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Abstract

This dissertation studies the nonclassical shock waves which appears as limits of certain type

diffusive-dispersive regularisation to hyperbolic of conservation laws. Such shocks occur very often

when the flux function lacks the convexity especially when the initial conditions for Riemann problem

belong to different region of convexity. They have negative entropy dissipation. They do not verify

the classical Oleinik entropy criterion. The cubic function is taken as a flux function. The existence

and uniqueness of such shock waves are studied. They are constructed as limits of traveling-wave

solutions for diffusive-dispersive regularisation. A kinetic relation is introduced to choose a unique

nonclassical solution to the Riemann problem.

The numerical simulations are investigated using a transport-equilibrium scheme to enable com-

puting the nonclassical solution at the discrete level of kinetic function. The method is composed

of an equilibrium step containing the kinetic relation at any nonclassical shock and a transport step

advancing the discontinuity with time.
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Chapter 1

Introduction

This dissertation deals with the theory and the numerical computation of nonclassical solutions

of hyperbolic conservation laws in the form

ut + f(u)x = 0, u0(x), x ∈ R, (1.1)

where f : R → R is called the flux function, u : [0,∞) × R → R is called the conserved variable,

x ∈ R is the space variable, t ∈ [0,∞) is time, u0(x) is the initial condition. We are interested

generally in the solution of the Riemann problem where the initial condition u0(x) is of heaviside

type, possessing a single jump at the origin. For such Riemann problems, the weak solution is a

superposition of fixed states, separated by the so called Lax curves, provided an entropy condition

is satisfied. However, when the initial data do not satisfy the entropy condition, one can still find

a solution and it is refered to as a nonclassical shock. A nonclassical system of conservation law is

a system of conservation laws for which the solution comprises a nonclassical shock. Nonclassical

systems of conservation laws arise in macroscopic models for crowd dynamics [1] and some models

of magnetohydrodynamics [2].

In general, the weak solution of the Riemann problem with left and right states u− and u+

associated with a conservation law is not unique. Uniqueness is restored by requiring that the states

u+ and u− satisfy an entropy condition that can be either the Lax inequality or the Oleinik entropy

condition. These two conditions are obviously true when the flux function is convex. For nonconvex

flux, these entropy conditions may fail and one can still construct a unique weak solution provided

that the states u+ and u− satisfy a kinetic relation in the form u+ = K(u−). Just like for classical

1



shock where the entropic solution is obtained as a limit of a diffusive regularisation, nonclassical

solutions can also be obtained as a limit of a regularised equation with a diffusive and dispersive

term. The numerical solution of nonclassical system of conservation laws is done in this work using

the transport equilibrium scheme of Chalons [3]. The choice of this scheme is because it computes

accurately nonclassical shock front using the known kinetic relation.

The nonclassical solution of hyperbolic conservation laws has been introduced first by LeFloch [4].

The existence and the uniqueness is studied by Hayes and LeFloch [5–7] by considering diffusive-

dispersive regularization. They showed that the limit value given by diffusive-dispersive regularization

and many similar continuous or discrete models verify the single entropy inequality. They showed

that when the flux is convex, the entropy inequality select a unique weak solution of (1.1). However

when the flux lacks convexity or concavity, this is no longer true and there is room for an additional

selection criterion. Jacobs, McKinney and Shearer [8] and then Hayes and LeFloch [5] showed that

limits of diffusive-dispersive regularizations depend on sign of the diffusive-dispersive’s parameters

later called ε and δ. The limits do not coincide with the classical entropy solutions of Kruzkov-

Volpert’s theory for which is the problem (1.1) has a unique classical entropy solution [9,10]. For our

case we use the same regularisation by focusing on the case where ε > 0 and δ > 0 for cubic type as

flux function. In fact the case ε > 0 and δ < 0 gives the Lax shocks (classical shocks) [5,8]. We used

the kinetic relation function of propagation speed to restore the uniqueness by seting it to be equal

to entropy dissipation.

The numerical computation of nonclassical solution of conservation laws is studied by Hages et

al [5] where they compared the Beam-Warming and Lax-Wendroff schemes. They realised that the

Beam-Warming scheme produces the non-classical shocks while no such shocks are obtained with the

Lax-Wendroff scheme. The results obtained rely critically on the sign of the dispersion coefficient and

the type of function under consideration. LeFloch and Mohammadian [11] also computed numerically

the nonclassical solutions of conservation laws using high-order finite difference method. The main

point of the study was to numerically determine kinetic functions associated with corresponding

scheme. These approximations of the kinetic relation help to evaluate the ability of a scheme for

computing nonclassical shocks.

The rest of this dissertation is organised as follows; in Chapter 2 we present some generalities on

classical solution of systems of the conservation laws. Here an existence and uniqueness result of the

entropic (in the sense of Lax) solution of Riemann problems is presented and it appears the solution
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is a justaposition of fixed states separated by Lax curves. These Lax curves can either be rarefaction

waves, or shock waves or contact discontinuities waves. The solution can be computed numerically

using the finite volume method. This method, whose semi-discrete form is conservative ensure that

the discontinuous exact solution is captured accurately with the correct velocity of the shock front.

Chapter 3 is concerned with the theory of nonclassical solutions. The focus is on the scalar case.

To restore uniqueness for such problem the states across a nonclassical shock are required to satisfy

a so-called kinetic relation. This relation is expressed in terms of a kinetic function which in turn

is constructed using the geometrical properties of the flux function. It is important to note that

nonclassical shock appears in general for problem for which the flux function is not convex or not

concave.

Chapter 4 deals with a numerical method for the solution of nonclassical system of conservation

laws. This method called transport-equilibrium method consist of an equilibrium step where a

conservative scheme is modified so as to introduce an equilibrium at each interface where there is a

nonclassical shock and the transport step aims at propagating the corresponding discontinuity. The

algorithm is illustrated on many examples among which the cubic flux that is of concave-convex type.

Finally we present a conclusion and an outlook in Chapter 5.

3



Chapter 2

Preliminaries on systems of conservation

laws

In this chapter we present basic results and concepts on system of conservation laws which

arise naturally in applications as conservation of mass, momentum and energy. Most of the results

presented in this chapter are taken from [12–14]. The interested reader may consult [13] for the

analytical results and [15–19] for the numerical results on conservation laws in general.

We will first present results on scalar conservation laws and later consider the general case of

systems of conservation laws.

2.1 Scalar conservation laws

A scalar conservation law in one dimension is a first order partial differential equation in the

form

ut + f(u)x = 0, (2.1)

where u : [0,∞)×R→ R is called the conserved quantity, x ∈ R the space variable, t ∈ [0,∞) time,

and f : R→ R is the flux function.

The equation (2.1) is a suitable model for transport problems as illustrated below. Consider a

fluid of density u flowing in a pipe. Let x = a1 and x = a2 be the locations of two cross sections of
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the pipe. By integrating the equation (2.1) over the interval [a1, a2] ⊂ R, we find

d

dt

∫ a2

a1

u(t, x)dx =

∫ a2

a1

ut(t, x)dx = −
∫ a2

a1

f(u(t, x))xdx, (2.2)

=f(u(t, a1))− f(u(t, a2)), (2.3)

=[influx at a1]− [outflux at a2]. (2.4)

Hence the rate of change of u in the sections of the pipe limited by a cross section x = a1 and x = a2

depends only on the influx at x = a1 and the outflux at x = a2.

An example of such a problem is traffic flow for which u represent the number of vehicles per

kilometer and the flux f, in the LWR model [20, 21] has the form

f(u) = [v(u)u]x,

where v = v(u) is the average velocity of the cars. If umax is the maximum density of traffic and vmax

the maximum velocity of cars, the velocity is linearly decreasing from vmax when the density is zero

to zero when the density is umax. When the density of cars is zero, drivers will drive at the speed

vmax which in practice is the speed limit in the area. When the cars are in a bumper to bumper

situation (density close to umax), the drivers are driving with a speed close to zero.

Concepts of solution

A smooth solution of (2.1) is a function u which satisfies (2.1) at every (t, x) ∈ [0,∞) × R.

Smooth solution can be found using the method of characteristics. Indeed for smooth solution u the

equation (2.1) can be written in the equivalent quasilinear form

ut + f ′(u)ux = 0. (2.5)

Consider an initial condition u(0, x) = u0(x). The idea of the method of characteristics consists of

looking for the solution along a curve x = x(t), called a characteristic curve so that the function

u = u(t, x(t)) satisfies equation (2.5). The total derivative of u is then

du

dt
= ut(t, x(t)) +

dx

dt
(t)ux((t, x(t)) = 0. (2.6)
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Comparing (2.5) and (2.6) we see that the characteristics must satisfy

dx

dt
= f ′(u),

du

dt
= 0, u(0, x) = u0(x). (2.7)

Solving this system of ordinary differential equation provides a solution for the partial differential

equation (2.5).

For example consider the Cauchy problem for the advection equation

ut + αux = 0 u(0, x) = u0(x), (2.8)

where α ∈ R is given. The smooth solution of (2.8) is obtained by the method of characteristics.

Indeed the characteristics emanating from (0, ξ) satisfy

dx
dt

= α x = ξ at t = 0,

du
dt

= 0 u = u0(ξ) at t = 0.

Solving this system of equations and eliminating ξ, the solution of the advection equation is found

in the traveling waves form

u(t, x) = u0(x− αt). (2.9)

As another example, we consider the Cauchy problem for the inviscid Burger’s equation given by

ut +

(
u2

2

)
x

= 0, u(0, x) = −sinx. (2.10)

The smooth solution are found using the quasilinear form ut + uux = 0. The characteristics starting

at (0, ξ) satisfy
dx
dt

= u x = ξ at t = 0,

du
dt

= 0 u = − sin(ξ) at t = 0.

Solving these equations, we obtain

u = −sin(ξ), x = ξ − tsin(ξ).
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The characteristics through (0,−π
2
) is found by x = −π

2
+ t while the characteristics through (0, π

2
)

is found by x = π
2
− t. The two characteristics intersect at time t = T ∗ = π as illustrated in 2.1. This

leads to a multivalued solution which is not desirable, hence we aim at finding a weak solutions.

Figure 2.1: Two crossing characteristics of the Burger’s equation.

2.1.1 Weak solution

Definition 2.1.1. Assume that the flux function f is C1. A measurable function u : [0,∞)×R→ R

is weak solution of the system of conservation (2.1) if

u : [0,∞)× R 7→ Rn is continuous as function from [0,∞) into L1
loc and for all ϕ ∈ C1 with compact

support we have

∫ ∞
0

lim

{∫
[uϕt + f(u)ϕx]dxdt

}
= 0. (2.11)

A characterization of weak solutions is given in the following lemma.

Lemma 2.1.1. The piece-wise constant function

u(t, x) =

u
− if x < st,

u+ if x > st.

(2.12)

is weak solution of the conservation laws (2.1) if and only if

f(u+)− f(u−) = s(u+ − u−), (2.13)

where u−, u+ ∈ Rn, s ∈ R.
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Proof. 1. Let v be a test function that is a C1 function with compact support in Λ− and (Λ+), where

Λ+ = Λ ∩ {x > st}, Λ− = Λ ∩ {x < st}

Figure 2.2: Rankine Hugoniot diagramm

Let n be the vector field such that

n = [v, f(v)]ϕ = [vϕ, f(v)ϕ]

and

div(n) = [vϕ]t + [f(v)ϕ]x

= vϕt + f(v)ϕx

= vϕt + f(v)ϕx

The equation (2.11) becomes

∫ ∫
Λ+∪Λ−

div(n)dxdt = 0. (2.14)
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From the divergence theorem and the fact that ϕ = 0 on the boundary ∂Λ,

∫ ∫
Λ+∪Λ−

div(n)dxdt = 0 =

∫
∂Λ+

∂+ · nds+

∫
∂Λ−

∂,− ·nds (2.15)

where ∂−, ∂+ are the external normal vector to the domain Λ−, Λ+ respectively and ds the differential

of the arc-length along the line x = st defined by

∂+ds = (s,−1)dt, ∂−ds = (−s, 1)dt.

It follows from (2.15) that

∫
∂Λ+

∂+ · nds+

∫
∂Λ−

∂− · nds =

∫
[su+ − f(u+)]ϕ(t, st)dt+

∫
[−su− + f(u−)]ϕ(t, st)dt, (2.16)

Finally ∫
∂Λ+

∂+ · nds+

∫
∂Λ−

∂− · nds =

∫
[s(u+ − u−)− (f(u+)− f(u−))]ϕ(t, st)dt, (2.17)

Therefore ∫
[s(u+ − u−)− (f(u+)− f(u−))]ϕ(t, st)dt = 0. (2.18)

The equation (2.18) is true ∀ ϕ ∈ C1
c . This implies lemma (2.1.1).

2. Conversely let

γ0 = {(ξ(t), t)/t ∈ [0, T ] = I} ⊂ suppϕ suppϕ = Λ+ ∪ γ0 ∪ Λ−.

and

ξ′(t) =
[f(u)]

[u]
(ξ(t), t) ∀ t ∈ [0, T ].

We have

[f(u)](ξ(t), t)− [u]ξ′(t) = 0. (2.19)

By integrating (2.19) with respect to t we have

∫
I

{[f(u)](ξ(t), t)− [u](ξ(t), t)ξ′(t)}ϕ(ξ(t), t)dt = 0. (2.20)
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Let

ve = (v1, v2) = (1,−ξ′(t)).

It follows that

∫
I

{[f(u)]v1 + [u]v2}ϕdt = 0 =

∫
γ0

{f(u+)v1 + u+v2}ϕdt−
∫
γ0

{f(u−)v1 + u−v2}ϕdt. (2.21)

We will have ∫
γ0

{f(u+)v1 + u+v2}ϕdt =

∫
∂Λ+

{f(u+)v1 + u+v2}ϕdt. (2.22)

By using the divergence theorem

∫
∂Λ+

{f(u+)v1 + u+v2}ϕdt =

∫ ∫
Λ+

{uϕt + f(u)ϕx}ϕdxdt+

∫ ∫
Λ+

{ut + f(u)x}ϕdxdt. (2.23)

But since our solution is classical outside of the shock we have

∫ ∫
Λ+

{ut + f(u)x}ϕdxdt = 0. (2.24)

Therefore we have

∫
γ0

{f(u+)v1 + u+v2}ϕdt =

∫ ∫
Λ+

{uϕt + f(u)ϕx}ϕdxdt. (2.25)

Similarly we have ∫
I

{[f(u)]v1 + [u]v2}ϕdt = 0 = (2.26)

−
∫
γ0

{f(u−)v1 + u−v2}ϕdt =

∫ ∫
Λ−

{uϕt + f(u)ϕx}ϕdxdt. (2.27)

Putting (2.26) and (2.25) together equation (2.21) becomes

∫
I

{[f(u)]v1 + [u]v2}ϕdt = 0 =

∫ ∫
Λ+∪Λ−

{uϕt + f(u)ϕx}ϕdxdt. (2.28)

We have proved therefore the converse.

The formula (2.13) is called Rankine-Hugoniot condition. In the scalar case we can solve for s
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to get

s =
f(u+)− f(u−)

u+ − u−
(2.29)

called the shock speed and can be interpreted geometrically as the slope of the secant line passing

throught the point (u−, f(u−) and (u+, f(u+)) on the graph of flux function f.

Weak solution of system of conservation laws are not unique. Indeed consider the Riemann

problem for the Burger’s equation

ut +

(
u2

2

)
x

= 0, u(0, x) =

1 if x > 0,

0 if x < 0.

(2.30)

For 0 < ρ < 1,

uρ(t, x) =


0 if x < ρt

2
,

ρ if ρt
2
< x < (1+ρ)t

2
,

1 if x ≥ (1+ρ)t
2

.

(2.31)

is a weak solution.

In fact the piecewise constant function uρ satisfies the equation outside of the jumps and the

Rankine Hugoniot condition holds on the two lines of discontinuity {x = ρt
2
} and {x = (1+ρ)t

2
}. Hence

the problem (2.30) has an infinite number of solutions.

To single out the physically relevant solution, we need some admissibility conditions.

(1) Vanishing viscosity approach: This approach aims to look at the solutions of the conserva-

tion law (2.1) as the limit of a sequence of solution of the viscous model [13]

uεt + f(uε)x = εuεxx, (2.32)

as ε → 0. In fact for general n × n systems, the major problem resides in etablishing the

compactness of the approximating sequence [22]. We realise that uε(t, x) solves (2.32) if and
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only if uε(t, x) = u(t/ε, x/ε) for some function u which verifies

ut + J(u)ux = uxx, (2.33)

where J(u) is Jacobian matrix of f(u). In the analysis of vanishing viscosity approach the key

step is to derive a priori estimates on the stability of solutions of (2.33). The solution are now

taken from the viscous traveling profiles solutions of the form

u(t, x) = U(x− λt), (2.34)

where λ ∈ R and the function U must verifies the second order ODE

U ′′ = (J(U)− λ)U ′. (2.35)

In this new approach, the profile u(.) of a viscous solution is viewed locally as a superposition

of viscous traveling waves [22]. The scalar cases are fully obtained in [23,24].

(2) Lax inequality: A jump in the solution between two states u− and u+, satisfying the Rankine

Hugoniot condition, is admissible in the Lax sense, or satisfies the Lax entropy inequality if

f ′(u−) > s > f ′(u+). (2.36)

Example

Consider the following Initial value problem for the Burger’s equation

ut +

(
u2

2

)
x

= 0, u(0, x) =


0 if x < 0,

2 if 0 < x < 1,

1 if x > 1.

(2.37)

We aim at finding the unique entropy solution for all time t > 0. The initial condition has

two jumps, see Figure 2.3, one located at x = 0 and the other at x = 1. For the left jump,

u− = 0, u+ = 2 and the shock speed is found as s = 1. We see that f ′(u−) = 0 < s and the

Lax inequalities are not satisfied. Consequently, the entropy solution emanating from x = 0 is

a rarefaction wave. One can show in a similar way that the Lax inequalities hold for the right
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jump. Hence the solution emanating from x = 1 is a shock wave. The characteristics satisfy

dx

dt
=


0 if ξ < 0,

2 if 0 < ξ < 1,

1 if ξ > 1.

Hence those emanating from (0, ξ) satisfy

x =


ξ if ξ < 0,

2t+ ξ if 0 < ξ < 1,

t+ ξ if ξ > 1.

The rarefaction wave is bounded above by the curve x = 2t. The shock position satisfies

dx

dt
=

3

2
, x(0) = 1.

The solution is found by

x =
3

2
t+ 1.

The rarefaction wave crosses the shock wave when

2t =
3

2
t+ 1,

giving t = 2 and x(2) = 4. Consequently, the entropy solution of the problem for 0 ≤ t ≤ 2 is

given by

u(t, x) =



0 if x < 0,

x
t

if 0 < x < 2t,

2 if 2t < x < 3t
2

+ 1,

1 if x > 3t
2

+ 1.

(2.38)
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After the interaction, a shock emerges with its speed given by the Rankine-Hugoniot condition

dx

dt
=

x

2t
+

1

2
, x(2) = 4. (2.39)

Solving (2.39) gives the shock position

x(t) =
√
t+ t+ 2−

√
2.

The entropy solution of the problem (2.37) for t > 2 is therefore given by

u(t, x) =


0 if x < 0,

x
t

if 0 < x <
√
t+ t+ 2−

√
2,

1 if x >
√
t+ t+ 2−

√
2.

(2.40)

Figure 2.3: Initial condition (left) and characteristics propagation (right) for the example

2.2 System of conservation laws

A system of n× n conservation laws in one dimension is an equation of the form

∂tu+ ∂xf(u) = 0, (2.41)

where u : [0,∞)× R→ Rn, f : Rn → Rn.
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For smooth solutions the equation (2.41) is equivalent to the quasilinear form

ut + J(u)ux = 0, (2.42)

where J(u) = Df(u) is the Jacobian matrix of the flux f at the point u.

Definition 2.2.1. A system of conservation laws is said to be strictly hyperbolic if the Jacobian

matrix J(u) has n real, distinct eigenvalues.

For strictly hyperbolic systems of conservation laws, the eigenvalues can be sorted as

λ1(u) < λ2(u) < ..... < λn(u).

For these eigenvalues, we can find basis ri(u) and lj(u), i, j = 1, 2..., n. of right and left eigenvectors

respectively with the normalisation

lj(u).ri(u) = δij, (2.43)

where δij is the Kronecker delta defined by

δij =

1 if i = j,

0 if i 6= j.

(2.44)

Definition 2.2.2. i).The i-th field is genuinely nonlinear if for all u

Dλi(u) · ri(u) > 0.

ii).The i-th field is linearly degenerate if for all u

Dλi(u) · ri(u) = 0,

where D denotes the derivative with respect to the conserved variable u.
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2.2.1 Linear system

Consider the Cauchy problem for a linear system of conservation laws

ut + Aux = 0, u(0, x) = ū(x), (2.45)

where A is an n × n constant matrix with real and distinct eigenvalues λi, and corresponding left

and right eigenvectors ri and lj, i = 1, . . . , n. For smooth solutions, we can write the components of

the vector u in the basis of right eigenvectors as

uj = lj · u.

Multiplying (2.45) on the left by lj, gives

(uj)t + λj(uj)x = 0; uj(0, x) = ūj(x), j = 1, . . . , n. (2.46)

(2.46) is scalar advection equation whose solution is given by

uj(t, x) = ūj(x− λjt).

The solution of the Cauchy problem is then

u(t, x) =
n∑
j=1

ūj(x− αjt)rj. (2.47)

For the Riemann problem (2.45), the initial condition ū(x) satisfies

ū(x) =

u
− if x < 0,

u+ if x > 0.

(2.48)

We can write the jump in the initial data u+ − u− as linear combination of the right eigenvectors of

A

u+ − u− =
n∑
j=1

ϑjrj.
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where ϑj, j = 1, ...n are scalars. We construct the intermediate states

ψj = u− +
∑
i≤j

ϑiri, j = 0, ...n.

so that the difference

ψj − ψj−1 =
∑
i≤j

ϑiri −
∑
i≤j−1

ϑiri = ϑjrj

is a j-eigenvector of A. The corresponding solution of (2.45) with ū as in (2.48) is

u(t, x) =



ψ0 = u− if x
t
< λ1,

.....

ψj for λj <
x
t
< λj+1,

.....

ψn = u+ if x
t
> λn.

(2.49)

2.2.2 Admissibility condition

As for the scalar case, the weak solution of system of conservation laws are not unique. Further

admissibility conditions that aim to single out the physically relevant solution are presented below.

Entropy inequality

Definition 2.2.3. A continuously differentiable function U : Rn 7→ R is called an entropy for the

system of conservation laws (2.1) with entropy flux F : Rn 7→ R if

DU(u)Df(u) = DF(u), ∀u ∈ Rn, (2.50)

holds.

The pair (U ,F) is called an entropy-entropy flux pair for the system of conservation laws (2.1).

A weak solution u of a system of conservation laws satisfy an entropy inequality if

U(u)t + F(u)x 6 0, (2.51)
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holds, for all entropy-entropy flux pair (U ,F).

Finding an entropy-entropy flux pair is easy when n = 2. Indeed in this case (2.50) is a system

of 2 partial differential equations. But when n ≥ 3 the system (2.50) is overdetermined. In fact for

n×n systems the equations (2.50) can be regarded as a first order differential system of n equations

for two scalar functions variables U , F . Note that when we have an entropy-entropy flux pair (U ,F),

then for a smooth solution u of the conservation laws the associated image U(u), satisfies

U(u)t + F(u)x = 0, (2.52)

holds. Indeed

U(u)t + F(u)x = DU(u)ut +DF(u)ux = DU(u)(−Df(u)ux) +DF(u)ux = 0. (2.53)

For Burger’s equation for which the flux function is f(u) = u2

2
, an entropy-entropy flux pair is found

as

U(u) = u3, F(u) =
3u4

4
.

In fact we have from the equation (2.50) U ′(u)f ′(u) = F ′(u). Since f ′(u) = u, we let U(u) = u3,

and then F ′(u) = 3u3. Integrating gives F(u) = 3u4

4
. The function

u(t, x) =

1 if x < t
2
,

0 if x > t
2
,

(2.54)

is a discontinuous weak entropy solution for the Burger’s equation. Indeed, at the point of jump, the

following entropy inequality is satisfied:

F(u+)−F(u−) < s[U(u+)− U(u−)].

This is because here s = 1
2
, u− = 1, u+ = 0, and then F(u+)−F(u−) = −3

4
and U(u+)−U(u−) =

1.
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Lax inequality

A shock solution of the system of conservation laws of the form

u(t, x) =

u
− if x < sit,

u+ if x > sit,

(2.55)

satisfies the Lax inequalities if

λi(u
−) > si > λi(u

+), (2.56)

where si is the shock speed given by Rankine-Hugoniot condition and λi(u) is the i-th eigenvalue of

the Jacobian matrix of the flux function.

2.2.3 Riemann problem for system of conservation laws

We now present the general procedure for the construction of the solution of the Riemann problem

for a nonlinear system of conservation laws
ut + f(u)x = 0,

u0(x) =

u
− if x < 0,

u+ if x > 0.

(2.57)

Shock and Rarefaction waves

Assume the system of equation (2.57) is strictly hyperbolic with each field either genuinely

nonlinear or linear degenerate. Let λi = λi(u) and ri = ri(u) be an eigenvalue and the corresponding

eigenvectors of Jacobian matrix J(u) of f.

Definition 2.2.4. The i-rarefaction curve is the integral curve of the vector field ri passing through

u ∈ Rn.

du

ds
= ri(u), u(0) = u. (2.58)
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We denote the solution of (2.58) by

s 7→ Ri(s)(u). (2.59)

Definition 2.2.5. For a given state u ∈ R, the i-shock curve through u is the set of solutions of the

Rankine-Hugoniot conditions

f(u)− f(u) = s(u− u), (2.60)

We denote the solution of (2.60) by

s 7→ Si(s)(u). (2.61)

Note that the equation (2.60) is a system of n equations in n + 1 unknown hence the solution

set describe a curve.

Contact discontinuity

When the i-th field is linearly degenerate (see Definition 2.2.2), the shock and the rarefaction

curve coincide and are called contact discontinuity curve.

The existence of solutions to the Riemann problem is given by the following theorem.

Theorem 2.2.1. Assume the system of equation (2.57) is strictly hyperbolic with each field either

genuinely nonlinear or linear degenerate. For ‖ u+ − u− ‖ sufficiently small, there exists a unique

entropy (in the sense of Lax) solution to the Riemann problem (2.57). The solution comprises m+1

constant states u− = u0, u1, ....., um−1, um = u+. When the i-th characteristic field is linearly

degenerate ui is joined to ui−1 by an i-contact discontinuity, while when the i-characteristic field is

genuinely nonlinear ui is joined to ui−1 by either an i-(Lax) rarefaction or an i-(Lax) shock.

A proof of this theorem can be found in [13].

Example: Consider the Riemann problem for the conservation laws

ut + f(u)x = 0 (2.62)
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with the initial condition

u0(x) =

u
− if x < 0,

u+ if x > 0.

(2.63)

where

u =

(
v

φ

)
and f(u) =

(
v2

2
+ φ

vφ

)
.

The Jacobian matrix of the flux function is

A = Df(v, φ) =

v 1

φ v

 , (2.64)

1. The eigenvalues are found as solution of the quadratic equation∣∣∣∣∣∣v − λ 1

φ v − λ

∣∣∣∣∣∣ = 0⇒ (v − λ)2 − φ = 0. (2.65)

The solution is

λ1 = λ1(v, φ) = v −
√
φ and λ2 = λ2(v, φ) = v +

√
φ.

We have

Dλ1.r1 =

(
1,− 1

2
√
φ

)(
1

−
√
φ

)
= 1 +

1

2
=

3

2
, (2.66)

Dλ2.r2 =

(
1,

1

2
√
φ

)(
1√
φ

)
= 1 +

1

2
=

3

2
. (2.67)

Hence the two fields are both genuinely nonlinear.

2. To get the shock curves we do the following. For a fixed state (v, φ), the Rankine-Hugoniot

jump conditions reads

f(v, φ)− f(v, φ) = s[(v, φ)t − (v, φ)t],

This implies 
v2

2
− v2

2
+ φ− φ = s(v − v)

vφ− vφ = s(φ− φ).

(2.68)
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In (2.68), s is the shock speed. Our strategy is to solve (2.68) for φ and s in terms of v. From

the first equation in (2.68), we get

φ = φ− 1

2
(v2 − v2) + s(v − v). (2.69)

Substitute in the second equation and after simplification arrive at the following quadratic in

s,

2s2 − (3v + v)s+ vv + v2 − 2φ = 0. (2.70)

Solving we find s1 = s1(v; v, φ) = 1
4
(3v + v)− 1

4

√
(v − v)2 + 16φ,

s2 = s2(v; v, φ) = 1
4
(3v + v) + 1

4

√
(v − v)2 + 16φ.

(2.71)

When v = v we get s1 = λ1 and s2 = λ2. Substituting in (2.69) we get

S1 = φ+ 1
4
(v − v)((v − v)−

√
(v − v)2 + 16φ,

S2 = φ+ 1
4
(v − v)((v − v) +

√
(v − v)2 + 16φ.

(2.72)

3. For a given left state (v, φ), the state that can be connected to (v, φ) to the right through a

1-shock wave must satisfy the Lax inequality

λ1(v, φ) > s1(v; v, φ)

or

v −
√
φ >

1

4
(3v + v)− 1

4

√
(v − v)2 + 16φ

Solving this inequality, we find v 6 v. Similarly, for a given right state (v, φ), the state that

can be connected to (v, φ) to the left through a 1-shock waves must satisfy the Lax inequality

s1(v; v, φ) > λ1(v, φ)
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or
1

4
(3v + v)− 1

4

√
(v − v)2 + 16φ > v −

√
φ

and the solution is easily found to be v > v. Repeating the same approach for the 2-shock, we

find that the forward 2-shock is admissible if v > v and the backward 2-shock is admissible in

the sense of Lax if v 6 v.

4. The rarefaction curves are found as follows

d

dt

(
u

φ

)
=

2

3
r1,2(v, φ) =

(
1

±
√
φ

)
,

(
v

φ

)
(0) =

(
v

φ

)
. (2.73)

For the 1-rarefaction curve, this system of equations reads
dv
dt

= 2
3

v(0) = v,

dφ
dt

= −2
3

√
φ φ(0) = φ.

(2.74)

Solving this coupled system of ODEs gives

v =
2

3
t+ v and φ =

(√
φ− 1

3
t

)2

. (2.75)

Eliminating t, we finally get for the 1-rarefaction curve

R1(v; v, φ) =

(√
φ− 1

2
(v − v)

)2

, (2.76)

and for the 2-rarefaction curve

R2(v; v, φ) =

(√
φ+

1

2
(v − v)

)2

, (2.77)

In summary the forward (+) and backward (-) Lax curves are found as

L+
1 (v; v, φ) =


R1(v; v, φ) =

(√
φ− 1

2
(v − v)

)2

if v > v,

S1 = φ+ 1
4
(v − v)

{
(v − v)−

√
(v − v)2 + 16φ

}
if v 6 v;

(2.78)
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L−1 (v; v, φ) =


R1(v; v, φ) = (

√
φ− 1

2
(v − v))2 if v 6 v,

S1 = φ+ 1
4
(v − v)

{
(v − v)−

√
(v − v)2 + 16φ

}
if v > v;

(2.79)

L+
2 (v; v, φ) =


R2(v; v, φ) = (

√
φ+ 1

2
(v − v))2 if v < v,

S2 = φ+ 1
4
(v − v)

{
(v − v) +

√
(v − v)2 + 16φ

}
if v > v;

(2.80)

L−2 (v; v, φ) =


R2(v; v, φ) = (

√
φ+ 1

2
(v − v))2 if v > v,

S2 = φ+ 1
4
(v − v)

{
(v − v) +

√
(v − v)2 + 16φ

}
if v < v.

(2.81)

The shock speeds are found ass1 = s1(v; v, φ) = 1
4
(3v + v)− 1

4

√
(v − v)2 + 16φ,

s2 = s2(v; v, φ) = 1
4
(3v + v) + 1

4

√
(v − v)2 + 16φ.

(2.82)

2.3 Finite volume scheme for conservation laws

We are now interested in the numerical solution of the Cauchy problem for a system of conser-

vation laws

ut + f(u)x = 0, t > 0, u(0, x) = u(x) for x ∈ [a, b]. (2.83)

We subdivise the spatial domain [a, b] into points xi = a + i∆xi where i = 0, 1, ..., N. We define the

mid point xi+1/2 = xi+xi+1

2
and space width ∆xi = xi − xi−1. We also define the cell average

ui =
1

4xi

∫
Ii

u(x, t)dx, (2.84)

where Ii = [xi−1/2;xi+1/2), i = 1, ...N. Integrating (2.83) over Ii gives

dui
dt

=
1

4x
[f(u(xi−1/2, t))− f(u(xi+1/2, t))]. (2.85)
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To complete the definition of the numerical scheme we need to find the correct approximations of

the term f(u(xi+1/2, t)) which define the numerical flux function.

We denote

Fi+1/2 ≈ f(u(xi+1/2, t)) = F(ui, ui+1). (2.86)

where the function F : Rn ×Rn → Rn is called the numerical flux function. It may depend on more

argument depending on the order of the scheme [25–27]. For first order scheme, only two arguments

are necessary. The numerical flux is required to be consistent with the continuous flux in the sense

that

F(u, u) = f(u) (2.87)

With approximation (2.86) and using (2.85), we arrive at the semi discrete numerical scheme

du

dt
=

1

4x
[Fi−1/2 − Fi+1/2]. (2.88)

The scheme of the form (2.88) are called conservative scheme. For convergence to the exact solution,

the scheme must be conservative and consistent [18,25,26].

2.3.1 Example of numerical scheme

Here we are going to present some simple examples of useful schemes [16–19].

1. Upwind scheme: It is defined by the numerical flux

Fi+1/2 =

f(ui) if f ′(ui) > 0,

f(ui+1) if f ′(ui+1) 6 0.

(2.89)

2. Lax-Friedrichs scheme: It is based in central differencing and is very stable and the numerical

flux is

Fi+1/2 =
1

2
[uni−1 + uni+1 − α(f(uni+1)− f(uni ))], (2.90)

where α = maxu |f ′(u)|.
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3. Local Lax-Friedrichs scheme: Its numerical flux is defined by

Fi+1/2 =
1

2
[f(ui) + f(ui+1)− αi+1/2(ui+1 − ui)], (2.91)

where αi+1/2 = max(ui, ui+1)|f ′(u)|

4. Richtmyer two-step Lax-Wendroff method: The numerical flux which corresponds to that is

Fi+1/2 =
1

2
[f(ui) + f(ui+1)− αf ′(ui+1/2)(f(ui+1)− f(ui))]. (2.92)

5. MacCormarck’s method: The corresponding numerical flux is

Fi+1/2 =
1

2
[f(ui) + f(ui − α(f(ui)− f(ui−1))]. (2.93)

2.3.2 Time discretisation and the CFL condition

The complete description of the numerical solution of the conservation laws (2.1) is done by

integrating with respect to time the semi-discrete scheme (2.88). The semi-discrete scheme (2.88)

can be written in the general form du/dt = L(u). Integrating du
dt

= L(u) using the forward Euler

scheme gives

un+1 = un + ∆tL(un), (2.94)

This scheme is stable provided that the time step ∆t in from (2.94) is under the CFL condition

∆t×maxλi
∆x

≤ 1, (2.95)

and λi are the eigenvalues of the Jacobian matrix J of the flux function f.

An m-stage (SSP ) Runge Kutta method for the solution of du
dt

= L(u) takes the form

u(0) = un, (2.96)

u(i) =
i−1∑
k=0

[αi,ku
(k) + ∆tβi,kL(u(k))], αi,k ≥ 0 i = 1, ..m, (2.97)

u(n+1) = um. (2.98)
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For the consistency we should have
i−1∑
k=0

αi,k = 1.

We have to point out that when βi,k is negative, βi,kL̂(u(k)) is used instead of βi,kL(u(k)) where L̂

represents the approximation of the same spatial derivative as L. This change of sign of βi,k preserves

the strong stability property ‖ un+1 ‖≤‖ un ‖ for the first order Euler scheme, solved backward in

time

un+1 = un −∆tL̂(un), (2.99)

which is obtained by resolving the negative version of the system of conservation laws

ut − f(u)x = 0. (2.100)

Definition 2.3.1. A finite volume scheme for a first-order equation is stable if the iterates remain

bounded as the grid is refined

For CFL coefficient c = 1 and taking (m, p) as m-stage pth order method (Optimal SSP Runge-

Kutta) we have, with βi,k > 0:

(1) SSPRK(2,2): An optimal second order scheme is

u(1) = un + ∆tL(un),

u(n+1) =
1

2
un +

1

2
u(1) +

1

2
∆tL(u(1)).

(2) SSPRK(3,3): An optimal third order is

u(1) = un + ∆tL(un),

u(2) =
3

4
un +

1

4
u(1) +

1

4
∆tL(u(1)),

u(n+1) =
1

3
un +

2

3
u(2) +

2

3
∆tL(u(2)).

We have to point out that the idea behind SSP methods is to assume that the first order time

discretization of the process of lines ODE is strongly stable under a certain norm, when the time
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step ∆t is suitably restricted, and then try to find a higher order time discretization (Runge-Kutta)

that maintains strong stability for the same norm, perhaps under a different time step restriction.

Example 1: Linear advection equation

We take a linear advection equation with periodic boundary data

ut + ux = 0, u(0, x) = u0(x), u(0, t) = u(1, t). (2.101)

As initial data u0(x) we take a combination of the smooth cos(πx
4

) and double step function.

Figure 2.4: Approximate solutions at t=1 of the linear advection equation

Figure 2.4 shows approximate solutions at t = 1 which is computed by the four schemes (upwind,

Lax-Friedrichs, Lax-Wendroff and MacCormarck schemes ) on a grid with 200 nodes using a time-step

restriction ∆t = 0.1∆x. We see that the two first schemes (upwind and Lax-Friedrichs) smear both

part and the discontinuity path of the advected profile. The second-order schemes (Lax-Wendroff

and MacCormarck), on the other hand, preserve the smooth profile quite accurately with oscillations
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around the discontinuities.

Example 2: Dam break problem

The dam break problem [28] is generated by the homogeneous one dimensional shallow water

equations:

Ut + f(U)x = 0 where U = (h, hu)t and f(U) = (h, hu2 + g
h2

2
)

where h represents water height, x ∈ [0, L] for the ideal case of a flat and frictionless channel of unit

width and rectangular cross section, with the initial conditions

u(x, 0) = 0, h(x, 0) =

hL if x 6 L
2
,

hR if x > L
2
.

(2.102)

In the example, we presented two ratios of initial water depths hL/hR = 10 and hL/hR = 100

and we took as time t = 10, 20 and space interval ∆x = 0.5.

The first example use the following initial conditions

u = 0, h =

1 if x < 1000,

0.1 if x > 1000,

and the second example use the following initial conditions

u = 0, h =

50 if x < 1000,

0.5 if x > 1000.

All the example are computed in the cfl = 0.45 condition at the time T = 10 and T = 20 with grid

points N = 4000 using Lax-Friedrichs scheme. The numerical results are presented in the figures 2.5

and 2.6
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Figure 2.5: Water velocity (left) and water height (right) for the dam break problem computed at
time T = 20s.

Figure 2.6: Water velocity (left) and water height (right) for the dam break problem computed at
time T = 10s.

The numerical implementation Figures 2.5 and 2.6 show that our solution agree with the analyt-

ical solution [29] which is a rarefaction wave moving to the left and a shock wave moving to the right.

Our results are similar to those obtained in the papers [28] where they use Lax-Wendroff scheme.
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Example 3: Euler equation of gas dynamics: The shock tube problem

We present the ”shock tube problem” of gas dynamics [15] which is governed by the Euler

equations in the form

ρt + (ρu)x = 0, (2.103)

(ρu)t + (ρu2 + p)x = 0, (2.104)

Et + (u(E + p))x = 0. (2.105)

where ρ the density, u the velocity, p the pressure, E the energy with additional equation called

equation of state of a polytropic gas:

E =
p

γ − 1
+

1

2
ρu2. (2.106)

with γ = 1.4.

Indeed the shock tube problem is described as the tube filled with gas initially separeted by

membrane into two compartments. The gas has higher pressure and density in one half of the tube

than in the other half with zero velocity everywhere. We allow the gas to flow when we remove

at t = 0 the membrane expecting the motion to have lower pressure. We are solving the Riemann

problem computed at t = 1

qt + f(q)x = 0,

(ρl, ul, pl) = (3, 0, 10), x < 0,

(ρr, ur, pr) = (1, 0, 1), x > 0.

where q = (ρ, ρu,E)t and we use the CFL = 0.05 and respectively the grids points 1000 and 2000.
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Figure 2.7: Gas density (left), gas velocity (middle), gas pressure (right) for the tube shock problem
computed at time T = 1s with grid points 1000.

Figure 2.8: Gas density (left), gas velocity (middle), gas pressure (right) for the tube shock problem
computed at time T = 1s with grid points 2000.

The numerical implementation in Figure 2.7 and 2.8 agree with the one implemented in [15]

which the shock waves propagate into the region of lower pressure followed by contact discontinuity

and a rarefaction waves.
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Chapter 3

Nonclassical solution of hyperbolic

conservation laws

3.1 Introduction

This chapter deals with the theory of nonclassical solution of scalar conservation laws. We will

be concerned by the solution of the Cauchy problem

ut + f(u)x = 0, u(0, x) = u0(x), (3.1)

where the conserved variable u, the flux f and the initial data u0 are as in Chapter 2. In the study of

the Cauchy problem, we will start by studying the Riemann problem where the initial condition u0

is of the Heaviside type between two given states u− and u+. In general, the solution of the Riemann

problem is a set of fixed states separated by the so-called Lax curves (see Section 2.2.3). In the classical

setting, the uniqueness of the weak solution is restored by using entropy admissibility conditions such

as the Lax inequality (2.56) or the Oleinik entropy condition. For some cases with non-convex flux,

at the point of jump of the weak solution, neither the Lax inequalities nor the Oleinik entropy

condition are satisfied. This gives rise to the so-called nonclassical shock. A nonclassical solution of

the Riemann problem for a system of conservation laws is a solution containing a nonclassical shock.

For such solution, uniqueness is restored by using the so-called kinetic function which requires the

existence of a kinetic function K such that u+ = K(u−) across any jump in the solution profile.

Hayes and Leflock [5,6,30] proved the existence of nonclassical solution of conservation law in the
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scalar case using a regularisation that is both diffusive and dispersive. The nonclassical solution is

obtained as the diffusion and dispersion coefficients tend to zero. LeFloch and Mishra [2] considered

a nonlinear system of conservation laws arising in ideal magnetohydrodynamics. They showed that

the initial value problem for this model may lead to solutions exhibiting nonclassical shock waves.

They determined the associated kinetic function characterizing the dynamics of undercompressive

shocks driven by resistivity and Hall effects. The study of nonclassical solutions of conservation

laws using numerical methods has been done by Chalons [3] using a transport equilibrium scheme

and by Kurganov and Petrova [31] using particle methods. Abeyratne et al [32] proposed a finite

difference scheme with controled dissipation property. To accurately capture the numerical solution,

front tracking should be used and a nucleation condition need to be included in order to classify any

discontinuity in the numerical solution as classical or nonclassical shock [33,34].

The rest of this chapter is organised as follows. In Section 3.2, we recall the construction of the

classical solution when the flux function is not uniformly convex and the Oleinik entropy condition

is satisfied. Then in Section 3.3 we investigate the entropy dissipation followed by the section 3.4

which talked about kinetic relation. Finally we investigate in section 3.5 the existence of nonclassical

solution as limit of traveling waves.

3.2 Oleinik Entropy Condition

In this section we consider the conservation law (3.1) when the flux function f is not uniformly

convex. When the flux is convex, the Lax inequalities (2.56) is enough to ensure the uniqueness of

the solution of the Riemann problem between two states u− and u+. When the flux function is not

uniformly convex, the Lax inequalities are not enough to guarantee the uniqueness of the solution.

In this case, we require a stronger condition

f(u)− f(u−)

u− u−
≥ f(u+)− f(u−)

u+ − u−
. (3.2)

This condition is called the Oleinik entropy condition. The following elementary lemma gives condi-

tions for which the Oleinik entropy condition is satisfied.

Lemma 3.2.1. Consider the Riemann problem for (3.1) with data u− and u+ and such that the flux

function satisfies either of the following two conditions.
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(i) u− > u+ and the chord connecting (u−, f(u−)) and (u+, f(u+)) lies above the graph of f(u),

(ii) u− < u+ and the chord connecting (u−, f(u−)) and (u+, f(u+)) lies below the graph of f(u),

Then the Oleinik entropy condition is satisfied and the Riemann problem possess a unique solution

given by

u(t, x) =

u
−, x < st,

u+, x > st,

(3.3)

where

s =
f(u+)− f(u−)

u+ − u−
.

Now if neither of the conditions (i) and (ii) in Lemma3.2.1 is satisfied as in Figure 3.1, for

u− > u+, the other case being similar, we construct the two states u2 and u3 as shown

Figure 3.1: A non convex flux function

in the Figure 3.1 where the chord connecting (u−, f(u−)) and (u2, f(u2)) and the chord connecting

(u+, f(u+)) and (u3, f(u3)) are tangent to the graph of f. The Oleinik entropy condition (3.2) and

therefore the Lax inequalities are satisfied between u+ and u3 and between u2 and u−. The solution

of the Riemann problem is two shocks between u+ and u3 and between u2 and u− and we put a

rarefaction wave from u2 to u3. This gives the explicit solution

u(t, x) =


u−, x/t < f ′(u2),

G(x/t), f ′(u2) < x/t < f ′(u3),

u+, x/t > f ′(u3),

(3.4)

where G = (f ′)−1.
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3.3 Entropy dissipation function

Consider a conservation law in the form (3.1) possessing an entropy-entropy flux pair (U ,F). We

have the following definition

Definition 3.3.1. (i) The entropy dissipation function E is defined as

E :R× R→ R (3.5)

(u, v) 7→ −s[U(v)− U(u)] + F(v)−F(u), (3.6)

where s = f(v)−f(u)
v−u .

(ii) The tangent function T is defined by

T : R→ R such thatf ′(T (u)) =
f(u)− f(T (u))

u− T (u)
, u 6= T (u), T (0) = 0.

(iii) The zero entropy dissipation E0 function is a function E0 : R 7→ R which satisfies

E(u, E0(u)) = 0 with E0(u) 6= u for u 6= 0.

3.3.1 Example

Consider the conservation law

ut + (u3 + 2u)x = 0,

where the flux the function is f(u) = u3 + 2u. An entropy-entropy flux pair for this equation is given

by

U = u2 and F(u) = 6u3 + 4u.

The entropy dissipation function here is defined as

E(u, v) = −(v3 − u3 + 2v − 2u)(v + u) + 6v3 − 6u3 + 4v − 4u,

which simplifies to

E(u, v) = (u− v)
(
u3 + v3 + 2u2v + 2uv2 − 6u2 − 6v2 − 6uv + 2u+ 2v − 4

)
.
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The tangent function satisfies

f ′(T (u)) =
f(u)− f(T (u))

u− T (u)
andu 6= T (u).

Since f ′(u) = 3u2 + 2, it follows that

3[T (u)]2 + 2 =
u3 + 2u− [T (u)]3 − 2[T (u)]

u− [T (u)]
,

Therefore T (u) satisfies the following equation

2[T (u)]3 − 3u[T (u)]2 + u3 = 0. (3.7)

Solving (3.7) gives

T (u) = u, T (u) = −u
2
.

Since the flux function is concave-convex, then T is monotone decreasing hence we discard the values

T (u) = u which is double roots, to get that the tangent function here is

T (u) = −u
2
.

The zero entropy dissipation function is obtained by solving

(E0(u)− u)[E0(u)3 + (2u− 6)E0(u)2 + (2u2 − 6u+ 2)E0(u) + u3 − 6u2 + 2u− 4] = 0.

Since E0(u) 6= u, It follows that

E0(u)3 + (2u− 6)E0(u)2 + (2u2 − 6u+ 2)E0(u) + u3 − 6u2 + 2u− 4 = 0. (3.8)

This equation (3.8) has some real solution whose complicated expressions are not included in

this dissertation.

The concepts presented in Definition 3.3.1 allows us to solve the Riemann problem. We have the

following lemma.
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Lemma 3.3.1. A shock wave of the form

u(t, x) =

u
− x < st,

u+ x > st.

(3.9)

satisfies the single entropy inequality (2.51) if and only if

u+ ∈

[E0(u−), u−], u− ≥ 0,

[u−, E0(u−)], u− ≤ 0.

(3.10)

The proof of this Lemma 3.3.1 can be found in [4]. We can now define the concept of nonclassical

shock.

Definition 3.3.2. Among the shocks satisfying the Lemma 3.3.1 there are some verifying the Oleinik

entropy relation (3.2) (therefore Lax inequalities), we called them Classical shock or Lax shock. They

belong to the following set

u+ ∈

[T (u−), u−], u− ≥ 0,

[u−, T (u−)], u− ≤ 0.

(3.11)

On the hand those which verifying Lemma 3.3.1 but violate the Oleinik entropy relation(3.2), they

are called nonclassical shocks. They belong to the following set

u+ ∈

[E0(u−), T (u−)), u− ≥ 0,

[T (u−), E0(u−)], u− ≤ 0.

(3.12)

We denote the inverse of tangent function T −1, zero entropy dissipation function [E0]−1. The

entropy dissipation function has the following property.

Theorem 3.3.2 (Entropy dissipation for concave-convex flux). For a given left-hand state u > 0 the

function E(u, .) is monotone decreasing in (−∞, T (u)] and monotone increasing in [T (u),+∞).

A proof of this theorem can be found in [4]

As consequence of this theorem there exists some value E0(u) satisfying

E(u, E0(u)) = 0, E0(u) ∈ (T −1(u), T (u)).
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The function E0(u) : R→ R is monotone decreasing function with

E0(E0(u)) = u, ∂uE0(u) < 0. (3.13)

The zero entropy dissipation E0 enable one to determine the critical limit for the range of the kinetic

functions. To extend the definition of E0 we introduce the function ρ such that for u− 6= u+ and

u− 6= ρ(u+, u−) we have
f(ρ(u+, u−))− f(u−)

ρ(u+, u−)− u−
=
f(u+)− f(u−)

u+ − u−
. (3.14)

We can also define its companion E0
c : R→ R satisfying

f(u)− f(E0
c (u))

f(u)− E0
c (u)

=
f(u)− f(E0(u))

f(u)− E0(u)
, (3.15)

so that the points (E0(u), f(E0(u))), (E0
c (u), f(E0

c (u))), (u, f(u)) are aligned.

The rarefaction set to the Riemann problem with cubic function are found by

R(u−) =


[u−,∞), u− > 0,

(−∞,∞), u− = 0,

(−∞, u−], u− < 0.

If the initial data of the Riemann problem belongs to same region of convexity or concavity the

Riemann solution is always classical otherwise the Riemann solution is nonclassical. In the rest of

the section the focus will be on concave-convex or convex concave function for which

uf ′′(u) > 0, when u 6= 0, f ′′′(u), and lim
|u|→+∞

f ′(u) = +∞, (3.16)

uf ′′(u) < 0, when u 6= 0, f ′′′(u), and lim
|u|→+∞

f ′(u) = −∞. (3.17)

and explain how to construct nonclassical entropy solutions of the Riemann problem (2.57). The

prototype of interest is the cubic flux f(u) = u3 + au presenting a single inflection point.

The following theorem [4] give the solution to Riemann problem for concave-convex case and

convex-concave case.

Theorem 3.3.3. Assume that the flux function in (3.1) is concave-convex. Consider the Riemann
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problem with initial data u− and u+. Then the solution of the Riemann problem has the following

form in the class of piecewise smooth functions, for definiteness u− ≥ 0,

(i) If u+ ≥ u−, the solution is unique and consists of a rarefaction connecting continuously u− to

u+.

(ii) If u+ ∈ [E0
c (u−), u−), the solution is unique and consists of a classical shock connecting u− to

u+.

(iii) If u+ ∈ [E0(u+), E0
c (u−)) , there exist infinitely many solutions, consisting of a nonclassical

shock connecting u− to some intermediate state um followed by

(i) a classical shock if um < ρ(u−, u+)

(ii) or a rarefaction if um ≥ u+. The values u+ ∈ [T (u+), E0
c (u+)] can also be attained with a

single classical shock.

(iii) If u+ ≤ E0(u−), there exist infinitely many solutions, consisting of a nonclassical shock connect-

ing u− to some intermediate state um ∈ [E0(u−), T (u−)] followed by a rarefaction connecting

continuously to u+.

Proof. We know that from the theorem 2.2.1

(1) A shock connecting a state u− to a state u+ < u− cannot be followed by another shock or by

a rarefaction.

(2) A rarefaction cannot be followed by a shock but a rarefaction can always be continued by

attaching to it another rarefaction.

We realise that a rarefaction wave can be added after a right-contact wave due to the fact that the

left-hand of the rarefaction waves has a quicker speed than or equal to the shock speed. To have a

unique solution we made the following observations

(1) When u− is connected to u+ by a shock waves, after no other wave can be added except when

u+ = E0
c (u−) due to the fact that the shock is then a right-contact and can be followed with a

rarefaction which preserve that the solution is monotone.

(2) When u− is connected to u+ by a rarefaction waves, after no other wave can be added except

another rarefaction.

40



So the case (i) and (ii) are solved. Therefore we conclude that a Riemann solution contains at most

two elementary waves (shock waves and rarefaction) which lead to uniqueness of result. For the case

(iii) we just need to see that if a shock waves and a rarefactions as (i) and (ii) are the only admissible

solutions. It is well know that two shock waves can be combined only when the smaller speed of the

right-hand one is greater or equal to the largest speed of the left-hand wave. We will have

(1) u− connected to u+ ∈ [E0(u−), T (u−)) by a nonclassical shock can be followed only by a shock

connecting to a value um ∈ [u+, ρ(u−, u+)) or else by a rarefaction to um 6 u+. In fact for each

state um ∈ [u+, ρ(u−, u+)) is associated with a classical shock which propagates with the speed

s(um, u
+). This leads s(um, u

+) > s(u−, u+), where s(um, u
+) and s(u−, u+) are obtained by

Rankine-Hugoniot relation between um and u+ after u− and u+. These states um, u− and u+

are therefore attainable by just adding a classical shock after the nonclassical one. Moreover a

state um ∈ [E0
c (u+), E0(u+)) cannot be reached by adding a second shock after the non-classical

because E0(u+) = u−. It follows that any shock which connects u+ to some state um > E0
c (u+)

travels with a smaller speed( s(u+, um) < s(u−, u+)). We have finally the states um < u+

cannot be reached due to the fact that they are associated with rarefactions which travel faster

than the nonclassical shock.

(2) After a classical shock leaving from a state u− and reaching u+, no other wave can be added

except when u+ = T (u−) and, in that case, a rarefaction only can follow the classical shock.

Indeed from the theorem 2.2.1 a classical shock cannot be added after another classical shock,

nor a rarefaction except when u+ = T (u−). It follows by taking into Consideration a nonclassical

shock emanating from u+ and reaching um. Assuming that u+ < 0. For the nonclassical shock to

be admissible one needs um 6 E0(u+), but we should order the speeds, s(u+, um) > s(u−, u+),

it follows thus um > u−. The condition (3.13) combined with the fact that E0 is monotone,

and the inequality u+ > E0(u−) we find also u− = E0(E0(u−)) > E0(u+) > um, which lead to

a contradiction because we can never have both um > u− and u− > um at the same time. It

follows that we can have more than two waves (shock waves and rarefactions waves). We have

proved the point (iii)

For the convex-concave case we have
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Theorem 3.3.4. Suppose that f is a convex-concave flux function(3.17) with a given Riemann initial

conditions u− and u+ satisfying the entropy condition (2.51), then the Riemann problem admits the

following solutions in the class of piecewise function with u− ≥ 0 :

(1) If u+ ≥ u− , the solution is unique and consists of a classical shock wave connecting u− to u+.

(2) If u+ ∈ [0, u−) , the solution is unique and consists of a rarefaction wave connecting monoton-

ically u− to u+.

(3) If u+ ∈ [T −1(u−), 0), there are infinitely many solutions, consisting of a rarefaction wave

connecting u− to some intermediate state um with 0 ≤ um ≤ [E0]−1 ≤ u+, followed by a

classical or nonclassical shock connecting to u+.

(4) If u+ ∈ (−∞, E0(u−)), the solution may contain a classical shock connecting u− to some state

um > u−, followed with a classical or nonclassical shock connecting to u+. This happens when

there exists um satisfying ρ(um, u
+) < u− < um < [E0]−1(u+).

(5) Finally, if u+ ∈ (∞, [T ]−1(u−)], there exists a solution connecting u− to u+ by a classical shock

wave.

The proof can be found in [4]. The convex-concave case is treated similar to concave-convex case.

Alternatively to the entropy dissipation function, one can also construct nonclassical solutions of

conservation laws using the so-called kinetic function.

3.4 Kinetic relation

In this part the focus will be in kinetic relation. In fact the kinetic relation enable us to choose

the physically relevant nonclassical solution of Riemann problem (3.1) with initial data u+, u−.

Definition 3.4.1. i)A kinetic function K : R→ R is a monotone decreasing function and Liptschitz

continuous mapping E
0(u) < K(u) < T (u), u > 0,

T (u) < K(u) < E0(u), u < 0,

(3.18)
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with contraction property

|K(K(u))| < |u|, u 6= 0.

ii) We call companion Kc of a kinetic function K, any function that satisfies

Kc :R→ R (3.19)

u 7→

Kc(u) = K(u) if K(u) = T (u),

Kc(u) 6= K(u) 6= u if f(u)−f(Kc(u))
f(u)−Kc(u)

= f(u)−f(T (u))
f(u)−T (u)

, u 6= 0.

(3.20)

and for which T (u) < Kc(u) < E0(u), u > 0,

E0(u) < Kc(u) < T (u), u < 0.

Definition 3.4.2. Under the assumptions of the Theoreom 3.3.3. A weak solution of (3.1) in the

class of piecewise smooth functions is called a nonclassical entropy solution (associated with the

kinetic function K) if any nonclassical shock connecting two states u− and u+ satisfies the kinetic

relation

u+ = K(u−). (3.21)

We can now attempt to point out all the shock waves which are admissible (all classical shock

and nonclassical) connecting u− to u+. For concave-convex case [4] we have

Theorem 3.4.1. Under the hypothesis of the Theorem 3.3.3. The Riemann problem admits an unique

nonclassical entropy solution in the class of piecewise functions, given as follows when u− > 0

(i) If u+ > u− , the solution is a rarefaction connecting u− to u+.

(ii) If u+ ∈ [K(u−), u−) , the solution is a classical shock waves connecting u− to u+.

(iii) If u+ ∈ [K(u−), T (u−)), the solution consists of a nonclassical shock connecting u− to K(u−)

followed by a classical shock.

(iv) If u+ 6 K(u−), the solution consists of a nonclassical shock connecting u− to K(u−) followed

by a rarefaction connecting to u−.

When u− 6 0 we have
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(i) If u+ 6 u− , the solution is a rarefaction connecting u− to u+.

(ii) If u+ ∈ [u−,K(u−)), the solution is a classical shock waves connecting u− to u+.

(iii) If u+ ∈ (T (u−),K(u−)) , the solution consists of a nonclassical shock connecting u− to K(u−)

followed by a classical shock connecting K(u−) to u+.

(iv) If u+ > K(u−), the solution consists of a nonclassical shock connecting u− to K(u−) followed

by a rarefaction connecting to u+.

The proof of this theorem is similar to the 3.3.3. For convex-concave case [4] we have

Theorem 3.4.2. Under the hypothesis of the theorem 3.3.4. The Riemann problem admits an unique

nonclassical entropy solution in the class of piecewise function, given as follows when u− > 0

(i) If u+ > u− , the solution is unique and consists of a classical shock wave connecting u− to u+.

(ii) If u+ ∈ [0, u−), the solution is unique and consists of a rarefaction waves monotonically con-

necting u− to u+.

(iii) If u+ ∈ [K(u−), 0), the solution contains a rarefaction wave connecting u− to um = K(u+),

followed with a nonclassical shock connecting to u+.

(iv) If u+ ≤ K(u−), the solution contains

- if u− > ρ([K]−1(u+), u+), classical shock connecting u− to um = K]−1(u+) followed by

nonclassical shock connecting um to u+.

- if u− 6 ρ([K]−1(u+), u+) a single classical shock connected u+ to u−.

when u− 6 0

(i) If u+ 6 u−, the solution is classical shock connecting u− to u+.

(ii) If u+ ∈ (u−, 0], the solution is a rarefaction wave connecting u− to u+.

(iii) If u+ ∈ (0,K(u−)), the solution contains a rarefaction waves connecting u− to [K]−1(u+) fol-

lowed by a nonclassical shock connecting [K]−1(u+) to u+.

(iv) If u+ > K(u−), the solution consists of a nonclassical shock connecting u− to K(u−) followed

by a rarefaction connecting to u+.
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(iv) If u+ > K(u−), the solution contains

- if u− < ρ([K]−1(u+), u+), classical shock connecting u− to [K]−1(u+) followed by nonclas-

sical shock connecting K]−1(u+) to u+.

- if u− > ρ([K]−1(u+), u+) a single classical shock connected u− to u+.

3.4.1 Selection Rule

For any given initial u−, u+ data for the Riemann problem each u− is associated to a correspond-

ing set Snc [35] such that

Snc ⊂ {u < Kc(u), u− > 0},

Snc ⊂ {u > Kc(u), u− < 0}.
(3.22)

Let the set Snc(0) = ∅. We have

(i) If u+ ∈ Snc(u−), then the solution is nonclassical otherwise

(ii) the solution is classical.

For instance by letting Snc(u−) = ∅, then the classical solution is picked out for all u+.

Another simple way to select the solution is to introduce the nucleation condition which is to

define the set Snc through a threshold. Therefore we look at the Lipshitz continuous nucleation

threshold function N : R→ R with conditionT (u) < N(u) < Kc(u), u > 0,

Kc(u) < N(u) < T (u), u < 0.

(3.23)

Finally we specify the nonclassical set

Snc(u−) =

[N(u),+∞), u− < 0,

(−∞, N(u)], u− > 0.

(3.24)
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3.5 The existence of nonclassical solution, limit of traveling

waves

In this section, just as for classical shock where the entropic solution is found as a limit of a

diffusive regularisation, nonclassical solutions can also be found as a limit of a regularised equation

with a diffusive and dispersive term. We consider therefore a diffusive and dispersive regularisation

of a conservation law with a cubic flux function

ut + (u3)x = εuxx + δuxxx, (3.25)

where ε > 0 and δ are real parameters.

The case where ε > 0 and δ < 0 (which gives a classical solution), is solved by the following

theorem.

Theorem 3.5.1. Assume ε > 0 and δ < 0. Let u satisfies the equation (3.25) having traveling waves

solutions of the form

u = u(x− st), (3.26)

where s propagation speed. Let

u(x, t) =

u
− if x < st,

u+ if x > st,

(3.27)

be the shocks waves solution of the equation

ut + (u3)x = 0, (3.28)

such that in the limit, the traveling waves solutions (3.26) approach as shock waves solutions of the

equation (3.28). Therefore there is a trajectory for the second order derivative of the equation

−s(u− u−) + u3 − (u3)− − εu′ = δu
′′
, (3.29)

46



for which the boundary conditions

u(+∞) = u+, u(−∞) = u−, u
′
(+∞) = 0, (3.30)

u
′
(−∞) = 0, u

′′
(+∞) = 0, u

′′
(−∞) = 0, (3.31)

hold if and only if (3.27) is classical shock.

The proof of this theorem 3.5.1 can be found in [8].

Remark 3.5.1. Note that the motivation for studying the equation (3.25) and (3.28) is refered to

chapter 1 paragraph 3.

Now we focus in the case where ε > 0 and δ > 0. This case is more interesting because there is

admissible shocks that violate the Lax entropy condition. Let us assume that for given two states

u− and u+ such that u−u+ < 0 and

w(ξ) = u(x, t), ξ =
x− st√

δ
, w(−∞) = u−, w(−∞) = u+, (3.32)

w
′
(−∞) = 0, w

′
(+∞) = 0, w

′′
(+∞) = 0, w

′′
(−∞) = 0. (3.33)

With the new change of variable we have

ut =
du

dξ

dξ

dt
= −w′ s√

δ
, (u3)x =

3w2w′√
δ
, ux =

du

dξ

dξ

dx
=

w′√
δ
, uxx =

w′′

δ
, uxxx =

w′′′

δ
3
2

,

So the equation (3.25) becomes

−w′ s√
δ

+
3w2w′√

δ
= ε

w′′

δ
+ δ

w′′′

δ
3
2

, (3.34)

It follows

−sw′ + 3w2w′ = ε
w′′√
δ

+ w′′′, (3.35)

Finally we have

−sw′ + (w3)′ = ε
w′′√
δ

+ w′′′. (3.36)
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Let us rewrite the equation (3.36) with σ = ε√
δ
. We have

−sw′ + (w3)′ = σw′′ + w′′′. (3.37)

The equation (3.37) is conservative [5] and taking in account the balance of diffusive and dispersive

effect with σ fixed and limit ε, δ → 0 , we have

−sw′ + (w3)′ = σw′′ + w′′′ = 0, (3.38)

By integrating once we have

−sw + (w3) + c = σw′ + w′′ = l(w), (3.39)

where c is constant of integration and l is function in w. We will havel(w) = −sw + (w3) + c,

w′′ = −σw′ + l(w).

(3.40)

Also when δ → 0, we have from (3.36)

w′′ = 0 =⇒ w′ = k(µ).

where k is integration function in µ. Let k(µ) = µ. Therefore we have

w
′ = µ,

µ′ = −σµ+ l(w),

(3.41)

For getting the constant c in the equation

l(w) = c− sw + (w3), (3.42)

the boundary conditions are used. Indeed

lim
|ξ|→∞

µ′ = lim
|ξ|→∞

w′′ = 0 = c− sul + u3
l ,
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Therefore using equation (3.39), we have to make it easier to follow he argument,

c = su− − [u−]3 and l(w) = su− − [u−]3 − sw + w3. (3.43)

The equilibrium point are the point of the system of equationw
′ = µ = 0,

µ′ = −σµ+ l(w) = 0,

(3.44)

It follows that

l(w) = 0 = su− − [u−]3 − sw + w3.

Let Eq be the set of equilibrium points. We have

Eq = {(w, µ) = (w, 0)|l(w) = 0}. (3.45)

The following proposition is used to get the equilibrium point.

Proposition 3.5.1. 1. Given a state u− > 0, the set Λ(u−) consisting of all states u+ that can be

achieved through a diffusive traveling wave taking the values u− and u+ at the left and the right ends

respectively, is given by

Λ(u−) =

[
−1

2
u−, u−

)
.

2. For a state given u− > 0, The solution of Riemann problem with initial data u−, u+ satisfies

(i) a rarefaction waves if u+ ≥ u−,

(ii) a shock waves, if u+ ∈ Λ(u−),

(iii) a shock waves with associated rarefaction if u+ /∈ Λ(u−).

A proof can be found in [5].

Coming back to the determination of equilibrium point we consider the initial data u−, u+ such

that

u− > 0 and u+ /∈ Λ(u−) means u+ 6= −1

2
u−.
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l(w) is a polynomial of degree 3, so we have at most 3 roots which we denote by

w∗l = u− > w∗m > w∗r and w∗l = u− due to l(u−) = 0.

Since l(u−) = 0, we rewrite l(w)

w3 − sw + su− − [u−]3 = (w − u−)(aw2 + bw + c) = aw3 + (b− au−)w2 + (c− au−)w − cu−

where a, b, c are reals coefficient. By identification we get

a = 1, b = u−, c = −s+ [u−]2

It follows that

w∗l = u− and w∗m, w
∗
r

are roots of the equation

w2 + u−w + [u−]2 − s = 0. (3.46)

Therefore we determine s as follows

s = w2 + u−w + [u−]2. (3.47)

Also in the polynomial l(w), the coefficient of degree 2 is zero ( l(w) no quadratic term [12]) therefore

the roots w∗l , w
∗
m, w

∗
r verify

w∗l + w∗m + w∗r = 0. (3.48)

In the papers [8], Jacob, Mc Kinney and M. Shealter proved that there is a trajectory which passed

through the point w∗l , w
∗
r in the form

µ(ξ) =
1√
2

(w(ξ)− w∗l )(w(ξ)− w∗r), (3.49)
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Indeed they sought an invariant parabola through the point w∗l , w
∗
R in the form

µ(ξ) = c(w(ξ)− w∗l )(w(ξ)− w∗r), (3.50)

where c is constant. Let us determine c

dµ

dw
= c(2w − w∗l − w∗r). (3.51)

We have will by multiplying (3.50) and (3.51) side by side we have

µ
dµ

dw
= c2(2w − w∗l − w∗R)(w(ξ)− w∗l )(w(ξ)− w∗r). (3.52)

But using equation (3.41) the gradient along µ is

µ
dµ

dw
= −σµ+ (w(ξ)− w∗l )(w(ξ)− w∗r)(w − w∗m). (3.53)

By using (3.52) and (3.53) we get

c2(2w − w∗l − w∗r) = −cσ + w − w∗m. (3.54)

By identification of the coefficient of w, It follows that

2c2 = 1 =⇒ c =
1√
2

or c = − 1√
2
.

Let decrease w from w∗l to w∗r and µ = w′ < 0 [8]; therefore we choose the positive roots c = 1√
2
. The

function w reach the value 0 by continuity. Let w(ξ) = 0. From the equation (3.54) by replacing c

with its value, we have

1

2
(w∗l + w∗r) =

σ√
2

+ w∗m, (3.55)

If follows

w∗l + w∗r =
√

2σ + 2w∗m. (3.56)
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By putting the equation (3.56) in the equation (3.48) we have

w∗m = −
√

2

3
σ and w∗r = −w∗l +

√
2

3
σ = −u− +

√
2

3
σ. (3.57)

Finally by replacing w∗r , w
∗
m with its values in the equation (3.46) we get the shock speed

s = [u−]2 − [u−]

√
2

3
σ +

2

9
σ2. (3.58)

So the set Eq is finally defined by

Eq =

{
(u−, 0),

(
−
√

2

3
σ, 0

)
,

(
−w∗l +

√
2

3
σ, 0

)}
.

The Jacobian matrix J of the system of equation (3.41) is

J =

 0 1

l
′
(w) −σ


The eigenvalues in λ are solution of the equation

λ2 + λσ + s− 3(w∗)2 = 0, (3.59)

where w∗ can be w∗l or w∗r or w∗m. The discriminant of the equation (3.59) is

∆ = σ2 + 4
[
3(w∗)2 − s

]
= σ2 + 4l

′
(w∗),

(i) Since the coefficient of the polynomial l(w) of degree 3 is positive, we have l
′
(w∗) > 0 at the

exterior of the equilibria w∗l and w∗r (w∗l > w∗m > w∗r). Therefore we have ∆ > 0 since

√
σ2 + 4l′(w∗ > σ

due to the fact that l
′
(w∗) > 0 and

σ2 + 4l
′
(w∗) > σ2.
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Finally we get

λ1(w∗) =
1

2

(
−σ −

√
σ2 + 4l′(w∗

)
= −1

2

[
4l
′
(w∗)

−σ +
√
σ2 + 4l′(w∗)

]
, (3.60)

λ2(w∗) =
1

2

(
−σ +

√
σ2 + 4l′(w∗)

)
= −1

2

[
4l
′
(w∗)

−σ −
√
σ2 + 4l′(w∗)

]
. (3.61)

It follows that λ1 > 0 and λ2 < 0. Finally we conclude that the state w∗l and w∗r are saddle

points.

(ii) At the equilibrium point w∗m, we have l
′
(w∗m) < 0 and therefore the equilibrium point w∗m is

stable (due to σ > 0 and λ1(w∗) and λ2(w∗) have non-zero reals parts) and is either a node if

∆ ≥ 0 (two negative real eigenvalues), or a spiral if ∆ > 0 (two complex conjugate eigenvalues).

In summary, the right state w∗r is only found from the left state w∗l (3.57). From the paper [8],

we notice that the trajectory which connected two saddle point w∗l and w∗r must satisfied

w∗r < w∗m. (3.62)

It follows that

−w∗l +

√
2

3
σ < −

√
2

3
σ. (3.63)

Therefore

w∗l >
2
√

2

3
σ. (3.64)

But if w∗r < w∗m is not satisfied the trajectory is a connection between unstable point(saddle) and

stable point (node/spiral).

We realize also that the traveling waves which pass through w∗r and w∗l is not quicker than the

speed of propagation in both side of w∗r and w∗l . In fact l′(w) = 3w2 − s in both side of w∗r and w∗l .

As a result the saddle-saddle trajectory turns into undercompressive shock when we take the limit of

ε with δ → 0. This shock doesn’t verify the Lax entropy criterion and the Oleinik entropy criterion.

We can attempt to state the following proposition

Theorem 3.5.2. Assume σ > 0. Therefore there is a trajectory from a saddle point equilibrium (w∗l , o)
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to saddle point (w∗r , o) for the system (3.41) if and only

w∗l >
2
√

2

3
σ and s = [u−]2 −

√
2

3
σ[u−] +

2

9
σ2. (3.65)

From above proposition we conclude if w∗l <
2
√

2
3
σ we get the classical solution which is described

from the proposition (3.5.1).

When w∗l >
2
√

2
3
σ,

(i) The solution is a rarefaction wave if u+ ≥ u−,

(ii) A classical shock waves if −
√

2
3
σ ≤ u+ ≤ u−,

(iii) We have, if −u−+
√

2
3
σ ≤ u+ ≤ −

√
2

3
σ, nonclassical shock from u− to w∗r = −u−+

√
2

3
σ followed

by a classical shock connecting to u+,

(iv) If u+ ≤ −u− +
√

2
3
σ we have slow nonclassical shock waves from u− to −u− +

√
2

3
σ went along

by a rarefaction waves connecting to u+.

3.5.1 Kinetic relation derived from traveling waves

For definiteness consider the entropy, entropy-flux pair (U(u),F(u)) = (u
2

2
, 3u4

4
) which is linked

to the flux f(u) = u3. The results can be generalised for the family of entropies U(u) = u2n

2n
[5].

For nonclassical solution we require the entropy dissipation function E to be equal to the kinetic

function K. Let u−, u+ be given states and vm such that u− > vm > u+ to be determined. The

Rankine-Hugoniot condition gives the speed of propagation of the shock between u− and u+ as

s = [u+]2 + u+u− + [u−]2. (3.66)

The entropy dissipation function is given as

E(u−, vm) =
1

4
(vm − u−)2([vm]2 − [u−]2). (3.67)

To get all the admissible entropy solution the entropy dissipation function should be negative implying

[vm]2 ≤ [u−]2, (3.68)
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since (vm − u−)2 > 0. Let

z =
s

[u−]2
, a =

vm
u−
, (3.69)

Note that a should be negative since u−vm < 0 for a given u− > 0. Combining (3.66) and (3.69) gives

z = a2 + a+ 1. (3.70)

Solving (3.70) gives

a =
−1−

√
4z − 3

2
, (3.71)

which is valid for z ≥ 3
4
. Brian T. Hages and Phillipe Lefloch [5] proved that to stay in the allowable

region for two waves nonclassical solution we must have z ≤ 1 so that the admissibility condition

(3.68) for entropy dissipation must be satisfied. In order to select a unique nonclassical solution we

introduce the Kinetic function K. For nonclassical solution we require the entropy dissipation to be

equal to kinetic function which is a function of speed of propagation

E(u−, vm) = K(s). (3.72)

For our purpose we rescale the Kinetic function by the relation

K(s) = [u−]4φ(z, u−), z ∈
[

3

4
, 1

]
. (3.73)

Proposition 3.5.2. Assume that the Kinetic function K(s) is a smooth function defined for s ∈

[0,+∞) and for all u− > 0 satisfies the conditions

(i) K(s) < 0, s ∈ (0,+∞), (3.74)

(ii) K(0) = 0, (3.75)

(iii) K(s) > −3s2

4
, s ∈ (0,+∞). (3.76)

Consider two initial states u− > 0 and u+ < 0. Then, in the family of two-wave solutions generated by

u− and u+, there exists a unique solution consisting of a nonclassical shock from u− to an intermediate

state denoted by vm(u−) ∈ (u−, u
−

2
) with wave speed denoted by s ∈ (0,+∞) and a classical wave

from vm(u−) to u+ such that the kinetic relation (3.72) and (3.73) holds for the nonclassical wave.

The classical wave is a shock wave if u+ > vm(u−) and a rarefaction wave if u+ 6 vm(u−).
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Proof. We just need to prove that the kinetic relation φ according to (3.73) select a unique value z

everywhere in the range [3
4
, 1] leading to prove that the kinetic relation K and the entropy dissipation

has one intersection point in the range [3
4
, 1] with respect to z. Indeed by considering a = vm

u−
,

p(a) = E(u−, vm) =
1

4
(vm − u−)2([vm]2 − [u−]2) =

[u−]4

4
(a− 1)2(a2 − 1) =

[u−]4

4
φ(z, a), (3.77)

Firstly

p′(a) =
[u−]4

2
(a− 1)2(2a+ 1). (3.78)

p is decreasing when −1 6 a < −1
2
. Therefore since a = −1−

√
4z−3

2
is decreasing function with respect

to z, by replacing with its values in the range −1 < a < −1
2
, we get 3

4
6 z < 1.

Secondly by using chain rule,

[p(a(z))]′ = a′(z)× p′(a)[z], (3.79)

Since a and p are decreasing function with respect to z in the range 3
4
6 z < 1, we have therefore

their composition

[p(a(z))] =
[u−]4

4

{
z2 + z

(
3 + 2

√
4z − 3

)
− 3

2

√
4z − 3− 9

2

}
(3.80)

is strictly increasing. Since p with respect to z is an increasing function, any decreasing function φ

with respect to z over the interval (3
4
, 1) crosses the graph of p exactly in one point. It follows that

[u−]
4

4
lim

z−→ 3
4

+
φ(z, s) > E

(
a

(
3

4

))
= −

[
3

4

]3 [
u−
]4
, (3.81)

[u−]4

4
lim

z−→1−
φ(z, s) ≤ E(a(1)) = 0. (3.82)

We have to point out that proposition 3.5.2 shows only the existence of the nonclassical solution

but cannot select it. It does select the classical solution in

u+ = −u− − vm(u−) ∈
(
−u

−

2
, 0

)
, or z(u−) =

3

4
and u+ ≤ −u

−

2
.

In proposition 3.5.2

vm(u−) ∈
(
u−,

u−

2

)
⇒ −u− − vm ∈

(
−u

−

2
, 0

)
.
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We found that −u− − vm(u−) < 0 since u− > 0.

By using an exact kinetic relation, we recuperate the solutions found as limits of vanishing

viscosity-dispersion approximations. Indeed in the same spirit Jacobs, MCKinney, and Shearer [8]

proved the existence of nonclassical solution using traveling waves. We recall their results for our

analysis by defining a normalized parameter

ν =
σ

u−
, (3.83)

and putting a normalized parameter (3.83) in the shock speed we have

s = [u−]2 −
√

2

3
σ[u−] +

2

9
σ2 = [u−]2

(
1−
√

2

3
ν +

2

9
ν2

)
. (3.84)

We proved the following theorem which reproduces the unique solution to the Riemann problem for

diffusive-dispersive regularizations for the cubic scalar equation(3.25), through the use of a specific

kinetic relation and nucleation criterion.

Theorem 3.5.3. The unique solution to the Riemann problem for diffusive-dispersive regularizations

(3.25) is equivalent to nonclassical shocks for the cubic scalar equation (3.28) which satisfy the kinetic

relation for φ having the explicit dependence

K(s) = [u−]4φ(z) = p[a(z)], (3.85)

where p[a(z)] is defined by (3.80) and s is defined by (3.84). The nonclassical shocks must also satisfy

the nucleation criteria

u+ < −
√

2σ/3, (3.86)

u− > 2
√

2σ/3. (3.87)

Proof. We have

z =
s

[u−]2
= 1−

√
2

3
ν +

2

9
ν2,

by using (3.69). In the amount p[a(z)] we have

√
4z − 3 =

√
1− 4

3

√
2ν +

8

9
=

√{
2

3

√
2ν − 1

}2

= 1− 2

3

√
2ν, (3.88)
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since u− > 2
√

2σ/3. Indeed from the assumption of the theorem 3.5.3 and using (3.83) we have

u− > 2
√

2σ/3 =⇒ 1 > 2
√

2ν/3.

By using (3.88) in p[a(z)], It follows that

K(s) = p[a(z)] = [u−]4

(
ν4

81
−
√

2

9
ν3 +

2

3
ν2 − 2

√
2

3
ν

)
. (3.89)

Let vm = w∗r = −u− +
√

2
3
σ from (3.57). The entropy dissipation (3.67)

E(u−, w∗r) =
1

4

(
−u− +

√
2

3
− u−

)2
[u− +

√
2

3

]2

− [u−]2

 .

It follows that

E(u−, w∗r) =

{
σ4

81
−
√

2

9
u−σ3 +

2

3
[u−]2σ2 − 2

√
2

3
[u−]3σ

}
, (3.90)

By putting the normalized ν (3.83) in (3.90) we get

E(u−, w∗r) = [u−]4

(
ν4

81
−
√

2

9
ν3 +

2

3
ν2 − 2

√
2

3
ν

)
. (3.91)

According to the proposition 3.5.2, the unique value selected by kinetic relation (3.72) is

vm = w∗r = −u− +

√
2

3
σ. (3.92)
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Chapter 4

Transport Equilibrium schemes for

computing nonclassical solutions of

systems of conservation laws

4.1 Introduction

The numerical computation of nonclassial solution of systems of conservation laws is a challenging

problem and a very active field of research. The main difficulty resides in the approximation of the

kinetic function K at the discrete level. There are two main approaches to the computation of

nonclassical shocks. In the first approach, one uses a regularisation of the problem with a diffusive

and dispersive terms in order to approximate the kinetic function. In the second approach, armed

with the full knowledge of the kinetic function, ones tracks the nonclassical shocks and resolve them

accurately by the means of the kinetic relation, that justify why the approach is called sharp interface

approach. The transport equilibrium schemes, first developed by Chalons [3] falls in the second

approach. The method consists of an equilibrium step which incorporate the kinetic relation at any

nonclassical shock and a transport step which advances the discontinuity with time. The method

resolves accurately nonclassical shocks with the correct shock position and shock velocity. The

drawback of the method is that it requires knowledge of the kinetic function and the underlying

Riemann solution. This makes the method not suitable for any complex application.
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4.2 Presentation of the algorithm

We present the transport equilibrium scheme for the computation of nonclassical solutions of a

conservation law in the form

ut + f(u)x = 0, x ∈ R, t > 0. (4.1)

where the notations are as in the previous chapter. We assume that the the conservation law has a

kinetic relation K are defined as in (3.4.1) and the tangent function T as in (3.3.1). We discretise

the space and time by means of the grids xi+1/2 = i∆x, i ∈ Z and tn = n∆t where ∆x and ∆t is the

space step and time step, respectively. The method seek to find a piecewise constant approximation

vni of v(xi, tn) at any time tn in the interval Ii = [xi−1/2;xi+1/2). In the finite volume framework, the

method solves at each grid interface xi+1/2 a Riemann problem for the conservation laws with left

and right data vni−1 and vni , respectively. Nonclassical shock appears in general when the left and

right states belongs to two different regions on concavity of the flux function f. We assume that the

flux function is concave convex or convex-concave as is described in (3.16) and (3.17). We recall the

following properties of concave-convex flux

uf ′′(u) > 0, when u 6= 0, f ′′′(u), and lim
|u|→+∞

f ′(u) = +∞, (4.2)

or convex-concave, that is they satisfy

uf ′′(u) < 0, when u 6= 0, f ′′′(u), and lim
|u|→+∞

f ′(u) = −∞. (4.3)

The typical example of interest for us will be the cubic flux function f(u) = u3. By keeping this in

mind, let us insert two subsets C and N made of all the pairs (u−, u+) ∈ R2 with u+u− < 0 and such

that the Riemann solution with initial data u+ and u− satisfying the single entropy inequality (2.51)

and Kinetic relation (3.21) is respectively classical and nonclassical. We have therefore

C =

{(u
−, u+), u+u− < 0 |u+u− > u−T (u−)} if f satisfies (3.16)

{(u−, u+), u+u− < 0 |u+u− 6 u−K(u−) and [u−]2 6 u−ρ(K−1(u+), u+)} if f satisfies (3.17) ,

(4.4)
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and

N =


{(u−, u+), u+u− < 0 |u+u− < u−T (u−)} if f satisfies (3.16)

{(u−, u+), u+u− < 0 |u+u− > u−T (u−) if f satisfies (3.17) or

{u+u− 6 u−K(u−), [u−]2 6 u−ρ(K−1(u+), u+)} if f satisfies (3.17).

(4.5)

Notice that C = ∅ if f sastifies (4.2) and u−K(u−) > 0. The Riemann solution combined with

a pair (u−, u+) in C (when is it not empty) is always a classical shock connecting u− to u+ while if

(u−, u+) belongs to N , the Riemann solution is nonclassical [3] apart from if u+ = K(u−).

Concerning the solutions remaining always either in R− or R+ , we choose on a numerical flux

function h consistent with the flux function f defined in (3.1) and consider the following 3-point

explicit conservative scheme

vn+1
i = vni − λ[hi+1/2 − hi−1/2], i ∈ Z, (4.6)

with λ = ∆t
∆x

defined under the CFL restriction

λmax |f ′(u)| 6 1

2
(4.7)

and hi+1/2 = h(vni , v
n
i+1) for all ∈ Z and h(u, u) = f(u)∀u ∈ R. The objective is to figure out how

to transform such a conservative scheme (4.6) in order to rightly capture all the solutions of the

Riemann problem with a given initial data u+ and u− verifying the single entropy inequality (2.51)

and Kinetic relation (3.21) that is including those associated with the case u+u− < 0 in initial data.

The algorithm comprises two main steps. We have an Equilibrium step and a Transport step. In

the Equilibrium step, we propose to modify any given consistent and conservative scheme so we can

put at stationary some admissible discontinuities. Then, the transport step aims at diffusing these

discontinuities [3].

(1) When Riemann initial data is such that u+u− < 0 and the corresponding solution is simply a

shock wave which can be classical or nonclassical from u− to u+ give rise to spurious values

distinct from u− to u+ if we used the conservative scheme (4.6).
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In fact looking at the following natural discretization of the initial data

v0
i =

u
− i 6 0,

u+ i > 1,

(4.8)

It follows that by using the conservative scheme (4.6)

v1
i =



u− − λ[h(u−, u−)− h(u−, u−)] = u−, i 6 −1,

u− − λ[h(u−, u+)− h(u−, u−)], i = 0,

u+ − λ[h(u+, u+)− h(u−, u+)], i = 1,

u+ − λ[h(u+, u+)− h(u+, u+)] = u+, i > 2,

(4.9)

with v1
0 /∈ {u−, u+} and v1

1 /∈ {u−, u+}. The aim is to keep a sharp interface between u− to u+

propagating at speed s given by Rankine-Hugoniot conditions(2.13) s = s(u−, u+)

To reach this goal, we propose to use the following nonconservative formula

vn+1
i = vni − λ[hai+1/2 − hbi−1/2], i ∈ Z, (4.10)

where the numerical fluxes hai+1/2 = hai+1/2(vni , v
n
i+1) and hbi+1/2 = hb(vni , v

n
i+1) are defined as

follows

hai+1/2(v, v) = hbi+1/2(v, v) = h(v, v),

for all v. It follows that if (u−, u+) ∈ C we set

hai+1/2(u−, u+) = h(u−, u−), hbi+1/2(u−, u+) = h(u+, u+) for i ∈ Z, (4.11)

which is enough to avoid the nondesired intermediate valuesv
1
0 = u− − λ[ha1/2(u−, u+)− hb−1/2(u−, u−)] = u− − λ[h(u−, u−)− h(u−, u−)] = u−,

v1
1 = u+ − λ[ha3/2(u+, u+)− hb1/2(u−, u+)] = u+ − λ[h(u+, u+)− h(u+, u+)] = u+.

(4.12)

In the same manner, if (u−, u+) ∈ N we set

hai+1/2(u−, u+) = h(u−,K−1(u+)), hbi+1/2(u−, u+) = h(K(u−), u+) for i ∈ Z, (4.13)
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we have the same result as (4.12).

The new consideration (4.10) of the scheme (4.6) enable to take off nondesired values and make

stationary the initial discretization (4.8). Furthermore when it should be moving at speed s a

transport step must be added in the algorithm.

(2) The second motivation involve the circumstances where (u−, u+) ∈ N but u+ 6= K(u−). Our

aims is to force the numerical scheme to create such a nonclassical discontinuity (u+ = K(u−))

The algorithm presented above can be summarised in two main steps.

(1) The transport step: aims to make stationary some of admissible shocks with Riemann problem

with initial data u+ and u− satisfying the single entropy inequality (2.51) and Kinetic relation

(3.21). We consider the new update formula (4.10) of the scheme (4.6)

hai+1/2 = hai+1/2(vni , v
n
i+1) =


h(vni , v

n
i ) if (vni , v

n
i+1) ∈ C,

h(vni ,K−1(vni+1)) if (vni , v
n
i+1) ∈ N ,

hi+1/2 = h(vni , v
n
i+1) otherwise,

(4.14)

and

hbi+1/2 = hbi+1/2(vni , v
n
i+1) =


h(vni , v

n
i ) if (vni , v

n
i+1) ∈ C,

h(K(vni ), vni+1) if (vni , v
n
i+1) ∈ N ,

hi+1/2 = h(vni , v
n
i+1) otherwise.

(4.15)

(2) the equilibrium step takes into account the transport of the solution got at intermediate time

tn+1− with the speed s(u−, u+) defined at the each interface xi+1/2 by

si+1/2(vni , v
n
i+1) =

s(v
n+1−
i , vn+1−

i+1 ) if (vni , v
n
i+1) ∈ C ∪ N ,

0 otherwise,

(4.16)

and find solution to transport equation with the speed si+1/2. For getting a new approximation

vn+1
i at time tn+1 = tn + ∆t we select randomly on interval [xi−1/2, xi−1/2) a value in the

juxtaposition of these Riemann solutions at time ∆t. Furthermore given a random sequence kn
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within (0, 1) we set

vn+1
i =


vn+1−
i−1 if kn+1 ∈ (0, λs+

i−1/2),

vn+1−
i if kn+1 ∈ [λs+

i−1/2, 1 + λs−i+1/2],

vn+1−
i+1 if kn+1 ∈ [1 + λs−i+1/2, 1).

(4.17)

where s+
i+1/2 = max(si+1/2, 0), s−i+1/2 = min(si+1/2, 0).

4.3 Convergence of the algorithm

The algorithm presented in the previous section has a non conservative numerical flux function.

In general for a numerical scheme for the solution of system of conservation law to converge, the

scheme should be consistent, in the sense that the numerical flux reduces to the continuous flux when

its argument are equal, and conservative. Convergence problems are then an issue for the presented

algorithm. It turns out that the algorithm is convergent for the class of classical and nonclassical

shock solutions as presented in the following theorem.

Theorem 4.3.1. Under the CFL condition (4.7) the scheme described by (4.14), (4.2) (4.16), (4.17)

with a Rieman problem satisfying the single entropy inequality (2.51) and Kinetic relation (3.21) is

convergent in the following sense

(1) Constant state: Assume that v = vni−1 = vni = vni+1, then vn+1
i = v

(2) Classical or nonclassical shock (region of different convexity or concavity): Let u− and u+ be two

constant states such that u−u+ < 0 and that can be connected by an admissible classical shock

or nonclassical shock. Assume that v0
i = u− if i ≤ 0 and v0

i = u+ if i ≥ 0. Then the scheme

described by (4.14), (4.2) (4.16), (4.17) converges to the solution of Riemann problem satisfying

the single entropy inequality (2.51) and Kinetic relation (3.21) given by v(x, t) = u+ if x <

s(u−, u+)t and u(x, t) = u+ otherwise. In particular, we have vni ∈ {u−, u+} ∀i ∈ Z and n ∈ N

so that the discontinuity is pointed.

(3) Classical solution (same region of convexity or concavity): In this case by assuming vni−1, v
n
i vni+1

are either all non positive or negative gives probable convergence depending on (4.14), (4.2),

(4.16), (4.17) since vni+1 coincide with usual conservative scheme (4.6).
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The proof can be found [3]

4.4 Numerical experiments

To experiment the above algorithm (transport-equilibrium scheme) we choose the following test

cubic f(u) = u3 in the concave-convex case (the case convex-concave is similar by considering −f(u)).

The corresponding entropy entropy-flux is (U ,F) = (u2, 3
2
u4). We respectively find the tangent

function, the zero entropy dissipation function, the kinetic function, the intermerdiate function ρ

T (u) = −u
2
, E0(u) = −u, K = −3

4
u, ρ(u, v) = −u− v.

We choose the numerical flux Local Lax-freidrichs scheme h by

h(u, v) =
1

2
(f(u) + f(v)− k(u, v)(v − u)), k(u, v) = max(|f ′|(u), |f ′|(v)).

We compare the result of the transport equilibrium scheme with the Local Lax-freidrichs scheme.

Figure 4.1: Solution of the Riemann problem for the cubic flux with the intial data u− = 4, u+ = 5
(left) and u− = 4, u+ = −0.5 (right).
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Figure 4.2: Solution of the Riemann problem for the cubic flux with the intial data u− = 4, u+ = −2
(left) and u− = 4, u+ = −5 (right).

The numerical result in the Figures 4.1 and 4.2 compare well with the results found in the

paper [3]. The solutions contain shocks as well nonclassical shock and rarefactions which move from

the left to the right. In the Figure 4.1 the transport equilibrium scheme and the Local Lax-freidrichs

scheme capture the classical solution and both coincide while in the case where the solution contain

a nonclassical shocks (Figure 4.2), the standard numerical schemes fail to resolve the discontinuity.
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Chapter 5

Conclusion

This dissertation aim was to study the theory and the numerical approximation of nonclassical

solution of hyperbolic conservation laws. The construction of the solution of the Riemann problem

was done using a kinetic function that depends on the geometrical properties of the flux function.

For the numerical approximation we used a numerical scheme called transport-equilibrium scheme

that tracked the nonclassical front and resolve it accurately using the kinetic function. A drawback

of this work is it focuses more on the scalar case and more precisely on the cubic flux function. It

will be interesting to see how the results found here can be extended to systems of conservation laws

in general. For such case a precise definition of the kinetic function needs to be investigated.

For further work the application of nonclassical solution in the model of crowd dynamic will be

studied where the flux function possess two inflection points.
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