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Abstract

The purpose of this study is to investigate and understand data which are

grouped into categories. At the onset, the study presents a review of early

research contributions and controversies surrounding categorical data analysis.

The concept of sparseness in a contingency table refers to a table where many

cells have small frequencies. Previous research findings showed that incorrect

results were obtained in the analysis of sparse tables. Hence, attention is

focussed on the effect of sparseness on modelling and analysis of categorical

data in this dissertation.

Cressie and Read (1984) suggested a versatile alternative, the power divergence

statistic, to statistics proposed in the past. This study includes a detailed

discussion of the power-divergence goodness-of-fit statistic with areas of inter­

est covering a review on the minimum power divergence estimation method

and evaluation of model fit. The effects of sparseness are also investigated

for the power-divergence statistic. Comparative reviews on the accuracy, ef­

ficiency and performance of the power-divergence family of statistics under

large and small sample cases are presented. Statistical applications on the

power-divergence statistic have been conducted in SAS (Statistical Analysis

Software).

Further findings on the effect of small expected frequencies on accuracy of the

X 2 test are presented from the studies of Tate and Hyer (1973) and Lawal and

Upton (1976).

Other goodness-of-fit statistics which bear relevance to the sparse multino-
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mial case are discussed. They include Zelterman's (1987) D 2 goodness-of-fit

statistic, Simonoff's (1982, 1983) goodness-of-fit statistics as well as Koehler

and Larntz's tests for log-linear models. On addressing contradictions for the

sparse sample case under asymptotic conditions and an increase in sample size,

discussions are provided on Simonoff's use of nonparametric techniques to find

the variances as well as his adoption of the jackknife and bootstrap technique.



Contents

1 Introduction 1

2 The Chi-squared Distribution : Historical Documentation 4

2.1

2.2

Early Contributions : The Pearson X2

Summary of Karl Pearson's Work ...

4

7

2.3 Findings and Accomplishments of R.A. Fisher

2.4 Early Controversies of Categorical Data Analysis

9

9

2.4.1 Contentions arising from the Pearson - Yule Alliance 10

2.4.2 Disputes in the Pearson R.A. Fisher Association . . . . . 12

2.5 Logistic Regression and the Loglinear Model . . . . . . . . . . . 13

3 Statistics Measuring Goodness-of-fit Discrete Multivariate

Data 18

3.1 The Multinomial Distribution . . . . . . . . . . . . . . . . . . . 19

VI



3.2 Defining a Model and Model Fit .

VB

.............. 24

3.3 The Power Divergence Statistic . . . . . . . . . . . . . . . . . . 28

3.4 Case of no Parameter Estimation . . . . . . . . . . . . . . . . . 31

3.5 Estimating Parameters . . . . . . . . . . . . . . . . . . . . 35

3.5.1 Maximum Likelihood Approach 35

3.5.2 Minimum Power-divergence Estimation Approach 37

3.6 Case of Parameter Estimation . . . . . . . . . . . . . . . 40

3.6.1 Independence and Homogeneity in Two Dimensional Con­

tingency Tables . . . . . . . . . . . . . . . . . . . . . . . 40

3.6.2 Adopting the Loglinear Models Approach. . . . . . . . . 46

3.7 Choosing the Appropriate Loglinear Model. . . . . . . . . . . . 48

4 Evaluating Model Fit using the Power Divergence Statistic 51

4.1 Influence of Sparseness Assumptions on Significance Levels and

Accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 52

4.1.1 Case of the Equiprobable Model . . . . . . . . . . . . . . 53

4.1.2 Accuracy of Possible Alternatives to the Equiprobable

Model . . . . . . . . . . . . . . . . . . . . . . . . . .. 55

4.2 Zelterman's D 2 Goodness of Fit Statistic ..... 56

4.2.1 General Mathematical Notation of the Statistic . . . . . 57



V111

4.2.2 Testing with Estimated Parameters . . . . . . . . . .. 61

4.3 Koehler and Larntz's Goodness-of-fit Statistics for Sparse Multi-

nomials 62

4.3.1 A Look at Asymptotic Normality 63

4.4 Simonoff's Goodness-of-fit Statistic: Sparse Multinomials 67

4.4.1 Effect of Parameter Estimation . . . . . . . . . . . . . . 69

4.5 Loglinear Models for Sparse Data: Koehler's Findings .. . . . 70

4.5.1 Examining Independence In Sparse Tables . . . . . . . . 72

4.5.2 Accuracy Assessments . 75

4.6 Adopting Jackknife and Bootstrap Methods for Sparse Multi-

nomials 78

4.6.1 Approximating Variance 78

4.6.2 Evaluation and Assessment of Estimator's Performance 80

4.7 Comparisons between Pearson X 2 and G2 under Sparse Conditions 82

4.7.1 Similarities and Differences under Asymptotic Normality 82

4.7.2 Small-Sample Studies. 82

4.7.3 Comparison for Parameter Estimation 83

4.7.4 Comparisons under Conditional Tests . 84

4.7.5 Evaluating and Measuring Efficiency 84



IX

4.7.6 Sparseness Assumptions . . . . . . . . . . . . . . . . . . 85

5 Consequences of Small Expected Frequencies

5.1 Small Expected Frequency and Accuracy of the X 2 Test

87

87

5.1.1 The X 2 Test : Issues of Precision . . . . . . . . . 88

5.1.2 Differences between the Multinomial and X 2 Tests 89

5.1.3 Radlow and Alf's Assessment Approach 91

5.2 Log Normal Approximation to the Distribution of the X 2 Statis-

tic .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 93

5.2.1 Earlier Findings on Size of Expectations . . . . . . . . . 93

5.2.2 Approximations Using the Log Normal . . . . . . . . . . 95

5.2.3 Effect of Infinite Samples. . . . . . . . . . . . . . . . . . 96

5.2.4

5.2.5

Effect of Finite Samples .

Recommendations for Use of the Log Normal Approxi-

mation .

96

. 97

5.3 Comparisons between X2, G2, and the Multinomial Small

Expected Frequencies . 98

5.4 Comparing X 2 and G2
..... 99

6 The Effects of Small Sample Size 101



x

6.1 Asymptotic Moments and Asymptotic Significance Levels .... 102

6.2 Comparisons between other Approximations to the Exact Sig­

nificance Level. . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.2.1

6.2.2

Assessing Model Accuracy

Approach for Assessing Accuracy

· 105

· 106

6.3 Assessing Efficiency: Comparing Power of X 2 and G2
• . 107

6.4 Choice of a Suitable Test Statistic · 110

7 Applications using the SAS Software 112

7.1 Small Samples and Small Cell Frequencies .113

7.1.1 Model Fit and Interaction or Independence. · 113

7.2 Cells With Zero Counts . . . . · 121

7.2.1

7.2.2

7.2.3

The Catmod Procedure

Maximum Likelihood Approach

Weighted Least Squares Approach.

· 123

· 123

· 124

7.2.4 The ADD CELL Option ................. · 126

7.3 The IML Procedure . . . . . . . · 127

7.4 Comparisons Between the IML and Catmod Procedures. . 127



8 Conclusion

9 Bibliography

10 Appendix

Xl

131

132

140



Chapter 1

Introduction

Data which is arranged into various groups and where counts are taken to

determine the number of individuals belonging to each category is collectively

known as categorical data.

Research output over the past 20 years highlights that the testing and defining

of models for discrete multivariate data has been a popular research area.

The idea of grouping data into classes and then counting group frequencies

has resulted in many applications. A few examples in the sciences include :

characterising survey responses (always, sometimes, never); medical reports on

reactions of patients to treatment (mild, moderate, severe, remission) and in

industry, the reporting of the failure of equipment under quality control tests

(mechanical, electrical, no problems detected).

Initially the statistical analysis of discrete multivariate data was more con­

cerned with model development and it was assumed that the adequacy of the

model could be assessed by employing the traditional goodness-of-fit tests, ex­

ample: Pearson's X2 or the loglikelihood ratio statistic G2 , using a chi-squared

critical value.

1
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Read and Cressie (1988) contend that this is a poor approximation. Hence

they have defined and used the power-divergence family of statistics to analyse,

compare and describe the behaviour and merits of the traditional goodness-of­

fit tests.

In chapter 2, a historical outline of the X2 distribution is presented together

with an indepth discussion of early controversies surrounding categorical data

analysis.

Chapter 3 presents the necessary concepts and notation for modelling and

testing discrete multivariate data. The power divergence statistic proposed

by Read and Cressie is presented. Further areas of discussion include: the

modelling of cross-classified data under independence; loglinear models for two

and three dimensions and methods of parameter estimation.

Chapter 4 looks at the influence of sparseness assumptions on significance levels

and accuracy. On discussing large sparse multinomial distributions, statistics

proposed by Zelterman (1987) and Simonoff (1987) will be introduced and

examined. Findings by Koehler (1986) on the use of the loglinear models

under multinomial sampling in the sparse contingency table case will also be

presented. Further aspects of discussion include jackknifing and bootstrapping

,goodness-of-fit statistics in sparse multinomials. Finally, a report weighing the

benefits between the Pearson X2 and the loglikelihood ratio statistic G 2 for

sparse contingency tables sums up the chapter.

Chapter 5 deals with the effects of small expected frequencies. Research find­

ings and recommendations from Tate and Hyer (1973) as well as Chapman

(1976) will be presented. Furthermore, comparisons will be made between the

X 2 and G 2 statistics under conditions of small expected frequencies.

Chapter 6 deals with the issue of small samples. The relevance of the properties

that were previously discussed for large samples will now be examined for the
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small sample case and efficiency evaluations will be carried out.

Chapter 7 looks at applications in SAS for small samples with small cell fre­

quencies and cases containing sampling zeros. The IML and Catmod proce­

dures were used with sensitivity analyses being carried out on the data sets

containing sampling zeros to investigate if there is a substantial difference in

the parameter estimates when a zero cell is adjusted by a pre-selected small

constant.



Chapter 2

The Chi-squared Distribution :

Historical Documentation

The chi-square test statistic plays an important role in categorical data anal­

ysis. For this reason, the aim of this chapter is to first present a historical

preview on the chi-square distribution and to thereafter show how the early

developments in the chi-square distribution progressed to give greater contri­

butions to categorical data analysis. Literature surveys disclose that the early

work done on categorical data analysis was surrounded by controversy. Thus,

a twentieth century tour of categorical data analysis is included to highlight

the developments of categorical data analysis together with a discussion on

some aspects of this controversy.

2.1 Early Contributions': The Pearson X2

Pascal, Fermat, Huygens, Cardano among other scientists studied games of

chance and obtained many useful results. De Moivre later rewrote some of the

4
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earlier results in a more approximate form using an equation now associated

with James Stirling. Utilising areas under the normal curve he obtained ap­

proximations to terms of the binomial distribution and thereafter expressed

the binomial terms in an exponential form. He discovered that neighbouring

terms could be obtained from areas under the normal curve by equating the

Riemann sums to integrals. This was noted as the first work done on the

calculation of areas under the normal curve by quadrature.

It was de Moivre and Laplace who showed that

(m - Np)
x= 1 1

(Npq)'i
(2.1 )

, since p + q = 1

was asymptotically standard normal where m denotes the number of successes

in N independent trials with p being a probability of a success in each trial.

Squaring (2.1) gives

(m - Np)2

(Npq)
(m - Np)2(p + q)

Npq

(m - Np)2 (m - Np)2
--'----------='---'---+--'-----='--'---

Np Nq

(m - Np)2 (Np - m)2
-----'--+--'-------'-----'---

Np Nq

(m-Np)2 (N-m-N+Np)2
--'-----='--'---+-'-------_=--..:....-

Np Nq

(m - Np)2 + (N - m - N(l _ p))2

Np Nq

(m-Np)2 (N-m-Nq)2
Np + Nq , (2.2)
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since q = 1 - p.

Pearson (1900) generalized (2.2) to obtain

(2.3)

where ai = observed number in the ith cell of a multinomial distribution which

has k categories. Lancaster (1969 ,p. 2) reports that it was Bienyame who

obtained the distribution of the sum of squares of n independently distributed

normal variables in the gamma function form. Bienyame evaluated the integral

'Y

2 J 2P(U2 < ,./) = -1-) un- 1 e-u duo
r( -n

2 0

He also presented work on the distribution of a linear form in the class fre­

quencies of a multinomial distribution. In later work Bienyame gave formulae

that indicated that he was proposing to extend the normal approximation to

the multinomial distribution. Later he presented a version of the multivariate

central limit theorem as well as a X2 distribution for a sum of standardized

squares.

Karl Pearson was initially responsible for highlighting the use of the X2 dis­

tribution. Other scientists who made significant contributions were Lexis and

Sheppard. Sheppard looked at feasible goodness-of-fit tests for the multinomial

distribution. He suggested a method to test the goodness-of-fit by calculating

the difference between the observed frequency and the expected frequency for

each cell of a frequency table and thereafter to check how often it exceeded the

probable error. He concluded that in a good fit this would happen less often

than in a bad fit. It was Pearson, who presented the widely used goodness of

fit test by using the variance-covariance matrix of the multinomial distribution

in the quadratic form approach rather than the awkward form of the variances

and covariances for a two-way contingency table as was done in the work of

Sheppard.
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2.2 Summary of Karl Pearson's Work

Pearson introduced a number of theoretical statistical distributions which are

now known as Pearson's system of frequency curves. One of these distributions

is the so called Type III distribution which includes the gamma and chi-squared

distributions. On noticing that the normal curve was being accepted as fitting

a set of data even when it was not an accurate fit, Pearson realized the necessity

to identify a goodness of fit test which would determine which distributions

described a frequency distribution well and which did not.

In his paper, Pearson (1900), starts by considering

where Y is an n x 1 vector whose elements are random variables and Y is

an n x n positive definite variance-covariance matrix. Then Pearson's lemma

states that there is a linear transformation, Y ---+ Z, such that

n

y'y- 1y = Z'Z = L Zi2 .

i=1

Further if the joint distribution of Yi, ... ,Yn is given by

f(Yl,"" Yn) = cexp ( _~Y'Y-1y) ,

(2.4)

(2.5)

where c is a constant, then y'y-1y = X2 is distributed as the sum of squares

of n independently distributed standard normal variables. This follows from

Pearson's lemma, since the joint distribution of the Z;'s is

g(Zl,'" ,zn) = cexp (-~z'z) (2.6)

which is the probability density function of n independent standard normal

variables. Furthermore we have
n

L zlrv X2
( n).

i=1
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Pearson refers to X as the generalized probable error.

For the multinomial distribution, Pearson then went on to define the observed

and expected frequencies mi and mi, respectively and differences ei = mi - mi,

i = 1, ... , n + 1, where

and

and

n+l

2.:ei = 0,
i=l

N(l - ~)
Var( ei) = N Pi(l - Pi) = UN-) 2= O"i ,

(2.7)

(2.8)

-m-m-
Cov(ei, ej) = ; J = -NPiPj = O"iO"jr"ij . (2.9)

Because of the identity in (2.7), only the first n of the ei were considered

to be "variables" by Pearson. Under the assumption that he would always

work with large numbers, Pearson considered the errors to be approximately

distributed as normal variables having an n x n covariance matrix, V, given

by (2.8) and (2.9). He also further assumed that normal variables have a joint

normal distribution.

Using the assumption of joint normality, Pearson expressed the joint distri­

bution of the first n of the set ei by an equation of the form (2.4). Trying

to express X2 = e/V-Ie in a form so that computations could be carried out

with ease, involved intricate work for deriving V-I. Pearson determined the

elements of V-I by an application of the theory of partial correlation.

Pearson's research in 1904 involved the study of contingency tables which

considered the underlying distribution to potentially have a joint normal dis­

tribution. He defined "contingency" and other related numerical measures.

The "first coefficient of contingency", r" was defined as
2

r" = ±<P(1 + <p2)-1/2, with <p2 = ~.
N

It was also Pearson who showed that X2 was unaffected by a reordering of the

marginal classes.
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2.3 Findings and Accomplishments of R.A.

Fisher

Fisher worked on testing hypotheses in regression analysis. He considered cases

where a joint normal distribution was assumed and where the sums of squares

resulted in quadratic forms of normal variables. On reading Pearson's Mathe­

matical contributions to the Theory of Evolution) he derived the distribution of

the correlation coefficient. He also derived the distribution for the non-central

and central X2 as well as the distribution of the correlation ratio, Pearson's TJ.

Other contributions made by Fisher in 1922 include the concepts of sufficiency

of estimators and measuring the effectiveness of statistical tests. He is further

acclaimed for the first fundamental proof of the asymptotic distribution of the

X2 statistic when parameters are estimated from the data. Another contribu­

tion by Fisher, was to partition X2 into different components which made the

comparison of nested models possible.

His work also provided insight into a measure of second order interaction for

contingency tables of higher dimensions. Further contributions include an

alternative method of partitioning the overall X2 in higher order tables. The

theory of two dimensional contingency tables also owes much to Fisher.

2.4 Early Controversies of Categorical Data

Analysis

Agresti (1996, p. 257) contends that "the beginnings of categorical data anal­

ysis were often shrouded in controversy". He states that although key figures

in the development of statistical science made significant contributions, they

were frequently engaged in disputes with one another. Among these scientists,
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one can include Karl Pearson, G Udny Yule, and R A Fisher.

A literature survey suggests that the earliest methods for analysing categorical

data were developed in England. Therefore, for the purposes of this study,

the historical overview of the evolution of categorical data will commence in

London.

2.4.1 Contentions arising from the Pearson - Yule Al­

liance

By 1900, Karl Pearson (1857-1936) was recognized by the statistical commu­

nity for his work on the Pearson curves, finding the product-moment estimate

of the correlation coefficient and its standard error. Documentation of Pear­

son's research work show that he wrote articles on an assortment of subjects

which include art, religion, philosophy, socialism, women's rights, physics, ge­

netics, and evolution. This versatile ability earned him the title of being called

a renaIssance man.

Literature on categorical data analysis in the early 1900's concentrated on

the discussions and debates regarding suitable choices of summary indices for

describing association. He recognized that association could be measured by

approximating a measure, like correlation. In 1904 Pearson described the term

contingency as "a measure of the total deviation of the classification from

independent probability" (Agresti, (1996, p. 258)) and he further defined

measures to describe its extent.

George Udny Yule (1871 - 1951), an Englishman and associate of Pearson's

concluded his investigations in multiple regression and partial correlation coef­

ficients, and ventured into an examination of association in contingency tables.

He believed that many categorical variables are fundamentally discrete and he

further represented indices in terms of cell counts, without assuming underly-
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ing continuum. One such measure attributed to him is the odds ratio () and a

transformation of it to the [-1,+1] scale,

(()-I)
Q = (() + 1)'

now described as Yule's Q . Yule said the following with regard to Pearson's

assumptions of underlying normality for certain measures, "at best the nor­

mal coefficient can only be said to give us in cases like these, a hypothetical

correlation between supposititious variables. The introduction of needless and

unverifiable hypotheses does not appear to me a desirable proceeding in scien­

tific work" (Agresti, (1996, p. 258)).

Karl Pearson did not accept Yule's criticism graciously and he and D. Heron

responded by filling more than 150 pages of Pearson's journal (Biometrika)with

a bitter response to Yule's criticism. In addition, they responded negatively to

Yule's book, An Introduction to the Theory of Statistics (Griffin, 1911) despite

the positive reception it received from the statistical community. They found

fault with the above-mentioned book and declared that

"If Mr Yule's views are accepted, irreparable damage will be done to the growth

of modern statistical theory.... [Yule's Q] has never been and never will be used

in any work done under his [Pearson's] supervision..... We regret having drawn

attention to the manner in which Yule has gone astray at every stage in his

treatment of association, but criticism of his methods has been thrust on us not

only by Mr Yule's recent attack, but also by the unthinking praise which has

been bestowed on a text-book which at many points can only lead statistical

students hopelessly astray".

It was later seen that Pearson and Yule had legitimate arguments since most

nominal variables did not possess an obvious or noticeable underlying con­

tinuous distribution. However, many applications did relate to an underlying

continuum, and could be used for model building and inference toward that

continuum.
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2.4.2 Disputes in the Pearson R.A. Fisher Association

Fisher (1890-1962) introduced the idea of degrees of freedom and proposed that

for tests of independence in I x J tables, X 2 had (I - 1)(J - 1) degrees of

freedom. On the contrary, Pearson claimed that any application of his statistic,

had degrees of freedom equal to the number of cells minus 1, or I J - 1 for a

two way table. Fisher pointed out that an additional (I -1)(J -1) constraints

on the fitted values arose when estimating hypothesized cell probabilities using

estimated row and column probabilities thus modifying the distribution of X 2
•

Pearson's criticism of Fisher's findings was even more vicious than his attack

on Yule's claims. He stated the following "I hold that such a view [Fisher's]

is entirely erroneous, and that the writer has done no service to the science

of statistics by giving it broad-cast circulation in the pages of the Journal of

Royal Statistical Society ... .! trust my critic will pardon me for comparing him

with Don Quixote tilting at the windmill; he must either destroy himself, or

the whole theory of probable errors, for they are invariably based on using

sample values for those of the sampled population unknown to us" ( Agresti

(1996, p. 259)).

Pearson declared that the use of row and column sample proportions to esti­

mate unknown probabilities was inconsequential for large sample distributions.

Fisher tried unsuccessfully to get his rebuttal published by the Royal Statistical

Society and he withdrew his membership.

Unfortunately, it was only shortly thereafter that, statisticians realized that

Fisher was correct but Fisher was embittered over this and his dealings with

Pearson. When writing about Pearson, he said: "If peevish intolerance of free

opinion in others is a sign of senility, it is one which he had developed at an

early age" (Agresti, 1996, p. 260). In an article in 1926, he verified his earlier

assertions regarding the degrees of freedom for the chi-squared distributions

by using 12000 2x2 tables randomly generated by Karl Pearson's son E. S.
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Pearson. He showed that the sample mean of X 2 was 1.00001, which is nearer

to his earlier prediction of 1.0 for the formula of E(X2
) than Pearson's I J - 1

= 3.

Fisher's contributions to areas such as design of experiments and analysis of

variance; his introduction of concepts of sufficiency, information, and optimal

properties of maximum likelihood estimators earned him the recognition that

he deserved amongst the statistical fraternity. Realising the restrictions of

large sample statistical methods for laboratory work, he was one of the first to

aid the work on small samples and hence promoted the research done by W.

S. Gosset on the t distribution.

Working on applications in toxicology with binary responses, Chester Bliss

used and made famous the probit model and hence contributed to some work

on model building for categorical data analysis. Fisher presented an algorithm

for obtaining maximum likelihood estimates of parameters for the probit model

in the appendix of one of Bliss's articles in 1935. This algorithm is usually

described as Fisher scoring.

Canonical correlation methods for contingency tables was another area of in- .

terest to Fisher. He allotted scores to rows and columns of a contingency table

in such a manner that a maximum correlation is obtained.

2.5 Logistic Regression and the Loglinear Model

Many categorical variables consist of only two categories, for example (yes, no)

or (dead, alive), giving rise to binary data. A binary response can be defined

in terms of a Bernoulli variable with the probability of a success, denoted by

1r, and the probability of a failure, denoted by (1 - 1r). When observing n

independent observations on a binary response with parameter 7f, the number
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of successes has a binomial distribution with parameters nand 1r. Consider

the simple case of one explanatory variable X. To show that the value of 1r

changes as the value of X changes, write 1r(x). For example as one increases

the level of toxicity, say X, so the probability that an insect dies, 1r(x), will

increase. Often the relationship between 1r(x) and x is nonlinear with a fixed

change in X having a smaller impact when 1r is nearer 0 or 1 rather than at

the centre of the range. In most cases the nonlinear relationship consists of

1r(x) increasing continuously as x decreases or vice versa resulting in an "S"

shaped curve. A function having this shape is

exp(a + (3x)
1r(x) = 1 + exp(a + (3x)'

which is called the logistic regression function. This function may also be

written in the form

R.A. Fisher and Frank Yates proposed log [(1=11")] as a plausible transformation

of a binomial parameter for analysing binary data. This type of transformation

was described by the term "logit".

Other models which may be considered are of the form 1r(x) = F(a + (3x),

where F(·) is a continuous distribution function. When F(·) is the standard

normal cumulative distribution function, <1>(-), then the model is

This model is called a probit model. The early work of Joseph Berkson, showed

that the fit for the logistic regression model and the probit model are similar.

Sir David R. Cox expanded on logistic regression through his 1970 book, The

Analysis of Binary data. Another variation of the logit model, the Rasch

model, which is used in psychometric testing, was introduced by George Rasch

in the same time period. Many powerful developments took place in categor­

ical data analysis during the quarter century following the end of World War
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n. A few findings include expressions derived by H. Cramer and C. R. Rao

for large sample distributions of parameter estimators in models for categori­

cal data analysis. Jerzey Neyman initiated the family of best asymptotically

normal (BAN) estimators which possess similar properties as the large sample

properties of maximum likelihood estimators. During the early 1950's, William

Cochran generalized (Cochran's Q) of McNemars's test which compared pro­

portions in several matched samples and further explained the partitioning of

the chi-squared statistics into parts that described various elements of associ­

ation. Explanations on appropriate sample size for the chi-squared approxi­

mations to work well for the X 2 statistic was another contribution by him as

well as the test of conditional independence for 2 x 2 x ]{ tables.

Bartlett investigated the aspect of interaction in contingency tables. These

findings were extended to multiway tables in articles by J. . Darroch, I.J

Good, L Goodman, H. O. Lancaster, N. Mantel, R. L. Plackett and S. Roy.

Some instrumental work done by Birch in 1963-1965 showed how to obtain

maximum likelihood estimates of cell probabilities in three-way tables under

various conditions. Earlier theoretical findings of Cramer and Rao on large

sample distributions for categorical data models were also discussed and ex­

panded. Birch's articles sparked off substantial research on loglinear models

between 1965 and 1975.

For an r X c contingency table, with classification variables A and B, a saturated

loglinear model for the data is given by

where 2..: A~ = 0, 2..: A: = 0 and 2..: AjB = O. This model is easily extended
j ij

to higher order contingency tables.

The next decade's research concerning loglinear and logit modelling were cen­

tered at three American Universities namely: Chicago, Harvard and North

Carolina. Leo Goodman, of the University of Chicago, presented his findings
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on partitioning of chi-squared models for square tables, stepwise logit and log­

linear model-building procedures, as well as specialized models for ordinal data.

He also wrote articles for social science journals and hence made loglinear and

logit methods popular approaches for applications.

Some of Goodman's students at Chicago made many useful contributions.

One such student is Shelby Haberman. He completed his Ph.D dissertation

making sound theoretical contributions to loglinear models. Areas covered in

his discussions include residual analysis, loglinear models for ordinal variables

and theoretical results for models.

Later, Stephen Fienberg and William Cochran, students of Fredrick Mosteller

were involved in related research on maximum likelihood methods for loglinear

and logit models. The bulk of this research was kindled by problems which

arose after analyzing large multivariate data sets in the National Halothane

study. This study compared halothane with other anaesthetics in order to

ascertain if halothane was more likely than other anaesthetics to cause death

due to liver damage. Mosteller (1968) explained how loglinear models could be

used for smoothing in multidimensional discrete data sets. Gary Koch looked

at studies in weighted least squares. This approach was applied to cases when

maximum likelihood methods presented problems.

Later advancements in categorical data analysis include modelling of ordinal

data by Leo Goodman in 1979; Cyrus Metha and Nitin Patel's algorithm

for implementing exact-small sample methods, generation of graphical models

for rnultiway contingency tables, conditional likelihood methods for multiway

contingency tables and method of conditional likelihood for modelling of odds

ratios and methodology for longitudinal and multivariate categorical responses.

John Nelder and R. W. M. Wedderburn's research on generalized linear models

is construed to be a significant contribution since it combines logistic and probit

regression models for binomial data and loglinear models for Poisson data with
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concepts of regression and ANOVA for normal response data. The fitting of

GLM's required Fisher scoring which was developed further by Fisher in 1935

when he used maximum likelihood fitting of probit models. Once again it is

seen that Fisher's contributions were indeed very wide.

Apart from the work done on model building, Cressie and Read concentrated

on describing and assessing goodness of fit. They investigated the conven­

tional tests for goodness of fit and also suggested the alternative of the power­

divergence family of statistics.

From 1950 onwards more research was done on small-sample comparisons be­

tween the X 2 and G2 test statistics under the null model, as well as examining

the effect of modified test statistics on various methods of parameter estima­

tion and determining the efficiency of the modified test statistics.



Chapter 3

Statistics Measuring

Goodness-of-fit : Discrete

Multivariate Data

The fit of a model can be measured by comparing the expected frequencies for

each outcome with the observed frequencies from the sample. Cressie and Read

(1984) suggested the power-divergence statistic as an alternative to statistics

proposed in the past. In this chapter a notation for modelling and testing dis­

crete multivariate data will be presented. Section 3.1 discusses the multinomial

distribution. Section 3.2 presents the definition of a model for a multinomial

vector 1r and examines model fit whilst section 3.3 discusses the power diver­

gence family of statistics introduced by Read and Cressie (1988). In section

3.4, the case of no parameter estimation is examined. Two methods used for

estimating unknown parameters, the minimum power divergence estimation

approach as well as the method of maximum likelihood are described in sec­

tion 3.5. Independence and homogeneity in two dimensional tables for the case

of parameter estimation are topics examined in section 3.6. Lastly, section 3.7,

highlights different selection methods to ensure that the best loglinear model

18
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is chosen.

3.1 The Multinomial Distribution

The multinomial distribution plays a central role in the analysis of categorical

data and will be discussed in this section.

Suppose an outcome of a trial can be classified into one of k mutually exclusive

categories Ai, i = 1, ... k, and that the probability of being classified into

category Ai is P(A) = 7fi, i = 1, ... ,k. If there are n independent trials and

Xi is the number of outcomes classified in category Ai, i = 1, ... k, then the

random vector X = (Xl, X z, , X k ) is said to have a multinomial distribution

with parameters n, 1r = (7f1' 7fk), which is denoted by Mulh(n,1r). The

probability function of X = (Xl, ... , X k ) is given by

k X7f'
P(X = x) = n! IT _i ,

x·Ii=l ,.

where 0 :S Xi :S n, 0 :S 7fi :S 1; i = 1, ... , k and 2:7=1 Xi = n, 2:7=17fi = 1.

(3.1 )

As an example, consider the question:

"Should major political decisions be based on a nationwide referendum ?"

Suppose that there are k = 3 answer categories with possible responses; Al

= "agree" , A z = "disagree" and A3 = "no opinion". If n people are interviewed

and asked their opinion on the question above, then the classification of the

answers can be summarized by the random vector X = (Xl, X z, X 3 ) where

Xi = the number of times that A is observed, with 2::=1 Xi = n.

In the case of a two-way frequency table with r levels for classification variable

A and c levels for classification B, let Xij denote the number of outcomes

classified in cell (i,j), and 7fij denote the probability that an outcome is clas­

sified in cell (i,j). If there are n independent trials then the random vector
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x = (Xn , ... ,Xlc , ... ,Xrl ,Xrc ) will have a multinomial distribution with

parameters nand 1r = (?rn, , ?rl c , ... , ?rrl"" ?rrc), i.e. X rv Mult(n, 1r).

The moment generating function of X is given by

k

Mx(t) = E[e tIX
] = E[exp L: tiXi]

i=l

The mean of Xi is

E(Xi )

It follows that

: Mx(t)]
ut, t=o

E(XiXj )
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Thus

and

var(Xi ) E(Xl) - (EXi?
n(n - 1)7f; +n7fi - n27f;

n7f; +n7fi = n7fi(l - 7fi)

cov(Xi , X j ) = E(XiXj ) - E(Xi)E(Xj )

n(n -l)7fi7fj - (n7fd(n7fj) = - n7fi7fj .

For the random vector X we have E(X) = n1r and

= n[D1l" - 1t'1t"].

Thus if P = X/n then

cov(P) E [(X/n - 1t' )(X/n - 1t')']

~cov(X) = ~[D1l" - 1t'1t"].
n 2 n

Another important result is that as n -----+ 00 the multinomial random vector

will have an asymptotic normal distribution. This result is stated and proved

in Theorem 3.1.

Let X n = (Xnl,Xn2, ... ,Xnk)' rv Mult(n;1t') and Un = (Xn - n1t')/Vii =
Vii(P - 1t'), where P = :n. It then follows that

E(Un) = 0 and cov(Un ) = ncov(P) = D1l" - 1t'1t" .
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Theorem 3.1:

Un ~ U, where U has the multivariate normal distribution with mean vector

o and covariance matrix D 1r - 1r1r'.

Proof: The m.g.f of Un is given by

Note that e- t '1rvn = (e- t '1r Ivnf. Thus

Since eX = 1 + x + x 2 /2 + o(x 2
), as x -+ 0, we have

Now
k

L 1fj(tj - t'1r)
j=l

k k
~ 1ft· - t'1r ~ 1f'
~ J J ~ J
j=l j=l

t'1r - t'1r = °
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and

k k
L: 1fAtj - t'1r)2 = L: 1fAtj - t'1r)(tj - t'1r)
j=1 j=1

k k

= L: 7rj(tj - t'1r)tj - L: 7rj(tj - t'1r)t'1r
j=1 j=1

k k

= L: 7rj(tj - t'1r)tj - 0, since L: 7rj(tj - t'1r) = 0, as above
j=1 j=1

k k k

= L: tj7r j tj - L: L: 7rj7rjdjtj' = t'(D1r - 1r1r')t .
j=1 j=1 j'=1

Thus MuJt) = (1 + ~. ~t'(D1r -1r1r')t +0(n-1)f, so that

1nMuJt) = n1n {I + ~. ~t'(D1r -1r1r')t + 0(n-1)}

n [~ . ~t'(D1r - 1r1r')t +0(n-1)]

= ~t'(D1r - 1r1r')t + 0(1) as n ~ 00

since 1n(1 + x) = x +o(x) as x ~ O. Thus

1· M (t) _ ~t'(D,,--1r1r')tlm Un - e ,
n--+oo

which is the m.g.f. of the N(O, D 1r - 1r1r') distribution.

This result may also be expressed as follows:

If X rv Mu1t(n; 1r), then X has approximately the N(n1r, n(D 1r -1r1r')) distri­

bution for n large.
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3.2 Defining a Model and Model Fit

The simplest model for the multinomial probability vector 1r, is the null model

described by :

Ho : 1r = 1r0, (3.2)

with 1r0 = (7r01' 7r02, ... , 7rOk) representing the hypothesized probability vector

and expected cell frequencies given by n1ro = (n7rOI, n7r02, ... , n7rOk). Let x =
(Xl, X2, ... , Xk ), where Xi denotes the number of observed replies in cell Ai and

2:7=1 Xi = n. Model fit can be measured by comparing the expected frequency

of the ith cell, n7rOi with the observed frequency Xi. The null model is rejected

if the difference between the observed and expected frequencies becomes too

large.

Popular goodness-of-fit statistics used to test Ho : 1r = 1r0 include:

(3.3)

which was proposed by Pearson and the loglikelihood ratio statistic given by

2 ~ ( Xi )G = 26xilog - ..
i=l n7ro,

(3.4)

x 2 = 0 = G2 only if there are no differences between Xi and n7rOi. An increase

in the discrepancy between x and n1ro, results in an increase of the values of
X 2 and G2

.

If x is replaced by the multinomial vector X in (3.3) and (3.4), then X 2 and

G2 may be viewed as random variables. Pearson reported that X 2 exhibited

properties of a chi-squared distribution with k - 1 degrees of freedom, when

the sample size n increased, under the null model described previously in (3.2).

This result is stated and proved in the following theorem.
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Theorem 3.2

Consider the hypothesis Ho : 'iT" = 'iT"o ('iT"o a fixed value).

Proof:

Write X 2 as follows:

2(X )2t n -:;; - 1rOi

i=l n1rOi

d
Thus Un ---+ U where U rv N(O, D.,,-o - 'iT"o'iT"~). By Theorem 3.1, (replacing 'iT"

by 'iT"o), it follows that

Using Corollary 2s.2 of Searle (1971, p.69), we have the result: X rv N(O, V)

then, for singular or non-singular V, X'AX rv x2 (tr(AV)) if and only if

VAVAV = VAV. Firstly

tr(AV) tr[D;Ol(D.,,-o - 'iT"o'iT"~)]

tr[I - D;ol'iT"O'iT"~]

tr(I) - tr( 'iT"~D;ol'iT"O)

k - tr(l), since 'iT"'D;l'iT" = 1

k -1 .
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To show that VAVAV = VAV, note that

and VAV

D ,. 'D-1 - 1= 11" - 1r1r , SInce 1r 11" 1r - .

Now

which is the required result.

Thus X2 = U~D;olUn ~ X2 (k -1).

Null models that do not completely specify the null probability vector 1ro, cre­

ate problems. For example, (Read and Cressie, (1988, plO)), discuss a model

log 7ri = a +{3i, which has two unspecified parameters a and {3. These param­

eters are called nuisance parameters and must be estimated from the sample.

Once the parameters have been estimated, the estimates for the expected fre­

quencies niri can be found and the goodness-of-fit statistics given in (3.3) and

(3.4) can be calculated.

Estimation entails the null model being expressed by

Ho : 1rEIIo , (3.5)

where II° refers to a set of hypothesized probability vectors for 1r. Estimating

nuisance parameters can be viewed as choosing an element of the set II°
which proves most consistent with the sample data. The resulting estimated

probability vector is denoted by Jr.
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Fisher (1924) illustrated that in the case of one nuisance parameter occurring,

k (X " )2
2 '" i - n7ri
X=~ " ,

i=l n7ri

(3.6)

(3.7)

has a chi-squared distribution with k - 2 degrees of freedom when (3.5) is

true for increasing sample size. As highlighted in the earlier discussion on

the controversy between Fisher and Pearson, Pearson had formerly prescribed

k - 1 degrees of freedom.

Studies undertaken by Cramer (1946) which involved generalisations to s pa­

rameters yielded

2 ~ [Xi]G = 2~Xdog nir. '
i=l •

and (3.6) are asymptotically chi-squared with k - s - 1 degrees of freedom, in

the event that certain regularity conditions on 1r and k hold and that (3.5) is

true.

Recent additions to the family of goodness-of-fit statistics include the Freeman­

Tukey Statistic which was defined as

k 2

F2=4L(VX:-~)
i=l

(3.8)

by Fienberg (1979) and Moore (1986). Two further statistics are the modified

loglikelihood ratio statistic,

k ( ")2 " n7ri
GM = 2Ln7r)og -. '

i=l X,

and the Neyman-modified statistic (Neyman , 1949)

NJ\12 = t (X, - niri )2
X •

•=1

(3.9)

(3.10)

Research findings have indicated that under the conditions described earlier,
the abovementioned three statistics possess the same asymptotic chi-squared
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distribution as X 2 and G2 . Discrepancies between statistics do arise in terms

of equivalence under descriptions of finite sample size thus causing controversy

on the topic of choice of an appropriate statistic. Read and Cressie (1988)

furnished the power-divergence family of goodness-of-fit statistics which will

be introduced and discussed in the subsequent section.

3.3 The Power Divergence Statistic

In accordance with the previous methods for measuring the fit of a model

by comparing the expected frequency for each category with the observed

frequency, Read and Cressie (1988) defined the power-divergence statistic as:

-00 < >. < 00 ,

(3.11)

where>. is the family parameter, and is chosen by the user. The power­

divergence statistic is zero when the observed and expected frequencies are

equal for every outcome, (for any value of >.). The statistic is always positive

for all other cases and gets larger as the discrepancy between the observed and

expected frequencies increases.

The statistic 2n1>' (~ :1r) measures the divergence of ~ from 1r through a

weighted sum of powers of the terms ~ for i = 1, ... , k. In other words
n7ri

it measures how far the empirical probability diverges from the probability

distribution under the hypothesis, hence the name power-divergence statistic.

The following notation

2 k [(m~','.)>'-l].,21>' (X: ill) = >.(>. + 1) ~Xi " -00 < >. < 00 (3.12)

is adopted by Read & Cressie (1988) when comparing the cell frequency vector
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X with the estimated expected frequency vector, ill = n1r ; where L:=1 Xi =

L7=1 mi. Closer examination of the previous equation reveals that the total

sample size n is eliminated.

If A = 1 is substituted in (3.12), the power-divergence statistic simplifies to

the X2 statistic. This is verified as follows: For X = 1 the power-divergence

statistic is

2Jl(Xi : ill) 2 k (X )
1(2) ~Xi m: - 1

Further inspection of (3.12) shows that the equation is undefined for A = -1

and A = O. But if 21>' (X : ill) is defined as the continuous limits of (3.12) as

A ----+ -1 and A ----+ 0, then 21>' (X ; ill) is continuous in A.

The loglikehood ratio statistic is a special case of the power-divergence when

A ----+ 0 in (3.12). We use the fact that

log(t) = lim(th
- l)/h

h~O
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lim 2IA(X : ill)
A-->O

For the case ). -t -1,

lim t Xi [(~) A_I] i C~l)
A-->O i=l m,

30

2 k [(X_)A ]lim 21>' (X : m) = 1im '"' Xi -' - 1 .
>'-->-1 A-->-l ).(). + 1) f;;; mi

Let y = ). + 1, then if ). -t -1, y -t O. The limit above then becomes

lim (:1) t Xi [(~)Y-l - 1] = lim ( _~)( ) t [(~i)Y mi - Xi]
y-->O y y i=l m, y-->O y y i=l mi

1. 2 2:k

'" [ ( Xi ) y Xi]= Im m- - - 1 + 1 - -
y-->O y(y - 1) i=l I mi mi

k y . k

1· 2 2:'" [(Xi) ] l' 2 2:('" )= III m- - - 1 + Im m- - X
y-->O y(y - 1) i=l 'mi y-->O y(y - 1) i=l I ,

= lim (2 tm; [(Xi)Y -1] ~ , since 2:(Xi- mi) = 0
Y-->O y - 1) i=I mi y

=2tmi10g(~') =GM2
•

i=I '

Hence, equations (3.6), (3.7) and (3.9) may be expressed as :

2nI
I (~ : 1r) = X 2

,
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and
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2nI-1 (~ : 1?) = GM
2

.

Similarly, substituting>. = -~ and>. = -2 in (3.12) gives rise to two other

statistics that are linked to the power-divergence statistic through the index

>.. They are the F 2 and N M 2 statistics respectively, with

1 (X~) F 22nI-2 -:;;: 1r = ,

2nI-2 (~ : 1?) = N M2
.

The power-divergence statistic is seen to consolidate and unify goodness-of-fit

tests which were previously considered in isolation.

3.4 Case of no Parameter Estimation

The simple null hypothesis for 1r is: Ho : 1r = 1ro, where 1ro = (-7r0l' 71"02, ... , 7I"Ok)

is completely specified and each 7I"Oi > O.

From Theorem 3.2, under the null model above, the following results have been

obtained.

(i) vnC: - 1r0) converges in distribution to a multivariate normal distribu­

tion as n --t 00 0

(1
0 1') X2 __ "",k. (Xi - n7l"0i)2

L..,,=l converges III distribution as n --t 00 to the
n7l"0i

quadratic form of the multivariate normal random vector in (i).

(iii) In the case of (i) and (ii), X 2 converges in distribution to a central chi­

squared random variable with k - 1 degrees of freedom.
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From the results (i) to (iii) above, and the null model, it follows that

P(X2 2: c) -+ P(XLl 2: c) for any c 2: 0 and n -+ 00, and

(3.13)

Thus the null hypothesis will be rejected at a 1000: percent significance level,

ifthe value of X 2 exceeds the critical value xi-,Jk-1). The 1000:th percentile

for the chi-square distribution with v degrees of freedom, Xi-a (v), is defined

as follows:

P(x~ ~ Xi-a(v)) = 1 - 0: .

The Pearson X 2 test requires that the sample size, n in (i) is large enough

for (3.13) to be true and further that the number of cells be fixed in order

for k to be small in comparison with n. As a consequence of k being small in

relation to n, it ensures that each expected cell frequency would be large since

mfOi -+ 00 for each i = 1, ... , k.

The following theorem shows that the power divergence statistic has the same

asymptotic distribution as the Pearson X 2 statistic, under Ho : 11'" = 11'"0.

Theorem 3.3 :
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Proof:

The power-divergence statistic, (for>. -# 0 or >. -# -1), under Ho, is

2 k [( Xi ).\ ]2nI.\ (: : 1ro) = = LX - - 1
>'(>'+l)i=l t mfOi

2 k [( Xi ) .\+1 ]--- Ln7fO· -- - 1
>.(A + 1) i=l t n7fOi

k [( ).\+1 ]2n n7fOi Xi 1
7f. 1---+-- -

>'( >. + 1)~ Ot n7fOi n7fOi

k [( ).\+1]2n Xi - n7fOi
7fOi 1 + - 1

>.(>. + 1) ~ n7fOi

Xi - n7fOt
where Vi = ----

n7fOi

Now consider f(Vi) = (1 +Vi).\+l and expand in a Taylor series, i.e.

I f" (0) 2f(Vi) = 1 + f (O)Vi + -,11; + ...
2.

V2

1 + (>' + 1)Vi + >. (>' + 1)-t + op (~)

where op( ~) depends on >. and converges in probability to zero faster than· ~

as n ---+ 00 because vn7foiVi is asymptotically normally distributed as n ---+

00, i = 1, ... ,k. This follows from (i) since ~ = 1r + Op (In)
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Thus

smce

k [ V2]2n '"7l"Oi (,\ + l)Vi + ,\(,\ + 1)-2
i + op (~)

'\(A+1)t:t

Thus

k k ( )Xi - n7l"OiL 7l"Oi Vi = L 7l"Oi n7l" .
i=l i=l Ot

k k

I.: Xi - n I.: 7l"Oi
i=l i=l

n

n-n
=--=0.

n

The power divergence statistic is hence found to have the same asymptotic

distribution as Pearson's X 2 statistic with

P (2nI A (~ : 11"0) ;:::: Xi-a(k -1)) ---t a as n ---t 00,

for each'\ t (-00,00) and each at (0,1).

(3.14)

The null hypothesis will thus be rejected if X 2 or 2nIA(~ : 11"0) exceeds the

value Xi-a(k -1).

In conclusion it is seen that properties of the power-divergence family of statis­

tics being equivalent to the asymptotic equations derived earlier, requires that

the number of cells k be fixed and the expected cell frequencies n7l"Oi should be

large for all i = 1, ... , k.
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3.5 Estimating Parameters

In the case where a model contains unknown parameters, these parameters will

have to be estimated from the data. Calculation of the expected cell frequencies

is only done after the unknown parameters have been estimated. Two methods

that will be considered include the method of maximum likelihood and the

minimum power divergence estimation approach.

3.5.1 Maximum Likelihood Approach

The maximum likelihood approach is a frequently used estimation technique.

To illustrate the method consider a two-dimensional contingency table. If a

full multinomial sampling scheme is used then the log likelihood function is

r c

log L(1r) = k1 +L L Xij log(7rij)
i=l j=l

where k1 is not a function of 7rij. Note that

r c

logL(1r) = k1+LLXijlog(n:ij)
z=l J=l

r ere

k1+ L LXij log(mij) - L LXij log(n) .
i=l j=l i=l j=l

If a Poisson sampling scheme is used, then the likelihood function is

r c

L(m) = IT IT [exp(-miJm~/]/xij!
i=l j=l

and
r ere

log L(m) = L L Xij log(mij) - L L mij + k2 ,

i=l j=l i=l j=l
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where k2 is not a function of mij·

For a product-multinomial distribution with fixed row marginals, Xi+, the like­

lihood function is

cr

r

IT Xi+!

L(1r) = -r-
i =_l-c-- IT IT 7f~ij

IT IT Xij! i=l j=l
i=l j=l

and the log likelihood function is

r c

log L(1r) k3 + L LXij log(7fij)
i=l j=l

r ere

k3 + L LXij log(mij) - L LXij log(n) ,
i=l j=l i=l j=l

where k3 is not a function of mij.

It is evident that all three sampling procedures have a log likelihood pro­

portional to
r c

I«m) = L L Xij log(mij) .
i=l j=l

Maximum likelihood estimation will require a constrained maximization of

I«m) with respect to the frequency mij, subject to the constraints imposed

on the mij by the hypothesized model. For example the model log(7fij)

fl + ai + /3j, i = 1, ... ,7", j = 1, ... , c, imposes the constraints

mij = n7fij = nexp[fl + ai + /3j]' i = 1, ... ,7"; j = 1, ... ,c.
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If the method of maximum likelihood is used, then note that

r c

K(m) - L LXij log(xij)
i=l j=l

r ere

L LXij log(mij) - L LXij log(xij)
i=l j=l i=l j=l

t tXij log (:'J)
i=l j=l 'J

Thus maximizing the kernel of the loglikelihood function, K (m), is equivalent

to minimizing the loglikelihood ratio statistic, G2
•

3.5.2 Minimum Power-divergence Estimation Approach

In order to use the power-divergence family of statistics in a multidimen­

sional table, arrange the frequencies appropriately into a column vector X =
(XI, X 2 , ... ,Xk ), where k will now be the number of cells in the table. The

power-divergence statistic will be used in the form

21"(x:m)= (2 ) ~Xi[(~i)A -1] ;-oo<A<oo (3.15)
A A+ 1 L mi,=1

with the limit as A -+ -1 and A -+ 0 being used for A = -1 and A

0, respectively and the subscript i runs from 1 to k, the total number of

cell in the contingency table, to ensure that the statistic can be applied to

multidimensional tables.

Read and Cressie (1988) further define the general null model for m as

Ho: m E Mo (3.16)

where Mo C M describes the set of all frequency vectors satisfying the con­

straints of the hypothesized model. As a consequence, the maximum likelihood
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method is said to be similar to minimizing (3.15) with regard to m cMo using

>. = O. Equation (3.15) could be minimized for different values of >.; thus

prompting the definition of the minimum power divergence estimate of meMo

to be expressed as the iT:!''' which satisfies

J),(x : ill(),)) = inf J),(x: m); -00 < >. < 00 .
mEMo

(3.17)

The estimate ill), is unique since J)'(x : m) is strictly convex. Read and Cressie

(1988) show that a minimum power divergence estimator is a best asymptotic

estimator (BAN). A BAN estimator must have the following three properties:

(a) The estimator converges to the true value of the evaluated parameter as

n -----+ 00.

(b) They are asymptotically normally distributed.

(c) They are asymptotically efficient, since no other estimator can have a

smaller variance as n -----+ 00.

The null hypothesis Ho can be reparameterized by assuming that the vector

1r E llo, is a function of s parameters 0 = (01,02, .... ,Os) E Ba), where

s < k - 1. This means that there is a function f( 0) that maps each element

of the subset Ba C RS into the subset IIo. Thus Ho can be reparameterized

in terms of the pair (f,80 ) as

Ho : There is a 0 E Ba such that 1r = f(O).

In order to ensure that the minimum power divergence statistic exists and con­

verges to 0, as n -----+ 00, it is necessary to specify certain regularity conditions

on f and Ba under Ho.

The six regularity conditions of Birch (1964) are given in Read and Cressie

(1988, Appendix A5). Birch's regularity conditions require that f satisfies

certain smoothness requirements and that Jri = fi(O) is positive for all i. These
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conditions ensure that the model has under Ho has s parameters and not fewer

and are also necessary for deriving the asymptotic distribution of the power­

divergence statistic under Ho.

The results presented earlier for the general hypothesis hold in this case by

using the asymptotic normality of the BAN estimator 1? These can be stated

as follows:

(i*) If X is a random vector with a multinomial distribution Mult k (n,71")

and Ho : 71" = f(O) E IIo for some 0 then .;n(~ - 1?) converges in

distribution to a multivariate normal random vector as n --+ (X) under

the restriction that f satisfies Birch's regularity conditions and 1?E II 0 is

a BAN estimator of f(O).

X 2 '\'k (Xi - n7ri)2 b·' " f:::(X ~= L..Ji=l ~ can e wrItten as a quadratIc form III V n --71"),
n~ n

and X 2 converges in distribution, as n --+ (X) , to the quadratic form of

the multivariate normal random vector in (i*).

(iii*) In the case of (i*) and (ii*) X 2 converges in distribution to a chi-squared

distribution wth k - s - 1 degrees of freedom.

Read and Cressie (1988) prove that X 2

distribution under Ho and that

2nIA(X : 1?) = 2nI1(X : 1?) + op(l),
n n

I.e. the power-divergence statistic has asymptotically the same distribution as

X2. This means that

P(2nIA(~ : 1?) 2: c) --+ P(X2
k-s-l 2: c), as n --+ (X) for each A E(-(X), (X)), c 2: O.

Thus for testing Ho at the 1000'% level of significance,

if c = X21_a(k - S - 1) where 0' E (0,1), then

p (2nI' (~: iT) ~ X\_.(k -s -1)(<>1) --; <> as n--; 00, (3.18)
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Also, if 1?(A) f II0 is the minimum power divergence estimator of 1t", then for

each>. f (-00,00) and each 0' f (0,1),

p(2nIA(~ :1?(A)) 2':x\_c,(k-S-l)) -to' asn-too.

3.6 Case of Parameter Estimation

Goodness-of-fit tests are generally used to check if a set of data comes from a

given distribution or class of distributions. However, another use is to observe

and interpret associations or relationships between two or more random vari­

ables. The model of independence examines whether categorical variables are

independent and this model will require parameter estimation.

The model of marginal homogeneity will also be discussed and it will be shown

that the maximum likelihood estimates for the models of independence and

marginal homogeneity are the same.

3.6.1 Independence and Homogeneity in Two Dimen­

sional Contingency Tables

Consider a two-dimensional table comprising of r rows, c columns with rc cells

obtained from the cross-classification of two variables say A and E. The r rows

represent the r categories of the variable A, denoted by AI, Az, ... ,Ar whilst the

c columns represent the c categories of variable E, denoted by El, Ez, ... ,Ec .

The cell frequency in the ith row and jth column is denoted by Xij'

The concept of marginal totals plays an important role in testing independence.

The row total for row i is expressed as Xi+ = 2:;=1 Xij; where i = 1, ... , rand

the column total for column j is denoted by x+.i = 2:~=1 Xij; where j = 1, ... , c.
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These totals are referred to as the marginal totals for the frequency table. The

total for all the cells is denoted by n = X++ = l.:;=1 l.:j=l Xij· The total may

also be expressed as n = l.:;=1 Xi+ = l.:j=l X+j.

The study of independence involves the calculation of 'lrij, which is the proba­

bility of observing an individual in A; n B j or otherwise referred to as the joint

probability for the cells.

Looking specifically at independence : two variables A and B are said to be

statistically independent if

P(A; n B j ) = P(A;)P(Aj ), for i = 1, ... , ,; j = 1, ... c.

For the two-dimensional frequency table, this can be expressed as

'lrij = 'lri+'lr+j for fOli = 1, ... ,1; j = 1, ... ,c,

where 'lri+ and 'lr+j are the unknown marginal probabilities.

The model of independence or no association is

Ho : 'lrij = 'lri+'lr+j , i = 1, ... , ,; j = 1, ... , c, (3.20) .

Let the random variable X ij , i = 1, ... , I; j = 1, ... , c denote the observed fre­

quency for the cell (i, j), and let 'lrij denote the probability that an outcome is

classified in cell (i,j). Then X = (Xn , X1Z, ... ,X1c,Xr1,XrZ"",Xrc) has a multi­

nomial distribution with parameters nand 1t" = ('lrn, 'lr1Z, ... ,'lr1c, ... ,'lrr1,'lrrZ, ... ,'lrrc)'

The expected value of X ij is E(Xij ) = mij = n'lrij Hence (3.21) can be ex­

pressed in terms of the expected frequencies, as

(3.21 )

The unknown marginal probabilities must be estimated in order to test (3.21)

and this is done by using the maximum likelihood estimates of 'lri+ and 'lr+j,

1 Xi+ d X+j. . .
name y - an -, respectIvely. These estImates are obtamed as follows:

n n
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If a multinomial sampling procedure is used, then the likelihood function is

the multinomial probability function, i.e.

n'L(1r) = r c·

IT IT Xij
i=l j=l

The log likelihood function is

r c

r c

IT IT Xi)'lr ..
tJ

i=l j=l

log L(1r) = C + L L Xij log('lrij) ,
i=l j=l

where c is a constant which is not a function of the 'lrij. Under Ho, the log

likelihood function is

r c

log L(1r) = C + L L Xij log( 'lri+ 'lr+j) .

i=l j=l

The maximum estimates of 'lri+ and 'lr+j are found by maximizing log L(1r)
r c

subject to the constraints L'lri+ = 1 and L'lr+j = c. In order to do this con-
i=l j=l

sider the two Lagrange multipliers )'1 and ),2 and maximize the log likelihood

function with the two constraints, i.e. maximize

with respect to 'lri+ and 'lr+j.

The partial derivative with respect to 'lri+ is
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which must be set to zero. This gives

rNow
r c r

L L Xij = Al L 7l"i+ = Al , since L 7l"i+ = 1 .
i=l j=l i=l i=l

c

Hence Al = nand 7l"i+ = ~ 2: Xij = x~+. Thus the maximum likelihood
j=l

estimate is 1ri+ = x~+. Similarly setting 8;+i log L(7r) = 0 and solving for 7l" +j

we get 1r+j = X~i.

Consequently, the expected value of X ij is expressed:

~ (Xi+) (x+j) _ Xi+X+jmij =n - - - .
n n n

(3.22)

The null hypothesis in (3.22) can now be tested by using the power divergence

family of statistics, defined from (3.12) as :

r C [( )A ]A ~ 2 Xij
21 (x: m) = A(A + 1) ~f;Xij mij -1 , -00 < A< 00

(3.23)

with limits as A -7 -1 and A ~ 0 being used for A = -1 and A = O.

The degrees of freedom for the chi-square distribution are:

k - s - 1 = (re - 1) - (1' - 1) - (e - 1) = (1' - l)(e - 1).

Thus the power-divergence statistic and X 2 have approximately a chi-square

distribution with (1' - 1)(e - 1) degrees of freedom.

When the row totals are constrained by the sample layout, then the appropriate

model in question is the model of homogeneity of proportions. The hypothesis

of homogeneity of proportions may be expressed as

(3.24)
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X+j
with the maximum likelihood estimate of 1r+j, the marginal proportion n
The maximum likelihood estimate for 1r+j is found by maximizing

r ere

logL(1t") = C+ LLxijlog(xi+) + LLxij log(1r+j)
i=1 j=1 i=1 j=1

c

subject to the constraint L 1r+j = 1. This is done by introducing the Lagrange
j=1

multiplier .A3 such that .A3 (t 1r+j - 1) = 0 and maximizing
3=1

with respect to 1r+j.

olog L(1t") _ ~ .. _1 _'
- ~x~ A3,

01r+j i=1 1r+j

r

which is set to zero, giving LXij = .A31r+j. Now
i=1

c r c

L L Xij = .A3 L 1r+j = .A3 ,

j=1 i=1 j=1

c

since L 1r+j = 1. Hence
j=1

r

2: Xij
~ i=1 x+j

.A3 = nand 1r+j = -- = - .
n n

Th
~ Xi+X+j. .

us mij = Xi+ 1r+j = , whIch IS the same result obtained for the
n

maximum likelihood estimator for the independence model.

The sampling procedure adopted for model of homogeneity of proportions,

is the product-multinomial model, with the row totals, Xi+ fixed, while for
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the hypothesis of independence the full multinomial sampling procedure is

assumed. The full-multinomial distribution has the total sample size, n fixed.

Since the expressions for the maximum likelihood estimators for the test of

homogeneity are the same as those for the test of independence, there is no

difference between the two tests as long as the method of maximum likelihood

is used to estimate the expected cell frequencies.

The minimum power divergence estimator for the independence model is found

as follows:

Express Ho m t: Mo for the contingency table, where the 7fij must be esti­

mated as,

Ho : 1r t: llo,

where II0 is a set of values for 1r.

(3.25)

When testing independence for a two dimensional contingency table; II0 =
{ 7fij : 7fij > 0; l:~=1 l:j=l 7fij = 1; 7fij = 7fi+7f+j}. Estimation of 1r can be

achieved by selecting the value of ir t: II0 which is closest to ~ with regard

to the measure 2nI>" (: : ir) ; hence yielding the power diverg:nce estimate

defined in (3.27) ie : ir(>") which fulfills

- 00 < A < 00. (3.26)

The chi-squared distribution, for large samples, is appropriate if one degree of

freedom is subtracted for each parameter that is estimated.

The versatility of the power-divergence statistic is highlighted when fitting

log-linear models to cross-classified data as well as the estimating of unknown

model parameters.
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3.6.2 Adopting the Loglinear Models Approach

Loglinear models are used mainly when at least two classification variables are

used for a frequency table. For a r x e table, which classifies n subjects on two

responses, recall that the joint probabilities 1rij for the cells is determined by

the row and column marginal totals when the variables are independent. Hence

1rij = 1ri+ 1r+j i = 1, ... , r; j = 1, ... , e and the related expression for expected

frequencies is mij = n1ri+1r+j for all i and j. The model of independence

(3.21) and the model of homogeneity (3.25) possess a linear structure when

logarithms are applied to the expected cell frequencies. The resulting model is

and

log(mij) = log(n) + log (X~+) + log(1r+}).

Further generalising simplifies lij to

where
_ 1++ 1,+ l+j

U - - , U +Ul(,) = - , U +U2( ') = -
re e J r

with departures from U described by Ul(+) = U2(+) = o.

(3.27)

(3.28)

(3.29)

In keeping with the previous models namely (3.22) and (3.25), the model for

independence or homogeneity has (r - 1) (e - 1) degrees of freedom.

Loglinear Models : Two Dimensional Tables

When the number of parameters equals the number of cells in a contingency

table, the model is described as being saturated. For the two dimensional case,

(3.30)
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summarIzes the most general loglinear model. The interaction term U12(ij)

identifies deviation from independence (or homogeneity) and further fulfills

the condition that U12(i+) = U12(+j) = 0, for every i and j. Now, taking

li+ l+j 1++.. 1 . hIt . t 0 d
U12(i") = lij - - - - +- Jomt y WIt t le cons ram s Ul(+) = U2(+) = an

J e r re
UI2(i+) = UI2(+j) = 0 yields re parameters and hence has re - re = 0 degrees

of freedom, hence the description of a saturated model.

Loglinear Models For Three Dimensional Tables

Expanding the saturated two dimensionalloglinear model to three dimensions

gIves

where mijl represents the expected cell frequency in the ith row, jth column

and lth layer of the table.

In addition to the constraints applied to the two dimensional case, further

constraints that apply include: U3(+) = 0, UI3(i+) = U13(+I) = U23(j+) = U23(+I) =

oand U123(ij+) = U123(i+l) = UI23(+jl) = o.

The model for which variables 1, 2 and 3 are completely independent of one

another is the ideal model and is described as follows :

(3.32)

If the above model is not suitable because dependence exists between variables

then one of the following three models can be used :

When variables 1 and 2 are dependent on each other but are jointly indepen­

dent of variable 3, the appropriate model is

Ho : lijl = U +UI(i) +U2(j) +U3(1) +UI2(ij) . (3.33)
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The second model is

Ho : lijl = (u + Ul(i) +U2(j) +U3(1) +U12(ij) +U13(il) , (3.34)

is suitable when variables 1 and 2 are dependent and variables 1 and 3 are

dependent whilst variables 2 and 3 are conditionally independent given variable

1.

Lastly, the third option is

Ho : lijl = U + Ul(i) +U2(j) + U3(1) +U12(ij) +U13(il) + U23(j1) , (3.35)

which has no three factor interaction but there is pairwise association between

variables 1, 2 and 3.

Although other methods have been used for analyzing cross-classified data, it

was found that the loglinear model is preferred in most cases with the main

reason being the abundant availability of computer programs for analysing

such data.

3.7 Choosing the Appropriate Loglinear Model

Model fit can be examined through calculation of the goodness-of-fit test statis­

tic from the power-divergence family 2I>'(x : m) in (3.16). A prerequisite step

is to calculate the expected cell frequencies, ill for the hypothesized loglin­

ear model. A model is thought to be an appropriate choice if the value of

2I>'(x : m) is not "too large". When the hypothesized model is true, it is de­

duced that the test statistic follows a chi-squared distribution. The degrees of

freedom is equal to the difference between the total number of cells in the table

and the number of parameters minus a further one degree of freedom. Hence,

the description "too large" encompasses values that lie in the upper tail of

the chi-squared distribution. However, this assumption is not always suitable.
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The choice of A depends on the kind of variations from the null model, for

example when the minimum expected cell frequency is no less than one, Read

& Cressie suggest that A = ~ is the appropriate choice.

By default, fitting loglinear models requires that all lower order effects be

incorporated before a higher order effect is included. In other words, a model

can only use the interaction term U123 if all the terms U12, U13, U23 , Ul, U2, U3

and U are already included in the model. This is called a hierarchical model

and it is frequently used unless a nonhierarchical model is deemed fit.

Selection of a model could be based on one of the following techniques: step­

wise selection, selection based on measures of marginal and partial association

or selection based on standardized parameter estimates. A further expansion

on these selection methods will be presented shortly for a model of order v

which contains all the interaction terms.

Stepwise selection employs three steps. Firstly, for a t dimensional table, all

uniform models of order v, that is, a model which includes all interaction terms

involving v variables, for 1 ~ v ~ t must be filled. Secondly, the smallest value

of v for which the uniform model of order v presents the best fit to the model

must be identified. Thirdly, either a forward, stepwise selection or a backward

elimination method must be used to choose the interaction terms involving v

variables for the appropriate model.

Selection using measures of marginal and partial association involves examin­

ing the terms to ensure that only the necessary few terms are included in the

model. A partial association statistic looks at the difference between models

at each stage of the deletion of an interaction term from a uniform model of

some order v. Thus, in the case of a three dimensional table, the partial asso­

ciation of U12 is measured by comparing the difference between the fit of the

hierarchical model containing the terms U12, U13, U23 with the model in which

U12 is deleted.
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On the other hand, determining the effect of a given interaction term from a

marginal table by collapsing over all variables not included in the interaction

describes the procedure based on marginal association. Marginal association

of U12 is evaluated by finding the goodness-of-fit statistic for testing U12 = 0

for variables 1 and 2.

If significant answers are obtained for both the marginal and partial association

tests, this would imply that the term in question should be included in the

model. On the other hand, if both tests are insignificant, then the term should

be excluded. However, if one test is significant whilst the other is insignificant

then further investigations need to be carried out on the model.

Lastly, selection based on standardized parameter estimates, requires that all

possible terms in the saturated model be estimated first and then their stan­

dardized estimates should be compared. The terms with the largest standard­

ized estimates should be included in the model.

Usage of the three methods mentioned above does not guarantee that the

"correct" model is chosen; therefore all prior knowledge about the problem and

the data should be used and the fit of the model should be assessed thereafter.



Chapter 4

Evaluating Model Fit using the

Power Divergence Statistic

Acceptance or rejection of a model is determined by either calculating the

100% a value or examining how efficient the test statistic is. The initial sec­

tions of this chapter address the above criteria for large samples with increas­

ing sample size but fixed cell number. The influence of sparseness assumptions

yield different findings and the usual conditions defining acceptance or rejection

of a model are no longer appropriate. Hence, discussions on the sparse sample

case are presented. The D 2 goodness-of-fit statistic proposed by Daniel Zelter­

man (1987) is introduced and deliberated in section 4.3. Thereafter Koehler

and Larntz's (1980) proposed goodness-of-fit statistic is explained and findings

of their study under sparseness assumptions are presented. In section 4.5, a

goodness of fit statistic introduced by Simonoff (1982) is highlighted and dis­

cussed regarding issues concerning the effect of parameter estimation as well

as sparseness assumptions. Thereafter, a discussion on goodness-of-fit tests

for loglinear models under sparse conditions undertaken by Koehler (1986)

is summarized addressing topics of independence and accuracy assessments.

A further section investigates the use of jackknife and bootstrap methods in

51
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sparse multinomials. The study undertaken by Simonoff (1986) involved the

use of nonparametric techniques to estimate variances. Finally the last sec­

tion in this chapter looks at a comparative study between Pearson X 2 and the

loglikelihood ratio statistic G2 under conditions of sparseness.

4.1 Influence of Sparseness Assumptions on

Significance Levels and Accuracy

The common experience when working with experiments in the social and bi­

ological sciences is that one frequently obtains large sparse arrays full of zeros

and ones. With the number of multinomial cells, k, increasing without limit,

there is a change in the dimension and in the probability space. Therefore, the

property that the expected cell frequencies become large with n, as was as­

sumed under asymptotic theory where the cell probabilities were fixed, cannot

be assumed.

It is highlighted by Hoeffding (1965, p. 371-372) that equivalence or supremacy

ofthe loglikelihood ratio test G2 p = 0) over Pearson's X 2 (,\ = 1) "are subject

to the limitation that k is fixed or does not increase rapidly with n. Otherwise

the relation between the two tests may be reversed." It is further found that

X 2 and G 2 have different asymptotic normal assumption distributions when

the rate at which k ~ 00 is constrained (I must remain finite). For a fixed k ,

the asymptotic distributions for both statistics is chi-squared with degrees of

freedom comparable to k. Hence the property of asymptotic normality. With

an increase in the degrees of freedom, the chi-squared variable gets closer to a

normal variable in distribution.
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4.1.1 Case of the Equiprobable Model

Although X is a multinomial probability vector since k is no longer fixed, the

cell probabilities and the sample size need to be expressed as functions of k.

Change in notation yields X k = (Xlk, ... ,Xkk ) I"V Multk(nk,'7rk) and the null

model is expressed as

(4.1)

where 1 = (1,1, ... ,1) is a 1 x k vector.

Using the sparseness assumptions of HoIst (1972) the following result is stated

and proved (Read and Cressie, 1988 : p. 58). Suppose nk --7 00 as k --7 00 so

that ~k --7 a (0 < a < 00).

Then for any c ~ 0

:2 c] --; P[N(O, 1) :2 cl, as k --7 00 (4.2)

when hypothesis (4.9) holds and A> -1.

Under the assumption that X k is a multinomial random vector, the statistic

k .

Sk = L hk(Xik , i),
i=l

(4.3)

where hk (·,·) is a real measurable function, is used so that HoIst's result reads

as follows (Read and Cressie, (1988, p. 174)) :

Theorem 4.1

"Define
k .

f1k = L E[hk(lik' i)]
,=1
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and

(4.4)

where the -r:~s are independent Poisson random variables with means nk1rOik

and i = 1, ... ,k.

Assume the following :

nk
(a) nk and k ----+ 00, such that k ----+ a (0 < a < (0);

(b) k1rOik :::; C < 00 for some nonnegative number c; i = 1, ... , k and all k;

(c) I hk(v,x) I:::; 0: exp (f3v) for 0:::; x:::; 1; v = 0,1,2, ... ,0: and f3 real;

Then (Sk - f1k) is asymptotically a standard normal random variable, as k ----+
(jk

00."

The following theorem shows that although Sk is a sum of dependent random

variables thus preventing the standard central limit theorems from being ap­

plied, it is possible under certain instances to ensure that Sk has the same

asymptotic limit as Sk* = ~7=1 hk(Yik, t), where the -r:~s are independent

Poisson random variables and have the same means as the multinomial Xik'S.

Cressie and Read (1984) applied this theorem to the equiprobable hypothesis

and a summary of their findings is presented. For the equiprobable hypothesis

(4.1) condition (b) of the theorem is satisfied immediately since 1rOik = t for

each i = 1, ... , k.
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A -I 0, A> -1

(4.5)

A= 0,

for any given A > -1, condition (c) of the theorem is satisfied and hence

condition (d) is also satisfied. Asymptotic normality of the power divergence

statistic (4.2) is obtained by substituting (4.5) for hk (-,·) into (4.4) with the

~~s being independent and identically distributed Poisson variables with mean

This indicates further that under the sparseness assumptions, the members of

the power-divergence family are no longer asymptotically equivalent..When

a zero cell frequency is observed then 2nkI>' (Xk : 1rk ) is undefined for A ~
nk

1 · . . f nk
1r

ik d d h 0 U' "1- , SInce posItIve powers 0 -- are nee e were Xik =. smg a Slml ar
Xik

approach it is found that f.Lk(>') and [ak(>.)]2 are not defined for A ~ -1 because

Yk has a positive probability of being O.

4.1.2 Accuracy of Possible Alternatives to the Equiprob­

able Model

Read and Cressie (1988) observed that the power-divergence family members

were asymptotically equally efficient when testing against local alternative

models that converge to the null but under the sparseness assumptions this is

no longer the trend.

When testing the model
1

Ho : 1rk=-1
k

(4.6)
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(4.7)
1 h

H1,k:1rk=-kl+~
nk 4

where h = (81, <h, ... ,8k ) and I:7=18i = 0, the power-divergence statistic has a

normal distribution under H1 ,k. Pearson's X 2 test ( ,\ = 1) was found to be

maximally efficient for the power-divergence family for testing (4.6). The loss

in efficiency for using any ,\ other than ,\ =1 was calculated by Cressie and

Read (1988) and it was found that for ,\ > 3, the accuracy swiftly declined

whereas -1 < ,\ :s; 3 seemed to produce the best results. It was further found

that for nk large as compared to k, the variations in the ,\ values were minimal.

against

Comparisons between Pearson's X 2
(,\ =1) and the loglikelihood ratio G2

(,\ =

0) tests under the equiprobable null hypothesis were carried out by Koehler

and Larntz (1980) using Monte Carlo power comparisons when i: lies in the

range [~ to 5]. Their findings were consistent with Read and Cressie that X 2

is slightly more effective for local alternatives. On the other hand for the case

when one or two cells have very small probabilities and the rest are almost

equivalent, G2 was observed to yield better findings. Alternatively, with an

increase in the number of near-zero alternative probabilities, X 2 prevails as

the better statistic. This finding substantiates the advice by Read and Cressie

(1988) to use ,\ = ~.

4.2 Zelterman's D 2 Goodness of Fit Statistic

A goodness-of-fit statistic D 2 proposed by Daniel Zelterman (1987) for appli­

cations to large sparse multinomial distributions is discussed in this section.

Comparing the Pearson's X 2 and the D 2 statistics he concluded that both

were approximately normally distributed when the sample size is not large in

relation to the number of categories. Further findings include that the test

based on D2 possesses reasonable power when the X 2 test exhibits properties
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of biasedness.

The D 2 statistic originates from the loglikelihood ratio statistic for testing a

sequence of multinomial hypotheses against a sequence of local alternatives

which are Dirichlet mixtures of multinomials.

Zelterman's findings and conclusions are as follows: when sample size n was

large, in comparison with k, the number of multinomial categories, X 2 and

D2 + k function closely to chi-squared random variables and vary minimally

under the null hypothesis with similar conclusions being yielded quite often.

Under conditions of sparseness arising from nand k both large, both X 2 and

D 2 behave like normal random variables with means and variances that differ

from those of the chi-squared distribution. Also, in the sparse distribution case,

X 2 and D 2 are not alike and X 2 rejects the null hypothesis very seldomly.

4.2.1 General Mathematical Notation of the Statistic

For each k = 1,2 ... , let X(k) = {Xi(k): i = 1, .. "k}, represent a multinomial
k

vector with probability vector 1T'(k) = {7ri(k) > 0 : L 7ri(k) = I} and parameters
i=l

k

n(k) = L Xi(k) when k = 1,2, .... The null hypothesis Ho : 1T'(k) = 1T'O(k) with
,=1

1T'O(k) = {7rOi(k) > 0 : t 7rOi(k) = 1}, describes a completely specified sequence

of probability vectors. The alternative hypothesis is Ha : 1T'(k) = q(k) = {qj(k)}'

The study undertaken considered each q(k) as an unobservable realization on

a set of random variables assuming values near 1T'(k), with high probability. It

is assumed that for k sufficiently large, the qj(k) can be expressed as

(4.8)

The constants Ti(k) are such that maXi I Ti(k) I is bounded as k -+ 00 and
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k

2..: Ti(k) 7ri(k) = 0 for all k. The statistic obtained from the theorem is asymp-
i=1
totically only a function of the variances of mixing distributions under asymp-

totic conditions. For unspecified mixing variances a D 2 statistic is proposed.

The D 2 statistic is not a member of the power-divergence family of statistics

studied by Cressie and Read (1984).

Extending the loglikelihood ratio for tests of the alternative hypotheses with

no estimated parameters gave rise to the Dirichlet mixtures as a special case.

Zelterman's derivation of the statistic involved testing a sequence of simple

hypotheses against a similar sequence of multinomial alternative hypotheses.

He found that the variances of the mixing distributions decrease to zero as the

number of multinomial categories increases without limit.

Let n(k)7ri(k) = milk), where m(k) = {mi(k) > O} are real known constants.

Consider unconditional tests for known values of m. For the sequence under

Ha' let 7ri(k) be expressed as

Bi(k)
7ri(k) = -------'-'-----

BI(k) +... + Bk(k)
i = 1,2, ... ,k, (4.9)

where Bi(k) described unobservable realisations of mutually independent, non­

negative valued random variables each possessing distribution functions Hi(k) (.).

Under the assumption that the distribution functions Hi(k) satisfy

100BdHi(k) (B) = milk), and fli(k) = J(B - mi(k))6 dH ilk) (B) being finite for

all i = 1, ... , k, and k = 1,2, ... ; and defining O"i(k)2 = J(B - mi(k))2dHi (k) (B)

1 k O"i(k)4 . ....
and Vk = -2 L --2' an Important theorem whIch applIes to many mIxmg

i=1 milk)

distributions and more significantly to applications in the Dirichlet multinomial

mixture will be stated. The proof however can be found in Zelterman (1986).
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Theorem 4.2

Suppose that

(i) °< liminf Vk ::; limsup Vk < 00,

m(k)
(ii) limmax _t- = 0,

k t n(k)

(iii) lim 2: f-ii(k) = 0,
k i=l

(iv) and for some E > °and all k sufficiently large min mi(k) > E-
t

Then the loglikelihood ratio for testing these hypotheses satisfies

1 A - ~ L:k [(Xi(k) - mi(k))2 - Xi(k)]O"i(k)2 _ ~Vi + (1)
og k - k oPo .

2 i=l mi(k)2 2

The first term of (4.10) has mean 0(1) and variance Vk +0(1).

(4.10)

Zelterman also mentions the following finding in his article: if {Hi(k) (-)}

represents independent gamma distributions with means mi(k) and variances

O"i(k) 2, then assuming that for some value of k, there exists a real number

M > 0, which is not a function of k or i, he has shown in detail that under

certain conditions, the conditions of the theorem are satisfied and that the

loglikelihood ratio, for the gamma variables, satisfies (4.10).

0" 2
A case of interest is where~ is independent of i. In this case the distribu-

mi(k)

tion of 1r(k) in (4.9) is Dirichlet for every k. Dirichlet mixtures of multinomials

take the form of posterior distributions in the Bayesian analysis of multinomi­

als with Dirichlet priors.

Zelterman further reports that the likelihood ratio (4.10) for testing Dirichlet

mixtures of multinomials satisfies

Ilk [(Xi(k) - mi(k))2 - Xi(k)] 1 2
log Ak = 2ck- 2 L - =be + oPo (1), (4.11)

i=l mi(k)
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2

when kt O"i(k) = c2 for all i = 1,2, ... , k and k = 1,2, .... The term oPo (1) in
mi(k)

(4.11) is with respect to the sequence of multinomial null hypotheses.

Zelterman defines

(4.12)

He observed that for k large, (2k)-tD 2 behaves approximately as a standard

normal variable under multinomial sampling.

k (x· - my k x
Also, when X 2 = L 2 " then D 2 = X 2

- L _2 , and under the

i=l (m: x.) (k i;l)m
i

k k2
multinomial sampling, E L -'. = k and var L _'. = L mi-

1
- -.

i=l m, 2=1 m 2 2=1 n
Thus X 2 and D2 + k are differ slightly from one another when all mi are

nearly equal or when few of the mi are small.

Writing

provides another relationship between D 2 and X 2
, where ~ must be subtracted

from each observation prior to testing.

He concluded that G2 and D 2 may have better normal approximations than

X 2 when the data is sparse due to the reduced skewness and kurtosis.

When Xi = 1 and the corresponding mean mi is small, then the contribution

to D 2 is
1- 2m· + m 2

- x2 , 2

m· - 2 + l_ E-
t mi. mi'

which if mi is small will be mi - 2 and similarly for G2
, the contribution for
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an Xi = 1, is -2log mi, but the contribution to X 2 is mi- 1
- 2 + mi, which

could be very large.

4.2.2 Testing with Estimated Parameters

Zelterman further addresses the topic of testing for independence of rows and

columns. Let X(k) = {Xij(k) : i = 1, ... , rk; j = 1, ... , cd represent a multino­

mial vector with T(k) X C(k) cells and parameter n(k) = L: Xij(k) and 1rij(k) > 0,
')

where L: 1rij(k) = 1.
')

The mean of Xij(k) under the hypothesis of independence is

(4.13)

with 1ri+(k) > °and 1r+j(k) > 0, being unknown probabilities such that L 1ri+(k) =,
L 1r+j(k) = l.

)

Inference on the model of independence is conditional on marginal totals de­

fined by Xi+(k) = L Xij(k) and X+j(k) = L Xij(k)' Defining I = the number
j i

of Xi+(k) which are nonzero and J = the number of nonzero X+j(k) for each

k = 1,2, ... and applying Theorem 4.2, if 1t'(k) = 1rij(k) behaves like a Dirichlet

vector under the simple hypotheses, then a test with maximum asymptotic

power rejects Ho for large values of

(4.14)

If the mij(k) are unknown, then the following statistic can be considered:

(4.15)
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where mij(k) = Xi+(k)X+j(k) is the maximum likelihood estimate of mij(k), as
n(k)

was shown in chapter 3. The * in the summation sign above represents the

summation over only those values of i and j for which mij(k) is positive.

Zelterman (1983, p. 628) showed that the "asymptotic correlation between

D 2 and D2 is unity under the null hypothesis" under general conditions of'r(k)

and C(k) both being proportional to k and all mij(k) bounded above and away

from zero. Hence it can be concluded that D2 will be approximately normally

distributed and have maximal asymptotic power when D 2 does.

4.3 Koehler and Larntz's Goodness-of-fit Statis­

tics for Sparse Multinomials

Koehler and Larntz (1980) question the validity of the traditional asymptotic

rules with regard to expected cell frequency and goodness of fit tests. They

mention the following example Koehler and Larntz (1980, p. 336) "in a mul­

tidimensional contingency table analysis the full table is often collapsed over

categories and/or variables to avoid problems caused by small expected fre­

quencies. Thus for larger samples sizes, instead of increasing the expected

frequencies, the analyst increases the number of variables in the table."

HoIst (1972, p. 137) expresses that for the goodness-of-fit problem of ex­

amining whether a sample has come from a given population, "it is rather

unnatural to keep k fixed when n -t 00; instead we should have that k -t 00

when n -t 00". These ideas were echoed by Bishop, Fienberg and Holland

(1975, p. 416) in the following description "Typically, multinomial data arrive

in the form of a cross-classification of discrete variables. In many situations

there are a large number of variables which can be used to cross-classify each

observation, and if all variables are used the data would be spread too thinly
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over the cells in the resulting multidimensional contingency table. Thus, if

the investigator uses a subset of the variables to keep the average number of

observations from becoming too small; he is in effect choosing k so that ~ is

moderate." Koehler and Larntz look at goodness-of-fit when the number of

cells expand with a similar growth in sample size.

4.3.1 A Look at Asymptotic Normality

(Xl, X z, ... , X k ) is the multinomial random vector described in the previous
k

chapter with probability parameter 1r = (7rI' 7rz, ... , 7rk) such that n = L: Xi
i=l

k
and 1 = L: 7ri. Under their investigation of asymptotic normality, Koehler and

i=l
Larntz (1980) allow the number of cells to expand with a similar increase in

sample size, and find that both X k z (3.3) and Gk z (3.4) possess asymptotic

normal distributions under the conditions that allow both nand k to become

large without essentially forcing min n7ri --t 00.
I<i<k

The test for a uniform distribution described on a fixed interval which is divided

into a number of subintervals of equal length was considered. If some specific

expected frequency A is needed for each subinterval, then k subintervals are

used for a sample size of n, where k is chosen such that ~ is close to A. An

increase in n would in effect lead to an increase in k.

To examine the limiting distribution of goodness-of-fit statistics for multino­

mials of increasing dimension, a sequence of Poisson random vectors is defined

since the asymptotic moments are expressed by use of independent Poisson fre­

quencies. Thus for each multinomial vector (Xlk , X 2k , ... , X kk ); (1'1k, Y2k, ... , Ykk )

is described as a vector of independent Poisson random variables such that

E(Yik) = E(Xik ).

Morris (1966, 1975) generalized a conditioning argument by Steck (1957) and
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hence achieved a central limit theorem for sums of functions of multinomial

frequencies by adopting a method that demanded that sums of functions of

independent Poisson frequencies possess a limiting normal distribution. Thus,

the asymptotic normality of the sum under the multinomial distribution can

be found by conditioning on the sum of independent Poisson frequencies.

The case of the null hypothesis Ho : 11" = 11"0 being true was considered. The

necessary and sufficient conditions for asymptotic normality as k ---. 00 were

firstly that min 1fik = o( 1) as k ---. 00 and secondly that nk 1fik is uniformly
l-:;i-:;k

bounded below by some constant. Koehler and Larntz then showed that when

the null hypothesis is true, the asymptotic mean for the Pearson statistic is

described as

whilst

I1p,k = k, (4.16)

(4.17)

It is further stated that exact moments for the Pearson statistic were obtained

by Haldane (1937) and is expressed as

(4.18)

and

( 2) 2 [ k - 1]var X k = O"p,k - 2 1 + ----:;;;- . (4.19)

Another finding is that O"P,k
2 and hence var(Xk2) can be greater than the chi­

squared variance on k - 1 degrees of freedom when the expected frequencies

are not all equal.

The asymptotic moments for the likelihood ratio statistic were also described

by using independent Poisson random variables. By defining the POiSSOll ill-
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formation kernel by

{

y log( ~) - y +m, if y > 0

I(y,m) =
m, if y = 0

Koehler expresses the first two asymptotic moments as

k

f-lLR,k = 2L E[I(ljk, nk7l"jk)]
i=1

and
k

(J"LR,k
2 = 4 L var[I(ljk' nk7l"jk)] - nk/'k

2

j=1

(4.20)

(4.21 )

(4.22)

Graphs for the expected value and variance of the Poisson Information Kernel

as a function of the expected cell size and covariance between the Poisson

Information Kernel and the observed value as a function of expected cell size

were generated and presented in Koehler and Larntz's paper.

The graph of E[I(Y,m)] for the Poisson random variable Y with mean m,

exhibits a swift descent of E[I(Y,m)] as m ~ 0 which reinforces that f-lLR,k can

be much smaller than the chi-squared mean when many expected frequencies

are smaller than one half. Another observation is that when most expected

frequencies are between 1 and 5, f-lLR,k is considerably bigger than k -1 and the

mean of the likelihood ratio statistic is close to k - 1 when almost all expected

frequencies are large.

The graphs of var[I(Y, m)] and cov[I(Y, m), Y] show that the asymptotic vari­

ance can be much smaller than 2(k -1) when expected frequencies are smaller

than one. On the other hand, it is larger than 2( k - 1) when most expected

frequencies are moderate. These findings are warnings that the chi-squared ap­

proximation for the likelihood ratio statistic may result in overblown critical
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levels when most expected frequencies are moderate and very cautious critical

values when most expected frequencies are smaller than one-half.

Pearson and likelihood ratio statistics are found to possess different limiting

normal distributions as k --+ 00 because of the varying influence of the very

small observed counts on the statistics. Koehler and Larntz (1980, p. 338)

state "For a cell with an expected frequency larger than one, an observed

count of zero or one makes a larger minimum contribution to Gk
2

than X k
2

.

Consequently, when most expected cell frequencies are in the range of 1.0

to 5.0 the first two moments for G k
2 are larger than those for X k

2
. The

contribution to X k
2 for a nonzero count can be quite large when the expected

frequency is less than one, however, and the first two moments for X k
2 are

larger than the corresponding moments for Gk
2 when a sufficient number of

expected frequencies are less than one."

Also, accuracy of the asymptotic chi-squared and normal approximations for

cell sizes when expected frequencies do not exceed five were assessed by use of a

Monte Carlo study. The aim was to pinpoint when the normal approximation

is more precise to warrant the extra calculation, to investigate the effect of

deviations from the condition stipulated by the Central Limit Theorem on the

accuracy of the asymptotic approximations and to further identify and isolate

situations when the exact means and variances leads to better normal approx­

imations. Detail description of the procedure is given in Koehler and Larntz

(1980, p. 339). Monte Carlo power calculations indicated that the normal ap­

proximation was more accurate for the Gk 2 statistic standardized with {lLR,k

and (J"2 LR,k than for X k
2 standardized with {lp,k and (J"2 p,k. In the case of the

unsymmetrical null hypothesis, either test was found to be assertive. Another

observation was that the Pearson statistic is dominant over a smaller area as

compared to the symmetrical null hypothesis case. The normal approximation

for X k
2 and Gk

2 were stated to provide "computationally inexpensive power

approximations. Monte Carlo results indicate that that it is not uncommon

for the power approximations to be too large by as much as 20 percent for
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moderate power and moderate cell sizes. The discrepancy is generally smaller

for Gk
2 than for X/ " (Koehler and Larntz (1980, p. 343)). The Pearson test

was found to possess some optimal power properties in the symmetrical case

when the number of cells were quite big so the Pearson goodness-of-fit based

on the traditional chi-squared approximation is preferred in the symmetrical

case.

4.4 Simonoff's Goodness-of-fit Statistic

Multinomials

Sparse

The general goodness-of-fit problem tests the null hypothesis Ho : 1r = 1ro,

where 1ro is some completely specified probability vector, against all possible

alternatives. Simonoff suggested a new approach for testing goodness-of-fit

which restricts the null distribution of 1ro such that it satisfies a smoothness

constraint so that knowledge contained in nearby cells can be used to provide

concise estimations of probabilities in a particular cell. Taking into considera­

tion that frequent parametric forms like the uniform, normal or gamma occur .

hence this is not a confining assumption. The improved statistic presented, is

based on the MPE (maximum posterior estimator) estimates of Simonoff (1982,

1983). As found in earlier work, under the assumption of smoothness, the es­

timates are consistent under the sparse asymptotic framework. The proposed

test was judged to be more powerful than the standard tests for sparseness

since the frequency estimates 7r; = xni do not possess the above-mentioned
n

characteristic.

The suggested statistic considered a random vector x generated from 1r by a

multinomial likelihood :

k

log(x 11r) = Lxdog7ri'
i=l

(4.23)
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k
where L: 7fi = 1 and x is some random vector.

i=1

Simonoff (1982) defined the MPE, 1r as the value of 1r that maximizes

(4.24)

k

with L: Pi = 1 and f3 2: o.
i=1

(4.25)Zi =

Simonoff (1983) showed that the MPE is consistent in a sparse asymptotic

framework. The consistency of 1r, where 1ro is the null distribution of 1r,

implies that 1r - 1ro, will find even tiny departures from the null hypothesis if

the deviations are from a case which possesses smoothness. The standardized

value

is utilized to construct the test statistic

(4.26)

The subscript 0 denotes that the test statistic is under the null hypothesis.

M 2 is more or less equal to the sum of dependent xi random variables when

the null hypothesis is true. Departure from the null leads to increased values

of I Zi - f.lO(Zi) I, hence rejection occurs for large values of M 2
•

The usage of mean and variance occurs in a moderate capacity since the dis­

tribution of M 2 is not asymptotically normal. The z/s exhibited evidence of

being dependent and hence M 2 does not have a chi-squared distribution. Si­

monoff however, verifies that the z;'s are closely distributed as gamma random

variables.

The accuracy of the approximation was analysed under the uniform null dis­

tribution by examining the true significance level of M 2 when using a gamma
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approximation, as a function of k. It was found that the gamma random vari­

able with parameters a = 2.5 and b = 2.5 + 0.6a fitted the distribution of M 2

well. The value of a = 0.05 was estimated from computer simulations. The

actual test was repeated for n = k = 20,30,40, ... , 100. The standard errors

of the a levels were observed to be smaller than 0.0095. Use of the gamma

distribution leads to a tolerant test; however for k > 40 this tolerance is almost

insignificant.

The connection between the gamma approximation and the chi-squared ap­

proximation allows for the critical value of the gamma (a, b) distribution to

be rewritten in terms of the critical value of a chi-square random variable. In

particular, a gamma (a , b) random variable is equal to ~ times the correspond­

ing critical value ofaX~a random variable. Hence, the critical values of M 2

can be determined from a table of critical values for chi-square. Koehler and

Larntz (1980) had stated earlier that many problems can be recreated in terms

of the uniform situation, hence the gamma approximation has wide utility and

relevance.

When n i- k, M 2 relies on k for a wide range of n because ofthe standardization

of the Zi. Various simulations with changing sizes of n indicate that as n

increases the critical value decreases. However, for nonuniform 7ri values in the

range [(3\)' (2
3
k)] the approximated values are accurate to within ±0.5. Once

the values are out of this range, M 2 takes on notably higher values than the

gamma approximation would verify.

4.4.1 Effect of Parameter Estimation

As discussed in previous chapters, the issue of unknown parameters needs to

be first addressed by estimating the parameters and then decreasing the de­

grees of freedom by the number of parameters estimated. Effect of parameter

estimation was analysed through use of simulations and Simonoff (1985) dis-
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covered that for small values of k(5:. 35), there was conformity of the critical

values with parameter estimation to those without estimation for k, reduced

by the number of parameters being evaluated. This is not consistent with

larger values of k and hence it is suggested that significance be evaluated for

each situation individually.

The procedure adopted for the case when parameters are estimated involved

initial estimation of parameters and this yields a fully specified null distribu­

tion and an observed value of M 2
. The simulation method was broken down

into two stages: "(a) generate a multinomial vector based on the specified null

distribution, and (b) from the generated vector, estimate the parameters and

calculate M 2
" which is described in Simonoff (1985, p. 673). Both steps were

repeated for about 500 to 1000 times and then the observed M 2 is weighed

against the simulated null distribution of M 2 , and the tail probability is esti­

mated which essentially means the null distribution of M 2 , when parameters

are estimated, was simulated.

In conclusion, Simonoff (1985) had proposed a new goodness-of-fit statistic for

sparse multinomials and he showed that if the null and alternative distributions

have properties of smoothness, then the proposed test is more effective than

the standard tests.

4.5 Loglinear Models for Sparse Data: Koehler's

Findings

Koehler (1986) looked at the fit of loglinear models under multinomial sam­

pling in the sparse contingency table case. Amongst the traditional assump­

tions that minimum expected cell frequencies be increasing without bound

with increasing sample size, the assumption of the categories being fixed was

inappropriate. As an example, Koehler and Larntz (1986) consider a study
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of a rare disease. Invariably, this results in information on many issues but

a limited sample size. Sample size being small yields unrealistic results due

to the large number of variables being included in the study. The trend is to

form smaller tables or join related categories to condense that table in terms

of sparseness. Seeing that sample size is effected, it generated interest in in­

vestigating the effect on choice of categories and the asymptotic properties of

goodness-of-fit statistics as the number of categories increased with sample size

but without an increase in expected frequencies.

Asymptotic normality of the likelihood ratio goodness-of-fit statistic for loglin­

ear models with closed form estimates was investigated for contingency tables.

Asymptotic normality was shown to hold under the following sufficient condi­

tions furnished by Koehler :

(a) the sample size increases with a growth in the number of categories,

(b) increase in the sample size should occur at a quicker pace than the num­

ber of parameters estimated under the null hypothesis.

The condition of all expected frequencies becoming large as the sample size

increases is not essential. In comparison with other goodness-of-fit statistics;

the Pearson statistic is not seriously influenced or distorted by small expected

frequencies as in the chi-square approximation case.

Haberman's (1977) work on large sparse contingency tables yielded that when

the difference in the degrees of freedom for the two models is substantially less

than the total number of observations, the regular chi-squared approximation

is suitable for Pearson and likelihood ratio test statistics.
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The following notation was adopted for a sequence of multinomial distributions

with an increasingnumber of categories. Let tk represent the number of cate­

gories for the kth multinomial in the sequence and ilk = (nlk' nZk, ... , ntkk) de­

noted the vector of random frequencies with Pk = (Plk,PZk, ... ,Ptkk) describing
tk

the corresponding vector of probabilities. The total sample size is nk = L nik.
i=l

The vector of expected frequencies is expressed mk = (mlk, mZk, ... , mtkk)

where mik = nkpik.

For a two dimensional case, a test of independence was carried out on a series

of tables which were increasing in size. It was observed that the kth table in

the sequence possessed tlk rows and tZk columns and hence a total of tk =
t1k X tZk categories. An increase in the number of categories results from a

simultaneous increase in the number of rows and columns. The set of indexes

denoting the rows and columns of the kth two-dimensional table is represented

by h = {(i,j): i = 1,2, ... ,tlk and j = 1,2, ... ,tzd whilst {n(i,h): iEh} is

the set of observed frequencies. The total sample size {nk = L n(i, h)}
i£h

is fixed with a matching set of probabilities represented by {p(i, h) : iEh}.

Expected frequencies were expressed as m(i, h) = nkP(i, h) for iEh. Row

totals and column totals described by {n(i, Ilk) : itIlk } and {n(i, IZk ) : itIzd,

respectively, were indexed by sets {Ilk = (i, +) : i = 1, 2, ... , t 1d and {IZk =

(+,j) : j = 1,2, ... , tzd. The corresponding expected frequencies for the row

and column margins were denoted by {m(i, Ilk) : itIlk } and {m(i, IZk ) : itIzd.

The expected frequencies under the null hypothesis are

(" I ) _ m(i, Ilk)m(i, IZk )mo 1, k - --'----'---'------'--
nk

(4.27)

The role of i is as follows. For {mo(i, h), i = (i, j)} represents an element of

h but for {m(i,Ilk),i = (i,+)} it is an element of Ilk and denotes the corre­

sponding row. The maximum likelihood estimates for the expected frequencies
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are given by

(4.28)

hence the likelihood ratio goodness-of-fit test statistic for independence is writ-

ten as
2 ~. ) [n(i,h)]

Gk = 2 L..t n(l, h log mo(i, h) .
"h

(4.29)

Koehler (1986) states further that with an increase in the number of cate­

gories resulting from a simultaneous increase in the rows and columns, if the

conditions of the following theorem are satisfied, then (G%-iLk) has a limiting
(Jk

standard normal distribution where J-L and O"k are described in the following

theorem from Koehler (1986, p 485).

Theorem 4.3 "Suppose the hypothesized model for the kth table" has a

multiplicative probability structure of the form

(4.30)

"and suppose that tk -7 00 as k -7 00 in such a way that

(i) there is a fixed E> 0 such that nkp(i, h) = m(i, h) > Efor all iEh and

all k.

(ii) max p(i, h) = 0(1),

( .) -1 '\' [ (. I ) (. I)] 1 [ m(i,h) ] (IV O"k i?4 n 1, k - m 1, k X og mo(i,J
k

) = op 1).

Th (G% - J-Lk) h 1··· d d ...en as a Iffiltmg stan ar normal dIstrIbutIOn where the location
O"k
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parameter

and

(h2 = 4 L var [Y(i, h)] - 4nk/k
2

."

idk

In the location parameter flk,

fl(h) = 2 L EY(i, h)
idk

and

fl(Ijk) = 2 L EY(i, I jk ) .
idjk

(4.31)

(4.32)

fl(h) represents the sum of the expectations of the information kernels and

fl(Ijk) is the sum of expectations of the information kernels for a specific mar­

gm.

In the theorem, (i) and (ii) are the appropriate smoothness conditions with

condition (ii) stipulating the chance of an event in any category decreasing

as the number of categories increase, and condition (i) safeguards against any

probabilities converging to zero as total sample size increases. Requirement

(iii) secures that the number of estimated parameters grows at a gradual rate,

compared to the total number of categories. Application of the theorem can

be carried out on a sequence of alternatives that converge at a rapid rate to

the sequence of null hypotheses as k -+ 00 as a result of (iv).

Koehler also shows that G~ possesses the property of asymptotic normality.

When the total sample size nk and the total number of categories in the table,

tk, get bigger, category size can be increased by expanding the number of vari­

ables, or increasing the number of groups for some variables or even increasing
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both. The value of dk varies with an increase in the number of variables in the

model.

4.5.2 Accuracy Assessments

The normal and chi-squared approximations for X~ and G% were found and

thereafter accuracy assessments were made with the aid of Monte Carlo studies.

The algorithm that was adopted to generate tables of frequencies appears in

Koehler (1977). Tables of different sizes were tested for the hypothesis of

independence. Monte Carlo studies showed that the following modifification

of the asymptotic mean

1" = 2t: EY(i, I,)-~ [2i~ EY(i, 1j ,) - II +};, [2i~ EY(i, J j ,) - II '
(4.33)

improved the approximation for smaller tables. In estimating the unknown

parameters it was found that the expected frequencies became large under

the conditions of theorem 4.3 in conjunction with 2 L EY(i, Ijk ) quickly con­

verging to t(Ijk) and 2 L EY(i, Jjk ) rapidly converging to t( Jjk ). Hence, the

asymptotic mean in (4.33) is rewritten

dk dk -1

f1k = 2 L EY(i, h) - L[t(Ijk) - 1] + L [t(Jjk ) - 1].
iEh j=1 j=1

(4.34)

Koehler (1986) writes that" The latter formula is the asymptotic mean when

no parameters are estimated minus the number of parameters estimated in

fitting the loglinear model." The asymptotic mean in (4.34) and the asymptotic

variance were described as the exact asymptotic moments in the Monte Carlo

study. Their estimates were achieved from EY(i, h) and var[(Y(i, h)] at the

value of the maximum likelihood estimate of the corresponding expected cell

frequency.
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Monte Carlo studies carried out on tables of dimensions k x k and 2 x k x k

yielded the following findings by Koehler :

In the k x k case, a 6 X 6 table with 36 categories and sample sizes of 18, 72

and 180 were used. Also 10 x 10 tables with sample sizes of 50, 200 and 500

and lastly a 20 X 20 table was considered with sample size 200 only.

Thereafter, situations based on varying sets of marginal probabilities were

discussed. Findings from the simulations were as follows : the chi-squared

approximation was not effective for sparse tables in most cases. Tables pos­

sessing a majority of expected frequencies less than 0.5, yielded results which

described the Gk
2 statistic as stochastically smaller than the chi-squared ran­

dom variable with (k - 1)2 degrees of freedom. If most expected frequencies

have a value between 1 and 4, then the G~ statistic rejects Ho too often. The

chi-squared approximation was quite accurate for the 6 x 6 table with sample

size of 180 in which all the expected frequencies are 5.

On the contrary, the normal approximation using large sample moments yielded

much better findings than the chi-squared approximation but moderate find­

ings for the 6 X 6 tables. The use of estimated moments resulted in larger

rejection levels being obtained as opposed to cases when exact asymptotic

moments were used. When most expected frequencies exceeded 1, normal ap­

proximations with exact and estimated moments were almost alike. Expected

frequencies less than 1, resulted in the normal approximation with estimated

moments yielding large rejection levels as a result of the negative bias of the

estimator for EY(i, I k ) obtained by replacing m(i, h) with m(i, h).

Koehler (1986, p. 489) concludes his study of k x k tables with" The chi­

squared approximation for the Pearson statistic is quite accurate for case 1

where all the expected frequencies are equal, but inaccurate for case 3 which

possessed either moderately large and very small expected frequencies. The

rejection rates for the normal approximation with exact asymptotic moments



77

are similar for the chi-squared approximation."

In the 2x 5 x 5 tables, with sample sizes of 25 and 100 and 2 x 10 x10 tables

samples of sizes 100, 200 and 400 were taken. The chi-squared approximation

for Gk 2 was thought to be erratic as opposed to the normal approximation for

Gk
2 which was quite accurate when the exact asymptotic moments were used.

Use of the estimated asymptotic moments proved to provide sound findings

when the total sample size was almost double the total number of categories.

When all expected frequencies are the same the normal and chi-squared ap­

proximations for the Pearson statistic were consistent with the findings from

the k x k case study. The normal approximation was slightly better for total

sample size being as large as the number of categories. Neither approximation

was favourable for the case of number of categories being twice as large as the

sample size.

Koehler (1986, p. 489) summarizes his findings by stating that "It is not pos­

sible to make specific recommendations about the accurate use of the normal

and chi-squared approximations for the Gk 2 and X k 2 statistics from the lim­

ited Monte Carlo study discussed here". However, he generalizes that the

accuracy of the chi-squared approximation for Gk 2 in sparse tables is unre­

liable for testing the fit of loglinear models. Concentration of expected cell

frequencies between 0.5 and 4 boosts the Type I error. Tables with expected

frequencies nearly equal found the chi-squared approximation to be more reli­

able for the Pearson statistic whereas the chi-squared approximations for X k 2

were obtained for sparse tables. A frequent observation was that the limiting

normal distribution was more precise for Gk
2 than for X k 2.
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4.6 Adopting Jackknife and Bootstrap Meth­

ods for Sparse Multinomials

Tests for Ho : 1r = 1ro against all possible alternatives where X = (Xl, ... , X k ) is

Multk(n, 1r), initially saw Pearson's statistic (3.3) and the loglikelihood statis­

tic (3.4) being generally recommended. Further work by Cressie and Read

(1984) on the family of power-divergence statistics yielded a more appropriate

statistic with ,\ = ~.

With an increase in sample size, n --t 00, the asymptotic X2 distribution for the

statistic no longer holds for the sparse case. Morris (1975) observed that X k 2

and Gk
2 were asymptotically normal with different mean and variance under a

simple hypothesis for increasing sample size. Cressie and Read (1984) showed

that the power divergence statistic mirrored such properties. The variance of

the statistic is required to prove these resuts under sparse conditions.

Simonoff (1986) used nonparametric techniques to estimate such variances.

His findings showed that the bootstrap does not produce an unchanging or

constant variance estimate but the jackknife and the "categorical jackknife"

each gives a consistent estimate. Categorical jackknifing involves deletion of

cells instead of the deletion of observations.

4.6.1 Approximating Variance

Conditions for the sparse asymptotic environment include n, k --t 00 with

o< 11 < ~ < 12 < 00. The null hypothesis is assumed to be true and further

assumptions were that there exists M E (1, (0) such that 0 < (Mk)-I <

1fi < ~ < 1 for all i where M is positive. Another assumption is that the

maximum likelihood estimate (MLE) (j is consistent. Also, that p(8) have

bounded second derivatives with respect to 8 is another essential condition.
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Then, 1ri = Xi is defined to be the frequency estimate.
n

The concept of bootstrapping introduced by Effron (1979) entailed the esti­

mation of the variance of a statistic under some unknown distribution F by
~

its variance under the hypothetical distribution F. For categorical data, this

involves analysing the statistic as if the true distribution of X was multinomial

(n, 1?) instead of (n, 1r). The bootstrap distribution in a parametric bootstrap

is based on the parametric estimates p(1?) instead of 1?

Previous research on jackknifing summarized the jackknife estimate as :

(T) _ '" (Pj - TO)2
varJ - L.J (n(n - 1)) ,

J

p.
where TO = L: _J and Pj = nT - (n - 1)T(j) where T(j) represents the value

j n
of the statistic evaluated after the jth observation is deleted from the data

set. The ith cell contains Xi identical pseudovalues. Varying the notation of

Simonoff (1986) slightly, the ith cell is described

((Xi -1) - (n -1)Pi(8(i)))2

Pi (8(i))

Now (4.46) can be expressed as

J ~ 1 _ .(0)-1 2(Xi - np/O)) . _
, p, + ~ , for z - 1, ... , k.

Pi (0)

Therefore X\) ~ L: X;Ji = 2X2
- L: ~ + 1 and the jackknife estimate of

i n i Pi (0)
the variance is expressed
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SJ2 was expressed as

(n(n - 1))
(4.36)

He states further that the calculation of E(si) shows that SJ2 is too large.

Hence for the purpose of his study he restated (4.47) as a smaller estimate:

S 2
-2 J +sJ=-

2 [ (n - 2) ] (LPi(8)-1 _ e) .
2n(n-1)) .

t

(4.37)

Comparing the structures of X 2
, G2 and 2nI~ in this case, he states that

a jackknife approach in which cells, rather than observations are deleted one

at a time is an appropriate choice. This is verified by the property that the

cell counts become independent asymptotically under the sparse conditions.

Simonoff (1986) jackknifed U = ~2 instead of X 2 since var(X2 ) = Pvar( ~2)

is not very different in structure.

4.6.2 Evaluation and Assessment of Estimator's Per­

formance

Measuring the performance of various estimators was based on the bias, stan­

dard deviation (SD), and root mean squared error (RMSE) of variance estima­

tors for X 2 as well as 2nlt, suggested by Cressie and Read. Cell values were

all divided by k. Simulations were undertaken for 500 multinomial responses

with the same set of replicated multinomials being used for each pair (k, n).
Use of an unbiased but more variable estimate leads to a test with better size,

on average.
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Simonoff's (1986) simulation results illustrate that the bootstrap is an ex­

tremely poor variance estimate for this case study. The bootstrap variance

is basically Var(X2
) under the alternative model X f'V Multk(n, 1?) instead of

X f'V Multk(n,1r). When the data is sparse (7;- < 5) heavily biased variance

estimates are obtained. This is consistent with Cressie and Read's asymptotic

variance which leads to a heavily biased variance estimate even for n = 10k.

On the other hand, the jackknife furnishes a favourable variance estimate for

sparse data (n < 5k) and is therefore preferred over the categorical jackknife

due to minimal fluctuations. The bias properties of the parametric bootstrap

and the asymptotic formula are quite similar but Cressie and Read's asymp­

totic variance is preferred as the parametric bootstrap has changeable bias

properties. Accuracy improves with an increase in the table size for given

constant 7;-.

On comparing the results of estimator behaviour for X 2 and 2nlf, Simonoff

.concluded that the biases and standard deviations are a bit smaller for 2nlf

than for X 2 .

The restriction, of the standardized version of a goodness-of-fit statistic, that

the number in the denominator should equal the square root of the estimate of

the null variance, is a disadvantage of the jackknife. The asymptotic formula

provided by Cressie and Read (1984), is acceptable but if the null is not true

then the probability estimates will be incorrect. The estimate is still considered

to be closer to the null variance than the jackknife. Simonoff (1986) states in

conclusion that in the case of few cells, the jackknife should be used if n < lOk.

On the other hand the jackknife for sparse data should be used when n < 5k

whilst Var(2nIA) is recommended for nonsparse data.
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4.7 Comparisons between Pearson X 2 and G2

under Sparse Conditions

Discussions on the asymptotic normality of the two statistics, small-sample

studies, the effect of parameter estimation and conditional tests form the basis

of this comparative study.

4.7.1 Similarities and Differences under Asymptotic

Normality

x 2 and G2 are asymptotically normal for sparse samples but their asymptotic

means and variances are unequal unlike the findings for the fixed cell assump­

tions. Koehler and Larntz (1980) attribute this to the varying effect of very

small observed counts on X 2 and G2
. For expected frequency larger than 1,

the first two moments of G2 are larger those for X 2 when many expected cell

frequencies exist between 1 and 5 for observed frequencies of 0 or 1. When

expected frequencies are less than 1 then the opposite occurs.

4.7.2 Small-Sample Studies

Koehler and Larntz (1980) observed the following findings in their comparative

study : for the equiprobable null hypothesis, the chi-squared approximation

for X 2 did not produce distorted information in the case of small expected

frequencies of almost 0.25 with k 2:: 3, n 2:: 10 and ~2 2:: 10. However, G2 was

not well approximated by the chi-squared distribution when ~ :::; 5. Moderate

intervals were obtained for the chi-square approximation when I < 0.5 with

the "liberal" intervals being yielded for I > 1. They advise that the normal

approximation be used for G2 and that the X 2 based on the traditional chi-
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squared be used for the test involving the equiprobable model.

Zelterman examined the hypothesis of cell frequencies coming from a Poisson

distribution with equal means and found that Zelterman (1984) reports that

the G2 and Freeman-Tukey T 2 are better approximated by the normal distri­

bution as compared to X 2
. That X 2 is better approximated by the chi-square

distribution than the normal distribution under the equiprobable model was a

contribution of Koehler and Larntz (1980). This was also preferred to using G2

with the normal approximation. Cressie and Read (1984), however, contend

that the normal approximation is inadequate as compared to the chi-squared

approximation for both X 2 and G2 when 10 ::; n ::; 20 and 2 ::; k ::; 6.

In the case of unequal probabilities G2 was the approved choice for the normal

approximation under conditions where most expected frequencies are smaller

than 5, n 2: 15 and n; 2: 10. Expected frequencies which are exceptionally

small distort the accuracy of the normal approximation for X 2 however the

normal approximation for G2 is unaffected. When a large number of expected

frequencies are less than one, the yielded critical values for X 2 being unre­

stricted and G2 exhibited the same shortfalls as observed in the equiprobable

case.

4.7.3 Comparison for Parameter Estimation

Earlier documentation on Koehler and Larntz's work indicate that they ini­

tially assumed that all hypotheses were simple and require no parameter es­

timation. Thereafter Koehler (1986) looked at the level of precision of the

normal approximation to the G2 by scrutinising the outcomes of parameter

estimation on loglinear models. He concluded that firstly, X 2 is closely ap­

proximated by the chi-square approximation, unlike G2 , when the expected

cell frequencies are less than 1. Inferior chi-squared approximations for X 2 are

are obtained when the expected cell frequency range in size from being quite



84

large to very small. In most instances the normal approximation was more

accurate for G2 than for X 2
. Lastly, replacing the expected frequencies by

the maximum likelihood estimates yields large biases for the moments of G2

quite often and hence Koehler motivates that estimates with an insignificant

or negligible bias be developed.

4.7.4 Comparisons under Conditional Tests

In addressing the shortfalls of the asymptotic approximation, McCullagh (1986)

suggested that by conditioning on the sufficient statistic for the nuisance pa­

rameters, the distribution dependent on the unknown parameters could be

eliminated. He constructed a normal approximation for the conditional tests,

based on X 2 and G2
, under the restriction that the number of estimated pa­

rameters do not change as k increases. His study of X2 suggests that the

normal approximation is inadequate.

4.7.5 Evaluating and Measuring Efficiency

Efficiency comparisons between X 2 and G2 can be made by studying their

power functions. The topic of efficiency under small-sample studies and other

sparse conditions will be examined in the next two subsections.

X2 was found to be more robust in small samples than in other studies un­

dertaken by West and Kempthorne (1971). Koehler and Larntz (1980) ob­

tained results consistent with West and Kempthorne whilst Goldstein, Wolf

and Dillon (1976) compared the X 2
, G2 and Freeman Tukey F 2 statistics and

obtained almost similar results for all three statistics. This prompted further

power computations for X 2
, G2 and F 2

• Wakimoto, Odaka and Kang (1987)

reveal that there is a significant discrepancy between the powers of the test
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statistics, which were similar to the bump and dip classification obtained by

Read and Cressie (1988), in their study of power computations for the above­

mentioned statistics. For the power-divergence statistic, the bump alternative

is a description used when the power function increases with), for 8 > O.

When the power function decreases with), for 8 < 0, a dip occurs when k > 2.

Read and Cressie (1988) recommend X 2 for bumps and F 2 for dips whilst G2

is found to lie between X 2 and F 2 •

Examining discrete data obtained from parts of continuous distributions, Kallen­

berg, Oosterhoff and Schriever (1985) show that X 2 and G2 possess equivalent

power for testing the equiprobable hypothesis when the number of cells is

small. With an increase in the cell size, their findings highlight that X 2 is

better than G2 for heavy tailed cases and G2 is better than X 2 for light tailed

options.

4.7.6 Sparseness Assumptions

For the equiprobable null hypothesis, HoIst (1972) and Ivchenko and Medvedev

(1978) report that X 2 is more robust than G2 under tests for local alternatives.

On the other hand, the null hypotheses with unequal cell probabilities yields

that G2 or X 2 is preferred depending on the situation.

Recalling Zelterman's (1986, 1987) D 2 statistic,

(4.38)

derived from the loglikelihood ratio statistic for testing a sequence of multino­

mial null hypotheses against a sequence of local alternatives which are Dirich­

let mixtures of multinomials, it is also recalled that he claimed that D 2 is not

a member of the power-divergence family, however Cressie and Read (1988)

claim otherwise.
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They contend that the following modified statistic

k (X 1 )2 k
2 L i - 2 - n1ri L 1D = -k- --,

n1r' 4n1r'
i=l ' i=l'

(4.39)

consists of a generalized X 2 statistic, (the first term), with the latter two

terms being independent of the data. Expanding the power divergence family

of statistics to include

where

k

L h>'(Xi + C, mi +d),
i=}

(4.40)

(4.41 )

indicates that D 2 is similar to the member of the power-divergence family with

A = 1, C = -} and d = O. D2 was shown to have fairly tolerable asymptotic

power when the test based on X 2 is biased.



Chapter 5

Consequences of Small

Expected Frequencies

The effects of small expected frequencies will be examined in this chapter. Sec­

tion 5.1 deals with Tate and Hyer's (1973) findings whilst section 5.2 presents

and discusses findings of Lawal and Upton. Research findings by Chapman

(1976) will be documented in section 5.3.

5.1 Small Expected Frequency and Accuracy

of the X 2 Test

The research study undertaken by Tate and Hyer (1973) considered the ac­

curacy of the chi-square distribution as an approximation to the multinomial.

Large sample methods have been popular in the analysis of tests like the Pear­

son X 2 test.

For the Pearson X 2 statistic it is known that, provided that the expected

87
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frequencies are not too small, then the X 2 statistic is approximately distributed

as a chi-square with k-1 degrees of freedom. The acceptable size of the "small"

expected frequencies has been a widely investigated topic. Previous findings

include: Fisher (1941, p. 82) suggestion that "no expectation be less than

five" to avoid invalidating the chi-square approximation. Cramer ( 1946, p.

420) stated that "expectations should be at least ten," whilst Kendall (1952, p.

292) claims that the estimation "confidently be applied when the theoretical

cell frequencies are, say, not less than 20." Cochran (1952) suggests that in

goodness-of-fit tests of the normal or Poisson distributions, expectations should

be at least one at either one or both tails. Yarnold (1970, p. 865) suggested

that in the single multinomial with no estimated parameters "If the number of

classes s, is three or more, and if r denotes the number of expectations less than

five, then the minimum may be as small as 5;". Statistical literature suggests

that expectations should be five or more. Tate and Hyer (1973, pp. 836-837)

state the following with regard to the significance of an expected frequency of

five: "Although any recommendation is in part arbitrary, the number five may

well have originated in the experience that, when expectations are about five

or more, the binomial distribution is usually well fitted by the normal curve

and that, consequently, expectations of five or more satisfy the assumption of

normal binomial distributions in categories."

5.1.1 The X 2 Test Issues of Precision

To gain some insight into the accuracy of the chi-square approximation, Ney­

man and Pearson (1931) compared the exact multinomial probabilities with

chi-square probabilities of X 2
, Shanawany (1936) looked at the agreement be­

tween the exact and chi-square probabilities under different distributions whilst

Van der Waerden (1957) carried out similar investigations for small skew dis­

tributions and uniform distributions. Their conclusions were similar as each,
found that the chi-square approximation was adequately sufficient even in the
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extreme cases.

Additional experiments on assessing accuracy of the X 2 test were undertaken

by Slakter (1966) who obtained the distributions of X 2 when the null hypothe­

sis is true that the 7l"i are each equal to t for n of sizes 10, 15 and 50. Expected

frequencies range from 5 when (n = 50 and k = 10) to 0.05 when (n = lOand

k = 200) using 10 000 random samples. He computed the probability values

of X 2 in the hypothetical sampling distributions having chi-square probabili­

ties of 0.01, 0.05 and 0.1 He concluded that the exactness or precision of the

approximations were unperturbed by the size of expectations.

Roscoe and Byars (1971) found the distribution of X 2 in 10 000 random sam­

ples using various associations between nand k namely, n = 10, 15, 20, 30,

50 and 100 and k = 2, 3, 4, 5, 6, 8 and 10. The X 2 values were calculated

when the expected frequency was ~. Comparisons for X 2 and the 0.05 and

0.01 tabled values of chi-square, with attention being paid to the number of

rejections in each set of 10 000 samples, yielded the following response: (Tate

and Hyer (1973, p. 837)) "acceptable approximations were obtained with ex­

pected frequencies as small as one". His findings are consistent with Slakter's

conclusions and hence indicate that the chi-square approximation is extremely

powerful in tests of goodness-of-fit for the discrete uniform distribution with

minimum expected frequencies presenting no complications.

A further finding was that the X2 statistic is quite close to the chi-square

distribution irrespective of size. However, the topic of accuracy of X 2 did not

address the single multinomial case.

5.1.2 Differences between the Multinomial and X 2 Tests

In addition to the investigations discussed in the previous sections, further

accuracy assessments of the chi-square distribution as an approximation to
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the multinomial distribution were undertaken by Tate and Hyer (1973). They

explain that the multinomial distributions were contrived by k taking on val­

ues from 3 to 7 and n changing so that the expectations spanned from one

to not fewer than five, with parameters each equal to t· Further, thirty

six distributions were constructed, with k = 3 and n ranging from 4 to 12,

with parameters 0.10, 0.25, 0.65, 0.10, 0.35, 0.55, 0.25, 0.25, 0.50 and 0.30,

0.50, 0.20 respectively. After calculating the exact cumulative probabilities

and chi-square probabilities "the absolute percentage errors in the chi-square

probabilities and the number of times they underestimated the exact proba­

bilities in the [0.005 - 0.009]' [0.010 - 0.050], [0.051 - 0.100], [0.101 - 0.150]

and [0.151 - 0.205]" (Tate and Hyer (1973, p. 837)) regions were determined.

Results obtained indicated that there was no reduction in the mean error

when there was a growth in the size of the expected values. The largest errors

had appeared for expectation approximately equal to five. Further, the error

decreased as the exact probability grew but also increased in accordance with

an increase in the number of categories.

Tate and Hyer (1973, p. 838) conclude that "Insofar as one may generalize from

the distributions studied, the X 2 test is not satisfactory if close approxima­

tions to exact probabilities are needed and expectations fewer than 10. Even

when expectations exceed 10, the approximations may be poor. Regarding

expectations, there appears to be no more justification for the 'five-or-more'

rule-of-thumb than a 'one-or-more' rule in using X 2 to test the hypothesis that

the parameters of a multinomial distribution have specified values against the

alternative that at least one parameter is not as specified."

The main source of discrepancy was the number of outcomes resulting in the

same X 2 value having differing cumulative multinomial probabilities. Another

approach that was utilized involved calculating the rank-order coefficients of

correlation between the X 2 and multinomial probabilities of individual out­

comes over the region [0.01- 0.10] and the extent of disagreement between the
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chi-square and exact probabilities was observed.

Tate and Hyer (1973) state that the X 2 test of goodness-of-fit is not reli­

able for small expectations. Differences between nominal and actual levels of

significance of the test varies, thus no formal conclusions about power were

furnished.

Cochran (1952) regarded the inaccuracy to be unimportant and Roscoe and

Byars (1971) agree with this conclusion but comment further that researchers

would ideally prefer limits that are slightly less confining. Good, Gover and

Mitchell (1970) considered an approximation to be satisfactory if P(X 2 ) is

within a factor of two of P(X2
). The studies undertaken involved goodness­

of-fit tests with no parameters being estimated.

5.1.3 Radlow and Alf's Assessment Approach

Contentions by Radlow and Alf (1975) that discrepancies exist in Tate and

Hyer's (1973) findings due to the use of an inappropriate modelled them to

suggest an alternate multinomial test. They attribute the discrepancies to the

finding that the objective function for arranging experimental outcomes has

been altered when comparisons were made with the X2 test.

Tate and Hyer's (1973) approach involved the multinomial test ordering terms

by their probabilities, unlike the X2 test which orders terms by deviations from

the null hypothesis. The method is favoured if events of lower probability

exhibit more discrepancy from the null hypothesis which is seldomly true.

Another multinomial test which orders experimental outcomes in the same way

as the X
2 test is proposed. Referred to as the "exact X2 test" and expressed,

as "Pmx2 ", the procedure adopted is as follows:
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1. The probability of each outcome under the null hypothesis is computed

using the multinomial frequency distribution.

2. The X2 values of each outcome under the null hypothesis are calculated.

3. Outcomes are ordered using the x2 values.

4. Cumulative probabilities are computed commencing with the one asso­

ciated with the largest value for x2
.

5. The null hypothesis is rejected at the Q level if the cumulative probability

corresponding to the outcome is equal to or less than Q.

On examining the accuracy of the approximate X2 test, Radlow and Alf (1975,

p. 813) state that "If Tate and Ryer were using an incorrect ordering of exper­

imental outcomes, large discrepancies should be found between their multino­

mial test and the X2 test even for large expected values. This is the test they

reported. Moreover, if the exact X2 test described here provides the correct

ordering of experimental outcomes, discrepancies from the approximate X2 test

should be smaller then those obtained by the Tate and Ryer method, and only

negligible errors should appear when expected frequencies are large. This is

precisely the result obtained."

Their findings also confirm that for small expected cell frequencies the proposed

exact X2 test should be used and a further corollary is obtained. The corollary

states that the one-sample X2 test supplies better approximations than the

eyman Pearson (1931) statistic and the Tate and Ryer statistic.
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5.2 Log Normal Approximation to the Dis­

tribution of the X 2 Statistic

In testing the null hypothesis that XI, ... , X k , the observed frequencies in k

classes are distributed according to a multinomial with probabilities 1l"I, ... ,1l"k,

the commonly used X 2 statistic, proves to be unreliable if the expected fre­

quencies become too small. Lawal and Upton (1980) also questioned the per­

missible size of the expected frequency for undistorted approximation of X 2

by the xLI distribution. They recommend a log normal approximation to the

distribution of X 2
, claiming that the approximation is reliable under restric­

tions that the smallest expectation is bigger than --T, with r describing the
d'I

number of expectations less than 5, and d representing the number of degrees

of freedom.

5.2.1 Earlier Findings on Size of Expectations

Yarnold (1970) suggested that the following description should be the basis'

of allocating some clarity as to what is meant by "small" expected frequency:

"If the number of classes k is three or more, and if r denotes the number of

expectations less than five, then the minimum expectation may be as small as

5{" (Lawal and Upton, 1980, p. 447). Lawal and Upton's intention involved

developing an approximation to the distribution of X 2 so that it can be apphed

even to cases outside Yarnold's restrictions.

Pearson's (1932) approximation to the distribution of X 2 described the exact
variance of X 2 as

var(X 2 ) = 2( k _ 1) + (R - P - 2k + 2) ,
n

(5.1)

where R = 2: 1l"i-
I

. He found that when Rand k, the number of classes, were
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small in comparison to n, the total frequency, then

var(X2
) = 2(k - 1) (5.2)

which is the variance of the approximating X2
k-1 distribution, yielded good

approximations.

When small expected frequencies arise, ~ is large and leads to X 2 possessing

a greater variance than the approximating X2
. Nass (1959) concluded that

the value of cX2 should be looked at in comparison with percentage points

of the X~ distribution, with c and d being obtained so that there is acquies­

cence between both means and variances only to be discredited by Yarnold

(1970) who found minimal improvement on the usual X2 approximation in his

study involving small expected frequencies. He assessed the performance of

the C(m) distribution (Cochran, 1942). The C(m) approximation works in

that portion of the parameter space where the X2 approximation fails. It was

derived under the assumption that as n ---+ 00, some of the expectations are

finite whilst the others are very large. The limiting distribution of X 2 is called

the C(m) distribution and the C(m) approximation for P(X 2 2': c) is called

the probability under this limiting distribution.

The C (m) distribution involved r of the cells possessing an exact Poisson

distribution with the remaining cells having an exact X2 distribution:

(5.3)

In the above distribution, Ui has a Poisson distribution with expectation mi,

and X2 is a random variable having a chi-square distribution with k - r - 1 de­

grees offreedom. Furthermore, U1 , ... , Ur and X2 are independently distributed.

Yarnold looked at changes in performance of the upper tail of the X2 approxi­

mation to the distribution of X 2 for both small and large expectations. The X2

approximation yielded misleading findings when some expectations were large
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and others were small whilst the C (m) approximation yielded accurate results

and the error in the X2 approximation is well approximated by the difference

between the X2 and C(m) approximations for P(X 2 ~ c). His observations

showed that changes in the sizes of the large expectations had minimal conse­

quences. Hence he concluded that the C(m) distribution was a good alternative

in cases when his rule did not find the usual x2 approximation to be suitable.

5.2.2 Approximations Using the Log Normal

Studies undertaken by Lawal and Upton (1980) on the distribution of t (Ui-
m

;)2 ,
. m,
t=l

indicated that this term has the shape of the upper tail of a log normal dis-

tribution, but they were unsuccessful in proving a connection between the tail

areas of the log normal and the X 2 distributions through theoretical methods.

The two-parameter log normal distribution was used for approximations to the

upper tail ofaX2 distribution and the fit was considered to be acceptable.

Their approach described the following: "Z has a log normal distribution with

parameters f.l and (72 and are related to the mean and variance of X 2 by

where

and

1
f.l = () - 2'lj;, (72 = 'lj; - (),

() = 21og[E(X 2
)] = 21og(k - 1),

(5.4)

(5.5)

1/J = log[E(X2
)2 + var(X2)] = log [k 2 _ 1 + (R - P: 2k + 2)] . (5.6)

If Uo. is the upper 0' point of a unit normal random variable, the above implies

that the upper 0' point for X 2 is estimated to be

(5.7)
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P(X2 > z) = <ll [(lOg:- It)], (5.8)

where <ll(.) is the unit normal distribution function." (Lawal and Upton (1980,

p. 449)).

5.2.3 Effect of Infinite Samples

The effectiveness of the log normal approximation was gauged through com­

parisons with the C(m) distribution. The exact tail probabilities of the C(m)

distribution corresponding to the log normal critical values from (5.8) were cal­

culated for the ranges that were considered suitable by Cochran (1952) for this

type of approximation to be successful. The X2 approximation yielded poor

results quite consistently and the accuracy of the X2 approximation worsened

when the number of cells which are small, increased. This is also echoed in

Yarnold's rule which connects the admissible size of the smallest expectation

to the proportion of cells which are small. Thus the log normal approxima­

tion seems to be uninfiuenced by the number of small cells, providing that the

number of expectations less than 5 is restricted to be less than k - 1 where k

represents the number of cells.

5.2.4 Effect of Finite Samples

Yarnold (1970) illustrated that the distribution of X 2 was almost identical

to the C(m) distribution, even when n is quite small. For the case of infi­

nite samples, it was seen that the log normal approximation performed quite

successfully for the upper tail of the C(m) distribution. Seeing that the distri­

bution of X 2 is a step function, the number of possible values for X 2 would be

finite. Thus the most apparent discrepancy of any approximation to the X 2

would be expected for the case when there are few values for X 2 which arise
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when the number of cells, k, is small, and when most of the cells have equal

expectations.

The following situations were considered: firstly, when r cells had small ex­

pectations and the remaining cells had large expectations. The second case

investigated performance when the expectations varied quite distinctly in size.

In both cases the log normal approximation fared well immaterial of the vari­

ation in the number and size of expected frequencies.

5.2.5 Recommendations for Use of the Log Normal

Approximation

x 2 is discrete, especially when the number of cells are small and they possess

equal expectations. Therefore it may sometimes occur that there is no critical

value which leads to a tail probability close to one of the standard levels.

Therefore, uncertainty exists about the critical values derived from the log

normal approximation corresponding to a tail probability in a specified interval.

However, results from experiments undertaken by Lawal and Upton (1980, p.

452) suggest that the following method described below yields suitable tail

probabilities between 0.03 and 0.07 at the nominal 0.05 level and between

0.003 and 0.02 at the nominal 0.01 level. Bounds of 0.04 and 0.06 and between

0.005 and 0.015 are obtained for cases in which power was not extreme.

Lawal and Upton (1980, p. 452)) recommend the following rules:

"(i) in cases where Yarnold's rule for the X2 approximation is satisfied, this

should be used;

(ii) in other cases, the smallest expectation should be greater than -;.- where
d"2 '

r is the number of expectations less than 5 and d is the number of degrees of

freedom."
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5.3 Comparisons between X 2 , G2 , and the Multi­

nomial : Small Expected Frequencies

Comparisons were made between the exact multinomial, and exact X2 proba­

bilities for X 2 and G2 by using the significance levels obtained for the above­

mentioned statistics in cases with small expected frequencies occuring in almost

30 classes. The eventual findings indicate that the X2 probabilities for G2 were

nearer to the multinomial than the corresponding X 2 probabilities.

Chapman (1976) explains that the test of homogeneity can be used to test if

the categories in a contingency table contain the same number of observations.

Choice of the relevant test depends on the data set. The exact multinomial

probabilities, and exact X2 probabilities for the statistics X 2 and G2 were

used for the calculation of significance levels for various partitions of n into k

classes. Thereafter a comparison was made taking the levels from each of the

three criteria.

An alternative approach for testing the same hypothesis is

k ( (,\"k X))2
X2 = '" Xi - .L..-i=l t
~ (,\"k Xi)
i=l .L..-i=l k

(5.9)

The partitions Xi were ordered by their X 2 values. Partitions which are fur­

ther away from the null hypothesis give rise to larger values of X 2 , which is

approximately X2 with k - 1 degrees of freedom if the expected value per class,

(2:7=1 :'), is fairly large.

An additional test measuring departures from homogeneity, is the loglikelihood

ratio criterion described by,

(5.10)
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Here partitions were ranked by their G2 values. Like X2 G2 has an approximate

chi-squared distribution with (k - 1) degrees of freedom for substantially large

expected values.

In addition to Tate and Hyer's (1973) findings discussed in previous sections,

Cochran (1936) suspected that the G2 distribution may be expressed more

accurately by a continuous curve than the X 2 distribution since there is greater

chance for many different arrangements to give the same X 2 value than the

same G2 value. Fisher (1950) found that the X 2 test was affected to a greater

extent than G2
, for many classes with large observations. Conahan (1970)

observed that for k 2::: 5 and expected value being at least 3, the likelihood ratio

test was found to be superior to the X 2
• Good approximations to the exact

multinomial were obtained when the expected value is greater than or equal

to 10. Finally, when k 2::: 5, the multinomial test was preferred for expected

values less than 3 whilst the chi-squared approximation, G2 was suitable for

expected frequencies greater than or equal to 3.

Partitions were generated with the use of Lehmer's (1964) algorithm for the

calculation of significance levels. Many restrictions were imposed to minimize

the number of divisions and hence reduce execution time when the number

of observations was very large. Partitions were discarded if they contributed

little to the significance levels for other partitions.

5.4 Comparing X 2 and G2

The differences between the X2, G2
, X2 and exact multinomial probabilities

were observed with the use of the modification of Tate and Hyer's method

of breaking down data to a simpler form. Probability differences between

the exact multinomial and two chi-squared approximations were examined

according to the difference caused by varying expectation per class, number
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of classes and multinomial probability, by the size and range of the differences

and variations in the number of underestimates of the multinomial probability.

Variance for each partition was assumed to be the same so that the averages

were weighted by the square root of the number of partitions used to form them.

It was suggested that further analyses need to be undertaken to determine if

a trend arises with varying expectation or the number of classes.

Generally, the exact G2 probabilities yielded values closer to the multinomial

probabilities than for X 2 , while the differences between the exact and chi­

squared probabilities for X 2 were not as large as the corresponding G2 dif­

ferences. An increase of expectation from two to five, led to the size of the

differences between the exact X 2 and the multinomial increasing. However,

there was a decrease in the differences between the exact and chi-squared prob­

abilities for X 2 and a decrease in the size of both types of differences for G2

especially for larger multinomial probabilities.

The general pattern that was noted is as follows: "the probabilities from the

exact log likelihood, the log likelihood used as a X2 approximation, and the

multinomial initially tend to be smaller than those from the exact X 2 , and X 2

as a X2 approximation.... This relationship becomes more pronounced as the

expectation per class increases to five and appears to be independent of the

multinomial probability levels" (Chapman, 1976, p. 860).



Chapter 6

The Effects of Small Sample

Size

In this chapter, the appropriateness of properties previously highlighted for

large samples will be examined for the small sample case. Topics that will be

covered in the discussion include:

(i) Suitability of asymptotic results for small samples.

(ii) Differences between asymptotic significance levels and exact significance

levels for the power divergence statistic.

(iii) Further approximation methods relevant to small samples.

(iv) What sample size does "small" define?

(v) Comparing relative efficiency of the power-divergence family members

for small samples with large sample results.

(vi) General overview and suggestions for small sample statistics.

101
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6.1 Asymptotic Moments and Asymptotic Sig­

nificance Levels

Read and Cressie contend that the accuracy of the small sample asymptotic

significance levels can be determined through comparisons between the asymp­

totic moments of the test statistic with small sample expressions for these

moments.

They examined the null model as defined below :

Ho : 1r = 1ro, (6.1 )

where 1ro represents a completely specified probability vector with k, the num­

ber of cells, being fixed. In the Chapter 3 it was shown that the power diver­

gence statistic 2nT" (~ : 1ro) is chi-squared with k - 1 degrees of freedom. The

first three moments of a chi-squared statistic with k - 1 degrees of freedom

can be found provided that ,\ > -1.

The mean and variance calculated for these expansions were described (Read

and Cressie (1988, p. 65)) as :

E [2nIA (~ : 1ro)J [k - 1] +n-1 [(A - 1)(2 - 3k + t)/3

(6.2)

+(,\ - 1)('\ - 2)(1 - 2k + t)/4] + O(n- 1 )

and Var [2nIA (~ : 1ro)J

= [2k - 2] + n-1 [(2 - 2k - k2 + t) + (A - 1)(8 - 12k - 2k2 + 6t)

(6.3)

+(A - 1)2(4 - 6k - 3P + 5t)/3 + (A - 1)(A - 2)(2 - 4k + 2t)] + O(n- 1 )

k

where t = 2: 7rOi -1.

i=1

Examining each component of (6.2) and (6.3) identifies the first terms on the

right hand side as the mean and variance of the chi-squared random variable
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with k - 1 degrees of freedom. The second term describes correction terms of

order n-1
. Read and Cressie (1988) further express the correction terms for

the mean and variance as fm(>.., k, t) and fv()., k, t) respectively.

The terms for fm and fv regulate the rate of convergence of the mean and

variance of the power divergence statistic to the mean and variance of the

chi-square random variable with k - 1 degrees of freedom. Thus the values of

A > -1 for which fm and fv are almost zero are of significance.

On examining the equiprobable hypothesis

1
Ho : 1r = k1,

k

t = L 7fO;-l = P, it was reported that for k 2: 2,
;=1

2 4(k - 2)
fm()., k, k ) = 0 when A = 1 or A = 2 - 3(k _ 1)

and

f ( \ k k2 ) = 0 h \ = 5k - 1 ± [3(3P - 2k + 7)]t
v A, , W en A (k) .

2 4 - 5

(6.4)

Solving for A in fm()., k, P) = 0 and fv(A, k, P) for increasing values of k,

resulted in the values of A being unaffected by the number of cells, k. They

further remark that for cell size greater than 50, the outcomes were consistently

unchanging whereas, the value of A = 1 ( Pearson X 2 statistic) reduces the

correction term for the mean over all values of k but does this for the variance

for only large values of k.

When t = P for the equiprobable hypothesis, Pearson's X 2 (A = 1) yielded

the smallest correction terms for k 2: 20. For cases when t strongly influences

k
2

, selecting A E [0.61; 0.67] is reported to give the smallest mean and variance

correction terms.
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Read and Cressie's Moment Corrected Statistic

P(XLl 2: c) represents the distribution tail function of the chi-squared distri­

bution or the asymptotic significance level for the critical value c.

Read and Cressie (1988) found that the precision of the small sample ap­

proximation to the significance level, can be improved through the use of a

moment-corrected distribution tail function formulated from the moment cor­

rected statistic
2nIA(; : 11"0) - {lA

(J"A
- 00 < A< 00, (6.5)

. fm(A,k,t) 2 fv(A,k,t)
WIth {lA = (k -1)(1- (J"A) + nand (J"x = 1+ 2(k -l)n·

The mean and variance of this moment corrected statistic is reported to exist

for A > -1 which is similar to the chi-squared mean and variance, k - 1

and 2( k - 1) respectively. Unlike the power-divergence statistic, the corrected

statistic exists for A S; -1. The moment corrected distribution tail function is

defined by Read and Cressie as Tc (c) = Tx (c:~>,) where Tx (c) = P(XLl 2:
c). Therefore Tc provides a more precise approximation to the small sample

significance level of the test based on the power divergence statistic.

6.2 Comparisons between other Approxima­

tions to the Exact Significance Level

Rejection of a null hypothesis is based on comparisons between the test statistic

and the critical value. Read and Cressie (1988) looked at testing Ho : 11" =

11"0 using the test statistic 2nIA(; : 11"0) with x being the observed value of

the multinomial random vector X. Due to the discrete nature of the power

divergence statistic a constant Cc< must be found for a specified value of A in

order for
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Letting P(2nIA( ~ : 'iTo) 2: c I Ho) = TE ( c) for c 2: 0 they express TE ( cc;) 2:
a and TE(ccx + c) < a; c > 0, as a reformulation of the above probability

statements. TE(c) represents the exact distribution tail function of the test

statistic 2nIA(~ : 'iTo), assuming that Ho is true.

Further alternatives which could be used as approximations to TE(c) are re­

ported by Read and Cressie (1988, p. 70) to be :

(i) Tx(c) : the chi-squared distribution tail function.

(ii) Tc (c) : the moment corrected chi-squared distribution tail function.

(iii) Ts(c) : the second-order-corrected chi-squared distribution tail function

(iv) TN(c) : defined as P (N(O,l) 2: (C:;~)(A))), the tail function of the

normal distribution.

6.2.1 Assessing Model Accuracy

The attainment of the exact distribution tail function TE for 2nIA( ~ : 'iTo)

was achieved after expressing all possible combinations x =(x}, ... , Xk) of n ob-

'servations arranged into k cells. TE(c) considered only values of x for which

2nIA(~ : 'iTa) ~ c, where c is a stipulated critical value and thereafter adding

their respective multinomial probabilites. The equiprobable hypothesis has

been a common area of focus in most small sample studies because firstly, it

produces very sensitive tests; secondly, application of the probability integral

transformation breaks down numerous goodness-of-fit problems to essentially

evaluating the fit of the uniform distribution on [0,1], and lastly, few calcula­

tions are required for TE.
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Read and Cressie (1988) selected the commonly used critical value of c =

xi-ex(k - 1) since it was not dependent on A. On comparing the sizes of

I Tx(xi-ex(k - 1)) - TE(xi-ex(k - 1)) I when the number of cells range from

2 to 6 and values of n spanned the interval of 10 to 50, Read and Cressie

(1988, p. 71) observed "that for 10 :S n :S 20 the chi-squared approximation

Tx(xi-ex(k -1)) = a is accurate for TE(xi-ex(k -1)) provided that A E [~, ~]".

These results parallel Larntz's (1978) findings for A. It was further observed

by graphical means that the accuracy of the normal approximation yielded

inferior results for many values of nand k. Also noticed was that for an with

an increase in n, there is an interval of A for which the chi-squared critical

value can be used to approximate the exact value. However when n is kept

constant an increase in the number of cells, k causes greater amounts of error

in the significance level to increase for tests using A outside the interval [~, ~].

Finally based on suggestions by Larntz (1978) and Fienberg (1980, p. 172) on

minimum expected cell size for Pearson's X 2
, Read and Cressie (1988, p. 72)

conclude that "the traditional chi-squared critical value xi-ex(k - 1) can be

used with accuracy for general k ( when testing the equiprobable hypothesis)

provided that min mri 2: 1, and AE [~, 1]".
l<i<k

It is thus found that the power divergence statistic with A = ~ and X 2 ( A = 1)

is well approximated by the equiprobable hypothesis whereas the significance

levels for G2 (A = 0) and the Freeman-Tukey statistic F 2 (A = -~) did not fare

well in terms of approximation by the chi-squared significance level.

6.2.2 Approach for Assessing Accuracy

Commenting that accuracy assessments of the chi-squared approximation, when

null models have parameters which must be estimated, is an under-researched

area, Read and Cressie highlight approaches that were used in the past. One
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such estimation method for nuisance parameters required conditioning on suf­

ficient statistics for these parameters in order to eliminate the conditional dis­

tribution depending on unknown parameters. Other algorithms can be used

as well.

An algorithm was presented by Mehta and Patel in 1986 to compute r x c

tables whose associated probabilities are conditioned on rows and columns.

Tables whose probabilities were less than the probability of the observed table

were calculated thus improving efficiency for large tables. Another algorithm

proposed by Agresti (1979) takes a sample from the set of all possible tables

and is useful for approximating the attained significance level for very large

tables.

Indepth comparisons between X 2 and G2 yield that A = 1 is preferable to

A = 0 in terms of the accuracy of the chi-squared significance level.

Rudas (1986) and Hosmane (1987) used simulation with A = ~ and obtained

a test statistic which is close to X 2 with regard to small-sample accuracy of

the chi-squared significance levels. However G2 was observed to reject the null

hypothesis too frequently in the cases considered. This again supports Cressie .

and Read's conclusions for those cases where no parameters are estimated and

the minimum expected cell frequency is no less than 1.

6.3 Assessing Efficiency : Comparing Power

of X 2 and G2

Assessing how efficient the power-divergence statistic is for small samples re­

quired the identification of the previous asymptotic results which would be ap­

proximately correct for small samples. Frosini (1976) commented that in the

case of the Pearson X 2 statistic, earlier conditions which were established to be
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appropriate, are very confining in small samples. The approach preferred by

Read and Cressie (1988) involved calculating the exact power 2nI'x(~ : 7r0) for

each A and to thereafter make contrasts without any connection with asymp­

totic results.

The case of the equiprobable null model is again considered. In this particular

case, one of the k probabilities is in a state of disorder whilst the remainder

are harmonized so that they still add up to 1 and is expressed by Read and

Cressie (1988) as

where -1 ::; 8 ::; k - 1.

(1 + 8)
k

i = 1, ... , k - 1

(6.6)

i=k

(6.7)

Power computations for each test statistic 2nI'x(~ : 7ro), requires the calcula­

tion of the critical value CO' for some chosen a value. This describes a "size-a

test". The size of the approximation error is dependent on A, hence an er­

ror in the estimation of the exact size of the test distorts comparisons with

A-dependent approximation errors. In keeping with the critical values being

discrete, the significance levels are also discrete. Hence it is unusual that an

exact size a test will exist for every A. This situation can be contended with

by use of the appropriate randomized size-a test which can always be obtained

thus allowing comparisons of power functions for all A values.

The randomized size-a test is defined by Read and Cressie (1988, p. 77) as

follows:

Let c,X(a) be a value that can be obtained by 2nI'x(~ 7ro) m order for

P(2nI'x( ~ : 7ro) > c,X(a) I Ho) = al,'x and

p (2nI'x (~ : 7ro) ~ c,X(a) IHO) = a2,'x
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For outcome x, the randomized size-a test rejects Ho with probability

1

o
The exact size of the test was further written:

Expressing {31,>- and {32,>- as :

x
P(2nI>-( - : 1ro) ~ c>-(a) IHI) = {32,>-

n

for HI in (6.7), the power of the randomized test obtained by Read and Cressie

(1988) is :

Three values of the disturbance factor 8 ie: 8 = 1.5 , 8 = 0.5 and 8 = -0.9 were

considered by Read and Cressie (1988) to depict the bounds of the alternative

model (6.7) with a midpoint. Results regarding power of the randomized size­

a test yielded the following observations noted by Read and Cressie (1988,

p. 77) : when " k = 2, the power-divergence statistic has identical critical

values and power functions for every value of ). E [-5,5]. For k > 2, the power

function increases with), for 8 > 0 (which represents a bump alternative) but

decreases with), for 8 < 0 (which represents a dip alternative)". Large I ). I
values are associated with small rates of change in the power function. Bump
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alternatives are detected by using large A values but for dip type descriptions

power improves with large and negative A. If an individual cell contains a

zero observed frequency, the power-divergence statistic with A > -1 will be

undefined and it was suggested that A > -1 be used.

6.4 Choice of a Suitable Test Statistic

For critical values which can be estimated with very little difficulty and at

the same time providing adequate safeguarding against extreme bump and

dip models, it is advised that A = ~ be used as it is found to be the best

value for A is when n is small. Other findings include "For large n, it is

an excellent compromise between the loglikelihood ratio statistic G2 (A = 0)

which is optimal for nonlocal (fixed) alternatives ... and the Pearson X 2 (A = 1)

statistic which is optimal under sparseness assumptions" (Read and Cressie,

(1988, pp. 79-80)). It is further suggested that the critical value be estimated

from the chi-square approximation only if n ~ 10 and the minimum expected

cell frequency more than 1. Expected cell frequencies which are approximately

equivalent result in the chi-square approximation being calculated even when

expectations are as low as ~. No fixed recommendation can be given for the

situation when expected cell frequencies are very small while others are greater

than 1.

Using I A I values greater than 5 should be avoided as the growth in power

becomes very small and the approximations used to obtain the critical value

for rejecting the null hypothesis becomes more unreliable. Stipulated require­

ments for values of A outside the interval [~,~] are the calculation of the mo­

ment corrected approximation based on the moment-corrected distribution tail

function whenever n ~ 10 and the minimum expected cell frequency is no less

than 1. Zero counts led to the power-divergence statistic being undefined for

A S; -1, therefore Read and Cressie write that values of A > -1, should be
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used for large sparse arrays. This recommendation will be looked at critically

and analysed in the practical applications later.



Chapter 7

Applications using the SAS

Software

This chapter looks at the performance of the chi-squared tests for contingency

tables under conditions of sparseness. The power-divergence statistic was in­

troduced by Cressie and Read (1988) with the key purpose of investigating and

curbing the limitations of the chi-squared tests under conditions of sparseness.

The choice of >. was based on different factors. One of the aspects was the

expected frequency. The appropriateness of this choice, is examined through

applications using a loglinear program of Crowther and Joubert (1988), which

utilizes the IML procedure of the SAS software system. Source code for the

power-divergence analysis was appended to the IML loglinear program in order

to compare the values of the Pearson X 2
, likelihood ratio statistic G2, and the

power divergence series. Residuals were also included to provide additional

insight into the interpretations. This program appears in the Appendix.

The hypothesis of independence and conditional independence in loglinear

models is investigated for frequency tables with small and zero frequencies.

The IML loglinear program as well as PROC CATMOD of the SAS system

112
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was used for analysis of data sets.

The IML loglinear program presented problems when a matrix, compnsmg

of the columns associated with parameters set equal to zero under indepen­

dence became singular thus PROC CATMOD was also used for the analysis, ,
of frequency tables.

Examples presented cover the following areas : small samples, samples with

small expectations, tables containing cells with zero cell counts, which are

sampling zeros.

7.1 Small Samples and Small Cell Frequen-
.

Cles

The IML procedure of Crowther and Joubert (1988), for estimating the pa­

rameters in a loglinear model, was used for the case of a small sample as well

as tables with small cell counts, to test the hypothesis of independence and

conditional independence by fitting the appropriate models.

7.1.1 Model Fit and Interaction or Independence

In the first example, a small sample was drawn from a slightly larger sample

which inspected the relationship of a respondent's reaction to a support pres­

sure group with respect to local area noise. The category counts in the first

sample, Fingleton (1984, p. 6) appeared to be quite large and a loglinear anal­

ysis of the data yielded expected values which were all above 1 thus avoiding

complications of small cell counts or small expected frequencies.

A much smaller sample (Fingleton, 1984, p. 8) was taken from the afore-
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said population. The following table contains the data of interest. Responses

Ab A 2 , Bb and B 2 are explained as follows:

"AI: Respondent supports the Anti-Stansted airport pressure group".

"A2 : Respondent does not support pressure group."

"BI : Respondent considers local area noisy."

"B2 : Respondent does not consider local area noisy."

Table 1

BI B2

Al 5 (1.69) 2 (5.31)

A2 2 (5.31) 20 (16.69)

Fingleton observed that the degree of association between pressure group sup­

port and noise perception was similar for the above table and the slightly larger

table from which the above-mentioned smaller sample was drawn. He arrived

at this conclusion by comparing the cross-product ratios for the samples in

table 1 and table la, below, respectively.

Table la contains the data for the larger sample.

Table la

Bl B 2

Al 21 25

A2 3 77

Expected cell frequencies for the independence model appear in brackets in

Table 1. Testing the hypothesis of independence, yielded a loglikelihood ratio

statistic, G2 = 10.27 and X 2 = 11.27. For (Y = 0.05, the null hypothesis is
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rejected, since G2 > X6.9s(1) = 3.84. There is therefore sufficient evidence to

conclude that the variables "pressure support group" and "noise perception"

are dependent.

Cressie and Read (1988) recommend that the critical value be calculated from

the chi-squared approximation provided that n 2: 10 and minimum expected

cell frequency is no less than 1. Examination of the expected frequencies in

the data indicate that all values were above 1. Hence ,\ = ~ was used in the

calculation of the power divergence statistic, for which 2nI>" (; : 7?) = 10.72.

The data was also analysed for different values oflambda. Computations of

the power-divergence statistic for lambda ranging between 0 and 2 indicate

that the power-divergence statistic is closer to G2 for values of lambda less

than ~ whereas it is closer to the X 2 statistic for values of lambda greater

than ~. At ,\ = ~, there seems to be a good compromise between X 2 and G2

thus justifying our choice of lambda. Our findings are consistent with those of

Rudas (1986), who showed that using ,\ = ~ resulted in a test statistic whose

accuracy of the chi-square significance level is very similar to that of X 2
.

Fienberg (1979) supports the use of the X2 test in small samples if the minimum

expected cell frequency is approximately 1. If sample size is about 4 to 5 times

the number of cells in the table then appropriate p-values are obtained. In

the above example, the sample size is 29, the number of cells equals 4 and the

expected frequency is almost 1 for only one cell. The p-value obtained is 0.013

which is in keeping with the above statement concerning appropriate values of

p on the basis of expected cell frequency and sample size.

The second small sample case study (n = 52), Christensen (1990, p. 35) with

data displayed in Table 2 below, identifies males between the ages of 11 and

30 who underwent knee operations using orthroscopic surgery and the result

of the surgery. Categories for type of injury include descriptions of : twisted

knee (T), direct blow (D), or both (B). The results for surgery were described

by the following groups: excellent (E), good (G) and fair or poor (F-P).
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Table 2

RESULT

E G F-P Totals

Twist 21 (21.46) 11 (9.69) 4 (4.84) 36

Direct 3 (4.17) 2 (1.88) 2 (0.94) 7

Both 7 (5.37) 1 (2.42) 1 (1.21) 9

Totals 31 14 7 52

Output of the test produced the following results: X 2 = 3.228842, and G2 =
3.173231. Expected values for the independence model appear within brackets

in Table 2. From the table it can be seen that only one expected value is

less than 1. Provided that the sample size is large, comparisons can be made

between X 2 and the X2 distribution with 4 degrees of freedom. However, since

the sample size is small, using either the X 2 or G2 statistics will result in

distorted conclusions.

Fienberg's conclusion is that if the sample size is 4 to 5 times the cell size,

(which is the case in this example), then the X2 test yields a p-value with

the appropriate order of magnitude. However, this cannot be applied in this

example since one of the estimated expected cell frequencies is less than one.

If the hypothesis of independence is tested at the 5% level of significance, i.e.

a = 0.05, then X~.95(4) = 9.488 . Since X 2 = 3.228842 < 9.4888, Ho will not

be rejected. There is thus insufficient evidence to indicate a dependence in the

relationship between type of injury and the result of the operation.

In order to investigate the value of the power-divergence statistic for different

values of A, 2nIA (~ : 1?) was calculated for -1 < A < 1. The table below

gives the values of 2nIA (~ : 1?) for selected values of A for the independence
model.
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Table 2a

,\ 2nIA (; : 1?)
-0.95 3.337088

-0.50 3.23.553

-0.30 3.201095

-0.10 3.180189

-0.05 3.176422

0.50 3.172612

0.55 3.175660

0.60 3.179274

0.65 3.181295

2/3 3.184981

0.70 3.188210

0.75 3.193535

0.80 3.199435

0.85 3.202601

0.90 3.212970

0.95 3.220612

X2 3.228842

G2 3.173231

On comparing the Pearson X 2 and G2 statistics with the changing values of

the power-divergence statistic, the following comments are made: ,\ values

between 0.5 and 0.95 produce 2nIA (; : 1?) values which deviate slightly from

each other. Hence an appropriate choice of ,\ could be any ,\ value in this

interval.

However, on closer examination, it is seen that as ,\ approaches ~, the power­

divergence statistic yields values closer and closer to G2 but the deviations

between these values increase for values greater than ~. On the other hand,
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the power-divergence values gets closer to X 2 for values greater than ~. These

findings are to be expected since the power-divergence statistic approaches X 2

as ). ~ 1 and approaches G2 as ). ~ O. It was further noted that at ~, the X 2

and G2 values compare quite closely to the power-divergence statistic with the

value of G2 being nearer to the value of the power-divergence statistic.

The next example from Bishop, Fienberg and Holland (1975, p. 148) IS an

example of a small sample with small cell frequencies. The information pre­

sented in table 3 below gives the classification of the reaction of lymphoma

patients to chemotherapy classified according to sex and cell type.

Table 3

Variable 1

Variable 3 Variable 2 No Response Response

Nodular Male 1 ( 3) 4 ( 2)

Female 2 (4.8) 6 (3.2)

Diffuse Male 12 (7.8) 1 (5.2)

Female 3 (2.4) 1 (1.6)

The total sample size is 30 and there are cells present with small frequencies.

The table contains 8 cells and if we use the traditional chi-square tests on this

data set it would lead to distorted p-values since sample size is still less than

the number of cells multiplied by either 4 or 5. The three variables of interest

are cell type, either nodular or diffuse, sex and response to the treatment.

A further observation is that patients with nodular disease seem to respond

better than patients with diffuse disease under the treatment offered.

Various models were fitted to test if interaction exists between the variables.

The example highlights the versatility of the G2 statistic when tables are con­

densed. The ability to subtract G2 values as a result of partitioning G2 is also

used. The conditional tests of hypothesis could have been also tested using
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the difference between the X 2 values as both G2 and X 2 are distributed as X
2

with the appropriate degrees of freedom. In this case however, only the G2

statistic is used in the analysis. The advantages of G2 cannot, however, be

generalized to the power-divergence statistic.

The models considered investigate the relationship between:

(i) sex and response to the treatment,

(ii) sex and cell type, and

(iii) cell type and response to treatment.

To test (i) a model with UI23 = 0 is found. Thereafter the model with UI2 =
UI23 = 0 is obtained. The overall difference between G2 (Vi V 2 , V 2%, VI V 3 ) and

G2(V3 Vi, V 3 VI "'2), indicates whether interaction exists between the variables or

not.

The output generated by the loglinear programme utilizing Proc IML for the

test of no three factor interaction yields the following values: G2 = 0.650743

with a p-value of 0.4191847. The second model yields a G2 value of 0.809475

with a p-value of 0.667152. The hypothesis that Ul2 = 0 is tested by finding the

difference G2(% "'2 V I IV2Vi) = G2
(VI V 2 ) - G2(V3 V 2Vd = 0.809475 - 0.650743 =

0.158732 < X6.9S(1) = 3.84. This indicates that there is insufficient evidence to

conclude that the Ul2 term is nonzero. Hence there appears to be no interaction

between sex and response.

On testing the second model for interaction between sex and cell type, the

usual approach would have been to first get the model for no three factor

interaction, that is, obtain a model for UI23 = 0 and thereafter to obtain the

model for U23 = Ul23 = 0 with the difference between the models used to

test whether there is an interaction between sex and cell type. This approach

is however omitted since it is already established that Ul2 = O. Instead the
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G2 value is found for the model in which U23 = U12 = U123 = 0, thereafter

subtracting the G2 value for the model with U12 = U123 = O. This difference is

then used to test whether U23 = O.

The model with U23 = U12 = U123 = 0 gives a G2 value of 5.316720 with

a p-value of 0.150021. Testing U23 = 0, requires the difference, 5.316720 ­

0.809475 = 4.507245. Since this value exceeds X6.9s(1) = 3.84, this indicates

that there is evidence of interaction between sex and cell type. In other words

there is a relationship between the patient's sex and whether they suffer with

nodular or diffuse disease.

The value for the difference contained in Bishop, Fienberg and Holland appears

to be in error, hence the inconsistency in the final answer for the differences

between their finding and our answer. Lastly, a test was conducted along

similar lines to test if any interaction exists between the type of cell disease

and the response which essentially means that we have to assess the magnitude

of the interaction between cell type and response. Again we find G2 values for

two models and subtract one from the other to obtain overall interaction.

Taking G2 for the model in which U13 = U12 = U123 = 0 and subtracting the

G2 value for the model in which U12 = U123 = 0 gives 14.829709 - 0.809475 =
14.020315. Once again this value exceeds X6.9s(1) and it can be concluded that

there is an interaction effect between the type of cell disease and the response

to the treatment.

We have thus found that U13 and U23 are not zero, thus cell type is related to

both sex and response.
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7.2 Cells With Zero Counts

Contingency tables with zero cell frequencies are obtained quite frequently.

These cells of zero magnitude cause complications in loglinear applications.

Some cells will always have a zero frequency, because of the fact that it is

impossible to classify an individual in a particular cell. For example the number

of males suffering from menstrual problems. Such zeros are called fixed or

structural zeros. They have a true probability of zero and cell size will always

be zero immaterial of sample size. The other type of zero frequency is a

random zero or sampling zero. Cells containing such zeros have the possibility

of containing a positive cell count and their true probability is positive. With

an increase in sample size, these cells could increase to positive counts.

Some of the problems presented by random zeros include. asymptotic results

being invalid and maximum likelihood estimates of the parameter not existing.

Sampling or random zeros occur more often than structural zeros. Tables

containing structural zeros are called incomplete tables. For the purpose of this

study, our discussion will be restricted to sampling or random zeros. Cells with

zero counts affect the existence of maximum likelihood estimates in loglinear

models. Parameter estimates having values of positive or negative infinity

indicate that the likelihood function keeps increasing as the parameter moves

toward positive or negative infinity.

Empty cells or cells of zero count also lead to poor approximation of the

goodness-of-fit statistics. The problem which arises when taking the loga­

rithm of the zero frequency is addressed by adding a very small constant like

10-8 to the zero cell. The size of the constant in terms of "smallness" is not

restricted. Some authors suggest that the zero cell frequency should be ad­

justed by adding a constant of 0.5. The effect of the adjustment to empty cells

on parameter estimates and goodness-of-fit statistics was investigated. A data

set was analysed with different "small" values for a constant added to the zero
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frequency cell and comparisons were made. Special attention was paid to the

case where cells with zero frequency are adjusted by 0.5.

An example relating to sampling zeros appears in Agresti (1996, p. 186). Table

4 obtained from the 1991 General Social Survey, investigated whether there is,
any association between job satisfaction (S) and Income (I), grouped by gender

(G).

Table 4

JOB SATISFACTION

Gender Income Very A Little Moderately Very

Dissatisfied Dissatisfied Satisfied Satisfied

< 5000 1 3 11 2

Female 5000-15000 2 3 17 3

15000-25000 0 1 8 5

> 25000 0 2 4 2

< 5000 1 1 2 1

Male 5000-15000 0 3 5 1

15000-25000 0 0 7 3

> 25000 0 1 9 6

The table contains small cell frequencies and sampling zeros, hence it is sus­

pected that the usual chi-squared tests may not be appropriate. Agresti's

approach checked if the I * S term measuring association can be taken out

of the model with (IS, GI, GS) interactions using the GENMOD procedure

of SAS. This is achieved by obtaining the C}2 values for both the (GI, GS)

and (IS,GI,GS) models. The model for G2 [(GI,GS)I(IS,GI,GS)] yields

the eventual result. His reported findings highlighted G2 ( GI, GS) = 19.4

with 18 degrees of freedom and G2(IS, GI, GS) = 7.1 with 9 degrees of free­

dom. The test statistic for the hypothesis of conditional independence is hence



123

G2 [(GI, GS)I(IS, GI, GS)] = 19.4 - 7.1 = 12.3 with a total of 18 - 9 = 9 de­

grees of freedom. The p-value of 0.2 suggests that there is insufficient evidence

to indicate that association exists.

Validation of Agresti's findings were accomplished through analyses using the

Catmod and the IML loglinear programme. Comparisons were carried out

between results yielded by the CATMOD procedure and the IML routine. It

was observed that as soon as zero cells were made extremely small (e.g. 10-15
),

the IML loglinear procedure encountered a singular matrix when fitting certain

models, hence analyses were run using PROC CATMOD to check if similar

problems were experienced. General discussions as well as findings for each

procedure with respect to the above-mentioned example follow.

7.2.1 The Catmod Procedure

PROC CATMOD can utilize the maximum likelihood analysis or the weighted

least squares analysis. This procedure treats any zero in the data set as a struc­

tural zero, but if there is more than one population, then a zero can be treated

as a sampling zero. When the algorithm of PROC CATMOD is required to

evaluate the logarithm of a zero in the estimation routine, it automatically

adjusts to take a logarithm of some small value in order to continue. If it is

known that the zero cell frequencies are sampling zeros then a frequency say,

f = 0, can be adjusted by inserting an "if statement" :

if f = 0, then f = f + 0.00000001 in the data section of the program.

7.2.2 Maximum Likelihood Approach

The maximum likelihood approach was first used to measure the (GI, GS) in­

teraction in order to make comparisons with Agresti's findings. On examining
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the goodness of fit for the data contained in the maximum likelihood analysis

of variance table from the output of PROC CATMOD, it is seen that the re­

sults are the same as those of Agresti. Zero cell frequencies were adjusted by

adding the constant 0.000000001, thus obtaining G2 = 19.37 with 18 degrees of

freedom. The standard errors obtained for each of the parameters were small.

These results are the same as those reported by Agresti.

A sensitivity analysis was conducted by comparing results of analyses when

zero cells were adjusted to the following values to 10-
8

, 10-
15

, 10-16
, 10-

17

10-18,10-20,10-25, and 10-30 .

The following findings were noted for the above scenario: examining the anal­

ysis of maximum-likelihood estimates for each parameter for the above adjust­

ments on the zero cell frequency indicates that the outputs were identical for

all the cases. In other words, the values of the parameter estimates, standard

errors, chi-squared values and p-values remain the same. The only difference

in output arose for the calculation of the maximum-likelihood predicted val­

ues for response functions and frequencies. Large absolute values of residuals

occurred for functions 9, 21, 25, 26 and 29. This finding was consistent with

all of the above trials.

PROC CATMOD thus seems to be stable when an extremely small value is

used to replace a zero cell frequency and converges consistently to the same

parameter estimates.

7.2.3 Weighted Least Squares Approach

In the weighted least squares approach the weighted residual sums of squares

for the model are made as small as possible.

The weighted least squares statement was applied in two ways: firstly, a small
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value is assigned to the zero cell frequencies by the user by setting the frequency

f equal to some value say, 0.00000001 and secondly the zero cell frequencies

were left unadjusted. The latter analysis allows SAS to automatically take

care of the zero cell frequency. The following observations were made:

When f is stipulated as some value like f = f + 0.000000001 the output pro­

vides values for n - 1 = 31 cells. On the other hand when f is not assigned

some adjusted value, the output presented indicates that the 6 cells containing

zero cell frequencies were omitted from the analysis with findings being pre­

sented for only n - 1 = 25 cells. This confirms the fact that PROC CATMOD

takes zeros as structural zeros.

To investigate the effect of varying sizes of the adjustment made by the user to

the zero cell through assignment some small value to f, analyses were run for

the following assignments to zero frequencies : 10-8,10-15,10-20, and 10-25 .

The parameter estimates were not affected by the size of the constant added

to zero cell.

Although in large samples with categorical data, the weighted least squares

estimators have similar properties to the maximum likelihood estimators, in

the case of small samples with zero cell frequencies, it is suggested that the

maximum likelihood approach be used as the CATMOD procedure calculates

the observed response function for the weighted least squares analysis.

Finally, on using either the weighted least squares approach or the maximum

likelihood approach with PROC CATMOD, the following point needs to be

noted: it appears that CATMOD treats all zeros as structural zeros hence

special care must be taken if one is working with data that contains sampling

zeros so that they are adjusted appropriately to avoid them being incorrectly

analysed as structural zeros.
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7.2.4 The ADDCELL Option

A further option available in PROC CATMOD is the ADDCELL statement.

It is stated as follows: ADDCELL = some number, where the number should

be positive. This is said to facilitate automatic adjustment to cells with zero

frequency. It has no effect on maximum likelihood analyses but can be used

for the weighted least squares approach. Applications were carried out on the

model testing interaction between the G*I and G*S effects using the weighted

least squares approach. The following cases were compared:

(a) weighted least squares with f assigned IQ-15,

(b) weighted least squares with ADDCELL statement assigned to IQ-15 and

(c) weighted least squares with no adjustments being made to zero cells, i.e.

a zero appears in the data set and is not adjusted.

In case (a) the output yields a residual of 8.20 with 18 degrees of freedom and

a p-value of 0.9756. There is a change in the findings for (b) : the residual =
8.20 but the degrees of freedom are now 12, since the CATMOD analysis has

taken a zero as a structural zero. The residual occurs with a p-value of 0.7695.

The output for case (c) is identical to (b)'s findings. It appears that SAS

handles the ADDCELL option in exactly the same way as when the weighted

least squares analysis is run with no adjustment to a zero cell frequency.

Hence, the ADDCELL statement in the weighted least squares analysis seems

to treat zero cells as structural zeros. These findings are inconsistent with the

description of the ADD CELL option given by the SAS manual, as it needs

some positive value to be assigned to it in order for the program to execute.

However, the output indicates that it ignores the assigned value and executes

as if no adjustments were made to the zero cells. It is therefore advised that

the ADDCELL statement be avoided and that some small value be assigned
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to a zero cell in the SAS program statements, to ensure that the analysis is

done on all the cells.

7.3 The IML Procedure

The results obtained by Agresti (1996) for the (IS, Gl, GS) interaction model

and those obtained by the loglinear program using PROC IML were identical.

The results yielded a G2 value of 7.093 with 9 degrees of freedom. Ideally we

would like the value of the adjustment for zero cell frequencies to be as small

as possible. However, PROC IML either experiences problems when a singular

matrix occurs or very large StandLH values are found for the G, G * land

G * S effects. This problem is eliminated by keeping the adjustments to cells

to approximately lO-6, lO-7 or at most lO-8. The analysis of the model for

(Gl, GS) using the IML procedure with the loglinear approach yields G2 =
19.368408 with a p-value of 0.369475, which are both identical to Agresti's

findings. If the adjusted cell size is set to lO-15 or smaller, then analysis is not

possible as a singular matrix occurs in the estimation procedure.

7.4 Comparisons Between the IML and Cat­

mod Procedures

Outputs for the (IS, G l, GS) model were obtained for varying sizes of adjust­

ments made to zero cell frequencies by using the loglinear approach in IML

and thereafter through use of the Catmod procedure. The maximum likelihood

approach was used in these analyses.

As reported earlier, Proc Catmod does not seem to be sensitive to the mag­

nitude of the constant that is added to a zero cell. But the recommendation
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is to use a value such as 10-8 as the adjustment. The value of the likelihood

ratio statistic, for the above-mentioned model, is 7.09 with a p-value of 0.8972

and 13 degrees of freedom.

The loglinear program utilizing the IML procedure on the other hand, consis­

tently yields a likelihood ratio value of 7.093491 with 9 degrees of freedom and

a probability value of 0.627386 with a corresponding Pearson chi-square value

of 6.605016 with 9 degrees of freedom and a probability value of 0.678167, as

long as the adjustment made to zero cells is made no smaller than 10-8
. If the

adjustment to zero cells is made smaller than 10-8 , then instabilities occur in

the IML program. These instabilities can affect the standLH values for some

adjusted values. It is therefore recommended that adjustments to zero cells be

made no smaller than 10-8 .

Further analysis was conducted for adjustments which were larger than 10-8

up to 0.5. In the case of the adjusted cell being assigned the value of 0.5, a

chi-square value of 5.172430 with a probability value of 0.819025 was observed

whilst the G2 = 4.879436 with a corresponding p-value of 0.844689. The power­

divergence statistic value of 5.046544 for). = ~ was closer to the the Pearson

chi-square than G2
, whilst the difference between the Pearson chi-square and

G2 statistic increased.

The fluctuations in the values of the goodness-of-fit statistics, as the adjusted

cell gets closer to 0.5, suggests that large adjusted cell sizes are not favoured

hence such adjustments should be avoided, rather adjustments which are closer

to 0 and that yield more consistent results should be considered.

These findings are justified by our results obtained when the hypothesis, ).GI =
).GS = ).GIS = 0 was tested. Using an adjustment of 0.5 gave G2 = 24.417746

with a p-value of 0.27326 and X 2 = 24.268192 with a p-value of 0.280246,

(df = 21). This indicated that the model fitted was adequate for the data.

On the other hand, an adjustment of 10-8 yielded the following results for
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the above analysis: G2 = 31.91945 with a p-value of 0.084679 whilst X 2 =
30.376529 with a corresponding p-value of 0.059659. These findings indicate

that the model is not really adequate for the data and that the fit is not

good, in contrast with the conclusion for the adjustment of 0.5. This distinct

difference in conclusions cautions one to choose the size of the adjustment

carefully. Also, there is a big difference between the X 2 and G2 values for each

of these adjusted cell sizes. Hence it is highlighted once more that zero cells

should be adjusted to 10-8 rather than using the larger adjustment of 0.5.

Using the above recommendation that the preferred adjustment for cells having

a zero frequency be 10-8 , further analysis was carried out to observe the effect

of changing lambda on the power-divergence statistic. Once more, values of ,\

in the interval 0.5 to 0.95 were used. The following table gives the values of

2nl>' (; : ir) for the selected values of'\ for the (IS, Gl, GS) model.

Table 4a

,\ 2nI>' (; : ir)
0.50 6.650788

0.55 6.633281

0.60 6.619133

0.65 6.608119

2/3 6.604546

0.70 6.600043

0.75 6.594735

0.80 6.592044

0.85 6.591837

0.90 6.593996

0.95 6.598420

X 2 6.605016

G2 7.093490
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As expected, when ..\ approaches 0, the power-divergence statistic yields values

closer to G2
• For values of ..\ closer to 1, the power-divergence statistic is closer

to X 2
. It is suggested that ..\ can be chosen to be any value in the above interval

but ..\ = ~ results in a power-divergence statistic which seems to provide a good

compromise between G2
(..\ ---+ 0) and X 2

(..\ ---+ 1).
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Conclusion

It is hoped that this dissertation has presented the chosen topics on aspects of

categorical data analysis in an organised manner and that the area of sparse

contingency tables has been adequately addressed.

Areas of future research could include parameter estimation and hypothesis

testing for the power-divergence statistic under the sparseness assumption.

One particular avenue of interest is to investigate the use of jackknifing as an

estimation method under conditions of sparseness. This study contains a brief

discussion on jackknifing in section 4.7 of chapter four.

Another topic that has been addressed in detail in articles not covered here,

is the use of the Akaike's Information Criterion as measure of goodness of fit.

This criterion can also be investigated and compared with the power-divergence

statistic.

Lastly, from the applications undertaken, it is noted that the procedure in­

troduced by Crowther and Joubert (1988) presented problems, when a matrix

comprising of the columns associated with parameters set equal to zero under

independence, became singular. This problem was avoided by using adjust­

ments of about 10-6 ,10- 7
, or at best 10-8

• Future research could consider

addressing the problems experienced by the IML routine regarding the size of

adjustments and the occurrence of large StandLH values.
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Appendix

Program 1
The source code below appeared in Crowther and Joubert (1988). It was
further adapted for the power-divergence statistic. The following program
uses the IML loglinear option and analyses data from Agresti (1996, p. 186)
which is quoted in table 4 of chapter 7. The data refers to the 1991 General
Social Survey which looked at the relationship between job satisfaction (S) and

income (I) grouped according to gender (G).

proc iml worksize= 100;

options pagesize=200;

* FREQUENCY VECToR(factor that changes slowest first );

x= { 1, 3, 11, 2,

2, 3, 17, 3,

0, 1, 8, 5,

0, 2, 4, 2,

1, 1, 2, 1,

0, 3, 5, 1,

0, 0, 7, 3,

0, 1, 9, 6};

xr=nrow(x);

x=x<>J(xr,1,1e-8);

*******************************************************************************
* The above line is inserted to adjust the zero cell frequencies which occur in

the matrix, of size 32, to some positive value. In this case, cells with zero

frequency are adjusted to 10--8;

* The line can be omitted if no cells with zero frequency occur.;

* NUMBER OF VARIABLES;

*------------; nf=3;

* NAME OF VARIABLES;

*---------; name={t1 g .","i."," s ."};

*--------------------------------------------------_ ..
* POWER SERIES;

*---------; POW= 0.66667;

*--------------------------------------------------_.,
k=j(6,1,0);



* NUMBER OF LEVELS FOR EACH FACTOR (MAX 6 FACTORS);

*---------; k[1,J=2 ;k[2,J=4 ;k[3,J=4 ; k[4,J=O ;k[5,J=O ;k[6,J=O

*------------------------------------------------------------;

* SPECIFICATION OF HYPOTHESIS MATRIX AH ;

* index vector nh of the hypothesis in the order (lambdas set to zero)

1 A (I+A)B (I+(A+(I+A)B))C (I+A+(I+A)B+(I+(A+(I+A)B)C)D ens,

=1 A B AB C AC BC ABC D AD BD ABD CD ACD BCD ABCD etc.;

*-----------; nh={8};

*-----;G1={ 0 O};

*------------------------------------------------------------;

* CONSTRUCTION OF DESIGN MATRIX A;

reset nolog;

reset fw=10;

c=kC1,J;

een=J(c,1,1);

d=c-1;

A=(i(d)//J(1,d,-1));

e=k [1J ;

do i=2 to nf;

c=k[i,J;

een=J(c,1,1);

d=c-1 ;

Y=(I(d)//J(1,d,-1));

een1=j (e, 1,1);

A1=A<Deen;

Y1=een1<DY;

A=A1IIY1 ;

A=Allhdir(A1,Y1);

e=k[i,J *e;
end;

A=j(e,1,1)IIA;

*-----------------------------------------------------------,,
vg=1;

do i=1 to nf;

vg=vg//«k[i,J-1)*vg);

end;

kol=cusum(vg);

nrh=nrow(nh) ;
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ii=nh[1,]-1;iii=nh[1,] ;

a1=kol[ii,]+1;a2=kol[iii,];

AH=A [, a1 : a2] ;

do i=2 to nrh;

ii=nh[i,]$-$1;iii=nh[i,];

a1=kol[ii,]+1;a2=kol[iii,];

AH=AHI IA[,a1:a2];

end;

* CONSTRUCTION OF THE INDEX VECTOR;

tyd=name[1,1];

naam1={'"1 }//tyd;

do i=2 to nf;

naam1=naam1//concat(naam1,name[i,1]);

end;

naam1=rowcatc(naam1);

nn=nrow(naam1);

index={"mu"};

do i=2 to nn;

tyd=naam1[i,1];

index=index//repeat(tyd,vg[i,1]);

end;

*------------------------------------------------------------------",
* HYPOTHESIS MATRIX WITH STRUCTURE;

sg=sum(g1*g1');

if sg-=O then AH=AH*G1';

*------------------------------------------------------------------",
free Y Ai Y1 tyd naam1 ;

A=inv(A'*A)*A' ;

lambda=A*log(x) ;

x1=1/x;

varl=A*(x1#A');

stdl=sqrt(vecdiag(varl»;

standl=lambda/stdl;

free varl stdl

gX=AH' *log(x) ;

m=x;

gm=gx;

itr=O;
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diff=1 ;

do while (diff> 0.000001);

m1=m;

mi=1/m;

m=m-AH*inv(AH'*(mi#AH))*gm;

m=m<>J(xr,1,1e-10);
*------- The above line is omitted when the data contains no zero cells

gm=AH'*log(m);

diff=sqrt«m-m1)'*(m-m1));

itr=itr+1 ;

end;

lambdah=A*log(m);

varlh=vecdiag(A*(mi#A'))-vecdiag(A*(mi#AH)*inv(AH'*(mi#AH))*AH'*(mi#A'));

vecvar=varlh<>J(e,1,1E-10);

stdlh=sqrt(vecvar) ;

standlh=lambdah/stdlh;

vgh=ncol(ah);

X2=(x-m)'*(mi#(x-m));

G2=2*x'*log(x/m);

K2ft=4*(sqrt(x)-sqrt(m))'*(sqrt(x)-sqrt(m));

Wald=gx'*inv(AH'*(x1#AH))*gx;

xdmpl=(x/m)##pow;

sbr=xdmpl-J(xr,1,1);

pdivser=2*(x'*sbr)/(pow*(pow+1));

vec=x21IG21IK2ftIIWaldllpdivser;

prob=J(1,5,1)-probchi(vec,vgh);

resid=(x-m)/sqrt(m);

*output;

vec1={"Pearson" "LR" "F-T" "Wald" "POWDIV"};

R={"Chi-2" "Of" "Prob"};

Test=vec//J(1,5,vgh)//prob;

nrt=xr/k[nf] ;

x=shape (x ,nrt) ;

m=shape(m,nrt) ;

res id =shape(resid,nrt);

print "------------LOG.IML-----------------";

print"number of iterations=" itr;

print" 11 ;
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print x[format=7.1]

m[format=12.6]

print" ";

print index lambda[format=12.6] standl[format=12.6]

lambdah [format=12.6] standlh[format=12.6];

print" ";

print "Chi-squared statistics with p-values";

print Test[rowname=R colname=vec1 format=12.6];

print" ";

print "Standardized Residuals";

print resid[format=12.6];

Program 2
This program uses PROC CATMOD of the SAS system for the data in Table
4 of chapter 7.

data gis;

input g i s f;

If f=O then HO.DDOOOOD1;

cards;

1 1 1 1

1 1 2 3

1 1 3 11

1 1 4 2

1 2 1 2

1 2 2 3

1 2 3 17

1 2 4 3

1 3 1 0

1 3 2 1

1 3 3 8

1 3 4 5

1 4 1 0

1 4 2 2

1 4 3 4

1 4 4 2

2 1 1 1
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2 1 2 1

2 1 3 2

2 1 4 1

2 2 1 0

2 2 2 3

2 2 3 5

2 2 4 1

2 3 1 0

2 3 2 0

2 3 3 7

2 3 4 3

2 4 1 0

2 4 2 1

2 4 3 9

2 4 4 6

proc catmod;

weight f;

model g*i*s= _response_/pred=freq ml;

* The "ml" statement can be replaced by the WLS option;

* The addcell option can also be inserted at this stage;

loglin g i s g*i g*s;

quit;
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