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Abstract

In this dissertation we study conformal symmetries in the Stephani universe which is

a generalisation of the Robertson-Walker models. The kinematics and dynamics of

the Stephani universe are discussed. The conformal Killing vector equation for the

Stephani metric is integrated to obtain the general solution subject to integrability

conditions that restrict the metric functions. Explicit forms are obtained for the

conformal Killing vector as well as the conformal factor . There are three categories

of solution. The solution may be categorized in terms of the metric functions k and

R. As the case in - kR i= 0 is the most complicated, we provide all the details of

the integration procedure. We write the solution in compact vector notation. As the

case k = 0 is simple, we only state the solution without any details. In this case

we exhibit a conformal Killing vector normal to hypersurfaces t = constant which is

an analogue of a vector in the k = 0 Robertson-Walker spacetimes. The above two

cases contain the conformal Killing vectors of Robertson-Walker spacetimes. For

the last case in - kR = 0, k =I 0 we provide an outline of the integration process.

This case gives conformal Killing vectors which do not reduce to those of Robertson­

Walker spacetimes. A number of the calculations performed in finding the solution

of the conformal Killing vector equation are extremely difficult to analyse by hand.

We therefore utilise the symbolic manipulation capabilities of Mathematica (Ver 2.0)

(Wolfram 1991) to assist with calculations.
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1 Introduction

We take spacetime to be a 4-dimensional pseudo- Riemannian manifold endowed with

a symmetric, non-degenerate metric tensor field. The spacetime geometry resembles

the geometry of special relativity in the neighbourhood of a point in the manifold.

The gravitational field is described by the met ric tensor field. For many cosmological

and astrophysical applications it is important to solve the Einstein field equations

explicitly to obtain the gravitational field. The Einstein field equations are a non­

linear coupled system of partial differential equations. The matter content is given

by the symmetric energy-momentum tensor. The spacetime geometry is described

by the curvature tensor which is used to construct the Einstein tensor. The Einstein

field equations relate the matter content (energy-momentum tensor) to the spacetime

geometry (Einstein tensor). Einstein obtained the field equations using a physical

argument; however, the field equations may be mathematically rigorously generated

utilising a variational argument. The field equations satisfy conservation laws called

the Bianchi identities. In the quasi-static limit we regain the Newtonian potential

for weak gravitational fields.

Exact solutions to the Einstein field equations are important as they allow

for a discussion of the physical properties of specific models. They also throw light

on more general qualitative features of the gravitational field. Exact solutions also

have extensive applicability in cosmology and astrophysics. A comprehensive list
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of exact solutions to the Einstein field equations is given by Kramer et at (1980) .

Solutions to the field equations may be generated using different procedures. For

example we could define the energy-momentum tensor by specifying an equation of

state and solve the field equations for the metric tensor. Another possibility is to

suppose that the gravitational field possesses a symmetry, e.g. a Killing vector. This

assumption leads to a simplification of the field equations. Most solutions known are

spacetimes of high symmetry such as the Robertson-Walker spacetimes. With less

symmetry the field equations are more difficult to integrate. Thus the form of the

energy-momentum tensor is specified or a restriction is imposed on the spacetime

geometry in an attempt to find the solution.

A recent approach used to find exact solutions is to impose a conformal

symmetry requirement on the manifold. This leads to a deeper understanding of the

spacetime geometry and has the added advantage of simplifying the field equations

and possibly, their solutions. A number of exact solutions have been found in vari­

ous models with the assumption that the spacetime is invariant under a conformal

Killing vector. In particular conformal Killing vectors have been studied in perfect

fluids and anisotropic fluids by Herrera and Ponce de Leon (1985a,b,c), Herrera et at

(1984), Maartens and Maharaj (1990), Maartens et at (1986), Mason and Maartens

(1987) , Mason and Tsamparlis (1985) and Saridakis and Tsamparlis (1991). Dyer

et at (1987) and Maharaj et al (1991) have analysed spherically symmetric cosmo­

logical models with a conformal symmetry. The physical properties of the solutions

to the field equations with a conformal symmetry have been extensively investigated

by a number of authors. In particular the inheritance properties of kinematical and

dynamical quantities in spacetimes with an inheriting conformal Killing vector, fluid

flow lines are mapped conformally into fluid flow lines, have been analysed. Results in
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specific spacetimes have been obtained by Coley (1991) and Coley and Tupper (1989,

1990a,b,c,d). Furthermore conformal Killing vectors may be important in relativistic

kinetic theory, e.g. for a distribution function for massless particles in equilibrium the

inverse temperature function is a conformal Killing vector (Israel 1972). This demon­

strates that it is important to find explicitly conformal Killing vectors in general rel­

ativity. The G15 Lie algebra of conformal Killing vectors in Minkowski spacetime is

listed by Choquet-Bruhat et al (1977). Maartens and Maharaj (1986) found the G15

Lie algebra of conformal Killing vectors in the Robertson-Walker spacetimes. The

conformal Killing vector equation was integrated by Maartens and Maharaj (1991)

to obtain the conformal geometry of plane fronted gravitational waves with parallel

rays, the pzrwave spacetimes. Moodley (1991) obtained solutions to the conformal

Killing vector equation in certain locally rotationally symmetric spacetimes.

In this dissertation we investigate the conformally flat solution of the Ein­

stein field equations with a perfect fluid source . This spacetime is called the Stephani

universe and is a generalisation of the standard cosmological models, the Robertson­

Walker models (Robertson 1929, Walker 1935). The Stephani universe differs from

the Robertson-Walker models in that

(i) it is generally not homogeneous or isotropic,

(ii) the curvature index is an arbitrary function of the time coordinate and is there­

fore not fixed.

However the Stephani universe does reduce to Robertson-Walker under the appro­

priate conditions. The Robertson-Walker spacetimes have six Killing vectors; in

contrast the Stephani universes do not possess Killing symmetries in general. We

will solve the conformal Killing vector equation for the Stephani metric thus obtain­

ing the conformal Killing vector and the conformal factor in general. Parts of the
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calculation involved in finding this solution are complicated and difficult to perform

by hand. We therefore utilise the symbolic manipulation capabilities of Mathemat­

ica (Ver 2.0) (Wolfram 1991) to help with calculations. We also verify our solutions

obtained using this package. It is interesting to observe that although the Stephani

universe may not admit Killing vector symmetries, it does contain conformal Killing

symmetries.

In chapter 2 we briefly consider those concepts in differential geometry of

general relativity necessary for this dissertation. We begin by introducing manifolds.

In general relativity spacetime is taken to be a 4-dimensional pseudo-Riemannian

manifold with a symmetric tensor field. Vector fields and tensor fields obeying the

tensor transformation law are defined on the manifold. In particular we consider the

indefinite symmetric metric tensor field of rank two which describes the gravitational

field. We define the covariant derivative by introducing the additional structure of

a connection on the manifold. The curvature tensor, the Ricci tensor, Ricci scalar,

Einstein tensor and energy-momentum tensor are defined. We are then in a position

to motivate the Einstein field equations. The Lie derivative is a geometrical object

which is naturally defined on the manifold. The Lie bracket, Lie algebras and Lie

groups are briefly discussed. We define the conformal Killing vector and list the

special cases of Killing, homothetic, special and nonspecial conformal Killing vectors.

In chapter 3 we consider the spacetime geometry of the Stephani universes

in detail. We briefly discuss some of the kinematical and dynamical features of the

Stephani metric and its relationship to the Robertson- Walker models. The Einstein

field equations are derived in full as the details of the spacetime curvature are not

well known. We calculate the nonzero connection coefficients, the components of

the Ricci tensor, the Ricci scalar and the components of the Einstein tensor. The
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Einstein field equations reduce to a system of two differential equations. We note

that the field equations obtained agree with the equations given in the literature.

The conditions under which the Stephani metric reduces to Robertson-Walker are

also discussed. We observe that the field equations may also be derived via the

Gauss-Codazzi equations (Stephani 1967) or by utilising the notion of infinitesimal

null isotropy (Koch-Sen 1985)

In chapter 4 we solve the conformal Killing vector equation for the Stephani

metric in the case kR - kR #- 0 where k and R are metric functions. This is

the most difficult case considered and we provide all the details of the integration

process. We obtain the spacelike components and the timelike component of the

conformal Killing vector. The conformal factor is also found. The solution obtained is

subject to integrability conditions. The integrability conditions relate the functions of

integration to the metric functions. Due to the complexity of parts of the calculation

we utilise the symbolic manipulation capabilities of Mathematica (Ver 2.0) to assist

with the calculations. Mathematica is also used to check that the conformal Killing

vector equations are in fact satisfied by our solution.

In chapter 5 we provide a complete analysis of conformal symmetries in

the Stephani universe. We collect the results obtained in chapter 4 for the case

kR - kR #- 0 and express the results in the more compact vector notation. The

two cases omitted in chapter 4 are also considered. We solve the conformal Killing

vector equation for the special case k = O. As the integration process is trivial, we

do not provide any details. We also integrate the conformal Killing vector equations

in the remaining case in - kR = 0, k #- O. An outline of the integration procedure

is sketched. We again use Mathematica to verify that the solution obtained satisfies

the conformal Killing vector equations. Wherever possible we have attempted to
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regain the conformal Killing vectors of the Robertson-Walker spacetimes.

In the conclusion we summarise the results obtained in this dissertation.

Some areas for future investigation are pointed out. We note that the results obtained

in this dissertation are original. We have not found any published work in the

literature on the solution of the conformal Killing vector equation in the Stephani

universes.
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2 Tensors, Field Equations and Lie AIgebras

2.1 Introduction

In this chapter we briefly introduce some fundamental concepts of differential geome­

try in general relativity relevant to this dissertation. For a more thorough treatment

see Bishop and Goldberg (1968), Choquet-Bruhat et al (1977), Hawking and Ellis

(1973) and Misner et al (1973). We begin by introducing the concept of an n­

dimensional differentiable manifold. In general relativity we take spacetime to be a

4-dimensional pseudo-Riemannian manifold. The differentiability of the manifold

allows us to define vector fields and tensor fields on the manifold which obey the

general invariant tensor transformation law. The indefinite symmetric metric tensor

field of rank two describes the gravitational field. The metric tensor field of general

relativity reduces to the Lorentzian metric of special relativity in the neighbourhood

of a point in the manifold. The above material is covered in §2.2. In §2.3 we in­

troduce the additional structure of a connection on the manifold which enables us

to define the covariant derivative. We define the concept of parallel transport and

introduce curvature on the manifold by defining the Riemann tensor. In addition we

define the Ricci tensor, the Ricci scalar and the Einstein tensor. The matter content

of the universe is described by the general energy-momentum tensor. We relate the

curvature of Riemannian space to the distribution of matter via the Einstein field
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equations. In §2.4 we consider the Lie derivative and its properties. The Lie bracket

is defined and a Lie algebra is introduced. We briefly discuss the relationship between

a Lie group and a Lie algebra. We define the conformal Killing vector and list the

special cases of Killing, homothetic, special and nonspecial conformal Killing vectors.

In later chapters we seek the conformal Killing vectors in Stephani universes.

2.2 Manifolds and Tensors

The concept of a manifold is central to the study of differential geometry and for the

formulation of the theory of general relativity. The surface of a sphere is a classic

example of a manifold. In fact any m-dimensional hypersurface in an n-dimensional

Euclidean space (m ~ n) is a manifold. A more abstract example is the set of all rigid

rotations of Cartesian coordinates in 3-dimensional Euclidean space. In general we

may consider a manifold to be any set that can be continuously parametrised. The

dimension of a manifold is given by the number of independent parameters and these

parameters are the coordinates of the manifold. An n-dimensional differentiable

manifold M has the property that it is mapped locally into ~n so that locally its

features are similar to ~n. It is important to note that although the local structure of

a manifold is similar to ~n, the global topology of M may be very different from that

of ~n. For a detailed treatment of manifolds and physical applications the reader is

referred to Bishop and Goldberg (1968), Burke (1985), Choquet-Bruhat et al (1977),

Dubrovin et al (1985) , Misner et al (1973) and Straumann(1984).

Let M be any set and U an open subset of M. We define a bijective

function 'ljJ : U ~ ~n that maps points p E U to ~n. The pair (U, 'ljJ) is called
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a chart. The coordinate functions of the chart are the real-valued functions on U

given by the mapping "p, called the coordinate map. The purpose of "p is to attach

coordinates to the point p E U. The set U is called the coordinate neighbourhood

and a point p E U has coordinates (XO, Xl, x 2
, . • • ,xn

-
l

) . Consider the collection of

charts {(Ucn"pO')}O'EI, where I is an index set. This collection forms an atlas if the

following properties are satisfied:

(i) The set of coordinate neighbourhoods {UO'} covers M. Thus it is possible to

write

M = U UO'
O'EI

(ii) For each a we have a bijective map "pO' : UO' --+ ~n. Each function "pO' takes

the open set U0' into a region of ~n for the same n.

(iii) If UO' n UfJ :I 0, for some a and {3, then the composite maps

are differentiable functions from ~n to ~n. The inverse maps "p-;l and "p~l

are defined as "pO' and "pfJ are injective. Therefore in the overlap of the two

coordinate neighbourhoods UO' and UfJ the coordinates in one neighbourhood

are continuously differentiable functions of the coordinates in the other neigh-

bourhood.

(iv) The collection {(UO" "pO')}O'EI is maximal. Thus any other chart will be contained

in this collection.

For a well-defined atlas the properties (i)-(iv) listed above must be satisfied. We

define an n-dimensional differentiable manifold to be the set M together with the
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The differentiability of a manifold allows us to introduce continuous coor-

dinate systems, at least locally. This also permits the definition of curves, vector

fields and tensor fields. We define a regularly parametrised smooth curve on the

manifold as the map x a : ?R ~ M. In relativity we consider only 4-dimensional

manifolds where points in the manifold are labelled by the real coordinates

( ° I 2 3) (t I 2 3)X ,x ,x ,x = c,x ,x ,x

where we set the speed of light c = 1. Consider two charts {(Ucn 7Pa)} and {(U,l3, 7P,l3)}

where uanu,l3 =1= 0. The coordinates in Ua and U,l3, (XO, Xl, x2 , x3 ) and (XO', Xl', x2' , x3' ) ,

respectively, are generated by the charts {(Ua,7Pa)} and {(U,l3, 7P,l3)}. We consider only

orientable manifolds so that in the overlapping region Ua n U,l3 =1= 0 the Jacobians are

positive:

and

In an orientable manifold all overlapping domains of the various coordinate neigh-

bourhoods in the atlas admit invertible coordinate transformations such that the

Jacobians are positive.

Let Tp ( M) denote the space of all tangent vectors at the point p on a curve

in the manifold M. The set of vectors Tp(M) is a vector space called the tangent

vector space to M at p. We construct the dual vector space T; (M) by defining the

real-valued linear functional T;(M) : Tp(M)~ ?R at p. From the space Tp(M) and

its dual T;(M) we form the Cartesian product

IT: = T* x T* x ... x T* x T x T x ... x T
" vi " ,y y

r times s times

at p EM. A tensor T of type (r, s) at p is a multilinear functional which maps

elements of IT~ into ?R. The vector space of all such tensors, denoted by T;, is formed
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by the tensor product

TT
S

T ® T ® ... ® T ®T* ® T* ® ... ® T*
, V" ", v "

r times s times

at p E M. For further details see Hawking and Ellis (1973), Misner et al (1973) and

Stephani (1990). By assigning a tensor of type (r, s) to each point along a curve in

the manifold we generate a type (r, s) tensor field. If {ea} and {ea} are dual bases

of Tp(M) and T;(M), respectively, then a tensor field T E T; can be expressed as:

the tensor field T with respect to new dual bases {ea'} and {ea'} are related to the

(2.1)

where Xg, represents the Jacobian matrix 8x a / 8xb' .

In order to consider metrical properties on the manifold we define a sym-

metric, nonsingular, covariant tensor field g of rank two on M called the metric

tensor field. Thus we have that g E T* ® T* and g == 9abea ® eb where g is the

bilinear functional

relative to the basis {ea}. The metric tensor field g endows M with the inner product

(X ,Y) - g(X, Y)

where X and Y are vector fields. The manifold M, in which the indefinite metric
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tensor g is defined, is called a pseudo-Riemannian manifold. The invariant quantity

defines the length along a curve on M between t l and t 2 which represent the values

of the parameter t at the endpoints of the curve. This definition is independent of

the coordinates used and does not depend on the way the curve is parametrised. The

infinitesimal distance between neighbouring points with coordinates xa and xa +dx"

is defined by the invariant relativistic quantity

(2.2)

called the line element or Riemannian fundamental form. Many treatments in general

relativity start by defining (2.2) in terms of the metric tensor field g which satisfies

the tensor transformation law (2.1). The spacetime of special relativity has the

property that at any point in the manifold we can introduce a global coordinate

system such that gab takes the Lorentzian form

1Jab

-1 0 0 0

o 1 0 0

o 0 1 0
000 1

Such coordinate systems are called inertial or Cartesian coordinate systems. This

coordinate system is global in special relativity because we can find a coordinate

neighbourhood that covers the whole of spacetime. In general relativity we can

introduce coordinates where the metric tensor always assumes the Lorentzian form

at a point. For local regions in the neighbourhood of a point in the spacetime of

general relativity we can introduce coordinate systems so that it is like that of special

relativity. In the spacetime of general relativity there exists only local inertial or local

Cartesian coordinate systems where gab approximates T/ab.
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2.3 Covariant Derivatives and Field equations

In order to define covariant derivati ves we need to impose the additional structure

of a connection on the manifold M. A connection V at a point p E M assigns a

differential operator VX to each vector field X at p. The operator VX maps a vector

field Y to a vector field VXY and satisfies the following properties:

(i) V XY is a tensor in the argument X. For functions f, 9 and vector fields X, Y , Z

we have

V(JX+gY)Z = fVxZ + gVyZ

Therefore the derivative Vx at p depends only on the direction of X at p.

(ii) For (Y, f3 E ~ and vector fields X, Y, Z:

Vx(aY+f3Z) = aVxY+f3VxZ

(iii) For a continuous function f and vector field Y :

Vx(fY) = X(f)Y +fVxY

Then VxY is the covariant derivative (with respect to V) of Y in the direction X

at p. Since VxY is a tensor in X we can define VY, the covariant derivative of Y,

as that tensor field of type (1 ,1 ) which when contracted with X produces the vector

VxY. A connection V on M is a rule which assigns a connection V to each point

such that, if Y is a vector field on M, then VY is a tensor field on M.

Since VY is a (1,1) tensor field, given a basis {ea} and its dual {ea} in a

coordinate neighbourhood in M, the covariant derivative of Y can be written as

13



where ya;b are the components of \7Y. These components are defined by

ya ;b = ya ,b + rabcYc

where the r a
bc are the connection coefficients. The connection coefficients, ra

bc , are

defined as

relative to the bases {ea} and {ea}. We consider only symmetric connection eo-

efficients. The transformation properties of the functions ra
bc are determined by

the connection properties (i)-(iii). If the bases are coordinate bases defined by the

coordinates {x a
} and {x a

' } , then the transformation law is given by

r-' xa'xexfrd Xa'Xd
b'c' = d b' c' ef + d c'b'

Thus the connection coefficients are not tensorial.

The definition of a covariant derivative can be extended to arbitrary tensor

fields subject to the following conditions:

(i) If T is a tensor field of type (r, s), then \7T is a tensor field of type (r, s + 1),

(ii) \7 is linear and commutes with the operation of contraction,

(iii) The Leibniz product rule holds and

(iv) \7 f = df for continuous functions f.

If T is a type (r, s) tensor field, then the components of the covariant derivative \7T

are given by

14



The statement that given a metric tensor field g there exists a unique sym­

metric connection \7 such that \7g = 0 is the fundamental theorem of Riemannian

geometry. The tensor field T is parallel transported along the integral curves of a

vector field X if

\7xT = 0

Thus the metric tensor g is parallel transported along all smooth curves. The above

unique connection \7 is called the metric connection and we can show that the con­

nection coefficients are expressed in terms of the metric tensor g and its derivatives

as follows

(2.3)

Parallel transport is path dependent and provides a measure of the curva­

ture of the manifold. This path dependence corresponds to the fact that the covariant

derivatives do not generally commute. The Riemann, or curvature, tensor R gives a

measure of this noncommutation via the Ricci identity

for vector fields X. The components Ra bed of the Riemann tensor R are expressed

in terms of the connection coefficients by

(2.4)

It can be established that the components of the curvature tensor satisfy the following

symmetry properties (Wald 1984):

R abed «.:

R abed - R abde

15



Rabcd

o

(2.5)

The last property (2.5) is called the Bianchi identity. Contraction of the Riemann

tensor (2.4) results in a tensor field of type (0,2) called the Ricci tensor with com­

ponents

(2.6)

The property Rabcd = Rcdab implies that the Ricci tensor is symmetric. By contracting

the Ricci tensor we obtain the Ricci, or curvature, scalar

(2.7)

The symmetric Einstein tensor G is defined in terms of the Ricci tensor (2.6) and

the Ricci scalar (2.7) by

(2.8)

On setting c = a in the Bianchi identity (2.5) and utilising equations (2.6)-(2.8) we

obtain the result

er, = 0

which proves that the Einstein tensor (2.8) has zero divergence.

(2.9)

In general relativity the matter distribution is described by the symmetric

energy-momentum tensor

(2.10)
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where J-l is the proper density, p is the isotropic pressure, qa is the heat flow and 1rab is

the anisotropic stress tensor relative to the fluid 4-velocity u where < u, u >= -1.

For a perfect fluid (2.10) becomes

Tab = (J-l + p)UaUb + P9ab (2.11)

due to the absence of heat conduction terms and stress terms corresponding to vis­

cosity. The spacetime curvature of Riemannian space is related to the distribution

of matter by the Einstein field equations. These field equations relate the energy­

momentum tensor (2.10) to the Einstein tensor (2.8):

Gab Rab - ~R9ab

",Tab (2.12)

where x = 81rG is the coupling constant. Here G is the conventional gravitational

constant. The field equations (2.12) form a set of ten coupled nonlinear partial dif­

ferential equations. Since the covariant divergence of the Einstein tensor G vanishes

by (2.9), the ten field equations are not all independent. As a consequence the field

equations provide only six independent differential equations for the gravitational

field g. From (2.9) and the Einstein field equations (2.12) we obtain

T
ab

jb = 0

which is the conservation law for energy-momentum.

2.4 Lie Derivatives, Lie Algebras and Conformal Motions

The Lie derivative plays an important role in describing symmetries of physical fields

in general and the gravitational field in particular. The Lie derivative provides
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a coordinate independent description of a symmetry property in the manifold M

and is defined naturally by the manifold structure. Therefore, unlike the covariant

derivative, the Lie derivative is an operation defined on a differentiable manifold

without imposing additional structure on the manifold. Let X be a vector field in

M such that X operates on differentiable scalar fields I producing scalar fields XI.

The Lie derivative with respect to X is an extension of this operation to the action

of an operator LX on all differentiable tensor fields. The operator LX·satisfies the

following properties:

(i) LX preserves tensor type. Therefore, if T is a tensor field of type (r, s) then

LxT is also a tensor field of type (r, s),

(ii) LX maps tensors linearly and commutes with the operation of contraction,

(iii) For arbitrary tensors Sand T

LX(S ® T) = (LXS) ® T +S ® (LxT)

which is the Leibniz product rule and

(iv) Lxi = XI for functions I.

The components of the Lie derivative of T with respect to X are given by

for a type (r, s) tensor field T.

The Lie bracket or commutator of two vector fields X and Y is defined by

[X, Y] = XY - YX

18
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As [X, Y] inherits the linearity properties of X and Y the Lie bracket [X, Y] E T(M).

A finite dimensional vector space on which the bracket operation (2.13) has been

defined is called a Lie algebra. The Lie bracket operation (2.13) is skew-symmetric

and bilinear. It is not associative and satisfies the Jacobi identity

[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, V]] == 0 (2.14)

for arbitrary vector fields X , Y and Z. The Lie derivative and the Lie bracket are

related by the identities

£XY == [X ,Y]

£[X,Yl == [£x,£y]

for vector fields X and Y.

Every Lie algebra defines a unique, simply connected Lie group. An r­

dimensional Lie group G; is a group which is also a smooth r-dimensional differen­

tiable manifold whose structure is such that the group composition Gr x Gr ----+ Gr

and the group inverse G r ----+ G, are smooth maps. We do not pursue the subject

of Lie groups further as it is not relevant to this dissertation. For more information

on Lie groups the reader is referred to Choquet-Bruhat et al (1977), Dubrovin et al

(1984), Sattinger and Weaver (1986) and Schutz (1980). Kramer et al (1980) com­

prehensively discuss the relevance of Lie groups and Lie algebras to various classes

of solutions to the Einstein field equations.

Manifolds, including the pseudo-Hiemannian manifold of general relativ­

ity, may admit continuous groups G; of infinitesimal transformations. A conformal

motion of a manifold M preserves the metric up to a factor. In this dissertation we

are concerned with the conformal motion of the Stephani universes. A conformal
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Killing vector X is defined by

(2.15)

where ~ = ~(xa) is the conformal factor and g is the metric tensor field. If g is

specified, then we solve (2.15) to obtain the conformal Killing vector X (see chapter

4). There are four cases associated with the equation (2.15):

(i) ~ = 0 : X is a Killing vector,

(ii)~,a = 0 =I- ~: X is a homothetic Killing vector,

(iii) ~;ab = 0 =I- ~,a : X is a special conformal Killing vector and

(iv) ~;ab =I- 0 : X is a nonspecial conformal Killing vector.

Killing vectors generate constants or first integrals of the motion along geodesics.

The Killing vectors span a group of isometries which may be used to characterise

systematically and invariantly solutions of the Einstein field equations. A homo-

thetic Killing vector scales all distances by the same constant factor and preserves

the null geodesic affine parameters. Homothetic Killing vectors lead to self-similar

spacetimes. Conformal Killing vectors generate constants of the motion along null

geodesics for massless particles. Suppose that Gr is a group of conformal motions

with generators {XI} = {Xj , X 2 , ••• , X, }. The elements of the basis {XI} are

related by

(2.16)

where the CK
IJ are the structure constants of the group and satisfy

K KC IJ = -C JI

The Lie identity

K M r M K MC LMC IJ + C \ IMC JL + C JMC LI 0

20



is obtained by substituting the relation (2.16) into the Jacobi identity (2.14). The

dimension r of the maximal group of conformal motions G; is given as

T = ~(n+1)(n+2)

by Choquet-Bruhat et al (1977) for an n-dimensional manifold. In the spacetime

manifold of classical general relativity we have a maximal G15 of conformal motions

since n = 4.
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3 The Stephani Universe

3.1 Introduction

The Robertson-Walker cosmological models satisfy the cosmological principle, i.e.

they are homogeneous and isotropic. The Stephani universe is a generalisation of the

Robertson-Walker models. In contrast to the Robertson-Walker model the Stephani

universe is generally not homogeneous or isotropic, but does reduce to the Robertson­

Walker model in the appropriate limit. The Stephani universe is the conformally

flat solution of the Einstein field equations with a perfect fluid source. As in the

Robertson-Walker models the hypersurfaces orthogonal to matter world lines have

constant curvature. However, since the curvature index in the Stephani model is

an arbitrary function of time, its sign can change from one hypersurface to another.

Therefore the Stephani model may appear to have a positive spatial curvature at

one moment and a negative spatial curvature at another. In contrast the spatial

curvature of the Robertson-Walker model remains fixed to describe always a flat,

closed or open spacetime. In §3.2 we introduce the Stephani line element and briefly

discuss some of its features. We derive the field equations in full as the details of

the spacetime curvature are not well known. We list the non-zero connection coeffi­

cients, the components of the Ricci tensor, the Ricci scalar and the Einstein tensor

components. In §3.3 we present the field equations for the Stephani universe for an
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energy-momentum tensor describing a perfect fluid. We also give the conditions for

the Stephani line element to reduce to Robertson-Walker form. Finally we observe

that the field equations may be derived with the help of the Gauss-Codazzi equations

(Stephani 1967) or may also be obtained by utilising the notion of infinitesimal null

isotropy (Koch-Sen 1985).

3.2 Spacetime Geometry

The Robertson-Walker models are the simplest models of the universe obtained from

the cosmological principle. In coordinates (xa
) == (t, x, y, z) the Robertson-Walker

line element is given by

where k == 0, 1, -1 and R(t) is the scale factor. The Robertson-Walker models are

the standard cosmological models describing a homogeneous and isotropic universe.

The hypersurfaces orthogonal to the matter world lines have constant curvature and

the curvature index k is fixed.

A generalisation of the Robertson-Walker model is given by the Stephani

universe. As for the Robertson-Walker spacetimes the hypersurfaces orthogonal to

the matter world lines have constant curvature, but the difference in the Stephani

universe is that the curvature index k is an arbitrary function of the time coordinate.

As a consequence the index k can change its sign from one hypersurface to another.

Thus the spacetime may have curvature index k > 0 at one instance and curvature

index k < 0 at another time. In coordinates (xa
) == (t, x, y, z) the Stephani line
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D

v

element has the form

where

1 + ~k(t) {[x - XO(t)]2 + [y - YO(t)]2 + [z - ZO(t)]2}

(
Vi R) R(V)F(t) - - - = F- -
V R V R t

k = [C2
(t ) - F2

1(t)] R2
(t )

(3.1)

with subscripts t, x, y, z denoting partial differentiation and dots representing dif-

ferentiation with respect to time. The functions C, F, R, Xo, Yo, Zo are arbitrary

functions of time. The Stephani metric (3.1) is conformally flat. This is analogous

to the Robertson-Walker spacetimes as the Weyl tensor also vanishes there. There-

fore the vacuum solution, obtained by taking C = 0 as may be verified by analysing

the field equations given later in this chapter, is Riemann flat. The matter source

in this solution is a perfect fluid having zero shear and rotation. Since the fluid

4-velocity is given by ua = D- 18g , the 4-acceleration vector has the form

o for a = 0

(:~2) n, for a

The expansion of the Stephani universe is given by

1,2,3

()
3
F

The above expressions characterise the kinematics of the Stephani solution. We

investigate the dynamics later in this chapter. The Stephani universe was originally
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obtained by Stephani (1967) by studying solutions of the Einstein field equations that

can be embedded in a flat 5-dimensional space. It is interesting to observe that the

Stephani universe was also obtained by Krasiriski (1981) in his search for intrinsically

spherically symmetric solutions, i.e. solutions which are composed of spherically

symmetric subspaces. The physical properties of the Stephani universe have been

investigated by Krasiriski (1983). In particular he investigated the geometry of the

Stephani solution in the vicinity of a spatial hypersurface in which k changes from

positive to negative. The general Stephani solution shares several qualitative features

with the de Sitter solution (a special Stephani solution in which the metric is de

Sitter) in which an example of foliation is used where the curvature k changes in

moving from one hypersurface to another (Krasiriski 1983). It should be pointed out

that the Stephani universe is not inconsistent with the standard observational tests

and is therefore a viable cosmological model.

For the Stephani line element (3.1) the nonvanishing connection coefficients

(2.3) are given by

r o
oo
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-(~)

3 (Vy
)f 23 = - V

-(~)

-(~)

Vz
v

Vz
v

3 (Vz)f 33 = - V

With the above connection coefficients we determine that the components of the
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Ricci tensor (2.6) for the metric (3.1) are given by

R22 _ _ Dy y +2 (Vy )2+ Dx Vx _ Dy Vy + D z Vz
D V DV DV DV

- (~) [(~) xx +2 (~)yy + (~)J
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(3.4)



- (~3) [Dt (~) (~)t -2D(~f -D (~) (~),,]

Rab = 0, a =I- b

(3.5)

Substituting the components (3.2)-(3.5) of the Ricci tensor (2.6) into (2.7) we obtain

the Ricci scalar

( V
2

) [( Vx) 2 (Vy
) 2 (Vz) 2]

+2 R2 V + V + V (3.6)

The Ricci tensor components (3.2)-(3.5) and the Ricci scalar (3.6) generate the

components of the Einstein tensor (2.8) for the line element (3.1):

+D2(~:) [(~)2+(J)2 +(~)2]

Gll = Dy y + Dzz _ 2Dx Vx + (Vx)2 _ (Vy)2 _ (Vz)2
D D DV V V V
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+(~3) [2Dt(~) (~\ -D(~f -2D(~) (~)J

+(~) [(~t + (~)J

+(~3) [2Dt(~) (~) t -D(~f -2D(~) (~)J

+ (~) [(~tx + (~)J

+(~3) [2Dt(~) (~)t -D(~f -2D(~) (~)J

+ (~) [(~) xx + (~)J
Gab = 0, a =I b

(3.8)

(3.9)

(3.10)

Thus far we have been treating D and V as arbitrary functions of t , x, y , and z . On

utilising the explicit forms of D and V for the Stephani metric (3.1) we find that
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(3.7)-(3.10) reduce to the system

2 2 (~ R)2GOO == 3C F (t) V - R

2 (R2
) • (VIR) (R2

)
-3C V2 +2CC (VI R)t V2

Gn

Gab == 0, a =I- b

(3.11)

(3.12)

(3.13)

(3.14)

Thus as for the Robertson-Walker spacetime only two of the components of the

Einstein tensor are independent. We have explicitly calculated the above quantities

as they do not appear explicitly in the literature and would be helpful to others

studying the Stephani spacetimes.

3.3 Field Equations

We formulate the field equations for the case of a perfect fluid energy-momentum

tensor (2.11) with a comoving fluid 4-velocity u given by u a == D"718g. The energy­

momentum tensor (2.11) becomes

(3.15)
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With the help of the Einstein tensor components (3.11)-(3.14) and the energy­

momentum tensor (3.15) we find that the Einstein field equations (2.12) can be

written as the system

2 • (VIR)
-3C (t) +2CC (VI R)t

. (VIR)
- -~J1 +2CC(VI R)t

(3.16)

(3.17)

We note that our field equations (3.16)-(3.17) agree with the equations given by

Kramer et al (1980), Krasiriski (1983) and Stephani (1967). This provides a check on

our calculations in §3.2. The field equations (3.16)-(3.17) constitute a system of two

equations in the variables fl, p, C, F, R, Xo, Yo, zoo Therefore the Stephani universe

allows for more general behaviour than the simpler Robertson-Walker model. As

was pointed out in §3.2 the vacuum solution of the Stephani universe corresponds to

C == 0 from (3.16) and (3.17). The physical properties of the de Sitter solution as a

special case of the Stephani field equations were analysed by Krasiriski (1983). The

Stephani universe also arises in the more general class of perfect fluid spacetimes

analysed by Krasiriski (1989).

The Stephani line element reduces to the Robertson-Walker models if and

only if one of the following three conditions applies:

(i) k, xo, Yo and Zo are constants,

(ii) ua 0,

(iii) p == f(fl), where the function f is independent of the spacelike coordinates

x, y, z.

31



In general the Stephani solution has no symmetry. If Xo, Yo and Zo are constants the

solution becomes symmetric about the line x == Xo, Y == Yo, z == Zo but still lacks

the homogeneity of the Robertson-Walker models. Thus we also require k to be

constant in condition (i) to obtain the Robertson-Walker spacetimes. Condition (ii)

implies that the matter flow lines in the Stephani model are nongeodesic and only

become geodesics when the Stephani line element reduces to the Robertson-Walker

model. The last condition (iii) means that the equation of state in the Stephani model

is position dependent. If the equation of state is of the barotropic form p == !(/-l),

then the Stephani model reduces to Robertson-Walker.

The Stephani universe was obtained by Stephani (1967) by seeking solu-

tions to the Einstein field equations that are embedded in a flat 5-dimensional space.

The field equations (3.16) and (3.17) can then be derived via the Gauss-Codazzi

equations

(Gauss)

(Codazzi)

(3.18)

where e == ±1 and nab are symmetric tensors defined on the 4-dimensional manifold

M. These tensors are generalisations to higher dimensions of the tensor of the second

fundamental form (Hawking and Ellis 1973, Kramer et al1980). The Gauss equations

(3.18) and the field equations (2.12) yield

(3.19)

For the Stephani metric e == +1 and the symmetric tensors nab assume the form

(3.20)
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Substituting (3.20) in (3.19) we obtain the field equations (3.16) and (3.17). The

Stephani universe may also be found by utilising the approach of solving the Ein­

stein field equations by introducing the notion of infinitesimal null isotropy. The

concept of infinitesimal null isotropy in terms of null sectional curvature was defined

by Karcher (1982). Koch-Sen (1985) showed that null isotropic spacetimes are con­

formally flat perfect fluid solutions to the Einstein field equations and consequently

are just the Stephani universes. Recently Jiang (1992) generalised the Stephani uni­

verse to include nonvanishing heat flow qa in the energy-momentum tensor (2.10),

with vanishing anisotropic stress 1rab, using a tetrad formalism.

33



4 Conformal Killing Vector Equation

4.1 Introduction

In this chapter we solve the conformal Killing vector equation for the Stephani metric

(3.1). There are three cases that arise in the integration process; we consider only

the most general case kR - kR :I 0 in this chapter. We obtain the conformal Killing

vector X and the conformal factor <p subject to integrability conditions that place

restrictions on the solution. As the integration process is lengthy and complicated

we provide only the details of the calculation in this chapter. We analyse the solution

obtained further in chapter 5. In §4.2 we write the conformal Killing vector equa­

tion as a coupled system of ten first order partial differential equations. We briefly

review other solutions of relevance with a conformal Killing vector in the literature.

In §4.3 we partially integrate the conformal Killing vector equations to obtain the

spacelike components of the conformal Killing vector. We have obtained expressions

for these components in which the dependence on the spatial coordinates x , y and

z is explicitly known. The timelike component of the conformal Killing vector is

found in §4.4 by utilising the method of characteristics. In the process of finding the

timelike component six integrability conditions have to be satisfied. In §4.5 we find

the conformal factor thereby generating another five integrability conditions. It is

important to note that our solutions are applicable only if the condition in - kR :I 0
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holds. We consider the remaining special cases in chapter 5. Parts of the calculation

are complex and extremely difficult to analyse by hand. We therefore use the sym­

bolic manipulation capabilities of Mathematica (Ver 2.0) (Wolfram 1991) to assist

with calculations.

4.2 Conformal Equation

In this section we list the ten independent partial differential equations that arise from

the conformal Killing vector equation (2.15). As the integration process is lengthy

the details of the solution are given in the subsequent sections of this chapter. For

the metric (3.1) the conformal equation (2.15) reduces to the following system of ten

equations:
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o

o

o

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)



o

o

(4.7)

(4.8)

(4.9)

(4.10)

The system (4.1)-(4.10) is a coupled system of ten first order partial differential

equations. We need to integrate this system to obtain the conformal Killing vector

X = (XO, Xl, X 2 , X 3 ) and the conformal factor <p in terms of the arbitrary functions

k, F, R, Xo, Yo and zoo The solution found is subject to integrability conditions that

contain the metric functions k, F, R, Xo , Yo, Zo and their derivatives.

The general solution of the conformal Killing vector equation has been

found in some other spacetimes. The Gl 5 Lie algebra of conformal Killing vec-

tors in Minkowski spacetime is given by Choquet- Bruhat et al (1977). Maartens

and Maharaj (1986) found the Gl 5 Lie algebra of conformal Killing vectors in the

Robertson-Walker spacetimes for all three cases of the spatial geometry k = 0,1, -1.

The conformal Killing vector equation (2.15) was integrated by Maartens and Ma-

haraj (1991) to obtain the conformal geometry of the pp-wave spacetimes. Moodley

(1991) found solutions to the conformal Killing vector equation in certain locally ro-

tationally symmetric spacetimes. We expect the conformal geometry of the Stephani

spacetimes to be more complicated than the previous cases because it lacks symme-

try. Many authors impose the restriction of a conformal symmetry to simplify the
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nonlinear Einstein field equations in attempts to find exact solutions. For an applica-

tion of conformal symmetry to spherically symmetric gravitational fields the reader

is referred to Dyer et al (1987), Herrera and Ponce de Leon (1985a,b,c), Maartens

and Maharaj (1990) and Maharaj et al (1991).

4.3 The Spacelike Components

In this section we will partially integrate the system (4.1)-(4.10) to obtain the space-

like components Xl, X 2 and X3 of the conformal Killing vector X. The remaining

timelike component XO will be found in the next section. On taking differences of

(4.5), (4.8) and (4.10) we obtain

(4.11)

The sum of the derivative of (4.6) with respect to z, the derivative of (4.7) with re­

spect to y and the derivative of (4.9) with respect to x implies the following identities

o

(4.12)

(4.13)

(4.14)

On differentiating (4.6) with respect to y and (4.7) with respect to z and using (4.11)

we obtain for the spacelike component Xl:
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(4.16)

Similarly (4.6), (4.9) and (4.11) give for the spacelike component X 2
:

(4.17)

(4.18)

Also from (4.7), (4.9) and (4.11) we obtain for the spacelike component X 3
:

(4.19)

(4.20)

These identities help in the integration process.

Then differentiation of (4.11) with respect to x and y, x and z, y and z, in

turn and using (4.12), (4.13) and (4.14) implies the following identities:

o

o

o

o
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(4.22)

(4.23)

(4.24)
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(4.26)

On differentiating (4.11) twice with respect to x and utilising (4.17) and (4.19) we

obtain the following relationships:

(4.27)

Then differentiation of (4.18) with respect to y and applying (4.11) gives the result

- X;yy = X;zx' Substitution of this result in (4.27) gives

(4.28)

where we have utilised the derivative of (4.16) with respect to x. Thus by equation

(4.27) we also have

o (4.29)

(4.30)

Equations (4.21), (4.22) and (4.28) imply that X;x is a function only of time. Simi­

larly X;y is a function only of time by equations (4.23), (4.24) and (4.29). Also X~z

is a function only of time by (4.25), (4.26) and (4.30).

Since X;x is a function of time only we may write

X; x = -A(t) (4.31)

where A(t) is an arbitrary function. Then from equations (4.15) and (4.16) we obtain

X~y = A(t)

X;z = A(t)
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Integrating equation (4.32) and using the result (4.12) we obtain:

Xl = ~A(t)y2 +V(t, x)y +V(t , x, z) (4.34)

where V(t,x) and V(t,x,z) are functions of integration. Substitution of (4.34) in

(4.33) yields

V zz A(t)

which is integrated to give

V(t, x, z) = ~A(t)Z2 +E(t, x)z +Q(t,x)

where E(t, x) and Q(t,x) are functions resulting from integration. Then the spacelike

component Xl becomes

Xl = !A(t)(y2 +Z2) +V(t , x)y +E(t, x)z +Q(t,x) (4.35)

We substitute the form of Xl given by (4.35) in (4.31) to obtain the differential

equation

V xxy +e:» +c:
For consistency we must have

Qxx -A(t)

which gives upon integration

-A(t)

V(t, x)
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where Vl(t), V 2(t), £l(t), £2(t), Ql(t) and Q2(t) are arbitrary functions. Substituting

the above results in (4.35) we obtain

Xl = !A(t)(y2 + Z2 - x2) + Vl(t)xy + V2(t)y + £l(t)XZ + £2(t)Z + Ql(t)X

+Q2(t) (4.36)

for the spacelike component Xl.

Similarly X;y is defined as

X~y = -B(t)

where B(t) is an arbitrary function. Then equations (4.17) and (4.18) imply

X;x = B(t)

X;z = B(t)

Integration of (4.38) and applying (4.13) yields

x 2 = ~B(t)x2 + J"(t, y)x + j(t, y, z)

(4.37)

(4.38)

(4.39)

(4.40)

where J"(t,y) and j(t,y,z) are arbitrary functions obtained via the integration pro­

cess. On substituting (4.40) in (4.39) we obtain

s: = B(t)
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which gives the result

j(t, y, z) = ~B(t)z2 + F(t, y)z + 1i(t, y)

where F(t, y) and 1i(t, y) are functions of integration. Thus the spacelike component

X 2 becomes

x 2 = ~B(t)(X2 + z2) +J(t,y)x +F(t,y)z +1i(t,y) (4.41)

By substituting (4.41) in (4.37) we obtain

JyyX +Fyyz +1iyy = -B(t)

Thus we must have

1iyy = -B(t)

which upon integration yields

1i(t, y) = -~B(t)y2 +1il(t)y +1i2(t)

where Jl(t), J2(t), Fl(t), F2(t), 1il(t) and 1i2(t) are arbitrary functions of time.

Substituting these equations in (4.41) gives
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(4.42)

for the spacelike component X 2
.

Again as X;z is a function of time we may write

X: z = -C(t)

where C(t) is an arbitrary function. We obtain from (4.19) and (4.20)

x~x = C(t)

Utilisation of (4.14) when integrating (4.44) gives

(4.43)

(4.44)

(4.45)

(4.46)

where K(t, z) and K(t, y, z) are arbitrary functions resulting from the integration

process. Substitution of (4.46) in (4.45) yields

x; = C(t)

which upon integrating gives

K(t, y, z) = !C(t)y2 +£(t, z)y +I(t, z)

where £(t, z) and I(t, z) are functions of integration. Thus the spacelike component

X 3 becomes

x 3 = !C(t)(X2+y2)+K(t,z)x+£(t,z)y+I(t,z) (4.47)

Substituting (4.47) in (4.43) gives the second order differential equation
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This gives the consistency conditions

IC z z - 0

I z z = -C(t)

On integrating the above set of equations we obtain

£(t,z)

where IC1(t ), IC2(t ), £l(t), £2(t), I 1(t ) and I 2(t ) are arbitrary functions. Thus (4.47)

becomes

x3 = ~C(t)(x2 + y2 - z2) + IC1(t )xz + IC2(t )x +£l(t)yZ +£2(t)y +I 1(t )z

+I2(t ) (4.48)

for the spacelike component X 3 •

Substitution of (4.36), (4.42) and (4.48) in equation (4.11) gives the fol­

lowing two independent equations:
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This implies that

Note that the above results and equations (4.6), (4.7) and (4.9) further reduce the

number of arbitrary functions: .

:h = -V2 , }C2 = -£2, £2 = -:F2

Then the spacelike components (4.36), (4.42) and (4.48) become

Xl = ~A(t)(y2 + Z2 - x2) - B(t)xy + V 2(t )y - C(t)xz + £2(t)Z + Ql(t)X

+Q2(t) (4.49)

X 2 _ ~B(t)(X2 + Z2 - y2) - A(t)xy - V 2(t )x - C(t)yz + :F2(t )z + Ql(t)y

+1t2(t ) (4.50)

X 3
_ ~C(t)(X2 + y2 - Z2) - A(t)xz - £2(t)X - B(t)yz - :F2(t )y + Ql(t)z

+I 2 ( t) (4.51 )
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We have therefore found expressions for the spacelike components Xl, X 2 and X 3

in which the x, y and z dependence is explicitly known. These expressions will be of

assistance in later calculations. Note that in the process of obtaining the spacelike

components (4.49)-(4.51) we have completely solved the conformal Killing vector

equations (4.6)-(4.7) and (4.9). It remains to obtain an expression for X O and <p and

to solve the remaining equations of the system (4.1)-(4.10).

4.4 The Timelike Component

In order to complete the solution of the conformal Killing vector X we need to obtain

the timelike component X O
• It is convenient to introduce the quantity

which on substituting the explicit value of V becomes:

Q ~ WkR - kR) [( x - xo? + (y - yo)2 + (z - zo?]

- !kR[(x-xo)xo+(y-yo)yo+(z-zo)zo] -.k} (4.52)

With the above definition for o , equations (4.2)-(4.4) can be written in the following

compact form :

(4.53)

X( -
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Differentiation of (4.53) with respect to y and (4.54) with respect to x and taking

the difference gives

(4.56)

where we have used (4.49) and (4.50). Similarly we obtain

(4.57)

by differentiating (4.53) and (4.55) and substituting (4.49) and (4.51) in the differ-

ence. In addition subtraction of the appropriate derivatives of (4.54) and (4.55) and

using the components (4.50) and (4.51) yields

(4.58)

for the timelike component Xo .

Equations (4.56)-(4.58) are a system of first order partial differential equa-

tions which can be solved for Xo by utilising the method of characteristics in which

a partial differential equation is converted to an equivalent system of ordinary dif-

ferential equations. For the partial differential equation (4.56) we obtain the four

characteristic equations

dx dy dz
o

dt
o (4.59)

We need to obtain four characteristics for this system of differential equations to

generate the general solution. It can be easily established that
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where Cl, C2 and C3 are three characteristics. To obtain the fourth characteristic C4

we use the fact that t, z and a are characteristics for the partial differential equation

(4.56). We note that a given by (4.52) is a quadratic in Y - Yo(t) and has the real

root

where we have set

Y-Yo(t)
-y + VY2-4XZ

2X
(4.60)

x F· .
-(kR- kR)
4R2

-a

y - -~kiJo
2R

- F· . [ 2 · 2] FZ 4R2(kR - kR) (x - xo) + (z - Zo) - 2R k [(x - xo)xo + (z - zo)zo]

FR
R2

[Note: We take only the positive square root in (4.60) without any loss in generality.

For the negative root we find that when X O
, given by (4.62), is substituted into

(4.56) restrictions are placed on the functions of integration unlike in the case for

the positive root. Thus the solution for the negative root is contained in that of the

positive root.] As X =f 0 we must have

. .
kR - kR =f 0

for a consistent solution.

The right hand side of (4.60) depends on the characteristics t, z, a and the

variable x. Thus we can treat Y - Yo( t) as a function only of x in the integration
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process. Then from (4.59) and (4.60) we have that

dx dX o

aay - (Ay - Ex +V2 )

C
4

X O B f d 1< f (x - xo )d(x - xo)
- -a x + -;- JE+H(x-xo)+G(X-xo)2

A +L f d(x - xo)

- a JE+H(x-xo)+G(x-xo)2

where we have set for convenience

AkRyo
A ==

(kR - kR)

A
B

- (F/2R2)(kR - kR)

F 2 • •

H - 2R3k(kR - kR)xo

1< - B
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· . .
L == Ayo - BXo +V 2

Note that in the above G < 0 and (4EG - H 2
) < o. Hence using Gradshteyn

and Ryzhik (1980) we can express the integrals in the characteristic C4 in terms of

elementary functions:

( tcH A+L) [1 . 2G(x - xo) +H]+ -- + -- arCSln ----;:::=====
2QG Q V-G j-(4EG - H2)

(4.61 )

Thus we have found the general solution of (4.56) as the fourth characteristic (4.61)

is known.

We may express the general solution of the partial differential equation

(4.56) as

where f is an arbitrary function. We may write the general solution in the equivalent

form:

B ««,
-x - ---
Q QG

+ f(t, z, Q)

( _]{H + A +L) [_1_ arcsin ----;:::::=-=Qx=]
2QG Q V-G jQx

2 +Qy
2

(4.62)

On substituting (4.62) first in (4.57) and then in (4.58) we obtain the following

conditions on the function f :

C
· . . AkRio (]{H ) QzQy

- X - £2 - Azo - + + A + L (4 63)
(kR - kR) 2G (Qx

2 +Qy
2 ) •

50



Elimination of 8f /8z from (4.63) and (4.64) gives the equation

[
. AkRzo . . ] [ . BkRzo . . ]

ay -Azo-. . +Cx - £2 + ax Bzo+. ') - Cy +:F2
(kR - kR) (kR - kR

(
I{ H )+a z 2G +A +L = 0

On substituting the explicit form of a from (4.52) in the above equation we obtain a

polynomial equation in x, y, z. On setting the coefficients to zero in the polynomial

equation we obtain the following consistency conditions:

£2 + Azo + AkRzo
Cxo + CxokR

(4.65)
(kR - kR)

=
(kR - kR)

J:2 + Bzo + suts;
Cyo + CYokR

(4.66)
(kR - kR) (kR - kR)

V2 + Ayo + AkRyo
Bxo + BxokR

(4.67)
(kR - kR) (kR - kR)

where the last equation is equivalent to [(I{H /2G) + A +L] = O. Substitution of

the conditions (4.65)-(4.67) in (4.63) gives the following restriction:

8f(t,z,a)
8z a(F/2R2)(kR - kR)

(Note that (4.64) gives the same restriction on f(t,z ,a)). We integrate this equation

to obtain

Cz
f(t, z, a) = a(F/2R2)(kR _ kR) + Ft(t, a)

where F, (t, a) is a function of integration. Substitution of f( t, z, a) and the condition

[(I{H /2G) +A +L] == 0 in equation (4.62) yields the result

XO == Ax + 13(y - Yo) + Cz - (BYokR)/(kR - kR)
a(F/2R2)(kR _ kR) + Ft(t, a) (4.68)
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where we have utilised the explicit values for B, 1< and G.

We now solve for the function F1(t ,a). On substituting (4.68) and (4.49)

in (4.53) we obtain

[91- Byo - .BkRYo. ] x + 92 - ~,A(x~ + y~ + z~)
(kR - kR)

A·kR 2,AR
. . (xoxo + YoYo + zozo) + (k· R _ kR·)(kR - kR)

[
B BkRyo ] [ kRXo]

+ Yo + (kR _ kR) Xo + (kR - kR)

where we have used conditions (4.65) and (4.67). Now F1 is a function of t and a,

and a x is a function only of t and x. We observe also that the right hand side of

the equation is a function of t and x. This implies that a 2aF1 / aa is necessarily a

function only of t. This condition gives after some calculation

91 - Byo - (BkRYo)/(kR - kR)
(F/2R2)(kR - kR)

(4.69)

subject to the consistency condition

g. 1A·( 2 2 2) ,AkR (. . . ) 2,AR
- 2 + 2" Xo+ Yo + Zo +. . xoxo + YoYo + ZOZo - ---:---------,,....-

(kR - kR) (kR - kR)

(4.70)

It is now possible to find the function F1 by integrating (4.69) :

F (t a) = -91 + Byo + (Bk.RiJo)/(~R - kR) M( ) (4.71)
1 , a(F/2R2)(kR _ kR) + t

where M(t) results from the integration process.
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Therefore on substituting (4.71) into (4.68) we obtain the timelike compo-

Ax + By ~ Cz - ~l + M (t)
a(F/2R2)(kR - kR)

(4.72)

We substitute (4.72) into equations (4.54) and (4.55) and obtain the following two

consistency conditions:

rU 1 B'(2 2 2) BkR (. . . ) 2BR
- 11.2 + 2 Xo +Yo + Zo +. . XoXo +YoYo + ZOZo - (k'R _ kR')(kR - kR)

(4.73)

-7- lC'( 2 2 2) + CkR (. . . ) 2CR
-.1..2 + 2 Xo +Yo + Zo . • XoXo +YoYo +ZoZo - (k'R _ kR')

(kR - kR)

(4.74)

Thus we have obtained the timelike component X O
, given by equation (4.72) subject

to the six integrability conditions (4.65)-(4.67), (4.70), (4.73) and (4.74). In addition

we have completely solved the conformal Killing vector equations (4.2)-(4.4). Note

that we have the restriction in - kR =f 0 in the above results. In order to complete

the solution we need to obtain the conformal factor cP and solve the remaining four

equations of the system (4.1)-(4.10).

4.5 The Conformal Factor

In this section we will completely solve the remaining conformal Killing vector equa-

tions (4.1), (4.5), (4.8) and (4.10) and thus obtain the conformal factor cP. In the
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process we obtain five more integrability conditions. As (4.11) is valid we note that

(4.5), (4.8) and (4.10) are equivalent. Thus it remains to solve equations (4.1) and

(4.5) and to find the conformal factor 4J. Instead of working with (4.1) we will replace

this equation by the difference of (4.1) and (4.5) so that <P is eliminated. On substi-

tuting the explicit value of the function D, defined in terms of the metric functions,

in (4.1) and taking the difference between (4.1) and (4.5) we obtain

[
F + (V/R)tt] X O + [(V/R)t x] Xl + [(V/R)t y ] X2 + [(V/R)tz] X3 + X O

F (V/ R)t (V/ R)t (V/ R)t (V/ R)t t

- X; = 0 (4.75)

On substituting for XO from (4.72) and simplifying equation (4.75) assumes the

following form :

[(~)JXl + [(~)JX
2 + [(~)JX

3
- (~) t X;

+ [2R
2(AX

~ By +~z - Od] F(V/R)tM (V) M (V) Ni = 0
F2 (kR - kR) t + F + R tt + R t

(4.76)

where the spacelike components XI, X2 and X3 are given by equations (4.49)-(4.51)

respectively.

To analyse (4.76) we need to substitute for Xl, X 2
, X 3 and obtain a poly-

nomial equation in x, y, z. To perform this by hand is extremely complicated and we

need to resort to a symbolic manipulation package. For our purposes Mathematica

(Ver 2.0) (Wolfram 1991) is appropriate. On substituting (4.49)-(4.51) in (4.76) we

obtain the following lengthy polynomial equation in x, y, z:
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-c [zo(kR - kR) +kRzo] + M [~(kR - kR) - 2~(kR - kR)

+ (kR - kRY] + M(kR - kR)} (x2+ y2 +Z2)

+2 { A [~(kR - kR)(x~ + y~ + z~) +kR(xoxo + yoiJo + ZOZO) - 2R]

4AR4 [P. . R· . . . ,]- . . -(kR - kR) - 2-(kR - kR) + (kR - kR)
F2(kR - kR)2 F R

4.AR4
.. [. . ]+ . . + Q2(kR - kR) + V2 yo(kR - kR) + kRyo

F2(kR - kR)

+fdzo(kR-kR)+kRzo]- M{xo[~(kR-kR)-2~(kR-kR)

. . ,] . . ruu; }+ (kR - kR) + 2xo(kR - kR) + F + kRxo

- M [xo(kR - kR) + kRxo] } x

4BR4 [P. . R· . . . ,]
- F2(kR _ kR)2 F(kR - kR) - 2R(kR - kR) + (kR - kR)

4BR4 " [. . ]+ . . + 1t2(kR - kR) - V2 xo(kR - kR) + kRxo
F2(kR - kR)

+.1"2 [zo(kR - kR) +kRzo] - M {YO [~(kR - kR) - 2~(kR - kR)

+ (kR - kRY] + 2iJo(kR - kR) + F~iJo + kRiio}

- M [yo(kR - kR) + kRiJo] } y
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+2 { c a(in - kR)(x~ + y~ + z~) +kR(xoxo +YoYo + zozo) - 2R]

_ .4CR
4

• [F (kR _ kR) _ 2R(kR - kR) + (kR - kRJ]
F2(kR - kR)2 F R

4CR4
•• [. • ]+ . . + I 2(kR - kR) - £2 xo(kR - kR) + kRxo

F2(kR - kR)

-:1"2 [yo(kR - kR) + kRyo] - M {ZO [~(kR - kR) - 2~(kR - kR)

. . ,] . . ruu; }+ (kR - kR) + 2zo(kR - kR) + F + kRzo

- Ni [zo(kR - kR) +kRzo] } z

+2 { 91 [~(kR - kR)(x~ + y~ + z6) +kR(xoxo +YoYo +zozo) - 2R]

4Q1R
4 [F. . R. . . .. ,]

- . . -(kR - kR) - 2-(kR - kR) + (kR - kR)
F2(kR - kR)2 F R

491R
4

[. • ] [. • ]+ . . + 92 xo(kR - kR) + kRxo + 1i2 Yo( kR - kR) + kRyo
F2(kR - kR)

[
. . ] { 1 2 2 2 [F . .+I2 zo(kR - kR) + uu; - M 2(xo+ Yo + zo) F(kR - kR)

R . . . ."] FkR-2 R(kR - kR) + (kR - kR) + p(xoxo+ Yoyo + zozo)

+2(in - kR)( xoxo + YoYo + zozo) + kR( xoxo + YoYo + zozo)

+kR(x~ +Y6 +z6) - 2 c:' -2~ +R)}

- Ni [~(kR - kR)(x~ +Y6 + z~) +kR(xoxo +YoYo +zozo) - 2.k] } = 0
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For the above equation to be valid the coefficients of the powers of x, y, z must

separately vanish. Hence we obtain the following consistency conditions

_ A [ kRXo] B [ kRYo] c [ kRZo]
91 + xo + (kR _ kR) + Yo + (kR _ kR) + Zo + (kR - kR)

M [F _ 2R (~R - k~Y] M (4.77)
- F R + (kR - kR) +

92 + V 2 [YO + . kRyo . ] + £2 [zo + . kRzo . ]
(kR - kR) (kR - kR)

+A [
1(2 2 2) kR (. . . ) 2R]-2 xo+Yo + Zo +. . xoxo +YoYo + ZoZo _. .

(kR - kR) (kR - kR)

4.AR4 [F R (kR - kRY] 4.AR4

- F2(kR - kR)2 F - 2R + (kR - kR) + F2(kR - kR)2

M { [F 2R + (kR - kRY] 2' FkRxo kRXo}
- xo F - R (kR - kR) + Xo + F(kR - kR) + (kR - kR)

+M [xo+ . kRxo. ] (4.78)
(kR - kR)

(4.79)
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I 2 - £2 [xO + (k~~X~R)] - F2 [YO + (k~~!i~R)]

[
1 2 2 2) kR (0 0 0 ) 2R]

+C 2"(XO+ Yo + Zo + (kR _ kR) XOXO + YoYo + ZOZO - (kR _ kR)

4CR4 [P R (kR - kRY] 4CR4

- F2(kR - kR)2 F - 2R + (kR - kR) + F2(kR - kR)2

{ [
F R (kR - kRY] 0 FkRio kRZO}

- M Zo F - 2R + (kR _ kR) + 2zo + F(in - kR) + (kR - kR)

+M [zo + (k~~Z~R)] (4.80)

c; [XO+ (k~~X~R)] + 1£2 [YO+ (k~~!i~R)] + I 2 [ZO+ (k~~Z~R)]

I! [1 (2 2 2) kR (0 0 0 ) 2R]+ ~l - Xo+ Yo + Zo + 0 0 XOXO + YoYo + ZOZO - 0 0
2 (kR - kR) (kR - kR)

_ 4Q1R
4

[F _ 2R (kR - kRY] 491R
4

F2(kR - kR)2 F R + (kR - kR) + F2(kR - kR)2

_ M {~(X2 2 Z2) [P _2R (~R - k~Y]
2 0 + Yo + 0 F R + (kR - kR)

+ FkR (0 0 0) 2( 0 0 0 )
F(in _ kR) XoXo + YoYo + ZOZo + XOXo + YoYo + ZoZo

+ kR ( 02 + 02 + 02) kR (00 00 00 )
(kR - kR) Xo Yo Zo + (kR _ kR) XOXO + YoYo + ZOZo

2 (PR R2 oo)}
- (kR-kR) y- 2R: + R

Mo [1 (2 2 2) kR 0 0 0 2R]+ 2" Xo+Yo + Zo + (kR _ kR) (XOXO +YoYO + ZOZO) - (kR _ kR) (4.81)
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Therefore we have obtained another five integrability conditions (4.77)-(4.81) for a

consistent solution.

Finally we obtain the conformal factor 4J using equation (4.5). Substitution

of (4.72) into (4.5) and simplifying yields

_~Xl _ V:X2 _ VX3 + VX1 _ 2R3(Ax~By+C.Z-gl)
x y z x F2(kR _ kR)

M(VR-VR)
+ R (4.82)

where XI, X 2 and X 3 are given by (4.49)-(4.51). Again to evaluate the right hand

side of (4.82) is extremely complicated to be done by hand. We resort again to the

computer package Mathematica (Ver 2.0) (Wolfram 1991) to evaluate the right hand

side of (4.82). Substituting (4.49)-(4.51) in (4.82) and after some simplification we

obtain the following

+x { -A [1 + ~(X02 +Yo2 +Z02)] - ~(V2YO +£2Z0 +92 )

+ M [(kR - kR)xo +kRxo] _ ~AR3.}
2R F2(kR - kR)

M [(kR - kR)yo + kRyo] 2BR3}

+ 2R - F2(kR - kR)

M [(kR - kR)zo+kRio] 2CR3}
+ 2R - F2(kR - kR)
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(4.83)

Thus we have completely solved the conformal Killing vector equations (4.1 )-( 4.10)

subject to the restriction in - kR -:f 0 to obtain the conformal Killing vector

x = (XO, Xl, X 2 , X 3 ) and the conformal factor 4>. We have found expressions for

X and 4> in which the dependence on the spacelike coordinates x, y, z is explicitly

known; the resulting functions of integration involve only the variable t. The time-

like component XO is given by (4.72) and the spacelike components Xl, X 2 and

X 3 are given by (4.49)-(4.51). This solution is subject to the eleven integrability

conditions (4.65)-(4.67), (4.70), (4.73)-(4.74) and (4.77)-(4.81). The integrability

conditions involve only the timelike coordinate t for the eleven functions of integra-

functions of integration to the metric functions k, F, R, xo, Yo, zoo We discuss this

solution further in §5.2 where the equations are also put into compact vector nota­

tion. Note that the solution presented in this chapter holds only if kR - kR -:f o.

The remaining speciai cases with k = 0 and kR- kR = 0 with k -:f 0 are considered

in §5.3 and §5.4 respectively.
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5 Conformal Symmetries in Stephani Universes

5.1 Introduction

In this chapter we provide a complete analysis of conformal symmetries in the

Stephani universe. The most complex case kR - kR #- 0 was considered in detail

in chapter 4. In §5.2 we collect the results obtained for the conformal Killing vector

equation in chapter 4 to facilitate easy reference. Since the form of this solution is

difficult to analyse we simplify the solution using vector notation. The integrability

conditions may be expressed in a more fundamental form on introduction of a new

time variable. Two further cases remain to be considered to generate the general

solution of the conformal Killing vector equations. In §5.3 we solve the conformal

Killing vector equation for the first case, k = O. As the integration process is simple

we do not provide details and only list the results obtained. A conformal Killing vec­

tor in the Stephani universe, which is the analogue to the conformal Killing vector

normal to the hypersurface t = constant in the k = 0 Robertson-Walker space­

times, is explicitly obtained. The remaining case governed by in - kR = 0, k #- 0

is considered in §5.4. As the integration process is similar to chapter 4 we give only

an outline of the details of the integration procedure. In the process of solving the

conformal Killing vector equation we use the same symbols to denote the functions

of integration for easy comparison between the three cases that arise. This is an

61



abuse of notation but should not lead to any confusion. Note that in some parts

of the calculation we utilise the symbolic manipulation capabilities of Mathematica

(Ver 2.0) (Wolfram 1991). We check that the conformal Killing vector equations are

in fact satisfied using this package.

. .
5.2 The Case kR - kR i= 0

The general solution of the conformal Killing vector equations (4.1)-(4.10) for the
. .

case kR - kR -=I 0 was found in chapter 4. The conformal Killing vector X ==

(XO,Xt,X2,X3
) is given by the equations (4.49)-(4.51), (4.72) and the conformal

factor ~ has the form (4.83). This solution is subject to the integrability conditions

(4.65)-(4.67), (4.70), (4.73)-(4.74) and (4.77)-(4.81). We bring the various results

together for easy reference. Collecting the appropriate equations from chapter 4 we

have the following solution for the case in - kR -=I 0 :

° Ax + By + Cz - 91 M
X == a(F/2R2)(kR _ kR) + (t)

Xl !A(t)(y2 + z2 - x2) - B(t)xy + 'D2(t )y - C(t)xz + £2(t)Z + Y1(t)X

+ 92(t)

X 2 !B(t)(x2+ z2 - y2) - A(t)xy - 'D2(t )x - C(t)yz + :F2(t )z + Y1(t)y

+'H2 ( t)
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[
k M(kR - kR)]v cP - (X2+ y2 + Z2) "4 (Axo +Byo +CZo - od - 4R

+x {-A [1 + ~(X02 +Yo2+ Z02)] - ~('D2YO + f 2z0+92)

M [(kR - kR)xo + kRxo] _ 2AR3
}

+ 2R F2(kR - kR)

+ Y{ -13 [1 + ~(xo2 +Y02+ Z02)] - ~(-'D2XO + .r2Z0 + 'H2)

M [(kR - kR)yo+ kRyo] _ 2BR3 }

+ 2R F2(kR - kR)

+ Z{-C [1 + ~(X02 +Yo2+ Z02)] - ~(-f2XO - .r2Yo +1"2)

M [(kR - kR)zo +kRio] _ 2CR3 }

+ 2R F2(kR - kR)

[
k(2 2 2)] 2(itR

3
k (f! )+01 1+ - Xo +Yo + Zo + . . + -2 ~2XO +112yo +I 2z0

4 F2(kR - kR)

- ~ [(kR - kR)(xo2+Y02+ Z02) +2kR(xoxo +YoYo + zozo) - 4R]

subject to the eleven integrability conditions

. . AkRio£2 + Azo +. .
(kR - kR)

. . BkRio;:2 + Bzo +. .
(kR - kR)

= C CxokR
Xo + (kR - kR)

= C CYokR
Yo + (kR - kR)
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AkR . . . 2AR
-92 + 12A(x~ +Y6 + z6) +. . (xoxo +YoYo + zozo) - (k· R kR)(kR - kR) -

. 2BR
. 1· 2 2 2 BkR (. . + i) _ .

- 'H2 + 2B(xo+Yo + zo) + (kR _ kR) XoXo +YoYo Zo 0 (kR - kR)

. 91yokR
- 91YO + (kR - kR)

[
kRYO] e [ kRiO]

92 + V 2 Yo + (kR _ kR) + 2 Zo + (kR _ kR)

[
1 (2 2 2) kR (. . . ) 2R]+A 2" Xo+Yo + Zo + (kR _ kR) XOXO +YoYo + ZOZO - (kR _ kR)

4AR4 [F 2R (kR - kRY] 4.AR4

- F2(kR - kR)2 F - R + (kR - kR) + F2(kR - kR)2
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{ [
F R (kR - kRY] . FkRxo kRXO}

- M Xo F - 2R + (kR _ kR) + 2xo + F(kR - kR) + (kR - kR)

+M [XQ + (k~~X~R)]

I _ £ [ kRXO] _ :F [ kRYO]
2 2 Xo + (kR _ kR) 2 Yo + (kR _ kR)

C [
1
(2 2 2) kR ( . . . ) 2R]+ - Xo+ Yo + Zo +. . XOXO+YoYo +ZOZO-. .

2 (kR - kR) (kR - kR)

4CR
4

[F R (kR - kRY] 4CR4

- F2(kR - kR)2 F - 2R + (kR - kR) + F2(kR - kR)2

M { [F 2R (kR - kRY] 2' FkRio kRZO}
- Zo F - R + (kR - kR) + Zo + F(in - kR) + (kR - kR)

+M [ZO+ . kRio. ]
(kR - kR)
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F kR (. . .) 2(' . + .)+. . XOXo +YoYo +ZoZo + XOXo +YoYo ZoZo
F(kR - kR)

kR ( .2 .2 '2) kR (.. .. .. )+. . Xo +Yo +Zo +. ') XOXO +YoYo + ZOZO
(kR - kR) (kR - kR

2 (PR R2
,,)}- --2-+R

(kR - kR) F R

. [1 2 2 2 kR (. . . ) 2R]+M 2(xo+Yo +zo) + (kR _ kR) XoXo +YoYo +ZOZo - (kR _ kR)

The integrability conditions place restrictions on the metric functions k, F, R, Xo, Yo,

Zo for the existence of a conformal symmetry X.

We can regain the conformal Killing vectors of Robertson-Walker space­

time from the above equations. However, as kR - kR =1= 0, the conformal Killing

vectors of the k == 1 and k == -1 spacetimes are only possible as k =1= °in this case.

The above form of the solution is not easy to work with. It is possible to express this

solution in a more compact form using vector notation. We introduce the vectors

(

A(t) )
A == B(t)

C(t)
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B r-; ro

where we have defined the quantity

k
T=­

R

v

Then the conformal Killing vector X is given by

X o _ A· r- 91 M- . +
a(F/2)T

(f:) = Hr. r)A - (A· r)r + r x U + 9jr + V

Similarly the conformal factor cP is given in the equation

(5.1 )

(5.2)

V<jJ =
k .
- [r· r(A . ro - 9d - ro . ro(A· r - 9dJ - (A· r - 91)
4

2R· . k k
- -.(A . r - 9d - -(r - ro) . V - -r' (ro x U)

F2T 2 2

M R [1 . . (1 2 ). ]--2- "2Tr·r-B·r+ "2B· ro+ R (5.3)

The eleven integrability conditions reduce to the following vector equations:

1· .
U = --.A x B

T
(5.4)

V 1[(1 2)' . .. ]t "2B . ro + R A - 91 B
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~ [FA. B - (FMTY]
FT

(5.6)

v :t [FUXB - 4 (:t} -F(!B.ro+ ~}A + (FMBY]

(5.7)

V ·B

(5.8)

The equations (5.1)-(5.3) are an equivalent representation of the solution

for the conformal Killing vector equations (4.1)-(4.10) subject to the conditions

(5.4)-(5.8) in the case in - kR i- O. The vectors A , U, V involving functions

resulting from the integration process are related to the vectors r, ro, B which are

defined in terms of the metric functions. The integrability conditions (5.4), (5.5) ,

(5.7) are vector equations. The conditions (5.6) and (5.8) are scalar equations. Hav-

ing found the above vector form of the solution we are in a position to investigate th e

physical properties of the Stephani universe with a conformal symmetry. It would

also be interesting to consider the effect that this conformal solution would have on

the general Einstein field equations (3.16)-(3.17). In particular it would be inter-

esting to consider the foliation of the de Sitter spacetime as a special case of the

Stephani solution. With the assumptions

Xo Yo Zo o

R == constant
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k -t

Krasiriski (1983) has attempted to describe the qualitative features of the Stephani

universe. The conformal symmetry would influence the physical properties of the

model. This is an area for future research.

Note that the integrability conditions (5.4)-(5.8) may be further simplified

if we introduce a new time variable T where

dId

dr FT dt

It is also convenient to introduce the quantities

C = FB'

f

m FMT

where we use the notation that primes denote differentiation with respect to T

whereas dots denote differentiation with respect to t. Then the integrability con­

ditions (5.4)-(5.8) may be put into the form

V' = -A' X C

V' fA' - g~C

~h A· C - m'
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(5.9)

v u x C - 4A" - fA + (mC)'

v .C = (mf)' - 91 f - 49~'

which is of a more fundamental form than the equations given previously. If the met­

ric functions I, m, C are specified then we can find the functions of integration A, U

and V for the conformal Killing vector X from the above for the given cosmological

model.

5.3 The Case k 0

The special case k = 0 has been excluded in the solution given in §5.2. The conformal

Killing vector equations (4.1)-(4.10) may also be integrated in this elementary case

to yield the conformal Killing vector X and the conformal factor 4J. We do not

provide details of the integration process in this case as the calculations are very

simple. With the restriction k = 0 the general solution to the conformal Killing

vector equations (4.1)-(4.10) is given by

xO = F~2 [~91(X2 + y2 + Z2) +92X +H2y +I2z +M(t)]

~A(y2 + z2 - x2) - Bxy + V 2y - Cxz + £2Z + 91(t)X

+92(t)
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(5.11)

(5.12)

(5.13)

where A, B, C, V 2, £2, F2 are constants. The solution (5.9)-(5.13) is subject to the

integrability conditions

o (5.14)

(5.15)

(5.16)

(5.17)

(5.18)

The system (5.9)-(5.13) represents the solution to the conformal Killing vector equa­

tion, subject to the integrability conditions (5.14)-(5.18), for the case k = O.

For appropriate choices of the functions of integration in the above solu-

tion we can generate the Killing vectors of the k = 0 Robertson-Walker spacetimes.
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Similarly we can obtain the conformal Killing vectors of the Robertson-Walker space-

time (Maartens and Maharaj 1986) for the k == °case. Thus the equations of this

section together with the results of §5.2 reproduce the conformal Killing vectors for

all the Robertson-Walker models for the values k == 0,1, -1. To illustrate the pro-

cedure we will generate, as an example, the analogue of a conformal Killing vector

in Robertson-Walker spacetime which is normal to the homogeneous hypersurfaces

t == constant. This timelike conformal Killing vector given by

x == (R(t), 0, 0, 0)

with conformal factor

cP==R

is listed by Maartens and Maharaj (1986) for the k == °Robertson-Walker models.

With the conditions Xl == X2 == X3 == 0, equations (5.9)-(5.13) imply

A == °
c == °

°
°

Then the conformal Killing vector is given by

B == °

°

°

x = (F~2M(t), 0,0,0)

with the conformal factor
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The integrability conditions (5.14)-(5.17) are identically satisfied. The last condition

(5.18) gives the following form for the function M(t) :

We regain the k = 0 Robertson-Walker conformal Killing vector given above by an

appropriate choice of the function F. Hence we have established that the Stephani

conformal Killing vector is a generalisation of the normal conformal Killing vector

x = (R(t), 0, 0,0) in the Robertson-Walker spacetimes.

. .
5.4 The Case kR - kR - 0, k i= 0

The remaining special case for the general solution of (4.1)-(4.10) is governed by the

condition in - kR = 0, k i- O. It is also possible to integrate the conformal Killing

vector equations in this last case and generate the general solution. The integration

is more complicated than the case k = 0 of §5.3. The method of solution is similar

to that of chapter 4; consequently we provide only the main points of the integration

process in obtaining the solution. The spacelike components are the same as in §4.3.

Therefore the conformal Killing vector equations (4.6), (4.7) and (4.9) give

(5.19)

(5.20)
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(5.21)

for the spacelike components.

The timelike component and the conformal factor are also obtained in a

similar manner as in chapter 4. Since kR - kR == 0, k i=- 0 we have that

k(t) == €R(t)

where € i=- 0 is an arbitrary constant. Thus a defined by equation (4.52) becomes

-~EF [(x - xo)xo + (y - Yo)Yo + (z - zo)zo] - ~~ (5.22)

when kR - kR == O. The integration process for this case is simpler than that in

chapter 4 since a is linear in x, y, z. As before we can write (4.2)-(4.4) in the form

Substitution of (5.19)-(5.21) in the above yields
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Noting that

1 1. 2R 2
y - yo(t) == --;-[(x - xo)xo] - -;-[(z - zo)zo] - --. - -.a

Yo Yo ER2 yo EFyo

from (5.22) and applying the method of characteristics we obtain the timelike com-

ponent:

== (5.23)

where M(t) is a function of integration.

With X O given by (5.23) the conformal Killing vector equations (4.2)-(4.4)

are satisfied. In the process of finding the timelike component we observe that the

following conditions are generated

A(t) == constant B(t) constant

C(t) constant Yl(t) constant

It remains to solve the remaining conformal Killing vector equations (4.1), (4.5), (4.8)
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and (4.10) and to obtain the conformal factor <p. Further integrability conditions will

be generated in this process.

Note that (4.5), (4.8) and (4.10) are equivalent as X~ = X; = X;. We

eliminate <p by taking the difference of (4.1) and (4.5). On substituting for X O
, from

(5.23) , in the resulting equation and simplifying we obtain the restriction

Substitution of (5.19)-(5.21) in the above equation yields a polynomial equation in

x , y, z . This implies the following consistency conditions:

Axo + Byo + Cio = 0

- ~~~ + B(xoxo +YoYo + zozo) - 'D2(t )xo + .r2(t)ZO

~ (M(t)Fyo)'

~ (M(t)Fx)' ~ ( V2 ).
F ° + f2F Fyo

1 ( ( .' 4 (f2 ) '- - M t)Fzo) - - -.
F f2F Fyo
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(5.30)



1 .... 2 (M(t)FR)' 4 (1l2)'
F[M(t)F(xoxo+YOyo+zozo)] - EF R2 + E2F Fyo (5.31)

From equation (4.5) we obtain the conformal factor

+ {l2(t) - M (t):i:o)]

+ y [_ BER (xo2 + yo2 +Z02) _ B _ ER (-V2(t )xo+F2(t )zo
4 2

+1i2(t ) - M(t)!io)]

[
CER 2 2 2 212R ER ( c ( ) -t: ( )+ z --(xo +Yo + zo ) - C- -F2' - -2 -C,2 t Xo -.r2 t Yo

4 E Yo

+I 2(t ) - M(t)io)]

+91:R(xo2+Y02 + zo2) + 91 + E: (92(t)xo+1i2(t )yo+I 2(t )zo)

2il2R M(t)ER. . . M(t)R
- EF2

yo
- 2 (xoxo +YoYo + zozo) + R (5.32)

where we have used (5.19)-(5.21) and (5.23).

We have thus solved the conformal Killing vector equations (4.1)-(4.10)

for the case kR - kR = 0, k :I 0 and obtained the conformal Killing vector X

and the conformal factor ~. The timelike component X O is given by (5.23) and the

spacelike components Xl, X 2
, X3 are defined by (5.19)-(5.21). Equation (5.32) gives

the conformal factor ~. The solution obtained is subject to the eight integrability

conditions (5.24)-(5.26), (5.27)-(5.31). Note that in this case k = ER(t) with E i- O.

Thus the quantity k is strictly a function of time and cannot be a constant. Therefore
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the conformal Killing vectors corresponding to kR - kR = 0, k =J 0 do not reduce

to the conformal Killing vectors of Robertson- Walker spacetimes as a special case.

Thus we have established that the Stephani universes contain conformal symmetries

that do not have an analogue in Robertson-Walker spacetimes.

The results of §5.2, §5.3, §5.4 comprise the general solution of the con­

formal Killing vector equation in Stephani universes. By generating the general

conformal Killing vector X in Stephani universes we have created future avenues of

research. The physical properties of the Stephani models with a conformal symmetry

should be investigated. The possible solutions to the Einstein field equations (3.16)­

(3.17) are restricted by the conformal Killing vector X. In particular it would be

interesting to study the special cases of the scale factors of cosmological significance

that arise in the Robertson-Walker spacetimes: de Sitter, Friedmann etc.
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6 Conclusion

Our objective in this dissertation was to analyse conformal symmetries in Stephani

universes which are generalisations of the Robertson-Walker models. We have ob­

tained the general solution to the conformal Killing vector equation in the Stephani

universe for the three cases

(i) kR - kR :I 0,

(ii) k = 0 and

(iii) kR - kR = 0, k -# 0

subject to integrability conditions. The integrability conditions are essentially rela­

tionships between the functions arising from the integration process and the metric

functions. In the process of finding the solution we encountered some very long

calculations which were readily amenable to treatment with the symbolic manipu­

lation capabilities of Mathematica (Vel' 2.0) (Wolfram 1991). We also verified that

the solution obtained was correct using this package. It is significant to note that

although the Stephani universe may not admit Killing vector symmetries, it does

admit conformal Killing symmetries.

In chapter 2 we introduced only those aspects of differential geometry rele­

vant to this dissertation. In particular we studied those aspects which are necessary

for the development of conformal symmetries of this dissertation. We introduced the
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concept of a differentiable manifold on which vector and tensor fields are defined.

The covariant derivative was defined and curvature was introduced on the manifold

via the Riemann tensor. Then we introduced the Einstein field equations. The Lie

derivative is a natural geometric structure on the manifold. Lie algebras were defined

and we briefly discussed the relationship between a Lie group and a Lie algebra. We

imposed the condition of a conformal symmetry on the manifold by defining the

conformal Killing vector.

The Stephani universe was introduced in chapter 3. The Stephani universe

is a generalisation of the Robertson-Walker models. The kinematics and dynamics of

the Stephani universe were considered. The Einstein field equations were fully derived

as this model is not well known. We found that the field equations obtained agreed

with those given by Kramer et al (1980), Krasiriski (1983) and Stephani (1967). The

requirements for the Stephani line element to reduce to the Robertson-Walker model

were also discussed in this chapter. Our equations were obtained directly from the

Einstein field equations. It is also possible to obtain the field equations using an

embedding procedure (Stephani 1967) or the concept of infinitesimal null isotropy

(Koch-Sen 1985).

In chapter 4 we solved the conformal Killing vector equation. The solution

given is subject to the restriction in - kR #- O. As this is the most complicated case

we provided all the details of the integration procedure. We obtained explicit forms

for the timelike component and the three spacelike components of the conformal

Killing vector as well as the conformal factor. The solution obtained is subject to

eleven integrability conditions that relate the functions of integration to the metric

functions. Since parts of the calculation were difficult to perform by hand we used

Mathematica (Ver 2.0) to assist with calculations. Mathematica (Ver 2.0) was also
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used to verify that the solution found satisfies the conformal Killing vector equations.

In chapter 5 we gave a complete analysis of conformal symmetries in

Stephani universes. The results obtained in chapter 4 for the case kR - kR #- 0

were expressed in vector notation. This greatly simplified the form of the solution.

In this chapter we also considered the two cases omitted in chapter 4. For the case

k == 0 we merely stated the results as the integration process is very simple. As an

example we generated the conformal Killing vector in the Stephani universe which

is the analogue of a conformal Killing vector in the k == 0 Robertson-Walker space­

time normal to the homogeneous hypersurfaces t == constant. The conformal Killing

vector equation was also solved for the remaining case in - kR == 0, k #- o. As

the solution process was similar to that used in chapter 4 we only gave an outline

of the integration procedure. The solution found in this case was subject to eight

integrability conditions that restrict the metric functions . .We again utilised Mathe­

matica (Vel' 2.0) to verify that the solution obtained does indeed satisfy the conformal

Killing vector equations. It is significant to note that the cases kR - kR #- 0 and

k == 0 contain the Robertson-Walker conformal Killing vectors. However, the case

kR- kR == 0, k #- 0 yields vectors which cannot be reduced to the conformal Killing

vectors of Robertson-Walker spacetimes.

Having obtained the conformal Killing vectors in Stephani universes the

physical properties of these models should be studied further. This would involve

an analysis of the Einstein field equations for the Stephani universes. Also it would

be interesting to consider more general symmetries in the Stephani universe which

contain conformal Killing vectors, e.g. the curvature inheritance of Duggal (1992).

The existence of other symmetries would improve our understanding of the geometry

of the Stephani universes.
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The results obtained in this dissertation are original. Apparently this dis­

sertation represents the first attempt to solve the conformal Killing vector equation

in the Stephani universe. We hope that we have demonstrated that the study of

symmetries in the Stephani universe is a fertile area of research and warrants further

investigation.
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