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Abstract

ABSTRACT

This thesis investigates the design of damping controllers to alleviate the problem of

low frequency electro-mechanical oscillations in power systems. The operating point

and network parameters of power systems are continually changing, resulting in

changes in system dynamics. The conventional controller design methodology has

therefore come under increasing scrutiny for its lack of considerations for robustness.

The thesis first outlines the conventional design of a power system stabilizer (PSS) and

then applies two robust techniques (Hoo and Quantitative Feedback Theory, QFT) to the

design problem. The single machine infinite bus (SMIB) model is used to illustrate the

procedure for all three design techniques. The final design is undertaken to illustrate the

more important problem of robust multi-machine PSS design using QFT. The design

requires linearised models of the multi-machine system. A brief discussion is given on

how these can be obtained. An introduction to decentralized control design in QFT is

included to support the multi-machine design.

Chapter three proceeds through the design steps required to generate a conventional

PSS. The technique is shown to be simple for a given set of operating conditions. The

controller is shown to be adequately robust over the given set of operating conditions

albeit not by design.

Chapter four introduces a design technique that directly addresses robustness issues

during the controller design. For a restricted range of operating conditions the designed

controller demonstrates the desired robustness and performance characteristics. The

inherent difficulties with Hoo in PSS design become more apparent as the operating

range is extended.

Chapter five introduces the second robust controller design technique. QFT is shown to

be more adept at dealing with increased operating ranges and changing specifications in
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Abstract

the single-machine infinite-bus case. The controller is easy to generate and performs

well over the entire range of operating conditions. QFT is also applied to the controller

design for a four-machine study system. The design is a marginally more complex than

in the single machine case but is still easily accomplished.

This thesis confirms previous attempts at solving the design problem using the methods

outlined above. The performance of all controllers is assessed for small and large

disturbances using non-linear time domain simulations with models developed using

PSCAD/EMTDC and MATLAB.
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Introduction

CHAPTER ONE

INTRODUCTION

1.1 General

Inherent in large power system behaviour are phenomena termed local and inter-area

modes. These are low frequency, poorly damped electro-mechanical oscillations, where

generators in one area swing against each other (local mode), or generators of one area

swing against generators of another area or the aggregate system (inter-area mode).

Typical frequencies for these oscillations lie in the range of 0.2 to 3 Hz (Kundur, 1994;

Rao, 1998a). Power transfer limits are severely restricted by these oscillations due the

threat of network security compromise. The problem has been further aggravated by the

use of fast acting automatic voltage regulators (AVR's) and long, weak transmission

links.

Modulating the generator field excitation signal, in a coordinated manner using a

supplementary control signal at the AVR input summing junction, has been identified

as a means to effectively damp out these oscillations. The device used to achieve this is

termed a power system stabiliser (PSS). The signals considered most feasible as inputs

to such a device, are shaft speed, AC bus frequency, and a combination of terminal

power and shaft speed (Larsen and Swann, 1981). The stabiliser output is fed back to

the AVR input summing junction, with the appropriate gain and phase advance, to

achieve the required degree of modulation of the field excitation signal. PSS's are

traditionally designed as lead compensators and are largely contingency-based designs.

The designs are undertaken for the operating condition possessing oscillations with the

poorest damping. This restricts their effectiveness to a small region around the design

operating point.
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Traditional design techniques adopted by DeMello and Concordia (1969), Larsen and

Swann (1981), Kundur (1994) and others have been successful in the past due to the

limited range of operating conditions of power networks. With increased demand being

placed on power networks, the feasible range of operating conditions has become

larger. A consequence of this, is the operation of generators with reduced stability

margins. These are changes required to meet the increasing demand for electricity

without the need to build costly new generating units and transmission networks. Small

signal stability has always been of paramount importance for any power network. This

is the ability of a system to remain in sYnchronism following small disturbances (Swift,

1996a; Chonco, 2000).

The prospect of instability has necessitated the application of improved design

techniques to endow PSS's with robustness properties so as to ensure sufficient

damping over the entire range of operating conditions. Advances in robust control have

introduced new techniques for the design of controllers possessing such robustness

properties. All of these techniques are however not directly applicable to power

systems.

Hex:> optimal control and Quantitative Feedback Theory (QFT) are two well researched

and widely used methods for robust controller design. These will be discussed and

applied to robust controller design in the course of this thesis.

1.2 Background and Objectives

For power systems constrained by stability concerns, the limiting factor is damping of

system oscillations and not first swing stability (Swift, 1996a). The damping of these

oscillations has traditionally been the task of a PSS and has received much attention in

past work (DeMello and Concordia, 1969; Larsen and Swann, 1981; Kundur, 1994).

These authors have presented a design technique for a PSS, which effectively adds

- 2 -



Introduction

damping to these oscillations. The major drawback of controllers designed in this

manner is the failure to adequately address robustness issues during the design process.

The primary aim of this thesis is to highlight two robust design techniques for PSS

design. The conventional design method is also presented for a SMIB system for

completeness and to highlight the differences between the three design approaches.

The robust design methodologies chosen are Roo optimal control and QFT. The latter is

also applied to the design of a multi-machine stabiliser to address the issue of damping

of inter-area mode oscillations in multi-machine networks. The work presented in this

thesis follows from Rao (1998a) for Roo, Boje and Jennings (2001) and Rao and Boje

(2001) for QFT. The performance of all stabilisers is assessed using the non-linear

power system simulation package, PSCAD/EMTDC.

1.3 Thesis layout

This thesis consists of five further chapters and appendices. The material is arranged as

follows.

A review of the literature on the application of PSS's to power system damping is

presented in Chapter Two. The chapter begins by reviewing the conventional design

and implementation of power system stabilizers and then extends this to the attempts at

robust stabiliser design. The scope is focused to coincide with the methods used in later

chapters of this thesis.

The conventional design technique for a SMIB PSS is outlined in Chapter Three. The

design is accomplished by following and combing the work in references, Larsen and

Swann, 1981; Kundur, 1994; Lakmeeharan and Coker, 1999. The performance of the

resulting PSS is assessed using a non-linear simulation (PSCAD/EMTDC).

Chapter Four makes the transition from conventional to robust design techniques. A

brief outline of Roo theory is given to provide an introduction. The relevant extensions
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and modifications for application to power systems are discussed. A stabiliser for a

SMIB system operating over a restricted range of conditions is then sYnthesized with

the Hoo toolbox in MATLAB. An assessment of the controller performance is given

using PSCAD/EMTDC. The work presented in this chapter closely follows Rao's

(1998a) application ofHoo to PSS design.

Chapter Five introduces QFT for both the general single input single output and multi­

variable formulations of SMIB systems. Two PSS designs for a SMIB example are

presented. A final design for a multi-machine PSS is then presented. A brief discussion

of the study network is given to highlight the design problem. The structured singular

value is introduced as an adequate measure for stability and is then used to calculate the

stability boundaries in the multi-machine QFT PSS design. The controller performance

assessments are also shown.

Chapter Six summarises the main results from the previous chapters and discusses the

merits and de-merits of all the design techniques presented. Some suggestions for

further work are also given.

1.4 Software tools employed in the thesis

The non-linear simulation of a SMIB system was implemented in PSCAD/EMTDC.

This simulation was used for assessing the performance of the controllers designed for

the restricted range of operating conditions for all three design methods. A non-linear

simulation implemented using MATLAB provided by Rigby (2000), with the required

alterations by the author, was used for the extended range of operating conditions of

Chapter Five (Sect. 5.4.2).

PSCAD/EMTDC was also used to perform the non-linear simulations of the four­

machine test system under different operating conditions for controller performance

assessment.
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The Hoo toolbox in MATLAB was used to synthesize the controller for the design

example of Chapter Four. Also used was MATLAB's QFT toolbox for the designs of

Chapter Five.

The Power System Toolbox (Cherry Tree Scientific Software, 1993) is shown in

Appendix D to be useful in generating linearised models of the four-machine test

system.

A copy of all software developed and used in the course of this thesis is provided on the

accompanying compact disc.

1.5 Achievements and findings of the thesis

This work has achieved the following:

• An in depth understanding of the electromechanical oscillatory phenomena In

power systems gained from a review of the pertinent literature.

• An implementation of non-linear simulations in PSCAD/EMTDC and MATLAB to

assess the performance of all the designed controllers.

• Demonstrated robust techniques applied to the successful design of power system

damping controllers.

• The conventional design method was extensively researched to fully understand the

design approach and a design was presented.

• Understanding in the fields ofHoo and QFT applied to robust controller design.
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• Demonstrated the performance of all designed controllers.

• Confirmed the results ofprevious attempts at applying all three design techniques to

PSS design.

• Outlined a method to obtain linearised models of multi-machine power system

networks (Appendix D).
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CHAPTER TWO

Literature Survey and Review of Power System Oscillations

2.1 Introduction

Chapter One outlined one of the major problems facing large power networks and

highlighted the use of a PSS as a possible solution. PSS's are supplementary control

devices added to the generators in the system to provide increases in damping torque.

This increase in damping torque has been shown (DeMello and Concordia, 1969;

Larsen and Swann, 1981; Kundur, 1994), to enhance network stability by damping out

the system oscillations.

All generators in a power network may not require the addition of a PSS to ensure

adequate damping of the system oscillatory modes. The topic of optimal placement has

been dealt with in numerous papers, to identify suitable locations for the addition of

PSS's (Martins and Lima, 1990; Kundur, 1994; Lakmeeharan and Coker, 1999). The

identification of these optimal locations is often based on participation factors, which in

essence are a measure of the degree to which a particular generator participates in a

specified mode. It has been shown (Kundur, 1994) that generators with the highest

participation in a specified mode may be fitted with PSS's to effectively damp out the

mode without the requirement of damping contributions from other generators in the

network. Optimal placement was not considered in the studies undertaken, primarily

due to the small size of the multi-machine test system used in Chapter Five.

This chapter reviews the oscillatory phenomena experienced in power systems and

introduces the design techniques for controllers to alleviate the problem. The extensions

of the robust techniques required for application to power systems are also highlighted

in the relevant chapters. Their application to power system stabiliser design is then

presented.
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2.2 Review and outline of solutions to the power system oscillatory mechanism

Power system electro-mechanical oscillations

Consider the third order linearised model of a single machine connected to an infinite

bus via an external reactance (DeMello et aI, 1969; Kundur, 1994), shown in Figure

2.1. The model illustrates manual excitation control. Damper winding effects are

ignored in this discussion but may be accounted for if required. The physical meaning

of all symbols used may be found in the list of symbols at the beginning of the thesis. A

single line diagram of a single machine infinite bus (SMIB) system can be found in

Appendix A (Fig A.l).

Figure 2.1: Block diagram of the third order linearised

SMIB system

The section enclosed within the dashed box represents the condition with constant d­

axis flux linkage and represents the mechanical dYnamics and the external electrical

network. To investigate the damping and SYnchronizing torques before the introduction

of excitation control, a few simple concepts will be developed. The section enclosed by

the dashed box in Figure 2.1 has a characteristic equation given by,

K Km
S2 +-!!....S+_I_O = 0

M M
2.2.1
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The natural frequency in equation 2.2.1 is, OJn = ~(KIOJo)/ M and the damping ratio is,

c; = 0.5KD / ~KIMOJo' At any oscillatory frequency the accelerating torque (I1Ta) in

Figure 2.1 is comprised of two components, one in phase with the machine rotor angle

(sYnchronizing torque) and the other in phase with the machine rotor speed (damping

torque), (DeMello et aI, 1969; Kundur, 1994). The accelerating torque oscillations can

always be broken down into these two components. A positive synchronizing torque is

always desirable as this ensures that the rotor angle is restored to the equilibrium

position following a small perturbation. Including the de-magnetising effect of the

armature reaction, which is the forward path through the element K4 , the electrical

torque contribution is,

2.2.2

As the constants K j , i= 2 .. .4, are always positive, it is clear that the demagnetising

effect has a negative contribution to the SYnchronizing torque component at steady state

(s = 0). At an oscillatory frequency of 0) » 1/( K3T~o)' the phase of the torque

described by equation 2.2.2 changes to +90 degrees, and it is in phase with the rotor

speed. It therefore has a purely damping effect. DeMello et al (1969) show that for

typical oscillation frequencies of about one hertz the field contribution to the damping

ratio would be between 0.03 - 0.05 %.

Figure 2.2 illustrates the response of the rotor angle, for the system of Figure 2.1,

following a small step disturbance in the mechanical torque with KD equal to zero. In

Figures 2.2(a) and 2.2(b) the field flux variation is zero. The response for Kt positive

and negative is shown in Figure 2.2(a) and 2.2(b) respectively. Figures 2.2(c) and 2.2(d)

show the response with the change in field voltage equal to zero, and the total

SYnchronizing torque coefficient, K s =K 1 -KzK 3K
4

, positive and negative

respectively. The effect on the damping and sYnchronizing torque components when a
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high gaIn automatic voltage regulator (AVR) IS added to the system is shown in

Chapter Three (eq. 3.2.2).

KD = 0 (a) KD < 0 (b)

Ks >0 (c)

Figure 2.2: Rotor angle responses following a step change

in mechanical torque

DeMello et al (1969) explains the need for restricting the AVR transient gain due to

open-circuit considerations when the machine angle has no significance. It is at times

desirable to have high gain for steady-state operation while restricting the transient gain

as discussed above. If a high gain regulator is used to satisfy the gain requirements for

steady-state operation, a reduction in the transient gain can be achieved by adding a lag

network in series with the regulator, or with rate feedback from the exciter voltage. A

high gain exciter also serves to almost eliminate the negative steady-state synchronizing

torque coefficient produced by the de-magnetising effect of armature reaction. The

damping component of this torque is correspondingly reduced. A high gain voltage

regulator provides improvement in the synchronizing torque but this is to the detriment

of the natural damping of the machine. This results in oscillatory behaviour of the

machine for some operating conditions. An effective way to solve the problem of

poorly damped modes is to provide a stabilising signal derived from machine speed,

terminal frequency, power or combinations of signals.
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Power system ~:tabilisers

Larsen and Swann (1981) discuss the application and tuning of the devices (PSS)

described above. The PSS is required to produce a component of electrical torque in

phase with the rotor speed deviations. Regardless of the input signal chosen, the

stabiliser is required to compensate for the gain and phase characteristics of the

excitation system, the generator and the power system. Practical speed input stabilisers

must have high frequency, gain attenuation to limit the impact of noise and minimise

torsional inter-action (Larsen and Swann, 1981). This can be accomplished by utilising

low-pass or band-reject filters. Also introduced is a washout stage to prevent steady­

state terminal voltage changes as the system frequency changes. The design of a PSS

utilising rotor :~peed deviations as input, is given in Chapter Three. The root locus is

shown by Larsen and Swann (1981) to be a convenient and effective way to tune the

stabiliser gain for optimum damping.

Lakmeeharan and Coker (1999), have outlined a procedure for the optimal placement

and tuning of PSS's. The tuning approach used is similar to the discussions given

above. The formulae to enable the physical parameter calculations for the PSS lead and

lag time constants are also given. A case study of inter-area mode damping is also

presented.

In a paper by K.lein, Rogers and Kundur (1991), the phenomenon of local and inter-area

mode oscillations was considered. The concept was developed for a simple four

generator, two-area test system. An investigation was performed to determine the effect

of excitation systems used on system damping. If a fast exciter was used on one unit,

with slow exciters on the other units, it was found that with a fast exciter in the

receiving area the damping of the mode is significantly improved. A fast exciter in the

sending area has the opposite effect. The location of the fast exciter also has an effect

on the frequency of the mode. The effect of different generator and excitation models

on the mode shape was investigated. For symmetric systems with no power flow across

the tie line it "vas found that the generating units in one area oscillate in anti-phase with
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those in the second area, regardless of generator and exciter characteristics. Generator

and exciter characteristics are shown to be of a greater consequence for systems under

high loading. Non-linear, static or dYnamic loads are shown to have more of an impact

on the inter-area mode in a stressed system and in a system with slow exciters. In a

follow-up paper (Klein, Rogers, Moorty and Kundur, 1992), an analytical investigation

of the factors influencing PSS performance was performed. The effect of system loads,

PSS location and the voltage characteristics are shown to be the key factors in

determining PSS performance.

A major conce:rn with respect to the controller design method used in the discussion

above is the lack of robustness considerations during the design. A robust controller has

the ability to perform satisfactorily over a broad range of operating conditions. The

conventionally designed controller may display robustness once designed, but this is

not incorporated into a systematic design procedure. There have been various attempts

at applYing robust techniques to damping controller design in power systems, and two

of these techniques are discussed below.

Ha:.> optimal COlntrol in power system stabiliser design

Klein, Xe, Rogers, Farrokhpay and Balu (1994) used Ha:.> to design robust damping

controllers for a large power system. The objective was to damp out the inter-area mode

oscillation. It i:5 shown in this paper that success of the designed controller relies on a

reduced order system model and good engineering insight when the design

specifications are chosen. The choice of the weighting functions plays a key role in

determining the effectiveness of the resulting controller. The deviations in frequency

response of the: closed loop transfer function over the range of operating conditions can

be represented as an uncertainty disk around a chosen nominal plant case.

Ahmed, Chen and Petroianu (1996) develop a method for decentralized Ha:.> controller

design. The rnethod of balanced truncation is used to reduce the order of the

sYnthesized controllers. An optimal controller is sYnthesized in the same manner as
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given in the reference Klein et al (1994). The controller is found to achieve the design

objectives with respect to Hoo nonn specifications but is ineffective in improving the

damping factor of the closed loop poles, which is what was desired. A sub-optimal

approach is presented to overcome this problem. This approach relies on creating a

fictitious unstable plant by shifting the imaginary axis in the complex plane. The

standard Hoo al:sorithm is then applied to the new fictitious plant to generate a sub­

optimal controller. The controller generated in this manner is shown to have superior

perfonnance to the controller synthesized using the conventional Hoo fonnulation. This

new technique is shown to produce controllers displaying the desired improvements in

damping.

Cui, Ukai, Kando, Nakamura and Fujita (1999) present a decentralized controller

design for a large system using Hoo • The approach is similar to Klein et al (1994). Rao

(1998a) develops the simplest fonnulation of applying Hoo to the design of a damping

controller for Cl single machine infinite bus system. The standard theory is extended to

deal with representing plant uncertainty in a meaningful way as applied to power

systems. The concept of Hoo optimal controller design is further investigated in Chapter

Four with a di~:cussion of the modifications required for power system application.

Quantitative l[?eedback Theory (QFT)

Another approach to robust controller design is Quantitative Feedback Theory (QFT)

introduced by Horowitz (1979, 1993). The ease of application of QFT to controller

design makes it highly attractive. Some adaptation may be required for multi-machine

PSS design. Rao (1998a,b) applies this philosophy to a PSS design for a single machine

infinite bus (SMIB) system. An extension, based on the ideas of commutative

controllers is made to enable the design of multi-machine stabilisers. This method

places a restriction on the structure of the controller. A further modification is presented

to circumvent the above restriction. The approach relies on robust non-singularity

checks for cornplex interval matrices, coupled with solution of an optimisation problem

for the controller parameters. A PSS and a supplementary damping controller for a mid-
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point static var compensator (SVC) in a SMIB system, is designed to illustrate the ideas

developed. Sedigh and Alizadeh (1994), propose the use of state-feedback to stabilise

an unstable plant. A controller is then designed using QFT to satisfy the performance

requirements. The essence of QFT is not fully exploited in that both problems can be

approached simultaneously.

Boje and Jennings (2001), approach the problem ofPSS design in a SMIB case from a

multi-variable standpoint. The effects on the speed and voltage loops are determined

after a PSS is added in the feedback path. The PSS is shown to affect only a cross­

coupling term in the model description. This makes sense since the term mentioned is

the transfer function relating the speed output to the AVR input, which is what is

desired. Boje, Nwokah and Jennings (1999), shows a SMIB PSS can be designed to

reduce the inter-action between the mechanical and electrical loops before feedback

loop design of the AVR and governor loops are attempted. The Perron root is used a

measure of inter-action between the diagonal and off-diagonal elements of the

describing matrix. A return path decoupler is designed to reduce the inter-action index.

This is a 'pre-controller' that has elements only on the off-diagonal, in the position

where an effect is desired on the plant matrix.

The structured singular value in QFT design

Yang, Zhang and Yu (1999) introduced a new method for decentralized PSS design

based on application of the structured singular value (SSV). The SSV was used to make

conclusive deductions on system stability. Rao and Boje (2001) incorporated the use of

the SSV stability measure into a multi-machine decentralized stabiliser design using

QFT. A simple approach is developed to design the stabilisers for a single machine at a

time. The ideas introduced by Yang, et al (1999), and used by Rao and Boje (2001), are

further investigated and applied to multi-machine controller design in Chapter Five.
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CHAPTER THREE

Conventional design and tuning of

Power System Stabilisers (PSS)

3.1 Introduction

Numerous accounts of power system stabiliser design have been given throughout the

last four decades (DeMello & Concordia, 1969; Larsen & Swann, 1981). This chapter

serves to illustrate a conventional method for power system stabiliser design and tuning

and its effect on the damping of low frequency poorly damped oscillations.

The major shortcoming of such design methods is their lack of quantifiable robustness

during the design process over the entire feasible range of operating conditions for

power systems. The subsequent chapters of this thesis outline design methodologies for

controllers that possess such robustness properties. Performance analysis of all the

designed controllers is provided in the relevant chapters.

The primary objective of this chapter is to provide a design and tuning technique for

conventional PSS' s and to illustrate their performance. The design method presented

here follows from Kundur (1994) and is integrated with work undertaken by

Lakmeeharan and Coker (1999). Chapter Two presented a review of some of the most

influential papers on conventional controller design.

- 15 -
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3.2 Function of a PSS

The primary function of a PSS is to add a component of damping torque in phase with

rotor speed deviations, at the rotor oscillatory frequency. This is achieved by

modulating the exciter input signal, with a supplementary signal applied at the

automatic voltage regulator (AVR) input summing junction. This signal is obtained

from the output of a supplementary control device, a PSS in this discussion. As

mentioned earlier in this thesis, there exist numerous possibilities for input signals to

such a device. In this and subsequent chapters, the rotor speed deviation is considered

as the input. The block diagram of a simple PSS is shown in figure 3.1.

washout

1 +sT w

lead block 1 lead block 2 limiter

Figure 3.1: Block diagram of a simple PSS

The washout block is included to prevent steady changes in speed from modifYing the

terminal voltage. The Kpss term in figure 3.1 is used to tune the PSS gain to provide

maximum damping. The phase compensation blocks are required to provide phase lead

to compensate for the phase lag of the generator transfer function between the exciter

input summing junction and electrical torque (~Te), as shown in figure 3.2.

1
1+ sTR

Figure 3.2: Block diagram of transfer function

from Vref to !1Te
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Figure 3.2 represents the AVR loop together with the excitation system of the linearised

SMIB block diagram (Appendix A.l). Each phase lead block of the PSS in Figure 3.5

can provide a maximum of sixty degrees phase lead. Multiple blocks are used if the

required phase lead is greater than sixty degrees.

3.3 Design example

The initial step is to investigate the effect of the AVR on the damping and

SYnchronizing torque components of the generator. The change in electrical torque due

to changes in field-flux linkage is given by equation 3.3.2. At steady state (s = 0), the

torque component is in phase with the rotor position deviation. At any

electromechanical oscillatory frequency (s = j w), the torque changes to be almost

entirely in phase with the rotor speed deviations. From the block diagram of figure 3.3,

it can be seen that the field flux variations due to changes in rotor position (Kundur,

1994; p 762) is given by,

3.3.1

The contribution to the electrical torque component due to changes in field flux linkage

is thus given by,

3.3.2

The function GexCs) in equation 3.3.1 represents the transfer function of the excitation

system. In equation 3.3.2 this has been replaced by Ka, which is the transfer function of

a high gain excitation system (Kundur, 1994). The constants K2 , K3, K4 and K6 are

usually positive; K5 can be either positive or negative (Kundur, 1994). Tpese constants

are dependent on the system and machine impedances and the operating condition
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(DeMello and Concordia, 1969). It has been shown that the effect of the AVR on

damping and synchronising torque components are most influenced by K 5 and GexCs),

(Kundur, 1994). If K5 is positive, the AVR adds negative synchronising torque and

positive damping torque and vice versa for K5 negative. The design is now illustrated

for Case One given in Table 3.1. The generator data is given in Appendix B.l with the

calculated K constants for the chosen example in Appendix B.2.

Case Pb Qb Xe

1 1.0 0.2 0.2

2 1.0 -0.2 0.3

3 1.0 0.5 0.3

Table 3.1: SMIB operating conditions

At the electromechanical mode frequency of s = jm (= j9.5345 for case one, with the

numerical values for K j , i = 1,2 ... 6, from Appendix B.2), equation 3.3.2 becomes,

......................................................................................... · .. · 1 pss 1

1

,-----------t K 4 1-----------'--------,

+.....

Figure 3.3: Linearised SMIB block diagram with PSS.
..... PSS signal path
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_ - 0.005812 x j9.5345 + 0.0939 1:18
I:1Te - ( )2 ( )0.01889 x j9.5345 + 1.899 x j7.7836 +12.63

= 0.00451:18 - 0.0025(jI:18)

The synchronising torque component due to field flux variations is thus given by,

K s =0.0045 p.u. torque / rad

and the damping torque component is given by,

3.3.3

= -0.0989 p.u. torque / speed change

To determine the phase lead that the PSS is required to provide, the phase lag from the

exciter input to the electrical torque must first be determined. Including the effect of the

voltage transducer time constant TR, the transfer function from the exciter input to the

electrical torque is given by equation 3.3.4,

I:1Te = Gp = K 2K 3K a (sTR + 1)
I:1v pss S2 (T3TR )+ s(T3 + TR )+ (1 + K 3K 6 K

a
)

3.3.4

Usually the time constant TR is small with respect to other time constants in the circuit

and its effect may be ignored resulting in,

I:1Te ~ Gp = K 2 K 3K a

I:1v pss sT3 + (1 + K 3K 6 K a )
3.3.5
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Equation 3.3.5 may now be used to calculate the phase lag from exciter input to

electrical torque. Equation 3.3.5 produces a result that is approximately one degree less

than equation 3.3.4 in this example, illustrating that neglecting the effect of TR does not

introduce gross error. At the rotor oscillation frequency given above, equation 3.3.5

gives,

G = 45.11
p 12.63 + j19.7745

=1.9L - 57.40

A rule of thumb is to compensate the phase lag to about ten degrees less than the actual

amount required, thereby allowing for uncertainties in modelling and to ensure that the

PSS does not negatively affect synchronising torque (Lakmeeharan and Coker, 1999).

The required phase lead for the design example is therefore chosen to be 47.5 degrees.

The amount of damping introduced depends on the gain of the PSS transfer function at

the rotor oscillation frequency. This gives the following result for the improvement in

damping torque,

!1Tpss = (gain of pss at w = 9.5345)x (1.922)!1wr

From the value for KD in equation 3.3.3, the minimum gain of the PSS required to

combat the effect of armature reaction must be,

. 0.0989
gazn pss MIN = = 0.052

1.922

Two lead blocks are used with each providing 23.75 degrees. One lead block would

have sufficed for this design example since the required phase lead is less than 60

degrees. The PSS parameter calculations now proceed as follows (Lakmeeharan &

Coker, 1999). If the required phase lead for block' i' is Bm we have,

- 20-
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3.3.6

For the i'th block, with the T2i-1 element associated with the zero of the lead block, this

gives,

T2i- 1a --­
i - T

2i

and

1

where 0Jm is the frequency of the oscillatory mode.

3.3.7

3.3.8

Using the above information the following values for the time constants are obtained,

~ = T3 = 0.1643 s

T2 = T4 = 0.0667 s

Figure 3.4 shows the Arg(Gp(jm)) of the generator, compared to the Arg(PSS(jm)). The

washout term has not been included in the PSS description at this point. To prevent

steady-state changes in terminal voltage as the system frequency changes, a washout

filter is added as part of the final PSS transfer function. This is typically chosen as a

high pass filter with the time constant being between one and twenty seconds (Kundur,

1994). The choice of the washout term is not critical with respect to PSS performance,

but has an effect on the voltage loop. The time constant in this example is chosen to be

five seconds. The gain of the PSS with K pss = 1 p.u, at the rotor frequency is 2.57.

This illustrates that the PSS provides sufficient gain to combat the effect of the AYR.
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Figure 3.4: Phase plots of Gp(s)

and PSS(s)

The final PSS including the washout tenn thus has the following fonn,

PSS _ 5s (1+0.165s) (1+0.165s)
- (1 + 5s) (1 + 0.0668s) (1 + 0.0668s)

The gain tenn Kpss does not have an infinite range over which the PSS remaIns

stabilising. There exist values of Kpss where the PSS will destabilise the system. The

PSS provides maximum damping at an optimum gain, Kopt . The gain, Kpss , may be

tuned to find K opt and achieve optimum damping, using the root locus (Larsen and

Swann, 1981). The gain was not tuned for optimum damping in this example. Bode

magnitude plots of the open and closed loop system, for all plant cases, are shown in

figure 3.5. Non-linear simulations using PSCADIEMTDC were perfonned to assess the

controller perfonnance. The small signal perfonnance of the PSS is shown in figure 3.6

with the large disturbance response shown in figure 3.7. It is clearly visible that the

controller is robust over the range of chosen operating conditions. Although this is

desirable, the issue of robustness was not accounted for in the design process. In the

example presented, the chosen operating conditions produce large differences in the

magnitude peaks of the open loop system at their respective oscillatory frequencies,

which may account for the eventual PSS being robust.
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Saturation of the AVR signal produces responses similar to those illustrated in Figure

3.7. This was however not the case in these studies. Any improvement in damping was

a direct consequence of the introduction of the PSS. In a complete research study the

large signal behaviour may be investigated more thoroughly for a range of operating

conditions.
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3.4 Summary and conclusions

This chapter outlined the design of a conventional PSS applied to a SMIB system. The

design approach is simple, requiring only that a worst case operating condition can be

identified. The PSS is then designed to provide optimum damping for the worst case,

with the view that all other plant cases will be sufficiently well damped. In the example

presented it is seen that the controller has the desired performance for all operating

conditions.

The approach presented in this chapter works well for the SMIB case. It has however

been shown that improperly tuned controllers of this type, when applied to multi­

machine systems can de-stabilise the lower frequency inter-area mode (Djukanovic,

Khammash and Vittal, 1998).

The following chapters explore robust techniques for damping controller design.

Within the Hoo framework the problem is formulated as a nominal plant with an

appropriate description of the uncertainty. This accounts for the parameter variation of

the plant model with changing operating conditions. QFT addresses the problem of

plant model variations with operating condition by requiring the formation of a

template that contains all possible plant models. The controller is then designed to

satisfy specifications at each frequency and for all plant models simultaneously.
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CHAPTER FOUR

Hoo based PSS design

4.1 Introduction

The concept of Hex> optimal control for robust controller design was first introduced

by Zames in the 1960's (Kwakemaak, 1993). The approach allowed for design with

robustness considerations, far more directly than other optimisation methods. It

made possible the synthesis of feedback systems, with guaranteed robust stability,

in the presence of norm bounded uncertainty. The most widely accepted solution to

the standard Hex> problem is the state space solution developed by Glover and Doyle

(Maciejowski, 1989).

There have been numerous attempts at designing controllers for power system

application within the Hex> framework (Klein, Le, Rogers, Farrokhpay and Balu,

1994; Ahmed, Chen and Petroianu, 1996; Rao, 1998a and Cui, Ukai, Kando,

Nakamura and Fujita, 1999). Rao, (l998a) outlines some important considerations

when applying Hex> to general controller designs. The key issues are the choice of

weighting function and avoiding pole-zero cancellations in the mixed sensitivity

formulation. It has been observed that all the plant stable poles are cancelled by the

controller zeros in the optimal solution to the mixed sensitivity formulation. The

choice of weighting function requires good engineering insight into the design

problem to ensure suitable controller synthesis for realistic design specifications.

This chapter outlines the design of a power system stabiliser (PSS) employing Hex>

concepts, for a single machine infinite bus (SMIB) system. The design is

undertaken for the operating range given in Chapter Three. The performance of the

PSS is assessed with a non-linear time domain simulation, implemented in

PSCAD/EMTDC. The range of operating conditions has been restricted but can be

extended with the relevant modifications to the problem definition.
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4.2 Theory of IL,

A brief outline of Hoo theory is now provided. For a detailed discussion the reader

should consult the relevant literature (Maciejowski, 1988; Kwakemaak, 1993;

Limebeer and Green, 1993).

Consider the single input single output (SISO) system in fig 4.1, with the plant P

containing no uncertainty. The closed loop transfer function is given by T(s).

II

Ty/u = T(s)

y

·~o

1rf 10'
frequency (,ad/sec)

10'

Figure 4.1: SISO system, output magnitude response

The infinity norm of a stable T(jm) is defined as,

11 T(jm)IL = maxi T(jm)1
w

4.2.1

which is the maximum magnitude of T(jm) over all co. If T(jm) does not have a

maximum value but is asymptotically close to some maximum value, equation 4.2.1

can be rewritten as follows,

11 T(jm)IL supIT(jm)/
w

4.2.2

This is the supremum or least upper bound of T(j m) V co. As a consequence of H
oo

belonging to the Hardy space of functions, T(jm) is stable if IIT(jm)lIoo has a finite

maximum value. The Hardy space is a set of functions on the complex plane that are
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both analytic and bounded in the right-half plane (Kwakernaak, 1993). If 11 T(jm) Iloo

is infinite, T(jm) is unstable by the same argument.

Equations 4.2.1 and 4.2.2 can be extended to deal with the multivariable case as

follows. Here G(s) will be a matrix of transfer functions. Each element is a rational

transfer function element. We thus have the following,

max a(G(jm))
w

4.2.3

This is the frequency dependent maximum principal gain of G(jm), in any direction.

Hence, the maximum principal gain, a (.), gives the peak value over all frequencies

of the worst-case gain of the matrix G(s).

Returning to the SISO case. If the maximum magnitude of T(jm) is required to be

limited by a weighting W(m), where W(m) is used to place an upper bound on the

magnitude of T(j m), over all frequencies such that,

I T(jm)1 < W(m) V m

or

4.2.4

4.2.5

From the sub-multiplicative property of matrix norms, (IIA x ~IL ~ IIA/L, x "~IICXl)' the

following statement can be made,

4.2.6

Combining equations 4.2.5 and 4.2.6 a matrix equivalent to the infinity norm

specification can be written as follows,
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< 1 4.2.7

The H
oo

norm bounded approach can thus be used to specify upper bounds on

system functions. Possible applications include disturbance attenuation and closed

loop performance specifications.

This brief discussion only serves to introduce Hoo as used in a robust stability

approach. An approach is now presented which makes use of the above arguments

to illustrate the use of the infinity norm when applied to plants subject to

uncertainty.

The SISO general plant perturbation model is shown in figure 4.2 with the plant P

and the uncertainty A. The signals 'q' and 'p' are the inputs and outputs to the

uncertainty respectively.

p

Figure 4.2: General perturbation model

If pes) is stable and .d(s) is stable, the small gain theorem guarantees stability of the

closed loop if the magnitude of the loop transmission, L=P.1, is less than unity. This

is formulated using the infinity norm as follows,

< 1 4.2.8
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An interpretation of the above statement on the Nyquist plane is: The Nyquist plot

of the maximum characteristic gain locus of the loop transmission cannot encircle

the (-1 +jO) point thereby ensuring stability. Thus the contour is confined to the

circle shown in figure 4.3.

Re.IAxis

Figure 4.3: Small gain condition represented on the Nyquist

plane

This leads to gross conservatism for plants whose Nyquist contour lies outside the

circle but never encircles the (-1 +jO) point. Equation 4.2.8 can however, be used as

a test for robust stability, by re-arranging a given plant structure to be equivalent to

that shown in fig. 4.2.

4.3 Uncertainty modelling

Considering a multi-input multi-output (MIMO) system, with Go(s) the nominal

transfer function matrix and G(s) the true transfer function matrix. The uncertainty

describing the difference between the true and nominal plants can be modelled in

one of many possible ways. The most popular models used are the,

additive model,

4.3.1
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input multiplicative model,

G(s) =G 0 (s) x [[ +~ i (s)]

and the output multiplicative model,

G(s) = [[ +~ 0 (s)] x G 0 (s)

4.3.2

4.3.3

The multiplicative model from equation 4.3.2 gives a relative, rather than absolute

uncertainty magnitude as is shown in the following equation,

I1 G-GoIL =11 Go~tlL

~II GolLxl1 ~tlL
4.3.4

as opposed to the additive model from 4.3.1 which gives an absolute uncertainty

magnitude,

4.3.5

Equations 4.3.1 and 4.3.2 with a controller introduced in the feedback path can be

represented as shown in figure 4.4(a) and 4.4(b) respectively.

(a) (b)

Figure 4.4: (a) additive uncertainty model; (b) multiplicative uncertainty model

- 31 -



______________________-=O:....;,.n;:....:H:..=.wPSS design

If the blocks G and A in figure 4.4(a) are SISO blocks with additive uncertainty and

the objective is to introduce a controller K in the feedback path. The controller K,

must be designed such that robust stability is guaranteed for all uncertainty (A).

Equating the section enclosed by the dashed box in figure 4.4(a), to P in figure 4.2,

this can be formulated as an H oo problem as follows,

< 'tI ro 4.3.6

If it is possible to place an upper bound on the magnitude of L1a with a known

function, Ba(m), such that,

the following result is obtained.

I K(jm)(I + Go (jm)K(jm)f 1 I

'tiro

'tiro

4.3.7

4.3.8

l.e < 1

This is a sufficient condition for robust stability of the closed loop in the presence of

norm bounded uncertainty (Rao, 1998a).

In the case of multiplicative uncertainty we have the following,

4.3.9

with Bm(m) being the function used to place an upper bound on the multiplicative

uncertainty. Equations 4.3.8 and 4.3.9 indicate that by proper choice of controller

K(s), the functions defined on the left of the inequality may be shaped to be smaller
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than their respective bounds. This is therefore a guarantee of robust stability of the

loop in the presence of uncertainty. If for example disturbance attenuation is the

desired criterion for the design of K(s), with the sensitivity function S = (l+GK)-1 $

W1( w), with W1( w) some chosen specification, we can write the following,

1(1 +GKfll 4.3.10

or using the arguments presented in equation 4.2.6,

4.3.11

A similar argument can be presented for the closed loop transfer function, TUw), as

follows. If W2( w) is chosen as the upper bound on TUw) we have the following,

1 4.3.12

These can be incorporated into a mixed sensitivity problem as follows

(Maciejowski, 1988),

1

4.4 Selecting weighting functions

4.3.13

The mixed sensitivity formulation of equation 4.3.13 yields a unique problem in that

the synthesized controller contains amongst its zeros, the open loop stable poles of

the plant. This results in the poorly damped mode being unobservable at the chosen

plant output, with no improvement in damping. Klein et at (1994) have exploited a

property of the Hex) algorithm to overcome this problem. The algorithm produces a
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controller whose zeros consist of the open loop stable poles of the plant and whose

poles contain the poles of Wj(s). The function Wj(s) may therefore be chosen such

that, included in its poles are the critical poles of the plant. W2(S) may be chosen to

satisfy the closed loop performance requirements. Klein et al (1994) have shown

that the specification on closed loop performance can be chosen as a simple high

pass filter to achieve the minimisation of the closed loop norm. The problem with

this approach is the inability to directly specify the amount of damping

improvement desired.

4.5 The standard Hoo problem

The following discussion follows the presentation in Maciejowski (1988). For the

block diagram of the generalised plant in fig 4.5, the 'input' (w), is a vector of all

the signals entering the system, 'error' (z) is a vector of all the signals required to

characterise the behaviour of the closed loop system. The vector of control signals is

represented by 'u', and 'y' is the vector of measured outputs. Some elements of 'w'

and 'z' can be connections to uncertainty blocks as described above.

w Z

r----1
pes)

f---

u y

'---- K(s) ~

Figure 4.5: Generalised plant model

If pes) is partitioned as follows,

4.5.1
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we can write,

and y = P21 W+ P22 U 4.5.2

Eliminating u and y by using u=Ky, where K is a feedback controller we have,

with

The standard problem becomes: Find a stabilising controller K(s) such that,

11~(p,K)IICX) < r

or

4.5.3

4.5.4

4.5.5

4.5.6

for some chosen ,,/, where F/(P,K) is a linear fractional mapping, as described by

equation 4.5.4, with the subscript 'l' denoting 'lower'. If the feedback path

containing K had been drawn above P, an upper transformation would be needed

(Maciejowski, 1988). The variable 'y' can be optimised iteratively to maximize

system robustness to satisfy equation 4.5.6.

In terms of the mixed sensitivity problem formulation, F/(P,K) becomes,

4.5.7
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The solution to this problem (Glover and Doyle, 1988) is given in Appendix C

without derivation but with a brief explanation.

MATLAB provides an implementation of the algorithm in the form of a toolbox

(Balas, Doyle and Glover, 1990). This toolbox has been used for the numerical

example presented in section 4.6 below.

4.6 Hoo PSS design example

The design presented in this section follows the ideas formulated by Rao (1998a)

for applying Hoo to PSS design for a SMIB system. A linearized model suffices to

represent the SMIB system for the purposes of the small signal design. A nominal

model is obtained by linearising the system equations around a chosen nominal

operating point. The modelling and system data are given in the Appendices A and

B.l, with the linearised model obtained from Kundur (1994). The uncertainty is

identified as the deviation in the plant frequency response from the nominal

response obtained at a chosen operating point.

In a power system, the range of operating conditions may include both stable and

unstable systems. Hence the use of the standard Hoo problem formulation may result

in an unstable Li. This contradicts the assumptions of the small gain condition (Rao,

1998a; p 32). A modification (Rao, 1998a) is therefore required to adequately define

the uncertainty without the above-mentioned violation.

If LiTm is assumed to be zero, inspection of the block diagram of the SMIB system

(Kundur, 1994), illustrates that the model variation can only be attributed to changes

in LiTe. The two contributors to changes in LiTe, are changes in rotor position (Lib),

and changes in the field excitation signal (Mfd ). Identifying the uncertainties and

representing them with upper bounds in the block diagram, results in figure 4.6

shown below.
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Figure 4.6: SMID block diagram with uncertainty
blocks added.

The range of operating conditions chosen for the design is given in Table 3.1. Case

one is chosen as the nominal operating condition.

To utilise the HOC! approach, bounds on the uncertainties (LJEjd and .1b) are required.

These may be obtained by plotting the frequency responses of the relevant transfer

functions (I1Tell1o and I1Tell1Vrej ) at each operating point and choosing functions

(Wy and W8), which place an upper bound on the uncertainty magnitudes (Rao,

1998a). This allows for application of the standard Hoo problem formulation. The

frequency responses of .1Tel.18 and .1Tel.1 Vrefi together with the chosen weighting

functions are shown in figure 4.7

The weighting functions Wy and W8 are incorporated into the state-space description

as follows,

4.5.1

In the chosen design example the nominal case (Case one) provided an adequate

bound on the uncertainty, as shown in figure 4.7, and no modification of the state­

space representation was required. This stemmed from case one having the

maximum magnitude in the frequency domain for the uncertainty paths.
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Figure 4.7: Magnitude plots of uncertainty transfer functions

0.2397 * (s + 111.4024)W - ---,-~--~--'-
v - (s + 6.7073)

w _ (0.184*s+1.1254)
8 - (0.1639*s+1)

The objective is to design a feedback controller (PSS), to minimize the infinity

norm of the closed loop transfer function, TL1w/vre;(s) , and guarantee robust stability

with improved system damping for all operating conditions. The weighting function

used in the algorithm to minimize the closed loop norm was chosen to have the

characteristics of a high pass filter. A Bode magnitude plot of the weighting

function is shown in figure 4.9 together with the plant behaviour.

The Reo optimal PSS is synthesized using MATLAB's Robust Control Toolbox. The

Reo algorithm produces controllers of unnecessarily high order. The Bode plot of the

resulting controller is shown in figure 4.8. A typical lead type characteristic is

demonstrated. The washout term is not included in the PSS transfer function shown

in the Bode plot of figure 4.8. The washout term is not part of the synthesized

controller and is added as a supplementary term.

Figure 4.9 shows the magnitude plot of all three plant cases with and without the

controller, compared with the weighting function. It is clearly visible in figure

4.9(b) that the controller minimizes the magnitude peak, of P(s) =TL1w/Vre;(s) , at the

oscillatory frequencies.
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Figure 4.8: Bode plot of the Hoo PSS

The controller performance in the presence of small disturbances at the AVR

reference input is illustrated in figure 4.1 O. The large disturbance response is

illustrated in figure 4.11.

Rao (1998a), highlights that the closed loop norm achieved was greater than one.

The same result was obtained for this example. This is an inherent shortcoming of

Hoo optimisation due to its conservativeness, as observed in figure 4.3, in assessing

system robustness.

20

.ff)

o _.,

40

.100"-:---~",,":"-~~_~ __.............J

10" 10· 10' 10'
frequency (rad/sec)

'H~O'-;-"----1~0.-~~.-.........10:-'--~....J1O'

frequency (radlsecl

(a) (b)

Figure 4.9: (a) Magnitude plot of the open loop plant P(s)

and (b) the closed loop T(s)

-- no controller - with Hoo controller .... weighting function, W3(s)
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4.7 Extending the range of operating conditions

To find a controller for an extended range of operating conditions reqUIres

following the steps identical to those presented in section 4.6. Figure 4.12 illustrates

bode magnitude plots of the uncertainty transfer functions for the operating

conditions of table 4.2 (Boje et ai, 2001).

p Q Xe comment

1.0 0.2 0.2 nominal

1.0 -0.2 0.3 leading p.f

1.0 0.5 0.3 lagging p.f

0.9 0.3 0.65 nominal

0.05 0.0 1.08 light load

0.5 -0.2255 1.08 0.9 pflead

0.05 0.0 0.15 light load

0.1 0.0 0.15 10% load

0.3 0.0 1.08 30% load

0.7 0.3884 1.08 0.85 pflag

0.9 0.4993 0.615 0.85 pflag

0.9 -0.4059 0.15 0.9 pflead

Table 4.2: Extended range of operating conditions.
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WoCico)
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Figure 4.12: Magnitude plots of uncertainty transfer
functions for the extended operating range
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W = 25
v (O.4*s+l)

_ 1.025 *(0.04s 2 + 4s + 13)Wo - __---->.. --L_

(0.02s 2 + 2s + 4.2)

It is clearly visible that the uncertainty region has increased and the required upper

bounds have become larger if the nominal operating condition remains unchanged.

Rao (1998a, p 36), outlines a design of a controller encompassing an extended range

of operating conditions. HCX) fails to generate a controller that provides robust

stability for the extended range of operating conditions. It is also shown that most

plants in the given plant still remain inadequately damped in the closed loop.
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4.8 Summary and conclusions

Hoo optimisation has been applied over a restricted range of operating conditions to

the design of a damping controller for a SMIB system. The controller is observed to

possess adequate robustness properties for the chosen range of operating conditions.

The key consideration for the design is the choice of the weighting functions.

The designer has no control once the synthesis procedure is set in motion. This is

due to the automated nature of the solution algorithm. Hoo optimal control is seen to

be efficient at generating robust controllers albeit of unnecessarily high order.

The inherent conservativeness in Hoo optimal control can be reduced by the

technique known as Mu (11) synthesis. This technique makes use of the quantity

known as the 'structured singular value' (SSV- 11). The SSV is a matrix function

that provides a generalization of the largest singular value ((f), (Djukanovic,

Khammash and Vittal, 1998). The definition of'11' for a complex matrix 'M, is the

smallest structured perturbation Ll, (measured in terms of a (Ll)), that makes det(I ­

MLJ) = O. The SSV is dependent on the complex matrix M and the structure of the

uncertainty 'Ll' and can be thought of as lying between the spectral radius and the

maximum principal gain of M. The problem definition for '11' synthesis thus

becomes one of finding an upper bound for the SSV of the matrix M while

simultaneously attempting to design a stabilising controller K. This results in a non­

convex problem (Rao, 1998a,b) and solutions are difficult to find. This approach

was not investigated as an application to controller design in this thesis.
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CHAPTERS

QFT applied to PSS design

5.1 Introduction

This chapter outlines the design for robust damping controllers (PSS), based on

Quantitative Feedback Theory (QFT) as applied to both the SMIB and multi­

machine cases.

Application of the QFT design philosophy has recently become widespread in the

design of damping controllers for power systems (Sedigh and Alizadeh, 1994; Rao,

1998a; Boje, Nwokah and Jennings, 1999; Boje and Jennings, 2001; Rao and Boje,

2001; Kelemen and Akhrif, 2002). The conventional QFT approach deals with

shaping of the loop transmission, \;jP E {P}, to satisfy bounds at every frequency

placed on the closed loop system functions, eg: output sensitivity function.

An introduction to QFT for an arbitrary SISO case is provided before practical

application to a power system is illustrated. A controller is designed for the SMIB

case with the same restricted range of operating conditions used in Chapters Three

and Four. The controller design for the SMIB case is then undertaken for an

extended range of operating conditions. The objective is to illustrate the ease with

which QFT handles templates of varying sizes and shapes as opposed to R oo • Both

these designs are treated as SISO type designs with the AVR and governor loops

closed. The final design example applies QFT to the more interesting and

challenging problem of multi-machine stabiliser design.

The first SMIB design proceeds as a standard SISO design for a SMIB case. The

range of operating conditions is then extended and the PSS is designed using the

ideas presented by Boje and Jennings (2001).
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The multi-machine PSS design is undertaken to encompass four operating

conditions, one being that of a generator outage scenario. The structured singular

value is introduced as an adequate system robust stability measure. It is shown to be

useful in obtaining the stability boundaries required in QFT controller designs for

multi-machine networks. The design follows on a recent paper by Rao and Boje

(2001) who have applied QFT to multi-machine PSS design.

A brief discussion of the multi-machine study system is also given to outline the

structure and define the problem to be solved. The study system is obtained from

Kundur (1994) and has been successfully used to study the problem of inter-area

mode oscillations (Klein et aI, 1992).

- 46 -



QFT applied to PSS design

5.2 QFT tracking design for SISO systems

Consider the generalised two-degree of freedom plant structure shown in figure 5.1.

disturbance
Do(s)

sensor

Figure 5.1: 2 DOF structure

If the plant has significant uncertainty and belongs to a set of plants, P(s) E {P},

containing both stable and unstable cases, the output Y(s) belongs to a set of outputs

{Y} for any given R(s). The closed loop tracking transfer function is given by,

T (s) _ FGP _ F L
YIR -l+GPH - H l+L

for L = GP.

5.2.1

The objective is to design G(s) such that variations in the plant cause Y(s) to lie only

within a defined region for a given input R(s). This is accomplished in the QFT

framework by placing magnitude constraints on the closed loop transfer function as

in equation 5.2.2 below. If the function F(s) is other than unity, it is typically

designed after G(s) to ensure that Y(s) achieves the desired tracking ofR(s).

v P, (() 5.2.2

Figure 5.2 shows tracking boundary specifications for an arbitrary example system

in the frequency domain with its translation onto the Nichols chart. This is done
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using the sisobnds(7, ... ) command from MATLAB's 'QFT' toolbox (Borghesani,

Chait and Yaniv, 1994). The area defined below the solid contours in figure 5.2(b)

is used as an exclusion region for the design of G at each frequency. The nominal

loop transmission Lo(j OJ) = Po (j OJ)G(jOJ) is manually shaped to simultaneously

satisfy the boundary constraint at all frequencies for every plant case in the plant

set. This guarantees robustness of the designed controller.

15

10

~ 0
.,
~ -5

l6' _10L-----­
:::lE

-15

-20

-25

-OO'----~~...o..1..-~-~ ..............._~~..............J
wo, 100 101 102

frequency (rad/sec)

-350 -300 -250 -200 -150 -100 -50
Phase (degrees)

Figure 5.2: Frequency domain boundary specifications with

translation onto the Nichols chart

Similar arguments can be presented for other system functions, for example the

output sensitivity function. Robust stability boundaries may also be added if

performance specification is not the only concern.

The ideas in SISO QFT are now illustrated with the simple example below (Boje,

2001). Consider a plant given by the following,

P=~
s

with k E [1,5]

Design a feedback controller G(s) to achieve the following,
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bI: 1_1_1 ~ -20dB V OJ ~ 0.5
l+L

b2: 1_1_1 ~ 3dB V OJ
l+L

These are magnitude specifications for the output sensitivity function. Figure 5.3(a)

shows the boundaries on the Nichols chart, plotted together with the nominal plant

chosen for k = 1. The nominal plant can be chosen as anyone of the possible plant

cases in the plant set. The boundaries are plotted using the sisobnds(2, ....)

command from the toolbox. Figure 5.3(b) shows the nominal loop after being

shaped, using the 'LPSHAPE' command from the toolbox, to satisfy the boundary

constraints. The controller is given by the change in gain and phase added to the

nominal plant to satisfy the boundary constraints.

.f oFO.5

J_2

'1 P(j'O)\
. Q 'J
;t/·

;0}=5~~J

-350 -300 -250 -200 -150 -100 -50 0
Phase

-350 -300 -250 -200
Phase

lO)=2

//~ro)

-150 -100 -50 0

Figure 5.3: (a) Nominal plant (b) Nominal plant with controller

A controller satisfying the above constraints is found with the graphical user

interface (GUI) in the toolbox and is given by,

G= 5
s/36.8+1

A controller that satisfies the design specifications exactly at each frequency and

minimises the high frequency gain, for a given excess of poles over zeros, may be

regarded as 'optimal' in the sense of minimising the high frequency noise. Practical
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controllers are low order and therefore probably will not be optimal in the above

sense.

The example serves to illustrate the use of QFT and its ease of application in the

SISO case. Figure 5.4 shows Bode magnitude plots of the output sensitivity function

for all plant cases satisfying the specifications used for the design of the controller.

-10

-30

100 10' 1d 1d
frequency (rad/sec)

Figure 5.4: '-' output sensitivity function, .... design specifications

5.3 Extension to the multi-variable case

5.3.1 Diagonal controller design

This section extends the design methodology of the first section to multi-variable

systems. This only serves to introduce some basic ideas on the vastly diverse topic

of multi-variable QFT design. A more in-depth discussion can be found in Horowitz

(1992), Boje (2001) and Yaniv (1999). The formulation outlined accomplishes the

design of G one element at a time and uses back substitution of the designed

controllers to ease over-design in the subsequent loops. This is not a sequential loop

closure approach as the specifications are used to over-bound the unknown elements

as will be illustrated. The output sensitivity function will be used to illustrate an

approach in MIMO system design (Boje, 2001). The controller structure is assumed

to be diagonal in nature. Let pes) in figure 5.1 be an m x m matrix in general, pes) E

{P}, but be described by a 2 x 2 case as follows for illustration,

- 50 -



QFT applied to PSS design

5.3.1.1

with the following assumed properties

1) P is diagonally dominant such that PIIP22 > Pl2P21 at frequencies of interest

2) P is square and invertible (to allow inversion required for this formulation)

The above assumptions are added to ease the discussion but are not a necessity. The

formulation may proceed without the requirement for the inversion of the plant

matrix but is not shown here. Constraint one is added to validate the argument for

the assumption of a diagonal controller structure. For plants displaying strong

interaction between the diagonal and off-diagonal elements of the plant matrix,

assumption one is invalid. Techniques do however exist to design controllers in this

case, with the controller comprising a de-coupling element and a diagonal controller

(Boje, 2001). The controller G in this formulation is defined as having the following

structure,

5.3.1.2

The design objective is identical to that in section 5.2. The output sensitivity

transfer function is chosen for the illustration and is given by,

T=(l +PCr l

Equation 5.3.1.2 can be re-written as follows,

(1 +PG)T = 1

1\

With P =p-I equation 5.3.1.4 becomes,

5.3.1.3

5.3.1.4
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5.3.1.5

Expanding equation 5.3.1.5 into its individual elements gives,

5.3.1.6

Writing the elements of P as ; ij = 1/ ,where the qij are transfer function
/qij

elements, equation 5.3.1.6 becomes,

5.3.1.7

Multiplying each row of equation 5.3.1.7 by the respective qii element it becomes,

5.3.1.8

Solving for the individual rows with, li =qUgi' equation 5.3.1.8 gives for row one,

5.3.1.9

and

5.3.1.10
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Equations 5.3.1.9 and 5.3.1.10 give two design equations for the first controller

element, gll' but still contain the unknown tij elements preventing a solution for

the controller. Over-bounding the unknown elements with their respective

specifications and using the Schwartz inequality to generate the maximum boundary

specification circumvents the problem. If the magnitude of tij (jm) ::; aij (m) for all

co and P, each unknown element tij (jm) may be replaced by a known aij (m) in the

design of the first loop as follows,

1 all-- < ----;---'--'-----;-
1+ /1 - q

max1+a _11
21

ql2

1 a l2-- < ---:---=--~
1+ /1 - q

max _11 (a
22

+ 1)
ql2

5.3.1.11

5.3.1.12

The design for gl may now proceed as for a SISO system. After the design of gl is

accomplished, the unknown elements for the design of the second loop may be

removed from equation 5.3.1.6 by using Gauss-Jordan elimination in the following

way. The first row is replaced by,

R ~R X P2J
1 I"

PII +gl

The second row is then replaced by,

Written explicitly, equation 5.3.1.14 becomes,

5.3.1.13

5.3.1.14
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5.3.1.15

Replacing the terms not containing g 2 in equation 5.3.1.15 by,

5.3.1.15

the familiar SISO formulation emerges,

,,* 1
t 22 =

P22 =,,* 1+ Z;P22 + g2

,,* 1P21 q22
t 21 = =---

" *
Q2I l + Z;P22 + g2

5.3.1.16

where jJ;j = 1/ q;j" Equation 5.3.1.16 gives two exact design equations for g2

without the requirement for over-bounding the unknowns. This is true for the last

design step of any controller design using this formulation.

The design for reference tracking is marginally more difficult and an example of the

first element of the first row, t l1 , is shown in equation 5.3.1.17. The pre-filter F(s) is

chosen to be identity. For a tracking transfer function given by equation 5.3.1.17.

T =PGF(I + PGr l

The first element of the first row is given by,

5.3.1.17
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5.3.1.18

If the requirement is, b(m) < It11 (jm)1 < a (m) , the specification on t11 now needs to

be divided between the two terms on the right hand side of equation 5.3.1.18. This

is shown graphically in figure 5.5. The design is now 'split' into two parts and is

shown in equation 5.3.1.19. A closed form solution to calculate the boundaries has

been formulated by Boje (2001).

1
- < 8(m)
1+ I1

5.3.1.19

1
b(m) + 8(m) < _I < a(m) - 8(m)
~1+/1~

h'((t)) ~'((t))

Figure 5.5: Boundary division for

tracking design

- 55 -



QFT applied to PSS design

5.4 SMIB PSS design example using QFT

5.4.1 Design for a restricted range of operating conditions

This section outlines the SISO QFT method applied to SMIB PSS design. The

machine model used here is the same as that used in all previous examples

presented. The machine model assumes the presence of an AVR but no governor

controls. The restricted range of operating conditions as used in Chapters Three and

Four is once again used for the design. In QFT designs the plant is described as a

complex number at every frequency, for each plant case. The uncertainty is defined

as the deviation in the frequency response for each plant case, with respect to a

chosen nominal plant case. The nominal plant case in this example is chosen as

Case One in Table 3.1. The open loop plant template can be formed as a set of

complex numbers that contains all possible plant behaviours at every frequency

considered, thus completely describing the plant uncertainty. The open loop plant

characteristics are once again shown in figure 5.6 for ease of reference.

40

20

cc 0
:!:!.
Cl

E -20
C
g>
E -40

-80 PIs)

case 1

---

-100'-:---~~~~~~~~~~............J

10.1 100 101 102

frequency (rad I sec)

Figure 5.6: Open loop plant characteristics (T;.,. IV )
OJr re!

The design specifications (2) and (3) given below are chosen based on the open loop

plant behaviour and follow on the ideas presented by Boje et al (1999). The

specifications may be modified to suit practical design needs.

1) Stabilize the unstable plant cases
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QFT applied to PSS design

\jP, OJ to ensure robust stability

P3) -- ~ -10dB \jP, OJ to provide improvement in the closed loop damping
1+ I pss

The element P, in specification three above represents the open loop plant with the

AVR loop closed. The specification of -10dB for closed loop performance

improvement around the modal frequency was chosen to minimize the magnitude

peaks displayed by the open loop plant. This example is illustrative and the

specifications may not be realistic in practice. Practical design specifications are

normally defined as a client requirement. The loop transmission described in

specification three above is lpss = Pgpss , where gpss represents the PSS description.

The specifications for the design are translated onto the Nichols chart and the design

constraints are shown in Figure 5.7(a), plotted for frequencies around the oscillatory

mode of each plant case.

-20

40
(0=8

-350 -300 -250 -200 -150 -100 -50 0
Phase (degees)

(a)

'\
\

\ GO =0.1
~

.lY.J ·3t5 ·27lJ .n:; ·18) -135 ·00 ·45
Open.LoD~ P~:D (dllGl

(b)

Figure 5.7: (a)Boundary constraints for the SMIB system

(b) nominal plant with the controller added

After shaping the nominal plant to satisfy the boundary constraints, the PSS is read

off from the GUI in the normal manner. The nominal plant with the designed

controller in place is shown in figure 5.7(b). The PSS that stabilizes and meets the

specifications for all three plant cases is given by equation 5.4.1.1.
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(5s +1) (0.0352s + 1)
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5.4.1.1

A Bode plot of the resulting PSS, before addition of the washout term, is shown in

figure 5.8 below. A lead network once again suffices to meet the requirements for

the design. The phase lead added is approximately the same as that added by the

conventionally designed PSS of Chapter Three. The Hoo PSS of Chapter Four adds

marginally more phase lead for the same operating conditions. The gain

contributions of all the PSS' s are approximately the same.

Figure 5.9 shows the Bode magnitude plot of the closed loop system after the

addition of the PSS. The closed loop magnitude does not exceed the design

specification as expected. The PSS performance for disturbance conditions is

assessed using a non-linear simulation in PSCAD/EMTDC and the results are

shown in Figures 5.10 and 5.11. Figure 5.10 illustrates the closed loop behaviour for

small step changes in the AVR input. Figure 5.11 illustrates the controller

performance in the presence of a three-phase fault at the infinite bus.

113 1--- - - - - ­

~ 14 1-- - - - -­

-g 12.-g,
~

13 ------

50

40

20

10

~ o.:-:c-,,--'----'---'----'--'--'-'-'1~OOO ----'---l.-~'--'--'---'-1LJO'--;-' ----'--'----'-.-i-i--'-..:.-"-J
1

0'"

f"requenc::y (rad/sec::)

Figure 5.8: Bode plot of the controller
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Figure 5.9: - Magnitude plot of the closed loop plant T(s)
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5.4.2 Extending the range of operating conditions

Increased bandwidth of the terminal voltage control loop has invalidated the

assumption that the speed and voltage control loops are completely de-coupled and

can be designed as independent SISO systems (Boje et aI, 1999). In this example

the effect of the PSS on the mechanical and electrical systems will be illustrated.

The effect on stability, of both the mechanical and electrical loops after the addition

of the PSS will be highlighted. The machine in this example is modelled as a two­

input, two-output, third order system and is given in Appendix B.3. The inputs are

changes in the mechanical torque and the field excitation signals. The outputs are

chosen as the rotor speed deviations and changes in terminal voltage. The AVR and

governor controls are provided as external controllers added to the system

(Appendix B.3). The speed and voltage controllers are incorporated into the forward

path of the system description. In the transfer function description the off-diagonal

elements represent the coupling between the electrical and mechanical systems. The

range of operating conditions for this example has been extended to show how QFT

deals with a large operating range as compared to Hoo • The range of operating

conditions for the design is given in Table 4.2 (Boje et aI, 2001). The work

presented here closely follows the work presented in the above reference.

The machine is described by a third order linearised model and is taken from

Kundur (chapter 12, 1994)

The elements of the open loop plant matrix pes) without the controllers in place is

given in Appendix A.3. With the speed and voltage controllers in place the closed

loop description reduces to,

5.4.2.1

With the speed and voltage loops closed the system can be viewed as a SISO system

if I1Tm (s) is considered to be zero. The PSS is the only element of a feedback

controller G given by,
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5.4.2.5

With the PSS added to the system, the closed loop tracking transfer function

becomes,

o J(t 11 t12 J
1+tl2 g pss t21 t22

5.4.2.6

where t;\ =t21 + (t2/12 - t11t22 )gpss' The element T in equation 5.4.2.6 above

represents the closed loop transfer function with the speed and voltage loops closed.

Writing the equation for the output speed deviation after the PSS is added to the

open loop system as,

5.2.2.7

it can be seen that t12 (s) represents the effect of changes in ~Vref on the output

speed deviation. It is evident from equation 5.4.2.6 that the overall stability of the

system is determined by the stability of the power system stabiliser loop. Boje et al

(2001) indicate that designing the power system stabiliser loop to be stable will

ensure stability of the closed loop system, provided that there is no state that is

unstable, being unobservable from the speed measurement and uncontrollable from

the AVR input.

For regulation of output disturbances, following the steps similar to that of the

tracking objective, the output sensitivity function after the PSS is added becomes,

5.4.2.8
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Written explicitly equation 5.4.2.8 is given as,

5.4.2.9

with the S;j' as follows,

S;I = S21 + gPSS(t12 S 2) -t22 S tt)

S;2 =S 22 + g PSS (t12 S 22 - t22 S 12 )

It is again evident that stability of the PSS loop is shown to have an impact on the

stability of the overall sensitivity function. The design can now commence with the

specifications (Boje et ai, 2001), as follows

1) Stabilise the plant if unstable

, to ensure robust stability

3) t ll ~ (10 dB + It)) (jO)ldB) \;j OJ, to provide damping torque in the speed loop
1+ Ipss

The range of operating conditions is given in table 4.2. Extending the range of

operating conditions only requires increasing the size of the template describing the

region of possible plants. This is more straightforward that the Heo method which

requires bounding the uncertainty. Because of the over-bounding required on the

extended uncertainty in Heo for this example, a solution to the design problem could

not be found. Figure 5.12 shows the open loop magnitude plots of the transfer

function matrix elements. The design once again proceeds with plotting the

boundaries and shaping a chosen nominal plant loop. An initial 'guess' for the

controller can be made consisting of only the washout tenn to include its effect on

the overall designed PSS. Figure 5.13 shows the closed loop plant matrix elements

with the designed PSS in place. Figure 5.14 and 5.15 illustrate non-linear time

domain simulations for small and large disturbances for all operating conditions of
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Table 4.2. Figure 5.14 shows the system response to a small change in the AVR

reference input, with figure 5.15 showing the system response to a three-phase fault

at the infinite bus. The non-linear simulations were carried out in MATLAB. The

original software was provided by Rigby (2000). The required changes were made

satisfy the specific requirements of the example.
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The rotor speed deviation Figures 5.14 and 5.15 is given in radians per second.
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5.5 Multi-machine PSS design

The distributed nature of large power systems makes the design of robust multi­

machine power system stabilisers a formidable task. The problem is further

constrained by measurements for each machine only being available locally for

feedback. Interaction between the machines and controllers demand that the

individual controller designs proceed in a co-ordinated manner. Various attempts

have been made to circumvent the drawbacks associated with such a design task.

The PSS design for multi-machine systems can be formulated as the decentralised

stabilisation of a large-scale system problem. Yang, Zhang and Yu (1999) introduce

the use of the structured singular value in a novel way to accomplish such de­

centralised designs. The structured singular value (SSV - 'Jl ') is used to determine

stability regions within which the closed loop system transfer function elements

must lie to ensure that the designed controllers remain stabilising. The approach

relies on results based on the SSV derived by Grosdidier and Morari (Yang et aI,

1999). Rao and Boje (2001) have used a similar formulation to calculate these

stability bounds in multi-machine PSS design to allow formulation within the QFT

framework, and is the basis for the work contained in the example presented. More

detail on the use of the SSV in stability boundary calculations in QFT is given in the

course of this example.

The study system chosen to illustrate the design has previously been used by Klein

et al (1991, 1992) to investigate the factors influencing the performance of power

system stabilisers and to study the fundamental nature of inter-area oscillations. The

next section provides an over-view of the four-machine study network. The effect of

the inter-area mode, for a chosen operating point, on tie-line power flow is

illustrated, highlighting the need for the application of PSS's.

5.5.1 The four machine study network

The system chosen to illustrate the design of PSS 's for multi-machine networks is

obtained from Kundur (1994, ch 12, p813), and has been shown to be insightful in

system stability studies (Klein et aI, 1991,1992) albeit of small size. This is a four-
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machine network comprising of two areas connected by a dual circuit tie line. The

machines in each area are identical. Figure 5.16 shows a line diagram of the

network with the

Area 1
distances given in Ion

Area 2

Figure 5.16: Two-area test case

machine data given in Appendix DJ. Four operating conditions are chosen for the

design and are given in Table 5.1 (Rao and Boje, 2001). A generator outage

scenario is included as one of the operating conditions. This case is chosen to

illustrate how changes in the physical description of the network can be

incorporated into the design with minimal effort. The nominal operating condition is

chosen as Case A, in Table 5.1.

Case Operating condition

A Base case, area one exports 400MW to area two

B Area one imports 400MW from area one

C Base case with one of the parallel sections of 11 Okm tie line out of circuit

D Gen 4 o/c, load in area two reduced to 1130MW, area one exports 450MW to

area two

Table 5.1: Operating conditions for the two-area system

For the nominal case, Area one exports 400 MW to Area two. The system possesses

three oscillatory modes, two being local modes and the third being an inter-area

mode. A non-linear implementation in PSCADIEMTDC used throughout the study

is shown in figure 5.1 7. The effect of the inter-area mode on the tie-line power flow

for the nominal case is shown in figure 5.18. The first two seconds of the simulation

is required by PSCAD/EMTDC for initialisation of the model. The inter-area mode
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QFT applied to PSS design

manifests itself as an oscillatory component of the tie line power. Chonco (2000)

used a nonlinear formulation similar to that given in Figure 5.17 to investigate the

use of FACTS devices to damp the inter-area mode oscillations in the same study

network. In the design example, each generator is to be fitted with a PSS. To fit the

design problem within the QFT framework, linearised models of the network are

required to enable the formation of a template containing all possible plant

descriptions. These can be

INTER-TIE POWER FLOW

300

! 250

0:

~ 200
o
n.

150

100

50

8763 4 5
llME (sec)

2
oL..-_"---_"---_..L.-_..L....-_..L....-_..L....-_-'------l

o

Figure 5.18: Effect of the inter-area mode on
inter-tie power flow

obtained by using the 'Power System Toolbox' (Cherry Tree Scientific Software,

1993), with the bus and line data obtained from PSCAD/EMTDC. An illustration on

obtaining the linearised model for Case A of Table 5.1 is shown in Appendix D.2.

The linearised models for the design example were obtained from Rao (1998) due to

the limited scope of this thesis.

5.5.2 The structured singular value as a stability measure

A MIMO plant represented by the nxn transfer function matrix P(s), admitting a

diagonal regular splitting, can be written as the sum of the diagonal and off-diagonal

parts as follows:
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5.5.2.1

with the interaction matrix defined as

G p

5.5.2.2

Fig 5: 19: Equivalent feedback structure

If a diagonal stabilising controller, G = diag(gii)i=I,2,..n, exists as shown in figure 5.19,

and the individual closed loop transfer functions can be defined as,

T = diag( Piigii J
1+ Piigii

5.5.2.3

The closed loop system with the controller G IS stable under the following

assumptions, (Yang et aI, 1999; Rao et aI, 2001),

1) The system does not have any unstable de-centralized fixed modes

2) P and Pd have an equal number of right half plane poles

3) The elements of T are stable (by design)

if all elements of T satisfy the following

5.5.2.4
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with JL(.) being the SSV of the argument. This is a sufficient condition for stability

of T(s) provided the controller is designed based on the elements of Pd. This implies

that each element, gii, must be designed independently on a single input-single

output system P
dii

• Equation 5.5.2.4 implies that for stability, the magnitude of the

frequency response of the SISO closed loop elements of T must be less than a scalar

frequency dependent function, l/JL(M(jm)) , (Yang et aI, 1999). A toolbox is

provided in MATLAB (Balas, Doyle, Glover and Packard, 1993) to calculate the

SSV and has been used for all the calculations in the example presented. Equation

5.5.2.4 illustrates the use of the SSV to place magnitude bounds on the individual

elements of T to ensure closed loop stability. The term on the right hand side of the

inequality in equation 5.5.2.4 may be viewed as a circle within which all elements

of T are constrained to lie to ensure stability.

5.6 Design example

All the participating generators in the test system affect the inter-area mode

damping. The total damping will therefore be the sum of the contributions from the

individual machines. As previously mentioned all generators are to be fitted with

stabilisers in this example due to the small size of the study system. To incorporate

the situation of a generator outage scenario requires minimal computational effort

since the plant response is a complex number at every frequency. The design

frequency range has been chosen to encompass the movement of the oscillatdry

modes with changing operating condition. The technique presented is a sequential

design approach as each stabiliser is designed one a time. It should however be

mentioned that this does not represent a sequential loop closure type approach.

The stability and performance bounds are calculated at each operating point and the

intersection of these plotted on the Nichols chart is used as the design constraint.
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5.6.1 Stability boundary calculations

The SSV has been shown in section 5.5.2 to be an effective way of computing

stability bounds in design applications. Rao et al (2001), highlight that bounds

computed in this manner can be rather conservative when applied to power systems

that display high levels of inter-action between the diagonal and off-diagonal

elements of the transfer function matrix. Applying equation 5.5.2.4 to the study

system of figure 5.16 clearly highlights this shortcoming. This is demonstrated by

figure 5.20 which shows the J.1(M) for the example system of figure 5.16, plotted

against the elements of T, for case A of Table 5.1. The shortcomings of using

equation 5.5.2.4 to produce boundaries on the elements of T, are clearly evident

around the inter-area mode frequency of 3.74 rad/sec. The bound is seen to be

adequate at the higher local mode frequencies. The stabilising controller used is

given by equation 5.5.6.2. The arguments presented are not entirely meaningless for

application to power systems. Rao et al (2001) show that instead of placing a bound

on the diagonal elements of the closed loop transfer function, it is possible to use a

similar formulation to generate the required bounds on the controller frequency

response.
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Figure 5.20: ---- Magnitude of the elements of T, ,
- '1/J.1(M)

This may be accomplished in the following manner. If a nominal controller Go

exists, such that application to the individual input/output pairs in P results in stable

-72 -



QFT applied to PSS design

closed loops, and 11 = diag(l1ii) is an additive perturbation in the controller matrix,

shown in figure 5.21,

-,
I
I
I
I

:G
I
I
I
I
I
I

I I~ J

Figure 5.21: Nominal PSS with added perturbation

Using the definition of the structured singular value (Rao et ai, 2001) the system

remains stable if,

5.5.6.1

This once again generates circular regions, now centred at goi, at every frequency.

The radius is given by the term on the right of the in-equality. The intersection over

the plant set of these circles at each frequency is the region within which all

stabiliser responses must lie to ensure stability of the closed loop system. The

stabilising controller for this study network is obtained from Klein et al (1992) and

is given by,

g . = 20 10s 1+ 0.05s 1+ 3s
01 1+10sl+0.02s1+5.4s

5.5.6.2

Applying equation 5.5.6.1 to the example system, the stability bound on PSS design

at the inter-area mode frequency of 3.74 rad/sec is shown in figure 5.22. In the

chosen example the stabilising controller is identical for all machines. The

controller is thus given by Go = gol, where the identity matrix is of the same

dimension as P. For multiple operating conditions the bound for robust stability is
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the intersection of the bounds calculated at each operating condition. In the example

system, since the stabilising controller is identical for all machines, all the circles

are centred at the same point, goi, and the stability bound becomes the circle of

minimum radius.

15~-----r---""---"'-----'----'

10"--1:
5 ·······i··············(···········j··············t .

~ i ~ ~ !
.- : : +90(3.74): :

o __+_'--'H--\--

5--- -1--T-----1--- r-
.10 L.-_---'-__-L-__..L.-_---l.__--'

o 10 15 20 25
real

Figure 5.22: Stability bound on PSS response

at the inter-area mode frequency

5.6.2 Determining the performance specifications

The application of PSS's is not only necessitated by the requirement for system

stability. An improvement in the closed loop performance is also generally desired.

In this design example the requirement is for a stabilising PSS that enhances the

overall system damping, thereby improving the closed loop performance. The open

loop transfer functions from the AVR to rotor speed for each individual machine

demonstrates behaviour that contains magnitude peaks at the modal frequencies.

This is due to inadequate damping of the dominant poles. Specifications on the

closed loop performance may be generated in any number of realistic ways for use

within the QFT framework. The specifications in this illustrative example are

formulated along the lines presented in Rao et al (2001). Since the design of each

stabiliser is treated as a SISO design, it is possible to impose performance
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restrictions only on the diagonal elements of the transfer function matrix to achieve

the desired effect. Placing upper bounds on the closed loop magnitude of the

diagonal elements, at the modal frequencies will increase the damping and give the

required performance improvement. In the design example the off diagonal

elements contain the same dominant poles as the diagonal elements of the transfer

function matrix. Therefore, an improvement in the damping of the diagonal

elements will guarantee improvement in the damping of the off diagonal elements.

The chosen specifications on the closed loop magnitudes can be converted into

bounds on the controller frequency response, (Rao et aI, 2001). For example, a

SISO plant with open loop transfer function pes), and a controller g(s) with positive

feedback has the closed loop transfer function given by,

t(jm) = p(jm)(1- p(jm)g(jm)rl 5.6.2.1

If the magnitude of tOm) is to be bounded by a function a(m), equation 5.6.2.1 can

be written as

It(jm)1 = Ip(jm)(1- p(jm)g(jm)rll < a(m) '\I m

or

'\I m 5.6.2.2

Equation 5.6.2.2 defines a circular region of radius a-I(m) centred at the point

p -I (jm) outside of which the controller response, g(jm), should lie. These

regions are easily transferred onto the Nichols chart, using genbnds(1 0, ... ), for use

in a normal QFT type design. If the intention is to only directly affect the dominant

pole damping, the performance bounds may be obtained by simply replacing the

dominant poles in the plant, pes), with poles of the same frequency and the desired

damping factor (Rao et aI, 200 I). The magnitude plot of the transfer function for

generator one's AVR input to speed output for Case A of Table 5.1, is shown in
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figure 5.23, compared with the same function when the dominant poles are replaced

with poles of the same frequency and damping factor of 5%.

It is important to bear in mind that bounds calculated in this manner are operating

point dependent. At each operating point, the useful boundary is the intersection of

the individual bounds.

-10
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·25
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~.3J

"-g, ·35

E
-40

·45
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-55
10'10°
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Figure 5.23:- ..... Magnitude plot of the plant element

- Plot of the modified function

An example of the stability and performance bounds on the Nichols chart, for Case

A, is shown in figure 5.24. The controllers are designed to lie in the intersection of

the stability and performance bounds at each frequency. Figure 5.25(a) illustrates

the intersection of the boundary regions for Case A, plotted at co = 2.85 rad/sec. The

regions of intersection between the stability and performance bounds may be very

small or even not possible. The gain of the nominal controller can be increased

resulting in an upward shift of the stability bounds on the Nichols chart. The only

condition is that the nominal controller still stabilises the plant. The performance

requirements can also be adjusted for more realistic damping of each system mode.

The overall damping for the inter-area mode should however not become too small

as this negates the entire design objective. The plot of the designed controller for

generator one is shown in figure 5.25(b) together with the specifications for Case A.
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The equation of the final diagonal controller meeting all the specifications has the

elements given below:

g .. =30 10s 0.1211s+1
11 (1 Os + 1) (0.00925s + 1)

g .. = 12.5 10s 0.1523s + 1
11 (1 Os + 1) (0.0073s + 1)

i = 1,2

i=3,4
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The controller perfonnance for small disturbances at the AVR reference input of

each generator for all the operating conditions is shown in figure 5.26. The network

is then subjected to a large disturbance in the fonn of a three phase to ground fault

at bus eight. The system response to the large disturbance for all operating

conditions is shown in figure 5.27.
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Figure 5.26: System responses to a 5% step disturbance at the

AVR input of all generators for 100 ms : cases a-d
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5.7 Conclusion

This chapter has shown the use of QFT for robust damping controller design. The

development from the single-input single-output to the multivariable case is

illustrated. The problem of damping controller design for multi-machine power

systems has been examined using a four-machine study system (Klein et ai, 1992;

Kundur, 1994). The necessary extensions required to enable multi-machine

damping controller design within the QFT framework is introduced (Rao et ai,

2001) and used to accomplish PSS design for the study network.

The time-domain simulations are undertaken with a detailed model in

PSCAD/EMTDC. These simulations were used to assess the controller performance

at each of the chosen operating conditions. The results show that the designed

controller meets the requirements of being both stabilising and enhancing the closed

loop performance.

The effect of different load models has not been investigated. The outlined

methodology can be easily extended to incorporate different load models. As the

load model changes the corresponding linearised system description will change to

reflect this. These are then added to the description of the system uncertainty in the

manner outlined in this chapter.

In multi-machine power networks damping controllers may not be required on

every machine. Damping controllers need only be applied to machines participating

in a specific oscillatory mode. The identification of these of these generators

commonly relies on residue techniques and participation factors. This topic has not

been investigated since all generators participate in the unstable inter-area mode of

this example. The poorly damped local modes are also well damped after the

addition of the stabilisers.

The next chapter makes concluding remarks on the thesis in its entirety and outlines

the scope for further work.
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CHAPTER SIX

Conclusion

This thesis has illustrated the design of power system damping controllers using three

different approaches. This chapter discusses their relative merits, and concludes with

some suggestions for further work.

6.1 Comparative analysis

Chapter Three illustrated the conventional PSS design methodology applied to the

design of a damping controller for a SMIB system over a restricted range of operating

conditions. The ease of application of the conventional design method is overshadowed

by its lack of robustness considerations during the design process. For controllers

designed in this manner the design operating point must be very carefully chosen. This

may prevent the controller exciting other potential oscillatory modes that exist

elsewhere in the frequency domain due to the changing operating conditions.

Chapter Four introduced the first of two robust design methods for robust PSS design.

Hoo optimisation has been shown to be effective in producing a robust controller for a

restricted range of operating conditions. One shortfall of this method is that it can be

very conservative for robust stability analysis and cannot explicitly handle pole­

placement type specifications. The choice of the weighting functions for minimisation

of the system norms is also of paramount importance during the design process. The

order of the controllers generated are dependent on the order of the plant model and

weighting function used and is generally of unnecessarily high order. The order of the

SYnthesized controller increases with an increase in order of the plant and weighting

function description. This may make the controllers practically unrealisable when high

order plant and load models are required. The excitation system used in the plant
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description during the design was a high gain static model. In practice there may for

example be necessary requirements for the addition of transient gain reduction, which

results in a corresponding increase in controller order. Care needs to be taken to define

the plant uncertainty in a meaningful way without violating the standard definition

within the Hoo formulation. If the operating range increases, the uncertainty description

increases and a new weighting function is required to adequately describe the deviation

from a nominal plant model. This makes dealing with added operating conditions

labour intensive once the design process has begun.

QFT is shown in Chapter Five to be effective in the design of stabilizers for the SMffi

and the multi-machine cases. In the design of the PSS for the SMffi case, the design

proceeds with ease once the specifications in the frequency domain are adequately

defined. The model uncertainty has an accurate description as opposed to that of Hoo

outlined above. Increases in plant and load model order are also easily dealt with, as the

plant description is a simply complex number at every frequency. PSS design was also

outlined for a multi-machine study network displaying both local and inter-area modes.

The decentralized nature of the design problem in the multi-machine case makes it

difficult to find meaningful stability boundaries for the design. The structured singular

value has been shown to be useful in alleviating such drawbacks. A stabilizing

controller has been successfully designed for the four-machine test system. A

PSCAD/EMTDC implementation was devised and used for the performance

assessment of the designed controller.

6.2 Suggestions for further work

The thesis has shown two approaches to robust controller design. The limited scope of

the thesis made it impossible to deal with all aspects and was confined to the key

considerations contained herein. In a full research thesis it may be appropriate to

conduct laboratory testing of all the designed controllers. The development of linearised

models for the four-machine test system was also beyond the scope of this thesis and
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more accurate models can be found. This will ensure that the designed controllers

reflect more accurately controllers that may be implemented in practice. The design

specifications together with practical operating ranges may also be obtained from a

reputable power utility to facilitate a realistic design that will result in practical

laboratory simulations.
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Appendix A

Modelling of the SMIB system

The following model of a single machine infinite bus (SMIB) system is obtained from

Kundur (1994) and is included for ease of reference. The meaning of symbols can be

found in the list of symbols at the beginning of the thesis. All quantities are in per unit

unless otherwise stated.

The general configuration for a single generator connected to an infinite bus VIa a

transmission line, with line resistance ignored, is shown below

P,Q

GEN

Figure A.l: schematic of the SMIB system

The damper winding and stator transient effects are ignored in the following discussion

but can be added easily in the frequency domain design.

The generator in figure A.l, without an automatic voltage regulator and excitation system

can be described by the equations given below. The numbers within brackets represent

the numbering in the reference (Kundur, 1994).
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A.I.1 (12.115)

A.I.2 (12.115)

AI.3 (12.115)

where

A.I.4 (12.108)

and

A.I.5 (12.108)
f

A.I.6 (12.108)

A.I.7 (12.108)

The effect when field excitation control with a AVR added, is illustrated in the block

diagram below (Kundur, 1994; p 759)
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Voltage V
ref E

I
tranlSducer~Vl_ +,, __ xciter

_E_t
_ ~ .1 K a I F E,rd

. l+sTR , ---I

Efmin

Figure A.2: Thyristor excitation system with AVR

The terms Efmax and Efmin in figure A.2 above is added to exciters implemented practically

to prevent saturation of the field in any direction. Field saturation effects were not

considered during the course of this thesis. The differential equation describing the state

variable associated with the AVR is

• K s K 6 1
/1v] =-/18+-/1 l1f --/1vT T 't' fd T ]

R R R

A.1.8 (12.135)

Taking into account the effect of the exciter and the AVR on equations A.1.1-A.1.3, the

complete state-space description, with L1Tm equal to zero, is given by

K D K] Kz
0

2H 2H 2H 0

/1OJr OJo 0 0 0 /1OJr 0.
/18 /18

A.1.9 (a)= + Vref

/1'f/fd
K3K4 1 K3Ka /1'f/fd K3Ka0 --- ---

~Vl
1; 1; 1; /1v] 1;

0
Ks K6 1

0
TR TR TR

With the rotor speed deviation chosen as the output of interest

C = [1 0 0 0], D = [0] A.1.9 (b)

A.3
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The fonnulae for the constants K]-K6 are given below

E BEqO
K I = 2 (R T sin 8 0 + X Td cos 8 0 ) +

RT + X Tq X Td

EBi qo '.
2 (X q - X d)( X Tq SIn 8 0 - RT cos 8 0 )

RT + X Tq X Td

K - Lads [ RT E (XTq(Xq -X~) 1J.]
2 - 2 qO + 2 + l qO

Lads + Lld RT + X TqXTd RT + X TqXTd

( J
-1

L +L X ,K = ads Id 1 Tq (X - X )
3 + 2 d d

L adu R T + X Tq X Td

T 3 = T; 0 s (1 + X Tq (X d - X ~ )J-1

Ri + X Tq X Td

K L Lads E B ( • s: s: )
4 = adu 2 X Tq SlnuO -RTCOSuo

Lads +Lfd RT +XTqXTd

where

X Tq = X e + (Laqs + LI)

(12.123)

(12.124)

(12.126)

(12.127)

(12.128)

(12".133)

(12.134)

(12.105)

(12.105)

AA
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(12.105)

and the subscript's' denotes the saturated value of a quantity. All quantities are given in

per unit. The block diagram representation of the SMIB system is shown below

.----------l K 4 t--------------,

Figure A.3: SMIB block diagram
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Appendix B

B.l : System data

This appendix gives the parameters for the single machine infinite bus system (Kundur,

1994; p 732,752) used in the examples presented in this thesis. All quantities are in per

unit unless otherwise stated.

Generator

Ra = 0.003

X d =1.81

X q =1.76

Xl =0.16

X~ =0.3

T~o =8.0sec

H=3.5

K D =0

(VO = 377rad / sec

Vb =1.0

AVR and exciter

K a = 200

TR = O.Olsec

Base power = 2220 MVA Base voltage = 24 kV
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B.2 : K constants

This appendix gives the 'K ' constants for the example of Chapter Three. These are

operating point and system dependent and correspond to the operating point and system

parameters used in the example of Chapter Three.

K 1 = 1.23

K 2 =0.874

K 3 =0.26

K 4 = 2.58

K s = -0.015

K 6 = 0.23

K a =200

T3 = 2.0

TR = 0.01sec

B.3: System description for the extended range of operating conditions

This appendix gives the transfer function matrix description as used in the design of

section 5.2. The machine is described by a third order model (Kundur, 1994) and the

equations are obtained from Boje et al (1999). The governor and AVR description used

to close the speed and voltage loops before the design of the PSS can commence is also

gIven.

p(S)=_1_(~11 ~12J
~(s) P21 P22

B.2



with

Ptt (s) = (l + SK3T~o)s

Pt2 (s) = -K2K 3s

P2t (s) = K s(l + SK3T~o)OJo - K 2K 4K 6OJO

Pn (s) =K 3[K6 (Ms + KD)s + (K1K 6 - K 2Ks)OJo]

and

M=2H

The AVR and governor are given as follows,

where

gG =
s(sTg + 1)(sI: + 1)

The governor constants are as follows,

SMIB system data

Tg = O.22s , I: = O.30s

The constants for the AVR are as given in Appendix B.2.

B.3
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Appendix C

Glover-Doyle solution to the standard Hoo problem

The solution to the problem statement of chapter 4 is outlined here. This solution is

taken from Rao (1998, p 119-121)

Consider the generalized plant shown in the figure below

sured
puts

regulated
outputs

w plant z

pes) mea
01 ~ I---- out
s

u Y
controller

'---- K(s) I---

contr
input

reference
inputs

Figure C.1: generalized plant model

Let the plant P have the following realization

The set of equations above can be represented as follows

C.1
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A B I B2

p= Cl DII D l2

C2 D 21 D 22

The following assumptions are made,

1. (A, B2) is stabilizable and (A, C2) is detectable

2. DI ) = 0, D 22 = °

Assumptions 2 and 4 can be relaxed except for the requirement that the matrices, D12,

and D21 have full column and row ranks respectively.

Under these assumptions, given a value 'Y > 0, there exists a stabilizing controller K

such that IITwzllro < 'Y if and only if

a. There exists a symmetric and positive semi-definite solution, X er; = X~ ~ 0,

satisfying

C.l.l

C.2
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b. There exists a symmetric and positive semi-definite solution, Yeo =Y: z 0,

satisfying

C.1.2

c. p(XeoYeo) < y2, where p (.) represents the spectral radius of the argument.

There exist standard techniques to solve the algebraic Ricatti equations C.l.l and C.l.2.

If the above conditions hold, a solution is the controller with the realization

C.1.3

where

1\

Aeo = A - y-2BIBr X eo + B2Feo + Zeo Leo C2

This is the central or minimum entropy controller and has been used in the solution to

the problem presented in this thesis.

For Hoo norm minimization, the conditions a-c are solved repeatedly with varying

values of y, until the optimum value is approached to within the desired level of

tolerance. The controller is then a realization of the corresponding solutions, Xoo and

C.3
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AppendixD

D.I : Parameters of the two area system

This appendix gives the parameters for the two-area system in Chapter Five (Kundur,

1994; p 813). All quantities are in per unit unless otherwise stated.

Generator

X d =1.8 X q = 1.7 Xl =0.2 X~ = 0.3 X~ = 0.55

X; = 0.25 X; = 0.25 Ra = 0.0025 T~o = 8.0sec T~o = OAsec

T~'o = 0.03 sec T~'o = 0.05 sec ASat = 0.015 RSat = 9.6 If!Tl = 0.9

H = 6.5 (for Gland G2) H = 6.175 (for G3 and G4) K D =0

Base power = 900 MVA Base voltage = 20kV

Transmission line

The line lengths are given in figure 5.16

r 0.0001 pulkm XL = 0.001 pulkm be 0.00175 pulkm

Base power = 100 MVA

Transformers

Base voltage = 230kV

RT = 0.0 XT =0.15

Base power = 900 MVA Base voltage = 20/230 kV

D.1



The following data is given for Case a of table 5.3

Initial conditions of the generators

The two-area system

G1:P=700MW

G2:P=700MW

G3:P=719MW

G4:P=700MW

System loads

Bus 7: PL = 967 MW

Bus 9: PL = 1767 MW

Q=185MVAr

Q=235 MVAr

Q=176MVAr

Q=202MVAr

QL= 100MVAr

QL= 100MVAr

°Et = 1.03L 20.2

Et = 1.01L 10.5°

°Et = 1.03L -6.8

Et = 1.03L -17.0°

Qc=200MVAr

Qc=350MVAr

Thyristor exciter with transient gain reduction (TGR)

KA = 200

TA = 1.0sec

TB = 10.0sec

TR = O.Olsec

D.2
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D.2: The Power System Toolbox

The following is an illustration on uSing the Power System Too1box to generate

1inearized models of the system shown in figure 5.16. The data set presented here has

been generated for Case A of Table 5.1 using PSCAD/EMTDC. The base power is

chosen as 100 MVA.

For a more in depth discussion on advanced features the relevant user manual should be

consulted.

%*********************************************************************
%data from PSCAD for use with the power system toolbox to generate
%linearised models
%the sub-transient machine model is used.
%the exciter is a thyristor type with transient gain reduction

bus =[1 1.03 20.2 7.0 1.85 0 0 0 0 2 5.0 -2.0 20;
2 1.01 10.5 7.0 2.35 0 0 0 0 2 5.0 -2.0 20;
3 1.03 -6.8 7.19 1.76 0 0 0 0 1 5.0 -2.0 20;
4 1.01 -17 7.0 2.02 0 0 0 0 2 5.0 -2.0 20;
5 1.0023 13.93 0 0 0 0 0 0 3 0.0 0.0 230;
6 0.9737 4.14 0 0 0 0 0 0 3 0.0 0.0 230;
7 0.9549 -3.83 0 2.0 9.67 1 0 0 3 4.0 0.0 230;
8 0.9342 -17.95 0 0.0 0 0 0 0 3 0.0 0.0 230;
9 0.9730 -30.86 0 3.5 17.67 1 0 0 3 4.0 0.0 230;

10 0.9854 -23.08 0 0 0.00 0 0 0 3 0.0 0.0 230;
11 1.0063 -13.19 0 0 0.00 0 0 0 3 0.0 0.0 230] ;

line = [ ...
1 5 0.0 0.0167 0.00 0 0 0 0 0;
5 6 0.0025 0.025 0.00 0 0 0 0 0;
2 6 0.0 0.0167 0.00 0 0 0 0 0;
6 7 0.001 0.01 0.00 0 0 0 0 0;
7 8 0.011 0.110 0.00 0 0 0 0 0;
7 8 0.011 0.110 0.00 0 0 0 0 0;
9 8 0.011 0.110 0.00 0 0 0 0 0;
9 8 0.011 0.110 0.00 0 0 0 0 0;
10 9 0.001 0.01 0.00 0 0 0 0 0;
4 10 0.0 0.0167 0.00 0 0 0 0 0;
11 10 0.0025 0.025 0.00 0 0 0 0 0;
3 11 0.0 0.0167 0.00 0 0 0 0 0] ;

mac con = [1 1 900 0.2 0.0025 1.8 0.3 0.25 8.0 0.03 1.7 0.55

0.25 0.4 0.05 6.5 o 0 1 0 0 1 1;

D.3



The two-area system

2 2 900 0.2 0.0025 1.8 0.3 0.25 8.0 0.03 1.7 0.55

0.25 0.4 0.05 6.5 0 0 2 0 0 1 1;

3 3 900 0.2 0.0025 1.8 0.3 0.25 8.0 0.03 1.7 0.55

0.25 0.4 0.05 6.175 0 0 3 0 0 1 1;

4 4 900 0.2 0.0025 1.8 0.3 0.25 8.0 0.03 1.7 0.55

0.25 0.4 0.05 6.175 0 0 4 0 0 1 1];

exc con = [0 1 0.01 200 0 10 1 15 -15; .
o 2 0.01 200 0 10 1 15 -15; .
o 3 0.01 200 0 10 1 15 -15; .
o 4 0.01 200 0 10 1 15 -15];

%*********************************************************************

The command 'svm_mgen' is run at the command line with the data in the correct path.

The program returns the state-space matrices of the system.

DA
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