
School of Agriculture, Engineering and Science 

 

 

 

 

 

Design and Analysis of a Multi-Trailer System for the Durban 

Container Terminal 

 

Theo Govender - 209508046 

 

In fulfilment of the MSc-Eng. Degree in Mechanical Engineering 

 

March 2018 

 

 

 

 

 

Supervisor: Dr. Michael Brooks 

Co-Supervisor: Dr. Clinton Bemont



i 

 

Preface 

The research contained in this Design and Analysis of a Multi-Trailer System for the Durban Container 

Terminal was completed by the candidate whilst based in the Discipline of Mechanical Engineering, 

School of Agriculture, Engineering and Science, University of KwaZulu-Natal, Howard College, South 

Africa. 

The contents of this work have not been submitted in any form to another university and, except where 

the work of others is acknowledged in the text, the results reported are derived from investigations 

undertaken by the candidate. 

As the candidate’s Supervisor, I agree to the submission of this thesis; 

 

_________________________ 

Signed: Dr. M Brooks 

 

Date: ………………………… 

  



ii 

 

Declaration - Plagiarism: 

I, Theo Govender declare that:  

(i) The research reported in this dissertation is my original work, except where otherwise indicated. 

(ii) This dissertation has not been submitted for any degree or examination at any other university.  

(iii) This dissertation does not contain other persons’ data, pictures, graphs or other information, unless 

specifically acknowledged.  

(iv) This dissertation does not contain another persons’ writing, unless specifically acknowledged: 

a) Where other written sources have been quoted, their words have been re-written but the 

general information attributed to them has been referenced.  

b) Where exact words are used, the writing is placed inside quotation marks, and referenced.  

(v) Where I have reproduced a publication of which I am the author, co-author or editor, I have indicated 

in detail which part of the publication was written by myself alone and have fully referenced the 

publication.  

(vi) This dissertation does not contain text, graphics or tables copied and pasted from the Internet, unless 

specifically acknowledged.  

 

Signed: ……………………………………………….  

Date: ………………………………………………….  

Place: ………………………………………………… 

 

  



iii 

 

Acknowledgements 

I wish to thank my supervisors, Dr Michael Brooks and Dr Clinton Bemont, for their continuous 

guidance and support which enabled me to complete this study. Your experience and expertise has been 

invaluable throughout this journey.  

I also extend my sincere gratitude to the following people: 

The operational staff at the Durban Container Terminal, who were ever willing to impart their 

knowledge on the terminals operations which proved vital for this study. 

My family, for always believing in me and my ability to complete this dissertation. Mom and Dad, your 

support goes beyond words.  

Lastly, to my Lord and Saviour Jesus Christ, thank you for your wisdom and grace which empowers 

me to keep going and never give up. 

  



iv 

 

Abstract 

Multi-trailer systems (MTS) allow for the transportation of multiple shipping containers in a single 

movement as opposed to the conventional trailer systems often used within a port terminal environment. 

The adoption of MTSs creates an opportunity for container terminal operators to reduce the operational 

costs associated with container movements between the container vessel and stacking areas during the 

vessel loading and unloading operations while maintaining, and in certain cases improving, the port’s 

quayside productivity. A reduction in operational costs can potentially result in lower tariffs levied to 

container vessel operators, improving the competitiveness of a port. 

While MTSs have been in existence for many years and have been successfully implemented in many 

international port container terminals, the influence of this type of trailer on the operational costs of the 

waterside horizontal-transport system and on the quayside productivity within South African ports has 

not been investigated or demonstrated to date. This study set out to determine the influence which an 

indigenously designed MTS has on the abovementioned factors at South Africa’s largest container port, 

the Durban Container Terminal.   

Discrete event simulations were used to benchmark the current performance of the container movement 

operations at Pier One of the Durban Container Terminal using the existing tractor-trailer units (TTUs). 

The performance of the operations was then analysed for the scenario of replacing the TTUs with MTSs 

that have twice the container carrying capacity. The results showed that nine MTSs can replace the 

existing fleet of fifteen TTUs without compromising on the quayside performance for the vessel 

unloading operations, which leads to a 25% reduction in operational costs. A reduction in labour costs 

accounts for 88% of the saving. Use of MTSs for the vessel loading operations showed minimal benefit 

and the performance using the existing TTUs for this operation can be considered equivalent. The 

results imply that an MTS configuration with the ability to uncouple the individual trailers in the set for 

use as TTUs was required. This lead to the selection of a semi-trailer lead MTS configuration 

incorporating the use of a converter dolly for the indigenous design conducted here. 

The indigenous MTS design consisted of two identical semi-trailers connected using a converter dolly, 

allowing for interchangeability in the MTS set and for use of the semi-trailers as TTUs. The terminal’s 

existing semi-trailers could have been used with the converter dolly designed in this study for the MTS, 

however an improved semi-trailer design with regards to mass, cost and manoeuvrability has been 

provided. The new semi-trailer design was shown to have a 21.4% lower tare mass and a 14.1% lower 

product manufacturing cost over the existing design. For the MTS configuration, up to an 11.6% 

improvement in manoeuvrability is expected when using the newly designed semi-trailer. 
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1 Introduction 

1.1 Port Container Terminals 

Port container terminals are designed for the handling and temporary storage of containerised cargo, 

where containers are loaded and unloaded from one mode of transport to another for the cargo to reach 

its intended destination. Intermodal containers, which are uniform steel boxes used for stowing various 

types or cargo, were introduced into the market for intercontinental transportation of sea freight 50 years 

ago and have proven to be the most economical method for packing cargo intended for transportation 

via sea [1].  Port container terminals utilise various handling equipment to facilitate container movement 

between a vessel (ship) and the container terminal’s storage yard, such as quay cranes (QCs), trailer 

systems, rubber tyre gantry cranes (RTGs) and straddle carriers (SCs). 

Studies show that in 1985, 4.9 million TEU (twenty-foot equivalent unit1) containers were in circulation 

world-wide and that by 1995 this figure had almost doubled to 9.2 million [2]. Today, there are more 

than 30 million TEU containers in active circulation being transported by nearly 5000 container vessels 

[3], with the number of containers expected to increase annually by 8.5% [4]. 

The growing number of container shipments creates increased competition for business between port 

container terminals, especially those in close geographic proximity. This in turn places increased 

demands on the container terminals with respect to container logistics, management of the terminal and 

the constant innovation in so far as container handling equipment is concerned [2]. The competitiveness 

of a port container terminal hinges on two main factors which are taken into consideration by ocean 

carriers, as well as hinterland trucking and railway services when selecting a container terminal [5, 6]: 

1. The total time spent at a port by a container vessel (transhipment time). 

2. The service rates charged for unloading and loading a vessel. 

A container terminal has an advantage over its competitors when it has a low handling turnaround time 

for the containers, which directly relates to a reduced transhipment time for container vessels, coupled 

with low service charges for the movement of the containers onto and off a vessel. 

 

 

 

 

 

 

 

1 A TEU is an approximate unit of cargo capacity based on the volume of a 20-foot-long (6.1 m) 

intermodal container. 
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1.2 Operational Costs of Port Container Terminals 

The operational costs associated with the daily functioning of port container terminals have a direct 

impact on the service charges levied to container vessel operators. While fuel prices have fallen in recent 

times, numerous port terminals have raised container handling charges which results in intermodal costs 

making up more than 50% of a vessel’s voyage operating cost, thus posing a major challenge for 

container vessel operators [7]. The rise in service charges levied by container terminal operators can be 

attributed partially to increases in labour and service costs, equipment maintenance costs, energy costs 

and administrative overheads year-on-year [8].    

The United Nations Economic and Social Commission for Asia and the Pacific (ESCAP/UNDP) has 

developed a model tariff structure consisting of four groups that account for the costs associated with 

operating a port container terminal i.e. the navigation service, the berthing service, the cargo service, 

and “other” business services. Each of these groups contain multiple services associated with several 

port operations [9]. Seedah et al. showed that the cost associated with a single vessel calling at a port 

terminal can be represented by Equation (1.1) [10]:  

 𝐶𝑇 = 𝐶𝑁 + 𝐶𝐵 + 𝐶𝐶 + 𝐶𝑂   (1.1) 

Where:  𝐶𝑇 = total cost of the vessel call 

𝐶𝑁 = costs associated with navigational services 

𝐶𝐵 = costs associated with berth services 

𝐶𝐶 = costs associated with cargo operations 

𝐶𝑂 = all other costs not captured in any of the variables above 

The navigation service includes pilotage and tug services. Berth services, which are regarded as the 

interface between the marine transport and inland transport at a port, include berth hire and handling 

using terminal handling equipment such as QCs, trailer systems, SCs and RTGs. Cargo operations 

include activities and services such as storage and handling of cargo into and out of the port which 

includes cargo transfer via road trucks and rail. Other costs such as port security, management services, 

and provision of utilities are necessary for the overall management and operations of the port and fall 

under “other” business services; they are relatively minor in comparison with the other categories. 

Determining the exact total cost of a vessel call is complex in nature and varies among ports based on 

the number of operations associated with a vessel calling, however the generalised model represented 

by Equation (1.1) provides a relatively good estimate for comparative purposes [10]. Seedah et al. [10] 

showed that berthing service costs can make up almost 40% of the total cost of the vessel call, indicating 

that a terminal’s operational cost surrounding vessel docking duration and the use of terminal handling 

equipment for container transfer between the vessel and storage area forms a key component in 
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determining the service tariffs levied to container vessel operators. The efficiency of berthing services 

thus heavily influences the competitiveness of the container terminal.   

1.3 The Waterside Horizontal-Transport System 

1.3.1 Background 

The waterside horizontal-transport system forms the interface between the ship-to-shore system and the 

storage system of a port container terminal. The horizontal transport equipment generally utilised by 

container terminals are SCs, automated guided vehicles (AGVs) and tractor-trailer units (TTUs).  When 

a container vessel calls at a port and is allocated to a berth, QCs (which forms the ship-to-shore system) 

are used to unload containers from the vessel and transfer them to the waterside horizontal-transport 

system. The performance objective of waterside horizontal-transport system is efficient, smooth and 

fast transfer of containers between the QCs and the storage yard of the container terminal [11]. SCs are 

classified as active vehicles as they are fitted with container lifting devices which allow them to load 

and unload containers themselves from the terminal’s storage area. TTUs and AGVs are classified as 

passive vehicles as they require the assistance of other terminal equipment for loading and unloading 

containers [12]. TTUs and AGVs have a safe working load capacity of two TEUs; SCs can carry one 

20-foot container, one 40-foot container or two 20-foot containers simultaneously, depending on the 

lifting device.  Figure 1.1 shows an illustration of the horizontal-transport vehicles described.  

 

 

Figure 1.1: Schematic illustration of horizontal-transport vehicles. (a) Tractor-trailer unit (TTU). 

(b) Straddle carrier (SC). (c) Automated-guided vehicle (AGV). [12] 
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1.3.2 Multi-Trailer Systems 

A multi-trailer system (MTS) allows for the transportation of multiple containers using a single tractor 

as opposed to the traditional TTU vehicle configuration. An MTS consists of a tractor that pulls several 

trailers, each trailer having a carrying capacity of two TEUs. Port terminal operators consider the use 

of MTSs as a potentially attractive option for increasing port terminal efficiency by decreasing 

operational costs for the waterside-horizontal transport subsystem while maintaining, or even 

potentially increasing, QC productivity and hence reducing vessel berthing time. In recent times, 

European container terminal operators have implemented MTSs with two to three trailers in a set for 

the short distance vessel to stacks operation as a method of increasing container transportation 

efficiency [13]. Figure 1.2 below depicts a three-trailer MTS at the Port of Manila with a carrying 

capacity of 6 TEUs. 

 

Figure 1.2: Semi-trailer led MTS [14] 

A study conducted by Goussiatiner [13] on the efficiency of MTSs for vessel to stacks container 

transportation using discrete event simulation (DES) modelling showed that the use of MTSs can lead 

to a higher gross QC productivity by reducing the delay between trailer arrivals at the QCs, hence 

reducing vessel berthing time. Of more significance was his finding that MTSs can achieve the same 

QC productivity levels as TTUs, but with fewer vehicles in the fleet, leading to a lower operating cost 

for the waterside horizontal-transport system. The study also showed that a two trailer MTS gives the 

greatest fleet reduction margin (while maintaining QC productivity) between incrementally longer MTS 

systems where the length of the trailer set is longer by one trailer. Similar results could be expected for 

other container terminals using trailer systems. This relationship is depicted in Figure 1.3 and Figure 

1.4 for a varying distance between the vessel and storage area. The time quality index (TQI) is a direct 

measure of QC productivity used in the study, defined by Equation (1.2), where 𝑇𝑑 is the QC average 

cycle time and 𝑇𝑤 the average time between trailer arrivals at the QC [13]. A 100% TQI is achieved 

when the delay between trailer arrivals at the QC is reduced to zero, maximising their productivity.  



5 

 

 
𝑇𝑄𝐼 =  

𝑇𝑑

𝑇𝑑 + 𝑇𝑤
   (1.2) 

 

Figure 1.3: The effect of MTSs on time quality indicator for a ship-to-stack distance of 500 m. [13] 

 

Figure 1.4: The effect of MTSs on time quality indicator for a ship-to-stack distance of 1250 m. [13] 
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1.4 The Durban Container Terminal 

The Port of Durban, which has the largest container terminal in the southern hemisphere, has seen 

continuous growth from 72000 containers handled per year in 1979, to the current volumes of TEUs 

exceeding 3.6 million a year [15]. The Durban Container Terminal, which forms part of the Port of 

Durban and is the largest container terminal in Africa, is divided into two areas which are Pier One and 

Pier Two. Pier One utilises TTUs to transport the containers between the QCs and the storage yard, 

where RTGs then transfer the containers between the trailer and the stacking area. The operation at Pier 

Two differs from Pier One in that straddle carriers are used as the transport vehicle between the QCs 

and the stacking area. Pier One has a total of three berths where vessels of up to 4,500 TEU can be 

safely accommodated. The Durban Container Terminal handles 69% of South Africa’s national 

throughput of containerised cargo [16]. Figure 1.5 shows an aerial view of Pier One and Pier Two of 

the Durban Container Terminal. Figure 1.6 shows a satellite image of Pier one depicting the QCs, 

stacking areas and a berthed vessel. This study is concerned with the operations at Pier One only, where 

TTUs are employed. 

 

Figure 1.5: The Durban Container Terminal [17]  

Pier One 

Pier Two 
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Figure 1.6: Satellite image of Pier One 

In a 2012 study by the Centre for Competition, Regulation and Economic Development (CCRED), it 

was found that the average terminal handling charge per vessel call at the Durban Container Terminal 

was 84% higher that the global average [18], making it one of the most expensive terminals in the world. 

As can be seen in Figure 1.7, which shows the average terminal handling charges for 20 ports across 

the globe, the Durban Container Terminal charges US$275,000 for an average vessel, significantly more 

than the global average price of US$150,000 [18].  

 

Figure 1.7: Average terminal handling charges (US$), 2012 [19] 

 

Quay Cranes 

Stacking Areas 
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While the study acknowledges the difficulty of accurately comparing port charges because port pricing 

structures differ worldwide, it also states that “South Africa’s port charges have been said to be among 

the most expensive in the world, and if correct this would undermine the government’s strategy to 

promote growth of the manufacturing sector and the export of manufactured goods” and “A concerted 

effort is required to reduce South African tariffs in order to stimulate economic development” [18]. 

Research conducted by Simpson [20] shows that there is mixed evidence on the operational efficiency 

at the Port of Durban and that a reduction in operational costs coupled with an increase in the efficiency 

of the operations should be a key focus for the terminal. Inherently, reductions in operational costs as 

well as an increase in operational efficiency can potentially lead to reductions in the charges levied to 

container vessel operators while maintaining the profitability of a port terminal. 

1.5 Research Objectives 

This study set out to determine whether an indigenously designed two-trailer MTS can reduce 

operational costs of the waterside-horizontal system and increase productivity at Pier One of the Durban 

Container Terminal. Specifically, the study addresses the following objectives: 

1. Characterise the existing container terminal operation at Pier One with respect to container 

movement. 

2. Model the container operations to establish the effects of using an MTS fleet instead of the 

existing TTUs. 

3. Propose a design of an indigenous MTS based on the results from (2) above. 

4. Carry out a full analysis of the design and optimise with respect to mass, cost and 

manoeuvrability.  

Numerous international port terminal operators use MTSs for the movement of containers between the 

vessel and stacking area, but to date, the use of MTSs within South African ports has not been 

demonstrated and the potential effects have not been investigated. Using vehicles that are capable of 

transporting a larger number of containers in a single movement may enable South African terminal 

operators to reduce labour and equipment costs without negatively affecting the terminal’s performance, 

but no study has been done in this regard and the Port of Durban has not considered the use of trailer 

systems capable of carrying more than two TEUs in the container terminal environment. Chapters 2 and 

3 address this shortcoming.  

While there are various internationally designed and manufactured MTSs available in the market, there 

is no locally developed product able to meet the technical and functional requirements for trailer 

equipment allowed to be operated in the Durban Container Terminal, therefore there exists an 

opportunity to implement an indigenous MTS design. A system which is designed and manufactured 

using predominantly locally available components not only adds to the capabilities and skills 
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development of the country, but is also in line with the South African Government’s policies on 

localisation for economic growth [21]. The results from Chapters 2 and 3 serve as motivation for the 

proposed design of the MTS described in Chapters 4 to 7. 

1.6 Report Layout 

The layout of this dissertation is as follows: 

a) Chapter 2 presents relevant information about container terminal operation, container handling 

equipment and the vessel unload and loading procedures at the Durban Container Terminal. The 

research methodology and approach for carrying out this project are also described. 

b) Chapter 3 details a comparative study of the vessel loading and unloading procedure at the Durban 

Container Terminal for the conventional TTUs used versus a two- trailer MTS using discrete event 

simulation (DES) modelling.  

c) Chapter 4 discusses relevant trailer design methods and equipment which will be used in the design 

of a suitable MTS. 

d) Chapter 5 presents a detailed and indigenous MTS design suitable for the Durban Container 

Terminal. 

e) Chapter 6 presents a turning analysis for the designed MTS. 

f) Chapter 7 details a system comparison between the MTS designed and the TTUs used at the Port 

of Durban. 

g) Chapters 8 and 9 provide a discussion of the results and a conclusion of the study, respectively. 
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2  Container Terminal Operation 

2.1 Introduction 

In this chapter, the background on container terminal operation, container handling equipment and the 

container movement operations at Pier One are presented. It is drawn from the first part of the journal 

article published in the South African Journal of Industrial Engineering (SAJIE) by the author and 

supervisors (Govender et al., 2017) [22]. The methodological approach followed for this study is also 

provided. 

2.2 Background 

Steenken et al. [2] defines a container terminal as “open systems of material flow with two external 

interfaces”. These two interfaces are the quayside where vessels are either loaded or unloaded with 

containers and the landside system where containers are loaded or unloaded from external trucks or 

trains. When a container vessel arrives at a port, it is assigned to a berth which is equipped with QCs. 

The QCs are used to load and unload containers to and from the vessel. Unloaded containers are 

transported to the storage yard using equipment such as TTUs.  These containers are then picked up by 

external trucks or placed onto trains for transportation to their final destination. Containers to be 

exported are transported to the terminal by external trucks or trains where they are then placed into the 

storage yard. The containers are subsequently transported from the yard to the QCs where they are 

loaded onto the vessel.  Figure 2.1 shows the general operation of a container terminal. 

 

Figure 2.1: General operation of a container terminal [23] 
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2.3 Container Handling Equipment 

2.3.1 Quay Cranes 

A QC is a type of crane used at container terminals for the loading and unloading of containerised cargo 

from vessels. Unlike conventional cranes which utilise hooks, QCs are equipped with a handling device 

called a spreader that is lowered onto the top of a container and then locks into its four corner castings. 

QCs usually transport a single container during movements, however most modern QCs have the ability 

to move four TEUs at once (four 20 ft. containers or two 40 ft. containers). Figure 2.2 depicts multiple 

QCs in position, ready to move containers onto/off a vessel. 

 

Figure 2.2: QCs positioned to move containers off and onto vessels [24] 

2.3.2 Trailer Systems 

Movement of containers between the QCs and the storage yard is achieved using equipment such as 

TTUs or MTSs. The trailers, which are generally of a skeletal type, are connected to terminal tractors. 

The tractors are designed for optimal speed-to-tractive-effort performance to move the heavy loads 

between the QCs and storage yard. As mentioned previously, trailer systems fall into the category of 

‘passive’ vehicles since they are unable to lift containers by themselves. Figure 2.3 depicts a TTU used 

at the Durban Container Terminal, while Figure 2.4 shows a three-trailer MTS with a 6 TEU carrying 

capacity at the Port of Manila. 
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Figure 2.3: Existing tractor-trailer unit used at the Durban Container Terminal 

 

Figure 2.4: Three-trailer MTS at the Port of Manila [14] 

2.3.3 Rubber Tyre Gantry Cranes 

For terminals using TTUs or MTSs as the horizontal transport medium, RTGs are used to lift and place 

containers from the stacking areas onto the trailers and vice versa. The stacking area of a container 

terminal is a temporary storage area for containers waiting to be loaded onto a vessel for export or 

imported containers waiting to be transported to their final destination by external trucks or train. 

Containers are stacked on top of each other to a maximum of five or six containers high depending on 

the height and span of the RTG used. Figure 2.5 depicts an RTG stacking containers. 

 



13 

 

 

Figure 2.5: RTG stacking containers [25] 

2.4 Durban Container Terminal - Pier One Operation 

Pier One of the Durban Container Terminal is an RTG terminal which utilises TTUs as the horizontal 

transport medium between the vessel and stacking area. Pier One has a total of three berths - 105 to 

107. A vessel is said to be at berth 106 when it is positioned midway between berths 105 and 107. A 

total of six QCs service the three berths. The QCs and the RTGs at Pier one are fitted with single lifting 

devices which can only lift one container at a time. The storage yard for Pier One has 21 storage blocks 

(block A1 to G3) where containers are stacked five-high and six-wide. Figure 2.6 shows the yard layout 

of Pier One. 

 

Figure 2.6: Pier One yard layout at the Durban Container Terminal 
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2.4.1 Vessel Unloading Procedure 

Three QCs are used per vessel for the unloading procedure at Pier One for vessels in excess of 250 

meters in length with over 2000 containers on board [26]. For smaller vessels (less than 250 meters), 

one or two QCs are used. The terminal uses a rule of five TTUs per QC when determining the number 

of TTUs required for a vessel unloading operation, however the TTUs are not bound to a specific QC 

but can service any QC being used to unload the vessel concerned [26]. Storage blocks D1 to G3 (Figure 

2.6) are allocated for containers unloaded from a vessel (imported containers) [26]. The terminal has a 

rule of two RTGs per QC when determining the number of RTGs required for a vessel unloading 

operation [26]. These RTGs are positioned at the respective storage blocks which the containers to be 

unloaded are assigned to. The TTUs circulate between the QCs and the RTGs until all the containers 

which are to be unloaded from the vessel are stacked in the correct storage blocks. Unloaded containers 

are allocated a predefined position to be placed in a stacking block; the position at which a container is 

placed in the yard is recorded after it has been placed [26]. 

2.4.2 Vessel Loading Procedure 

Similar to the vessel unloading procedure, three QCs are used per vessel for the loading procedure at 

Pier One for vessels in excess of 250 meters in length with over 2000 containers on board [26]. One or 

two QCs are used for smaller vessels. The Durban Container Terminal’s rule for determining the 

number of TTUs and RTGs required for the loading procedure is the same as that for the unloading 

procedure, that is, five TTUs and two RTGs per QC. Storage blocks A1 to C3 are designated for 

containers to be loaded onto a vessel (export containers). Unlike the vessel unloading procedure, the 

containers to be loaded onto a vessel have predefined blocks and stacking positions in which they are 

stored in the yard [26]. Five TTUs are designated to service one particular QC and these TTUs will 

circulate between their assigned QC and the storage block which holds the containers to be loaded onto 

the vessel by the assigned QC [26]. It is common practice for the terminal to keep most of the containers 

that are designated to be loaded onto the vessel by a particular QC in a single storage block. Export 

containers are generally stacked in the yard according to the position they are to be loaded onto the 

vessel, that is, containers to be loaded towards the bottom of the vessel are usually stacked towards the 

top end of the storage blocks [26]. This is done to minimise container shuffling in the yard, which can 

become a common occurrence. 
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2.5 Research Methodology 

One of the objectives of this project was to determine if a reduced fleet of MTSs can replace the current 

fleet of TTU’s at Pier One of the Durban Container Terminal to reduce operational costs of the 

waterside-horizontal system and potentially reduce vessel berthing time by improving QC productivity. 

The analysis was carried out by means of discrete event simulation using ArenaTM software. Based on 

the results of the simulation, the required MTS configuration was determined and a suitable vehicle was 

then designed based on the terminal’s functional requirements for trailer equipment. The designed MTS 

was structurally verified using finite element analysis (FEA) software package ANSYS® and its turning 

performance assessed using the software package BricsTurn®.  

The progression phases for the study were as follows: 

1. Simulate the unloading and loading procedure for a container vessel at Pier One using TTU’s 

as the transport medium between the vessel and stacking area by means of a DES model to 

replicate the present operation of the terminal.  

2. Simulate the same procedure from (1) above but increase the carrying capacity of the trailers 

to 4 TEUs to simulate that of a two-trailer MTS. Determine the effect on the QC productivity 

and perform a preliminary operational cost comparison of the waterside-horizontal transport 

system to understand the benefits of using an MTS fleet. 

3. Based on the simulation results from 2, determine the MTS configuration required. 

4. Design a suitable MTS using locally available components and verify the integrity of the 

structure using FEA. Ensure that the vehicle designed can be manoeuvred within the terminal 

yard based on the current layout of the stacking area. 

5. Compare the performance of the designed MTS to the current vehicles used at the terminal 

with regards to mass, manufacturing cost, turning performance and the operational costs 

associated with each vehicle type. 

2.6 Chapter Summary 

This chapter has presented the background information on container terminal operation as well as a 

detailed description of the vessel loading and unloading procedures used at Pier One of the Durban 

Container Terminal. Information on the types of container handling equipment and vehicles used in this 

environment was also presented. Lastly, the methodological approach followed for this research was 

described. 
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3 Container Movement Simulation Model 

3.1 Introduction 

This chapter concentrates on the DES models that were developed using ArenaTM to simulate the vessel 

loading and unloading procedure at Pier One of the Durban Container Terminal. The model parameters 

were estimated using physical data obtained from time and measurement studies at the terminal. The 

aim of the simulation was to determine the effect on QC productivity and operational costs for the 

waterside-horizontal transport system when using two-trailer MTSs instead of the currrent fleet of 

TTUs. This chapter is drawn from the second part of the journal article by Govender et al. [22] published 

in the South African Journal of Industrial Engineering. 

3.2 Existing Port Terminal Simulation Studies 

Several analyses of port terminals and their cargo transportation activities using simulation techniques 

can be found in literature [2, 27, 28, 29, 30, 31]. While queuing theory and mathematical algorithms are 

used by some authors to model the complex activities of a port terminal, simulation modelling has been 

adopted by numerous researchers as an alternative method for analysing port terminal systems at the 

macroscopic level of operations. The use of queuing theory and other analytical methods for modelling 

provides acceptable results for non-complex systems, however for systems where the probability 

distributions used to represent the service time of the various activities involved differ from the Erlang 

family, analytical methods have been found to lead to unsatisfactory results [27]. Additionally, the 

complex and dynamic nature of a container terminal’s operations can lead to difficulty in obtaining 

theoretical solutions using analytical methods [28]. 

Robinson [29] describes a discrete event simulation as “a simulation which models the operation of a 

system as a discrete sequence of events in time”. Each event occurs at a particular instant in time and 

marks a change of state of the system. The ability to model complex systems accurately has led to 

various simulation studies using DES for port terminal operations. A few authors have conducted 

studies on the operation of container terminals using DES. Adam [30] used DES to identify and 

investigate the logistic bottlenecks which exist at the Male’ Commercial Harbour. The model was used 

to analyse vessel berthing time, berth capacity, yard capacity and utilisation of the various container 

handling equipment at the port. The results showed that the berth capacity was the main contributor to 

the long queues and vessel delays experienced at the harbour. Kotachiav et al. [31] proposed a generic 

DES which modelled container terminal port operations with various resource types which included the 

different container handling equipment. The analysis considered the effect of varying model inputs to 

measure the impact on the outputs which included equipment utilisation, waiting times and throughput. 

Park [23] presented a DES model for analysing the performance of four Korean container terminals. 

Their model focused on obtaining the optimal container throughput for each terminal and the associated 

financial implication for the Korean Busan Container terminal for the optimum throughput. Data was 
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collected at each of the terminals and used as inputs into the model. The results showed that for an 

optimal throughput of 550 000 TEUs for the Korean Busan Container terminal, the associated social 

costs (the terminal’s cost of operation plus the external costs borne by third parties) rise sharply while 

there is a minimal increase in corporate profit. Kulaka et al. [32] developed an ArenaTM-based 

simulation model to analyse the operations of the Haydarpasa Container Terminal. This was aimed at 

identifying potential bottlenecks at the quay cranes, storage yard and the transportation system by 

examining the terminal’s equipment productivity, utilization and average waiting times. Gori et al. [33] 

developed a micro-simulation model using discrete events to analyse the operations at the Port of 

Civitavecchia. The entire process from vessel arrival to departure is modelled, which includes vessel 

navigation to the berth, handling operations at the berth and external truck arrivals. The model allows 

for specific calibration for each kind of vessel and the type of freight transported. 

The research presented by the above authors generally focused on port performance from a macroscopic 

level and little work has been published regarding dedicated analysis of the waterside horizontal-

transport system. Recently, Kulatunga et al. [34] investigated the effect of changing a container 

terminals’ equipment fleet size on the performance of the terminal during the vessel unloading 

procedure only. The research methodology was twofold; the performance and operational efficiency for 

a generalised container terminal layout was determined analytically, thereafter an optimised layout was 

determined using DES. The optimum TTU fleet size was then determined using DES for the previously 

determined optimal yard layout and for a minimised QC idle time. One of the few available reports on 

the use of MTSs in container terminals was a dedicated investigation into the efficiency of multi-trailer 

systems used for transporting containers from the QC to the stacking area, conducted by Goussiatiner 

[13] using DES. The focus of the investigation was on the influence of the travel distance between the 

quayside and the stacking area has on the optimum trailer fleet size and container carrying capacity per 

MTS for maximised crane productivity. The study, which analysed the vessel unloading operation only, 

showed that for a ship-to-stacks distance exceeding 500 meters a fleet of single TTUs can be replaced 

by a smaller fleet of two-trailer MTSs while maintaining the same crane productivity at a lower 

operating cost per shift.  

This work builds on the study done by Goussiatiner [13], who considered only a single QC and RTG 

for the unloading operation with assumed statistical distributions to represent the container handling 

and transporting equipment’s cycle times. As an extension to that study, the present work considers 

both the vessel loading and unloading operations with a larger fleet of QCs, TTUs and RTGs, each 

represented by statistical distributions obtained from physically measured data sets. The model 

described in this chapter takes into consideration each of the individual activities of the various handling 

equipment and vehicles during the loading and unloading process and represents the cycle times of 

these activities as separate statistical distributions, whereas Goussiatiner adopted the use of single 
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statistical distributions to represent the holistic cycle time for each type of transporter. Similarly, this 

simulation study looks at reducing operational costs of a container terminal by using MTSs instead of 

TTUs. 

3.3 The Discrete Event Simulation Model 

3.3.1 Introduction 

Discrete event simulation is the method of using computer software to imitate the behaviour of a 

complex system as an ordered sequence of well-defined events over period of time [35]. The simulations 

involve objects known as “entities” which move around, change status and affect each other and the 

state of the system [36]. These entities compete for service from resources that represent equipment, 

people or space in a storage area. An entity seizes a resource when available and releases it when 

finished [30]. In the model created in this study, the entities are the 20 ft. and 40 ft. containers and the 

resources are the QCs, TTUs, MTSs and the RTGs which are modelled as transporters. The QC and 

RTG container processing times are represented using probability distributions, as well as the time 

delays representing the transfer of containers from the QCs/RTGs to the trailer systems and vice versa. 

The sequence of events associated with container movements during the loading and unloading 

operations are modelled using process logic to replicate the actual operations observed at the terminal.      

3.3.2 Model Structure 

The loading and unloading models created in ArenaTM were set up for a single vessel with a length of 

300 meters and a carrying capacity of 2000 containers with a 45% 20 ft. : 55% 40 ft container ratio [37]. 

The vessel length and quantity of containers selected was based on the average vessel calling at Pier 

One of the Durban Container Terminal [26]. The vessel was positioned at berth 106 for each scenario, 

analagous to the berth used when only a single vessel has called at the terminal. Three QCs, fifteen 

TTUs and six RTGs were used in the simulations to conform to the general equpiment assignment rule 

used by the terminal. The models were set up to represent the procedure oberved at the terminal for 

both the loading and unloading operations. The models were then modified by replacing the TTU fleet 

with a fleet of two-trailer MTSs capable of transporting four TEUs and the results compared. 

3.3.3 Data Collection 

Qualitative and quantitative data was collected by conducting interviews, on-site observations and time 

measurements at Pier One. Qualitative data was obtained from interviews with the operational staff at 

the terminal to understand the logistics, operational processes and performance of the terminal with the 

current TTU setup for the vessel loading and unloading procedures. The data collected during the 

interviews and on-site observations was used to replicate the actual container movement processes 

between the vessel and the stacking area using the DES models created for the current layout of the 

terminal yard. Quantitative data was obtained by conducting physical time studies at the terminal for 
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the individual core processes which make up the complete operations. Data sets for the QC cycle time, 

RTG cycle times and the various transfer delays observed in the processes were collected to map the 

movement of the containers for the simulation. Distance measurements were conducted for the TTU 

routing from the quayside to the stacking areas and incorporated into the model. 

3.3.4 Model Input Parameters 

The data sets collected for the QC cycle times, RTG cycle times and the various observed transfer delays 

were used to generate suitable probability distributions for use as input parameters in the DES model. 

This was achieved using the ArenaTM’s Input Analyser which is designed specifically to fit probability 

distributions to measured data sets, provide approximations of the parameters and assess the accuracy 

of the probability distributions assigned to a set of data [36]. ArenaTM requires the data sets to be 

recorded using text files (.txt) for processing and distribution estimation, therefore all the individual 

data sets were organised as such. ArenaTM’s Input Analyser automatically provides numerical measures 

for the quality of a fit for an assigned distribution, which is the mean square error, Chi-square and 

Kolmogorov-Smirnov goodness-of-fit tests. These tests were evaluated for all data sets to ensure 

accurate distributions where obtained. Table 3.1 shows a summary of the simulation model input 

parameters. Figure 3.1 and Figure 3.2 shows the distribution summary of the QC cycle times. 

Table 3.1: Summary of the simulation model input parameters 

Designation Unloading Model Inputs Loading Model Inputs Units 

QC Cycle time 0.63 + ERLA(0.23, 5) 0.73 + ERLA(0.174, 6) Minutes 

RTG Cycle Time to Stacks - 

Tier 1 
1.21 + WEIB(1.19, 2.37) 

3 + ERLA(0.0786,5) 

Minutes 

RTG Cycle Time to Stacks - 

Tier 2 
0.26 + LOGN(1.07, 0.581) Minutes 

RTG Cycle Time to Stacks - 

Tier 3 

0.16 + 2.84 * BETA(2.44, 

2.82) 
Minutes 

RTG Cycle Time to Stacks - 

Tier 4 

0.03 + 2.97 * BETA(1.82, 

2.42) 
Minutes 

RTG Cycle Time to Stacks - 

Tier 5 
0.18 + LOGN(1.15, 0.611) Minutes 

Trailer Lowered / Lifted 5 5 Seconds 

Trailer lifted plus twist locks 

removed 
8 - Seconds 

Trailer to QC transfer delay 16.5 + WEIB(2.99, 1.73) 20 + WEIB(2.31, 1.69) Seconds 

Trailer to RTG transfer delay 20.5 + WEIB(2.99, 1.73) 23 + WEIB(2.15, 1.46) Seconds 

TTU/MTS average velocity 20 20 km/hr 
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Figure 3.2: Distribution summary for 

the QC cycle time – vessel loading 

Figure 3.1: Distribution summary for 

the QC cycle time – vessel unloading 

                       

                                                   

 

As can be seen in Table 3.1, a single statistical distribution is used to represent the RTG cycle time in 

the loading model, as opposed to the RTG tier-based cycle time distributions used in the unloading 

model to represent stacking of the containers in the five-high storage blocks. This is due to shuffling of 

containers in the yard during the loading process whereby containers in the stack are sometimes moved 

around to get to the required container to be loaded onto the vessel in the correct sequence. For the 

vessel unloading model, 20% of each container type (20 ft. or 40 ft.) is assigned to a single tier since 

different container types are not stacked on top of each other in the yard. An average velocity of 20 

km/hr. was used to model the TTU/MTS movement (loaded and unloaded), analogous to the velocities 

used in the studies conducted by Goussiatiner [13] and Yun et al. [37].  This velocity is approximately 

consistent with the average TTU velocity at the Durban Container terminal, which has a maximum 

speed limit of 30 km/hr for these vehicles. The time involved in aligning the RTG or QC spreader when 

lifting a container from a trailer, as well as aligning the trailer to accept a container by a RTG or QC, 

was based on observation and modeled as a transfer delay using Weibull (WEIB) distributions. The 

time delay for lowering and lifting a trailer by the tractor, as well as the time delay for removing the 
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twist locks in the unloading model, was modelled as a constant value rather than a probability 

distribution as the time to perform these processes were observed to be approximately constant. The 

Erlang (ERLA) probability function was assigned to the QC data set for both models, while the use of 

the Beta (BETA) and Lognormal (LOGN) probability functions were utilised for the Tier 2 to Tier 5 

RTG cycle time to stacks for the unloading model, 

3.3.5 Vessel Unloading Model 

The storage blocks selected for the offloading simulation model were F1 to F3 and G1 to G3 as these 

are the areas allocated for containers unloaded from the same vessel (Figure 3.3). Each of these storage 

blocks operates with a single RTG, as per the terminal’s stacking operation. The three QCs were spaced 

equally along the length of the vessel while the RTGs were positioned at the middle of the respective 

storage blocks. The QCs have an equal number of each type of container to unload from the vessel. 

When a QC offloads a container from the vessel, a TTU is requested by the QC for the container to be 

loaded onto. If a 20 ft. container is loaded, the trailer will wait underneath the QC for another 20 ft. 

container to be loaded before it leaves for the stacking area. This is consistent with the operations at the 

terminal to ensure that a TTU is loaded to its maximum carrying capacity of two TEUs during container 

movements. When the TTU leaves for the stacking area it will travel along the side between blocks A1 

to F1 and enter the stacking area between blocks F and G. Figure 3.3 shows the path followed by the 

TTUs/MTSs. Depending on RTG availability, a TTU will either drive up to a non-busy RTG or join a 

queue with the least number of TTUs at an RTG waiting to be served. The RTGs stack containers five 

high by six wide in the storage blocks. Once the TTU has been completely unloaded by the RTG it will 

return to the quayside and be loaded by a QC requesting its service, restarting the cycle. The TTUs are 

not bound to a specific QC or RTG, as per operational practice. Figure 3.4 shows the unloading model 

using ArenaTM with the QC, TTU and RTG operation cycles highlighted. To compare the performance 

of the unloading procedure when using a fleet of MTSs instead of TTUs, a modified model was created 

with vehicle capacities of four TEUs to simulate an MTS with two trailers in its set. Figure 3.5 shows 

the model architecture for this operation with the logic processes referenced to Figure 3.4. The setup of 

the MTS model is similar to that shown in Figure 3.4 , with modifications made to the model logic to 

accommodate the increased carrying capacity of the trailers. 
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Figure 3.3: Paths followed by the TTUs and MTSs 

3.3.6 Vessel Loading Model 

The storage blocks selected for the loading operation were blocks A2, B2 and C2 (See Figure 3.3), 

analogous to the stacking blocks used at the Durban Container Terminal for the loading of vessels that 

are at berth 106. Two RTGs were assigned to each block, with each RTG having an equal number and 

type of container to be offloaded from the stacking area. All the containers from an individual block 

were assigned to a specific QC; containers from block A2 were assigned to QC 1 which was positioned 

towards the left end of the vessel, containers from block B2 were assigned to QC 2 which was positioned 

at the middle of the vessel and containers from block C2 were assigned to QC 3 which was positioned 

towards the right end of the vessel. Unlike the multi-serving TTUs from the vessel unloading operation, 

the five TTUs per QC for the vessel loading operation circulate between a single QC and its 

corresponding storage block. The TTUs are loaded with either two 20 ft. containers or one 40 ft. 

container by the RTGs and then travel to the respective QC to be unloaded. Once unloaded, the TTUs 

travel back to the stacking area to be loaded with containers again, repeating the cycle until the storage 

blocks are void of all containers. Figure 3.6 shows the ArenaTM model logic for the QC 1 – block A2 

pair. To compare the performance of the loading procedure when using a fleet of MTSs, a modified 

model was created with vehicle capacities of four TEUs to simulate a short MTS with two trailers in 

the set. Figure 3.7 shows the model architecture for this operation with the logic processes referenced 

to Figure 3.6. The setup of the MTS model is similar to that shown in Figure 3.6, with modifications 

made to the model logic to accommodate the increased carrying capacity of the trailers. 
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Figure 3.5: Model architecture for the vessel unloading procedure using TTUs 
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Figure 3.7: Model architecture for the vessel loading procedure using TTUs 
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3.3.7 Model Assumptions 

Due to the extremely complex nature of modelling the operations at container terminals [38], 

assumptions were made while developing the models for the loading and unloading operations at Pier 

One for the currently used TTUs and the proposed MTSs. These assumptions are as follows: 

➢ The trailers are always loaded to their maximum carrying capacities i.e. 2 TEUs for the TTUs 

and 4 TEUs for the MTSs.  

➢ The 3 QCs are equally spaced apart at berth 106. 

➢ The QCs and RTGs are fixed in space i.e. the transfer points with the trailers are always the 

same. 

➢ The QCs and RTGs each have the same quantity and type of containers to load onto the trailers 

for the unloading and loading models respectively. 

The assumptions made are consistent with the studies conducted by Goussiatiner [13], Yun et al. [37] 

and Kulatunga et al. [34].  

3.3.8 Results 

3.3.8.1 Model Verification and Validation 

Kelton et al. [36] describes model verification as “the task of ensuring that the model behaves as 

intended”, alternatively known as debugging the model. Model validation is ensuring that the model 

behaves in the same manner as the real system being simulated [36]. 

The models were verified using ArenaTM’s run controller tool to monitor the simulation programme in 

stages as the entities (containers) moved from one resource to the next to ensure that the correct transfers 

and process time delays occurred as required.  An animation was also created in ArenaTM so that the 

activities and movements which were occurring in the system could be viewed. This was done to 

confirm that logic implemented created the system intended. Figure 3.8 shows the run controller tool 

and the animation created for the models. The simulation models were each run for 20 statistically 

independent replications to obtain a better estimate of the mean performance by using multiple samples 

[39]. 
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Figure 3.8: Run controller tool and animation in ArenaTM 

Quay crane productivity, which is measured as the average number of containers moved per hour by 

the QCs, is the parameter used by the terminal to measure its vessel loading and unloading performance 

as this productivity determines the total time required to load/unload a vessel. The total number of 

containers which are loaded/unloaded from a vessel is divided by the sum of the individual operation 

times for the QCs utilised, yielding the average QC productivity for the vessel concerned. The general 

terminal performance for the unloading procedure is approximately 28 moves/hour, whereas for the 

loading procedure 26 moves/hour is most commonly achieved [26]. The simulation results for the 

average QC productivity of each operation were validated against the actual terminal performance.  The 

average TTU cycle time, measured from arrival underneath the QC until returning to the quayside, was 

recorded for both operations for the scenarios of carrying a single 40 ft. container or two 20 ft. containers 

and compared to the average simulation results. Table 3.2 shows the comparison between the simulated 

and measured results for each procedure. The average results for the QC productivity and TTU cycle 

time from the simulation versus the actual average measured data shows marginal difference and 

provides acceptable accuracy of the model.   

Animation 

Run controller tool 
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Table 3.2: A comparison of measured and simulated results 

Parameters Units 

 Vessel Unloading   Vessel Loading 

Measured 

Average 

Simulation 

Average 

% 

Difference 

Measured 

Average 

Simulation 

Average 

% 

Difference 

QC 

Productivity 
Moves/hour 28 27.21 2.90% 26 26.15 0.57% 

TTU Cycle 

Time - 2 x 20 

ft. Containers 

Minutes 9.62 10.31 6.67% 8.56 8.69 1.51% 

TTU Cycle 

Time - 1 x 40 

ft. Container 

Minutes 6.03 6.35 5.06% 2.67 2.78 3.96% 

 

3.3.8.2 Vessel Unloading Model Results 

The average QC productivity results for a varying fleet size of TTUs and MTSs were obtained from the 

respective unloading simulations and graphed, shown in Figure 3.9. The number of QCs and RTGs in 

the system was kept constant to analyse the effect that the trailer type and fleet size has on the terminal 

performance for the unloading procedure. For an equivalent fleet size of fifteen vehicles each, the MTS 

allows the QCs to operate at a productivity of 28.48 moves per hour, marginally higher than the QC 

productivity achieved with the current TTU setup. This is attributed to the average QC ‘waiting for a 

trailer’ delay being lower when using a fleet of MTSs. Waiting for trailers is constantly experienced in 

a terminal due to the fact that trailers arrive at irregular intervals at the QCs. For equivalent fleet sizes, 

the average QC ‘waiting for a trailer’ delay will be lower for a fleet of MTSs since this delay will only 

be experienced after every four 20 ft. containers or two 40 ft. containers offloaded from the vessel, in 

comparison to the QCs having to wait for a trailer after every two 20 ft. containers or one 40 ft. container 

for a fleet of TTUs. Waiting for a trailer delay can be eliminated by using a large number of trailers in 

the fleet however this will lead to low equipment utilisation levels and congestion at the terminal [13] 

(Figure 3.10). Of greater significance is the smaller fleet size of MTSs required to maintain the same 

QC productivity as that of the TTU fleet; the fifteen TTUs can be replaced by nine MTSs without 

negatively affecting QC productivity. Figure 3.9 shows that the TTU fleet requires additional vehicles 

to maximise the QC productivity whereas the QCs are able to operate at maximum productivity with 

only ten MTSs in the system. 
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Figure 3.9: Average QC productivity – unloading model 

 

Figure 3.10: Average trailer fleet utilisation 

3.3.8.3 Vessel Loading Model Results 

The average QC productivity results for a varying fleet size of TTUs and MTSs were also obtained 

from the respective loading simulations, graphed in Figure 3.11. These results were obtained for a 

varying fleet size per QC since the vehicles are dedicated to a particular crane, unlike the unloading 

procedure where the entire fleet services all three QCs. The results were recorded for a maximum fleet 

size of five vehicles per QC. Figure 3.11 shows that there is a small increase in the QC productivity for 
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the vessel loading procedure when using an equivalent fleet of TTUs and MTSs above three vehicles. 

QC productivity is maximised when using three TTUs per QC which shows that there are more TTUs 

in the current system (15) than is required. 

 

Figure 3.11: Average QC productivity – Loading model 

The DES results show that using MTSs for the loading procedure is not very beneficial; three TTUs per 

QC creates almost the same crane productivity as three MTSs per QC and the performance of both 

vehicles can be considered equivalent. As can be seen by the flattening of the curve from Figure 3.11, 

when scheduling a minimum of nine TTUs in total for three QCs for the loading procedure the QC 

‘waiting for a trailer delay’ is reduced almost to zero. 

3.3.8.4 Results Discussion 

The simulation results show that a significantly reduced fleet of MTSs can be used at Pier One for the 

vessel unloading procedure without negatively affecting the crane productivity and hence the terminal 

performance, however for the loading procedure the use of MTSs shows minimal to no benefit. For the 

unloading procedure using TTUs, the system can be viewed as having three producers (QCs) and six 

consumers (RTGs) of containers. The average RTG cycle time is marginally less than the average QC 

cycle time, meaning that the delay between trailer arrivals at the QC is largely dependent on the travel 

time of the trailers. Due to an MTS having to wait longer underneath a QC, the delay between trailer 

arrivals is experienced less frequently and a smaller fleet of MTSs can replace the TTU fleet for 

equivalent crane productivity.  

For the loading procedure using TTUs, the system can be viewed as having three dedicated sets of two 

producers (RTGs) and one consumer (QC) of containers. In this setup, even though the producers have 



32 

 

a cycle time approximately double that of the consumer, the supply of containers by the two RTGs 

collectively creates an abundance at the QC. This creates a queue of trailers waiting at the QC to be 

unloaded. Figure 3.11 shows that a delay between trailer arrivals at the QC is only experienced for less 

than three TTUs or MTSs per QC in the system. Figure 3.11 also shows that for equivalent fleet sizes 

less than three, using MTSs creates a marginally lower QC productivity than its TTU counterpart due 

to the MTS having to wait much longer than a TTU underneath the RTG. This leads to long delays 

between trailer arrivals at the QC as there isn’t a sufficient number of empty trailers able to be 

continuously loaded by the RTGs and sent to the QCs. 

The results positively show that a fleet of two-trailer MTSs can be implemented at the terminal. To 

maintain the current productivity of the terminal, nine two-trailer MTSs can be used per three QCs 

during a vessel unloading process. For the loading process, the same fleet size of MTSs can be used 

with either one or two trailers in the set. The results also show that using a fleet of nine or more MTSs 

can improve QC productivity and hence reduce the total time of the vessel unloading procedure, 

however the benefit is marginal. The more significant benefit would be from a potential reduction in 

operating costs for the waterside-horizontal system due to a smaller fleet of vehicles required. 

3.4 Preliminary Operational Cost Comparison 

The data shown in Table 3.3 was used to conduct a preliminary operational cost comparison per shift 

to run each vehicle type. Even though fifteen TTUs are used in practice for both the unloading and 

loading process, nine vehicles were used for the cost analysis for the loading operation since this is the 

number of vehicles required to achieve maximum crane productivity, based on the results of the DES. 

Table 3.3: Durban Container Terminal’s operational cost parameters [26, 40] 

Equipment Life Cycle 5 Years 

Working Hours/Day 21.83 Hours 

Shift Duration 8 Hours 

Fuel Cost R10.64 Per Litre 

Annual Maintenance 

Cost (% of the equipment 

value) 

10% 

Labour Rate R 200 Per Hour 

 

Table 3.4 shows the equipment cost per shift for the trailer systems. This cost is calculated using the 

life cycle of the trailers and the total number of shifts per year which the trailers are operated. The 

terminal recapitalises its trailer equipment every 5 years, hence the 5 year life cycle. While the 

equipment unit cost is higher for an MTS, the total equipment cost is lower when compared to the fleet 
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of TTUs since the required fleet size for equal crane productivity is smaller. This leads to a lower 

equipment and maintenance cost per shift for the MTS. This MTS equipment cost is based on the 

average unit price of MTSs designed and manufactured by European original equipment manufacturers 

[13] as there is currently no locally manufactured product available.   

Table 3.4: Equipment cost per shift (loading and unloading) 

Type Unit Cost 
Required 

Fleet Size 
Total Equipment Cost Cost Per Shift 

TTU R 2 300 000 15 R 34 500 000 R 6 947 

MTS R 3 700 000 9 R 33 300 000 R 6 705 

 

Due to the MTS prime mover (terminal tractor) pulling a greater load than its TTU counterpart the fuel 

consumption over a distance is larger for the MTS, however due to the MTS being able to move twice 

the number of containers in a single movement than a TTU the overall distance travelled to move all 

containers to the stacking area is half that of the TTUs. This leads to the fuel usage per shift being lower 

for the MTS system. Table 3.5 shows this preliminary comparison. The fuel consumption is based on 

the use of a CVS Ferari FR270 terminal tractor which is part of the Durban Container Terminal’s fleet 

of vehicles. 

Table 3.5: Fuel cost per shift 

 

The annual maintenance cost for each trailer type was approximated as 10% of the total cost of the 

equipment. This is an acceptable approximation and has been adopted by Goussiatiner [13] and Isalgue 

et al. [41] in determining the annual maintenance costs of terminal trailers. Table 3.6 shows that the 

maintenance cost per shift for a fleet of MTSs is 3.5% lower that of the TTU fleet. 

Table 3.6: Maintenance cost per shift 

Type 
Total Equipment 

Cost 
% Annual Maintenance Cost Cost Per Shift 

TTU R 34 500 000.00 
10.00 

R 3 450 000 R 694.68 

MTS R 33 300 000.00 R 3 330 000 R 670.52 

Type 

Total Distance Covered in 1 

Shift (km) 

Prime Mover 

Fuel 

Consumption 

(km/litre) 

Fuel Cost 

per Litre 

Cost Per Shift 

Loading Unloading Loading Unloading 

TTU 266.2 885 1.079 
R 10.64 

R 2 625 R 8 727 

MTS 133 442 0.557 R 2 541 R 8 443 
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Use of an MTS fleet also results in a lower labour cost per shift for the waterside-horizontal transport 

system due to a fewer number of tractor drivers required. A labour cost of R 200 per hour was used as 

the remuneration rate for the vehicle drivers, which is consistent with the earnings of these drivers at 

the terminal. Table 3.7 shows the labour cost comparison. 

Table 3.7: Labour cost per shift 

Type 
Drivers Required Labour Rate 

(Per hour) 

Cost Per Shift 

Unloading Loading Unloading Loading 

TTU 15 9 
R 200 

R 24 000 R 14 400 

MTS 9 9 R 14 400 R 14 400 

 

As can be seen from Table 3.4 to Table 3.7, the main saving contributor when using a fleet of MTSs is 

from a reduction in labour costs in the unloading procedure. Table 3.8 below shows the comparison of 

the total operating cost per shift for the vehicle types and process. The labour cost saving when using 

the required fleet size of MTSs for vessel unloading makes up 95% of the overall 25% saving in 

operating costs. The savings when using MTSs for the loading procedure are marginal; an approximate 

saving of 1% in operating costs can be expected when compared to the TTU fleet.  

Table 3.8: Total operating cost per shift 

Type 
Vehicles Required Total Operating Cost Per Shift 

Unloading Loading Unloading Loading 

TTU 15 9 R 40 368 R 24 666 

MTS 9 9 R 30 219 R 24 316 

 

3.5 Chapter Summary 

A discrete event simulation was described to evaluate the effect of using MTSs instead of TTUs to 

transport containers between the vessel and the stacking area at Pier One. A review of existing port 

terminal simulation studies was also presented. The results of the simulation showed that a fleet of two-

trailer MTSs, each with a capacity of four TEUs, can be implemented at Pier One to reduce operating 

costs of the waterside-horizontal transport system while maintaining the performance of the terminal. 

Use of a fleet of MTSs for the unloading procedure has shown significantly greater benefits than for the 

loading procedure, however the system can be used for both operations without negatively affecting 

terminal performance or operating costs of either. The results of the study show that operational costs 

for the vessel unloading procedure can be reduced by approximately 25% when using nine MTSs 

instead of the currently used fifteen TTUs. 
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4 Multi-Trailer Design Considerations 

4.1 Introduction 

Having established the value of implementing an MTS solution for Pier One at the Durban Container 

Terminal, this chapter considers the different types of MTSs currently available, methodologies 

employed in trailer design and whether an indigenously designed vehicle is feasible. The design aspects 

affecting the manoeuvrability of the MTS are also investigated.  

A review of the different types of MTSs available was conducted with the intention of finding a suitable 

configuration for the design approach, taking into account the results from Chapter 3. An investigation 

into the standards and guidelines for trailers was conducted to determine appropriate load cases and 

safety factors needed to be taken into account during the design. This was done by analysing standards, 

information from trailer manufacturers and research into vehicle design and testing. Manoeuvrability 

of the MTS, in particular the swept path during turning and how the trailer’s geometrical parameters 

influence this factor, is examined. Suitable locally available trailer components such as axles, 

suspension, rims and tyres, as well as a variety of materials were investigated and compared to select 

that most appropriate for the MTS design. 

4.2 Multi-Trailer System Configuration 

4.2.1 System Types 

MTS manufacturers group the system configuration into three main types [13], namely a semi-trailer 

lead MTS, a drawbar-trailer lead MTS and a bidirectional MTS. 

Semi-Trailer Lead MTS 

A semi-trailer lead MTS is a short MTS made up of a tractor, a lead semi-trailer and typically one to 

two drawbar trailers. The tractor is connected to the lead semi-trailer using a fifth-wheel. During the 

operation, the trailer set can change its size from one to three trailers, but the tractor remains connected 

to the same semi-trailer. A semi-trailer lead MTS with two trailers in the set is shown in Figure 4.1. 

Drawbar-Trailer lead MTS 

A drawbar-trailer lead MTS is a long MTS made up of multiple drawbar trailers, pulled by a heavy-

duty terminal tractor fitted with a ballast to reduce wheel slip. The lead trailer is connected to the tractor 

using a towing hitch. During operation, the trailer set remains intact. Figure 4.2 shows an example of 

this system type, with Figure 4.3 showing the drawbar connection to the tractor. 
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Bidirectional MTS 

A bidirectional MTS is similar to a drawbar-trailer lead system, except that drawbars are present on 

both sides for connection to the tractor. This allows the MTS to change its moving direction without 

having to turn around. The feature is beneficial for congested and narrow areas, for instance narrow 

quays where turning around is not possible. This type of system is still in its experimental stages and is 

yet to be implemented in a terminal environment.  

 

Figure 4.1: Semi-trailer lead MTS 

 

Figure 4.2: Drawbar-trailer lead MTS 

 

Figure 4.3: Drawbar connection to the tractor 
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4.2.2 System Evaluation and Selection 

The analysis presented in Chapter 3 focused on the effect of using two-trailer MTSs for the unloading 

and loading procedure at Pier One of the Durban Container Terminal. Results showed that using a fleet 

of these MTSs is beneficial for the vessel unloading procedure, while for the loading procedure a single 

trailer system shows equivalent performance to the MTS. The results imply that the system 

configuration implemented at the terminal should allow for changes in the size of the trailer set such 

that a two-trailer MTS can be used for the unloading procedure, while for the loading procedure the 

individual trailers from the MTS should be able to be uncoupled and used separately as TTUs, should 

the terminal decide to do so. The Durban Container Terminal favours the use of fifth wheel couplings 

over the use of drawbars for the connection of the tractors to the trailer systems (see Figure 2.3) since 

specialised tractors are required for drawbar connections, as shown in Figure 4.3.  Tractors with drawbar 

connections are generally used for high gross combinational mass (GCM) applications (excess of 250 

tons) where ballasts are fitted to the tractors. This is due to the vertical load transfer from the trailer 

through a fifth wheel connection not being large enough to provide sufficient friction at the tyre-road 

surface interface to prevent wheel slip, hence the area on the tractor where a fifth wheel coupling is 

present is replaced with a heavy ballast and a drawbar connection is utilised. Currently, the terminal 

only uses tractors with fifth wheel couplings for trailer movements.  

Based on the above considerations, a semi-trailer lead MTS configuration is the most suitable system 

for implementation at Pier One when compared to a drawbar-trailer lead and bidirectional MTS since 

only two trailers will be in the set and the terminal has sufficient space for turning this vehicle. A 

drawback of the conventional semi-trailer lead MTS configuration shown in Figure 4.1 is that it has a 

permanent drawbar connection on the second trailer, therefore the trailer positions cannot be 

interchanged in the set. Furthermore, when the second trailer is removed it can only couple to another 

tractor using the drawbar connection. For the MTS designed for Pier One it is desirable to have identical 

semi- trailers in the set, connected to each other via a removable drawbar. This will allow for 

interchangeability in the set and allow for each semi-trailer to be connected to a tractor via a fifth wheel 

coupling, creating a uniform vehicle fleet. To achieve this, a converter dolly fitted with a fifth wheel 

coupling must be used as the removable drawbar connection between 2 identical semi-trailers to form 

the semi-trailer lead MTS design. An example of this configuration is shown in Figure 4.4, with a 

converter dolly shown in Figure 4.5. Figure 4.6 depicts how a converter dolly connects the two semi-

trailers together.  
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Figure 4.4: Semi-trailer lead MTS with a converter dolly [42] 

 

 

Figure 4.5: Converter dolly [43] 

 

Figure 4.6: Converter dolly connecting two trailers [44] 
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For the proposed MTS design consisting of two identical trailers coupled together via a converter dolly, 

the existing semi-trailers at the terminal could be modified by adding towing hitches at the rear of each 

trailer and used with a converter dolly to form the MTS configuration, however, an opportunity exists 

for a better designed semi-trailer with regards to mass, cost and manoeuvrability since the Port of 

Durban recapitalises its trailer fleet every 5 years. A better designed semi-trailer will allow for a greater 

reduction in operational costs if a lower tare mass results in a saving in manufacturing costs. Chapter 7 

presents a comparison of the existing semi-trailers versus the more optimised semi-trailer design when 

used in the MTS configuration.  

4.3 Design Requirements 

4.3.1 Port Terminal Requirements 

The Durban Container Terminal has specific requirements for the trailer equipment supplied and 

operated at Pier One [45]. While MTSs have never been designed for Pier One previously, TTUs have 

been utilised at the terminal since its inception and general design requirements for these trailers have 

been developed. The key functional and technical requirements for these trailers are shown below, 

which will be applicable to an MTS designed specifically for Pier One.  

A) Equipment Functional Requirements 

• The trailers will be utilised to transport one 40 ft., one or two 20 ft. ISO containers or one 20 

ft. tank container (each semi- trailer in the MTS must comply with this). These containers can 

be empty or fully laden up to its maximum design loads. 

• The trailers will be subjected to shock impact loads of fully loaded containers being loaded by 

container handling equipment. 

• The trailers must be designed for short hauls with an average distance of 2 km per trip at a 

maximum speed of 30 km/hr with a full load. They will be subject to frequent intermittent stops 

and will have to negotiate corners in and out of the container stacks. 

• The trailers must be of the cornerless type, designed to allow the fitting and removal of twist 

lock connecters on containers loaded on the trailer without having to climb onto or crawl under 

the trailer. 

B) Technical Specific Requirements 

• The trailer structure must be constructed from a readily available carbon steel grade of a 

recognised specification that is fit for the application. 

• The trailer structure must be braced adequately to withstand all stresses at the fifth wheel king-

pin. 
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• The side and end guides of the trailer must facilitate the accurate self-positioning of containers 

when placed onto the trailer. 

• Heavy duty tandem axles capable of hauling the rated payload at 30 km/hr and capable of 

withstanding shock impacts by containers when loaded, are required. 

• The axles brake system must enable the trailer to comply with SANS 1447 – Part 2. 

• Tyres manufactured in the Republic of South Africa or standard tyres which are readily 

available in South Africa must be used. 

Container terminal trailers are generally of a skeletal chassis type and consists of two core centre beams 

with cross members to form the structure. The cross members perform two functions; to support the 

payload as well as to form a connection between the centre beams to create the chassis. The design of 

the chassis takes into account the position and spacing of the suspension, position of the coupling 

equipment and auxiliary equipment such as the braking system and lubrication system. The chassis 

must be able to withstand shock impact loads which can occur when the containers are not gradually 

lowered onto the trailers. The length and width of the trailer chassis must accommodate the type and 

quantity of containers required. As mentioned in the equipment functional requirements, the design of 

the individual semi-trailers in the MTS must allow for the fitting and removal of twist lock connecters 

on containers. This implies that the containers need to be supported on the outer edges of the bottom of 

the container frame to ensure that its corner castings are accessible at all times. This is the case on the 

existing trailers used at Pier One, shown in Figure 2.3. 

An important requirement is the use of tandem axles for trailer equipment intended for use at the 

terminal. These must be fitted with an adequate braking system to ensure compliance to SANS 1447-2 

(Braking of low speed trailers). A low speed trailer is defined as a trailer, which according to its design, 

is intended to be coupled to a towing vehicle with a maximum operating speed of 40 km/hr. [46]. The 

Durban Container Terminal has a speed limit of 30 km/hr for these trailers, therefore the application of 

this standard for the braking performance of the axles is relevant. Tandem axles are used for reduced 

axle loads at the terminal to minimise wear and damage to the road surface. They are attached to the 

chassis of the trailers via a leaf spring suspension rather than an air suspension system due to the road 

surface of the terminal yard being extremely flat and uniform, without any gradient. An air suspension 

system is generally used on trailers intended for use on irregular, uneven road surfaces where impact 

absorption is required for sensitive cargo. 

4.3.2 Structural Requirements  

A review of the literature surrounding the structural requirements for trailer designs, in particular that 

of the loading requirements and stress safety factors, was conducted. A review of the available 

standards, trailer design methods employed by trailer manufacturers and relevant literature on 



41 

 

theoretical trailer design and data collection from field testing is presented in this section to determine 

appropriate load cases and safety factors to be used in the design of the MTS. 

4.3.2.1 Trailer Standards 

South African National Standards (SANS), were investigated to determine if there was any formal 

guideline for the design of trailer equipment. Many standards surrounding the compliance of sub-

systems such as the lighting equipment, warning signs, underrun protection devices and braking 

equipment for low speed applications can be found [47, 48, 49, 46], however no standard is available 

which details the structural requirements and load capacity for the design of a trailer or converter dolly 

chassis. The South African Road Traffic Act (Act 93 of 1996) stipulates the general requirements for 

road going vehicles to be declared roadworthy, such as the dimensions of the vehicle, braking 

performance and axle loads however no recommendations are made with regards to the strength 

requirements of the vehicles chassis. While the MTS does not have to comply with the South African 

Road Traffic Act due to it being operated on private property, the compliance standards were 

investigated to determine if there are any structural requirements and load capacity guidelines available 

which could be adopted for the design of the MTS.   

The Australian Design Rules (ADRs) are national standards for vehicle safety, anti-theft and emissions 

for passenger vehicles, goods vehicles, trailers and two and three wheeled vehicles. The ADRs are 

performance based and cover matters such as occupant protection, lighting, structures, engine exhaust 

emissions, noise, braking and a range of other items [50]. A review of the ADRs applicability summary 

for trailers has shown that rules have been created for the design and use of trailer equipment such as 

braking systems, fuel systems, axles and wheels, external noise reducers and mechanical connection 

between vehicles, however no structural and load capacity guidelines for a chassis design is mentioned. 

The European Agreement Concerning the International Carriage of Dangerous Goods by Road is a 

United Nations treaty that governs the transport of hazardous materials using public roads [51]. The 

agreement has defined dangerous goods using nine classes which range from explosive substances to 

radioactive and corrosive substances. The agreement stipulates that trailer designs intended for the 

carriage of dangerous goods must be able to withstand minimum accelerations of two times gravity in 

the direction of travel (longitudinal acceleration) and in the vertical direction in which the payload 

exerts its mass. Trailers must also withstand a minimum of one times gravity at right angles to the 

direction of travel (lateral acceleration). Each of these accelerations must be applied together with the 

maximum payload which the vehicle chassis is designed to carry, however the standard makes no 

mention of the required material strength safety factors to be used in the design.  The trailers designed 

according to the agreement are intended for road use up to a maximum speed of 120 km/hr.  
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A review of the published ISO standards applicable to trailer design has shown many standards 

applicable to the compliance of components used in the design of a trailer. Examples of this include 

ISO 611:2003 [52] and ISO 4148:2004 [53] which address the braking of vehicles and their trailers, 

and the dimensions of warning lights respectively. Similar to SANS, no standard guidelines are 

available with regard to the strength requirements of a chassis design. 

The above-mentioned standards relate to trailers intended for road use. While the MTS is intended for 

use solely within the confinement of Pier One of the Durban Container Terminal which is private 

property and thus not requiring the MTS to comply to the South African Road Traffic Act (Act 93 of 

1996), these standards were examined for the purpose of finding proven trailer structural design codes 

and guidelines which could be implemented in the design of the MTS.  

4.3.2.2 Design Methods Used by Trailer Manufacturers 

Research into the load cases and safety factors used by trailer manufacturers was undertaken to gain an 

insight into the industry norms for trailer design with regard to the structural design methods employed. 

Due to a lack of conclusive design data highlighted in the previous section on trailer standards, in 

particular safety factors; load cases and safety factors used in industry were examined. By knowing the 

load cases and safety factors used, similarities were observed and similarly applied to the MTS design. 

Most of the information with regards to this was adopted from Cowling [54] as obtaining information 

directly from manufacturers proved difficult owing to their reluctance to disclose design methods.  

Table 4.1 summarises the information obtained by Cowling on the load cases and the safety factors used 

by various trailer manufacturers.  

Afrit and Transpec CC, which are South African manufacturers, use safety factors which range from 

1.4 to 2.8 and from 2 to 2.5 respectively against material yield strength, depending on whether the trailer 

is intended for light or heavy industrial use. The load cases used for the design were not disclosed.    

John Pilcher Designs produce designs of trailer for agricultural use for the South African market. A 

safety factor of 3 against material yield strength is used for the static load case of the payload mass with 

a 1g vertical acceleration during the design process. 

Wabash International and East MFG, which are American manufacturers, use design factors of 2.5 and 

2 to 3 respectively. The static design loads are multiplied by the design factor to form the load cases. 

Wabash International applies the factor to a loading scenario dependent on the use of the trailer, while 

East MFG applies the factor to worst case legal loads, however the exact load cases used by both 

manufacturers were not made available. The design factors are used to accommodate for dynamic 

loading conditions in a static analysis.  
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Haulmark, an Australian manufacturer, use design factors ranging from 2.5 to 3.0 depending on the 

usage and the expected life of the trailer. Similar to the other manufacturers listed, the load cases to 

which this factor is applied was not disclosed.  

Table 4.1: Design load cases & design/safety factors used by trailer manufacturers [54] 

Trailer Manufacturers Load Cases (LC) 
Design Factors 

incorporated into LC 
Safety Factors 

Afrit Not Disclosed Not Disclosed 1.4 – 2.8 

Transpec CC Not Disclosed Not Disclosed 2 - 2.5 

John Pilcher Designs 
Payload + 1g vertical 

acceleration 
1 3 

Wabash International Not Disclosed 2.5 Not Disclosed 

East MFG Not Disclosed 2 - 3 Not Disclosed 

Haulmark Not Disclosed 2.5 - 3 Not Disclosed 

 

Transnet Engineering is the current manufacturer and supplier of semi-trailers to the Port of Durban, 

which range from skeletal trailers used in TTUs, to heavy duty multipurpose trailers. Direct discussions 

with their design team revealed the load cases and safety factors used in their designs [55]. The skeletal 

semi-trailers manufactured for container movement at Pier One are designed using the load cases shown 

in Table 4.2. For each of these load cases, the design requirement is that the maximum stress must fall 

below the yield stress of the materials used (minimum safety factor of 1). Design factors have been 

incorporated into the load cases, however the exact factors used were not disclosed. For each load case, 

the mass of the payload is applied together with the acceleration magnitude in the respective directions. 

S355 steel, which has a yield stress of 355 MPa [56], is used in the design of their trailers. These trailers 

have been successfully operated at the terminal for several years without structural failure. 

Table 4.2: Transnet Engineering’s trailer design requirements 

Load Cases Maximum Stress Criteria 

Vertical: Payload + 2g 

Yield Stress Longitudinal: Payload + 0.8g 

Lateral: Payload + 0.3g 

 

4.3.2.3 Trailer Design Studies 

A review on the literature applicable to the theoretical design and field testing of trailers is presented in 

this section. The review was done to gain an insight into the static and dynamic forces acting on the 

chassis of a trailer, and which have been incorporated into theoretical designs, as well as any potential 
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correlation between these theoretically assumed loads and physically measured results. The information 

presented is not intended to be an in depth review of the literature, but rather an analysis of the available 

information and data with potential applicability to this study.  

Koszalka et al. [57]  presented the design process of a frame for a semi low-loader for the transportation 

of oversize loads, in particular wheel and tracked machines. The design of the trailer revolved around 

an initial central beam design, with the rest of the frame developed around to the shape of the central 

beam and the load support requirements. The initial model of the frame was analysed using finite 

element analysis (FEA) and thereafter modified based on the initial von Mises stress results. The 

assumptions were that the trailer should be designed with a load capacity of 58 tons, with the quad-axle 

group carrying 69% of this load. The remaining load should be transferred to the fifth wheel of the 

prime mover. The initial bending moments in the box-type central beam were determined and the cross-

sectional thicknesses was calculated taking into account the strength requirements using steel with a 

yield strength of 360 MPa. The FEA model was setup using shell elements and a combination of rigid 

beam and spring elements to represent the suspension structure. The structural analysis took into 

account the possibilities of payloads with different sizes placed at varying positions on the deck of the 

trailer. The anticipated payloads were increased by 20% to take into account dynamic load effects. This 

was used as a basis for the forces applied to the trailer in the static FEA model which took into account 

only vertical loading. The trailer geometry was continuously modified until the stresses in the structure 

were found to be below the yield stress of the material used for the design. 

An analytical optimisation of a chassis for a dual axle flatbed trailer was conducted by Iqbal et al. [58]. 

The objective of their study was to reduce the tare mass of the trailer by 10% for a 36 ton payload. 

Analytical calculations were done to determine the optimum dimensions for the main beams and cross 

members of an existing trailer for the intended payload. Bending and shear stress calculations were 

undertaken using a safety factor of 1 against the material yield strength, which resulted in a mass saving 

of approximately 15%. Only static load effects were taken into account in this study. 

Martins et al. presented a method to optimize the mass and material costs for a semi-trailer in [59]. FEA 

was used as the tool for reducing the mass of a fifteen meter long semi-trailer designed by a Portuguese 

manufacturer. Using ANSYS®, the material and thickness for each structural member were 

independently defined. Using genetic algorithm implementation from MATLAB® and linking this to 

the FEA software, the material thicknesses were varied according to an optimisation function to reduce 

the trailer mass and manufacturing costs by using standard structural sections available for the specific 

material thicknesses obtained from the mass optimisation. The boundary conditions and the load cases 

for the structural analysis were defined to simulate real life situations. Displacement constraints were 

applied to the kingpin and where the chassis linked to the suspension. The suspension was simulated 

using spring elements with an elastic constant equal to the stiffness of the actual suspension. A vertical 
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load equivalent to 150% of the maximum payload anticipated was used in the static analysis. Torsional 

effects on the chassis as a resulted of lateral loads was also accounted for. The initial stresses in the 

trailer structure, before mass optimisation, were all below 130 MPa. On completion of the optimisation 

study, the stresses in the structure were found to approach the yield strength of the materials used, 

resulting in a 6% reduction in mass and a 10% reduction in material costs. 

An analysis on the effect that road roughness has on the stress distribution of a heavy duty trailer chassis 

was conducted by Rahman and Kurdi [60]. The study involved static analyses of the trailer chassis 

carrying the maximum payload for which it was designed, as well as cyclic loading using measured 

acceleration profiles from field tests. The results of the experiment showed that fatigue life can be 

improved by using suitable design factors for the loads in the static analysis. It was mentioned that 

further research into the effect of cyclic loading on the lifespan of the trailer is required to accurately 

predict fatigue failure. 

Ebrahimi et al. [61] designed, fabricated and tested a trailer used for the transportation of hay bales. 

The trailer consists of a drag-chain deck fitted with hydraulic rams to incline the trailer for ease with 

unloading the bales. The forces on the trailer were calculated using the average mass of the hay bales 

and this was used as the loading conditions for the structural analysis conducted in ANSYS®. The trailer 

was subjected to zero load, medium load and maximum load (fully laden). Safety factors in the range 

of 1.6 to 3.4 against yielding were obtained from the analysis. 

A design optimisation of a cane haulage vehicle was carried out by Cowling in [54]. The aim of the 

study was to improve the efficiency of raw sugarcane transportation using a mass optimised trailer. 

Cowling initially conducted an optimisation of the geometrical parameters of the trailer’s main chassis 

beams for a reduced maximum bending moment, which resulted in a lower section modulus requirement 

and hence a lower mass of the main beams. This was conducted using the SCILAB® software package. 

FEA was then used to verify the structural integrity of the main beams for the load cases selected. 

Cowling chose five load cases for the analysis:  

• Vertical static payload 

• Braking (longitudinal load) 

• Accelerating (longitudinal load) 

• Cornering (lateral load) 

• Torsion (due to road unevenness) 

The vertical load case incorporated a design factor of 2.75 (the static load was increased by a factor of 

2.75) to take into account dynamic loading in the vertical direction. Cowling chose the upper limit of 

the recommended range from American trailer manufactures, Wabash International and East MFG, due 
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to the severe operating conditions often experienced by cane haulage vehicles. For this load case, the 

stress results corresponded to a safety factor of 2 against yielding. The load case for braking was 

determined from the required braking performance of the vehicle, multiplied by a design factor of 2 to 

account for emergency stops and the uncertainties in braking forces. The acceleration load case was 

determined in a similar manner. Both the acceleration and braking load cases included the static load of 

the payload. The cornering load case, which accounts for the cornering forces experienced by the trailer, 

was taken as 0.3g in combination with the static payload. 

A significant study describing the forces experienced by trailer equipment operating in a port terminal 

environment was conducted by Dwarika [62]. Field testing of trailers used at the Port of Durban and 

Port of Richards Bay was carried out using accelerometers to determine the range of accelerations the 

trailers are exposed to in their daily operations. This data was then used as a basis for determining 

appropriate load cases to be used in the design of trailers for a port terminal environment. From the data 

collected, Dwarika proposed the following load cases shown in Table 4.3. 

Table 4.3: Trailer design load cases proposed by Dwarika [62] 

Load Cases 

Vertical: Payload + 1.5g 

Longitudinal: Payload + 0.5g 

Lateral: Payload + 0.25g 

 

The vertical load case proposed by Dwarika incorporated a design factor of 1.5, hence the 1.5g 

acceleration. The longitudinal and lateral load cases were determined by applying a design factor of 

2.31 and 1.25 respectively to the maximum measured accelerations from the field tests such that values 

of 0.5g and 0.25g could be used as the loading accelerations, in line with the recommendations of 

Winkler et al. [63]. These load cases were used to better design the existing trailers with regards to 

mass. Similar to the various studies described previously, static analyses were conducted by Dwarika 

in his finite element analysis of the trailers. The yield stress of the material was used as the criteria for 

determining the safety factors for the trailer designs, where factors in the range of 1.2 to 2.5 were used 

as per the recommendations of Ugural [64]. 

4.3.2.4 Load Case Selection 

The investigation into the strength requirements for trailer designs has shown that there is no single 

comprehensive design guideline in this regard. A review of local and international standards has shown 

minimal structural and load capacity guidelines for the design of a semi-trailer or converter dolly 

chassis, while the information from manufacturers and a review of trailer design studies has shown 

varying design requirements. The information obtained from trailer manufacturers has shown that these 



47 

 

designs have developed through experience, based on the requirements for each type of trailer and its 

operating environment. This can be seen by the absence of a specific design standard detailing the 

structural requirements for a trailer. A common method of analysis found in the literature, as well as 

from manufacturers, is the use of static load cases incorporating a design factor [54, 62, 61, 60, 57]. 

This allows for a static analysis to be conducted while taking into account the effects of fatigue without 

a dedicated dynamic analysis [54, 62]. The same approach has been adopted in this study. Table 4.4 

shows the load cases selected for the MTS design, adopted from information presented in [54] and [62]. 

Table 4.4: Load cases for the present MTS design 

Load Case Safety Factor 

Vertical: Payload + 2g vertical acceleration 

1.2 – 2.5 (Against yielding) 

Longitudinal (Braking): Payload + 0.52g longitudinal acceleration 

Lateral (Cornering): Payload + 0.25g lateral acceleration 

Longitudinal (Accelerating): Payload + Coupling forces during 

take-off 

 

From [54], a design factor of 2 is used for the MTS for the vertical and braking load cases. The factor 

is selected from the lower region of the range recommended in [54] due to the predominantly uniform 

operating conditions expected for the MTS. Dynamic loading effects are expected to be minimal due to 

the flat terminal yard, careful loading of containers onto the trailer equipment and gradual braking of 

the trailers which was noticed from observations at Pier One. An acceleration of 2g for the vertical load 

case has been determined by applying the design factor of 2 to the static load (1g), while an acceleration 

of 0.52g has been obtained by applying the design factor to the required braking performance of the 

proposed MTS (0.26g) as set out in SANS 1447-2 [46], which is a design requirement for trailers 

operated in the Durban Container Terminal. This is consistent with the method implemented by 

Cowling [54]. The lateral load case has been adopted from [62], where an acceleration of 0.25g is 

suggested. This value incorporates a design factor of 1.25 to the maximum measured lateral acceleration 

of the trailers at the Durban Container Terminal.  

To account for the effect of the forces on the trailer chassis and converter dolly during take-off, the 

forces at the coupling points, arising from the tractive effort of the terminal tractor, are used for the 

accelerating load case. These horizontal forces are applied directly onto the semi-trailer kingpin and the 

towing eye of the converter dolly, replicating the typical loading scenario expected during take-off. 

For the braking, cornering and accelerating load cases the payload, together with a vertical acceleration 

equivalent to gravity, is applied. The recommended range of safety factors (1.2-2.5) from [64] is adopted 

for the MTS design for the abovementioned load cases. 
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4.3.3 Manoeuvrability 

The turning ability of the MTS within the confinement of Pier One is an important feature in the design 

of the vehicle. With any type of trailer system, more space is required for the execution of a turn as the 

vehicle combination becomes longer. The increase in the required space is due to a phenomenon known 

as off-tracking, where the centreline of the steering axle of the tractor does not coincide with the 

centreline of the axle set of the towed trailer as it traverses a curve or turn. The swept path of the vehicle 

during the turn is defined as the distance between the path of the front outside wheel of the tractor and 

the path of the rear inside wheel of the last trailer in the combination [65]. This is used to determine the 

area required to manoeuvre the vehicle. Figure 4.7 depicts the off-tracking phenomenon and the 

resulting swept path of a TTU. Research conducted by Sayers [66] has shown that for reduced off-

tracking and hence a reduced swept path, the wheel base of a trailer should be kept to a minimum.  This 

can be seen from Equation (4.1) [66] which describes the maximum off-tracking (OT) of a TTU as a 

function of the tractor and trailer wheel bases (𝐿1 & 𝐿2), the kingpin offset (𝐾𝑂) and radius of the turn 

(𝑅1) (referenced to Figure 4.8). This relationship holds true for multiple trailer combinations at low 

speeds (below 40 km/hr) [66].  

 
𝑂𝑇 = 𝑅1 − 𝑅3 = 𝑅1 − √𝑅1

2 + 𝐾𝑂2 − 𝐿1
2 − 𝐿2

2    (4.1) 

Figure 4.8 shows the maximum off-tracking that occurs for a vehicle combination once a turn has 

reached “steady state” i.e. the turn is large enough for the transient off-tracking to have reached a steady 

value where the off-tracking becomes constant. In practice, most turns do not reach a steady state since 

the curve path being followed by the leading axle is not long enough to achieve this.  
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Figure 4.7: Off-tracking and swept path [67] 

 

 

 

Figure 4.8: Maximum low speed off-tracking for a TTU [66] 

 

 



50 

 

Sayers [66] showed that the steady state off-tracking performance is directly related to the off-tracking 

experienced during the transient phase of a turn. The analysis of the transient off-tracking phenomenon 

is considerably more complex than the maximum steady state off-tracking prediction represented by 

Equation (4.1) and is generally predicted using turning manoeuvre software packages. The software 

package BricsTurn® is used in this study to verify the manoeuvrability of the designed MTS.  

While the observations in [66] hold true, minimising the wheelbase of a trailer depends largely on the 

load carrying capacity of the axles and the allowable distance between the trailer’s kingpin and the rear 

of the driver’s cabin of the tractor. The kingpin setback, a feature of the geometrical vehicle parameters 

shown in Figure 4.9, is limited by the swing clearance between the first trailer and the tractor to ensure 

that no interference occurs between the two during turning manoeuvres. The swing clearance between 

the trailer and tractor is depicted in Figure 4.10. Once the kingpin setback is determined, the position 

of the axle group can be calculated using the maximum load capacity of the axle group for a minimum 

wheelbase. These parameters are taken into account during the current MTS design. 

 

Figure 4.9: Trailer geometric parameters [68] 
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Figure 4.10: Swing clearance [69] 

4.4 Material Selection 

Material selection plays a vital role in the mass, strength and cost of a trailer design. Together with 

design optimisation methods, manufacturers have considered various alternatives with regards to 

material types in an effort to reduce the tare mass of trailers and the associated manufacturing costs, 

without compromising on the load carrying capability of these vehicles. The mechanical and physical 

properties of a material such as its yield strength, density, elasticity and resistance to fatigue plays an 

important role in making an appropriate selection. A common method of comparing materials is by 

using their modulus of elasticity/density and yield strength/density ratios as a method of determining 

potential mass savings [54]. These factors, together with the cost and availability of each material, are 

compared in this study to determine a suitable material for the indigenous MTS design.  

While many material types have been used in the design of trailers such as aluminium and composite 

materials, steel is by far the most commonly used material for trailers intended for heavy payload 

applications due to its availability, ease of manufacturing (weldability) and resistance to fatigue. For 

these reasons, this investigation is limited to the steel grades, ranging from mild steels to high strength 

steels, most commonly used for trailer designs.  

4.4.1 Structural Steel 

Structural steel is an iron alloy which contains a 0.05% – 0.25% carbon content by weight. Other 

alloying elements can also be found in these steels steel such as manganese, silicon, phosphorous and 

sulphur which are used to augment the metal to produce the desired mechanical properties [70]. 

Structural steel is the most common form of steel used in the design of trailers due to it being cheaper 
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than high strength steels coupled with easy manufacturing techniques [54, 62, 58]. Structural steels have 

yield strengths in the range of 235-450 MPa. Table 4.5 shows the different grades of structural steel and 

its mechanical properties, locally produced and available in South Africa, used in the design of trailer 

equipment [62, 60].  

Table 4.5: Mechanical properties of structural steel grades [56] 

Grade 

Yield 

Strength     

(MPa) 

Tensile 

Strength     

(MPa) 

Density   

(kg/m3) 

Elastic 

Modulus 

(GPa) 

Yield 

Strength/

Density 

(10-3) 

Elastic 

Modulus/D

ensity (10-3) 

S235 235 360 7850 200 29.9 25.4 

S275 275 430 7850 200 35.0 25.4 

S355 355 510 7850 200 45.2 25.4 

S450 450 550 7850 200 57.3 25.4 

 

4.4.2 High Strength Steel 

High strength steels, commonly known as HSLA steels (high-strength low-alloy), are steel alloys 

containing elements such as cobalt, molybdenum, titanium and vanadium that are added to achieve 

enhanced mechanical properties. The high strength is obtained from precipitation hardening by micro 

alloying elements and then carefully controlling the processing parameters during hot rolling [71]. The 

high strength steels available in South Africa are Domex and Supraform, manufactured by SSAB and 

Arcelor Mittal respectively, which have yield strengths in the range of 460-600 MPa.  Domex has been 

extensively used by South African trailer manufacturers for reduced tare mass designs in low payload 

applications [54]. Table 4.6 shows the mechanical properties of the various grades of Domex and 

Supraform. 

Table 4.6: Mechanical properties of HSLA steel grades [71, 72] 

Grade 

Yield 

Strength     

𝝈𝒚     

(MPa) 

Tensile 

Strength

𝝈𝑼𝑻𝑺     

(MPa) 

Density  

𝝆     

(kg/m3) 

𝑬        

(GPa) 

𝝈𝒚

𝝆
           

(10-3) 

𝑬

𝝆
            

(10-3) 

Domex 460 

MC 
460 520 7870 210 58.4 26.6 

Domex 500 

MC 
500 550 7870 210 63.5 26.6 

Domex 550 

MC 
550 600 7870 210 69.9 26.6 

Supraform TM 

460 
460 530 7850 205 58.5 26.1 

Supraform TM 

600 
600 650 7850 205 76.4 26.1 
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4.4.3 Material Comparison 

An evaluation matrix is used to compare the materials presented in 4.4.1 and 4.4.2 by rating them based 

on their material properties such as the elasticity/density and yield strength/density ratios, resistance to 

fatigue, as well as cost and availability. The materials are rated relative to each other using a linear 5 

point scale (-2 to 2) based on the minimisation of cost and mass of the design, with -2 being very bad, 

0 being neutral and 2 being very good. The final scores are obtained by adding the individual ratings of 

each property for the material. 

As can be seen in Table 4.7, the HSLA steels scored better for the yield strength/density ratio; the higher 

yield strength dominated the result due to all the steels compared having very similar densities. The 

stiffness/density ratio showed very similar results for the high and low strength steels due to their closely 

related elastic modulus, with the high strength steels scoring marginally higher than the low strength 

steels. Ratings for fatigue resistance also favoured the higher strength steels due to an increased tensile 

strength which directly improves its resistance to fatigue [73]. The cost and availability factors 

influenced the final scores considerably, mainly due to the significantly greater cost and lower 

availability of the HSLA steels. Even though these steels are available locally, they are not produced as 

frequently as structural steels due to a much lower demand and are thus not readily available at all times. 

The HSLA steels, which can cost up to three times more than structural steels, are limited in size 

variations and thickness while structural steels are produced in multiple thicknesses and sizes. Standard 

sections such as I-beams and C-channels are produced using structural steel grades in numerous sizes, 

while the range of size variations for these sections in the high strength steel grades are limited. 

Table 4.7: Material evaluation matrix 

Material 
𝝈𝒚

𝝆
 

𝑬

𝝆
 

Fatigue 

Resistance 
Cost Availability 

Final 

Score 

S235 -1 0 -1 2 2 2 

S275 -1 0 0 2 2 3 

S355 1 0 1 2 2 6 

S450 1 0 1 1 2 5 

Domex 460 

MC 
1 1 1 0 0 3 

Domex 500 

MC 
2 1 2 -1 -1 3 

Domex 550 

MC 
2 1 2 -2 -1 2 

Supraform TM 

460 
1 1 2 -1 0 3 

Supraform TM 

600 
2 1 2 -2 -1 2 
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As mentioned in chapter 4.4.2, the existing semi-trailers at Pier One could be used as the individual 

semi-trailers in a short MTS coupled together via a converter dolly, however an opportunity exists for 

a better optimised semi-trailer design with regards to a lower tare mass which could lead to a lower 

overall product cost in order to maximise the operational cost reduction for the terminal created by the 

use of MTSs. Using a higher strength material will result in a lower tare mass, however the cost benefits 

may be minimal when compared to the existing semi-trailers due to the lower mass/higher cost trade-

off. As can be seen from Table 4.7, grade S355 has scored the highest of all the materials evaluated 

mainly due to its low cost and its availability in the required shapes, it has been selected as the material 

to be used in the design of the MTS.  

4.5 Standard Components 

4.5.1 Axles 

The axles selected for a trailer design depends on several factors, including the nature of the trailer’s 

physical geometry, its operating speed and the magnitude of the payload being transported. Part of the 

technical specific requirements for trailers operated at Pier One is the use of tandem axles fitted with a 

braking system to ensure compliance to SANS 1447-2 [45]. For the MTS design, GO Heavy Duty Axles 

which are rated at maximum load of 22 700 kg [74] are utilised due to their high load capacity when 

compared to other axles available in the market. These axles, which are designed and manufactured 

within South Africa, have a track length of 1 930 mm and main beam centre mountings of 1 000 mm 

[74]. S-cam drum brakes are present which enables the axles to be compliant with the required braking 

performance as set out in SANS 1447-2 [75]. The axles are manufactured using solid 130 mm diameter 

round cross-sections of EN 19 steel. Figure 4.11 depicts the GO Heavy Duty Axle. 

 

 

Figure 4.11: GO Heavy Duty Axle [76] 
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4.5.2 Suspension 

The function of a suspension is to connect the chassis of the vehicle (trailer or converter dolly) to the 

axles by means of a mechanical device which reduces vibrations occurring during motion due to the 

dynamic effects created by load movement and road unevenness. Different types of suspensions exist 

for trailer equipment such as air, hydraulic and leaf spring suspensions [54]. Leaf spring suspensions 

are most commonly used for container carrying trailers due to their low cost and ease of application 

when compared to the other systems mentioned. While their performance in off-road usage is lower 

than that of air and hydraulic suspensions [54], its performance in a terminal yard environment will be 

adequate due to the flat, uniform road surface. They are thus chosen for use in the present MTS design. 

The leaf spring suspension system selected is the GO Heavy Duty Tandem Suspension with a load 

capacity of 46 000 kg.  The over slung suspension configuration (where the axles are fastened to the 

bottom of the leaf spring sets) is used for the semi-trailers, while the underslung configuration (where 

the axles are fastened to top of the leaf spring sets) is used for the converter dolly, purely for geometric 

reasons. The axles and suspension assembly is commonly referred to as a bogie. These configurations 

are shown in Figure 4.12 and Figure 4.13. 

 

 

 

Figure 4.12: GO Heavy Duty Tandem Suspension - over slung configuration for semi-trailer [76] 
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Figure 4.13: GO Heavy Duty Tandem Suspension - under slung configuration for converter dolly [76] 

4.5.3 Rims and Tyres 

The selection of suitable rims and tyres for an MTS depends on the maximum axle load which the 

wheels must safely handle as well as the intended operating environment. The rim selected for use in 

the MTS design is the Metaforge heavy duty rim (Part Number: MF900225HD), while the tyre selected 

is the Continental Terminal Tyre (Part Number: 0730044). This rim and tyre combination has a 

maximum load capacity of 6 300 kg, thus four of these will be used on each axle to satisfy the load 

carrying capacity of the axles. The Continental Terminal Tyre, apart from its load capacity, has been 

selected due to its greater resistance to wear when compared to standard trailer tyres [77]. Both these 

items are available in South Africa. 

4.5.4 Couplings 

The mechanical coupling equipment used for interconnectivity of the trailers in the MTS set and 

connection to the terminal tractor is selected from the range available from Jost South Africa, a local 

manufacturer and supplier of commercial vehicle components. Kingpins and towing hitches will be 

fitted to the semi-trailers, while a fifth wheel and a towing eye will be incorporated into the design of 

the converter dolly. The strength requirement for the mechanical coupling equipment selected is based 

on the D-value calculation which is used in trailer design [69] and is dependent on the mass of the 

vehicles before and after each coupling point. These calculations which are used to select the 

appropriate mechanical couplings are presented in Chapter 5. 

Leaf springs 

Suspension brackets 

Axles fastened to the top of the leaf springs 
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4.6 Chapter Summary 

This chapter presented the design considerations surrounding the MTS for this study. Different MTS 

configurations were investigated, with the semi-trailer led MTS being selected as the most appropriate 

configuration to be used for the design. The functional and technical requirements for trailer systems 

designed to operate at Pier One were discussed for implementation onto the MTS. A survey of the 

literature on the structural strength requirements for trailers was presented, yielding the load cases and 

safety factors to be incorporated into the design. The locally available materials and standard trailer 

components which will be used in the design were also assessed and presented. One of the guiding 

principles in the design of the MTS is the use of locally available components so as to reduce 

manufacturing costs and to raise the likelihood of the design being implemented at the Durban Container 

Terminal. Literature surrounding the manoeuvrability of trailers and the influence of the wheelbase 

dimension on the turning performance of a vehicle was discussed. 
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5 Multi-Trailer System Design 

5.1 Introduction 

This chapter details the design of the MTS proposed for use at Pier One of the Durban Container 

Terminal with the aim of reducing the operational cost of the waterside horizontal transport system. The 

geometric design of the semi-trailers and converter dolly for the MTS using the material and standard 

components discussed in Chapter 4.4 and 4.5 is presented, including the structural analysis conducted 

in ANSYS® using the load cases discussed in Chapter 4.3.2.4. The MTS design incorporated the port 

terminals functional and technical requirements, as well as the geometric factors affecting 

manoeuvrability.  

Due to the port not having any existing terminal tractors with a load capacity and tractive effort capable 

of moving the gross mass of the proposed MTS, a suitable tractor was first selected for this application. 

This was to ensure that the MTS is designed with the appropriate geometrical features and clearances 

to allow it to function without any structural interference with a prime mover that is capable of hauling 

the required load. The Kalmar TR626i terminal tractor, discussed in Chapter 5.2, is selected for use as 

the prime mover for the MTS due to its load haulage capacity and fifth wheel coupling connection, 

which is a requirement for the semi-trailer led MTS design configuration chosen.  

5.2 Terminal Tractor 

The Durban Container Terminal currently owns four different models of terminal tractors, each having 

a maximum gross combinational mass (GCM) within the range of 75 000 - 90 000 kg. These models 

are the MAFI MT25YT and MT30YT, the Terberg YT222 and the CVS Ferari FR270. A tractor’s GCM 

rating is an indication of the maximum trailer mass (combined tare mass and payload) that the tractor 

can move at a rated speed determined by the vehicle manufacturer. The GCM rating includes the mass 

of the tractor itself, thus the mathematical difference between the GCM rating and the tractor mass gives 

the maximum trailer mass that the tractor can safely move. Since the MTS in question has a container 

carrying capacity of four TEUs which results in a maximum payload of 121 920 kg (30 480 kg per 

TEU), the existing tractors cannot be considered for use as the prime mover in the MTS due to the 

maximum mass of the MTSs payload exceeding the GCM rating of these tractors. For this reason, a 

tractor capable of hauling the required load of the MTS was selected for which the MTS could be 

designed. The tractor selected for this application was the Kalmar TR626i terminal tractor, shown in 

Figure 5.1 with its general assembly dimensions.  
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Figure 5.1: Kalmar TR626i terminal tractor [78] 

The TR626i terminal tractor has a maximum GCM of 240 000 kg with a tare mass of 14 000 kg, 

allowing for the use of an MTS with a total mass of up 226 000 kg. While the proposed MTS will have 

a total mass considerably lower than the maximum mass which the tractor can safely handle, use of this 

tractor will result in better acceleration and speed capabilities when compared to a tractor with a lower 

GCM rating. As mentioned in Chapter 4.2.2, a semi-trailer led MTS has been selected as the 

configuration for the proposed design, therefore a tractor with a fifth wheel coupling is required for 

connection to the leading trailer in the MTS set. This vehicle contains a hydraulically lifted fifth wheel 

coupling mechanism, capable of withstanding a maximum vertical load of 32 000 kg imposed by the 

trailer it is connected to.  This tractor model is designed specifically for use in heavy payload 

applications in a port terminal environment, in particular for the use as the prime mover in an MTS [79].   
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5.3 System Configuration 

The system configuration of the proposed MTS is a semi-trailer led system with two trailers in the set. 

The arrangement selected was that of two identical semi-trailers coupled together via a converter dolly 

which allows for the interchangeability of trailers within the set and connection to the tractor via a fifth 

wheel coupling, as well as allowing for the use of each semi-trailer separately to form a TTU for use 

during the vessel loading operation. This configuration was determined based on the results of the DES 

presented in Chapter 3 which showed that it is beneficial to use a two-trailer MTS for the vessel 

unloading operation, while the use of either a two-trailer MTS or a TTU showed similar results for the 

loading operation. Figure 5.2 shows the notional configuration for the MTS design consisting of the 

tractor, identical semi-trailers and a converter dolly.  

 

Figure 5.2: Notional MTS configuration 

The design of the MTS consists of two main assemblies; the design of the semi-trailers and the design 

of the converter dolly. For this study, the semi-trailer used in the MTS is designed first based on the 

geometry and magnitude of the payload to be transported, taking into account the geometry of the 

terminal tractor selected. The converter dolly was designed thereafter based on the geometry of the 

semi-trailers and its imposed loads. 

5.4 Semi-Trailer Design 

5.4.1 General Structural Arrangement 

The semi-trailers used for container movement within a port terminal environment are generally of a 

skeletal type and are constructed from two longitudinal centre beams joined together using cross 

members to create the trailer chassis. The lengths of the beams are determined from the length of the 

ISO containers which the semi-trailer is intended to transport, while the distance between the beams are 

governed by the centre mounting distance of the axles. Unlike trailers intended for road use which have 

twist locks fitted to the chassis for securing the containers at its corner castings to prevent movement, 

container terminal trailers are designed with guides for positioning and securing the containers, which 

allow for the corner castings of the containers to be accessible at all times. This is to allow for containers 

to be loaded onto the trailers without removing the twist locks which are used to secure the containers 

that are stacked on a vessel [45]. The guides are fitted at the front, back and sides of the trailer to 

Tractor

Semi-Trailer 1 Semi-Trailer 2

Convertor Dolly
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accommodate the width and length of the ISO containers. The suspension for the semi-trailer is fitted 

to the bottom of the longitudinal beams towards the rear end of the beam, while the kingpin is fitted to 

a plate which is welded onto the bottom of the front end of the beam. Figure 5.3 depicts a container 

terminal semi-trailer showing the structural features described. This general structural arrangement is 

used as a guideline for the geometrical setup of the structural members which forms the chassis of the 

semi-trailer designed for the MTS. 

 

Figure 5.3: Container terminal semi-trailer [24] 

 

5.4.2 Longitudinal Centre Beams 

The longitudinal centre beams can be viewed as the most critical structural members of a trailer due to 

them being the foundation upon which the rest of the chassis is designed [62]. Each beam consists of a 

single I-section with a varying web height along its length based on the clearances required for 

connection to the tractor, the height of the axle and suspension assembly for levelled coupling purposes, 

as well as the strength required due to the design loads and safety factors. The length of the beam is 

dependent on the number and type of ISO containers required to be transported. Each semi-trailer in the 

MTS must be able to transport a maximum of 2 TEUs at any given instance, which is one 40 ft. container 

or two 20 ft. containers. Table 5.1 shows the external dimensions and gross mass of these container 

types. 
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Table 5.1: ISO Container external dimensions and maximum gross mass 

 
20 ft. Container 40 ft. Container 

External Dimensions 

Length (m) 6.058  12.192  

Width (m) 2.370  2.370  

Height (m) 2.591  2.591  

Maximum Gross Mass (kg) 30 450  30 450  

 

As shown in Table 5.1, a single 40 ft. container has a length of 12.192 m, while two 20 ft. containers 

have a combined length of 12.116 m. Based on these dimensions, the longitudinal beams for an MTS 

semi-trailer must have a minimum length of 12.192 m for it to be able to transport the required container 

combinations. In practice, these beams are manufactured to be slightly longer than the maximum 

container length to allow for a clearance between the front and rear container guides which are mounted 

onto the ends of the beam, as well as for a clearance between the two 20 ft. containers when loaded onto 

the semi-trailer. Transnet Engineering’s trailer design team requires that a clearance allowance of 5% 

is used in the design of the longitudinal beams for their container terminal trailers and this has proven 

adequate for container loading [80]. The same approach is adopted for this design, resulting in a length 

of 12.8 m for the semi-trailer longitudinal beams.  

The cross-sectional shape selected for the longitudinal beams is that of an I-section due to its efficacy 

with supporting loads which cause bending of the structure and its resistance to flexure [62, 81]. I-

sections have been successfully used as the shape for longitudinal beam designs in the trailer industry 

for many years due to their structural effectiveness and ease of manufacturing. Figure 5.4 shows the 

orientation of the flanges and web which form an I-section, together with key parameters.  

The longitudinal beam consists of three steel plates welded together to form the I-section. The two 

flanges (top and bottom) are connected to a single web via fillet welds. The web height, also known as 

the flange depth, is a variable feature of the longitudinal beam while the web thickness together with 

the width and thickness of the flanges are constant along its length.   
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Front Rear 

 

Figure 5.4: I-section parameters [82] 

The flange width was selected based on the size required for mounting the suspension onto the beam, 

while the web height varies along the length of the beam based on the clearances required for connection 

to the tractor and the height of the bogie assembly for levelled coupling purposes, as well as based on 

the strength requirements for the design. For these reasons, a flange width of 130 mm and a web height 

varying between 240 mm and 530 mm was preselected for the longitudinal beam design, which is in 

accordance with the recommendations from [62] for the general beam dimensions of a container 

terminal trailer. Figure 5.5 shows the web dimensions of the longitudinal centre beam determined from 

the above-mentioned considerations.  

 

Figure 5.5: Longitudinal centre beam - Web dimensions 

The thickness of the web and flanges for the required design safety factors are dependent on the load 

transferred to the longitudinal beam from the container-supporting cross members, as well as from the 

portion of the container base which rests directly on the top flange of the beam. By allowing a portion 

of the base to rest on the top flange, the load on the container-supporting cross members is reduced, 

resulting in lower material stresses in those members. These cross members are positioned transversely 

to the web of the longitudinal beam, taking into consideration the loading of 20 ft. and 40 ft. containers 

12 800 mm

530 mm 240 mm

9 525 mm 2 035 mm
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to ensure that access to the corner castings and fork lift pockets are not obstructed, as well as taking 

into account space requirements for mounting of the kingpin. The function of the cross members in a 

trailer chassis is twofold; to support the vertical load of the containers and to maintain the shape of the 

structure during torsional loading. A review of trailer chassis design, in particular that of the effect of 

cross bracing a ladder frame structure, revealed that between six and twelve cross members are typically 

recommended to support the payload. This recommendation ensures adequate stiffness of the structure 

without a substantial increase in mass [54, 83, 84, 85]. While the amount of cross bracing required is 

highly dependent on the magnitude of the payload and the induced dynamic loads due to the operating 

environment of a trailer, the above findings were applied to the design of the MTS semi-trailers and 

verified using FEA methods in Chapter 5.4.8. As shown in Figure 5.6, eight container-supporting cross 

members are used for the semi-trailer design, with their position and transferred loads (F1) depicted 

relative to the longitudinal beam. The load where the container rests directly on the top flange is 

depicted by the uniformly distributed load (W). The highest vertical loads occur when transporting two 

20 ft. containers, with the cross-member load being split equally. The preliminary thickness of the web 

and flanges of the longitudinal beam are calculated using the loads shown in Figure 5.6 with Table 5.2 

to achieve the strength required based on a design factor of 2 for the vertical load case. The suitability 

of the calculated thicknesses for all other load cases is assessed in Chapter 5.4.8 using FEA methods on 

completion of the geometrical design of the chassis.  Each beam carries half the maximum 20 ft. 

container payload of 60 900 kg. Table 5.2 provides the magnitude of the parameters from Figure 5.6. 

 

Figure 5.6: Imposed loads on the longitudinal beam 
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Table 5.2: Longitudinal beam load parameters 

Parameter Unit Magnitude 

F1 kg (kN) 566 (5.56) 

W kg/m (kN/m) 7364 (72.24) 

A m 1.18 

B m 4.62 

C m 7.08 

D m 10.52 

E m 0.88 

 

The longitudinal beam is supported by the bogie towards the back end of the beam (left section in Figure 

5.5) and the fifth wheel of the tractor towards the front end of the beam. The position of these supports, 

detailed in Chapter 5.4.4 and 5.4.6, results in bending and shear stresses experienced along the beams 

length (see Figure 5.17 for the support layout). Figure 5.7 shows the bending moment diagram while 

Figure 5.8 shows the shear force diagram for the beam as a result of the imposed loads, taking into 

consideration a design factor of 2 in the vertical direction. Note that the zero position on the horizontal 

axis for both the graphs refers to the front end of the beam. 

 

Figure 5.7: Bending moment diagram – longitudinal centre beams 
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Figure 5.8: Shear force diagram – longitudinal centre beams 

Bending moment capacity is generally the limiting factor for the static load case, thus the bending 

stresses as a result of the bending moment experienced by the beam are used to determine the material 

thicknesses for the required design strength [54]. The maximum bending moment experienced by the 

longitudinal beam as a result of the imposed loads is 419.54 kN.m at a distance of 5.05 m from the front 

end of the beam (see Figure 5.7). Using this maximum bending moment and a safety factor of 1.2 [64] 

against the yield strength of S355 steel (as per the deductions reached in Chapters 4.3.2.4), the thickness 

combinations for the flanges and web to achieve the required strength were obtained using Equation 

(5.1), where  𝜎𝐵𝑒𝑛𝑑𝑖𝑛𝑔 is the bending stress, 𝑀 is the bending moment and 𝑐 is the distance from the 

neutral axis to the flange surface. 

 

 

𝜎𝐵𝑒𝑛𝑑𝑖𝑛𝑔 =  
𝑀. 𝑐

𝐼
   (5.1) 

The lower limit of the safety factor range was chosen with a view to obtain a reduced mass while 

maintaining the required strength of the beam. The thickness combinations of the flange and web was 

determined for a maximum bending stress of 296 MPa (safety factor of 1.2 against a yield stress of 355 

MPa). The effect of the flange and web thicknesses on the overall mass of the longitudinal beam is 

shown in Figure 5.9 for a range of 5-20 mm. This range was chosen since it spans the commonly used 

material thicknesses for the design of longitudinal beams in trailers [54, 62, 85, 58]. 
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Figure 5.9: Effect of flange and web thicknesses on the overall mass of the longitudinal beam 

Table 5.3 shows the thickness combinations of the web and flanges for the safety factor and design 

loads used, as well as the resulting mass of the beam for each thickness combination. These material 

thicknesses were limited to that which is readily available in the Republic of South Africa for the 

selected S355 steel grade for manufacturing purposes, thus the thickness values yielded by Equation 

(5.1) were rounded off to the nearest available sizes. 

Table 5.3: Flange and web thickness combinations 

Flange Thickness 

(mm) 

Web Thickness  

(mm) 

Mass  

(kg) 
Safety Factor 

12 20 1251 1.22 

16 16 1166 1.29 

16 20 1355 1.41 

20 8 893 1.23 

20 10 987 1.29 
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As can be seen in Table 5.3, the combination of 20 mm flanges with an 8 mm web thickness yields the 

lowest mass (893 kg) with a resulting safety factor of 1.23 which falls within the recommended range 

from [64]. These material thicknesses are used as the initial parameters for the beam and refined during 

the structural analysis of the trailer to ensure safety factors within the recommended range of 1.2 -2.5 

are achieved [64] based on the FEA results. Figure 5.10 depicts the preliminary longitudinal beam 

design for the semi-trailers with manufacturing considerations accounted for. 

 

                                                

 

 

 

 

 

 

Figure 5.10: Preliminary longitudinal beam design 

5.4.3 Container Supports 

Cross members that pass through the webs of the pair of longitudinal beams are utilised with guides on 

each end to support each ISO container across its width (see Figure 5.3). These are used to secure the 

containers from moving laterally during transportation, as well as to aid the loading of containers onto 

the deck of the chassis by QCs and RTGs. Similar to the method used to determine the required length 

of the longitudinal beam based on the length of the containers carried, the length of the container-

supporting cross members was determined using the width of the containers carried by the semi-trailer 

and increased by 5% [80] for clearance between the containers and the guides. Using the width of the 

ISO containers presented in Table 5.1, together with the added clearance, the required length of the 

container-supporting cross members was found to be 2 489 mm. Eight cross members strategically 

positioned along the length of the longitudinal beams are used to support the containers. The orientation 

of the cross members, that pass through the webs of the longitudinal beams that are spaced 1 000 mm 

apart to satisfy the axle centre requirements, results in bending of the members owing to the mass 

portion of the containers that the cross member carries. This is depicted in Figure 5.11. The mass of the 

containers resting on the cross members is represented as a point load due to the outer edges of ISO 

containers being lower than the under surface of the floor, concentrating the load towards the ends of 

Rear view 

Side view 

Isometric view 
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the cross members. This orientation is used to determine the geometry of the cross members based on 

the structural requirements for the chassis. 

 

Figure 5.11: Orientation of the container-supporting cross members 

Standard structural sections are extensively used as cross members in trailer designs due to their 

availability and reduced cost when compared to equivalent fabricated sections formed by welding steel 

plates together, thus a standard structural section is desirable for the container-supporting cross 

members of the MTS semi-trailers. Similar to the longitudinal beams, standard I-sections are 

predominantly used due to their efficacy with supporting bending loads, these were selected for use as 

the container-supporting cross members in the present design.  

An appropriate structural section was determined from the minimum elastic section modulus required 

to prevent bending stresses beyond a predefined limit. This relationship is defined by Equation (5.2), 

where  𝜎𝐵𝑒𝑛𝑑𝑖𝑛𝑔 is the maximum allowable bending stress, 𝑀 is the maximum bending moment and              

𝑍𝑒 is the elastic section modulus of the cross section. 

 

 

𝜎𝐵𝑒𝑛𝑑𝑖𝑛𝑔 =  
𝑀

𝑍𝑒
   (5.2) 

Using a design factor of 2 for the vertical load, as per the deductions from Chapter 4.3.2.4, the maximum 

bending moment experienced by the cross members was determined using Figure 5.11 and applied to 

Equation (5.2) with an allowable bending stress of 296 MPa (safety factor of 1.2 [64] against a yield 

stress of 355 MPa) to determine the minimum required elastic section modulus of the cross members.  

For geometric reasons, the IPE 180 parallel flange I-section which has a section modulus greater than 

the minimum required value obtained using Equation (5.2) (27 930 mm3) was selected as the container-

supporting cross members. 

 

F₁ F₁

1 000 mm 

2 489 mm 
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The guides, which are assembled onto either end of the container-supporting cross members as well as 

to the front and back end of the longitudinal beams to facilitate accurate self-positioning of containers 

when lowered onto the trailer, have profiles that are dictated by the technical requirements for trailers 

operating at Pier one [45]. This profile requirement, shown in Figure 5.12, is adhered to for the geometry 

of the guides designed for the semi-trailers.  

Figure 5.13 shows the arrangement of the container-supporting cross members, as well as the container 

guides, assembled with the pair of longitudinal beams. Support plates have been added to allow the 

sides as well as the container base to rest on the chassis due to the height difference between the base 

of the container and its outer edges.   

 

Figure 5.12: Guide profiles [45] 

 

Figure 5.13: Cross members and guides assembled to the longitudinal beams 
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5.4.4 Kingpin Setback 

The kingpin setback on a trailer is limited by the required swing clearance between the chassis and the 

terminal tractor to ensure that no interference occurs between the two vehicles during turning 

manoeuvres. It is desirable to have as short a wheel base as possible for the semi-trailers of the MTS in 

order to reduce the swept path of the vehicle during turning manoeuvres, hence improving 

manoeuvrability. To achieve this, the kingpin setback should be at its maximum allowable distance in 

order to have a minimum wheel base. Since the Durban Container Terminal does not stipulate the 

minimum required swing clearance or maximum kingpin setback for trailers designed for use at Pier 

One, the recommendations from [54] on the minimum swing clearance between a semi-trailer and a 

prime mover are used to determine the kingpin setback for the MTSs semi-trailers.  A minimum swing 

clearance of 300 mm is recommended, resulting in a maximum kingpin setback of 931 mm for the semi-

trailers based on half the width of the chassis (1 414.5 mm) and the distance between the Kalmar TR626i 

tractors fifth wheel centre and the rear of its cabin (1 470 mm). This relationship is described by 

Equation (5.3) [54], where  𝑆𝐶 is the swing clearance, 𝐿1 is the kingpin setback, 𝐿2 is the distance 

between the centre of the fifth wheel and rear of the cabin and 𝑊 is the half width of the semi-trailer 

chassis. 

 

 

𝑆𝐶 =  𝐿2 − √𝐿1
2 +

𝑊2

4
  (5.3) 

To mount the kingpin to the chassis of the semi-trailer, a structure known as a skid plate is used. This 

plate has a circular cut-out for fitment of the kingpin and is welded onto the underneath surface of the 

longitudinal beams, spanning the distance between them. The leading edge of the skid plate has a 300 

bend to allow for a “skid” type operation when coupling the semi-trailer to the tractor. This was 

determined from measurements of the bend angle on the existing trailer’s skid plates to guide the chosen 

design.  Figure 5.14 and Figure 5.15 shows the orientation of the kingpin and the skid plate on the 

chassis. The method used to select the appropriate kingpin is presented in Chapter 5.4.7   
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Figure 5.14: Side view of the kingpin-skid plate assembly 

 

 

Figure 5.15: Aerial view of the kingpin-skid plate assembly 

 

5.4.5 Auxiliary Structures 

5.4.5.1 Lower Cross-Bracing 

Cross-bracing of the chassis between the pair of longitudinal beams is a method employed in trailer 

design to reduce twisting of the structure due to the torsional effects created by lateral loads. Trailer 

manufacturers have implemented the use of different standard structural sections as cross-braces, 

predominantly channels and round tube sections. A study by Yura [86] on the fundamentals of beam 

bracing showed that cross-bracing of beams using channel sections attached between the bottom tension 

flanges reduces the angle of twist of the structure while also increasing the buckling strength of the 

beam webs when exposed to torsional loads. This suggested approach is used for cross-bracing the 

MTSs semi-trailers longitudinal beams in this design. Channel sections are welded to the top surface of 

the longitudinal beams’ bottom flanges, spanning the distance between the two longitudinal beams’ 

webs along the beams’ length, each spaced 1.2 m apart. The container-supporting cross members 

provide the bracing required towards the top flange of the beams. While the primary function of the 

cross braces is to provide added stiffness to a trailer structure, they are also commonly used as a platform 

Skid plate

Kingpin
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for mounting the components of a trailer’s subsystems and for added bracing between the suspension 

brackets [62]. 

5.4.5.2 Towing Hitch Mounting 

A towing hitch is a device attached to the rear of a trailer chassis to enable additional trailers to be 

coupled to the set. The hitch, which allows for lateral and vertical articulation of the connection during 

turning manoeuvres, is designed by manufacturers to be bolted onto the rear end of the chassis at a 

suitable height for levelled coupling purposes.  For this MTS, the semi-trailers are designed with an 

extension to the rear of the chassis to accommodate the fitment of the towing hitch. A 30 mm plate 

braced with channel sections, recommended by the towing hitch manufacturers, is bent and profiled to 

be welded onto the underneath surface of the longitudinal beams bottom flanges with bolt holes at the 

required distance to ensure levelled coupling to the converter dolly. The method used to select the 

appropriate towing hitch is presented in Chapter 5.4.7. Figure 5.16 shows the orientation of the towing 

hitch assembled to the chassis.  

 

 

Figure 5.16: Mounting of the towing hitch to the semi-trailer chassis (left) front view (right) rear view             

5.4.5.3 Landing Gear 

A landing gear is used to support a semi-trailer when it is uncoupled from the prime mover. The gear is 

fitted at a distance away from the front of the trailer to ensure that interference with the prime mover’s 

chassis does not occur during turning. The A402 model landing gear, manufactured by Jost, was 

selected for the semi-trailer design due to its availability and telescopic design. The telescopic design 

allows for the height of the legs to be adjusted for ease of coupling to the terminal tractor as well as the 

converter dolly.  

5.4.5.4 Rear-Underrun Protection Device 

A rear-under run protection device, also known as the rear bumper of heavy good vehicle, is a safety 

device that prevents an impacting vehicle from becoming lodged underneath the heavy goods vehicle 

in a rear end collision. The rear-underrun protection device for the semi-trailers in this study was 
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designed according to the geometric requirements as per SANS 1055, which is a terminal specific 

requirement for trailers operated at Pier One. The dimensions are given in Table 5.4.  

Table 5.4: Rear-underrun protection device dimensions 

Parameter SANS 1055 Requirement Design Value 

Ground clearance 550 mm (maximum) 550 mm 

Lateral length (L) 1 730 mm < L < 1 930 mm 1 930 mm 

Distance away from rear extremity of 

the chassis 
450 mm (maximum) 220 mm 

                                                                                  

5.4.6 Bogie Assembly Position 

The position of the bogie assembly for a minimum wheel base is dependent on the mass of the chassis 

carrying the maximum payload and the position of the kingpin relative to their respective centre of 

gravities. The structural mass of the chassis, inclusive of the longitudinal centre beams, container 

supporting cross members and auxiliary structures was found to be 4 277 kg obtained using the 

computer aided drawing (CAD) software Creo 2.0, however this does not include the mass added to the 

structure from welding and painting. This additional mass is approximated using the findings from [62] 

where the welding and paint work for the existing trailers used at the Durban Container Terminal was 

found to be 5% of the chassis total mass. This resulted in a mass of 4 492 kg for the chassis. Using this 

mass and the maximum payload of two 20 ft. containers, the position of the bogie assembly was 

calculated such that it would be loaded to 90% of its rated maximum load capacity. This was done based 

on recommendations from the axle manufacturer to account for containers that may be overloaded and 

for irregular load distribution of its contents that may cause the axles to be loaded beyond its rated 

capacity of 22 700 kg. Figure 5.17 shows the load transfer analysis conducted to determine the position 

of the bogie, resulting in the semi-trailer having a wheelbase of 8.909 m.  
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5.4.7 Coupling D-Values 

The strength requirement for mechanical couplings used in trailer equipment is determined using the 

D-value formula [87], shown by Equation (5.4), which represents the theoretical reference value for the 

horizontal force between the towing vehicle and the trailer [69]. Equation (5.4) was used to select an 

appropriate kingpin for the leading semi-trailer since it experiences the greatest horizontal force from 

all the couplings in the MTS as a result of being connected directly to the terminal tractor. Figure 5.18 

shows the reaction loads pertaining to the variables used in Equation (5.4) [87]: 

 

 

𝐷 = 0.5𝑔
(𝐵 + 𝑈𝑇)(𝑇 + 0.08𝐵)

𝑇 + 𝐵 − 𝑈𝑇
    (5.4) 

where 𝐷 is the theoretical horizontal reference force between the towing vehicle and the trailer, 𝑈𝑇 

(=𝑈𝑑) is the fifth wheel load imposed by the semi-trailer, 𝑇 is the sum of the ground axle loads of the 

tractor as a result of the imposed load 𝑈𝑇, 𝑅1𝑏 (=𝑅2𝑏) is the sum of the ground axle loads of the semi-

trailers, 𝐶𝑑 is the sum of the ground axle loads of the converter dolly as a result of the imposed load 𝑈𝑑 

and 𝐵 (=  𝑅1𝑏 +  𝐶𝑑 + 𝑅2𝑏) is the sum of the axle loads of the MTS. 

 

Figure 5.18: Reaction loads for the MTS [87] 

The sum of the axle loads for the tractor was obtained by adding the imposed fifth wheel load of the 

trailer to the mass of the selected terminal tractor (14 000 kg tare mass for the Kalmar TR626i terminal 

tractor), while the ground axle loads of the trailers were determined by adding the mass of the entire 

bogie assembly (3 580 kg including rims and tyres) to the sum of the imposed loads on the axles as a 

result of the chassis mass and the payload. The imposed fifth wheel load and the load on the axles are 

shown in Figure 5.17. The resulting minimum D-value of the kingpin required for this application was 

found to be 225.92 kN. This lead to the selection of the Jost KZ1116 kingpin which has a D-value of 

260 kN. For reasons of availability, the RO - 50 flex towing hitch which also has a D-value of 260 kN 

was selected for the semi-trailers. The towing hitch will experience a lower horizontal force than the 

kingpin, thus the selection of the RO - 50 flex towing hitch suffices for the design even though it has a 

higher D-value rating than required. 
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5.4.8 Semi-Trailer Structural Analysis 

5.4.8.1 Finite Element Model 

To validate the structural integrity of the semi-trailer for the MTS, finite element analyses (FEA) of the 

chassis using the load cases discussed in Chapter 4.3.2.4 were conducted to ensure that the stresses 

induced in the materials resulted in the desired safety factor range of 1.2-2.5 for the design. Linear static 

analyses were conducted using ANSYS®. 

Using a mid-surfaced geometry, the model was automatically meshed with predominantly shell 

elements of the quadrilateral type. This was for improved accuracy as compared to other element types 

such as triangular elements [88, 89]. The meshed geometry is shown in Figure 5.19, together with the 

orientation of the global coordinate system. A mid-surfaced model was used for reduced solution times 

without negatively affecting the accuracy of the results since through-the-thickness variations in strain 

would be minimal due to the dimensions of the structural components [90]. The kingpin was modelled 

as a solid body rather than a mid-surfaced body since it did not conform to the requirements for using 

shell elements [90]. 

The effect of the semi-trailer’s suspension system and its spring configuration were incorporated in the 

analyses by means of multi-point rigid connections with deformable contact behaviour, as well as 1D 

bar and spring elements to represent the axles and leaf springs respectively [54, 62]. A similar setup 

was used to simulate the effects of the tractor’s and converter dolly’s suspension when the semi-trailer 

is coupled to the fifth wheel. Spring constants equivalent to the manufacturer’s specifications for the 

suspensions were used for defining the spring elements in the model. The container payloads were 

incorporated into the model using two mass elements weighing 30 450 kg each as the highest payload 

scenario, located at the geometric centre of the containers and applied as a uniformly distributed load 

to the surfaces of the chassis that supports the load. The mass of the semi-trailer was also included in 

the analyses.  Figure 5.20 depicts these features of the model together with the orientation of the global 

coordinate system. The X, Y and Z axes are taken as the longitudinal, vertical and lateral directions 

respectively.  

The von-Mises stress criterion was used in the FEA analyses to evaluate the design stresses, similar to 

previous studies [54, 57, 61, 83, 85] . This criterion is commonly used by design engineers as it is a 

theoretical measure of stress used to estimate yield failure in isotropic, ductile materials such as mild 

steel, making it suitable for the structural analyses in this study.  While the use of maximum principle 

and shear stress as the criteria for evaluating the safety of structures designed from ductile materials can 

be found in literature [91], the use of the von-Mises stress criterion is the most appropriate for 

determining the structural safety for materials in their elastic range [92]. 
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As mentioned in Chapter 4.4.3, grade S355 steel has been selected as the material for the design of the 

semi-trailers. The mechanical properties of this steel grade, shown in Table 4.5, was used in the 

analyses. 

 

Figure 5.19: Meshed semi-trailer geometry 

 

 

Figure 5.20: Full finite element model representation 
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5.4.8.2 Vertical Load Case 

The vertical load case consists of the payload, together with an acceleration equivalent to two times 

gravity in the vertical direction (negative Y axis direction of the global coordinate system) applied to 

the entire model. The model was constrained in at the kingpin and the suspension to prevent rigid body 

motion, while replicating the actual restraints on the structure during real life usage. Translational 

constraints in the direction of the global X and Y axes were applied to top and bottom of the springs 

respectively, while the translational constraint in the direction of the global Z axis was applied to the 

surface of the kingpin and the top of the springs [62]. The von-Mises stress plots for this load case are 

shown in Figure 5.21 and Figure 5.22. 

The results of this load case initially showed non-compliance to the design criterion of a maximum 

allowable non-localised peak stress of 296 MPa for a minimum safety factor of 1.2 against yielding 

[64]. Apart from the stress concentrations in the model which generate high stress values at localised 

points [93], the von-Mises stress results for the skid plate in the region around the kingpin as well as 

the front section of the longitudinal beam webs were found to be within the range of 352 to 395 MPa. 

These results are shown in Figure 5.23. 

 

Figure 5.21: von-Mises stress plot for the semi-trailer vertical load case – top view 
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Figure 5.22: von-Mises stress plot for the semi-trailer vertical load case – bottom view 

 

Figure 5.23: High stress regions on the skid plate and the longitudinal beams webs 

The high stress in these regions are caused by the vertical load on the skid plate at the support area 

representing connection to the fifth wheel of the tractor/converter dolly. This support area lies between 

the span of the 2 longitudinal beams, causing the skid plate to experience high bending stresses. The 

deformation of the skid plate is transferred to the front end of the longitudinal beams due to the contact 

area between them, causing the bottom flanges to bend inward which generates high stresses on the web 

region. This can be seen in Figure 5.24 where the deformation in this region is scaled by a factor of 5 

for visual purposes.  

To reduce the high stresses experienced at these regions, the skid plate was braced using fabricated 

channel sections with a 20 mm plate thickness, with due regard for space limitations, in an effort to 

minimise bending of the plate and the web of the longitudinal beams. The design modification is shown 
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in Figure 5.25, with the corresponding stress results for this region incorporating the added bracing 

shown in Figure 5.26 and Figure 5.27. The modification proved to be successful in reducing the von-

Mises stress in this area below the allowable value of 296 MPa, with stresses found within the range of 

147 to 287 MPa. 

 

Figure 5.24: Scaled deformation of the high stress region 

 

 

 

Figure 5.25: Additional bracing of the skid plate to minimise bending (left longitudinal beam hidden) 
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Figure 5.26: von-Mises stress plot of the skid plate with the added bracing – top view  

 

Figure 5.27: von-Mises stress plot of the skid plate with the added bracing – bottom view 

On inspection of the stress on the longitudinal beams, the location of the maximum stress was found to 

occur in the region where one of the support plates is positioned on the top flange. This support plate 

effectively increases the thickness of the top flange in that area, consequently reducing the stress results 

at that point when compared to the analytical calculations for the maximum stress presented in Chapter 

5.4.2. The stress from the FEA at the location which coincided with the maximum bending moment 

calculated in Chapter 5.4.2, was found to be 205 MPa. Since this stress was considerably lower than the 

maximum allowable value of 296 MPa an opportunity existed to reduce the thickness of the longitudinal 

beams flanges as a potential mass saving modification. Subsequent analyses resulted in the top and 

bottom flange thickness being reduced from 20 mm to 16 mm, pending verification in other load cases. 

This decreased the mass of the longitudinal beams by 210 kg in total. The final von-Mises stress plots 
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for this load case are shown in Figure 5.28 and Figure 5.29. The non-localised peak stress for this load 

case was found to be 287 MPa (see Figure 5.26), resulting in a safety factor of 1.24.  This value falls 

within the allowable safety factor range discussed in Chapter 4.3.2.4.  

 

Figure 5.28: Finalised von-Mises stress plot for the semi-trailer vertical load case – top view 

 

Figure 5.29: Finalised von-Mises stress plot for the semi-trailer vertical load case – bottom view 
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5.4.8.3 Longitudinal Braking Load Case  

The longitudinal braking load case consists of the payload coupled with an acceleration of 0.52g applied 

to the entire model in the positive X direction of the global coordinate system. Gravity was applied to 

the model in the negative Y direction of the global coordinate system. Similar to the vertical load case, 

the model was constrained in the respective directions at the kingpin and the suspension to prevent rigid 

body motion, while replicating the actual restraints on the structure during braking of the semi-trailer. 

A translational constraint in the direction of the global Y axis was applied to the bottom of the springs 

respectively, while the translational constraint in the direction of the global Z axis was applied to the 

surface of the kingpin and the top of the springs [62]. The surface of the kingpin was also constrained 

in the direction of the global X axis. The von-Mises stress plots for this load case are shown in Figure 

5.30 and Figure 5.31. 

The results of this load case complied with the design criteria for the chassis with a maximum stress of 

258 MPa occurring on the skid plate in the region of the kingpin, resulting in a safety factor of 1.38. 

This value falls within the allowable safety factor range defined in Chapter 4.3.2.4. Localised high stress 

points exceeding the yield stress of the material were found in the longitudinal beam’s webs at the 

corner regions of the skid plate braces (see Figure 5.32), however this is due to modelling 

approximations used in the FEA process and is not considered a true representation of the stress 

distribution in those areas [93]. This is discussed further in Chapter 8.  

 

Figure 5.30: von-Mises stress plot for the semi-trailer braking load case – top view 
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Figure 5.31: von-Mises stress plot for the semi-trailer braking load case – bottom view 

 

 

Figure 5.32: Localised high stress region at the web-skid plate bracing interface 

5.4.8.4 Longitudinal Acceleration Load Case  

The longitudinal load case simulating the maximum tractive force of the terminal tractor transferred to 

the kingpin of the semi-trailer was conducted by applying this force directly onto the kingpin in the 

positive X direction of the global coordinate system. The D-value of the kingpin, described in Chapter 

5.4.7, is a theoretical reference force calculation used to determine the strength requirements of the 

coupling and is based on the mass of the vehicles concerned, however it does not represent the actual 

tractive force provided by the terminal tractor used, as Equation (5.4) is independent of the tractive 

performance of the prime mover. The maximum tractive effort of the Kalmar TR626i terminal tractor 

was calculated as 256 kN, using the performance data shown in Appendix B. This maximum tractive 

effort is available between 1000-1400 rpm in the first gear, which is during take-off. This force value 

was applied directly to the kingpin, simulating the tractor pulling the MTS. Together with the tractive 
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force, this load case consisted of the mass of the payload and gravity applied to the model in the negative 

Y direction of the global coordinate system. Translational constraints in the direction of the global Z 

and Y axes were applied to the top and bottom of the springs respectively, while the translational 

constraint in the direction of the global X axis was applied to the surface where the towing hitch is 

connected to the chassis. The von-Mises stress plots for this load case are shown in Figure 5.33 and 

Figure 5.34.  

 

Figure 5.33: von-Mises stress plot for the semi-trailer accelerating load case – top view 

 

Figure 5.34: von-Mises stress plot for the semi-trailer accelerating load case – bottom view 

The non-localised peak stress in this load case was found to be 190 MPa on the bottom flange of the 

longitudinal beams, resulting in a safety factor of 1.86. This falls within the allowable safety factor 

range. Localised high stress points exceeding the yield stress of the material were found at the corners 
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of the cross members used to brace the towing hitch mounting plate, shown in Figure 5.35. These 

localised high stresses are discussed further in Chapter 8.  

 

Figure 5.35: Localised high stress at the corners of the cross member 

5.4.8.5 Lateral Load Case 

The lateral load case was conducted to simulate the effects on the chassis during cornering. This load 

case consists of the payload together with an acceleration of 0.25g applied to the entire model in the 

negative Z direction of the global coordinate system, while gravity was applied to the model in the 

negative Y direction. Similar to the previous load cases, the model was constrained at the kingpin and 

the suspension to prevent rigid body motion, replicating the actual restraints on the structure during real 

life cornering. Translational constraints in the direction of the global X and Y axes were applied to the 

top and bottom of the springs respectively, while the translational constraint in the direction of the 

global Z axis was applied to the surface of the kingpin [62]. The von-Mises stress plots for this load 

case are shown in Figure 5.36 and Figure 5.37. 
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Figure 5.36: von-Mises stress plot for the semi-trailer lateral load case – top view 

 

 

Figure 5.37: von-Mises stress plot for the semi-trailer lateral load case – bottom view 

The results of this load case complied with the design criteria for the chassis with a maximum stress of 

272 MPa occurring on the top flange of the right longitudinal beam (when viewed from the front), 

resulting in a safety factor of 1.31. This value falls within the allowable safety factor range discussed 

in Chapter 4.3.2.4. Localised high stress points exceeding the yield stress of the material occurred in 

the longitudinal beams webs at the corner regions of the skid plate braces as well as at the corners of 

the channel section cross braces due to modelling approximations used in the FEA process [93] and 

these are discussed in further Chapter 8. 
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5.4.9 Semi-Trailer Final Design 

On completion of the structural analysis, the CAD model of the semi-trailer was updated with the 

longitudinal beams flanges reduced to 16 mm and the cross bracing addition to the skid plate, described 

in Chapter 5.4.8.2. These modifications resulted in a final chassis mass of 4 410 kg, 82 kg less than the 

initial mass as sized via the analytical analysis. The semi-trailer design for the MTS was carried out 

with the intention of having a reduced mass and improved manoeuvrability when compared to the 

existing semi-trailers at the terminal that could have been used to form the MTS (Chapter 4.2.2). 

Preliminary comparisons of the mass of each chassis showed that the semi-trailer designed in this study 

is 2260 kg lighter than the existing semi-trailers, representing a 33.9% mass reduction which directly 

leads to a lower product cost. A detailed mass and cost comparison is given in Chapter 7 and discussed 

further in Chapter 8.  Figure 5.38 shows the CAD model of the finalised semi-trailer design for use in 

the MTS. 

 

Figure 5.38: Finalised semi-trailer design 
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5.5 Converter Dolly Design 

5.5.1 General Structural Arrangement 

The structural arrangement of a converter dolly, similar to a semi-trailer, consists of a steel chassis 

constructed from two longitudinal centre beams joined together using cross members. The length of the 

beams were determined based on the geometry of the suspension fitted onto the bottom of the lower 

flanges, while the height of the beams is based on the overall height requirement of the converter dolly 

for levelled coupling to a semi-trailer [45]. The distance between the beams is governed by the centre 

mounting distance of the axles used. A fifth wheel coupling is fitted onto a mounting plate that is 

positioned on the upper surface of the longitudinal beams top flanges, directly in line with the centre of 

the bogie assembly for even load distribution and reduced tyre wear when turning [94, 95]. In operation, 

this fifth wheel couples to the kingpin of a semi-trailer.  

There are two configurations of the drawbar arrangement which distinguishes the converter dolly types. 

An A-type converter dolly, which is used in the MTS design for this study, has a single point towing 

connection which allows articulation in yaw (steering), pitch (fore/aft rotation), and roll (side-to-side 

rotation) of the dolly with respect to the towing vehicle [95]. A C-type converter dolly has a double 

draw bar arrangement, resulting in two parallel towing connections to the leading semi-trailer. This 

connection type eliminates yaw, improving the vehicles stability at speeds above 45 km/hr., however 

this reduces the low speed manoeuvrability of the trailer system and produces extreme towing hitch 

forces as well as tyre scrubbing during small radius turns at low speeds [95]. The A-type converter dolly 

was chosen for the MTS in this study since it is used for low speed applications and does not require 

added stability for higher speed usage.   

The structural arrangement detailed above is highlighted in Figure 5.39 and used as a guideline for the 

geometrical setup of the structural members which form the converter dolly designed for the MTS.  

 

Figure 5.39: Converter dolly – structural arrangement 
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5.5.2 Chassis Structure 

The chassis of the converter dolly consists of two I-section longitudinal beams of length 2 597 mm to 

accommodate the fitment of the GO underslung bogie. The height of the longitudinal beams was 

determined from the required overall height of the converter dolly, taking into consideration the height 

of the bogie which fits underneath the bottom flange of the longitudinal beams and the fifth wheel which 

fits onto the top flange. The webs of the beams have a varying height between 346 mm and 140 mm, 

while the flanges have a width of 130 mm based on the size required for mounting the suspension onto 

the beam. Similar to the semi-trailer design, the cross-sectional shape selected for the longitudinal 

beams of the converter dolly was that of an I-section due to its efficacy with supporting bending loads 

and its resistance to flexure [62, 81]. The initial material thickness used for the webs and flanges was 

preselected to be 10 mm and verified using FEA in Chapter 5.5.6 to achieve the required safety factor 

rage of 1.2 - 2.5 [64]. 

To reduce twisting of the structure due to the torsional effects created by lateral loads, the chassis of the 

converter dolly is braced using a combination of standard channel and square tube sections towards the 

bottom flange of the longitudinal beams based on the recommendations from [86], similar to the semi-

trailer design. These cross braces were positioned strategically such that they could also be used as the 

platform for additional bracing between the suspension brackets.  

The front end of the chassis has two brackets spaced 870 mm apart for connecting the A-frame drawbar, 

discussed further in Chapter 5.5.5. Figure 5.40 below shows the chassis of the converter dolly with the 

longitudinal beams and cross members in position. 

 

Figure 5.40: Converter dolly chassis  
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5.5.3 Fifth Wheel Assembly 

The fifth wheel assembly selected for the converter dolly was the Jost JSK 38C-1 heavy duty coupling 

suitable for connection to the 3 ½” kingpin used in the semi-trailer design. This selection was based on 

the imposed vertical load from the skid plate of the semi-trailer, as well as the fifth wheels strength 

requirement determined using the D-value calculation for selecting mechanical couplings used in trailer 

equipment [69, 87]. The results of the D-value calculation used for selecting the appropriate fifth wheel 

are given in Chapter 5.5.6.  

The fifth wheel is designed to be bolted onto a mounting plate that is fastened to the top flanges of the 

longitudinal beam using eight M20x1.5 bolts of strength class 10.9 as per ECE R55-01 regulations [96]. 

As mentioned in Chapter 5.5.1, it is recommended in [94, 95] that the fifth wheel coupling used in 

converter dollies be directly in line with the centre of the bogie assembly for even load distribution to 

the axles and reduced tyre wear when turning. This recommendation has been factored into the 

converter dolly design. Figure 5.41 displays the fifth wheel and mounting plate which is bolted onto the 

top flange of the longitudinal beams. 

 

Figure 5.41: Fifth wheel assembly fitted to chassis 

5.5.4 Bogie Assembly  

The under slung bogie selected for the converter dolly requires a minimum clearance of 220 mm 

between the centre line of the axles and the underneath surface of the longitudinal beams bottom flanges 

as per the specifications from the manufacturer [74]. This clearance is required to prevent the axles from 

colliding with the chassis when loaded to its maximum allowable capacity of 22 700 kg. To achieve 

this, trailer equipment manufacturers use boxed steel structures called pedestals which are welded onto 

the suspension brackets for an increased clearance between the axles and the longitudinal beams. This 

approach is adopted for the converter dolly design and is shown in Figure 5.42. The pedestals are 

designed with a height of 100 mm to achieve the minimum required clearance. Figure 5.42 shows the 

bogie assembled to the chassis with the pedestals in position. 

Fifth wheel 
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Figure 5.42: Bogie assembly utilising pedestals for connection to the chassis (tyres hidden) 

5.5.5 Drawbar Arrangement 

The single point drawbar used for the converter dolly was designed with a length of 1 650 mm to ensure 

that the rear end of the leading semi-trailer in the MTS set clears the front container guides of the second 

semi-trailer during turning manoeuvres, preventing collisions during tight turns. The connection points 

of the drawbar to the chassis of the converter dolly were designed to be as far apart as possible, taking 

into account manufacturing considerations, in order to reduce the bending moment on the front 

members of the chassis during movement. M36x4 shanked bolts were used to connect the drawbar to 

the chassis of the converter dolly. The towing eye selected for the design was the Jost Heavy Duty 

Towing Eye (Part number: 57005) which is mounted at the front end of the drawbar and used to connect 

the converter dolly to the leading semi-trailer. The selection of the towing eye was based on the strength 

requirement determined using the D-value calculation for selecting mechanical couplings used in trailer 

equipment [69, 87]. The results of the D-value calculation used for selecting the towing eye are detailed 

in Chapter 5.5.6. Figure 5.43 shows the drawbar designed from standard square steel sections and 

fabricated steel plates to form the structure, together with the towing eye assembled in position.  

 

Figure 5.43: Drawbar design   
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5.5.6 Coupling D-Values 

The D-value rating for the coupling equipment used in the converter dolly design was obtained from 

the equations presented in ISO 12357-3 [87] which details the strength requirements of mechanical 

coupling used in multiple vehicle combinations. Variations of Equation (5.4) were used to determine 

the minimum D-value for selecting the appropriate couplings. The results of the calculations yielded D-

values of 249 kN for both the towing eye and fifth wheel couplings, leading to the selection of the Jost 

JSK 38C-1 fifth wheel and Heavy-Duty Towing Eye which had D-values of 250 kN and 314 kN 

respectively. These selections were also based on local availability.  

5.5.7 Converter Dolly Structural Analysis 

5.5.7.1 Finite Element Model 

Finite element analyses (FEA) of the chassis were conducted to ensure that the stresses induced in the 

materials resulted in the desired safety factor range of 1.2-2.5 using the load cases discussed in Chapter 

4.3.2.4 . Linear static analyses were conducted using ANSYS®. A similar approach to the semi-trailer 

FE model was used for the converter dolly. 

A mid-surfaced geometry was meshed with predominantly shell elements of the quadrilateral type for 

improved accuracy, as compared to alternate types such as triangular elements [88, 89]. The meshed 

geometry is shown in Figure 5.44, together with the orientation of the global coordinate system. A mid-

surfaced model was used for reduced solution times, assuming minimal through-the-thickness 

variations in strain [90]. The towing eye was modelled as a solid body rather than a mid-surfaced body 

since it did not conform to the requirements for using shell elements [90]. 

The effect of the converter dollie’s suspension system and its spring configuration were incorporated in 

the analyses by means of multi-point rigid connections with deformable contact behaviour, as well as 

1D bar and spring elements to represent the axles and leaf springs respectively [54, 62], similar to the 

semi-trailer model. Spring constants equivalent to the manufacturer’s specifications for the suspensions 

were used for defining the spring elements in the model. The load imposed onto the fifth wheel 

connection by the semi-trailer was incorporated into the model using a remote force located at a position 

representing the fifth wheel-kingpin interface. The mass of the converter dolly was included in the 

analyses. For reduced solution times, the fifth wheel geometry was excluded from the model since the 

imposed loads could be directly applied to the mounting plate at the areas of contact.  

Figure 5.45 depicts these features of the model together with the orientation of the global coordinate 

system. The X, Y and Z axes are taken as the longitudinal, vertical and lateral directions respectively.  
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Similar to the structural analyses for the semi-trailers, the von-Mises stress criterion was used to 

evaluate the design stresses for the converter dolly [54, 57, 61, 83, 85] as it is most appropriate for 

determining the structural safety of materials showing elastic properties [92].  

 

Figure 5.44: Meshed converter dolly geometry 

 

Figure 5.45: Finite element model representation 

5.5.7.2 Vertical Load Case 

This load case consists of the vertical force applied to the mounting plate, together with an acceleration 

equivalent to two times gravity in the vertical direction (negative Y axis direction of the global 

coordinate system) applied to the entire model. The vertical force applied to the mounting plate was 

equal to twice the actual vertical load transferred from the semi-trailer to the fifth wheel of the converter 

dolly in order to maintain a design factor of 2 (see Chapter 4.3.2.4). The model was constrained in the 

respective directions at the suspension and the towing eye to prevent rigid body motion, while 

1D Bar ElementsSpring Elements

Remote force applied to the fifth wheel interface at the mounting plate
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replicating the actual restraints on the converter dolly during real life usage. Translational constraints 

in the direction of the global X and Y axes were applied to top and bottom of the springs respectively, 

while the translational constraint in the direction of the global Z axis was applied to the inner surface 

of the towing eye and the top of the springs. The von-Mises stress plots for this load case are shown in 

Figure 5.46 and Figure 5.47. 

 

Figure 5.46: von-Mises stress plot for the converter dolly vertical load case – top view 

 

Figure 5.47: von-Mises stress plot for the converter dolly vertical load case – bottom view 

The results of this load case complied with the design criteria for the converter dolly with a non-

localised peak stress of 266 MPa occurring on the web of the longitudinal beam in the region of the 

bottom flanges, resulting in a safety factor of 1.33. This falls within the allowable safety factor range 

discussed in Chapter 4.3.2.4. Localised high stress points exceeding the yield stress of the material were 

found in the longitudinal beams webs at the corner regions of the front cross member and at the interface 
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between the longitudinal beams and the foremost pedestal (see Figure 5.48), discussed further in 

Chapter 8. 

 

 

Figure 5.48: Localised high stress regions for the vertical load case  

5.5.7.3 Longitudinal Braking Load Case 

The longitudinal braking load case consists of the vertical force applied to the mounting plate which is 

equivalent to the actual vertical load transferred from the semi-trailer to the fifth wheel of the converter 

dolly, coupled with an acceleration of 0.52g applied to the entire model in the negative X direction of 

the global coordinate system. The force component on the fifth wheel due to the longitudinal 

acceleration was included in the model, equivalent to the imposed vertical load on the fifth wheel 

multiplied by the longitudinal acceleration magnitude. This force was applied in the negative X 

direction of the global coordinate system. 

Gravity was applied to the model in the negative Y direction of the global coordinate system. Similar 

to the vertical load case, the model was constrained in the respective directions at the towing eye and 

the suspension to prevent rigid body motion, while replicating the actual restraints on the structure 

during real life usage which resembled braking of the converter dolly. Translational constraints in the 

direction of the global Y and Z axes were applied to the bottom and top of the springs respectively, 

while the translational constraint in the direction of the global X axis was applied to the inner surface 

of the towing eye. The von-Mises stress plots for this load case are shown in Figure 5.49 and Figure 

5.50. 
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Figure 5.49: von-Mises stress plot for the converter dolly braking load case – top view 

 

Figure 5.50: von-Mises stress plot for the converter dolly braking load case – bottom view 

The results of this load case complied with the design criteria for the converter dolly with a non-

localised peak stress of 174 MPa occurring on the bottom flange of the longitudinal beams in the region 

of the centre pedestal, resulting in a safety factor of 1.7. This falls within the allowable safety factor 

range. Localised high stress points exceeding the yield stress of the material were found at the corners 

of the members supporting the mounting plate (see Figure 5.51), however this is due to modelling 

approximations used in the FEA process and is not deemed a true representation of the stress distribution 

in those areas [93], as discussed further in Chapter 8.  
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Figure 5.51: Localised high stress regions at the corner of the mounting plate support members 

5.5.7.4 Longitudinal Acceleration Load Case 

The longitudinal load case simulating the maximum horizontal force on the drawbar of the converter 

dolly due to the tractive force of the terminal tractor was conducted by applying this force directly onto 

the towing eye in the negative X direction of the global coordinate system. As previously mentioned, 

the D-value is a theoretical reference force calculation used to determine the strength requirements of 

the coupling and is based on the mass of the vehicles concerned, however it does not represent the actual 

horizontal force on the couplings due to the tractive performance of the prime mover.    

Similar to the longitudinal acceleration load case for the semi-trailer design where the maximum 

calculated tractive force was applied to the kingpin, the maximum horizontal force on the towing eye 

during take-off was calculated as 120 kN and applied onto the towing eye for the analysis using the 

performance data shown in Appendix B.  

Together with the horizontal force, this load case consisted of the vertical force applied to the mounting 

plate equivalent to the actual vertical load transferred from the semi-trailer to the fifth wheel of the 

converter dolly in the negative Y direction of the global coordinate system. Translational constraints in 

the direction of the global Z and Y axes were applied to the top and bottom of the springs respectively, 

while the translational constraint in the direction of the global X axis was applied to the mounting plate 

in the areas which contact the fifth wheel. The von-Mises stress plots for this load case are shown in 

Figure 5.52 and Figure 5.53.  

The non-localised peak stress in this load case was found to be 213 MPa on the front end of the bottom 

flange of the longitudinal beams, resulting in a safety factor of 1.67, that falls within the allowable 

safety factor range discussed in Chapter 4.3.2.4. Localised high stress points exceeding the yield stress 
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of the material were found at the corners of the square sections used to form the drawbar hinge, shown 

in Figure 5.54. These localised high stresses are discussed further in Chapter 8.  

 

Figure 5.52: von-Mises stress plot for the converter dolly accelerating load case – top view 

 

Figure 5.53: von-Mises stress plot for the converter dolly accelerating load case – bottom view 
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Figure 5.54: Localised high stress at the corners of the square sections of the drawbar hinge 

5.5.7.5 Lateral Load Case 

The lateral load case was conducted to simulate the cornering effects on the converter dolly during 

turning manoeuvres of the MTS. This load case consisted of the vertical force on the mounting plate 

together with an acceleration of 0.25g applied to the entire model in the negative Z direction of the 

global coordinate system. Gravity was applied to the model in the negative Y direction. The force 

component on the fifth wheel due to the lateral acceleration was included in the model, equivalent to 

the imposed mass on the fifth wheel multiplied by the lateral acceleration of 0.25g. This force was 

applied in the negative Z direction of the global coordinate system. 

Similar to the previous load cases, the model was constrained at the towing eye and the suspension to 

prevent rigid body motion, replicating the actual restraints on the structure during real life cornering. 

Translational constraints in the direction of the global X and Y axes was applied to the top and bottom 

of the springs respectively, while the translational constraint in the direction of the global Z axis was 

applied to the inner surface of the hole in the towing eye. The von-Mises stress plots are shown in Figure 

5.55 and Figure 5.56.  

The non-localised peak stress in this load case was found to be 286 MPa on the webs of the longitudinal 

beams, resulting in a safety factor of 1.24. This value falls within the allowable safety factor range. 

Localised high stress points exceeding the yield stress of the material were found at the corners of the 

square sections used to form the drawbar hinge, shown in Figure 5.57 and discussed further in Chapter 

8. 
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Figure 5.55: von-Mises stress plot for the converter dolly lateral load case – top view 

 

Figure 5.56: von-Mises stress plot for the converter dolly lateral load case – bottom view 

 

Figure 5.57: Localised high stress at the drawbar hinge corners 
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5.5.8 Converter Dolly Final Design 

The results of the structural analysis showed that the initial design of the converter dolly was within the 

limits of the safety factor range detailed in Chapter 4.3.2.4. Subsequent analyses of the structure allowed 

for the reduction in the thickness of certain members which experienced low stress in order to reduce 

the mass of the converter dolly’s chassis, resulting in a mass reduction of 148 kg when compared to the 

initial chassis design. On completion of the structural analysis the CAD model of the converter dolly 

was updated with the reduced material thicknesses. The modifications resulted in a final structural mass 

of 1 045 kg. Figure 5.58 shows the CAD model of the finalised converter dolly designed for use in the 

MTS. 

 

Figure 5.58: Finalised converter dolly design 

5.6 Complete Multi-Trailer System 

The completed MTS design is shown in Figure 5.59 with the identical semi-trailers connected using the 

converter dolly. The MTS has a total tare mass of 20 571 kg (including the mass of the suspensions, 

axles and tyres) and a length of 27.8 m with the two semi-trailers in the set.  

 

Figure 5.59: Completed MTS design 
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5.7 Chapter Summary 

A detailed design of the MTS was provided, beginning with the design of the semi-trailers and thereafter 

the converter dolly. The Kalmar TR626i terminal tractor was selected as the prime mover for the MTS 

such that the appropriate geometrical features and clearances could be implemented into the design to 

allow it to function without structural interference from the prime mover. The MTS was designed in 

accordance with the technical and functional requirements presented in Chapter 4.3.1 and was verified 

structurally using FEA based on the criteria presented in Chapter 4.3.2.4. An iterative design process 

was adopted where the mass of both the semi-trailer and converter dolly was reduced based on the 

results of the structural analyses. This was done to reduce the manufacturing cost of the product in order 

to increase the operational cost benefit of using MTSs at Pier One. 
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6 Turning Analysis 

6.1 Introduction 

This chapter details the turning analyses of the MTS for the container movement operations undertaken 

at the Durban Container Terminal. The investigation was conducted to ensure that the vehicle is able to 

complete the typical turning manoeuvres required for container movement within the confinement of 

Pier One. The turning software BricsTurn® was used to conduct the analyses for the expected turning 

activities. The results of the analyses were used to confirm that the MTS was able to be manoeuvred 

around the quayside and within the available space between the stacking areas using the Kalmar TR626i 

terminal tractor.  

6.2 Equivalent Wheelbase for the Tractrix Method 

BricsTurn® utilises the geometric tractrix method to predict the low speed swept path of a vehicle 

combination as the steering axle traverses a predefined curve. The method is based on the passive 

following of the trailing axle groups in the vehicle combination, with the curves tracking the path 

followed by the geometric centre of the trailing axle groups during a turn known as the “tractrix” curve 

[97]. To obtain the swept path of the vehicle combination, the tractrix curve is offset using the geometry 

of the vehicle, considering the change in perpendicularity of the steering axle to the prescribed path 

being followed [98]. BricsTurn® relies on the following geometric parameters to generate the tractrix 

curves and hence the swept path of a multi-unit vehicle combination: 

1. The wheelbase of each vehicle in the set. For multiple axles, this is measured to the geometric 

centre of the axle group. 

2. The distance from each coupling point to the centre of the preceding axle group. 

3. The width of the vehicles and each axle group. 

4. A predefined path followed by the centre of the steering axle. 

During turning manoeuvres, vehicles with multiple fixed trailing axles do not experience pure rolling 

motion due to tyre scrub which creates lateral forces generated by the tyres at the ground interface [98], 

reducing the turning performance of the vehicle by inducing a larger swept path. Effectively, a vehicle 

with multiple fixed trailing axles would not exhibit the same turning behaviour as that of a vehicle with 

a single fixed trailing axle. This is an effect that BricsTurn® does not automatically take into 

consideration. To model the turning performance of vehicles with multiple axles, an “equivalent 

wheelbase” principle was developed by Winkler and Aurell [99] on the basis that a vehicle with multiple 

fixed trailing axles with wheelbase WB may be reduced to having one fixed axle with equivalent 

wheelbase WBEq, producing the same turning behaviour at low speeds. Figure 6.1 depicts this 

relationship for a three-axle rigid truck (two fixed rear axles and one steering axle). The broken lines 

represent the bicycle model of the three-axle vehicle with wheelbase WB and an axle spacing of 2Δ. 
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The lateral forces at the tyre-ground interface due to the slip angles created is denoted by Fy. The solid 

lines represent the two-axle vehicle with equivalent wheelbase WBEq (one fixed rear axle and one 

steering axle).  

 

Figure 6.1: Equivalent wheelbase for a three-axle rigid truck [98] 

Winkler and Aurell [99] defined the wheelbase of the equivalent two axle vehicle, 𝑊𝐵𝐸𝑞, shown in 

Figure 6.1 using Equation (6.1) where Cα is the sum of the cornering stiffness of the front and rear tyres, 

denoted by subscript f and r, and TF the tandem factor. The cornering stiffness is a proportionality 

constant characterised by the ratio of a tyre’s slip angle and the resulting lateral force developed [98]. 
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The tandem factor, TF, is obtained from Equation (6.2) for a vehicle with n fixed axles.   
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) ÷ 𝑛 
 

 (6.2) 

For the particular case of low speed turning, the equivalent vehicle model develops small slip angles 

and the third term in Equation (6.1) can be omitted [98, 99], making the equivalent wheelbase 

independent of the tyre’s cornering stiffness at low speeds.  
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While the study conducted by Winkler and Aurell in [99] was for that of a rigid truck, the same theory 

can be applied to trailer systems by substituting the hitch points as the steering axle [98]. Although 

lateral hitch forces are not present in the case of a rigid truck around which the theory was developed, 

de Saxe [98] showed that the effect of lateral hitch forces on the equivalent wheelbase model can be 

neglected, which was also in line with the findings of Morrison [100]. Equations (6.1) and (6.2) were 

utilised to find the equivalent wheelbase for each vehicle in the MTS for use as inputs into the turning 

models implemented in BricsTurn®. 

6.3 BricsTurn® Simulation 

6.3.1 Method Validation 

To validate the results yielded by BricsTurn®, the swept path plots of the double and triple-trailer 

combination vehicles used for the geometric design of highways, as shown in the governing AASHTO 

policy of 2001 [101], were compared to the plots yielded by BricsTurn® for the same vehicles and turn 

using its geometric parameters presented in [101]. This approach was necessitated by the lack of other 

publicly available swept path plots of vehicles for particular turning manoeuvres, including data of the 

vehicle’s geometric parameters and information on the turn radius. The AASHTO policy is used for the 

design of roads in the United States of America, in part to ensure that all vehicle types are catered for 

with regard to the space requirements for turning. Figure 6.2 and Figure 6.3 shows the swept paths of a 

double-trailer (called a 33D) and triple-trailer (called a 30T) adapted from the AASHTO road design 

guideline, each for a 180° turn at their respective centreline turn radii (CTR). The replicated scenarios 

using BricsTurn®, shown in Figure 6.4 and Figure 6.5, yielded results within 2.5% for the minimum 

and maximum radii of the swept paths when compared to the plots from the AASHTO policy, validating 

the results produced by BricsTurn®. Table 6.1 shows the results comparison for the models implemented 

in BricsTurn® to the data obtained from the AASHTO road design guideline. 

Table 6.1: Comparison of BricsTurn® and AASHTO swept path radii for the 33D and 30T trailers 

Parameter Data Source 33D Double-Trailer 30T Triple-Trailer 

Maximum outer radius 

of the swept path 

AASHTO 18.4 m 13.87 m 

BricsTurn® 18.4 m 13.86 m 

% Difference 0 % 0.07 % 

Minimum inner radius 

of the swept path 

AASHTO 4.54 m 3 m 

BricsTurn® 4.43 m 2.93 m 

% Difference 2.43 % 2.33 % 
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Figure 6.2: Turning path for 33D double-trailer combination [101]           

 

Figure 6.3: Turning path for 30T triple-trailer combination [101] 
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Figure 6.4: BricsTurn® swept path plots for the for 33D double-trailer combination 

 

 

Figure 6.5: BricsTurn® swept path plots for the for 30T triple-trailer combination 

Path of the front overhang 

Path of the front overhang 

Centreline turning radius 

Centreline turning radius 

Path of the right rear wheel 

Path of the right rear wheel 
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6.3.2 Input Data 

BricsTurn® requires the wheelbase lengths of each vehicle in the MTS set as well as the various hitch 

point distances to the relevant bogie centres to carry out the analyses. Steering and geometry data for 

the prime mover was obtained from the respective product data sheets for the Kalmar TR626i terminal 

tractor. The steering lock-to-lock time for the tractor, defined as the time taken to turn the steering wheel 

from full left lock to full right lock (or vice versa), was approximated as 3.5 seconds for the analyses. 

This was determined from physical lock-to-lock time measurements of the existing tractors at the 

Durban Container Terminal where the average time for multiple drivers was obtained. The time 

measurement activity was required since this information for the TR626i model was not readily 

available. All simulations were conducted at the maximum terminal operating speed of 30 km/hr., 

together with the equivalent wheelbase (see Chapter 6.2) of each individual vehicle in the set. Figure 

6.6 shows the user interface of BricsTurn® and the input data for the MTS’s turning analyses. 

 

Figure 6.6: BricsTurn® input data for the MTS’s turning analyses 
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6.3.3 Turning Manoeuvres 

The turning simulations implemented in BricsTurn® to validate the manoeuvrability of the MTS within 

the confinement of Pier One was carried out by replicating the expected turns which the MTS would 

need to complete for container movement between the vessel and stacking areas during the vessel 

loading and unloading operations. Each simulation required the intended path of the centre of the 

tractor’s steering axle to be sketched and used as an input for the path to be followed by the tractor. 

Rectangular blocks representing the size of the stacking areas were included in the layout of the 

simulation output area to visualise the MTS manoeuvring within the terminal. Each turn was simulated 

using radii equal to the minimum turn radius of the TR626i terminal tractor (7.77 m) so as to not violate 

its turning capabilities. Figure 6.7 shows the tractrix curves of a common double 90° turn where the 

MTS exits and enters adjacent storage blocks (e.g. exiting between blocks F and G and entering between 

blocks D and E) centrally, while Figure 6.8  depicts the worst case, highly uncommon, scenario of the 

MTS both exiting and entering a storage block directly underneath an RTG. 

 

Figure 6.7: Double 900 turn with central exit-entry of storage blocks 

For the worst case scenario shown in Figure 6.8, the MTS needs to complete a 123° turn at the minimum 

turning radius when exiting the storage block, followed by a 131° turn also at the minimum turning 

radius in order to enter the next storage block without colliding with the RTG. The angles and lengths 

of this turn were determined using an iterative approach since BricsTurn® does not automatically 

suggest a path to be followed for the completion of a turn. 

Figure 6.9 shows the MTS entering the stacking area of block 1 for each area designation (blocks A1, 

B1, C1…, G1) for the scenario of entering centrally and the worst case of having to enter the block 

underneath an RTG. For the case of entering underneath an RTG, the MTS would have to complete a 

127° turn moving away from the storage block for approximately 12 m and thereafter complete a 142° 
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turn to enter the block. An iterative approach was used to determine these parameters, similar to that 

described for the turns between adjacent storage blocks. 

 

Figure 6.8: Worst case exit-entrance of adjacent storage blocks (underneath RTG) 

 

 

Figure 6.9: Entering a stacking area (blocks A1 to G1) centrally (left) vs. underneath an RTG (right) 
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Figure 6.10: Entering blocks A1, A2 and A3 underneath an RTG during vessel loading 

Figure 6.10 depicts the worst case turning manoeuvre (entering the storage block underneath an RTG) 

which the MTS would complete between the QCs and storage blocks A1 to A3 for the case of using the 

MTS for the vessel loading procedure. For this scenario, the entire available space between the QCs 

and blocks A1 to A3 can be used to perform the 180° turn. Using a 15 m turning radius for the tractor, 

the start of the turn must occur at a minimum horizontal distance of 26.9 m away from the entrance 

point of the RTG to ensure that a collision between the two does not occur. Again, an iterative approach 

was used to determine these parameters  

The above analyses using BricsTurn® validates the ability of the MTS to be manoeuvred within Pier 

One for container movement between the vessel and the stacking areas using the Kalmar TR626i 

terminal tractor. 

6.4 Chapter Summary 

This chapter presented the turning analyses conducted for the MTS using BricsTurn®. Background 

information on the effect which multiple axles have on the turning performance of a vehicle was 

provided, together with the equivalent wheelbase method which is used to model these effects. The 

results yielded by BricsTurn® for an 180° turn of the 33D double-trailer and the 30T triple-trailer was 

validated using the AASHTO road design guideline prior to the analyses being conducted for the MTS. 

The turning analyses for the MTS included the worst case scenarios which could be encountered during 

container movement at Pier One, with the results of the analyses verifying that the designed MTS can 

be operated by any competent driver within the confinement of Pier One.  



114 

 

7 System Comparison 

7.1 Introduction 

This chapter presents a comparative analysis for the scenarios of using the semi-trailer designed in this 

study versus Pier One’s existing semi-trailer design as the vehicles in the MTS configuration. As 

mentioned in Chapter 4.2.2, the existing semi-trailer design currently used by the terminal could be 

modified by adding towing hitches at the rear of each trailer, and used with the converter dolly designed 

in this study to form the MTS configuration, however, an opportunity existed for a better designed semi-

trailer with regards to mass, cost and manoeuvrability, since the Port of Durban recapitalises its trailer 

fleet in 5 year cycles. The mass, product cost and turning performance for both semi-trailer designs, 

when used in the MTS arrangement, is compared together with its influence on reducing the operational 

cost of the waterside horizontal-transport system at Pier One. The preliminary operational cost 

comparison presented in Chapter 3.4 is refined in Chapter 7.3, using the results from Chapter 7.2, 

factoring in the actual cost of the MTS designed in this study. 

7.2 Comparison 

7.2.1 Mass 

Table 7.1 shows the mass comparison of the semi-trailer designs, with the tare mass consisting of the 

respective chassis and bogie masses combined. The data for the existing semi-trailers was obtained from 

the study conducted by Dwarika [62] for the analysis. While the bogie mass for the semi-trailer designed 

in this study was marginally greater than the bogie used on the existing trailers due to the different tyres 

utilised, the comparison of the chassis masses revealed that the semi-trailer chassis designed in this 

study had a significantly lower mass than that of the existing semi-trailers, with a saving of 

approximately 34%. When comparing the tare masses, the saving was found to be approximately  21%. 

The larger chassis mass of the existing trailers can be attributed to the increased material thicknesses 

used when compared to the chassis designed in this study, as well as a greater number of cross members 

and other structural members. This is further discussed in Chapter 8. 

Table 7.1: Mass comparison of the semi-trailer designs 

Assembly 
Existing Semi-trailer New Semi-trailer  Mass Saving 

kg kg % 

Chassis 6 670 4 410 33.9 

Bogie 3 490 3 580 -2.6 

Total Tare 10 160 7 990 21.4 
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7.2.2 Product Manufacturing Cost 

The product cost for the MTS using each semi-trailer design was determined by approximating the 

material and auxiliary system cost for the semi-trailers as well as the converter dolly. The raw material 

cost for the chassis of each vehicle was determined using the average steel cost by mass for S355 

structural steel, which was R22 823.61 per 1000 kg as of October 2017 [102]. The fabrication cost for 

these steel items (cutting, bending, machining etc.) was approximated as 50% of the material cost for 

each respective vehicle. The raw material and fabrication cost approximation was obtained from 

discussions with steel suppliers on the costs associated with the semi-trailer and converter dolly chassis 

designed in this study. The cost of the auxiliary systems (bogie, kingpin, towing eyes, fifth wheel and 

so on) for each vehicle was determined from suppliers within South Africa. Table 7.2 gives the product 

cost comparison for the MTS when using the two different semi-trailer designs, with a detailed cost 

breakdown shown in Appendix C. This analysis excluded determining the exact labour costs for 

manufacturing as it falls outside the scope of this study, however a mark-up on the manufacturing cost 

to account for labour costs and a suitable profit margin is included in Chapter 7.2.4 when analysing the 

effect of the equipment cost on the operational cost of the waterside horizontal-transport system. As can 

be seen in Table 7.2, the cost of the MTS is projected to be 15.1% lower when using the semi-trailer 

designed in this study than when using the existing semi-trailers. This cost saving can be attributed to 

the lower mass of the new chassis design, resulting in a cheaper semi-trailer when compared to the 

existing vehicle.  

Table 7.2: Product manufacturing cost comparison for the MTS using each semi-trailer design 

Semi-Trailer Semi-Trailer Cost Converter Dolly Cost MTS Cost 

Existing R 457 399 
R 293 021 

R 1 207 819 

New design R 392 675 R 1 025 679 

 

7.2.3 Turning Performance 

A comparison of the turning performance for the MTS using each semi-trailer type was conducted for 

the worst case turning scenarios presented in Chapter 6 to analyse the swept paths of each combination. 

The maximum width of the swept path (see Figure 4.8) for each manoeuvre was used to compare the 

turning performance of the MTS combinations as this directly relates to the amount of off-tracking 

which occurs during a turn. The path followed by the centre of the tractor’s steering axle in each case 

is the same, represented by the black curves in Figure 7.1 to Figure 7.3. The blue tractrix curves 

represent the front left and right corners of the tractor, while the green and red curves represent the 

innermost path followed by new and existing semi-trailer designs respectively for the second trailer in 

the MTS set. The tractrix curves for each combination was superimposed such that the difference in the 

swept paths during a turn could be visualised.  
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Figure 7.1: Double 900 turn – central exit and entry showing the swept path difference 

 

 

 

      direction 
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Figure 7.2: Double 900 turn – exit and entry underneath RTG showing the swept path difference 

 

 

Figure 7.3: 1800 turn – Entry into block A underneath RTG showing the swept path difference 

 

      direction 

      direction 
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Table 7.3: Swept path comparison for the MTS using each semi-trailer design 

Turning scenario 

Maximum width of the swept path % 

Improvement 

using new 

semi-trailer 

design 

MTS using new 

semi-trailer 

design 

MTS using existing 

semi-trailer design 

Double 90° turn – central exit and 

entry. (See Figure 7.1) 
11.9 m 12.9 m 7.7 % 

Double 90° turn – exit and entry 

underneath RTG. (See Figure 7.2) 9.8 m 10.6 m 7.5 % 

180° turn – entry into block A 

underneath RTG. (See Figure 7.3) 9.9 m 11.2 m 11.6 % 

 

The reduction in the maximum width of the swept path using the semi-trailer designed in this study was 

found to be within the range of 7.5% to 11.6% when compared to the MTS configuration using the 

existing semi-trailers. This is attributed to the smaller wheelbase of the new semi-trailer design (8.909 

m vs. 9.635 m), as well as a greater kingpin setback which reduces the overall length of the vehicle 

when coupled to the tractor, which results in lower off-tracking and hence a reduced maximum swept 

path width when compared to the existing design. Reduced off-tracking allows the MTS to complete 

turns in a smaller available area (since the swept area is smaller), increasing its manoeuvrability and 

reducing the chances of collision with stationary objects due to off-tracking.  

7.3 Operational Cost Comparison 

The preliminary operational cost comparison conducted for the waterside horizontal-transport system 

for the two vehicle types (MTSs and TTUs), documented in Chapter 3.4, was refined using the data 

from Chapter 7.2 in order to determine the impact of the designed MTS on reducing these operational 

costs.  

Table 7.4 shows the updated equipment cost per shift for each vehicle type. The unit cost for the existing 

TTUs at Pier One was determined using the most recent equipment prices available. The unit cost for 

the MTS was determined using the cost of the TR626i terminal tractor, together with a mark-up on the 

product manufacturing cost for the MTS designed to account for labour costs and a suitable profit 

margin. This mark-up was determined by comparing the existing semi-trailers actual selling price to its 

product manufacturing cost approximated in this study, shown Table 7.2. This mark-up was calculated 

to be 85.4% of the semi-trailers manufacturing cost which was factored into the unit cost for the MTS. 

The TTU and MTS unit costs used for this comparison were found to be consistent with the findings of 

Goussiatiner in [13]. The equipment cost per shift to operate each vehicle type showed minimal 
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difference due to the now higher than initially predicted unit cost (see Chapter 3.4) for the MTS. This 

higher unit cost directly impacts the maintenance costs per shift, shown in Table 7.5, with the 

maintenance cost difference between the two vehicles also being minimal due to the higher MTS unit 

cost than initially predicted.    

Table 7.4: Equipment cost per shift (loading and unloading) 

Type Unit Cost 
Required 

Fleet Size 
Total Equipment Cost Cost Per Shift 

TTU R 2 347 809 15 R 35 217 135 R 7 091 

MTS R 3 899 406 9 R 35 094 654 R 7 067 

  

Table 7.5: Maintenance cost per shift (loading and unloading) 

Type 
Total Equipment 

Cost 
% Annual Maintenance Cost Cost Per Shift 

TTU R 35 217 135 
10.00 

R 3 521 714 R 709 

MTS R 35 094 654 R 3 509 465 R 707 

 

The preliminary fuel cost calculation for the MTS, shown earlier in Table 3.5, was refined using the 

average fuel consumption of the TR626i terminal tractor and presented in Table 7.6. The current fuel 

price (as of October 2017) was included in the cost calculations. The fuel consumption of this tractor 

was lower than the CVS Ferari FR270 which was used in the preliminary fuel cost calculations, resulting 

in a larger saving in fuel costs than initially predicted for the MTS. Table 7.6 shows that a saving of 

11.1% in fuel costs can be achieved when using the suggested fleet size of MTSs for the vessel loading 

and unloading procedure due to a smaller fleet size when compared to the existing TTUs for equal QC 

productivity. 

Table 7.6: Fuel cost per shift (October 2017) 

 

The labour cost per shift for operating a fleet of MTSs versus that of a fleet of TTUs for the vessel 

loading and unloading procedures, previously shown in Table 3.7, remains the same since the fleet size 

Type 

Total Distance Covered in 1 

Shift (km) 

Prime Mover 

Fuel 

Consumption 

(km/litre) 

Fuel Cost 

per Litre 

Cost Per Shift 

Loading Unloading Loading Unloading 

TTU 266.2 885 1.079 
R 13.74 

R 2 625 R 8 727 

MTS 133 442 0.606 R 2 541 R 8 443 
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of each vehicle required for equivalent QC productivity has not changed. Table 7.7 below shows the 

finalised total operating cost per shift for the container movement procedures at Pier One when using a 

fleet of the MTSs designed in this study versus the existing TTUs.  

Table 7.7: Total operating cost per shift 

Type 
Vehicles Required Total Operating Cost Per Shift 

Unloading Loading Unloading Loading 

TTU 15 9 R 43 291 R 25 657 

MTS 9 9 R 32 392 R 25 248 

 

The main saving contributor when using a fleet of MTSs, as initially observed in the preliminary cost 

comparisons, emanates from a reduction in labour costs for the unloading procedure. The labour cost 

saving when using the required fleet size of MTSs for vessel unloading makes up 88% of the overall 

25% saving in operating costs shown in Table 7.7. The savings when using MTSs for the loading 

procedure, similar to the preliminary cost exercise, was found to be marginal; an approximate saving of 

1% in operating costs is still expected when compared to the TTU fleet.  
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8 Discussion 

The discrete event simulation created to replicate the existing operations at Pier One proved to be an 

accurate method for benchmarking the terminal’s current performance for the use of TTUs as the 

transport medium for container movement, with the results found to be within 7% of the physically 

measured TTU cycle times and within 3% of the current quay crane productivity. The modified version 

of the benchmark model, created to understand the influence that an MTS fleet would have on port 

productivity and operational costs, revealed that using MTSs at Pier One has a significantly greater 

effect on reducing operational costs than it does on improving productivity. Even though the use of 

MTSs has only shown benefit for the vessel unloading operation, the financial savings are considerable. 

The initial operational cost comparison for the system types (TTUs and MTSs) revealed that this cost 

can be reduced by up to 25% for the vessel unloading operation when using nine MTSs with a carrying 

capacity of four TEUs instead of the existing two TEU capacity tractor-trailer units. This creates an 

opportunity to reduce the charges levied to container vessel operators and hence improve the Port’s 

competitiveness. Determining the actual influence which the waterside horizontal-transport systems 

operational costs have on the charges imposed to vessel operators falls outside the scope of this study, 

however studies have shown that the costs associated with container movement between the vessel and 

storage area form a large part of the total cost of a vessel calling at a port [10], making them a key 

component in determining the service tariffs levied to container vessel operators. 

A detailed survey of the literature surrounding the simulation of port terminal activities revealed that 

most of the available literature focused on port performance and its associated activities from a 

macroscopic level. This work, which built on the study conducted by Goussiatiner [13], is one of the 

few available dedicated analyses of the waterside horizontal-transport system and creates a platform for 

future studies in this regard. The models could be used to understand how changes in the fleet size and 

carrying capacity of the other container handling equipment (RTGs and QCs) at Pier One influences 

productivity and operational costs. Port layout changes could also be analysed by using the model to 

assess potential benefits. 

The ArenaTM models in this study focused on the movement of the trailers in the system and can benefit 

from additional improvements. An improvement would be the incorporation of traffic created using 

MTSs to understand if this has any effect on trailer availability at the quay cranes. This could be done 

by modelling the MTSs using guided transporters (as opposed to the conventional transporters utilised 

for this work) that account for the position of the other vehicles in their vicinity, however this increases 

the complexity, size and solution time of the model due to the complex logic implementation required. 

The probability distributions used in this study were obtained from data sets containing manual time 

measurements. An additional improvement would be to refine these distributions by creating data sets 

using the time logs associated with container movements that are recorded by the terminal’s logistic 
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system. This will allow for larger data sets to be used to which suitable distributions could be assigned, 

yielding improved mathematical representations for the processing time of the activities in the system.    

A preliminary operational cost comparison to run each system type, based on the fleet sizes as per the 

DES results for equivalent QC productivity, was conducted to determine the financial benefit of using 

MTSs at Pier One instead of the existing TTU fleet. The equipment, fuel, maintenance and labour costs, 

which in totality make up the operational cost for using each trailer system type, were calculated and 

compared on a “per shift” basis. For each individual cost, the preliminary comparison showed that a 

fleet of MTSs for equivalent QC productivity was cheaper to operate than TTUs due to the reduced 

fleet size for the vessel unloading procedure with lower labour costs being the main contributor. A 

reduction in labour costs can be viewed in a negative manner by the labour unions representing the 

terminal’s workforce as it could signify job losses, however the use of MTSs can create an opportunity 

for the terminal’s management to re-skill these staff for other influential positions within the 

organisation. This is beneficial to both the workforce and the terminal’s management since these 

individuals will be developing new skills to aid the operations of the terminal. 

Multiple MTS types were investigated to select an appropriate configuration for the proposed design 

that met the technical and functional requirements for trailer equipment intended for container 

movement at Pier One.  From the types investigated, the semi-trailer lead MTS configuration 

incorporating the use of a converter dolly was deemed the most suitable due to its ability to decouple 

its semi-trailers for use as TTUs, its semi-trailer interchangeability in the MTS set, as well as its kingpin 

feature which allows it to be connected to a tractors fifth wheel for coupling purposes. For this system 

type, the terminal’s existing semi-trailers could in theory be modified for use as the MTS, however, an 

opportunity exists for a better designed semi-trailer with regard to mass, cost and manoeuvrability as 

the terminal replaces its trailer equipment every five years. For this reason, an MTS incorporating a 

newly designed semi-trailer and converter dolly was pursued using locally available materials and 

components. 

A major component of the MTS design process, apart from the investigation into locally available 

materials and standard components, involved a detailed review of the available literature and 

information from trailer manufacturers on the strength requirements for the semi-trailer and converter 

dolly chassis. A review of the applicable trailer design standards, publications on trailer design studies 

as well as the design methods employed by trailer manufacturers was conducted to determine 

appropriate load cases and safety factors for the structural design of the respective chassis. An 

examination of the available SANS, ISO and ADR standards revealed that while there are various 

guidelines detailing the design requirements for individual trailer components, there is no 

comprehensive standard that details the strength requirements for a chassis with regards to the load 

cases and safety factors employed during the design phase for a given payload. A review of the literature 
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applicable to the theoretical design and field testing of trailers was conducted to gain an insight into the 

static and dynamic forces acting on the chassis of a trailer which could be potentially adopted for the 

MTS load cases. The literature showed varying load cases and safety factors employed by various 

authors, supporting the notion of a lack of a general structural design standard for trailer equipment.  

Information on the load cases and safety factors used by trailer manufacturers was obtained from the 

study conducted by Cowling [54] and revealed that manufacturers have developed their own design 

standards through experience, based on the requirements for each type of trailer and its operating 

environment. While a few manufacturers make use of dynamic models incorporating fatigue effects, 

the more common approach was found to be the application of a design factor to the static load cases 

to account for fatigue loading using a static analysis. The same approach was adopted in this study. The 

study describing the forces experienced by trailer equipment operating in a port terminal environment, 

conducted by Dwarika [62], revealed the maximum accelerations which the existing semi-trailers 

experience during container movement operations. His study was of interest to the author as it gave an 

insight into the actual loads that might be experienced by the MTS. The load cases proposed by Dwarika 

[62] were marginally lower than those adopted in this study, suggesting that the load cases and safety 

factors used here are adequate to ensure that fatigue failure does not occur. The load cases selected for 

the present MTS can be used for future trailer designs intended for port use. 

Finite element analyses of the entire semi-trailer and converter dolly chassis were conducted for the 

load cases chosen using ANSYS® software to validate the structural integrity of the design for the 

required safety factor range. The structural components which were mid-surfaced were chosen based 

on their length-to-thickness ratio where a minimum value of 10 was used as the deciding criteria [90]. 

A combination of shell and solid elements was used to mesh the geometry, with local mesh controls 

applied to certain areas to provide a finer mesh for improved accuracy. The models were constrained in 

the relevant directions to prevent rigid body motion that creates solution errors, while replicating the 

real-world constraints on the structure. The von-Mises stress criterion was used to evaluate the stresses 

for each load case, similar to the studies conducted in [54, 61, 83, 85], due to its accuracy when 

estimating yield failure in ductile isotropic materials [92]. Modifications to the chassis were made in 

certain regions where the yield stress of the material did not correspond to a minimum safety factor of 

1.2 until the results from all load cases satisfied the design safety factor requirements. In order to reduce 

the weight of the chassis, an iterative approach was adopted where the initial design was refined by 

reducing the material thicknesses of the structure during the subsequent FEA analyses where stresses 

below the threshold value of 296 MPa was found. This resulted in a final mass saving of 82 kg for the 

semi-trailer and 148 kg for the converter dolly over the initial design prior to the analyses. 
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Localised high stress points exceeding the yield stress of the material were regularly found during the 

analysis of the stress results for the semi-trailer and the converter dolly, this was due to modelling 

approximations within the software simulation. Inaccurate stress concentrations, as well as singularity 

points, frequently arise in the FEA process due to geometry features such as sharp re-entrant corners, 

fillet corners and at the corners of bodies in contact [93]. While the stress results in those areas may not 

be an accurate representation of the actual stresses present in reality, the stress fields away from those 

local concentrations provides credible results based on St. Venant’s principle [93]. The results yielded 

by the FEAs were scrutinised at the high stress regions to determine if the stresses were erroneous and 

could be disregarded, or if they were real stresses that needed to be reduce by redesigning the structural 

members. A method employed to check this was the use of the Structural Error Tool in ANSYS® which 

highlights the regions of the geometry where the stress errors are present. The tool represents the error 

associated with the discrepancy between the calculated stress field in a region and the model’s globally 

continuous stress field [103], highlighting the regions where discontinuous stress results are present. 

An example is shown in Figure 8.1 below for the isolated high stress point occurring in the longitudinal 

acceleration load case, validating the notion that the results in that region are not a true representation 

and can be disregarded. 

 

Figure 8.1: Localised high stress error confirmed using the Structural Error Tool in ANSYS® 

 

The D-value equations used to determine the strength requirement for mechanical couplings were 

adopted in this study for selecting appropriate kingpins, towing eyes and hitches as well as the fifth 

wheel for the converter dolly. The D-value can be viewed as a “blanket” method for selecting trailer 

couplings with the appropriate strength as the equations do not take into consideration the tractive effort 

provided by the prime mover in a trailer system. This is useful to trailer designers as this tractive effort 

information is rarely available. While this method has been proven in industry to be a successful 

approach for selecting trailer couplings without having data on the tractive performance of the prime 

mover, it must be noted that the results yielded by the D-value equations do not represent the actual 

maximum horizontal force on the coupling as a result of the tractive effort provided by the prime mover. 

For the case of the MTS, the D-value equations under-predict the horizontal force on the kingpin of the 

lead semi-trailer compared to what is provided by the tractor (225.92 kN vs 256 kN), however a kingpin 

with a safe rating relative to both (260 kN) was selected. 

Region of stress errorLocalised high stress
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The turning analyses conducted using BricsTurn® validated the MTSs ability to be manoeuvred within 

the terminal yard for the typical turns it would need to complete during container movement operations. 

This incorporated the equivalent wheel base methodology for multi-axle vehicles proposed by Winkler 

and Aurell [99]. It was necessary to consider the application of this theory in the turning analyses since 

the software does not automatically take the influence of multiple axles into account. The simulation 

results for the worst case turns show that MTS can complete such movements, but the MTS will be 

more difficult to manoeuvre accurately when compared to the existing TTUs due to it being much 

longer. For successful implementation of the MTS at Pier One, driver training for long vehicle 

combinations will need to be conducted, as well as the addition of road markings which could guide 

drivers to complete the more difficult turns without relying on their judgement alone. 

Future improvements to the design of the MTS proposed in this study can be made to enhance the 

manoeuvrability of the vehicle. One method is by incorporating the use of steerable axles in the design 

of the semi-trailers. Available steering systems in the market, such as the Tridec® system from Jost, can 

be fitted to reduce the off-tracking of the semi-trailers in the MTS. Disadvantages of this type of system 

is that they will increase the tare mass and cost of the MTS, with most of the systems not being designed 

to safely bear the high axle loads of these semi-trailers. 

The system comparison conducted between the existing semi-trailers and the semi-trailer designed in 

this study when used in the MTS configuration showed that the new design is lighter, cheaper and had 

better manoeuvrability than the existing trailer. The mass comparison revealed that the newly designed 

chassis is 33.9% lighter than the existing semi-trailers, with a saving of 21.4% on the overall tare mass. 

The heavier chassis of the existing semi-trailers can be attributed to the higher load cases utilised for 

the design which results in a stronger, heavier design than is required. This was confirmed in a study 

conducted by Dwarika [62] who showed that lower load case acceleration values could be used for the 

design of those semi-trailers without compromising their structural integrity. The lower chassis mass 

directly results in a reduced product cost for the newly designed semi-trailer since both designs utilise 

the same steel grade; a 15.1% lower product cost for the MTS is expected when using the semi-trailer 

designed in this study compared to the existing semi-trailers. The manoeuvrability comparison of the 

MTS when using each semi-trailer design was conducted by superimposing the swept paths of each 

system for identical paths followed by the tractor. Comparisons of the maximum width of the swept 

paths for each manoeuvre confirmed that the smaller wheelbase and the greater kingpin setback of the 

new semi-trailer design results in reduced off-tracking for identical turns of the MTS, allowing the MTS 

to complete turns in a smaller available area than if the existing semi-trailers had to be used in the set. 
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The finalised operational cost comparison of the waterside horizontal-transport system for the currently 

used TTUs versus the proposed MTS design was conducted by refining the product costs determined 

for each system type, as well as accounting for the use of the TR626i terminal tractor as the prime mover 

in the MTS. The product cost of the MTS designed in this study was found to be 5.4% higher than what 

was first predicted, in Chapter 3.4, resulting in the equipment and maintenance costs per shift for each 

system being almost identical. The savings in fuel costs, due to a lower fleet size of MTSs, is higher 

than initially predicted due to the lower fuel consumption of the chosen tractor. Even though the actual 

fuel usage of the tractors in reality rarely matches the average consumption values reported by 

manufacturers (used in this study for all setups), the average values give a useful relative indication of 

the amount of fuel used for each vehicle for costing purposes. Labour costs still account for the largest 

influence on the overall cost savings when using a fleet of MTSs; 88% of the overall 25% saving in 

operating costs is due to the reduction in the number of tractor drivers required. While the use of MTSs 

has only shown financial benefit when used for the vessel unloading procedure, the cost saving for the 

terminal over a 12 month period (for the 458 unloading shifts only) is substantial; the savings would be 

approximately R5 million if the suggested fleet of MTSs is implemented. 
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9 Conclusion 

The objectives of this study have been met through the following: 

1. The existing container movement operations at Pier One was benchmarked using discrete event 

simulation models for the vessel loading and unloading procedures. The simulation results were 

validated against the current performance of the terminal, with the results being within 7% of 

the physically measured TTU cycle times and within 3% of the current measured quay crane 

productivity. 

2. The container movement operations using MTSs as a replacement for the existing TTUs was 

modelled and the resulting effects showed a 25% reduction in operational costs for the 

unloading procedure when using an MTS fleet. An MTS fleet with nine vehicles could replace 

the existing fifteen TTUs while maintaining the current productivity levels of the terminal. 

3. Based on the results from (2) which revealed the requirement of an MTS that could have its 

trailers uncoupled and used as TTUs, a semi-trailer lead MTS design incorporating a converter 

dolly was proposed. 

4. The MTS design was carried out using locally available components and materials. The design 

was conducted with a view to a reduced mass and cost, and improved manoeuvrability over the 

existing semi-trailers, which in theory could also be used in the MTS configuration with the 

converter dolly designed in this study. The semi-trailer designed here was shown to have a 

21.4% lower tare mass and a 14.1% lower product cost over the existing semi-trailers. Up to an 

11.6% improvement in the turning performance of the MTS is expected when using the semi-

trailers designed in this study. 

The use of MTSs for quayside container movement operations has been successfully implemented in 

many major international port terminals as a method of reducing the operational costs associated with 

the waterside horizontal-transport system and this study has shown that the use of MTSs at Pier One of 

the Durban Container Terminal also creates operational cost reduction opportunities. Even though the 

use of an MTS fleet only shows marginal QC productivity improvements for the vessel unloading 

operations and almost no benefit (nor detriment) to the vessel loading procedure, the reduction in fleet 

size in comparison to the existing TTUs used for the unloading procedure results in considerable 

operational cost savings for the terminal which can be achieved while maintaining current levels of 

productivity. 

The MTS design provided here, suits the technical and functional requirements for trailer equipment 

operated at Pier One. This design, which incorporated locally available materials and components, 

would fulfil the South African Government’s policies on localisation during manufacture. The vehicle 

provides a method for the Durban Container Terminal to reduce operational costs and can potentially 
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result in lower tariffs being offered to container vessel operators, thus improving the competitiveness 

of the Port.   

The reduction in labour costs could potentially be viewed in a negative manner by the respective labour 

unions representing the tractor drivers, with opposition against implementing MTSs. The implications 

of reducing labour therefore needs to be addressed by the terminal and respective labour representatives 

so as to determine how multi-trailer systems can be implemented at the terminal for the benefit of both 

the port operator and the workforce. 

This study focused only on Pier One since Pier Two utilises straddle carriers instead of TTUs, however 

a similar study can be conducted for Pier 2 to determine if there is any benefit to the terminal in 

switching to the use of MTSs. Further research into the influence of multiple vessels berthed at Pier 

One, varying the stacking areas for container storage, as well as using QCs and RTGs with greater 

lifiting capacities (more than one TEU) could be conducted to determine the resulting influence on 

operational costs and port productivity for the Durban Container Terminal. This study is intended to 

inspire further research into the applicability and benefit of MTSs for container movement at other 

major ports within South Africa.  
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Appendix A - MTS General Assembly  
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Appendix B - Tractive Effort Calculations 

For the Kalmar TR626i tractor: 

Maximum engine torque (Volvo TAD1360VE Stage 3B) = 1740 Nm 

Total speed reduction at wheels due to gearbox and differential = 109.386  

Maximum theoretical wheel torque = 1740 x 109.386 = 190.33 kNm 

Wheel radius = 535 mm 

Maximum theoretical wheel tractive effort = 190.33/0.535 = 355.76 kN 

Transmission efficiency = 0.9 

Axle efficiency = 0.87 

Maximum wheel tractive effort considering losses = 355.76 x 0.9 x 0.87 = 278.56 kN 

Maximum coupler force on the leading semi-trailer’s kingpin: 

Ftractive = (mmts+tractor) (asystem) 

278560 = (14000+156370) (asystem) 

Fkingpin = mmts.asystem = 156370 (asystem) = 256 kN 

Maximum coupler force on the converter dolly towing eye: 

Ftowing eye = (msemi-trailer+converter dolly) (asystem) 

Ftowing eye = (743948) (256000/156370) = 120 kN 

 

NOTE: Rolling resistance of the wheels were neglected due to it being much smaller in magnitude than 

the other forces on the system. 
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Appendix C – Critical Weld & D-Value Calculations 

Note: All weld calculations assume zero-to-maximum cyclic loading.  

C.1.1) Fillet welds joining the skid plate to the underneath of the lower flanges: 

Force on weld: 𝐹𝑚𝑎𝑥 = 250 𝑘𝑁 

Area of the weld bead: 𝐴𝑤𝑒𝑙𝑑 = 1.414ℎ𝑑 = 1.67ℎ 𝑚2 

Fatigue shear stress concentration factor: 𝐾𝑓𝑠 = 2.7 

𝜏𝑚𝑎𝑥 =
𝐹𝑚𝑎𝑥.𝐾𝑓𝑠

𝐴𝑤𝑒𝑙𝑑
= 404.19ℎ−1𝑥103 𝑃𝑎  

𝜏𝑚𝑒𝑎𝑛 = 𝜏𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑛𝑔 =
𝜏𝑚𝑎𝑥

2⁄ =  202.09ℎ−1𝑥103 𝑃𝑎  

Using ER70S-6 welding wire, the limiting strength of the weld is based on the parent material properties 

since S355 steel has a lower yield and ultimate tensile strength. 

𝑆𝑦 = 355 𝑀𝑃𝑎 

𝑆𝑢 = 510 𝑀𝑃𝑎 

Ultimate shear strength: 𝑆𝑢𝑠 = 0.65𝑆𝑢 = 306 𝑀𝑃𝑎 

Endurance limit in shear: 𝑆𝑠𝑒 = 87.13 𝑀𝑃𝑎 

Using Goodman’s equation for fatigue: 

 𝜏𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑛𝑔 =
𝑆𝑎

𝑅𝐹
 [1 −

𝜏𝑚𝑒𝑎𝑛.  𝑅𝐹 

𝑆𝑢𝑠
] ; for infinite life: 𝑅𝐹 =1 and 𝑆𝑎 = 𝑆𝑠𝑒 

 

Using data above, ℎ = 2.97 mm for infinite life. For manufacturing purposes, ℎ ≥ 5𝑚𝑚  

C.1.2) Fillet welds connecting the channels to the towing hitch plate: 

Force on weld: 𝐹𝑚𝑎𝑥 =
120

2
= 60 𝑘𝑁 

Area of the weld bead: 𝐴𝑤𝑒𝑙𝑑 = 0.707ℎ𝑑 = 0.1414ℎ 𝑚2 

𝜎𝑚𝑎𝑥 =
𝐹𝑚𝑎𝑥

𝐴𝑤𝑒𝑙𝑑
= 424.32ℎ−1𝑥103 𝑃𝑎  

𝜎𝑚𝑒𝑎𝑛 = 𝜎𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑛𝑔 =
𝜎𝑚𝑎𝑥

2⁄ =  202.09ℎ−1𝑥103 𝑃𝑎  

Endurance limit: 𝑆𝑒 = 145 𝑀𝑃𝑎 

Ultimate tensile strength: 𝑆𝑢 = 510 𝑀𝑃𝑎 

Using Goodman’s equation for fatigue: 

 𝜎𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑛𝑔 =
𝑆𝑎

𝑅𝐹
 [1 −

𝜎𝑚𝑒𝑎𝑛.  𝑅𝐹 

𝑆𝑢
] ; for infinite life: 𝑅𝐹 =1 and 𝑆𝑎 = 𝑆𝑒 

 

Using data above, ℎ = 1.87 mm for infinite life. For manufacturing purposes, ℎ ≥ 5𝑚𝑚  
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C.1.3) Fillet weld connecting the towing eye to the drawbar 

Force on weld: 𝐹𝑚𝑎𝑥 =
120

2
= 60 𝑘𝑁 

Area of the weld bead: 𝐴𝑤𝑒𝑙𝑑 = 1.414ℎ𝑑 = 0.309ℎ 𝑚2 

Fatigue shear stress concentration factor: 𝐾𝑓𝑠 = 2.7 

𝜏𝑚𝑎𝑥 =
𝐹𝑚𝑎𝑥.𝐾𝑓𝑠

𝐴𝑤𝑒𝑙𝑑
= 524.27ℎ−1𝑥103 𝑃𝑎  

𝜏𝑚𝑒𝑎𝑛 = 𝜏𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑛𝑔 =
𝜏𝑚𝑎𝑥

2⁄ =  262.135ℎ−1𝑥103 𝑃𝑎  

𝑆𝑦 = 355 𝑀𝑃𝑎 

𝑆𝑢 = 510 𝑀𝑃𝑎 

Ultimate shear strength: 𝑆𝑢𝑠 = 0.65𝑆𝑢 = 306 𝑀𝑃𝑎 

Endurance limit in shear: 𝑆𝑠𝑒 = 87.13 𝑀𝑃𝑎 

Using Goodman’s equation for fatigue: 

 𝜏𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑛𝑔 =
𝑆𝑎

𝑅𝐹
 [1 −

𝜏𝑚𝑒𝑎𝑛.  𝑅𝐹 

𝑆𝑢𝑠
] ; for infinite life: 𝑅𝐹 =1 and 𝑆𝑎 = 𝑆𝑠𝑒 

Using data above, ℎ = 3.86 mm for infinite life. For manufacturing purposes, ℎ ≥ 5𝑚𝑚  

C.2.1) Kingpin D-value 

𝐷 = 0.5𝑔
(𝐵+𝑈𝑇)(𝑇+0.08𝐵)

𝑇+𝐵− 𝑈𝑇
  

     = 0.5(9.81)
(117275+25198)(39198+0.08(117275))

39198+117275−25198
= 225.97 𝑘𝑁   

C.2.2) Towing hitch / Towing eye D-Value 

𝐷 = 0.65𝑔
(𝑇+𝑅1𝑏)(𝐶𝑑+𝑅2𝑏)

(𝑇+𝑅1𝑏)+(𝐶𝑑+𝑅2𝑏)
  

     = 0.65(9.81)
(39198+43674)(43737+29864)

(39198+43674)+(43737+29864)
= 248.56 𝑘𝑁  

C.2.3) Fifth wheel D-value 

𝐷 = 0.5𝑔
(𝑇+𝑅1𝑏+𝑊𝑑)(𝑈𝑑+𝑅2𝑏+0.08(𝑇+𝑅1𝑏+𝑊𝑑))

𝑇+𝑅1𝑏+𝑊𝑑+𝑅2𝑏
  

     = 0.5(9.81)
(87497)(68977+0.08(87497))

87497+68977−25239
= 248.47 𝑘𝑁   
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Appendix D – MTS Coupling Specifications 

D.1) Semi-trailer kingpin (KZ 1116)  

 

Figure D.1: KZ 1116 specifications [104] 

D.2) Semi-trailer towing hitch (RO 50 Flex) 

 

 

Figure D.2: RO 50 flex specifications [104] 
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D.3) Towing eye 

 

Figure D.3: Converter dolly towing eye specifications [104] 

D.4) Fifth wheel 

 

Figure D.4: JSK 36C fifth wheel specifications [104] 
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Appendix E - Cost Breakdown 

Table C.1: New and existing semi-trailer product material cost breakdown 

 

Table C.2: Converter dolly product material cost breakdown 

 

New Semi-trailer

Chassis R 22 823.61 per ton 4.326 R 98 734.94

Total R 98 734.94

Auxillary Systems Quantity

Kingpin R 7 670.00 each 1 R 7 670.00

Landing gear R 13 540.00 per pair 1 R 13 540.00

Hitch R 10 477.00 each 1 R 10 477.00

Bogie R 128 302.00 each 1 R 128 302.00

Tyre&Rims R 10 573.00 each 8 R 84 584.00

Total R 244 573.00

Steel items fabrication cost

% of steel cost R 98 734.94 total 50% R 49 367.47

Product Material Cost

Total R 392 675.41

Existing Semi-trailer

Chassis R 22 823.61 per ton 6.67 R 152 233.48

Total R 152 233.48

Auxillary Systems

Kingpin R 7 670.00 each 1 R 7 670.00

Hitch R 10 477.00 each 1 R 10 477.00

Bogie R 128 302.00 each 1 R 128 302.00

Tyre&Rims R 10 325.00 each 8 R 82 600.00

Total R 229 049.00

Steel items fabrication cost

% of steel cost R 152 233.48 total 50% R 76 116.74

Product Material Cost

Total R 457 399.22

Converter Dolly

Chassis R 22 823.61 per ton 1.045 R 23 850.67

Total R 23 850.67

Auxillary Systems

Bogie R 128 302.00 each 1 R 128 302.00

Tyre&Rims R 10 573.00 each 8 R 84 584.00

Fifth wheel + Plate R 21 912.00 each 1 R 21 912.00

Towing eye R 1 376.00 each 1 R 1 376.00

Total R 236 174.00

Steel items fabrication cost

% of steel cost R 65 994.00 total 50% R 32 997.00

Product Material Cost

Total R 293 021.67
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