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ABSTRACT 

The objective of this dissertation is to expand on the proofs and concepts of Degree 

Theory, dealt with in chapters 1 and 2 of Deimling [28], to make it more readable and 

accessible to anyone who is interested in the field. 

Chapter 1 is an introduction and contains the basic requirements for the subsequent 

chapters. 

The remaining chapters aim at defining a ll-valued map D (the degree) on the set 

At = {(F, 0, y) / ° ~ X open, F : 0 -+ X, y ~ F( an) } 

(each time, the elements of At satisfying extra conditions) 

that satisfies : 

(Dl) D(I, 0, y) = 1 ify EO. 

(D2) D(F, 0, y) = D(F, 0 , y) + D(F, 0 , y) if 0 and 0 are disjoint open subsets of 
1 2 1 2 

o such that y ~ F(O \ ° u 0 ). 
1 2 

(D3) D(I - H(t, .), 0, y(t)) is independent of t if H : J x 0 -+ X and y : J -+ X. 

An important property that follows from these three properties is 

(D4) F-1(y) =1= 0 if D(F, 0, y) =1= o. 

This property ensures that equations of the form Fx = y have solutions if D(F, 0, y) f O. 

Another property that features in these chapters is the Borsuk property which gives us 

conditions under which the degree is odd and hence nonzero. 
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CHAPTER 1 

1.1 INTRODUCTION 

Nonlinear functional analysis developed mainly because many of the problems in nature 

are represented by nonlinear models. In practise, one would like to know whether a 

nonlinear equation of the form Fx = y has a solution. If a solution does exist, then one 

would want to know if it is unique, and have some way of locating the solution. A field 

in nonlinear functional analysis which addresses the question of the existence of solutions 

to such equations is Degree Theory. 

To motivate the definition and properties of the degree that uniquely define it, we 

consider first, the concept of the winding number of plane curves, which indicates how 

many times a closed curve winds around a fixed point not on the curve. 

Let r ~ ( be a continuously piecewise differentiable closed curve with a E ( \ r. If z(t), 

t E [0, 1] is a representation of r, (since r is dosed, z(O) = z(l) ), then 

w (r, a) = 2
1

, J dz is an integer and is called the winding number (index) of the 
ID r z-a 

point a with respect to the curve r . (see Alfors [25] ). It is possible to define w (r, a) 

for any continuous closed curve r that does not pass through a (need not be piecewise 

differentiable). We divide r into subarcs r , ... , r ,each contained in a ball that does 
1 n 

not contain a. Let (J be the directed line segment from the initial point to the terminal 
k 

point of r and set (J = (J + (J + ... + (J • Then (J is piecewise differentiable and 
k 1 2 n 

W ((J, a) is defined. We define w (r, a) by w ((J, a) . It can be shown that this definition 

is independent of the subdivision. More precisely, if z (t) and z (t) are continuous 
1 2 

piecewise differentiable representations of rand r respectively such that 
1 2 ' 
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max{lz.(t) -z(t)1 / t E [0, 1]} < min {la -z(t) 1 / t E [0, 1]} for j = 1, 2, then 
J 

w (r , a) = w (r ,a). Thus we have defined 
1 2 

W : {(r, a) / r is closed continuous, a E 4: \ r } -l II 

and this satisfies the following properties (which are not hard to see) : 

(a) w is constant on some neighbourhood of (r, a) . 

(b) w (r, .) is constant on every connected component of 4: \ r; in particular, it is 

equal to zero on the unbounded component . 

( c) If r can be continuously deformed to r without passing through a, then 
o 1 

w (r , a) = w (r ,a). More precisely, let z (t) and z (t) be representations for 
o 1 0 1 

rand r respectively, such that there exists a continuous 
o 1 

h: [0,1] x [0,1] -l 4: \ {a} satisfying h(O, t) = z (t) and h(1, t) = z (t) in 
o 1 

[0, 1] and h(s, 0) = h(s, 1) for all s E [0, 1]; then w (r , a) is constant for all 
s 

s E [0, 1] where r is the closed curve represented by h(s, .). 
s 

(d) If '"7 r denotes the curve r with its orientation reversed, then 

w ( - r, a) = - w (r, a). 

Property (c) is most important since it allows us to calculate the winding number of a 

complicated curve by finding the winding number of a possibly simpler curve. 

To get a more geometric feel for this, consider the following: -

Let B (0) be the closed ball of radius r > 0 centred at the origin in IR and consider a 
r 

continuous F: B (0) -l IR . As x travels once around the boundary of the ball, in a 
r 

positive direction, the image points Fx travel along an oriented curve C. We assume 

that 0 ~ C. Let w+ and w denote the number of windings about the origin in a positive 

and negative direction, respectively, and define w = w+ - w . 

2 



c o c 
F 

w=l W= -1 

B (0) 
r oo(jC 

W=o 

\ W = winding number of F 

It is intuitively clear that this definition leads to the following important results. 

(i) If W f 0, then there exists x E B (0) such that Fx = O. (Kronecker's existence 
o r 0 

principle) 

(ii) If F is changed continuously in such a way that none of the cQrresponding 

curves C pass through the origin, then w remains unchanged. (Homotopy 

invariance) 

The degree is defined so that it satisfies these nice properties. 

There has been much development in Degree Theorey since the work of Brouwer in his 

paper published in 1912 [37] . Much effort has been made to establish the properties of 

the degree using analytic methods instead of algebraic topological methods . In 1934, 

Leray and Schauder [36] extended the degree for finite dimensional operators (of 

Brouwer) to infinite dimensional operators (compact perturbations of the identity). A 

lot of work has been done by Nussbaum and Sch6neberg in extending the degree to other 

kinds of operators. 

1.2 PRELIMINARIES 

In the sequel K denotes either { or IR. 
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1.2.1 Definition 

Let X be a linear space over K . A norm on X is a function 1.1 : X -t IR such 

that for x, y E X and k E K, 

(i) Ixl ~O and Ixl =Oiffx=O 

(ii) Ix + yl ~ Ixl + Iyl 

(iii) I k x I = I k I I x I· 

A normed linear space (nls.) X is a linear space X together with a norm 1.1 on 

it. A Banach space is a nls. in which every Cauchy sequence is convergent. 

In the sequel X will denote a Banach space unless otherwise stated. 

If X is a nls., x E X and r > 0, then B (x ) = {x E X / Ix - x I < r} is the ball of centre 
o r 0 0 

x with radius r. 
o 

If 11.11 is another norm on the nls . X, then it is useful to note that the two norms 1.1 

and 11.11 are equivalent if they generate the same topology, i.e. if every I· I-ball 

contains a II.II-ball, and every II.II-ball contains a I· I-ball. 

An equivalent condition is : there exist a, fJ > 0 such that al x I ~ Ilxll ~ fJl x I for all 

x EX. 

If F : X -t Y is a map between two nlss . X and Y, then we write Fx instead of F(x) 

and we speak of the operator F. 

Every K~valued operator will be called a functional. 

The set of all bounded linear operators from a nls X to a nls Y will be denoted by 

BL(X, Y). 

BL(X, Y) is a Banach space iff Y is a Banach space. 

BL(X, X) will simply be denoted by BL(X) and BL(X, K) denoted by X *, the Banach 

space of all continuous linear functionals x*: X -t K . 
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The simplest element of BL(X) is I, the identity on X, i.e. Ix = x for all x E X. 

If 0 ~ X, then 0 and 80 will denote the closure and boundary of 0, respectively. 

If A, B ~ X, then A\B = {x E A / x ~ B }. 

n 1/ 
We let !Rn = {x = (x, ... , X ) / x.E!R for i = 1, 2, .. . , n} with Ixl = ( ~ x~) 2 

1 nIl 

The identity of !Rn will be denoted by id, i.e. id(x) = x for all x E !Rn. 

Linear maps in !Rn will be identified with their matrices A = (a..) . 
IJ 

{
o '.J. • 

If 8 .. = 1 ,~~JJ' (L.Kronecker's symbol), then id = (8..) . 
IJ , - IJ 

i=l 

Cx(B) will denote the collection of all continuous functions from B to X and we write 

C(B) ifB ~X. 

We will let J denote the interval [0, 1] in !R. 

1.2.2 Definition 

D ~ X is said to be convex ifAx + (1-A)y E D for all x, y E D and all 

A E [0, 1]. 

The convex hull of A ~ X is the intersection of all convex sets that contain A, 

and is denoted by conv A. 

It is easy to verify that 

n n 
conv A = { ~ A.xi / xi E A, A.E [0, 1] and ~ A.= 1, n E IN }. 

i=l 1 1 i=l 1 

1.2.3 Definitions 

Let X be a topological space. 

(i) A subset M of X is said to be compact if every open covering of M can 

be reduced to a finite open covering of M, i.e. if M ~ U A A ' AA ~ X 
AEA 
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n 
is open, then there exist ). , ... , ). ,say, such that M ~ U A). . 

1 n i=l i 

(ii) A set M is separable if it contains a count ably dense set. (recall: 

M C M is dense in M if M = M ) 
1- 2 2 1 2 

(iii) A subset M of X is relatively compact if M is compact . A subset M of 

X is precompact (totally bounded) if to every € > 0, there exist finitely 

n 

many balls B /x
i
) ~ X, i = 1, ... , n, such that M ~ i~l B /x

i
) · 

The following equivalent conditions for compactness are often useful and convenient, and 

the proofs may be found in any text on general topology, Willard [30] for example. 

1.2.4. Theorem 

Let X be a topological space and M ~ X. Then the following are equivalent :-

(i) M is compact. 

(ii) )'~A A).f 0 whenever (A)')'€A is a family of closed subsets of M such 

that the intersection of any finite subfamily is nonempty (the finite 

intersection property) . 

(iii) Every net in M has a convergent subnet with limit in M. 

The next two results relates the concepts defined above. Again, no proofs are included. 

1.2.5 Theorem 

Every compact set is separable. 

1.2.6 Theorem 

In a complete space, relative compactness is equivalent to precompactness. 
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We state the following useful theorem. 

1.2.7 Theorem 

Let (X, 1.1) be a nls . with dim X = 00. Then there exists a sequence 

(x ) ~ aB (0) such that I x - x I ~ 1 for n j m. 
n 1 m n 

1.2.8 Theorem 

The closed unit ball in a nls. X is compact iff dim X < 00 . 

From the previous results we obtain the following :-

1.2.9 Theorem 

If (X, 1.1) is a nls., then aB (0) is compact iff dim X < 00. 
1 

Since we have so many sets that are not relatively compact in infinite dimensional 

spaces, we introduce the concept of a measure of noncompactness. 

Let !lJ denote the collection of all bounded subsets of X. (Recall: B is a bounded subset 

of X if B is contained in some ball in X). 

If B E !lJ is not relatively compact (precompact), then there exists an € > 0 such that B 

cannot be covered by finitely many €-balls . 

1.2.10 Definition 

If B is a bounded subset of a nls . X, then diam B = sup {Ix - yl / x, yE B} is 

called the diameter of B. 

It seems natural to introduce the following definition which is due to Kuratowski . 

7 



1.2.11 Definition 

Let X be a Banach space and $ its bounded sets. Then 

a: $ ~ IR + defined by 

n 

a(B) = inf { d > 0 / B ~ i~ 1 B i' n E IN, diam B i ~ d} 

is called the Kuratowski-measure of noncompactness (a-MNC) and 

f3: $ ~ IR+ defined by 

n 
f3(B) = inf {r > 0 / B ~ .U B (x.), nE IN } 

1=1 r 1 

is called the Hausdo rff (bal0-measure of noncompactness. 

We can regard a(B) and f3(B) as the extents to which B is not compact . 

Sadovskii [9] also introduced a measure of noncompactness, but his was more- general. It 

seems that Sadovskii was not aware of the work of Kuratowskii and Darbo (who proved 

some of the properties of the a-MNC). 

Although the above definitions, which were introduced in 1930, seem quite natural, they 

were only taken up, 37 years later, in 1967. 

Darbo has shown that if we work in a Banach space, we obtain the following useful 

results. 

1.2.12 Theorem 

Let X be a Banach space, $ its bounded sets and ,: $ ~ IR+ be either a or 

{3. Then 

(a) ,(B) = 0 HfB is compact for all BE $. 

(b) ,is a seminorm, i.e. r(AB) = IAI ,(B) and r(B +B ) ~ ,(B) + ,(B ). 
1 2 1 . 2 

(c) B ~ B implies ,(B) ~ ,(B) and r(B U B ) = max{,(B), ,(B )}. 
1 1 2 12 1 2 

(d) ,(conv B) = ,(B) . 

(e) ,(B) = r(B) . 
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Proof: 

(a) 
m 

"===}" : Suppose r(B)=O. Take any E > O. Then by definition, B ~ .U M . 
1 = 1 1 

where diam M. ~ E if , = a and M. = B )xJ if , = {3. If M. are not 
1 1 l. 1 1 

E-balls, then for each i, choose x. E M .. Then we have M.~ B c(xJ Thus 
1 Ill. 1 

B is precompact and relatively compact. So B is compact_ 

"{=" : Suppose B is compact . Then B is relatively compact and hence 

precompact. Let E > O. Then B admits a finite cover by E-balls. (These 

have radius f and diameter 2E.) Thus a(B) ~ 2E and (3(B) ~ E. Since E 

was arbitrary, we must have ,(B) = o. 
m 

(b) Let d > 0 and let B CUM < d with diam M ~ d if", = a and 
- i=l i - i 

m 
M. = BJx') if, = {3. Then A B ~ .U A M. with diam A M. ~ IAI d if 

1 l. 1 1=1 1 1 

,= a and A M i = B I A I d (x i) if , = (3. Hence r( AB) ~ I A I ,(B). 

m 

Now let d > 0 and let A B ~ i~l Mi with diam Mi ~ d if, = a and 

M. = B (xJ if, = {3. Then B ~ .u ~ M. if A f 0 and diam ~ M. ~ _1_ d 
1 d 1 1=1;\ 1 ;\ 1 IAI 

1 
if ,= a or - M. = B1 (xJ Thus I A I ,(B) ~ ,(A B) for A f 0, and 

A 1 _ d 1 

A 

this is trivial for A = O. So we have r(A B) = I A I (B). 

m n 
Now let d ,d > 0 and let B CUM and B C U N with diam M < d 

12 1- i=1 i 2-j=1 j i- 1 

and diam N. ~ d
2 
if , = a or M. = Bd (xJ and N. = Bd (yJ if , = {3. 

J 1 11 J 2J 

Then B + B ~. U. (M. + N J with diam (M . + N J ~ d + d if, = {3 or 
1 2 I'J 1 J 1 J 1 2 

M. + N. ~ B (x. + y.) if, = {3. Then ,(B + B ) ~ r(B ) + r(B ). 
1 J d

1
+ d

2 
1 J 1 2 1 2 

Hence ,is a seminorm. 

(c) 
m 

Let d > 0 and let B1 ~ 'U1 M . with diam M. ~ d if ,~ a or M. = Bd(xJ 
1= 1 1 1 1 

m 
if, = {3. Then B ~ B ~ . U M._ Thus by definition, ,(B ) ~ ,(B ). 

1 2 1=1 1 1 2 
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Now assume, without loss of generality, that 

max {,(B ), ,(B n = ,(B). Since B ~ B U B , we have 
1 2 2 2 1 2 

III 

,(B) S,(B U B ). Let d > 0 with B ~.U M . with diam M. S dif 
2 1 2 2 1=1 1 1 

, = Cl! or M. = B (xJ if , = (3. Since ,(B) S ,(B ), we can find N. such 
1 d 1 1 2 J 

n 
that B ~ . UN. with diam N. S d if ,= Cl! or N. = B (xJ if , = (3. So 

1 J=1 J J J d J 
n III 

B U B ~ CU NJ U (.U MJ and hence by definition, ,(B U B ) S ,(B ). 
1 2 J =1 J 1=1 1 1 2 2 

Thus ,(B U B ) = max {,(B ), ,(B n. 
1 2 1 2 

(d) Since B ~ cony B, we have by (c) that ,(B) s ,( cony B). 

III 

Now let d > 0 with B ~ .U M. with diam M. ~ d if, = Cl! or M. = B (xJ 
1=1 1 1 " 1 d 1 

if, = (3. Since diam (conv MJ ~ d and Bd(xJ is convex, we may assume 
1 1 

that the Mi are convex. Now 

III 

cony B C cony [M U cony (. U M)] 
1 1= 2 

III 

C cony [M U cony [M U cony (.U MJ]] 
1 2 1=3 1 

c 

So if we can show that ,( cony (C U C ) ) ~ max {,(C), ,(C n for 
1 2 1 2 

convex C and C , then we would have 
1 2 

,( cony B) S max {,(M ), ... , ,(M n s d 
1 III 

and so ,(cony B) ~ ,(B) . 

We would first like to show that 

conv(C U C ) ~ U [A C + (l-A) C ] = S. 
1 2 O~A~ l 1 2 

Now C U C c S, so we just need to verify that S is convex. 
1 2 -

Let x, yES and J-L E [0, 1] . Then x = AC + (1-A) c and 
1 2 

Y = AICI + (l-AI) c' for some A, AI E [0,1] and c ,Cl E C , 
1 1 1 

C 2' c; E C 2· We must show that J-L x + (1-J-L) yES. 

J-LX + (l-J-L)Y = J-L)..c + l£(l-)..)c + (1-1£))..' c' + (1-1£)(1-)..' )c' 
1 2 1 2 
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= [JLk + (1-JL)A' Cl] + [JL(1-A)C + (1-JL)(1-A' )C'] . 
112 2 

Since A, A', JL E [0, 1], JLA + (1-JL)A' E [0, 1]. 

If ° < JLA + (1-JL) A ' < 1, then ° < JL(1-A) + (1-JL)(1-A') < 1 and so 

() ( A ( ) A ') [l!,A ~ 1 -g) A ' , ] f.IX+ 1-JL Y = JL + 1-JL JLX+{1-/1)X' Cl+ JL~ +(1-JL)X' Cl 

,[ X~1-A) + (JL(1-A)+(1-JL)(1-A)) /1(1- +(1-/1)(1-X') C2 

E (JLA+(1-JL)A ')C +(JL(1-A)+(1-/1)(1-A'))C 
1 2 

~ S 

If JLA + (1-JL)A' = 0, then JLA = ° = (1-JL)A' and so 

. f.IX + (1-/1)Y = JLC + (1-JL)c' E C ~ S, and if J1A + (1-/1)A' = 1, then 
222 

/1(1-A) + (l-J1)(l-A') = ° and so J1(1-A) = ° = (1-/1)(1-A') . 

Thus f.IX + (l-JL)y = JLC + (1-JL)c' E C ~ S. Hence S is a convex set 
1 1 1 

containing C U C and so conv (C U C ) ~ S = U [AC + (l-A)C ]. 
1 2 1 2 . 0~A9 1 2 

Since C - C is bounded, there exists r > ° such that I x I < r for all 
1 2 

xEC-C. 
1 2 

Given E > 0, we can find A , .. . , A E [0, 1] such that 
1 p 

P 

[0, 1] ~ .U (A. -~, A. -~) since [0,1] is compact . Now let 
1=1 1 r 1 r 

x E conv (C U C). Then x = AC + (1-A)C for some A E [0, 1], c E C , 
1 2 1 2 1 1 

C E C . Since A E [0, 1], we can find i such that 
2 2 

I A - A.I <~. So x = A,C + (1-AJC + [(A-A.)C - (A-AJC ] and 
1 r 11 12 11 12 

I (A - AJC
1 

- (A-A.)C
2

1 = I A-A. I I c - c I < ~ r = E. 
1 1 1 1 2 r 

11 



Thus x E \C 1+ (l-»)C 2 + B E(O), 

p 

So conv (C U C ) ~ ,U [A,C + (l-A,}C + B (0)] and hence by (b) and 
1 2 1=1, 1 1 1 2 E 

(c) and the obvious statement that ,(B E(O)) ~ 2E, we have 

,(conv (C U C ) ) ~ max ,(A ,C + (l-A.)C + B/O)) 
1 2 1 ~ i ~p 1 1 1 2 

~ max [,(A,C )+,((l-A.)C )+,(B (0))] 
l< i < 1 1 1 2 E - -p 

~ max [I A,Ii(C )+ 11-A,I'(C )+2E] 
1 ~ i ~p 1 1 1 2 

~ max [I A,I max{ ,(C ),,(C )} 
1 ~ i ~p 1 1 2 

+ 11-\1 max{,(C
1
),,(C)}+2E], 

= max{ -nC ),,(C )} + 2E for all E >' 0, 
1 2 

Hence ,( conv( C U C )) ~ max{ ,( C ), ,( C )} and we are done, 
1 2 1 2 

_ m 

(e) By (c) we have ,(B) ~ ,(B) , If d > 0 with B ~ i~l Mi with diam Mi ~ d 

_ m_ 

if , = a or M, = B (x J if , = (3, then B ~ ,U M, and 
1 d 1 1=1 1 

diam M = diam M < d, 
i i -

So ,(B) ~ ,(B) and hence ,(B) = , (B) , • 
Now let us compare the a-MNC and the (3--MNC, Let B E .;8 , If d > 0 with 

m 

B ~ i~lBd(xi)' then diam Bd(x) ~ 2d and so a(B) ~ 2 (3(B), Now let d > 0 with 

m 
B ~ ,U

1 
M, such that diam M,~ d, ' Choose x ,E M" Then Ix - x,l ~ diam M, ~ d for all 

1= 1 1 1 1 1 1 
m 

X E M" Thus M, ~ Bd(x,) for each i, So B ~ ,U Bd(x,) and hence (3(B) ~ a(B) , Thus 
1 1 1 1=1 1 

we obtain the inequality (3(B) ~ a(B) ~ 2 (3(B) for all B E .;8 , 

Strict inequalities hold in the following subsets of C( J): 

Bl = {x E C(J) / x(O) = 0, x(l) = 1,,0 ~ x(t) ~ 1 in J} 

B 2 = {x E B 1 / 0 ~ x( t) ~ ~ in [0, ~ ] and ~ ~ x( t) ~ 1 in [ ~, 1] } 

B 3 = {x E B 1 / 0 ~ x( t) ~ j in [0, ~ ] and ~ ~ x( t) ~ 1 in [ ~, 1] }, 

12 



We would now like to calculate the measures of the ball B (x ). 
r 0 

N.B.: If X is a finite-dimensional space, then B (x ) is closed and bounded, hence 
r 0 

compact. Thus {(B (x )) = ,(B (x )) = O. 
r 0 r 0 

We will consider X to be an infinite-dimensional space. Since B (x ) = B (0) + x , we 
r 0 r 0 

have ,(B (x )) = ,(B (0)). Also, B (0) = r B (0) . So 
r 0 r r 1 

{(B (x )) = r ,(B (0)) = r ,(B (0)). Thus we need only compute ,(B (0)) . 
r 0 1 1 1 

Let S = aB (0). Then S ~ B (0) and B (0) is convex. So conv S ~ B (0). For x E S, 
1 1 1 1 

1 1 Ixl = 1 = I-xl and so -x E S. Thus 0 = 2:x + 2: (-x) E conv S. Now take any 

x E B (0) \ {o} . Then ...£ E S. So x = Ixl (~) + (1 - Ixl )(0) E conv S. Thus we 
1 Ixl Ixl 

have shown that conv S = B (0) . So ,(S) = ,( conv S) = {(B (0)). 
1 . 1 

m 
By definition of a and (J, a(S) ~ 2 and (J(S) ~ 1. Suppose a(S) < 2. Then S = i~l Mi 

with closed sets M. and diam M. < 2. Let X be an n-dimensional subspace of X. Then 
1 1 n 

m 
S n X =.U (M.n X ) is the boundary of the unit ball in X . By theorem 2.13, which is 

n 1=1 ' 1 n n 

proved later in chapter 2, we find that one of the sets M.n X must contain a pair of 
1 n 

antipodal points, x and -x. Hence diam M.~ diam (M .n X ) ~ 2, a contradiction. So 
1 1 n 

a(S) = 2 and 1 = ~ ~ (J(S) ~ 1, giving us (J(S) = 1. Thus in an infinite-dimensional 

space, 

a(B (x )) = 2r and {J(B (x )) = r . 
r 0 r 0 

1.2.13 Definition 

Let X, Y be Banach spaces and n ~ X. A subset B of Cin) is said to be 

equicontinuous at e E n if for every c > 0, there exists 0 > 0 such that for 

every", E 0 with le - ",I < 0, we have sup {Iu(e)-u(",)I / u E B} ~ c. B is 

equicontinuous on n if it is equicontinuous at each x E O. 

Let B ~ Cy(n) be a bounded equicontinuous set and let B(e) = {u(e) / u E B} be the 
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slice at ~ E O. We now prove the following result . 

1.2.14 Theorem 

Proof: 

Let X be a Banach space, D ~ !Rn be compact and B ~ Cx(D). Then 

(a) a{B) = sup a(B(~)) if B is bounded and equicontinuous. 
D 

(b) B is relatively compact iff B is equicontinuous and B(~) is relatively 

compact for every ~ E D. 

p p 

(a) Let d > 0 with B ~ i~l Mi and diam Mi ~ d. Hence B(~) ~ i~!.Mi(~) with 

diam M.(~) = sup { l u(O-v(~)1 / u, v E MJ 
1 1 

= sup { 1(u - v)(e)1 / u, v E MJ 
1 

= diam M 
i 

~ d. 

Thus a(B( 0) ~ a(B) for all e E D and so sup a(B( e)) ~ a(B) . 
D 

Now to obtain the opposite inequality we let E > 0, u E B, and e E D. To 

p 

show u( 0 E .U (B( ei
) + B (0)) . Since B is equicontinuous, there exists a 

1=1 E 

8> 0 such that for every 'f/ E D with 1 e - 'f/I < 8 we have 

1 v( e) - v( 'f/) 1 < E for all v E B. Since D is compact, we can find 

p 

e, ... , ep E D such that D ~ i~l B~ei). Now e E D, so there exists i such 

that 1 e - ei 1 < 8. Thus 1 u( 0 - u( ei) 1 < E. SO 

u(e) = u(ei) + (u(e) - u(ei)) E B(ei) + B (0) . Thus 
E 

p 

B( e) ~ i~l [B( ei) + B /0)] for all e E D. Let d > sup a(B( 0). Then we 
D 

14 



P m 

can find M , "" M ) cliam M, ~ d and ,U B(e) ~ ,U M" Now B is the 
1 m J 1=1 J=l J 

union of the finitely many sets {u E B / u(e1) E M, , .. " u(ep
) E M, , 

J 1 Jp 

where (j , j , .. " j ) is a permutation of (1, 2, .. " p)}, each of which has 
1 2 P 

diameter ~ d + 2€. Thus o{B) ~ sup a(B( e)) and we are done, 
D 

(b) If B is equicontinuous and B( 0 is relatively compact for every e E D, 

then by (a), a(B) = sup a(B(e)) = sup 0 = 0 and so B is relatively 
D D 

compact , Now, suppose B is relatively compact , Then a(B)=O, 

Since the map u ---! u(~) is continuous, we must also have a(B( ~)) = 0, 

So B(~) is relatively compact for every ~ E D, Now take E >" 0, We can 

P 

find u, .. " u in Cx(D) such that B ~,U B (uJ and {u, .. " u } is 
1 P 1= 1 E 1 1 P 

equicontinuous , Therefore, there exists 8 > 0 such that I e - 'f} I < 8 

implies that sup {Iu,(e) -u,('f})1 / i = 1, .. " p} < E, Thus for 
1 1 

le - 'f}1 < 8 we have sup {Iu(e) - u('f}) I / u E B } ~ 3 E and so B is 

equicontinuous , • 
The following is an important extension theorem and is a special case of Dugundji's 

extension theorem, 

1.2.15 Theorem 

Proof: 

Let X and Y be nlss" A ~ X closed and F: A ---! Y continuous, Then F has a 

continuous extension F : X ---! Y such that F(X) ~ conv(F(A)) , 

The idea of the proof is simple. We first construct a locally finite covering 

(U ») AEA of X\A, i,e, X\A = U U A ' U A is open and to every x E X\A 
AEA 

there exists a neighbourhood V(x) which meets only finitely many U A' Then 
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we define 

<p), (x) 
and 7/J(x) = ~....:.....--

~ <p (x) 
J1EA J1 

Notice that since the covering is locally finite, each x E X\A can only belong 

to finitely many U), and so ~ <p (x) is a finite sum and ~ <p (x) > O. Hence 
J1EA J1 J1EA J1 

7/J), is continuous in X\A. Furthermore, 0 ~ 7/J), (x) ~ 1 and ~ 7/J), (x) = l. 
),EA 

Next we choose suitable points a), E A and we let 

Fx = { Fx if x E A 
~ 7/J),(x) Fa), ifx ~ A 

Obviously F is an extension of F with F(X) ~ conv(F(A)), F is continuous in 

X\A and at interior points of A (if there are any), and 

Fx - Fx = ~ 7/J), (x) [Fa), - Fx ] , hence I Fx - Fx I ~ ~ 7/J), (x) I Fa), - Fx I for 
o ), 0 0 ), 0 

x ~ A and x E A. 
o 

It must be shown that F is continuous on BA ~ A. Let x E BA. Given € > 0, 
o 

we then find 8 > 0 such that IFz - F\I < € in A n Blx
o
)' since F is 

continuous . 

To prove continuity of F at x , we should have that 7/J, (x) f 0 (i.e. x E U,) 
o A A 

with I x - \ I sufficiently small implies that a), must be in B Ix 0)' since then 

I Fx - Fx I ~ ~ 7/J), (x) I Fa), - Fx I < ~ 7/J), (x) € = E-
o), 0 ), 

We must now find appropriate U), and a), . Let Bx be a ball with centre 

x E X\A such that diam B < p(B ,A), for example, B = B (x) with x- x x r 

r = p(x6 A). Then X\A = u B . X\A is a metric space and hence is 
. xEX\A x 

paracompact (see Willard [30]) . Thus X\A admits a locally finite refinement 

(U ),) ),EA (i.e. a locally finite open covering such that every U), is contained in 

some Bx). Now U), ~ Bz implies p(U)" A) ~ p(Bz' A) > 0 and therefore we 

can choose a),E A such that p(a)" U),) < 2 p(U)" A) for every), E A. Then 
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Ix - xol < ~ and VJ),(x) * 0 (i .e. x E U), ~ Bz for some z E X \ A) imply 

Ix - a), I < p(a)" U),) + diam U), 

< 2 p( a)" A) + diam Bz 

~ 3lx- x ol 

<3.Q 
4 

< b and we are done. 

1.2.16 Definition 

A subset D of X is said to be a retract of X if there exists a continuous map 

R : X -I D such that Rx = x for all x E D. 

i.e. D is a retract of X if I I D has a continuous extension to X. 

R is called a retraction of D. 

• 

If D ~ X is closed convex, then by theorem 1.2.15, I I D has a continuous extension F to X 

such that F(X) ~ conv(I(D)) = conv(D) = D. So F: X -I D is continuous such that 

Fx = x for all x E D. Thus every closed convex subset of a nls. X is a retract of X. 

Differentiability 

To differentiate a nonlinear operator, we have to use local approximations to the 

operator by linear operators. More about this can be found in Kantorovich [33] . 

We say that w(h) = o(h) as h -I 0 if ~ -10 as I hi -10. 

1.2.17 Definition 

Let X and Y be Banach spaces over K, n ~ X be open and F : n -I Y. 
, 

F is said to be Frechet-differentiable at x E n if there exists an 
o 

F'(x) E BL(X, Y) such that F(x + h) = F(x ) + F'(x ) h + w (x , h) and 
o 000 0 

w(x ,h) =o(lhl) as h-lO. 
o 

17 



F is said to be the Frechet -(strong-) derivative of F at x . o 

F is said to be Gateaux-differentiable at x E [2 if there exists 
o 

F(x +th)-F(x ) 
F' (x ) E BL(X, Y) such that lim 0 0 = F' (x ) h for all hEX. 

o t-lO t 0 

F' (x ) is often called the Gateaux- (weak-) derivative of F at x . 
o 0 

In the special case of functionals rp: [2 ~ X -+ K, we say that rp is 
A * 

Gateaux-differentiable at x E [2 if there exists rpl (x ) E X such that 
o 0 

rp(x +th)-rp(x ) 
1 i m 0 0 = rpl (x ) h for all hEX, and rpl (x ) is called the 
t-lO tOO 

gradient of rp at x , denoted by grad rp(x ). 
o 0 

We now give some properties of the derivative, the proofs of which can be found in 

Kantorovich [33]. 

(1) 

(2) 

(3) 

(4) 

I 

If the operator F is Frechet-differentiable at x, then it is continuous at x . 

Let F = a F + a F . If F I (x ) and F I (x ) exist, then so does F I (x ) and we 
1122 10 20 0 

ha ve F I (x ) = a F I (x ) + a F I (x ). 
o 110 220 

I 

If F E BL(X, Y), then F is Frechet-differentiable at every point x E X and 
o 

F/(X)=F. 
o 

Let X, Y, Z be Banach spaces with [2 ~ X and [2 ~ Yopen. If F : [2 -+ [2 
1 2 1 2 

I 

has a Gateaux-derivative at x E [2 and F : [2 -+ Z is Frechet-differentiable 
o 1 2 2 

A 

at y = F (x ), F = F F has a Gateaux derivative at x and 
o 1 0 2 1 0 

F' (x ) = F' (F (x )) F' (x ) = F' (y ) F' (x ). 
o 210 0 2010 

Let F: X -+ Y have a derivative pi in [2 . Then pi can be regarded as a mapping of 

the set [2 into the space BL(X, Y) . Thus it is reasonable to speak of the derivative of 

this operator, if it exists. Then PII(X ) E BL(X, BL(X, Y)) . We identify the space 
o 

BL(X, BL(X, Y)) with the space BL(X2, Y), the set of all bilinear operators 
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A : X x X -j Y, i.e. operators A such that A(x, .) and A( ., x) are linear for all x E X 

and IAI = sup {IA(x, x)1 / Ixl ~ 1, Ixl ~ 1} < CD. 
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CHAPTER 2 

DEGREE IN FINITE DIMENSIONAL SPACES 

Before we define the degree we give some definitions, notations and important results . 

Let 0 ~ !Rn be open. 

Ck(O) will denote the set of all f: 0 --!!Rn which are k-times continuously 

differentiable in 0, while Ck(O) = Ck(O) n C(O) and Coo(O) = n Ck(O). If fl (x ) 
k~l - 0 

exists, then J ix ) = det fl (x ) is called the Jacobian of f at x and x is called a critical 
f\ 0 0 0 0 

point of f if J (x) = O. These points will play an important role later, and so we 
f 0 

introduce S/O) = {x E 0 / J/x) = O} and we write Sf whenever 0 is clear from the 

context. 

A point y E !Rn will be called a regular value of f if f-l(y) n S (0) = 0, and a singular value 
f 

otherwise. 

The following theorem is absolutely vital since it allows us to approximate continuous 

maps by differentiable maps. It is a special case of theorem 3.5 and so we do not prove 

it . 

2.1 Theorem 

Let A ~ !Rn be compact, f E C(A) and f > O. Then there exists a function 

g E Crn(!RD
) such that I f(x) - g(x) I ~ f on A. 

The next result, which is a special case of Sard's lemma, tells us that the regular values 
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of a differentiable function form a dense subset of \Rn . The proof can be found in 

Schwartz [31]. 

2.2 Theorem 

Let 0 ~ IRn be open and f E Cl(O). Then JLn(f(Sf)) = 0, where JLn denotes the 

n-dimensional Lebesgue measure. 

2,3 Theorem (Inverse function theorem) 

Let 0 be open, f E Cl(O) and J/\) * ° for some XoE O. Then there exists a 

neighbourhood U of x such that fl is a homeomorphism onto a neighbourhood of 
o u -

f(x ). 
o 

The proof of this is standard, via Banach's fixed point theorem. We will use this result 

to show that if 0 is open and bounded and y is a regular value of f, then f-i(y) is finite . 

By theorem 2.3, for each x E f-i(y), there exists a neighbourhood U(x ) of x such that 
o 0 0 

f-i(y) n U(x ) = {x}. Consequently f-l(y) must be finite. Otherwise, there would be an 
o 0 

accumulation point x E 0 of solutions by the compactness of O. Thus we have a 
o 

contradiction to x being an isolated solution. So we must have f-l(y) to be finite . 
o 

The construction of a unique degree in finite dimensions can be found in Heinz [8], 

N agumo [15] and Deimling [28] . 

We state this formally in the following theorem. 

2.4 Theorem 

Let .At = Hf, 0, y) / 0 ~ IRn open bounded, f E C(O) and y E IRn \ f( a~) } . 

(a) Then there is a unique function d: .At --! II satisfying the following 

properties:-
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( dl) d(id, 0 , y) = 1 if Y E 0. 

(d2) d(f, 0, y) = d(f, ° , y) + d(f, ° ,y) if ° and ° are disjoint open 
1 2 1 2 

subsets of ° such that y E !Rn \ f(O \ ° u ° ). 
1 2 

(d3) d(h(t, .), 0, yet) ) is independent of t if h : J x 0 -+ !Rn, y : J -+!Rn 

are continuous such that yet) ~ het, ao) on J . 

(b) If (f, 0, y) E .At with f E Cl(O) and y is a regular value of f, then we define 

d(f, 0, y) = L sgn J/x) and we agree that ~ = o. o 
xEf-l(x) 

(c) If (f, 0, y) E .At with f E C2(0), then we define d(f, 0, y) = d(f, 0, y') 

where y' is any regular value of f such that I y - y' I < p(y, f( aO)), and 

d(f, 0, y') is given by (b). 

(d) If (f, 0, y) E .At, then we define d(f, 0, y) = d(g, 0, y) where g E C2(0) is 

a map such that Ig -fl < p(y, f(OO)) and d(g, 0, y) is given by (c). 
o 

This degree is often called the Brouwer degree. (f, 0, y) will be called an admissible 

triplet for the Brouwer degree if (f, 0, y) E .At. 

Of course, the usefulness of a degree theory stems from the properties it satisfies . Apart 

from the three properties (dl)-(d3) that uniquely define the degree, we also have some 

simple consequences which we call (d4)-(d7). We write these properties down formally 

in the following theorem. 

2.5 Theorem 

Let .At = Hf, 0, y) / ° ~ !Rn open bounded, f E C(O) and y E [Rn \ f( aO)} and 

d : .At -+ II the Brouwer degree defined in Theorem 2.4. Then d has the following 

properties:-

( dl) 

(d2) 

d(id,O,y)=l ifYEO. 

d(f, D, y) = d(f, D , y) + d(f, ° ,y) whenever ° and ° are disjoint open 
1 2 1 2 
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subsets of ° such that y ~ f(O \ ° u ° ). 
1 2 

(d3) d(h(t, .), 0, y(t)) is independent oft whenever h : J x 0 -+!Rn and 

(d4) 

(d5) 

(d6) 

(d7) 

y : J -+!Rn are continuous and y( t) ~ h( t, 00) for every t E J . 

d(f, 0, y) :j: 0 implies that f-1(y):j: 0. 

d( ., 0, y) and d(f, 0 , .) are constant on {g E C(O) / 1 g - fl < r} and 
o 

B (y) ~ !Rn, respectively, where r = p(y, f(80)). Moreover, d(f, 0, .) is 
r 

constant on every connected component of !Rn \ f( 80) . 

d(g, 0, y) = d(f, 0, y) whenever g 180 = fl 80 . 

d(f, 0, y) = d(f, ° ,y) for every open subset ° of ° such that 
1 1 

Y ~ f(O \ ° ). 
1 

No proofs are included here, but they are along the lines of those given in chapter 3 for 

the Leray-Schauder degree. 

Sometimes we would like to solve equations of the type f(x) = x. Such points are called 

fixed points of the map f. The next theorem is Brouwer's fixed point theorem. It can be 

proved using other techniques, but we will use degree theory to prove it. 

DO denotes the interior of the set D. 

2.6 Theorem (Brouwer's fixed point theorem) 

Let D ~ !Rn be a nonempty compact convex set and f : D -+ D continuous. Then f 

has a fixed point . The same is true if D is only homeomorphic to a compact convex 

set . 

Proof: 

First suppose D = B (0). We may assume that f(x) :j: x on 80, else we are done. 
r 

Let h(t, x) = x - t f(x). Then h : J x D -+ !Rn is continuous . For any 
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(t, x) E [0, 1) x OD we have 

Ih(t, x)1 Ix - t f(x) I > Ixl - t If(x) I ~ (1 - t) r > o. 

Also f(x) * x on oD and so I h( l , x) I > 0 on oD. Thus 0 ~ h(t, oD) for all t E J . 

So by (d3), d(id - f, DO, 0) = d(id, B (0), 0) = 1 by (d1). By (d4), since 
r 

d(id - f, DO, 0) * 0, we can find x E B (0) such that x - f(x) = O. 
r 

Next we consider D to be a general compact convex set. By Theorem 1.2.15 we 

have a continuous extension {: IRn -+ IRn such that {(lRn) ~ conv f(D) ~ D. Since 

D is compact, it is also bounded, and so we can find r > 0 such that D ~ B (0) . So 
r 

{I B (0) : B /0) -+ B /0). By the first step, we can find x E B /0) such that 
r 

{(x) = x. But {(x) E D. So x E D. Hence f(x) = f(x) = x. 

Lastly, let h: D -+ D be a horneomorphism with D compact convex. Then 
° ° 

h -lfh : D -+ D is continuous. By the second step, we can find x E D such that 
° ° 0 

h-1fh (x) = x . Thus f(h(x)) = h(x) E D and 

so f has a fixed point. • 
The following examples illustrate the above theorem. 

2.7 Example 

Let A = (a.J be an n x n - matrix such that a .. ~ 0 for all i, j. Then there exist 
~ ~ 

A ~ 0 and x * 0 such that x. ~ 0 for all i and Ax = AX. (In other words, A has a 
1 

nonzero eigenvector corresponding to a nonnegative eigenvalue). 

n 
To prove this, let D = {x E IR / x. ~ 0 for all i and E x.= I}. IfAx = 0 for some 

1 • 1 
1=1 

X E D, then we are done with A = O. IfAx * 0 for all x E D, then for x E D 
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n AXj n 
~ (Ax).~ a for some a>O. Thus f: x t---+ ~ (Ax). is continuous on D. If 

i=l 1 i=l 1 

x E D, then x. ~ 0 for all :i and a .. ~ 0 for all i, j. So (Ax) i ~ 0 for all i. 
1 ~ 

n [AX J Axj n ~ = 1. Thus ~ (Ax) . E D if x E D. So f(D) ~ D. 
. n. 1 
J=l ~ (Ax). J i=l 

Also 

i = 1 
1 

D is convex and easily a closed bounded subset of IRn
, hence it is compact. By 

Brouwer's fixed point theorem, we can find x E D such that f(x ) = x . Thus 
000 

n n 
Ax = ( ~ (Ax)J x and'\ == ~ (Ax).> O. 

O. 1 0 . 1 • 
1=1 1=1 

2.8 Example 

It is impossible to retract the closed unit ball continuously onto its boundary such 

that the boundary remains point wise fixed, i.e. there is no continuous map 

f : B (0) ---I aB (0) such that f(x) = x for all x E aB (0). Suppose we can find a 
1 1 1 

map f satisfying these properties . Then by Brouwer's fixed point theorem, g = -f 

has a fixed point x E B (0) . Thus x E aB (0) and we have the ridiculous situation 
o 1 0 1 

X = f(x ) = -x . • 
o 0 0 

We have been using the homotopy invariance up to now, i.e. if f and g are homotopic 

maps, then their degrees are the same. It is also useful to use the fact that if two maps 

have different degrees, then they cannot be homotopic. We use this in proving the 

following theorem (the Hedgehog theorem) . 

2.9 Theorem 

Let n ~ IRn be open bounded with 0 E n and let f: an ---I IRn \ {O} be continuous. 

Suppose also that the dimension n is odd. Then there exist x E an and ,\ * 0 such 

that f(x) = ,\ x. 
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Proof: 

We may assume, without loss of generality, that f E C(O), by Theorem 1.2.15. By 

definition we have 

de-id, 0, 0) = sgn det (-id) '(0) 

= sgn det (-id) 

= sgn (_l)n 

= -1 since n is odd. 

If d(f, 0, 0) "f -1, then f and -id cannot be homotopic and so 0 E h(J x 00) where 

het, x) = (1 - t) f(x) - t x. Thus there exists (to ' \) E J x ao such that 

0= het x). If t = 1, then - x = 0 and if t = 0, we have f(x ) = O. So t E (0, 1). 
0' 0 0 0 0 0 0 

Thus f(x ) = t (1 - t )-lX . If d(f, 0, 0) = -1, then f and id cannot be homotopic. 
o 0 0 0 

So again, by the same argument as above, het , x) = (1 - t) f(x) + t x must have a 

zero (t , x ) E (0, 1) x 00. And so, 
o 0 

f(x ) = -t (1 - t )-lx as required. • 
o 0 0 0 

Since the dimension n is odd, the theorem does not apply to {no A simple 

counterexample is the following rotation by ; of the unit circle in ( : 

f(x , x ) = (-x, x ). 
1 2 1 2 

If ° =B (0), then the theorem tells us that there is at least one normal such that f 
1 

c!langes at most its orientation. In other words, there is no continuous f : S --! IR where 

S = aB (0) such that f(x) "f 0 and (f(x), x) = 0 on S. In particular, if n = 3, this means 
1 

that a 'hedgehog cannot be combed without leaving tufts or whorls' . 

Whenever we want to show that f(x) = y has a solution using degree theory, we have to 

verify that d(f, 0, y) "f O. Borsuk's Theorem is important in this respect. 

2.10 Theorem (Borsuk's Theorem) 
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Proof: 

Let 0 ~ !Rn be open, bounded and symmetric with respect to 0 E O. Let £ E C(O) 

be odd and 0 ~ f( 80) . Then d(f, 0, 0) is odd. 

Step 1 : 

Here we show that we may assume that £ E (:1(0) and Jr<O) :/: O. Choose 

g E (:1(0) such that 1£ - g I < -2
1 p(O, £(80)). Let g (x) = -2

1 (g (x) - g (-x)) and 
1 10 2 1 1 

choose 0 < _1 p(O, f( 80)) where M is a bound for 0 and 0 is not an eigenvalue of 
2M 

g' (0). Then f = g - 0 id is in (:1(0), odd and 
2 2 

J _ ( 0) = det f' (0) = det [g' ( 0) - 0 I ] :f: o. Also 
£ 2 n 

1£- f I = If - (g - 0 id) I 
o 2 0 

1 
= s~p If(x) -2 (g1(x) -g1(-x)) + oxl 

1 1 
~2s~P If(x)-g1(x)1 +2s~P If(-x)-g1(-x)1 + os~p Ixl 

o 0 0 

~I£-gl +8M 
1 0 

< ~ p( 0, f( 00)) + ~ p( 0, f( 80) ) 

= p(O,f( 80)) . 

Thus by (d5), d(f, 0, 0) = d(£, 0, 0) with f E (:1(0) and J )0) f o. 
f 

Step 2 : 

Now let f E (:1(0) and J/O) :/: o. Suppose we can find an odd g E (:1(0), 

If - g 10 < p(O, f( 80)) such that 0 t g(Sg). Then we will have by (d5) and by 

definition, d(f, 0, 0) = d(g, 0, 0) = sgn Jg(O) + L sgn Jix) 

0:/:XEg-1(0) 

Now g(x) = 0 {=} g( -x) = 0 since g is odd. So x E g-1(0) {=} -x E g-l(O). We 

also have, 

g(-x + h) -g(-x) -g'(x) h 

- - g(x - h) + g(x) + g' (x)( -h) 

- - [g(x - h) g(x) - g' (x)( -h) = o( I hi) . 
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Thus g/(X) = g/(_X). And so .Jg(-'-x) = det g/(_X) = det g/(X) = Jg(x). Thus 

L sgn J g(x) is even. Now if sgn J g(O) = 0, then J g(O) = 0 and so 

OfxEg-1(0) 
o E g(Sg)' a contradiction. Thus sgn J g(O) f 0 and hence sgn J g(O) E {1, -1} . So 

sgn Jg(O) + L sgn Jg(x) is odd. Thus d(f, 0, 0) is odd. 

OfXE g-1(0) 

Step 3: 

We need to find an odd g E C1(0), such that \ f - g \ 0 < p(O , f( 80)) and 0 ~ g(Sg) ' 

Such a map g will be defined by induction. Define 

Ok = {x E n / xi 4= 0 for some i ~ k} 

and choose an odd cp E C 1([R) such that cp' (0) = 0 and cp( t) = 0 iff t = O . (For 

example cp(t) = t 3) . Let P : [Rn --I [R be defined by P (x) = x for x E [Rn. 
k k k 

Clearly P is linear. Define cp = cp P . Then 
k k k 

cp'(X) = cp'(P (x)) P/(X) = cp'(P (x)) P'. Define 
k k k k k 

£(x) = f(x) on 
~ 

1 

o = {x E 0 / x 4= O}. By theorem 2.2, we choose y1 ~ £(S-f(O)) with 
1 1 1 

o ly1\ < Nrn where M = sup \ cpl ,0 ~ [-a, a]n. 
[-a , a] 

Define g (x) = f(x) - cp (x) y1 for x E IT. Note g' (0) = f' (0) since cp '(0) = O. If 
1 1 1 1 

x E 0 with g (x) = 0, then f(x) = cp (x) y1 and £(x) = y1. 0 is open and 
1 1 1 .1 

f = cp Ion O . Thus fl (x) = cp' (x) l(x) + cp (x) l' (x) for all x in 0 . 
1 1 1 1 1 

Therefore 

g/(X) = cp'(X) £(x) + cp (x) £/(X) - cp'(X) y1 = cp (x) £/(X) and so 
1 1 1 1 1 

det g/(x) = [cp (x)]n det £/(X) . Now we have £(x) = y1 and y1 ~ £(S-f(O)). So 
1 1 1 

X ~ S£(O). This means that det £ I (x) = J -f(x) f O. Thus J (x) = det g' (x) t- 0 
1 g 1 

1 

since cp (x) f 0 on O . Therefore 0 is a regular value of g I (). Also for all x E IT 
1 1 1 H 

1 

If(x)-g(x)1 = Icp(x) l ly11 ~M~=.Q. So If-g I (.Q. 
, 1 1 lY.l n n 1 0 - n 

Now suppose that for some k < n, we have an odd g E C1(0) such that 
k 
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o ~ g (S (0)), I f - g I < U and f' (0) = g' (0) . 
kg k kO n k 

k 

Define 0' = {x E 0 / x f 0 } . Then - 0' = 0' and 0' (0 . Also 
k+1 k+1 k+1 k+1 k+1 - k+1 

cp f 0 on 0' . So we can define g (x) = \x) g (x) on 0' . Find 
k+1 k+1 k CPk k k+1 +1 

yk+1 E 0 I such that yk+1 ~ g (S- (0 I )) and I yk+11 < In . 
k+1 k gk k+1 

g (x) = g (x) - cP (x) yk+1 is odd. Now with the roles of 0 , f, f, y1, g 
k+1 k k+1 1 1 

played respectively by 0' ,g, g , yk+1, g ,we can prove that 0 is a regular 
k+1 k k k+1 

val ue of g I 0 ' . 
k+1 k +1 

Proof: Let x E 0' and g (x) = o. We want to show that J (x) f o. 
k+1 k+1 gk+1 

Now cP (x) yk+1 = g (x) = cP (x) g (x) and cp (x) * 0 (since x E 0' ). 
k+1 k k+l k k+l k+l 

Thus g (x) = yk+l. Since yk+l ~ g (S- (0' )) we have J- (x) * o. Now 
k k gk k+l gk 

-
g = cp g near x, so 

k k+l k 

g' (x) = cp' (x) g (x) + cp (x) g' (x) = cp' (x) yk+l + cp (x) g' (x). Therefore 
k k+l k k+l k k+l k+1 k 

g' (x) = g'(x) - cp' (x) yk+l = cp (x) g'(x) = cp(x ) g'(x). Therefore 
k+l k k+1 k+l k k+l k 

Jg (x) = [cp(x )]n J- (x) f 0 (since cp(x ) f 0 and J- (x) f 0). Now suppose 
k+1 k+l gk k+l gk 

that x E 0 \0' and g (x) = O. Then x E 0 with x = 0, implying that 
k+l k+l k+l k k+l 

cp' (x) = cp' (0) = o. Therefore 
k+l 

g' (x) = g' (x) and hence J (x) = J (x). Alsocp (x) = cp(O) = 0 and 
k+l k gk+l gk k+l 

gk(X) = gk (x) + cp (x) yk+l = O. Since 0 ~ g (S (0)) (by the induction 
+1 k+l k g k 

k 

assumption), we must have x ~ S (0). So J (x) f 0 and hence J (x) f 0 
gk k gk gk+l · 

Thus we have proved that if x E 0 and g (x) = 0, then J (x) f O. So 
k+l k+l g 

k+l 
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o ~ g (S (0 )) . Also g' (0) = g'(O) - cp' (0) yk+l = g'(O) = f'(O), and 
k+l g k+l k+l k k+l k 

k+l 

Ig - g I = I cp yk+ll ~ M lyk+ll < M ~ =.Q. Therefore 
k k+1 0 k+l 0 lYl n n 

k 0 0 0 
If - gk) 0 ~ If - gk l 0 + Igk - gk) 0 < n + ii = (k + 1) ii' 

By induction, we deduce the existence of an odd g = g E (:1(0) such that 
n 

If - gl < ~ = 0 and 0 ~ g(S (0 )) (0 = O\{O}) and g'(O) = £'(0). 
o n g n n 

Therefore J g(O) = J/O) f 0 which implies that 0 t Sg' and so 

o t g(Sg) ' • 
The following is a generalisation of Borsuk's theorem and is a consequence of Borsuk's 

theorem and the homotopy invariance. 

2.11 Corollary 

Proof: 

Let 0 ~ IRn be open bounded and symmetric with respect to 0 E O. Let f E C(O) 

be such that 0 t f( aO) and f( -x) f ), f(x) on ao for all A ~ 1. Then d(f, D, 0) is 

odd. 

Let h(t, x) = (1- t) f(x) + t g(x) where g(x) =f(x) - f(-x). Suppose that there 

exists (t , x ) E J x ao such that f(x ) = t f(-x ). 
o 0 000 

t = 0 implies that 0 E f( an). 
o 

t 0* 0 implies that f( -x 0) = } f(\) and } ~ 1, contrary to the hypothesis. 
o 0 

Thus 0 ~ h(J x a~) and so by (d3), d(f, 0, 0) = d(g, 0, 0) and this is odd by 

Borsuk's theorem. • 
We now give some applications of Borsuk's theorem. The first result is known as the 

Borsuk-Ulam theorem. 
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2.12 Corollary 

Proof: 

Let 0 ~ !Rn be open bounded and symmetric with respect to 0 E O. Let 

f: 00 -i!RIll be continuous with m < n. Then f(x) = f(-x) for some x E an. 

Suppose g(x) = f(x) - f( -x) f. 0 on 190 and let g be any continuous extension to 0 

of the boundary values, by theorem 1.2.15. By (d5), d(g, 0, y) = d(g, 0, 0) for 

all y E B (0) where r = p(g( 190), 0) . [N.B.: B (0) is in !Rn] . By corollary 2.11, 
r r 

d(g, 0,0) is odd. Thus d(g, 0, y) f. 0 for all yE B (0). And so by (d4), y E g(O) 
r 

for all y E B (0). Thus B (0) ~ g(O) ~ !Rill . So we arrive at the ridiculous situation 
r r 

where the !Rn-ball is contained in !Rill. Thus 

f(x) = f(-x) for some x E 190 . • 
This result has applications in meteorology. Here n = 3, and 0 ~ !Rn is the earth, and 190 

the surface of the earth. Let f : 190 -i !R 2 be such that f(x) is the weather at x (i.e. 

temperature and pressure, and m = 2). Then we can conclude, from the above result, 

that we can find two opposite points on the earth's surface having the same weather. 

The next result tells us something about the coverings of the boundary 00 and it is 

sometimes referred to as the Lusternik-Schnirelman-Borsuk theorem. It will be 

required in our work later on. 

2.13 Theorem 

Let 0 ~ IRn be open bounded and symmetric with respect to 0 E 0 and let 

{A
l
, ... , Ap} be coverings of 190 by closed sets A.~ 00 such that A. n (-AJ = 0 

1 1 1 

for i = 1, 2, ... , p. Then p ~ n + 1. 

Proof: 

Suppose that p ~ n. Let 
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f.(x) = { 1 
1 -1 

on A 
i for i = 1, ... , p - 1, 

on-A 

and 

f.(x) = 1 on n for i = p, ... , n. 
1 

For i = 1, 2, ... , p-1, extend f. continuously to n by theorem 1.2.15. We will 
1 

show that f satisfies f( -x) f A f(x) on an for every A ~ O. 

[N.B.: f(x) = (f (x), ... , f (x))] Then by corollary 2.11, we would have 
1 n 

d(f, 0., 0) f 0 since 0 ~ f( an). This would mean that we can find x E 0. such that 

f(x) = 0, a contradiction to f (x) = 1. 
n 

Now, x E A implies that -x ~ A . Thus -x E A. for some i ~ p-1, i.e. x E -A .. 
p pI" 1 
P -1 

Thus an ~ .U [A.U (-AJ] . Let x E 80. Then x E A. implies f.(x) = 1 and 
1=1 1 1 1 1 

f.(-x) = -1, and x E -A. implies f .(x) = -1 and f.(-x) = 1. Thus f(x) and f(-x) 
1 J J J 

do not point in the same direction in both cases. So f( ~x) f A f(x) on an for all 

Thus, we must have p ~ n+ 1. • 
This theorem tells us that we need at least n + 1 closed subsets A. containing no 

1 

antipodal points, if we want to cover aB (0) ~ !Rn by such sets. Finally we apply 
r 

Borsuk's theorem, to the problem of finding sufficient conditions for a continuous 

function to be open. This result is known as the Domain-Invariance theorem for maps 

which are locally one-to-one, i.e. to every x in the domain of f, there exists a 

neighbourhood U(x) of x such that fl u(x) is one-to-one. 

2.14 Theorem (Domain invariance theorem) 

Let 0. ~ !Rn be open and f : 0. --l!Rn continuous and locally one-to-one. Then f is 

an open map. 

Proof: 
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It is sufficient to show that for x E D, there exists a ball B (x ) such that 
o r 0 

f(B (x )) contains a ball with centre f(x ). 
r 0 0 

Step 1 : 

We will first assume that \ = 0 and f(O) = O. Choose r > 0 such that fl B (0) is 
r 

1 t - ( ) one-to-{)ne and consider h(t, x) = f( l+t x) -f(-l+t x) for (t, x) E J x Br 0 . 

h is easily a continuous function of (t, x) with h(O, x) = f(x) and 

h(l, x) = f( ~ x) - f(- ~ x). So h(O, .) = f and h(l, .) is an odd function. We 

need to verify that 0 ~ h(J x aB (0)). Suppose 0 = h(t, x) for some 
r 

1 t. 1 t 
(t, x) E J x aBr(O). Then f( l+t x) = f(-l+t x) . Smce l+t x and - l+t x are 

both in B r(O) and fl B (0) is one-to one, we must have l!t x = -l!t x. Thus 
r 

x = 0, a contradiction. So 0 ~ h(J x aB (0)) and by (d3) we obtain 
r 

d(h(O, .), B (0), 0) = d(h(l, .), B (0), 0), i.e. d(f, B (0), 0) = d(h(l, .), B (0),0) . 
r r r r 

Since h(l, .) is odd, we can apply Borsuk's theorem to get d(h(l, .), B (0), 0) * o. 
r 

If s = p(f( aB (0)), 0), then for all y E B (0), we have 
r s 

d(f, B (0), y) = d(f, B (0), 0), by (d5) . So d(f, B (0), y) * 0 for all y E B (0). 
r r r s 

(d4) yields y E f(B (0)) for all y E B (0). So B (0) ~ f(B (0)) as required. 
r s s r 

Step 2: 

We will now show why we may take x = 0 and f(O) = O. Let 11 = D - x and 
o 0 

£(x) = f(x + x ) - f(x) for x E 11 . Then 0 E 11 and £(0) = o. Also, 11 is open 
o 0 

and £ : 11 --I !Rn is continuous and locally one-to-{)ne. So by step 1, there exist 

r > 0 and s > 0 such that B (0) ~ f(B (0)) . So B (0) ~ f(B (0) + x ) - f(x ) and 
s r s r 0 0 

hence we have 

B (f(x )) = B (0) + f(x ) ~ f(B (0) + x ) = f(B (x )). 
sOs 0 r 0 rO 

The above theorem can be used to prove surjectivity results for continuous maps 

f: !Rn --I !Rn. Suppose f is locally one-tO-Dne and I f(x) I --I (I) as I x I --I (I). By 
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theorem 2.14, f is an open map and so f( !Rn) is open. We will show that f(!Rn) is closed. 

Let (x ) be a sequence in !Rn such that f( x ) --1 y. Since 1 f( x) 1 --1 rn as 1 x 1--1 rn we 
n n 

must have (x ) to be bounded. Thus {x / n E IN } is closed bounded and hence 
n n 

compact. So (x ) has a convergent subsequence. Without loss of generality, we may 
n 

assume that x --1 x. Thus 
n 0 

f(x ) ----+ f(x ) and so y = f(x). Thus f(!Rn) is an open and closed subset of !Rn. Since !Rn 
n 0 0 

is connected, !Rn and 0 are its only open and closed subsets, and so f(!Rn) = !Rn. 

We shall now state a theorem, due to Leray, on the degree of the composition of two 

continuous maps . We prove the product formula in infinite dimensional spaces and so 

we do not include the proof here. Before we state it, we need some preliminaries. 

If 0 ~ !Rn is open bounded, f : 0 ----+!Rn is continuous, then by (d5), d( f, 0, y) is the same 

integer for every y in a connected component K of !Rn \ f( 170). We will denote this 

integer by d(f, 0, K). Since f( 00) is compact we have one unbounded component K if 
rn 

n > 1 and two unbounded components if n = 1, and in this case K will denote the 
rn 

union of these two. K will not play a role later, since it contains points y ~ f(O) and so 
rn 

d(f, 0, K ) = O. We write gf to mean gf(x) = g(f(x». 
rn 

2.15 Theorem (Product formula) 

Let 0 ~ !Rn be open bounded, f E C(O), g E C(!Rn) and K. the bounded connected 
1 

components of !Rn \ f( 170). Suppose that y ~ (gf) ( 170) . Then 

d(gf, 0, y) = L d(f, 0, KJ d(g, K., y) where only finitely many terms are 
1 1 

i 

different from zero. 

Leray has shown that the product formula for the degree can be generalised to infinite 

dimensional spaces and it yields short and elegant proofs of some fundamental 
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propositions of topology, for example the Jordan's-separation theorem. We can extend 

Jordan's curve theorem to !Rn as follows . 

2.16 Theorem 

Proof: 

Let 0 C!Rn and 0 C!Rn be compact sets which are homeomorphic to each other. 
1 - 2 -

Then !Rn \ 0 and !Rn \ 0 have the same number of connected components. 
1 2 

Let h: 0 -.-j 0 be a homeomorphism onto 0 ; il a continuous extension of h to 
1 2 . 2 

!Rn; il -1 a continuous extension of h -1 to !Rn; K
j 

the bounded conponents of !Rn \ 0
1 

and L. the bounded components of !Rn \ O
2
• Since 8K.n K.= 0 for all i, we must 

1 J 1 

have 8Kj~ 0
1
. Similarly 8Li~ O

2
. 

Fix j and let G denote the components of !Rn \ h( aKJ Since 
q J 

U L. = !Rn \ 0 ~!Rn \ h( 8K J = U G , we see that to every i there exists a q such 
• 1 2 J q q 
1 

that L.~ G (components are maximal connected sets) . In particular L C K . 
1 q 00 - 00 

Let x E 8K.. Then since 8K.~ 0
1
, we have il-1il(x) = h-1h(x) = id(x) since 

J J 
- 1- - 1-h(x)EO . So h- hi 8K = idl 8K and so by (d6) d(id, K., y) = d(h- h, K., y). 

2 .. J J 
J J 

Consider any y E K .. Then d(il -lil, K., y) = 1. By the product formula (2.12), 
J J 

1 = d(il-1il, K., y) = l d(il, K., G ) d(il-1, G ,y). If N = {i / L.~ G }, then by 
J q J q q q 1 q 

(d2), d(il-1, G ,y) = l d(il-1, L., y) and d(il, K., G ) = d(il, K., LJ for every 
q. 1 J q J 1 

lEN 
q 

i EN. Thus 1 
q 

= II d(il, K., LJ d(il-1
, L., y) 

J 1 1 

q iEN 
q 

= l d(il, K., LJ d(il -1
, L., KJ 

J 1 1 J 
i 
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since y E K . ~ IRn 
\ h-1(02) ~ IRn 

\ h-1(aL} 
J 1 

We may repeat the same argument with fixed L. instead of K., to obtain 
1 J 

1 = \ d(il -I, L ., K.) d(h, K., LJ 4 1 J J 1 
J 

= \ d(h, K., LJ d(h-1, L., K} 4 J 1 1 J 
(2) 

J 

If there are only m components L., then (1) and summation over i in (2) yields 
1 

ID ID 

m = \ 1 = L L d(h, K., LJ d(h-1, L., K,} 
L J 1 1 J 

i=l j i=l 

j 

Therefore we must also have m components K
j
, and conversely. Thus IRn 

\ 0
1 

and IRn \ 0 either have the same finite number of components or they both have 
2 

count ably many. • 

We conclude this chapter with some extensions to earlier results and some final remarks. 

Degree on unbounded sets 

Up to this point we assumed that the open sets 0 ~ IRn , used in the degree, were also 

bounded, so as to ensure that f-l(y) was compact . Now suppose 0 ~ IRn is open (not 

necessarily bounded), f: n --l IRn continuous and y E IRn \ f( a~) . Also assume that 

s~p I x - f(x) I < ID. Let x E f-l(y) and let s~p I x - f(x) I = M. Then f(x) = y and so 

Ixl ~ Ix -f(x) I + If(x) I ~ M + Iyl . Thus f-l(y) is a closed bounded set and hence is 
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compact. Let 0 be any open bounded set such that f-1(y) ~ 0 . Thus d(f, 0 n 0
0

, y) is 
o 0 

defined, where d represents the Brouwer degree. Now let 0
1 

be another open bounded 

set such that f-1(y) co. We need to show that d(f, 0 no, y) = d(f, 0 no, y). Now 
- 1 0 1 

OnO is an open bounded set such that f-1(y) ~ 0 nO. Thus 
o 1 0 1 

y ~ f(O n 0i \ 0 n (oon 0
1
)) for i = 0,1. So by (d7), we have 

d(f, 0 nO i' y) = d(f, 0 n (0 on 0
1
), y) for i = 0, 1. Thus 

d(f, 0 no, y) = d(f, 0 no, y) . This enables us to make the following definition. 
o 1 

2.17 Definition 

For 0 ~ !Rn open, let 6(0) be the collection of all f E C(O) satisfying 

s~p I x - f(x) I < rn . Let ~- = {(f, 0, y) / 0 ~ !Rn open, f E 6(0), y ~ f( a~)}. 
o 

Then we define d: ~--l II by d(f, 0, y) = d(f, 0 nO, y) where 0 is any open 
o 0 

bounded set containing f-1(y) and d is the Brouwer degree. 

If 0 ~!R is open and bounded, then it is easy to see that we obtain the Brouwer degree. 

We will now show that we obtain (dl)-(d3) . 

(d1) d( id, 0, y) = 1 if Y EO: 

Let no be an open bounded set containing id -l(y) = {y}. Then y E 0 n 0
0 

and so 

by (dl), d(id, 0, y) = d(id, 0 no, y) = 1. 
o 

(d2) Let 0 and 0 be disjoint open subsets of 0 such that y ~ f (0 \ 0 U 0). Then 
1 2 1 2 

d (1,0, y) = d (1, 0 , y) + d (1, 0 , y) : 
1 2 

Let 0
0 

be any open bounded set such that f-l(y) ~ 0 o' By definition, 

d( f, 0, y) = d( f, 0 no, y) = d( f, n no, y) + d( f, 0 no, y) by (d2) since 
o 1 0 2 0 

Ono and 0 n 0 are disjoint open subsets of 0 n 0 and 
1 0 2 0 0 

OnO \ (0 no) U (0 no) ~ 0 \ 0 U 0 . 
o 10 20 12 

So Y ~ f(O n 0 \ (0 no) U (0 no)) . Again by definition 
o 1 0 2 0 
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d(f, o.n 0 , y) = d(f, 0., y), for i = 1, 2 , and we are done. 
1 0 1 

(d3) Let h : J x 0 -I!R and y : J -I!R be continuous, 

sup {I x - h( t, x) I / (t, x) E J x 0 } < m and y( t) ~ h( t, a~) on J. Then 

d (h(t, .), 0, y(t)) is constant on J: 

Let M = sup {Ix-h(t , x)1 / (t, x) E J x O} and M' = max {ly(t)1 / t E J} . 

If x E U (h(t , .)t1(y(t)) = A, then h(t, x) = y(t) for some t E J. Then 
J 

I x I ~ I x - h( t, x) I + I h( t, x) I ~ M + M I , and so A is a bounded set . Let 0
0 

be 

any open bounded set containing A. Then (h(t, .)t1(y(t)) ~ A ~ 0 for all t E J . 
o 

Thus by definition d(h(t, .), 0, y(t)) = d(h(t, .), 0 nO, y(t)) and this is 
o 

independent of t by (d3) . 

Thus d satisfies (d1)-(d3) . We will denote this by d and will also call it the Brouwer 

degree. 

Degree in Finite Dimensional Topological Vector Spaces 

Up to this point we used the standard basis {el, e2, . •• , en} in !Rn to define the degree 

[N.B. : J/x) = det fl (x) is dependent on the basis]. Let {el, e2, • .. , en} be another basis 

for !Rn. Then there exists a matrix A, det A f 0 such that x = Ax, 0 = An, 

g(x) = AfA -l(x), x E O. We want to show that d(f, n, y) = d(g, 0, Ay) . 

First suppose f E Cl(O) and y is a regular value of f. Then for x = Ax, 

J (x) = det g' (x) g 

= det (AfA-l)/(x) 

= det (Af' (A -lx)A -1) 

= det A det fl (A -lx) det A-l 

= det fl (x) 

= J/x) . 
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We need to check that Ay is a regular value of g. Let g(x) = Ay, and x = Ax. Then 

AfA -l(Ax) = Ay and so f(x) = y. Since y is a regular value of f, J~x) f 0 and so 

J g(x) f 0, proving that Ay is a regular value of g. 

Let x = Ax. Then 

x E g-l(Ay) = (AfA -ltl(Ay) = (Af-1A-l)(Ay) = Af-1(y) 

{::::} Ax E Af-1(y) 

{::::} xEf-1(y) 

{::::} A -lx E f-1(y). 

Thus, d(f, 0, y) - 1 sgn J{x) 

xEf- 1(y) 

- 1 sgn Jg(x) 
XEg- 1(Ay) 

- d(g, D, Ay) . 

Now take f E C(O), y E !Rn \ f(80). Choose flE [:2(0) such that If - fll 0< p(y, f(80)). 

Then 

p(y, f( 80)) 

= 

< 

sup {I AfA -l(i) - Af A -l(i) I / i E D } 
1 

det A sup {I fA -l(i) - f A -l(i) I / i = Ax, x E O} 
1 

det A sup {If(x) -f (x)l/ x EO} 
. 1 

det A If - f I 
1 0 

det A p(y, f( 80)), 

and 

inf { I y - f( x) I / x E 80} 

- inf{/A-l(Ay-Af(x))/ /x=A-lx,xE an} 
- det A -1 inf {I Ay - AfA -l(i) I / i E an } 
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So 1 g - Af A -11 
1 0 

det A -1 p(Ay, g( 80)). 

< det A det A-1 p(Ay, g(80)) 

= p(Ay, g(80)) . 

- -1 -Thus d(f, 0, y) = d(f, 0, y) and d(g, 0, Ay) = d(Af A ,0, Ay). 
1 1 

We can now reduce y to a regular value of f , and by what was done earlier, Ay can be 
1 

reduced to a regular value of Af A -1. Thus d(f, 0, y) = d(g, 0, Ay) where g = AfA -1, 
1 

o = AO, x = Ax, det A f. O. [N.B.: 0 is the representation of 0, where ° is given by the 

standard basis, using the new basis. Also, ° need not be bounded.] Thus we have 

shown that the degree, defined on IRn, is independent of our choice of basis for IRn. 

Our degree, defined up to this point, is only defined on IRn . We would like to define a 

degree on X, where X is an n-dimensional Hausdorff real topological vector space. (i.e.: 

a real vector space where addition and scalar multiplication are continuous.) 

Now X is homeomorphic to IRn and may be regarded as normed. 

In fact if {xl, ... , xn} is a basis for X, h: X -! IRn defined by h(.~ a.(x)xi) =.~ a.(x)e i 
1=1 1 1=1 1 

is a homeomorphism (see Schaefer [29]) and 1 h( x) 1 may be taken as 1 x I. 
Let ° ~ X be open, F : 0 -! X continuous, (id -F)(O) relatively compact and 

y E X \ F( 80). We want to define a degree for the triplet (F, 0, y). Let f = hFh -1. We 

want to show that (f, h(O), h(y)) is an admissible Brouwer triplet: 

(i) Since h is a homeomorphism, h( 0) ~ IRn is open. 

(ii) h a homeomorphism implies h( 80) = 8(h(0)). 

(iii) f( 8(h(0))) = (hFh -l)(h( 80)) = hF( 80) . 

So y ~ F(80) {:::} h(y) ~ hF(80). Thus h(y) ~ f(8(h(O))). 

(iv) f is continuous. 

(v) (id - f)(h(O)) is relatively compact, hence bounded. 

Hence (f, h(O), h(y)) is a Brouwer triplet. 
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If {Xl, ... , xn} is another basis for X, then we obtain a corresponding homeomorphism h. 

There exists a matrix A, det A * 0 such that h = Ah. Then 

h(O) = A(h(O)); f = hFh-1 = AhF(Ahtl = Af A -1. 
1 

Since the degree in !Rn is independent of the choice of basis, 

d(f, h(O), h(y)) = d(f, h(O), h(y)). Thus the degree defined by 

d' (F, 0, y) = d(hFh -1, h(O) , h(y)) is well-defined. 

As before, we can show that d' satisfies (d' 1)-{ d' 3). To show that the' degree is unique, 

we define d (f, 0, y) = d'(h-1fh, h-1(0), h-1(y)) for (f, 0, y) a Brouwer triplet . Easily d 
o 0 

satisfies (d 1 )-( d 3) and so it must be the Brouwer degree (the Brouwer degree is 
o 0 

unique, satisfying (d1)-(d3)) . So if (F, 0, y) is the triplet we are considering., then 

(hFh-1, h(O), h(y)) is a Brouwer triplet and so 

d(hFh-1
, h(O), h(y)) = d (hFh-1, h(O), h(y)) = d'(F, 0, y). 

o 
Formally we have the following definition. 

2.18 Definition 

Let X be a real n-dimensional Hausdorff topological vector space and 

vi{ = {(F, 0, y) / 0 ~ X open, F : 0 -l X continuous, F(O) compact and 

yE X \ F( OO)}. Then we define d(F, 0, y) = dB(hFh -1, h(O), h(y)), where 

h : X -l!Rn is the linear homeomorphism defined by h(xi) = e\ with {xl, ... , xn} 

a basis for X and {el, .. . , en} the standard basis of !Rn and dB is the Brouwer 

degree. 

We denote this degree by d and again call it the Brouwer degree. 

A Relation Between the Degrees for Spaces of Different Dimension 

Suppose 0 c !Rn is open bounded, f: 0 -l!Rm with m < n is continuous and 
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Y E [Rm \ g( 80) where g = id - f. Then g(x) = y with x E 0 implies x = y + f(x) E [Rm. 

So all solutions of g(x) = y are already in 0 n [Rm. Thus we may expect d(g, 0, y) to be 

computed by d(g I ,on [Rm, y). We prove this in the following theorem. 
o n [Rm 

2.19 Theorem 

Proof: 

Let X be a real Hausdorff topological vector space with dim X = n, X a 
n n m 

subspace with dim X = m < n, 0 ~ X open bounded, f : 0 -+ X continuous, 
m n m 

g(O) relatively compact and y E X \ g( 80) where g = id - f. Then 
m 

d(g, 0, y) = d(g Ion X , y) . 
o n X ' m· 

m 

By definition 2.18, assume that X = [Rn and 
n 

X = [Rm = {x E [Rn / X = ... = X = a} . Since the reduction to the regular case 
m m+1 n 

presents no difficulty, we may assume that f E (:1(0) and y t g(S ). We need to 
g 

verify that y t g (S ) (g = g I _ , where 0 = 0 n X ). 
m gm m 0 m m 

m 

r 

I - 8.f.(x) : - 8.£ .(x) 
Let y = g (x) = g(x). Then J (x) = det g/(X) = det __ ~ ___ L: ____ · ___ _ L: __ _ 

m g . 
. (0): I 

: n-m 

and evaluating by the last n-m rows, we obtain J (x) = J (x). But J (x) of O. 
g g g 

So Jg (x) of 0 and hence y t g (S ). By definition, 
m g 

m m 

d(g, 0, y)= L sgn Jg(x) and 

xEg-1(y) 

d(g , 0 ,y)= \' sgn J (x). 
m m L g 

xEg-1(y) m 
m 

Also x E g-l(y) {::} X = Y + f(x) E [Rm {::} X E g -l(y) . 
m 

m 

So d(g, 0, y) = 2 sgn Jg(x) = \' sgn J (x) = d(g , 0 , y) 
L g m m 

XEg -l(y) XEg -l(y) m 
m 

as required. 
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CHAPTER 3 

COMP ACT MAPS 

In this chapter we consider an extension of the Brouwer degree to compact perturbations of 

the identity. 

Preliminaries 

3.1 Definitions 

Let X and Y be Banach spaces, 0 ~ X and F: 0 -I Y. 

( a) F i~ said to be compact if it is continuous and F( 0) is relatively compact, i.e. 

F(O) is compact . We will let %(0 , Y) denote the class of all compact maps 

and write %(0) instead of %(0, X) . 

(b) F is said to be completely continuous if it is continuous and maps bounded 

subsets of 0 into relatively compact subsets of Y. 

(c) F is said to be finite dimensional if F(O) is contained in a finite dimensional 

subspace of Y. 

The class of all finite dimensional, compact maps will be denoted by .9"(0, Y) 

and again we write .9"(0) instead of .9"(0, X) . 

In the linear case, a map that takes bounded sets into relatively compact sets is 

automatically continuous and a finite dimensional map is automatically compact. 

But, consider the following example. 
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3.2 Example 

Let dim X = 00. By theorem 1.2.7, there exists a sequence (x) ~ OB (0) such that 
n 1 

1 x -x 1 ~ 1 for n f m. Let 
n ID 

{

k(1-2IX-X I) 
cp(x) = k 

o 
if x E B / (x ) 

1 2 k 

otherwi s e 

The functional rp is continuous and unbounded since cp(x ) = k for each k E IN. If 
k 

Fx::;: '''/x) x then F is continuous and finite dimensional. Now (x ) ~ B (0) and 
'1-'\ l' k 2 

Fx = kx for each k E IN. Hence F(B (0)) is unbounded and thus not relatively 
k 1 2 

compact . So F : B (0) -! X is continuous and finite dimensional, 
2 

but not compact. 

3.3 Definition 

• 

Let n ~ X be closed and bounded. Then F : n -! Y is said to be proper if F-1(K) is 

compact in X whenever K is compact in Y. 

3.4 Theorem 

Let n ~ X be closed, bounded and F : n -! Y . continuous and proper. Then F is 

also closed. 

Proof: 

Let A be closed in n. To show F(A) closed, we let (x ) be a sequence in A such that 
n 

Fx -! Y and we show that y E F(A). Using the third equivalent property for 
n 

compactness, we see that {Fx / n E IN } U {y} is compact . Since F is proper, 
n 

F-1( {F( x ) / n E IN } U {y}) is also compact and (x ) is contained in it. Thus (x ) 
n n n 

has a convergent subsequence, say x -! x. But A is closed, so x E A and F 
n

k 
0 0 
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continuous gives Fx -1 Fx . 
ilk 0 

But Fx -1 y. Thus y = Fx E F(A), proving that 
ilk 0 

F(A) is closed. • 
The next result is very useful since it approximates compact maps by finite dimensional 

maps in some sense. It is absolutely essential in order to define a degree for compact 

perturbations of the identity. 

3.5 Theorem 

Let X and Y be Banach spaces and B ~ X be closed bounded. Then 

(a) 5(B, Y) is dense in %(B, Y), i.e. for F E %(B, Y) and £ > 0, there exists 

F E 5(B, Y) such that sup 1 Fx - F x 1 < £. 
£ B £ 

(b) If F E %(B), then I-F is proper. 

Proof: 

(a) Let F E %(B, Y) and £ > O. Since F(B) is compact, there exists y , ... , Y E Y 
1 P 

p 

such that F(B) f . U B (y J Define 
1 = 1 £ 1 

IP.(y) = max {O, £-1 y-y.l} 
1 1 

and 

IP. (y) 
'I/;.(y) = ----=-1 -

1 ~ 
j = 1IPj (y) 

Now IPi is continuous. For y E F(B), we must have y E B £(Yi) for some i, and 

p 

hence cp.(y) > 0 and .E IP.(Y) > o. Thus V. is also continuous . 
1 J=1 J 1 

P 

Define F x = .E V.(Fx) y. , for x E B. Then F is continuous and finite 
£ 1=1 1 1 £ 

dimensional. 
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p 

({F B) = c ({ .b 7/J .(FB) y J 
1=1 1 1 

p 

< .b ,( 7/J.(FB) y J 
1= 1 1 1 

p 

Now .b 1/J.(y) = 1 ,and 1/J.(y) ~ 0 for all y E F(B). 
1 = 1 1 1 

So 7/J.(F(B)) ~ [0, 1] and [0, 1] is compact . Therefore !( 1/J.(F(B)) = o. But 
1 1 

!(7/J.(F(B)) yJ = !(7/J.(F(B)) ly.1 = o. 
1 1 1 1 

Hence ,(F cB) = o. So F l ..9'(B, Y) . 

Take x E B. Then 

p p 

IF x - Fxl c I .~ 1/J.(Fx) y. -.~ 1/J.(Fx) Fx I 
1=1 1 1 1=1 1 

p 

< .b 1/J.(Fx) I Y.- Fx I· 
1=1 l ' 1 

If 1/J.(Fx) > 0 ,then rp.(Fx) > O. So I Fx - y.1 < E-
l 1 1 

p 

Thus IF x - Fxl ~ .~ 1/J.(Fx) c = c and sup IF x - Fxl ~ c . 
c 1= 1 1 xEB c 

(b) Let F E %(B) and K ~ X compact . Must show that A = (I_Ft1(K) is 

compact . Since I-F is continuous and K closed, A must also be closed. 

Now K = (I-F)(A) . So A ~ F(A) + K and 

!(A) ~ ,(F(A)) + ,(K) = ,(F(A)) ~ !(F(B)) = o. So ,(A) = 0 proving that A 

is relatively compact. Since A is closed, A is compact and hence I-F is 

proper. • 

3.6 Theorem 

Let X, Y be Banach spaces, 0 ~ X open, F E %(0, Y) and F differentiable at x . 
o 

Then Ft (x ) is completely continuous. 
o 

Proof: 

Let B ~ 0 be bounded. Must show that Ft (x )(B) is relatively compact . B bounded 
o 
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means that there exists M E lR such that Ixl ~ M for all xEB. Suppose we have 

already shown that F' (x )(B (0)) is relatively compact . 
a 1 

Now x E B implies that I if x I < 1, so if x E B /0). Therefore B ~ M B 1(0) . So 

{((F'(x ))(B)) 
o 

< {((F' (xa))(M B 1(0))) 

- {(M F'(x )(B (0))) (since F'(x ) is linear) 
al . a 

- M {(F'(xo)(B 1(0))) 

- o. 

Thus F' (x )(B) is relatively compact . 
o 

Now to show that F' (x )(B (0)) is relatively compact. Since F is differentiable at x , 
o 1 a 

lW(x ; h)1 
F(x+h)=Fx+F'(x)h+w(x;h) where 0 -10 as Ihl_-IO. 

o 0 0 0 Ihl 
Iw(x ; h)1 

Given £ > 0, there exists 0 > 0 such that 0 < I h I < 0 implies that 0 < £ . 

Ihl 

and so I w( x ; h) I < £ I hi < £ o. Now F' (x ) h = F( x + h) - Fx - w( x ; h). 
o 0 0 0 0 

For Ihl < 0, I-W(x; h)1 = Iw(x; h)1 < £ o. Therefore 
o 0 

-w(xa; h) E B £JO) = 0 B /0). Now F' (xo)(B JO)) ~ F(xo+ B JO)) - Fxo+ 0 B /0) , 

and so F' (x )(0 B (0)) ~ F(B ix )) - Fx + 0 B (0) . Since F' (x ) is linear, o 1 b\ a 0 £ 0 

of'(x )(B (0)) ~ F(Bix ))-Fx + oB (0) andso o 1 b\ 0 a £ 

o ,(Fl(\)(B 1(0))) ~ ,(F(B J\))) + ,( {-Fx
o
}) + 0 ,(B /0)) . Hence 

{(F'(x )(B (0))) ~ 2£ for all £ > O. Thus {(F'(x )(B (0))) = 0 and so 
o 1 0 1 

F' (x )(B (0)) is relatively compact. 
o 1 • 

The following theorem is an easy consequence of theorem 1.2.15 , but we state it 

nevertheless . 

3.7 Theorem 

Let X, Y be Banach spaces, A ~ X closed bounded and F E %(A, Y) . Then F has an 

extension F E %(X, Y) and F(X) ~ conv (F(A)). 
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Proof: 

By theorem 1.2 15 , there exists a continuous extension F with F(X) ~ cony (F(A)) . 

Then a(F(X)) ~ a(conv (F(A))) = a(F(A)) = o. • 

The Degree 

We are now ready to define the Leray-Schauder degree, a ll-valued function D defined on 

the triplets (I - F, 0, y) where 0 ~ X is open bounded, F : 0 --! X is compact and 

yE X \ (I - F)( 00), and satisfying the following conditions :-

(D1) D(I, 0, y) = 1 if y EO . 

(D2) If 0 ,0 are disjoint open subsets of 0 such that y E X \ (I - F)(O \0 U 0 ), then 
1 2 1 2 

D(1 - F, 0, y) = D(1 - F, 0 , y) + D(1 - F, 0 , y) . 
1 2 

(D3) If H : J x 0 --! X and y: J --! X are continuous, H compact and 

y(t) E X \ (I - H(t, .))(00) ,then D(1 - H(t, .),0, y(t)) is independent oft . 

The above triplets will be referred to as admissible LS-triplets. 

We follow the following steps. 

Step 1 : 

Step 2 : 

Uniqueness: 

We show that if any ll-valued function D defined on the collection of 

admissible triplets satisfies (D1) - (D3), it is unique. 

We define a function D and show that it satisfies (D1)-(D3) . 

Let 0 ~ X be open bounded, F E %(0), and y E X \ (I - F)( 00) . 

By theorem 3.5(b), I - F is proper and it is also continuous, and so by theorem 3.4 it must 

be closed. Therefore (I - F)( 00) is closed with y ~ (I - F)( 00) . Hence 

p = p(y, (I - F)(oO)) > O. By theorem 3.5(a), there exists FE 3"(0) such that 
1 
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IF - F I < p ,i.e. suI1 I Fx - F xl < p. Define H : J x 0 --I X by 
1 0 xEO 1 

H(t, x) = t F /x) + (l-t) Fx = Fx + t (F / - Fx) for (t, x) E J x 0 . 

F and F continuous implies that H is continuous. 
1 

For each (t, x) E J x 0, H(t, x) E cony (F (0) U F(O)) and so 
1 

H(J x 0) ~ con v (F 1(0) U F(O)). Hence 

{(H(J x 0)) < {( cony (F (0) U F(O))) 
1 

- {(F (0) U F(O)) 
1 

- max { {(F (0)), {(F(O)) } 
1 

- 0, 

since F and F are both compact . 
1 

Therefore H is compact. 

Suppose yE (I - H(t, .))(aO) for some t E J . Then y = (I - H(t, .))(x) for some 

x E a~. So y = x-H(t, x) = x-Fx-t (F x-Fx) . Thus 
1 

y - (I - F)x = -t (F x - Fx) , and so 
1 

I y - (I - F)x I = It (Fix - Fx) I ~ IF 1x - Fxl < p. 

But I y - (I - F)xl ~ p(y, (I - F)( a~)) = p, a contradiction. 

Hence y~(I-H(t,.))(aO) onJ. 

The hypotheses of (D3) are thus satisfied, proving that 

D(1 - F, 0, y) = D(1 - F , 0, y) . 
1 

(1) 

Since F is finite dimensional, we can find a finite dimensional subs pace X of X that 
1 1 

contains F (0) and y (for example: X = span (F (0) U {y}) ). 
1 1 1 

Suppose 0 = 0 n X i= 0. By theorem 1.2.15 , we can find a continuous extension of 
1 1 

F Ion X to X ,say F: X --I X . By theorem 3.7 ,F is also compact . Since X is closed 
1 11 111 1 1 

in X, there exists a continuous projection P from X onto X . Then X = X ID X , where 
1 1 1 2 

X = P (X), P = 1- P , and X is closed since P is continuous. 
2 2 2 1 2 2 

So the map H: J x 0 --I X defined by H(t, x) = t F (x) + (1 - t) F P x , for 
1 1 1 1 
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(t, x) E J x 0 , is compact . We must now show that y(t):: y ~ (I - H(t, .))(80) for 

t E J. Let y = (I - H(t, .))(x) for x E 0 and t E J . Then x = y + H(t, x) E Xl' So 

P X = x and F P x = F x = F x. So 
I I I I I 

Y = X - t F x - (1 - t) F P x = x - t F x - (1 - t) F x = x - F x = (I - F )x. Since 
1 11 1 1 1 1 

Y ~ (I - F 1)( 80), we must have x ~ 80. Therefore y ~ (I - H(t, .))( 80) for t E J. Thus by 

(D3), 

D(1 - F , 0, y) = D(1 - FP, 0, y) . 
1 1 1 

(2) 

Now consider 0' = 0 + B2(0) , where B2(0) is the unit ball of X. Then 0 ~ 0', and 
1 1 1 2 1 

o C O. So 0 cOn 0' . If x E 0 with (I - F P )x = y ,then x = y + F P x EX. So 
1- 1- 11 11 1 

x E 0 n X and P x = x. Hence y = (I - F P )x = (I - F )x = (I - F )x. Thus x E 0 and 
1 1 11 1 1 -

hence x E 0 ~ 0 nO ' , proving that y ~ (I - F P )(0 \ 0 nO') and since 0 nO' is an 
1 · 1 1 

open subset of 0, we have by (D2), 

D(1 - FP, 0, y) = D(1 - FP, 0 n 0', y). (3) 
1 1 1 1 

We now show that y ~ (I - FP )(0' \ 0 no'). Suppose y = (I - FP )(x) for x EO' . 
1 1 1 1 

Since x EO', there exists a sequence (y ) in 0' such that y -I x. Let y = x + b 
n n n n n 

where x E 0 and b E B2(0), for all n. Now P y -I P x since P is continuous. Thus 
n 1 n 1 1n 1 1 

x -I P x. Also P y -I P X , and so b -I P x. x E 0 implies that P x E 0 and 
n 1 2n 2 n 2 n 1 I 1 

b E B2(0) implies that P x E 1P(O). So x + b -I P X + P x = x. Thus 
n 1 21 n n I 2 

X E 0 + 1P(o) ~ 0 n X + 132(0). Now P x E 0 n X . Thus F P x = F P x. So 
1 1 1 1 1 1 11 11 

Y = (I - FP )x, and x = y + F P x EX . Thus x E 0 ~ 0 n X . But if x E 80, then 
11 11 1 1 1 

yE (I - FP )(80) . So x E 0 n X = 0 ~ 0 nO' . Thus we have shown that x E 0' with 
1 1 1 1 

Y = (I-F P )(x) implies that x EO no' . So y ~ (I-F P )(0' \ 0 no'). 
1 1 1 1 

By (D2), 

D(1 - FP, 0', y) = D(1 - FP, 0 n 0', y) . 
1 1 1 1 

(4) 

(3) and (4) give 

D(I-F P, 0, y) = D(I-F P, 0', y). 
1 1 1 1 

(5) 

(1), (2) and (5) give us 
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D(I - F, 0, y) = D(I - FP, 0 ' , y). 
1 1 

(6) 

Now let x E 0' . Then x E 0 + :82(0) . So P x E 0 ~ 0 n X and hence F P x = F P x. 
1 1 1 1 1 11 11 

Thus (I - F P )x = (I - F P )x for x EO' , giving us (I - FP) In, = (I - FP) I 0" So 
11 11 11H 11 

D(I - FP, 0' , y) = D(I - FP, 0' , y) . (7) 
1 1 1 1 

(6) and (7) give 

D(I - F, 0, y) = D(I - FP, 0', y). 
1 1 

Let 0 ~ X be open bounded, f: 0 -I X be continuous and y E X \ f( an ) (i.e. 
1 1 1 1 1 1 

(f, 0 , y) is a Brouwer triplet) . Now P (0 + B2(0)) ~ 0 and if x EO, then 
1 1 1 1 1 1 

(8) 

X E 0 + B2(0) and P x = x. So x E P (0 + B2(0)), and hence P (0 + B2(0)) = 0 . 
1 1 1 1 1 1 1 1-- 1 1 

Thus P (0') = 0 where 0 ' = 0 + B2(O) . Also P (0') ~ 0 and if x EO, then there 
1 1 11 1 1 1 

exists a sequence (x ) in 0 such that x -I x. Now x EX, so P x = x. Also 
n 1 n 1 1 

X E 0 ~ 0', so x EO' . Hence x = P x E P (0'), proving that 0 ~ P (0') . Thus we 
n 1 1 1 1 1 

have P (0') = 0 . 
1 1 

Now Pin, :0 ' -10 and (I-f):O -IX. So (I-f)P In, :O'-IX 
1H 1 1 1 1H 1 

In order for (I - (I - f)P , 0', y) to be an admissible LS-triplet, the following conditions 
1 

must be satisfied: 

(a) 0' is open bounded in X. 

(b) (I - f)P 110 ' is compact. 

(c) y~(I-(I-f)P)(80'). 
1 

We now show that these conditions are satisfied. 

(a) o and B2(0) are open and bounded in X and X respectively, so 0' = 0 + B2(0) is 
1 1 1 2 1 1 

open and bounded in X. 

(b) ((I - f)P )(0') = (I - f)(O ) ~ 0 - f(O) . Now 0 ~ X is compact since it is a closed 
1 1 1 1 1 1 

bounded subset of a finite dimensional space. So f(O ) must also be compact in X 
1 1 

(and hence both are compact in X). 

{{ ((I-f)P )(0')) s ,( 0 -f(O)) s ,( 0) + ,(f(O)) = O. 
1 1 1 1 1 
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So (I - f)P 110 I is compact . 

(c) Suppose y = (I - (I - f)P )x for x E 0 I = 0 + 13 2(0) . Then 
1 1 1 

X = Y + (I - f)P x EX . So x E 0 and P x = x. Thus 
1 1 1 1 

Y = (I - (I - f)P )x = (I - (I - f))x = fx . Since y t f( 80 ), we must have x EO, and 
1 1 1 

so x EO + B2(0) = 0 / . Thus y'l. (I - (I -f)P )(80 / ). 
1 1 1 

Hence (I - (I - f)P , 0 I, y) is an admissible LS-triplet. 
1 

We will now show that d , defined by d (f, 0 , y) = D(1 - (I - f)P ,0 + B2(0), y) 
o 0 1 1 1 1 

satisfies (d l)-(d 3), where (f, 0 , y) is a Brouwer triplet . If it does, then}t must be the 
o 0 1 

Brouwer degree, since the Brouwer degree is unique. 

(d 1) For y EO, 
o 1 

d (id, 0 , y) = D(1 - (I - id)P ,0 + B2(0), y) = D(1, 0 + B2(0), y) = 1 by 
o 1 . 111 11 

(D1) . 

(d 2) Let 0 1 and 0 2 be disjoint open subsets of 0 ~ X such that y t f(O \ 0 1 U 0 2). 
o 1 1 1 

Then d (f, 0 , y) = D(1 - (I - f)P ,0 + B2(0), y). Now 0 1 and 0 2 disjoint 
o 1 1 1 1 

open in X , imply that 0 1 + B2(0) and 0 2 + B2(0) are disjoint open in X. 
1 1 1 

Consider y = (I - (I - f)P )x where x E 0 1 = 0 + 13 2(0). Then 
1 1 1 

x = Y + (I - f)P EX. So we get P x = x and x EO. Thus y = fx. Since 
1 1 1 1 

Y t f(O \ 0 1 U 0 2), we must have 
1 

x E 0 1 U 0 2 ~ (0 1 U 02)+B2(0) = (0 1 + B2(0)) U (02 + B2(0)). Therefore 
1 1 1 

y t (I - (I - f)P )(0 + B2(0) \ (0 1 + B2(0)) U (02 + B2(0))). 
1 1 1 1 1 

Thus by (D2), 

D(1 - (I - f)P ,0 + B2(0), y) 
1 1 1 

= D(1 - (I - f)P , 0 1 + B2(0), y) + D(1 - (I - f)P , 0 2 + B2(0), y) 
1 1 1 1 

=d (f, 01, y) + d (f, 0 2, y). 
o 0 
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Therefore d (f, 0, y) = d (f, 0 1
, y) + d (f, 0 2, y) 

000 

(d 3) Let 0 C X be open bounded, h: J x 0 ~ X and y : J ~ X be continuous 
o 1- 1 1 1 1 

and y(t) E X \ h(t, 80 ) for t E J . Then 
1 1 

d (h(t, .), 0, y(t)) = D(I - (I - h(t, .))P ,0 + B2(0), y(t)). 
o 1 1 1 

Define H: J x 0 + B 2( 0) ~ X by 
1 1 1 

H(t, x) = (I - h(t, .))P x = P x - h(t, P x). 
1 1 1 

H is easily continuous. 

~ P (0 + B2(0)) - h(J x P (0 + B2(0))) 
1 1 1 1 1 1 

= 0 - h(J x 0 ). 
1 1 

Now 0 is closed and bounded in X and hence is compact. Therefore h(J x 0 ) 
1 1 1 

is also compact in X . Thus both are compact in X. 
1 

Therefore !( H(J x 0 + B2(0)) ) ~ !( 0 ) + ,( h(J x 0 ) ) = 0, proving 
1 1 1 1 

that H is compact . 

Now let y(t) = (I - H(t, .))x for (t, x) E J x 0 + B2(0) = J x (0 + :82(0)). 
1 1 1 1 

Then x = y(t) + H(t, x) EX . So P x = x and x EO . 
1 1 1 

Thus y(t) = x - H(t, x) = x - [x - h(t, x)] = h(t, x). 

But y(t) ~ h(t, 80). Therefore x E 0 ~ 0 + B2(0), and so 
1 1 1 1 

y(t) ~ (I - H(t, .))( 8(0 + B2(0))) . Hence by (D3), 
1 1 

D(I - H(t, .),0 + B2(0), y(t)) is independent of t. Therefore 
1 1 

d (h(t, .),0 ,y(t)) is independent oft. 
o 1 

Since d , defined on the Brouwer triplets, satisfies (d 1 )-( d 3), and since the Brouwer 
o 0 0 

degree is unique, we must have d to be the Brouwer degree. Therefore d = d. Thus 
o 0 

D(I - FP, 0', y) 
1 1 

= d ((I - F ) In, 0 , y) = d((1 - F ) In, 0 , y) . (9) 
o 1 Hi 1 1 Hi 1 
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(8) and (9) give us 

D(1 - F, 0, y) = d((1 - F ) I i) ,0 , y). 
1 U 1 

1 

Thus if a degree on our admissible LS-triplets exists, then it must be unique. 

We now show the existence of a degree on admissible LS-triplets. 

For 0 ~ X open bounded, F E $(0) and y E X \ (I - F)( a~), define 

D(1 - F, 0, y) = d((1 - F ) I i) , 0 ,y) where F E 5(0), F : n --! X ,dim X < rn , 
lU 1 1 1 1 1 

1 

yE X ,0 = 0 n X and IF - F I < p(y, (I - F)( a~)). 
1 1 1 1 0 

We must first show that this definition is independent of the choice of F and X , and then 
1 1 

show that D satisfies (D1)-(D3). 

well-defined: 

Suppose F ,X satisfy all the conditions that F ,X do. Let X = span(X U X). Since 
22 11 0 12 

dim X < rn and dim X < rn ,we must also have dim X < rn . Also let 0 = 0 n X . 
1 2 0 0 0 

Since 0 is open bounded in X, 0 must be open bounded in X . Also F I i) : 0 --! X is 
o 0 i U 0 i o 

continuous for i = 1, 2. Let h: J x 0 --! X be defined by h(t, x) = t F x + (1 - t) F x 
o 0 1 2 

for (t, x) E J x n . 
o 

Then h is continuous. 

[N.B.: 0 ~ 0 implies that ao c ao : Let x E ao C 0 C 0 and suppose x ~ a~ . Then o 0- 0- o-

x E O. Also, n ~ n n X. Therefore x E X and hence x E 0 n X = 0 , a contradiction. 
o 0 0 0 0 

Thus we must have x E an and so ao c ao .] o -
If t E J and x E ao , then 

o 

ly-h(t,x)1 = ly-(1-F)x-(Fx-h(t,x))1 

~ ly-(1-F)xl-IFx-h(t,x)1 

Now 

IFx-h(t, x)1 = I Fx - t F x - (1 - t) F x I 
1 2 
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= 1 t (F - F )x + (1 - t)(F - F )Xl 
1 2 

~ t I(F-F
1
)xl + (l-t) I(F-F)xl 

<tp+(l-t)p 

= p. 

Also, x E an implies x E a~, and so 
o 

ly-(1-F)xl > p(y, (1-F)(aO)) = p. 

Thus 1 y - h( t, x) 1 > p - p = 0 for all t E J and x E ao . Therefore y t h( t, ao ) for all 
o 0 

tEJ. By (d3), . 

d((1-F )10,0 ,y) = d((1-F )10 ,0 ,y). 
1 ~£ 0 2 ~£ 0 

o 0 

Therefore, y E X.\ (I - F J( ono) for i = 1,2. 
1 1 

By theorem 2.19, 

d((I-F)lo ,Oo,y) 
o 

By (10) and (11), 

= d((I-FJ10 n X ,0 n X., y) 
1 . 0 1 o 1 

= d( (I - F J Ion X ,0 n X., y) 
1 . 1 

1 

= d((I-FJ1o ,0., y) fori = 1, 2. 
1 • 1 

1 

d((1-F )1 0 ,0, y) = d((I-F )1 0 ,0, y). 
1 1 1 2 2 2 

Hence our definition is independent of the choice of F and X . 

We must now show that D satisfies (Dl)-(D3)o 

CDl): 

1 1 

Let 0 ~ X be open bounded, and y E O. Then let X = span {y}, 0 = n n X . Then 
1 1 1 

Y E X and hence 
1 

D(I, 0, y) = d((I -0)1 0 ,0, y) 
1 1 

= d(I, 0 , y) 
1 

= 1 by (dl) . 
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(D2): 

Let 0 1 and 0 2 be disjoint open subsets of 0 with y ~ (I - F)(O \ 0 1 U 0 2
) . Since 

F E %(0), 1- F is proper and continuous, hence it must be closed. Therefore 

(I - F)(O \ 0 1 U 0 2) is closed and P = p(y, (I - F)(O \ 0 1 U 0 2
)) > O. 

1 

Choose F E Sf(O) such that sup {I F x - Fxl / x EO} < p . Then choose, as we may, X 
1 1 1 1 

a subspace of X with dim X < rn, F (0) ~ X and yE X. Let 0 = 0 n X. But 
1 1 1 1 1 1 

P = p(y, (I - F)(O \ 0 1 U 0 2
)) < p(y, (I - F)( (0)) = p. Therefore 

1 

sup {I F x - Fxl / x EO} < p, and by definition, 
1 

D(I-F, 0, y) = d«1 -F )1 0 ,0, y) . (12) 
1 1 1 

Now 0 1 n X and 0 2 n X are disjoint open subsets of o . We need to show that 
111 

Y ~ (I - F ) 1 0 (0 \ (0 1 n X ) U (0 2 n X ) ) = (I - F ) 10 (0 \ (0 1 U 0 2) n X ). 
111 1 1 111 1 

Suppose y = (I - F)x for x E 0 \ (0 1 U 0 2) n X . Then x = y + F x EX. This must 
1 1 1 1 1 

mean that x ~ 0 1 U 0 2
. Therefore x E 0 \ 0 1 U 0 2, and 

1 F x -Fxl = 1 (I - F)x - (I - F )xl 
1 1 

= 1 (I - F)x - y 1 

~ p(y, (I - F)(O \ 0 1 U 0 2)) 

= Pi' 

contrary to the way F was chosen. 
1 

Therefore y ~ (I - F )(0 \ (0 1 U 0 2) n X) and by (d2) we obtain 
1 1 1 

d«I-F )1 0 ,0, y) 
1 1 1 

= d«1 - F ) 1 n ,0 1 n X , y) + d«1 - F ) 1 n ,0 2 n X , y). 
1 H 1 1 H 1 

1 1 

(13) 

We now need to check that sup {I F x - Fxl / x E Oi } < p(y (I - F )( 80 i)) for i = 1, 2. 
1 ' 1 

We claim that for i f j, OOi n oj = 0. For if x E 80i n oj, then since oj is open, there 

exists an open neighbourhood U of x contained in oj. But x E 80\ therefore every 

neighbourhood of x meets Oi as well as its boundary, a contradiction to Oi n oj = 0. Thus 

OOi n oj = 0. Therefore OOi ~ 0 \ 0 1 U 0 2. So 
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sup {I F x - Fxl / x E Oi } 
1 

~ SUp {I F 1x - Fx I / X EO} 

< p(y, (I-F)(O \ 0 1 U 0 2
)) 

< p(y, (I - F)( aO i)) for i = 1, 2. 

Again by definition we have for i = 1, 2 

d((1 - F ) In, Oi n X , y) = D(1 - F, Oi, y). 
1 ~£ 1 

1 

(12), (13) and (14) give us 

D(1 - F, 0, y) = D(1 - F, 0 1, y) + D(1 - F, 0 2
, y) . 

Before we prove (D3), we need the following lemma. 

3.8 Lemma 

Let X be a real Banach space, 0 ~ X open and bounded, F E %(0) and 

y ~ (I - F)(aO). Then D(1 - F, 0, y) = D(1 - F - y, 0, 0) . 

Proof: 

(14) 

By theorem 3.5, there exists F E ::/ (0) such that sup {I Fx - F x I / x EO} < p, 
1 1 

where p = p(y, (I - F)( aO)). Let X be a finite-dimensional subspace of X such that 
o 

yE X , F (0) ~ X and 0 = 0 n X . Then by definition, 
o 1 0 0 0 

D(1 - F, 0, y) = d((id - F ) 10 ,0 , y) . 
1 0 0 

(15) 

Define h: J x n ~ X by h(t, x) = (I - F ) I n (x) - t y for (t, x) E J x n , and 
o 0 1 H 0 

o 
y : J ~ X by y(t) = (1 - t) y for t E J . Then hand y are continuous . Since 

o 
an ~ ao , for (t ) x) E J x ao , we ha ve 

o 0 

ly(t)-h(t,x)1 = l(l-t)y-(1-F)x+tyl 
1 

= I y - (I - F )x I 
1 

~ ly-(1-F)xl-I(I-F)x-(1-F )xl 
1 

= I y - (I - F)x I - I Fx - F x I 
1 
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~ p(y, (I - F)( an 0)) - I Fx - F IX I 

~ p(y, (1-F)(an)) -sup {IFx- F
I
x l / X E 0o} 

~p-sup{IFx-Ffl /XEO} 

>p-p 

= O. 

Therefore y(t) ~ h(t, an) for t E J, and by (d3), d(h(t, .), 0. ,y(t)) is 
o 0 

independent of t. 

So we have d(h(O, .), 0., y(O)) = d(h(I, .), 0., y(I)), which is 
o 0 

the same as 

d((1 - F ) I 0 ' 0. , y) = d((1 - F ) I 0 - y, 0. , 0). (16) 
1 0 0 1 0 0 

p(O, (1-F-y)(an)) =inf{IO-(1-F-y)xl /XE an} 
= inf { I (I - F - y) (x) I / x E an } 
= inf { I (I - F) x - y I / x E an } 
= p(y, (I - F)( an)) 

= p. 

So for x E 0, 

I (F - y) x - (F - y) x I = I Fx - F x I ~ sup {I Fx - F x I / x EO} < p. 
1 1 1 

Again by definition, 

D(1 - F - y, 0., 0) = d((1 - F - y) I 0 ' 0. , 0). 
1 0 0 

(17) 

(15), (16) and (17) imply that 

D(1 - F, 0., y) = D(I - F - y, 0., 0). • 
We are now able to prove (D3) . 

(D3) : 

Let H : J x 0 -+ X be compact, y : J -+ X continuous such that 
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y(t) ~ (I - H(t, .))(80) for all t E J. We have already shown that 

D(1 - H(t, .),0, y(t)) = D(1 - H(t , .) - y(t), 0, 0). 

Let H (t, x) = H(t, x) + y(t) . Then H : J x 0 -! X is compact, 0 ~ (I - H (t, .))(80) 
o 0 0 

and D(1 - H(t, .), 0, y(t)) = D(1 - H (t, .), 0,0) by lemma 3.8. 
o 

J x 0 is closed bounded. Let 8 = inf p((1 - H (t, .))(80), 0). We will now prove that 
tEJ 0 

8> o. If 8 = 0, then there is a sequence (t ,x ) in J x 80 such that 
n n 

I x - H (t , x ) - 0 I -! 0 , i.e. x - H (t , x ) -! O. Since J is compact, by taking a 
nOn n n On n 

suitable subsequence we may suppose that t -! t for some t E J . Similarly, since 
n 0 0 

H (J x 80) ~ H (J x 0) is relatively compact, we may also suppose that 
o 0 

H (t ,x ) -! X for some x E X. Therefore x -! x . Since 80 is closed, x E 80 ~ o. 
Onn 0 0 nO 0 

Hence by continuity of H ,x = H (t ,x ) = H(t , x ) + y(t). So 
00 000 00 0 

y(t ) = (I - H(t ,.))x E (I - H(t , .))(80), contrary to hypothesis . Thus 8> o. 
o 0 0 0 

By theorem 3.5, there exists F E 5(J x 0, X) such that 

sup _ I F(t, x) - H (t, x) I < inf p((1 - H (t, . ))( 80), 0) . 
J x 0 0 tEJ 0 

So for each t, 

s up I F( t , x) - H (t , x) I 
xEJ 0 

~ sup _ IF(s,x)-H(s,x)1 
J x 0 . 0 

~ inf p((1 - H (s, .))(80),0) 
sEJ 0 

~ inf I (I - H (s, .))xl. 
sEJ 0 

Therefore by definition, 

D(I - H (t, .), 0,0) = d((I - F(t, .)) I (") ,0 ,0) o ~, 0 
o 

where X is a subspace of X, dim X < 00, 0 EX, F(J x 0) ~ X and 0 = 0 n X . Then 
o 0 0 0 0 0 

d((1 - F(t, .)) 10 ,0 ,0) is independent of t by (d3), proving (D3). 
o 0 

We have thus proved the following result . 
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3.9 Theorem 

Let X be a real Banach space and 

.At= { (I - F, 0, y) / 0 ~ X open bounded, F E X(O) and yE X \ (I - F)(aO) }. 

Then there exists a unique function D : .At --+ II (the Leray--Schauder degree ) 

satisfying (D 1 )-(D3). This function is defined by 

D(1 - F, 0, y) = d((1 - F ) I r. , 0 ,y) where F E ,5((0) such that 
1 H 1 1 

1 

s~p IF 1x - Fx I < p(y, (I - F)( 00)), Xl is a subspace of X such that 

F (0) ( X , Y EX, dim X < 00, 0 = 0 n X and d is the Brouwer degree of 
1 - 1 1 1 1 1 

X (defined in chapter 2). 
1 

We now obtain the following extension of (D2) . 

3.10 Lemma 

Proof: 

Let 0 ~ X be open bounded, F : 0 --+ X compact, y E X \ (I - F)( a~) . 

Let {O / k = 1, 2, ... } be an infinite disjoint sequence of open subsets of 0 such 
k 

00 

that y ~ (I - F)(O \ .U 0,). Then for each k, D(1 - F, 0 , y) is defined, only 
1= 1 1 k 

finitely many of them are non-zero, and 

00 

D(1 - F, 0, y) = }'; D(1 - F, 0 ,y). 
k= 1 k 

Let x E ao . Since 0 is open, we have x dO . If x E 00 for some i f. k, then 0 
k k ~ k i i 

must meet 0 (since x E 00 , every neighbourhood of x must meet 0 ), a 
k k k 

contradiction. So ao n (U 0) = 0. Also an n 0 = 0. Hence 
k if.k i k k 

00 00 00 

an n (,U 0 J = 0 and so 00 ~ 0 \ .U 0 .. Since y ~ (I - F)(O \ .U 0 J, we must 
k 1=1 1 k 1=1 1 1=1 1 

have y ~ (I - F)( ao ) and so D(1 - F, 0 , y) is defined for each k. 
k k 

Let M = (I - Ftl(y) . By theorem 3.5, I - F is proper and hence (I - Ft1(y) 
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is compact . So M is closed. 

CD 

Now if x E M, then x E 0 and (I - F) x = y. Since y ~ (I - F)(O \ .U OJ, we 
1 = 1 1 

CD CD 

must have x E U O . Thus M C U O . Since M is compact, we can find a finite 
i=1 i - i=1 i 

subset N of IN such that M C U O. Since the O. are disjoint, 
- iEN i 1 

Mn( U OJ=0 
iEIN\N 1 

Therefore (I - Ft1(y) nO. = 0 for all i E IN \N. So D(1 - F, 0., y) = 0 for all 
1 1 

i E IN \ N. Now (I - Ft1(y) ~ U O. and so y ~ (I -:- F)(O \ U OJ Since N is 
iEN 1 iEN 1 

finite, (D2) yields D(1 - F, 0, y) = ~ D(1 - F, 0., y) and for i ~ N, 
iEN 1 

D(1 - F, 0., y) = o. Thus 
1 

CD 

D(1 - F, 0, y) = .~ D(1 - F, 0., y). 
1=1 1 • 

Now we obtain more properties of the Leray-Schauder degree whose analogues for the 

Brouwer degree follow by similar proofs and were stated in theorem 2.5 without proof. 

3.11 Theorem 

The Leray-Schauder degree satisfies the following properties in addition to 

(Dl)-(D3). 

(D4) D(1 - F, 0, y) * 0 implies (I - Ftl(y) * 0. 

(D5) D(1 - G, O,y) = D(1 - F, 0, y) for G E %(0) n B p(F) and 

D(1 - F, 0, y) = D(1 - F, 0, y) for y E B (y), 
1 1 P 

where p = p(y, (I - F)( a~)) > o. 

Also D(1 - F, 0, .) is constant on every connected component of 

x \ (I - F)(BO) . 

(D6) D(1 - G, 0, y) = D(1 - F, 0, y) if GI ao = FI ao ' G E %(0). 

(D7) D(1 - F, 0, y) = D(1 - F, 0 ,y) for any open set 0 of 0 such that 
1 1 
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Proof: 

Y E X \ (I - F)(O \ 0 ). 
1 

(D4) Y E X \ (I - F)( 80) = X \ (I - F)(O \ 0 u 0) . Hence by (D2), 

D(1 - F, 0, y) = D(1 - F, 0, y) + D(1 - F, 0, y) . Thus 

(D7) 

(D6) 

D(1 - F, 0, y) = O. If (I - Ftl(y) = 0, then y E X \ (I - F)(O \ 0 u 0) 

and again by (D2), 

D(1 - F, 0, y) = D(1 - F, 0, y) + D(1 - F, 0, y) = 0 + 0 = O. 

Thus D(1 - F, 0, y) f 0 implies that (I - F)-l(y) f 0. 

If 0 c 0 is open such that y E X \ (I - F)(O \ 0 ), then 
1 - 1 

Y E X \ (I - F)(O \ 0 u 0) . So 
1 

D(1 - F, 0, y) = D(1 - F, 0 , y) + D(1 - F, 0, y) = D(1 - F, 0 , y) . 
1 1 

Let H(t, x) = t Fx + (1 - t) Gx. Then 

,(H(J x B)) ~ ,( cony (FB U GB)) 

= r(FB U GB) 

= max {r(FB), r(GB)} 

= O. 

Therefore H E %(J x 0, X). If y E (I - H(t, . ))( aO), then there exists 

x E ao such that 

y = (I - H(t, .)) x 

= x - t Fx - (1 - t) Gx 

= x - t Fx - (1 - t) Fx 

= (I - F)x since F I ao = G I 80' 

Thus y ~ (I - H(t, .))(80). Hence by (D3), 

D(1 - F, ~, y) = D(1 - G, 0, y) . 

(DS) Let G E %(0) n B iF), and H(t, x) = (1 - t) Fx + t Gx with 

(t, x) E J x O. Easily, H E %(J x 0, X) . Suppose y E (I - H(t, .))(aO) 

fOr some t E J. Then for some x E 80 
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y = (I - H(t, .))x = x - (1 - t) Fx - t Gx = x - Fx + t (Fx - Gx). 

So \Fx - Gx\ ~ \t(Fx - Gx)1 = Iy - (I - F)xl ~ p(y, (I - F)(80)) = p. 

Therefore IF - GI > p, a contradiction. Hence y ~ (I - H(t, .))(80) and o -

so by (D3), 

D(I - F, 0, y) = D(I - G, 0, y) . 

Now let y E B (y), and H(t, x) = Fx where (t, x) E J x 0 and 
1 p 

y(t)=(l-t)y+ty. 
1 

Now H E %(J X 0, X). 

Suppose y(t) E (I - H(t, .))(00). Then y(t) = (I - H(t, .))x for some 

x E 80. This implies that (1 - t) y + t y = (I - F)x which means that 
1 _ 

t (y - y) = (I - F)x - y. Therefore 
1 

\y -yl ~ It (y -y)1 = 1(1-F)x-y\ ~ p(y, (1-F)(80)) = p, 
1 1 

a contradiction. Hence y(t) ~ (I - H(t, .))(80) and by (D3) 

D(1 - F, 0, y) = D(1 - F, 0, y ). 
1 

Now we show that D(1 - F, 0, .) is constant on every connected 

component C of X \ (I -,- F)( 00) . Since X \ (I - F)( 80) is open, C is open 

and nonempty ~ Let y E C. By what has just been proved, D(1 - F, 0, .) is 

constant on some ball neighbourhood in C of y. Thus regarded as a 

mapping from C to !R, D(I - F, 0, .) I C is continuous at each y E C. 

Therefore it is continuous. But a continuous image of a connected set is 

connected. Thus D(I - F, 0, C), as a set, is a nonempty connected subset 

of IR. But it is a subset of H, and the only nonempty connected subsets of H 

are the one point sets. Thus D(1 - F, 0, C) is a one point set, and so 

D(I - F, 0, .) is constant on C. • 
Below, we have an extension to Borsuk's theorem. The usefulness of this theorem lies in 

fact that it gives conditions under which the degree is odd and hence nonzero. 
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3.12 Theorem 

Proof: 

Let 12 ~ X be open bounded and symmetric with respect to 0 E 12, F E %(0), 

G = 1- F, 0 ~ G( 812), G(- x) of A Gx on 812 for all A ~ 1. Then D(I - F, 12,0) 

is odd. In particular, this is true if F I an is odd. 

1 t --
Let H(t, x) = 1+t Fx -1+t F(- x) for (t, x) E J x n. If B ~ 12, then 

,(H(J x B)) ~ ,(cony (FB U (-F(-B)))) 

= ,(FB U (-F( -B))) 

= max {,(FB), ,( -F( -B))} 

~ ,(F(O)) 

= o. 
Hence H E %(J x 0, X). 

Suppose 0 = (I - H( t, .))x with (t, x) E J x 80. Then 

1 t 1 t 
x = 1+t Fx _1+t F(- x) and so 1+t (I - F)x = 1+t (I - F)(- x). Therefore 

(I - F)x = t (I - F)(- x). 

If t = 0, then G(x) = 0 for x E 80, and if t of 0, then t Gx = G( - x) with x E 80, 

and t ~ 1, contradicting the hypotheses . 

Thus 0 ~ (I - H(t, .))( an), and by (D3), 

D(I - F, 0, 0) = D(1 - F , 0, 0), (18) 
o 

where Fox = ~ (Fx - F(- x)) is odd. 

Choose F E ~(D) such that s~p I F x - F xl < p(O, (I - F )(80)) and let 
1 12 1 0 0 

F x = -21 (F x - F (- x)). Then F E ~(D) is odd and for x E D, 
2 1 1 2 

IF x-F xl = I -21 F x-~F (-x) -F xl 
2 0 1 ..6 1 0 

= I ~(Fx-Fx)-~(F -F )(-x)1 
1 0 ..6 1 0 

~ ~ IF x-F xl + ~ IF (-x) -F (-x) I 
1 0 ..6 1 0 

~ ~s~p IF x-F xl + ~sup IF (-x) -F (-x) I o 1 0 D 1 0 
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= sup IF x-F xl 
(1 1 0 

< p(O, (I - F )(80)). 
o 

Thus by definition, 

D(I - F , 0, 0) = d((I - F ) 10 ' 0 , 0), 
o 2 2 2 

(19) 

where X is a subspace of X such that dim X < (I) , F (0) ~ X and 
2 2 2 2 

o =Onx. 
2 2 

Since 0 E 0 and 0 E X we must have 0 EO . 0 is also open, bounded and 
2 2 2 

symmetric with respect to 0 EO. By Borsuk's theorem (2.10), 
2 

d((I - F) I 0 ' O
2

, 0) is odd. Thus by (18) and (19), 
2 

D(I - F, 0, 0) is odd. 

If F 180 is odd, then 

(I - F)(-x) = -x - F( -x) = -x + Fx = -(I - F)(x) f .\(I - F)x for.\ ~ 1 and for 

all x E an. 
Hence D(I - F, 0, 0) is odd by above. • 

3.13 Theorem 

Proof: 

Let 0 ~ X be open, F : 0 --! X completely continuous and I - F locally 

one-to-one. Then I - F is open. 

It is sufficient to show that to x E 0, there exists a ball B (x ) such that 
o r 0 

(I - F)(B (x )) contains a ball with centre (I - F)(x ). 
r 0 0 

We will first consider the case x = 0 and F(O) = O. Since I - F is locally 
o 

one-to-one, we can choose r > 0 such that (I - F) I B (0) is one-to-one. 
r 

Define H(t, x) = F( l!t x) - F(-I!t x) for (t, x) E J x B/O). 

Let B ~ B (0). Then H(J x B) ~ F(B (0)) - F(B (0)). So 
r r r 

,(H(J x B)) ~ ,(F(B (0))) + ,(F(B (0))) = 0 since F is completely continuous. 
r r 
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Thus H E %(J x :8 (0), X). 
r 

Now suppose 0 E (I - H(t, .))(:8 (0)) for some t E J. Then 0 = (I - H(t, .))x 
r 

for some x E 1\(0). So x = F( l!t x) - F(-l!t x) . Therefore 

(I - F)( l!t x) = (I - F)(-l!t x) . Since x E :8/0), we must have 

l!t x E B /0) and - l!t x E :8)0). Also (I - F) 1:8 (0) is one-tO-Dne. So 
r 

l!t x = -I!t x giving us x = o. Thus 0 ~ (I - H(t, .))(aB)O)) for all t E J, 

and we can apply (D3) to give us 

D(I - H(O, .), B (0),0) = D(I - H(1, .), B (0), 0) . 
r r 

1 1 
But H(O, x) = Fx and H(l, x) = F( "2 x) - F(-"2 x) . So 

D(I - F, B (0),0) = D(I - H(l, .), B (0),0) . 
r r 

By theorem 3.12, this is odd, and hence nonzero. 

If p = p(O, (I - F)( aB (0)), then by (D5) we have for all y E B (0), 
r P 

D(I - F, B (0), y) = D(I - F, B (0) , 0) t o. So by (D4), y E (I - F)(B (0)) for 
r r r 

all y E B p(O) . Hence we have B p(O) ~ (I - F)(B r(O)) as required. 

Now take x E n. Passing to n - x and Fx = F(x + x ) - Fx for x E n - x , we 
o 0 0 0 0 

obtain, by the first part, r > 0 and p > 0 such that B p(O) ~ (I - F)(B /0)) . Let 

xE B ((I-F)(x )) . Then Ix-(I-F)x I < p. So 
P 0 0 

x - (I - F)x E (I - F)(B (0)) . Thus we can find y E B (0) such that 
o r r 

X - (I - F)(x ) = (I - F)(y) = y - F(y + x ) + Fx. So 
000 

x = x + y - F(y + x ) = (I - F)(y + x) and y + x E B (x). Hence 
o 0 0 0 r 0 

X E (I - F)(B (x)) and so we have B ((I - F)x ) ~ (I - F)(B (x)) and we are 
r 0 p 0 r 0 

done. • 
The above theorem can be used to prove surjectivity results . Now we show that we also 

obtain a product formula for the degree. 

66 



3.14 Theorem (Product Formula) 

Let ° ( X be open bounded F E .%(0), F = I - F ,G : X -t X completely 
- , 0 0 0 

continuous, G = I - Go' y ~ GF( 80), and (K») AEA the connected components of 

X \ F( 00). Then 

Proof: 

D(GF, 0, y) = ~ D(F, 0, KA) D(G, KA, y) 
AEA 

where only finitely many terms are nonzero and D(F, 0, KA) = D(F, 0, z) for 

any z E KX 

We first verify that (GF, 0, y) is an LS-triplet, i.e. 1- GF E .%(0). Now 

1- GF means (I - GF) I O· 

1- GF = (I - (I - G )(1 - F )) In = F + Gin - G F . Thus 
o 0 H 0 OH 00 

(I - GF)(O) ~ F (0) + G (0) - G F (0) and 
o 0 0 0 

,((I - GF)(O)) < ')'(F (0)) + ,(G (0)) + ,(-G F (0)). F E .%(0), so 
- 0 0 0 0 0 

,(F (0)) = O. G is completely continuous, so since 0 is bounded, ')'(G (0)) = o. 
o 0 0 

F (0) is relatively compact, hence bounded, and so 
o 

,(-G F (0)) = ')'(G (F (0))) = O. Thus ')'((I - GF)(O)) = O. Since I - GF is 
o 0 0 0 

continuous, we get 1- GF E .%(0). 

Step 1: 

F(O) is bounded, so there exists r > 0 such that F(O) ~ B (0) . Let 
r 

x E G -l(y) n B (0). Then x E B (0) and x = G x + y. Thus 
r r 0 

G-l(y) n :8 (0) ~ G (:8 (0)) + y. G is completely continuous, so G (:8 (0)) is 
r 0 r 0 0 r 

relatively compact, and hence G (B (0)) + y is relatively compact . So 
o r 

G -l(y) n B (0) must be relatively compact . But G -l(y) n B (0) is closed, hence it 
r r 

must be compact . Let M = G -l(y) n B (0) . If x E M, then Gx = y and so 
r 

x ~ F( 00) since y ~ GF( an). Thus x E X \ F( 80) . So 

M ~ X \ F( 80) = U K A' Since M is compact, we can find finitely many i, 
AEA 
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p 

i = 1, 2, .. . , P such that U K together with K = K n B (0) cover M. 
i=l i p+l m r+l 

Since K is the unbounded component of X \ F( aO), it contains points y ~ F(O) 
m 

and so D(F, 0, K ) = O. Hence D(F, 0, K ) = o. 
m p+l 

Now suppose A ~ {1, 2, ... , p} and A * m. X \ B (0) ~ X \ F(O) ~ X \ F(aO) and 
r 

X \ B (0) is unbounded and connected. Hence X \ B (0) ~ K . Since 
r r m 

K A n Km = 0 we must have K A ~ B /0) . Since the connected components are 

p+l 
disjoint and since M ~ i ~l Kiwe must have KA n M = 0 and so KA n G-l(y) = 0. 

Hence D(G, KA, y) = 0 for A ~ {1, 2, ... , p }, proving that the sum is finite . 

Step 2 : 

Let S = {z E B (O)\F(aO) / D(F, 0, z) = m} and 
m r+l 

N
m 

= {A E A / D(F, 0, KA) = m} for m Ell \ {o}. Now 

S ~ B (0) \ F( a~) ~ X \ F( a~) = U K A' 
m r+l · AEA 

If X E S m ,then x E KA for some A E A and D(F, 0, x) = m. Hence 

D(F, 0, KA) = m and so A EN . Thus S ~ U K, . Now if x E U K" 
m m AEN 1\ AEN 1\ 

m m 

then x E K A for some A E N m' So 

D(F, 0, x) = D(F, 0, K,) = m. We must still show that x E B (0) \ F( 00) . 
1\ r+l 

Now U KA ~ X \ F(OO) and so x ~ F(OO) . Since m * 0, KA is not the 
AEN 

m 

unbounded component K and so x must be an element of B (0) and hence 
m r+l 

x E S . Thus S = U K, . Hence S is open. So by lemma 3.10, 
m m AEN 1\ m 

m 

= }; m (}; D(G, K" y) ) 
m AEN 1\ 

m 

=};mD(G, S ,y). 
m m 

(20) 

Thus we have to show that 
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D(GF, 0, y) = ~ m D(G, S ,y) . 
m m 

(20 1 
) 

Now as = u K), \ U K), ~ U K), \ U K), ~ U oK), and 
m ),EN ),EN ),EN ),EN ),EN 

m m m m m 

oK), ~ F(oO) for all), E N m. 

Thus as ~ F( (0). By theorem 3.5, we can find G E 3(B (0)) such that 
m 1 f+1 

_sup I G X - G xl < p(y, GF(80)) . Let G = I - G. Then 
xEB (0) 1 0 1 

f+1 

IGF - GFI = I (G - G)IF(i"I) I ~ IG - GI = IG - G I < p(y, GF(80)) o HO 0 1 00 

and 

I G - G I < p(y, GF( (0)) ~ p(y, G( 05 )). Thus by (D5), 
o m 

D(GF, 0, y) = D(GF, 0, y) (21) 

and 

D(G, S ,y) = D(G, 5 ,y) 
m m 

(22) 

for all m. 

If M = B (0) n G-1(y) = 0, then both sides of (20 / ) are zero, so we may assume 
o f+1 

that M f 0. 
o 

Since M is compact and y ~ GF( 80), we have 
o 

p(M , F( (0)) = inf {I x - z I / x EM, z E F( (0) } > 0 because 
o 0 

F( (0) = (I - F )( (0) is closed. 
o 

Again by theorem 3.5, we can find F E 3(0) such that 
1 

IF -F I < min {I, p(M ,F(oo))}. 
1 0 0 0 

Let F = I - F. For x E 0, 
1 

I Fx I ~ I Fx - Fx I + I Fx I ~ IF - F I + I Fx I < 1 + r, 
o 

so F(O) ~ B (0). 
f+1 

Define S = {z E B (0) \ F(oO) / D(F, 0, z) = m}. Since 
m f+1 

IF -F I < p(M ,F(oO)) < p(z, F(oO)) for all z EM, we have 
1 0 0 0 - 0 
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D(F , 0, z) = D(F, 0, z) for all z EM. Thus S n M = S n M . Now 
1 0 m 0 m 0 

y ~ G( as ). We want to show that y ~ G(S \ S n S ). If y = Gx with x E S 
m m m m m 

then x E G ~l(y) n 13 (0) = M and so x E M n S = M n S . Hence 
r+l 0 0 m 0 m 

x E S n S . Thus y ~ G(S \ S n S ), and so by (D7) 
m m m m m 

D(G, S ,y) = D(G, S n S ,y). 
m m m 

(23) 

Similarly, 

D ( G, S, y) = D( G, S n S ,y). 
m m m 

(24) 

From (20), (22), (23) and (24) we obtain 

~ D(F, 0, K,) D(G, K" y) = ~ m D(G, S ,y) 
.x /\ /\ m m 

and from (21) we obtain 

D(GF, 0, y) = D(GF, 0, y). 

Now choose a subs pace X of X such that dim X < m , y EX, F (0) ~ X and 
1 1 1 1 1 

G (13 (0)) ~ X. By the product formula in finite dimensions and the definition 
1 r+l 1 

of the Leray-Schauder degree, we have 

~ ID D(G, S ,y) 
m m 

= ~ m d( G I X,S n X , y) 
m m 1 

1 

= d(G F I n n X' ° n X , y) 
1 1 

= D(G F, 0, y). 

So we have ~ D(F, 0, K.x) D(G, K.x' y) = D(G F, 0, y) and 
.x 

D(GF, 0, y) = D(GF, 0, y). Thus, we just need to show that 

D(G F, 0, y) = D(GF, 0, y). 

Now G F = I - (G F + F ) 
1 1 

and GF = I - (F + G F) . 
o 1 

(25) 

(26) 

Consider H(t, x) = F x + t (F x-F x) + G (Fx + t(Fx-Fx)) for (t x) E J x O. 
o 1 0 1 ' 

Then H E J&(J x 0, X) and x - H(t, x) = G(Fx + t (Fx - Fx)) . 

If y = (I - H(t, .))x with x E 80 and t E J, then G(Fx + t (Fx - Fx)) = y. 
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Also Fx + t (Fx-Fx) = (l-t) Fx + t Fx E B (0). Thus 
f+l 

z = Fx + t (Fx - Fx) EM. Since x E AN, 
o 

Iz-Fxl > p(M, F(oo')) > IF -F I. But 
- 0 1 0 0 

I z - Fx I = I Fx + t (Fx - Fx) - Fx I = t I F x - F x I· o 1 

Thus I F x - F x I ~ t I F x - F x I > IF - F I ,a contradiction. 
o 1 0 1 1 00 

Hence y ~ (I - H(t, .))(00) . Applying (D3), we get 

D(1 - H(l, .),0" y) = D(1 - H(O, .), 0" y) 

which is the same as 

D(1 - (F + G F), 0" y) = D(1 - (F + G F), 0" y). 
1 1 0 1 

By (25) and (26) we obtain 

D(G F, 0" y) = D(GF, 0" y) 

which was what we were required to show. 

We obtain the following version of Jordan's separation theorem. 

3.15 Theorem 

• 

Let A and B be closed bounded subsets of the real Banach space X such that 

there exists a homomorphism G = 1- F from A onto B, with F E 5(A). Then 

X\A and X\B have the same number of components . 

We do not include a proof here because it is along the lines of theorem 2.16 . 

Now we prove a result that reduces a degree on some space to a degree on a subspace. 

3.16 Theorem 

Let Xo be a closed subspace of X, 0, ~ X open bounded, F : (2 --t Xo compact, 

G = 1- F, y E X \ G(OO) . Then 
o 

71 



Proof: 

D(G, 0, y) == D(G 10 n X ,0 n X o' y). 
o 

Since G( 80) is closed p = p(y, G( ao)) > o. By theorem 3.5, we can find 

F E 3"(0, X ) such that s~p I F x - Fxl < p. 
1 0 0 1 

Let X be a subspace of X such that dim X < rn, F (0) ~ X , Y EX, 0 = 0 n X 
1 1 1 1 10 0 

and 0 = 0 n X . 
1 1 

Now X n X is a subspace of X, dim (X n X ) < rn , y E X n X , 
o 1 0 1 0 1 

F (0) ~ X n X . 
1 0 1 

So by definition 

D(G, 0, y) d( (I - F 1) Ion (X n X), 0 n X 0 n Xl' y)" 
o 1 

d((1 -F l)l o n X' 0
0 
n Xl' y). 

o 1 

(27) 

Also 80 = 0 n X \ 0 n X ~ 0 n X \ 0 n X = (ao) n X ~ ao 
o 0 0 0 0 0 

andsos~p IFlx-Fxl ~s~p IF1x-Fxl <p(y,G(aO))~p(y,G(aOo)) · 
o 0 

o 
Hence by definition 

D(G10 ,0
0

, y) = d((1 -F)lo n x, 0 n X, y). 
o 0 1 0 1 

(28) 

From (27) and (28), we get 

D(G, 0, y) = D(G10 ,0
0

, y) . • o 

The fixed point theorem corresponding to Brouwer's fixed point theorem is Schauder's 

fixed point theorem, which follows. It was extended by Schauder in 1930. 

3.17 Theorem 

Let X be a real Banach space, C ~ X nonempty closed bounded and convex, 

F : C --j C compact. Then F has a fixed point . 
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Proof: 

By the remarks after definition 1.2.16, C is a retract of X. So there exists a 

retraction R: X --I C. Since C is bounded, there exists r > 0 such that 

C ~ B (0) . Now FR: X --I C is continuous . Let H(t, x) = t FRx for 
r 

(t, x) E J x B (0) . If 0 = (I - H(t, .))x for some (t, x) E J x oB (0), then 
r r 

x = t FRx. 

t = 0 implies that x = 0, a contradiction. 

tfOimplies fx=FRxEC and so I fXI <r. But I fX I =flxl ~r,a 
con tradiction. 

So 0 ~ (I - H(t, .))(oB (0)) on J . 
r 

Thus by (D3), 

D(I - FR, B (0), 0) = D(I, B (0), 0) = 1 by (D1) . 
r r 

By (D4), there exists x E B (0) such that (I - FR)x = o. So x = FRx E C and 
r 

hence FRx = Fx. Thus 

x= Fx. • 
Given a problem where we want to use Schauder's fixed point theorem or a degree 

argument, we first look for a suitable Banach space X. Then we formulate the problem 

as x - Fx = 0 such that F is completely continuous, if we can. Thereafter we apply the 

homotopy H(t, x) to reduce I - F to a simpler map I - F. In most examples, the most 
o 

difficult part is finding a suitable open bounded n ~ X such that H(t, x) f x on on, or 

finding a closed bounded convex set C such that C is invariant under F . 

This is the question of finding a priori bounds for the possible solutions, i.e. in the 

simplest case, find r > 0 such that 

{x / x - A Fx = 0 for some A E [0, 1] } ~ B (0) . 
r 

This can be illustrated by the following example. 
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3.18 Example 

Let X be a real Banach space, J = [0, a] ~ !R, f : J x X --+ X completely 

continuous and If(t, x) I ~ c (1 + Ixl) on J x X, for some c ~ O. Then the 

initial value problem, 

Xl = f(t, x), x(O) = x
o
' 

has at least one solution on J. 

(29) 

It is useful to note that (29) is equivalent to the existence of a continuous 

function x: J --+ X such that 

t 
x(t) = X + J f(s, x(s)) ds. 

o 0 
(30) 

The natural space for (30) is Y = Cx(J). 

t 
Define F: Y --+ Y by (Fx)(t) = x + J f(s, x(s)) ds for x E Y and t E J. 

o 0 

To show that F is completely continuous, we must show that for every bounded 

B ~ Y, FB is relatively compact. Now 

t 
F(B)(t) ~ {x } + { J f(s , x(s)) ds / x E B } for t E J. 

o 0 

t 
Since J g(s) ds is the limit of Riemann sums t ~ g(sJ (s. - s. )/t, we have 

o 1 1 1 1-1 

t 
{ J /(s, x(s)) ds / x E B } ~ t conv { f(s, x(s)) / s E J, x E B}. So 

t 
a(FB(t)) ~ a({ J f(s, x(s) ds / x E B}) ~ t a({f(s, x(s)) / s E J, x E B }). 

o 

Since J x B is bounded, and f is completely continuous, we must have 

a({f(s, x(s)) / s E J, x E B}) = 0, and so a(FB(t)) = 0 for all t E J. Thus 

sup a(FB(t)) = O. 
tEJ 

Now FB is bounded and for x E B, t ,t E J, 
1 2 

I Fx( t ) - Fx( t ) I 
1 2 

t t 
1 2 

- I J f( s, x( S )) ds - J f( s, x( s )) ds I 
o 0 

t 
1 

I J f(s, x(s)) ds I (assume t ~ t ) 
t2 1 2 
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tl 

< J I f( s, x( S )) I ds 
t2 

< It -t I c(1+ Ixl) 
1 2 

< c It - t I (1 + M) if M is a bound of B, 
1 2 

and so FB is easily equicontinuous. 

Therefore by theorem 

a(FB) = sup a(FB(t)). 
J 

So by (31) and (32), a(FB) = 0 and hence F is completely continuous . 

Now suppose x is a solution of (I - ). F)x = 0 for some). E [0, 1] . Then 

t t 
Ix(t)1 < Ix I + c J (1 + Ix(s)l) ds ~ c + c J Ix(s)1 ds = ~t) 

- 0 0 1 0 

with c = I x I + c a. 
1 0 

Now ipl(t) = c Ix(t)1 ~ c ip(t). 

= ipl ( t) e -{;t - C ip( t) e-{;t 

= [ipl(t) - C ip(t)] e-{;t 

~ o. 
t 

Therefore J o(ip(s) e-{;S)/ds ~ 0, which is the same as ip(t) e-{;t S ip(O) = Cl 

for all t E J. Hence we have the a priori estimate, 

Ixl Ssup~t)Ssupc ect=c eca=c. 
o tEJ tEJ 1 1 2 

(32) 

Choose r > c. If H(t, x) = t Fx, (t, x) E [0, 1] x 13 (0), then H is compact (since 
2 r 

H([O, 1] x 13 (0) ~ conv (F 13 (0) U {o}) ) and (I - H(t, .))x = 0 implies that 
r r 

(I - t F)x = 0 and so (I - t F)x = 0 with t E [0, 1]. Therefore 

Ixl S c < r. Thus x E B (0) which means that x t aB (0), and hence by (D3), 
o 2 r r 

D(1 - F, B (0), 0) = D(1, B (0), 0) , 
r r 

(33) 

and by (D1), 

D(1, B (0), 0) = l. 
r 

(34) 

(33) and (34) give us D(1 - F, B (0),0) = 1. By (D4), there exists x E B (0) such 
r r 
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that (I - F)x = O. Thus, (30) has a continuous solution. • 
The following is a result of Schafer concerning the homotopy H(t, x) = t Fx. 

3.19 Corollary 

Proof: 

Let F : X ~ X be completely continuous. Then the following alternative holds: 

Either x - t Fx = 0 has a solution for every t E [0, 1], or 

S = {x / x = t Fx for some t E (0, 1)} is unbounded. 

Suppose x - t Fx = ° has no solution for some t E (0, 1] and let F = t F . Now o 0 0 ,· 0 

take any r > 0 and consider the radial retraction R : X ~ B (0) defined by 
r 

{

X iflxlsr 

Rx = I~ I if I x I > r 

Then RF 0 I B (0): B )0) ~ B /0) is continuous . 
r 

Let (x ) ~ B (0) . To show that RF (x ) has a convergent subsequence. Since F 
n r 0 n 

is completely continuous, so is F . Thus (F x ) has a convergent subsequence, 
o 0 n 

say F x ~ y and continuity of R gives us RF x ~ Ry. Thus RF is a 
o n

k 
0 n

k 
0 

compact operator. Since B (0) is closed, bounded and convex, we can apply 
r 

Schauder's fixed point theorem (theorem 3.17), to obtain a point x E B (0) such 
r 

that RF x = x. If F x E B (0), then RF x = F x and then we get t Fx = x, a 
o 0 r 0 0 0 

contradiction to this equation having no solution. Hence I F x I > r and so 
o 

rF x rt 
x = RF OX = I FOxl . So x = It Fx with It = IF ~I and 0 < It < 1, i.e. x E S. We 

o 0 
rF x 

also obtain Ixl = I IFoxl I = r. Thus S is unbounded. • 
o 

Compact Linear Operators 
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Up to this point we have considered arbitrary nonlinear operators . In applications, we 

sometimes encounter nonlinearities of the form F = 1 + R where 1 is linear and R is 

nonlinear, but small in some sense. Then we would like to know whether the nice 

properties of 1 carry over to F. 

Among the linear operators of a Banach space into itself, the compact linear operators, 

are quite simple, since the results from linear algebra can be extended to this class. We 

denote this class by C1(X) and if 1 E C1(X), then 1 is a completely continuous 

operator, but we will call it compact . The aim in this section is to obtain a formula 

similar to d(A, 0, 0) = sgn det A from chapter 2. 

3.20 Theorem 

Proof : 

Let X be a real Banach space, 1 E CL(X) and 1 = 1-1 . Then we have 
o 0 

(a) Let M = I - M with M E C1(X). Suppose also that L and M are 
o 0 

one-to-one. Then D(1M, 0, 0) = D(L, 0 , 0) D(M, 0, 0) for every 

bounded ° ~ X such that 0 E 0 . 

(b) 
_ ID 

Let X =.m X. be the topological direct sum of closed subspaces X , ... , X 
1=1 1 1 m 

such that Lo(XJ ~ X. ' 1et 1 be one-to-one. Then 
1 1 

m 

D(L, B /0), 0) = i~ 1 D(1 I X.' B /0) n Xi' 0). 
1 

(a) 1et K). be the connected components of X\M(oO). Now 0 E 0, so 0 ~ 00. 

Now M is one-to-one and MO = O. So 0 t M( an). Thus 0 E K for 
a 

some a and 0 t K). for all ). f a. 

Also, since 1 is linear, we must have 10 = O. Thus 1-10 = {O} (since Lis 

one-to-one) . So 1 -10 n K). = 0 for all ). f a and hence 

D(1, K)., 0) = O. (35) 

Now by the product formula, we get 
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D(LM, 0, 0) = ~ D(M, 0, K).) D(L, K)., 0) 
). 

and by (35) we get 

D(LM, 0, 0) = D(M, 0, Ko) D(L, Ka, 0). 

Since 0 E K ,we have by definition a 

D(M, 0, K a) = D(M, 0, 0). 

Also, since 0 = LO E L(Ka)' we have 0 ~ L(O \ Ka), and hence by (D7) 

(36) 

(37) 

D(L, 0, 0) = D(L, K
a

, 0). (38) 

By (36), (37) and (38) we have 

D(LM, 0, 0) = D(M, 0, 0) D(L, 0, 0), 

as required. 

(b) It is sufficient to prove the case m = 2, for the result, will follow by 

induction. 

Consider the projections P : X ---I X and M = LP + P and 
i ill 2 

M = P + LP . 
2 1 2 

M M = (LP + P )(P + LP ) = Lp 2 + P P + LP LP + P LP . 
12 121 2 121 1222 

Now LP LP (X) = LP L(X ) ~ LP X = 0, p2 = P , P P = 0 
12 12 12 1 121 

and LP (X) ~ X and so P LP = LP . 
2 2 2 2 2 

Thus M M = LP + LP = L(P + P ) = L. 
1 2 1 2 1 2 

(I - MJ(XJ = [I - (P. + LP J](XJ i f j 
1 1 J 1 1 

and so 

= (I-LPJ(XJ 
1 1 

= (I - L)(X,) 
1 

= Lo(X) 

( X. for i = 1, 2, 
1 

I - M = L P E CL (X) and I - M = L P E CL(X) . 
1 0 1 2 0 2 

Suppose M x = 0 for some x E X. Let x. = P .x, i = 1, 2. So x = x + X 
2 1 1 1 2 
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and x EX. 
i i 

M (x + x ) = 0 implies that (P. + LP J(x + x ) = 0 
i12 J 112 

and so x + Lx = O. 
j i 

But Lx E X and x E X with i * j. 
i i j j 

By uniqueness of the representation x. = 0 and Lx 
J i 

one-to~ne and so x = 0 = x . Thus x = o. 
1 2 

Thus M is one-t~ne for i = 1, 2. With 0= B (0), 
i 1 

D(L, 0,0) = D(M M ,0,0) 
1 2 

= D(M , 0, 0) D(M , 0, 0) (by part (a) ) 
1 2 

o. But L is 

= D(Milonx' 0 n Xl' 0) D(M2 10nX ,[2 n ~2' 0) 
I 2 

2 

= i~ I D(Mi I onx.' 0 n Xi' 0) 
1 

2 

= Ri D(Ll x .' ° n Xi' 0). • 
1 

The next two results can be found in basic texts in functional analysis and no proofs will 

be given. 

3.21 Theorem 

Let X be a Banach space, L E CL(X) and L = I - L . Then 
o 0 

(a) N(L) = {x E X / Lx = O} is finite dimensional and 

R(L) = {(x / x E X} is closed. 

(b) Suppose that V and Ware closed subspaces of X such that 

V c W, V * Wand L(W) ~ V. Then there exists w E W \ V such that 

Iwl = 1 and p(Low, Lo(V)) ~ i. 

The next result is a spectral theorem. 

79 



3.22 Theorem 

Let X be a Banach space over K = [R or K = (, L E CL(X), L, = L - AI o ~ 0 

for A E K, and let A be the set of all eigenvalues of L . Then 
o 

(SI) A ~ {J.L E K / 1 J.LI ~ 1 L 0 i}, A is at most countable and only J.L = 0 may be 

a cluster point of A. 

(S2) LA is a homeomorphism onto X for every A ~ A U {O}. 

(S3) To every A E A \ {O} there exists a smallest natural number k = k(A) 

such that we have, with R(A) = R(L~) and N(A) = N(L~) 

(a) X = R(A) Ell N(A), dim N(A) < CD and R(A) is closed. 

(b) R(A) and N(A) are invariant under Lo and LAJR(A) is a 

homeomorphism onto R('\) . 

(c) N(J.L) ~ R(A) whenever A, J.L E A \ {O} and A f J.L. 

As in linear algebra, dim N(A) is called the algebraic multiplicity of the eigenvalue A 

while dim N(LA) ~ dim N(A) is called the geometric multiplicity of A. We now prove 

the analogue of 

d(A, 0, 0) = sgn det A = (_I)dim N 

from chapter 2. 

3.23 Theorem 

Proof: 

Let X be a real Banach space, L E CL(X), A f 0 and A -1 not an eigenvalue 

of L. Let 0 ~ X be open bounded and 0 E O. Then 

D(I - AL, 0, 0) = (_l)m(A), where m(A) is the sum of the algebraic 

multiplicities of the eigenvalues J.L of L satisfying J.L A > 1, and m(A) = 0 if L has 

no eigenvalues of this kind. 

Let M = I - AL = -A(L - A -11) . By (S2), L - A -11 is a homeomorphism onto X 

80 



since A -1 is not an eigenvalue of L. Hence M is a homeomorphism onto X. Thus 

D(1 - AL, 0, 0) = D(1 - AL, B /0), 0) by (D7) and so it is sufficient to consider 

o = B (0). By (Sl), there are at most finitely many /-L E A such that /-L A > 1, i.e. 
1 

sgn /-L = sgn A and I/-LI > 1 AI-1, say /-L , ... , /-L . 
1 P 

P P 
Let V =.e N(/-L.) and W =.n R(/-L} We will now show that X = Ve W. 

1=1 1 J=l J 
P 

If x E V n W, then x = .~ x., x. E N(/-L.) and x E R(/-L.) for j = 1, 2, ... , p . 
]=1 J J J J 

P 

By (S3)(c), N(/-L.) ~ R(/-L) for j = 2, ... , P and we have . ~ x.E R(/-L). Hence we 
J 1 J=2 J 1 

P 

have x = x - .~ x. E R(/-L ) nN(/-L ) = {O} , and similarly we may obtain 
1 J =2 J 1 1 

X = ... = x = O. Thus V n W = {O}. 
2 P 

Now take any x E X. Then x = x. + y. for x . E N(/-L.) and y. E R(/-L.) by (a) of 
J J J J J J 

(S3). 

So x - ~ x 
j = 1 j 

x-x - ~ X 

k rh j 

y - ~ x. E R(/-L ) by (c) of (S3) for k = 1,2, ... ,p. 
k rh J k 

p p 

Thus x - ~ x E Wand so x = ~ x + w for some wE W. Hence we get 
j=lj j=lj 

X =VeW. 

L(V) ~ V and L(W) ~ W since V and Ware invariant under L by (b) of (S3). 

Thus AL(V) ~ V and AL(W) ~ W. Also, M is a homeomorphism, hence 

one-to-one. So we may apply theorem 3.20 to get 

D(M, 0, 0) = D(Mlv' [2 n V, O).D(Ml w ' 0 nw, 0) 

with 0 = B (0). 
1 

Consider H(t, x) = t A Lx for (t, x) E J x [2 n W. 

and suppose 0 = (I - H(t, .))(x) for (t, x) E J x (0 n W) . 

So 0 = (I - tAL )x. 

If t = 0, then x = o. 

81 

(39) 



If t = 1, then (I - AL)x = 0 and so (L - A -ll)x = O. Since A -1 is not an 

eigenvalue of L, we must have x = O. Suppose 0 < t < 1. Then 

(L - (tAt11)x = 0 with (t A)-lA = t-1 > 1. Hence if x:/= 0 (tAt1 is one of 

f.L, ... , f.L , say f.L . and x E N(f.LJ But x E W. So we have x E V n W = {O}. Thus 
1 P J J 

x = o. 

So for all t E J, 0 ~ (I -H(t, . ))( 8(0 n W)) . Since H is compact, we have by (D3), 

D(Mlw, n n w, 0) = D(I, n n w, 0) and D(I, 0 n w, 0) = 1 by (D1). So 

D(Mlw, 0 nw, 0) = 1. (40) 

Since N(f.LJ is finite dimensional for each i and by theorem 3.20, again, we have 
1 

P 

D(M I V, 0 n V, 0) = R ld(M I N(f.LJ' 0 n N(f.L
i
), 0). 

1 

( 41) 

Now define h(t, x) = (2t -l)x - t A Lx for (t, x) E J x 0 n N(f.LJ and let 
1 

o = h(t, x). Then 0 = (2t -l)x - t A Lx. 

If t = 0 then x = O. If t = 1 then (I - AL) x = 0 and hence x = 0, since A -1 is not 

an eigenvalue of L. Now suppose 0 < t < 1. Then if x :/= 0, 

(L - 2\ix 1 I) x = 0 and since f.L. is the only eigenvalue of L I N( ) we must have 
J f.L . 

2t - 1 2t - 1 J 
tA = f.L. and t = Af.L. > 1 and so t > 1, a contradiction. 

J J 

Thus x = o. So 0 ~ h(t, 8(0 n N(f.LJ)) and hence by (d3) 
1 

d(M I N(f.LJ' 0 n N(f.L), 0) = d( -id I N(f.L.) , 0 n N(Jt
j
), 0) 

J J 

= (_l)dimN(f.L/ (42) 

Thus (39), (40), (41) and (42) give us 

p 

D(M, 0, 0) = .IT (_l)dim N(f.L) = (_l)m(A) 
1 = 1 

p 

where m(A) = .~ dim N(f.LJ If there are no such f.L, then X = Wand 
1 = 1 1 

D(M, 0, 0) = 1 = (_1)0. • 
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We illustrate this theorem with the next example. 

3.24 Example 

Consider the boundary value problem 

X I I + Jl x = 0 in J 

x(O) = x(l) = O. 

(43) 

(44) 

By standard results on boundary value problems, (43) and (44) are equivalent to 

where 

1 

x(t) - Jl J ok(s, t) x(s) ds = 0 in J 1 
{
s(1- t) 0 < s < t < 1 . 

k( s, t) = t (1 - s) 0 ~ t ~ s ~ 1 

1 
Let X = C(J) and (Lx)(t) = J k(t, s) x(s) ds. Then LE CL(X). 

o 

Thus (45) becomes 

x - Jl Lx = O. 

Now (46) has nontrivial solutions <=> Jl-1 is an eigenvalue of L. 

Ifp ~ 0, then the general solution to (43) is 

{
c e -Fit t + d e-H t 

x(t) = c + d t 
, Jl < 0 
, Jl = O . . 

The boundary conditions in (44) give us c = d = O. Thus x(t) = 0 for Jl ~ O. 

(45) 

( 46) 

If Jl > 0 then the general solution to (43) is x( t) = c sin( lilt) + d cos (..fP, t). 

Again the boundary conditions give us d = 0 and c sin n = O. 

For c f 0, c sin (n) = 0 

<=> sin (n) = 0 

<=> ..fP, = n7r for some n E IN 

<=> Jl = n27r2 for some n E IN. 

A f 0 is an eigenvalue of L <=> x - A -lLx = 0 has nontrivial solutions 

<=> x(t) = c sin (~ A -1 t) c f 0 and A -1 = n27r2 for some nE IN. 

Th us A = (n 27r2) -1 for n E IN are the eigen val ues of L. 
n 
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N(L -). I) 
n 

- {x E X / (L ---,). I) x = O} 
n 

- {x E X / x( t) = c sin (~ t), c E IR} 
n 

- span { x (t) = sin ( ~ t) } 
n n 

- span {x (t) = sin (nn) }. 
n 

Thus dim N(L -). I) = 1. 
n 

We now want to show that k(>. ) = 1 (i.e. the algebraic multiplicity of). is 1) . 
n n 

2 
Let x E N((L -). 1)2). Then (L -). I) x = 0 i.e. (L -). 1)((L -). 1)x) = O. 

n n n n 

So (L -). I) x E N(L -). I) = span {sin(nn)} . Thus (L -). 1)x = c sin(nn) for 
n n n 

some c E R and so 

Now (Lx)(t) 

And so 

x(t) = ). -1 [Lx(t) - c sin (nn)] 
n 

1 
- J k( t, s) x( s) ds 

o 
t 1 

- J k( t, s) x( s) ds + J k( t, s) x( s) ds 
o t 
t 1 

- J s(l-t) x(s) ds + J t(1--s) x(s) ds 
o t 

t 1 
- (l-t) J s x(s) ds + t J (l-s) x(s) ds 

o t 

( 47) 

( 48) 

(Lx)'(t) 
t 1 

- J S x( s) ds + (l-t) t x( t) + J (l-s) x( s) ds - t (l-t) x( t ) 
o t 

1 1 
= - J s x( s) ds + J x( s) ds 

o t 

and (Lx)" (t) = -x(t). 

By (47), x'(t) = ). -l[(Lx)'(t) - cn7r cos (nn)] 
n 

and x"(t) = ). -1[(Lx)"(t) + cn27r2 sin (nn)] . 
n . 

SO x" (t) + ). -1 x(t) = c n27r2 sin (nn). 
n 

By (47) and (48) we get x(O) = 0 = x(l). 

1 
Now J sin2(nn) dt 

o 
/ 1 - cos 2nn dt 

o 2 
1:. [t _ sin 2nn] 1 
2 2n7rt 0 
1 
2' 
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1 
Cn21f2 J sin2(ll1rt) dt 

o 
1 

J (X"(t) + A- 1 x(t)) sin (nn) dt by (49). 
o n 

1 
But J xll(t) sin(nn) dt 

o 
1 1 

= sin(nn) Xl (t) I - J Xl (t) n1f cos(nn) dt 
o 0 

1 1 
= -n1f[ cos(nn) x(t) I + J x(t) n1f sin(nn) dt ] 

o 0 

1 
= _n21f2 f x(t) sin(nn) dt 

o 
1 

= f (- A -1 x(t) sin (nn)) dt . 
o n 

Substituting in (49) we get ~ n21f2 = 0 and hence c = O. 

Thus (1 - A 1)x = 0 and so x E N(1 - A I) . 
n n 

So N(1 - A I) = N((1 - A 1)2) proving that k(A ) = 1 for all n E IN. 
n n n 

If A < 0 then A A < 0 for all n E IN and A -1 is not an eigenvalue of 1 and so 
n 

m(A) = O. Thus D(1 - A1, B (0), 0) = 1 for A < 0 and 
1 

D(I - A1, B (0), 0) = 1 for A = O. 
1 

If 0 < A < 1f2, A -1> (1f2t1 ~ (n21f2t 1 = A -2 for all n ~ 1. 
n 

So A -1 is not an eigenvalue of 1. Also AA < 1f2 (n21f2t 1 = _1_ ~ 1 and so 
n n2 

m(A) = O. Therefore 

D(1 - A1, B (0), 0) = 1 for -m < A < 1f2. 
1 

(50) 

If n21f2 < A < (n + 1)2 1f2, then A < A -1 < A . So A -1 is not an eigenvalue of L. 
n+ 1 n 

Now A A < 1. So A A < A A < 1 for all m ) n + 1. Also A A > 1. 
n+1 rn- n+1 - n 

So A A. ~ A A > 1 for i = 1, 2, .. . , n . Therefore A , .. . , A are the only 
1 n 1 n 

eigenvalues of 1 satisfying A A. > 1. Also, the algebraic multiplicity of each A. is 
1 1 

1 since dim N((1 - A,I)k(Ai)) = dim N(1 - A,I) = 1. 
1 1 

So m(A) = n. By Theorem 3.2.21 we have 

D(1 - AI, B (0),0)= (_1)rn(A) for (n1f)2 < A < ((n + 1)A)2 
1 
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(51) 

(50) and (51) give us 

D(L - AI, B 1(0),0) = { (_l)ll 

• 
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CHAPTER 4 

4.1 SET CONTRACTIONS 

We saw that we could extend the degree theory for finite dimensional maps to a degree for 

compact perturbations of the identity. Now we extend further to another type of 

perturbation of the identity. Before we discuss the degree, we will give some definitions. 

4.1.1 Definition 

In the sequel, X will denote a Banach space and , : !iJ-l IR will be either a or {J, 

the Kuratowski or Hausdorff measures of noncompactness, respectively. 

Let 0 ~ X and F: 0 -l X be continuous . 

F is Lipschitz if I Fx - Fy I ~ k I x - y I for some k >0 and all x, y E 0 and a 

strict contraction if k < 1. If k = 1 is the smallest Lipschitz constant, then F is 

called nonexpansive. 

F is said to be ,-Lipschitz if t{FB) ~ k ,(B) for some k ~ 0 and all bounded 

BC O. 

If k < 1, we call F a strict ,-contraction. 

F is (-condensing if ,(FB) < ,(B) whenever B ~ 0 is bounded and t{B) > O. 

(In other words, ,(FB) ~ t{B) implies that t{B) = 0.) 

se ,(0) will consist of all strict {-Contractions F : 0 -l X and e ,(0) all 

{-Condensing maps . 

F is called a k -set contraction if it is a strict {-Contraction with constant k. 

These definitions contain the condition that F is bounded; i.e F takes bounded sets into 

bounded sets . It is easy to see that se ,(0) ~ e ,(0) . 
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Also, if 0 is closed and FEe iO), then F is ,-Lipschitz with k = 1. To see this, let B ~ 0 

be bounded. If !CB) > 0, then ,(FB) < !CB). If ,(B) = 0, then B is relatively compact . 

Let (y ) be any sequence in F(B). Then y = Fx for some x E B, n E IN. Since B is 
n n n n 

relatively compact, some subsequence (x ) of (x ) converges in X to say x. Since 0 is 
k n 

n 

closed, we must have x E 0 and (y ) = (Fx ) converges to Fx by the continuity of F . 
k k 

n n 

Thus FB is relatively compact and hence !CFB) = ° = !CB) . We have thus shown that F· 

is ,- Lipschitz with constant k = 1. 

4.1.2 Example 

If F : 0 --! X is Lipschitz with constant k, then F is a--Lipschiti with constant 

k. To see this, we use the definition of a. Let B ~ 0 be bounded and suppose B 

admits a finite cover by sets U l' U 2' ... , Un' such that diam U i ~ d , i = 1, ... , n, 

d > 0. Then FB is covered by sets FU , FU , ... , FU ,with 
1 2 n 

diam FU sup {I Fx - Fy I / x, Y E U. } 
1 

< sup {k I x - y I / x, Y E U. } 
1 

k sup {I x - y I / x, Y E U. } 
1 

k diam U 
i 

< k d. 

Thus a(FB) ~ k a(B) and hence F is a--Lipschitz with constant k. 

Now, if we have G: 0 --! X to be a--Lipschitz with constant k, then F + G is 
, 

a--Lipschitz with constant k + k. Indeed, if B ~ 0 is bounded, then 

a((F + G)(B)) < a(FB + GB) 

< a(FB) + a(GB) 

< k a(B) + k a(B) 

(k + k) a(B) . 

Therefore F + G is a--Lipschitz with constant k + k. • 
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4.1.3 Example 

We know that se ,(0) ~ e ,(0). Nussbaum [2] gave the following example of a 

map that is a-condensing but not a strict a-contraction. 

Let ~ : [0, 1] -l IR be a continuous strictly decreasing nonnegative function such 

that ~(O) = 1 and consider the map F : B (0) -l B (0) defined by 
1 1 

Fx = ~(Ix!) x, where B (0) is the closed unit ball about 0 in an infinite 
1 

dimensional space X. Let r E (0, 1). If x E 8(Br~(r)(0)), then Ixl = r ~(r) and 

x = I~I Ixl = I~I r ~(r) = IXI ~(r). Let y = lxi' then Iyl = Ilxll = r ~ l. 
Therefore 

x = y ~(r) = y ~(Iyl) = Fy E F B (0) . Thus 8(B J.( )(0)) ~ F B (0) . So we r rlf' r " r 

obtain 

a(F Br(O)) ~ a(8(Br~(r)(0))) = 2 r ~(r) = a(Br(O)) ~(r) . 

If for some k < 1, F is a k-set-contraction, then a(F Br(O)) ~ k a(Br(O)) . Since 

~ is strictly decreasing and continuous, we see that ~(r) -l 1 as r -l 0, and we 

can therefore find r > 0 such that ~(r) > k, giving us 

a(F Br(O)) ~ a(Br(O)) ~(r) > k a(B/O)) , a contradiction. 

Thus F cannot be a k-set-contraction for any k < 1, i.e. F cannot be a 

strict a-contraction. 

Now let B ~ B (0) . Then FB ~ con v (B U {O}) and hence 
1 

a(FB) ~ a( conv (B U {O})) = a(B U {O}) = a(B) . (1) 

However, we can say more than this . Let B C B (0) with a(B) = d > O. Select 
- 1 

d - -o < r < " and let B = B n B (0) and B = B \ B (0) . Now 
£, 1 r 2 r 

d = a(B) ~ a(B 1(0)) = 2. Therefore r < ~ ~ 1 and so Br(O) ~ B 1(0) . By (1) we 

get a(FB) ~ a(FBr(O)) ~ a(Br(O)) = 2r < d = a(B) . Therefore 

a(FB ) < a(B) . (2) 
1 

If b E B 2 = B \ ]\(0) , then I b I > r and since ~ is strictly decreasing, 

~(I b I) < ~(r). Therefore 

89 



FB = { Fb / b E B } 
2 2 

= { ~(I b I ) b / b E B) 

C {Ab / b E B , 0 ~ A < ~(r) } 
2 

~ con v (~(r)B U {O} ), 
A A 

since we have ~(r) > ~(1) ~ 0 and Ab = RIJ ~(r)b + (1 - RIJ ) O. 

Thus a(FB) ~ a(conv (~(r)B U {O} )) 
2 

= a( ~(r)B U {O} ) 

= ~(r) a(B) 

< a(B). (3) 

Now B = B U Band FB C FB U FB . Therefore, by (2) and (3)"we have 
1 2 - 1 2 

a(FB) ~ a(FB U FB ) 
1 2 

= max {a(FB ), a(FB )} 
1 2 

< a(B), 

showing that F is a-condensing. 

Thus F is a map that is a-condensing but not a strict a-contraction. • 

We know that every Lipschtz map with constant k, is also ,-Lipschitz with the same 

constant k. In the following example our map is Lipschitz with constant k, but 

')'-Lipschitz with a smaller constant k. 

4.1.4 Example 

Consider the ball-retraction R : X -1 B (0) given by 
1 . {X if Ixl ~ 1 

Rx = I ~ I if I x I ~ 1 . 

Let x, y E X. If I x I ~ 1 and I y I ~ 1, then I Rx - Ry I = I x - y I ~ 21 x - y I. If 

Ixl ~ 1 and Iyl ~ 1, then 
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IRx-RYI - h-ir-Thl 

= Ifxr-Wr+ Wr-Thl 

= I 1 1 1 I (TXT - TYT)x + fyr(x - y) 

< 11 1 1 1 1xr - TYT Ixl + TYT Ix - yl 

= Ilfl - Ixlll I 1 I I xl Iyl x +8 x-y 

- Ilxl - Iyll + 1 Ix _ yl Iyl 8 

< Ilxl -Iyll + Ix-yl 

< Ix-yl + Ix-yl 
- 2Ix-yl -

If I x I ~ 1 and I y I ~ 1, then 

I Rx - Ry I = I fxr - y I 
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< Ix-YI+(lxl-l) 

< Ix-YI + !lxl-1Y1! 

< Ix-YI + Ix-YI 

2I x -YI· 

Thus for all x, Y E X, I Rx - Ry I ~ 2 I x - y I and so R is Lipschitz with constant 

2. 

Hence R is ,-Lipschitz with constant 2. But this constant can be improved 

upon. 

Let B ~ X be bounded. For any xE B, x = 1 x + 0.0 E cony (B U {O}) and 

I~I x + (l-I~I) 0 E cony (B U {O}) . Hence Rx E cony (B U {O}) and so 

RB ~ cony (B U {O}). Thus ,(RB) ~ ,(cony (B U {O})) = {(B U {O}) = ,(B) . 

So R is ')'-Lipschitz with constant 1. • 
Theorems 3.5(b) and 3.6 can now both be extended to ,-Lipschitz maps. 

4.1.5 Theorem 

Proof: 

(a) Let B ~ X be closed bounded and F E C,(B). Then I - F is proper and 

maps closed subsets of B onto closed sets. 

(b) Let [2 ~ X be open, F : [2 --t X be ')'-Lipschitz with constant k and 

differentiable at x. Then F I (x ) is ,-Lipschitz with the same constant 
o 0 

k. 

(a) Let K be compact and A = (I - Ftl(K) . Then (I - F)A = K and 

A ~ K + FA. Therefore {(A) ~ ,(K + FA) = {(FA). Since F E C ,(B), 

{(A) = 0 and so A is relatively compact . But 1- F is continuous and K 
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(b) 

is compact, hence closed. Thus A is closed, hence compact . Thus I - F 

is proper and since it is continuous, it must also be closed. 

Since F is differentiable at x , F(x +h) = F(x ) + F' (x ) h + w(x , h) 
o 0 0 0 0 

where 

I
W(x' h)1 h ~ 0 as Ihl ~ 0, i.e. for E > 0, there exists 0 = O(E) > 0 

such that I w(x ,h) I ~ E Ihl when Ihl ~ o. If B ~ X is bounded, then 
o 

B ~ B/O) for some r > O. Therefore AB ~ A B/O) = B ~O) where 

o A = -. Hence r 

t(F(x + AB)) + ,(F(x )) + t( w(x , AB)) 
o 0 0 

t(F' (x ) AB) 
o 

< 

t(F(x + AB)) + ,( w(x , AB))., 
o 0 

Now if x E B, then I AX I = A I x I ~ A r = 0 and so I w( x , AX) I ~ E o. 
o 

So for x, Y E B 1 

I w( X 1 AX) - w( x , AY) I ~ I w( X 1 AX) I + I w( x , AY) I ~ 2 E o. 
o 0 0 0 

Therefore t( w(x 1 AB)) ~ 2EO. 
o 

So A t(F'(x )B) t(F'(x ) AB) 
o 0 

< t(F(x + AB)) + 2EO 
o 

< k ,(x + AB) + 2EO 
o 

= k ,(AB) + 2EO 

Ak t(B) + 2EO. 

Thus ,(Ft (x o)B) ~ k ,(B) + ~ = k ,(B) + 2H ~ k t(B) as E ~ O. 

So ,(F' (x )B) < k ,(B) showing that F' (x) is ')'-Lipschitz with 
0-0 

constant k. • 
Dugundji's extension theorem yields, as an easy exercise, that every compact map on a 

closed subset of X has a compact extension (see theorem 3.7). We cannot obtain such a 

result for ')'-Lipschitz maps . 
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If F : 13 (0) ---l X is ,-Lipschitz with constant k, then there exists a ,Lipschitz 
r 

extension, with the same k, to all of X, namely FoR where R: X ---l 13/0) ~ X is defined 

by 

Rx=[X x-x 
x + r 0 

o Ix - x I 
o 

Ix-xl~r 
o 

Ix-xl>r 
o 

In a Hilbert space, any ,Lipschitz map defined on a closed convex set has a ,Lipschitz 

extension with the same constant. This follows from the next theorem, which we state 

without proof. 

4.1.6 Theorem 

Let X be a Hilbert space and C ~ X be closed and convex. Then the metric 

projection P: X ---l C is nonexpansive, in particular a-Lipschitz with constant 

k = 1. 

The following lemma, which will play an important role in the sequel, is due to 

Kuratowski (1930). 

4.1.7 Lemma 

Let X be a Banach space, (B J a decreasing sequence of nonempty closed subsets 
1 

such that a(B J ---l 0 as i ---l rn . Then Q B. is nonempty and compact. 
1 1 1 

Proof: 

Since each B. is closed, Q B. is also closed. We just need to show it to be 
111 

relatively compact. Suppose a( Q B J > 0 and let c = a( Q B J Since a(B J ---l 0 
1 1 1 1 1 

as i ---l rn, there exists N E IN such that i ~ N implies that a(B J < c. So for i ~ N, 
1 

we have a(B J < a( Q B J ~ a(B J, a contradiction. Thus a( n B ) = 0 and so it 
1 1 1 1 i i 

is relatively compact. Being closed, it must also be compact. 
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We must now show that n B * 0. Since each B. is nonempty, for each i we ca 
i i 1 

choose an x E B. Then 
i i 

a({x./i~l}) 
1 

a( {x. / i ~ p} U {x. / i = 1,2, .. . , p-1} ) 
1 1 

a({x./i~p}) forallp. 
1 

Now {x. / i ~ p} ~ B. Hence a( {x. / i ~ p} ) ~ a(B ) ~ 0 as p -l U 
1 pIP 

Therefore a( {x. / i ~ p} ) ~ 0 as p ~ (lJ and so a( {x. / i ~ I} ) = O. Thl 
1 1 

{x. / i ~ I} is relatively compact . Therefore (x ) has a convergent subsequenc1 

1 n 

say x ~ x . We claim that x E Q B.. To show this, take n E IN. k. ~ 
k . 0 0 1 1 1 

1 

implies that x E B CB. So {x / k > n } CB. Now x ~ x and B . 
k. k . - n k. i - - n k . 0 n 

1 1 1 1 

closed. Thus x E B . But n E IN was arbitrary. Hence we must have x E n B . 
OnO i i 

Thus B is a nonempty compact set. 

Now we obtain a generalisation of Schauder's fixed point theorem. 

4.1.8 Theorem 

Let C ~ X be nonempty, closed, bounded and convex, and F C-l 

'}'--Condensing. Then F has a fixed point. 

Proof: 

We will assume, for now, that 0 E C. 

(1) Suppose the result is true for strict '}'--Contractions. Choose k < 1 sue 
n 

n 1 
that k ~ 1 (for example k =.~ -. ) and consider k F. For x E ( 

n n 1=1 21 n 

we need to have k Fx E C. Since 0 E C and Fx E C 
n ' 

k Fx = k Fx + (1 - k ) 0 E C because C is convex. Therefore 
n n n 

k F : C ~ C. Let B C C. Then 
n -

r((k F)B) = k ,(FB) < k ,(B) if r(B) > O. If r(B) = 0, then B 
n n n 

relatively compact and so is FB. Thus 
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ry{k (FB)) = k ,(FB) = 0 = ry{B). Therefore 
n n 

k F : C -1 C is a strict ')'-Contraction. Since the result is true for these 
n 

maps, k F has a fixed point x E C, i .e. k F(x ) = x . 
n n n n n 

So x - Fx = k Fx - Fx = (k - 1 )Fx -1 0 as n -1 CD. But 
n n nn n n n 

x - Fx = (I - F)x E (I - F)(C) and I - F is closed (by theorem 4.5), 
n n n 

so (I - F)( C) is closed. Thus 0 E (I - F)( C) . So there exists x E C such 
o 

that 0 = (I - F)x , i.e. Fx = x . 
o 0 0 

(2) Now suppose F: C -1 C is a strict ')'-Contraction with constant k < l. 

Define a sequence (C ) by C = C, C = cony (FC ), n ~ l. 
nOn n-1 

C = cony (FC ) = cony (FC) ~ cony (C) = C = C . Suppose C ~ C . 
1 0 0 k k-1 

Then C = con v (FC ) ( cony (FC ) = C . Hence by induction, 
k+1 k - k-1 k 

C)C )C) ... . o - 1 - 2-

Thus we have a decreasing sequence of closed convex sets. We also have, 

ry{C) = ry{conv(FC )) 
n n -1 

= ry{FC ) 
n-1 

< k ,(C ) 
n -1 

< 

CD 

Thus ,(C) -1 0 as n -! CD . Let C = n C . Then C is closed, bounded 
n n=O n 

and convex. By lemma 4.17, C is compact. For any 

x E C, we have x E C for all n. So Fx E FC ~ (conv FC ) = C for 
n n-1 n -1 n 

all n. Thus Fx E C and hence Fie : C -! C. Since C is compact, Fie is 

a compact map. Hence by Schauder's fixed point theorem, there exists 
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x E C such that Fx = x. Since C ~ C, F : C -+ C has a fixed point . 
000 

Now suppose 0 ~ C. Since C f 0, there exists y E C. Now consider Cl = C - Y 
o 0 

and F I (x) = F( x + y ) - y. Then 0 E C I and F I : Cl -+ C I is also 
o 0 

"}'-Condensing. So by part 1, F' has a fixed point , i.e. there exists x E Cl such 
o 

that FIX = x. Therefore F(x + y ) - y = x , and so F(x + y ) = x + y 
00 0000 0000 

and F has a fixed point. • 
The previous theorem is a result of Darbo's theorem and a fixed point theorem of 

Krasnoselskii [35] . 

We are now ready to define a degree for ,-condensing maps . As in the case of the 

Leray-Schauder degree, we consider the triplets (I - F, 0, y) where X is a Banach space, 

o ~ X open bounded, F: 0 -+ X is "}'-Condensing and y E X \ (I - F)( 80), and we define 

a unique ll-valued map on these triplets that satisfies the properties: 

(D1) D(1, 0, y) = 1 ify E O. 

(D2) If 0 and n are disjoint open subsets of n such that y E X \ (I - F)(O \ 0 U ° ), 
1 2 1 2 

then D(I - F, 0, y) = D(1 - F, 0 , y) + D(I - F, 0 , y) . 
1 2 

(D3) Let H: J x 0 -+ X, y : J -+ X be continuous, ,(H(J x B)) < !(B) for B ~ 0 and 

!(B) > 0 (i.e. H is ,-condensing) and y(t) E X \ (I - H(t, .))(80). Then 

D(I -H(t, .), 0, y(t)) is independent oft. 

Degree for Strict -y-Contractions 

Let J{ = {(I - F, 0, y)/ 0 ~ X is open bounded, F : 0 ~ X is a srtict ,-contraction, and 

Y E X \ (I - F)( 80) } 
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We first show that if there exists a 7l-valued function on .At satisfying (Dl)-(D3), then it 

must be unique. 

Uniqueness: 

Since D satisfies (Dl)-(D3), it must also satisfy (D4)-(D7). So by (D4) we have 

D(1 - F, n, y) = 0 if (1 - Ft1(y) = 0. Therefore we assume that (1 - F)-1(y) f 0. 

Let C = cony (F(O) + y) and C = conv (F(O n C ) + y) . Now 
o n n-1 

C = conv (F(O) + y) ) cony (F(O n C ) + y) = C. Therefore C 2 C . 
o - 0 1 0 1 

Suppose C ) C . Then 
k-1 - k 

C = cony (F(O n C ) + y) ~ cony (F(O n C ) + y) = C . 
k+1 k k-1 k 

Therefore C is a decreasing sequence of nonempty closed convex sets . Also 
n 

r(C ) r(conv (F(O n C ) + y) 
n n-1 

r((F(O n C ) + y) . 
n -1 

r((F(O n C )) 
n-1 

< r(F(C )) 
n-1 

< k ,(C ) 
n-1 

< 

< knr(C) -! 0 as n -! rn, since k < 1. 

m 
By lemma 4.7, C = n C is nonempty, compact and convex. 

m n = 0 

We will now show that (I - F)-l(y) ~ Cm n n. Let x E (I - Ft1(y) . Then (I - F)x = y. 

Since y ~ (I - F)( 00), we must have x E n. Also x = Fx + y E C , therefore 
o 

x = Fx + Y E F(O n C ) + y ~ C , and so x = Fx + y E F(O n C ) + y ~ C . If x E C , 
o 1 1 2 n 

then x = Fx + y E F{ 0 n C ) + y ~ C . Therefore x E C for all n, so x E C ,and hence 
n n+1 n m 

x E C n n. 
m 
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From the definitions of the sets C we have that F(O n C ) + y ~ C . 
n m m 

Since C is a closed convex subset of the nls. X, C is a retract (from the remark after 
m m 

definition 1.2.16) . Let R: X -! C be a retraction. 
m 

We will show that (1 - F)-l(y) ~ R-1(0) n O. Since (1 - Ft1(y) ~ Cm n 0, we will show 

that C n 0 C R -1(0) nO. Let x E C nO. Then x E C and x E 0, which means that 
m - m m 

Rx = x E O. Therefore x E R -l(x) ~ R -1(0), and hence x E R -1(0) n O. 

(1 - F)-l(y) ~ R-1(0) n 0 implies that y ~ (1 - F)(O \ (R-1(0) nO)). Since R is 

continuous, R -1(0) n 0 is open and by (D7) we have 

D(1 - F, 0, y) = D(1 - F, R-1(0) nO, y) . (4) 

We now show that D(1 - F, R -1(0) nO, y) = D(1 - FR, R -1(0) n 0, y). 

Define H: J x R-1(0) n 0 -! X by H(t, x) = t FRx + (1- t)Fx = Fx + t(FRx - Fx). 

Then H is continuous. 

Suppose y = (1 - H(t, .))x for t E J and x E R -1(0) n 0 ~ R -1(0) n O. Then 

x = y + H(t, x) = Y + Fx + t(FRx - Fx) = (1 - t)(Fx + y) + t(FRx + y) . 

Now x E R -1(0) n O. SO Rx E 0 and x E O. Therefore Rx E 0 n C for all n . 
n 

Hence FRx + y E F(O n C ) + y for all n. Now x E 0 implies Fx + y E F(O) + y. 
n 

Therefore x = (1 - t)(Fx + y) + t(FRx +y) E conv (F(O) + y) = C . So 
o 

Fx + y E F(O n C ) + y, and hence 
o 

x = (1 - t)(Fx + y) + t(FRx + y) E conv (F(O n C ) + y) = C. Again 
o 1 

Fx + y E F(O n C ) + y, and so 
1 

x = (1 - t)(Fx + y) + t(FRx + y) E conv (F(O n C ) + y) = C ,etc .. Thus we have 
1 2 

X E C for all n, and hence x E C . Therefore Rx = x and so x E (I - Ftl(y) . But 
n m 

(1 - Ft1(y) ~ R -1(0) n 0 which is open. Therefore x E R -1(0) n 0, and so 

x ~ 8(R-1(0) nO). Hence y ~ (1 - H(t, .))(8(R-l(0) nO)). 

Let B ~ R-1(0) n O. We will now show that r(H(J x B)) ~ k ,(B) . 

Now H(t, x) = (1- t) Fx + t FRx. Therefore H(J x B) ~ conv (F(B) U FR(B)). Now 
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R(X) ~ Coo and Coo is compact . Hence 

r(R(X)) ~ ,(Coo) = o. Therefore ,(R(X)) = 0, and so R(X) is relatively compact. Thus 

R E % (X). So R(B) is relatively compact, and therefore FR(B) is relatively compact, 

which implies that r(FR(B)) = o. Therefore 

r(H(J x B)) 

By (D3), 

~ r( conv (F(B) U FR(B))) 

= r(F(B) U FR(B)) 

= max {,(F(B)), ,(FR(B))} 

= ,(F(B)) 

~ k ,(B) 

D(I - F, R-1(0) n 0, y) = D(1 - FR, R-1(0) n 0, y) . (5) 

Now FR(R -1(0) n 0) ~ FR(X). Now R(X) relatively compact implies that F(R(X)) is 

relatively compact. So ,(FR(R -1(0) n 0)) ~ r(F(R(X))) = O. Therefore FR(R -1(0) n 0) is 

relatively compact, implying that FR E %(R -1(0) no). Thus (I - FR, R -1(0) n 0, y) is a 

LS-triplet . By the same procedure used in chapter 3, using the uniqueness of the 

Leray-Schauder degree, we can conclude that 

D(1 - FR, R-1(0) n 0, y) = DLs(1 - FR, R-1(0) no, y) . (6) 

Thus we have shown that 

D(1 _ F, 0, y) = {DLs(1 - FR, R-1(0) n 0, y) if (I - F)-1(y) * 0 
o if (I - F)-l(y) = 0 

We now show that this formula can be used to define the degree, i.e. we show that R can 

be replaced by R in (6) (where R is any retraction of X onto any closed subset C satisfying 

Coo ~ C, F(O n C ) + y ~ C and F(O n C) is relatively compact). 
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Well-defined: 

A set C satisfying all the above properties does exist, namely C itself. Since C is closed 
00 

convex, it must be a retract (follows from the remark after definition 1.2.16). Let 

R: X -+ C be a retraction, and 0 = R-1(0) no, 0 = R-1(0) n 0, and 0 = 0 nO . 
1 2 3 1 2 

We show that (I - FR, 0 , y) is a LS-triplet . Easily, we have 0 open bounded and 
2 2 

FR E %(0). We need to check that y 1:. (I - FR)( 80) . Suppose y = (I - FR)x for some . 
2 2 

X E 0 ~ R -1(0) n O. Then x = y + FRx. Now Rx E 0 n c. So 
2 

X = Y + FRx E y + F(O n C) ~ C. Therefore x E C and hence Rx = x. So we have 

y = (I - F)x. Since y ~ (I - F)( 80), we must have x E O. But Rx = x and so 

x ER-Ix E R -l(O) . Therefore x E R-1(0) n 0 = O . Thus x ~ an . So y ~ {I - FR)(80 ), 
2 2 2 

proving that (I - FR, 0 , y) is a LS-triplet. 
2 

We now show that DLS(1 - FR, 0 l' y) = DLs(1 - FR, 0
3

, y). 

Suppose y = (I - FR)x with x E 0 \ 0 . Then x = FRx + y. Now 
1 3 

0\0 = R -1(0) n o \ ((R -1(0) n 0) n (R -1(0) n 0)) 
1 3 

- R -1(0) n 0 \ (R-1(0) n R-1(0) n 0) 

c R -1(0) n 0 \ (R -1(0) n R -1(0) n 0) 

c R -1(0) n 0 \ (R -1(0) n R -1(0) no). 

Therefore x E R -1(0) n 0, implying that Rx E 0 and x E O. SO Rx E 0 n C . Since 
00 

F(O n Coo) + y ~ Coo' we have x = F(Rx) + y E F(O n Coo) + y ~ Coo ~ C. Hence Rx = x 

and Rx = x, which means that x E R -1(x) and x E R -1(x). Therefore 

y = x - FRx = x - Fx = (I - F)x with x E O. Since y ~ (I - F)( 80), we must have x E O. 

So x E R -1(0) n R -1(0) n 0 = 0 , a contradiction. Hence y 1:. (I - FR)(O \ 0) . Therefore 
3 1 3 

by (DLS 7), 

DLs(1-FR, 0
1
, y) = DLs(1-FR, 0

3
, y) . (7) 

Now we show that DLS(1 - FR, O
2
, y) = DLs(1 - FR, 0

3
, y) . We will use (D

LS
7), by 

verifying that y ~ (I - FR)(O \ 0 ). Suppose y = (I - FR)x where x E 0 \ 0 . Then 
2 3 2 3 
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x = FRx + y. Now 

o \ 0 = R-1(0) n 0 \ (R-1(0) n R-1(0) n 0) ~ (R-1(0) n 0) \ (R-1(0) n R-1(0) nO). 
2 3 

Thus x E R -1(0) n 0, and so Rx E 0 and x E O. Therefore 

x = FRx + y E F(O n C) + y ~ C. So Rx = x and x E R-1(x). Therefore 

y = x - FRx = x - Fx = (I - F)x. Since y ~ (I - F)( 00), we must have x E O. Therefore 

x E R -1(x) ~ R -1(0). Now x = FRx + y E F(O) + y ~ Co' which means that Rx = x E Co. 

So x = FRx + y E F(O n C ) + y ~ C , which means that Rx = x E C. Again 
o 1 1 

X = FRx + y E F(O n C ) + y ~ C ,etc.. Thus x E C for all n, and hence x E C . 1 2 n (lJ 
Therefore Rx = x, and so x E R -1(x) ~ R -1(0). This gives us x E R -1(0) n R -1(0) n 0 = 0

3
, 

a contradiction. Thus we must have y ~ (I - FR)(02 \ 0). By (DLS7), we obtain 

DLS(I - FR, O
2
, y) = DLS(I - FR, 0

3
, y). (8) 

Now we show that DLS(I - FR, 0
3
, y) = DLs(1 - FR, 0

3
, y). 

Consider H: J x 0 -I X defined by H(t, x) = t FRx + (1 - t) FRx. 
3 

0
3 
= R-1(0) n R-1(0) n 0 ~ R-1(0) n R-1(0) nO, so ifx E 0

3
, then Rx EO, Rx EO and 

x E O. So FRx E F(O n C ) and FRx E F(O n C) . Therefore (lJ 

H(t, x) = t FRx + (1 - t) FRx E conv ( F(O n C ) U F(O n C) ), and hence (lJ 

H(J x 0 ) ~ conv ( F(O n C ) U F(O n C)). Therefore, 
3 (lJ 

'}(H(J x (
3
)) ~ '}{conv ( F(O n C(lJ) U F(O n C) )) 

= '}(F(O n C ) U F(O n C)) (lJ 

= max {'}(F(O n C )), '}(F(O n C)) } (lJ 

= 0 , since F(O n C ) and F(O n C) are relatively compact. Therefore (lJ 

H(J x (
3
) is relatively compact. We need to show that y ~ (I - H(t, .))(80

3
) on J. 

Let y = (I - H(t, .))x for (t, x) E J x 0 . Then 
3 

x = Y + H(t, x) = t(FRx + y) + (1 - t)(FRx + y). Now x E 0 ~ 0 n 0 so x E 0 and 
3 1 2' 1 

X E O2. 0 1 = R-1(0) n 0 ~ R-1(0) n O. Therefore Rx E 0 and x E O. SO Rx E 0 n C(lJ 

and hence FRx + Y E C(lJ ~ C. 
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Similarly, since x EO, we obtain FRx + Y E C. Therefore 
2 

x = t(FRx + y) + (1- t)(FRx + y) E conv C = C since C is convex. Thus Rx = x. 

Since x E 0, Fx + Y E C. So x = t(FRx + y) + (1 - t)(Fx + y) E conv C = C . 
o 0 0 

Therefore x E 0 n C and so x = t(FRx + y) + (1 - t)(Fx + y) E conv C = C , etc .. 
. 0 1 1 

Hence we get x E C , and so Rx = x. Thus x = Fx + y. As before 
ill 

(I - F)-1(y) ~ R -1(0) n 0 and (I - Ft1(y) ~ R. -1(0) n 0, so (I - Ft1(y) ~ 0 . Thus 
3 

x~ an. Thereforey~ (1-H(t, .))(80). 
3 3 

By (DLS3), 

DLS(1 - FR, 0
3

, y) = DLs(1 - FR., 0
3

, y) . (9) 

By (7), (8) and (9) we have 

-1 _ ~ ~-1 
DLs(1 - FR, R (0) n 0, y) - DLs(1 - FR, R (0) n 0, y) . 

Thus we have shown that on our definition, the degree is well-defined. 

We now go on to show the existence of such a map. 

Existence: 

If F E SC ,(0), and y ~ (I - F)( a~), define 

D(1 - F, 0, y) = DLs(I - FR, R -1(0) n 0, y), 

where C is any closed convex subset of X satisfying C ill ~ C, F(O n C) + y ~ C, F(O n C) is 

relatively compact and R : X ----i C is any retraction. 

We must now show that D satisfies (D1)-(D3) . 

CDl) : 

Let y E O. If F = 0, then C ill = {y} and R : X ----i {y} defined by Rx = y for all 

x E X is the retraction. So D(1, 0, y) = DLS(1, R -1(0) n 0, y). Since y E {y}, we must 

have Ry = y. Thus y E R-1(y). We also have yE O. So Y E R-1(y) nO. By (D
LS

1), 
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D(1, 0, y) = DLS(1, R-l(O) n 0 , y) = 1. 

(D2) : 

Let F E SC (0), Y ~ (I - F)( a~) and 0 ,0 disjoint open subsets of 0 such that 
, 1 2 

Y ~ (I - F)(O \ 0 U 0). Now 
1 2 

D(1 - F, 0, y) = DLs(1 - FR, R -1(0) n 0, y) (10) 

where R: X -j C is a retraction. 
00 

R-1(0) n 0 and R-1(0 ) n 0 are disjoint open subsets of R -1(0) n O. We need to show 
1 1 2 2 

that 

y ~ (I :..- FR)(R -1(0) n 0 \ ((R -1(0 ) no) U (R -1(0 ) no»). Suppose y = (I - FR)x 
1 1 2 2 

for x E R-1(0) n 0 \ ((R-l(O ) no) U (R-1(0 ) no» . Then x = FRx + y. Also 
1 1 2 2 

R ~1(0) n 0 ~ R -1(0) n O. So Rx E 0 and x E O. Therefore 

x = FRx + y E F(O n C ) + y for all n. So x E C and hence Rx = x . Therefore 
n 00 

y = (I - F)x. Since y ~ (I - F)(O \ 0 U 0) and x E 0, we must have x E 0 U 0 . 
1 2 1 2 

Suppose (without loss of generality) that x EO . Since Rx = x, we have x E R -1(0 ) nO, 
1 1 1 

a contradiction. 

Therefore y ~ (I - FR)(R -1(0) n 0 \ ((R -1(0) nO) U (R -1(0 ) no») . Applying 
1 1 2 2 

(DLS2), we get 

DLS(1 - FR, R -1(0) n 0, y) 

= DLs(1-FR, R-1(0) n 0
1
, y) + DLs(1-FR, R-l(O) n O

2
, y) (11) 

Let C~ be constructed just as Coo was, with 0 replaced by 0., where i = 1,2. 
1 

If (I - Ft1(y) nO. f 0, then C i ~ C , R : X -j C and C is admissible. So 
10000 00 00 

D(1-F, 0., y) = DLs(1-FR, R-1(0,) no., y) . 
III 

Suppose (I - F) -l(y) no. = 0. Then D(1 - F, 0 ., y) = O. We must show that 
1 1 

DLS(1 - FR, R -1(0,) no., y) = O. Suppose (I - FRtl(y) n R -1(0,) n 0 f 0. Then there 
1 1 1 i 
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exists x E (I - FRt1(y) n R-1(0) n 0i ~ (I - FRt1(y) n R-1(0) n 0i' This implies that y 

= (I - FR)x and x E R-1(0.) no .. Therefore x = FRx + y and 
1 1 

Rx E 0 n C . Thus x E C and so Rx = x. Therefore y = (I - F)x. Since CD CD 
Y ~ (I - F)(80), we must have x E O. So we obtain x E (I - Ft1(y) no., a contradiction. 

1 

Therefore (I - FRt1(y) n R -1(0.) nO. = 0, resulting in 
1 1 

D (I - FR, R-1(0,) no., y) = o. So D(1 - F, 0., y) = 0 = DLS(1 - FR, R-1(0,) fI 0., y) . 
LS 1 1 1 1 1 

So we obtain in either case, 

D(1 - F, 0., y) = DLs(1 - FR, R-1(O,) no., y) . 
111 

(12) 

By (10), (11) and (12), we have 

D(1 - F, 0, y) = D(1 - F, 0 , y) + D(1 - F, 0 , y), 
1 2 

proving (D2). 

(D3) : 

Let H: J x 0 -+ X be a strict '}'-Contraction with constant k < 1, y : J -+ X continuous 

and y(t) ~ (I - H(t, .))(80) for all t E J. 

Let C = conv (H(J x 0) + y(J)), C = conv (H(J x 0 ne) + y(J)) for n ~ 1 and 
o n n-l 

C (H) = ne. As before C (H) is compact, convex, and closed. 
CD n~O n CD 

Suppose (I - H(t, .)t1(y(t)) f 0. Then there exists x E (I - H(t, .))-l(y(t)). Therefore 

x = H(t, x) + y(t) E C . So x = H(t, x) + y(t) E C , etc .. Therefore x E C (H). So 
o 1 CD 

C (H) = 0 implies that (I - H(t, .))-l(y(t)) = 0, and so D(1 - H(t, .), 0, y(t)) = 0 for all CD 

t E J. 

Suppose C (H) f 0 and let R : X -+ C (H) be a retraction. We need to check that CD CD 

C (H) is admissible. Consider H(t, .) for some t E J. Then C t ~ C ,where C t is CD CD CD CD 

constructed as CCD was, with F replaced by H(t , .) and y replaced by y(t) . 

H(t, n n C (H)) + y(t) ~ C (H) by definition of the sets C and CD CD n 

H(t, n n C CD(H)) ~ H(J x n n C CD(H)). So 
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r( H(t, 0 n C(IJ(H))) ~ ,( H(J x 0 n C(IJ(H))) ~ k r(0 n C(IJ(H)) = 0 since C(IJ(H) is 

compact. Therefore H(t, 0 n C (H)) is relatively compact . Thus C (H) is admissible. (IJ (IJ 

Hence D(I - H(t, .),0, y(t)) = DLs(I - H(t, R(.)), R-1(0) n 0, y(t)). 

r(H(J x R(R-1(0) n 0))) ~ r(H(J x (R(O) n 0))) ~ k ,(R(O) n 0) = 0 since R(O) ~ C(IJ(H) 

which is compact. So H E %(J x 0, X), and by (DLS3) we have 

DLS(I - H(t, R(. )), R -1(0) n 0, y(t)) is independent of t. 

The following theorem ensures that the degree for set contractions is in fact an extension of 

the LS-degree. 

4.1.9 Theorem 

If F E %(0) and y E X\(I - F)( an), then 

D(I - F, 0, y) = DLS(I - F, 0, y) . 

Proof: 

By the same procedure as that used in getting equations (4) and (5) in the 

uniqueness proof, we get 

DLS(I - F, 0, y) = DLs(I - FR, R -1(0) n 0, y) 

where R is defined as before. Also by definition 

D(I - F, 0, y) = DLs(I - FR, R -1(0) n 0, y). 

Thus 

D(I - F, 0, y) = DLs(I - F, 0, y). 

Degree For ')'-Condensing Maps 

We first show that if F is [-Condensing, then k F is a strict [-Contraction for all positive 

k < 1. 
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Let F: [1 --j X be a ,-condensing map. Then k F : [1 --j X. Take any bounded set 

B ~ [1. Then {((k F)(B)) = ,(k F(B)) = k ,(FB) . 

If ,(B) > 0, then k ((FB) < k ,(B) since F is ,-condensing. 

If ,(B) = 0, then B is relatively compact. Since k F is continuous, k F(B) is relatively 

compact, and so ,(k F(B)) = o. Therefore {((k F)(B)) = 0 = k ,(B). 

Thus in either case, ,((k F)(B)) ~ k ,(B), proving that k F is a strict ,-contraction. 

We now establish the uniqueness of the degree, if it exists. 

Uniqueness: 

Let 

.At= {(I - F, D, y) / D ~ X open bounded, F : [1 ~ X ,-condensing and y ~ (i: - F)(BD)} 

and suppose that that there exists a map D : .At ~ II satisfying (Dl)-(D3). 

Let (I - F, D, y) E .At. By theorem 4.5, I - F is proper, hence (I - F)( BD) is closed. 

Thereforep=p(y, (I-F)(BO)) >0. Let O~r=sup{IFxl / xED}. Choose 

o ~ k < 1 such that (1 - k) r < p. 

Define H : J x [1 --j X by H(t, x) = (l-t) Fx + t k Fx = (l-t(l-k)) Fx for 

(t, x) E J x [1. 

Then H is continuous. 

Let B ~ [1 with ,(B) > o. Then H(J x B) ~ conv (FB U k FB). Therefore 

J(H(J x B)) ~ J(conv (FB U k FB)) = J(FB U k FB) = max { ,(FB), ,(k FB) } 

= max {,(FB), k J(FB) } < j(B) . 

Also, for (t, x) E J x BD, 

Iy-(I-H(t, .))xl I y - (I - F)x + t(1- k) Fx I 

> ly-(I-F)xl-t(l-k)IFxl 

> p-t(l-k)r 

> p-p 
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= o. 
Therefore y ~ (I - H(t, .))(80) for all t E J. Thus by (D3),we have 

D(1 - F, 0, y) = D(1 - k F, 0, y). 

By above k F is a strict ')'-Contraction. 

As was done in the Leray-Schauder degree, we can show that 

D(1 - k F, 0, y) = D (I - k F, 0, y) where Dsc is the degree for strict ,-contactions . 
sc, , 

Therefore D(1 - F, 0, y) = Dsc (I - k F, 0, y), showing the uniqueness of the degree. , 
Now to show the existence of the degree. 

Existence: 

For FEe ,(0,) and y ~ (I - F)( 80) define the degree by 

D(1 - F, 0, y) = Dsc (I - k F, 0, y), , 
where (1 - k) sU:Q I Fxl < p(y, (I - F)( 80)) = p, and k < 1. Let r = sU:Q I Fxl. 

xEO xEO 

We now want to show that for k and k satisfying these conditions, 
1 2 

Dsc (I - k F, 0, y) = Dsc (I - k F, 0, y). ,1 ,2 
Define H: J x 0, -I X by H(t, x) = (1 - t)k Fx + tk Fx for (t, x) E J x O. 

1 2 

H is continuous. For B ~ 0" 

f(H(J x B)) ~ f(conv (k FB U k FB)) 
1 2 

= f(k FB U k FB ) 
1 2 

= max { f(k FB), ,(k FB) } 
1 2 

= k ,(FB) for k = max {k , k } 
1 2 

~ f(B) since 0 ~ k < 1. 

Lastly, we must show that y ~ (I - H(t, .))(00) for t E J. Let (t, x) E J x 80, then 

I y - (I - H( t, .))x I - ly-x+H(t,x)1 

- IY-(1-F)x-((1-t)(1-k) +t(l-k ))Fx I 
1 2 
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> p-((l-t)(l-k) + t(l-k)) r 
1 2 

> p-((l-t)p+tp) 

- o. 

Therefore y ~ (I - H(t, .))(80) for t E J. Thus (Dsc 3) is satisfied, proving that 
I 

Dsc (I - k F, 12, y) = Dsc (I - k F, 12, y). 
I 1 I 2 

We will now show that (Dl)-(D3) are satisfied. 

(Dl) : 

Let yEn. 

D(I, 0, y) = Dsc (I - k F, 0, y) where F == 0 and any k E [0, 1). By (Dsc 1), 
I I 

Dsc (I - k F, 12, y) = 1, proving (D1). 
I 

(D2) : 

Let FEe (0), 0 and 0 disjoint open subsets of 12 with y ~ (I - F)(O \ 12 U 0 ). Let 
11212 

P = p(y, (I - F)( (0)), 5 = p(y, (I - F)(O \ (12 U 0 ))) and choose k E [0, 1) such that 
1 2 

(1 - k) r < 5 where r = sup {I Fxl / x EO}. Now 5 ~ p, so (1- k) r < p. Therefore by 

definition, D(I - F, 0, y) = Dsc (1- k F, 12, y) . We now need to show that 
I 

y ~ (I - k F)(O \ 0 U 0 ). Let x E 0 \ 12 Un. Then 
1 2 1 2 

ly-(I-kF)xl - ly-(I-F)x-(l-k)Fxl 

> I y - (I - F)xl - (1- k) I Fxl 

> 5-(1-k)r 

> 5- 5 

- o. 

So y ~ (I - k F)(O \ 0 un) . Thus 
1 2. 
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D (1 - k F, D, y) = DSC (1 - k F, D , y) + DSC (1 - k F, D , y). 
sc, ,1, 2 

Now to show that 

(1- k) sup {I Fxl / x E OJ < p(y, (1 - F)(8DJ) for i = I, 2. 
1 1 

Now sup {IFxl /xEOJ~sup{IFxl /xEO}=r and 
1 

p(y, (1 - F)(aDJ) ~ p(y, (1 - F)(8D)) = p since 8D. ~ 8D for i = 1,2. Therefore 
1 1 

(l-k)sup{IFxl/xEO.} < (l-k)sup{IFxl/XEO} 
1 

= (1 - k) r 

< p 

< p(y, (I - F)( aD J) for i = 1, 2. 
1 

Thus Dsc (I - k F, 0., y) = D(I - F, n., y) for i = 1, 2. 
,1 1 

Hence D(I - F, n, y) = D(I - F, n , y) + D(I - F, n , y), proving (D2) for ,..condensing 
1 2 

maps. 

(D3) : 

Let H E C(J x 0, X), y E C(J), yet) ~ (I - H(t, .))( 8n) on J and for B ~ 0 with ,(B) > 0, 

ICH(J x B)) < ,(B) . 

Let p = p(y(t), (I - H(t, .))(80)) > 0 and p = inf p , 
t tEJ t 

r = sup {IH(t, x)1 / (t, x) E J x n}. Assume that p > 0, and choose k E [0, 1) such that 

(1 - k) r < p. Then 

(l-k) sup {IH(t, x)1 / x EO} 

Therefore, 

~ (l-k) sup {IH(t, x)1 / (t, x) E J x O} 

= (1 - k) r 

< p 

= inf p 
tEJ t 

~ P for all t E J. 
t 
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D(1 - H(t, .), n, y(t)) = DSC (I - k H(t, .), 0, y(t)), , 
and this is independent of t since r(k H(J x B)) = k r(H(J x B)) ~ k ,(B). 

Thus (D3) holds. 

We still have to show that P = inf p > O. 
tEJ t 

Suppose p = O. Then there exists a sequence (t) ~ J such that Pt -+ O. For each n, ther 
n 

exists x E an such that Iy(t ) - (I - H(t , .))(x )1 < p + 1. 
n n n n -t n 

n 

Therefore 

and p + 1. -+ 
t n 
n 

Iy(t ) - (I - H(t , .))(x )1 -+ 0, and hence y(t ) - (x - H(t , x )) -+ O. Since (t ) ~ 
n n n n n nn n 

with J compact, there exists a subsequence of t converging in J, say t -+ t (without 10 
n n 0 

of generality). y continuous implies that y(t ) -+ y(t ). Now 
n 0 

{x /nEIN}~{x -H(t ,x )/nEIN}+{H(t ,x )/nEIN}. 
n n n n n n 

X - H(t ,x ) = y(t ) - (y(t ) - (x - H(t ,x ))) -+ y(t ) - 0 = y(t ). 
n nn n n n nn 0 0 

So {x - H(t ,x ) / nE IN } U {y(t )} is compact . Hence 
n n n 0 

r( {x - H(t ,x ) / nE IN } = 0, and so 
n n n 

r( {x / n E IN }) ~ 0 + ,( {H(t ,x ) / n E IN }). Now 
n n n 

r( {H(t ,x ) / nE IN }) ~ r(H(J x {x / n E IN })) < r( {x / nE IN }) if 
n n n n 

r({x /nEIN}»O. 
n 

Thus ,({x / n E IN }) = 0 and so there exists a subsequence of x that converges, 
- n n 

say x -+ x (without loss of generality). But (x ) ~ an which is closed, and so 
nOn 

X E an ~ O. Therefore H(t , x ) -+ H(t , x) . Hence x - H(t , x ) = y(t ), implyin 
o n n 00 0 00 0 

that 

y(t ) E (I - H(t , .))(an), a contradiction to the hypothesis . Thus p > O. 
o 0 

Thus we have proved the following theorem. 

111 



4.1.10 Theorem 

Let X be a Banach space and 

.}{= {(I - F, 0, y) / ° ~ X open bounded, F E C,(O), y E X \ (I - F)(80) }. 

(a) Then there exists a unique map D: .}(-I71 satisfying (D1)-(D3), the 

(b) 

(c) 

degree for t-condensing maps. 

Let F E SC,(O). If there exists a closed convex C ~ X such that Coo ~ C,. 

F( 0 n C) + y ~ C and F( 0 n C) is relatively compact (Coo is defined 

above ), and if R is any retraction onto C, then 

D(1 - F, 0, y) = DLs(1 - FR, R-1(0) no, y) 

where D
LS 

is the Leray-Schauder degree and D(I - F, 0, y) = 0 if no 

such C exists. 

IfF E C (0), then , 
D(1 - F, 0, y) = Dsc (I - k F, 0, y) , 

where k E [0, 1) and (1 - k) sup {I Fxl / x E [2 } < p(y, (I - F)( aO)), 

and Dsc is the degree defined in (b). , 
Again we obtain the properties (D4)-(D7) of the degree. 

4.1.11 Theorem 

Besides (D1)-(D3), the degree defined above has the following properties. 

(D4) D(I - F, 0, y) * 0 implies (I - Ftl(y) * 0. 

(DS) D(1 - G, 0, y) = D(I - F, 0, y) for G E C ,(0,) n B p(F) and 

D(1 - F, 0, .) is constant on B p(Y) where p = p(y, (I - F)( aO)) . More 

than that, we have D(I - F, 0, .) is constant on every connected 

component of X \ (I - F)( 80) . 

(D6) D(1 - G, 0, y) = D(I - F, 0, y) whenever G I an = F lao and 
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G E C,(O,). 

(D7) D(I - F, D, y) = D(I - F, D ,y) for every open subset D of D 
1 1 

satisfying y ~ (I - F)(o' \ D ) . 
. 1 

The proofs go exactly like those in theorem 3.11, since they follow from (D1)-(D3) . 

In (D6), for H(t, x) = t Fx + (1 - t) Gx we have for B ~ 0" ,(B) > 0, 

!(H(J x B)) ~ max {!(FB), ,(GB) } < ,(B) . 

The next theorem shows that the ,.,-condensing degree is in fact an extension of the degree 

for strict ,-contractions. 

4.1.12 Theorem 

Proof: 

If F E SC ,(0,) with y E X \ (I - F)( aD), then 

D(I - F, D, y) = Dsc (I - F, D, y). , 
As in the uniqueness proof, we can show that 

Dsc (I - F, D, y) = Dsc (I - k F, D, y), , , 
where (1- k) sU2 I Fx I < p(y, (I - F)( aD)) . 

xED 

By definition, 

Thus we have 

D(I - F, D, y) = Dsc (I - k F, D, y). , 
D(I - F, D, y) = Dsc (I - F, D, y). , 

4.1.13 Theorem 

Let Xo be a closed subspace of X, D ~ X open bounded, F 

'/Condensing map, y E X \ (I - F)( 00) . Then 
o 
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Proof: 

D(1 - F , D, y) = D((1 - F) I D n X ' D n X o' y) . 
o 

Let r = sup {IFxl / x En}, p = p(y, (I - F)(aD)) > O. Choose k E [0,1) such 

that (1 - k) r < p. Then by definition 

D(I - F, 0, y) = D(1 - k F, 0, y) . 

Also with 0 = D n X , 
o 0 

(l-k)sup{IFxl /XEn } 
o 

~ (1 - k) sup {I Fxl / x En} 

<p 

= p(y, (I - F)(aO)) 

< p(y, (I - F)( 00)) since 00 c a~. 
- 0 0 -

Thus by definition again, 

D((1-F)ln ,no,y)=D((1-kF)l n ,Oo,y) · 
o 0 

Thus we only need to show that 

D(1 -k F, 0, y) = D((1 -k F)ln ,0
0

, y), 
o 

and hence we may assume that F is a strict ,-contraction with constant k < 1, 

and we must show that D(1 - F, 0, y) = D((1 - F) In' Do' y). 
o 

If (I - Ftl(y) = 0, then (I - F)-l(y) n n = 0 and so 
o 

D(1 -F, 0, y) = 0 = D((1-F)ln' 0
0

, y). 
o 

Now assume that (I - F) -l(y) f 0. This implies that C (F) f 0. Let 
Cl) 

R : X ---1 C be a retraction. Then 
CD 

D(I - F, D, y) = D((1-FR)I R -l(O) nO' R-1(0) nO, y) 

= D((1-FR)I R -l(O) nO' R -l(D) n 0
0

, y) 
o 

since this result holds for the LS-degree. 

C CD (F 1[2 ) ~ C Cl)' Hence C CD is admissible for F 1[2 . Thus 
o 0 
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D((1-F)lo ,Oo, y)=D((1-FR)I R-l(O) n O,R-1(OO)nO o'Y) . 
o 0 0 

So we need to show that 

D((I-FR)I R-l(O) n O,R-1(0)nO o'Y) 
o 

=D((I-FR)I R-l(O) n O,R-1(OO)nO o'y) · 
o 0 

Therefore we must show that 

y ~ (I - FR)(R-l(O) n 0 \ (R-1(O ) nO)). 
000 

Suppose y = (I - FR)x for 

R-1(O) n 0 \ (R-1(O ) nO) 
000 

x E 

c R-l(O) nO \ (R-l(O ) no) 
000 

(R-1(O)\R-1(0 ) no) u (R-l(O) n ao ). 
000 

c 

Then x E R -1(0) and so Rx E 0 ne. Therefore x = FRx + y E C ) and hence 
ill ill 

Rx = x. So y = (I - F)x. If x E ao , then y E (I - F)( 8D ) ~ (I - F)( aO), a 
o 0 

contradiction. 

If x ~ R -1(0 ), then x = Rx ~ 0 , a contradiction to x = Fx + y EX. Therefore 
o 0 0 

y ~ (I - FR)(R-l(O) nO / R-1(O ) no). Thus 
000 

D((I-FR)I R-l(O) n 0
0

' R-1(0) n 0
0

, y) 

D((I-FR)I R-l(O) nO' R-1(Oo) n 0
0

, y), 
o 0 

proving the result . • 
The following lemma can be found in Nussbaum [1] . 

4.1.14 Lemma 

Proof: 

Let H: 0 -l X be odd, continuous, 0 symmetric with respect 0 E 0, then 

C (H) is symmetric. 
ill 
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If x E cony H(D), then x = ), H(x ) + .. . + ), H(x ) where x E D and), E [0, 1] 
ilk k k k 

and the), sum to 1. 
k 

Then -x = ), H( -x )+ ... + ), H( -x) with -x E D (since n is symmetric, D is 
ilk k k 

symmetric). Therefore -x E cony H(D). Thus cony H(D) symmetric implying 

that C = cony H(D) is symmetric. Suppose C is symmetric for n ~ 1. Let 
o n-1 

X E cony H(D ne). Then x = ), H(x )+ ... + ,\ H(x), where x E D n C 
n-1 ilk k k n-1 

Therefore -x E D ne, which implies that 
n-1 

-x = ,\ H( -x )+ .. . + ,\ H( -x ) E cony H(D ne). Therefore cony H(D ne) 
ilk k n-1 n-l 

is symmetric, implying that C is symmetric . 
n 

Thus C is symmetric. 
m • 

The extension of Borsuk's theorem is simple. 

4.1.15 Theorem 

Proof: 

Let n ~ X be open bounded and symetric with respect to 0 En, FEe ,(0), 

o ~ (I - F)( an) and (I - F)( -x) i= ,\ (I - F)(x) on (f;J, for all ,\ ~ 1. Then 

D(I - F, n, 0) is odd. In particular, this is true if F I an is odd and x i= Fx 

on an. 

1 t 
Define H(t, x) = l+t Fx -l+t F(-x) for (t, x) E J x O. Then for B ~ Oand 

{(B) > 0, 

{(H(J x B)) ~ {(cony (FB U (-F(-B)))) 

= {(FB U (-F(-B))) 

= max {{(FB), ,(-F(-B)) } 

< ((B) . 

Therefore HE C,(J x D, X). If 0 E (I - H(t, .))(an) for some t E J, then 

o = (I - H(t, .))x for some x E an. Therefore 
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o = l!t (I - F)x - l!t (I - F)(-x). If t f. 0, then (I - F)(-x) = f (I - F)x 

with f ~ 1, and if t = 0, then (I - F)x = 0, a contradiction. 

Therefore 0 ~ (I - H(t, .))(80). Thus we may apply (D3), to obtain 

D(1 - F, 0, 0) = D(1 - G, 0, 0), 

where G(x) = ~ (Fx - F( -x)) is odd. Choose k E [0, 1] such that 

(1- k) sup {I Gxl / x EO} < p(O, (I - G)( 80)). Then 

D(1 - G, 0, 0) = D(1 - k G, 0, 0). 

Let H = k G. Then H is also odd and H E SC ,(0). Let 

(13) 

(14) 

C = conv (H(O)), C = conv (H(O n C )) for n ~ 1. By lemma 4.1.12, each 
o n n-1 

C is symmetric and so C (]) (H) = n C is also symmetric. Let ~: X --! C (]) (H) 
n n~O nO," 

be a retraction. Then Rx = -21 (R x - R (-x)) is odd and is also a retraction onto 
o 0 

C (H), since for x E C (H) we have -x E C (H) and 
(]) (]) (]) 

1 1 
Rx = 2" (R/x) - R/-x)) = 2" (x - (-x)) = x. 

If x E R -1(0) n 0, then -x E 0 and Rx E 0 implies that -Rx E 0, and this means 

that R( -x) E 0 since R is odd. So -x E R -1(0) n O. Thus R -1(0) n 0 is 

symmetric. 

Also G(O) = o. So H(O) = 0, and hence 0 E C (H). Therefore RO = 0, and so 
(]) 

o E R -1(0) and 0 E o. Thus 0 E R -1(0) n O. By definition, 

D(1 - H, 0, 0) = D(1 - HR, R -1(0) n 0, 0) . 

Since HR is odd, we can apply theorem 3.12 to obtain 

D(1 - HR, R -1(0) n 0, 0) is odd. (13), (14) and (15) yield 

D(1 - F, 0, 0) is odd. 

(15) 

Before we prove the domain invariance theorem, we require the following lemma which is 

found in Nussbaum [1]. 
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4.1.16 Lemma 

Proof: 

Let V be a closed bounded set in a Banach space X. For any subset A ~ V an 

any real I: > 0, let AI: = {x E V / p(x, A) < I:} . Let f : V -I X be a continuOl 

map such that for any A ~ V with ,(A) > 0, lim /(f(AI:)) < /(A) . Let J = [0, : 
1:-+0 

and assume that we are given two homotopies, G : J x V -I V and 

H : J x V -I V, such that G(t, x) and H(t, x) are uniformly continuous in t, 

G ::: G(t, .) is a k -set contraction and H ::: H(t, .) is a h -set contraction, and 
t t t t 

k + h ~ 1 for t E J . Consider the homotopy F(t, x) = f(H(t, x)) - f(G(t, x) 
t t 

Then if A is any subset of V with /(A) > 0, 

,(F(J x A)) < ,(A). 

Suppose A ~ V and ,(A) = d > 0 and suppose s E J. We want to find an ope 

interval J abou t s in J such that '}(F( J x A)) < ,( A). To do this considE 
s s 

H (A) and G (A) . 
s s 

If H (A) and G (A) are relatively compact, then f(H (A)) and f(G (A)) ar 
s s s s 

relatively compact. By the uniform continuity of H(t, x) and G(t, x) in t, ther 

exists 0> 0 such that for t E J and It - s I ~ 0, G (A) ~ N / (G (A)) and 
t d 8 s 

H (A) ~ N / (H (A)). If we set J = J n (s - 0, s + 0), it follows that 
t d 8 s s 

F(J x A) ~ {y - z / y E f(N / (H (A))), Z E f(N / (G (A))) }, so that 
s d8 s d8 s 

d d /(F(J
s 

x A)) ~ 4 + 4 < d = ,(A) . 

If ,(H (A)) > 0 or ,(G (A)) > 0, we may assume for definiteness that 
s s 

/(H (A)) > O. By assumption on f, there exists I: > 0 such that if we set 
s 

Cs I: = N I:(H (A)) n V, then ,(f(Cs J) < /(H (A)). By the uniform continuity 0 
,s ,'- s 

H in t, there exists 0 > 0 such that if t E J and It - si < 0 then H (A) ( C 
1 - l' t - S,I: 

If we write 4a = ,(H (A)) - /(f(C )), by the uniform continuity of G in t 
s S,I: 

there exists 0 > 0 such that for t E J and It - si ~ 0, G (A) ~ N (G (A)). I i 
2 2 t a s 
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follows that if we take 0 = min {o , 0 } and J = J n (s - 0, s + 0), then 
1 2 5 

,{f(H(J )( A))) ~ ,(H (A)) - 4a and "((f(G(J )( A))) ~ ,{G (A)) + 2a. This in 
5 S S S 

turn implies that 

,{F(J )( A)) 
5 

~ ,{{y-z / y E f(H(J
s

)( A)), Z E f(G(J
s

)( A))} 

~ (,{H (A)) - 4a) + (,(G (A)) + 2a) 
5 5 

< ,{H (A)) + ,(G (A)) 
5 5 

< h ,(A) + k ,(A) 
5 5 

= (h + k ) ,(A) 
5 S 

~ ry(A). 

The remainder of the proof is a simple compactness argument. As we have 

shown, for each s E J, there is an open interval J about s in J such that 
S 

,{F(J )( A)) < ,(A). By the compactness of J, J can be covered by a finite 
S 

number of these subintervals, say J , ... , J . Then 

,{F(J x A)) 

S S 
1 n 

n 
= ry( .U F(J x A)) 

1=1 s 
i 

= max {,{F(J x A)) / i = I, ... , n} 

< ,{A). 

s . 
1 

Remarks: Iffis a k--set contraction, k < I, then for any A ~ V with ,(A) > 0, 

ry(f(A€)) ~ k ,(A€) ~ k (,(A) + 2E ), and k ,(A) + 2Ek < ,(A) for E < [(1 - k) ,(A)]/2 . 

Thus the condition of Lemma 4.1.16 holds if f is a k--set contraction, k < 1. The 

hypothesis also holds if f is a condensing map. In this case, take 6 = ,(A) - ,(f( A)) > 0, 

and, by uniform continuity, select E> 0 so that f(A) ~ N 6/3(f(A)). Then we have 

ry(f(A E/ )) ~ ,(f(A)) + 2Oj3 < ,(A) for 0 ~ El < E. 

4.1.17 Theorem (Invariance of Domain) 

Let n be an open subset of a Banach space X and let f: n -j X be a continuous 
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Proof: 

map such that 1- f is one-to-one. Assume that for each x E 0, there is a closed 
o 

ball V about x , V ~ 0, such that for any A ~ V with ,(A) > 0, if we set 
o 

A = {x EV I d(x, A) < E}, then lim f(f(A )) < f(A). 
E cl 0 E 

Then (I - F)(D) is open. 

Suppose (I - f)x = z. Select a closed ball V about x as in the statement of the 
. ° ° ° 

theorem. We want to show that (I - f)(V) contains an open neighbourhood of z , 
° 

and since x E 0 is arbitrary, this will show that (I - f)(D) is open. Clearly, we 

° 
can assume x = z = o. Suppose we can show that D(1 - f, VD, 0) f. O. Since 

° ° 
1- f is one-to-one, x - ix f 0 for x E BY; and since I - f is a closed map (because 

........ 

flv is ')'-Condensing), Ix - ixl ~ E > 0 for x E aV. For Izl < E, I - f is 
z 

homotopic to I - f (f x = ix + z) by the homotopy I - t f - (1 - t) f, 0 ~ t ~ 1; 
z z 

and this homotopy is uniformly continuous in t and has no zeros on aV. Thus we 

see that 

D(1 - f, VD, 0) = D(1 - f , VD, 0) 
z 

= D(1 - f - z, Vo, 0) 

= D(1 -f, VD, z) 

= D(1 - f, VD, 0) 

f. 0, 

so there exists u E V with (I - f)u = z. This shows that (I - f)(V) 2 B /0), the 

open ball about O. 

To complete the proof, it thus suffices to prove that D(1 - f, VD, 0) f. o. Consider 

the homotopy F(t, x) = f( l~t ) - f( 1!~ ) , 0 ~ t ~ l. 

If we set H(t, x) = l~t and G(t, x) = 1!~' we see that H : J x V --1 V, 

G : J x V -l V, Ht is a l!t - set contraction, G
t 

is a l!t - set contraction, 

l!t + l!t = 1, and G and H are uniformly continuous in t . By lemma 4.1.16, if 
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A ~ V and [(A) > 0, [(F(J x A)) < [(A). Also, F(t, x) t x for (t, x) E J x 8V , 

. . x x) -t x ( -t x ) for If F(t, x) = x, we obtaIn l+t - f( l+t = l+t - f l+t ' which contradicts 

the fact that I - f is one-to-one. It follows by (D3) that 

D(1 - f, VD, 0) = D(1 - F , VD, 0) = D(1 - F , VD, 0) . However, 
D 1 

F (x) = f( ~2 ) - f( - ~2 ), so F ( - x) = - F (x), and by theorem 4.1.15 we find 
1 1 1 

D(1 - F , VD, 0) is odd and hence nonzero. • . 
1 

The last two results, with the proofs, are taken from Nussbaum. 

4.2 THE NUSSBAUM DEGREE 

We would like to define a degree for the triplet (I - F, 0, 0), where X is a Banach space, 

o ~ X open bounded, F : 0 -t X [-condensing and S = {x E 0 / Fx = x } compact. (The 

empty set is regarded as a compact set.). 

_ n 
Now S ~ U B (x) where B (x) ~ O. Since S is compact, we have S ~ .U B (x.) with 

xES rx rx 1=1 r i 1 

_ n 

B (x.) ~ O. If V = .U B (x.), then V is an open neighbourhood of Sand 
r . 1 1=1 r. 1 

1 1 

_ n_ 

V ~ .U B (x.) ~ O. If 0 = (I - F)x with x E 0, then Fx = x and so x E S ~ V. Thus 
1=1 r. 1 

1 

x E V and hence x ~ w. So 

o ~ (I -F)(OV). (1) 

Since F is ,-condensing, so is F I V. Therefore (I - F, V, 0) is an admissible triplet for 

the [-condensing degree, Dc ' Thus we define 
[ 

D(1 - F, 0,0) = Dc (I - F, V, 0) . , 
We must show that this definition is independent of V. 

Let V. be an open neighbourhood of S with V. ~ 0 for i = 1,2. Then V n V is an open 
1 1 1 2 
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neighbourhood of S and V n V ~ V n V ~ o. 
1 2 1 2 

Now 0 = V \ V n V and 0 = V n V are disjoint open subsets of V .. Let 
1 i 1 2 212 1 

o = (I - F)x for x E V \ 0 u 0 . Then x E S ~ V n V . But x ~ 0 U o . So 
i 12 12 12 

x ~ V \ V n V and x ~ V n V . Therefore x E V n V and x ~ V n V . So 
i 1 2 12 1 2 12 

X E 8(V n V ), a contradiction. 
1 2 

Thus 0 ~ (I -F)(V
i 

\ (0
1 

U O
2
)). 

By (Dc 2), 
'Y 

DC (I-F, V., 0) = Dc (I-F, 0,0) + Dc (I-F, 0,0). 
'Y 1 'Y 1 'Y 2 

Now (I - F)-l(O) = S ~ Vi U (V
1 
n V

2
)· Therefore (I - F)-1(0) n (Vi \ V1 n V

2
) = 0, 

by (D c 4), Dc (I - F, 0 , 0) = O. So 
'Y 'Y 1 

Dc (I -F, V., 0) = Dc (I-F, V n V ,0), 
'Y 1 'Y 1 2 

and hence 

DC (I-F, V, 0) = Dc (I-F, V ,0). 
'Y 1 'Y 2 

So the the degree is well-defined. 

Now we show that D satisfies (D1) - (D3) . 

(Dl) : 

Let F :: 0 and 0 E O. Then S = {x E 0 / Fx = x } = {O} . Let V be any ( 

neighbourhood of S such that V ~ O. Then 0 E V and so D(I, 0, 0) = Dc (I, V, 0) = 1 

by (Dc 1). 
'Y 

(D2) : 

'Y 

Let 0 ,0 be disjoint open subsets of 0 such that 0 ~ (I - F)(O \ 0 U 0 ). 
1 2 1 2 
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s = {x E 0 I Fx = x } is compact. Let S. = {x EO . I Fx = x} for i = 1, 2. Then 
1 1 

S. = O. n S. Let x E S n (X \ O
2

) . Then x = Fx, x E (1 and x E X \ (1 . If x ~ (1 , then 
1 1 2 1 

X E 0 \ 0 U 0 , a contradiction. So x E 0 and hence x E S. Therefore 
1 2 1 1 

S n (X \ (1 ) ~ S . 
2 1 

Now let x E S. Then x E S and x EO. So Fx = x and x EO, and hence x ~ 0 since (1 
1 1 1 2 1 

and (1 are disjoint. Therefore x E S n (X \ 0 ), and hence S ~ S n (X \ 0 ). 
2 2 1 2 

Thus S = S n (X \ 0 ). 
1 2 

X \ 0 is closed and S is closed, so S is closed, and is a subset of a compact set S, hence S 
2 1 1 

must be compact. 

Similarly S is compact. 
2 

Therefore (I - F, (2 ,0) and (I - F, (2 ,0) are admissible triplets. 
1 . 2 

Let V. be an open neighbourhood of S. such that V. ~ (2. for i = 1, 2, 
1 1 1 1 

and let V = V U V . If x E S, then Fx = x and x E (2 . Therefore 0 == (I - F)x for x E (2. 
1 2 

But 0 ~ (I - F)(O \ (2 U 0) . So x E 0 U (2 . Therefore x E 0 or x E (2 , and so 
1 2 1 2 1 2 

S ~ SUS ~ V U V = V, and V = V U V c V U V c 0 U (2 C O. So V is an open 
1 2 1 2 1 2- 1 2- 1 2-

neighbourhood of S such that V ~ o. 

By definition, 

and 

for i = 1, 2. 

D(1 - F, 0,0) = Dc (I - F, V, 0), 
I 

D(1 - F, 0.,0) = Dc (I - F, V., 0), 
1 I 1 

(2) 

(3) 

We now need to show that 0 ~ (I - F)(V \ V U V ) = (I - F)( IN). By (1), this is true, 
1 2 

and hence by (Dc 2), 
I 

Dc (I - F, V, 0) = Dc (I - F, V , 0) + Dc (I - F, V , 0) . 
I I 1 I 2 

By (2), (3) , and (4) , we have 
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D(I - F, 0, 0) = D(I - F, 0 , 0) + D(I - F, 0 ,0) . 
1 2 

The following theorem is an extension of the ordinary (D3), found in Nussbaum [2]. 

4.2.1 Theorem 

Proof: 

Let 0 ~ J x X be open bounded and H: 0 --I X be continuous such that 

S = {(t, x) E 0 / H(t, x) = x} is compact and ,(H(O n (J x B))) < i\B) for 

all bounded B ~ X with ,(B) > O. Set 0t = {x EX / (t, x) E [2}. Then 

D(I - H(t, .), n ,0) is independent of t. 
t 

Step 1 : 

Suppose we have shown that every t E J has a neighbourhood 0 such that 
t 

D(I - H(s, .), n ,0) is constant for all s EO . 
s t 

Let U = {t E J / D(I - H(t, .),0 ,0) = D(I - H(O, .), 0 ,O)} and let t E U. 
t 0 

Then D(I - H(t, .), 0 ,0) = D(I - H(O, .), 0 ,0) . But for all s EO, 
tot 

D(I - H(s, .), 0 ,0) is constant and hence must be D(I - H(t, .), 0 ,0) . So 
s t 

D(I - H(s, .),0 ,0) = D(I - H(O, .) , 0 ,0) for all s EO . Therefore 0 C U and 
sO t t -

hence U is open in J. 

Let t ~ U. Then D(I - H(t, .),0 ,0) f D(I - H(O, .), 0 ,0) = d. So for all 
tOO 

S EO, D(I - H(s, .), 0 ,0) = D(I - H(t, .),0 ,0) f d . Hence s ~ U. 
t s t 0 

So 0 C J \ U. . Therefore J \ U is open and hence U is closed in J. 
t -

But U is an open and closed set in a connected set J. Hence it is either empty or 

J. Since 0 E U, we must have U = J. Therefore 

D(I - H(t, .),0 ,0) = D(I - H(O, .), D ,0) 
t 0 

for all t E J, and is thus constant on J. 

Step 2 : 
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We must now show that for t E J, we can find an open neighbourhood 0 of t 
o t 0 o 

in J such that D(1 - H(t, .), D , 0) is constant for all t EO. 
t to 

Let S = {t} x {x / (t, x) E S}. Given (t , x) E S , we can find an open 
tot o 

neighbourhood N of x (in X ) and E > 0 such that J n J x N ~ 0 
x x x x 

(J = (t - E ,t + E)). S is easily shown to be closed and since it is a subset 
x 0 xO x t . o 

of the compact set S, S is also compact . So there exist finitely many that cover 
to 

it, say (J n J) x N ,i = 1,2, ... , n. 
x . x. 

1 1 

n 

Let E = min {E / i = 1, 2, ... , n} with 1= (t - E, t + E) and V = .U N . 
x. 0 0 __ 1= 1 x. 

1 •. 1 

So for (t , x) E S ,( t , x) E (J n J) x N for some i. Therefore x E N ~ V 
o t 0 x. x. x. o 1 1 1 

and t E (I n J). So (t ,x) E(1 n J) x V, and hence 
o 0 

S ~ (I n J) x V. (5) 
to 

n 
(I n J) x V (I n J) x ( U N ) 

i=l x. 
1 

n 
C (I n J) x .U N 

1 = 1 x. 
1 

n 
. U [(I n J) x N 1 
1=1 x. 

1 

~ O. 

Let J
7I 

= (\ - 71, to + 71) where 71 > O. 

We claim that for", small enough, S t ~ (J", n J) x V for t E J", n J. 

Suppose not. Then we can find a sequence (t ,x ) in S such that t -l t and 
n n n 0 

X n ~ V. Since S is compact, we can find a convergent subsequence, say 

(t ,x )-l(t,x)ES. H continuous implies thatH(t ,x )-lH(t,x). So 
n

i 
n

i 
0 n. n . 0 

1 1 

X -l H(t ,x). But x -l x, so H(t , x) = x . Therefore 
n . 0 n. 0 

1 1 
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(t , x) E S ~ (I n J) x V by (5). But x ~ V and V open implies that x ~ V, a 
o ton i 

contradiction. 

Thus for 'Tl small enough, S C (J n J) x V for t E J n J. 
t - 'Tl 'Tl 

Choose 'Tl and V as above. Then H: (J n J) x V --I X is continuous and for 
'Tl 

tEJ'Tl n J,St~J'Tl n JxV. xEfJVimpliesthat(t,x)~St,andso 

H(t, x) f x. Therefore 0 ~ (I - H(t, .))(8V). 

Let SI = { x E 0 / H(t, x) = x}. If x E SI, then x E 0 and H(t, x) = x. So 
t t t t 

(t, x) E 0 and H(t, x) = x.Therefore (t, x) E S C J n J x V. So x E V, 
t - 'Tl 

and SIC V for all t E J n J. 
t - 'Tl 

Let t E J n J and x E V. Then 
'Tl 

(t, x) E (J'Tl n J) x V ~ (I n J) x V C O. Therefore x E 0 ( 'Tl can be 
t 

chosen so that J C I). So V ~ 0 , and hence for all 
'Tl - t 

D(1 - H(t, .),0 ,0) = Dc (I - H(t, .), V, 0) 
t , 

and (I - H(t, .), V, 0) is admissible (for Dc ). Thus , 
DC (I - H(t, .), V, 0) is constant on J n J and thus 

, 'Tl 

D(1 - H(t, .), 0 ,0) is independent of t on J n J. 
t 'Tl • 

4.2.2 Therorem 

Proof: 

Let F : D --I X be ,-condensing and 0 ~ (I - F)( 80). Then 

DN(1 - F, 0, 0) = Dc (I - F, 0, 0), , 
where DN is the Nussbaum degree. 
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Let S = { x E ° / Fx = x } and let V be an open neighbourhood of S such that 

V C 0. Now S is compact since I - F is proper, so DN(1 - F, 0, 0) is defined. 

Then 

DN(1 - F, 0, 0) '= Dc (I - F, V, 0). 
I 

Since 0 ~ (I - F)(O \ V), we have 

Dc (I - F, 0, 0) = Dc (I - F, V, 0) . 
I I 

Thus we have 

DN(1 - F, 0, 0) = Dc (I - F, 0,0). 
I 

4.2.3 Theorem 

Proof: 

Let ° ~ X be open bounded and symmetric with respect to 0 E 0, F : ° ---j X be 

,.."....-condensing, S = { x E ° / Fx = x } compact and F(x) = - F( -x) 

for all x E 0. Then D(1 - F, 0, 0) is odd. 

Let V be an open neighbourhood of S such that V ~ 0 . Then 

D(1 - F, 0 , 0) = Dc (I - F, V, 0) . 
I 

Flav is odd since BY ~ 0. Therefore by theorem 4.1.13, we have 

Dc (I - F, V, 0) is odd, and so D(1 - F, 0, 0) is odd. 
I 
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CHAPTER 5 

DEGREE OF MAPS ON UNBOUNDED SETS 

Up to this point, n ~ X was open and bounded. We will now consider 0 ~ X to be just 

open. Of course, we will require extra conditions on our function F. First we consider 

locally compact operators and then locally '/Condensing operators . 

5.1 LOCALLY COMPACT OPERATORS 

We will consider the triplet (I - F, 0, y) where X is a Banach space, 0 ~ X is open, 

F : n -! X is locally compact, y ~ (I - F)(BO) and (I - Ft1(y) is compact. We show that 

there is a unique ll-valued map defined on these triplets, the degree. 

N.B.: F is locally compact if for each x E 0, there exists a neighbourhood U(x) of x 

such that F I U(x) is compact. 

Firstly we will show that there exists a bounded neighbourhood V ~ 0 of (I -"- F) -1(y) such 

that FIV is compact. F is locally compact, so for each x E (I - Ft1(y), there is a 

neighbourhood U(x) of x such that F I U(x) is compact . Choose r x > 0 small enough so that 

Br (x) f U(x). Thus FIB (x) is compact. Since (I - Ft1(y) is compact and 
x r 

x 
n 

(I - Ftl(y) f U B (x) we must have (I - Ftl(y) f.U B (xJ = V where 
XE(I-F)-1(y) rx 1=1 ri 1 

r. = r . Let r = max {r , ... , r }. Then V is a bounded set with bound 
1 x. 1 n 

1 

r + max { I X.I I i = 1, ... , n}. 
1 

Now F(V) 
n 

= FCU B (Xi)) 
1 = 1 r. 

1 
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c F( B (x) U .. . u B (x)) 
r 1 r n 

1 n 

= F(B (X)) U ... U F(B (X)) 
r 1 r n 

1 n 

c F(B (X)) U ... U F(B (X)) 
r 1 r n 

1 n 
_ n _ 

But F(B (x.)) is compact for each i, so .U F(B (x.)) is also compact . Thus F(V) is 
r 1 1=1 r . 1 
i 1 

relatively compact and so Fly is compact. So we define, for our triplet (I - F, 0, y), 

D(1 - F, 0, y) = DLs (1 - F, V, y), 

(1) 

where V is any bounded neighbourhood of (I - Ftl(y) such that Fly is compact . 

Since (I - Ftl(y) ~ V, we have y ~ (I - F)( BY). 

We must show that this well-defines D. Suppose we have 

V ,V ~ [2 arebounded neighbourhoods of (I - Ftl(y) such that Fly is compact for 
1 2 . 

1 

i = 1,2. Let V = VI n V
2 

and suppose that y E (I - F)(Vi \ V). 

Then y = (I - F)(x) for some x E y. \ V. Therefore x E (I - F)-I(y) ~ V., j = 1, 2. So 
1 J 

x E VI n V 2 = V, a contradiction. Thus y ~ (I - F)(V i \ V) for i = 1, 2. So by (D LS 7), 

DLS(1 - F, V I' y) = DLS(1 - F, V, y) = DLS(1 - F, V 2' y), 

proving that the degree is well-defined. 

With D defined in (1), we will show that it satisfies (D1)-(D3). 

(Dl) : 

Let y E O. Now F == 0 : n -l X is locally compact (in fact, it is compact), 

(I - F)-l(y) = {y} is compact and y ~ 80 = (I - F)(80). Let V = B (y) nO. Then V is a 
1 

bounded neighbourhood of (I - Ftl(y) and Fly is compact . Thus 

D(I, 0, y) = DLs(I, V, y) = 1 
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(D2) : 

Let 0 and 0 be disjoint subsets of 0 with y E X \ (I - F)(O \ 0 U 0 ). T o show that 
1 2 1 2 

D(1 - F, 0, y) = D(1 - F, 0
1
, y) + D(1 - F, O

2
, y). Let V C 0 be a bounded 

neighbourhood of (I - Ft1(y) such that Fly is compact . Then 

D(1 - F, 0, y) = DLS(1 - F, V, y). 

Now let V = V n 0 for i = 1,2. Then V . ~ O. is a bounded neighbourhood of 
i ill 

(I - Ft1(y) no. such that Fly is compact . Then 
1 . 

1 

D(1 - F, 0i' y) = DLS(1 - F, Vi' y), 

for i = 1, 2. We will now show that y ~ (I - F)(Y \ V U V). Suppose it does . Then 
1 2 

y = (I - F)(x) for some x E Y \ V U V . Now 
1 2 

V U V = (V nO) U (V no) = V n (0 U 0 ). 
1 2 1 2 1 2 

(2) 

(3) 

(4) 

But x E Y ~ 0 and y ~ (1 - F)(O \ 0 U 0). Thus we must have x f. 0 U o. Therefore 
1 2 1 2 

by (4), x ~ V. But x E (I - Ftl(y) C V, a contradiction. Thus y ~ (I - F)(V \ V U V ). 
- 1 2 

DLS(1 - F, V, y) = DLS(1 - F, V l' y) + DLs(1 - F, V 2' y). 

(2), (3) and (5) give us 

D(1 - F, 0, y) = D(1 - F, 0 , y) + D(1 - F, 0 , y) . 
1 2 

(D3) : 

(5) 

Let 0 ~ X be open, y : J -t X and H: J x 0 -t X be continuous. Suppose that for each 

x E 0, there exists a neighbourhood U(x) of x such that HI J x U(x) is compact (i.e. H is 

locally compact) and further suppose that for each t E J, y(t) ~ X \ (I - H(t, .))(80) and 

U (I - H(t, .)t1(y(t)) is compact . 
tEJ 

We will show that D(I - H(t, .), 0, y(t)) is independent of t. 

For each x E 0, there exists a neighbourhood U(x) of x such that HI J x U(x) is compact. 

Choose r > 0 small enough so that Br (x) ~ U(x). Thus 
x x 
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HIJxBr (x) is compact. 
x 

Now A = U (I - H(t, .t1(y(t)) is compact and contained in O. (Since 
tEJ 

y(t) t (I - H(t , .))(80)) . Thus we must have x , ... , x E A, r. = r such that A ~ .1 
1 n 1 x . 1 

1 

B (x.) = V . Let r = max {r , .. . , r } and s = max {I x I, '" , Ix I} . Then for x E V, ~ 
r. 1 1 n 1 n 

1 

have x E B (x.) for some i, and so 
r. 1 

1 

Ixl ~ Ix-x.1 + Ix .1 <r.+ Ix.1 ~r+s. 
1 1 1 1 

Thus V is a bounded neighbourhood of A. Then 

D(I - H(t, .), 0, y(t)) = DLS(I - H(t, .), V, y(t)), 

if the following conditions (which are proved as well) hold. 

(I 

(a) For each t E J, H (t, .) is locally compact: For each x EO, there exists 

neighbourhood U(x) of x such that HIJxU(x) is compact . So H(J x U(x)) 

relatively compact. Since H(t, U(x)) ~ H(J x U(x)), H(t, U(x)) is also relative: 

compact . Hence H(t , .) is locally compact . 

(b) y(t) t (I - H(t, .))(80) : This is given. 

( c) 

(d) 

A = (I - H (t, .)) -1( y( t)) is compact: A (A, A is compact and A is closed. Hen( 
t t - t 

A is compact . 
t 

V is a bounded neighbourhood of A for each t : V is a bounded neighbourhood of 1-
t 

hence of each A . 
t 

( e) H( t, .) l-v is compact for each t E J : 
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H(J x V) 
n 

= H(Jx U B (x,)) 
i=l r. 1 

1 

n 

~ H(J X .U B (X,)) 
1=1 r. 1 

1 

n _ 

= .U H(J X B (X,)) 
1=1 r. 1 

1 

H(J X B (xJ) is relatively compact and a finite union of relatively compact sets is 
r. 1 

1 

again relatively compact. Hence H( J x V) is relatively compact. For each t E J, 

H(t, V) ~ H(J x V). Hence H(t, V) is relatively compact. Thus H(t, .) Iv is 

compact. 

Now DLS(1 - H(t, .), V, y(t)) is independent of t by (D LS3) and by (6), 

D(1 -H(t, .), 0, y(t)) is independent oft. 

Thus D defined in (1) satisfies (D1)-(D3) . 

Now, we show that there is only one 71-valued map, defined on the given triplets, satisfying 

(D1)-(D3). 

Let .At = {I - F, 0, y) / 0 ~ X open, bounded, F : 0 ---j X compact, and y ~ (I - F)(80)} 

and .At- = {(I - F, 0, y) / 0 ~ X open, F : 0 ---j X locally compact, y ~ (I - F)(OO) and 

(I - Ft1(y) is compact} . 

Let D: .At----j 71 satisfy (D1)-(D3) (then D also satisfies (D4)-(D7)). 

Now a compact operator is locally compact and if F : 0 ---j X is compact, then (I - Ft1(y) 

is also compact. So.At ~ .At-. Let D' = D 1.At . We will show that D' satisfies 

(D 'I )-(D'3). 

(D'l) and (D'2) are trivial since (D1) and (D2) hold . 

(D'3) : 
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Let H : J x 0 -l X and y : J -l X be continuous, H compact and 

y(t) ~ (I - H(t, .)(80) for each t E J . In order to use (D3), we must have 

A = U (I - H(t, .t1(y(t)) to be compact. 
tEJ 

Let (x ) be a sequence in A. Then x E (I - H( t , .) tl(y( t )) for some t E J. Therefore 
n n n n n 

x = y( t ) + H( t , x ). (t) is a sequence in the compact set J, hence there exists some 
n n n n n 

subsequence that converges, say t -l t E J. 
k 0 

n 

H(J x 0) is relatively compact. Therefore some subsequence of H(t ,x ) converges. 
- k k 

n n 

Without loss of generality, we may assume that H( t ,x ) -l Y . 
k k 0 

n n 

Sox =y(t )+H(t ,x )-ly(t)+y =X . Sincex EO,wehavex En . 
k k k k 000 n 0 

n n n n 

So H(t ,x ) -l H(t , x). Therefore y = H(t , x ) and so x = y(t ) + H(t , x ), 
k k 00 0 00 0 0 00 

n n 

which implies that y(t ) = (I - H(t , .))(x). Therefore x E (I - H(t , .))-l(y(t )) ~ A. 
o 0 0 0 0 0 

Therefore A must be compact and so D'(I - H(t, .),0, y(t)) = D(I - H(t, .),0, y(t)) and 

is independent of t by (D3). 

Therefore D' : At-lll satisfies (D'1)-(D'3). 

By uniqueness of the Leray-Schauder degr~e, 

D' = D LS 

Now D : At--l II satisfies (Dl)-(D3) (hence it satisfies (D4)-(D7)). Let 

(7) 

(I - F, 0, y) E At- and let V be any bounded neighbourhood of (I - Ft1(y) such that F I V 

is compact . Suppose 

y E (I - F)(O \ V). Then for some x E 0 \ V, y = (I - F)(x) which implies that 

x E (I - Ft1(y) ~ V, a contradiction. So y ~ (I - F)(n \ V). Therefore by (D7), 

D(I - F, 0, y) = D(I - F, V, y). (8) 

But (I-F, V, y) E At, so 

D(1 - F, V, y) = D'(1 - F, V, y) = DLs(1 -F, V, y) 
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by (7). So there is a unique Zl- valued map D : Al----l Zl satisfying (D1)-(D3). Thus we 

have proved the following theorem: 

5.1.1 Theorem 

Let X be a Banach space and 

At = {1 - F, 0, y) / ° ~ X open, F : 0 ----l X locally compact, y ~ (1 - F)(oO) 

and (1 - Ftl(y) is compact} . 

(a) Then there exists a unique map D : At ----l Zl satisfying (D1)--(D3) the 

degree for locally compact operators. 

(b) Let (1 - F, 0, y) E At. Then D(1 - F, 0, y) = D
LS

(1 - F L V,,,y) where V 

is any bounded neighbourhood of (1 - Ftl(y) such that F I V is compact 

and D
LS 

is the Leray-Schauder degree. 

It is easy to see that this degree is really an extension of the LS-degree. 

We also have the Borsuk property and the properties (D4)--(D7) holding. 

5.2 LOCALLY ')'-CONDENSING OPERATORS 

We want to define a degree for the triplet (1 - F, 0, y) where ° ~ X is open, 

F : 0 ----l X is locally ,-condensing (i.e. for each x E 0, there exists a neighbourhood U(x) 

of x such that F I U(x) is ,-condensing), y E X \ (1 - F)( 00) and (1 - F) -l(y) is compact. 

First we show the existence of V ~ 0, a bounded neighbourhood of (1 - Ftl(y) such that 

F I V is ,-condensing. The procedure used to obtain a V is exactly like that used for locally 

compact maps . 

n 

Thus we obtain (1 - F) -l(y) ~ i~ 1 B f.(\) = V where F lE (x.) is ,-condensing for 
1 f. 1 

1 

i = 1, 2, ... , n. Then V is a bounded neighbourhood of (1 - Ftl(y). Let B ~ V such that 
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n n 
1(B) > O. Then B = .U (B n B (x.)) and so FB = .U F(B n B (x.)). 

-1 = 1 r 1 1 = 1 r . 1 

So 1(FB) 

i 1 

n 
= 1(.U F(B n B (x.)) 

1=1 r. 1 
1 

_ max {1(F(B n B (x.))) / i = 1) 2) .. . ) n} 
r. 1 

1 

= 1(F(B n B (x )))) say 
r
k 

k 

If 1(B n B (x)) = 0) then B n B (x) is relatively compact and since F is continuous 
r
k 

k r
k 

k 

with closed domain 0) F(B n B (x)) is also relatively compact. Therefore 
r
k 

k 

1(F(B n B (x ))) = 0 and so 1(FB) = 0 < 1(B). 
r
k 

k 

If 1(B n B (x)) > 0) then 1(F(B n B (x ))) < 1(B n B (x)) ~ -y(B)) since __ 
r k r k rkk k k 

FIB (x) is 1---<::ondensing. Hence 1(B) > 0 implies 1(FB) < 1{B) and so 
r
k 

k , 

F I V is 1---<::ondensing. 

We would like to define 

D(I - F) 0) y) = Dc (I - F) V) y)) , 
where Dc is the degree for ,---<::ondensing maps and V is any bounded neighbourhood of , 
(I - Ftl(y) such that F I V is 'r condensing. 

As in the case of locally compact maps) y ~ (I - F)( 00) and 

Dc (I - F) V ) y) = Dc (I - F) V ) y) for V ) V ~ 0 any bounded neighbourhoods of 
, 1 , 2 1 2 

(1) 

(I - Ftl(y) such that F I V is ?-Condensing for i = 1) 2. Thus the degree defined above is 
i 

well-defined. 

Now to show that (Dl)-(D3) hold. The proof of (D1) and (D2) is exactly the same as that 

for the locally compact operators) with compact replaced by ,-condensing. We will now 

prove (D3). 
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(D3) : 

We have the following hypotheses for (D3): 

Let H : J x 0 --; X and y : J --; X be continuous. Suppose for each x E ° there exists a 

neighbourhood U(x) of x such that ,(H(J x B)) < ,(B) for B ~ U(x) with ,(B) > o. 

Further, suppose that y(t) E X \ (I - H(t, .))(80) and A = U (I - H(t, .))-1(y(t)) is 
tEJ 

compact. 

We must show that D(1 - H(t, .), 0, y(t)) is independent of t. As in the proof for locally 

n 

compact maps, we obtain A ~ .U B (x.) = V where HIJ B- ( ) is l---<:ondensing. 
1=1 r. 1 x x. 

1 r. 1 
1 

( a) For each t E J, H (t, .) is locally "(-condensing: 

For each x E 0, there exists a neighbourhood U(x) of x such that HI J x U(x) is 

,-condensing. Let B ~ U(x) with ,(B) > o. Then ,(H(t, B) ~ ,(H(J x B)) < ((B). 

So H(t, .) is locally (-Condensing. 

(b) y(t) ~ (I-H(t, .))-1(80): 

(c) 

(d) 

This is part of the hypothesis. 

A = (I-H(t, .)t1(y(t)) is compact : 
t 

A ~ A with A closed and A compact. Thus A is compact. 
t t t 

V is a bounded neighbourhood of A for all t E J: 
t 

V is a bounded neighbourhood of A, hence of A . 
t 

(e) H (t, .) I V is "(-condensing: 

_ n 

Let B ~ V with ,(B) > o. Now B =.U (B n B (xJ). So 
1= 1 r. 1 

r{H(t, B)) 
1 

~ {(H(J x B)) 

n 
= ,eU H(J x (B n B (x.)))) 

1 = 1 r 1 
i 

= max {,(H(J x (B n B (xJ))) / i = 1,2, ... , n} 
r. 1 

1 

= ,(H(J x (B n B (x )))), say. 
\ k 
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If ,(B n 13 (x)) = 0, then B n 13 (x) is relatively compact. Since H is continuous 
fk k fk k 

with closed domain, H(J x (B n 13 (x
k
))) is also relatively compact . 

r
k 

Therefore r(H(J x (B n B (x )))) = 0 < ,(B) . (3) 
fk k 

Let 

So by (2) and (3), r(H(t, B)) < ,(B). 

If ,(B n B (x)) > 0, then 
fk k 

r(H(J x (B n 13 (x )))) < r(B n B (x)) ~ ,(B). 
fk k fk k 

So by (2) and (4), r(H(t, B)) < ,(B). 

Thus H(t, .) Iv is ')'-Condensing. 

Thus we have V to be admissible for each t, and so 

D(1 - H(t, .),0, y(t)) = Dc (I - H(t, .), V, y(t)) , 
and this is independent of t by (D c 3). , 

(4) 

.At= {I - F, 0, y) / 0 ~ X open bounded F : 0 --j X ,-{;ondensing, y E X \ (I - F) / GO)} 

and 

Ai = {(I - F, 0, y) / 0 ~ X open, F : 0 ----I X locally ,-{;ondensing, y E X \ (I - F)(80) 

and (I - F) -1(y) is compact}. 

We need to show that there is a unique map D: .J{----I II satisfying (Dl)-(D3). 

Let D: .At---j II satisfy (Dl)-(D3) . Then it also satisfies (D4)-(D7). 

Any ')'-<:ondensing map is locally ')'-Condensing and if FEe (0), then (I - Ft1(y) is , 
compact (since I - F is proper). 

So .At ~ .J{-. 

Let (I - F, 0, y) E .At. As before, there exists an open bounded neighbourhood V in 0 of 

(I - F)-1(y) such that F I V is J-<:ondensing. Then y ~ (I - F)(O \ V) and hence by (D7), 

D(1 - F, 0, y) = D(1 - F, V, y). (5) 
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Now (I - F, V, y) E At. We will show that Df = D\ At satisfies (Dfl)-(D f3). Since (Dl) 

and (D2) hold, we also have (Dfl) and (Df2) holding. 

(D'3) : 

Let H: J x 0 ---l X and y: J ---l X be continuous, H '/Condensing and 

yet) ~ (I - H(t, .)tl(80) for each t E J. In order to use (D3), A = U (1 - H(t, ·)t1(y(t)) 
tEJ 

must be compact. Let (x ) be a sequence in A. Then x E (1 - H(t , .))-l(y(t )) for some 
n n n n 

t E J. Therefore x = y(t ) + H(t , x). J is compact, so some subsequence of (t ) 
n n n n n n 

converges, say t ---l t E J and by continuity of y, yet ) ---l y(t). So {yet ) j n E IN } is 
k 0 k 0 k 

n n n 

relatively compact (since every sequence in it is convergent). Now 

{x jnEIN}C{y(t )jnEIN}+{H(t ,x )jnEIN}. k - k k k 
n n n n 

So J{ {x
k 

j n E IN}) < J{ {y( tk ) j n EIN }) + 'Y( {H( \ ' xk ) j n E IN }) 
n 

If 'Y( {x j n E IN }) > 0 then 
k 

n 

n n n 

- 0 + 'Y( {H( \ , xk ) j n EIN }) 
n n 

< J{H(J x {x
k 

j n E IN })). 
n 

J{{x
k 

j n E IN}) ~ J{H(J x {x
k 

j n E IN })) < ,({x
k 

j n E IN }), a contradiction. 
n n n 

Thus 'Y( {xk j n E IN }) = O. Therefore {xk j n E IN } is relatively compact. So some 
n n 

subsequence of it converges. Without loss of generality, assume x ---l x . 
k 0 

n 

Since x E 0, we must have x E 0, and by continuity of H, H(t ,x ) ---l H(t x) 
k 0 k k 0' 0 

n n n 

But H(t ,x ) = x -yet ) ---lX -y(t) = y . Therefore H(t x) = y and so 
k k k k 0 0 0 0' 0 0' 

n n n n 

X - yet ) = H(t ,x). Thus yet ) = (I - H(t , .))(x ) and hence 
o 0 00 0 0 0 

x E (1 - H(t , .))-l(y(t )) C A. 
o 0 0-

Hence A is compact. 
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Thus D' (I - H(t, .),0, y(t)) = D(1 - H(t, .), 0, y(t)) and this is independent of t by (D3). 

So D I : M --j II and it satisfies (D 'l)-(D '3). By uniqueness of the degree for 

~ondensing maps, 

Now (I - F, V, y) E .Jt, so 

D(I-F, V, y) = D'(1-F, V, y) = Dc (I-F, V, y) 
'Y 

by (6). 

Thus (1) and (7) give 

D (I - F, 0, y) = Dc (I - F, V, y), 
'Y 

and so there is a unique map, D : .Jt---j II satisfying (D1)-(D3). 

(6) 

(7) 

It is again an easy exercise to check that this degree is an extension of the [-Condensing 

degree. 

As we had in the previous chapters this unique map will satisfy (D4)- (D7) and Borsuk's 

property. 
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CHAPTER 6 

DEGREE IN LOCALLY CONVEX SPACES 

Before we define a degree on such spaces we give some definitions and facts about them .. 

Proofs of the results can be found in Schafer [29]. 

6.1 Definition: 

(X, T) is a topological vector space (t.v.s.) if X is a vector space over 

the field K with topology T such that addition A: (x, y) --I X + Y and scalar 

multiplication S: ('\, x) --I ,\ X are continuous . 

The field K is either [R or C 

T is separated if different points have disjoint neighbourhoods. 

The following theorem gives conditions that a t .v.s. satisfies. 

6.2 Theorem 

Let (X, T) be a t.v.S. with T separated. Then there is a basic system 21 (0) of 

neighbourhoods of 0, with the following properties. 

(a) U E 21(0) and ,\ * 0 imply that ,\ U E 21(0) . 

(b) For U E 21(0), there exists V E 21(0) such that V + V ~ U. 

(c) n U = {o}. 
UE 11 (0) 

(d) Every U E 21(0) is open, absorb ant and balanced, where U is called absorb ant 

if to each x E X, there exists ,\ > 0 such that x E ,\ U and balanced if ,\ U ( U , -

for all ,\ with 1,\ I ~ 1. 
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A basic neighbourhood system of any x E X is given by U(x ) = x + U(O). 
o 0 0 

A t.v.S. (X, r) is said to be locally convex if there exists a neighbourhood system U(( 

satisfying in addition 

(e) Every U E U(O) is convex. 

An 0 ( X is said to be bounded if to every U E U(O), there exists AU > 0 such that 

o ~ AU U. 

6.3 Theorem 

Let X be a locally convex t.v.S. and 11(0) a basic system of neighbourhoods of 

with the properties (a) - (e). Let pu : X ~ IR be defined by 

pu(x) = inf {A > 0 / x EAU}. Then pu is a continuous seminorm, 

U = {x E X / pu(x) < 1 } and oU = {x E X / pu(x) = 1 }. 

(pu is called the Minkowski functional. ) 

The above theorem is standard and so we state it without proof. 

We would like to define a degree for the following triplet: 

(I - F, 0, y) where X is a locally convex t .v.s., 0 ~ X is open, F : n ~ X is compact and 

Y E X \ (I - F)( 80) . 

~efore we do this , we first have to give some approximation for F, the degree of which \\ 

know. 

6.4 Theorem 

Let X be a topological space, Y a locally convex t .v.s., 0 ~ X and F : (2 -+ . 

compact. Let U (0) be a neighbourhood base of 0 E Y satisfying (a) - (e) i 

theorem 6.2. Then we have 

(a) For U c 11(0), there exists a finite dimensional F such that F x - Fx E 1 
U U 

141 



Proof: 

on U. F u also turns out to be compact. 

(b) I - F maps closed subsets of 0 onto closed sets . 

(a) Since F(O) is compact, we can find y , ... , Y E Y such that 
1 ID 

-- ID 

F(O) f. i~l (Yi + U). Let CPi(x) = max {a, 1 - pu(Fx - Yi)} on O. Then CP. j 
1 

continuous and non-negative. For x E 0, F(x) E Y. + U for some i. 
1 

m 

Therefore .~ cP,(x) > ° for all x E O. So we may define 
1=1 1 

m ID 

'\.(x) = (.~ CP.(x)t1 cP,(x) and F x = .~ '\.(x) Y. on O. Then Fu is continuou 
1 J=l J 1 U 1=1 1 1 

ID 

and finite dimensional. Easily .~ '\,(x) = 1 on O. ('\ .(x) E [0, 1]). So 
1 = 1 1 1 

ID 

= pu(Fx - .~ '\.(x) yJ 
1= 1 1 1 

ID m 

= pii~ l\(X) Fx - i~ l\(x) y i) 

ID 

~ i~lu(\(x)(Fx - Yi)) (pu is a seminorm) 

ID 

= .~ '\.(x) pu(Fx - yJ 
1=1 1 1 

Now CP.(x) > ° for some i, and so pu(Fx - y J < 1 for some i. If 
1 1 

pu(Fx - yJ ~ 1, then CP.(x) = ° and hence '\.(x) = 0. 
1 1 1 

ID ID 

So i~l\(x) pu(Fx - Yi) < i~l\(x) = 1. Therefore pu(Fx- Fix)) < 1 an, 

this implies that Fx - F UX E U. 

To show F u(O) is relatively compact we just need to show that ever 

sequence in it has a convergent subsequence since it is contained in a finit 

dimensional subspace of Y. 

Let (Fu(x )) be a sequence in Fu(O). (,\ (x )) is a sequence in J, hence it ha 
n 1 n 

a convergent subsequence, say ,\ (x ) -I a . Similarly'\ (x ) has ' 
1 k

n 
1 2 n

k 
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convergent subsequence, etc. So we obtain a subsequence, (x ) of (x ) suc: 
n

k 
n 

that ). .(x ) ---! a . for i = 1, 2, ... , m. Therefore 
1 n

k 
1 

m m 
F (X ) = .~ )..(x ) y. ---! .~ a .y .. So F (0) is relatively compact. Thus 

u n 1=1 1 n 1 1=1 1 1 U 
k k 

F u : 0 ---! Y is compact. 

(b) Let 0
0 
~ 0 be closed. To show (1 - F)(Oo) is closed. Let (x).).EA be a net i: 

0
0 

such that (1 - F)(x).) ---! y. Now Fx). E F(O), which is compact . Therefor 

(Fx).).EA has a cluster point Yo E F(O) . Thus there exists a subnet (xJwE~ 

of (x).) ).EA such that Fxw ---! Yo' So Xw = (xw - FxJ + Fxw ---! Y + y 

and hence y + Y 0 is a cluster point of (x).) ).EA· But (x).) ).EA f. 0
0 

and 0
0 

i 

closed, hence x = y + Y EO . Therefore 
000 

(1 - F)(x ) = li m (1 - F)(x ) = y. 
o w w 

So y = (1 - F)(xo) f. (1 - F)(Oo) ' 

closed. 

Thus (1 - F)(O) 1 
o 

The following procedure gives a way of defining the degree: 

Let (1 - F, 0, y) be the triplet we are considering. By Theorem 6.4(b), 1 - F is closed 

Hence (1 - F)( a~) is closed. So there exists 

. U E 91(0) such that (y + U) n (1 - F)( 80) = 0. (1 
.-
By Theorem 6.4 (a), there exists a finite dimensional F such that F x - Fx E U on O. Le 

1 1 

X be a subspace of X such that dim X < (1) , F (0) eX, y E X and let 0 = 0 n X. No~ 
1 1 1 -1 1 1 1 

(a) [1 - (1 - F)] (0 ) is bounded: 
1 

[I - (I - F )] (0 ) = F (0 ). 
1 1 1 1 

and 

(b) Y E X \ (1 - F )( ao ) : 
1 1 1 

Suppose y = (1 - F )(x) for x EO . Then F x = x - y. But F x - Fx E U. So 
1 1 1 1 
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x - y - Fx E U. Therefore (I - F)(x) E Y + U. Since (I - F)( 80) n (y + U) = ( 

we must have x t 00 . 

But 00 
1 

=onx\onx 
1 1 

conx \OnX 
- 1 1 

=oOnx. 
1 

(i 

Thus x tOO, and hence y t (I - F )(80 ). 
1 1 1 

So (a) and (b) imply that d((1 - F ) 1 i) ,0 , y) is defined by definition 2.17 (where d is tl 
1 H 1 

1 

Brouwer degree extended to unbounded sets) . Thus, it seems natural to define the degrE 

by 

D(I - F, 0, y) = d((I-F )1 0 ,0, y) . 
1 1 1 

We must show that this degree is well~efined. 

6.5 Theorem 

Proof: 

Let (I - F, 0 , y) be one of the triplets we are considering. Suppose there exist 

finite dimensional F. such that F.x - Fx E U (where U is obtained by (1)) on 0 an 
1 1 

a subspace X. of X such that dim X. < w , F .(0) f X., Y E X. and O. = ° n X., for 
1 1 1 1 1 1 1 

i = 1, 2. Then 

d((I-F )Ii), 0, y) = d((I-F )Ii) ,0, y). 
1 H 1 2 H 2 

1 2 

N.B.: 0 and 0 come from spaces of different dimension. Hence we mus 
1 2 

use theorem 2.19. 

Let X = span (X U X ) and 0 = 0 n X . 
3 1 2 3 3 

Let 0
0 

be any bounded open set that contains (I - F i) -l(y), i = 1, 2. (This can b 

done since (I - F J -l(y) is compact). Then by definition 2.17. 
1 

d((1 -FJ10 ,0., y) = d((I-FJln n n ,0. no, y) 
1.1 lH H 10 

1 i 0 
(4 
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and 

d((1 -FJ/f\ ,0
3
, y) = d((1 -FJ/{) n () ,0 no, y) . 

1 H3 1 H3 HO 3 0 
(5 

We will first show that 

d((I-FJ/ o nO' o. n 0
0

, y) = d((I-F)/O nO' 0 3 n 0
0

, y) . 
1 i 0 1 3 0 

In order to apply Theorem 2.19, we must have F i /0 no: 0
3 

n 0
0 
-I Xi i 

3 0 

continuous, 0 3 n 0
0 

open bounded and y E Xi \ ((I - F)/03 n 0
0

)(8(0
3 

n 0/ 

Easily, F i /0 n 0 is continuous. 
3 0 

Suppose y = (I - Fi)(x) for x E a(03 n 0/ 

Now 8(0 nO) 
3 0 

=0 n 0 \0 nO 
3 0 3 0 

cono\ono 
- 3 0 3 0 

= (ao no) U (0 n an ). 
3 0 3 0 

Since x E (I - FJ-l(y) c 0 we must have x E ao nO . 
1 - 0 3 0 

But an = 0 n X \ 0 n X 
3 3 3 

cOnx \onx 
- 3 3 

= ao nx 

So x E a~. 

Now (I - F)x = (I - FJx + (F.x - Fx) E Y + U. So (I - F)(an) n (y + U) * 0, ; 
1 1 

contradiction. Thus y E X. \ ((I - F J / () n () )( a(o no)). 
1 1 U H 3 0 

3 0 

By Theorem 2.19, we have 

d((1 -Fi)/O nO' 0
3 

n 0
0

, y) 
3 0 

=d((I-F)/o nOn X'o nO no.,y) 
3 0 i 3 0 1 

= d((I-F)/o no' O. n 0
0

, y). 
i 0 1 

By (4), (5) and (6), 

145 



d((1-FJlo,O .,y)=d((1-FJl o 0 ,y)). 
1 Hi 1 1 3' 3 

We will now show that 

d((1 -F )10 ,0 ,y) = d((1 -F )10 ,0 ,y). 
1 H 3 2 H 3 

3 3 

Define h : J x 0 -+ X by h(t, x) = t (I - F )x + (1 - t)(1 - F )X 
3 1 2 

for (t, x) E J x 0 . 
3 

Then (i) h is continuous 

(ii) sup {Ix-h(t, x)1 / (t, x) E J x 0 } 
3 

= sup {Ix - t(1 - F )x - (1- t)(I - F )xl / (t, x) E J x n } 
1 2 3 

= sup {It F x + (1-t) F xl / (t, x) E J x 0 } 
1 2 3 

~ sup {It FIxl / (t , x) E J x 03} 

+ sup {I (1 - t) F xl / (t, x) E J x 0 } 
2 3 

< sup {I F x I / x EO} + sup {I F x I / (t, x) EO} 
- 1 3 2 3 

< ID. 

(iii) If y = h(t, x) for (t, x) E J x 80 , then 
3 

y = t (I - F ) x + (1 - t ) (I - F )x 
1 2 

= X - Fx - [t (F x - Fx) + (1 - t)(F x - Fx)]. 
1 2 

F x - Fx, F x - Fx E U and U is convex, so 
1 2 

(7 

t(F x - Fx) + (1 - t)(F x - Fx) E U. Therefore (I - F)x E Y + 1 
1 2 

with x E 80 = on n X C 80. A contradiction to 
3 3 -

(I - F)( 80) n (y + U) = 0. Thus y ~ h(t, 80 ), t E J . 
3 

Therefore the hypotheses for (d3) in definition 2.17 are satisfied, to give us 

d((1 -F )10 ,0 ,y) = d((1 -F )10 ,0 ,y) . 
1 H 3 2 H 3 

3 3 

(8 

(7) and (8) imply that 

d((1-F )10,0, y) = d((1-F )10 ,0, y). 
1 H 1 2 H 2 

1 2 
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6.6 Theorem 

Proof: 

Let (I - F, 0, y) be our triplet. Suppose there exist U. E U(O) such that 
1 

(y + U i) n (I - F)( ao) = 0, i = 1, 2, and there exist finite dimensional F i and 

subspace X. of X such that dim X. < (I) , F.(O) f X., Y EX., O. = 0 n X., i = 1, 2. 
1 1 1 1 11 1 

Then 

d((1-F )Ii'\, 0, y) = d((1-F )Ii'\, 0, y). 
1 u 1 2 u 2 

1 2 

Let V E U (0) such that V ( U nU. By Theorem 6.4(a), there exist 
- 1 2 

finite dimensional F and a subspace X of X such that dim X < (I), F (0) ( X , 
3 3 3 3 - 3 

Y EX, 0 = 0 n X , and F x - Fx E V on O. Hence F x - Fx E U on 0 for 
3 3 3 3 3 i 

i = 1, 2. So by Theorem 6.5, 

d( (I - F J I i'\ , 0., y) = d( (I - F ) I i'\ , 0 , y) 
1 u. 1 3 u 3 

1 3 

for i = 1, 2. Thus 

d((1 - F ) I i'\ , 0 , y) = d((1 - F ) I i'\ , 0 , y). 
1 u 1 2 u 2 

1 2 

Thus, the degree defined by 

D(1 -F, 0, y) = d((1 - F )Ii'\ ,0, y) 
1 u 1 

1 

in (3) is well-defined. 

,!,he following lemma can be found in Nagumo[16]. 

6.7 Lemma 

Proof: 

Let K. (i = 1, 2) be compact sets in X. Then K + K is compact in X. 
1 1 2 

K 1 x K 2 is a compact set in the product space X x X. The map 

ifJ : X x X -+ X defined by ifJ(x, y) = x + y, (x,y) E X x X is continuous and 

ifJ(K x K ) = K + K . Thus K + K is also compact. 
1 2 1 2 1 2 
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6.8 Lemma 

Proof: 

For our admissible triplet (I - F, n, y), 

D(1 - F, n, y) = D(1 - (F + y), n, 0). 

(F + y)(O) = F(O) + y. Since F is compact, by the above lemma 

F + y is also compact . Also 0 = (1 - (F + y))(x) = x - Fx - y implies that 

y = (I - F)(x). Therefore x ~ an. 

So 0 ~ (I - (F + y))( on). Hence (1 - (F + y), n, 0) is an admissible triplet . 

y ~ (1 - F)( an) and (I - F)( on) is closed, so we can find U E 11(0) such that 

(y + U) n (I - F)( an) = 0. By Theorem 6.4, there exists a finite dimensional I 

such that F x - Fx E U on O. Let X be a subspace of X such that dim X < ( 
1 1 1 

F (0) eX, y E X and let n = n n X . Then 
1 - 1 1 1 1 

D(1 - F, n, y) = d((1 - F ) 1 0 ' n , y) 
111 

= d((1-(F + y))If) , n , 0) . (~ 
1 H 1 

1 

Now (F + y)(O) = F (0) + y eX, 0 E X and 
1 1 - 1 1 

(F + y)x - (F + y)x = F x - Fx E U on O. Thus by definition 
1 1 

D(1 - (F + y), n, 0) = d((1 - (F + y)) 1 0 ' n ,0) 
1 1 1 

(lC 

Thus (9) and (10) give us 

D(1 - F, n, y) = D(1 - (F + y), n, 0) . 

6.9 Theorem 

For the triplet (I - F, n, y), the degree defined by 

D(1 -F, n, y) = d((1 - F )1 0 , n, y) 
1 1 1 

(where the triplet (I - F , n , y) is defined as above) satisfies (D1)-(D3). 
1 1 

Proof: 

(Dl) : 
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To show D(1, 0, y) = 1 if Y E O. Here F == O. Since y ~ 1( 80) = 80, there exists 

U E U(O) such that (y + U) n an = 0. If F == 0, then F is finite-dimensional ani 
1 1 

F x - Fx = 0 E U on O. Let X be a subspace of X such that dim X < rn, y E X 
1 1 1 

and let 0 = 0 n X. Now F (0) = 0 EX. So by definition 
1 1 1 1 

D(1 - F, 0, y) = d((1 - F ) I 0 , 0 , y) = d(1 I r. , 0 , y) = 1 since y EO, an 
1 H 1 H 1 1 

1 1 

by (d1). 

(D2) : 

Let 0 1, 0 2 be disjoint open subsets of 0 such that y E X \ (I - F)(O \ 0 1 U 0 2
). W 

must show that D(1 - F, 0, y) = D(1 - F, 0 1, y) + D(1 - F, 0 2, y) . Now 

o \ 0 1 U 0 2 is closed and hence (I - F)(Ol U 0 2) is also closed. Therefore theI 

exists U E U(O) such that (y + U) n (I - F)(O \ 0 U 0 ) = 0. By theorem 6.4(( 
1 2 

there exists a finite dimensional F such that F x - Fx E U on ( 
1 1 

Let X be a .subspace of X such that F (0) eX, y E X and let 0 = 0 n X. Then 
1 1 -1 1 1 1 

D(1-F, 0, y) = d((1 -F) 10 ,0, y) . (1] 
1 1 1 

F I oi is also an approximation for F I oi, i = 1, 2. If Oi = Oi n X for i = 1, ~ 
1 H H 1 1 

then 

D(1 - F, oi, y) = d((1 - F ) I Oi, oi, y), 
111 

for i = 1,2. 

0 1 and 0 2 are disjoint open subsets of 0 . 
1 1 1 

o \ 0 1 U 0 2 = 0 n X \ (0 1 n X ) U (0 2 U X ) 
1 1 1 1 1 1 

~ 0 n X \ (0 1 U 0 2) n X 
1 1 

= (0 \ 0 1 U 0 2) n X . 
1 

(1~ 

Suppose y = (I - F )(x). Then y = (I - Fx) - (F x - Fx). Now F x - Fx E U. S 
1 1 1 

(I - F)(x) E Y + U. Therefore x ~ 0 \ 0 1 U 0 2 and so x ~ 0 \ 0 1 U 0 2. Thus 
1 1 1 

Y ~ (1-F )(0 \ 0 1 U 0 2
) and by (d2), 

1 1 1 1 
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d((I - F ) I 0 ' 0 , y) 
111 

= d((1 - F ) I 1\1,0 1
, y) + d((1 - F ) 11)2,02, y). 

1 H 1 1 H 1 
1 1 

(12 

Thus, (11), (12), (13) imply that 

D(I - F, 0, y) = D(1 - F, 0 1, y) + D(I - F, 0 2, y). 

(D3) : 

Let H: J x 0 --i X and y: J --i X be continuous, (0 ~ X open, X is a locall 

convex t.v.s.) H be compact and y(t) EX \ (I - H(t, .))(80) for all t E J. Then" 

must show that D(I - H(t, .), D, y(t)) is independent of t. First take y(t) :: O. Fi 

7 E J. We will show that there is some interval about 7 on which the degree. 

* constant . Consider X = IR x X. If 11 is a system of neighbourhoods at the origi 

* for X then a system of neighbourhoods at the origin for X is given by 

* 11 = {(-8, 8) x U / 8> 0, U E 11}. 

* Let 0 = IR x 0 and define 

where 

* H (t, x) = (0, H( <t>, x)), 

* for (t, x) EO , 

<t> = {l if t < 0 
if 0 ~ t ~ 1 
if t > 1 

-* - * -* * Then 0 = IR x 0, ao = 0 \ 0 = IR x 0 \ IR x 0 = IR x an. Also for (t , x) E 0 

* we have H (t, x) = (0, H( <t>, x)) f. {O} x H(J x 0) , so 

. * -* - * * H (0) f. {O} x H(J x 0) and this is relatively compact, and hence H (0 ) • 

* -* relatively compact. Thus H : 0 --i {O} X X is compact. Suppose 

* * * (7,0) E (I - H )(80). Then (7, 0) = (I - H )(t, x) for some (t, x) E IR x er 
* Therefore (7,0) = (t, x) - H (t, x) = (t, x) - (0, H( <t>, x)). So t = 7 and 

150 



* * o = (I - H(r, .))(x) where x € an, a contradiction. Thus (r, 0) ~ (I - H )(80 ) 

* * * * By theorem 6.4(a), (I - H )(80 ) is closed. Therefore there exists U E 2t suc: 

* * * * that (U* + (r, 0)) n (I - H )(80 ) = 0. Now U E 2t implies that there exists 

* 0> 0 and U E 2t such that U = (-0, 0) x U. So 

* * (( r - 0, r + 0) x U) n (I - H )( an ) = 0. Let It - rl < o. Then 

* * * (t, x) ~ (I - H )(80 ) for all x E U. Thus (t, x) * (I - H )(t , x) for all x E U ani 
1 1 

* for all (t , x ) E lR x 80 . So in particular, (t, x) * (I - H )(t, x) for all x E U and 
1 1 1 

X E 80, i.e. (t, x) * (t, x ) - (0, H( <t>, x)) for all x E U and x E 80, implyin 
1 1 1 1 

that U n (I - H«t>, .))(80) = 0 whenever It - rl < o. By theorem 6.4(a), ther 

exists a finite dimensional F : J x 0 --! X such that F(t, x) - H(t, x) E U on J x r. 
If X is a subs pace of X such that dim X < 00, F(J x 0) ~ X and ° = ° n X , then 

1 1 1 1 1 

D(1 - H(t, .), 0, 0) = d((1 - F(t, .)) I 0 ' ° 1,0) 
1 

for It - rl < 0 on J . Therefore there exists 0> 0 such that D(1 - H(t, .), 0,0) j 

constant on (r - 0, r + 0) n J . So every r E J has a neighbourhood on which th 

degree is constant . Since J is a connected set, D(1 - H(t, .),0,0) is constant on J . 

Now if y(t) was not a constant, then 

D(1 - H(t, .),0, y(t)) = D(1 - (H(t, .) + y(t)), 0,0) (14 

by lemma 6.8. 

Now y is continuous and J is compact so y(J) is compact. Therefore 

H(J x 0) + y(J) is compact by lemma 6.7. Therefore (I - (H(t, .) + y(t)), 0, 0) j 

an admissible triplet and so by above D(1 - (H(t, .) + y(t)), 0, 0) is constant on ~ 

So (14) implies that D(1 - H(t, .), 0, y(t)) is constant on J, 

proving (D3) . 

The proof of (D3) is found in Nagumo [16]. The following are some results on subspace 
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and projections. 

6.10 Lemma 

Proof: 

Let X be any topological space and X a subspace of X. If K C K is compact in X , 
0-0 0 

then K is compact in X. 

Let {V a} aEA be any open cover of K in X. Then {V n X } EA forms an 
a 0 a 

open cover of K in X. By compactness, this can be reduced to a finite subcover, 
o 

say, V n X , ... , V n x. So V , .. . , V is a finite subcover of K in X . Thus K is 
1 0 n 0 1 n 

compact in X. • 

6.11 Theorem (Tychonoff) 

Let (X, T) be a Hausdorff real topological vector space of finite dimension n . Then 

X admits a norm 11.11 that gives the topology T and makes (X, 11.11) isometrically 

isomorphic to ([Rn, 1.1 ) (where 1.1 is the usual norm in [Rn). Indeed, if h : X -l [Rn 

is any algebraic isomorphism, then it is also a homeomorphism (X, T) -l ([Rn , 1.1) 

and Ilxll = I hex) I , x E X defines a norm 11·11 on X with the asserted properties. 

We do not include the proof for the above theorem. If it is required, it can be found in 

SchaJer [29] . 

6.12 Lemma 

Proof: 

Let X be a finite dimensional subspace of a Hausdorff t.v.S. X. Then X is closec 
o 0 

in X. 

X IS a subspace of X, so X has the relative topology induced by th 
o 0 

topology on X. By Tychonofi's theorem (6.11), X is homeomorphic with [Rn ani 
o 
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has a norm 1.1 that gives the relative topology on Xo · Now, let (x>.) >'EA be a net i 

X such that x, --I x E X. To show x EX . Now B (0) in X is open in X an 
o A 0 1 0 0 

hence by the relative topology, there exists an open set 0 in X such that 

B (0) = 0 n X. 0 open in X, and 0 E 0 implies that there exists U E 91(0) suc 
1 0 

that U ~ O. Since X is a t.v.s., there exists V E 91(0) such that V + V ~ U. 

x>. --I x implies that there exists >'v E A such that (>. ~ >'v implies x>. E x + V 

Therefore x>. - x E V and so x - x>. E (-1) V f V (since V is balanced). So f( 
V V 

>. ~ >'v we have 

x>.-x>. = (x>.-x) + (x-x>. )EV+VfUfO. Butx>.-x>. EX . So 
V V v 0 

x>. - x>. E 0 n X = B (0) for all >. ~ >.v. Therefore Ix>. - x>. I < 1 and 
V 0 1 V 

Ix>. I ~ 1 + Ix>. I = R for all >. ~ >'v. So (x>.)>.)>. f BR(O) is a subnet ( 
V - V 

(x>')>'EA where x>. --I x. Now B = Clx BR(O) is compact in X (it is closed all 
o 0 

bounded) and so, by lemma 6.10, also compact in X. Since X is Hausdorff, B 

closed in X. Hence x E B ( X. Therefore x EX, proving X is closed in X. 
- 0 0 0 

The next result can be found in standard books on linear functional analysis (for examp 

Limaye [27]). 

6.13 Lemma 

If {xl, x2
, .. • , xn} is a linearly independent set in a nls. X, then there exists 

* i {l·f· . a , a , ... , a in X such that a.(x ) = 0 ~f ~ := ~ . 
1 2 n JIlT] 

Let X be a finite dimensional real nls. (dim X = n) with basis {x \ x 2, . .. , X n}. Then by tb 

above lemma, there exists a, a, ... , a in X* such that a (xi) = {1 ~f ~ = L 
1 2 n j 0 If 1 f ] 
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n 
So if x E X, then there exists). , ... ,). E IR such that x = ). xl + .. . + ). x . 

1 n 1 n 
1 n 

a.(x) = a.(). x + ... + ). x ) 
J J 1 n 

1 n 
= ). a.(x ) + ... + ). a.(x ) 

1 J n J 
j 

= )..a.(x ) 
J J 

= ). . 
j 

1 n n . 
Then x = a (x) x + ... + a (x) x =.}; a,(x) Xl. 

1 n 1=1 1 

The next results can be found in Taylor [32]. 

6.14 Lemma 

A T t .v.S. is Hausdorff. 
1 

6.15 Lemma 

Let X be a locally convex topological vector space. Let M be a subspace of X an 

let f be a continuous linear functional on M . Then there exists a continuous linec 

functional F on X which is an extension of f. 

6.16 Lemma 

Let X be a locally convex T t .v.S. and let X be a finite dimensional subspace of: 
1 1 

(dim X = n). Then there exists a continuous projection P : X --+ X from X ont 
1 1 1 

X , and X and X = (I - P )(X) are closed complementary linear subspaces of )< 
1 1 2 1 

i.e. X and X are closed with X = X ID X . 
1 2 1 2 

Proof: 

By lemma 6.14, X is Hausdorff. Therefore by Tychonoff's theorem, )( 

admits a norm which gives it precisely the relative topology in X. Let {x \ .. . , x
D 
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be a basis for X. Since X is a nls., by remarks after lemma 6.13 there exists 
1 1 

* n a, ... , a E X such that x = ):: a.(x) xi for all x EX. 
1 n 1 1=1 1 1 

By lemma 6.15, there exist continuous linear functionals 13. on X which al 
1 

n . 
extensions of a. Define a mapping P : X -i X by P x = .h f3.(x) x\ x E ) 
ill 1 1=1 1 

Now P is linear and continuous (since each 13. is). If x EX, then 
1 1 1 

n . n . 
P X = .h f3.(x) Xl = .h a.(x) Xl = x. Thus P is surjective. Also, since 

1 1=1 1 1=1 1 1 

P x E X for all x E X, P (P x) = P x. So p 2 = P. Therefore P is a continu01 
1 1 11 1 11 1 

projection of X onto X (P = 1- P is easily a projection of X onto a 
1 2 1 

complementary subspace of X). It remains to be shown that X and X = P P 
1 1 2 2 

are closed. 

Let x E Xl. Then there exists a net (xA)AEA in Xl converging to x in Xl. But 

P x, = x, and P x, -i P X (P continuous). Hence x, -i P x. 
11\ 1\ 11\ 1 1 1\ 1 

By uniqueness of limits (since X is Hausdorff), x = P x EX. Therefore X is close, 
1 1 1 

Now P = I - P : X -i X is a continuous projection of X onto X and similarly J 
2 1 2 2 

is closed. 

We are now ready to show that the degree is unique. 

6.17 Theorem 

Proof: 

Let X be a locally convex t.v.s. and 

At= {(I - F, 0, y) / ° ~ X open, F : n -i X compact, y EX \ (I - F)(aO)}. 

Then there is a unique map D : At-i 71 satisfying (D1)-(D3). 

By theorem 6.9, the existence of such a map is guaranteed. 

Let the map D : M -i 71 satisfy (D1)-(D3) and let (I - F, 0, y) EAt . I - F is 
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closed operator by Theorem 6.4(b). So (I - F)( ao) is closed. Hence there exists 

U E U(O) such that (y + U) n (I - F)(aO) = 0. By theorem 6.4(a), there exists: 

finite dimensional F such that F x - Fx E U on O. F is also a compact map b: 
1 1 1 

theorem 6.4(a). Consider a subspace X of X such that dim X < rn, F (0) ( X , 
1 1 1 - 1 

Y E X and 0 = 0 n X. Define 
1 1 1 

by 

H(t, x) = t F x + (1 - t) Fx = Fx + t(F x - Fx) 
1 1 

for (t, x) E J x O. 

Let (H(t)" x),)) be a net in H(J x 0). Since J is compact, we may assume withou 

loss of generality that t), -t \ E J . F 1(0) is relatively compact, so F l(x),) has 

convergent subnet, say F (x ) -t y . F(O) is also relatively compact, so F(xJ ha 
1 a 1 lA. 

a convergent subnet, say F(xf3) -t y. So 

H(tf3 , x(3) = tf3 F 1x f3 + (1 - t(3) FXf3 -t \y 1 + (1- \) y. 

Thus H is compact (since it is continuous) . 

If y = (I - H(t, .))(x) (t, x) E J x 0, then 

y = x - F(x) - t (F x - Fx) = (I - F)(x) - t (F x - Fx). Now F x - Fx E U an 
1 1 1 

since U is balanced, t (F x - Fx) E U. Therefore (I - F)(x) E Y + U and so 
1 

x ~ a~. Therefore y ~ (I - H(t, .))(00) for all t E J. So by (D3), 

D(I - F, 0, y) = D(I - F , 0, y). (15 
1 

Since X is finite dimensional, there exists a continuous projection P : X -t X 
1 1 

Then X = X ID X where X = P (X), P = I - P. (By lemma 6.16). B 
1 2 2 2 2 1 

Tychonoff's theorem, since X is finite-dimensional, it is also a nls 
1 

Now 0 is a closed subset of X , so by theorem 1.2.15, F I j) X: 0 n X -t X ha 
1 1 l U n 1 1 _ _ 1 

a continuous extension F: X -t X such that F (X ) ( cony (F (0 n X )) ( X. X 
11 1 11- 1 1 - 1 

is a nls., hence has a measure of noncompactness defined on it. 
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-
Hence ,(F (X )) ~ , (conv (F (0 n X))) = iF (0 n X )) = 0 since F (0 n X ) c X 

11 1 1 1 1 1 l-

is relatively compact. Therefore F is compact . 
1 - -

Now let H(t, x) = t F x + (1 - t) F P x for (t, x) E J x O. F is compact, henc 
1 1 1 1 

F P is also compact . Since F is compact, H must also be compact. Suppose 
111 

Y = (I - H(t, .))(x) for (t, x) E J x O. Then x = y + H(t, x) EX . Therefore 
1 

x E 0 n X . Therefore P x = x and F P x = F x = F x. So 
1 1 1 1 1 1 

Y = X - t F x - (1 - t) FP x = x - t F x - (1 - t) F x = (I - F )(x) . Thus w 
1 1 1 1 1 1 

must have x t an and so y t (I - H(t, .))(80) for all t E J . Thus by (D3) again 
-

D(I-F, 0, y) = D(I-F P, 0, y) . 
111 

(16 

Now consider 0' = P-1(0) . 0 open in X and P continuous give us 0' open i 
1 1 1 1 1 

X. Also 0 cO' . So 0 cO' n 0 with 0' n 0 open in X. If x E 0 with 
1- 1-

- -
Y = (I - F P )(x), then x = y + F P x EX . So x E 0 n X = O. Therefore 

11 11 1 1 1 - -
y t (I - FP )(0 \ 0 ) J (I - F P )(0 \ 0' nO). So y t (I - F P )(0 \ 0' n 0' 

11 1- 11 11 ' 

Since 0' nO is open in X, we have by (D7), 
- -

D(I - FP, 0, y) = D(I - FP, 0' nO, y). 
1 1 1 1 

(17 
- -

If x E 0' = P-l(O ) with y = (I - FP )(x), then x = y + FP x E X and so 
11 11 11 1 

x = P x and P x EO . So x EO. Therefore 
1 1 1 1 -

y t (I - F P )(0' \ 0 ) 
1 1 1 

(U 
-

Now to show y t (I - F P )(80'): Let x EO' . Then there exists a net (x,) c 0 
1 1 A -

such that x-\-I x. P continuous implies P X,-I P x. But P x, EO. So 
1 lA 1 lA 1 

P x EO. Therefore x E P-l(O ), and therefore 0' ~ P-l(O ) . 
11 _ 11 11 

Now let y = (I - F P )(x) with x E 0'. Then P x E 0 and hence 
1 1 1 1 

FP x = F P x. So 
1 1 1 1 

y = (I - FP )x 
1 1 

(U 

and x = y + F P x EX. Therefore x = P x E 0 ~ 0 n X . 
1 1 1 1 1 1 

If y = (I - F P)x for x E 0 then x = y + F P x EX. So 
1100 0 1101 

P X = x and y = (I - F)x and so x tan. Therefore 
1 0 0 1 0 0 
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y ~ (I - F P )( an). 
1 1 

(20 

(19) and (20) give us that x ~ ao and so x E 0 n Xl = 0
1 
f. 0'. Therefore 

y ~ (I - F P )( aO'). (21 
1 1 - -

(18) and (21) givey ~ (I -F P )(0' \ 0) 2 (I-F P )(0' \ 0' nO). So by (D7) 
11111 - -

D(1-F P, 0' no, y) = D(1-F P, 0', y). (22 
1 1 1 1 

Let x EO' ( P -1( 0 ). Then P x EO. SO F P x = F P x. Therefore 
-11 11 11 11 - -

(I-F P )(x) = (1-F P )(x). Hence (1-F P )In, = (I -F P )In'. Therefore 
11 11 11 U 11 u 

D(I - FP, 0', y) = D(1 - FP, 0', y). (2~ 
1 1 1 1 

(15), (16), (17), (22) and (23) give us 

D(1 - F, 0, y) = D(1 - FP, p-1(0 ), y) . (24 
1 1 1 1 

Now let (f, 0 , y) be an extended Brouwer triplet: i.e. 0 ~ X open, f: 0 --! X 
1 1 1 1 1 

continuous, y E X \ f( an ) and (id - f)(O ) is bounded. 
1 1 1 

Define d (f, 0 , y) = D(1 - (I - F)P , P-1(0 ), y). 
o 1 1 1 1 

For (1 - (I - f)P , P-1(0 ), y) to be an admissible triplet for D we must have 
1 1 1 

(i) p-1(0 ) open in X. 
1 1 

(ii) (I - f)P I compact. 
1 P-1(0 ) 

1 1 

(iii) yE X \ (I - (I - f)P )( ap-1(0 )). 
1 1 1 

We now prove them. 

(i) 

(ii) 

o is open in X and P : X --! X is a continuous projection. So P-1(0 ) 
1 1 1 1 1 1 

open in X. 

(I - f)P (p-1(0 )) ~ (I - f)P (P-1(0 )) = (I - f)(O ) ( X. But 
111 111 1- 1 

(I - f)(O ) is bounded. So (I - f)P (p-1(0 )) is a closed bounded subset ( 
1 1 1 1 

a finite dimensional space, hence is compact. So (I - f)P /--
1 P -1(0 ) 

1 1 

compact. 

158 



(iii) 8P-1(0 ) = p-1(0 ) \ p-1(0 ) C P-1(0 ) \ p-1(0) = p-1(0 \0 ) = p-1(an ). 
11 11 11- 11 1 111 1 1 

Let y = (I - (I - f)P )x with x E 0P-1(0 ) c p-l( an) . Therefore P x E an . 
1 11- 1 1 1 1 

Also x EX . So x = P x. Therefore x E an . So y = (I - (I - f)P )x = f 
1 1 1 1 

and x E an , a contradiction. Hence y ~ (I - (I - f)P )( 8P-1(0 )) . 
1 1 1 1 

Now we must show that d satisfies (d l)-(d 3). 
000 

(d 1) : 
o 

Let y EO. Then 
1 

d (id, 0 y) 
o 1 

(d 0 2) : 

= D(1 - (I - id)P , P-l(O ), y) 
1 1 1 

= D(I, p-1(0 ), y) 
1 1 

= 1 since P y = y and hence y E P-1(y) and by (D1). 
1 1 

Let 0 1, 0 2 be disjoint open subsets of 0 with y E X \ f(O \ 0 1 U 0 2). Then 
1 1 1 

d (f, 0 , y) = D(1 - (I - f)P , p-l(O ), y). (25' 
o 1 1 1 1 

0 1, 0 2 are disjoint open subsets of O. Hence p-1(01), p-l(02) are disjoint ope] 
1 1 1 

subsets of P-l(O). Now suppose y = (I - (I - f)P )x where 
1 1 

x E P-1(0 ) \ P-l(OI) U p-1(02) ( P-l(O ) \ P-l(OI U 0 2) = P-l(O \ 0 1 U 0 2). 
111 1 -111 11 

Therefore P x E 0 \ 0 1 U 0 2• Also 
1 1 

x = Y + (I - f)P x EX . So P x. = x. Therefore x E 0 \ 0 1 U 0 2 and 
1 1 1 

Y = (I - (I - f)P )x = f(x), a contradiction. So 
1 

y ~ (I - (I -f)P )(P-l(O ) \ P-l(OI) U P -l(02)). So by (D2) 
1 1 1 1 1 

D(1 - (I - f)P , P-l(O ), y) 
1 1 1 

= D(1 - (I - f)P , P-l(01), y) + D(1 - (I - f)P , P-1(02), y) 
1 1 1 1 

= d (f, 0 1, y) + d (f, 0 2, y). 
o 0 
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(25) and (26) give d (f, 0 , y) = d (f, 0 1, y) + d (f, 0 2
, y) . 

010 0 

(d 3) : 
o 

Let 0 c X be open, h : J x n -+ X and y : J -+ X be continuous, 
1- 1 1 1 1 

sup {lx-h(t,x)I/(t,x) E J x n} < (I). 

1 

(N.B.: we can write I. \, since X is f.d. and hence a nls) and y(t) ~ h(t, (0) for a: 
1 1 

t E J. 

d (h(t, .), 0 , y(t)) 
o 1 

= D(1 - (I - h(t, .))P , p-l(O ), y(t)) . 
1 1 1 

(27 

Define H : J x p-l(O ) -+ X by H(t, x) = (I - h(t, .))P x, (t, x) E J x P-l(O ). 
1 1 1 1 1 1 

{(id - h(t, .))(0 1) / t E J} is a bounded subset of a finite dimensional space. Henc 

is relatively compact. Thus H is compact (easily continuous). Now suppose 

y(t) = (I - H(t, .))(x), (t, x) E J x p-l(O). Then x = y(t) + H(t, x) EX. 
1 1 1 

So P x = x. Also x E P-l(O ) C p-l(O). So P x EO. Therefore x EO, and 
1 11- 11 1 1 1 

y(t) = X - H(t, x) = x - (I - h(t, .))P x = x - (I - h(t, .))x = h(t, x). Hence 
1 

x ~ 80 i.e. P x ~ 80. This implies that x ~ p-l( 00 ). 
1 1 1 1 1 

But 8P-1(0 ) = p-1(0 ) \ p-l(O ) C P-l(O ) \ P-l(O ) = P-l(80). Thus 
11 11 1 1 - 11 11 1 1 

x ~ 8P-l(0). Therefore y(t) ~ (I - H(t, .))(8P-l(0)) for all t E J. So by (D3), 
1 1 1 1 

-1 
D(1 - H(t, .), P (0 1), y(t)) is independent of t and by (27), 

1 

d (h(t, .), 0 , y(t)) is independent of t. 
o 1 

Thus d , defined on the extended Brouwer triplets, satisfies (d l)-(d 3). Since tl: 
o 0 0 

Brouwer degree is unique, d = d. 
o 

Therefore by (24), 

D(1 - F, 0, y) = D(I - FP, P-1(0 ), y) = d((id - F ) 1 j) , 0 , y). 
1111 IH 1 

1 
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Thus there is a unique map 

D : .Jt---'j II satisfying (Dl)-(D3) . • 
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CHAPTER 7 

DEGREE FOR SEMICONDENSING VECTOR FIELDS 

In this chapter, we give an extension of the degree to semicondensing vector fields . Most 

the work is extracted from the paper by Schoneberg [20]. 

Let X be a real Banach space of infinite dimension. 

7.1 Definition 

Let At = {c : IR+--l IR+ / c is a continuous strictly increasing map such that c(O) = 

and c(r) --l (]) as r --l (]) }. 

F : n --l X, where n ~ X, is a c-condensing map, for c E At if it is a continuol 

map such that -y(FB) < c( ,(B)) for all bounded B ~ n with -y(B) > O. 

If c( t) :: t, then a c--condensing map is simply a ,--condensing map. 

7.2 Definition 

* x * The map 5: X --l 2 defined by 5x = {x* E X / x*(x) =lxl2 = Ix*12} 

called the duality map of X. 

The following is an extension of the inner product in Hilbert spaces to real Banach spaces. 

7.3 Definition 

The semi-inner products (., .):!: : X x X --l IR are defined by 

(x, y)+ = Iyl lim t-1(ly + txl -Iyl) and 
t-lO + 

(x, y) = Iyl lim t-1(lyl-ly-txl). 
t-lO + 

162 



Deimling [28] shows that the semi-inner products have the representations 

(x, y)+ = sup {y*(x) / y* E :Yy} and 

(x, y) = inf {y*(x) / y* E :Yy } . 

Deimling [28] also shows that the semi-inner products satisfy the following useful 

properties. 

7.4 Theorem 

(x, z) _+ (y, z) _ ~ (x + y, z)± ~ (x, z)± + (y, zL , 

I(x, Y)±I ~ Ixl IYI , 

(x + ay, y)± = (x, y)± + a lyl2 for all a E IR and 

((}:X, (3y) ± = a{3 (x, y) ± for a{3 ~ 0 . 

7.5 Theorem 

Proof: 

Let n ~ X be open, F ,F : n --j X be continuous, c: IR+ --j IR be continuous and 
1 2 

€ ~ O. Suppose that for all y ,y En, 
1 2 

c( I y 1 - y 21) I y 1 - y 21 ~ (F lY - F l ' Y 1 - y) + + € I y 1 - y 21 . 

Then for all y , y En, 
1 2 

c( I y - y I) I y - y I ~ (F y - F y ,y - y) + € I y - y I . 
1 2 1 2 11 221 2- 1 2 

Let y ,y E n. Since n is open, there exists d > 0 such that 
1 2 

z.(t) = y. - t F.y. E n whenever 0 ~ t ~ d and j = 1,2. 
J J J J 

c( I z (t) - z (t) I) I z (t) - z (t) I 
1 2 1 2 

< (F z (t) - F z (t), z (t) - z (t)) + + € I z (t) - z (t) I 11 22 1 2 1 2 
(t-1(z (t) - z (t)) + F z (t) - F z (t) - t-1(z (t) - z (t)) z (t) - z (t)) 

1 2 11 22 1 2' 1 2 + 
+ € Iz (t) -z (t)1 

1 2 

(t-1(z (t) - z (t)) + F z (t) - F z (t), z (t) - z (t))+ - t-1lz (t) - z (t)12 
1 2 11 22 1 2 1 2 

+ € Iz (t) -z (t)1 
1 2 
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( t-1[lz (t) -z (t) + t(F z (t) -F z (t))1 -Iz (t) -z (t)1 
1 2 11 22 1 2 

+ Et] IZ (t) -z (t)1 
1 2 

for 0 < t ~ d . 

Suppose y f y . Since z (t) - z (t) --I Y - Y as t --I 0 +, for all small enough 
1 2 1 2 1 2 

Iy - y I 
t > 0, we may multiply by 1 2 to get 

Iz (t) - z (t)1 
1 2 

c( I z (t) - z (t) I) I y - y I 
1 2 1 2 

I y - y I t -1[ I y - y + t(F Y - F z (t)) + t(F z (t) - F y ) I 
1 2 1 2 22 22 11 11 

( 

- I y - y - t(F Y - F y ) I + Et] 
1 2 1 1 2 2 

I y - y I t -1[1 y - y I + t I F y - F z (t) I + t I F z (t) - F y I 
1 2 1 2 2 2 2 2 1 1 1 1_. 

( 

- I y - Y -t(F Y - F y ) I + Et ] 
1 2 1 1 2 2 

I y - y I t -1[ I y - y I - I y - y - t(F Y - F y ) I ] 
12 12 12 11 22 

+ Iy -y I [IFy -Fz(t)1 + IFz(t)-Fy I +E] . 
1 2 22 22 11 11 

Noting that Iyllim t-1[1yl - Iy - txl ] = (x, y) ,z.(t) --I y. as t --I 0+ , 
t-+ 0 + - J J 

and 

the continuity of c , 1.1, F and F , we obtain, by taking limits as t --I 0+ , 
1 2 

c( I y - y I) I y - y I ~ (F y - F y , y - y) + ElY - y I ,giving us the 
1 2 1 2 11 221 2- 1 2 

desired result. • 
7.6 Definition 

Let 0 ~ X and F : 0 --I X. Then F is said to be accretive if (Fx - Fy, x - y)+ ~ 0 

for all x, y EO. 

If c E .At, then F is c-accretive if (Fx - Fy, x - y) + ~ c( I x - y I) I x - y I for all 

x, yE O. 

F is strongly accretive if F is c-accretive for some c E .At . 

N.B. If 0 is open and F is continuous, then we can replace (., .)+ by (., .) in the 

above definition, by theorem 7.5. (In theorem 7.5, c need not belong to .At). 
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7.7 Theorem 

Let 0 ~ X be open and F : n -! X be continuous and strongly accretive. Then the 

following are equivalent :-

(1) 

(2) 

F has a zero in O. 

There exists x E 0 such that 1 Fx 1 ~ 1 Fx 1 for all x E 00. 
o 0 

The proof of the above theorem can be found in Kirk and Sch6neberg [23] and [24] . 

7.8 Definition 

Let 0 ~ X be open bounded. Then F : n -! X is said to be semicondensing if it is 

continuous and if there exists a bounded continuous mapping V: O"x 0 -! X and 

c E .At such that :-

(a) Fx = V(x, x) for all x E O. 

(b) {V( ., y) / y EO} is equicontinuous. 

(c) For all A ~ 0 with a(A) > 0, there exists £ E [ 0, c( a(A))) and a finite 

covering {A, ... , A } of A such that 
1 n 

c(ly -y I) Iy -y I ~(V(x,y)-V(x,y),y -y)++£ Iy -y 1 for 
1 2 12 11 2212 1 2 

all y ,y E 0 and all x ,x E A belonging to the same A .. 
1 2 1 2 1 

The pair (V, c), in the above definition, is called a representation for the semi condensing 

vector field F on O. 

7.9 Remark 

Theorem 7.5 with F = V(x , .) and F = V(x , .) allows us to replace (., .)+ by 
1 1 2 2 

(.,.) in condition (c) . 

The following example illustrates the conditions (a) , (b) and (c) in definition 7.8 . 
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7.10 Example 

Let 12 C X be open bounded, F : 0 ----f X continuous bounded and accretive, and 
- 1 

F : (2 ----f X a-<:ondensing. We will show that I + F - F is semicondensing. The 
2 1 2 

map V : 12 x n ----f X defined by Vex, y) = (I + F ) Y - F x is bounded and 
1 2 

continuous. 

(a) 

(b) 

(c) 

vex, x) = (I + F - F )x for all x E n. 
1 2 

Let x E 12 and E > O. Since F is continuous, there exists 0 > 0 such that 
2 

1 x - x' 1 < 0 implies 1 F x - F x' 1 < E. 
2 2 

So if 1 x - x' 1 < 8 then for yEn 

IV(x, y) - V(x', y)1 

1 (I + F )y - F x - (I + F )y + F x' 1 
1 2 1 2 

IFx-Fx'l 
2 2 

< E. 

Hence {V(., y) / y E 12} is equicontinuous. 

Let c(t) :: t and let x , x , y , y , E 12 . Then 
1 2 1 2 

c( 1 y 1 - y 21) 1 y 1 - y 21 

IY1-Y212 

< Iy -y 12 + (F Y -F y, y -y)+ (since F is accretive) 
1 2 11 121 2 1 

(F1Yl -Fl
2 
+ Yl -Y2' Yl -y)+ (by theorem 7.4) 

(V(x , Y ) - Vex , y ), y - y )+ 
1 1 1 2 1 2 

< (V(x , y ) - vex , y ), y - y )+ + (V(x , y ) - vex , y ), y - y )+ 
11 2212 22 1212 

< (V (x , y ) - V (x , y ), y - y ) + 
1 1 2 2 1 2 

+ IF x - F x 1 Iy - y I. 
2 1 2 2 1 2 (1) 

Let A ~ n with a(A) > O. Since F is a-<:ondensing, a(F (A)) < a(A) . By 
2 2 

definition of a, we can find E > 0 such that a(F/A)) < E a(A), and a finite 

covering {A, ... , A } of A such that IF x - F x I ~ E whenever x, x 
1 n 21 22 12 

belong to the same A .. So by (1), for all y ,y E n and all x ,x in the same 
1 1 2 1 2 
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A., we have 
1 

Iy -y 12~(V(x,y)-V(x,y),y -y)++£IY1-Y21 · 
12 11 2212 

Thus (V, c) is a representation for I + F 1 F 2 and so I + F 1 

semi condensing. 

F is 
2 

• 
We will now give some properties of semicondensing vector fields . 

7.11 Theorem 

Proof: 

Let n ~ X be open bounded and let F : 11 -l X be semi condensing. Then 

F is bounded. 

F is proper. 

F(A) is closed whenever A ~ 11 is closed. 

(1) 

(2) 

(3) 

(4) If n ~ n is open, then F 111 is semicondensing. 
1 1 

(5) If F : 11 -l X is semi condensing and t, t ~ 0 such that t + t > 0, then 

tF + tF is sernicondensing. 

(1) and (4) are obvious . (3) follows from (2) since F is continuous. 

To prove (5), if (V, c) and (V, c) are representations for F and F respectively, then 

(tV + tV, tc + tc) is a representation for tF + tF (noting that in the definition of 

sernicondensing vector fields, (., . L can be replaced by (., .) ). 

Now to prove (2) . Let (V, c) be a representation for F. Let K ~ X be compact. To 

show that F-1(K) is compact. Let (x ) be a sequence in F-l(K). Then (Fx ) ~ K 
n n 

and so we may assume that Fx -l z E K. 
n 

By the continuity of F we may select a 

sequence (z ) in n such that I x - z I ~ 1:. and 
n n n n 

1 I Fx - Fz I ~ - for each n. 
n n n 

Then Fz = Fx + (Fz - Fx ) -l Z + 0 = Z. 
n n n n 

Let A = {z / n E IN }. If we can 
n 

show that a(A) = 0 then some subsequence of (z ) will be convergent, say 
n 
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Z -! y. Then we will have x = z + (x - z ) -! Y + 0 = y and thus 
ll. ll . ll . ll. ll. 

1 1 1 1 1 

F-l(K) will be compact 

So suppose a(A) > O. Since F is semi condensing, there exists E E [ 0, c( a(A)) ) 

and a finite covering {A, ... , A }' of A such that 
1 m 

c(ly - yl) Iy - yl ~ (V(x, y) - V(x,)7), y - y)+ + E Iy - yl for all y, y E 0 and 

all x, x E A belonging to the same Ai. Choose 8> 0 such that E + 28 < c(a(A)) 

and then choose n E IN such that I Fz - z I ~ 8 for all n ~ n . Let r. ~ A be defined 
o II 0 1 

by r. = {y E A. / y = z for some n ~ n }. By definition of a, we can find 
1 1 II 0 

some j E {l, ... , m} such that diamT. ~ a(A). (N.B.: a(A) = a({z / n ~ no}))· 
J II 

So for y, y Er., we have, 
J 

c(ly - yl) < IV(y, y) - V(y, y)1 + E 

IFy -Fyl + E 

< I Fy - z I + I z - Fyl + E 

< 8+8+E 

28 + E 

So c( diam r.) ~ 28 + E < c( a( A)) and since c is strictly increasing, 
J 

diam r . < a(A) ~ diam r., a contradiction. Hence a(A) = o. 
J J 

7.12 Definition 

• 

Let 0 ~ X be open bounded and F: [2 -! X. F is said to be semiaccretive if F is 

continuous and there exists a bounded continuous map W : 0 x 0 -! X such that 

Fx = W(x, x) for x E 0, W(x, .) is accretive for all x E 0, and the map 

x t-----+ W(x,.) is a compact map of 0 into the space of bounded, continuous and 

accretive mappings of 0 into X, where the latter space is taken with the topology of 

uniform convergence; 
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7.13 Theorem 

Let 0 ~ X be open bounded, F : n ---t X semi condensing and G n ---t X 

semiaccretive. Then F + G is semicondensing. 

The proof of the previous theorem can be found in Schoneberg [20]. In defining the degree, 

the following theorem proves very useful . 

7.14 Theorem 

Proof: 

Let 0 ~ X be open' bounded and let F : n ---t X and F : n ---t X be 
1 2 

semi condensing with representations (V , c ) and (V , c ) respectively. Define 
1 1 2 2 _ 

W : J x 0 x 0 ---t X and d : J x lR+ ---t lR + by 

W(t, x, y) = t V (x, y) + (1 - t) V (x, y) and d(t, r) = t c (r) + (1 - t) c (r). 
1 2 1 2 

Then the set G = { (t, x) E J x 0 / W(t, x, y) = 0 for some y EO} is open in 

J x X and there is a unique map H : G ---t 0 satisfying W(t, x, H(t, x)) = 0 for 

all (t, x) E G. 

Furthermore, H is continuous and for all bounded A ~ X with o:(A) > 0 we have 

o:(H( G n (J x A))) < 0:( A). 

We break the proof up into four parts. 

(a) For all (t, x) E J x 0, the map W( t, x,.) is continuous and d( t, . )-accretive: 

t F + (1- t) F is semi condensing by theorem 7.11 and (W(t, ., .), d(t, .)) is 
1 2 

easily a representation for it . Let (t, x) E J x O. Since 0 is open, there exists 

r > 0 such that B (x) ~ O. Then o:(B (x)) = 2r > O. Thus there exists 
r r 

E(t) E [ 0, d(t, o:(B (x))) ) = [ 0, d(t, 2r)) and a finite covering {A , ... , A } 
r 1 n 

of B (x) such that 
r 

d( t, I y - y I) I y - y I 
1 2 1 2 

~(W(t,x,y)-W(t,x,y),y -y )++E(t) Iy -y I 
11 2212 12 
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for all y ,y E 12 and all x ,x E B (x) belonging to the same A .. 
I 2 I 2 r 1 

Take x = x = x and let r -+ O. Then we have 
I 2 

d( t, I y - y I) I y - y I 
I 2 1 2 

( W(t, x, Y ) -W(t, x, y ), y - y )+ 
1 2 1 2 

(2) < 

for all y ,y E 12 . Thus, by definition, W(t, x, .) is d(t, .)-accretive. 
1 2 

Now let yEn and E > O. Since W is continuous, there exist neighbourhoods 
o 

N ,N and N of t, x, and y respectively, such that if 
t x Yo 0 

(i, x, y) E N x N x N ,then 
t x Yo 

IW(f, x, y) - W(t, x, y)1 < E. Thus whenever yEN, we have 
o Yo 

IW(t, x, y) - W(t, x, y)1 < E, proving the continuity ofW(t, x, .). 
o 

(b) G is open: 

Let (t , x ) E G. Then there exists yEn such that W(t , x , y ) = O. 
o 0 0 0 0 0 

Since 12 is open, we can choose R > 0 such that BR (y 0) ~ 12. From (2) we 

have for all y , yEn, 
1 2 

d( t , I y - y I) I y - y I 
o 1 2 1 2 

< ( W(t , x , y ) - W(t , x , y ), y - Y )+ 
001 002 1 2 

< IW(t , x, y) - W(t , x, y)1 Iy -y I. 
001 00212 

Thus for y , yEn with y * y , 
1 2 1 2 

d(t , I y - y I) ~ I W(t , x , y ) - W(t , x , y ) I 
012 001 002 

Ify = y and y = y E aBa(y ) (and hence y * y ), then 
1 0 2 0 1 2 

IW(to,\,y)1 

IW(t,x ,y)-W(t,x,y)1 
o 0 000 

) d( t , I y - y I) 
o 0 

d(t , R) 
o 

> O. (3) 

By the equicontinuity of {V.( ., y) / yEn }, 
1 

1, 2, and by the 
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boundedness of V and V , {W( ., .,y) / y EO} is equicontinuous. 
1 2 

Therefore there exists 0> 0 such that if max { It - t I, I x - x I } ~ 0 then 
o 0 

IW(t,x,y)-W(t ,x ,y)1 ~-21d(t ,R) (4) 
o 0 0 

for all y E O. 

So if max { It - t I, I x - x I } ~ 0 and y E 8BR(y ), then 
000 

IW(t, x, y)1 > IW(t o' \' y)1 -IW(t, x, y) - W(t o' \' y)1 

~ d(to' R) -~ d(\, R) (by (3) and (4)) 

1 
= 2" d(\, R) . 

Therefore €(o) = inf { IW(t, x, y)1 / y E 8BR(yo)' (t, x) E J x 0 with 

max { I t - t I, I x - x I} ~ o} 
o ," 0 

By continuity of W, we may assume that 0 is chosen so small that 

IW(t, x, y )1 ~ €(o) whenever (t, x) E J x 0 with 
o 

max {It -t I, Ix-x I} ~ o. But for all such (t, x) E J x 0, 
o 0 

IW(t, x, yo)1 ~ €(8) ~ IW(t, x, y)1 for all yE 8BR(yo)' Now by part (a), 

W( t, x, .) is d( t, . )-accretive and hence is strongly accretive. Applying 

theorem 7.7, we obtain that W(t, x,.) has a zero in BR(yo) ~ O. Thus for all 

(t, x) E J x 0 with max {I t - t I, I x -x I} ~ 0, there exists y E 0 such that 
o 0 

W(t, x, y) = 0 and hence (t, x) E G. Proving that G is open. 

( c) There exists a unique map H: G --'I 0 such that W( t, x, H( t, x)) = 0 for 

(t, x) E G and this map H is continuous: 

Since for (t, x) E G, there exists y E 0 such that W(t, x, y) = 0, we can find 

a map H : G --'I 0 such that W(t, x, H(t, x)) = O. Suppose H was another 
1 

such map. By (2) we have for (t, x) E G, 

d(t, IH(t,x)-H(t,x)l) IH(t,x)-H(t,x)1 
1 1 

~ (W(t, x, H(t, x)) - W(t, x, H (t, x)), H(t, x) - H (t, x) )+ 
1 1 
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= ( 0, H(t, x) - H (t, x) L 
1 

= O. 

Soeitherd(t, IH(t,x)-H(t,x)I)=O or IH(t,x)-H(t,x)1 =0. 
1 1 

In either case H(t, x) = H (t, x) and so H = H. 
1 1 

Therefore there must be a unique map H: G --+ 0 satisfying 

W(t, x, H(t, x)) = 0 for all (t, x) E G. 

We now want to show that H is continuous. Let (t , x ), (t, x) E G. With 
o 0 

y = H(t, x) and y = H(t , x ) we have by the result in (a), 
1 2 0 0 

d( t, 1 y 1 - y 21) 1 y 1 - y 21 

< (W(t, x, Y ) - W(t, x, y ), y - y )+ 
- 1 2 1 2 

< IW(t, x, y)1 Iy -y 1 since W(t, x, H(t, x)) = O. 
- 2 1 2 

Ify -y f 0, then d(t, Iy -y I) $ IW(t, x, y)1 andify -y = 0, then 
12 12 2 12 

this is trivially true. Let (t, x) --+ (t , x) in G. Since W( ., ., H(t , x )) is 
o 0 0 0 

continuous, we have W(t, x, H(t , x )) --+ W(t , x , H(t ,x )) = O. 
o 0 0 0 0 0 

Since d E .At, 1 H(t, x) - H(t , x ) 1 --+ 0 and so H(t, x) --+ H(t ,x ), proving 
o 0 0 0 

that H is continuous. 

(d) For all bounded A ~ X with a(A) > 0, a( H( G n (J x A)) ) < a(A) : 

Without loss of generality assume A ~ O. Since a(A) > 0, there exists a 

finite covering {A , ... , A } of A and E(t) E [0, d(t, a(A))) such that 
1 n 

d( t, 1 y - y I) 1 y - y 1 $ ( W ( t, x , Y ) - W ( t, x , Y ), y - y ) + 
1212 11 2212 

+ E(t) 1 y - y 1 
1 2 

for all y ,y E 0, for all t E J and for all x ,x E A belonging to the same A . 
1 2 1 2 i 

Since V ,V are bounded, for each t E J we can find an open neighbourhood 
1 2 

N of t such that 
t 

1 W(t, x, y) - W(s, x, y) 1 $ i (d(t, a(A)) - E(t)) for all SENt and all 
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x, yE O. 

Select t t E J such that {N , ... , N } covers J and define r . ~ J x X 
l' . .. , m t t iJ 

1 m 

by r = N x A. Then for (t, x), (t, x) Er .. n G, we have 
ij t. i 1J 

J 

d(t ., IH(t,x)-H(f,x)l) IH(t, x)-H(f, x)1 
J 

( W(t., x , H(t, x)) - W(t., X, H(f, x)), H(t, x) - H(f, x) )+ 
J J 

< 

+ E(tJ IH(t, x) - H(f, x)1 
J 

1 H(t, x) - H(f, x) 1 [I W(t., x, H(t, x)) - W(t., x, H(f, x)) 1 + E(tJ] 
J J J 

< 

1 H(t, x) - H(f, x) 1 [I W(t., x, H(t, x)) - W(t, x, H(t, x)) 1 
J 

< 

+ IW(tj' x, H(f, x)) - W(f, x, H(f, x))1 + E(t
j
)] 

1 H( t, x) - H(f, x) 1 [~3 (d( t., a( A)) - E( t J) + E( t J ] 
J J J 

I H(t, x) - H(f, x) I [i d(t ., a(A)) + ~ E(tJ ]. 
J J 

< 

Therefore 

d(t., diam H(r .. n G)) 
J 1J 

~ ~ d(t., o{A)) + ~ E(tJ 
J J 

< ~ d(t., a(A)) + j d(t., a(A)) 
J J 

= d(t ., a(A)). 
J 

Hence diam H(r .. n 0) < a(A) for all i, j. 
1J 

But G n (J x A) ~ .U. (f .. n G). Hence by definition of a, 
1, J 1J 

a( H(G n (J x A)) ) < a(A). • 
The following corollary follows easily from the above theorem. 

7.15 Corollary 

Let 0 ~ X be open bounded and let (V, c) be a representation for a semi condensing 

vector field on O. Then the set G = { x E n / V(x, y) = 0 for some y EO} is 

open in X and there is a unique map H: G -! n satisfying V(x, H(x)) = 0 for all 
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x E G. This map is fr-{:ondensing. 

We are now nearly ready to define a degree for semicondensing maps . The following 

lemma helps in this regard. 

7.16 Lemma 

Proof: 

Let 0 ~ X be open bounded, and for i = 1, 2, let F . : n -! X be semi condensing 
1 

with representation (V. , cJ Let G. ~ X be defined by 
III 

G. = { x E 0 / V . (x, y) = 0 for some y EO} and let H . : G. -! 0 be defined by 
1 1 1 1 

V.(x, H (x)) = 0 for all x E G .. Then t F x + (1 - t) F x:f: 0 for all t E J and 
1 1 1 2 --

x E ao implies that DN(I - H., G., 0) , i = 1, 2 is defined and 
1 1 

DiI - HI' G , 0) = DN(I - H
2

, G , 0) , where DN is the Nussbaum degree from 

chapter 4. 

Let W, d, G and H be as in theorem 7.14. Set M = { (t, x) E G / H(t, x) = x }. 

Then, easily, M = { (t, x) E J x 0 / W(t, x, x) = O}. If ( (t ,x ) ) ~ M such that 
n n 

(t ,x ) -! (t, x) E J x n, then V. (x , x ) = F ,x ,i = 1, 2. So 
n n 1 n n In 

o = W(t , x , x ) = t F X + (1 - t ) F x -! t F x + (1 - t) F x since F and 
n n n n In n 2n I 2 1 

Fare contnuous on n. Thus t F x + (1 - t) F x = 0 and by hypothesis x ~ a~. 
2 I 2 

Let A = { x E 0 / (t, x) E M for some t E J }. 

Ifx E A, then x EO and (t, x) E M for some t E J. Thus 

(t, x) E G and H(t, x) = x. So x = H(t, x) E H(G n (J x A)) and hence we get 

A ~ H(G n (J x A)) . If a(A) > 0, then a(A) ~ a(H(G n (J x A))) < a(A), a 

contradiction. So a(A) = O. Since M ~ J x A, we must have that a(M) = 0 and 

since M is closed, it must be compact . 

If Gt = { x E X / (t, x) E G } 

= { x E X / (t , x) E J x 0 and W(t, x , y) = 0 for some y EO}, 
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then GO = { x E X / x E 0 and W(O, x, y) = 0 for some y EO} 

= { x E X / x E 0 and V (x, y) = 0 for some y EO} 
2 

=G 
2 

and G 1 = { x E X / x E 0 and W (1, x, y) = 0 for some y EO} 

={ x E X / V (x, y) = 0 for some y EO} 
1 

= G. 
1 

Now by theorem 4.2.1, 

DN(I - H(O, .), GO, 0) = DiI - H(l, .), G1, 0). So if Hl = H(l, .) and H2 = H(O, .) 

then 

D (I-H , G , 0) = DN(I - H , G , 0). 
N 2 2 1 1 • 

Now consider the triplet (F, 0, 0) where 0 ( X is open bounded, F n -I X 

semicondensing such that 0 ~ F( a~). 

Let (V, c) be a representation for F and set G = { x E 0 / Vex, y) = 0 for some y EO} 

and define H: G -I 0 by Vex, Hx) = 0 for ,all x E O. By lemma 7.16, 

DN(I - H, G, 0) is defined and hence we define the degree on the triplet (F, 0, 0) by 

D(F, 0, 0) = DN(I - H, G, 0). 

We must show that this is well-defined. 

Let (V., c.) , j = 1, 2 be two representations for F. If G. and H. are defined as in 
J J J J 

lemma 7.16 with F = F = F, then, since 0 ~ F(OO), we must have by the same lemma 
1 2 

that 

DN(I - H , G , 0) = DN(I - H , G ,0). Hence D(F, 0, 0) is well-defined. 
1 1 . 2 2 

7.17 Remark 

If F = 1- H with H: n -I X fr-Condensing and x - Hx f. 0 for all x E 80, then F 

is semi condensing by example 7.10. Here F = I + 0 - Hand 0: n -I X is 

accretive, continuous and bounded. Here (V, c) is a representation for F where 
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V(x, y) = y - Hx, x, Y E 0 and c(t) = t ,t E J. 

Let G = { x E 0 / V (x, y) = 0 for some y EO} 

= { x E 0 / Hx = y for some y EO} 

= { x E 0 / Hx EO} . 

Now for x E G, we have Hx E 0 and so V(x, Hx) = Hx - Hx = O. 

Therefore by definition, 

D(I - H, 0, 0) = DN(I - H, G, 0). (5) 

Since H: 0 -+ X is fr-<:ondensing, 1 - H is proper and hence (I - H) -1( 0) is 

compact. Since 0 ~ (I - H)( 80), we must have (I - Htl(O) ~ 0 and this is compact. 

Thus (I - HI 0' 0 ,0) is a Nussbaum triplet . Let 0 = (I - H)(x) with,x E O. 

Then Hx = x and x E O. So x E G. Thus 0 ~ (I - H)(O\ G) and so by (DN 7), 

DN(I - H, G, 0) = DN(I - H, 0, 0). (6) 

(5) and (6) give us 

D(I - H, 0, 0) = DN(I - H, 0, 0). 

Thus the degree defined is in fact an extension of the 

Nussbaum degree. 

The following results show that our degree satisfies those properties that make degree 

theory useful. 

7.18 Theorem 

Let 0 ~ X be open bounded and F: 0 -+ X be semi condensing with representation 

(V, c) such that 0 ~ F( 80). Then the degree, defined above satisfies 

(a) 

(b) 

(c) 

D(I, 0, 0) = 1 if 0 E O. (D1) 

If 0 and 0 are disjoint open subsets of 0 with 0 ~ F(O \ ° U 0 ), then 
1 2 1 2 

D(F, 0, 0) = D(F, 0 , 0) + D(F, 0 ,0). (D2) 
1 2 

If D(F, 0, 0) f. 0, then F-1(0) f. 0. (D4) 
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Proof: 

(d) If F is strongly accretive and F-1(0) :f. 0, then D(F, 0,0) = 1. 

(e) If F I &0. = G I 80 and G: 0 -i X is semicondensing, then 

D(F, 0, 0) = D(G, 0,0). (D6) 

(f) If 0 is symmetric with respect to 0 E 0 and Fx = -F( -x) for all x E 80, 

then D(F, 0, 0) is odd. 

( a) Follows from remark 7.17. 

(b) If G = { x E 0 / V(x, y) = 0 for some y EO}, then by corollary 7.15, let 

H : G -i 0 be the unique map such that V(x, Hx) = 0 for x E G. Then by 

definition, 

D(F, 0, 0) = DN(1 - H, G, 0) . (7) 

Let G. = { x E O. / V(x, y) = 0 for some y E O.}. Then G. is open. 
1 1 1 1 

Consider H. = HI G : G. -i O. Then H : G -i 0 . So by definition 
1 . 1 i i i 

1 

again, 

D(F, 0 ., 0) = DN(1 - H., G., 0) ,i = 1, 2 . 
1 1 1 

(8) 

Now G. is an open subset of G for i = 1, 2 and G and G are disjoint. 
1 1 2 

Suppose 0 = (I - H)x for x E G\(G U G). Then x = Hx. Since x E G, 
1 2 

V(x, Hx) = 0 and so Fx = V(x, x) = 0 with x E G \(G
1 

U G/ Since x ~ G
i 

and V(x, Hx) = 0 we must have x ~ 0 i' Hence x E 0\(0
1 

U O
2
) with 

Fx = 0, a contradiction. Hence 0 ~ (I - H)(G\(G U G ), and so by (D 2), 
1 2 N 

DN(1 - H, G, 0) = DN(1 - H, G , 0) + D (I - H, G , 0) 
1 N 2 

= DN(1 - H , G , 0) + DN(1 - H , G , 0) . 
1 1 2 2 

(9) 

(7), (8) and (9) give us 

D(F, 0, 0) = D(F, 0 ,0) + D(F, 0 ,0). 
1 2 

(c) Let D(F, 0, 0) :f. o. By corollary 7.15, if 

G = { x E n / V(x, y) = 0 for some yEn}, then there exists a unique map 
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H : G -l 0 such that V(x, Hx) = 0 , x E G. Then 

D(F, 0, 0) = DN(1 - H, G, 0). So DN(1 - H, G, 0) f 0 and by (DN4), 

(I - Ht1(0) f 0. Thus we can find x E G such that x = Hx. But x E G, 
o 0 0 0 

so V(x , Hx ) = O. Hence Fx = V(x , x ) = V(x , Hx ) = O. Therefore 
00 0 00 00 

F-1(0) f 0. 

(d) Since F is strongly accretive, we can find c E .At such that F is c-accretive. 

Soforallx,yEO, (Fx-Fy,x-y)+~c(lx-yl) Ix-yl. Suppose 

F-1(0) f 0 and let x ,x be zeros of Fin O. Then 
1 2 

O=(O,x -x)+=(Fx -Fx,x -x)+~c(lx -x I) Ix -x I· 
12 1212 1212 

So c( 1 x - xl) 1 x - x 1 = O. Hence 1 x - x 1 = 0 and so x = x . Thus F 
1 2 1 2 1 2 1- 2 

has a unique zero in 0, say x E O. Let W: 0 x 0 -l X be defined by 
o 

W(x, y) = Fy. 

(W, c) is a representation for F : 

(1) 

(2) 

W(x, x) = Fx. 

Let E > 0 and x EO. Then for all x E 0 
1 

sup { 1 W(x, y) - W(x , y) I / yE 0 } 
1 

= sup { 1 Fy - Fy 1 / y EO} 

=0 

< E. 

Thus { W(., y) / y EO} is equicontinuous. 

(3) c( I y - y I) I y - y I 
~ (Fy - Fy, y - y)+ 

= (W(x, y) - W(x, y), y - y)+ 

~ (W(x,y)-W(x,y),y-y)++ E Iy-yl 

for all x, X, y, yE O. 

Hence (W, c) is a representation for F. 

Define G = { x E 0 / W(x, y) = 0 for some y EO} 
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(e) 

= { x E 0 / Fy = 0 for some y EO} 

= { x E 0 / Fx = o} since x is the unique zero of F 
o 0 

= o. 

There exists a unique map H : 0 -I 0 such that W(x, Hx) = 0 for x E O. 

But W(x, Hx) = FHx. So FHx = O. But F has a unique zero x , hence 
o 

Hx = x for all x E O. So by definition, 
o 

D(F, 0, 0) = DN(I - H, 0, 0) 

= DN(I - xo' 0, 0) 

= DN(I, 0, x) 

= 1 by (DN1) since x E o. 
o 

Let F. be semi condensing, 0 t F.(80), with representation (V., c.) ,i = 1, 2, 
1 1 1 1 

and such that F 11 ao = F 21 ao . 
Let G. = { x E 0 / V. (x, y) = 0 for some y EO} and H : G -lObe 

1 1 i i 

defined by V.(x, H.x) = 0 for all x E G .. 
1 1 1 

Suppose 0 = t F x + (1 - t) F x for x E ao . 
1 2 

Then 0 = t F x + (1 - t) F x = F x. A contradiction. Therefore 
1 1 1 

o ~ t F x + (1 - t) F x for all t E J and x E ao. Then by lemma 7.16, 
1 2 

DN(I - H , G , 0) = DN(I - H , G ,0) and so by definition, 
1 1 2 2 

D(F , 0, 0) = D(F , 0, 0) . 
1 2 

(f) If we replace F by ~ (Fx - F( - x)), we will have Fx = - F( - x) for all 

x E nand F will also be semicondensing. Let (V, c) be a representation for 

F . Then if we define V: 0 x 0 -I X by 

Vex, y) = i (V(x, y) - V(- x, - y)), then (V, c) is also a representation of F . 

Let G ={ x E 0 / Vex, y) = 0 for some y EO} and H : G -lObe 

defined by Vex, Hx) = 0 for x E G. 

o E G: 

Now 0 E o. So F(O) = - F( - 0) . Thus F(O) = 0 and so V(O, 0) = 0, 
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giving us 0 E G. 

G=-G: 

Let x E G. Then V(x, y) = 0 for some y E O. Then 

V(- x, - y) = - V(x; y) = 0 and since y E 0 and 0 is symmetric 

with respect to 0, we must have - y E O. Since - x E 0, we must 

have - x E G, and so G is symmetric with respect to O. 

Hx= - H(- x): 

Let x E G. Then V(x, Hx) = O. 

Now V(x, - H(- x)) = - V(- x, H(- x)). Since x E G we must have 

- x E G and so V(-x, H(- x)) = O. Hence V(x, - H(-~)) = O. 

But H: G ---+ 0 was a unique map such that V(x, Hx) = 0 for all 

x E G. Hence Hx = - H(- x) for all x E G. 

By Borsuk's theorem for the Nussbaum degree, DN(I - H, G, 0) is odd. But 

D(F, 0, 0) = DiI - H, G, 0) by definition. 

Hence D(F, 0, 0) is odd. • 
The last result is the (D3) property. 

7.19 Theorem 

Proof: 

Let 0 ~ X be open bounded and H: J x n ---+ X be continuous such that 

H(t, x) * 0 for (t, x) E J x 00, H(t , .) is semi condensing for all t E J and 

{ H(., x) / xE 80 } is equicontinuous . Then D(H(t, .), 0, 0) is independent of t . 

Since J is compact, it suffices to show that for each t E J, there exists some 
o 

interval about t on which D(H(t, .), 0, 0) is independent of t. 
o 

Fix t E J. By theorem 7.11 (3), H(t , .)(80) is closed. Thus, since 
o 0 

o ~ H(t , .)(00), we can find E> 0 such that B (0) n H(t , .)(00) = 0. Since 
o E 0 
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{ H(t, x) / x E 00 } is equicontinuous, there exists an interval I C J about t , such 
- 0 

that IH(t, x) -H(t ,x)1 < E for all t E I and all x E 00. 
o 

Fix t E 1. Then for t E J and x E on, 
1 

It H(t, x) + (1-t) H(t ,x)1 
1 0 

~ IH(t ,x)l-t IH(t ,x) -H(t, x)1 
o 0 1 

~ E-IH(t ,x) -H(t, x)1 
o 1 

>E-E 

= o. 

Thus 0 f t H(t , x) + (1 - t) H(t ,x) for x E on. So by lemma 7.16, and by 
1 0 

definition, D(H(t , .), 0, 0) = D(H(t , .), 0, 0). 
1 0 

Thus D(H(t, .), 0,0) is constant on 1. • 
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CONCLUSION 

A further extension of the degree, not covered in this dissertation, is the degree of 

multi valued maps. More about this can be found in Petryshyn and Fitzpatrick [7] and 

Ma [21]. 
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