
Mathematical modelling of drug resistance in malignant

tumour treatment

A DISSERTATION SUBMITTED TO THE UNIVERSITY OF KWAZULU-NATAL

FOR THE DEGREE OF MASTER OF SCIENCE

IN THE COLLEGE OF AGRICULTURE, ENGINEERING AND SCIENCE.

By

Khaphetsi J. Mahasa

School of Mathematics, Statistics and Computer Sciences

Pietermaritzburg

September 2014



Contents

Abstract vii

Declaration viii

Dedication ix

Acknowledgment x

1 Introduction 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 A review of mathematical models for drug resistance . . . . . . . . . . . . . . . . . . 5

1.3 Steady states analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 Rough-Hurwitz stability criterion . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.2 Dulac’s criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
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Abstract

Resistance to conventional chemotherapies, especially to anti-cancer agents, is rapidly becoming a

global pandemic. Mutations, in combination with genetic instabilities, play an important role in

the molecular heterogeneity of cancerous cells that display resistance to chemotherapeutic drugs.

Currently, mechanisms involved in drug resistance phenotype resulting from the interaction of a

tumour and anti-cancer agents are not fully understood. In this dissertation, we propose two new

dynamical models for the interaction between a tumour and a chemotherapeutic drug. Our focus

is only on resistance which is caused by random genetic point mutations. The models consist of

coupled systems of ordinary and partial differential equations. Tumour cells are divided into two

classes, namely; sensitive and resistant cells. We determine the equilibrium points of the model

equations and investigate their stability. In the first instance, after reviewing the basic modelling

assumptions and main results found in the mathematical modelling literature on drug resistance, we

present the ordinary differential equation (ODE) model. To account for spatial growth effects, we then

extend the model to a partial differential equation (PDE) model that describes the local interaction

of the tumour with the anti-cancer agent through convection, reaction and diffusion processes. Some

analytical solutions of the PDE model that are comparable to those found in the literature are

obtained. One novel outcome of the models in this dissertation is the qualitative demonstration

of the possible success of the therapy for certain initial conditions, number of sensitive cells and

their interaction with the chemotherapeutic drug. Parameter sensitivity analysis is carried out to

determine the influence of each individual parameter in the model. For all the models, numerical

solutions which showed the effect of therapeutic agents on the growth and spread of the tumour cells,

subject to evolving drug resistance phenomenon, were attained and presented here.
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Chapter 1

Introduction

1.1 Overview

Cancer is a major global health problem and a leading cause of deaths worldwide [6]. According

to the International Agency for Research on Cancer, there were 12.7 million new cases of cancer in

2008. The global cancer burden is expected to double to 21.4 million cases with the corresponding

deaths of 13.5 million by 2030 [7]. Some cancers can be treated successfully even with current medical

treatment options [8, 9]. However, to date, there is still no cure for most cancers [10, 11].

Cancer is generally defined as an unrestrained growth of abnormal cells in any part of the body.

There are various distinct types of cancers, which can change substantially in their phenotype (the

appearance of a cancerous cell resulting from its interaction with a surrounding environment) and

response to treatment. Normal cells have regulatory mechanisms that govern cell proliferation (i.e

a cellular division or increase in number), differentiation (the degree of tumours capacity in relation

to invasiveness and mortality), survival and death of the individual cells. Cancer cells, on the other

hand, behave quite differently. Cancer can occur when there is either a fast unbounded growth of

abnormal cells or cells have lost their ability to die; thereby resulting in the formation of a mass called

a tumour. Tumours can be classified in two ways, namely benign or malignant tumours. A benign

tumour usually remains confined to its tissue of origin. Benign tumours may be harmful due to their

interference in body regulatory mechanisms that accompany the cellular proliferation, growth and

death of individual cells. So they can be harmful, although they are usually considered less dangerous

and or less invasive than malignant tumours. A malignant tumour is one that can metastasize (i.e
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invade the surrounding tissues, and spread to other distant body sites). The metastatic tumours

initially grow locally in the primary tissue before they can spread to other distant sites through the

bloodstream and the lymphatic system.

Figure 1.1: The stages of tumour metastasis, Source [1].

Figure 1.1 gives a summary of the metastatic processes. Step (1) illustrates the state at which the

tumour grows at its primary site, (2) represents the state at which the tumour has broken away

from the original site and entered the bloodstream or lymphatic system, (3) shows the cancerous

cells travelling through the bloodstream or lymphatic system to other parts of the body, (4) denotes

the state at which the tumour escapes the bloodstream or lymphatic system and breaks into the

nearby tissue, and finally (5) represents the state at which the tumour has now invaded the nearby

tissue and started to grow into a new tumour [1]. Metastasis has been reported as the most frequent

cause of cancer death, therefore, systemic or targeted therapies are required to improve patients

health [12–16].

There are many causes of cancer that have been identified to date, including excessive exposure

to sunlight, drinking excessive alcohol, exposure to certain chemicals and genetic differences [17].

However, many of the cancer causing agents are still unknown [18]. In the case of known cancer types,

there exist a considerable number of treatment options for patients including chemotherapy [19–24],

surgery [25], immunotherapy [6, 20, 26–32], radiotherapy [33, 34], anti-angiogenesis [8, 33, 35], and

oncolytic virus therapy (virotherapy) [36,37]. Treatment usually improves the patients quality of life

or brings about remission of the cancer [10,11]. However, mathematical and biological knowledge of

2



these treatment modalities is still in its infancy.

The effectiveness of cancer treatment varies between patients and with the type of cancer. Some

cancers may remain undetectable for years, while others may grow and metastasize rapidly, and

cause death within a short period. Nevertheless, in as much as there are numerous distinct cancer

types, Hanahan and Weinberg [38] showed that, in their rapid cell growth, most human cancers have

six basic properties, to be specific:

(i) unbounded replicative potential,

(ii) insensitivity to growth-inhibitory signals,

(iii) tissue invasion and metastasis,

(iv) self-sufficiency in growth signals,

(v) evasion of programmed cell death, and finally

(vi) sustained angiogenesis (development of new blood vessels)

Conventional cancer treatments follow three principal regimens. Firstly surgery, may be appropriate

where the tumour is of a detectable size and is localized; that is, it is unlikely to have metastasized.

A second therapy option is radiotherapy, which uses radiation to kill the cancerous cells. However it

may cause a further problem of killing healthy surrounding tissues if tumour has metastasized. The

third option is chemotherapy, where cytotoxic drugs are used to invade the rapidly proliferating cells.

However, a major limitation of chemotherapy is that it also kills any normal healthy cells that also

have a rapid proliferation rate, such as those found in bone marrow [8]. Furthermore, despite great

advances in both biological and clinical understanding of cancer, there remain only a few cancer types

that are known to be sensitive to standard therapies and which are thus potentially curable. These

include many pediatric tumours, several hematological cancers and germ cell tumours such as those

found in the testis [9]. Therefore, despite great advances in both biological and clinical understanding

of drug sensitivity, drug-resistant tumour populations remain a major challenge for both scientific

and clinical researchers [9, 39–43].

Resistance to a single chemotherapeutic drug has been reported in many mathematical, biological

and oncological studies [5, 44–49]. Although many tumour cells may be intrinsically resistant to

chemotherapy, such resistance being caused by mutant genes, in some cases, a tumour may also
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develop resistance to a chemotherapeutic agent later during therapy due to cell mutations in response

to signals from the micro-environment. This later development may then confer resistance to a specific

chemotherapeutic drug [43]. Examples of reported acquired drug resistance studies include breast

cancers that show a loss of estrogen receptor following the emergence of tamoxifen resistance [50];

the development of mutations that render chronic myelogenous leukemia (CML) cells resistance to

the drug imatinib [51], and non small cell lung cancer (NSCLC) resistance to the drug gefitimb [52].

With diverse underlying evolutionary mechanisms and pathways to drug resistance, the development

of tumour sub-populations, which modify the overall sensitivity of the drug sensitive cells, still remains

a problem in clinical oncology [46]. Due to drug resistance, there is a need for better understanding of

the roles played by various treatments modalities for the inhibition of tumour growth and metastasis.

This is an exceptionally difficult task since cancer cells are usually composed of cells that may be in

different phases of their cell cycle [10]. Furthermore, for any given type of cancer, the macroscopic

properties of the tumour may depend on the number of the cancer cells present at that instant. As a

result, mathematical modelling of malignant tumours faces challenges in terms of which parameters

to prioritise, because there are no consistent data about the properties of a given cancer [10, 20, 53].

In response to this challenge, mathematical models developed in this dissertation will provide a

theoretical description of dynamical systems concerned in the spread of cancerous cells. These models

will thus provide qualitative and quantitative understanding of the effects of various treatment options

on cancerous cells.

There are two major aims in this study. We seek to understand, and model, the biological aspects

of cancer that concern:

(i) cell population growth describing the production of offspring through cell proliferation, death

and local interaction between tumour cells and cancer anti-agents,

(ii) spatial distribution dynamics of the cell populations through reaction, convection and diffusion

which describe the random mobility of cells, and biological phenomenon which are involved in

the migration of cancer anti-agents towards tumour cells.

In particular, we aim to answer the following questions;

(a) How do tumour cells escape cancer drugs or treatment?

(b) What interventions can be implemented to reduce or minimise this escape?
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As a first approach to answering these questions, we develop deterministic mathematical models that;

(1) take into consideration the local population growth and reaction kinetics,

(2) model the dynamics of spatial distribution of the tumour sub-populations through reaction,

convection and diffusion,

(3) enhance our understanding of the effect of different interventions on the tumour cell sub-populations

through qualitative and numerical analyses.

1.2 A review of mathematical models for drug resistance

Along with biological and clinical research, many mathematical models have been developed to model

the development of drug resistance in cancer. Such mathematical models have the advantage over

clinical studies in that they provide significant insights into the dynamics of the drug resistance

before the model could be used in carrying out the clinical trials. Economically, this help to save

money that could be used to implement the dimly understood drug resistance phenomenon. Further,

conclusions from mathematical models could provide a valuable information to clinical researchers

to develop new trials with a more refined focus, and in some cases lead to new clinical trials [45].

In earlier studies [39–41], the evolution of drug resistance was identified as the major source of

failure in many chemotherapies. Mathematical models that take into account the undesirable effects

of drug-resistance can be found in [10, 11, 22, 41, 54–56] with succinct reviews published in [45, 46].

These studies range from deterministic to stochastic models, and from discrete (agent-based) to

continuum models. The models include those composed of ordinary differential equations (ODEs),

partial differential equations (PDEs), delayed differential equations (DDEs), and integro differential

equations (IDEs) [45,46].

In literature, there are mathematical models which consider the mechanism of genetic point mutations

and gene amplification. Gene amplification comes as a result of an overproduction of a particular gene

or genes. This means that larger portion of the genome would be replaced by copies of one gene, which,

in turn, confer resistance to a particular drug. By using branching stochastic processes, mathematical

models of drug resistance due to gene amplification were done in [57,58]. Point mutations are random

genetic changes that occur during cell division. The models of this type have been considered in

earlier works of Coldman and Goldie [5]. One novel feature of their model is that small tumours
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have a higher probability of not having drug resistance than large solid tumours. However, more

recent reports of stochastic models of point mutations are found in Komarova [54, 59]. By using

PDEs and probabilistic methods, Komarova [59] showed that the tumour pre-treatment phase is

more important in the development of drug resistance than the treatment phase. Further, Komarova

and Wodarz [54] showed, within the assumptions of their model, that using a combination of three

drugs with different specificities might overcome the problem of resistance. Another mathematical

report on genetic point mutations is by Iwasa et al [60] in which the branching processes were used

to compute the probability of resistance at the time the tumour is detected.

From these studies it can be seen that there has been considerable work on modelling of drug resistance

using stochastic processes. However, there is no enough information on the mechanisms of how do

cancer cells elude chemotherapy. It is nevertheless important to note that there are diverse underlying

evolutionary mechanisms and pathways to drug resistance. The development of the drug-resistant

tumour sub-populations which modify the overall sensitivity of the drug sensitive cells still remains a

major problem in clinical oncology [46]. Even though there are many treatment options available for

cancer patients, particularly in the early stages of the disease, the mortality rate is still high [61]. We

describe two particular ODE models here which will be used as starting points for our PDE model

which takes into account the effects of spatial dynamics of the tumour cells.

The first model we describe is the ODE model of Tomasetti and Levy [47] which describes the

probability of the development of drug resistance based on the number of cancerous cells at the time

of detection, the mutation rate and the turnover rate of the cancer cells. In their study, they first

distinguished two types of cells: the wild-type (cells that are sensitive to the drug), N(t), and the

cells that have undergone mutations and hence resistant to the drug, R(t). They further delineated

the branching processes that lead to drug resistance due to genetic point mutations. The model may

be described by the equationsN
′(t) = (L−D)N(t),

R′(t) = (L−D)R(t) + µN(t),

t ≤ t?

N
′(t) = (L−D −H)N(t),

R′(t) = (L−D −H)R(t) + µN(t),

t > t?

where N(t) is the number of wild-type cancer cells that are sensitive to a drug at time t, R(t) denotes

the cancer cells that have undergone mutations and are therefore resistant to the drug. L,D, µ denote
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the natural cell birth, death and mutation rates, respectively, while H denotes the drug-induced death

rate. An interesting finding from this model is that the levels of resistance, before the start of the

treatment and present at some given time afterwards, always depends on the turnover rate D/L,

regardless of the number of chemotherapeutic drugs used simultaneously in the treatment [8].

The mathematical model by Jackson and Byrne [48] played an important role in the development of

further mathematical models for drug resistance in solid tumours. Their spatially- dependant mathe-

matical model considered the response of vascular tumours and drug resistance to chemotherapeutic

treatment. In that study, two tumour cell types are distinguished with respect to their responsiveness

to a chemotherapeutic agent: a rapidly dividing population, p(r, t), which is highly susceptible to the

drug, and the other population, q(r, t), which has lower drug susceptibility. They further assumed

that the tumour spheroid expands or shrinks at a rate which depends upon the balance between cell

growth and division, and cell death within the tumour, in which the latter state is being modified

by the presence of the drug. d(r, t) denotes a chemotherapeutic drug concentration at time t, and

u(r, t) presents a local cell velocity. The model is described by the following equations:

∂d

∂t
+∇ · (ud) = ∇ · (D(r)∇d) + Γ(r)(dB(t)− d)− λd, (1.1)

∂p

∂t
+∇ · (up) = Dp∆p+ Fp(p)− Cp(p, d), (1.2)

∂q

∂t
+∇ · (uq) = Dq∆q + Fq(q)− Cq(q, d), (1.3)

where D(r) and Γ(r) are radial diffusion and coefficient of blood-tissue transfer, respectively. λ and dB

are the respective drug decay and prescribed drug concentration in the tumour vasculature. Dp and

Dq are the constant random motility coefficients of the two types of tumour cells and Fp(p) and Fq(q)

are their respective net proliferation rates. The functions Cp(p, d) and Cq(q, d) represent the effect

of the chemotherapy on each tumour sub-population. This model illustrates how the vasculature

exchange would affect the tumour’s response to therapy. Using this model, Jackson and Byrne [48]

found that the spatially- dependent blood-tissue transfer gave rise to the largest reduction in tumour

volume as compared to no blood-tissue transfer and constant blood-tissue transfer. Furthermore,

when the tumour consisted of only sensitive cells, minimum tumour radius was determined. From

this model, it could be seen that while under certain conditions the drug resistant sub-population

could be eliminated, nevertheless, tumour re-growth is possible.

In this dissertation, we draw some important tumour modelling assumptions on previous studies,

such as those outlined above to develop new mathematical models of drug resistance which take into
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account the effects of genetic point mutations. We will use both ordinary and partial differential

equations. We will then use computational methods to solve these differential equations. The nu-

merical schemes used include a hybrid fourth and fifth order Runge-Kutta differential solvers such

as ode45 and pdepe solvers.

1.3 Steady states analysis

In mathematical analysis of biological systems, particularly in anti-cancer modelling, the study of the

equilibria of the system and stability analysis are important tasks because stability conditions usually

indicate the conditions where tumour eradication is feasible [62,63]. Furthermore, it is important to

note that the orbital portraits of one steady state may differ from those of nearby steady states [62].

Thus, any categorisation of the steady state must be local.

There are two methods of determining the stability of any system, namely graphical stability analysis

and linearisation stability analysis. Because the models are comprised of nonlinear ODEs, for the

purposes of this study, we use the linearisation stability analysis. In effect, linearisation simply means

that we approximate a function by a first-order Taylor series expansion about the steady state. If

the linearization is performed, then the nonlinear system behaves more like a linear system, which is

easy to determine its stability, in the neighbourhood of equilibrium point.

For the purpose of this study, we use the linearisation method and deduce the stability of each steady

state based on the Rough-Hurwitz stability criterion [62,64–66], as described below.

To illustrate the linearisation technique, consider a biological system that is described by three

differential equations. The derivatives about the equilibrium point are given as

dx

dt
= f1(x, y, z) ≈ x

∂f1

∂x
+ y

∂f1

∂y
+ z

∂f1

∂z
,

dy

dt
= f2(x, y, z) ≈ x

∂f2

∂x
+ y

∂f2

∂y
+ z

∂f2

∂z
,

dz

dt
= f3(x, y, z) ≈ x

∂f3

∂x
+ y

∂f3

∂y
+ z

∂f3

∂z
.

We re-write this system in matrix notation as

ẋ = J(x) =


∂f1
∂x

∂f1
∂y

∂f1
∂z

∂f2
∂x

∂f2
∂y

∂f2
∂z

∂f3
∂x

∂f3
∂y

∂f3
∂z




x

y

z

 , (1.4)
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where the matrix J is the Jacobian matrix of the system. We find the eigenvalues of the Jacobian

matrix in order to deduce the stability of the system via the Routh-Hurwitz stability criterion, as

will be shown in Section 2.4 and 2.6.

1.3.1 Rough-Hurwitz stability criterion

In a complex dynamical system, determination of the stability of the system may not be easy.

However, the Rough-Hurwitz criterion provides necessary and sufficient conditions for the stability of

a system with n state variables [62,64–66]. May [64] provides a full description of the Routh-Hurwitz

stability criterion based on m = 1, 2, . . . , 5 state variables. In brief, the criterion can be given as

follows. Suppose the characteristic polynomial associated with the Jacobian matrix of the system of

differential equations with n state variables is

P (γ) = γn + a1γ
n−1 + · · ·+ an−1γ + an, (1.5)

where the coefficients a1, a2, . . . , an are real constants. We define the Hurwitz matrices corresponding

to the number of the state variables as

H1 = (a1), H2 =

 a1 1

a3 a2

 , H3 =


a1 1 0

a3 a2 a1

a5 a4 a3

 , . . . , (1.6)

Hn =



a1 1 0 0 . . . 0

a3 a2 a1 1 . . . 0

a5 a4 a3 a2 . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . . an


, (1.7)

with ai = 0 whenever j > n. If all the roots of the polynomial (1.5) are negative or have a negative

real part, then the determinants of the Hurwitz matrices, (1.6)− (1.7) are positive. That is,

det(Hi) > 0, i = 1, 2, . . . , n. (1.8)
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In summary, the Rough-Hurwitz stability criterion for n = 2, 3, 4 and 5 is

n = 2 : a1 > 0 and a2 > 0,

n = 3 : a1 > 0, a3 > 0 and a1a2 > a3,

n = 4 : a1 > 0, a3 > 0, a4 > 0, and a1a2a3 > a2
3 + a2

1a4,

n = 5 : ai > 0, i = 2, 3, 4, 5, a1a2a3 > a2
3 + a2

1a4, and

(a1a4 − a5)(a1a2a3 − a2
3 − a2

1a4) > a5(a1a2 − a3)2 + a1a
2
5


(1.9)

The proof of this criterion is given by Gantmacher [66] for n = 2. We use this criterion because the

models considered here have more then two state variable. If there is no drug in the tumour, then the

system (2.4) − (2.6) deduces to a system of two state variables. Thus the Rough-Hurwitz criterion

would be helpful in determining the stability of the system.

1.3.2 Dulac’s criterion

Dulac’s Criterion is an important theorem used to determine if the system of differential equations has

no periodic orbits [67]. This criterion would be vital for the models considered in this study because

the periodic orbits might show the condition at which a tumour eradication is feasible or not. This

means that after a chemotherapeutic drug has killed some sensitive cells, then other cells, possibly

the resistant cells, might bring cancer remission later or not. In this study, it is also important to

investigate if tumour eradication is possible under the constraints of the models considered in this

study.

Consider a smooth differential equation system

ẋ = f(x, y), (1.10)

ẏ = g(x, y). (1.11)

Dulac’s criterion states that if there is a smooth function B(x, y) defined on a simply connected

region Ω ⊂ Rn such that

∂

∂x
(B · f) +

∂

∂y
(B · g) (1.12)

is not identically zero and of a fixed sign on Ω, then the system (1.10) − (1.11) has no periodic

solution on Ω. The main disadvantage of Dulac’s criterion is that there is no systemic way of finding

the function B(x, y). For this reason, the method is not always possible to use. Consequently, instead,

we make use of the Poincaré-Bendixson theorem.
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1.3.3 Poincaré-Bendixson Theorem

Dulac’s criterion is useful for demonstrating the existence of periodic solutions. To show that it a

periodic solution exists, a necessary and sufficient condition is that the Poincaré-Bendixson theorem

is satisfied. We state, without proof, the Poincaré-Bendixson theorem that is useful for demonstrating

the existence of the limit cycle of the system of differential equations [68].

Theorem 1.3.1. Suppose there is a function f ⊂ C1(E), where E is an open subset of R2, and φ is

the solution of the system ẋ = f(x). If Ω is a non-empty compact ω-limit set of φ, and Ω does not

contain a rest point (i.e. stable equilibrium point), then Ω is a periodic orbit.

Corollary 1.3.4. This Corollary follows directly from Theorem 1.3.1. If E contains a periodic orbit

Γ of the system ẋ = f(x) and its interior U , then U contains at least one rest point of the system, [68].

In order to determine the stability of the ODE systems, developed in this dissertation, about any

steady state, we shall use the Rough-Hurwitz stability criterion. Additionally, to show the existence

of a globally asymptotic stable point, in Section 2.4.2, we will use the Dulac’s criterion and a corollary

of the Poincaré-Bendixson theorem to show that there exist no periodic solutions associated with the

models considered in this study.

1.4 Sensitivity analysis

The modelling of complex biological system involves estimation and analysis of model parameters.

However, as indicated above, understanding of the multi-drug–tumour system may be limited by

lack of values for parameters. This deficiency can be partially addressed through a technique called

sensitivity analysis (SA). SA investigates the relationship between particular model parameters and

the characteristics of the observable outcome; thus indicating some phenotypic behaviour of the

system under study [69]. SA can be utilised, not only for identification of the model parameters that

are highly correlated with the state variables, but also to help prioritise research on those essential

parameters [70], particularly where there is no available medical literature for some of the model

parameters. To be specific, we will here identify the parameters that are most influential in the

dynamical behaviour of our systems.
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1.4.1 Partial rank correlation coefficient

We use the partial rank correlation coefficient (PRCC) test, to determine the statistical significance

of the model parameters on the outcome of the state variables. In particular we consider those

model state variables that have a monotonic but non-linear behaviour [71, 72]. PRCC uses the

Latin hypercube sampling technique (LHS). To implement the LHS, we first generate a random

sample of N vectors in the parameter space using the Latin hypercube sampling. LHS attempts

to sample the whole parameter space by separating the bounded subsets of the parameter space

into N compartments and then choosing a random value in each compartment from a uniform

distribution [72, 73]. To perform this task, we first needed to write a Matlab code and use the

Matlab built-in function lhsdesign to generate a matrix of parameter values between 0 and 1. Each

parameter set needed to be rescaled by the tumour carrying capacity 5× 107, [74]. By letting M be

the resultant matrix of the lhsdesign, then, using the output of the LHS, we could generate a vector,

Y , where yi represents a model value at any time t using the given parameter value of ith row of the

matrix M .

The first step in the implementation of PRCC test is to rank the transformed matrices, which take

M and Y as inputs and return the matrices M and Y with the same dimensions, in which each

column contains all the integers from 1 to N . Note that the ordering of the integers in M and Y

corresponds to ordering of the integer values in the original matrices, where a 1 in the kth column of

M corresponds to the position of the lowest value in the kth column of M , and N corresponds to the

highest value.

Utilising the rank transformed matrices, M and Y , we can now fit a linear regression model for each

of the parameters, say p̄k, defined as

p̄k = a0 + a1p1 + · · ·+ ak−1pk−1 + ak+1pk+1 + · · ·+ anpn, (1.13)

which expresses a selected parameter pk as a linear combination of all other model parameters.

Equation (1.13) can be solved by

a =
(
XTX

)−1 (
XTpk

)
, a =


a0

a1

...

an

 , and X =
[

1, p1, p2, . . . , pn

]
. (1.14)
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Similarly, we define

Ȳpk = b0 + b1p1 + · · ·+ bk−1pk−1 + bk+1pk+1 + · · ·+ bnpn, (1.15)

of which can be solved by

b =
(
XTX

)−1 (
XTY

)
, b =


b0

b1

...

bn

 , and X =
[

1, p1, p2, . . . , pn

]
. (1.16)

The values p̄k and Ȳpk , together with pk and Y , are used to compute the residuals, res(pk) = pk − p̄k
and res(Ypk) = Y − Ȳpk , between the two data sets. The correlation coefficients between res(pk) and

res(Ypk) are computed via the Matlab built-in function corrcoeff. These correlation coefficients are

the required results of the PRCC, and measure the strength of the relationship between the two

given parameters, or the degree of association between a given state variable and a given parameter.

A correlation coefficient value close to 1 indicates a strong positive linear relationship between the

given state variable and the parameter in question, whereas a negative correlation coefficient value

close to −1 shows a strong negative relationship between the state variable and the given parameter.

Therefore, the sign indicates the qualitative relationship between the state variable and the parameter

in question. If the correlation coefficient is either −1
2

or 1
2
, then there is no linear relationship between

the state variable and the parameter in question. Thus, the parameters with large PRCC values

greater then 0.5 or less than −0.5 are the most important [75]. The PRCC test is applicable only

in mathematical models that have two or more parameters. This is true for the ODE models in this

study. The quantitative results of the sensitivity analysis are presented in Chapter 4.

1.5 Dissertation structure

The remainder of the dissertation comprises four chapters where the major contributions to the

chemotherapeutic modelling of drug resistance in cancer are presented. In particular, two new math-

ematical models describing the interactions between tumour cells and chemotherapeutic agent(s) are

presented.

In Chapter 2, two new compartmental models describing the interactions between tumour cells and

chemotherapeutic drug(s) are constructed. In order to model these interactions, the system of several
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ordinary differential equations that take into account the effects of drug resistance to one and then

two chemotherapeutic agents are constructed. The steady states and stability of the systems are

investigated. The fixed points are important since they highlight the system solutions that might

bring about cancer eradication or remission. The stable points are solutions that might bring about

effective disease control and prolong the quality of life, while unstable points are solutions of the

uncontrolled state (i.e the state that usually leads to metastasis).

In Chapter 3, to account for the spatial distribution dynamics of the tumour sub-populations, a partial

differential equation model is constructed. Some analytical solutions of this model are presented.

Model simulations and parameter sensitivity analysis of the ODE models is presented in Chapter 4.

Numerical simulations provide a plausible dynamical model behaviour and interactions of tumour

sub-populations and chemotherapeutics drugs. In Chapter 5, the overall conclusions from the studies

are brought together and discussed in the light of previously published work. This highlights some

further points for future research. In the Appendix, a glossary of relevant biological terms is given.
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Chapter 2

A two compartmental ODE model for

drug resistance

2.1 Introduction

The use of ordinary differential equations (ODEs) to model tumour growth has a long history in

cancer modelling, [24, 76–82]. See specifically the work of Tomasetti and Levy [47] described in the

previous chapter. While ODEs can capture many important features of cell divisions in large cell

populations they have the added advantage of being computationally easy to work with. Nevertheless,

using ODEs in cancer modelling requires a number of simplifying assumptions to represent a three-

dimensional tumour. Thus, identifying the constituent components in any biological system is a

vital step to ensure robust mathematical and computational analysis. In this regard, it is important

to note that within a single tumour, there are likely to be a number of sub-populations that could

each be characterised by different intrinsic growth rates and treatment susceptibilities [83]. Thus,

in order to monitor the growth of the tumour, it is vital to track the total number of cells within

it, while also keeping track of each sub-population within it [24, 84–86]. However, with biological

phenomena, it is often difficult to adequately delineate which tumour components are present in

the system because some components or processes may not be well understood. Nevertheless, many

biological phenomena involving time-evolved systems can be analysed using ODEs consisting of two

cell populations [33,47].

Furthermore, there are some mathematical models in which partial resistance, and its corresponding
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correlation to the amount of the drug present, have been addressed [49, 87]. In this chapter, we

develop a non cell-cycle specific system of ODEs that govern the development of tumour cells under

the intervention of chemotherapeutic drug(s). We give the criteria and theorems needed to show

stability and non-existence of periodic solutions. The numerical solutions of these system of equations

are given in Chapter 4.

2.2 Chemotherapeutic model formulation

As explained in the previous chapter, one of the defining attributes of malignant tumours is their

ability to metastasise [88]. Furthermore, human cancer cells may include a sub-population with an

intrinsic drug resistance. In this section we develop a mathematical model that considers the case

in which the tumour develops the resistance to a single chemotherapeutic drug due to genetic point

mutations. We have also considered a similar biological setting to that proposed by Goldie and

Goldman [5], where, even-though the malignant cancer cells are highly heterogeneous, the tumour

is viewed as a single compartmental population composed of two types of cell sub-populations. The

first sub-population group consists of rapidly proliferating cells that are highly susceptible to the

drug, S(t), and the second sub-group consists of the cells that are drug resistant, R(t). Thus:

N(t) = S(t) +R(t), (2.1)

where N(t) is the total number of the tumour cells at time t.

2.2.1 Model assumptions

As mentioned earlier, modelling of biological system requires a number of simplifications. Therefore,

in constructing the first ODE model the following assumptions were made:

(i) There is a logistic growth in both types of cells, when there is no drug in the tumour, and the

intrinsic growth rates are different. It is reasonable to assume different growth rates because,

in [46], it was found experimentally that the sensitive tumour cells usually grow faster than

the resistant cells. Furthermore, it has been shown that in lung cancer cells, resistant to the

chemotherapeutic drug, gemcitabine, are less invasive and grow slowly than their drug sensitive

counterparts [89].

16



(ii) The drug kills only the sensitive cells and has no effect on the resistant cell population.

(iii) Mutation happens in only one direction (i.e. during mitosis, one of the daughter cells mutates

to a resistant cell and not vice-versa). This is a standard assumption when modelling resistance

due to genetic point mutations, rather than resistance caused by gene amplification [47].

(iv) We assume that an interaction between the chemotherapeutic drug and the tumour cells follows

an exponential saturation kinetics as in [21]. This exponential form has been validated by [90]

for a reasonable number of chemotherapeutic drugs.

By distinguishing between only two types of tumour cells, the model variables are;

(a) D(t), the chemotherapeutic drug concentration at time t,

(b) S(t), the number of tumour cells that are sensitive to the drug at time t,

(c) R(t), the number of tumour cells that are resistant to the drug at time t.

The model parameters, λS and λR are the intrinsic growth rates of sensitive and resistant cells,

respectively. λD represents a drug decay rate, µ is the mutation rate coefficient resulting from cell

division. kS is the susceptibility coefficient of the sensitive cells to the drug, while k is the drug

saturation coefficient for the tumour. V (t) represents an external time dependent influx of the

chemotherapeutic drug, and θ is the limiting size, commonly called maximum carrying capacity of

the tumour.

With these parameters, we model the dynamics of the chemotherapeutic drug by the equation

dD(t)

dt
= V (t)− λDD, (2.2)

with the following baseline conditions:

D(t) =

0 if t = 0,

Dc(t) if t > 0,

(2.3)

where Dc(t) is the drug concentration in the tumour (which depends on the external influx V (t) and

the natural decay rate of the drug, λD,) at any time t. We assume that λD ≥ 0, with inclusion

of a mathematical limit state λD = 0 to represent a situation of having no chemotherapeutic drug

decay in the tumour. We have assumed that, initially at time t = 0, there is no drug in the tumour,
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so D(0) = 0, as in Krabs and von Wolfersdorf [91]. We have further assumed that the amount of

the chemotherapeutic drug entering the patient is bounded above, that is 0 ≤ V (t) ≤ Vmax(t), in

accordance with [19,24,91–93].

During chemotherapy, the basic growth kinetics of the tumour cells is usually perturbed by the

intravenous infusion of the cytotoxic agent at any time t [94]. Thus, we write our full model as

dD(t)

dt
= V (t)− λDD, (2.4)

dS(t)

dt
= λSS

(
1− S

θ

)
− kS(1− e−kD)S − µS, (2.5)

dR(t)

dt
= λRR

(
1− R

θ

)
+ µS. (2.6)

The corresponding initial conditions for the system (2.4)− (2.6), given by the initial drug concentra-

tion, the initial number of the sensitive and resistant cells, are

D(0) = 0, S(0) = S0, R(0) = R0, (2.7)

where each of the above initial values is non-negative. In order to determine the effects of the

chemotherapeutic drug, we have assumed that there is at least one tumour cell that is sensitive to

the drug at the start of the therapy. The domain of the model is [0, Tf ], where Tf ∈ R+ is a fixed time

of chemotherapy. In the second equation (2.5), the last term denotes the loss term (i.e the sensitive

cells death due to the presence of the drug at the tumour site.) In both tumour sub-populations,

equations (2.5) and (2.6), the first term denotes the logistic growth of tumour cells. This model

obeys the growth laws on a finite interval [0, θ], as in [78–82].

This model shares some similarities with the recent model of Tomasetti and Levy [47], but instead of

modelling an intrinsic drug resistance in chemotherapy, we focus on the dynamics of the drug effects

after the treatment has begun. We are mainly concerned with minimising the escape of the malignant

tumours once the drug is introduced. In addition, in contrast with Tomasetti and Levy [47], we allow

for logistic growth of the tumour cell population. Tumour growth, in reality, is limited by the carrying

capacity of the host tissue, as well as the availability of oxygen and nutrients necessary for its growth.

Models of this type have been found to be appropriate for modelling tumour growth [95, 96]. Fur-

thermore, our mathematical model is in line with many other mathematical models that describe the

dynamics of the drug based on the decay of the external influx of the drug [24,78–82]. To be specific,

here we are primarily concerned with the effects of the drugs on the tumour sensitive cells, while also

taking into account the evolution of a resistant cell sub-population as the treatment progresses.
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2.2.2 Non-dimensionalisation of model equations

In order to facilitate the numerical simulation of the system, we need to non-dimensionalize the

systems. The rationale behind this process is to determine which parameter variations have a more

significant effect on the system and, possibly, to reduce the number of parameters. We take the drug

concentration, D, as a non-dimensional variable, as in [29]. We denote by S? the non-dimensionalised

version of the state variable S and then choose the size of the cell population scale as S0, where S0

is an initial number of sensitive cells. Note, here we have assumed that the eternal drug influx, V ,

is constant for the duration of a chemotherapeutic treatment. Thus the non-dimensionalised state

variables for respective tumour sub-populations and drug concentration using equations (2.4)− (2.6)

are

S = S?S̄, D = D?D̄, D̄ =
1

k
, R = R?R̄, t = t?t̄, t0 =

1

λD
, R0 = θ, (2.8)

and the corresponding model parameters are

V ? = αV, α =
t0
D̄
, µ1 = µt0, a1 = λSt0, θ1 =

S0

θ
, (2.9)

η = kSt0, a2 = λRt0, µ2 =
S0t0µ

θ
, S̄ = S0, R̄ = R0. (2.10)

Writing the system (2.4)− (2.6) in these new dimensionless variables and parameters, and dropping

the stars for notational convenience, we have

dD(t)

dt
= V −D, (2.11)

dS(t)

dt
= a1S

(
1− S

θ1

)
− η(1− e−D)S − µ1S, (2.12)

dR(t)

dt
= a2R (1−R) + µ2S, (2.13)

and corresponding initial conditions are

D(0) = 0, S(0) = 1, R(0) = 1, (2.14)

where the number of initial sensitive cells are given by S0 > 0 and the number of resistant cells are

given by R0 ≥ 0.

2.3 Boundedness, positive invariance and dissipativity

In this section, we establish some important properties of the system (2.11)−(2.13), which ensure that

we have non-negative solutions. The same assurance will be needed for other equations (2.59)−(2.63)
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later in the chapter.

2.3.1 Positive Invariance

All solutions with positive values shall always remain positive. From equation (2.12), one solution

is S ≡ 0; therefore, we observe that no solution S(t) with t > 0 can be zero in finite time, hence

all solutions are non-negative. Similarly, it can be shown that the same analysis leads to positive

solutions of equation (2.13). Finally, from equation (2.11), we note that

dD(t)

dt
= V −D, D0 = 0, (2.15)

where D0 is the initial drug concentration at the time t = 0 and V is a constant external drug influx;

hence there is no solution of equation (2.11) with D(t) > 0 that can be zero.

2.3.2 Dissipativity

A dissipative system is a system whose solutions starting from a certain region, say B, in Rn either

approach, enter or remain in B. For the system (2.11)−(2.13), dissipativity imply that all trajectories

evolve to an attracting region in R3
+. However, one should note that the non-negative initial conditions

of the system, does not guarantee that all the solutions shall also be non-negative. From equation

(2.12), if S0 > 0, then we realise that

dS(t)

dt
= a1S

(
1− S

θ1

)
− η(1− e−D)S − µ1S,

dS(t)

dt
≤ a1S

(
1− S

θ1

)
(2.16)

Separating the variable from equation (2.16), we obtain

dS

S
(

1− S
θ1

) ≤ a1dt. (2.17)

Solving the inequality equation (2.17) we get

S(t) ≤ θ1

1 + Ae−a1t
, (2.18)

where A is a constant. Taking the limits on both sides, we have that

lim
t→∞

sup S(t) ≤ lim
t→∞

θ1

1 + Ae−a1t
= θ1. (2.19)
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Now, considering equation (2.13), let R0 ≥ 0 and S(t) = θ1, then

dR(t)

dt
≤ a2R (1−R) + µ2θ1,

R(t) ≤ 1

2C

{
a2θ1 + ρ tanh

[
ρ

2θ1

(t+ A)

]}
, (2.20)

where

ρ =
√

4µ2a2θ1 + (a2θ1)2, (2.21)

and C,A are constants. Taking the limits on both sides of equation (2.20) we obtain

lim
t→∞

sup R(t) ≤ 1

2C
(a2θ1 + ρ) . (2.22)

Similarly, from equation (2.11), we have

dD(t)

dt
≤ V −D, (2.23)

lim
t→∞

sup D(t) ≤ V. (2.24)

Hence we have the region

B =

{
(D,S,R) ∈ R3

+

∣∣0 ≤ S ≤ θ1, 0 ≤ R ≤ 1

2C
(a2θ1 + ρ) , 0 ≤ D ≤ V

}
(2.25)

as the attracting invariant region of the system.

2.3.3 Boundedness

All the solutions of the system (2.11)− (2.13), with positive initial values are bounded in the region

in R3
+ and are attracted to the region B. It is important to note that because we are modelling a

biological system, we can never have negative tumour sub-populations.

2.4 Equilibria and stability analysis: single drug resistance

Determining the solutions of a non-linear system may not be a trivial task. However, through

stability analysis, one can determine the long term behaviour of the system without having to indulge

in a tedious search for solutions. For the models, equations (2.11) − (2.13) and (2.59) − (2.63),

stability analysis is most significant because a stable solution may imply a full remission of the
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tumour sub-populations or at least a condition at which the tumour sub-populations may remain

controllable. Conversely, unstable steady states may imply the relapse of the tumour sub-populations,

corresponding to unsuccessful chemotherapy.

It is of particular interest in this study to determine the asymptotic local stability of the systems.

To achieve this, we linearise equations (2.11)− (2.13) about each of the steady states and determine

the stability of the system.

2.4.1 Drug free equilibrium: single drug resistance

We first investigate the equilibria of equations (2.11) − (2.13) when there is no drug (D(t) = 0 for

all time t). This helps to shed light on how the two tumour sub-populations grow if there is no drug

in the patient’s body. The steady states of the system is found by making the respective derivatives

zero. We have the following reduced system:

a1S

(
1− S

θ1

)
− µ1S = 0, (2.26)

a2R (1−R) + µ2S = 0, (2.27)

Solving equation (2.26), we obtain the following:

S = 0 or S =
θ1(a1 − µ1)

a1

. (2.28)

Substituting S = 0 into equation (2.27), we find that

R = 0 or R = 1. (2.29)

If we substitute S = θ1(a1−µ1)
a1

into equation (2.27), we observe that

a2a1R
2 − a2a1R− µ2θ1(a1 − µ1) = 0, (2.30)

which is quadratic in R. Thus we solve it to obtain

R =

(
1

2
+

√
1

4
+
µ2θ1

a1a2

(a1 − µ1)

)
. (2.31)

Because we are modelling a biological system, we are only interested in steady states which are

positive and real; thus we can only take a positive value for R provided that the discriminant is

non-negative. That is,

µ1 < a1. (2.32)
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Denoting the equilibrium point by Ei = (S?, R?) , i = 0, 1, 2, and using equations (2.28), (2.29) and

a positive value for R in equation (2.31), we obtain the following steady states:

E0 = (0, 0) , (2.33)

E1 = (0, 1) , (2.34)

E2 =

(
θ1 (a1 − µ1)

a1

,

(
1

2
+

√
1

4
+
µ2θ1

a1a2

(a1 − µ1)

))
. (2.35)

E2 exists if and only if µ1 < a1. Note, if µ1 = a1, then E2 reduces to E1. This generally means that

equilibrium point E2 exists if the intrinsic growth rate of sensitive population is higher or equal to

the mutation rate of cancerous cells. This is intuitive valid because if the mutations do not occur

at a faster rate than growth of sensitive sub-population, then it might be plausible to inhibit the

occurrence of resistant sub-population. The Jacobian of the linearised system with no drug is given

by

J =

 a1

(
1− 2S

θ1

)
− µ1 0

µ2 a2(1− 2R)

 . (2.36)

We first evaluate the Jacobian matrix (2.36) about the trivial equilibrium point E0. This reduces to

the matrix

J(E0) =

 a1 − µ1 0

µ2 a2

 . (2.37)

The corresponding characteristic polynomial is given by

γ2 + (µ1 − a2 − a1) γ + a2a1 − a2µ2 = 0. (2.38)

Now, using Routh-Hurwtiz conditions for stability [62], the eigenvalue γ2 = a2 > 0, then no matter

the sign of the eigenvalue γ1 = a1 − µ1 can be, (i.e. either a1 − µ1 < 0 or a1 − µ1 > 0 ) we shall

always have an unstable steady state.

2.4.2 Existence of a globally asymptotically stable point for a drug free

case

Since equations (2.11) − (2.13), are dissipative, as shown in Section 2.3.2, then it suffices to only

prove that there are no periodic orbits associated with the system.
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If there exists a periodic orbit in the system, then using Corollary 1.3.4 of the Poincaré-Bendixson

Theorem, we note that it should enclose the steady state, E0 in this case. Note that if a periodic

orbit existed, then part of the orbit must lie in the dissipative region B in equation (2.25), hence the

orbit cannot be periodic, but rather approach the steady state E0. Therefore, E0 must be a globally

asymptotically stable steady state.

However, we have already shown above that the steady state E0 is unstable; hence there exists at

least one other steady state that is globally asymptotically stable. This can be established from

realisation that when there is no drug infused, equations (2.11)− (2.13) reduce to a two dimensional

system. Thus we can state the following result:

Theorem 2.4.1. If the equilibrium solutions Ei, i = 1, 2 exist, then at least one of the equilibrium

solutions is globally asymptotically stable in R2 \ E0.

Proof. Since we have already established that the steady state, E0 is unstable, and the system is

dissipative, then it suffices to show that there are no periodic solutions. To prove this, we shall utilise

the Dulac’s theorem by choosing B(S,R) = 1
S·R . Applying this to equations (2.11) − (2.13), with

D = 0, we have that

∂

∂S

{
1

S ·R

(
a1S

(
1− S

θ1

)
− µ1S

)}
+

∂

∂R

{
1

S ·R

(
a2R

(
1− R

θ1

)
+ µ2S

)}
=

∂

∂S

{
a1

R

(
1− S

θ1

)
− µ1

R

}
+

∂

∂R

{
a2

S

(
1− R

θ1

)
+
µ2

R

}
= −

(
a1

Rθ1

+
a2

θ1S
+
µ2

R2

)
< 0.

This is always true for any two dimensional system, (S,R) ∈ R2
+. Therefore, by Dulac’s criterion the

reduced system does not have periodic solutions.

We study the stability of the system about the non-trivial steady state in order to gain an under-

standing of the long term behaviour of the system. The steady state, E1 = (0, 1), represents the

case where the tumour grows to its carrying capacity. This is the most undesirable state because

this state could suggest that chemotherapy is unlikely to be successful. The Jacobian matrix (2.36)

corresponding to the second steady state, E1 = (0, 1), is

J(E1) =

 a1 − µ1 0

µ2 −a2

 . (2.39)
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We note that the steady state E1 is locally asymptotically stable only if a1 < µ1 because we have

γ2 = −a2 < 0. The condition a1 < µ1 is plausible in cancer treatment [5] because here it indicates

that the impact of random mutations acquisition on drug resistance is time dependent. In this case

more resistant cells are continuously produced despite the lack of growth of sensitive cells [5]. The

steady state E1 can be the unstable saddle point if µ1 < a1.

The Jacobian matrix (2.36) at the steady state, E2, is

J(E2) =

 µ1 − a1 0

µ2 −2a1

√
1
4

+ µ2
a1a2

(a1 − µ1)

 . (2.40)

The equilibrium point E2 would to be locally asymptotically stable only if

µ1 < a1. (2.41)

Otherwise, E2, would be an unstable.

Therefore, we have the following cases for E0, E1 and E2:

(i) If a1 < µ1, then E0 is unstable, but E1 is stable and E2 does not exist.

(ii) If a1 > µ1, then E0 and E1 are unstable, but E2 is stable.

Using parameters from the literature, a1 = 0.18 from [97], a2 = 0.16 and θ = 1.2 × 106 from [98],

µ = 3.67 × 10−6 from [74], and plotting the phase portraits of the system corresponding to E0, E1

and E2, we obtain Figure 2.1.
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Figure 2.1: The phase portraits corresponding to the equilibrium points when µ1 < a1.

In Figure 2.1, the points, E0, E1 and E2, denote the equilibrium points of the system, and the arrows

indicate the direction of the trajectories away from or towards the equilibrium points.

It is important to note that, in the absence of the drug, the system reduces to a two-dimensional

autonomous system. We have used a phase plane analysis to capture the significant features of the

system. The steady state E2 is globally asymptotically stable as shown in Figure 2.1. This confirms

the existence of a global steady state as discussed earlier in this section.

When mutation rate is higher than the intrinsic growth of sensitive sub-population, we have the

following phase portrait:
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Figure 2.2: The phase portraits corresponding to the equilibrium points when a1 < µ1.

From Figure 2.2, we note that the steady state E1 is stable, but not asymptotically. In this case,

we only have two equilibrium points, E0, which is unstable, and E1, which is stable. Intuitively, this

means that if the treatment is taken, then tumour sub-populations would still be driven to extinction,

but not exponentially like in the case when µ1 < a1 as indicated in Figure 2.1.

2.4.3 Treatment equilibrium: single drug resistance

Having shown the dynamical behaviour of the model when there is no drug in at the tumour site, we

next consider the classification of the equilibrium points in the presence of a therapeutic drug. The

equilibrium points, denoted by T (Ei) = (S∗, R∗, D∗), i = 0, 1, 2 are found by solving the non-linear

system (2.11)−(2.13), with the left sides equated to zero. As before in Section 2.4, the stability of the

system should be found in the same manner. However, the model now involves exponential terms,

which pose a challenge in terms of solving the system algebraically, hence we used the computer
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package SAGE [99] to find the steady states. We found the following plausible steady states:

T (E0) = (0, 0, V ) , (2.42)

T (E1) = (0, 1, V ) , (2.43)

T (E2) = (S∗, R∗, D∗), (2.44)

where

S∗ =
θ1

a1

(
a1 −

(
µ1 + η

(
1− e−V

)))
,

R∗ =

(
1

2
+

√
1

4
+
µ2θ1

a1a2

(a1 − (µ1 + η (1− e−V )))

)
,

D∗ = V.

Since e−V < 1, then R∗ exists only if the following conditions is satisfied:

µ1 + η
(
1− e−V

)
< a1. (2.45)

If condition (2.45) is satisfied, then S∗ and R∗ are positive. This is another necessary condition for

existence of positive solutions in this model. We require position solutions because we are dealing

with biological populations; hence we cannot have negative populations.

The Jacobian matrix, for i = 0, 1, 2 is,

J(T (Ei)) =


−1 0 0

−ηe−D∗
S∗ −2a1

θ1
S + a1

θ
S∗ 0

0 µ2 a2(1− 2R∗)

 . (2.46)

Evaluating the Jacobian matrix (2.46) of the system about the steady state, T (E0), we obtain the

following:

J(T (E0)) =


−1 0 0

0 0 0

0 µ2 a2

 . (2.47)

Here, we observe that the eigenvalue γ1 = −1 < 0, but the eigenvalue γ3 = a2 > 0, hence the steady

state, T (E0), is an unstable saddle point.

28



The Jacobian matrix corresponding to the steady state, T (E1) is

J(T (E1)) =


−1 0 0

0 0 0

0 µ2 −a2

 . (2.48)

Since the first eigenvalue γ1 = −1 < 0, and the third eigenvalue γ3 = −a2 < 0, then the steady state

T (E1) is stable, but not asymptotically.

At the steady state, T (E2), we have the following result:

J(T (E2)) =


M11 M12 M13

M21 M22 M23

M31 M32 M33

 , (2.49)

where

M11 = −1, M12 = 0, M13 = 0,

M21 =
θ1

a1

(
a1 −

(
µ1 + η

(
1− e−V

)))
,

M22 = −
(
a1 −

(
µ1 + η

(
1− e−V

)))
, M23 = 0,

M31 = 0, M32 = µ2,

M33 = −2a2

√
1

4
+

µ2

a1a2

(a1 − (µ1 + η (1− e−V ))).

Since e−V ≤ 1 and given that the condition (2.45) is satisfied, then the eigenvalue γ2 = M22 is

negative. Furthermore, if the condition (2.45) is satisfied, then the eigenvalue γ3 = M33 < 0 only if

µ1 + η
(
1− e−V

)
< a1. (2.50)

Since γ1 = −1 < 0, then the steady state T (E2) would be locally asymptotically stable.

2.5 The two drug case

One of the major questions in this dissertation is to determine how cancer cells elude the chemothera-

peutic drugs. In such a biologically complex situation, the mathematical model is similarly complex.

Apart from the tumour’s heterogeneity, there are many factors which might substantially alter the

tumour’s responsiveness to the chemotherapeutic drugs. The investigation of these factors has been a
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central focus of both clinical and mathematical oncologists in the last decades [2,45,46,100,101]. The

prevalence of these adverse factors usually leads to the development multi-drug resistance (MDR).

Figure 2.3: The schematic view of the mechanisms that contribute to the development of the multi-

drug resistance (MDR), Source: [2].

Figure 2.3 gives a summary of the factors involved in the evolution of MDR. In many studies,

MDR has been described as the most likely route by which the malignant tumour cells elude the

chemotherapeutic drugs [2, 11, 42, 45–47, 54, 100, 101]. Since some cancer cells may by resistant to

one drug, but be vulnerable to other drug, it is important to consider the evolution of a multi-

drug resistance phenomenon in mathematical modelling. The combination of drugs used in clinical

studies usually includes both cytostatic and cytotoxic drugs. Cytostatic drugs, assist in slowing

down the rapid proliferation of the tumour cells, possibly by inhibiting their growth [55] or by

inhibiting in the growth of the tumour host tissue, and some specific cell functions that are involved

in tumour invasion [102,103]. For instance, Tamoxifen is a drug that is utilised to treat breast cancer

by binding to estrogen receptors on the tumour cells and so inhibiting transcription of estrogen-

responsive genes [104]. In lower dosages, cytostatic drugs are not considered harmful to the normal

cells [45, 47,56,105].

Cytotoxic drugs, on the other hand, can destroy the tumour cells. However, they present problems of

not only the inevitable evolution of multi-drug resistance, but their toxicity to normal tissues [106].
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Furthermore, during chemotherapy, cytotoxic drug kills sensitive cells [8,44,45,47], but the resistant

cells may actually increase; consequently leading to a failure of the therapy. Therefore both drug

types may be used together. Accordingly, in modelling the effects of acquired drug resistance we aim

to minimize the number of resistant cells through studying the effect of two drugs on the tumour

sensitive cells. At present this study is limited to the effect of two drugs, although extension of this

model to account for three or more drugs is possible.

We denote by R1(t) and R2(t) the populations of tumour cells that are resistant to the first and

second drugs, respectively, at time t after the start of the treatment. We further denote with R12(t)

the tumour cells that are resistant to both the first and second drugs. We have also assumed that

the non-cross resistant sub-populations mutate into cross resistant sub-population. We assume that

the drugs are combined (e.g Lapatinib is a combination of two drugs [107]) and hence are infused

simultaneously as a combination into the targeted tumour site. With these notations, we can now

write the model as

dD(t)

dt
= V (t)− λDD, (2.51)

dS(t)

dt
= λSS

(
1− S

θ

)
− kS(1− e−kD)S − µS, (2.52)

dR1(t)

dt
= λR1R1

(
1− R1

θ

)
+
µ

3
S − kR1(1− e−kD)R1 − µR1(t), (2.53)

dR2(t)

dt
= aR2R2

(
1− R2

θ

)
+
µ

3
S − kR2(1− e−kD)R2 − µR2(t), (2.54)

dR12(t)

dt
= λR12R12

(
1− R12

θ

)
+
µ

3
S + µR1(t) + µR2(t). (2.55)

The initial conditions of the system (2.51)− (2.55) are given as

D(0) = 0, S(0) = S0, R1(0) = R01, R2(0) = R02, R12(0) = R012, (2.56)

where each of the initial values is non-negative. Again, we emphasise that the chemotherapeutic

drug, D, represents the combination of two chemotherapeutic drugs, for instance, a combination

of cytotoxic and cytostatic drugs [15, 16, 47, 55, 56, 102, 105–110] or a cytotoxic drug with an ABC-

transport inhibitor [111]. This model setting provides valuable information because if a particular

tumour cell is resistant to one drug, then it may be still vulnerable to the other drug and D remains

the same as in Tomasetti and Levy [47].
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2.5.1 Non-dimensionalisation

As we did in Section 2.2.2 for the simpler model, we again now create dimensionless variables. We

denote by S? the non-dimensionalised state variable S for sensitive cells and choose the order of

magnitude of the cell population scale to be S0. The dimensionless state variables for a two drug-

resistance model, equations (2.51)− (2.55), are

S = S?S̄, D = D?D̄, D̄ =
1

k
, R1 = θR?

1, R2 = θR?
2, R12 = θR?

12,

t = t?t̄, t0 =
1

λD
, S̄ = S0 (2.57)

The additional dimensionless parameters to baseline parameters (2.9)− (2.10) are

V ? = αV, α =
t0
D̄
, µ1 = µ3 = µ5 = µt0, a1 = λSt0, θ1 =

S0

θ
, η = kSt0, aR1 = λR1t0,

µ2 =
µt0S0

3R01

, η1 = kR1t0, aR2 = λR2t0, µ4 =
µt0S0

3R02

, η2 = kR2t0, aR12 = λR12t0,

µ6 =
µt0S0

3R012

, µ7 =
µt0R01

R012

, µ8 =
µt0R02

R012

, R?
01 =

R01

θ
, R?

02 =
R02

θ
, R?

012 =
R012

θ
. (2.58)

Dropping the asterisks for notational convenience, we write equations (2.51)− (2.55), in terms of the

dimensionless state variables (2.57) as follows:

dD(t)

dt
= V −D, (2.59)

dS(t)

dt
= a1S

(
1− S

θ1

)
− η(1− e−D)S − µ1S, (2.60)

dR1(t)

dt
= aR1R1 (1−R1) + µ2S − η1(1− e−D)R1 − µ3R1, (2.61)

dR2(t)

dt
= aR2R2 (1−R2) + µ4S − η2(1− e−D)R2 − µ5R2, (2.62)

dR12(t)

dt
= aR12R12 (1−R12) + µ6S + µ7R1(t) + µ8R2(t), (2.63)

The initial conditions of the dimensionless system (2.59)− (2.63) are given as

D(0) = 0, S(0) = 1, R1(0) = R01, R2(0) = R02, R12(0) = R012, (2.64)

where each of the initial values is non-negative. We shall solve equations (2.11)− (2.13) and (2.59)−

(2.63), using the Matlab numerical solver, ode45, to determine the effects of the chemotherapeutic

drug on tumour reduction.

32



2.6 Equilibria and stability analysis: multi-drug resistance

In this section, we determine all biologically feasible equilibria admitted by system (2.59)−(2.63) and

study the dynamics around each equilibrium point. We first determine the steady states when there

is no chemotherapeutic drug in the tumour. Second, we find all equilibrium points of the system

when there is a dose of the combination drug in the tumour.

2.6.1 Drug free equilibrium: multi-drug resistance

Let the steady states be Ei = (S,R1, R2, R12). Then in order to better understand the dynamical

behaviour of the system, with no chemotherapy, set

a1S

(
1− S

θ1

)
− µ1S = 0, (2.65)

aR1R1 (1−R1) + µ2S − µ3R1 = 0, (2.66)

aR2R2 (1−R2) + µ4S − µ5R2 = 0, (2.67)

aR12R12 (1−R12) + µ6S + µ7R1(t) + µ8R2(t) = 0, (2.68)

and solve for the state variables. From equation (2.65) we find that

S = 0, and S =
θ1(a1 − µ1)

a1

. (2.69)

Thus we have two cases:

(i) S = 0,

(ii) S = θ1(a1−µ1)
a1

.

Now, we have the following analysis:

(i) If S = 0, from equation (2.66) we find that

R1 = 0, and R1 =
aR1 − µ3

aR1

, (2.70)

and from equation (2.67), we have that

R2 = 0, and R2 =
aR2 − µ5

aR2

. (2.71)
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When S = R1 = R2 = 0, from equation (2.68), we note that

R12 = 0, and R12 = 1, (2.72)

and with S = R1 = 0 and R2 =
aR2
−µ5

aR2
, from equation (2.68) we have that

R12 =
1

2
+

√
1

4
+

µ8

aR2aR12

(aR2 − µ5). (2.73)

Since we are modelling a biological system, we take the positive R12 provided that µ5 < aR2 .

Similarly, when R1 =
aR1
−µ3

aR1
and S = R2 = 0, from equation (2.68) we note that

R12 =
1

2
+

√
1

4
+

µ7

aR1aR12

(aR1 − µ3), (2.74)

provided µ3 < aR1 . If S = 0, R1 =
aR1
−µ3

aR1
and R2 =

aR2
−µ5

aR2
, from equation (2.68) we find that

R12 =
1

2
+

√
1

4
+

µ7

aR1a12

(aR1 − µ3) +
µ8

aR2a12

(aR2 − µ5). (2.75)

We only take a positive value for R12 provided that µ3 < aR1 and µ5 < aR2 .

Thus, for the case S = 0, we obtained the following five biologically meaningful steady states:

E?
0 = (0, 0, 0, 0) , (2.76)

E?
1 = (0, 0, 0, 1) , (2.77)

E?
2 = (0, 0, R??

2 , R
??
12) , (2.78)

E?
3 = (0, R???

1 , 0, R???
12 ) , (2.79)

E4?
4 =

(
0, R4?

1 , R
4?
2 , R

4?
12

)
, (2.80)

where

R??
2 =

aR2 − µ5

aR2

, R??
12 =

1

2
+

√
1

4
+

µ8

aR2aR12

(aR2 − µ5),

R???
1 =

aR1 − µ3

aR1

R???
12 =

1

2
+

√
1

4
+

µ7

aR1aR12

(aR1 − µ3),

R4?
1 =

aR1 − µ3

aR1

, R4?
2 =

aR2 − µ5

aR2

,

R4?
12 =

1

2
+

√
1

4
+

µ7

aR1a12

(aR1 − µ3) +
µ8

aR2a12

(aR2 − µ5).
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The Jacobian of the system, for i = 0, 1, 2, 3, 4, is given by

J(E?
i ) =


a1 − 2a1S

θ1
− µ1 0 0 0

µ2 aR1(1− 2R1)− µ3 0 0

µ4 0 aR2(1− 2R2)− µ5 0

µ6 µ7 µ8 aR12(1− 2R12)

 .

(2.81)

Evaluating the Jacobian matrix about the trivial steady state, E?
0 , we have that

J(E?
0) =


a1 − µ1 0 0 0

µ2 aR1 − µ3 0 0

µ4 0 aR2 − µ5 0

µ6 µ7 µ8 aR12

 . (2.82)

We observe that the trivial steady state is unstable because the eigenvalue γ4 = aR12 > 0. The

other eigenvalues γ1 = a1−µ1, γ2 = aR1 −µ3, γ3 = aR2 −µ5 can either be negative or positive.

Thus, in any case, E?
0 would still be unstable.

The Jacobian matrix corresponding to the second steady state, E?
1 , is

J(E?
1) =


a1 − µ1 0 0 0

µ2 aR1 − µ3 0 0

µ4 0 aR2 − µ5 0

µ6 µ7 µ8 −aR12

 . (2.83)

Here we realise that because the fourth eigenvalue γ4 = −aR12 < 0, then the steady state E?
1

is locally asymptotically stable if and only if a1 < µ1, aR1 < µ3, and aR2 < µ5, otherwise, it

remains unstable.

The Jacobian matrix about the steady state, E?
2 , is given by

J(E?
2) =


a1 − µ1 0 0 0

µ2 aR1 − µ3 0 0

µ4 0 M33 0

µ6 µ7 µ8 M44

 , (2.84)

where

M33 = −(aR2 − µ5), M44 = −2aR12

√
1

4
+

µ8

aR2aR12

(aR2 − µ5) (2.85)
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The eigenvalues γ4 = M44 < 0 only if µ5 < aR2 . The eigenvalue γ3 = −(aR2 − µ5) < 0 provided

µ5 < aR2 , hence the steady state E?
2 is locally asymptotically stable only if the eigenvalues

γ2 = aR1 − µ3 < 0 if and only if aR1 < µ3 and γ1 = aS − µ1 < 0 only if a1 < µ1, otherwise it is

unstable.

The Jacobian resulting from the steady state, E?
3 , is

J(E?
3) =


a1 − µ1 0 0 0

µ2 M22 0 0

µ4 0 −(aR2 − µ5) 0

µ6 µ7 µ8 M44

 , (2.86)

where

M22 = −(aR1 − µ3), M44 = −2aR12

√
1

4
+

µ7

aR1aR12

(aR1 − µ3) (2.87)

We note that γ4 = M44 < 0 only if µ5 < aR2 . The eigenvalue γ3 = M22 < 0 only if µ5 < aR2 . The

steady state E?
3 would be locally asymptotically stable only if the eigenvalues γ3 = aR2−µ5 < 0

if and only if aR2 < µ5, γ1 = a1 − µ1 < 0 only if a1 < µ1, γ4 = M44 < 0 and γ3 = M22 < 0;

otherwise it would be unstable.

Evaluating the Jacobian matrix about the steady state E?
4 , we have the following:

J(E?
4) =


a1 − µ1 0 0 0

µ2 M22 0 0

µ4 0 −M33 0

µ6 µ7 µ8 M44

 , (2.88)

where

M22 = −(aR1 − µ3), M33 = −(aR2 − µ5), (2.89)

M44 = −2aR12

√
1

4
+

µ7

aR1a12

(aR1 − µ3) +
µ8

aR2a12

(aR2 − µ5) (2.90)

Here, given that µ3 < aR1 and µ5 < aR2 , then the eigenvalues γ2 = M22 < 0, γ3 = M33 < 0 and

γ4 = M44 < 0. Hence, the steady state E?
4 would be asymptotically locally stable if a1 < µ1;

otherwise it would be unstable point.
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(ii) When S# = θ1(a1−µ1)
a1

, we have the following solutions for the resistant sub-populations:

R#
1 =

1

2aR1

(aR1 − µ3) +

√
1

4a2
R1

(aR1 − µ3)2 +
µ2θ1

a1aR1

(a1 − µ1), (2.91)

R#
2 =

1

2aR2

(aR2 − µ5) +

√
1

4a2
R2

(aR2 − µ5)2 +
µ4θ1

a1aR2

(a1 − µ1), (2.92)

R#
12 =

1

2
+

√
1

4
+

1

a12

(
µ6S# + µ7R

#
1 + µ8R

#
2

)
, (2.93)

provided that

S# > 0, R#
1 > 0, R#

2 > 0, whenever µ1 < a1, µ3 < a2, µ5 < a2. (2.94)

For this case, S# = θ1(a1−µ1)
a1

, we obtained the following steady state:

EP? =
(
S#, R#

1 , R
#
2 , R

#
12

)
, (2.95)

The Jacobian matrix of this steady state, EP?, is

J(EP?) =


M11 0 0 0

µ2 M22 0 0

µ4 0 −M33 0

µ6 µ7 µ8 M44

 , (2.96)

where

M11 = −(a1 − µ1), M22 = −

(
(aR1 − µ3) + 2aR1

√
1

4a2
R1

(aR1 − µ3)2 +
µ2θ1

a1aR1

(a1 − µ1)

)
,

M33 = −

(
(aR2 − µ5) + 2aR2

√
1

4a2
R2

(aR2 − µ5)2 +
µ4θ1

a1aR2

(a1 − µ1)

)
,

M44 = −2aR12

√
1

4
+

1

a12

(
µ6S# + µ7R

#
1 + µ8R

#
2

)
,

where S#, R#
1 and R#

2 are given in (2.91− 2.93) and satisfy condition (2.94). We realise that if

condition (2.91− 2.93) is satisfied, then all the eigenvalues, γ1 = M11, γ2 = M22, γ3 = M33 and

γ4 = M44 are negative. Thus, the steady state, EP?, is locally asymptotically stable. Otherwise,

it would be unstable.
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In this section, we have investigated the dynamics of the tumour growth when there in no treatment

given. It is important to note that the existence of stable steady states indicates the plausible points

when cancerous cells my not be harmful to a patient. It is also important to note that some tumours

may remain undetectable for years, while others may grow and metastasize rapidly, and cause death

with a short period [38].

2.6.2 Treatment equilibrium: multi-drug resistance

Determining the steady states of the system (2.59− 2.63) is quite tedious; however, we obtained the

following the steady states denoted by T (Eqi
i ) = (Dqi, Sqi, Rqi

1 , R
qi
2 , R

qi
12), for i = 0, . . . , 5:

T (Eq0
0 ) = (V, 0, 0, 0, 0) , (2.97)

T (Eq1
1 ) = (V, 0, 0, 0, 1) , (2.98)

T (Eq2
2 ) =

(
V, 0, Rq2

1 , 0, R
q2
12

)
, (2.99)

T (Eq3
3 ) =

(
V, 0, 0, Rq3

2 , R
q3
12

)
, (2.100)

T (Eq4
4 ) =

(
V, 0, Rq4

1 , R
q4
2 , R

q4
12

)
, (2.101)

T (Eq5
5 ) =

(
V, Sq5, Rq5

1 , R
q5
2 , R

q5
12

)
, (2.102)

where

Rq2
1 =

1

aR1

(
aR1 −

(
µ3 + η1

(
1− e−V

)))
, Rq2

12 =
1

2
+

√
1

4
+

µ7

aR12

Rq2
1 , (2.103)

Rq3
2 =

1

aR2

(
aR2 −

(
µ5 + η2

(
1− e−V

)))
, Rq3

12 =
1

2
+

√
1

4
+

µ8

aR12

Rq3
2 , (2.104)

Rq4
1 = Rq2

1 , Rq4
2 = Rq3

2 , Rq4
12 =

1

2
+

√
1

4
+

1

aR12

(
µ7R

q4
1 + µ8R

q4
2

)
, (2.105)

Sq5 =
θ1

a1

(
a1 −

(
µ1 + η

(
1− e−V

)))
, Rq5

1 = Rq2
1 , Rq5

2 = Rq3
2 , (2.106)

Rq5
12 =

1

2
+

√
1

4
+

1

aR12

(
µ6Sq5 + µ7R

q5
1 + µ8R

q5
2

)
. (2.107)

Since e−V ≤ 1, then the equilibrium points T (Eq2
2 ), T (Eq3

3 ), T (Eq4
4 ) and T (Eq5

5 ) exist only if

µ1 + η
(
1− e−V

)
< a1, (2.108)

µ3 + η1

(
1− e−V

)
< aR1 , (2.109)

µ5 + η2

(
1− e−V

)
< aR2 (2.110)
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The Jacobian matrix for the system, for i = 0, 1, 2, 3, 4, 5, is given by

J(T (Eqi
i )) =



−1 0 0 0 0

−ηe−DS TS 0 0 0

−η1e
−DR1 mu2 TR1 0 0

−η2e
−DR2 µ4 0 TR2 0

0 µ6 µ7 µ8 TR12


, (2.111)

where

TS = −2a1

θ1

S +
(
a1 −

(
µ1 + η

(
1− e−D

)))
, (2.112)

TR1 = −2aR1R1 +
(
aR1 −

(
µ3 + η1

(
1− e−D

)))
, (2.113)

TR2 = −2aR2R2 +
(
aR2 −

(
µ5 + η2

(
1− e−D

)))
, (2.114)

TR12 = aR12(1− 2R12). (2.115)

and given that conditions are satisfied (2.108− 2.110).

Evaluating the Jacobian matrix (2.111) about the steady state T (Eq0
0 ), we have

J(T (Eq0
0 )) =



−1 0 0 0 0

0 a1 − µ1 0 0 0

0 µ2 aR1 − µ3 0 0

0 µ4 0 aR2 − µ5 0

0 µ6 µ7 µ8 aR12


. (2.116)

We observe that the eigenvalue γ1 = −1 < 0, but γ5 = aR12 > 0, hence the steady state T (Eq0
0 ) is an

unstable saddle point.

Evaluating the Jacobian matrix (2.111) about the steady state T (Eq1
1 ), we obtain

J(T (Eq1
1 )) =



−1 0 0 0 0

0 a1 − µ1 0 0 0

0 µ2 aR1 − µ3 0 0

0 µ4 0 aR2 − µ5 0

0 µ6 µ7 µ8 −aR12


. (2.117)

This implies that the second eigenvalue, γ2 = a1 − µ1, is negative only if a1 < µ1. In that case,

the mutation rate is higher than the growth of sensitive cells. This indicates the impact of random
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mutations whereby the drug resistance acquisition is time dependent. It means that more resistant

cells would be continuously produced, despite the lack of growth of sensitive cells [5]. The eigenvalue,

γ3 = aR1−µ3 and γ4 = aR2−µ5 would be negative only if aR1 < µ3 and aR2 < µ5, respectively. Because

γ1 = −1 < 0 and γ5 = −aR12 < 0, then the state T (Eq1
1 ) is stable if and only if a1 < µ1, aR1 < µ3

and aR2 < µ5.

The Jacobian matrix corresponding to T (Eq2
2 ) is given as

J(T (Eq2
2 )) =



−1 0 0 0 0

0 a1 − µ1 0 0 0

−η1e
−VR1 µ2 TR1 0 0

0 µ4 0 aR2 − µ5 0

0 µ6 µ7 µ8 TR12


, (2.118)

where

TR1 = −
(
aR1 −

(
µ3 + η1

(
1− e−V

)))
,

TR12 = −2aR12

√
1

4
+

µ8

aR12

Rq3
2 .

If condition (2.109) is satisfied, then both eigenvalues, γ3 = TR1 and γ5 are negative. Thus, the

steady state, T (Eq2
2 ), would be locally asymptotically stable if a1 < µ1 and aR2 < µ5. Otherwise, it

would be an unstable point.

Evaluating the Jacobian matrix, (2.111), about the steady state T (Eq3
3 ), we have the following

outcome:

J(T (Eq3
3 )) =



−1 0 0 0 0

0 a1 − µ1 0 0 0

0 µ2 aR2 − µ3 0 0

−η2e
−VR2 µ4 0 TR2 0

0 µ6 µ7 µ8 TR12


, (2.119)

where

TR2 = −
(
aR2 −

(
µ5 + η1

(
1− e−V

)))
,

TR12 = −2aR12

√
1

4
+

µ7

aR12

Rq2
1 .
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Similarly, if condition (2.110) is satisfied,then both the third and fifth eigenvalues, γ3 = TR1 and γ5,

are negative. Hence, the steady state, T (Eq3
3 ), would be locally asymptotically stable only if a1 < µ1

and aR1 < µ3. Otherwise, it would be unstable.

The Jacobian matrix corresponding to T (Eq4
4 ) is given by

J(T (Eq4
4 )) =



−1 0 0 0 0

0 a1 − µ1 0 0 0

−η1e
−VR1 µ2 TR1 0 0

−η2e
−VR2 µ4 0 TR2 0

0 µ6 µ7 µ8 TR12


, (2.120)

where

TR1 = −
(
aR1 −

(
µ3 + η1

(
1− e−V

)))
,

TR2 = −
(
aR2 −

(
µ5 + η1

(
1− e−V

)))
,

TR12 = −2aR12

√
1

4
+

1

aR12

(
µ7R

q4
1 + µ8R

q4
2

)
.

Now, if conditions (2.109 − 2.110) are satisfied, then the eigenvalues, γ3 = TR1, γ4 = TR2 and

γ5 = TR12, are all negative. Therefore, the steady state, T (Eq4
4 ), is locally asymptotically stable only

if a1 < µ1 because the first eigenvalue, γ1 = −1, is negative.

Finally, the Jacobian matrix corresponding to the endemic equilibrium point, T (Eq5
5 ), is given as

J(T (Eq5
5 )) =



−1 0 0 0 0

−ηe−V S TS 0 0 0

−η1e
−VR1 µ2 TR1 0 0

−η2e
−VR2 µ4 0 TR2 0

0 µ6 µ7 µ8 TR12


, (2.121)

where

TS = −
(
a1 −

(
µ1 + η

(
1− e−D

)))
,

TR1 = −
(
aR1 −

(
µ3 + η1

(
1− e−V

)))
,

TR2 = −
(
aR2 −

(
µ5 + η1

(
1− e−V

)))
,

TR12 = −2aR12

√
1

4
+

1

aR12

(
µ6Sq5 + µ7R

q5
1 + µ8R

q5
2

)
.
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If conditions (2.108 − 2.110) are satisfied, then the endemic equilibrium point, T (Eq5
5 ), is locally

asymptotically stable. Otherwise, it would be unstable. This equilibrium point denotes the point

that could bring cancer cell sub-populations to extinction when the chemotherapeutic drug is induced

into the tumour.

2.7 Summary

In this chapter, two mathematical models describing local interaction of malignant tumour and anti-

cancer agents have been presented. These models are based on compartmentalisation of tumour cells

into drug sensitive and drug resistant sub-populations. The first model developed in this chapter

describes the dynamics of tumour cells’ interaction with a single chemotherapeutic drug. In the second

model, we incorporated the dynamics of a multi-drug resistant phenotype. Equilibrium points of the

model equations and their stability analysis were investigated, and show that the model is stable

under certain conditions. However, because those conditions depend upon the parameter values, the

stable conditionality of model does not always hold. Such stability analysis of the equilibria is an

important aspect of mathematical modelling because a stable point could represent the state where

tumour eradication is feasible, and this point, could then be a target point for chemotherapy. In

this way we have increased our qualitative understanding of the model dynamics in relation to its

stability. In Chapter 3, the model with single drug resistance will be extended to include the spatial

interactions of tumour cells with a chemotherapeutic drug. In Chapter 4, numerical techniques will

be applied to obtain quantitative results for both single and multi-drug resistance cases.
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Chapter 3

A PDE model for drug resistance

3.1 Introduction

Even though ODE models can capture many vital biological processes, some processes can only be

adequately addressed through partial differential equation (PDE) models. Such processes include the

changes in age of the cells (i.e., the time elapsed since mitosis occurred), volume or density of the cells,

their degrees of resistance to treatment, their DNA content or the size of the induced metastases.

Analysis based on spatial and temporal processes takes into account the interactions between the

tumour cells and their environment.

In this chapter, the goal is to develop a deterministic PDE model that describes tumour reduction

by introducing chemotherapeutic drug, while simultaneously attempting to minimise the evolution of

drug resistant phenotype. Our convection-reaction-diffusion model takes into account three important

processes. To be specific, firstly, in order to account for the spatial dynamics of tumour cells, we

have considered a spatial transport equation (based on convection) that governs the concentrations

of tumour cells in response to the chemotherapeutic drug, for a given fixed period of the treatment.

The model also incorporates the local chemical reactions that indicate the tumour’s response to the

chemotherapeutic drug while distinguishing between the drug sensitive and drug resistant tumour

sub-populations. Finally, diffusion is the most significant mode of transport in the interstitial space

around the tumour. Being the dominant transport process once the drug leaves the blood vessels it

accounts for the intra-cellular spread of substances such as drug molecules.

In this way, the model describes the tumour’s response to the chemotherapeutic drug by taking into
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account the fact that chemotherapy is a localised treatment. That is to say, the drug is delivered from

the patient’s vasculature into the tumour by means of blood vessels, which are often dense around

the tumour surface, as shown below

Figure 3.1: The blood vessels that vascularise the tumour, Source: [3].

It can be seen in Figure 3.1 that the tumour is surrounded by blood vessels to transport oxygen and

minerals, which are essential for maintaining tumour growth and allowing for metastasis.

In our model, as in Jackson and Byrne [48], the tumour is viewed as a radially symmetric packed

sphere, of radius R(t), consisting of two types of sub-populations; the drug sensitive and drug resistant

cells. There is an evidence that tumours grown in vitro (see Appendix) have a nearly spherical shape,

but tumours grown in vivo are not [48, 112]. It is thus a moving boundary model, as illustrated in

Figure 3.2(b).

(a) 3D spherical tumour (b) 2D projection

Figure 3.2: The schematic view of a spherically symmetric tumour. The spatial domain is a moving

boundary [0, R(t)] with a radius r = R(t).
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Figure 3.2(a) show a schematic view of a spherical tumour in 3 dimensional space, while Figure 3.2(b)

shows its projection of 2 dimensional setting in order to show a corresponding moving radius.

The geometry of this moving boundary problem, where cell movement is associated only with local

volume changes that accompany cell proliferation and death, has been considered in various studies

such as in [48,113–115]. However, there are models that associate the moving boundary of the tumour

not only with concentration gradients of the chemicals inside the tumour, but also with interstitial

pressure [113]. Because we are mainly interested in the tumour’s response to the chemotherapeutic

agent, in this model we have not considered the impact of interstitial pressure.

We have developed a new model similar to the model of Jackson and Byrne [48], as well as Jack-

son [113], where the chemotherapeutic drug kills all types of tumour cells, subject to different sus-

ceptibilities, by assuming that the drug kills only sensitive cells, and does not have any impact on

the resistant cells. This is a reasonable assumption because the model developed in this study is non

cell-cycle specific. In cell cycle-specific models, chemotherapeutic drugs kill cancerous cells only in

specific phases of the cell cycle [116]. The problem with cell cycle-specific chemotherapies is that

drugs target cells only in certain phases of the cell cycle, and consequently spare some tumour cells

that are not in the targeted phases [117]. We have further assumed that the resistant sub-population

in the tumour is due to genetic point mutations, as in Tomasetti and Levy [47]. Since we are mod-

elling a malignant tumour, we have also assumed the tumour to possess its own vasculature so that

it can receive nourishment sufficient to maintain its growth and malignancy, through both diffusion

and blood-tissue transfer [48,114].

3.2 PDE model formulation

There are many important biological processes involved in the distribution of drugs into the targeted

cancerous cells, as shown in Figure 3.3.

The physical processes involved in the movement of drugs into or out of the tumour cells. Normally,

drug molecules could either traverse from the vasculature (blood vessels) by means of advection

(sometimes called convection) or diffuse through the interstitial space around the tumour; they are

usually subject to some natural decay before they could be up-taken by the tumour cells. During

advective movement, drug molecules are carried with a bulk flow of interstitial fluid. This flow

could result from pressure differences within a tumour tissue or from the drainage of fluids into the
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lymphatic circulation system [4].

Figure 3.3: The biological processes involved in the migration of the drug molecules into the tumour

cells, Source [4].

In some cases, drug molecules are boosted (activated) to increase an efficacy of the chemotherapeutic

compounds as well as to increase the time of drug survival within the tumour tissue beyond its half-

life [4]. For mathematical simplicity, in our model we consider diffusion and convection processes.

Diffusion accounts for the random motility of drug molecules due to gradients in their concentration

while convection usually accounts for the motion of the drug due to bulk motion in the carrying

environment [118].

In order to account for the spatial dynamics of tumour cell sub-populations, where the density of any

species depends on time and space, the ODE model is now extended to a system of partial differential

equations (PDEs). We make the following assumptions for the vascular tumour growth model:

(i) The chemotherapeutic drug reaches the tumour cells mainly by constant diffusion from nearby

vasculature. There is little convectional movement of the drug at the tumour site.

(ii) The chemotherapeutic drug diffuses both ways between the tumour vasculature and the tumour-

host tissue at a rate that is proportional to the difference in the drug concentrations in the blood

and tumour.

(iii) The drug sensitive tumour cells are uniformly susceptible to the drug, and the drug does not

have any effects on the resistant cells.
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(iv) The tumour cells grow logistically in the absence of the chemotherapeutic drug [21,48].

(v) A portion of the drug gets inactivated as it interacts with the tumour cells. As in the ODE

model, we assume that the interaction of the drug with the tumour cells follows an exponential

saturation kinetics.

The model is comprised of a system of partial differential equations that describe spatial interaction

of the chemotherapeutic drug with two tumour sub-populations. The first tumour sub-population

comprises cells that are sensitive to the drug, S(r, t), while the second sub-population is made up of

cells that are resistant to the drug, R(r, t). We follow a similar modelling approach to that adopted

by Byrne and Jackson [48] by considering a vascular exchange between blood and the tumour. We

denote by D(r, t) a drug concentration within the tumour, and by Db(t) the drug concentration

within the blood. We consider a constant rate of transfer of the drug from the nearby vasculature

to the tumour as in [114]. Tumour cell movement is described by the local volume changes that

accompany proliferation and death of individual cells. Such movement is usually associated with a

local cell velocity, u(r, t).

The following are the baseline parameters for our spatially symmetric tumour model:

(i) dD denotes the diffusion coefficient of the drug,

(ii) dS represents the growth rate of the sensitive cells,

(iii) dR denotes the growth rate of resistant cells,

(iv) µ represents the mutation rate coefficient resulting from cell division,

(v) λD denotes the chemotherapeutic decay,

(vi) λS represents an intrinsic growth rate of sensitive cells,

(vii) λR denotes an intrinsic growth rate of resistant cells,

(viii) Γ represents the permeability coefficient between the tumour and nearby tissue vasculature,

(ix) uS represents a rate of inactivation of the drug from an interaction of sensitive cells, S(r, t),

and the chemotherapeutic drug, D(r, t),

(x) kS denotes a susceptibility coefficient of the sensitive cells,
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(xi) k denotes a saturation coefficient of the drug,

(xii) θ represents a maximum carrying capacity of the tumour.

Applying the principle of conservation of mass on each tumour sub-population and drug concentra-

tion, then the model is written as follow:

∂D

∂t
+∇ · (uD) = dD∇2D + Γ(Db(t)−D)− λDD − uSISD(S,D), (3.1)

∂S

∂t
+∇ · (uS) = dS∇2S + λSS

(
1− S

θ

)
− ISD(S,D)− µS, (3.2)

∂R

∂t
+∇ · (uR) = dR∇2R + λRR

(
1− R

θ

)
+ µS. (3.3)

This model shares some similarities with that of Jackson and Byrne [48] in that the local concentration

of each tumour sub-population is subject to both diffusion and convection processes. However, in this

model, reduction of drug concentration does not depend only on natural drug decay, as considered by

Jackson and Byrne [48], but also to inactivation of the drug resulting from drug interaction with the

sensitive cells. To account for this interaction between the tumour and the sensitive cells, we have

denoted this interaction by a term I, for instance, ISD(S,D), represents the interaction of the drug

and the sensitive cells. This interaction, in principle, depends only on the local concentrations of the

sensitive tumour cells, S, and the chemotherapeutic drug, D. In addition, we considered an influence

of genetic point mutations, µ, in the acquisition of resistance phenotype of tumour cells. We also

note that all types of tumour sub-populations have distinct intrinsic growth rates, with the sensitive

cells growing faster than the resistant cells. Furthermore, the chemotherapeutic drug decays at some

specific rate and also diffuses into, or out of, the tumour from the bloodstream in the surrounding

tissue.

Unlike to Jackson and Byrne [48], who assumed Michaelis-Menten interaction kinetics between the

tumour cells and the chemotherapeutic drug, instead because chemotherapeutic drugs are effective

during certain phases of the cell division cycle, we take the interaction term between the sensitive

cells and the drug to follow exponential kinetics as

ISD(S,D) = kS(1− e−kD)S. (3.4)

The interaction of the chemotherapeutic drug and sensitive cells is usually given by exponential

saturation kinetics [97]. This interaction of the sensitive cells and the chemotherapeutic drug has

been validated with medical data by Gardner [90].
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To account for the spherical symmetry of the tumour, we define the tumour boundary by

B(r, t) = r −R(t) = 0, (3.5)

and the radial unity vector by r̂; thus we have u = u(r, t)r̂. Our system of equations can be written

as

∂D

∂t
+

1

r2

∂

∂r

(
r2uD

)
=
dD
r2

∂

∂r

(
r2∂D

∂r

)
+ Γ(Db(t)−D)− λDD − uSkS(1− e−kD)S, (3.6)

∂S

∂t
+

1

r2

∂

∂r

(
r2uS

)
=
dS
r2

∂

∂r

(
r2∂S

∂r

)
+ λSS

(
1− S

θ

)
− kS(1− e−kD)S − µS, (3.7)

∂R

∂t
+

1

r2

∂

∂r

(
r2uR

)
=
dR
r2

∂

∂r

(
r2∂R

∂r

)
+ λRR

(
1− R

θ

)
+ µS. (3.8)

To find the equation for the local cell velocity, u, we first assume that there are no empty spaces within

the tumour such that the fraction of the spheroid occupied by the tumour cells remains constant,

and that the proportion of the vascular space within the tumour also remains constant. Under these

assumptions, we can write the following relation for the two tumour sub-populations

S +R = c ≡ constant. (3.9)

Adding equation (3.7) and (3.8), and using (3.9) we obtain

c

r2

∂

∂r

(
r2u
)

=

(
dS − d(c−S)

r2

)
∂

∂r

(
r2∂S

∂r

)
+ λSS

(
1− S

θ

)
+ λ(c−S)(c− S)

(
1− (c− S)

θ

)
− kS(1− e−kD)S,

c

r2

∂

∂r

(
r2u
)

=
E

r2

∂

∂r

(
r2∂S

∂r

)
+ λSS

(
1− S

θ

)
+ λRR

(
1− R

θ

)
− kS(1− e−kD)S, (3.10)

where E = (dS − d(c−S)). Equation (3.10) is the equation for the local velocity, u. It suffices to

determine the drug concentration, D, and the radial velocity, u.

To complete our system, we note that the tumour has a moving boundary; hence let r = R(t), then

we impose the following initial conditions:

R(0) = R0, S(r, 0) = S0, R(r, 0) = 0, D(r, 0) = 0, Db(0) = Db0 (3.11)

These conditions imply that the tumour of a given radius R0 comprises only the sensitive cells, S0.

There is no chemotherapeutic drug in the tumour at time t = 0, but there is some chemotherapeutic

drug in the surrounding tumour vasculature.
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To asses the tumour’s response to the chemotherapeutic drug we study the evolution of the tumour’s

volume (V = (4/3)πR3), and note that under radial symmetry, the tumour expands at a rate that

is equal to the radial velocity at the tumour boundary [48]. Hence we have

dR

dt
= u(R(t), t) (3.12)

At r = 0, we further impose the following Neumann boundary conditions:

∂D(0, t)

∂r
= 0,

∂S(0, t)

∂r
= 0,

∂R(0, t)

∂r
= 0, u(0, t) = 0. (3.13)

Since the tumour is assumed to be spherical, then at r = 0 there is no influx of the drug and the

local radial velocity is zero. We further propose that there is no flux of tumour cells at the tumour

center. To model the temporal and spatio-temporal equations through the continuity conditions at

the boundary, B(r, t) = 0, we have that

∂D(r, t)

∂r
= C0,

∂S(r, t)

∂r
= 0,

∂R(r, t)

∂r
= 0, D(r, t) = DN(t). (3.14)

Here, we have denoted the local concentration of the drug at the tumour boundary by DN(t). For

mathematical simplicity, the concentration of the drug in the blood, Db(t), and the amount of the

drug at the tumour boundary, DN(t), are assumed to be constants as in [113]. In [48] they are

regarded as bi-exponential functions.

As in previous chapters, we now define dimensionless variables and parameters where

D = D?D̄, λD =
1

t0
λ?D, λS =

1

t0
λ?S, λR =

1

t0
λ?R, Db = D?

bD̄, S = S?S̄, (3.15)

R = R?R̄, dD =
R2

0

t0
d?D, dS =

R2
0

t0
d?S, dR =

R2
0

t0
d?R, r = R0r

?, t = t?t̄, (3.16)

u =
R0

t0
u?, Γ =

Γ?R2
0

t0
,

∂

∂r
=

1

R0

∂

∂r?
,

∂

∂t
=

1

t0

∂

∂t?
, kS =

D0

S0

k?S, uS =
1

t0
u?S, (3.17)

k =
1

D0

k?, µ =
D0

S0t0
µ?, ε = R2

0/dD, D0 =
1

k
, ρS =

S2
0λS
dS

, η =
S0kS
ds

, (3.18)

θ1 =
θ

S0

, β = R2
0/dD, ρR =

R2
0λR
dR

, µ2 =
R0µ

dR
, R? =

R0

θ
, S̄ = S0. (3.19)

Using these dimensionless variables and parameters, (3.15) − (3.19), in equations (3.6) − (3.8), and
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dropping the asterisks for notational convenience, we have the dimensionless system of equations

ε

{
∂D

∂t
+

1

r2

∂

∂r

(
r2uD

)}
=

1

r2

∂

∂r

(
r2∂D

∂r

)
+

1

dD

(
Γ(Db(t)−D)− λDD − uSkS(1− e−kD)S

)
,

(3.20)

α

{
∂S

∂t
+

1

r2

∂

∂r

(
r2uS

)}
=

1

r2

∂

∂r

(
r2∂S

∂r

)
+ ρSS

(
1− S

θ1

)
− η(1− e−D)S − µ1S, (3.21)

β

{
∂R

∂t
+

1

r2

∂

∂r

(
r2uR

)}
=

1

r2

∂

∂r

(
r2∂R

∂r

)
+ ρRR (1−R) + µ2S (3.22)

The velocity dimensionless equation is

c

r2

∂

∂r

(
r2u
)

=
E

r2

∂

∂r

(
r2∂S

∂r

)
+ ρSS

(
1− S

θ1

)
+ ρRR (1−R)− η(1− e−D)S. (3.23)

In this section we have now developed a model to describe the spatial dynamics of the tumour

sub-populations and their interaction with the chemotherapeutic drug. This would be helpful in

demonstrating the importance of space for tumour modelling. Furthermore, this would also be

helpful for investigating the partial distribution effects of drugs on tumour growth.

3.3 Analytical solutions of the PDE model

Due to the complexity of the model, we do not expect to obtain the full analytical solutions of

the model. Nevertheless, full solutions will be obtained derived numerically in Chapter 4. In the

meantime, we can obtain analytical solutions for the local drug concentration and the local velocity,

with transformation and additional assumptions. The full solution of the model shall be derived

numerically in Chapter 4.

Firstly, we introduce a small parameter 0 ≤ ε = R2
0/dD � 1 which is a similar transformation as was

used by [48,113] to find steady states of their model solutions. Thus we can write equation (3.20) as

ε

{
∂D

∂t
+

1

r2

∂

∂r

(
r2uD

)}
=

1

r2

∂

∂r

(
r2∂D

∂r

)
+

1

dD

(
Γ(Db(t)−D)− λDD − uSkS(1− e−kD)S

)
.

(3.24)

Then, following the method of multiple time scales [119, 120], we have adopted two time scales

for our model: the intrinsic tumour growth scale (≈ 1 day), and the shorter diffusion time scale

(R0/dD ≈ 60 seconds) [48]. Assuming that the chemotherapeutic drug diffuses much faster than the

intrinsic growth of the tumour cells, then the quantity ε = R2
0/dD ≈ 0 so that

1

r2

∂

∂r

(
r2∂D

∂r

)
+

1

dD

(
Γ(Db(t)−D)− λDD − uSkS(1− e−kD)S

)
= 0. (3.25)
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Note that equation (3.25) is a homogeneous first order partial differential equation; hence we can

find the solution to it.

Next, if we further assume a low chemotherapeutic drug concentration, then 1 − e−kD ≈ kD. This

transforms the term uSkS(1− e−kD)S to a linear term; hence equation (3.25) becomes

1

r2

∂

∂r

(
r2∂D

∂r

)
−
(
λD + Γ + uSkSkS

dD

)
D = − Γ

dD
Db(t). (3.26)

Now, let

ξ2
D =

λD + Γ + uSkSkS

dD
, (3.27)

then we have the following non-homogeneous PDE;

1

r2

∂

∂r

(
r2∂D

∂r

)
− ξ2

DD = − Γ

dD
Db(t). (3.28)

Let us define another function D = G(r, t)/r, then we can write

G′′ − ξ2
DG = − Γ

dD
Db(t). (3.29)

We choose the particular solution to equation (3.29) as Gp = Γ
dD
Db(t). The corresponding homoge-

neous equation to (3.29) is

G′′ − ξ2
DG = 0. (3.30)

Equation (3.28) is of the form

1

r2

∂

∂r

(
r2∂fj
∂r

)
− (kj)

2fj + γj = 0, (3.31)

which is a mass balance equation and could be solved with appropriate boundary conditions [121–124].

The formulation and solutions of the equations of this type are discussed in detail by Deen [123] and

Bird et al [122].

The general solution to equation (3.28) is

D(r, t) =
a(t) sinh(ξDr) + b(t) cosh(ξDr)

r
+

Γ

dDξ2
D

Db(t), (3.32)

where a(t) and b(t) are functions that are determined from the boundary conditions. To find the

solution for the local drug concentration, we demand that the chemotherapeutic drug concentration

approaches a steady state in the blood tissue. This can occur only if a(t) + b(t) = 0. Since we have

assumed spherical tumour, then we require symmetry condition to be satisfied; hence we have that

∂D

∂t

∣∣∣∣
r=0

= 0, hence b(t) = 0. (3.33)
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At r = R(t), we have

a(t)
sinh(ξDR(t))

R(t)
+

Γ

dDξ2
D

Db(t) = DN(t). (3.34)

This gives

a(t) =

(
DN(t)− Γ

dDξ2
D

Db(t)

)
R(t)

sinh(ξDR(t))
. (3.35)

Hence, the solution for the local drug concentration is

D(r, t) =

(
DN(t)− Γ

dDξ2
D

Db(t)

)
R(t) sinh(ξDr)

r sinh(ξDR(t))
+

Γ

dDξ2
D

Db(t). (3.36)

Here, we have only provided the analytical solution for the local drug concentration based on the

assumption of induced low drug concentration at the tumour site. This solution is similar to the one

attained by Jackson and Byrne [48]. The solution for high drug concentration can only be found

numerically.

We next find the equation for the local velocity, u(r, t), by substituting equation (3.36) into equation

(3.23). Let us first make the following assumptions;

(i) The intra-tumour drug concentration, D, is low and constant. This implies that 1−e−kD ≈ kD.

It is important to note that at relatively low drug concentrations, this interaction term is nearly

linear, whereas at higher drug concentration, the drug concentration within the tumour reaches

a saturation state (i.e a response curve plateaus). This exponential term corresponds to drug

response kinetics suggested by Gardner [90].

(ii) The tumour consists of only sensitive cells (i.e. one cell type, S(r, t) = 1). Thus, there are no

resistant cells, R(r, t) = 0.

With these assumptions, the equation for the local velocity becomes

1

r2

∂

∂r

(
r2u
)

= 1− kSkD. (3.37)

Substituting equation (3.36) in the above equation we obtain

∂

∂r

(
r2u
)

=

(
1− kSkΓ

dDξ2
D

Db(t)

)
r2 − kSk

((
DN(t)− Γ

dDξ2
D

Db(t)

)
R(t)r sinh(ξDr)

sinh(ξDR(t))

)
. (3.38)

Using integrating the above equation with respect to r and making use of the condition u(0, t) = 0,

we have∫
∂

∂r′
(
r2u
)
dr′ =

∫ (
1− kSkΓ

dDξ2
D

Db(t)

)
(r′)2dr′

− kSk
((

DN(t)− Γ

dDξ2
D

Db(t)

)
R(t)

sinh(ξDR(t))

∫
r′ sinh(ξDr

′)dr′
)
, (3.39)
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Integration by parts, equation (3.39) becomes

r2u(r, t) = u(0, t) +

(
1− kSkΓ

dDξ2
D

Db(t)

)
r3

3

− kSk
(
DN(t)− Γ

dDξ2
D

Db(t)

)
R(t)

sinh(ξDR(t))

(
r

ξD
cosh(ξDr)−

1

ξ2
D

sinh(ξDr)

)
. (3.40)

Therefore the solution for the local velocity is

u(r, t) =

(
1− kSkΓ

dDξ2
D

Db(t)

)
r

3
− kSkR(t)

ξ2
D

(
DN(t)− Γ

dDξ2
D

Db(t)

)
ξDr cosh(ξDr)− sinh(ξDr)

r2 sinh(ξDR(t))
.

(3.41)

With this solution for the local cell velocity, we can now follow the tumour’s expansion by tracking

the evolution of the tumour radius, given by

dR

dt
=

(
1− kSkΓ

dDξ2
D

Db(t)

)
R(t)

3
− kSk

ξ2
D

(
DN(t)− Γ

dDξ2
D

Db(t)

)
ξDR(t) cosh(ξDR(t))− sinh(ξDR(t))

R(t) sinh(ξDR(t))
.

(3.42)

These solutions, when one type of tumour cell is present (primarily sensitive cells), is that tumours

would usually regress once a chemotherapeutic drug is infused at the tumour site. When there are two

types of the tumour sub-populations, the dynamics become complex. We shall attempt to capture

some essential aspects of the model numerically in Chapter 4. We remark that the analysis and

solutions provided here are only valid if we have a spherical geometry. These results would differ

for non-spherical tumours and are not applicable where there are drug resistant tumour cells. More

importantly, the establishment of these results is important because, by our model assumption, the

resistant sub-population arise from mutation of a single sensitive cell. Thus, it is essential to track

the dynamics of tumour growth prior to evolution of a drug-resistant sub-population. However, the

model dynamics when there are two types of tumour sub-populations (i.e. the sensitive and resistant

cells), will be investigated numerically in Chapter 4.

3.4 Summary

In this chapter, we enhanced our understanding of the spatial dynamics that underlie a tumour’s

growth with the intervention of a single chemotherapeutic drug. The presented model described the

evolution of tumour sub-populations both in space and time. Our model shares some important

similarity and analysis with that of Jackson and Byrne [48] for one cell type. The model follows the
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evolution of tumour sub-populations in spherical geometry. Since the drug resistant tumour sub-

population results from genetic point mutations of the sensitive cells, we analysed the model when

one type of tumour cell exits. This analysis helped to follow the spatial evolution of the tumour as

described by the radial velocity of the tumour at the boundary, u(R(t), t), shown in equation 3.42.

In the following chapter, we shall provide numerical simulations of the model to better understand

the model dynamics that could lead to fail or success of the treatment for combating tumour cells.

55



Chapter 4

Numerical results and discussion

The main goal of a chemotherapy treatment is to reduce the tumour volume to a smallest possible

burden at the end of the therapy. Consequently we have already analysed the two ODE models in

order to gain insight into the dynamical behaviour of models’ response to small perturbations as

illustrated by the stability of the models’ equilibrium points. In this chapter, we now present the

numerical findings for the ODE and PDE models that were developed earlier in Chapters 2 and 3. We

solved the ODE model using Matlab’s built-in solver, ode45. The ode45 uses a Runge-Kutta method,

with a variable time step, to compute a solution of a given differential equation. For the PDE model,

we used Matlab’s built-in solver, pdepe, which converts a PDE to a coupled set of ODEs using a

second-order spatial discretization based on a fixed set of specified nodes. For intuitive analysis of

the models, the dimensionless variables and parameters have now been re-defined in terms of the

similar variables and parameters as in the original models.

4.1 Sensitivity analysis

In order to check for a monotonic dependence of sensitive cells on the baseline parameters, sensitivity

analysis was performed on the ODE systems (2.11) − (2.13), and (2.59) − (2.63). Because we have

assumed that only sensitive cells can mutate into a resistant sub-population, it is important to

investigate the influence of the baseline parameters of the model relationship of on the sub-population

of sensitive cells. If many sensitive cells could be eradicated by the chemotherapeutic drug, then

there would be few or, possibly, no sensitive cells that might subsequently mutate into a resistant

sub-population.
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We provide the outcomes of the partial rank correlation coefficient (PRCC) analysis over 500 ran-

domised parameter values, with respect to sensitive cells, using Latin hypercube sampling [71, 72].

We have regarded the external drug influx, V , as a one of the baseline parameters in order to check

its contribution to the models monotonicity for tumour sensitive sub-population.

To effectively model drug resistance, we needed to deduce which parameters are in the model are

most correlated with the sensitive sub-population. Thus the PRCC results allow us to determine

which of the parameters could be most effectively controlled in order to mitigate cancer occurrence.

Thus PRCC results are used to identify the key parameters that contribute most significantly to

the sensitive cell density. The PRCCs were computed for each of the input baseline parameters

and the state variable S(t), representing the population of sensitive cells. Scatter plots for each

baseline parameter and the number of sensitive cells were generated and examined for any monotonic

dependence of the sensitive cell population on the given parameter.

As explained in Section 1.4, the magnitude of the PRCC illustrates the strength of correlation between

the two quantities, while the sign of the PRCC indicates the qualitative relationship. Typically, a

significant positive PRCC value implies that if values of one variable (i.e. the parameter under study)

increases, then the values on the second parameter (i.e. sensitive sub-population), would also increase

correspondingly, given that other parameters are held constant. Similarly, a significant negative

PRCC tells us that as the input variable increase, then the outcome variable would correspondingly

decrease. The PRCC results for equations (2.11) − (2.13) are given in Table 4.1, and for equations

(2.59)− (2.63) in Table 4.2.

Table 4.1: The PRCCs between the input parameters for single drug resistance phenomenon and the

output variable (sensitive cells).

Partial Rank Correlation Coefficients

R
es

u
lt

s

Parameter PRCC Parameter PRCC

λD −0.94542 λS 0.018136

µ 0.041334 λR 0.060717

kS 0.025807 V 0.9152

k −0.070753 θ −0.031957

It can be seen from Table 4.1 that the external drug influx (V ) and the natural decay of the drug (λD)

both have PRCC, in magnitude, close to 1. Thus we conclude that they contribute most significantly
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to the density of the sensitive sub-population. This further highlights the role of the chemotherapeutic

drug in minimising the survival opportunities of the tumour sensitive cells. Furthermore, we note

that the positive value of PRCC for V indicates that an increase in the chemotherapeutic drug influx

should result in the number of sensitive cells also increasing. Corresponding reasoning can be applied

to the negative value of the PRCC for λD indicating that an increase in the drug decay rate would

lead to a decrease in the number of sensitive cells.

Since we have many parameters in the model, the indices of the PRCC are also crucial in determining

the effect of each individual parameter in metastasis dynamics and prevalence of multi-drug resistance.

So similarly, we computed the PRCC for equations (2.59) − (2.63), and obtained the results in

Table 4.2.

Table 4.2: PRCC results for the multi-drug resistance phenomenon

Partial Rank Correlation Coefficients

R
es

u
lt

s

Parameter PRCC Parameter PRCC

λR12 0.075714 k −0.023531

kR2 −0.025612 kS 0.076146

λR2 0.072677 θ −0.047579

kR1 0.0089081 λS 0.04642

λR1 0.1137 λD −0.94691

µ 0.0.0078702 V 0.91861

As before, Table 4.2 illustrates the degree of influence of each parameter on the sensitive sub-

population, given that all the influences of other parameters and variables could be completely

removed. The results of the PRCC for the model with multi-drug resistance shown in Table 4.2 show

that, again, the external drug influx, V , is a parameter that is highly positively correlated with the

number of sensitive cells, while the drug decay, λD, is highly negatively correlated with the number

of sensitive cells. The positive correlation implies that the number of sensitive cells would increase

depending on the prevalence of the drug at the tumour site. This further suggests that if the number

of sensitive cells increase, then the external drug influx should be increased. However, the increase of

drug influx should be within tolerable toxicity constraints. Determination of an optimal drug influx

shall constitute our future work on this model.

On the other hand, the negative correlation between drug decay and the number of sensitive cells
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implies that when a drug with low decay rate is used, then the number of sensitive cells decreases. If

the drug does not decay quickly, many sensitive cells would be killed by the drug elimination from a

surrounding tumour tissue can take place due to natural decay [4]. Because chemotherapeutic drug

molecules are subject to natural decay before they are taken up by cells [4], it clear that if the drug

does not decay fast, then many drug molecules would interact with sensitive cells. These results

appear to show that drug decay is an important aspect to consider for chemotherapeutic modelling.

In this regard, Feizabadi et al. [24] argued that success of a chemotherapy regimen may be greatly

influenced by the decay rate of the drug.

4.2 Solution of model with single drug resistance

In this Section, we investigate the dynamical behaviour of the model (2.4)− (2.6). We assumed that

the resistant tumour sub-population is only resistant to one cytotoxic drug. The sensitivity analysis

has shown that the external drug influx V , and the molecular drug decay, λD, are the most influential

parameters in the model. Hence we shall separately investigate the dynamical response of the system

to small variations in each of these two parameters.

We have taken the fixed time period of a chemotherapy simulation as [0, 60] days and assumed the

following initial conditions for the model: S(0) = 1×1012, R(0) = 0, D(0) = 0, as also used by Monro

and Gaffney [11].

For the model simulations, we have used parameters from various literature sources that deal with

the effects of drug resistance, and/or tumour burden reduction. However, there is no consistent

plethora of tumour and chemotherapeutic drug interaction data available to choose from. Thus, for

some parameters, we have estimated the values (parameter fitting) based on similar parameters from

available literature sources. For instance, there is an evidence that resistant cells proliferate slower

than sensitive cells [46]. The baseline parameters are given in Table 4.3.
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Table 4.3: List of baseline parameter values utilised in the simulations of the model with single drug

resistance and their sources.

Parameter Value Source

λD 1.9/day λ [48]

µ 1× 10−6/day µ [83, 125]

kS 0.6/day d1 [83]

k 1.179 mL/nmol σT [29]

λS 4.31× 10−1/day a [20]

λR 4.31× 10−1/day Parameter Fitting

V 5.1/day V [6]

θ 2× 1012 nmol N∞ [11]

4.2.1 Results

We first investigated the tumour growth in the absence of the drug. Two numerical solutions using

parameter values in Tables 4.3 but with different initial values for the sensitive cell population are

presented in Figures 4.1(a) and 4.1(b). Figure 4.1(a) shows the growth of tumour sub-populations

when the initial number of sensitive cells is S(0) = 1×1012, while in Figure 4.1(b) the initial number of

sensitive cells is S(0) = 0.2×1012. In both figures, we note that all graphs reach the same asymptote,

which indicates that the respective tumour sub-populations grow to the maximum carrying capacity

in the host tissue in the absence of the drug. This suggest that once the tumour has been detected,

there is an immediate need for medical treatment. Furthermore, comparing the two figures, it can

be seen that if, at the start of the therapy, there are initially more sensitive cells, Figure 4.1(a) the

tumour cells would quickly grow to the carrying capacity of the host more rapidly. With both graphs,

in both figures, reaching the same asymptote imply that there are now equal number of sensitive and

resistant cells.
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(a) S(0) = 1× 1012. (b) S(0) = 0.2× 1012.

Figure 4.1: The tumour growth when there is no chemotherapeutic drug.

The first step in addressing drug resistance is to kill the drug sensitive cells, so as to give them

no chance of mutating into the resistant sub-population. In this regard, the sensitivity analysis

(Section 4.1) showed that the amount of the chemotherapeutic drug infused into the tumour can

have considerable consequences on the success of the treatment. Thus, we varied the values of V,

representing the cytotoxic drug dose. However, to avoid drug toxicity constraints, we have limited

the values, while yet still maintaining a sufficient amount of the drug to induce lethal outcomes on

the sensitive cells. Consequently, we have adopted the maximum drug dose as V = 5.1, as from [6],

to obtain the results in Figures 4.2(a)− 4.2(c).

(a) (b)
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(c)

Figure 4.2: The finite continuous chemotherapeutic treatment on the sensitive cells with different

drug doses.

The graphs of S(t) in Figure 4.2(a) − 4.2(c) are all asymptotically decreasing. However, in Fig-

ure 4.2(a) this non-zero asymptote indicates that with a low chemotherapeutic drug dose (V = 1.1),

the number of sensitive cells initially drops but then remains at more than half the initial value.

This contrasts with the higher dosages represented in figures 4.2(b) and 4.2(c). In these, we note

that the drug sensitive population is quickly reduced to an insignificant amount. Similar high dose

strategies has been found to be effective against the more drug sensitive cells of the tumour, such as

in lymphoma, leukemia and germ cell tumour [9]. In all three graphs it can be seen that the drug

resistant cells continued to multiply to a maximum, unaffected by the treatment.

Other insightful results are obtained if we vary the drug decay rate, because if the drug does not

decay too quickly, then for longer periods, there should be a reasonable amount of the drug available

to kill the tumour. With drug dose now fixed at maximum tolerable content, V = 5.1 per day, we

obtained the results shown in Figure 4.3(a)− 4.3(c).
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(a) (b)

(c)

Figure 4.3: Simulations tumour growth subject to different drug decay rate.

Figure 4.3(a)− 4.3(c) show reduction of the sensitive cells with different, reducing, drug decay rates.

In Figure 4.3(a) fewer sensitive cells are killed, and moreover, their number remains as slightly less

than half the initial amount. In Figure 4.3(b), we have a drug with an average decay rate of 4.5 and it

can be seen that the graph does take longer time to reach an asymptotic horizontal value (S(t) = 0),

but this is close to zero. Thus, we conclude that while eradication of sensitive cells takes a longer

period of time, there ultimately remain very few sensitive cells. Mathematically, it is possible to have

a limiting case of no drug decay as shown in Figure 4.3(c). This is presented for comparison, but in

biological situations there is always a natural decay for each drug [24]. Once again it can be seen

that the drug resistant cells were unaffected by the treatment.
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Our results are in accordance with other published findings. In this regard, Feizabadi et al. [24]

obtained results for different decay rates in their model, and argued that success of a chemotherapy

regimen may be greatly influenced by the decay rate of the drug. Similar findings suggest that if

the drug has a lower decay rate, then opportunities for successful treatment are increased, provided

that the drugs effectively penetrate the tumour at lethal concentrations [43,126,127]. Such successful

treatments would not allow the sensitive sub-population to accumulate enough mutations to become

malignant.

4.3 Summary

In this section, we have provided results of the model with a single drug resistance. In particular, we

have identified, through sensitivity analysis (Section 4.1), model parameters that are most influential

to the number of sensitive cells. By varying those parameters, we have observed some significant

reduction in the number of sensitive cells, which, if not eliminated, may contribute to an increase in

the number of the resistant tumour sub-population. However, in all cases, development of resistant

sub-population is inevitable. As highlighted in a recent review [111], the cancerous cells that recur

after a single treatment may be resistant to multiple drugs. It was therefore important to investigate

the dynamics of multi-drug resistance in this model. This is done in Section 4.4 below.

4.4 Solution of the ODE model for a multi-drug resistance

As pointed out in Section 2.5 one of the reasons ascribed to the failure of the chemotherapeutic

treatment is the development of the multi-drug resistance phenomenon. In this section, we provide

the simulated results for the multi-drug resistance with two chemotherapeutic drugs.

Again, as with the single drug case, some model parameters are not available in the literature,

hence, for modelling purposes, we have estimated missing parameters (Parameter fitting) based on

the available information pertaining to their properties. The baseline parameters of the model are

given in Table 4.4,
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Table 4.4: List of baseline parameter values used for simulations using equations (2.51)− (2.55).

Parameter Value Source

λD 1.9/day λ [48]

µ 10−1 − 10−6/day µ [83, 125]

kS 0.6/day d1 [83]

k 1.179 mL/nmol σT [29]

λS 4.31× 10−2/day Modified a from [20]

λR1 3.84× 10−2/day Parameter Fitting

λR2 2.81× 10−2/day Parameter Fitting

λR12 2.5× 10−2/day Parameter Fitting

V 5.1/day V [6]

θ 2× 1012 nmol N∞ [11]

4.4.1 Results

Here, we are intrigued by the following question, “does increasing the number of drugs improve the

opportunities of chemotherapeutic success?”. This question has been addressed in numerous studies,

but there is no unique answer to it. In particular, we note the view of Komarova and Wodarz [54]

who argued that success depends on the mutation rate and the death rate of the tumour cells. They

emphasized that the higher the mutations acquisition, the lesser the effect of incremental increases

in the number of drugs, with more likelihood of the tumour becoming difficult to treat. Using the

baseline parameters given in Table 4.4, our results are shown in Figure 4.4.
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(a) (b)

Figure 4.4: The dynamical behaviour of the tumour sub-populations, subject to high mutation rate

and different drug doses.

Figures 4.4(a), we note that , with low drug dosage, if there are higher mutation variations in the

tumour while the sub-populations represented as S,R1 and R2 do reduce by 40 days, the population

of multi-drug resistant cells represented as R12 continues to increase, similar to the findings in [5,

41, 47, 51, 52, 54, 111, 125, 128]. To determine whether higher dosage would be even more beneficial,

we investigated the effects of continuous infusion of high drug dose to the tumour site. The results

are illustrated in Figures 4.4(b). When comparing Figures 4.4(a) and 4.4(b), we note that with

a higher dose, the populations of sensitive cells are significantly decreased in less than 10 days

while in Figure 4.4(a) takes more than 10 days to decrease to zero. Thus in comparing the results

for low dosage in Figures 4.4(a) with high dosages in Figure 4.4(b), when we have high mutation

rates, it appears that higher drug doses, within toxicity constraints, are more beneficial than lower

drug doses in order to minimise the occurrence of non-cross resistant cells (i.e. cells that are not

multi-drug resistant). Therefore, this partially explains some apparently contradictory findings in

the literature. To be specific, in some studies low continuous drug dose has been identified as the

most effective treatment dosing strategy for chemotherapy [54,129]. On the other hand, some studies,

have suggested that higher concentrated drug doses are more beneficial [42,130]. However, our results

show substantial advantages of high continuous drug dosing strategy in preventing the development

of drug resistance, subject to high mutation rates, and partially inhibiting an increase in resistance

in multidrug-resistant tumour sub-population.
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These results highlight an important prediction by Goldie and Coldman [5] which links the success

of a therapy to the number of cellular mutations. As described in [5], this relation is given by the

following equation:

P (α) = e−α(N−1), where N(t) = S(t) +R(t), (4.1)

and α is the varying mutation rate, and N(t) is the tumour density with drug sensitive, S(t), and

resistant, R(t), sub-populations. As the number of mutations increases, the probability of having

zero resistant sub-population declines. This result is shown in Figure 4.5.

Figure 4.5: The probability of zero resistant cells as mutations increase [5].

Figure 4.5 shows the effect of mutation rate on the probability of attaining zero resistant tumour sub-

population. The probability of zero resistant cells, is implicitly captured by our model as illustrated

in Figure 4.4(a) and Figure 4.4(b), which both show a persistent increment in the cross resistant

sub-population, R12, despite multi-drug treatment.

As with the single drug resistance case, before investigating the effect of a multi-drug regimen, we

establish a comparative baseline of following the evolution of the tumour sub-populations when there

is no treatment given. We use the baseline parameters in Table 4.4 for the simulations. The results

are given in Figure 4.6.
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Figure 4.6: Relative growth of tumour sub-populations in the absence of the treatment, t ∈ [0, 500]

and S(0) = 0.1× 1012.

Figure 4.6, it can be seen that the growth of all tumour sub-populations in the absence of a chemother-

apeutic drug approach the maximum carrying capacity, θ = 2× 1012, and the population of sensitive

cells quickly proliferates up to the maximum carrying capacity of the tumour.

In order to gain insight into the dynamics of multi-drug resistance, we next investigated the effect

of three different chemotherapeutic drug doses on the cell sub-populations. The results are shown in

Figure 4.7(a)− (f)

From the graphs in Figure 4.7 it can be seen that with any dose, the graphs of S,R1 and R2 all follow

similar patterns to S and R in the single drug resistant model. By this we mean that with a low

dosage (a), the population of sensitive cells decreases, but not as quickly a in high dosage, (e). With

higher dosages, S(t) appears to drop to zero between 12 days (c) and 10 days (e). This indicates

that a high infusion of the combination of chemotherapeutic drugs, V , might be a valuable strategy

to eradicate the sensitive sub-population. And under any dosage, R1 and R2, initially increase and

then drop off to zero.

Nevertheless, the multi-drug resistant cells, shown by R12, maintain the tumour’s proliferation, up

to the maximum carrying capacity of the tumour cell, under any dosage, although the higher the

dosage, the less rapidly it increases. For the tumour this means that higher drug doses yield more

efficacious outcomes. With the drug dose within the toxicity constraints, then the majority of both

sensitive and non-cross drug resistant sub-populations are greatly reduced, but the cross resistant

population remains a threat.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.7: The response of the tumour sub-populations to various drug doses in multi-drug resistance

case.
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In all the figures for the resistant sub-populations in Figure 4.7, the curve for the multi-drug resistant

sub-population, as indicated by R12, keeps increasing to the maximum carrying capacity of the

tumour. This highlights the fact that multi-drug resistant sub-population is, generally, not easy to

control. That is why multi-drug resistance has always be ascribed as a major source of failure in

many chemotherapeutic treatments [2].

4.5 Solution of the PDE model without the interstitial con-

vection

In this section we provide the numerical solution of equations (3.20) − (3.22). These equations

represent an interaction of the tumour cells with a single chemotherapeutic drug. The diffusive flux

is a major modal transport by which the chemotherapeutic drug could reach the tumour. Hence,

without loss of generality, interstitial convection could be regarded as zero. The model reduces to

∂D

∂t
=
dD
r2

∂

∂r

(
r2∂D

∂r

)
+ Γ(Db(t)−D)− λDD − uSkS(1− e−kD)S, (4.2)

∂S

∂t
=
dS
r2

∂

∂r

(
r2∂S

∂r

)
+ λSS

(
1− S

θ

)
− kS(1− e−kD)S − µS, (4.3)

∂R

∂t
=
dR
r2

∂

∂r

(
r2∂R

∂r

)
+ λRR

(
1− R

θ

)
+ µS. (4.4)

First, in order to gain some insights into the mechanical behaviour of the model, we considered

different initial conditions. The solutions presented in this section were found using a finite difference

based PDE solver in Matlab, pdepe. We solved equations (4.2)− (4.4) with initial conditions (3.11),

and boundary conditions (3.13) and (3.14). For the model simulations, we used the initial conditions

Db(0) = 1.179, S(r, 0) = 4 × 103, R(r, 0) = 0, D(r, 0) = 0 to investigate the effects of the growing

tumour subject to diffusion of the chemotherapeutic drug from the surrounding vasculature.

The parameter values used in the simulations are given in Table 4.5. We obtained some parameter

values from Jackson’s models [48] and other literature relevant sources, as shown in the table. Because

there is no consistent data for any type of cancer [10], we had to use some parameters that relate to

a variety of cancer types. The baseline parameters and the initial conditions are varied in order to

investigate the tumour’s behaviour with respect to different mutations.
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Table 4.5: List of baseline parameter values utilised for simulations in the PDE model and their

sources.

Parameter Value Source

dD 1.7 cm2/day D [48]

dS 0.0867 cm2/day Parameter Fitting

dR 0.0845 cm2/day Parameter Fitting

λD 1.9/day λ [48]

µ 1× 10−3/day µ [125]

Γ 16/day Γ [48]

uS 0.021/day Parameter Fitting

kS 42.8/day kT [29]

k 1.179 mL/nmol σT [29]

λS 0.18/day a [97]

λR 0.15/day Parameter Fitting

θ 2× 106/nmol M [131]

4.5.1 Results

We begin by evaluating the model response to different initial numbers of sensitive tumour cells,

because we assumed that the resistant sub-population evolves from the mitosis of the sensitive cells.

This consideration is vital in those instances where the acquired drug resistance might be dependent

on the size of the tumour. In this regard, the initial tumour size plays an important role predicting

the equilibrium state from the start of the therapy [132]. When medical treatment is given to a

cancer patient, the tumour cells could be driven to either no tumour equilibrium or large tumour

equilibrium [132]. The latter state is usually held responsible for failure of many chemotherapies due

to the evolution of drug resistance.

If we have no drug present, and initially only sensitive cells, we then investigate the effect of tumor

size using S(0) = 5× 1011 in Figure 4.8.
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Figure 4.8: The comparison of the tumour sub-populations growth without drug.

As with the ODE model, equations (2.4) − (2.6), Figure 4.8 show that if there is no drug at the

tumour site, and an initial tumour size is large, then the tumour sub-populations would rapidly

proliferate to the maximum carrying capacity of the host tissue. This further indicates that larger

tumours are more difficult to treat by chemotherapy or radiotherapy [133], and usually, the tumour

would grow to a dangerous level if left untreated. However, if the initial numbers of sensitive tumour

cells is small, S(0) = 4× 103, we obtain results in Figure 4.9.

(a) (b)

Figure 4.9: Tumour sub-populations with small initial size, S0 = 4× 103.
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Figure 4.9 gives a comparison of tumour growth for the two sub-populations when the initial number

of sensitive cells is small. As show in Figure 4.9(a), if the initial number of sensitive cells is small, then

the tumour could be eradicated before the evolution of the drug resistant sub-population. This is

shown in Figure 4.9(a) whereby the sensitive cells are eradicated on 10th day, while the evolution of the

resistant tumour sub-population occurs on the 25th day as shown in Figure 4.9(b). From these results

we note that treatment of small tumours may help to circumvent a problem of drug resistance because

sensitive cells could be eradicated before the evolution of the resistant sub-population. However, small

tumours may not be easily identified until they have reached a certain detectable size [20].

It was necessary to further explore a optimal time to eradicate a tumour with small initial number of

sensitive cells at the start of therapy, S0 = 4×103, and we obtained the results shown in Figure 4.10.

Figure 4.10: Simulation of the smallest time for the eradication of a tumour with small number of

sensitive cells.

Figure 4.10 indicates that, under our model assumptions, the tumour’s eradication with a chemother-

apeutic drug is plausibly within 9 days. This further shows that continuous infusion of chemothera-

peutic drug is better strategy to reduce a tumour burden [134].

It is of particular interest to determine the dynamics of the tumour’s response to the chemotherapeutic

drug. To achieve this, we have numerically solved the model with and without the drug and using

S0 = 5× 103, θ = 2× 1012 and µ = 1× 10−6 as recommended in [11]. We obtained the results shown

in Figure 4.11.
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Figure 4.11: The solution of the model with a chemotherapeutic drug.

Figure 4.11 shows the tumour growth profile with interventions by chemotherapeutic drug. Compared

to Figure 4.8, it can be seen that with no drug present there is the inevitable growth in cancer cells.

However in Figure 4.11, as with many cytotoxic drug models, the simulations show that for certain

initial and boundary conditions, eradication of the sensitive cells is possible. However, the evolution

and growth of the resistant sub-population remain inevitable. Although further studies must be

conducted, our results to date indicate that continuous infusion of a chemotherapeutic drug could be

useful to eliminate the drug sensitive cells, while diminishing the opportunities for the development

of drug resistance. This outcome is important for our model because we assumed that the resistant

tumour sub-population arise from genetic mutations of sensitive cells. Thus, the benefits of this

treatment strategy could help to combat drug resistance by giving sensitive cells no chance of quickly

mutating into drug resistant sub-population.

4.6 Summary

Mathematical modelling and computer simulations are tools that provide a robust framework for

better understanding of cancer progression and response to treatment. In this chapter, we solved

numerically both the ODE and PDE models. Through sensitivity analysis of the ODE models, pa-

rameters that contribute most significantly to the tumour’s response to therapy were identified as
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external drug influx and drug decay. Numerical simulations obtained in this study demonstrate the

qualitative effect of various initial conditions and boundary conditions of tumour sub-populations.

Specifically we have shown that for the tumour with high genetic point mutations, high dosage of

a chemotherapeutic drug could be used to eradicated sensitive cells, thereby minimising the devel-

opment of resistant sub-population. For cases where diffusion of anti-cancer drugs into or out of

the tumour is a major mode of transport, continuous infusion of the drug might help to eliminate

drug sensitive sub-population. Because the development of drug resistance is a major impediment

of chemotherapy success, the results presented in this study support the clinical implementation of

a continuous infusion of a chemotherapeutic drug, within toxicity constraints, to prevent the devel-

opment of drug resistance in tumours. The mathematical models developed in this study provide a

significant level of new understanding of these interactions. Nevertheless, the complex interactions

between a tumour and the anti-cancer agents are still poorly understood from biological and math-

ematical points of view. In particular, we need greater insight into how to prevent the resistant

sub-population from proliferating.
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Chapter 5

Conclusions

In this dissertation, we sought to understand and model local interactions between tumour cells and

anti-cancer agents, while including the evolution of drug resistance. We further sought to enhance

our understanding of the effect of different interventions on the tumour cell sub-populations through

qualitative and numerical analysis. We formulated and analysed two mathematical models that

take into account the effects of drug resistance in cancer. The numerical simulations showed that a

combination of two drugs that are functionally and structurally different may succeed in eliminating

the drug-sensitive and non-cross resistant cells. However, we found that multi drug resistant cells

continued to proliferate.

In Chapter 2, we developed two new ODE models that describe the local interaction of the tumour

cells and anti-cancer agent(s). These models comprise two tumour sub-populations, namely the drug

sensitive cells, S(t), and the resistant cells, R(t). We considered two situations, specifically where

there was resistance to one drug or two drug. The mechanisms underlying multi-drug resistance

are both biologically and mathematically complex, but we were able to determine the stationary

states of these systems and analysed their stability. In both models, non-trivial equilibrium states

were found and the conditions that confer stability were determined. Biologically, these states and

stability conditions indicated that conditions under which the tumour could be harmful or not if

not eradicated from the body. In particular, a stable steady-state solution imply that the tumour

can remain inside a host tissue of a patient for a long time without causing much evasion on the

surrounding tissues [135]. On the other hand, an unstable tumour is likely to metastasise to other

tissues [135]. These findings were different from those already published, in that they do not only give

a qualitative understanding of a tumour progression and metastasis, but they also give a valuable
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information on the conditions under which the tumour could confer resistance to chemotherapeutic

drug(s). However, under certain conditions, the ODE models have certain limitations because they

do not include the spatial dynamics of tumour cells. Normally, tumour sub-populations compete for

space and resources necessary for their growth and metastasis [55]. We incorporate this feature into

our partial differential equation (PDE) model in Chapter 3.

In Chapter 3, we presented a mathematical model that includes spatial dynamics of the tumour and

chemotherapeutic agents. This is a convection-reaction-diffusion model type with spherical geometry.

We distinguished between the sensitive, S(r, t), and resistant, R(r, t), sub-populations. Analytical

solutions of the chemotherapeutic drug concentration and the local velocity of the tumour boundary

were found. These solutions showed that when tumour consisted of one cell, sensitive cell, the

temporal expansion of the tumour can be followed by tracking a radial change of the tumour boundary.

This was achieved by introducing a local velocity, u(r, t), which described a cellular motion generated

by the balance between tumour cell proliferation and death. An drug resistant sub-population might

arise from mutations of the drug sensitive sub-population via mutations [41,130]. Thus, the derivation

of these solutions served as a key step in comprehending the moving boundary conditions usually

associated with the tumour surface, as well as the roles played by mutations in the evolution of

the drug resistant sub-population. We have shown how the underlying assumptions influence model

analytical solution feasibility. For example, assuming a lower chemotherapeutic drug concentration

and one cell type lead to simplification (via Maclaurin series expansion) of an exponential term,

which described the tumour’s interaction with the chemotherapeutic drug, to a linear term which

helped to attain analytical solutions for the drug and radial velocity of the tumour boundary. These

findings are similar to those obtained by Jackson and Byrne [48]. Numerical solutions of this model

further show the possibility of eradicating sensitive cells when diffusion of chemotherapeutic drug is

a major mode of fluids transport into or out of the tumour. However, the success of the therapy

depends on a low initial number of sensitive cells. Consequently, through the model, we have shown

that early detection of the tumour is important aspect for the efficacious elimination of the tumour,

which is in accordance with findings by [5, 47].

In Chapter 4, sensitivity analysis was used to show that the model was most sensitive to the model

parameters. Specifically, when the drug decay rate was high, there was an increase in the number of

sensitive cell population, and when the external drug influx was increased, there was a corresponding

drop in the number of sensitive cell population. From these observations we concluded that in order to
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efficaciously eliminate the drug sensitive sub-population, it is important to use a chemotherapeutic

drug with a low decay rate, while continuously infusing a drug influx within admissible toxicity

constraints. These results are in accordance to other published findings such as [55, 129, 130, 134].

The numerical solutions for the models showed that it is possible to eradicate the sensitive sub-

population, which, if not removed, could mutate into drug resistant sub-populations. The results

indicate that for the first ODE model with a single drug, complete remission is not feasible, but the

sensitive sub-population is significantly reduced. The reduction of the sensitive sub-population is

slow, thus giving sensitive cell population an opportunity to mutate into a resistant sub-population.

The model was extended to a two drug case where we further considered the effects of genetic point

mutations that confer multi-drug resistance. Mutations have been shown in many studies [5,41,47,51,

52,105,117,125,136] that they contribute significantly to the evolution of drug resistance. This model

showed a significant reduction in the sensitive sub-population. Nevertheless, the persistent growth of

the multi-drug resistant sub-population was unavoidable. Under high genetic point mutations, our

results showed that continuous infusion of the chemotherapeutic drug, within toxicity constraints,

is recommended to reduce the sensitive cell population. Furthermore, our results showed that there

would still be a significant reduction on the number of the tumour sensitive sub-population when the

chemotherapeutic drug with low decay rate was used.

The models presented in this study show how mathematical models may be used to reveal complex

spatial and dynamical interactions between tumours and chemotherapeutic drugs. The interaction of

between tumour cells and chemotherapeutic drugs, subject to drug resistance, has been done in many

studies [5, 9, 42, 47,48,55, 58,59, 102,126]. The preliminary results here expand current knowledge of

mathematical approaches to modelling drug resistance. The results provide a solid foundation of two

compartmental modelling of tumour sub-populations for extending the model to more sophisticated

representation of the biological processes and the chemotherapeutic drug interactions.

The models presented here have significant shortcomings that need to be addressed in order to

make the models suitable for clinical validation. Firstly, the empirically determined parameters, for

example the growth of resistant cells, λR for the first ODE model, and λR1 , λR2 and λR12 for the

second ODE models, need to be sourced from clinical data for the model results to be realistic. Thus,

we have identified a need for more clinical or empirical research in this regard. The second limitation

is that these models only include a tumour in a pre-metastatic state. As discussed in Chapter 1,

when subgroups of cancer cells leave the primary tumour and travel to other distant site in the body
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and begin to invade a new distant tissue and therein form a new tumour mass, they are said to

have metastasised. Metastasis has been reported as the most frequent cause of cancer death [12–16].

Therefore, because early spread of tumour cells is usually not detected [137], it is important to

prohibit the development of tumour cells prior to metastastic process with the chemotherapeutic

drugs once the tumour is detected. In this regard, these models could possibly be extended to

include the interaction of the tumour and the drug at the secondary site (that is, after the tumour

has metastasised to a new site). This would, however, present a considerable mathematical challenge

because, for instance, such an extension would mean that our first ODE model would consist of six

coupled differential equations that have to be solved simultaneously. Moreover, chemotherapy can

kill tumour cells only at certain stages in the cell cycle, so other tumour cells would be unaffected.

An exciting extension to our work could be to model chemotherapy and immunotherapy concomi-

tantly. Alternatively, it is worth noting that there already exist a number of mathematical models

that combine chemotherapy with immunotherapy [20,26–28,30–32]. Combining immunotherapy with

anti-cancer drugs has the advantage of combating cancerous cells that elude an assault of chemother-

apeutic drugs, and hence result in faster elimination of tumour cell sub-populations. A sophisticated

model of this type was presented in [20] in which the immune system consists of three sub-populations,

namely tumour antigen activated cells, natural killer cells and the circulating lymphocytes (white

blood cells). This model has a great advantage of having already been validated with both mice and

human data.

Our approach would be different from that in [20] and would seek to model the tumour’s interaction

with the drugs, with evolving drug resistance to chemotherapy, but with the enhancement of the

immunotherapy.
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Appendix: Glossary of biological terms

used in this dissertation

Apoptosis programmed cell death.

Detoxification the removal of toxic agents in a living organism.

Differentiation

In developmental biology, differentiation is the term used to denote the cells

developmental capacity to perform a specific function by change of phenotype.

However, in surgical pathology,differentiation, apart from being used as a

classification of whether the tumour is benign of malignant, is used to grade

the degree of tumours capacity in relation to invasiveness and mortality.

Lymphoma
a range of cancers that are associated with the lymphatic system, connecting

network of nodes,organs, and vessels whose primary cell is the lymphocyte.

Malignant
A malignant tumour is the one that is capable of invading the neighbouring

tissues and spreading to other body parts.

In vitro test
A medical trial, experiment or procedure that is usually carried outside the

body of an animal or a patient.

In vivo test A medical trial that is carried inside the body of an animal or a patient.

Metastasize A tumour is said to have metastasized if it has spread to other distant body

parts from the primary tumour site and has began to form a new tumour there.

Mitosis the process of molecular cell division.

Phenotype the set of observable attributes or characteristics of an individual resulting from

mutations in genes when they interact with a surrounding environment.
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Angiogenesis is the formation of new blood vessels from pre-existing blood vessels in the body.

The newly formed blood vessels does not only supply oxygen and nutrients to

cancerous cells, but they also provide an opportunity for tumour cells to get into

blood vessels and spread to other parts of the body.

Proliferate To reproduce/divide/increase in number.
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