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ABSTRACT

This v|v0rk describes the installation of a Beowulf cluster at the University of KwaZulu-Natal
and the subsequent Monte Carlo molecular simulation study which was undertaken to investigate
the pure component and binary mixture phase equilibrium properties for systems of industrial
relevance. The work was undertaken both at the University of KwaZulu-Natal in South Africa and

at the Hoégskolan i Boréds in Sweden.

To conduct the molecular simulation work, a 20-node Beowulf cluster called yoda was assembled
and installed at the University of KwaZulu-Natal. The project saw the installation of a Linux
operating system as well as the necessary PBS queuing software, the SSH remote login software
and the BIGMAC molecular simulation program code.

The first objective of this work was to use the BIGMAC program code to study hydrocarben
mixtures for industrially relevant systems. To this end, five different n-alkane and 1-alkene
mixtures were simulated using the Spyriouni er al. (1999) olefin force field as well as the NERD
and TraPPE force fields. These mixtures included an ethane + propene binary at 277.6K, a 1-
hexene + n-octane binary at 328.15K, an n-dodecane + l-octadecene binary at 760mmHg, a
propene + 1-butene binary at 294.3K and a 1-butene + 1-hexene mixture at 373K. It was shown
that the NERD and TraPPE force fields yield P-x-y data sets that are, in general, shifted to higher
pressures due to their overestimation of the pure component vapour pressures but that the x-y data is
accurately reproduced for all three force fields used. |

Building on the results from the binary simulations, the NERD and TraPPE force field parameters
were extended to the simulation of conjugated alkenes (1,3-butadiene; 1,3-pentadiene and 1,3,5-
hexatriene} to examine their ability to simulate molecules for which they were not explicitly
parameterized. In this part of the work, it was shown that the effects of intramolecular equilibrivm
geometries can have a significant impact on the predicted thermophysical properties. While the
results for 1,3-butadiene were very successful, the results for the remaining conjugated alkenes and
the results from the TraPPE force field simulations were more disappointing. This work suggested

that a reparameterization of the united-atom force field parameters was necessary.

Another issue which emerged from the simulation of the five initial binary mixtures was the

difficulty which was experienced when trying to use the N;N,PT Gibbs Ensemble to simulate



narrow phase envelope regions. As a result, a new methodology was developed in terms of which
new variants of isothermal Gibbs Ensembles can be developed. It was shown how novel Gibbs
Ensemble partition functions and their corresponding thermodynamic potentials can all emerge
from a single governing equation which is a special case of the generalized multiphase uPT
ensemble, In ferms of this analysis, the novel w,NoVT and ENVT Gibbs Ensembles were
developed, characterised and tested. It is shown how these two new ensembles reliably overcome
the mass balance constraints inherent in the traditional N;N,PT Gibbs Ensemble. These novel
Gibbs Ensembles were used to study two close-boiling mixtures and, to the kmowledge of this work,
this represents the first time that such close-boiling mixtures have been directly studied using a
Gibbs Ensemble.

Finally, a new force field for n-alkanes and alkenes called the TBORG (Transferability Based On
Relaxing Geometries) force field was developed. This new force field represents a large regression
effort which sought to improve the intermolecular parameters for n-alkanes and alkenes by allowing
for a larger and more versatile intramolecular parameter set while still retaining the conceptual
appeal of transferable intermolecular parameters. The n-alkane parameters were highly successful,
although the parameters for alkenes gave less satisfactory results. Both sets of parameters,
however, achieved particular success in improving the estimation of pure component vapour
pressures and vapour densities for carbons in the range of C, to C; without sacrificing the accurate
prediction of liquid densities, critical temperatures and critical demsities. The regressed parameters
point towards the need for a wider intramolecular parameter set to be used in conjunction with

anisotropic parameters in order to improve the predictions of transferable united-atom force field
models.
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“The cie\.rli‘lpi; in the details” — German ﬁmverb

acc(o — n) probability of accepting a move from old state o to new state n

A . constant for the law of rectilinear diameters

A macroscopic variable

A ' Helmholtz free energy, A=/ -T§

b vector co-ordinates of a periodic image, b = (bx,by ,bz)

bbb, x-, y-and z-components of a periodic image

B constant for the density scaling law used to regress the critical temperature

{c} ‘ set of £ trial orientations for Configurational-Bias Monte Carlo moves

Co1a.. cosine series torsional constants

C number of components

DOF number of intensive variable degrees of freedom which need to be specified

doom (A) largest distance between the interaction site furthest from the centre of mass of
molecule A

A fugacity of species i

f (N,V) compounded function of N and V for the generalized Q,,, ensemble

F number of phases

F; pair force exerted on molecule i by molecule j
Fy objective function

Ty “Massieu” function in the entropy representation
g, (r;}) pair distribution function

4{N) compounded function of N for the generalized Q,,, ensemble
G Gibbs free energy G=U ~-T5+ PV

h Planck’s constant

3 Hamiltonian

H enthalpy, H =U+ PV

AH, latent heat of vaporization
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index to denote distinct phases

number of trial positions for the first segment placed used during 2 Configurational-
Bias Monte Carlo move o

number of trial directions for segments after the first segment is placed used during
a Configurational-Bias Monte Carlo move
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bond stretching constant

bond angle bending constant
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kinetic {(ideal) contribution to the energy
overall constant used to non-dimensionalize the partition function
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molecule mass
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number of intensive parameter specifications replacing extensive parameter
specifications in the Legendre transform
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number of molecules
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denotes a probability density function
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phase space probability density

ensemble partiion function T T . —

molecular or atomic position vector for interaction site i, r, = (r;,ry 7 )

vector separation between sites interaction sites i and j , 1, =r, -1,
three orthogonal unit vectors in three-dimensional space
molecular or atornic position scalar

cut-off radius

cut-off radius for the DC-CBMC algorithm

scalar separation between interaction sites i and j , 5 = lrij|

x-, y-and z-components of molecular position

total number of points generated in an importance sampling algorithm
Universal Gas Constant

randomn number from a uniform distribution in the interval [0,1]

standard deviation |
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entropy

instantaneous value of the entropy

time

absolute temperature

reduced temperature, 7, =T/T,
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CHAPTER 1:
INTRODUCTION

“If one doesn’t know to which port one is sailing, no wind is favourable” — Lucius Annaeus Seneca

Separation operations are ubiquitous in the chemical industry. Separation operations of one
form or another are found in the purification of chemicals or in the removal of wastes from process
streams. Most of these separation processes involve the formation of a new phase or the addition of
a new phase. Consequently, knowledge of phase equilibria is crucial to the design of efficient
separation strategies. The number of known chemical compounds exceeds six million and certain
estimates project that this number may increase at a rate of 100,000 new chemical compounds per
year. Clearly this creates a data gap between the synthesised chemical of the organic chemist and
the measured pure component property data of the physical chemist. The situation becomes even
worse for binary mixtures where the number of unique binary combinations roughly increases
proportional to the square of the number of pure components and where nearly all of the mixtures of

interest are usually complicated functions of temperature (and pressure).

With the rapid advances in computer hardware and clustering technologies in recent years,
however, molecular modelling and molecular simulation techniques have emerged as a powerful
means to predict phase equilibria and to explore the link between microscopic chemical behaviour
and macroscopic properties. The ability to simulate different phase diagrams could in the near
future, therefore, become viable for the design of separation processes and crucial to uncovering the
underlying phenomenological factors at work.

Ungerer (2003) has suggested that the greatest current challenges facing the molecular simulation
community may be grouped into the following three categories:
¢ Development of accurate force fields to correctly describe intermolecular interactions.
» Development of reliable mixing rules to comectly model cross-interactions between different
functional groups or atomic species.
e Development of efficient algorithms to improve the sampling efficiency of computer
simulations and to further reduce the time for simulating physical properties.
This work addresses the first and third points above.
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In Chapter Two, the installation of a2 Linux Beowulf clnster called yoda is described. The
installation procedure, the general operating principles and the varicus softwares required are

discussed.

As a necessary first step, Chapter Three outlines the basic theory of the thermodynamics of Monte
Carlo simulations. In particular, the concept of ensembles is fleshed out and the notion of
importance sampling is introduced. Several thermodynamic partition functions are given to
establish the link between macroscopic thermodynamics and statistical thermodynamics. It is also

explained how thermodynamic degrees of freedom can be understood in a simulation sense.

The primary simulation method used throughout this work is the Gibbs Ensemble Monte Carlo
method and Chapter Four details how this algorithm is implemented. The strengths and weaknesses
of alternative simulation strategies are also discussed. A new unification formalism is also
developed in terms of which it is shown how the partition function of novel isothermal Gibbs
Ensembles can be developed from a single governing equation which also directly provides the
thermodynamic potential. The Semi-Grand Ensemble is also introduced as a prelude to the
development of two new isothermal Gibbs Ensembles in Chapter Eight.

Chapter Five describes the auxiliary algorithims, the intra- and intermolecular potentials used as well
as some of the calculation procedures for the chemical potential and the pressure. The essential
Configurational-Bias Monte Carlo algorithm is also explained as this is required for all of the

subsequent simulation work.

The simulation results of five binary n-alkane and 1-alkene mixtures using three different force
fields are presented in Chapter Six. The performance of the NERD, TraPPE and Spyriouni et al.
(1999} olefin force fields are discussed and their strengths and weaknesses elucidated for these
relatively ideal mixtures. As justification for the development of new Gibbs Ensembles, the

limitations of current N\ N,PT simulations are explained.

Chapter Seven describes the extension of the NERD and TraPPE force fields to the simulation of
conjugated alkene molecules. The objective was to test the versatility of transferable force fields to
new homologous series for which the existing parameters sets should be sufficient without adjusting

the intermolecular parameters. It is shown that the magnitude of the intramolecular equilibrium
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geometries play a major role in the accurate prediction of the pure compounent phase equilibrium

properties. e e i meneamme e, e s e

Building on the foundation laid in Chapter Five, Chapter Eight introduces the novel p,N,VT and
£NVT Gibbs Ensembles. Using these two new algorithms, the simulations of two close-boiling
mixtures are presented. It is shown how the N, VT and £ NVT Gibbs Ensembles have, for the
first time, permitted the simulation of a binary mixture with such a narrow phase envelope. The
new Gibbs Ensembles are also shown to provide phase compositions with considerably lower
statistical uncertainties than conventional N,N,PT Gibbs Ensembles.

Chapters Six and Seven clearly established several deficiencies with respect to current transferable
united-atom force fields. Chapter Nine builds on the results of these two Chapters and presents the
new TBORG n-alkane and alkene force fields. It is shown how the incorporation of a larger
intramolecular parameter set is able to provide a force field which, for the first time, is able to
provide an accurate prediction of the vapour pressures and vapour densities while not sacrificing
accuracy with respect to the prediction of the liquid densities, the critical temperatures and critical

densities for molecules in the range of C, to C,.
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BEOWULF CLUSTER YODA

“No one understands the value of the unforgiving minute” — General George S. Patton

2.1 Introduction

In 1965, the co-founder of Intel- Corporation, Gordon Moore, made his famous observation
that the number of transistors on a silicon chip roughly doubles every 2 years (Moore {1965)).
Since 19635, however, developments in microprocessor technology have seen “Moore’s Law” come
to predict an average doubling of PC speeds every 18 months. Indeed, even for this work over the
three year period beginning in December 2001 and lasting until January 2005, entry level computer
speeds from South African retailers moved from approximately 1.2GHz at the end of 2001 up to
over 4GHz at the beginning of 2005. With this increase in computer processing power expected to
continue beyond 2015, clustered computer technologies offer an exciting new too! which can be
explored to meet the computer-intensive requirements of molecular simulation of phase

equilibrium.

2.2 The Beowulf Cluster aS a Computational Tool

Until the mid 1990°s supercomputing (or high performance) computing was essentially
reserved for those who had access to budgets in the millions of dollars. The Beowulf evolution has
completely changed this scepario. Using relatively cheap, off-the-shelf components from a local
computer hardware vendor, it is now possible for anyone in the research community to have access

to a dedicated computational resource by building a Beowulf cluster.

In most general terms, computer clusters are ensembles of independently operational computers
integrated by means of an interconnection network which supports user accessible software for
organizing and controlling concurrent computing tasks that may co-operate on a common

application program or workload (Sterling (2001)).

2.2.1 A Brief History

In 1993, Thomas Sterling and Donald Becker led the so-called “Beowulf project” which

aimed to build a gigaflops workstation for under $50,000. Several developments in previous years

4



D e

BEOWULF CLUSTER YODA

had made this project possible. Indeed, by 1993, the new Intel 80386 processor represented a major
performance advance over its predecessor the 80286, RAM memory had decreased to
comparatively low cost levels and 10 MBps Ethemet was commonly available for standard PCs as a
local area networking technology. In addition, the Linux operating system (first released by Linus
Torvalds in 1991) had come to the point where it could be used in a cluster environment, and the
Parallel Virtual Machine (PVM, hitp://www.csm.oml gov/pwin/, a library of linkable functions that

could allow routines running on separate but networked machines to exchange data and co-ordinate

their operation) had managed to become the first major cross-platform parallel programming

message passing model to achieve wide acceptance. The project ran essentially outside the main
parallel processing community and was based on commodity software and publicly available
technology. The Beowulf project succeeded and a 16-node cluster of Intel 486 computers costing
$40,000 ran in 1994. In the process, the Beowulf project developed all the necessary Ethemet
driver software for Linux and additional low-level cluster management tools and demonstrated the

cost effectiveness of Beowulf class systems for real-world applications.

In 1997, a Beownlf cluster costing under $50,000 won the Gordon Bell Prize for performance / unit
price. This trend has continued and Beowuif clusters have increased their share of the “Top 5007
supercomputer list (http://www.top500.0rg). In June 2001, 33 Beowulfs were in the Top 500, while

in June 2005, this number had risen to 304, The major advantages of 2 Beowulf cluster include:

¢ Scalability: new nodes may readily be added to an existing cluster to increase ils size,
s Availability of new software; the extensive community of software developers on the internet
have ensured the ease of Beowulf installation and support, and

» Performance / unit price: the Beowulf cluster display the lowest $ / computational power

statistics.

A Beowulf cluster may be conveniently thought of in terms of a layered struchure of interlocking
hardwares and softwares that facilitate the interface between the computational resource and the
user. This is illustrated in Figure 2-1:


http://www.csm.oml.gov/pvinA
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Figure 2-1: Schematic representation of the hardware and software architecture of a Beowulf cluster.
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BEOWULF CLUSTER YODA

A Beowulf cluster comprises a number of hardware and software components. Unlike

traditional mainframes, the user can express considerable freedom in the selection of the system
architecture and the range of software which is to be installed.

2.2.2.1 The Hardware nodes

The hardware node is the principal building block of a Beowulf cluster. Normally a
distinction is made between the controlling or “master node” and the computational or “slave
nodes”. In certain installations it is possible to install the master node as a computational node but
this adds to the load on the master node with the benefit of only one additional computational PC.
For this project, the master node was therefore installed as a dedicated administration node to
maximise its administration performance. The Intel Pentium and Athlon AMD represent the two
broad families from which slave and master nodes tend to be drawn. Ideally, all nodes within a
cluster should be of similar specification. This is particular true if massively paralie] jobs are to be
mun in order to minimize load imbalances between the computational nodes. This is, however, no

longer strictly necessary with recent developments in queuing technology

At the time of the purchase of the hardware for the yoda cluster in November 2001, the Athlon
AMD 1.2 GHz architecture was noted to have a computational performance advantage over the
corresponding Pentium IT machines in a similar price bracket. For this reason, it was decided to
proceed with the Athlon AMD’s as the nodes of choice.

2.2.2.2 The Network

The network provides the means of exchanging data between the clustered nodes and the
means for co-ordinating their actions. The subcomponents of the network are the network interface
controllers, the network swiiches and the network channels and links. In late 2001, considerable
interest was being expressed in the Beowulf community in the use of Gigabit Ethernet connections
and optical fibre cabling. Since massively parallel calculations were not likely to be undertaken on

yoda, it was decided to utilise the standard 100Megabit Ethernet connection and the standard
moulded copper cabling.
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2.2.2.3 Operating System

Linux has emerged as the dominant Unix-like operating system. There 1s some debate within
the Beownlf community surrounding the use of Windows-based Beowulf clusters (Sterling (2001)).
The greater stability of the Linux operating platform; the large global community of Linux kemel
and application developers who readily provide support, bug-fixes and sofiware enhancements; as

well the much lower cost of the Linux operating system made possible by the open source software

imitiative (http://www.opensource.org/) and GNU (Gnu’s Not Unix), meant that the installation of a

Linux operating system on the yoda cluster had a distinct cost advantage over the installation of a

Windows-based system.

Aside from direct costs, the essentiaily freely available software and data manipulation applications
on a Linux machine are more suited to dealing with the large quantities of data generated in the
output file from a typical simulation. These include the various shell programming environments
like bash, tcsh and csh for the manipulation of files as well as the column and row scripting and
manipulation packages such as sed (http://www.gnu.org/software/sed/sed.hitml) and gawk
(hitp://www.gnu.org/software/gawk/gawk. html) (Siever er al. (2000} and Welsh et al. (1999)). In
addition, graphical packages like xmgrace (http:/plasma-gate. weizmann.ac.il/Grace/) provide
graphical analysis tools equal in utility to Microsoft Excel and which are perhaps more ideally
suited to the representation of large vector arrays of data. = '

2.2.2.4 Resource Management

The distributed resources of a Beowulf cluster require the services of a software system for
resource management. Several such software systems exist to provide administrators with the
ability to balance contending demands and to apply policies to govemn the use of the cluster. The
tasks that need to be performed include: o

* Queuing: Different people submit different jobs to a given Beowulf cluster. A queuing
system is necessary to buffer job requests until resources are available to process them.

¢ Scheduling: This is necessary to balance the priorities of jobs with the existing cluster
governance policies to optimally fit as many jobs onto a cluster at any given time or load.

¢ Resource control: This becomes important to put jobs on the correct nodes, to start jobs, to
terminate jobs and to suspend jobs as required. |

¢ Monitoring: Software needs to be in place in order to continuously track the status of the

cluster and its resource utilization. This is needed for proper cluster management.
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e Accounting: A billing system is necessary to determine the remaining time due to a user as

well as to assess overall system availability.

The two most prominent packages used for this type of application are the Portable Batch System
(PBS, http://www.openpbs.org/) and the Sun GridEngine (http:/gridengine.sunsource.net/)
softwares. ~ An additional package for resource management is the Maui Scheduler

(http://www.clusterresources.com/products/maui/). The Maui scheduler in fact sits on top of other

lower resource managers and offers additional resource management options. It was not installed

for this project due to the limited demands that were placed on the Beowulf cluster yoda.

2.2.2.5 Program Software

Common programming languages used for molecular simulation include C and FORTRAN
77. Although there are now more sophisticated variants of these two programming languages (C++;
; FORTRAN 90; FORTRAN 95), their portability, ease of integration into a myriad of installation
environments, ease of compilation and low processing overhead, all ensure that they still find
appeal in the programming community. For this project, a serial and a parallel version of the
BIGMAC programming code as provided by Thijs Vlugt were modified and utilized for the
simulation of phase equilibria.

2.2.2.6 Parallel Environment

Most simply, parallel computation on a Beowulf is achieved by dividing a computation into
parts and making use of multiple processes on separate processors to execute each of these parts.
The most simple approach to achieve this is to have each of the processors send and receive
messages. This is made possible by a message-passing library specification, MPI (Message Passing
Interface, http://www.mpi-forum.org). MPICH (http://www-unix.mcs.anl.gov/mpi/mpich/) and
LamMPI (http:/fink.sourceforge.net/pdb/package.php/lammpi) are the two most popular
implementations of MPL

In late 2001, the BIGMAC code was used to simulate the vapour-liquid equilibrium of a system of
300 molecules of (propane + n-pentane) at 64°C on the Beowulf clusters yoda (http://voda.nu.ac.za)

and Ingvar (www.nsc.liu.se/systems/ingvar/) at mole fractions of 0.1 and 0.9 propane. At the time

of the test, both the Ingvar and yoda clusters had similar slave node specifications. Typically, a
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Monte Carlo simulation will only achieve a linear speed increase with increasing numbers of nodes
running a job in parallel when the number of interaction sites in a computation exceeds 1,000 sites
(Vlugt (2002)). As may be seen from Figure 2-2, the speed of execution of the BIGMAC job when
run on 8 nodes is not significantly higher than that achieved when the job is only run on 2 nodes.
This is due the bottleneck of processes (and algorithms) requiring network communication
(message-passing) and hence the use of any more than 2 nodes per job represented a waste of
system resources for the yoda cluster. For 8 nodes, this network communication overhead in fact
leads to the increase in the CPU time as shown in Figure 2-2 for the 90mol% simulations on yoda
and Ingvar. The typical system sizes used in this work were consistently less than this “threshold”
value of about 1000 interaction sites and hence the serial BIGMAC code was modified and used for

the results presented in this work.
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Figure 2-2: Performance of the BIGMAC parallel program code for the 300 molecule binary system of
propane + n-pentane at 64°C on the yoda and Ingvar Beowulf clusters.

2.2.2.7 Remote Access Software

An important advantage of the Beowulf cluster is that the access of the user may be remote

with respect to the physical location of the Beowulf cluster itself. The Beowulf cluster may thus
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exist as a dedicated computational resource. This is achieved by means of a remote login software.
In texms of this work, the Open SSH (Secure Shell)-software-was used (hitp:/ww.openssh.comy).- - =
This software is freely available for academic use and hence represented no additional financial

overhead for the project.

In this way, using relatively cheap off-the-shelf components and hardware, a 20-node Beowulf
cluster called “yoda” was assembled for this work. The following hardware specifications describe

the equipment used to assemble the Beowulf cluster yoda:

Table 2-1: Specifications of the master and slave nodes for the Beowulf cluster yoda.

Master Node Slave Node
CPU 1.2GHz AMD Thuderbird 1.2GHz AMD Thuderbird
Motherboard | Asus Socket A7VLT33-VM Asus Socket A7VLT33-VM
Slots Five PCI and 4 Integrated AGP Five PCI and 4 Integrated AGP
RAM 256Mb PC 133 SDRAM 256Mb PC 133 SDRAM
Hard Disk 80Gb Hard Drive 20Gb Hard Drive
Floppy Drive | Samsung 3.5” 1.44Mb Samsung 3.5 1.44Mb
CD-ROM 52X CD-ROM Drive -
Graphics Card | 8Mb Graphics Card 8Mb Graphics Card
Network Card | DFE-570TX, 4x100MB, TP, PCI ;z?m FastBhertink 1 3CH05CTXM TP

Table 2-2: Additional Hardware for the Beowulf cluster yoda.

Network Switch One 3COM 24-port 10/100Mbit Fast Ethemnet Switch

Keyboard and Mouse | One set each for the master node and for slave node administration

Monitor One for the master node and one for slave node administration

Three important cost-saving features included:

e Only the master node and the first slave node had CD-ROM drives. This is because once the
master node had been installed, all remaining installations could be achieved by boot disk.

+ Only 1 master node monitor and one meobile slave node monitor were purchased

11
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¢ The slave node hard-drives could be limited to 20Gb capacity since this greatly exceeded the

——required installation space. - - : e

2.2.3 Imstaliation of the Beowulf cluster yoda

The installation of yoda and was completed at the end of 2001. The Red Hat 7.1 provided a

2.4.2 kemnel and almost all of the necessary software that was required for the installation and

administration of the cluster. Version 7.1 was the most recent version of Red Hat Linux available at

the time of the installation.

2.2,3.1 Partitioning the Hard Drive

A total of 9 partitions were created on the hard drive of the master node:
¢ A boot partition, “/dev/hdal”.
* Another primary partition, “/dev/hda2”.
e A third primary partition created as the system’s swap drive.
¢ A fourth partition, “/dev/hdad”, was created as an extended partition to include the rest of the
disk partitions. These remaining partitions included “/usr”, “/usr/local”, “/var”, “/tmp” and
“/home”.

2.2.3.2 Local Area Network Settings and Running Services

The master node is part of two different networks, an internal network with a range of private
IP addresses (10.0.0.0) and an external network with a public IP address. The ethQO device was used
for the host for the public IP address and the ethl device was used for the host for the private IP
address. In addition, the following services were selected to be run on the machine: crond, dhepd,
gpm, ipchains, iptables, keytable, netfs, network, nfs, nfslock, ntpd, portmap, random, rawdevices,

' syslog, tfip, xfs, xinetd and sshd2.

2.2.3.3 LILO Configuration

The installation of LILO on the Master Boot Record was only necessary on the master node
because the slave nodes were booted using dhep and bootp over the network. In addition, a high

12
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security firewall was configured to ensure network security. SSH traffic was explicitly allowed on

oo mme——ee-port 22-and the firewall rules-were configured only to apply on ethQ,——————=—varicen

2.2.3.4 Setting up the Hostnames of the Nodes Used

The hostnames of 2ll the nodes in the cluster had to be defined and this was done in the
“/etc/hosts™ file which served as a naming service for the cluster's internal network. In addition, the
“fetc/resolv.conf” file was configured to provide access to the Intemet Domain Name System. This

particular file is needed in a series of routines 1o resolve IP-address to domain names or vice versa.

2.2.3.5 Installation of the DHCPD and BOOTP

DHCP stands for Dynamic Host Control Protocol, and its server provides its clients with IP
addresses according to those defined in its configuration file, */etc/dhcpd.conf”. The DHCPD that
came with Red Hat Linux 7.1 also featured a BOOTP server and by defining each client separately,
this feature was enabled and each node could be booted off the network. Each client had to be
listed in the DHCP configuration file and given an IP-address based on its MAC address (a six byte
unique number, identifying that particular Ethernet card.). The DHCFPD only applies to ethl. In
order to reflect this explicitly, a small alteration was made to the DHCPD SystemV control script

 found in “etc/initd/dhopd”.

2.2.3.6 Installation of Secure Shell (SSH)

At the time of installation, the OpenSSH version 3.1.0 was the latest version of SSH and it
was instalied on the cluster. After installation, a few changes had to be made to the file
“feto/ssh2/sshd2_config” for the server to work in the cluster environment. Most significantly,
every user must be able 1o logon to every node without giving their password, as this is needed by
MPI and “rdist”. A method to sclve this problem is to use host-based authentication within the
cluster together with password authentication for access from the outside. This required:

¢ Changing “AllowedAuthentications” to "hostbased, password".
o Checking that “IgnoreRhosts” is set to “no”
¢ Changing “DefaultDomain” to the appropriate domain
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o Creating a file named “.shosts” with permissions set to 0400. This file had to be located in
~——e==we-. - - the home directories of all users and had to contain ali hostnames and a username for €ach .
host. The owner and the group of the file had to be explicitly set to be the user.
The directory named “knownhosts” in *“/etc/ssh2/” must contain all public keys from every node.
The SSH server was restarted by 1ssuing the command “/etc/rc.d/init.d/sshd restart”.

2.2.3.7 Installation of Slave Nodes

Next, it was possible to install a single slave node as an image which could be used for
cloning additional nodes. For compatibility reasons, the same version of RedHat Linux 7.1 was
used. The actual partitioning of each node’s hard drive is done by BpBatch during the installation

phase of the imagefiles.

The installation and configuration procedure of the slave nodes was the same as for the master
node, except for the generation of keys. Since the same pair of keys had to be used on every node,
the keys in “/etc/ssh2/” on the master node had to be copied to the slave node and then used to

overwrite any created keys that were local to the slave node.

In order to add new nodes to the cluster, a few changes had to be made to the master node before
the new nodes could be used: .

¢ The new node with its network information (MAC address, IP-number) had to be added to

“/etc/dhcpd.conf”.

* The new node’s hostname and IP-number had to be added to “/etc/hosts™.

* The new node had to be added “/etc/distfile™.

» A copy of “/ete/ssh2/knowhosts/node(0.yoda.ssh-dss.pub™ had to be made and renamed to

_ “newhostname.voda.ssh-dss.pub”.

¢ The new node's hostname had to be added to “/var/spool/PBS/server_priv/nodes”.

Importantly, however, whenever a new user was added or deleted, this information had to be

manually updated on all nodes.

The administration of slave nodes can be a tedious task. The availability of cloning software,
however, alleviates this burden. For this work, the freely downloadable remote-boot processor

BpBatch (http://www.bpbatch.org) was used. BpBatch allows one to partition hard drives as well

as to create images of entire hard disk partitions and file systems. It then provides a framework to
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distribute and install these images on a cluster of PC’s, The software takes control at an early stage

—===—-=0f the boot process of the computer. - Network cards supporting PXE booting were thus required.

BpBatch's loader must be specified as the bootfilename in the DHCP information for the client
computer. BpBatch's loader can then use TFTP to retrieve the main BpBatch program from the
server. This also required the creation of a “/tftpboot” directory with the correct file permissions.
Once BpBatch is started, it looks for a default script on its network server. Every command found

in this script will be executed in a serial order, until the end of the script is reached.

The clone images were created with the help of BpBatch's MrZip. MrZip is a tool used for
compressing a selected amount of a disk system. After completion the image files were moved to

the “/iftpboot™ directory, from where BpBatch can collect and use the images as required.

2.2.3.8 Installation of the Message Passing Interface (MPT)

MPICH is a portable, open-source implementation of the Message-Passing Interface standard
and is suitable for clusters built on standard Ethernet network devices and wiring. At the time of
installation, the latest MPICH version was MPICH-1.2.3 and this was selected for installation. In
terms of the website documentation at bitp:/www-unix.mes.anl.govimpi/mpich, MPICH
implements all features found in the MPI 1.2 standard. Every node in the cluster required that a
local copy of MPICH be installed. This was achieved by putting the compiled version of MPICH in
an nfs-mountable directory, mounting this on every node and then installing it on each node. The
“fusr/lib/mpich/share/machines LINUX"” file was modified to reflect all nodes in the cluster while
the “/usr/lib/mpich/bin/mpirun.args” file was modified to integrate MPICH with PBS.

2.2.3.9 Installation of the Portable Batch Scheduler (PBS)

At the time of instaliation, PBS had become the de facro standard for job scheduling on Linux
Beowulf clusters. In order to perform the workload management functions of queuing, scheduling
and monitoring, PBS consists of the following fundamental parts:

» The Job Server. This daemon is run continuously on the master node and its main function is
1o receive and create batch jobs, modify jobs if needed and protect the jobs in case of a
system crash.

¢ The Job Executor (MOM). This daemon handles the actual execution of jobs. When it

receives a copy of a job from the server, it creates a new session. Apart from the actual
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execution, the executor is also responsible for returning the job output to the user.. A job
et —- GXECULOT dagmmon runs on each computer node that is part of the cluster . . ... ... . .
¢ The Job Scheduler. The Job Scheduler daemon deals with enforcing the resource policies

defined by the system administrator. The Scheduler is in close contact with the MOM’s

running on each node in order to determine what resources are available and the status of

gach job.

The OPENPBS software was downloaded and installed in the “/usr/pbs/ directory while the default
“fvar/spool/PBS/” directory was used for the spooling directory. Both the Job Server and the Job
Scheduler were configured by modifying configuration files located in the “/var/spool/PBS/
directory on the master node. In particular;
e The “/var/spool/PBS/server_privs/nodes” file was edited to include the mames of all 19
available computational nodes. These names are read by the server during bootup.
s The “/var/spool/PBS/server_privs/serv_conf” file was modified to define 4 default queues
(“qmini”, “qsmall”, “qmedium”, and “qlarge”) and one routing queue. - The

“fvar/spool/PBS/server_priv/qmgr” command was used to apply the queue configuration.

Each slave computational node also required the installation of a server to handle the execution of
jobs sent from the master node server. This required: .
o Setting “PBS_SCP=/usr/local/bin/scp™ in the “/etc/pbs.conf” file in order to specify the
application to use during the copying of output files between nodes.

¢ Specifying the execution server fo use in the “/var/spool/PBS/mom_priv/config” file on each
node.

2.3 Cost Considerations

Although a Beowulf cluster exhibits very favourable price per unit performance statistics, the
useful lifespan of a Beowulf cluster is typically less than 3 years (Vlugt (2002)). This is because
the relative speed of all of the computational nodes is then % that of entry level computer in
accordance with Moore’s Law. In addition, manufacturer guarantees typically do not extend

beyond 2 years for the most expensive components such as the motherboards and hard-drives.

The greatest hazard to the yoda installation proved to be the semi-regular electrical power outages
(usually around the holiday season in South Africa) which ultimately further reduced the lifespan of
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the hard-drives. Multiple UPS units for both the master nodes and slave nodes with automatic

shutdown softwares thusproved essential to ensure stable operation and cluster protection.

Network and communication latency is a crucial issue which must be adequately addressed in any
cluster installation. Although this issue is most serious for parallel computing applications where
the transfer of large quantitics of data between the slave nodes and master node must be achieved
efficiently, even the serial calculations of the yoda cluster suffered from severe packet loss
depending on how heavily the cluster was loaded with computational jobs and on how many jobs
were quened. The replacement of the handmade cabling with moulded Belkin “FastCat” CatSe
cabling essentially eliminated this problem at the end of 2003. Data packet losses were
dramatically reduced and the network latency decreased by two orders of magnitude in “ping” tests
down to approximately 0.2 milliseconds.
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THERMODYNAMICS OF THE MONTE CARLO SIMULATION
OF PHASE EQUILIBRIA

“To see the world in a grain of sand;

and heaven in a wildflower |
Hold infinity in the palm of your hand;
And etemity in an hour” — William Blake

3.1 Ensemble Averages

Legend holds that in 1872 a $25,000 wager was made between Califormia Govemor Leland
Stanford and two other men, James R Keene and Fredrick MacCrellish, concerning whether all four
of a horse’s legs left the ground in a full gallop. It was a commonly held Victorian belief that when
a horse galloped it always maintained one hoof in contact with the ground. Stanford was convinced
otherwise, but since a horse’s trot or canter was too fast for the human eye to see, the point seemed
impossible to prove. He thought that photography would decisively settle the matter and hired
Edweard James Muybridge who at the time held the position of ‘Official Photographer for the US

Government for the Pacific Coast’.

Muybridge’s subject was Stanford’s horse, and he calculated that he needed 12 cameras 22 inches
apart to record the separate parts of the horse’s stride. As it ran across the trip wires, the horse

pulled out a pin allowing the shutter to move and take a picture,

Muybridge was successful, Stanford won the bet and the work culminated in a lecturing circuit for
Muybridge concerning animal locomotion and development of the zoopraxiscope which was the

precursor to Edison’s phonograph.

The natural question of course is: What exactly is the link between the molecular simulation of
phase equilibria and an obscure 19th century bet? Essentially, the genius of Muybridge was in
realising that a sufficient number of still photos taken at regular intervals could be used to
decompose an apparently continuous variable (a horse’s gallop) into discrete, manageable images to
observe the horse’s gallop. This analogy is, therefore, both convenient and appropriate for

understanding the essence of a Monte Carlo sirnulation. Basically, the idea behind a Monte Carlo
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stmulation is to calculate a macroscopic variable by substituting our almost intuitive understanding

of 2 macroscopic variable being continuous with discrete microscopic “pictures’ of the system == -

This is consistent with the way in which one measures macroscopic variables. Consider a pressure
gauge. When one observes the reading on the gauge, one is not actually observing the
instantanecus pressure, but rather the reading that one takes is an average of the fiuctuating pressure
observed on the gauge. These different fluctuating values can be thought of as co-ordinates in

multidimensional space, namely phase space. A macroscopically observed variable may thus be

written as a time average as follows:

fm—hﬂﬂ

A2, - L Tanr)) e

where A is the macroscopic variable, { ) , denotes an average over time, Y(¢) denotes a

i
particular point in phase space at time ¢ and subscript ¢, denotes the observation time. In practice
it is not feasible to calculate 4, over an infinite time and hence the link with the horseracing

analogy. The idea, therefore, is to replace the time average by an ensemble average where an
ensemble is a large collection of points Y in phase space with the same macroscopic parameter
values, e.g. constant number of molecules, constant volume and constant temperature (NVT) or
constant number of molecules, constant pressure and constant temperature (NPT). One may

therefore replace the time average of Equation (3—1) with an average over all the members of the
ensemble ‘frozen’ at a particular time:

A= (A, = S A2, (1) 62

where { ) = denotes an ensemble average and &,,(Y) represents the probability density of

observing a particular point in phase space of a given ensemble. It should be stressed that a
necessary requirement for Equation (3-2) to hold valid is that the system be ‘ergodic’, that is that all
state points eventually access all other state points and that there are no inaccessible points in phase
space that should in fact be accessible. '

It is more convenient to define a ‘weight’ function w,, (Y} in place of &, (Y) which satisfies the

following equations (Allen and Tildesley (1987)):
B (1) = Qo1 (Y) (-3
Q.. = Z w, () _ (3-4)
= _
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(a),.= {;WM (T)ﬂ(y)}/ Zrelt)

(3-5)

where Q, . is the ensemble partition function (also called the sum over states).

For the purposes of this thesis, it is necessary to initially consider the partition functions for three
‘basic’ ensembles. It is assumed throughout this thesis that the basic simulation box for all
equations is a cube and that the dimensionality of all simulations boxes 1s thus 3. As a starting point
for further discussion, it is instructive to write the quasi-classical partition function for the pure
component canonical (NVT) ensemble (Allen and Tildesley (1987)):

H » % (p" N u(r”
Ovir =Wjdp exp[- ( %T} jdr exp[“ ( )kBT} (36)

— ) ex
T ZNVTENVT

where Q. denotes the kinetic (ideal gas) NVT partition function, QF,, denotes the potential

(excess) NVT partition function, # is Planck’s constant, &, is Boltzmann’s constant, T is the

N
absolute temperature, ?(‘,(p”) = Zp,z [2m is the kinetic energy, U (r”) is the potential energy and

i=t
the integration is performed over all molecular momenta vectors p” and molecular position vectors
r* for the N molecules in the system. The exponent ‘3N’ in the term #°" arises because of the 3-
dimensional nature of the simulation box that has been assumed to apply for ¥ molecules. The
N1 term accounts for the indistinguishability of the molecules. The final line in Equation (3—6)
results because the energy is always expressible as the sum of the kinetic (p-dependent) and

potential (r-dependent) contributions. In particular, the ideal contribution may be evaluated

analytically because K is a quadratic function of the momenta to give:

i V i
T = NTAE - (3-7)

where V' is the volume and A is the thermal de Broglie wavelength where
A=(w[2mmk,T)" ) (3-8)

where m 1s the molecule mass. The excess part is then:

G =P [dr¥ exp {—U(rﬁ%i,} . (-9
B .
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For Monte Carlo simulations, this analytical integration of the kinetic contribution to the partition
~m——m——e..-fnction is wsually-possible. It is convenient to recognise that the partition function represents a

surn over all possible molecular arrangements, i.e. a sum over states.

Monte Carlo simulations in the isothermal-isobaric ensemble or NPT ensemble were first described
by Wood (1968), and a neat derivation of the partition function of the NPT ensemble is given by
Frenkel and Smit (1996). In the NPT ensemble, the volume is allowed to fluctuate so as to keep the
total system pressure constant. One must therefore account for these fluctuations in the volume in

the excess part of the partition function of a pure component:
1 .
Orrr = iR fa(myyr* exp[—ﬂPV]( fas” exp| ~pU (s”)]) (3-10)

where f=1/k, T, P is the pressure and the integration is now performed over all dimensionless
vector co-ordinates s” where s=r/L, and I, in the box length of a cubic simulation box. The
reason for the separation of the term " from the integral over molecular co-ordinates is because
the partition function must now be integrated over all possible volumes, It is important to note that
the function of the term X, is to non-dimensionalize the partition function. In this instance, K, has

units of volume. It is somewhat arbitrary since it cancels off in practice (Equation (3-16) reveals
why). It should also be noted that in this formulation of the NPT ensemble partition function, the

fluctuations in the velume are integrated over the logarithm of the volume (Eppinga and Frenkel
(1984)).

The Grand Canonical (gVT) Ensemble was first implemented for classical fluids by Norman and
Filinov (1969). An elegant derivation of the basic partition function is given in Frenkel and Smit

{1996) which may be written as follows for a pure component:

Qm=§(%Iﬁ”e@[—w(“)ﬂ D

where u is the chemical potential and the partition function now includes a summation over

numbers of molecules since the number of molecules may fluctuate in this ensemble.

The connection from the partition function to classical thermodynamics is made by defining a
thermodynamic potential ¥, (McQuarzrie (1976)):

Y, =-In [Qm] (3-12)
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The thermodynamic potential for the NVT, NPT and VT ensembles may then be written as (Allen
and Tildesley (1987)): ' '

AfkyT = _m[QNVT] (3-13)
GieT = ~1n[Qyr ] (3-14)
Lik,T=—PV = —ln[QM] (3-15)

where A is the Helmholtz free energy, & is the Gibbs free energy and L is the Hill energy.

3.2 The Metropolis Method
If one considers Equation (3-5) and, say, Equation (3-6) for the NVT ensemble, it would
seem that the effort in evaluating an average of the form (ﬁ)m typically rests in the evaluation of
an expression of the form (Frenkel and Smit (1996)):
| | . Idr” (ﬂ(r”)exp[—ﬂU (r” )])
N )
~ jdr"”r (ﬂ(r”)exp[—ﬁU(rN )])
Owr -

where the kinetic contributions cancel because of the ratio of the two integrals. Conventional

(3-16)

numerical integration techniques (e.g. Simpson’s rule) are in general not feasible to use to evaluate
the above expression due to the intractably large number of functional evaluations that would be
required to evaluate N molecules over 3-dimensional space for all possible arangements of these
molecules. Also, many of these configurations may also have a low probability density. A random

Meonte Carlo sampling integration scheme is also not a feasible strategy because one does not know
the distribution Q’(r” ) a priori. Equation (3-16) is, however, a ratio of two integrals and

Metropolis et al. (1953) were able to show that it is possible to devise an efficient Monte Carlo

importance sampling scheme to evaluate such integrals.

This may be understood by recognising that the probability of observing the system in a
configuration around r" for the NVT ensemble, fP(r‘” )WT , 15 given by:

) exp[—ﬁU (r”)] _ exp[—ﬁU (r” )]
T far® exp[—ﬁU (r" )] - Ower

e(r") (3-17)
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If one could then generate points in configuration space according to the probability distribution

B _Q)(rﬁ)NVT -around r”,then onaverage: oo " ' TrmmsSmEmmes—a e e o

(ﬁﬁw)m%igﬁ(l}ﬂ) (3-18)

i=l

where ¢, is the number of points generated per unit volume around r” and R are the total number

of points generated. This is the basic idea behind importance sampling, i.e. one transforms the task

from generating points in configuration space randomly and then giving them a weight given by

ens

@(r") |, to generating points in phase space according to the distribution given by ®(r¥} and
o108 gp phase sp g g

then giving each of these samples an equal weighting,

Consider the analogy of a student trying to determine the most popular beer in a well frequented
student night club and restaurant street area on a Friday night. One possible approach would be to
attempt to go into every restaurant or night club on the street without exception and accumulate
statistics on how many beers of each type are consumed in each establishment. Of course, several
of these haunts will be closed (most clubs usually have only one or two nights a week when they are
designated as the place to be seen). Thus there would therefore be several wasted excursions to
closed or not very busy bars. An alternative strategy would be to choose to only go into those night
clubs which have the largest number of cars parked outside and to then question the clientele who
seem to be drinking the most beers as to what their favourite brew is. The first strategy is analogous
to the approach of conventional numerical integration using say Simpson’s Rule: it is very time
intensive. The second approach represents an implementation of the Metropolis importance
sampling technique: so long as a sufficient number of people are questioned in a sufficient number
of bars (there might be reduced prices in different bars on different beers and experience dictates
that price invariably overrides student brand loyalty) then a good estimate of the most consumed
beer will be obtained. In principle, the first approach would give us total statistics on the amount of
beer consumed in the evening and so would be able to provide information on the total beer

consumed for all types in all places on the Friday of interest. This is analogous to obtaining

information regarding the quantity Q_ . The importance sampling approach, however, cannot

provide this information (i.e. cannot provide 0, ) since the curious student only enters those night

clubs and restaurants that have the largest crowds outside.
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In terms of the Monte Carlo simulation of phase equilibria, the solution therefore becomes to set up

a Markov chain of states which has a limiting distribution given by fP(r”)m. A Markov chain is a

sequence of trials that satisfies two conditions {Allen and Tildesley (1987)):

* The outcome of each trial belongs to a finite set of outcomes {TI,YA,...,'I‘D,Y",._.}

» The outcome of each trial depends only on the trial that immediately precedes it

Two states T, and Y, are linked by a transition probability :r(o - n) which is the probability of

going from an old state to a new state. The collection of all z{o-—»n) forms a transition
probability matrix which is both stochastic (random) and ergodic and which must satisfy the
condition that it must not destroy the lirmting distribution rP(r” )m for the ensemble once this
distribution is reached (Frenkel and Smit (1996)). It is convenient to enforce the unnecessarily
strong condition of microscopic reversibility which requires that the number of moves from an old
state ¢ to a new state n is exactly cancelled by the number of reverse moves at equilibrium. This
detailed balance condition may be expressed as (Frenkel and Smit (1996)): -

2™ 7(0—>n)=0""1(n > 0) | (3-19)
In practice a Monte Carlo algorithm consists of two basic steps. The first is the attempt to perform

a trial move from state o to state » while the second stage involves the decision to accept or reject
this trial move. This may be expressed as: . N
x(o—>n)=acc(o—>n)a.(o«)n) - 3-20)
where the probability of accepting a trial move is denoted by acc{o — n) and where (o — 1) is
the probability of performing a trial move from state o to state » (Allen and Tildesley (1987),
Frenkel and Smit (1996)). In the original Metropolis er al. (1953) implementation, ¢ was chosen
to be a symmetrical matrix (i.e. @(o — #)=a(n — o)) which combined with Equations (3-19) and
{(3-20) leaves: _
PR acc{o—» n)=@”“’
acc{n—>o0) ™

(3-21)

There exist different possible choices for selecting ace{o — n) and a discussion of this is contained

in Allen and Tildesley (1987). The choice of Metropolis et al., however, appears to be the most
efficient, 1.e.:
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acc(o - n) = (Pnew/’@old if (in < (Pold (3_22)

— =1 lf Q;,new > (P”ld

The second line of Equation (3-22) indicates that the probability of accepting 2 move cannot exceed
unity. The transition probability for going from state ¢ to state » can then be written as:
zr{o—s>n)=alo—>n) if @™ z@™
=afo—sn)e™/e™] if @ <™ (3-23)

z(o—>0)=1-Y 7{0o—>n)

The procedure by which one accepts a new state is thus as follows. The first line of Equation (3~
23) indicates that if the probability of observing the new state @™ is higher than the probability of
observing the old state ®*“ then the transition probability is equal to the probability of generating
the trial move, i.e. it is unconditionally accepted without applying a stochastic acceptance criterion.
The second line of Equation (3-23) states that if @™ is lower than @™ | then the trial move is only

conditionally accepted. This is determined by generating a random number, R, from a uniform
distribution in the interval [0,1]. The trial move is accepted if R, < acc(o — n) and is rejected

otherwise. The probability that ®,,, 15 less than acc(o — n} is clearly equal to acc(o —n) and

so this acceptance rule guarantees that one generates the correct acceptance criterion for a trial
move from state n to state ¢ (Frenkel and Smit (1996)). The final line of Equation (3-23)

indicaies that the old state must be recounted if the trial move is rejected.

3.3 Degrees of Freedom

In many ways, molecular simulation can conveniently be thought of as a kind of *computer
experiment’. This is because molecular simulation effectively aims to describe physical systems
such as those encountered in chemical thermodynamics. The quantities encountered in chemical
thermodynamics can also be determined in a statistical sense by molecular simulation methods. Of

particular relevance to the simulation of phase equilibria are the following variables:

25



THERMODYNAMICS OF THE MONTE CARLO SIMULATION OF PHASE EQUILIBRIA

Table 3-1: Intensive and extensive variable pairing and contribution to total thermodynamic equilibriurn.

Extensive property Conjugate intensive property | Equilibrium component
Number of molecules, N | Chemical potential, p Chemical equilibrium
Volume, ¥V Pressure, P Mechanical equilibrium
Internal energy, E Temperature, T Thermal equilibrium

Total thermodynamic equilibrium is achieved when the system under study achieves chemical
equilibrium, mechanical equilibriim and thermal equilibriuin. An understanding of the pairing of
these variables is therefore significant for equilibrium chemical thermodynamics because the
specification of either the extensive or conjugate intensive variable of a pair is required to determine
each of the three equilibrium components of total thermodynamic equilibrium. The conjugate
variable of the pairing which is not specified then becomes the dependent variable and must be
determined from the equilibrium condition of the system. In this way, the specification of either the
number of molecules or the chemical potential determines the chemical equilibrivm, the
specification of pressure or volume determines the mechanical equilibrium and the specification of
temperature or internal energy determines the thermal equilibrium. This, in turn, will affect the
specific ensemble that will be appropriate for a given simulation (e.g. grand-canonical (uVT)
ensemble, isothermal-isobaric (NPT) ensemble, canonical (NVT) ensemble). The number of
intensive and extensive parameters which need to be specified may be determined from the Gibb-
Duhem phase rule (Smith et al. (1996)): : _
| DOF=C—-F +2 (329

wﬁere DOF is the number of intensive degrees of freedom which need to be specified, C is the
number of components, and F is the number of phases present. Thus for a two-component and two
phase system, two intensive parameters will need to be set in order to specify the equilibrium
condition of the system under study. An important prescription is that it is necessary to stipulate at
least one extensive property. In the simulation of a two-phase system, two extensive properties will
need to be specified to place two physical constraints on the system. This has the effect of placing
physical bounds on both of the simulation “boxes”.
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“Make everything as simple as possible but not simpler” — Albert Einstein

4.1 Phase Coexistence

The condition for the coexistence of two or more phases (I,II,...) , is that the temperature for

all coexisting phases must be equal, the pressure in all phases must be equal and the chemical
potential of each species i must be the same for that species in all phases (Smith et al. (1996)):
(h=1,=..=T), (B=R,=..=P), (,ub.=ym == gh) 41
It might, therefore, seem appropriate to stipulate a constant pPT ensemble to simulate phase
equilibrium. This approach has two inherent flaws. Any sensible simulation requires at least one
extensive parameter specification in order to place a physical bound on the size of the system
(Frenkel and Smit (1996)). In addition, this uPT ensemble would correspond to an over-
specification of the state of the system in terms of Equation (3-24) because it is, in general, not

possible to stipulate all intensive variables a priori. This would violate the Phase Rule.

In a physical experiment, a first-order phase transition is normally quite easy to locate. So long as
one is at a temperature sufficiently far away from the critical point, one will observe that at a
suitable temperature and density that an initially homogenous phase will divide into two phases
separated by an interface. Before the advent of the Gibbs Ensemble, molecular simulations had to
locate phase coexistence indirectly. This usually involved conducting several simulations,
evaluating the macroscopic properties of the individual phases in each of these simulations and then
finding the point where the temperature, pressure and the chemical potentials of all species were
equal in all phases. This approach underpins the application of the NPT + test particle method
(Lofti er al. (1992)) in conjunction with the Widom test particle insertion method (Widom (1963)),
and the Gibbs-Duhem integration technique (Kofke (1993a) and Kofke (1993b)).

Recent reviews of different simulation methods include those by Panagiotopoulos (2000} and
Ungerer (2003).
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4.2 The Gibbs Ensemble

The direct simulation of phase coexistence is complicated by the presence of an interface °
between two coexisting phases. Typically in a simulation one tries to minimize the sample size to

reduce computational cost (assuming only pair-wise additive interactions, the simulation time

typically scales approximately proportional to N*). For a two-phase simulation of limited size
with an explicit interface, however, this would increase the relative effect of the interface since the
relative percentage of molecules residing near the interface increases rapidly with decreasing
system size (Frenkel and Smit (1996)).

The Gibbs Ensemble (Panagiotopoulos (1987), Panagiotopoulos et al. (1988), Smit et al. (1989),
Smit and Frenkel (1989)) represents perhaps the most widely used simulation technique for the
study of first order phase transitions. Gibbs Ensemble simulations are performed in two
microscopic regions away from the interface. Each region is simulated within standard periodic
boundary conditions using the minimum image convention. The Gibbs Ensemble thus enables the
direct simulation of coexisting phases without the difficulty of simulating the interface (see Figure
4-1). This is achieved by a coupling of the phases by means of suitable acceptance / rejection

criteria (discussed below).

Phase I

Phase 11

Figure 4-1: Schematic representation of the two coexisting phases in a Gibbs Ensemble simulation.



GIBBS ENSEMBLE MONTE CARLO SIMULATIONS

The Gibbs Ensemble comes in NVT and NPT (or N;N,PT) variants with the former variant being
the one of choice for one-component simulations whereas the latter variant is the preferable
ensemble for binary simulations (the stipulation of P and 7 providing the specification of the
necessary two intensive degrees of freedom for a binary two-phase system). The partition function
for the NVT version of the Gibbs Ensemble at temperature T for N total molecules distributed
over two volumes 7, and ¥ =V -V, is given by (St and Frenkel (1989), Panagiotopoulos
(1992)):

1 & 1 | -n
GE = avyr(v-v)y
MK¥T KA3N RIZ_:‘)”I!(N H _[ ( ) (4_2)

X ja'sf}' h expl:—ﬁU sy )] jds, exp[ ﬁU sy )]
where », is the number of molecules in phase 1. It has, however, been shown to be advantageous to

perform the volume integration over In(V') (Eppinga and Frenke] (1984)) in which case the integral
becomes (Frenkel and Smit (1996):

L&
GE _
Qv = APK, ,;,nl N —n)!

Pl (o) e

jdsﬁ*“' exp[ -BUy, :3“‘"I ]fds[ exp[—ﬁUl(sf' )]

where 1 counts the number of ways of choosing », molecules from N total molecules.

n (N —n)!
Thus it becomes clear that the probability of observing a configuration around s* and s ™ with #,
molecules in phase I with volume ¥] is given by:

m+l _ N-r+1
e W(V-n)

NYT V(N*nl)!ni! (4—4)

exp ~A{UL(st) +Va (s5)) ]

(”nV!-sll’ M)

In order to achieve the above distribution, and to satisfy the requirements for phase coexistence
(Section {4.1)) and thermodynamic equilibrium (Section (3.3)), three basic moves are required
during simulations in the Gibbs Ensemble:

1) molecule translations to satisfy the requirement for thermal (i.e. temperature) equilibrium,

2) volume exchanges between the two boxes such that the total volume is conserved to satisfy

the requirement for mechanical (i.e. pressure) equilibrium, and
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3) molecule transfers between the two simulation boxes to satisfy the requirement for chemical

-(i.e. chemical potential) equilibrium .. : e

and are shown in Figure 4-2:

C 0o O O

O
O
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O
Q

O
o .
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O

Figure 4-2: The three principle Monte Carlo moves in the Gibbs Ensemble to ensure total thermodynamic

equilibrium of two coexisting phases: molecule displacements, volume changes and transfers of molecules.

Using Equations (3-21) and (4-4) it is possible to derive the acceptance criteria for performing:
1}  atrial molecule displacement in phase I (Panagiotopoulos (1987)):
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(25 ): =min {1, exp[_ﬁ (a0, (s ))]} meremerninries (45

(&%)

where the min{ } function denotes that one accepts a move with a maximum probability

acc(o—»n)=

of unity, and AU, (s} ) =Up™ (s )- Uy (s7').

2) avolume exchange in box I by an amount AV , V™ =¥ + AV (Panagiotopoulos (1987)):

-Vnew my+i [V _ Vm JN-nla-l
GE "V 1, 1 1 _
acc(o - n) = -(g%)—m = min [ 7 ] V- (4-6)
Bt x e}{p[—}li’(m‘ifI (s';1 ) + AU, (s,’f"" ))]

3) amolecule transfer by removing 2 molecule from box I and inserting this molecule into box
IT (Panagiotopoulos (1987)):

(Q:GE )new , ™ (V — V;)
acc{o > n)= —N::T —min{ (V-m+1}% 47
B xexp[*ﬁ(AU, (s;")+/_\U“ (s;:"”‘ ))]

Additional moves like molecule rotation (which has an identical acceptance criterion to equation
{(4-5)) are also permitted, but the above three moves are required to ensure phase equilibrium. The

key phase-coupling moves are the molecule transfer move which enforces equal chenucal potentials
of each species in all phases (Jul,i Sy == ‘ui) without requiring a priori knowledge of the
equilibriurn chemical potentials of each of the components, and the volume change move which
ensures equality of pressure between the phases (F=F, =..=PF) without requiring a priori
knowledge of the equilibrium pressure. In the original work, the Gibbs Ensemble Monte Carlo
method (GEMC) was introduced as a combination of the pVT, NPT and NVT ensembles. It has,

however, been shown that the NVT version of the Gibbs Ensemble is rigorously equivalent to the

NVT ensemble in the thermodynamic limit of an infinite system size (Smit et al. (1989)).

The Gibbs Ensemble may also be written for the case where the total system pressure is kept
constant (Panagiotopoulos et al. (1988)). This NPT version of the Gibbs Ensembile is ideally suited
for the study of binary vapour-liquid equilibrium (VLE) and for the simulation of non-saturated
phase behaviour of pure compounds because two intensive degrees of freedom are required for both
- of these cases. This may be seen from Equation (3-24). The essential difference between the NVT

and NPT versions of the Gibbs Ensemble 1s that the box volumes are allowed to change volumes
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independently in the NPT Gibbs Ensemble while in the NVT version of the Gibbs Ensemble the

—-total system volume of both boxes is conserved. For a binary two-phase system, with ¥, molecules

of type 1 where N, =n, +n;,, and N, molecules of type 2 where N, =n, +n,, the partition

fumction for the N\N.PT Gibbs Ensemble is:

QN,N e ASN‘Am 2 Z

Ky mzom,g -0”[,1 _"11)'"[2'(‘”2'"1,1)! .
x [d(n¥,) (V" exp[-BPV,]) (4-8)
X.[d hqu)(V;f"””‘“ e‘xp["-ﬁPVu])

<{ ot en{ -0 ()] fst -0 4]
K, now has units proportional to the square of the volume. Thus:
q{":.v”u,Vn ]GE ) )
NN PT By !(Nl LT )!”t.z !(N2 - ”Lz)! ’ . (4-9)

xexp[*ﬁ(P(V; +Vn)+U(Sl )+U( . ni))}

o o Nem
1-/ll’sl ’sll

The molecule transfer and molecule translation acceptance criteria for this ensemble are identical to

the acceptance criteria for the NVT Gibbs Ensemble but the volume move now has a different
acceptance criterion. Thus for an increase in the volume of phase 1 of AV, V¥ =J° + A¥:
(&)

e oM
Py n.P1 )

=mm{1{(’,’;; ] exp[-éh(éw;)m (s ))ﬂ}

It is important to note that the total number of molecules is fixed in both versions of the Gibbs
Ensemble. .

acc(o—> n)=
“H

(4-10)

The molecule transfer step is crucial for the algorithm to work properly. This makes the Gibbs
Ensemble difficult to implement for dense phases since the probability of inserting a molecule
successfully is then very low. This tends to be a weakness of all ‘chemical potential based’
algorithms.
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4.3 The Semi-Grand Ensemble

Before the advent of Configurational-Bias tectmiques (discussed in Section (5.7)), the
insertion or deletion of molecules in pVT ensermnble simulations proved prohibitively difficult. The
molecule wansfer step is also crucial for the Gibbs Ensemble algorithm. The Gibbs and uVT
ensembles thus tend to be awkward to implement successfully for dense phases since the probability

of mserting a molecule is then very low.

As an alternative to the difficulty that will be encountered when trying to insert a molecule in a
simulation box for an ensemble in which the total volume is fixed {e.g. the gVT or NVT version of
the Gibbs Ensemble), one might consider frying to change molecule identities for the case of a
multicomponent mixture. In this case, the total number of molecules will remain constant and thus
each identity change corresponds to the destruction of a molecule of a certain species and the
creation of a molecule of a different species type and is shown schematically in Figure 4-3. This
coupling of a molecule destruction to the creation of a molecule of another type will in general be
more successful than the separate creation and destruction of molecules when sampling
configurations. This is precisely the reasoning behind the formulation of the Semi-Grand Ensemble
(Kofke and Glandt (1988)). '

00503
®
© ®
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' @
Ty -

Figure 4-3: Molecule identity change move in the Semi-Grand Ensemble. The smaller molecule is being

transformed into the same type as the larger molecule.

In the original formulation, the Semi-Grand Ensemble was derived for the case of constant

simulation box volume. For a multicomponent mixture, however, it will in general be necessary to
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specify at least two degrees of freedom (Equation 3-24). Consequently, it is most convenient to
write. the partition function..for. Semi-Grand Ensemble at constant pressure {Frenkel and Smit
(1996)):

¥

56 m ojdw” exp[-BPV] _
o (4-11)
X{; H(Q] st"Mr exp[—ﬁU(sN)]}

where 79, is the isobaric Semi-Grand partition function, C is the number of components, #, is
the number of molecules of type 1 and & is the fugacity fraction of species i which varies between

0 and 1 and is defined as:

&= {.; .
Z =17
where f; is the fugacity of species i and is defined in terms of the chemical potential of species i

as (Frenkel and Smit {1996)):

(@12

p(P.T{x)) = (T)+&,T[£] T @)
where x; is the mole fraction of component i, and where -
(T {P=1})=k,Tin[ A} =k, Tt BAP ] i)
=k3Th1]:piAi3] o
where 4/ (T} is the chemical potential in the ideal gas reference state { P =1) of species i (Frenkel

and Smit (1996)). The summation over identities in Equation (4-11) indicates that the partition

function must be evaluated over all possible identities for the N molecules in the mixture. It must
be noted that at equilibrium, (f;;=f,; =...= f;) because (s, =gp,; =...= &) at equilibrium (Smith

et al. (1996)). The probability of observing a configuration around s” of N molecules in a volume

V with n, molecules of type i in the Semi-Grand Ensemble is given by:

e(NV,s" n), <V exp[—ﬁPV][?J | exp[ -pU (s")] (4-15)

Using Equation (3-21) and Equation (4-15), it is possible to show that the acceptance criterion for

changing the identity of a molecule of species i into a molecule of species j is given by:

: —-——(‘Pm)m =min éex - s" |
acc(o—)n)-(@m)om = mi {1,{: o[ -(a0( ))]} @4-16)
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It may be appear that this ensemble is directly applicable to the simulation of phase equilibrium.

The probability given in Equation (4-15) includes specification of two intensive variables, -

B= ] T and P, as well as a ratio of two intensive variables, 5 X Frenkel and Smit {1996)
B 1

outline a procedure to determine phase equilibriuvm at a given # and P. The procedure is,

unfortunately, iterative in nature. For a binary mixture this method requires the gradual insertion of
molecules of type 1 into a phase I composed of pure molecules of type 2. Thereafter one performs
a sirnilar task for a second phase II, but instead, molecules of type 2 are added to a phase initially
composed of molecules of type 1 only. Equilibrium properties can, therefore, not be obtained from
a direct sirmulation. The Semi-Grand Ensemble does, however, have considerable advantage for the
case of multicomponent systems where the number of components present is greater than two. This
1s because the composition of a phase is then determined in an averaged statistical sense. In
contrast, the Gibbs Ensemble requires that the overall composition for the components be specified
a priori. The difficulty inherent in a priori specification of overall composition is explained with
reference to the well known “lever-arm rule” in Section (8.1). In Sections (8.2) and (8.3) two

methods that marry the advantages of the Gibbs Ensemble and the Semi-Grand Ensembile by the use
of new ensemble formulations are described.

The characteristic thermodynamic potential for this isobaric Semi-Grand Ensemble is given by
(Frenkel and Smit (1996)): '

BN =-m[ 0¥, | (4-17)

The presence of the term 2,V in Equation (4-17) and the fugacity ratio & both originate from the

specification that the total number of molecules is constant. It is important to note that in this
formulation of the Semi-Grand Ensemble, the partition function of Equation (4-11) applies only to

the simulation of one phase and not to the simulation of two-coexisting phases explicitly.

Panagiotopoulos (1989) has proposed an additional move for the Gibbs Ensemble which
corresponds to an identity swap between two molecules in two different but co-existing phases.
The move is in principle similar to the identity swap move of the Semi-Grand Ensemble but differs
in the sense that the identity swap is performed in both phases of the Gibbs Ensemble in such a way

that the total number of molecules of each species involved in the swap move are conserved, i.e. #,

and n, remain unchanged. The acceptance criterion for this move is given by:
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Although this move in the Gibbs Ensemble is in principle similar to the identity swap move of the

Semi-Grand Ensemble, the inverse identity swap move which is performed simultaneously in the
other simulation box has the net effect of cancelling off the fugacity coefficient ratio in the

acceptance criterion for this move.

The identity swap move has the effect of ensuring that the chemical potential difference between
two components in a mixture remains constant across the phases. The identity swap move is
therefore of particular use when one of the components is considerably more difficult to swap
successfully. For a binary and two-phase system, if one performs conventional molecule swaps for
the more easily swapped component according to Equation (4-7) and also identity changes, the
following conditions are therefore satisfied: _

S

Hyg = B (4-19)
My~ Hia = Hpy ~ Hog

The first line of Equation (4-19) originates from the transfer steps while the second line originates
from the identity swaps. Equation (4-19) is sufficient to ensure equality of the chemical potentials
of the species present. Martin ef al. (2000) and Panagiotopoulos (1989) both report that the relative
acceptance of the identity swap move is one to two orders of magnitude higher than that for the
conventional molecule swap move of Equation (4-7). In general, therefore, for an n-component
and two-phase mixture, then only one species swap move and (n-1) distinet identity swap moves are
necessary to ensure chemical equilibrium. This move is therefore of considerable advantage for the
case of simulating binary and muiticomponent VLE.

4.4 Pseundo-Ensemble Alternatives to the Gibbs Ensemble

Although the primary focus of this work is the use of the Gibbs Ensemble to simulate phase
equilibrium, pseudo-ensembles represent an important new class of simulation technique that have
emerged in recent years. As pointed out by Escobedo (1998), the advent of pseudo-ensembles has

greatly enhanced the numerical tools available to molecular sirnulation. Mehta and Kofke (1995)
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first proposed a scheme to mimic a traditional pVT simulation by means of an NPT type of
----- «w———s-gnsemble in which molecule insertions and deletions were replaced by volume fluctuations. Attard
(1997) has also proposed a similar approach. Both schemes rely on virtual or “faked” insertion
moves to evaluate the instantaneous chemical potential of the system being simulated {e.g. by test-

particle insertion methods such as the Widom test-particle insertion method of Widom (1963)).

Camp and Allen (1996) subsequently used the idea of replacing molecule insertions with volume
moves to formulate a pseudo Gibbs Ensemble in which molecule transfers are replaced by
concerted volume moves. Instantaneous evaluation of the chemical potential is again a requirement
of this method. Escobedo and de Pablo (1997) then proposed a variant of this method which
essentially allows for the substitution of volume moves with molecule transfers in another pseudo
Gibbs Ensemble. This method avoids direct volume changes and is advantageous for polymeric
systems.

Using a general formalism, Escobedo (1998) has been able to unify pseudo-ensembles with
Histogram Reweighting techniques and NPT + test particle methods (Mdller and Fischer (1990),
Lofti et al. (1992), Boda et al. (1995)). In particular, it has been explicitly shown that NPT + test
particle methods represent low order extrapolation schemes of pseudo-ensembles using Taylor
series while Histogram Reweighting is effectively an infinite order pseudo-ensemble extrapolation

scheme. The formalism also suggested the formulation of an interpolative approach for the direct
simulation of dew- and bubble-points.

The idea of combining pseudo-ensembles with multiple phases has spawned several new molecular
simulation approaches. Bode et al. (1996a) used separate VT simulations to determine third order
Taylor series of the pressure as a function of the imposed values of chemical potential and
temperature around a neighbourhood of {T;,4,}. In a sense, this method can be thought of as the
reverse approach to that of an NPT + test particle simulation. This is because an NPT + test particle
simulation achieves phase coexistence by enforcing pressure and temperature and then determining
the point at which the chemical potentials of two phases are equal, while the approach of Boda et al.
(1996) first imposes the chemical potentials and then seeks the conditions at which the chemical
potentials of the two phases are the same.

In a related approach, Vrabec and Hasse (2002) have formulated a Grand Equilibrium method for

pure components and mixtures which also uses Taylor series expansions. The method rather uses
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NPT simulations to evaluate the chemical potentials of all components and their derivatives at
constant pressure to formulate first-order Taylor series expansions for the chemical potentials as
functions of pressure at constant composition. Next, a pseudo-p#VT simulation is performed in
which the chemical potentials are set according to the instantancous pressure (which must be
calculated during this second simulation) according to the functions which have been determined
for the chemical potentials. In this way, the outputted chemical potential function from the first
simulation of the one phase is used as an input for the second simulation of the other phase. The
decoupling of the phases, the expansions used for the chemical potentials and the multiple
simulations required to evaluate the functions for the chemical poteniials necessarily place this

approach in the class of pseudo-ensembles multiphase pseudo-ensembles.

In order to compensate for the well-known inability of the Gibbs Ensemble to simulate near-critical
data accurately, Miyano (1997) proposed an iterative equation of state algorithm-based Gibbs
Ensemble approach. In this scheme, the pressure and vapour composition are systematically refined
until equality of chemical potentials between the vapour and the liquid was obtained. This
algorithm did allow for the simulation of binary data much closer to the critical point without the
usually large fluctuations found in the Gibbs Ensemble,

Recently, the Bubble Point Ensemble algorithm has been developed and used for the simulation of
mixtures of fluids with simple Lennard-Jones interactions (Ungerer ef al. (1999)) as well as for
alkane mixtures of chain molecules (Ungerer et al, (2001)). The idea behind this ensemble was also
suggested by Escobedo (1999). This development has been significant because it has facilitated the
simulation of bubble points at a fixed liquid composition by a direct algorithm. The method relies
heavily on fake molecule insertions and deletions in the liquid phase and is shown schematically in

Figure 4-4:
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Figure 4-4: Diagram showing how insertions and deletions of molecules in the liquid phase are never actually

carried out.

In this method, the composition of the liquid phase is kept constant. The usual Gibbs Ensemble
moves are used except that transfers of molecules to or from the liquid phase are never actually
performed. The liquid phase thus remains at constant composition while the vapour phase
undergoes effective changes. These “fake” or virtual transfer moves require modifications to the
usual transfer acceptance criteria (Ungerer ef al. (1999)). The simulation proceeds by imposing the
chemical potential calculated in the liquid phase by “fake” molecule insertions in the liquid phase
on the vapour phase. This imposed chemical potential is progressively refined during the
simulation. Unlike the methods of Boda et al. (1996) and Vrabec and Hasse (2002), the Bubble
Point Ensemble thus has direct mechanical coupling of the coexisting phases which has been shown
by Ungerer et al. (1999) to improve convergence. A hybrid method was proposed in which the
average box sizes and average molecule numbers from the Bubble Point Ensemble are used to
initialize an NVT Gibbs Ensemble simulation. This approach was selected because the Bubble
Point Ensemble was found to have larger density fluctuations than the Gibbs Ensemble (Ungerer et
al. (1999), Ungerer et al. (2001)). This might be attributable to slight errors which creep into the

calculation of the chemical potential which is imposed on the vapour phase. Following the
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discussion from Section (3.3), it is important to note that an NVT ensermble has too few intensive
enmmn - paraimeters specified for a two-phase and two-component system. ..Clearly, only T is specified for
the final NVT Gibbs Ensemble when there are in fact two intensive degrees of freedom. It therefore
becomes very important to sample the chemical potential in the liquid phase over a sufficiently long

interval such that a good chemical potential is imposed on the vapour box.

The key difference between the pseudo-ensembles and pseudo Gibbs Ensembles discussed thus far
and conventional Gibbs Ensemble simulations rests in the way in which two coexisting phases are
coupled at the level of microscopic fluctuations in Gibbs Ensemble (e.g. molecule transfers which
implicitly assume equality of chemical potentials of individual components in all phases), whereas
these fluctuations are selectively decoupled for any pseudo-ensemble approach. The virtual
molecule transfers to the liquid phase in the Bubble Point Ensemble are an example of this
decoupling. The key issue, though, is that this convenient decoupling of certain types of moves in
pseudo-ensembles allows one to avoid some of the mass balance and volume constraints which can
hinder a standard Gibbs Ensemble simulation (Escobedo (1999)). An example of this is the way in
which a constant liquid composition can be imposed iﬁ the Bubble Point Ensemble while still

allowing molecule transfers to satisfy the requirement for chemical equilibrium.

Pseudo-ensembles can, however, suffer from the disadvantage that inaccuracies present in
intermediate computed variables propagate as errors in imposed variables. This can cause errors of
varying magnitude in the final computed results. The higher the desired accuracy or extrapolation
order, the longer a simulation must be run. Escobedo (1998} alluded to the necessary compromise
that must be struck between simulation length and the extrapolation order when considering using
different pseudo-ensemble techniques. Also, Ungerer et al. (1999) have pointed out that the
repeated evaluation of chemical potentials in methods like those mentioned by Escobedo (1998) and
Miyano (1998) can be very expensive computationally. Systematic deviations from GEMC
simulations errors have also been found in certain cases, Vrabec and Hasse (2002) found the
isothermal dew line of a Lennard-Jones fluid mixture to be underestimated, while this result is also

evident in the results from Miyano {1997) for points away from the critical point.

There has been some debate concerning the validity of microscopic reversibility as a necessary
condition for a simulation to be valid. For example, during a simulation it is comumon practice to
adjust the maximum rotation or translation step size so that a predetermined target acceptance of

rotation and translation moves are achieved by the end of the simulation. Small translations or
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rotations will have a high probability of being accepted but will sample configuration space less
efficiently. Miller ef af, (2000) have argued, however, that adjusting step size can bias the potential
energy surface particularly for inhomogeneous systems, It was shown explicitly that this can lead
to erroneous results since the system is no longer truly microscopically reversible.
Mancusiouthakis and Deem (1999), however, have argued that since most Monte Carlo simulation
moves lead to ergodic sampling, the local balance condition tegether with the requirement for

regular sampling is sufficient to ensure a correct simulation.

Pseudo-ensembles are, in general, non-ergodic due to the use of interpolation schemes and “fake”
moves. “Fake” or virtual moves are inherently non-ergodic. For a sirnulation te be unconditionally
ergodic, the reverse move must be possible to satisfy the condition of microscopic reversibility.
This is not possible for virtual moves. This can lead to ergodicity errors. It can be shown that there
are circumstances for which the condition of the microscopic reversibility can be relaxed (Miller et
al. (2000), Rull er al. (1995})). The point, however, remains that while there may be circumstances
for which microscopic reversibility is an unnecessarily strong requirement, the imposition of this
condition will always guarantee that a simulation is ergodic (Frenkel and Smit (1996)). It has also
been shown that “real” moves lead to a faster convergence (Escobedo (1999)). The use of pseudo-
ensembles to take advantage of the array of simulation options provided by these simulation tools

must therefore be done with careful consideration and on a case-by-case basis (Escobedo (1999)).

4,5 Histogram ReWeighting

Histogram Reweighting represents an exciting new alternative to the simulation of phase
equilibriurn properties. Although the primary focus of this work is the simulation of phase
equilibrivm using the Gibbs Ensemble, some attention must be given to this new method because it

represents a simulation methodology that is receiving renewed attention.

As pointed out by Panagiotopoulos (2000}, it has been known for some time that a single
calculation can, in principle, be used to obtain information for a system for a range of state
conditions. Grand canonical Histogram Reweighting makes use of this idea. In general, multiple
overlapping histograms at different temperatures and chemical potentials will need to be collected
to cover the conditions of interest. Once this has been achieved, all the thermodynamic properties

over the region of interest can be obtained.
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Ferrenberg and Swendsen (1988) originally proposed a means by which to combine multiple
histograms to obtain a global free energy function by minimizing the differences between predicted
and observed histograms. Subsequently, Ferrenberg and Swendsen (1989) also proposed an
optimized method to combine the collected histograms for a wide range of parameter values of
different Hamiltonians. The implementation of Histogram Reweighting has additionally been
described by Swendsen (1993), Potoff and Panagiotopoulos (1998), and Errington and
Panagiotopoulos (1998a), Ermrington and Panagiotopoulos (1998b) and Emington and
Panagiotopoulos (1999a) have also outlined a general procedure for generating pure component

coexistence data effectively.

Most recently, the method has been used to parameterise intermolecular force fields for n-alkanes
(Errington and Panagiotopoulos (1999a)), benzene and cyclohexane (Errington and
Panagiotopoulos (1999b)), carboxylic acids (Kamath et al. (2004)), as well as glycols, ethers,
ketones and aldehydes (Stubbs et al. (2004). Conrad and de Pablo (1998) have developed an
alternative NPT ensemble Histogram Reweighting technique.

While Histogram Reweighting works well for pure components and while the method has been
applied to the simulation of some alcohol mixtures (Chen et al. (2001)), carbon dioxide and
nitrogen mixtures (Potoff and Siepmann (2001)), polar and non-polar mixtures (Potoff et al. (1999))
and water-alkane mixtures (Errington et al. (1998c) and Boulougouris et al. (2000)), the increasing
number of histograms that are required to simulate multicomponent mixtures make this method
computationally expensive for mixtures with two or more components (Ungerer et al. (1999). The
method does, however, have the distinct advantage that the simulated data is not limited to discrete
simulated points as for the Gibbs Ensemble and for certain cases of pseudo-ensembles. Also,
Histogram Reweighting is ideally suited to the simulation of near-critical phase equilibrium data.
In this way, it can be used to simulate mixtures over a wide temperature range even though the

computational overload is increased (Potoff ez al. (1999)).

4.6 The Reaction Gibbs Ensemble

Recently, the reaction Gibbs Ensemble Monte Carlo (RGEMC) method has been proposed as
a means to more accurately model vapour-liquid phase equilibrium using a methodology closely
related to the standard Gibbs Ensemble approach (Lisal ef al. (1999)). The method is based on the
Reaction Gibbs Ensemble method of Smith and Triska (1993) and has been used to study binary
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mixtures containing isobutene, MTBE and n-butane (Lisal ef al. (1999)), binary mixtures containing

water, methanol, ethanol,~carbondioxide and ethane~(Lfsal et -al~~(2001)), -aswell-as-

multicomponent and reacting multicomponent phase equilibrium. While this method appears to
irnprove the simulated phase diagrams over conventional GEMC simulations, it only scales the
simulated phase diagram by a simple pressure adjustment to the acceptance rules and, more
importantly, RGEMC does so by shifiing the true composition predicted by the simulation.
Furthermore, the improved results given by the RGEMC may be achieved by simply applying the
Gamma/Phi approach to VLE (Smith ef al. (1996)) using a direct scaling methodology. In
Appendix 4B of this Chapter, explicit details of this methodology and its derivation are given.

The RGEMC also does not address the issue presented by random fluctuations in the box volume in
an NPT GEMC or NPT RGEMC simulation which can cause a simulation to fail due to the box
length dropping below twice the cut-off radius (see Section (5.2)). This is because although the
simulated pressures are now shifted closer to the experimental results, one still has to judiciously
select the pressures for the Reaction Gibbs Ensemble simulation run. Thus, the RGEMC method
does not obviate the difficulty of satisfying mass baiance constraints imposed by the “lever-arm”
rule referred to in Section (8.1) for binary simulations in which both N, and N, are specified a

priovi.

4.7 A Generalized isothermal Gibbs Ensemble Formalism

Hill (1956) has developed the ensemble formalism behind a general case of a system in
material, chemical and thermal comtact with its surroundings. This ‘generalized ensemble’
effectively constitutes a uPT ensemble, i.e., an ensemble at constant chemical potential, temperature
and pressure. Hill (1956) has, however, argued that this ensemble is of little practical use because
T, P and all of the g,'s cannot all be independent for reasons mentioned in Section (4.1). This

‘generalized’ ensemble does, however, have an important application. Indeed, it can be shown to
provide a convenient starting point to ‘derive’ all other ensembles (which may therefore be regarded
as special cases of the ‘generalized’ ensemble). It also can directly yield the characteristic
thermodynamic potential for an ensemble which provides the link to macroscopic thermodynamics.
In this Section, the generalized ensemble is given for the general case of multiple phases and
multiple components. Several other ensembles are shown to be simplifications of this ensemble.

Two new ensemble formalisms are also “derived” from this approach.
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Escobedo (2001a) has argued that much still needs to be done to develop methodological
erre e SramMeworks that inter-relate different simulation approaches. . Almost 15 years ago, Graben and Ray
(1991) provided a unified treatment of adiabatic ensembles. In this analysis they provided the
fundamental partition functions and fundamental entropy refations for four monophasic adiabatic
ensembles. This analysis of adiabatic ensembles was significant because it suggested the
formulation of a governing framework from which several classes of ensembles can be deduced.
The analysis was, however, limited to pure components. Escobedo has invested considerable effort
in providing generalized frameworks with which to consider pseudo-ensembles (Escobedo (1998)),
multiphase pseudo-ensemble approaches collectively referred to as “virtual Gibbs Ensembles”
(Shetty and Escobedo (2002)) and polydisperse systems (Escobedo (2001a)). The applications have
been limited but have included the simulation of a simple Lennard-Jones mixtures in a bubble-point
pseudo-ensemble (Shetty and Escobedo (2002), Escobedo (1998)) essentially equivalent to the
Bubble Point Ensemble of Ungerer ez al. (1999), the simulation of a simple Lennard-Jones mixture
in a semi-open Gibbs Ensemble (Escobedo (2000)), as well as the study of some polydisperse fluid
mixture behaviour (Escobedo (2003) and Escobedo (2001b)). More recently, Escobedo (2000b) has
used pseudo-ensembles to study alkane mixtures that could be of relevance to distillation

operations.

The aim of the following section of work is to use a generalized ensemble formalism to develop a
methodological means by which to “generate” ensemble partition functions and the corresponding

thermodynamic potentials.
The fundamental relation in thermodynamics may be expressed as (Rao (1994)): _
U=U(S,V,N,N,,...N.}=U(X') (4-20)
where U is total internal energy and is a function of extensive parameters only, § is the entropy ,
V is total volume, ¥, is total number of molecules of species i and X' is the set of C+2
exiensive variables in the entropy representation of the fundamental relation. Once the fundamental
relation is known, the system under study is completely defined and all relevant thermodynamic
properties are then obtainable (Rao (1994)). Since entropy is continuous, differentiable and single-
valued, Equation (4-20) may alternatively be expressed as:
S=8{(U,V,N,N,,....N.)=5{X) | 4-21)

which is known as the entropy representation of the fundamental relation and where X is now the

set of C+2 extensive parameters in the entropy representation of the fundamental relation. Note
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that all extensive properties are total properties in the sense that they are sums over all subsystems

wmeees——---guch that ~-X; = X,; + X|;; +... where X, is a particular extensive variable, and that the number of

components ranges from 1 to C.

The exclusive extensive variable dependence of Equation (4-21) or Equation (4-20) is inconvenient
since they do not coincide with the understanding of Equation (3-24) which requires the

specification of intensive variable parameters. Following the approach of Escobedo (2000a), if X

is the set of all extensive variables such that X = X(U ,V,NI,NZ,...,NC) and if Y is the set of all
corresponding conjugate intensive variables such that Y =Y (3, 8P,—fu,,— B~ ﬁpc) , then it

is possible to replace a subset X = 5{(.5(" X 2,...) of X consisting of M extensive variables with a

subset i’:i’(ﬁ,}é,...) of Y consisting of M, (=M ) intensive variables where X, and ¥, are

particular conjugate extensive and intensive quantities respectively. This formally allows one to
arrive at the familiar ensemble abbreviations (e.g. NPT, NVT, etc) which are a mixture of intensive

and extensive parameters which satisfy the intensive property requirements of Equation (3-24).

Each intensive variable is related to its conjugate extensive variable by means of:

1{ o5
c-4)

i X
Details conceming the specifics of Legendre transforms of thermodynamic potentials are contained
in Hill {1956) and Rao (1994). As pointed out by Escobedo (2000a), it is important to note that:
Yy=Yu¥ (4-23)
and
X=XuX ' (4-24)

where X and ¥ are the respective extensive and intensive subsets of X and Y notin X and Y.

It is known that the entropy is a homogenous first order function of the extensive variables.
Consequently, it is possible to derive the Euler relation for the entropy representation for a system
of C components (Rao (1994)):

C
f-: BU + BPV =" BuN, (4-25)
B =l
in which the internal entropy (or equi&alently the energy after trivial re-arrangement of Equation

(4-25)) is the sum of each intensive variable with its conjugate extensive variable. Clearly:
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=Xy (4-26)

a2

Using the Legendre transform rules (Rao (1994)), it becomes possible to derive a “Massieun”
function in the entropy representation, &, to give an alternative representation of the fundamental

relation. In particular:

-~ M? -
e ) |
5 & = 4-27)
Mp _
=XY=> XY

The final line of Equation (4-27) arises because XoY =X-¥ +X-¥. This may be seen directly
from BEquations (4-23) and (4-24).

At this point it is convenient to note that all the thermodynamic potentials for all of the ensembles
described thus far contain only some of the terms present in Equation (4-25). At equilibrium,
however, the system is uniquely specified by the C+2 extensive variables in X, and the
requirements of phase equilibrium embodied in Equation (4-1) must hold for all extensive
parameters.

It should therefore be possible to artive at a hypothetical general ensemble from which all ensemble
partition functions may be readily determined by simplification, i.e. as special cases. In this case,
one would desire to express the fundamental relation as:

A

S S
E;—=;B-(ﬁ,ﬁP,—ﬁ#p-ﬁﬂ;,--.rﬁﬂc)*—';—;(Y) | (4-28)

where the entropy is now exclusively a function of intensive parameters, i.e. a total Legendre
transform of all extensive quantities to intensive quantities. The partition function for this general
ensemble must therefore involve integration or summation over all of the exiensive variables

present in Equation (4-25).

A convenient starting point for this ensemble is the ‘generalized ensemble’. According to Hill

(1956) the partition function for the generalized ensemble may be given by:
O,pr = [dVQ,r exp[-pPV] (4-29)
where O, is given by Equation (3-11) and is now integrated over all possible volumes. Since this

is effectively the partition function for a uPT ensemble, Equation (4-29) is equivalent to integrating
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any other ensemble over the remaining unspecified intensive variables, e.g. integrating the NPT

e €NSEMble over all possible numbers of molecules: -~ - <ot miiam

Q;.IPT = ZN(QNPT exp[ﬁ:uN])
Substituting Equation (3-11) for @, in Equation (4-29) or substituting Equation (3-10) for Q,,;

m Equation (4-30), one arrives at:

LT

o |exp[ AuN]—

1
NIAY

"= fas” exp[—ﬁU (s )]

where the integration over volume is performed over ¥ and not In[¥]. Expanding Equation (4-

31) for the more general case of C components and F phases yields:

Q,upr =

=0

Ny,

RN
Ky wpne . df/'j(lf'j"" exp[—ﬁPVj])

'ﬁ explBun]

F
i=1 A?n{ !
i I I i

=1

FAIH o ol

.

mrm—r b i

(4-30)

jdV(V” exp[-BPV])

(4-31)

( (4-32)

4

where the term K, is still arbitrary and its units are such as io make the integral of Equation (4-32)

dimensionless. Since all terms exclusively involving », in Equation (4-32) are independent of all

phase volumes ¥, and dimensionless co-ordinates s, all terms involving the phase volumes y; are

independent of the dimensionless co-ordinates s, and all phase volumes and numbers of

melecules of each species are independent of each other, Equation (4-32) may be rewritien as:

where:

My N, N

J-1ue]-11
: i
<[ ds? Hexp[-5Q]

= Koﬁf\?"‘nni,i!
31

1 i=1

Q= i{Uj (s")+P¥;- i”ﬁNs.j}
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The form of Equation (4--34) as a summation of energy terms arises due to the substitution of the

product over exponentials in Equation (4-32) with equivalent summations over the exponentiated

terms BPV,, PN, and ﬁU(sN" ) . In particular, Equation (4-34) may be simplified to give:

Q=U (" )+ P~ SNy BNCRL)

il
where the sﬁrmhétidns. over phases have been replaced by the total values for the extensive
parameters. Comparison of Equation (4-35) with Equation (4-25) indicates that the dummy
quantity Q is in fact equivalent to 7S where the partition function in Equation (4-33) is now a
function of the intensive parameters only. e s

Expression of the generalized partition function over an arbitrary number of components and an
arbitrary number of phases in Equation (4-33) provides a means to directly link back to the
fundamental thermodynamic relation of Equation (4-21) or equivalently Equation (4-20).

Equation (4-33) provides an overall partition function from which it is possible to derive all other
isothermal partition functions and from which the thermodynamic potential ¥, may easily be
discerned. This may be understood by writing Q as the sum of two scalar products using Equation
(4-26): ' |
L R Q:;:;_'_i.i, o (4-36)

where Q is now the sum of the product of the conjugate pairs which have an extensive parameter
which is fixed (X-Y ) and the conjugate pairs which have an extensive quantity which is allowed to
vary (XsY ). If one defines a particular ensemble with certain fixed extensive parameters in order
to satisfy the equilibrium requirements of Equation (3-24), then the XY terms may be factored out

of the integral in Equation (4-33) since the extensive quantities X are constant:

[Gur Jyg =0 (X Y)]zxn.{.s}dx TTA" xg(N) HEN) e

i=t
F c _F
where f(N,V):KLHVj”’ » a(N) =TI T, [Q,m]- _ denotes. the special case of the uPT

Y
0 j i el x

ensemble at constant X and ¥ , N={nm,ng,...n} and V={V,J;,..V;}. Note that the
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integration 1s performed over all constrained and unconsirained extensive quantities which vary in

wrnemseomesssll Of the phases, fe. o sz
XLy B} = (Bt ey Vi Vs U (87 )son U (7 )} (4-38)
It should be noted that integration over the set of {U/,,U,,,..., U} is in fact an integration over all of

the molecular co-ordinates since U=U (s"‘r ) For an ensemble at constant N, the term

C
[ TA]™ xg{(N) factors out of the integral as a constant and so does not affect the formulation of the

=

partition function or acceptance criteria, while for an ensemble at constant N and V, the tenmns

c

HA?"" xg(N) and f (N,V) both factor out as constants. The integral term in Equation (4-37) is

i=1

in fact the partition function for an ensemble at constant X and Y. This shows that all partition

functions and thermodynamic potentials may be derived as special cases of a generalized pPT

ensemble:
ln[Q#PT ]|j‘(,y = _(i'?) +In [Q(i’ Y )]

[5 5{.?]+m[Q(i,i’)]

B

(4-39)

where the final line of Equation (4-39) is derived from the relations given in Equation (4-26} and
natural logarithms are taken of both sides of Equation (4-37) to begin to make a formal link with
the thermodynamic potential defined in Equation (3-12). In order for Equation (4-39) to be useful,

however, it is necessary to evaluate ln[Qm :HR.'E' . For any given ensemble, the entropy may be

related to probability by (Hill (1956)):
(8)= —kxzx:w(i)ln[@(i)] (4-40)

where X is the set of instantaneous values of the set of extensive variables X which are allowed to

vary. It is more convenient to consider Equation (4-33) without the quasi-classical approximation
such that:

O, = Y ex0| TS | (4-41)

where § is the instantancous value of the entropy, the term g(N) accounting for

indistinguishability of the molecules is now implicitly accounted for in the summations over all

49



GIBBS ENSEMBLE MONTE CARLO SIMULATIONS

extensive variables and the need for the term f (N, V) disappears since the partition function is

now dimensionless. Using Equations (3-3) and (4-41), Equation (4—40) becomes: 7w

(5)=-k: Te(X) [ (%), ]
:kaZm[exp[*ﬁT% Pr]exp(—ﬁTS) (442

t{Jh)wle]

from which —In I:Qp PT:] ={0. This expression is analogous to the expression derived by Hill (1956).
From Equation (3-12), this implies that the themnmodynamic potential for the yPT ensemble,
¥ opr = —ln[Qp m,] , is zero This is consistent with the observation that the uPT does not describe a

system of physical significance because no extensive parameter is fixed and therefore, since this
ensemble should have no link to macroscopic thermodynamics, the ¢PT thermodynamic potential

must be zero.

Equation {4-39) may thus be smmﬁarized as:
[ Q,er g, = ¥xs +[Q(X.¥)]=0 )

Comparing Equations (4-39) and (4-43), it may be seen that:

_ S o)
q"i"?z—v(XOY)z—(———X;Y o (4“44)

B

It would be reassuring to note that the condensed formulation given in Equation (443) yields the

correct partition function and thermodynamic potential for all ensembles. For this purpose, the
application of Equation (4—43) to derive the partition function and the thermodynamic potential for
the N\N,PT version of the Gibbs Ensemble is demonstrated in Appendix 4A at the end of this
Chapter. ' '

4.8 Appendix 4A: Application of gPT Generalized Ensemble to the
Gibbs Ensemble

In this Appendix, the formalism of Equations (4-37) and {4-39) is used to alternatively
‘derive’ the partition function and the thermodynamic potential for the NyN,PT version of the Gibbs

Ensemble to demonstrate the utility of the new formalism and to demonstrate that this new

50

R R



GIBBS ENSEMBLE MONTE CARLO SIMULATIONS

formalism correctly generates known partition functions. The derivation of the thermodynamic
potentials and part_ition-ﬁmctions for the NPT, NVT-or pVT ensembles using this approach-are- ~———

similar,

4.8.1 The NyN,PT Gibbs Ensemble as a Special Case of the yPT Generalized
Ensemble ' '
The N\N,PT version of the Gibbs Ensemble is a two-phase and toncomponent ensemble at

constant number of molecules of species 1, constant number of molecules of species 2, constant

pressure and constant temperature. The sets X, ¥, X and Y are then:

i

= {“1.1 RECTRTCY +"1|.z} = {NwNz}

{_ﬁﬂn_ﬁﬂz}
iz{Vi’VH!UIBUﬂ}

Y ={BR. BuPy= B F1Bu = B}
According to Equations {4-39) and (443}, the thermodynamic potential for this ensemble is then:
W wrr = BN, + BN,
=—%B+ﬁ(UI+Uﬂ)+}3P(VI +7) (4-46)
=BG

e
1]

(4-45)

where & is the Gibbs free energy. This thermodynamic potential is equivalent to the
thermodynamic potential of the NPT ensemble (Equation (3-14 )).

For the N|\N,PT version of the Gibbs Ensemble, C=2 and F=2. Substituting for X+¥ from
Equation (4-45), Equation (4-33) therefore becomes:

[ | [avua, | [dspas

KV " g

GE Vi"r Vﬂf‘u
= <X ] 4-47
[Q”PT]N‘N’PT N.;; K AMAGS ny lng, tng, by, ! : ( )

x{exp[—ﬁ(Ul (s’," ) +Uy (s;“ ) + PV, + PV )]}
L J
Also, one has the relations n;, +n;, =N, and m, +ny, =N, from which one can eliminate 7,

and n;,. Equation (4—47) becomes:
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GE 1 1
av,dvy,ev"
[QﬂPT ]NN oK ATMASY N%:,* nytng, o g, ! V{,! - SRR

J Ids"“ds"‘ exp[ (UI (S;’)+Uu (suu)"'PVI"'PV")]

sP 5™

1 i e 1
K Asll\ﬁj\.z”l\|r =0y =0 Py (N nl,l)’nl,z ( --n”)l (4-48)

j vy exp[-BPV, Vi j dv; exp[-BPV, |V x

V=0 ¥ =0

o | [asyasp {exn (Ui (s ) +Un(si)) )

N-ﬂ 8

where both volumes are now changed mdependently and which }nelds the probability density of
Equanon (4-9) as required.

4.9 Appendix 4B: Geperating RGEMC Results from Conventional
GEMC Simulations S

The RGEMC is able to achieve a shift in the simulated phase diagram by modifying the
expression for the chemical potential in the vapour phase as follows (Lisal ef al. (1999)):

Psﬂ
(P sat )GE

where superscript RG denotes a property value for the reaction Gibbs Ensemble, superscript GE

(Jug'i)RG:Jug'i(T,.Po)-F(ﬂgl) +k Tln . (4"‘49)

denotes a property value for the Gibbs Ensemble, superscript ex denotes an excess property,

subscript exp denotes an experimentally measured quantity, g, denotes the chemical potential of
species i in the vapour phase, g (T,P° ) denotes the standard chemical potential in the ideal gas

state, and A™ is the pure component saturated vapour pressure of species i. Implicit in the

derivation of Equation (4-49) is the assumption that:
Pi_::p _ j-isll

s (4-50)
()" (7)

which in general is strictly only true for ideal mixtures. The term P / (P*)” in Equation (4-49)

may be viewed as an ‘adjustment’ to the reference chemical potential and is accounted for in the

acceptance rule for a molecule transfer move in the RGEMC as follows:
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wims... ace(o—> n)=minq1,
BT

Ra exp{—(wf%)

The term B, / (};”‘ )GE in Equation (4-51) is inverted in the acceptance criterion for the reverse
transfer of a molecule from the liquid to the vapour phase. The only difference between Equation

(4-51) and Equation (4-7) is the presence of the ‘ideal’ term P / (P;“‘ )GE .

An analogous expression to Equation (4-49) may also be written for the liquid phase to ensure

equality of chemical potentials between the two coexisting phases where the subscripts g of

Equation (4-49) are replaced by subscripts /. Unlike in the vapour phase, the adjustment to the
reference chemical potential 1s not accounted for in the acceptance rule of Equation (4-51). To
understand how this term is accounted for and how the phase diagram is shifted using RGEMC, it is
convenient to consider the gamma/phi formulation for VLE (Smith ez al. (1996)):

VP =x1.f; | (4-52)
or equivalently

y@P=xyB" ; & =N i ' (4-53)

where y. is the mole fraction of component i in the vapour phase, x, is the mole fraction of

component i in the liquid phase, éf; is the fugacity coefficient of component i in solution in the
vapour phase, y; is the activity coefficient of component i in the liguid, f; is the fugacity of
component i in solution, and @, measures deviations from ideal behaviour in the vapour. The

term on the right-hand side of Equation (4-52) is directly related to the chemical potential of the
liquid phase. The link between the chemical potentials of a GEMC simulation and a RGEMC
simulation may thus be written as:

( )GE
E ] i R )
(xwrf; )GE =exP|:(#r.i )G ]:..._.___ P BXP[(J“:J) G] (4-54)
Therefore, Equation (4—53) may be rewritten as follows:

Psat

RG GE &
‘®‘P = iipim ms
Oi)™ = (k) ()" (4-55)

=(xi7i )GE Py

exp
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. . GE iy N
Since the scaling term P, / (1—'{‘“‘) represents an additional contribution to the reference

* chemical potential, both . andyl(whlch account for non-ideal vapoilf and liquid deviations
respectively) are not functions of this new contribution. Thus, in general, for a given x, a necessary
condition for both the RGEMC and GEMC to vield similar compositions is that: _
RG &E
= =[~§~] o (4-56)
iexp i )
where the above relation has been derived by a ratio of Equation (4-55) written for both reaction

(Gibbs Ensemble and the Gibbs Ensemble and where P may be evaluated for a binary mixture

from:

- x]?l}::m + (I - x1)72sz
@, @,

P

(4~-37)

by using the relation that the mole fractions in the vapour must sum to one. In general, Equation
(4-56) is not satisfied by the RGMEC methodology uniess both of the simulated vapour pressures
of the pure components exhibit the same relative deviation from the experimental saturated vapour

pressures of the pure components. For all other cases, a given x; will not yield similar y, values

for both GEMC and RGEMC.

In addition, it is possible to generate the results from RGEMC using standard GEMC by use of the
following formulae which may be derived by using Equation (4-55) and Equation (4-57) and by

substituting the experimental saturated vapour pressures:

Y =% [Z%TEPLM (4-58)
oY [ % TE P (4-59)

where
e

and may be evaluated from the GEMC results at the end of a simulation. Hence, the RGEMC
approach does not address fundamental inaccuracies in any force field and thus serves to only
qualitatively and not quantitatively shift the phase diagram. Any apparent improvement in the

overall location of the phase diagram is achieved by compromising the true molar composition.
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In order to demonstrate this procedure, the original P-x-y and x-y data for GEMC and RGEMC
simulations {Lisal ef al. (1999)) for the isobutene + MTBE system at 350K, as well as for the
method described above are plotted in Figure 4-5 and Figure 4-6. Although there are only 3
mixture data points, it may be seen that the x-y data calculated from Equations (4-58) to (4-60)
using the results from the Gibbs Ensemble simulations lie on the plot for the x-y data from the
reaction Gibbs Ensemble simulations and that the vapour mole fractions are clearly shifted from the
original Gibbs Ensemble results. This demonstrates the equivalence of the methodology proposed
by Equations (4-58) to (4-60) and that in spite of the shift that occurs due to the RGEMC approach,
this shift is still reproduced in Figure 4-6 by the methodology described above.
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Figure 4-5: Simulated P-x-y diagrams for isobutene (1) + MTBE (2) at 350K from the original RGEMC and
GEMC simulations, and using Equations (4—38) to (4-60).
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Figure 4-6: Simulated P-x-y diagrams for isobutene (1) + MTBE (2} at 350K from the original RGEMC and
GEMC simulations, and using Equations (4-58} to {4-60),
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T - CHAPTERS:

MONTE CARLO SIMULATION METHODS

“Give me six hours to chop down a tree and I will spend the first four sharpening the axe” —
Abraham Lincoln

5.1 Imtroduction

Recalling the Muybridge bet of Section (3.1), there were several practical difficulties to be
confronted by Muybridge including the requirement for faster shuiter speeds to overcome the
limitations of 19" century wet photography that required long exposure times as well as the need to
film dark horses against white backgrounds to diminish the effect of bluring. In an analogous
manner, several practical considerations require special techniques for Monte Carlo simulations, for
example when simulating charged molecules or for simulating molecules with an articulated
structure. These methods Include periodic boundaries and the minimum image convention, the

calculation of long-range interactions and Configurational-Bias Monte Carlo (CBMC).

5.2 Periodic Boundaries and the Minimum Image Convention

Molecular simulations are usually performed using a small number of molecules,
10 < N 510000 (Allen and Tildesley (1987)). The size of the system under investigation is limited
by the available computer memory and by the speed of execution of the program. Indeed, if all
molecular interactions are assumed to be pairwise additive, then the time taken to complete the
double loop required to evaluate all distinct interactions between pairs of interaction sites is
proportional to N°. Consequently, computational times scale rapidly with increasing size of the

system under study and with model interaction complexity.

Unfortunately, in a three-dimensional and N —particle system with free boundaries, the number of
molecules at the surface of a simulation cell is proportional to ¥ . Even for moderately large
system sizes, this implies that a significant fraction of the molecules under study will be at the
surface. Molecules on the surface will in general experience quite different forces to molecules in
the bulk. Tt is thus necessary to choose boundaries which mimic the behaviour of an infinite bulk

fluid. This is usually achieved by the use of periodic boundary conditions. The volume ¥
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containing N molecules is treated as the primitive cell of an infinite lattice of identical cells. A

two-dimensional version of a periodic system is shown in Figure 5-1:

0 0|0 0l6e

Figure 5-1: Two-dimensional periodic system (Allen and Tildesley (1987). The boxes labelled “A”-“H" are

periodic images of the central grey box. Molecules may enter or leave each box across any of the four edges.

The cut-off radius, 7, for intermolecular interactions is shown using the dashed circle around molecule 1.

As a molecule 1 moves through a boundary, its images 1a, la, 1c, etc. move across their
corresponding boundaries. In this way, the number density of the central box is conserved and only
the co-ordinates of molecules in the central box need to be recorded. If all the intermolecular
interactions are taken to be pairwise additive, then the total potential energy of the N molecules for
a three dimensional system may be given by (Frenkel and Smit (1996)):

U= %Z U (v +bLy)) (5-1)
ij.b
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where the summation is carried over all pairs of interaction sites i and j, v; is a set of three

integers describing the vector separation between sites interaction sites i and j , b is a set of three

integers describing the vector co-ordinates of a periodic image, Uy (|1'ij + bLz.-D is the intermolecular

potential energy function between two molecules, and the symbol ' denotes that the term with i=j

is excluded for b =0.

The presence of the periodic image boxes has the effect of potentially indroducing spurious
correlations which are not present in the macroscopic system under study (Frenkel and Smit
(1996)). The effect on macroscopic properties is thus a function of both the intermolecular potential
and the properties under investigation (Allen and Tildesley (1987)). In general, therefore, the
maximum wavelength of a fluctuation is then limited to be less than the simulation box length.
Another factor to consider is that for an isotropic system, a molecule should not interact with a
periodic image of itseif (i.e. molecule 1 in the central grey box in Figure 5-1 should not interact
with molecule 1,4, 13, etc.) or with two periodic images of the same molecule (i.e. molecule 1 may
interact with 2y in Figure 5-1 but not also 2Zg, 25, 2, etc.) because this will introduce an artificial
periodicity on the simulation. This is known as the minimum image convention and effectively
implies that the interacting molecule should not interact with molecules outside of a box of the same

size as the simulation box centred on the interacting molecule of interest.

5.3 The Lennard-Jones Potential

The well-known Lennard-Jones (LJ) potential for describing van der Waals interactions is the

most important intermolecular potential energy model used in this work and is given by (Lennard-

Jones (1924):
o 12 o 6
w3 {2

where U (r;g) is the LJ interaction potential, &, is the intermolecular potential well depth or

(5-2)

energy parameter for the interaction between sites i and j, oy is the intermolecular potential size
parameter between sites i and j at which U}, (r;j) is zero, and #; is the separation distance

between interaction sites i and j. Equation {5-2) may be thought of as consisting of a repuisive

term proportional to ™ which dominates at short separation distances and a dispersive or an
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attractive term which is proportional to ~° and which dominates at large separations. The physical

——-—==-televance of &; and oy are given in Figure 5-2: »wavev ~ o I S IR

600

400 -

200 -

-200 -

" Lennard-Jones energy, U Li{rij) [K]
2

-400

Intermolecular separation, ry [A]

Figure 5-2: Graph showing the shapes of the intermolecular potential function for the LJ with

& [k, =359K and o, =3.8084 .

The section of the curve for which dU/dr, >0 (i.e. the part of the curve to the left of the local

minimum of /) represents the distance for which repulsive interactions dominate. The section of

the intermolecular potential energy curve for which dU/dr;j <0 {i.e, the part of the curve to the

right of the local minimum of U/) contains the separation distances for which dispersion

interactions dominate.
As pointed out by Wu and Sadus (2000), the LI potential enjoys popularity because it is a

continuous intermolecular potential that qualitatively captures the salient features of van der Waals

intermolecular interactions. There are only two parameters (o and &;) which need to be regressed
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for a given interaction between sites 1 and j. The denominator powers of r; are also even which

" ensures that one can avoid the expensive square root function in any simulation code which would

be required to calculate #; from molecular co-ordinates.

5.4 Intramolecular Potential Energy Models

In general, the application of spherically symmetric point potentials will only be valid for
molecules of small size because the influence of molecular geometry on the intermolecular
interactions are not well accounted for when considering larger molecules of varying shapes. Since
the seminal work of Ryckaert and Bellemans (1975) and Ryckaert and Bellemans (1978), it has

become common to view n-alkanes from the “ball and stick™ perspective as seen in Figure 5-3;

Figure 5-3: Diagram showing the representation of chain molecules. CH, groups labelled a, b and ¢ are
all in the same plane of the page. The angles & and &, are the bond-bending angles between three adjacent
functional groups. The angles ¢ and ¢, are the torsional angles between four adjacent functional groups and
are defined as 0° for the eis-conformation. The torsion around the bond b-c is the angle ¢, between the

planes defined by the CH; groups a-b-c and b-c-d. 7 is the bond length between two adjacent functional
groups.

There will be a conformational energy associated with a given molecular geometry. The
intramolecular potential models which can be used to describe this interaction can become quite
complicated and Sadus (1999) contains a discussion of some of the more complicated models.
Unfortunately, the more complicated the intramolecular interactions, the longer the simulation will

take and this effect increases with increasing chain length. For many years now since the work of
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Ryckaert and Bellemans (1975), it has been common practice when simulating r-alkanes to only
..consider those inframolecular interactions ansing from:
¢ bond stretching between two adjacent functional groups
» bond angle bending between three adjacent functional groups
» torsions between four functional groups

» dispersion interactions for functional groups separated by at least 4 bonds

The contribution from bond siretching for those models where the bond lengths are not constant

may be described by a harmonic potential of the form:

Unear =55 (11, 5-3)

where U, is the bond stretching potential energy, k, is the bond stretching constant, / is the
bond length of the bond and /; is the equilibrium bond length of the bond. Equation {5-3) indicates

that positive or negative deviations from the equilibrium bond length lead to an increase in the

intramolecular energy. e

The contribution from bond angle bending for those models where the bond angles fluctuate may be
described by a harmonic potential of the form (van der Ploeg and Berendsen (1982)):

U =% (6-8, | 549
where U,,,, is the bond angle bending energy, &, is the bond angle bending constant, 08 <= is
the bond angle and &, is the equilibrium bond angle. Equation (5—4) indicates that positive or

negative deviations from the equilibrium bond angle also lead to an increase in the intramolecular

energy.

Nearly all models for r-alkanes include a torsional potential to account for the out-of-plane
totations that occur about a central bond in a set of four adjacent functional groups or atoms. The
work of Ryckaert and Bellemans (1975) and subsequently the work of Jorgensen et al. (1984)

established the utility of using a cosine series to describe this contribution:
Uy =€+ [I +COS (¢)] +c, [l - cos(2¢)] +e, [1 +¢0s (3¢)] - e
=c,+ 2.6, [l +(-1)" cos(né)] o : &-3)

n=l..
where U, . is the bond angle bending energy, ¢,,¢,¢,,...c, are constants, 0<@<2n is the

torsional angle defined in Figure 5-3. Equation (5-5) captures the periodic character that this

62



MONTE CARLG SIMULATION METHODS

potential should have because as the torsional angle rotates around the central bond (bond b-c in
Figure 5-3) the intramolecular energy due this rotation must demonstrate local energy maxima or
minima due to steric hindrance between the functional groups. The torsional angle is defined as

0.0° in the cis conformation for all torsions.

For interactions between functional groups separated by at least four bonds that do not involve
charged species, the interactions are usually modelled using a dispersion interaction potential such
as the LT potential (Equation (5-2)).

Although these interactions are highly simplified, they provide an efficient compromise between

computational expense and adequately describing intramolecular interactions.

3.5 Long-Range Interactions

In general, the molecular interactions are dominated by the interactions of each molecule
with its nearest neighbours. It thus becomes practical to only consider those short-ranged
interactions that are less than some cut-off distance, 7. . For the purposes of this work, this cut-off
is always spherical. This cut-off also turns out to be computationally necessary since the time

required increases proportional to N{m2 , Where Ny is the number of interaction sites, and the

number of interactton sites contained in a sphere around a central interaction site increases

proportional to N, = p¥ ¥ o r; where ¥, is cut-off volume arising due to the cut-off radius.

The number of intermolecular interactions thus scales roughly as #7.

With reference to Figure 5-2, the contribution from long-range interactions with 7, >9.5A may
appear negligible but this is, in general, not the case particularly in the vicinity of the critical point.
Powles (1984) has indicated that the inclusion of these long-range interactions must be undertaken
with some care. Smit and Frenkel (1991) have shown that the phase diagram of the two-
dimensional Lennard-Jones fluid depends largely on the details of the truncation while Smit (1992)
has shown that the phase diagram of the three dimensional Lennard-Jones fluid is significantly

underestimated when the long-ranged interactions are not correctly included.
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If the total potential energy is not rigorously zero for »

3 27 and if the interactions are pairwise

" additive, then it i§ possible to write' the contribution of these long-range interactions io the total
potential energy as (Frenkel and Smit (1996));

v =Y uc ("u’) +%?dﬁjU (;13)43;31? (5-6)
5 e

where U7 is the total potential energy, U° ("u) is the potential energy from two-body interactions
evaluated up to the cut-off radius and the integral extends from the cut-off radius, r., to infinity.

From Equation {5-6), it may be seen that unless U/ (ru) decays faster than rif (where the 3 arises
from the 3-dimensional nature of the system), then the contribution from the long-range dispersion

forces will be infinite since then drrU (’11) >1. It thus becomes essential to judiciously select a
suitable cut-off radius, r., and to have some means of accurately approximating the non-negligible

contributions from long-range interactions.

5.5.1 Analytical Tail Corrections

The pair or “radial” distribution function, g, (r;j) , provides a convenient means to accurately
estimate the contribution to the potential energy from the long-ranged interactions when

dr;jrisz (rij)<1 (Allen and Tildesley (1987)), i.e. when the dispersion interactions decay more

rapidly than the dimensionality of the system. gz(qj) describes the probability of finding two
atoms a distance r; apart relative to the probability expected for a completely random distribution at
the same density. McQuarrie (1976} contains a more detailed description but in a generalized form,
£, {r;j) may be given by:

g{%)= %ﬂ fandr,..dn, exp| (X (57,1, )¥)] -7

where O, is the partition function for the ensemble, the integration is performed over N -2
molecular co-ordinates and Y is the set of intensive parameters which have a conjugate extensive
property X(r,r,...,r,} which is variable and, in general, is a function of (r,#,..,#y). One may

then write the total internal energy of a pure component as (Allen and Tildesley (1987)):
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" =(3/2) N, T + 27N p j’d g, (U (n) (5-8)

- — BTN D V¥ ek A 4

and the pressure of a pure component as (Allen and Tildesley (1987)):

PV =NizT -(2/3)=N pn]dnjgz (r)s %[fzj %QJ (5-9)
] ,

i

and the chemical potential of a pure component as (Allen and Tildesley (1987)):
p=k ﬂn[mf’]+4arpjd§ Jd., 7, (7.£)U (%) (5-10)

where & is a coupling parameter that must be integrated over as well (McQuarrie (1976)).

So long as 7. is chosen sufficiently large, it is possible to assumne that g, (r;j) =1, i.e. the ratio of
the molecule density around a central molecule in a sphere of radius 7 to the average density is
approximately unity for r; 27. such that Equations (5-8) to (5-10) for a pure component

interacting via the LJ potential (Equation (5-2)) become (Allen and Tildesley (1987)):

UL ~US, + UL =US; +2aNp |drgiU,, (r;)

e

5-11
8 1 0'12 ot ( )
.'.U “—”EENPS 5 -l
rc L
(PY), = (PY);, +(PV);
= au,,(r.
=(PY), -(2/3)zNp drijr;%{rﬁ __dﬂir(i)] (5-12)
T E]
e (T
s fi )
My = UG+ = g +Amp Id 7t (P'ij)
* (5-13)

16 1207 (o8
oy 3,06‘3 72 72

where the subscript LR denotes a long-range contribution,
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5.6 Pressure Calculation

~ The pressure is an important quantity which must be calculated during simulation unless it is
set to be constant like in an isobaric ensemble (e.g. the NyN,PT Gibbs Ensemble). For the general
case of molecular fluids, Allen and Tildesley (1987) have shown using the virial theorem that the
pressure may be written as the sum of the ideal and the excess contributions as:
(Ruh= (P )+ (P +(PH)
= (pk,T)+{W/V)

where P, , PY, P°= and P*are the total virial pressure, the ideal pressure, the excess

(5-14)

contribution to the pressure up to the cut-off radius and the long-range contribution to the pressure
respectively; and %/ is the total molecular viral. For simplicity, the long-range contributions are
included in the term 7/ in Equation (5-14) but are easily separated out and ('W/ V) may be

evaluated from Equation (5-12). In addition for atomic fluids with pairwise additive intermolecular

potentials, 9/ may be written as (Allen and Tildesley (1987)):

w=%ZZ"ﬁ'Fﬁ=‘§erﬁ'VrU("ﬁ)=‘§Zzw(’ij) : | (5_._15)

i =i i =i i g

where r; is the vector separating interaction sites i and j such that r; =1, -r; and 7 =|1-j -T

;Fij

is the pair force exerted on molecule i by molecule j; V_ is the gradient vector defined by

r

v.{ Z)=%I—f'x +j—li'y +j—zfz where subscripts x, y and z denote 3 orthogonal directions; f,,
r o dr, 7 dr, |

f, and £, are three orthogonal unit vectors; and w(rﬁ) is the total intermolecular pair viral function

such that:

w(n)=r - (5-16)
where w(r;j) is a purely scalar quantity and only scalar quantities appear in Equation (5-16) since
the dot product V.U (ri,.) in Equation (5-15) must yield a scalar quantity. In Equation (5-15) it
must also be. understood that the function V,U(r,) is, in general, orientation dependent for
molecular fluids. Two options are then available when considering the definition of w(r;j).

Defining w(r;} as an atomic virial would define the distances r, as atomic distances and this

would require the evaluation of inframolecular separations and forces between sites on the same
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molecule as well as the expected intermolecular forces and distances between sites on different

molecules. The other (considerably simpler) alternative is to define- w( ) as a molecular vinal """

quantity where all the distances r; are explicitly intermolecular distances between interaction sttes

on different molecules. This is advantageous because it avoids the extra calculation of
intramolecular forces. Akkermans and Ciccotti (2004) have demonstrated explicitly the
equivalence of the pressure calculated by the atomic virial and the pressure calculated by the
molecular virtal. For the molecular virial, the vector distance r; must also now be interpreted as
the vector separating the two co-ordinate centres of mass of the two molecules. The term r; must
thus be replaced in Equation (5-15) with the projection of r; in the direction r,;, proj. L; where
K

wp =T — T, 15 the vector separating interaction site b on molecule j and interaction site a on

molecule i. The term K; must also be replaced by ZZ . since the total force between two

molecules must now be calculated as the sum between all sites on different molecules. The

molecular virial becomes:

W3 LT3 (proi, 1 o

i = oa

ZZZZ{ LN ") T Vel () (5-17)

[ m]h

—ayyrylel,)

iogeioa |ajb

where the molecular virial is now given by

w(f‘u)=§ 4

(r’ajb ! ) ( ujb ) (5—1 8)

laﬁ'
and

( m)

w{ip ) =i (3-19)

It must be noted that the density term, p, in Equation {5-14) is now the density of the molecules to

coincide with the molecular virial and not the total density of all of the interaction sites on the

molecules which coincides with the atomic virial.

From the preceding equations it becomes clear that the pressure is dependent on the slope of the

potential energy curve, i.e. dependent on dU(r)/dr .
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For the 1.J potential, the expression for the molecular virial s easily evaluated as:

BT e A

»

fajb L

Tiny fajb

Another important calculation for pure component simulations is the latent heat of vaporization,

AH . . The latent heat of vaporization may be calculated directly from the thermodynamic

dgﬁnitioq of the enthalpy for the liquid and vapour phases as:
| (AHW)=(HS,)-(H,)=(US-(P%)g)-(u,-(}’%)) |
~(w.-u)-{(P4),-(P74))

where subscript g denotes the vapour phase, subscript [ denotes the liquid phase and where AH,

(5-21)

and U are intensive properties. Strictly speaking, (&Hm> must be calculated as the ensemble

average as indicated in Equation (5-21). This work has found that it is possible to apply the

approximation  that ((P %)g - (P %)) RS <}ffg ((%)g —(%)’ ]} without  introducing

significant error but the decrease in computational load is essentially negligible. Another possible

approach is to suggest that one should only use ensemble averaged quantities at the end of the
simulation as:

e ) e

but this will in general not be valid since in general { PV #{P < 4 > Use of the
E | general (P} (B )(V4), ) Use of
Clausius-Clapeyron equation:
dinpP
AH =R, —— 5-23
where R denotes the Universal Gas Constant, by making a plot of InP against I/T to give
AH /R, will also only yield an approximate answer since it assumes ideality of vapour phase and

it neglects the molar volume of the liquid as being negligible compare to that of the vapour which is

not, in general, true. This is particularly the case for temperature near the critical point.
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5.9 Conﬁgurahonal—Bias Monte Carlo Methods

" A common bottleneck in attaining convergence by Monte Carlo methods which rely on

molecule transfers is the low rates of acceptance for molecule transfer attempts. This is particularly
true for dense fluids at low temperatures, for large molecules or for molecules with an articulated
structure because any random move which tries to insert an entire molecule in a single step will
struggle to find a sufficient gap in which to insert the large molecule. Smit ef al. (1995) have found

for a chain of » LJ atoms that the probability that an insertion will not result in an overlap is of the

order of 0.005". Consequently, the probability of inserting a molecule becomes drarmatically
smaller for increasing chain lengths. The Configurational-Bias Monte Carle (CBMC) method
tackles this problem by biasing the selection of orientations such that configurations favourable to

the insertion of a molecule are generated.

Based on the work of Siepmann and Frenkel (1992) which essentially described a CBMC scheme
for chain molecules with a finite number of discrete confirmations and which was used to simulate
polyethylene (de Pablo ez al. (1992a)), Frenkel ef al. (1992), Mooij et al. (1992) and Smit ef al.
(1995) and then separately de Pablo ef al. (1992b) and Laso et al. (1992) developed the CBMC
method for the more general off-lattice case. Frenkel et al. (1992} originally suggested that one
should separate the caiculation of the intermolecular interactions from the strong intramolecular
interactions (like those in Equations (5-3) to (5-5) in the CBMC method for optimal efficiency.
The method of de Pablo er al. (1992b} and Laso et al. (1992), however, does not separate these
contributions. Smit et al. (1995) have shown explicitly as to why the method of Frenkel et al.
(1992) is more efficient and for that reason the basic calculation of as suggested by Frenkel and
Smit (1996) is outlined below. The CBMC algorithm is shown schematically in Figure 5-4.
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Figure 5-4: Schematic representation of the insertion of a chain molecule using CBMC. The arrows indicate
the trial orientations in which to insert the fifth atom.

A chain is grown systematically segment by segment. For a chain with ¢ segments, a trial new

conformation is generated as follows:
1)  The first atom is placed at a random position and the intermolecular energy U™ is calculated
together with:
W™ =exp |:— ,BUf’“] (5-24)
where w]® is the Rosenbluth factor of the first segment and U™ is the intermolecular

interaction energy of the first segment. For low density systems the placement of the first
bead is usually not a problem but in many cother cases the success rate can be quite low. For

this reason, Esselink et a/. (1995) have outlined a procedure in terms of which multiple sites

are considered for the first segment. In that case, if {c} ( =C1sCasmnCy isaset of £, trial

positions for the first segment then w{™ becomes:
Wi = iexp[-ﬁ[f,“‘ (c)] (5-25)
h=1 :
2) Fromthe £, trial first positions, one is selected where each first segment has probability:

exp[—ﬂU,"“ (e )]

W
W,

= (c,)= (5-26)
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For the insertion of the next segment m, a set {c} £ = C1rCarensCy of £ trial orientations are

again generated, but this time relative to the previous bead and according to a probability

which is a function of the internal energy:

exp -BUS (¢, )]
K
Mooij and Frenkel (1996} show how to optimize £ for a partiéular application. For each of

@™ (c,) = (5-27)

the £ ftrial orientations generated according to Equation (5-27), the external energy U(l:h )Zd

is calculated together with the Rosenbluth factor for the segment:

£
Wi = exp[ ~BU (¢, )] (5-28)
h=l
From these £ trial positions, one is selected with probability:

SRR £ )

W

(5-29)

3) Step 2 is repeated £-1 times until the entire molecule chain is grown and the total

Rosenbluth weight, W™, of the new chain may then be calculated. The Rosenbluth
weight of the new chain is defined as:

£

_W?”Hie!cp[-ﬁU,?' ()]

m=2 h=1

xk”

Wnew

(5-30)

4) To complete a CBMC move, it is also necessary to calculate the Rosenbluth weight of the old
configuration. The old chain is retraced in a similar way except that for each segment

only £ -1 trial orientations (£, —1 trial orientations for the first segment) are considered.
The £™ trial orientation (£," trial orientation for the first bead) is necessarily the old
chain. The total Rosenbluth weight of the old chain, W™, is defined as:

d . t

W TS exe[ 802" ()]
old = m=2 h=]
Kax KT

5) To satisfy detailed balance, it has been shown (Frenkel et al. (1992)) that the new

configuration is accepted with probability:

W

(5-31)

. W |
acc(o - n) =min {I’W} . {(5-32)
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The above acceptance criterion may be applied to the partial or full “regrowing” of a chain

- ezeeemolecule. - Note that the constani X which comes from the intramolecular interactions cancels off

in the final derivation and does not appear in Equation (5-32). The method can be understood to be
*looking one segment ahead’ before placing the next segment of the molecule. The Rosenbluth
weights may be viewed as correcting for the bias introduced by preferentially considering the more
favourable configurations. In this way the insertions of molecules are biased such that favourable
configurations are generated. Smit et al. (1995) and Mooij et al. (1992) have shown that the
acceptance criterion for the transfer of a molecule from phase II to phase I where the chain is
grown by means of the CBMC algorithm is given by: o o

) VN - Woew .
acc(o — n)=min {l, G -[-(VI ) (?:'_1 )W } (5-33)

The difference between Equation (5-33) above and Equation {4-7) is the substitution of the internal

energy difference term, exp[wﬁ&UI““"], by the Rosenbluth weight, W™ . Also, the difference

between the de Pablo ez al. (1992b) and the Frenkel et al. (1992) methods is found in step 2 of the
method for generating a new configuration. The de Pablo method does not separate the
intramolecular interactions and generates new configurations according to Equation (5-27). For
this reason, the intramolecular interactions will appear in the new Rosenbluth weight and in the
acceptance criterion. This implies that the probability of accepting a new configuration will in
general be less efficient for the de Pablo method than for the Frenkel method and increasingly less
efficient for longer chains (Smit ef al. (1995)). |

Based on the CBMC method, Siepmann et al. (1993) successfully simulated the pure component

phase behaviour up to the critical point of long-chain n-alkanes ranging from Cs to Cyg for the first
time.

It is common practice to immediately reject those moves which would place two interactions sites at
a distance less than some specified hard inner cut-off radius from one another. A hard inner cut-off
value of 2A is typical. The reasoning behind this may be deduced from Figure 5-2 where it may be
seen that the intermolecular energy becomes rapidly positive for short separations which
corresponds to intermolecular repulsions. The large positive intermolecular energy changes
necessary to achieve these moves renders their probability of occurrence so negligibly low that
these moves may be neglected. The idea that the intermolecular repulsions at short distances play a

dominant role in determining the acceptance of attempted moves has been used by Viugt er al.
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{1998) to devise the Dual Cut-Off Configurational-Bias Monte Carlo (DC-CBMC) algorithm. The

algorithm essentially divides the external energy of interaction of a molecule, U™ (r <7,), into a
shorter-range potential which is less expensive to calculate, U™ (r < rDC) , and the difference
between the full and approximate potentials, SU™ (r,, <r <7, ), as follows:

U (r<r )= U (r<rpe )+ U (rpe <r<r;) (5-34)
where r,. is the shorter DC-CBMC cut-off radius. The acceptance criterion for accepting a

molecule regrowth has been shown by Viugt er al. (1998) to be given by:

{1 rnew

. W extnew ext.oid
ace(o—n)= mn{l,ﬁ;ﬁexp[—ﬁ(&f ~8U )]} (5-35)

where W is an approximate Rosenbluth weight calculated for r <7,.. An optimal value for 7,

has been shown to be approximately 5A. This algorithm has been found to speed up the simulation
of n-octane by a factor of 4 and more for even longer molecules (Vlugt et al. (1998)).

The basic CBMC algerithm has been modified to include expanded ensembles (Escobedo and de
Pablo (1995)) in which long-chain molecules are inserted gradually to improve insertion successes
during a simulation. The recoil growth algorithm (Consta et al. (1999a), Consta e al. (1999b)) is
another development in terms of which a chain molecule may recoil along its length while being
grown in order to avoid configurations which hit dead-ends before the final configuration is
accepted. Both of these algorithms greatly improve the efficiency of insertions for molecules with
complicated articulated structures and for dense systems. Finally, Martin and Siepmann (1999a)
have developed the coupled-decoupled CBMC algorithm for the simulation of branched molecules.

5.8 Chemical Potential Calculation

The evaluation of the chemical potential is an important calculation because the equality of
the chemical potentials of a species in all phases for that species is a necessary requirement for total
thermodynamic equilibrium.  Smit and Frenkel (1989) have shown that the chemical potential of
component i in phase I in an atomic system in the NVT Gibbs Ensemble for a simulation in which
the probability that either of the boxes empties of molecules is small, and where the boxes do not

change identities, is given by:

v v aun '
=k, Tl —{ 1 _exp| ~22k 536
s =k Ls <n,_i+1e""[ - M (5-36)
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where AU, is the energy change associated with inserting a molecule of type i into phase I.
== —Equation (5—36) hag its origins in the test particle energy expression of Widom (1963). Dwing a
Gibbs Ensemble simulation, however, the “ghost-" or “test particle” insertions required by the
Widom method are unnecessary. For the NVT or N\N,PT Gibbs Ensembles, the insertion energies,

AUT;, required by the ensemble average of Equation (5-36) are obtained from the actual energy

changes associated with molecule swaps between the coexisting phases. Equation (5-36) is,
however, only applicable for atomic systems. For articulated molecules simulated using the CBMC
method, Mooij and Frenkel (1994) have shown that the chemical potential of a species i in phase 1
is given by:

el _
S G (o O I

where ¥, is the Rosenbluth factor of Equation (5-30) for the inserted molecule of type i in phase

1 and Q“ is the partition function of an ideal chain constructed using only intramolecular

interactions and is given by:

fI iexp[—ﬁ[fj:“ (e, ):l .

Qikl‘ — m=2 b=l &g_l

(5-38)
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SIMULATING BINARY PHASE EQUIBRIUM USING
TRANSFERABLE UNITED-ATOM FORCE FIELDS

“Somewhere, something incredible is waiting to be known.” — Blaise Pascal

6.1 Transferable Intermblecular Force Fields

In recent years, a myriad of transferable force fields have emerged based on the approach of
Section (5.3) for the intermolecular potential, Section (5.4) for the intramolecular potential and
Section (3.5) for the long-range corrections. The majority of these have been directed towards the
simulation of normal alkanes, branched alkanes and 1-alkenes. Prominent force fields for these
hydrocarbons include:

¢ the TraPPE force field (Martin and Siepmann (1998), Martin and Siepmann (1999a), Chen
and Siepmann (1999), Wick et al. (2000), Chen e al. (2001)),
» the NERD force field (Nath e al. (1998a), Nath and de Pablo(2000), Nath et al. (2001a)),
+ the Spyriouni et al. olefin force field (Spyriouni et al. (1999)), and
o the n-alkane force field of Errington and Panagiotopoulos (1999a) (nAEP force field).
These force fields have made it possible to simulate a wide range of compounds, as well as mixtures

that belong to certain homologous series of chemicals, without having to parameterise force fields

for individual chemical compounds.

The above force fields all make the “(isotropic) united-atom™ (UA) approximation in which
functional groups of atoms are collapsed into a single interaction site. In this way, the —CH;, -CH~
and —CH- functional groups in the hydrocarbon chain are ftreated as single sites. Unlike the
“explicit hydrogen” (EH) approach, these UA models assume that the explicit inclusion of hydrogen
atom interactions is unnecessary and that hydrogen atom interactions can be lumped into L or Be6
parameters for functional groups of atoms. As pointed out by Chen and Siepmann (1999), the
united-atom approximation reduces CPU calculation time by approximately one order of magnitude
without significantly lowering the accuracy of the simulated phase equilibrium properties. The
most significant deviations are found when simulating high pressure phase equilibrium or high-
density liquids where the contributions of the hydrogen atom to molecular volume become very
significant (Ryckaert ef al. (1989), Moller et al. (1991)).
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Mixtures of n-alkanes have been studied using the TraPPE (Martin and Siepmann (1997), Martin e¢
o _al (1999b), Martin et al. (1999¢), Martin ef al. (2000)) and NERD force fields (Nath ez al. (1998b))
as well as the nAEP force field (Potoff et al. (1999)).

More recently, revised anisotropic united atom (AUA) force fields have also been parameterised for
the simulation of n-alkanes (Ungerer ef al. (2000)), branched alkanes (Bourasseau ef al. (2002)) and
i-alkenes, 2-alkenes, isobutene and 1,3-butadiene (Bourasseau et al, (2003)). AUA force fields
differ from UA force fields by allowing the interaction site on a functional group to be displaced
off-centre relative to the actual location of the functional group in three-dimensional space. These
force fields have also been applied to the simulation of #-alkanes and 1-alkene mixtures in zeolites
(Pascual et al. (2003), Pascual ef al. (2004)). '

1-Alkenes (c~olefins) are an important class of compounds that find wide application in industrial
processes {(Grubbs and Chang (1998), Rouhi (2002)), and knowledge of their phase behaviour is
vital for equipment design. In spite of this, there have been only a limited number of simulation
studies of 1-alkene mixtures (Nath and de Pablo (1999), Nath ef al. (2001a), Nath et al. (2001b),
Lisal et al. (1999)).

6.2 Simulation of Binary Phase Envelopes

The NERD and TraPPE force fields as well as the 1-alkene force field of Spyriouni e al
(SA1) were used because these force fields have been shown to reproduce experimental pure
component phase equilibrium data reasonably well in the original publications. Also, these force
fields were developed using different approaches for describing the intramolecular geometries and

_different thermophysical properties were targeted when optimizing the intermolecular potential
energy parameters. The intermolecular interactions have been shown previously to play a dominant
role in determining the pure component phase equilibrium properties (Smit et al. (1995),
Dubbeldam et al. (2004)). The SAI force field has fixed bond lengths and bond angles but flexible
torsional angles, the TraPPE force field has constant bond lengths but flexible bond angles and
torsional angles, and the NERD force field has flexible bond lengths, bond angles and torsional
angles. In addition, the parameterisation of the Lennard-Jones size ¢ and energy & parameters for
the SAI force field differed to that of the NERD and TraPPE force fields. Specifically, when fitting
the LJ parameters for the SAI force field, emphasis was placed on the experimentai vapour
pressures, while fitting of the NERD and TraPPE force fields focused on reproducing the
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experimental saturated liquid densities, critical temperatures and cntical densities. It is therefore
important to examine whether these differences will significantly affect the simulated phase
diagrams of the mixtures studied here. '

The recently developed AUA force fields mentioned previously have also been shown to reproduce
the pure component phase equilibrium data well. These AUA force fields were, however,
parameterised with less attention given to the equilibrium properties of the shorter n-alkanes, in
particular ethane and propane. In addition, it remains to be seen whether a similar improvement in
the equilibrium data obtained from current united-atom force fields could not be achieved by
modifying the internal equilibriumn geometries. This would amount to allowing the internal
geometries to be different to the experimentally observed geometries to account for the effects of
anisotropic interactions without having to resort to a full anisotropic potential. This is advantageous
because AUA force fields require additional calculations to compute the interaction site, which is
not located on the united-atom centre, as well as a correction which must be added to the
Rosenbluth factor (Smit ez al. (1995)). The results for 1-alkenes in Pascual ef al. (2004) have also
shown that the TraPPE-UA force field gives slightly better liquid density results while the AUA4
force field gives superior vapour pressure predictions. For these reasons and since the UA force
fields are computationally cheaper, the NERD, TraPPE and Spyriouni et a/. force fields only were
used in this work since this would establish how these recently developed force fields compare in
predicting binary VLE for n-alkane + 1-alkene mixtures and permits a comparison of how the
different parameterisation targets {vapour pressures or liquid densities and critical properties) affect
the P-x-y and x-y diagrams for the mixtures.

6.3 Simulation Details

CBMC Gibbs Ensemble simulations were undertaken for three n-alkane + 1-alkene mixtures:
¢ Px-y data for ethane (1) + propene (2) at 277.6K
¢ P-x-y data for 1-hexene (1} + n-octane (2) at 328.15K
¢ T-x-y data for n-dodecane (1) + 1-octadecene (2) at 760mmHg
and two 1-alkene + 1-alkene mixtures:
¢ P-x-y data for propene (1} + 1-butene (2) at 294.3K
¢ P-x-y data for 1-butene (1) + 1-hexene (2) at 373K
The mixtures investigated were chosen since they are systems for which experimental binary VLE

data are available (Dortmund Data Bank), and are representative of the types of mixtures which can
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be encountered in industrial separation operations such as petroleum refining (McKay ez al. (1951)),
sub-atmospheric fractional distillation of petroleum (Jordan and van Winkle (1951)), and in the

synthetic chemical industry (Laugier and Richon (1996), Goff et al. (1951)).

6.3.1 Force Field Parameters

All three force fields use the LY 12-6 potential (Equation (5-2)) to calculate non-bonded
intermolecular energies. The LJ parameters for interactions between like sites denoted as o and
g; are listed in Table 6-1 for all three force fields:

Table 6-1: Intermolecular Force field parameters for the NERD, TraPPE and SA1 force fields.

NERD

Ethane Propene

Eon(a) [ F2 =100-6K Sonf) [ 1O0OK £, (o fhy =925K £ [ks =46.0K
T = 3.8254 Tonnfo?) = 3.854 O o) = 3.724 Coptet) =377 A

Molecules with more than three carbon atoms

Zonfor) [Fn TOAOK 2 ) [y =4S8K g, ) [y =925K gy [k, =46.0K

o) = 3914 o) 3.93A T ek} = 3.72A O i) =377 A
TraPPE

Sono) Ko TIBOK £y ) [l =96.0K £ o) [y =85.0K £ [k =47.0K
O enfo) = 3.75A Tenfo) = 3-95A T ) = 3675A O o = 3734
SA1

SCH](Spg)/kg =£CH:(59’] /kﬁ =47.66K gCH(spz)/kB =81.69K gCH:[sP’}/kls =R9.93K

UCHs(sp’J = chi'l:(!Ps) = aCH(sp") =3.9154 D-CH,[spz) =3.9054

Parameters for interactions between two sites of different typé (e: g., between —CH; and —-CH,-) are

calculated using the Lorentz-Berthelot mixing rules:

g=Jag; 3 oy=(o;+o;)/2 (6-1)
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The NERD and TraPPE force fields use the LT 12-6 potential to calculate the potential energy of
non-bonded interactions up to a specified cut-off radius of 13.8 A and 14 A respectively. For the
SALl force field, however, the LJ potential is used to calculate intermolecular interactions up to a

first cut-off radius of 1.45c;, whereas a quintic sphne is used between 1.450; and 2.300;

(Spyriouni et al. (1999), Theodorou and Suter (19853)). For all force fields, analytical tail
corrections are applied to estimate the long-range interactions arising from intermolecular
separations greater than 7. (Ses Section (5.5.1)).

The intramolecular force field parameters for the bond lengths, the bond angles and torsions for

each of the force fields used are contained in Table 6-2, Table 6-3, and Table 6-4 respectively.

Table 6-2: Bond length parameters for the NERD, TraPPE and SA1 force fields applicable to Equation 5-3.

NERD
k. fky =96500K/A* (C-C,C=C); I,=154A (C-C); I,=134A (C=C)

TraPPE
k [y =0K/A* (C-C,C=C); ,=1.54A (C-C); [, =133 {C=C)

SAl

k,/k, =OK/A* (C-C,C=C); [,=1.53A (C-C); },=1331A (C=C)

Table 6-3: Bond angle parameters for the NERD, TraPPE and SA1 force fields applicable to Equation 5-4.

NERD
k,/ky =62500K/rad® (C~C-C); 6, =114.0° (C-C-C)
k, [k, =62500 K /rad* {C-C=C}; 6,=124.0° (C-C=C)

TraPPE :
k, [k, =62500K/rad? {C-C-C); §,=1140° (C~C-C)
k, kg =70420K/rad® {C-C=C); 6,=119.7° (C-C=C)

SAl

k, ks =0K/rad® (C-C-C); 6, =112.0° (C-C-C)
k, [k, =0K/rad® {C-C=C); §,=124.0° (C-C=C)
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Table 6-4: Torsional parameters for the NERD, TraPPE and SA1 force fields applicable to Equation 5-5.

NERD

ok, =0K; ¢ /k;=355.04K; ¢, [k, =-68.19K; ¢, /k,; =791.32K (C~C-C-C)
o fky =4797K; ¢ fky =86.31K; ¢, /k, =—-109.71K; ¢, /k, =282.08K (C-C-C=C)

TraPPE

cofks =0K; ¢ /k, =355.03K; ¢, /k, =-68.19K; «c,/k, =791.32K (C-C-C-C)
¢, /ky =688.5K; ¢ /k, =86.36K; c,/k; =—109.77K; ¢, /k,=28224K (C-C-C=C)

541

co/ky =0K; ¢ /ky =355.03K; ¢, /k; =-68.19K; ¢, /k; =791.32K (C-C-C-C)
Cofky = 685.96K; ¢, [k, =8631K; ¢, /k; =—109.71K; ¢, fk, =282.08K (C-C-C=C)

6.3.2 Method of Simulation

The Configurational-Bias Monte Carlo method was used in conjunction with the Gibbs
Ensemble Monte Carlo technique to simulate the four pressure-composition phase diagrams and the
temperature-composition phase diagram presented below. The NVT version of the Gibbs Ensemble
was used to simulate the two pure component compositions of each of the phase diagrams while the
NPT version of the Gibbs Ensemble was used to simulate six intermediate compositions for each of
the phase diagrams. The intermediate compositions used were 0.1, 0.2, 0.4, 0.6, 0.8 and 0.9 mole

- fraction of component 1. The total numbers of molecules used for each of the phase diagrams were
as follows: | "

800 molecules for ethane + propene;

600 molecules for propene + 1-butene;

600 molecules for 1-butene + 1-hexene;

350 molecules for 1-hexene + r-octane; and

150 molecules for n-dodecane + 1-octadecene. .

The above system sizes were found to give reproducible results without significantly increasing the
CPU time required.

The types of moves performed during 2 simulation were (1) volume changes; (2) molecule identity
changes using CBMC and transfers of molecules between simulation boxes; (3) full regrowing of
chains and partial regrowing of chains using CBMC; (4) translation of the centre of mass (COM);

and (5) rotation around the COM. Each of the moves was selected at random (Smit and Frenkel
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(1991)) and the moves were performed with the following fixed probabilities: pl: p2: p3: p4: p5 =
0.006: 0.328: 0.222: 0.222: 0.222, where pl refers the fixed probability of attempting 2 move of —————
type 1, ie. a volume change (Smit ez al. (1995)). The maximum volume, translation and rotational
displacements were chosen in such a way that 50% of all of these moves were accepted. This target

of 50% is commonly used as it has been found to be approximately optimal for Monte Carlo
simulations.

All the pure component simulations in the NVT Gibbs Ensemble were equilibrated for at least
100,000 cycles while the NPT GEMC mixture simulations were cquilibrated for at least 150,000
cycles (a cycle consists of N attempted moves to the system where N is the total number of
molecules in the simulation). Care was taken fo ensure that the systems had reached equilibrium
before production cycles for ensemble averages were started. The standard deviations of ensemble
averages were estimated by the standard practice of dividing the production cycles of each run into

five blocks and calculating the standard deviation from the averages obtained from each of these
five blocks. : !

To increase simulation efficiency, multiple trial sites were chosen for the first segment of the chain
(Esselink et al. (1 995)). This ranged from 4 for the ethane + propene mixture, which had the
shortest chains, to 15 for the n-dodecane + 1-octadecene mixture which had the longest chains.
Also, a COM-based cut-off was Iused for the computation of intermolecutar forces (Martin and
Siepmann (1998)). In this time-saving approach for the interaction between sites on two different
molecules A and B, the periodic image of an interaction site on the second molecule is evaluated
as the same as the periodic image of the COM of B if the distance between the COM’s of A and B
is less than d o, (A)+deoy (B)+7., where de,,(A) is the largest distance between the bead
furthest from the COM of A. This also increased computational efficiency by reducing the
calculation of periodic images of interactions sites for those interaction sites with the same periodic
image as the COM of the molecule without compromising accuracy. Finally, the dual-cut-off
CBMC algorithm of Vlugt ef al. (1998) was used for split energy moves with an inner cut-off
distance of 4.5A. This was then corrected to the full potential with tail corrections in the acceptance

rle,

It is important to choose initial volumes and molecule numbers that do not differ drastically from

the eventual equilibriurn values. It was observed that choosing values for the initial volumes or
.
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initial compositions of thé two boxes that differed considerably from the ultimate equilibrium
values considerably increased the computational time required for reaching equilibrium.

A simple strategy to partially overcome this problem is to use the experimental pure component
densities and the experimental compositions as input parameters to determine the initial volumes
and initial compositions. The aim, however, was to use the NPT simulations to predict the vapour-
liquid equilibrium curves without a prieri knowledge of equilibrium compositions. A means to
reasonably estimate the equilibrium compositions ;vith a minimum of information was thus

required.

Since the n-alkane and 1-alkene mixtures selected are almost ideal, it was decided to use Raoult's
law to estimate the initial compositions. In terms of this very simple description of phase
behaviour, the only two inputs required are the pure component saturated vapour pressures which
vield an estimate for the vapour and liquid compositions. With the assumption that the molar
volumes are linearly additive, it was then possible to estimate reasonable values for the initial
molecule numbers and box volumes for the simulations. Using this above approach, suitable initial
conditions could be set. The NPT GEMC simulation pressure was then adjusted so that at least

10% of the total number of molecules was in the vapour at equilibrium.

6.4 Transferability of the SA1 Force Field Parameters

Whereas the NERD and TraPPE force fields were used to simulate all mixtures studied, the
SAl force field was only used to simulate the 1-butene + 1-hexene and propene + 1-butene
mixtures. Although the SAl force field was parameterised to simulate the pure component
properties of 1-alkenes only, it was attempted to simulate the n-alkane mixtures using the relevant
functional group parameters from the SA1 force field parameters. It was found, however, that the
SA1 force field is not suitable for simulating the n-alkane + 1-alkene mixtures. This is because the
sp’ hybridized -CH,— and —CH; functional group parameters in the SA1 force field are not
transferable to n-alkanes {unlike the NERD and TraPPE force fields). For example, the simulation
of pure 1-hexene and pure n-octane using the SA1 sp® hybridized —CH,— and —CH, parameters for
the n-alkanes incorrectly predicted a-octane (simulated saturated vapour pressure of 90.2kPa at
328.15K) to be more volatile than 1-hexene (simulated saturated vapour pressure of 85.1kPa at
328.15K). No attempt was made to simulate the ethane + propene mixture using the SA1 force
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field since it was expected that the simulated saturated vapour pressure for ethane would have been

significantly worse than for the longer n-octane molecule discussed above, - < =mme oo

6.5 Regression of Critical Temperatures and Critical Densities

An Arrhenius plot of the simulated saturated vapour pressure for 1-octadecene using the NERD,
TraPPE and SAl force fields is give in Figure 6-1 together with the available experimental data.
Simulated coexistence liquid and vapour densities are shown in Figure 6-2 for the NERD, TraPPE
and SA1 force fields. The critical temperature for 1-octadecene in Figure 6-2 from the simulations

was estimated using a density scaling law (Rowlinson and Widom (1989)):
pi - p, =B(T, -T) (6-2)

while the critical density was estimated using the law of rectilinear diameters (Rowlinson and
Swinton (1982)):

p|'+pg
2

where p, and p, are the liquid and gas densities respectively, A and B are component-specific

=p, +A(T, -T) (6-3)

constants, P is the universal scaling exponent {usually assuming a value between 0.32-0.33), and

P, and T are the critical density and the critical temperature respectively.
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Figure 6-1: Vapour pressure for 1-octadecene as predicted by the TraPPE, NERD and SA1 force fields and

the experimental 1-octadecene vapour pressure curve (Jordan and van Winkle (1951)).
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Figure 6-2: Simulated pure component coexistence densities for 1-octadecene from the NERD, TraPPE and
SAl force fields and the critical data of Wakeham et al. (2002) and Nikitin and Popov (1999).
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In contrast to the poor transferability of the SA1 parameters to the n-alkane chains discussed above,
+ e~ preliminary results indicate that these parameters are transferable to the simulation of long 1-alkene
molecules. In Figure 6-1 there is good agreement between the available experimental data and the
vapour pressures simulated using the SA1 force field. The simulations for 1-octadecene using the
NERD and TraPPE force fields are also included in Figure 6-1 and show similarly good agreement.
The estimated critical density for 1-octadecene of 0.227g/cm’, 0.221g/cm’ and 0.224g/cm’ for the
NERD, TraPPE and SA1l force fields respectively all compare favourably with the extrapolated
critical density of 0.227g/cm’ of Wakeham er al. (2002). However, while the estimated critical
temperatures of 744K and 742K for the NERD and TraPPE force fields respectively are in
reasonable agreement with the experimental value of 748K determined by Nitikin and Popov (1999)
using a pulse-heating technique, the estimated critical temperature for 1-octadecene from the SAl
force field off 777K is in substantial disagreement with the experimental value. It should be noted
that the SA1 force field also does not reproduce the experimental saturated liquid and vapour
densities well for the short 1-alkenes (Spyriouni er al. (1999)) while good agreement between the
NERD and TraPPE force fields was found for critical temperatures and critical densities of the short
1-alkenes (Wick et al. (2000), Nath ez al. (2001b)).

No additional parameters were required for the simulation of 1-octadecene for any of these united-
atom force fields but additional intramolecular parameters are required when extending these force
fields to other homologous series for chemicals with sp® hybridized double bonds, e.g. the TraPPE

force field has been extended to the simulation of aromatic compounds including benzene (Wick et
al. (2000)).

6.6 n-Alkane + 1-Alkene Mixtures

The P-x-y and x-y data for the ethane (1) + propene (2) mixture at 277.6 K are shown in
Figure 6-3 and Figure 6-4; the P-x-y and x-y data for the I-hexene (1) + n-octane {2) mixture at
328.15 K are shown in Figure 6-5 and Figure 6-6; and the T-x-y and x-y data for the »-dodecane (1)
+ 1-octadecene (2) mixture at 760 mmHg are shown in Figure 6-7 and Figure 6-8.
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Figure 6-3: Simulated P-x-y data for the ethane (1) + propene (2) mixture at 277.6K and the corresponding
experimental VLE (McKay et al. (1951)).
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Figure 6-4: Simulated x-y data for the ethane (1) + propene (2) mixture at 277.6K and the corresponding
experimental x-y data (McKay ef al. (1951)).
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Figure 6-5: Simulated P-x-y data for the l-hexene (1) + n-octane (2) mixture at 328,15K and the
corresponding experimental VLE (Dortmund Data Bank).
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Figure 6-6: Simulated x-y data for the 1-hexene (1) + n-octane (2) at mixture 328.15K and the corresponding
experimental x-y data (Dortmund Data Bank).
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Figure 6-7: Simulated T-x-y data for the n-dodecane (1) + 1-octadecene (2) mixture at 760mmHg and the
cotresponding experimental VLE (Jordan and van Winkle (1951)).
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Figure 6-8; Simulated x-y data for the n-dodecane (1) + 1-octadecene (2) mixture at 760mmHg and the

corresponding experimental x-y data (Jordan and van Winkle (1951)).
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It is important to note that the connecting lines in Figure 6-3 to Figure 6-8 are only included to
show the trends in the data. It is clear from the P-x-y diagram that the TraPPE force field
overestimates the experimental phase envelope. This is a direct consequence of the feature that the
TraPPE force field overestimates pure component saturated vépour pressures (Martin and Siepmann
{1998), Wick et al. (2000)). The reason for this is that the TraPPE parameters were parameterised
with the initial intent of reproducing all coexistence properties but eventually the authors settled on
selecting experimental liquid coexisience densities, critical temperatures and critical densities only
as the primary parameterisation criteria. In particular, the simulated ethane saturated vapour
pressure overestimates the experimental value of 664.7kPa by 15% and the simulated propene
saturated vapour pressure overestimates the experimental value of 2410kPa by 32%. This results in
a simulated ethane + propene phase envelope that is shifted to higher pressures.

In contrast to the TraPPE force field results, the NERD force field yields an ethane + propene phase
envelope that is shifted to lower pressures compared to experimentally measured data. Indeed, the
simulated saturated vapour pressures of ethane and propene are lower than the corresponding
experimental values by 9.2% and 2.1% respectively. As for the TraPPE results, this discrepancy
between the simulated results and the experimental data may be because the NERD parameters
were not fitted to experimental saturated vapour pressures, but rather the LJ parameters were
primarily parameterised to reproduce experimental coexistence liquid densities, critical
temperatures and critical densities as well as experimental second Virial coefficients for short
hydrocarbon chains {e.g. ethane, ethene, propane and propene). Both force fields, however, yield
an isotherm that has the correct shape. This is confirmed by the x-y plot in Figure 6-4 which shows
that both the TraPPE and NERD force fields reproduce the experimental x-y plot to within the
statistical deviation of the simulation resulis. Error bars are only included on the P-x-y and x-y
diagrams for this mixture only, and are omitted from the remaining phase diagrams for the sake of
clarity. The relative ermrors are, however, similar (in general approximately +0.01 and never more
than +0.03 mole fraction) for all of the mixtures studied.

As for the ethane + propene mixture, the TraPPE force field overestimates the experimental phase
envelope for the 1-hexene + n-octane mixture at 328.2 K as shown in Figure 6-5 and Figure 6-6.
The experimental #-octane saturated vapour pressure of 8.4kPa is overestimated in the simulations
by 58% and that of 1-hexene of 76.8kPa is overestimated by 43%. However, in contrast to the
ethane + propene mixture, the NERD force field also overestimates the experimental phase
envelope. The simulated n-octane saturated vapour pressure (obtained from the NERD force field)
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is overestimated in the simulations by 16% and that of 1-hexene by 15%. Similar to the data in
Figure 6-4, the simulated x-y diagrams for the NERD and TraPPE force fields agree with the

experimental data in spite of the deviations in the P-x-y data.

As seen in Figure 6-7 and Figure 6-8, the phase envelope for the isobars of n-dodecane + 1-
octadecene at 760 mmHg obtained from the NERD and TraPPE force fields are shifted to lower
temperatures compared to experimental data. This observation is consistent with the trend that both
force fields overestimate the pure compenent saturated vapour pressure for the longer n-alkane and
1-alkene chains. Indeed, the experimemtal normal boiling points of both 1-octadecene and a-
dodecane of 587.3K and 488.8K respectively (Jordan and van Winkle (1951)) are underestimated in
simulations by both force fields by approximately 10K. As in the case of the two mixtures
discussed before, both force fields yield x-y data in good agreement with experiment (Figure 6-8).

Comparison of the simulated data in Figure 6-7 and Figure 6-8 with those in Figure 6-3 to Figure
6-6 reveals that the difference between the T-x-y results obtained from the NERD and TraPPE force
fields is far smaller for the n-dodecane + 1-octadecene mixture than for the ethane + propene and 1-
hexene + n-octane mixtures. It thus appears that the NERD and TraPPE force fields yield the most
similar results for mixtures comprised of longer alkane and l-alkene molecules. This is to be
expected since, once the —CH, group had been parameterised for ethane, the ~CH,— groups in the

' TraPPE force field were parameterised for all n-alkanes based on a fit to the vapour-liquid
coexistence curve of n-octane (Martin and Siepmann (1998)). A similar procedure was adopted for
the 1-alkene sp’ hybridized groups (Wick et al. (2000)). In contrast to the TraPPE force field, the
NERD force field uses a larger parameter set to describe the #-alkane and 1-alkene homologous
series and thus only assumes functional group transferability for chain lengths of four carbon units
and longer (Nath ez al. (1998a), Nath and de Pablo (2000)). With increasing chain length, however,
the larger number of sp’ hybridized —CH,— groups dominate the intermolecular LJ interactions.
Since the L) size and energy parameters for the NERD and TraPPE models for this functional group
are very similar (see Table 6-1), these force fields yield increasingly similar phase diagrams for
longer alkane and 1-alkene chains.
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Figure 6-9: Simulated P-x-y data for the propene (1) + 1-butene (2) mixture at 294.3K and the corresponding
expenimental VLE (Goff et al. (1952)).
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Figure 6-10: Simulated x-y data for the propene (1) + 1-butene (2) mixture at 294.3K and the comresponding
experimental x-y data (Goff er al. (1952)).
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Figure 6-11: Simulated P-x-y data for the 1-butene (1) + 1-hexene (2) mixture at 373K and the corresponding
experimental VLE (Laugier and Richon (19986)).
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Figure 6-12: Simulated x-y data for the 1-butene (1) + 1-hexene {2) mixture at 373K and the corresponding
experimental x-y data (Laugier and Richon (1996)).
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6.7 1-alkene + 1-alkene mixtures
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It is of interest to ascertain if the SAl force field yields P-x-y data that is in better agreement
with experiment than the data from the NERD and TraPPE simulations, and if this force field also
yields simulated x-y results in good agreement with experimentally measured data. As pointed out
by Nath ef al. (2001), the available binary VLE data for 1-alkene mixtures are more limited than for
n-alkanes. For this reason, only the almost ideal mixtures of propene + 1-butene at 294.3K and 1-
butene + J-hexene at 373K were simulated.

The simulated P-x-y and x-y diagrams for the propene + I-butene mixture at 294,3K are shown in
Figure 6-9 and Figure 6-10. As for the alkane + I-alkene mixtures discussed above, the phase
envelope obtained from the TraPPE force field is shifted to higher pressures compared to the
experimental data (the experimental saturated vapour pressure of 1-butene of 263.4kPa is
overestimated by 44%, and that of propene of 1049kPa is overestimated by 26%). The NERD force
field yields a phase envelope in very good agreement with experimentally measured data, although
it slightly underestimates the experimental data (the simulations underestimate the experimental
saturated vapour pressure of 1-butene by 2% and that of propene by 3%). The SA1 force field also
yields data in good agreement with the experimental P-x-y data, although the experimental saturated
vapour pressure of 1-butene is overestimated by 15% and that of propene by 3%. This is what
results in the slight overestimation of the phase envelope shown in Figure 6-9. Thus, even though
the SA1 force field is parameterised to reproduce pure component saturated vapour pressures, it
yields a 1-butene saturated vapour pressure that is higher than experiment. However, 1-butene was
the shortest l-alkene used in the parameterisation of the SA1 Lennard-Jones terms and no
distinction is made between the sp® hybridized ~CH,— and ~CH; functional group parameters (Table
6-1). All three force fields reproduce the experimental x-y diagram, as was found for the alkane +
l-alkene mixtures discussed earlier.

The P-x-y and x-y diagrams for 1-butene + 1-hexene at 373K are shown in Figure 6-11 and Figure
6-12. Similar trends to those observed for the propene + 1-butene mixture are seen here. The
TraPPE force field overestimates the phase envelope, with the experimental 1-butene and 1-hexene
pure component saturated vapour pressures of 1822kPa and 292.6kPa being overestimated by 19%
and 29% rtespectively. The NERD force field underestimates the 1-butene pure component
saturated vapour pressure by 9% while the 1-hexene saturated vapour pressure is overestimated by

2%. The P-x-y envelope obtained from the NERD force field is thus in good agreement with
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experiment. The SA1 force field yields P-x-y data that is in best agreement with experimental

phase equilibria. For this force field the experimental pure component saturated vapour pressures

of 1-hexene and 1-butene are overestimated by only 5% and 0.5%, respectively. Once again, in
spite of the deviations in some of the P-x-y data, all force fields yield x-y diagrams that are in good

agreement with the experimental data.

It is interesting to note that the NERD force field underestimates the pure component vapour
pressure for some mixtures and overestimates the pure component vapour pressure for other
mixtures. The TraPPE force field, however, consistently overestimates the pure component vapour
pressure. This possibly indicates that the accuracy of the simulated vapour pressure from the
NERD force field may depend on either the chain length or on the reduced temperature of the
simulation. ' |

In summary, for both sets of alkane + i-alkene and 1-alkene + 1-alkene mixtures where both
components are short chains the NERD force field yields P-x-y data that is in better agreement with
experiment than the TraPPE data (Figure 6-3, Figure 6-5, Figure 6-9, and Figure 6-11). However,
as discussed with reference to the n-dodecane + 1-octadecene phase diagram shown in Figure 6-7,
the TraPPE and NERD force fields yield similar data for n-alkane + 1-alkene mixtures that contain
longer chains, and both models underestimate the experimental isotherm. Similarly to the NERD
force field, the SAl potential also yields P-x-y data that are in good agreement with the
experimental data for 1-alkene + 1-alkene mixtures that contain short chains. Also, in spite of
deviations in some simulated P-x-y data from the experimental data, all force fields yield x-y data in

close agreement with the experimental data for all mixtures studied.

6.8 Ideal Solution Behaviour of the Mixtures Studied

Figure 6-13 and Figure 6-14 show plots of the relative excess volumes of the liquid and
vapour phases as a function of composition for the 1-hexene + n-octane mixture at 328K and the 1-
butene + 1-hexene mixture at 373K respectively. Similar results were obtained for the other
mixtures and are thus not shown here. The data sets are obtained for overall mole fractions of
component 1 of 0.0, 0.1, 0.2, 0.4, 0.6, 0.8, 0.9 and 1.0 as one follows a data set from left to right in
the figures.
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Figure 6-13: Plot of the ratio of the excess to the real volumes for both liquid and vapour phases for the 1-
hexene + g-octane mixture at 328.15K
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Figure 6-14: Plot of the ratio of the excess to the real volumes for both liquid and vapour phases for the 1-
butene + 1-hexene mixture at 373K.
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The proximity of the data about the V%=O line confirms that the force ficlds used at least

qualitatively reproduce the ideal solution behaviour of these two mixtures. This indicates why the

method of choosing the initial conditions for the simulations worked because this method inherently
required a nearly ideal mixture. For both mixtures, however, it is noteworthy that the vapour phase
deviates more from ideal solution behaviour than the liquid phase for all force fields. Both mixtures
should, however, display ideal solution behaviour, particularly in the vapour phase. This curious
deviation from what should be the expected trend is a result of the emphasis which was placed on
the accurate reproduction of liquid phase densities during the pure component parameterisation of
these force fields. All three force fields in general under predict the vapour densities in the original
publications which leads to the overall negative deviation of the vapour excess volumes from ideal
solution behaviour. The one exception is the NERD force field’s deviation from ideal gas
behaviour for the n-octane n+ 1-hexene mixture. This result may be understood, however, as being
a consequence of the larger parameter set for the NERD force field as well as a result of the large
emphasis thai was placed on the parameterisation of the 1-alkene parameters using 1-hexene pure
component data (Nath and de Pablo {1999), Nath et al. {2001)).



CHAPTER 7:
TESTING THE LIMITS OF TRANSFERABLE FORCE FIELDS

“Great things are not done by impulse but by a series of small things brought together.” — Vincent
van Gogh

7.1 Introduction

In view of the results stemming from the previous Chapter, it became interesting to determine
whether the transferable force fields studied could be extended to different homologous series of
chemicals for which the parameterised functional groups should be sufficient, but for which these

transferable force fields were not originally and explicitly parameterised.

Conjugated alkenes represent a homologous series for which the intermolecular parameters listed in
Table 6-1 and the intramolecular parameters listed in Table 6-2 to Table 6-4 should be largely
sufficient. By far the most important conjugated alkene is 1,3-butadiene. Indeed, 1,3-butadiene
ranks 36" in the top 50 most produced chemicals in the United States, and approximately 6 million
metric tons ate produced annually. Isolation of 1,3-butadiene is currently based on butadiene-
containing C, fractions from the steam cracking of naphtha, gas oil, and other higher boiling
hydrocarbon fractions to form ethylene and homologous compounds (Grub and Léser (2000)). This
makes accurate knowledge of 1,3-butadiene mixture VLE data vital. The majority of 1,3-butadiene
is used in the production of styrenebutadiene rubber copolymers (SBR) but other applications
inctude its use as a polymer component for polybutadiene, styrene-butadiene latex and acrylonitrile-
butadiene-styrene (ABS) resins. Several other conjugated alkenes also participate in industrially
important chemical reactions. For example, the Diels-Alder reaction represents an important route
towards the formation of cyclic hydrocarbon compounds (Grub and Lser (2000)). Consequently, it
is also important to have an accurate description of the phase behaviour of the general homologous

series of conjugated alkenes.

1,3-Butadiene has been stmulated previously using the AUA4 anisotropic force field of Bourasseau
et al. (2003) as part of a wider force field parameterisation for alkenes. Over the limited
temperature range from 245K to 295K, the AUA4 olefin force field gave average relative errors of
2.6% on the liquid density, 1.1% on the latent heat of vaporisation, and 8.6% on the saturated

vapour pressure. No emphasis was placed on correctly reproducing the vapour densities,
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7.2 Intramolecular Parameters

""" The NERD and TraPPE force fields were considered for testing whether atkane and alkene
parameters from a transferable force field could be used to extend a force field to the simulation of
conjugated alkenes. The Spyriouni ez al. olefin force field was not selected because this force field

was shown to provide less accurate results in the previous Chapter.

Thermophysical property information for linear conjugated alkenes with more than 6 carbons is
essentially unavailable. Consequently, 3 conjugated alkenes were selected for which there is

thermophysical property data available (Vargaftik (1975), Smith and Srivastava (1986)). These are
listed in Table 7-1:

Table 7-1: Names and molecular structures of the most stable conformers for the conjugated alkenes studied.

Hn}
HC .
1,3-butadiene | % 2 (fé\" K
H
H CH
¢is-1,3-pentadiene HC“;__ g\(s) @ / sy H
C—C
H H
. H H CH
cis-1,3,5-hexatriene HC(" g\ﬁ) @) / 8 ©H
C—C
H H

7.2.1 Torsional Parameters

The intramolecular torsional parameters in Table 6-4 are insufficient because there is no
provision for a torsion for the internal cis double bond between two sp® hybridized fimctional
groups (for cis-1,3-pentadiene and eis-1,3,5-hexatriene) and for the torsion about the carbon-carbon
single bond in a =CH-CH = sequence for all three components. The NERD olefin force field
(Nath er al. (2001a)) has neither set of required parameters. The parameters for the cis-torsion

around a double bond between two sp’ hybridized functional groups were therefore borrowed from
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the TraPPE force field (Wick er ai. (2001)). Unlike for torsions around a carbon-carbon single
bond, the rotation around a carbon-carbon double bond is strongly hindered and the TraPPE olefin
force field uses a harmonic potential:

Ups =k, (6-6,) (7-1)
instead of the more familiar cosine series where %, is the harmonic torsional constant and ¢, is the
equilibrium torsional angle. The values of these parameters are contained in Table 7-2. The angle
¢, is defined as zero in the cis-conformation and ¥ radians in the frans-configuration. This

borrowed torsional potential was found to work extremely well for the modified NERD force field

because it was found to limit the structure of a cis-configuration to small perturbations about a

torsional angle of zero as required.

Tabie 7-2: Intramolecular torsional parameters used for the simulation of the conjugated alkenes.

TraPPE NERD Bock et al.

cis torsion, Eq. 7-1

k, (Kirad®) 12400 - -

&, 0° - -

=CH -~ CH = torsion, Eq. 7-2

¢ (K) - - 0

¢ (K) - - 249.84
e, (K) . - - 1287.70
e, (K) - - 440.83
c, (K) - - -129.33

Several investigators have studied the torsional energy arising from rotation about the
=CH ~CH = sequence (Nevins e al. {1996), Murcko ez al. (1996), Karpfen ef al. (1997)). In

particular, the torsional potentials of Bock et al. (1979) and Szalay ef al. (1989) ate shown in Figure
7-1: '
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Figure 7-1: Comparison of the torsional potential of Bock er al. {1979) and Szalay et al. (1989} for 1,3-
butadiene as well as the ab imitio torsional data of Liu and Zhou (1993) for the = CH -CH = torsion of cis-
1,3,5-hexatriene.

The ab initio calculations of Szalay et al. (1989) were used by Bourasseau er al. (2003) to describe
the 1,3-butadiene torsional potential. The = CH-CH = torsional potential of Bock et al. (1979),
however, was based on calorimetric and spectroscopic data as well as several sets of ab initio

calculations and was therefore seiected for the present work. It is given by a cosine series:

Ups =6 + 2. € [1 +(~1)"" cos (ne&)] ()

n=14
where the constants ¢; are listed in Table 7-2. From Figure 7-1 it is clear that both torsional
potentials display extrema of similar magnitude at similar torsional angles. Indeed, it was found

that there was a negligible difference in the pure component results obtained from the two torsional
potentials of Szalay et al. (1989) and Bock et al. (1979).

No data could be found concemning the = CH-CH = torsion of cis-1,3-pentadiene. Liu and Zhou
(1993), however, did conduct an ab initio study of the two = CH- CH = torsions which are present
in cis-1,3,5-hexatriene and data is also plotted in Figure 7-1. The energies associated with the

conformation behaviour of =CH-CH = torsions in ¢is-1,3,5-hexatriene are considerably higher
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than those arising from the same torsion in a 1,3-butadiene molecule. Both molecules, however,
exhibit a zero torsional energy contribution at 180° consistent with a trans configuration of the
=CH~CH = sequence and display qualitative agreement in the location of local torsional energy
maxima at 90° and 270°. The reason for the local maxima observed at approximately 90° and 270°
is due to eiectron correlation effects (Szalay et al. (1989). The 1,3-butadiene molecule, however,
displays a torsional energy local minimum at 0° (360°) while the c¢is-1,3,5-hexatriene molecule

displays a torsional energy local maximum at 0° (360°).

The apparent discrepancy between the two torsional descriptions can be explained in terms of the
extra two carbons constituting the cis-1,3,5-hexatriene molecule. This is important because
otherwise the approach described in Section (5.4) of using additive bond length, bond angle,
torsional and intramolecular LI contributions would be inconsistent with physical reality. Indeed,
when a cis-1,3,5-hexatriene molecule rotates to a =CH-CH = ¢is configuration at 0°, and to a
gauche configuration at 90° or 270°, the extra Cs, and Cg, carbons listed in Table 7-1 of cis-1,3,5-
hexatriene are also brought closer to the C;;, carbon. These functional group centres must therefore
result in a higher torsional energy associated in these configurations than that observed for the 1,3-
butadiene molecule due to interatomic repulsions at short separations. This intramolecular energy
contribution may therefore be correctly accounted for by the inclusion of the intramolecular LJ
interactions between carbon atoms separated by more than 3 bonds as described in Section (5.4).
As a result, the torsional potential of Bock et al. (1979) was also used to describe the =CH-CH =

torsion for the cis-1,3,5-hexatriene and the cis-1,3-pentadiene molecules.

7.2.2 Bond Angle Parameters

The two sets of bond angle bending parameters for the = CH — bond angle for the NERD and
TraPPE force fields in Table 6-3 differ significantly. There are also subtle differences between
these values and the equilibrium values suggested by Bock et al. (1979) for 1,3-butadiene and by
Liu and Zhou (1993) for cis-1,3,5-hexatriene as shown in Table 7-3. It is interesting to note,

however, that the equilibrium value for ¢, from the NERD force field is in closest agreement with

the suggested equilibrium values from Bock et al. (1979) and Liu and Zhou (1993). It was
therefore important to determine what effect, if any, that this would have on the pure component

equilibrium properties.
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Table 7-3: = CH - bond angle parameters for the NERD and TraPPE force fields as well as the suggested
equilibrium values from Bock et ¢f. (1979) and Liu and Zhou (1993).

NERD TraPPE Bock ef al. Liu and Zhou
1.3-butadiene
k,/k,, Kirad® 62500 70420 - -
By, (Cay=Ciy—Cp) 124¢ 119.7° 123.3°-125.9° -
cis-1,3,5-hexatriene
k, [k, Kirad’ 62500 70420 - -
90, (C(n =C¢j_cm) 1240 119.70 - ].22-1D
8y, (Coy~Ciy=Ci} 124° 119.7° - 125.9°
7.2.3 Bond Length Parameters o o

There are also subtle differences in the bond lengths between the functional groups suggested
by the NERD and TraPPE force fields and the values reported by Bock et af. {1979) and Liu and
Zhou {1993) as seen in Table 7-4. - '

Table 7-4: Bond length parameters for the NERD and TraPPE force fields as well as the suggested
equilibrium values from Bock ez a/. (1979) and Liu and Zhou {1993).

NERD TraPPE Bock et al. Liu and Zhou
1,3-butadiene
k,[k,, K/IA? 96500 0 - _ -
Iy {Co=Co) 1.34A 1.33A 1.34A -
A () 1.54A 1.54A 1.46A -1.48A -
cis-1,3,5-hexatriene
k [k,, K/A? 96500 o | . - -
ly {€C4=Cp) 1.34A 1.33A - 1.34A
I (CopCey) 1.54A 1.54A - 1.46A
I, {€y=Cu) 1.34A 1.33A - 1.36A
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Significantly, both the NERD and TraPPE force fields overestimate the C—C bond between two
sp” hybridized carbons by about 0.08A for both ¢is-1,3,5-hexatriene and 1,3-butadiene. - -

7.3 Simulation Methodology

The CBMC method was used in conjunction with the NVT version of the Gibbs Ensemble
for the pure component simulations, while the CBMC method was used in conjunction with the
NPT version of the Gibbs Ensemble for the binary simulation. The total numbers of molecules used
for each of the phase diagrams were as follows:

s 500 1,3-butadiene molecules,
* 400 cis-1,3-pentadiene molecules, and

¢ 400 cis-1,3,5-hexatriene molecules

¢ 400 total molecules for the 1,3-butadiene + n-heptane binary mixture. Two pure component

and six intermediate compositions corresponding to 0.1, 0.2, 0.4, 0.6, 0.8, and 0.9 overall

mole fraction of 1,3-butadiene were simulated.

For the pure component simulations, the box volumes were adjusted so that the liquid and vapour
box volumes at the end of a simulation were approximately equal in size. For the NPT simulations,
the imposed pressure of the simulation was adjusted so that approximately 10% of the total
molecules were in the vapour box at equilibrium. For the binary simulations, the estimation
procedure described in the previous Chapter which assumed relatively ideal mixture behaviour was
not used because the phase envelope for the 1,3-butadiene + r-heptane mixture was large compared
to the mixtures studied in the Chapter Six. The simulation pressure was adjusted on a trial and error

basis without introducing significant stability problems.

As for the simulations in the previous Chapter, five distinct types of moves were performed for both
the pure component and binary simulations, namely

1}  volume changes,

2) transfers of molecules between simulation boxes,

3} full regrowing of chains and partial regrowing of chains usmg CBMC,

4) translation of the centre of mass (COM), and

5)  rotation around the COM.
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Each of the moves was selected at random and, were performed with the fixed probabilities: pl: p2:
p3: p4: pS = 0.006: 0.328: 0.222: 0.222: 0.222. The maximum volume, translation and rotational

displacements were chosen in such a way that 50% of all of these moves were accepted.

All the simulations were equilibrated for at least 50,000 cycles. The production runs consisted of at
least 50,000 cycles for the pure component simulations and at least 100,000 cycles for the binary
simulations. The standard deviations of ensemble averages were computed by dividing the

production cycles of each run into five blocks and calculating the standard deviation from the

averages of these five blocks.

For both the pure component and binary simulations the same and unaltered LJ parameters listed in
Table 6-1 were used.

7.4 Pure Component Simulations of 1,3-Butadiene

The pure component properties of 1,3-butadiene over the temperature range of 223K — 403K
were simulated using the appropriate NERD and TraPPE intermolecular parameters of Table 6-1
and the bond angle and bond length parameters of Table 7-3 and Table 7-4 but including the
torsional potential of Bock er al. (1979) as described in Table 7-2. It was found, however, that
while the NERD force field gave reasonable agreement with the experimental data (Smith and
Srivastava (1986)), the TraPPE force field was considerably in error. The most significant
difference between the intramolecular parameters of the NERD and TraPPE force fields resides in
the description of the = CH - bond angle. The equilibrium =CH - bond angie of the NERD force
field is, however, in closer agreement with the recommended values of Bock er af, {1979) and Liu
and Zhou (1993). Since the intention was to simulate 1,3-butadiene pure component behaviour
without adjusting the intermolecular parameters, but with flexibility regarding the intramolecular
parameters, the NERD parameters for the =CH - bond angle were therefore also used for the 1,3-
butadiene simulations using the TraPPE force field. This significantly improved the simulated
results obtained from the TraPPE force field for 1,3-butadiene. The results for the NERD and
modified TraPPE force fields denoted as “Version 1” for the liquid and vapour densities, the
saturated vapour pressures and the latent heats of vaporization are shown in Figure 7-2 to Figure 7-5
and are listed in Table 7-7 to Table 7-9 in Appendix 7A at the end of this Chapter:
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Figure 7-2: 1,3-Butadiene liquid and vapour coexistence densities from “Version 1” of the NERD and

TraPPE force fields and the experimental data of Smith and Srivastava (1986). Critical points are shown as
solid symbols. '
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Figure 7-3: 1,3-Butadiene vapour coexistence densities from “Version 1" of the NERD and TraPPE force
fields and the experimental data of Smith and Srivastava (1986).
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Figure 7-4: 1,3-Batadiene saturated vapour pressures from “Version 1” of the NERD and TraPPE force fields
and the experimental data of Smith and Srivastava (1986).
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Figure 7-5: 1,3-Butadiene latent heats of vaporization from “Version 1” of the NERD and TraPPE force
fields and the experimental data of Smith and Srivastava (1986).
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The NERD force field in general estimates the pure component saturated liquid and vapour
densities (Figure 7-2 and Figure 7-3), vapour pressures {Figure 7-4) and heats of vaporization
(Figure 7-5) of 1,3-butadiene better than the TraPPE force field except in the lower half of the
temperature range considered where the TraPPE force field displays a better prediction of the pure
component saturated liquid densities. The average differences between the experimental pure
component data of 1,3-butadiene and the simulated data using the NERD and TraPPE force fields

are listed in Table 7-5 together with the “Version 2” modifications.

The saturated liquid and vapour densities estimated by the TraPPE force field are in general shifted
to lower temperatures. Consequently, while the critical temperature of 424K and the critical density
of 0.2416g/cm’ estimated by NERD force field using Equations (6-2) and (6-3) with B=0.32 are
close to the experimentally measured critical temperature and density of 425.15K and 0.245g/cm’
respectively, the TraPPE force field provides a considerably poorer estimate of the critical
temperature and the critical density of 409.1K and 0.250g/cm’® respectively. It has been shown
previously by Chen ef al. {1998), Martin and Siepmann (1998), and Ungerer et al. (2000) that the
critical temperature increases with increasing & and that the critical density decreases with
increasing o-. The NERD sp” hybridized LT & parameter for the ~CH= group is 1K smaller than
the comresponding group for the TraPPE force field but the NERD sp” hybridized LT £ parameter
for the CHy= group is 7.5K larger than the same group of the TraPPE force field. In addition, both
of the relevant sp® hybridized LJ ¢ parameters for the -CH= and the CH,= groups have larger
values in the NERD force field than they do in the TraPPE force field. The combination of the
larger LT & and & parameters for the NERD force field are what results in the better overall shape
of the pure component properties for the NERD force field over the TraPPE force field. This

suggests that the magnitudes of the NERD parameters are more suited to the simulation of
conjugated alkene molecules.

Since a change of only a few degrees in the equilibrium bond bending angie achieved a
considerable improvement in the agreement between the simulated and experimental pure
component properties, it was decided to adjust the equilibrium bond lengths for both the NERD and
TraPPE force fields to more correctly reproduce the molecular geometry of 1,3-butadiene. From
Table 7-4, it may be seen that while both the TraPPE and NERD force fields use equilibrium values
for the two CH, = CH double bonds that are close to the 1.34A suggested by Bock et al. (1979),
the central CH-CH single bond differs by as much as 0.08A. The reason for this discrepancy

resides in the way in which the transferable force fields are, in general, parameterized. Indeed, all
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single bonds between sp” or sp’ hybridized carbons are assumed to have a bond length of 1.54A for
both the TraPPE and the NERD (for molecules with more than three carbons) force fields. Clearly,
the force exerted on a sp® hybridized -CH= group by a sp® hybridized CH,= group along the single
bond connecting them will be less than the force exerted by another sp® hybridized ~CH = group
because the second -CH= group has one fewer hydrogen atom attached. It is important to
determine whether the assumption of using a single equilibrium bond length for all C-C bonds is
valid. Consequently, the NERD and TraPPE force fields were adjusted to treat the central
CH~-CH single bond as having an equilibrium length of 1.46A. The two double bonds retained
their equilibrium lengths bonds as listed in Table 7-4 because these lengths are very similar to the
value suggested by Bock et al. (1979). All other intermolecular 1.J and intramolecular parameters
were left unchanged. The results of these “Version 2” simulations are shown in Figure 7-6 to
Figure 7-9 and the data is listed in Table 7-7 to Table 7-9 in Appendix 7A at the end of this
Chapter:
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Figure 7-6: 1,3-Butadiene liquid and vapour coexistence densities from “Version 2” of the NERD and

TraPPE force fields and the experimental data of Smith and Srivastava (1986). Critical points are shown as
solid symbols.
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Figure 7-7: 1,3-Butadiene vapour coexistence densities from “Version 2” of the NERD and TraPPE force
fields and the experimental data of Smith and Srivastava (1986).
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Figure 7-9: 1,3-Butadiene latent heats of vaporization from “Version 27 of the NERD and TraPPE force
fields and the experimental data of Smith and Srivastava (1986).
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The NERD force field again demonstrates a better overall agreement with the experimental data
than the TraPPE force field. This may be seen in Table 7-5 which shows the average differences -

between the experimental data of Smith and Srivastava {1986) and the simulated data from both sets
of modifications to the NERD and TraPPE force fields:

Table 7-5: Average differences between the experimental saturated pure component properties of 1,3-

butadiene and the simulated data from the “Version 17 and the “Version 2” modifications of the NERD and
the TraPPE force fields.

NERD
Temperature range [K] 223403
Property Je Pe IH(P m) AH,,
Average difference [%], “Version 17 34 253 53 6.2
Average difference [%], “Version 2” 1.3 11.2 2.8 i3
Net % Improvement 2.1 141 2.5 2.9
TraPPE
Temperature range {K} 223-383
Property 2 2, In (P"‘ )| aH,,
Average difference [%], “Version 17 35 82.5 i2.9 15.5
Average difference [%], “Version 27 1.7 65.6 11.1 12.6
Net % Improvement 1.8 16.9 1.8 2.9

The results in Table 7-5 also indicate that the shortening of the CH - CH equilibrium bond length
by only 0.08A (a change of roughly 5%) significantly improved the pure component simulated data
for both force fields. This is significant because it suggests that the internal molecular geometries
must receive more serious consideration when parameterizing a pure component force field and that
a wider set of intramolecular geometries could significantly improve the overall accuracy of any
transferable force field. The other important feature of the improvement in physical property
prediction from “Version 1” to “Version 2” in Table 7-5 is that both force fields showed an
improvement of similar magnitude in each of the physical properties listed despite having different
sets of intermolecular L parameters which produced different macroscopic properties. This
suggests that the intramolecular potential parameters can affect the value of simulated physical

properties largely independent of the value of the intermolecular parameters. This conclusion
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would seem to contradict the observations of Smit et al. (1995), Chen et al. (1998) and Dubbeldam
et al. (2004) who argued that the inframolecular interaction parameters have only a marginal
influence on the prediction of physical properties. Recently, Ungerer et al. (2000) has suggested
that intramolecular parameters can influence the suitability of the intermolecular parameters
regressed for transferable force fields. It is the opinion of this work, however, that these two
seemingly contradictory perspectives can be reconciled, particularly for harmonic potentials.
Indeed, when additional simulations were conducted by varying the value of the bond stretching
and bond angle bending constant, &, and k, for the harmonic bond streiching and bond angle

bending potentials, it was found that changes in the magnitude of up to 30% in these constants
affected the final values of the simulated physical properties by less than 2% which supports the
work of Smit ef al. (1993), Chen et al. (1998) and Dubbeldam ef al. (2004). When the values of the
equilibrium bond angles, &, and the equilibrium bond lengths, [, were modified, however, it was
found that even small changes of 5% dramatically altered the simulated physical properties to a
similar extent as those already seen listed for the CH - CH bond length which supports the work of
Ungerer ef al. (2000). Only the effect of the magnitude of the intramolecular interactions on the
physical properties was actively explored in the works of Smit ef al. (1995), Chen ef al. (1998} and
Dubbeldam er al. (2004). The above results therefore highlight the equilibrium geometries as the
most crucial component of the intramolecular parameter sets that affect the simulated physical
properties. Even though the magnitude of the intramolecular parameters are less significant than
the magnitude of the interaction potential arising from intermolecular interactions, the equilibrium
bond lengths and equilibrium bond angles will have a crucial role in positioning the intermolecular
interaction sites in three-dimensional space. The role of the equilibrium geometries may therefore
be understood to have an indirect, but still significant, role in determining macroscopic properties.
The NERD olefin force field of Nath er ol (2001a) utilized a —-CH= equilibrium bond angle
obtained from the work of Jorgensen et al. (1984) that was derived from microwave measurements
of linear olefins. The TraPPE olefin force field of Wick er al. (2000}, however, used equilibrium
geometries obtained from the force field of Cornell et al. (1995) optimized for nucleic acids and
proteins. The TraPPE olefin force field of Wick er al. (2000) does, however, provide a good
description of the pure component liquid phase properties and the saturated vapour pressures. This
has also been confirmed by Bourasseau et al. (2003). The regression of the intermolecular
parameters for the TraPPE olefin force field proceeded by first regressing the sp® hybridized & and
& parameters for the CHy;= group of ethylene to provide a good fit with the experimentally

measured pure component data for ethylene. Thereafler, the ¢ and & parameters for the sp’
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hybridized -CH= group were regressed to reproduce the pure component properties of longer 1-
alkene molecules. Implicit within this “secondary regression”, however, was the equilibrium bond
angle of Cornell et al. (1995). It is, therefore, the perspective of this work that the final o and ¢
parameters for the sp’ hybridized -CH= group of the TraPPE force field compensated for the
erroneous bond angle to the extent that their transferability to other functional groups was limited.
This helps explain the superior results obtained using the NERD intermolecular parameters where
an equilibrium bond angle closer to the experimentally measured value for linear olefins was
utilized. This viewpoint is supported by the work of Chen et al. (1998) where it has already been
reported that there can potentially exist several “optimal” intermolecular parameter sets which yield
very similar macroscopic properties. An exploration of the effects of the equilibrium molecular
geometry on the suitability of regressed intermolecular interaction parameters forms the basis of the

work in Chapter Nine where it is considered in more detail,

‘What is particularly remarkable about the data from the NERD force field is that it shows good
agreement with the experimental saturated vapour densities and the saturated vapour pressures. In
the original publications, the simulated vapour data and heats of vaporization did not demonstrate
this level of accuracy even for molecules with four carbons (Nath et af. (2001a)). The improvement
in the prediction of the saturated vapour pressures and the vapour densities is also very important
for the accurate simulation of the latent heats of vaporization as may be seen through the definition
of the latent heat of vaporization in Equation 5-21. The good close agreement between the
experimentally measured latent heats of vaporization as seen in Figure 7-9 and Table 7-5 therefore
also indicates that the NERD force field parameters also provide a good estimate of the
intermolecular potential energy, U. This further suggests that the values of the & and ¢

parameters of the sp? hybridized -CH= and CH,= groups of the NERD force field are close to their
optimally transferable values.

7.5 Pure Compbneut Simulations of cis-1,3-Pentadiene and cis-1,3,5-

Hexatriene

The pure component simulation data for cis-1,3-pentadiene and cis-1,3,5-hexatrienc are
shown in Figure 7-10 to Figure 7-13 and the comresponding data is listed in Table 7-10 to Table
7-12 in Appendix 7A at the end of the Chapter.
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Figure 7-10: cis-1,3-pentadiene and cis-1,3,5-hexatriene Hquid and vapour coexistence densities from the

NERD and TraPPE force fields and the experimental data of Smith and Srivastava (1986). Critical points are

shown as solid symbols. Comelated data using the law of rectilinear diameters is shown as dotted lines.
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Figure 7-11: cis-1,3-pentadiene vapour coexistence densities for the NERD and TraPPE force fields and the

experimental data of Smith and Srivastava (1986). Correlated data using the law of rectilinear diameters is
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Figure 7-12: cis-1,3-pentadiene and cis-1,3,5-hexatriene saturated vapour pressures from the NERD and
TraPPE force fields and the experimental data of Smith and Srivastava (1986).
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Figure 7-13: cis-1,3-pentadiene heats of vaporization from the NERD and TraPPE force fields and the
experimental data of Smith and Srivastava (1986). Data for cis-1,3,5-hexatriene is omitted for clarity.
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Given the superior results obtained by using the observed molecular geometries for 1,3-butadiene, it
was decided to use the same approach when simulating cis-1,3-pentadiene and cis-1,3,5-hexatriene.
Unfortunately, no experimental study of the equilibrium geometries for cis-1,3-pentadiene as shown
in Table 7-1 could be found. The equilibrium lengths of the C=C double bonds for both 1,3-
butadiene and cis-1,3,5-hexatriene as listed in Table 7-4, however, all have values between 1.34 A
and 1.36A. The intemal CH-CH bond length for both 1,3-butadiene and cis-1,3,5-hexatriene
varies between 1.46A and 1.48A. Consequently, an equilibrium bond length of 1.34A was used for
the double bonds in cis-1,3,-pentadiene while an equilibrium bond length of 1.47A was used for the
internal single bond. For the C®¥ —C* single bond the relevant bond length parameters from Table
6-2 were used. For cis-1,3,5-hexatriene, the equilibrium bond lengths of Liu and Zhou (1993) as
listed in Table 7-4 were used. The NERD simulations used a bond stretching constant of
96500K/A?. Both molecules exclusively have =CH - bond angles. From Table 7-3, this
equilibrivm bond angle varies, in general, between 123° and 126° for both 1,3-butadienc and cis-
1,3,5-hexatriene and therefore an equilibrium value of 124° was used for all of these bond angles
together with a bond angle bending constant of 62500K/rad’. From Table 7-2, the cis torsion of the
TraPPE force field was used for both force fields to describe the ¢is torsion, while the torsional
potential of Bock et al, (1979) was used for the = CH ~CH = torsion.

For cis-1,3-pentadiene, the available experimental data was limited to the critical temperature, the
critical density, vapour densities and vapour pressures in the temperature range from 213-317K, and
heats of vaporization and liquid densities in the temperature range from 294-303K. In order to
estimate liquid densities in the temperature range between the critical temperature and the available
experimental data, the modified Rackeit equation of Spencer and Danner {(1972) was used:

iz[%]zm[“ﬂ-ﬂf”] -3

o Per :
where Z,, is a modified compressibility factor. Using the known values of I, and p,_, the
available liquid densities as a function of temperature were then used to regress an optimal value of
Z,,. This allowed for the estimation of the liquid densities over the temperature ranges of 213-
294K and 303-488K. Then using these generated liquid density values together with the available
critical data and the vapour density data in the temperature range from 213-317K, it was possible to
determine best-fit values for the constants A and B in Equations (6-2) and (6-3) with p=0.32.
These two equations could then be used to estimate vapour densities in the temperature range 317-

488K given the estimated liguid densities obtained from Equation 7-3).
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The above approach could not, however, be confidently used for cis-1,3,5-hexatriene because of the
lack of measured data for the critical temperature and the critical density. Saturated liquid density
data was only available in the temperature range of 306-324K. The critical density and the critical
temperature of c¢is-1,3,5-hexatriene were estimated by best-fit regression of these variables (together
with Z,,) using Equation (7-3) to be 0.243g/cm’ and 579.6K. Since this critical temperature is
255K higher than the highest temperature of a measured liquid density, it was not reasonable to
estimate the saturated vapour densities using Equations (6-2) and (6-3). For this reason, the
simulated vapour densities of cis-1,3,5-hexatriene are not shown in Figure 7-10 or Figure 7-11 but
are listed in Table 7-12 in Appendix 7A at the end of this Chapter.

From Figure 7-10 to Figure 7-13, it is clear that the simulated data of the NERD and TraPPE force
fields show simnilar trends to those observed in the simulated data for 1,3-butadiene. The TraPPE
force field shows a better description of the high liquid densities, the NERD force field is clearly
superior in the predictions of the vapour densities over the whole range and the liquid densities in
the near-critical temperature range, while the estimated critical temperature of 485K and critical
density of 0.2423g/cm’ (Table 7-11) for the NERD force field compare more favourably than the
TraPPE force field with the measured critical temperature of 488K. and the measured critical density
of 0.2477g/en’. The vapour pressures are again overestimated by both force fields but the
agreement with the measured data is worse than it was for 1,3-butadiene. This also leads to the
poorer description of the latent heats of vaponization as seen in Figure 7-13. It is suspected that the
origin of the apparently increasing deviation between the simulated results and the experimental
data may lie in the description of equilibrium length of the C* —C® single bond. Unlike for
conventional n-alkanes, the sp® hybridized -CH; group now has a sp® hybridized =CH- group
attached to it instead of the usual sp® hybridized =CH, group. With one less hydrogen, the sp°
hybridized —~CH= group will be able to exert a greater attractive force on the terminal —CH; group
thereby reducing the equilibrium length of the C* —C® bond. The observed difference between
the measured physical property data and the simulated data therefore again suggests that the
transferability of intramolecular bond lengths depends on the hybridization of the functional groups.
Due to the lack of measured equilibrium geometries with which to confirm these suspicions and test
modified bond lengths, however, no further simulations were conducted but the idea is explored
further in Chapter Nine.

For cis-1,3,5-hexatriene, the measured vapour densities were very limited and measured heats of

vaporization could not be found and are therefore not shown in Figure 7-11 and Figure 7-13. The
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simulated liquid densities and the simulated vapour pressures are, however, in considerable

. disagreement with the limited experimental data. It was suspected that an incorrect model of the

cis-torsional may have resulted in trans-1,3,5-hexatriene being simulated but simujations of trans-
1,3,5-hexatriene did not significantly improve the data and the computer algorithm was confirmed
to be correct. Consequently, with the equilibrium geometries of Liv and Zhou (1993) correctly
used, the remaining possibility lay in the description of the =CH-CH= torsional potential
because the torsional potential of Bock et al. (1979) was used and it was assumed that the
intramolecular LY interactions would account for the local intramolecular energy maxima observed
at 0° (360°). In order to confirm this, a2 histogram of the observed torsional angles for the
=CH-CH= torsion was recorded. For the above assumption to be true, then the following

expression must hold true for all torsional angles:

oo M exp[—ﬁU(-;ﬁ)m]
! zw’t‘ Zaexp[_ﬁU(¢)int]

where @ is the probability of observing a configuration with a torsional angle of ¢ when the fotal

(7-4)

inframolecular potential is U{4). . and w; is again a weighting function but this time it serves to

ot ?
describe the number of times that a particular torsional angle is observed for the histogram. For the
Bock er al. (1979) torsional potential combined with the existing LJ parameters to have been
adequate, then both the normalized histogram and the graph arising from the exponential function

described in Equation (7-4) above must be equivalent over the range 0 <@ <2x. The resulting

curves are plotted in Figure 7-14 below. For clarity, a zoomed view is also given in Figure 7-15:

118



TESTING THE LIMITS OF TRANSFERABLE FORCE FIELDS

040

R e B e R L T

0.35 1

T AT T R S o T - e — T

f=
[
o

o

[ o)

L
)

Normalized prebabilit
=]
8

0.15 -
0.10 :
005
0.00 : TN :
G 60 120 130 240 300 36G
Angle (deg)
e =C-C= histogram - Equation (8-4)|

Figure 7-14: Normalized probability plot for the = CH—CH = torsion from the pure component simulation
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Figure 7-15: Zoomed view for the normalized probability plot for the = CH-CH = torsion from the pure

component simulation of cis-1,3,5-hexatriene and from Equation (7-4).
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For both Figure 7-14 and Figure 7-15 only the histogram resulting from the =CH—CH = torsion

.. over the first four carbons the liquid phase is plotted. It was found that the vapour phase yielded the

same distribution and that both =CH-CH = torsions yielded the same histogram. Both the
normalized histogram from the simulation and the curve resulting from Equation (7-4) are sharply
peaked around 180° This corresponds to the frans configuration for the =CH-CH = torsion
which is the more stable configuration because then the first and fourth carbons of the torsional
sequence are most widely separated. It would appear, however, that the origin for the discrepancy
between the simulated results and the experimental data is because the measured data of Liu and
Zhou reveals that the =CH —CH = torsion should be much more sharply peaked around 180° (the
trans configuration) than that simulated by the Bock ez al. (1979) potential with the existing set of
LJ parameters. Figure 7-15 shows a zoomed view and reveals the much higher concentration of cis
configurations near 0° (360°) obtained in the simulations. The cis configuration will, in general,
yield a lower density than the frans configuration because the more linear frans orientation will
allow for a closer packing of molecules in the liquid phase than the more “boat-shaped” cis

configuration.

The solution required to resolve the difference between the measured physical property data and the
simulated data would therefore require a reparameterization of the sp’ hybridized CH,= and -CH=
LJ parameters or the formulation of a new = CH—CH = torsional potential for cis-1,3,5-hexatriene
or a combination of both approaches. Indeed, if a combination of revised sp” hybridized ¢ and &

parameters were given different values, then the repulsion between =CH-CH= from the
intramolecular LJ interactions at short separations would force cis-1,3,5-hexatriene towards a higher
fraction of frans configurations as required and potentially also go a long way towards improving
the simulated results from the TraPPE force field. It was, however, the objective of this study not to
modify the L] parameters as this would require an extensive effort for only 3 molecules.
Alternatively, the torsional potential of Bock ez al. (1979) could be empirically modified to give a
better distribution of torsional angles. It is not immediately apparent how this could be easily or
reasonably achieved with the very limited temperature-dependent data available for c¢is-1,3,5-
hexatriene against which to check the resulting torsional potential. Chapter Nine presents a more

extensive study of 2 new intermolecular force field based on observations from this Chapter.
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7.6 Binary Simulations for Conjugated Alkenes

To test the applicability of the revised NERD and TraPPE force fields for binary VLE
simulations, a 1,3-butaidene + n-heptane mixture at 70°C was simulated. The 1,3-butadiene
molecule was simulated using the “Version 2” modifications described in the previous Chapter
while the n-heptane molecule was simulated using the conventional NERD and TraPPE parameters
for n-alkanes as laid out in Table 6-1 to Table 6-4. The resulting P-x-y diagram is shown in Figure
7-16 and the corresponding x-y data is plotted in Figure 7-17. Figure 7-18 shows a plot of the ratio
of the excess to the real volumes for both phases and for both the NERD and TraPPE force fields.

From Figure 7-16 the NERD force field displays a much better description of the P-x-y phase
envelope than the TraPPE force field. This is, however, largely attributable to the superior pure
component vapour pressure predicted by the modified NERD force field as evidenced by the pure
component simulated properties and the corresponding experimental data of Smith and Srivastava
(1986) in Table 7-6:

Table 7-6: Experimental and simulated pure component properties obtained using the NERD and TraPPE

force fields for 1,3-butadiene and n-heptane. Subscripted values indicate the estimated error in the simulated

results.
1,3-butadiene n-heptane
NERD, TraPPE,
Exp. Exp. NERD TraPPE
“Vers. 2” | “Vers. 2”
P, [kPa] 949 9774, 130845 40.4 44 .85 57.524
P s [g/cm3] 0.552 0. 5480_001 0.5440_002 0.640 0.6290_002 0.6440_003
Py X 10*, [g/em’] | 212 22230 315, 14.0 16.2;, 20.9974

Crucially, however, from Figure 7-17 it may be seen that the x-y data resulting from the simulations
are in poor agreement with the experimental data because both force fields underestimate the value
of the ratio of the 1,3-butadiene phase compositions, x,/y, . Physically, this translates to NERD
and TraPPE force fields overestimating the amount of n-heptane in the vapour, underestimating the
amount of n-heptane in the liquid, overestimating the amount of 1,3-butadiene in the liquid, or

underestimating the amount of 1,3-butadiene in the vapour.
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Figure 7-16: Simulated P-x-y daia for the 1,3-butadienc (1) + n-heptane (2) mixture at 343.15K and the
comresponding experimental VLE (Dortmund Data Bank). Estimated uncertainties are included.
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Figure 7-17: Simulated x-y data for the 1,3-butadiene (1) + n-heptane (2) at mixture 343.15K, the
corresponding experimental x-y data (Dortmund Data Bank), and the ideal solution x-y data based on the

experimental saturated vapour pressures of 1,3-butadiene and #-heptane. Uncertainties are omitted for clarity.
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Figure 7-18: Plot of the ratio of the excess to the real volumes for both liquid and vapour phases for the 1,3-
butadiene + #-heptane mixture at 343.15K.

From Table 7-6 it is possible to deduce that the pure component properties are not responsible for
the discrepancy between the experimental and the simulated x-y curves. In terms of the saturated
vapour pressure, the TraPPE force field overestimates both pure component saturated vapour
pressures by approximately 50% while the NERD force field overestimates the 1,3-butadiene
vapour pressure by roughly 3% and the n-heptane vapour pressure by about 10%. Thus, because
the NERD force field describes the one vapour pressure well and the other badly, while the TraPPE
force field describes both vapour pressures poorly, neither the quality of the pure component vapour
pressures nor the relative inaccuracy between each of the pure component vapour pressures can be
blamed for the discrepancy. Both force fields also describe the pure component liquid densities
well and these can, therefore, not be the cause. The pure component vapowr densities follow a
similar trend to the vapour pressures and for the reason already mentioned excluding the vapour

pressures as the cause, the inaccuracies in the simulated vapour densities can also not be the cause.
In Figure 7-17, the ideal mixture x-y curve based on Raoult’s Law and using the experimental pure

component vapour pressures is plotted. It may be seen that the force fields display a completely

inaccurate trend away from the ideal curve because the ratio x,/y, for the experimental data is
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always higher than the ideal curve while the ratio x/y, from the force fields is always
underestimated. In addition, the bubble point line connecting the pure component vapour pressures
in Figure 7-16 is esseniially linear for both the NERD and TraPPE force fields and for the
experimental data. This confirms the ideality of the liquid phase for the experimental data and for

the liquid phase simulated by both force fields (which is also supported by the V*/V ratio which

displays only small deviationaround zero in Figure 7-18 and which indicates that the liquid excess
volume is essentially zero for all compositions). The deviation would therefore appear to lie mostly

in the vapour phase.

Recalling the x-y data of Chapter Seven, all the x-y diagrams (while still close to the experimental
data) tended to slightly underestimate the x,/y, ratio if they were not in perfect agreement with the
experimental data. This phenomenon has essentially been enhanced for the 1,3-butadiene + n-
heptane mixture studied. The 1,3-butadiene molecule consists exclusively of sp’ hybridized
functional groups whereas the n-heptane molecule consists exclusively of sp® hybridized functional
groups. Since the discrepancy in the simulated and experimental data would seem to lie in the
simulation of the vapour phase, this suggests that either the interactions between the 1,3-butadiene
molecules in the liquid phase needs to be reduced by adjusting the values of LT o and ¢

parameters for the sp® hybridized -CH= and CH,= groups to reduce the afttraction between these

groups at short separations, or by adjusting the values of the LY & and ¢ parameters for the sp’

hybridized -CH;— and —CH, groups to increase the aftraction between these groups at short
separations in the liquid phase. The net effect would be an increase in the tendency of 1,3-
butadiene to exist in the vapour and a decrease in the tendency of n-heptane to exist in the vapour.

Qualitatively, a decrease in the values of either or both of the LJ ¢ parameters for the sp’
hybridized -CH= and CH,= groups can be seen to be favourable based on the results obtained from
the pure component NERD simulations of 1,3-butadiene. It is well known that the critical
temperature and vapour pressures both decrease with decreasing £. The “Version 2” NERD force
field currently overestimates the critical temperature (Figure 7-6) and the saturated vapour pressures
(Figure 7-8) and the reduction in the LI £ parameters would therefore shift these properties towards
the comrect values. For cis-1,3,5-hexatriene, however, the critical temperature for cis-1,3,5-
hexatriene is already too low and a decrease in the values of the LJ £ parameters might increase the
fraction of cis-conformations by decreasing the repulsions at short separations for the

intramolecular LT interactions. This suggests that a simultaneous adjustment also needs be made to
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increase the LJ sp® hybridized o parameters because this can be used to increase repulsive
interactions at short separations and hence the fraction of trans configurations as seen in Figure 5-2.
It is also well known that the simulated vapour pressure decreases with increasing o which will
improve the situation for all conjugated alkenes studied. These and other considerations already

mentioned are explored more fully in Chapter Nine.
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7.7 Appendix 7A: Pure Component Simulation Data for the Three Conjugated Alkenes Studied

!
!
Table 7-7: Simulated coexistence densities for 1,3-butadiene for “Version 1”7 and “Version 2" of the NERD and TraPPE force fields and the corresponding

experimental data. Subscripted figures signify the estimated error in the simulated value. All densities have units of g/em’. }
1

TraPPE, Version 2

Temperature Experimental NERD, Version 1 NERD, Version 2 TraPPE, Version i

[K] 2 p, x10* o p, x10° o p, x10° P p, x10° o Py x10°
223 0.701 3.28 0.676¢.001 538095 | 0.688p00r | 447043 0.6900.001 8185 0.698001 | 7.14p4;
253 0.668 13.9 0.644 002 19.1:4 | 0.656¢00, 16.4,, 0.6550002 27.9,4 | 0.664000 26.4,
283 0.633 41.7 0.610.001 54.01 0.6240002 | 46.937 0.6180.0m 75.527 0.6280.002 70. 8;,5
313 0.595 101 0.5740.001 1235 0.588y.001 1105, 0.5780.00 1734, 0.5870.002 156;,1
343 0.552 212 0.533000¢ 2490 0.5480 001 2224, 0.5316.002 338, 0.5420,00 309
363 0.519 333 0.5000 602 3761 0.5170.001 33545 0.4%40.902 528, 0.506¢.002 476;4
383 0.480 518 0.4640 004 5684 0.4830.002 5096 0.4480.002 812 0.459,.004 71 8:35
403 0.429 832 0.4180,005 9115, 0,440 004 7733 -'

Table 7-8: Critical temperatures and critical densities of 1,3-butadiene for “Version 1™ and “Version 2” of the NERD and TraPPE force fields estimated using

Equations {6-2) and (6-3) with p=0.32.

Experimental | NERD, Version 1 | NERD, Version 2 | TraPPE, Version 1 | TraPPE, Version 2
T, . [K] 425.15 424.0 431.4 409.1 413.6
P.r» [gfem’] (.2450 0.2416 0.2435 0.2500 0.2497
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Table 7-9; Simulated saturated vapour pressures and latent heats of vaporization of 1,3-butadiene for “Version 1" and “Version 2” of the NERD and TraPPE
force fields and the corresponding experimental data. Subscripted figures signify the estimated error in the simulated value. All vapour pressures are measured in

kPa and all heats of vaporization are measured in kJ/mol,

Temperature Experimental NERD, Version 1 NERD, Version 2 TraPPE, Version 1 TraPPE, Version .2
(K] In(P™) | AH,, | W(P") | aH,, | m(P*}| AH, | Wm(P™) | AH, | Wn(P*) | aH,
223 241 24.7 2.904,5 22. 7008 2.72610 3338 214504 318512 21. 7010
253 3.97 23.2 4.28,.1» 21564 41444 22.00.14 4.664 03 20.20.12 4,601, 20.50.05
283 5.15 21.7 5.405.05 20.3500 5.26445 20.841, 5.720.05 18.84.06 5.6750s 19.350;
313 6.07 19.9 6.265.0: 18.75.07 6.165.09 19.2515 6.574.08 17.3013 6.480.03 17.64.4;
343 6.83 17.7 6.980.03 16.80.09 6.880.04 174518 7.2300s 15.0013 7. 7003 15.60.47
363 7.26 16.0 738008 | 15-1oos | 7290 | 159070 | 76308 | 13.3006 | 7-5800s | 13.8014
383 7.65 13.8 7. 75004 13.10.47 7.664.0 14.05 19 8.00¢.03 10.8¢24 7.93003 11.502
403 8.00 10.9 8.074.05 10.2¢.32 8.01g.07 11.5020 '

NPT
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Table 7-10: Simulated coexistence densities for cis-1,3-pentadiene and cis-1,3,6-hexatriene for the modlﬁed NERD and TraPPE force fields. Subscnpted figures

signify the estimated error in the simulated value. Al densities have units of g/em’,

cis-1,3-pentadiene cis-1,3,5-hexatriene
Temperature NERD TraPPE Temperature NERD TraPPE

[K] pr | pex100 | | px10° [K] p | pex100 L p | g x10°
225 0.7170002 | 126041 | 0.7450m02 | 1.39.15 300 0.7060.00; | 942036 | 0.7150003 | 13.027
245 0.699.001 | 2.66077 | 0.724p40) | 3.6%.5, 306 0.69%.00 | 11.536 | 0.7100003 | 15.3,5
280 0.667000, § 11 .82‘9 314 0.6920002 | 15.652 0.701002 | 21.134
315 0.6320001 | 36.110 | 0.652¢p002 | 52. 737 323 0.684g003 | 22.163 | 0.6920001 | 27.654
350 0.5940,00; | 90.655 0.6100m02 1 129/, 385 0.6180.004 | 104, 0.6210001 | 13745
385 0.5520 063 | 200,53 0.56201002 | 27250 420 0.5750003 | 21701 0.5749003 | 27915
420 0.5040,004 | 402y7 0.5040m03 | 5415 450 0.53200m | 3850 0.5244.90s | 4885,
455 0.4375.005 | 7703, 465 0.5006005 | 49943 0.495,905 | 64435

Table 7-11: Critical temperatures and critical densities of c¢is-1,3-pentadiene and cfs-1,3,5-hexatriene for the NERD and TraPPE force fields estimated using
Equations (6-2) and (6-3) with § =032,

cis-1,3-pentadiene cis-1,3,5-hexatriene
Experimental NERD TraPPE NERD TraPPE
7., (K] 488 485 473 523 508
£, [g/em’] 0.2477 0.2423 0.2531 0.2517 0.2587
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Table 7-12: Simulated saturated vapour pressures and latent heats of vaporization of cis-1,3-pentadiene and cis-1,3,5-hexatriene for the modified NERD and
TraPPE force fields. Subscripted figures signify the estimated error in the simulated value, All vapour pressures are measured in kPa and all heats of

vaporization are measured in k)/mol.

TESTING THE LIMITS OF TRANSFERABLE FORCE FIELDS

cis-1,3-pentadiene cis-1,3,5-hexatriene
Temperature NERD TraPPE Temperature NERD TraPPE
(K] In(P™) | 8H,, | In(P*) | AH,, K] In(P™) | AH,, | n(P™} | A4,
225 1.2303 | 28.5007 | 1.3404s | 27.3011 300 3.36010 | 30.002 | 3.68520 | 28.60.12
245 20700 | 27804z | 240034 | 26.40;, 306 35830 | 297005 | 387000 | 28.3024
280 3.68024 | 26,4415 314 391520 | 294020 | 420016 | 279000
318 4.8800c | 24.8022 | 526006 | 23.4014 323 42727 | 289010 | 4-4%.12 | 275008
350 586p0; 12295 6.190s | 21.4p), 385 59254 1253023 1 018500 | 23.8520
385 6.6%05 | 207004 | 6.96p0s | 19.0p20 420 606005 | 22.8028 | 688004 | 21.1022
420 734006 1 17.6014 | 7.5%.03 | 15.6047 450 722006 | 202025 { 741006 | 18.2¢3s
455 7.87005 | 13302 465 744005 | 184030 | 765006 | 16202
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ALTERNATIVE GIBBS ENSEMBLES FOR SIMULATING
N | MULTICOMPONENT VLE

“dut viam inveniam, aut faciam -- If I can’t find a way then I'll make a way” — Hannibal

8.1 Practical Considerations

For conventional N\N,PT Gibbs Ensemble simulations to correctly simulate a two-phase
mixture, it is necessary that the initial overall state of the mixture under study be spectfied within
the two phase region of thermodynamic state space (i.e. within the phase envelope on a P-x-y or T-
%-y diagram). This requires that the initial overall density and the initial overall composition of the
mixture must lie in-between the equilibrium phase densities and compositions respectively. This is

necessary to satisfy mass balance constraints because the total number of molecules of type 1, N,,

and the total number of molecules of type 2, N,, cannot change for a N{N,PT Gibbs Ensemble

simulation. This imposes a restriction in the sense that some prior knowledge of the phase envelope

is required to satisfy these composition and density constraints. Consider Figure 8-1:

Pa

Pza
P2n
Pac

X1 i Xi2 ¥i, xnyovi
: 42 i3
Mole Fraction of species i

Figure 8-1: Sketch of an arbitrary azeotropic system to highlight the difficuity in simulating binary VLE for

binary azeotropic mixtures or mixtures with narrow phase envelopes.
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The following potential difficulties in simulating a phase envelope become evident:
¢ Ifthe two-phase region is very narrow {e.g. for a mixture of close boiling components), it will
be almost impossible to stipulate an initial state satisfactorily because the chance of
stipulating an initial state within the two-phase region will then be very small. In Figure

8-1 this may be seen by considering the set of F,, x,,, ¥, and z,. In order to get a
sensible equilibrium at point 7, , a value for the overall composition z;, must be chosen in
between x;, and y,,. Ifavalue for z;, is chosen higher than y,,, then two vapour phases
will result with approximately identical compositions of z,,. Contrarily, if a value for z,,
is chosen lower than x;,, then two liquid phases will result with approximately identical
compositions of z,,. Alternatively, a pressure between P, and P; must be set for the
N;N,PT Gibbs Ensemble simulation to achieve phase separation. Choosing the simulation
pressure above F,, will result in two liquid phases with composition z;, while choosing P
below P, will result in two vapour phases of identical composition of z,. Suitable
selections for z, and P can often require several trial and error simulations for narrow

phase envelopes.

* Azeotropic compositions or compositions in the infinitely dilute regions become virtually
impossible to simulate because it is again very difficult to stipulate a satisfactory initial
density, composition and simulation pressure. This may be seen in Figure 8-1 for the sets
of B, x,, y, and z, and R, x;, y,, and z, where the judicious choice of P and z
becomes even more sensitive than that of P, and z,, because of the narrowing of the two-
phase region in these sections of the diagram.

o If the initial compositions are very close to one of the phase compositions, then most of the
molecules in the simulation will tend to move into one of the simulation boxes. This might
cause one of the simulation box sizes to drop in size such that one of the box side lengths is
less than twice the cut-off radius. This will invalidate results from the simulation (see

Section (5.5)). This is a consequence of the well known “lever-arm rule”. From mass

balance constraints, if &; is the total number of molecules of species i, then the number of

molecules of species 1 in the liquid for the set P,, x,,, ¥, and z,,, in Figure 8-1 is given
by the ratio N, x(x,, - 2,) / (%2 -,). Thisimplies that not only is it necessary to choose

z, between x, and y, and to choose P between its upper and lower limits in the two phase
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region for a given z,, but it is also necessary to choose 2z, and P reasonably well inside
these outer limits for the simulation not to risk falling below a minimum size restriction on
the simulation box size. This can be considerably difficult for points like z;, and B, or z;
and B in Figure 8-1. -

e Escobedo (2000a) has pointed out that another limitation exists for the case when the
incipient phase has negligible volume and the abundant phase had fixed composition such
as bubble or dew point simulations. This is because it can be of considerable interest to
calculate bubble or dew pressures corresponding to fixed compositions in the liquid or the

vapour instead of calculating the liquid and vapour compositions arising from an imposed

pressure and overall composttion.

Essentially, the first three difficulties listed above concerning the application of the N|N,PT version

of the Gibbs Ensemble to binary mixtures all originate from the requirement that one is forced to
stipulate both P and z, (where z, =%4 ., ) a priori. In Figure 8-1 this corresponds to specifying
both the vertical {through P) and hotizontal (through z,) co-ordinates in the two-dimensional
space of the phase diagram with the only freedom in this stipulation being constrained to the area

between the dew and bubble point lines of the phase diagram. The smaller this area, the more
unwieldy the N,N,PT Gibbs Ensemble becomes.

It therefore becomes prudent to consider altemative ensemble formulations or simulation
approaches. Considerable attention has been paid in recent years to new ensemble formulations. In
the next Section, several approaches are commented on which have been used with varying success

for simulating binary mixtures before three new ensemble formulations are developed and applied.

Recalling Equation {(3-24) and the discussion at tﬁe cﬂd ofd‘ Section (3.3), the stipulation of any two
intensive parameters should in principle be equivalently sufficient to guarantee phase separation.
Thus it should not be necessary that P and T are the only intensive pairing that can be utilized for
two-phase Gibbs Ensemble-type simulations with two intensive degrees of freedom. If an intensive
pairing other than P and T is chosen, however, this will in general require that two different
pieces of extensive variable information be specified other than N, and N, to place physical limits
on the system. This alternative extensive parameter inforration could, for example, be a volume

specification or an energy specification.
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8.2 Formulation of a g;N,VT Gibbs Ensemble for Binary Mixtures

"1t would be convenient to retain many of the advantages of the Gibbs Ensemble, including
direct mechanical and chemical coupling of volume and mechanical fluctuations in the boxes,
without having to resort to the approximations and interpolations inherent in pseudo-ensemble
approaches. Escobedo (20002) has alluded to the formulation of “osmotic” and “semi-open” Gibbs
Ensembles. The semi-open variant in principle corresponds to the wN,VT Gibbs Ensemble .
described below. In this Section, the p,N,VT Gibbs Ensemble partition function, the characteristic

thermodynamic potential and the acceptance criteria for this ensemble using the methodology

outlined in Section (4.7) are formally developed.

The proposed ¢, N,VT Gibbs Ensemble is a two-phase and two-component ensemble at constant
chemical potential of species 1, constant number of molecules of species 2, constant total volumne
and constant temperature. The reasoning behind the stipulation of 4, instead of P is that it will
now permit some compositional freedom and allow one to obviate the mass balance constraints that
necessarily must apply in the NyN,PT Gibbs Ensemble due to the fixed compositions. It should be
noted that the total number of molecules N in this ensemble is not constant since the total number
of molecules of species 1, n,, fluctuates in accordance with the imposed chemical potential &,. The
sets X, YV, X and Y are then:
X={m, +n,V}={N,V}
Y ={-pu,, BP}
X={n, +n,,U,Uy} ={n.U.Us}
(~Bu. BBy =B}
According to Equations (4-39) and (443), the thermodynamic potential for this ensemble is then:
‘PEN:W = Pu,N, — PV
=—%B +BU +Uy) - N,

(&-1)

'

(8-2)

For the proposed pt,N,VT Gibbs Ensemble, C=2 and F=2. Substituting for X-¥ from Equation
(4-45), Equation (4--33) therefore becomes:

I:Q,un' - i jjd V,dv; I Ids;n ds™ ViV

1 3 i,
NT ] 2 1 1 1 1
MAT e R R Ko AT Ay Yoy Uy T )

x{exp[—ﬁ(Ul (S?' ) +Uy (sII ) THM )]}

(8-3)
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Also, one knows that N, =n,, +n,, = constant, n, =n,, +n,, from which one can eliminate »_,.

— —===-(ne also has the relation ¥, + ¥, =V from which one can eliminate ¥}, . Equation (8-3) becomes:

[QﬂPT}HNVI’ KAJN Z Z Z A3n, (;T:_ ):}an

=0 gm0 1y n Ly o 2 ¥,

x IdV;V:’* (v -n)e | [dsypdsy

¥;=0 s s

e [-8(01(52) Ul - )
zﬁ?"i i 1 ri A;—‘“-n]_z!(j\fz-nl,z)!

t
ma=0rig, =0 By Py 0

(84)

-

vy (v -y | [dspdsy

0 s"lI SI“I

x {exp[“ﬁ (Ux (3?[ ) +Uy (sﬁ' ) A )]}

¥
Voo = ]'an =V, may be included in the constant X, as for the NVT Gibbs Ensemble. The

4

#

probability of observing a configuration around s* and s} ™ with a,, molecules in phase I with
volume ¥}, n, molecules of species 2 in phase I and #;, molecules of species 2 in phase II is
given by:
V PII ﬂu GE
@(ni,n”l,v”n,z’ 13158y )HN:F'T

ey -v)" n N
" Aln, !”u,f!"{_z 1(1)\,2 —Hpy )! eXp[—ﬁ(Ul (s[ ) +Uy (sn )_ ald )]

The probability distribution given in Equation (8-5) prescribes the same basic molecule translation,

(8-5)

volume change and molecule swap moves given by Equations {(4-5) to (4-7) for the NVT Gibbs
Ensemble but with additional molecule creation and destruction moves for species 1:
1) Molecule creations of species 1 in phase I. The acceptance criteria for this move may be
derived by combining Equations (3-21), (3-22) and (8-5):
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(hr)

aec (O —F H) = o
Ifizw)
7 V]"‘H A?"‘ n, | 3]
A 1) T
=1mi 1 g
min4l, exp[—ﬁ (UI (s;’|+l ) — o (n + 1))] (8-6)
X
exp[—ﬁ (U] (s‘]'i ) - Hm )]
cmindl| — U exp[- _
=nun {15 \A? (n].l + 1) ex'p[ ﬁ(AU[ H ):l]}
where AU, =U, (sp*)-U,(s').
2) And molecule destructions of species 1 in phase 1
GE Y
acc{o—rn)= m—
( GE old
wNAT (8-7)

=mm{1,[%‘mexp[—ﬁ(w; 4 )]]}

These acceptance criteria turn out to be identical to the molecule creation and destruction
acceptance criteria for the pVT ensemble (Frenkel and Smit (1996)).

Unlike the NyN,PT Gibbs Ensemble in which P, N, and N, are specified a priori one now
specifies g, N, and V' a priori in the #;N,VT Gibbs Ensemble . The average total comnposition,
z,, is thus variable. The specification of p, effectively determines the vertical co-ordinate on the

phase diagram thus replacing the specification of P in the N,N,PT Gibbs Ensemble because each

1, corresponds to one unique pair of x; and y, on the phase diagram at equilibrium. The constant
total volume ¥ replaces the specification of the extensive variable N, and thus determines the

horizontal co-ordinate on the phase diagram. As ¥V increases, the average number of molecules in
the liquid phase will increase. In terms of the “lever-arm” rule, this implies that as the value of V

increases, the ensemble average overall composition approaches the ensemble average liquid

composition,
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8.3 Formulation of a {,NVT Gibbs Ensemble for Binary Mixtures

I ) St e e

‘Tt shisuld be possible 16 construct a Semi-Grand vatiation of the basic Gibbs Ensemble using
the ideas contained in Sections {8.2), (4.3) and (4.7). The advantage of this proposed ensemble
would be that it would be able to maintain a constant total number of molecules while varying the
number of each type of molecule. In the p;N,VT Gibbs Ensemble the total number of molecules
can vary which might result in a considerable increase in the length of a simulation if the number of

molecules of species 1 increases substantially from the starting value.

The reasoning behind the formulation of the £, NVT Gibbs Ensemble is that it should be possible to
specify one intensive variable and one relationship among two or more intensive variables and still
satisfy the requirement that two intensive degrees of freedom be specified for a two-component and
two-phase system. As for the u,N,VT Gibbs Ensemble of Section (8.2), it is most convenient to
specify the temperature a priori which thus becomes the directly specified intensive variable. One
may then choose a chemical potential difference to specify the remaining intensive degree of
freedom. This effectively amounts to deriving a Gibbs Ensemble from the Semi-Grand Ensemble

analogous to the way in which a constant chemical potential Gibbs Ensemble was effectively
- derived from the pVT ensemble in Section (8.2). .. =

In the proposed £, NVT Gibbs Ensemble, the total number of molecules of species 1 and species 2,
n, and », respectively, are both variable but subject to the constraint that N=n +n,. Itis
therefore convenient to write the contribution of —fun, and —fFu,n, to Equation (4-25) for a
binary system as: R

~Bum, - Buyny = =P — P (N —n,)

(8-8)
_ =_ﬁ#zN_ﬁ(ﬂi _J“z)”l
The total volume ¥ is also held constant. The sets X, ¥, X and Y can then become:
X={N,V}
Y= {"ﬂl”z ,BFP }
- (8-9)
X={nm, +ny,,U,,Up} ={n U, ,Ug}

Y ={_ﬁ(ﬂ| - J“z),ﬂvﬂu =.B1}
According to Equations {(4-39) and (4-43), the thermodynamic potential for this ensemble is then:
Ve, = Bu,N - BPV |

8-10
='%3+5(UI+UH)_)8(#1“4“2)"1 ( )
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It is interesting to note how similar the thermodynamic potential and sets of X, ¥, X and Y are
for both the £;NVT and N, VT Gibbs Ensembles. This is to be expected since both ensembles are
similar in the sense that they involve molecule destructions and creations but differ in what type of
molecule number specification remains constant, namely N for the £ NVT Gibbs Ensemble and
N, forthe N, VT Gibbs Ensemble.

For the proposed £, NVT Gibbs Ensemble, C=2 and F=2. Substituting for X-¥ from Equation
(4-45), Equation (4-33) therefore becomes:

(O Tye = 2 [ JdToa¥, [ [asipast

L ECTU T I AR o st
M o
y R
I op
K A A 1y Iy, !nﬂ.zl

x {exp I:~ﬁ' (U[ (S;" ) +Uy (s;’[“ ) -(t - ) m, )]}

Also, one knows that N=n +n,=n+ny, n=n,+n, and n,=n,+n,, as mass balance

&-11)

constrainis. One also has again F]+¥; =V from which onc can eliminate ¥;. The term

1

———————  which accounts for indistinguishability (i.e. double counting) must also be
m gt g, !

refained and the molecules are free to swap identities from species 1 to species 2 or vice versa in

both simulation boxes. For a binary mixture, Equation (8-11) becomes:

jdV IdVV"‘ v -y

(o e 5 3, B[R]

- - 1
2 =0, =0n =0 '("; j"’11)””‘111 (N y "nl)

[ Jasmast forn[ (U, a1)+ Ua (67) = =) )

’u

, (8-12)
[ avpe (v -n)y™

A,NZZ ( ] nmr(w

3 Mt gm0 oD e —HU)!H[“ !(N—nl - "u,l)!
Nj; a;jafs N ds] {exp[ ﬁ(UI (s’,“]+U (8’,':r "‘] (4 — 1), )]}

Recalling Equations (4-13) and (4-14), and introducing the fugacity fraction as discussed in
Equations (4-11) and (4-12), Equation (8-12) for a binary mixture re-arranges to become:
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"‘ (1%) W’.’T"_(V O

_—“[Qﬂ”']gwr —K AW Z Z Z

- I —_—f —
-0"1:=°"m=°”n]'(“i nl.l)‘nl[,l'(N s "11,1)!

j Ids?{ "dsp {exp[ ﬂ(UI (sf‘ ) +U, (sff'”' ))]}
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(8-13)
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where £ =1-¢& for a binary mixture. As pointed out by Frenkel and Smit (1996), the convenience

behind introducing & and &, for the Semi-Grand Ensemble arises because while In[f,/f,] varies

. between —o and o« as one goes from pure species 2 to pure species 1, &, varies between 0 and 1

in the same composition interval. From Equation (8-13), it is convenient to think of this new

variant of the Gibbs Ensemble as a “two-phase Semni-Grand Ensemble” by comparing it with

Equation (4-11) discussed previously. The probability of observing a configuration around s;* and
sy with #; tota] molecules in phase I with volume ¥;, s, molecules in phase I, and ny,

molecules of species 2 in phase II with volume (V - V,) is given by:

GE
Neny
Q’("I!"ID"HHVDSi »Sy )ENPT

e [i%} (814
" !(n[ B n"‘)!nﬂ-i !(N - ": —hg, )! eXp[_ﬁ(U[ (é;l ) +Uy (53""‘ ))]

ac

The probability distribution given in Equation (8-14) prescribes the same basic molecule
translation, volume change and molecule swap moves given by Equations (4-5) to (4-7) for the
NVT Gibbs Ensemble but with additional molecule identity changes given by:
1) Converting a molecule of type 2 into a molecule of type 1 in phase I. The acceptance
criterion for this move is derived by combining Equations (3-21), (3-22) and (8-14):
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oE ey
R - (ohﬁ.n);M.w e e e Attt £ et e 211
i) |
F ( Y !(n( _"1,1)! [1—51 )"' Y]
(my + 1) =y -1\ &
=min<l,

)] ' (8-15)

x( £ Jn,»fl exp[—ﬁUI (S:""l-""

1-¢ exp[—ﬁU, (s;" . H J

L

o {1[((’;;:')) : i". exp| - AT, (57 ‘)]J}

where AU, (s}"‘"“'“ ) =U, (s'I" SO )_ U, (sf”"'-' ) '

2)  And converting a molecule of type 1 into a molecule of type 2 in phase I

(Br)”

(‘P;m )om

. Li 1-g ”l;“n']
:mm{l,[ (HI wnn” +1) ‘f:: exp[*ﬁAU. (Si ' )]]}

These acceptance criteria tum out to be similar to the molecule identity change steps for the
monophasic Semi-Grand Ensemble (Frenkel and Smit (1996), Kofke and Glandt {1998)).

acc(o - ?!) =

(8-16)

Unlike the NyN,PT Gibbs Ensemble in which P, N, and N, are specified a priori, one now
specifies &, N and V' a priori. The average total composition, z,, is thus again variable. The
specification of £ determines the vertical co-ordinate on the phase diagram thus replacing the
specification of P in the N;N,PT Gibbs Ensemble because each & corresponds to a single pair of
x, and y, on the phase diagram. The ratio N/V replaces the specification of the extensive
variables N, and N,, and thus determines the horizontal co-ordinate on the phase diagram. The
larger the value of N/V, the more molecules of the fixed total number molecules ¥ will be found
in the liquid phase. In terms of the “lever-arm” rule, this implies that as the value of N/V

increases, the ensemble average overall composition approaches the ensemble average liquid

composition.

The £ NVT Gibbs Ensemble can be thought of as a biphasic Semi-Grand Ensemble. The linking of

two phases by volume changes using the acceptance criterion given in Equation (4—6) in which the
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total volume is conserved ensures that the specification of the intensive parameters & and T fully

parameterises an equilibrium ensemble without the need to specify the pressure. -..—.... .. ..

Both the pN,VT and the £, NVT Gibbs Ensembles obviate the difficulty associated with specifying
N, and N, a priori by specifying g, and N, in the #,N,VT Gibbs Ensemble and by specifying ¢
and N in the §{NVT Gibbs Ensemble. The imposed values of ¥ and N, in the p,N,VT Gibbs
Ensemble and the imposed values of & and N in the £ NVT Gibbs Ensemble effectively

determine the relative “size” of the simulated phases (i.e., how many molecules are in each of the

phases at equilibrium) and hence the average value of z, in Figure 8-1.

8.4 Chemical Potential in the g;N,VT and £ NVT Gibbs Ensembles

In a manner analogous to the proofs outlined in Smit and Frenkel {(1989) and Mooij and
Frenkel (1994), it is possible to show that the expression give for the chemical potential in the NVT
Gibbs Ensembie given in Equation (5-37) is applicable to the evaluation of the chemical potential
in both the ,N,VT and £ NVT Gibbs Ensembles. This is the case because the molecule swap
moves are the same for all types of Gibbs Ensembles and because the total volume is conserved in
all three cases of the NVT, g NLVT and £ NVT Gibbs Ensembles.

8.5 Simulations Using the x,N,VT and {NVT Gibbs Ensembles

To assess the potential of the p)N,VT and §,NVT Gibbs Ensembles to simulate the VLE of
mixtures with narrow phase envelopes that cannot reasonably be simulated using the NN, VT Gibbs
Ensemble, two close-boiling binary mixtures were simulated namely:

* 1-butene + n-butane mixture at 37.8°C (Laurance and Swift (1974))
¢ 1l-hexene + n-hexane mixture at 55°C (Dortmund Data Bank)

The TraPPE force field parameters of Table 6-1, Table 6-2, Table 6-3 and Table 6-4 were used to
simulate the two isotherms studied. S

8.5.1 Simulation Methodology and Details
The CBMC method was used in conjunction with both the g;N,VT and £NVT Gibbs
Ensembles to simulate each of the isotherms studied. The N,N,PT Gibbs Ensemble could not be
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used to study either of the isotherms for comparison because the small size of the phase envelopes
made it impossible to simulate a phase coexistence point even with trial and error simulations. The
NVT Gibbs Ensemble was used to simulate the pure component compositions for both of the
isotherms studied. Values for g, and £, were selected so as to vield approximate overall mole
fractions of 0.05, 0.10, 0.20, 0.40, 0.60, 0.80, 0.90, and 0.95 of component 1 at equilibrivm. For the
&NVT Gibbs Ensemble simulations, the total numbers of molecules used for each of the phase
diagrams were:
+ 300 total molecules for the 1-butene (1) + n-butane (2) mixture

¢ 250 total molecules for the 1-hexene (1) + n-hexane (2) mixture

For the p;N,VT Gibbs Ensemble simulations, it was obviously not possible to constrain the total
number of molecules because N, is allowed to fluchiate. For comparison purposes, however, the
values of u, and V' for a g;N;VT Gibbs Ensemble simulation were adjusted so that the ensemble
averaged total number of molecules at the end of a y,N, VT Gibbs Ensemble simulation was similar
to the total number of molecules used for the §,NVT Gibbs Ensemble simulation for similar z, at
equilibrium. The simulation of an isotherm using either the p,N,VT or the &NVT Gibbs
Ensembles for the mixture compositions therefore proceeded in the following general manner,

» Both the pure component compositions were simulated using the NVT Gibbs ensembles.

¢ The ensemble averaged chemical potentials for both pure components at the temperature of
the isotherm were recorded.

* Several simulations of no more than 4,000 equilibration cycles and 20,000 production cycles
were then used to generate intermediate values for g, and £, such that approximately 20%
of the molecules were located in the vapour phase at equilibrium. This was made possible
by the low calculated statistical uncertainties associated with the calculated chemical

potentials (typically less than 1%). The densities of each of the components in each of the

phases were also recorded.

¢ Plots of g, as a function of the overall mole fraction of component 1, z,, and §, as a function
of z, were then generated as shown in Figure 8-2 and Figure 8-3 for the 1-butene -+ n-
butane mixture.

¢ From plots similar to those in Figure 8-2 used for the gN;VT Gibbs Ensemble and Figure
8-3 used for the £,NVT Gibbs Ensemble, and using the approximate equilibrium component

densities also recorded, it was possible to select values of i, and £, and total volumes ¥
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corresponding to the 8 required intermediate compositions such that approximately 20% of

s wme e~ 1€ TROlECULlES €XiSted In the vapour phase at equilibrium. |

1t must be pointed out, however, that this preliminary sirnulation method is, in fact, unnecessary and
was only undertaken in this instance to better facilitate a direct comparison of the relative
performances of the y,N,VT and £ NVT Gibbs Ensembles. Even so, the method of simulation
described above marked a considerable improvement over the essentially trial and error simulation
approach that would had to have been used for conventional N{N,PT Gibbs Ensemble simulations

similar to that described for the binary mixture simulations of Chapter Six.

The preliminary simulations revealed that the pN,VT and & NVT Gibbs Ensembles are
considerably less sensitive to the values selected for the initial volumes and for the initial
compositions than the N,N,PT Gibbs Ensemble. In general, it was found that an initial overall mole
fraction of the dilute component of anything between 0.0 to 0.5 mole fraction could stili yield a
sensible simulation with phase separation. There was also considerable freedom with respect to
values for the initial volumes. The total initial volumes were increased by up to as much as 100%
in excess of the total volume required for approximately 20% of the molecules to exist in the
vapour, and the simulations still converged to the same equilibrjum phase densities (although with

higher fractions of the total number of molecules in the vapour).
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Figure 8-2: Plot of the simulated component chemical potentials as a function of the simulated overall mole
fraction of 1-butene for the 1-butene (1) + n-butane (2) mixture at 37.8°C using the u;N,VT Gibbs Ensemble.
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Figure 8-3: Plot of the simulated overall mole fraction as a function of the imposed fugacity fraction of 1-
butene for the 1-butene (1) + r-butane (2) mixture at 37.8°C using the §NVT Gibbs Ensemble.
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Asa genefal guideline, it will usnally be better to stipulate the chemical potential of the component
e Which is more easily transferred between simulation boxes for a wN;VT Gibbs Ensemble
simulation because this will lead to a higher sampling efficiency. This will usually tend to be the
smaller molecule if there is a size difference between the two components. For the mixtures
studied, however, both components in both close-boiling mixtures have approximately equivalent
molecular sizes and approximately equivalent intra- and intermolecular interactions. For these
mixtures, it was found that it proved to be more efficient to stipulate the chemical potential for the
more dilute component, i.e. to stipulate g, for z, £0.5 and then to stipulate g, for z, 20.5. This
is because the addition of an extra molecule for the dilute component results in a larger deviation
and hence better compositional sampling per insertion attempt, particularly for the infinitely dilute
regions. For the £, NVT Gibbs Ensemble, this is not applicable because two different molecules
have to change identity in the same simulation box. The only requirement for binary phase
envelope sirmulations using the £NVT Gibbs Ensemble is then that the imposed value of the
fugacity fraction must span a range of values for 0<& <1 (or equivalently 0<¢, <1).
Consequently, it is reasonable to expect that the yN,VT Gibbs Ensemble is likely to be more
advantageous than the £,NVT Gibbs Ensemble for the case where one of the molecules is not easily
created or destroyed. This must be balanced against the feature that the £,NVT Gibbs Ensemble can
directly control the total number of molecules (and hence the simulation time) where this can only
be indirectly controlled in the p, N, VT Gibbs Ensemble.

The different creation and destruction moves employed by the w,N,VT and £NVT Gibbs
Ensembles necessitated different relative probabilities of the different types of moves employed
" during a simulation. The types of moves performed during a 4, N,VT Gibbs Ensemble simulation
were as follows: '
1)  volume changes(Equation (4-6)),
2) conservative molecule identity exchanges using CBMC (Equation (4-18)),
3) transfers of molecules between simulation boxes using CBMC (Equation (4-7)},
4) creations and destructions of the (dilute) species with the imposed chemical potential using
CBMC (Equation {(8-6) and Equation {(8-7)),
5) full regrowing of chains at a new position in the same simulation box using CBMC (Equation
(5-33)), S e
6) partial regrowing of a chain in the same simulation box using CBMC (Equation (5-33))
7)  translation of the COM (Equation (4-5)), and R
8) rotation around the COM (Equation {4-5)).
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The type of move performed at each Monte Carlo step was selected at random. The moves were
performed with the following fixed probabilities:
pl: p2: p3: p4: p5: p6: p7: p8 = 0.010: 0.050: 0.200: 0.300: 0.047: 0.100: 0.147: 0.146,

where pl again refers to the probability of performing a move of type 1 listed above. To improve
the sampling efficiency of each simulation, the molecule transfer move between boxes was only
performed for the species whése chemical potential was not imposed. This is because the molecule
with the imposed chemical potential could still sample different compositions through the creation
and destruction moves of Equation {8—6) and Equation {8-7). Also, for the molecule with the
imposed chemical potential, the choice between a creation or destruction attempt was made
randomly as was the box identity in which a melecule was created or from which a molecule was
deleted. A rough check on the consistency of a simulation was provided by comparing the number
of successful and attempted creations and destructions of the species with the imposed chemical
potential in either simulation box. At equilibrium, the number of creations and destructions in a

given simulation box had to be more or less equal.

The types of moves performed during a £,NVT Gibbs Ensemble simulation were as follows:
1) wvolume changes(Equation (4-6)),
2) conservative molecule identity exchanges using CBMC (Equation (4—18)),
3) Semi-Grand (non-comservative) molecule identity changes of a molecule using CBMC
~ (Fquation (8-15) and Equation (8-16))
4) transfers of molecules between simulation boxes using CBMC (Equation (4-7)),
5y full regrowing of chains at a new position in the same simulation box using CBMC (Equation
(5-33)),
6) partial regrowing of a chain in the same simulation box using CBMC (Equation (5-33)}
7) translation of the COM (Equation (4-5)), and
8) rotation around the COM (Equation {4-5)).
The type of move performed at each Monte Carlo step was selected at random. The moves were
performed with the following fixed probabilities:
pl: p2: p3: p4: p5: p6: p7: p8 = 0.010: 0.050: 0.300: 0.200: 0.047: 0.100: 0.147: 0.146,
where pl again refers to the probability of performing a move of type 1 listed above. For the
molecule with the imposed fugacity, the choice between a Semi-Grand creation or destruction
attempt from the other species was made randomly as was the box identity in which the molecule
type was generated or removed. In this case too, a rough check on the consistency of a simulation

was also possible. The number of creations of species i in simulation box I had to be
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approximately equivalent to the number of destructions of the same species in the same simulation

- box at equilibrium.

The maximum volume, translation and rotation moves were again adjusted so that approximately
50% of all of these moves were accepted over the course of a simulation for both the 4y N;VT and
£NVT Gibbs Ensemble simulations. Both the pure component and mixture simulations were
equilibrated for at least 40,000 cycles. The production period for calculating ensemble averages
consisted of at least 160,000 cycles. The standard deviations of ensemble averages were estimated
by dividing the production cycles of each run into five blocks and calculating the standard deviation

from the averages obtained from each of these five blocks. -

8.5.2 Simulated Binary Phase Envelopes

The P-x-y and x-y diagrams for the 1-butene (1) + n-butane (2) mixture at 37.8°C and the 1-
hexene (1) + n-hexane (2) mixture at 55°C are shown in Figure 84 to Figure 8-7 and the tabulated
data is given in Table 8-9 to Table 8-10 in Appendix 8A at the end of the Chapier.

To the knowledge of this work, this is the first time that such narrow phase envelope regions have
been simulated with a variant of the Gibbs Ensemble, Both the P-x-y data of the 1-buiene (1) + n-
butane (2) mixture of Figure 8-4 and the P-x-y data of the 1-hexene (1} + n-hexane (2) mixture of
Figure 8-6 were successfully simulated using both the wy\N,VT and &NVT Gibbs Ensembles.
Although both of the simulated phase diagrams are shifted to higher pressures, this is not a failing
of the simulation algorithms but rather a function of the overprediction of the vapour pressures for
n-alkanes and 1-alkenes of the TraPPE force field as discussed in Chapter Six.

146



ALTERNATIVE GIBBS ENSEMBLES FOR SBMULATING MULTICOMPONENT VLE

650
600 - T
i
‘%
»
‘= 550 4 -
£ .{ ‘%
: - 0
$ 500 + { a{
% i
a 450 1
400
350 . : ' '
0 0.2 0.4 0.6 0.8 1
Mole Fraction, xy, v,
|—Exp o pIN2VT a EINVT|

Figare 8-4: P-x-y diagram for the 1-butene (1) + n-butane (2) mixture at 37.8°C simulated using the g, N,VT
(circles) and the §NVT (iriangles) Gibbs Ensembles and the corresponding experimental data of Laurance
and Swift (1974). Open symbols denote dew points and closed symbols denote bubble points.
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Figure 8-3; x-y diagram for the 1-butene (1) + n-butane (2) mixture at 37.8°C simulated using the p,N,VT
(circles) and the ENVT (triangles) Gibbs Ensembles and the corresponding experimental data of Laurance
and Swift (1974).
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Figure 8-6: P-x-y diagram for the 1-hexene (1) + n-hexane (2) mixture at 55°C simulated using the u,N,VT
{circles) and the £ NVT (triangles) Gibbs Ensembles and the corresponding experimental data of the
Dortmund Data Bank. Open symbols denote dew points and closed symbols denote bubble points.
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Figure 8-7: x-y diagram for the 1-hexene (1) + n-hexane (2} mixture at 55°C simulated using the $;NVT
(circles) and the ENVT (triangles) Gibbs Ensembles and the corresponding experimental datz of the
Dortmund Data Bank.
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Table 8-1: Simulated chemical potentials, overall compositions and nurnbers of molecules in each for the 1-

butene (1) + s#-butane (2) mixture at 37.8°C obtained from the y;N,VT Gibbs Ensemble. Subscripted values
denote the calculated statistical uncertainty.

Iraposed | Imposed | Simulated | Simulated
z, N,, N, | Ny N,
MK | Kl ;K] | w4 (K]

- - - 476945 0 2429 57132
-5610 ~5601.507 | -4784.500 | 0.0540001 | 13.10s | 2345 3700 | 35.524
-5420 -5420047 | 4795969 1 0.099003 | 25115 | 2364 | 6.75; | 53.644
-5170 -5170.045 | -4843.854 | 0.222004 | 59.315 | 21421 1500, | 45.8,4
-5000 -5000.1,5 | -4908.5;, | 0.377p007 | 95.240 | 162.3 1 263y, | 37. 713

-5050 | -4848.254 | -5049.8,5 | 0.609004 | 152.955 { 101.8 | 37.1535 | 20.65,

-5250 1 -4766.3,7 | -5249.95 | 0.79%4g010 | 201.5;5 | 54.2 | 48.5;5 | 1092

-5500 | -4721.9; | -5498.1;4 | 0.90%003 | 233.9;4 | 243 | 56.124 [ 4.9,

-5630 | -4710.752 | -3617.706 | 0.940p00 | 231.822 | 154 | 58.2;2 1 3.2,
- - -4686.64 5 - 1 240.6; 5 594>

Table 8-2: Simulated chemical potentials, overall compositions and numbers of molecules in each for the 1-

butene (1) + »-butane (2) mixture at 37.8°C obtained from the £, NVT Gibbs Ensemble. Subscripted values
denote the calculated statistical uncertainty.

Imposed | Simulated | Simulated
z, Ny, N, Ny | Ny

& # (K] i, [K]

¢ ~4769.4,5 0 242.9;, 57.1;7
0.072 -5559.645 | 4785.5;p | 0.06300002 | 14602 | 225.5:5 | 4302 | 55. 726
0.121 | -5402.4,; | -4802.7); | 0.10600003 | 24.763 | 215.5:0 | 7204 | 52.654
0243 | -5176.55; | -4839%.655 | 0.21700007 | 50.205 | 187.815 ] 15.055 | 47.1,5
0.440 | 497545, | -4917.074 | 040400000 | 92.310 { 141415 | 28.9,2§ 37.3,5
0.655 | -4846.9; | -5062.803 | 0.62150020 | 142.5:5 | 90415 | 43.720 | 23.310
0.822 | -4759.0y; | -5251.4;; | 0.80050003 | 180926 | 47265 | 58927 | 12.906
0.900 | -4729.7,, | -5428.8,5 | 0.886g0005 | 20095, | 26.8¢7 | 65.055 | 7.30s
0940 | -4710.0y; | -5578.957 | 0.9315000¢ | 210053 | 16295 | 69354 | 4.5

! -4686.67 5 1 240.6, 5 59.4;,
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Table 8-3: Simulated chemical potentials, overall compositions and numbers of molecules in each for the 1-
hexene (1) + n-hexane (2) mixture at 55°C obtained from the y;N,VT Gibbs Ensemble. Subscripted values
denote the calculated statistical uncertainty.

Imposed | Imposed | Simulated | Simulated

b | K| oax | omm || e M | M| P
- - -5861.9 0 19845, 51.65,
-6750 -6736.257 | -5890.3;5 | 0.0555003 | 11.808 | 202.9:5 | 3.200 | 47.125
-6570 26568.612 | -5901.9, | 0.09%000s | 20.315 | 19445 | 5.500 | 45.625
-6400 6399955 | 5931757 | 0.1600012 | 32337 | 168437 | 9301 | 41.635
-6120 -6120.0,5 | -6013.935 | 0.365g023 | 79.695 | 137.5;5 | 21.802 | 32.535

-6150 | -5963.7;5 | -6149.9;5 | 0.5880032 | 139.643 | 99.0;5 | 30.443 | 18.402
-6350 | -5878.055 | -6350.3p5 | 0.7710004 | 181015 | 54.0;6 | 39.0y; | 10.00,
-6600 | -5823.65; | -6597.200 | 0.8950007 | 193435 | 22.8, | 46.635 | 4.70,
-6780 | -5803.415 | -6757.510 | 0.9400003 | 200.6,5 | 12.9q5 | 49.425 | 2.700
- - -5780.5,5 1 196.8; 3 53.23,5

Table 8-4: Simulated chemical potentials, overall compositions and numbers of molecules in each for the 1-
hexene (1) + n-hexane (2) mixture at 55°C obtained from the £ NVT Gibbs Ensemble. Subscripted values

denote the calculated statistical uncertainty.

Imposed | Simulated | Simulated
4 4 [K] K, [K]
0 -5861.9,6 0 198.454 51.60
0.061 | -6756.655 | -5887.5;; | 0.05300003 | 10.29; | 189.3;5 | 3.001 | 47.5:6
0.110 | -6572.4y4 | -5899.8;5 | 0.09600003 | 18.502 | 180.155 | 5.503 | 46.024
0.200 | -6366.3y5 | -5923.1,5 | 0.17600008 | 33.804 | 163.150 | 10.3p5 | 42.855
0420 | 611233 | 6017.613 | 038200015 | 73207 | 122.15s | 22405 | 32315
0.670 | -5938.4y5 | -6182.655 | 0.63500012 | 120.326 | 71.617 | 38.455 | 19.7,4
0.840 | -5856.552 | -6412.454 | 081800009 | 155.305 | 35.803 | 49.1p5 | 9.80.
0.910 | -5824.25; | -6593.759 | 0.89600004 | 169.715 | 2030, | 544,65 | 5.60
0.960 | -5811.6y5 | -6836.1)5 | 0.9530000s | 182.045 9.205 | 56.3;5 | 2.402
1| -5780.5;5 1] 196.853 53.25;5
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8.5.2,1 Pressures from gsN;VT or {;NVT Gibbs Ensemble Simulations

" The apparent scatter in the simulated pressures is, at first glance, also disappointing. In
Figure 8-4 and Figure 8-6, only the statistical uncertainty in the pressure for the dew points for the
&NVT Gibbs Ensemble simulations is shown for clarity because the uncertainty is of similar
magnitude for all pure component and mixture simulation points. It must be noted, however, that
the estimated statistical uncertainty in the simulated vapour pressures of the pure components using
the NVT Gibbs Ensemble are of similar magnitude to the estimated uncertainty in the pressures
calculated for the mixture points using either the p,N,VT Gibbs Ensembie or the £NVT Gibbs
Ensemble. This may be seen in Table 8-9 and in Table 8-10. Depending on the number of
simulation production cycles, it is well known that the uncertainty in the simulation pressure from
an isochoric Gibbs Ensemble is of the order of 5-10%. For the two mixtures studied, the small
difference between the pure component vapour pressures magnifies this apparent uncertainty in
Figure 8-4 and Figure 8-6, For an N;N,PT Gibbs Ensernble, the pressure for each nuxture pomt is
derived from the imposed pressure P used for each simulation point. For the p,N,VT and £NVT
Gibbs Ensembles, the pressure is not imposed which tends to yield the higher statistical uncertainty
in the simulation pressure. This originates from the way in which new configurations are generated
in conventional Monte Carlo simulations. Indeed, recalling Equation (3-16), it may be seen that
new configurations are generated by considering the change in the energy between the old and new

states only where configurations which lower the system energy are preferentially sampled.

No conventional algorithm for isochoric Monte Carlo simulations preferentially seeks to minimize
the difference [Pl - f;,| to rigorously satisfy the requirement for mechanical equilibrium as outlined

by Equation {4-1). The NVT, w;N,VT and £NVT Gibbs Ensembles achieve mechanical
equilibrium by enforcing a conservation of total volume and requiring that £, = £, in an average
sense such that no pressure difference terms appear in the acceptance criterion of Equation (4-6).
For isochoric Gibbs Ensembles, this is inescapable because of the way in which new configurations
are generated by the Monte Carlo sampling algorithm. Thus while it is still correct, it can be argued
that isochoric Gibbs Ensembles are, therefore, less rigorous in their establishment of mechanical
equilibrium. TInstantaneous configurations can (and do) display deviations from the mechanical
requirement of Equation (4-1) which leads to the larger statistical uncertainty in the ensemble
averaged pressure. Figure 8-8 and Figure 8-9 show the evolution of the ensemble average pressures

for the simulated 1-butene + n-butane mixture for a point corresponding to z, = 0.2,
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Figure 8-8: Evolution of the ensemble average pressure (dark line) as a function of the number of simulation
cycles for the u;N,VT Gibbs Ensembles for a point corresponding to z, = 0.22 for the 1-butene (1) + n-

butane mixture at 37.8°C. The instantaneous pressures are shown as the lighter dotted line.
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Figure 8-9: Evolution of the ensemble average pressure (dark line) as a function of the number of simulation
cycles for the £;NVT Gibbs Ensembles for a point corresponding to z, ~ 0.22 for the 1-butene (1) + n-butane

mixture at 37.8°C. The instantaneous pressures are shown as the lighter dotted line.
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Only configurations from 40,000 cycles onwards are shown in Figure 8-8 and Figure 8-9 as these

then correspond to the production period for ensemble averages. As may be seen in these graphs;-

the averages pressures are composed of much larger instantaneous fluctuations which, in general,
lead to statistical uncertainties of the order of 5-10% in the simulated average pressures. This is
typical behaviour for isochoric Gibbs Ensembles. Consequently, further attention needs to be

directed towards algbﬁthms which still preferentially configurations which lower the overall system

energy but which also minimize the difference |7, — B, in the configurations generated.

8.5.2.2 Compositions from p; N2 VT or §,NVT Gibbs Ensemble Simulations

In spite of the apparent fluctuations in the pressures, Figure 8-5 and Figure 8-7 reveal that the
x-y data is well described by the y,N,VT and £§,NVT Gibbs Ensembles for both mixtures. The
accurate description of the x-y data is largely a feature of the TraPPE force field which is able to
reproduce this type of data well as described in Chapter Six. Most significantly, errors bars are
excluded from Figure 8-5 and Figure 8-7 because they are less than the symbol size. This is
confirmed by the data listed in Table 8-9 and Table 8-10 in Appendix 8A at the end of the Chapter
where the estimated errors in the compositions of both phases for both mixtures is less than 107 for
the #,N,VT Gibbs Ensemble simulations and less than 107 for the £NVT Gibbs Ensemble
simulations. This represents a considerable improvement over the estimated uncertainties in the
compositions from N;N,PT Gibbs Ensemble simulations which tend to be of the order of 0.02-0.03,
The reason for this improvement is because the N, VT Gibbs Ensemble allows for the creation and
destruction of molecules of one of the components while the §NVT Gibbs Ensemble is able to

allow the molecules to change identities without requiring that the total number of each species be
conserved. )

The novel composition-based moves of the 1 N,VT and the £ NVT Gibbs Ensembles result in their
compositional sampling being better than that of the conventional N;N,PT Gibbs Ensemble. This is
also because the overall composition can vary for both the pN,VT and the {NVT Gibbs
Ensembles. The rapid convergence of the overall, vapour and liquid mole fractions for the 1-butene

+ n-butane mixture at 37.8°C for a point corresponding roughly to z, =0.22 for the ;N,VT and the

£NVT Gibbs Ensembles are shown in Figure 8-10 and Figure 8-11 respectively. It is important to
note that ensemble averaged compositions in Figure 8-11 from the £ NVT Gibbs Ensemble
simulations show considerably smaller fluctuations than the corresponding compositions in Figure

8-10 from the g, N,VT Gibbs Ensemble simulations, This is supported by comparing the data listed
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in Table 8-9 and Table 8-10. The reason why the £,NVT Gibbs Ensemble has lower statistical
uncertainties is because molecule identity changes are permissible for both species in the £ NVT
Gibbs Ensemble while molecule creations and destructions are only penmissible for one of the
species in the u;N,VT Gibbs Ensemble. The second species in the g,N,;VT Gibbs Ensemble can
only achieve chemical equilibrium by (less efficient) molecule transfers between the simulation
boxes. The reason why molecule transfers will always be less efficient is becaunse they require a
simultaneous molecule destruction attempt in one simulation box and a corresponding molecule
creation attempt in the other simulation box. The ¢ NVT Gibbs Ensemble, therefore, has some
advantages in the sense that it will, in general, ensure lower statistical uncertainties in the simulated
compositions. This is evidenced in Table 8-5 to Table 8-8. For both mixtures sirnulated using the
N> VT Gibbs Ensemble, the highest acceptance rates (Z0%) are obtained for creations and
destructions of molecules in the vapour phase where the probability of generating an overlap is
lowest and where the energy associated with a creation or destruction attempt is lowest. It may also
be seen that the probability of a molecule transfer is also less than or equal to the probability of a
molecule creation or destruction in the p;N,VT Gibbs Ensemble in the liquid phase. This is
because a molecule transfer requires a molecule destruction in one simulation box and a
simultaneous molecule creation in the remaining simulation box and the probability for both of

these moves are separately less than unity as seen from the results of Table 8-5 and Table 8-7.

The importance of the “conservative” identity swap move of Equation (4-18) for exploring
different composition configurations is shown by the high acceptances for this move for both the
N, VT and the £ NVT Gibbs Ensembles in Table 8-5 to Table 8-8. Typically, the acceptance rates
for this move are found to be above 30% for the mixtures studied. The high acceptance percentages
for the “non-conservative” identity change move {(which is exclusive to the §NVT Gibbs
Ensemble) are, however, the important factor behind the low uncertainties of the compositions seen
for the £ NVT Gibbs Ensemble. This move is performed for both species in a binary mixture
simulation and the acceptance percentages observed of over 55% for both mixtures are what
guarantees the more efficient sampling of compositions for the £ NVT Gibbs Ensernble. This is
why the £NVT Gibbs Ensemble has the lowest estimated uncertainties in the simulated
compositions.
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Figure 8-10: Evolution of the ensemble average liquid mole fraction (dark line), x, , vapour mole fraction
(plain line), y,, and the overall mole fraction (dotted line), z,, of 1-butene for the 1-butene (1} + n-butane (2)

mixture at 37.8°C determined using the §yN2VT Gibbs Ensemble for z, = 0.22,
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Figure 8-11: Evolution of the ensemble average liquid mole fraction (dark line), x, , vapour mole fraction

(plain line), y,, and the overall mole fraction (dotted line), z,, of 1-hexene for the I-butene (1) + n-butane (2)

mixture at 37,8°C determined using the £,NVT Gibbs Ensemble for z, = 0.22.
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j
!
Table 8-5: Percentage acceptances for the composition-related moves in the 4, N;VT Gibbs Ensemble for the 1-butene (1) +n-butane (2) mixture at 37.8°C.
!

Acceptance [%}
Imposed | Imposed | Molecule Transfers | Creations Liquid Destructions Liquid | Creations Vapour | Destructions Vapour Conservati{re
# [K] i [K] Identity Swaps
1-butene | n-butane | l-butene | y-butane | 1-butene | p-butane | 1-butene | n-butane | 1-butene | n-butane Eq. (4-18)
-5610 - - 42 53 - 53 - 754 - 754 - 315 i
-5420 - - 4.1 52 - 52 - 80.0 - 79.9 323 i
-5170 - - 4.2 5.3 - 53 - 84.0 - 84.0 - 332 |
-5000 - - 4.2 52 - 52 - 85.5 - 85.5 - 333 :
- -5050 52 - . 4.2 - 4.2 - 84.1 - 84.0 332
- 5250 | 52 : : a3 : 23 - 816 - 3.6 328 1
- -5500 5.2 - - 42 - 42 - 76.8 - 76.8 317
- -5630 52 . - 4.3 - 4.3 - 733 - 73.2 31.0

]

H

|
Table 8-6: Percentage acceptances for the composition-related moves in the §/NVT Gibbs Ensemble for the 1-butene (1) +#-butane (2) mixture at 37.8°C |
|

Acceptance [%} Acceptance [%}
Imposed | Molecule Transfers | Conservative Non-Conservative Imposed | Molecule Transfers | Conservative Non-Conservative
& Identity Swaps, Identity Swaps, & Identity Swaps, 1dentity Swaps,
1-butene | n-butane
Eq. (4-18) Eq.’s (8-15) & (8-16) Eq. (4-18) Eq.’s (8-15) & (8-16)
0.072 5.0 42 316 56.0 0.655 52 4.2 333 60.4
0.121 5.1 42 324 579 0.822 5.1 4.1 328 59.3
0.243 5.1 4.1 331 50.7 0.960 5.1 4,1 322 578
0.440 5.1 4.1 333 60.5 0.540 5.2 4.0 315 56.1
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‘Fable 8-7; Percentage acceptances for the composition-related moves in the u, N, VT Gibbs Ensemble for the I-hexene (1) +n-hexane (2) mixture at 55°C.

Acceptance [%%}
Imposed ; lmposed | Molecule Transfers Creations Liquid Destructions Liquid Creations Vapour | Destructions Vapour | Conservative
mIKY] | e [K] Identity Swaps
l1-hexene | n-hexane | 1-hexene | n-hexane | 1-hexene | n-hexane | 1-hexene | n-hexane | 1-hexene | n-hexane

Equation (4-18)
-6750 - - 2.1 26 - 2.6 - 74.7 - 74.6 - 41.6
-6570 - - 2.1 26 - 2.6 - 79.5 - 79.4 - 42.7
-6400 - - 2.1 2.7 - 2.7 - 82.8 - 82.8 - 436
6120 - - 2.0 2.6 - 2.6 - 86.2 - 86.3 - 445
- -6150 2.6 - - 24 - 2.1 - 86.3 - 86.3 442
- -6350 2.6 - - 2.1 - 2.0 - 83.6 - 83.6 43.7
- -6600 2.5 - - 2.0 - 2.0 - 78.4 - 78.4 42.1
- -6780 2.5 - - 2.0 - 2.0 - 731 - 73.0 41.0

Table 8-8: Percentage acceptances for the composition-related moves in the £{,NVT Gibbs Ensemble for the I-hexene (1) +n-hexane (2} mixture at 55°C,

Acceptance [%} Acceptance [%}
Imposed | Molecule Transfers | Conservative Non-Conservative Imposed | Molecule Transfers | Conservative Non-Conservative
£ Identity Swaps, Identity Swaps, £ Identity Swaps, Identity Swaps,
1-butene | n-butane
Eq. {4-18) Eq.'s {8-15) & (8-16}) Eq. (4-18) Eq.’s (8-15) & {8-16)
0.061 2.5 2.1 413 60.4 0.670 2.5 20 44.4 65.5
0.110 2.5 2.1 42.6 62.5 0.840 25 2.0 435 64.2
0.200 26 2.1 437 64.3 0.910 2.5 1.9 42.4 62.5
0.420 2.6 20 444 65.5 0.960 2.5 1.9 40.6 59.6
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8.5.2.3 Equivalence of the g;N>VT and £ NVT Gibbs Ensembles

Figure 8-12 and Figure 8-13 demonsirate the statistical and thermodynamic consistency of
the u,N,VT and £NVT Gibbs Ensembles with respect to each other. For a given overall mole

fraction of 1-butene, z,, the chemical potentials of each species lie on the same curve, irrespective

of the type of Gibbs Ensemble used. The data points do not lie at precisely the same point along the
same curve because the different extensive parameter specifications required for the ;,N,VT and
£ NVT Gibbs Ensembles make it impossible to exactly duplicate the same thermodynamic
conditions. Figure 8-12 and Figure 8-13 are, nonetheless, important because they confirm the
equivalence of the two new types of Gibbs Ensembles because they yield the same values for
intensive properties at chemical equilibrium. The equivalence of the two ensembles may also be
compared in terms of the simulated numbers of each species in each phase at equilibrium. The total

number of molecules present in a ;N> VT Gibbs Ensemble simulation can vary because only N, is

constrained to remain constant. From Table 8-1 to Table 8-4 listed previously, it may be seen that
approximately equivalent chemical equilibriun specifications (simulated using approximately the
same total volume, V') yield approximately equivalent numbers of each type of molecule in each
phase at equilibrium. This result is also important because it confirms the extensive property

equivalence of these two new ensembles.
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Figure 8-12: Chemical potentials as a function of the overall simulated mole fraction for the 1-butene (1) + n-
butane (2) mixture at 37.8°C simulated using the pN,VT (circles) and the & NVT (triangles) Gibbs
Ensembles. Closed symbols denote 1-butene and open symbols denote n-butane.
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Figure 8-13: Chemical potentials as a function of the overall simulated mole fraction for the 1-hexene (1) +
n-hexane (2) mixture at 55°C simulated using the p;N,VT (circles) and the &§NVT (triangles) Gibbs

Ensembles. Closed symbols denote 1-hexene and open symbols denote n-hexane.
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Since both the N, VT and £ NVT Gibbs Ensembles rely on composition-based Monte Carlo
moves to achieve thermodynamic equilibrium, it is important to validate the application of Equation
(5-37) for simulations in these ensembles. Figure 8-14 to Figure 8-17 in Appendix 8A at the end of
this Chapter demonstrate the validity of Equation (5-37) and the ability of both the g, N;VT and
£ NVT Gibbs Ensembles to converge rapidly to the final equilibrium chemical potentials. Indeed,
both ensembles satisfy the requirement for the chemical equilibrium of each species of Equation (4
1) because the chemical potentials of each individual species in different phases closely approach
similar values at the end of a sirnulation for both Gibbs Ensernbles. Figure 8-14, however, reveals
that the calculated chemical potential which is imposed for 1-butene for the pN,VT Gibbs
Ensemble has a lower associated uncertainty than the chemical potential for the same species when
calculated from a simulation in the §NVT Gibbs Ensemble as shown in Figure 8-15. This
behaviour is to be expected though because the chemical potential is not strictly imposed for the
£ NVT Gibbs Ensemble. This is confirmed by the observation that the chemical potentials of n-

butane calculated from both the u,N; VT and §NVT Gibbs Ensembles in Figure 8-16 and Figure
8-17 have similar uncertainties.
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8.6 Appendix 8A: P-x-y, x-y and chemical potential data from g,N,VT and the {,NVT Gibbs Ensemble
Simulations |

Table 8-9: Simulated composition and pressure data for the 1-butene (1) + n-butane (2) mixture at 37.8°C simulated using the g, N,VT and the £INVT Gibbs

Ensembles and the corresponding experimental data of Lavrance and Swift (1974). Subscripted values denote the calculated statistical uncertainty, ’

Experimental MNVT Gibbs Ensemble E,NVT Gibbs Ensemble
Imposed | Imposed Imposed :
P [kPa] | x N2 s [K] 2 [K] P [kPa) X, » £ P [kPa}l X »
355.1 0 ¢ - - 470.65 0 0 0 470.6;5 g ¢
3647 [ 0100206 -5610 480.9)7 1 0.053,00 | 0.062400; | 0.072 485. 739 | 0.06100002 | 0.0710.00m
3739 | 02]0.2345 | -5420 4923y, | 00955005 | 0-1129002 | 0.121 485.13; | 0.103pp002 | 0.12000004
3828 (03103425 | -5170 498353 | 0.216000¢ | 02470004 | 0.243 501.05 | 021100009 | 24100006
391.3 | 0.4 7 0.4452 ( -5000 51945 | 0.36%9pg07 | 04100009 | 0.440 530.7p | 0.39550005 | 0-4370.0004
3993 1| 0.5 0.5426 -5050 | 545355 | 0.602000s | 06430004 | 0.653 53825 | 0.6120000 | 0.65200008
406.7 | 0.6 | 0.6383 -5250 558550 | 0789010 | 0.B16p00s | 0.822 571653 | 0.7930.0008 | 0.8200.000
4136 | 0.7 ] 0.7302 -5500 | 574.41; | 0.906005 | 0.920g00s | 0.900 574.5¢ | 0.8820000¢ | 0.89%.0003
4200 |08 0.8204 -5630 576.77 | 0.938p002 | 0.947500, | 0.940 585.6;5 | 0.92850005 | 0.93% 0003
4256 | 0.9 ] 0.9099 - - 588.457 1 i 1 588.447 i I
430.6 1 1
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Table 3-10: Simulated compaosition and pressure data for the 1-hexene (1) + n-hexane (2) mixture at 55°C simulated using the (N, VT and the EINVT Gibbs
Ensembles and the corresponding experimental data of the Dortmund Data Bank. Subscripted values denote the calculated statistical uncertainty.
Experimental N, VT Gibbs Ensemble ENVYT Gibbs Ensemble
Imposed | Imposed Imposed
P [kPa] { x, » a K | K P [kPa] x, » P P [kPa] x ¥

64.4 0 ] - - 94.34, 0 0 0 94.3,, 0 fi
660 |[0.102]0.1022( 6750 92.2,5 | 00555003 | 0.063000 | 0.061 92.5;2 | 0.051p0003 { 0.05% 006
67.4 (02000233 6570 93644 | 0.094g004 | 0.108g00s | 0.110 94148 1 0.09300004 | 0-1060.0006
68.7 [0.300( 0341 -6400 93255 | 0.160401p | 0.182012 | 0.200 97160 | 0.171p0008 | 0.194p 0007
70.1 0.400 | 0445 | -6120 99.2;5 | 0.365000; | 0.40kg05 | 0.420 99.%0 | 0.37500016 | 041000008
71.3 | 0.500 | 0.543 -6150 | 104.54, | 0.588p03 | 0.622003 | 0.670 | 105.9;5 | 0.62740005 | 06610006
724 | 0.600 | 0.639 -6350 | 104.855 | 0.771o00s | 0.7970004 | 0.840 | 107215 | 0.81300013 | 0-B34p0008
73.6 | 0.700 | 0.732 -6600 | 109275 | 0.8955007 | 0.9085005 | 0.910 | 109.154 | 0.8935000: | 0.9075.0005
747 {0.799 | 0.823 -6780 | 110.95; | 0940000 | 09480z | 0.960 | 107.057 | 0.9520000: | 0.95800002
75.8 | 0900 0.912 - - 112.770 1 1 | 112.7;4 i 1
76.8 1 1
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Figure 8-14: Evolution of the ensemble average liquid (dark line) and vapour (plain line) chemical potentials
of 1-butene in the 1-butene (1) + n-butane (2} mixture at 37.8°C with z, ~0.22 using the pN,VT Gibbs

Ensemble,
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Figure 8-15: Evolution of the ensemble average liquid (dark line} and vapour (plain line) chemical potentials
of 1-butene in the 1-butene (1) + n-butane (2) mixture at 37.8°C with z, =022 using the §NVT Gibbs

Ensemble.
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Figure 8-16: Evolution of the ensemble average liquid (dark line) and vapour (plain line) chemical potentials
of n-butane in the 1-butene (1) + n-butane (2) mixture at 37.8°C with z, ~0.22 using the u;N,VT Gibbs

Ensemble.

-4800

-4820 -

-4840 -

-4860 -

-4880 -

Average Chemical Potential, <p> [K]

-4900 e T
40000 80000 120000 160000 200000
Number of Cycles

|—p{L2} —pvi2}]

Figure 8-17: Evolution of the ensemble average liquid (dark line) and vapour (plain line) chemical potentials
of n-butane in the 1-butene (1) + n-butane (2) mixture at 37.8°C with z, ~0.22 using the £;NVT Gibbs

Ensemble.
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. . .. CHAPTEROY:
TRANSFERABILITY BASED ON RELAXING GEOMETRIES

“If you look for the good in something, you will surely find it” — Abraham Lincoln

A number of issues concerning the parameterization of intermolecular force fields and how
the parameterization affects the simulated pure component properties and the simulated binary VLE
have been alluded to in Chapter Six and Chapter Seven including:

1) If the saturated vapour pressure is to be reproduced accurately, more consideration needs to
be given towards including this property in the fitting process for the infermolecular
parameters. This view has been supported by Emington and Panagiotopoulos (19992) and
by Li et al. (2003). It was also seen in Chapter Seven that an improvement in the vapour
phase densities for conjugated alkenes accompanied the improvement in the saturated
vapour pressure. This was also observed by Emington and Panagiotopoutos (1999a) who
produced what is arguably the most accurate united-atom force field for n-alkanes to date.

2) The complete transferability of intramolecular geometries should be reviewed. The work in
Chapter Seven indicated that an improvement in the pure component properties can result
if the equilibrium intramolecular geometries are selected to closely approximate their
experimentally observed values. It may also be necessary to incorporate a wider range of
equilibrium molecular geometries as part of the force field to achieve a good prediction of
all pure component properties.

3) A wide range of molecules and homologous series should be included in the parameterization
of intermolecular force field parameters to ensure the maximurn transferability of the
parameters fitted. This idea has been explored by Ungerer ef al. (2000) and by
Bourasseau et al. (2003). '

4) Force fields should be tested to examine their prediction of binary VLE. Subtle inaccuracies
in the regressed non-bonded interaction parameters can result in significant etrors in the

simulated P-x-y and x-y data when binary or multi-component VLE is simulated.

To examine these ideas, the following Chapter attempts to develop an improved force field for n-
alkanes and 1-alkenes.
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9.1 The Evolution of the Functional Form of Transferable Force Fields

The evolution of transferable united-atom force fields can be traced to the 1980°s with the
work of Jorgensen et al. (1984) on the OPLS force field. A number of molecular force fields
already existed by this time. The work of Jorgensen and co-workers, however, was significant
because:

» it introduced the basic functional form which has been widely ernployed by molecular
simulation ever since, and
e it was the first study to attempt to simulate the vapour-liquid equilibrium behaviour of a
range of hydrocarbons using a limited “base” set of intermolecular and intramolecular
parameters
The main features of this force field included: _

1) One common constant bond length and one common constant bond angle, but a cosine series
for the torsional potential. o

2) A Lennard-Jones description for the non-bonded interactions (including interaction sites on
the same molecule separated by more than 3 bonds), and a Coulombic description for
charges which were assigned to each of the interaction sites. o

3) Distinct LI &, parameters for the -CH,— and ~CH; functional groups. Unlike in previous
polymer simulation studies (where differences in the interactions of terminal carbon
groups can be treated as negligible compared to the bulk interactions of a molecular

~ chain}, the -CH,— and —CHj; groups were now regarded as having interactions which were
distinctly different in magpitude.

4) Thell] o, and g; parameters for the —CH,~ group were regressed from simulations of liquid
cyclopentane and were then regarded as common for all the branched and normal alkanes
studied.

5) The 1J o, and &, parameters for the —CH; group had to be made distinct for different
branched and normal alkanes to get a good fit to the data.

6) Thel]J o, parameters for the -CH,— and —CHj groups were set to the same value.

7) The LJ parameters were regressed to predict pure component n-alkane behaviour for a variety
of physical properties well near 25°C :

Requiring only 5 distinct 1.J parameters for the n-alkanes, the OPLS force field was reasonably
successful. The OPLS force field did not, however, give a good description of the vapour-liquid

coexistence curve up the critical point. The development of CBMC techniques also revealed that
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the OPLS predictions became progressively worse for longer m-alkanes. In response to this
observation, Siepmann et al. (1993) derived the SKS force field which provided a considerably
better description of the critical densities, the critical temperatures and the liquid densities over a
wider temperature range for molecules from 6 to 48 carbon atoms. The main features of this force
field included: _

1} Ome common constant bond length, one common but now flexible bond angle described by a

harmonic potential, and a cosine series for the torsional potential.
2) Distinct LY o; and g; parameters for the ~-CH,— and —CH; functional groups. Only three L]
parameters were, however, required because while the g; parameters for the -CH,— and —

CH, functional groups were distinct, the o, parameters for the —-CH,— and —CH,
functional groups had the same magnitude.
3) The LJ parameters were regressed to reproduce the pure component liquid densities and the
pure component critical temperature and critical densities.
The SKS force field provided a very good description for medium to long n-alkanes but gave no
explicit attention to short n-alkanes with less than 6 carbons. The SKS force field did, however,
demonstrate that a small group of transferable LY parameters could provide a very good description

of the pure component vapour-liquid coexistence curve over a wide range of temperatures for a
range of carbon chain {engths.

The TraPPE force field improved upon the LJ parameters of the SKS force field and, importantly,
was also applicable fo short n-alkanes. The main features of this widely used force field include:
1) As for the SKS force field, one common constant bond length, one common flexible bond
angle described by a harmonic potential, and a cosine series for the torsional potential.

2) Distinct o, and g, LJ parameters for the -CH,— and —CH; groups (a total of four non-

bonded LJ parameters) which are fully transferable to all #-alkanes. The LJ parameters
were parameterized sequentially. The o, and &, parameters for the —CH, group were
regressed first to provide the best possible reproduction of the physical properties of
cthane. Thereafter the o, and &; parameters for the —CH,— group were regressed to
provide the best possible physical property predictions for #-octane. |

3} As for the SKS force field, the LJ parameters were regressed to reproduce the pure

component liquid densities and the pure component critical temperatures and critical
densities. |
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Considering the .Limited intermolecular and intramolecular parameter set used, the TraPPE force
field was remarkably successful even for n-alkanes longer than n-octane. This success was also
evidenced in the TraPPE alkene force field of Wick er al. (2000) and served to confirm the
usefulness of transferable united-atom force fields. It has, however, been found that while the
critical densities, the critical temperatures and the liquid densities are well predicted, the saturated

vapour pressures, vapour densities and heats of vaporization are not well reproduced.

More or less concurrent with the development of the TraPPE n-alkane and alkene force fields was
the development of the NERD #-alkane (Nath et al. (1998)) and 1-alkene (Nath ez al. (2001)) force
field. The major features of this force field include:

1}  One common, but fully flexible, bond length for s-alkanes which is described by a harmonic

potential. As for the TraPPE force field, however, there is one common flexible bond

angle described by a harmonic potential and a torsional potential described by a cosine
series, ‘ ' o |

2} As for the TraPPE force field, there are distinct L] o, and &, parameters for the ~-CH,- and
—~CH; functional groups. There is only one set of o; and g, parameters for the -CH,—
group but there are distinct o; and g, parameters for the ~CH; group for ethane, propane
and molecules longer than propane to provide a larger set of L) parameters for the -CH;
group. :

3) As for the SKS and thc TraPPE force fields, the LJ parameters were regressed to predict pure
component critical densities, critical temperatures and liquid densities. S

It is interesting to note from the original publications that the NERD force field is, in general able

to provide a better prediction of the saturated vapour pressures, vapour densities and heats of

vaporization of short hydrocarbons than the TraPPE force field and this can probably be attributed
to the larger set of LT non-bonded parameters. PR '

- Using Hamiltonian scaling grand canonical Monte Carlo and Histogram Reweighting techniques,
Errmgton and Panagiotopoulos (1999a) parameterized an n-alkane force field (nAEP force field).
The model was able to achieve good success in providing an accurate description of the pure
component vapour pressures, vapour densities, liquid densities, critical temperatures and critical
densities. The major features of this model include:

1) A Be6 potential is used to describe the non-bonded interactions.
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2) Three different bond lengths of 1.839A for the CH, — CH, bond lengih in ethane, 1.687A for
the CH, —CH, bond length in Tonger n-alkanes, and 1.536A for the CH, —~CH, bond ™"
length in longer n-alkanes. The authors found this increase in the number of bond lengths
necessary to obtain a good fit to the data.

3) One constant bond length and one fully flexible bond angle wcfc used for all n-alkanes. A
cosine series was again used for the torsional potential, _

4) Distinct oy, &; and «; Be6 parameters for the ~-CH,— and —CH; functional groups are used
(for a total of six non-bonded Be6 interaction parameters) which are fully transferable to
all n-alkanes. The Be6 parameters were also parameterized sequentially. The o, £; and
«,, parameters for the —-CH; group were regressed to reproduce the physical properties of
ethane. Thereafler, the 6;, &; and «, parameters for the ~-CH,~ group were regressed to
provide the best possible physical property predictions for propane and n-hexane.

5) The Be6 parameters were regressed to provide a good fit to the experimental pure component
liquid and vapour coexistence densities, the critical temperatures, the critical densities,
and the saturated vapour pressures.

The force field was able to achieve a superior prediction of the pure component vapour densities
and saturated vapour pressures when compared to the corresponding TraPPE and NERD
predictions. The nAEP force field has, however, not been extensively used. This is perhaps
because of the more complicated from of the non-bonded Be6 potential with the extra ¢, parameter

as well as the exponential repulsive term which requires more computational overhead.

Most recently, anisotropic united-atom force fields for n-alkanes and alkenes have received
renewed attention. The option of using anisotropic intermolecular interactions to improve the
predictions of united-atom force fields had been alluded to the in first TraPPE publication of Martin
and Siepmann (1998). The n-alkane force field of Ungerer et al. (2000) which optimized the
parameter set of Toxvaerd (1997), and the alkene force field of Bourasseau et al. (2003) represent
the most comprehensive AUA force field available. The main features of this force field include:

1) One constant bond length and one constant bond angle were used for all n-alkanes. A cosine

series was used to describe the torsional potential.

2) Distinct L] o, and g, parameters for both the -CH,— and —CH, groups, and two distinct

anisotropic &, parameters which describe the displacement of the interaction site from the
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location of the carbon centre. These six parameters are fully transferable to all —CH; and

=CH,=groups.

TR e 5, o B k3 e =

3} The intermolecular parameters were regressed to reproduce the pure component liquid
' densities, the heats of vaporization and the saturated vapour pressures.
The AUA4 n-alkane potential of Ungerer ef @/, (2000) was able to achieve good agreement with the
experimental hiquid densities, the heats of vaporization and the saturated vapour pressures for »-
alkanes longer than n-pentane. The agreement with the critical densities and temperatures was,
however, worse than for the NERD or TraPPE force fields and the AUA4 force field did not
explicitly consider n-alkanes with 4 or fewer carbons in detail. |

In light of the above discussion, the general approach to the formulation of the Transferability

Based On Relaxing Geometries (TBORG) force field described below was as follows: |

1) Al bond lengths were taken to be fixed. While the NERD force field did achieve an

improved description of the pure component VLE compared to the TraPPE force field, it

is unlikely that this improvement was exclusively due to flexibility in the bond lengths.

This improvement might have been the result of the larger set of regressed LJ parameters.

Chapter Seven revealed that the pure component properties are more sensitive to the

equilibrium geometry than the magnitude of the intramolecular potential. What is clear is

that the nAEP and AUA4 n-alkane force fields were both able to achieve a good
description of the pure component VLE while employing fixed bond lengths.

2) Different bond lengths were employed for bonds connecting distinct pairs of functional
groups. Two functional groups were regarded as distinct from one another if they had
different numbers of hydrogen atoms or different hybridizations. This marks a break from
the NERD and TraPPE approach where different bond lengths were only employed to
distinguish between single and double bonds. The AUA4 force field effectively amounts
to a relaxing of the fully transferable bond length constraint because of the use of the

. anisotropic &; parameter while the nAEP force field used three different bond lengths for

the three possibie connectivities of -CH; and —CH,~ fumctional groups.

3) Flexible bond angles were employed. Bond angles were regarded as flexible because the
alkene force field of Bourasseau ef al. (2003) highlighted the lack of ﬁexible bond angles
as potentially the reason behind their poorer description of #rans- and cis-2-butene.

4) As for the bond lengths, the constraint of full transferability of bond angles was relaxed.
Bond angles were aliowed to assume different equilibrium values for bond angles

including three distinet functional groups. Again, this is effectively applied in the AUA4
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force field because of the displacement of the interaction site from the carbon centre, but

- this approach is different to that in the TraPPE, NERD and nAEP force fields.
5) The isotropic LJ potential is used with distinct LY £, and o, parameters for the required
functional groups -CH;, -CH,—, -CH=, and =CH, for a total of 8 LJ parameters. These
L] parameters were, however, assumed to be fully transferable regardless of the
connectivities of the functional groups. The flexibility in the intermal equilibrium

geometries is assumed to more accurately account for the effects of anisotropy introduced

by the united-atom approximation.

9.2 Regression Methodology

The 8 required LT parameters as well as the equilibrium geometries for the TBORG force
field were regressed to obtain the closest possible fit to the following properties in the data
compilations of Smith and Srivastava (1986):

* The liquid and vapour coexistence densities ( p, and p, ),
¢ The natural logarithm of the saturated vapour pressures (ln(P”‘ ) ), and

* The critical temperatures and the critical densities ( p,, and T, ).

The following families of n-alkanes and alkenes were used to regress the 8 requiréd LJ parameters
to provide a good fit to the data listed above:

Tabie 9-1: Components used in the regression of the TBORG force field.

n-alkanes alkenes
ethane ethene
propane propene
n-butane I-butene
n-gctane cis-2-butene

trans-2-butene

1,3-butadiene

1-gctene

Although several interesting observations were made in Chapter Seven concerning cis-1,3-

pentadiene and cis-1,3,5-hexatriene, these were not included due the lack of measured data. It was
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suspected that these might then bias the final parameters regressed. This was also the reason for
truncating the maximum chain length used in the regression to 8 carbons because a complete set of
the coexistence liquid and vapour densities, the critical temperature, the critical density and the
saturated vapour pressures are, in general, unavailable for alkenes and n-alkanes with more than 9
carbons. This limited regression set was also used by the TraPPE and NERD force fields.

The intended flexibility in the intramolecular geometries necessitated that a more rigorous method
of parameter optimization be employed than the trial search methods used by the NERD and
TraPPE force fields. The computationally expensive method of Hamiltonian Scaling Monte Carlo
employed by the Be6 force field was also not utilized. Consequently, to define an objective

function, F,;, required for the regression, the following formulation of Ungerer et al. (2000) was

used:

2
Fohj =lZ“ M | (9-1)

N i=1 5_2

where s, is the estimated statistical uncertainty in the measured simulated property J;, J, ., is the

iexp
associated experimental value of the property under consideration, and 7 is the total number of

measured properties (i.e. T, and p_, and all the discrete values for p,, p, and In (P“‘) selected).

The estimated statistical uncertainty was used in the denominator of Equation {9-1) in place of

Jixp DEcause trial regressions revealed that the higher magnitudes of the liquid densities in the

lower ternperature regions tended to bias the final regressed parameter values. This proved
unsatisfactory because the low temperature region also has the highest uncertainty in the simulated

p, and P* values. This is because the low acceptance rate of swap moves at low temperatures

(high liquid densities) causes long period fluctuations in averaged values for o, and P™.

The regression was performed sequentially in the sense that the intramolecular parameters and the
LJ parameters for the sp’ hybridized -CH,— and —CH; groups for the n-alkanes were regressed first.
Thereafter, the intramolecular parameters and the 1.J parameters for the =CH~ and =CH, groups for
the alkenes were regressed. Bourasseau er al. (2003) conducted an extensive regression in which a
sequential approach similar to that listed above was compared to the approach of using a single
global optimization for all required parameters. The single global optimization approach is
advantageous because it avoids the propagation of subtle errors in the regression of parameters to

additional homologous series because only a single optimization is performed. The single global

172



TRANSFERABILITY BASED ON RELAXING GEOMETRIES

optimization method was, unfortunately, found to be intraciable due to the much larger set of
intramolecular equilibrium geometries employed. - There were too many parameters that would have
to have been regressed simultaneously. For the n-alkanes, F,; in Equation (9-1) was therefore a
function of the parameters listed in Table 9-2 while for the alkenes, F,, in Equation (9-1) was

considered to be a function of the parameters in Table 9-3.

A total of 14 intra- and intermolecular parameters (1 =14) must be regressed for the TBORG n-
alkane force field while a further 25 intra- and intermolecular parameters (4 =25) are required to

simulate alkenes for the TBORG force field. If v; denotes parameter “j” 10 be regressed, then the
set of all v;’s given by v, :(vl,vz,...,vﬂ) corresponding to the optima! parameter set will be

achieved when every partial derivative 0F,,; /v, of Equation (9-1) is set to zero:

Oy L 2o, o y
By Al @ -

In the above equation, J; was estimated by using a second order expansion of J; about a central

value v} as:

0 2 0
Ji("g."'A"J.)=Ji(vi)+iMAv§+liaJi—wAvf (9-3)
= o 23 o

Substituting Equation (9-3) into Equation (9-2), the condition to be satisfied for the optimal
parameter set can therefore be expressed as: ' '

0 b i
[Ji (vg) _Ji‘exp + iMAV + l i-a‘;—:(‘:l—)-sz]_a_‘_f_l
L]

¢ Bv. X v ) oy,
=i ¥ =t i J
hIN 3 =0 o4

5

for each and every v;. For Equation (9-4) to be useful, J;(v3), a/(v3)/dv;, &.(v3)/ov},
J; (vj) ,and 8/, (vj) / Ov, are required. Consequently, J; (vi) was evaluated by conducting a “base
simulation” with “central values” for v, =v}. In addition, “central values” for p, (T}, p, (T},

P*(T) and AH, (T) for a range of discrete temperature values were stored as well as the

estimated values for T, and p, from Equations (7-2) and {(7-3) with $=0.32,

173



TRANSFERABILITY BASED ON RELAXING GEOMETRIES

Table 9-2: List of model parameters optimized for the TBORG n-alkane force field.

Lennard-Jones non-bonded interactions

o

CH;(S]lj} ] £

cfe’) Tenfe)” “onle’)

Bond Lengths

CH, - CH, (ethane),
CH, — CH, (propane), CH, —CH, (butane), CH, — CH, (octane)
CH, - CH, (butane}, CH, —CH, (octane)

Bond Angles

CH, - CH, - CH, (propane),
CH, - CH, - CH, (butane), CH, —CH, - CH, (octane)
CH, - CH, —~CH, (octane) o

A

Table 9-3: List of model parameters optimized for the TBORG 1-alkene force field.

Lennard-Jones non-bonded interactions

Tefw)” “omala’)’ Tenla)” Conlar)

Bond Lengths

CH, =CH, (ethene),

CH, =CH (1-propene), CH, =CH (l-butene), CH, =CH (1,3-butadiene), CH, =CH
(1-octene), o ‘

CH = CH (cis-2-butene), CH =CH (trans-2-butene),

CH - CH, (l-propene), CH-CH, (1-butenc), CH-CH (1,3-butadiene), CH-CH, (i-
octene),

CH, —CH (cis-2-butene), CH, - CH (zrans-2-butenc)

13

Bond Angles

CH, =CH -CH, (propene),

CH, =CH-CH, (i-butene), CH,=CH-CH (1,3-butadiene), CH,=CH~CH, (I-
octene), N I

CH, —-CH =CH (cis-2-butene), CH, —CH =CH (frans-2-butene),

CH-CH, - CH, (1-butene), CH --CH, — CH, (1-octene)
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To determine J; (v, ), each of the v, s were systematically varied to consider values for each of the

v,’s above and below the central ﬁ?‘{?ai{ies. Once thége simulations “;eré .borﬁ;iaéél‘,mc!ementary |
second order polynomials of the following form were regressed to the simulated data:

J(v3 + &) =K, (L.T) +K, (i.T)v, + K, (i, T)v} (9-5)
where the constants K, (i,7), K, (i,T) and K, {i,T) were functions of: |

1) the particular property considered, 1, and
2)  the temperature at which that property was simulated, 7.

For the saturated vapour pressure, however, ln()"*“lt v/ T)) was used instead of P*(T') because this
resulted in a nearly linear relationship between 7 and P*. J, (vi), aJ, (vf{ ) /avj , 0% (v?1 ) / i,

J, (vj), and a7, (vj ) /avj could all be calculated from evaluation of Equation {9-5) or suitable

differentiation of Equation (9-5). This approach was expensive in terms of the number of
simulations required but was essential in elucidating the dependence of physical properties on the

varied parameters and the dependence of this variation with temperature as well.

Equation (9—4) may now be solved for the set of all Av;’s. The optimized parameters may then

each be calculated as:

v, =V, + Ay, . 9-6)

In contrast, Ungerer et al. (2000) used a first order Taylor series expansion of the force field of
Toxvaerd (1997) to approximate J, (vf’1 + Avl) (i.e. Equation (9-3) without the third term on the
right hand side of the equation), while Bourasseau ef al. (2003) used statistical fluctuations (which
tmplicitly only include the first order derivatives in Equation (9-3)) obtained during their regression
simulations to evaluate the partial derivatives. The approach of Ungerer et al. (2000) could not be
used because trial regressions employing Equation (9-4) revealed that the optimum geometries
were very different to the values used in the TraPPE, NERD and Be6 united-atom potentials. In
addition, trial regressions based on optimizing the properties of ethane with and without the second

order derivatives in Equation (9-3) revealed that the inclusion of the second order derivatives

provided regressions that were more accurate and more stable. This was the case because p,, p,,

P* and AH, were all fater found to have non-linear dependencies on the bond angles, and p, in

particular tended to have non-linear dependencies on most of the regressed parameters.
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It should be noted that Equation (9-3) effectively amounts to a second order Taylor series which

wsmm e excludes the second order cross derivatives of the form 8°J, (vf{ ) /6vjavk=5 .- The second order

cross-derivatives were exciuded because the large number of parameters considered would have
created the requirement for an additional large number of simulations to determine the functional
forms of these cross derivatives. The exclusion of the second order cross derivatives was, however,
found to introduce negligible error. This conclusion was based on simulations conducted once the
TBORG model parameters were optimized. It was found that the properties predicted from these
“test” simulations matched the corresponding values derived from the regression simulations within

the statistical uncertainty of the results. This, therefore, confirmed the validity of Equation (9-3).

9.3 Simulation Methodology

All of the regression simulations were conducted using the CBMC method in conjunction
with the NVT version of the Gibbs Ensemble. The total numbers of molecules, the absclute

temperature and reduced temperature {7, =T/T, ) ranges for each type of molecule as well as the

number of CBMC trial directions when “growing” molecules used for the n-alkane and alkene

parameter regressions are listed in Table 9-4.

Each molecule was sirnulated at six different temperatures spanning the range of temperatures listed
in Table 9-4. Only for cis-2-butene was the selection of the temperature range severely constrained
by the limited available data (Smith and Srivastava (1986), Vargaftik (1975)). For the rest of the
molecules, the temperature range was selected to allow as wide a temperature range as possible to
ensure maximum applicability of the final regressed set of parameters. The lower reduced
temperature limit imposed on the temperature range of around 0.5 was chosen because it was found
that below this reduced temperature, the number of accepted swap moves was so prohibitively low
as to make equilibrium virtually impossible to achieve within a reasonable number of CBMC trial
directions or within a reasonable number of cycles. The low temperature number of CBMC trial
directions listed in Table 9-4 reflects the number of CBMC trial directions required to achieve a
minimum acceptance rate of 0.1% for swap moves. It was found that 0.1% was the lowest
allowable acceptance for swap moves which could be tolerated without significantly increasing the
required number of equilibration cycles. The reason for the higher minimum reduced temperature
for longer molecules was to compensate for the greater difficulty experienced in inserting these

molecules, particularly in dense phases.
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Table 9-4: Simulation details for each of the molecules considered in the TBORG parameter regressions.

Molecule Temperature Range CBMC trial
directions

Species Number | Absolute {K] | Reduced | Low Temp | High Temp
ethane 500 125-275 [ 0.41-0.90 160 10
propane 400 173-331 | 0.47~0.90 50 4
n-butane 350 210-386 | 0.49-0.91 50 4
p-octane 200 320-520 | 0.56-091 50 4
ethene 500 136-253 1 0.48-0.90 50 4
i-propene 400 176 -327 | 0.48-0.89 50 4
1-butene 350 220-383 |0.52-091 50 4
cis-2-butene 350 225-302 1 0.51-0.69 50 4
trans-2-butene 350 226 -377 | 0.53-0.88 50 4
1,3-butadiene 350 216383 | 0.51-0.90 50 4
l-octene 200 311-518 0.55-0.91 50 4

Only for ethane was a reduced temperature as low as 0.41 explored which required 100 CBMC trial
directions to achieve a 0.1% swap move acceptance. The reason for this was to ensure that the L
parameters for the —CH, functional group included data from high density regions because the
cffect of the —CH; group constitutes a smaller and smaller fraction of the intermolecular potential as
chain length increases. The high density data for ethane would, therefore, serve to betier guarantee
the correctness of the -CH; LJ parameters by forcing them to better fit the ethane properties over a
wide temperature range. The higher reduced temperature of about 0.9 was imposed to prevent the
simulations from becoming unstable. If the simulations were conducted at 2 temperature much
above this reduced temperature, the well-known instability of the Gibbs Ensemble near the critical
point (Panagiotopoulos {2000})) caused the simulation box volumes to change phase identity during

a simulation run thereby compromising the coliection of ensemble averages for distinct phases.

As in the previous Chapters, the box volumes were adjusted so that the liquid and vapour box
volumes were approximately equal in size at the end of a simulation. The same five distinct types
of NVT moves listed previously were performed, namely (1) volume changes, (2) transfers of
molecules between simulation boxes, (3) full regrowing of chains and partial regrowing of chains
using CBMC, (4) translation of the COM, and (5) rotation around the COM. The maximum

volume, translation and rotational displacements were chosen in such a way that roughly 50% of
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each of these moves were accepted. For the four highest temperatures for each type of molecule,
s eanae v 1€ MOVES were performed with the fixed probabilities: pi: p2: p3: p4: p5 = 0.006: 0.328: 0.222:
0.222: 0.222. For the two lowest temperatures considered for each melecule, the fixed probabtlities
for each of the moves were adjusted to favour an increased number of molecule insertion attempts
per cycle (because of higher liquid densities) as pl: p2: p3: p4: pS = 0.006: 0.500: 0.165: 0.165:
0.164. Trial simulations consisting of no more than 10,000 equilibration and 20,000 production
cycles were used initially to identify approximate values for the model parameters around which to
conduct further regressions. During the final regression simulations, the equilibration cycles lasted
for at least 80,000 cycles while production runs included at least 100,000 cycles for averaging. The
standard deviations of ensemble averages were computed by dividing the production cycles of each

run into five blocks and calculating the standard deviation from the averages of these five blocks.

For each of the molecules, six base simulations corresponding to six different temperatures within
the ranges listed in Table 9-4 were conducted using “base” parameter values. Thereafter, the phase
envelope of each molecule was resimulated at all 6 temperatures while systematically varying each
of the parameters which could affect the properties of a species under consideration. For each
parameter considered, revised phase envelopes were simulated for three values below and for three
values above the base value of each parameter while keeping the other relevant parameters at their

base values. Table 9-5 lists the number of simulations conducted for each species considered:

Table 9-5: Details of the parameters varied for each component. In general, the number of simulations

required for each molecule is (6x v,) +1.

Species No. Distinet | No. Distinet | No. LJ parameters | Total No.

Bond Lengths | Bond Angles &; and o Simulations
ethane 1 0 2 19
propane 1 1 4 37
n-butane 2 I 4 43
n-gctane 2 2 4 49
ethene 1 0 2 19
1-propene 2 1 4 43
1-butene 2 2 4 49
cis-2-butene 2 2 4 49
trans-2-butene 2 2 4 49
1,3-butadiene 2 | 4 43
1-octene 2 2 4 49
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Note that the sp’ hybridized —CH; and —CH,— groups were not considered as variables for the
alkenes nor were the CH, —CH, bond, the CH, —-CH, bond, the CH, —-CH, —CH, bend or the

CH, - CH, —CH, bond angle because these were resolved from the n-alkane regression alone.

In Chapter Seven it was concluded that the equilibrinm geometries played a more significant role in
the determination of the physical properties than the magnitude of the inframolecular interactions.

For this reason, a bond-bending constant of k, = 62500K/deg® was used for all bond angles in the

TBORG n-alkane and alkene force fields. This is similar to the values used by the NERD and
TraPPE force fields (see Table 6-3). The only intramolecular parameters not subject to
optimization were the torsional potentials and the bond bending constants. The TraPPE torsional
parameters applicable for the —.CH, — CH, — and = CH -CH, — torsions in Table 6-4 were used to
describe the comresponding torsions for the TBORG force field. The torsional potential of Bock et
al. (1979) as described in Table 7-2 was used to describe the =CH~CH= torsion for 1,3-
butadiene while the harmonic torsional potential of Wick et al. (2000} for cis and #rans torsions was
used for the torsion in cis- and #rans-2-butene. The parameters for the cis torsion ~-CH=CH - are
listed in Table 7-2 while the frans harmonic torsional parameters for Equation (7-1) are taken to be

¢, =180° and k, =13400K/deg’.

For interactions between functional groups of different types, the Lorentz-Berthelot combining rules

of Equation (6-1) for the TBORG force field to evaluate &; and o; were used. As for the TraPPE

force field, non-bonded interactions were evaluated up to a cut-off radius of 14A. The Lennard-
Jones potential was used to describe intramolecular interactions between functional groups

separated by more than 3 bonds on the same molecule.

9.4 Regression of sp’ Hybridized —-CH; and —-CH,- Lennard-Jones
Parameters for n-Alkanes

Figure 9-1 and Figure 9-2 demonstrate the need to use a second order polynomial and second
order finite differences to properly describe the effect of varying the model parameters. In Figure

9-1, the non-linear dependence of the vapour density on the CH, -CH, equilibrium bond length

for all temperatures considered in the regression may be readily seen. Typically, the vapour density

exhibited a non-linear dependence on all TBORG meodel parameters at all temperatures. Figure 9-2
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shows the non-linear dependence of the liquid density on the equilibrinm CH, - CH, —CH, bond

angle. While the liquid density tended to be an approximately linear function for most other
TBORG model parameters, changes in the equilibrium bond angle tended to cause the vapour

density, the latent heat of vaporization and the saturated vapour pressure to vary non-linearly.

It is important to understand the dependence of the stimulated physical properties on the variation of

the TBORG model parameters. There are four basic groups of model parameters which can be
optimized for the TBORG force field namely bond lengths, bond angles, L] &, parameters and L]
&, parameters. The bond lengths and bond angles may be conveniently understood as affecting the
macroscopic properties through steric or molecular geometry influences on each molecule.
Alternatively, the L} o, and & parameters will affect the macroscopic properties through

energetic attractions and repulsions between molecules in the bulk phase. In Figure 9-3 to Figure
9-18 the dependence of the liquid density, vapour density, saturated vapour pressure and the latent
heat of vaporization of n-butane have been graphed to illustrate these dependencies. r-Butane was

selected because it has at least one example of the four basic TBORG parameter groups.
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Figure 9-1: Variation in the vapour density of n-butane when varying the CH, - CH, equilibsium bond length.

Each parametric line represents the liquid density at a different temperature.
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Figure 9-2: Variation in the liquid density of n-butane when varying the CH, -CH, ~CH, equilibrium bond

angle. Each parametric line represents the liquid density at a different temperature.
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Figure 9-3: Effect of varying the CH, - CH, bond length on the liquid density of n-butane.
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Figure 9-4: Effect of varying the CH, - CH, bond length on the vapour density of n-butane.
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Figure 9-5: Effect of varying the CH, -CH, bond length on the saturated vapour pressure of n-butane.
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Figure 9-6: Effect of varying the CH, - CH, bond length on the latent heat of vaporization of #-butane.
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Figure 9-7: Effect of varying the CH, -CH, - CH1 bond angle on the liquid density of n-butane.

Temperature [K]

200 L T T L3 T
0.00 0.02 0.04 .06 0.08
Vapour density {g/em’}
— Experiment & 74° o 81° o §8°
o 95° & 102° s 109° e 116°

Figure 9-8: Effect of varying the CH_ - CH, - CH, bond angle on the vapour density of n-butane.
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Figure 9-9: Effect of varying the CH, - CH, - CH, bond angle on the saturated vapour pressure of #-butane.
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Figure 9-10: Effect of varying the Ci, -CH_ -CH_ bond angle on the latent heat of vaporization of n-butane.
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Figure 9-11: Effect of varying the Lennard-Jones &ii parameter for the —-CH, group on the liquid density of

n-butane,
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Figure 9-12: Effect of varying the Lennard-Jones o;; parameter for the —CH; group on the vapour density of

r-butane.
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Figure 9-13: Effect of varying the Lennard-Jones o, parameter for the -CH, group on the saturated vapour

pressure of n-butane.
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Figure 9-14: Effect of varying the Lennard-Jones o, parameter for the —CH; group on the latent heat of

vaporization of n-butane.
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Figure 9-15: Effect of varying the Lennard-Jones &; parameter for the -CH,— group on the liquid density of

n-butane.
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Figure 9-16: Effect of varying the Lennard-Jones &; parameter for the -CH,— group on the vapour density of

n-butane.
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Figure 9-17: Effect of varying the Lennard-Jones g, parameter for the -CH,— group on the saturated vapour

pressure of n-butane.
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Figure 9-18: Effect of varying the Lennard-Jones g, parameter for the —-CH,— group on the latent heat of

vaporization of a-butane.
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9.4.1 Effect of the Equilibrium Bond Length,

The graphs in Figure 9-3 to Figure 9-6 show the effect of varying the CH,-CH,
equilibrivm bond length on the physical properties of n-butane. Figure 9-3 and Figure 9-4 reveal
that an increase in the bond length leads to a decrease in the liquid densities and to an increase in
the vapour densitics. The decrease in the liquid densities can be explained in terms of the larger
molecular volume that each molecule will occupy with a larger bond length. In the vapour phase,
however, the effect of increasing the bond length is considerably smaller because of the larger
distances between the molecules in the lower density phase. The increase in the density of the
vapour phase with increasing the bond length is therefore a function of a larger molecular volume
being more easily accommodated in a low density vapour phase than in the liquid phase. From
Figure 9-4 it is also apparent that the while the bond length has a more or less constant relative
shifting effect over the entire liquid density range, the effect on the vapour density is most
pronounced in the near-critical region when the molecules in the vapour phase begin to approach
higher densities. This combination implies that an increase in the bond length will also decrease the
critical temperature. The logarithm of the saturated vapour pressure in Figure 9-5 increases with
increasing bond length and the relative increase appears to be slightly larger at the lower
temperatures. This effect can be explained in terms of the higher average repulsions between
molecules with larger bond lengths. The saturated vapour pressure will, in general, increase with
increasing intermolecular repulsions. These increased repulsive interactions will be most
significantly felt in the low temperature region with the higher liquid densities. From Figure 9-6, it

may be seen that the latent heat of vaporization increases with decreasing bond length. Recalling

Equation (5-21), the latent heat of vaporization is a function of the difference between (U+ PV)‘

for the vapour phase and (U + PV)‘T for the liquid phase and describes the enthalpy required to

evaporate molecules from the liquid phase. The higher density of the liquid phase (due to lower
molar volumes) comnbined with the lower vapour pressure for short bond lengths will in general
require more energy to evaporate molecules in the liquid phase thus leading to the observed trend of

an increasing latent heat of vaporization with a decreasing bond length.

9.4.2 Effect of the Equilibrium Bond Angle, §,

The graphs in Figure 9-7 to Figure 9-10 show the effect of varying the CH, -~ CH, —-CH,

equilibrium bond angle on the physical properties of »n-butane. A decrease in the
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Figure 9-19: Graph showing the effect of the L] o, and g, parameters on the shape of the intermolecular
potential energy curve. The base curve (o =3.383) has o, =3.383A and g =127.1K. Parametric curves

with o, =4.883A and £=250K are also plotted. The Shifted parametric curve is the o, =3.383A

parametric curve but shifted horizontally to the left by an amount of 1.5A.

From Figure 9-13 it may be seen that the saturated vapour pressure decreases with increasing o; .
In Figure 9-19, two LJ potential curves are plotted with o =3.383A and o =4.883A. A third
curve with o, =4.883A but shifted to the left by an amount of 1.5A is also drawn. The force
between two molecules is given by ~dU,, /dr; and is positive for repulsive forces and negative for

attractive forces. For the attractive region both the o; =3.383A and o; =4.883A curves have

similar slopes. For the attractive region, however, it may be seen that with the exception of the

region immediately to the right of the potential minimum, the slope and hence the attraction

between the molecules for the curve with o, =4.883A is greater in magnitude than slope for the

o, =3.383A curve. This result can also be understood by considering the molecular virial

contribution to the pressure of Equation (5-14). For the excess contribution to the pressure, it can
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be seen that while w(r;) e 7 in Equation (5-16), one also has Poc1/¥ =1/ in Equation (5-14).

S Uy A s TR P P

It has already been seen that the phase density decreases with increasing o, and hence since P is

then proportional to 1/ #; overall, the saturated vapour pressure decreases with increasing o, .

It is also found in Figure 9-14 that the latent heat of vaporization increases with increasing o;.
This is consistent with the increasing attractive forces between the molecules as o, increases which

requires more energy to cause a molecule in the liquid phase to be vaporized.

9.4.4 Effect of the Lennard-Jones ¢, Parameter

The graphs in Figure 9-15 to Figure 9-18 demonstrate the effect of varying the LJ ¢,
parameter. In terms of Figure 9-19, the effect of increasing the value of &, may be understood as
increasing the well depth. This can be seen by comparing the base graph with ¢, =127.1K and the
parametric curve with £, =250K ., The slope of the repulsive section of the LJ potential remains
effectively unchanged but the slope of the attractive section of the potential curve now has a larger
magnitude. For this reason, an increase in the LT &, parameter leads to an increase in the liquid
density and a comesponding decrease in the vapour density. This implies that the critical
temperature will also increase with increasing values of &;. An increase in g; with its associated

increase in attractive forces between molecules in the liquid phase thus also results in a decrease in
saturated vapour pressure as seen in Figure 9-17 and an increase in the latent heat of vaporization as

seen in Figure 9-18.

Although the above discussion was limited to n-butane, the same general irends were observed for
all other molecules used in both the n-alkane and the alkene parameter regressions. The magnitude

of these trends, however, varied from molecule to molecule as the number of instances of a given
parameter increased or decreased. In this way, the effect of the LY o, parameter for the -CH;
group and the CH, -CH, —CH, bond angle on the simulated physical properties were more

pronounced for n-butane than for n-octane because of the higher “per molecule concentration” of

these parameters for the case of #-butane.
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0.4.5 Selection of the Final n~-Alkane Parameter Set

To determine an optimal set of r-alkane parameters for the TBORG force field, four sets of
optimization constraints were considered in addition to the Final constraint set which was used to
optimize the Final set of parameters. Each of these different regression constraint sets resulted in
different parameter sets. The TBORG model parameters which resulted from the different sets of

constraints are listed in Table 9-6 and their effect on the simulated physical properties are listed in
Table 9-7.

Table 9-6: Table of the regressed n-alkane TBORG model parameters for the different regression constraints,

Final | Case] | Casell | Case Il | Case IV

CH, - CH, (ethane) [A] 2207 |2.145 |2.089 |2206 2281
CH, - CH, (propane) {A] 2.045 12023 |1.952 |2.045 |2.066
CH, - CH, (=2C¢)[A] 2.045 | 2.062 | 1.952 |2.045 |2.066
CH, - CH, (n-butane) [A] 1.688 | 1.677 |1.683 |1.688 |1.655
CH, - CH, (2Cs) [A] 1.688 | 1.693 |1.683 {1.688 |1.655

CH, -CH, - CH, (propane) [deg] | 84.1 [84.6 |[83.0 |84.1 84.4

CH, - CH, - CH, (n-butane) [deg] { 105.2 [98.7 [1069 [1052 |110.1
CH, - CH, ~CH, (2C;) [deg] 1052 | 103.3 ({1069 |1052 |110.1
CH, - CH, - CH, (2Cs) [deg] 1154 | 1137 |108.1 |1154 |1193

o, (~cH, -) [A] 3.698 |3.690 |3.753 |3.608 |3.707
6/k, (~cH, -) (K] 66.54 | 67.67 | 6238 |6652 |65.14
oy (~ch,) [A] 3546 |3.562 [3.580 |3.546 |3.525
55 /%, (-CH,) (K] 130.35 | 127.36 | 125.18 | 130.30 | 133.62
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Table 9-7: Deviation between the simulated and experimental physical properties for the Final parameter set of the TBORG n-alkane force field and for &ch of

the variations of the Final set considered. Data in brackets correspond to the bracketed and more limited temperature range listed for each molecule.

Final Casel | Casell | Caselll | Case IV Final Casel | Casell | Caselll | Case IV

Ethane: 125-275K n-Butane: 210-386K

(149-275K) (249-386K)
% Avg. Error p, 0.30 033 {044 (030 0.15 % Avg. Ertor p, 0.34 052 {023 |034 0.19
% Avg. Error p, 8.54 449y | 654 |514 |848 20.97 % Avg. Error p, 7.16 ooy | 691 | 2060 | 7.17 14.46
% Avg, Brror P* | 34634 | 551 [3.58 |[349 3.63 % Avg. Error P 0.30 019 | 1.08 | 237 | 032 1.09
% Avg. Error AH,, | 1.44 180 [2.09 | 144 1.45 % Avg. Error AH,,, | 1.81 1.64 [1.58 | 1.81 1.59
lp. - o, | [gfem’] | 0.0011 | 0.0010 | 0.0015 | 0.0002 | 0.0012 o, - o | [gfem®] | 0.0027 | 0.0042 | 0.0026 | 0.0006 | 0.0008
I, -1 K] 0.61 061 1061 [2.19 0.61 |r,-7..] [K] 0.85 085 |085 |523 0.85
Propane: 173-331K n-Octane: 320-520K

(205-331K) (368-520K)
% Avg, Error p, 0.28 034 |023 [o028 0.10 % Avg. Error g, 0.49 045 |o086 049 0.41
% Avg. Error p, 11.84 g0, | 1095 | 1993 [ 11.84 |18.78 % Avg. Error p, 2.87 ay | 3.03 17.51 {2.88 3.50
% Avg. Error P™ 397 01ey | 4.36 5.33 399 401 % Avg. Error P™ 435139 | 4.18 5.02 435 3.34
% Avg. Error AH_ | 2.37 246 |266 |237 2.03 % Avg. Error AH,, | 3.81 3.54 (190 |3.80 4.34
lo.-»,,| (gfonl | 0.0020 | 0.0018 | 0.0020 | 0.0032 | 0.0026 o, ~ 2. | [gen®] [ 0.0005 | 0.0002 | 0.0035 | 0.0011 | 0.0004
b -7, | [X] 0.74 074 | 074 298 0.74 Ir. -] K} 1.14 1.14 255 |26l 1.14
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The Final set of TBORG n-alkane model parameters had the following characteristics:
errciaenme . A unique CH; ~ CH; bond length for ethane., = . . |

L

A transferable CH, —CH, bond length valid for propane and longer molecules.

A transferable CH, —~ CH, bond length valid for n-butane and longer molecules.

A unique CH, - CH, —CH, bond angle for propane.

A transferable CH, — CH, —CH, bond angle valid for n-butane and longer molecules.

A transferable CH, — CH, — CH, bond angle valid for n-pentane and longer molecules.

Transferable g, and o, LJ parameters for the -CH; group valid for all molecules.

Transferable ¢; and o, LJ parameters for the -CH,— group valid for all molecules.

Vapour density, saturated vapour pressure, liquid density, critical temperature and critical
density data were used to regress the intermolecular and intramolecular parameters. Latent

heat of vaporization data was excluded.

The four other constraint variations considered had the following characteristics:

e Case I: The same as for the TBORG Final set of parameters except that there were

o distinct CH, - CH, bond lengths for propane, n-butane and molecules with at least

than 5 carbons
o distinct CH, —CH, bond lengths for n-butane and molecules with at least 5 carbons

o distinct CH, —CH, —CH, bond angles for n-butane and molecules with at least 5
carbons
e Case [I: The same as for the TBORG Final set of parameters except that

o Latent heat of vaporization data was also used in the definition of the objective
function

» Case [TI: The same as for the TBORG Final set of parameters except that
o A good fit to estimated critical densities and critical temperatures was not enforced
o Case IV: The same as for the TBORG Final set of parameters except that
o The vapowr density data was excluded from the regression and not used in the

definition of the objective function.

Comparing the accuracy of the simulated physical properties obtained from the Final set of
parameters with the accuracy of the simulated physical properties resulting from the more expanded

parameter set of Case I in Tabie 9-7, it may be seen that there is little difference for all molecules
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studied. In addition, from Table 9-6 it can be seen that the optimal sizes regressed for the two

CH, —~CH, bond lengths allowed differ by only 0.04A while the optimal values for the two
CH, — CH, bond lengths allowed differ only by 0.02A. The two optimal values considered for the
CH, -CH, —CH, bond angle also differ by only 5°. Since there was no substantial benefit in

using the more expanded intramolecular parameter set, the Final parameter set listed in Table 9-6
was preferred.

The regression for Case 1I which included data for the latent heat of vaporization in Equation {{(9-4)
was unsatisfactory because of the considerable deterioration in the agreement between the simulated
and experimental vapour pressures particularly for propane, n-butane and »-octane. This can be
traced back to the definition of the latent heat of vaporization in Equation (5-21) where the
influence of the liquid molar volume will tend to dominate over the influence of the vapour molar
volume in the regression because of the lower statistical uncertainty which tends to be found in the
liquid densities. This is the case for propane and n-butane where an improvement in the liguid
densities accompanied less accurate simulated vapour densities. The largest improvement in the
latent heat of vaporization occurred for n-octane where the average discrepancy between the
experimental and the simulated data was halved. It therefore appears that the effect of including the
latent heat of vaporization data in the regression is most significantly felt for the larger molecules.
This may also be seen for ethane where the agreement between the simulated and the experimental
latent heat of vaporization data in fact deteriorated. In Table 9-12 in Appendix 9A it may be seen
that the relative statistical uncertainty in the latent heat of vaporization is aiways lower than that of
the corresponding vapour density. For this reason, the inclusion of latent heat of vaporization data

in the objective function will in general lead to a lower accuracy in the simulated vapour density
results,

For all regression cases except Case III, the model parameters regressed had to achieve values such
that critical temperatures estimated through Equations (6-2) and (6-3) from the simulated data were
constrained to be within 0.2% of the comesponding experimental critical temperature. This is why
the predicted critical temperatures are the same for regressions cases other than Case III. For Case
III, the constraint of accurately reproducing the critical data was relaxed. This was also the
approach followed by Ungerer et al. {2000) and by Bourasseau ef al. (2003). From Table 9-7 the
error in the estimated critical temperature for all four molecules for Case III ranges from 2.2K to
5.2K. This was also the typical magnitude of the error experienced for the AUA4 n-alkane and
alkene force fields of Ungerer er al. (2000) and Bourasseau et al, {2003) respectively. To a limited
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extent, good estimations of the critical density and the critical temperature both require good
predictions of the liquid and vapour densities. This result therefore argues in favour of producing a
force field which provides good estimates of the vapour densities and which explicitly accounts for

the critical properties in the regression objective function.

For Case IV, the experimental data for the vapour densities were excluded from the objective
function. As a result, this mainly led to an improvement in the liquid densities and the saturated
vapour pressures. For propane, ethane and n-butane the improvement in the latent heats of

vaporization was marginal while for n-octane the simulated AH =~ data got slightly worse. This

may be due to the slight deterioration in the accuracy of the simulated vapour densities for n-octane.

It was seen previously for Case II that the relationship between AH,, and p, was most significant

for n-octane,

The equilibrivm bond lengths show the following trend:
CH,-CH, = CH,-CH, 2 CH,-CH,

This trend is qualitatively similar to the larger equilibrivm bond lengths required by the nAEP force
field to accurately reproduce the pure component VLE for n-alkanes. This observation would,
therefore, seem to confirm the importance of allowing longer bond lengihs to accurately reproduce
pure component VLE. The relative sizes of the bond lengths above are also consistent with the
effects of anisotropy. A larger off-centre intermolecular interaction for the ~CH; groups is to be
expected because of the terminal position of the —CH; group and the attachment of three hydrogen
atoms. For the —CH,- group, however, there are an even number of hydrogen atoms attached
{namely two) and the location of the —CH,— groups within the carbon backbone implies that the
influence of anisotropic interactions are less pronounced. This is because the ~CH,— group is
somewhat symmetrical about the carbon centre. For this reason the CH, —CH, equilibrium bond
length should be the shortest and the optimized bond length parameters correctly reproduce the
expected trend. The CH, —CH, equilibrium bond length of 1.6884 is also reasonably close to the

length used by the NERD and TraPPE force field for this bond of 1.54A.

The three equilibrium bond angles are also consistent with the molecular geometry that is to be
expected. For the NERD, TraPPE, nAEP and AUA4 force fields, an equilibrium bond angle of
114.0° was used for all of the bond angles as listed in Table 9-6. The TBORG CH, -CH, ~CH,

equilibrium bond angle for propane of 84.11° is, however, considerably smaller. This smaller
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equilibrium bond angle when combined with the longer CH, —CH, equilibrium bond length of
=3 045 A does, however, provide a molecular volume fot propane which is similar to that provided by
the other force fields. This is also the case for the CH, —CH, —CH, equilibrium bond angle for n-

butane and n-octane which, although also smaller than the 114.0° angle used by the NERD,
TraPPE, nAEP and AUA4 force fields for this bond angle, does allow the TBORG force field to
accommodate the longer bond lengths of 2.045A and 1.688A. The molecules in the TBORG force
field, therefore, have a more “zig-zag” or “concertina” shape but still have approximately the same
molecular volume as the volumes for these same molecules modelled by the NERD, TraPPE, nAEP
and AUA4 force fields. This is encouraging because it implies that the parameters in the TBORG
force, while empirical, still have a commection to physical reality. The flexible molecular
geometries therefore serve to place the interaction sites in more favourable locations in an
anisotropic sense similar to the AUA4 force field.

This effective intramolecular rearrangement has, however, been crucial in improving the simulated
physical properties, particularly the saturated vapour pressures and vapour densities. Using the
Final set of parameters in Table 9-6, the pure component VLE of ethane, propane, n-butane and n-
octane were simulated. The pure component simulations results are shown in Figure 9-20 to Figure
6-23 and the corresponding data is given in Appendix 9A at the end of the Chapter. The average
deviations in the predicted physical properties were similar to those obtained from the regression
estimates of Table 9-7. S

In terms of the liquid densities in Figure 9-20, it can be seen that the TBORG force field is able to
provide as good a description of the liquid densities as the NERD and TraPPE force fields which
are known to reproduce the liquid densities well. The TBORG force field is also able to provide
good predictions of the critical temperature and the cnitical density because these properties are
required in the regression. The NERD and TraPPE force fields are known to provide good
estimations of the critical densities and these are, therefore, not shown for clarity. Critical
temperatures and critical densities for ethane, propane, n-butane and n-octane were not quoted in
the original AUA4 publication (Ungerer et al. (2000)) and are, therefore, not shown.
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Figure 9-20: Liquid and vapour coexistence densities for ethane, propane, n-butane and #-octane. Simulated
tesults from the TBORG, NERD, TraPPE and AUA4 force fields are shown with the experimental data of
Smith and Srivastava (1986). Experimental critical points are shown as plus symbols.
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Figure 9-21: Vapour coexistence densities for ethane, propane, n-butane and n-octane. Simulated results

from the TBORG, NERD and TraPPE force fields are shown with the experimental data of Smith and
Srivastava (1986).
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Figure 9-22: Saturated vapour pressures for ethane, propane, #-butane and n-octane. Simulated results from
the TBORG, TraPPE and AUA4 force fields are shown with the experimental data of Smith and Srivastava
(1986).
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Figure 9-23: Latent heats of vaporization for ethane, propane r’r-l.)i.naﬁ.e and n-octane. Simulated resuits from
the TBORG and AUA4 force fields are shown with the experimental data of Smith and Srivastava (1986).
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Figure 9-21 reveals the superior vapour densities predicted by the TBORG force field. The NERD
force field tends to overestimate the vapour densities while the TraPPE force field tends to
underestimate the vapour densities. This is largely a function of the greater emphasis placed on
correctly reproducing the vapour densities during the parameterization of the TGORG force field.
The saturated vapour pressures are also better estimated by the TBORG force field over the entire
temperature range while the NERD and TraPPE force fields tend to overestimate the vapour
pressure. The good fit to the saturated vapour pressures required by the TBORG parameterization
has thus ensured superior pure estimates for the vapour pressures as well. Although the latent heats
of vaporization were not included in the objective function for the regression of the TBORG »-
alkane parameter set, it must be noted that the TBORG force field also provides a good estimate of
the latent heats of vaporization for ethane, propane and n-butane. For n-octane, however, the

agreement is less good but remains within an average of 5% of the experimental data.

Another important feature of the TBORG force is the temperature range over which the force has
been parameterized and over which the force field gives accurate pure component properties. From
Figure 9-20 to Figure 9-23 the larger effective range of the TBORG force field indicates its superior
performance as when compared to the smaller effective temperature ranges of the NERD and
TraPPE force fields. This is largely due to the deliberate simulation of pure component properties
at lower reduced temperatures. It should be noted that the AUA4 force used only one coexistence
point each for ethane, propane and n-octane during the parameterization of this force field. It has
already been seen from the optimized geometries generated in Table 9-6 that the transferability of
the intramolecular parameters is least for the shorter chain lengths. The TBORG force field
explicitly accounted for this by the inclusion of additional intramolecular equilibrium geometries as
required. This combined with the larger effective temperature range used for the parameterization
of the TBORG force field would, therefore, suggest that greater confidence be placed in the
TBORG force field when simulating these short and intermediate length r-alkanes over a wide
range of temperatures.

9.5 Regression of sp2 Hybridized =CH, and =CH- Lennard-Jones

Parameters for Alkenes

To maintain consistency with the optimization criteria used for the TBORG n-alkane force

field, it was decided to enforce the transferability of intramolecular equilibrium geometries as far as
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possible for the alkene parameters. Consequently, the Final set of TBORG alkene model

parameters had the following characteristics: T R A TREE
¢ A unique bond length for the CH, = CH, bond in ethene and a unique CH —CH bond length

for 1,3-butadiene.

A transferable CH, ~ CH bond length for propene, cis-2-butene and frans-2-butene. It was

found that there was only a small impact on the physical properties when this bond length
was required to be fully transferable,

A transferable CH, = CH bond length valid for propene; ﬂbﬁfene, 1,3-butadiené, 1-octene
and longer molecules. It was again found that the values of an optimal independent set of

CH, = CH bond lengths were very similar.

A transferable CH = CH bond length for cis-2-butene and trans-2-butene.

A transferable CH — CH, bond length valid for 1-butene and longer molecules.

»

A unique CH,-CH=CH, bond angle valid for propene and a unique CH, -CH, -CH
bond angle valid for 1-butene.
A unique CH, =CH -CH bond angle valid for 1,3-butadiene.

A transferable CH, — CH = CH bond angle valid for cis-2-butene and frans-2-butene

A transferable CH, —CH =CH bond angle valid for molecules longer than 1-butene.

A transferable CH, = CH ~CH, bond angle valid for 1-butene and longer molecules.

Transferable &; and o; LJ parameters for the =CH; group valid for all molecules.

L ]

Transferable &; and o; LJ parameters for the =CH- group valid for all molecules.

Vapour density, saturated vapour pressure, liquid density, critical temperature and critical
density data were used to regress the intermolecular and intramolecular parameters. Latent

heat of vaporization data were again excluded.

The experimental data for cis- and trans-2-butene were more limited than the data available for the
other alkenes studied. This was particularly true for cis-2-butene. Consequently, the Final TBORG
model parameters were regressed to directly optimize the simulated physical property predictions
for all of the alkenes except cis-2-butene. Bourasseau ef al (2003) reported that the optimization of
the AUA4 parameters for 2-alkenes could not provide the same quality of agreement with the
experimental data as the TraPPE alkene force field of Wick et al. (2000). This was attributed to a
deficiency in the AUA4 force field with respect to the 2-alkenes considered.
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For the regression of the TBORG n-alkane parameters, it was found that it was possible td achieve a
reasonable agreement between the critical temperatures and the critical densities estimated from
simulation and the corresponding experimental critical temperatures and critical densities without
having to strictly impose this requirement on the TBORG parameter optimization. For the alkenes,
however, the agreement between the estimated critical temperatures and the critical densities was

significantly worse than when this requirement was not imposed. This is evidenced in Table 9-10.

Consequently, the following three cases for the regression of the TBORG alkene parameters were

also considered:

o Case I: The TBORG alkene regression was divided into two parts. In the primary
regression, the model parameters necessary for all of the alkenes except cis- and trans-2-
butene were optimized. In the next subsidiary regression, the CH, —-CH obtained for
propene was imposed on cis- and trans-2-butene while the CH=CH bond length and the
CH, - CH = CH bond angle were regarded as common to both isomers but were optimized
to achieve the best agreement with the experimental data,

e Case [I: The TBORG alkene regression was again divided into two parts. In the primary

regression, however, the model parameters necessary for all of the alkenes except ¢is-2-
butene only were optimized. In the next subsidiary regression, the CH, ~CH obtained for
propene and frans-2-butene were imposed on cis-2-butene while the CH =CH bond length
and the CH,-CH=CH bond angle for cis-2-butene were independently optin;:ized to
achieve the best agreement with the experimental data for cis-2-butene. |

o Case III: The same as for the constraints used for the Final TBORG alkene parameter set

except that a good agreement with the experimental critical temperatures and critical
densities was not enforced.

For Equation (6-2) and (6-3) to provide a consistent estimate of the critical temperature and the
critical density, coexistence density information in the near-critical region is required. The
available data for cis-2-butene was limited to the reduced temperature range of 0.57, -0.77, .
Consequently, a good agreement with the critical density and the critical temperature of cis-2-
butene was not enforced in any of the above cases or in the Final set of TBORG alkene parameters.
The optimized parameters for the Final TBORG parameter set and for the three cases described

above are listed in Table 9-8, the averages of the deviations of the simulated data from the
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experimental data for the various species considered are listed in Table 9-9, while the effect of the

various optimization cases on the estimated critical properties are listed in Table 9-10.

Table 9-8: Table of the regressed alkene TBORG model parameters for the different regression constraints,

Final | Casel | Case Il | Case I1I

CH, = CH, (ethene) [A] 1.854 {1.865 [ 1.854 |2.011
CH,-CH (=Cy)[A] 2,014 [2.019 {2.014 {2032
CH, =CH (=C;) [A] 1.840 | 1.855 |1.840 |[1.846
CH-CH, (=Cy) {A] 1753 [ 1751 (1753 [ 1771
CH-CH (1,3-butadiene) [A] 1.809 [1.806 |1.809 |[1.865
CH =CH (cis-2-butene) [A] 1.711 | L1711 [1.769 | 1.648
CH=CH (trans-2-butene) [A) 1711 | 1711 [ 1711 | 1.648
CH, -CH =CH, (propene) [deg] 106.1 | 107.3 [ 109.1 118.7
CH, —CH, - CH (1-butene) [deg] 943 942 94.3 96.0

CH, -CH, -CH (=Cs) [deg] 122.1 {1213 (1221 | 1300
CH, = CH-CH, (=C,) [deg] 116.1 | 1159 {1161 11178

CH, = CH-CH (1,3-butadiene) [deg] | 107.2 | 106.6 | 1072 | 1129

CH,-CH=CH (2Cs) [deg] 116.1 | 1159 | 116.1 117.8

CH,-CH=CH (cis-2-butene) [deg] | 117.1 | 117.1 | 115.0 |117.4

CH, -CH =CH (trans-2-butene) {deg} | 117.1 | 117.1 ;117.1 117.4

oy(=cH) [A] 3503 3499 3503 |3.4497
ealk, (= CH, ) [K] 108.40 | 108.80 | 108.40 | 114.53
oy (=CH-) [A] 3200 |3.196 |3.200 |3.2161
&/, (=CH-) [K] B 100.22 ] 101.09 | 100.22 | 97.83
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Table 9-9: Deviation between the simulated and experimental physical properties for the Final parameter set of the TBORG alkene force field and for each of the

variations of the Final set considered. Data in brackets corresponds to the bracketed and more limited temperature range listed for each molecule.

Final Casel Case II Case III Final Case I Case Il Case I1I

Ethene: 136-253K 1-Butene: 216-383K

(160-253K) (253-383K)
% Avg. Error p, 0.32 0.33 0.32 0.40 % Avg. Error p, 0.55 0.55 0.55 0.53
% Avg. Error p_ 16.191.19) | 14.68(10.47) | 16.191.19) | 5.31(428) % Avg. Error p, 503330 | 46lausy | 5.03a30 | 3.9600
% Avg. Error P* 1.29039) | 1.37049) | 129039y | 1.60(097) % Avg. Error P* 112042 | 1.040asy | 1.12042) | 0.860.45)
% Avg. Error AH,, | 1.76 1.79 1.76 1.70 % Avg. Error AH 1.33 1.38 1.33 1.71
o —p._| [gfom’] | 00007 | 00005 | 00005 |0.0002 | ||p-p.| [gorr] 0.0023 | 0.0023 | 0.0023 | 0.0027
77| K] 0.07 0.16 0.16 1.24 7| K] 0.84 0.84 0.84 110
Propene: 176-327K 1,3-Butadiene: 216-383K

(207-327K) (253-383K)
% Avg. Error p, 0.37 0.39 0.37 0.15 % Avg. Error p, 0.47 0.47 0.47 0.62:
% Avg. Error p, 2430249 | 251g0sy | 243009 | 1.67q67) % Avg. Error p, 13200151y | 129301135 | 13.200151) | 5.00(4.61)
% Avg. Error P™ 0.80017) | 0.7401n | 0.80pan | 0.68(023) % Avg. Error P*™ 1.70098) | 1.58095) | 1.7009s) | 1.34(0s4)
% Avg. Error AH 1.86 1.90 1.86 2.24 % Avg,. Error AH 0.67 0.73 0.67 1.73
lo.—p| [gom’] | 00022 [0.0022 [0.0022 (00032 | ||p.—p.| [gfor] 00018 00015 [ 0.0019 | 0.0035
I, -1 K] 0.73 0.73 0.73 0.18 Ir. -1, | K] 0.85 0.85 0.85 2.44
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Final Case I Casell | Caselll Final Casel Case Il Case 111
cis-2-Butene: 136-253K 1-Octene: 216-383K
(160-253K) (253-383K)
% Avg. Error p, 0.10 0.12 0.15 0.09 % Avg. Error p, 0.70 0.71 0.70 0.45
% AVg. Error P, 4.36(434) 5.29(4,95) 6.80(5_30‘} 5.52(4.75) % AVg. Error P, 15.56(!(“]') 15.04{9_75} 15.56([0.01) 16.79([312)
% Avg. Error P** 6.15(5_29] 6.50(5_93) 6.36((,_30) 4 77{3_73) % AVg_ Error Pm 4.48(-2_46) 4.44(2.33) 4.48(2_45) 4 20(3_05]
% Avg. Error AH | 2.20 2.38 1.97 1.89 % Avg. Error AH,,, | 7.11 7.10 7.11 7.70
o, - p.| [g/om’] 0.0038 | 0.0038 | 0.0029 | 0.0045 lo.-p| [gem] | 00023 |0.0023 |0.0023 | 0.0068
7T -7 | [K] 11.54 11.54 12.31 11.15 r—7 | K 1.13 1.13 1.13 10.37
uash i - T..| [K] :
trans-2-Butene: 176-327K
(207-327K)
% Avg. Error p, 0.23 0.21 0.23 0.18
% Avg. Error p, 2.2710) | 3.14¢.03) | 2.272.30) 3.63(4‘00)
% AVg. Error Pm 3.95(2'7;) 4. 13(2‘78) 3.95(2_72] 3.02(;_29}
% Avg. Error AH 4,72 4.89 4,72 4.44
lo. - p...| [g/em’] 0.0020 | 0.0020 | 0.0020 | 0.0030
7-7..| K] 0.86 | 0.86 |0.86 |2.87
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Table 9-10: Comparison of the experimental critical temperature and densities with those estimated from the
Final TRORG alkene parameter set and for the optimal parameter set obtained when good agreement with the

experimental critical densities and temperatures was not imposed. The corresponding estimates from the
AUAA4 and TraPPE force fields are also listed.

Exp. | Final | Case IIl | TraPPE | AUA4

Ethene

p,, [g/em’] 0.2141 1 0.2149 | 0.2140 | 0215 | 0212

T, [K] 2823 (2823 |283.6 283 280
Propene

o, lgiem’] 0.2234 | 0.2256 | 0.2266 [ 0.230 0.2257

T, [K] 365.6 | 3663 | 365.7 363 373.5
1-Butene

P, [ghem’) 0.2338 | 0.2361 | 0.2365 | 0.241 0.2362

7, [K] 4196 | 4204 ;4207 414 419.6

1,3-Butadiene

£, [gem’] 0.2450 | 0.2432 1 0.2353 - 2315

T, [X] 425.2 14243 | 4467 - 422.4

cis-2-Buiene
P [gfcma] 0.2398 | 0.2360 | 0.2353 0.246 0.2382
T, [K] 435.6 14471 | 446.7 435 448

rrans-2-Butene

2., [giem®] 0.2357 | 0.2337 {02327 [ 0238 |0.234

T 1K} 428.6 | 4295 |431.5 426 439.4
1-Octene

P, [g/em’] 0.2338 | 0.2361 | 0.2406 | 0.238 0.2409

T, [K] 567.0 |568.1 |577.4 |[567 559.2

There is only a small difference between the optimal parameters listed for the Final TBORG alkene
parameter set and for Case I in Table 9-8. This is encouraging because it suggests that there is a
substantial degree of transferability of the Final TBORG alkene parameter set to both 1-alkenes and
2-alkenes. In Case II in Table 9-8, the Final and independently regressed equilibrium bond lengths
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and equilibrium bond angles for ¢is-2-butene and trans-2-butene are also very similar to the vatues
obtained when ¢rans-2-butene was included within the main parameter regression. These
equilibrium bond lengths and equilibrium bond angle parameters are also very similar for both c¢is-
2-butene and trans-2-butene and therefore confirm the simplifications of using transferable bond
length values and bond angle values for cis-2-butene and #rans-2-butene. For Case IIl in Table 9-8,
however, the optimal parameter set is significantly different to the values obtained for the Final
parameter set. Most of the equilibrium bond lengths for Case III are higher than the corresponding
equilibrium bond lengths for the Final alkene parameter set. This is also true for the equilibrium
bond angles for Case Il which tend to be higher than the equilibrium bond angles for the Final
alkene parameter set. This confirms the perspective of Chen ef 4/. (1998) in which it was suggested
that multiple parameter sets exist for which various “optimal” force fields can be obtained. From
the above results and from the regressions obtained for the TBORG #n-alkane parameters, the key
feature in resolving the final and optimal parameter set resides in the regression constraints and the

optimization criteria used.

The result of relaxing the constraint of a good prediction of the critical temperatures and critical
densities is evidenced in Table 9-10 where the critical densities and critical temperatures for Case
111 show a larger deviation from the corresponding experimental values than for the Final parameter
set, Case I and Case II. Table 9-9, however, shows that the simulated physical properties for Case
1T show a lower average deviation from the corresponding values. This was found to be largely
attributable to a general improvement in the simulated physical properties at low temperatures
which occurs when the constraint of a good estimaiion of the critical properties is relaxed. This
explains why the AUA4 force field is generally able to provide a better prediction of the pure
component densities, vapour pressures and heats of vaporization than the NERD or TraPPE force
fields while the NERD and TraPPE force fields yield superior critical property estimations than the
AUAA4 force field.

It may be seen in Table 9-8 that all of the éarbon-carbon double bonds are significantly larger than
the 1.34A used by the NERD and TraPPE force fields. This is again consistent with the TBRORG
force field parameters displacing the interaction centres to more optimal locations to effectively
account for anisotropic interactions. The effect on the regressed equilibrium bond length is again
most pronounced for bonds incorporating a terminal group, this time the sp® hybridized -CH,
group. This increase in the equilibrium bond length may be understood in terms of a required

displacement of the functional group centre to a location intermediate between the carbon centre
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and its two attached hydrogen atoms. For ethane, the TBORG force field required an increase of

oo wsmemenne . the CH, —CH, equilibrium bond length of 0.66A over the same equilibrium bond, [ength used for

the NERD and TraPPE force fields due to the three hydrogen atoms present in the —CH; group. For
ethene, the increase in the CH, = CH, bond length for the TBORG force field is only 0.51A due to

the two hydrogen atoms present in the =CH, group. This is reassuring because it suggests that the
regressed equilibrium bond lengths are not simply empirical but rather demonstrate the correct trend
of increasing anisotropy with increasing numbers of attached hydrogen atoms. In addition, the

CH, = CH, equilibrium bond length for ethene is less than the CH, — CH, equilibrium bond length

for ethane as expected. The regressed carbon-carbon double bond lengths show the following
trend:

CH,=CH, 2 CH,=CH = CH=CH
The difference between largest and smallest regressed values of the equilibrium lengths for the
carbon-carbon double bonds in Table 9-8 is smaller than for the carbon-carbon single bonds of the
TBORG n-alkane bond lengths Table 9-6. This is because of the greater anisotropy of the sp’
hybridized —-CH= group with only one attached hydrogen atom as compared to the -CH,— group
with two attached hydrogen atoms. The net result is a CH, = CH bond length which is very similar
in length to the CH, = CH, bond length and a regressed equilibrium bond length for the CH = CH
bond length which is larger than the CH, ~CH, equilibrium bond length even though one would

expect carbon-carbon double bonds to be shorter than carbon-carbon single bonds.

The regressed equilibrium lengths of the carbon-carbon single bonds in Table 9-8 follow the
following trend:

CH;-CH = CH-CH = CH-CH,
The CH, -CH bond length is the longest due to the anisotropy of the ~CH; group while the

anisotropic contribution of two —CH= groups in the CH—CH bond results in it requiring a longer

bond length than the CH —CH, bond with only one -CH= group. It is also encouraging to note that

the anisotropy of the ~CH= group is also results in longer carbon-carbon single bond lengths for the
alkene regression as compared to the carbon-carbon single bonds regressed from the TBORG »-
alkane force field. The only exception is the CH, —CH, equilibrium bond length in propane as

compared to the CH, —CH equilibrium bond length in propene, but in this case the effects of the

terminal —CH; group as well as the regressed propane and propene bond angles dominate.
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It 15 interesting to note that there is less than an 8° difference between the regressed equilibrium
ememme-yalues for all of the bond angles except those for the CH, =CH~-CH, CH,-CH,-CH and
CH, —CH, - CH bond angles. This similarity of the Final equilibrium bond angle values indicates
how the NERD and TraPPE force fields were able to achieve a reasonable agreement with the
experimental data with only a single equilibrium bond angle value. As for the bond angles
regressed for the TBORG n-alkane force field, the regressed equilibrium bond angles area all lower
than the 124° used by both the NERD and TraPPE force field for bond angles with a carbon-carbon
double bond. This is again largely a function of the longer bond lengths regressed for the TBORG
alkene force field and which lead to a “concertina” structure for the alkene molecules as well. This
is most strongly seen in the CH, - CH, - CH and CH, - CH =CH, bond angles where the longer

bond lengths for bond including terminal groups leads to the smallest values for the regressed bond
angles.

Several features of the TBORG alkene force ficld are, however, less satisfactory than was found for
the TBORG #n-alkane force field:

» The CH, -CH, ~CH equilibrium bond angle is larger than the 114° that is used by the
NERD and TraPPE force fields for this bond angle.

+ Comparing the agreement between the simulated and experimental results for 1-octene in
Table 9-9 and the agreement between the simulated and experimental results for #-octane in
Table 9-7, it may be seen that the simulated data is better for n-octane than for 1-octene,
particularly for the vapour densities and the latent heats of vaporization,

e In Table 9-9, the deviation between the experimental and simulated vapour densities for
ethene, 1,3-butadiene and 1-octene all tend to be greater than 10% and are larger than for
any of the other molecules studied. This situation could not be improved by increased the
number of independent intramolecular geometry parameters.

* The simulated latent heats of vaporization for the alkenes tend to be worse than the simulated

latent heats of vaporization for the n-alkanes. - .

The disagreement between the vapour densities for ethene is most noticeable because ethene has
only a =CIi, group and an independent bond length. This therefore suggests that the value of the
values of the Lennard-Jones parameters obtained for the =CH, group using the TBORG
optimization constraints are perhaps not fully optimal. Based on the simulated results, it is believed
that this might be attributable to assumptions inherent in the TBORG force field, namely
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¢ The application of the united-atom assumption to the —~CH= group, and

vav cwmas —enna® The use of transferable torsional angles .. e s e

The —CH= group is the least symmetrical of all of the functional groups for which Lennard-Jones
parameters had to be regressed. This is because of the presence of only one hydrogen atom attached
to the carbon centre. For all of the molecules studied, the -CH= group is attached by a carbon-
carbon single bond to an adjacent functional group. Rotation around this carbon-carbon single bond
is not hindered as for rotation about the carbon-carbon double bond. This implies that the hydrogen
atom can effectively rotate about the central carbon in the functional group which effectively shifts
the interaction site in a torsional sense. This is not the case for the —-CH,, —-CH,~ or the =CH,
because the displaced centre tends to be averaged out by the presence of more than one attached
hydrogen atom. This is mostly strongly understood for 1,3-butadiene where the CH-CH
equilibrium bond length should vary between a maximum value when the two hydrogen atoms on
the two carbon centres are frans relative to one another and a minimum value when the two
hydrogen atoms on the two carbon centres are cis relative to one another. The TBORG force field,
however, uses a fixed bond length for the CH —CH equilibrium bond length, This suggests why
the results for the vapour densities for 1,3-butadiene are less accurate and provides another
explanation as to why the flexible bond lengths of the modified NERD force field gave better
results for the pure component properties of 1,3-butadiene in Chapter Seven. The carbon-carbon
double bond in frans- and cis-2-butene also possesses two —CH= groups for which the CH =CH
bond length could vary between maximum and minimum values depending on the location of the
attached hydrogen atoms relative to one another. This would explain the poorer estimate of the
latent heats of vaporization for trans- and cis-2-butene as seen in Table 9-9. These results would
therefore suggest one of two possible remedies for the —-CH= group, namely:

1) Explicit and separate LT parameters for the carbon and the hydrogen atoms in the -CH=

functional group
2} Inclusion of a flexible bond length for bonds with a —CH= group to account for rotation of the
hydrogen atom about the carbon centre

The other assumption which then also needs to be questioned is the transferability and origin of the
torsional angle potentials. In the above regressions it has been seen that distinct bond angle and
bond length values enabled the TBORG force field to more accurately simulate a range of pure
| component properties over a larger range of temperatures than previous united-atom force fields.

For the torsions, however, it is common practice when parameterizing united-atom force fields to
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treat a torsional potential as transferable so long as the bond between the two central functional

- -groups -is the same. - In Chapter Seven it was argued -that the -CH, =CH-CH=CH, torsional

potential of 1,3-butadiene appeared to not be applicable to the simulation of 1,3-pentadiene and
1,3,5-hexatriene. In light of the slightly poorer resuits obtained for n-octane relative to the other n-
alkanes and in light of the poorer pure component properties also obtained for 1-octene, it would
appear that this might be the case for torsions used in the parameterization of the TBORG force

field as well. To an extent, the regressed values for the L) &, and o, n-alkane parameters would

compensate for slight errors in the torsional potential for n-octane. These errors would, however,
propagate through the alkene parameterization because the parameterization necessarily had to be

performed sequentially. For 1-octene, however, the regressed values for the L) ¢, and o, for the

=CH, and —CH= groups would be least able to compensate for errors in the torsional potential
because of the lower occurrence of =CH, and -CH= groups. This also explains the observed
inaccuracy of the ethene vapour densities because the Final values of the LJ parameters for the
=CH; would have been shifted to partially compensate for small errors in the torsional potentials.
The simultaneous regression of all of the required LJ parameters together with the additional
parameters for distinct torsions would massively increase the number of regression simulations
required, but the above results for n-octane and 1-octene would suggest that this is likely to be

required to produce a truly transferable united-atom force field.,

The simulated data obtained using the Final TBORG alkene parameter set are graphed in Figure
9-24 to Figure 9-31 where they are also compared to the results from other force fields, while Table
9-13 in Appendix 9A lists the simulation data used to generate Figure 9-24 to Figure 9-31. As
listed in Table 9-9, the liquid densities are in general well reproduced for all the alkenes studied in
Figure 9-24 and Figure 9-26 and are comparable to the estimates of the TraPPE force field. The
vapour densities are also in reasonable agreement with the experimental data except for the cases of
ethene, 1,3-butadiene and 1-octene as shown in Figure 9-25 and Figure 9-27 and are generally
superior to both the NERD and TraPPE force fields because this was included in the optimization
criteria. In Figure 9-28 and Figure 9-29 it may be seen that the simulated vapour pressures of the
TBORG force field are also general superior the estimates of the TraPPE and AUAS4 force fields. In
Figure 9-30 and Figure $-31, however, the estimates of the latent heats of vaporization of the
TBORG force field are worse than those of the AUA4 force field, particularly for I-octene but this
is because a good prediction of the latent heats of vaporization was required by the AUA 4 force

and not by the TBORG optimization criteria.
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Figure 9-24: Liquid and vapour coexistence densities for ethene, propene, 1-butene, 1,3-butadiene and 1-
octene. Simulated results from the TBORG, TraPPE and AUA4 force fields are shown with the experimental
data of Smith and Srivastava (1986). Experimental critical points are shown as plus symbols.
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Figure 9-25: Vapour coexistence densities for ethene, propene, 1-butene, 1,3-butadiene and 1-octene.

Simulated results from the TBORG and TraPPE force fields are shown with the expeninental data of Smith
and Srivastava (1986).
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Figure 9-26; Liquid and vépour coexistence densities for cis-2-butene and #rans-2-butene. Simulated results
from the TBORG, TraPPE and AUA4 force fields are shown with the experimental data of Smith and

Srivastava (1986). Experimental critical points are shown as plus symbols.
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Figure 9-27: Vapour coexistence densities for ¢is-2-butene and srans-2-butene. Simulated results from the

TBORG and TraPPE force fields are shown with the experimental data of Smith and Srivastava (1986),
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Figure 9-28: Saturated vapour pressures for ethene, propene, l-butene, 13-butadiene and l-octene,
Simulated results from the TBORG, TraPPE and AUA4 force fields are shown with the experimental data of
Smith and Srivastava (1986).
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Figure 9-29: Saturated vapour pressures for cis-2-butene and trans-2-butene. Simulated results from the

TBORG, TraPPE and AUA4 force fields are shown with the experimental data of Smith and Srivastava
(1986).
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Figure 9-30: Latent heats of vaporization for ethene, propene, 1-butene, 1,3-butadiene and l-octéne.
Simulated results from the TBORG and AUA4 force fields are shown with the experimental data of Smith
and Srivastava (1986).
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Figure 9-31: Latent heats of vaporization for cis-2-butene and frans-2-butene. Simulated results from the

TBORG and AUA4 force fields are shown with the experimental data of Smith and Srivastava (1986).
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9.6 Comparison of the Regressed Lennard-Jones Parameters

The values for the L] ¢; and o, parameters for the sp® hybridized —CH, and ~CH,— groups
and for the sp® hybridized =CH, and —~CH= groups of the TraPPE, AUA4 and TBORG fields are
compared in Figure 9-32 and Figure 9-33. From Figure 9-32 it may be scen that both the TBORG
force field (which implicitly accounts for anisotropy) and AUA4 force field (which explicitly
accounts for anisotropy) have L] &, parameters which are larger than the corresponding values for
the TraPPE force field (which does not account for anisotropy). From Figure 9-19 the effect of a
larger LJ &, parameter is to increase the magnitude of the intermolecular attractions and repulsions.
Larger L] g, parameters are required by the AUA4 and TBORG force fields relative to the TraPPE

force field because the interaction sites for the AUA4 and TBORG force fields are displaced
relative to their locations when displaced by the TraPPE force field. This requires a deeper
potential energy well and stronger repulsions at short distances in order to provide the similar

simulated values for the liquid densities in particular. For all three force fields, the value of the LY
&, parameter for a given hybridization (sp’ or sp’) increases with increasing numbers of attached

hydrogen atoms. This is because a united-atom functional group with a farger number of atoms

shouid, in general, lead to an intermolecular interaction which is larger in magnitude.

For the LT &; parameter in Figure 9-33, the TraPPE force field tends to have larger o; values than
either the AUA4 or TBORG force fields. This again relates back to the effects of anisotropy
because a larger o, value in Figure 9-19 causes intermolecular repulsions to be shifted to larger
separation distances. These larger o values are required by the TraPPE force field because there
is no accounting of the displacement of the interaction site from the carbon centre and the larger o
values ensure that neighbouring functional groups are still situated at average distances which yield
the correct phase densities. It is interesting to note that for the TraPPE force field, the LY o,
parameter increases with decreasing numbers of attached hydrogen atoms for a given hybridization
while the opposite trend is observed for the AUA force ficld. Bourasseau et al. (2003) argued that
the L} o, parameter should increase with increasing number of attached hydrogen atoms for a
given hybridization because the increased molecular volume of more hydrogen atoms should
increase the distance at which intermolecular repulsions are experienced. Martin and Siepmann
{1998), however, argued that it was reasonable for the -CH,— methylene group to possess a larger
L} o; parameter than the —CH; methyl group value because of the two bond lengths shared by the

218



TRANSFERABILITY BASED ON RELAXING GEOMETRIES

—CHy~ group with neighbouring functional groups. For the TBORG force field, it may be seen
from Figure 9-33 that the L} o, parameter increases with increasing numbers of hydrogen atoms -

for sp® hybridized functional groups but that it decreases with increasing numbers of hydrogen
atoms for sp’ hybridized functional groups. This is because the TBORG force field implicitly
accounts for the effects of anisotropy through optimization of the equilibriom bond lengths and the
equilibrium bond angles. As discussed previously, the increases in the lengths of the carbon-carbon
single bond lengths for the TBORG force field are larger than for the carbon-carbon double bond
lengths. This bond length effect leads to the different trends in the values of the LY o, parameters

for the sp’ and sp” hybridized functional groups of the TBORG force field.

9.7 Simulation of Binary VLE for the TBORG Force Field

To test the TBORG force field for the simulation of binary VLE, an n-pentane (1) + n-hexane
(2) mixture at 25°C was selected (Dortmund Data Bank). The P-x-y data was simulated using the
& NVT Gibbs Ensemble because it was shown in the previous Chapter that the §NVT Gibbs
Ensemble yields lower uncertainties in the simulated compositions for both the TraPPE and the
TBORG n-alkane force fields. The simulation methodology employed was essentially the same as
for the £, NVT Gibbs Ensemble simulations as described in Section (8.5.1). The CBMC method
was used for the simulations and a total system size of 280 molecules was used as this was found to
be sufficient to give reproducible results. The NVT Gibbs Ensemble was used for the pure
component compositions. Values for & were again selected give approximate overall mole
fractions of 0.05, 0.10, 0.20, 0.40, 0.60, 0.80, 0.90 and 0.95 of n-pentane at equilibrium. The same
types of Monte Carlo moves as listed in (8.5.1) for the £NVT Gibbs Ensemble simulations of the 1-
butene + n-butane and 1-hexene + n-hexane mixtures were performed with the same relative
probabilities. All of the simulations were equilibrated for 40,000 cycles and the production period
for ensemble averages consisted of at least 160,000 cycles. As for previous simulations, the
standard deviations of ensemble averages were computed by dividing the production period into
five blocks. The standard deviation of an ensemble averaged quantity was then set as the standard
deviation of the averages obtained from each of these five blocks. The resulting P-x-y data and x-y

data are shown in Figure 9-34 and Figure 9-35 respectively and the data is tabulated in Table 9-11.
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Figure 9-32: Comparison of the L] g; parameters for the sp° hybridized —CH; and —CH,— groups and for the
sp” hybridized =CH, and ~CH= groups of the TraPPE, AUA4 and TBORG fields.
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Figure 9-33: Comparison of the L] o parameters for the sp’ hybridized ~CH; and —CH,~ groups and for the
sp” hybridized =CH, and CH= groups of the TraPPE, AUA4 and TBORG fields.
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Figure 9-34: P-x-y data for the n-pentane (1) + n-hexane (2) mixture at 25°C from the TBORG (diamonds)
and TraPPE (triangles) force fields obtained using the £ NVT Gibbs Ensemble and the experimental data of
the Dortmund Data Bank. Cpen symbols denote dew points and closed symbols denote bubble points.
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Figure 9-38: x-y data for the n-pentane (1) + n-hexane (2) mixture at 25°C from the TBORG (diamonds) and
TraPPE (triangles) force fields obtained using the £ NVT Gibbs Ensemble and the experimental data of the
Dortmund Data Bank.
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Table 9-11: P-x-y data for the £ NVT Gibbs Ensemble simulations of the n-pentane (1) + n-hexane (2)
mixture at 25°C from the TBORG and TraPPE force fields. Subscripts denote the estimated statistical

uncertainty in the simulated result.

Pressure [kPa] x, %
TBORG | TraPPE | TBORG | TraPPE | TBORG | TraPPE
21.119 | 3195 0p 0o 0o 0

228 | 35.752 | 0.039001 | 0.039000 | 0.1250000 | 0-109 001
242,53 | 37.806 | 0.0780001 | 0.0810001 | 0.2310.000 | 0.2130.000
29250 | 42.0;5 | 0.1620001 | 0.1600002 | 0.4085001 | 0.36%.001
39.15, 56.136 | 0.3359g002 | 0.3370001 | 0.6450002 | 0.609 001
50.04, 71.167 | 0.5560001 | 0.5440.004 | 0.815¢000 | 0.7850.0m
62.163 86.254 | 0.7660001 | 0.7630002 | 0.9200000 | 0.9080.000
67.9:3 95.150 | 0.8909001 | 0.879%.001 | 0.9660000 | 0.9570.000
74360 |  99.3;7'| 0.94300; | 0.9385001 | 0.9830.000 | 0.979.000
75344 | 101745 1o 1o lo 1o

The benefit in the improvement of the pure component vapour pressures of the TBORG force field
may be seen in Figure 9-34 where the TBORG force field results are shifted significantly closer to
the correct phase envelope than the TraPPE force field results. As may be seen in Figure 9-35, this
improvement in the overall location of the phase envelope is achieved without significantly
compromising the x-y data predictions of the TBORG force field which agree well with the results
from the TraPPE simulations and with the experimental data. Only the estimated statistical
uncertainty for the dew point pressures for the TBORG force field are indicated in Figure 9-34 for
clarity but are of similar magnitude for the remaining symbols. The estimated uncertainties in the
liquid and vapour compositions are again very low for the £NVT Gibbs Ensemble and are
consistently less than 0.004 for both force fields as seen in Table 9-11. This binary mixture result
would therefore seem to confirm that the n-alkane parameters for the TBORG force field are also
suitable for the simulation of binary VLE.

9.8 Methods to Improve United-Atom Force Fields

Based on the results of this Chapter, the following considerations would therefore appear to

be important for the parameterization of improved united-atom force fields:
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The correct simulation of critical data should be a criterion enforced during the optimization
of the force field.

Vapour density and vapour pressure data should be used during the parameterization to
ensure a good fit this data.

The torsional potentials should be re-examined and potentially optimized to specific force
fields. ' |

Sequential optimization of different LT functional groups can lead to the propagation of errors
through a force field. More attention should then be given towards simuitaneous
parameterization of all required functional groups.

A combination of displaced interaction sites using explicit anisotropic parameters and

" flexible equilibrium geometries may have to implemented to achieve a truly optimal

united-atom force field

For certain functional groups (e.g. the —CH= functional group), the validity of the united-

atom approximation may have to be re-examined.
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9.9 Appendix 9A

Table 9-12: Simulated physical properties from the TBORG n-alkane force field for ethane, propane, n-butane and #-octane. Experimentat data from Smith and

Srivastava (1986). Estimated simulation errors are given as subscripts.

Molecule | Temperature p, [gfem’) p, %10 [gfom®] | W{P*) [kPa] | AH,, [Kmol]
X3 Exp. | TRORG | Exp. | TBORG | Exp. | TBORG | Exp. [ TBORG
Ethane 125 0.614 | 0.61400, | 0.202 | 025943 | -0.362 | -0.3000.s | 16.8 | 16.8002
149 0.587 | 0.5860001 | 2.16 | 2.3%05 | 2.18 | 2.130p4 | 16.0 | 160006
188 0.540 | 0.540000; | 242 | 25314 | 4.80 | 4.76005 | 14.6 | 14.60
217 0.501 | 0.5000001 | 80.7 | 8395 |6.09 ]6.08p, | 133 {13305
256 0.437 | 0.43900 | 281 | 2825y | 7.34 | 7.32003 | 10.7 | 10.75,)
275 0.396 | 0.400004 | 488 | 472, 782 | 7.80004 | 8.86 | 8.86p04

Propane 173 0.645 | 0.6450001 | 0.853 | 1.16555 | 1.02 122524 | 21.2 | 212963
205 0.612 [ 0.611,000 § 7.04 [ 8.1710 329 | 335, [ 20,1 | 20.140s
236 0.577 | 0.57750m | 29.7 | 33.2;5 483 | 4.89%. 18.6 | 18.6008
268 0.537 { 0.5385002 | 90.4 | 94.445 6.01 6.030.06 16.7 | 16,7010
300 0.490 | 0.492545, | 220 | 2185, 6.91 6.89%03 14.4 | 14490,
331 0.434 | 04380005 | 472 | 469y 7.62 | 7.60007 11.5 | 11505
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Molecule | Temperature p, [glem®] p, x10* [g/enr’] ln(P“‘) [kPa] | AH,, [kVmol]

ot P

(K] Exp. | TBORG | Exp. | TBORG | Exp. | TBORG | Exp. | TBORG

n-Butane 249 0.664 0.6640_90] 1.33 1 .640‘29 1.38 1 .390‘34 2520 14 i

288 0.626 | 0.6250002 | 10.7 | 11.6¢;5 3.62 | 3.62q); |23.7 | 23.50.4

321 0.585 | 0.584000¢ | 45.6 | 47.8;; 517 1516005 1{21.6 | 21.7505

353 0.545 0.5460_90[ 1 17 1203_2 6.15 6.150,03 19.4 19.70‘10

386 0.501 | 0.5040004 | 251 | 2573 692 | 6900 | 169 | 17.4¢,4

249 0.443 | 0.448p003 | 523 | 515;s 7.57 7.560.07 13,5 1 14.242;

n-Octane 320 0.681 | 0.683g003 | 2.48 | 2.2142¢ | 1.75 1.41p38 | 403 | 41205

368 0.639 | 0.643000; | 15.2 | 15315 | 3.68 | 3.59%.1s | 36.9 | 38.101,

416 0.595 1 0.5970003 | 574 | 58.255 5.08 (5.0l 1330 [34.2:5

456 0.552 | 0.5540002 | 139 | 1405, 598 | 5920 |[29.2 [ 30.530

496 0.501 | 0.497500; | 302 | 295, 6.72 | 6.6300s |24.7 | 26.1063

520 (0.462 | 0.459002 | 473 | 4814, 7.11 7.0600s 1 21.3 | 22,305
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Table 9-13: Simulated physical properties from the TBORG alkene force field for ethene, propene, 1-butene, cis-2-butene, frans-2-butene, 1,3-butadiene and -

octene. Experimental data from Smith and Srivastava (1986). Estimated simulation errors are given as subscripts.

Molecuie | Temperature o [g/cm’] 2, x10* [glem’] ln(P”‘) [kPa] | AH,, [kl/mol]

K] Exp. | TBORG | Exp. | TBORG | Exp. | TBORG | Exp. | TBORG
Ethene 136 0.614 1 0.612000¢ | 2.03 | 2.800.14 2.10 [ 222006 | 14.8 | 14.4905
160 0.581 | 0.580500 | 12.1 § 147588 4.03 | 4.06046 13.9 | 13.6¢0s
184 0.546 | 0.546000; | 43.2 | 49.8,5 540 [ 543006 | 12.9 | 12,7006
209 0.506 | 0.5070001 | 119 | 129,, 6.47 | 647504 11.7 | 11.6004
233 0.460 | 0.463000: | 266 | 28654 728 | 1.270m 10.1 | 10.1p¢7
253 0.413 | 0.4150005 | 493 | 50833 7.83 | 7. 7%us 8.21 | 8.464,3

Propene 176 0.668 | 0.6670001 | 1.47 | 1.35547 1.63 | 1.560y; | 20.6 | 20.600s
207 0.631 j 0.631p0m | 10.0 ) 10292 3.69 ] 3.6800p | 19.3 | 19.4h0s
239 0.592 | 0.592p00 | 40.4 } 40.6,4 520 | 518007 | 17.8 | 18.0p04
270 0.549 | 0.550p002 1 113 | 11244 6.26 | 6.26p0: | 16.1 | 16.450s
302 0.498 ) 0.5010003 | 269 | 27145 7.15 1 7.1500s | 13.8 | 14.2h44
327 0.447 ; 0.452p00s | 505 | 490, 771 | 770005 | 113 | 118500
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TRANSFERABILITY BASED ON RELAXING GEOMETRIES

Molecule | Temperature | p, [gem®) | p, x10* [gfem®] | In{P™) [kPa] | AH,,, [kVmol]

K] Exp. | TBORG | Exp. | TBORG | Exp. | TBORG | Exp. | TBORG

1-Butene 220 0.678 ; 0.6775001 { 3.26 | 3.71o4v 2.35 | 246000 | 23.9 | 242005

256 0.638 | 0.637000m | 17.7 | 183¢s7 | 4.18 | 41905 | 22.5 | 225008

291 0.595 | 0.5%75001 | 59.7 | 63,44, 547 | 552003 [ 20.6 | 20,7504

322 0.554 | 0.556000 | 181 | 14445 | 6.36 | 6.3900s | 18.6 | 18910

352 0.508 | 0.5120002 | 287 | 2905 7.06 | 7.0800s | 16.2 [ 16.60,2

383 0.448 | 0.4550007 | 573 | 59144 7.67 | 7.70p0s | 12.9 | 13.2443

cis-2-Butene 225 0.697 0.6950_00[ 2.45 2.330‘33 2.09 1 .8?0122 259 26.20_0(,

242 0.679 | 0.678p002 | 6.04 | 5.13¢43 3.06 [ 270004 | 25.1 | 255000

255 0.665 | 0.664500 | 10.9 | 108004 | 3.70 | 3.49.1 | 244 | 24.9000

272 0.646 1 0.646p00 | 21.6 | 217,56 4.43 | 425000 {235 | 24.1507

285 0.631 | 0.6329002 } 34.2 | 350004 | 4.92 | 4.8050y | 22.7 | 23.4012

302 0.612 | 0.6120004 | 58.5 | 57.555 549 [ 534012 | 21.7 | 224

frans-2-Butene 226 0.677 | 0.6800003 | 3.09 | 3.0307 2.33 ] 2,097 | 25.1 | 26.2024

256 0.646 | 0.646000; | 13.0 | 12.2(5 3.87 [ 3.640: | 23.6 | 24.8y,5

289 0.609 | 0.6100002 | 43.0 | 41.5,5 5.16 | 5.01g07 | 22.0 | 23.1000

319 0.573 | 0.5725002 | 102 | 102;, 6.07 [ 5.95007 | 202 | 201907

348 0.533 | 0.5330002 | 210 | 209, 6.79 [ 6.7050s | 18.0 [ 18.9900

I 0.484 | 0.481001 | 399 | 4053, 7.40 1 7.2%0s | 153 | 16.102
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TRANSFERABILITY BASED ON RELAXING GEOMETRIES

Molecule Temperature o [glent’) p, x10° [g/em’] ln(P“‘) [kPa] | AH,, [kJ/mol]

K] Exp. | TBORG | Exp. | TBORG | Exp. | TBORG | Exp. | TBORG

1,3-Butadiene 216 0.709 | 0.712p004 | 2.17 | 2.640¢s 1.97 | 2.07p2s | 25.0 | 25.1524

253 0.668 | 0.6715002 | 13.9 | 15.524 3.97 | 4.000,s {232 | 23400

283 0.633 | 0.636000s | 41.7 | 49760 5.15 | 526011 | 217 [ 21904,

323 0582 05810002 131 ]4134 6.34 637005 192 194003

353 0.536 | 0.536p004 | 267 | 2942, 7.05 | 7.1l } 169 | 17.0012

383 0.480 | 0.47396;) | 518 | 5644, 7.65 | 7.690 | 13.8 [ 13.82

1-Octene 311 0.700 06990002 2.00 113032 1.52 130021 39.0 415032

340 0.675 | 0.674003 | 6.61 | 5.33); 280 § 259 374 [39.60s

388 0.631 | 0.629.p; | 30.8 [ 26.6;, 444 [ 431000 | 344 § 36.0027

435 0.587 | 0.583¢002 | 97.2 | 98.843 5.64 | 5.5T00s | 30.5 [ 3230

476 0.543 | 0.5350003 | 220 | 21653 6.47 | 6.5450¢ | 25.1 | 28.2019

518 0.487 | 047901, ; 456 | 4865, 7.17 {7190 22504

228


http://23.4o.o7
http://19.4o.os
http://41.5o.32
http://36.Oo.27
http://32.3o.23

- . CHAPTER 10:
CONCLUSIONS

“T never saw a wild thing sorry for itself, A smali bird will fall frozen dead from a bough without
ever having felt sorry” —~ D.H. Lawrence

The Beowulf cluster has indeed come of age and the maintenance and use of thé Bt;owﬁif cluster
yoda at the University of KwaZulu-Natal is an example of how supercomputing resources are now
readily available to all academic researchers. The Beowulf cluster must now be considered as a
serious proposition for everyday academic use rather than being considered as the domain of

isolated groups of computer engineers or high-end users.

ta

This work has demonstrated the utility of an accessible Beowulf cluster through the simulation of a
variety of pure component and binary systems. Through a series of simulations using the TraPPE,
NERD and SA1 force fields, this work was able to demonstrate the ability of transferable united-
atom force fields to simulate r-alkane and 1-alkene binary mixtures of industrial relevance. There
are, however, limitations to the range of applicability and the accuracy which can be obtained using
these force fields. The SA1 force field was shown to be applicable to the simulation of the vapour
pressures of long 1-alkene molecules through pure component simulations of the phase behaviour
of l-octadecene. The SAl force field was, however, found to be inadequate when it comes to
simulating n-alkane properties and the liquid densities of 1-alkenes. In contrast the NERD and
TraPPE force fields were observed to provide a reasonable description for the five binary mixtures
considered. Both force fields, however, displayed a tendency to overestimate the dew point and
bubble point pressures of the phase envelope because of the overestimation of the pure component
vapour pressures by both of these force fields. This observation emphasised the need for
transferable united-atom force fields which correctly reproduce the pure component vapour
pressures. o

The x-y data revealed that in spite of discrepancies between the simulated and experimental P-x-y
data, the x-y data for all binary mixtures was well described by all three force fields used. Thisis a
significant result as it indicates that the force fields describe the comrect shape of the phase envelope
and can be regarded with confidence when simulating x-y data. By considering the excess volumes
predicted by both force fields, however, it was found that the NERD, TraPPE and SA1 force fields

cannot describe the expected ideal behaviour of the vapour phase. This observation motivated the
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need for a transferable united-atom force field which correctly describes the pure component vapour

densities.

With the mixed success obtained using the NERD, TraPPE and SA1 force fields, the following
section of work focused on testing how transferable the TraPPE and NERD united-atom force fields
were by examining their prediction of the pure component and binary phase behaviour of
conjugated alkenes. The pure component properties of 1,3-butadiene; 1,3-pentadiene and 1,3,5-
hexatriene were simulated using two sets of modified NERD and TraPPE parameters. It was found,
however, that the current sets of parameters were insufficient to model the pure component phase
behaviour accurately. Once the internal CH—~CH equilibrium bond length had been modified to
more accurately represent the actual equilibrinm length of the internal single bond in 1,3-butadiene,
however, a considerable improvement in the pure component simulated properties of 1,3-butadiene
was observed, particularly for the modifications to the NERD force field. A dedicated torsional
potential was also required for 1,3-butadiene. The results for the pure component simulations of
1,3-pentadiene and 1,3,5-hexatriene were, however, less satisfactory, It is believed that this is a
combination of inadequate torsional potential and inadequate equilibrium intramolecular
geometries. The precise root cause of the deviation of the simulated properties of 1,3-pentadiene
and 1,3,5-hexatriene from the corresponding experimental data could not be established because of
a lack of experimental data. The major result stemming from this section of this work was that
more attention needs to be directed towards understanding the role and effect of the intramolecular

equilibrium geometries on the simulated pure component physical properties.

The simulation of a binary mixture of n-heptane + 1,3-butadiene revealed further deficiencies in the
parameter set which was used for the simulation of 1,3-butadiene because both the P-x-y and x-y
data were not well represented. This is in contrast to the earlier observation that the NERD and
TraPPE force fields provided a good description of the experimental x-y data in spite of poorer
predictions for the P-x-y data. This observation suggested that the force field parameters might

require a more fundamental investigation and a revision of the parameter values.

The development of a new transferable united-atom force was thus undertaken. The TBORG force
field sought to improve the simulated pure component vapour pressures and vapour densities while
not sacrificing an accurate description of the pure component liquid densities, critical temperatures
and critical densities. This objective was met by relaxing the constraint of transferable

intramolecular geometries o attempt to more faithfully account for subtle bond length and bond
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angle variations for the different hybridizations and connectivities of functional groups that can be
found in conjugated alkenes, n-alkanes, l-alkenes and 2-alkenes. -The -assumption of fully
transferable Lennard-Jones functional groups was, however, retained. A formal optimization
program was undertaken through which it was also possible to elucidate and quantify the role of the

bond lengths, the bond angles as well as the LJ ¢; and o, parameters on the vapour densities, the

liguid densities, the heats of vaporization and saturated vapour pressures. Importantly, it was
shown that the equilibrium geometries have a significant effect on the physical properties which

confirmed the suspicions of earlier Chapters.

The TBORG force field was largely successful in achieving its goal of more accurately reproducing
a larger range of physical properties over a wide temperature range, particularly for the r-alkanes.
The agreement between the simulated and the experimental pure component properties for the
alkenes was, unfortunately, less satisfactory. This is believed to have been due to a propagation of
subtle errors in the parameterization of the 1-alkene parameters which argues in favour of a
regression procedure which simultaneously regresses as large a number of functional groups as
possible. In the process, the requirement for a more thorough consideration of the effects of
anisotropy also became apparent because the optimization of the imtramolecular geometries
effectively corresponded to a shifting of the interaction centres to positions that would be consistent
with displaced anisotropic interaction centres. It is therefore the opinion of this work that a
combination of a larger anisotropic parameter set and a larger intramolecular geometry set might
provide the largest improvement for the prediction of physical properties by united-atom force
fields. It was also shown how the temperature range of the physical properties against which the
model parameters are regressed should be as a large as possible and that as wide a set as possible of

physical properties needs to be considered.

For the binary mixtures studied, several difficulties were experienced with using the N;N,PT Gibbs
Ensemble because of mass balance limitations that are inherent to this type of simulation. To
overcome these difficulties, a unifying formalism was developed based on an extension of the pPT
ensemble to multiple phases. The result was a governing equation for isothermal Gibbs Ensembles
that can be used to derive both the partition functions and thermodynamic potentials of novel Gibbs
Ensembles. Using this framework, two new isothermal Gibbs Ensembles were developed which
overcome all of the mass balance limitations of the N;N,PT Gibbs Ensemnble. The p,N.VT Gibbs
Ensemble is characterised by the stipulation of one of the chemical potentials of one of the species
while the £,NVT Gibbs Ensemble is characterised by the stipulation of a fugacity fraction. Both of

231



CONCLUSIONS

these new ensembies are isochoric. To the knowledge of this work, these two new ensembles
represent the first time that a Gibbs Ensemble has been able to simulate a close boiling mixture
directly. To this end, two close-boiling mixtures of an s-alkane + l-alkene were successfully
simulated. The only slight drawback with the implementations of these two ensembles resides in
the need to calculate the pressure during a simulation. The uncertainties in the computed pressures
tend to be of the order of 5-10% which is typical for isochoric Gibbs Ensemble simutations. Both
ensembles, however, are able to achieve a considerably lower uncertainty in the computed
compositions than the N;N,PT Gibbs Ensemble, particularly the £, NVT Gibbs Ensemble whose
compositions can exhibit uncertainties two orders of magnitude smaller than those found in

simulations using the N{N,PT Gibbs Ensemble.

The aim of this work was to address the simulation of hydrocarbon system of industrial relevance.
To that end, a Beowulf cluster called yoda was assembled and installed. Several binary and pure
component simulations were conducted which raised several important questions regarding the
force fields and simulation algorithms used. In order to address these issues, a new force field
called the TBORG force field was developed and a unifying framework and two new Gibbs

Ensembles were characterised to permit the more efficient simulation of a range of binary mixtures.
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e e e e CHAPTER11:
| RECOMMENDATIONS

“Opportunity is missed by most people because it is dressed in overalls and looks like hard work.” -
Thomas Alva Edison

Based on the work described in the preceding Chapters, the following suggestions are extended for
future work:

)

2)

3)

4

5)

Investigation should take place into the development of transferable united-atom force fields
which explicitly account for anisotropy as well as incorporating a larger intramolecular
equilibrium geometry parameter set. While the TBORG r-alkane and alkene force fields
demonstrate a general improvement in the accuracy of the pure component property
predictions over a wider temperature range, some deficiencies, most notably the latent
heat of vaporization, were identified. The agreement between the expertmental and
simulated data for the alkene force field was also less than that of the n-alkane force field

. and should be addressed. _ S

More investigation should take place into methods which could efficiently facilitate
simultaneous regression of intra- and intermolecular force field parameters for a number
of homologous series. The propagation of subtie errors in the regressed force field

- parameters is not easily overcome with current regression techniques.

The principles underpinning the TBORG force field should be tested for a wider range of
homologous series to ascertain whether or not a similar improvement in the physical
properties can also be obtained for a wider range of compounds. This further testing of
the TBORG force field should also include pure component simulations for carbon chains
longer than C; to evaluate the transferability of the force field to longer n-alkane and
alkene carbon chains. '

More extensive testing of the TBORG force field needs to be undertaken for a larger number
of mixtures to more thoroughly explore its application to the simulation of binary and
temary VLE.

Investigation should take place into the role of the torsional potential on the simulated pure
component properties. An extensive study into the effect of the torsional parameters on
the macroscopic phase behaviour has, to the knowledge of this work, never been

undertaken. The apparent influence of the torsional potential on the conjugated alkenes
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would, therefore, seem to justify a more formal mvestigation inio the parameters of this

__intramolecular potential energy term. _____.

6) The wN;VT and £NVT Gibbs Ensembles should be used to simulate azeotropic systems.
This would mark a considerable step forward in terms of proving that a much wider range
of binary systems, such as alcohols, can be simulated by the Gibbs Ensemble.

7) This work dealt primarily with the unification of isothermal Gibbs Ensemble under a
governing framework. Using existing adiabatic ensemble theory, it will also be possible
to unify a novel subset of adiabatic Gibbs Ensembles. This would then directly facilitate
the formulation of Gibbs Ensembies which can be used for isobaric VLE without the mass
balance constraints inherent in the NyN;PT Gibbs Ensemble. This work should then be
further pursued to permit the formulation of a truly unifying formalism which provides for
the unification of adiabatic and isothermal Gibbs Ensembles under a single governing
framework. '

8) The current Monte Carlo sampling methods result in an undesirably large uncertainty in the
calculated pressure. This is unsatisfactory for the simulation of close boiling mixtures and
is likely to also cause undesirably large uncertainties in the temperatures that would have
to be caiculated from any adiabatic Gibbs Ensemble simulations. New Monte Carlo
sampling algorithms, therefore, need to be developed to more rigorously sample

~ configurations which minimize the pressure and temperature differences between phases.
This is explicitly in accordance with the mechanical and thermal equilibrium components
of total thermodynamic equilibrium and will ensure lower statistical deviations in the

calculated intensive properties.
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e . e JCHAPTER 12:
PUBLICATIONS RESULTING FROM THIS WORK

“It is common sense to take a method and try it. If it fails, admit it frankly and try another. But
above all, try something” - Franklin D Roosevelt

T McKnight, D Ramjugernath, X Bolton, and P Ahlstrom, “Phase equilibrium by computer
experiments”, Chemical Technology, April 2002, pg 28.

K Bolton, P Ahlsirom, T McKnight, and D Ramjugemath: “Studying the dynamics of chemical
systems by computer simulations", Part 27, Chemical Technology, November 2002, pg 29.

T McKnight, D Ramjugernath, M Starzak, and K Bolton, “A Comparison of the NER]j, TraPPE
and Buckingham exp-6 united atom potentials for the simulation of vapour-liquid phase
equilibrium™, Poster at the 17" IUPAC Conference on Chemical Thermodynamics, ICCT,
Rostock, Germany, 28 July - 2 August, 2002.

T McKnight, R Harris, D Ramjugernath, M Starzak, JD Raal, and K Bolton, “Molecular simulation
and experiment measurement: A comparison”, Presentation at the 6™ Italian Conference on

Chemical and Process Engineering, Pisa, ltaly, 8-11 June, 2003.

T McKnight, D Ramjugemath, X Bolton, and M Starzak, “Comparing the experimental and
simulation approaches for predicting binary VLE”, Presentation at the National Meeting of

the South African Institute of Chemical Engineers (SAIChE) Congress 2003, Sun City, 3-5
Septernber 2003. '

T McKnight, D Ramjugemath, K Bolton, P Ahlstrébm, and M Starzak “Molecular simulation of
binary vapour liquid equilibrium”, Presentation at the I* Workshop on Applied Molecular
Modelling and Simulations, 22 — 23 April, 2004, Parys, South Africa.

T McKnight, D Ramjugernath, P Ahlstrém, and K Bolton, “Simulation of Conjugated Alkenes
Using Transferable United Atom Force Fields”, Poster at the 3° International Conference of

“Computational Modeling and Simulation of Materials”, Acireale, italy, May 30 - June 4,
2004.
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N du Preez, M Martin, T McKnight, and D Ramjugemath, “Pure component coexistence properties
for long-chain 1-alkenes and l-alcohols by molecular simulation using transferable force
fields”, Poster at the 18" IUPAC Conference on Chemical Thermodynamics, Beijing, China,
17-21 August 2004, o

T McKnight, TJH Viugt, D Ramjugernath, M Starzak, P Ahlstrém, and K Bolton “Simulation of 1-
alkene and n-alkane binary vapour-liquid equilibrium using different united-atom transferable
force fields”, Fluid Phase Equilibria, 232(1-2): 136-148, 2005
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