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ABSTRACT 

This work describes the installation of a Beowulf cluster at the University of KwaZulu-Natal 

and the subsequent Monte Carlo molecular simulation study which was undertaken to investigate 

the pure component and binary mixture phase equilibrium properties for systems of industrial 

relevance. The work was undertaken both at the University of KwaZulu-Natal in South Africa and 

at the Hogskolan i Boras in Sweden. 

To conduct the molecular simulation work, a 20-node Beowulf cluster called yoda was assembled 

and installed at the University of KwaZulu-Natal. The project saw the installation of a Linux 

operating system as well as the necessary PBS queuing software, the SSH remote login software 

and the BIGMAC molecular simulation program code. 

The first objective of this work was to use the BIGMAC program code to study hydrocarbon 

mixtures for industrially relevant systems. To this end, five different «-alkane and 1-alkene 

mixtures were simulated using the Spyriouni et al. (1999) olefin force field as well as the NERD 

and TraPPE force fields. These mixtures included an ethane + propene binary at 277.6K, a 1-

hexene + n-octane binary at 328.15K, an n-dodecane + 1-octadecene binary at 760mmHg, a 

propene + 1-butene binary at 294.3K and a 1-butene + 1-hexene mixture at 373K. It was shown 

that the NERD and TraPPE force fields yield P-x-y data sets that are, in general, shifted to higher 

pressures due to their overestimation of the pure component vapour pressures but that the x-y data is 

accurately reproduced for all three force fields used. 

Building on the results from the binary simulations, the NERD and TraPPE force field parameters 

were extended to the simulation of conjugated alkenes (1,3-butadiene; 1,3-pentadiene and 1,3,5-

hexatriene) to examine their ability to simulate molecules for which they were not explicitly 

parameterized. In this part of the work, it was shown that the effects of intramolecular equilibrium 

geometries can have a significant impact on the predicted thermophysical properties. While the 

results for 1,3-butadiene were very successful, the results for the remaining conjugated alkenes and 

the results from the TraPPE force field simulations were more disappointing. This work suggested 

that a reparameterization of the united-atom force field parameters was necessary. 

Another issue which emerged from the simulation of the five initial binary mixtures was the 

difficulty which was experienced when trying to use the N]N2PT Gibbs Ensemble to simulate 



narrow phase envelope regions. As a result, a new methodology was developed in terms of which 

new variants of isothermal Gibbs Ensembles can be developed. It was shown how novel Gibbs 

Ensemble partition functions and their corresponding thermodynamic potentials can all emerge 

from a single governing equation which is a special case of the generalized multiphase /xPT 

ensemble. In terms of this analysis, the novel /x^VT and £iNVT Gibbs Ensembles were 

developed, characterised and tested. It is shown how these two new ensembles reliably overcome 

the mass balance constraints inherent in the traditional NiN2PT Gibbs Ensemble. These novel 

Gibbs Ensembles were used to study two close-boiling mixtures and, to the knowledge of this work, 

this represents the first time that such close-boiling mixtures have been directly studied using a 

Gibbs Ensemble. 

Finally, a new force field for n-alkanes and alkenes called the TBORG (Transferability Based On 

Relaxing Geometries) force field was developed. This new force field represents a large regression 

effort which sought to improve the intermolecular parameters for n-alkanes and alkenes by allowing 

for a larger and more versatile intramolecular parameter set while still retaining the conceptual 

appeal of transferable intermolecular parameters. The «-alkane parameters were highly successful, 

although the parameters for alkenes gave less satisfactory results. Both sets of parameters, 

however, achieved particular success in improving the estimation of pure component vapour 

pressures and vapour densities for carbons in the range of C2 to C8 without sacrificing the accurate 

prediction of liquid densities, critical temperatures and critical densities. The regressed parameters 

point towards the need for a wider intramolecular parameter set to be used in conjunction with 

anisotropic parameters in order to improve the predictions of transferable united-atom force field 

models. 
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CHAPTER 1: 

INTRODUCTION 

"If one doesn't know to which port one is sailing, no wind is favourable" - Lucius Annaeus Seneca 

Separation operations are ubiquitous in the chemical industry. Separation operations of one 

form or another are found in the purification of chemicals or in the removal of wastes from process 

streams. Most of these separation processes involve the formation of a new phase or the addition of 

a new phase. Consequently, knowledge of phase equilibria is crucial to the design of efficient 

separation strategies. The number of known chemical compounds exceeds six million and certain 

estimates project that this number may increase at a rate of 100,000 new chemical compounds per 

year. Clearly this creates a data gap between the synthesised chemical of the organic chemist and 

the measured pure component property data of the physical chemist. The situation becomes even 

worse for binary mixtures where the number of unique binary combinations roughly increases 

proportional to the square of the number of pure components and where nearly all of the mixtures of 

interest are usually complicated functions of temperature (and pressure). 

With the rapid advances in computer hardware and clustering technologies in recent years, 

however, molecular modelling and molecular simulation techniques have emerged as a powerful 

means to predict phase equilibria and to explore the link between microscopic chemical behaviour 

and macroscopic properties. The ability to simulate different phase diagrams could in the near 

future, therefore, become viable for the design of separation processes and crucial to uncovering the 

underlying phenomenological factors at work. 

Ungerer (2003) has suggested that the greatest current challenges facing the molecular simulation 

community may be grouped into the following three categories: 

• Development of accurate force fields to correctly describe intermolecular interactions. 

• Development of reliable mixing rules to correctly model cross-interactions between different 

functional groups or atomic species. 

• Development of efficient algorithms to improve the sampling efficiency of computer 

simulations and to further reduce the time for simulating physical properties. 

This work addresses the first and third points above. 

1 



INTRODUCTION 

In Chapter Two, the installation of a Linux Beowulf cluster called yoda is described. The 

installation procedure, the general operating principles and the various softwares required are 

discussed. 

As a necessary first step, Chapter Three outlines the basic theory of the thermodynamics of Monte 

Carlo simulations. In particular, the concept of ensembles is fleshed out and the notion of 

importance sampling is introduced. Several thermodynamic partition functions are given to 

establish the link between macroscopic thermodynamics and statistical thermodynamics. It is also 

explained how thermodynamic degrees of freedom can be understood in a simulation sense. 

The primary simulation method used throughout this work is the Gibbs Ensemble Monte Carlo 

method and Chapter Four details how this algorithm is implemented. The strengths and weaknesses 

of alternative simulation strategies are also discussed. A new unification formalism is also 

developed in terms of which it is shown how the partition function of novel isothermal Gibbs 

Ensembles can be developed from a single governing equation which also directly provides the 

thermodynamic potential. The Semi-Grand Ensemble is also introduced as a prelude to the 

development of two new isothermal Gibbs Ensembles in Chapter Eight. 

Chapter Five describes the auxiliary algorithms, the intra- and intermolecular potentials used as well 

as some of the calculation procedures for the chemical potential and the pressure. The essential 

Configurational-Bias Monte Carlo algorithm is also explained as this is required for all of the 

subsequent simulation work 

The simulation results of five binary n-alkane and 1-alkene mixtures using three different force 

fields are presented in Chapter Six. The performance of the NERD, TraPPE and Spyriouni et al. 

(1999) olefin force fields are discussed and their strengths and weaknesses elucidated for these 

relatively ideal mixtures. As justification for the development of new Gibbs Ensembles, the 

limitations of current NiN2PT simulations are explained. 

Chapter Seven describes the extension of the NERD and TraPPE force fields to the simulation of 

conjugated alkene molecules. The objective was to test the versatility of transferable force fields to 

new homologous series for which the existing parameters sets should be sufficient without adjusting 

the intermolecular parameters. It is shown that the magnitude of the intramolecular equilibrium 
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geometries play a major role in the accurate prediction of the pure component phase equilibrium 

properties. 

Building on the foundation laid in Chapter Five, Chapter Eight introduces the novel /iiN2VT and 

£iNVT Gibbs Ensembles. Using these two new algorithms, the simulations of two close-boiling 

mixtures are presented. It is shown how the jU]N2VT and £iNVT Gibbs Ensembles have, for the 

first time, permitted the simulation of a binary mixture with such a narrow phase envelope. The 

new Gibbs Ensembles are also shown to provide phase compositions with considerably lower 

statistical uncertainties than conventional N]N2PT Gibbs Ensembles. 

Chapters Six and Seven clearly established several deficiencies with respect to current transferable 

united-atom force fields. Chapter Nine builds on the results of these two Chapters and presents the 

new TBORG n-alkane and alkene force fields. It is shown how the incorporation of a larger 

intramolecular parameter set is able to provide a force field which, for the first time, is able to 

provide an accurate prediction of the vapour pressures and vapour densities while not sacrificing 

accuracy with respect to the prediction of the liquid densities, the critical temperatures and critical 

densities for molecules in the range of C2 to C8. 
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CHAPTER 2: 

BEOWULF CLUSTER YODA 

"No one understands the value of the unforgiving minute" - General George S. Patton 

2.1 Introduction 

In 1965, the co-founder of Intel Corporation, Gordon Moore, made his famous observation 

that the number of transistors on a silicon chip roughly doubles every 2 years (Moore (1965)). 

Since 1965, however, developments in microprocessor technology have seen "Moore's Law" come 

to predict an average doubling of PC speeds every 18 months. Indeed, even for this work over the 

three year period beginning in December 2001 and lasting until January 2005, entry level computer 

speeds from South African retailers moved from approximately 1.2GHz at the end of 2001 up to 

over 4GHz at the beginning of 2005. With this increase in computer processing power expected to 

continue beyond 2015, clustered computer technologies offer an exciting new tool which can be 

explored to meet the computer-intensive requirements of molecular simulation of phase 

equilibrium. 

2.2 The Beowulf Cluster as a Computational Tool 

Until the mid 1990's supercomputing (or high performance) computing was essentially 

reserved for those who had access to budgets in the millions of dollars. The Beowulf evolution has 

completely changed this scenario. Using relatively cheap, off-the-shelf components from a local 

computer hardware vendor, it is now possible for anyone in the research community to have access 

to a dedicated computational resource by building a Beowulf cluster. 

In most general terms, computer clusters are ensembles of independently operational computers 

integrated by means of an interconnection network which supports user accessible software for 

organizing and controlling concurrent computing tasks that may co-operate on a common 

application program or workload (Sterling (2001)). 

2.2.1 A Brief History 

In 1993, Thomas Sterling and Donald Becker led the so-called "Beowulf project" which 

aimed to build a gigaflops workstation for under $50,000. Several developments in previous years 
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had made this project possible. Indeed, by 1993, the new Intel 80386 processor represented a major 

performance advance over its predecessor the 80286, RAM memory had decreased to 

comparatively low cost levels and 10 MBps Ethernet was commonly available for standard PCs as a 

local area networking technology. In addition, the Linux operating system (first released by Linus 

Torvalds in 1991) had come to the point where it could be used in a cluster environment, and the 

Parallel Virtual Machine (PVM, http://www.csm.oml.gov/pvinA a library of linkable functions that 

could allow routines mnning on separate but networked machines to exchange data and co-ordinate 

their operation) had managed to become the first major cross-platform parallel programming 

message passing model to achieve wide acceptance. The project ran essentially outside the main 

parallel processing community and was based on commodity software and publicly available 

technology. The Beowulf project succeeded and a 16-node cluster of Intel 486 computers costing 

$40,000 ran in 1994. In the process, the Beowulf project developed all the necessary Ethernet 

driver software for Linux and additional low-level cluster management tools and demonstrated the 

cost effectiveness of Beowulf class systems for real-world applications. 

In 1997, a Beowulf cluster costing under $50,000 won the Gordon Bell Prize for performance / unit 

price. This trend has continued and Beowulf clusters have increased their share of the "Top 500" 

supercomputer list (nttp://www.top500.org). In June 2001, 33 Beowulfs were in the Top 500, while 

in June 2005, this number had risen to 304. The major advantages of a Beowulf cluster include: 

• Scalability: new nodes may readily be added to an existing cluster to increase its size, 

• Availability of new software: the extensive community of software developers on the internet 

have ensured the ease of Beowulf installation and support, and 

• Performance / unit price: the Beowulf cluster display the lowest $ / computational power 

statistics. 

A Beowulf cluster may be conveniently thought of in terms of a layered structure of interlocking 

hardwares and softwares that facilitate the interface between the computational resource and the 

user. This is illustrated in Figure 2-1: 
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Figure 2-1: Schematic representation of the hardware and software architecture of a Beowulf cluster. 
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2.2.2 Elements of a Cluster , 

A Beowulf cluster comprises a number of hardware and software components. Unlike 

traditional mainframes, the user can express considerable freedom in the selection of the system 

architecture and the range of software which is to be installed. 

2.2.2.1 The Hardware nodes 

The hardware node is the principal building block of a Beowulf cluster. Normally a 

distinction is made between the controlling or "master node" and the computational or "slave 

nodes". In certain installations it is possible to install the master node as a computational node but 

this adds to the load on the master node with the benefit of only one additional computational PC. 

For this project, the master node was therefore installed as a dedicated administration node to 

maximise its administration performance. The Intel Pentium and Athlon AMD represent the two 

broad families from which slave and master nodes tend to be drawn. Ideally, all nodes within a 

cluster should be of similar specification. This is particular true if massively parallel jobs are to be 

run in order to minimize load imbalances between the computational nodes. This is, however, no 

longer strictly necessary with recent developments in queuing technology 

At the time of the purchase of the hardware for the yoda cluster in November 2001, the Athlon 

AMD 1.2 GHz architecture was noted to have a computational performance advantage over the 

corresponding Pentium II machines in a similar price bracket. For this reason, it was decided to 

proceed with the Athlon AMD's as the nodes of choice. 

2.2.2.2 The Network 

The network provides the means of exchanging data between the clustered nodes and the 

means for co-ordinating their actions. The subcomponents of the network are the network interface 

controllers, the network switches and the network channels and links. In late 2001, considerable 

interest was being expressed in the Beowulf community in the use of Gigabit Ethernet connections 

and optical fibre cabling. Since massively parallel calculations were not likely to be undertaken on 

yoda, it was decided to utilise the standard lOOMegabit Ethernet connection and the standard 

moulded copper cabling. 
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2.2.2.3 Operating System 

Linux has emerged as the dominant Unix-like operating system. There is some debate within 

the Beowulf community surrounding the use of Windows-based Beowulf clusters (Sterling (2001)). 

The greater stability of the Linux operating platform; the large global community of Linux kernel 

and application developers who readily provide support, bug-fixes and software enhancements; as 

well the much lower cost of the Linux operating system made possible by the open source software 

initiative (http://www.opensource.org/) and GNU (Gnu's Not Unix), meant that the installation of a 

Linux operating system on the yoda cluster had a distinct cost advantage over the installation of a 

Windows-based system. 

Aside from direct costs, the essentially freely available software and data manipulation applications 

on a Linux machine are more suited to dealing with the large quantities of data generated in the 

output file from a typical simulation. These include the various shell programming environments 

like bash, tcsh and csh for the manipulation of files as well as the column and row scripting and 

manipulation packages such as sed fttrp://www.gnu.org/software/sed/sed.htrnl) and gawk 

(http://www.gnu.org/software/gawk/gawk.html) (Siever et al. (2000) and Welsh et al. (1999)). In 

addition, graphical packages like xmgrace (http://plasma-gate.weizmann.ac.il/Grace/) provide 

graphical analysis tools equal in utility to Microsoft Excel and which are perhaps more ideally 

suited to the representation of large vector arrays of data. 

2.2.2.4 Resource Management 

The distributed resources of a Beowulf cluster require the services of a software system for 

resource management. Several such software systems exist to provide administrators with the 

ability to balance contending demands and to apply policies to govern the use of the cluster. The 

tasks that need to be performed include: 

• Queuing: Different people submit different jobs to a given Beowulf cluster. A queuing 

system is necessary to buffer job requests until resources are available to process them. 

• Scheduling: This is necessary to balance the priorities of jobs with the existing cluster 

governance policies to optimally fit as many jobs onto a cluster at any given time or load. 

• Resource control: This becomes important to put jobs on the correct nodes, to start jobs, to 

terminate jobs and to suspend jobs as required. 

• Monitoring: Software needs to be in place in order to continuously track the status of the 

cluster and its resource utilization. This is needed for proper cluster management. 
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• Accounting: A billing system is necessary to determine the remaining time due to a user as 

well as to assess overall system availability. 

The two most prominent packages used for this type of application are the Portable Batch System 

(PBS, http://www.openpbs .or g/) and the Sun GridEngine (http://gri.dengine.sunsource.net/) 

softwares. An additional package for resource management is the Maui Scheduler 

(http://www.clusterresources.com/products/maui/). The Maui scheduler in fact sits on top of other 

lower resource managers and offers additional resource management options. It was not installed 

for this project due to the limited demands that were placed on the Beowulf cluster yoda. 

2.2.2.5 Program Software 

Common programming languages used for molecular simulation include C and FORTRAN 

77. Although there are now more sophisticated variants of these two programming languages (C++; 

; FORTRAN 90; FORTRAN 95), their portability, ease of integration into a myriad of installation 

environments, ease of compilation and low processing overhead, all ensure that they still find 

appeal in the programming community. For this project, a serial and a parallel version of the 

BIGMAC programming code as provided by Thijs Vlugt were modified and utilized for the 

simulation of phase equilibria. 

2.2.2.6 Parallel Environment 

Most simply, parallel computation on a Beowulf is achieved by dividing a computation into 

parts and making use of multiple processes on separate processors to execute each of these parts. 

The most simple approach to achieve this is to have each of the processors send and receive 

messages. This is made possible by a message-passing library specification, MPI (Message Passing 

Interface, http:///www.mpi-forum.org). MPICH (http://\vmv-unix.mcs.anl.gov/mpi/mpich/) and 

LamMPI (http://fink.sourceforge.net/pdb/package.php/lammpi) are the two most popular 

implementations of MPI. 

In late 2001, the BIGMAC code was used to simulate the vapour-liquid equilibrium of a system of 

300 molecules of (propane + n-pentane) at 64°C on the Beowulf clusters yoda (http://voda.nu.ac.za) 

and Ingyar (www.risc.liu.se/systems/ingvar/) at mole fractions of 0.1 and 0.9 propane. At the time 

of the test, both the Ingvar and yoda clusters had similar slave node specifications. Typically, a 
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Monte Carlo simulation will only achieve a linear speed increase with increasing numbers of nodes 

running a job in parallel when the number of interaction sites in a computation exceeds 1,000 sites 

(Vlugt (2002)). As may be seen from Figure 2-2, the speed of execution of the BIGMAC job when 

run on 8 nodes is not significantly higher than that achieved when the job is only run on 2 nodes. 

This is due the bottleneck of processes (and algorithms) requiring network communication 

(message-passing) and hence the use of any more than 2 nodes per job represented a waste of 

system resources for the yoda cluster. For 8 nodes, this network communication overhead in fact 

leads to the increase in the CPU time as shown in Figure 2-2 for the 90mol% simulations on yoda 

and Ingvar. The typical system sizes used in this work were consistently less than this "threshold" 

value of about 1000 interaction sites and hence the serial BIGMAC code was modified and used for 

the results presented in this work. 
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Figure 2-2: Performance of the BIGMAC parallel program code for the 300 molecule binary system of 

propane + n-pentane at 64°C on the yoda and Ingvar Beowulf clusters. 

2.2.2.7 Remote Access Software 

An important advantage of the Beowulf cluster is that the access of the user may be remote 

with respect to the physical location of the Beowulf cluster itself. The Beowulf cluster may thus 
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exist as a dedicated computational resource. This is achieved by means of a remote login software. 

In terms of this work, the Open SSH (Secure Shell) software was used (http:/Avw.openssh.com). 

This software is freely available for academic use and hence represented no additional financial 

overhead for the project. 

In this way, using relatively cheap off-the-shelf components and hardware, a 20-node Beowulf 

cluster called "yoda" was assembled for this work. The following hardware specifications describe 

the equipment used to assemble the Beowulf cluster yoda: 

Table 2-1: Specifications of the master and slave nodes for the Beowulf cluster yoda. 

CPU 

Motherboard 

Slots 

RAM 

Hard Disk 

Floppy Drive 

CD-ROM 

Graphics Card 

Network Card 

Master Node 

1.2GHz AMD Thuderbird 

Asus Socket A7VLT33-VM 

Five PCI and 4 Integrated AGP 

256Mb PC 133 SDRAM 

80Gb Hard Drive 

Samsung 3.5" 1.44Mb 

52X CD-ROM Drive 

8Mb Graphics Card 

DFE-570TX, 4x100MB, TP, PCI 

Slave Node 

1.2GHz AMD Thuderbird 

Asus Socket A7VLT33-VM 

Five PCI and 4 Integrated AGP 

256Mb PC 133 SDRAM 

20Gb Hard Drive 

Samsung 3.5" 1.44Mb 

-

8Mb Graphics Card 

3Com FastEtherlink XL-3C905C-TX-M TP 

PCI 

Table 2-2: Additional Hardware for the Beowulf cluster yoda. 

Network Switch 

Keyboard and Mouse 

Monitor 

One 3COM 24-port 10/100Mbit Fast Ethernet Switch 

One set each for the master node and for slave node administration 

One for the master node and one for slave node administration 

Three important cost-saving features included: 

• Only the master node and the first slave node had CD-ROM drives. This is because once the 

master node had been installed, all remaining installations could be achieved by boot disk. 

• Only 1 master node monitor and one mobile slave node monitor were purchased 
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• The slave node hard-drives could be limited to 20Gb capacity since this greatly exceeded the 

required installation space. , , ,., .., , , , , . , -„ 

2.2.3 Installation of the Beowulf cluster yoda 

The installation of yoda and was completed at the end of 2001. The Red Hat 7.1 provided a 

2.4.2 kernel and almost all of the necessary software that was required for the installation and 

administration of the cluster. Version 7.1 was the most recent version of Red Hat Linux available at 

the time of the installation. 

2.2.3.1 Partitioning the Hard Drive 

A total of 9 partitions were created on the hard drive of the master node: 

• A boot partition, "/dev/hdal". 

• Another primary partition, "/dev/hda2". 

• A third primary partition created as the system's swap drive. 

• A fourth partition, "/dev/hda4", was created as an extended partition to include the rest of the 

disk partitions. These remaining partitions included "/usr", "/usr/local", "/var", "/top" and 

"/home". 

2.2.3.2 Local Area Network Settings and Running Services 

The master node is part of two different networks, an internal network with a range of private 

IP addresses (10.0.0.0) and an external network with a public IP address. The ethO device was used 

for the host for the public IP address and the ethl device was used for the host for the private IP 

address. In addition, the following services were selected to be run on the machine: crond, dhcpd, 

gpm, ipchains, iptables, keytable, netfs, network, nfs, nfslock, ntpd, portmap, random, rawdevices, 

syslog, tftp, xfs, xinetd and sshd2. 

2.2.3.3 LILO Configuration 

The installation of LILO on the Master Boot Record was only necessary on the master node 

because the slave nodes were booted using dhcp and bootp over the network. In addition, a high 
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security firewall was configured to ensure network security. SSH traffic was explicitly allowed on 

port 22 and the firewall rules were configured only to apply on ethO. •—-—-

2.2.3.4 Setting up the Hostnames of the Nodes Used 

The hostnames of all the nodes in the cluster had to be defined and this was done in the 

"/etc/hosts" file which served as a naming service for the cluster's internal network. In addition, the 

"/etc/resolv.conf' file was configured to provide access to the Internet Domain Name System. This 

particular file is needed in a series of routines to resolve IP-address to domain names or vice versa. 

2.2.3.5 Installation of the DHCPD and BOOTP 

DHCP stands for Dynamic Host Control Protocol, and its server provides its clients with IP 

addresses according to those defined in its configuration file, "/etc/dhcpd.conf'. The DHCPD that 

came with Red Hat Linux 7.1 also featured a BOOTP server and by defining each client separately, 

this feature was enabled and each node could be booted off the network. Each client had to be 

listed in the DHCP configuration file and given an IP-address based on its MAC address (a six byte 

unique number, identifying that particular Ethernet card.). The DHCPD only applies to ethl. In 

order to reflect this explicitly, a small alteration was made to the DHCPD SystemV control script 

found in "/etc/initd/dhcpd". 

2.2.3.6 Installation of Secure Shell (SSH) 

At the time of installation, the OpenSSH version 3.1.0 was the latest version of SSH and it 

was installed on the cluster. After installation, a few changes had to be made to the file 

"/etc/ssh2/sshd2_config" for the server to work in the cluster environment. Most significantly, 

every user must be able to logon to every node without giving their password, as this is needed by 

MPI and "rdist". A method to solve this problem is to use host-based authentication within the 

cluster together with password authentication for access from the outside. This required: 

• Changing "AllowedAufhentications" to "hostbased, password". 

• Checking that "IgnoreRhosts" is set to "no" 

• Changing "DefaultDomain" to the appropriate domain 
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• Creating a file named ".shosts" with permissions set to 0400. This file had to be located in 

the home directories of all users and had to contain all hostnames and a username for each 

host. The owner and the group of the file had to be explicitly set to be the user. 

The directory named "knownhosts" in "/etc/ssh2/" must contain all public keys from every node. 

The SSH server was restarted by issuing the command "/etc/rc.d/init.d/sshd restart". 

2.2.3.7 Installation of Slave Nodes 

Next, it was possible to install a single slave node as an image which could be used for 

cloning additional nodes. For compatibility reasons, the same version of RedHat Linux 7.1 was 

used. The actual partitioning of each node's hard drive is done by BpBatch during the installation 

phase of the imagefiles. 

The installation and configuration procedure of the slave nodes was the same as for the master 

node, except for the generation of keys. Since the same pair of keys had to be used on every node, 

the keys in "/etc/ssh2/" on the master node had to be copied to the slave node and then used to 

overwrite any created keys that were local to the slave node. 

In order to add new nodes to the cluster, a few changes had to be made to the master node before 

the new nodes could be used: 

• The new node with its network information (MAC address, IP-number) had to be added to 

"/etc/dhcpd.conf. 

• The new node's hostname and IP-number had to be added to "/etc/hosts". 

• The new node had to be added "/etc/distfile". 

• A copy of "/etc/ssh2/knowhosts/node00.yoda.ssh-dss.pub" had to be made and renamed to 

"newhostname.yoda.ssh-dss.pub". 

• The new node's hostname had to be added to "/var/spool/PBS/server_priv/nodes". 

Importantly, however, whenever a new user was added or deleted, this information had to be 

manually updated on all nodes. 

The administration of slave nodes can be a tedious task. The availability of cloning software, 

however, alleviates this burden. For this work, the freely downloadable remote-boot processor 

BpBatch (http://www.bpbatch.org) was used. BpBatch allows one to partition hard drives as well 

as to create images of entire hard disk partitions and file systems. It then provides a framework to 
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distribute and install these images on a cluster of PC's. The software takes control at an early stage 

of the boot process of the computer. Network cards supporting PXE booting were thus required. 

BpBatch's loader must he specified as the bootfilename in the DHCP information for the client 

computer. BpBatch's loader can then use TFTP to retrieve the main BpBatch program from the 

server. This also required the creation of a "/tftpboot" directory with the correct file permissions. 

Once BpBatch is started, it looks for a default script on its network server. Every command found 

in this script will be executed in a serial order, until the end of the script is reached. 

The clone images were created with the help of BpBatch's MrZip. MrZip is a tool used for 

compressing a selected amount of a disk system. After completion the image files were moved to 

the "/tftpboot" directory, from where BpBatch can collect and use the images as required. 

2.2.3.8 Installation of the Message Passing Interface (MPI) 

MPICH is a portable, open-source implementation of the Message-Passing Interface standard 

and is suitable for clusters built on standard Ethernet network devices and wiring. At the time of 

installation, the latest MPICH version was MPICH-1.2.3 and this was selected for installation. In 

terms of the website documentation at http://www-unix.mcs.anl.gov/mpi/mpich. MPICH 

implements all features found in the MPI 1.2 standard. Every node in the cluster required that a 

local copy of MPICH be installed. This was achieved by putting the compiled version of MPICH in 

an nfs-mountable directory, mounting this on every node and then installing it on each node. The 

"/usr/lib/mpich/share/machines.LINUX" file was modified to reflect all nodes in the cluster while 

the "/usr/Ub/mpich/bin/mpirun.args" file was modified to integrate MPICH with PBS. 

2.2.3.9 Installation of the Portable Batch Scheduler (PBS) 

At the time of installation, PBS had become the de facto standard for job scheduling on Linux 

Beowulf clusters. In order to perform the workload management functions of queuing, scheduling 

and monitoring, PBS consists of the following fundamental parts: 

• The Job Server. This daemon is run continuously on the master node and its main function is 

to receive and create batch jobs, modify jobs if needed and protect the jobs in case of a 

system crash. 

• The Job Executor (MOM). This daemon handles the actual execution of jobs. When it 

receives a copy of a job from the server, it creates a new session. Apart from the actual 
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execution, the executor is also responsible for returning the job output to the user. A job 

_____ executor daemon runs on each computer node that is part of the diwter,, 

• The Job Scheduler. The Job Scheduler daemon deals with enforcing the resource policies 

defined by the system administrator. The Scheduler is in close contact with the MOM's 

running on each node in order to determine what resources are available and the status of 

eachjob. 

The OPENPBS software was downloaded and installed in the "/usr/pbs/" directory while the default 

"/var/spool/PBS/" directory was used for the spooling directory. Both the Job Server and the Job 

Scheduler were configured by modifying configuration files located in the "/var/spool/PBS/" 

directory on the master node. In particular: 

• The "/var/spool/PBS/server_privs/nodes" file was edited to include the names of all 19 

available computational nodes. These names are read by the server during bootup. 

• The "/var/spool/PBS/server_privs/serv_conf' file was modified to define 4 default queues 

("qmini", "qsmall", "qmedium", and "qlarge") and one routing queue. • The 

"/var/spool/PBS/serverjpriv/qmgr" command was used to apply the queue configuration. 

Each slave computational node also required the installation of a server to handle the execution of 

jobs sent from the master node server. This required: 

• Setting "PBS_SCP=/usr/local/bin/scp" in the "/etc/pbs.conf file in order to specify the 

application to use during the copying of output files between nodes. 

• Specifying the execution server to use in the "/var/spool/PBS/mom_priv/config" file on each 

node. 

2.3 Cost Considerations 

Although a Beowulf cluster exhibits very favourable price per unit performance statistics, the 

useful lifespan of a Beowulf cluster is typically less than 3 years (Vlugt (2002)). This is because 

the relative speed of all of the computational nodes is then XA that of entry level computer in 

accordance with Moore's Law. In addition, manufacturer guarantees typically do not extend 

beyond 2 years for the most expensive components such as the motherboards and hard-drives. 

The greatest hazard to the yoda installation proved to be the semi-regular electrical power outages 

(usually around the holiday season in South Africa) which ultimately further reduced the lifespan of 
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the hard-drives. Multiple UPS units for both the master nodes and slave nodes with automatic 

shutdown softwares thus proved essential to ensure stable operation and cluster protection. 

Network and communication latency is a crucial issue which must be adequately addressed in any 

cluster installation. Although this issue is most serious for parallel computing applications where 

the transfer of large quantities of data between the slave nodes and master node must be achieved 

efficiently, even the serial calculations of the yoda cluster suffered from severe packet loss 

depending on how heavily the cluster was loaded with computational jobs and on how many jobs 

were queued. The replacement of the handmade cabling with moulded Belkin "FastCat" Cat5e 

cabling essentially eliminated this problem at the end of 2003. Data packet losses were 

dramatically reduced and the network latency decreased by two orders of magnitude in "ping" tests 

down to approximately 0.2 milliseconds. 
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CHAPTER 3: 

THERMODYNAMICS OF THE MONTE CARLO SIMULATION 

OF PHASE EQUILIBRIA 

"To see the world in a grain of sand; 

and heaven in a wildflower 

Hold infinity in the palm of your hand; 

And eternity in an hour" - William Blake 

3.1 Ensemble Averages 

Legend holds that in 1872 a $25,000 wager was made between California Governor Leland 

Stanford and two other men, James R Keene and Fredrick MacCrellish, concerning whether all four 

of a horse's legs left the ground in a full gallop. It was a commonly held Victorian belief that when 

a horse galloped it always maintained one hoof in contact with the ground. Stanford was convinced 

otherwise, but since a horse's trot or canter was too fast for the human eye to see, the point seemed 

impossible to prove. He thought that photography would decisively settle the matter and hired 

Edweard James Muybridge who at the time held the position of 'Official Photographer for the US 

Government for the Pacific Coast'. 

Muybridge's subject was Stanford's horse, and he calculated that he needed 12 cameras 22 inches 

apart to record the separate parts of the horse's stride. As it ran across the trip wires, the horse 

pulled out a pin allowing the shutter to move and take a picture. 

Muybridge was successful, Stanford won the bet and the work culminated in a lecturing circuit for 

Muybridge concerning animal locomotion and development of the zoopraxiscope which was the 

precursor to Edison's phonograph. 

The natural question of course is: What exactly is the link between the molecular simulation of 

phase equilibria and an obscure 19th century bet? Essentially, the genius of Muybridge was in 

realising that a sufficient number of still photos taken at regular intervals could be used to 

decompose an apparently continuous variable (a horse's gallop) into discrete, manageable images to 

observe the horse's gallop. This analogy is, therefore, both convenient and appropriate for 

understanding the essence of a Monte Carlo simulation. Basically, the idea behind a Monte Carlo 
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simulation is to calculate a macroscopic variable by substituting our almost intuitive understanding 

of a macroscopic variable being continuous with discrete microscopic 'pictures' of the system. • 

This is consistent with the way in which one measures macroscopic variables. Consider a pressure 

gauge. When one observes the reading on the gauge, one is not actually observing the 

instantaneous pressure, but rather the reading that one takes is an average of the fluctuating pressure 

observed on the gauge. These different fluctuating values can be thought of as co-ordinates in 

multidimensional space, namely phase space. A macroscopically observed variable may thus be 

written as a time average as follows: 

*-.«<*>*.=MT(0)L=ft. {r1**(T(0)j (3-1} 
s y obs o j 

where JL is the macroscopic variable, { ). denotes an average over time, T(/) denotes a 

particular point in phase space at time / and subscript tobs denotes the observation time. In practice 

it is not feasible to calculate jlobs over an infinite time and hence the link with the horseracing 

analogy. The idea, therefore, is to replace the time average by an ensemble average where an 

ensemble is a large collection of points T in phase space with the same macroscopic parameter 

values, e.g. constant number of molecules, constant volume and constant temperature (NVT) or 

constant number of molecules, constant pressure and constant temperature (NPT). One may 

therefore replace the time average of Equation (3-1) with an average over all the members of the 

ensemble 'frozen' at a particular time: 

T 

where { ) denotes an ensemble average and <PCTJ(Y) represents the probability density of 

observing a particular point in phase space of a given ensemble. It should be stressed that a 

necessary requirement for Equation (3-2) to hold valid is that the system be 'ergodic', that is that all 

state points eventually access all other state points and that there are no inaccessible points in phase 

space that should in fact be accessible. 

It is more convenient to define a 'weight' function wm (Y) in place of &m (T) which satisfies the 

following equations (Allen and Tildesley (1987)): 

a,=2X00 (3-4) 
T 
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{*)„={X"~FW)}/l,»-W 0-5) 
where Qms is the ensemble partition function (also called the sum over states). 

For the purposes of this thesis, it is necessary to initially consider the partition functions for three 

'basic' ensembles. It is assumed throughout this thesis that the basic simulation box for all 

equations is a cube and that the dimensionality of all simulations boxes is thus 3. As a starting point 

for further discussion, it is instructive to write the quasi-classical partition function for the pure 

component canonical (NVT) ensemble (Allen and Tildesley (1987)): 

QNvT=J^w\dpN
exp 

where g/wr denotes the kinetic (ideal gas) NVT partition function, Q"^ denotes the potential 

(excess) NVT partition function, h is Planck's constant, kB is Boltzmann's constant, T is the 

N 

absolute temperature, 3c(pw) = XP?/^" x is the kinetic energy, l/(rN) is the potential energy and 

the integration is performed over all molecular momenta vectors pN and molecular position vectors 

rN for the N molecules in the system. The exponent '3N' in the term hiN arises because of the 3-

dimensional nature of the simulation box that has been assumed to apply for N molecules. The 

N\ term accounts for the indistinguishability of the molecules. The final line in Equation (3-6) 

results because the energy is always expressible as the sum of the kinetic (p-dependent) and 

potential (r-dependent) contributions. In particular, the ideal contribution may be evaluated 

analytically because 3C is a quadratic function of the momenta to give: 

Q'NrT ~ NIA3N ( 3 _ 7 ) 

where V is the volume and A is the thermal de Broglie wavelength where 

A = (h2/27rmkBTf2 (3-8) 

where m is the molecule mass. The excess part is then: 

QZr=V'NjdrN
exV 

Jjr*exp 
(3-6) 

(3-9) 
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For Monte Carlo simulations, this analytical integration of the kinetic contribution to the partition 

function is usually possible. It is convenient to recognise that the partition function represents a 

sum over all possible molecular arrangements, i.e. a sum over states. 

Monte Carlo simulations in the isothermal-isobaric ensemble or NPT ensemble were first described 

by Wood (1968), and a neat derivation of the partition function of the NPT ensemble is given by 

Frenkel and Smit (1996). In the NPT ensemble, the volume is allowed to fluctuate so as to keep the 

total system pressure constant. One must therefore account for these fluctuations in the volume in 

the excess part of the partition function of a pure component: 

QNPT = ^ i ^ I i ( l n F ) F / v + l e x p ^ P F ] ( K e x p [ ^ c / ( s A ' ) ] ) (3~10) 

where P - l/kBT, P is the pressure and the integration is now performed over all dimensionless 

vector co-ordinates sN where s = r/Lb and Lb in the box length of a cubic simulation box. The 

reason for the separation of the term VN from the integral over molecular co-ordinates is because 

the partition function must now be integrated over all possible volumes. It is important to note that 

the function of the term K0 is to non-dimensionalize the partition function. In this instance, K0 has 

units of volume. It is somewhat arbitrary since it cancels off in practice (Equation (3-16) reveals 

why). It should also be noted that in this formulation of the NPT ensemble partition function, the 

fluctuations in the volume are integrated over the logarithm of the volume (Eppinga and Frenkel 

(1984)). 

The Grand Canonical (liVT) Ensemble was first implemented for classical fluids by Norman and 

Filinov (1969). An elegant derivation of the basic partition function is given in Frenkel and Smit 

(1996) which may be written as follows for a pure component: 

^=g(^^K^[-M'")]) <3-H) 
where ju is the chemical potential and the partition function now includes a summation over 

numbers of molecules since the number of molecules may fluctuate in this ensemble. 

The connection from the partition function to classical thermodynamics is made by defining a 

thermodynamic potential *¥m (McQuarrie (1976)): 

• ^ „ = - M e „ ] (3-12) 
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The thermodynamic potential for the NVT, NPT and piVT ensembles may then be written as (Allen 

and Tildesley (1987)): 

A/kBT = -]n[QNVT] (3-13) 

G/kBT = -\n[QNPT] (3-14) 

L/kBT = -PV = -\n[Q/iyT] (3-15) 

where A is the Helmholtz free energy, G is the Gibbs free energy and L is the Hill energy. 

3.2 The Metropolis Method 

If one considers Equation (3-5) and, say, Equation (3-6) for the NVT ensemble, it would 

seem that the effort in evaluating an average of the form {^)enj typically rests in the evaluation of 

an expression of the form (Frenkel and Smit (1996)): 

jrfr"(j?(r")exp[-/?£/(r")]) 
\J*NVT / : 

KH>nl ( 3 - 1 6 ) 
/*»(^(r»)nq.[-^(r")]) 

QNVT 

where the kinetic contributions cancel because of the ratio of the two integrals. Conventional 

numerical integration techniques (e.g. Simpson's rule) are in general not feasible to use to evaluate 

the above expression due to the intractably large number of functional evaluations that would be 

required to evaluate N molecules over 3-dimensional space for all possible arrangements of these 

molecules. Also, many of these configurations may also have a low probability density. A random 

Monte Carlo sampling integration scheme is also not a feasible strategy because one does not know 

the distribution <p(rN) a priori. Equation (3-16) is, however, a ratio of two integrals and 
V / ens 

Metropolis et al. (1953) were able to show that it is possible to devise an efficient Monte Carlo 

importance sampling scheme to evaluate such integrals. 

This may be understood by recognising that the probability of observing the system in a 

configuration around rN for the NVT ensemble, <P\rN ) , is given by: 

IM exp[-Mr»)] _exp[-^(r")] 
1 W j</r"exP[-/?C/(r")] QmT 
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If one could then generate points in configuration space according to the probability distribution 

<p(rN J around rN , then on average: 

(^)4fe^(r'i (3-i8) 
where qi is the number of points generated per unit volume around rN and R are the total number 

of points generated. This is the basic idea behind importance sampling, i.e. one transforms the task 

from generating points in configuration space randomly and then giving them a weight given by 

(P[rN) , to generating points in phase space according to the distribution given by <P[rN ) and 
V 'ens \ 'ens 

then giving each of these samples an equal weighting. 

Consider the analogy of a student trying to determine the most popular beer in a well frequented 

student night club and restaurant street area on a Friday night. One possible approach would be to 

attempt to go into every restaurant or night club on the street without exception and accumulate 

statistics on how many beers of each type are consumed in each establishment. Of course, several 

of these haunts will be closed (most clubs usually have only one or two nights a week when they are 

designated as the place to be seen). Thus there would therefore be several wasted excursions to 

closed or not very busy bars. An alternative strategy would be to choose to only go into those night 

clubs which have the largest number of cars parked outside and to then question the clientele who 

seem to be drinking the most beers as to what their favourite brew is. The first strategy is analogous 

to the approach of conventional numerical integration using say Simpson's Rule: it is very time 

intensive. The second approach represents an implementation of the Metropolis importance 

sampling technique: so long as a sufficient number of people are questioned in a sufficient number 

of bars (there might be reduced prices in different bars on different beers and experience dictates 

that price invariably overrides student brand loyalty) then a good estimate of the most consumed 

beer will be obtained. In principle, the first approach would give us total statistics on the amount of 

beer consumed in the evening and so would be able to provide information on the total beer 

consumed for all types in all places on the Friday of interest. This is analogous to obtaining 

information regarding the quantity Qms. The importance sampling approach, however, cannot 

provide this information (i.e. cannot provide Qms) since the curious student only enters those night 

clubs and restaurants that have the largest crowds outside. 
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In terms of the Monte Carlo simulation of phase equilibria, the solution therefore becomes to set up 

a Markov chain of states which has a limiting distribution given by <p(rN) . A Markov chain is a 
V 'ens 

sequence of trials that satisfies two conditions (Allen and Tildesley (1987)): 

• The outcome of each trial belongs to a finite set of outcomes {Y13T2,...,T0, Y„,...} 

• The outcome of each trial depends only on the trial that immediately precedes it 

Two states Y0 and Y„ are linked by a transition probability n(o -* n) which is the probability of 

going from an old state to a new state. The collection of all n[o-^n) forms a transition 

probability matrix which is both stochastic (random) and ergodic and which must satisfy the 

condition that it must not destroy the limiting distribution @(rN\ for the ensemble once this 
V 'ens 

distribution is reached (Frenkel and Smit (1996)). It is convenient to enforce the unnecessarily 

strong condition of microscopic reversibility which requires that the number of moves from an old 

state o to a new state n is exactly cancelled by the number of reverse moves at equilibrium. This 

detailed balance condition may be expressed as (Frenkel and Smit (1996)): 

<PoU;r(o-»«) = <Pnew7r(n->o) (3-19) 

In practice a Monte Carlo algorithm consists of two basic steps. The first is the attempt to perform 

a trial move from state o to state n while the second stage involves the decision to accept or reject 

this trial move. This may be expressed as: 

n{p-^n)-acc{o^>n)a{o-^n) (3-20) 

where the probability of accepting a trial move is denoted by acc{o -> n) and where a(o^nt) is 

the probability of performing a trial move from state o to state n (Allen and Tildesley (1987), 

Frenkel and Smit (1996)). In the original Metropolis et al. (1953) implementation, a was chosen 

to be a symmetrical matrix (i.e. a(o -» n) = a{n -> o)) which combined with Equations (3-19) and 

(3-20) leaves: 

7 { = —IT (3-21) 
acc{n^o) <PM V ' 

There exist different possible choices for selecting acc{p -> n) and a discussion of this is contained 

in Allen and Tildesley (1987). The choice of Metropolis et al, however, appears to be the most 

efficient, i.e.: 
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acc(o^n)^^ev//(PM if T^«PM 

= 1 if <Pnew > CPoM 

The second line of Equation (3-22) indicates that the probability of accepting a move cannot exceed 

unity. The transition probability for going from state o to state n can then be written as: 

n(o^n) = a(o^n) if <pnew><p0,d 

= a(o->n)[<P™/<Pold] if <p™ « P M (3-23) 

n{o -» 6) = 1 -*Yj7z{p -> n) 

The procedure by which one accepts a new state is thus as follows. The first line of Equation ( 3 -

23) indicates that if the probability of observing the new state <pnew is higher than the probability of 

observing the old state <Pold then the transition probability is equal to the probability of generating 

the trial move, i.e. it is unconditionally accepted without applying a stochastic acceptance criterion. 

The second line of Equation (3-23) states that if <Pnew is lower than <PM , then the trial move is only 

conditionally accepted. This is determined by generating a random number, 3J™,,, from a uniform 

distribution in the interval [0,1]. The trial move is accepted if a^0;1] <acc{p->n) and is rejected 

otherwise. The probability that <^01) is less than acc[o^n) is clearly equal to acc{o-*n) and 

so this acceptance rule guarantees that one generates the correct acceptance criterion for a trial 

move from state n to state o (Frenkel and Smit (1996)). The final line of Equation (3-23) 

indicates that the old state must be recounted if the trial move is rejected. 

3.3 Degrees of Freedom 

In many ways, molecular simulation can conveniently be thought of as a kind of 'computer 

experiment'. This is because molecular simulation effectively aims to describe physical systems 

such as those encountered in chemical thermodynamics. The quantities encountered in chemical 

themiodynamics can also be determined in a statistical sense by molecular simulation methods. Of 

particular relevance to the simulation of phase equilibria are the following variables: 
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Table 3-1: Intensive and extensive variable pairing and contribution to total thermodynamic equilibrium. 

Extensive property 

Number of molecules, N 

Volume, V 

Internal energy, E 

Conjugate intensive property 

Chemical potential, /u 

Pressure, P 

Temperature, T 

Equilibrium component 

Chemical equilibrium 

Mechanical equilibrium 

Thermal equilibrium 

Total thermodynamic equilibrium is achieved when the system under study achieves chemical 

equilibrium, mechanical equilibrium and thermal equilibrium. An understanding of the pairing of 

these variables is therefore significant for equilibrium chemical thermodynamics because the 

specification of either the extensive or conjugate intensive variable of a pair is required to determine 

each of the three equilibrium components of total thermodynamic equilibrium. The conjugate 

variable of the pairing which is not specified then becomes the dependent variable and must be 

determined from the equilibrium condition of the system. In this way, the specification of either the 

number of molecules or the chemical potential determines the chemical equilibrium, the 

specification of pressure or volume determines the mechanical equilibrium and the specification of 

temperature or internal energy determines the thermal equilibrium. This, in turn, will affect the 

specific ensemble that will be appropriate for a given simulation (e.g. grand-canonical (/xVT) 

ensemble, isothermal-isobaric (NPT) ensemble, canonical (NVT) ensemble). The number of 

intensive and extensive parameters which need to be specified may be determined from the Gibb-

Duhem phase rule (Smith et al. (1996)): 

DOF = C-¥ + 2 (3-24) 

where DOF is the number of intensive degrees of freedom which need to be specified, C is the 

number of components, and F is the number of phases present. Thus for a two-component and two 

phase system, two intensive parameters will need to be set in order to specify the equilibrium 

condition of the system under study. An important prescription is that it is necessary to stipulate at 

least one extensive property. In the simulation of a two-phase system, two extensive properties will 

need to be specified to place two physical constraints on the system. This has the effect of placing 

physical bounds on both of the simulation "boxes". 
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_ CHAPTER 4: 

GIBBS ENSEMBLE MONTE CARLO SIMULATIONS 

"Make everything as simple as possible but not simpler" - Albert Einstein 

4.1 Phase Coexistence 

The condition for the coexistence of two or more phases (l,II,...), is that the temperature for 

all coexisting phases must be equal, the pressure in all phases must be equal and the chemical 

potential of each species i must be the same for that species in all phases (Smith et al. (1996)): 

(^=ru=...=r), (/>=/>„ =...=p), (Mu'Mu'-'fh) C^1) 

It might, therefore, seem appropriate to stipulate a constant /APT ensemble to simulate phase 

equilibrium. This approach has two inherent flaws. Any sensible simulation requires at least one 

extensive parameter specification in order to place a physical bound on the size of the system 

(Frenkel and Smit (1996)). In addition, this /iPT ensemble would correspond to an over-

specification of the state of the system in terms of Equation (3-24) because it is, in general, not 

possible to stipulate all intensive variables a priori. This would violate the Phase Rule. 

In a physical experiment, a first-order phase transition is normally quite easy to locate. So long as 

one is at a temperature sufficiently far away from the critical point, one will observe that at a 

suitable temperature and density that an initially homogenous phase will divide into two phases 

separated by an interface. Before the advent of the Gibbs Ensemble, molecular simulations had to 

locate phase coexistence indirectly. This usually involved conducting several simulations, 

evaluating the macroscopic properties of the individual phases in each of these simulations and then 

finding the point where the temperature, pressure and the chemical potentials of all species were 

equal in all phases. This approach underpins the application of the NPT + test particle method 

(Lofti et al. (1992)) in conjunction with the Widom test particle insertion method (Widom (1963)), 

and the Gibbs-Duhem integration technique (Kofke (1993a) and Kofke (1993b)). 

Recent reviews of different simulation methods include those by Panagiotopoulos (2000) and 

Ungerer (2003). 
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4.2 The Gibbs Ensemble 

The direct simulation of phase coexistence is complicated by the presence of an interface 

between two coexisting phases. Typically in a simulation one tries to minimize the sample size to 

reduce computational cost (assuming only pair-wise additive interactions, the simulation time 

typically scales approximately proportional to TV2). For a two-phase simulation of limited size 

with an explicit interface, however, this would increase the relative effect of the interface since the 

relative percentage of molecules residing near the interface increases rapidly with decreasing 

system size (Frenkel and Smit (1996)). 

The Gibbs Ensemble (Panagiotopoulos (1987), Panagiotopoulos et al. (1988), Smit et al. (1989), 

Smit and Frenkel (1989)) represents perhaps the most widely used simulation technique for the 

study of first order phase transitions. Gibbs Ensemble simulations are performed in two 

microscopic regions away from the interface. Each region is simulated within standard periodic 

boundary conditions using the minimum image convention. The Gibbs Ensemble thus enables the 

direct simulation of coexisting phases without the difficulty of simulating the interface (see Figure 

4-1). This is achieved by a coupling of the phases by means of suitable acceptance / rejection 

criteria (discussed below). 

Phase I 

•:-:-D-rr-r?=;3 

Phase II 

. - - 0 - O - - 0 - O - - ; 
•'|° oo °o o 0 

I o °°o° o° 9 
? o o ° ° o ! 

Figure 4-1: Schematic representation of the two coexisting phases in a Gibbs Ensemble simulation. 
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The Gibbs Ensemble comes in NVT and NPT (or N]N2PT) variants with the former variant being 

the one of choice for one-component simulations whereas the latter variant is the preferable 

ensemble for binary simulations (the stipulation of P and T providing the specification of the 

necessary two intensive degrees of freedom for a binary two-phase system). The partition function 

for the NVT version of the Gibbs Ensemble at temperature T for N total molecules distributed 

over two volumes Vl and V = V-V1 is given by (Smit and Frenkel (1989), Panagiotopoulos 

(1992)): 

xJ**-* exp[-/?t/n (i*->)] J*? expf-^t/, (•?)] 

where n, is the number of molecules in phase I. It has, however, been shown to be advantageous to 

perform the volume integration over ln(F) (Eppinga and Frenkel (1984)) in which case the integral 

becomes (Frenkel and Smit (1996): 

1 A 1 

v 
0GE = 

KA (4-2) 

QGE 

V 

X 

0 

A3AXi&V(#-Mi)! 

—LLy^fV-vY"1' 
V 

Win Vi 

v-vx 

VAV Vi)y*{y_Vy-* (4-3) 

x J < - ap[-fiUa (4"*)] ]*? exp[-/?t/, (•? )] 

where — — counts the number of ways of choosing «: molecules from N total molecules. 

Thus it becomes clear that the probability of observing a configuration around s"1 and s '̂"1 with w, 

molecules in phase I with volume Vl is given by: 

, „ NC£ V"'+1(V-V,) 
X 

(4-4) 

exp - / ? ( ^ ( S ? ) + tfn (<-"•)) 

In order to achieve the above distribution, and to satisfy the requirements for phase coexistence 

(Section (4.1)) and thermodynamic equilibrium (Section (3.3)), three basic moves are required 

during simulations in the Gibbs Ensemble: 

1) molecule translations to satisfy the requirement for thermal (i.e. temperature) equilibrium, 

2) volume exchanges between the two boxes such that the total volume is conserved to satisfy 

the requirement for mechanical (i.e. pressure) equilibrium, and 
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3) molecule transfers between the two simulation boxes to satisfy the requirement for chemical 

(i.e. chemical potential) equilibrium . ... 

and are shown in Figure 4-2: 

O O o O 
Oo o o 0 

o o..o o 

o 
O-CL 

O O o O 
Oo o o 0 

o o o o 
o° o ° 

O O o O 
Oo o o 
o o o o 
o 
o 
o 

O ° o 0 
o o u 

o 
o"> 

o 

\ 

o 

Figure 4-2: The three principle Monte Carlo moves in the Gibbs Ensemble to ensure total thermodynamic 

equilibrium of two coexisting phases: molecule displacements, volume changes and transfers of molecules. 

Using Equations (3-21) and (4-4) it is possible to derive the acceptance criteria for performing: 

1) a trial molecule displacement in phase I (Panagiotopoulos (1987)): 
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acc (o->n)- \ZNVT } 

\rNVT ) 

min{l,exp -/?(AC/,(s?)) , (4-5) 

where the min { } function denotes that one accepts a move with a maximum probability 

of unity, and At/, (s? ) = U™ (^) - Uf (s? ) , 

2) a volume exchange in box I by an amount AV, V"™ = V°u + AV (Panagiotopoulos (1987)): 

acc (o-+n)-
UGE \« 
X*NVT ) 

UGE V 
\rNVT J 

• = min-< 

f r̂ new V ' + 1 (y _ p-new \N-"i+l 

yoli V - V{
M 

xexp ^(AU^+AU^-*)) 

(4-6) 

3) a molecule transfer by removing a molecule from box I and inserting this molecule into box 

II (Panagiotopoulos (1987)): 

acc ( 0 - > » ) : 

UOE \ -
X*NVT ) 

( < P < * V l d :mm 
' (^-n ,+l )K I (4-7) 

Additional moves like molecule rotation (which has an identical acceptance criterion to equation 

(4-5)) are also permitted, but the above three moves are required to ensure phase equilibrium. The 

key phase-coupling moves are the molecule transfer move which enforces equal chemical potentials 

of each species in all phases (//y=/*m = — = Jui) without requiring a priori knowledge of the 

equilibrium chemical potentials of each of the components, and the volume change move which 

ensures equality of pressure between the phases (Pl=Pu=...-P) without requiring a priori 

knowledge of the equilibrium pressure. In the original work, the Gibbs Ensemble Monte Carlo 

method (GEMC) was introduced as a combination of the jiiVT, NPT and NVT ensembles. It has, 

however, been shown that the NVT version of the Gibbs Ensemble is rigorously equivalent to the 

NVT ensemble in the thermodynamic limit of an infinite system size (Smit et al. (1989)). 

The Gibbs Ensemble may also be written for the case where the total system pressure is kept 

constant (Panagiotopoulos et al. (1988)). This NPT version of the Gibbs Ensemble is ideally suited 

for the study of binary vapour-liquid equilibrium (VLE) and for the simulation of non-saturated 

phase behaviour of pure compounds because two intensive degrees of freedom are required for both 

of these cases. This may be seen from Equation (3-24). The essential difference between the NVT 

and NPT versions of the Gibbs Ensemble is that the box volumes are allowed to change volumes 
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independently in the NPT Gibbs Ensemble while in the NVT version of the Gibbs Ensemble the 

total system volume of both boxes is conserved. For a binary two-phase system, with JV, molecules 

of type 1 where JV, = rau + nu_,, and N2 molecules of type 2 where N2 = nl2 + «n2 the partition 

function for the NiN2PT Gibbs Ensemble is: 

1 - <& & 1 ZI 
x^(lnF1)(F I"'+,exp[-^PF I]) 

x f d ( t a r n ) ( ^ + , e ^ [ - / W n ] ) 

x{ Jrfs? exp[-/H/(s?)] f r f s^ exP[-/Hy(s£-'*)]} 

JST,, now has units proportional to the square of the volume. Thus: 

^(^+1)^.(^-^+1) 

JN.N-.PT 
nu\(N,-nu)ln,2\(N2-nia)\ 

texp[-fi(p(V1+Va)+u(^)+U(s^))'\ 

(4-8) 

(4-9) 

The molecule transfer and molecule translation acceptance criteria for this ensemble are identical to 

the acceptance criteria for the NVT Gibbs Ensemble but the volume move now has a different 

acceptance criterion. Thus for an increase in the volume of phase I of AV1, F,new = V°li + AFj: 

{ GE y » 
^N^PT ) acc(o->n) = 
(<PGE ) 

•void 

= mun 

(4-10) 

1, 
7, 

old exp[-^(p(AK I) + AC/I(s?))] 

It is important to note that the total number of molecules is fixed in both versions of the Gibbs 

Ensemble. 

The molecule transfer step is crucial for the algorithm to work properly. This makes the Gibbs 

Ensemble difficult to implement for dense phases since the probability of inserting a molecule 

successfully is then very low. This tends to be a weakness of all 'chemical potential based' 

algorithms. 
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4.3 The Semi-Grand Ensemble 

Before the advent of Configurational-Bias techniques (discussed in Section (5.7)), the 

insertion or deletion of molecules in //.VT ensemble simulations proved prohibitively difficult. The 

molecule transfer step is also crucial for the Gibbs Ensemble algorithm. The Gibbs and fiVT 

ensembles thus tend to be awkward to implement successfully for dense phases since the probability 

of inserting a molecule is then very low. 

As an alternative to the difficulty that will be encountered when trying to insert a molecule in a 

simulation box for an ensemble in which the total volume is fixed (e.g. the /AVT or NVT version of 

the Gibbs Ensemble), one might consider trying to change molecule identities for the case of a 

multicomponent mixture. In this case, the total number of molecules will remain constant and thus 

each identity change corresponds to the destruction of a molecule of a certain species and the 

creation of a molecule of a different species type and is shown schematically in Figure 4-3. This 

coupling of a molecule destruction to the creation of a molecule of another type will in general be 

more successful than the separate creation and destruction of molecules when sampling 

configurations. This is precisely the reasoning behind the formulation of the Semi-Grand Ensemble 

(Kofke and Glandt (1988)). 

1 o 

6 

o 
o 

o 

>o 
o 
o 

o 

o d 

• 
Figure 4-3: Molecule identity change move in the Semi-Grand Ensemble. The smaller molecule is being 

transformed into the same type as the larger molecule. 

In the original formulation, the Semi-Grand Ensemble was derived for the case of constant 

simulation box volume. For a multicomponent mixture, however, it will in general be necessary to 
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specify at least two degrees of freedom (Equation 3-24). Consequently, it is most convenient to 

write the partition function, for Semi-Grand Ensemble at constant pressure (Frenkel and Smit 

(1996)): 

Q---iry.\dvv"^{-ppv] 

(4-11) 

H i nlf-1 KH>/ (S" ) ] ! 
identities i=l \^>\ 

where QS°PT is the isobaric Semi-Grand partition function, C is the number of components, n{ is 

the number of molecules of type i and § is the fugacity fraction of species i which varies between 

0 and 1 and is defined as: 

where f- is the fugacity of species i and is defined in terms of the chemical potential of species i 

as (Frenkel and Smit (1996)): 

vXP,T,{x.]) = tf{T) + kBT\n[ft (4-13) 

where xi is the mole fraction of component i , and where 

M^(T,{P = l}) = kBT\n[^] = kBTln[^P] 

= Vb[AAf] 

where juf (T) is the chemical potential in the ideal gas reference state (P = 1) of species i (Frenkel 

and Smit (1996)). The summation over identities in Equation (4-11) indicates that the partition 

function must be evaluated over all possible identities for the iV molecules in the mixture. It must 

be noted that at equilibrium, (fii=fil,i- — = fi) because yU^-ft^ = — - M ) at equilibrium (Smith 

et al. (1996)). The probability of observing a configuration around s'' of N molecules in a volume 

V with «; molecules of type i in the Semi-Grand Ensemble is given by: 

Cz V 
<p(N,V,sN,ni)2T^VNexp[-fiPV] | - cxp[-flU(sN)] (4-15) 

Using Equation (3-21) and Equation (4-15), it is possible to show that the acceptance criterion for 

changing the identity of a molecule of species i into a molecule of species j is given by: 

flcc(0^")=^^-=min{1'fexp[-^(Af/(SA'))]} (4-16) 
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It may be appear that this ensemble is directly applicable to the simulation of phase equilibrium. 

The probability given in Equation (4—15) includes specification of two intensive variables, 

P~YhT a nd P > a s w e ^ 2s a r a u 0 ° f t w o intensive variables, 'VC . Frenkel and Smit (1996) 
/ KBl / hi 

outline a procedure to determine phase equilibrium at a given /? and P. The procedure is, 

unfortunately, iterative in nature. For a binary mixture this method requires the gradual insertion of 

molecules of type 1 into a phase I composed of pure molecules of type 2. Thereafter one performs 

a similar task for a second phase II, but instead, molecules of type 2 are added to a phase initially 

composed of molecules of type 1 only. Equilibrium properties can, therefore, not be obtained from 

a direct simulation. The Semi-Grand Ensemble does, however, have considerable advantage for the 

case of multicomponent systems where the number of components present is greater than two. This 

is because the composition of a phase is then determined in an averaged statistical sense. In 

contrast, the Gibbs Ensemble requires that the overall composition for the components be specified 

a priori. The difficulty inherent in a priori specification of overall composition is explained with 

reference to the well known "lever-arm rule" in Section (8.1). In Sections (8.2) and (8.3) two 

methods that marry the advantages of the Gibbs Ensemble and the Semi-Grand Ensemble by the use 

of new ensemble formulations are described. 

The characteristic thermodynamic potential for this isobaric Semi-Grand Ensemble is given by 

(Frenkel and Smit (1996)); 

P^N = -\n[Qs
N%] (4-17) 

The presence of the term juxN in Equation (4-17) and the fugacity ratio § both originate from the 

specification that the total number of molecules is constant. It is important to note that in this 

formulation of the Semi-Grand Ensemble, the partition function of Equation (4-11) applies only to 

the simulation of one phase and not to the simulation of two-coexisting phases explicitly. 

Panagiotopoulos (1989) has proposed an additional move for the Gibbs Ensemble which 

corresponds to an identity swap between two molecules in two different but co-existing phases. 

The move is in principle similar to the identity swap move of the Semi-Grand Ensemble but differs 

in the sense that the identity swap is performed in both phases of the Gibbs Ensemble in such a way 

that the total number of molecules of each species involved in the swap move are conserved, i.e. «, 

and K2 remain unchanged. The acceptance criterion for this move is given by: 
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acc{o-^ «) = 
(<pGE V 

(CPGE V 
\rN,N,PT J 

= min<l, 

«p[-^(A^(t?)+AC/H(iJJ^))' 

(4-18) 

Although this move in the Gibbs Ensemble is in principle similar to the identity swap move of the 

Semi-Grand Ensemble, the inverse identity swap move which is performed simultaneously in the 

other simulation box has the net effect of cancelling off the fugacity coefficient ratio in the 

acceptance criterion for this move. 

The identity swap move has the effect of ensuring that the chemical potential difference between 

two components in a mixture remains constant across the phases. The identity swap move is 

therefore of particular use when one of the components is considerably more difficult to swap 

successfully. For a binary and two-phase system, if one performs conventional molecule swaps for 

the more easily swapped component according to Equation (4-7) and also identity changes, the 

following conditions are therefore satisfied: 

* » " ^ (4-19) 

th,\ Mia ~ /"n.i /V2 

The first line of Equation (4-19) originates from the transfer steps while the second line originates 

from the identity swaps. Equation (4-19) is sufficient to ensure equality of the chemical potentials 

of the species present. Martin et al. (2000) and Panagiotopoulos (1989) both report that the relative 

acceptance of the identity swap move is one to two orders of magnitude higher than that for the 

conventional molecule swap move of Equation (4-7). In general, therefore, for an n-component 

and two-phase mixture, then only one species swap move and (n-1) distinct identity swap moves are 

necessary to ensure chemical equilibrium. This move is therefore of considerable advantage for the 

case of simulating binary and multicomponent VLE. 

4.4 Pseudo-Ensemble Alternatives to the Gibbs Ensemble 

Although the primary focus of this work is the use of the Gibbs Ensemble to simulate phase 

equilibrium, pseudo-ensembles represent an important new class of simulation technique that have 

emerged in recent years. As pointed out by Escobedo (1998), the advent of pseudo-ensembles has 

greatly enhanced the numerical tools available to molecular simulation. Mehta and Kofke (1995) 
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first proposed a scheme to mimic a traditional piVT simulation by means of an NPT type of 

ensemble in which molecule insertions and deletions were replaced by volume fluctuations. Attard 

(1997) has also proposed a similar approach. Both schemes rely on virtual or "faked" insertion 

moves to evaluate the instantaneous chemical potential of the system being simulated (e.g. by test-

particle insertion methods such as the Widom test-particle insertion method of Widom (1963)). 

Camp and Allen (1996) subsequently used the idea of replacing molecule insertions with volume 

moves to formulate a pseudo Gibbs Ensemble in which molecule transfers are replaced by 

concerted volume moves. Instantaneous evaluation of the chemical potential is again a requirement 

of this method. Escobedo and de Pablo (1997) then proposed a variant of this method which 

essentially allows for the substitution of volume moves with molecule transfers in another pseudo 

Gibbs Ensemble. This method avoids direct volume changes and is advantageous for polymeric 

systems. 

Using a general formalism, Escobedo (1998) has been able to unify pseudo-ensembles with 

Histogram Reweighting techniques and NPT + test particle methods (Moller and Fischer (1990), 

Lofti et al. (1992), Boda et al. (1995)). In particular, it has been explicitly shown that NPT + test 

particle methods represent low order extrapolation schemes of pseudo-ensembles using Taylor 

series while Histogram Reweighting is effectively an infinite order pseudo-ensemble extrapolation 

scheme. The formalism also suggested the formulation of an interpolative approach for the direct 

simulation of dew- and bubble-points. 

The idea of combining pseudo-ensembles with multiple phases has spawned several new molecular 

simulation approaches. Bode et al. (1996a) used separate ^VT simulations to determine third order 

Taylor series of the pressure as a function of the imposed values of chemical potential and 

temperature around a neighbourhood of {T0,/J0} . In a sense, this method can be thought of as the 

reverse approach to that of an NPT + test particle simulation. This is because an NPT + test particle 

simulation achieves phase coexistence by enforcing pressure and temperature and then determining 

the point at which the chemical potentials of two phases are equal, while the approach of Boda et al. 

(1996) first imposes the chemical potentials and then seeks the conditions at which the chemical 

potentials of the two phases are the same. 

In a related approach, Vrabec and Hasse (2002) have formulated a Grand Equilibrium method for 

pure components and mixtures which also uses Taylor series expansions. The method rather uses 
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NPT simulations to evaluate the chemical potentials of all components and their derivatives at 

constant pressure to formulate first-order Taylor series expansions for the chemical potentials as 

functions of pressure at constant composition. Next, a pseudo-/iVT simulation is performed in 

which the chemical potentials are set according to the instantaneous pressure (which must be 

calculated during this second simulation) according to the functions which have been determined 

for the chemical potentials. In this way, the outputted chemical potential function from the first 

simulation of the one phase is used as an input for the second simulation of the other phase. The 

decoupling of the phases, the expansions used for the chemical potentials and the multiple 

simulations required to evaluate the functions for the chemical potentials necessarily place this 

approach in the class of pseudo-ensembles multiphase pseudo-ensembles. 

In order to compensate for the well-known inability of the Gibbs Ensemble to simulate near-critical 

data accurately, Miyano (1997) proposed an iterative equation of state algorithm-based Gibbs 

Ensemble approach. In this scheme, the pressure and vapour composition are systematically refined 

until equality of chemical potentials between the vapour and the liquid was obtained. This 

algorithm did allow for the simulation of binary data much closer to the critical point without the 

usually large fluctuations found in the Gibbs Ensemble. 

Recently, the Bubble Point Ensemble algorithm has been developed and used for the simulation of 

mixtures of fluids with simple Lennard-Jones interactions (Ungerer et al. (1999)) as well as for 

alkane mixtures of chain molecules (Ungerer et al. (2001)). The idea behind this ensemble was also 

suggested by Escobedo (1999). This development has been significant because it has facilitated the 

simulation of bubble points at a fixed liquid composition by a direct algorithm. The method relies 

heavily on fake molecule insertions and deletions in the liquid phase and is shown schematically in 

Figure 4-4: 
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Figure 4-4: Diagram showing how insertions and deletions of molecules in the liquid phase are never actually 

carried out. 

In this method, the composition of the liquid phase is kept constant. The usual Gibbs Ensemble 

moves are used except that transfers of molecules to or from the liquid phase are never actually 

performed. The liquid phase thus remains at constant composition while the vapour phase 

undergoes effective changes. These "fake" or virtual transfer moves require modifications to the 

usual transfer acceptance criteria (Ungerer et al. (1999)). The simulation proceeds by imposing the 

chemical potential calculated in the liquid phase by "fake" molecule insertions in the liquid phase 

on the vapour phase. This imposed chemical potential is progressively refined during the 

simulation. Unlike the methods of Boda et al. (1996) and Vrabec and Hasse (2002), the Bubble 

Point Ensemble thus has direct mechanical coupling of the coexisting phases which has been shown 

by Ungerer et al. (1999) to improve convergence. A hybrid method was proposed in which the 

average box sizes and average molecule numbers from the Bubble Point Ensemble are used to 

initialize an NVT Gibbs Ensemble simulation. This approach was selected because the Bubble 

Point Ensemble was found to have larger density fluctuations than the Gibbs Ensemble (Ungerer et 

al. (1999), Ungerer et al. (2001)). This might be attributable to slight errors which creep into the 

calculation of the chemical potential which is imposed on the vapour phase. Following the 
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discussion from Section (3.3), it is important to note that an NVT ensemble has too few intensive 

parameters specified for a two-phase and two-component system. .Clearly, only T is specified for 

the final NVT Gibbs Ensemble when there are in fact two intensive degrees of freedom. It therefore 

becomes very important to sample the chemical potential in the liquid phase over a sufficiently long 

interval such that a good chemical potential is imposed on the vapour box. 

The key difference between the pseudo-ensembles and pseudo Gibbs Ensembles discussed thus far 

and conventional Gibbs Ensemble simulations rests in the way in which two coexisting phases are 

coupled at the level of microscopic fluctuations in Gibbs Ensemble (e.g. molecule transfers which 

implicitly assume equality of chemical potentials of individual components in all phases), whereas 

these fluctuations are selectively decoupled for any pseudo-ensemble approach. The virtual 

molecule transfers to the liquid phase in the Bubble Point Ensemble are an example of this 

decoupling. The key issue, though, is that this convenient decoupling of certain types of moves in 

pseudo-ensembles allows one to avoid some of the mass balance and volume constraints which can 

hinder a standard Gibbs Ensemble simulation (Escobedo (1999)). An example of this is the way in 

which a constant liquid composition can be imposed in the Bubble Point Ensemble while still 

allowing molecule transfers to satisfy the requirement for chemical equilibrium. 

Pseudo-ensembles can, however, suffer from the disadvantage that inaccuracies present in 

intermediate computed variables propagate as errors in imposed variables. This can cause errors of 

varying magnitude in the final computed results. The higher the desired accuracy or extrapolation 

order, the longer a simulation must be run. Escobedo (1998) alluded to the necessary compromise 

that must be struck between simulation length and the extrapolation order when considering using 

different pseudo-ensemble techniques. Also, Ungerer et ah (1999) have pointed out that the 

repeated evaluation of chemical potentials in methods like those mentioned by Escobedo (1998) and 

Miyano (1998) can be very expensive computationally. Systematic deviations from GEMC 

simulations errors have also been found in certain cases. Vrabec and Hasse (2002) found the 

isothermal dew line of a Lennard-Jones fluid mixture to be underestimated, while this result is also 

evident in the results from Miyano (1997) for points away from the critical point. 

There has been some debate concerning the validity of microscopic reversibility as a necessary 

condition for a simulation to be valid. For example, during a simulation it is common practice to 

adjust the maximum rotation or translation step size so that a predetermined target acceptance of 

rotation and translation moves are achieved by the end of the simulation. Small translations or 
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rotations will have a high probability of being accepted but will sample configuration space less 

efficiently. Miller et al. (2000) have argued, however, that adjusting step size can bias the potential 

energy surface particularly for inhomogeneous systems. It was shown explicitly that this can lead 

to erroneous results since the system is no longer truly microscopically reversible. 

Manousiouthakis and Deem (1999), however, have argued that since most Monte Carlo simulation 

moves lead to ergodic sampling, the local balance condition together with the requirement for 

regular sampling is sufficient to ensure a correct simulation. 

Pseudo-ensembles are, in general, non-ergodic due to the use of interpolation schemes and "fake" 

moves. "Fake" or virtual moves are inherently non-ergodic. For a simulation to be unconditionally 

ergodic, the reverse move must be possible to satisfy the condition of microscopic reversibility. 

This is not possible for virtual moves. This can lead to ergodicity errors. It can be shown that there 

are circumstances for which the condition of the microscopic reversibility can be relaxed (Miller et 

al. (2000), Rull et al. (1995)). The point, however, remains that while there may be circumstances 

for which microscopic reversibility is an unnecessarily strong requirement, the imposition of this 

condition will always guarantee that a simulation is ergodic (Frenkel and Smit (1996)). It has also 

been shown that "real" moves lead to a faster convergence (Escobedo (1999)). The use of pseudo-

ensembles to take advantage of the array of simulation options provided by these simulation tools 

must therefore be done with careful consideration and on a case-by-case basis (Escobedo (1999)). 

4.5 Histogram Reweighting 

Histogram Reweighting represents an exciting new alternative to the simulation of phase 

equilibrium properties. Although the primary focus of this work is the simulation of phase 

equilibrium using the Gibbs Ensemble, some attention must be given to this new method because it 

represents a simulation methodology that is receiving renewed attention. 

As pointed out by Panagiotopoulos (2000), it has been known for some time that a single 

calculation can, in principle, be used to obtain information for a system for a range of state 

conditions. Grand canonical Histogram Reweighting makes use of this idea. In general, multiple 

overlapping histograms at different temperatures and chemical potentials will need to be collected 

to cover the conditions of interest. Once this has been achieved, all the thermodynamic properties 

over the region of interest can be obtained. 
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Ferrenberg and Swendsen (1988) originally proposed a means by which to combine multiple 

histograms to obtain a global free energy function by minimizing the differences between predicted 

and observed histograms. Subsequently, Ferrenberg and Swendsen (1989) also proposed an 

optimized method to combine the collected histograms for a wide range of parameter values of 

different Hamiltonians. The implementation of Histogram Reweighting has additionally been 

described by Swendsen (1993), Potoff and Panagiotopoulos (1998), and Errington and 

Panagiotopoulos (1998a), Errington and Panagiotopoulos (1998b) and Errington and 

Panagiotopoulos (1999a) have also outlined a general procedure for generating pure component 

coexistence data effectively. 

Most recently, the method has been used to parameterise intermolecular force fields for «-alkanes 

(Errington and Panagiotopoulos (1999a)), benzene and cyclohexane (Errington and 

Panagiotopoulos (1999b)), carboxylic acids (Kamath et al. (2004)), as well as glycols, ethers, 

ketones and aldehydes (Stubbs et al. (2004). Conrad and de Pablo (1998) have developed an 

alternative NPT ensemble Histogram Reweighting technique. 

While Histogram Reweighting works well for pure components and while the method has been 

applied to the simulation of some alcohol mixtures (Chen et al. (2001)), carbon dioxide and 

nitrogen mixtures (Potoff and Siepmann (2001)), polar and non-polar mixtures (Potoff et al. (1999)) 

and water-alkane mixtures (Errington et al. (1998c) and Boulougouris et al. (2000)), the increasing 

number of histograms that are required to simulate multicomponent mixtures make this method 

computationally expensive for mixtures with two or more components (Ungerer et al. (1999). The 

method does, however, have the distinct advantage that the simulated data is not limited to discrete 

simulated points as for the Gibbs Ensemble and for certain cases of pseudo-ensembles. Also, 

Histogram Reweighting is ideally suited to the simulation of near-critical phase equilibrium data. 

In this way, it can be used to simulate mixtures over a wide temperature range even though the 

computational overload is increased (Potoff et al. (1999)). 

4.6 The Reaction Gibbs Ensemble 

Recently, the reaction Gibbs Ensemble Monte Carlo (RGEMC) method has been proposed as 

a means to more accurately model vapour-liquid phase equilibrium using a methodology closely 

related to the standard Gibbs Ensemble approach (Lisal et al. (1999)). The method is based on the 

Reaction Gibbs Ensemble method of Smith and Triska (1993) and has been used to study binary 
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mixtures containing isobutene, MTBE and n-butane (Lisal et al. (1999)), binary mixtures containing 

water, methanol, ethanol, carbon dioxide and ethane (Lisal et air (2001)), ~as well ~as 

multicomponent and reacting multicomponent phase equilibrium. While this method appears to 

improve the simulated phase diagrams over conventional GEMC simulations, it only scales the 

simulated phase diagram by a simple pressure adjustment to the acceptance rules and, more 

importantly, RGEMC does so by shifting the true composition predicted by the simulation. 

Furthermore, the improved results given by the RGEMC may be achieved by simply applying the 

Gamma/Phi approach to VLE (Smith et al. (1996)) using a direct scaling methodology. In 

Appendix 4B of this Chapter, explicit details of this methodology and its derivation are given. 

The RGEMC also does not address the issue presented by random fluctuations in the box volume in 

an NPT GEMC or NPT RGEMC simulation which can cause a simulation to fail due to the box 

length dropping below twice the cut-off radius (see Section (5.2)). This is because although the 

simulated pressures are now shifted closer to the experimental results, one still has to judiciously 

select the pressures for the Reaction Gibbs Ensemble simulation run. Thus, the RGEMC method 

does not obviate the difficulty of satisfying mass balance constraints imposed by the "lever-arm" 

rule referred to in Section (8.1) for binary simulations in which both JV, and Nx are specified a 

priori. 

4.7 A Generalized Isothermal Gibbs Ensemble Formalism 

Hill (1956) has developed the ensemble formalism behind a general case of a system in 

material, chemical and thermal contact with its surroundings. This 'generalized ensemble' 

effectively constitutes a [iPT ensemble, i.e., an ensemble at constant chemical potential, temperature 

and pressure. Hill (1956) has, however, argued that this ensemble is of little practical use because 

T, P and all of the fi, 's cannot all be independent for reasons mentioned in Section (4.1). This 

'generalized' ensemble does, however, have an important application. Indeed, it can be shown to 

provide a convenient starting point to 'derive' all other ensembles (which may therefore be regarded 

as special cases of the 'generalized' ensemble). It also can directly yield the characteristic 

thermodynamic potential for an ensemble which provides the link to macroscopic thermodynamics. 

In this Section, the generalized ensemble is given for the general case of multiple phases and 

multiple components. Several other ensembles are shown to be simplifications of this ensemble. 

Two new ensemble formalisms are also "derived" from this approach. 
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Escobedo (2001a) has argued that much still needs to be done to develop methodological 

frameworks that inter-relate different simulation approaches. Almost 15 years ago, Graben and Ray 

(1991) provided a unified treatment of adiabatic ensembles. In this analysis they provided the 

fundamental partition functions and fundamental entropy relations for four monophasic adiabatic 

ensembles. This analysis of adiabatic ensembles was significant because it suggested the 

formulation of a governing framework from which several classes of ensembles can be deduced. 

The analysis was, however, limited to pure components. Escobedo has invested considerable effort 

in providing generalized frameworks with which to consider pseudo-ensembles (Escobedo (1998)), 

multiphase pseudo-ensemble approaches collectively referred to as "virtual Gibbs Ensembles" 

(Shetty and Escobedo (2002)) and polydisperse systems (Escobedo (2001a)). The applications have 

been limited but have included the simulation of a simple Lennard-Jones mixtures in a bubble-point 

pseudo-ensemble (Shetty and Escobedo (2002), Escobedo (1998)) essentially equivalent to the 

Bubble Point Ensemble of Ungerer et al. (1999), the simulation of a simple Lennard-Jones mixture 

in a semi-open Gibbs Ensemble (Escobedo (2000)), as well as the study of some polydisperse fluid 

mixture behaviour (Escobedo (2003) and Escobedo (2001b)). More recently, Escobedo (2000b) has 

used pseudo-ensembles to study alkane mixtures that could be of relevance to distillation 

operations. 

The aim of the following section of work is to use a generalized ensemble formalism to develop a 

methodological means by which to "generate" ensemble partition functions and the corresponding 

thermodynamic potentials. 

The fundamental relation in thermodynamics may be expressed as (Rao (1994)): 

U = U(S,V,Nl,N2,...,Nc) = U(X') (4-20) 

where U is total internal energy and is a function of extensive parameters only, S is the entropy , 

V is total volume, N{ is total number of molecules of species i and X' is the set of C + 2 

extensive variables in the entropy representation of the fundamental relation. Once the fundamental 

relation is known, the system under study is completely defined and all relevant thermodynamic 

properties are then obtainable (Rao (1994)). Since entropy is continuous, differentiable and single-

valued, Equation (4-20) may alternatively be expressed as: 

S = S(U,V,NlfN2,...,Nc) = S(X) (4-21) 

which is known as the entropy representation of the fundamental relation and where X is now the 

set of C + 2 extensive parameters in the entropy representation of the fundamental relation. Note 
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that all extensive properties are total properties in the sense that they are sums over all subsystems 

such that X{ -Xl{ +Xui +... where X{ is a particular extensive variable, and that the number of 

components ranges from 1 to C. 

The exclusive extensive variable dependence of Equation (4-21) or Equation (4-20) is inconvenient 

since they do not coincide with the understanding of Equation (3-24) which requires the 

specification of intensive variable parameters. Following the approach of Escobedo (2000a), if X 

is the set of all extensive variables such that X = X(U,V,Nl,N2,...,Nc) and if Y is the set of all 

corresponding conjugate intensive variables such that Y = Y(/?,/?P,-/?;u1,-/?>u2,...,-/?//c) , then it 

is possible to replace a subset X = XfXpX,,...] of X consisting of M% extensive variables with a 

subset Y = Y( jj,72,...j of Y consisting of Mf (=M^.) intensive variables where X{ and Y{ are 

particular conjugate extensive and intensive quantities respectively. This formally allows one to 

arrive at the familiar ensemble abbreviations (e.g. NPT, NVT, etc) which are a mixture of intensive 

and extensive parameters which satisfy the intensive property requirements of Equation (3-24). 

Each intensive variable is related to its conjugate extensive variable by means of: 

F^i-f-^-1 (4̂ 22) 

Details concerning the specifics of Legendre transforms of thermodynamic potentials are contained 

in Hill (1956) and Rao (1994). As pointed out by Escobedo (2000a), it is important to note that: 

Y = Y u Y (4-23) 

and 

X = X u X (4-24) 

where X and Y are the respective extensive and intensive subsets of X and Y not in X and Y. 

It is known that the entropy is a homogenous first order function of the extensive variables. 

Consequently, it is possible to derive the Euler relation for the entropy representation for a system 

of C components (Rao (1994)): 

j-^fiU + pPV-j^fiMM (4-25) 
*B i=l 

in which the internal entropy (or equivalently the energy after trivial re-arrangement of Equation 

(4-25)) is the sum of each intensive variable with its conjugate extensive variable. Clearly: 
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X-Y (4-26) 
JSM 

Using the Legendre transform rules (Rao (1994)), it becomes possible to derive a "Massieu" 

function in the entropy representation, <Ff, to give an alternative representation of the fundamental 

relation. In particular: 

k* k> «-> ( 4 _ 2 7 ) 

T9=— -X-Y = — -YXY Y K k 
My 

The final line of Equation (4-27) arises because X-Y = X«Y + X-Y. This may be seen directly 

from Equations (4-23) and (4-24). 

At this point it is convenient to note that all the thermodynamic potentials for all of the ensembles 

described thus far contain only some of the terms present in Equation (4-25). At equilibrium, 

however, the system is uniquely specified by the C + 2 extensive variables in X, and the 

requirements of phase equilibrium embodied in Equation (4-1) must hold for all extensive 

parameters. 

It should therefore be possible to arrive at a hypothetical general ensemble from which all ensemble 

partition functions may be readily determined by simplification, i.e. as special cases. In this case, 

one would desire to express the fundamental relation as: 

^ = ̂ (/?,/?p,-/?//,,-Mv..,-#0=-f(Y) (4-28) 

where the entropy is now exclusively a function of intensive parameters, i.e. a total Legendre 

transform of all extensive quantities to intensive quantities. The partition function for this general 

ensemble must therefore involve integration or summation over all of the extensive variables 

present in Equation (4-25). 

A convenient starting point for this ensemble is the 'generalized ensemble'. According to Hill 

(1956) the partition function for the generalized ensemble may be given by: 

Q,FT = \dVQpT exp[-/?i>F] (4-29) 

where Q yj. is given by Equation (3-11) and is now integrated over all possible volumes. Since this 

is effectively the partition function for a juPT ensemble, Equation (4-29) is equivalent to integrating 
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any other ensemble over the remaining unspecified intensive variables, e.g. integrating the NPT 

ensemble over all possible numbers of molecules: 

Q,PT = ZN(QNPT ™P[PMN]) (4-30) 

Substituting Equation (3-11) for Q „. in Equation (4—29) or substituting Equation (3-10) for QNPT 

in Equation (4-30), one arrives at: 

xjdsNexv[-/3U(sN)~\ 

where the integration over volume is performed over V and not ln[F]. Expanding Equation (4— 

31) for the more general case of C components and F phases yields: 

- e x p e r t ; ] 

e„pr=L 
A < = 1 

(4-31) 

1 r 
" A*"TI"u! 

xj^expf-/?^)] j-fjn 

(4-32) 

where the term K0 is still arbitrary and its units are such as to make the integral of Equation (4—32) 

dimensionless. Since all terms exclusively involving «; in Equation (4—32) are independent of all 

phase volumes V- and dimensionless co-ordinates s"J, all terms involving the phase volumes Fj are 

independent of the dimensionless co-ordinates s"', and all phase volumes and numbers of 

molecules of each species are independent of each other, Equation (4-32) may be rewritten as: 

NUN2,~NC 

j-fjn^.j-fj 

<n*? 
H 

rw 
^ f exp[-/3Q] 

i=l j=I 

(4-33) 

where: 

j=I I i=l 

(4-34) 
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The form of Equation (4—34) as a summation of energy terms arises due to the substitution of the 

product over exponentials in Equation (4—32) with equivalent summations over the exponentiated 

terms PPV^, P/dtNi and /3U\sN'). In particular, Equation (4—34) may be simplified to give: 

Q = tfr(»*)+J,*T-E/<Mr (^35) 

where the summations over phases have been replaced by the total values for the extensive 

parameters. Comparison of Equation (4-35) with Equation (4-25) indicates that the dummy 

quantity Q. is in fact equivalent to TS where the partition function in Equation (4—33) is now a 

function of the intensive parameters only. 

• 

Expression of the generalized partition function over an arbitrary number of components and an 

arbitrary number of phases in Equation (4—33) provides a means to directly link back to the 

fundamental thermodynamic relation of Equation (4-21) or equivalently Equation (4—20). 

Equation (4-33) provides an overall partition function from which it is possible to derive all other 

isothermal partition functions and from which the thermodynamic potential *FOTJ may easily be 

discerned. This may be understood by writing Q as the sum of two scalar products using Equation 

(4-26): 

_ _ _ _ (4-36) 
= X«Y + X.Y 

where Q is now the sum of the product of the conjugate pairs which have an extensive parameter 

which is fixed (X«Y) and the conjugate pairs which have an extensive quantity which is allowed to 

vary (X-Y). If one defines a particular ensemble with certain fixed extensive parameters in order 

to satisfy the equilibrium requirements of Equation (3-24), then the X«Y terms may be factored out 

of the integral in Equation (4—33) since the extensive quantities X are constant: 

[fi^]w=«p[-(X-Y)]l { dX 
N X{1,...,F) 

U = i 

(4-37) 

1 F C F 

where / ( N , V ) = —Y\V-> , ^ ( N ) = f "Jay!, [ f i ^ J - ^ denotes the special case of the /tPT 

ensemble at constant X and Y , N = {«,,nn,...,«F} and \ = {Vl,Vn,...,VF). Note that the 
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integration is performed over all constrained and unconstrained extensive quantities which vary in 

all of the phases, i.e.: 

X{l,...,F} = {«1I,...)%!...,«cl,...,«CF;FIv..JFF;C/I(s"'),...JC/F(s"F)} (4-38) 

It should be noted that integration over the set of [UI,Un,...,Ur) is in fact an integration over all of 

the molecular co-ordinates since U = u(sN). For an ensemble at constant N, the term 

c 
"J A:1"1 x^(N) factors out of the integral as a constant and so does not affect the formulation of the 

i=l 

partition function or acceptance criteria, while for an ensemble at constant N and V, the terms 

c 
"JA "̂1 X#(N) and _f(N,V) both factor out as constants. The integral term in Equation (4—37) is 

in fact the partition function for an ensemble at constant X and Y. This shows that all partition 

functions and thermodynamic potentials may be derived as special cases of a generalized /iPT 

ensemble: 

tafepr]U=-(X-Y) + ln[e(x,Y)] 

(s ^ r ,- -M ^ 3 9 > 

=-^- x - Y J + l n [e (x ,Y) ] 
where the final line of Equation (4-39) is derived from the relations given in Equation (4-26) and 

natural logarithms are taken of both sides of Equation (4—37) to begin to make a formal link with 

the thermodynamic potential defined in Equation (3-12). In order for Equation (4-39) to be useful, 

however, it is necessary to evaluate In HQ^T-J _ . . For any given ensemble, the entropy may be 

related to probability by (Hill (1956)): 

(S) = -*,Y<p(xWr<p(x)l (4-40) 

where X is the set of instantaneous values of the set of extensive variables X which are allowed to 

vary. It is more convenient to consider Equation (4-33) without the quasi-classical approximation 

such that: 

e ^ r = Z e x p [ - r 5 ] (4-41) 
x 

where S is the instantaneous value of the entropy, the term #(N) accounting for 

indistinguishability of the molecules is now implicitly accounted for in the summations over all 
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extensive variables and the need for the term / ( N , V ) disappears since the partition function is 

now dimensionless. Using Equations (3-3) and (4-41), Equation (4-40) becomes: 

(S) = -kBY<p(x) ln|"<p(x) 
* ' mSf \ 'ens L ^ ' « 

= - * * ] •> 
exp[-0TS] 

exp(-y?T5) (4-42) 

- S, 

from which -lnTg^j.] = 0. This expression is analogous to the expression derived by Hill (1956). 

From Equation (3-12), this implies that the thermodynamic potential for the /xPT ensemble, 

^PPT = -lnTg^j. ] , is zero This is consistent with the observation that the /iPT does not describe a 

system of physical significance because no extensive parameter is fixed and therefore, since this 

ensemble should have no link to macroscopic thermodynamics, the jtiPT thermodynamic potential 

must be zero. 

Equation (4-39) may thus be summarized as: 
lnfe-]U=VFx,v+i<e(x,Y)]=o 

Comparing Equations (4-39) and (4-43), it maybe seen that: 

* M — ( * Y ) ' 
\.*B 

X«Y 

(4-43) 

(4-44) 

It would be reassuring to note that the condensed formulation given in Equation (4-43) yields the 

correct partition function and thermodynamic potential for all ensembles. For this purpose, the 

application of Equation (4-43) to derive the partition function and the thermodynamic potential for 

the NiN2PT version of the Gibbs Ensemble is demonstrated in Appendix 4A at the end of this 

Chapter. 

4.8 Appendix 4A: Application of /tPT Generalized Ensemble to the 

Gibbs Ensemble 

In this Appendix, the formalism of Equations (4-37) and (4-39) is used to alternatively 

'derive' the partition function and the thermodynamic potential for the NiN2PT version of the Gibbs 

Ensemble to demonstrate the utility of the new formalism and to demonstrate that this new 
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formalism correctly generates known partition functions. The derivation of the thermodynamic 

potentials and partition functions for the NPT, NVT or p,VT ensembles using this approach are 

similar. 

4.8.1 The NiN2PT Gibbs Ensemble as a Special Case of the /tPT Generalized 

Ensemble 

The N]N2PT version of the Gibbs Ensemble is a two-phase and two-component ensemble at 

constant number of molecules of species 1, constant number of molecules of species 2, constant 

pressure and constant temperature. The sets X, Y, X and Y are then: 

X = {/Jy +nm,nl2 +nllz} = {Nt,N2} 

X = {« ,£ /„£ /„} 
Y = {{3lP1,0uP11=PlP1,Pi,j3n=/]l} 

According to Equations (4-39) and (4-43), the thermodynamic potential for this ensemble is then: 

(4-45) 

^ ^ / J ^ + M ^ 
_ 5 { +/]{Ul+Ua) + /3P{Vl+Vn) (4-46) 

••fiG 

where G is the Gibbs free energy. This thermodynamic potential is equivalent to the 

thermodynamic potential of the NPT ensemble (Equation (3-14)). 

For the NiN2PT version of the Gibbs Ensemble, C = 2 and F = 2. Substituting for X«Y from 

Equation (4-45), Equation (4—33) therefore becomes: 

few] 
' N,,N2 

V"i v"<> 

^Af'Af^,,,!^!^!^! 
x{exp[-^(t/ I(s?) + C/n(s2') + PFi+/'KII)' 

(4-47) 

Also, one has the relations nx, + «„, = Nx and nl2 + nll2 - N2 from which one can eliminate /%, 

and nna. Equation (4-47) becomes: 
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fe*r] N.N-PT JKn^CC 
Kahf K"2 Jtk Sw l&u iSw !%,21£ I 

x J Jrfs?rfs?exp[-j5(£/I(s7') + C/II(s2') + ^ + ^ n ) " 

IE tf0A?"'Af' , * * £ , nv l(N, - » u ) !« u !(iV2 - «u)l 
5C GO 

J dVaexp[-fiPVn]V*° j ^ e x p f - ^ P F , ] ^ " ' x 
=0 Vt=0 

j J****? {«q?[-)5(^(s?)+t/n(s^))] 

(4-^8) 

where both volumes are now changed independently and which yields the probability density of 

Equation (4-9) as required. 

4.9 Appendix 4B: Generating RGEMC Results from Conventional 

GEMC Simulations 

The RGEMC is able to achieve a shift in the simulated phase diagram by modifying the 

expression for the chemical potential in the vapour phase as follows (Lisal et al. (1999)): 

M^/U^M/cf+v-in ps: 

(r)" 
(4-49) 

where superscript RG denotes a property value for the reaction Gibbs Ensemble, superscript GE 

denotes a property value for the Gibbs Ensemble, superscript ex denotes an excess property, 

subscript exp denotes an experimentally measured quantity, //gJ denotes the chemical potential of 

species i in the vapour phase, /igi \T,P°) denotes the standard chemical potential in the ideal gas 

state, and / f is the pure component saturated vapour pressure of species i. Implicit in the 

derivation of Equation (4-49) is the assumption that: 

sat 
,exp 

\GE (4-50) 

(rf (r)c 

which in general is strictly only true for ideal mixtures. The term /J* {p** \ in Equation (4-49) 

may be viewed as an 'adjustment' to the reference chemical potential and is accounted for in the 

acceptance rule for a molecule transfer move in the RGEMC as follows: 
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ace (o—>n) = mi mrn< 
i,exp 

»/^ 
-exp 

{*U,+AUa] 
(4-51) 

The term P^V/(P^1) in Equation (4-51) is inverted in the acceptance criterion for the reverse 

transfer of a molecule from the liquid to the vapour phase. The only difference between Equation 

(4-51) and Equation (4-7) is the presence of the 'ideal' term ^/(P*1)™ . 

An analogous expression to Equation (4-49) may also be written for the liquid phase to ensure 

equality of chemical potentials between the two coexisting phases where the subscripts g of 

Equation (4-49) are replaced by subscripts / . Unlike in the vapour phase, the adjustment to the 

reference chemical potential is not accounted for in the acceptance rule of Equation (4-51). To 

understand how this term is accounted for and how the phase diagram is shifted using RGEMC, it is 

convenient to consider the gamma/phi formulation for VLE (Smith et dl. (1996)): 

yAP=xirifi (4-52) 

or equivalently 

M <D1 (4-53) ypiP=xiyip? , ^ - /fi 

where y. is the mole fraction of component i in the vapour phase, XJ is the mole fraction of 

component i in the liquid phase, $ is the fugacity coefficient of component i in solution in the 

vapour phase, y, is the activity coefficient of component i in the liquid, f{ is the fugacity of 

component i in solution, and <D; measures deviations from ideal behaviour in the vapour. The 

term on the right-hand side of Equation (4-52) is directly related to the chemical potential of the 

liquid phase. The link between the chemical potentials of a GEMC simulation and a RGEMC 

simulation may thus be written as: 

(prf sGE 

{xjjiT=exp 0"/,i)G£ -exp 
i,exp 

(%r (4-54) 

Therefore, Equation (4-53) may be rewritten as follows: 

(prf (4-55) 

= ( V i ) ^ ,exp 

53 



GIBBS ENSEMBLE MONTE CARLO SIMULATIONS 

Since the scaling term P^/iP*1) represents an additional contribution to the reference 

chemical potential, both <J>; and y. (which account for non-ideal vapour and liquid deviations 

respectively) are not functions of this new contribution. Thus, in general, for a given xt a necessary 

condition for both the RGEMC and GEMC to yield similar compositions is that: 

\GE jRG 

psat 
" i,exp 

psa 
(4-56) 

where the above relation has been derived by a ratio of Equation (4-55) written for both reaction 

Gibbs Ensemble and the Gibbs Ensemble and where P may be evaluated for a binary mixture 

from: 

r-wJT ,0-* . )^ 
* • a, 

(4-57) 

by using the relation that the mole fractions in the vapour must sum to one. In general, Equation 

(4-56) is not satisfied by the RGMEC methodology unless both of the simulated vapour pressures 

of the pure components exhibit the same relative deviation from the experimental saturated vapour 

pressures of the pure components. For all other cases, a given x{ will not yield similar yt values 

for both GEMC and RGEMC. 

In addition, it is possible to generate the results from RGEMC using standard GEMC by use of the 

following formulae which may be derived by using Equation (4-55) and Equation (4-57) and by 

substituting the experimental saturated vapour pressures: 

y-t 
rft 

sat 
i.exp 

\ C £ 

1 

1 

f 

->RG 

where 

p--2>i 

II 

,GE 

i,exp 

y£_ 
x P53* 

(4-58) 

(4-59) 

(4-60) 

and may be evaluated from the GEMC results at the end of a simulation. Hence, the RGEMC 

approach does not address fundamental inaccuracies in any force field and thus serves to only 

qualitatively and not quantitatively shift the phase diagram. Any apparent improvement in the 

overall location of the phase diagram is achieved by compromising the true molar composition. 
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In order to demonstrate this procedure, the original P-x-y and x-y data for GEMC and RGEMC 

simulations (Lisal et al. (1999)) for the isobutene + MTBE system at 350K, as well as for the 

method described above are plotted in Figure 4-5 and Figure 4-6. Although there are only 3 

mixture data points, it may be seen that the x-y data calculated from Equations (4—58) to (4—60) 

using the results from the Gibbs Ensemble simulations lie on the plot for the x-y data from the 

reaction Gibbs Ensemble simulations and that the vapour mole fractions are clearly shifted from the 

original Gibbs Ensemble results. This demonstrates the equivalence of the methodology proposed 

by Equations (4-58) to (4-60) and that in spite of the shift that occurs due to the RGEMC approach, 

this shift is still reproduced in Figure 4-6 by the methodology described above. 
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Figure 4-5: Simulated P-x-y diagrams for isobutene (1) + MTBE (2) at 350K from the original RGEMC and 

GEMC simulations, and using Equations (4-58) to (4-60). 
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Figure 4-6: Simulated P-x-y diagrams for isobutene (1) + MTBE (2) at 350K from the original RGEMC and 

GEMC simulations, and using Equations (4-58) to (4-60). 
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_ CHAPTER 5: 

MONTE CARLO SIMULATION METHODS 

"Give me six hours to chop down a tree and I will spend the first four sharpening the axe" -

Abraham Lincoln 

5.1 Introduction 

Recalling the Muybridge bet of Section (3.1), there were several practical difficulties to be 

confronted by Muybridge including the requirement for faster shutter speeds to overcome the 

limitations of 19th century wet photography that required long exposure times as well as the need to 

film dark horses against white backgrounds to diminish the effect of blurring. In an analogous 

manner, several practical considerations require special techniques for Monte Carlo simulations, for 

example when simulating charged molecules or for simulating molecules with an articulated 

structure. These methods include periodic boundaries and the minimum image convention, the 

calculation of long-range interactions and Configurational-Bias Monte Carlo (CBMC). 

5.2 Periodic Boundaries and the Minimum Image Convention 

Molecular simulations are usually performed using a small number of molecules, 

10 < N < 10000 (Allen and Tildesley (1987)). The size of the system under investigation is limited 

by the available computer memory and by the speed of execution of the program. Indeed, if all 

molecular interactions are assumed to be pairwise additive, then the time taken to complete the 

double loop required to evaluate all distinct interactions between pairs of interaction sites is 

proportional to N2. Consequently, computational times scale rapidly with increasing size of the 

system under study and with model interaction complexity. 

Unfortunately, in a three-dimensional and N -particle system with free boundaries, the number of 

molecules at the surface of a simulation cell is proportional to A r ' /3. Even for moderately large 

system sizes, this implies that a significant fraction of the molecules under study will be at the 

surface. Molecules on the surface will in general experience quite different forces to molecules in 

the bulk. It is thus necessary to choose boundaries which mimic the behaviour of an infinite bulk 

fluid. This is usually achieved by the use of periodic boundary conditions. The volume V 
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containing N molecules is treated as the primitive cell of an infinite lattice of identical cells. A 

two-dimensional version of aperiodic system is shown in Figure 5-1: 

Figure 5-1: Two-dimensional periodic system (Allen and Tildesley (1987). The boxes labelled "A"-"H" are 

periodic images of the central grey box. Molecules may enter or leave each box across any of the four edges. 

The cut-off radius, rc , for intermolecular interactions is shown using the dashed circle around molecule 1. 

As a molecule 1 moves through a boundary, its images 1A, 1B, lc, etc. move across their 

corresponding boundaries. In this way, the number density of the central box is conserved and only 

the co-ordinates of molecules in the central box need to be recorded. If all the intermolecular 

interactions are taken to be pairwise additive, then the total potential energy of the N molecules for 

a three dimensional system maybe given by (Frenkel and Smit (1996)): 

L ij.b 
(5-1) 
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where the summation is carried over all pairs of interaction sites i and j , r-. is a set of three 

integers describing the vector separation between sites interaction sites i and j , b is a set of three 

integers describing the vector co-ordinates of a periodic image, U- ( rg + bZj) is the intermolecular 

potential energy function between two molecules, and the symbol f denotes that the term with i=j 

is excluded for b = 0. 

The presence of the periodic image boxes has the effect of potentially introducing spurious 

correlations which are not present in the macroscopic system under study (Frenkel and Smit 

(1996)). The effect on macroscopic properties is thus a function of both the intermolecular potential 

and the properties under investigation (Allen and Tildesley (1987)). In general, therefore, the 

maximum wavelength of a fluctuation is then limited to be less than the simulation box length. 

Another factor to consider is that for an isotropic system, a molecule should not interact with a 

periodic image of itself (i.e. molecule 1 in the central grey box in Figure 5-1 should not interact 

with molecule 1A, 1B, etc.) or with two periodic images of the same molecule (i.e. molecule 1 may 

interact with 2H in Figure 5-1 but not also 2E, 2F, 2G, etc.) because this will introduce an artificial 

periodicity on the simulation. This is known as the minimum image convention and effectively 

implies that the interacting molecule should not interact with molecules outside of a box of the same 

size as the simulation box centred on the interacting molecule of interest. 

5.3 The Lennard-Jones Potential 

The well-known Lennard-Jones (LJ) potential for describing van der Waals interactions is the 

most important intermolecular potential energy model used in this work and is given by (Lennard-

Jones (1924): 

where Uu(r\^\ is the LJ interaction potential, sXi is the intermolecular potential well depth or 

energy parameter for the interaction between sites i and j , a<t is the intermolecular potential size 

parameter between sites i and j at which Uu(r^ is zero, and r~ is the separation distance 

between interaction sites i and j . Equation (5-2) may be thought of as consisting of a repulsive 

term proportional to r~n which dominates at short separation distances and a dispersive or an 

( r, V 

Kr*J 
3. 

KrSJ 

(5-2) 
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attractive term which is proportional to r 6 and which dominates at large separations. The physical 

relevance of e§ and a- are given in Figure 5-2: —— - - • 

Figure 5-2: Graph showing the shapes of the intermolecular potential function for the LJ with 

e--jkB -359K and o^ =3.808A . 

The section of the curve for which dVldr* > 0 (i.e. the part of the curve to the left of the local 

minimum of U) represents the distance for which repulsive interactions dominate. The section of 

the intermolecular potential energy curve for which dU/dr- < 0 (i.e. the part of the curve to the 

right of the local minimum of U) contains the separation distances for which dispersion 

interactions dominate. 

As pointed out by Wu and Sadus (2000), the LJ potential enjoys popularity because it is a 

continuous intermolecular potential that qualitatively captures the salient features of van der Waals 

intermolecular interactions. There are only two parameters (a{- and^j) which need to be regressed 
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for a given interaction between sites i and j . The denominator powers of r- are also even which 

ensures that one can avoid the expensive square root function in any simulation code which would 

be required to calculate n from molecular co-ordinates. 

5.4 Intramolecular Potential Energy Models 

In general, the application of spherically symmetric point potentials will only be valid for 

molecules of small size because the influence of molecular geometry on the intermolecular 

interactions are not well accounted for when considering larger molecules of varying shapes. Since 

the seminal work of Ryckaert and Bellemans (1975) and Ryckaert and Bellemans (1978), it has 

become common to view rc-alkanes from the "ball and stick" perspective as seen in Figure 5-3: 

Figure 5-3: Diagram showing the representation of chain molecules. CH2 groups labelled a , b and c are 

all in the same plane of the page. The angles 6l and 82 are the bond-bending angles between three adjacent 

functional groups. The angles <j>x and <j>2 are the torsional angles between four adjacent functional groups and 

are defined as 0° for the ds-conformation. The torsion around the bond b-c is the angle <j>2 between the 

planes defined by the CH2 groups a-b-c and b-c-d . / is the bond length between two adjacent functional 

groups. 

There will be a conformational energy associated with a given molecular geometry. The 

intramolecular potential models which can be used to describe this interaction can become quite 

complicated and Sadus (1999) contains a discussion of some of the more complicated models. 

Unfortunately, the more complicated the intramolecular interactions, the longer the simulation will 

take and this effect increases with increasing chain length. For many years now since the work of 

61 



MONTE CARLO SIMULATION METHODS 

Ryckaert and Bellemans (1975), it has been common practice when simulating w-alkanes to only 

consider those intramolecular interactions arising from: 

• bond stretching between two adjacent functional groups 

• bond angle bending between three adjacent functional groups 

• torsions between four functional groups 

• dispersion interactions for functional groups separated by at least 4 bonds 

The contribution from bond stretching for those models where the bond lengths are not constant 

maybe described by a harmonic potential of the form: 

U^^'Xil-h? (5-3) 

where £/strctc.h is the bond stretching potential energy, ks is the bond stretching constant, / is the 

bond length of the bond and /„ is the equilibrium bond length of the bond. Equation (5-3) indicates 

that positive or negative deviations from the equilibrium bond length lead to an increase in the 

intramolecular energy. 

The contribution from bond angle bending for those models where the bond angles fluctuate may be 

described by a harmonic potential of the form (van der Ploeg and Berendsen (1982)): 

tfb-=%(*-'.)' (5-4) 

where U^a is the bond angle bending energy, kg is the bond angle bending constant, 0 < 0 < n is 

the bond angle and &0 is the equilibrium bond angle. Equation (5-4) indicates that positive or 

negative deviations from the equilibrium bond angle also lead to an increase in the intramolecular 

energy. 

Nearly all models for n-alkanes include a torsional potential to account for the out-of-plane 

rotations that occur about a central bond in a set of four adjacent functional groups or atoms. The 

work of Ryckaert and Bellemans (1975) and subsequently the work of Jorgensen et al. (1984) 

established the utility of using a cosine series to describe this contribution: 

t /,ors=c0+c1[l + cos(^)] + c2[ l-cos(2^)] + c3[l + cos(3^)]-... 

-*+iji+(-ir«M] (5_5) 

n=l,... 

where Ut0TS is the bond angle bending energy, c0,Cj,c2,...,cn are constants, 0<^<27i is the 

torsional angle defined in Figure 5-3. Equation (5-5) captures the periodic character that this 
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potential should have because as the torsional angle rotates around the central bond (bond b-c in 

Figure 5-3) the intramolecular energy due this rotation must demonstrate local energy maxima or 

minima due to steric hindrance between the functional groups. The torsional angle is defined as 

0.0° in the cis conformation for all torsions. 

For interactions between functional groups separated by at least four bonds that do not involve 

charged species, the interactions are usually modelled using a dispersion interaction potential such 

as the LJ potential (Equation (5-2)). 

Although these interactions are highly simplified, they provide an efficient compromise between 

computational expense and adequately describing intramolecular interactions. 

5.5 Long-Range Interactions 

In general, the molecular interactions are dominated by the interactions of each molecule 

with its nearest neighbours. It thus becomes practical to only consider those short-ranged 

interactions that are less than some cut-off distance, rc . For the purposes of this work, this cut-off 

is always spherical. This cut-off also turns out to be computationally necessary since the time 

required increases proportional to N<jn,.
2 , where N,int, is the number of mteraction sites, and the 

number of mteraction sites contained in a sphere around a central interaction site increases 

proportional to N,int] - pVc cc Fc <x r̂  where Vc is cut-off volume arising due to the cut-off radius. 

The number of intermolecular interactions thus scales roughly as r*. 

With reference to Figure 5-2, the contribution from long-range interactions with rX] > 9.5A may 

appear negligible but this is, in general, not the case particularly in the vicinity of the critical point. 

Powles (1984) has indicated that the inclusion of these long-range interactions must be undertaken 

with some care. Smit and Frenkel (1991) have shown that the phase diagram of the two-

dimensional Lennard-Jones fluid depends largely on the details of the truncation while Smit (1992) 

has shown that the phase diagram of the three dimensional Lennard-Jones fluid is significantly 

underestimated when the long-ranged interactions are not correctly included. 
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If the total potential energy is not rigorously zero for r* > rc and if the interactions are pairwise 

additive, then it is possible to write the contribution of these long-range interactions to the total 

potential energy as (Frenkel and Smit (1996)): 

i<J L rc 

where UT is the total potential energy, Uc (r^j is the potential energy from two-body interactions 

evaluated up to the cut-off radius and the integral extends from the cut-off radius, rc, to infinity. 

From Equation (5-6), it may be seen that unless Uyr^j decays faster than r^3 (where the 3 arises 

from the 3-dimensional nature of the system), then the contribution from the long-range dispersion 

forces will be infinite since then dr^U\r~\>\. It thus becomes essential to judiciously select a 

suitable cut-off radius, rc, and to have some means of accurately approximating the non-negligible 

contributions from long-range interactions. 

5.5.1 Analytical Tail Corrections 

The pair or "radial" distribution function, g2 (rA, provides a convenient means to accurately 

estimate the contribution to the potential energy from the long-ranged interactions when 

dr^U(rA<l (Allen and Tildesley (1987)), i.e. when the dispersion interactions decay more 

rapidly than the dimensionality of the system. g2(lj) describes the probability of finding two 

atoms a distance r» apart relative to the probability expected for a completely random distribution at 

the same density. McQuarrie (1976) contains a more detailed description but in a generalized form, 

g2 (r~) may be given by: 

fth) = ̂ p ^ J * 3 * 4 . . - * » « p [ - ( * ( ' , . r a . . . , » i , > 1 r ) ] (5-7) 

where Qm is the partition function for the ensemble, the integration is performed over JV-2 

molecular co-ordinates and Y is the set of intensive parameters which have a conjugate extensive 

property X(t\,r2...,rN) which is variable and, in general, is a function of (i\,r2...,rN). One may 

then write the total internal energy of a pure component as (Allen and Tildesley (1987)): 

64 



MONTE CARLO SIMULATION METHODS 

UT={3J2)NkBT + 2nNp\dVlg2{r^U(r^ 
0 

and the pressure of a pure component as (Allen and Tildesley (1987)): 

PV = NkBT-{2l3)nNp\dr^2(r^rl\ rjgfe) 
v 

dr-
J 

and the chemical potential of a pure component as (Allen and Tildesley (1987)): 

1 00 

fx = kBT\n[pKiyAnp\d^\dr^g1(r^)u(r^ 

(5-8) 

(5-9) 

(5-10) 

where £ is a coupling parameter that must be integrated over as well (McQuarrie (1976)). 

So long as rc is chosen sufficiently large, it is possible to assume that ^ (^ j ) « 1 , i.e. the ratio of 

the molecule density around a central molecule in a sphere of radius n to the average density is 

approximately unity for r^>rc such that Equations (5-8) to (5-10) for a pure component 

interacting via the LJ potential (Equation (5-2)) become (Allen and Tildesley (1987)): 

CO 

UT
U *£/£ + U%=UC

U + 2nNp\dr^Uu(r^ 

.Ug=-xNps 
( ~12\ ^ 

(PV)T
U*(PV)C

U+(PV% 

= (PV)C
u-{2li)xNp)drfl\ 

dUu(r>j 

v * * i 

/ . i f f - y ^ 2fcf_ 
3 r» 

A& K MU + Mu = / £ + 4*P ]drfyaUu (rfl ) 

u 16 V^ 
V rC J 

. 6 \ 

'C J 

(5-11) 

(5-12) 

(5-13) 

where the subscript LR denotes a long-range contribution. 
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5.6 Pressure Calculation 

The pressure is an important quantity which must be calculated during simulation unless it is 

set to be constant like in an isobaric ensemble (e.g. the N]N2PT Gibbs Ensemble). For the general 

case of molecular fluids, Allen and Tildesley (1987) have shown using the virial theorem that the 

pressure may be written as the sum of the ideal and the excess contributions as: 

(p^=(pidH^)^LR) (5_14) 
= (pkBT) + {W/V) 

where P^, Pid, Pc,ex and PLRzre the total virial pressure, the ideal pressure, the excess 

contribution to the pressure up to the cut-off radius and the long-range contribution to the pressure 

respectively; and %> is the total molecular viral. For simplicity, the long-range contributions are 

included in the term <W in Equation (5-14) but are easily separated out and (W/V) may be 

evaluated from Equation (5-12). In addition for atomic fluids with pairwise additive intermolecular 

potentials, <W may be written as (Allen and Tildesley (1987)): 

"- iZZvV^ZZv^fcMZZ«to <5-15) 
i j>i l j>i i j>i 

where r̂  is the vector separating interaction sites i and j such that i:. = i \ - r ; and r~ = Ir, - rf I; F~ 

is the pair force exerted on molecule i by molecule j ; Vr is the gradient vector defined by 

d V d "Y d 'Y 
V r ( r ) = — f r + — f +—f. where subscripts x, y and z denote 3 orthogonal directions; rx, 

drx ' dry dr. 

ry and f„ are three orthogonal unit vectors; and w (r» ) is the total intermolecular pair viral function 

such that: 

/ \ dUM W ( r«) = r « - i i i (5-16) 
u'ij 

where w(^) is a purely scalar quantity and only scalar quantities appear in Equation (5-16) since 

the dot product Vr£/(ig) in Equation (5-15) must yield a scalar quantity. In Equation (5-15) it 

must also be understood that the function v^f/fa) is, in general, orientation dependent for 

molecular fluids. Two options are then available when considering the definition of w ^ ) . 

Defining w(/]j) as an atomic virial would define the distances r» as atomic distances and this 

would require the evaluation of intramolecular separations and forces between sites on the same 
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molecule as well as the expected intermolecular forces and distances between sites on different 

molecules. The other (considerably simpler) alternative is to define wta ) as a molecular virial 

quantity where all the distances r~ are explicitly intermolecular distances between interaction sites 

on different molecules. This is advantageous because it avoids the extra calculation of 

intramolecular forces. Akkermans and Ciccotti (2004) have demonstrated explicitly the 

equivalence of the pressure calculated by the atomic virial and the pressure calculated by the 

molecular virial. For the molecular virial, the vector distance E. must also now be interpreted as 

the vector separating the two co-ordinate centres of mass of the two molecules. The term r- must 

thus be replaced in Equation (5-15) with the projection of r̂ - in the direction riajb, projr ^ where 

riajb = rjb ~~ r u i s m e vector separating interaction site b on molecule j and interaction site a on 

molecule i . The term FB must also be replaced by 2 ^ F i a j b since the total force between two 
a b 

molecules must now be calculated as the sum between all sites on different molecules. The 

molecular virial becomes: 

^=iZZZZH^K 
i j>i a b 

-iIZZZ^4"*-V^('*) (5-17) 
l j>! a b |riajb *riajb | 

--iZZZZ^-ta) 
i j>i a b lajb 

where the molecular virial is now given by 

-h)=IZ^^-cfeb) (s-is) 
la jb 

and 

W - * ^ o*» 
It must be noted that the density term, p, in Equation (5-14) is now the density of the molecules to 

coincide with the molecular virial and not the total density of all of the interaction sites on the 

molecules which coincides with the atomic virial. 

From the preceding equations it becomes clear that the pressure is dependent on the slope of the 

potential energy curve, i.e. dependent on dU(r)/dr. 
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For the LJ potential, the expression for the molecular virial is easily evaluated as: 

%U=- dUu(r^) 
iajb dr. 

= -24*, 
iajb 

_ / _ X i V . / N* 

V iajb J V i a i b J 
(5-20) 

(5-21) 

Another important calculation for pure component simulations is the latent heat of vaporization, 

Ai/TOp. The latent heat of vaporization may be calculated directly from the thermodynamic 

definition of the enthalpy for the liquid and vapour phases as: 

where subscript g denotes the vapour phase, subscript / denotes the liquid phase and where A//vap 

and U are intensive properties. Strictly speaking, (AH\ must be calculated as the ensemble 

average as indicated in Equation (5-21). This work has found that it is possible to apply the 

without introducing approximation that \(pV/N) ~{PV/N))~\PS 

significant error but the decrease in computational load is essentially negligible. Another possible 

approach is to suggest that one should only use ensemble averaged quantities at the end of the 

simulation as: 

but this will in general not be valid since in general \Py-Kj) *{Pg)\\/fj\ ) • Use of the 

Clausius-Clapeyron equation: 

Atfvap=*G 
d]nP 
d(\/T) 

(5-23) 

where RG denotes the Universal Gas Constant, by making a plot of InP against \JT to give 

AHnp/RG will also only yield an approximate answer since it assumes ideality of vapour phase and 

it neglects the molar volume of the liquid as being negligible compare to that of the vapour which is 

not, in general, true. This is particularly the case for temperature near the critical point. 
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5.7 Configurational-Bias Monte Carlo Methods 

A common bottleneck in attaining convergence by Monte Carlo methods which rely on 

molecule transfers is the low rates of acceptance for molecule transfer attempts. This is particularly 

true for dense fluids at low temperatures, for large molecules or for molecules with an articulated 

structure because any random move which tries to insert an entire molecule in a single step will 

struggle to find a sufficient gap in which to insert the large molecule. Smit et al. (1995) have found 

for a chain of n LJ atoms that the probability that an insertion will not result in an overlap is of the 

order of 0.005". Consequently, the probability of inserting a molecule becomes dramatically 

smaller for increasing chain lengths. The Configurational-Bias Monte Carlo (CBMC) method 

tackles this problem by biasing the selection of orientations such that configurations favourable to 

the insertion of a molecule are generated. 

Based on the work of Siepmann and Frenkel (1992) which essentially described a CBMC scheme 

for chain molecules with a finite number of discrete confirmations and which was used to simulate 

polyethylene (de Pablo et al. (1992a)), Frenkel et al. (1992), Mooij et al. (1992) and Smit et al. 

(1995) and then separately de Pablo et al. (1992b) and Laso et al. (1992) developed the CBMC 

method for the more general off-lattice case. Frenkel et al. (1992) originally suggested that one 

should separate the calculation of the intermolecular interactions from the strong intramolecular 

interactions (like those in Equations (5-3) to (5-5) in the CBMC method for optimal efficiency. 

The method of de Pablo et al. (1992b) and Laso et al. (1992), however, does not separate these 

contributions. Smit et al. (1995) have shown explicitly as to why the method of Frenkel et al. 

(1992) is more efficient and for that reason the basic calculation of as suggested by Frenkel and 

Smit (1996) is outlined below. The CBMC algorithm is shown schematically in Figure 5-4. 
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Figure 5-4: Schematic representation of the insertion of a chain molecule using CBMC. The arrows indicate 

the trial orientations in which to insert the fifth atom. 

A chain is grown systematically segment by segment. For a chain with £ segments, a trial new 

conformation is generated as follows: 

1) The first atom is placed at a random position and the intermolecular energy £7,°" is calculated 

together with: 

w™ =exp[-/3U™] (5-24) 

where w"ew is the Rosenbluth factor of the first segment and U"1 is the intermolecular 

interaction energy of the first segment. For low density systems the placement of the first 

bead is usually not a problem but in many other cases the success rate can be quite low. For 

this reason, Esselink et al. (1995) have outlined a procedure in terms of which multiple sites 

are considered for the first segment. In that case, if {c} = c,,c2,...,c. is a set of ^ trial 

positions for the first segment then w"6" becomes: 

wr=Z e xp[-^r( ch)l (5-25) 
h=l 

2) From the £<, trial first positions, one is selected where each first segment has probability: 

«"(*)- L Jv J (5-26) 
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For the insertion of the next segment m , a set {c} = c,,c2,...,ct of £ trial orientations are 

again generated, but this time relative to the previous bead and according to a probability 

which is a function of the internal energy: 

**{<)= L / (5-27) 

Mooij and Frenkel (1996) show how to optimize £ for a particular application. For each of 

the £ trial orientations generated according to Equation (5-27), the external energy f/(ch) 

is calculated together with the Rosenbluth factor for the segment: 

w r = i e x p [ ~ / ? L C ' ( c h ) ] (5-28) 

ext 

I 
h=l 

From these £, trial positions, one is selected with probability 

* - ( « » ) = L J J (5-29) 

3) Step 2 is repeated £-\ times until the entire molecule chain is grown and the total 

Rosenbluth weight, Wnew, of the new chain may then be calculated. The Rosenbluth 

weight of the new chain is defined as: 

w r r i £ e x p [ - / ? £ / r ( c h ) ] 
Wnew= ^ ^ (5-30) 

4) To complete a CBMC move, it is also necessary to calculate the Rosenbluth weight of the old 

configuration. The old chain is retraced in a similar way except that for each segment 

only £ - 1 trial orientations (£,, - 1 trial orientations for the first segment) are considered. 

The £* trial orientation (^0
& trial orientation for the first bead) is necessarily the old 

chain. The total Rosenbluth weight of the old chain, W°ld, is defined as: 

t i w>ldniexp[-^r(ch)] 
wo.d = 522JM _ ( 5 _ 3 1 ) 

5) To satisfy detailed balance, it has been shown (Frenkel et al. (1992)) that the new 

configuration is accepted with probability: 

wnew 1 
acc(o-»7i) = min | l ,—j j4 (5-32) 

71 



MONTE CARLO SIMULATION METHODS 

The above acceptance criterion may be applied to the partial or full "regrowing" of a chain 

molecule. - Note that the constant K which comes from the intramolecular interactions cancels off 

in the final derivation and does not appear in Equation (5-32). The method can be understood to be 

'looking one segment ahead' before placing the next segment of the molecule. The Rosenbluth 

weights may be viewed as correcting for the bias introduced by preferentially considering the more 

favourable configurations. In this way the insertions of molecules are biased such that favourable 

configurations are generated. Smit et al. (1995) and Mooij et al. (1992) have shown that the 

acceptance criterion for the transfer of a molecule from phase II to phase I where the chain is 

grown by means of the CBMC algorithm is given by: 

( V (N — n ) wBew 1 
1»7— N/ ; TT\ (5-33) 

(F-F,)(n,+1) W0,d J 
The difference between Equation (5-33) above and Equation (4-7) is the substitution of the internal 

energy difference term, exTp\-fiAU"ew'], by the Rosenbluth weight, W™ . Also, the difference 

between the de Pablo et al. (1992b) and the Frenkel et al. (1992) methods is found in step 2 of the 

method for generating a new configuration. The de Pablo method does not separate the 

intramolecular interactions and generates new configurations according to Equation (5-27). For 

this reason, the intramolecular interactions will appear in the new Rosenbluth weight and in the 

acceptance criterion. This implies that the probability of accepting a new configuration will in 

general be less efficient for the de Pablo method than for the Frenkel method and increasingly less 

efficient for longer chains (Smit et al. (1995)). 

Based on the CBMC method, Siepmann et al. (1993) successfully simulated the pure component 

phase behaviour up to the critical point of long-chain «-alkanes ranging from C6 to C48 for the first 

time. 

It is common practice to immediately reject those moves which would place two interactions sites at 

a distance less than some specified hard inner cut-off radius from one another. A hard inner cut-off 

value of 2A is typical. The reasoning behind this may be deduced from Figure 5-2 where it may be 

seen that the intermolecular energy becomes rapidly positive for short separations which 

corresponds to intermolecular repulsions. The large positive intermolecular energy changes 

necessary to achieve these moves renders their probability of occurrence so negligibly low that 

these moves may be neglected. The idea that the intermolecular repulsions at short distances play a 

dominant role in determining the acceptance of attempted moves has been used by Vlugt et al. 
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(1998) to devise the Dual Cut-Off Configurational-Bias Monte Carlo (DC-CBMC) algorithm. The 

algorithm essentially divides the external energy of interaction of a molecule, t/ext (r <rc), into a 

shorter-range potential which is less expensive to calculate, Uat{r<rDC), and the difference 

between the full and approximate potentials, dU^1 (rDC < r < r c ) , as follows: 

17-(r <rc) = W«(r <rDC) + ££/£« {rDC <r<rc) (5-34) 

where r ^ is the shorter DC-CBMC cut-off radius. The acceptance criterion for accepting a 

molecule regrowth has been shown by Vlugt et al. (1998) to be given by: 

l , _ e x p [ - / ? ( < 5 t / ~ - 5 U ^ M ) ] (5-35) 

where W is an approximate Rosenbluth weight calculated for r<rDC. An optimal value for rDC 

has been shown to be approximately 5A. This algorithm has been found to speed up the simulation 

of n-octane by a factor of 4 and more for even longer molecules (Vlugt et al. (1998)). 

The basic CBMC algorithm has been modified to include expanded ensembles (Escobedo and de 

Pablo (1995)) in which long-chain molecules are inserted gradually to improve insertion successes 

during a simulation. The recoil growth algorithm (Consta et al. (1999a), Consta et al. (1999b)) is 

another development in terms of which a chain molecule may recoil along its length while being 

grown in order to avoid configurations which hit dead-ends before the final configuration is 

accepted. Both of these algorithms greatly improve the efficiency of insertions for molecules with 

complicated articulated structures and for dense systems. Finally, Martin and Siepmann (1999a) 

have developed the coupled-decoupled CBMC algorithm for the simulation of branched molecules. 

5.8 Chemical Potential Calculation 

The evaluation of the chemical potential is an important calculation because the equality of 

the chemical potentials of a species in all phases for that species is a necessary requirement for total 

thermodynamic equilibrium. Smit and Frenkel (1989) have shown that the chemical potential of 

component i in phase I in an atomic system in the NVT Gibbs Ensemble for a simulation in which 

the probability that either of the boxes empties of molecules is small, and where the boxes do not 

change identities, is given by: 

Mii=-kBT]n 
1 / F> 

KT j 
(5-36) 
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where AC/,* is the energy change associated with inserting a molecule of type i into phase I . 

Equation (5-36) has its origins in the test particle energy expression of Widom (1963). During a 

Gibbs Ensemble simulation, however, the "ghost-" or "test particle" insertions required by the 

Widom method are unnecessary. For the NVT or NiN2PT Gibbs Ensembles, the insertion energies, 

AC/,+i, required by the ensemble average of Equation (5-36) are obtained from the actual energy 

changes associated with molecule swaps between the coexisting phases. Equation (5-36) is, 

however, only applicable for atomic systems. For articulated molecules simulated using the CBMC 

method, Mooij and Frenkel (1994) have shown that the chemical potential of a species i in phase I 

is given by: 

Mv=-kBT]n 
f nid\ a 

-kBT\n 

A3 

A3 

V, 

v."u+1y 

-k„T]n 

WT; 

Wu (5-37) 

••f$+t*u 

where Wu is the Rosenbluth factor of Equation (5-30) for the inserted molecule of type i in phase 

I and Qf is the partition function of an ideal chain constructed using only intramolecular 

interactions and is given by: 

ni>xP[-/ttc<(ch)] 1 1 

id _ m=2h=l 

or = e (5-38) 
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CHAPTER 6: 

SIMULATING BINARY PHASE EQUIBRIUM USING 

TRANSFERABLE UNITED-ATOM FORCE FIELDS 

"Somewhere, something incredible is waiting to be known." - Blaise Pascal 

6.1 Transferable Intermolecular Force Fields 

In recent years, a myriad of transferable force fields have emerged based on the approach of 

Section (5.3) for the intermolecular potential, Section (5.4) for the intramolecular potential and 

Section (5.5) for the long-range corrections. The majority of these have been directed towards the 

simulation of normal alkanes, branched alkanes and 1-alkenes. Prominent force fields for these 

hydrocarbons include: 

• the TraPPE force field (Martin and Siepmann (1998), Martin and Siepmann (1999a), Chen 

and Siepmann (1999), Wick et at. (2000), Chen et al. (2001)), 

• the NERD force field (Nath et al. (1998a), Nath and de Pablo(2000), Nath et al. (2001a)), 

• the Spyriouni et al. olefin force field (Spyriouni et al. (1999)), and 

• the n-alkane force field of Errington and Panagiotopoulos (1999a) (nAEP force field). 

These force fields have made it possible to simulate a wide range of compounds, as well as mixtures 

that belong to certain homologous series of chemicals, without having to parameterise force fields 

for individual chemical compounds. 

The above force fields all make the "(isotropic) united-atom" (UA) approximation in which 

functional groups of atoms are collapsed into a single interaction site. In this way, the -CH3, -CH2-

and -CH- functional groups in the hydrocarbon chain are treated as single sites. Unlike the 

"explicit hydrogen" (EH) approach, these UA models assume that the explicit inclusion of hydrogen 

atom interactions is unnecessary and that hydrogen atom interactions can be lumped into LJ or Be6 

parameters for functional groups of atoms. As pointed out by Chen and Siepmann (1999), the 

united-atom approximation reduces CPU calculation time by approximately one order of magnitude 

without significantly lowering the accuracy of the simulated phase equilibrium properties. The 

most significant deviations are found when simulating high pressure phase equilibrium or high-

density liquids where the contributions of the hydrogen atom to molecular volume become very 

significant (Ryckaert et al. (1989), Moller et al. (1991)). 
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Mixtures of «-alkanes have been studied using the TraPPE (Martin and Siepmann (1997), Martin et 

al. (1999b), Martin et al. (1999c), Martin etal. (2000)) and NERD force fields (Nath etal, (1998b)) 

as well as the nAEP force field (Potoff et al. (1999)). 

More recently, revised anisotropic united atom (AUA) force fields have also been parameterised for 

the simulation of w-alkanes (Ungerer et al. (2000)), branched alkanes (Bourasseau et al. (2002)) and 

1-alkenes, 2-alkenes, isobutene and 1,3-butadiene (Bourasseau et al. (2003)). AUA force fields 

differ from UA force fields by allowing the interaction site on a functional group to be displaced 

off-centre relative to the actual location of the functional group in three-dimensional space. These 

force fields have also been applied to the simulation of n-alkanes and 1-alkene mixtures in zeolites 

(Pascual et al. (2003), Pascual et al. (2004)). 

1-Alkenes (a-olefins) are an important class of compounds that find wide application in industrial 

processes (Grubbs and Chang (1998), Rouhi (2002)), and knowledge of their phase behaviour is 

vital for equipment design. In spite of this, there have been only a limited number of simulation 

studies of 1-alkene mixtures (Nath and de Pablo (1999), Nath et al. (2001a), Nath et al. (2001b), 

Lisaletal. (1999)). 

6.2 Simulation of Binary Phase Envelopes 

The NERD and TraPPE force fields as well as the 1-alkene force field of Spyriouni et al. 

(SA1) were used because these force fields have been shown to reproduce experimental pure 

component phase equilibrium data reasonably well in the original publications. Also, these force 

fields were developed using different approaches for describing the intramolecular geometries and 

different thermophysical properties were targeted when optimizing the intermolecular potential 

energy parameters. The intermolecular interactions have been shown previously to play a dominant 

role in determining the pure component phase equilibrium properties (Smit et al. (1995), 

Dubbeldam et al. (2004)). The SA1 force field has fixed bond lengths and bond angles but flexible 

torsional angles, the TraPPE force field has constant bond lengths but flexible bond angles and 

torsional angles, and the NERD force field has flexible bond lengths, bond angles and torsional 

angles. In addition, the parameterisation of the Lennard-Jones size a and energy s parameters for 

the SA1 force field differed to that of the NERD and TraPPE force fields. Specifically, when fitting 

the LJ parameters for the SA1 force field, emphasis was placed on the experimental vapour 

pressures, while fitting of the NERD and TraPPE force fields focused on reproducing the 
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experimental saturated liquid densities, critical temperatures and critical densities. It is therefore 

important to examine whether these differences will significantly affect the simulated phase 

diagrams of the mixtures studied here. 

The recently developed AUA force fields mentioned previously have also been shown to reproduce 

the pure component phase equilibrium data well. These AUA force fields were, however, 

parameterised with less attention given to the equilibrium properties of the shorter «-alkanes, in 

particular ethane and propane. In addition, it remains to be seen whether a similar improvement in 

the equilibrium data obtained from current united-atom force fields could not be achieved by 

modifying the internal equilibrium geometries. This would amount to allowing the internal 

geometries to be different to the experimentally observed geometries to account for the effects of 

anisotropic interactions without having to resort to a full anisotropic potential. This is advantageous 

because AUA force fields require additional calculations to compute the interaction site, which is 

not located on the united-atom centre, as well as a correction which must be added to the 

Rosenbluth factor (Smit et al. (1995)). The results for 1-alkenes in Pascual et al. (2004) have also 

shown that the TraPPE-UA force field gives slightly better liquid density results while the AUA4 

force field gives superior vapour pressure predictions. For these reasons and since the UA force 

fields are computationally cheaper, the NERD, TraPPE and Spyriouni et al. force fields only were 

used in this work since this would establish how these recently developed force fields compare in 

predicting binary VLE for n-alkane + 1-alkene mixtures and permits a comparison of how the 

different parameterisation targets (vapour pressures or liquid densities and critical properties) affect 

the P-x-y and x-y diagrams for the mixtures. 

6.3 Simulation Details 

CBMC Gibbs Ensemble simulations were undertaken for three n-alkane + 1-alkene mixtures: 

• P-x-y data for ethane (1) + propene (2) at 277.6K 

• P-x-y data for 1-hexene (1) + w-octane (2) at 328.15K 

• T-x-y data for n-dodecane (1) + 1-octadecene (2) at 760mmHg 

and two 1-alkene + 1-alkene mixtures: 

• P-x-y data for propene (1) + 1-butene (2) at 294.3K 

• P-x-y data for 1-butene (1) + 1-hexene (2) at 373K 

The mixtures investigated were chosen since they are systems for which experimental binary VLE 

data are available (Dortmund Data Bank), and are representative of the types of mixtures which can 
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be encountered in industrial separation operations such as petroleum refining (McKay et al. (1951)), 

sub-atmospheric fractional distillation of petroleum (Jordan and van Winkle (1951)), and in the 

synthetic chemical industry (Laugier and Richon (1996), Goffer al. (1951)). 

6.3.1 Force Field Parameters 

All three force fields use the LJ 12-6 potential (Equation (5-2)) to calculate non-bonded 

intermolecular energies. The LJ parameters for interactions between like sites denoted as a~ and 

£;J are listed in Table 6-1 for all three force fields: 

Table 6-1: Intermolecular Force field parameters for the NERD, TraPPE and SA1 force fields. 

NERD 

Ethane 

s , ,, lkB =100.6K 
CH3(sp3)/ B 

crm , ,, = 3.825A 
CH3(sp3) 

Propene 

s , ,. Iks =100.0K e , ,, lkB •• 
CH3(sp3)/ B CH,(sp-)/ B 

=92.5K £ , ,, lkB =46.0K 
CH(sp-)/ B 

u , n=3.85A a , , , =3.72A a , , ,=3.77A 
CH3(sp3) CH,(sp-j CH(sp-) 

Molecules with more than three carbon atoms 

s , rt Ik. =104.0K 
CH3(Sp3)/ B 

o- , A = 3.9lA 
CH3(Sp3) 

s , rt Ik. =45.8K 
CH,(sp3)/ B 

er , ,» =3.93A 

s , ,. Ik. =92.5K £ . ,./jt. =46.0K 
CH,(sp-)/ * CH(sp3)/ B 

a , ,.=3.72A 
CH,(sp-) 

a , ,, =3.77A 
CH(sp-) 

TraPPE 

e , ,, Ik. =98.0K 
CH3(sp3)/ * 

a , ,, =3.75A 
CH3(sp

3) 

*C„3(Sp3) /^ = 4 6 - 0 K 

CTCH2(^)=3-95A 

s^i ^ A» =85 .OK 
CH,(sp-)/ B 

a , ., =3.675A 
CH,(sp-) 

£ , ., /*. =47.0K 
CH(sp-)/ a 

cr , ,, =3.73A 
CH(sp3) 

SA1 

ecn^)/kB=£cH^)/k' 

CH3(sp
3) CH,(sp3) CH 

, =47.66K s , . 
' CH(sp" 

,/Jfc, =81.69K 

, ,, =3.915A a , ,. =3.905A 
(sp-) CH,(Sp3) 

ff , rt /Jt. =89.93K 
CH,(sp-)/ a 

Parameters for interactions between two sites of different type (e.g., between -CH3 and -CH2-) are 

calculated using the Lorentz-Berthelot mixing rules: 

h = ̂ H i **={**+°a)ft (6-1) 
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The NERD and TraPPE force fields use the LJ 12-6 potential to calculate the potential energy of 

non-bonded interactions up to a specified cut-off radius of 13.8 A and 14 A respectively. For the 

SA1 force field, however, the LJ potential is used to calculate intermolecular interactions up to a 

first cut-off radius of 1.45cr;j, whereas a quintic spline is used between 1.45<Xjj and 2.300 -̂

(Spyriouni et al. (1999), Theodorou and Suter (1985)). For all force fields, analytical tail 

corrections are applied to estimate the long-range interactions arising from intermolecular 

separations greater than rc (See Section (5.5.1)). 

The intramolecular force field parameters for the bond lengths, the bond angles and torsions for 

each of the force fields used are contained in Table 6-2, Table 6-3, and Table 6-4 respectively. 

Table 6-2: Bond length parameters for the NERD, TraPPE and SA1 force fields applicable to Equation 5-3. 

NERD 

kJkB = 96 500 K/A2 ( C - C , C = C); /0=1.54A(C-

TraPPE 

kj'kB-OK/A2 ( C - C , C = C); /0=1.54A (C-C) ; 

SA1 

kJkB=OK/A2 ( C - C , C = C); /0=1.53A (C-C) ; 

-C); /0=1.34A ( C - C ) 

/0 =1.33A (C = C) 

/0=1.33lA (C = C) 

Table 6-3: Bond angle parameters for the NERD, TraPPE and SA1 force fields applicable to Equation 5-4. 

NERD 

kg jkB = 62500 K/rad2 (C - C - C); 

kg jkB = 62 500 K/rad2 (C - C = C); 

TraPPE 

kg/kB= 62500K/rad2 ( C - C - C ) ; 

kg jkB = 70420 K/rad2 (C - C = C); 

SA1 

kg jkB = 0 K/rad2 (C - C - C); 0O --

kg/kB=0K/rad2 ( C - C = C); 80 = 

90 =114.0° ( C - C - C ) 

90 =124.0° ( C - C = C) 

• 

e0 =ii4.o° (c-c-c) 
90 =119.7° ( C - C = C) 

= 112.0° ( C - C - C ) 

= 124.0° ( C - C = C) 
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Table 6-4: Torsional parameters for the NERD, TraPPE and SA1 force fields applicable to Equation 5-5. 

NERD 

cJkB = 
COlkB = 

:0K; cJkB 

= 47.97K; c 

TraPPE 

CJkB --
Co/*B = 

SA1 

co/K '-
CJkB '-

= 0K; cJkB 

= 688.5K; c 

--WL; cJkB 

-- 685.96K; 

= 355.04K; c. 

. / * . - = 86.31K; 

= 355.03K; c. 

lh- = 86.36K; 

= 355.03K; c 

<h/kB = 86.3 IK 

IK=-
c2lkB 

/* , = -

c2/kB 

, / * . -

; cjk 

-68.19K; cJkB 

= -109.71K; c3 

-68.19K; cJkB 

= -109.77K; c 

-68.19K; cJkB 

5=-109.71K; 

= 791.32K 

IK = 
(c-

282.08K 

= 791.32K 

A = 
(c-

= 282.24K 

= 791.32K 

"JkB 

(c 
= 282.08K 

-c-
(c-

-c-
(c-

-c-
(c 

c-
-c-

c-
-c 

c-
-c 

c) 
-c = 

-c) 
-c = 

-c) 
-c 

c) 

= c) 

=c) 

6.3.2 Method of Simulation 

The Configurational-Bias Monte Carlo method was used in conjunction with the Gibbs 

Ensemble Monte Carlo technique to simulate the four pressure-composition phase diagrams and the 

temperature-composition phase diagram presented below. The NVT version of the Gibbs Ensemble 

was used to simulate the two pure component compositions of each of the phase diagrams while the 

NPT version of the Gibbs Ensemble was used to simulate six intermediate compositions for each of 

the phase diagrams. The intermediate compositions used were 0.1, 0.2, 0.4, 0.6, 0.8 and 0.9 mole 

fraction of component 1. The total numbers of molecules used for each of the phase diagrams were 

as follows: 

• 800 molecules for ethane + propene; 

• 600 molecules for propene + 1-butene; 

• 600 molecules for 1-butene + 1-hexene; 

• 350 molecules for 1-hexene + «-octane; and 

• 150 molecules for n-dodecane + 1-octadecene. 

The above system sizes were found to give reproducible results without significantly increasing the 

CPU time required. 

The types of moves performed during a simulation were (1) volume changes; (2) molecule identity 

changes using CBMC and transfers of molecules between simulation boxes; (3) full regrowing of 

chains and partial regrowing of chains using CBMC; (4) translation of the centre of mass (COM); 

and (5) rotation around the COM. Each of the moves was selected at random (Smit and Frenkel 
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(1991)) and the moves were performed with the following fixed probabilities: pi: p2: p3: p4: p5 = 

0.006: 0.328: 0.222: 0.222: 0.222, where pi refers the fixed probability of attempting a move of 

type 1, i.e. a volume change (Smit et al. (1995)). The maximum volume, translation and rotational 

displacements were chosen in such a way that 50% of all of these moves were accepted. This target 

of 50% is commonly used as it has been found to be approximately optimal for Monte Carlo 

simulations. 

All the pure component simulations in the NVT Gibbs Ensemble were equilibrated for at least 

100,000 cycles while the NPT GEMC mixture simulations were equilibrated for at least 150,000 

cycles (a cycle consists of N attempted moves to the system where N is the total number of 

molecules in the simulation). Care was taken to ensure that the systems had reached equilibrium 

before production cycles for ensemble averages were started. The standard deviations of ensemble 

averages were estimated by the standard practice of dividing the production cycles of each run into 

five blocks and calculating the standard deviation from the averages obtained from each of these 

five blocks. / 

To increase simulation efficiency, multiple trial sites were chosen for the first segment of the chain 

(Esselink et al. (1995)). This ranged from 4 for the ethane + propene mixture, which had the 

shortest chains, to 15 for the n-dodecane + 1-octadecene mixture which had the longest chains. 

Also, a COM-based cut-off was used for the computation of intermolecular forces (Martin and 

Siepmann (1998)). In this time-saving approach for the interaction between sites on two different 

molecules A and B, the periodic image of an interaction site on the second molecule is evaluated 

as the same as the periodic image of the COM of B if the distance between the COM's of A and B 

is less than dcou (A) + dC0M (B) + rc, where dCQM (A) is the largest distance between the bead 

furthest from the COM of A. This also increased computational efficiency by reducing the 

calculation of periodic images of interactions sites for those interaction sites with the same periodic 

image as the COM of the molecule without compromising accuracy. Finally, the dual-cut-off 

CBMC algorithm of Vlugt et al. (1998) was used for split energy moves with an inner cut-off 

distance of 4.5A. This was then corrected to the full potential with tail corrections in the acceptance 

rule. 

It is important to choose initial volumes and molecule numbers that do not differ drastically from 

the eventual equilibrium values. It was observed that choosing values for the initial volumes or 
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initial compositions of the two boxes that differed considerably from the ultimate equilibrium 

values considerably increased the computational time required for reaching equilibrium. 

A simple strategy to partially overcome this problem is to use the experimental pure component 

densities and the experimental compositions as input parameters to determine the initial volumes 

and initial compositions. The aim, however, was to use the NPT simulations to predict the vapour-

liquid equilibrium curves without a priori knowledge of equilibrium compositions. A means to 

reasonably estimate the equilibrium compositions with a minimum of information was thus 

required. 

Since the n-alkane and 1 -alkene mixtures selected are almost ideal, it was decided to use Raoult's 

law to estimate the initial compositions. In terms of this very simple description of phase 

behaviour, the only two inputs required are the pure component saturated vapour pressures which 

yield an estimate for the vapour and liquid compositions. With the assumption that the molar 

volumes are linearly additive, it was then possible to estimate reasonable values for the initial 

molecule numbers and box volumes for the simulations. Using this above approach, suitable initial 

conditions could be set. The NPT GEMC simulation pressure was then adjusted so that at least 

10% of the total number of molecules was in the vapour at equilibrium. 

6.4 Transferability of the SA1 Force Field Parameters 

Whereas the NERD and TraPPE force fields were used to simulate all mixtures studied, the 

SA1 force field was only used to simulate the 1-butene + 1-hexene and propene + 1-butene 

mixtures. Although the SA1 force field was parameterised to simulate the pure component 

properties of 1-alkenes only, it was attempted to simulate the n-alkane mixtures using the relevant 

functional group parameters from the SA1 force field parameters. It was found, however, that the 

SA1 force field is not suitable for simulating the n-alkane + 1-alkene mixtures. This is because the 

sp3 hybridized -CH2- and -CH3 functional group parameters in the SA1 force field are not 

transferable to n-alkanes (unlike the NERD and TraPPE force fields). For example, the simulation 

of pure 1-hexene and pure n-octane using the SA1 sp3 hybridized -CH2- and -CH3 parameters for 

the H-alkanes incorrectly predicted n-octane (simulated saturated vapour pressure of 90.2kPa at 

328.15K) to be more volatile than 1-hexene (simulated saturated vapour pressure of 85.1kPa at 

328.15K). No attempt was made to simulate the ethane + propene mixture using the SA1 force 
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field since it was expected that the simulated saturated vapour pressure for ethane would have been 

significantly worse than for the longer w-octane molecule discussed above. 

6.5 Regression of Critical Temperatures and Critical Densities 

An Arrhenius plot of the simulated saturated vapour pressure for 1-octadecene using the NERD, 

TraPPE and SA1 force fields is give in Figure 6-1 together with the available experimental data. 

Simulated coexistence liquid and vapour densities are shown in Figure 6-2 for the NERD, TraPPE 

and SA1 force fields. The critical temperature for 1-octadecene in Figure 6-2 from the simulations 

was estimated using a density scaling law (Rowlinson and Widom (1989)): 

Pl-pg=B{Ta-Tf (6-2) 

while the critical density was estimated using the law of rectilinear diameters (Rowlinson and 

Swinton(1982)): 

?L^L = Pa+A(Ta-T) (6-3) 

where p, and pg are the liquid and gas densities respectively, A and B are component-specific 

constants, B is the universal scaling exponent (usually assuming a value between 0.32-0.33), and 

pa and Ta are the critical density and the critical temperature respectively. 
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Figure 6-1: Vapour pressure for 1-octadecene as predicted by the TraPPE, NERD and SAl force fields and 

the experimental 1-octadecene vapour pressure curve (Jordan and van Winkle (1951)). 
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Figure 6-2: Simulated pure component coexistence densities for 1-octadecene from the NERD, TraPPE and 

SAl force fields and the critical data of Wakeham et al. (2002) and Nikitin and Popov (1999). 
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In contrast to the poor transferability of the SA1 parameters to the w-alkane chains discussed above, 

preliminary results indicate that these parameters are transferable to the simulation of long 1-alkene 

molecules. In Figure 6-1 there is good agreement between the available experimental data and the 

vapour pressures simulated using the SA1 force field. The simulations for 1-octadecene using the 

NERD and TraPPE force fields are also included in Figure 6-1 and show similarly good agreement. 

The estimated critical density for 1-octadecene of 0.227g/cm3, 0.221 g/cm3 and 0.224g/cm3 for the 

NERD, TraPPE and SA1 force fields respectively all compare favourably with the extrapolated 

critical density of 0.227g/cm3 of Wakeham et al. (2002). However, while the estimated critical 

temperatures of 744K and 742K for the NERD and TraPPE force fields respectively are in 

reasonable agreement with the experimental value of 748K determined by Nitikin and Popov (1999) 

using a pulse-heating technique, the estimated critical temperature for 1-octadecene from the SA1 

force field off 777K is in substantial disagreement with the experimental value. It should be noted 

that the SA1 force field also does not reproduce the experimental saturated liquid and vapour 

densities well for the short 1-alkenes (Spyriouni et al. (1999)) while good agreement between the 

NERD and TraPPE force fields was found for critical temperatures and critical densities of the short 

1-alkenes (Wick et al. (2000), Nath et al. (2001b)). 

No additional parameters were required for the simulation of 1-octadecene for any of these united-

atom force fields but additional intramolecular parameters are required when extending these force 

fields to other homologous series for chemicals with sp2 hybridized double bonds, e.g. the TraPPE 

force field has been extended to the simulation of aromatic compounds including benzene (Wick et 

al. (2000)). 

6.6 «-Alkane + 1-Alkene Mixtures 

The P-x-y and x-y data for the ethane (1) + propene (2) mixture at 277.6 K are shown in 

Figure 6-3 and Figure 6-4; the P-x-y and x-y data for the 1-hexene (1) + «-octane (2) mixture at 

328.15 K are shown in Figure 6-5 and Figure 6-6; and the T-x-y and x-y data for the n-dodecane (1) 

+ 1-octadecene (2) mixture at 760 mmHg are shown in Figure 6-7 and Figure 6-8. 
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Figure 6-3: Simulated P-x-y data for the ethane (1) + propene (2) mixture at 277.6K and the corresponding 

experimental VLE (McKay et al. (1951)). 

Figure 6-4: Simulated x-y data for the ethane (1) + propene (2) mixture at 277.6K and the corresponding 

experimental x-y data (McKay et al. (1951)). 
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Figure 6-5: Simulated P-x-y data for the 1-hexene (1) + n-octane (2) mixture at 328.15K and the 

corresponding experimental VLE (Dortmund Data Bank). 
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Figure 6-6: Simulated x-y data for the 1-hexene (1) + n-octane (2) at mixture 328.15K and the corresponding 

experimental x-y data (Dortmund Data Bank). 
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Figure 6-7: Simulated T-x-y data for the n-dodecane (1) + 1-octadecene (2) mixture at 760mmHg and the 

corresponding experimental VLE (Jordan and van Winkle (1951)). 
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Figure 6-8: Simulated x-y data for the n-dodecane (1) + 1-octadecene (2) mixture at 760mmHg and the 

corresponding experimental x-y data (Jordan and van Winkle (1951)). 
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It is important to note that the connecting lines in Figure 6-3 to Figure 6-8 are only included to 

show the trends in the data. It is clear from the P-x-y diagram that the TraPPE force field 

overestimates the experimental phase envelope. This is a direct consequence of the feature that the 

TraPPE force field overestimates pure component saturated vapour pressures (Martin and Siepmann 

(1998), Wick et al. (2000)). The reason for this is that the TraPPE parameters were parameterised 

with the initial intent of reproducing all coexistence properties but eventually the authors settled on 

selecting experimental liquid coexistence densities, critical temperatures and critical densities only 

as the primary parameterisation criteria. In particular, the simulated ethane saturated vapour 

pressure overestimates the experimental value of 664.7kPa by 15% and the simulated propene 

saturated vapour pressure overestimates the experimental value of 2410kPa by 32%. This results in 

a simulated ethane + propene phase envelope that is shifted to higher pressures. 

In contrast to the TraPPE force field results, the NERD force field yields an ethane + propene phase 

envelope that is shifted to lower pressures compared to experimentally measured data. Indeed, the 

simulated saturated vapour pressures of ethane and propene are lower than the corresponding 

experimental values by 9.2% and 2.1% respectively. As for the TraPPE results, this discrepancy 

between the simulated results and the experimental data may be because the NERD parameters 

were not fitted to experimental saturated vapour pressures, but rather the LJ parameters were 

primarily parameterised to reproduce experimental coexistence liquid densities, critical 

temperatures and critical densities as well as experimental second Virial coefficients for short 

hydrocarbon chains (e.g. ethane, ethene, propane and propene). Both force fields, however, yield 

an isotherm that has the correct shape. This is confirmed by the x-y plot in Figure 6-4 which shows 

that both the TraPPE and NERD force fields reproduce the experimental x-y plot to within the 

statistical deviation of the simulation results. Error bars are only included on the P-x-y and x-y 

diagrams for this mixture only, and are omitted from the remaining phase diagrams for the sake of 

clarity. The relative errors are, however, similar (in general approximately ±0.01 and never more 

than ±0.03 mole fraction) for all of the mixtures studied. 

As for the ethane + propene mixture, the TraPPE force field overestimates the experimental phase 

envelope for the 1-hexene + n-octane mixture at 328.2 K as shown in Figure 6-5 and Figure 6-6. 

The experimental n-octane saturated vapour pressure of 8.4kPa is overestimated in the simulations 

by 58% and that of 1-hexene of 76.8kPa is overestimated by 43%. However, in contrast to the 

ethane + propene mixture, the NERD force field also overestimates the experimental phase 

envelope. The simulated K-octane saturated vapour pressure (obtained from the NERD force field) 
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is overestimated in the simulations by 16% and that of 1-hexene by 15%. Similar to the data in 

Figure 6-4, the simulated x-y diagrams for the NERD and TraPPE force fields agree with the 

experimental data in spite of the deviations in the P-x-y data. 

As seen in Figure 6-7 and Figure 6-8, the phase envelope for the isobars of H-dodecane + 1-

octadecene at 760 mmHg obtained from the NERD and TraPPE force fields are shifted to lower 

temperatures compared to experimental data. This observation is consistent with the trend that both 

force fields overestimate the pure component saturated vapour pressure for the longer w-alkane and 

1-alkene chains. Indeed, the experimental normal boiling points of both 1-octadecene and n-

dodecane of 587.3K and 488.8K respectively (Jordan and van Winkle (1951)) are underestimated in 

simulations by both force fields by approximately 10K. As in the case of the two mixtures 

discussed before, both force fields yield x-y data in good agreement with experiment (Figure 6-8). 

Comparison of the simulated data in Figure 6-7 and Figure 6-8 with those in Figure 6-3 to Figure 

6-6 reveals that the difference between the T-x-y results obtained from the NERD and TraPPE force 

fields is far smaller for the n-dodecane + 1-octadecene mixture than for the ethane + propene and 1-

hexene + n-octane mixtures. It thus appears that the NERD and TraPPE force fields yield the most 

similar results for mixtures comprised of longer alkane and 1-alkene molecules. This is to be 

expected since, once the -CH3 group had been parameterised for ethane, the -CH2- groups in the 

TraPPE force field were parameterised for all w-alkanes based on a fit to the vapour-liquid 

coexistence curve of n-octane (Martin and Siepmann (1998)). A similar procedure was adopted for 

the 1-alkene sp2 hybridized groups (Wick et al. (2000)). In contrast to the TraPPE force field, the 

NERD force field uses a larger parameter set to describe the n-alkane and 1-alkene homologous 

series and thus only assumes functional group transferability for chain lengths of four carbon units 

and longer (Nath et al. (1998a), Nath and de Pablo (2000)). With increasing chain length, however, 

the larger number of sp3 hybridized -CH2- groups dominate the intermolecular LJ interactions. 

Since the LJ size and energy parameters for the NERD and TraPPE models for this functional group 

are very similar (see Table 6-1), these force fields yield increasingly similar phase diagrams for 

longer alkane and 1-alkene chains. 
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Figure 6-9: Simulated P-x-y data for the propene (1) + 1-butene (2) mixture at 294.3K. and the corresponding 

experimental VLE (Goff et al. (1952)). 
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Figure 6-10: Simulated x-y data for the propene (1) + 1-butene (2) mixture at 294.3K. and the corresponding 

experimental x-y data (Goff et al. (1952)). 
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Figure 6-11: Simulated P-x-y data for the 1-butene (1) + 1-hexene (2) mixture at 373K and the corresponding 

experimental VLE (Laugier and Richon (1996)). 
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Figure 6-12: Simulated x-y data for the 1-butene (1) + 1-hexene (2) mixture at 373K and the corresponding 

experimental x-y data (Laugier and Richon (1996)). 
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6.7 1-alkene + 1-alkene mixtures 

It is of interest to ascertain if the SAl force field yields P-x-y data that is in better agreement 

with experiment than the data from the NERD and TraPPE simulations, and if this force field also 

yields simulated x-y results in good agreement with experimentally measured data. As pointed out 

by Nath et al. (2001), the available binary VLE data for 1-alkene mixtures are more limited than for 

n-alkanes. For this reason, only the almost ideal mixtures of propene + 1-butene at 294.3K and 1-

butene + 1-hexene at 373K were simulated. 

The simulated P-x-y and x-y diagrams for the propene + 1-butene mixture at 294.3K are shown in 

Figure 6-9 and Figure 6-10. As for the alkane + 1-alkene mixtures discussed above, the phase 

envelope obtained from the TraPPE force field is shifted to higher pressures compared to the 

experimental data (the experimental saturated vapour pressure of 1-butene of 263.4kPa is 

overestimated by 44%, and that of propene of 1049kPa is overestimated by 26%). The NERD force 

field yields a phase envelope in very good agreement with experimentally measured data, although 

it slightly underestimates the experimental data (the simulations underestimate the experimental 

saturated vapour pressure of 1-butene by 2% and that of propene by 3%). The SAl force field also 

yields data in good agreement with the experimental P-x-y data, although the experimental saturated 

vapour pressure of 1-butene is overestimated by 15% and that of propene by 3%. This is what 

results in the slight overestimation of the phase envelope shown in Figure 6-9. Thus, even though 

the SAl force field is parameterised to reproduce pure component saturated vapour pressures, it 

yields a 1-butene saturated vapour pressure that is higher than experiment. However, 1-butene was 

the shortest 1-alkene used in the parameterisation of the SAl Lennard-Jones terms and no 

distinction is made between the sp3 hybridized -CH2- and -CH3 functional group parameters (Table 

6-1). All three force fields reproduce the experimental x-y diagram, as was found for the alkane + 

1-alkene mixtures discussed earlier. 

The P-x-y and x-y diagrams for 1-butene + 1-hexene at 373K are shown in Figure 6-11 and Figure 

6-12. Similar trends to those observed for the propene + 1-butene mixture are seen here. The 

TraPPE force field overestimates the phase envelope, with the experimental 1-butene and 1-hexene 

pure component saturated vapour pressures of 1822kPa and 292.6kPa being overestimated by 19% 

and 29% respectively. The NERD force field underestimates the 1-butene pure component 

saturated vapour pressure by 9% while the 1-hexene saturated vapour pressure is overestimated by 

2%. The P-x-y envelope obtained from the NERD force field is thus in good agreement with 
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experiment. The SA1 force field yields P-x-y data that is in best agreement with experimental 

phase equilibria. For this force field the experimental pure component saturated vapour pressures 

of 1-hexene and 1-butene are overestimated by only 5% and 0.5%, respectively. Once again, in 

spite of the deviations in some of the P-x-y data, all force fields yield x-y diagrams that are in good 

agreement with the experimental data. 

It is interesting to note that the NERD force field underestimates the pure component vapour 

pressure for some mixtures and overestimates the pure component vapour pressure for other 

mixtures. The TraPPE force field, however, consistently overestimates the pure component vapour 

pressure. This possibly indicates that the accuracy of the simulated vapour pressure from the 

NERD force field may depend on either the chain length or on the reduced temperature of the 

simulation. 

In summary, for both sets of alkane + 1-alkene and 1-alkene + 1-alkene mixtures where both 

components are short chains the NERD force field yields P-x-y data that is in better agreement with 

experiment than the TraPPE data (Figure 6-3, Figure 6-5, Figure 6-9, and Figure 6-11). However, 

as discussed with reference to the w-dodecane + 1-octadecene phase diagram shown in Figure 6-7, 

the TraPPE and NERD force fields yield similar data for n-alkane + 1-alkene mixtures that contain 

longer chains, and both models underestimate the experimental isotherm. Similarly to the NERD 

force field, the SA1 potential also yields P-x-y data that are in good agreement with the 

experimental data for 1-alkene + 1-alkene mixtures that contain short chains. Also, in spite of 

deviations in some simulated P-x-y data from the experimental data, all force fields yield x-y data in 

close agreement with the experimental data for all mixtures studied. 

6.8 Ideal Solution Behaviour of the Mixtures Studied 

Figure 6-13 and Figure 6-14 show plots of the relative excess volumes of the liquid and 

vapour phases as a function of composition for the 1-hexene + n-octane mixture at 32 8K and the 1-

butene + 1-hexene mixture at 373K respectively. Similar results were obtained for the other 

mixtures and are thus not shown here. The data sets are obtained for overall mole fractions of 

component 1 of 0.0, 0.1, 0.2, 0.4, 0.6, 0.8, 0.9 and 1.0 as one follows a data set from left to right in 

the figures. 
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The proximity of the data about the ^ /L = 0 line confirms that the force fields used at least 

qualitatively reproduce the ideal solution behaviour of these two mixtures. This indicates why the 

method of choosing the initial conditions for the simulations worked because this method inherently 

required a nearly ideal mixture. For both mixtures, however, it is noteworthy that the vapour phase 

deviates more from ideal solution behaviour than the liquid phase for all force fields. Both mixtures 

should, however, display ideal solution behaviour, particularly in the vapour phase. This curious 

deviation from what should be the expected trend is a result of the emphasis which was placed on 

the accurate reproduction of liquid phase densities during the pure component parameterisation of 

these force fields. All three force fields in general under predict the vapour densities in the original 

publications which leads to the overall negative deviation of the vapour excess volumes from ideal 

solution behaviour. The one exception is the NERD force field's deviation from ideal gas 

behaviour for the «-octane n+ 1-hexene mixture. This result may be understood, however, as being 

a consequence of the larger parameter set for the NERD force field as well as a result of the large 

emphasis that was placed on the parameterisation of the 1-alkene parameters using 1-hexene pure 

component data (Nath and de Pablo (1999), Nath et al. (2001)). 
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CHAPTER 7: 

TESTING THE LIMITS OF TRANSFERABLE FORCE FIELDS 

"Great things are not done by impulse but by a series of small things brought together." - Vincent 

van Gogh 

7.1 Introduction 

In view of the results stemming from the previous Chapter, it became interesting to determine 

whether the transferable force fields studied could be extended to different homologous series of 

chemicals for which the parameterised functional groups should be sufficient, but for which these 

transferable force fields were not originally and explicitly parameterised. 

Conjugated alkenes represent a homologous series for which the intermolecular parameters listed in 

Table 6-1 and the intramolecular parameters listed in Table 6-2 to Table 6-4 should be largely 

sufficient. By far the most important conjugated alkene is 1,3-butadiene. Indeed, 1,3-butadiene 

ranks 36* in the top 50 most produced chemicals in the United States, and approximately 6 million 

metric tons are produced annually. Isolation of 1,3-butadiene is currently based on butadiene-

containing C4 fractions from the steam cracking of naphtha, gas oil, and other higher boiling 

hydrocarbon fractions to form ethylene and homologous compounds (Grub and Loser (2000)). This 

makes accurate knowledge of 1,3-butadiene mixture VLE data vital. The majority of 1,3-butadiene 

is used in the production of styrenebutadiene rubber copolymers (SBR) but other applications 

include its use as a polymer component for polybutadiene, styrene-butadiene latex and acrylonitrile-

butadiene-styrene (ABS) resins. Several other conjugated alkenes also participate in industrially 

important chemical reactions. For example, the Diels-Alder reaction represents an important route 

towards the formation of cyclic hydrocarbon compounds (Grub and Loser (2000)). Consequently, it 

is also important to have an accurate description of the phase behaviour of the general homologous 

series of conjugated alkenes. 

1,3-Butadiene has been simulated previously using the AUA4 anisotropic force field of Bourasseau 

et al. (2003) as part of a wider force field parameterisation for alkenes. Over the limited 

temperature range from 245K to 295K, the AUA4 olefin force field gave average relative errors of 

2.6% on the liquid density, 1.1% on the latent heat of vaporisation, and 8.6% on the saturated 

vapour pressure. No emphasis was placed on correctly reproducing the vapour densities. 
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7.2 Intramolecular Parameters 

The NERD and TraPPE force fields were considered for testing whether alkane and alkene 

parameters from a transferable force field could be used to extend a force field to the simulation of 

conjugated alkenes. The Spyriouni et al. olefin force field was not selected because this force field 

was shown to provide less accurate results in the previous Chapter. 

Thermophysical property information for linear conjugated alkenes with more than 6 carbons is 

essentially unavailable. Consequently, 3 conjugated alkenes were selected for which there is 

thermophysical property data available (Vargaftik (1975), Smith and Srivastava (1986)). These are 

listed in Table 7-1: 

Table 7-1: Names and molecular structures of the most stable conformers for the conjugated alkenes studied. 

1,3-butadiene 

cfs-l,3-pentadiene 

cz's-l,3,5-hexatriene 

H 
uC ( I ) 
H % ( 2 ) H c—ck 

H ( ^ H 

H 

H H H H 

H P W \ ( 3 ) (4,/(5)H 
c—c 
H H 

H H H H 
C-—C / C C__ 

JJ (1) (2)^(3) (4) / (5) («) H c—c 
H H 

7.2.1 Torsional Parameters 

The intramolecular torsional parameters in Table 6-4 are insufficient because there is no 

provision for a torsion for the internal as double bond between two sp2 hybridized functional 

groups (for cz5-l,3-pentadiene and cis-l,3,5-hexatriene) and for the torsion about the carbon-carbon 

single bond in a = CH - CH = sequence for all three components. The NERD olefin force field 

(Nath et al. (2001a)) has neither set of required parameters. The parameters for the m-torsion 

around a double bond between two sp2 hybridized functional groups were therefore borrowed from 
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the TraPPE force field (Wick et al. (2001)). Unlike for torsions around a carbon-carbon single 

bond, the rotation around a carbon-carbon double bond is strongly hindered and the TraPPE olefin 

force field uses a harmonic potential: 

U^kM-tf (7-D 
instead of the more familiar cosine series where k± is the harmonic torsional constant and <f>0 is the 

equilibrium torsional angle. The values of these parameters are contained in Table 7-2. The angle 

(pQ is defined as zero in the czs-conformation and -K radians in the /raay-configuration. This 

borrowed torsional potential was found to work extremely well for the modified NERD force field 

because it was found to limit the structure of a cfs-configuration to small perturbations about a 

torsional angle of zero as required. 

Table 7-2: Intramolecular torsional parameters used for the simulation of the conjugated alkenes. 

cis torsion, Eq. 7-1 

k4 (K/rad2) 

A 

= CH - CH = torsion, Eq. 7-2 

Co ( K ) 

c, (K) 

c2 (K) 

c3 (K) 

c4 (K) 

TraPPE 

12400 

0° 

-

-

-

-

-

NERD 

-

-

-

-

-

-

-

Bock et al. 

-

-

0 

249.84 

1287.70 

440.83 

-129.33 

Several investigators have studied the torsional energy arising from rotation about the 

= C H - C H = sequence (Nevins et al. (1996), Murcko et al. (1996), Karpfen et al. (1997)). In 

particular, the torsional potentials of Bock et al. (1979) and Szalay et al. (1989) are shown in Figure 

7-1: 
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Figure 7-1: Comparison of the torsional potential of Bock et al. (1979) and Szalay et al. (1989) for 1,3-

butadiene as well as the ab initio torsional data of Liu and Zhou (1993) for the = CH-CH = torsion of cis-

1,3,5-hexatriene. 

The ab initio calculations of Szalay et al. (1989) were used by Bourasseau et al. (2003) to describe 

the 1,3-butadiene torsional potential. The = CH-CH = torsional potential of Bock et al. (1979), 

however, was based on calorimetric and spectroscopic data as well as several sets of ab initio 

calculations and was therefore selected for the present work. It is given by a cosine series: 

U„ = c0 + X cn [l + (-1)-1 cos(n*)l (7-2) 
n=l,4 

where the constants c, axe listed in Table 7-2. From Figure 7-1 it is clear that both torsional 

potentials display extrema of similar magnitude at similar torsional angles. Indeed, it was found 

that there was a negligible difference in the pure component results obtained from the two torsional 

potentials of Szalay et al. (1989) and Bock et al. (1979). 

No data could be found concerning the = CH -CH = torsion of cis-l,3-pentadiene. Liu and Zhou 

(1993), however, did conduct an ab initio study of the two = CH - CH = torsions which are present 

in crs-l,3,5-hexatriene and data is also plotted in Figure 7-1. The energies associated with the 

conformation behaviour of = C H - C H = torsions in m-l,3,5-hexatriene are considerably higher 
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than those arising from the same torsion in a 1,3-butadiene molecule. Both molecules, however, 

exhibit a zero torsional energy contribution at 180° consistent with a trans configuration of the 

= CH - CH = sequence and display qualitative agreement in the location of local torsional energy 

maxima at 90° and 270°. The reason for the local maxima observed at approximately 90° and 270° 

is due to electron correlation effects (Szalay et al. (1989). The 1,3-butadiene molecule, however, 

displays a torsional energy local minimum at 0° (360°) while the cz",s-l,3,5-hexatriene molecule 

displays a torsional energy local maximum at 0° (360°). 

The apparent discrepancy between the two torsional descriptions can be explained in terms of the 

extra two carbons constituting the cz's-l,3,5-hexatriene molecule. This is important because 

otherwise the approach described in Section (5.4) of using additive bond length, bond angle, 

torsional and intramolecular LJ contributions would be inconsistent with physical reality. Indeed, 

when a cw-l,3,5-hexatriene molecule rotates to a =CH-CH = cis configuration at 0°, and to a 

gauche configuration at 90° or 270°, the extra C<5) and C(6) carbons listed in Table 7-1 of cis-1,3,5-

hexatriene are also brought closer to the C(1) carbon. These functional group centres must therefore 

result in a higher torsional energy associated in these configurations than that observed for the 1,3-

butadiene molecule due to interatomic repulsions at short separations. This intramolecular energy 

contribution may therefore be correctly accounted for by the inclusion of the intramolecular LJ 

interactions between carbon atoms separated by more than 3 bonds as described in Section (5.4). 

As a result, the torsional potential of Bock et al. (1979) was also used to describe the = CH - CH = 

torsion for the ds-l,3,5-hexatriene and the cw-l,3-pentadiene molecules. 

7.2.2 Bond Angle Parameters 

The two sets of bond angle bending parameters for the = CH - bond angle for the NERD and 

TraPPE force fields in Table 6-3 differ significantly. There are also subtle differences between 

these values and the equilibrium values suggested by Bock et al. (1979) for 1,3-butadiene and by 

Liu and Zhou (1993) for cf,y-l,3,5-hexatriene as shown in Table 7-3. It is interesting to note, 

however, that the equilibrium value for 0O from the NERD force field is in closest agreement with 

the suggested equilibrium values from Bock et al. (1979) and Liu and Zhou (1993). It was 

therefore important to determine what effect, if any, that this would have on the pure component 

equilibrium properties. 
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Table 7-3: = C H - bond angle parameters for the NERD and TraPPE force fields as well as the suggested 

equilibrium values from Bock et al. (1979) and Liu and Zhou (1993). 

1,3-butadiene 

kg/kb, K/rad2 

" o ' V (') = C ( : ) - C ( j ) ) 

cis-l ,3,5-hexatriene 

kjkb, K/rad2 

" o » V-TO = C(,,-C(3)J 

^ 0 ' \C{2)- C(!)
 =C(4)j 

NERD 

62500 

124° 

62500 

124° 

124° 

TraPPE 

70420 

119.7° 

70420 

119.7° 

119.7° 

Bock et al. 

-

123.3°-125.9° 

-

-

-

Liu and Zhou 

-

-

-

122.1° 

125.9° 

7.2.3 Bond Length Parameters 

There are also subtle differences in the bond lengths between the functional groups suggested 

by the NERD and TraPPE force fields and the values reported by Bock et al. (1979) and Liu and 

Zhou (1993) as seen in Table 7-4. 

Table 7-4: Bond length parameters for the NERD and TraPPE force fields as well as the suggested 

equilibrium values from Bock et al. (1979) and Liu and Zhou (1993). 

1,3-butadiene 

kJkB, K/A2 

»o (C,„"CmJ 

' o \ c r - ) _<*(3)J 

cis-l,3,5-hexatriene 

ks/kB, K/A2 

'0 ( C ( l ) = C f f l j 

'o (Cc)-C(3)) 

'o (,C(3)=C(4)) 

NERD 

96500 

1.34A 

1.54 A 

96500 

1.34A 

1.54A 

1.34A 

TraPPE 

0 

1.33A 

1.54A 

0 

1.33A 

1.54A 

1.33A 

Bock et al. 

-

1.34 A 

1.46A-1.48A 

-

-

-

-

Liu and Zhou 

-

-

-

-

1.34A 

1.46A 

1.36A 
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Significantly, both the NERD and TraPPE force fields overestimate the C - C bond between two 

sp2 hybridized carbons by about 0.08A for both cw-l,3,5-hexatriene and 1,3-butadiene. 

7.3 Simulation Methodology 

The CBMC method was used in conjunction with the NVT version of the Gibbs Ensemble 

for the pure component simulations, while the CBMC method was used in conjunction with the 

NPT version of the Gibbs Ensemble for the binary simulation. The total numbers of molecules used 

for each of the phase diagrams were as follows: 

• 500 1,3-butadiene molecules, 

• 400 cz's-l,3-pentadiene molecules, and 

• 400 czs-l,3,5-hexatriene molecules 

• 400 total molecules for the 1,3-butadiene + n-heptane binary mixture. Two pure component 

and six intermediate compositions corresponding to 0.1, 0.2, 0.4, 0.6, 0.8, and 0.9 overall 

mole fraction of 1,3-butadiene were simulated. 

For the pure component simulations, the box volumes were adjusted so that the liquid and vapour 

box volumes at the end of a simulation were approximately equal in size. For the NPT simulations, 

the imposed pressure of the simulation was adjusted so that approximately 10% of the total 

molecules were in the vapour box at equilibrium. For the binary simulations, the estimation 

procedure described in the previous Chapter which assumed relatively ideal mixture behaviour was 

not used because the phase envelope for the 1,3-butadiene + n-heptane mixture was large compared 

to the mixtures studied in the Chapter Six. The simulation pressure was adjusted on a trial and error 

basis without introducing significant stability problems. 

As for the simulations in the previous Chapter, five distinct types of moves were performed for both 

the pure component and binary simulations, namely 

1) volume changes, 

2) transfers of molecules between simulation boxes, 

3) full regrowing of chains and partial regrowing of chains using CBMC, 

4) translation of the centre of mass (COM), and 

5) rotation around the COM. 
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Each of the moves was selected at random and, were performed with the fixed probabilities: pi: p2: 

p3: p4: p5 = 0.006: 0.328: 0.222: 0.222: 0.222. The maximum volume, translation and rotational 

displacements were chosen in such a way that 50% of all of these moves were accepted. 

All the simulations were equilibrated for at least 50,000 cycles. The production runs consisted of at 

least 50,000 cycles for the pure component simulations and at least 100,000 cycles for the binary 

simulations. The standard deviations of ensemble averages were computed by dividing the 

production cycles of each run into five blocks and calculating the standard deviation from the 

averages of these five blocks. 

For both the pure component and binary simulations the same and unaltered LJ parameters listed in 

Table 6-1 were used. 

7.4 Pure Component Simulations of 1,3-Butadiene 

The pure component properties of 1,3-butadiene over the temperature range of 223K - 403K 

were simulated using the appropriate NERD and TraPPE intermolecular parameters of Table 6-1 

and the bond angle and bond length parameters of Table 7-3 and Table 7-4 but including the 

torsional potential of Bock et al. (1979) as described in Table 7-2. It was found, however, that 

while the NERD force field gave reasonable agreement with the experimental data (Smith and 

Srivastava (1986)), the TraPPE force field was considerably in error. The most significant 

difference between the intramolecular parameters of the NERD and TraPPE force fields resides in 

the description of the = CH - bond angle. The equilibrium = CH - bond angle of the NERD force 

field is, however, in closer agreement with the recommended values of Bock et al. (1979) and Liu 

and Zhou (1993). Since the intention was to simulate 1,3-butadiene pure component behaviour 

without adjusting the intermolecular parameters, but with flexibility regarding the intramolecular 

parameters, the NERD parameters for the = CH - bond angle were therefore also used for the 1,3-

butadiene simulations using the TraPPE force field. This significantly improved the simulated 

results obtained from the TraPPE force field for 1,3-butadiene. The results for the NERD and 

modified TraPPE force fields denoted as "Version 1" for the liquid and vapour densities, the 

saturated vapour pressures and the latent heats of vaporization are shown in Figure 7-2 to Figure 7-5 

and are listed in Table 7-7 to Table 7-9 in Appendix 7 A at the end of this Chapter: 
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Figure 7-2: 1,3-Butadiene liquid and vapour coexistence densities from "Version 1" of the NERD and 

TraPPE force fields and the experimental data of Smith and Srivastava (1986). Critical points are shown as 

solid symbols. 
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Figure 7-3: 1,3-Butadiene vapour coexistence densities from "Version 1" of the NERD and TraPPE force 

fields and the experimental data of Smith and Srivastava (1986). 
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Figure 7-4: 1,3-Butadiene saturated vapour pressures from "Version 1" of the NERD and TraPPE force fields 

and the experimental data of Smith and Srivastava (1986). 
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Figure 7-5: 1,3-Butadiene latent heats of vaporization from "Version 1" of the NERD and TraPPE force 

fields and the experimental data of Smith and Srivastava (1986). 
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The NERD force field in general estimates the pure component saturated liquid and vapour 

densities (Figure 7-2 and Figure 7-3), vapour pressures (Figure 7-4) and heats of vaporization 

(Figure 7-5) of 1,3-butadiene better than the TraPPE force field except in the lower half of the 

temperature range considered where the TraPPE force field displays a better prediction of the pure 

component saturated liquid densities. The average differences between the experimental pure 

component data of 1,3-butadiene and the simulated data using the NERD and TraPPE force fields 

are listed in Table 7-5 together with the "Version 2" modifications. 

The saturated liquid and vapour densities estimated by the TraPPE force field are in general shifted 

to lower temperatures. Consequently, while the critical temperature of 424K and the critical density 

of 0.2416g/cm3 estimated by NERD force field using Equations (6-2) and (6-3) with p = 0.32 are 

close to the experimentally measured critical temperature and density of 425.15K and 0.245g/cm3 

respectively, the TraPPE force field provides a considerably poorer estimate of the critical 

temperature and the critical density of 409.IK and 0.250g/cm3 respectively. It has been shown 

previously by Chen et al. (1998), Martin and Siepmann (1998), and Lingerer et al. (2000) that the 

critical temperature increases with increasing s and that the critical density decreases with 

increasing a . The NERD sp2 hybridized LJ s parameter for the -CH= group is IK smaller than 

the corresponding group for the TraPPE force field but the NERD sp2 hybridized LJ s parameter 

for the CH2= group is 7.5K larger than the same group of the TraPPE force field. In addition, both 

of the relevant sp2 hybridized LJ a parameters for the -CH= and the CH2= groups have larger 

values in the NERD force field than they do in the TraPPE force field. The combination of the 

larger LJ a and s parameters for the NERD force field are what results in the better overall shape 

of the pure component properties for the NERD force field over the TraPPE force field. This 

suggests that the magnitudes of the NERD parameters are more suited to the simulation of 

conjugated alkene molecules. 

Since a change of only a few degrees in the equilibrium bond bending angle achieved a 

considerable improvement in the agreement between the simulated and experimental pure 

component properties, it was decided to adjust the equilibrium bond lengths for both the NERD and 

TraPPE force fields to more correctly reproduce the molecular geometry of 1,3-butadiene. From 

Table 7-4, it may be seen that while both the TraPPE and NERD force fields use equilibrium values 

for the two CH2 =CH double bonds that are close to the 1.34A suggested by Bock et al. (1979), 

the central CH - CH single bond differs by as much as 0.08A. The reason for this discrepancy 

resides in the way in which the transferable force fields are, in general, parameterized. Indeed, all 
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single bonds between sp2 or sp3 hybridized carbons are assumed to have a bond length of 1.54A for 

both the TraPPE and the NERD (for molecules with more than three carbons) force fields. Clearly, 

the force exerted on a sp2 hybridized -CH= group by a sp3 hybridized CH2= group along the single 

bond connecting them will be less than the force exerted by another sp2 hybridized -CH = group 

because the second -CH= group has one fewer hydrogen atom attached. It is important to 

determine whether the assumption of using a single equilibrium bond length for all C - C bonds is 

valid. Consequently, the NERD and TraPPE force fields were adjusted to treat the central 

CH - CH single bond as having an equilibrium length of 1.46A. The two double bonds retained 

their equilibrium lengths bonds as listed in Table 7-4 because these lengths are very similar to the 

value suggested by Bock et al. (1979). All other intermolecular LJ and intramolecular parameters 

were left unchanged. The results of these "Version 2" simulations are shown in Figure 7-6 to 

Figure 7-9 and the data is listed in Table 7-7 to Table 7-9 in Appendix 7A at the end of this 

Chapter: 
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Figure 7-6: 1,3-Butadiene liquid and vapour coexistence densities from "Version 2" of the NERD and 

TraPPE force fields and the experimental data of Smith and Srivastava (1986). Critical points are shown as 

solid symbols. 
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Figure 7-7: 1,3-Butadiene vapour coexistence densities from "Version 2" of the NERD and TraPPE force 

fields and the experimental data of Smith and Srivastava (1986). 
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Figure 7-8: 1,3-Butadiene saturated vapour pressures from "Version 2" of the NERD and TraPPE force fields 

and the experimental data of Smith and Srivastava (1986). 
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Figure 7-9: 1,3-Butadiene latent heats of vaporization from "Version 2" of the NERD and TraPPE force 

fields and the experimental data of Smith and Srivastava (1986). 
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The NERD force field again demonstrates a better overall agreement with the experimental data 

than the TraPPE force field. This may be seen in Table 7-5 which shows the average differences 

between the experimental data of Smith and Srivastava (1986) and the simulated data from both sets 

of modifications to the NERD and TraPPE force fields: 

Table 7-5: Average differences between the experimental saturated pure component properties of 1,3-

butadiene and the simulated data from the "Version 1" and the "Version 2" modifications of the NERD and 

the TraPPE force fields. 

Temperature range [K] 

Property 

Average difference [%], "Version 1" 

Average difference [%], "Version 2" 

Net % Improvement 

NERD 

223-403 

Pi 

3.4 

1.3 

2.1 

P, 

25.3 

11.2 

14.1 

ln(PM t) 

5.3 

2.8 

2.5 

AH 
vap 

6.2 

3.3 

2.9 

Temperature range [K] 

Property 

Average difference [%], "Version 1" 

Average difference [%], "Version 2" 

Net % Improvement 

TraPPE 

223-383 

A 

3.5 

1.7 

1.8 

Pz 

82.5 

65.6 

16.9 

InfP33') 

12.9 

11.1 

1.8 

A#Vflp 

15.5 

12.6 

2.9 

The results in Table 7-5 also indicate that the shortening of the CH - C H equilibrium bond length 

by only 0.08A (a change of roughly 5%) significantly improved the pure component simulated data 

for both force fields. This is significant because it suggests that the internal molecular geometries 

must receive more serious consideration when parameterizing a pure component force field and that 

a wider set of intramolecular geometries could significantly improve the overall accuracy of any 

transferable force field. The other important feature of the improvement in physical property 

prediction from "Version 1" to "Version 2" in Table 7-5 is that both force fields showed an 

improvement of similar magnitude in each of the physical properties listed despite having different 

sets of intermolecular LJ parameters which produced different macroscopic properties. This 

suggests that the intramolecular potential parameters can affect the value of simulated physical 

properties largely independent of the value of the intermolecular parameters. This conclusion 
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would seem to contradict the observations of Smit et al. (1995), Chen et al. (1998) and Dubbeldam 

et al. (2004) who argued that the intramolecular interaction parameters have only a marginal 

influence on the prediction of physical properties. Recently, Lingerer et al. (2000) has suggested 

that intramolecular parameters can influence the suitability of the intermolecular parameters 

regressed for transferable force fields. It is the opinion of this work, however, that these two 

seemingly contradictory perspectives can be reconciled, particularly for harmonic potentials. 

Indeed, when additional simulations were conducted by varying the value of the bond stretching 

and bond angle bending constant, ks and ke for the harmonic bond stretching and bond angle 

bending potentials, it was found that changes in the magnitude of up to 30% in these constants 

affected the final values of the simulated physical properties by less than 2% which supports the 

work of Smit et al. (1995), Chen et al. (1998) and Dubbeldam et al. (2004). When the values of the 

equilibrium bond angles, 6>0, and the equilibrium bond lengths, /„, were modified, however, it was 

found that even small changes of 5% dramatically altered the simulated physical properties to a 

similar extent as those already seen listed for the CH - CH bond length which supports the work of 

Ungerer et al. (2000). Only the effect of the magnitude of the intramolecular interactions on the 

physical properties was actively explored in the works of Smit et al. (1995), Chen et al. (1998) and 

Dubbeldam et al. (2004). The above results therefore highlight the equilibrium geometries as the 

most crucial component of the intramolecular parameter sets that affect the simulated physical 

properties. Even though the magnitude of the intramolecular parameters are less significant than 

the magnitude of the interaction potential arising from intermolecular interactions, the equilibrium 

bond lengths and equilibrium bond angles will have a crucial role in positioning the intermolecular 

interaction sites in three-dimensional space. The role of the equilibrium geometries may therefore 

be understood to have an indirect, but still significant, role in determining macroscopic properties. 

The NERD olefin force field of Nath et al. (2001a) utilized a -CH= equilibrium bond angle 

obtained from the work of Jorgensen et al. (1984) that was derived from microwave measurements 

of linear olefins. The TraPPE olefin force field of Wick et al. (2000), however, used equilibrium 

geometries obtained from the force field of Cornell et al. (1995) optimized for nucleic acids and 

proteins. The TraPPE olefin force field of Wick et al. (2000) does, however, provide a good 

description of the pure component liquid phase properties and the saturated vapour pressures. This 

has also been confirmed by Bourasseau et al. (2003). The regression of the intermolecular 

parameters for the TraPPE olefin force field proceeded by first regressing the sp2 hybridized a and 

e parameters for the CH2= group of ethylene to provide a good fit with the experimentally 

measured pure component data for ethylene. Thereafter, the a and s parameters for the sp2 
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hybridized -CH= group were regressed to reproduce the pure component properties of longer 1-

alkene molecules. Implicit within this "secondary regression", however, was the equilibrium bond 

angle of Cornell et al. (1995). It is, therefore, the perspective of this work that the final a and e 

parameters for the sp2 hybridized -CH= group of the TraPPE force field compensated for the 

erroneous bond angle to the extent that their transferability to other functional groups was limited. 

This helps explain the superior results obtained using the NERD intermolecular parameters where 

an equilibrium bond angle closer to the experimentally measured value for linear olefins was 

utilized. This viewpoint is supported by the work of Chen et al. (1998) where it has already been 

reported that there can potentially exist several "optimal" intermolecular parameter sets which yield 

very similar macroscopic properties. An exploration of the effects of the equilibrium molecular 

geometry on the suitability of regressed intermolecular interaction parameters forms the basis of the 

work in Chapter Nine where it is considered in more detail. 

What is particularly remarkable about the data from the NERD force field is that it shows good 

agreement with the experimental saturated vapour densities and the saturated vapour pressures. In 

the original publications, the simulated vapour data and heats of vaporization did not demonstrate 

this level of accuracy even for molecules with four carbons (Nath et al. (2001a)). The improvement 

in the prediction of the saturated vapour pressures and the vapour densities is also very important 

for the accurate simulation of the latent heats of vaporization as may be seen through the definition 

of the latent heat of vaporization in Equation 5-21. The good close agreement between the 

experimentally measured latent heats of vaporization as seen in Figure 7-9 and Table 7-5 therefore 

also indicates that the NERD force field parameters also provide a good estimate of the 

intermolecular potential energy, U. This further suggests that the values of the <r and s 

parameters of the sp2 hybridized -CH= and CH2= groups of the NERD force field are close to their 

optimally transferable values. 

7.5 Pure Component Simulations of c/s-l,3-Pentadiene and ds-1,3,5-

Hexatriene 

The pure component simulation data for cw-l,3-pentadiene and cz's-l,3,5-hexatriene are 

shown in Figure 7-10 to Figure 7-13 and the corresponding data is listed in Table 7-10 to Table 

7-12 in Appendix 7A at the end of the Chapter. 
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Figure 7-10: cw-l,3-pentadiene and cw-l,3,5-hexatriene liquid and vapour coexistence densities from the 

NERD and TraPPE force fields and the experimental data of Smith and Srivastava (1986). Critical points are 

shown as solid symbols. Correlated data using the law of rectilinear diameters is shown as dotted lines. 
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Figure 7-11: cw-l,3-pentadiene vapour coexistence densities for the NERD and TraPPE force fields and the 

experimental data of Smith and Srivastava (1986). Correlated data using the law of rectilinear diameters is 

shown as dotted lines. Data for c«-l,3,5-hexatriene is omitted for clarity. 
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Figure 7-12: cis- 1,3-pentadiene and cis-l,3,5-hexatriene saturated vapour pressures from the NERD and 
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Figure 7-13: cis- 1,3-pentadiene heats of vaporization from the NERD and TraPPE force fields and the 

experimental data of Smith and Srivastava (1986). Data for cz5-l,3,5-hexatriene is omitted for clarity. 

115 



TESTING THE LIMITS OF TRANSFERABLE FORCE FIELDS 

Given the superior results obtained by using the observed molecular geometries for 1,3-butadiene, it 

was decided to use the same approach when simulating cz's-l,3-pentadiene and cz's-l,3,5-hexatriene. 

Unfortunately, no experimental study of the equilibrium geometries for cz's-l,3-pentadiene as shown 

in Table 7-1 could be found. The equilibrium lengths of the C = C double bonds for both 1,3-

butadiene and cz's-l,3,5-hexatriene as listed in Table 7-4, however, all have values between 1.34 A 

and 1.36A. The internal CH-CH bond length for both 1,3-butadiene and cz"s-l,3,5-hexatriene 

varies between 1.46A and 1.48A. Consequently, an equilibrium bond length of 1.34A was used for 

the double bonds in cw-l,3,-pentadiene while an equilibrium bond length of 1.47A was used for the 

internal single bond. For the C(4) -C ( 5 ) single bond the relevant bond length parameters from Table 

6-2 were used. For cz's-l,3,5-hexatriene, the equilibrium bond lengths of Liu and Zhou (1993) as 

listed in Table 7-4 were used. The NERD simulations used a bond stretching constant of 

96500K/A2. Both molecules exclusively have - C H - bond angles. From Table 7-3, this 

equilibrium bond angle varies, in general, between 123° and 126° for both 1,3-butadiene and cis-

1,3,5-hexatriene and therefore an equilibrium value of 124° was used for all of these bond angles 

together with a bond angle bending constant of 62500K/rad2. From Table 7-2, the cis torsion of the 

TraPPE force field was used for both force fields to describe the cis torsion, while the torsional 

potential of Bock et al. (1979) was used for the = CH - CH = torsion. 

For cz'5-l,3-pentadiene, the available experimental data was limited to the critical temperature, the 

critical density, vapour densities and vapour pressures in the temperature range from 213-317K, and 

heats of vaporization and liquid densities in the temperature range from 294-303K. In order to 

estimate liquid densities in the temperature range between the critical temperature and the available 

experimental data, the modified Rackett equation of Spencer and Danner (1972) was used: 

1 i&kj-wr] p.3) 
Hi \ Ha J 

where Z ^ is a modified compressibility factor. Using the known values of TCT and pCT, the 

available liquid densities as a function of temperature were then used to regress an optimal value of 

ZM . This allowed for the estimation of the liquid densities over the temperature ranges of 213-

294K and 303-488K. Then using these generated liquid density values together with the available 

critical data and the vapour density data in the temperature range from 213-317K, it was possible to 

determine best-fit values for the constants A and B in Equations (6-2) and (6-3) with p = 0.32. 

These two equations could then be used to estimate vapour densities in the temperature range 317-

488K given the estimated liquid densities obtained from Equation (7-3). 
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The above approach could not, however, be confidently used for cz".s-l,3,5-hexatriene because of the 

lack of measured data for the critical temperature and the critical density. Saturated liquid density 

data was only available in the temperature range of 306-324K. The critical density and the critical 

temperature of cz's-l^S-hexatriene were estimated by best-fit regression of these variables (together 

with Zu) using Equation (7-3) to be 0.243g/cm3 and 579.6K. Since this critical temperature is 

255K higher than the highest temperature of a measured liquid density, it was not reasonable to 

estimate the saturated vapour densities using Equations (6-2) and (6-3). For this reason, the 

simulated vapour densities of czs-l,3,5-hexatriene are not shown in Figure 7-10 or Figure 7-11 but 

are listed in Table 7-12 in Appendix 7 A at the end of this Chapter. 

From Figure 7-10 to Figure 7-13, it is clear that the simulated data of the NERD and TraPPE force 

fields show similar trends to those observed in the simulated data for 1,3-butadiene. The TraPPE 

force field shows a better description of the high liquid densities, the NERD force field is clearly 

superior in the predictions of the vapour densities over the whole range and the liquid densities in 

the near-critical temperature range, while the estimated critical temperature of 485K and critical 

density of 0.2423g/cm3 (Table 7-11) for the NERD force field compare more favourably than the 

TraPPE force field with the measured critical temperature of 488K and the measured critical density 

of 0.2477g/cm3. The vapour pressures are again overestimated by both force fields but the 

agreement with the measured data is worse than it was for 1,3-butadiene. This also leads to the 

poorer description of the latent heats of vaporization as seen in Figure 7-13. It is suspected that the 

origin of the apparently increasing deviation between the simulated results and the experimental 

data may lie in the description of equilibrium length of the C(4) - C(5) single bond. Unlike for 

conventional ra-alkanes, the sp3 hybridized -CH3 group now has a sp2 hybridized =CH- group 

attached to it instead of the usual sp3 hybridized =CH2 group. With one less hydrogen, the sp2 

hybridized -CH= group will be able to exert a greater attractive force on the terminal -CH3 group 

thereby reducing the equilibrium length of the C<4) - C(5) bond. The observed difference between 

the measured physical property data and the simulated data therefore again suggests that the 

transferability of intramolecular bond lengths depends on the hybridization of the functional groups. 

Due to the lack of measured equilibrium geometries with which to confirm these suspicions and test 

modified bond lengths, however, no further simulations were conducted but the idea is explored 

further in Chapter Nine. 

For c«-l,3,5-hexatriene, the measured vapour densities were very limited and measured heats of 

vaporization could not be found and are therefore not shown in Figure 7-11 and Figure 7-13. The 

117 



TESTING THE LIMITS OF TRANSFERABLE FORCE FIELDS 

simulated liquid densities and the simulated vapour pressures are, however, in considerable 

disagreement with the. limited experimental data. It. was suspected that an incorrect model of the 

cfs-torsional may have resulted in trans-1,3,5-hexatriene being simulated but simulations of trans-

1,3,5-hexatriene did not significantly improve the data and the computer algorithm was confirmed 

to be correct. Consequently, with the equilibrium geometries of Liu and Zhou (1993) correctly 

used, the remaining possibility lay in the description of the = CH - CH = torsional potential 

because the torsional potential of Bock et al. (1979) was used and it was assumed that the 

intramolecular LJ interactions would account for the local intramolecular energy maxima observed 

at 0° (360°). In order to confirm this, a histogram of the observed torsional angles for the 

= CH - CH = torsion was recorded. For the above assumption to be true, then the following 

expression must hold true for all torsional angles: 

w, exp[-^).] 

where <P{ is the probability of observing a configuration with a torsional angle of <j> when the total 

intramolecular potential is C/(^)jnt, and w^ is again a weighting function but this time it serves to 

describe the number of times that a particular torsional angle is observed for the histogram. For the 

Bock et al. (1979) torsional potential combined with the existing LJ parameters to have been 

adequate, then both the normalized histogram and the graph arising from the exponential function 

described in Equation (7-4) above must be equivalent over the range 0 < <p < 2n. The resulting 

curves are plotted in Figure 7-14 below. For clarity, a zoomed view is also given in Figure 7-15: 
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For both Figure 7-14 and Figure 7-15 only the histogram resulting from the = CH - CH = torsion 

over the first four carbons the liquid phase is plotted. It was found that the vapour phase yielded the 

same distribution and that both = C H - C H = torsions yielded the same histogram. Both the 

normalized histogram from the simulation and the curve resulting from Equation (7-4) are sharply 

peaked around 180°. This corresponds to the trans configuration for the = C H - C H = torsion 

which is the more stable configuration because then the first and fourth carbons of the torsional 

sequence are most widely separated. It would appear, however, that the origin for the discrepancy 

between the simulated results and the experimental data is because the measured data of Liu and 

Zhou reveals that the = CH -CH = torsion should be much more sharply peaked around 180° (the 

trans configuration) than that simulated by the Bock et al. (1979) potential with the existing set of 

LJ parameters. Figure 7-15 shows a zoomed view and reveals the much higher concentration of cis 

configurations near 0° (360°) obtained in the simulations. The cis configuration will, in general, 

yield a lower density than the trans configuration because the more linear trans orientation will 

allow for a closer packing of molecules in the liquid phase than the more "boat-shaped" cis 

configuration. 

The solution required to resolve the difference between the measured physical property data and the 

simulated data would therefore require a reparameterization of the sp2 hybridized CH2= and -CH= 

LJ parameters or the formulation of a new = CH - CH = torsional potential for cis-l ,3,5-hexatriene 

or a combination of both approaches. Indeed, if a combination of revised sp2 hybridized s and <r 

parameters were given different values, then the repulsion between - C H - C H = from the 

intramolecular LJ interactions at short separations would force czs-l,3,5-hexatriene towards a higher 

fraction of trans configurations as required and potentially also go a long way towards improving 

the simulated results from the TraPPE force field. It was, however, the objective of this study not to 

modify the LJ parameters as this would require an extensive effort for only 3 molecules. 

Alternatively, the torsional potential of Bock et al. (1979) could be empirically modified to give a 

better distribution of torsional angles. It is not immediately apparent how this could be easily or 

reasonably achieved with the very limited temperature-dependent data available for cis-l,3,5-

hexatriene against which to check the resulting torsional potential. Chapter Nine presents a more 

extensive study of a new intermolecular force field based on observations from this Chapter. 
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7.6 Binary Simulations for Conjugated Alkenes 

To test the applicability of the revised NERD and TraPPE force fields for binary VLE 

simulations, a 1,3-butaidene + n-heptane mixture at 70°C was simulated. The 1,3-butadiene 

molecule was simulated using the "Version 2" modifications described in the previous Chapter 

while the n-heptane molecule was simulated using the conventional NERD and TraPPE parameters 

for n-alkanes as laid out in Table 6-1 to Table 6-4. The resulting P-x-y diagram is shown in Figure 

7-16 and the corresponding x-y data is plotted in Figure 7-17. Figure 7-18 shows a plot of the ratio 

of the excess to the real volumes for both phases and for both the NERD and TraPPE force fields. 

From Figure 7-16 the NERD force field displays a much better description of the P-x-y phase 

envelope than the TraPPE force field. This is, however, largely attributable to the superior pure 

component vapour pressure predicted by the modified NERD force field as evidenced by the pure 

component simulated properties and the corresponding experimental data of Smith and Srivastava 

(1986) in Table 7-6: 

Table 7-6: Experimental and simulated pure component properties obtained using the NERD and TraPPE 

force fields for 1,3-butadiene and n-heptane. Subscripted values indicate the estimated error in the simulated 

results. 

Psa t, [kPa] 

Pi. [g/cm3] 

pgxlO\[g/cm3] 

1,3-butadiene 

Exp. 

949 

0.552 

212 

NERD, 

"Vers. 2" 

97742 

0.5480.ooi 

222g.9 

TraPPE, 

"Vers. 2" 

130875 

0.5440.oo2 

31512 

n-heptane 

Exp. 

40.4 

0.640 

14.0 

NERD 

44.87.6 

0.6290.oo2 

16.23.2 

TraPPE 

57.5,., 

0.6440.oo3 

20.9Q.74 

Crucially, however, from Figure 7-17 it may be seen that the x-y data resulting from the simulations 

are in poor agreement with the experimental data because both force fields underestimate the value 

of the ratio of the 1,3-butadiene phase compositions, xu/yt . Physically, this translates to NERD 

and TraPPE force fields overestimating the amount of n-heptane in the vapour, underestimating the 

amount of n-heptane in the liquid, overestimating the amount of 1,3-butadiene in the liquid, or 

underestimating the amount of 1,3-butadiene in the vapour. 
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Figure 7-16: Simulated P-x-y data for the 1,3-butadiene (1) + n-heptane (2) mixture at 343.15K and the 

corresponding experimental VLE (Dortmund Data Bank). Estimated uncertainties are included. 

0.2 0.4 0.6 
Liquid mole fraction, Xi 

1.0 

- Experimental — • - - NERD — * — TraPPE ° Ideal 

Figure 7-17: Simulated x-y data for the 1,3-butadiene (1) + ?i-heptane (2) at mixture 343.15K, the 

corresponding experimental x-y data (Dortmund Data Bank), and the ideal solution x-y data based on the 

experimental saturated vapour pressures of 1,3-butadiene and n-heptane. Uncertainties are omitted for clarity. 
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Figure 7-18: Plot of the ratio of the excess to the real volumes for both liquid and vapour phases for the 1,3-

butadiene + n-heptane mixture at 343.15K. 

From Table 7-6 it is possible to deduce that the pure component properties are not responsible for 

the discrepancy between the experimental and the simulated x-y curves. In terms of the saturated 

vapour pressure, the TraPPE force field overestimates both pure component saturated vapour 

pressures by approximately 50% while the NERD force field overestimates the 1,3-butadiene 

vapour pressure by roughly 3% and the n-heptane vapour pressure by about 10%. Thus, because 

the NERD force field describes the one vapour pressure well and the other badly, while the TraPPE 

force field describes both vapour pressures poorly, neither the quality of the pure component vapour 

pressures nor the relative inaccuracy between each of the pure component vapour pressures can be 

blamed for the discrepancy. Both force fields also describe the pure component liquid densities 

well and these can, therefore, not be the cause. The pure component vapour densities follow a 

similar trend to the vapour pressures and for the reason already mentioned excluding the vapour 

pressures as the cause, the inaccuracies in the simulated vapour densities can also not be the cause. 

In Figure 7-17, the ideal mixture x-y curve based on Raoult's Law and using the experimental pure 

component vapour pressures is plotted. It may be seen that the force fields display a completely 

inaccurate trend away from the ideal curve because the ratio jq/y, for the experimental data is 
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always higher than the ideal curve while the ratio x,/y, from the force fields is always 

underestimated. In addition, the bubble point line connecting the pure component vapour pressures 

in Figure 7-16 is essentially linear for both the NERD and TraPPE force fields and for the 

experimental data. This confirms the ideality of the liquid phase for the experimental data and for 

the liquid phase simulated by both force fields (which is also supported by the V'/V ratio which 

displays only small deviationaround zero in Figure 7-18 and which indicates that the liquid excess 

volume is essentially zero for all compositions). The deviation would therefore appear to lie mostly 

in the vapour phase. 

Recalling the x-y data of Chapter Seven, all the x-y diagrams (while still close to the experimental 

data) tended to slightly underestimate the xx/y1 ratio if they were not in perfect agreement with the 

experimental data. This phenomenon has essentially been enhanced for the 1,3-butadiene + n-

heptane mixture studied. The 1,3-butadiene molecule consists exclusively of sp2 hybridized 

functional groups whereas the n-heptane molecule consists exclusively of sp3 hybridized functional 

groups. Since the discrepancy in the simulated and experimental data would seem to lie in the 

simulation of the vapour phase, this suggests that either the interactions between the 1,3-butadiene 

molecules in the liquid phase needs to be reduced by adjusting the values of LJ a and e 

parameters for the sp2 hybridized -CH= and CH2= groups to reduce the attraction between these 

groups at short separations, or by adjusting the values of the LJ a and E parameters for the sp3 

hybridized -CH2- and -CH3 groups to increase the attraction between these groups at short 

separations in the liquid phase. The net effect would be an increase in the tendency of 1,3-

butadiene to exist in the vapour and a decrease in the tendency of n-heptane to exist in the vapour. 

Qualitatively, a decrease in the values of either or both of the LJ e parameters for the sp2 

hybridized -CH= and CH2= groups can be seen to be favourable based on the results obtained from 

the pure component NERD simulations of 1,3-butadiene. It is well known that the critical 

temperature and vapour pressures both decrease with decreasing s. The "Version 2" NERD force 

field currently overestimates the critical temperature (Figure 7-6) and the saturated vapour pressures 

(Figure 7-8) and the reduction in the LJ s parameters would therefore shift these properties towards 

the correct values. For czs-l,3,5-hexatriene, however, the critical temperature for os-1,3,5-

hexatriene is already too low and a decrease in the values of the LJ e parameters might increase the 

fraction of m-conformations by decreasing the repulsions at short separations for the 

intramolecular LJ interactions. This suggests that a simultaneous adjustment also needs be made to 
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increase the LJ sp2 hybridized a parameters because this can be used to increase repulsive 

interactions at short separations and hence the fraction of trans configurations as seen in Figure 5-2. 

It is also well known that the simulated vapour pressure decreases with increasing a which will 

improve the situation for all conjugated alkenes studied. These and other considerations already 

mentioned are explored more fully in Chapter Nine. 
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7.7 Appendix 7A: Pure Component Simulation Data for the Three Conjugated Alkenes Studied 

Table 7-7: Simulated coexistence densities for 1,3-butadiene for "Version 1" and "Version 2" of the NERD and TraPPE force fields and the corresponding 

experimental data. Subscripted figures signify the estimated error in the simulated value. All densities have units of g/cm3. 

Temperature 

[K] 

223 

253 

283 

313 

343 

363 

383 

403 

Experimental 

Pi 

0.701 

0.668 

0.633 

0.595 

0.552 

0.519 

0.480 

0.429 

P g x l 0 < 

3.28 

13.9 

41.7 

101 

212 

333 

518 

832 

NERD, Version 1 

Pi 

0.6760.ooi 

0.6440.oo2 

0.6100.ooi 

0.5740.001 

0.533o,ooi 

0.500o.oo2 

0.4640.oo4 

0.4180.005 

p,xl0« 

5.380.75 

19.12.4 

54A.9 

123,8 

2494,o 

376,0 

56824 

911si 

NERD, Version 2 

Pi 

O.6880.001 

0.6560.ooi 

0.6240.oo2 

0.588o.ooi 

0.5480.ooi 

0.517o.ooi 

0.4830.oo2 

0.4400.oo4 

P . x l O 4 

4.47o.43 

16.4x2 

46.93.7 

HO9.0 

222s.9 

3359.6 

50916 

77339 

TraPPE, Version 1 

Pi 

0.690o.ooi 

0.655o.oo2 

0.6180.001 

0.578o,oo3 

0.531o.oo2 

0.4940.oo3 

0.4480.oo2 

/>gxi°4 

8.18,5 

27.92.4 

75.54.7 

173s.! 

338,4 

528,, 

81229 

TraPPE, Version 2 

P, 

0.6980.oo, 

0.6640.oo2 

0.628o.oo2 

0.587o.oo2 

0.5420.oo3 

0.5060.oo2 

0.4590.oo4 

P g x l 0 4 

7.140.s3 

26.42.7 

7O.85.5 

1566.2 

309,5 

4766.4 

71836 

j 

I 
Table 7-8: Critical temperatures and critical densities of 1,3-butadiene for "Version 1" and "Version 2" of the NERD and TraPPE force fields estimated using 

Equations (6-2) and (6-3) with p = 0.32. 

Tct,m 
/?cr,[g/cm3] 

Experimental 

425.15 

0.2450 

NERD, Version 1 

424.0 

0.2416 

NERD, Version 2 

431.4 

0.2435 

TraPPE, Version 1 

409.1 

0.2500 

TraPPE, Version 2 

413.6 

0.2497 



TESTING THE LIMITS OF TRANSFERABLE FORCE FIELDS 

i 

Table 7-9: Simulated saturated vapour pressures and latent heats of vaporization of 1,3-butadiene for "Version 1" and "Version 2" of the NERD and TraPPE 

force fields and the corresponding experimental data. Subscripted figures signify the estimated error in the simulated value. All vapour pressures are measured in 

kPa and all heats of vaporization are measured in kJ/mol. 

Temperature 

[K] 

223 

253 

283 

313 

343 

363 

383 

403 

Experimental 

ln(p s a t) 

2.41 

3.97 

5.15 

6.07 

6.83 

7.26 

7.65 

8.00 

Lxrivap 

24.7 

23.2 

21.7 

19.9 

17.7 

16.0 

13.8 

10.9 

NERD, Version 1 

ln(/>sat) 

2.900.,s 

4.280.12 

5.400.o5 

6.260.02 

6.980.o3 

7.38o.o4 

7.75o.o4 

8.07o.os 

A"** 

22.7o.o8 

21.5o.ii 

20.3o.o9 

18.7o,o7 

16.80.09 

15.lo.os 

13.lo.17 

10.2o.32 

NERD, Version 2 

ln(P5a t) 

2.72o.io 

4.140.,4 

5-260.o6 

6.160.09 

6.880.04 

7-290.o2 

7.660.02 

8.OI0.07 

AH 
vap 

2^.0o,i4 

20.80.32 

19.2o.i5 

17.4o.,8 

15.9o.2o 

14.0o.i9 

11 -5o.29 

TraPPE, Version 1 

ln(p s a t) 

3.33o.i8 

4.66o.o8 

5.720,o6 

6.57o.os 

7.23o.o5 

7.630.o3 

8.OO0.03 

&Hn,P 

21.4o.o4 

20.2o.i2 

I8.80.06 

17.1o.i3 

15.0o.u 

13.lo.06 

10.80.24 

TraPPE, Version 2 

ln(P s a t) 

3.180.12 

4.60o.i, 

5.67o.o6 

6.48o.o3 

7.17o.o3 

7.58o.o4 

7.930.o3 

AH 
vap 

21.7o.io 

20.5o.o5 

19.3o.o7 

17.6o.u 

15.60.07 

13.80.14 

11.5o.2, 

I 

I 
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Table 7-10: Simulated coexistence densities for cw-l,3-pentadiene and cz',s:-l,3,6-hexatriene for the modified NERD and TraPPE force fields. Subscripted figures 

signify the estimated error in the simulated value. All densities have units of g/cm3. 

c«-l,3-pentadiene 

Temperature 

[K] 

225 

245 

280 

315 

350 

385 

420 

455 

NERD 

Pi 

0.717o.oo2 

0.6990.ooi 

0.6670.oo2 

0.6320.ooi 

0.5940.oo2 

0.552o.oo3 

0.5040.oo4 

0.437o.oos 

P g x l 0 4 

1.260.4i 

2.660.77 

H.82.9 

36.1,.9 

90.66.3 

200,3 

40227 

77022 

TraPPE 

Pi 

0.7450/oo2 

0.7240/ooi 

0.652o/oo2 

O.6IO0/002 

0.562o/oo2 

0.5040/0o3 

Pgxl0< 

1.39o.,9 

3.69o.si 

52.73.7 

129„ 

272g.o 

54121 

cis-\ ,3,5-hexatriene 

Temperature 

[K] 

300 

306 

314 

323 

385 

420 

450 

465 

NERD 

Pi 

0.7060,oo2 

0.6990.oo2 

0.6920.oo2 

0.684o.oo3 

0.6180.004 

0.575o.oo3 

0.532o.oo2 

0.506o.oo5 

P f f x l 0 4 

9.42o.86 

11.53.6 

15.632 

22.16.3 

10412 

217,, 

385,0 

49948 

TraPPE 

A 

0.715o.oo3 

O.7100.oo3 

0.701o.oo2 

0.692o.ooi 

0.6210.oo3 

0.5740.oo3 

0.5240.oo5 

0.495o.oo5 

P . x l O 4 

13.02.7 

15.3,,5 

2I.I3.4 

27.63.4 

1374.9 

279,3 

48832 

64433 

Table 7-11: Critical temperatures and critical densities of cw-l,3-pentadiene and cis-l,3,5-hexatriene for the NERD and TraPPE force fields estimated using 

Equations (6-2) and (6-3) with 6 = 0.32 . 

Ta,[K] 

pc r ,[g/cm3] 

cis-1,3-pentadiene 

Experimental 

488 

0.2477 

NERD 

485 

0.2423 

TraPPE 

473 

0.2531 

cis-l ,3,5-hexatriene 

NERD 

523 

0.2517 

TraPPE 

508 

0.2587 
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Table 7-12: Simulated saturated vapour pressures and latent heats of vaporization of cis-l,3-pentadiene and cis-l,3,5-hexatriene for the modified NERD and 

TraPPE force fields. Subscripted figures signify the estimated error in the simulated value. All vapour pressures are measured in kPa and all heats of 

vaporization are measured in kJ/mol. 

cis-l ,3-pentadiene 

Temperature 

[K] 

225 

245 

280 

315 

350 

385 

420 

455 

NERD 

ln(P s a t) 

1.230.33 

2.070.29 

3-680.24 

4.88o.06 

5.860.o7 

6.690.o8 

7.340.06 

7-870.os 

Wmp 

28.5o.o7 

27.80.I8 

26.40.,3 

24.8o.22 

22.9o.i5 

20.7o.i4 

17.6o.H 

13.3o.33 

TraPPE 

l n ^ 1 ) 

1.340,3 

2.400.,4 

5.26o.o6 

6.190.08 

6.960.o6 

7.59o.o3 

AH 
Vitp 

27.3o.ii 

26.4o.ii 

23.40.14 

21.4o.i4 

19.0o.20 

15.6o.i7 

cis-l ,3,5-hexatriene 

Temperature 

[K] 

300 

306 

314 

323 

385 

420 

450 

465 

NERD 

ln(P s a t) 

3.36o.io 

3.58o.3o 

3.910.2o 

4.270.27 

5.920„ 

6.660.o6 

7.22o.o6 

7.440.o6 

A ^ 

30.0o.i2 

29.7o,5 

29.4o.2o 

28.9o.io 

25.3o.23 

22.8o.2s 

20.2o.23 

18.4o.3o 

TraPPE 

ln(PSi") 

3.680.20 

3.87o.o9 

4.20o.i6 

4.49012 

6.180.04 

6.880.04 

7.41o.o6 

7.650.o6 

*Km 

28.60.12 

28.3o.24 

27.9o.o9 

27.5o,o8 

23.8o.2o 

2i.lo.22 

18-2o.35 

16.2Q.24 
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CHAPTER 8: 

ALTERNATIVE GIBBS ENSEMBLES FOR SIMULATING 

MULTICOMPONENT VLE 

"Aut viam inveniam, autfaciam — If I can't find a way then I'll make a way" - Hannibal 

8.1 Practical Considerations 

For conventional NiN2PT Gibbs Ensemble simulations to correctly simulate a two-phase 

mixture, it is necessary that the initial overall state of the mixture under study be specified within 

the two phase region of thermodynamic state space (i.e. within the phase envelope on a P-x-y or T-

x-y diagram). This requires that the initial overall density and the initial overall composition of the 

mixture must lie in-between the equilibrium phase densities and compositions respectively. This is 

necessary to satisfy mass balance constraints because the total number of molecules of type 1, Nx, 

and the total number of molecules of type 2, N2, cannot change for a N]N2PT Gibbs Ensemble 

simulation. This imposes a restriction in the sense that some prior knowledge of the phase envelope 

is required to satisfy these composition and density constraints. Consider Figure 8-1: 

P3 

P2A 

P^Q 

P2C 

Pi 

LIQUID 2-PHASE REGION 

^ T 

£* 
VAPOUR 

s, i y i , s,2 y>. x.3 y>> 
23,1 S* ZiJ 

Mole Fraction of species i 

Figure 8-1: Sketch of an arbitrary azeotropic system to highlight the difficulty in simulating binary VLE for 

binary azeotropic mixtures or mixtures with narrow phase envelopes. 
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The following potential difficulties in simulating a phase envelope become evident: 

• If the two-phase region is very narrow (e.g. for a mixture of close boiling components), it will 

be almost impossible to stipulate an initial state satisfactorily because the chance of 

stipulating an initial state within the two-phase region will then be very small. In Figure 

8-1 this may be seen by considering the set of P2, xi2, vu and zi2. In order to get a 

sensible equilibrium at point P2, a value for the overall composition zi2 must be chosen in 

between JCW and y{2. If a value for z u is chosen higher than yi2, then two vapour phases 

will result with approximately identical compositions of zi2. Contrarily, if a value for zi2 

is chosen lower than xia, then two liquid phases will result with approximately identical 

compositions of z i2. Alternatively, a pressure between P2A and P2B must be set for the 

NiN2PT Gibbs Ensemble simulation to achieve phase separation. Choosing the simulation 

pressure above P2A will result in two liquid phases with composition zi2 while choosing P 

below P2B will result in two vapour phases of identical composition of zia. Suitable 

selections for zx and P can often require several trial and error simulations for narrow 

phase envelopes. 

• Azeotropic compositions or compositions in the infinitely dilute regions become virtually 

impossible to simulate because it is again very difficult to stipulate a satisfactory initial 

density, composition and simulation pressure. This may be seen in Figure 8-1 for the sets 

of Pi, JCJ ,, yv and zu and P3, x-3, j>u and z u where the judicious choice of P and z-

becomes even more sensitive than that of P2 and zi2 because of the narrowing of the two-

phase region in these sections of the diagram. 

• If the initial compositions are very close to one of the phase compositions, then most of the 

molecules in the simulation will tend to move into one of the simulation boxes. This might 

cause one of the simulation box sizes to drop in size such that one of the box side lengths is 

less than twice the cut-off radius. This will invalidate results from the simulation (see 

Section (5.5)). This is a consequence of the well known "lever-arm rule". From mass 

balance constraints, if N-t is the total number of molecules of species i , then the number of 

molecules of species i in the liquid for the set P2, xia, yia and zw , in Figure 8-1 is given 

by the ratio N{ x (xi2 - z u )/(xia - y^) • This implies that not only is it necessary to choose 

Zj between x{ and yt and to choose P between its upper and lower limits in the two phase 
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region for a given zK, but it is also necessary to choose z{ and P reasonably well inside 

these outer limits for the simulation not to risk falling below a minimum size restriction on 

the simulation box size. This can be considerably difficult for points like zi3 and P3 or Z;, 

and Px in Figure 8-1. 

• Escobedo (2000a) has pointed out that another limitation exists for the case when the 

incipient phase has negligible volume and the abundant phase had fixed composition such 

as bubble or dew point simulations. This is because it can be of considerable interest to 

calculate bubble or dew pressures corresponding to fixed compositions in the liquid or the 

vapour instead of calculating the liquid and vapour compositions arising from an imposed 

pressure and overall composition. 

Essentially, the first three difficulties listed above concerning the application of the NiN2PT version 

of the Gibbs Ensemble to binary mixtures all originate from the requirement that one is forced to 

stipulate both P and g( (where zt = % + w , ) a priori. In Figure 8-1 this corresponds to specifying 

both the vertical (through P) and horizontal (through z;) co-ordinates in the two-dimensional 

space of the phase diagram with the only freedom in this stipulation being constrained to the area 

between the dew and bubble point lines of the phase diagram. The smaller this area, the more 

unwieldy the NiN2PT Gibbs Ensemble becomes. 

It therefore becomes prudent to consider alternative ensemble formulations or simulation 

approaches. Considerable attention has been paid in recent years to new ensemble formulations. In 

the next Section, several approaches are commented on which have been used with varying success 

for simulating binary mixtures before three new ensemble formulations are developed and applied. 

Recalling Equation (3-24) and the discussion at the end of Section (3.3), the stipulation of any two 

intensive parameters should in principle be equivalently sufficient to guarantee phase separation. 

Thus it should not be necessary that P and T are the only intensive pairing that can be utilized for 

two-phase Gibbs Ensemble-type simulations with two intensive degrees of freedom. If an intensive 

pairing other than P and T is chosen, however, this will in general require that two different 

pieces of extensive variable information be specified other than JV, and N2 to place physical limits 

on the system. This alternative extensive parameter information could, for example, be a volume 

specification or an energy specification. 
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8.2 Formulation of a / A ^ Y T Gibbs Ensemble for Binary Mixtures 

It would be convenient to retain many of the advantages of the Gibbs Ensemble, including 

direct mechanical and chemical coupling of volume and mechanical fluctuations in the boxes, 

without having to resort to the approximations and interpolations inherent in pseudo-ensemble 

approaches. Escobedo (2000a) has alluded to the formulation of "osmotic" and "semi-open" Gibbs 

Ensembles. The semi-open variant in principle corresponds to the /iiN2VT Gibbs Ensemble 

described below. In this Section, the /x^VT Gibbs Ensemble partition function, the characteristic 

thermodynamic potential and the acceptance criteria for this ensemble using the methodology 

outlined in Section (4.7) are formally developed. 

The proposed /XiN2VT Gibbs Ensemble is a two-phase and two-component ensemble at constant 

chemical potential of species 1, constant number of molecules of species 2, constant total volume 

and constant temperature. The reasoning behind the stipulation of /u{ instead of P is that it will 

now permit some compositional freedom and allow one to obviate the mass balance constraints that 

necessarily must apply in the NiN2PT Gibbs Ensemble due to the fixed compositions. It should be 

noted that the total number of molecules N in this ensemble is not constant since the total number 

of molecules of species 1, it,, fluctuates in accordance with the imposed chemical potential \L\. The 

sets X, Y, X and Y are then: 

X = {nn+nn„V}={N2,V} 

Y = {-/3n2,pP) 
x = |"i,i + Hi'Ui>Unj = {ni>ui>Un } 

Y={-M>A>A.=A} 

According to Equations (4-39) and (4-43), the thermodynamic potential for this ensemble is then: 

o/ x (8-2) 
= - % +fi(U1+Ua)-fiM1Nl 

For the proposed jUiN2VT Gibbs Ensemble, C = 2 and F = 2. Substituting for X«Y from Equation 

(4-45), Equation (4-33) therefore becomes: 

= t \[dvudv, (rfss-ds?—= 3 '
 u 

ftWjW £->n J J n l i J n ! r A3n 'A3"-n '« '« '« ' 

xfal-pft^+u^-m)] 
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Also, one knows that N2 = nl2 + «II2 = constant, «, = «,, + «„_, from which one can eliminate M ^ . 

One also has the relation Vl + Va=V from which one can eliminate Fn.-. Equation (8-3) becomes: 

GE 1 °° "° 1 "- 1 Vur 

1 = 0 CO 1 W , 

-—y y—-—y — 
A32V, Z J Z ^ _ „ . , Zv A3„, 

(8-4) 

x{exP[-y?(c/ I(s7')+C;n(s5')-m)]} 

= K„ may be included in the constant K0 as for the NVT Gibbs Ensemble. The 

probability of observing a configuration around s"! and s„'"' with nw molecules in phase I with 

volume F,, «,, molecules of species 2 in phase I and «I[2 molecules of species 2 in phase II is 

given by: 

I n \GE 

yni(y-y\"* r -, (8-5) 

" A», t h ft -. H ^ ' (S?'+ "'(*'" W -
/V, « j , '"0,1 '"u 1^'2 " U / 1 

The probability distribution given in Equation (8-5) prescribes the same basic molecule translation, 

volume change and molecule swap moves given by Equations (4-5) to (4-7) for the NVT Gibbs 

Ensemble but with additional molecule creation and destruction moves for species 1: 

1) Molecule creations of species 1 in phase I. The acceptance criteria for this move may be 

derived by combining Equations (3-21), (3-22) and (8-5): 
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acc (o-^n) 
(cpGE Y 

(<p0E V 

= mm< 

m,+l Af"/itl! M 

A*" + , ) (n u +l) ! *V 

X 

= min 1 
t V 

exp[-£(c/ , (s?)- / / ,« ,) 

FT 

A f ( n u + l ) 
exp[-£(At/, -//,)] 

where At/, = 17, (s^1) - C7, (s^1). 

2) And molecule destructions of species 1 in phase I 

acc (o->n) 

^ A3 

^min-U- ^ e x p [ - ^ ( A t / , + / i 1 ) ] 

(8-6) 

(8-7) 

These acceptance criteria turn out to be identical to the molecule creation and destruction 

acceptance criteria for the fiVT ensemble (Frenkel and Smit (1996)). 

Unlike the NiN2PT Gibbs Ensemble in which P, Nt and N2 are specified a priori one now 

specifies /*,, N2 and V a priori in the /*iN2VT Gibbs Ensemble . The average total composition, 

z,, is thus variable. The specification of //, effectively determines the vertical co-ordinate on the 

phase diagram thus replacing the specification of P in the NiN2PT Gibbs Ensemble because each 

ju, corresponds to one unique pair of xi and yi on the phase diagram at equilibrium. The constant 

total volume V replaces the specification of the extensive variable JV, and thus determines the 

horizontal co-ordinate on the phase diagram. As V increases, the average number of molecules in 

the liquid phase will increase. In terms of the "lever-arm" rule, this implies that as the value of V 

increases, the ensemble average overall composition approaches the ensemble average liquid 

composition. 
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8.3 Formulation of a &NVT Gibbs Ensemble for Binary Mixtures 

It should be possible to construct a Semi-Grand variation of the basic Gibbs Ensemble using 

the ideas contained in Sections (8.2), (4.3) and (4.7). The advantage of this proposed ensemble 

would be that it would be able to maintain a constant total number of molecules while varying the 

number of each type of molecule. In the JB1N2VT Gibbs Ensemble the total number of molecules 

can vary which might result in a considerable increase in the length of a simulation if the number of 

molecules of species 1 increases substantially from the starting value. 

The reasoning behind the formulation of the ^NVT Gibbs Ensemble is that it should be possible to 

specify one intensive variable and one relationship among two or more intensive variables and still 

satisfy the requirement that two intensive degrees of freedom be specified for a two-component and 

two-phase system. As for the /XiN2VT Gibbs Ensemble of Section (8.2), it is most convenient to 

specify the temperature a priori which thus becomes the directly specified intensive variable. One 

may then choose a chemical potential difference to specify the remaining intensive degree of 

freedom. This effectively amounts to deriving a Gibbs Ensemble from the Semi-Grand Ensemble 

analogous to the way in which a constant chemical potential Gibbs Ensemble was effectively 

derived from the /xVT ensemble in Section (8.2). 

In the proposed ^NVT Gibbs Ensemble, the total number of molecules of species 1 and species 2, 

«, and n2 respectively, are both variable but subject to the constraint that N -n{ + n2. It is 

therefore convenient to write the contribution of -pf^^ and ~Pn2n2 to Equation (4-25) for a 

binary system as: 

= -pH2N-p{n,-n2)n, 

The total volume V is also held constant. The sets X, Y, X and Y can then become: 

X = {N,V} 

Y = {-Pv2,pP} 
- ( i f ^ ( 8 - 9 ) 
x = {"i,i +nu,Ul,Uu\ = {nx,Ul,Un\ 

Y = {-p(Mi-M2),P1,Pu=fr} 

According to Equations (4-39) and (4-43), the thermodynamic potential for this ensemble is then: 

>GE = Ru 1 V%VT=P»2N-PPV 

-% +P(Ul+Un)-p{Jui-M2)ni 
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It is interesting to note how similar the thermodynamic potential and sets of X, Y, X and Y are 

for both the ^NVT and /x^VT Gibbs Ensembles. This is to be expected since both ensembles are 

similar in the sense that they involve molecule destructions and creations but differ in what type of 

molecule number specification remains constant, namely N for the ^NVT Gibbs Ensemble and 

N2 for the /XiN2VT Gibbs Ensemble. 

For the proposed £iNVT Gibbs Ensemble, C = 2 and F = 2. Substituting for X»Y from Equation 

(4-45), Equation (4-33) therefore becomes: 

-]G£ 

'a* 

y\ y\\ (8-11) 

x{exp[-^(£/ 1 (^) + I / n ( s 2 ' ) - ( ^ - / / 2 ) n 1 ) ] } 

Also, one knows that 7V = n, + n2 -nx +nn, «, =n{1 +«IU and n2=n1;i+nU2 as mass balance 

constraints. One also has again Vx + VB =V from which one can eliminate Vn . The term 

which accounts for indistinguishability (i.e. double counting) must also be 

"i,i-"n,i-"i,2-"ii,2-

retained and the molecules are free to swap identities from species 1 to species 2 or vice versa in 

both simulation boxes. For a binary mixture, Equation (8-11) becomes: 
Vn V 

[e. i N 1, N-n, 

• I I I 
f K V"1 ]dVn $ dVW (V-V^-' 

(•;=o 

""•Jftarr ^ A f ^ ^ ^ A j nu\(nI-nll)lnBA\(N-nl-nm)\ 

-" i e"i 

V 

j dV^"' (V -Vjf'"' 

(8-12) 

1 . tH' (A Y"' K-0 

yy y 

x j J < - " ' ^ { e x p r - y 9 ( t / I ( s J - ) + i 7 I I ( S r i ) - ( ^ - ^ ) " 1 ) 

Recalling Equations (4-13) and (4-14), and introducing the fugacity fraction as discussed in 

Equations (4-11) and (4—12), Equation (8-12) for a binary mixture re-arranges to become: 
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L^ff lw 

N "i N-n, I 1 - A •zzz 
J ^^(7-K,)*^ 

r,=o-

x f fAj^A?{«q?[-^(l/1{i?)+^1I(^))" 
(8-13) 

f ^ ^ ( F - F , ) * " * 

where £, = 1 - £, for a binary mixture. As pointed out by Frenkel and Smit (1996), the convenience 

behind introducing £, and £2 for the Semi-Grand Ensemble arises because while ln[/J//2] varies 

between -co and =o as one goes from pure species 2 to pure species 1, £2 varies between 0 and 1 

in the same composition interval. From Equation (8-13), it is convenient to think of this new 

variant of the Gibbs Ensemble as a "two-phase Semi-Grand Ensemble" by comparing it with 

Equation (4-11) discussed previously. The probability of observing a configuration around s"1 and 

ŝ ""' with «j total molecules in phase I with volume Vl, n,, molecules in phase I, and nIU 

molecules of species 2 in phase II with volume {V - Vx) is given by: 

<p(nl,nll,nuvViyi\s^') 
ftWT 

( K Y 

y?{v-Vx) 
(8-14) 

M^M^V*-^*^ 
The probability distribution given in Equation (8-14) prescribes the same basic molecule 

translation, volume change and molecule swap moves given by Equations (4-5) to (4-7) for the 

NVT Gibbs Ensemble but with additional molecule identity changes given by: 

1) Converting a molecule of type 2 into a molecule of type 1 in phase I. The acceptance 

criterion for this move is derived by combining Equations (3-21), (3-22) and (8-14): 
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acc(o-:>-n) = 
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" ^ e x p ^ L ^ s " " " 1 ^ 1 ) " 

exp 

= min < 1. ( " i - " u ) I, 
-exp 

-^ , ( s " "" 1 ' ) 

( n u + 1 ) 1 - 1 , 

where At/,(•?•**') = t/,(s^"''+1)-£/, (s^""). 

2) And converting a molecule of type 1 into a molecule of type 2 in phase I 

( a \Ilew 

<2Cc(o-»n) = 
(<PG ) " 

= min-|l. 

I 
i - « exp -^AL^s?'"11-1)] 

(8-15) 

(8-16) 

( « , - n u + l ) | , 

These acceptance criteria turn out to be similar to the molecule identity change steps for the 

monophasic Semi-Grand Ensemble (Frenkel and Smit (1996), Kofke and Glandt (1998)). 

Unlike the N\N2PT Gibbs Ensemble in which P, N{ and N2 are specified a priori, one now 

specifies £,, N and V a priori. The average total composition, z,, is thus again variable. The 

specification of £, determines the vertical co-ordinate on the phase diagram thus replacing the 

specification of P in the NiN2PT Gibbs Ensemble because each £, corresponds to a single pair of 

JC, and yl on the phase diagram. The ratio N/V replaces the specification of the extensive 

variables JV, and N2, and thus determines the horizontal co-ordinate on the phase diagram. The 

larger the value of N/V, the more molecules of the fixed total number molecules N will be found 

in the liquid phase. In terms of the "lever-arm" rule, this implies that as the value of N/V 

increases, the ensemble average overall composition approaches the ensemble average liquid 

composition. 

The ^NVT Gibbs Ensemble can be thought of as a biphasic Semi-Grand Ensemble. The linking of 

two phases by volume changes using the acceptance criterion given in Equation (4-6) in which the 
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total volume is conserved ensures that the specification of the intensive parameters £, and T fully 

parameterises an equilibrium ensemble without the need to specify the pressure. 

Both the /i]N2VT and the ^NVT Gibbs Ensembles obviate the difficulty associated with specifying 

JV, and N2 a priori by specifying [ix and N2 in the/X]N2VT Gibbs Ensemble and by specifying £ 

and N in the £jNVT Gibbs Ensemble. The imposed values of V and N2 in the /x^VT Gibbs 

Ensemble and the imposed values of £, and N in the ^NVT Gibbs Ensemble effectively 

determine the relative "size" of the simulated phases (i.e., how many molecules are in each of the 

phases at equilibrium) and hence the average value of z, in Figure 8-1. 

8.4 Chemical Potential in the /*iN2VT and &NVT Gibbs Ensembles 

In a manner analogous to the proofs outlined in Smit and Frenkel (1989) and Mooij and 

Frenkel (1994), it is possible to show that the expression give for the chemical potential in the NVT 

Gibbs Ensemble given in Equation (5-37) is applicable to the evaluation of the chemical potential 

in both the /i1N2VT and £iNVT Gibbs Ensembles. This is the case because the molecule swap 

moves are the same for all types of Gibbs Ensembles and because the total volume is conserved in 

all three cases of the NVT, MiN2VT and frNVT Gibbs Ensembles. 

8.5 Simulations Using the fiiN2VT and fcNVT Gibbs Ensembles 

To assess the potential of the /iiN2VT and ^NVT Gibbs Ensembles to simulate the VLE of 

mixtures with narrow phase envelopes that cannot reasonably be simulated using the NiN2VT Gibbs 

Ensemble, two close-boiling binary mixtures were simulated namely: 

• 1-butene + n-butane mixture at 37.8°C (Laurance and Swift (1974)) 

• 1-hexene + /z-hexane mixture at 55°C (Dortmund Data Bank) 

The TraPPE force field parameters of Table 6-1, Table 6-2, Table 6-3 and Table 6-4 were used to 

simulate the two isotherms studied. 

8.5.1 Simulation Methodology and Details 

The CBMC method was used in conjunction with both the /x,N2VT and |,NVT Gibbs 

Ensembles to simulate each of the isotherms studied. The NiN2PT Gibbs Ensemble could not be 
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used to study either of the isotherms for comparison because the small size of the phase envelopes 

made it impossible to simulate a phase coexistence point even with trial and error simulations. The 

NVT Gibbs Ensemble was used to simulate the pure component compositions for both of the 

isotherms studied. Values for fa and |i were selected so as to yield approximate overall mole 

fractions of 0.05, 0.10, 0.20, 0.40, 0.60,0.80, 0.90, and 0.95 of component 1 at equilibrium. For the 

£iNVT Gibbs Ensemble simulations, the total numbers of molecules used for each of the phase 

diagrams were: 

• 300 total molecules for the 1-butene (1) + rc-butane (2) mixture 

• 250 total molecules for the 1-hexene (1) + n-hexane (2) mixture 

For the ^iN2VT Gibbs Ensemble simulations, it was obviously not possible to constrain the total 

number of molecules because JV, is allowed to fluctuate. For comparison purposes, however, the 

values of /^ and V for a jiiN2VT Gibbs Ensemble simulation were adjusted so that the ensemble 

averaged total number of molecules at the end of a p i^VT Gibbs Ensemble simulation was similar 

to the total number of molecules used for the £iNVT Gibbs Ensemble simulation for similar z, at 

equilibrium. The simulation of an isotherm using either the /iiN2VT or the ^NVT Gibbs 

Ensembles for the mixture compositions therefore proceeded in the following general manner, 

• Both the pure component compositions were simulated using the NVT Gibbs ensembles. 

• The ensemble averaged chemical potentials for both pure components at the temperature of 

the isotherm were recorded. 

• Several simulations of no more than 4,000 equilibration cycles and 20,000 production cycles 

were then used to generate intermediate values for fa and £i such that approximately 20% 

of the molecules were located in the vapour phase at equilibrium. This was made possible 

by the low calculated statistical uncertainties associated with the calculated chemical 

potentials (typically less than 1%). The densities of each of the components in each of the 

phases were also recorded. 

• Plots of fa as a function of the overall mole fraction of component 1, z,, and £i as a function 

of Zj were then generated as shown in Figure 8-2 and Figure 8-3 for the 1-butene + n-

butane mixture. 

• From plots similar to those in Figure 8-2 used for the jiiN2VT Gibbs Ensemble and Figure 

8-3 used for the &NVT Gibbs Ensemble, and using the approximate equilibrium component 

densities also recorded, it was possible to select values of fa and & and total volumes V 
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corresponding to the 8 required intermediate compositions such that approximately 20% of 

the molecules existed in the vapour phase at equilibrium. 

It must be pointed out, however, that this preliminary simulation method is, in fact, unnecessary and 

was only undertaken in this instance to better facilitate a direct comparison of the relative 

performances of the jtiN2VT and £iNVT Gibbs Ensembles. Even so, the method of simulation 

described above marked a considerable improvement over the essentially trial and error simulation 

approach that would had to have been used for conventional NiN2PT Gibbs Ensemble simulations 

similar to that described for the binary mixture simulations of Chapter Six. 

The preliminary simulations revealed that the / z^VT and ^NVT Gibbs Ensembles are 

considerably less sensitive to the values selected for the initial volumes and for the initial 

compositions than the N1N2PT Gibbs Ensemble. In general, it was found that an initial overall mole 

fraction of the dilute component of anything between 0.0 to 0.5 mole fraction could still yield a 

sensible simulation with phase separation. There was also considerable freedom with respect to 

values for the initial volumes. The total initial volumes were increased by up to as much as 100% 

in excess of the total volume required for approximately 20% of the molecules to exist in the 

vapour, and the simulations still converged to the same equilibrium phase densities (although with 

higher fractions of the total number of molecules in the vapour). 
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Figure 8-2: Plot of the simulated component chemical potentials as a function of the simulated overall mole 

fraction of 1-butene for the 1-butene (1) + n-butane (2) mixture at 37.8°C using the /i1N2VT Gibbs Ensemble. 

Figure 8-3: Plot of the simulated overall mole fraction as a function of the imposed fugacity fraction of 1-

butene for the 1-butene (1) + n-butane (2) mixture at 37.8°C using the £iNVT Gibbs Ensemble. 
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As a general guideline, it will usually be better to stipulate the chemical potential of the component 

which is more easily transferred between simulation boxes for a /XiN2VT Gibbs Ensemble 

simulation because this will lead to a higher sampling efficiency. This will usually tend to be the 

smaller molecule if there is a size difference between the two components. For the mixtures 

studied, however, both components in both close-boiling mixtures have approximately equivalent 

molecular sizes and approximately equivalent intra- and intermolecular interactions. For these 

mixtures, it was found that it proved to be more efficient to stipulate the chemical potential for the 

more dilute component, i.e. to stipulate ju{ for z, < 0.5 and then to stipulate /u2 for zx > 0.5 . This 

is because the addition of an extra molecule for the dilute component results in a larger deviation 

and hence better compositional sampling per insertion attempt, particularly for the infinitely dilute 

regions. For the £iNVT Gibbs Ensemble, this is not applicable because two different molecules 

have to change identity in the same simulation box. The only requirement for binary phase 

envelope simulations using the i^NVT Gibbs Ensemble is then that the imposed value of the 

fugacity fraction must span a range of values for 0 < £, < 1 (or equivalently 0 < £2 < 1). 

Consequently, it is reasonable to expect that the jtiiN2VT Gibbs Ensemble is likely to be more 

advantageous than the £iNVT Gibbs Ensemble for the case where one of the molecules is not easily 

created or destroyed. This must be balanced against the feature that the ^NVT Gibbs Ensemble can 

directly control the total number of molecules (and hence the simulation time) where this can only 

be indirectly controlled in the /iiN2VT Gibbs Ensemble. 

The different creation and destruction moves employed by the /LiiN2VT and £iNVT Gibbs 

Ensembles necessitated different relative probabilities of the different types of moves employed 

during a simulation. The types of moves performed during a /iiN2VT Gibbs Ensemble simulation 

were as follows: 

1) volume changes(Equation (4—6)), 

2) conservative molecule identity exchanges using CBMC (Equation (4-18)), 

3) transfers of molecules between simulation boxes using CBMC (Equation (4-7)), 

4) creations and destructions of the (dilute) species with the imposed chemical potential using 

CBMC (Equation (8-6) and Equation (8-7)), 

5) full regrowing of chains at a new position in the same simulation box using CBMC (Equation 

(5-33)), 

6) partial regrowing of a chain in the same simulation box using CBMC (Equation (5-33)) 

7) translation of the COM (Equation (4-5)), and 

8) rotation around the COM (Equation (4—5)). 
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The type of move performed at each Monte Carlo step was selected at random. The moves were 

performed with the following fixed probabilities: 

pi: p2: p3: p4: p5: p6: p7: p8 = 0.010: 0.050: 0.200: 0.300: 0.047: 0.100: 0.147: 0.146, 

where pi again refers to the probability of performing a move of type 1 listed above. To improve 

the sampling efficiency of each simulation, the molecule transfer move between boxes was only 

performed for the species whose chemical potential was not imposed. This is because the molecule 

with the imposed chemical potential could still sample different compositions through the creation 

and destruction moves of Equation (8-6) and Equation (8-7). Also, for the molecule with the 

imposed chemical potential, the choice between a creation or destruction attempt was made 

randomly as was the box identity in which a molecule was created or from which a molecule was 

deleted. A rough check on the consistency of a simulation was provided by comparing the number 

of successful and attempted creations and destructions of the species with the imposed chemical 

potential in either simulation box. At equilibrium, the number of creations and destructions in a 

given simulation box had to be more or less equal. 

The types of moves performed during a ijjNVT Gibbs Ensemble simulation were as follows: 

1) volume changes(Equation (4-6)), 

2) conservative molecule identity exchanges using CBMC (Equation (4-18)), 

3) Semi-Grand (non-conservative) molecule identity changes of a molecule using CBMC 

(Equation (8-15) and Equation (8-16)) 

4) transfers of molecules between simulation boxes using CBMC (Equation (4-7)), 

5) full regrowing of chains at a new position in the same simulation box using CBMC (Equation 

(5-33)), 

6) partial regrowing of a chain in the same simulation box using CBMC (Equation (5-33)) 

7) translation of the COM (Equation (4-5)), and 

8) rotation around the COM (Equation (4-5)). 

The type of move performed at each Monte Carlo step was selected at random. The moves were 

performed with the following fixed probabilities: 

pi: p2: p3: p4: p5: p6: p7:p8 = 0.010: 0.050: 0.300: 0.200: 0.047: 0.100: 0.147: 0.146, 

where pi again refers to the probability of performing a move of type 1 listed above. For the 

molecule with the imposed fugacity, the choice between a Semi-Grand creation or destruction 

attempt from the other species was made randomly as was the box identity in which the molecule 

type was generated or removed. In this case too, a rough check on the consistency of a simulation 

was also possible. The number of creations of species i in simulation box I had to be 
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approximately equivalent to the number of destructions of the same species in the same simulation 

box at equilibrium. , _.„ , __._ 

The maximum volume, translation and rotation moves were again adjusted so that approximately 

50% of all of these moves were accepted over the course of a simulation for both the jiijNiVT and 

iaNVT Gibbs Ensemble simulations. Both the pure component and mixture simulations were 

equilibrated for at least 40,000 cycles. The production period for calculating ensemble averages 

consisted of at least 160,000 cycles. The standard deviations of ensemble averages were estimated 

by dividing the production cycles of each run into five blocks and calculating the standard deviation 

from the averages obtained from each of these five blocks. 

8.5.2 Simulated Binary Phase Envelopes 

The P-x-y and x-y diagrams for the 1-butene (1) + «-butane (2) mixture at 37.8°C and the 1-

hexene (1) + n-hexane (2) mixture at 55°C are shown in Figure 8-4 to Figure 8-7 and the tabulated 

data is given in Table 8-9 to Table 8-10 in Appendix 8A at the end of the Chapter. 

To the knowledge of this work, this is the first time that such narrow phase envelope regions have 

been simulated with a variant of the Gibbs Ensemble. Both the P-x-y data of the 1-butene (1) + n-

butane (2) mixture of Figure 8-4 and the P-x-y data of the 1-hexene (1) + n-hexane (2) mixture of 

Figure 8-6 were successfully simulated using both the ^iN2VT and ijiNVT Gibbs Ensembles. 

Although both of the simulated phase diagrams are shifted to higher pressures, this is not a failing 

of the simulation algorithms but rather a function of the overprediction of the vapour pressures for 

n-alkanes and 1-alkenes of the TraPPE force field as discussed in Chapter Six. 
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Figure 8-4: P-x-y diagram for the 1-butene (1) + n-butane (2) mixture at 37.8°C simulated using the ^iN2VT 

(circles) and the ^NVT (triangles) Gibbs Ensembles and the corresponding experimental data of Laurance 

and Swift (1974). Open symbols denote dew points and closed symbols denote bubble points. 

0.2 0.4 0.6 
Liquid Mole Fraction, Xj 

0.8 

-Exp o M1N2VT A flNVT 

Figure 8-5: x-y diagram for the 1-butene (1) + n-butane (2) mixture at 37.8°C simulated using the /iiN2VT 

(circles) and the &NVT (triangles) Gibbs Ensembles and the corresponding experimental data of Laurance 

and Swift (1974). 
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Figure 8-6: P-x-y diagram for the 1-hexene (1) + n-hexane (2) mixture at 55°C simulated using the /XiN2VT 

(circles) and the ^NVT (triangles) Gibbs Ensembles and the corresponding experimental data of the 

Dortmund Data Bank. Open symbols denote dew points and closed symbols denote bubble points. 
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Figure 8-7: x-y diagram for the 1-hexene (1) + n-hexane (2) mixture at 55°C simulated using the /iiN2VT 

(circles) and the I J N V T (triangles) Gibbs Ensembles and the corresponding experimental data of the 

Dortmund Data Bank. 
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Table 8-1: Simulated chemical potentials, overall compositions and numbers of molecules in each for the 1-

butene (1) + n-butane (2) mixture at 37.8°C obtained from the /x1N2VT Gibbs Ensemble. Subscripted values 

denote the calculated statistical uncertainty. 

Imposed 

rt [K] 

-

-5610 

-5420 

-5170 

-5000 

-

Imposed 

-

-5050 

-5250 

-5500 

-5630 

-

Simulated 

-

-5601.50.7 

-5420.00.7 

-5170.00.5 

-5000. l , j 

-4848.25.6 

-4766.317 

-4721.9,0 

-4711.7M 

-4686.67.5 

Simulated 

-4769.415 

-4784.5,0 

-4795.96.9 

-4843.86.7 

-4908.5,, 

-5049.8^ 

-5249.9,.6 

-5498.11.4 

-5617.70.6 

-

z . 

0 

0.0540.ooi 

0.0990.oo3 

0.222Q.OO4 

0.3770.oo7 

0.609o.oo4 

0.7940.oio 

0.9090.oo3 

0.9400.oo2 

1 

*u 

13.1o.s 

25.1,.o 

59.3j.fi 

95.24.o 

152.9o.8 

201.53.s 

233.92.4 

231.82.2 

240.6,.7 

* u 

242.9 

234.5 

236.4 

214.2 

162.3 

101.8 

54.2 

24.3 

15.4 

NTA 

3.70.o 

6.7ft, 

15.0o., 

26.30.3 

37.1o.8 

48.53.6 

56.12.4 

58.22.2 

59.4,.7 

K.2 

57.13.7 

55.52.4 

53.6,.6 

45 .8 M 

37.7,.8 

20.6o.i 

10.9o.2 

4.90.o 

3.20., 

Table 8-2: Simulated chemical potentials, overall compositions and numbers of molecules in each for the 1-

butene (1) + n-butane (2) mixture at 37.8°C obtained from the ij,NVT Gibbs Ensemble. Subscripted values 

denote the calculated statistical uncertainty. 

Imposed 

0 

0.072 

0.121 

0.243 

0.440 

0.655 

0.822 

0.900 

0.940 

1 

Simulated 

-5559.69.6 

-5402.4,3 

-5176.58., 

-4975.48.2 

-4846.9„ 

-4759.0,, 

-4729.7,9 

-4710.0,, 

-4686.67.5 

Simulated 

-4769.4t5 

-4785.5io 

-4802.7,3 

-4839.68J 

-4917.07.6 

-5062.89.3 

-5251.4,, 

-5428.8,8 

-5578.99.7 

zx 

0 

0.0630.ooo2 

O.IO60.0003 

0.2170.ooo7 

0.4040.ooo9 

0.6210.0020 

O.8OO0.0008 

O.8860.0005 

0.931o.ooo4 

1 

* u 

14.60^ 

24.7o.3 

50.20.5 

92.3,.o 

142.5,.5 

180.926 

200.95.i 

2IO.O3.3 

240.6i.7 

* M 

242.93.7 

225.52.6 

215.52.9 

187.8,.8 

141.4i.8 

90.4,5 

47.20.8 

26.80.7 

16.20.3 

Ny, 

4.3o.2 

7.20.4 

15.0o.5 

28.9,,2 

43.72.0 

58.92.7 

65.O5.2 

69.33.4 

59.4,.7 

Ka 

57.13.7 

55.72.6 

52.62.8 

47.1,.7 

37.3,.5 

23.3,.o 

12.90.« 

7.30.6 

4.50.2 
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Table 8-3: Simulated chemical potentials, overall compositions and numbers of molecules in each for the 1-

hexene (1) + n-hexane (2) mixture at 55°C obtained from the /x,N2VT Gibbs Ensemble. Subscripted values 

denote the calculated statistical uncertainty. 

Imposed 

V, [K] 

-

-6750 

-6570 

-6400 

-6120 

-

Imposed 

-

-6150 

-6350 

-6600 

-6780 

-

Simulated 

-6736.20.7 

-6568.6U 

-6399.9o.6 

-6120.0,5 

-5963.74.5 

-5878.09.5 

-5823.622 

-5803.416 

-5780.5is 

Simulated 

-5861.916 

-5890.3,9 

-5901.9,7 

-5931.727 

-6013.935 

-6149.9,3 

-6350.30.9 

-6597.20.9 

-6757.5,.0 

z i 

0 

0.0550.oo3 

0.0940.oo4 

O.I6O0.012 

0.3650.o23 

0.5 8 80.032 

0.771o.oo4 

0.895o.oo7 

0.9400.oo3 

1 

NLA 

H.80.8 

20.3,.3 

32.33.7 

79.69.9 

139.64.3 

181.0,., 

193.43.8 

200.62.s 

196.83.3 

* « 

198.43.0 

202.92.8 

194.42 i 

168.43.7 

137.53.8 

99.0,6 

54.0,.6 

22.82.0 

12.90.8 

*r* 

3.20.o 

5-5o.o 

9.30., 

2I.80.2 

30.44.3 

39.0,., 

46.63.8 

49.42.5 

53.23.3 

Ny,t 

51.63.0 

47.12.8 

45.62.5 

41.63.7 

32.53.s 

18.40.2 

IO.O0.0 

4.70., 

2.70,o 

Table 8-4: Simulated chemical potentials, overall compositions and numbers of molecules in each for the 1-

hexene (1) + n-hexane (2) mixture at 55°C obtained from the £,NVT Gibbs Ensemble. Subscripted values 

denote the calculated statistical uncertainty. 

Imposed 

6 
0 

0.061 

0.110 

0.200 

0.420 

0.670 

0.840 

0.910 

0.960 

1 

Simulated 

-6756.68.9 

-6572.4,4 

-6366.3,9 

-6112.3,3 

-5938.425 

-5856.56.2 

-5824.29.i 

-5811.618 

-5780.5,5 

Simulated 

-5861.9,s 

-5887.5,, 

-5899.8,5 

-5923.1,9 

-6017.6,3 

-6I82.625 

-6412.46.4 

-6593.785 

-6836.1,3 

Z l 

0 

0.053o.ooo3 

0.0960.CO03 

0.176o.ooo8 

0.3820.ooi5 

0.635o.oon 

O.8I80.0009 

0.896o.ooo4 

0.953o.ooo3 

1 

*M 

10.2a, 

18.50.2 

33.8o.4 

73.2o.7 

120.32.6 

155.30j 

169.7, j 

182.03.6 

196.83.3 

NL,2 

198.43.0 

189.3,5 

I8O.I2.5 

163.13.0 

122.1,5 

71.6,7 

35.8o.3 

20.30^ 

9.20^ 

ffr, 

3.0o.i 

5.50.3 

1 0 . 3 M 

22.40.9 

38.42.9 

49.1o.5 

54.4,.6 

56.33.6 

53.23.3 

Ny,2 

51.63.0 

47.5,.6 

46.02.4 

42.82.8 

32.3,.3 

19.7M 

9.8o., 

5.6o.2 

2.40^ 
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8.5.2.1 Pressures from ^iN2VT or £iNVT Gibbs Ensemble Simulations 

The apparent scatter in the simulated pressures is, at first glance, also disappointing. In 

Figure 8-4 and Figure 8-6, only the statistical uncertainty in the pressure for the dew points for the 

£iNVT Gibbs Ensemble simulations is shown for clarity because the uncertainty is of similar 

magnitude for all pure component and mixture simulation points. It must be noted, however, that 

the estimated statistical uncertainty in the simulated vapour pressures of the pure components using 

the NVT Gibbs Ensemble are of similar magnitude to the estimated uncertainty in the pressures 

calculated for the mixture points using either the /x,N2VT Gibbs Ensemble or the ^NVT Gibbs 

Ensemble. This may be seen in Table 8-9 and in Table 8-10. Depending on the number of 

simulation production cycles, it is well known that the uncertainty in the simulation pressure from 

an isochoric Gibbs Ensemble is of the order of 5-10%. For the two mixtures studied, the small 

difference between the pure component vapour pressures magnifies this apparent uncertainty in 

Figure 8-4 and Figure 8-6. For an NiN2PT Gibbs Ensemble, the pressure for each mixture point is 

derived from the imposed pressure P used for each simulation point. For the /iiN2VT and ^NVT 

Gibbs Ensembles, the pressure is not imposed which tends to yield the higher statistical uncertainty 

in the simulation pressure. This originates from the way in which new configurations are generated 

in conventional Monte Carlo simulations. Indeed, recalling Equation (3-16), it may be seen that 

new configurations are generated by considering the change in the energy between the old and new 

states only where configurations which lower the system energy are preferentially sampled. 

No conventional algorithm for isochoric Monte Carlo simulations preferentially seeks to minimize 

the difference \PL — Pv\ to rigorously satisfy the requirement for mechanical equilibrium as outlined 

by Equation (4-1). The NVT, jUiN2VT and £iNVT Gibbs Ensembles achieve mechanical 

equilibrium by enforcing a conservation of total volume and requiring that PL -PY in an average 

sense such that no pressure difference terms appear in the acceptance criterion of Equation (4-6). 

For isochoric Gibbs Ensembles, this is inescapable because of the way in which new configurations 

are generated by the Monte Carlo sampling algorithm. Thus while it is still correct, it can be argued 

that isochoric Gibbs Ensembles are, therefore, less rigorous in their establishment of mechanical 

equilibrium. Instantaneous configurations can (and do) display deviations from the mechanical 

requirement of Equation (4-1) which leads to the larger statistical uncertainty in the ensemble 

averaged pressure. Figure 8-8 and Figure 8-9 show the evolution of the ensemble average pressures 

for the simulated 1-butene + n-butane mixture for a point corresponding to zl « 0.2. 
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300 

40000 80000 120000 
Number of Cycles 

160000 200000 

•<P> Pi 

Figure 8-8: Evolution of the ensemble average pressure (dark line) as a function of the number of simulation 

cycles for the /tiN2VT Gibbs Ensembles for a point corresponding to z, * 0.22 for the 1-butene (1) + n-

butane mixture at 37.8°C. The instantaneous pressures are shown as the lighter dotted line. 

Figure 8-9: Evolution of the ensemble average pressure (dark line) as a function of the number of simulation 

cycles for the i^NVT Gibbs Ensembles for a point corresponding to z, * 0.22 for the 1-butene (1) + n-butane 

mixture at 37.8°C. The instantaneous pressures are shown as the lighter dotted line. 
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Only configurations from 40,000 cycles onwards are shown in Figure 8-8 and Figure 8-9 as these 

then correspond to the production period for ensemble averages. As may be seen in these graphs, 

the averages pressures are composed of much larger instantaneous fluctuations which, in general, 

lead to statistical uncertainties of the order of 5-10% in the simulated average pressures. This is 

typical behaviour for isochoric Gibbs Ensembles. Consequently, further attention needs to be 

directed towards algorithms which still preferentially configurations which lower the overall system 

energy but which also minimize the difference \PL -Py\ in the configurations generated. 

8.5.2.2 Compositions from #iN2VT or £iNVT Gibbs Ensemble Simulations 

In spite of the apparent fluctuations in the pressures, Figure 8-5 and Figure 8-7 reveal that the 

x-y data is well described by the /iiN2VT and £iNVT Gibbs Ensembles for both mixtures. The 

accurate description of the x-y data is largely a feature of the TraPPE force field which is able to 

reproduce this type of data well as described in Chapter Six. Most significantly, errors bars are 

excluded from Figure 8-5 and Figure 8-7 because they are less than the symbol size. This is 

confirmed by the data listed in Table 8-9 and Table 8-10 in Appendix 8 A at the end of the Chapter 

where the estimated errors in the compositions of both phases for both mixtures is less than 10'2 for 

the ^NYVT Gibbs Ensemble simulations and less than 10"3 for the ^NVT Gibbs Ensemble 

simulations. This represents a considerable improvement over the estimated uncertainties in the 

compositions from NiN2PT Gibbs Ensemble simulations which tend to be of the order of 0.02-0.03. 

The reason for this improvement is because the /iiN2VT Gibbs Ensemble allows for the creation and 

destruction of molecules of one of the components while the £iNVT Gibbs Ensemble is able to 

allow the molecules to change identities without requiring that the total number of each species be 

conserved. 

The novel composition-based moves of the /iiN2VT and the £iNVT Gibbs Ensembles result in their 

compositional sampling being better than that of the conventional NjN2PT Gibbs Ensemble. This is 

also because the overall composition can vary for both the / A ^ V T and the i^NVT Gibbs 

Ensembles. The rapid convergence of the overall, vapour and liquid mole fractions for the 1-butene 

+ n-butane mixture at 37.8°C for a point corresponding roughly to zx « 0.22 for the /X]N2VT and the 

liNVT Gibbs Ensembles are shown in Figure 8-10 and Figure 8-11 respectively. It is important to 

note that ensemble averaged compositions in Figure 8-11 from the &NVT Gibbs Ensemble 

simulations show considerably smaller fluctuations than the corresponding compositions in Figure 

8-10 from the /XiN2VT Gibbs Ensemble simulations. This is supported by comparing the data listed 
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in Table 8-9 and Table 8-10. The reason why the ^NVT Gibbs Ensemble has lower statistical 

uncertainties is because molecule identity changes are permissible for both species in the ijiNVT 

Gibbs Ensemble while molecule creations and destructions are only permissible for one of the 

species in the /x^VT Gibbs Ensemble. The second species in the tiiN2VT Gibbs Ensemble can 

only achieve chemical equilibrium by (less efficient) molecule transfers between the simulation 

boxes. The reason why molecule transfers will always be less efficient is because they require a 

simultaneous molecule destruction attempt in one simulation box and a corresponding molecule 

creation attempt in the other simulation box. The ijiNVT Gibbs Ensemble, therefore, has some 

advantages in the sense that it will, in general, ensure lower statistical uncertainties in the simulated 

compositions. This is evidenced in Table 8-5 to Table 8-8. For both mixtures simulated using the 

/XiN2VT Gibbs Ensemble, the highest acceptance rates (^70%) are obtained for creations and 

destructions of molecules in the vapour phase where the probability of generating an overlap is 

lowest and where the energy associated with a creation or destruction attempt is lowest. It may also 

be seen that the probability of a molecule transfer is also less than or equal to the probability of a 

molecule creation or destruction in the /x^VT Gibbs Ensemble in the liquid phase. This is 

because a molecule transfer requires a molecule destruction in one simulation box and a 

simultaneous molecule creation in the remaining simulation box and the probability for both of 

these moves are separately less than unity as seen from the results of Table 8-5 and Table 8-7. 

The importance of the "conservative" identity swap move of Equation (4-18) for exploring 

different composition configurations is shown by the high acceptances for this move for both the 

tiiN2VT and the £iNVT Gibbs Ensembles in Table 8-5 to Table 8-8. Typically, the acceptance rates 

for this move are found to be above 30% for the mixtures studied. The high acceptance percentages 

for the "non-conservative" identity change move (which is exclusive to the ijjNVT Gibbs 

Ensemble) are, however, the important factor behind the low uncertainties of the compositions seen 

for the ^NVT Gibbs Ensemble. This move is performed for both species in a binary mixture 

simulation and the acceptance percentages observed of over 55% for both mixtures are what 

guarantees the more efficient sampling of compositions for the £iNVT Gibbs Ensemble. This is 

why the £iNVT Gibbs Ensemble has the lowest estimated uncertainties in the simulated 

compositions. 
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40000 80000 120000 160000 200000 

Number of Cycles 

xl yl - zl 

Figure 8-10: Evolution of the ensemble average liquid mole fraction (dark line), xl, vapour mole fraction 

(plain line), y,, and the overall mole fraction (dotted line), z,, of 1-butene for the 1-butene (1) + w-butane (2) 

mixture at 37.8°C determined using the /tiN2VT Gibbs Ensemble for z, * 0.22. 

Figure 8-11: Evolution of the ensemble average liquid mole fraction (dark line), x,, vapour mole fraction 

(plain line), yx, and the overall mole fraction (dotted line), z,, of 1-hexene for the 1-butene (1) + n-butane (2) 

mixture at 37.8°C determined using the ^NVT Gibbs Ensemble for z, « 0.22. 
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i 

Table 8-5: Percentage acceptances for the composition-related moves in the /iiN2VT Gibbs Ensemble for the 1-butene (1) +n-butane (2) mixture at 37.8°C. 

Imposed 

M.[K] 

-5610 

-5420 

-5170 

-5000 

-

-

-

-

Imposed 

fc[K] 

-

-

-

-

-5050 

-5250 

-5500 

-5630 

Acceptance [%} 

Molecule Transfers 

1-butene 

-

-

-

-

5.2 

5.2 

5.2 

5.2 

n-butane 

4.2 

4.1 

4.2 

4.2 

-

-

-

-

Creations Liquid 

1-butene 

5.3 

5.2 

5.3 

5.2 

-

-

-

-

n-butane 

-

-

-

-

. 4 - 2 

4.3 

4.2 

4.3 

Destructions Liquid 

1-butene 

5.3 

5.2 

5.3 

5.2 

-

-

-

-

n-butane 

-

-

-

-

4.2 

4.3 

4.2 

4.3 

Creations Vapour 

1-butene 

75.4 

80.0 

84.0 

85.5 

-

-

-

-

n-butane 

-

-

-

-

84.1 

81.6 

76.8 

73.3 

Destructions Vapour 

1 -butene 

75.4 

79.9 

84.0 

85.5 

-

-

-

-

n-butane 

-

-

-

-

84.0 

81.6 

76.8 

73.2 

Conservative 

Identity Swaps 

Eq. (4-18) 

31.5 

32.3 

33.2 

33.3 

33.2 

32.8 

31.7 

31.0 

Table 8-6: Percentage acceptances for the composition-related moves in the ^NVT Gibbs Ensemble for the 1-butene (1) +n-butane (2) mixture at 37.8°C. 

Imposed 

0.072 

0.121 

0.243 

0.440 

Acceptance [%} 

Molecule Transfers 

1 -butene 

5.0 

5.1 

5.1 

5.1 

n-butane 

4.2 

4.2 

4.1 

4.1 

Conservative 

Identity Swaps, 

Eq.(4-18) 

31.6 

32.4 

33.1 

33.3 

Non-Conservative 

Identity Swaps, 

Eq.'s (8-15) & (8-16) 

56.0 

57.9 

59.7 

60.5 

Imposed 

0.655 

0.822 

0.900 

0.940 

Acceptance [%} 

Molecule Transfers 

. 5.2 

5.1 

5.1 

5.2 

4.2 

4.1 

4.1 

4.0 

Conservative 

Identity Swaps, 

Eq. (4-18) 

33.3 

32.8 

32.2 

31.5 

Non-Conservative 

Identity Swaps, 

Eq.'s (8-15) & (8-16) 

60.4 

59.3 

57.8 

56.1 
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Table 8-7: Percentage acceptances for the composition-related moves in the /*iN2VT Gibbs Ensemble for the 1-hexene (1) +«-hexane (2) mixture at 55°C. 

Imposed 

-6750 

-6570 

-6400 

-6120 

-

-

-

-

Imposed 

fc[K] 

-

-

-

-

-6150 

-6350 

-6600 

-6780 

Acceptance [%} 

Molecule Transfers 

1-hexene 

-

-

-

-

2.6 

2.6 

2.5 

2.5 

w-hexane 

2.1 

2.1 

2.1 

2.0 

-

-

-

-

Creations Liquid 

1-hexene 

2.6 

2.6 

2.7 

2.6 

-

-

-

-

M-hexane 

-

-

-

-

2.1 

2.1 

2.0 

2.0 

Destructions Liquid 

1-hexene 

2.6 

2.6 

2.7 

2.6 

-

-

-

-

«-hexane 

-

-

-

-

2.1 

2.0 

2.0 

2.0 

Creations Vapour 

1 -hexene 

74.7 

79.5 

82.8 

86.2 

-

-

-

-

H-hexane 

-

-

-

-

86.3 

83.6 

78.4 

73.1 

Destructions Vapour 

1-hexene 

74.6 

79.4 

82.8 

86.3 

-

-

-

-

n-hexane 

-

-

-

-

86.3 

83.6 

78.4 

73.0 

Conservative 

Identity Swaps 

Equation (4-18) 

41.6 

42.7 

43.6 

44.5 

44.2 

43.7 

42.1 

41.0 

Table 8-8: Percentage acceptances for the composition-related moves in the ^NVT Gibbs Ensemble for the 1-hexene (1) +n-hexane (2) mixture at 55°C. 

Imposed 

El 

0.061 

0.110 

0.200 

0.420 

Acceptance [%} 

Molecule Transfers 

1 -butene 

2.5 

2.5 

2.6 

2.6 

n-butane 

2.1 

2.1 

2.1 

2.0 

Conservative 

Identity Swaps, 

Eq. (4-18) 

41.3 

42.6 

43.7 

44.4 

Non-Conservative 

Identity Swaps, 

Eq.'s (8-15) & (8-16) 

60.4 

62.5 

64.3 

65.5 

Imposed 

0.670 

0.840 

0.910 

0.960 

Acceptance [%} 

Molecule Transfers 

2.5 

2.5 

2.5 

2.5 

2.0 

2.0 

1.9 

1.9 

Conservative 

Identity Swaps, 

Eq. (4-18) 

44.4 

43.5 

42.4 

40.6 

Non-Conservative 

Identity Swaps, 

Eq.'s (8-15) & (8-16) 

65.5 

64.2 

62.5 

59.6 
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8.5.2.3 Equivalence of the jiiN2VT and £iNVT Gibbs Ensembles 

Figure 8-12 and Figure 8-13 demonstrate the statistical and thermodynamic consistency of 

the /iiN2VT and £iNVT Gibbs Ensembles with respect to each other. For a given overall mole 

fraction of 1-butene, z,, the chemical potentials of each species lie on the same curve, irrespective 

of the type of Gibbs Ensemble used. The data points do not lie at precisely the same point along the 

same curve because the different extensive parameter specifications required for the /XiN2VT and 

£iNVT Gibbs Ensembles make it impossible to exactly duplicate the same thermodynamic 

conditions. Figure 8-12 and Figure 8-13 are, nonetheless, important because they confirm the 

equivalence of the two new types of Gibbs Ensembles because they yield the same values for 

intensive properties at chemical equilibrium. The equivalence of the two ensembles may also be 

compared in terms of the simulated numbers of each species in each phase at equilibrium. The total 

number of molecules present in a /XiN2VT Gibbs Ensemble simulation can vary because only N2 is 

constrained to remain constant. From Table 8-1 to Table 8-4 listed previously, it may be seen that 

approximately equivalent chemical equilibrium specifications (simulated using approximately the 

same total volume, V) yield approximately equivalent numbers of each type of molecule in each 

phase at equilibrium. This result is also important because it confirms the extensive property 

equivalence of these two new ensembles. 
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Figure 8-12: Chemical potentials as a function of the overall simulated mole fraction for the 1-butene (1) + n-

butane (2) mixture at 37.8°C simulated using the /*iN2VT (circles) and the £jNVT (triangles) Gibbs 

Ensembles. Closed symbols denote 1-butene and open symbols denote «-butane. 
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Figure 8-13: Chemical potentials as a function of the overall simulated mole fraction for the l-hexene (l) + 

n-hexane (2) mixture at 55°C simulated using the fiiN2VT (circles) and the ^NVT (triangles) Gibbs 

Ensembles. Closed symbols denote 1-hexene and open symbols denote n-hexane. 
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Since both the //.iN2VT and &NVT Gibbs Ensembles rely on composition-based Monte Carlo 

moves to achieve thermodynamic equilibrium, it is important to validate the application of Equation 

(5-37) for simulations in these ensembles. Figure 8-14 to Figure 8-17 in Appendix 8A at the end of 

this Chapter demonstrate the validity of Equation (5-37) and the ability of both the fiiN2VT and 

£iNVT Gibbs Ensembles to converge rapidly to the final equilibrium chemical potentials. Indeed, 

both ensembles satisfy the requirement for the chemical equilibrium of each species of Equation (4-

1) because the chemical potentials of each individual species in different phases closely approach 

similar values at the end of a simulation for both Gibbs Ensembles. Figure 8-14, however, reveals 

that the calculated chemical potential which is imposed for 1-butene for the ju1N2VT Gibbs 

Ensemble has a lower associated uncertainty than the chemical potential for the same species when 

calculated from a simulation in the ijiNVT Gibbs Ensemble as shown in Figure 8-15. This 

behaviour is to be expected though because the chemical potential is not strictly imposed for the 

£iNVT Gibbs Ensemble. This is confirmed by the observation that the chemical potentials of n-

butane calculated from both the /iiN2VT and i^NVT Gibbs Ensembles in Figure 8-16 and Figure 

8-17 have similar uncertainties. 
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8.6 Appendix 8A: P-x-y, x-y and chemical potential data from ^iN2VT and the &NVT Gibbs Ensemble 

Simulations 

Table 8-9: Simulated composition and pressure data for the 1-butene (1) + n-butane (2) mixture at 37.8°C simulated using the /j,N2VT and the £1NVT Gibbs 

Ensembles and the corresponding experimental data of Laurance and Swift (1974). Subscripted values denote the calculated statistical uncertainty. 

Experimental 

P [kPa] 

355.1 

364.7 

373.9 

382.8 

391.3 

399.3 

406.7 

413.6 

420.0 

425.6 

430.6 

*> 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

* 

0 

0.1206 

0.2345 

0.3425 

0.4452 

0.5426 

0.6383 

0.7302 

0.8204 

0.9099 

1 

/t,N2VT Gibbs Ensemble 

Imposed 

-

-5610 

-5420 

-5170 

-5000 

-

Imposed 

-

-5050 

-5250 

-5500 

-5630 

-

P [kPa] 

470.627 

480.9,7 

492.3 „ 

498.3„ 

519.4,5 

545.35.6 

559.529 

574.4,7 

576.7,7 

588.48.7 

*i 

0 

0.0530.ooi 

0.0950.oo3 

0.216o.oo4 

0.3690.oo7 

0.6020.oo4 

0.7890.oio 

0.906o.oo2 

0.9380.oo2 

1 

yt 

0 

0.0620.oo2 

0-1 12o.O02 

0.2470.oo4 

0.4100.oo9 

O.6430.oo4 

O.8I60.008 

0.9200.oo3 

0.9470.ooi 

1 

£,NVT Gibbs Ensemble 

Imposed 

0 

0.072 

0.121 

0.243 

0.440 

0.655 

0.822 

0.900 

0.940 

1 

P [kPa] 

470.627 

485.720 

485.122 

501.0,5 

530.718 

538.220 

571.623 

574.538 

585.62S 

588.48.7 

*i 

0 

0.0610.0002 

0.103o.ooo2 

0.21 10.0009 

0.395o.ooo9 

0.612o.oo2o 

0.793o.ooo8 

0.882o.ooo4 

0.9280.ooo5 

1 

^1 

0 

0.0710.0003 

0.120o.ooo4 

0.2410.0006 

0.437o.ooo4 

0.652o.ooo8 

0.820o.ooo3 

0.8990.ooo3 

0.9390.ooo3 

1 
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Table 8-10: Simulated composition and pressure data for the 1-hexene (1) + M-hexane (2) mixture at 55°C simulated using the ^tN2VT and the £1NVT Gibbs 

Ensembles and the corresponding experimental data of the Dortmund Data Bank. Subscripted values denote the calculated statistical uncertainty. 

Experimental 

P [kPa] 

64.4 

66.0 

67.4 

68.7 

70.1 

71.3 

72.4 

73.6 

74.7 

75.8 

76.8 

*, 

0 

0.102 

0.200 

0.300 

0.400 

0.500 

0.600 

0.700 

0.799 

0.900 

1 

y^ 

0 

0.122 

0.233 

0.341 

0.445 

0.543 

0.639 

0.732 

0.823 

0.912 

1 

/*iN2VT Gibbs Ensemble 

Imposed 

/UK] 

-

-6750 

-6570 

-6400 

-6120 

-

Imposed 

-

-6150 

-6350 

-6600 

-6780 

-

P [kPa] 

94.36., 

92.24.8 

93.64.4 

9 3 . 2 M 

99.27.0 

104.59.2 

104.82.3 

109.27.8 

110.9s., 

H2.77.0 

X, 

0 

0.055o.oo3 

0.0940.oo4 

O.I6O0.012 

0.3650.o23 

O.5880.032 

0.7710.004 

0.8950.oo7 

0.9400.oo3 

1 

y\ 

0 

0.0630.oo3 

O.IO80.005 

0.182o.on 

0.4010.o25 

0.622o.o30 

0.7970.oo4 

0.9080.oo5 

0.9480.oo2 

1 

liNVT Gibbs Ensemble 

Imposed 

0 

0.061 

0.110 

0.200 

0.420 

0.670 

0.840 

0.910 

0.960 

1 

P [kPa] 

94.3s.! 

92.52.8 

94.U.8 

9 7 . 1 M 

99.939 

105.97.8 

107.2U 

IO9.I3.0 

107.06.7 

H2.77.o 

*i 

0 

0.0510.0003 

0.0930.ooo4 

0.171o.ooo9 

0.375o.ooi6 

0.627o.ooo6 

0.813o.ooi3 

0.893o.ooo3 

0.952o.ooo3 

1 

) \ 

0 

0.0590.ooo6 

0.1060.0006 

0.1940.ooo7 

0.410o.ooo8 

0.6610.0006 

0.8340.ooo8 

0.9070.ooo5 

0.958o.ooo2 

1 
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Figure 8-14: Evolution of the ensemble average liquid (dark line) and vapour (plain line) chemical potentials 

of 1-butene in the 1-butene (1) + «-butane (2) mixture at 37.8°C with z, « 0.22 using the jtiN2VT Gibbs 

Ensemble. 
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Figure 8-15: Evolution of the ensemble average liquid (dark line) and vapour (plain line) chemical potentials 

of 1-butene in the 1-butene (1) + n-butane (2) mixture at 37.8°C with z, «0.22 using the I J N V T Gibbs 

Ensemble. 

163 



ALTERNATIVE GIBBS ENSEMBLES FOR SIMULATING MULTICOMPONENT VLE 

-4800 

\ -4820 

-4840 -

| -4860 

U 

3 
-4880 

-4900 
40000 80000 120000 160000 

Number of Cycles 

200000 

/t{L,2} ,L{V,2} 

Figure 8-16: Evolution of the ensemble average liquid (dark line) and vapour (plain line) chemical potentials 

of n-butane in the 1-butene (1) + n-butane (2) mixture at 37.8°C with z, a 0.22 using the /x^VT Gibbs 

Ensemble. 
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Figure 8-17: Evolution of the ensemble average liquid (dark line) and vapour (plain line) chemical potentials 

of n-butane in the 1-butene (1) + n-butane (2) mixture at 37.8°C with z, «0.22 using the ^NVT Gibbs 

Ensemble. 
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CHAPTER 9: 

TRANSFERABILITY BASED ON RELAXING GEOMETRIES 

"If you look for the good in something, you will surely find it" - Abraham Lincoln 

A number of issues concerning the parameterization of intermolecular force fields and how 

the parameterization affects the simulated pure component properties and the simulated binary VLE 

have been alluded to in Chapter Six and Chapter Seven including: 

1) If the saturated vapour pressure is to be reproduced accurately, more consideration needs to 

be given towards including this property in the fitting process for the intermolecular 

parameters. This view has been supported by Errington and Panagiotopoulos (1999a) and 

by Li et ah (2003). It was also seen in Chapter Seven that an improvement in the vapour 

phase densities for conjugated alkenes accompanied the improvement in the saturated 

vapour pressure. This was also observed by Errington and Panagiotopoulos (1999a) who 

produced what is arguably the most accurate united-atom force field for ra-alkanes to date. 

2) The complete transferability of intramolecular geometries should be reviewed. The work in 

Chapter Seven indicated that an improvement in the pure component properties can result 

if the equilibrium intramolecular geometries are selected to closely approximate their 

experimentally observed values. It may also be necessary to incorporate a wider range of 

equilibrium molecular geometries as part of the force field to achieve a good prediction of 

all pure component properties. 

3) A wide range of molecules and homologous series should be included in the parameterization 

of intermolecular force field parameters to ensure the maximum transferability of the 

parameters fitted. This idea has been explored by Ungerer et ah (2000) and by 

Bourasseau et ah (2003). 

4) Force fields should be tested to examine their prediction of binary VLE. Subtle inaccuracies 

in the regressed non-bonded interaction parameters can result in significant errors in the 

simulated P-x-y and x-y data when binary or multi-component VLE is simulated. 

To examine these ideas, the following Chapter attempts to develop an improved force field for n-

alkanes and 1-alkenes. 
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9.1 The Evolution of the Functional Form of Transferable Force Fields 

The evolution of transferable united-atom force fields can be traced to the 1980's with the 

work of Jorgensen et al. (1984) on the OPLS force field. A number of molecular force fields 

already existed by this time. The work of Jorgensen and co-workers, however, was significant 

because: 

• it introduced the basic functional form which has been widely employed by molecular 

simulation ever since, and 

• it was the first study to attempt to simulate the vapour-liquid equilibrium behaviour of a 

range of hydrocarbons using a limited "base" set of intermolecular and intramolecular 

parameters 

The main features of this force field included: 

1) One common constant bond length and one common constant bond angle, but a cosine series 

for the torsional potential. 

2) A Lennard-Jones description for the non-bonded interactions (including interaction sites on 

the same molecule separated by more than 3 bonds), and a Coulombic description for 

charges which were assigned to each of the interaction sites. 

3) Distinct LJ ea parameters for the -CH2- and -CH3 functional groups. Unlike in previous 

polymer simulation studies (where differences in the interactions of terminal carbon 

groups can be treated as negligible compared to the bulk interactions of a molecular 

chain), the -CH2- and -CH3 groups were now regarded as having interactions which were 

distinctly different in magnitude. 

4) The LJ crH and si{ parameters for the -CH2- group were regressed from simulations of liquid 

cyclopentane and were then regarded as common for all the branched and normal alkanes 

studied. 

5) The LJ cri; and s~ parameters for the -CH3 group had to be made distinct for different 

branched and normal alkanes to get a good fit to the data. 

6) The LJ (Ti; parameters for the -CH2- and -CH3 groups were set to the same value. 

7) The LJ parameters were regressed to predict pure component n-alkane behaviour for a variety 

of physical properties well near 25°C 

Requiring only 5 distinct LJ parameters for the «-alkanes, the OPLS force field was reasonably 

successful. The OPLS force field did not, however, give a good description of the vapour-liquid 

coexistence curve up the critical point. The development of CBMC techniques also revealed that 

166 



TRANSFERABILITY BASED ON RELAXING GEOMETRIES 

the OPLS predictions became progressively worse for longer n-alkanes. In response to this 

observation, Siepmann et al. (1993) derived the SKS force field which provided a considerably 

better description of the critical densities, the critical temperatures and the liquid densities over a 

wider temperature range for molecules from 6 to 48 carbon atoms. The main features of this force 

field included: 

1) One common constant bond length, one common but now flexible bond angle described by a 

harmonic potential, and a cosine series for the torsional potential. 

2) Distinct LJ ad and £•„ parameters for the -CH2- and -CH3 functional groups. Only three LJ 

parameters were, however, required because while the eA parameters for the -CH2- and -

CH3 functional groups were distinct, the ai{ parameters for the -CH2- and -CH3 

functional groups had the same magnitude. 

3) The LJ parameters were regressed to reproduce the pure component liquid densities and the 

pure component critical temperature and critical densities. 

The SKS force field provided a very good description for medium to long n-alkanes but gave no 

explicit attention to short n-alkanes with less than 6 carbons. The SKS force field did, however, 

demonstrate that a small group of transferable LJ parameters could provide a very good description 

of the pure component vapour-liquid coexistence curve over a wide range of temperatures for a 

range of carbon chain lengths. 

The TraPPE force field improved upon the LJ parameters of the SKS force field and, importantly, 

was also applicable to short n-alkanes. The main features of this widely used force field include: 

1) As for the SKS force field, one common constant bond length, one common flexible bond 

angle described by a harmonic potential, and a cosine series for the torsional potential. 

2) Distinct cr(i and sA LJ parameters for the -CH2- and -CH3 groups (a total of four non-

bonded LJ parameters) which are fully transferable to all n-alkanes. The LJ parameters 

were parameterized sequentially. The a{i and si{ parameters for the -CH3 group were 

regressed first to provide the best possible reproduction of the physical properties of 

ethane. Thereafter the cra and s{i parameters for the -CH2- group were regressed to 

provide the best possible physical property predictions for n-octane. 

3) As for the SKS force field, the LJ parameters were regressed to reproduce the pure 

component liquid densities and the pure component critical temperatures and critical 

densities. 
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Considering the limited intermolecular and intramolecular parameter set used, the TraPPE force 

field was remarkably successful even for «-alkanes longer than w-octane. This success was also 

evidenced in the TraPPE alkene force field of Wick et al. (2000) and served to confirm the 

usefulness of transferable united-atom force fields. It has, however, been found that while the 

critical densities, the critical temperatures and the liquid densities are well predicted, the saturated 

vapour pressures, vapour densities and heats of vaporization are not well reproduced. 

More or less concurrent with the development of the TraPPE n-alkane and alkene force fields was 

the development of the NERD n-alkane (Nath et al. (1998)) and 1-alkene (Nath et al. (2001)) force 

field. The major features of this force field include: 

1) One common, but fully flexible, bond length for rc-alkanes which is described by a harmonic 

potential. As for the TraPPE force field, however, there is one common flexible bond 

angle described by a harmonic potential and a torsional potential described by a cosine 

series. 

2) As for the TraPPE force field, there are distinct LJ crH and si{ parameters for the -CH2- and 

-CH3 functional groups. There is only one set of a- and sn parameters for the -CH2-

group but there are distinct CJH and fia parameters for the -CH3 group for ethane, propane 

and molecules longer than propane to provide a larger set of LJ parameters for the -CH3 

group. 

3) As for the SKS and the TraPPE force fields, the LJ parameters were regressed to predict pure 

component critical densities, critical temperatures and liquid densities. 

It is interesting to note from the original publications that the NERD force field is, in general, able 

to provide a better prediction of the saturated vapour pressures, vapour densities and heats of 

vaporization of short hydrocarbons than the TraPPE force field and this can probably be attributed 

to the larger set of LJ non-bonded parameters. 

Using Hamiltonian scaling grand canonical Monte Carlo and Histogram Reweighting techniques, 

Errington and Panagiotopoulos (1999a) parameterized an n-alkane force field (nAEP force field). 

The model was able to achieve good success in providing an accurate description of the pure 

component vapour pressures, vapour densities, liquid densities, critical temperatures and critical 

densities. The major features of this model include: 

1) A Be6 potential is used to describe the non-bonded interactions. 
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2) Three different bond lengths of 1.839A for the CH3 - CH3 bond length in ethane, 1.687A for 

the CH3 -CH 2 bond length in longer w-alkanes, and 1.536A for the CH2 -CH2 bond 

length in longer «-alkanes. The authors found this increase in the number of bond lengths 

necessary to obtain a good fit to the data. 

3) One constant bond length and one fully flexible bond angle were used for all «-alkanes. A 

cosine series was again used for the torsional potential. 

4) Distinct ai{, e~ and a- Be6 parameters for the -CH2- and -CH3 functional groups are used 

(for a total of six non-bonded Be6 interaction parameters) which are fully transferable to 

all n-alkanes. The Be6 parameters were also parameterized sequentially. The cr-, si{ and 

ai{ parameters for the -CH3 group were regressed to reproduce the physical properties of 

ethane. Thereafter, the o~, e~ and ai{ parameters for the -CH2- group were regressed to 

provide the best possible physical property predictions for propane and n-hexane. 

5) The Be6 parameters were regressed to provide a good fit to the experimental pure component 

liquid and vapour coexistence densities, the critical temperatures, the critical densities, 

and the saturated vapour pressures. 

The force field was able to achieve a superior prediction of the pure component vapour densities 

and saturated vapour pressures when compared to the corresponding TraPPE and NERD 

predictions. The nAEP force field has, however, not been extensively used. This is perhaps 

because of the more complicated from of the non-bonded Be6 potential with the extra ai{ parameter 

as well as the exponential repulsive term which requires more computational overhead. 

Most recently, anisotropic united-atom force fields for M-alkanes and alkenes have received 

renewed attention. The option of using anisotropic intermolecular interactions to improve the 

predictions of united-atom force fields had been alluded to the in first TraPPE publication of Martin 

and Siepmann (1998). The «-alkane force field of Ungerer et al. (2000) which optimized the 

parameter set of Toxvaerd (1997), and the alkene force field of Bourasseau et al. (2003) represent 

the most comprehensive AUA force field available. The main features of this force field include: 

1) One constant bond length and one constant bond angle were used for all K-alkanes. A cosine 

series was used to describe the torsional potential. 

2) Distinct LJ or- and £a parameters for both the -CH2- and -CH3 groups, and two distinct 

anisotropic Ss parameters which describe the displacement of the interaction site from the 
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location of the carbon centre. These six parameters are fully transferable to all -CH3 and 

=£H2- groups. _ _ 

3) The intermolecular parameters were regressed to reproduce the pure component liquid 

densities, the heats of vaporization and the saturated vapour pressures. 

The AUA4 n-alkane potential of Ungerer et al. (2000) was able to achieve good agreement with the 

experimental liquid densities, the heats of vaporization and the saturated vapour pressures for n-

alkanes longer than «-pentane. The agreement with the critical densities and temperatures was, 

however, worse than for the NERD or TraPPE force fields and the AUA4 force field did not 

explicitly consider /z-alkanes with 4 or fewer carbons in detail. 

In light of the above discussion, the general approach to the formulation of the Transferability 

Based On Relaxing Geometries (TBORG) force field described below was as follows: 

1) All bond lengths were taken to be fixed. While the NERD force field did achieve an 

improved description of the pure component VLE compared to the TraPPE force field, it 

is unlikely that this improvement was exclusively due to flexibility in the bond lengths. 

This improvement might have been the result of the larger set of regressed LJ parameters. 

Chapter Seven revealed that the pure component properties are more sensitive to the 

equilibrium geometry than the magnitude of the intramolecular potential. What is clear is 

that the nAEP and AUA4 w-alkane force fields were both able to achieve a good 

description of the pure component VLE while employing fixed bond lengths. 

2) Different bond lengths were employed for bonds connecting distinct pairs of functional 

groups. Two functional groups were regarded as distinct from one another if they had 

different numbers of hydrogen atoms or different hybridizations. This marks a break from 

the NERD and TraPPE approach where different bond lengths were only employed to 

distinguish between single and double bonds. The AUA4 force field effectively amounts 

to a relaxing of the fully transferable bond length constraint because of the use of the 

anisotropic 8% parameter while the nAEP force field used three different bond lengths for 

the three possible connectivities of-CH3 and-CH2- functional groups. 

3) Flexible bond angles were employed. Bond angles were regarded as flexible because the 

alkene force field of Bourasseau et al. (2003) highlighted the lack of flexible bond angles 

as potentially the reason behind their poorer description of trans- and cz's-2-butene. 

4) As for the bond lengths, the constraint of full transferability of bond angles was relaxed. 

Bond angles were allowed to assume different equilibrium values for bond angles 

including three distinct functional groups. Again, this is effectively applied in the AUA4 
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force field because of the displacement of the interaction site from the carbon centre, but 

this approach is different to that in the TraPPE, NERD and nAEP force fields. 

5) The isotropic LJ potential is used with distinct LJ ss and cri; parameters for the required 

functional groups -CH3, -CH2-, -CH=, and =CH2 for a total of 8 LJ parameters. These 

LJ parameters were, however, assumed to be fully transferable regardless of the 

connectivities of the functional groups. The flexibility in the internal equilibrium 

geometries is assumed to more accurately account for the effects of anisotropy introduced 

by the united-atom approximation. 

9.2 Regression Methodology 

The 8 required LJ parameters as well as the equilibrium geometries for the TBORG force 

field were regressed to obtain the closest possible fit to the following properties in the data 

compilations of Smith and Srivastava (1986): 

• The liquid and vapour coexistence densities (p ; and pg), 

• The natural logarithm of the saturated vapour pressures (ln(Psat J), and 

• The critical temperatures and the critical densities (pa and Ta ). 

The following families of n-alkanes and alkenes were used to regress the 8 required LJ parameters 

to provide a good fit to the data listed above: 

Table 9-1: Components used in the regression of the TBORG force field. 

n-alkanes 

ethane 

propane 

n-butane 

n-octane 

alkenes 

ethene 

propene 

1-butene 

czs-2-butene 

trans-2-butene 

1,3-butadiene 

1-octene 

Although several interesting observations were made in Chapter Seven concerning cis-1,3-

pentadiene and czs-l,3,5-hexatriene, these were not included due the lack of measured data. It was 
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suspected that these might then bias the final parameters regressed. This was also the reason for 

truncating the maximum chain length used in the regression to 8 carbons because a complete set of 

the coexistence liquid and vapour densities, the critical temperature, the critical density and the 

saturated vapour pressures are, in general, unavailable for alkenes and n-alkanes with more than 9 

carbons. This limited regression set was also used by the TraPPE and NERD force fields. 

The intended flexibility in the intramolecular geometries necessitated that a more rigorous method 

of parameter optimization be employed than the trial search methods used by the NERD and 

TraPPE force fields. The computationally expensive method of Hamiltonian Scaling Monte Carlo 

employed by the Be6 force field was also not utilized. Consequently, to define an objective 

function, Fobj, required for the regression, the following formulation of Ungerer et al. (2000) was 

used: 

i| a, 

where s{ is the estimated statistical uncertainty in the measured simulated property Jx, J, is the 

associated experimental value of the property under consideration, and n is the total number of 

measured properties (i.e. Ta and pa, and all the discrete values for p,, pg and ln(Psat) selected). 

The estimated statistical uncertainty was used in the denominator of Equation (9-1) in place of 

J- because trial regressions revealed that the higher magnitudes of the liquid densities in the 

lower temperature regions tended to bias the final regressed parameter values. This proved 

unsatisfactory because the low temperature region also has the highest uncertainty in the simulated 

pg and Psat values. This is because the low acceptance rate of swap moves at low temperatures 

(high liquid densities) causes long period fluctuations in averaged values for pg and Psat. 

The regression was performed sequentially in the sense that the intramolecular parameters and the 

LJ parameters for the sp3 hybridized -CH2- and -CH3 groups for the «-alkanes were regressed first. 

Thereafter, the intramolecular parameters and the LJ parameters for the =CH- and =CH2 groups for 

the alkenes were regressed. Bourasseau et al. (2003) conducted an extensive regression in which a 

sequential approach similar to that listed above was compared to the approach of using a single 

global optimization for all required parameters. The single global optimization approach is 

advantageous because it avoids the propagation of subtle errors in the regression of parameters to 

additional homologous series because only a single optimization is performed. The single global 
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optimization method was, unfortunately, found to be intractable due to the much larger set of 

intramolecular equilibrium geometries employed. There were too many parameters that would have 

to have been regressed simultaneously. For the «-alkanes, Fobj in Equation (9-1) was therefore a 

function of the parameters listed in Table 9-2 while for the alkenes, FobJ in Equation (9-1) was 

considered to be a function of the parameters in Table 9-3. 

A total of 14 intra- and intermolecular parameters (X = 14) must be regressed for the TBORG n-

alkane force field while a further 25 intra- and intermolecular parameters (A - 25) are required to 

simulate alkenes for the TBORG force field. If v, denotes parameter " j " to be regressed, then the 

set of all Vj's given by v^ =(v,,v2,...,vA) corresponding to the optimal parameter set will be 

achieved when every partial derivative dFoh-/dvi of Equation (9-1) is set to zero: 

In the above equation, J{ was estimated by using a second order expansion of J{ about a central 

value v° as: 

^ ( v ^ A v ^ ^ ^ v ^ + S - ^ A v ^ i S - ^ A v ? (9-3) 

Substituting Equation (9-3) into Equation (9-2), the condition to be satisfied for the optimal 

parameter set can therefore be expressed as: 

a/, 
dv- J 2tT dv] 

Yir- — —2 ' — = ° CM) 

for each and every Vj. For Equation (9-4) to be useful, ^ ( v " ) , a / j f v " ) / ^ , S V ^ v " ) / ^ , 

Ji (VJ) , and dJx (\\/dvi are required. Consequently, J{ (y\ \ was evaluated by conducting a "base 

simulation" with "central values" for vA = v° . In addition, "central values" for pl (T), pg (T), 

P*" (T) and isH (T) for a range of discrete temperature values were stored as well as the 

estimated values for TCT and pa from Equations (7-2) and (7-3) with p = 0.32. 
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Table 9-2: List of model parameters optimized for the TBORG n-alkane force field. 

Lennard-Jones non-bonded interactions 

" C H , ^ ' ) ' 5CH 3 (sp 3 ) ' ^ C H , ^ ) ' £CU,(spi) 

Bond Lengths 

CH3-CH3 (ethane), 

CH3-CH2 (propane), CH3-CH2 (butane), CH3-CH2 (octane) 

CH2 -CH 2 (butane), CH2 -CH 2 (octane) 

Bond Angles 

CH 3 -CH 2 -CH 3 (propane), 

CH3 -CH2 -CH2 (butane), CH3 -CH 2 -CH2 (octane) 

CH2 -CH 2 -CH 2 (octane) 

Table 9-3: List of model parameters optimized for the TBORG 1 -alkene force field. 

Lennard-Jones non-bonded interactions 

^ C H ^ s p 2 ) ' f C H , ( s p : ) ' ^ ( s p 3 ) ' £CH{ 

Bond Lengths 

CH2=CH2 (ethene), 

CH2=CH (1-propene), CH2=CH (1-butene), CH2=CH (1,3-butadiene), CH2=CH 

(1-octene), 

CH = CH (m-2-butene), CH = CH (frans-2-butene), 

CH-CH3 (1-propene), CH-CH 2 (1-butene), CH-CH (1,3-butadiene), CH-CH2 (1-

octene), 

CH3 - CH (cz's-2-butene), CH3 - CH (fraH^-2-butene) 

13 

Bond Angles 

CH 2 =CH-CH 3 (propene), 

CH 2 =CH-CH 2 (1-butene), CH 2 =CH-CH (1,3-butadiene), CH 2=CH-CH 2 (1-

octene), 

CH 3-CH = CH (cis-2-butene), CH 3-CH = CH (trans-2-butene), 

CH-CH 2 -CH 3 (1-butene), CH-CH 2 -CH 2 (1-octene) 
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To determine Jx {yx), each of the Vj 's were systematically varied to consider values for each of the 

Vj 's above and below the central v- values. Once these simulations were completed, elementary 

second order polynomials of the following form were regressed to the simulated data: 

J i(v°+Av j) = K,(i )r) + K2(i,r)v j+K3(i,r)vJ
2 (9-5) 

where the constants K ^ r ) , K2(i,T) and K2( i , r) were functions of: 

1) the particular property considered, i, and 

2) the temperature at which that property was simulated, T . 

For the saturated vapour pressure, however, ln^P*" (l/r)) was used instead of Psat (T) because this 

resulted in a nearly linear relationship between T and Psat. J. (v°), dJ{ (v° )/dv}, d2 J{ (\\ )/dv°r, 

Jjfvj), and djAv\ dv^ could all be calculated from evaluation of Equation (9-5) or suitable 

differentiation of Equation (9-5). This approach was expensive in terms of the number of 

simulations required but was essential in elucidating the dependence of physical properties on the 

varied parameters and the dependence of this variation with temperature as well. 

Equation (9-4) may now be solved for the set of all Avi 's. The optimized parameters may then 

each be calculated as: 

Vj-vj'+AVj (9-6) 

In contrast, Ungerer et al. (2000) used a first order Taylor series expansion of the force field of 

Toxvaerd (1997) to approximate J;(v° +AvA (i.e. Equation (9-3) without the third term on the 

right hand side of the equation), while Bourasseau et al. (2003) used statistical fluctuations (which 

implicitly only include the first order derivatives in Equation (9-3)) obtained during their regression 

simulations to evaluate the partial derivatives. The approach of Ungerer et al. (2000) could not be 

used because trial regressions employing Equation (9-4) revealed that the optimum geometries 

were very different to the values used in the TraPPE, NERD and Be6 united-atom potentials. In 

addition, trial regressions based on optimizing the properties of ethane with and without the second 

order derivatives in Equation (9-3) revealed that the inclusion of the second order derivatives 

provided regressions that were more accurate and more stable. This was the case because p,, pg, 

Psat and AHvap were all later found to have non-linear dependencies on the bond angles, and pg in 

particular tended to have non-linear dependencies on most of the regressed parameters. 
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It should be noted that Equation (9-3) effectively amounts to a second order Taylor series which 

excludes the second order cross derivatives of the form d2J{ (v°) dvjdv^ . The second order 

cross-derivatives were excluded because the large number of parameters considered would have 

created the requirement for an additional large number of simulations to determine the functional 

forms of these cross derivatives. The exclusion of the second order cross derivatives was, however, 

found to introduce negligible error. This conclusion was based on simulations conducted once the 

TBORG model parameters were optimized. It was found that the properties predicted from these 

"test" simulations matched the corresponding values derived from the regression simulations within 

the statistical uncertainty of the results. This, therefore, confirmed the validity of Equation (9-3). 

9.3 Simulation Methodology 

All of the regression simulations were conducted using the CBMC method in conjunction 

with the NVT version of the Gibbs Ensemble. The total numbers of molecules, the absolute 

temperature and reduced temperature (TT = T/Ta ) ranges for each type of molecule as well as the 

number of CBMC trial directions when "growing" molecules used for the /z-alkane and alkene 

parameter regressions are listed in Table 9-4. 

Each molecule was simulated at six different temperatures spanning the range of temperatures listed 

in Table 9-4. Only for cfs-2-butene was the selection of the temperature range severely constrained 

by the limited available data (Smith and Srivastava (1986), Vargaftik (1975)). For the rest of the 

molecules, the temperature range was selected to allow as wide a temperature range as possible to 

ensure maximum applicability of the final regressed set of parameters. The lower reduced 

temperature limit imposed on the temperature range of around 0.5 was chosen because it was found 

that below this reduced temperature, the number of accepted swap moves was so prohibitively low 

as to make equilibrium virtually impossible to achieve within a reasonable number of CBMC trial 

directions or within a reasonable number of cycles. The low temperature number of CBMC trial 

directions listed in Table 9-4 reflects the number of CBMC trial directions required to achieve a 

minimum acceptance rate of 0.1% for swap moves. It was found that 0.1% was the lowest 

allowable acceptance for swap moves which could be tolerated without significantly increasing the 

required number of equilibration cycles. The reason for the higher minimum reduced temperature 

for longer molecules was to compensate for the greater difficulty experienced in inserting these 

molecules, particularly in dense phases. 
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Table 9-4: Simulation details for each of the molecules considered in the TBORG parameter regressions. 

Molecule 

Species 

ethane 

propane 

n-butane 

n-octane 

efhene 

1-propene 

1-butene 

cz's-2-butene 

trans-2-bu.tme 

1,3-butadiene 

1-octene 

Number 

500 

400 

350 

200 

500 

400 

350 

350 

350 

350 

200 

Temperature Range 

Absolute [K] 

125-275 

173-331 

210-386 

320 - 520 

136-253 

176-327 

220-383 

225 - 302 

226-377 

216-383 

311-518 

Reduced 

0.41 - 0.90 

0.47-0.90 

0.49-0.91 

0.56-0.91 

0.48-0.90 

0.48-0.89 

0.52-0.91 

0.51-0.69 

0.53-0.88 

0.51-0.90 

0.55-0.91 

CBMC trial 

directions 

Low Temp 

100 

50 

50 

50 

50 

50 

50 

50 

50 

50 

50 

High Temp 

10 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

Only for ethane was a reduced temperature as low as 0.41 explored which required 100 CBMC trial 

directions to achieve a 0.1% swap move acceptance. The reason for this was to ensure that the LJ 

parameters for the -CH3 functional group included data from high density regions because the 

effect of the -CH3 group constitutes a smaller and smaller fraction of the intermolecular potential as 

chain length increases. The high density data for ethane would, therefore, serve to better guarantee 

the correctness of the -CH3 LJ parameters by forcing them to better fit the ethane properties over a 

wide temperature range. The higher reduced temperature of about 0.9 was imposed to prevent the 

simulations from becoming unstable. If the simulations were conducted at a temperature much 

above this reduced temperature, the well-known instability of the Gibbs Ensemble near the critical 

point (Panagiotopoulos (2000)) caused the simulation box volumes to change phase identity during 

a simulation run thereby compromising the collection of ensemble averages for distinct phases. 

As in the previous Chapters, the box volumes were adjusted so that the liquid and vapour box 

volumes were approximately equal in size at the end of a simulation. The same five distinct types 

of NVT moves listed previously were performed, namely (1) volume changes, (2) transfers of 

molecules between simulation boxes, (3) full regrowing of chains and partial regrowing of chains 

using CBMC, (4) translation of the COM, and (5) rotation around the COM. The maximum 

volume, translation and rotational displacements were chosen in such a way that roughly 50% of 
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each of these moves were accepted. For the four highest temperatures for each type of molecule, 

the moves were performed with the fixed probabilities: pi: p2: p3: p4: p5,= 0,006: 0.328: 0.222: 

0.222: 0.222. For the two lowest temperatures considered for each molecule, the fixed probabilities 

for each of the moves were adjusted to favour an increased number of molecule insertion attempts 

per cycle (because of higher liquid densities) as pi : p2: p3: p4: p5 = 0.006: 0.500: 0.165: 0.165: 

0.164. Trial simulations consisting of no more than 10,000 equilibration and 20,000 production 

cycles were used initially to identify approximate values for the model parameters around which to 

conduct further regressions. During the final regression simulations, the equilibration cycles lasted 

for at least 80,000 cycles while production runs included at least 100,000 cycles for averaging. The 

standard deviations of ensemble averages were computed by dividing the production cycles of each 

run into five blocks and calculating the standard deviation from the averages of these five blocks. 

For each of the molecules, six base simulations corresponding to six different temperatures within 

the ranges listed in Table 9-4 were conducted using "base" parameter values. Thereafter, the phase 

envelope of each molecule was resimulated at all 6 temperatures while systematically varying each 

of the parameters which could affect the properties of a species under consideration. For each 

parameter considered, revised phase envelopes were simulated for three values below and for three 

values above the base value of each parameter while keeping the other relevant parameters at then-

base values. Table 9-5 lists the number of simulations conducted for each species considered: 

Table 9-5: Details of the parameters varied for each component. In general, the number of simulations 

required for each molecule is (6x vj j +1. 

Species 

ethane 

propane 

n-butane 

n-octane 

ethene 

1 -propene 

1-butene 

cw-2-butene 

/rawj-2-butene 

1,3-butadiene 

1-octene 

No. Distinct 

Bond Lengths 

1 

1 

2 

2 

1 

2 

2 

2 

2 

2 

2 

No. Distinct 

Bond Angles 

0 

1 

1 

2 

0 

1 

2 

2 

2 

1 

2 

No. LJ parameters 

fij, and ov 

2 

4 

4 

4 

2 

4 

4 

4 

4 

4 

4 

Total No. 

Simulations 

19 

37 

43 

49 

19 

43 

49 

49 

49 

43 

49 
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Note that the sp3 hybridized -CH3 and -CH2- groups were not considered as variables for the 

alkenes nor were the CH3 -CH2 bond, the CH, -CH2 bond, the CH3 -CH 2 -CH 2 bend or the 

CH2 - CH2 - CH2 bond angle because these were resolved from the «-alkane regression alone. 

In Chapter Seven it was concluded that the equilibrium geometries played a more significant role in 

the determination of the physical properties than the magnitude of the intramolecular interactions. 

For this reason, a bond-bending constant of k^ = 62500K/deg2 was used for all bond angles in the 

TBORG n-alkane and alkene force fields. This is similar to the values used by the NERD and 

TraPPE force fields (see Table 6-3). The only intramolecular parameters not subject to 

optimization were the torsional potentials and the bond bending constants. The TraPPE torsional 

parameters applicable for the -CH2 - CH2 - and = CH - CH2 - torsions in Table 6-4 were used to 

describe the corresponding torsions for the TBORG force field. The torsional potential of Bock et 

al. (1979) as described in Table 7-2 was used to describe the = C H - C H = torsion for 1,3-

butadiene while the harmonic torsional potential of Wick et al. (2000) for cis and trans torsions was 

used for the torsion in cis- and trans-2-butene. The parameters for the cis torsion -CH = CH - are 

listed in Table 7-2 while the trans harmonic torsional parameters for Equation (7-1) are taken to be 

<j>a =180° and k4 =13400K/deg2. 

For interactions between functional groups of different types, the Lorentz-Berthelot combining rules 

of Equation (6-1) for the TBORG force field to evaluate sg and tr~ were used. As for the TraPPE 

force field, non-bonded interactions were evaluated up to a cut-off radius of 14A. The Lennard-

Jones potential was used to describe intramolecular interactions between functional groups 

separated by more than 3 bonds on the same molecule. 

9.4 Regression of sp3 Hybridized -CH3 and -CH2- Lennard-Jones 

Parameters for n-Alkanes 

Figure 9-1 and Figure 9-2 demonstrate the need to use a second order polynomial and second 

order finite differences to properly describe the effect of varying the model parameters. In Figure 

9-1, the non-linear dependence of the vapour density on the CH3 -CH 2 equilibrium bond length 

for all temperatures considered in the regression may be readily seen. Typically, the vapour density 

exhibited a non-linear dependence on all TBORG model parameters at all temperatures. Figure 9-2 
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shows the non-linear dependence of the liquid density on the equilibrium CH3 - CH2 - CH2 bond 

angle. While the liquid density tended to be an approximately linear function for most other 

TBORG model parameters, changes in the equilibrium bond angle tended to cause the vapour 

density, the latent heat of vaporization and the saturated vapour pressure to vary non-linearly. 

It is important to understand the dependence of the simulated physical properties on the variation of 

the TBORG model parameters. There are four basic groups of model parameters which can be 

optimized for the TBORG force field namely bond lengths, bond angles, LJ a{i parameters and LJ 

sa parameters. The bond lengths and bond angles may be conveniently understood as affecting the 

macroscopic properties through steric or molecular geometry influences on each molecule. 

Alternatively, the LJ ati and gj, parameters will affect the macroscopic properties through 

energetic attractions and repulsions between molecules in the bulk phase. In Figure 9-3 to Figure 

9-18 the dependence of the liquid density, vapour density, saturated vapour pressure and the latent 

heat of vaporization of H-butane have been graphed to illustrate these dependencies. n-Butane was 

selected because it has at least one example of the four basic TBORG parameter groups. 
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Figure 9-1: Variation in the vapour density of w-butane when varying the CH, -CH2 equilibrium bond length. 

Each parametric line represents the liquid density at a different temperature. 
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Figure 9-5: Effect of varying the CH3 -CH2 bond length on the saturated vapour pressure of n-butane. 

1 2 6 -
I 
1 22~ 
§ 
•c 

1 18-
> 
"S 
1 14-
93 

10-

1-

200 

Experiment 

o 2.03A 

A 
D 

A ~ \ o 

• 

i i 

250 300 

Temperature \K\ 

A 1.85A • 1.91A 

A 2.09A • 2.15A 

A 

a 
0 

9 

350 

o 

• 

A 
D 
O 

m 
• 

400 

1.97 A 

2.21A 
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Figure 9-9: Effect of varying the CH3 -CH1-CHl bond angle on the saturated vapour pressure of n-butane. 
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9.4.1 Effect of the Equilibrium Bond Length, 10 

The graphs in Figure 9-3 to Figure 9-6 show the effect of varying the CH3 - CH2 

equilibrium bond length on the physical properties of n-butane. Figure 9-3 and Figure 9-4 reveal 

that an increase in the bond length leads to a decrease in the liquid densities and to an increase in 

the vapour densities. The decrease in the liquid densities can be explained in terms of the larger 

molecular volume that each molecule will occupy with a larger bond length. In the vapour phase, 

however, the effect of increasing the bond length is considerably smaller because of the larger 

distances between the molecules in the lower density phase. The increase in the density of the 

vapour phase with increasing the bond length is therefore a function of a larger molecular volume 

being more easily accommodated in a low density vapour phase than in the liquid phase. From 

Figure 9-4 it is also apparent that the while the bond length has a more or less constant relative 

shifting effect over the entire liquid density range, the effect on the vapour density is most 

pronounced in the near-critical region when the molecules in the vapour phase begin to approach 

higher densities. This combination implies that an increase in the bond length will also decrease the 

critical temperature. The logarithm of the saturated vapour pressure in Figure 9-5 increases with 

increasing bond length and the relative increase appears to be slightly larger at the lower 

temperatures. This effect can be explained in terms of the higher average repulsions between 

molecules with larger bond lengths. The saturated vapour pressure will, in general, increase with 

increasing intermolecular repulsions. These increased repulsive interactions will be most 

significantly felt in the low temperature region with the higher liquid densities. From Figure 9-6, it 

may be seen that the latent heat of vaporization increases with decreasing bond length. Recalling 

Equation (5-21), the latent heat of vaporization is a function of the difference between (U + PV) 

for the vapour phase and (U + PV)! for the liquid phase and describes the enthalpy required to 

evaporate molecules from the liquid phase. The higher density of the liquid phase (due to lower 

molar volumes) combined with the lower vapour pressure for short bond lengths will in general 

require more energy to evaporate molecules in the liquid phase thus leading to the observed trend of 

an increasing latent heat of vaporization with a decreasing bond length. 

9.4.2 Effect of the Equilibrium Bond Angle, <90 

The graphs in Figure 9-7 to Figure 9-10 show the effect of varying the CH3 -CH2 -CH 2 

equilibrium bond angle on the physical properties of w-butane. A decrease in the 
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Figure 9-19: Graph showing the effect of the LJ or and ea parameters on the shape of the intermolecular 

potential energy curve. The base curve (<r = 3.383) has aA = 3.383A and e& =127.1K. Parametric curves 

with ov = 4.883A and £ = 250K are also plotted. The Shifted parametric curve is the <T„=3.383A 

parametric curve but shifted horizontally to the left by an amount of 1.5A. 

From Figure 9-13 it may be seen that the saturated vapour pressure decreases with increasing a-, 

In Figure 9-19, two LJ potential curves are plotted with <7{i =3.383A and cra =4.883A. A third 

curve with al{ =4.883A but shifted to the left by an amount of 1.5A is also drawn. The force 

between two molecules is given by -dUujdr~ and is positive for repulsive forces and negative for 

attractive forces. For the attractive region both the cr;i =3.383A and a~ =4.883A curves have 

similar slopes. For the attractive region, however, it may be seen that with the exception of the 

region immediately to the right of the potential minimum, the slope and hence the attraction 

between the molecules for the curve with a{i = 4.883A is greater in magnitude than slope for the 

ai{= 3.3 83A curve. This result can also be understood by considering the molecular virial 

contribution to the pressure of Equation (5-14). For the excess contribution to the pressure, it can 
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be seen that while w(ra j oc r§ in Equation (5-16), one also has P x l/V = \Jr? in Equation (5-14). 

It has already been seen that the phase density decreases with increasing o^ and hence since P is 

then proportional to \Jr^ overall, the saturated vapour pressure decreases with increasing aa. 

It is also found in Figure 9-14 that the latent heat of vaporization increases with increasing a~. 

This is consistent with the increasing attractive forces between the molecules as crA increases which 

requires more energy to cause a molecule in the liquid phase to be vaporized. 

9.4.4 Effect of the Lennard-Jones sn Parameter 

The graphs in Figure 9-15 to Figure 9-18 demonstrate the effect of varying the LJ eXl 

parameter. In terms of Figure 9-19, the effect of increasing the value of su may be understood as 

increasing the well depth. This can be seen by comparing the base graph with s{i -127. IK and the 

parametric curve with en = 250K. The slope of the repulsive section of the LJ potential remains 

effectively unchanged but the slope of the attractive section of the potential curve now has a larger 

magnitude. For this reason, an increase in the LJ s{i parameter leads to an increase in the liquid 

density and a corresponding decrease in the vapour density. This implies that the critical 

temperature will also increase with increasing values of es . An increase in sa with its associated 

increase in attractive forces between molecules in the liquid phase thus also results in a decrease in 

saturated vapour pressure as seen in Figure 9-17 and an increase in the latent heat of vaporization as 

seen in Figure 9-18. 

Although the above discussion was limited to w-butane, the same general trends were observed for 

all other molecules used in both the n-alkane and the alkene parameter regressions. The magnitude 

of these trends, however, varied from molecule to molecule as the number of instances of a given 

parameter increased or decreased. In this way, the effect of the LJ cri{ parameter for the -CH3 

group and the CH 3 -CH 2 -CH 2 bond angle on the simulated physical properties were more 

pronounced for n-butane than for «-octane because of the higher "per molecule concentration" of 

these parameters for the case of n-butane. 
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9.4.5 Selection of the Final n-Alkane Parameter Set 

To determine an optimal set of n-alkane parameters for the TBORG force field, four sets of 

optimization constraints were considered in addition to the Final constraint set which was used to 

optimize the Final set of parameters. Each of these different regression constraint sets resulted in 

different parameter sets. The TBORG model parameters which resulted from the different sets of 

constraints are listed in Table 9-6 and their effect on the simulated physical properties are listed in 

Table 9-7. 

Table 9-6: Table of the regressed rc-alkane TBORG model parameters for the different regression constraints. 

CHa - CH3 (ethane) [A] 

CH3 - CH, (propane) [A] 

CH3-CH2 (>C4)[A] 

CH2 - CH, (n-butane) [A] 

CH 2 -CH 2 (aC5)[A] 

CH3 - CH2 - CH3 (propane) [deg] 

CH3 - CH, - CH, (n-butane) [deg] 

CH3 - CH, - CH2 (>C5) [deg] 

CH, -CH, -CH, (>C5) [deg] 

<rH(-CH,-)[A] 

* i A ( - C H 2 - ) [ K ] 

«rB(-CHs) [A] 

eJka(-CE2) [K] 

Final 

2.207 

2.045 

2.045 

1.688 

1.688 

84.1 

105.2 

105.2 

115.4 

3.698 

66.54 

3.546 

130.35 

Case I 

2.145 

2.023 

2.062 

1.677 

1.693 

84.6 

98.7 

103.3 

113.7 

3.690 

67.67 

3.562 

127.36 

CaseH 

2.089 

1.952 

1.952 

1.683 

1.683 

88.0 

106.9 

106.9 

108.1 

3.753 

62.38 

3.580 

125.18 

Case III 

2.206 

2.045 

2.045 

1.688 

1.688 

84.1 

105.2 

105.2 

115.4 

3.698 

66.52 

3.546 

130.30 

Case IV 

2.281 

2.066 

2.066 

1.655 

1.655 

84.4 

110.1 

110.1 

119.3 

3.707 

65.14 

3.525 

133.62 
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Table 9-7: Deviation between the simulated and experimental physical properties for the Final parameter set of the TBORG /z-alkane force field and for each of 

the variations of the Final set considered. Data in brackets correspond to the bracketed and more limited temperature range listed for each molecule. 

Ethane: 125-275K 

(149-275K) 

% Avg. Error p, 

% Avg. Error p 

% Avg. Error />*" 

% Avg. Error A//Vllp 

k~P„.J [g/cm3] 

|r - r 1 [K] 

Propane: 173-331K 

(205-33 IK) 

% Avg. Error pl 

% Avg. Error p 

% Avg. Error P5" 

% Avg. Error A//vap 

k - * J tg701"3] 

k-r, |[K] 

Final 

0.30 

8.54 (4.49) 

3.46 (o.74) 

1.44 

0.0011 

0.61 

0.28 

ll-84(6.89) 

3-97 (o.79) 

2.37 

0.0020 

0.74 

Case I 

0.33 

6.54 

5.51 

1.80 

0.0010 

0.61 

0.34 

10.95 

4.36 

2.46 

0.0018 

0.74 

Case II 

0.44 

5.14 

3.58 

2.09 

0.0015 

0.61 

0.23 

19.93 

5.33 

2.66 

0.0020 

0.74 

Case III 

0.30 

8.48 

3.49 

1.44 

0.0002 

2.19 

0.28 

11.84 

3.99 

2.37 

0.0032 

2.98 

Case IV 

0.15 

20.97 

3.63 

1.45 

0.0012 

0.61 

0.10 

18.78 

4.01 

2.03 

0.0026 

0.74 

«-Butane:210-386K 

(249-3 86K) 

% Avg. Error p, 

% Avg. Error pg 

% Avg. Error P** 

% Avg. Error AHmp 

k-P„.J [g-'cm3] 

\T -T I [K] 

«-Octane: 320-520K 

(368-520K) 

% Avg. Error pt 

% Avg. Error pg 

% Avg. Error Psal 

% Avg. Error ArYvap 

k-/»«.! [g^m3] 

| r - r„J [K] 

Final 

0.34 

7.16(3.95) 

0.30 (o,4) 

1.81 

0.0027 

0.85 

0.49 

2.87 (ui) 

4.35 (1.35) 

3.81 

0.0005 

1.14 

Case I 

0.52 

6.91 

1.08 

1.64 

0.0042 

0.85 

0.45 

3.03 

4.18 

3.54 

0.0002 

1.14 

Case II 

0.23 

20.60 

2.37 

1.58 

0.0026 

0.85 

0.86 

17.51 

5.02 

1.90 

0.0035 

2.55 

Case III 

0.34 

7.17 

0.32 

1.81 

0.0006 

5.23 

0.49 

2.88 

4.35 

3.80 

0.0011 

2.61 

Case IV 

0.19 

14.46 

1.09 

1.59 

0.0008 

0.85 

0.41 

3.50 

3.84 

4.34 

0.0004 

1.14 
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The Final set of TBORG «-alkane model parameters had the following characteristics: 

• A unique CH3 - CH3 bond length for ethane. 

• A transferable CH3 - CH2 bond length valid for propane and longer molecules. 

• A transferable CH2 - CH, bond length valid for n-butane and longer molecules. 

• A unique CH3 -CH 2 -CH 3 bond angle for propane. 

• A transferable CH3 -CH 2 - CH2 bond angle valid for n-butane and longer molecules. 

• A transferable CH, - CH2 - CH2 bond angle valid for n-pentane and longer molecules. 

• Transferable sA and ai{ LJ parameters for the -CH3 group valid for all molecules. 

• Transferable e~ and oA LJ parameters for the -CH2- group valid for all molecules. 

• Vapour density, saturated vapour pressure, liquid density, critical temperature and critical 

density data were used to regress the intermolecular and intramolecular parameters. Latent 

heat of vaporization data was excluded. 

The four other constraint variations considered had the following characteristics: 

• Case I: The same as for the TBORG Final set of parameters except that there were 

o distinct CH3 - CH2 bond lengths for propane, ra-butane and molecules with at least 

than 5 carbons 

o distinct CH2 - CH2 bond lengths for H-butane and molecules with at least 5 carbons 

o distinct CH3 - CH2 - CH2 bond angles for n-butane and molecules with at least 5 

carbons 

• Case U: The same as for the TBORG Final set of parameters except that 

o Latent heat of vaporization data was also used in the definition of the objective 

function 

• Case III: The same as for the TBORG Final set of parameters except that 

o A good fit to estimated critical densities and critical temperatures was not enforced 

• Case IV: The same as for the TBORG Final set of parameters except that 

o The vapour density data was excluded from the regression and not used in the 

definition of the objective function. 

Comparing the accuracy of the simulated physical properties obtained from the Final set of 

parameters with the accuracy of the simulated physical properties resulting from the more expanded 

parameter set of Case I in Table 9-7, it may be seen that there is little difference for all molecules 
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studied. In addition, from Table 9-6 it can be seen that the optimal sizes regressed for the two 

CH3-CH2 bond lengths allowed differ by only 0.04A while the optimal values for the two 

CH2 - CH2 bond lengths allowed differ only by 0.02A. The two optimal values considered for the 

CH3 -CH 2 -CH 2 bond angle also differ by only 5°. Since there was no substantial benefit in 

using the more expanded intramolecular parameter set, the Final parameter set listed in Table 9-6 

was preferred. 

The regression for Case II which included data for the latent heat of vaporization in Equation ((9-4) 

was unsatisfactory because of the considerable deterioration in the agreement between the simulated 

and experimental vapour pressures particularly for propane, n-butane and n-octane. This can be 

traced back to the definition of the latent heat of vaporization in Equation (5-21) where the 

influence of the liquid molar volume will tend to dominate over the influence of the vapour molar 

volume in the regression because of the lower statistical uncertainty which tends to be found in the 

liquid densities. This is the case for propane and n-butane where an improvement in the liquid 

densities accompanied less accurate simulated vapour densities. The largest improvement in the 

latent heat of vaporization occurred for n-octane where the average discrepancy between the 

experimental and the simulated data was halved. It therefore appears that the effect of including the 

latent heat of vaporization data in the regression is most significantly felt for the larger molecules. 

This may also be seen for ethane where the agreement between the simulated and the experimental 

latent heat of vaporization data in fact deteriorated. In Table 9-12 in Appendix 9A it may be seen 

that the relative statistical uncertainty in the latent heat of vaporization is always lower than that of 

the corresponding vapour density. For this reason, the inclusion of latent heat of vaporization data 

in the objective function will in general lead to a lower accuracy in the simulated vapour density 

results. 

For all regression cases except Case III, the model parameters regressed had to achieve values such 

that critical temperatures estimated through Equations (6-2) and (6-3) from the simulated data were 

constrained to be within 0.2% of the corresponding experimental critical temperature. This is why 

the predicted critical temperatures are the same for regressions cases other than Case HI. For Case 

III, the constraint of accurately reproducing the critical data was relaxed. This was also the 

approach followed by Ungerer et al. (2000) and by Bourasseau et al. (2003). From Table 9-7 the 

error in the estimated critical temperature for all four molecules for Case III ranges from 2.2K to 

5.2K. This was also the typical magnitude of the error experienced for the AUA4 n-alkane and 

alkene force fields of Ungerer et al. (2000) and Bourasseau et al. (2003) respectively. To a limited 
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extent, good estimations of the critical density and the critical temperature both require good 

predictions of the liquid and vapour densities. This result therefore argues in favour of producing a 

force field which provides good estimates of the vapour densities and which explicitly accounts for 

the critical properties in the regression objective function. 

For Case IV, the experimental data for the vapour densities were excluded from the objective 

function. As a result, this mainly led to an improvement in the liquid densities and the saturated 

vapour pressures. For propane, ethane and n-butane the improvement in the latent heats of 

vaporization was marginal while for «-octane the simulated AHnp data got slightly worse. This 

may be due to the slight deterioration in the accuracy of the simulated vapour densities for n-octane. 

It was seen previously for Case II that the relationship between AHvap and pg was most significant 

for n-octane. 

The equilibrium bond lengths show the following trend: 

CH3~CH3 > CH3-CH2 > CH2-CH2 

This trend is qualitatively similar to the larger equilibrium bond lengths required by the nAEP force 

field to accurately reproduce the pure component VLE for n-alkanes. This observation would, 

therefore, seem to confirm the importance of allowing longer bond lengths to accurately reproduce 

pure component VLE. The relative sizes of the bond lengths above are also consistent with the 

effects of anisotropy. A larger off-centre intermolecular interaction for the -CH3 groups is to be 

expected because of the terminal position of the -CH3 group and the attachment of three hydrogen 

atoms. For the -CH2- group, however, there are an even number of hydrogen atoms attached 

(namely two) and the location of the -CH2- groups within the carbon backbone implies that the 

influence of anisotropic interactions are less pronounced. This is because the -CH2- group is 

somewhat symmetrical about the carbon centre. For this reason the CH2 -CH2 equilibrium bond 

length should be the shortest and the optimized bond length parameters correctly reproduce the 

expected trend. The CH2 -CH2 equilibrium bond length of 1.688A is also reasonably close to the 

length used by the NERD and TraPPE force field for this bond of 1.54A. 

The three equilibrium bond angles are also consistent with the molecular geometry that is to be 

expected. For the NERD, TraPPE, nAEP and AUA4 force fields, an equilibrium bond angle of 

114.0° was used for all of the bond angles as listed in Table 9-6. The TBORG CH3 -CH 2 -CH 3 

equilibrium bond angle for propane of 84.11° is, however, considerably smaller. This smaller 
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equilibrium bond angle when combined with the longer CH3 - CH2 equilibrium bond length of 

2.045A does, however, provide a molecular volume for propane which is similar to that provided by 

the other force fields. This is also the case for the CH3 -CH 2 -CH2 equilibrium bond angle for n-

butane and w-octane which, although also smaller than the 114.0° angle used by the NERD, 

TraPPE, nAEP and AUA4 force fields for this bond angle, does allow the TBORG force field to 

accommodate the longer bond lengths of 2.045A and 1.688A. The molecules in the TBORG force 

field, therefore, have a more "zig-zag" or "concertina" shape but still have approximately the same 

molecular volume as the volumes for these same molecules modelled by the NERD, TraPPE, nAEP 

and AUA4 force fields. This is encouraging because it implies that the parameters in the TBORG 

force, while empirical, still have a connection to physical reality. The flexible molecular 

geometries therefore serve to place the interaction sites in more favourable locations in an 

anisotropic sense similar to the AUA4 force field. 

This effective intramolecular rearrangement has, however, been crucial in improving the simulated 

physical properties, particularly the saturated vapour pressures and vapour densities. Using the 

Final set of parameters in Table 9-6, the pure component VLE of ethane, propane, «-butane and n-

octane were simulated. The pure component simulations results are shown in Figure 9-20 to Figure 

9-23 and the corresponding data is given in Appendix 9A at the end of the Chapter. The average 

deviations in the predicted physical properties were similar to those obtained from the regression 

estimates of Table 9-7. 

In terms of the liquid densities in Figure 9-20, it can be seen that the TBORG force field is able to 

provide as good a description of the liquid densities as the NERD and TraPPE force fields which 

are known to reproduce the liquid densities well. The TBORG force field is also able to provide 

good predictions of the critical temperature and the critical density because these properties are 

required in the regression. The NERD and TraPPE force fields are known to provide good 

estimations of the critical densities and these are, therefore, not shown for clarity. Critical 

temperatures and critical densities for ethane, propane, «-butane and «-octane were not quoted in 

the original AUA4 publication (Ungerer et al. (2000)) and are, therefore, not shown. 
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Figure 9-20: Liquid and vapour coexistence densities for ethane, propane, n-butane and n-octane. Simulated 

results from the TBORG, NERD, TraPPE and AUA4 force fields are shown with the experimental data of 

Smith and Srivastava (1986). Experimental critical points are shown as plus symbols. 

600 

100 
0.00 0.02 0.04 

Density [g/cm3 

0.06 0.08 

Experimental o TBORG * TraPPE NERD 

Figure 9-21: Vapour coexistence densities for ethane, propane, n-butane and n-octane. Simulated results 

from the TBORG, NERD and TraPPE force fields are shown with the experimental data of Smith and 

Srivastava (1986). 
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Figure 9-22: Saturated vapour pressures for ethane, propane, n-butane and n-octane. Simulated results from 

the TBORG, TraPPE and AUA4 force fields are shown with the experimental data of Smith and Srivastava 

(1986). 
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Figure 9-23: Latent heats of vaporization for ethane, propane, n-butane and n-octane. Simulated results from 

the TBORG and AUA4 force fields are shown with the experimental data of Smith and Srivastava (1986). 
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Figure 9-21 reveals the superior vapour densities predicted by the TBORG force field. The NERD 

force field tends to overestimate the vapour densities while the TraPPE force field tends to 

underestimate the vapour densities. This is largely a function of the greater emphasis placed on 

correctly reproducing the vapour densities during the parameterization of the TGORG force field. 

The saturated vapour pressures are also better estimated by the TBORG force field over the entire 

temperature range while the NERD and TraPPE force fields tend to overestimate the vapour 

pressure. The good fit to the saturated vapour pressures required by the TBORG parameterization 

has thus ensured superior pure estimates for the vapour pressures as well. Although the latent heats 

of vaporization were not included in the objective function for the regression of the TBORG n-

alkane parameter set, it must be noted that the TBORG force field also provides a good estimate of 

the latent heats of vaporization for ethane, propane and n-butane. For n-octane, however, the 

agreement is less good but remains within an average of 5% of the experimental data. 

Another important feature of the TBORG force is the temperature range over which the force has 

been parameterized and over which the force field gives accurate pure component properties. From 

Figure 9-20 to Figure 9-23 the larger effective range of the TBORG force field indicates its superior 

performance as when compared to the smaller effective temperature ranges of the NERD and 

TraPPE force fields. This is largely due to the deliberate simulation of pure component properties 

at lower reduced temperatures. It should be noted that the AUA4 force used only one coexistence 

point each for ethane, propane and w-octane during the parameterization of this force field. It has 

already been seen from the optimized geometries generated in Table 9-6 that the transferability of 

the intramolecular parameters is least for the shorter chain lengths. The TBORG force field 

explicitly accounted for this by the inclusion of additional intramolecular equilibrium geometries as 

required. This combined with the larger effective temperature range used for the parameterization 

of the TBORG force field would, therefore, suggest that greater confidence be placed in the 

TBORG force field when simulating these short and intermediate length n-alkanes over a wide 

range of temperatures. 

9.5 Regression of sp2 Hybridized =CH2 and =CH- Lennard-Jones 

Parameters for Alkenes 

To maintain consistency with the optimization criteria used for the TBORG n-alkane force 

field, it was decided to enforce the transferability of intramolecular equilibrium geometries as far as 
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possible for the alkene parameters. Consequently, the Final set of TBORG alkene model 

parameters had the following characteristics: 

• A unique bond length for the CH2 = CH2 bond in ethene and a unique CH - CH bond length 

for 1,3-butadiene. 

• A transferable CH3 - CH bond length for propene, cu-2-butene and /ra«s-2-butene. It was 

found that there was only a small impact on the physical properties when this bond length 

was required to be fully transferable. 

• A transferable CH2 =CH bond length valid for propene, 1-butene, 1,3-butadiene, 1-octene 

and longer molecules. It was again found that the values of an optimal independent set of 

CH2 = CH bond lengths were very similar. 

• A transferable CH = CH bond length for cz's-2-butene and /rans-2-butene. 

• A transferable CH - CH2 bond length valid for 1-butene and longer molecules. 

• A unique CH3 -CH = CH2 bond angle valid for propene and a unique CH3 -CH2 -CH 

bond angle valid for 1-butene. 

• A unique CH2 =CH-CH bond angle valid for 1,3-butadiene. 

• A transferable CH3 - CH = CH bond angle valid for cz's-2-butene and trans-2-butene 

• A transferable CH2 -CH = CH bond angle valid for molecules longer than 1-butene. 

• A transferable CH2 = CH - CH2 bond angle valid for 1-butene and longer molecules. 

• Transferable es and a~ LJ parameters for the =CH2 group valid for all molecules. 

• Transferable sa and crs LJ parameters for the =CH- group valid for all molecules. 

• Vapour density, saturated vapour pressure, liquid density, critical temperature and critical 

density data were used to regress the intermolecular and intramolecular parameters. Latent 

heat of vaporization data were again excluded. 

The experimental data for cis- and /raws-2-butene were more limited than the data available for the 

other alkenes studied. This was particularly true for cz's-2-butene. Consequently, the Final TBORG 

model parameters were regressed to directly optimize the simulated physical property predictions 

for all of the alkenes except cz's-2-butene. Bourasseau et al (2003) reported that the optimization of 

the AUA4 parameters for 2-alkenes could not provide the same quality of agreement with the 

experimental data as the TraPPE alkene force field of Wick et al. (2000). This was attributed to a 

deficiency in the AUA4 force field with respect to the 2-alkenes considered. 
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For the regression of the TBORG n-alkane parameters, it was found that it was possible to achieve a 

reasonable agreement between the critical temperatures and the critical densities estimated from 

simulation and the corresponding experimental critical temperatures and critical densities without 

having to strictly impose this requirement on the TBORG parameter optimization. For the alkenes, 

however, the agreement between the estimated critical temperatures and the critical densities was 

significantly worse than when this requirement was not imposed. This is evidenced in Table 9-10. 

Consequently, the following three cases for the regression of the TBORG alkene parameters were 

also considered: 

• Case I: The TBORG alkene regression was divided into two parts. In the primary 

regression, the model parameters necessary for all of the alkenes except cis- and trans-2-

butene were optimized. In the next subsidiary regression, the CH3 - CH obtained for 

propene was imposed on cis- and trans-2-butQne while the CH = CH bond length and the 

CH3 - CH = CH bond angle were regarded as common to both isomers but were optimized 

to achieve the best agreement with the experimental data. 

• Case II: The TBORG alkene regression was again divided into two parts. In the primary 

regression, however, the model parameters necessary for all of the alkenes except cis-2-

butene only were optimized. In the next subsidiary regression, the CH3 - CH obtained for 

propene and *ra«s-2-butene were imposed on cf.s-2-butene while the CH = CH bond length 

and the CH3-CH = CH bond angle for cw-2-butene were independently optimized to 

achieve the best agreement with the experimental data for cfs-2-butene. 

• Case III: The same as for the constraints used for the Final TBORG alkene parameter set 

except that a good agreement with the experimental critical temperatures and critical 

densities was not enforced. 

For Equation (6-2) and (6-3) to provide a consistent estimate of the critical temperature and the 

critical density, coexistence density information in the near-critical region is required. The 

available data for cz's-2-butene was limited to the reduced temperature range of 0.5rcr -Q.7Ta. 

Consequently, a good agreement with the critical density and the critical temperature of cis-2-

butene was not enforced in any of the above cases or in the Final set of TBORG alkene parameters. 

The optimized parameters for the Final TBORG parameter set and for the three cases described 

above are listed in Table 9-8, the averages of the deviations of the simulated data from the 
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experimental data for the various species considered are listed in Table 9-9, while the effect of the 

various optimization cases on the estimated critical properties are listed in Table 9-10. 

Table 9-8: Table of the regressed alkene TBORG model parameters for the different regression constraints. 

CH2 = CH2 (ethene) [A] 

CHj-CH (>C3)[A] 

CH2=CH (>C3)[A] 

CH-CH2 (>C4)[A] 

CH-CH (1,3-butadiene) [A] 

CH = CH (cz's-2-butene) [A] 

CH = CH (/rans-2-butene) [A] 

CH3 -CH = CH2 (propene) [deg] 

CH3 -CH2 -CH (1-butene) [deg] 

CH2 -CH2 -CH (22C5) [deg] 

CH2 = CH - CH2 (SC4) [deg] 

CH2= CH-CH (1,3-butadiene) [deg] 

CH2 -CH = CH ( >C5) [deg] 

CH3 -CH = CH (cw-2-butene) [deg] 

CH3 -CH = CH (toms-2-butene) [deg] 

<rH(=CH,)[A] 

*aA,(=CH1) [K] 

CTii(=CH-) [A] 

V*, (=CH-)[K] 

Final 

1.854 

2.014 

1.840 

1.753 

1.809 

1.711 

1.711 

109.1 

94.3 

122.1 

116.1 

107.2 

116.1 

117.1 

117.1 

3.503 

108.40 

3.200 

100.22 

Case I 

1.865 

2.019 

1.855 

1.751 

1.806 

1.711 

1.711 

107.3 

94.2 

121.3 

115.9 

106.6 

115.9 

117.1 

117.1 

3.499 

108.80 

3.196 

101.09 

Case II 

1.854 

2.014 

1.840 

1.753 

1.809 

1.769 

1.711 

109.1 

94.3 

122.1 

116.1 

107.2 

116.1 

115.0 

117.1 

3.503 

108.40 

3.200 

100.22 

Case III 

2.011 

2.032 

1.846 

1.771 

1.865 

1.648 

1.648 

118.7 

96.0 

130.0 

117.8 

112.9 

117.8 

117.4 

117.4 

3.4497 

114.53 

3.2161 

97.83 
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Table 9-9: Deviation between the simulated and experimental physical properties for the Final parameter set of the TBORG alkene force field and for each of the 

variations of the Final set considered. Data in brackets corresponds to the bracketed and more limited temperature range listed for each molecule. 

Ethene: 136-253K 

(160-253K) 

% Avg. Error pi 

% Avg. Error pn 

% Avg. Error Ps* 

% Avg. Error A//vap 

k " / < v J Is/cm3] 

K-rJtK] 

Propene: 176-327K 

(207-327K) 

% Avg. Error p, 

% Avg. Error p 

% Avg. Error Psal 

% Avg. Error Atfvap 

k - / u l f̂ 01"3] 

| r . - r jpq 

Final 

0.32 

16.19(11.,9) 

1.29(0.39) 

1.76 

0.0007 

0.07 

0.37 

2.43(1.24) 

0.80,0.17) 

1.86 

0.0022 

0.73 

Case I 

0.33 

14.68(,o.i7) 

1.37(0.44) 

1.79 

0.0005 

0.16 

0.39 

2.51(i.o9) 

0.74(o.i7) 

1.90 

0.0022 

0.73 

Case II 

0.32 

16.19OI.KO 

1 -29(0.39) 

1.76 

0.0005 

0.16 

0.37 

2.43(1.09) 

0.80(o.i7) 

1.86 

0.0022 

0.73 

Case III 

0.40 

5-31(4.28) 

1.60(0.97) 

1.70 

0.0002 

1.24 

0.15 

1-67(1.67) 

0.68(0.23) 

2.24 

0.0032 

0.18 

1-Butene: 216-383K 

(253-383K) 

% Avg. Error p, 

% Avg. Error Pg 

% Avg. Error P™1 

% Avg. Error AH 

k - P . J [B/cm3] 

fc-rJ[K] 

1,3-Butadiene:216-383K 

(253-383K) 

% Avg. Error p, 

% Avg. Error pg 

% Avg. Error Psal 

% Avg. Error A//vap 

k-p«„l is/™3] 

\T -T I [K] 

Final 

0.55 

5-03(3.30) 

1 • 12(0.42) 

1.33 

0.0023 

0.84 

0.47 

13.20(11.5,) 

1 -70(0.98) 

0.67 

0.0018 

0.85 

Case I 

0.55 

4.61(3.15) 

1 -04(0.45) 

1.38 

0.0023 

0.84 

0.47 

12.93(Uj5) 

1.58(0.95) 

0.73 

0.0019 

0.85 

Case II 

0.55 

5.03(3.30) 

1.12(0.42) 

1.33 

0.0023 

0.84 

0.47 

13.20(1UI) 

1.70(0.95) 

0.67 

0.0019 

0.85 

Case III 

0.53 

3.96(2.91) 

0.86(0.48) 

1.711 

0.0027 

1.10 

0.62 

5.00(4.61) 

1-34(0.84) 

1.73 

0.0035 

2.44 
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c/s-2-Butene: 136-253K 

(160-253K) 

% Avg. Error pt 

% Avg. Error pe 

% Avg. Error PSM 

% Avg. Error AH 

k ~ A , J tg/cm3] 

\T -T I [K] 

trans-2-Butene: 176-327K 

(207-327K) 

% Avg. Error pt 

% Avg. Error pg 

% Avg. Error Psal 

% Avg. Error A//vap 

k - P „ J [g/cm3] 

|r - r | [K] 

Final 

0.10 

4.36(4.24) 

6.15(5.29) 

2.20 

0.0038 

11.54 

0.23 

2.27(2.30) 

3.95(2.72) 

4.72 

0.0020 

0.86 

Case I 

0.12 

5.29(4.95) 

6.50(5.93) 

2.38 

0.0038 

11.54 

0.21 

3-14(3.03) 

4.13(2.78) 

4.89 

0.0020 

0.86 

Case II 

0.15 

6.80(6.80) 

6.36(6.30) 

1.97 

0.0029 

12.31 

0.23 

2.27(2.30) 

3.95(2.72) 

4.72 

0.0020 

0.86 

Case III 

0.09 

5-52(4.75) 

4.77(3.73) 

1.89 

0.0045 

11.15 

0.18 

3.63(4.oo) 

3-02(2.29) 

4.44 

0.0030 

2.87 

1-Octene: 216-383K 

(253-3 83K) 

% Avg. Error p, 

% Avg. Error pt 

% Avg. Error F* 

% Avg. Error AH 

k - A , J tg/cm3] 

K-T„\ [K] 

Final 

0.70 

15.56(io.oi) 

4.48(2.46) 

7.11 

0.0023 

1.13 

Case I 

0.71 

15.04(9.76) 

4.44(2.33) 

7.10 

0.0023 

1.13 

Case II 

0.70 

15.56(10.oi) 

4.48(2.46) 

7.11 

0.0023 

1.13 

Case III 

0.45 

16.79(,3.22) 

4.20(3.05) 

7.70 

0.0068 

10.37 

: 
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Table 9-10: Comparison of the experimental critical temperature and densities with those estimated from the 

Final TBORG alkene parameter set and for the optimal parameter set obtained when good agreement with the 

experimental critical densities and temperatures was not imposed. The corresponding estimates from the 

AUA4 and TraPPE force fields are also listed. 

Ethene 

Ar [g/Cm3] 

Ta [K] 

Propene 

Pa [g/cm3] 

Ta\K] 

1-Butene 

Pa [g/cm3] 

Ta PC] 

1,3-Butadiene 

Pa [g/cm3] 

r«pq 
cis-2-Butene 

Per [g/cm3] 

Ta [K] 

tfrans-2-Butene 

Pa [g/cm3] 

Ta[K\ 

1-Octene 

Pa [g/cm3] 

Ta{K] 

Exp. 

0.2141 

282.3 

0.2234 

365.6 

0.2338 

419.6 

0.2450 

425.2 

0.2398 

435.6 

0.2357 

428.6 

0.2338 

567.0 

Final 

0.2149 

282.3 

0.2256 

366.3 

0.2361 

420.4 

0.2432 

424.3 

0.2360 

447.1 

0.2337 

429.5 

0.2361 

568.1 

Case i n 

0.2140 

283.6 

0.2266 

365.7 

0.2365 

420.7 

0.2353 

446.7 

0.2353 

446.7 

0.2327 

431.5 

0.2406 

577.4 

TraPPE 

0.215 

283 

0.230 

363 

0.241 

414 

-

-

0.246 

435 

0.238 

426 

0.238 

567 

AUA4 

0.212 

280 

0.2257 

373.5 

0.2362 

419.6 

237.5 

422.4 

0.2382 

448 

0.234 

439.4 

0.2409 

559.2 

There is only a small difference between the optimal parameters listed for the Final TBORG alkene 

parameter set and for Case I in Table 9-8. This is encouraging because it suggests that there is a 

substantial degree of transferability of the Final TBORG alkene parameter set to both 1-alkenes and 

2-alkenes. In Case II in Table 9-8, the Final and independently regressed equilibrium bond lengths 

208 



TRANSFERABILITY BASED ON RELAXING GEOMETRIES 

and equilibrium bond angles for cz's-2-butene and fra«.s-2-butene are also very similar to the values 

obtained when trans-2-butene was included within the main parameter regression. These 

equilibrium bond lengths and equilibrium bond angle parameters are also very similar for both cis-

2-butene and *ra«,s-2-butene and therefore confirm the simplifications of using transferable bond 

length values and bond angle values for cz's-2-butene and z>-<2«.s-2-butene. For Case HI in Table 9-8, 

however, the optimal parameter set is significantly different to the values obtained for the Final 

parameter set. Most of the equilibrium bond lengths for Case HI are higher than the corresponding 

equilibrium bond lengths for the Final alkene parameter set. This is also true for the equilibrium 

bond angles for Case III which tend to be higher than the equilibrium bond angles for the Final 

alkene parameter set. This confirms the perspective of Chen et al. (1998) in which it was suggested 

that multiple parameter sets exist for which various "optimal" force fields can be obtained. From 

the above results and from the regressions obtained for the TBORG n-alkane parameters, the key 

feature in resolving the final and optimal parameter set resides in the regression constraints and the 

optimization criteria used. 

The result of relaxing the constraint of a good prediction of the critical temperatures and critical 

densities is evidenced in Table 9-10 where the critical densities and critical temperatures for Case 

III show a larger deviation from the corresponding experimental values than for the Final parameter 

set, Case I and Case II. Table 9-9, however, shows that the simulated physical properties for Case 

III show a lower average deviation from the corresponding values. This was found to be largely 

attributable to a general improvement in the simulated physical properties at low temperatures 

which occurs when the constraint of a good estimation of the critical properties is relaxed. This 

explains why the AUA4 force field is generally able to provide a better prediction of the pure 

component densities, vapour pressures and heats of vaporization than the NERD or TraPPE force 

fields while the NERD and TraPPE force fields yield superior critical property estimations than the 

AUA4 force field. 

It may be seen in Table 9-8 that all of the carbon-carbon double bonds are significantly larger than 

the 1.34A used by the NERD and TraPPE force fields. This is again consistent with the TBORG 

force field parameters displacing the interaction centres to more optimal locations to effectively 

account for anisotropic interactions. The effect on the regressed equilibrium bond length is again 

most pronounced for bonds incorporating a terminal group, this time the sp2 hybridized -CH2 

group. This increase in the equilibrium bond length may be understood in terms of a required 

displacement of the functional group centre to a location intermediate between the carbon centre 

209 



TRANSFERABILITY BASED ON RELAXING GEOMETRIES 

and its two attached hydrogen atoms. For ethane, the TBORG force field required an increase of 

the CH3 -CH3 equilibrium bond length of 0.66A over the same equilibrium bond length used for 

the NERD and TraPPE force fields due to the three hydrogen atoms present in the -CH3 group. For 

ethene, the increase in the CH2 = CH2 bond length for the TBORG force field is only 0.51 A due to 

the two hydrogen atoms present in the =CH2 group. This is reassuring because it suggests that the 

regressed equilibrium bond lengths are not simply empirical but rather demonstrate the correct trend 

of increasing anisotropy with increasing numbers of attached hydrogen atoms. In addition, the 

CH2 = CH2 equilibrium bond length for ethene is less than the CH3 - CH3 equilibrium bond length 

for ethane as expected. The regressed carbon-carbon double bond lengths show the following 

trend: 

CH2=CH2 > CH2=CH > CH = CH 

The difference between largest and smallest regressed values of the equilibrium lengths for the 

carbon-carbon double bonds in Table 9-8 is smaller than for the carbon-carbon single bonds of the 

TBORG n-alkane bond lengths Table 9-6. This is because of the greater anisotropy of the sp2 

hybridized -CH= group with only one attached hydrogen atom as compared to the -CH2- group 

with two attached hydrogen atoms. The net result is a CH2 = CH bond length which is very similar 

in length to the CH2 = CH2 bond length and a regressed equilibrium bond length for the CH = CH 

bond length which is larger than the CH2 -CH 2 equilibrium bond length even though one would 

expect carbon-carbon double bonds to be shorter than carbon-carbon single bonds. 

The regressed equilibrium lengths of the carbon-carbon single bonds in Table 9-8 follow the 

following trend: 

CHj-CH > CH-CH > CH-CH2 

The CH3 - CH bond length is the longest due to the anisotropy of the -CH3 group while the 

anisotropic contribution of two -CH= groups in the CH-CH bond results in it requiring a longer 

bond length than the CH - CH2 bond with only one -CH= group. It is also encouraging to note that 

the anisotropy of the -CH= group is also results in longer carbon-carbon single bond lengths for the 

alkene regression as compared to the carbon-carbon single bonds regressed from the TBORG n-

alkane force field. The only exception is the CH3 - CH2 equilibrium bond length in propane as 

compared to the CH3 - CH equilibrium bond length in propene, but in this case the effects of the 

terminal -CH3 group as well as the regressed propane and propene bond angles dominate. 
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It is interesting to note that there is less than an 8° difference between the regressed equilibrium 

values for all of the bond angles except those for the CH 2 =CH-CH, CH 3 -CH 2 -CH and 

CH2 - CH2 - CH bond angles. This similarity of the Final equilibrium bond angle values indicates 

how the NERD and TraPPE force fields were able to achieve a reasonable agreement with the 

experimental data with only a single equilibrium bond angle value. As for the bond angles 

regressed for the TBORG rc-alkane force field, the regressed equilibrium bond angles area all lower 

than the 124° used by both the NERD and TraPPE force field for bond angles with a carbon-carbon 

double bond. This is again largely a function of the longer bond lengths regressed for the TBORG 

alkene force field and which lead to a "concertina" structure for the alkene molecules as well. This 

is most strongly seen in the CH3 - CH2 - CH and CH3 - CH = CH2 bond angles where the longer 

bond lengths for bond including terminal groups leads to the smallest values for the regressed bond 

angles. 

Several features of the TBORG alkene force field are, however, less satisfactory than was found for 

the TBORG w-alkane force field: 

• The CH2 -CH 2 -CH equilibrium bond angle is larger than the 114° that is used by the 

NERD and TraPPE force fields for this bond angle. 

• Comparing the agreement between the simulated and experimental results for 1-octene in 

Table 9-9 and the agreement between the simulated and experimental results for «-octane in 

Table 9-7, it may be seen that the simulated data is better for w-octane than for 1-octene, 

particularly for the vapour densities and the latent heats of vaporization. 

• In Table 9-9, the deviation between the experimental and simulated vapour densities for 

ethene, 1,3-butadiene and 1-octene all tend to be greater than 10% and are larger than for 

any of the other molecules studied. This situation could not be improved by increased the 

number of independent intramolecular geometry parameters. 

• The simulated latent heats of vaporization for the alkenes tend to be worse than the simulated 

latent heats of vaporization for the n-alkanes. 

The disagreement between the vapour densities for ethene is most noticeable because ethene has 

only a =CH2 group and an independent bond length. This therefore suggests that the value of the 

values of the Lennard-Jones parameters obtained for the =CH2 group using the TBORG 

optimization constraints are perhaps not fully optimal. Based on the simulated results, it is believed 

that this might be attributable to assumptions inherent in the TBORG force field, namely 
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• The application of the united-atom assumption to the -CH= group, and 

• The use of transferable torsional angles _,- -

The -CH= group is the least symmetrical of all of the functional groups for which Lennard-Jones 

parameters had to be regressed. This is because of the presence of only one hydrogen atom attached 

to the carbon centre. For all of the molecules studied, the -CH= group is attached by a carbon-

carbon single bond to an adjacent functional group. Rotation around this carbon-carbon single bond 

is not hindered as for rotation about the carbon-carbon double bond. This implies that the hydrogen 

atom can effectively rotate about the central carbon in the functional group which effectively shifts 

the interaction site in a torsional sense. This is not the case for the -CH3, -CH2- or the =CH2 

because the displaced centre tends to be averaged out by the presence of more than one attached 

hydrogen atom. This is mostly strongly understood for 1,3-butadiene where the CH-CH 

equilibrium bond length should vary between a maximum value when the two hydrogen atoms on 

the two carbon centres are trans relative to one another and a minimum value when the two 

hydrogen atoms on the two carbon centres are cis relative to one another. The TBORG force field, 

however, uses a fixed bond length for the CH - CH equilibrium bond length. This suggests why 

the results for the vapour densities for 1,3-butadiene are less accurate and provides another 

explanation as to why the flexible bond lengths of the modified NERD force field gave better 

results for the pure component properties of 1,3-butadiene in Chapter Seven. The carbon-carbon 

double bond in trans- and cz's-2-butene also possesses two -CH= groups for which the CH = CH 

bond length could vary between maximum and minimum values depending on the location of the 

attached hydrogen atoms relative to one another. This would explain the poorer estimate of the 

latent heats of vaporization for trans- and cis-2-butene as seen in Table 9-9. These results would 

therefore suggest one of two possible remedies for the -CH= group, namely: 

1) Explicit and separate LJ parameters for the carbon and the hydrogen atoms in the -CH= 

functional group 

2) Inclusion of a flexible bond length for bonds with a -CH= group to account for rotation of the 

hydrogen atom about the carbon centre 

The other assumption which then also needs to be questioned is the transferability and origin of the 

torsional angle potentials. In the above regressions it has been seen that distinct bond angle and 

bond length values enabled the TBORG force field to more accurately simulate a range of pure 

component properties over a larger range of temperatures than previous united-atom force fields. 

For the torsions, however, it is common practice when parameterizing united-atom force fields to 
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treat a torsional potential as transferable so long as the bond between the two central functional 

groups is the same. In Chapter Seven it was argued that the CH2 = CH-CH = CH2 torsional 

potential of 1,3-butadiene appeared to not be applicable to the simulation of 1,3-pentadiene and 

1,3,5-hexatriene. In light of the slightly poorer results obtained for «-octane relative to the other n-

alkanes and in light of the poorer pure component properties also obtained for 1-octene, it would 

appear that this might be the case for torsions used in the parameterization of the TBORG force 

field as well. To an extent, the regressed values for the LJ sn and cri{ n-alkane parameters would 

compensate for slight errors in the torsional potential for «-octane. These errors would, however, 

propagate through the alkene parameterization because the parameterization necessarily had to be 

performed sequentially. For 1-octene, however, the regressed values for the LJ su and <ji{ for the 

=CH2 and -CH= groups would be least able to compensate for errors in the torsional potential 

because of the lower occurrence of =CH2 and -CH= groups. This also explains the observed 

inaccuracy of the ethene vapour densities because the Final values of the LJ parameters for the 

=CH2 would have been shifted to partially compensate for small errors in the torsional potentials. 

The simultaneous regression of all of the required LJ parameters together with the additional 

parameters for distinct torsions would massively increase the number of regression simulations 

required, but the above results for n-octane and 1-octene would suggest that this is likely to be 

required to produce a truly transferable united-atom force field. 

The simulated data obtained using the Final TBORG alkene parameter set are graphed in Figure 

9-24 to Figure 9-31 where they are also compared to the results from other force fields, while Table 

9-13 in Appendix 9A lists the simulation data used to generate Figure 9-24 to Figure 9-31. As 

listed in Table 9-9, the liquid densities are in general well reproduced for all the alkenes studied in 

Figure 9-24 and Figure 9-26 and are comparable to the estimates of the TraPPE force field. The 

vapour densities are also in reasonable agreement with the experimental data except for the cases of 

ethene, 1,3-butadiene and 1-octene as shown in Figure 9-25 and Figure 9-27 and are generally 

superior to both the NERD and TraPPE force fields because this was included in the optimization 

criteria. In Figure 9-28 and Figure 9-29 it may be seen that the simulated vapour pressures of the 

TBORG force field are also general superior the estimates of the TraPPE and AUA4 force fields. In 

Figure 9-30 and Figure 9-31, however, the estimates of the latent heats of vaporization of the 

TBORG force field are worse than those of the AUA4 force field, particularly for 1-octene but this 

is because a good prediction of the latent heats of vaporization was required by the AUA 4 force 

and not by the TBORG optimization criteria. 
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Figure 9-24: Liquid and vapour coexistence densities for ethene, propene, 1-butene, 1,3-butadiene and 1-

octene. Simulated results from the TBORG, TraPPE and AUA4 force fields are shown with the experimental 

data of Smith and Srivastava (1986). Experimental critical points are shown as plus symbols. 
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Figure 9-25: Vapour coexistence densities for ethene, propene, 1-butene, 1,3-butadiene and 1-octene. 

Simulated results from the TBORG and TraPPE force fields are shown with the experimental data of Smith 

and Srivastava (1986). 
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480 
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Figure 9-26: Liquid and vapour coexistence densities for cis-2-butene and trans-2-b\iter\e. Simulated results 

from the TBORG, TraPPE and AUA4 force fields are shown with the experimental data of Smith and 

Srivastava (1986). Experimental critical points are shown as plus symbols. 
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Figure 9-27: Vapour coexistence densities for cz's-2-butene and trans-2-butene. Simulated results from the 

TBORG and TraPPE force fields are shown with the experimental data of Smith and Srivastava (1986). 
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Figure 9-28: Saturated vapour pressures for ethene, propene, 1-butene, 1,3-butadiene and 1-octene. 

Simulated results from the TBORG, TraPPE and AUA4 force fields are shown with the experimental data of 

Smith and Srivastava (1986). 
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Figure 9-29: Saturated vapour pressures for ci.5'-2-butene and ft-ans-2-butene. Simulated results from the 

TBORG, TraPPE and AUA4 force fields are shown with the experimental data of Smith and Srivastava 

(1986). 
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Figure 9-30: Latent heats of vaporization for ethene, propene, 1-butene, 1,3-butadiene and 1-octene. 

Simulated results from the TBORG and AUA4 force fields are shown with the experimental data of Smith 

and Srivastava (1986). 
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Figure 9-31: Latent heats of vaporization for cz.s-2-butene and fr-ans-2-butene. Simulated results from the 

TBORG and AUA4 force fields are shown with the experimental data of Smith and Srivastava (1986). 
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9.6 Comparison of the Regressed Lennard-Jones Parameters 

The values for the LJ es and <7a parameters for the sp3 hybridized -CH3 and -CH2- groups 

and for the sp2 hybridized =CH2 and -CH= groups of the TraPPE, AUA4 and TBORG fields are 

compared in Figure 9-32 and Figure 9-33. From Figure 9-32 it may be seen that both the TBORG 

force field (which implicitly accounts for anisotropy) and AUA4 force field (which explicitly 

accounts for anisotropy) have LJ eu parameters which are larger than the corresponding values for 

the TraPPE force field (which does not account for anisotropy). From Figure 9-19 the effect of a 

larger LJ es parameter is to increase the magnitude of the intermolecular attractions and repulsions. 

Larger LJ es parameters are required by the AUA4 and TBORG force fields relative to the TraPPE 

force field because the interaction sites for the AUA4 and TBORG force fields are displaced 

relative to their locations when displaced by the TraPPE force field. This requires a deeper 

potential energy well and stronger repulsions at short distances in order to provide the similar 

simulated values for the liquid densities in particular. For all three force fields, the value of the LJ 

sn parameter for a given hybridization (sp3 or sp2) increases with increasing numbers of attached 

hydrogen atoms. This is because a united-atom functional group with a larger number of atoms 

should, in general, lead to an intermolecular interaction which is larger in magnitude. 

For the LJ ari{ parameter in Figure 9-33, the TraPPE force field tends to have larger <xa values than 

either the AUA4 or TBORG force fields. This again relates back to the effects of anisotropy 

because a larger ai{ value in Figure 9-19 causes intermolecular repulsions to be shifted to larger 

separation distances. These larger a~ values are required by the TraPPE force field because there 

is no accounting of the displacement of the interaction site from the carbon centre and the larger a{i 

values ensure that neighbouring functional groups are still situated at average distances which yield 

the correct phase densities. It is interesting to note that for the TraPPE force field, the LJ a-

parameter increases with decreasing numbers of attached hydrogen atoms for a given hybridization 

while the opposite trend is observed for the AUA force field. Bourasseau et al. (2003) argued that 

the LJ ai{ parameter should increase with increasing number of attached hydrogen atoms for a 

given hybridization because the increased molecular volume of more hydrogen atoms should 

increase the distance at which intermolecular repulsions are experienced. Martin and Siepmann 

(1998), however, argued that it was reasonable for the -CHr- methylene group to possess a larger 

LJ <7;; parameter than the -CH3 methyl group value because of the two bond lengths shared by the 
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-CH2- group with neighbouring functional groups. For the TBORG force field, it may be seen 

from Figure 9-33 that the LJ axi parameter increases with increasing numbers of hydrogen atoms 

for sp3 hybridized functional groups but that it decreases with increasing numbers of hydrogen 

atoms for sp2 hybridized functional groups. This is because the TBORG force field implicitly 

accounts for the effects of anisotropy through optimization of the equilibrium bond lengths and the 

equilibrium bond angles. As discussed previously, the increases in the lengths of the carbon-carbon 

single bond lengths for the TBORG force field are larger than for the carbon-carbon double bond 

lengths. This bond length effect leads to the different trends in the values of the LJ ai{ parameters 

for the sp3 and sp2 hybridized functional groups of the TBORG force field. 

9.7 Simulation of Binary VLE for the TBORG Force Field 

To test the TBORG force field for the simulation of binary VLE, an «-pentane (1) + n-hexane 

(2) mixture at 25°C was selected (Dortmund Data Bank). The P-x-y data was simulated using the 

£iNVT Gibbs Ensemble because it was shown in the previous Chapter that the | tNVT Gibbs 

Ensemble yields lower uncertainties in the simulated compositions for both the TraPPE and the 

TBORG w-alkane force fields. The simulation methodology employed was essentially the same as 

for the &NVT Gibbs Ensemble simulations as described in Section (8.5.1). The CBMC method 

was used for the simulations and a total system size of 280 molecules was used as this was found to 

be sufficient to give reproducible results. The NVT Gibbs Ensemble was used for the pure 

component compositions. Values for £, were again selected give approximate overall mole 

fractions of 0.05, 0.10, 0.20, 0.40, 0.60, 0.80, 0.90 and 0.95 of w-pentane at equilibrium. The same 

types of Monte Carlo moves as listed in (8.5.1) for the ^NVT Gibbs Ensemble simulations of the 1-

butene + w-butane and 1-hexene + w-hexane mixtures were performed with the same relative 

probabilities. All of the simulations were equilibrated for 40,000 cycles and the production period 

for ensemble averages consisted of at least 160,000 cycles. As for previous simulations, the 

standard deviations of ensemble averages were computed by dividing the production period into 

five blocks. The standard deviation of an ensemble averaged quantity was then set as the standard 

deviation of the averages obtained from each of these five blocks. The resulting P-x-y data and x-y 

data are shown in Figure 9-34 and Figure 9-35 respectively and the data is tabulated in Table 9-11. 
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Figure 9-32: Comparison of the LJ es parameters for the sp3 hybridized -CH3 and -CH2- groups and for the 

sp2 hybridized =CH2 and -CH= groups of the TraPPE, AUA4 and TBORG fields. 

Figure 9-33: Comparison of the LJ cru parameters for the sp3 hybridized -CH3 and -CH2- groups and for the 

sp2 hybridized =CH2 and -CH= groups of the TraPPE, AUA4 and TBORG fields. 
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0.4 0.6 
Mole Fraction, Xj, yi 

Exp • TBORG A TraPPE 

Figure 9-34: P-x-y data for the n-pentane (1) + n-hexane (2) mixture at 25°C from the TBORG (diamonds) 

and TraPPE (triangles) force fields obtained using the |]NVT Gibbs Ensemble and the experimental data of 

the Dortmund Data Bank. Open symbols denote dew points and closed symbols denote bubble points. 
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Figure 9-35: x-y data for the K-pentane (1) + n-hexane (2) mixture at 25°C from the TBORG (diamonds) and 

TraPPE (triangles) force fields obtained using the £jNVT Gibbs Ensemble and the experimental data of the 

Dortmund Data Bank. 
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Table 9-11: P-x-y data for the i^NVT Gibbs Ensemble simulations of the H-pentane (1) + n-hexane (2) 

mixture at 25°C from the TBORG and TraPPE force fields. Subscripts denote the estimated statistical 

uncertainty in the simulated result. 

Pressure [kPa] 

TBORG 

21.1,.9 

22 .7 U 

24.22.8 

29.25.o 

39.15.i 

50.04., 

62.16.8 

67.93.8 

74.36.0 

75.34.4 

TraPPE 

31-926 

35.73.2 

37.8o.6 

42.0L8 

56.13.6 

7 1 . 1 M 

86.256 

95.18.o 

99.32.7 

101.74.8 

xx 

TBORG 

Oo 

0.0390.ooi 

0.0780.ooi 

0.1620.ooi 

0.3390.oo2 

0.5560.ooi 

0.7660.ooi 

0.8900.ooi 

0.9430.001 

lo 

TraPPE 

Oo 

0.0390.ooo 

O.O8I0.001 

0.1600.oo2 

0.3370.oo, 

0.5440.oo4 

0.7630.oo2 

0.879o.ooi 

0.9380.ooi 

lo 

tt 
T B O R G 

Oo 

0.125o.ooo 

0.2310.000 

0.4080.00, 

0.6450.oo2 

0.815o.ooo 

0.920Q.OOO 

0.9660.ooo 

0.9830.ooo 

lo 

TraPPE 

0 

0.109o.ooi 

0.213o.ooo 

0.3690.ooi 

O.6090.ooi 

0.7850.ooi 

O.908o.ooo 

0.957o.ooo 

0.979o.ooo 

lo 

The benefit in the improvement of the pure component vapour pressures of the TBORG force field 

may be seen in Figure 9-34 where the TBORG force field results are shifted significantly closer to 

the correct phase envelope than the TraPPE force field results. As may be seen in Figure 9-35, this 

improvement in the overall location of the phase envelope is achieved without significantly 

compromising the x-y data predictions of the TBORG force field which agree well with the results 

from the TraPPE simulations and with the experimental data. Only the estimated statistical 

uncertainty for the dew point pressures for the TBORG force field are indicated in Figure 9-34 for 

clarity but are of similar magnitude for the remaining symbols. The estimated uncertainties in the 

liquid and vapour compositions are again very low for the liNVT Gibbs Ensemble and are 

consistently less than 0.004 for both force fields as seen in Table 9-11. This binary mixture result 

would therefore seem to confirm that the n-alkane parameters for the TBORG force field are also 

suitable for the simulation of binary VLE. 

9.8 Methods to Improve United-Atom Force Fields 

Based on the results of this Chapter, the following considerations would therefore appear to 

be important for the parameterization of improved united-atom force fields: 
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1) The correct simulation of critical data should be a criterion enforced during the optimization 

of the force field. 

2) Vapour density and vapour pressure data should be used during the parameterization to 

ensure a good fit this data. 

3) The torsional potentials should be re-examined and potentially optimized to specific force 

fields. 

4) Sequential optimization of different LJ functional groups can lead to the propagation of errors 

through a force field. More attention should then be given towards simultaneous 

parameterization of all required functional groups. 

5) A combination of displaced interaction sites using explicit anisotropic parameters and 

flexible equilibrium geometries may have to implemented to achieve a truly optimal 

united-atom force field 

6) For certain functional groups (e.g. the -CH= functional group), the validity of the united-

atom approximation may have to be re-examined. 
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9.9 Appendix 9A 

Table 9-12: Simulated physical properties from the TBORG n-alkane force field for ethane, propane, n-butane and ?!-octane. Experimental data from Smith and 

Srivastava (1986). Estimated simulation errors are given as subscripts. 

Molecule 

Ethane 

Propane 

Temperature 

[K] 

125 

149 

188 

217 

256 

275 

173 

205 

236 

268 

300 

331 

Pi [g/cm3] 

Exp. 

0.614 

0.587 

0.540 

0.501 

0.437 

0.396 

0.645 

0.612 

0.577 

0.537 

0.490 

0.434 

TBORG 

0.6140.ooi 

0.5860.ooi 

0.5400.ooi 

0.5000.ooi 

0.4390.ooi 

0.4000.0o4 

0.6450.ooi 

O.6H0.001 

0.5770.ooi 

0.538o.oo2 

0.4920.oo2 

0.438o.oo6 

P j x l 0 4 [g/cm3] 

Exp. 

0.202 

2.16 

24.2 

80.7 

281 

488 

0.853 

7.04 

29.7 

90.4 

220 

472 

TBORG 

0.259o.o3 

2.390.o8 

25.3,.4 

83.9 I8 

2826., 

47221 

1-160.28 

8.17,0 

33.22.5 

94.46.5 

218s., 

46947 

ln(P s a t) [kPa] 

Exp. 

-0.362 

2.18 

4.80 

6.09 

7.34 

7.82 

1.02 

3.29 

4.83 

6.01 

6.91 

7.62 

TBORG 

-0.300o,18 

2.13o.o4 

4.760.o6 

6.O80.02 

7.32o.o3 

7.8O0.04 

1.22o.24 

3.350.,2 

4.890.o7 

6.030.o6 

6.890.o3 

7.60o.o7 

AHvap [kJ/mol] 

Exp. 

16.8 

16.0 

14.6 

13.3 

10.7 

8.86 

21.2 

20.1 

18.6 

16.7 

14.4 

11.5 

TBORG 

16.80.02 

I6.O0.06 

14.6o.o4 

13.3o.io 

10.70,, 

8.860.04 

21.2o.o8 

20.lo.o5 

I8.60.08 

16.7o.io 

14.4o.o3 

ll.5o.15 
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Molecule 

K-Butane 

n-Octane 

Temperature 

[K] 

249 

288 

321 

353 

386 

249 

320 

368 

416 

456 

496 

520 

Pi [g/cm3] 

Exp. 

0.664 

0.626 

0.585 

0.545 

0.501 

0.443 

0.681 

0.639 

0.595 

0.552 

0.501 

0.462 

TBORG 

0.6640.ooi 

0.6250.oo2 

0.5840.ooi 

0.5460.ooi 

0.5040.oo4 

0.4480.oo3 

0.683o.oo3 

0.6430.oo2 

0.5970.oo3 

0.5540.oo2 

0.4970.oo3 

0.4590.oo2 

p ? x l 0 4 [g/cm3] 

Exp. 

1.33 

10.7 

45.6 

117 

251 

523 

2.48 

15.2 

57.4 

139 

302 

473 

TBORG 

l-640.29 

11.61.3 

47.82.2 

1203.2 

257,3 

51535 

2.21o.26 

15.3..9 

58.25.5 

1405.9 

295,2 

48133 

l n ( F a t ) [kPa] 

Exp. 

1.38 

3.62 

5.17 

6.15 

6.92 

7.57 

1.75 

3.68 

5.08 

5.98 

6.72 

7.11 

TBORG 

1.39*24 

3.62o.,3 

5.160.o5 

6.150.o3 

6.900.o4 

7.560.o7 

1.41o.i8 

3.59o.,8 

5.01o.i3 

5.920.04 

6.630.o6 

7.06o.o8 

AHmp [kJ/mol] 

Exp. 

23.7 

21.6 

19.4 

16.9 

13.5 

40.3 

36.9 

33.0 

29.2 

24.7 

21.3 

TBORG 

25.2o.i4 

23.5o.i4 

21.7o.05 

19.70,o 

17.40.,4 

14.2o.27 

41.2o.52 

38.lo.ii 

34.2o.5i 

30.5o.3o 

26.lo.63 

22.3o.57 
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Table 9-13: Simulated physical properties from the TBORG alkene force field for ethene, propene, 1-butene, c/s-2-butene, trans-2-butene, 1,3-butadiene and 1-

octene. Experimental data from Smith and Srivastava (1986). Estimated simulation errors are given as subscripts. 

Molecule 

Ethene 

Propene 

Temperature 

[K] 

136 

160 

184 

209 

233 

253 

176 

207 

239 

270 

302 

327 

Pi [g/cm3] 

Exp. 

0.614 

0.581 

0.546 

0.506 

0.460 

0.413 

0.668 

0.631 

0.592 

0.549 

0.498 

0.447 

TBORG 

0.6120.ooi 

0.5800.ooi 

0.5460.ooi 

0.5070.ooi 

0.4630.ooi 

0.4150.oo5 

0.6670.ooi 

0.631o.ooi 

0.5920.ooi 

0.550o.oo2 

0.5010.oo3 

0.4520.oo5 

p g x l 0 4 [ g / c m 3 ] 

Exp. 

2.03 

12.1 

43.2 

119 

266 

493 

1.47 

10.0 

40.4 

113 

269 

505 

TBORG 

2.860.14 

14.7o.88 

49.82.5 

12949 

2865.6 

50838 

1.35o.i7 

10.2Q.23 

40.62.6 

H24.o 

2711S 

49025 

l n ( p a ' ) [kPa] 

Exp. 

2.10 

4.03 

5.40 

6.47 

7.28 

7.83 

1.63 

3.69 

5.20 

6.26 

7.15 

7.71 

TBORG 

2.22o.o6 

4.06o.o6 

5.430.o6 

6.47o.o4 

7.27o.o2 

7.79o.o5 

1.560.„ 

3.680.02 

5.180.07 

6.260.o4 

7.15o.03 

7.70o.o3 

AHmp [kJ/mol] 

Exp. 

14.8 

13.9 

12.9 

11.7 

10.1 

8.21 

20.6 

19.3 

17.8 

16.1 

13.8 

11.3 

TBORG 

14.4o.o5 

13.60.05 

12.7o.o6 

ll.60.04 

10.10.07 

8.460.,3 

20.6o.o5 

19.4o.o5 

I8.O0.04 

16.4o.o5 

14.2o.o4 

ll.8o.09 
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Molecule 

1-Butene 

cw-2-Butene 

frans-2-Butene 

Temperature 

[K] 

220 

256 

291 

322 

352 

383 

225 

242 

255 

272 

285 

302 

226 

256 

289 

319 

348 

377 

Pi [g/cm3] 

Exp. 

0.678 

0.638 

0.595 

0.554 

0.508 

0.448 

0.697 

0.679 

0.665 

0.646 

0.631 

0.612 

0.677 

0.646 

0.609 

0.573 

0.533 

0.484 

TBORG 

0.6770.ooi 

0.6370.ooi 

0.5970.00! 

0.556o.ooi 

0.512o,oo3 

0.4550.oo7 

0.695o.OOI 

0.67 80.002 

0.6640.ooi 

0.6460.ooi 

0.6320.oo2 

0.612o.oo4 

O.68O0.003 

0.6460.oo2 

O.6IO0.002 

0.572o.oo2 

0.533o.oo2 

0.481o.ooi 

pgx\0A [g/cm3] 

Exp. 

3.26 

17.7 

59.7 

141 

287 

573 

2.45 

6.04 

10.9 

21.6 

34.2 

58.5 

3.09 

13.0 

43.0 

102 

210 

399 

TBORG 

3.71o.27 

18.3o.87 

63.42.0 

1444.5 

29018 

59144 

2.33o.37 

5-13o.63 

IO.80.94 

21.7M 

35.0o.94 

57.55.5 

3.03 o.76 

12.2,3 

41.52.7 

10274 

2098.9 

40532 

ln(i>sa') [kPa] 

Exp. 

2.35 

4.18 

5.47 

6.36 

7.06 

7.67 

2.09 

3.06 

3.70 

4.43 

4.92 

5.49 

2.33 

3.87 

5.16 

6.07 

6.79 

7.40 

TBORG 

2.460.o9 

4.190.o5 

5.520.o3 

6.390.o4 

7.08o.o5 

7.70o.o5 

1.87o.22 

2.70o,14 

3.49o,, 

4.250.o9 

4.80o.o3 

5.340.i2 

2.090.27 

3.640.n 

5.OI0.07 

5.950.o7 

6.700.o4 

7.290.06 

AHmp [kJ/mol] 

Exp. 

23.9 

22.5 

20.6 

18.6 

16.2 

12.9 

25.9 

25.1 

24.4 

23.5 

22.7 

21.7 

25.1 

23.6 

22.0 

20.2 

18.0 

15.3 

TBORG 

24.2o.o9 

22.5o,os 

20.7o.o4 

18.90.I0 

I6.60.12 

13.20,3 

26.2o.o6 

25.5o.o9 

24.9o.o9 

24.1o.o7 

23.40.12 

22.4o.,6 

26.2o.24 

24.8o.15 

23.10.09 

21.lo.07 

18.9o.09 

I6.I0.22 
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Molecule 

1,3-Butadiene 

1-Octene 

Temperature 

[K] 

216 

253 

283 

323 

353 

383 

311 

340 

388 

435 

476 

518 

A [g/cm3] 

Exp. 

0.709 

0.668 

0.633 

0.582 

0.536 

0.480 

0.700 

0.675 

0.631 

0.587 

0.543 

0.487 

TBORG 

0.7120,oo4 

0.6710.oo2 

0.6360.oo4 

0.5810.oo2 

0.536o.oo4 

0.4730.on 

0.6990.oo2 

0.6740.oo3 

0.6290.oo2 

0.583o.oo2 

0.535o.oo3 

0.4790.ou 

p ^ x l O 4 [g/cm3] 

Exp. 

2.17 

13.9 

41.7 

131 

267 

518 

2.00 

6.61 

30.8 

97.2 

220 

456 

TBORG 

2.64o.65 

15.52.4 

49.76.o 

1418.4 

2942 2 

5649 4 

1.130.32 

5 . 3 3 u 

26.62., 

98.83.3 

21693 

48657 

ln(P s a t) [kPa] 

Exp. 

1.97 

3.97 

5.15 

6.34 

7.05 

7.65 

1.52 

2.80 

4.44 

5.64 

6.47 

7.17 

TBORG 

2.070.25 

4.00o.i5 

5.260.ii 

6.370.o5 

7.11o.o7 

7.690.o9 

1.30o.27 

2.590.25 

4.310.o9 

5.57o.o4 

6.540.04 

7.19o.o9 

AHyap [kJ/mol] 

Exp. 

25.0 

23.2 

21.7 

19.2 

16.9 

13.8 

39.0 

37.4 

34.4 

30.5 

25.1 

TBORG 

25.10.24 

23.4o.o7 

2 1 . 9 0 „ 

19.4o.os 

17.00.12 

13.8o.2o 

41.5o.32 

39.60.18 

36.Oo.27 

32.3o.23 

28.2o.i9 

22.5o.4i 
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CHAPTER 10: 

CONCLUSIONS 

"I never saw a wild thing sorry for itself. A small bird will fall frozen dead from a bough without 

ever having felt sorry" - D.H. Lawrence 

The Beowulf cluster has indeed come of age and the maintenance and use of the Beowulf cluster 

yoda at the University of KwaZulu-Natal is an example of how supercomputing resources are now 

readily available to all academic researchers. The Beowulf cluster must now be considered as a 

serious proposition for everyday academic use rather than being considered as the domain of 

isolated groups of computer engineers or high-end users. 

This work has demonstrated the utility of an accessible Beowulf cluster through the simulation of a 

variety of pure component and binary systems. Through a series of simulations using the TraPPE, 

NERD and SA1 force fields, this work was able to demonstrate the ability of transferable united-

atom force fields to simulate M-alkane and 1 -alkene binary mixtures of industrial relevance. There 

are, however, limitations to the range of applicability and the accuracy which can be obtained using 

these force fields. The SA1 force field was shown to be applicable to the simulation of the vapour 

pressures of long 1-alkene molecules through pure component simulations of the phase behaviour 

of 1-octadecene. The SA1 force field was, however, found to be inadequate when it comes to 

simulating n-alkane properties and the liquid densities of 1-alkenes. In contrast the NERD and 

TraPPE force fields were observed to provide a reasonable description for the five binary mixtures 

considered. Both force fields, however, displayed a tendency to overestimate the dew point and 

bubble point pressures of the phase envelope because of the overestimation of the pure component 

vapour pressures by both of these force fields. This observation emphasised the need for 

transferable united-atom force fields which correctly reproduce the pure component vapour 

pressures. 

The x-y data revealed that in spite of discrepancies between the simulated and experimental P-x-y 

data, the x-y data for all binary mixtures was well described by all three force fields used. This is a 

significant result as it indicates that the force fields describe the correct shape of the phase envelope 

and can be regarded with confidence when simulating x-y data. By considering the excess volumes 

predicted by both force fields, however, it was found that the NERD, TraPPE and SA1 force fields 

cannot describe the expected ideal behaviour of the vapour phase. This observation motivated the 
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need for a transferable united-atom force field which correctly describes the pure component vapour 

densities. 

With the mixed success obtained using the NERD, TraPPE and SA1 force fields, the following 

section of work focused on testing how transferable the TraPPE and NERD united-atom force fields 

were by examining their prediction of the pure component and binary phase behaviour of 

conjugated alkenes. The pure component properties of 1,3-butadiene; 1,3-pentadiene and 1,3,5-

hexatriene were simulated using two sets of modified NERD and TraPPE parameters. It was found, 

however, that the current sets of parameters were insufficient to model the pure component phase 

behaviour accurately. Once the internal CH - CH equilibrium bond length had been modified to 

more accurately represent the actual equilibrium length of the internal single bond in 1,3-butadiene, 

however, a considerable improvement in the pure component simulated properties of 1,3-butadiene 

was observed, particularly for the modifications to the NERD force field. A dedicated torsional 

potential was also required for 1,3-butadiene. The results for the pure component simulations of 

1,3-pentadiene and 1,3,5-hexatriene were, however, less satisfactory. It is believed that this is a 

combination of inadequate torsional potential and inadequate equilibrium intramolecular 

geometries. The precise root cause of the deviation of the simulated properties of 1,3-pentadiene 

and 1,3,5-hexatriene from the corresponding experimental data could not be established because of 

a lack of experimental data. The major result stemming from this section of this work was that 

more attention needs to be directed towards understanding the role and effect of the intramolecular 

equilibrium geometries on the simulated pure component physical properties. 

The simulation of a binary mixture of n-heptane + 1,3-butadiene revealed further deficiencies in the 

parameter set which was used for the simulation of 1,3-butadiene because both the P-x-y and x-y 

data were not well represented. This is in contrast to the earlier observation that the NERD and 

TraPPE force fields provided a good description of the experimental x-y data in spite of poorer 

predictions for the P-x-y data. This observation suggested that the force field parameters might 

require a more fundamental investigation and a revision of the parameter values. 

The development of a new transferable united-atom force was thus undertaken. The TBORG force 

field sought to improve the simulated pure component vapour pressures and vapour densities while 

not sacrificing an accurate description of the pure component liquid densities, critical temperatures 

and critical densities. This objective was met by relaxing the constraint of transferable 

intramolecular geometries to attempt to more faithfully account for subtle bond length and bond 
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angle variations for the different hybridizations and connectivities of functional groups that can be 

found in conjugated alkenes, rc-alkanes, 1-alkenes and 2-alkenes. The assumption of fully 

transferable Lennard-Jones functional groups was, however, retained. A formal optimization 

program was undertaken through which it was also possible to elucidate and quantify the role of the 

bond lengths, the bond angles as well as the LJ £» and ov parameters on the vapour densities, the 

liquid densities, the heats of vaporization and saturated vapour pressures. Importantly, it was 

shown that the equilibrium geometries have a significant effect on the physical properties which 

confirmed the suspicions of earlier Chapters. 

The TBORG force field was largely successful in achieving its goal of more accurately reproducing 

a larger range of physical properties over a wide temperature range, particularly for the n-alkanes. 

The agreement between the simulated and the experimental pure component properties for the 

alkenes was, unfortunately, less satisfactory. This is believed to have been due to a propagation of 

subtle errors in the parameterization of the 1-alkene parameters which argues in favour of a 

regression procedure which simultaneously regresses as large a number of functional groups as 

possible. In the process, the requirement for a more thorough consideration of the effects of 

anisotropy also became apparent because the optimization of the intramolecular geometries 

effectively corresponded to a shifting of the interaction centres to positions that would be consistent 

with displaced anisotropic interaction centres. It is therefore the opinion of this work that a 

combination of a larger anisotropic parameter set and a larger intramolecular geometry set might 

provide the largest improvement for the prediction of physical properties by united-atom force 

fields. It was also shown how the temperature range of the physical properties against which the 

model parameters are regressed should be as a large as possible and that as wide a set as possible of 

physical properties needs to be considered. 

For the binary mixtures studied, several difficulties were experienced with using the NiN2PT Gibbs 

Ensemble because of mass balance limitations that are inherent to this type of simulation. To 

overcome these difficulties, a unifying formalism was developed based on an extension of the /iPT 

ensemble to multiple phases. The result was a governing equation for isothermal Gibbs Ensembles 

that can be used to derive both the partition functions and thermodynamic potentials of novel Gibbs 

Ensembles. Using this framework, two new isothermal Gibbs Ensembles were developed which 

overcome all of the mass balance limitations of the N]N2PT Gibbs Ensemble. The /i[N2VT Gibbs 

Ensemble is characterised by the stipulation of one of the chemical potentials of one of the species 

while the &NVT Gibbs Ensemble is characterised by the stipulation of a fugacity fraction. Both of 
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these new ensembles are isochoric. To the knowledge of this work, these two new ensembles 

represent the first time that a Gibbs Ensemble has been able to simulate a close boiling mixture 

directly. To this end, two close-boiling mixtures of an n-alkane + l-alkene were successfully 

simulated. The only slight drawback with the implementations of these two ensembles resides in 

the need to calculate the pressure during a simulation. The uncertainties in the computed pressures 

tend to be of the order of 5-10% which is typical for isochoric Gibbs Ensemble simulations. Both 

ensembles, however, are able to achieve a considerably lower uncertainty in the computed 

compositions than the NiN2PT Gibbs Ensemble, particularly the £iNVT Gibbs Ensemble whose 

compositions can exhibit uncertainties two orders of magnitude smaller than those found in 

simulations using the NiN2PT Gibbs Ensemble. 

The aim of this work was to address the simulation of hydrocarbon system of industrial relevance. 

To that end, a Beowulf cluster called yoda was assembled and installed. Several binary and pure 

component simulations were conducted which raised several important questions regarding the 

force fields and simulation algorithms used. In order to address these issues, a new force field 

called the TBORG force field was developed and a unifying framework and two new Gibbs 

Ensembles were characterised to permit the more efficient simulation of a range of binary mixtures. 
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_ _ CHAPTER 11: 

RECOMMENDATIONS 

"Opportunity is missed by most people because it is dressed in overalls and looks like hard work." -

Thomas Alva Edison 

Based on the work described in the preceding Chapters, the following suggestions are extended for 

future work: 

1) Investigation should take place into the development of transferable united-atom force fields 

which explicitly account for anisotropy as well as incorporating a larger intramolecular 

equilibrium geometry parameter set. While the TBORG n-alkane and alkene force fields 

demonstrate a general improvement in the accuracy of the pure component property 

predictions over a wider temperature range, some deficiencies, most notably the latent 

heat of vaporization, were identified. The agreement between the experimental and 

simulated data for the alkene force field was also less than that of the n-alkane force field 

and should be addressed. 

2) More investigation should take place into methods which could efficiently facilitate 

simultaneous regression of intra- and intermolecular force field parameters for a number 

of homologous series. The propagation of subtle errors in the regressed force field 

parameters is not easily overcome with current regression techniques. 

3) The principles underpinning the TBORG force field should be tested for a wider range of 

homologous series to ascertain whether or not a similar improvement in the physical 

properties can also be obtained for a wider range of compounds. This further testing of 

the TBORG force field should also include pure component simulations for carbon chains 

longer than C8 to evaluate the transferability of the force field to longer n-alkane and 

alkene carbon chains. 

4) More extensive testing of the TBORG force field needs to be undertaken for a larger number 

of mixtures to more thoroughly explore its application to the simulation of binary and 

ternary VLE. 

5) Investigation should take place into the role of the torsional potential on the simulated pure 

component properties. An extensive study into the effect of the torsional parameters on 

the macroscopic phase behaviour has, to the knowledge of this work, never been 

undertaken. The apparent influence of the torsional potential on the conjugated alkenes 
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would, therefore, seem to justify a more formal investigation into the parameters of this 

intramolecular potential energy term. 

6) The /x^VT and &NVT Gibbs Ensembles should be used to simulate azeotropic systems. 

This would mark a considerable step forward in terms of proving that a much wider range 

of binary systems, such as alcohols, can be simulated by the Gibbs Ensemble. 

7) This work dealt primarily with the unification of isothermal Gibbs Ensemble under a 

governing framework. Using existing adiabatic ensemble theory, it will also be possible 

to unify a novel subset of adiabatic Gibbs Ensembles. This would then directly facilitate 

the formulation of Gibbs Ensembles which can be used for isobaric VLE without the mass 

balance constraints inherent in the NiN2PT Gibbs Ensemble. This work should then be 

further pursued to permit the formulation of a truly unifying formalism which provides for 

the unification of adiabatic and isothermal Gibbs Ensembles under a single governing 

framework. 

8) The current Monte Carlo sampling methods result in an undesirably large uncertainty in the 

calculated pressure. This is unsatisfactory for the simulation of close boiling mixtures and 

is likely to also cause undesirably large uncertainties in the temperatures that would have 

to be calculated from any adiabatic Gibbs Ensemble simulations. New Monte Carlo 

sampling algorithms, therefore, need to be developed to more rigorously sample 

configurations which minimize the pressure and temperature differences between phases. 

This is explicitly in accordance with the mechanical and thermal equilibrium components 

of total thermodynamic equilibrium and will ensure lower statistical deviations in the 

calculated intensive properties. 
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