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DISSERTATION SUMMARY 

Early blight, caused by Alternaria solani (Ellis and Martin) Sorauer, has been reported to 

reduce tomato crop yields and market value, causing economic losses to tomato growers. 

There are currently no resistant cultivars available to farmers in the market. Fungicide 

applications are the standard method for managing the disease on tomatoes. Due to concerns 

such as cost, exposure risks, chemical residues and other health and environmental hazards, 

alternative control methods have been sought. Integrated disease management has been 

proposed as a possible strategy that could aid in reducing fungicide use in crop production.  

The use of plant resistance activators such as acibenzolar-S-methyl (ASM) along with 

biological control agents has been reported to have similar efficacy as compared to 

conventional chemicals in controlling early blight on tomato. 

Therefore, this study was aimed at isolating and screening strains of yeasts and bacterial 

biological control agents (BCAs) against A. solani in in vitro and in vivo bioassays. 

Subsequently, single and combined applications of potassium silicate (KSil), ASM and BCA 

treatments were tested for their ability to reduce early blight of tomato under greenhouse and 

nursery conditions. 

Isolation of 171 bacterial and 40 yeast strains were made from tomato leaves. These were 

screened for their potential to control early blight disease in tomato using a dual culture 

bioassay on agar plates (bacteria) and their inhibitory effect on spore germination (yeasts). 

Sixty percent (60%) of the bacterial isolates inhibited mycelial growth of A. solani, with 

zones of inhibition ranging from 6-14 mm on potato dextrose agar (PDA). Thirty-five percent 

(35%) of the yeast isolates inhibited spore germination of A. solani on tryptone soy agar 

(TSA) with inhibition of conidial germination of between 18 and 82%. 

Five bacterial isolates (Bacillus spp. XVT8, Pseudomonas putida NC13, Bacillus subtilis 

N6/2, Bacillus subtilis WESH1 and Bacillus subtilis N5) and five yeast isolates (Meyerozyma 

guilliermondii P1-1, Meyerozyma guilliermondii C10, Rodotorula minuta P1-Orange, 

Meyerozyma guilliermondii Y4 and Pichia guilliermondii H5) were further tested under 

greenhouse conditions against early blight on tomato plants. The greenhouse results showed 

that B. subtilis N6/2, B. subtilis N5, Bacillus spp. XVT8 and B. subtilis WESH1 significantly 

(p = 0.001) reduced early blight severity when compared to the A. solani inoculated control, 
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which showed a final disease severity of 97%. However, the yeast isolates did not control A. 

solani under greenhouse conditions. 

None of the liquid potassium silicate concentrations significantly reduced disease severity 

under greenhouse conditions (P > 0.05). The 75% reduced concentration (0.056 g L-1) and the 

100% concentration (0.075 g L-1) of ASM significantly (p = 0.001) reduced disease severity, 

by 52% and 68%, respectively, under greenhouse conditions. 

When ASM was used in combination with Bacillus sp.  XVT8+ Bacillus subtilis N6/2, a 

disease reduction of 62 and 66%, respectively, was observed under greenhouse condition, and 

a disease reduction of 68% and 66%, respectively, was observed under nursery conditions. 

Bacillus sp. XVT8 + B. subtilis N6/2 caused a 57% and 46% disease reduction in the 

greenhouse and nursery trials, respectively. However, none of these treatments was 

significantly better than Bacillus sp. XVT8 applied on its own. When ASM was used in 

combination with B. subtilis N6/2 under greenhouse and nursery conditions it reduced disease 

levels by 41% and 47%, respectively. When 75% acibenzolar-S-methyl was used alone under 

greenhouse and nursery conditions it caused disease reductions of 23% and 14%, 

respectively. Two fungicide treatments, Rovral Flo and Coproxydithane +Petrin reduced 

disease levels under greenhouse and nursery conditions by 46% and 21%, respectively. 

In conclusion, this study demonstrated that the biocontrol agent Bacillus sp. XVT8 alone, or 

in combination with ASM is about three times more effective at controlling early blight 

disease of tomato under greenhouse and nursery conditions than current fungicide 

applications. Use of a combination of two biocontrol agents, Bacillus sp. XVT8 + B. subtilis 

N6/2, also provided disease control superior to that provided by the fungicides, under both 

greenhouse and nursery conditions, although the control levels were less than that provided 

by Bacillus sp. XVT8 alone. Only one interation was positive, in the combination treatments 

(75% ASM+ B. subtilis N6/2). All other combinations were antagonistic (biocontrol agents 

with each other; ASM with Bacillus sp. XVT8, or with Bacillus sp. XVT8 + B. subtilis N6/2).  
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DISSERTATION INTRODUCTION 

 

Early blight caused by Alternaria solani (Ellis & Martin) Sorauer is a major disease of 

tomato [Solanum lycopersicum (L.) H. Karst.] In severe cases this disease can cause complete 

defoliation of tomato plants (Peralta et al., 2005). The lack of obvious resistance genes in 

tomato germplasm has made it difficult to develop resistant cultivars by conventional 

breeding (Foolad et al., 2000; Chaerani et al., 2007). Early blight control has therefore been 

based on fungicide applications. However, this strategy is not a good long-term solution 

because of the cost, exposure risks, fungicide residues and other health and environmental 

hazards that routine pesticide applications pose (Jagadeesh and Jagadeesh, 2009; Afifi and 

Zayan, 2010). In an attempt to overcome this problem research efforts have focused on 

finding sustainable, alternative approaches to controlling the disease. The use of biological 

control and integrated disease management have been reported to be possible alternatives to 

controlling plant diseases. However, concerns over the inconsistent performance of biological 

control agents have been reported (El-Ghaouth et al., 2002; Leverentz et al., 2003). Duffy and 

Weller (1995) and Varshney and Chaube (2001) suggested that integrating microbial 

antagonists with other disease control strategies could overcome this shortfall. 

The main aim of this research was to develop an integrated disease management approach 

using a plant defence activator, Acibenzolar-S-methyl (ASM), potassium silicate, and 

selected bacterial and yeasts biological control agents to control early blight of tomato caused 

by A. solani under greenhouse and nursery conditions. 

The specific objectives of this study were as follows: 

1.  To write a Literature Review on early blight, the causal microorganism, the life cycle, 

climatic conditions required for infection, symptoms, and economic importance and the 

available control options;  

2.  To isolate and screen microorganisms for antagonism against A. solani in vitro;  

3.  To screen in vivo the best antagonists against early blight of tomato under greenhouse 

conditions;  

4.  To evaluate a range of concentrations of acibenzolar-S-methyl and liquid potassium 

silicate (KSil) for their ability to control early blight of tomato under greenhouse conditions; 
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5.  Integrate the best control options selected from bacterial and yeast biological control 

agents with the optimum concentrations of acibenzolar-S-methyl and potassium silicate 

(KSil) under greenhouse and nursery conditions. 

The dissertation consists of five chapters, with each chapter covering a detailed aspect of the 

research conducted on the integrated control of early blight disease of tomato. With the 

exception of the literature review, each of the chapters has been written as an independent 

study, and prepared in the format of a scientific paper. This creates some redundancy in the 

introductory information, and the references. However, it is the standard dissertation model 

that has been adopted by University of KwaZulu-Natal. 

This research was undertaken in the Discipline of Plant Pathology, at the University of 

KwaZulu-Natal, Pietermaritzburg, under the supervision of Dr K.S. Yobo and Prof. M.D. 

Laing. 
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CHAPTER ONE 

LITERATURE REVIEW 

1.1 Introduction 

Tomato [Solanum lycopersicum (L.) H. Karst.] is an important vegetable crop that is 

cultivated worldwide and belongs in the genus Solanum, of the family Solanaceae, subfamily 

Solanoidea and tribe Solaneae. This family includes well known plant species such as potato 

(Solanum tuberosum L.), tobacco (Nicotiana tabacum L.), sweet pepper (Capsicum annuum 

L.) and eggplant (Solanum melongena var. esculentum) (Taylor, 1986; Afifi and Zayan, 

2010). 

 

In South Africa, tomato is regarded as the second most important horticultural crop following 

potato. It is cultivated commercially as well by resource poor farmers and home gardeners 

(Department of Agriculture Forestry and Fisheries, 2013). It is one of the main vegetables 

used for hawking by small-scale entrepreneurs in the informal sector (Department of 

Agriculture Forestry and Fisheries, 2010).Its production constitutes 23% of the total 

vegetable production in South Africa (Department of Agriculture Forestry and Fisheries, 

2012). 

 

1.2 Origin and history of tomato   

According to Sims (1980), tomato originated from the Andean region which includes Peru, 

Ecuador, Chile, Colombia and Bolivia. It is reported to have evolved from Solanum 

lycopersicum var. cerasiforme, which is known as the cherry form. It is believed that the crop 

was introduced by the Spanish explorers to Spain and was later taken to Morocco, Turkey 

and Italy. However, the tomato crop was only accepted as a food crop in the 18th century due 

to the popular belief that it was poisonous (Harvey et al., 2002). 

 

1.3 Tomato production and constraints in South Africa 

In South Africa tomato is grown in both summer and winter in frost-free areas. The major 

growing areas include Limpopo, the Mpumalanga Lowveld, Middleveld, the Pongola area of 

KwaZulu-Natal, the southern parts of the Eastern Cape and the Western Cape (Department of 
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Agriculture Forestry and Fisheries, 2013). Tomato is known to be susceptible to a large 

number of diseases (Dabbas et al., 2010). These include bacterial wilt, late blight, bacterial 

speck and spot, as well as early blight disease caused by the fungus Alternaria solani 

Sorauer. These diseases lower production of the crop (Balbi-Peña et al., 2006).  

 

1.4 Taxonomy and morphology of Alternaria solani 

Alternaria solani is a fungus that causes early blight disease in tomatoes. It is classified under 

the kingdom Fungi, phylum Ascomycota, class Dothideomycetes, subclass 

Pleosporomycetidiae, order Pleosporales, family Pleosporaceae, genus Alternaria, species 

solani, authority Sorauer (Chaerani et al., 2006). It belongs to the fungi imperfecti 

(deuteromycotina) family in the class Hyphomycetes and order Hyphales. This family is 

known to cause a number of diseases on a wide range of agronomic and horticultural plants. 

This pathogen was first reported in New Jersey by Ellis and Martin in 1882 (cited in Sherf 

and MacNab, 1986). 

 

According to Agrios (2005), A. solani is classified as a deuteromycete due to its lack of 

known sexual stage. As with other members of this genus, it is identified by transverse and 

longitudinal septate conidia, with multinucleate cells including dark-collared (melanised) 

cells. The melanin is reported to act as a protective barrier against adverse environmental 

conditions. This includes resistance to antagonistic microbes and their metabolites (e.g. 

hydrolytic enzymes). It also allows the pathogen to survive for several years in the soil. In 

addition, it increases its resistance to lysis and results in extended survival (Rotem, 1994). It 

is characterized by the formation of polymorphous conidia either singly or in short or longer 

chains and provided with cross, longitudinal as well as oblique septa and having longer or 

short beak.The beaked conidium may possess 9-11 transverse septa as well as vertical septa 

(Mamgain et al., 2013)  

 

The fungus produces a deeply pigmented gray/black hairy colony with a mycelium that is 

haploid and septate, becoming darkly pigmented with age. This occurs when the pathogen is 

cultured on artificial media such as V-8 juice agar. However, its sporulation requires 
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exposure to light. Thick-walled chlamydospores have also been reported but are not found 

frequently (Simmons, 2000; 2007). 

1.4.1 Symptoms 

Early blight symptoms are normally observed on foliage, stems and the fruits (Figure 1A and 

1B). They appear as black lesions about 1-2 mm in size (Pscheidt and Stevenson, 1988; 

Stevenson, 1993). However, under favourable environmental conditions the lesions tend to 

become enlarged, with a yellow halo. Defoliation may also occur due to the expansion of the 

lesions, resulting in entire leaves turning chlorotic and necrotic. Other indications such as 

concentric rings may also be visible on green and ripe tomato fruit, resulting in premature 

drop of fruits (Jones, 1991). 

                                                                             

 

Figure 1.1. Infection of early blight on tomato fruit (A) and foliage (B) (photos courtesy of 

W.R. Stevenson) (Kemmitt, 2012).http://utahpests.usu.edu/htm/utah-pests-news/up-spring-

2012/tomato-diseases-watch 

 

1.4.2 Economic importance and distribution of early blight 

Early blight occurs worldwide and is widespread in the tropics, subtropics and temperate 

zones. According to Hassanein et al. (2010), early blight disease results in high yield losses, 

resulting in economic losses in every growing season, both directly and indirectly, by fruit 

infection and by causing sun blotch on defoliated plants. Temperatures ranging from 24-29°C 

combined with humid environments favour infection (Rotem, 1994).  

A 1B 1A 

http://utahpests.usu.edu/htm/utah-pests-news/up-spring-2012/tomato-diseases-watch
http://utahpests.usu.edu/htm/utah-pests-news/up-spring-2012/tomato-diseases-watch
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1.4.3 Alternate hosts 

Early blight can affect any plants that belongs to the family Solanaceae, whether cultivated or 

weeds. However, potato (Solanum tuberosum L.) are reported to be one of the crops which is 

mostly affected by early blight disease (Jones, 1991). Jagadeesh and Jagadeesh (2009b) 

reported that early blight causes major losses in potato fields in most production regions of 

the world. According to Van der waals et al. (2003) yield losses of from 1% to 60% with the 

average being 20% have been shown to occur when the disease is not controlled out of the 14 

potato growing regions of South Africa. 

1.4.4 Disease cycle and epidemiology 

The presence of free moisture with optimum temperatures of 28-30°C has been reported to 

promote conidial germination, which takes place in approximately 40 minutes. However, 

infection also occurs during alternating wet and dry periods due to renewed growth of 

desiccated germ tubes when they are re-wetted. The pathogen can penetrate through the leaf 

epidermis directly or enter through stomata (Kemmitt, 2012). A. solani survives between 

crops cycles in plant debris and on seed (Figure 1.2). In mild climates the pathogen can 

survive from season to season on volunteer plants of tomato and potato plants such as S. 

melongena (eggplant) as well as other several weedy solanaceous hosts S. carolinense L 

(horse nettle) and Solanum nigrum  L. (nightshade). 

Figure 1.2. Life cycle of early blight in tomato (Kemmitt, 2012). 
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1.5 Control of early blight 

Current control strategies for early blight disease are based on fungicide use. However, the 

commonly used fungicides are not very effective against early blight, and there have been 

concerns raised about their effects on food safety (Afifi and Zayan, 2010). In addition, 

limitations such as fungicide resistance, fungicide residues on crops, as well as workers’ 

health and safety concerns have been raised (Jagadeesh and Jagadeesh, 2009). This has led to 

a search for alternative control measures such biological control, which aims at using 

beneficial microbes to manage crop diseases (Raupach and Kloepper, 2000; Punja and 

Utkhede, 2003). 

 

According to Guetsky et al. (2002), the use of biological control methods should create a 

more sustainable agricultural system and minimize the need for synthetic chemicals in food 

crop production. The success of biological control in managing various plant disease, using 

either natural products or antagonistic microorganisms, has been shown in many countries 

(Papavizas, 1985). They have been shown to be less costly, easily applied and can provide the 

best control measure under defined conditions. In addition, their application is safe and 

environmental friendly (Sivan and Chet, 1993). The uses of biological control agents and 

cultural practise have already been used to manage early blight disease of tomato (Sherf and 

MacNab, 1986).  

1.5.1 Cultural methods 

A cultural method is defined as incorporating all aspects of crop husbandry that reduce 

disease development. These include the use of clean seed, the use of tolerant or resistant 

varieties, destroying crop debris after harvest, and crop rotation (Westcott, 2001). According 

to Sherf and MacNab (1986), cultural methods have been successful tools in reducing disease 

severity caused by various pathogens for centuries. This practise serves as a way of reducing 

disease below economic threshold levels. Therefore, employing sound cultural practices to 

control disease in tomato may assist in keeping the crop healthy and keep early blight losses 

below economic threshold levels (Spletzer and Enyedi, 1999). 
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(i) Crop rotation 

Crop rotation is defined as the practice of cultivating different types of crops in the same area 

in sequential seasons. It is regarded as one of the most important disease management 

practices and serves as one of the effective strategies in reducing levels of early blight on 

tomato. A crop rotation including members of different families (non-solanaceous) crops has 

been found to reduce the initial inoculum of early blight (Madden et al., 1978). This practise 

is normally conducted by grouping the members of the same family in a crop rotation method 

based on groups rather than on individual crops. This method helps in removing infected 

debris which serves as a source of inoculum, thus reducing re-infection of the crop (Sherf and 

MacNab, 1986).  

(ii) Using disease free plants 

The use of disease-free certified seed is one way of controlling early blight disease on 

tomatoes. There are currently no known resistant cultivars available to farmers in the market. 

However, partial resistance has been observed in wild species of tomato (Afifi and Zayan, 

2010). Wild species that were identified as being potential sources of resistant genes include 

species such as Solanum habrochaites (syn. Lycopersicon hirsutum L), Solanum 

pimpinellifolium L (syn. Lycopersicon pimpinellifolium L), Solanum peruvianum L (syn. 

Lycopersicon peruvianum L.mill), and Solanum chilense (dunal) Reiche (syn. Lycopersicon 

chilense (dunal) (Foolad et al., 2000; Chaerani et al., 2007). 

(iii) Sanitation  

According to Tumwine et al. (2002), a broader definition of sanitation refers to the exclusion 

of inoculum sources in the crop as well as outside the crop. This may be achieved by using 

various practices such as basic crop hygiene to the elimination of alternate hosts (Hanada, 

1988). This kind of practice has been recommended at the field level due to its success in 

controlling fungal diseases of perennial crops and other diseases such as damping-off 

diseases (Emebiri and Obiefuna, 1992). However, removing crop residues and preventing 

weeds is important when controlling early blight disease of tomato. This is due to the fact that 

the pathogen can survive from season to season as well as in the residues.  
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1.5.2 Chemical control 

Fungicide application has become the standard method for managing early blight disease of 

tomato (Table 1.1). Fungicide resistance as well as hazardous effect on the environment are 

some of the limitations associated with the use of chemicals in managing plant diseases (Afifi 

and Zayan, 2010). There is also an issue of the high cost associated with the use of chemicals 

as agents of disease control (Yazici et al., 2011). In addition, fungicide use requires 

application from 1-2 days after transplanting and a 5-7 day spray schedule thereafter, 

resulting in high input costs (Miller and Miller, 2004). Hazardous effect on the environment 

has resulted in discontinuation of some of the chemicals used to control early blight. 

Therefore, this calls for other strategies such as biological control as possible alternative 

measure to control the disease in tomato production (Urech et al., 1997). 
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Table 1.1. List of common fungicide used for controlling early blight disease. 

Active Ingredient Type of fungicide Reference 

Chlorothalonil Protectant Sahu et al. (2013) 

Azoxystrobin Curative Bartlett et al. (2002) 

Pyraclostrobin Curative Kermit (2012) 

Trifloxystrobin Curative Bartlett et al. (2002) 

Copper oxychloride  

Mancozeb 

 

Iprodione 

Protectant  

Protectant 

 

Translaminar 

Sahu et al. (2013) 

Sarkar and Chowdhary 

(2004) 

Sarkar and Chowdhary 

(2004) 

   

 

1.6 Integrated disease management 

Integrated control of plant diseases can be defined as combining a number of methods of 

controlling plant diseases leading to increased disease control, and often in reductions in the 

number of fungicide applications (El-Khoury and Makkouk, 2010). The various methods 

include biological, cultural and other control strategies (Andrews, 1983). Combining 

biological control agents with reduced number of application of fungicides may be an 

effective way of achieving disease control in plants (Elad et al., 1993; Raupach and Kloepper, 

2000, Clarkson et al., 2006). According to Leverentz et al. (2003) using biological control 

alone may be less effective than commercial fungicides, or it may provide inconsistent 

control. Lumsden et al. (1995) suggested that using biological control in conjunction with 

fungicides can reduce the level of chemical and pesticide contaminations in food. However, 

the use of chemicals with biological control has been reported in only a few systems 

(Guetsky et al., 2002). Various reasons have been given to explain this problem. According to 

Harman and Bjorkman (1998), one of the causes of failure in adapting biological control is a 

lack of knowledge and education among the farmers concerning the product. In addition, Butt 

and Goettel (2000) noted that market potential is another major factor limiting the success of  
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biological control agents. These include the absence of strong incentives to develop these 

agents, as well as the availability of new biodegradable chemical pesticides. This tends to 

limit the acceptance and transfer of new technology. Bagheri (2010) and Ying and Min 

(2011) commented that the participation of farmers in the production of biological control 

agents may play an important role in the adoption of biological control as an alternative 

disease control management method. The farmers could help in identifying the technical 

barriers that diminish the efficacy of these products. In addition, farmers will gain an 

understanding of the biological control product which would help in their adoption of the 

technology (Valentin, 2002). 

 

1.7 Control of disease using biological control methods 

The term “biological control” has been used in various disciplines such as Entomology and 

Plant Pathology. According to Baker and Cook (1974), biological control can be defined as 

“the reduction of inoculum or disease producing activity of a pathogen or parasite in its 

dormant or active state using one or more organism accomplished naturally or by 

manipulation of the environment, host or antagonist by mass introduction of one or more 

antagonist”. However, in this review the term biological control applies to the use of 

microbial antagonists to suppress plant diseases. 

Previous research has demonstrated that many microorganisms can act as antagonists to plant 

pathogens (Table 1.2) (Cook, 2000). These organisms can be specific to a pathogen without 

causing negative effects on beneficial microorganisms (Becker and Schwinn, 1993). 

Biological control agents may provide a good solution for growers who are working toward 

an organic status for their crops. 

According to El-Khoury and Makkouk (2010), success in the use of antagonistic 

microorganisms against plant pathogens is well established with the control of crown gall 

with Agrobacterium radiobacter K84 as well as that of seedling blights and damping off 

disease caused by Pythium and Rhizoctonia with Trichoderma harzianum (Harman and 

Bjorkman, 1998), Gliocladium virens (Lumsden et al., 1996) and Streptomyces griseus (Cook 

et al., 1996). 
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In order for biological control to be successful and effective, one has to understand the 

mechanism by which these organisms function. This may result in enhanced control efficacy 

and reducing the inconsistencies as well as variability in performance (Guetsky et al., 2002).  
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Table 1.2. Some common biological control agents that have been investigated for control of some common pathogens on various crops. 

Organism (BCA) Target Pathogen Crop Disease Application method Reference(s) 

Trichoderma koningii Protomycopsis phaseoli Cowpea leaf smut Foliar spray Adejumo et al.,1999 

Pseudomonas fluorescens Pyricularia oryzae Rice Rice blast Seed treatment  
 

Vasudevan et al.,2002 

Bacillus cereus Alternaria alternate Tobacco Brown spot Foliar application Fravel and Spur,1977 

Aeromonas caviae R. solani and Fusarium 
oxysporum 

Radish Damping off and 
Fusarium wilt 

Applied on  potting sand or 
soil 

De boer et al.,1999 

Pseudomonas gladioli b25 A. Solani 
 

Tomato Early blight Combination treatment Agrios,1997 

Fusarium sambucinum R. solani and Fusarium Potato Black scurf and and 
Fusarium dry rot 

Seed treatment Hijwegen,1992 

T. minor P. xanthii Cucumber Powdery mildew Soil and seed treatment Romero et al.,2003 

Bacillus spp P. xanthii Cucurbit Powdery mildew Foliar spray  and seed 
treatment 

Gardener and Fravel, 
 2002 

Fusarium oxysporum Fusarium oxysporum  Tomato   Tomato wilt and   Soil incorporation       Gardener and Fravel, 
 2002 

Streptomyces spp Alternaria solani 
Clavibacter michiganensis 

Tomato Early blight and 
bacterial canker 

Seed coating  Rabeendram et al.,1998 

Gliocladium virens Sclerotinia sclerotiorum Cabbage Sclerotinia Rot soil inoculation to  
the root zone 

Rabeendram et al.,1998 
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1.8 Biological control agents used in controlling disease in tomatoes 

Biological control agents have been used in controlling various tomato diseases such as bacterial 

wilt, crown rot and early blight (Table 1.2) (Montealegre, et al., 2005; Yazici et al., 2011; Maji 

and Chakrabartty, 2014). This includes the use of bacteria, yeast, and filamentous fungi (Caron et 

al., 1985). These micro-organisms have been reported to be effective as microbial antagonists in 

controlling plant pathogens (Table 1.2) (Medeiros et al., 2012). 

 

Yazici et al. (2011a) reported that 23 out of 190 bacterial isolate that were screened in a study of 

bacteria for biological control were effective against early blight. In dual culture agar tests, the 

inhibitory zones ranged between 9.35 and 31.3mm. The organisms included bacteria such as 

Serratia plymuthica (IK-139) which was highly effective in the in-vitro test. Other active 

bacteria were Paenibacillus macerans-GC subgroup A (1.82), Serratia plymuthica (1.78), 

Bacillus coagulans (1.75), Serratia marcescens-GC subgroup A (1.50), Bacillus pumilis –GC 

subgroup B (1.50) and Pantoea agglomerans (1.32). However, there was no evidence on how 

well the bacteria performed in a greenhouse or field environment. In addition, isolate T39 of 

Trichoderma harzianum (TRICHODEX 20SP, Makhteshim Chemical Works) has also been 

rported as an effective as a biocontrol agent against tomato diseases in commercial greenhouses 

(Elad, 1993; Elad and Shtienberg, 2000). In a study conducted by Omar et al. (2005) two 

bacterial isolates, Bacillus megaterium (c96) and Burkholderia cepacia (c91), were found to be 

be antagonistic against Fusarium oxysporum f.sp. radicis-lycopersici, the causal organism of 

fusarium crown and root rot of tomato. 
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     Table 1.3. Biological control agents used against tomato pathogens 

 

  

Organism (BCA) Disease  Pathogen Reference 

Trichoderma harzianum Fusarium crown and root 

rot 

Fusarium oxysporum Sundaramoorthy and  Balabaskar 

(2013) 

Gliocladium Intraradices Fusarium crown and root 

rot 

F. oxysporum Datnoff et al. (1995) 

Bacillus subtilis Bacterial wilt Rhizoctonia solani Chen et al. (2012) 

Gliocladium virens Crown rot R. solani Lamb and Rosskopf (2001) 

Trichoderma spp. Root and crown rot R. solani Montealegre et al. (2005) 

Pseudomonas spp. Leaf spot of tomato Alternaria solani El-Abyad et al. (1993) 
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Table 1.4. Yeast antagonists that have been tested against different pathogens 

 

Organism Crop Pathogen Reference 

Candida guilliermondii (strains 101 , US 7) tomato  Botrytis cinerea Saligkarias et al. (2002) 

 

Pseudozyma flocculosa    Cucumber Powdery mildews Punja and Utkhede (2003) 

Candida quercitrusa Chilli pepper Colletotrichum capsici Chanchaichaovivat et al. (2007) 

Issatchenkia orientalis Chilli pepper C. capsici Chanchaichaovivat et al. (2007) 

Candida musae Chilli pepper C. capsici Chanchaichaovivat et al. (2007) 

Pichia guilliermondii, Chilli pepper C. capsici Chanchaichaovivat et al. (2007) 

Saprophytic yeast 

Pichia guilliermondii   

Pistachio nut  

Tomato 

Aspergillus flavus 

B. cinerea 

Afsah-Hejri (2013) 

Guetsky et al. (2002) 

  

 



15 

 

1.9 Systemic resistance in plants 

According to Elad et al. (2010) and Ryals and Ward (1994), plants express their own active 

defence mechanism against biotic stresses. Systemic acquired resistance SAR and induced 

systemic resistance (ISR) are the two reported forms of induced resistance in which plant 

defence is preconditioned as a result of prior infection or treatment that causes resistance 

following a challenge by the pathogen or parasite (Chaudhary et al., 2007). According to 

Kloepper et al. (1992), “induced systemic resistance (ISR) refers to the systemic protection of the 

plants following induction with an inducing agent to a single part of the plant”. Induction can be 

as a result of various substances such as microorganisms, metabolic substances of the host plant, 

or chemical compounds (Achuo et al., 2004). According to Louws et al. (2000), these agents 

elicit biochemical processes such as the production of phenolics, phytoalexins and enzymes such 

as glucanases or chitinases which are responsible for rupturing of fungal cell walls (Agrios, 

1988).  

 

 1.10 Silicon (Si) 

Silicon (Si) is regarded as one of the most abundant element in the earths crust as well as in the 

soil (Datnoff et al., 1997). According to Epstein (1994) , silicon is found in some plant tissue in 

high concentration and occasionally at levels higher than those of potassium and nitrogen. In 

agriculture, silicon has been used for centuries for the purpose of controlling disease without a 

proper understanding of its mechanisms of action (Belanger et al., 1995). Marschner (1995) 

noted that this element is beneficial in controlling plant diseases and aids in plant growth, 

including the alleviation of abiotic stresses. It has been reported to reduce mineral toxicity in 

plants such as those caused by aluminium and manganese, and also preventing zinc and 

phosphorus deficiency (Marschner, 1995; Tisdale, 1995). In crops such as rice (Oryza sativa L.), 

it was found that using fertilizers that include silicon as one of the elements resulted in higher 

yields and also reduced rice blast disease severity (Winslow, 1997; Kim et al., 2000). 

According to Bocharnikova et al. (2010) and Ma et al. (2001), silicon is taken up by plants from 

the soil as monosilicic acid (H4SiO). It accumulates in the epidermal tissues of rice as a polymer 

of hydrated amorphous silica soon after uptake. Various modes of action of silicon in plants have 
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been proposed. These include silicon being deposited in plant tissue resulting in the formation of 

a physical barrier (de Melo et al., 2010). In addition, it reduces the susceptibility of the cell wall 

to enzymatic degradation by fungi. In a study conducted by Fawe et al., (2001), silicon 

accumulated close to the pathogens site of entry which led to the conclusion that Si act against 

the pathogen by increasing the mechanical resistance in the plants. It also serves to enhance 

phytoalexin production (Cherif et al., 1994).  

Silicon has the ability to form complexes with phenolic compounds. The presence of these 

phenolic compounds in the infection courts acts as a defence mechanism against fungal 

pathogens and their attack. This resistance mechanism is facilitated by the presence of soluble 

silicon (Menzies et al., 1991a; Menzies et al., 1991b). According to Inanaga et al. (1995) silicon 

application can accelerate the production of antifungal compounds after the penetration of 

pathogens into the epidermal cell.  

Silicon can enhance defence responses that are functionally similar to those displayed in 

systemic acquired resistance. According to Cherif et al. (1994), Si treated plants can significantly 

increase antioxidant enzymes activities as well as the production of antifungal compounds such 

as phenolic metabolism products, phytoalexins, and pathogenesis related proteins (Cherif et al., 

1994). It has been reported that in the presence of Ca and pectin ions Si accumulates in the 

epidermal tissues and results in the formation of a cellulose membrane-Si, thus providing 

protection to the plants. The increase of Si in the sap of the plant results to Si polymerisation 

which is identified as Si gel hydrated with water molecules (Belanger, 2003; Rodrigues, 2003; 

Gao et al., 2005). 

In studies which were conducted on rice, Triticum spp (wheat) and Cucumis sativus L. 

(cucumber), lower disease severity in the Si-treated plants was related to the higher activity of 

protective enzymes polyphenol oxidase (PPO) and phenylalanine ammonia-lyase (PAL) in 

leaves of the plants (Cai et al., 2008). These enzymes play a significant role in regulating the 

production and accumulation of antifungal compounds such as phenolic metabolism products 

(lignin), phytoalexins and pathogenesis-related proteins in plants (Inanaga et al., 1995).  
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1.11 Use of acibenzolar-S-methyl on plants  

Acibenzolar-s- methyl (BION®) is the registered trade mark of a Syngenta product with an 

active ingredient known as acibenzolar-S-methyl (benzothiadiazole) (ASM) (Novartis, 1997: 

Csosz et al., 1999). ASM was registered in the United States as a “reduced risk compound’ in 

1998 as Actigard® (Syngenta Crop Protection Inc., Greensboro, NC) for use on tobacco 

(Nicotiana tabacum L.), spinach (Spinacea oleracea L.), tomato [Solanum lycopersicum (L.) H. 

Karst.] cole crops, and leafy vegetables and as BION in Europe (Syngenta Ltd., Basel, 

Switzerland) on wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) (Tally et al., 

1999; Novartis Crop Protection, 1999).   

 It triggers induced systemic resistance in plants, and is active against various pathogens such as 

fungi, bacteria and viruses when used on various plants (Lawton et al., 1996). This is achieved 

by the activation of various enzymes, lignin and phenolic compounds as well as enhancement of 

expression in the genes related to resistance in plants (Buzi et al., 2004). It induces host plant 

resistance and has no direct activity against target pathogens. However, application of this 

chemical to a range of plants results in a spectrum of responses. It has a long lasting effect on 

monocotyledonous plants while on dicotyledonous plants its effect has been reported to be 

minimal. It has been used on various crops to control diseases such as downy mildew 

(Plasmopara helianthi) and Orobanche cumana attacking sunflower, fire blight of pear, 

Sclerotinia white mould of soybean, and brown spot and narrow brown leaf spot in rice (Dann et 

al., 1998; Tosi et al., 1999; Sauerborn et al., 2002). 

 

ASM application showed remarkable protective activity against anthracnose in cucumber. 

Disease suppression by ASM has been found even when the whole cucumber plants were 

inoculated with the pathogen 3 hours after treatment with ASM. High levels of control were 

observed on both the treated leaves (first leaves) and untreated upper leaves. A strong activity 

against anthracnose was highly reproducible on treated and untreated leaves. However, 

phytotoxicity of ASM was noted when it was applied at 100gml−1, resulting in chlorosis, 

browning and mosaic formations, symptoms that appeared on treated leaves and occasionally on 

untreated leaves (Malolepsza, 2006). 
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In another study conducted on the effect of ASM in plants by Dilci et al., (2008), ASM 

significantly lowered infection caused by both B. cinerea and S. sclerotiorum on early maturing 

sunflower variety “Aurasol” (Monsanto), regardless of the application time and dosage applied.  

There is much to be done to convince farmers and growers that intergrated disease managent can 

work and could provide a useful addition to their disease management programmes.however 

before the strategy can be introduced investigation on how it works has to dertemined. 

1.12 References 

Achuo, E.A., Audenaert, K., Meziane, H., Hôfte, M., 2004. The salicylic acid dependant defence 

pathway is effective against different pathogens in tomato and tobacco. Plant Pathology 53, 63-

72. 

Adejumo, T.O., Ikotun, T., Florini, D.A., 1999. Biological control of Protomycopsis phaseoli the 

causal agent of leaf smut of cowpea. Phytopathology 147, 371-375. 

Afifi, M.A., Zayan, A.M., 2010. Antifungal effect of neem and some medicinal plant extracts 

against Alternaria solani the causes of tomato early blight. Aspects of Applied Biology 96, 251-

257. 

Afsah-Hejri, L., 2013. Biocontrol of Botrytis cinerea on strawberry fruit by plant growth 

promoting bacteria. International Food Research Journal 20(6), 3403-3409. 

Agrios, G.N., 1988. Plant Pathology 3rd ed. Academic Press, London.  

Agrios, G.N., 1997. Plant Pathology. 4th Ed, Academic Press, New York. 

Agrios, G.N., 2005. Plant Pathology. 5th Ed, Elsevier Academic Press, London. 

Andrews, J.H., 1983. Future strategies for integrated control. Fungi in biological control system. 

American Phytopathological Society, St Paul MN, 1-431-440. 

Balbi-Peña, M.I., Becker, A., Stangarlin, J.R., Franzener, G., Lopes,M.C., Schwan-

Estrada,K.F.R., 2006 Control of Alternaria solani em tomateiro by extracts in Curcuma longa 

and curcumin - II avaliação in vivo. Brasileira Phytopathology 31, 401-404. 



19 

 

Baker, K.F., Cook, R.J., 1974. Biological Control of Plant Pathogens. W. H. Freeman and Co, 

San Francisco, California.  

Bartlett, D.W., Clough, J.M., Godwin1, J.R., Hall, A.A., Hamer, M., Parr-Dobrzanski, B., 2002. 

Strobilurin fungicides.Pest Management 58 (7), 649-662. 

Becker, J.O., Schwinn, F.J., 1993. Control of soil-borne pathogens with living bacteria and fungi: 

Status and outlook. Pesticide Science 37, 355-363. 

Belanger, R.R., Benhamou, N., Menzies, J.G., 2003. Cytological evidence of an active role of 

silicon in wheat resistance to powdery mildew (Blumeria graminis f.sp.tritici)”. Phytopathology 

93(4), 402-412.  

Bocharnikova, E.A., Loginov, S.V., Matychenkov, V.V., Storozhenko, P.A., 2010. Silicon 

fertilizer efficiency. Russian Agricultural Sciences 36, 446-448. 

Butt, T.M., Goettel, M.S., 2000. Bioassays of entomopathogenic fungi. In: Bioassays of 

enthomophathogenic microbes and nematodes. Navon, A., Acher, K.R.S., (Eds) 141-195. CABI 

Publishing, Wallingford, United Kingdom. 

Bagheri, A., 2010. Potato farmers’ perceptions of sustainable agriculture: the case of Ardabil 

province of Iran. Proceedings on Social and Behavioral Sciences 5, 1977-1981. 

Buzi, A., Chilosi, G., De Sillo, D., Magro, P., 2004. Induction of resistance in melon to 

Diydymella bryoniae and Sclerotinia sclerotiorum by seed treatments with acibenzolar-S-methyl 

and methyl jasmonate but not with salicylic acid. Phytopathology 152, 34-42. 

Cai, K.Z., Gao, D., Luo, S.M., Zeng, R.S., Yang, J.Y., Zhu, X.Y., 2008. Physiological and 

cytological mechanisms of silicon induced resistance in rice against blast disease. Plant 

Physiology 134, 324-333. 

Caron, M., Fortin, J.A., Richard, C., 1985 Effect of Glomus intraradices on infection by 

Fusarium oxysporum f.sp. radicis-lycopersici in tomatoes over a 12-week period. Canadian 

Journal of Botany 64, 552-556. 

Chaerani, R., Voorrips, R.E., 2006. Tomato early blight (Alternaria solani): The pathogen, 

genetics, and breeding for resistance. Journal of General Plant Pathology .72, 335–347. 



20 

 

Chaerani, R., Groenwold, R., Roeland, P.S., Voorrips, E., 2007. Assessment of early blight 

(Alternaria solani) resistance in tomato using a droplet inoculation method. Journal of Plant 

Pathology 73, 96-103. 

Chanchaichaovivat, A., Ruenwongsa, P., Panijpan, B., 2007. Screening and identification of 

yeast strains from fruits and vegetables: Potential for biological control of postharvest chilli 

anthracnose (Colletotrichum capsici). Biological Control 42, 326-335. 

Chaudhary, D.K., Prakash, A., Johri, B.N., 2007. Induced systemic resistance in plants (ISR) in 

plants: mechanism of action. Indian Journal of Microbiology 47, 289-297. 

Chen, Y., Yan, F., Chai, Y., Liu, H., Kolter, R., Losic, K., Guo, J., 2012. Bio- control of tomato 

wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes 

mediating biofilm formation. Environmental Microbiology 15(3), 848-64. 

Cherif, M., Menzies, J.G., Ehret, D.L., Bogdanoff, C., Bélanger, R.R., 1994. Yield of cucumber 

infected with Pythium aphanidermatum when grown with soluble silicon. Horticultural Science 

29, 896-897. 

Clarkson, J.P., Scruby, A., Mead, A., Wright, C., Smith, B., Whipps, J.M., 2006. Integrated 

control of Allium white rot with Trichoderma viride, tebuconazole and composted onion waste. 

Plant Pathology 55, 375-386. 

Cook, R.J., 2000. Advances in plant health management in the 20th century. Annual Review of 

Phytopathology. 38, 95-116. 

Cook R.J., Bruckart W.L., Coulson J.R., Goettel M.S., Humber R.A., 1996. Safety of 

microorganisms intended for pest and plant disease control: a framework for scientific 

evaluation. Biological Control 7, 333–51. 

Csosz, L., Tyihak, E., Manninger, S., 1999. First experience with Bion as a synthetic plant 

activator. Novenyvedelem 35(7), 327-337. 

Dabbas, M.R., Singh, D.P., Prakash, H.G., 2010. Effect of seed dressing chemicals and bio agent 

on seed mycoflora, compatibility and seed germination of tomato. Asian Journal of Horticulture 

5, 298-300. 



21 

 

Dann, E., Diers, B., Byrum, J., Hammerschmidt, R., 1998. Effect of treating soybean with 2, 6- 

dichloroisonicotinic acid (INA) and benzothiadiazole (BTH) on seed yields and the level of 

disease caused by Sclerotinia sclerotiorum in field and greenhouse studies. European Journal of 

Plant Pathology 104, 271–278. 

Datnoff, L.E., Nemec, S., Pernezny, K., 1995. Biological control of Fusarium crown and root rot 

of tomato in Florida using Trichoderma harzianum and Glomus intraradices. Biological Control 

5, 427-431. 

Datnoff, L.E., Deren, C.W., Snyder, G.H., 1997. Silicon fertilization for disease management of 

rice in Florida. Crop Protection 16, 525-531. 

de Boer, M., Van der Sluis, I., Van Loon, L.C., Bakke, P.A.H.M., 1999. Combining fluorescent 

Pseudomonas spp strains to enhance suppression of Fusarium wilt of radish. Plant Pathology 

105, 201–210. 

de Melo, S.P., Monteiro, F.A., De Bona, F.D., 2010. Silicon distribution and accumulation in 

shoot tissue of the tropical forage grass Brachiaria brizantha. Plant and Soil 336, 241-249. 

Department of Agriculture, Forestry and Fisheries. 2010. Production Guidelines for Tomato. 

Directorate Agricultural Information Services, Pretoria. pp. 3-32.www.daff.gov.za/publications 

Department of Agriculture, Forestry and Fisheries. 2012. Production Guidelines for Tomato. 

Directorate Agricultural Information Services, Pretoria. pp. 1-16.www.daff.gov.za/publication 

Department of Agriculture, Forestry and Fisheries. 2013. Production Guidelines for Tomato. 

Directorate Agricultural Information Services, Pretoria. pp. 1 16.www.daff.gov.za/publications. 

Dilci, B., Rühl, G., A. Bramm, A., Hoeppner, F., 2004. Resistance inducing agent BION® and 

plant nutrition method CULTAN as alternative agricultural practice for stabilized yield in 

Central Europe in high oleic sunflower (Helianthus annuus L.). In: Proceedings of the 4th 

International Crop Science Congress, 26 September – 1 October, Brisbane, Australia.   

El-Abyad, M.S., El-Sayed, M.A., El-Shanshoury, A.R., El-Sabbagh, S.M., 1993. Towards 

biological control of fungal and bacterial disease of tomato using antagonistic Streptomyces spp. 

Plant and Soil 149, 185-195. 



22 

 

Elad, Y., Zimand, G., Zaqs, Y., Zuriel, S., Chet, I., 1993. Use of Trichoderma harzianum in 

combination or alternation with fungicides to control cucumber grey mould (Botrytis cinerea) 

under commercial greenhouse conditions. Plant Pathology 42, 324-332. 

Elad, Y., Shtienberg, D., 2000. Management of humidity-promoted diseases in non-heated 

greenhouses by means of fenhexamide, Trichoderma harzianum T39 and integrated control 

according to greenman. Pflanzzenschutz-Nachrichten Bayer, in press. 

Elad, Y., Rav,D.,  David,D.R., Harel,Y.M., Borenshtein,M., Kalifa,H.B., Silber,A.,Graber,E.R., 

2010. Induction of systemic resistance in plants by biochar, a soil applied carbon sequestering 

agent. Phytopathology 100, 913–921 

Ellis, M.B., Gibson, I.A.S., 1975. Alternaria solani no. 45 set 48. Commonwealth Mycological 

Institute, Kew, Surrey, UK. 

El-Khoury, W., Makkouk, K., 2010. Integrated plant disease management in developing 

countries. Journal of Plant Pathology 92, 35-42. 

Emebiri, L.C., Obiefuna, J.C., 1992. Effect of leaf removal and intercropping on the incidence 

and severity of black Sigatoka disease at the establishment phase of plantains (Musa spp. ABB). 

Agriculture, Ecosystems and Environment 39, 213-219.  

Epstein E., 1994. The anomaly of silicon in plant biology, Proceedings of the National Academy 

of Sciences 91(1), 7-11.  

Fawe, A., Menzies, J.G., Chérif, M., Bélanger, R.R., 2001. Silicon and disease resistance in 

dicotyledons. In: Silicon in Agriculture. Datnoff L.E., Snyder G.H., Korndörfer G.H., (Eds.), 

159-170. Elsevier, Amsterdam. 

Foolad, M.R., Ntahimpera, N., Christ, B J., Lin, G.Y., 2000. Comparison of field, greenhouse 

and detached-leaflet evaluations of tomato germ plasm for early blight resistance. Plant Disease 

84, 967-972. 

Fravel, D.R., Spur, R.H.W.J., 1977. Biocontrol of tobacco brown-spot disease by Bacillus cereus 

subsp. mycoides in a controlled environment. Phytopathology 67, 930-932. 



23 

 

Gao, X., Zou, C., Wang, I., Zhang, F., 2005. ‘‘Silicon improves water use efficiency in plants”. 

Journal of plant nutrition 27(8), 1457-1470. 

Gardener, M.B., Fravel, D.R., 2002. Biological control of plant pathogens: Research, 

commercialisation and application in the USA.Online.Plant health progress doi:10.1094/PHP-

200200510-01-RV. 

Goettel, M.S., Hajek, A.E., 2001. Evaluation of Non-target Effects of Pathogens Used for 

Management of Arthropods. In: Wajnberg, E., Scott, J.K., Quimbly, P.C. (eds.) (2001): 

Evaluating Indirect Ecological Effects of Biological Control. Oxon/ N. York: CABI 

Publishing.81-97. 

Guetsky, R., Shtienberg, D., Elad, Y., Fischer, E., Dinoor, A., 2002. Improving biological 

control by combining biocontrol agents each with several mechanisms of disease suppression. 

Phytopathology 92, 976-985. 

Hanada, T., 1988. Use of cheese cloth and plastic materials in highland vegetable production. 

Teknologi Sayur Sayuran 4, 25-31. 

Harman, G.E., Bjorkman, T., 1998. Potential and existing uses of Trichoderma and Gliocladium 

for plant disease control and plant growth enhancement. In: Trichoderma and Gliocladium Vol. 

2. Kubicek, C.P., Harman, G.E., (Eds). Taylor and Francis, London. 229-265.  

Harvey, M., Quilley, S., Beynon, H., 2002. Exploring the tomato.Transformation of Nature, 

Society and Economy. Edgar Publishing, Cheltenham, UK: 1-304.  

Hassanein, M., Abou-Zeid, A.M., Youssef, K.A., Mahmoud, D.A., 2010. Control of tomato early 

blight and wilt using aqueous extract of neem leaves. Phytopathologica Mediterranea 49, 143–

151. 

Hijwegen, T., 1992. Biological control of cucumber powdery mildew with Tilletiopsis minor, 

under greenhouse conditions. Netherlands Journal of Plant Pathology 98, 211–215. 

Inanaga, S., Okasaka, A., Tanaka, S., 1995. Does silicon exist in association with organic 

compounds in rice plant? Japanese Journal of Soil Science and Plant Nutrition 11, 111-117. 



24 

 

Jagadeesh, K.S., Jagadeesh, D.R., 2009. Biological control of early blight of tomato caused by 

Alternaria solani as influenced by different delivery methods of Pseudomonas gladioli B25. 

Acta Horticulturae 808:327-332. 

Jones, J.P., 1991. Early blight, pp. 1-13-14. Compendium of Tomato Disease. Editor? American 

Phytopathological Society, St. Paul, MN. 

Kemmitt, G., 2012. Early Blight of Potato and Tomato. The American Phytopathological 

Society, St Paul, MN. 

Kim, S. G., Kim, K. W., Park, E. W., Choi, D. 2002. Silicon-induced cell wall fortification of 

rice leaves: a possible cellular mechanism of enhanced host resistance to blast. Phytopathology 

92, 1094-1103. 

Kloepper, J.W., Tuzun, S., Kuc, J.A., 1992. Proposed definition related to induced resistance.  

Biocontrol Science and Technology 2, 349-351. 

Lawton, K.A., Friedrich, L., Hunt, M., Weymann, K., Delaney, T., Kessmann, H., Staub, T., 

Ryals, J., 1996. Benzothiadiazole induces disease resistance in Arabidopsis by activation of the 

systemic acquired resistance signal transduction pathway. Plant Journal 10, 71-82. 

Leverentz, B., Conway, W.S., Janisiewicz, W.J, Saftner, R.A, Camp, M.J., 2003. Effect of 

combining 1-MCP treatment, heat treatment, and biocontrol on the reduction of postharvest 

decay of ‘Golden Delicious’ apples. Postharvest Biology and Technology 27, 221-233. 

Louws, F.J., Wilson, M., Campbell, H.L., Cuppels, D.A., Jones, J.B., Shoemaker, P.B., Sahin, F., 

Miller, S.A., 2001. Field control of bacterial spot and bacterial speck of tomato using a plant 

activator. Plant Disease 85,481-488. 

Lumsden, R.D., Lewis, J.A., Fravel, D.R., 1995. Formulation and delivery of biocontrol agents 

for use against soilbrne pathogens. In: Hall, F.R., Bary, J., eds, Biological Control Pest Agents. 

Formulation and Delivery. Washington, DC: American Chemical Society, 166-182. 

Lumsden, R.D., Walter, J.F., Baker, C.P., 1996. Development of Gliocladium virens for 

damping-off disease control. Canadian Journal of Plant Pathology 18, 463-468. 



25 

 

Ma, J.F., Miyake, Y., Takahashi, E., 2001. Silicon as a beneficial element for crop plants. In: 

Datnoff LE, Snyder GH, Korndorfer GH (eds) Silicon in agriculture. Studies in plant science, 8. 

Elsevier, Amsterdam,17-39. 

Madden, L., Pennypacker, S.P., MacNab, A.A., 1978. Fast, a forecast system for Alternaria 

solani on tomato. Phytopathology 68, 1354-1358. 

Malolepsza, U., 2006. Induction of disease resistance by acibenzolar-S-methyl and O-

hydroxyethylorutin against Botrytis cinerea in tomato plants. Crop Protection 25, 956-962. 

Mamgain, A., Roychowdhury, R., Jagatpati Tah, J., 2013. Alternaria pathogenicity and its 

strategic controls. Research Journal of Biology 1, 1-9. 

Marschner, H., 1995. Mineral Nutrition of Higher Plants. Academic Press, London. 

Maji, S., Chakrabartty, P.K., 2014. Biocontrol of bacterial wilt of tomato caused by Ralstonia 

solanacearum by isolates of plant growth promoting rhizobacteria. Australian Journal of Crop 

Science 8(2), 208-214. 

McGee, D.C., 1996). Advances in Seed Treatment Technology. Technical Report No. 11, Asian 

Pacific Seed Association. 

McKenzie, D., 1991. Vroe~roes, 'n onderskatte siekte op aartappels in Suid Afrika, pp. 1-7- 10, 

Roodeplaat, South Africa. 

Medeiros, F.H.V., Martins, S.J., Zucchi, T.D., De Melo, I.S., Batista, L.R., Machado, J.C., 2012, 

Biological control of mycotocin-producing molds. Revista Ciências Agrotec Lavras 36, 483-497. 

Menzies, J., Bowen, P., Ehret, D., Glass, A.D.M., 1991a. Foliar applications of potassium silicate 

reduce severity of powdery mildew on cucumber, muskmelon and zucchini squash. Journal of 

the American Society for Horticultural Science 117, 902-905. 

Menzies, J.G., Ehret, A.D., Glass, M., Helmer, T., Koch, C., Seywerd, F., 1991b. Effects of 

soluble silicon on the parasitic fitness of Sphaerotheca fuliginea on Cucumis sativus. 

Phytopathology 81, 84-88. 

Miller, S.A., 2000. Field control of bacterial spot and bacterial speck and spot of tomato using a 

plant activator. Plant Disease 85, 481-488. 



26 

 

Miller, J., Miller, T., 2004.Timing of fungicide applications for managing early blight. 

Proceedings of at the Idaho Potato Conference. January 21 and 22.www.cals.uidaho.edu. 

Montealegre, J.R., Herrera, R., Velásquez, J.C., Silva, P., Besoaín, X., Pérez, L.M., 2005. 

Biocontrol of root and crown rot in tomatoes under greenhouse conditions using Trichoderma 

harzianum and Paenibacillus lentimorbus. Additional effect of solarisation. Electronic Journal of 

Biotechnology.http://www.ejbiotechnology.info/content/vol8/issue3/full/7/. 

Novartis. 1997. Nature created the concept. The plant activator. Novartis Crop Protection AG, 

Basle, Switzerland, pp. 35. 

Novartis Crop Protection. 1999. Actigard, a new and novel plant health product for protection 

against diseases of agronomic, vegetable and tree crops. Novartis Crop Protection Technical 

Bulletin 4. Greensboro, NC. 

Omar, I., O'Neill, T. M., Rossall, S., 2000. Biological control of fusarium crown and root rot of 

tomato with antagonistic bacteria and integrated control when combined with the fungicide 

carbendazim. Plant Pathology 55 (1), 92-99. 

Papavizas, G.C., 1985. Trichoderma and Gliocladium: Biology, ecology, and potential for 

biocontrol. Annual Review of Phytopathology 23, 23-54. 

Pscheidt, J.W., Stevenson, W.R., 1988. The critical period for control of early blight (Alternaria 

solani) of potato. Potato Journal 65,425-438. 

Punja, Z.K., Utkhede, R.S., 2003. Using fungi and yeasts to manage vegetable crop diseases. 

Elsevier 21 (ed.) 1998. Proc. 51st N.Z. Plant Protection Conf. 1998: New Zealand Plant 

Protection Society. Annals of Applied Biology 21(9), 400-7. 

Rabeendran N., Jones E.E., Stewart A. (1998) Isolation and in vitro screening of soil fungi for 

biological control of Sclerotinia sclerotiorum: Microbial Control of Plant Pathogens, 

proceedings of the 51st New Zealand pPlant Protection Conference 1998: , New Zealand Plant 

Protection Society. pp. 102-106. 

Raupach, G.S., Kloepper, R.J.W., 2000. Bio-control of cucumber diseases in the field by plant 

growth-promoting rhizobacteria with and without methyl bromide fumigation. Plant Disease 84, 

1073-1075. 



27 

 

Ryals, J.S.U., Ward, E., 1994. Systemic acquired resistance. Plant Physiology. 104, 1109-1112. 

Rodrigues, R.R., Benhamou, N, N., Datnoff, L.E., Jones, J.B., Belanger, R.R., 2003 

‘Ultrastructural and cytochemical aspects of silicon-mediated rice blast resistance. 

Phytopathology 93(5), 535-546. 

Romero, D., Rivera, M.E., Cazorla, F.M., De Vicente, A., Perez-Garcia, A., 2003. Effect of 

mycoparasitic fungi on the development of Sphaerotheca fusca in melon leaves. Mycological 

Research 107, 64-71. 

Rotem, J., 1994. The Genus Alternaria: Biology, Epidemiology, and Pathogenicity, 1st Ed. The 

American Phytopathological Society, St. Paul, Minnesota. 

Sahu, D.K., Khare, C.P., Singh, H.K., Thakur, M.P., 2013. Evaluation of newer fungicide for 

management of early blight of tomato in Chhattisgarh.internation quarterly journal of life science 

8(4), 1255-1259. 

Sauerborn, J., Buschmann, H., Hiasvand, G., Ghiasi, K., Kogel, K.H., 2002. Benzothiadiazole 

activates resistance in sunflower (Helianthus annuus) to the root-parasitic weed Orobanche 

cumana. Phytopathology 92, 59-64. 

Saligkarias, I.D, Gravanis, I.F, Epton, H.A.S., 2002. Biological control of Botrytis cinerea on 

tomato plants by the use of epiphytic yeasts Candida guilliermondii Strains 101 and US 7 and 

Candida oleophila Strain I-182: I. in vivo studies. Biological Control 25, 143-150. 

Sarkar, S.C., Chowdhary, A.K., 2004. Bio-efficacy of polyram against Alternaria solani causing 

early blight disease of tomato. In: 56th Annual Meeting held at IARI, New Delhi-110012, and 

February 19-21. 

Sherf, A.F., MacNab, A.A., 1986. Vegetable Diseases and Their Control. Wiley, New York. 

Sims, W.L., 1980. History of tomato for industry around the world. Acta Horticulturae 100, 25-

26. 

Simmons, E.G., 2000. Alternaria themes and variations (244-286). Species on Solanaceae. 

Mycotoxin 75, 1-115. 



28 

 

Simmons E. G. (2007). Alternaria. An Identification Manual: CBS Biodiversity Series No. 6. 

CBS Fungal Biodiversity Centre, Utrecht. The Netherlands 775. 

Sivan, A., Chet, I., 1993. Integrated control of fusarium crown and root rot of tomato with 

Trichoderma harzianum in combination with methyl bromide or soil solarisation. Crop 

Protection 12, 380-386. 

Spletzer, M.E., Enyedi, A.J., 1999. Salicylic acid induces resistance to Alternaria solani in 

hydroponically grown tomato. Phytopathology 89, 722-727. 

Sundaramoorthy,S., Balabaskar,P., 2013. Biocontrol efficacy of Trichoderma spp. against wilt of 

tomato caused by Fusarium oxysporum f. sp. Lycopersici.Journal of Applied Biology and 

Biotechnology 1 (03),036-040,Available online at http://www.jabonline.in DOI: 

10.7324/JABB.2013.1306 

Stevenson, W.R. 1993. Management of early blight and late blight. Pages 141 -147. In Potato 

Health Management. Rowe, R.C. (Ed). APS Press, St. Paul, MN. 

Taylor, I.B. 1986. Biosystematics of the tomato. P.1-34. In: The tomato crop: a scientific basis 

for improvement. Atherton J.G., Rudich, J. (Eds.). Chapman and Hall, London. 

Tally, A., Oostendorp, M., Lawton, K., Staub, T., Bassy, B., 1999. Commercial development of 

elicitors of induced resistance to pathogens. In: Inducible Plant Defences against Pathogens and 

Herbivores: Biochemistry, Ecology, and Agriculture. Agrawal, A.A., Tuzun, S., Bent, E., (Eds). 

APS Press, St. Paul, MN (USA). 

Tisdale, S.L., Nelson, W.L., Beaton, J.D., Havlin, J.L., 1995. Soil fertility and fertilizer, 5th Ed. 

Prentice-Hall of India, New Delhi. 68. 

Tosi, L., Luigetti, R., Zazzeroni, A., 1999. Benzothiadiazole induces resistance to Plasmopara 

helianthi in sunflower plants. Phytopathology 147, 365-370. 

Tumwine, J., Frinking, H.D., Jeger, M.J., 2002. Integrating cultural control methods for tomato 

late blight (Phytophthora infestans) in Uganda. Annals of Applied Biology 141:225-236. 

Urech, P.A., Staub, T., Voss, G., 1997. Resistance as a concomitant of modern crop protection 

Pesticide Science 51 (3), 227-234.  



29 

 

Valentin, R J. 2002. Economics of marketing and technical support in the commercial biological 

control industry. First International Symposium on Biological Control of Arthropods. p. 151 – 

153, viewed 20 October 2009. Available on the internet www.bugwood.org/arthropod. 

Van der waals, J., Korsten, L., Denner, F.D.N. 2003. Early blight in South Africa: Knowledge, 

attitudes and control practices of potato growers. Potato Research 46, 27-37.  

Vasudevan, P., Reddy, M.S., Kavitha, S., Elusamy, V.P., Paulraj, R.S., Puroshothaman, S.M., 

Brinda, P.V., Bharathi, K.S., Kloepper, J., Gnanamanickyam, S.S., 2002. Role of biological 

preparations in enhancement of rice seedling growth and grain yield. Current Science 83, 140-

1144. 

Westcott,C.,2001. Plant disease handbook.6th Edition.Kluwer academic 

press.Boston.Massachussets. 

Winslow MD, Okada K, Correa-Victoria F. 1997. Silicon deficiency and the adaptation of 

tropical rice ecotypes. Plant Soil 188, 239-248. 

Yazici, S., Yanar, Y., Karaman, I., 2011. Evaluation of bacteria for biological control of early 

blight disease of tomato. African Journal of Biotechnology 10, 1573-1577. 

Ying, X., Min, L., 2011. Research on farmer’s production willingness of safe agricultural 

products and its influence factors: An empirical analysis in China. Energy Procedia, 5, 53-58. 

  

http://www.bugwood.org/arthropod


30 

 

CHAPTER TWO 

Isolation and in vitro screening of biological control agents against Alternaria 

solani 

 

Abstract 

In this study 171 bacterial and 40 yeast isolates were screened in vitro for antagonistic activity 

against Alternaria solani, the causal agent of early blight disease on tomato. The bacterial and 

yeast strains were isolated from infected and uninfected tomato leaves, respectively. An in vitro 

bioassay on agar plates was used to screen the bacterial isolates, while inhibitory effects on spore 

germination of A. solani was used to screen the yeast isolates. The results for the in vitro 

bioassay on agar plates showed that 60% of the bacterial isolates inhibited mycelial growth of A. 

solani, with inhibition zones ranging from 6-14 mm. Thirty-five percent (35%) of the yeast 

isolates inhibited spore germination of A. solani. The five most effective bacterial isolates, 

XVT8, NC13, N6/2, WESH1 and N5, and the five most effective yeast isolates, P1-1, C10, P1-

Orange, Y4 and H5, were selected for identification. Based on 16s rRNA sequence, Isolates N5, 

N6/2 and WESH1 were identified as Bacillus subtilis while NC13 was identified as 

Pseudomonas putida strain PYR1 and XVT8 was identified as a Bacillus spp. The yeast isolates 

were sent to Inqaba Biotechnical Industries for genomic identification. Isolates C10, P1-1 and 

Y4 were identified as Meyerozyma guilliermondii, Isolate P1-orange was identified as 

Rodotorura minuta and H5 was identified as Pichia guilliermondii. The five best bacterial and 

five yeast isolates were used for further studies. 
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2.1 Introduction 

Tomato is regarded as one of the world’s major vegetable crop and is grown under protected 

structures as well as under field conditions (Kumra and Phoeling, 2006). According to FAO 

(2001), it is an important crop for both small and large holder farmers in terms of land 

occupation, cultivated surface, cash and nutritional value. However, this crop encounters major 

losses due to numerous diseases affecting it. Early blight, caused by Alternaria solani Sorauer, 

has been reported to be one of the most destructive diseases affecting tomato [Solanum 

lycopersicum (L.) H. Karst.] production (Howell, 2007). Favourable environmental conditions 

such as high relative humidity, warm temperatures and abundant moisture have been reported to 

result in rapid disease development causing major yield losses (Agrios, 1988; Rotem, 1994). The 

fungus causes disease on foliage (leaf blight), stems (collar rot) and fruit, and can result in severe 

damage during all stages of plant development (Nash and Gardner, 1988).  

 

Fungicides have been the most widely adopted control measure for this disease in most tomato 

production areas. However, due to environmental concerns, human health issues and the cost of 

these fungicides, there is a need for alternative methods of control (Herriot et al., 1986). The use 

of bio-based, eco-friendly, biodegradable plant derived or microbial derived products to control 

plant pathogens has been suggested as alternatives. According to Jagadeesh and Jagadeesh 

(2009), biological control agents offer a practical and economical alternative for the management 

of plant pathogens. Microorganisms such as bacteria and yeasts have been evaluated for their 

potential as biological control agents in controlling plant diseases. Biological control agents such 

as Pseudomonas spp have been used with success in controlling early blight on tomato (Sharma 

and Sharma, 2006). Other biological control agents such as Streptomyces spp and Bacillus 

subtilis have also been used to control A. solani (Mateascu et al., 2002; Sid et al., 2005). 

 

Previous research has shown that yeast isolates can be used as biological control agents against 

various diseases (Elad et al., 1994). Studies conducted by Cook et al. (1997) and Dik et al. 

(2001) showed that epiphytic yeast can control Botrytis cinerea Pers.:Fr. by colonizing wounds 

of tomato plants. However, according to Pliego (2011), only few of these organisms actually 
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work when applied in the field. This is due to a lack of appropriate screening procedures in 

selecting for the potential organisms under laboratory conditions. According to Krauss (1996), 

isolating biocontrol agents is a straight forward procedure. However, isolates require proper 

screening to select the best ones. Field trials are said to be the most realistic approach as far as 

screening is concerned but are expensive (Pliego et al., 2011). In this study, dual culture plates as 

well as inhibition of spore germination were used to screen bacteria and yeast species versus A. 

solani. The aim of the study was to isolate potential bacterial and yeast BCA’s from the 

phyllosphere of tomato plants and screen them for antagonistic activities against A. solani in 

vitro. 

 

2.2 Materials and methods 

2.2.1 Isolation of A. solani 

Tomato plants showing early blight disease symptoms were collected from a farm near 

Pietermaritzburg, KwaZulu-Natal, South Africa. The pathogen was isolated from infected leaf 

samples. Several small tissue pieces from the infected parts were cut and surface sterilized by 

soaking in 2% sodium hypochlorite (NaOCl) solution for 5 min. They were then rinsed five 

times in sterile distilled water. The small tissues were then picked with sterile forceps and 

wrapped in a sterile paper towel to dry. The small tissues were then plated onto V8 tomato juice 

agar medium consisting of distilled water (800ml), V8 juice (200ml), CaCO3 (2g) and agar 

(20g). The plates were incubated at 26 ±2°C and monitored daily for 7 days. Fungal growth 

suspected to be A. solani was aseptically transferred onto fresh V8 tomato juice agar plates and 

incubated to produce pure A. solani cultures. Wet mounts were prepared from pure cultures and 

viewed under a light microscope for observation of spores and hyphae. Dark coloured, muriform 

and beaked conidia with septate branched mycelium as well as light brown hyphae which turned 

darker with age were observed (Ellis and Gibson 1975; Rotem 1994). Cultural characteristics 

were observed directly by pigmentation on the growing medium and the mycelial growth pattern 

on PDA plates while sporulation was observed on samples from 10-day-old culture under the 

microscope. Pure cultures were stored in 30% glycerol at -800C for further use.  
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2.2.2 Pathogenicity test for A. solani isolates 

A pathogenicity test of the A. solani isolate was carried out under greenhouse conditions. Two 

weeks old tomato seedlings were transplanted into 15 cm diameter pots containing composted 

pine bark growing medium. Two seedlings were planted per pot. Bacterial cultures were washed 

by adding sterile distilled water nto the agar plates containing the bacterial culture. The cell 

concentrations in the suspensions were determined using a Helber counting chamber (Paul 

Marienfield Superior GmbH & Co, Germany), and adjusted to 107 cells ml-1 before inoculation 

onto tomato plants.The seedlings in each pot were inoculated with an A. solani suspension using 

a hand spray at a concentration of 104 conidiam l-1. The inoculated plants were covered with 

clear plastic bags overnight to maintain high relative humidity for fungal infection. Seedlings 

were monitored for the development of early blight symptoms. Plants with symptoms specific to 

early blight were sampled and the fungus was re-isolated as previously described in Section 

2.1.1. 

2.2.3 Isolation of biological control agents (BCAs) 

(i) Isolation of bacterial BCAs 

Approximately 10g sample of infected and un-infected leaves and stems of tomato plants were 

colleceted from Hanover farm in Pietermaritzburg. They were washed under running tap water 

and transferred into 500 ml conical flasks containing 200 ml of sterile distilled water. This was 

shaken vigorously on a rotary shaker at 180 rpm for 60 min. The leaves were removed and the 

liquid suspension was used to prepare serial dilutions of 10-1 to 10-4. The dilutions were heated in 

a water bath at 100°C for 15 min. Aliquots of 0.1 ml were plated on tryptone soy agar (TSA) and 

incubated at 28oC for 72 h. Individual bacterial colonies were transferred onto clean TSA plates 

and incubated for 48 h at 28oC. A total of 171 pure bacterial colonies were selected based on 

morphological characteristic, sub-cultured and stored in 30% glycerol at -80°C for further use in 

the study.  
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(ii) Isolation of yeast BCAs 

Approximately 10g sample of un-infected leaves and stems of tomato plants collected from 

Hanover farm in Pietermaritzburg were washed under running tap water and transferred into 500 

ml conical flasks containing 200 ml sterile distilled water. The flask was placed on a rotary 

shaker at 180 rpm for 60 min to dislodge microorganisms from the leaf and stem surfaces. The 

leaves and stem sections were removed and the liquid suspension was used to prepare serial 

dilutions of 10-1 to 10-4. One ml of each dilution was plated on nutrient yeast dextrose agar 

(NYDA) plates consisting of nutrient broth (8 g.L-1), yeast extract (5 g.L-1), dextrose (10 g.L-1), 

agar (15 g.L-1) and chloramphenicol (100 mg.L-1). The agar plates were incubated for 48 h at 

28oC. Selected yeast colonies were re-streaked on malt extract agar plates consisting of malt 

extract (30 g.L-1), peptone (3 g.L-1), agar (15 g.L-1) for single colony isolation. A total of 40 

suspected yeast colonies were stored in 30% glycerol at -80°C for subsequent use in the study. 

2.2.4 In vitro screening of bacterial isolates against A. solani 

(i) Preliminary screening of bacterial isolates 

One hundred and seventy-one bacterial culture plates were each separately washed with sterile 

distilled water using an L-shape glass rod and the suspensions were separately poured into 

Erlenmeyer flasks. The concentration of cells was adjusted as required using Helber counting 

chamber (Paul Marienfield Superior GmbH & Co, Germany). In vitro inhibition of mycelial 

growth of A. solani by the bacterial isolates was tested using a dual culture technique as 

described by Paulitz et al. (1992) and Landa et al. (1997). The experimental design used was a 

complete randomized design (CRD) with three PDA replicate plates for each isolate. Three 50 μl 

drops from a 108 cfu ml-1 bacterial suspension were equidistantly placed on the margins of potato 

dextrose agar (PDA) plates and incubated at 28°C for 24 h. A 4 mm2 agar disc cut from fresh V8 

agar cultures of A. solani was placed at the center of the PDA plates for each bacterial isolate and 

incubated at 28 ± 1°C for 10 d. The control was treated with distilled water. Data were obtained 

for the percentage inhibition by using the following formular:  

ZOI = (100 x (R1 - R2)/R1 - R1; where R1 is radial growth of the pathogen in Control treatment 

and R2 is radial growth of the pathogen in dual culture with antagonist) and the width of the zone 
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of inhibition (ZOI) (measured as the smallest distance between the colonies in the dual culture 

plate) 

  (ii) Confirmation of inhibitory activity of selected bacterial isolates 

Bacterial isolates selected from the first in vitro screening experiment were re-screened for the 

second time using the dual bioassay technique as described by Paulitz et al. (1992) and Landa et 

al. (1997). The experimental design used was a complete randomized design (CRD) with three 

PDA plates for each isolate. Pieces of agar blocks (4x4m2) carrying mycelium of the pathogen 

grown on V8 media were cut and transferred into the center of each PDA plate. The agar plates 

were divided into four quadrants and sterile antibiotic disk were placed in each quadrant of the 

plates and the biocontrol agents were inoculated onto the disk. The plates were incubated at 28°C 

for 10 d and the inhibition diameters were measured. The above procedure was repeated for 20 

bacterial isolates that showed potential to inhibit A. solani. The experiment was repeated twice. 

2.2.5 In vitro screening of yeast isolates against A. solani  

    (i) Preliminary screening of yeast strains 

Yeast isolates were screened using a spore germination inhibition test. The experimental design 

used was a completely randomized design (CRD), with each treatment replicated three times 

using three Eppendorf tubes for each isolate. Cell suspensions of the yeast isolate were prepared 

from 2-day-old culture on Malt extract agar plates at a concentration of 107 cells ml-1. The plates 

were washed with sterile distilled water using an L-shaped glass rod and the suspensions were 

poured into a 50 ml Erlenmeyer flasks. The concentration of cells were adjusted as required 

using a haemocytometer. A spore suspension of A. solani was prepared from 10-day old culture 

on V8 agar plates at a concentration of 104 conidia ml-1. Twenty (20) µl of yeast and 20µl of A. 

solani spore suspension were then added into an Eppendorf tube and mixed. The results were 

taken by counting the number of A. solani germinated (elongated germ tube) after incubation at 

28°C, counted every 2 h for 10 h. The experiment was repeated twice and isolates that showed 

50% inhibition were selected for secondary screening. The above procedure was repeated for the 

secondary screening of five selected yeast isolates.  
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    (ii) Confirmation of spore germination inhibition of selected yeast isolates 

Twenty yeast isolates showing potential to inhibit the germination of A. solani conidia were 

further screened using the above method described in Section 2.2.5 to confirm their ability to 

inhibit A. solani spore germination. 

2.2.6 Identification of bacterial isolates using 16S rRNA sequence analysis 

16S rRNA gene fragments from different isolates were amplified according to the method of 

Garbeva et al. (2003) using BacF, a Bacillus specific forward primer, in conjunction with R1378, 

a universal 16S rRNA reverse primer (Table 2-1) (Heuer et al., 1997). Each 25 µl reaction 

volume contained (1x) GoTaq® Flexi buffer, 1.75 mM MgCl2, 0.2 mM of each dNTP, 0.2 µM of 

primer, 1.25 U of GoTaq® DNA polymerase, approximately 50-100 mg template DNA made up 

to a final volume of 25 µl with nuclease-free water. Control reactions conducted without the 

DNA template were included in each round of amplifications. Thermal cycling was performed as 

follows: an initial denaturation, 94oC for 5 min; followed by 30 cycles of denaturation (94oC for 

1 min), annealing (65oC for 90 s) and extension (72oC for 2 min); with a final extension of 72oC 

for 10 min. All samples were kept at 4oC. PCR amplification of the targeted gene fragment 

(~1300 bp) was confirmed by agarose gel electrophoresis. The resultant amplicons were sent to 

Inqaba BiotechTM (Hatfield Pretoria, RSA) for sequencing , where they were purified (Wizard 

PCR Prep Kits, Promega) before being sequenced using the ABI PRISM Big Dye Terminator 

cycle sequencing kit (Applied Biosystems, Foster City, California, USA). Both the forward and 

reverse primers were used and reaction sequences were analysed with an ABI 3130XL sequence 

analyser (Applied Biosystems). The observed results were evaluated by using the standard 

nucleotide BLAST (BLASTn) from the NCBI web server against previously reported sequences 

using the GenBank/EMBL/DDBJ database for determination of 100% similarity. 
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Table 2.1. rRNA primers used for identification of bacterial isolates. 

16S rRNA primers Sequence (5´-3´) References 

P1- BacF GGGAAACCGGGGCTAATACCGGAT  

24 

Garbeva et al., (2003) 

P2- R1378 CGGTGTGTACAAGGCCCGGGAACG  

24 

Heuer et al., (1997) 

 

2.2.7 Identification of yeast strains 

The selected yeast isolates were sent to Inqaba Biotech for identification at BiotechTM (Hatfield 

Pretoria, RSA), 

2.2.8 Statistical analysis  

A general analysis of variance was performed on data collected using Statistical Analysis System 

(SAS) software, Version 9.3 (SAS Institute Inc., 2011). Where ANOVA was significant means 

were separated using Duncan’s multiple range test at a 5% probability level.  

 

2.3 Results 

2.3.1 Pathogenicity test for A. solani isolates 

Three (3) days after inoculation of A. solani onto tomato seedlings disease symptoms were 

observed on all tomato plants. Based on the visual observation of early blight disease symptoms 

on the leaves, it was therefore concluded that the isolate was pathogenic as it produced typical 

early blight disease symptoms on tomato plants.  
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2.3.2 Antifungal bioassay 

(i) Preliminary screening of bacterial isolates 

A total of 171 bacterial isolates were screened for their ability to suppress A. solani in an in vitro 

dual culture bioassay. Of the 171 bacterial isolates, 20 were selected for secondary screening 

based on their primary screening performance. Sixty percent (60%) of the twenty bacterial 

isolates inhibited A. solani mycelial growth, with inhibition zones ranging from 6-10%. The level 

of inhibition varied with each bacterial isolate between experiments. Highly significant 

differences (P <.001) were observed among the isolates in the primary and secondary screenings. 

Isolate N6/2, WESH1 and N6212 caused similar zones of inhibition in primary and secondary 

screening (Table 2.2). Isolates that performed with consistency in the first and second 

experiments were selected for further testing under glasshouse conditions (Table 2.2).  
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Table 2.2. Inhibition of Alternaria solani mycelial growth by bacterial isolates on potato 

dextrose agar 

Isolates 1st screening 
ZOI in mm 

2nd screening 
ZOI in mm 

HL22 0.0a 12.0lm 
HP22 0.0a 11.3jkl 

XVT15 0.0a 9.0de 
XVT3 0.0a 0.0a 
XVT5 0.0a 9.7efg 
NC25 6.0b 11.0ijk 
A16 8.3def 10.8ij 

HS17 8.3def 10.0fgh 
N621 8.7defg 8.7cd 
N26 9.3fghi 9.3def 

HP16 10.3ijkl 13.0n 
N5 10.3ijkl 10.3ghi 
N21 10.7jklm 0.0a 
N6/2 11.0klmn 11.0ijk 
NC13 11.0klmn 10.0fgh 
N6212 12.0nopq 12.0lm 
XVT8 13.0rstu 10efg 
HP28 13.3rstu 12.3mn 

XVT13 13.3rstu 9.3def 
WESH1 14.0tuvw 14.0o 
P-value 0.001 0.001 

LSD 1.1 0.8 
S.E.D 
CV % 

0.6 
18.1 

0.4 
18.2 

ZOI = zone of inhibition 

Means with the same letter in the same column are not significantly different at P > 0.05. 

Isolates with 0 inhibitions were excluded on the final screening based on their performance. 

Isolates which did not show any zones of inhibition zone during the final screening were excluded from the table. 
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Table 2.3: Confirmation of inhibitory activity of selected bacterial isolates on potato dextrose 

agar 

Isolates ZOI in mm 

HL22 9.7defghi 

HP22 8.7cdefg 

XVT15 10.7fghi 
XVT3 8.0bcde 

XVT5 10.0defghi 

NC25 11.7hij 

A16 8.0bcde 

HS17 6.7bcd 

N621 8.7cdefg 

N26 9.7defghi 

HP16 6.2bc 

N5 10.3efghi 

N21 9.7defghi 

N6/2 11.0ghi 

NC13 10.0defghi 

N6212 12.0ij 

XVT8 8.3bcdef 

HP28 12.0ij 

XVT13 

WESH1 

8.3bcdef 

  10.7fghi 

P-value 0.0001 

LSD 2.3 

S.E.D 

CV% 

1.2 

26.6% 
ZOI = zone of inhibition 

Means with the same letter in the same column are not significantly different at P > 0.05. 

Isolates with 0 zone of inhibition –were excluded on the final screening based on their performance. 

Isolates  which did not show any zone of inhibition during the final screening were excluded on the table. 
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Isolates NC13, WESH1 (Figure 2-1B) and XVT8, N5 (Figure 2-1C) N6/21(Figure 2-1D) caused 

inhibition against A. solani whereas the Control (figure A) caused no inhibition. However, the 

greatest inhibition (13 mm) was observed with Isolate N6 2/1 (Figure 2-1D) and the least (7mm) 

with Isolate N5 in (Figure 2-1C).  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. In vitro antifungal activity of bacterial isolates against A. solani on potato dextrose 

agar. Water control (A); Isolates NC13 and WESH1 (B); Isolates N5, XVT8 and water control 

(C); Isolates N62/ and two water control (D). 

2.3.3 Preliminary screening of yeast 

(i) Inhibition of conidial germination by yeast isolates 

A total of 40 yeast-like organisms were isolated from tomato plants and screened for antagonistic 

activities in vitro using the conidial germination inhibition test. Isolates varied in their ability to 

inhibit the conidial germination of A. solani. Significant differences (P < 0.05) in percentage 

conidial inhibition were observed among the isolates. Five isolates strongly inhibited 

germination of A. solani conidia compared with the controls. All tested biocontrol agents caused 

A B 

C D 
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a difference in reduction of conidia germination of A. solani compared to the Control. Isolates 

Y4, H5 and P1-1 reduced conidial germination below 20% (Figure 2-2).  

 

Figure 2.2. Inhibitory effect of five best yeast isolates on spore germination of A. solani in in-

vitro over different time intervals. 

 (ii) Confirmatory screening for yeast  

All five of the yeast isolates showed inhibitory effect against spore germination of A. solani with 

percentage spore germination less than 40%. Conidial germination varied between isolates. 

Isolate P1-Orange had the highest percentage (30%) of conidial germinated (Figure 2-3) while 

Isolate Y4 had the lowest level (18%) of conidial germination (Figure 2-3). As expected the 

control had the highest number of germinated conidial up to 100% at hours. 
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Figure 2.3. Inhibitory effect of five best yeast isolates on spore germination of A. solani in-vitro 

at different time intervals. 

 

2.3.4 Identifications of biological control agents 

 (i) Identification of bacterial isolates 

The PCR amplified products from nine bacterial isolates were sequenced and compared with 16S 

rRNA sequences in the NCBI database. Based on comparison of the partial sequences by 

BLAST of the three isolates WESH1, N6/21, N5, N62, HP28 were identified as Bacillus subtilis 

and the HP22 isolate as Bacillus thuringiensis, Isolate NC13 was identified as Pseudomonas 

putida while Isolate XVT3 was identified as Bacillus subtilis and Isolate XVT8 was identified as 

a Bacillus spp (Table 2.5).  
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Table 2.4. Identification of biological control agents using 16S rRNA sequence analysis.  

 

S.No. Isolate 

name 

Identified species Primer E-value % 

similarity 

Accession 

number 

1 WESH1 Bacillus subtilis  BacF and R1378 0.0 

 

100%  KJ604990.1 

2 N6/21 Bacillus spp. BacF and 16S rRNA 0.0  100%  KJ000215.1 

3 XVT8 Bacillus ssp. BacF and 16S rRNA         KJ767389.1 

4 HP22 Bacillus thuringiensis 

 

BacF and 16S rRNA 0.0  99%  KF973233.1 

5 N5 Bacillus subtilis BacF and 16S rRNA 0.0  100% KF982017.1 

6 N62 Bacillus subtilis BacF and 16S rRNA 0.0 100% KF982026.1 

7 HP28 Bacillus subtilis BacF and 16S rRNA 0.0 100% KF973233.1 

8 NC13 Pseudomonas putida BacF and 16S rRNA 0.0 100% KP192770.1 

9 XVT3 Bacillus subtilis BacF and 16S rRNA 0.0 95%  
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 (ii) Identification of yeast  

ITS sequence analysis indicated that Isolates C10, P1-1 and Y4 of the yeast biocontrol agents 

screened in this study belonged to the species Meyerozyma guilliermondii, Pichia 

guilliermondii, Rodotorura minuta respectively.  Isolate P1-Orange was identified as 

Rodotorura minuta and Isolate H5 was identified as Pichia guilliermondii (Table 2-5). 

 

Table 2.5. Blast and identification of yeast isolates. 

Isolate 

name 

Identification species  Primer E-

value 

% similarity  Accession 

number  

Y4 Meyerozyma 

guilliermondii 

ITS 0.0 100% JX455762.1 

P1 

ORANGE 

Rhodotor

ula minuta 

ITS 0.0 100% JN837083.1 

P1-1 Meyerozyma 

guilliermondii 

ITS 0.0 100% JX455762.1 

C10 Meyerozyma 

guilliermondii 

ITS 0.0 100% JX455762.1 

H5 Pichia guilliermondii ITS 0.0          99% HM037942.1 

                                                                                                                                                                                                                                                                                                                                                                                       

2.4 Discussion 

The objective of this research was to isolate antagonistic bacterial and yeasts isolates and to 

evaluate their efficacy against A. solani in vitro. A total of 171 bacterial isolates and 40 yeast 

isolates were obtained from tomato leaf surface. Only 60% of the bacterial isolates inhibited 

A. solani mycelia growth, with inhibition zone ranging from 6-14mm. Thirty five (35%) of 

the yeast isolates inhibited spore germination of A. solani. Isolates of bacterial and yeast cells 

from tomato leaves exhibiting a wide range of inhibitory activity against several pathogens 

have been reported in various studies (Guetsky, 2002). 
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Dual culture with fungal pathogens on agar plates has often been used as a screening method 

(Kloepper and Schroth, 1981; Schroth and Hancock, 1982; Yazici, 2011). However, some 

authors have reported the method as being inappropriate. This is due to its exclusion of host 

antagonist-pathogen interacting factors as well as lack of selecting biological control agents 

based on other mechanisms such as root colonisation, induction of systemic resistance as well 

as niche competition (Lugtenberg et al., 2001; Bakker et al., 2003; Kamilova et al., 2005; 

Pang et al., 2009). In addition, the use of a spore germination inhibition test has also been 

reported as an efficient method in screening yeast isolates (Hejri, 2005).   

In this study, the greatest inhibition was caused by Bacillus sp. N6 2/1(88%) and the least 

(56%) by Bacillus subtilis N5. This suggests that the isolates could be producing antifungal 

metabolites (AFMs) (Montealegre et al., 2003). Production of zones of inhibition agrees with 

the report of Basım (1990). It was suggested that in vitro A. solani interactions with B. 

subtilis AB-27 and AB-2 strains resulted in production of the targeted zones of inhibition. It 

has been reported that B. subtilis can secrete several antifungal metabolites such as subtilin, 

bacitracin, bacillin and bacillomycin, which belong to the iturin family (Alippi and Mónaco, 

1994). 

The use of Pseudomonas species as biological agents to control disease in various crops has 

been reported in several studies. However, there is no evidence of the organisms being used 

to control early blight in tomato. In a study conducted by Wei et al. (1991), it was reported 

that the application of a strain of Pseudomonas putida resulted in disease resistance against 

anthracnose disease of cucumber. In addition, Glandorf et al. (2001) reported that 

Pseudomonas putida supressed Fusarium wilt disease caused by F. sp. vasinfectum in cotton 

cultivar “Rowden” under field conditions. Other Pseudomonas species such as Pseudomonas 

gladioli B25 has been reported to control early blight disease by 60.2% using a combination 

of (seed treatment method + soil application method + nursery bed method + foliar spray 

method + root dip method) (Jagadeesh and Jagadeesh, 2009). In another study, twenty three 

bacterial isolates were found to strongly inhibit the growth of A. solani by forming inhibition 

zones larger than 5 mm using a dual culture in vitro assay on nutrient agar (NA) medium 

(Fontenelle et al., 2011). In another study conducted by Chitra et al. (2009) against R. solani 

in a susceptible variety of amaranth, Pseudomonas sp. Strain PN026R showed antagonism on 

NA medium. It was reported that the reduction in disease severity could be due to induction 

of systemic resistance caused by the organisms. 
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There is no evidence in the literature reporting on the use of yeast as biological control agents 

of A. solani in tomatoes. Nevertheless, in studies conducted by Elad et al. (1994) and 

Saligkarias (2002), evidence of significant biocontrol activity by strains of yeasts such as 

Rhodotorula rubra and Candida pelliculosa against Botrytis cinerea on tomato was observed. 

Other yeasts isolates have also been found to have efficacy against B. cinerea. The ability of 

yeasts to grow rapidly on the leaf, fruit and flower surfaces as well as in sugar-rich 

environments has been reported to result in exclusion of other microorganisms by means of 

competition for space and nutrients (Valdebenito-Sanhueza, 2000). In this study, yeast 

isolates that exhibited antagonistic properties against A. solani were observed. These isolates 

inhibited spore germination of A. solani in spore germination experiments. The isolates were 

identified as strains of Rhodotorula minuta and Meyerozyma guilliermondii. Meyerozyma 

guilliermondii (teleomorph) has been reported as biological control of Botrytis cinerea and 

Penicillium expansum. However, this organism has only been reported on its anamorphic 

state (Candida guilliermondii). Meyerozyma guilliermondii a recently assigned species name 

for Candida guilliermondii is often reported when the organisms is mentioned as biological 

control (Kurtzman and Suzuki, 2010). Rhodotorula strains have been reported to have 

antifungal activity against important plant pathogens including B. cinerea under iron-limited 

conditions (Calvente et al., 2001). Rhodotorula minuta has been identified as a biological 

control agent effective against Colletotrichum gloeosporioides that causes anthracnose of 

mango (Mangiferae indica L.) (Patiño-Vera et al., 2005). Control of grey mould rot using 

epiphytic yeasts of Rhodotorula and Candida spp. has been successful for postharvest 

treatments of strawberry (Helbig, 2002), bean, tomato (Elad et al., 1994; Kalogiannis et al., 

2006), citrus fruits, apple, pear, kiwi fruit and table grapes (Lima et al., 1999; El Ghaouth et 

al., 2000). The results found in this study suggest that the bacterial isolate tested poses a good 

potential in controlling Alternaria Solani. 

 

  



48 

 

2.5 References 

Agrios, G.N., 2005. Plant Pathology. 5th Ed, Elsevier Academic Press, London. 

Alippi, A., Monaco, C., 1994. In vitro antagonism against Bacillus species,Sclerotium rolfsii 

and Fusarium solani. Revista La Plata 70, 91-95. 

Bakker, P.A.H.M., Ran, L.X., Pieterse, C.M.J., Van Loon, L.C., 2003.Understanding the 

involvement of rhizobacteria-mediated induction of systemic resistance in biocontrol of plant 

diseases. Canadian Journal of Plant Pathology 25, 5-9. 

Basım, H., 1990. Studies of in vitro antagonistic effects of some Bacillus subtilis isolates 

against important plant pathogenic fungi. Proccedings of the 2nd Turkish national congress of 

biological controlAgricultural. Antalya, Turkey. 

Bose, T.K., Som, M.G., 1986. Vegetable Crops in India. Nayaprakash Publishing, Calcutta. 

Calvente, V., De Orellano, M.E., Sansone, G., Benuzzi, D., Sanz de Tosetti, M.I., 2001. 

Effect of nitrogen source and pH on siderophores production by Rhodotorula strains and 

their application to biocontrol of phytopathogenic moulds. Journal of Indian Microbiological 

Biotechnology 26, 226–229. 

Chitra, B. Nair., Anith, K.N., 2009. Efficacy of acibenzolar-S-methyl and rhizobacteria for 

the management of foliar blight disease of amaranth. Journal of Tropical Agriculture 47 (1-

2), 43-47. 

Cook, D.W.M., Long, P.G., Ganesh, S., Cheah, L.H., 1997. Attachment microbes 

antagonistic against Botrytis cinerea-biological control and scanning electron microscope 

studies in vivo. Annals of Applied Biology 131, 503-518. 

Department of Agriculture Forestry and Fisheries. 2010. A profile of the south african tomato 

market value chain, Directorate Marketing, Pretoria. pp. 3-33. 

Department of Agriculture Forestry and Fisheries. 2013. A profile of the south african tomato 

market value chain, Directorate Marketing, Pretoria. pp. 3-33. 

Department of Agriculture Forestry and Fisheries. 2014. A profile of the south african tomato 

market value chain, Directorate Marketing, Pretoria. pp. 3-35. 

Dik, A., Wubben, J., 2001. Biological control of Botrytis cinerea in greenhouse crops. 

Biological control of fungal and bacterial plant pathogens. IOBC WPRS Bull 24, 49-52. 



49 

 

Elad, Y., Kohl, J., Fokkema, N.J., 1994. Control of infection and sporulation of Botrytis 

cinerea on bean and tomato by saprophytic yeasts. Phytopathology 84, 1193-1200. 

El Ghaouth, A., Smilanick, J., Wisniewski, M., Wilson, C., 2000. Improved control of apple 

and citrus fruit decay with the combination of Candida saitona and 2-deoxy-D-glucose. Plant 

Disease 84, 249-253. 

Ellis, M.B., Gibson, I.A.S., 1975. Alternaria solani no. 45 set 48. Commonwealth 

Mycological Institute, Kew, Surrey, UK 

Fontenelle, A.D.B., Guzzo, S.D., Lucon, C.M.M., Harakava, R., 2011 Growth promotion and 

induction of resistance in tomato plant against Xanthomonas euvesicatoria and Alternaria 

solani by Trichoderma spp. Crop Protection 30, 1492-1500. 

Food and Agriculture Organization of the United Nations. 2001. The State of Food and 

Agriculture. Food and Agriculture Organization of the United Nations, Rome, Italy. 

Garbeva, P., Veen, J.A., Elsas, J.D., 2003. Predominant Bacillus spp.in agricultural soil under 

different management regimes detected via PCR-DGGE. Microbial Ecology 45, 302-316. 

Guetsky, R., Shtienberg, D., Elad, Y., Fischer, E., Dinoor, A., 2002. Improving biological 

control by combining biocontrol agents each with several mechanisms of disease suppression. 

Phytopathology 92, 976-988. 

Heuer, H., Krsek, M., Baker, P., Smalla, K., Wellington, E.M.H., 1997. Analysis of 

actinomycete communities by specific amplification of genes encoding 16S rDNA and gel-

electrophoretic separation in denaturing gradients. Applied Environmental Microbiology 63, 

3233-3241 

Hejri, A. L., Azar, M., Javanshah, A., 2005. Isolation and identification of saprophytic yeasts 

from pistachio fruits and leaves. Proceeding of the 4th International Symposium on 

Pistachios and Almonds, Tehran, Iran. 

Helbig, J., 2002. Ability of the antagonistic yeast Cryptococcus albidus to control Botrytis 

cinerea in strawberry. Biological Control 47, 85-99. 

Herriot, A.B., Haynes, Jr F.L., Shoemaker, P.B., 1986. The heritability of resistance to early 

blight in diploid potatoes (Solanum tuberosum subsp. phureja and stenotonum). American 

Potato Journal 63,229-232. 



50 

 

Howell, C.R., 2007. Effect of seed quality and combination fungicide- Trichoderma spp. seed 

treatments on pre- and post-emergence damping-off in cotton. Phytopathology 97, 66-71. 

Jagadeesh, K.S., Jagadeesh, D.R., 2009. Biological control of early blight of tomato caused 

by Alternaria solani as influenced by different delivery methods of Pseudomonas gladioli 

B25. Acta Horticulturae 808:327-332. 

Kalogiannis, S., Tjamos, S.E., Stergiou, A., Antoniou, P.P., Ziogas, B.N., Tjamos, E.C., 

2006. Selection and evaluation of phyllosphere yeast as biocontrol agents against grey mould 

of tomato. European Journal of Plant Pathology 116, 69-76. 

Kamilova, F., Validov, S., Azarova, T., Mulders, I., Lugtenberg, B.J.J., 2005. Enrichment for 

enhanced competitive plant root tip colonizers selects for a new class of biocontrol bacteria. 

Environmental Microbiology 7, 1809-1817. 

Kloepper, J.W., Schroth M.N., 1981. Relationship of in vitro antibiosis of plant growth-

promoting rhizobacteria to enhanced plant growth and the displacement of root microflora. 

Phytopathology 71, 1020-1024. 

Kumar, P., Poehling, H.M., 2006. Persistence of soil and foliar azadirachtin treatments to 

control sweet potato whitefly Bemisia tabaci Gennadius (Homoptera: Aleyrodidae) on 

tomatoes under controlled (laboratory) and field (netted greenhouse) conditions in the humid 

tropics. Journal of Pesticide Science 79, 189-199. 

Krauss, U., 1996. Establishment of a bio assay for testing control measures against crown rot 

of banana. Crop Protection 15, 269-274. 

Kurtzman, C.P., Suzuki, M., 2010. Phylogenetic analysis of ascomycete yeasts that form 

coenzyme Q-9 and the proposal of the new genera Babjeviella, Meyerozyma, Millerozyma, 

Priceomyces, and Scheffersomyces. Mycoscience 51, 2-14. 

Lamb, E.M., Rosskopf, E.N., 2001.The potential for use of biologically-based disease 

management products in florida vegetable production. Proceedings of the florida State 

Horticultural Society.114, 263-265. 

Landa, B.B., Hervas, A., Bethiol, W., Jimenez-Diaz, R.M., 1997. Antagonistic activity of 

bacteria from the chickpea rhizosphere against Fusarium oxysporum f.sp. ciceris. 

Phytoparasitica 25, 305-318. 



51 

 

Lima, G., Arrus, S., De Curtis, F., Arras, G., 1999., Influence of antagonist, host fruit and 

pathogen on the biological control of postharvest fungal diseases by yeasts. Journal of 

Industrial Microbiology and Biotechnology 23, 223-229. 

Lugtenberg, B.J.J., Dekkers, L.C., Bloemberg, G.V., 2001. Molecular determinants of 

rhizosphere colonization by Pseudomonas. Annual Reviews of Phytopathology 39, 461-490. 

Mateescu, R., Cornea, P.C., Grebenisan, I., Babeanu, N., Campeanu, G., 2002. İn vivo 

biocontrol activity of Bacillus spp. strains on Alternaria tenuis. Faculty of Biotechnology, 

UASVM Bucharest, 59 Bd. Marasti, Romania.www.academia.edu 

Montealegre, J.R., Reyes, L.M., Perez, R., Herrera, P., Silva, X., Besoain, X., 2003. Selection 

of bio- antagonistic bacteria to be used in biological control of Rhizoctonia solani in tomato. 

Electron Journal of Biotechnology 6, 115-127. 

Nash, A.F., Gardner, R.G., 1988. Tomato early blight resistance in a breeding line derived 

from Lycopersicon hirsutum PI 126445. Plant Disease 72, 206-209. 

Pang, Y., Liu, X., Ma, Y., Chernin, L., Berg, G., Gao, K, 2009 Induction of systemic 

resistance, root colonisation and biocontrol activities of the rhizospheric strain of Serratia 

plymuthica are dependent on N-acyl homoserine lactones. European Journal of Plant 

Pathology 124, 261-268. 

Patiño-Vera, M., Jimenez, B., Balderas, K., Ortiz, M., Allende, R., Carrillo, A., Galindo, E., 

2005. Pilot-scale production and liquid formulation of Rhodotorula minuta, a potential 

biological control agent of mango anthracnose, Journal of Applied Microbiology 99, 540-

550. 

Paulitz, T.C., Zhou, T., Rankin, L., 1992. Selection of rhizosphere bacteria for biological 

control of Pythium aphanidermatum on hydroponically grown cucumber. Biological Control 

3, 226-237. 

Pliego, C., Ramos, C., Vicente, A., Cazorla, F.M., 2011. Screening for candidate bacterial 

biocontrol agents against soil borne fungal plant pathogens. Plant and Soil 340, 505–520. 

DOI 10.1007/s11104-010-0615-8. 

Rotem, J., 1994. The Genus Alternaria: Biology, Epidemiology, and Pathogenicity, 1st Ed. 

The American Phytopathological Society, St. Paul, Minnesota. 



52 

 

Saligkarias, I.D., Gravanis, F.T., Epton, H.A.S., 2002. Biological control of Botrytis cinerea 

on tomato plants by the use of epiphytic yeasts Candida guilliermondii Strains 101 and US 7 

and Candida oleophila Strain I-182: II. A study on mode of action. Biological Control 25, 

151-161. 

Schroth, M.N., Hancock, J.G., 1982. Disease-suppressive soil and root-colonizing bacteria. 

Science 216, 1376-1381. 

Sharma, N., Sharma, S., 2006. Control of foliar diseases of mustard by Bacillus from 

reclaimed soil. Microbiological Research 163, 408-413. 

Sid, A., Eziyyani, M., Egea-Gilabert, C., Candela, M.E., 2005. Selecting bacterial strains for 

use in the biocontrol of diseases caused by Phytophthora capsici and Alternaria alternata in 

sweet pepper plants. Biologica Plantarum 47(4), 569-574. 

Valdebenito-Sanhueza, R.M.V., 2000. Leveduras para o controle de fitopatógenos. In: Melo, 

I.S., Azevedo, J.L. Controle Biológico. 1st Ed., Vol.2, Embrapa Meio Ambiente, Jaguariúna, 

p.41-56. 

Yazici, S., Yanar, Y., Karaman, I., 2011. Evaluation of bacteria for biological control of early 

blight disease of tomato. African Journal of Biotechnology 10, 1573-1577. 



53 

 

CHAPTER THREE 

In vivo screening of microbial antagonists against Alternaria solani on 

tomato 

 

Abstract 

Five bacterial isolates, (Bacillus spp. XVT8, Pseudomonas putida NC13, Bacillus subtilis 

N6/2, Bacillus subtilis WESH1 and Bacillus subtilis N5) and five yeast isolates (Meyerozyma 

guilliermondii P1-1, Meyerozyma guilliermondii C10, Rodotorula minuta P1-Orange, 

Meyerozyma guilliermondii Y4 and Pichia guilliermondii H5) that showed inhibitory effect 

against A. solani during in vitro studies were tested against A. solani under greenhouse 

conditions on tomato plants. The biological control agents were applied as foliar spray. The 

greenhouse results showed that B. subtilis N6/2, B. subtilis N5, Bacillus spp. XVT8 and B. 

subtilis WESH1 significantly (P = 0.001) reduced disease severity of early blight when 

compared to the A. solani inoculated control which showed a final disease severity of 97%. 

However, the yeast isolates had minimal effect on A. solani under greenhouse conditions. The 

best bacterial and yeast treatments were Bacillus spp. XVT8, B. subtilis N6/2, Meyerozyma 

guilliermondii C10 and Pichia guilliermondii H5 . The study demonstrated that the best two 

Bacillus isolates could be used in an integrated disease management strategy for the control 

of early blight on tomato. 
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3.1 Introduction 

Various biological control agents have been found following screening of large numbers of 

microorganisms in both in vitro and in vivo studies (Berg et al., 2005; Kui et al., 2008). It has 

been reported that biological control agents found in this way require more extensive 

laboratory assays and require facilities with controlled environment. For selection of an 

effective biological control agent, screening should involve a simple and quick in vitro or in 

vivo antagonistic assay (Knudsen and Hockenhull, 1997; Kim et al., 2008).    

A screening program could be described as the assessment of the potential of biocontrol 

agents to control diseases in plants. Initial screening is regarded as the most important aspect 

of the screening procedure. This is because for one to obtain success in developing a 

commercial biocontrol product, identifying the best isolates has to be done in precisely and 

conducted in a careful manner (Chiou and Wu, 2003). According to Merriman and Russell 

(1990) and Folman et al. (2003), failure in performance of many biological control agents lies 

in the lack of appropriate screening procedures in order to select microorganisms that are 

consistently effective in controlling the target pathogen. Furthermore, some of the screening 

procedures do not consider the effect of biotic and abiotic factors that may also influence the 

efficacy of a biological control agent. There has been an increase in the use of screening 

procedures that mimic conditions under which the agent will be used. According to Dowling 

and O'Gara (1994) and Glick (1999), screening systems that mimic field conditions are more 

likely to result in the selection of effective biocontrol agents. Therefore a combination of in 

vitro and in vivo screening procedures can lead to the identification of effective microbial 

strain that can be integrated into disease management system. 

Studies have been conducted on the use of Bacillus spp. to control foliar disease on tomato 

[Solanum lycopersicum (L.) H. Karst.] plants. According to Sharma and Sharma (2006); Sid 

et al. (2005) and Mateascu et al. (2002), Bacillus spp. have been used to inhibit mycelial 

growth and spore germination of A. solani. Foliar application of Bacillus coagulans strain İK-

22 and Bacillus pumilus significantly reduced disease severity of early blight on tomato 

(Yazici et al., 2011). However, there is no documented evidence on the use of yeasts to 

control early blight disease on tomato. 

In this chapter, ten microbial antagonists selected from in vitro screening studies against A. 

solani were tested under greenhouse conditions for their ability to control early blight disease 

on tomato plants. 
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3.2 Materials and methods 

3.2.1 Preparation of pathogen inoculum 

A. solani was grown on V8 tomato juice agar (V8 tomato juice 200 ml, CaCO3 3 g, agar 20g 

in 1 L distilled water). The plates were incubated at 25°C for seven days as described in 

chapter 2. After 10-14 days, conidia were harvested in sterile distilled water (containing 

0.01% of surfactant, Tween-20) by dislodging them off the agar plates with an L-bent glass 

rod and adjusted to 107 conidia.ml-1, the required concentration, using a haemocytometer.  

3.2.2 Greenhouse conditions for in vivo experiments 

All in vivo experiments under greenhouse conditions were treated with the same conditions as 

described in this section.   

The greenhouse trial was conducted at the University of KwaZulu-Natal, Pietermaritzburg 

South Africa. Seeds of the tomato cultivar Rodade were obtained from Starke Ayres (Pty) 

Ltd, Pietermaritzburg South Africa. The seed were sown in Speedling 128 cavity seedling 

trays filled with composted pine bark seedling mix (Gromor, Cato Ridge, South Africa). The 

seeded trays were kept in a greenhouse at a temperature of 26°C during the day and 18°C at 

night with a relative humidity of 75-85%. The seeds were watered once a day until 

germination and thereafter two times a day until transplanted using sprinkler irrigation. 

Irrigation water contained (per litre) NPK Starter Grower fertilizer 2:1:2(43) (1 g) plus trace 

elements (Ag-Chem Africa (Pty), Pretoria, South Africa). Seedlings were monitored, and at a 

two leaf stage they were transplanted into 15 cm diameter pots (one plant per pot) filled with 

composted pine bark (CPB) potting mix media. The seedlings were watered and kept under 

the same greenhouse conditions as previously described.  

3.2.3 Efficacy of bacterial biocontrol agents under greenhouse conditions 

Tomato seeds were planted, watered and fertilised as described in Section 3.1.2. 

Five bacterial isolates, Bacillus sp XVT8, Pseudomonas putida NC13, Bacillus subtilis N6/2, 

Bacillus subtilis WESH1 and Bacillus subtilis N5, were cultured on tryptone soy agar (TSA) 

medium in 90 mm diameter petri dishes, and incubated at 28°C for 48 h. Bacterial cultures 

were washed by adding sterile distilled water nto the agar plates containing the bacterial 

culture. The cell concentrations in the suspensions were determined using a Helber counting 



56 

 

chamber (Paul Marienfield Superior GmbH & Co, Germany) and adjusted to 107 cells ml-1 

before inoculation onto tomato plants. The bacterial suspension was applied as foliar spray 

using a pressurised 1 L hand spray bottle until run-off and left for 2 h. Plants were then pre-

incubated by covering them with transparent plastic bags for 24 h and thereafter sprayed with 

A. solani spore suspension as prepared in Section 3.1.1.  The experiment was arranged in a 

completely randomized design with three replications consisting of single plants per bacterial 

isolate treatment. A total of six treatments were used: five bacterial treatments and a control 

(no bacterial BCA treatment, but inoculated control). The plants were assessed for disease 

severity five days after treatment following a three days interval over a period of three weeks. 

The experiment was conducted twice. 

3.2.4 Efficacy of yeast biocontrol agents under greenhouse conditions 

Tomatoes were planted, watered and fertilised as described in Section 3.2.2. 

Five yeast isolates, Meyerozyma guilliermondii P1-1, Meyerozyma guilliermondii C10, 

Rodotorula minuta P1-Orange, Meyerozyma guilliermondii Y4 and Pichia guilliermondii H5, 

were grown on malt extract agar (MA) (malt extract 30 g, mycological peptone 5 g and agar 

20 g in 1L of distilled water) plates containing 0.1 mg of chloramphenicol  and incubated for 

48 h. The fresh cultures were used to prepare suspensions at concentrations of 104 cells ml-1 

in sterile distilled water containing 0.01% Tween-80. The cells were dislodged with an L-

shaped glass rod and the concentrate was poured into an Erlenmeyer flask. The concentration 

of cells for each was adjusted as required using a haemocytometer. The suspension was 

sprayed onto the tomato plants using a 1 L hand spray bottle until run-off and left for 2 h. 

Plants were then pre-incubated by covering them with transparent plastic bags for 24 h and 

thereafter sprayed with A. solani spore suspension as prepared in Section 3.2.1.  The 

experiment was arranged in a completely randomized design with three replications 

consisting of single plants per yeast isolate treatment. A total of six treatments were used:  

five yeast treatments and a control (no yeast BCA treatment, but inoculated control). The 

plants were assessed for disease severity five days after treatment following a three days 

interval over a period of three weeks. The experiment was conducted twice. 
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3.2.5 Data analysis 

Disease ratings of percentage foliar infection consisted of an estimate of percent leaf area 

infected (% LAI) using the Horsfall-Barratt Scale (1945) where [1 = 0%; 2 = 1 – 3%; 3 = 3 – 

6%, 4=6-12, 5=12-25%, 6=25-50%, 7=50-60%, 8=60-70%, 9=70-80%, 10=80-90%, 11=90-

100%]. The estimates were used to calculate the Area Under the Disease Progress Curve 

(AUDPC) for each treatment (Shanner and Finney, 1977). The AUDPC values and the final 

disease severity values (arcsine transformed) were subjected to analysis of variance 

(ANOVA) using Statistical Analysis System (SAS) software, Version 9.3 (SAS Institute Inc., 

2011). Treatment means were separated using Duncan multiple range test at 5% probability 

level. 

 

3.3 Results 

3.3.1 Effect of bacterial antagonists on early blight severity 

Performance of the five bacterial antagonists against early blight under greenhouse condition 

is shown in Figure 3.1 and Table 3.1. Highly significant differences (P = 0.001) were 

observed amongst bacterial antagonists with regards to disease development. In figure 3.1 

Bacillus spp. XVT8 was strongly antagonistic against the pathogen with the lowest AUDPC 

score (94), and the highest percent disease reduction (75%) compared to the pathogen 

inoculated control (308) (Figure 3.1; Table 3.1). Plants treated with Pseudomonas putida 

NC13 developed the highest AUDPC score (323) and showed early blight disease reduction 

of 11% (Table 3.1). The order of performance in terms of disease reduction when compared 

to the A. solani inoculated control was: B. subtilis XVT8 > B. subtilis N6/2 >B. subtilis 

WESH1 > B. subtilis N5 > P. putida NC13 (Figure 3.1 and Table 3.1). 

 



58 

 

 

Means followed by the same letter are not significantly different at 5% level of significance according 
to Duncan’s multiple Range Test. 

Figure 3.1. Effect of bacterial biological control agents on early blight AUDPC on tomato 

plants grown under greenhouse conditions.  

Analysis of variance of the AUDPC values showed significant differences between 

treatments (P = 0.001). Pseudomonas putida NC13 caused no control against early blight 

with disease severity by 11% compared to the pathogen inoculated control. Bacillus subtilis 

WESH1 and B. subtilis N5 caused moderate levels of disease reduction ranging between 53-

54%. B. subtilis N6/2 showed a disease control of 63% however, the highest disease 

reduction was caused by Bacillus spp. XVT8 with over 70% reduction in disease severity 

compared to the pathogen inoculated control in both experiments (Table 3.1). 
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Table 3.1. The efficacy of five bacterial isolates against early blight disease severity on tomato plants grown under greenhouse conditions 

Treatment Mean foliar disease        

severity1,2,3 

% reduction AUDPC3,4 

Alternaria solani inoculated Control 97.7a 0.0 307.667a 

Pseudomonas putida NC13 87.0b 10.7 322.5a 

Bacillus subtilis N5 44.8c 52.9 155c 

B. subtilis WESH1 43.8c 53.9 167.5c 

Bacillus subtilis N6/2 35.2d 62.5 191b 

Bacillus spp XVT8 23.0e 74.7 93.7d 

Fpr 0.0001  0.0001 

Fvalue 263.7  271 

Cv % 7.3  9.2 
1Visual ratings of foliar disease severity (0 – 100) using Horsfall-Barratt scale. Numbers are arcsine transformed. 
2Ratings made on whole plant at three days after inoculation with Alternaria solani [1 = 0%; 2 = 1 – 3%; 3 = 3 – 6%, 4=6-12, 5=12-25%, 6=25-50%, 7=50-60%, 8=60-70%, 
9=70-80%, 10=80-90%, 11=90-100%]. 
3Within each column, values followed by the same letter indicate no significant difference at P =0.05, according to Duncan multiple range test (DMRT). 
4AUDPC = Area Under the Disease Progress Curve, based on disease severity on six assessment dates.
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3.3.2 Effect of yeast isolates on early blight severity 

Analysis of variance of the AUDPC values showed significant differences (P = 0.001 

between the treatments. Disease control levels were not significantly different among 

Alternaria solani inoculated control and Meyerozyma guilliermondii Y4 (Figure 3.3).  There 

were no significant differences between Meyerozyma guilliermondii P1-1 and Pichia 

guilliermondii H5. Meyerozyma guilliermondii C10 was the best yeast isolate with an 

AUDPC value of 331 units. 

 

Means followed by the same letter are not significantly different at 5% level of significance according 
to Duncan’s multiple range test. 

Figure 3.2. Effect of yeast biological control agents on early blight AUDPC on tomato plants 

grown under greenhouse conditions. 

There were significant differences among the five yeast isolates (Table 3.2). However, all the 

yeast isolates tested caused minimal disease reduction of less than 20%. Disease severity 

ranged from 81-98% which indicates a high disease severity of early blight (Table 3.2). 

Meyerozyma guilliermondii C10 and Pichia guilliermondii H5 were the best two isolates. 
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Table 3.2. The efficacy of five yeast isolates against early blight disease severity on tomato plants grown under greenhouse conditions 

Treatment Mean foliar disease 

severity1,2,3 

% reduction AUDPC3,4 

Alternaria solani inoculated Control 100a 0.0 511.5a 

Meyerozyma guilliermondii Y4 98.0b 2.0 460.7b 

Meyerozyma guilliermondii P1-1 86.9c 13.1 419c 

Rodotorura minuta P1-Orange 84.1c 15.8 445.8bc 

Meyerozyma guilliermondii C10 81.9c 18.0 330.8d 

Pichia guilliermondii H5 81.9c 18.0 419.8c 

Fpr 0.0001  0.0001 

Fvalue 27.04  21.73 

Cv 7.07  10 
1Visual ratings of foliar disease severity (0 – 100) using Horsfall-Barratt scale. Numbers are arcsine transformed. 
2Ratings made on whole plant at three days after inoculation with Alternaria solani [1 = 0%; 2 = 1 – 3%; 3 = 3 – 6%, 4=6-12, 5=12-25%, 6=25-50%, 7=50-60%, 8=60-70%, 
9=70-80%, 10=80-90%, 11=90-100%]. 
3Within each column, values followed by the same letter indicate no significant difference at P =0.05, according to Duncan Multiple Range Test (DMRT). 
4AUDPC = Area Under the Disease Progress Curve based on disease severity on six assessment dates. 
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3.4 Discussion 

Screening for potential biocontrol agents based on their antagonistic properties against 

pathogens is still regarded as a practical approach for identifying effective candidate strains 

from among abundant plant-associated micro-organisms (Raaijmakers et al., 2002). The aim 

of the study was to evaluate potential bacterial and yeast biological control agents selected 

from in vitro studies (Chapter Two) for their antagonistic effect against early blight of tomato 

under greenhouse conditions. According to Fravel (2005) and Mari and Guizzardi (1998), 

yeast and bacteria were successfully used as biological control agents on fruits and vegetables 

against various diseases caused by different pathogens.  

In this study, five bacterial and five yeast isolates were tested for their inhibitory effect 

against early blight disease under greenhouse conditions. Bacillus spp. XVT8, B. subtilis N5, 

and B. subtilis N6/2 showed potential in controlling early blight disease of tomato. However, 

Pseudomonas putida NC13 did not show any ability to reduce early blight severity.The low 

disease reduction percentage observed corresponds with the AUDPC value which also 

showed that the treatment were less effective compared to the Bacillus spp. XVT8, B. subtilis 

N5, and B. subtilis N6/2.  AUDPC value of the two effective isolates (Bacillus spp. XVT8 

and B. subtilis N5) and the disease percentage reduction indicated high effectiveness against 

early blight when compared to the in vitro performance. Different strains of Bacillus spp. 

have been reported to aid in promoting plant growth as well as controlling diseases (Kloepper 

et al.2004). In addition, they are reported to compete with other pathogens for nutrients such 

as iron and phosphate and also produce secondary metabolites such as antibiotics which 

suppreses some plant pathogens and others by competing for nutrients such as iron and 

phosphate (Gardener, 2004). The results observed in the study correlates with those of 

Adebayo and Ekpo (2005) who reported that B. subtilis inhibited the growth of fungal 

pathogens associated with tomato. It was reported that B. subtilis had an effect in inhibiting 

fungal growth and also promoted growth of tomato. Abdel-Kader (2012) also reported that 

application of B. subtilis showed significant reduction in disease incidence of early blight in 

tomato when compared with the biological controls which were tested. According to Sharma 

and Sharma (2006) and Sid et al. (2005), B. subtilis was successfully used to inhibit mycelial 

growth and spore germination of A. solani. The Bacillus isolates used in this study were 

selected based on their inhibitory effects on mycelial growth of A. solani (Chapter 2). We 

found this method to be equally effective because two of the Bacillus isolates consistently 
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reduced final disease severity of early blight on tomato under greenhouse conditions in two 

separate experiments conducted. Two of the bacterial isolates, B. subtilis N6/2 and B. subtilis 

XVT8 had the highest reduction of early blight severity on tomato plants under controlled 

greenhouse conditions. What remains to be seen is if these isolates would perform well under 

uncontrolled environments, i.e., nursery and field conditions. 

The performances of the yeast isolates during greenhouse studies on tomato plants did not 

correlate with those obtained from in vitro studies. High AUDPC as well low disease 

percentage reduction indicated that all the yeast isolates failed to significantly reduce early 

blight disease severity under greenhouse conditions. Various observations suggest that 

competition for nutrients between yeast and plant pathogens is likely to be the main 

mechanism of action (Janisiewicz et al. 2000). Therefore, it is possible that the failure of the 

yeast to control the disease could be that the tested isolates were not competitive enough to 

reduce the effect of A. solani under the conducive greenhouse conditions. Moreover, the A. 

solani inoculum used in this study was more than that of the yeast inoculum which means the 

pathogen could possibly have overwhelmed the competitive abilities of the yeast isolates. 

Kohl et al. (1995) reported that only strong competitors have the ability to protect necrotic 

tissue from external colonization by pathogens. Kloepper (1991) recommended the use of 

rapid pre-screening techniques such as a radicle assay as well as a hypocotyl assay allowing 

large number of strains to be tested. Cook and Baker (1983) mentioned that the host plant is a 

participant in virtually any biological control aimed at suppressing the disease producing 

activities caused by the pathogen. Hence, it is essential that biological control agents selected 

under laboratory conditions should vigorously be tested on target host-pathogen 

combinations.  

Chérif et al. (2002) and Fravel (2005) explained that antifungal activities in vitro do not 

always correlate with disease reduction in vivo. Ran et al. (2005) also observed the lack of 

correlation between in vitro and in vivo effectiveness of biological control agents.  However, 

some authors have reported a positive correlation between in vitro and in vivo studies (Askew 

and Laing, 1994; Glick, 1995; De Boer et al., 1999; Zhang et al., 1999; Khalid et al., 2004). 

The results obtained in the current study suggest that the bacterial isolates selected during in 

vitro studies have potential as biocontrol agents against A. solani on tomato. However, further 

nursery/field studies need to be conducted to ascertain the real potential of these bacteria 

biological control agents under field conditions.  
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CHAPTER FOUR 

The effect of potassium silicate and a plant defence activator, acibenzolar-s-

methyl, on early blight of tomato under greenhouse conditions 

 

Abstract 

Different concentrations of potassium silicate (KSil) and acibenzolar-S-methyl (ASM) were 

evaluated for their efficacy in controlling early blight disease of tomato under greenhouse 

conditions. Four concentrations (50, 100, 150 and 200 ppm) of a liquid formulation of 

potassium silicate (KSil) and four reduced acibenzolar-S-methyl (ASM) concentrations (25, 

50, 75 and 100 percent) were used in the study. None of the potassium silicate concentrations 

significantly reduced disease severity of early blight under greenhouse condition (P > 0.05). 

The 75 and 100 percent concentrations of ASM significantly (P = 0.001) reduced disease 

severity of early blight by 52 and 68% respectively. Analysis of the distribution of silicon as 

a results of potassium silicate applications in the tomato plant showed that there was minimal 

uptake of potassium silicate and hence accumulation of silicon in the tomato plants. There 

were no significant differences in silicon accumulation observed between the different 

potassium silicate treatments in the leaves as well as the stems (P > 0.05). 

 

 

4.1 Introduction 

At present, application of selected fungicides continues to be the primary means of control of 

early blight disease of tomato. However, these chemicals have been reported to be hazardous 

on the environment as well as human health (Yazici et al. 2011). Alternative control 

strategies are therefore being sought as a possible solution to the problem (Abdel-Kader. 

2012). Induced resistance has been used successfully in plant disease control since 1950. This 

strategy has been reported to have several benefits such as increasing the ability of 

susceptible plants to withstand pathogens in a non-genetic way (Kuć, 2001). Various types of 

inducers including microorganisms (fungi, bacteria), chemicals, metabolic substances of the 

host plant, plant extracts as well as ultraviolet light have been reported to induce resistance 

(Métraux et al., 1991; Kessmann et al., 1994; Achuo et al., 2004; Obradovic and Jones, 
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2005). Silicon and acibenzolar-S-methyl (ASM) have been reported to be among these 

chemical compounds which have been used as disease resistance inducers in plants. 

Csosze et al. (1999) reported that ASM is a member of a novel class of inducers of systemic 

acquired resistance which activates gene expression and disease resistance in plants. 

According to Louws (2000), the compound has no direct microbial activity, however, “it 

assists the plants to obtain pre-infection biochemical processes that confer resistance to the 

same spectrum of pathogens as a biological elicitor”. ASM has demonstrated an ability to 

manage a number of plant diseases including bacterial spot on tomato [Solanum lycopersicum 

(L) H. Karst.] as well as tomato spotted wilt (Csinos et al. 2001; Huang, 2012). Even though 

ASM has shown efficacy in disease suppression, negative effects have been reported, such as 

reduced plant growth and yield (Csinos et al. 2001; Louws et al. 2001). According to Louws 

et al. (2001), many growers are reluctant to adopt ASM due to documented concerns over 

reduced or delayed yields as well as whether the achieved control justifies the additional cost 

of ASM compared with the use of fungicides. Nevertheless, even though high application 

rates of ASM have been studied, the use of low application rates has often been overlooked.  

 

Fertilisation with plant-available forms of silicon has been shown to reduce a number of 

diseases in various crops such as wheat (Triticum aestivum L.), rice (Oryza sativa L.), 

sugarcane (Saccharum sp. L.), maize (Zea mays L.), and cucumber (Cucumis sativa L.), as 

well as citrus. Even though mechanisms in which silicon compounds function is not clear it 

has been shown to be efficient in reducing levels of plant diseases (Epstein. 1994; Liang and 

Ding, 2002). Some authors agree that silicon acts as a physical barrier in cell walls, 

preventing the penetration of fungal hyphae into host tissues (Ma and Yamaji, 2006). 

However, others believe that the disease reduction effects provided by silicon are related to 

the priming of plant defense reactions (Rodrigues et al. 2003; 2004; Yang et al. 2003). Ma 

and Yamaji (2006) reported that for a plant to benefit from silicon, it has to be able to acquire 

the element in high concentrations, whether it is a monocotyledon or a dicotyledon. Tomato 

is regarded as a non-accumulator because it has a rejective mode of uptake which tends to 

minimise silicon uptake (Mitani and Ma, 2005). The objective of this study was to evaluate 

range of reduced concentrations of ASM and potassium silicate (KSil) for their efficacy in 

suppressing early blight of tomato under greenhouse conditions. 
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4.2 Materials and methods  

4.2.1 Preparation of pathogen inoculum 

A cultures of A. Solani was grown on V8 tomato juice agar [V8 tomato juice 200 ml, CaCO3 

3 g, agar 20g in 1 L distilled water]. The plates were incubated at 25°C for seven days as 

described in (Chapter 2). After 10-14 days, conidia were harvested in sterile distilled water 

(containing 0.01% of a surfactant, Tween-20) by dislodging them off the agar plates with an 

L-bent glass rod, and then adjusting their concentration to 107 conidia ml-1using a 

haemocytometer. 

4.2.2 Greenhouse conditions for in vivo experiments 

The greenhouse trial was conducted at the University of KwaZulu-Natal, Pietermaritzburg 

South Africa. Seeds of tomato (Solanum lycopersicum (L.) H. Karst.) of the cultivar Rodade 

were obtained from Starke Ayres (Pty) Ltd, Pietermaritzburg, South Africa. The seed were 

sown in Speedling 128 cavity seedling trays filled with composted pine bark seedling mix 

(Gromor, Cato Ridge, South Africa). The seeded trays were kept in a greenhouse at a 

temperature of 26°C during the day and 18°C at night with a relative humidity of 75-85%. 

The seeds were watered once a day until germination and thereafter two times a day until 

transplanted using sprinkler irrigation. Irrigation water contains (per litre) NPK Starter 

Grower fertilizer 2:1:2(43) (1 g) plus trace elements (Ag-Chem Africa (Pty), Pretoria, South 

Africa. Seedlings were monitored, and at a two leaf stage they were transplanted into 15 cm 

diameter pots filled with a composed pine bark (CPB) potting mix media. The seedlings were 

watered and kept under the same greenhouse conditions as previously described.  

4.2.3 Evaluating the effect of different concentrations of potassium silicate on early 

blight disease under greenhouse condition 

Tomato plants (1 plant/pot) were grown in 150 mm diameter pots containing composted pine 

bark in a greenhouse maintained at 25 – 28oC with a relative humidity (RH) of 75%. There 

were four treatment concentrations of KSil including an untreated, inoculated Control. These 

were 0 (Control), 50, 100, 150, and 200ppm. Potassium chloride (KCl) salts was also used as 

a positive control to quantify the effect of the potassium. A liquid formulation of dissolved 

potassium silicate Agrisil K50 (PQ Corporation, South Africa) with a concentration of 20.5% 

silicon was used as the silicon source. The treated plants in pots were arranged in a 

completely randomised design with three replicates per treatment concentration. Plants were 
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then pre-incubated by covering them with transparent plastic bags for 24h and thereafter 

sprayed with an A. solani spore suspension and again covered with a transparent plastic bag 

to increase humidity. The plants were fertilized weekly with 150 ml per pot of limestone 

ammonium nitrate (LAN) to ensure that nutrients were not a limiting factor for growth. The 

plants were assessed for disease severity three days after treatment following a three days 

interval over a period of three weeks. The experiment was conducted twice. 

4.2.4 Effect of acibenzolar-S-methyl (ASM) on early blight under greenhouse conditions 

Four concentrations of ASM were evaluated in this study. These were: 25%=0.02 g.L-1, 

50%=0.03 g.L-1, 75%=0.04 g.L-1 and 100%=0.075 g.L-1, where 100%=0.075 g.L-1 is the 

recommended concentration. 500ml of treatments were sprayed onto five weeks old tomato 

plants until run-off and left for 24 h. Plants were then pre-conditioned by covering them with 

transparent plastic bags for 24 h and then spraying them with an A. solani suspension until 

run-off. The treated plants were covered again with transparent plastics bags for another 24 h. 

The experiment was arranged in a completely randomized design with six three replications 

consisting of single plants per ASM treatment. A total of five treatments were used: four 

different ASM treatments and a pathogen-inoculated control. ASM treatments were applied 

every 14 days. The plants were assessed for disease severity three days after treatments were 

applied following a three days interval over a period of three weeks. The experiment was 

conducted twice.  

4.2.5 Uptake and accumulation of potassium silicate in tomato plants 

The experiment was set up in the same way as described under Section 4.2.3 above with the 

exception that the tomato plants were not treated with the pathogen, A. solani. There were 

four KSil treatments (50, 100, 150, and 200 g.L-1) and a KCl control. Leaf samples (three 

leaves per replicate) were taken from each treatment each week for a period of six weeks. 

The samples were frozen at -80 0C until used for analysis to determine the silicon 

accumulation levels. The experiment was done twice. 

(i) Setting up a standard curve 

Quantities of 0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5 ml of Si standard solution was 

separately transferred into a 50 ml volumetric flask. Thirty (30) ml of acetic acid (20%) and 

10 ml of ammonium molybdate solution (54 g.L-1, pH 7.0) was added and the volumetric 

flasks were shaken up to mix the content thoroughly. After 5 min, 5 ml of 20% tartaric acid 



73 

 

and 1 ml reducing solution was added. The content solution was adjusted to 50 ml with 20% 

acetic acid. The reducing solution was made by mixing Solution A (2 g of Na2SO3 and 0.4 g 

of 1-amino-2-naphthol-4-sulfonic acid in 25 ml of ddH2O) and Solution B (25 g of NaHSO3 

in 200 ml of ddH2O). This was adjusted to 250 ml with ddH2O and stored in a tightly 

stoppered plastic bottle in the dark. The absorbance was measured at 650 nm after 30 min 

using a CT-8 Series Double Beam UV/VIS Spectrophotometer E-Chrom Tech (Chrom Tech-

CT, Taiwan). 

(ii) Pre-treatment of leaf samples 

A 100 mg leaf sample previously dried at 70oC for one week and ground powder using a 

mortar and pestle. The sample powder was transferred into a 100 ml polyethylene tube. A 3 

ml solution of 50% NaOH was added and the tube was covered with a loose-fitting plastic 

cap. It was gently vortexed, then autoclaved at 121℃ for 20 min. The solution was 

transferred to volumetric flask and adjusted to 50 ml with ddH2O. This procedure was 

repeated for all the leaf samples from the various KSil treatments. 

(iii) Sample determination 

One millilitre (1 ml) of a pre-treated leaf sample solution was transferred to a 50 ml 

volumetric flask. A 30 ml solution of 20% acetic acid and 10 ml of ammonium molybdate 

solution (54 g.L-1, pH 7.0) were added and the volumetric flask was shaken for the content to 

mix thoroughly.  After 5 min, 5 ml of 20% tartaric acid and 1 ml of the reducing solution 

were added and adjusted to 50 ml with 20% acetic acid. The mixture was allowed to stand for 

30 min and the absorbance was measured at 650 nm using a CT-8 Series Double Beam 

UV/VIS Spectrophotometer E-Chrom Tech (Chrom Tech-CT, Taiwan). 

4.2.6 Scanning electron microscopy analysis of tomato plant leaves treated with 

potassium silicate 

Fresh leaf samples which were stored at -80 0C were used for silicon microanalysis using 

scanning electron microscopy (SEM) using Energy Dispersive X-ray (EDX). Samples were 

prepared for SEM by primary and secondary fixation. The fixation protocol began by 

immersing two pieces of 0.5 mm of excised epidermis in 3% glutaraldehyde. They were then 

treated twice with sodium cacodylate buffer for 5 min. For secondary fixation, the samples 

were fixed in 20% osmium tetroxide. Samples were rinsed in sodium cacodylate buffer for 

another 5min. They were then dehydrated in graded ethanol series (30%, 50%, 70%, 90% and 
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100%) for 10 min. The samples were transferred to critical point drying (CPD) machine 

basket in 100% ethanol (Quorum K850 critical point dryer from Quorum Technologies). 

During CPD, the ethanol was replaced with liquid CO2. The CO2 was heated and pressurized 

to its critical point at which the liquid converts to gas without damaging effect of the surface 

tension on the sample. The samples were then mounted on aluminium stubs with double 

sided sticky tape and sputter coated with gold (Eiko IB.3 ion coater, Tokyo, Japan). The dried 

samples were then viewed using SEM. 

4.2.7 Statistical analysis 

Disease ratings of percentage foliar infection consisted of an estimate of percent area infected 

(% LAI) using a Horsfall-Barratt Scale (1945) where [1 = 0%; 2 = 1 – 3%; 3 = 3 – 6%, 4=6-

12, 5=12-25%, 6=25-50%, 7=50-60%, 8=60-70%, 9=70-80%, 10=80-90%, 11=90-100%]. 

The estimates were used to calculate the Area Under the Disease Progress Curve (AUDPC) 

for each treatment (Shanner and Finney, 1977). The AUDPC values, the final disease severity 

values (arcsine transformed) and the silicon quantities in leaf samples were subjected to 

analysis of variance (ANOVA) using Statistical Analysis System (SAS) software, Version 

9.3 (SAS Institute Inc., 2011). Treatment means were separated using Duncan multiple range 

test at a 5% probability level. 

 

4.3 Results  

4.3.1 Efficacy of different potassium silicate concentrations on disease severity of early 

blight 

 Significant differences at (P = 0.0001) were observed among the AUDPC values resulting 

from the four different concentration of KSil. The KCl treated control and 100ppm were not 

significantly different from water treated control, however they were significantly different 

compared with other treatments (Figure 4.1). 
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Figure 4.1. Effect of different liquid potassium silicate concentrations on severity of early 

blight under greenhouse conditions. 

 

Significant differences (P = 0.0089) were observed between the different KSil treatments 

with regards to disease severity and AUDPC units. Plant treated with KSil showed minimal 

disease control. None of the plants treated with KSil concentrations reduced disease severity 

over 12% relative to the water control (Table 4.1). 
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Table 4.1. Evaluation of the efficacy of several potassium silicate concentrations for the 

control of early blight disease on tomato under greenhouse condition 

Treatment Foliar disease 
severity1,2,3 

% Early blight 
reduction 

AUDPC3,4 

 
KCl 

 
89b 

 
- 0.3 661a 

 
0 (Water Control) 

 
88.7a 

 
0 659a 

 
50 ppm 

 
84.9b 

 
4.3 583b 

 
100 ppm 

 
84.7b 

 
4.5 555ab 

 
150 ppm 

 
82.9c 

 
6.5 552b 

 
200 ppm 

 
78.4a 

 
11.6 527b 

F – ratio 8.66  3.38 

P – value 

CV% 

0.0089 

5.5 

 0.0001 

18 
 

1Visual ratings of foliar disease severity (0 – 100) using a Horsfall-Barratt scale. Numbers are arcsine 

transformed. 
2Ratings made on whole plant at three days after inoculation with Alternaria solani [1 = 0%; 2 = 1 – 3%; 3 = 3 – 

6%, 4=6-12, 5=12-25%, 6=25-50%, 7=50-60%, 8=60-70%, 9=70-80%, 10=80-90%, 11=90-100%]. 
3Within each column, values followed by the same letter indicate no significant difference at P =0.05, according 

to Duncan Multiple Range Test (DMRT). 
4AUDPC = Area Under the Disease Progress Curve based on disease severity on six assessment dates. 

4.3.2 Efficacy of various ASM concentrations on disease severity of early blight 

There were significant differences (P = 0.001) in the AUDPC values after treatment with the 

four ASM concentrations, and the pathogen inoculated control. ASM at a 75% concentration 

(0.056 g l-1) and at 100% (0.075 g l-1) were the most effective in reducing the levels of early 

blight, with AUDPC units below 150. All the ASM treatments were significantly better than 

the pathogen inoculated control (Figure 4-2). 
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Figure 4.2. Effect of different concentrations of acibenzolar-S-methyl on disease AUDPC of 

early blight under greenhouse conditions. 

 

Significant differences (P = 0.001) were observed among the ASM treatments (P = 0.0001). 

The 75% concentration (0.056 g l-1) and 100% (0.075 g l-1) treatments provided equivalent 

control levels that were not significantly different, but were significantly more effective than 

the treatments of 25% (0.018 g l-1) and 50% (0.038 g l-1). (Table 4.2). 
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Table 4.2. Evaluating the efficacy of acibenzolar-S-methyl on early blight severity under 

greenhouse conditions 

Treatment Foliar disease  
severity1,2,3 

% Early blight 
reduction 

AUDPC3,4 

Control 80a 0 328a 
25% (0.018 g l-1) 40b 48 216c 
50% (0.038 g l-1) 40b 48 249b 
75% (0.056 g l-1) 39c 67 126d 
100% (0.075 g l-1) 32b 57 138d 
P – value 0.0001  0.0001 
F– ratio 
CV% 

163.49 
7.9 

 88.3 
14.4 

 

1Visual ratings of foliar disease severity (0 – 100) using a Horsfall-Barrattscale, Numbers are arcsine 

transformed. 
2Ratings made on whole plant at three days after inoculation with Alternaria solani [1 = 0%; 2 = 1 – 3%; 3 = 3 – 

6%, 4=6-12, 5=12-25%, 6=25-50%, 7=50-60%, 8=60-70%, 9=70-80%, 10=80-90%, 11=90-100%]. 
3Within each column, values followed by the same letter indicate no significant difference at P =0.05, according 

to Duncan multiple range test (DMRT). 
4AUDPC = Area Under the Disease Progress Curve based on disease severity on six assessment dates. 

4.3.3 Uptake and accumulation of silicon in tomato plants  

(i) Standard curve 

Linear regression equation for the determination of silicon content was acquired as y = 

0.0243x – 0.0016, R2 = 0.887 is shown in Figure 4.3, where y = OD value and x is the time in 

weeks for setting up the standard curve (Figure 4.3). 
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Figure 4.3. A standard curve for the determination of the silicon content in tomato leaves 

(ii) Silicon accumulation in tomato plants 

Accumulation of silicon in stems and leaves was evaluated after six weeks. The results 

indicate that there no significant difference across the silicon treatments at P = 0.005. Silicon 

accumulation in stems was significantly higher than in the leaves with the highest recorded 

level of 0.93 mg g-1 of leaf sample (Table 4.3). The results showed that stems accumulated 

more silicon, even in silicon-deprived control plants. The ANOVA showed that there was no 

difference between any of the treatments and the control in Week2, Week3, Week4 and 

Week6 (Figure 4.5). Significant differences were observed on week5. 
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Table 4.3. Levels of silicon uptake and accumulation in leaves and stems after six weeks of 

growth under greenhouse conditions 

Time/weeks 

Treatment 

Concentration 
(ppm) 

WK2 WK3 WK4 WK5 WK6 STEMS 

KCL 0.057a             0.059a 0.063a  0.065ab 0.068a 0.093a 

50  0.058 a           0.063b 0.064a 0.064a 0.069a 0.091a 

100 0.059a  0.062b 0.063a 0.066b 0.069 a 0.093a 

150 0.063b     0.063b  0.064a 0.066b 0.070b 0.092a 

200 0.057a           0.061b                      0.064a 0.065ab                               0.069a             0.092a 

F-ratio 0.11 0.53 0.19 0.14 0.51 0.79 

P-value 0.37 0.71 0.94 0.10 0.73 0.42 

CV (%) 13.07 3.33 10.7 4.3 4.3 3.0 

Means with the same letter are not significantly different (P = 0.05) according to Duncan’s multiple 
range test. 

4.3.4 Silicon levels in leaves using Energy Dispersive X-ray (EDX) 

Minimal absorption of silicon over a period of six weeks was observed in tomato leaves using 

EDX on a scanning electron microscope (Table 4.4). Silicon mapping showed that leaves 

accumulated more silicon, even in the control plants that were not provided with additional 

silicon. There were no significant differences between the treatments during week except for 

treatment 150ppm which had a slightly higher silicon absorption compare to other treatments.  

Week 1. Even though the level of silicon absorption was minimal across all treatments a 

gradual increase in silicon uptake was observed with increase in the concentration of silicon. 

Each treatment showed a slight increase absorption of the element over time.  
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Table 4.4. Evaluation of levels of silicon in tomato plants treated with potassium silicate, 

with scanning electron microscopy energy dispersive X-ray (SEMEDX) 

Time/weeks 

Treatment 
Concentration WK2 WK3 WK4 WK5 WK6 STEM 

50 0.01a 0.03a 0.04b 0.06a 0.06a 0.13a 

100 0.03a 0.04a 0.05ab 0.08a 0.12b 0.19a 

150 0.04a 0.05a 0.07a 0.08a 0.13b 0.19a 

200 0.04a 0.08a 0.08a 0.09a 0.13b 0.19a 

F-ratio 1.50 3.46 4.95 2.03 0.02 3.36 

P-value 0.28 0.07 0.03 0.18 5.62 0.07 

CV (%) 57 41 21 21 23 16 

Means with the same letter are not significantly different (P =0.05) according to Duncan’s multiple 
range test. 

 

EDX showed that the levels of silicon absorbed by tomato were much lower than most 

(Figure 4.4) other elements that are present within tomato leaf samples. Silicon levels were 

observed to be higher in the stems than in the leaves.  
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Figure 4.4. Silicon concentration peak amongst other elements found in a sample of tomato 

leaf using energy dispersive X-ray. 

 

4.4 Discussion  

Sticher et al. (1997) reported that identifying a suitable disease resistance inducer may help in 

protecting plant against various diseases which are caused by pathogens such as fungi, 

viruses and bacteria. It can also be seen as a way of adding or contributing to sustainable 

agriculture (Edreva and Kostoff, 2004). In this study, four treatments of potassium silicate 

and four treatments of ASM were tested for their efficacy in controlling early blight of 

tomato under greenhouse conditions. The results demonstrated that none of the potassium 

silicate treatments were effective in controlling the disease. However, all of the ASM 

treatments provided moderate control of 48 to 67% reduction in disease severity. 

According to Ma and Takahashi (2002) and Lana et al. (2003), plants possess different 

abilities when it comes to silicon accumulation. Monocotyledons are classified as silicon 

accumulators, accumulating more Si in their shoots compared to other species, and especially 

when compared with silicon non-accumulators (some dicotyledons). Ma and Yamaji (2006) 

suggested that xylem loading (e.g. the transport of silicon from cortical cells to the xylem) is 

the most important determinant for a high level of silicon to accumulate in monocotyledons. 

Therefore, the much lower accumulation of silicon in tomato observed in the study might be 

explained by a lower density of the transporter to transport silicon from the external solution 
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into the cortical cells as well as the absence of transporter to transport Si from cortical cells to 

the xylem. 

ASM has been reported to activate resistance in many crops against a broad spectrum of 

diseases when applied in relatively small amounts. These include fungi, bacteria and viruses. 

It has been reported that in monocotyledonous plants the activated resistance by ASM 

typically is long lasting, while the lasting effect is less pronounced in dicotyledonous plants. 

Out of the four ASM concentrations (25% (0.018 g l-1), 50% (0.038 g l-1), 75% (0.056 g l-1) 

and 100% (0.075 g l-1)) two concentrations (75% (0.056 g l-1) and 100% (0.075 g l-1) resulted 

in a control effect above 50% against early blight disease. The results obtained in the study 

are in agreement with the one reported by Fritz (2005) where significant differences were 

observed among the treatments.  The result obtained in the study agree with the results found 

by Madhusudhan et al. (2008) where ASM resulted in 66 and 68% reduction of local lesions 

in tomato  and bell pepper as a result of TMV infection.  

The SEM-EDX analysis was mainly used to observe the silicon levels in plant samples and 

the elemental distribution in the tomato plant tissues, while it is also a method for the rapid 

determination of the silicon content in plant tissues, as described by Wei-min et al. (2005). 

Hence, only the results of the rapid determination of the silicon content analyses were 

considered for analysis.The microanalysis using scanning electron microscopy (SEM) with 

energy dispersive X-ray (EDX) performed on the plant samples also showed that silicon was 

absorbed in small amount. This explains failure of the potassium silicate applications to 

control early blight disease. 

The 75% (0.056 g l-1) and 100% (0.075 g l-1) concentrations of ASM showed potential to 

control early blight in tomato. The effect of low concentrations of ASM in early blight 

control is important as it could be integrated with other disease management strategies to 

effectively manage the pathogen. 
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CHAPTER FIVE 

Integrated management of early blight of tomato using biological control 

agents and plant defence activator under greenhouse and nursery 

conditions 

 

Abstract  

A plant defence activator, acibenzolar-S-methyl (ASM), two biological control agents, 

Bacillus subtilis N6/2 and Bacillus sp. XVT8, as well as combinations thereof were evaluated 

for their efficacy in controlling early blight of tomato under greenhouse and nursery 

conditions. The treatments were applied as foliar sprays. Individual applications of 75% 

(0.056 g l-1) concentration of acibenzolar-S-methyl, Rovral Flo and Coproxydithane+Petrin 

treatment failed to control early blight disease in both greenhouse and nursery conditions. 

Bacillus sp. XVT8 and B. subtilis N6/2 treatments significantly (P = 0.0001) reduced early 

blight disease severity in both greenhouse and nursery trials. A single application of Bacillus 

sp. XVT8 resulted in a significant reduction (P = 0.0001) in the levels of early blight disease 

in both greenhouse and nursery trials. However, a single treatment of B. subtilis N6/2 failed 

to control early blight under nursery conditions. The combination treatment of 75% 

acibenzolar-S-methyl + Bacillus sp. XVT8 + B. subtilis N6/2 showed disease suppression of 

62% and 66% in the greenhouse and nursery trials, respectively. Combination treatments with 

75% ASM and Bacillus sp. XVT8 reduced disease severity under greenhouse and nursery 

conditions by 66% and 68%, respectively. The combination of Bacillus sp. XVT8 + B. 

subtilis N6/2 caused a 57% and 46% disease reduction in the greenhouse nursery conditions, 

respectively. The combined treatment of 75% ASM + B. subtilis N6/2 failed to control early 

blight disease in both the greenhouse and nursery experiments. 

 

5.1 Introduction 

Tomato (Solanum lycopersicum (L.) H. Karst.) is an important vegetable because of its health 

benefits and phytochemical properties. Even though the crop is important for its nutritional 

value and as an important cash crop for smallholders and medium-scale commercial farmers 

in Africa, diseases such as early blight still remain a challenge for its production (Babalola 
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and Glick, 2012). Early blight has been reported to reduce the quantity and quality of tomato 

fruit produced by tomato crops globally (Tewari and Vishunavat, 2012). Even though the 

application of fungicides has been adopted as a standard practice to control early blight, 

various concerns such as the harmful effects of fungicides to human health and the 

environment have been raised (Janisiewicz and Korsten, 2002). This in turn has driven a 

search for alternative disease control measures (Nordlund, 1996; Glick and Bashan, 1997; El-

Khoury and Makkouk, 2010). 

The use of microbial antagonists such as bacteria has been suggested as one of the strategies 

that could play a role in controlling plant diseases (Lima et al., 1997; Harman et al., 2004). 

However, biological control has sometimes been reported to be less effective than 

commercial fungicides (El-Ghaouth et al., 2002; Leverentz et al., 2003). To overcome this 

shortfall, the use of microbial antagonists combined with commercial fungicides has been 

suggested. Moreover, application of mixtures of microbial antagonists could also serve as a 

way of reducing the inconsistency in performance that is normally observed when a single 

biological control agent is used (Droby et al., 1998; Janisiewicz, 1988; Duffy and Weller, 

1995; Varshney and Chaube, 2001). In addition, it has been suggested that combining two or 

more antagonists could more closely mimic natural conditions on the phylloplane, and might 

broaden the spectrum of biocontrol activity. This in turn would enhance the efficacy and 

reliability of biocontrol, and allow the combination of various control measures without the 

need for genetic engineering (de Medeiros et al. 2012). However, the combination of 

different treatments increases the complexity and costs associated with such treatments. In 

some cases, combinations of biological control agents may be antagonistic (Yobo, 2005). 

Chemically induced systemic acquired resistance (SAR) has also been suggested as one of 

the strategies that could be used to control disease in plants, indirectly. A synthetic 

compound, acibenzolar-S-methyl (ASM), has been reported to induce SAR and to provide 

significant suppression of various tomato diseases (Louws et al., 2001; Abbasi et al., 2002; 

Wilson et al., 2002). According to Batista et al. (2006), adopting integrated disease 

management practices, as well as implementing management strategies to reduce fungicide 

use in crop production, could minimise losses in tomato production. Integration of biological 

control agents with ASM has been used successfully to control bacterial spot of tomato under 

greenhouse experiments (Obradovic et al., 2005). In a study conducted by Fritz (2005), a 

strong, direct inhibitory effect of ASM in vitro on Alternaria isolates was documented. Fifty 
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three percent (53%) reduction of mycelial discs on potato dextrose agar was observed when 

compared to the control. The objective of this study was to investigate individual and 

combined effect of a plant defence activator, ASM, and two biological control agents for the 

management of early blight under greenhouse and nursery conditions. 

5.2 Materials and methods 

5.2.1 Biological control agents, plant defence activator and plant sanitizer 

The biological control agents used in this study were selected based on their performance 

during greenhouse studies (Chapter Three). The tested isolates were B. subtilis N6/2 and 

Bacillus sp. XVT8. 

A plant defence activator, ASM, was used in the study. The concentration used was selected 

based on the studies carried out under greenhouse conditions on early blight of tomato 

(Chapter Four). 

5.2.2 Production of seedlings and greenhouse conditions 

All greenhouse bioassays were treated under the same conditions as described in this section. 

Greenhouse experiments were subjected to the temperature of 25°C during the day and 20°C 

at the night, with a relative humidity of 75-90%. 

The greenhouse trial was conducted at the University of KwaZulu-Natal, Pietermaritzburg 

South Africa. Seeds of tomato (Solanum lycopersicum (L.) H. Karst.) (Cultivar Rodade) were 

obtained from Starke Ayres (Pty) Ltd, Pietermaritzburg South Africa. The seed were sown in 

Speedling 128 cavity seedling trays filled with composted pine bark (CPB) seedling mix 

(Gromor, Cato Ridge, South Africa). The seeded trays were kept in a greenhouse at a 

temperature of 26°C during the day and 18°C at night with a relative humidity of 75-85%. 

The seeds were watered once a day using sprinkler irrigation until germination and thereafter 

twice a day until transplanted. Irrigation water contains (per litre) NPK Starter Grower 

fertilizer 2:1:2(43) (1 g) plus trace elements (Ag-Chem Africa (Pty), Pretoria, South Africa). 

Seedlings were monitored, and at a two leaf stage they were transplanted into 15 cm diameter 

pots filled with composed pine bark potting mix media. The seedlings were watered and kept 

under the same greenhouse conditions as previously indicated above.  
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5.2.3 Inoculum preparation of A solani for the greenhouse and nursery experiments 

A culture of A. solani was grown on V8 tomato juice agar [V8 tomato juice 200 ml, CaCO3 3 

g, agar 20g in 1 L distilled water]. The plates were incubated at 25°C for seven days as 

described in Chapter Two. After 10-14 days, conidia were harvested in sterile distilled water 

(containing 0.01% of surfactant, Tween-20) by dislodging them off the agar plates with an L-

bent glass rod and adjusted to 107 conidia ml-1 using a haemocytometer.  

5.2.4 Treatment preparation for greenhouse and nursery experiments 

(i) Inoculum preparation of biological control agents 

Bacterial isolates Bacillus sp. XVT8 and B. subtilis N6/2, were cultured in tryptone soy agar 

(TSA) medium in 9 mm petri plates. The plates were incubated at 28°C for 48 h (Chapter 

Two). Bacterial cultures were washed by adding sterile distilled water nto the agar plates 

containing the bacterial culture. The conidial concentration in the suspension was measured 

using a Helber counting chamber (Paul Marienfield Superior GmbH & Co, Germany), and it 

was adjusted to107 conidia ml-1 before inoculation. The bacterial suspension was applied as 

foliar sprays using 1 L hand spray bottles. 

(ii) Plant defence activator - Acibenzolar-S-Methyl (ASM) 

A 75% concentration treatment of a full strength (0.075 g l-1) ASM was prepared by 

measuring 0.056 g and dissolved in 1000 ml of tap water in a Aqua Systems 2L Garden 

Pressure Sprayer. The mixture was shaken to form a homogenous solution. ASM treatments 

were repeated every 14 d for both the greenhouse and nursery trials.  

5.2.5 Testing treatment combinations under greenhouse conditions 

Tomato seedlings used for greenhouse studies were prepared and fertilized as described in 

Section 5.2.2. A total of 9 treatments were evaluated in this study. Among the treatments 

were combinations of two and three treatments. The treatments consisted of (1) Fungicide 

(Rovral Flo), (2) B. subtilis N6/2, (3) Bacillus sp. XVT8, (4) 75% ASM (0.056 g l-1), (5) B. 

subtilis N6/2 + Bacillus sp. XVT8, (6) B. subtilis N6/2 + 75% ASM, (7) Bacillus sp. XVT8 + 

75% ASM, (8) B. subtilis N6/2 + Bacillus sp. XVT8 + 75% ASM, (9) A. solani inoculate 

control. The treatments were applied following a waiting period of 24 h between treatment 

applications: B. subtilis N6/2 followed by Bacillus sp. XVT8 and 75% ASM.  
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The plants were arranged in a randomized complete block design (RCBD) with six replicates 

per treatment. Plants were fertilized weekly with 150 ml per pot of limestone ammonium 

nitrate to ensure that nutrients were not a limiting factor for growth. The pathogen was 

inoculated by spraying 107 ml-1 of a conidial suspension on leaf surfaces. 

Before and after inoculation each plant was sprayed with distilled water to create high 

humidity conditions and covered with a plastic bag for 24 h. The plants were then assessed 

for disease severity five days after treatment with A. solani inoculum following a three days 

interval over a period of four weeks. The experiment was conducted twice and the data was 

pooled for statistical analysis. 

5.2.6. Testing treatment combinations under nursery conditions 

Nursery trials were conducted at Sunshine Seedling Services (Old Wartburg Rd, 

Pietermaritzburg, South Africa). The trials were conducted in an unprotected tunnel with 

approximately 10-20% shading on the roof. Five to six week old tomato seedlings (cv 

Rodade) provided by Sunshine Seedling Services were transplanted into 20 cm diameter pots 

(one seedling per pot) filled with growing medium comprising of a mixture of vermiculite 

and coco peat. The plants were drip irrigated once a day for a period of 20 min. The irrigation 

water contained NPK fertiliser 3:1:3 [38] 0.75 g L-1; CaNO3 0.25 g L-1; Microplex at 1 g per 

1000 L (Sunshine Seedling Services, Pietermaritzburg, South Africa). The plants were then 

assessed for disease severity five days after treatment with A. solani inoculum over a period 

of four weeks following an interval of three days. The trial was repeated once and the data 

pooled for statistical analysis. 

 In the nursery experiment, most experimental techniques used were as described in Section 

5.2.5, such as the preparation and application of pathogen inoculum. The same treatments and 

treatment combinations were used except for the Fungicide Control which consisted of a 

weekly treatment with Coproxydithane and Petrin, which is the standard fungicide used at the 

nursery where the experiment was conducted. 

5.2.7 Disease scoring and data analysis 

Disease ratings of percentage foliar infection consisted of an estimate of percentage leaf area 

infected (%LAI) using a Horsfall-Barratt Scale (1945) where [1 = 0%; 2 = 1 – 3%; 3 = 3 – 

6%, 4=6-12, 5=12-25%, 6=25-50%, 7=50-60%, 8=60-70%, 9=70-80%, 10=80-90%, 11=90-
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100%]. The estimates were used to calculate the Area Under the Disease Progress Curve 

(AUDPC) for each treatment (Shanner and Finney, 1977). The AUDPC values and the final 

disease severity values (arcsine transformed) were subjected to analysis of variance 

(ANOVA) using Statistical Analysis System (SAS) software, Version 9.3 (SAS Institute Inc, 

2011). Treatment means were separated using Duncan’s multiple range test at the 5% 

probability level. 

The benefits of using treatment combinations were compared with separate/individual 

application of each treatment were estimated. When two or more treatments were applied 

together, their effects could be classified as antagonistic, additive or synergistic. Antagonistic 

effects means the efficacy of the combination(s) is lower than the sum of the individual 

components’ efficacies. Additive effects means that the efficacy of the combination(s) is 

equal to the sum of the separate efficacies, and synergistic effects means the efficacy of the 

combination(s) is greater than the sum of the separate efficacies. The expected disease control 

was calculated according to Abbott’s formulas (Levy et al., 1986) as follows:  

E (exp) = a + b – (a x b)/100; and SF = E (obs)/E (exp),  

Where a = control efficacy of treatment “a” when applied alone; b = control efficacy of 

treatment “b” when applied alone; E (exp) = expected control efficacy by the combination(s); E 

(obs) = observed control efficacy by the combination(s); and SF = the synergy factor achieved 

by the combination(s). When SF = 1, the interaction between the treatments is additive; when 

SF < 1, the interaction is antagonistic; and when SF > 1, the interaction is synergistic (Levy et 

al., 1986). 

 

5.3 Results  

5.3.1 Efficacy of individual and combination treatments in reducing early blight severity 

under greenhouses conditions 

The levels of disease control provided by the treatments with single biological control agents, 

Bacillus spp. XVT8 and B. subtilis N6/2, and the fungicide control treatment, Rovral Flo, 

were not significantly different (63.3%, 62.9% and 53.5%, respectively), and fell into the best 

class of treatments. Treatment with the biocontrol agent Bacillus spp. XVT8 alone resulted in 

the lowest overall AUDPC values. The treatment combination of Bacillus sp. XVT8 + B. 
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subtilis N6/2 caused a disease reduction of 53.4% which was almost exactly the same as the 

commercial fungicide treatment (53.5%), and was not significantly more effective than either 

of the biocontrol agents by themselves.    

Treatment with 75% ASM alone failed to control early blight disease under greenhouse 

conditions with a disease reduction of only 14%. However, B. subtilis N6/2 + 75% ASM 

provided moderate control of early blight disease, with a disease reduction of 41%, which is 

close to the level of control provided by the fungicide (53.6%), but was less than the 

biocontrol agent by itself (62.9%). However, the combination of the two biological control 

agents and ASM (B. subtilis N6/2 + Bacillus sp. XVT8 + 75% ASM) provided for disease 

reduction of 62.4%, and Bacillus sp. XVT8 + 75% ASM provided a disease reduction 65.9%, 

the best treatment overall, although it was not significantly more effective than the biocontrol 

agent by itself (Table 5.1). 
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Table 5.1: Efficacy of individual and combined applications of two biological control agents, 

ASM and their combination treatments against early blight of tomato under greenhouse 

conditions.  

 

Treatments 

 

Final disease 
severity 

% Early 
blight 
reduction 

 

AUDPC 

A. solani 86.27a 0 766.5a 

Rovral Flo 40.17d 53.5 292.88c 

Bacillus sp XVT8  31.65d 63.3 121.5d 

B. subtilis N6/2 31.98d 62.9 247.25c 

75% ASM 74.53b 13.6 222.17cd 

Bacillus sp. XVT8 + B. subtilis N6/2 40.16d 53.4 428.17b 

B. subtilis N6/2 + 75% ASM  50.68c 41.3 270c 

Bacillus sp. XVT8 +75% ASM  29.61d 65.7 398.92b 

B. subtilis N6/2+ Bacillus sp. XVT8+75% ASM  32.44d 62.4 126.25d 

F-value 37.68  33.31 

P-value 0.0001  0.0001 

CV% 16.47  37.14 

Means with the same letter are not significantly different (P =0.05) according to Duncan’s multiple 
range test. 

ASM = acibenzolar –S- methyl 

 

The failure of the combination treatments to have higher levels of activity than the biocontrol 

agents by themselves is reflected in the analysis in Table 5.2, which shows that all the 

combination treatments resulted in antagonistic effects between the treatments (Table 5.2). 
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Table 5.2: Calculation of benefits of treatment combinations for the control of early blight on 

tomato under greenhouse conditions using Abbots formula (Levy et al., 1986) 

Treatment Efficacy  

Observed 

Efficacy   

expected 

Synergy  

factor 

Interactive  

effect 

Bacillus sp. XVT8 + B. subtilis 65.67 79.26 0.5 antagonistic 

N6/2 + ASM 41.26 59.26 0.5 antagonistic 

Bacillus sp. XVT8 +ASM 13.60 59.97 0.9 antagonistic 

N6/2+ Bacillus sp. XVT8+75% 

ASM 

65.67 -227.24 -0.2 antagonistic 

ASM= acibenzolar-S-methyl 

5.3.2 Integrated control of early blight of tomato under nursery conditions 

Significant differences were observed among the single treatments (p = 0.0001) (Table 5.3). 

Bacillus subtilis N6/2 and 75% ASM treatments applied alone performed poorly, and reduced 

early blight disease under nursery conditions by only 25% and 24%, respectively. However, 

Bacillus sp. XVT8 applied alone caused a disease reduction of 65%. This was better than its 

performance during the greenhouse experiment. The standard fungicide treatment of 

Coproxydithane + Petrin also provided for poor levels of control of early blight disease with a 

23% disease reduction (Table 5.3). 

When 75% ASM was applied alone it provided a poor level of disease control of 23.9%. 

When 75% ASM was used in combination with Bacillus sp. XVT8, the best overall control 

level was achieved of 69.9% disease reduction, although this was not significantly different 

to the biocontrol agent by itself. When 75% ASM was used in combination with Bacillus 

subtilis N6/2 a moderate level of disease control was provided, of 48.3%, which was 

significantly better than either of the treatments by themselves (23.9% and 25.2%, 

respectively). When 75% ASM was used in combination with both of the biological control 

agents, Bacillus sp. XVT8 + B. subtilis N6/2 a disease reduction of 66.9% was observed. This 

was not significantly better than performance of Bacillus sp.XVT8 by itself (Table 5.3).  

The AUDPC values show that the best treatment was achieved with a combination of 75% 

ASM with both of the biological control agents. However, this was not significantly better 

than the biocontrol agent Bacillus sp. XVT8 treatment on its own. The least effective 
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treatment was the fungicide treatment, which fell into the same class as the untreated, 

inoculated Control. The biocontrol agent Bacillus subtilis N6/2 on its own performed poorly, 

with a high AUDPC value. 

Table 5.3: Efficacy of individual and combined applications of two biological control agents, 

ASM and their combination treatments against early blight of tomato under nursery 

conditions 

 

Treatment 

Final disease 
severity 

% Early blight 
reduction 

AUDPC 

A. solani 97.95a 0 552.5a 

Coproxydithane +Petrin 77.00b 21.3 507.17a 

Bacillus sp. XVT8 33.43d 65.8 218.25de 

B. subtilis N6/2 73.27b 25.2 391bc 

75% ASM  74.53b 23.9 289cd 

Bacillus sp. XVT8 + B. subtilis N6/2 40.49cd 58.7 298.58cd 

B. subtilis N6/2+75 % ASM  50.68c 48.3 460ab 

Bacillus sp. XVT8+75% ASM  29.53d 69.9 291cd 

B. subtilis N6/2 + Bacillus sp. XVT8 + 75% ASM 32.44d 66.9 157.75e 

F-value 40.29  11.82 

P-value 0.0001  0.0001 

CV% 18.0  38.37 

Means with the same letter are not significantly different (P =0.05) according to Duncan’s multiple 
range test 

ASM= acibenzolar-S-methyl 

 

The combination of the two biological control agents, and the combinations of 75% ASM 

with one or two biological control agents were mostly antagonistic. The one exception was 

the combination of B. subtilis N6/2 with 75% ASM in the nursery trial that resulted in a 

strong additive effect (Table 5.4). 
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Table 5.4: Calculation of the nature of the interactions of treatment combinations for the 

control of early blight on tomato under nursery conditions using Abbot’s formula (Levy et 

al., 1986) 

Treatment Efficacy 
Observed 

Efficacy  
expected 

Synergy 

Factor 

Interactive 

effect 

Bacillus sp. XVT8 + B. subtilis N6/2 58.67 73.27 0.7 Antagonistic 

B. subtilis N6/2 + ASM 48.26 42.31 1.14 Synergistic  

Bacillus sp. XVT8 + 75% ASM  69.85 72.82 0.96 Antagonistic 

B. subtilis N6/2 + Bacillus sp. XVT8 + 75% 

ASM 

66.88 -297.7 - 0.2 Antagonistic 

ASM = acibenzolar-S-methyl 

 

5.4 Discussion 

Two biological control agents and a 75% concentration of ASM were tested either singly or 

in combinations for their efficacy in controlling early blight disease under greenhouse and 

nursery conditions. Overall, Bacillus sp. XVT8, Bacillus sp. XVT8 + 75% ASM, and 

Bacillus sp. N6/2 + Bacillus sp. XVT8 +75% ASM were consistent in controlling early blight 

in both greenhouse and nursery conditions. The treatment combination of Bacillus sp. XVT8 

+ B. subtilis N6/2 was antagonistic under both greenhouse and nursery conditions. The 75% 

ASM treatment was consistently ineffective against early blight and provided relatively poor 

control. It was not additive or synergistic with either biocontrol agent in the greenhouse trial, 

and was additive in action with Bacillus sp. N6/2 in the nursery trial. It did not improve the 

performance of the biocontrol agent Bacillus sp. XVT8 significantly in either experiment. 

Acoording to Jacobsen et al. (2004) Bacillus based biocontrol play a vital role in controlling 

disease in plants.This is due to their production of wide spectrum of antibiotics as well as 

their ability to form endospore and this is evident on the results obtained from the study.The 

results obtained in the study correlate with the study where Bacillus sp. was used as 

biological control agent against Fusarium wilt of tomato under greenhouse condition a 

disease reduction of 62.5-81.2 % was achieved (Ajilogba et al.,2013) . I another study the use 

of bacillus sp was found to have a better performance in controlling powdery mildew in 
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cucumber and gray mold in tomato with results that were as effeicient as the results obtained 

from using fungicide (Kim et al., 2013). 

Previous reports on the effect of ASM on early blight disease severity under greenhouse and 

nursery conditions have not been documented due to early blight being controlled using 

commercial fungicide alone. However, it has been reported that when ASM was used in 

controlling bacterial speck and spot under greenhouse condition it did not have any 

significant impact on the population of bacterial speck and spot (Louws et al., 2001).  Saad et 

al. (2015) and Soleimani and Kirk (2012) reported that ASM did not provide any control 

against of A. solani when tested in vitro. This correlates with the results observed in the study 

in which ASM alone failed to control early blight and its contribution towards the 

performance of the treatment combinations was trivial 

This study contradicts various studies where it was observed that combining different 

biological control agents resulted in better disease control (Duffy et al., 1996; Raupach and 

Kloepper, 1998; Mishra et al., 2011). In this study the combination of the two biological 

control agents was consistently antagonistic when compared to the Bacillus spp. XVT8 by 

itself. Given the complexities and costs involved in applying multiple biocontrol agents, or 

biocontrol agents combined with ASM, this is the best outcome, especially as it was 

substantially more effective than the standard fungicide. 

In conclusion ASM did not control early blight disease when used as a single treatment as 

well as in combination with the biological control agents. In addition biological control used 

in the study showed to be less effective in controlling early blight disease under greenhouse 

and nursery conditions when used in combination. However even though the combined 

biological control were not effective one single treatment of biological control agents showed 

to be more effective compared to the current fungicide program used for controlling early 

blight disease. 
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DISSERTATION OVERVIEW 

The search for alternatives to agrochemicals has attracted the attention of many researchers 

globally in the last few decades. This interest has been prompted by the necessity to increase 

crop production to meet the demands for food (Ray et al., 2013). Plant diseases alone have 

been shown to drastically reduce crop yields thereby necessitating the need to find strategies 

to control them (Agrios, 2005).  

Integrating biological control agents (BCA) with other means of control such as plant defence 

activators has been reported to increase reliability and consistencies of BCAs. This may be 

used as an alternative strategy that can be practiced on a large scale. Moreover, combinations 

of BCAs with plant defence activators has been shown to be effective and may offer a better 

option to control plant disease on a large scale (El Ghaouth et al., 2000; Usall et al., 2001; 

Arras et al., 2002 Droby et al., 2003; Spadaro et al., 2004; Lima et al., 2005). On the other 

hand, this would increase the costs of disease control. 

Therefore, this study was aimed at isolating potential bacterial and yeast BCAs and screening 

them in vitro and in vivo against early blight of tomato caused by A. solani. A range of 

concentrations of acibenzolar-S-methyl and potassium silicate were evaluated for their ability 

to control early blight of tomato under greenhouse conditions. The best treatments were 

combined and tested in an effort to formulate an integrated approach to manage early blight 

under greenhouse and nursery conditions.  

In this study, the following outcomes were achieved: 

 In an in vitro dual-culture assay 10 bacterial isolates strongly inhibited the growth of 

A. solani. 

 Bacillus subtilis N6/2, B. subtilis N5, Bacillus sp. XVT8 and B. subtilis WESH1 

significantly (p = 0.001) reduced disease severity of early blight in an initial trial. 

 None of the liquid potassium silicate concentrations significantly reduced disease 

severity of early blight under greenhouse condition. Little potassium silicate was 

taken up and translocated into the leaves by tomato. 

 Individual applications of 75% (0.056 g L-1)  ASM and both the fungicide treatments 

Rovral Flo (100mL/100 ) Land Coproxydithane +Petrin failed to control early blight 

disease under both greenhouse and nursery conditions. 
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 Biocontrol treatments with Bacillus sp. XVT8 and B. subtilis N6/2 alone significantly 

(P = 0.0001) reduced early blight disease severity under both greenhouse and nursery 

conditions. 

 A single treatment of Bacillus sp. XVT8 provided better and more consistent control 

of early blight disease than a single treatment of B. subtilis N6/2  under greenhouse 

and  nursery conditions 

 Combination of 75% reduced concentration of ASM and Bacillus sp .XVT8 

controlled early blight in the greenhouse and nursery by 66% and 68% respectively 

compared to the pathogen inoculated control treatment. However, these levels of 

control were not significantly better than the biocontrol agent by itself. 

 The combination treatment of 75% ASM + Bacillus sp. XVT8 + B. subtilis N6/2 

resulted in disease suppression of 62% and 66% in the greenhouse and nursery, 

respectively. Neither of these results were significantly better than Bacillus sp. XVT8 

by itself. 

 

In vitro bioassays 

Sixty percent (60%) of the bacterial isolates inhibited mycelial growth of A. solani, with 

inhibition zones ranging from 6-14 mm. Thirty-five percent (35%) of the yeast isolates 

inhibited spore germination of A. solani. 

The isolates screened were identified isolates N5, N6/2 and WESH1 were identified as 

Bacillus subtilis while NC13 was identified as Pseudomonas putida strain PYR1 and XVT8 

was identified as a Bacillus sp using 16S rRNA sequencing,. The yeast isolates C10, P1-1 and 

Y4 were identified as Meyerozyma guilliermondii, Isolate P1-Orange was identified as 

Rodotorula minuta and H5 was identified as Pichia guilliermondii. 

Greenhouse trials 

The study demonstrated that the best two Bacillus isolates could be used in an integrated 

disease management strategy for the control of early blight on tomato. The performance of 

the yeast isolates during greenhouse studies on tomato plants did not correlate well with those 

obtained in the in vitro studies. None of the yeast isolates reduced early blight disease 

severity under greenhouse conditions. It is clear that the in vitro test used here did not 

replicate conditions in the greenhouse, on the leaf of tomato, where the competition with A. 
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solani takes place. More work is needed to discover a better primary screening method to 

identify competitive yeast strains to control foliar diseases of crops. Use of detached tomato 

leaves in the laboratory may be an option. 

The 75% reduced concentration (0.056 g L-1) and the full strength (0.075 g L-1) ASM showed 

potential in controlling early blight of tomato. 

The microanalysis using scanning electron microscopy (SEM) with energy dispersive X-ray 

(EDX) performed on the plant samples treated with potassium silicate showed that silicon 

was absorbed in minute amount which explains why KSil had no effect on the disease, and 

there was no difference in the levels of silicon taken up as a result of differences in 

concentrations of KSil that were applied. 

Nursery trial 

ASM on its own provided little control of early blight, a 23.9% reduction. When 75% ASM 

was used in combination with XVT8 Bacillus sp. + Bacillus subtilis N6/2, disease reductions 

of 66% and 68% respectively were observed. However, a disease reduction of 47% was 

observed when 75% ASM was combined with B. subtilis N6/2. A combination of two 

biological control agents Bacillus sp. XVT8 + B. subtilis N6/2 resulted in a significant 

disease reduction of 57%. Coproxydithane +Petrin fungicide resulted in minimal disease 

reduction of 21%. These results are in agreement with the studies conducted by various 

works where it was observed that combining different biological agents results a better and 

consistent disease control (Duffy et al., 1996; Raupach and Kloepper, 1998; Mishra et al., 

2011). 

Overall conclusion 

These results indicate that biological control agents alone, or in combination with ASM, can 

be used successfully in a sustainable disease management program. 

 

Proposed future research priorities 

 Selecting more efficient biological control agents suitable for integrated application 

with ASM. 
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 To evaluate the efficacy of all the combination treatment that showed potential in 

controlling early disease under fields conditions. 

 Use of participatory approach to evaluate the efficacy of the treatment combination 

under farmer’s conditions. 

 An evaluation of the financial aspects of applying a range of control measures to a 

tomato crop for the control of early blight. 
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