
Techniques and Countermeasures of

TCP/IP OS Fingerprinting on Linux

Systems

by

Riaan Stopforth

Submitted in fulfilment of the academic

requirements for the degree of

Master of Science in the

School of Computer Science,

University of KwaZulu – Natal,

Durban

December 2007

Abstract
Port scanning is the first activity an attacker pursues when attempting to

compromise a target system on a network. The aim is to gather information

that will result in identifying one or more vulnerabilities in that system. For

example, network ports that are open can reveal which applications and

services are running on the system. How a port responds when probed with

data can reveal which protocol the port utilises and can also reveal which

implementation of that protocol is being employed. One of the most

valuable pieces of information to be gained via scanning and probing

techniques is the operating system that is installed on the target. This

technique is called operating system fingerprinting.

The purpose of this research is to alert computer users of the dangers of

port scanning, probing, and operating system fingerprinting by exposing

these techniques and advising the users on which preventative

countermeasures to take against them.

Analysis is performed on the Transmission Control Protocol (TCP), User

Datagram Protocol (UDP), Internet Protocol (IPv4 and IPv6), and the

Internet Control Message Protocol (ICMPv4 and ICMPv6).

All the software used in this project is free and open source. The operating

system used for testing is Linux (2.4 and 2.6 kernels). Scanning, probing,

and detection techniques are investigated in the context of the Network

Mapper and Xprobe2 tools.

ii

Preface
The experimental work described in this dissertation was carried out in the

School of Computer Science, University of KwaZulu-Natal, Durban, from

January 2006 to March 2007, under the supervision of Mr Luke Vorster and

Dr David Erwin.

These studies represent original work by the author and have not otherwise

been submitted in any form for any degree or diploma to any tertiary

institution. Where use has been made of work of others it is duly

acknowledged in the text.

The content of this thesis has been summarised in a paper called “Counter-

measures for operating system fingerprinting” (Stopforth et. al.). This

paper was accepted by the EngineerIT – Electronics, computer, information

& communications technology in engineering journal, and was published in

the April 2007 publication.

iii

Table of Contents

Overview ...1

Introduction...4

Chapter 1: Protocols and Techniques..12

1.1. Protocol Architecture..13

1.1.1 Transmission Control Protocol (TCP)....................................14

1.1.1.1 Sequence Number Field...16

1.1.1.2 Opening and Closing Connections.................................17

1.1.2 User Datagram Protocol (UDP)...22

1.1.3 Internet Protocol (IP)..23

1.1.3.1 Internet Protocol version 4...24

1.1.4 Internet Control Message Protocol (ICMP)..........................26

1.1.4.1 Destination Unreachable Message.............................26

1.1.4.2 Echo or Echo Reply Message......................................28

1.1.5 Internet Protocol version 6 (IPv6)...29

1.1.7 Summary...30

1.2. Scanning Techniques..31

1.2.1 Firewalls..33

1.2.2 Port Scanning..34

1.2.2.1 A new port scanning proposal..37

1.2.3 Other TCP/IP Attacks..40

1.2.3.1 IP Spoofing (IP Hijack)...41

1.2.3.2 Address Resolution Protocol (ARP) Spoofing.................41

1.2.3.3 ICMP Attacks..42

1.2.4 Operating System (OS) Fingerprinting.................................44

1.2.5 Summary...52

Chapter 2: Tests and Experiments...53

2.1. Practical Investigation with IPv4..53

2.1.1 IPID scan...53

2.1.1.1 Scenario 1 – Confirming if Linux 2.6.x is immune to

Nmap when it is a zombie system..54

iv

2.1.1.2 Scenario 2 – Confirming if Linux 2.6.x is immune to

Nmap when it is a zombie system and it has a firewall.............56

2.1.1.3 Scenario 3 - Confirming if another Linux OS running

kernel 2.6.x is immune to Nmap when it is a zombie system....57

2.1.1.4 Scenario 4 - Confirming if Linux 2.6.x is immune to

Nmap when it is a target system..58

2.1.1.5 Microsoft Windows XP Professional IPID incremental...59

2.1.2 Other port scanning techniques..59

2.1.2.1 SYN Scan..60

2.1.2.2 UDP Scan..60

2.1.2.3 TCP Scan..60

2.1.2.4 Null Scan..61

2.1.2.5 ACK scan...61

2.1.2.6 FIN scan...61

2.1.2.7 Window scan...61

2.1.2.8 Xmas scan...61

2.1.2.9 TCP Maimon scan...62

2.1.2.10 Protocol scan..62

2.1.3 OS Detection...64

2.1.3.1 Using Nmap..64

2.1.3.2 Using Xprobe2..65

2.2. Realisation of Preliminary Countermeasures.............................67

2.2.1 Unique Linux Characteristics..69

2.2.2 Preliminary Countermeasures for Linux...............................71

2.2.3 Summary...76

2.3. Validation of Preliminary Countermeasures...............................77

2.3.1 Type Of Service...79

2.3.1.1 Nmap's Results...80

2.3.1.2 Xprobe2's Results...82

2.3.2 ICMP Echo Ignore All..84

2.3.2.1 Nmap's Results...84

2.3.2.2 Xprobe2's Results...86

v

2.3.3 IP Default TTL...87

2.3.3.1 Nmap's Result...87

2.3.3.2 Xprobe2's Results...89

2.3.4 TCP Window Scaling...92

2.3.4.1 Nmap's Output..92

2.3.4.2 Xprobe2's Results...94

2.3.5 Timestamps...98

2.3.5.1 Nmap's Results...98

2.3.6 Other modifications of the TCP/IP stack...............................99

Chapter 3: Countermeasures...101

3.1 OS Fingerprinting Tools Detection..101

3.1.1 Detecting Nmap..101

3.1.2 Detecting Other OS Fingerprinting Tools...........................107

3.2 Final Countermeasures..114

3.2.1 Type of Service Field...114

3.2.2 OS Fingerprinting Tools Detection.....................................115

3.2.3 Port 0 Disabled..116

3.2.4 Block ICMP messages...116

3.2.5 Conclusion...118

3.2.6 Future Work..121

References...122

Appendices...126

Appendix A – Protocols...126

Appendix A.1 Format of the TCP Header.................................126

Appendix A.2 Format of the IPv4 Header.................................129

Appendix A.3 Internet Control Message Protocol (ICMP).......136

A.3.1 Time Exceeded Message...136

A.3.2 Parameter Problem Message.......................................137

A.3.3 Source Quench Message...138

A.3.4 Redirect Message..139

A.3.5 Timestamp or Timestamp Reply Message...................141

A.3.6 Information Request and Information Reply Message142

vi

Appendix A.4 Internet Protocol version 6 (IPv6)......................145

A.4.1 Format of the IPv6 Header..145

A.4.1.1 IPv6 Extension Headers..146

A.4.1.1.1 Hop-by-Hop Option Header...........................149

A.4.1.1.2 Routing Header..150

A.4.1.1.3 Fragment Header...153

A.4.1.1.4 Authentication Header...................................155

A.4.1.1.5 Encapsulating Security Payload (ESP) Header

...156

A.4.1.1.6 Destination Option Header............................158

A.4.1.1.7 Upper-Layer Header......................................159

A.4.1.1.8 No Next Header...160

Appendix A.5 Internet Control Message Protocol for IPv6 (ICMPv6)

..161

A.5.1 Destination Unreachable Error Message........................162

A.5.2 Packet Too Big Error Message..164

A.5.3 Time Exceed Error Message...165

A.5.4 Parameter Problem Error Message.................................166

A.5.5 Echo Request and Echo Reply Informational Message...167

Appendix B – Scripts for firewalls..169

Appendix B.1 – Settings when firewall is disabled...................169

Appendix B.2 – Settings when firewall is enabled....................171

Appendix B.3 – Suggested Additions to firewalls.....................175

Appendix C – Results of Tests and Experiments with IPv4..........177

Appendix C.1 – Output of the Port Scanning techniques.........177

SYN Scan..177

UDP Scan..179

TCP Scan...181

Null Scan...183

ACK Scan..185

FIN Scan...187

Window Scan..189

vii

Xmas Scan...191

TCP Maimon Scan...193

Protocol Scan..195

Appendix C.2 – OS Detection..198

Nmap's Results...198

Xprobe2's Results...202

Appendix D – Installation of the OSF Module..............................206

Appendix E – Summary of Nmap Options....................................213

Target Specifications..213

Host Discovery..213

Port Scanning...214

Port Specifications and Scan Order...215

Services and Version Detection..215

Operating System (OS) Detection..215

Timing and Performance..215

Firewall / IDS Evasion and Spoofing..216

Output...217

Miscellaneous Options..218

Runtime Interaction..218

Appendix F – Summary of Xprobe version 2's Options................220

Options...220

Appendix G – Information analysed by Ethereal..........................222

Appendix H – Abstracts of Ethereal with the Xprobe2 tests

performed under IPv4..224

With Firewall Disabled...224

With Firewall Enabled..246

Appendix I – GNU General Public License...................................257

viii

Acknowledgements
A lot of help and support has been received from a number of people.

I would like to express my thanks to the following people:

● Evgeniy Polyakov for the help he provided while the tests were

performed with the OSF module. It is amazing to find somebody that

is willing to spend a large amount of their time to assist a person

with their research.

● My supervisors, Mr Luke Vorster and Dr David Erwin, as well as

all the members at the University of KwaZulu Natal, who have

guided and assisted me during the course of my research.

● My family, who have supported me during the research period,

especially to my mother who has proofread my documentations, even

though at times it must have been difficult trying to understand what

I was attempting to convey.

● Finally, to Jesus Christ my saviour, who has helped me in all the

research, problems, achievements and results. Without him, I will

not have been able to complete any of my life tasks.

ix

Overview

A synopsis of the events that took place in this project are:

1. A broad investigation into security notions pertaining to common

computer security threats. For example, email spamming, password

guessing, computer viruses, computer intrusion, and social

engineering. The investigation covered well-known techniques and

related countermeasures.

2. Gained awareness and deeper understanding of data

communications and networking protocols, architecture, and

implementations.

3. Acquired technical orientation within the Linux operating system in

terms of architecture, system commands, administration, and

security features. This was solidified by completing the Linux

Professional Institution (LPI) exams and acquiring the related

certification.

4. Conducted a deeper investigation of the techniques and related

countermeasures of computer hacking, with particular focus on

Linux and inter-networking vulnerabilities.

5. Investigated hacking methodologies with the intent of identifying a

specific phase that is of interest. Operating system fingerprinting

was identified as a crucial activity that would be of much value to

counteract – it is currently a nascent field.

6. Investigated the various tools and techniques currently employed

during the phase of scanning, probing, and operating system

1

fingerprinting. Determined what information an attacker receives

from a target via these methods.

7. Investigated and experimented with techniques that could be used to

modify the Linux operating system in order to prevent it from being

fingerprinted on a network.

8. Investigated and experimented with the Linux firewall (iptables), its

configuration, and its modules that are currently available to aid

preventing or deterring fingerprinting techniques.

An outline of the content of the dissertation is as follows:

1. Should the reader have little knowledge on the subject, the

dissertation begins with an introduction to the domain of the project.

This includes a background to data communications, information

security, and a discussion that highlights the significance of this

research.

2. An overview of computer network architectures and relevant

networking protocols is provided as this knowledge is required to

understand the hacking techniques relevant to this project.

3. The techniques applied by operating system fingerprinting tools,

particularly the popular Nmap and Xprobe2 applications, is provided.

4. The results of tests and experiments that were performed with the

tools is presented.

5. The characteristics that make it possible for scanning and probing

tools to fingerprint the Linux operating system is discussed.

2

6. A preliminary set of countermeasures is proposed. These

countermeasures primarily involve the modification of

characteristics, identified in the previous section, of the TCP/IP

stack. The results of investigating these countermeasures is also

presented.

7. Various techniques employed by operating system fingerprinting

tools can be detected by the target system, thus providing an

opportunity for reactive countermeasures. These techniques are

discussed and the results of experimentation performed when these

techniques are applied is also presented.

8. The dissertation concludes with a final list of valid countermeasures,

presented in order of significance, and a brief outline of further work

that should be undertaken as a result of the results of this project.

3

Introduction

The primary reason for a communication system is the exchange of

information between two parties. Communication systems are so deeply

ingrained into modern life that we almost take them for granted. As a

result of an ongoing need for more efficient and capable communication

systems, the fields of computer science and data communications merged

during the 1970s and 1980s. Networking is a resulting field that concerns

itself with the technology and architecture of the communication systems

used to interconnect communicating devices. The emergence of this field

had a radical impact on technology, products, and companies of the

computer industry. [Stallings 2004a]

Most computer networks are, by nature, shared resources used by many

applications for many different purposes. Sometimes the data transmitted

between applications is confidential. In these situations, security measures

are applied to restrict access to the information while it is being exchanged

via the data transmission system. Access restrictions are also applied to the

information while it is being stored on the computers themselves. [Peterson

2003] One of the more undesirable side-effects of using shared computer

networks, such as the Internet, for the exchange of confidential information

is the ever growing security threat that confidential information can be

stolen.

By the nature of the fact that more and more computing resources can be

utilised remotely, there is another equally significant and increasing

security threat – computing resources can be hijacked, or vandalised.

Security experts accept that it is an ongoing battle to secure an information

system – an information system has to provide at least some access to

itself, and the information on it, in order to be of any use. This access can

be obtained by garnering security information, such as access passwords,

from valid users of the system. Passwords can be bought, stolen, or

4

managed carelessly. The system could also have flaws, or bugs, that make it

vulnerable to other forms of attack. Security experts work in a grey area,

only ever able to answer the question: is it secure enough? [Schneier 2000]

Information security is a volatile field, particularly in the context of data

communication networks. Computer technology progresses exponentially

over time, according to Moore's Law, and techniques for exploiting these

technologies are realised at an equally alarming rate.

Some examples of security exploits, obtained from a news survey [Schneier

2000], that occurred over a period of just one month – March 2000 – are:

● The SalesGate.com website was broken into. Almost 3000 customer

records, including credit card numbers and personal information,

was stolen.

● Convicted criminal hacker Kevin Mitnick testified before Congress.

He told them that social engineering is a major security vulnerability.

He said he can often obtain passwords and other secrets just by

pretending to be someone else and asking for the information.

● Pierre-Guy Lavoie, 22, was convicted in Quebec of breaking into

several Canadian and US government computers. He served 12

months in prison.

● Japan's Defense Agency delayed the development of a new defense

computer system after it was discovered that the software had been

developed by members of the Aum Shinrikyo cult.

● An email virus, or worm, called Pretty Park, spread across the

5

Internet. It was not the first of its kind – it spreads automatically by

sending itself to all the addresses listed in the user's Outlook

Express address book.

● Guiseppe Russo and his wife, Sandra Elazar, were arrested in Sicily

after stealing about 1000 credit cards on the Internet.

● A hacker, a.k.a. 'Coolio', denied launching massive denial-of-service

attacks in February 2000. he admitted to hacking about 100 websites

in the past, including cryptography company RSA Security and a

website belonging to the US State Department.

● Attackers launched a denial-of-service attack on Microsoft's Israeli

website.

● Jonathan Bosnak, a.k.a. 'The Gatsby' was sentenced to eighteen

months in prison for hacking into three separate telephone company

systems.

● The military of Taiwan announced that it had discovered more than

7000 attempts by Chinese hackers to enter the country's security

systems.

Some examples of software vulnerabilities discovered [Schneier 2000]

during that same time period of March 2000 are:

● A vulnerability was discovered in the Microsoft Internet Explorer 5.0

that allows an attacker to set up a web page giving her the ability to

execute any program on a visitor's machine.

6

● By modifying a URL, an attacker can completely bypass the

authentication mechanisms protecting the remote management

screens of the Axis StarPoint CD-ROm servers.

● If an attacker sends a Netscape Enterprise Server 3.6 a certain type

of long message, a buffer overflow crashes a particular process. The

attacker can then execute arbitrary code remotely on the server.

● It is possible to launch a denial-of service attack that Internet

Security System's RealSecure Network Intrusion Detection software

fails to detect.

● By sending a certain URL to a server running Allaire's ColdFusion

product, an attacker can receive an error message giving

information about the physical paths to various files.

● Omniback is a Hewlett-Packard product that performs system

backup routines. An attacker can manipulate the product to cause a

denial-of-service attack.

● By manipulating the contents of certain variables, an attacker can

exploit a vulnerability in DNSTools 1.0.8 to execute arbitrary code.

● If you send a long login name and password, even an incorrect one,

to BisonWare's FTP Server 3.5, it will crash.

Any two points on the Internet are adjacent, regardless of geographical

location. Attackers can choose a country with weaker computer crime laws

to base their operations. Internet attackers don't have to be anywhere their

target. This has enormous security implications and, therefore, was chosen

7

as the general area to investigate in this research project. A security officer

of a computer on the Internet has to worry about all the computer

criminals in the world. The global nature of the Internet also complicates

criminal investigation and prosecution. It is often unclear how to go about

prosecuting a computer criminal in many cases – due to a lack of political

borders on the Internet, it is unclear who should police it.

Hacking remote computer systems is considered illegal in most countries.

In some countries, such as the U.S.A. and Singapore, the use of hacking

techniques are considered analogous to using munition. Therefore, the

techniques like those investigated in this project are closely guarded by

those who use them. Hackers generally do not want their identities known,

nor their hacking exploits publicised. Some, however, have been caught,

convicted, and exposed to the public in the process. Others have changed

their profession. For example, Dr. K is a hacker that does not want his real

name known. He started the Phreak/Hack – United Kingdom (P/H-UK) e-

zine and now works as a computer networking and security specialist.

There are some “purist” hackers, that release software tools that

implement their techniques for others to study. There are also some

hackers that seek acknowledgement from their peers by releasing

automated versions of their techniques in the form of software tools called

'exploits'. These tools are usually proof of the techniques they employ, but,

on the darker side, they are often intended to be used by others. Hackers

tend to proliferate their techniques by sharing with each other.

There is, therefore, not much pertinent academic literature available on the

specific topic of research, apart from documents written by the authors of

specific tools and the odd turned-professional such as Dr K. Regarding the

public arena, many security professionals and researchers who do publish

their work merely repeat the above-mentioned documents when covering

the topic of this research project.

Port scanning is one such set of techniques. Port scanning, or probing,

8

techniques are used to determine which services are running on a remote

system and, more importantly, whether the services are in the listening

state or not. These listening services, or open ports, are the entry points for

networked applications, such as web browsers and email clients, to make

use of the services on a remote system.

Port scanning techniques are used by system administrators to test and

troubleshoot their networked systems, so there are many benign tools

available for this purpose. Port scanning is a double-edged sword, however,

because similar techniques are also used by hackers to gain information

about systems they have become aware of and want to target. Open ports

are, therefore, also the entry points attackers use to penetrate vulnerable

systems.

For example, if an attacker knows which services, and which version of

those services, are running on a target system, then an attack strategy to

penetrate the target can be formulated. This is because software vendors

and engineers publish the vulnerabilities of specific versions of services

they produce or use. A mailing list that addresses issues experienced in

using a particular vendor's product is a common place to begin this type of

research. An attacker needs no more than one exploitable service to

compromise a system.

For an attacker, there is far more valuable information to be gained by port

scanning than simply determining which version of which services are

running on a target. A subset of port scanning techniques, known as

operating system fingerprinting, involves determining the type and version

of the operating system employed by a target. This information is valuable

for an attacker because operating systems have vulnerabilities too, and it

is, in fact, the operating system that will ultimately be compromised if an

attack is successful. In this regard, services are merely gateways to the

operating system, and many successful attacks have been achieved through

exploiting a combination of a service vulnerability, to gain remote entry to a

9

system, and an operating system vulnerability.

An example of a hacker that used port scanning techniques in successful

attacks is Kevin Mitnick. He was convicted for theft of documents and

manuals from PacBell (1982), breaking into Digital Equipment Company's

network (1998) and stealing credit card numbers from Netcom (1995) (Dr

K 2000).

Examples of known attacks that can be performed once the open ports of a

target system is known, are: Project Loki (daemon9 1996), ping flooding

and IP spoofing, to name a few. With regards to operating system

fingerprinting, examples of known attacks that can be performed on a

fingerprinted operating system are described by McClure et. al. (2005)

It is vital for system administrators and individuals to countermeasure port

scanning techniques as this could deter attackers from subsequent stages

of their attack strategies or, even better, prevent attackers from

formulating strategies altogether (due to a lack of sensitive information

about target systems). Failure to provide scanning countermeasures could

result in considerable loss. For example, the infiltration of important and

confidential information, the corruption of data, and, in the worst case, loss

of control of mission-critical systems such as medical or military systems.

Recall that system administrators use port scanning tools and techniques

for testing and troubleshooting their networks. Though malignant port

scanning must be counteracted, and ideally prevented, system

administrators might find a secondary value in the techniques presented in

this project – seeing their systems from the perspective of an attacker is

the best way to determine the vulnerabilities and, therefore, the

countermeasures they need to apply to secure their systems as much as

possible. Once suitable countermeasures have been applied, the same

scanning, probing, and fingerprinting techniques can then be used to

10

validate the effectiveness of those countermeasures.

For the reasons mentioned above, this research project is justified as a

valuable contribution to the ongoing endeavour of keeping up with the

vulnerabilities and resultant dangers we expose ourselves to as we advance

our networked computing technology.

11

Chapter 1: Protocols and Techniques

For information exchange between two systems to occur, they must be

interconnected directly or via a communications network. A

communications model is typically comprised of the following elements

[Stallings 2004a]:

● Source – The device that generates data to be transmitted.

● Transmitter – The device that transforms and encodes the data so

as to produce a signal that can be transmitted across some sort of

transmission system.

● Transmission System – A single transmission line or a more

complex network of transmission lines that ultimately connect the

source and destination.

● Receiver – Accepts the signal from the transmission system and

decodes it into a format that can be processed by the destination

device.

● Destination – Receives the transmitted data.

Apart from the data to be transmitted, some additional data is required to

allow for the communication to take place. The source, transmission

system, and destination devices must perform other tasks [Stallings

2004b]:

● The source system must notify the communication network of the

identity of the destination system.

12

● The source system must be sure that the destination system is

prepared to receive data.

As a result, special information regarding the data must be added in a

specific order with the data sent. An agreement that specifies the format

and meaning of messages computers exchange is known as a

communication protocol [Comer 2004].

Port scanning, probing, and fingerprinting involves the analysis of

information about remote systems. This information is in the format

specified by network protocols used on computer networks. The next

section introduces network architecture and the various protocols that are

significant in the context of this project. Scanning, probing, and

fingerprinting techniques are then introduced.

1.1. Protocol Architecture

A layered protocol architecture is needed to allow for the development of

standardised network technologies. [Stallings 2004a] The advantage of the

layered approach is that the protocols of each layer are easy to manage

and maintain in isolation. The lower layers can be changed without

affecting the upper layers. For example, the layers that comprise

internetworking technology, the architecture of the Internet, can be

deployed on a wide variety of communication systems. Similarly, the upper

layers can also reuse the functionality provided by the lower layers. For

example, for most communication systems, three are a number of protocols

that can be transmitted through them.

The OSI model and TCP/IP stacks are the two main layered architectures

that are investigated in this project. OSI is an architecture model, while the

TCP/IP stack is an implementation that happens to have a lot in common

13

with the OSI model, even though they were developed independently.

TCP/IP is the network architecture that enables the Internet.

A comparison of the two architectures and their corresponding layers is

depicted in Figure 1.

Figure 1 – Comparison of the OSI and TCP/IP Architectures

The layers that are focussed on in this project are the Transport, Internet

and Network Access layers of TCP/IP stack.

1.1.1 Transmission Control Protocol (TCP)

Most of the information in this section has been taken from RFC 793

(Postel 1981a), which deals with the TCP protocol.

The TCP protocol corresponds with the Transport layer in Figure 1.

Presentation

Application

Session

Transport

Network

Data Link

Physical

OSI

Application

Transport
(host-to-host)

Internet

Network
Access

Physical

TCP/IP

14

Applications that utilise the TCP protocol interact with the TCP stack. The

TCP stack is a software module that interacts with the operating system.

The operating system, in turn, interacts with the software driver of the

network interface card (NIC). The NIC is directly connected to a local area

network (LAN).

TCP is a connection-oriented end-to-end protocol. It is designed to be as

reliable as possible, and achieves this reliability by providing transmission

flow-control functionality. When a packet is transmitted a copy of the

packet is put into the re-transmission queue and a timer is started. If an

acknowledgement is not received after a specified time, then the packet is

re-transmitted. It should be noted, though, that even if an

acknowledgement is received within the time-window (the TCP layer has

done its part), the packet has not necessarily been delivered to the other

end of the connection. The format of the TCP packet header is presented in

Appendix A.1. The TCP window is an indication to the sender as to the

amount of data it can send to the receiver before the receiver's buffer

overflows. As a result of the TCP stack reporting the window value, flow-

control can be achieved by the sender. The window notifies the sender as to

how many octets, starting with the acknowledgement number of that

packet being sent, the receiver is willing to receive.

A TCP connection is a two-way connection – both hosts must establish their

own end. This is achieved with the exchange of three messages, known as

the three-way handshake, as depicted in Figure 2. The system that wants

to initialise the connection (A), transmits a TCP packet with the

synchronise (SYN) control flag set to 1. This is the first message. The

receiving system (B) acknowledges the reception of the SYN packet from A

and requests to initialise its own end of the connection. Therefore, the

packet that is sent by B in response to A has both the SYN and

acknowledge (ACK) control flags set to 1. This is the second message. A's

end of the connection is established upon receipt of the second message.

Finally, A sends a packet to B with the ACK control flag set to 1. This is the

third message. B's end of the connection is now also established. To close a

15

connection, a similar protocol is employed, only the FIN control flag is used

instead of SYN.

1.1.1.1 Sequence Number Field

The purpose of the sequence number is to confirm, in an

acknowledgement, that all packets from the most recently confirmed

packets up to, but not including the most recently sent packet, have been

successfully received. This is done via an acknowledge packet. Once an

acknowledgement of a packet has been received, the copy in the re-

transmission queue can be removed. The sequence number also identifies

the order that incoming packets should be processed. This field cycles from

0 to 232-1 and therefore all arithmetic is done modulo 232.

The sequence number of the sender differs from that of the receiver.

Therefore, the sender needs to notify the receiver of its initial send

sequence number (ISN) and the receiver needs to notify the sender of its

ISN. The initial receive sequence (IRS) number is the ISN sent by the

receiving computer (system B in Figure 2). Once the sequence number of

the other host has been received, the sequence number of that host must

be confirmed. This process is explained in Figure 2, where A and B are

considered to be separate systems.

The three-way handshake is needed as hosts are not synchronised and

might have different ways of generating the ISNs.

16

Figure 2 – A description of the “Three-way handshake”

1.1.1.2 Opening and Closing Connections

The establishment of a TCP connection is based on the three-way

handshake, as shown in Figure 2. Figure 3 elaborates on this, considering a

situation where system B received an old packet that was still floating

around in the network, after system A crashed. The initial state of system A

is closed and system B is listening. After step 5 in Figure 3, the sequence of

steps 2 to 3 in Figure 2 will occur.

This situation does not usually occur, as an engineering estimation has

been made that a system should be connected to a network after it has

crashed after a delay time of 2 minutes (Postel 1981a). The time that a

packet lives is considered to be less than this delay value.

Step 1: A B

Description of data being
sent

Step 2: A B

Step 3: A B

System A sends a packet
with SYN flag to system B,
notifying system B of it's
ISN.

System B sends system A a
packet with ACK flag,
confirming system A's ISN,
and a SYN flag, notifying
system A of its ISN.

System A sends system B a
packet with ACK flag,
confirming system B's ISN.

17

Figure 3 – The initial stages when an old packet is received

A similar situation occurs in the event of a system that crashes. A crashed

system is one that does not respond due to an abnormal event that has

occurred. In this scenario, the crashed system or the related daemon on

the system might have to be restarted before subsequent connections can

be established.

Step 1: A B

Description of data being
sent

System A sends a SYN
packet to system B with a
sequence number with a
value of 100.

Step 2: A B

...

...
System B receives a SYN
packet from system A that
has a sequence number
with a value of 90.

Step 3: A B

System B replies to system
A with a packet that has a
sequence number of 300,
and acknowledges that it is
expecting the next packet
from system A to be one
with sequence number 91.

Step 4: A B

System A recognizes that
there must be an error, as
system B is not awaiting
the same sequence number
that system A is willing to
send, and therefore a RST
packet is sent to system B,
putting it back into a
listening mode.

Step 5: A B

System B eventually
receives the original SYN
packet from system A that
has a sequence number
with a value of 100.

...

18

If system A crashes (assuming that the daemon of the TCP control in

system A had to restart), then system B is still under the impression that it

has an established connection to system A. System A then sends a SYN

packet to system B, in which instance system B will ignore it, as it is

already connected to system A. System B continues to send data from the

prior connection, but system A will realise something is wrong as it is

expecting a SYN/ACK packet acknowledging the sequence number it has

sent recently. System A responds to system B with an RST packet, which

closes the connection with system B, and a new connection is established.

This is known as a half-open connection.

Other scenarios can occur other than the example shown above. According

to RFC 793 (Postel 1981a) all scenarios have to follow the rules as to when

an RST packet is generated. These rules are not always obeyed as some

operating systems don't follow them. RST packets are sent in the following

conditions:

● If the connection does not exist, and packets are received from a

system.

● Should the ports that the receiving SYN packet is trying to connect

to be closed.

● The receipt of an ACK packet without establishing the connection. As

seen later in the document, these rules are not always obeyed as

some operating systems don't follow them for either security or

ignorance reasons.

● The receipt of an ACK packet that has a different sequence number

than that expected.

19

● If there is an unacceptable level in security, precedence or

compartment. This could involve a user trying to login to a system,

but they do not have rights to that system, or an incorrect password

has been entered.

If an RST packet is sent after a sequence number has been initiated, then

the sequence number of the RST packet is taken from the

acknowledgement field of the incoming packet, otherwise the sequence

number is taken to be zero.

The RST packets are validated by checking the sequence number of the

packets. Once the RST packet is confirmed to be valid and the system is in

the listen state, it ignores it. Should it be in a SYN-received state (from a

prior listen state) the system should return to a listen state, otherwise the

system changes to a closed state.

A connection is closed when no further data is needed to be transported

between two systems. On closing a connection, an action similar to the

three-way handshake is implied.

This is illustrated in Figure 4. System A and system B have a connection

established between them. System A is currently on a sequence number

with a value of 99 and system B is currently on a sequence number with a

value of 299. In Figure 4, step 2 and step 3 is often combined into a single

step.

The TCP protocol and previous examples explain the basic communication

process that occurs in a network.

20

Figure 4 – Closing “three-way handshake”

TCP is one of the commonly used protocols in port scanning and probing

techniques.

Step 1: A B

Description of data being sent

System A wants to close the
connection, and goes into the
FIN-WAIT-1 state. A FIN/ACK
packet is sent from system A to
system B that has a sequence
number of 100 and
acknowledges that it is waiting
for a packet with a sequence
number with a value of 300.

Step 2: A B

System B goes into the CLOSE-
WAIT state on reception of FIN
packet, and replies with an ACK
packet (that has a sequence
number with a value of 300) that
acknowledges that it is waiting
for the reception of packet 101.
System A goes into FIN-WAIT-2
state on receipt of the packet.

Step 3: A B

System B is ready to close and
goes into a LAST-ACK state and
therefore sends a FIN/ACK
packet with a sequence number
to system A with a value of 300,
and acknowledges that it is
waiting to receive a packet with
a sequence number with a value
of 101.

Step 4: A B

System A goes into the TIME-
WAIT state and sends an ACK
packet to system B with a
sequence number that has a
value of 101, and acknowledges
that it is ready to receive a
packet with a sequence number
with a value of 301. System B
closes on reception of this
packet, in which system A then
closes after twice the time of the
maximum packet lifetime.

21

1.1.2 User Datagram Protocol (UDP)

It must be noted that most of the information in this section, has been

taken from RFC 768 (Postel 1980), which deals with the User Datagram

Protocol.

The UDP protocol corresponds with the Transport layer in Figure 1. UDP is

a connectionless protocol. It is mainly used for sending messages that are

not guaranteed to be delivered. It has therefore no flow and congestion

control. The format of the UDP packet is shown in Figure 5.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Source Port Destination Port

Length Checksum

.

Data Octets

.

Figure 5 – UDP packet format

Source Port (16 bits): This field is used should a reply be needed to be

sent to it. If this field is not needed, it has a value of zero.

Destination Port (16 bits): This specifies the port that the packet is

being sent to of the destination address.

Length (16 bits): This field specifies the length of the datagram, including

the length of the header and the data, in terms of bytes.

Checksum (16 bits): This is the one's complement of the one's

complement of the sum of the pseudo header, the UDP header and the

22

data. The pseudo header prevents against misrouted datagrams. The

checksum procedure is the same as in TCP. The format of the pseudo

header is shown in Figure 6.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Source Address

Destination Address

Zero Protocol UDP Length

Figure 6 – UDP Pseudo Header

Data Octets (variable length): This field is padded with zeroes to make it

a multiple of two bytes.

UDP is one of the commonly used protocols in port scanning and probing

techniques.

1.1.3 Internet Protocol (IP)

The TCP and UDP protocols both rely on the Internet Protocol (IP). The IP

protocol corresponds with Internet layer in Figure 1. The reason for having

this layer is to allow data to be propagated from one network to another.

This concept is often referred to as inter-networking and is the key

architectural layer that enables the Internet itself.

The popular IP versions that are currently being used are the Internet

Protocol version 4 (IPv4) and Internet Protocol version 6 (IPv6).

23

1.1.3.1 Internet Protocol version 4

It must be noted that most of the information in this section, has been

taken from RFC 791 (Postel 1981b), which deals with the Internet protocol.

This version of IP is still used widely around the world. IPv4 has a 32-bit

address space, meaning that there are 232 IP addresses that can be

assigned world wide.

The purpose of the IP protocol is to move packets between hosts in an

interconnected set of networks, taking into account that the packets are

limited in size. Therefore, two key functions of the Internet Protocol is

addressing and fragmentation.

The higher layers of the TCP/IP stack are responsible for associating the

names of the destination with its unique address. These addresses are

included in the header of the IP protocol, and the routers and gateways on

the network direct the packets to the correct destination.

With Network Address Translation (NAT), a gateway is assigned an IPv4

address. Should a packet be received, the gateway determines which

system in the private network requested information from that host, and

sends that packet to that system.

Even though NAT is a fast and cost effective solution of giving many

computers access to the restricted Internet public address range, it has

some problems. One of these problems is that it violates certain IP security

mechanisms that rely on IP addresses, since the IP address has effectively

been spoofed. As a result of this, many network services will not run

through a NAT gateway (Burgess 2006). This is not always effective

because many users have the same IPv4 addresses as seen from the

Internet, which restricts some users to some servers.

24

The masquerading of packets is a similar process to NAT, but instead of

altering only the IP layer, the TCP layer is also altered, resulting in a new

port number being assigned at the gateway. In so doing, two systems

behind the NAT gateway will be able to communicate to other systems on

the Internet, referring to the same port number. With masquerading, the

gateway will also alter the port number of the source to a higher unused

port number internally (as well as change the address of the source).

The format of the IPv4 header is discussed in Appendix A.2.

IPv4 has the option of having packets fragmented during transmission.

Fragmentation allows larger packets to be divided into smaller size packets

(not necessarily equal in size). The primary reason for packet

fragmentation is that data might have to traverse many networks to get

from source to destination, where the maximum transmission unit (MTU)

size may differ from one network to another.

There is, however, a Don't Fragment (DF) flag that can be set in the packet,

and should a node not be able to deliver it, it is simply discarded. In this

scenario an ICMP error message is returned to the sender. These

fragments are controlled by setting the identification field to be the same

for the fragments of that packet, therefore preventing the fragments of

different packets from being mixed. The More Fragment (MF) flag is set

when subsequent fragments are still expected. In the case of the last

fragment of a packet, the MF is set to a value of zero.

25

1.1.4 Internet Control Message Protocol (ICMP)

Most of the information in this section has been taken from RFC 792

(Postel 1981c), which deals with the Internet Control Message Protocol.

ICMP acts as if it is a higher-level protocol than IP, but it is actually part of

the IP protocol. It provides feedback about problems that have occurred on

the network. It should be noted, however, that these messages are not

necessarily sent in the event of an error.

Should an ICMP message be sent, it is indicated in the Protocol field in the

IP packet header, which will have a value of 1. There are basically eight

different formats for an ICMP packet, each for different types of message.

The 32 bit unused field is not used for all the code values, and should be

set zero by the sender. The receiver should ignore this field.

1.1.4.1 Destination Unreachable Message

These messages are sent when a packet is not sent successfully to the

destination.

The format of the Destination Unreachable Message ICMP is shown in

Figure 7.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Type Code Checksum

Unused

.

Internet Header + 64 bits of Original Data Datagram

.

Figure 7 – Destination Unreachable Message ICMP

26

The fields in the Destination Unreachable Message ICMP has the following

functions.

Type (8 bits): The value of this field is 3.

Code (8 bits): The code has the following values for the respective

message:

0 = Net unreachable

1 = Host unreachable

2 = Protocol unreachable

3 = Port unreachable

4 = Fragmentation needed and DF set

5 = Source route failed

Codes 0, 1, 4 and 5 are usually received from a gateway. Codes 2 and 3 are

usually received from a host.

Checksum (16 bits): The value of this field is the one's complement of the

one's complement sum of the ICMP message starting with the ICMP Type

field. For the calculation of the checksum, the checksum field is taken to be

zero.

27

Internet Header + 64 bits of Data Datagram: Should the higher level

protocol use a port number, it is then taken as part of the first 64 data bits

of the original packet's data.

1.1.4.2 Echo or Echo Reply Message

In the event that an Echo Message ICMP is sent to a host the host replies

with an Echo Reply Message ICMP. Should the host reply with an Echo

Reply message, then the Identifier and Sequence Number field should be

the same as that of the Echo Message.

The format of the Echo and Echo Reply Message is shown in Figure 8.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Type Code Checksum

Identifier Sequence Number

.

Data

.

Figure 8 – Echo and Echo Reply Message ICMP

The fields in the Echo and Echo Reply Message ICMP has the following

functions.

Type (8 bits): The value of this field is 8 for echo messages and 0 for echo

reply messages.

Code (8 bits): The code field has a value of 0 for both type of messages

and are usually sent by either a host or a gateway.

28

Checksum (16 bits): The value of this field is the one's complement of the

one's complement sum of the ICMP message starting with the ICMP Type

field. Should the total length be odd, then an extra byte of zeroes is added.

For the calculation of the checksum, the checksum field is taken to be zero.

Identifier (16 bits): Should the code be equal to zero, then an identifier

to aid the matching request and reply messages may be zero. Otherwise,

the Identifier field of the Echo Reply message must be the same as that in

the Echo Request message field.

Sequence Number (16 bits): Should the code be equal to zero, then an

identifier to aid the matching request and reply messages may be zero.

Otherwise, the Sequence Number field of the Echo Reply message must be

the same as that in the Echo Request message field.

The other ICMP formats are discussed in Appendix A.3.

1.1.5 Internet Protocol version 6 (IPv6)

As IPv6 has many security features added to it, further investigation is

needed to determine if it will function as a countermeasure for port

scanning.

Most of the information in this section has been taken from RFC 2460

(Deering & Hinden 1998), which deals with the Internet protocol version 6.

The changes from IPv4 to IPv6 are that IPv6 has expanded address

capabilities, header format specifications, improved support for extensions

and options, flow labelling capability and authentication and privacy

capabilities. Although IPv6 increases the address space, it is not widely

used due to the fact that people are either not affected by this constriction

29

or that most networks use Network Address Translation (NAT).

IPv6 has IP addresses that are 128 bits in length. This results in over 3.4 x

1032 addresses that can be assigned to computers.

The formats of the headers and extension headers are discussed in

Appendix A.4.

As ICMP is considered as part of the IP, this is different in the case of IPv6.

More details of ICMPv6 are discussed in Appendix A.5.

1.1.7 Summary

The information presented in this chapter provided an adequate

introduction to network architectures and protocols. Concepts of NAT, IP

Masquerading and packet filtering were also introduced. Finally, how the

Linux operating system provides these facilities was discussed. This is of

interest in the context of the scanning and probing techniques introduced

in the following chapter.

30

1.2. Scanning Techniques

An anatomy of a hack is described by McClure (McClure et al. 2005) as

shown in Figure 9.

Figure 9 – Anatomy Of A Hack

Footprinting

Scanning

Enumeration

Gaining
Access

Escalating
privilege

Pilfering

Covering
tracks

Creating
back doors

Denial of
Service

Methodology Objective
Target address range, namespace
acquisition and gathering
information about the target

Identification of services listening.
Identifies the most promising point
of entry for the attacker

Attacker determines valid user
accounts and poorly protected
resources

Using the information gathered to
attempt to gain access to the system

Instead of just having restricted
rights to the system, the attacker
seeks to gain access of the complete
system

Further information is gathered to
gain access to the system as a
trusted user

Hiding any evidence from the system
administrator that access has been
gained by the attacker

Trap doors are set so that the
attacker can easily gain full control
of the system in the future

As a last resort, the attacker will use
readily available exploits to disable
the target

31

As it can be seen in Figure 9, footprinting is the first step in hacking a

system. Footprinting involves the location of the company, postal

addresses, administrators telephone numbers and the IP address that has

been assigned to them. This information is available on the from the

Internet Corporation for Assigned Names and Numbers (ICANN;

http://www.icann.org) and Internet Assigned Numbers Authority (IANA).

Not much can be done about the public viewing of these pages, apart from

restricting access to a target's network details.

Operating System Fingerprinting is part of the Scanning stage. The

attacker sends data, using some or other network protocol, to the target

system. The response from the target system is monitored and then

analysed for useful information such as the operating system, its version,

which services are running, and so on.

The Enumeration phase of the hack entails the gathering of information

such as user accounts and poorly protected resources. The resulting

information gained from the Scanning phase is used during the

Enumeration phase. Needless to say, the information gathered in the

Enumeration phase can be catastrophic to a computer network. If the

Scanning phase is countermeasured to an adequate degree, the attacker

would never reach the Enumeration phase.

The first line of defence against scanning, probing, and by extension,

operating system fingerprinting, is the network firewall. Firewalls aid the

network administrator by filtering network information at any node of the

network, including the network gateway to the Internet. The next section

will provide a simple introduction to firewalls. The remainder of the

chapter discusses the scanning, probing, and fingerprinting techniques

used by attackers at the time of writing.

32

http://www.icann.org/

1.2.1 Firewalls

A firewall is a network mechanism that separates systems from the rest of

the network by restricting the data that can pass through it, both from the

network to the protected system, and from the protected system to the

network. For example, the firewall could only allow incoming data to pass

through ports that correspond to requests made by systems within the local

network. In this sense, firewalls can be utilised as simple packet filters. We

refer to this type of firewall as a stateless firewall. Stateful firewalls,

however, are more intelligent in that they can filter data at higher levels in

the protocol architecture.

Stateful firewalls open the packets and analyse the contents before

allowing it to be processed by the system. The fields in the TCP/IP stack are

analysed to see whether they are valid, making it possible to know if it is an

erroneous packet that was received for potentially malignant or

antagonistic purposes.

The most dominant technique of packet filtering in Linux is the IPtables

statefull firewall. IPtables gives the user access to packets as they are

handed from the NIC to the operating system and, it also provides this

access at various stages of propagation through the TCP/IP stack, including

just before packets pass out of the operating system and onto the NIC.

The IPtables technology is enabled by providing a set of 'call-back' system

calls that give the programmer access to packets just before they pass into

the kernel, into the TCP stack implementation, as they propagate up the

layers of the TCP/IP stack, down the stack and, finally, just before they are

about to leave the kernel.

The result of this software architecture realises a high-level application,

called IPtables, that allows system administrators the ability to control

network traffic by setting a set of simple conditional rules that control

33

incoming and outgoing network traffic. These rules are simple because, for

the network administrator, the firewall is configured by specifying which

types of packets are allowed and which are not.

IPtables has a modular architecture, due to the lower-level system-calls it is

built with. The various modules are used to add semantics for various types

of protocols, routing features such as NAT and IP masquerading, logging

and messaging facilities, and, more interestingly, the state of packets in the

context of a known connection using a known protocol. If packets don't

make sense in the context of a particular 'conversation', an IPtables module

can detect this and take appropriate action.

1.2.2 Port Scanning

Recall that the second phase of a hack is the scanning of a system's NIC to

see which ports are listening. This could involve TCP and UDP port

scanning. It could also involve higher-level analysis such as operating

system fingerprinting. There are many types of port scanning techniques,

but the following types are the most common TCP scans (McClure et al.

2005) and are also used by Network Mapper (Nmap), as described by

Nmap's manual pages.

UDP scan: UDP scanning is usually slower and difficult than TCP scans,

but some system administrators ignore the monitoring of these ports.

Versions scans can be deployed to help differentiate between open ports

and filtered ports. The disadvantages for this scan is that it is slow and

closed ports send back an ICMP port unreachable error message.

TCP connect scan: This is a three way handshake scan, in which a SYN

packet is sent to the target from the attacker. The target replies with a

SYN/ACK packet, to which the attacker replies with an ACK packet. This

scan is easily detected by the target system. Should this scan be available,

34

it is better to use. The disadvantage, however, is that it takes longer for the

scan to be performed. Furthermore, these scans can be detected and

logged by the target system. This is one of the oldest types of scan.

TCP SYN scan: This scan is referred to as half-open. This is because a full

TCP connection is not established. A SYN packet is sent from the attacker

to the target. If a SYN/ACK packet is received from the target, it means

that the port is listening. Should a RST/ACK packet be received, it would

indicate that the port is not listening. The SYN scan is the most popular

scan because it is faster, and stealthy, as a TCP connection is never

completely established. This scan is also able to differentiate between

open, closed, and filtered ports.

TCP FIN scan: The attacker sends a FIN packet. According to RFC 793

(Postel 1981a), the target system should send a RST packet back to the

attacker for a closed port. This scan genrally effective on Unix TCP/IP

stacks.

TCP Xmas Tree scan: The attacker sends a packet with the FIN, URG and

PUSH flags set (making it look like a Christmas tree).

The PUSH control flag is activated in the packet if the nature of the packet

is such that it must be pushed immediately to the receiver. This includes all

unsent data that has not been sent from a node before the PUSH packet

has been received.

Again, according to RFC 793 (Postel 1981a), a RST packet is sent from the

target back to the attacker if the port is closed.

TCP Null scan: A packet is sent from the attacker to the target that has all

the flags turned off. According to RFC 793 (Postel 1981a), a RST packet is

35

sent from the target to the attacker if the port is closed.

The advantage of the Null, XMAS and FIN scans is that they can sometimes

penetrate certain non-stateful firewalls and packet filtering routers. These

scan types are therefore slightly more stealthy. The disadvantage of these

scans is that they cannot differentiate between open and filtered ports.

TCP ACK scan: This scan is used to map out firewall rule sets. It can be

used to determine if the firewall is a simple packet filter, which only allows

established connections (with the ACK bit set) or whether it is a stateful

firewall, which performs advanced packet filtering.

TCP Window scan: With this scan it can be determined if ports are open

and if they are filtered or not. This is due to the way the TCP window size is

reported. Different operating systems report different window sizes. With

open ports a positive window size is reported even if a RST packet is also

returned. Closed ports are known if a window size of zero is reported. Only

a small number of operating systems on the Internet give this report, so

this kind of scan cannot be reliable.

TCP RPC scan: This scan is specific to Unix systems, and is used to detect

and identify Remote Procedure Call (RPC) ports and the associated services

along with their version. This scan can also be used on a MS Windows

system on port 445 instead of port 111 on Unix systems.

Maimon Scan (Maimon 1996): Maimon indicates that this is a “Stealth

scan” as the SYN flag is not set. It uses two methods. The first method is

that a packet with the FIN and ACK flags set are sent. An RST packet will

be returned from the target if the port is open, otherwise nothing will be

received. The other method is to send an ACK packet, and if the TTL value

of the received RST packet is different to that of the other packets

received, then this is an indication that the port is open.

36

For all the scanning methods mentioned above, the target system is able to

determine who is performing the scans against it. This is achieved by

identifying the system with the same IP address that is scanning the target

system on different ports and protocols. Furthermore, this traffic is usually

logged. In this event, the system administrator can block any

communication with this IP address.

Countermeasures for these scans are available (an example is Psionic

PortSentry (www.psionic.com/abacus) from the Abacus project), that

detects and responds to the attack. A response to this attack could be to set

filtering rules that will not allow the attacker's unique IP address to have

access to the system (Postel 1981a). This is not always reliable as the

attacker could modify it's IP address for the time period that the scans have

been performed, making it possible to continue with the attack. The

attacker could also perform a 'denial of service' (DoS) attack with spoofed

packets.

The most common and secure countermeasure is to disable all ports and

services of the system that are not needed. This countermeasure is

probably not the most convenient countermeasure as some open ports will

still be needed for effective communication across a network. Another

countermeasure that could be implemented is to set filtering rules and

allow only selected systems with their specific IP addresses to

communicate with it. This will work for situations where a user can dial

into the system and then login.

1.2.2.1 A new port scanning proposal

A new type of scanning technique has been invented by Antirez

(http://www.kyuzz.org/antirez/), which is known as the basic IPID scan

technique. This scanning method is also known as the Stealth, Blind or Idle

scan. It works on the concept that there are three computer systems. The

Attacker, the Target and the Zombie. The zombie system can be any

37

http://www.kyuzz.org/antirez/
http://www.psionic.com/abacus

computer system on the network that is idle. The IPID scan is described in

Figure 10.

Figure 10 – IPID scan process

The IPID scan operates on the idea that the attacker monitors the IPID (the

IP Identification field) of the packets received from the zombie system. The

condition that must be observed, is that the zombie system is idle, i.e. it is

not actively sending packets over the network.

The attacker sends a SYN packet to the zombie system, which returns a

SYN/ACK packet, which has an IPID value of x. The attacker then is faced

with two scenarios.

(A)ttacker (Z)ombie

SYN

SYN / ACK

IPID = x

(A)ttacker (T)arget

(Z)ombie (T)arget

(A)ttacker (T)arget

(Z)ombie

SYN from Z SYN from Z

RST

Target Port Open Target Port Closed

SYN/A
CK

RST

IPID = x+1

(A)ttacker (Z)ombie

SYN/ACK

RST

IPID = x+2

(A)ttacker (Z)ombie

SYN/ACK

RST

IPID = x+1

38

The first scenario occurs when the port is open on the target system. The

attacker sends a spoofed packet to the target, in which the destination

address is that of the target system, but the source address is that of the

zombie system. Since the port is open, the target system sends a SYN/ACK

packet to the zombie system. The zombie system did not establish a prior

connection to the target system, therefore it will reply with a RST packet

which will have an IPID of (x+1). The attacker then again sends a SYN

packet to the zombie system, which then replies with a SYN/ACK packet

that has an IPID value of (x+2).

The other scenario is if the port is closed on the target system. The

attacker sends a spoofed packet to the target, which has the destination

address of the target system, but the source address is that of the zombie

system. As the port is closed, the target system sends a RST packet to the

zombie system, to which the zombie system does not react. The attacker

then sends a SYN packet to the zombie system, which then replies with a

SYN/ACK packet that has an IPID value of (x+1).

The attacker knows if the specific port of the target system is open if the

difference in IPIDs is 2, otherwise it is closed should the difference of the

IPIDs be 1.

The advantage of the IPID scan is that the target system has no records

that the attacker is trying to do a port scan on it. The target system thus

has only records of the zombie system scanning its ports, and therefore can

set filtering rules to block any communication with the zombie system.

Another advantage is that the attacker can use a zombie system that the

target system trusts. In this case, the target system won't mind if scans are

done from the trusted system, allowing the attacker to do a thorough scan

without being interrupted.

39

This well designed scanning method so impressed Gordon Lyon, also

known as Fyodor (a hacker) that he programmed this scanning method in

his popular program Network Mapper, also commonly known as Nmap.

The IPID scan does not work on zombie systems running OpenBSD and

Linux kernel 2.4.x, as the IPID values are sequential. This is discussed in

section 1.2.4 Operating System (OS) Fingerprinting.

According to Fyodor (http://www.insecure.org/nmap/idlescan.html) there

are challenges with the IPID scan. Scanning the ports one at a time could

take a lot of time. Another challenge is that, should the zombie be a non-

idle host, then this will make it difficult to scan for open ports. The solution

is to either use another system as the zombie system, or as Fyodor has

done in Nmap, to rescan for open ports should the IPID increment be

greater than two for each port.

Another challenge for IPID scanning is egress filtering done by the Internet

Service Provider or ISP (e.g. the ISP checks to see if the packet being sent

from it actually comes from a valid system in its network). To bypass this,

one could either try another ISP, or use IP tunnelling. Another method is to

use a zombie system that is in the same network resulting in the ISP

sending the spoofed packet.

Since the attacker does not receive any packets from the target, it is

impossible to use IPID scanning for operating system fingerprinting (as

shown in section 2.3.2.2 Xprobe2's Results) of the target system.

1.2.3 Other TCP/IP Attacks

As a result of the previous discussions, the worst type of attack that uses

the TCP/IP stack is port scanning. Therefore, some attacks, described by

40

Dr. K (Dr. K 2000), that use the TCP/IP stack are discussed next.

1.2.3.1 IP Spoofing (IP Hijack)

This attack involves the attacker, a target and a trusted host that the target

is communicating with. The attacker SYN-floods the trusted host, possibly

using an illegitimate source address. At the same time the attacker sends a

SYN packet to the target. The target replies with a SYN/ACK packet with a

sequence number, making it possible for the attacker to guess of a possible

sequence number that the target is using to communicate with the trusted

host. The attacker will adjust the packets sent to the target so that the host

will believe the packets are coming from the trusted host.

The attacker then sends a spoofed SYN packet to the target with the source

address of the trusted host. The target replies to the trusted host with a

SYN/ACK packet, but the trusted host does not receive it as it's buffer is

overflowing with the SYN-flooding.

Thereafter the attacker sends an ACK packet to the target with the source

address of the trusted host and a sequence number previously guessed. If

the sequence number is correctly guessed, then the attacker can

communicate with the target and penetrate it. Similar techniques can be

used for packet alteration as described in section 1.2.2 Port Scanning.

1.2.3.2 Address Resolution Protocol (ARP) Spoofing

ARP is a protocol used to identify an unknown IP address with a system's

MAC address. ARP spoofing is the process where an attacker will send

spoofed ARP messages on the network that contain the false MAC address.

In this way the packets that were intended for a system are sent to the

attacker's system for analysis. ARP spoofing is also used for Denial of

Service (DoS) attacks, if the host becomes unreachable, and can only be

41

done on local LAN segments.

The technique of ARP spoofing makes it possible for a man-in-the-middle

attack, in which the attacker acts as a router and forwards packets

between systems. This gives the attacker the opportunity to either analyse

the packets being sent, or to alter them and send inaccurate packets to the

destination system.

1.2.3.3 ICMP Attacks

Ping Flood: A program such as Packet InterNet Gopher (PING) is used

(PING is part of “iputils” package and the latest versions are available in

source form for anonymous ftp ftp://ftp.inr.ac.ru/ip-rout ing/iputils-‐

current.tar.gz.) The UDP protocol is mainly used for this attack, even

though some versions of PING can send TCP packets. Due to the fact that

the TCP/IP stack has higher priorities than that of user programs, the user

programs will start to run slowly. This is because the processor is spending

most of it's time on the incoming ICMP Echo packets and returning ICMP

Echo Reply packets. This is more effective if a number of computers attack

a single host at the same time. Ping flooding will also reduce the available

network bandwidth to a system, resulting in the valid users of that system

to experience very slow access.

Oversized Packets (Ping of Death): When a packet is larger than 65536

bytes , and after the fragments have been combined, the buffer overflows.

With older OS such as MS Windows 3.1, MS Windows 3.11 and DOS, the

Ping of Death can be successfully achieved with packet sizes of 7999 bytes.

This can cause the system to reboot, shutdown, fail, or the kernel to start

panicking.

Destination Unreachable Message to “Nuke” network connection:

The target has an established connection with a server. The attacker then

42

sends a Destination Unreachable ICMP message to the target that has the

same source address as that of the server. The target is disconnected but

this gives the attacker an opportunity to connect to the server as the

target.

Traceroute: This is not really an attack, but it gives the attacker the

opportunity to discover the route that the packets are travelling.

Traceroute tracks the route that packets travel across a TCP/IP network to

a specified host. Since a Time Exceed ICMP packet is sent to the attacker

when the TTL value has reached zero, the attacker starts sending a packet

with a small value in the TTL field. The attacker receives these messages,

with the address of the node that sent it. Every time the attacker

increments the TTL value, the next node sends the message. If the packet

that the attacker is sending has a port number that does not exist then, as

soon as the packet has reached its destination, the target will return a Port

Unreachable message to the attacker. Since traceroute relies on the TTL

value in the IP protocol, other protocols that travel with the IP protocol

packet could also be used to route the packet path.

Bypass Firewalls: Some firewalls (depending on the configuration) don't

allow ICMP messages through, but some are allowed through for the

network to perform properly. A program like Simple Nomad's “icmpenum”

uses the Timestamp Request and ICMP Information messages to be able to

map the network behind the firewall. This will only be possible if the

firewalls are configured to allow Timestamp Request or ICMP Information

messages through.

Project Loki (daemon9 1996): The technology developed in this project

stores data inside Echo messages. It allows attackers to retrieve

information from a target that has been compromised before, with the

request of these messages and without the permission of the user of the

target system. The project's objection was initially to allow traffic between

two systems without noticing the flow of traffic between them, but it can be

43

a tool used by an attacker. This tunnelling effect might also allow packets

to bypass the firewall as described above.

1.2.4 Operating System (OS) Fingerprinting

Operating system fingerprinting is the process of detecting the operating

system of a remote target. It is done by probing – sending different

“formats” of packets and analysing the packets received is response. This

technique is considered to be part of the scanning process because it the

same technical process as port scanning techniques do.

It must be noted that most of this information is gathered from Fyodor's

paper (Fyodor 1998) as well as from Ofir Arkin's paper (Arkin 2001a).

The reason why detection of the OS of a remote system is necessary is that

when an attack is made on a system (whether it is a hacker or a system

administrator trying to audit how secure the system is), the attacker might

only have one chance of doing so. The daemon might crash and, in this way,

notify the administrator that somebody is trying to penetrate the system.

This usually only occurs when exploit code is being used.

The way that the detection used to be performed in the past was that a

telnet connection (or a similar type) was established with the system, and

the system would display a banner of the operating system running. This

was not an accurate way of detecting the operating system, as the system

administrators could either disable the display of the banner, or have the

banner display OS information that was untrue.

As mentioned before, the new way of doing the OS detection is by

analysing the packets sent back from the target system. Thus it is possible

to not only know what OS is running on the system, but the version as well.

44

According to Arkin, the techniques used by Nmap are not sufficient and

therefore ICMP based OS detection is better. Many OSs have not changed

the TCP / IP stack in the past versions and service packs, therefore making

it difficult to differentiate between them. This is where Xprobe2

(http://www.sys-security.com) uses a different approach to detect the OS.

Xprobe2 is also able to often send and receive ICMP messages as the

firewalls don't always block them. This gives the attacker the opportunity

to view packets sent from a system behind a firewall. This makes Xprobe2

different to Nmap, even though Fyodor has implemented these type of

scans in the OS fingerprinting in the later versions (as investigated in

version 4.00) of Nmap. These techniques are also discussed.

The following techniques are used to determine the OS on the system.

The FIN probe: A packet is sent to a system that either has the FIN

control flag set, or where the SYN and ACK control flags are not set.

According to RFC 793 (Postel 1981a), these packets must be ignored.

Packages such as MS Windows, BSDI, CISCO, HP/UX, MVS, and IRIX send

a RST packet in return.

IPID sampling: Most OSs increment the IPIDs for each consecutive

packet they send. OpenBSD use random values for the IPID while Linux

version 2.4.x and up use an IPID value of zero as well as having the DF

control flag set. MS Windows increments the IPID with a value of 256.

Don't Fragment (DF) bit: Some OSs set this bit while others don't.

TCP ISN sampling: This looks at the initial sequence number. The

different OSs can be classified into the following categories.

45

http://www.sys-security.com/archive/papers/X_v1.0.pdf

Table 1 – ISN values for different OS

ISN Operating System

64k Old Unix systems

Random increments Newer versions of Solaris, IRIX,

FreeBSD, Digital UNIX, Cray, etc.

True Random Linux 2.x, OpenVMS, newer AIX,

etc.

Fixed increment (Time dependant) MS Windows

Constant (same ISN) 3Com hubs, Apple Laserwriter

printers

TCP Initial Window: The monitoring of the window size of the returned

packets is done. This window size is relatively constant for each OS.

Interestingly enough, with MS Windows NT the window size used is the

same as that of OpenBSD and FreeBSD.

ACK value: Some OSs differ as to how this value is set. If a FIN/PSH/URG

packet is sent, then most OSs will set the ACK value to that of the ISN.

Unlike MS Windows and printers that don't follow RFC 793, this field will

have an incremented value of the sequence number.

ICMP Error Message Quenching: Some OSs limit the number of ICMP

error messages that are sent within a second.

ICMP Message Quoting: Most OSs send only the IP header and 8 bytes

back, while Sun Solaris returns one extra byte but Linux sends even more

bytes back. Such OSs are HPUX 11.x, MacOS 7.x-9.x and Foundary

Switches.

ICMP error messages echoing integrity: Systems have to send back

part of the original message with the port unreachable error. Often the

headers are messed up. AIX and BSDI send back the total header size to be

46

20 bytes too high, while other OSs have a total header size of 20 bytes less.

AIX and FreeBSD send back a checksum that is either not valid or with a

value of zero. Many OSs miscalculate the UDP header checksum or set it to

zero.

Some OSs don't echo the 3-bit flags and Offset field values correctly.

A program such as Nmap does nine different tests on a system and

depending on the results it receives, it determines the OS.

Type of Service (TOS): This field is usually set to zero for all OSs. Linux

has the precedence bits of the TOS field set to 0xC0. ICMP error messages

are always sent with the default TOS value of 0x0000. The ICMP echo reply

message should have the same TOS value as the ICMP request message.

TCP Options: The following options are usually sent in all packets used for

probing:

Window Scale=10; NOP; Max Segment Size = 265; Timestamp; End of Ops;

FreeBSD support all of the above options, while Linux 2.0.X only supports a

few. Linux version 2.1.X and above support all of these options. The values

of the options that are returned differ between OSs. Even if the values are

the same, the order differs. Solaris will return:

 <no op><no op><timestamp><no op><window scale><echoed MSS>

while Linux 2.1.122 will return:

47

<echoed MSS><no op><no op><timestamp><no op><window scale>

Exploit Chronology: MS Windows 95, 98 or NT don't have any differences

in the TCP stack as the TCP stack has not changed during the versions. A

way to be able to determine the version of the Microsoft OS, is to do

attacks on the system (such as Ping of Death etc.) and carry on with nastier

attacks, until the system has crashed. Each version has patched some of

these loopholes.

Another way is to use a method used by Xprobe2 that monitors the fields

and reactions that the OS performs when it receives an ICMP message.

SYN Flood Resistance: Some OS are not resistant to SYN floods, as they

can only handle 8 packets at a time. This is a useful (but not a friendly) tool

to determine the OSs of a system.

Time-To-Live (TTL): This field has a different value for ICMP query

messages and for ICMP query replies.

By combining the above results of the scans performed on a system it can

be determined what OS and version the system is running.

Xprobe2 uses an Optical Character Recognition (OCR) approach (Arkin et

al. 2003), which makes use of a matrix based OS fingerprinting. Xprobe2

monitors if the OS on the target system responds to ICMP Echo Request,

ICMP Timestamp Request, ICMP Address Mask Request and ICMP

Information Request with different bits set. The fields in the received

packets are then observed. Some of the fields are:

● IP TTL field

48

● The value in the code field

● Precedence bits

● TOS field

● TOS byte unused bit

● DF bit

● IP packet total length

● IPID

● IP Header Checksum

● UDP Checksum

● ICMP ISN

● Content offset from the ICMP header

The adding the statistical scores of the different tests performed gives a

total score that is possible to determine the OS running on the target

system. The tests performed by Xprobe2 are similar to those of Nmap,

except that Xprobe2 is only reliable on the reception of ICMP packets.

49

The approach Xprobe2 uses differentiates between Linux kernel versions

by exploiting the fact that versions 2.0.x use 64 as the initial TTL field,

while versions 2.2.x and 2.4.x use 255 for this field. Linux with a kernel

version of 2.4.x and higher has an IPID value of zero.

There are other less popular fingerprinting tools available that have been

investigated.

QueSO is an OS fingerprinting tool that uses some of the techniques that

Nmap uses. It was created by the Apostols and can be found at

www.apostols.org/projectz/queso/. Netcraft (www.netcraft.com) is a website

that surveys webserver platforms as a primary role, and consequently also

does some basic OS fingerprinting. It fingerprints in a similar basis as

Nmap but it states that the OS fingerprinting might be inaccurate if the

system has “changed the default configuration of their TCP/IP stack.”

Nessus (www.nessus.org) is a program specifically designed for network

auditing. It has the ability to do OS fingerprinting, but it uses a plug-in

from Nmap. From this, it is concluded that Nessus uses the same scanning

techniques that Nmap does.

P0f (Zalewski 2004) is a passive fingerprinting tool. It does similar checks

as Nmap does, but instead of sending packets to the target to analyse the

packets, it monitors the packets that are being received with either an

incoming or outgoing connection. This type of scanning has the

disadvantage that the attacker has to wait for a legitimate connection to be

established before the OS fingerprinting can be performed. The advantage

it has compared to Nmap, is that P0f can fingerprint OS behind a firewall

or NAT. Another advantage is that it has an advanced masquerade

detection. The way that P0f is able to perform this type of detection is by

recording the changes in the TCP/IP packets that come from the same IP

address. Zalewski states though that most of the detections and

50

http://www.nessus.org/
http://www.netcraft.com/
http://www.apostols.org/projectz/queso/

identifications performed by P0f are not accurate and are there-for purely

“amusement value”. He also states that “P0f will never be as precise as

Nmap”, which is another disadvantage.

Veysset et. al. created the program Ring, from which Tod Beardsley

(Beardsley 2003) created Snacktime. A patch for Nmap has been

implemented that adds this scanning method. These programs operate on

the basis of determining the retransmission of packets for the TCP

handshake. Three methods are used for this fingerprinting.

The first method is that the attacker has a firewall activated on his machine

to drop all SYN/ACK packets when the port is open. The attacker sends a

SYN packet to the target machine, to which the target replies with a

SYN/ACK packet. As the target system is not receiving an

acknowledgement of the reception of the SYN/ACK packet, it retries to

send it for a limited number of times, with a different delay between the

retries.

The second method is that the attacker sends a SYN packet to the target

system. The target replies with a SYN/ACK packet. The attacker replies

with an ACK packet. The firewall of the attacker's system is enabled and

then a FIN/ACK packet is sent to the target. The target machine replies

with a FIN/ACK packet, which is dropped at the attacker's system. The

attacker then monitors the number of limited packets and the delays

between the retries sent by the target system.

The third method has not been fully implemented in the Ring program yet.

The attacker sends a SYN packet to the target, to which the target replies

with a SYN/ACK packet. The attacker acknowledges and then sends a

PSH/ACK packet to the target system. The target system acknowledges and

then sends a PSH/ACK packet to the attacker. The attacker then enables

the firewall to block all FIN/ACK packets and then acknowledges with an

51

ACK packet. The target system then sends FIN/ACK packets that are

limited in retries and with different delays between them to the attacker's

system.

These retries and delays are compared with a database to determine the

OS being used.

From the above investigated programs, it can be determined that the

different techniques used for OS fingerprinting are represented by Nmap

and Xprobe2. It is believed that any countermeasures for these

fingerprinting tools will be sufficient for the other tools available.

1.2.5 Summary

Different port scanning techniques, TCP/IP and ICMP attacks were

investigated. The way that OS fingerprinting is achieved was shown and it

was also determined which fingerprinting tools will be sufficient to do the

fingerprinting experiments.

52

Chapter 2: Tests and Experiments

Various tests were performed to investigate the efficiency of the different

port scans and operating system fingerprinting. These tests were

performed in situations when a firewall was either disabled, or enabled ,

with a standard Linux distribution – Suse 10.1.

2.1. Practical Investigation with IPv4

2.1.1 IPID scan

A practical investigation is needed to confirm that Linux kernel version

2.4.x and above is immune to the IPID scan. These tests have been

performed on Linux with a kernel version 2.4.x (Arkin 2001b). From Arkin's

tests the IPID remained zero. This investigation should determine what

would happen if the zombie system runs on a Microsoft Windows platform,

or a Linux kernel smaller than version 2.4, irrespective of whether the

target is running a Linux kernel version greater than 2.4. It is known that

Microsoft Windows increments the IPID by a factor of 256. (Fyodor 1998).

The firewall uses the IPtables rules specified in Appendix B.2. From these

rules it can be seen that all broadcast and multicast packets are dropped.

The TCP packets are rejected with a TCP RST packet, except those that are

used for SSH. UDP packets are rejected with a Port Unreachable ICMP

while all other types of packets are rejected with a Protocol Unreachable

ICMP.

There are various scenarios that have been considered. Four scenarios

were chosen. The first two scenarios investigate and validate the

effectiveness of IPID scans when a Linux system plays the role of zombie

system, with or without a firewall. The third scenario solidifies the results

by using a different Linux distribution to the first two scenarios. The last

53

scenario is to test the IPID scan when a Microsoft server plays the role of

zombie system and Linux plays the role of the target system.

Three computer systems were set up to demonstrate the IPID scan.

Professional Hacker's Linux Assault Kit (PHLAK) was used as it contains a

large variety of hacking tools. PHLAK can be found at http://phlak.org.

Microsoft Windows XP Professional with service pack 2 was used as this is

one of the common Microsoft operating systems used at the time of writing,

and it is not immune to Nmap when it plays the role of zombie system.

SUSE 10.1 was used as this is a stand-alone Linux system with a kernel

version that is greater than 2.4.x. The computers configured as follows:

Computer A:

IP Address: 10.0.0.5

Operating System: Windows XP Professional with Service Pack 2

Computer B:

IP Address: 10.0.0.6

Operating System: Professional Hacker's Linux Assault Kit (PHLAK)

running a Linux kernel version 2.6.9

Computer C:

IP Address: 10.0.0.7

Operating System: SUSE 10.1 running Linux kernel version 2.6.16.13-4

2.1.1.1 Scenario 1 – Confirming if Linux 2.6.x is

immune to Nmap when it is a zombie system

In this scenario, computers A, B and C are considered to be the target,

54

http://phlack.org/

zombie and attacker systems respectively. Nmap was executed on

computer C to scan computer A for open ports via computer B.

The following output was found:

linux:/ # nmap -P0 -p- -sI 10.0.0.6 10.0.0.5

Starting Nmap 4.00 (http://www.insecure.org/nmap/) at 2006-06-20 09:18 SAST

Idlescan using zombie 10.0.0.6 (10.0.0.6:80); Class: Incremental

Interesting ports on 10.0.0.5:

(The 65530 ports scanned but not shown below are in state: closed|filtered)

PORT STATE SERVICE

135/tcp open msrpc

139/tcp open netbios-ssn

445/tcp open microsoft-ds

1025/tcp open NFS-or-IIS

5000/tcp open UPnP

MAC Address: 00:50:22:A4:46:FE (Zonet Technology)

Nmap finished: 1 IP address (1 host up) scanned in 256.225 seconds

As seen from the results, five open ports were detected in the scan. From

these results, it is clear that a Linux kernel version 2.6.9 is not immune to

Nmap when acting as a zombie system. It also indicates that Microsoft

Windows XP Professional is not immune to Nmap when acting as a target

system.

55

2.1.1.2 Scenario 2 – Confirming if Linux 2.6.x is

immune to Nmap when it is a zombie system and it

has a firewall

In this scenario, computers A, B and C are considered to be the target,

attacker, and zombie systems, respectively. Nmap was executed on

computer B to scan computer A (which has the firewall disabled) for open

ports via computer C.

The following output was found:

linux:/# nmap -P0 -p- -sI 10.0.0.7 10.0.0.5

Starting nmap 3.81 (http://www.insecure.org/nmap/) at 2006-06-20 09:41 EDT

Idlescan using zombie 10.0.0.7 (10.0.0.6) port 80 cannot be used because IPID

sequencability class is: All zeros. Try another proxy.

QUITTING!

This output shown above indicates that a Linux kernel version 2.6.16 and

higher is immune to being a zombie system.

The same scenario was considered, but this time the firewall was enabled

on computer C.

The following output was found:

linux:/# nmap -P0 -p- -sI 10.0.0.7 10.0.0.5

Starting nmap 3.81 (http://www.insecure.org/nmap/) at 2006-06-20 09:49 EDT

Idlescan using zombie 10.0.0.7 (10.0.0.6) port 80 cannot be used because it has

56

http://www.insecure.org/nmap/
http://www.insecure.org/nmap/

not returned any of our probes – perhaps it is down or firewalled.

QUITTING!

From the results shown above the observation is that a zombie system

running Linux kernel version 2.6.16, with a firewall enabled, is not able to

find any open ports on the target system.

2.1.1.3 Scenario 3 - Confirming if another Linux OS

running kernel 2.6.x is immune to Nmap when it is a

zombie system

In this scenario, computers A, B and C are considered to be the target,

attacker and zombie systems respectively. Nmap was executed on

computer B to scan computer A for open ports via computer C. Computer

C's Operating system was changed to PHLAK, running a Linux kernel

version 2.6.9. This was done so that tests could be performed on a different

Linux kernel version.

The following output was found:

linux:/# nmap –vv P0 -p- -sI 10.0.0.5 10.0.0.7

Starting nmap 3.81 (http://www.insecure.org/nmap/) at 2006-06-20 10:01 EDT

Idlescan using zombie 10.0.0.7 (10.0.0.6:80); Class: Incremental

Initiating Idlescan against 10.0.0.7

Discovered open port 25/tcp on 10.0.0.7

Discovered open port 21/tcp on 10.0.0.7

Idlescan is unable to obtain meaningful results from proxy 10.0.0.5 (10.0.0.5). I'm

sorry it didn't work out.

QUITTING!

57

http://www.insecure.org/nmap/

In this scenario, the very verbose mode of Nmap was considered, and even

though Nmap considered the scan not to be meaningful, two open ports

were found. This again indicates that a system running Linux kernel

version 2.6.9 cannot be considered immune to Nmap because two open

ports were found.

2.1.1.4 Scenario 4 - Confirming if Linux 2.6.x is

immune to Nmap when it is a target system

In this scenario, computers A, B and C are considered to be the zombie,

attacker and target systems respectively. Nmap was executed on computer

B to scan computer C (with the firewall disabled) for open port via

computer A.

The following output was found:

linux:/# nmap –vv P0 -p- -sI 10.0.0.5 10.0.0.7

Starting nmap 3.81 (http://www.insecure.org/nmap/) at 2006-06-20 10:01 EDT

Idlescan using zombie 10.0.0.7 (10.0.0.6:80); Class: Incremental

Initiating Idlescan against 10.0.0.7

Discovered open port 22/tcp on 10.0.0.7

WARNING: Idlescan has erroneously detected phantom ports – is the proxy

10.0.0.5 (10.0.0.5) really idle?

(Continues and Repeats the scanning process)

The results shown above suggest that a system running Linux 2.6.16 is not

immune as a target to Nmap if the zombie system is running on Microsoft

Windows XP Professional.

58

http://www.insecure.org/nmap/

The same scenario is considered, but this time the firewall on the target

system is enabled.

The following output was found:

linux:/# nmap -P0 -p- -sI 10.0.0.5 10.0.0.7

Starting nmap 3.81 (http://www.insecure.org/nmap/) at 2006-06-20 10:01 EDT

Idlescan using zombie 10.0.0.7 (10.0.0.6:80); Class: Incremental

(Continues and Repeats scan as no reply is received)

From the results of this scan, no open ports were found. The packet

analysing tool Ethereal (found at http://www.ethereal.com) was executed

the same time when the scan was done, and it was observed that no

response was received from the target system.

2.1.1.5 Microsoft Windows XP Professional IPID

incremental

While these computer systems were set up, it was decided to monitor the

packets being sent from the Microsoft Windows XP Professional system.

HPING(1,2,3), which is a TCP pinging program developed by Antirez

(http://www.kyuzz.org/antirez/), was used to monitor the response from the

Microsoft Windows XP Professional system. While Ethereal was running at

the same time, it was interesting to see that the IPID's of the packets that

were received from the Microsoft operating system were incrementing by a

value of one, and not 256 as stated before.

2.1.2 Other port scanning techniques

Other port scanning techniques were investigated, again taking into

consideration that the standard firewall that came with SUSE 10.1 was

59

http://www.kyuzz.org/antirez/
http://www.ethereal.com/
http://www.insecure.org/nmap/

either enabled or disabled. The system's settings and the outputs of the

scans are displayed in Appendix C.1.

2.1.2.1 SYN Scan

As seen from the outputs in Appendix C.1, Nmap was able to detect that

the SSH port was open, irrespective of whether the firewall was enabled or

not. Without the firewall enabled, ports 111 (rpcbind) and 631 (ipp) were

also detected as being open, while port 113 was detected as closed for

authentication when the firewall was enabled. Recall that open ports are

useful for an attacker as these could be vulnerable areas of penetration.

2.1.2.2 UDP Scan

As seen by the output in Appendix C.1, with the firewall disabled, Nmap

saw four ports open / filtered on system B, being ports 68 (dhcpc), 111

(rpcbind), 631 (ipp) and 1024 (udp). Packets were dropped in the

transmission so Nmap had to increase the delay between the packets sent

to 800 ms. This resulted in the time period for the scan to be 1 490

seconds.

Once the firewall was enabled Nmap thought that all the ports were open /

filtered. The time period for the scan was shorter with a time of 46

seconds.

2.1.2.3 TCP Scan

As seen from the results from the output in Appendix C.1, the ports that

were found open when the firewall was disabled were ports 22 (SSH), 111

(rpcbind) and 631 (ipp). However when the firewall was enabled, ports 22

(SSH) and 113 (closed for authentication) were found by Nmap.

60

2.1.2.4 Null Scan

The outputs in Appendix C.1 indicate that Nmap saw ports 22 (SSH), 111

(rpcbind) and 631 (ipp) to be open / filtered when the firewall was disabled.

However with the firewall enabled Nmap assumed that all 1 672 ports

scanned were open / filtered.

2.1.2.5 ACK scan

It is of interest to see from the output in Appendix C.1 results that with the

firewall disabled all 1 672 ports scanned were seen unfiltered, while with

the firewall enabled, ports 22 (SSH) and 113 (authentication) were seen as

unfiltered.

2.1.2.6 FIN scan

From the results in Appendix C.1, it is evident that with the firewall

disabled, ports 22 (SSH), 111 (rpcbind) and 631 (ipp) are seen as open /

filtered, while with the firewall enabled all the 1 672 scanned ports are

seen by Nmap as open / filtered.

2.1.2.7 Window scan

Once again the outputs in Appendix C.1 were interesting. With the firewall

disabled Nmap reported that all 1 672 ports scanned were closed, but with

the firewall enabled, it reported that ports 22 (SSH) and 113

(authentication) were closed.

2.1.2.8 Xmas scan

As observed from the outputs in Appendix C.1, with the firewall disabled

ports 22 (SSH), 111 (rpcbind) and 631 (ipp) were seen as open / filtered,

61

but with the firewall disabled, all 1672 scanned ports are reported as open

/ filtered.

2.1.2.9 TCP Maimon scan

As observed from the outputs in Appendix C.1, it is noted that with the

firewall disabled, all 1 672 scanned ports are seen as closed, while with the

firewall enabled, port 22 (SSH) is seen by Nmap as closed.

2.1.2.10 Protocol scan

The IP protocol scan is one that Nmap used to determine the protocols that

the target system is compatible with. It is not really a port scanning

technique, but it needs to be investigated to determine if any information

can be gained from this scan.

Resulting from the outputs in Appendix C.1 it can be seen that without the

firewall enabled protocol 1 (icmp) and 6 (tcp) are available, protocols 2

(igmp) and 41 (ipv6) are open / filtered and protocol 17 (udp) is filtered.

With the filter enabled only protocol 1 (icmp) is seen by Nmap.

From the overall outputs given by Nmap, it is concluded that the firewall

does not always hide which ports are open or closed. Often Nmap reported

that a specific port was closed (referring specifically to port 22 for SSH

that was enabled for test purposes) which could give an attacker the idea

that the port could actually be open. Should a firewall be the solution for

port scanning? More development is needed to improve it. The results of

these experiments have been summarised in Table 2.

62

Table 2 - Comparison of the different scanning techniques

Scan Firewall Disabled Firewall Enabled

SYN 22, SSH-open

111, rpcbind-open

631, ipp-open

22, SSH-open

111, auth-closed

UDP 68, dhcpc-open/filtered

111, rpcbind-open/filtered

631, ipp-open/filtered

1024, udp-open/filtered

All 1672 ports open/filtered

TCP 22, SSH-open

111, rpcbind-open

631, ipp-open

22, SSH-open

113, auth-closed

Null 22, SSH-open/filtered

111, rpcbind-open/filtered

631, ipp-open/filtered

All 1672 ports open/filtered

ACK All 1672 ports unfiltered 22, SSH-unfiltered

113, auth-unfiltered

FIN 22, SSH-open/filtered

111, rpcbind-open/filtered

631, ipp-open/filtered

All 1672 ports open/filtered

Window All 1672 ports closed 22, SSH-closed

113, auth-closed

Xmas 22, SSH-open/filtered

111, rpcbind-open/filtered

631,ipp-open/filtered

All 1672 ports open/filtered

Maimon All 1672 ports closed 22, SSH-closed

Protocol 1, ICMP-open

2, IGMP-open/filtered

6, TCP-open

17, UDP-filtered

41, Ipv6-open/filtered/

1, ICMP-open

These results are discussed further in section 2.2 – Deducible

Observations.

63

2.1.3 OS Detection

It should also be taken into consideration whether the firewall affects the

detection of the operating system. Recall that it is crucial for the attacker

to know the operating system of the target to be able to compromise a the

target entirely.

A comparison of OS detection is done using Nmap and Xprobe2.

Two computer systems were set up to demonstrate the scans. The

computers used had the following configurations:

Computer A:

IP Address: 10.0.0.5

Operating System: SUSE 10.1 running Linux kernel version 2.6.16.13-4

Computer B:

IP Address: 10.0.0.6

Operating System: SUSE 10.1 running Linux kernel version 2.6.16.13-4

Opened ports/services: port 22 / SSH

System A was used to do the scans on system B, with the scenario that

system B has the firewall disabled and enabled respectively.

The system configurations and the outputs are displayed in Appendix C.2.

2.1.3.1 Using Nmap

As seen from the outputs in Appendix C.2, Nmap was able to detect that

64

the SSH port was open, irrespective of whether the firewall was enabled or

not. Without the firewall enabled, ports 111 (rpcbind) and 631 (ipp) were

also detected, while port 113 was detected as closed for authentication

when the firewall was enabled.

In both cases the Linux version was detected (not exactly to version

2.6.16.13-4, using Nmap version 4.00), even though when the firewall was

enabled on system B it caused Nmap to determine a greater variety of

versions.

In comparison when the firewall was enabled, the time period for the scan

was more than double compared to when the firewall was disabled.

From the outputs in Appendix C.2 it can be observed that the firewall

enabled on a system does help against SYN scanning as well as for OS

detection, but not in great depth. Nmap was still able to detect that the

SSH port was open (which is probably one of the most promising ports to

attack from the attacker's perspective especially if the version of SSH are

between 1.2.24 and 1.2.31 (McClure et. al. 2005 pgs 255 - 258), as well as

being able to determine that it was a Linux kernel running on the target.

2.1.3.2 Using Xprobe2

From the outputs in Appendix C.2 it is observed that when the firewall was

disabled, Xprobe2 detected the OS that was running on system B was Linux

with a kernel version of 2.4.22 or higher. Xprobe2 was a bit confused when

the firewall was enabled. Xprobe2 thought the OS was Foundry Networks

IronWare Version 03.0.01eTc1 on its primary guess, and then it couldn't

decide between a Linux kernel of version 2.4.21 and higher, or Foundry

Networks IronWare. There were more guesses that the OS was Foundry

Networks IronWare.

65

Ethereal was used as well, and the difference in packets sent between the

two systems when the firewall was enabled or disabled were investigated.

The following differences were found:

● With the firewall disabled, a Destination Unreachable ICMP was

returned from system B, as system A sent the packet to port 65534,

which was obviously closed. When the firewall was enabled, the

ICMP message was not sent from system B.

● System A sent a couple of TCP SYN packet to system B. In the

situation that the firewall was disabled, RST / ACK packets were

returned. When the firewall was enabled, system B simply dropped

these TCP SYN packets and did not send any ICMP packet back to

system A.

It was also observed that the TTL field in the TCP had a value of 64. The

abstracts of the Ethereal outputs can be found in Appendix H.

66

2.2. Realisation of Preliminary

Countermeasures

Port scanning techniques were first investigated with the use of IPv4. A

comparison of the scans is shown in Table 2.

The SYN scan is found to be powerful enough to detect port 22 (SSH) as

open when the firewall is enabled. This is the same as the TCP scan, as the

SYN scan is part of the TCP three-way handshake.

The ACK scan showed that all the ports are unfiltered when the firewall

was disabled, but port 22 (SSH) was seen as listening and unfiltered when

the firewall was enabled.

When the Window scan was performed, it was observed that all the ports

were seen as closed when the firewall was disabled, but port 22 (SSH) was

seen as closed when the firewall was enabled. The problem here is that

even though Nmap detected and showed specifically that this port was

closed, it could be an indication to the attacker that a firewall is present, or

that the port is currently closed, but could be opened in the future.

A similar situation is observed in the Maimon scan. With the firewall

disabled, all the scanned ports are seen as closed, but port 22 (SSH) is seen

as closed when the firewall is enabled.

From these observations it can be concluded that the most powerful scans

of Nmap are the SYN, TCP, ACK, Window and Maimon scans, as these will

show available ports even if the pre-installed firewall of Suse 10.1 is

activated in the Linux system. A weighted matrix was generated from these

results and a graph of these results are shown in Figure 11.

67

0 1 2 3 4 5 6 7 8 9 10

Rating

SYN

UDP

TCP

Null

ACK

FIN

Window

Xmas

Maimon

S
ca

n
Scan Rating

Figure 11 – Comparison of the different scanning ratings and their relative

effectiveness

The results that were found regarding the SSH port was expected given the

firewalls configurations. This SSH service was the only one enabled on the

system, and therefore the other services that were found was not expected.

Fyodor (http://www.insecure.org/nmap/idlescan.html) suggests using

countermeasures including a stateful firewall and egress filtering.

According to Fyodor, OpenBSD, Solaris and Linux systems are immune to

being a zombie system when Nmap performs IPID scans. Linux 2.4.x uses

peer-specific IPID values as well as zeros the IPID fields in packets with the

Don't Fragment (DF) bit set. OpenBSD randomises the IPID sequence

value, but this leads to a problem where the random IPID value cannot be

repeated in the packet stream. He also states that it might not stop all IPID

related attacks, and that further investigation should be done for other

IPID related attacks. Since Linux has its IPID value set to zero, it is safe

against any further type of IPID attack.

68

In the case where the IPID scans were performed the results showed that a

system with a kernel version 2.6.9 was not immune to being a zombie

system, however it was immune when a kernel version 2.6.16 was used.

This is irrespective to whether the firewall was enabled or not.

Xprobe2 does not have any scanning techniques available for IPv6 at this

stage. Nmap on the other hand has three scanning techniques for IPv6, but

the only useful scan is the TCP scan. There are no other scans available.

2.2.1 Unique Linux Characteristics

Linux reacts differently to other OS when certain packets are received and

also sends packets with unique properties, making it possible for

fingerprinting in OS detection. The properties that have been found in

scans performed as well as those from Ofir Arkin's paper (Arkin 2001b) are

stated below.

Linux replies to Echo Request broadcasts as well as Timestamp Requests.

It does not respond to Information request ICMPs aimed at the broadcast

address, as well as Address Mask Request ICMP messages.

Fyodor states that the IPID value increments with a value of one, but

kernel version 2.4.x and above keeps this field zero when the DF bit is set

(Fyodor 1998). This is obviously not true, as seen in the IPID scan

performed on a Linux system running a kernel version 2.6.9. The DF bit is

always set, even if the variable in the ip_no_pmtu_disc file is set.

The TTL values of the Reply ICMP messages are 64 for kernel version 2.0.x,

but kernel version 2.2.x and up have a TTL value of 255. Again these facts

were found not to be true in the tests performed with Xprobe2, and that the

TTL value was 64 for a kernel version 2.6.16. All the Request ICMP

69

messages have a TTL value of 64 though, except for the Destination

Unreachable ICMP message, which had a TTL value of 255 (as seen in

Appendix H).

Another interesting observation seen in Appendix H is that the sequence

number of the TCP packets that were sent, all have a value of zero (relative

sequence number). This does not validate as stated in section 1.2.4

Operating System Fingerprinting, which states that it should be a true

random value.

Other characteristics in the TCP/IP stack of the replies with Linux version

2.2.x and 2.4.x are shown in Table 3 (Arkin 2001b).

Table 3 – Characteristic Responses of Linux

Information

Request

Timestamp

Request

Address Mask

Request

Echo

Request

Precedence not = 0 Not Answering Not = 0x00 Not Answering Not = 0x00

TOS not = 0 Not Answering Not = 0x00 Not Answering Not = 0x00

Unused = 1 Not Answering 0x1 Not Answering 0x1

Another finding about Linux is that when a Timestamp Request ICMP is

received and the Code field has a value other than 0, then it will reply with

a Timestamp Reply ICMP message, with the Code field value of 0.

Another characteristic of Linux is that it quotes more than 8 data bytes in

the ICMP error messages. It will also send ICMP error messages that are

up to 576 bytes in size. Twenty bytes are added to the quoting of the

corrupt packet with a Destination Unreachable message. This is another

characteristic of Linux other than that the Precedence is equal to 0xc0,

which only Linux has.

Linux's other feature is that the TCP options are returned in the following

70

order:

<echoed MSS><no op><no op><timestamp><no op><window scale>

The above order can be a fingerprint for these Linux systems.

In the tests that were performed against the Linux systems, it was noted

that the Destination Unreachable ICMP messages were blocked and the

TCP SYN packets were dropped when the firewall was disabled. The

original installed firewall of Suse 10.1 did make a difference in the port

scanning and OS detection, but it was not always sufficient.

2.2.2 Preliminary Countermeasures for Linux

The most secure countermeasures for port scanning is to disable the

services and ports not in use and to have the latest kernel version installed

onto the system, preferably version 2.6.16 or above, as this will prevent the

system being a zombie in the IPID scans.

There are many countermeasures suggested, which will be discussed.

Dr. K (Dr. K 2000) suggests that an Intrusion Detection Software (IDS) be

used. The best open-source IDS available are SNARE (System iNtrusion

Analysis and Reporting Environment) found at

www.intersectalliance.com/projects/index.html and SNORT found at

www.snort.org. These packages log any scanning and penetration attempts,

as well as what might seem to be an attempt. Depending on the

configurations, the IDS can notify the system administrator about the

attempts, and block any traffic from the specific IP address. SNORT is one

of the best IDSs available as it updates its signature database from the

Internet when new attacks are found.

71

http://www.snort.org/
http://www.intersectalliance.com/projects/index.html

Other suggestions are that the system is updated with the latest patches.

This will help in the prevention of IP spoofing, as the system could be

immune to SYN flooding. Another prevention would be that packets can be

dropped that are oversized, as in the case of the Ping of Death. The system

administrator can then test the system by running scripts and tools

available and then attack it. In this way, the IDS rules and configurations

can be altered until the desired results are acquired.

There are times when some services are needed on a system. It is

dangerous to have services running that anybody could gain access to.

These services should also be made available to those who need them. TCP

wrappers gives the possibility of adding Access Control Lists (ACLs) to

these services, so that only some people are able to gain access to them

(Burgess 2006). With the use of TCP wrappers all communication of the

different services are logged. Depending on how secure you need a system

to be, one could deny all traffic to it, and then start allowing only systems

that require access to it as time progresses. System administrators must

investigate the log files for possible attacks.

An internal network can be protected with firewalls. As mentioned

previously, stateful firewalls are better. Firewalls can also log half-open

connections as well as ICMP messages received.

A stateful firewall with egress filtering is recommended. The firewall

should be configured with some of the following rules:

● The firewall itself should not generate TTL Exceeded ICMP

messages.

● It should not allow traffic directed to routers, unless it contains

routing information.

72

● Traffic directed to the firewall must be blocked.

● Don't allow ICMP request messages from the Internet to the

protected network.

The above countermeasures are preferable for port scanning and further

attacks on the system, but countermeasures are needed for OS

fingerprinting. Nostromo (Nostromo 2005) suggested patches and

programs to fool OS detection scanners such as Nmap and Xprobe2. Some

of the suggestions are:

IP Personality by Gaël Roualland et. al. It modifies the TCP ISN, the TCP

initial window size, TCP options and IPID numbers. This patch is outdated.

Stealth Patch by Sean Trifero et. al. This patch worked with kernel

versions 2.2.19 to 2.2.22 and version 2.4.19. It discards all packets that

have the FIN and SYN flags set.

Nostromo (Nostromo 2005) suggests a few other Linux programs, but these

are either outdated or do not deceive programs such as Nmap. The above

patches change the TCP/IP stack properties to that of other operating

systems, but if ICMP scans are performed, then this will have no effect on

fooling the attacker.

Morph by Syn Ack Labs (www.synacklabs.net) (Wang 2004) is another OS

fingerprint deceiver. Morph alters the TCP/IP packets to have the

characteristics of another OS. It deceives QueSO, Nmap and Xprobe2, and

it is being developed to deceive P0f and RING/Snacktime.

Another interesting characteristic of Linux is the way it responds to

73

http://www.synacklabs.net/

incoming traffic directed to port 0, as described by Ste Jones (Jones 2003).

The following seven tests are performed by OS fingerprinting tools that

send packets to and from port 0:

● A TCP packet is sent from port 0 to port 0.

● A TCP packet is sent from any port except 0 to port 0.

● A TCP packet is sent from port 0 to an open port.

● A TCP packet is sent from port 0 to a closed port.

● A UDP packet is sent from port 0 to port 0.

● A UDP packet is sent from port 53 to port 0.

● A UDP packet is sent from port 0 to a closed port.

Different OSs reply in different ways to the above tests. The tools that is

used to perform these scans is gobbler-2.0.1-alpha

(www.networkpenetration.com). Linux replies to all the tests performed.

The best countermeasure for this is to block all traffic sent to port 0.

Spangler (Spangler 2003) and Beardsley (Beardsley 2003) suggest that

countermeasures for the Ring / Snacktime fingerprinting are that a firewall

with filtering is used and that the unused ports are kept closed. A packet

mangler, which alters the fields in a packet header, should be used to give

an inaccurate retransmission timeout values. The number of retries should

also be altered as well as the delays between them. Ofir Arkin (Arkin

74

http://www.networkpenetration.com/

2001b) suggests the following countermeasures to prevent scans that use

ICMP messages:

● All ICMP Echo messages must be blocked, and hosts on the

protected networks must be configured so that they will not answer

to ICMP Echo Request messages. This includes ICMP Echo request

messages that are sent to the Broadcast Address of the connected

network. Should any Echo ICMP messages be needed to be sent then

all Echo ICMP messages that contain data must be blocked. This will

prevent back doors for programs such as LOKI.

● Block Timestamp Request, Information Request and Address Mask

Request ICMP messages and configure hosts to ignore them. This

will also prevent Non-Echo Sweeps.

● IP directed broadcasts must be blocked as well, as this will prevent

Non-Echo ICMP Broadcasts.

● All fields in the ICMP messages must be checked by the firewall, to

prevent Parameter Problem ICMP messages.

● Block Destination Unreachable ICMP error messages from the

protected network to the Internet.

● Packets that contain protocols that are not supported must be

blocked.

● All outgoing Fragment Reassembly Time Exceeded ICMP error

messages must be blocked.

75

It is concluded that there are countermeasures to port scanning. It is

possible to keep a network safe when certain traffic is blocked. Yet there is

still a vulnerability hole in terms of OS fingerprinting. Even though there

might be patches available, they are outdated and not effective.

IPv6 is currently more secure in terms of port scanning techniques, as

there is only a TCP scan available with Nmap 4.00, and Xprobe2 does not

support it. The possibility of other scanning techniques using IPv6 is a topic

that needs further investigation.

Nmap 4.00 also does not have the possibility of OS fingerprinting for IPv6,

which makes a system secure from this point of view. OS detection with

IPv6 is also a topic that needs further investigation.

Preventions to IPv6 port scanning will be developed as the new scanning

techniques are found. People around the world currently do not use IPv6

unless they are forced to. As it could be years until the Internet works

entirely only on IPv6, users will continue to use IPv4. As a result, people

will have to think of countermeasures to protect their systems in IPv4 from

being scanned. As stated before, there are many countermeasures for port

scanning, but countermeasures for OS detection are still lacking.

2.2.3 Summary

The observations found from the port scanning experiments were

discussed. The candidate properties that Linux has in it's TCP/IP packets

were discussed. Comments were made on the recommended and previous

countermeasures that were made available. Other recommendations were

also discussed.

76

2.3. Validation of Preliminary Countermeasures

Programs such as IP Personality fool Nmap and Xprobe2 by changing the

TCP packet fields such as the Initial Window Size. These values could be

initially set by developers for optimization or sane defaults. It is therefore

suggested that these fields and properties are left as the default value and

changes are specifically made that have no effect on the TCP/IP stack

except those fields that are unique to Linux and have no effect on

communication. The order of impact that the properties of Linux have on

OS fingerprinting are discussed below, with their respective solution.

Have a firewall implemented. This is probably the most important factor.

This will prevent packets with an unknown purpose being sent to your

system. As stated before, a stateful firewall is recommended.

The factor for fingerprinting Linux and which carries the largest weighting,

is the Precedence value of the TOS field. If this value could be 0x00, then

this will be a start in preventing Nmap and Xprobe2 from detecting that

Linux is the OS. Only IPv4 has a Type of Service field, so IPv6 is immune to

this. It therefore does not affect communication over a network, and it can

be concluded that it is safe to change this field.

It was suggested previously that all ICMP messages should be blocked.

This is not always needed, as it depends on how secure the requirements

for the system are. The characteristic of Linux is that when it sends ICMP

error messages more than 8 bytes of the data are quoted, and an extra 20

bytes are added. If only 8 bytes are quoted as done in other operating

systems, and the extra arbitrary 20 bytes are removed, then it will also help

with the preventing of the OS fingerprinting. This can be achieved by

altering the code for the TCP/IP stack.

Some OS fingerprinting programs look at the delays between the ICMP

77

reply messages. To prevent this, the ICMP reply messages can have

random delays between them, but this could have a low priority for a

countermeasure.

It is also recommended that the SYN/ACK retries are altered to prevent

Ring/Snacktime from fingerprinting the OS. This can be done by altering

the /proc/sys/net/ipv4/tcp_synack_retries file. The default value is 5, but

this value should not be higher than 255. This won't alter the delays

between the retries.

The TCP options are in the format:

<echoed MSS><no op><no op><timestamp><no op><window scale>

The order of the options should not have an effect on the TCP/IP

communication. Altering the order of the options will therefore have no

effect on Linux. Pirating the options order of another OS could work as a

countermeasure, but this has a very low impact on the current

fingerprinting techniques.

Another noticeable characteristic of Linux which is only used to

differentiate between the versions of the kernel is the TTL value. Even

though the value of 64 dominates, there are cases where 255 is used. The

value of 255 might be used for the TTL field as an optimization value as it

was experienced that packets were lost, but the value of this field has a

very low impact on the fingerprinting process.

As seen in the tests performed (Appendix H), Linux has a window size of

6840, except for the RST/ACK packets which has a window size of 0.

Altering this value will change the performance of the communication

across the network. It therefore has a low importance value for a

78

countermeasure. If OS fingerprinting programs depended purely on

whether the window size is equal to 6840, then the altering of the default

value with a value of one will be enough for a countermeasure, which is not

the case with Nmap.

The OS fingerprinting done through the connection of port 0 is not really a

threat for Linux at this stage, as Microsoft Windows is an OS that also

replied to all seven tests. Even though this might be the case, it is

recommended that all traffic to port 0 must be blocked, as this

fingerprinting in conjunction with another one could identify the OS. A

typical IPtables configuration is as stated below:

iptables -I INPUT -p tcp --dport 0 -j DROP

iptables -I INPUT -p udp --dport 0 -j DROP

iptables -I INPUT -p tcp --sport 0 -j DROP

iptables -I INPUT -p udp --sport 0 -j DROP

From the above stated countermeasures, it was believed by just having the

precedence bits changed to 0x00 would be sufficient to prevent the

fingerprinting of Linux. Other fields in the TCP/IP stack can be changed,

but these either won't have much influence or they could hamper

communication. Further investigation can be done once the change in the

precedence bits has been implemented and the fingerprinting is successful.

2.3.1 Type Of Service

Testing to determine whether the TOS has an effect on the OS

79

fingerprinting needs to be performed. Linux default value of the TOS field

is 0xc0. IPtables are used to alter the outgoing packets. The code is part of

the script found in Appendix B.3. Test code for the IPtables is needed and

the following code alters the TOS field:

iptables -t mangle -A PREROUTING -j TOS --set-tos 0x00

By using the above code the “mangle” table is altered. The TOS field is set

to 0x00. The rules for the firewall can be seen in Appendix B.3. Tests were

performed by Nmap and Xprobe2 to determine the effect that this change

has had on the fingerprinting.

Two systems were used for the tests performed. Both systems were

running SUSE 10.1 with the Linux kernel version 2.6.16. The attacking

system's IP address was 10.0.0.5 and the target's IP address was 10.0.0.6

and it had port 22 (SSH) open.

The firewall is enabled in all these tests, as IPtables sets the rules for the

firewall.

2.3.1.1 Nmap's Results

When Nmap was run with the TOS field set to 0x00, the following results

were obtained:

linux:/# nmap -O -vv 10.0.0.6

Starting Nmap 4.00 (http://www.insecure.org/nmap/) at 2006-09-04 02:57 SAST

Initiating ARP Ping Scan against 10.0.0.6 [1 port] at 02:57

The ARP Ping Scan took 0.01s to scan 1 total hosts.

DNS resolution of 1 IPs took 0.01s. Mode: Async [#: 2, OK: 1, NX: 0, DR: 0, SF: 0,

80

TR: 1, CN: 0]

Initiating SYN Stealth Scan against pc-wvl-6.cs.ukzn.ac.za (10.0.0.6) [1672 ports]

at 02:57

Discovered open port 22/tcp on 10.0.0.6

The SYN Stealth Scan took 21.38s to scan 1672 total ports.

For OSScan assuming port 22 is open, 113 is closed, and neither are firewalled

Host pc-wvl-6.cs.ukzn.ac.za (10.0.0.6) appears to be up ... good.

Interesting ports on pc-wvl-6.cs.ukzn.ac.za (10.0.0.6):

(The 1670 ports scanned but not shown below are in state: filtered)

PORT STATE SERVICE

22/tcp open ssh

113/tcp closed auth

MAC Address: 00:0F:FE:31:D9:CF (G-pro Computer)

Device type: general purpose|broadband router

Running: Linux 2.4.X|2.5.X|2.6.X, D-Link embedded

OS details: Linux 2.4.0 - 2.5.20, Linux 2.4.18 - 2.4.20, Linux 2.4.26, Linux 2.4.27 or

D-Link DSL-500T (running linux 2.4), Linux 2.4.7 - 2.6.11, Linux 2.6.0 - 2.6.11

OS Fingerprint:

TSeq(Class=RI%gcd=1%SI=33DCCB%IPID=Z)

T1(Resp=Y%DF=Y%W=16A0%ACK=S++%Flags=AS%Ops=MNNTNW)

T2(Resp=N)

T3(Resp=Y%DF=Y%W=16A0%ACK=S++%Flags=AS%Ops=MNNTNW)

T4(Resp=Y%DF=Y%W=0%ACK=O%Flags=R%Ops=)

T5(Resp=Y%DF=Y%W=0%ACK=S++%Flags=AR%Ops=)

T6(Resp=Y%DF=Y%W=0%ACK=O%Flags=R%Ops=)

T7(Resp=N)

PU(Resp=N)

TCP Sequence Prediction: Class=random positive increments

 Difficulty=3398859 (Good luck!)

IPID Sequence Generation: All zeros

Nmap finished: 1 IP address (1 host up) scanned in 23.771 seconds

 Raw packets sent: 3364 (135KB) | Rcvd: 20 (1056B)

The observation from the above code is that Nmap was not deceived.

Tcpdump was executed at the same time, and the following output was

received from it:

81

pc-wvl-6.cs.ukzn.ac.za.ssh > pc-wvl-5.cs.ukzn.ac.za.51941: S, cksum 0x66af

(correct), 3424862189:3424862189(0) ack 561094594 win 5792

<mss1460,nop,nop,timestamp 129682542 1061109567,nop,wscale 2>

02:58:00.013585 IP (tos 0x0, ttl 64, id 0, offset 0, flags [DF], proto: TCP (6),

length: 40)

From the Tcpdump output it is evident that the TOS field is 0x00.

2.3.1.2 Xprobe2's Results

The following results were observed from Xprobe2:

linux:/# xprobe2 10.0.0.6

Xprobe2 v.0.3 Copyright (c) 2002-2005 fyodor@o0o.nu, ofir@sys-security.com,

meder@o0o.nu

[+] Target is 10.0.0.6

[+] Loading modules.

[+] Following modules are loaded:

[x] [1] ping:icmp_ping - ICMP echo discovery module

[x] [2] ping:tcp_ping - TCP-based ping discovery module

[x] [3] ping:udp_ping - UDP-based ping discovery module

[x] [4] infogather:ttl_calc - TCP and UDP based TTL distance calculation

[x] [5] infogather:portscan - TCP and UDP PortScanner

[x] [6] fingerprint:icmp_echo - ICMP Echo request fingerprinting module

[x] [7] fingerprint:icmp_tstamp - ICMP Timestamp request fingerprinting module

[x] [8] fingerprint:icmp_amask - ICMP Address mask request fingerprinting

module

[x] [9] fingerprint:icmp_port_unreach - ICMP port unreachable fingerprinting

module

[x] [10] fingerprint:tcp_hshake - TCP Handshake fingerprinting module

[x] [11] fingerprint:tcp_rst - TCP RST fingerprinting module

[x] [12] fingerprint:smb - SMB fingerprinting module

[x] [13] fingerprint:snmp - SNMPv2c fingerprinting module

[+] 13 modules registered

82

[+] Initializing scan engine

[+] Running scan engine

[-] ping:tcp_ping module: no closed/open TCP ports known on 10.0.0.6. Module test

failed

[-] ping:udp_ping module: no closed/open UDP ports known on 10.0.0.6. Module

test failed

[-] No distance calculation. 10.0.0.6 appears to be dead or no ports known

[+] Host: 10.0.0.6 is up (Guess probability: 50%)

[+] Target: 10.0.0.6 is alive. Round-Trip Time: 0.01042 sec

[+] Selected safe Round-Trip Time value is: 0.02083 sec

[-] fingerprint:tcp_hshake Module execution aborted (no open TCP ports known)

[-] fingerprint:smb need either TCP port 139 or 445 to run

[-] fingerprint:snmp: need UDP port 161 open

[+] Primary guess:

[+] Host 10.0.0.6 Running OS: "Foundry Networks IronWare Version 03.0.01eTc1"

(Guess probability: 100%)

[+] Other guesses:

[+] Host 10.0.0.6 Running OS: "Linux Kernel 2.4.21" (Guess probability: 91%)

[+] Host 10.0.0.6 Running OS: "Linux Kernel 2.4.22" (Guess probability: 91%)

[+] Host 10.0.0.6 Running OS: "Foundry Networks IronWare Version 07.5.04T53"

(Guess probability: 91%)

[+] Host 10.0.0.6 Running OS: "Foundry Networks IronWare Version 07.5.05KT53"

(Guess probability: 91%)

[+] Host 10.0.0.6 Running OS: "Foundry Networks IronWare 07.6.01BT51" (Guess

probability: 91%)

[+] Host 10.0.0.6 Running OS: "Foundry Networks IronWare 07.6.04aT51" (Guess

probability: 91%)

[+] Host 10.0.0.6 Running OS: "Foundry Networks IronWare 07.7.01eT53" (Guess

probability: 91%)

[+] Host 10.0.0.6 Running OS: "Linux Kernel 2.4.23" (Guess probability: 91%)

[+] Host 10.0.0.6 Running OS: "Linux Kernel 2.4.24" (Guess probability: 91%)

[+] Cleaning up scan engine

[+] Modules deinitialized

[+] Execution completed.

From the output, Xprobe2 guessed that the OS of the target is either

Foundary Networks IronWare or Linux.

83

Changing the TOS field did not prevent the OS fingerprinting tools from

detecting the OS running on the target.

Other changes to the TCP/IP packet are needed to deceive the OS

fingerprinting tools.

2.3.2 ICMP Echo Ignore All

For the tests that follow, the variables were altered that were in the

/proc/sys/net/ipv4/ directory. These are the settings that the Linux kernel is

currently working on. To alter these variables root access is needed.

The default setting for this variable is zero. Should this variable be non-

zero, then the kernel will ignore all ICMP echo requests. This variable was

changed with the following statement:

echo 1 > /proc/sys/net/ipv4/icmp_echo_ignore_all

2.3.2.1 Nmap's Results

The following output was observed from Nmap:

linux:/# nmap -O -vv 10.0.0.6

Starting Nmap 4.00 (http://www.insecure.org/nmap/) at 2006-09-04 03:22 SAST

Initiating ARP Ping Scan against 10.0.0.6 [1 port] at 03:22

The ARP Ping Scan took 0.01s to scan 1 total hosts.

DNS resolution of 1 IPs took 0.04s. Mode: Async [#: 2, OK: 1, NX: 0, DR: 0, SF: 0,

TR: 1, CN: 0]

Initiating SYN Stealth Scan against pc-wvl-6.cs.ukzn.ac.za (10.0.0.6) [1672 ports]

at 03:22

Discovered open port 22/tcp on 10.0.0.6

84

SYN Stealth Scan Timing: About 32.08% done; ETC: 03:23 (0:01:03 remaining)

The SYN Stealth Scan took 67.31s to scan 1672 total ports.

For OSScan assuming port 22 is open, 113 is closed, and neither are firewalled

Host pc-wvl-6.cs.ukzn.ac.za (10.0.0.6) appears to be up ... good.

Interesting ports on pc-wvl-6.cs.ukzn.ac.za (10.0.0.6):

(The 1670 ports scanned but not shown below are in state: filtered)

PORT STATE SERVICE

22/tcp open ssh

113/tcp closed auth

MAC Address: 00:0F:FE:31:D9:CF (G-pro Computer)

Device type: general purpose|broadband router

Running: Linux 2.4.X|2.5.X|2.6.X, D-Link embedded

OS details: Linux 2.4.0 - 2.5.20, Linux 2.4.18 - 2.4.20, Linux 2.4.26, Linux 2.4.27 or

D-Link DSL-500T (running linux 2.4), Linux 2.4.7 - 2.6.11, Linux 2.6.0 - 2.6.11

OS Fingerprint:

TSeq(Class=RI%gcd=1%SI=2C977C%IPID=Z)

T1(Resp=Y%DF=Y%W=16A0%ACK=S++%Flags=AS%Ops=MNNTNW)

T2(Resp=N)

T3(Resp=Y%DF=Y%W=16A0%ACK=S++%Flags=AS%Ops=MNNTNW)

T4(Resp=Y%DF=Y%W=0%ACK=O%Flags=R%Ops=)

T5(Resp=Y%DF=Y%W=0%ACK=S++%Flags=AR%Ops=)

T6(Resp=Y%DF=Y%W=0%ACK=O%Flags=R%Ops=)

T7(Resp=N)

PU(Resp=N)

TCP Sequence Prediction: Class=random positive increments

 Difficulty=2922364 (Good luck!)

IPID Sequence Generation: All zeros

Nmap finished: 1 IP address (1 host up) scanned in 70.019 seconds

 Raw packets sent: 5045 (203KB) | Rcvd: 27 (1350B)

From the output it is evident that Nmap was able to determine that the OS

running on the target system was Linux.

85

2.3.2.2 Xprobe2's Results

Xprobe2 was executed and the following was observed:

linux:/# xprobe2 10.0.0.6

Xprobe2 v.0.3 Copyright (c) 2002-2005 fyodor@o0o.nu, ofir@sys-security.com,

meder@o0o.nu

[+] Target is 10.0.0.6

[+] Loading modules.

[+] Following modules are loaded:

[x] [1] ping:icmp_ping - ICMP echo discovery module

[x] [2] ping:tcp_ping - TCP-based ping discovery module

[x] [3] ping:udp_ping - UDP-based ping discovery module

[x] [4] infogather:ttl_calc - TCP and UDP based TTL distance calculation

[x] [5] infogather:portscan - TCP and UDP PortScanner

[x] [6] fingerprint:icmp_echo - ICMP Echo request fingerprinting module

[x] [7] fingerprint:icmp_tstamp - ICMP Timestamp request fingerprinting module

[x] [8] fingerprint:icmp_amask - ICMP Address mask request fingerprinting

module

[x] [9] fingerprint:icmp_port_unreach - ICMP port unreachable fingerprinting

module

[x] [10] fingerprint:tcp_hshake - TCP Handshake fingerprinting module

[x] [11] fingerprint:tcp_rst - TCP RST fingerprinting module

[x] [12] fingerprint:smb - SMB fingerprinting module

[x] [13] fingerprint:snmp - SNMPv2c fingerprinting module

[+] 13 modules registered

[+] Initializing scan engine

[+] Running scan engine

[-] ping:tcp_ping module: no closed/open TCP ports known on 10.0.0.6. Module test

failed

[-] ping:udp_ping module: no closed/open UDP ports known on 10.0.0.6. Module

test failed

[-] No distance calculation. 10.0.0.6 appears to be dead or no ports known

[+] Host: 10.0.0.6 is down (Guess probability: 0%)

[+] Cleaning up scan engine

[+] Modules deinitialized

86

[+] Execution completed.

Xprobe2 was not able to determine what the OS was as it did not receive

any ICMP reply packets. Xprobe2 relies purely on the ICMP packets it

receives. This is a disadvantage of Xprobe2. Nmap on the other hand was

able to detect the OS.

With the ICMP packets disabled there is no need to alter the packets in

terms of the amount of data sent in the ICMP error packet.

2.3.3 IP Default TTL

The impact that the TTL value has on the OS fingerprinting tools has to be

investigated. This is done by altering the TTL value in the

/proc/sys/net/ipv4/ip_default_ttl file. The default value is 64. It was decided

to modify the TTL value to any random number below 256. The TTL value

was changed to 128. It was reasoned that it might be a countermeasure to

have this value a variable number, but it does bring in a problem that this

could be a vulnerability in detecting Linux that has a variable TTL. It would

be advisable not to have the TTL value below 64, as this is a reasonable

number to prevent a packet from getting lost on the Internet.

2.3.3.1 Nmap's Result

The results that Nmap displayed are shown below:

linux:# nmap -O -vv 10.0.0.6

Starting Nmap 4.00 (http://www.insecure.org/nmap/) at 2006-09-04 03:47 SAST

Initiating ARP Ping Scan against 10.0.0.6 [1 port] at 03:47

The ARP Ping Scan took 0.01s to scan 1 total hosts.

DNS resolution of 1 IPs took 0.01s. Mode: Async [#: 2, OK: 1, NX: 0, DR: 0, SF: 0,

87

TR: 1, CN: 0]

Initiating SYN Stealth Scan against pc-wvl-6.cs.ukzn.ac.za (10.0.0.6) [1672 ports]

at 03:47

Discovered open port 22/tcp on 10.0.0.6

The SYN Stealth Scan took 21.38s to scan 1672 total ports.

For OSScan assuming port 22 is open, 113 is closed, and neither are firewalled

Host pc-wvl-6.cs.ukzn.ac.za (10.0.0.6) appears to be up ... good.

Interesting ports on pc-wvl-6.cs.ukzn.ac.za (10.0.0.6):

(The 1670 ports scanned but not shown below are in state: filtered)

PORT STATE SERVICE

22/tcp open ssh

113/tcp closed auth

MAC Address: 00:0F:FE:31:D9:CF (G-pro Computer)

Device type: general purpose|broadband router

Running: Linux 2.4.X|2.5.X|2.6.X, D-Link embedded

OS details: Linux 2.4.0 - 2.5.20, Linux 2.4.18 - 2.4.20, Linux 2.4.26, Linux 2.4.27 or

D-Link DSL-500T (running linux 2.4), Linux 2.4.7 - 2.6.11, Linux 2.6.0 - 2.6.11

OS Fingerprint:

TSeq(Class=RI%gcd=3%SI=A7336%IPID=Z)

T1(Resp=Y%DF=Y%W=16A0%ACK=S++%Flags=AS%Ops=MNNTNW)

T2(Resp=N)

T3(Resp=Y%DF=Y%W=16A0%ACK=S++%Flags=AS%Ops=MNNTNW)

T4(Resp=Y%DF=Y%W=0%ACK=O%Flags=R%Ops=)

T5(Resp=Y%DF=Y%W=0%ACK=S++%Flags=AR%Ops=)

T6(Resp=Y%DF=Y%W=0%ACK=O%Flags=R%Ops=)

T7(Resp=N)

PU(Resp=N)

TCP Sequence Prediction: Class=random positive increments

 Difficulty=684854 (Good luck!)

IPID Sequence Generation: All zeros

Nmap finished: 1 IP address (1 host up) scanned in 23.758 seconds

 Raw packets sent: 3364 (135KB) | Rcvd: 19 (996B)

Nmap was not deceived by this alteration.

88

2.3.3.2 Xprobe2's Results

Xprobe2 was executed to investigate the affect of the alteration on it.

linux:/# xprobe2 10.0.0.6

Xprobe2 v.0.3 Copyright (c) 2002-2005 fyodor@o0o.nu, ofir@sys-security.com,

meder@o0o.nu

[+] Target is 10.0.0.6

[+] Loading modules.

[+] Following modules are loaded:

[x] [1] ping:icmp_ping - ICMP echo discovery module

[x] [2] ping:tcp_ping - TCP-based ping discovery module

[x] [3] ping:udp_ping - UDP-based ping discovery module

[x] [4] infogather:ttl_calc - TCP and UDP based TTL distance calculation

[x] [5] infogather:portscan - TCP and UDP PortScanner

[x] [6] fingerprint:icmp_echo - ICMP Echo request fingerprinting module

[x] [7] fingerprint:icmp_tstamp - ICMP Timestamp request fingerprinting module

[x] [8] fingerprint:icmp_amask - ICMP Address mask request fingerprinting

module

[x] [9] fingerprint:icmp_port_unreach - ICMP port unreachable fingerprinting

module

[x] [10] fingerprint:tcp_hshake - TCP Handshake fingerprinting module

[x] [11] fingerprint:tcp_rst - TCP RST fingerprinting module

[x] [12] fingerprint:smb - SMB fingerprinting module

[x] [13] fingerprint:snmp - SNMPv2c fingerprinting module

[+] 13 modules registered

[+] Initializing scan engine

[+] Running scan engine

[-] ping:tcp_ping module: no closed/open TCP ports known on 10.0.0.6. Module test

failed

[-] ping:udp_ping module: no closed/open UDP ports known on 10.0.0.6. Module

test failed

[-] No distance calculation. 10.0.0.6 appears to be dead or no ports known

[+] Host: 10.0.0.6 is up (Guess probability: 50%)

[+] Target: 10.0.0.6 is alive. Round-Trip Time: 0.00026 sec

[+] Selected safe Round-Trip Time value is: 0.00051 sec

89

[-] fingerprint:tcp_hshake Module execution aborted (no open TCP ports known)

[-] fingerprint:smb need either TCP port 139 or 445 to run

[-] fingerprint:snmp: need UDP port 161 open

[+] Primary guess:

[+] Host 10.0.0.6 Running OS: "Foundry Networks IronWare Version 03.0.01eTc1"

(Guess probability: 91%)

[+] Other guesses:

[+] Host 10.0.0.6 Running OS: "Linux Kernel 2.6.0" (Guess probability: 83%)

[+] Host 10.0.0.6 Running OS: "Linux Kernel 2.6.1" (Guess probability: 83%)

[+] Host 10.0.0.6 Running OS: "Linux Kernel 2.6.2" (Guess probability: 83%)

[+] Host 10.0.0.6 Running OS: "Linux Kernel 2.6.3" (Guess probability: 83%)

[+] Host 10.0.0.6 Running OS: "Linux Kernel 2.6.4" (Guess probability: 83%)

[+] Host 10.0.0.6 Running OS: "Linux Kernel 2.6.5" (Guess probability: 83%)

[+] Host 10.0.0.6 Running OS: "Linux Kernel 2.6.6" (Guess probability: 83%)

[+] Host 10.0.0.6 Running OS: "Linux Kernel 2.6.7" (Guess probability: 83%)

[+] Host 10.0.0.6 Running OS: "Linux Kernel 2.6.8" (Guess probability: 83%)

[+] Cleaning up scan engine

[+] Modules deinitialized

[+] Execution completed.

The results show that Xprobe2 was effected in some way. Its primary guess

was still Foudary IronWare, but with the other tests it performed it guessed

the OS of the target to be Linux, with an 83% probability. Interestingly

enough, it was found that when the TTL value was set to 255, Xprobe2

gave a different result, but Nmap was not effected.

The following results were found from Xprobe2.

linux:/# xprobe2 10.0.0.6

Xprobe2 v.0.3 Copyright (c) 2002-2005 fyodor@o0o.nu, ofir@sys-security.com,

meder@o0o.nu

[+] Target is 10.0.0.6

[+] Loading modules.

[+] Following modules are loaded:

90

[x] [1] ping:icmp_ping - ICMP echo discovery module

[x] [2] ping:tcp_ping - TCP-based ping discovery module

[x] [3] ping:udp_ping - UDP-based ping discovery module

[x] [4] infogather:ttl_calc - TCP and UDP based TTL distance calculation

[x] [5] infogather:portscan - TCP and UDP PortScanner

[x] [6] fingerprint:icmp_echo - ICMP Echo request fingerprinting module

[x] [7] fingerprint:icmp_tstamp - ICMP Timestamp request fingerprinting module

[x] [8] fingerprint:icmp_amask - ICMP Address mask request fingerprinting

module

[x] [9] fingerprint:icmp_port_unreach - ICMP port unreachable fingerprinting

module

[x] [10] fingerprint:tcp_hshake - TCP Handshake fingerprinting module

[x] [11] fingerprint:tcp_rst - TCP RST fingerprinting module

[x] [12] fingerprint:smb - SMB fingerprinting module

[x] [13] fingerprint:snmp - SNMPv2c fingerprinting module

[+] 13 modules registered

[+] Initializing scan engine

[+] Running scan engine

[-] ping:tcp_ping module: no closed/open TCP ports known on 10.0.0.6. Module test

failed

[-] ping:udp_ping module: no closed/open UDP ports known on 10.0.0.6. Module

test failed

[-] No distance calculation. 10.0.0.6 appears to be dead or no ports known

[+] Host: 10.0.0.6 is up (Guess probability: 50%)

[+] Target: 10.0.0.6 is alive. Round-Trip Time: 0.00362 sec

[+] Selected safe Round-Trip Time value is: 0.00724 sec

[-] fingerprint:tcp_hshake Module execution aborted (no open TCP ports known)

[-] fingerprint:smb need either TCP port 139 or 445 to run

[-] fingerprint:snmp: need UDP port 161 open

[+] Primary guess:

[+] Host 10.0.0.6 Running OS: "Linux Kernel 2.4.5" (Guess probability: 91%)

[+] Other guesses:

[+] Host 10.0.0.6 Running OS: "Linux Kernel 2.2.1" (Guess probability: 91%)

[+] Host 10.0.0.6 Running OS: "Linux Kernel 2.2.5" (Guess probability: 91%)

[+] Host 10.0.0.6 Running OS: "Linux Kernel 2.2.20" (Guess probability: 91%)

[+] Host 10.0.0.6 Running OS: "Linux Kernel 2.2.24" (Guess probability: 91%)

[+] Host 10.0.0.6 Running OS: "Linux Kernel 2.4.16" (Guess probability: 91%)

[+] Host 10.0.0.6 Running OS: "NetBSD 2.0" (Guess probability: 91%)

91

[+] Host 10.0.0.6 Running OS: "Linux Kernel 2.2.0" (Guess probability: 91%)

[+] Host 10.0.0.6 Running OS: "Linux Kernel 2.2.4" (Guess probability: 91%)

[+] Host 10.0.0.6 Running OS: "Linux Kernel 2.2.19" (Guess probability: 91%)

[+] Cleaning up scan engine

[+] Modules deinitialized

[+] Execution completed.

From the results Xprobe2's primary guess was that the target's OS was

Linux. The other guesses were that the OS of the target is Linux and in one

situation that it was NETBSD 2.0. This shows that the TTL value has some

effect on Xprobe2, but it does not fully deceive it.

2.3.4 TCP Window Scaling

TCP window scaling is defined according to RFC 1323. The

/proc/sys/net/ipv4/tcp_window_scaling file determines if the kernel follows

these definitions or not. The default value is 1 which is to follow these

definitions. The value in this file was set to 0.

Investigation was done on how this change affected Nmap and Xprobe2.

2.3.4.1 Nmap's Output

Nmap gave the following output:

linux:/# nmap -O -vv 146.2 30.94.108

Starting Nmap 4.00 (http://www.insecure.org/nmap/) at 2006-09-04 04:06 SAST

Initiating ARP Ping Scan against 10.0.0.6 [1 port] at 04:06

The ARP Ping Scan took 0.02s to scan 1 total hosts.

DNS resolution of 1 IPs took 0.01s. Mode: Async [#: 2, OK: 1, NX: 0, DR: 0, SF: 0,

TR: 1, CN: 0]

92

Initiating SYN Stealth Scan against pc-wvl-6.cs.ukzn.ac.za (10.0.0.6) [1672 ports]

at 04:06

Discovered open port 22/tcp on 10.0.0.6

The SYN Stealth Scan took 21.39s to scan 1672 total ports.

For OSScan assuming port 22 is open, 113 is closed, and neither are firewalled

Host pc-wvl-6.cs.ukzn.ac.za (10.0.0.6) appears to be up ... good.

Interesting ports on pc-wvl-6.cs.ukzn.ac.za (10.0.0.6):

(The 1670 ports scanned but not shown below are in state: filtered)

PORT STATE SERVICE

22/tcp open ssh

113/tcp closed auth

MAC Address: 00:0F:FE:31:D9:CF (G-pro Computer)

Device type: general purpose

Running: Linux 2.4.X|2.5.X|2.6.X

OS details: Linux 2.4.0 - 2.5.20, Linux 2.6.8 - 2.6.11

OS Fingerprint:

TSeq(Class=RI%gcd=1%SI=2888C6%IPID=Z)

T1(Resp=Y%DF=Y%W=16A0%ACK=S++%Flags=AS%Ops=MNNT)

T2(Resp=N)

T3(Resp=Y%DF=Y%W=16A0%ACK=S++%Flags=AS%Ops=MNNT)

T4(Resp=Y%DF=Y%W=0%ACK=O%Flags=R%Ops=)

T5(Resp=Y%DF=Y%W=0%ACK=S++%Flags=AR%Ops=)

T6(Resp=Y%DF=Y%W=0%ACK=O%Flags=R%Ops=)

T7(Resp=N)

PU(Resp=N)

TCP Sequence Prediction: Class=random positive increments

 Difficulty=2656454 (Good luck!)

IPID Sequence Generation: All zeros

Nmap finished: 1 IP address (1 host up) scanned in 23.785 seconds

 Raw packets sent: 3364 (135KB) | Rcvd: 18 (904B)

This alteration had some effect on Nmap. Nmap was still able to determine

that Linux was running on the target system, but with fewer kernel

versions. This means that this is not the only thing Nmap looks at to

determine the OS.

93

2.3.4.2 Xprobe2's Results

Xprobe2 gave the following results:

linux:/# xprobe2 10.0.0.6

Xprobe2 v.0.3 Copyright (c) 2002-2005 fyodor@o0o.nu, ofir@sys-security.com,

meder@o0o.nu

[+] Target is 10.0.0.6

[+] Loading modules.

[+] Following modules are loaded:

[x] [1] ping:icmp_ping - ICMP echo discovery module

[x] [2] ping:tcp_ping - TCP-based ping discovery module

[x] [3] ping:udp_ping - UDP-based ping discovery module

[x] [4] infogather:ttl_calc - TCP and UDP based TTL distance calculation

[x] [5] infogather:portscan - TCP and UDP PortScanner

[x] [6] fingerprint:icmp_echo - ICMP Echo request fingerprinting module

[x] [7] fingerprint:icmp_tstamp - ICMP Timestamp request fingerprinting module

[x] [8] fingerprint:icmp_amask - ICMP Address mask request fingerprinting

module

[x] [9] fingerprint:icmp_port_unreach - ICMP port unreachable fingerprinting

module

[x] [10] fingerprint:tcp_hshake - TCP Handshake fingerprinting module

[x] [11] fingerprint:tcp_rst - TCP RST fingerprinting module

[x] [12] fingerprint:smb - SMB fingerprinting module

[x] [13] fingerprint:snmp - SNMPv2c fingerprinting module

[+] 13 modules registered

[+] Initializing scan engine

[+] Running scan engine

[-] ping:tcp_ping module: no closed/open TCP ports known on 10.0.0.6. Module test

failed

[-] ping:udp_ping module: no closed/open UDP ports known on 10.0.0.6. Module

test failed

[-] No distance calculation. 10.0.0.6 appears to be dead or no ports known

[+] Host: 10.0.0.6 is up (Guess probability: 50%)

[+] Target: 10.0.0.6 is alive. Round-Trip Time: 0.00027 sec

[+] Selected safe Round-Trip Time value is: 0.00054 sec

94

[-] fingerprint:tcp_hshake Module execution aborted (no open TCP ports known)

[-] fingerprint:smb need either TCP port 139 or 445 to run

[-] fingerprint:snmp: need UDP port 161 open

[+] Primary guess:

[+] Host 10.0.0.6 Running OS: "Foundry Networks IronWare Version 03.0.01eTc1"

(Guess probability: 91%)

[+] Other guesses:

[+] Host 10.0.0.6 Running OS: "Foundry Networks IronWare Version 07.5.05KT53"

(Guess probability: 83%)

[+] Host 10.0.0.6 Running OS: "Foundry Networks IronWare 07.6.01BT51" (Guess

probability: 83%)

[+] Host 10.0.0.6 Running OS: "Foundry Networks IronWare 07.6.04aT51" (Guess

probability: 83%)

[+] Host 10.0.0.6 Running OS: "Foundry Networks IronWare 07.7.01eT53" (Guess

probability: 83%)

[+] Host 10.0.0.6 Running OS: "Linux Kernel 2.4.25" (Guess probability: 83%)

[+] Host 10.0.0.6 Running OS: "Linux Kernel 2.4.24" (Guess probability: 83%)

[+] Host 10.0.0.6 Running OS: "HP JetDirect ROM H.07.15 EEPROM H.08.20"

(Guess probability: 83%)

[+] Host 10.0.0.6 Running OS: "HP JetDirect ROM G.08.21 EEPROM G.08.21"

(Guess probability: 83%)

[+] Host 10.0.0.6 Running OS: "HP JetDirect ROM G.08.08 EEPROM G.08.04"

(Guess probability: 83%)

[+] Cleaning up scan engine

[+] Modules deinitialized

[+] Execution completed.

From the output it is seen that Xprobe2 thought the target's OS was

between Foundary IronWare, Linux and HP JetDirect ROM. This has had

the greatest effect on Xprobe2. It was then decided to have the TTL value

altered to 128 while the tcp_window_scaling file is set to 0.

linux:/# xprobe2 10.0.0.6

Xprobe2 v.0.3 Copyright (c) 2002-2005 fyodor@o0o.nu, ofir@sys-security.com,

meder@o0o.nu

95

[+] Target is 10.0.0.6

[+] Loading modules.

[+] Following modules are loaded:

[x] [1] ping:icmp_ping - ICMP echo discovery module

[x] [2] ping:tcp_ping - TCP-based ping discovery module

[x] [3] ping:udp_ping - UDP-based ping discovery module

[x] [4] infogather:ttl_calc - TCP and UDP based TTL distance calculation

[x] [5] infogather:portscan - TCP and UDP PortScanner

[x] [6] fingerprint:icmp_echo - ICMP Echo request fingerprinting module

[x] [7] fingerprint:icmp_tstamp - ICMP Timestamp request fingerprinting module

[x] [8] fingerprint:icmp_amask - ICMP Address mask request fingerprinting

module

[x] [9] fingerprint:icmp_port_unreach - ICMP port unreachable fingerprinting

module

[x] [10] fingerprint:tcp_hshake - TCP Handshake fingerprinting module

[x] [11] fingerprint:tcp_rst - TCP RST fingerprinting module

[x] [12] fingerprint:smb - SMB fingerprinting module

[x] [13] fingerprint:snmp - SNMPv2c fingerprinting module

[+] 13 modules registered

[+] Initializing scan engine

[+] Running scan engine

[-] ping:tcp_ping module: no closed/open TCP ports known on 10.0.0.6. Module test

failed

[-] ping:udp_ping module: no closed/open UDP ports known on 10.0.0.6. Module

test failed

[-] No distance calculation. 10.0.0.6 appears to be dead or no ports known

[+] Host: 10.0.0.6 is up (Guess probability: 50%)

[+] Target: 10.0.0.6 is alive. Round-Trip Time: 0.00029 sec

[+] Selected safe Round-Trip Time value is: 0.00059 sec

[-] fingerprint:tcp_hshake Module execution aborted (no open TCP ports known)

[-] fingerprint:smb need either TCP port 139 or 445 to run

[-] fingerprint:snmp: need UDP port 161 open

[+] Primary guess:

[+] Host 10.0.0.6 Running OS: "Foundry Networks IronWare Version 03.0.01eTc1"

(Guess probability: 83%)

[+] Other guesses:

[+] Host 10.0.0.6 Running OS: "HP JetDirect ROM A.03.17 EEPROM A.04.09"

(Guess probability: 83%)

96

[+] Host 10.0.0.6 Running OS: "HP JetDirect ROM A.05.03 EEPROM A.05.05"

(Guess probability: 83%)

[+] Host 10.0.0.6 Running OS: "HP JetDirect ROM F.08.01 EEPROM F.08.05"

(Guess probability: 83%)

[+] Host 10.0.0.6 Running OS: "HP JetDirect ROM F.08.08 EEPROM F.08.05"

(Guess probability: 83%)

[+] Host 10.0.0.6 Running OS: "HP JetDirect ROM F.08.08 EEPROM F.08.20"

(Guess probability: 83%)

[+] Host 10.0.0.6 Running OS: "HP JetDirect ROM G.05.34 EEPROM G.05.35"

(Guess probability: 83%)

[+] Host 10.0.0.6 Running OS: "HP JetDirect ROM G.06.00 EEPROM G.06.00"

(Guess probability: 83%)

[+] Host 10.0.0.6 Running OS: "HP JetDirect ROM G.07.02 EEPROM G.07.17"

(Guess probability: 83%)

[+] Host 10.0.0.6 Running OS: "HP JetDirect ROM G.07.02 EEPROM G.07.20"

(Guess probability: 83%)

[+] Cleaning up scan engine

[+] Modules deinitialized

[+] Execution completed.

Here Xprobe2 guessed that the OS of the target was either Foundary

IronWare or HP JetDirect ROM, with no mention of Linux while Nmap had

no change in its output.

From the above tests it was established that if the Linux kernel was not

following RFC 1323, then it was able to deceive Xprobe2 but not Nmap.

Causing the kernel not to follow RFC 1323 can result in the communication

not being optimised, so it is recommended that this value is kept as it is.

As Xprobe2 was deceived when Nmap was not, it can be said that Nmap is

a more powerful tool than Xprobe2 when it comes to OS fingerprinting. It is

more difficult to deceive Nmap than Xprobe2.

The reason why Nmap is a better OS fingerprinting tool is due to the fact

97

that it has 1681 different fingerprints of tests performed on OS in its

database (nmap-os-fingerprint). This database is community maintained. It

makes it very difficult to deceive Nmap, as Fyodor has 172 fingerprints for

Linux with different alterations done to the TCP/IP stack. As Xprobe2 is

deceived more easily, more focus is needed to investigate countermeasures

for Nmap instead of Xprobe2.

2.3.5 Timestamps

All the settings that were changed were reset manually, but the TOS field

was kept to 0x00. It was then decided to disable the TCP timestamps in the

/proc/sys/net/ipv4/tcp_timestamps file.

With this change in the TCP/IP stack, only Nmap's results were observed.

2.3.5.1 Nmap's Results

Nmap showed the following output:

linux:/# nmap -O -vv 10.0.0.6

Starting Nmap 4.00 (http://www.insecure.org/nmap/) at 2006-09-05 15:45 SAST

Initiating ARP Ping Scan against pc-wvl-6.cs.ukzn.ac.za [1 port] at 15:45

The ARP Ping Scan took 0.02s to scan 1 total hosts.

DNS resolution of 1 IPs took 13.00s. Mode: Async [#: 1, OK: 0, NX: 0, DR: 1, SF: 0,

TR: 3, CN: 0]

Initiating SYN Stealth Scan against pc-wvl-6.cs.ukzn.ac.za [1672 ports] at 15:45

Discovered open port 22/tcp on pc-wvl-6.cs.ukzn.ac.za

SYN Stealth Scan Timing: About 32.08% done; ETC: 15:46 (0:01:03 remaining)

The SYN Stealth Scan took 67.31s to scan 1672 total ports.

For OSScan assuming port 22 is open, 113 is closed, and neither are firewalled

Host pc-wvl-6.cs.ukzn.ac.za appears to be up ... good.

Interesting ports on pc-wvl-6.cs.ukzn.ac.za:

98

(The 1670 ports scanned but not shown below are in state: filtered)

PORT STATE SERVICE

22/tcp open ssh

113/tcp closed auth

MAC Address: 00:30:18:66:7A:0B (Jetway Information Co.)

Device type: general purpose

Running: Linux 2.4.X|2.5.X

OS details: Linux 2.4.0 - 2.5.20 w/o tcp_timestamps, Linux 2.4.22 (x86)

w/grsecurity patch and with timestamps disabled

OS Fingerprint:

TSeq(Class=RI%gcd=1%SI=3C3087%IPID=Z%TS=U)

T1(Resp=Y%DF=Y%W=16D0%ACK=S++%Flags=AS%Ops=MNW)

T2(Resp=N)

T3(Resp=Y%DF=Y%W=16D0%ACK=S++%Flags=AS%Ops=MNW)

T4(Resp=Y%DF=Y%W=0%ACK=O%Flags=R%Ops=)

T5(Resp=Y%DF=Y%W=0%ACK=S++%Flags=AR%Ops=)

T6(Resp=Y%DF=Y%W=0%ACK=O%Flags=R%Ops=)

T7(Resp=N)

PU(Resp=N)

TCP Sequence Prediction: Class=random positive increments

 Difficulty=3944583 (Good luck!)

IPID Sequence Generation: All zeros

Nmap finished: 1 IP address (1 host up) scanned in 82.684 seconds

 Raw packets sent: 5045 (203KB) | Rcvd: 27 (1254B)

From these results, it can be seen that Nmap still detects Linux, but thinks

that a patch from grsecurity has been installed. This is an example of the

vast number of fingerprints that Nmap has. It is observed that the window

size has changed to 16D0. This suggests that the window size be changed

to another value to deceive Nmap.

2.3.6 Other modifications of the TCP/IP stack

Modifying the Window size and MSS field of the TCP/IP stack were

99

considered, but this would be ineffective, as Fyodor could just add these

fingerprints to the Nmap database, unless the alterations mimic another

OS. No matter what changes are made to the TCP/IP stack, it would have

no effect on Nmap, except if one would want to make the TCP/IP stack the

same as that of another OS. Modifying the TCP/IP stack to be the same as

that of another OS creates the problem that the system could have

vulnerabilities or problems equivalent to that of the other OS. An example

is that if the IPID bit is not set to zero, and the DF bit is not set, then the

system could be vulnerable to IPID scans.

It can therefore be concluded that the modifications of the TCP/IP stack

will be useful to a degree, but it would not be the best countermeasure for

OS fingerprinting.

It is suggested that the ICMP packets discussed in section 2.2.1 Unique

Linux Characteristics are blocked as this will prevent OS fingerprinting

through a firewall or a system. Tools that operate similarly to Xprobe2 and

that are reliable on ICMP messages will not be able to fingerprint the OS of

a target system successfully.

100

Chapter 3: Countermeasures

Based on the results of tests to validate the preliminary countermeasures in

Section 2.3, it was decided that another approach should be investigated

and tested in addition – the active detection of OS fingerprinting tools. The

main difference between this technique and the others is that if the target

can detect an OS fingerprinting attempt, it could respond in a more

intelligent way while maintaining 'normal' networking functionality for

other communication.

Once this approach has been investigated, the final set of countermeasures

is presented. This includes altering the TCP/IP stack, as well as the afore-

mentioned approach of detecting scans performed on a system. This final

list of countermeasures make a system as secure as possible against OS

fingerprinting.

3.1 OS Fingerprinting Tools Detection

According to McClure et. al. (McClure et al. 2005), OS fingerprinting can

only be prevented by modifying the unique TCP/IP stack fingerprint, but

this will “affect the functionality of the operating system.” As this is not the

desired option, the task is therefore to try and prevent a scan from Nmap,

without modifying the TCP/IP stack.

3.1.1 Detecting Nmap

The database of P0f (Zalewski 2004) was investigated, and it was noted

that Nmap itself has a fingerprint because of the unique way it sends the

probing packets to a target system. It was then thought to use the same

tool against the attacker that is used on the target. By this it is meant that

one should monitor the packets being received and identify if they come

from Nmap. Should the packets come from Nmap then the system should

101

either drop them or respond appropriately.

As Nmap is not able to determine the OS if it cannot find at least one open

port, a system could react to all probes from Nmap as if the port is closed.

Evgeniy Polyakov used the fact that Nmap has a unique signature and

combined this with IPtables, to design the OSF (Operating System

Fingerprinting) module. OSF can be downloaded from

http://tservice.net.ru/~s0mbre/archive/osf/. The OS fingerprints can be

downloaded from http://www.openbsd.org/cgi-bin/cvsweb/src/etc/pf.os.

Evgeniy Polyakov states that this is the best countermeasure for active OS

fingerprinting tools such as Nmap. This won't prevent passive OS

fingerprinting tools, but a user from the target system would have to

connect to the attacker's machine first. The task is rather to block active

OS fingerprinting tools.

The procedure to get OSF working is really involved and somewhat

complicated for first time users. The Makefile is first edited and the path of

the IPtables source files is specified. Once this is done, the source code is

built that generates the libipt_osf.ko kernel module. The library file is then

also compiled which generates the libipt_osf.so shared library. The kernel

module is then installed and the pf.os file is loaded into the

/proc/sys/net/osf path. Once this has been done, it can be implemented with

Iptables. The installation procedure is described in Appendix D.

Nmap has the fingerprints presented below. The order of the fingerprints

are as follows:

<Window Size>:<Initial TTL>:<Don't Fragment bit>:<Overall SYN packet

size>: <Options in Order if used>: Nmap scan or OS

102

http://www.openbsd.org/cgi-bin/cvsweb/src/etc/pf.os
http://tservice.net.ru/~s0mbre/archive/osf/

1024:64:0:40: Nmap SYN scan 1

2048:64:0:40: Nmap SYN scan 2

3072:64:0:40: Nmap SYN scan 3

4096:64:0:40: Nmap SYN scan 4

1024:64:0:60:W10,N,M265,T: Nmap OS detection probe 1

2048:64:0:60:W10,N,M265,T: Nmap OS detection probe 2

3072:64:0:60:W10,N,M265,T: Nmap OS detection probe 3

4096:64:0:60:W10,N,M265,T: Nmap OS detection probe 4

NAST, another OS fingerprinting tool has got the following fingerprint:

32767:64:0:40: NAST SYN scan

Due to the fact that Windows 2003 has a similar fingerprint to Nmap, it is

suggested that the statement for the detecting of Nmap is placed at the

end of the IPtables list, therefore allowing communication from Windows

2003. The main options used are --log and --ttl.

The statement used for the blocking of Nmap packets is:

103

iptables -I INPUT -p tcp -m osf --genre Nmap --log 2 --ttl 2 -j REJECT

The above statement rejects all TCP packets coming in from Nmap.

The firewall settings are shown in Appendix B.3, which were used once the

OSF module was loaded. When Nmap was used to fingerprint the OS of the

target system, the following output was observed:

linux:/# nmap -O -vv 10.0.0.6

Starting Nmap 4.00 (http://www.insecure.org/nmap/) at 2006-09-15 23:48 SAST

Initiating ARP Ping Scan against pc-wvl-6.cs.ukzn.ac.za [1 port] at 23:48

The ARP Ping Scan took 0.01s to scan 1 total hosts.

DNS resolution of 1 IPs took 13.00s. Mode: Async [#: 1, OK: 0, NX: 0, DR: 1, SF: 0,

TR: 3, CN: 0]

Initiating SYN Stealth Scan against pc-wvl-6.cs.ukzn.ac.za [1672 ports] at 23:48

Increasing send delay for pc-wvl-6.cs.ukzn.ac.za from 0 to 5 due to

max_successful_tryno increase to 4

Increasing send delay for pc-wvl-6.cs.ukzn.ac.za from 5 to 10 due to

max_successful_tryno increase to 5

Increasing send delay for pc-wvl-6.cs.ukzn.ac.za from 10 to 20 due to

max_successful_tryno increase to 6

Increasing send delay for pc-wvl-6.cs.ukzn.ac.za from 20 to 40 due to

max_successful_tryno increase to 7

Increasing send delay for pc-wvl-6.cs.ukzn.ac.za from 40 to 80 due to

max_successful_tryno increase to 8

Increasing send delay for pc-wvl-6.cs.ukzn.ac.za from 80 to 160 due to

max_successful_tryno increase to 9

Increasing send delay for pc-wvl-6.cs.ukzn.ac.za from 160 to 320 due to 11 out of

12 dropped probes since last increase.

SYN Stealth Scan Timing: About 2.82% done; ETC: 00:06 (0:17:22 remaining)

104

Increasing send delay for pc-wvl-6.cs.ukzn.ac.za from 320 to 640 due to 11 out of

11 dropped probes since last increase.

Increasing send delay for pc-wvl-6.cs.ukzn.ac.za from 640 to 1000 due to 11 out of

19 dropped probes since last increase.

SYN Stealth Scan Timing: About 65.20% done; ETC: 00:15 (0:09:32 remaining)

The SYN Stealth Scan took 1668.84s to scan 1672 total ports.

Warning: OS detection will be MUCH less reliable because we did not find at least

1 open and 1 closed TCP port

Host pc-wvl-6.cs.ukzn.ac.za appears to be up ... good.

All 1672 scanned ports on pc-wvl-6.cs.ukzn.ac.za are: filtered

MAC Address: 00:30:18:66:7A:0B (Jetway Information Co.)

Too many fingerprints match this host to give specific OS details

TCP/IP fingerprint:

SInfo(V=4.00%P=i586-suse-linux%D=9/16%Tm=450B2637%O=-1%C=-

1%M=003018)

T5(Resp=N)

T6(Resp=N)

T7(Resp=N)

PU(Resp=N)

Nmap finished: 1 IP address (1 host up) scanned in 1690.096 seconds

 Raw packets sent: 1851 (76.1KB) | Rcvd: 1673 (114KB)

As it can be seen from the above output, Nmap was not able to determine

the OS running on the target system as it was not able to find an open port.

The file /var/log/messages was investigated, and the following was seen:

105

Sep 15 11:48:13 linux-xegw kernel: ipt_osf: Windows [.NET::Windows .NET

Enterprise Server] : 10.0.0.5:57418 -> 10.0.0.6:716 hops=206

Sep 15 11:48:13 linux-xegw kernel: ipt_osf: NMAP [syn scan:2:NMAP syn scan (2)]

: 10.0.0.5:57418 -> 10.0.0.6:716 hops=15

OSF first thought that it was receiving packets from a Windows .NET

Enterprise Server, and then it found that it was receiving packets from

Nmap. With the '-j REJECT' option, the system will send ICMP error

messages to the attacking system, if ICMP messages are not disabled. It is

therefore better to have the line:

iptables -I INPUT -p tcp -m osf --genre Nmap --log 2 --ttl 2 -j DROP

Vmstat was executed when the OSF module was installed and removed,

and the following was shown respectively:

procs -----------memory---------- ---swap-- -----io---- --system-- ----cpu----

 r b swpd free buff cache si so bi bo in cs us sy id wa

 2 0 0 400708 47268 451152 0 0 122 31 279 320 8 1 88 3

procs -----------memory---------- ---swap-- -----io---- --system-- ----cpu----

 r b swpd free buff cache si so bi bo in cs us sy id wa

 1 0 0 421140 43220 436220 0 0 148 34 278 351 10 1 86 3

From this it is seen that with the OSF module installed, less free memory

was available, but this could also be due to other programs that are

running. The time that was spent running kernel code (in system time) does

not differ.

It can be concluded that OSF solves the problem of active OS

fingerprinting by Nmap as well as port scanning, and is therefore the best

countermeasure found. As the target system logs the IP address of the

system performing the scans, the system administrator can block any

106

further packets received from that system.

3.1.2 Detecting Other OS Fingerprinting Tools

Investigation was done to see how other OS fingerprinting tools reacted to

this modification on the target system. A set of OS fingerprinting tools was

tested to determine performance against the target.

Xprobe2 was tested with the OSF module enabled on the target system,

and the following output was received:

linux:/# xprobe2 10.0.0.6

Xprobe2 v.0.3 Copyright (c) 2002-2005 fyodor@o0o.nu, ofir@sys-security.com,

meder@o0o.nu

[+] Target is 10.0.0.6

[+] Loading modules.

[+] Following modules are loaded:

[x] [1] ping:icmp_ping - ICMP echo discovery module

[x] [2] ping:tcp_ping - TCP-based ping discovery module

[x] [3] ping:udp_ping - UDP-based ping discovery module

[x] [4] infogather:ttl_calc - TCP and UDP based TTL distance calculation

[x] [5] infogather:portscan - TCP and UDP PortScanner

[x] [6] fingerprint:icmp_echo - ICMP Echo request fingerprinting module

[x] [7] fingerprint:icmp_tstamp - ICMP Timestamp request fingerprinting module

[x] [8] fingerprint:icmp_amask - ICMP Address mask request fingerprinting

module

[x] [9] fingerprint:icmp_port_unreach - ICMP port unreachable fingerprinting

module

[x] [10] fingerprint:tcp_hshake - TCP Handshake fingerprinting module

[x] [11] fingerprint:tcp_rst - TCP RST fingerprinting module

[x] [12] fingerprint:smb - SMB fingerprinting module

[x] [13] fingerprint:snmp - SNMPv2c fingerprinting module

[+] 13 modules registered

107

[+] Initializing scan engine

[+] Running scan engine

[-] ping:tcp_ping module: no closed/open TCP ports known on 10.0.0.6. Module test

failed

[-] ping:udp_ping module: no closed/open UDP ports known on 10.0.0.6. Module

test failed

[-] No distance calculation. 10.0.0.6 appears to be dead or no ports known

[+] Host: 10.0.0.6 is up (Guess probability: 50%)

[+] Target: 10.0.0.6 is alive. Round-Trip Time: 0.00024 sec

[+] Selected safe Round-Trip Time value is: 0.00049 sec

[-] icmp_port_unreach::build_DNS_reply(): gethostbyname() failed! Using static ip

for www.securityfocus.com in UDP probe

[-] fingerprint:tcp_hshake Module execution aborted (no open TCP ports known)

[-] fingerprint:smb need either TCP port 139 or 445 to run

[-] fingerprint:snmp: need UDP port 161 open

[+] Primary guess:

[+] Host 10.0.0.6 Running OS: "Foundry Networks IronWare Version 03.0.01eTc1"

(Guess probability: 100%)

[+] Other guesses:

[+] Host 10.0.0.6 Running OS: "Linux Kernel 2.4.21" (Guess probability: 91%)

[+] Host 10.0.0.6 Running OS: "Linux Kernel 2.4.22" (Guess probability: 91%)

[+] Host 10.0.0.6 Running OS: "Foundry Networks IronWare Version 07.5.04T53"

(Guess probability: 91%)

[+] Host 10.0.0.6 Running OS: "Foundry Networks IronWare Version 07.5.05KT53"

(Guess probability: 91%)

[+] Host 10.0.0.6 Running OS: "Foundry Networks IronWare 07.6.01BT51" (Guess

probability: 91%)

[+] Host 10.0.0.6 Running OS: "Foundry Networks IronWare 07.6.04aT51" (Guess

probability: 91%)

[+] Host 10.0.0.6 Running OS: "Foundry Networks IronWare 07.7.01eT53" (Guess

probability: 91%)

[+] Host 10.0.0.6 Running OS: "Linux Kernel 2.4.23" (Guess probability: 91%)

[+] Host 10.0.0.6 Running OS: "Linux Kernel 2.4.24" (Guess probability: 91%)

From the above results it is seen that Xprobe2 was not effected by the

installation of the OSF module on the target system. This was expected as

Xprobe2 mainly gets its results from returned ICMP messages.

108

QueSo was tested and it gave the following output:

linux:/# queso 10.0.0.6:22

10.0.0.6:22 * Standard Solaris 2.x, Linux 2.2.??? 2.4.???, MacOS

This output appeared even if OSF was not loaded. QueSo was not able to

determine the exact OS running on the target system.

It was then decided that SAINT (Security Administrator's Integrated

Network Tool) must be used to determine how secure the target is (found

at www.wwdsi.com/saint). The following output was seen when OSF was

not loaded:

linux:/# saint 10.0.0.6

> bin/udp_scan: are we talking to a dead host or network?

>

10.0.0.6:

 Services:

 auth

 SSH

The OSF module was then loaded, and the following output was observed

from SAINT:

linux:/# saint 10.0.0.6

> > bin/udp_scan: are we talking to a dead host or network?

As seen above, when OSF was loaded, SAINT was not able to detect even

open ports from the target.

Strobe (http://linux.maruhn.com/sec/strobe.html) was also tested. Strobe

109

http://linux.maruhn.com/sec/strobe.html
http://www.wwdsi.com/saint

was not able to detect any open ports on the target system when a general

port scanning test was performed. The target system's /var/log/messages

file gave the following:

Jul 13 11:53:02 linux-g5ii sshd[12819]: Did not receive identification string from

10.0.0.5

The following output was given the Strobe did a scan specifically on port 22

(SSH).

linux:/# strobe 10.0.0.6:22

strobe 1.05 © 1995 – 1999 Julian Assange <proff@iq.org>

attempting port=22 host=10.0.0.6

10.0.0.6 22 ssh #SSH Remote Login Protocol

-> SSH-1.99-OpenSSH-4.2\n

The file /var/log/messages showed the following:

Jul 13 11:48:07 linux-g5ii sshd[11989]: Did not receive identification string from

10.0.0.5

This proves that strobe is not as good as Nmap in doing general port scans

and open ports are not known. Strobe was able to identify that port 22 was

open and the service that was running on it.

McClure et. al. highly recommends a Microsoft Windows based port

scanner and OS fingerprinter, NetworkActiv Port Scanner. This OS

fingerprinting tool uses the same principle as Xprobe2, in that ICMP

packets are sent to the target. With the target allowing ICMP messages,

NetworkActiv Port Scanner reported the following OS running on the

target:

110

mailto:proff@iq.org

Primary guess(es) with 100% Match:

 MacOSX

 Linux kernel 2.0.29

 Linux kernel 2.2.10

 Linux kernel 2.2.14-20000612

 Linux kernel 2.2.16C32III

 Linux kernel 2.2.19-3cl

 Linux kernel 2.2.20

 Linux kernel 2.4.2-2

 Linux kernel 2.4.7-10

 Linux kernel 2.4.9-6

 Linux kernel 2.4.18

 Linux kernel 2.4.18-3

 GNU/Linux 2.1

 GNU/Linux 3.0

 SunOS 5.6

 SunOS 5.8

 Solaris 8

 pSOSystem

 AIX

 FreeBSD

 FreeBSD/i386

 HP JetDirect

Secondary guess(es) with 0% Match:

Unknown

All ICMP messages were then rejected, and NetworkActiv Port Scanner

reported the following OS on the target:

111

Primary guess(es) with 100% Match:

 MacOSX

 Linux kernel 2.0.29

 Linux kernel 2.2.10

 Linux kernel 2.2.14-20000612

 Linux kernel 2.2.16C32III

 Linux kernel 2.2.19-3cl

 Linux kernel 2.2.20

 Linux kernel 2.4.7-10

 Linux kernel 2.4.9-6

 Linux kernel 2.4.18

 Linux kernel 2.4.18-3

 GNU/Linux 2.1

 GNU/Linux 3.0

 Solaris 8

 FreeBSD

 FreeBSD/i386

 HP JetDirect

Secondary guess(es) with 66% Match:

 Windows ME - on Ethernet

 Windows 2000 Professional - Stock/SP1/SP2

 Windows 2000 Professional - Stock/SP1/SP2 on Ethernet

 Windows 2000 Professional - SP3 on Ethernet

 Windows 2000 Professional - SP3

 Windows XP Home Edition - on Ethernet

 Windows XP Professional - on Ethernet

 Windows XP Professional

 Linux kernel 2.4.2-2

112

 Solaris

 pSOSystem

 Netopia R5200-K v4.3.8

 Cisco 3620 WAN Router

 Cisco 6509/7200 Router

 Cisco GSR 12016

The result of the above output indicates that NetworkActiv Port Scanner is

not as specific as Nmap, and was not able to pin-point the OS running on

the target.

This again indicates that Nmap is a better OS fingerprinting tool. With the

above tests performed, it shows that OSF block packets from Nmap but not

other OS scanning tools. OSF also has the advantage that should a new

type of OS fingerprinting tool become available, its fingerprint can be

added to OSF's database.

The attacker might be able to realise that he is being countered, when he is

trying to scan ports of a system with Nmap and the results show that the

ports are all closed, especially, for example, when the attacker is able to

connect to a web server at the same IP address with a web browser. This is

a disadvantage of the current version of the OSF module, and this will

result in a cycle of improvements that will be made by the developers of the

OSF module and Nmap.

The only way Nmap can do an OS fingerprint of a system, is when the data

length of the packet is changed. This is a weakness of the OSF module. To

counteract this vulnerability, the OSF module should increase the TCP/IP

analysis of more fields compared to the few fields currently observed.

113

3.2 Final Countermeasures

Looking at the overview of all the preliminary countermeasures discussed,

it is suggested that a stateful firewall be used to prevent OS fingerprinting.

In Linux, this is possible by using IPtables. The different features of the

required firewall configuration are discussed, as well as how to implement

this configuration with the use of IPtables.

Different systems will have different firewall configurations of the settings

needed, depending on what the system is to be used for. For example. a

system could be a PC, firewall, router, gateway, back-end server, or a

combination of one or more of the above. The IPtables rules should then be

captured in a parametrised shell script that is executed when the system

boots and every time the system takes on a different role.

3.2.1 Type of Service Field

This is one of the major fields that will help prevent OS fingerprinting, not

only by active, but also by passive OS fingerprinting tools. Nmap and

Xprobe2 first look at this field to determine if the OS is Linux or not. To

modify the default value of 0xC0 to 0x00, as other operating systems have

it, the following IPtables statement can be used:

iptables -t mangle -A PREROUTING -j TOS --set-tos 0x00

The above statement could have the '-A POSTROUTING' option as well, but

is mainly used for routers. This statement also works for standalone PCs,

but the following statement will also work:

iptables -t mangle -I OUTPUT -j TOS --set-tos 0x00

114

This statement modifies the packet's TOS field as it is leaving the system.

There are different variants of the above statement that can be used

depending on the use of the system.

3.2.2 OS Fingerprinting Tools Detection

This is achieved with the use of the OSF module. The installation and

loading of this module are performed with the steps shown in Appendix D.

The Nmap packets are blocked with the statement:

iptables -I INPUT -p tcp -m osf --genre Nmap --log 2 --ttl 2 -j DROP

In case a new OS fingerprinting tool becomes available and OSF is not able

to drop the packets from this tool, then the new tools fingerprint can be

included in the OSF database. To do this, edit the pf.os file and add the new

fingerprint in the format:

<Window Size>:<Initial TTL>:<Don't Fragment bit>:<Overall SYN packet

size>: <Options in Order if used>: OS Fingerprinting Tool's Name

It is advised that the IPtables statement is placed at the end of the table, to

allow communication with Microsoft Windows system, or any other OS that

might have a similar fingerprint as that of the OS fingerprinting tool.

The system administrator can therefore view the /var/log/messages file,

and monitor any scans performed against the system. The IP addresses are

also logged so all communication from these IP addresses can be blocked.

115

3.2.3 Port 0 Disabled

All packets that are received that have a source port or a destination port

of zero, must be dropped. This will prevent OS fingerprinting from tools

that monitor how a system reacts when these ports are used.

The best option is to drop all TCP and UDP packets that are received with

these conditions with the use of IPtables. The IPtables statements that are

suggested are below:

iptables -I INPUT -p tcp --dport 0 -j DROP

iptables -I INPUT -p udp --dport 0 -j DROP

iptables -I INPUT -p tcp --sport 0 -j DROP

iptables -I INPUT -p udp --sport 0 -j DROP

3.2.4 Block ICMP messages

As many OS fingerprinting tools use ICMP messages to bypass the firewall

and to analyse a system, it is suggested that all replies and broadcasting

ICMP messages that are going out, are to be blocked. ICMP messages that

are coming in might be helpful to establish if an error has occurred on the

network.

This can be done by placing these rules in the /etc/sysctrl.conf file. The

following lines must be inserted into this file which will then set the

settings for the kernel.

116

net.ipv4.icmp_echo_ignore_all = 1

net.ipv4.icmp_echo_ignore_broadcasts = 1

net.ipv4.icmp_ignore_bogus_error_responses = 1

The above statements drop all ICMP echo, broadcast and bogus error

messages. They assist in preventing information being sent in ICMP

messages that will allow OS fingerprinting.

Due to the fact that the necessary ICMP messages must be blocked, it is

therefore suggested that the '-j DROP' option is used instead of the '-j

REJECT' option, as these usually send ICMP error messages. This will also

prevent Traceroutes of a system.

The blocking of needed ICMP messages can also be done with the use of

IPtables. The following line will drop respectively all Echo Reply,

Timestamp Reply and Information Reply ICMP messages that are going

out.

iptables -p icmp --icmp-type 0 -I OUTPUT -j DROP

iptables -p icmp --icmp-type 14 -I OUTPUT -j DROP

iptables -p icmp --icmp-type 16 -I OUTPUT -j DROP

This line can be inserted into the same script that the other IPtables

statements are in. This statement is probably the most effective, as it won't

allow ICMP Reply messages out of the system, but it would allow Request

117

ICMP message to be sent.

3.2.5 Conclusion

The most effective ways to prevent OS fingerprinting on a Linux system

have just been discussed. Recall that they are:

● Modification of the Type of Service field.

● The installation of the OSF module.

● Disabling port 0 communication.

● Blocking certain ICMP messages.

We will now conclude the findings from this project.

Recall that the first contact with a target system is through port scanning.

This activity involves searching for open ports as well as determining the

operating system running on the target. The supplying of inaccurate

information at this stage of the attack, could be useful to prevent the target

system from being compromised any further.

IPv4 and OS fingerprinting were investigated and tests were performed to

determine how secure the default installation of Suse 10.1 Linux operating

system can be configured. It was found that the default installation of Suse

10.1 Linux was not that secure in terms of port scanning and active OS

fingerprinting.

IPv6 was investigated and it was found that this is a solution, as Nmap does

118

not support OS fingerprinting in IPv6 at this stage. Since IPv6 is not going

to be used worldwide for some time, it was then decided to investigate OS

fingerprinting in IPv4.

It was initially thought that modifying the TCP/IP stack will prevent active

OS fingerprinting after the techniques for OS fingerprinting were

investigated. A number of OS fingerprinting tools were investigated, such

as Nmap, Xprobe2, Strobe, SAINT, QueSo and NetworkActive Port Scanner

and it was concluded that the best tools available are Nmap and Xprobe2.

Xprobe2 was relatively easy to deceive, and it relied on the ICMP messages

it received from the target system. Nmap on the other hand was not that

easy to deceive, due to the fact that it has such a large database of

fingerprints, and should an alteration be made to the TCP/IP stack, this

modified fingerprint could simply be added to Nmap's database. The fields

in the TCP/IP stack that was modified to try and deceive Nmap were the

TOS field, the IP TTL value, the TCP Window Scaling and the timestamps.

Other techniques to deceive OS fingerprinting tools, especially Nmap, were

investigated. It was then decided that the technique that is being used

against the target system is also to be used against the attacker. This is

done by using the fingerprint of Nmap to identify any packets coming from

it. All packets that are received from Nmap are simply dropped. This does

not only prevent OS fingerprinting against the system but against port

scanning as well.

This countermeasure is taken to be the best because when any new types

of OS fingerprinting tools become available, it's fingerprint then can simply

be added to the database. There were some OS fingerprinting and port

scanning tool such as QueSo that was able to perform a fingerprint of the

target's OS.

In the cases that Nmap performed a scan against a target system, it was

119

noted that it could not pin-point the OS running on the target. The attacker

should be able to identify that the target system has detected a scan that is

being performed against it and is blocking the scan. It should also be

obvious to the attacker that a module such as OSF is present when it is

known that a system has an open port, and a scan cannot be performed. It

was found that with the installation of the OSF module, the CPU was not

affected with processing overhead.

Nmap can, however, do an OS fingerprint of a system when the data length

of the packet is changed. This is a weakness of the OSF module. To

counteract this vulnerability, the OSF module should increase the TCP/IP

analysis of more fields compared to the few fields currently observed.

An attacker will first try to perform a normal Nmap scan, and only when

s/he identifies that a module such as OSF is blocking the packets, will the

data length of the scanning packets be changed. The OSF module can be

extended so that when it detects an Nmap scan, it replies with a fingerprint

of either another OS or another network component, such as a printer or a

router. It can be suggested that workstations return a printer's fingerprint,

the attacker might become suspicious if a public web server returns a

fingerprint of a printer, and will be able to know that the attacks are being

counteracted. Therefore it is suggested that servers connected to the

Internet return the fingerprint of another OS. There are programs and

modules that could do this, but this could be added to the OSF module.

Other countermeasures were also investigated, and it was found that the

TOS field in the Linux TCP stack should be set to 0x00 instead of the

default 0xC0, which is mostly unique to Linux. Other suggestions are that

all packets with a source or destination port of zero be dropped, and that

certain ICMP messages leaving the system be blocked. The firewall to the

network should also monitor the packets coming in and going out of the

network. Packets must have legitimate fields and the source and

destination addresses must be valid for the respective network.

120

With the above suggested countermeasures, it can be concluded that if

they are implemented on a system, it will make a system considerably more

secure against active OS fingerprinting using currently known techniques.

3.2.6 Future Work

Nmap could be improved by sending a fingerprint of another OS to the

target system. The OSF module will then recognise that a system running a

legitimate OS, is trying to connect to it and probably accept the connection

if these settings are configured in the firewall rules.

A cycle will occur, in that the OSF module will be improved to counteract

Nmap, while Nmap will be improved to bypass the OSF module.

An investigation of OS fingerprinting of IPv6 packets will also determine if

it has a weakness, resulting that patches and other countermeasures will

be needed to be developed.

The OSF module can be extended to have a database that is community

maintained as Nmap's database is. For a better detection of fingerprinting

tools, the OSF module needs to monitor more fields in the TCP/IP stack, so

that fingerprinting tools will not be able to deceive it. An added feature to

the OSF module would be that should it detect an OS fingerprinting tool

performing a scan against the system, it will reply with another OS's

fingerprint.

121

References

Arkin, O. (2001a) X remote ICMP based OS fingerprinting techniques.

http://www.sys-security.com/archive/papers/X_v1.0.pdf - 1 August

2006.

Arkin, O. (2001b) ICMP Usage in Scanning, Version 3.0.

http://www.blackhat.com/presentations/bh-europe-01/arkin/bh-

europe-01-arkin.ppt – 1 August 2006.

Arkin, O., Yarochkin, F. & Kydyraliev, M. (2003) The Present and Future of

Xprobe2, The Next Generation of Active Operating System

Fingerprinting.

http://sys-

security.com/blog/archive/papers/Present_and_Future_Xprobe2-

v1.0.pdf – 1 August 2006.

Beardsley, T. (2003) Snacktime: A Perl Solution for Remote OS

Fingerprinting.

http://www.planb-security.net/wp/snacktime.html – 5 September

2006.

Burgess, M. (2006) In: Principles of Network and System Administration,

2nd edition, pages 67, John Wiley & Sons, Ltd, England.

Comer, D.E. (2004) In: Computer Networks and Internets with Internet

Applications, 4th edition, Pearson Prentice Hall, NJ, USA.

Contra, A. & Deering, S. (1998) Internet Control Message Protocol

122

http://www.planb-security.net/wp/snacktime.html
http://www.planb-security.net/wp/snacktime.html
http://www.planb-security.net/wp/snacktime.html
http://www.planb-security.net/wp/snacktime.html
http://sys-security.com/blog/archive/papers/Present_and_Future_Xprobe2-v1.0.pdf
http://sys-security.com/blog/archive/papers/Present_and_Future_Xprobe2-v1.0.pdf
http://sys-security.com/blog/archive/papers/Present_and_Future_Xprobe2-v1.0.pdf
http://www.blackhat.com/presentations/bh-europe-01/arkin/bh-europe-01-arkin.ppt
http://www.blackhat.com/presentations/bh-europe-01/arkin/bh-
http://www.blackhat.com/presentations/bh-europe-01/arkin/bh-europe-01-arkin.ppt
http://www.sys-security.com/archive/papers/X_v1.0.pdf
http://www.sys-security.com/archive/papers/X_v1.0.pdf

(ICMPv6) for the Internet Protocol Version 6 (IPv6), RFC 2463.

daemon9 (1996) Phrack Magazine, Volume 7, Issue 49, File 06 of 16.

Deering, S. & Hinden, R. (1998) Internet Protocol, Version 6 (IPv6)

Specifications, RFC 2460.

Dr. K (2000) In: A Complete H@cker's Handbook, Second Edition, Carlton

Books Limited, London.

Fyodor (1998) Remote OS detection via TCP/IP stack Fingerprinting,

http://www.insecure.org/nmap/nmap- fingerprinting-article.html –

15 July 2006.

Jones, S. (2003) Port 0 OS Fingerprinting, NetworkPenetration.com.

http://networkpenetration.com/port0.html – 23 July 2006

Kent, S. & Atkinson, R. (1998a) IP Authentication Header, RFC 2402.

Kent, S. & Atkinson, R. (1998b) IP Encapsulating Security Payload (ESP),

RFC 2406.

Maimon, U. (1996) Phrack Magazine, Volume 7, Issue 49, File 15 of 16.

McClure, S., Scambray, J., Kurtz, G. (2005) In: Hacking Exposed – Network

Security Secrets & Solutions, 5th Edition, pages 41 – 76 and back

page, McGraw-Hill, California (USA).

123

http://networkpenetration.com/port0.html
http://www.insecure.org/nmap/nmap-

Nostromo (2005) Techniques in OS-Fingerprinting.

http://nostromo.joeh.org/osf.pdf – 15 August 2006.

Postel, J. (1980) User Datagram Protocol, RFC 768.

Postel, J. (1981a) Transmission Control Protocol, RFC 793.

Postel, J. (1981b) Internet Protocol, RFC 791.

Postel, J. (1981c) Internet Control Message Protocol, RFC 792.

Schneier, B. (2000) Secrets and Lies – Digital Security in a Networked

World, Wiley Publishing Inc., Indianapolis, Indiana, USA

Spangler, R. (2003) Analysis of Remote Active Operating System

Fingerprinting Tools.

http://www.packetwatch.net/documents/papers/osdetection.pdf –

15 August 2006.

Stallings, W. (2004a) Data and Computer Communications, Pearson

Prentice Hall, Upper Saddle River, NJ, USA.

Stallings, W. (2004b) In: Computer Networking with Internet Protocols and

Technology, Pearson Prentice Hall, Upper Saddle River, NJ, USA.

Peterson, L., Davie, B (2003) Computer Networks – A Systems Approach,

Morgan Kaufmann Publishers, San Francisco, CA.

124

http://www.packetwatch.net/documents/papers/osdetection.pdf
http://www.packetwatch.net/documents/papers/osdetection.pdf
http://nostromo.joeh.org/osf.pdf

Stopforth, R., Vorster, L., Erwin, D. (2007) Counter-measures for operating

system fingerprinting. In: EngineerIT – Electronics, computer,

information & communications technology in engineering, page

18. South African Institution for Electrical Engineering. In

collaboration with Computer Society of South Africa (CSSA),

National Laboratory Association (NLA), IER South Africa

Network, IEEE South African Section, CSIR National Metrology

Laboratory (NML) and South African Council for Automation and

Computation (SACAC).

Wang, K. (2004) Frustrating OS Fingerprinting with Morph.

http://www.synacklabs.net/projects/morph/Wang-Morph-

DEFCON12.pdf – 10 August 2006.

Zalewski, M. (2004) Passive OS Fingerprinting Tool version 2.0.4.

http://lcamtuf.coredump.cx/p0f.shtml – 15 August 2006.

125

http://lcamtuf.coredump.cx/p0f.shtml
http://www.synacklabs.net/projects/morph/Wang-Morph-

Appendices

Appendix A – Protocols

Appendix A.1 Format of the TCP Header

The TCP header contains information about the packet. It has the format

shown in Figure A.1.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 28 30 31 32

Source Port Destination Port

Sequence Number

Acknowledgement Number

Data

Offset
Reserved

U

R

G

A

C

K

P

S

H

R

S

T

S

Y

N

F

I

N

Window

Checksum Urgent Pointer

Options Padding

Data

Figure A.1 – TCP Header

The purpose of each field is as follows:

Source Port (16 bits): This is the source port number.

Destination Port (16 bits): This is the destination port number.

Sequence Number (32 bits): The sequence number will be present in

this field, unless a SYN is present. Should a SYN be present, then this field

will contain the initial sequence number (ISN). The first data packet that is

126

sent will have this field with a value of ISN+1.

Acknowledgement Number (32 bits): If the ACK control flag is set, this

field will contain the sequence number that the sender of the packet is

expecting to receive next. This number is always sent once a connection is

established.

Data Offset (4 bits): This value indicates how many 32 bits words the

header contains. This gives an indication as to where the data begins.

Reserved (6-bits): This field is reserved for future use and should always

be zero.

Control Bits (6 bits):

URG: Urgent Pointer field

ACK: Acknowledgement field

PSH: Push Function

RST: Reset the connection

SYN: Synchronise sequence numbers

FIN: No more data from sender

Window (16 bits): This field indicates the number of data octets, starting

with the one indicated in the acknowledgement field, that the sender of the

packet is willing to receive.

Checksum (16 bits): The checksum is the one's complement of the sum of

all 16 bit words in the header and data of the TCP as well as of the 96 bit

pseudo header. The pseudo header consists of the source address, the

destination address, the protocol and the TCP length as shown in Figure

127

A.2.

Source Address

Destination Address

Zero Protocol TCP Length

Figure A.2 – The Pseudo Header

The TCP length is the TCP header length and the data length, but

excluding the 12 octets of the pseudo header.

Urgent Pointer (16 bits): This field contains the value of a positive offset

from the sequence number of this packet. The urgent field is only taken

into account if the urgent control flag is set.

Options (variable length): The options are at the end of the header, and

are a multiple of 8 bits. There are two formats that the option field could

be:

i) a single octet of option-kind, or,

ii) an octet of option-kind and an octet of option-length and the

octets of the actual option-data. Option-length takes into account

the entire option field.

Padding (variable length): The padding, which consists of zeroes, is used

to ensure that both the TCP header ends and the data begins on a 32-bit

boundary.

128

Appendix A.2 Format of the IPv4 Header

The IPv4 header is shown in Figure A.3.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Version IHL Type of Service Total Length

Identification Flags Fragment Offset

Time to Live Protocol Header Checksum

Source Address

Destination Address

Options Padding

Figure A.3 – Header of IPv4 packet

The purpose of each field is the following:

Version (4 bits): This indicates the version of IP being used, i.e., version

4.

IHL (4 bits): Internet Header Length is the length of the header in words

of 32 bits. The minimum value for this field is five.

Type of Service (8 bits): This sets the priority of the packet. The trade off

is between low-delay, high-reliability, and high-throughput. These bits are

set for the following conditions:

Bits 0 – 2 : This is used for the Precedence. The

following code implies the corresponding

conditions:

111: Network Control

129

110 : Internetwork Control

101 : CRITIC / ECP

100 : Flash Override

011 : Flash

010 : Immediate

001 : Priority

000 : Routine

Bit 3 : 0 = Normal Delay; 1 = Low Delay

Bit 4 : 0 = Normal Throughput; 1 = High

Throughput

Bit 5 : 0 = Normal Reliability; 1 = High Reliability

Bits 6 – 7 : Reserved for future use.

It must be noted that usually two of the three trade offs are set and that the

Network control precedence is only used within a network.

Total Length (16 bits): This is the length of the packet (including the

header) measured in bytes. The field can have a value of 65 535 bytes,

which is impractical to send across a network. It is recommended that

before a sender sends a packet that is larger than 576 bytes it must be

determined that the receiver will be able to receive that size packet. The

value of 576 bytes is chosen as to allow a packet with 512 bytes of data and

64 bytes for the header to be sent.

130

Identification (16 bits): This field differentiates between the fragmented

packets that will be assembled at the receiver.

Flags (3 bits): The bits are the control flags for the following:

Bit 0: reserved and must always be zero.

Bit 1: (DF) 0 = May Fragment; 1 = Don't Fragment

Bit 2: (MF) 0 = Last Fragment; 1 = More Fragments

Fragment Offset (13 bits): This field indicates where in the packet the

fragment belongs. It is measured in units of 8 bytes.

Time to Live (8 bits): The Time to Live field indicates the life span of the

packet. Each time the packet goes through a gateway or a router, this field

is decremented. The packet is discarded when this field becomes zero. An

estimation for this field is one unit for every second that the packet should

survive.

Protocol (8 bits): This indicates the protocol used in the data portion of

the packet. An example of a protocol value used in this field is determined

by differentiating between the TCP and the User Datagram Protocol (UDP).

Header Checksum (16 bits): This is a checksum of the header only. As

the fields in the header are changed this field is recomputed at every point

on the network where the header is processed. The checksum is calculated

the same way that the checksum of the TCP packet is calculated.

Source Address (32 bits): The address of the source of the packet.

131

Destination Address (32 bits): The address where the packet must be

delivered.

Options (variable length): This field has two cases that effects its format.

The first is where a single byte of the option-type is used; the second where

a byte with the option-type is used as well as a byte that describes the

option length (which contains the size of the option-type, option length and

the option data) and also a byte for the actual option data.

The option-type byte has three fields. One bit indicates a copied flag, two

bits indicate the option class and five bits indicate the option number. If the

copied flag bit is set, then this option is copied to all fragments where

fragmentation has been implemented.

The option classes for the option type byte are:

0 = control

1 = reserved

2 = debugging and measurement

3 = reserved for future use

The following set of internet options have been defined;

Class Number Length Description
0 0 - This indicates the end of the Option list. It is

only one byte in size. It is used at the end of

all the options that could be used and when

the end of the options do not coincide with the

end of the internet header. It can be copied,

introduced or deleted on fragmentation.

0 1 - This indicates no operation and is also one

132

Class Number Length Description
byte in size. It is used between options as a

boundary. It may be copied, introduced or

deleted on fragmentation.

0 2 11 This indicates that the packets carry Security,

Compartmentation, User Group (TCC), and

Handling Restriction Codes compatible with

the Department of Defence (DoD)

requirements. This field is described later. It

must be copied on fragmentation and appears

mostly once in a packet.

0 3 var This indicates Loose Source Routing, which is

used to route the packets depending on

information supplied by the source. It must be

copied on fragmentation, and appears mostly

once in a packet.

0 9 var This indicates strict source routing, which also

routes packets depending on information

supplied by the source. It must be copied on

fragmentation, and appears mostly once in a

packet.

0 7 var This indicates the record route which is used

to trace the route a packet takes. It is not

copied on fragmentation and goes only in the

first fragment. It appears mostly once in a

packet.

0 8 4 This is used to carry the stream identification

in networks that don't support the stream

concept. It must be copied on fragmentation

and appears mostly once in a packet.

2 4 var This indicates the Internet Timestamp. It has a

133

Class Number Length Description
maximum length of 40 bits. The value of the

timestamp is in milliseconds since midnight

UT. If the UT is not known for some reason,

then any timestamp can be used, provided

that the highest bit is set, to indicate that it is

not a standard value. A large enough data

space is needed to be able to hold all the

timestamps. If the timestamps exceed the

available space, then no more are inserted and

the overflow counter is incremented. The

timestamp is not copied on fragmentation and

is only in the first fragment. It appears at most

once only in a packet.

The Security field is 16 bits in length, and specifies sixteen levels of

security, as described in the following:

0000000000000000- Unclassified

1111000100110101- Confidential

0111100010011010- EFTO

1011110001001101- MMMM

0101111000100110- PROG

1010111100010011- Restricted

1101011110001000- Secret

0110101111000101- Top Secret

0011010111100010- Reserved for future use

1001101011110001- Reserved for future use

0100110101111000- Reserved for future use

0010010 10111101- Reserved for future use

0001001101011110- Reserved for future use

134

1000100110101111- Reserved for future use

1100010011010110- Reserved for future use

1110001001101011- Reserved for future use

The Compartments field is also 16 bits in length and has an all zero value if

the information that is sent is not compartmented. Other values for this

field can be obtained from the Defence Intelligence Agency.

The Handling Restriction field is 16 bits in length of which the values are

digraphs (Defence Intelligence Agency Manual (DIAM) 65-19, Standard

Security Markings).

The Transmission Control Code (TCC) field is 24 bits in length and provides

a way set apart from the traffic and identifies controlled communities of

interest among subscribers. These values are trigraphs, and are available

from HQ DCA Code 530.

Padding (variable length): Zeroes are padded in the header to make it

end on a 32 bit boundary.

135

Appendix A.3 Internet Control Message Protocol

(ICMP)

Most of the information in this appendix has been taken from RFC 792

(Postel 1981c), which deals with the Internet Control Message Protocol.

A.3.1 Time Exceeded Message

This message is sent when the TTL value equals zero or there is an error in

the fragmentation process, and the packet has not arrived at it's

destination. The format of the Time Exceeded Message ICMP is shown in

Figure A.4.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Type Code Checksum

Unused

Internet Header + 64 bits of Original Datagram

Figure A.4 – Time Exceeded Message ICMP

The fields of the Time Exceeded Message ICMP has the following functions.

Type (8 bits): The value of this field is 11.

Code (8 bits): The code has the following values for the respective

message:

0 = Time to live exceeded in transit

1 = Fragment reassembly time exceeded

136

Code 0 is usually received from a gateway, while code 1 is usually received

from a host.

Checksum (16 bits): The value of this field is the one's complement of the

one's complement sum of the ICMP message starting with the ICMP Type

field. For the calculation of the checksum, the checksum field is taken to be

zero.

Internet Header + 64 bits of Data Datagram: Should the higher level

protocol use a port number, it is then taken as part of the first 64 data bits

of the original packet's data.

A.3.2 Parameter Problem Message

The Parameter Problem Message ICMP is sent a datagram is being

processed and a problem is detected and the packet is discarded.

The format of the Parameter Problem Message ICMP is shown in Figure

A.5.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Type Code Checksum

Pointer Unused

Internet Header + 64 bits of Original Data Datagram

Figure A.5 – Parameter Problem Message ICMP

Type (8 bits): The value of this field is 12.

137

Code (8 bits): The code has the following values for the respective

message:

0 = Pointer indicates the error

Code 0 is usually received from either a host or a gateway.

Checksum (16 bits): The value of this field is the one's complement of the

one's complement sum of the ICMP message starting with the ICMP Type

field. For the calculation of the checksum, the checksum field is taken to be

zero.

Pointer (8 bits): Should the code of the message be equal to 0, then this

field points to the byte that caused the error.

Internet Header + 64 bits of Data Datagram: Should the higher level

protocol use a port number, it is then taken as part of the first 64 data bits

of the original packet's data.

A.3.3 Source Quench Message

A Source Quench Message is usually sent when a gateway's buffer is full

and it cannot queue any more packets to be forwarded.

The format of the Source Quench Message ICMP is shown in Figure A.6.

138

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Type Code Checksum

Unused

Internet Header + 64 bits of Original Data Datagram

Figure A.6 – Source Quench Message ICMP

The fields in the Source Quench Message ICMP has the following functions.

Type (8 bits): The value of this field is 4.

Code (8 bits): The value of this field is 0,which is usually received either

from a host or a gateway.

Checksum (16 bits): The value of this field is the one's complement of the

one's complement sum of the ICMP message starting with the ICMP Type

field. For the calculation of the checksum, the checksum field is taken to be

zero.

Pointer (8 bits): Should the code of the message be equal to 0, then this

field points to the byte that caused the error.

Internet Header + 64 bits of Data Datagram: Should the higher level

protocol use a port number, it is then taken as part of the first 64 data bits

of the original packet's data.

A.3.4 Redirect Message

This message is sent to a host when a gateway finds that there is a shorter

path via another gateway that the packets can be sent to it's destination.

139

The format of the Redirect Message ICMP is shown in Figure A.7.

The fields of the Redirect Message ICMP have the following functions.

Type (8 bits): The value of this field is 5.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Type Code Checksum

Gateway Internet Address

Internet Header + 64 bits of Original Data Datagram

Figure A.7 – Redirect Message ICMP

Code (8 bits): The code has the following values for the respective

message:

0 = Redirect datagrams for the network

1 = Redirect datagrams for the host

2 = Redirect datagrams for the type of service and network

3 = redirect datagrams for the type of service and host

Code 0, 1, 2 and 3 is usually received from a gateway.

Checksum (16 bits): The value of this field is the one's complement of the

one's complement sum of the ICMP message starting with the ICMP Type

field. For the calculation of the checksum, the checksum field is taken to be

zero.

Gateway Internet Address (32 bits): This field contains the address of

the gateway that the original datagram's data should be sent to.

140

Internet Header + 64 bits of Data Datagram: Should the higher level

protocol use a port number, it is then taken as part of the first 64 data bits

of the original packet's data.

A.3.5 Timestamp or Timestamp Reply Message

The Timestamp and Timestamp Reply messages can be used to determine

the time it takes for the packets to travel in the network.

The format of the Timestamp and Timestamp Reply message ICMPs are

shown in Figure A.8.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Type Code Checksum

Identifier Sequence Number

Originate Timestamp

Receive Timestamp

Transmit Timestamp

Figure A.8 – Timestamp and Timestamp Reply Message ICMP

The fields in the Timestamp and Timestamp Reply Message ICMP has the

following functions.

Type (8 bits): The value of this field is 13 for the timestamp messages and

14 for the timestamp reply messages.

Code (8 bits): The code field has a value of 0 for both type of messages

and are usually sent by either a host or a gateway.

141

Checksum (16 bits): The value of this field is the one's complement of the

one's complement sum of the ICMP message starting with the ICMP Type

field. For the calculation of the checksum, the checksum field is taken to be

zero.

Identifier (16 bits): Should the code be equal to zero, then an identifier

to aid the matching request and reply messages may be zero. Otherwise,

the Identifier field of the Echo Reply message must be the same as that in

the Echo Request message field.

Sequence Number (16 bits): Should the code be equal to zero, then an

identifier to aid the matching request and reply messages may be zero.

Otherwise, the Sequence Number field of the Echo Reply message must be

the same as that in the Echo Request message field.

Originate Timestamp (32 bits): This is the time, in milliseconds (since

midnight UT) that the sender sent the Echo message.

Receive Timestamp (32 bits): This is the time, in milliseconds (since

midnight UT) the received received the Echo message.

Transmit Timestamp (32 bits): This is the time, in milliseconds (since

midnight UT) the receiver of the Echo message sends the Echo Reply

message back to the sender of the Echo message.

Should the timestamps not be accurate as the UT is not available, then any

time can be used for the timestamp, but the high order bits of the

timestamp must be set to indicate that it is a non-standard value.

A.3.6 Information Request and Information Reply Message

The information request messages are sent by a host to find out the

142

number of the network it is physically connected to.

The Information Request and Information Reply Message ICMPs have the

format shown in Figure A.8.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Type Code Checksum

Identifier Sequence Number

Figure A.8 – Information Request and Information Reply Message

The fields of the Information Request and Information Reply messages have

the following functions.

Type (8 bits): The value of this field is 15 for the information request

messages and 16 for the information reply messages.

Code (8 bits): The code field has a value of 0 for both type of messages

and are usually sent by either a host or a gateway.

Checksum (16 bits): The value of this field is the one's complement of the

one's complement sum of the ICMP message starting with the ICMP Type

field. For the calculation of the checksum, the checksum field is taken to be

zero.

Identifier (16 bits): Should the code be equal to zero, then an identifier

to aid the matching request and reply messages may be zero. Otherwise,

the Identifier field of the Echo Reply message must be the same as that in

the Echo Request message field.

143

Sequence Number (16 bits): Should the code be equal to zero, then an

identifier to aid the matching request and reply messages may be zero.

Otherwise, the Sequence Number field of the Echo Reply message must be

the same as that in the Echo Request message field.

144

Appendix A.4 Internet Protocol version 6 (IPv6)

Most of the information in this appendix, has been taken from RFC 2460

(Deering & Hinden 1998), which deals with the Internet protocol version 6.

A.4.1 Format of the IPv6 Header

The IPv6 Header is shown in Figure A.9. The purpose of each field is as the

following.

Version (4 bits): This specifies the Internet Protocol version (i.e. 6)

Traffic Class (8 bits): This field is used to identify between different

classes and priorities of the packet. If a node supports this field, then it

should alter it as needed, otherwise ignore it. If the sender cannot support

this field, then it should be set to zero.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Version Traffic Class Flow Label

Payload Length Next Header Hop Limit

|

Source Address

|

|

|

Destination Address

|

|

Figure A.9 – IPv6 Header

145

Flow Label (20 bits): This field is used by the source to label sequences of

packets, therefore requesting that special handling is done by the IPv6

routers. Hosts and routers that do not support this field are to be set to

zero at the source, or leave unchanged when forwarding the packet and

ignore it when receiving the packet.

Payload Length (16 bits): This specifies the length of the payload. This is

an indication of the rest of the packet following the IPv6 header in terms of

bytes.

Next Header (8 bits): This field identifies the type of header to

immediately follow the IPv6 header.

Hop Limit (8 bits): This field's value decrements by one each time the

packet is processed by a node. The packet is dropped when a node

identifies that the value in this field is equal to zero.

Source Address (128 bits): The address of the original sender of the

packet.

Destination Address (128 bits): The address that the packet is to be

delivered to.

A.4.1.1 IPv6 Extension Headers

With IPv6 additional headers can be added that are placed between the

IPv6 header and that of the header of the layer above it. The number of

headers that are used and the type of header used are determined by the

Next Header field's value. These extension headers are not processed by

any of the nodes that the packet travels along with until the packet has

reached the destination address. The destination node then processes the

146

extension headers in the order that they appear.

The only extension header that can be processed by the nodes along which

the packet travels is the Hop-by-Hop Option header. This Extension header

follows the IPv6 header. The next header field will have a value of zero if

this extension header is being used.

Should any node not be able to recognise the Next Header value, the

packet is immediately discarded, and an ICMP Parameter Problem message

is sent back to the source of the packet with the ICMP Code value of 1. This

means that a unrecognised Next Header type has been encountered. The

ICMP pointer field will contain the offset of the unrecognised value.

The order of the headers are as follows:

● IPv6 header

● Hop-by-Hop Option header

● Destination Options header, which is processed by the first

destination as well as other destinations that are listed in the routing

header.

● Routing header

● Fragment header

● Authentication header

147

● Encapsulating Security Payload header

● Destination Options header, that contains options for only the final

destination

● Upper-layer header

Most the headers appear once, except for the destination header which

could only appear at most twice. Nodes should be able to process the

extension headers in any order if needed, but the Hop-by-Hop header

should be first. Even though the nodes are able to process the extension

headers in any order, it is recommended that the source puts them in the

above order. These headers will be dealt with in further detail.

Before these extension headers are further analysed, it must be noted that

the Hop-by-Hop Option header and the Destination Option header both

carry different type-length-value (TLV) encoded options. The format is 8

bits for the identifier of the Option Type field, 8 bits for the Option Data

Length (which is measured in bytes), and a variable length field for the

Option Data. The highest two order bits of the Option Type specifies the

action to be taken when an IPv6 node does not recognise the Option Type.

These two bits have the following meanings:

00 : skip over this option and continue processing the

header.

01 : discard the packet

10 : discard the packet and send an ICMP Parameter

Problem with a code 2 message to the packet's source

148

address, indicating the unrecognised Option Type.

11 : discard the packet and should the packet's

destination address not have been a multicast address,

send an ICMP Parameter Problem with a Code 2

message to the packet's source address, indicating the

unrecognised Option Type.

The third highest bit of the Option Type indicates if the Option Data of the

option can change the en-route of the packet's final destination. Should the

Authentication header be present and any option that might change the en-

route, then the entire Option Data field must be treated as all zero bytes

when verifying the packet's authentication. This third bit has the respective

meanings:

0 : Option Data does not change en-route

1 : Option Data may change en-route

A.4.1.1.1 Hop-by-Hop Option Header

This header is used to carry information that must be viewed by every node

that has interaction with the packet. It is identified by a Next header value

of zero in the IPv6 header. The Hop-by-Hop option header has got the

format as shown in Figure A.10.

149

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Header Hdr. Ext. Len.

Options

Figure A.10 – Hop-by-Hop Option Header

The fields in the header have the following functions:

Next Header (8 bits): This field identifies the type of header that will

follow the Hop-by-Hop option header.

Hdr. Ext. Len. (8 bits): This field indicates the length of the Hop-by-Hop

option header, not including the first 8 bytes. The value of this field is in

units of eight bytes.

Options (variable length): The length of this field is so that it is a

multiple of 8 bytes. It contains at least one TLV-encoded option.

A.4.1.1.2 Routing Header

This header indicates the nodes that the packet must be forwarded by to its

destination. This header is identified by having the Next Header field of the

previous header as a value of 43. The routing header has the format as

shown in Figure A.11.

150

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Next Header Hdr. Ext. Len. Routing Type Segments Left

type-specific data

Figure A.11 – The Routing Header's format

The fields in the Routing Header has the following functions:

Next Header (8 bits): This identifies the the type of header that follows

the Routing Header.

Hdr. Ext. Len. (8 bits): This indicates the length of the Routing Header in

terms of 8 bytes in length. This excludes the first 8 bytes.

Routing Type (8 bits): This field indicates a particular Routing header

variant.

Segment Left (8 bits): This indicates the number of route segments or

nodes that are remaining before the packet has reached it's destination.

type-specific data (variable length): The format of this field depends on

the Routing Type field. Its length is so that Routing Header is a multiple of

8 bytes.

Certain conditions occur when a received packet is being processed,and it

is found that there is an unrecognised Routing Type value. This depends on

the Segments Left field. If the Segments Left field is zero, the node must

ignore the Routing header and proceed to the next header, which is

151

identified in the Next Header field of the Routing Header. If the Segments

Left value is not zero, the node must discard the packet and send an ICMP

Parameter Problem, Code 0, message back to the sender.

The Type 0 Routing header has the format shown in Figure A.12.

The fields in the Type 0 Routing header have the following functions:

Next Header (8 bits): This field indicates the type of header that will

follow the Type 0 Routing header.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Next Header Hdr. Ext. Len. Routing Type=0 Segments Left

Reserved

|

Address [1]

|

|

|

Address [2]

|

|

.

.

.

.

|

Address [n]

|

|

Figure A.12 – Type 0 Routing Header

152

Hdr. Ext. Len. (8 bits): This is the length of the Routing header in units of

8 bytes. This does not include the first 8 bytes. For the Type 0 Routing

header, the Header Extension Length field is equal to twice the number of

addresses in the header.

Routing Type (8 bits): In this case this field is equal to zero.

Segment Left (8 bits): This indicates the number of route segments or

nodes that remain before the packet has reached it's destination.

Reserved (32 bits): This field is initialised to zero for transmission, but

ignored on reception.

Address [1..n] (vectored 128 bits): These addresses are numbered from

1 to n.

Multicasting addresses must not appear in a Type 0 Routing header or in

the destination address field of the IPv6 header. The Routing header is not

processed by a node unless it has reached the destination address. When it

has reached that node, the destination address is swapped with the next

address in the Routing header.

A.4.1.1.3 Fragment Header

The fragment header is used when a packet larger than what would fit in

the path MTU to the destination, is sent. This is performed only by the

source nodes, and not the routers as in IPv4. This header is identified by

the Next header field of the previous header with a value of 44. It has the

format shown in Figure A.13.

153

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Next Header Reserved Fragment Offset Res M

Identification

Figure A.13 – Fragment Header

The fields in the Fragment header have the following functions:

Next Header (8 bits): This identifies the type of header that follows the

Fragment Header.

Reserved (8 bits): This field is reserved. it is initialised to zero on

transmission and ignored on reception.

Fragment Offset (13 bits): This field indicates the offset in units of 8

bytes that the data follows after this header, from the start of the

Fragmentable Part of the original packet.

Res (2 bits): These two bits are reserved. They are initialised to zero for

transmission and ignored on reception.

M flag (1 bit): This is an indication if more fragments are being sent. If it

is set to 1, then more fragments are being sent, and if it is set to 0, then

this is the last fragment.

Identification (32 bits): This is the identification number that is given to

the fragments that come from the same packet that was fragmented. This

field is needed so that fragments from other packets are not mixed.

The fragmented packets consist of a header that has the IPv6 header as

154

well as any extended headers that the nodes will process. The fragmented

part of the packet consists of the data as well as any headers that are only

needed at the destination node.

A.4.1.1.4 Authentication Header

Most of the information in this appendix has been taken from RFC 2402

(Kent & Atkinson 1998a), which deals with the Authentication Header.

The Authentication Header provides data origin authentication for the IPv6

packet. The header is identified by the Next Header field of the previous

header that has a value of 51. The Authentication Header has the format

shown in Figure A.14.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Next Header Payload Len. Reserved

Security Parameters Index (SPI)

Sequence Number Field

.

Authentication Data

.

.

Figure A.14 – Authentication Header

The fields in the Authentication Header have the following functions:

Next Header (8 bits): This identifies the the type of header that follows

the Authentication Header.

Payload Len. (8 bits): This field specifies the length of the Authentication

155

Header in units of 4 bytes, after which 2 of these bytes are subtracted.

Reserved (16 bits): This field is for future use, and should be set to zero.

Security Parameter Index (32 bits): The value of this field is determined

by the combination of the destination address as well as the Authentication

Header, which identifies the Security Association of the packet. The value

from 0 to 255 is reserved by IANA. This field should never be zero.

Sequence Number (32 bits): The value of this field increments for each

packet that is sent.

Authentication Data (variable length): This field contains the Integrity

Check Value (ICV) of the packet. It must be a multiple of 32 bits in length

for IPv4 and 64 bits for IPv6. The ICV is computed from the IP header, the

Authentication Header, as well as from the upper layer protocols.

A.4.1.1.5 Encapsulating Security Payload (ESP) Header

Most of the information in this appendix has been taken from RFC 2406

(Kent & Atkinson 1998b), which deals with the ESP Header.

The ESP header is used for data origin authentication, confidentiality and

connectionless integrity. This header is identified by the Next Header field

of the previous header, with a value of 50. The ESP Header is shown in

Figure A.15.

The fields in the ESP packet have the following functions.

Security Parameter Index (32 bits): The value of this field is determined

156

by the combination of the destination address as well as the Authentication

Header, which identifies the Security Association of the packet. The value

from 0 to 255 are reserved by IANA. This field should never be zero.

Sequence Number (32 bits): The value of this field increments for each

packet that is sent.

Payload Data (variable length): This field contains the Initialisation

Vector (IV) that is needed when the encryption algorithm needs

cryptographic synchronisation data.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Security Parameter Index (SPI)

Sequence Number

.

Payload Data

.

Padding (0 – 255 bytes)

Pad Length Next Header

.

Authentication Data

.

Figure A.15 – ESP Header

Padding (0 – 255 bytes): The padding is needed to fill the plain text so

that block sizes of the cipher blocks can be multiples of the block size

needed. It is also used so that the cipher text can end on a 4 bytes

boundary, as well as to conceal the actual length of the payload. If the

encryption algorithm does not specify the padding contents, but padding is

needed, then a series of 1 byte sized values, starting from 1, are added, and

157

Auth.
Coverag
e

Conf.
Coverag
e

the following values increment from the previous one. This technique is not

only simple, but it also helps against the “cut and paste” attacks as the

receiver can check the padding when doing the decryption.

Pad Length (8 bits): This field indicates the padding size of the previous

field.

Next Header (8 bits): This identifies the the type of header that follows

the ESP Header.

Authentication Data (variable length): This field contains an ICV of the

ESP header, excluding the Authentication Data field. Due to the fact that

the encryption is not done on the Authentication Data field, the detection of

bogus packets is possible before the receiver has performed any decryption

of the packet, therefore preventing Denial of Services (DoS) attacks.

A.4.1.1.6 Destination Option Header

The Destination Option header carries optional information that is only

processed by the destination node. This header is identified by the Next

Header field of the previous header that has a value of 60. The Destination

Option header has the format shown in Figure A.16.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Next Header Hdr. Ext. Len.

Options

Figure A.16 – Destination Option Header

158

The fields in the Destination Option header have the following functions:

Next Header (8 bits): This identifies the the type of header that follows

the Destination Options Header.

Hdr. Ext. Len. (8 bits): This indicates the length of the Destination

Options Header in terms of 8 bytes in length. This excludes the first 8

bytes.

Options (variable length): The length of this field is so that the

Destination Options header is a multiple of 8 bytes. It contains at least one

TVL-encoded option.

A.4.1.1.7 Upper-Layer Header

These are headers that are used by upper-layer protocols. The pseudo-

header shown in Figure A.17 is used for TCP and UDP in IPv6.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

|

Source Address

|

|

|

Destination Address

|

|

Upper-Layer Packet Length

zero Next Header

Figure A.17 – Pseudo-header

159

The fields in the Pseudo-header have the following functions.

Source Address (128 bits): This field has the source address of the TCP

packet.

Destination Address (128 bits): This field has the destination address of

the TCP packet.

Upper-Layer Packet Length (32 bits): This contains the length of the

upper layer packet. Some upper-layer protocols contain the length of the

protocol in the packet.

Next Header (8 bits): This identifies the the type of header that follows

the pseudo-header.

A.4.1.1.8 No Next Header

This is indicated by the previous header that has the Next Header field

with a value of 59.

160

Appendix A.5 Internet Control Message Protocol for

IPv6 (ICMPv6)

Most of the information in this appendix, has been taken from RFC 2463

(Contra & Deering 1998), which deals with the Internet Control Message

Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6).

As ICMP is taken as part of the IP, it is therefore different for Ipv6. IPv6

nodes used ICMPv6 messages when the packets are processed and errors

are encountered. It has a Next Header value of 58.

There are error messages and informational messages. The error messages

have message Types from 0 to 127 and the informational messages have

message Types from 128 to 255.

ICMPv6 have the following processing rules:

● If the error message type is unknown, it must be passed to the upper

layer.

● Should the information message type be unknown, then it is

discarded.

● The error message contains as much of the original packet without

making the packet exceed the minimum MTU.

● Should the IP need to pass the error message to the upper layers,

the protocol type is taken from the original package.

161

● An ICMP message should not be sent when the following is received:

○ An ICMPv6 message

○ A packet that has an Ipv6 multicast destination address or is sent

as a link-layer multicast.

○ A packet that is sent as a link-layer broadcast

○ Should a packet contain a source address that does not identify a

single node.

● To preserve bandwidth, the ICMPv6 error messages must be sent at

a limited rate. Ways to accomplish this is:

○ To limit the about of error messages in a given time period.

○ To limit the rate that error messages are sent by a fraction of the

available bandwidth.

The six different ICMPv6 message formats are discussed below.

A.5.1 Destination Unreachable Error Message

The Destination Unreachable error message is sent when a packet cannot

be sent to the destination address. This excludes the reason of congestion.

The format of the Destination Unreachable message is shown in Figure

162

A.18.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Type Code Checksum

Unused

.

As much of the packet that will fit in the ICMP packet, without

exceeding the minimum IPv6 MTU.

.

Figure A.18 – Destination Unreachable Error Message

The fields in the Destination Unreachable message have the following

functions:

Type (8 bits): The value of this field is 1.

Code (8 bits): The value of this field has the following meanings:

0 = No route to destination

1 = Communication with Destination administratively prohibited

2 = This value is not yet assigned

3 = Address unreachable

4 = Port unreachable

Checksum (16 bits): This field is the one's complement of the one's

complement sum of the entire ICMPv6 message starting with the Type field

and ending with the pseudo header. For the calculation of the checksum,

the checksum field is taken to be zero.

163

Unused (32 bits): This field is unused for all code values and the sender

should set the value of this field to zero. The receiver should ignore this

field.

A.5.2 Packet Too Big Error Message

The Packet Too Big message is sent when the packet is larger than the

MTU of a node's outgoing link.

The format of the Packet Too Big message is shown in Figure A.19.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Type Code Checksum

MTU

.

As much of the packet that will fit in the ICMP packet, without

exceeding the minimum IPv6 MTU.

.

Figure A.19 – Packet Too Big Error Message

The fields in the Packet Too Big message have the following functions:

Type (8 bits): The value of this field is 2.

Code (8 bits): The value of this field is set to zero by the sender. This field

is ignored by the receiver.

Checksum (16 bits): This field is the one's complement of the one's

complement sum of the entire ICMPv6 message starting with the Type field

164

and ending with the pseudo header. For the calculation of the checksum,

the checksum field is taken to be zero.

MTU (32 bits): The Maximum Transmission Unit of the next-hop link.

A.5.3 Time Exceed Error Message

This message is sent when the Hop Limit field has reached zero and the

packet is discarded.

The format of the Time Exceed Error Message is shown in Figure A.20.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Type Code Checksum

Unused

.

As much of the packet that will fit in the ICMP packet, without

exceeding the minimum IPv6 MTU.

.

Figure A.20 – Time Exceed Error Message

The functions of the Time Exceed message fields are explained below.

Type (8 bits): The value of this field is 3.

Code (8 bits): The value of this field has the following meanings.

0 = Hop limit exceeded in the transit

1 = Fragment reassembly time exceed

165

Checksum (16 bits): This field is the one's complement of the one's

complement sum of the entire ICMPv6 message starting with the Type field

and ending with the pseudo header. For the calculation of the checksum,

the checksum field is taken to be zero.

Unused (32 bits): This field is unused for all code values and the sender

should set the value of this field to zero. The receiver should ignore this

field.

A.5.4 Parameter Problem Error Message

This error is sent when an IPv6 node detects an error in the IPv6 header or

extension headers, and the packet is discarded.

The format of the Parameter Problem error message is shown in Figure

A.21.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Type Code Checksum

Pointer

.

As much of the packet that will fit in the ICMP packet, without

exceeding the minimum IPv6 MTU.

.

Figure A.21 – Parameter Problem Error Message

The fields of the Parameter Problem Error Message have the following

functions:

Type (8 bits): The value of this field is 4.

166

Code (8 bits): The value of this field has the following meanings:

0 = An error in the header field detected

1 = Unrecognised Next Header type

2 = Unrecognised Ipv6 option

Checksum (16 bits): This field is the one's complement of the one's

complement sum of the entire ICMPv6 message starting with the Type field

and ending with the pseudo header. For the calculation of the checksum,

the checksum field is taken to be zero.

Pointer (32 bits): This field identifies the offset in bytes in the packet in

which the error was detected.

A.5.5 Echo Request and Echo Reply Informational

Message

The use of this message is for diagnostic purposes. If a node receives an

Echo Request ICMPv6, then it should return an Echo Reply ICMPv6.

The format of the Echo Request and Echo Reply informational message is

shown in Figure A.22.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Type Code Checksum

Identifier Sequence Number

.

Data

.

Figure A.22 – Echo Request and Echo Reply Information Message

167

Type (8 bits): The value of this field is 128 for an Echo Request message,

and 129 for Echo Reply message.

Code (8 bits): The value of this field is set to zero by the sender.

Checksum (16 bits): This field is the one's complement of the one's

complement sum of the entire ICMPv6 message starting with the Type field

and ending with the pseudo header. For the calculation of the checksum,

the checksum field is taken to be zero.

Identifier (16 bits): Should the code be equal to zero, then an identifier

to aid the matching request and reply messages may be zero. Otherwise,

the Identifier field of the Echo Reply message must be the same as that in

the Echo Request message field.

Sequence Number (16 bits): Should the code be equal to zero, then an

sequence number to aid the matching request and reply messages may be

zero. Otherwise the Sequence Number of the Echo Reply message must be

the same as that in the Echo Request message field.

Data (variable length): This field contains zero or more bytes of data. The

Echo Reply message will have the same data as that in the Echo Request

message.

168

Appendix B – Scripts for firewalls

Appendix B.1 – Settings when firewall is disabled

#!/bin/sh

echo "***Initialising No Firewall Rules***";

echo " - Flush all rules";

/sbin/iptables --flush;

/sbin/iptables --flush INPUT;

/sbin/iptables --flush OUTPUT;

/sbin/iptables --flush FORWARD;

/sbin/iptables --table nat --flush;

echo " - Delete all chains";

/sbin/iptables --delete-chain;

/sbin/iptables --table nat --delete-chain;

echo " - Prevent SYN flood attacks";

echo 1 > /proc/sys/net/ipv4/tcp_syncookies;

echo " - Prevent spoofing source address verification";

echo 1 > /proc/sys/net/ipv4/conf/all/rp_filter;

echo " - Disable response to broadcasts - we don't want to become a smurf

amp";

echo 1 > /proc/sys/net/ipv4/icmp_echo_ignore_broadcasts;

169

echo " - Enable ICMP redirect acceptance";

echo 1 > /proc/sys/net/ipv4/conf/all/accept_redirects;

echo " - Enable bad error message protection";

echo 1 > /proc/sys/net/ipv4/icmp_ignore_bogus_error_responses;

echo " - Log spoofed packets, source routed packets, redirect packets";

echo 1 > /proc/sys/net/ipv4/conf/all/log_martians;

echo " - Enable ICMP echo reply";

echo 0 > /proc/sys/net/ipv4/icmp_echo_ignore_all;

echo " - Modify TOS value of all outgoing packets to 0xc0";

/sbin/iptables -t mangle -I OUTPUT -j TOS --set-tos 0xc0;

echo "***Done***";

170

Appendix B.2 – Settings when firewall is enabled

#!/bin/sh

echo "***Initialising Suse 10.1 Firewall Rules***";

echo " - Flush all rules";

/sbin/iptables --flush;

/sbin/iptables --flush INPUT;

/sbin/iptables --flush OUTPUT;

/sbin/iptables --flush FORWARD;

/sbin/iptables --table nat --flush;

echo " - Delete all chains";

/sbin/iptables --delete-chain;

/sbin/iptables --table nat --delete-chain;

echo " - Set default chain policies";

/sbin/iptables --policy INPUT DROP;

/sbin/iptables --policy OUTPUT DROP;

/sbin/iptables --policy FORWARD DROP;

/sbin/iptables --new forward_ext;

/sbin/iptables --new input_ext;

/sbin/iptables --new reject_func;

echo " - Prevent SYN flood attacks";

echo 1 > /proc/sys/net/ipv4/tcp_syncookies;

171

echo " - Prevent spoofing source address verification";

echo 1 > /proc/sys/net/ipv4/conf/all/rp_filter;

echo " - Disable response to broadcasts - we don't want to become a smurf

amp";

echo 1 > /proc/sys/net/ipv4/icmp_echo_ignore_broadcasts;

echo " - Enable ICMP redirect acceptance";

echo 1 > /proc/sys/net/ipv4/conf/all/accept_redirects;

echo " - Enable bad error message protection";

echo 1 > /proc/sys/net/ipv4/icmp_ignore_bogus_error_responses;

echo " - Log spoofed packets, source routed packets, redirect packets";

echo 1 > /proc/sys/net/ipv4/conf/all/log_martians;

echo " - Enable ICMP echo reply";

echo 0 > /proc/sys/net/ipv4/icmp_echo_ignore_all;

echo " - Modify TOS value of all outgoing packets to 0xc0";

/sbin/iptables -t mangle -I OUTPUT -j TOS --set-tos 0xc0;

echo " - Adding Pre-defined Firewall Rules from Suse 10.1";

/sbin/iptables -A INPUT -i lo -j ACCEPT;

/sbin/iptables -A INPUT -m state --state RELATED,ESTABLISHED -j

ACCEPT;

/sbin/iptables -A INPUT -i eth0 -j input_ext;

172

/sbin/iptables -A INPUT -j input_ext;

/sbin/iptables -A INPUT -m limit --limit 3/min -j LOG --log-prefix "SFW2-IN-

ILL-TARGET " --log-tcp-options --log-ip-options;

/sbin/iptables -A INPUT -j DROP;

/sbin/iptables -A FORWARD -m limit --limit 3/min -j LOG --log-prefix "SFW2-

FWD-ILL-ROUTING " --log-tcp-options --log-ip-options;

/sbin/iptables -A OUTPUT -o lo -j ACCEPT;

/sbin/iptables -A OUTPUT -m state --state NEW,RELATED,ESTABLISHED -j

ACCEPT;

/sbin/iptables -A OUTPUT -m limit --limit 3/min -j LOG --log-prefix "SFW2-

OUT-ERROR " --log-tcp-options --log-ip-options;

/sbin/iptables -A input_ext -m pkttype --pkt-type broadcast -j DROP;

/sbin/iptables -A input_ext -p icmp -m icmp --icmp-type 4 -j ACCEPT;

/sbin/iptables -A input_ext -p icmp -m icmp --icmp-type 8 -j ACCEPT;

/sbin/iptables -A input_ext -p icmp -m state --state RELATED,ESTABLISHED

-m icmp --icmp-type 0 -j ACCEPT;

/sbin/iptables -A input_ext -p icmp -m state --state RELATED,ESTABLISHED

-m icmp --icmp-type 3 -j ACCEPT;

/sbin/iptables -A input_ext -p icmp -m state --state RELATED,ESTABLISHED

-m icmp --icmp-type 11 -j ACCEPT;

/sbin/iptables -A input_ext -p icmp -m state --state RELATED,ESTABLISHED

-m icmp --icmp-type 12 -j ACCEPT;

/sbin/iptables -A input_ext -p icmp -m state --state RELATED,ESTABLISHED

-m icmp --icmp-type 14 -j ACCEPT;

/sbin/iptables -A input_ext -p icmp -m state --state RELATED,ESTABLISHED

-m icmp --icmp-type 18 -j ACCEPT;

/sbin/iptables -A input_ext -p icmp -m state --state RELATED,ESTABLISHED

-m icmp --icmp-type 3/2 -j ACCEPT;

/sbin/iptables -A input_ext -p icmp -m state --state RELATED,ESTABLISHED

-m icmp --icmp-type 5 -j ACCEPT;

173

/sbin/iptables -A input_ext -p tcp -m limit --limit 3/min -m tcp --dport 22 --

tcp-flags FIN,SYN,RST,ACK SYN -j LOG --log-prefix "SFW2-INext-ACC-TCP "

--log-tcp-options --log-ip-options;

/sbin/iptables -A input_ext -p tcp -m tcp --dport 22 -j ACCEPT;

/sbin/iptables -A input_ext -p tcp -m tcp --dport 113 -m state --state NEW -j

reject_func;

/sbin/iptables -A input_ext -m limit --limit 3/min -m pkttype --pkt-type

multicast -j LOG --log-prefix "SFW2-INext-DROP-DEFLT " --log-tcp-options --

log-ip-options;

/sbin/iptables -A input_ext -m pkttype --pkt-type multicast -j DROP;

/sbin/iptables -A input_ext -p tcp -m limit --limit 3/min -m tcp --tcp-flags

FIN,SYN,RST,ACK SYN -j LOG --log-prefix "SFW2-INext-DROP-DEFLT " --

log-tcp-options --log-ip-options;

/sbin/iptables -A input_ext -p icmp -m limit --limit 3/min -j LOG --log-prefix

"SFW2-INext-DROP-DEFLT " --log-tcp-options --log-ip-options;

/sbin/iptables -A input_ext -p udp -m limit --limit 3/min -j LOG --log-prefix

"SFW2-INext-DROP-DEFLT " --log-tcp-options --log-ip-options;

/sbin/iptables -A input_ext -m limit --limit 3/min -m state --state INVALID -j

LOG --log-prefix "SFW2-INext-DROP-DEFLT-INV " --log-tcp-options --log-ip-

options;

/sbin/iptables -A input_ext -j DROP;

/sbin/iptables -A reject_func -p tcp -j REJECT --reject-with tcp-reset;

/sbin/iptables -A reject_func -p udp -j REJECT --reject-with icmp-port-

unreachable;

/sbin/iptables -A reject_func -j REJECT --reject-with icmp-proto-

unreachable;

echo "***Done***";

174

Appendix B.3 – Suggested Additions to firewalls

#!/bin/sh

echo "***Initialising Suggested Firewall Rules***";

echo " - Prevent SYN flood attacks";

echo 1 > /proc/sys/net/ipv4/tcp_syncookies;

echo " - Prevent spoofing source address verification";

echo 1 > /proc/sys/net/ipv4/conf/all/rp_filter;

echo " - Disable response to broadcasts - we don't want to become a smurf

amp";

echo 1 > /proc/sys/net/ipv4/icmp_echo_ignore_broadcasts;

echo " - Disable ICMP redirect acceptance";

echo 0 > /proc/sys/net/ipv4/conf/all/accept_redirects;

echo " - Enable bad error message protection";

echo 1 > /proc/sys/net/ipv4/icmp_ignore_bogus_error_responses;

echo " - Log spoofed packets, source routed packets, redirect packets";

echo 1 > /proc/sys/net/ipv4/conf/all/log_martians;

echo " - Disable ICMP echo reply";

echo 1 > /proc/sys/net/ipv4/icmp_echo_ignore_all;

175

echo " - Drop outgoing ICMP";

/sbin/iptables -p icmp --icmp-type any -I OUTPUT -j DROP;

echo " - Modify TOS value of all outgoing packets to 0x00";

/sbin/iptables -t mangle -I OUTPUT -j TOS --set-tos 0x00;

echo " - Drop all packets with port 0";

/sbin/iptables -I INPUT -p tcp --dport 0 -j DROP;

/sbin/iptables -I INPUT -p udp --dport 0 -j DROP;

/sbin/iptables -I INPUT -p tcp --sport 0 -j DROP;

/sbin/iptables -I INPUT -p udp --sport 0 -j DROP;

echo " - Initiating OSF module";

/sbin/insmod /home/user/osf/ipt_osf.ko;

/home/user/osf/load /home/user/osf/pf.os /proc/sys/net/ipv4/osf;

/sbin/iptables -I INPUT -p tcp -m osf --genre Nmap --log 2 --ttl 2 -j DROP;

echo "***Done***";

176

Appendix C – Results of Tests and Experiments with

IPv4

Appendix C.1 – Output of the Port Scanning

techniques

SYN Scan

The firewall was disabled and the following output was received from

Nmap:

linux-:/# nmap -sS -vv 10.0.0.6

Starting Nmap 4.00 (http://www.insecure.org/nmap/) at 2006-07-17 11:32 SAST

Initiating ARP Ping Scan against 10.0.0.6 [1 port] at 11:32

The ARP Ping Scan took 0.01s to scan 1 total hosts.

DNS resolution of 1 IPs took 13.00s. Mode: Async [#: 1, OK: 0, NX: 0, DR: 1, SF: 0,

TR: 3, CN: 0]

Initiating SYN Stealth Scan against 10.0.0.6 [1672 ports] at 11:32

Discovered open port 22/tcp on 10.0.0.6

Discovered open port 111/tcp on 10.0.0.6

Discovered open port 631/tcp on 10.0.0.6

The SYN Stealth Scan took 1.81s to scan 1672 total ports.

Host 10.0.0.6 appears to be up ... good.

Interesting ports on 10.0.0.6:

(The 1669 ports scanned but not shown below are in state: closed)

PORT STATE SERVICE

177

22/tcp open ssh

111/tcp open rpcbind

631/tcp open ipp

MAC Address: 00:0E:A6:73:E7:25 (Asustek Computer)

Nmap finished: 1 IP address (1 host up) scanned in 16.560 seconds

 Raw packets sent: 1680 (67.2KB) | Rcvd: 1673 (77KB)

The firewall was then enabled on system B and the following output was

observed.

linux:/# nmap -sS -vv 10.0.0.6

Starting Nmap 4.00 (http://www.insecure.org/nmap/) at 2006-07-17 11:13 SAST

Initiating ARP Ping Scan against 10.0.0.6 [1 port] at 11:13

The ARP Ping Scan took 0.02s to scan 1 total hosts.

DNS resolution of 1 IPs took 13.00s. Mode: Async [#: 1, OK: 0, NX: 0, DR: 1, SF: 0,

TR: 3, CN: 0]

Initiating SYN Stealth Scan against 10.0.0.6 [1672 ports] at 11:13

Discovered open port 22/tcp on 10.0.0.6

The SYN Stealth Scan took 21.39s to scan 1672 total ports.

Host 10.0.0.6 appears to be up ... good.

Interesting ports on 10.0.0.6:

(The 1670 ports scanned but not shown below are in state: filtered)

PORT STATE SERVICE

22/tcp open ssh

113/tcp closed auth

MAC Address: 00:0E:A6:73:E7:25 (Asustek Computer)

178

Nmap finished: 1 IP address (1 host up) scanned in 35.297 seconds

 Raw packets sent: 3347 (134KB) | Rcvd: 7 (318B)

UDP Scan

The following output was given by Nmap when the firewall was disabled:

linux:/# nmap -sU -vv --dns_servers 10.0.0.0 10.0.0.6

Starting Nmap 4.00 (http://www.insecure.org/nmap/) at 2006-07-17 11:33 SAST

Initiating ARP Ping Scan against 10.0.0.6 [1 port] at 11:33

The ARP Ping Scan took 0.02s to scan 1 total hosts.

DNS resolution of 1 IPs took 13.00s. Mode: Async [#: 1, OK: 0, NX: 0, DR: 1, SF: 0,

TR: 3, CN: 0]

Initiating UDP Scan against 10.0.0.6 [1482 ports] at 11:33

Increasing send delay for 10.0.0.6 from 0 to 50 due to max_successful_tryno

increase to 4

Increasing send delay for 10.0.0.6 from 50 to 100 due to max_successful_tryno

increase to 5

Increasing send delay for 10.0.0.6 from 100 to 200 due to max_successful_tryno

increase to 6

Increasing send delay for 10.0.0.6 from 200 to 400 due to 11 out of 11 dropped

probes since last increase.

Increasing send delay for 10.0.0.6 from 400 to 800 due to 11 out of 11 dropped

probes since last increase.

UDP Scan Timing: About 3.21% done; ETC: 11:49 (0:15:25 remaining)

UDP Scan Timing: About 67.46% done; ETC: 11:57 (0:07:42 remaining)

The UDP Scan took 1476.42s to scan 1482 total ports.

Host 10.0.0.6 appears to be up ... good.

179

Interesting ports on 10.0.0.6:

(The 1478 ports scanned but not shown below are in state: closed)

PORT STATE SERVICE

68/udp open|filtered dhcpc

111/udp open|filtered rpcbind

631/udp open|filtered unknown

1024/udp open|filtered unknown

MAC Address: 00:0E:A6:73:E7:25 (Asustek Computer)

Nmap finished: 1 IP address (1 host up) scanned in 1490.257 seconds

 Raw packets sent: 1934 (54.2KB) | Rcvd: 1483 (83KB)

The following output was observed when the firewall was enabled:

linux:/# nmap -sU -vv --dns_servers 10.0.0.0 10.0.0.6

Starting Nmap 4.00 (http://www.insecure.org/nmap/) at 2006-07-17 11:14 SAST

Initiating ARP Ping Scan against 10.0.0.6 [1 port] at 11:14

The ARP Ping Scan took 0.01s to scan 1 total hosts.

DNS resolution of 1 IPs took 13.00s. Mode: Async [#: 1, OK: 0, NX: 0, DR: 1, SF: 0,

TR: 3, CN: 0]

Initiating UDP Scan against 10.0.0.6 [1482 ports] at 11:15

The UDP Scan took 31.91s to scan 1482 total ports.

Host 10.0.0.6 appears to be up ... good.

All 1482 scanned ports on 10.0.0.6 are: open|filtered

MAC Address: 00:0E:A6:73:E7:25 (Asustek Computer)

Nmap finished: 1 IP address (1 host up) scanned in 45.705 seconds

 Raw packets sent: 2965 (83KB) | Rcvd: 1 (42B)

180

TCP Scan

With the firewall disabled, the following output was given by Nmap:

linux:/# nmap -sT -vv --dns_servers 10.0.0.0 10.0.0.6

Starting Nmap 4.00 (http://www.insecure.org/nmap/) at 2006-07-17 11:59 SAST

Initiating ARP Ping Scan against 10.0.0.6 [1 port] at 11:59

The ARP Ping Scan took 0.01s to scan 1 total hosts.

DNS resolution of 1 IPs took 13.00s. Mode: Async [#: 1, OK: 0, NX: 0, DR: 1, SF: 0,

TR: 3, CN: 0]

Initiating Connect() Scan against 10.0.0.6 [1672 ports] at 11:59

Discovered open port 631/tcp on 10.0.0.6

Discovered open port 22/tcp on 10.0.0.6

Discovered open port 111/tcp on 10.0.0.6

The Connect() Scan took 2.55s to scan 1672 total ports.

Host 10.0.0.6 appears to be up ... good.

Interesting ports on 10.0.0.6:

(The 1669 ports scanned but not shown below are in state: closed)

PORT STATE SERVICE

22/tcp open ssh

111/tcp open rpcbind

631/tcp open ipp

MAC Address: 00:0E:A6:73:E7:25 (Asustek Computer)

Nmap finished: 1 IP address (1 host up) scanned in 16.882 seconds

 Raw packets sent: 1 (42B) | Rcvd: 1 (42B)

181

When the firewall was disabled, the following output was observed.

linux:/# nmap -sT -vv --dns_servers 10.0.0.0 10.0.0.6

Starting Nmap 4.00 (http://www.insecure.org/nmap/) at 2006-07-17 11:16 SAST

Initiating ARP Ping Scan against 10.0.0.6 [1 port] at 11:16

The ARP Ping Scan took 0.01s to scan 1 total hosts.

DNS resolution of 1 IPs took 13.00s. Mode: Async [#: 1, OK: 0, NX: 0, DR: 1, SF: 0,

TR: 3, CN: 0]

Initiating Connect() Scan against 10.0.0.6 [1672 ports] at 11:16

Discovered open port 22/tcp on 10.0.0.6

The Connect() Scan took 30.89s to scan 1672 total ports.

Host 10.0.0.6 appears to be up ... good.

Interesting ports on 10.0.0.6:

(The 1670 ports scanned but not shown below are in state: filtered)

PORT STATE SERVICE

22/tcp open ssh

113/tcp closed auth

MAC Address: 00:0E:A6:73:E7:25 (Asustek Computer)

Nmap finished: 1 IP address (1 host up) scanned in 44.588 seconds

 Raw packets sent: 1 (42B) | Rcvd: 1 (42B)

182

Null Scan

The following output was observed when the firewall was disabled:

linux:/# nmap -sN -vv --dns_servers 10.0.0.0 10.0.0.6

Starting Nmap 4.00 (http://www.insecure.org/nmap/) at 2006-07-17 12:00 SAST

Initiating ARP Ping Scan against 10.0.0.6 [1 port] at 12:00

The ARP Ping Scan took 0.02s to scan 1 total hosts.

DNS resolution of 1 IPs took 13.00s. Mode: Async [#: 1, OK: 0, NX: 0, DR: 1, SF: 0,

TR: 3, CN: 0]

Initiating NULL Scan against 10.0.0.6 [1672 ports] at 12:00

The NULL Scan took 1.54s to scan 1672 total ports.

Host 10.0.0.6 appears to be up ... good.

Interesting ports on 10.0.0.6:

(The 1669 ports scanned but not shown below are in state: closed)

PORT STATE SERVICE

22/tcp open|filtered ssh

111/tcp open|filtered rpcbind

631/tcp open|filtered ipp

MAC Address: 00:0E:A6:73:E7:25 (Asustek Computer)

Nmap finished: 1 IP address (1 host up) scanned in 15.802 seconds

 Raw packets sent: 1676 (67KB) | Rcvd: 1670 (76.8KB)

The following was observed when the firewall was enabled:

linux:/# nmap -sN -vv --dns_servers 10.0.0.0 10.0.0.6

183

Starting Nmap 4.00 (http://www.insecure.org/nmap/) at 2006-07-17 11:17 SAST

Initiating ARP Ping Scan against 10.0.0.6 [1 port] at 11:17

The ARP Ping Scan took 0.01s to scan 1 total hosts.

DNS resolution of 1 IPs took 13.00s. Mode: Async [#: 1, OK: 0, NX: 0, DR: 1, SF: 0,

TR: 3, CN: 0]

Initiating NULL Scan against 10.0.0.6 [1672 ports] at 11:18

The NULL Scan took 35.86s to scan 1672 total ports.

Host 10.0.0.6 appears to be up ... good.

All 1672 scanned ports on 10.0.0.6 are: open|filtered

MAC Address: 00:0E:A6:73:E7:25 (Asustek Computer)

Nmap finished: 1 IP address (1 host up) scanned in 49.631 seconds

 Raw packets sent: 3345 (134KB) | Rcvd: 1 (42B)

184

ACK Scan

With the firewall disabled the following output was given by Nmap:

linux:/# nmap -sA -vv --dns_servers 10.0.0.0 10.0.0.6

Starting Nmap 4.00 (http://www.insecure.org/nmap/) at 2006-07-17 12:01 SAST

Initiating ARP Ping Scan against 10.0.0.6 [1 port] at 12:01

The ARP Ping Scan took 0.01s to scan 1 total hosts.

DNS resolution of 1 IPs took 13.00s. Mode: Async [#: 1, OK: 0, NX: 0, DR: 1, SF: 0,

TR: 3, CN: 0]

Initiating ACK Scan against 10.0.0.6 [1672 ports] at 12:01

The ACK Scan took 1.06s to scan 1672 total ports.

Host 10.0.0.6 appears to be up ... good.

All 1672 scanned ports on 10.0.0.6 are: UNfiltered

MAC Address: 00:0E:A6:73:E7:25 (Asustek Computer)

Nmap finished: 1 IP address (1 host up) scanned in 15.474 seconds

 Raw packets sent: 1673 (66.9KB) | Rcvd: 1673 (77KB)

On the contrary, when the firewall was enabled, the following output was

observed:

linux:/# nmap -sA -vv --dns_servers 10.0.0.0 10.0.0.6

Starting Nmap 4.00 (http://www.insecure.org/nmap/) at 2006-07-17 11:19 SAST

Initiating ARP Ping Scan against 10.0.0.6 [1 port] at 11:19

The ARP Ping Scan took 0.01s to scan 1 total hosts.

185

DNS resolution of 1 IPs took 13.00s. Mode: Async [#: 1, OK: 0, NX: 0, DR: 1, SF: 0,

TR: 3, CN: 0]

Initiating ACK Scan against 10.0.0.6 [1672 ports] at 11:19

The ACK Scan took 22.04s to scan 1672 total ports.

Host 10.0.0.6 appears to be up ... good.

Interesting ports on 10.0.0.6:

(The 1670 ports scanned but not shown below are in state: filtered)

PORT STATE SERVICE

22/tcp UNfiltered ssh

113/tcp UNfiltered auth

MAC Address: 00:0E:A6:73:E7:25 (Asustek Computer)

Nmap finished: 1 IP address (1 host up) scanned in 35.982 seconds

 Raw packets sent: 3347 (134KB) | Rcvd: 7 (318B)

186

FIN Scan

With the firewall disabled the following output was given by Nmap:

linux:/# nmap -sF -vv --dns_servers 10.0.0.0 10.0.0.6

Starting Nmap 4.00 (http://www.insecure.org/nmap/) at 2006-07-17 12:02 SAST

Initiating ARP Ping Scan against 10.0.0.6 [1 port] at 12:02

The ARP Ping Scan took 0.01s to scan 1 total hosts.

DNS resolution of 1 IPs took 13.00s. Mode: Async [#: 1, OK: 0, NX: 0, DR: 1, SF: 0,

TR: 3, CN: 0]

Initiating FIN Scan against 10.0.0.6 [1672 ports] at 12:03

The FIN Scan took 2.70s to scan 1672 total ports.

Host 10.0.0.6 appears to be up ... good.

Interesting ports on 10.0.0.6:

(The 1669 ports scanned but not shown below are in state: closed)

PORT STATE SERVICE

22/tcp open|filtered ssh

111/tcp open|filtered rpcbind

631/tcp open|filtered ipp

MAC Address: 00:0E:A6:73:E7:25 (Asustek Computer)

Nmap finished: 1 IP address (1 host up) scanned in 17.011 seconds

 Raw packets sent: 1685 (67.4KB) | Rcvd: 1670 (76.8KB)

With the firewall enabled the following output was observed:

linux:/# nmap -sF -vv --dns_servers 10.0.0.0 10.0.0.6

187

Starting Nmap 4.00 (http://www.insecure.org/nmap/) at 2006-07-17 11:20 SAST

Initiating ARP Ping Scan against 10.0.0.6 [1 port] at 11:20

The ARP Ping Scan took 0.02s to scan 1 total hosts.

DNS resolution of 1 IPs took 13.00s. Mode: Async [#: 1, OK: 0, NX: 0, DR: 1, SF: 0,

TR: 3, CN: 0]

Initiating FIN Scan against 10.0.0.6 [1672 ports] at 11:20

The FIN Scan took 35.89s to scan 1672 total ports.

Host 10.0.0.6 appears to be up ... good.

All 1672 scanned ports on 10.0.0.6 are: open|filtered

MAC Address: 00:0E:A6:73:E7:25 (Asustek Computer)

Nmap finished: 1 IP address (1 host up) scanned in 49.662 seconds

 Raw packets sent: 3345 (134KB) | Rcvd: 1 (42B)

188

Window Scan

The following output was seen when the firewall was disabled:

linux:/# nmap -sW -vv --dns_servers 10.0.0.0 10.0.0.6

Starting Nmap 4.00 (http://www.insecure.org/nmap/) at 2006-07-17 12:03 SAST

Initiating ARP Ping Scan against 10.0.0.6 [1 port] at 12:03

The ARP Ping Scan took 0.04s to scan 1 total hosts.

DNS resolution of 1 IPs took 13.00s. Mode: Async [#: 1, OK: 0, NX: 0, DR: 1, SF: 0,

TR: 3, CN: 0]

Initiating Window Scan against 10.0.0.6 [1672 ports] at 12:04

The Window Scan took 0.85s to scan 1672 total ports.

Host 10.0.0.6 appears to be up ... good.

All 1672 scanned ports on 10.0.0.6 are: closed

MAC Address: 00:0E:A6:73:E7:25 (Asustek Computer)

Nmap finished: 1 IP address (1 host up) scanned in 15.698 seconds

 Raw packets sent: 1673 (66.9KB) | Rcvd: 1673 (77KB)

When the firewall was enabled the following output was observed:

linux:/# nmap -sW -vv --dns_servers 10.0.0.0 10.0.0.6

Starting Nmap 4.00 (http://www.insecure.org/nmap/) at 2006-07-17 11:22 SAST

Initiating ARP Ping Scan against 10.0.0.6 [1 port] at 11:22

The ARP Ping Scan took 0.02s to scan 1 total hosts.

DNS resolution of 1 IPs took 13.00s. Mode: Async [#: 1, OK: 0, NX: 0, DR: 1, SF: 0,

189

TR: 3, CN: 0]

Initiating Window Scan against 10.0.0.6 [1672 ports] at 11:22

The Window Scan took 22.01s to scan 1672 total ports.

Host 10.0.0.6 appears to be up ... good.

Interesting ports on 10.0.0.6:

(The 1670 ports scanned but not shown below are in state: filtered)

PORT STATE SERVICE

22/tcp closed ssh

113/tcp closed auth

MAC Address: 00:0E:A6:73:E7:25 (Asustek Computer)

Nmap finished: 1 IP address (1 host up) scanned in 35.861 seconds

 Raw packets sent: 3347 (134KB) | Rcvd: 7 (318B)

190

Xmas Scan

The following output was received from Nmap when the firewall was

disabled:

linux:/# nmap -sX -vv --dns_servers 10.0.0.0 10.0.0.6

Starting Nmap 4.00 (http://www.insecure.org/nmap/) at 2006-07-17 12:04 SAST

Initiating ARP Ping Scan against 10.0.0.6 [1 port] at 12:04

The ARP Ping Scan took 0.02s to scan 1 total hosts.

DNS resolution of 1 IPs took 13.00s. Mode: Async [#: 1, OK: 0, NX: 0, DR: 1, SF: 0,

TR: 3, CN: 0]

Initiating XMAS Scan against 10.0.0.6 [1672 ports] at 12:05

The XMAS Scan took 1.95s to scan 1672 total ports.

Host 10.0.0.6 appears to be up ... good.

Interesting ports on 10.0.0.6:

(The 1669 ports scanned but not shown below are in state: closed)

PORT STATE SERVICE

22/tcp open|filtered ssh

111/tcp open|filtered rpcbind

631/tcp open|filtered ipp

MAC Address: 00:0E:A6:73:E7:25 (Asustek Computer)

Nmap finished: 1 IP address (1 host up) scanned in 16.268 seconds

 Raw packets sent: 1676 (67KB) | Rcvd: 1670 (76.8KB)

The following output was observed when the firewall was enabled:

191

linux:/# nmap -sX -vv --dns_servers 10.0.0.0 10.0.0.6

Starting Nmap 4.00 (http://www.insecure.org/nmap/) at 2006-07-17 11:23 SAST

Initiating ARP Ping Scan against 10.0.0.6 [1 port] at 11:23

The ARP Ping Scan took 0.02s to scan 1 total hosts.

DNS resolution of 1 IPs took 13.00s. Mode: Async [#: 1, OK: 0, NX: 0, DR: 1, SF: 0,

TR: 3, CN: 0]

Initiating XMAS Scan against 10.0.0.6 [1672 ports] at 11:23

The XMAS Scan took 35.83s to scan 1672 total ports.

Host 10.0.0.6 appears to be up ... good.

All 1672 scanned ports on 10.0.0.6 are: open|filtered

MAC Address: 00:0E:A6:73:E7:25 (Asustek Computer)

Nmap finished: 1 IP address (1 host up) scanned in 49.682 seconds

 Raw packets sent: 3345 (134KB) | Rcvd: 1 (42B)

192

TCP Maimon Scan

With the firewall disabled, the following output was received from Nmap:

linux:/# nmap -sM -vv --dns_servers 10.0.0.0 10.0.0.6

Starting Nmap 4.00 (http://www.insecure.org/nmap/) at 2006-07-17 12:05 SAST

Initiating ARP Ping Scan against 10.0.0.6 [1 port] at 12:05

The ARP Ping Scan took 0.01s to scan 1 total hosts.

DNS resolution of 1 IPs took 13.00s. Mode: Async [#: 1, OK: 0, NX: 0, DR: 1, SF: 0,

TR: 3, CN: 0]

Initiating Maimon Scan against 10.0.0.6 [1672 ports] at 12:06

The Maimon Scan took 0.86s to scan 1672 total ports.

Host 10.0.0.6 appears to be up ... good.

All 1672 scanned ports on 10.0.0.6 are: closed

MAC Address: 00:0E:A6:73:E7:25 (Asustek Computer)

Nmap finished: 1 IP address (1 host up) scanned in 15.159 seconds

 Raw packets sent: 1673 (66.9KB) | Rcvd: 1673 (77KB)

With the firewall disabled the following output was observed:

linux:/# nmap -sM -vv --dns_servers 10.0.0.0 10.0.0.6

Starting Nmap 4.00 (http://www.insecure.org/nmap/) at 2006-07-17 11:25 SAST

Initiating ARP Ping Scan against 10.0.0.6 [1 port] at 11:25

The ARP Ping Scan took 0.01s to scan 1 total hosts.

DNS resolution of 1 IPs took 13.00s. Mode: Async [#: 1, OK: 0, NX: 0, DR: 1, SF: 0,

193

TR: 3, CN: 0]

Initiating Maimon Scan against 10.0.0.6 [1672 ports] at 11:25

The Maimon Scan took 22.24s to scan 1672 total ports.

Host 10.0.0.6 appears to be up ... good.

Interesting ports on 10.0.0.6:

(The 1671 ports scanned but not shown below are in state: open|filtered)

PORT STATE SERVICE

22/tcp closed ssh

MAC Address: 00:0E:A6:73:E7:25 (Asustek Computer)

Nmap finished: 1 IP address (1 host up) scanned in 36.180 seconds

 Raw packets sent: 3348 (134KB) | Rcvd: 6 (272B)

194

Protocol Scan

The following output was received when the firewall was disabled:

linux:/# nmap -sO -vv --dns_servers 10.0.0.0 10.0.0.6

Starting Nmap 4.00 (http://www.insecure.org/nmap/) at 2006-07-17 12:06 SAST

Initiating ARP Ping Scan against 10.0.0.6 [1 port] at 12:06

The ARP Ping Scan took 0.02s to scan 1 total hosts.

DNS resolution of 1 IPs took 13.01s. Mode: Async [#: 1, OK: 0, NX: 0, DR: 1, SF: 0,

TR: 3, CN: 0]

Initiating IPProto Scan against 10.0.0.6 [256 ports] at 12:06

Increasing send delay for 10.0.0.6 from 0 to 5 due to max_successful_tryno

increase to 4

Increasing send delay for 10.0.0.6 from 5 to 10 due to max_successful_tryno

increase to 5

Increasing send delay for 10.0.0.6 from 10 to 20 due to max_successful_tryno

increase to 6

Increasing send delay for 10.0.0.6 from 20 to 40 due to max_successful_tryno

increase to 7

Increasing send delay for 10.0.0.6 from 40 to 80 due to max_successful_tryno

increase to 8

Increasing send delay for 10.0.0.6 from 80 to 160 due to max_successful_tryno

increase to 9

Increasing send delay for 10.0.0.6 from 160 to 320 due to 11 out of 12 dropped

probes since last increase.

IPProto Scan Timing: About 18.43% done; ETC: 12:09 (0:02:14 remaining)

Increasing send delay for 10.0.0.6 from 320 to 640 due to 11 out of 11 dropped

probes since last increase.

Increasing send delay for 10.0.0.6 from 640 to 1000 due to 11 out of 19 dropped

195

probes since last increase.

Discovered open port 6/ip on 10.0.0.6

Discovered open port 1/ip on 10.0.0.6

IPProto Scan Timing: About 67.22% done; ETC: 12:11 (0:01:20 remaining)

The IPProto Scan took 274.10s to scan 256 total ports.

Host 10.0.0.6 appears to be up ... good.

Interesting protocols on 10.0.0.6:

(The 251 protocols scanned but not shown below are in state: closed)

PROTOCOL STATE SERVICE

1 open icmp

2 open|filtered igmp

6 open tcp

17 filtered udp

41 open|filtered ipv6

MAC Address: 00:0E:A6:73:E7:25 (Asustek Computer)

Nmap finished: 1 IP address (1 host up) scanned in 287.904 seconds

 Raw packets sent: 433 (8718B) | Rcvd: 257 (12.3KB)

With the firewall enabled the following output was observed:

linux:/# nmap -sO -vv --dns_servers 10.0.0.0 10.0.0.6

Starting Nmap 4.00 (http://www.insecure.org/nmap/) at 2006-07-17 11:26 SAST

Initiating ARP Ping Scan against 10.0.0.6 [1 port] at 11:26

The ARP Ping Scan took 0.02s to scan 1 total hosts.

DNS resolution of 1 IPs took 13.00s. Mode: Async [#: 1, OK: 0, NX: 0, DR: 1, SF: 0,

TR: 3, CN: 0]

Initiating IPProto Scan against 10.0.0.6 [256 ports] at 11:26

196

Discovered open port 1/ip on 10.0.0.6

The IPProto Scan took 6.45s to scan 256 total ports.

Host 10.0.0.6 appears to be up ... good.

Interesting protocols on 10.0.0.6:

(The 255 protocols scanned but not shown below are in state: open|filtered)

PROTOCOL STATE SERVICE

1 open icmp

MAC Address: 00:0E:A6:73:E7:25 (Asustek Computer)

Nmap finished: 1 IP address (1 host up) scanned in 20.264 seconds

 Raw packets sent: 512 (10.3KB) | Rcvd: 2 (88B)

197

Appendix C.2 – OS Detection

Nmap's Results

Two computer systems were set up to demonstrate the scans. The

computers used had the following configurations:

Computer A:

IP Address: 10.0.0.5

Operating System: SUSE 10.1 running Linux kernel version 2.6.16.13-4

Computer B:

IP Address: 10.0.0.6

Operating System: SUSE 10.1 running Linux kernel version 2.6.16.13-4

Opened ports/services: port 22 / SSH

System A was used to do the scans on system B, with the scenario that

system B has the firewall disabled and enabled respectively. The following

results were observed in the scans.

Firstly, the firewall is disabled. Nmap's output was the following:

linux:/# nmap -O -vv 10.0.0.6

Starting Nmap 4.00 (http://www.insecure.org/nmap/) at 2006-07-17 11:07 SAST

Initiating ARP Ping Scan against 10.0.0.6 [1 port] at 11:07

The ARP Ping Scan took 0.02s to scan 1 total hosts.

DNS resolution of 1 IPs took 13.00s. Mode: Async [#: 1, OK: 0, NX: 0, DR: 1, SF: 0,

198

TR: 3, CN: 0]

Initiating SYN Stealth Scan against 10.0.0.6 [1672 ports] at 11:07

Discovered open port 22/tcp on 10.0.0.6

Discovered open port 631/tcp on 10.0.0.6

Discovered open port 111/tcp on 10.0.0.6

The SYN Stealth Scan took 0.48s to scan 1672 total ports.

For OSScan assuming port 22 is open, 1 is closed, and neither are firewalled

Host 10.0.0.6 appears to be up ... good.

Interesting ports on 10.0.0.6:

(The 1669 ports scanned but not shown below are in state: closed)

PORT STATE SERVICE

22/tcp open ssh

111/tcp open rpcbind

631/tcp open ipp

MAC Address: 00:0E:A6:73:E7:25 (Asustek Computer)

Device type: general purpose

Running: Linux 2.4.X|2.5.X|2.6.X

OS details: Linux 2.4.0 - 2.5.20, Linux 2.4.7 - 2.6.11

OS Fingerprint:

TSeq(Class=RI%gcd=1%SI=38C174%IPID=Z)

T1(Resp=Y%DF=Y%W=16A0%ACK=S++%Flags=AS%Ops=MNNTNW)

T2(Resp=N)

T3(Resp=Y%DF=Y%W=16A0%ACK=S++%Flags=AS%Ops=MNNTNW)

T4(Resp=Y%DF=Y%W=0%ACK=O%Flags=R%Ops=)

T5(Resp=Y%DF=Y%W=0%ACK=S++%Flags=AR%Ops=)

T6(Resp=Y%DF=Y%W=0%ACK=O%Flags=R%Ops=)

T7(Resp=Y%DF=Y%W=0%ACK=S++%Flags=AR%Ops=)

PU(Resp=Y%DF=N%TOS=C0%IPLEN=164%RIPTL=148%RID=E%RIPCK=E%UC

K=E%ULEN=134%DAT=E)

199

TCP Sequence Prediction: Class=random positive increments

 Difficulty=3719540 (Good luck!)

IPID Sequence Generation: All zeros

Nmap finished: 1 IP address (1 host up) scanned in 16.292 seconds

 Raw packets sent: 1688 (68.1KB) | Rcvd: 1686 (78KB)

The firewall on system B then was enabled and the following output was

observed:

linux:/# nmap -O -vv 10.0.0.6

Starting Nmap 4.00 (http://www.insecure.org/nmap/) at 2006-07-17 11:05 SAST

Initiating ARP Ping Scan against 10.0.0.6 [1 port] at 11:05

The ARP Ping Scan took 0.01s to scan 1 total hosts.

DNS resolution of 1 IPs took 13.00s. Mode: Async [#: 1, OK: 0, NX: 0, DR: 1, SF: 0,

TR: 3, CN: 0]

Initiating SYN Stealth Scan against 10.0.0.6 [1672 ports] at 11:05

Discovered open port 22/tcp on 10.0.0.6

The SYN Stealth Scan took 21.38s to scan 1672 total ports.

For OSScan assuming port 22 is open, 113 is closed, and neither are firewalled

Host 10.0.0.6 appears to be up ... good.

Interesting ports on 10.0.0.6:

(The 1670 ports scanned but not shown below are in state: filtered)

PORT STATE SERVICE

22/tcp open ssh

113/tcp closed auth

MAC Address: 00:0E:A6:73:E7:25 (Asustek Computer)

Device type: general purpose|broadband router

200

Running: Linux 2.4.X|2.5.X|2.6.X, D-Link embedded

OS details: Linux 2.4.0 - 2.5.20, Linux 2.4.18 - 2.4.20, Linux 2.4.26, Linux 2.4.27 or

D-Link DSL-500T (running linux 2.4), Linux 2.4.7 - 2.6.11, Linux 2.6.0 - 2.6.11

OS Fingerprint:

TSeq(Class=RI%gcd=1%SI=39A613%IPID=Z)

T1(Resp=Y%DF=Y%W=16A0%ACK=S++%Flags=AS%Ops=MNNTNW)

T2(Resp=N)

T3(Resp=Y%DF=Y%W=16A0%ACK=S++%Flags=AS%Ops=MNNTNW)

T4(Resp=Y%DF=Y%W=0%ACK=O%Flags=R%Ops=)

T5(Resp=Y%DF=Y%W=0%ACK=S++%Flags=AR%Ops=)

T6(Resp=Y%DF=Y%W=0%ACK=O%Flags=R%Ops=)

T7(Resp=N)

PU(Resp=N)

TCP Sequence Prediction: Class=random positive increments

 Difficulty=3778067 (Good luck!)

IPID Sequence Generation: All zeros

Nmap finished: 1 IP address (1 host up) scanned in 37.469 seconds

 Raw packets sent: 3364 (135KB) | Rcvd: 18 (936B)

201

Xprobe2's Results

Two computer systems were set up to demonstrate the scans. The

computers used had the following configurations:

Computer A:

IP Address: 10.0.0.5

Operating System: SUSE 10.1 running Linux kernel version 2.6.16.13-4

Computer B:

IP Address: 10.0.0.6

Operating System: SUSE 10.1 running Linux kernel version 2.6.16.13-4

Opened ports/services: port 22 / SSH

System A was used to do the scans on system B, with the scenario that

system B has the firewall disabled and enabled respectively. The following

results were observed in the scans.

Firstly, the firewall is disabled. Xprobe2's output was the following:

linux:/# xprobe2 10.0.0.6

Xprobe2 v.0.3 Copyright (c) 2002-2005 fyodor@o0o.nu, ofir@sys-security.com,

meder@o0o.nu

[+] Target is 10.0.0.6

[+] Loading modules.

[+] Following modules are loaded:

202

[x] [1] ping:icmp_ping - ICMP echo discovery module

[x] [2] ping:tcp_ping - TCP-based ping discovery module

[x] [3] ping:udp_ping - UDP-based ping discovery module

[x] [4] infogather:ttl_calc - TCP and UDP based TTL distance calculation

[x] [5] infogather:portscan - TCP and UDP PortScanner

[x] [6] fingerprint:icmp_echo - ICMP Echo request fingerprinting module

[x] [7] fingerprint:icmp_tstamp - ICMP Timestamp request fingerprinting module

[x] [8] fingerprint:icmp_amask - ICMP Address mask request fingerprinting

module

[x] [9] fingerprint:icmp_port_unreach - ICMP port unreachable fingerprinting

module

[x] [10] fingerprint:tcp_hshake - TCP Handshake fingerprinting module

[x] [11] fingerprint:tcp_rst - TCP RST fingerprinting module

[x] [12] fingerprint:smb - SMB fingerprinting module

[x] [13] fingerprint:snmp - SNMPv2c fingerprinting module

[+] 13 modules registered

[+] Initializing scan engine

[+] Running scan engine

[-] ping:tcp_ping module: no closed/open TCP ports known on 10.0.0.6. Module test

failed

[-] ping:udp_ping module: no closed/open UDP ports known on 10.0.0.6. Module

test failed

[-] No distance calculation. 10.0.0.6 appears to be dead or no ports known

[+] Host: 10.0.0.6 is up (Guess probability: 50%)

[+] Target: 10.0.0.6 is alive. Round-Trip Time: 0.00032 sec

[+] Selected safe Round-Trip Time value is: 0.00063 sec

[-] icmp_port_unreach::build_DNS_reply(): gethostbyname() failed! Using static ip

for www.securityfocus.com in UDP probe

[-] fingerprint:tcp_hshake Module execution aborted (no open TCP ports known)

[-] fingerprint:smb need either TCP port 139 or 445 to run

[-] fingerprint:snmp: need UDP port 161 open

[+] Primary guess:

[+] Host 10.0.0.6 Running OS: "Linux Kernel 2.4.22" (Guess probability: 100%)

[+] Other guesses:

[+] Host 10.0.0.6 Running OS: "Linux Kernel 2.4.23" (Guess probability: 100%)

[+] Host 10.0.0.6 Running OS: "Linux Kernel 2.4.21" (Guess probability: 100%)

[+] Host 10.0.0.6 Running OS: "Linux Kernel 2.4.20" (Guess probability: 100%)

[+] Host 10.0.0.6 Running OS: "Linux Kernel 2.4.19" (Guess probability: 100%)

203

[+] Host 10.0.0.6 Running OS: "Linux Kernel 2.4.24" (Guess probability: 100%)

[+] Host 10.0.0.6 Running OS: "Linux Kernel 2.4.25" (Guess probability: 100%)

[+] Host 10.0.0.6 Running OS: "Linux Kernel 2.4.26" (Guess probability: 100%)

[+] Host 10.0.0.6 Running OS: "Linux Kernel 2.4.27" (Guess probability: 100%)

[+] Host 10.0.0.6 Running OS: "Linux Kernel 2.4.28" (Guess probability: 100%)

[+] Cleaning up scan engine

[+] Modules deinitialized

[+] Execution completed.

The firewall on system B then was enabled and the following output was

observed:

linux:/# xprobe2 10.0.0.6

Xprobe2 v.0.3 Copyright (c) 2002-2005 fyodor@o0o.nu, ofir@sys-security.com,

meder@o0o.nu

[+] Target is 10.0.0.6

[+] Loading modules.

[+] Following modules are loaded:

[x] [1] ping:icmp_ping - ICMP echo discovery module

[x] [2] ping:tcp_ping - TCP-based ping discovery module

[x] [3] ping:udp_ping - UDP-based ping discovery module

[x] [4] infogather:ttl_calc - TCP and UDP based TTL distance calculation

[x] [5] infogather:portscan - TCP and UDP PortScanner

[x] [6] fingerprint:icmp_echo - ICMP Echo request fingerprinting module

[x] [7] fingerprint:icmp_tstamp - ICMP Timestamp request fingerprinting module

[x] [8] fingerprint:icmp_amask - ICMP Address mask request fingerprinting

module

[x] [9] fingerprint:icmp_port_unreach - ICMP port unreachable fingerprinting

module

[x] [10] fingerprint:tcp_hshake - TCP Handshake fingerprinting module

[x] [11] fingerprint:tcp_rst - TCP RST fingerprinting module

[x] [12] fingerprint:smb - SMB fingerprinting module

[x] [13] fingerprint:snmp - SNMPv2c fingerprinting module

[+] 13 modules registered

[+] Initializing scan engine

204

[+] Running scan engine

[-] ping:tcp_ping module: no closed/open TCP ports known on 10.0.0.6. Module test

failed

[-] ping:udp_ping module: no closed/open UDP ports known on 10.0.0.6. Module

test failed

[-] No distance calculation. 10.0.0.6 appears to be dead or no ports known

[+] Host: 10.0.0.6 is up (Guess probability: 50%)

[+] Target: 10.0.0.6 is alive. Round-Trip Time: 0.00202 sec

[+] Selected safe Round-Trip Time value is: 0.00405 sec

[-] icmp_port_unreach::build_DNS_reply(): gethostbyname() failed! Using static ip

for www.securityfocus.com in UDP probe

[-] fingerprint:tcp_hshake Module execution aborted (no open TCP ports known)

[-] fingerprint:smb need either TCP port 139 or 445 to run

[-] fingerprint:snmp: need UDP port 161 open

[+] Primary guess:

[+] Host 10.0.0.6 Running OS: "Foundry Networks IronWare Version 03.0.01eTc1"

(Guess probability: 100%)

[+] Other guesses:

[+] Host 10.0.0.6 Running OS: "Linux Kernel 2.4.21" (Guess probability: 91%)

[+] Host 10.0.0.6 Running OS: "Linux Kernel 2.4.22" (Guess probability: 91%)

[+] Host 10.0.0.6 Running OS: "Foundry Networks IronWare Version 07.5.04T53"

(Guess probability: 91%)

[+] Host 10.0.0.6 Running OS: "Foundry Networks IronWare Version 07.5.05KT53"

(Guess probability: 91%)

[+] Host 10.0.0.6 Running OS: "Foundry Networks IronWare 07.6.01BT51" (Guess

probability: 91%)

[+] Host 10.0.0.6 Running OS: "Foundry Networks IronWare 07.6.04aT51" (Guess

probability: 91%)

[+] Host 10.0.0.6 Running OS: "Foundry Networks IronWare 07.7.01eT53" (Guess

probability: 91%)

[+] Host 10.0.0.6 Running OS: "Linux Kernel 2.4.23" (Guess probability: 91%)

[+] Host 10.0.0.6 Running OS: "Linux Kernel 2.4.24" (Guess probability: 91%)

[+] Cleaning up scan engine

[+] Modules deinitialized

[+] Execution completed.

205

Appendix D – Installation of the OSF Module

The procedure of installing the OSF module is with the following steps:

1. Make sure that a C compiler is installed on the system. The one that

is configured by the OSF module is GCC (GNU C Compiler).

2. Make sure that the Linux source files are on the system. These files

are found in the /usr/src/linux/ directory, which needs to be available.

3. The IPtables source files are also needed, especially the iptables.h

file and the libiptc/ directory. If these are not available on the

system, they should be downloaded and saved in a directory on it.

For description purposes it is going to be assumed that a copy of the

source files are in the /home/user/iptables directory.

4. The OSF source files must also be available on the system. For

description purposes, it is going to be assumed that it is saved in the

/home/user/osf direcory.

5. While in the /home/user/osf directory, edit the Makefile file with an

editor. The following lines are altered:

● IPTABLES:= path_to_iptables_sources_or_header_files

Becomes

IPTABLES:= /home/user/iptables

206

● iptables_version=$(shell(/sbin/iptables -V | awk {'print $$2'} | cut

-c 2-))

Becomes

iptables_version=$(shell(/usr/sbin/iptables -V | awk {'print $$2'} |

cut -c 2-))

This is not a standard modification on all distributions. A search

should be performed for the directory that IPtables executable

file is stored in. This can be done with the command:

which iptables

● Errors can occur when trying to compile the OSF module. This is

due to the fact that OSF compilation uses different information

for version fields than that of IPtables. It has been found that

errors occurred in the compilation are solved with the following

alterations.

○ KDIR:= /lib/modules/$(shell uname -r)/build

Becomes

KDIR:= /lib/modules/<kernel version>/build

Where <kernel version> is determined by the statement:

uname -r

207

○ LCFLAGS= -DIPTABLES_VERSION=\”$(iptables_version)\”

Becomes

LCFLAGS= -DIPTABLES_VERSION=\”<IPtables version>\”

Where <IPtables version> is determined by the statement:

iptables -V

An example of the IPtables version is 1.3.5, so <IPtables

version> will equal to '1.3.5' without the quotes.

6. Save the Makefile file, and exit the editor.

7. Another adjustment that must be made if errors should occur, is to

edit the libpit_osf.c file, and modify the following line under the

'static struct iptables_match osf_match={' section.

.version=IPTABLES_VERSION,

Becomes

.version=”1.3.5”,

The above changes must include the period, comma and quotation

marks.

208

8. Run the command 'make', which will generate the ipt_osf.ko kernel

module.

9. Run the command 'make lib', which will build the libipt_osf.so shared

library.

10.Copy the OSF shared library to the directory that IPtables is found

in. This is done with the statement:

cp ./libipt_osf.so <directory of iptables>

Where <directory of iptables> is found with the command:

which iptables

11.Run 'make bin', which will build the application to load fingerprints

and obtain information relative to matched packets. These

applications are:

● load – This allows one to load the fingerprints database into the

module.

OSF has the 'load' tool with it allowing one to load and

flushthe fingerprint table. It has also the following

options availablewith it:

● --log x

This logs the operating system even if it doesn't match the

desired one. The variables for x are:

209

○ 0 : log all matched and unknown

entries.

○ 1 : log only the first matching entry.

○ 2 : log all matched entries.

● --ttl x

This option determines if the OS fingerprinting should rely

on the TTL field of the IP stack. The options available are:

○ 0 : This is the true IP and TTL

comparison, and mostly works for

LANs.

○ 1 : Checks if the TTL is less than the

fingerprint one, which works for

global addresses.

○ 2 : Do not compare TTL at all. This

option was developed when Nmap's

TTL value was variable. It allows one to

detect Nmap, but can produce false results.

● --netlink

This option allows OSF to log events through netlink

connector.

210

● --connector

This option is only valid for Linux kernel version 2.6.14 and

above, and will also log all events through netlink

connector.

● osfd – This is the netlink deamon that listens for incoming

matched packets over the netlink.

● ucon_osf - This is the netlink deamon that listens for incoming

matched packets using the connector module. This is not being

used for the investigations done so far.

12.Run the following command to install the OSF module:

insmod ./ipt_osf.ko

13.Load the OSF database into the kernel with the following statement:

./load ./pf.os /proc/sys/net/ipv4/osf

The Nmap packets are blocked with the statement:

iptables -I INPUT -p tcp -m osf --genre Nmap --log 2 --ttl 2 -j DROP

Should the error:

iptables:match 'osf' v(I'm v1.3.5).

211

occur, then it means that the OSF database has not been updated. To

correct this repeat step 10.

In case a new OS fingerprinting tool becomes available and OSF is not able

to drop the packets from this tool, then the new tools fingerprint can be

included in the OSF database. To do this, edit the pf.os file and add the new

fingerprint in the format:

<Window Size>:<Initial TTL>:<Don't Fragment bit>:<Overall SYN packet

size>: <Options in Order if used>: OS Fingerprinting Tool's Name

Repeat step 13 again after the new fingerprint has been added.

The script that is written to load the OSF module and to block Nmap

packets has to have steps 12 and 13 in it, as well as the IPtables statement

to drop the packets. It is advised that the IPtables statement is placed at

the end of the table, to allow communication with Microsoft Windows

system, or any other OS that might have a similar fingerprint as that of the

OS fingerprinting tool.

212

Appendix E – Summary of Nmap Options

This summary is from the Nmap manual pages.

Syntax: nmap [Scan Type] [Option] <host of network #1, ... #N>

Target Specifications

-iL <targets_filename> Input from list

-iR <numhosts> Choose random targets. numhosts

specifies the number of IPs that

Nmap must generate.

--exclude <host1,host2...> Exclude these hosts from scanning

--excludefile <excludefile> Excludes hosts in the specified file

from being scanned. The hosts are

separated from a TAB delimiter, or by

a new line.

Host Discovery

-sL List / DNS scan

-sP Ping scan

-P0 Don't ping

-PS [portlist] SYN ping. E.g. -PS22,23,25

-PA [portlist] TCP Acknowledge ping

-PU [portlist] UDP ping

-PE Echo Ping

-PP Timestamp ping

213

-PM Address Mask ping

-PR ARP ping

-n No DNS resolution

-R Do DNS resolution

--system_dns Use system DNS resolver (Used for

IPv6 scans)

--dns_servers <server1, server2 ...> Servers to do reverse DNS queries

Port Scanning

-sS SYN scan

-sU UDP scan

-sT TCP connect

-sN Null scan

-sA ACK scan

-sF FIN scan

-sW Windows scan

-sX Xmas scan (FIN,PSH and URG flags

are set)

-sM TCP Maimon scan

--scanflags Custom TCP scan e.g.

URGACKPSHRSTSYNFIN will set all

the control flags

-sI <zombiehost:port> Idle scan

-sO Protocol scan

-b <ftp relay host> FTP bounce

214

Port Specifications and Scan Order

-p <port_ranges> Port ranges to scan

-F Fast scan mode

-r don't randomise port scan

Services and Version Detection

-sV Version detection

--allports Don't exclude any ports from version

detection

--version-intensity <intensity> Set the intensity of the version

detection

--version-light Enable light mode

--version-all Try every single port

--version-trace Trace version scan activity

Operating System (OS) Detection

-O Operating system detection

--osscan-limit Limit OS detection to promising

targets

--osscan-guess Guess from the OS detection results

--fuzzy Same as –osscan-guess

Timing and Performance

--min-hostgroup <numhosts> Adjust minimum parallel group size

--max-hostgroup <numhosts> Adjust maximum parallel group size

215

--min-parallelism <numhosts> Adjust minimum probe parallelization

--max-parallelism <numhosts> Adjust maximum probe

parallelization

--min_rtt_timeout <time> Adjust minimum probe timeouts (time

is in milliseconds)

--max_rtt_timeout <time> Adjust maximum probe timeouts

--initial_rtt_timeout <time> Adjust initial probe timeouts

--max-retries <numtries> specify the maximum number of

portscan probe transmissions

--host-timeout <time> Give up on slow target hosts

--scan-delay <time> Delay between probes

--max_scan-delay <time> Adjust maximum delay between

probes

-T Paranoid Serial scan and 300 seconds wait

-T Sneaky Serial scan and 15 seconds wait

-T Polite Serial scan and 0.4 second wait

-T Normal Parallel scan

-T Aggressive Parallel scan and 300 seconds

timeout and 1.25 seconds per probe

-T Insane Parallel scan and 75 seconds timeout

and 0.3 seconds per probe

Firewall / IDS Evasion and Spoofing

-f Fragmentation

--mtu Using the specified MTU

-D <decoy1, decoy2, ME, ...> Cloak a scan with decoys

-S <IP_Address> Spoof source address

216

-e <interface> Use specified interface

--source-port <portnumber> Spoof source port number

-g <portnumber> Same as –source-port <portnumber>

--data-length <number> Append random data to send packets

--ttl <value> Set IP time-to-live field

--randomize_hosts Randomize hosts

--spoof-mac <macinfo> Spoof MAC address (macinfo can be

MAC address, prefix or vendor name)

--badsum Send packet with bogus TCP/UDP

checksums

Output

-oN <filename> Normal output to filename

-oX <filename> XML output to filename

-oS <filename> Script Kiddie Output to filename

-oG <filename> Grepable output to filename

-oA <basename> Output to all formats with the

basename.*

-v Increase verbosity level

-d [level] increases or sets debugging level

--packet-trace Trace packet and data sent and

received

--iflist List interfaces and routers

--append-output Append to output file instead of

overwriting it

--resume <filename> Resume aborted scan

--stylesheet <path or URL> Set XSL stylesheet to transform XML

217

output

--webxml load stylesheet from insecure.org

--no_stylesheet omit XSL stylesheet declaration from

XML

Miscellaneous Options

-6 Enable IPv6 scanning

-A Aggressive scan options

--datadir <directoryname> Specify custom Nmap data file

location

--send_eth use raw ethernet sending

--send_ip send at raw IP level

--privileged Assume that the user is fully

privileged

--interactive Start in interactive mode

-V Print version number

--version Same as -V

-h Print help summary page

--help Same as -h

Runtime Interaction

The following keys can be used to change running conditions when Nmap

is running:

v / V Increase / Decrease the verbosity

d / D Increase / Decrease the debugging

level

218

p / P Turn on / off packet tracing

? Print a runtime interaction help

screen

Anything else Prints out status messages

219

Appendix F – Summary of Xprobe version 2's Options

This is a summary of Xprobe2's manual pages.

Syntax: xprobe2 [Option] <host>

Options

-v be verbose

-r display route to target (an output

similar to traceroute, displaying the

route that the packet travelled)

-p <proto:portnum:state> Specify the port number, protocol

and state. E.g. tcp:23:open;

UDP:53:CLOSED . portnum are

values between 1 and 65535.

-c <configfile> Use <configfile> to read the

xprobe2.conf configuration file from

a different location.

-h Prints the help of Xprobe

-o <fname> Log everything to the file <fname>.

The default output is to stderr.

-t <time_sec> Set the round trip or initial receive

time-out time. The default time is 10

seconds.

-s <send_delay> Set the delay between the sending of

the packets. <send_delay> is in

terms of milliseconds.

-d <debuglv> Specify the debugging level.

220

-D <modnum> Disable the module number

<modnum>

-M <modnum> Enable the module number

<modnum>

-L Display the available modules

-m <numofmatches> Display the number of matches to

print.

-T <portspec> Enable TCP port scan for specified

port(s). E.g. -T21-23,53,110

-U <portspec> Enable UDP port scan for specified

port(s). E.g. -U23-23,53,110

-f Force fixed round-trip time (-t

option)

-F Generate signature. Use the -o

option to save to a file.

-X Generate XML output and save it to

<logfile> specified with the -o

option.

-B Forces TCP handshake module to be

able to guess open TCP ports.

-A Analyse the packets gathered during

the port scanning, to be able to

detect suspicious traffic, such as

transparent proxies and firewalls.

This option is to be used with the -T

option.

221

Appendix G – Information analysed by Ethereal

The following information is given by Ethereal on sending or receiving a

TCP packet:

Frame number sent or received and it's size

Arrival Time: Date and Time

Time delta from previous packet

Time since reference or first frame

Frame Number

Packet Length

Protocols in frame (e.g. eth:ip:tcp)

Ethernet, Source and Destination Address

Destination

Source

Type: (e.g. IP)

Internet Protocol, Source Address and Destination Address

Version: (e.g. 4)

Header length: (e.g. 20)

Differentiated Services Field: (e.g. Default or ECN)

0000 00 . . = Differentiated Services Codepoint

. 0 . = ENC-Capable Transport (ECT)

. 0 = ECN-CE

 Total Length : 40

 Identification

Flags

222

* . . . = Reserved bit (* is either set or unset)

. * . . = Don't fragment (* is either set or unset)

. . * . = More fragments (* is either set or unset)

 Fragment offset

 Time to live

 Protocol: (e.g. TCP)

Header checksum: [Indication whether it is correct or not]

Source Address

Destination Address

Transmission Control Protocol, Source Port and Destination Port, Sequence

Number, Acknowledgement Number and Length

Source port

Destination port

Sequence number (relative sequence number)

Header Length

Flags (* is either set or unset)

* = Congestion Window Reduced (CWR)

. * = ECN-Echo

. . * = Urgent

. . . * = Acknowledgement

. . . . * . . . = Push

. * . = Syn

. * = Fin

Window size

Checksum: [Indication whether it is correct or not]

223

Appendix H – Abstracts of Ethereal with the Xprobe2

tests performed under IPv4

With Firewall Disabled

No. Time Source Destination Protocol Info

 4 6.400527 10.0.0.5 10.0.0.6 ICMP Echo (ping) request

Frame 4 (98 bytes on wire, 98 bytes captured)

 Arrival Time: Aug 11, 2006 17:32:20.166447000

 Time delta from previous packet: 0.000017000 seconds

 Time since reference or first frame: 6.400527000 seconds

 Frame Number: 4

 Packet Length: 98 bytes

 Capture Length: 98 bytes

 Protocols in frame: eth:ip:icmp:data

Ethernet II, Src: 10.0.0.5 (00:0e:a6:73:e7:25), Dst: 10.0.0.6 (00:30:18:66:7a:0b)

 Destination: 10.0.0.6 (00:30:18:66:7a:0b)

 Source: 10.0.0.5 (00:0e:a6:73:e7:25)

 Type: IP (0x0800)

Internet Protocol, Src: 10.0.0.5 (10.0.0.5), Dst: 10.0.0.6 (10.0.0.6)

 Version: 4

 Header length: 20 bytes

 Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)

 0000 00.. = Differentiated Services Codepoint: Default (0x00)

 0. = ECN-Capable Transport (ECT): 0

 0 = ECN-CE: 0

 Total Length: 84

 Identification: 0x8191 (33169)

 Flags: 0x00

 0... = Reserved bit: Not set

224

 .0.. = Don't fragment: Not set

 ..0. = More fragments: Not set

 Fragment offset: 0

 Time to live: 64 (TTL value of 64)

 Protocol: ICMP (0x01)

 Header checksum: 0xe50d [correct]

 Good: True

 Bad : False

 Source: 10.0.0.5 (10.0.0.5)

 Destination: 10.0.0.6 (10.0.0.6)

Internet Control Message Protocol

 Type: 8 (Echo (ping) request)

 Code: 0

 Checksum: 0x22b1 [correct]

 Identifier: 0x8191

 Sequence number: 0x0000

 Data (56 bytes)

0000 00 30 18 66 7a 0b 00 0e a6 73 e7 25 08 00 45 00 .0.fz....s.%..E.

0010 00 54 81 91 00 00 40 01 e5 0d 0a 00 00 05 0a 00 .T....@.........

0020 00 06 08 00 22 b1 81 91 00 00 44 dc a3 04 00 02 ".....D.....

0030 80 d7 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 14 15

0040 16 17 18 19 1a 1b 1c 1d 1e 1f 20 21 22 23 24 25 !"#$%

0050 26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35 &'()*+,-./012345

0060 36 37 67

No. Time Source Destination Protocol Info

 5 6.400668 10.0.0.6 10.0.0.5 ICMP Echo (ping) reply

Frame 5 (98 bytes on wire, 98 bytes captured)

 Arrival Time: Aug 11, 2006 17:32:20.166588000

 Time delta from previous packet: 0.000141000 seconds

 Time since reference or first frame: 6.400668000 seconds

 Frame Number: 5

225

 Packet Length: 98 bytes

 Capture Length: 98 bytes

 Protocols in frame: eth:ip:icmp:data

Ethernet II, Src: 10.0.0.6 (00:30:18:66:7a:0b), Dst: 10.0.0.5 (00:0e:a6:73:e7:25)

 Destination: 10.0.0.5 (00:0e:a6:73:e7:25)

 Source: 10.0.0.6 (00:30:18:66:7a:0b)

 Type: IP (0x0800)

Internet Protocol, Src: 10.0.0.6 (10.0.0.6), Dst: 10.0.0.5 (10.0.0.5)

 Version: 4

 Header length: 20 bytes

 Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)

 0000 00.. = Differentiated Services Codepoint: Default (0x00)

 0. = ECN-Capable Transport (ECT): 0

 0 = ECN-CE: 0

 Total Length: 84

 Identification: 0x0de1 (3553)

 Flags: 0x00

 0... = Reserved bit: Not set

 .0.. = Don't fragment: Not set

 ..0. = More fragments: Not set

 Fragment offset: 0

 Time to live: 64 (TTL value of 64)

 Protocol: ICMP (0x01)

 Header checksum: 0x58be [correct]

 Good: True

 Bad : False

 Source: 10.0.0.6 (10.0.0.6)

 Destination: 10.0.0.5 (10.0.0.5)

Internet Control Message Protocol

 Type: 0 (Echo (ping) reply)

 Code: 0

 Checksum: 0x2ab1 [correct]

 Identifier: 0x8191

 Sequence number: 0x0000 (Sequence number = 0)

226

 Data (56 bytes)

0000 00 0e a6 73 e7 25 00 30 18 66 7a 0b 08 00 45 00 ...s.%.0.fz...E.

0010 00 54 0d e1 00 00 40 01 58 be 0a 00 00 06 0a 00 .T....@.X.......

0020 00 05 00 00 2a b1 81 91 00 00 44 dc a3 04 00 02 *.....D.....

0030 80 d7 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 14 15

0040 16 17 18 19 1a 1b 1c 1d 1e 1f 20 21 22 23 24 25 !"#$%

0050 26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35 &'()*+,-./012345

0060 36 37 67

No. Time Source Destination Protocol Info

 6 6.434253 10.0.0.5 10.0.0.6 ICMP Echo (ping) request

Frame 6 (98 bytes on wire, 98 bytes captured)

 Arrival Time: Aug 11, 2006 17:32:20.200173000

 Time delta from previous packet: 0.033585000 seconds

 Time since reference or first frame: 6.434253000 seconds

 Frame Number: 6

 Packet Length: 98 bytes

 Capture Length: 98 bytes

 Protocols in frame: eth:ip:icmp:data

Ethernet II, Src: 10.0.0.5 (00:0e:a6:73:e7:25), Dst: 10.0.0.6 (00:30:18:66:7a:0b)

 Destination: 10.0.0.6 (00:30:18:66:7a:0b)

 Source: 10.0.0.5 (00:0e:a6:73:e7:25)

 Type: IP (0x0800)

Internet Protocol, Src: 10.0.0.5 (10.0.0.5), Dst: 10.0.0.6 (10.0.0.6)

 Version: 4

 Header length: 20 bytes

 Differentiated Services Field: 0x06 (DSCP 0x01: Unknown DSCP; ECN: 0x02)

 0000 01.. = Differentiated Services Codepoint: Unknown (0x01)

 1. = ECN-Capable Transport (ECT): 1

 0 = ECN-CE: 0

 Total Length: 84

 Identification: 0x634d (25421)

227

 Flags: 0x04 (Don't Fragment)

 0... = Reserved bit: Not set

 .1.. = Don't fragment: Set

 ..0. = More fragments: Not set

 Fragment offset: 0

 Time to live: 64 (TTL value of 64)

 Protocol: ICMP (0x01)

 Header checksum: 0xc34b [correct]

 Good: True

 Bad : False

 Source: 10.0.0.5 (10.0.0.5)

 Destination: 10.0.0.6 (10.0.0.6)

Internet Control Message Protocol

 Type: 8 (Echo (ping) request)

 Code: 123

 Checksum: 0x9567 [correct]

 Identifier: 0x8191

 Sequence number: 0x0001

 Data (56 bytes)

0000 00 30 18 66 7a 0b 00 0e a6 73 e7 25 08 00 45 06 .0.fz....s.%..E.

0010 00 54 63 4d 40 00 40 01 c3 4b 0a 00 00 05 0a 00 .TcM@.@..K......

0020 00 06 08 7b 95 67 81 91 00 01 44 dc a3 04 00 03 ...{.g....D.....

0030 0d a4 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 14 15

0040 16 17 18 19 1a 1b 1c 1d 1e 1f 20 21 22 23 24 25 !"#$%

0050 26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35 &'()*+,-./012345

0060 36 37 67

No. Time Source Destination Protocol Info

 7 6.434444 10.0.0.6 10.0.0.5 ICMP Echo (ping) reply

Frame 7 (98 bytes on wire, 98 bytes captured)

 Arrival Time: Aug 11, 2006 17:32:20.200364000

 Time delta from previous packet: 0.000191000 seconds

228

 Time since reference or first frame: 6.434444000 seconds

 Frame Number: 7

 Packet Length: 98 bytes

 Capture Length: 98 bytes

 Protocols in frame: eth:ip:icmp:data

Ethernet II, Src: 10.0.0.6 (00:30:18:66:7a:0b), Dst: 10.0.0.5 (00:0e:a6:73:e7:25)

 Destination: 10.0.0.5 (00:0e:a6:73:e7:25)

 Source: 10.0.0.6 (00:30:18:66:7a:0b)

 Type: IP (0x0800)

Internet Protocol, Src: 10.0.0.6 (10.0.0.6), Dst: 10.0.0.5 (10.0.0.5)

 Version: 4

 Header length: 20 bytes

 Differentiated Services Field: 0x06 (DSCP 0x01: Unknown DSCP; ECN: 0x02)

 0000 01.. = Differentiated Services Codepoint: Unknown (0x01)

 1. = ECN-Capable Transport (ECT): 1

 0 = ECN-CE: 0

 Total Length: 84

 Identification: 0x0de2 (3554)

 Flags: 0x00

 0... = Reserved bit: Not set

 .0.. = Don't fragment: Not set

 ..0. = More fragments: Not set

 Fragment offset: 0

 Time to live: 64 (TTL value of 64)

 Protocol: ICMP (0x01)

 Header checksum: 0x58b7 [correct]

 Good: True

 Bad : False

 Source: 10.0.0.6 (10.0.0.6)

 Destination: 10.0.0.5 (10.0.0.5)

Internet Control Message Protocol

 Type: 0 (Echo (ping) reply)

 Code: 123

 Checksum: 0x9d67 [correct]

229

 Identifier: 0x8191

 Sequence number: 0x0001 (Sequence number = 1 => incremented)

 Data (56 bytes)

0000 00 0e a6 73 e7 25 00 30 18 66 7a 0b 08 00 45 06 ...s.%.0.fz...E.

0010 00 54 0d e2 00 00 40 01 58 b7 0a 00 00 06 0a 00 .T....@.X.......

0020 00 05 00 7b 9d 67 81 91 00 01 44 dc a3 04 00 03 ...{.g....D.....

0030 0d a4 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 14 15

0040 16 17 18 19 1a 1b 1c 1d 1e 1f 20 21 22 23 24 25 !"#$%

0050 26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35 &'()*+,-./012345

0060 36 37 67

No. Time Source Destination Protocol Info

 8 6.460577 10.0.0.5 10.0.0.6 ICMP Timestamp request

Frame 8 (54 bytes on wire, 54 bytes captured)

 Arrival Time: Aug 11, 2006 17:32:20.226497000

 Time delta from previous packet: 0.026133000 seconds

 Time since reference or first frame: 6.460577000 seconds

 Frame Number: 8

 Packet Length: 54 bytes

 Capture Length: 54 bytes

 Protocols in frame: eth:ip:icmp

Ethernet II, Src: 10.0.0.5 (00:0e:a6:73:e7:25), Dst: 10.0.0.6 (00:30:18:66:7a:0b)

 Destination: 10.0.0.6 (00:30:18:66:7a:0b)

 Source: 10.0.0.5 (00:0e:a6:73:e7:25)

 Type: IP (0x0800)

Internet Protocol, Src: 10.0.0.5 (10.0.0.5), Dst: 10.0.0.6 (10.0.0.6)

 Version: 4

 Header length: 20 bytes

 Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)

 0000 00.. = Differentiated Services Codepoint: Default (0x00)

 0. = ECN-Capable Transport (ECT): 0

 0 = ECN-CE: 0

230

 Total Length: 40

 Identification: 0x8191 (33169)

 Flags: 0x00

 0... = Reserved bit: Not set

 .0.. = Don't fragment: Not set

 ..0. = More fragments: Not set

 Fragment offset: 0

 Time to live: 64 (TTL value of 64)

 Protocol: ICMP (0x01)

 Header checksum: 0xe539 [correct]

 Good: True

 Bad : False

 Source: 10.0.0.5 (10.0.0.5)

 Destination: 10.0.0.6 (10.0.0.6)

Internet Control Message Protocol

 Type: 13 (Timestamp request)

 Code: 0

 Checksum: 0xfce2 [correct]

 Identifier: 0x8191

 Sequence number: 0x0000

 Originate timestamp: 226440

 Receive timestamp: 0

 Transmit timestamp: 0

0000 00 30 18 66 7a 0b 00 0e a6 73 e7 25 08 00 45 00 .0.fz....s.%..E.

0010 00 28 81 91 00 00 40 01 e5 39 0a 00 00 05 0a 00 .(....@..9......

0020 00 06 0d 00 fc e2 81 91 00 00 00 03 74 88 00 00 t...

0030 00 00 00 00 00 00

No. Time Source Destination Protocol Info

 9 6.460749 10.0.0.6 10.0.0.5 ICMP Timestamp reply

Frame 9 (60 bytes on wire, 60 bytes captured)

 Arrival Time: Aug 11, 2006 17:32:20.226669000

231

 Time delta from previous packet: 0.000172000 seconds

 Time since reference or first frame: 6.460749000 seconds

 Frame Number: 9

 Packet Length: 60 bytes

 Capture Length: 60 bytes

 Protocols in frame: eth:ip:icmp

Ethernet II, Src: 10.0.0.6 (00:30:18:66:7a:0b), Dst: 10.0.0.5 (00:0e:a6:73:e7:25)

 Destination: 10.0.0.5 (00:0e:a6:73:e7:25)

 Source: 10.0.0.6 (00:30:18:66:7a:0b)

 Type: IP (0x0800)

 Trailer: 000000000000

Internet Protocol, Src: 10.0.0.6 (10.0.0.6), Dst: 10.0.0.5 (10.0.0.5)

 Version: 4

 Header length: 20 bytes

 Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)

 0000 00.. = Differentiated Services Codepoint: Default (0x00)

 0. = ECN-Capable Transport (ECT): 0

 0 = ECN-CE: 0

 Total Length: 40

 Identification: 0x0de3 (3555)

 Flags: 0x00

 0... = Reserved bit: Not set

 .0.. = Don't fragment: Not set

 ..0. = More fragments: Not set

 Fragment offset: 0

 Time to live: 64 (TTL value of 64)

 Protocol: ICMP (0x01)

 Header checksum: 0x58e8 [correct]

 Good: True

 Bad : False

 Source: 10.0.0.6 (10.0.0.6)

 Destination: 10.0.0.5 (10.0.0.5)

Internet Control Message Protocol

 Type: 14 (Timestamp reply)

232

 Code: 0

 Checksum: 0x1464 [correct]

 Identifier: 0x8191

 Sequence number: 0x0000

 Originate timestamp: 226440

 Receive timestamp: 56651871

 Transmit timestamp: 56651871

0000 00 0e a6 73 e7 25 00 30 18 66 7a 0b 08 00 45 00 ...s.%.0.fz...E.

0010 00 28 0d e3 00 00 40 01 58 e8 0a 00 00 06 0a 00 .(....@.X.......

0020 00 05 0e 00 14 64 81 91 00 00 00 03 74 88 03 60 d......t..`

0030 70 5f 03 60 70 5f 00 00 00 00 00 00 p_.`p_......

No. Time Source Destination Protocol Info

 10 6.484581 10.0.0.5 10.0.0.6 ICMP Address mask request

Frame 10 (46 bytes on wire, 46 bytes captured)

 Arrival Time: Aug 11, 2006 17:32:20.250501000

 Time delta from previous packet: 0.023832000 seconds

 Time since reference or first frame: 6.484581000 seconds

 Frame Number: 10

 Packet Length: 46 bytes

 Capture Length: 46 bytes

 Protocols in frame: eth:ip:icmp

Ethernet II, Src: 10.0.0.5 (00:0e:a6:73:e7:25), Dst: 10.0.0.6 (00:30:18:66:7a:0b)

 Destination: 10.0.0.6 (00:30:18:66:7a:0b)

 Source: 10.0.0.5 (00:0e:a6:73:e7:25)

 Type: IP (0x0800)

Internet Protocol, Src: 10.0.0.5 (10.0.0.5), Dst: 10.0.0.6 (10.0.0.6)

 Version: 4

 Header length: 20 bytes

 Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)

 0000 00.. = Differentiated Services Codepoint: Default (0x00)

 0. = ECN-Capable Transport (ECT): 0

233

 0 = ECN-CE: 0

 Total Length: 32

 Identification: 0x8191 (33169)

 Flags: 0x00

 0... = Reserved bit: Not set

 .0.. = Don't fragment: Not set

 ..0. = More fragments: Not set

 Fragment offset: 0

 Time to live: 64 (TTL value of 64)

 Protocol: ICMP (0x01)

 Header checksum: 0xe541 [correct]

 Good: True

 Bad : False

 Source: 10.0.0.5 (10.0.0.5)

 Destination: 10.0.0.6 (10.0.0.6)

Internet Control Message Protocol

 Type: 17 (Address mask request)

 Code: 0

 Checksum: 0x6d6e [correct]

 Identifier: 0x8191

 Sequence number: 0x0000

 Address mask: 0.0.0.0 (0x00000000)

0000 00 30 18 66 7a 0b 00 0e a6 73 e7 25 08 00 45 00 .0.fz....s.%..E.

0010 00 20 81 91 00 00 40 01 e5 41 0a 00 00 05 0a 00 @..A......

0020 00 06 11 00 6d 6e 81 91 00 00 00 00 00 00 mn........

No. Time Source Destination Protocol Info

 12 7.270227 10.0.0.6 10.0.0.5 ICMP Destination unreachable (Port unreachable)

Frame 12 (146 bytes on wire, 146 bytes captured)

 Arrival Time: Aug 11, 2006 17:32:21.036147000

 Time delta from previous packet: 0.000187000 seconds

 Time since reference or first frame: 7.270227000 seconds

234

 Frame Number: 12

 Packet Length: 146 bytes

 Capture Length: 146 bytes

 Protocols in frame: eth:ip:icmp:ip:udp:dns

Ethernet II, Src: 10.0.0.6 (00:30:18:66:7a:0b), Dst: 10.0.0.5 (00:0e:a6:73:e7:25)

 Destination: 10.0.0.5 (00:0e:a6:73:e7:25)

 Source: 10.0.0.6 (00:30:18:66:7a:0b)

 Type: IP (0x0800)

Internet Protocol, Src: 10.0.0.6 (10.0.0.6), Dst: 10.0.0.5 (10.0.0.5)

 Version: 4

 Header length: 20 bytes

 Differentiated Services Field: 0xc0 (DSCP 0x30: Class Selector 6; ECN: 0x00)

 1100 00.. = Differentiated Services Codepoint: Class Selector 6 (0x30)

 0. = ECN-Capable Transport (ECT): 0

 0 = ECN-CE: 0

 Total Length: 132

 Identification: 0x0de4 (3556)

 Flags: 0x00

 0... = Reserved bit: Not set

 .0.. = Don't fragment: Not set

 ..0. = More fragments: Not set

 Fragment offset: 0

 Time to live: 64 (TTL value of 64)

 Protocol: ICMP (0x01)

 Header checksum: 0x57cb [correct]

 Good: True

 Bad : False

 Source: 10.0.0.6 (10.0.0.6)

 Destination: 10.0.0.5 (10.0.0.5)

Internet Control Message Protocol

 Type: 3 (Destination unreachable)

 Code: 3 (Port unreachable)

 Checksum: 0x116d [correct]

 Internet Protocol, Src: 10.0.0.5 (10.0.0.5), Dst: 10.0.0.6 (10.0.0.6)

235

 Version: 4

 Header length: 20 bytes

 Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)

 0000 00.. = Differentiated Services Codepoint: Default (0x00)

 0. = ECN-Capable Transport (ECT): 0

 0 = ECN-CE: 0

 Total Length: 104

 Identification: 0x0001 (1)

 Flags: 0x04 (Don't Fragment)

 0... = Reserved bit: Not set

 .1.. = Don't fragment: Set

 ..0. = More fragments: Not set

 Fragment offset: 0

 Time to live: 255

 Protocol: UDP (0x11)

 Header checksum: 0x6779 [correct]

 Good: True

 Bad : False

 Source: 10.0.0.5 (10.0.0.5)

 Destination: 10.0.0.6 (10.0.0.6)

 User Datagram Protocol, Src Port: domain (53), Dst Port: 65534 (65534)

 Source port: domain (53)

 Destination port: 65534 (65534)

 Length: 84

 Checksum: 0x5010 [correct]

 Domain Name System (response)

 Transaction ID: 0xbcfd

 Flags: 0x81b0 (Standard query response, No error)

 1... = Response: Message is a response

 .000 0... = Opcode: Standard query (0)

 0.. = Authoritative: Server is not an authority for domain

 0. = Truncated: Message is not truncated

 1 = Recursion desired: Do query recursively

 1... = Recursion available: Server can do recursive queries

236

 0.. = Z: reserved (0)

 1. = Answer authenticated: Answer/authority portion was authenticated by the server

 0000 = Reply code: No error (0)

 Questions: 1

 Answer RRs: 1

 Authority RRs: 0

 Additional RRs: 0

 Queries

 www.securityfocus.com: type A, class IN

 Name: www.securityfocus.com

 Type: A (Host address)

 Class: IN (0x0001)

 Answers

 www.securityfocus.com: type A, class IN, addr 205.206.231.10

 Name: www.securityfocus.com

 Type: A (Host address)

 Class: IN (0x0001)

 Time to live: -12 hours, -56 minutes, -12 seconds

 Data length: 1024

 Addr: 205.206.231.10

0000 00 0e a6 73 e7 25 00 30 18 66 7a 0b 08 00 45 c0 ...s.%.0.fz...E.

0010 00 84 0d e4 00 00 40 01 57 cb 0a 00 00 06 0a 00 @.W.......

0020 00 05 03 03 11 6d 00 00 00 00 45 00 00 68 00 01 m....E..h..

0030 40 00 ff 11 67 79 0a 00 00 05 0a 00 00 06 00 35 @...gy.........5

0040 ff fe 00 54 50 10 bc fd 81 b0 00 01 00 01 00 00 ...TP...........

0050 00 00 03 77 77 77 0d 73 65 63 75 72 69 74 79 66 ...www.securityf

0060 6f 63 75 73 03 63 6f 6d 00 00 01 00 01 03 77 77 ocus.com......ww

0070 77 0d 73 65 63 75 72 69 74 79 66 6f 63 75 73 03 w.securityfocus.

0080 63 6f 6d 00 00 01 00 01 ff ff 4a 14 04 00 cd ce com.......J.....

0090 e7 0a ..

No. Time Source Destination Protocol Info

 13 7.301929 10.0.0.5 10.0.0.6 TCP 17026 > 65535 [SYN] Seq=0 Ack=0

237

Win=6840 Len=0

Frame 13 (54 bytes on wire, 54 bytes captured)

 Arrival Time: Aug 11, 2006 17:32:21.067849000

 Time delta from previous packet: 0.031702000 seconds

 Time since reference or first frame: 7.301929000 seconds

 Frame Number: 13

 Packet Length: 54 bytes

 Capture Length: 54 bytes

 Protocols in frame: eth:ip:tcp

Ethernet II, Src: 10.0.0.5 (00:0e:a6:73:e7:25), Dst: 10.0.0.6 (00:30:18:66:7a:0b)

 Destination: 10.0.0.6 (00:30:18:66:7a:0b)

 Source: 10.0.0.5 (00:0e:a6:73:e7:25)

 Type: IP (0x0800)

Internet Protocol, Src: 10.0.0.5 (10.0.0.5), Dst: 10.0.0.6 (10.0.0.6)

 Version: 4

 Header length: 20 bytes

 Differentiated Services Field: 0x10 (DSCP 0x04: Unknown DSCP; ECN: 0x00)

 0001 00.. = Differentiated Services Codepoint: Unknown (0x04)

 0. = ECN-Capable Transport (ECT): 0

 0 = ECN-CE: 0

 Total Length: 40

 Identification: 0xe116 (57622)

 Flags: 0x04 (Don't Fragment)

 0... = Reserved bit: Not set

 .1.. = Don't fragment: Set

 ..0. = More fragments: Not set

 Fragment offset: 0

 Time to live: 64 (TTL value of 64)

 Protocol: TCP (0x06)

 Header checksum: 0x459f [correct]

 Good: True

 Bad : False

 Source: 10.0.0.5 (10.0.0.5)

238

 Destination: 10.0.0.6 (10.0.0.6)

Transmission Control Protocol, Src Port: 17026 (17026), Dst Port: 65535 (65535), Seq: 0, Ack: 0, Len: 0

 Source port: 17026 (17026)

 Destination port: 65535 (65535)

 Sequence number: 0 (relative sequence number)

 Header length: 20 bytes

 Flags: 0x0002 (SYN)

 0... = Congestion Window Reduced (CWR): Not set

 .0.. = ECN-Echo: Not set

 ..0. = Urgent: Not set

 ...0 = Acknowledgment: Not set

 0... = Push: Not set

 0.. = Reset: Not set

 1. = Syn: Set

 0 = Fin: Not set

 Window size: 6840 (Window size = 6840)

 Checksum: 0x2071 [correct]

0000 00 30 18 66 7a 0b 00 0e a6 73 e7 25 08 00 45 10 .0.fz....s.%..E.

0010 00 28 e1 16 40 00 40 06 45 9f 0a 00 00 05 0a 00 .(..@.@.E.......

0020 00 06 42 82 ff ff 40 3e dd ee 00 00 00 00 50 02 ..B...@>......P.

0030 1a b8 20 71 00 00 .. q..

No. Time Source Destination Protocol Info

 14 7.302124 10.0.0.6 10.0.0.5 TCP 65535 > 17026 [RST, ACK] Seq=0 Ack=0

Win=0 Len=0

Frame 14 (60 bytes on wire, 60 bytes captured)

 Arrival Time: Aug 11, 2006 17:32:21.068044000

 Time delta from previous packet: 0.000195000 seconds

 Time since reference or first frame: 7.302124000 seconds

 Frame Number: 14

 Packet Length: 60 bytes

 Capture Length: 60 bytes

239

 Protocols in frame: eth:ip:tcp

Ethernet II, Src: 10.0.0.6 (00:30:18:66:7a:0b), Dst: 10.0.0.5 (00:0e:a6:73:e7:25)

 Destination: 10.0.0.5 (00:0e:a6:73:e7:25)

 Source: 10.0.0.6 (00:30:18:66:7a:0b)

 Type: IP (0x0800)

 Trailer: 000000000000

Internet Protocol, Src: 10.0.0.6 (10.0.0.6), Dst: 10.0.0.5 (10.0.0.5)

 Version: 4

 Header length: 20 bytes

 Differentiated Services Field: 0x10 (DSCP 0x04: Unknown DSCP; ECN: 0x00)

 0001 00.. = Differentiated Services Codepoint: Unknown (0x04)

 0. = ECN-Capable Transport (ECT): 0

 0 = ECN-CE: 0

 Total Length: 40

 Identification: 0x0000 (0)

 Flags: 0x04 (Don't Fragment)

 0... = Reserved bit: Not set

 .1.. = Don't fragment: Set

 ..0. = More fragments: Not set

 Fragment offset: 0

 Time to live: 64 (TTL value of 64)

 Protocol: TCP (0x06)

 Header checksum: 0x26b6 [correct]

 Good: True

 Bad : False

 Source: 10.0.0.6 (10.0.0.6)

 Destination: 10.0.0.5 (10.0.0.5)

Transmission Control Protocol, Src Port: 65535 (65535), Dst Port: 17026 (17026), Seq: 0, Ack: 0, Len: 0

 Source port: 65535 (65535)

 Destination port: 17026 (17026)

 Sequence number: 0 (relative sequence number)

 Acknowledgement number: 0 (relative ack number)

 Header length: 20 bytes

 Flags: 0x0014 (RST, ACK)

240

 0... = Congestion Window Reduced (CWR): Not set

 .0.. = ECN-Echo: Not set

 ..0. = Urgent: Not set

 ...1 = Acknowledgment: Set

 0... = Push: Not set

 1.. = Reset: Set

 0. = Syn: Not set

 0 = Fin: Not set

 Window size: 0 (Window size = 0)

 Checksum: 0x3b16 [correct]

 SEQ/ACK analysis

 This is an ACK to the segment in frame: 13

 The RTT to ACK the segment was: 0.000195000 seconds

0000 00 0e a6 73 e7 25 00 30 18 66 7a 0b 08 00 45 10 ...s.%.0.fz...E.

0010 00 28 00 00 40 00 40 06 26 b6 0a 00 00 06 0a 00 .(..@.@.&.......

0020 00 05 ff ff 42 82 00 00 00 00 40 3e dd ef 50 14 B.....@>..P.

0030 00 00 3b 16 00 00 00 00 00 00 00 00 ..;.........

No. Time Source Destination Protocol Info

 15 7.302204 10.0.0.5 10.0.0.6 TCP 24472 > 65535 [SYN] Seq=0 Ack=0

Win=6840 Len=0

Frame 15 (54 bytes on wire, 54 bytes captured)

 Arrival Time: Aug 11, 2006 17:32:21.068124000

 Time delta from previous packet: 0.000080000 seconds

 Time since reference or first frame: 7.302204000 seconds

 Frame Number: 15

 Packet Length: 54 bytes

 Capture Length: 54 bytes

 Protocols in frame: eth:ip:tcp

Ethernet II, Src: 10.0.0.5 (00:0e:a6:73:e7:25), Dst: 10.0.0.6 (00:30:18:66:7a:0b)

 Destination: 10.0.0.6 (00:30:18:66:7a:0b)

 Source: 10.0.0.5 (00:0e:a6:73:e7:25)

241

 Type: IP (0x0800)

Internet Protocol, Src: 10.0.0.5 (10.0.0.5), Dst: 10.0.0.6 (10.0.0.6)

 Version: 4

 Header length: 20 bytes

 Differentiated Services Field: 0x10 (DSCP 0x04: Unknown DSCP; ECN: 0x00)

 0001 00.. = Differentiated Services Codepoint: Unknown (0x04)

 0. = ECN-Capable Transport (ECT): 0

 0 = ECN-CE: 0

 Total Length: 40

 Identification: 0xd837 (55351)

 Flags: 0x04 (Don't Fragment)

 0... = Reserved bit: Not set

 .1.. = Don't fragment: Set

 ..0. = More fragments: Not set

 Fragment offset: 0

 Time to live: 64 (TTL value of 64)

 Protocol: TCP (0x06)

 Header checksum: 0x4e7e [correct]

 Good: True

 Bad : False

 Source: 10.0.0.5 (10.0.0.5)

 Destination: 10.0.0.6 (10.0.0.6)

Transmission Control Protocol, Src Port: 24472 (24472), Dst Port: 65535 (65535), Seq: 0, Ack: 0, Len: 0

 Source port: 24472 (24472)

 Destination port: 65535 (65535)

 Sequence number: 0 (relative sequence number)

 Header length: 20 bytes

 Flags: 0x0002 (SYN)

 0... = Congestion Window Reduced (CWR): Not set

 .0.. = ECN-Echo: Not set

 ..0. = Urgent: Not set

 ...0 = Acknowledgment: Not set

 0... = Push: Not set

 0.. = Reset: Not set

242

 1. = Syn: Set

 0 = Fin: Not set

 Window size: 6840 (Window size = 6840)

 Checksum: 0xb6c8 [correct]

0000 00 30 18 66 7a 0b 00 0e a6 73 e7 25 08 00 45 10 .0.fz....s.%..E.

0010 00 28 d8 37 40 00 40 06 4e 7e 0a 00 00 05 0a 00 .(.7@.@.N~......

0020 00 06 5f 98 ff ff 16 c6 53 f9 00 00 00 00 50 02 .._.....S.....P.

0030 1a b8 b6 c8 00 00

No. Time Source Destination Protocol Info

 16 7.302302 10.0.0.6 10.0.0.5 TCP 65535 > 24472 [RST, ACK] Seq=0 Ack=0

Win=0 Len=0

Frame 16 (60 bytes on wire, 60 bytes captured)

 Arrival Time: Aug 11, 2006 17:32:21.068222000

 Time delta from previous packet: 0.000098000 seconds

 Time since reference or first frame: 7.302302000 seconds

 Frame Number: 16

 Packet Length: 60 bytes

 Capture Length: 60 bytes

 Protocols in frame: eth:ip:tcp

Ethernet II, Src: 10.0.0.6 (00:30:18:66:7a:0b), Dst: 10.0.0.5 (00:0e:a6:73:e7:25)

 Destination: 10.0.0.5 (00:0e:a6:73:e7:25)

 Source: 10.0.0.6 (00:30:18:66:7a:0b)

 Type: IP (0x0800)

 Trailer: 000000000000

Internet Protocol, Src: 10.0.0.6 (10.0.0.6), Dst: 10.0.0.5 (10.0.0.5)

 Version: 4

 Header length: 20 bytes

 Differentiated Services Field: 0x10 (DSCP 0x04: Unknown DSCP; ECN: 0x00)

 0001 00.. = Differentiated Services Codepoint: Unknown (0x04)

 0. = ECN-Capable Transport (ECT): 0

 0 = ECN-CE: 0

243

 Total Length: 40

 Identification: 0x0000 (0)

 Flags: 0x04 (Don't Fragment)

 0... = Reserved bit: Not set

 .1.. = Don't fragment: Set

 ..0. = More fragments: Not set

 Fragment offset: 0

 Time to live: 64 (TTL value of 64)

 Protocol: TCP (0x06)

 Header checksum: 0x26b6 [correct]

 Good: True

 Bad : False

 Source: 10.0.0.6 (10.0.0.6)

 Destination: 10.0.0.5 (10.0.0.5)

Transmission Control Protocol, Src Port: 65535 (65535), Dst Port: 24472 (24472), Seq: 0, Ack: 0, Len: 0

 Source port: 65535 (65535)

 Destination port: 24472 (24472)

 Sequence number: 0 (relative sequence number)

 Acknowledgement number: 0 (relative ack number)

 Header length: 20 bytes

 Flags: 0x0014 (RST, ACK)

 0... = Congestion Window Reduced (CWR): Not set

 .0.. = ECN-Echo: Not set

 ..0. = Urgent: Not set

 ...1 = Acknowledgment: Set

 0... = Push: Not set

 1.. = Reset: Set

 0. = Syn: Not set

 0 = Fin: Not set

 Window size: 0 (Window size = 0)

 Checksum: 0xd16d [correct]

 SEQ/ACK analysis

 This is an ACK to the segment in frame: 15

 The RTT to ACK the segment was: 0.000098000 seconds

244

0000 00 0e a6 73 e7 25 00 30 18 66 7a 0b 08 00 45 10 ...s.%.0.fz...E.

0010 00 28 00 00 40 00 40 06 26 b6 0a 00 00 06 0a 00 .(..@.@.&.......

0020 00 05 ff ff 5f 98 00 00 00 00 16 c6 53 fa 50 14 _.......S.P.

0030 00 00 d1 6d 00 00 00 00 00 00 00 00 ...m........

245

With Firewall Enabled

No. Time Source Destination Protocol Info

 1 0.000000 10.0.0.5 10.0.0.6 ICMP Echo (ping) request

Frame 1 (98 bytes on wire, 98 bytes captured)

 Arrival Time: Aug 11, 2006 17:33:33.771341000

 Time delta from previous packet: 0.000000000 seconds

 Time since reference or first frame: 0.000000000 seconds

 Frame Number: 1

 Packet Length: 98 bytes

 Capture Length: 98 bytes

 Protocols in frame: eth:ip:icmp:data

Ethernet II, Src: 10.0.0.5 (00:0e:a6:73:e7:25), Dst: 10.0.0.6 (00:30:18:66:7a:0b)

 Destination: 10.0.0.6 (00:30:18:66:7a:0b)

 Source: 10.0.0.5 (00:0e:a6:73:e7:25)

 Type: IP (0x0800)

Internet Protocol, Src: 10.0.0.5 (10.0.0.5), Dst: 10.0.0.6 (10.0.0.6)

 Version: 4

 Header length: 20 bytes

 Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)

 0000 00.. = Differentiated Services Codepoint: Default (0x00)

 0. = ECN-Capable Transport (ECT): 0

 0 = ECN-CE: 0

 Total Length: 84

 Identification: 0xaabf (43711)

 Flags: 0x00

 0... = Reserved bit: Not set

 .0.. = Don't fragment: Not set

 ..0. = More fragments: Not set

 Fragment offset: 0

 Time to live: 64 (TTL value of 64)

246

 Protocol: ICMP (0x01)

 Header checksum: 0xbbdf [correct]

 Good: True

 Bad : False

 Source: 10.0.0.5 (10.0.0.5)

 Destination: 10.0.0.6 (10.0.0.6)

Internet Control Message Protocol

 Type: 8 (Echo (ping) request)

 Code: 0

 Checksum: 0xb557 [correct]

 Identifier: 0xaabf

 Sequence number: 0x0000

 Data (56 bytes)

0000 00 30 18 66 7a 0b 00 0e a6 73 e7 25 08 00 45 00 .0.fz....s.%..E.

0010 00 54 aa bf 00 00 40 01 bb df 0a 00 00 05 0a 00 .T....@.........

0020 00 06 08 00 b5 57 aa bf 00 00 44 dc a3 4d 00 0b W....D..M..

0030 c4 b0 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 14 15

0040 16 17 18 19 1a 1b 1c 1d 1e 1f 20 21 22 23 24 25 !"#$%

0050 26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35 &'()*+,-./012345

0060 36 37 67

No. Time Source Destination Protocol Info

 2 0.000244 10.0.0.6 10.0.0.5 ICMP Echo (ping) reply

Frame 2 (98 bytes on wire, 98 bytes captured)

 Arrival Time: Aug 11, 2006 17:33:33.771585000

 Time delta from previous packet: 0.000244000 seconds

 Time since reference or first frame: 0.000244000 seconds

 Frame Number: 2

 Packet Length: 98 bytes

 Capture Length: 98 bytes

 Protocols in frame: eth:ip:icmp:data

Ethernet II, Src: 10.0.0.6 (00:30:18:66:7a:0b), Dst: 10.0.0.5 (00:0e:a6:73:e7:25)

247

 Destination: 10.0.0.5 (00:0e:a6:73:e7:25)

 Source: 10.0.0.6 (00:30:18:66:7a:0b)

 Type: IP (0x0800)

Internet Protocol, Src: 10.0.0.6 (10.0.0.6), Dst: 10.0.0.5 (10.0.0.5)

 Version: 4

 Header length: 20 bytes

 Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)

 0000 00.. = Differentiated Services Codepoint: Default (0x00)

 0. = ECN-Capable Transport (ECT): 0

 0 = ECN-CE: 0

 Total Length: 84

 Identification: 0x0de5 (3557)

 Flags: 0x00

 0... = Reserved bit: Not set

 .0.. = Don't fragment: Not set

 ..0. = More fragments: Not set

 Fragment offset: 0

 Time to live: 64 (TTL value of 64)

 Protocol: ICMP (0x01)

 Header checksum: 0x58ba [correct]

 Good: True

 Bad : False

 Source: 10.0.0.6 (10.0.0.6)

 Destination: 10.0.0.5 (10.0.0.5)

Internet Control Message Protocol

 Type: 0 (Echo (ping) reply)

 Code: 0

 Checksum: 0xbd57 [correct]

 Identifier: 0xaabf

 Sequence number: 0x0000

 Data (56 bytes)

0000 00 0e a6 73 e7 25 00 30 18 66 7a 0b 08 00 45 00 ...s.%.0.fz...E.

0010 00 54 0d e5 00 00 40 01 58 ba 0a 00 00 06 0a 00 .T....@.X.......

248

0020 00 05 00 00 bd 57 aa bf 00 00 44 dc a3 4d 00 0b W....D..M..

0030 c4 b0 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 14 15

0040 16 17 18 19 1a 1b 1c 1d 1e 1f 20 21 22 23 24 25 !"#$%

0050 26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35 &'()*+,-./012345

0060 36 37 67

No. Time Source Destination Protocol Info

 3 0.030562 10.0.0.5 10.0.0.6 ICMP Echo (ping) request

Frame 3 (98 bytes on wire, 98 bytes captured)

 Arrival Time: Aug 11, 2006 17:33:33.801903000

 Time delta from previous packet: 0.030318000 seconds

 Time since reference or first frame: 0.030562000 seconds

 Frame Number: 3

 Packet Length: 98 bytes

 Capture Length: 98 bytes

 Protocols in frame: eth:ip:icmp:data

Ethernet II, Src: 10.0.0.5 (00:0e:a6:73:e7:25), Dst: 10.0.0.6 (00:30:18:66:7a:0b)

 Destination: 10.0.0.6 (00:30:18:66:7a:0b)

 Source: 10.0.0.5 (00:0e:a6:73:e7:25)

 Type: IP (0x0800)

Internet Protocol, Src: 10.0.0.5 (10.0.0.5), Dst: 10.0.0.6 (10.0.0.6)

 Version: 4

 Header length: 20 bytes

 Differentiated Services Field: 0x06 (DSCP 0x01: Unknown DSCP; ECN: 0x02)

 0000 01.. = Differentiated Services Codepoint: Unknown (0x01)

 1. = ECN-Capable Transport (ECT): 1

 0 = ECN-CE: 0

 Total Length: 84

 Identification: 0x0ead (3757)

 Flags: 0x04 (Don't Fragment)

 0... = Reserved bit: Not set

 .1.. = Don't fragment: Set

 ..0. = More fragments: Not set

249

 Fragment offset: 0

 Time to live: 64 (TTL value of 64)

 Protocol: ICMP (0x01)

 Header checksum: 0x17ec [correct]

 Good: True

 Bad : False

 Source: 10.0.0.5 (10.0.0.5)

 Destination: 10.0.0.6 (10.0.0.6)

Internet Control Message Protocol

 Type: 8 (Echo (ping) request)

 Code: 123

 Checksum: 0x3d66 [correct]

 Identifier: 0xaabf

 Sequence number: 0x0001

 Data (56 bytes)

0000 00 30 18 66 7a 0b 00 0e a6 73 e7 25 08 00 45 06 .0.fz....s.%..E.

0010 00 54 0e ad 40 00 40 01 17 ec 0a 00 00 05 0a 00 .T..@.@.........

0020 00 06 08 7b 3d 66 aa bf 00 01 44 dc a3 4d 00 0c ...{=f....D..M..

0030 3c 25 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 14 15 <%..............

0040 16 17 18 19 1a 1b 1c 1d 1e 1f 20 21 22 23 24 25 !"#$%

0050 26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35 &'()*+,-./012345

0060 36 37 67

No. Time Source Destination Protocol Info

 4 0.030759 10.0.0.6 10.0.0.5 ICMP Echo (ping) reply

Frame 4 (98 bytes on wire, 98 bytes captured)

 Arrival Time: Aug 11, 2006 17:33:33.802100000

 Time delta from previous packet: 0.000197000 seconds

 Time since reference or first frame: 0.030759000 seconds

 Frame Number: 4

 Packet Length: 98 bytes

 Capture Length: 98 bytes

250

 Protocols in frame: eth:ip:icmp:data

Ethernet II, Src: 10.0.0.6 (00:30:18:66:7a:0b), Dst: 10.0.0.5 (00:0e:a6:73:e7:25)

 Destination: 10.0.0.5 (00:0e:a6:73:e7:25)

 Source: 10.0.0.6 (00:30:18:66:7a:0b)

 Type: IP (0x0800)

Internet Protocol, Src: 10.0.0.6 (10.0.0.6), Dst: 10.0.0.5 (10.0.0.5)

 Version: 4

 Header length: 20 bytes

 Differentiated Services Field: 0x06 (DSCP 0x01: Unknown DSCP; ECN: 0x02)

 0000 01.. = Differentiated Services Codepoint: Unknown (0x01)

 1. = ECN-Capable Transport (ECT): 1

 0 = ECN-CE: 0

 Total Length: 84

 Identification: 0x0de6 (3558)

 Flags: 0x00

 0... = Reserved bit: Not set

 .0.. = Don't fragment: Not set

 ..0. = More fragments: Not set

 Fragment offset: 0

 Time to live: 64 (TTL value of 64)

 Protocol: ICMP (0x01)

 Header checksum: 0x58b3 [correct]

 Good: True

 Bad : False

 Source: 10.0.0.6 (10.0.0.6)

 Destination: 10.0.0.5 (10.0.0.5)

Internet Control Message Protocol

 Type: 0 (Echo (ping) reply)

 Code: 123

 Checksum: 0x4566 [correct]

 Identifier: 0xaabf

 Sequence number: 0x0001

 Data (56 bytes)

251

0000 00 0e a6 73 e7 25 00 30 18 66 7a 0b 08 00 45 06 ...s.%.0.fz...E.

0010 00 54 0d e6 00 00 40 01 58 b3 0a 00 00 06 0a 00 .T....@.X.......

0020 00 05 00 7b 45 66 aa bf 00 01 44 dc a3 4d 00 0c ...{Ef....D..M..

0030 3c 25 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 14 15 <%..............

0040 16 17 18 19 1a 1b 1c 1d 1e 1f 20 21 22 23 24 25 !"#$%

0050 26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35 &'()*+,-./012345

0060 36 37 67

No. Time Source Destination Protocol Info

 5 0.063754 10.0.0.5 10.0.0.6 ICMP Timestamp request

Frame 5 (54 bytes on wire, 54 bytes captured)

 Arrival Time: Aug 11, 2006 17:33:33.835095000

 Time delta from previous packet: 0.032995000 seconds

 Time since reference or first frame: 0.063754000 seconds

 Frame Number: 5

 Packet Length: 54 bytes

 Capture Length: 54 bytes

 Protocols in frame: eth:ip:icmp

Ethernet II, Src: 10.0.0.5 (00:0e:a6:73:e7:25), Dst: 10.0.0.6 (00:30:18:66:7a:0b)

 Destination: 10.0.0.6 (00:30:18:66:7a:0b)

 Source: 10.0.0.5 (00:0e:a6:73:e7:25)

 Type: IP (0x0800)

Internet Protocol, Src: 10.0.0.5 (10.0.0.5), Dst: 10.0.0.6 (10.0.0.6)

 Version: 4

 Header length: 20 bytes

 Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)

 0000 00.. = Differentiated Services Codepoint: Default (0x00)

 0. = ECN-Capable Transport (ECT): 0

 0 = ECN-CE: 0

 Total Length: 40

 Identification: 0xaabf (43711)

 Flags: 0x00

 0... = Reserved bit: Not set

252

 .0.. = Don't fragment: Not set

 ..0. = More fragments: Not set

 Fragment offset: 0

 Time to live: 64 (TTL value of 64)

 Protocol: ICMP (0x01)

 Header checksum: 0xbc0b [correct]

 Good: True

 Bad : False

 Source: 10.0.0.5 (10.0.0.5)

 Destination: 10.0.0.6 (10.0.0.6)

Internet Control Message Protocol

 Type: 13 (Timestamp request)

 Code: 0

 Checksum: 0x8a57 [correct]

 Identifier: 0xaabf

 Sequence number: 0x0000

 Originate timestamp: 835036

 Receive timestamp: 0

 Transmit timestamp: 0

0000 00 30 18 66 7a 0b 00 0e a6 73 e7 25 08 00 45 00 .0.fz....s.%..E.

0010 00 28 aa bf 00 00 40 01 bc 0b 0a 00 00 05 0a 00 .(....@.........

0020 00 06 0d 00 8a 57 aa bf 00 00 00 0c bd dc 00 00 W..........

0030 00 00 00 00 00 00

No. Time Source Destination Protocol Info

 6 0.252004 10.0.0.5 10.0.0.6 ICMP Address mask request

Frame 6 (46 bytes on wire, 46 bytes captured)

 Arrival Time: Aug 11, 2006 17:33:34.023345000

 Time delta from previous packet: 0.188250000 seconds

 Time since reference or first frame: 0.252004000 seconds

 Frame Number: 6

 Packet Length: 46 bytes

253

 Capture Length: 46 bytes

 Protocols in frame: eth:ip:icmp

Ethernet II, Src: 10.0.0.5 (00:0e:a6:73:e7:25), Dst: 10.0.0.6 (00:30:18:66:7a:0b)

 Destination: 10.0.0.6 (00:30:18:66:7a:0b)

 Source: 10.0.0.5 (00:0e:a6:73:e7:25)

 Type: IP (0x0800)

Internet Protocol, Src: 10.0.0.5 (10.0.0.5), Dst: 10.0.0.6 (10.0.0.6)

 Version: 4

 Header length: 20 bytes

 Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)

 0000 00.. = Differentiated Services Codepoint: Default (0x00)

 0. = ECN-Capable Transport (ECT): 0

 0 = ECN-CE: 0

 Total Length: 32

 Identification: 0xcfbe (53182)

 Flags: 0x00

 0... = Reserved bit: Not set

 .0.. = Don't fragment: Not set

 ..0. = More fragments: Not set

 Fragment offset: 0

 Time to live: 64 (TTL value of 64)

 Protocol: ICMP (0x01)

 Header checksum: 0x9714 [correct]

 Good: True

 Bad : False

 Source: 10.0.0.5 (10.0.0.5)

 Destination: 10.0.0.6 (10.0.0.6)

Internet Control Message Protocol

 Type: 17 (Address mask request)

 Code: 0

 Checksum: 0x1f41 [correct]

 Identifier: 0xcfbe

 Sequence number: 0x0000

 Address mask: 0.0.0.0 (0x00000000)

254

0000 00 30 18 66 7a 0b 00 0e a6 73 e7 25 08 00 45 00 .0.fz....s.%..E.

0010 00 20 cf be 00 00 40 01 97 14 0a 00 00 05 0a 00 @.........

0020 00 06 11 00 1f 41 cf be 00 00 00 00 00 00 A........

No. Time Source Destination Protocol Info

 8 2.258017 10.0.0.5 10.0.0.6 TCP 27624 > 65535 [SYN] Seq=0 Ack=0

Win=6840 Len=0

Frame 8 (54 bytes on wire, 54 bytes captured)

 Arrival Time: Aug 11, 2006 17:33:36.029358000

 Time delta from previous packet: 0.999683000 seconds

 Time since reference or first frame: 2.258017000 seconds

 Frame Number: 8

 Packet Length: 54 bytes

 Capture Length: 54 bytes

 Protocols in frame: eth:ip:tcp

Ethernet II, Src: 10.0.0.5 (00:0e:a6:73:e7:25), Dst: 10.0.0.6 (00:30:18:66:7a:0b)

 Destination: 10.0.0.6 (00:30:18:66:7a:0b)

 Source: 10.0.0.5 (00:0e:a6:73:e7:25)

 Type: IP (0x0800)

Internet Protocol, Src: 10.0.0.5 (10.0.0.5), Dst: 10.0.0.6 (10.0.0.6)

 Version: 4

 Header length: 20 bytes

 Differentiated Services Field: 0x10 (DSCP 0x04: Unknown DSCP; ECN: 0x00)

 0001 00.. = Differentiated Services Codepoint: Unknown (0x04)

 0. = ECN-Capable Transport (ECT): 0

 0 = ECN-CE: 0

 Total Length: 40

 Identification: 0x303f (12351)

 Flags: 0x04 (Don't Fragment)

 0... = Reserved bit: Not set

 .1.. = Don't fragment: Set

 ..0. = More fragments: Not set

255

 Fragment offset: 0

 Time to live: 64 (TTL value of 64)

 Protocol: TCP (0x06)

 Header checksum: 0xf676 [correct]

 Good: True

 Bad : False

 Source: 10.0.0.5 (10.0.0.5)

 Destination: 10.0.0.6 (10.0.0.6)

Transmission Control Protocol, Src Port: 27624 (27624), Dst Port: 65535 (65535), Seq: 0, Ack: 0, Len: 0

 Source port: 27624 (27624)

 Destination port: 65535 (65535)

 Sequence number: 0 (relative sequence number)

 Header length: 20 bytes

 Flags: 0x0002 (SYN)

 0... = Congestion Window Reduced (CWR): Not set

 .0.. = ECN-Echo: Not set

 ..0. = Urgent: Not set

 ...0 = Acknowledgment: Not set

 0... = Push: Not set

 0.. = Reset: Not set

 1. = Syn: Set

 0 = Fin: Not set

 Window size: 6840 (Window size = 6840)

 Checksum: 0x9621 [correct]

0000 00 30 18 66 7a 0b 00 0e a6 73 e7 25 08 00 45 10 .0.fz....s.%..E.

0010 00 28 30 3f 40 00 40 06 f6 76 0a 00 00 05 0a 00 .(0?@.@..v......

0020 00 06 6b e8 ff ff 3e 13 41 03 00 00 00 00 50 02 ..k...>.A.....P.

0030 1a b8 96 21 00 00 ...!..

256

Appendix I – GNU General Public License

GNU GENERAL PUBLIC LICENSE

 Version 2, June 1991

 Copyright (C) 1989, 1991 Free Software Foundation, Inc.

 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

 Everyone is permitted to copy and distribute verbatim copies

 of this license document, but changing it is not allowed.

Preamble

========

The licenses for most software are designed to take away your freedom to

share and change it. By contrast, the GNU General Public License is

intended to guarantee your freedom to share and change free software--to

make sure the software is free for all its users. This General Public License

applies to most of the Free Software Foundation's software and to any

other program whose authors commit to using it. (Some other Free

Software Foundation software is covered by the GNU Library General

Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price.

Our General Public Licenses are designed to make sure that you have the

freedom to distribute copies of free software (and charge for this service if

257

you wish), that you receive source code or can get it if you want it, that you

can change the software or use pieces of it in new free programs; and that

you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to

deny you these rights or to ask you to surrender the rights. These

restrictions translate to certain responsibilities for you if you distribute

copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or

for a fee, you must give the recipients all the rights that you have. You must

make sure that they, too, receive or can get the source code. And you must

show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2)

offer you this license which gives you legal permission to copy, distribute

and/or modify the software.

 Also, for each author's protection and ours, we want to make certain that

everyone understands that there is no warranty for this free software. If

the software is modified by someone else and passed on, we want its

recipients to know that what they have is not the original, so that any

problems introduced by others will not reflect on the original authors'

reputations.

Finally, any free program is threatened constantly by software patents. We

wish to avoid the danger that redistributors of a free program will

individually obtain patent licenses, in effect making the program

proprietary. To prevent this, we have made it clear that any patent must be

licensed for everyone's free use or not licensed at all.

258

The precise terms and conditions for copying, distribution and modification

follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND

MODIFICATION

0. This License applies to any program or other work which contains a

notice placed by the copyright holder saying it may be distributed under

the terms of this General Public License. The "Program", below, refers to

any such program or work, and a "work based on the Program" means

either the Program or any derivative work under copyright law: that is to

say, a work containing the Program or a portion of it, either verbatim or

with modifications and/or translated into another language. (Hereinafter,

translation is included without limitation in the term "modification".) Each

licensee is addressed as "you".

Activities other than copying, distribution and modification are not covered

by this License; they are outside its scope. The act of running the Program

is not restricted, and the output from the Program is covered only if its

contents constitute a work based on the Program (independent of having

been made by running the Program). Whether that is true depends on

what the Program does.

1. You may copy and distribute verbatim copies of the Program's source

code as you receive it, in any medium, provided that you conspicuously and

appropriately publish on each copy an appropriate copyright notice and

disclaimer of warranty; keep intact all the notices that refer to this License

and to the absence of any warranty; and give any other recipients of the

Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you

may at your option offer warranty protection in exchange for a fee.

259

2. You may modify your copy or copies of the Program or any portion of it,

thus forming a work based on the Program, and copy and distribute such

modifications or work under the terms of Section 1 above, provided that

you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating

that you changed the files and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or

in part contains or is derived from the Program or any part thereof, to be

licensed as a whole at no charge to all third parties under the terms of this

License.

c. If the modified program normally reads commands interactively when

run, you must cause it, when started running for such interactive use in the

most ordinary way, to print or display an announcement including an

appropriate copyright notice and a notice that there is no warranty (or else,

saying that you provide a warranty) and that users may redistribute the

program under these conditions, and telling the user how to view a copy of

this License. (Exception: if the Program itself is interactive but does not

normally print such an announcement, your work based on the Program is

not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable

sections of that work are not derived from the Program, and can be

reasonably considered independent and separate works in themselves, then

this License, and its terms, do not apply to those sections when you

distribute them as separate works. But when you distribute the same

sections as part of a whole which is a work based on the Program, the

distribution of the whole must be on the terms of this License, whose

permissions for other licensees extend to the entire whole, and thus to each

and every part regardless of who wrote it.

260

Thus, it is not the intent of this section to claim rights or contest your

rights to work written entirely by you; rather, the intent is to exercise the

right to control the distribution of derivative or collective works based on

the Program.

In addition, mere aggregation of another work not based on the Program

with the Program (or with a work based on the Program) on a volume of a

storage or distribution medium does not bring the other work under the

scope of this License.

3. You may copy and distribute the Program (or a work based on it, under

Section 2) in object code or executable form under the terms of Sections 1

and 2 above provided that you also do one of the following:

a. Accompany it with the complete corresponding machine-readable

source code, which must be distributed under the terms of Sections 1 and 2

above on a medium customarily used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give

any third party, for a charge no more than your cost of physically

performing source distribution, a complete machine-readable copy of the

corresponding source code, to be distributed under the terms of Sections 1

and 2 above on a medium customarily used for software interchange; or,

c. Accompany it with the information you received as to the offer to

distribute corresponding source code. (This alternative is allowed only for

noncommercial distribution and only if you received the program in object

code or executable form with such an offer, in accord with Subsection b

above.)

The source code for a work means the preferred form of the work for

261

making modifications to it. For an executable work, complete source code

means all the source code for all modules it contains, plus any associated

interface definition files, plus the scripts used to control compilation and

installation of the executable.

However, as a special exception, the source code distributed need not

include anything that is normally distributed (in either source or binary

form) with the major components (compiler, kernel, and so on) of the

operating system on which the executable runs, unless that component

itself accompanies the executable.

If distribution of executable or object code is made by offering access to

copy from a designated place, then offering equivalent access to copy the

source code from the same place counts as distribution of the source code,

even though third parties are not compelled to copy the source along with

the object code.

4. You may not copy, modify, sublicense, or distribute the Program except

as expressly provided under this License. Any attempt otherwise to copy,

modify, sublicense or distribute the Program is void, and will automatically

terminate your rights under this License. However, parties who have

received copies, or rights, from you under this License will not have their

licenses terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it.

However, nothing else grants you permission to modify or distribute the

Program or its derivative works. These actions are prohibited by law if you

do not accept this License. Therefore, by modifying or distributing the

Program (or any work based on the Program), you indicate your acceptance

of this License to do so, and all its terms and conditions for copying,

distributing or modifying the Program or works based on it.

262

6. Each time you redistribute the Program (or any work based on the

Program), the recipient automatically receives a license from the original

licensor to copy, distribute or modify the Program subject to these terms

and conditions. You may not impose any further restrictions on the

recipients' exercise of the rights granted herein. You are not responsible

for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent

infringement or for any other reason (not limited to patent issues),

conditions are imposed on you (whether by court order, agreement or

otherwise) that contradict the conditions of this License, they do not excuse

you from the conditions of this License. If you cannot distribute so as to

satisfy simultaneously your obligations under this License and any other

pertinent obligations, then as a consequence you may not distribute the

Program at all. For example, if a patent license would not permit royalty-

free redistribution of the Program by all those who receive copies directly

or indirectly through you, then the only way you could satisfy both it and

this License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any

particular circumstance, the balance of the section is intended to apply and

the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or

other property right claims or to contest validity of any such claims; this

section has the sole purpose of protecting the integrity of the free software

distribution system, which is implemented by public license practices.

Many people have made generous contributions to the wide range of

software distributed through that system in reliance on consistent

application of that system; it is up to the author/donor to decide if he or she

is willing to distribute software through any other system and a licensee

cannot impose that choice.

263

This section is intended to make thoroughly clear what is believed to be a

consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain

countries either by patents or by copyrighted interfaces, the original

copyright holder who places the Program under this License may add an

explicit geographical distribution limitation excluding those countries, so

that distribution is permitted only in or among countries not thus excluded.

In such case, this License incorporates the limitation as if written in the

body of this License.

9. The Free Software Foundation may publish revised and/or new versions

of the General Public License from time to time. Such new versions will be

similar in spirit to the present version, but may differ in detail to address

new problems or concerns. Each version is given a distinguishing version

number. If the Program specifies a version number of this License which

applies to it and "any later version", you have the option of following the

terms and conditions either of that version or of any later version published

by the Free Software Foundation. If the Program does not specify a version

number of this License, you may choose any version ever published by the

Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free

programs whose distribution conditions are different, write to the author to

ask for permission. For software which is copyrighted by the Free

Software Foundation, write to the Free Software Foundation; we

sometimes make exceptions for this. Our decision will be guided by the

two goals of preserving the free status of all derivatives of our free

software and of promoting the sharing and reuse of software generally.

NO WARRANTY

264

 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE

IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY

APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING

THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE

PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND

PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE

PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL

NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED

TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY

WHO MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS

PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING

ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES

ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM

(INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING

RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD

PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY

OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS

BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

 END OF TERMS AND CONDITIONS

265

	Overview
	Introduction
	Chapter 1: Protocols and Techniques
	1.1. Protocol Architecture
	1.1.1 Transmission Control Protocol (TCP)
	1.1.1.1 Sequence Number Field
	1.1.1.2 Opening and Closing Connections

	1.1.2 User Datagram Protocol (UDP)
	1.1.3 Internet Protocol (IP)
	1.1.3.1 Internet Protocol version 4

	1.1.4 Internet Control Message Protocol (ICMP)
	1.1.4.1 Destination Unreachable Message
	1.1.4.2 Echo or Echo Reply Message

	1.1.5 Internet Protocol version 6 (IPv6)
	1.1.7 Summary

	1.2. Scanning Techniques
	1.2.1 Firewalls
	1.2.2 Port Scanning
	1.2.2.1 A new port scanning proposal

	1.2.3 Other TCP/IP Attacks
	1.2.3.1 IP Spoofing (IP Hijack)
	1.2.3.2 Address Resolution Protocol (ARP) Spoofing
	1.2.3.3 ICMP Attacks

	1.2.4 Operating System (OS) Fingerprinting
	1.2.5 Summary

	Chapter 2: Tests and Experiments
	2.1. Practical Investigation with IPv4
	2.1.1 IPID scan
	2.1.1.1 Scenario 1 – Confirming if Linux 2.6.x is immune to Nmap when it is a zombie system
	2.1.1.2 Scenario 2 – Confirming if Linux 2.6.x is immune to Nmap when it is a zombie system and it has a firewall
	2.1.1.3 Scenario 3 - Confirming if another Linux OS running kernel 2.6.x is immune to Nmap when it is a zombie system
	2.1.1.4 Scenario 4 - Confirming if Linux 2.6.x is immune to Nmap when it is a target system
	2.1.1.5 Microsoft Windows XP Professional IPID incremental

	2.1.2 Other port scanning techniques
	2.1.2.1 SYN Scan
	2.1.2.2 UDP Scan
	2.1.2.3 TCP Scan
	2.1.2.4 Null Scan
	2.1.2.5 ACK scan
	2.1.2.6 FIN scan
	2.1.2.7 Window scan
	2.1.2.8 Xmas scan
	2.1.2.9 TCP Maimon scan
	2.1.2.10 Protocol scan

	2.1.3 OS Detection
	2.1.3.1 Using Nmap
	2.1.3.2 Using Xprobe2

	2.2. Realisation of Preliminary Countermeasures
	2.2.1 Unique Linux Characteristics
	2.2.2 Preliminary Countermeasures for Linux
	2.2.3 Summary

	2.3. Validation of Preliminary Countermeasures
	2.3.1 Type Of Service
	2.3.1.1 Nmap's Results
	2.3.1.2 Xprobe2's Results

	2.3.2 ICMP Echo Ignore All
	2.3.2.1 Nmap's Results
	2.3.2.2 Xprobe2's Results

	2.3.3 IP Default TTL
	2.3.3.1 Nmap's Result
	2.3.3.2 Xprobe2's Results

	2.3.4 TCP Window Scaling
	2.3.4.1 Nmap's Output
	2.3.4.2 Xprobe2's Results

	2.3.5 Timestamps
	2.3.5.1 Nmap's Results

	2.3.6 Other modifications of the TCP/IP stack

	Chapter 3: Countermeasures
	3.1 OS Fingerprinting Tools Detection
	3.1.1 Detecting Nmap
	3.1.2 Detecting Other OS Fingerprinting Tools

	3.2 Final Countermeasures
	3.2.1 Type of Service Field
	3.2.2 OS Fingerprinting Tools Detection
	3.2.3 Port 0 Disabled
	3.2.4 Block ICMP messages
	3.2.5 Conclusion
	3.2.6 Future Work

	References
	Appendices
	Appendix A – Protocols
	Appendix A.1 Format of the TCP Header
	Appendix A.2 Format of the IPv4 Header
	Appendix A.3 Internet Control Message Protocol (ICMP)
	A.3.1 Time Exceeded Message
	A.3.2 Parameter Problem Message
	A.3.3 Source Quench Message
	A.3.4 Redirect Message
	A.3.5 Timestamp or Timestamp Reply Message
	A.3.6 Information Request and Information Reply Message

	Appendix A.4 Internet Protocol version 6 (IPv6)
	A.4.1 Format of the IPv6 Header
	A.4.1.1 IPv6 Extension Headers
	A.4.1.1.1 Hop-by-Hop Option Header
	A.4.1.1.2 Routing Header
	A.4.1.1.3 Fragment Header
	A.4.1.1.4 Authentication Header
	A.4.1.1.5 Encapsulating Security Payload (ESP) Header
	A.4.1.1.6 Destination Option Header
	A.4.1.1.7 Upper-Layer Header
	A.4.1.1.8 No Next Header

	Appendix A.5 Internet Control Message Protocol for IPv6 (ICMPv6)
	A.5.1 Destination Unreachable Error Message
	A.5.2 Packet Too Big Error Message
	A.5.3 Time Exceed Error Message
	A.5.4 Parameter Problem Error Message
	A.5.5 Echo Request and Echo Reply Informational Message

	Appendix B – Scripts for firewalls
	Appendix B.1 – Settings when firewall is disabled
	Appendix B.2 – Settings when firewall is enabled
	Appendix B.3 – Suggested Additions to firewalls

	Appendix C – Results of Tests and Experiments with IPv4
	Appendix C.1 – Output of the Port Scanning techniques
	SYN Scan
	UDP Scan
	TCP Scan
	Null Scan
	ACK Scan
	FIN Scan
	Window Scan
	Xmas Scan
	TCP Maimon Scan
	Protocol Scan

	Appendix C.2 – OS Detection
	Nmap's Results
	Xprobe2's Results

	Appendix D – Installation of the OSF Module
	Appendix E – Summary of Nmap Options
	Target Specifications
	Host Discovery
	Port Scanning
	Port Specifications and Scan Order
	Services and Version Detection
	Operating System (OS) Detection
	Timing and Performance
	Firewall / IDS Evasion and Spoofing
	Output
	Miscellaneous Options
	Runtime Interaction

	Appendix F – Summary of Xprobe version 2's Options
	Options

	Appendix G – Information analysed by Ethereal
	Appendix H – Abstracts of Ethereal with the Xprobe2 tests performed under IPv4
	With Firewall Disabled
	With Firewall Enabled

	Appendix I – GNU General Public License

