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ABSTRACT 

 

Rising atmospheric CO2 (Ca) concentrations have generated concern among scientists, 

mainly because of CO2’s role as a greenhouse gas and its influence on plant growth and 

development.  Previous research has suggested that future CO2 enriched atmospheres 

may enhance the success of invasive aliens.  Chromolaena odorata is an example of an 

invasive alien proving to be a serious threat to indigenous vegetation in South Africa, and 

effective control measures are desperately needed to curb infestations in the future.  The 

current study aimed at assessing the response of C. odorata to elevated Ca and interactive 

factors, and was divided into two trials.  During PART A, C. odorata was grown in 

competition with 2 grass species: Eragrostis curvula and Themeda triandra (selected for 

their differential preferences to nutrient availability).  All three species were potted in a 

greenhouse at the University of KwaZulu-Natal (Howard College).  There were 16 pots 

in total, and each pot contained four C. odorata plants, four T. triandra seedlings, and 

four E. curvula seedlings.  Eight pots were exposed to elevated Ca (~700ppm), and eight 

pots were exposed to ambient Ca (~370ppm).  The pots at each Ca treatment were further 

divided: four received high nutrient treatments (3L per addition), while the other four 

received low nutrient treatments (300 ml per addition).  Studies on growth (e.g. plant 

height, dry weight, etc.), as well as physiology (e.g. Jmax), were undertaken.  Results 

showed that generally, plants responded positively to high nutrient treatments.  In 

contrast, elevated Ca did not affect growth or any of photosynthetic parameters of C. 

odorata significantly, but did reduce stomatal limitations.  During PART B, C. odorata 

plants were grown monospecifically to assess whether there was a “chamber effect” 

associated with planting density.  Pots at both Ca treatments contained either four C. 

odorata or two C. odorata seedlings.  Growth and physiology were assessed.  The fact 

that elevated Ca did not affect any of the photosynthetic parameters studied, suggests that 

photosynthetic down-regulation did not occur.  This, together with the fact that no 

increase in stomatal limitations were observed in elevated Ca, implies that enhancement 

of photosynthetic assimilation could have occurred in C. odorata plants exposed to CO2 

enrichment.  Results from this study (PART A and PART B), when compared to previous  
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research on this species, suggests that CO2 enrichment may enhance the success of 

monoculture populations of C. odorata.  However, other species may gain competitive 

advantages over C. odorata occurring in mixed communites, under CO2 enriched 

environments.  In addition, results of this study support the prediction that increasing Ca 

will reduce the importance of carbon as an external limiting resource, and that the extent 

of a plant’s response to Ca enrichment will depend on resources other than CO2.  If 

increases in temperature caused by elevated Ca increases nutrient availability in the soil, 

then Ca could indirectly enhance the success of C. odorata occurring in mixed 

communities. 
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CHAPTER 1. INTRODUCTION 

 

1.1 Global climate change: A serious threat to ecosystems 

According to Ehrlich (1991), climates have always changed in response to changes in 

solar output, the Earth’s orbit, variations in the tilt of its axis, volcanic activity, the 

drifting of continents, and so forth.  An example of climate change is the temperature 

difference of 5-8 °C between an Ice age and an interglacial warm period (King, 2005).  

However, it is not climate change itself that threatens the world today, but it is the 

potential rate of the change which is cause for great concern (Ehrlich, 1991). 

 

Woodwell (1995) suggested that global climates are moving from a period of slow 

change into a period of accelerating change.  The earth’s climate includes many 

linkages and feedbacks between atmospheric temperature, oceanic heat storage, 

clouds, humidity, ice cover, energy budgets, heat transport, i.a. (Houghton, 1991).  It 

would be expected that even a small change in any one of these links would have an 

impact on overall climate (Morel, 1989).  Therefore, world climate should not be seen 

as a constant.  The difficulty in accurately predicting the impacts of climatic changes 

has lead to a substantial increase in the magnitude of literature on global climate 

change, and its potential impacts.    

 

In an attempt to highlight the severity of the issue, Kingslover (1996) proposed that 

biological consequences of the rapid rates of climate change would preclude 

evolutionary responses: species will either adjust ecologically, or become extinct.  

Over a decade later, his prediction is proving true, as climate change is now 

recognized as a major threat to the survival of species, and integrated ecosystems 

worldwide (Thomas et al., 2004; Hulme, 2005). 

 

1.2 Elevated Atmospheric CO2 and the greenhouse effect 

The accelerating changes in global climate are probably linked to the accumulation of 

heat-trapping gases in the atmosphere (Woodwell, 1995; Hulme, 2005).  These gases 

are aptly termed “greenhouse gases,” and it was the French mathematician Fourier in 

1827 who first put forward the greenhouse gas concept: our atmosphere absorbs heat 
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that would otherwise radiate out into space (King, 2005).  The Earth’s average surface 

temperature is kept about 15ºC by this blanket effect of the atmosphere that surrounds 

it.  Without the warming effect of greenhouse gases, the average Earth surface 

temperature would be a mere -18°C (King, 2005).  Carbon dioxide (CO2), nitrous 

oxide (N2O) and methane (CH4), are examples of greenhouse gases, which enable the 

atmosphere to act as a “heat sink” (Houghton, 1991; Wallace et al., 1996).  However, 

it is the ‘greenhouse effect” of CO2 in particular, that is the reason for major concern 

regarding climatic effects (Bolin et al., 1987).  Although methane (produced in 

copious quantities by cows) has recently been identified as a more efficient 

greenhouse gas than CO2, the effects of methane on climate/ecosystems will not be 

discussed, as it does not form any part of the current study.  Instead, CO2 effects will 

be discussed in some detail. 

 

While CO2 is transparent to incoming short wave radiation from the sun, it absorbs 

outgoing long wave radiation and re-emits this energy in all directions.  Therefore, an 

increase in atmospheric CO2 concentration (Ca), will lead to a warming of the earth’s 

surface and lower atmosphere (Bolin et al., 1987; Houghton, 1991; Wallace et al., 

1996).   

 

Analysis of air trapped in glacial ice from Greenland and Antarctica has indicated that 

the average partial pressure of Ca during the last 220 000 years has been considerably 

lower than it is currently (Tissue et al., 1995).  More specifically, there has been a 

15% increase in Ca in the past 80 years alone (Wallace et al., 1996).  Ca increased 

from 315 parts per million (ppm) in 1958, to 343 ppm in 1984 (Bolin et al., 1987).  

Current literature shows that Ca levels are now rising at a rate of approximately 2 ppm 

per annum.  Ca was measured to be 379 ppm in 2004, 40 % higher than pre-industrial 

levels (King, 2005).  Figure 1.1 clearly illustrates the steep rise in Ca from 1958-2004, 

and future predictions of Ca concentrations range between about 450 and 600 ppm by 

the year 2050 (Woodward, 2002).   
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Fig. 1.1 The relentless rise of atmospheric CO2 (According to readings taken at 
Mauna Loa in Hawaai, Ca concentrations are 35% higher than pre-industrial levels; 
Adapted from http://www.newscientist.com/data/images/archive/2486/24861401.jpg) 
 

 

Although fires and respiration are sources of Ca, the observable changes in Ca and 

climate are a direct consequence of human activities that have occurred during the 

past century (Kingslover, 1996).  In particular, combustion of fossil-fuels – primarily 

oil, gas and coal, has been shown to be the major source of increasing Ca (Woodwell, 

1995).  Human activities could double Ca over the next 40 years (Wallace et al., 

1996).   

 

Not surprisingly, global warming is probably linked to increasing Ca (Weltzin et al., 

2003), and from data of the Vostok core, it was previously estimated that an 

approximate 1ºC increase in temperature is associated with every 7-10 ppm increase 

in Ca  (Woodwell, 1995).  However, an increase in Ca from 315 ppm in 1958 to 379 

ppm in 2004 (Bolin et al., 1987; King, 2005), should have resulted in a global 

temperature increase of 6ºC during that period.  This is clearly not the case.  This 

example points out that many inaccuracies and uncertainties regarding climate change 

predictions in the literature do exist.  Nevertheless, the fact that global temperatures 

have in fact increased by 0.6 °C over the past century (King, 2005), highlights the 

strong correlation between increasing Ca and climate change.   

 

As the subject of Ca enrichment reaches maturity, much attention now focuses on the 

fate of the “extra” CO2 in the atmosphere. 
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1.3 Plant response to elevated Ca 

The terrestrial biosphere is the major sink for increasing concentrations of Ca (Fujita 

et al., 2003).  More than one eighth of Ca is exchanged with terrestrial ecosystems 

each year, through the biological processes of photosynthesis and respiration (Lashof 

et al., 1997).  As a result, concern regarding the continuing increase in Ca has 

prompted a great deal of research on responses of plants to CO2 enrichment (Bazzaz, 

1990). 

 

According to Warrick et al. (1987), there are two ways in which plants/ecosystems 

can respond to rising levels of Ca.  The first is through changes in climate i.e. 

indirectly.  There is evidence that the direct correlation between global temperatures 

and increasing Ca is part of a positive-feedback system: warming produces more Ca, 

which will in turn favour a further warming (Woodwell, 1995).  Extreme temperatures 

caused by increasing Ca may make more resources available to plants, by thawing 

frozen soil, or by changing rates of nutrient cycling, and allowing plants to grow 

faster than they would otherwise (Weltzin et al., 2003).  Kimball et al. (1993) 

suggested that the average growth response of plants to doubled Ca, could be 

significantly higher in warmer climates.  Therefore, elevated Ca could affect plants 

indirectly. 

 

In addition to being an environmental factor, CO2 is also the carbon source that 

supports the growth of plants via photosynthesis (Murray, 1995).  Therefore, the 

second way in which ecosystems can be affected by increasing Ca is through direct 

effects on plant growth and development (Conroy et al., 1986; Warrick et al., 1987; 

Bazzaz, 1990).  An increase in the CO2 concentration in the atmosphere in contact 

with vegetation acts to increase the CO2 gradient between the atmosphere and the air 

spaces within leaves (Jarvis et al., 1999).  Given no adjustment to this change, the rate 

of CO2 diffusion through the stomatal pores could rise in proportion to the increase in 

ambient CO2.  Therefore the rise in CO2 availability directly impacts photosynthetic 

processes (Hulme, 2005).  However, this evokes a wide range of physiological and 

morphological responses in plants.  These responses vary among species: differences 

in photosynthetic pathways, intrinsic growth rates (Dukes, 2000) as well as growth 

conditions, differences in the degree of enrichment, and the duration of CO2 
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enrichment (Mott, 1990), all influence the response.  However, despite these complex 

interactive factors, certain trends can be identified.  

 

C3 species are plants which fix carbon by the photosynthetic carbon reduction (PCR) 

cycle (Wallace et al., 1996).  These plants show the greatest potential for responding 

to elevated Ca (Garbutt et al., 1990), and a number of studies confirm this is indeed 

the case (Mott, 1990; Poorter et al., 1996; Dukes, 2000; Lloyd and Farquhar, 2000; 

Ainsworth et al., 2002).  C4 plants, on the other hand, have an anatomy and 

biochemistry, that in effect, concentrate CO2 into the bundle sheath cells of leaves for 

subsequent assimilation of carbon by the C3 pathway.  That is, the CO2 concentration 

is already “elevated” in C4 species.  Therefore, C4 species are not expected to respond 

as strongly as C3 species to increasing Ca, and many studies confirm this prediction 

(Johnson et al., 1993; Poorter, 1993; Polley et al., 1994; Dippery et al., 1995; Tissue 

et al., 1995).  However, results on a study on three C4 species, showed a stimulation 

of leaf photosynthesis in elevated Ca of all three species (Ziska et al., 1999).  Results 

from this study suggest that certain C4 species may respond directly to increasing Ca.  

Wand et al. (1999) conducted a literature review and meta-analysis of data sets on 

responses of C4 vs C3 grasses to CO2 enrichment, and observed a significant positive 

response of C4 grasses.  These authors maintain that the previous prediction of C4 

grasses losing their competitive ability over C3 grasses, is premature.   Despite results 

from these two studies, the general pattern is that plants with the C3 metabolism are 

more sensitive to CO2 than plants with C4 metabolism (Garbutt et al., 1990).    

 

In light of the above, the remainder of this chapter will focus only on C3 plants, and 

their responses to elevated Ca.  According to Mott (1990), plants demonstrate a 

number of physiological and morphological responses to changes in Ca.  For the 

purpose of this thesis, plant responses to elevated Ca will be divided into two 

categories: 1) physiological responses, and 2) growth and morphological responses. 
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1.3.1 Physiological responses 

According to Long et al. (2004), plants can perceive a change in Ca only through 

tissues that are exposed to the open air.  With the exception of some reproductive 

organs, only the photosynthetic organs of plants have direct contact with the 

atmosphere.  The protective cuticle of higher-plant leaves and other photosynthetic 

organs means that only the inner surfaces of stomatal guard cells and the mesophyll 

can directly sense a change in Ca (Long et al., 2004). Not surprisingly, respiration, 

transpiration and photosynthesis appear to be the only three physiological processes 

by which plants and ecosystems can sense and respond directly to rising Ca (Drake 

and Gonzàlez-Meler, 1997).  For the purpose of this study, only photosynthesis, 

stomata and transpiration responses to elevated Ca will be discussed. 

 

Photosynthesis: 

Photosynthesis plays a central role in the physiology of plants (Mott, 1990).  

According to Bazzaz (1990), CO2 would enhance photosynthesis of C3 plants over a 

wide range of concentrations, provided that other environmental resources and factors 

are present at adequate levels.  Several lines of evidence do in fact illustrate a 

stimulation of photosynthesis in elevated Ca (Ackerson et al., 1984; Garbutt et al., 

1990).  Photosynthesis of Plantago major was enhanced during the first 2 weeks of 

exposure to elevated Ca (den Hertog et al., 1993).  A study conducted on Pinus taeda 

trees showed similar results: carbon assimilation (photosynthesis) was twice as high 

in elevated Ca than ambient Ca (Teskey, 1995).  Drake and Gonzàlez-Meler (1997) 

conducted a survey of 60 experiments, and found that growth of plants in elevated Ca 

increased photosynthesis 58% compared with the rate for plants grown at ambient Ca.   

 

Recent literature maintains that the observed stimulation in photosynthesis in elevated 

Ca, results from properties of the enzyme, rubisco (Long et al., 2004), an enzyme 

which has been shown to deactivate under moderate heat stress (Salvucci and Crafts-

Brandner, 2004).  At this point, the theory behind the function of rubisco, deserves a 

little attention. 

 

Rubisco (ribulose-1.5-bisphosphate carboxylase/oxygenase), catalyses the 

carboxylation reaction of the PCR cycle (Wallace et al., 1996).  Its main function is to 
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add CO2 to the 5-carbon molecule, ribulose-1.5-bisphosphate (RuBP).  However, 

rubisco has a very low catalytic rate, despite being one of the largest enzymes in 

nature (Salvucci and Spreitzer, 2002).  It also has a low affinity for CO2 on 

carboxylation, a reaction which is not saturated at current Ca (Drake and Gonzàlez-

Meler, 1997; Long et al., 2006).  To make matters worse, rubisco also has an affinity 

to bind to O2.  This oxygenation reaction leads to photorespiration, a process which 

decreases the net effect of photosynthesis by 20-30 % (Drake and Gonzàlez-Meler, 

1997).  In light of the above, it is not difficult to see how increasing Ca would 

competitively inhibit the oxygenation reaction of rubisco, thereby decreasing  

photorespiratory CO2 loss and diverting ATP and NADPH (generated by the light 

reactions) away from photorespiratory metabolism to photosynthetic assimilation 

(Usuda and Shimogawara, 1998; Long et al., 2004).    

 

The above explanation may be adequate in describing the short-term photosynthetic 

responses of plants to elevated Ca.  But what happens when plants are exposed to CO2 

enrichment for prolonged periods of time? 

 

According to Drake and Gonzàlez-Meler (1997), if plants are unable to use all the 

additional carbohydrate that photosynthesis in elevated Ca can provide, then a 

decrease in source activity must result.  There is in fact, abundant evidence that in the 

long-term, and in some species, photosynthesis acclimates to elevated Ca, i.e. the 

photosynthetic properties of leaves developed at elevated Ca differ from those 

developed at current Ca (Drake and Gonzàlez-Meler, 1997; Bazzaz, 1990; Kauder et 

al., 2000; Vu, 2005).  Plants grown at elevated Ca often fail to sustain the initial 

stimulation of net assimilation (Rogers and Humphries, 2000).  For example, the 

observed initial increase in photosynthesis of Plantago major plants transferred to  

elevated Ca, decreased after 2 weeks and nearly reached the level of control plants 

(den Hertog et al., 1993).  Acclimation of leaf net assimilation of Ginkgo biloba, 

occurred after two years of growth in elevated Ca, and maximum net CO2 assimilation 

was 56% higher at ambient Ca than at 700 ppm Ca (Overdieck and Strassemeyer, 

2005).  Many researchers have attempted to explain the phenomenon of 

photosynthetic acclimation: why and how it occurs. This has often resulted in 

contradicting views, especially along the time line.   
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Earlier studies on the photosynthetic acclimation to elevated Ca in five C3 species, 

indicated that the rubisco content of leaves in elevated Ca remained in excess of that 

required (Sage et al., 1989).  In contrast, more recent studies have shown that 

acclimation of photosynthesis is accompanied by lower concentrations of leaf rubisco 

content, because less rubisco is needed in elevated Ca (Drake and Gonzàlez-Meler, 

1997; Adam et al., 2004).  Research which supports this more recent point of view 

was conducted on Nardus stricta (Cook et al., 1998).  Plants were growing near a 

natural CO2 spring in Iceland where they were exposed to more than 100 years of 

elevated Ca (~ 790 ppm).  These plants showed reductions in photosynthetic capacity 

(~ 25%), rubisco content (~ 26%), and rubisco activity (~ 40 %), when compared to 

plants growing away from the spring (~ 360 ppm Ca).  More specifically, Rogers and 

Humphries (2000) showed that the failure of plants grown in elevated Ca to maintain 

the initial stimulation of photosynthesis, can be attributed almost entirely to the 

decrease in the maximum carboxylation velocity of rubisco (Vc,max). 

 

This has been shown to be the case for Polygonum cuspidatum, a species which 

showed a decline in Vc,max and Jmax (maximum electron transport rate), when exposed 

to elevated Ca for six months (Onoda et al., 2005).  Similarly, a study conducted on 

Larrea tridentate, an evergreen Mojave Desert shrub, showed that well-watered plants 

significantly down-regulated photosynthesis at elevated Ca, reducing maximum 

photosynthetic rates (Amax), and carboxylation efficiencies of rubisco (Huxman et al., 

1998).  Photosynthetic down-regulation observed in nodulated alfalfa plants exposed 

to elevated Ca, was also a direct consequence of reduced carboxylation efficiency, as a 

result of reduced rubisco content and activity (Aranjuelo et al., 2005).     

 

According to two earlier studies on cotton, photosynthetic acclimation to elevated Ca 

is mediated by shifts in allocation between leaves and the rest of the plant, such that 

carbohydrate supply remains in balance with the utilization capacity of sink tissue 

(Thomas and Strain, 1991; Barrett and Gifford, 1995).  Results from these two studies 

suggested that reductions in Vc,max (and hence rubisco activity), may be responsive to 

plant source-sink balance, rather than Ca as a single factor.  This idea is supported by 

recent research.  According Long et al. (2004), at a whole plant level, restricted 

capacity to utilize photosynthate drives a loss of photosynthetic capacity.  Ainsworth 
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et al. (2002) also maintain that a decrease in photosynthetic capacity would not occur 

if plants have adequate sink strength.  Futher support for this idea came from a study 

conducted on three component species of chalk grassland swards (Bryant et al., 1998).  

After 14 months of exposure to elevated Ca, Vc,max and Jmax were reduced in two of the 

three species.  However, after a change in source-sink balance brought about by 

defoliation, photosynthetic capacity was fully restored.  Similarly, Usuda and 

Shimogawara (1998) concluded that the 105% increase in root production of radish in 

elevated Ca, occurred to enhance sink capacity.  This enhanced capacity seemed to be 

responsible for the absorption of elevated levels of photosynthate, and resulted in the 

absence of over-accumulation of carbohydrates in source leaves, and the absence of 

photosynthetic acclimation at elevated Ca.   

 

Therefore the correlation between a decrease in Vc,max and photosynthetic acclimation 

(and photosynthetic down-regulation), should not be seen as a hard and fast rule.  

Different responses have been reported in the literature, and these cannot be ignored.  

For example, a step increase in Ca on Plantago plants, resulted in a 50% increase in 

photosynthesis, which lead to a 20-24% decrease in leaf nitrogen (N) content.  The 

offset of the C:N ratio in leaves, induced nitrogen stress.  This, and not reduced Vc,max 

resulted in photosynthetic down-regulation (Hui et al., 2002).  

 

In addition to reduced Vc,max, Drake and Gonzàlez-Meler (1997) also proposed that 

photosynthetic acclimation is accompanied by high carbohydrate concentrations in  

the leaf.  Bazzaz (1997) also maintained that accumulation of starch in plant cells may 

cause down-regulation of photosynthesis.  However a study on the acclimation of 

potato plants to elevated Ca, has shown that carbohydrates formed by CO2 -

assimilation in leaves during the rapid growth of plants in elevated Ca, were exported 

to sink tissues and used for accelerated shoot growth and tuber induction.  These 

results indicate that carbohydrate accumulation could not have resulted in down-

regulation of photosynthesis in these plants (Kauder et al., 2000). 

 

To further complicate matters, there are some cases in which no photosynthetic 

acclimation to elevated Ca occurs.  Lifelong exposure of Quercus pubescens to CO2 

enrichment, resulted in no photosynthetic down-regulation of these plants, as net 

photosynthesis was enhanced by 36 to 77% (Stylinski, et al., 2000).  Similarly, no 
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photosynthetic down-regulation was observed in sweetgum trees (Liquidambar 

styraciflua) after 3 years of exposure to elevated Ca (Herrick and Thomas, 2001).  

There were non-significant differences in Amax, rubisco content, activity and 

carboxylation capacity between ‘controls’ and plants under chronic Ca enrichment in 

both studies.  A more recent study on sweetgum trees (Sholtis et al., 2004), also 

showed no decrease in photosynthetic capacity, as net photosynthetic rates were 44% 

higher in trees grown in elevated Ca, than ambient Ca over the 3-year period.  

Calfapietra et al. (2005) also showed no clear signs of photosynthetic acclimation of a 

poplar plantation, after five years of elevated Ca exposure.  A study was conducted on 

perennial ryegrass (Lolium perenne), in which plants were exposed to 10 years of CO2 

enrichment (Ainsworth et al., 2003).  Results showed that although daily carbon 

assimilation was significantly increased in plants grown at elevated Ca, there was no 

significant change in photosynthetic stimulation across the 10-year period, and no 

greater acclimation in Vc,max and Jmax in the later years. 

 

The aim of this reviewing of contradicting results and contrasting research, is to 

demonstrate the difficulty of predicting how a single aspect of terrestrial vegetation 

(i.e. photosynthesis), could respond to increasing Ca, and hence global climate change.   

 

In order to increase our understanding of the differential photosynthetic responses 

reviewed above, closer attention needs to be drawn to stomata, pore-like structures 

that permit the exchange of gases between photosynthetic cells and the atmosphere 

(Wallace et al., 1996).    

 

Stomata: 

Stomata permit inward diffusion of CO2 for photosynthesis, and outward diffusion of 

water (H2O(g)) during transpiration (Wallace et al., 1996).  For the purpose of this 

thesis, stomatal conductance to CO2 is abbreviated as gc, while gw symbolizes 

stomatal conductance to H2O(g)).   

 

Stomata of most species close as Ca increases, i.e. gc is reduced in elevated Ca 

(Garbutt et al., 1990; Mott 1990; Drake and Gonzàlez-Meler, 1997; Medlyn et al., 

2001).   Studies on Lolium perenne (Ainsworth et al., 2003), and Ginkgo biloba 

(Overdieck and Strassemeyer, 2005), have shown a 30% decrease in gc, under CO2 
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enrichment.  Long et al. (2004) conducted a meta-analysis of results of 200 

independent FACE (Free Air CO2 enrichment) studies on C3 plants, and found an 

average 20% decrease in gc in elevated Ca.  Vu (2005) also demonstrated a decrease in 

gc of Arachis hypogaea (peanuts) in elevated Ca.   

 

However the correlation between reduced gc and increasing Ca is not universal.  No 

significant effect of elevated Ca on gc was noted for Pinus taeda trees (Teskey, 1995) 

and Douglas fir trees (Apple et al., 2000).  Some species have even shown an increase 

in gc in elevated Ca.  Wheeler et al. (1999) conducted a study to determine if stomata 

open at very high Ca concentrations.  Results showed that in three of the four species 

investigated, gc increased when plants were exposed to super-high (1000 and 10 000 

ppm) Ca concentrations. 

 

An early study (Mott, 1988) showed that gc actually responds to intercellular CO2 

concentrations within the leaf (Ci), and not Ca per se. Nevertheless, Murray (1995) 

attempted to explain how elevated Ca was sensed by stomata.  He questioned the 

possibility of CO2 sensors being located in the plasmalemma or other membranes.  

However, years later, the mechanism by which stomata sense CO2 concentrations, and 

where in the leaf CO2 is sensed, is still unclear (Long et al., 2004).   

 

Because assimilation of carbon is strongly dependent on the availability of CO2 and 

the gradient of CO2 between the atmosphere and the chloroplast (Kauder et al., 2000), 

gc could also affect photosynthesis.  Since photosynthesis has been shown to 

acclimate to elevated Ca, it is natural to wonder if stomata behave in the same manner.  

In a meta-analysis of data from 13 long-term (>1 year) studies on the effects of 

elevated Ca on forest trees, no evidence for acclimation of gc to elevated Ca was found 

(Medlyn et al., 2001).  However, results from a study on a C3 perennial forb, Solanum 

dimidiatum, in which gc-Ci response curves differed significantly across the range of 

growth CO2 treatments (200-500 µmol.mol-1), suggests that stomata of C3 herbaceous 

species, could acclimate to elevated Ca.   
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Transpiration: 

Literature shows that in elevated Ca, reduced gc leads to a decrease in transpiration 

(Bazzaz, 1990; Drake and Gonzàlez-Meler, 1997; Jarvis et al., 1999).  For example, 

reduced gc of poplar trees (Populus x euramericana) grown in elevated Ca, was shown 

to decrease tranpirational rates (Calfapietra et al., 2005).   

 

Because loss of water vapour (H2O(g)) via transpiration has a cooling effect on leaves, 

reductions of transpirational rates in elevated Ca also decreases evaporative cooling of 

leaves, which leads to increases in leaf temperatures (Jarvis et al., 1999).  This could 

have an effect on many physiological processes that occur in plants since most 

biological enzymes are temperature sensitive (Wallace et al., 1996).  For example, the 

O2/CO2 specificity of rubisco, is affected by temperature.   

 

Although photosynthesis, gc and transpiration have been discussed as separate 

categories under the discussion of physiological responses of plants to elevated Ca, the 

links between these processes, and subsequently generated feedbacks of these links, 

should not be forgotten.  For example, an earlier study on cotton and maize plants, 

clearly showed that increased water-use efficiency (WUE) in elevated Ca, was due to 

reduced transpiration in some plants, and to increased assimilation in others (Wong, 

1979).  The complexity of the various relationships and feedback loops present in leaf 

cells, such as the relationships between the three parameters described above, makes 

the topic of ‘plant responses to elevated Ca’ such a dynamic and interesting one.  

 

However, the picture is still incomplete at this stage.  For example, what do plants do 

with the ‘extra’ assimilated carbon in elevated Ca?  Is all of it invested directly into 

biomass, and if so, is biomass allocation uniform throughout the entire plant?  Does 

reduced gc also mean that plants in elevated Ca will produce fewer stomata? 

 

In order to investigate these questions, growth and morphological responses of plants 

to elevated Ca will now be discussed. 
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1.3.2 Growth and morphological responses 

Plant primary production is ultimately dependent on photosynthetic CO2 uptake 

(Körner, 1991).  Therefore, under CO2 enrichment, increased photosynthesis should 

also lead to increased growth of plants.  Most literature indicates an increase in plant 

dry weights in elevated Ca (Thomas and Strain, 1991; Hand et al.,1993; Kimball et al., 

1993;  Drake and González-Meler, 1997; Hui et al., 2002).  An early study 

demonstrated an increase in total plant growth of six early successional plant species 

in elevated Ca (Carlson and Bazzaz, 1982).  Elevated Ca also caused an increase in 

total plant biomass of C3 grasses (Wilsey et al., 1997), and biomass of Lotus 

corniculatus (Bazin et al., 2002).  In a study conducted on radish, Raphanus sativus, 

elevated Ca (700 ppm) increased dry matter production by 111% (Usuda and 

Shimogawara, 1998).  Growth rates of wheat, Triticum aestivum, increased with 

elevated Ca (Polley et al., 1993a).  Poorter (1993) compiled the results of growth 

responses of 156 species to elevated Ca.  Averaged over all species, a doubling of 

ambient Ca resulted in a stimulation of plant growth of 37%.  Similarly, a 37% 

increase in total dry weight of soybean (Glycine max) in elevated Ca was also 

observed, when a meta-analysis of data from 111 studies on soybean, was performed 

(Ainsworth et al., 2002).   

 

Enhancement of growth, according to Mott (1990), is associated with increased 

photosynthetic assimilation under elevated Ca.  However, plant growth is affected by a 

multitude of attributes other than photosynthesis (Körner, 1991), and increases in 

plant growth in elevated Ca, are actually a result of interactions between many factors 

(Mott, 1990).   

 

Time, for example is one of the factors that can influence a plant’s growth response to 

elevated Ca (Eamus, 1991; Poorter, 1993).   Most studies on the effects of elevated Ca 

show an initial enhancement in growth, and like photosynthesis, this enhancement is 

especially large when resources are plentiful (Bazzaz, 1990).  Centritto et al. (1999) 

conducted a study to determine if the increases in total biomass brought about by 

enhanced Ca, was a result of a transient or persistent effect.  In this study, four clones 

of Sitka spruce and cherry, were grown for three and two seasons, respectively, at two 

CO2 concentrations (350 µmol.mol-1).  Sitka spruce and cherry seedlings showed a 
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positive growth response to elevated Ca, and at the end of the experiments, both 

species were ~ 40% larger in elevated Ca.  However, the differences in plant dry mass 

at the end of the experiments, were a consequence of the more rapid growth in the 

early phase of exposure to elevated Ca.   A similar result was found by den Hertog et 

al. (1993) who showed that the initial 30% increase in total dry weight of Plantago 

major was due to a stimulation of relative growth rates (RGR) during the first ten 

days of exposure to elevated Ca.  These observations seem to suggest that growth may 

acclimate to elevated Ca, in a similar way that photosynthesis and stomatal 

conductance (gs) have been shown to acclimate to elevated Ca (Drake and González-

Meler, 1997).   

 

Another point to ponder, regarding growth, is whether increases in plant growth in 

elevated Ca occurs uniformly throughout the plant.  An early study on Plantago major 

(den Hertog et al., 1993), showed although total dry matter was increased by 30% in 

elevated Ca, there were no effects on partitioning ratios of dry matter.  Similarly, 

biomass allocation of soybean (Glycine max) was unaffected by growth in elevated 

Ca, as there was no effect on root:shoot ratios (Ainsworth et al., 2002).   

 

However, according to Taylor et al. (1994), additional amounts of carbon could be 

allocated to below-ground material, i.e. roots, under CO2 enrichment.  Root growth, 

according to these authors, could be a direct result of increased cell production, cell 

expansion, or both, due to the fact that root cell turgor pressure and root cell wall 

extensibility are promoted by exposure of shoots to elevated Ca. He and Bazzaz 

(2003) also maintain that an increase in carbon acquisition in elevated Ca, should 

result in a shift in allocation toward roots, until root activity is proportionally 

enhanced.  Wechsung et al. (1999) showed a 37% increase in root dry weight of 

wheat, under elevated Ca.  Increases in growth of a C3 grass under elevated Ca, 

occurred primarily in the roots (Wilsey et al., 1997).  Elevated Ca also increased dry 

weights of storage roots of radish, Raphanus sativus by 105%, only 46 days after 

planting (Usuda and Shimogawara, 1998).  These authors maintain that plants 

exposed to elevated Ca, accumulate more biomass as roots to enhance sink capacity. 

 

Farrar (1999) proposed that roots of plants grown in elevated Ca are heavier because 

of the earlier and greater production of nodal roots and the greater rate of production 
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of laterals on seminal roots.  In contrast, Pritchard et al. (1999) charged that root 

length increases in elevated Ca.  However, if plants are grown in pots, root growth 

restrictions may occur.  Thomas and Strain (1991) demonstrated root restriction as a 

factor in photosynthetic acclimation of cotton seedlings grown in elevated Ca.  In this 

study, plants were grown in two pot sizes (0.38 and 1.75 litres), and exposed to three 

Ca concentrations.  Reduced photosynthetic capacity observed for plants grown at 

elevated Ca, was clearly associated with inadequate rooting volume (small pot size).   

 

Nevertheless, Rogers et al. (1999) maintain that increased rooting generally observed 

under elevated Ca, has the potential to significantly alter the edaphic environment 

through increased carbon deposition and /or nutrient uptake by plants.   

 

In contrast to the literature reviewed above, many studies show an increase in above-

ground biomass (leaves and stems), in elevated Ca.  A study on Lotus corniculatus 

showed an increase in total biomass under elevated Ca (Bazin et  al., 2002),  However, 

shoot dry mass was 2.3 times greater, while root dry mass was 1.8 times greater under 

elevated Ca conditions, indicating a greater biomass allocation to shoots, compared 

with roots.  These results are consistent with Hunt et al. (1991), who showed an 

increase in shoot:root ratio in 14 C3  species.  Polley et al. (1993b) showed that only 

above-ground biomass (leaves and stems) of three C3 annuals (oats, wild mustard and 

wheat), increased linearly and nearly proportionately with increasing Ca 

concentrations.  Results from these studies support the prediction that in general, 

elevated Ca would alter the balance between growth and availability of resources, thus 

leading to reduced water stress (because of increased water use efficiency) and 

consequently, reduced root:shoot ratios, as plants increase their above-ground 

biomass allocation (Friedlingstein et al., 1999).  In contrast to all of the above studies, 

Ainsworth et al. (2002) showed that root:shoot ratios of soybean did not differ 

between ambient- and elevated Ca-grown plants.   

 

As can be seen, results in the literature concerning the root:shoot ratios under 

conditions of CO2 enrichment are mixed (Hunt et al., 1991).  This, together with the 

fact that even coexisting species may widely differ in root:shoot ratios even though 

receiving the same severe environmental constraints (Körner, 1991), indicates a high 

degree of variability of root: shoot ratios in elevated Ca. 
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Total leaf area, according to Taylor et al. (1994), may be stimulated following 

exposure to elevated Ca.  Wong (1979) and O’Leary and Knecht (1981) showed that 

elevated Ca increased leaf area in cotton and Phaseolus vulgaris, respectively.  Vu 

(2005) also reported an enhancement of leaf area of peanut in elevated Ca.  Carlson 

and Bazzaz (1982) conducted a study on six early successional plant species, and 

found that leaf area increased with increasing Ca.  A more recent study has shown an 

increase in leaf area of three cultivars of a C3 wheat species (Polley et al., 1993a).  

Pritchard et al. (1999) reviewed available literature, and found that 66% of studies 

reported an increase in leaf area per plant.   

 

These results could be due to the fact that both the production and expansion of leaf 

cells may be stimulated by exposure to elevated Ca (Taylor et al., 1994).  However, 

Usuda and Shimogawara (1998) maintain that it is the leaf area ratio (LAR; amount 

of leaf area per unit of plant dry mass), that provides an indication of the proportion of 

a plant that is active in photosynthesis.  Results from this study showed that elevated 

Ca increased the rate of expansion of radish leaves, but decreased LAR possibly 

because of the production of large storage roots.  Leaf area ratios of Sitka spruce and 

cherry seedlings also decreased in response to elevated Ca (Centritto et al. (1999).  

This indicates that these plants allocated more carbon to compartments such as stems 

or roots, instead of producing more leaves to acquire resources.  An increase in leaf 

thickness of soybean, loblolly pine and sweet gum, stimulated by elevated Ca 

(Thomas and Harvey, 1983), could also contribute to the observed decreases in LAR.  

Harmens et al. (2000) conducted a study on Dactylis glomerata, and showed that the 

reduction of LAR in CO2 enrichment, was due solely to a decrease in SLA (leaf 

area/leaf dry weight).  Similarly, Hui et al. (2002) and Overdieck and Strassemeyer 

(2005) showed a significant decrease in SLA with increasing Ca.  Bazzaz (1990) 

maintains that reduced SLA in elevated Ca is often associated with increased starch 

levels and reduced nitrogen (N) concentrations.   

 

Stomatal density (SD), is the number of stomata per unit area (Woodward, 1987).  

There is a lot of evidence that indicates a reduction of SD decreases as Ca increases 

(O’Leary and Knecht, 1981; Woodward, 1987; Beerling and Chaloner, 1993a; 

Beerling and Chaloner, 1993b).  A survey conducted by Woodward and Kelly (1995) 

on 100 species and 122 observations, showed that 74% of the cases exhibited a 
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decrease in SD.  In contrast, SD may also increase at higher Ca (Knapp et al., 1994; 

Maherali et al., 2002).  Apple et al. (2000) showed that elevated Ca had no effect on 

SD of Douglas fir needles.  A study conducted on four chalk grassland herbs, showed 

contrasting effects of elevated Ca on SD of these species (Ferris and Taylor, 1994).   

 

The contrasting results in the literature reviewed above, are not surprising since many 

factors could influence the effect of elevated Ca on SD.  Altitude (Woodward and 

Bazzaz, 1988), temperature change (Beerling and Chaloner, 1993b), LAR (O’Leary 

and Knecht, 1981), species specificity (Knapp et al., 1994), and canopy development 

(Tricker et al., 2005) have been documented as factors that increase the complexity of 

Ca interactions with SD, and subsequently the whole plant. 

 

1.4 Elevated Ca and interactive factors 

In the real word, rising Ca is always interacting with other environmental and 

biological parameters in determining actual changes in material and energy fluxes in 

ecosystems (Luo et al., 1999).  On this basis, it would be more beneficial to conduct 

studies on plant responses to interactive effects of elevated Ca with other 

environmental factors, rather than elevated Ca alone.  Significant CO2 times family 

interactions, were noted for photosynthetic rates of Plantago lanceolata, when 18 

families from two populations of P. lanceolata were studied under CO2 enrichment 

(Klus et al., 2001).  Sallas et al. (2003) conducted a study on differences of the 

response of two conifer seedlings (Norway spruce and Scots pine), when exposed to 

elevated Ca and elevated temperature.  Results showed that in general, effects of 

elevated Ca on the studied parameters were small, compared with the effects of 

elevated temperature.   

 

For the purpose of the study undertaken, interactive effects of elevated Ca with the 

following three factors, will be reviewed: 1) nutrient availability, 2) interspecific 

competition and 3) planting density. 
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1.4.1 Plants, elevated Ca and nutrients 

CO2 is just one of the many inorganic resources that are required by plants (Stitt and 

Krapp, 1999).  Increasing Ca reduces the importance of carbon as a limiting external 

resource (Lynch and St. Clair, 2004).  Therefore the extent of plant responses to Ca 

enrichment will depend on the availability of resources other than CO2 (Zanetti et al., 

1997).  Nutrient availability, according to Poorter et al. (1996), is an important factor 

that influences Ca responses of plants.  These sentiments are echoed by Körner (2003), 

who maintains that plant nutrition is a key issue in CO2 response research, as CO2 

enrichment per se, is rarely the major driver of responses.    

 

Many studies have been undertaken in an attempt to investigate the interactions 

between increasing Ca, and nutrient supply or availability, on plants.  Bezemer et al. 

(2000) showed no significant CO2 times nutrient interactions on an annual grass 

species (Poa annua).  Similarly, Pi (inorganic phosphate) limitations reduced dry 

matter formation of barley roots, at ambient and elevated Ca (Sicher, 2005).   

 

In contrast, Midgley (1996) showed that in three of the four Leucadendron species 

investigated, the response of plant biomasss to elevated Ca, was reduced at high 

nutrient supply.  Similarly, the response of total biomass of an annual plant 

community to elevated Ca was found to be dependent on nutrient levels (He et al., 

2002).  In a study conducted by Stöcklin and Körner (1999), the biomass of legumes 

increased significantly by 29% when treated with phosphorus (P).  In addition, the 

above-ground biomass response to elevated Ca, was much larger with P fertilization.  

Similar results emerged from a study on Pinus radiata seedlings.  Elevated Ca 

increased total dry weight of P. radiata by an average of 30% (Conroy et al., 1986).  

However, in P-deficient seedlings, the increase was only 13%.  A similar trend was 

observed for other parameters: assimilation and the number, length, weight and 

diameter of needles increased with elevated Ca, but the effect was decreased by P-

deficiency.   

 

The effect of P observed in this study was similar to the effect of another 

macronutrient, potassium (K), in a recent study on cotton.  Reddy and Zhao (2005) 

found that stimulation of physiological and growth parameters (e.g. photosynthesis, 
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leaf area and biomass production) of cotton observed under elevated Ca, was lost 

under severe K deficiency.  In addition, plants grown under elevated Ca were more 

sensitive to K deficiency.   

 

Because ~50% of leaf N is used for photosynthetic activities (Onoda et al., 2004), 

potential interactions of N with CO2 and other nutrients, could play a vital role in 

plant responses to simultaneous increases in Ca and nutrient supply.   

 

Nitrogen-nutrient interactions (at ambient Ca): 

An experiment was carried out on boreal rich-fen vegetation, in which plants were 

fertilized with N, P and K at three different sites (Øien, 2004).  Results showed that in 

two of the three sites, above-ground biomass increased when plants received N and P 

together, indicating a strong relationship between these two nutrients.  The addition of 

K to the nutrient treatment did not increase biomass more than when N and P were 

added.  Similarly, addition of N alone significantly increased above-ground biomass 

of two Austrialian grasslands (Bennet and Adams, 2001).  However, combined 

addition of N and P had similar effects to addition of N alone.  These two studies 

reiterate the point that the relationship between nutrient supply and growth is not 

always linear.  In a study on Sphagnum spp., the lack of significant increases in 

growth under elevated Ca and N deposition, was attributed to low supplies of K and P 

(Hoosbeek et al., 2002).  Results from these studies highlight an important point:  

nutrient-nutrient interactions need to be taken into consideration in studies on plant 

responses to increasing Ca and nutrient supply, especially when nutrients are supplied 

as a nutrient solution/treatment (comprising various combinations of different 

nutrients).   

 

Nitrogen-Ca interactions: 

Harmens et al. (2000) showed that both CO2 and N enrichment stimulated net dry 

matter production of Dactylis glomerata.  Responses of two semiarid shrubs 

(Prosopis glandulosa and Prosopis flexuosa), to elevated Ca were found to be 

dependent on N, with the largest effects evident at high N supply (Causin et al., 

2004).  Similarly, Deng and Woodward (1998) showed that elevated Ca increased fruit 

yield of strawberry plants, but the effect was more profound at high N supply, than at 

low N supply. 
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On the other side of the coin, responses of Hippeastrum spp. to N were also affected 

by Ca enrichment (Silberbush et al., 2003).  In this study, bulbs of an initial diameter 

were grown in a greenhouse, on dune sand either enriched with 1000 ppm CO2, or 

with ambient concentration, and exposed to different combinations of nitrogen and 

phosphorus.  Both nutrients significantly increased bulb growth, but the optimal 

response of larger bulbs (greatest bulb growth) was at the high Ca concentration, for 

both nutrients.  Results from these four studies suggest a strong interaction between N 

and CO2.   

 

Onoda et al. (2004) has shown that plants can alter their nitrogen allocation to 

increase the rate or duration of carbon assimilation.  Therefore, in addition to nutrient 

availability, the way in which nutrients are utilized by plants also influences the long-

term response of photosynthesis and growth to elevated Ca (Stitt and Krapp, 1999). 

 

1.4.2 Plants, elevated Ca and competition 

Plants respond less predictably to Ca enrichment when they are grown in mixed 

communities (Dukes and Mooney, 1999).  Component species of plant communities 

may differ in their responses to elevated Ca (Ferris and Taylor, 1994), and 

interspecific variation in plant responses may lead to community-level changes in 

species dominance, composition and diversity (Weltzin et al., 2003).   

 

According to Johnson et al. (1993), the effects of increasing Ca concentrations on 

plant-plant interactions in communities, are not mediated through competition for 

CO2 per se, but depend primarily on how the rate of carbon supply influences 

individual growth rates and alters the acquisition and utilization of other resources.  

This idea is supported by Dukes (2000), who stated that whereas the growth of a 

solitary plant might be limited by the availability of CO2, plants in communities are 

likely to be limited by the availability of light, space, water, and nutrients, for which 

they perceptibly compete with other plants.  Differences in species ability to compete 

for potentially limiting resources could influence species responses to elevated Ca 

(Reynolds, 1996).    
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Navas (1998) conducted a literature review, and found that competition largely altered 

the response of plant species to CO2 enrichment.  The observed responses of plants 

grown in mixtures to elevated Ca, were much lower than the estimated responses 

calculated from plants grown individually, indicating a depressing effect of inter-

specific competition on the response of plant mixtures to elevated Ca.  Experimental 

conditions of the 20 studies selected for the literature review, differed, and plant 

densities varied according to the growth form of a species.  Observations from this 

literature review highlight the fact that species responses to CO2 enrichment when 

grown in mixed communities, cannot be extrapolated from its response in 

monoculture, and this could be attributed to the fact that when species are grown in 

mixture, competitive interaction changes the amount they require of an available 

resource, relative to their acquisition in monoculture (He et al., 2002).  Bazzaz and 

Garbutt (1988) demonstrated strong interactions between different species in 

mixtures, and in some cases, interactions cancelled out the effects of CO2 

enhancement.  Therefore, interactions between plants in communities could be 

positive, negative or even neutral.   

 

Physiological responses of different plants to elevated Ca, might affect growth and 

competition by causing limitation of other resources to abate (or intensify).  The 

species that best responds to the full suite of CO2-driven changes in resource 

availability are most likely to benefit from the Ca increase (Dukes, 2000).  According 

to Hunt et al. (1991), increasing Ca clearly has the potential to induce shifts in species 

composition toward a competitive strategy.  One of the general patterns that has 

emerged, is that plants with C3 metabolism are more sensitive to increasing Ca than 

plants with C4 metabolism (Garbutt et al., 1990; Johnson et al., 1993; Poorter, 1993; 

Tissue et al., 1995).  The striking differences observed in photosynthesis and growth 

between C3 and C4 species are directly connected to the presence of the process of 

photorespiration in the former but not in the latter (Johnson et al., 1993).   

 

Gavazzi et al. (2000) demonstrated a favouring of community development of C3 

weeds over C4 weeds, in elevated Ca.  An early study on Abutilon theophrasti (C3 

weed) and Amaranthus retroflexus (C4 weed), in which both species were grown 

individually, and in competition with each other, showed elevated Ca had a positive 

effect on the biomass of A. retroflexus, and to a lesser extent, A. theophrasti  (Bazzaz 
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et al., 1989).  However, these effects were limited to the early parts of the experiment, 

in the case of individually grown plants.  These results are in direct contrast to two 

later studies on the same two species.  Dippery et al. (1995) and Tissue et al. (1995) 

conducted studies which compared the effects of elevated Ca on Abutilon theophrasti, 

and Amaranthus retroflexus, grown in competition with each other.  Dippery et al. 

(1995) showed that after 35 days of exposure to CO2 enrichment, there were no effects 

on relative growth rate (RGR), total biomass, or partitioning of biomass of the C4 

species.  On the contrary, C3 plants grown under 700 ppm Ca, had greater root mass 

and root:shoot ratios than C3 plants grown at lower Ca partial pressures.  Tissue et al. 

(1995) demonstrated similar results: net photosynthesis at growth CO2 concentration 

increased with increasing Ca for A. theophrasti (C3 weed), but not for A. retroflexus 

(C4 weed).  Contrary to the three studies on A. theophrasti and A. retroflexus 

discussed above, Coleman and Bazzaz (1992) showed that when both species were 

grown individually, elevated Ca had no effect of the final biomass of the C3 species, 

A. theophrasti.  

 

Further evidence, which supports the idea that the response of C3 - C4 mixed 

communities may not be as straightforward as expected, comes from a study 

conducted on the Poaceae family (Wand et al., 1999).  In this study, both C3 and C4 

grass species increased total biomass significantly, in response to elevated Ca.  

However, the overall stimulation of C3 carbon assimilation rates was reduced by 

stress.  Environmental stresses did not alter the C4 response to elevated Ca.  These 

results suggest that CO2-enriched environments characterized by several stresses may 

favor C4 grasses over C3 grasses.   

 

The focus of the literature reviewed thus far, has been on interactions between plants 

of the same life form, for e.g. weed-weed, or grass-grass interactions.  However, one 

needs to consider that in reality, plant communities are usually comprised of plants of 

different life forms.  Annuals, perennials, grasses, crops, and even weeds co-occur in 

nature.  Therefore, in order to get a more accurate representation of the role of 

competition in plant responses to elevated Ca, it would perhaps be more beneficial to 

conduct studies on different life forms grown in competition with each other.   
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According to Polley et al. (1994), increases in global Ca since the beginning of the 

19th century, potentially favour a greater increase in growth of a C3 weed species, 

Prosopis glandulosa, than C4 grasses.  Patterson and Flint (1980) also investigated the 

competitiveness of C3 and C4 crops and weeds under elevated Ca conditions.  Results 

from this study suggested that Ca enrichment would make C3 weeds more competitive 

than C4 crops.  This was shown to be the case in a more recent study: sorghum (C4 

crop) was grown in competitive mixtures with common cocklebur (C3 weed), in 

elevated Ca (Ziska, 2001).  Aboveground biomass and leaf area increased significantly 

for cocklebur, but decreased significantly for sorghum.  Results from this study 

indicate that vegetative growth, competition and potential yield of C4 crops, could be 

reduced by co-occurring C3 weeds as Ca increases.  On the other hand, Patterson 

(1980) predicted that C4 weeds might become less competitive when grown with C3 

crops.   

 

Despite the many conflicting reports on whether increasing Ca would generally favor 

C3 or C4 species, it is clear that global CO2-enrichment will affect the competitive 

interactions between C3 and C4 species in some way, and this may even affect 

seasonal niche separation and species distribution (Carter and Peterson, 1983).   

 

1.4.3 Plants, elevated Ca and planting density 

Many lines of evidence illustrate a response of plants to different planting density.  

Gan et al. (2002) conducted research on the responses of three genotypes of soybean 

(Glycine max), to planting density.  Results from the field showed that total biomass 

and seed yield per unit area, for all three genotypes responded positively to increased 

plant density.  The effect of planting density on individual plant characteristics varied 

across genotypes in this study.  In contrast, seed yield per plant, plant width and 

number of branches of Lesquerella fendleri, was significantly reduced with increasing 

planting density (Brahim et al., 1998).  Minor decreases in plant height observed in 

this study, was attributed to competition for available space at greater planting 

densities.   

 

A study on loblolly pine stands reported a significant increase in stem growth rates 

with increasing planting density (Will et al., 2005).  However, increases were not 
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proportional, indicating the presence of competition-induced limitations to growth.  In 

contrast, no adverse effects of increasing planting density on growth /yield of 

rubber/banana crops was observed, when these two species were grown together 

(Rodrigo et al., 1997).  In this study, rubber crops were grown in a single row, and 

increasing planting density was achieved by increasing the number of rows of banana 

crops, from one to three.  The relative performance of component crops in different 

cropping systems were analysed in terms of the crop performance ratio (CPR), which 

refers to the production of an intercrop per unit area of ground, compared with that 

expected from sole crops sown in the same proportions (Rodrigo et al., 1997).  

Interestingly, CPR and dry matter productivity of rubber increased with increasing 

banana planting density.  Leaf area and total dry matter of stands, as well as total yield 

per hectare, were significantly increased with increasing planting density.  

 

Effects of spacing on planting density were demonstrated by Proe et al. (2002), who 

conducted research on red alder and balsam spire poplar.  In this study, both species 

were grown in rows, that were spaced at either 1m or 1.5m apart.  Root:shoot ratios 

and leaf weight ratios of both species increased when planting occurred at wider 

spacing.  This was attributed to the fact that with planting density at wider spacing, 

leaf and root biomass increased for longer, before competition for above- and below-

ground resources commenced.  However, planting at wider spacing reduced stocking 

density by 56%, and led to a 35% decrease in total community biomass (dry 

matter/hectare).  Results from this study shows that in addition to the number of 

plants/area (plant density), the distance between plants could also influence plant 

behaviour, and should be taken into consideration in plant studies.   

 

It should be noted that in the above-mentioned studies, plant species were exposed 

only to planting density, and not to elevated Ca.  Since plants in nature occur in 

populations of variable planting density, it would be beneficial to conduct studies on 

the influence of planting density on the response of plants to elevated Ca.  Literature 

on plant responses to a combination of planting density and elevated Ca was scarce, 

and proved difficult to find.  However, three such studies are discussed below. 

 

He and Bazzaz (2003) investigated population- and individual-level responses of 

reproductive allocations of Phytolacca americana to elevated Ca.  At the population-
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level, the interaction between Ca and density was insignificant, but at the individual-

level, the effects of elevated Ca on reproductive allocation was density-dependent.  

For example, elevated Ca decreased the reproductive mass per vegetative mass at low 

density, but increased it at high density.  In addition, this study showed that net 

photosynthesis of P. americana increased under elevated Ca, but decreased with 

density, indicating a Ca times density interaction.  Rutuerto et al. (1996) conducted a 

study to investigate the influence of plant density on the response of Sinapis alba to 

increasing atmospheric CO2.  A strong density effect on individual plant biomass was 

observed for both CO2 levels (350 and 700 µL.L-1).  Similarly, total individual plant 

biomass values were significantly enhanced with elevated Ca, at all plant densities.  

Interestingly, when measured as a population/stand response, there was no effect of 

density on CO2 responses.  Wayne et al. (1999) also conducted a similar study, in 

which stands of Brassica kaber were grown at a range of six densities in both ambient 

and elevated CO2 environments.  Results showed that early in stand development, 

CO2 enhancement of above-ground biomass was highly density-dependent.  With 

regard to above-ground biomass, the density-dependence of the response of B. kaber 

to elevated CO2 was reduced, as stands matured.  At the final harvest, no apparent 

density-dependence of the response of stand communities of B. kaber to elevated 

CO2, were observed.   

 

Results from these three studies highlight the importance of considering plant density 

when assessing the potential impacts of CO2 enrichment on plants. 

 

1.5 Invasive aliens and elevated Ca 

Biological invasions, the human-mediated breakdown of biogeographical barriers to 

species dispersal, could be a consequence of global environmental change 

(Witkowski, 2002).  For several years, biological invasions have threatened to 

degrade the natural biological diversity of many nature reserves (Loope et al.1988).  

Patterson (1995) predicted that global warming and other climatic changes would 

affect the growth, phenology, and geographical distribution of weeds.  More 

specifically, Dukes and Mooney, (1999) and Weltzin et al. (2003) proposed that most 

aspects of global climate change, especially the interactive effects between increasing 

Ca and global warming, would favour invasive alien species.   
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This idea is supported by other studies.  For example, Poorter (1993) and Dukes 

(2000) suggested that many C3 plants that are fast growing tend to respond more 

strongly to elevated Ca.  Since vigorous growth rates are characteristic of many 

invasive species (Willis and Blossey, 1999; Simons, 2003), a positive response of 

invasive plant species to elevated Ca would be expected.  However, Lloyd and 

Farquhar (2000) proposed that ranking of plants with different inherent growth 

abilities should not be independent of growth conditions.  When grown individually 

or in monoculture, several lines of evidence have demonstrated a positive response of 

invasive plants to elevated Ca (Sasek and Strain, 1988; Dukes and Mooney, 1999; 

Dukes, 2000; Ziska, 2001).  Ziska (2003) conducted a study on the response of six 

invasive species to different CO2 concentrations: 284, 380 or 719 ppm CO2.  These 

averages corresponded roughly to the CO2 concentrations which existed in the 

beginning of the 20th century, the current CO2 concentration, and the future CO2 

concentration predicted for the end of the 21st century, respectively (Ziska, 2003).  On 

average, the stimulation of plant biomass among the invasive species from current to 

future CO2 concentrations, was 46%.  Studies on invasive weed, Pueraria lobata 

(kudzu), showed a 51% increase in biomass, and 58% increase in stem height, when 

exposed to elevated Ca (1000 ppm) (Sasek and Strain, 1988).   

 

However, research also suggests that invasive plants in mixed communities may 

respond differently to elevated Ca, compared with plants grown monospecifically.   

When Centaurea solstitalis (an invasive species), was grown in monoculture, it 

responded strongly to CO2 enrichment by increasing above-ground biomass 

production by 70% (Dukes, 2002).  However, when grown in competition with 

common serpentine grassland species, C. solstitalis responded to CO2 enrichment 

with similar but non-significant increases (69% increase in above-ground biomass 

production).  In contrast, above-ground production of an invasive annual C3 grass 

grown in a mixed community, was shown to increase more at elevated Ca, than 

several of the native annuals (Smith et al., 2000), suggesting that not all plants behave 

differently in communities, regarding their response to CO2 enrichment. 

 

Because invasive aliens are major agents of land transformation, disruptors of 

ecosystem functioning and a threat to biodiversity (Richardson et al., 1997), the 
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predicted increase in the success of invasive alien plants in CO2-enriched 

environments, is cause for major concern. 

 

1.5.1 Chromolaena odorata 

Background: 

Chromolaena odorata (Linn.) King and Robinson (Asteraceae), formerly known as 

Eupatorium odoratum, is a common pan-tropical weed found in waste places, 

roadsides, and farmlands (Apori et al., 2000; Taiwo et al., 2000).  It is commonly 

called ‘Siam weed,’ but was previously also known as Kingsweed, triffid weed and 

Christmas bush (Liggit, 1983; Udosen and Udodiong, 1999; Apori et al., 2000).    

C. odorata is a perennial, semi-lignified herbaceous shrub that can form dense tangled 

bushes up to 1.5-5m in height (McFadyen and Skarret, 1996; Udosen and Udodiong, 

1999; Apori et al., 2000; Witkowski and Wilson, 2001).  Growth is optimal in the 

open or in partial shade, and pale-bluish-lilac or white flowers are produced in winter 

(McFadyen and Skarret, 1996).   

 

Uses: 

Many beneficial aspects of this weed have been identified.  It has been widely used 

with considerable success as a fertilizer (Liggit, 1983).  According to Udosen and 

Udodiong (1999), a decoction of the leaf is used in combination with lemon grass and 

guava leaves for treatment of malaria.  In Vietnam, Eupolin ointment (made from 

leaves of C. odorata) has been licensed for the treatment of soft tissue wounds and 

burns (Phan et al., 2001).  Apori et al. (2000) conducted a study which revealed that 

C. odorata leaves are of high nutritive value, and might have the potential to be used 

as a protein supplement for ruminants.   

 

C. odorata poses a problem: 

However, despite its many uses C. odorata has become a serious pest in the humid 

tropics of South East Asia, Africa and Pacific Islands (Ye et al., 2004).  In Nigeria for 

example, it constitutes an aggressive weed that is very difficult to control in young 

single and mixed crop plantations of oil palm, rubber and cocoa (Ikuenobe and 

Anoliefo, 2003).   
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Studies have showed that C. odorata can be killed physically or chemically without 

too much difficulty (Liggit, 1983; Goodall and Erasmus, 1996; Zachariades and 

Goodall, 2002).  The problem lies in keeping an area free from the weed once it has 

been cleared.  The success of C. odorata as an alien invader, could therefore be 

attributed to the fact that it possesses many characteristics necessary for rapid spread 

and establishment. 

 

Factors promoting spread of C. odorata: 

C. odorata is fast growing and rapidly multiplying.  High competitive ability, 

production of phytotoxins (allelopathy), and general hardiness and wide 

environmental tolerance, further render it a problem plant (Liggit, 1983).  Plants attain 

reproductive maturity relatively early (Witkowski, 2002), and efficient short- and 

long-distance dispersal abilities ensure easy dispersal of the large quantity of seeds 

produced by this species (Ye et al., 2004).  The fact that a small but significant 

proportion of seeds persist in the soil for more than a year (Witkowski, 2002), further 

enhances this species’ exceptional reproductive ability.   These properties enable C. 

odorata to invade disturbed areas and recolonize cleared land very rapidly (Liggit, 

1983).  Another particularly dangerous attribute of C. odorata, is its high 

flammability: it burns even when green in midsummer, due to the presence of 

essential oils in its stems and leaves.  Nevertheless, it is rarely killed by fire and the 

ashbed that results from fires provides a good germination site for C. odorata seeds 

(Liggit, 1983).   

 

An early study demonstrated soil moisture as an important criterion for the survival of 

C. odorata (Kushwaha et al., 1981).  Support for this idea comes from a recent study, 

which showed that C. odorata grows mainly in areas with a rainfall of > 800 mm per 

annum (Zachariades and Goodall, 2002).  Bright sunlight and high relative humidity 

have also been documented as environmental factors which promote vigorous growth 

of this species (Ambika, 2002).  Therefore environmental factors, in combination with 

the properties of C. odorata described above, facilitate the spread of this weed 

throughout the tropical world, making this species extremely difficult to control.   
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C. odorata in South Africa: 

C. odorata was first recorded in South Africa in 1947 near Ndwedwe, KwaZulu-Natal 

(Retief, 2002).  During the next 30 years, C. odorata spread southwards and 

northwards throughout the coastal, subtropical region of KwaZulu-Natal (Liggit, 

1983; Goodall and Erasmus, 1996). By 1986, C. odorata was identified as one of 47 

alien invasive plant species, capable of transforming habitats and landscapes in South 

Africa (Wells et al., 1986).   

 

Other studies conducted in South Africa, have revealed that C. odorata suppresses 

indigenous vegetation through physical smothering and allelopathy, and the 

impenetrable tangles resulting from its growth form has the potential of shading out 

all natural vegetation (Macdonald, 1983; Zachariades and Goodall, 2002).  C. odorata 

also forms dense thickets on the edges of forest and riverine forest, ecotones which 

are normally fire-excluding (Macdonald, 1983).  Following invasion by C. odorata, 

fires burning in adjacent grassland and woodland areas cross the ecotone with ease 

and burn right into the canopies of fire sensitive forest trees.  This could explain the 

current severe threat that C. odorata poses to forest biodiversity in South Africa 

(Zachariades and Goodall, 2000).  A recent study conducted near St. Lucia in Kwa-

Zulu Natal, confirmed that C. odorata was most abundant in indigenous forest 

reserves, compared to other land regimes (van Gils et al., 2006).  Therefore, in South 

Africa, this species of weed is primarily viewed as a threat to biodiversity 

conservation, and secondarily to commercial agriculture and forestry (Liggit, 1983; 

Goodall and Erasmus, 1996).   

 

C. odorata was first observed in the Hluhluwe Game Reserve (north-eastern 

KwaZulu-Natal) in the early 1970’s (Howison and Balfour, 2002), and was classified 

as the most widespread alien invader in the reserve by the 1980’s (Macdonald, 1983).  

By 1998, approximately 2100 hectares of Hluhluwe Game Reserve were densely 

infested by C. odorata (Howison and Balfour, 2002).   

 

Although there are large tropical and subtropical areas in eastern and central Africa, 

where C. odorata is absent or limited to small infestations (McFadyen and Skarret, 

1996), figures regarding the Hluhluwe Game Reserve in South Africa suggest that the 

potential threat of C. odorata should not be underestimated.  
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Control: 

Biological control of a weed involves the introduction of host-specific natural 

enemies of a weed from its original native range (Fowler et al., 2000).  In South 

Africa, a review reported extensive use of biological control of 38 alien plant species 

(Richardson et al., 1997).  More recently, the success of biological control of 

environmental weeds was reported in New Zealand (Fowler et al., 2000).  Goodall 

and Erasmus (1996) proposed that biological control is the only viable solution for 

reducing the current and potential impacts of C. odorata.   

 

However, a recent study conducted near Scottburgh on the KwaZulu-Natal coast, 

showed that sugar-cane farmers could resort to a very costly option of tractor-

mounted herbicide sprayers to curb C. odorata infestations on their farms (Goodall, 

1997).   According to Richardson et al. (1997), satisfactory control of weeds is usually 

achieved only when several complementary methods, including biological control, 

improved land management practices, herbicides and mechanical methods are 

carefully intergrated.  Therefore, an effective intergrated control programme needs to 

be developed, to reduce C. odorata infestations in South Africa (Witkowski and 

Wilson, 2001; Witkowski, 2002).   

 

1.6 Experimental approaches to plant studies on responses to elevated Ca 

According to Long et al. (2004), most information about plant responses to elevated 

Ca has been derived from experimental studies that use greenhouses, artificially 

illuminated controlled environmental chambers, and in the field, transparent 

enclosures or open-top chambers (OTCs).  Many of these studies, including some of 

the field studies, have used plants grown in pots. 

 

Thomas and Strain (1991) showed that inadequate rooting volume (observed for 

plants grown in small pots), reduced the photosynthetic capacity of cotton seedlings, 

clearly demonstrating that the loss of response to increased Ca through acclimation, 

was an artifact of pot size.   Even large pots have been shown to restrict the response 

of plants to elevated Ca.  Ainsworth et al. (2002) conducted a survey on studies of 

soybeans grown at elevated Ca, and found that plants grown in the field without 
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restrictions on rooting volume showed a significant three fold increase in yield, 

compared to plants grown in large pots (> 9 litres volume).   

 

Most field studies have been based on the use of OTCs (Long et al., 2004).  

According to these authors, there are important differences between the environment 

within the best-engineered OTCs and the environment surrounding the chamber, 

despite the fact that the tops, or large portions of the tops, of OTCs are open to the 

atmosphere.  One obvious effect of an OTC is that wind is removed, preventing wind 

damage and dispersal of pathogens, rainfall interception is dramatically reduced, and 

plant-atmosphere coupling is altered (Long et al., 2004).   

 

Some field studies have even been conducted with the aid of branch chambers, where 

separate branches of trees are isolated and enclosed in a chamber (Teskey, 1995).  

According to this study, the relatively small size of these chambers helps provide a 

similar microclimate to that outside the chamber.  However, a limitation of this 

technique is that only a small portion of the crown is exposed to elevated Ca, and so 

phenomena e.g. photosynthetic acclimation, would not be observed, unless it is 

localized.   

 

Free Air CO2 enrichment (FACE) experiments have also been reported in many 

studies on plant responses to CO2 enrichment (Bryant et al., 1998; Wechsung et al., 

1999; Herrick and Thomas, 2001; Bernacchi et al., 2005).  A typical FACE apparatus 

consists of a 20-m-diameter plot within the cropfield, in which CO2 is released just 

above the crop surface on the upwind side of the plot (Long et al., 2006).  The greater 

size of FACE plots by comparison to OTCs not only reduces edge effects but also 

allows simultaneous studies of many plant processes   Within chamber systems, such 

holistic approaches are precluded by the damaging effect that would result from 

destructive sampling of soil and leaves (Long et al., 2004).  Woodward (2002) and 

Ainsworth and Long (2005) also maintain that FACE methods minimize experimental 

artifacts by allowing researchers to work under natural field conditions, without 

enclosures.   

 

However, FACE is not without limitations.  Long et al. (2004) maintain that one 

potential disadvantage of FACE is that it depends on continuous air movement.  In 
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addition, wind generates a dilution gradient across treatment plots, a gradient which 

becomes more pronounced in larger plots.  Further evidence, which supports the fact 

that FACE may not always be the better option, comes from a review of data obtained 

from 12 large-scale FACE experiments, which showed that trees were more 

responsive to FACE than herbaceous species (Ainsworth and Long, 2005) 

 

Although a study on Larrea tridentate showed that FACE and glasshouse well-

watered plants displayed similar behaviour when exposed to elevated Ca (Huxman et 

al., 1998), there are important differences between experimental approaches, which 

cannot be ignored.  For example, when Long et al. (2006) assessed model projections 

of global crop yield in CO2 enrichment, elevated Ca in FACE studies enhanced yield 

of crops by ~50% less than in enclosure studies.   

 

Although chamber studies have used a wide range of elevated Ca, averaging 700 

µmol.mol-1, FACE studies have used an elevation of 550-600 µmol.mol-1 (Long et al., 

2004).  The high cost of FACE experiments (Conroy et al., 1986), is probably the 

reason for this difference.  However, this may have serious consequences, in that 

responses to CO2 enrichment which are small in magnitude, may not be detected at 

the low Ca elevations used in FACE studies. 

 

From the literature reviewed above, it is clear that there advantages and disadvantages 

associated with both experimental approaches (OTCs and FACE).  The use of OTCs 

was considered the best option in the current study, particularly with respect to cost. 

 

1.7 This study 

 Background: 

The severity of the problem of Chromolaena odorata as an alien invader in South 

Africa, has been outlined in Section 1.5.1.  CO2-enriched atmospheres, as well as a 

potential increase in the success of invasive aliens in elevated Ca, have been predicted 

for the future (See Sections 1.2 and 1.5., respectively).  Therefore, a study on the 

response of C. odorata to elevated Ca, is required to assist future control measures of 

this particular weed in the South Africa.   
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Naidoo, personal communication, conducted a study in which C. odorata was grown 

in competition with another C3 species, Chrysanthemoides monilifera.  Results 

showed that C. monilifera out-competed C. odorata in CO2 enriched atmospheres.  

Based on the fact that C. odorata is a serious invader of grasslands, the present author 

(Lalla, unpublished) investigated the effects of elevated Ca on C. odorata, when 

grown in competition with a C4 grass, Hyparhenia dregeana.  Results from this study 

showed no enhancement of growth (e.g. total leaf area, plant height etc.) of  

C. odorata when grown in elevated Ca.  However, the lack of photosynthetic data in 

that study should be noted. 

 

Experimental approach: 

It is agreed that the most realistic picture of plant responses to elevated Ca will be 

found in situ, but a disadvantage of this approach is that the mechanisms of CO2 

effects will be obscured by a multitude of unknown interactions (Stöcklin and Körner, 

1999).  The current project attempts to bypass this problem by studying artificial plant 

communities growing in pots in a greenhouse.   

 

Treatments: 

Nutrient availability, according to Poorter et al. (1996) could affect a plant’s response 

to elevated Ca.  In the current study, Eragrostis curvula and Themeda triandra were 

chosen as competitors for C.odorata, because of their preference for different nutrient 

levels.  E. curvula is a perennial C4 grass native of South Africa that grows naturally 

in many semi-arid regions (Colom and Vazzana, 2003).  Also known as weeping 

lovegrass, E. curvula is able to adapt to climatic and edaphic factors.  This species is 

well adapted to high fertility, and a strong reaction to nitrogenous fertilization has 

been observed (Rethman, 1973).  Therefore, growth of this species is favoured by 

high nutrient supply.  T. triandra on the other hand, is a perennial warm-season C4 

grass which performs better in poor nutrient soils (Groves et al., 2003).   

 

According to Weltzin et al. (2003), plant responses to elevated Ca are often restricted 

by biotic (e.g. competition), and abiotic (e.g. soil nutrients) factors, that interact with 

each other and with changing Ca concentrations.  On this basis, one of the main aims 

of the current study, was to explore the relationship between competition and nutrient 

availability, and its potential impacts on the response of C. odorata to elevated Ca. 
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In previous studies on C. odorata (Naidoo, personal communication; Lalla, 

unpublished), this species was grown in competition with other species.  In addition, 

the density of the experimental pots in these two studies, were kept constant.  It would 

be interesting to investigate the C. odorata responses to elevated Ca, when grown 

monospecifically, and subjected to different planting densities.  

 

Experimental trials: 

This study was divided into two experimental trials.  The first of these (referred to as 

PART A), considers the effect of elevated Ca on interspecific competition.  C. odorata 

was grown in competition with T. triandra and E. curvula, and planting density was 

kept constant.  Plants were subjected to two factors: Ca and nutrient availability.  

 

The second trial (PART B) explores the effect of planting density on responses of  

C. odorata to elevated Ca.  In this trial, C. odorata was grown monospecifically, at 

two different planting densities.  Therefore, Ca and planting density were the two 

factors, to which plants from PART B were exposed.   

 

In both experimental trials, the effect of elevated Ca on the growth and physiology of 

C. odorata, was assessed.   
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CHAPTER 2. MATERIALS AND METHOD 

 

2.1 Collection of Plant Material 

PART A:  During April 2004, sixty-four intact young, single-stemmed, plants with 

roots, of C. odorata were collected from Manor Gardens, Durban, KwaZulu-Natal in 

South Africa (29º 51.781'S, 30º 58.286'E).  A single collection site was opted for, to 

minimize variation.  It was also for this reason that plants of similar height and stem 

diameter were chosen.  Once collected, the plants were completely defoliated and cut 

back to a single node, before planting.  During this growth trial, two grass species 

(Eragrostis curvula and Themeda triandra), were selected as potential competitors 

with C. odorata.  These grasses were obtained from the Grassland Science 

Department, University of KwaZulu-Natal, Pietermaritzburg.  Grass plants were 

growing as plugs in “seedling trays,” before they were potted.   

 

PART B:  During February 2005, sixty-four young plants of C .odorata (of similar 

height and stem diameter) were collected from the grounds of the University of 

KwaZulu-Natal, Durban (29º 52.238'S, 30º 58.513'E).  Once again, these plants were 

defoliated and cut back to a single node, before planting.  During this experimental 

trial, C. odorata was grown in the absence of competitors. 

 

2.2 Experimental Set-up 

During PART A and PART B, plants were potted in open-top chambers (OTCs) in a 

greenhouse at the University of KwaZulu-Natal, Durban.  Sixteen large round pots 

(50cm in diameter and 26cm in depth) were used in the study.  Several holes were 

drilled into the bottom of each pot to provide drainage.  Pots were then filled with 

3cm of coarse gravel, to serve as a water filter.  After the gravel was treated with a 

fungicide (Dursban 2 E, AgrEvo, chloropyriphos (organophosphate), pots were filled 

to the brim with river sand.  The combined effect of the drainage holes and gravel was 

to provide drainage and prevent excess water retention in the soil.  To avoid soil 

overheating, pots were painted white.  All 16 pots were then placed on stands in the 

greenhouse.   
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Air (from the outside) entered the greenhouse through an inlet, and was supplied to 

each of the 16 pots, via white insulated pipes (Fig. 2.1).  Air flowed through the pipes, 

up the riser pipe (63 mm in diameter), and into the open top chamber.  The risers were 

fitted with valves, which were manipulated to ensure that all pots received air at the 

same flow rate.  In addition, risers were fitted with baffles to distribute the air in the 

chamber.  The OTCs were 0.82 m in height and 0.44 m in diameter, giving a volume 

of 0.125 m3.  The flow rate was set in each pot, with the help of an air velocity meter.  

The ‘valves’ in the risers were adjusted manually, until the air-velocity meter gave a 

reading of ~2.45 ms-1 for each pot.  This supplied air sufficiently rapidly to provide 

three changes of air per minute in the OTCs. 

 

 

 

 

Fig. 2.1 Arrangement of 16 pots in the greenhouse. Green arrows indicate direction 
of airflow through each pot.  Broken arrows illustrate which pipe transports elevated 
or ambient Ca, in each row 

Elevated Ca Ambient Ca 

OPEN TOP 
CHAMBERS 

RISER 
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2.3 Experimental design 

The experimental factor common to both experimental trials, was Ca.  During the 

study, eight of the sixteen pots were exposed to ambient Ca (~370 ppm), and the other 

8 pots were exposed to elevated Ca (~720 ppm).  The source of elevated Ca (a CO2 

cylinder), was connected to only three of the six white pipes (Fig. 2.1).  This kind of 

experimental design made it possible for plants to be exposed to different Ca 

treatments, even though all 16 pots were situated adjacent to each other. 

 

2.3.1 Treatments 

PART A: Each of the 16 pots contained four C. odorata, four E. curvula and four T. 

triandra seedlings (Fig. 2.2).   

 

 

 

 

 

 

 

 

 

 

Fig. 2.2 Illustration showing species arrangement in each pot, for PART A (Aerial 
view) 
 

 

Consequently, the density of each pot was kept constant (12 plants in total).  In 

addition to Ca, another influencing factor was introduced: nutrient treatments.  Stock 

solutions of Hoagland’s nutrient solution (Hoagland and Arnon, 1950 in Salisbury and 

Ross, 1992), were prepared, and supplied fortnightly to the pots.  The various 

nutrients used to make up the nutrient solution supplied to the pots, are shown in 

Tables 2.1 and 2.2. 
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Table 2.1 Macronutrient concentration of final solution 

Nutrient Concentration (mol.L-1) 

K 0.006 

P 0.001 

N 0.01 

Ca 0.005 

Mg 0.002 

S 0.002 

Fe 9 x 10-5 

 

        

                     Table 2.2 Micronutrient concentration of final solution 

Nutrient Concentration (mol.L-1) 

B 4.69 x 10-5 

Cu 9.19 x 10-6 

Zn 7.67 x 10-7 

Mo 4.49 x 10-7 

Mn 1.11 x 10-7 
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This solution was prepared by diluting the following stock solution (Table 2.3): 

Table 2.3 Stock solution for Hoagland’s nutrient solution 

Salt Concentration (g/L) Dilution factor 

KH2PO4 136 1:1000 

KNO3 101 5:1000 

Ca(NO3)2 164 5:1000 

MgSO4 120 2:1000 

H3BO3 2.86 

MnCl2.4H2O 1.81 

ZnSO4.7H2O 0.22 

CuSO4.H2O 0.08 

H2MoO4.H2O 0.02 

Fe-EDTA 33 

 

 

At each Ca treatment, four pots received high nutrient treatments (3 L per addition), 

and the other four pots received low nutrient treatments (300 ml per addition), every 

two weeks.  All plants were watered on a regular basis.  A diagrammatic 

representation of treatments for PART A, can be seen in Fig. 2.3. 

 

 

1:10000 
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Fig. 2.3 Illustration showing experimental design of PART A 

 

Treatments, and the respective abbreviations for PART A, are summarized in Table 

2.4 below. 

   

  Table 2.4 The four treatments applied in PART A 

Ca Nutrient Treatment Abbreviation 

Ambient Low A & LN 

Ambient High A & HN 

Elevated Low E & LN 

Elevated High E & HN 

 

 

 

16 POTS 

8 POTS 
 (Ambient Ca) 

8 POTS 
 (Elevated Ca) 

4 POTS 
(High Nutrient) 

4 POTS 
(Low Nutrient) 

4 POTS 
(Low Nutrient) 

4 POTS 
(High Nutrient) 



 41

PART B: For this experiment, C. odorata was grown monospecifically.  At each Ca 

treatment, 4 pots contained four plants each, and the remaining 4 pots contained two 

plants each.  Figure 2.4 shows a simple diagrammatic representation of the treatments 

in PART B of this study.   

 

 

 

 

 

 

 

 

Fig. 2.4 Illustration showing experimental design of PART B 

Plants grown in this experimental trial were also exposed to two influencing factors 

(C a and density), and four treatments (summarized in Table 2.5). 

   

  Table 2.5 The four treatments applied in PART B 

Ca Density  

(no.of seedlings) 

Treatment Abbreviation 

Ambient 2 plants A & LD 

Ambient 4 plants A & HD 

Elevated 2 plants E & LD 

Elevated 4 plants E & HD 

 

16 POTS 

8 POTS 
 (Ambient Ca) 

8 POTS 
 (Elevated Ca) 

4 POTS 
(2 plants) 

4 POTS 
(4 plants) 

4 POTS 
(4 plants) 

4 POTS 
(2 plants) 
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2.4 Data collection 

Plants were watered regularly and allowed to grow for reasonable periods of time (6 

months for PART A and 8 months for PART B), before harvesting.  Occasionally 

plants were treated with insecticides (e.g. Kelthane and Ludwigs insect spray), to 

remove ants and aphids.  The data collected have been separated into 2 categories: 

physiological data and growth data. 

2.4.1 Physiological data 

Photosynthetic measurements: 

These were essentially measurements of the response of net CO2 assimilation (A) to 

intercellular CO2 concentrations (Ci), and were obtained using the Li-Cor 6400 

portable infrared gas analyzer (IRGA) (LiCor, Lincoln, Nebraska, U.S.A).  For PART 

A, two mature leaves from each pot were selected for measurements, and one leaf per 

plant was sampled in PART B.  Once a leaf was enclosed in the leaf chamber of the 

IRGA, a Ca value of either 400 or 700 ppm was selected, depending on which Ca 

treatment the leaf had been exposed to during the growth trial.  The flow rate was set 

to 500 µmol.s-1 , and a block temperature of 25 °C was selected.  To eliminate light as 

a compounding factor, a constant light intensity was used.  This value was selected as 

1000 µmol.m-2s-1 photosynthetic photon flux density (PPFD), since preliminary 

studies showed that photosynthesis of C. odorata occurs maximally at this light 

intensity.  Figure 2.5 shows the use of the IRGA, in obtaining A:Ci data in the study.    
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  Fig. 2.5 Picture showing IRGA-use in the greenhouse 

 

To allow for acclimation to chamber conditions, the leaf remained in the chamber for 

~10 minutes before any readings were taken.  An A:Ci autoprogram was then selected 

from the menu.  In this autoprogram, the user is required to enter desired Ca values, to 

which the leaf would be exposed.  The initial value was selected as either 400 or 700 

ppm (depending on the Ca treatment).  This initial value was decreased stepwise to 50 

ppm, and then increased stepwise to 1000 ppm.  During the increase, the leaf was 

exposed to the original Ca value again.  It should be noted that stepwise increasing and 

decreasing of Ca values was done at regular intervals (200 ppm at a time), to avoid 

unnecessary stress for the leaf.  However, smaller intervals (50 ppm) were used at 

lower Ca concentrations to improve the accuracy of the initial slopes of A:Ci curves.  

Data captured by the IRGA over the range of Ca values selected, included air 

temperature (Ta), stomatal conductance to CO2 (gc), intercellular CO2 concentration 

(Ci) and photosynthetic net CO2 assimilation rate (A).   

The response of A to Ca itself cannot be interpreted easily since it is affected by 

boundary layer, stomatal, and mesophyll processes; the response of A to Ci however, 

eliminates the effect of the boundary layer and stomata, depending solely on the 

mesophyll processes.  Hence it is not surprising that one of the most commonly 

reported responses of CO2 uptake is the response of A to Ci (Long and Bernarcchi, 

2003).   
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A plot of assimilation versus Ci, is called an A:Ci curve.  
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Fig. 2.6 Idealized A:Ci curve (1: CO2 compensation point, 2: initial slope and 3: Jmax) 

 

Although A:Ci curves show general trend patterns, Long and Bernarcchi (2003) state 

that one of the most common purposes of these curves is to extract other information, 

such as the maximum rate of electron transport used in the regeneration of RuBP 

(Jmax).  For this reason, the model curve in Fig. 2.6 can be analysed to obtain the 

values of three parameters: 1) The CO2 compensation point, 2) the initial slope of the 

curve, and 3) Jmax.  The CO2 compensation point is the Ci concentration at which the 

rates of gross assimilation and respiration are equal.  The initial slope of the curve 

gives the carboxylation efficiency, and is a measure of the activity of the enzyme 

rubisco.  Jmax is the maximum assimilation rate, and is a measure of the maximum rate 

of flow of electrons down the photosynthetic electron transport chain (Farquhar and 

Sharkey, 1982).   
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To investigate how these three parameters of photosynthesis responded to the 

treatments, if at all, data from the A:Ci curves were fitted to the monomolecular 

function A=a*(1-(exp(b-c*Ci)), (Causston and Dale, 1990), to yield values of a, b and 

c for each curve.  These values were used to estimate the values of the parameters, in 

the following way: 

 

a = Jmax 

b/c = CO2 compensation point 

and a*c*eb = initial slope of the curve.  This is derived from differentiating the curve 

and solving for Ci=0 

 

Results from these calculations were used to construct an “average” A:Ci curve, for 

each treatment. 

 

Stomatal measurements: 

In order to investigate the stomatal response of C. odorata to elevated Ca, stomatal 

conductance to CO2 (gc), and stomatal limitations to CO2, were assessed.  

Unfortunately, no direct measurements of gc under CO2 enrichment, were taken.  To 

compensate for this, values of gc which corresponded with Ca values closest to current 

Ca (~370 ppm) and elevated Ca (~720 ppm) were extrapolated from A:Ci data, and 

averaged per treatment.   

Stomatal limitations were calculated for each A:Ci curve (see Fig. 2.7), using the 

equation (Farquhar and Sharkey, 1982):  

                        

Stomatal limitation =  (Ao-A)/Ao 

 

where, Ao= Assimilation when stomatal conductance to CO2 is infinite (gc=∞).   
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Fig. 2.7 Idealized A:Ci curve, showing variables used in the formula to calculate 
stomatal limitations     

 

A was calculated using the equation: A=gc(Ca-Ci). For this equation, gc was selected 

at Ci =~370 ppm (close to atmospheric CO2) and Ca was entered as 370 ppm.  Ci was 

initially entered as 370 ppm, but was then decreased at regular intervals to yield 

arbituary values of A.  This equation describes the supply function of photosynthesis: 

as A increases, Ci decreases linearly and in inverse proportion to gc.  The point of 

interception between the supply function and A:Ci curve (demand function), gives the 

operating Ci of the plant (Long et al., 2004).  If there was no diffusion barrier, (i.e. 

gc=∞), Ci would equal to Ca, as indicated by the vertical line originating from ~370 

ppm on the x axis.  In many plants, the value of A at operational Ci is commonly 

about 90% of what it would be without the epidermis as a barrier to water loss and 

CO2 diffusion into intercellular spaces (Drake and Gonzàlez-Meler, 1997).  Since A is 

the actual rate of assimilation at actual Ci, the limitation imposed by stomata is given 

by (Ao-A)/Ao (in this example (Fig. 2.7), stomatal limitation=(9-3.8)/9=0.58).   
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2.4.2 Morphological and Growth data 

It is appropriate at this point, to introduce the terminology of “per plant” (PP) and 

“per community” (PC), which will be used frequently from hereon, with respect to 

growth data.  These terms will be explained with the aid of the hypothetical example: 

root dry weight.  Root dry weight PP will refer to the effect of a stimulus on the root 

dry weight of an individual plant. Root dry weight PC refers to the response of a 

community (all plants in a given treatment) to an influencing factor, and will be 

calculated by adding together the root dry weights of all plants belonging to the 

community (a specific treatment). 

It should be noted that PC data were only analyzed for PART B of the experiment, in 

which planting density was one of the influencing factors.  In PART A, planting 

density was kept constant, and so it was thought that PC calculations were irrelevant. 

Morphological and growth data have been separated into data collected prior to 

harvesting, and data collected after harvesting. 

 

2.4.2.1 Pre-harvest data 

Stomatal density (SD): 

 This parameter was calculated only for PART A.  Two C. odorata leaves from each 

plant were randomly selected.  Because data were eventually pooled together, this 

meant that 32 leaves were sampled for each of the 4 treatments.   

 

Accoding to Wallace et al. (1996), stomata are usually concentrated in the abaxial 

epidermis of leaves.  In addition, an earlier study on Phaseolus vulgaris, showed a 

significant Ca effect on SD of abaxial, and not adaxial leaf surfaces (O’Leary and 

Knecht, 1981).  In light of the above, only abaxial surfaces of C. odorata were 

sampled.  With the aid of a medicine dropper, acetone was applied to a section of leaf.  

This section was randomly chosen, since a previous study (Lalla, unpublished) 

showed no spatial heterogeneity in stomatal density across the leaf surface of  

C. odorata.  A small strip of cellulose acetate was gently pressed onto the moist 

surface to obtain a “surface print” of the leaf.  After the strip was dry, it was peeled 

off the leaf and placed on a microscope slide.  At this point (after drying), the strip 
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had hardened and curled around the edges.  So, to solve the problem, a small amount 

of acetone was placed on the slide before placing the strip.  This “flattened” out the 

strip, and facilitated its adherence to the slide.   

 

Slides were viewed under a light microscope, at a magnification of 25X.  When an 

image (with clear, visible stomata) was in focus, it was captured.  Three images per 

leaf were captured for replication purposes.  This resulted in the capturing of 96 

images for each of the 4 treatments.  All images were then imported into the Adobe 

Photoshop software program.  For each image, as all visible stomata were manually 

highlighted, the program counted the number of stomata in the field of view, and 

values of stomatal density per mm2 of leaf surface were calculated.  No obvious visual 

differences among treatments, in the lengths of pores and guard cells, were observed. 

 

Plant height and Stem cross-sectional area:  

Plant height (PP) was measured using a measuring tape.  Each plant in each pot was 

sampled, resulting in 16 replicates per treatment.  Measurements were taken from the 

point of new growth to the tallest part of the plant.  Thereafter, total stem length (PC) 

was calculated by summing up the individual plant heights of all plants belonging to a 

treatment.  Stem diameter measurements were obtained with the use of vernier 

calipers.  Because plants of similar stem diameter were initially collected (See Section 

2.1.), averages of stem diameter were calculated for each plant, at the point of new 

growth.  Stem cross-sectional areas PP, and stem cross-sectional area PC were 

calculated. 

 

2.4.2.2 Post-harvest data 

Total leaf area, specific leaf area and leaf dry weight: 

All the leaves of each plant were plucked by hand, and the total area per plant 

measured using a portable leaf area meter.  All the leaves (except one average-sized 

leaf) were placed in a marked brown paper bag, and dried in the oven at 80 °C for 2 

days, after which they were weighed.  The area of the individual selected leaf was 

measured with the leaf area meter, the leaf was dried and weighed, and the specific 

leaf area (SLA) was calculated.  SLA measurements were taken only for PART B.  

Total leaf area (PC) and leaf dry weight (PC) were also calculated.  For PART A of 
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the study, total leaf area of the experimental grasses (Eragrostis curvula and Themeda 

triandra, were also measured. 

 

Stem dry weight, root dry weight and total plant biomass and ratios: 

Stems of each plant were cut off with a pair of secateurs, and placed in brown paper 

bags.  To obtain stem dry weight (PP), the paper bags were placed in an oven (80 °C) 

for 2 days.  Root data were not captured for PART A, since it was impossible to 

separate the below-ground material of the individual plants in each pot.  However, 

root dry weight (PP) was measured for PART B, since C. odorata was grown 

monospecifically.  Roots of individual plants were collected by physically pulling the 

plants out of the soil, placed in a brown paper bag, and then left in an 80ºC oven for 

2days.  Unfortunately, one of the disadvantages of this technique is that some root 

material (especially the finer roots), could have escaped detection and remained in the 

soil. However, effort was made to ensure that most of the root material was removed 

when the plants were uprooted.  Roots were not washed after they were pulled out of 

the soil, which resulted in soil particles being collected as well.  However, this did not 

pose a problem, since oven-drying caused the soil to separate from the roots and 

accumulate at the bottom of the paper bags.  This, together with the fact that roots 

were physically shaken prior to being weighed, suggests that soil particles could not 

have affected root dry weight values.  Values of leaf, stem and root dry weight of each 

plant were then added together to produce a value for total plant biomass (PP).   

 

Biomass partitioning to leaves, stems and roots was then calculated as percentages of 

total plant biomass, for each plant.  Averages for leaf dry weight (PC), stem dry 

weight (PC) and root dry weight (PC) of each treatment, were added together to 

calculate total plant biomass (PC).  Community allocation to leaves, stems and roots 

were then calculated as percentages of total plant biomass (PC), for each treatment.  

Leaf area ratios (LAR; total leaf area per total plant biomass), were calculated at a PP 

and PC level.  For PART A, total above-ground biomass of the two grasses 

(Eragrostis curvula and Themeda triandra), were assessed, in addition to 

measurements for C. odorata.   
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2.5 Controls for experimental trials 

During PART A, eight additional pots, containing only grass species, were exposed 

only to nutrient treatments, as they were grown at ambient (~370 ppm) Ca.  This was 

done to investigate if there was a major difference in the behaviour of grasses grown 

without C. odorata (non-experimental grasses) compared to grasses grown together 

with C. odorata (experimental grasses).  Only leaf area and total above-ground 

biomass were calculated for the non-experimental grasses in PART A. 

 

For PART B, four additional pots were not subjected to density treatments, as they 

each contained 2 C. odorata seedlings.  These plants (termed “non-treatment plants”) 

were grown at ambient Ca concentrations for seven months, after which they were 

exposed to elevated Ca concentrations.  Measurements of Jmax were taken 2days after 

exposure to Ca enrichment, and thereafter at regular intervals until 22 days.  This was 

done to futher investigate the possibility of photosynthetic down-regulation in C. 

odorata exposed to elevated Ca. 

 

 

2.6 Statistical analysis 

Physiological data (Jmax, initial slope and CO2 compensation points) as well as 

stomatal limitations for each plant, were also subjected to K-S tests and analysis of 

variances across the treatments.  Differences between gc values at Ca=370 ppm and 

Ca=720 ppm, were assessed using a t-test.  Analysis of variance (ANOVA) across all 

four treatments was performed for gc values at Ca=370 ppm, and Ca=720 ppm, to 

investigate treatment effects.  

 

Growth data were subjected to the Kolmogorov-Smirnof test (K-S test) to test for 

normality of the distribution of the data.  As the data were normally distributed, a 

two-way Analysis of variance (ANOVA) across all 4 treatments was performed, for 

each parameter.  Since leaf, stem and root weight ratios PP and PC were subjected to 

the ANOVA as percentages, the residuals of the analyses for these three parameters 

had to be tested for normality.  Results from K-S tests showed that they were normal. 
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CHAPTER 3. RESULTS (PART A) 

 
 

EXPERIMENTAL POTS:  Influence of nutrients on the response to Ca 

3.1 Physiology data 

3.1.1 Photosynthesis 

Data from A:Ci curves for each individual leaf were fitted to the monomolecular 

function y=a*(1-exp(b-c*Ci)), to yield values for CO2 compensation point, initial 

slope and Jmax.  Data for these three parameters were subjected to a 2-way ANOVA, 

to investigate differences amongst the four treatments.  Mean ± SD values and p-

values are presented in Table 3.1. 

 

Table 3.1 Mean±SD values for 3 photosynthetic parameters of C. odorata, grown at 
four treatments, as well as P-values for Ca, nutrient and Ca*nutrient effects 

 

 

Statistical analysis revealed significant nutrient effects on Jmax, and means show that 

the highest, and second highest Jmax values can be observed for the two high nutrient 

treatments (Table 3.1).  Ca increased Jmax, but this was a non-significant effect 

(p=0.075; Table 3.1).  High nutrient supply decreased CO2 compensation points, but 

with a non-significant p-value of 0.067 (Table 3.1). 

 

An “average” A:Ci curve was constructed from the monomolecular function y=a*(1-

(exp(b-c*Ci)), and the average values of the constants a, b and c for each of the four 

treatments.  Figure 3.1 below, is a plot of “average” assimilation versus Ci, for C. 

odorata plants grown at elevated or ambient Ca, and at low or high nutrient supply. 

 

 

Mean ± SD P-values 
 

Parameter 
A&LN A&HN E&LN E&HN Ca 

nutrien
t 

Ca*nutrient 

Jmax (µµµµmol.m
-2

s
-1

) 10.6 ± 1.9 13.5 ± 2.3 11.7 ± 1.9 15.8 ± 3.0 0.075 0.001 0.559 

Initial slope 

(mol.m
-2

s
-1

) 
0.07 ± 0.05 0.08 ± 0.04 0.08 ± 0.04 0.05 ± 0.02 0.513 0.667 0.239 

CO2 compensation 

point ((µµµµmol.mol
-1

) 
74 ± 10 62 ± 8 70 ± 13 66 ± 8 0.980 0.067 0.368 
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Fig. 3.1 “Average” A:Ci curves for all four treatments 
 
 
Fig. 3.1 shows a general trend of the response of photosynthetic assimilation to Ci.  

Although lines for all four treatments are similar, statistical analysis of photosynthetic 

parameters has shown a significant effect of nutrients on Jmax (Table 3.1).  Since 

elevated Ca did not result in a decrease in any of the photosynthetic parameters, this 

suggests that photosynthetic down-regulation did not occur in C. odorata treatment 

plants. 

 

3.1.2 Stomatal conductance 

Unfortunately, no instantaneous gc measurements were taken.  To compensate for this, 

values for gc at Ca=370 ppm, and Ca=720 ppm, were extrapolated from A:Ci data.  

These gc values were averaged per treatment, after which, within treatment and across 

treatment comparisons were assessed.  A graphical representation of the results (Fig. 

3.2), precedes a summary of results of statistical analyses (Table 3.2). 
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Fig. 3.2 Bar graph showing comparisons of gc at Ca=370 ppm, and Ca=720ppm, of  
C. odorata grown under the four treatments.  Error bars refer to standard deviations 
 

 

 

Table 3.2 Within, and across treatment comparisons of mean ± SD gc values, at  
Ca=370 ppm and 720 ppm 
 

 

                  

 

P-values for Ca, nutrient, and Ca*nutrient effects, on gc at Ca=370 ppm and Ca=720 

ppm, across treatments, are shown in Rows 1 and 2, respectively (Table 3.2).  A 

significant Ca effect can be observed for gc at Ca=370 ppm (p=0.031; Table 3.2), and 

for gc at Ca=720 ppm (p=0.037; Table 3.2).  Figure 3.2 shows that gc values at both Ca 

concentrations, were higher for C. odorata grown in elevated Ca, irrespective of 

 

Mean ± SD P-values 
Row Parameter 

A&LN A&HN E&LN E&HN Ca nutrient Ca*nutrient 

1 

gc 

(µµµµmol.m
-2

.s
-1

), 

at Ca=370 ppm 

0.10 ± 0.06 0.10 ± 0.02 0.33 ± 0.30 0.20 ± 0.14 0.031 0.329 0.398 

2 

 gc 

(µµµµmol.m
-2

.s
-1

), 

at Ca=720 ppm 

0.10 ± 0.05 0.09 ± 0.02 0.33 ± 0.31 0.17 ± 0.10 0.037 0.226 0.265 

3 P-value 0.089 0.000 0.941 0.136 
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nutrient treatment.  Within treatment comparisons of gc at Ca=370 ppm and Ca=720 

ppm, showed that the A&LN treatment was the only treatment in which a significant 

difference can be noted (Table 3.2; Row 3).  However, this is most likely due to a 

small sample size, as data from only four plants were assessed for the A&HN 

treatment.   

 

Stomatal limitations of plants in each treatment, were calculated and subjected to 

statistical analysis.  Results are presented in Table 3.3. 

 

 

Table 3.3 Mean ± SD values for stomatal limitations for C. odorata, grown with high 
or low nutrients, at elevated or ambient Ca, as well as P-values for Ca, nutrient and 
Ca*nutrient effects 

 
 
Results show that nutrients, and the interaction between Ca and nutrients, had no 

significant effect on stomatal limitations of C. odorata exposed to the treatments.  In 

contrast, a significant Ca effect on stomatal limitations can be observed (p=0.059; 

Table 3.3), as elevated Ca reduced the limitations that stomata could have imposed on 

CO2 assimilation.   

 

 

 

 

 

 

 

 

 

Mean ± SD P values  
Parameter A&LN A&HN E&LN E&HN Ca Nutrient Ca*nutrient 

STOMATAL 

LIMITATIO

NS 

0.14 ± 
0.06 

0.17 ± 
0.05 

0.08 ± 
0.06 

0.14 ± 
0.08 

0.05
9 

0.077 0.596 
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3.2 Morphological and growth data 

3.2.1 Chromolaena odorata 

Growth and biomass partitioning characteristics of C. odorata under the four 

treatments are shown in Table 3.4.  Since planting density of all experimental pots 

was kept constant, all growth measurements were obtained, and will be presented and 

discussed, on a per plant basis.  Results from K-S tests showed that the data for all 

parameters were normally distributed, and so they were subjected to a 2-way 

ANOVA.   

 

Table 3.4 Summary of differences in mean ± SD values of nine structural parameters 
for C. odorata plants, across all four treatments.  P-values describe Ca, nutrient and 
Ca*nutrient effects   

 

 

From Table 3.4, it can be noted that nutrients had a significant effect on all seven 

biomass parameters measured for C. odorata.  Only one parameter (total leaf area), 

was significantly affected by Ca.  Significant Ca*nutrient effects were observed for 

only one parameter. 

 

 

 

 

Mean ± SD P values  
Parameter A&LN A&HN E&LN E&HN Ca nutrients Ca*nutrients 

Stomatal density 

(mm
2
) 

224 ± 51 177 ± 30 201 ± 29 190 ± 44 0.596 0.005 0.073 

Total leaf area 

(cm
2
 

165 ± 126 1394 ± 342 196 ± 122 820 ± 476 0.008 <0.001 0.003 

Plant height (cm) 
15 ± 4 43 ± 11 20 ± 6 39 ± 14 0.716 <0.001 0.077 

Stem cross 

sectional area 

(cm
2
) 

0.06 ± 0.03 0.13 ± 0.05 0.08 ± 0.03 0.15 ± 0.07 0.097 <0.001 0.896 

Leaf dry weight 

(g) 

2.0 ± 1.5 15.3 ± 6.5 3.1 ± 2.3 14.1 ± 9.3 0.645 <0.001 0.675 

Stem dry weight 

(g) 

1.1 ± 0.9 9.5 ± 4.5 1.7 ± 1.3 8.3 ± 6.6 0.762 <0.001 0.377 

Total above-

ground biomass 

(g) 

3.1 ± 2.4 24.8 ± 11.0 4.7 ± 3.6 22.4 ± 15.9 0.958 <0.001 0.449 
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Figs. 3.3-3.7 below, illustrate error-bar graphs for each of the nine biomass 

parameters described in Table 3.4, above.  In the following figures, error bars refer to 

standard deviations. 

 

 

Stomatal density: 

 

 

 

Fig. 3.3 Clustered error-bar graph illustrating stomatal density of C. odorata plants, 
grown under four treatments 
 
 

No Ca effects were noted for this parameter (p=0.596; Table 3.4).  At each Ca 

treatment, plants grown in low nutrients, had higher stomatal density than plants 

grown in high nutrients (Fig. 3.3).  This is indicative of a strong nutrient effect 

(p=0.005; Table 3.4).  The A&LN treatment showed the highest stomatal density (224 

mm-2), while the lowest value was observed for the A&HN treatment (177 mm-2).  

There was no interaction between Ca and nutrients, on stomatal density (p=0.073; 

Table 3.4). 
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Leaf Area: 
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Fig. 3.4 Clustered error-bar graph illustrating total leaf area of C. odorata plants, 
grown at elevated or elevated Ca, and high or low nutrients 
 

 

Figure 3.4 shows that the A&HN treatment generated the highest total leaf area (1394 

cm2), followed by the E&HN treatment (820 cm2).  Although Ca significantly 

influenced total leaf area (p=0.008; Table 3.4), the direction of this response could not 

be determined because of the significant interactive effect of Ca times nutrient 

(p=0.003; Table 3.4).  Figure 3.4 clearly shows that high nutrients significantly 

increased total leaf area of C. odorata, irrespective of Ca treatment (p<0.001; Table 

3.4).  
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Plant height and stem cross sectional area: 
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Fig. 3.5 Clustered error-bar graphs illustrating plant height (a) and stem cross-
sectional areas (b), respectively for C. odorata plants grown under four treatments 
 

 

Although plant height was not influenced by Ca, stem cross sectional area was 

increased by elevated Ca, but with a non-significant p-value of 0.097 (Table 3.4).  

There was no significant effect of Ca times nutrient on plant height (p=0.077; Table 

3.4), and stem cross sectional area (p=0.896; Table 3.4).   

 

A similar nutrient effect can be observed for plant height (Fig. 3.5a) and stem cross 

sectional area (Fig. 3.5b): At both Ca treatments, plants supplied with high nutrients 

displayed greater values than plants supplied with low nutrients.  Not surprisingly, a 

very significant nutrient effect (p=0.000) can be observed for both parameters (Table 

3.4).  The tallest C. odorata plants were observed for the A&HN treatment (43 cm; 

Table 3.4), while plants with the thickest stems were characteristic of the E&HN 

treatment (0.15 cm2; Table 3.4).   
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Biomass and biomass partitioning; per plant: 
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Fig. 3.6 shows clustered error-bar graphs for leaf dry weight (a), stem dry weight (b) 
and total above-ground biomass (c) of C. odorata plants, grown under high or low 
nutrients, and elevated or ambient Ca 
 

 

Ca, and Ca times nutrient effects on biomass partitioning were non-significant (Table 

3.4), while nutrients significantly affected all three parameters (p<0.001; Table 3.4).  

Figures. 3.6a-c show similar nutrient effects, as has been observed for plant height 

(Fig. 3.5a) and stem cross sectional area (Fig. 3.5b) above.  Greater leaf dry weight 

(Fig. 3.6a), stem dry weight (Fig. 3.6b) and total above-ground biomass (Fig. 3.6c), 

can be noted for plants grown in high nutrients, compared to plants in lower nutrients, 

irrespective of Ca treatment. 
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3.2.2 Grasses 

Only above-ground biomass and total leaf area for E. curvula and T. triandra, were 

assessed.  Results from K-S tests showed that data were normally distributed, and so 

they were subjected to a 2-way ANOVA. 

 

Table 3.5 Summary of differences in mean values for total above-ground biomass and 
total leaf area of E.curvula and T. triandra grasses, grown at ambient or elevated Ca, 
and high or low nutrient supply.  P-values describe Ca, nutrients, and Ca*nutrient 
effects 

 

 

Ca, and the interaction between Ca and nutrients, had no significant influence on 

biomass parameters for both grasses (Table 3.5).  In direct contrast, a very significant 

response to nutrients (p=<0.001) can be observed for both grass species: High nutrient 

supply increased total above-ground biomass and total leaf area, for both grasses, and 

from a comparison of the averages amongst the treatments, it can be observed that the 

magnitude of this effect was higher for T. triandra (Table 3.5). 

 

Since such a strong response of the experimental grasses to high nutrient supply was 

noted (see above), “control” grasses (grown without Ca
 treatments, and without C. 

odorata), were assessed for major differences in responses to high nutrient supply.   

  

 

 

Mean ± SD P values  
Parameter A&LN A&HN E&LN E&HN Ca nutrients Ca*nutrients 

E. curvula 

Total above-ground 

biomass (g) 

3.0 ± 1.6 9.4 ± 9.9 3.0 ± 1.4 9.6 ± 4.5 0.941 <0.001 0.948 

E. curvula 

Leaf area (cm
2
) 

188 ± 129 728 ± 520 210 ± 079 714 ± 390 0.965 <0.001 0.828 

 
       

T. triandra 

Total above-ground 

biomass (g 

1.6 ± 0.9 15.8 ± 8.6 1.0 ± 0.6 17.1 ± 12.7 0.849 <0.001 0.624 

T. triandra 

Leaf area (cm
2
) 

85 ± 86 1167 ± 692 45 ± 29 1205 ± 953 0.997 <0.001 0.795 
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 Table 3.6 P-values for “Control” grasses, subjected only to nutrient treatment 

 

 
 
 
 
 
 
 
 
 
 

From Table 3.6, it can be seen that the “control’ grasses behaved similarly to the 

experimental grasses, with regard to the response to high nutrient supply, even in the 

absence of Ca effects and competition with C. odorata.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E. curvula (Control) 

 

P-value for nutrient treatment 

Above-ground biomass (g) 0.000 
Total leaf area (cm2) 0.010 

  

T. triandra (Control)  

Above-ground biomass (g) 0.000 

Total leaf area (cm2) 0.000 
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CHAPTER 4. DISCUSSION (PART A) 

 

There has been a considerable amount of research on global climate change and 

increasing Ca in recent decades.  Given that the terrestrial biosphere is the major sink 

for increasing concentrations of Ca (Fujita et al., 2003), and the fact that CO2 is a 

substrate for photosynthesis, much focus has been placed on plant responses to CO2 

enrichment.  Almost two decades of research on this topic (Woodward, 2002), has 

provided a rich suite of data that has enabled the identification of certain trends.   

 

For example, many invasive plants have shown a positive response to elevated Ca, 

when grown individually or in monoculture (Dukes, 2000).  C3 plants have also been 

shown to respond more strongly to CO2 enrichment, than C4 species (Garbutt et al., 

1990; Poorter, 1993).  In addition, several studies have demonstrated a dependence of 

plant responses to elevated Ca, on nutrient levels (Stöcklin and Körner, 1999; He et 

al., 2002).  PART A of this study, assessed the interactive effects of competition 

between C3 and C4 species, and different nutrient concentrations, on the response of 

C. odorata to elevated Ca.  Discussions of results from this experimental trial will 

now follow. 

 

4.1 Physiology 

Enhancement of photosynthesis under CO2 enrichment, has been demonstrated in 

various studies (den Hertog et al., 1993; Teskey, 1995).  Increasing CO2 competitively 

inhibits the oxygenation reaction of the enzyme, rubisco, thus leading to a stimulation 

of photosynthesis. (Long et al., 2004).  A previous study showed that growth of a C3 

weed, Abutilon theophrasti, in elevated (700 ppm) Ca increased net photosynthesis 

27% relative to growth in ambient (350 ppm) Ca, when the species was grown in 

competition with C4 weed, Amaranthus retroflexus (Tissue et al., 1995).  However, a 

recent study showed no change in instantaneous CO2 assimilation rates of C. odorata 

under CO2 enrichment (Naidoo, personal communication).  Unfortunately, no 

measurements of instantaneous rates of photosynthetic assimilation in elevated Ca, 

were taken in the current study.  The “average” A:Ci curve constructed for the 

treatments, showed that lines for all four treatments were similar (Fig. 3.1; Chapter 3).  

Jmax was the only photosynthetic parameter to display a significant response: High 
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nutrient supply significantly increased Jmax of C. odorata (p=0.001; Table 3.1 in 

Chapter 3), and this contradicts results of a previous study on Populus euamericana, 

which showed no response of photosynthetic parameters to N fertilization (Calfapietra 

et al., 2005).   The current study also showed that elevated Ca increased Jmax, but with 

a non-significant p-value of 0.075 (Table 3.1 in Chapter 3).  Perhaps this could have 

been a significant response, if the duration of the growth period had been longer, or if 

measurements had been taken earlier, before full acclimation.  High nutrient supply 

decreased CO2 compensation points, but this was also a marginal effect (p=0.067; 

Table 3.1 in Chapter 3).  CO2 compensation points of C. odorata under elevated Ca 

(70 and 66 µmol.mol-1
; Table 3.1 in Chapter 3), were generally lower than that 

reported for Ginkgo biloba in elevated Ca (75-84 µmol.mol-1) (Overdieck and 

Strassemeyer, 2005), and this may simply be due to the different species studied. 

 

Since elevated Ca did not decrease any of the photosynthetic parameters studied, this 

could suggest that CO2 enrichment did not result in photosynthetic down-regulation in 

C. odorata.  However, the lack of direct photosynthetic data in elevated Ca, makes it 

impossible to determine if this were the case.   

 

Stomata are the entry site for CO2 used in photosyntheis (Wallace et al., 1996).  

During this trial, stomatal conductance (gc) and stomatal limitations of C. odorata, 

were assessed.  Stomatal acclimation to elevated Ca, is a process that would be 

demonstrated if stomatal behaviour of plants grown at contrasting CO2 concentrations 

differed when measured at the same CO2 concentration (Maherali et al., 2002).  

Although direct gc data in elevated Ca were not analysed, results from analysis of gc 

values extrapolated from A:Ci data, showed that elevated Ca significantly increased gc 

values at Ca=370 ppm and Ca=720 ppm (Table 3.2; Chapter 3).  This suggests that 

stomatal acclimation of C. odorata in elevated Ca could have occurred, but conclusive 

evidence in the form of direct gc data in elevated Ca, is lacking.   

 

It should be noted that for the A&HN treatment, data from only one pot was assessed 

for photosynthetic responses, compared with four pots for each of the other three 

treatments.  This difference was due to the fact that C. odorata plants from three out 

of the four pots belonging to the A&HN treatment, suffered an inadvertent water 

stress prior to photosynthetic measurements.  Therefore, a small sample size is most 
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likely the reason for the significant within treatment comparison of gc at Ca=370 ppm, 

and gc Ca=720 ppm, in the A&HN treatment (Table 3.2; Chapter 3).   

 

According to Drake and Gonzàlez-Meler (1997), it is not gc per se, which limits 

photosynthesis.  Stomatal limitations to photosynthesis, according to Farquhar and 

Sharkey (1982), could be quantified in a simple, practical way from A:Ci curves.  

Table 3.3 shows that elevated Ca significantly reduced stomatal limitations to 

photosynthesis, of C. odorata grown under the four treatments (p=0.059; Table 3.3 in 

Chapter 3).  This is not really surprising, since results of assessments of gc values 

extrapolated from A:Ci data, showed that significantly higher gc values were observed 

for the elevated Ca treatments (Fig. 3.2 and Table 3.2; Chapter 3). 

 

Different photosynthetic pathways is the major reason that C3 plants are expected to 

respond better to elevated Ca, than C4 plants (Johnson et al., 1993; Reynolds, 1996).  

Based on the fact that C. odorata and both grasses were grown together in the current 

trial, photosynthetic measurements for grasses could have aided in providing insight 

into the poor photosynthetic response of C. odorata.  It is unfortunate that 

photosynthesis of both grass species was not assessed, during PART A. 

 

4.2 Growth and Morphology 

C. odorata: 

Although a significant Ca effect on stem cross sectional area was not observed, Fig. 

3.5b (Chapter 3), suggests that CO2 enriched atmospheres are likely to result in C. 

odorata plants with thicker stems, even in poor nutrient (mineral stressed) soils.  Due 

to a dieback of many plants belonging to the A&HN treatment, total leaf area for this 

treatment was assessed from only four plants, instead of 16.  Incidentally, this was the 

only morphological parameter to be significantly affected by Ca (p=0.008; Table 3.4 

in Chapter 3).  However, the direction of this response could not be determined, due 

to a significant interaction between Ca and nutrients for this parameter (p=0.003; 

Table 3.4 in Chapter 3).  For plants treated with low nutrient supply, growth in 

elevated Ca resulted in higher total leaf area, than growth in ambient Ca (Fig. 3.4; 

Chapter 3).  In direct contrast to results of a study on spring wheat (Li et al., 2004), 

elevated Ca reduced total leaf area of C. odorata plants supplied with high nutrients.   
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Higher rates of growth in elevated Ca, according to Stitt and Krapp (1999), will lead 

to an increased demand for nutrients.  These authors maintain that this demand could 

be met by using nutrients more efficiently, and/or by increasing the rate of nutrient 

uptake.  Therefore, the fact that elevated Ca decreased total leaf area of high-nutrient 

grown plants, could have been a result of increased allocation to roots for increasing 

nutrient uptake, to keep up with the demand for more nutrients in elevated Ca (Stitt 

and Krapp, 1999), and/or to restore C:N balances which may have been offset by 

elevated Ca (Hartwig et al., 1996).  Unfortunately, with the lack of root data, and leaf 

concentrations of total non-structural carbohydrates and nitrogen, it is impossible to 

determine if the above statements hold true in the current trial.  At this stage, it is 

sufficient to say that nutrient supply modified the response of total leaf area of  

C. odorata to elevated Ca. 

 

Co-incidentally, elevated Ca also reduced plant height, leaf dry weight, and total 

above-ground biomass of high-nutrient treatment C. odorata plants (Figs. 3.5a; 3.6a; 

3.6c; respectively, in Chapter 3), but with non-significant differences (Table 3.4; 

Chapter 3).  These results are in contrast with previous studies which have shown that 

elevated Ca enhanced biomass parameters of high nutrient treatment plants (Conroy et 

al., 1986; Stöcklin and Körner, 1999; Causin et al., 2004; Reddy and Zhao, 2005).  

These contrasting results are understandable; if one considers that C. odorata in the 

current trial was subjected to competition with C4 species, in addition to competition 

for nutrients. 

 

When the grassland invader, Prosopis glandulosa was grown in competition with a C4 

grass, Schizachyrium scoparium, results showed that biomass of P. glandulosa was 

not affected by CO2 concentrations (Polley et al., 1994).  This is in accord with the 

current study.  In contrast, Ziska (2001) demonstrated a significant increase in total 

above-ground biomass and leaf area of C3 weed, common cocklebur, when grown in 

competition with a C4 crop (sorgum).  It should be mentioned that there were no 

nutrient treatments in these two studies.  In the current study, interactions between 

competition for nutrients, and competition between C3-C4 species, had come into play.   

 

According to Petersen (2005), differences in root length of plants in nutrient-rich 

zones, may be related to characteristics of the species involved.  If this is true, then 
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interactions between competition for nutrients, and competition between C3-C4 

species in PART A, is more than likely, and it is difficult, if not impossible, to predict 

the exact effect of either type of competition on the response of C. odorata to elevated 

Ca.   

 

However, because total leaf area was the only parameter to be significantly influenced 

by elevated Ca, this suggests that CO2 enrichment did not result in a stimulation of 

growth of C. odorata, when grown in competition with C4 grasses, and exposed to 

different nutrient treatments.  Due to the lack of photosynthetic down-regulation of C. 

odorata in the current trial (see Section 4.1; this study), one would have expected an 

enhancement of biomass of C. odorata in elevated CO2, most likely due to an increase 

in net assimilation rates.  However, the relatively low CO2 compensation points 

observed for C. odorata under elevated Ca (see Section 4.1; this study), are more 

characteristic of C4 species.  Therefore, it is possible that C. odorata has evolved a 

more efficient photosynthetic physiology than most other C3 species.  This would 

explain the lack of stimulation of biomass under CO2 enrichment, even in the absence 

of photosynthetic down-regulation.   

 

Alternatively, the response of C. odorata to high nutrient supply could have been so 

strong, that any potential Ca response could have easily been overshadowed, and thus 

remained undetected.  Midgley (1996) showed that increasing nutrient supply reduced 

the biomass response of three Leucadendron species to elevated Ca.  This could have 

occurred in the current trial, if one considers the significant effect of nutrient 

treatment on all seven morphological parameters measured for C. odorata: High 

nutrient supply resulted in taller C. odorata plants with thicker stems, with greater 

total leaf area and stomatal density, and greater biomass (leaf dry weight, stem dry 

weight and total above-ground biomass), irrespective of Ca treatment (Figs. 3.3-3.6; 

Chapter 3).  In addition, high nutrient supply also increased Jmax (Table 3.1), 

highlighting the fact that the response to nutrients was strong enough to be carried 

through structurally and physiologically.   

 

The fact that plants from only one of the four pots belonging to the A&HN treatment, 

survived growth, also re-iterates the strength of the nutrient effect on C. odorata 

plants.  When nutrient availability is high, excessive and potentially detrimental levels 
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of accumulation of nutrients in plants leaves could occur (Baker, 1983).  High nutrient 

concentrations in the soil proved detrimental to plants grown at ambient Ca (A&HN 

treatment), but not for plants grown at elevated Ca (E&HN treatment), possibility as a 

result of restoration of C:N balances in the latter, but not in the former treatment.  

Alternatively, the fact that only a few plants from the A&HN treatment survived 

growth, could merely be a result of water stress. 

 

Results from this experimental trial yield no conclusive evidence which supports the 

prediction that increasing Ca would reduce the importance of CO2 as an external 

limiting resource (Lynch and St. Clair, 2004), and cause limitations of other external 

resources to intensify (Dukes, 2000), since a strong nutrient response of C. odorata 

was observed for both Ca treatments.  For this reason, PART A also does not support 

the notion that higher Ca would benefit plant growth by enhancing resource-use 

efficiencies (Polley et al., 1993a).  However, more CO2-enrichment studies should be 

conducted on C. odorata and other resources, (e.g. water, light, temperature, space, 

etc.), which could provide evidence which may support these two hypotheses.  

 

Based on the fact that altered root:shoot ratios (often noted in elevated Ca), are 

indicative of shifts in functional relationships between these organs (Pritchard et al., 

1999), and that the capture of applied nutrients depends on roots (Petersen, 2005), the 

lack of below-ground data (and subsequent LAR, total plant biomass, and biomass 

allocation ratio data), in the current experimental trial, cannot be overstated.  In 

addition, relative growth rate data (RGR), should be incorporated into future studies, 

since research has shown that increases in plant growth in elevated Ca results mainly 

from initial stimulation, which may decline or even disappear over time (Centritto et 

al., 1999).   

 

Grasses: 

Ca and Ca times nutrient treatments, had no effect on the two structural parameters 

measured for the experimental grasses (Table 3.5; Chapter 3).  However, a strong 

response of both experimental grass species to nutrient treatments can be observed: 

High nutrient supply significantly increased above-ground biomass and total leaf area 

of E. curvula and T. triandra, when grown in competition with C. odorata, and 

exposed to different Ca and nutrient concentrations (Table 3.5; Chapter 3).  The fact 
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that the “control” grasses (grown in absence of C. odorata, and not exposed to Ca 

treatments), also displayed strong positive responses to high nutrient treatment (Table 

3.6; Chapter 3), makes the observed response of the experimental grasses to high 

nutrient supply, all the more robust.  

  

 E. curvula and T. triandra were chosen as competitors for C. odorata in this 

experimental trial (PART A), because of their preference for different nutrient levels.  

E. curvula has previously been shown to respond well to high nutrient level soils 

(Rethman, 1973), wheras T. triandra performs better in poor nutrient soils (Groves et 

al., 2003).  However, from comparisons of means for above-ground biomass and leaf 

area of both grasses, amongst the four treatments (Table 3.5; Chapter 3), it can be 

concluded that although both grasses responded positively to high nutrient levels, the 

effect was larger for T. triandra.  This contradicts a recent study on the responses of 

different grass species to nutrient gradients, which showed that at the lowest nutrient 

level, T. triandra was the most productive species in monoculture (Groves et al., 

2003).     

 

These contrasting results could be due to Ca effects and/or competition with a C3 

species, and highlights the fact that the opposite scenario could have also occurred: 

competition with C4 grasses and nutrient treatments, could have, and most probably 

did, alter the CO2 effects on C. odorata.   
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CHAPTER 5. RESULTS (PART B) 

 

EXPERIMENTAL POTS:  Influence of planting density on the response to Ca 

5.1 Physiology data 

5.1.1 Photosynthesis 

Data from A:Ci curves for each individual leaf were fitted to the monomolecular 

function A=a*(1-exp(b-c*Ci)), to yield values for CO2 compensation point, initial 

slope and Jmax.  Data for these three parameters were subjected to a 2-way ANOVA, 

to investigate differences amongst the four treatments.  Mean ± SD values and p-

values are presented in Table 5.1. 

 

Table 5.1 Mean ± SD values for 3 photosynthetic parameters of C. odorata, grown at 
four treatments, as well as P-values for Ca, density and Ca*density effects 

 

 

Statistical analysis revealed no significant effects of Ca, density or Ca*density on any 

of the photosynthetic parameters (Table 5.1).  The A&LD treatment showed the 

highest average for all three parameters. 

 

An “average’ A:Ci curve was constructed from the monomolecular function A=a*(1-

(exp(b-c*Ci)), and the average values of the constants a, b and c for each of the four 

treatments.  Figure 5.1 is a plot of “average” assimilation versus Ci, for C. odorata 

plants grown at elevated or ambient Ca, and at low or high planting densities. 

 

 

 

 

Mean ± SD P-values  
Parameter 

A&LD A&HD E&LD E&HD Ca density Ca*density 

Jmax (µµµµmol.m
-2

s
-1

) 12.5 ± 0.8 11.9 ± 1.2 11.8 ± 1.6 11.2 ± 1.3 0.133 0.191 0.931 

Initial slope 

(mol.m
-2

s
-1

) 
0.15 ± 0.08 0.10 ± 0.02 0.08 ±0.07 0.10 ± 0.04 0.165 0.534 0.152 

CO2 compensation 

point ((µµµµmol.mol
-1

) 
65 ± 22 57 ± 4 59 ± 7 61 ± 4 0.821 0.479 0.251 
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Fig. 5.1 “Average” A:Ci curve for all four treatments 

 

The general trend of responses of photosynthetic assimilation to Ci, can be seen from 

Fig. 5.1.  Lines for all four treatments are similar, and statistical analysis of 

photosynthetic parameters (Table 5.1) showed no significant differences among the 

treatments.  This implies that growth of C. odorata in elevated Ca resulted in no 

photosynthetic down-regulation of these plants.  

 

No significant effect of elevated Ca on Jmax, was also reported in two separate studies 

on Liquidambar styraciflua (Herrick and Thomas, 2001; Sholtis et al., 2004).  CO2 

compensation points of C. odorata in the elevated Ca treatments (59-61 µmol.mol-1; 

Table 5.1 in Chapter 5), were generally lower than that reported for this species in 

elevated Ca, when grown in competition with C4 grasses and subjected to different 

nutrient concentrations (66-70 µmol.mol-1) (Table 3.1 in Chapter 3; this study).   
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5.1.2 Stomatal conductance 

In an attempt to investigate the response of stomata to elevated Ca, stomatal 

conductance to CO2 (gc), as well as stomatal limitations of the treatment plants, were 

assessed.  Unfortunately, no instantaneous gc measurements were taken.  To 

compensate for this, values for gc at Ca=370 ppm, and Ca=720 ppm, were extrapolated 

from A:Ci data obtained from the IRGA.  These values were averaged, and compared 

within treatments, and across treatments.  Figure 5.2 is a graphical representation of 

the results, and results of statistical analyses are presented in Table 5.2. 
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Fig. 5.2 Bar graph showing comparisons of gc at Ca=370 ppm, and Ca=720ppm, of  
C. odorata grown under the four treatments.  Error bars refer to standard deviations 
 

 
Table 5.2 Within, and across treatment comparisons of mean ± SD gc values, at  
Ca=370 ppm and 720 ppm 

 

Mean ± SD P-values 
Row Parameter 

A&LD A&HD E&LD E&HD Ca density Ca*density 

1 

gc 

(µµµµmol.m
-2

.s
-1

), 

at Ca=370 

ppm 

0.20 ± 0.15 0.15 ± 0.03 0.13 ± 0.06 0.20 ± 0.08 0.730 0.916 0.089 

2 

 gc 

(µµµµmol.m
-2

.s
-1

), 

at Ca=720 

ppm 

0.21 ± 0.10 0.16 ± 0.03 0.15 ± 0.07 0.20 ± 0.07 0.862 0.885 0.042 

3 P-value 0.913 0.506 0.026 0.119 

g
c(

µ
m

o
l.

m
-2

.s
-1

) 

Treatment 
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P-values for Ca, density, and Ca*density effects, on gc at Ca=370 ppm and Ca=720 

ppm, across treatments are shown in Rows 1 and 2, respectively (Table 5.2).  A 

significant interactive effect of Ca times density can be observed for gc at Ca=720 

ppm, of plants belonging to the E&LD treatment (Table 5.2; Row 2).  Figure 5.2 

shows that for C. odorata grown at ambient Ca, gc at Ca=720 ppm was higher for 

plants grown at low planting density, compared with plants grown at high density.  

However, for elevated Ca-grown plants, growth at low planting density showed lower 

gc averages at Ca=720 ppm, than plants grown at high density (Fig. 5.2).  Within 

treatment comparisons of gc at Ca=370 ppm and Ca=720ppm, showed that the E&LD 

treatment was the only treatment in which a significant difference can be noted (Table 

5.2; Row 3).  It can be observed from Fig. 5.2, that mean gc values at Ca=720 ppm 

were higher than at Ca=370 ppm, for the E&LD treatment. 

 

Stomatal limitations of plants in each treatment, were calculated, and subjected to 

statistical analysis.  Results are presented in Table 5.3. 

 

 

Table 5.3 Mean±SD values for stomatal limitations for C. odorata, grown with high 
or low density, at elevated or ambient Ca, as well as P-values for Ca, density and 
Ca*density effects 

 

 

Decreases in stomatal limitations are generally expected in plants that are grown 

under CO2 enrichment.  However, results of the current study, show no significant 

effects of Ca, density or Ca times density on stomatal limitations of C. odorata 

subjected to the treatments.   

 

 

 

 

 

Mean ± SD P values  
Parameter 

A&LD A&HD E&LD E&HD Ca density Ca*density 

STOMATAL 

LIMITATIONS 
0.10 ± 0.12 0.09 ± 0.03 0.09 ± 0.05 0.06 ± 0.02 0.501 0.384 0.670 
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5.1.3 Non-treatment pots 

In a further attempt to investigate the physiological response of C. odorata to elevated 

Ca, four additional “non-treatment pots” were obtained.  These pots contained two C. 

odorata plants each, thus eliminating density as an influencing factor.  The “non-

treatment” plants were grown for seven months in ambient Ca, without OTCs, after 

which they were exposed to elevated Ca in OTCs.  Maximum assimilation rates (Jmax) 

were measured two days after exposure to elevated Ca (700 ppm), and thereafter at 

regular intervals.  For non-treatment C. odorata plants, Jmax was plotted against time 

(days after exposure to elevated Ca) (Fig. 5.3).  It should be noted that an initial 

reading of Jmax for “non- treatment” plants, was not taken (0 days after exposure to 

elevated Ca).  In an attempt to compensate for this, the average Jmax value of treatment 

C. odorata plants from the A&LD treatment, was substituted for an initial Jmax value 

of “non-treament” plants. 
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Fig. 5.3 Change in Jmax with time after transfer from ambient to elevated Ca 
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On the second day, Jmax had a value of ~14.5 µmol.m-2s-1, greater than that of ~12.5 

µmol.m-2s-1 (day 0).  Despite some variation in Jmax (Fig. 5.3), a general decrease in 

Jmax (14.55 µmol.m-2s-1 at 2 days, and 11.74 µmol.m-2s-1 after 22 days), can be 

observed. Data from day 2 to day 20 were subjected to a linear regression analysis, to 

ascertain whether the observed decrease in Jmax was significant or not.  Results of the 

analyses showed a significant decrease in Jmax, as the number of days after exposure to 

Ca increased (p=0.03).  Although these results suggest that photosynthetic down-

regulation of “non-treatment” C. odorata plants in elevated Ca could have occurred, 

the possibility of a “chamber effect” cannot be ruled out.  These non-treatment pots 

were exposed to elevated Ca the same time they were enclosed in chambers.  

Distinguishing between potential chamber effects and photosynthetic down-regulation 

on the significant decreases in Jmax observed for these “non-treatment” plants, is 

beyond the scope of this study.  However, earlier physiology results of the treatment 

C. odorata plants, in which no photosynthetic down-regulation occurred, suggests that 

the observed significant decrease in Jmax of the “non-treatment” C. odorata plants, is 

most likely a result of a “chamber effect”.   
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5.2 Morphological and growth data 
 

Growth and biomass allocation characteristics per plant (PP), of C. odorata under the 

four treatments are shown in Table 5.4.  Table 5.5 shows the same characteristics, per 

community (PC), of C. odorata under the four treatments.  Results from K-S tests 

showed that the data for all parameters (PP and PC) were normally distributed, and so 

they were subjected to a 2-way ANOVA.   

 

Table 5.4 Summary of differences in mean ± SD values of 12 structural parameters 
per plant (PP) for C. odorata plants, across all four treatments.  P-values describe Ca, 
density and Ca*density effects  
 

 

 
 
 
 
 
 
 

Mean ± SD P values  
Parameter A&LD A&HD E&LD E&HD Ca density Ca*density 

Total leaf area 

(cm
2
) 

504 ± 158 
342 ± 334 557 ± 220 287 ± 155 0.987 0.006 0.469 

Specific leaf area 

(cm
2
) 

212 ± 28 279 ± 82 193 ± 34 183 ± 56 0.003 0.133 0.041 

Leaf area ratio 

(cm
2
.g

-1
) 

65 ± 25 97 ± 39 60 ± 20 51 ± 28 0.009 0.228 0.035 

Plant height (cm) 
63 ± 15 35 ± 17 75 ± 35 49 ± 22 0.065 <0.001 0.917 

Stem cross 

sectional area 

(cm
2
) 

0.15 ± 0.06 0.06 ± 0.03 0.18 ± 0.09 0.11 ± 0.04 0.350 0.014 0.603 

Leaf dry weight 

(g) 

2.9 ± 1.0 1.5 ± 1.0 4.2 ± 1.7 1.8 ± 0.8 0.038 <0.001 0.155 

Stem dry weight 

(g) 

3.8 ± 2.1 0.9 ± 1.2 4.9 ± 4.6 2.3 ± 1.4 0.086 <0.001 0.866 

Root dry weight 

(g) 

1.9 ± 1.0 0.5 ± 0.5 1.7 ± 1.4 2.2 ± 1.1 0.018 0.096    0.003 

Total plant 

biomass (g) 

8.7 ± 3.8 2.9 ± 1.9 10.8 ± 6.6 6.2 ± 2.9 0.021 <0.001 0.607 

Leaf weight ratio 

(%) 

36.9 ± 11.7 52.3 ± 18.9 46.0 ± 19.5 29.7 ± 8.5 0.155 0.924 0.001 

Stem weight 

ratio (%) 

41.6 ± 10.6 31 ± 19.8 38.1 ± 16.2 35.2 ± 7.6 0.959 0.152 0.411 

Root weight ratio 

(%) 

21.5 ± 4.1 16.8 ± 14.2 15.9 ± 9.7 35.1 ± 9.7 0.063 0.036 0.001 
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Table 5.5 Summary of differences in mean ± SD values of 10 structural parameters 
per community (PC) for C. odorata plants, across all four treatments.  P-values 
describe Ca, density and Ca*density effects   

 

 
 

 
From Table 5.4, it can be seen that as a main factor, density significantly affected 

seven of the 12 morphological parameters (PP) measured for C. odorata (p<0.05).  In 

addition, density influenced five parameters, through an interaction with Ca.  

Similarly, five parameters were significantly affected by Ca, however, seven 

parameters were influenced by Ca if one includes interactive effects between Ca and 

density.  Ca times density effects were observed for five parameters.   

 

When assessed on a community basis, only four out of 10 parameters (PC) were 

significantly affected by Ca (Table 5.5).  Density influenced only one parameter 

significantly.  Significant interactive effects between Ca and density were noted for 

four parameters. 

 

 
Parameter 

Mean ± SD P values 

 A&LD A&HD E&LD E&HD Ca density Ca*density 

Total leaf area 

(cm
2
) 

1008 ± 81 1370 ± 1069 1115 ± 334 1076 ± 379 0.757 0.597 0.512 

Leaf area ratio 

(cm
2
.g

-1
) 

64 ± 24 107 ± 28 60 ± 19 48 ± 13 0.012 0.182 0.026 

Stem cross 

sectional area 

(cm
2
) 

0.29 ± 0.11 0.23 ± 0.1 0.36 ± 0.17 0.40 ± 0.13 0.079 0.826 0.442 

Leaf dry weight 

(g) 

5.9 ± 0.9 6.1 ± 0.7 8.3 ± 1.6 6.6 ± 0.8 0.018 0.187 0.093 

Stem dry weight 

(g) 

7.6 ± 3.4 3.7 ± 3.9 9.8 ± 8.5 8.6 ± 3.6 0.204 0.357 0.629 

Root dry weight 

(g) 

3.8 ± 1.6 1.9 ± 1.4 3.4 ± 2.5 8.1 ± 3.5 0.034 0.292 0.017 

Total plant 

biomass (g) 

17.3 ± 5.8 11.6 ± 5.9 21.5 ± 12.3 23.2 ± 7.3 0.080 0.641 0.388 

Leaf weight 

ratio (%) 

36.6 ± 10.6 58.4 ± 16.6 46.6 ± 20.2 30.1 ± 7.3 0.232 0.727 0.022 

Stem weight 

ratio (%) 

41.8 ± 7.7 27 ± 14.1 38.9 ± 17.3 36.3 ± 4.7 0.601 0.173 0.331 

Root weight 

ratio (%) 

21.6 ± 3.8 14.6 ± 7.2 14.4 ± 4.1 33.6 ± 5.0 0.043 0.038 <0.001 
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For a clear illustration, results have been presented per plant (PP), and then per 

community (PC).  In the following graphs, error bars refer to standard deviations. 

 

Leaf Area: 
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Fig. 5.4 Clustered error-bar graphs showing total leaf area per plant (a) and per 
community (b) of C. odorata grown at elevated or ambient Ca and high or low 
planting density 
 
 

PP: Table 5.4 shows a variation of total leaf area per plant from a low value of 287 

cm2 (E&HD treatment), to a high value of 557 cm2 (E&LD treatment).  Ca did not 

significantly affect total leaf area PP (p=0.987; Table 5.4).  P-values from Table 5.4 

indicate a highly significant density effect on total leaf area PP of C. odorata 

(p=0.006; Table 5.4).  At each Ca treatment, plants grown at lower density had greater 

total leaf areas PP, than plants grown at high density (Fig. 5.4a).  There was no 

significant interaction between Ca and density (p=0.469; Table 5.4). 

 

 PC:  Total leaf area per plant community, ranged from a low value of 1008 cm2 

(A&LD treatment) to a high value of 1370 cm2 (A&HD treatment) (Fig. 5.4b).  No 

significant Ca, density or Ca*density effects were observed (p=0.757; p=0.597; 

p=0.512, respectively; Table 5.5), for total leaf area PC. 

 

 

 

  
T

o
ta

l 
le

af
 a

re
a 

(c
m

2
) 

(P
P

) 

Ca 

a 

T
o

ta
l 

le
af

 a
re

a 
(c

m
2
) 

(P
C

) 

 Ca 

b 



 78

 

Specific leaf area: 
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Fig. 5.5 Clustered error-bar graph of specific leaf area (PP) of C. odorata grown at 
elevated or ambient Ca and high or low planting density 
 

Specific leaf area was measured per plant only, and not per community.  Fig. 5.5 

shows that plants belonging to the E&HD treatment had the lowest SLA values (183 

cm2; Table 5.4), while the A&HD treatment showed the highest SLA average (279 

cm2; Table 5.4).  Ca had a significant effect on SLA (p=0.003), with lower SLA’s at 

elevated Ca, while density did not (p=0.133).  At ambient Ca, plants grown with 

higher densities had greater SLA values than plants from the lower density treatments.  

This pattern is reversed at elevated Ca (although the effect is small), clearly indicating 

a significant interactive effect of Ca and density on SLA of C. odorata plants 

(p=0.041; Table 5.4). 
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Leaf area ratio: 
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Fig. 5.6 Clustered error-bar graphs showing Leaf area ratio per plant (a) and per community 
(b) of C. odorata grown at elevated or ambient Ca and high or low planting density. 
 

 

PP: Elevated Ca significantly reduced LAR, of both density classes (p=0.009; Table 5.4).  

Although density did not significantly influence LAR, a significant interaction between Ca 

and density, can be noted (p=0.035; Table 5.4).  At ambient Ca, plants in the low density 

treatment had lower LARs than plants from the high density treatment.  This pattern is 

reversed at elevated Ca (Fig. 5.6a).  Plants from the A&HD treatment showed the highest 

LAR values. 

 

PC: The response of LAR PC to the treatments (Fig. 5.6b), was exactly the same as that of 

LAR PP (Fig. 5.5a).  Significant responses to elevated Ca (p=0.012; Table 5.5) and to the 

interaction between Ca and density (p=0.026; Table 5.5), can be noted for this parameter at a 

PC level. 
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Plant height: 
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Fig. 5.7 Clustered error-bar graphs illustrating plant height of C. odorata grown under 
four treatments (ambient or elevated Ca, and low or high density) 
                        

 

PP: Plant height (PP) ranged from 35 cm (A&HD treatment), to 75 cm (E&LD 

treatment) (Fig. 5.7a).  Elevated Ca increased plant height of both density classes, but 

with a non-significant p-value of 0.065.  However, density had a very significant 

effect on plant height (PC) (p<0.001).  At both Ca treatments, plants grown at lower 

densities were taller than plants grown at high densities.  No interactive effects of Ca 

and density were noted (p=0.917; Table 5.4). 

 

PC: With the lack of measurements for lengths of side branches, plant height PC 

(total stem lengths) would have merely been a sum of plant heights of individual 

plants for each treatment.  High density treatment communities would obviously have 

greater total stem lengths than communities grown with low density, simply because 

there were more plants.  Plant height PC is actually meaningless and has not been 

calculated.   
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Stem cross sectional area: 
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Fig. 5.8 Clustered error-bar graphs showing stem cross sectional area per plant (a) and per community 
(b) of C. odorata grown under the four treatments 
 

 

PP: Averages for stem cross-sectional area were lowest (0.057 cm2) for the A&HD 

treatment, and highest (0.182 cm2) for the E&LD treatment (Fig. 5.8a).  Although Ca 

had no influence (p=0.350; Table 5.4), stem cross-sectional area PP of C. odorata was 

significantly influenced by planting density (p=0.014).  At both Ca treatments, C. 

odorata plants grown at lower densities had thicker stems than plants grown at higher 

densities.  No Ca*density effects were observed (p=0.603; Table 5.4).   

 

PC: Lowest stem total basal area (PC) was observed for communities belonging to 

the A&HD treatment (0.226 cm2), while the community growing in the E&HD 

treatment showed the highest stem basal area (PC) values (0.4 cm2) (Table 5.5).  

Elevated Ca increased basal area (PC) of the communities with both density classes 

(Fig. 4b), but with a non-significant P-value of 0.079 (Table 5.5).  Although density 

had no significant effect on total basal area (PC), it can be seen that for the ambient Ca 

treatments, communities grown at low density had greater total basal area than the 

community of higher density.  This pattern is reversed for the high Ca treatments (Fig. 

5.8b).  Surprisingly, there was no significant interactive effect between Ca and density, 

on total basal area (PC) (p=0.442; Table 5.5). 
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Biomass and biomass partitioning; per plant: 
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Fig. 5.9 Clustered error-bar graphs showing leaf dry weight per plant (a), stem dry 
weight per plant (b), root dry weight per plant (c) and total biomass per plant (d) of C. 

odorata grown at elevated or ambient Ca, and high or low planting density 
 

 

PP: Leaf dry weight (PP) averaged between 1.5 g (A&HD treatment) and 4.2 g 

(E&LD treatment) (Fig. 5.9a), stem dry weight averages ranged from 0.9 g (A&HD 

treatment) to 4.9 g (E&LD treatment) (Fig. 5.9b), and root dry weights were from 0.5 

g (A&HD treatment) to 2.2g (E&HD treatment) (Fig. 5.9c).  Elevated Ca increased 

leaf (Fig. 5.9a) and root (Fig. 5.9c) dry weights (PP) significantly (p=0.038 and 

p=0.018, respectively), but had no significant effect on stem dry weight (p=0.086) 

(Fig. 5.9b).  However, from Fig. 5.9b, it can be seen that stem dry weights at elevated 

Ca are generally greater than those at ambient Ca, for both density classes.  Table 5.4 
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shows a significant effect of planting density on leaf and stem dry weights (PP) 

(p<0.001 for both parameters).    From Fig. 5.9a and 5.9b, it can be seen that at both 

Ca treatments, plants grown at lower densities had greater leaf, and stem dry weights, 

than plants grown at higher densities.  This pattern is observed only at ambient Ca, for 

root dry weight (PP).  Fig. 5.9c shows that at elevated Ca, the pattern was reversed: 

plants grown at high density had heavier root mass than plants grown at low density.  

Therefore, root dry weight showed an interactive effect of Ca*density (p=0.003), 

although it was not significantly affected by planting density (p=0.096). 

 

Fig. 5.9d shows the response of total biomass (PP) of C. odorata to the four 

treatments.  Total biomass (PP) was lowest (2.9 g) for the A&HD treatment, and 

highest (10.8 g) for the E&LD treatment (Table 5.4).  Total plant biomass (PP) was 

significantly affected by Ca (p=0.021), and density (p<0.001) (Table 5.4).  Elevated 

Ca increased total biomass PP in both density classes.  At ambient and elevated Ca, 

plants grown at lower densities had greater total biomass, compared with plants 

grown at higher densities (Fig. 5.9d). 
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PP weight ratios: 
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Fig. 5.10 shows error-bar graphs for leaf weight ratio per plant (a), stem weight ratio 
per plant (b) and root weight ratio per plant (c) of C. odorata grown at ambient or 
elevated Ca, and high or low density 
 

 

PP: Biomass partitioning to leaves, stems and roots were calculated as ratios to total 

plant biomass, for each plant.  Assumptions of parametric ANOVA were tested, and 

found to be satisfied.  From Fig. 5.10a, it can be seen that leaf weight ratio (PP) was 

not significantly affected by Ca (p=0.155), or density (p=0.924).  However, a 
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significant interactive effect of Ca*density was noted (p=0.001).  Plants grown at high 

density allocated more biomass to leaves (PP) at ambient Ca, with the reverse for 

plants grown at elevated Ca. 

 

There were no significant effects of Ca (p=0.959), density (p=0.512), or Ca*density 

(p=0.411), on stem weight ratio (PP) of C. odorata.  The highest stem weight ratio 

(PP) was observed for the A&LD treatment (41.6 %) and the lowest average was 

observed for the A&HD treatment (31%) (Fig. 5.10b). 

 

Proportional biomass partitioning to roots (PP) (Fig. 5.10c) was affected by Ca, but 

with a non-significant p-value of 0.063 (Table 5.4), and significantly affected by 

density (p=0.036; Table 5.4).  There was a considerable allocation of biomass to roots 

in the elevated Ca, high planting density treatment, giving rise to a significant 

Ca*density interaction (p=0.001). 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 



 86

Potential pot size biomass restrictions:   

 

To investigate potential physical limitations that pot size or OTCs could have had on 

biomass PP responses to the treatments, above- and below-ground biomass were 

plotted as functions of total plant biomass for each treatment (Figs. 5.11a and 5.11b 

below).   
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Figs. 5.11a Changes in above- and below-ground biomass, in relation to total plant 
biomass, of the A&LD and A&HD treatment   
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Fig. 5.11b Changes in above- and below-ground biomass, in relation to total plant 
biomass, of the E&LD and E&HD treatment   
 

From the linear relationships between above-ground biomass and total plant biomass 

of plants from all four treatments (Figs. 5.11a and 5.11b), it can be concluded that pot 

size or OTCs did not limit growth of above-ground biomass (stems and leaves) of C. 

odorata, when exposed to elevated or ambient, and high or low planting densities.  In 

contrast, growth of below-ground biomass of C. odorata from three treatments 

(A&HD; E&LD and E&HD treatments), could have been restricted by pot size.  R-

squared values (coefficients of determinations), are indicators that reveal how closely 

the estimated values for the trendline correspond to the actual data. Since trendlines 

are most reliable when its R-squared value is at or near 1, the highest degree of pot-

size limitation on root growth of C. odorata, can be observed for plants in the A&HD 

treatment (Fig. 5.11a).   
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Biomass and biomass partitioning; community level: 
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Fig. 5.12 Clustered error-bar graphs showing leaf dry weight per community (a), stem 
dry weight per community (b), root dry weight per community (c) and total biomass 
per community (d) of C. odorata grown under the four treatments 
 

 

PC: Leaf dry weight (PC) averaged between 5.9 g (A&LD treatment) and 8.3 g 

(E&LD treatment) (Fig. 5.12a), stem dry weight means ranged from 3.7 g (A&HD 

treatment) to 9.8 g (E&LD treatment) (Fig. 5.12b), and root dry weights were from 

1.9 g (A&HD treatment) to 8.1 g (E&HD treatment) (Fig. 5.12c).     

  

The pattern that can be observed from Fig. 5.12a is that communities exposed to 

elevated Ca had greater total leaf dry weight (PC), than communities exposed to 
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ambient Ca, for both density classes.  The effect of Ca on communitiy total leaf weight 

was significant (p=0.018; Table 5.5).  No significant density, or Ca*density effects 

were noted for community leaf dry weight (PC) (Table 5.5). 

 

Although Ca and density did not affect community stem dry weight significantly, the 

pattern that emerges from Fig. 5.12b shows a decrease in stem dry weight (PC), with 

increasing planting density, for both Ca treatments.  The E&LD treatment once again 

showed the greatest variation in the data (SD=8.5; Table 5.5).  No significant 

interactive effects between Ca and density were observed for stem dry weight (PC). 

 

Significant Ca and Ca*density effects were observed for community root dry weight 

(p=0.034 and p=0.017, respectively; Table 5.5).  For the ambient Ca treatment, 

communities with lower planting densities had more root than communities with at 

higher planting densities (Fig. 5.12c).  As can be seen, this pattern is reversed for the 

elevated Ca treatment: There was more root in communities of high density than the 

low density communities.  The highest root dry weight was observed for the 

community under the E&HD treatment (Fig. 5.12c; Table 5.5).   

 

Elevated Ca increased total community biomass of both density classes, but with a 

non-significant p-value of 0.08 (Fig. 5.12d).  The lowest biomass (11.6 g) was 

observed for the A&HD treatment, and the highest value (23.2 g) belonged to the 

E&HD treatment (Table 5.5).  There were no significant density or Ca*density effects 

on total community biomass (Table 5.5).  
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PC weight ratios:                                                            
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Fig. 5.13 shows error-bar graphs for leaf weight ratio per community (a), stem weight 
ratio per community (b) and root weight ratio per community (c) of C. odorata grown 
under the four treatments 

                              

 

PC: Biomass weight ratios PC were similar to that of PP, for leaf, stem and root 

weight ratios.  The highest leaf weight ratio PC was observed for the A&HD 

treatment (58.4 %) and the lowest value was noted for the E&HD treatment (30.1 %; 

Table 5.5, Fig. 5.13a).  This pattern was also noted for leaf weight ratio (PP) (Fig. 

5.10a).  Ca and density did not influence leaf weight ratio PC significantly (p=0.232 

and p=0.727, respectively, Table 5.5).  Fig. 5.13a shows that for the ambient Ca 

treatment, communities grown at higher density, had a greater biomass allocation to 

leaves, compared to communities grown at lower density.  For the elevated Ca 
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 treatment, this pattern is reversed (Fig. 5.13a).  Not surprisingly, a significant 

interactive effect between Ca and density was noted for community leaf weight ratio 

(p=0.022). 

 

Communities of plants grown under the A&LD treatment, had the highest allocation 

to stems (41.8 %) while the lowest community stem weight ratio was observed for the 

A&HD treatment (27 %) (Table 5.5).  However, there were no significant Ca, density 

or interactive Ca and density effects on community stem weight ratio, Fig. 5.13b 

shows that for each Ca treatment, communities with lower densities allocated more 

biomass to stems than plants grown at higher densities.  Incidentally, this pattern was 

also observed for stem weight ratio (PP) (Fig. 5.10b). 

 

Community root weight ratios were significantly influenced by Ca (p=0.043), and by 

density (p=0.038) (Table 5.5).  For the ambient Ca treatment, overall community 

allocation to roots was higher at low planting density, than at higher planting density 

(Fig. 5.13c).  The opposite pattern can be observed for elevated Ca-grown 

communities.  Therefore, a significant Ca*density interaction on community root 

weight ratio can be noted (p<0.001) (Table 5.5). 
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CHAPTER 6. DISCUSSION (PART B) 

 

Although much is known about the individual effects of CO2 enrichment and planting 

density on plant growth, very little is known about the interactive effects of these two 

factors on plants.  PART B is the first study thus far, in which C. odorata was grown 

in monoculture.  Plants were grown at ambient or elevated Ca, and with high or low 

planting density.  Growth analyses were done at an individual plant (PP) level, as well 

as at a per community (PC) level.  Physiology results were based on single-leaf 

photosynthetic data. 

 

6.1. Physiology 

Stimulation of photosynthesis in elevated Ca has been demonstrated in various studies 

(Poorer et al, 1996; Lloyd and Farquhar, 2000; Ainsworth et al., 2002), and has been 

attributed to the properties of the enzyme rubisco.  Increasing Ca competitively 

inhibits the oxygenation reaction of rubisco, thus increasing photosynthetic 

assimilation (Johnson et al., 1993).  However, a recent study showed no change in 

instantaneous CO2 assimilation rates of C. odorata under CO2 enrichment (Naidoo, 

personal communication).  It is unfortunate that measurements of instantaneous rates 

of photosynthetic assimilation under elevated Ca, were not taken in the current study.  

Nevertheless, the “average” A:Ci curve constructed (Fig. 5.1; Chapter 5), showed that 

lines for all four treatments were similar, and statistical analysis revealed no 

significant effects of Ca, density or Ca times density on Jmax, initial slopes and CO2 

compensation points, of C. odorata grown in elevated or ambient Ca, and high or low 

density.  Therefore, in terms of changes to A:Ci curves, no noticeable photosynthetic 

down-regulation can be noted.  Although this indirectly suggests that enhancement of 

photosynthesis of C. odorata could have occurred in elevated Ca, the lack of direct 

data for assimilation rates under CO2 enrichment, makes it impossible to determine if 

this was indeed the case. 

 

Stomatal responses of C. odorata to elevated Ca, was investigated by assessing 

stomatal conductance, and stomatal limitation measurements.   
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Previous studies have shown that in elevated Ca, gc could increase (Wheeler et al., 

1999), decrease (Calfapietra et al., 2005; Overdieck and Strassmeyer, 2005), or 

remain unaffected (Teskey, 1995).  In a recent study, the significant decrease in gc of 

C. odorata in elevated Ca (when grown in mixed arrays with another C3 species), was 

attributed to resource-sink limitations, rather than elevated Ca per se (Naidoo, 

personal communication).  Unfortunately, data for instantaneous gc values in elevated 

Ca, were not analysed in the current study.  To compensate for this, mean gc values at 

Ca= 370 ppm and Ca=720 ppm, were extrapolated from A:Ci data for each treatment, 

and analyzed statistically.   

 

According to Maherali et al. (2002), a major factor that could alter stomatal responses 

to CO2 is the degree to which stomata acclimate to growth CO2.  These authors 

maintain that physiological stomatal acclimation would be demonstrated if the 

stomatal behaviour of plants grown at contrasting CO2 concentrations differ when 

measured at the same CO2 concentration.  Since there were no significant effects of Ca 

on gc at Ca=370 ppm, and gc at Ca=720 ppm between ambient- and elevated-grown 

plants (Table 5.2; Chapter 5), it can be concluded that stomatal acclimation to 

elevated Ca did not occur in the current study.  Nevertheless, gc values at Ca=720 ppm, 

were significantly higher than gc at Ca=370 ppm, for the E&LD treatment (Fig. 5.2; 

Chapter 5).  This could have resulted in, or have been a result of, the significant 

interactive effect of Ca and density on gc at Ca=720 ppm, across treatments (Table 5.2; 

Chapter 5). 

 

According to Drake and Gonzàlez-Meler (1997), the observed general decreases in gc 

in elevated Ca, by itself, does not limit photosynthesis.  Limitations that stomata could 

impose on CO2 assimilation, can be quantified in a simple, practical way from A:Ci 

responses (Long and Bernacchi, 2003), and have been calculated in the current study.  

Results showed no significant influence of Ca, density or Ca times density on stomatal 

limitations of C. odorata (Table 5.3; Chapter 5).  These results are not really 

surprising, if one considers the “slope” of the ‘average’ A:Ci curve constructed (Fig. 

5.1; Chapter 5).  A comparison of “average” A:Ci curves for both experimental trials 

of the current study (Fig. 3.1; Chapter 3, and Fig. 5.1; Chapter 5), as well as initial 

slope values (Table 3.1; Chapter 3, and  Table 5.1; Chapter 5), showed that relatively 

steep inclines for all four treatments can be observed in the “average” A:Ci curve 
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constructed for PART B (Fig. 5.1; Chapter 5).  This implies that photosynthesis was 

saturated at generally low Ci concentrations, and for a plant operating at 700 ppm 

(elevated Ca treatments), reduced gc would not decrease assimilation.  In this regard, 

C. odorata is effectively acting as a C4 plant, and the fact that elevated Ca had no 

effect on stomatal limitations, is not unexpected.  However, these results are in 

contrast to a study on sweetgum (Liquidambar styraciflua), which demostrated a 26% 

decrease in stomatal limitations under long-term CO2 enrichment (Herrick et al., 

2004).   

 

Research on physiological responses of plants to elevated Ca, has shown that after 

prolonged exposure to CO2 enrichment (as is the case when plants are grown in 

elevated Ca), photosynthetic down-regulation may occur as plants fail to sustain the 

initial stimulation of photosynthesis (Rogers and Humphries, 2000; Overdieck and 

Strassemeyer, 2005).  In the current study, results from A:Ci curves (Table 5.1; 

Chapter 5), indicated that photosynthetic down-regulation did not occur in C. odorata 

grown at elevated Ca, at high or low planting density.  However, to investigate the 

possibility of photosynthetic down-regulation even further, four “non-treatment” pots 

containing two C. odorata each, were obtained.  Significant decreases in Jmax with 

time (days after exposure to elevated Ca) of the “non-treatment” plants, provides 

evidence that photosynthetic downregulation could have occurred in these plants, 

when exposed to elevated Ca (Fig. 5.3; Chapter 5).  However, it should be noted that 

the “non-treatment” plants were exposed to elevated Ca by being enclosed in OTCs, 

and the response observed could in fact, be due to a chamber effect.  Distinguishing 

between possible chamber effects and photosynthetic down-regulation, on the 

significant decrease in Jmax of “non-treatment” C.odorata plants, is beyond the scope 

of this study.  

 

 Instead of resorting to this “by process of elimination” approach, photosynthetic 

down-regulation, or the lack of it, needs to be thoroughly investigated in future 

research, as it is an important phenomenon clearly demonstrated in various studies.  

According to Aranjuelo et al. (2005), photosynthetic down-regulation may be caused 

by stomatal- and non-stomatal limitations.  Since substantial stomatal limitations to 

photosynthesis did not occur in the current study, it can be concluded that if 

photosynthetic down-regulation had occured in leaves of C. odorata when exposed to 



 95

elevated Ca and different planting densities, it would have been attributed to non-

stomatal limitations, and this could range from low leaf rubisco (Cook et al., 1998) 

and offset in leaf C:N balances (Hui et al., 2002), to decreased carboxylation 

efficiencies (Long et al., 2004) and nutrient deficiencies (Barret and Gifford, 1995), as 

well as changes in source-sink balance (Ainsworth et al., 2002), or even a reduction in 

light capture (PS11 activity) (Aranjuelo et al., 2005). Hui et al., 2002).   These options 

need to be investigated in future, to allow for proper understanding of photosynthetic 

down-regulation in C. odorata in elevated Ca, if the process occurs at all.  In addition, 

photosynthetic measurements should be taken at various intervals during growth, 

instead of only at the end of the growth period.  This would also help investigate the 

potential for photosynthetic down-regulation.  

 

 Pritchard et al. (1999) mentioned the possibility of plant limitations to carbon 

assimilation e.g. inefficiencies of assimilate transport from sources to sinks.  These 

potential limitations of plant physiology and structure to photosynthesis, should be 

included in future research on C. odorata responses to CO2 enrichment. 

 

6.2 Growth and Morphology   

Growth and Morphology PP: 

The fact that density significantly influenced seven of the 12 biomass parameters PP, 

while Ca affected only five parameters significantly, suggests that density effects 

could have “overridden” the effects of Ca on C. odorata plants.  This means that in 

cases where a lack of Ca effects on a biomass parameter is observed, it does not 

necessarily mean that Ca did not affect the parameter at all; it could just mean that the 

response of the plant to density could have been stronger, and thus overshadowed the 

plant’s response to Ca.  He and Bazzaz (2003) showed that density modified the 

response of reproductive allocations of Phytolacca americana to elevated Ca.  

Therefore, density reducing the response of a plant to elevated Ca could have occurred 

in the current study.  Significant interactive effects between Ca and density were 

observed for five biomass parameters, and this re-iterates the possibility of 

overshadowing occurring between density and Ca effects, on biomass parameters (PP) 

of C. odorata.   
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Although many studies show an increase in total leaf area of plants when exposed to 

CO2 enrichment (Wong, 1979; O’Leary and Knecht, 1981; Polley et al., 1993a; 

Pritchard et al., 1999), total leaf area PP of C. odorata in the current study was not 

significantly affected by Ca (p=0.987; Table 5.4 in Chapter 5).  This is in direct 

contrast to results of two similar studies: Firstly, Wayne et al. (1999) studied density-

dependent CO2 responses of Brassica kaber, and showed a stimulation of leaf area in 

elevated Ca.  Secondly, leaf area of six invasive species was also enhanced in elevated 

Ca (Ziska, 2003).  However, recent studies on C. odorata have shown results similar 

to the current study: Total leaf area PP of C. odorata was not significantly influenced 

by Ca, when this species was grown in elevated Ca, and subjected to interspecific 

competition with another C3 plant (Naidoo, personal communication), grown in 

competition with a C4 grass (Lalla, unpublished), or subjected to different nutrient 

treatments (Patton, personal commnication).  In the current study, planting density 

had a significant effect on total leaf area PP of C. odorata (p=0.006; Table 5.4 in 

Chapter 5).  For each Ca treatment, plants grown at lower densities had greater total 

leaf area than plants grown at higher densities (Fig. 5.4a; Chapter 5).  This result 

could simply be attributed to space: fewer plants in a pot have more space in to which 

to expand their leaves, and therefore an increase in leaf area per plant is not 

unexpected.  Although no significant interactive effect between Ca and density was 

noted, Fig. 3a shows that elevated Ca increased total leaf area of the low-density class 

only, and this trend was observed by Rutuerto et al. (1996).  This observation suggests 

that once a certain threshold of self-shading occurs, the CO2 response of total leaf area 

is no longer density-dependent. 

 

Values for SLA were obtained by dividing the area of a single, average sized leaf by 

its weight.  Thus, high SLA values are usually characteristic of thin leaves.  In direct 

contrast to total leaf area, SLA was found to be significantly affected by Ca, and not 

by density (Table 5.4; Chapter 5).  Irrespective of planting density at which they were 

grown, C. odorata grown in elevated Ca had lower SLA values (thicker leaves) than 

plants grown in ambient Ca (Fig. 5.5; Chapter 5).  This is in accord with Thomas and 

Harvey (1983),  Usuda and Shimogawara (1998) and Hui et al. (2002), who 

demonstrated a stimulation of leaf thickness (decrease in SLA) in elevated Ca.  Bazzaz 

(1990) suggested that plants grown in elevated Ca reduce their SLA (have thicker 

leaves) because they become photosynthetically more efficient.  However, it is 



 97

impossible to determine if this were the case in the current trial, due to the lack of 

direct data for CO2 assimilation rates in elevated Ca.  At this stage, it is sufficient to 

say that investing in thicker leaves, could simply have been a way for elevated Ca-

grown plants of dealing with extra carbon.   

 

Although density did not significantly affect SLA, significant Ca times density effects 

were noted for SLA of C. odorata (p=0.041; Table 5.4 in Chapter 5).  Since the same 

Ca effect can be observed for both density classes, it can be concluded that Ca 

modified the response of SLA to density.  At ambient Ca, plants grown at high density 

had greater SLA values (thin leaves) than plants grown at lower density.  In fact, the 

A&HD treatment showed the highest SLA values (Fig. 5.5a; Chapter 5).  The pattern 

is reversed at elevated Ca, and the E&HD treatment showed the lowest SLA values 

(thickest leaves).  Previous studies on C. odorata have shown a variation in the 

responses of SLA to elevated Ca.  Patton (personal communication), however showed 

a significant decrease in SLA of C. odorata in elevated Ca (similar to the current 

study), while Lalla (unpublished) showed no difference between the SLA of ambient 

vs elevated Ca-grown C. odorata plants.  The variation in the results of how SLA of a 

single species responds to elevated Ca, highlights the need for future studies to be 

conducted to eliminate these discrepancies.  A starting point would be the fact that 

decreased SLA is often associated with increased starch levels in leaves (Bazzz, 

1990).  Therefore, future research on C. odorata should include measurements of total 

non-structural carbohydrates like starch (TNCs) in order to get a better understanding 

of how elevated Ca affects SLA.   

 

According to Usuda and Shimogawara (1998), leaf area ratio (LAR; leaf area per unit 

of plant dry mass), provides an indication of the proportion of a plant that is active in 

photosynthesis.  Decreasing LAR with increasing Ca concentrations, were reported for 

five out of six invasive species studied (Ziska, 2003).  Ishizaki et al. (2003) also 

showed a significant reduction in LAR of Polygonum cuspidatum in elevated Ca.  

Similarly, in the current trial, elevated Ca significantly reduced LAR PP of C. odorata, 

independently of which density group they were grown at (p=0.009; Table 5.4 in 

Chapter 5).  However, a possible link between the reductions of LAR in elevated Ca, 

and the proportion of C. odorata plants that were active in photosynthesis, cannot be 
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established in the current trial, since instantaneous rates of photosynthetic assimilation 

in elevated Ca, were not obtained.  

 

LAR PP was unaffected by planting density (p=0.228; Table 5.4 in Chapter 5), and 

this is in accord with a previous study on Sinapis alba (Rutuerto et al., 1996).  In the 

current trial, a significant interactive effect of Ca and density on LAR can also be 

noted (p=0.035; Table 5.4 in Chapter 5).  Since the trend of the response of LAR to 

Ca, is exactly the same as that observed for SLA (discussed above), it can be 

concluded that elevated Ca reduced LAR, solely due to a decrease in SLA; an idea 

which has been previously demonstrated by Harmens et al. (2000), in a study on 

Dactylis glomerata.   

 

An earlier study on an invasive alien, kudzu, showed a 58% increase in stem height, 

when exposed to elevated Ca (1000 ppm) in chambers (Sasek and Strain, 1988).  

Similarly, elevated Ca increased plant heights of both density classes of C. odorata, 

but with a non-significant p-value of 0.065 (Table 5.4; Chapter 5).  If the growth 

period of the current study was increased, this may have developed into a significant 

Ca effect on plant height.  However, this is speculation since previous studies have 

shown no significant influence of elevated Ca on plant height of this species (Lalla, 

unpublished; Patton, personal communication). Athough one might expect a positive 

relationship between planting density and plant height, because of competition for 

light, the current study demonstrated a significant decrease in plant height with 

increasing density, of both Ca treatments.  Brahim et al. (1998) attributed minor 

decreases in plant height of Lesquerella fendleri with increasing planting density, to 

competition for available space, and this could explain the plant height responses of 

C. odorata to density in the current study.   

 

Pritchard et al. (1999) conducted a review of studies on elevated Ca and plant 

structure, and reported that in many of the studies, stem diameter increased under CO2 

enrichment.  However, previous studies on C. odorata showed no significant effect of 

Ca on stem diameter (Lalla, unpublished; Patton, personal communication).  

Similarly, Ca had no significant effect on stem cross sectional areas of C. odorata in 

the current study (p=0.350; Table 5.4 in Chapter 5).  However, in direct contrast to a 

study on loblolly pines (Will et al., 2005), increasing planting density was 
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significantly associated with reduced stem cross sectional areas of C. odorata 

(p=0.014; Table 5.4 in Chapter 5).  This pattern was also observed for plant height, 

and the correlation is not surprising: thicker stems would be needed to support taller 

plants.   

 

Elevated Ca significantly increased leaf dry weight of C. odorata, irrespective of 

planting density (p=0.038; Table 5.4 in Chapter 5).  Although stem dry weights were 

not significantly affected by Ca (p=0.086; Table 5.4 in Chapter 5), the pattern that is 

obvious from Fig. 5.9b (Chapter 5) is similar to that of leaf dry weight: elevated Ca 

increased stem dry weights of both density classes.  These results indicate an increase 

in above-ground biomass of C. odorata in elevated Ca, a relationship which has been 

demonstrated in previous studies on different species (Polley et al., 1993b; Hunt et al., 

1991; Bazin et al., 2002).  Results from those studies support the prediction that plants 

would alter the balance between growth and availability of resources in elevated Ca, 

such that water stress is reduced (because of increased water-use efficiency due to 

decreased gc) (Friedingstein et al., 1999).  A consequence of this, according to these 

authors, is a reduction in the root:shoot ratio as plants increase their above-ground 

biomass.  (At this stage, it is impossible to assess if this prediction holds true in the 

current study, due to lack of direct gc data).  The fact that increasing planting density 

significantly decreased leaf and stem dry weights, irrespective of Ca exposure, is not 

surprising (p<0.001 for both parameters; Table 5.4 in Chapter 5).  With less 

competition for space, plants in the low density classes generally grew bigger.  It 

should be mentioned that this observation, thus far applies to above-ground growth 

(taller plants, thicker and heavier stems and leaves). 

 

Research similar to the current study was conducted on Brassica kaber, and results 

showed that root dry weight was significantly increased by density, but unaffected by 

Ca, or the interaction between Ca and density (Wayne et al., 1999).  In direct contrast, 

below-ground biomass of C. odorata in the current study was significantly influenced 

by Ca, and by the interaction between Ca and density.  At ambient Ca, plants grown 

with low density had heavier roots than plants grown with high density.  However, at 

elevated Ca, this pattern was reversed, and the significant interactive effect between 

Ca and density, rendered it impossible to determine the direction of the root dry 
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weight response to elevated Ca (i.e. whether elevated Ca had a positive or negative 

response on root dry weight).   

 

The significant increase in total plant biomass in elevated Ca (Fig. 5.9d; Chapter 5), 

can be attributed mainly to the increase in above-ground biomass (leaf- and stem dry 

weights) under CO2 enrichment (Fig. 5.9a and Fig. 5.9b; Chapter 5).  This positive 

response of total plant biomass to elevated Ca, has been observed in other studies 

(Carlson and Bazzaz, 1982; Wilsey et al., 1997; Ainsworth et al., 2002; Bazin et al., 

2002).  Ruetuerto et al. (1996) showed an increase in total plant biomass of Sinapis 

alba in elevated Ca, irrespective of planting density; results identical to the current 

study (Fig. 5.9d; Chapter 5).   

 

The idea of a positive correlation between the enhancement of growth, and an 

increase in photosynthetic assimilation rates, under CO2 enrichment, cannot be proven 

in the current trial due to a lack of direct data for CO2 assimilation rates in elevated 

Ca.  However, the fact that elevated Ca did not result in photosynthetic down-

regulation, nor an increase in stomatal limitations, does suggest that rates of 

photosynthesis could have been increased in elevated Ca.  However, a study similar to 

the current trial, showed no enhancement of instantaneous CO2 assimilation rates 

under CO2 enrichment (Naidoo, personal communication).    

 

In addition to photosynthesis, plant growth is affected by a multitude of other factors 

(Körner, 1991).  Time, according to Easmus (1991) and Poorter (1993), is one of the 

factors that could influence plant growth responses to elevated Ca.  Many studies have 

shown that initial increases in plant biomass are not maintained throughout growth in 

elevated Ca (Bazzaz, 1990; den Hertog et al., 1993; Centritto et al., 1999).  This 

suggests that growth, may in fact acclimate to elevated Ca, and in a similar way to 

photosynthesis and gc (Drake and Gonzàlez-Meler, 1997).  To re-iterate this point, a 

study on Dactylis glomerata showed that elevated Ca changed biomass allocation 

patterns only transiently, during early stages of growth, if at all (Harmens et al., 

2000).  Previous RGR (relative growth rate) data on C. odorata seedlings has shown 

that growth rates are quite high during the first 30 days, decreases considerably during 

the next 2 months, and the decline is greater in the subsequent period (after 2 months) 

(Ambika, 2002).  In addition, that study showed that the decline in growth rate of  
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C. odorata is slower in the roots.  Therefore, future research on this species, should 

incorporate regular biomass measurements (initial, during growth and prior to 

harvesting measurements), to generate RGR data.  This would help establish whether 

the observed increase in total plant biomass of C. odorata in elevated Ca, is a transient 

or persistent effect, and to determine if the RGR results for C. odorata seedlings holds 

true for cuttings from intact plants. Density significantly decreased total plant biomass 

(Fig. 5.9d; Chapter 5), in direct contrast to a study on rubber/banana plantations 

(Rodrigo et al., 1997).   

 

From Figs. 5.10a-c (Chapter 5), it can be concluded that in general, there was  greater 

proportional allocation of dry matter of C. odorata to above-ground biomass (leaves 

and stems), rather than to below-ground biomass.  One of the major reasons behind 

the high rate of invasiveness of C. odorata, is the fact that this weed suppresses 

natural vegetation through physical smothering and by forming impenetrable tangles 

which shade out indigenous vegetation (Macdonald, 1983; Goodall, 2002).  This, 

together with the fact that C. odorata is not a woody species with a long lifespan, but 

rather a rapid-growing shrub with a high reproductive rate, suggests that the general 

biomass partitioning pattern observed above, permit the observed growth patterns in 

the field. 

 

Altered root:shoot ratios are often noted in elevated Ca, and this suggests a shift in the 

functional relationship between these organs (Pritchard et al., 1999).  A closer look at 

the response of biomass partitioning patterns of C. odorata to the treatments, will now 

follow.  Stem weight ratios were not siginificantly affected by any of the treatments, 

and so will not be discussed.  Although leaf weight ratios were not significantly 

influenced by Ca or density, a significant interactive effect between the two factors 

can be observed (p=0.001; Table 5.4 in Chapter 5).  This implies that density could 

have modified the CO2 response of leaf weight ratios, or vice-versa, and 

distinguishing between the two is impossible at this stage: suffice it to say that there 

was some kind of significant interaction between Ca and density, on the response of 

leaf weight ratios to the treatments.   

 

At ambient Ca, high density grown plants allocated more carbon to leaves, than low 

density grown plants.  With a larger number of plants per pot, competition for 
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increasing surface areas for the absorption of CO2 and light must have arisen.  

However, with the abundant availability of CO2 in the elevated Ca treatments, 

competition of high density grown plants for CO2 was not that strong, and so these 

plants allocated more biomass to roots.  Significant Ca times density interactions were 

noted for root weight ratios.  Ca had a marginal effect on this parameter (p=0.063; 

Table 5.4).  Although this may have transpired into a significant effect, if time had 

permitted, it could also have been lost over a longer growth period.  Nevertheless, the 

extremely high root weight ratios for the E&HD treatment, suggests that results from 

this study may support the prediction that elevated Ca will promote root growth 

(Taylor et al., 1994).  On the other hand, because of reduced gc (in many cases), 

elevated Ca could reduce proportional allocation to roots. 

 

Usuda and Shimogawara (1998), attributed the extreme 105% increase in dry weight 

of storage roots of radish observed in their study, to increasing sink capacity.  These 

sentiments were echoed by Rogers et al. (1999), who maintained that increased 

rooting observed under CO2-enrichment occurs to increase carbon deposition and or 

nutrient uptake.  These predictions seem logical if the general expectation of plants 

enhancing photosynthesis and growth in elevated Ca, is met.  More sinks would be 

needed for the “extra” photoassimilate produced in the leaves (source), and the greater 

demands of the plant in elevated Ca, could result in the production of more roots to 

increase nutrient/water uptake to become more efficient.  However, without reference 

to direct data of photosynthetic rates in elevated Ca, it is impossible to determine if the 

above explanation could account for the response of root weight ratio or root dry 

weight, to elevated Ca.  However, it is possible that the changes in dry matter 

allocation patterns of C. odorata in elevated Ca, could be a secondary response 

through changes in C/N uptake, rather than a direct response to elevated Ca, as has 

been demonstrated by Ishizaki et al. (2003).  Ratios of C/N content in C. odorata, 

should therefore be included in future studies on the species. 

 

Thomas and Strain (1991) attributed photosynthetic acclimation of cotton seedlings, 

to inadequate rooting volume, as root restrictions were evident for plants grown in 

small pots.  To investigate potential pot size limitations in the current study, above- 

and below-ground biomass were plotted as functions of total plant biomass.  Linear 

relationships between total biomass and either plant component, according to 
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Centritto et al. (1999), indicate an absence of pot size limitations.  From Figs 5.11a 

and Fig. 5.11b (Chapter 5), and from the coefficient of determination (R2) value, it is 

evident that root restrictions due to pot size limitations, could have occurred in the 

A&HD, E&LD and E&HD treatments, in the current study.  Further evidence for this 

is provided by the fact that when collected, roots had formed masses which in many 

cases, had reached the sides of pots.  If photosynthetic down-regulation had occurred 

in the current study (see Section 6.1; this study), this could have been attributed to 

restricted root growth due to pot size limitations, as has been demonstrated by 

Thomas and Strain (1991).  Larger pots should be used in future CO2 enrichment 

studies on C. odorata.  On the other side of the coin, linear relationships between 

above-ground biomass and total plant biomass, provide evidence that neither pot size, 

nor OTC dimensions restricted above-ground growth, and therefore any observed 

responses of above-ground biomass to the treatments, could not have been an artifact 

of experimental technique.   

 

Results of growth analysis (PP) in this trial, suggests that elevated Ca would result in 

individual C. odorata plants, with thick leaves, and high leaf-, and total plant biomass, 

irrespective of the number of C. odorata plants growing together. 

 

Growth and morphology PC: 

All three studies reviewed on the responses of plants to elevated Ca and density in 

Section 1.4.3 in Chapter 1, have shown profound density-dependent responses of 

plants to elevated Ca at an individual level, but a “withering away” effect of this 

response at population level.  To ascertain if this were the case in the current study, 

per community (PC) biomass measurements were taken to investigate whether 

differences, if any, in the biomass responses of individual C. odorata plants to the 

treatments, scaled up to whole communities of C. odorata,.  A distinct decline in the 

responses of C. odorata PC, compared to that observed PP, to the treatments, is 

obvious from the comparisons of Table 5.4 and Table 5.5, in Chapter 5.  Total leaf 

area, stem cross sectional area and stem dry weight were significantly affected by 

density at an individual plant level, but not on a community level.  The significant 

interactive effect of Ca and density on total plant biomass PP, was lost at PC level.  

Leaf dry weight was significantly affected by Ca and density at PP level, but only by 

Ca at PC level.  These observations suggest that to some extent, a decline in the effects 
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of the treatments on plants occurred at community level, and this has been reported in 

previous studies (He and Bazzaz, 1990; Rutuerto et al., 1996; Wayne et al., 1999).   

 

When grown at different planting densities, competition for resources was indirectly 

incorporated into the study, as a factor which could have influenced the response of C. 

odorata to elevated Ca.  According to Dukes (2000), growth of a single plant might be 

limited by the availability of CO2, but plants in communities are likely to be limited 

by the availability of light, nutrients, water and space, for which they have to compete 

with one another.  This could explain the decline in effects of five out of nine biomass 

parameters from a PP to a PC level, observed in the study.  In plant communities, the 

greater number of plants increases competition for the same resources, and any one 

(or combinations) of the resources mentioned above, could have become limiting, and 

it is difficult to narrow down the possibilities.   

 

Despite this potential limitation of resources at community level, five parameters PC 

were still significantly influenced by the treatments (Ca, density or Ca times density), 

and these will now be discussed in detail.  

 

Effects of the treatments on root dry weight PP and PC, were identical (Fig. 5.9c and 

Fig. 5.12c; Chapter 5).  The fact that the response of this particular parameter of 

individual plants, was carried through to the whole community, highlights the 

importance of the effect of the treatments on root dry weights.  In this particular case, 

this refers to the significant Ca, and Ca times density effects on root dry weight PC and 

PP, and the latter has already been discussed.   

 

Leaf dry weight PP was significantly increased by increasing Ca, and decreased with 

increasing density (Fig. 5.9a; Chapter 5).  When assessed on a PC level, leaf dry 

weight was still significantly increased by elevated Ca (p=0.018; Table 5.5 in Chapter 

5).  Once again, this observation of “following through” of the response of leaf dry 

weight from individual, to community level, serves to make the significant Ca effect 

more profound.  Comparisons of the responses of leaf weight ratio PC and PP, to the 

treatments, showed a significant interactive effect between Ca and density, at both 

levels.  At ambient Ca, individual plants and communities of C. odorata grown with 

high density allocated more biomass to leaves, compared with plants from the low 
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density treatment (Fig. 5.12a; Chapter 5).  This pattern was reversed at elevated Ca, 

suggesting that competition among the high-density grown plants in elevated Ca, was 

transferred to below-ground biomass, as more roots were produced.  This is confirmed 

by the response of root weight ratio PC to the treatments (Fig. 5.12c; Chapter 5).  

Root weight ratio PP and PC were significantly influenced by density, and there was a 

significant Ca times density effect.  Elevated Ca significantly affected root weight ratio 

PC (p=0.043; Table 5.5 in Chapter 5).  Ca did affect root weight ratio PP, but with a 

non-significant p-value of 0.063.  Perhaps, this would have transpired into a 

significant effect, if time had permitted.  Nevertheless, the significant Ca times density 

on root weight ratio and leaf weight ratio, at PP and PC level, renders it impossible to 

determine the direction of the response of either parameter, to Ca or density as 

individual factors.    

 

From these results, it can be concluded that in C. odorata populations comprising a 

small number of plants, growing under CO2 enrichment, a greater allocation of 

community biomass to leaves would result.  But as the number of plants in the 

community increases, dry matter partitioning of the community would change in 

favour of the production of roots.  This suggests that the “withering away” of biomass 

responses to the treatments discussed earlier, could have been due to a limitation of 

nutrients and water, rather than resources such as light and above-ground space.   
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CHAPTER 7. CONCLUDING REMARKS 

 

7.1 Conclusion: PART A and PART B 

Invasive aliens are major agents of land transformation, disruptors of ecosystem 

functioning, and a threat to biodiversity (Richardson et al., 1997).  Future CO2-

enriched atmospheres (Wallace et al., 1996; King, 2005), are likely to enhance the 

success of invasive aliens (Patterson, 1995; Dukes and Mooney, 1999; Weltzin et al., 

2003).  Therefore, the emphasis is on current studies, which in most cases, are 

conducted under artificial controlled conditions, in order to predict, and curb rates of 

infestations of invasive plants in the future.  C. odorata is an invasive alien posing a 

serious threat to biodiversity in Africa (Ye et al., 2004), and more specifically, South 

Africa (Zachariades and Goodall, 2000; Howison and Balfour, 2002).   

 

The current study, undertaken on the basis of providing insight into C. odorata 

responses to interactive effects of Ca and other factors, was divided into two 

experimental trials, namely PART A and PART B.  Thus far, the two trials have been 

discussed separately to avoid confusion.  However, several similarities between the 

two experiments, in addition to being part of the overall study, demands concluding 

comments be brought together in a single chapter. 

 

During PART A, C. odorata was grown in competition with two C4 grasses, and 

exposed to two levels of Ca and nutrients.  It should be noted that although linked, 

there were two major types of competition that had come into play during this trial: 

competition for nutrients, and competition between C3 and C4 species for CO2.   

 

Numerous studies on increasing Ca effects on C3-C4 communities have given rise to 

the idea that CO2-enriched atmospheres would favour C3 plants over C4 species 

(Dippery et al., 1995; Gavazzi et al., 2000), even more so, if C3 plants are invasive 

species (Dukes and Mooney, 1999; Weltzin et al., 2003).  Assessment of 

photosynthetic parameters of C. odorata in PART A, showed no significant effect of 

CO2 enrichment on any of the parameters, although a marginal increase in Jmax was 

noted.  Results from analysis of indirect gc data obtained from A:Ci data, showed an 

enhancement of gc values at Ca=370 ppm and Ca=720 ppm, in elevated Ca.  Not 
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surprisingly, elevated Ca reduced stomatal limitations during this trial.  As total leaf 

area was the only structural parameter to be significantly influenced by Ca, it was 

concluded that generally, growth of C. odorata during PART A, was not enhanced by 

elevated Ca.  Both grass species also showed no growth stimulation under CO2 

enrichment.   

 

When grown individually or in monoculture, several studies have demonstrated a 

positive response of invasive species to elevated Ca (Dukes and Mooney, 1999; 

Dukes, 2000; Ziska, 2001).  However, responses of invasive species in mixtures, to 

CO2 enrichment, has been shown to be influenced by competition ((Bazzaz et al., 

1989; Dukes, 2002; Ziska, 2002).  Unfortunately, no prior studies have been 

conducted in which C. odorata, T. triandra and E. curvula were grown in 

monoculture in elevated Ca.  This is indeed a pity, since data from polyculture growth 

of C. odorata and both grasses (PART A), cannot be compared with data from 

monoculture CO2-enrichment studies on these three species, to help understand the 

role that competition between C3 and C4 species, could have had on the poor response 

of C. odorata to elevated Ca, in PART A. 

 

In addition, the lack of photosynthetic assessments of grasses, and the small number 

of structural parameters studied (seven for C. odorata; two for the grasses), suggests 

that results of PART A of this study, are inadequate in aiding recent research on 

predicting the success of C3 species (especially invasive aliens) in mixed 

communities, growing under CO2-enrichment (Smith et al., 2000; Dukes, 2002; 

Naidoo, personal communication).   

 

The second type of co-occurring competition during PART A (competition for 

nutrients), proved to more dominant, as growth of C. odorata and the grasses, and to 

some extent, physiology of C. odorata, was enhanced by high nutrient supply.  

Mineral stress, according to Lynch and St. Clair (2004), is a primary constraint of 

plant growth over the majority of the earth’s land surface.  In nutrient-poor systems, 

nutrient fertilization would spur the success of faster-growing species (Dukes, 2000).  

Therefore, the strong response of C. odorata to high nutrient supply is not really 

surprising. 
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In this trial, it is possible that any Ca effect could have been reduced, or even 

completely overshadowed, by the extremely strong nutrient effect, a concept which 

has been demonstrated by numerous studies (Conroy et al., 1986; Reddy and Zhao, 

2005; Midgley, 1996).   

 

According to Weltzin et al. (2003), increasing Ca may lead to an increase in other 

resources, e.g. nutrients, through changes in rates of nutrient cycling or by thawing 

frozen soil.  Up until the previous decade, no plant invaders likely to benefit from 

changes in nutrient availability associated with rising Ca, had been identified (Dukes, 

2000).  PART A of this study, identifies C. odorata as an invasive alien likely to 

respond positively to high nutrient availability, which may be induced by future CO2-

enriched atmospheres.   

 

Sage and Coleman (2001) put forward an interesting concept: low Ca concentrations 

in previous years may have acted as an evolutionary agent in selecting plants that are 

adapted to CO2 deficiency, and this might constrain the responses of these plants to 

rising Ca.  Research on C. odorata thus far (including PART A of this study), suggests 

that C. odorata may be a species that has adapted to previous low Ca concentrations, 

and this could explain the observed low responsiveness of this species to elevated Ca 

(Naidoo, personal communication; Lalla; unpublished).  However, from PART B of 

this study, it is clear that the above explanation does not apply to C. odorata, as the 

species did, to some extent, respond to elevated Ca, during this trial.  

 

During PART B, C. odorata was grown in monoculture, and exposed to different Ca 

concentrations, and different planting densities.  Although direct photosynthetic 

assimilation data in elevated Ca were not analysed, results from indirect data (no 

photosynthetic down-regulation, and no increase in stomatal limitions in elevated Ca, 

suggest that photosynthetic assimilation rates of C. odorata could have been enhanced 

under CO2 enrichment.  On a per plant basis, elevated Ca significantly increased leaf 

thickness, dry weight of leaves, and total plant biomass of C. odorata.  Plant height, 

stem dry weight and stem cross sectional areas of individual C. odorata plants, were 

also increased in elevated Ca, but these were non-significant effects.  Results from this 

trial suggests that the idea of low-responsiveness of C. odorata to elevated Ca, 

generated by previous studies on this species (Naidoo, personal communication; 
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Lalla, unpublished; Patton, personal communication), should not be taken as the 

norm, as growth conditions clearly play a vital role in the response of C. odorata to 

elevated Ca. 

 

From this experimental trial (PART B), it can be predicted that CO2 enriched 

atmospheres, as have predicted by global climate change studies (King, 2005), could 

enhance growth of individual C. odorata plants to some extent, irrespective of the 

number of co-occurring plants in monoculture populations.  Results from growth 

analysis at a community level, showed that in CO2-enriched environments with 

monoculture C. odorata communities comprising a small number of plants, 

community biomass allocation would be directed towards leaves (above-ground 

growth).  However, as the number of C. odorata plants in the community increases, 

community biomass would change in favour of roots (below-ground growth), most 

probably as a response to a depletion of soil nutrients.  This observation, supports 

previous research (Körner, 2003; Sicher, 2005), in highlighting the importance of 

avoiding nutrient stress during CO2 enrichment studies.   

 

Taken as a whole, this study (PART A and PART B), together with previous studies 

on this species (Naidoo, personal communication; Lalla, unpublished), suggests that 

CO2 enriched environments may enhance the success of monoculture populations of 

C. odorata, to some extent. However, when occurring in mixtures comprising other 

plants (e.g. C4 grasses, C3 species), C. odorata may fall short in competitive strategy, 

as other species gain in competitive advantage over C. odorata, in CO2 enriched 

atmospheres.  This study also supports previous research, which has shown a 

“depressing” effect of invasive plants in mixtures, compared to monoculture 

populations (Bazzaz et al., 1989; Dukes, 2002; Ziska, 2002).  The extremely strong 

response of ambient- and elevated Ca-grown C. odorata plants to high nutrient levels 

during PART A, provides no conclusive evidence to support the ideas that elevated Ca 

reduces carbon as a limiting external resource (Lynch and St. Clair, 2004), and that 

the extent of plant responses to CO2 enrichment will depend of the availability of 

resources other than CO2 (Zanetti et al., 1997).  However, if extreme temperatures 

caused by increasing Ca increases resource (nutrient) availability in the soil by altering 

rates of nutrient cycling (Weltzin et al., 2003),  then it is likely that elevated Ca would 

indirectly enhance the success of C. odorata occurring in mixed populations.   
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7.2 Experimental technique 

After conducting a study of this nature, it is only natural to wonder about the 

experimental approach used in the research (OTC study, instead of FACE study), and 

whether it would be beneficial to continue with this experimental approach in future 

research on C. odorata responses to CO2 enrichment.  When reviewing the literature 

on plant responses to elevated Ca (Section 1.3 and 1.4; Chapter 1), distinguishing 

between OTC and FACE studies would have been tedious, and was thus avoided.  

Instead, a short review of the two techniques was provided in Section 1.6 (Chapter 1).   

 

Despite some parallel trends observed between FACE and OTC studies, there are 

important differences which cannot be ignored (Long et al., 2004).  For example, trees 

have been shown to be more responsive than herbaceous species, to FACE studies 

(Ainsworth and Long, 2005).  Although this provides a good reason for the choice of 

experimental approach in the current study, OTCs were selected mainly due to the 

high cost associated with FACE studies.  Long et al. (2006) assessed models of CO2 

responses on crop yield, and concluded that FACE studies projected approximately 

50% less increase in yield, when compared to enclosure studies.  Ths reiterates the 

point that plant responses to elevated Ca are not independent of growth conditions.  

Differences in species studied, and duration of CO2 enrichment have been 

documented as factors that have resulted in inconsistent and often conflicting reports, 

concerning plant responses to elevated Ca (Mott, 1990).  Therefore it would be 

beneficial to compare results of similar studies (e.g. similar experimental approach, 

similar species, similar light conditions etc.   

 

The foundation of the current study was placed a few years ago, when Naidoo 

(personal communication) generated first results on the CO2 response of C. odorata.  

This topic was further investigated in two consecutive studies (Lalla, unpublished and 

Patton, personal communication), and the current study is the fourth of its kind.  Since 

all four studies on C. odorata responses to CO2 enrichment, were OTC studies, and 

were conducted under similar conditions (e.g. same greenhouse with similar 

experimental setup), it seems logical to continue use of OTCs in future research.  At 

some stage in the future, once data from a number of studies on C. odorata responses 

to elevated Ca have accumulated, a meta-analysis of data sets can be performed, 
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which has already shown to provide invaluable insight into plant responses to elevated 

Ca (Ainsworth et al., 2002; Ainsworth et al., 2005).  Meta-analyses demands effective 

communication amongst researchers in a particular field, and this more “coherent” 

approach to understanding plant responses to CO2 enrichment, is no doubt more 

valuable than isolated research.   

 

Ultimately, data from accumulative studies on C. odorata in elevated Ca, could be 

compared with CO2-enrichment studies on other invasive aliens which are seriously 

threatening natural vegetation in South Africa, to develop management strategies 

which will aid existing control measures for these invasive species in the future. In 

particular, the apparent lack of photosynthetic down-regulation, but no enhancement 

of growth, needs to be investigated further. 
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