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ABSTRACT 

Introduction 

Alzheimer’s disease (AD), a progressive neurodegenerative disorder that affects mostly the 

limbic system and the neocortical areas of the brain, is the most prevalent form of dementia 

affecting the elderly population. Twenty-nine million people live with the disease worldwide, 

10% of the population > 65 years of age and 50 % of the population > 85 years of age. These 

figures are expected to increase exponentially over the next few decades and reach 81.1 million 

by the year 2040.  Hallmark lesions include extracellular deposition of β-amyloid protein (Aβ) 

fibrillar plaques and intraneuronal neurofibrillary tangles (NFTs), which impair synaptic 

plasticity in the target regions of the brain thereby producing a progressive decline in cognitive 

function, with the earliest signs observed in learning and memory. Current therapies of AD are 

merely palliative and only slow down cognitive decline. In a recent study a novel compound, 

poly-N-methylated amyloid beta (Aβ)-peptide C-terminal fragments (MEPTIDES) was shown to 

reduce Aβ toxicity in vitro and in Drosophila melanogaster, however whether this novel drug is 

equally effective in mammals to inhibit Aβ-induced toxicity remains unclear. Accordingly in the 

present study we investigated the effects of MEPTIDES on the neurotoxicity induced by a single 

intracerebral (i.c.) injection of Aβ42 into the dorsal hippocampus of adult male Sprague-Dawley 

(SD) rats, a model of AD-like impaired learning and memory, and explored the implications of 

these findings for possible future management therapies or AD. 

 Methods 

Ethical clearance (ref: 048/13/Animal) was obtained from the University of KwaZulu-Natal 

Ethics Committee. Fully grown male SD rats (n = 40, 300 - 350 g, 8 - 9 weeks of age at the 

beginning of the study) were used. The study was divided into 2 parts. In part A, a rat model (n = 

20) of impaired learning and memory was established using Aβ42 (2 mM). A total of 100 µg of 

the neurotoxin was injected bilaterally into the dorsal hippocampus at a rate of 1 µl/ minute. In 

part B, the effect of MEPTIDES (2 mg/kg) injected intraperitoneally (i.p.) on Aβ42-induced 

neurotoxicity was investigated in vivo (n = 20). Control rats received intra-hippocampal 

injections of vehicle (Tris buffer, TB, 0.15 M). Learning and memory tests were performed using 

the Morris water maze. MEPTIDES were administered i.p. for 3 days post the i.c. injection of 



 

 
 

Aβ42.  Caspase 3 (C3), Tumor Necrosis factor Alpha (TNF-α), and 4-Hydroxynonel (4HNE) 

levels were measured in hippocampal tissue by either qPCR, Western Blot, or ELISA. MALDI 

TOF MS was used to determine whether MEPTIDES cross the blood brain barrier (BBB) and 

their distribution in the rat brain thereof. 

Results 

Behavioural results showed spatial learning and memory deficits in rats that were injected with 

Aβ42. These animals also displayed upregulation of C3 in the dorsal hippocampus. These effects 

were reversed in the rats that received i.p. injections of MEPTIDES, 24 hours after intra-

hippocampal injection of Aβ42. C3 cascade disruptions appeared to be amongst the earliest 

markers of Aβ42-induced neurotoxicity. 

Discussion and Conclusion 

Findings from this study showed that a single i.c. injection of Aβ42 induces C3 cascade and 

behavioural deficits in an adult male SD rat.  i.p. injections of MEPTIDES, 24 hours after intra-

hippocampal injection of Aβ42 reversed these effects. 

 

Keywords: Alzheimer’s disease, MEPTIDES, Aβ42, Morris water maze, caspase 3  
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CHAPTER 1 

Literature Review 

 

 

 

 

1.0  Preamble 

 Alzheimer’s disease (AD) is a poly-aetiological neurological disorder that leads to dementia 

(Sipos et al., 2007). The disease hallmarks include extracellular deposition of amyloid-β 

protein (Aβ) and intraneuronal neurofibrillary tangles (NFTs). The earliest symptoms include 

learning and memory deficits (U.S. Alzheimer’s Association, 2011). A novel compound, 

MEPTIDES, which is synthesized from C-terminal fragments of Aβ (covering residues 31 - 

42 or parts thereof), has been shown to reduce toxicity of Aβ in vitro and in Drosophila 

melanogaster (Pratim Bose et al., 2009), but it’s effects on Aβ neurotoxicity in vivo still 

remain elusive. Accordingly, this study investigated the effects of MEPTIDES in vivo on 

Aβ42-induced neurotoxicity in an adult male Sprague-Dawley (SD) rat model of learning and 

memory, which may have implications for AD management and treatment therapies.  

 

 

1.1   Introduction 

AD is a progressive neurodegenerative disorder that affects mostly the limbic system and the 

neocortical areas of the brain (Sipos et al., 2007). AD presents clinically as an inexorable 

cognitive impairment and a significant decline in performance of activities of daily living as 

it progresses. AD is the most prevalent form of dementia affecting the elderly population 

(U.S. Alzheimer’s Association, 2011). Females are more prone to suffer from AD than males 

due to differences in hormonal profiling (Mathew et al., 2011), even after correcting for 

differences in life expectancies (Kumar et al., 2011). AD is associated with a number of risk 

factors which include aging, family history, apolipoprotein E4 (ApoE4), 

hypercholesterolaemia (Huang et al., 2007), diabetes, hypertension, high alcohol intake  and 

vascular diseases (Findeis, 2007). Data show that 29 million people live with the disease 

worldwide (Reddy, 2011), 5.4 million in the U.S. alone (U.S. Alzheimer’s Association, 

2011), and these figures are expected to increase exponentially over the following decades 

(U.S. Alzheimer’s Association 2011; Cole and Vassar, 2007) and reach 81.1 million by the 

year 2040 (Chu, 2012). 
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1.2  Classification of Alzheimer’s disease 

There are basically 2 forms of AD. One is early onset Familial Alzheimer’s  disease (FAD) 

which is caused by autosomal dominant mutations in either Amyloid Precursor Protein (APP) 

or Presenilin 1 or 2 (PS1/PS2) genes (Mathew et al., 2011). FAD accounts for approximately 

2% of all AD cases. Mutations in these genes may cause an increase or decrease in the 

production of Aβ42 (Findeis, 2007), an increase in the production may lead to 100% 

penetrance of the disease (Cole and Vassar, 2007). Presenilin 1 gene mutations are the most 

common among FAD mutations (Chu, 2012). The second form is late onset Sporadic 

Alzheimer’s disease (SAD) which accounts for approximately 98% of all AD cases and the 

underlying causes of this AD type remain elusive (Mathew et al., 2011).  

 

It is estimated that the costs for dementia care worldwide are in the region of 315.4 billion 

U.S. Dollars annually (U.S. Alzheimer’s Association, 2007). In 2012, the total worldwide 

societal cost of dementia was estimated to be US$ 422 billion (Chu, 2012). Blocking disease 

progression or, in the best case scenario, preventing AD altogether would not only have 

significant benefits to the patient and their families, but would also substantially lighten the 

enormous economic burden to the community at large. Since the majority of AD cases arise 

from sporadic causes, the bulk of scientific investigations have thus focused on this dementia 

type.  

 

1.3 Aetiology of AD 

AD has 2 hallmark lesions namely, extracellular deposition of Aβ protein fibrillar plaques 

and intraneuronal NFTs (Mamelak, 2007), but it still remains unclear whether these are the 

cause of AD (Heneka and O'Banion, 2007). Evidence suggests that altered metabolism is a 

very early change in AD and that oxidative stress, particularly in lipids, proteins and DNA 

(Irie et al., 2005) of vulnerable neurons (Mamelak, 2007), precedes plaque formation 

(Gibson, 2002). Aβ has been shown to disrupt calcium (Ca
2+

) homeostasis by increasing the 

density of L and N-type voltage-dependent Ca
2+

 channels (Freir et al., 2003) and enhancing 

the influx of Ca
2+

 into hippocampal neurons through these channels. This suggests that Ca
2+

 

channels may play a role in the pathogenesis of AD (Freir et al., 2003). Additional 

neuropathologies include reactive microglial cells, increased expression of apoptotic protein 
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features, dystrophic neurons and bundles of astrocytic processes (Mamelak, 2007) as well as 

cholinergic, dopaminergic and serotonergic dysfunctions (Mandel et al., 2007).  

 

1.4 Neurofibrillary tangles (NFTs) 

NFTs consist of paired helical filaments that are composed of abnormally 

hyperphosphorylated microtubule-associated tau protein (Fen et al., 2010). Tau is 

predominantly expressed in neuronal axons (Reddy, 2011), and has more than 30 

phosphorylation sites. Tau phosphorylation regulates microtubule assembly and plays a role 

in the outgrowth of neuronal processes, regulation of the intricate transport system of the 

neuron, and the development of neuronal polarity (Reddy, 2011). In contrast, 

hyperphosphorylated tau becomes pathological destabilizing microtubules, resulting in the 

aggregation of hyperphosphorylated tau (Reddy, 2011). Increased evidence suggests that tau 

is critically involved in AD pathogenesis, particularly in impairing axonal transport of APP 

and subcellular organelles including mitochondria in neurons affected by AD (Reddy, 2011). 

Recent data reviewed by Reddy (2011) demonstrated that Aβ production, accumulation and 

Aβ-induced oxidative stress are critical factors for the hyperphosphorylation of tau in AD 

neurons, which ultimately leads to the production of NFTs. Neurons with NFTs show 

extensive oxidative stress, suggesting that oxidative stress plays a vital role in the 

pathophysiology of AD (Gibson, 2002). NFTs are arguably the most important aspect of the 

degenerating phenotype in AD-affected neurons (Perry et al., 2002). 

 

1.5  Models of AD  

Genetics play an important role in the manifestation of AD and AD-associated genes, which 

may be divided into those in which mutations cause autosomal dominant AD and those which 

polymorphisms serve as risk factors for AD, have paved the way for the development of AD 

mouse models (Hall and Roberson, 2012). The oldest and most commonly used transgenic 

models based on the expression of human APP (hAPP) have contributed enormously to the 

testing of the Amyloid hypothesis, several therapeutic agents and more recently, biomarkers 

that can assist in the detection of asymptomatic AD (Hall and Roberson, 2012).  

Traditionally, mice have been chosen over rats for transgenesis owing to technical reasons, 

but rats offer more advantages than mice because their lineage is closer to that of humans in 

several physiological and functional aspects (Hall and Roberson, 2012). The range of 
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advantages that rats offer include, larger body surface area and brain size which facilitate 

intracerebral administration of different experimental compounds as well as neurosurgical 

and neuroimaging experiments. The major advantage that rats offer is behavioural 

characterization because of their finer motor coordination when compared to that of mice 

(Hall and Roberson, 2012). A complete model of AD would have to display the full spectra 

of the underlying clinical and pathological symptoms of AD, no presently existing model 

exhibits all the features of AD, existing models develop phenotypes of AD to different 

extents and combinations (Hall and Roberson, 2012). The model of bilateral i.c. injections of 

Aβ42 into the dorsal hippocampus of a rat brain that we used in the present study was adopted 

from a study done by Shin et al. (1997), and was modified to answer specifically, the 

questions that were asked by our study. 

 

1.6 Aβ homeostasis  

APP processing is found to be somewhat heterogeneous, resulting in the production of 

variable lengths of Aβ, particularly at the carboxyl terminus (Cole and Vassar, 2007). The 

two major forms of Aβ that have been observed to be produced in the processing of APP are, 

40 and 42 residues in length, Aβ40 (produced as a cellular antioxidant) and Aβ42 (has been 

shown to be neurotoxic), respectively (Findeis, 2007). In a normal individual, the majority of 

the Aβ produced is of the shorter variety, Aβ40 (Cole and Vassar, 2007). Cerebral Aβ levels 

are regulated by the production, clearance and degradation of Aβ (Reddy, 2011). APP 

metabolism may also play a role in tau phosphorylation and subsequent NFT formation 

(Cetin, 2013). 

 

1.6.1     Amyloid Precursor Protein (APP) 

APP is a type-I transmembrane protein that has 695-770 amino acids (AAs) (Mathew et al., 

2011). It is transported from endoplasmic reticulum (ER) to the cell surface via a secretory 

pathway and has a large extracellular hydrophilic N-terminus, and a small cytoplasmic C-

terminus (Mathew et al., 2011). The APP gene is located on chromosome 21 and mutations in 

this gene may either increase or decrease Aβ production (Findeis, 2007). 
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1.6.2 Secretase enzymes  

β-Secretase is a novel aspartyl protease known as β-site APP-cleaving enzyme (BACE1) 

(Cole and Vassar, 2007), a type-I membrane protease with 501 AAs from the pepsin-like 

class of protease enzymes (Barman and Prabhakar, 2013). It is the rate-limiting enzyme in the 

synthesis of Aβ and therefore the prime drug target for lowering cerebral Aβ levels in the 

management, treatment and prevention of AD (Cole and Vassar, 2007). γ-Secretase is a 

complex of proteins consisting of presenilin 1 or 2 (PS1/PS2), nicastrin, anterior pharynx-

defective 1 (Aph1) and presenilin enhancer 2 (Pen2). α-Secretase is TNF-α converting 

enzyme (TACE), a member of the disintegrin and metalloprotease domain protein (ADAM) 

family (Cole and Vassar, 2007). 

 

BACE1 utilizes the general acid base mechanism to cleave the peptide bond during its 

catalytic cycle (Barman and Prabhakar, 2013). It initiates synthesis in the amyloidogenic 

pathway at the Asp+1 residue of APP to form the N-terminus of Aβ. The scission results in 

two cleavage fragments, a secreted APP ectodomain (APPsβ) and a membrane bound 

carboxyl terminal fragment (CTF) that is subsequently cleaved by γ-secretase to generate the 

C-terminus of Aβ and an APP intracellular domain (AICD) which is released into the cytosol 

(Cole and Vassar, 2007), and thus migrates to the nucleus (Mathew et al., 2011) where it 

plays a role in transcriptional transactivation (Cole and Vassar, 2007) by regulating 

phosphoinositide-mediated Ca
2+

 signaling through a γ-secretase-dependent signaling pathway 

(Findeis, 2007).  

In the alternate non-amyloidogenic pathway, α-secretase cleavage occurs within the Aβ 

domain at Leu+17 residue of APP. The scission produces a secreted (APPsα) ectodomain and 

a CTF which in turn is cleaved by γ-secretase to form a 3kDa fragment p3 (Cole and Vassar, 

2007). APPsα activates a putative receptor on the neuronal membrane which initiates a series 

of reactions that lead to the opening of potassium (K
+
) channels (Mathew et al., 2011). This 

ultimately leads to the activation of nuclear transcription factor kappa β (NFkβ), which 

promotes cell survival (Mathew et al., 2011).  
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Key: N/C – N/C-terminus of APP, APP – Amyloid precursor protein, Aβ – Amyloid beta, β/α/γ –

Beta/Alpha/Gamma secretase enzymes, AICD – APP intracellular domain 

 

Figure 1.1: Diagram showing APP cleavage by secretase enzymes in the amyloidogenic/non - 

amyloidogenic pathways. Image adapted from Cole and Vassar (2007).  

 

Although the majority of body tissues exhibit β-secretase activity, the highest levels are 

observed in neuronal cell lines and brain tissue with optimal activity detected at an acidic pH 

of 4.5 within subcellular compartments of the secretory pathway (the trans-Golgi network 

and endosomes) (Cole and Vassar, 2007). 
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1.6.3  Aβ Pathology 

Aβ42 is a 4kDa (Mathew et al., 2011) amphiphilic protein (Bose et al., 2009), that accounts 

for about 5-15 % of the total Aβ pool in a normal individual (Findeis, 2007). It is generated 

following abnormal sequential cleavage of the transmembrane APP by β- and γ-secretase in 

the amyloidogenic pathway (Fen et al., 2010), (see figure 1.1). The Aβ42 protein subsequently 

aggregates and forms higher order oligomers that directly interact with the cell membrane 

through the receptor for advanced glycation end products (AGEs) (Behl and Moosmann, 

2002) but the molecular mechanisms underlying the generation of soluble oligomers, 

insoluble fibrils, other neurotoxic species and their aggregation (Crews et al., 2010) are not 

fully understood (Bose et al., 2009). Synthesis of Aβ42 is precluded if APP is cleaved by α-

secretase within the Aβ domain in the non-amyloidogenic pathway. β- and α-Secretase 

moieties compete for APP substrate and hence an increase in the amyloidogenic pathway is 

coupled with a reciprocal decrease in the non-amyloidogenic pathway and vice versa (Cole 

and Vassar, 2007). 

 

In this study we particularly focused on oxidative stress, apoptosis, and inflammation 

mediated by stereotaxic infusion of Aβ42 into the dorsal hippocampus of an adult male SD rat 

model of learning and memory. We also investigated the effectiveness of MEPTIDES in vivo 

in the prevention and/or reduction of Aβ-induced neurotoxicity which may support 

MEPTIDES as a possible anti-AD drug which is beneficial in preventing or slowing down 

cognitive decline.   

 

1.7 Inflammation 

While minor signs of neuroinflammation can be found in a normal aging brain, the AD brain 

displays increased activation of inflammatory systems suggesting that qualitatively different 

immunostimulants may exist in the latter (Heneka and O'Banion, 2007). Although synthesis 

and deposition of Aβ and NFTs are hallmarks of AD (Mamelak, 2007, Heneka and O'Banion, 

2007), evidence suggests that inflammation in pathologically vulnerable regions of the AD 

brain (Akiyama et al., 2000) represents the third hallmark (Heneka and O'Banion, 2007). 

Damaged neurons and neurites and highly insoluble Aβ peptide deposits and NFTs provide 

stimuli for inflammation in the AD brain (Akiyama et al., 2000). Microglia represent the 

innate immune system in the brain and express a wide array of receptors that detect foreign 
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particles and tissue damage (Cameron and Landreth, 2010). Toll-like receptors (TLRs) are 

the most prominently expressed receptors in microglia, with TLR 2, 4 and TLR co-receptor, 

CD14, being of importance in AD (Cameron and Landreth, 2010). Following activation, 

various neuro-inflammatory (pro and anti-inflammatory) mediators, including a wide array of 

neurotoxic cytokines and chemokines are produced and released by microglia, which may 

also result in recruitment of astrocytes and neurons to the inflammatory response, and this 

cascade is thought to actively enhance the inflammatory response to extracellular Aβ plaques 

(Heneka and O'Banion, 2007). Astrocytes are involved in the degradation and clearance of 

Aβ, and provide trophic protection of neurons by forming a protective barrier between 

neurons and Aβ plaques (Heneka and O'Banion, 2007). Increased astrocyte number 

associated with Aβ lesions in AD suggests that these aggregates produce chemotactic 

molecules that recruit astrocytes (Heneka and O'Banion, 2007). Once this inflammation is 

initiated by degeneration, it may significantly contribute to disease progression and chronicity 

(Heneka and O'Banion, 2007).  

While inflammation is thought to be secondary to degeneration, evidence suggests that 

microglia and astrocytes (Heneka and O'Banion, 2007) may be activated by endogenous 

proteins which increase the production of inflammatory cytokines (Heneka and O'Banion, 

2007) like Interleukin-1β (IL-1β), Tumor necrosis factor alpha (TNFα) (Rogers et al., 1996) 

which regulate the intensity and duration of the inflammatory response (Heneka and 

O'Banion, 2007). In AD these have been observed to enhance APP processing by 

upregulating β-Secretase, altering Aβ fibrillar protein production and/or metabolism (Rogers 

et al., 1996) therefore increasing neurotoxic secretory products, pro-inflammatory cytokines 

and ROS (Eikelenboom and van Gool, 2004) which  establishes a vicious cycle (Heneka and 

O'Banion, 2007) that greatly contributes to neuronal damage. TNF-α, a pro-inflammatory 

cytokine and a focus in the present study, exhibits both pro-apoptotic and anti-apoptotic 

properties that account for the majority of the neurotoxic effects of proteins secreted by 

microglia in the CNS (Heneka and O'Banion, 2007). Nearly all cytokines that have been 

studied in animal models of AD, primarily in immunohistological evaluations, including IL-

1β, IL-6 and TNFα were upregulated when compared to their control equivalents (Akiyama 

et al., 2000). These differences are less likely to be a result of genetic polymorphisms that 

have been previously described (Nicoll et al., 2000, Papassotiropoulos et al., 1999, McCusker 

et al., 2001) because none of the members of the cytokine family that are associated with AD 

map onto the chromosomal region with evidence of a genetic linkage (Tanzi and Bertram, 
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2005) that increases the risk of AD development later in life. In an article by Akiyama et al. 

(2000), TNFα was reported to be neuroprotective in the AD brain.  It is this controversy that 

inspired our research team to investigate whether TNFα is up or downregulated in our animal 

model of Aβ-induced memory impairment and to subsequently establish what the 

implications of these changes are. 

 

1.8      Oxidative stress  

Reactive oxygen species (ROS) play an important role in the regulation of normal cellular 

and thus body function when they are produced at low concentrations at the appropriate time 

and place but when they are produced in excess, they can have detrimental consequences 

particularly for mitochondrial function and ultimately cellular integrity, a state known as 

oxidative stress (Rosenfeldt et al., 2013). ROS may target any cell component, but they 

generally react with the first structure they encounter, which is frequently the lipid bilayer of 

cell membranes. Oxidative stress represents an imbalance in the production of ROS and the 

body’s antioxidant defense system’s ability to detoxify the reactive intermediates (Rosenfeldt 

et al., 2013). The body has developed natural defense systems such as endogenous 

antioxidants that counteract the destructive effects of ROS and maintain REDOX equilibrium 

thus ensuring optimal health (Perry et al., 2002). Various intrinsic enzymatic and non-

enzymatic pathways are involved in achieving this REDOX equilibrium (Perry et al., 2002).  

The cytopathological significance of oxidative damage is seen by the upregulation of anti-

oxidant enzymes (Mamelak, 2007). Sources of ROS include enzymatic activation of 

cytochrome C, NADPH oxidases, xanthine oxidase, dysregulation of endothelial nitric oxide 

synthase (eNOS) and leakage from mitochondria.  The brain is a logical target for free radical 

damage due to its high concentration of unsaturated lipids, catecholamines and increased rate 

of oxidative metabolism (Mamelak, 2007, Lee et al., 2012). The brain also has low 

concentrations of enzymatic antioxidants and non-enzymatic free radical scavengers, whilst 

certain areas contain large amounts of iron (Fe) which is a crucial cofactor in ROS generation 

(Mamelak, 2007). This suggests that oxidative stress contributes to brain aging, but is by no 

means the sole cause of brain senescence (Mamelak, 2007).  

Oxidative insults that induce neuronal apoptosis, including agents that induce membrane lipid 

peroxidation, have been shown to activate caspases (Cetin, 2013). Damage caused by 

oxidative radicals observed in AD includes AGEs, nitration, lipid peroxidation adduction 
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products as well as carbonyl-modified neurofilament protein and free carbonyls (Mamelak, 

2007). This damage involves all neurons vulnerable to death in AD and not only those 

containing NFTs (Mamelak, 2007). Lipid peroxidation disrupts the Na
+
/Ca

2+
 channels and 

glucose uptake which leads to apoptosis (Mathew et al., 2011). The free radical theory of 

ageing proposes that, prolonged pro-oxidant status generated during normal cellular 

metabolism causes cumulative damage to DNA and other macromolecules (Mamelak, 2007). 

It also suggests that free radicals and their reactions are involved in the aetiology and 

development of a number of life-limiting diseases (Mamelak, 2007). Increased mitochondrial 

DNA in the early stages of AD may be linked to increased oxidative potential (Mamelak, 

2007). Haem oxygenase (HO-1) is among the most sensitive indicators of the cellular 

oxidative stress response and it has been shown that both HO-1 and its mRNA are increased 

in the brains of patients with AD (Mamelak, 2007). In a review by (Mamelak, 2007) it is 

suggested that increased HO-1 expression co-localizes with the altered form of tau protein. 

The most crucial aspect of oxidative damage in AD pathogenesis appear to be the 

cytoskeletal modifications (e.g. NFTs, are the most obvious modification and are the 

important phenotype in a degenerating neuron) in neurons that are susceptible to damage in 

AD, which in turn plays a key role in the irreversible cellular dysfunctions that ultimately 

yield dementia (Mamelak, 2007). 
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Figure 1.2: Diagram showing how several conditions including Aβ aggregation may lead to 

increased oxy-radicals resulting in membrane lipid peroxidation and generation of lipid 

peroxidation adducts like 4HNE that increase intracellular Ca
2+ 

levels that may cause a 

further increase in ROS and ultimately cause cell death. Image adapted from Cetin (2013).  

 

 

1.9 Apoptosis 

Apoptosis is a highly regulated process involved in embryonic development, developmental 

tissue remodeling, normal cell turnover and is a cell death program central to cellular and 

tissue homeostasis (Cetin, 2013). Apoptosis is increased in the aging process due to increased 

oxidative stress (Cetin, 2013) and is characterized morphologically by a series of events that 

include cytoplasmic shrinkage, chromatin condensation, nuclear and cellular fragmentation, 

and the formation of apoptotic bodies. Dysregulation in apoptotic pathways results in 

excessive or insufficient cell death that may result in several pathological processes leading 

to disease states such as cancers, autoimmune syndromes and/or neurodegenerative diseases 

like AD.  

Caspases are a family of intracellular cysteine-aspartate proteases that are divided into 

initiators of apoptosis (caspases-2, -8, -9 and -10), and effectors of apoptosis (caspases-3, -6, 

-7 and -14), however some caspases, including caspase-3 (C3) and caspase-6 (Casp6), appear 
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to function as both initiators and effectors (Cetin, 2013). Caspases are not only essential for 

triggering apoptosis, they have also been shown to play key roles in other non-apoptotic 

pathways, such as differentiation and proliferation of diverse cell types, axon guidance and 

synaptic activity and plasticity (Cetin, 2013). Activation of caspases has been implicated in 

several neurodegenerative diseases, such as AD, Huntington’s disease (HD), various ataxias 

and amyotrophic lateral sclerosis (Cetin, 2013).  

Cells undergo apoptosis through two major pathways, the extrinsic pathway (death receptor 

pathway) (Zeng et al., 2012) and the intrinsic pathway (the mitochondrial pathway) (Romani 

et al., 2010). These two pathways can be linked by caspase-8-activated truncated Bid 

formation. Very recently, death receptor 6 (DR6) also known as TNFRSF21, a relatively new 

member of the death receptor family was shown to be involved in the neurodegeneration 

observed in AD (Zeng et al., 2012). It was found that DR6 induces apoptosis when it is 

overexpressed (Zeng et al., 2012). However, how the death signal mediated by DR6 is 

transduced intracellularly is not known. Although caspases are the main players involved in 

apoptosis, there are other molecules involved in the progression of the apoptotic cascade that 

are relevant to AD (Cetin, 2013).  

 

Figure 1.3: Diagram showing intracellular sources of ROS and their interaction with 

apoptotic pathways (Cetin, 2013) 
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Figure 1.4: Diagram showing nitric oxide (NO) neurotoxicity in relation to AD.  

NFT formation may influence Aβ accumulation and vice versa that leads to cell death 

secondary to disruption of cellular trafficking. Cholinergic deficit is one of the most 

significant findings in AD, and is implicated in memory impairments observed in this 

disease. Increased production of Aβ induces NO production either by disrupting Ca
2+ 

homeostasis and subsequent increase in intracellular Ca
2+

 (nNOS and eNOS-mediated NO 

release) or by interactions with glial cells. These reactive oxygen species induce a variety of 

neurotoxic mechanisms, including DNA/protein alterations, mitochondrial dysfunction, 

apoptosis, neuro-inflammation, and lipid peroxidation (which jeopardize cellular membrane 

integrity, which leads to further Ca
2+

 influx and NO release). These mechanisms are likely to 

be involved in cell death and memory impairments observed in AD (Cetin, 2013). 

Neuronal death in AD may result directly and/or indirectly from the triggering insults caused 

by Aβ toxicity, glutamate excitotoxicity, long-lasting oxidative stress, DNA damage, and 

elevation of intracellular Ca
2+

 levels. Thus, the mode of cell death in AD remains a matter of 
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controversy, and it is possible that both apoptotic and non-apoptotic cell death coexist in the 

brains of affected patients.  

 

1.10 Manifestations of AD 

Depending on the subtype of the disease, manifestations may either include or lead to 

behavioural changes or vascular diseases (Breteler, 2000). The amyloid cascade hypothesis 

suggests that  early aggregation of Aβ triggers a complex of pathological cascades that lead to 

neurodegeneration with loss of working/short term memory as early symptoms (Fen et al., 

2010) of disease manifestation. Methionine residue number 35 (Met 35) and neighbouring 

residues of Aβ are apparently important in this early aggregation (Pratim Bose et al., 2009). 

On the other hand, the cholinergic hypothesis proposes that it is the decrease in synthesis of 

the neurotransmitter acetylcholine that is the cause of AD (Bayer and Wirths, 2010). 

In the vast majority of late-onset SAD, the majority of evidence collected does not support 

the amyloid cascade hypothesis as it is considered too narrow to explain all of the molecular 

mechanisms that lead to the characteristic accumulation of the neuropathological hallmarks 

of the disease (Simic et al., 2009). It is therefore not surprising that treatments aimed at 

lowering Aβ aggregation and production failed to show clinical improvement in AD patients. 

It is therefore necessary to gain a better understanding of the molecular and cognitive effects 

of different Aβ forms (Sipos et al., 2007) in order to design better therapeutic interventions 

targeting the Aβ cascade. 

AD affects people differently. The most common symptom found among all patients is 

forgetfulness of new information. Over time, the disease progresses and reaches an 

irreversible level where the patient is unable to perform basic daily life activities such as 

bathing, dressing or eating (Mandell and Green, 2011). At the late stage of the disease, the 

patient cannot even move, communicate or recognize family members. The Patient then 

becomes vulnerable to infection which may be fatal. Clinically AD is characterized by 

cognitive decline and memory loss (Allison et al., 2001). Although mild cognitive 

impairments (MCI) represent the harbinger signs of the disease, patients with MCIs do not 

always develop AD. The presence of Aβ plaques in the cortex and NFTs mark the advanced 

level of AD (Madsen et al., 2010). Biochemical events including loss of neurons and 
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synapses in specific regions of the brain lead to the development of the disease and these are 

life-threatening. 

 

1.11 Diagnosis  

Historically diagnosis of AD was made after exclusion of all other possible causes of 

dementia, including metabolic imbalances such as vitamin deficiencies or other neurological 

disorders with more definitive diagnostic criteria (Findeis, 2007). Problems associated with 

AD and other neurodegenerative disorders arise from the fact that cognitive tests currently 

used to assess clinical benefit of symptomatic drug treatment might suffer subjectivity and 

little sensitivity to subtle changes over time (Deguil et al., 2013). The other problem is that no 

equivalent task exists for research animal models as the verbal component, which is primarily 

used in these tests, is lacking in animals (Deguil et al., 2013).  

A clinical diagnosis of AD is made when patients have progressive memory decline for over 

6 months with resultant impairment of self-care and social or occupational functioning (Chu, 

2012), but this is still limited to probable or possible AD (Findeis, 2007). The presence of 

objective memory impairment should be documented by the Mini-Mental State Examination 

(MMSE) and other neuropsychological tests (Chu, 2012). Diagnosis of definite AD continues 

to require postmortem histological analysis of the brain to document the presence of 

characteristic senile plaques and tangles that define the disease (Findeis, 2007). The 

importance of the Aβ40/Aβ42 ratio emerged in examinations of both CSF and plasma of 

humans with or without AD and other neurodegenerative diseases (Findeis, 2007). Unlike 

other diagnostic methods that image brain function and/or volume, the Aβ40/Aβ42 ratio offers 

an opportunity to identify individuals at an even earlier pre-symptomatic stage of the disease 

(Findeis, 2007). Such individuals could then be placed on therapy that can potentially slow or 

prevent disease progression at a stage of disease where the efficacy of the treatment can be 

expected to be much greater than in patients at a more advanced stage of the disease (Findeis, 

2007). 

Other essential diagnostic points include deficits in two or more areas of cognition, absence 

of disturbance in consciousness, disease onset between the ages of 40 and 90 years, absence 

of systemic disorders or other brain diseases that could account for the progressive deficits in 

memory and cognition, evidence of cerebral atrophy on computed tomography (CT) or 
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magnetic resonance imaging (MRI) scans without other significant organic lesions, and the 

absence of any metabolic disorder. 

 

1.12 Conventional management strategies 

Current therapies of AD are merely palliative and only slow down cognitive decline. 

Treatments which address underlying pathologic mechanisms are completely lacking. 

Regular exercise, higher education and proper diet have been reported to be protective, as has 

smoking, despite its other negative health effects (Findeis, 2007). Other experimental 

therapies include vaccinations, secretase inhibitors and anti-inflammatory drugs (Behl and 

Moosmann, 2002).  

Symptomatic relief that is provided by approved AD pharmacotherapies are lost with time 

and the disease progresses despite continued treatment (Farlow et al., 2010). Table 1 below, 

shows some of the approved acetyl cholinesterase inhibitor (AChEI) drugs for symptomatic 

relief of AD, however there remains a continued need for the investigation of more robust 

management strategies. 

 

 

Table 1: Symptomatic drug treatments for Alzheimer’s disease 

Drug Class Dose 
(mg/day) 

Frequency 
(times/day) 

Absorption 
affected by food 

Metabolism 

Donepezil (Aricept) Cholinesterase inhibitor 5-10† 1 No CYP2D6 
CYP3A4 

Rivastigmine (Exelon) Cholinesterase inhibitor 3-12 2 Yes Non-hepatic 

Galantamine (Reminyl; 
Reminyl PR*) 

Cholinesterase inhibitor 8-32 2 
1 (PR) 

Yes CYP2D6 
CYP3A4 

Memantine (Ebixa) NMDA**-receptor antagonist 5-20 2 (one) No Non-hepatic 

PR* denotes prolonged release, and NMDA** N-methyl D-aspartate. Table adapted from 

Chu (2012). 
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Aβ fibrillar and oligomeric forms have been shown to have neurotoxic effects in vivo and in 

vitro consequently strategies to prevent the formation of or to lower levels of Aβ in the brain 

are anticipated to be of tremendous therapeutic benefit. There are several AD 

immunotherapies that are currently under research which include, direct immunization with 

synthetic full length forms of Aβ and the administration of modified Aβ fragments that may 

be conjugated to specific carriers in order to stimulate T- and β-cell lymphocytic immune 

responses and evade challenges that accompany intensifying a T-cell reaction precisely 

against Aβ (Morgan, 2006, Delrieu et al., 2012).  

 

Short peptides (<100 AAs) are the key regulators in a variety of biological activities because 

they offer high specificity associated with low toxicity and thus peptide beta sheet breakers 

(BSBs) have gained a lot of popularity because of these properties (Funke and Willbold, 

2012). Several peptide based inhibitors or BSBs of the Aβ self-aggregatory process have 

been reported (Pratim Bose et al., 2009). The first pentapeptide BSB was reported by 

Tjernberg et al. (1996). Since then, these pentapeptide BSBs have demonstrated their efficacy 

in vitro and in vivo (Hetényi et al., 2002). There are a total of 67 therapeutic peptides on the 

market today, 150 are in clinical phases and there is more than 400 in the pre-clinical trial 

stages (Funke and Willbold, 2012). Principally short N-methylated peptides analogous to 

parts of the hydrophobic central region (residues ~16-24) of Aβ have been used to design 

these anti-amyloid factors or BSBs with attractive pharmacological properties (Pratim Bose 

et al., 2009, Sigurdsson et al., 2000). Figure 1.5 shows research directions and strategies in 

the search for AD-modifying drugs. 
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While the central region of Aβ has attracted much attention, the C-terminal region has been 

far less explored despite the fact that this region forms intermolecular β-sheet contacts in Aβ 

fibrils and was previously proposed to be the kinetic determinant of the self-assembly process 

(Pratim Bose et al., 2009). More recently it was also demonstrated that peptides derived from 

Aβ positions 28-42 were efficient in protecting neurons from Aβ toxicity, again pointing to 

the importance of the C-terminal region (Pratim Bose et al., 2009).  

 

1.13    Poly - N - methylated Amyloid - β - Peptide (Aβ) C - terminal Fragments    

(MEPTIDES) 

In a recent study a novel compound Poly - N - methylated Amyloid - β - Peptide (Aβ) C - 

Terminal Fragments (MEPTIDES) (Figure 1.6) was shown to reduce Aβ toxicity in vitro and 

in Drosophila melanogaster. This study found that the C - terminal fragments (covering 

residues 31 - 42 or parts thereof) may be incorporated into the putative hydrophobic core of 

Aβ oligomers consequently disrupting it and thereby reducing its toxicity (Pratim Bose et al., 

2009). However whether this novel drug is equally effective in mammals to inhibit Aβ - 

induced toxicity remains unknown. 

 

Figure 1.5:  Research directions and strategies in the search for disease-modifying drugs  

APP denotes amyloid precursor 

protein,  

  , Aβ denotes beta-amyloid, and NFT neurofibrillary tangles (Chu, 2012).  
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Figure 1.6: Diagram showing Molecular structure of MEPTIDES. Image adapted from Pratim 

Bose et al. (2009). 

1.14  Basis of the study 

As stated earlier, the prevention and/or retardation of progressive AD, will have substantial 

medical, social and financial benefit to the patient, family members and the entire health care 

fraternity. We hypothesized that MEPTIDES will reverse the neurotoxic effects of Aβ42 in vivo. 

 

1.14.1  Aims 

The aims of the present study were therefore to 

 Establish and characterize a rat model that may resemble some of the symptoms of 

AD; and to 

 Evaluate the efficacy of MEPTIDES in vivo as a possible anti-AD drug. 
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CHAPTER 2 

Materials and Methods 

 

 

 

2.1  Materials and methods 

2.1.1  Reagents and materials 

Aβ42 peptides were purchased from DLD Scientific and MEPTIDES were synthesized by 

manual solid phase peptide synthesis on a Sieber resin with HATU as coupling reagent 

(Pratim Bose et al., 2009) by the University of KwaZulu-Natal Catalysis and Peptide 

Research Unit. OxiSelect
TM

 ZR RNA MiniPrep
TM 

kit was purchased from Zymo Research 

CORP. Nano-drop® ND-100 Spectrophotometer (Thermo Scientific, SA) was used for 

detection of RNA purity.  iScript™ cDNA Synthesis Kit (Bio- RAD, SA), primers designed 

and produced commercially (Inqaba, SA) were used to synthesize cDNA. Fast Start SYBR 

Green I, Gene-Amp 9700 Thermocycler from (Applied Biosystems, California, USA) and 

Light Cycler and software 4.1 (Roche Diagnostics) were used for qPCR caspase-3 gene 

amplification and analysis of results. OxiSelect
TM 

HNE Adduct Immunoblot kit (Cell Biolabs 

Inc) was used to measure 4HNE levels. Labotec Titramax 1000 orbital shaker was used to in 

all steps that required shaking. Odyssey CLx, blocking buffer, IRDye from (LiCOR 

Biosciences) were used in western blotting. Anti-rabbit IgG HRP-linked (Cell Signaling 

Technology) and Chemi-doc system used was from (Bio-RAD, SA). Leica CM 1100 cryostat 

was used to cut brain sections. MALDI-TOF Autoflex III
TM

 Speed MS, software Flex 

Imaging 3.0, ImagePrep station and Indium-tin-oxide (ITO) type I slides (Bruker Daltonics, 

Germany) were used to determine MEPTIDES distribution in the brain. 
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2.1.2  Ethical clearance 

Ethical clearance was obtained from the University of KwaZulu-Natal Ethics Committee. The 

reference number is 048/13/Animal. Institutional guidelines for animal care were followed 

(Animal Ethics Committee of the University of KwaZulu-Natal, 2007). All efforts were made 

to minimize animal suffering and to reduce the number of animals used. 

 

2.1.3  Animals 

Fully grown male Sprague-Dawley (SD) rats (n = 40) weighing between 300 – 350 g (8/9 

weeks of age), at the beginning of the study, were used. The rats were randomly assigned to 4 

groups (n = 10 rats/group) and housed under standard lighting conditions (12 hour light/dark 

cycles) (Sipos et al. , 2007), lights on at 06:00, 25 
o
C room temperature, humidity of 70%, at 

the Biomedical Resource Unit, University of KwaZulu-Natal, Westville campus. Food and 

water was available ad libitum. 
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2.2  Experimental design and timeline 

Study A 
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Study B 

                            

 

 

Figure 2.1: Diagram showing experimental design and timeline for study A and B. 
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2.3  Stereotaxic surgery 

On day 5, the rats were first given atropine (0.1 mg/kg, i.p.) and subsequently anaesthetized 

using sodium pentobarbital (60 mg/kg, i.p.). After full anaesthesia (the absence of hind paw 

reflex) was achieved, the head was shaved and the rat was placed in a stereotaxic apparatus 

(David Kopf Instruments, CA, USA). A midline sagittal incision was made on the scalp and 

the underlying tissue removed to expose the skull. Burr holes through which the injecting 

needles were pushed into the brain, were drilled through the skull at the following 

coordinates: Anterior - Posterior = -4.8 mm from bregma; Medio-Lateral = ±3.4 mm from the 

midline suture; and depth of 3.0 mm below the dura according to the Atlas of Paxinos and 

Watson (5
th

 Edition, 2005). Aβ42 (2 mM) or Tris buffer (TB 0.15 M) (Shin et al., 1997) was 

injected bilaterally into the dorsal hippocampus using a Hamilton syringe which had been 

pretreated with dimethyldichlorosaline to prevent the Aβ42 from adhering to the inner surface 

of the syringe, at a rate of 1 µl/minute for 10 minutes to deliver a final volume of 10 µl. A 

further 2 minutes was allowed for optimal diffusion of the drug into the brain. The burr holes 

were closed with bone wax and the wound was sutured and cleaned with iodine solution. 

Cellulose was used for the dressing of the wound (Purdue Frederic, USA). The rats were 

placed on a heating blanket to prevent hypothermia during surgery. They were returned to 

their home cages after full recovery from surgery. The rats were then given a 2-day recovery 

period. The rats were handled and weighed each day during this recovery time. Subsequent to 

the recovery period, on day 8, the rats underwent spatial learning and memory tests in the 

Morris water maze. 
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2.4.  Learning and Memory tests 

 

 

                        Figure 2.2: Diagram showing Morris Water Maze tank. 

The Morris water maze is a circular tank/maze 1 m in diameter with 4 imaginary quadrants. 

The level of usually opaque water (temperature between 22 - 25°C, to minimize hypothermic 

stress of the rat) was just high enough to cover the top of a clear Perspex platform (10 x 10 

cm wide and 20 cm high). The platform was placed in one of the quadrants, while the rat was 

placed in any of the other 3 quadrants. The rat was given 2 minutes to find its way to the 

platform. If not, the rat was gently guided to the platform during training after the 2 minutes 

had expired, and once on the platform the rat was given a maximum 15 seconds to familiarize 

itself with the position of the platform within the maze. There were 3 different starting 

positions, selected pseudo-randomly, at the borders of the quadrants in the tank. The rationale 

of the test is that the animal needs to find the platform using its memory of constant spatial 

cues placed around the maze. 

There were 3 training sessions, done on 3 consecutive days, with a pre - i.c. injection test on 

the 4
th

 day, following the final training session. The post-injection tests started 2 days after 

the i.c. injections of either TB or Aβ42. On day 8, post-lesion test 1 was performed. On days 9 

and 10, post-lesion tests 2 and 3 were carried out and the rats also received a MEPTIDES or 

saline injection (i.p.) after each test. The parameter that was recorded was the time taken for 

the rat to reach the hidden platform during all trials and tests. The rats were sacrificed on day 

14 by decapitation. 
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2.5  Sacrifice 

After completing the behavioural experiments, the animals were decapitated on day 14 

(between 10 am and 1 pm). Three whole brains from the MEPTIDES-treated Aβ42 and TB 

groups were rapidly removed from the skull placed in containers and gently immersed in 

liquid nitrogen until frozen. The brains were slowly immersed in the liquid nitrogen in order 

to preserve the morphology of the brain tissue. The hippocampus was dissected out of fresh 

brains in all the other the animals. Dorsal and ventral hippocampi were weighed, placed in 

Eppendorf vials and snap frozen in liquid nitrogen. The samples were then stored for a 

maximum of one month in a biofreezer at a temperature of -73 ˚C for further biochemical 

analysis. 

 

2.6 Biochemical Assays 

2.6.1  Real time PCR 

Total ribonucleic acid (RNA) was isolated from previously stored snap frozen hippocampal 

tissue. The hippocampal tissue weighing between 20-50 mg was homogenized in 400 µl of 

RNA lysis buffer using a sonicator (12000 Hz for 10 seconds). The RNA was extracted as per 

manufacturer’s instructions. The purity of the RNA was determined using a Nano-drop® 

ND-100 Spectrophotometer with the purity of RNA determined by the absorbance ratio at 

260 nm/280 nm. RNA was considered pure if the absorbance ratio ranged between 1.7 and 

2.5.  The isolated RNA was used to synthesize cDNA using the iScrip™ cDNA Synthesis 

Kit, as per manufacturer’s instruction. The RNA was converted to cDNA using the Gene-

Amp 9700 Thermocycler, with the following parameters: melting point 25 °C for 5 minutes, 

40 °C for 30 minutes, 85 °C for 5 minutes and hold at 4 °C.  The cDNA was then stored at –

20 °C until further analysis. The primers and their sequence are shown in Table 2. The 

expression of caspase-3 (C3) gene was subsequently assessed using a Light Cycler. The Light 

Cycler-master mix consisted of the following: 5.4 µl water, 1.6 µl MgCl2 (3 mM), 1.0 µl 

forward primer (1.0 µM), 1.0 µl reverse primer (1.0 µM), 1.0 µl Fast Start SYBR Green I, 

and 1.0 µl cDNA. RNA was quantified using the Light Cycler under the following PCR 

conditions: one cycle consisted of 95 °C for 10 minutes followed by 45 cycles at 95 °C for 15 

seconds, 60 °C for 1 minute and 72 °C for 10 seconds using a single fluorescence 

measurement (Mackraj et al., 2008, Zhu et al., 2011). This was followed by a final cooling 
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step to 40 °C. A dilution series of C3 gene and GAPDH amplicons were used to construct a 

standard curve. Quantitative analysis of the data was performed using Light Cycler software 

4.1. Melting curve analysis was done to detect the presence of a single specific product. 

 

Table 2. Sequences of primers for real-time qPCR (Inqaba, SA) 

Target gene Primers (5′-3′)    (nt
1
)          PP

2 
       Bp

3 

Caspase-3  

F5′-GGTGCCACTATGAATTTGAAATTAC-3′ 

25 1216-1240 25 

R5′-CCAACTCTTCATTTCCACAG-3′   20 1401-1382 20 

1 
length, 

2 
primer position, 

3 
product size. 

 

2.6.2  ELISA 

TNF-α was quantified using a sandwich ELISA from previously stored snap frozen 

hippocampal tissue. The hippocampal tissue of 5 animals per group (Aβ42, TB) weighing 

between 20-50 mg was homogenized in 600 µl of RIPA buffer (see Appendix B). 

Homogenates were centrifuged twice at 3578 g for 10 minutes at 4 
o
C. Supernatant was 

collected and protein concentration determined using the Bradford method (see Appendix A 

for standard curve and Appendix B Bradford method protocol) (Kruger, 2009). The protein 

lysate was stored at -80 °C after protein determination and standardization of protein 

concentration. Sample supernatant (diluted 5-fold) or protein standard (100 µl) were added to 

each well and incubated for 2.5 hours in the dark at 4 
o
C with gentle shaking on an orbital 

shaker. Plates were then washed 4 times with 1 X wash buffer (300 µl) using a multichannel 

pipette. Biotinylated anti-rat TNF-α antibody (100 µl) was added to each well and incubated 

for 1 hour at room temperature with gentle shaking on an orbital shaker. Plates were washed 

again 4 times with 1 X wash buffer (300 µl) using a multichannel pipette. HRP-conjugated 

streptavidin (100 µl) was added to each well and incubated for 45 minutes at room 

temperature with gentle shaking on an orbital shaker followed by 4 washes with 1 X wash 

buffer (300 µl) using a multichannel pipette.  Hundred microliters of 3, 3’, 5, 5’-

tetramethylbenzidine (TMB) substrate solution was added for 30 minutes at room 
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temperature in the dark with gentle shaking.  Finally, 50 µl of stop solution was added to each 

well and absorbance was measured at 45nm on a plate reader. 

 

2.6.3 Western Blotting 

The hippocampal tissue of 4 animals per group from the Aβ42, TB, MEPTIDES-treated Aβ42 

and MEPTIDES-treated TB groups, was homogenized in 600 µl of RIPA buffer (see 

Appendix B). Homogenates were centrifuged twice at 3578 g for 10 minutes at 4 
o
C. 

Supernatant was collected and protein concentration determined using the Bradford method 

(Appendix B) (Kruger, 2009).The protein lysate was stored at -80 °C. After protein 

determination and standardization of protein concentration, equal amounts of protein samples 

(40 µg) were diluted at a ratio of 1:2 with Bio Rad sample buffer (Appendix B). The mixture 

was heated at 95 °C for 5 minutes. The electrophoresis apparatus was set up and filled with 

running buffer (Appendix C). The protein samples were loaded onto the gel (30 µg protein in 

each well). (Note: The volume of protein samples varied to obtain similar amount of protein 

in each well). The samples were run on the SDS-PAGE gel at constant 200 Volts and 

fluctuating current (between 1 - 400 mA) for 45 to 50 minutes or until the bottom most 

marker band reached the bottom of the gel. Proteins separated on the gels were then 

transferred to nitrocellulose membranes using the traditional transfer method, with constant 

current (400 mA) and variable voltage (between 1 - 250 V). Transfer required 60 minutes 

with this method. The membranes were subsequently blocked in non-fat milk (Appendix C) 

or blocking buffer (LiCOR Biosciences), for 2 hours. Membranes were then incubated 

overnight at 4 ˚C with either C3 or 4HNE primary antibody in 0.2 % Tween 20 in Tris 

buffered saline (TBS-T)/blocking buffer (1:1000), after which they were washed three times 

(5 minutes each wash) with TBS-T. The membranes were washed with 0.2 % Tween 20 in 

Phosphate buffered saline (PBS-T) if they were going to be viewed on the Odyssey CLx. The 

membranes were then incubated with anti-rabbit IgG HRP-linked or IRDye antibody as the 

secondary antibody (1:10000 or 1:150000 respectively) for 2 hours and washed twice with 

TBS-T or PBS-T and finally with TBS or PBS. Membranes viewed on the Odyssey CLx were 

viewed immediately after the final wash step. The chemiluminescence peroxidase substrate-3 

reagents were added to the membranes that were viewed on the Chemi-doc system. 

Densitometric values were normalized to β-actin. 
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2.6.4  MALDI -TOF 

Previously stored whole brain samples of naïve control, and MEPTIDE-treated TB- and 

Aβ42-injected rats were sectioned using a cryostat (Leica CM 1100) into 10 µm thick sections 

and were placed onto chilled ITO coated MALDI TOF slides. The sections were then 

desiccated for 24 hours to remove any air bubbles.  

 

2.6.4.1  MALDI IMS matrix conditions  

For manual spotting, a-cyano-4-hydroxycinnamic acid (CHCA) was prepared in 50:50:0.1 

acetonitrile (ACN)/H2O/trifluoroacetic acid (TFA) under saturated matrix conditions. The 

drug (MEPTIDES) standard was mixed (1:3) with CHCA matrix solution and 0.5 ml were 

placed onto a MALDI target (steel plate) or a control tissue for analysis.  Matrix solution 

without the analyte was placed on tissue sections as control to check for matrix derived peaks 

interfering with the mass of the drug. 

For the imaging MALDI MS experiments, the tissue sections were coated with CHCA matrix 

solution using an automatic spraying device (Image Prep, Bruker Daltonics).  The Image Prep 

instrument deposits matrix solution onto the tissue in a controlled manner.  Briefly, a matrix 

aerosol is created by vibrational vaporization under controlled conditions with all droplet 

diameters ≤ 50 μm and an average droplet size of ≈ 20 μm.  A modified customized method 

was used for matrix application using the ImagePrep instrument.  The parameters for 

incubation time, wetness and matrix thickness were optimized to get the best spectra possible 

without delocalization of drug or endogenous compounds on the tissue.  The thickness of the 

matrix layer was monitored by the output from the optical sensor.  In short, the method 

contained four identical phases in which a matrix layer corresponding to 0.3 V was added by 

repeating a spray cycle of 2.5 s followed by 10 s incubation time and 90 s of drying time 

(influx of N2). The coated tissue sections were dried in the desiccator for 20 minute before 

analysis. 
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2.6.4.2        MALDI IMS detection limits and MS/MS verification 

The range of detection was investigated by applying different concentrations of the 

MEPTIDES onto a control brain section. The MEPTIDES was mixed (1:3) with matrix 

solution and the different amounts of the analyte applied to the tissue in a total volume of 0.5 

μl. The matrix spots were analyzed in reflectron mode collecting 200 shots per spot. Using 

MS mode, the peptide was detectable down to 1 ng and the signal response was 8 arbitrary 

units (au). The MEPTIDES standard was also analyzed in MS/MS mode using a LIFT 

method. The LIFT method was calibrated on the CHCA matrix peak of 379.1 Da and its 

fragments. The same method was used to perform MS/MS directly on naïve control, 

MEPTIDES-treated TB-injected and MEPTIDES-treated Aβ42-injected brain tissue and 

spectra generated were compared. Using the MS/MS mode, the MEPTIDES was detectable 

down to 1 ng. 

MS experiments were carried out using the AutoFlex III MALDI-TOF MS equipped with a 

solid-state Smartbeam laser operating at 200 Hz. The MS spectra were acquired in positive 

reflectron mode. For the initial analyses of the manually deposited spots, spectra consisting of 

1000 laser shots were acquired in bundles of 5 x 200 shots and data were collected between 

m/z 200 - 800 Da. Prior to analysis the MS method was calibrated using a standard peptide 

mix (Bruker Daltonics, Germany) and the matrix cluster peak from CHCA at m/z 379.1 Da. 

The MS/MS experiments were performed using a LIFT method optimized for the 

MEPTIDES by specific tuning of the timing of the LIFT cell and of the precursor ion 

selector. 

The software Flex Imaging 3.0 was used to set up the acquisition of the imaging experiments.  

The imaging MS experiments were performed by collecting spectra (200 shots) at a 

resolution of 200 μm in the same m/z range as above. 

The spectra were baseline subtracted (Convex hull) and smoothed (Savitzski golay) in the 

processing software during acquisition. In MS/MS mode, all spectra were normalized against 

root mean square (RMS) to reduce the influence of matrix hot spots. Here, we define the 

RMS as the root mean square of all spectra in the mass range analyzed. In this mode, both 

fragments and parent spectrum were acquired from each spot and 500 laser shots were 

summed up in a random walk pattern from each position.   
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2.7  Data presentation 

All results are presented as mean ± SEM. Software program Graphpad Prism (version 5.0, 

San Diego, California, USA) was used to analyze all statistical data. Data were subjected to 

either ANOVA with repeated measures where appropriate, followed by Bonferroni's posthoc 

test or non - parametric methods that included the Kruskal-Wallis and Mann-Whitney U tests. 

The t-test was used to test for a significant difference between two groups. The p value that 

was less than 0.05 was considered significant.  
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CHAPTER 3 

Results 

 

Study A 

 

3.1  Behavioural results 

All rats were subjected to three days of learning trials and a pre- i.c. injection test was 

performed on day 4. The rats then received bilateral injections (10 μl, i.c.) of either Tris 

buffer (TB 0.15 M) or Aβ42 (2 mM) directly into the dorsal hippocampus. A 2-day period of 

recovery was allowed subsequent to the i.c. injections. The rats then underwent post- i.c. 

injection tests in the same MWM to determine the integrity of memory of the rats. All rats 

showed good learning ability before the i.c. injections (this was when trial 1 was compared to 

the pre- i.c. injection test using repeated measures ANOVA of the latency to reach the hidden 

platform), see Appendix A.  

The ANOVA showed that there were significant differences between groups (F (3, 36) = 4.00, 

p = 0.01, Figure 3.1 n = 10/group). Bonferroni's posthoc test showed that there was a 

significant difference in time taken to find the hidden platform in the MWM when the Aβ42 

pre-injection test was compared to Aβ42 post-injection test (18.20 ± 7.28 vs 49.60 ± 10.22, p 

< 0.05). The time taken to find the hidden platform by the Aβ42 group post- i.c. injection of 

Aβ42 was also significantly different from the TB post-injection test (49.60 ± 10.22 vs 16.10 

± 4.22, p < 0.05), (Figure 3.1). 

Sixty percent of the rats in the TB-injected group showed decreased time to reach the hidden 

platform vs 80 % of the rats in the Aβ42-injected group who showed an increased time to 

reach the hidden platform in the MWM when the post- i.c. injection test was compared to the 

pre- i.c. injection test of the same rats in their respective groups (Figure 3.2 A and B).   

The first aim of the present study was to establish and characterize a rat model that may 

resemble some of the symptoms of AD. We now had face validity through the MWM 

behavioural results and we were confident that a single bilateral i.c. injection of Aβ42 (2 mM) 

into the dorsal hippocampus impaired spatial learning and memory in adult male SD rats. 
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Several hypotheses of mechanisms of the neurotoxic effects of Aβ42 exist; we investigated 

inflammation, oxidative stress and apoptosis to test these hypotheses in our model. 

 

3.2  TNF-α ELISA results 

Literature suggests that one of the earliest disruptions that occur in the brain following Aβ42 

aggregation is the upregulation of inflammatory cytokines. TNF-α is one of the cytokines that 

has been observed to be upregulated in AD patients following Aβ aggregation (Johnstone et 

al., 1999, Akiyama et al., 2000). We performed an ELISA to determine the levels of TNF-α 

in the dorsal hippocampi of our TB- vs Aβ42-injected rats for validation of these previous 

findings in the present rat model of AD. The linear range for the ELISA is indicated in 

chapter 2 (2.5.2 ELISA). The t-test analysis of hippocampal TNF-α levels did not show any 

significant difference (5190 ± 186.70 vs 5032 ± 440.40, p > 0.05) when the TB- and Aβ42-

injected rats were compared (Figure 3.3). 

 

3.3 4HNE Western blot results 

It is unclear whether increased ROS production causes Aβ42 aggregation in the AD brain or 

vice versa, but there is certainty that disruption of the metabolic pathways of one of the ROS 

products has detrimental effects on the physiological homeostatic balance of an organism. 

We measured 4HNE levels in the dorsal hippocampi using Western blotting. 4HNE is a 

product formed when ROS react with the lipid bilayer of cell membranes. The aim was to 

determine whether oxidative stress was one of the mechanisms by which Aβ42 exerted its 

neurotoxic effects. The linear range and protein amounts used for the Western blots are 

indicated in chapter 2 (2.5.3 Western Blotting). The t-test showed that there was no 

significant difference between the Aβ42- and the TB-injected rats when the 2 groups were 

compared  (4.60 ± 0.35 vs 4.30 ± 0.61, p > 0.05), (Figure 3.4). 
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Figure 3.1: Graph showing time taken by TB-injected and Aβ42-injected rats to find the 

hidden platform in the MWM. The pre-injection test is the test before the i.c injection of TB 

or Aβ42 (10 μl, i.c., bilaterally) to create lesions similar to those observed in AD. The 

significant difference observed between the Aβ42 pre-injection test vs Aβ42 post-injection test 

(18.20 ± 7.28 vs 49.60 ± 10.22, *p < 0.05), shows a decrease in ability to recall the location 

of the platform in the rats injected with Aβ42. The significant different observed when Aβ42 

post-injection test was compared to TB pre and post-injection tests (49.60 ± 10.22 vs 23.30 ± 

8.07 and 49.60 ± 10.22 vs 16.10 ± 4.22, *p < 0.05), show that TB- i.c. injections did not 

impair recall ability of the control rats in the MWM. 

 

 



35 
 

 

 

Figure 3.2: Diagram showing percentage change in the time taken to find the hidden platform 

in the MWM when the post- i.c. injection test of the TB- and Aβ42-injected rats was 

compared to the pre- i.c. injection test of the same rats in their respective groups. The pre - 

injection test was taken as 100 % for all comparisons. Figure 3.2 A shows post-  vs pre- i.c. 

injection test of the TB-injected rats. Sixty percent of the rats in this group showed decreased 

time to reach the hidden platform vs the 40 % that showed an increased time to reach the 

hidden platform. Figure 3.2 B shows post-  vs pre- i.c. injection test of the Aβ42-injected rats. 

Eighty percent of the rats in this group showed an increased time to reach the hidden platform 

vs 20% that showed a decreased time to reach the hidden platform. 
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Figure 3.3: Graph showing expression of TNF-α in the dorsal hippocampus of TB vs Aβ42-

injected rats. The t-test analysis of our TNF-α results did not show any significant difference 

(519 ± 186.70 vs 5032 ± 440.40, p > 0.05) when the TB and Aβ42-injected groups were 

compared. 
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Figure 3.4: Graph showing 4HNE Western blot results obtained for the dorsal hippocampi of 

Aβ42- vs TB-injected. The t-test analysis showed that there was no significant difference 

between the 2 groups (4.60 ± 0.35 vs 4.30 ± 0.61, p > 0.05). 
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Study B 

 

3.4  Behavioural results 

A similar trend was observed in the MEPTIDES-treated groups. The ANOVA showed a trend 

for the groups to be different from each other (F (7, 69) = 2.10, p = 0.05, Figure 3.5 n = 

10/group). Bonferroni's posthoc test showed a significantly increased time to find the hidden 

platform in the Aβ42 post-injection test 1, which is the first test before i.p. injection of 

MEPTIDES, compared to the Aβ42 pre-injection test (17.60 ± 4.24 vs 56.00 ± 12.41, p < 

0.05). This time was significantly reduced 24 hours after the first MEPTIDES i.p. injection in 

the same group (56.00 ± 12.41vs 21.50 ± 5.27,
 
p < 0.05), (Figure 3.5). 

  

3.5  C3 qPCR results  

There is extensive evidence to suggest that aggregation of Aβ42 in susceptible brain regions 

causes cell death (Loo et al., 1993, Awasthi et al., 2005) which leads to a decreased number 

of functional synapses. In the cerebral cortex specifically, this is associated with the dementia 

that is observed in AD patients. One of the mechanisms of cell death caused by Aβ is through 

activation of the caspase pathway (Cetin, 2013, Awasthi et al., 2005). We performed C3 gene 

qPCR and C3 protein Western blot analysis to test this theory in our model.  

There was a significant difference between groups in C3 gene expression revealed by 

ANOVA (F (3, 12) = 13.14, p = 0.0004). Bonferroni's posthoc test showed a significant 

upregulation of the C3 gene when the Aβ42-injected rats were compared to TB-injected rats 

(2.54 ± 0.45 vs 1.155 ± 0.11, p < 0.05). Notably, C3 gene expression decreased significantly 

to baseline levels when Aβ42-injected rats were compared to MEPTIDES-treated Aβ42-

injected rats (2.54 ± 0.45 vs 0.77 ± 0.04, p < 0.05), (Figure 3.6). 
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3.6 C3 Western blots results 

Western blot results for C3 protein levels in dorsal hippocampal tissue of TB-injected, Aβ42-

injected, and MEPTIDE (2 mg/kg)-treated rats are shown in Figure 3.7 A and B. The linear 

range and protein amounts used in the Western blot are outlined in chapter 2 (2.5.3 Western 

Blotting). The t-test analysis of TB- vs Aβ42-injected rats did not show any significant 

difference in the dorsal hippocampal C3 protein levels (1.38 ± 0.09 vs 1.55 ± 0.27, p > 0.05), 

(Figure 3.7 A). The t-test analysis of the MEPTIDE (2 mg/kg)-treated TB- vs Aβ42-injected 

rats also did not show any significant difference when the 2 groups were compared (0.19 ± 

0.04 vs 0.11 ± 0.01, p > 0.05), (Figure 3.7 B).  

 

3.7  MALDI TOF MS results 

MALDI TOF MS was performed on brain samples that were from the TB-injected + 

MEPTIDES-treated rats vs Aβ42-injected + MEPTIDES-treated rats to determine whether 

MEPTIDES cross the BBB and their abundance in the brain. Optimization was first done by 

spotting the MEPTIDES on the metal target plate (Bruker Daltonics, Germany) and a naïve 

rat brain (see Appendix D). The different methods used to obtain spectra are outlined in 

chapter 2 (2.5.4.2 MALDI IMS detection limits and MS/MS verification). Na
+
 adducts of 

MEPTIDES (722.41 ± 0.20 % m/z) or Na
+
/K

+
 adducts of fragments (674.12 ± 0.2 % m/z and 

690.043 ± 0.2 % m/z)  thereof were obtained. The Na
+
/K

+
 adducts of the fragments are 

indicated by a peak at 712.41 ± 0.20 % m/z (see Appendix D).  The m/z values obtained from 

the optimization results were used to analyze experimental brain tissue. There was a  greater 

abundance of the Na
+
/K

+
 adduct of  the  fragments in the MEPTIDES-treated Aβ42-injected 

rat brain (Figure 3.8 C) when it was compared to the MEPTIDES-treated TB-injected brain 

(712.41± 0.20 % m/z) (Figure 3.8 B). This peak was not observed in the control naïve brain 

(Figure 3.8 A).  
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Figure 3.5: Graph showing time taken by MEPTIDES-treated TB-injected and Aβ42-injected 

rats to find the hidden platform in the MWM. The significant difference observed between 

the pre-injection test vs the post-injection test 1, which is the first test before i.p. injection of 

MEPTIDES in the Aβ42-injected group (17.60 ± 4.24 vs 56.00 ± 12.41, *p < 0.05) shows a 

decrease in ability to recall the location of the platform in the rats injected with Aβ42 and is 

similar to that of the Aβ42-injected group in Figure 3.1. This time however, was significantly 

reduced 24 hours after the first i.p. injection of MEPTIDES in the same Aβ42-injected group 

(56.00 ± 12.41vs 21.50 ± 5.27,
 #

p < 0.05).  
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Figure 3.6: Graph showing qPCR expression of the C3 gene in the dorsal hippocampal tissue 

of TB- and Aβ42-injected rats vs MEPTIDES (2 mg/kg)-treated TB- and Aβ42-injected rats. 

The i.c Aβ42 injection significantly increased the expression of the C3 gene when the Aβ42-

injected rats were compared to TB-injected rats (2.54 ± 0.45 vs 1.16 ± 0.11, *p < 0.05). Three 

injections of MEPTIDES (2 mg/kg, i.p.) over a 3-day period reversed the effect of Aβ42 on 

C3 gene expression when Aβ42-injected rats were compared to the MEPTIDES-treated Aβ42 

rats (2.54 ± 0.45 vs 0.77 ± 0.04, *p < 0.05). 
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Figure 3.7: Graphs showing Western blot results for C3 protein levels in dorsal hippocampal 

tissue of TB-injected, Aβ-injected, and MEPTIDE (2 mg/kg)-treated rats. The t-test analysis 

of TB- vs Aβ-injected rats did not show any significant difference in dorsal hippocampal C3 

levels (1.38 ± 0.09 vs 1.55 ± 0.27, p > 0.05), (Figure 3.7 A). The t-test analysis of the 

MEPTIDE (2 mg/kg)-treated TB- vs Aβ-injected rats also did not show any significant 

difference when the 2 groups were compared (0.19 ± 0.04 vs 0.11 ± 0.01, p > 0.05), (Figure 

3.7 B).  
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Figure 3.8: Diagrams showing presence and abundance of MEPTIDES derived metabolites in 

the rat brain. Figure 3.8 A shows naïve brain. Figure 3.8 B shows TB-injected MEPTIDES-

treated rat brain. Figure 3.8 C shows Aβ42-injected MEPTIDES-treated rat brain. There was a  

higher abundance of the Na
+
/K

+
 adduct of  the (690.04 ± 0.20 % and 674.13 ± 0.20 % m/z 

respectively) fragments in the MEPTIDES-treated Aβ42-injected brain (Figure 3.8 C) when it 

was compared to the MEPTIDES-treated TB-injected brain (712.41± 0.20 % m/z) (Figure 3.8 

B). This peak was not observed in the control naïve brain (Figure 3.8 A). The peak of interest 

(712.41± 0.20 % m/z) in all MALDI TOF MS results is indicated by the red line. The colour 

legend represents the intensity of the peak of interest. 
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CHAPTER 4 

Discussion 

 

 

 

 

The hippocampus is one of the limbic structures of the brain that plays a prominent role in 

cognitive processes such as learning, memory storage and spatial navigation. Not surprisingly 

it is also the brain area that is first to show damage in people suffering from cognitive 

impairments (Colombo and Broadbent, 2000) . Because of its devastating effects on the 

quality of life, rodent models have been developed to study the pathophysiology of disorders 

associated with abnormalities in learning and memory. 

The aims of the present study were to establish and characterize a rat model that may resemble 

some of the symptoms of AD and to evaluate the efficacy of MEPTIDES in vivo as a possible 

anti-AD drug.  

 

 In 2 studies we showed that a single i.c. injection of Aβ42 into the dorsal hippocampus 

increased the time taken by rats to find the hidden platform in the MWM test. Rats treated 

with MEPTIDES for 3 days after the intra-hippocampal Aβ42 injection found the platform in 

significantly less time than saline-treated rats, suggesting that the MEPTIDES had prevented 

the development of cognitive impairment in the Aβ42-injected rats. These findings are in 

agreement with previous studies where MEPTIDES were shown to reduce Aβ42-related 

neurotoxicity in vitro and in Drosophila melanogaster. Pratim Bose et al. (2009) Showed that 

di-or tri-methylation retarded the appearance of the β-structure of Aβ40 to 4-5 hours and for 

Aβ42 to 3 hours. Penta-methylation in contrast, completely prevented β-sheet formation by 

Aβ40 during the time period studied and delayed the appearance of Aβ42 β-sheet structure to 4 

hours. This suggested that the penta-methylated peptide is more efficient than the less 

methylated peptides in reducing formation of oligomers with β-sheet structure from Aβ40 and 

Aβ42. The penta-methylated peptide resulted in prolonged life span in Drosophila expressing 

Aβ42 but had no effect on the life span of wild type Drosophila treated with the penta-
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methylated peptide only (Pratim Bose et al., 2009), indicating that the mode of action of 

MEPTIDES is Aβ specific. These results influenced and motivated the current investigations 

to evaluate whether MEPTIDES have similar effects in mammalian systems. 

 

 

Behavioural results obtained in our study showed impairment in cognitive function of the 

Aβ42-injected rats when they were compared to vehicle (TB) injected rats in the Morris Water 

Maze (MWM). The Aβ42-injected rats took longer to find the hidden platform than vehicle-

injected rats. Interestingly our findings show approximately 70 % of the Aβ42-injected rats 

had difficulty completing the behavioural task during post-injection test 1, which is the test 

conducted 48 hours after the i.c. injection of Aβ42. We attributed this observation to the toxic 

activity of our Aβ42. These findings were significant in the context that 60 % of AD patients 

do not display cognitive deficit symptoms until the disease reaches severe stages (Findeis, 

2007). Our data confirmed the damaging effects of Aβ42, and highlights the devastating 

consequences it may have when left uncontrolled. However, we also recognize that AD is 

progressive in nature, and develops over many years. We therefore proposed that learning 

and memory deficits may not be the earliest sign of AD and that there may be other earlier 

markers of this detrimental disease.  

 

It is undoubtable that there is increased inflammation in the AD brain, and microglia 

contribute largely to this inflammation (Frautschy et al., 1998). The neuro-inflammatory 

response is therefore thought to be a secondary event subsequent to neuronal damage and 

degeneration. Inflammation in AD can be described as an upregulation of the inflammatory 

pathway that initially acts as a defense mechanism in response to increased Aβ 

aggregation/plaque formation in the brain (Simic et al., 2009). Strangely some cytokines 

including TNF-α, have been observed to increase plaque formation by altering APP 

processing via upregulation of  the β-secretase enzyme (Heneka and O'Banion, 2007), the 

rate-limiting enzyme in Aβ production (Cole and Vassar, 2007). This observation has been 

supported by studies indicating that the majority of the neurotoxic effects attributed to 

microglia are exerted by TNF-α in the AD brain (Heneka and O'Banion, 2007).  It has 

subsequently been speculated that TNF-α contributes to Aβ formation by causing sustained 

activation of the β-secretase pathway leading to Aβ production in a vicious cycle that 

ultimately causes cell death. In contrast TNF-α (Rogers et al., 1996) suggested to protect 
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against glutamate, ROS and Aβ neurotoxicity (Akiyama et al., 2000) in AD. The function of 

TNF-α may be concentration dependent as previous findings by Johnstone et al. (1999) which 

showed that Aβ40 and Aβ42 stimulated the release of chemokines and TNF-α in particular, to 

different extents. In our experiments we measured TNF-α using a sandwich ELISA and found 

no differences between control and Aβ42 rats. While our data appear to be contrary to those of 

others, the difference in findings may be a result of variations in experimental protocols.  

 

Increased production of ROS/free radicals leads to oxidative stress (Rosenfeldt et al., 2013) 

and ultimately apoptosis (Loo et al., 1993). Detection of these pathophysiological entities has 

been proposed as possible early biomarkers of AD. 4HNE is a major cytotoxic product from 

the class of α- and β-unsaturated aldehydes (Camandola et al., 2000) that is used as a marker 

for the occurrence and extent of lipid peroxidation (Schneider et al., 2001). We found that 

Aβ42 injection into the dorsal hippocampus did not alter 4HNE levels when compared to 

vehicle-injected control rats. The results of the present study therefore suggest that Aβ42 

injection into the dorsal hippocampus does not increase lipid peroxidation or oxidative stress 

in the rat brain. A study by Tsirulnikov et al. (2012) demonstrated that the deacetylation of 

mercapturic acids formed in the GSH conjugation metabolism of 4HNE is aminoacyclase 3 

(AA3) mediated in neurons and might initiate a chain of reactions leading to transformation 

of macromolecules that might participate in AD pathology. Although data from our study is 

in contrast to earlier studies reporting elevated levels of HNE-lysine adducts in AD 

hippocampal tissue sections and increased 4HNE levels in N2a/D9 cells (Sayre et al., 1997, 

Liu et al., 2013), it is supported by a study by Yao et al. (1999) which showed that lipid 

peroxidation does not mediate Aβ-induced cell death in PC 12 cells, and we postulate that 

this may in part responsible for the results of the present study. We cannot neglect vast 

differences in results associated with studies conducted in vitro and in vivo. We also believe 

that our experimental timeline for the animal studies was short for detectable differences in 

the 4HNE levels, as this marker is used to measure chronic oxidative stress.  

 

Caspases are a family of aspartate-specific cysteinyl proteases that are produced as 

catalytically inactive zymogens in cells (Chai et al., 2000). Executioner caspases-3 and -7 are 

a subset that cleaves specific substrates leading to alterations linked to apoptosis viz. 

chromatin condensation, DNA fragmentation, blebbing of plasma membrane, cell shrinkage 
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and ultimately cell death (Kasibhatla and Tseng, 2003). A biochemical feature associated 

with apoptosis is the expression of cell surface markers. The externalisation of 

phosphatidylserine (PS), a transmembrane glycoprotein of the phospholipid bilayer signals 

early phagocytosis of apoptotic cells with minimal compromise to adjacent and surrounding 

tissue (Bratton et al., 1997). Mitochondria play an important role in apoptosis, via the 

intrinsic apoptotic program. An initial crucial step for activation of the intrinsic apoptotic 

pathway is depolarisation of the mitochondrial membrane. Depolarised mitochondrial 

membranes occur as a result of the formation of mitochondrial permeability transition (PT) 

pores (Hirsch et al., 1997). Altered mitochondrial PT has been associated with various 

metabolic consequences such as halted functioning of the electron transport chain (ETC) with 

associated elevation in ROS and decreased production of cellular ATP (Wang, 2001). Bax, a 

pro-apoptotic protein of the Bcl-2 family, translocates from the cytosol to the outer 

mitochondrial membrane during apoptosis where it interacts with lipids and induces 

mitochondrial PT pores. Findings from Loo et al. (1993) showed severe surface blebbing, 

internucleosomal DNA fragmentation and shrunken neurons in cultured neurons 24 hours 

after exposure to Aβ. In another study by Awasthi et al. (2005), Aβ42 inhibited cell 

proliferation by approximately 80 % when compared to the control value, caused 

morphological changes to the cells in a dose- and time-dependent manner and caused 

apoptosis of IMR-32 cells through activation of caspase-8, -9 and -3. It was concluded in this 

study that Aβ42 activated initiator caspase-9, which is responsible for the activation of 

executioner C3 which causes apoptosis. In our study we observed an upregulation of the C3 

gene but no change C3 protein levels as a result of Aβ42 injection into the dorsal 

hippocampus compared to control vehicle-injected rats, using qPCR and Western blot. This is 

an interesting finding as it indicates increased gene transcription, without concomitant raise 

in protein level. A reasonable explanation for this observation may be that C3 turnover could 

have been accelerated. However the catabolic products of C3 have not been measured in the 

present study, so this explanation remains speculative. Nevertheless misalignment between 

gene transcription and protein synthesis is not new, since other researchers have experienced 

similar results. A study by Glanemann et al. (2003) showed that large increases in gene 

expression are not congruent with changes in enzyme activity. In another study,Ghazalpour et 

al. (2011) showed that levels of transcripts and proteins correlated significantly for only about 

50 % of the genes that they tested, with an average correlation of 0.27, and these correlations 

varied depending on the cellular location and biological function of the gene. Schwanhausser 

et al. (2011) Found that mRNA levels only explained around 40% of the variability in protein 
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levels, and protein abundance seemed to be predominantly regulated at the ribosome, which 

highlighted the importance of translational control.
 
Compared to translational control, protein 

stability seems to have a minor role in cellular protein abundance. Despite the vast literature 

available on misalignment between gene transcription and protein synthesis, we speculate 

that on such a closely regulated cascade like the C3 apoptotic cascade, it necessary to gain 

insight into the exact time point of the synthesis C3 protein in the pathway to be able to detect 

any subtle changes in its expression thereof.  We postulate that C3 protein may not have a 

direct impact in behavior from the present study; it is rather the changes in the abundance and 

distribution of the C3 and other proteins which are responsible for the behavioural changes 

that we observed. 

 

Promising, was the fact that MEPTIDES showed positive effects on behaviour and also 

down-regulated C3 gene expression increases induced by Aβ42. Pratim Bose et al. (2009) 

Found that MEPTIDES could be incorporated into the hydrophobic core of Aβ oligomers and 

thus prevent Aβ aggregation in vitro. This was proposed as the mechanism of action of 

MEPTIDES in lowering Aβ associated toxicity in vitro. Another study by Awasthi et al. 

(2005) where short peptide Aβ15-22, (8 AAs in length) were used, reported an inhibition of 

Aβ42 self-aggregation and hydrolytic activities in vivo. This decrease was accompanied by a 

corresponding decrease in Aβ-induced apoptosis. In a similar study by Sigurdsson et al. 

(2000), pentapeptides LPFFD suggested in vivo reversal of Aβ lesion in the rat brain. We 

postulate that the mechanism of action of MEPTIDES in vivo may be the same as its action in 

vitro and similar to what other previously reported short peptides of variable lengths of Aβ 

have shown. But it is not known whether MEPTIDES cross the blood brain barrier, and since 

methylation changes the chemical properties and confers rigidity to a compound which may 

affect its behaviour in several environments, it became necessary that we determined whether 

MEPTIDES did in fact cross the blood brain barrier in order to be able to attribute the effects 

that we have observed solely to the MEPTIDES. This was performed by MALDI-TOF MS. 

 

The MALDI-TOF results revealed that there was a significantly greater abundance of the 

Na
+
/K

+ 
adduct (≈713Da) of the fragments that were previously obtained during the 

optimization process in the Aβ42 + MEPTIDES brain when it was compared to TB + 

MEPTIDES brain. We did not observe this peak in the control naïve brain. Silverberg et al. 
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(2003) Found that there was a coexistence of AD and adult-onset normal pressure chronic 

hydrocephalus (NPH) suggesting that AD and NPH are related and have a common 

physiological basis in cerebrospinal fluid (CSF) circulatory dysfunction and failure. CSF 

functions include buoyancy, acid base buffering and transport of molecules and 

micronutrients to and from the brain parenchyma. Failure of CSF to detoxify the brain may 

lead to aggregation of Aβ and other unidentified toxins (Silverberg et al., 2003). Endothelial 

receptors for Aβ disappear with age, this leads to increased parenchymal Aβ deposition since 

Aβ  has been observed to cross the BBB via capillaries and this happens to also be the 

primary route for its clearance (Silverberg et al., 2003). However, Aβ overproduction is not 

the only factor that determines whether Aβ will aggregate or not, particularly in late onset AD 

where Aβ overproduction does not seem to play a role (DeMattos et al., 2002). Other factors 

controlling local metabolism as well as clearance to plasma also seem to play a role 

(DeMattos et al., 2002). We postulate that it is these disruptions in CSF chemistry and BBB 

membrane integrity coupled with the Aβ specific nature of MEPTIDES (Pratim Bose et al., 

2009) that lead to greater penetrance of MEPTIDES into the Aβ42-exposed brain where it is 

able to perform the function of lowering Aβ42 associated neurotoxicity.  
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CHAPTER 5 

Summary and Conclusion 

 

 

5.0 Summary 

Substantial evidence exists that indicate Aβ to be one of the etiological factors in the 

development of AD. Since memory impairment is central to this neurological disorder, the 

present study focused on this characteristic symptom to investigate the possible therapeutic 

potential of a novel drug. The aims of the present study were to, establish and characterize a 

rat model that mimics the cognitive symptoms of AD and to evaluate the efficacy of 

MEPTIDES in vivo as a possible anti-AD drug. A single i.c. injection of Aβ42 (2 mM) was 

administered stereotaxically into the dorsal hippocampus of adult male SD rats and spatial 

learning and memory tests were conducted using the MWM. The rats showed deficits in 

learning and memory following intra-hippocampal injection of Aβ42, and these deficits were 

reversed by i.p. injections of MEPTIDES (2 mg/kg) over a 3 day period. Biochemical 

analysis of hippocampal brain tissue showed upregulation of the C3 gene in the Aβ42 rats. 

There was a downregulation of the C3 gene but no difference in C3 protein levels in the Aβ42 

rats that also received MEPTIDES i.p. There was also a high abundance of Na
+
/K

+ 
adducts of 

the MEPTIDES fragments in the Aβ42-injected brain when compared to the vehicle-injected 

rat brain. The present study is the first study to document that MEPTIDES cross BBB and it 

is also the first study to document the in vivo effects of MEPTIDES. 

 

5.1 Conclusion 

Findings from this study showed that a single bilateral intrahippocampal injection of Aβ42 

induces deficits in cognitive function in adult male SD rats by upregulating the C3 driven 

apoptotic pathway. MEPTIDES administered intraperitoneally get into the brain parenchyma 

in order to attenuate Aβ42 induced behavioural deficits. The mechanisms, by which 

MEPTIDES do so, include the downregulation of the C3 cascade. Our study further suggests 

that C3 cascade disruptions may be amongst the earliest markers of Aβ42-induced 

neurotoxicity. 
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Graphs showing the pre- and post-injection MWM results of the TB, Aβ42, TB + MEPTIDES 

and Aβ42 + MEPTIDES groups 
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WESTERN BLOT STANDARD CURVE
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Graph showing Western blot standard curve.  Standard samples OD range (0.221 – 1.901). 

Experimental tissue sample range (0.221 – 1.602). 

 

 

 

 

 

 

 

 

 

Graph showing TNF-Alpha ELISA standard curve. Standard samples OD range (0.000 – 

1.125). Experimental tissue sample range (0.393 – 0.518) 
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Laemli Buffer system 

Stock solutions 

1. Acrylamide/Bis (30 %) 

a. 87.6 g acrylamide (29.2 g/100 ml) 

b. 2.4 g N’N’-bis-methylene-acrylamide (0.8 g/100 ml) 

Make to 300 ml with distilled water. Filter and store at 4°C in dark. (Up to 30 days 

maximum) 

2. 10 % SDS 

Dissolve 10 g of SDS in 90 ml distilled water with gentle stirring and make up to 100 

ml using deionised water. 

 

3. 1.5 M Tris-HCl, pH 8.8 

a. 27.23 g Tris base (18.15 g/100 ml) 

b. 80 ml distilled water 

Adjust pH to 8.8 with 6 N HCl. Bring total volume to 150 ml using distilled water 

after adjusting pH. Store at 4 °C. 

4. 0.5 M Tris-HCl, pH 6.8 

a. 6 g Tris Base 

b. 60 ml distilled water 

Adjust pH to 6.8 using 6N HCl. Bring total volume to 100 ml using distilled water 

after adjusting pH. Store at 4 °C. 

5. 10 % APS (must be prepared fresh each time) 

a. 100 mg ammonium persulphate 

b. Dissolve in 1 ml distilled water 

 

6. Sample Buffer (Stock) 

a. 3.55 ml distilled water 

b. 1.25 ml 0.5 Tris-HCl pH 6.8 

c. 2.5 ml glycerol 

d. 2 ml 10 % SDS 
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e. 0.2 ml 0.5 % Bromophenol blue 

Total voume 9.5 ml. Store at room temperature. 

To use: Add 50 µL β-mercaptoethanol to 950 µl sample buffer prior to use. Dilute 

the sample at least 1:2 with sample buffer and heat at 95 °C for 4 minutes.  

 

7. 10 x Running buffer (Stock) 

a. 30.3 g Tris base 

b. 144 g Glycine 

c. 10 g SDS 

Dissolve and bring total volume up to 1000 ml (1 L) with distilled water. Do no 

adjust pH with acid or base. Store at 4 °C. If precipitation occurs warm to room 

temperature before use. 

To use: Dilute 50 ml of the 10 x stock with 450 ml distilled water for each run. 

Mix thoroughly before use. 

 

8. 10 x transfer buffer (Stock) 

a. 30.0 g Tris Base 

b. 144 g Glycine 

Dissolve and bring total volume to 1 L with distilled water. Do not adjust pH with 

acid or base. 

To use: Dilute 50 ml of the 10 x stock with 350 ml distilled water and 100 ml 

methanol. Mix thoroughly before use. 

 

9. 10 x TBS 

a. 87.66 g Sodium chloride 

b. 12.11 g Tris 

c. 40 ml HCl 

Make up to 1000 ml using distilled water. Adjust pH to 8.0. Note: 10 x TBS can 

be made in larger volumes and stored for long periods. 

To use: Dilute 100 ml TBS in 900 ml distilled water and mix thoroughly. 

 

10. 1 x TBS-T 
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Dilute 100 ml 10 x TBS in 900 ml distilled water and add 1 ml Tween 20. Mix 

thoroughly. 

 

11. RIPA buffer 

a. 8.76 g NaCl 

b. 10 ml Tris pH 7.2 (1 M Tris) 

c. 10 ml 10 % SDS 

d. 1ml Triton X 100 

e. 10 g Na deoxycholate 

f. 10 ml 0.5 M EDTA 

Make up to 1 L using distilled water and filter well before use. The buffer can be 

aliquoted in Eppendorf vials and stored at -20 °C. 

 

 

12. Bradford’s reagent (protein quantification) 

a. 50 mg Coomassie Brilliant Blue G250 

b. 50 ml methanol 

c. 100 ml 85 % Phosphoric acid 

d. 850 ml distilled water. 

Dissolve 50 mg Coomassie brilliant Blue G250 in 50 ml methanol. To this add 

100 ml phosphoric acid. Now add 500 ml distilled water. Filter and remove 

precipitates. Make up to 1 L using 350 ml distilled water. 
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Appendix C 

 

Western Blotting (SDS PAGE) 

 

Prepare gels (resolving gel and stacking gel) of required percentage. 

Note: While allowing resolving gel to set, cover the surface with isobutanol 

 

For 10 ml of resolving gel.  

Percent Gel Distilled H2O 

(ml) 

30% Acrylamide/Bis 

(ml) 

1.5 M Tris  

pH 8.8 

(ml) 

10% SDS 

(ml) 

10% 

APS 

(µl) 

TEMED 

(µl) 

4% 6.1 1.3 2.5 0.1 50 5 

7% 5.1 2.3 2.5 0.1 50 5 

10% 4.1 3.3 2.5 0.1 50 5 

12% 3.4 4.0 2.5 0.1 50 5 

14% 2.7 4.7 2.5 0.1 50 5 

16% 2.1 5.3 2.5 0.1 50 5 

 

Note: Add APS and TEMED immediately prior to pouring the gel 

 

4% Stacking gel:  

30% Acrylamide/Bis – 1.3 ml 

0.5M Tris pH 6.8 – 2.5 ml 

10% SDS – 100 µl 

Distilled water – 6 ml 

10% APS – 100 µl 

TEMED – 10 µl 

Note: Adjust the volumes above accordingly to prepare different amounts of gels.  Add APS and 

TEMED immediately prior to pouring the gel. 

       Electrophoresis 

- Samples must be boiled at 95°C for 5 minutes prior to loading 

- Assemble the electrophoresis apparatus and fill in 1x running buffer 
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- Load approx 5 µl of the protein marker being used 

- Load up to 25 µl (20 µg) protein in each well. (Note: Amount and volume of protein varies 

according to protein concentration, requirement and capacity of the wells) 

- Run the gels at 200V (400 mA) for about 45 to 50 minutes or until the bottom most marker 

band runs to the bottom of the gels 

- Equilibrate the gels in transfer buffer for about 10 mins 

Transfer 

- Soak 2 pieces of extra thick (2.4 mm) filter paper per gel OR 6 pieces of thick filter paper (0.8 

mm) per gel in transfer buffer 

- If using nitrocellulose membrane, wet it in transfer buffer; if using a PVDF membrane, wet it 

in methanol or ethanol for 30 sec. Following this, wash the membranes for 1-2 mins in water 

and equilibrate in transfer buffer for 10 mins with agitation 

- Assemble the sandwich for transfer on the cassette base: wet filter paper pieces at the 

bottom; membrane; the gel; the remaining wet filter paper pieces. Using the blot roller 

remove air bubbles 

- Place the cassette lid over the base and secure the lid making sure the lid is tightly closed 

and electrical contacts fit closely into the slots in the base. 

- Slide the cassette into the bay. 

- Choose a standard SD protocol from the BioRad menu 

- Initiate run by pressing the navigation button that corresponds to A: RUN for the upper bay 

and B: RUN for the lower bay. 

- After run is complete place the membranes in methanol for about 30 seconds and dry on a 

tissue paper 

Note: Always handle membranes using tweezers 

Blocking 

- The membrane is blocked in milk (5g fat free milk powder in 100 ml TBS-T). Prepare desired 

volume of milk. 25-30 ml is sufficient to immerse one membrane 

- Block for 2 hours OR overnight 
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Appendix D 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Date of acquisition 2014-07-15T17:18:24.644+00:00 

Acquisition method name  

Spectrum type 
Parent ion mass for ms/ms spectra 
Precursor ion selector lower mass limit 
Precursor ion selector upper mass limit 
CID valve/mode 
Number of shots 

LIFT  
722.41  
4.696  Da 
4.696  Da 
false 3000  

Bruker Daltonics flexAnalysis 

Instrument InfoUser   BDAL@DE 
Instrument FLEX-PC 
Instrument type autoflexTOF/TOF  
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Date of acquisition 2014-07-15T17:23:25.502+00:00 

Acquisition method name  

Spectrum type 
Parent ion mass for ms/ms spectra 
Precursor ion selector lower mass limit 
Precursor ion selector upper mass limit 
CID valve/mode 
Number of shots 

Instrument InfoUser   BDAL@DE 
Instrument FLEX-PC 

Instrument type autoflexTOF/TOF  

LIFT  
722.41  
4.696  Da 
4.696  Da 
false 2000  


