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GENERAL ABSTRACT 

 

The countries in sub-Saharan Africa (SSA) are faced with the problem of soil degradation resulting 

from unsustainable soil management practices such as conventional tillage (CT) and the removal 

of soil biomass from crop land. Conventional tillage leads to deterioration of important soil 

physical properties, the decline in soil organic carbon (SOC) and increase the risk of soil erosion. 

The reduction of SOC further affects soil macrofauna which has important key roles in soil 

processes such as soil structural formation, decomposition of soil organic matter (SOM) and 

recycling of soil important nutrients. This combined with water scarcity, low inherent soil fertility, 

increasing population and the predicted negative impacts of climate change poses threat to the 

regions ability to self-supply enough food for current and future generations. In response to this 

conservation agriculture (CA) has been endorsed because of its powerful mechanism to adapt by 

increasing resilience to land degradation, drought and increasing water use efficiency. Soils under 

no-till CA have been recognised widely that they generally contain higher SOC, the key principal 

indicator of soil quality, than CT system. These responses, however, are site-specific and depends 

on soil type, cropping systems, climate, fertilizer application and other management practices. 

Moreover, most of the published literature on the effect of CA on soil quality parameters comes 

from cooler temperate regions. As a result, the effect of CA on soil quality parameters in sub-

tropical semi-arid environments remains unknown or controversial. Therefore, the primary 

objective of the study was to assess the effect of no-till (NT), rotational tillage (RT), CT and 

nitrogen fertilizer application rates on selected physical, chemical and biological properties of the 

soil and, their influence on maize yield. The secondary objective of the study was to explore the 

use of visible to near infrared spectroscopy (VIS-NIRS) as a possible cheap alternative for SOC 

quantification. 
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The study was conducted at Bergville in KwaZulu-Natal Province of South Africa. The trial was 

established in 2003/04 growing season. This area forms the most important part of rainfed maize 

production in KwaZulu-Natal Province. The trial was arranged as a split plot with randomized 

tillage strips forming the whole plot and rate of application forming the sub-plots which are 

randomized within the whole plots. The experiment included three tillage treatments: 1) no-till 

(NT) with permanent residue cover, 2) annual conventional tillage (CT) and 3) rotational tillage 

(RT) every after four years. Nitrogen was applied at three rates, namely; 0 kg/ha, 100 kg/ha and 

200 kg/ha.  Lime ammonium nitrate (LAN) was used as a source of nitrogen. 

 

Unsuitable soil management in agriculture is known to results in deterioration of soil health and 

the decline in biodiversity. The objective of the study in soil biological properties was to assess the 

effect of no-till CA on the abundance and order diversity of soil macrofauna in continuous maize 

monocropping system. Soil macrofauna was sampled at the end of the 2015/2016 growing season 

using 25 × 25 × 25 cm steel monoliths. The mean density of individual orders was significantly 

higher (p < 0.001) under NT (46%) and RT (38%) compared with CT (16%). However, the 

Shannon-Weaver index (H, E index) revealed that the diversity and evenness of orders were 

similar, H= 2.6 and E~ 1, for all treatments. Macrofauna patterns revealed that NT and RT 

contained a significantly (p < 0.001) higher population of orders Isoptera and Diplopoda. Order 

Isoptera was 51% and 17% higher in NT than CT and RT, respectively while in Diplopoda, NT 

was 39% and 2% higher than CT and RT, respectively. It was concluded that NT and RT mulch-

based system favoured the development of macrofauna communities in the studied maize 

continuous monoculture cropping system but did not favour order diversity of macrofauna. This 
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suggests the importance of crop rotation for the development of the more diverse macrofaunal 

population. 

 

Soil degradation associated with the loss of soil organic carbon (SOC) has been a major concern in 

sub-Saharan Africa because of the subsequent yield reduction. The objective of the study in soil 

physical properties was to investigate the effect of NT, RT, CT and N fertilizer applications rate 

on soil aggregate stability, infiltration, SOC and its size fractions at 0-10, 10-20 and 20-30 cm 

depth. Soil samples were taken at the end of 2015/16 growing season using soil auger. On average, 

total SOC did not vary (p > 0.05) across the tillage treatments, 27.1 t/ha (NT) vs 26.0 t/ha (RT) and 

26.6 t/ha (CT), but varied with depth where it was stratified in the 0-10 cm depth in NT and RT. 

Particulate organic C, however, varied significantly (p < 0.05) across the treatments where it 

decreased with increase in tillage intensity but only in the 0-10 cm depth. Mean weight diameter 

(MWD) was high under NT and RT and this was correlated to higher infiltration observed in these 

treatments. The results of this study showed that reduced soil disturbance improves physical 

protection of SOC, soil structure and infiltration.  

 

Soil management practice may change soil chemical properties and thus fertility. The magnitude 

of change varies depending on soil type, cropping systems, climate, fertilizer application and 

management practices. The objective of this study on soil chemical characteristics was to assess 

the effects of tillage systems, residue retention and fertilizer application rates on the amount and 

distribution of soil major nutrients in the 0-10, 10-20 and 20-30 cm depth. The soil samples were 

taken at the end of 2015/2016 growing season using soil auger and transported to the University 

laboratory for chemical analysis. The concentration of total Nitrogen (N) followed the same trend 

as that observed in soil physical properties. SOC and N were found to be concentrated on the soil 
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surface (0-10 cm depth). Phosphorus was significantly higher (p < 0.001) under NT (0.0213 t/ha) 

than in RT (0.0127 t/ha) and CT (0.00704 t/ha). A large amount of P was in the 0-10 cm depth in 

NT and it was distributed more uniformly under RT and CT. Potassium was also higher (p < 0.05) 

under NT (9.73 t/ha) than in CT (8.00 t/ha) and RT (9.52 t/ha). It was found to be uniformly 

distributed across the soil depths in all tillage treatments. The soils from NT and RT had lower pH 

values than CT at 0-10 cm depth while increased significantly in the lower depths. Cation exchange 

(CEC) capacity followed the same trend. The results indicated that NT treatment increased nutrient 

availability in the studied soil which was more linked to the distribution of SOC and variability of 

pH along the soil profile, thus this indicating the potential of implementing NT in the semi-arid 

environment. 

 

Resilient and sustainable soil management systems are needed to overcome soil degradation, arrest 

soil fertility decline and to offset the predicted negative impact of climate change. This study 

investigated the long-term (13 years) impact of soil quality parameters (soil physical, chemical and 

biological properties), N fertilizer application rate and rainfall on maize grain yield. On average 

(across the years) maize yields were higher in NT (12.3 t/ha) and RT (12.4 t/ha) under higher rate 

on N fertilizer application (200 kg/ha) than CT (11.8 t/ha). However, yields decreased in NT with 

the reduction of N fertilizer application rate in medium N rate (100 kg/ha) and low rate (0 t/ha). 

The yields decreased by 1.7 t/ha, 1.4 t/ha and 0.4 t/ha from high N application rate (200 t/ha) to 

medium N application rate (100 t/ha) in NT, RT and CT, respectively. Under low rainfall of < 400 

mm/year and high N application rate (200 kg/ha), the yield was 9.13 t/ha, 7.96 t/ha and 7.00 t/ha 

in NT, RT and CT, respectively across the years. However, when the average rainfall was above 

600 mm/year, yields averaged at 13.3 t/ha, 13.7 t/ha and 13.5 t/ha in NT, RT and CT under high N 

fertilizer application rate across the years. Principal component analysis (PCA) was performed to 
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assess some biological, physical and chemical properties of the soil that contributed to maize yield. 

The results showed no parameter that seemed to be related to maize yield. This was attributed to 

the complex interaction of bio-physio-chemical parameters with the environment. The results of 

this study found that yields improve over time under CA and this was more pronounced during the 

drought period. Yields improvements under CA require the application of the higher rate of N 

fertilizer in correct amount. Therefore, it is recommended that CA is implemented in semi-arid 

subtropical areas to improve soil conditions, water conservation and to achieve optimum yields. 

 

Application of spectroscopy for assessment of soil nutrition in the field may be affected by the 

depth at which the radiation spreads to, the analysed nutrient, and management practices such as 

tillage systems. The visible to near infrared spectroscopy (VIS-NIRS) was explored as a technique 

to predict soil organic carbon (SOC) and soil organic nitrogen (SON) in soils differing in soil tillage 

management practices. Partial least square regression (PLSR) models were developed using the 

leave-one-out cross validation method. The models were then tested on independent samples (54) 

randomly selected from the total 324 samples. The best prediction model was observed for SOC 

with the coefficient of determination (R2) = 0.993, root mean square error of prediction (RMSEP) 

= 0.157% and residual predictive deviation (RPD) = 2.55 compared with R2= 0.661, RMSEP= 

0.019%, RPD= 2.11 for SON. Considering the predictive statistics and accuracy created by the 

model in the prediction of SOC, VIS-NIRS can be recommended as a fast, accurate technique for 

SOC determination in the studied soil. This will significantly reduce the cost associated with SOC 

and SON analysis for researchers and farmers. 
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UKUFINYEZWA KWENDABA YONKE JIKELELE 

 

Amazwe asezansi ne Afrikha abhekene nengwadla enkulu yokudicileka phansi nokuphelelwa 

umsoco komhlabathi. Lokuphelelwa umsoco komhlabathi kubangelwa izindlela zokutshala 

ezingalungile ezingahlali isikhathi eside njengokutshala lapho oqale ulime umhlabathi khona bese 

usebenzisa igeja ususe nokhula. Lokhukulima ngegeja bese ususa ukhula kubangela ukuthi 

umhlabathi unganothi ngoba usuke ususe amacembe namagatsha agayekile (noma ayimvuthuluka) 

abaluleke kakhulu ekwakheni inqalasizinda sokuthi umhlabathi ubumbane ubeyimbumba futhi 

ukwazi ukuthi unikeze izitshalo umsoco wokuthi zikhule kahle. Lezizimvuthuluka zezitshalo uma 

zingekho emhlabathini, zibangela ukuthi umhlabathi uguguleke kokuba zona zenza umhlabathi 

ukuthi ubumbane ube yimbumba uhlangane uthi thaqa. Lezizimvuthuluka zezitshalo 

ziyabandakanyeka ekubenikhona kwezilwane ezibalulekile kakhulu ezikwazi ukuthi zidle 

amecembe namagatsha ezitshalo ziwagaye abe yimvuthuluka bese zibuyisele imvundo nomsoci 

wezitshalo emhlabathini. Lokhu kuhlangene nokusweleka kwamanzi, umhlabathi ongavundile, 

ukunyuka kwesibalo sabantu, nezimo ezimbi eziqaguliwe zokhuphenduphenduka kwesimo sezulu 

kwenza ukuthi kube nokusaba okukhulu ukuthi thina silapha enzansi ne Afrikha sokwazi 

ukuzondla sibuye sondle nezizukulwane zethu ezizayo. Ukubhekana nalesisimo, ukutshala 

ungalimanga sekuphakanyisiwe futhi kwanconywa ngokuba kona kuyakwazi ukuthi kuvimbele 

ukuthi umhlathi okutshalwe kuwo ukuthi ungafi, kubuye kubhekane nesomiso futhi kusebenzise 

amanzi ngokuwonga ezitshalweni ngesikhathi sesomiso. Ukutshala ungalimanga ucwaningo 

olwenziwe ezindaweni eziningi emhlabeni jikelele selutshengise ngokusobala ukuthi uba 

nezimvuthiluka eziningi zezitshalo zokhula uma uqhathanisa nokutshala ulimile bese ususa ukhula 

namahlanga. Kepha lokhu kuhluka insimu nensimu futhi kuncike ohlobeni oluthile lomhlabathi, 

kubuye kuncike futhi ekutheni utsha ini iyixubanani futhi yini oyishintshangayo mawutshala, 
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kubuye futhi kuncike esimweni sezulu saleyondawo, kubuye futhi kuncike ekutheni hlobolini 

lwesivundiso osisebenzisayo mawutshala, kubuye kuncike ezindleleni ezinye ezinhlobonhlobo 

ezisetshenziswayo wawutshala noma ukhulisa izitshalo. Okunye futhi, izindaba zocwaningo 

eziningi ezibhaliwe mayelana nokutshala ungalimanga nemiphumela yakho ekwenzeni umhlaba 

onothileyo ziqhamuka le phesheya kwezilwandle, endaweni ebandayo futhi enemvula eningi. 

Ngalokhoke, thina lapha kwelengabadi asiyazi imiphumela yokutshala ungalimanga ukuthi iyefana 

yini nale yalezizindawo ezibandayo futhi elina kahulu kuyo ukuthi iyefana yini na la ekhaya, ngoba 

phela lana kwelakithi liyashisa futhi nemvula yakhona ayini kakhulu iyancikisela kwesinye 

isikhathi. Ngakhokonke lokhu okubaliwe, injongonqangi nenqikithi yalolucwaningo 

kwakuwukubheka imiphumela yokutshala ungalimanga ushiye ukhula namahlanga 

phezukomhlabathi, ukutshala ungalima ushiye ukhula namahlanga phezukomhlabathi ubuye ulime 

emva kweminyaka emine, ukutshala ulimile bese ususa ahlanga nokhula kanye nokusebenzisa 

isikhuthazakhaba esinezikalo ezahlukene ukuthi kwenza miphumelamini esakhiweni somhlabathi, 

nase msocweni kanye nasezilwaneni ezibonakalayo ngamehlo. Mase kucwaningiwe konke lokhu, 

kwabuye kwabheka ukuthi kunamuthelelamuni esivinweni sombila. Okunye okwabhekwa 

ukusebenzisa ubuchwepheshe obusha bothingo lwenkosazane ekukaleni imvuthuluka yezitshalo 

nokhula emhlabathini.  

 

Ucwaningo lolu lwenzelwa kwelamaNgwane, kwelikaMthaniya, kwelikaPhunga nomaGeba, 

kwelikaShaka kaSenzangakhona, uDlungwane KaNdaba, woDlungwane woMbelebele, odlunge 

emanxlulubaneni, kwaze kwasa amanxuluba ebikelana, uNodumehlezi kaMenzi, lwenziwa 

eningizimu ne Afrikha. Ucwaningo ensimini lwaqalwa ukwenziwa ngonyaka wezinkulungwane 

ezimbili nantathu kuya ezinkulungwaneni ezimbili nane. Lendawo le ekwenzelwa khona 

ucwaningo iyindawo ebalulekekakhulu ngoba iyona etshalwe umbila kakhulu lapha 
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kwelikaMthaniya. Lensimule, yatshalwa yahlukaniswa 1) kwabakhona indawo etshalwa 

ingalinywanga ushiye amahlanga nokhula, 2) etshalwa ingalinywanga ushiye amahlanga nokhula 

bese uyilima emva kweminyaka emine and 3) etshalwa ilinyiwe bese ususa amahlanga emva 

kokuvuna. Isikhuthazakhaba safakwa ngezikalo ezintathu, nazi lezizikalo; akufakwanga lutho 

kg/ha, ikhulu kg/ha Kanye namakhulu amabili kg/ha. Ukaliki wawufakwanjalo emva kweminyaka 

emibili. 

 

Ukungalimi amasimu ngendlela efanele sekuyaziwa ukuthi kwenza umhlabathi ulahlekelwe 

yimvundo futhi bese lezilwanyana ezitholakala emhlabathini zibaleke noma zife. Injongo nqangi 

yalolucwaningo kwakuwukubheka imithelela yokutshala ungalimanga ushiye amahlanga nokhula 

(NT), ukutshala ungalimanga ushiye amahlanga nokhula bese uyalima emva kweminyaka emine 

(RT), nokutshala ulimile ususe amahlanga (CT), ezilwaneni zasemhlabathini ezibonakala 

ngamehlo. Amasamphula okucwaninga lezilwane athathwa emvakokuvuna umbila ngonyaka 

wezinkulungwane ezimbili neshumi nanhlanu kuya kuya kunyaka wezinkulungwane ezimbili 

neshumi nesithupa kusetshenziswa insimbi enesikalo esingamashumi amabili nanhlanu 

uwaphindaphinde ngamanye futhi uphindaphinde ngamanye futhi okugcina (cm3). 

Sekucwaningiwe kwatholakala ukuthi lezizilwane zaziningi kakhulu ku NT (kwatholakala 

amashumi amane nesithupha kweziyikhulu) uma uqhathanisa naku RT (kwatholakala amashumi 

amathathu nesishiyagalombili kweziyikhulu) no CT (kwatholakala eziyishumi nesithupha). Uma 

kubhekwa ukwehlukahlukana kwazo, kwatholakala ukuthi kwakuyizinhlobo ozifanayo. Onomkoyi 

mamashongololo ayemaningi kakhulu ku NT no RT mawuqhathanisa namashongololo. 

Lolucwaningo lwakubeka obala okwezinqe ze sele ukuthi ukutshala ungalimanga ushiye 

amahlanga kwandisa lwzizilwane ezibalulekile zemvelo. Okunye ukutholakala kohlobo olulodwa 

lwalwezilwane ekutshaleni okuhlukene kukhombisa ukuthi kubalukekile ukuthi ushintshashintshe 
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izitshalo uzokhuthaza uhlobo olunye lwezilwane ukuthi zizodla amahlanga ngoba azidli into 

efanayo. 

 

Ukudicilileka phansi komhlanathi ovundile uze ufe okuhlobene nokulahleka kwemvuthuluka 

yamahlanga nokhula etholakala emhlabathini isibe ixhala kahulu emazweni asenzansi ne Afrikha 

ngoba yenza ukuthi isivuno sehle kakhulu. Injongo yalolucwaningo esakhiweni somhlabathi 

kwakuwukubheka kabanzi imithelela yoku NT, RT, CT kanye nezukalo ezahlukene 

zesikhuthazakhaba ekubumbaneni kwamagabade omhlabathi, ekungeneni kwamanzi 

emhlabathithi, ezimvuthwini zamahlanga nokhula emigodini yomhlabathi mawushona phansi 

kusuka emhlabathini phezulu uya eshumini, usuke eshumini uye emashumini amabili, usuke 

kwamabili uye kwamathathu. Amasampula athathwa onyakeni wezinkulungwane ezimbili 

neshumi nanhlanu kuya eshumini nesithupha kusetshenziswa insimbi i aga. Izimvuthulunga 

zamahlanga ezibalukekile akutholakalanga umahluko ocace bha, zazilingana yonke indawo. Uba 

ubuka ukushona phansi, kwatholakala ukuthi zaziningi uma usuka phezulu emhlabathini uya 

eshumini cm. Lokhu kwakucace bha okwezinqe zeselesele uma ubuka uku NT noku RT. Uma 

siqhubeka, ukubumbana kwamagabade kwatholakala ukuthi ayebumbene kakhulu eku NT nase 

RT. Ukubumbana kwamagabade nokungena kakhulu kwamanzi kwatholakala ukuthi kuyimihlathi 

eyazanayo. Lemiphumela yocwaningo ikubeke kwasobala okwezinqe zesele ukuthi ukatshala 

ungalimanga kwenzancono isimo somhlabathi ngokuwuvikela, kwandise nemvuthuluka 

ebalulekike, isakhiwo somhlabathi kanye nokungena kwamanzi emhlabathini. 

 

Indlela ophatha ngayo umhlabathi nendlela owulimangayo ingashintsha amakhemikhali atholakala 

emhlabathini kanye nemvundo uqobo. Isikalo sendlela ashintsha ngayo incike ekutheni hloboluni 

lomhlabathi, iyiphi indlela otshala ngayo, isimo sezulu saleyondawo, imvundo oyifakayo 
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emhlabathini kanye nendlela owenzangayo emasimini. Inhloso yalolucwaningo emakhemikhalini 

atholakala emhlabathini kwakuwukucubungula kabanzi imiphumela yokutshala 

okwahlukehlukene okubalwengenhla nezikali ezahlukene zesikhuthazakhaba ekuhlukahlukaneni 

kwemvundo ebalulekile emhlabathini mawushona phansi. Amasampula athathwa onyakeni 

wezinkulungwane ezimbili neshumi nanhlanu kuya eshumini nesithupha kusetshenziswa insimbi i 

aga. Lamasampula ayesethathwa esiwa esikhungweni semfundo ephakeme iNyuvesi yakwaZulu-

Natal eyocwaningwa kabanzi. Isikhuthazakhaba kwathokakala ukuthi sasihlobene nomungako 

kwemvuthuluka yomhlabathi. Ikhemikhali u P watholakala emuningi ngamalengiso ku NT uma 

uqhathanisa no RT no CT. U phosphorasi (P) omuningi watholakala emhlabathini ongaphezulu. U 

pothasiyamu (K) watholakala umningi ku NT uma uqhathano RT no CT. Umhlabathi ka NT 

watholakala ukuthi une esidi eningi uma uqhathathisa no CT. Ukunamathela kwemvundo 

kwatholakala ukuthi kuhlobene nalokhu. Lemiphumela itshengise ukuthi ukulima ungatshalanga 

kwandisa imvundo emhlabathimi and loku kuhlobene ncamashi nokubakhona kwemvuthulula 

ebalulekile emhlabathini. 

 

Ukutshala okuzinzile nokuqhuba isikhathi eside kuyadingeka ukuze kubhekwane nengwadla 

yokudicililekaphansi nokufa komhlabathi ukuze sigcine umhlabathi wethu uvundile sibhekane 

futhi nesimo esingesihle esiqaguliwe sokuguquguquka kwesimo sezulu. Lolucwaningo 

luculungule imiphumela yesikhathi eside (ye sakhiwo somhlabathi, izilwane ezibonakalayo 

ezitholakala emhlabathini kanye nemvundo yawo) utshale ungalimanga kanye nezikalo ezahlukene 

zesikhuthazakhana ukuthi ziyasikhuphula yini isivumo emasimini ekuhambeni kwesikhathi. 

kwatholakalake ukuthi isivuno siyakhuphuka mawutshale ungalimanga ufakefuthi 

nesikhuthazakhaba esingamakhulu amabili Kg mawuqhathanisa noma utshale ulimile. Ngakolunye 

uhlangothi, kwatholakala futhi ukuthi mawunciphisa isikalo sesikhuthazakhaba usisa ekhulwini Kg 
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isivuno siyehla. Okunye okwatholakala ukuthi makunesomiso, isivuno asehli kakhulu uma utshale 

ungalimanga kunokuba utshale ulimile. Izwe lethu ngoba libuye lihlaselwe isomiso kusobala 

ukuthi ukutshala ungalimanga kuyakwazi ukuthi kugcine amanzi emhlabathini. 

 

Ekugcineni kocwaningo, uthingo lwenkosazane lwabhekwa kabanzi ukuthi lungakwazi yini 

ukucubungunga ubungako bemvuthuluka ebalulekile emhlabathini. I partial least square regression 

(PLSR) yakhiwa kusetshenziswa leave-one-out cross validation method. Ama model lawa aye 

kalwa kuma sampula azimele angamashumi amahlanunane akhethwe ngokunganaki kwasephelele 

amasampula angamakhulu amathathu namashumi amabili nane. I model eqageka kahle yabonakala 

ezimvuthwini ezibalulekile ene coefficient of determination (R2) engu 0.993, root mean square 

error yoku prediction (RMSEP) = 0.157% and residual predictive deviation (RPD) = 2.55 

mawuqhathanisa R2 = 0.661, RMSEP = 0.019%, RPD = 2.11 ye mvuthuluka ebalulekile. Uma 

kubhekwa lezibalo nokuqagela ushaye emhlowleni, loluthingo lwenkosazane luyancomeka ukuthi 

lingawenza umsebenzi wocwaningo usize nabalimi kakhulu ezindlekweni. 
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1.1 Abstract 

 

Sub-Saharan Africa is faced with the challenge of improving current food security on highly 

degraded land. At the same time, the region has to develop strategies to ensure future food security 

for the increasing population under worsening climate change. Conventional tillage (CT) has for 

many years resulted in the deterioration of soil quality through depletion of soil organic matter. 

This review of the literature provides an overview of the impact of conservation agriculture (CA) 

on soil quality with particular emphasis on key soil physical, chemical and biological properties. 

This paper also discusses the impact of CA on yield, highlighting South African research gaps 

since the adoption is still very low in the country. The review of numerous studies indicated that 

soil quality and yield improvements are possible in CA although some negative results have also 

been reported under contrasting environments. Yield under CA was recognised to be resilient to 

seasonal rainfall variability compared with CT because of its ability to conserve water. CA is 

particularly relevant to the South African maize production given high levels of soil degradation, 

water scarcity and low soil fertility status. This review of the literature demonstrated that CA can 

have substantial positive environmental, financial, social and health benefits for South Africa and 

the world. However, more research on CA is required from different agro-ecological zones and 

socio-economic contexts since maize is the biggest produced crop in South Africa. 

 

1.2 Introduction 

 

The world population continues to increase, and it is projected to reach 9.1 billion by 2050 (FAO, 

2009a). This increase is expected to come mostly from the developing world with Sub-Saharan 
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Africa highlighted on top of the list (United Nations, 2009). Therefore, the pressing need to ensure 

increased food supply and food security on the limited amount of land in the region is obvious. 

Moreover, land resource in the region is continuously losing its value as a medium for crop growth. 

According to FAO (2010a), Southern Africa has a high level of soil degradation and a decline in 

soil fertility, which threatens crop productivity. Soil degradation level in South Africa is severe 

and 41% of the cultivated land is highly degraded (Bai and Dent, 2007). Drought in these areas 

often worsens the situation, resulting in complete crop failures (FAO, 2009b), especially for poor-

resourced smallholder farmers, who are often situated in marginal areas of agricultural crop 

production (Mabhaudhi et al., 2013). 

 

South Africa is a water scarce country with erratic rainfall distribution and an annual precipitation 

of less than 500 mm/year (IWMI, 1996), which is far below than the world average of 860 mm/year 

(DWAF, 2002). In the long run, climate change is predicted to have a negative impact with more 

frequent and prolonged drought and higher temperatures (FAO, 2010b). The combination of these 

problems put more pressure on limited arable land and available fresh water needed for food 

production. This is of great concern when viewed in the context of climate change and impact this 

will have on agricultural production and vulnerability of subsistence farmers and poor urban 

communities concerning food security (Thierfelder et al., 2014). This is most likely because the 

incidence of crop failure will probably rise due to extreme weather events (Schulze, 2011). In 

response to these challenges, conservation agriculture (CA) has been proposed by many 

researchers (Hobbs, 2007; Hobbs et al., 2008; Giller et al., 2009) to buffer these effects because of 

its powerful mechanism to adapt by increasing resilience to land degradation, drought and 

increasing water use efficiency (FAO, 2009b). FAO (2010b) has defined CA as a concept for 
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resource-saving agricultural productivity that strives to achieve acceptable profits together with 

high and sustained production levels while concurrently saving the environment. The three central 

themes around CA are based on systematic crop rotation, permanent soil cover by crop residues 

and minimum tillage and/or zero-tillage (Rusinamhodzi, 2015).  

 

The benefits associated with CA include crop sequence intensification (Brouder and Gomez-

Macpherson, 2014), better use of the cropping season window permitted by earlier field entry 

(Hobbs et al., 2008), increase soil organic carbon (SOC) (Rusinamhodzi, 2015), soil moisture 

retention while sharply reducing run-off, soil erosion and surface soil temperatures (Findlater, 

2013). According to FAO (2011), the long-term effects of CA when practiced comprehensively 

include improved crop yields and reduction of the production costs. Crop rotation allows for the 

inclusion of the crops that can improve soil fertility, for example, leguminous crops (Hobbs et al., 

2008) and it is also practiced to reduce the impact of pest and diseases which are more problematic 

in monocultural cropping systems (Kirkegaard et al., 2008). The practice specifically decreases 

farm sensitivity to weather variability through improving water retention and reducing water 

logging (Thierfelder and Wall, 2010). Therefore, increased soil water retention makes it a more 

reliable system for crop production in water scarce or dry countries such as South Africa and many 

parts of Sub-Saharan Africa.  

 

The estimates have, however, shown that the level of adoption of CA use in South Africa is still 

very low (360 800 ha) compared to USA (26 500 000 ha), Argentina (25 553 000 ha), Brazil (25 

502 000 ha) and Australia (17 000 000 ha) which have massive adoption of this technological 

advancement (Friedrich et al., 2012). In Sub-Saharan Africa, South Africa is on top of the list of 
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countries adopting CA, followed by Zambia (200 000 ha), Mozambique (152 000 ha) and 

Zimbabwe (139 300 ha) (Friedrich et al., 2012). Although the adoption of CA in South Africa is 

the highest in Sub-Saharan Africa, it only constitutes 2.8% of the country’s arable land. Various 

initiatives have been recently undertaken by Agricultural Research Council (Anon., 2014), 

farmer’s organisations and government to implement CA adoption in South Africa, however, these 

initiatives have not yet gained momentum or penetrated in most poor-resourced small-scale 

farmers found in different socio-economic and agroecological regions of South Africa. Factors 

which frequent limits its adoption by smallholder farmers in other African countries include, 

competing uses for crop residues (crop-livestock mixed farming), increased labour demands for 

weeding and lack of access to external input such as herbicides and inorganic fertilizers (Giller et 

al., 2009). In commercial farming systems, FAO (2010a) reported that mindset of farmers, 

extension and policymakers who still believe that crop growing is synonymous with plowing and 

making the field clean, has contributed to its slow adoption. Clean seedbeds are part of the cause 

of soil degradation and yield reduction due to exposure of soil to wind and water erosion. 

Inadequate CA knowledge and skills, retaining residues, weed control, availability of equipment 

and inputs and land tenure systems are amongst the challenges reported by FAO (2010a) to reduce 

the rate of adoption.  

 

Soil improvement properties and yield gains that accrue from CA practices are directly linked to 

the availability of soil organic matter (SOM) (Lafond et al., 2011), which in turn largely influences 

soil physical, chemical and biological properties. The accumulation of SOM is also dependent on 

various factors such as soil type, prevailing climate condition of the area, management practices 

such as tillage type and the complex interactions of these factors. The quantification of SOM, 
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directly measured as soil SOC is very expensive because of the use of traditional chemical methods 

and the use of machinery. This limits the innovation possibility and articulation of research 

institutions to perform relevant experiments linked to SOC, the principal indicator of soil quality. 

This is particularly true for countries in SSA which lack infrastructural funding and other 

developing countries. Visible and near infrared spectroscopy (VIS-NIRS) has been proposed as a 

cheap, fast and accurate method because of its successful use in other industries (Minasny et al., 

2011). It presents such alternative because it requires the only collection of samples as a 

preparation and provides accurate information of several soil properties from one spectral reading 

(Vohland et al., 2011). Application of VIS-NIRS collects large information about soil physical, 

chemical and biological properties of a sample and therefore, permits measurements of many soil 

properties from the single measurement (Minasny et al., 2011).  

 

Furthermore, Friedrich et al. (2012) reported that 87% of CA adoption is concentrated in just 5 

countries as mentioned above and Brouder and Gomez-Macpherson (2014) argued that the 

potential and environmental benefits of CA adoption for crops in agroecological regions beyond 

the intensive studies of Australia and Americas remain uncertain and controversial. This may be 

evident in South Africa, as the potential of CA to improve soil quality characteristics and 

associated yield gain of the different agroecological zones and socio-economic conditions across 

the country has not been fully explored in the scientific literature. 

 

The data on CA practices is largely missing in the scientific literature; perhaps, due to lack of 

research interest since CA is a long-term project and/or lack of clear policies encouraging its 

implementation. This may be evident as the South African National Department of Agriculture is 
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currently (2016) involved in drafting and establishing CA policy around the country to enforce its 

implementation in the nine respective provinces of the country. Promotion of CA with a view to 

expand it to a larger scale will depend, to a larger extent, on the availability of information relevant 

to agro-ecological zones and socio-economic niches about growth, development and yield of 

different crops. This will contribute to the documentation of scientific literature which might 

stimulate its expansion on the larger scale by both commercial and subsistence farmers. This 

information is urgently required if CA is to be promoted in the country. Ishaq et al. (2002) stated 

that “studies which are site specific are more important so that more accurate generalization can 

be made regarding conditions required for sustainable tillage”.  

 

In response to this, the Provincial Department of Agriculture in KwaZulu-Natal under Soil 

Analytical Services established a long-term field trial in 2003/2004 season to assess the effect of 

tillage type (conventional tillage, rotational tillage and no-till) and nitrogen application rates on 

soil fertility, maize productivity and quality, and crop diseases. This trial was laid out in Winterton 

Bergville KwaZulu-Natal where it forms the most important annual cropping area of KwaZulu-

Natal Province. However, consideration on the effect of tillage regime and nitrogen application 

rate on soil physical, chemical and biological properties has not been fully explored. In response 

to this, an additional investigation was established to look at the effect of different tillage systems 

and nitrogen fertilizer application on selected soil physical, chemical properties and biological 

properties. 

 

Therefore, the overall objective of the study was to assess the effect no-till, rotational tillage, 

conventional tillage and nitrogen fertilizer application rates on selected soil physical, chemical and 
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biological properties of the soil and their influence on maize yield. The secondary objective was 

to explore the use of VIS-NIRS as a possible alternative for SOC quantification. Thus, the specific 

objectives of the study were: 

 

 To assess the effect of tillage regimes and nitrogen fertilizer application rates on soil 

macrofaunal abundance and diversity. 

 To investigate tillage regimes and nitrogen fertilizer application rates effects on selected 

soil physical properties. 

 To investigate the effect of tillage regimes and different rates of fertilizer applications on 

selected soil chemical properties. 

 To investigate the combined effects of soil physical, biological and chemical properties on 

maize yield. 

 To develop spectral models for rapid assessment of soil organic carbon and nitrogen using 

visible and near infrared spectroscopy. 
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2. LITERATURE REVIEW 

 

2.1 Introduction 

 

This review of literature discusses conservation agriculture with particular emphasis on the current 

knowledge and status of its adoption in South Africa. The paper will first discuss history on the 

evolution of agriculture and soil cultivation practices, followed by a section encompassing effects 

of CA on soil quality characteristics including physical, chemical and biological properties. The 

next section will discuss yield gains, with a view to encourage its adoption in South Africa and to 

achieve the goal of sustainable agricultural production. On the basis of observed trends, the 

technical challenges and future research avenues on CA will be presented. 

 

2.2 Evolution of agriculture 

 

It was only in the Neolithic Era, about 10 000 years ago, that humans began cultivating crops and 

domesticating animals (Mazoyer and Roudart, 2006). Before then, to our knowledge, all human 

species were hunter-gathers, obtaining food from wild plants and animals. Humans became 

farmers the moment they were able to sow and reproduce seeds (Lamarca, 1998). According to the 

most commonly accepted theory of evolution, in the evolutionary branch, Homo sapiens, current 

humans, are the unique and latest representative of hominids which separated from primates about 

6–7 million ago (Mazoyer and Roudart, 2006). This branch of evolution is the one believed to be 

responsible for the development of agriculture as we know it today. Homo sapiens practiced slash-

and-burn agriculture which is believed to be the one that was responsible for shifting agriculture 
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(Vasey, 1992). This agricultural system provided a sufficient amount of nutrients to grow crops. 

However, this system was not sustainable, in that it destroyed forest natural resources, as a result 

of population increase and it leads to soil erosion and nutrients were depleted within few years of 

cultivation (Metzger, 2003). The later was overcome by leaving the field fallow for several years, 

up to 20 years, to allow the field to recover to its original state of the forest.  

 

As the time proceeded, all the virgin reserves were used, and the population density increased the 

frequency and intensity of clearing increased putting more pressure on limited forest resources 

(Mazoyer and Roudart, 2006). Ultimately, this resulted in the impossibility of pursuing this mode 

of cultivation in many areas of the world (Beyer et al., 1980). According to Mazoyer and Roudart 

(2006), deforestation generally led to the deterioration of soil fertility, development of more or less 

serious erosion problem and desertification. Following this, agriculture evolved through many 

revolutions including hydraulic agrarian systems; agrarian systems based on fallowing and animal-

drawn cultivation; agrarian systems without fallowing (the first agricultural revolution in modern 

times), mechanisation of animal-drawn cultivation and transport revolution and the second 

agricultural revolution of the modern times (motorization mechanization, synthetic fertilizers, seed 

selection and specialisation) (Mazoyer and Roudart, 2006). By 1930s, the second quarter of the 

20th century, commercial farmers around the world were practicing intensive tillage system in 

their farms which evolved from industrial revolution through mechanization. 

 

Intensive tillage, commonly referred to as conventional tillage resulted in huge loss of soil in the 

mid-western America (Hobbs, 2007). This is often called the American dust bowl of the 1930s 

which resulted from tillage as well as droughts that lasted for 4–8 years, depending on the location. 



11 

 

It was estimated that more than 91 million hectares of land were degraded due to inappropriate 

land management and according to Hobbs et al., (2008), this area of degradation has been 

dramatically reduced today and this was a wakeup call on how human intervention in soil 

management can lead to unsustainable agricultural systems. This resulted in many scientists 

recommending conservation tillage and recently conservation agriculture has been introduced to 

try and achieve sustainability in the management of agricultural resource base. 

 

In South Africa, the development of policies to mitigate and prevent soil degradation through 

erosion in agricultural landscape began in 1923 with the Drought Investigation Commission 

Report (Mills and Fey, 2004). Following this was the Soil Erosion Advisory Council in 1930 and 

the Soil Conservation Act in 1946 (Mills and Fey, 2004). According to Donaldson (2002), the 

results of these policies were an effective control in soil erosion in many parts of the country. 

However, before 1978, soil scientists in South Africa were not active in soil degradation research 

although some isolated cases had been reported in the late 1980s and 1990s, there was an increase 

which was still quite low according to Laker (2004). The control of soil erosion is the first step in 

the management of soil natural land resource effectively; the second step requires the 

understanding of soil physical, chemical and biological properties that may result under different 

management practices (Mills and Fey, 2004). Bassett (2010) on his Master’s Thesis reported that 

the first no-till research in South Africa was initiated by Dr J.B. Mallet at Cedara in KwaZulu-

Natal Province in the early 1970s. On his results, it was found that crop yield was higher under no-

till than conventional tillage on seasons when moisture was limiting, and his studies also showed 

that the production cost was much reduced under no-till than conventional tillage. Bassett (2010) 

further reports that besides these benefits offered by no-till, farmers remained disinclined to adopt 
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it because of the concern of the carry-over of diseases to the next season. The increase in fuel 

prices from 1998 encouraged further investigation of tillage management practices and led to the 

formation of the No-Till Club in KwaZulu-Natal Province and Conservation Farming Committee 

in Western Cape. These organisations with the help of non-government organisations, universities, 

Department of Agriculture, some commercial farmers and Agricultural Research Council (ARC) 

are providing information through research for sustainable agricultural management. 

 

2.3 Soil tillage concept 

 

2.3.1 Conventional tillage or plow tillage (PT) 

 

Conventional tillage generally involves ploughing and intensive soil disturbance. It is defined as 

the tillage type that leaves less than 15% of the crop residues on the soil surface after planting the 

next crop (EL, 2003). This type of tillage has been recognized as the major driver of soil 

degradation through the depletion of soil organic matter and associated nutrients loss (Mutema et 

al., 2013). It relies heavily on moldboard plow followed by secondary tillage (EL, 2003) which is 

often drawn by heavy tractors. Plow tillage (PT) is primarily practiced by commercial farmers in 

South Africa with huge capital investments on mechanized machinery and inorganic inputs such 

as fertilizers and herbicides. In smallholder farmers, this type of agricultural practice is not 

prevalent due to low incomes, land limitation and limited access to implements. They usually use 

animal-drawn moldboard plow, small tractors and hand hoe for soil tillage. 
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The benefits associated with soil PT system have been summarized by Hobbs (2007) and Hobbs 

et al. (2008). These authors cited that soil tillage was traditionally considered to be the first step in 

seedbed preparation and it is used to incorporate previous crop residues, weeds, soil amendments 

added to soil such as organic and inorganic fertilizers. Soil disturbance as results of PT helps to 

aerate SOM which in turn release nutrients through mineralization and oxidation after exposure of 

SOM. They further reported that it controls soil- and residue-borne pest and diseases since residue 

burial and disturbance have been shown to alleviate this problem. Lastly, the authors highlighted 

that PT system can provide temporary relief for soil compaction through the use of implements 

that could shatter below ground formed compaction layers. The disadvantage of this tillage system 

is its impacts on soil quality characteristics. Conventional tillage system has been widely reported 

to negatively affect soil physical, chemical and biological properties (Uri, 2000; Nail et al., 2007; 

Moussa-Machraoui et al., 2010). 

 

2.3.2 Conservation tillage (CT) 

 

Conservation tillage (CT) is defined as any tillage practice that minimises soil loss and water, 

which often require the presence of at least 30% of the crop residues throughout the year (Benite 

et al., 1998). Hobbs (2007) on the other hand, stated that CT is a collective umbrella term that is 

commonly given to no-tillage, direct drilling and minimum tillage and ridge tillage to denote that 

the specific practice has a conservation goal of some nature. Baker et al. (2007) further argued that 

this term is not adequately defined as it also involves the conservation of fuel, time, soil water, soil 

structure, earthworms and nutrients. With this tillage type, traditional implements used to prepare 

the soil for cultivation, such as plows, disks, chisel plows, and various types of cultivators are 



14 

 

eliminated and replaced by drills and direct seeders capable of cutting stumble and roots, leaving 

the seed properly placed in the soil (Lamarca, 1998). 

 

2.3.3 Conservation agriculture 

 

Food Agriculture Organization has defined CA as an approach of managing agroecosystem for 

improved and sustained productivity, increased profits and food security while preserving and 

enhancing the resource base and environment (FAO, 2010b). According to Verhulst et al. (2010), 

this cultivation system has been proposed as a widely adapted set of management principles that 

can assure more sustainable agricultural production. This system has been adopted as a result of a 

realisation that agriculture should not only be based only on high yield but it must also be 

sustainable. The adoption of this management principle has been pushed further by ever-increasing 

prices of production cost, scarcity of water, climate change and degradation of ecosystem services 

which force farmers to look for alternatives that can reduce cost while improving natural resource 

base and productivity (Kassam et al., 2009). 

 

Conservation agriculture is characterized by three main principles, namely, continuous minimum 

soil disturbance or reduced tillage, permanent soil cover by organic residues, and diversified crop 

rotation (Rusinamhodzi, 2015). According to the definition, minimum soil disturbance refers to 

low disturbance, no tillage and direct seeding. The disturbed area must be less than 15 cm wide or 

less than 25% of the cropped area (Verhulst et al., 2010). In this practice, there should be no area 

disturbed (by tillage) greater than the set limit. The aim for permanent soil cover is to protect the 

soil from water and wind erosion; reduce water run-off and evaporation; to improve water 
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productivity and to enhance chemical, physical and biological properties associated with long-term 

sustainable productivity (Verhulst et al., 2010). On the other hand, the use of diversified crop 

rotation is to minimise the impact of pest and disease and to enhance soil nutrition through the use 

of crops such as legumes which can fix atmospheric nitrogen (Kassam et al., 2009). 

 

Conservation tillage and CA definition have created some confusion among scientist and also the 

farming community and according to Hobbs (2007), the difference is that CT uses some of the 

principles of CA but has got more soil disturbance than CA. CA, on the other hand, maintains 

permanent soil cover and this can be a decomposed organic matter, or it can be a growing mulch. 

In its definition, CA contributes to environmental conservation as well as improved and sustained 

agricultural production as compared with CT. In addition, the area less than 30% ground cover is 

not considered as CA. As a result, CT system is considered as the transitional stage towards the 

leg of CA.  

 

For this particular study, CA is defined as the management practice that with minimal soil 

disturbance and permanent soil cover. Minimal soil disturbance refer to the operation performed 

by the no-till planter during sowing.  

 

2.4 Tillage effects on soil physical properties 

2.4.1 Soil structure and aggregation 

 

Soil structure refers to the arrangement of particles into units called aggregates. Aggregation 

results from the rearrangement, flocculation and cementation of particles. It is mediated by soil 
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organic carbon (SOC), biota, ionic bridging, clay and carbonates (Bronick and Lal, 2005). Plow 

tillage is one of the major drivers of soil destruction through the physical breakdown of the soil 

structure as compared to reduced tillage (Duiker and Beegle, 2006). As a result, soil becomes 

susceptible to soil erosion due to the disintegration of soil aggregates (Bronick and Lal, 2005). 

Although plow tillage results in better structural distribution than reduced tillage and no-till, the 

components of the soil structure in PT are very weak to resist water slacking resulting in structural 

deterioration (Six et al., 2000; Verhulst et al., 2010). These can also result in reduced aggregation 

and increase turnover of aggregates and fragments of roots and mycorrhizal hyphae which are the 

major binding agents in soil. In conservation agriculture, soil is protected by permanent residue 

cover and this protects the soil from the impact of the raindrop, water and wind erosion (Six et al., 

2000). In PT there is no protection of soil by the soil cover which increases chances of further 

destruction. 

 

2.4.2 Bulk density and porosity 

 

The soil is arranged into solids and voids. The voids, called pore space (porosity), are important 

for gas exchange, water movement, root growth and water storage. On the other hand, bulk density 

is the mass per unit volume of soil. The bulk density of the soil top layer (the top 30 cm) is usually 

lower in PT soils than in continuous no-till, reflecting the rapture effect of tillage near the surface 

(Dolan et al., 2006). According to So et al. (2009), PT loosens the soil structure causing the 

immediate increase on the soil macropores resulting in lower bulk density and higher total porosity 

which can benefit seedling establishment and crop growth. On the other hand, long-term trials 

have indicated that on the lower surface of the soil, below 30 cm (under the plow layer), soil bulk 
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density and total soil porosity between no-till and PT is generally similar (Dolan et al., 2006). 

Verhulst et al. (2010) stated that a new “steady state” may be expected as a result of a reduction in 

tillage, with a progressive change in total porosity with time. Moreover, the implement used in PT 

system makes soil more compact and after repeated tilling, the hardpan is usually formed 

underneath the plow layer (Gao-bao et al., 2012). This, in turn, can affect the movement of air, 

water and inhibits root growth. Hardpan has a high bulk density with a few macro-pores for roots 

to grow through (Gómez et al., 1999; Gao-bao et al., 2012) and tends to reduce macro-aggregates 

(Jin et al., 2011). This can significantly reduce root length and trigger the formation of lateral roots 

(Gao-bao et al., 2012). As a result, growth, development and yield of crops may be reduced due to 

inefficient contact of roots with water which transport nutrients required for plant growth. In the 

long run, yields may become unstable especially in drier areas. 

 

2.4.3 Water infiltration rate 

 

Infiltration is the process by which water in the ground surface enters the soil. Soil tillage modifies 

soil physical properties and hence soil structural stability, bulk density and pore structure are 

directly linked to water infiltration (Azooz and Arshad, 1996). As a result, infiltration may be 

affected by the change in management practice. Generally, infiltration is higher under no-tillage 

system with residue retention compared to PT and zero tillage with residue removal (Verhulst et 

al., 2010). Infiltration measured in Zambia and Zimbabwe showed that CA treatments were able 

to maintain higher infiltration rate compared to PT treatments with residue retention across the 

sites (Thierfelder et al., 2014). The authors attributed this to an increase in macro pores which 

resulted in high biological activity and reduction soil surface disturbance. Hobbs et al. (2008) 
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reported that increased infiltration rate under no-till CA may be a result of mulching of leftover 

residues which is a key component that promotes more stable soil aggregates. Govaerts et al. 

(2009a) reported that aggregates are more stable in zero tillage than in PT and zero tillage with 

residue removal and due to the presence of SOM which helps to bind aggregates together. Crop 

residues in the soil surface prevent aggregate breakdown by direct raindrop impact as well as by 

rapid wetting and drying of the soils (Le Bissonnais, 1996). Lal and Shukla (2004) argued that 

under these conditions, rapid wetting, for instance by slacking, and wind erosion cause less 

aggregate breakdown and prevent surface crust formation. Based on this information, it can be 

concluded that residue retention on the soil surface under no-till act as a succession barrier by 

reducing the runoff speed and giving water more time to infiltrate (Verhulst et al., 2010). However, 

other authors (Thierfelder and Wall, 2009) indicated that infiltration rate may be also dependent 

on soil type with the potential negative impact of water logging on granitic sandy soil, which has 

a tendency of accumulating too much water. 

 

2.4.4 Hydraulic conductivity (K) 

 

Hydraulic conductivity describes the ease with which water can move through the pore spaces or 

fractures. Soil behaves differently in relation to tillage system (Azooz and Arshad, 1996) and soil 

hydraulic conductivity would be expected to be higher under zero tillage with stubble retention on 

the soil surface than PT system. This is mostly due to an increase in faunal activity which 

influences the availability of macropores over time of no-till practice (Verhulst et al., 2010). 

Bhattacharyya et al. (2006) highlighted that the number, continuity and stability of macro-pores 

influence the hydraulic conductivity of the soil. Under NT conservation agriculture, the increase 
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in SOM in the soil surface stimulates root growth and mesofaunal activity which leads to the 

creation of channels (Osunbitan et al., 2005) and the continuity of these channels are then 

maintained due to the lack of soil disturbance. However, different studies have produced different 

results when comparing these two tillage treatments with others citing improved hydraulic 

conductivity under PT than NT and vice versa. Verhulst et al. (2010) attributed these differences 

to the difficulty of measuring K when the residues are present in zero tillage. Strudley et al. (2008) 

argued that residue presence can complicate the installation of measuring instrument and the 

removal of undisturbed core samples. As a result, high variation in K at a small scale may result 

from macro-pores and other structural attributes that are left intact by the absence of tillage. Azzoz 

and Arshad (1996) cited that differences in K observed between no-till and PT may be related to 

the transitory nature of soil structure after tillage, initial and final water content, site history, the 

time of sampling and the potential for soil disturbance. 

 

2.5 Tillage effects on soil chemical properties 

 

2.5.1 Soil organic carbon (SOC) 

 

SOC is the C stored in soil organic matter. It enters the soil through the decomposition of plant 

and animal residues, root exudates, living and dead microorganisms, and soil biota. SOC has been 

widely reported (Haynes and Beare, 1996; Wander et al., 1998; Franzluebbers, 2002; Verhulst et 

al., 2010) as a primary factor that indicates soil quality because of its effect on soil key quality 

parameters. Soil physical, chemical and biological properties are intrinsically linked to SOC and 

this, in turn, influences soil quality especially on the top layer of the soil. The top layer of the soil 
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is important because it is where most of the cropping and soil management practices take place. 

Therefore, soil management practices are amongst the most important factors influencing changes 

in SOC (Dikgwatlhe et al., 2014). Soil tillage, residue retention, crop rotation and the interactions 

of these factors, as in the case of CA, has been widely reported to influence SOC concentration 

(Verhulst et al., 2010; Higashi et al., 2014; Xue et al., 2015). 

 

Under no-till CA, the amount of SOC generally increases compared with PT (Verhulst et al., 2010). 

This increase in SOC is more pronounced in the topsoil. The soil layer from 0 to10 cm has high 

SOC compared to the subsoil (Puget and Lal, 2005; Blanco- Canqui and Lal, 2008; Dong et al., 

2009). In the subsoil, there may be either no significant difference in SOC or even in some cases 

decreases. In contrast to no-till system where SOC is usually stratified on the top 0–5 cm layer, a 

uniform distribution of SOC has been reported to up to 20 cm in PT system (Franzluebbers, 2002). 

However, over time, PT system generally exhibit a significant decline in SOC concentration due 

to the destruction of the soil structure, exposing SOM protected within soil aggregates to microbial 

organisms (Lal, 2007; Xue et al., 2015). Thus, the adoption of no-till system can minimize the loss 

of SOC leading to higher or similar concentration compared to PT. 

 

Some long-term studies (>10 years), however, have reported no increase in SOC under no-tillage 

system, even when the residues have been left on the soil surface (Wander et al., 1998). In a review 

of literature to determine the influence of the three different components of CA on SOC, Govaerts 

et al. (2009a) reported that in 7 of 78 (9%) cases, the SOC was lower in no-tillage compared to 

PT; in 40 (51%) cases it was higher and in 31 (40%) of the cases there was no significant 

differences. Verhulst et al. (2010) concluded that the mechanisms that govern the balance between 
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increased, similar or lower SOC after conversion to no-tillage are not clear but attributed the 

differences to climate and soil properties, differences in root development and rhizodeposits, and 

the stabilization of C in microaggregates-within-macroaggregates. Dikgwatlhe et al. (2014) further 

argued that the amount of SOC storage depends on the balance between the quantity and quality 

of SOM inputs- outputs which is largely determined by the combined interaction of climate, soil 

properties and land use management. 

 

Moreover, residue retention on soil surface has also been shown to increase the amount of SOC 

concentration (Wilhelm et al., 2004). In a long-term study (11 years) conducted by Dikgwatlhe et 

al. (2014), it was found that zero-tillage with residue retention resulted in an increase of SOC in 

the 0–10 cm soil layer compared to rotary tillage with residues incorporated and PT with residue 

retention and removed. Similar results were observed by Blanco- Canqui and Lal (2008) in a CA 

study conducted over a period of 10 years. The rate of residue decomposition depends not only on 

the amount retained but also on the characteristics of the soil and the composition of the residues 

(Verhulst et al., 2010). 

 

2.5.1.1 Soil organic carbon fractions 

 

Soil organic carbon based on physically defined fractions is increasingly used to interpret the 

dynamics of SOC (Six et al., 2001). Hermle et al. (2008) distinguished three fractions in which C 

may be available. These are easily decomposable fraction (labile), material stabilized by physical 

and chemical mechanisms (intermediate) and the biochemically recalcitrant fraction (stable). 

Easily decomposable fraction, consisting mainly of particulate organic carbon (POC) and some 
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dissolved C is readily available and rapidly decomposed, represents an early stage of humification 

and can stimulate decomposition of hemicellulose or cellulose (Valnauwe et al., 1994). On the 

other hand, resistant SOC such as lignin is old and in close contact with the mineral surface and is 

resistant to microbial decomposition. Sanger et al. (1996) reported that resistant SOC promotes 

the formation of a complex phenyl-propanol structure which often encrusts cellulose-

hemicellulose matrix and slow decomposition on these components. POM play a crucial role in 

soil aggregation and it can be used as an early indicator of changes in soil management because of 

its rapid turnover time (Six et al., 2001; Verhulst et al., 2010). Thus, Haynes and Beare (1996) 

suggested that it can be used as an indicator of early changes of SOC. 

 

Furthermore, NT conservation agriculture usually exhibits increased aggregation and SOC relative 

to PT (Six et al., 2000) due to the formation of stable aggregates. Stable soil aggregates reduce the 

susceptibility of SOC to external forces such as water, wind and microbial activity. Thus many 

researchers agree that SOC is the principal indicator of sustainability and soil quality given its 

influence on many soil properties (Brady and Weil, 2002). However, SOC is not a homogenous 

substance but rather composed of substances with different chemical composition and different 

recycling rates (Cambardella and Elliot, 1992). Thus, a simple method of size fractioning that 

separates the labile fraction, POC, (> 53 µm) of SOC and recalcitrant pool (< 53 µm) has been 

proposed by many researchers (Cambardella and Elliot, 1992; Six et al., 2001; Verhulst et al., 

2010). Therefore, POC constitutes a dynamic fraction and is associated with short-term nutrient 

availability (Salvo et al., 2010). In a study conducted to test different sensitivity quality indicators 

based on changes generated by different crop long-term rotations under PT, Moron and Sawchik 

(2003) found that the C associated with POC greater than 212 mm was the most sensitive size 
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fraction to changes in management practices, followed by, the fraction of POC between 53 and 

212 mm and, finally, the C associated with recalcitrant pool (< 53 µm). The traditional 

determination of total SOC showed a poor sensitivity of changes determined by management 

practices. In addition, other authors also reported that POC is a highly sensitive indicator to detect 

changes produced by different soil uses and management practices (Elliot et al., 1994; Bayer et 

al., 2001).  

 

Lastly, crop rotation has also been observed to influence the quantity and the quality of SOC 

(Govaerts et al., 2009b). It influences the above three different carbon fractions by altering 

different organic matter inputs (Verhults et al., 2010). Systems that use more diverse rotations have 

been reported to result in greater fine POM than monoculture (Pikul et al., 2007). Cover crops 

increase SOC by providing crop residues and vegetation cover during critical periods (Bowman et 

al., 1999). 

 

2.5.2 Nutrient availability 

 

2.5.2.1 Total nitrogen 

 

An increase of SOM in the soil may also have a profound effect on nitrogen cycling because SOM 

is made up of 5% nitrogen (Stevenson, 1994). This, according to Stevenson (1994) implies that 

SOM conserves soil nitrogen. In the no-till system, Spargo (2008) estimated that an increase of 

1% SOM, which is approximately 22 Mg SOM, in the top 15 cm soil layer may result in 1.1 Mg 

of N ha-1 retained in the soil. Similar trends have been reported in changes in total nitrogen as those 
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observed in SOC with respect to depth and tillage practice (Bradford and Peterson, 2000). In no-

till system, total nitrogen is usually stratified in the top layers while in PT is distributed equally 

across the profile. Lou et al. (2012) reported that no-till can enhance total nitrogen stock in 0–30 

cm soil profile but there may be no increase when compared to PT. 

 

2.5.2.2 Nitrogen mineralization 

 

Plow tillage system increases the rate of residue decomposition by breaking down soil aggregates 

and exposing SOM protected by soil aggregates to soil microbial attack (Six et al., 2002). This, in 

turn, increases the rate of SOC decomposition and hence soil organic nitrogen mineralization 

(Kristensen et al., 2000). Spargo (2008) reported that under no-till system the portion of conserved 

N is potentially available for plant uptake and the mineralization rate from one growing season 

may range between 1 and 4% depending on a number of factors such as temperature and soil 

moisture content. The author concluded that increasing SOM by 1% in the 15 cm soil layer has a 

potential to supply between 9 and 45 kg N ha-1 throughout the crop growing season. This may 

imply that no-till with residue retention may be particularly relevant to the agricultural situation 

experienced in Sub-Saharan Africa characterized with low soil fertility. Moreover, tillage system 

determines placement and distribution of crop residues. Under plow tillage system, SOC is 

distributed more evenly throughout the plowed layer of the soil while in no-till system; residues 

are usually stratified in the topsoil surface layer. According to Verhulst et al. (2010), this 

contributes to the effect of tillage on nitrogen dynamics. As such, Balota et al. (2004) reported that 

N mineralization in PT system is 1.5 times higher than in no-till system and this also depends on 

residue type and interaction with N management practices. 
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2.5.2.3 Exchangeable bases (K+, Mg2+ and Ca2+) 

 

Most research on tillage systems have indicated that Ca and Mg levels are unaffected by tillage 

practice (Duiker and Beegle, 2006; Govaerts et al., 2007; López-Fando and Pardo, 2009). 

However, some opposite trends of vertical Ca and Mg stratification has also been reported. 

According to Duiker and Beegle (2006), the effect of tillage practice on Ca and Mg have been 

more frequent, particularly when CEC is primarily associated with clay particles. Edwards et al. 

(1992) observed higher extractable Ca concentration on Ultisol under no-till when compared to 

conventional tillage. These authors attributed this to higher organic matter content under no-till 

system. In a later study, Duiker and Beegle (2006) found a higher concentration of Ca in the 0–5 

cm layer in no-till compared with the deeper layers in PT. These differences were attributed to 

tillage after the last lime application in PT treatments. Similar trends were observed for Mg. 

 

In contrast to what has been reported in Ca and Mg, no-till with residue retention has been reported 

to conserve and possibly increase the availability of K near the soil surface where crop roots 

proliferate (Franzluebbers and Hons, 1996). A study by Govaerts et al. (2007) reported 1.65 and 

1.43 times higher K in 0–5 cm and 5– 20 cm layers of the soil, respectively under NT compared 

to CT. Other authors have reported higher extractable K in no-till than in PT soils but this effect 

was observed to decline with increasing depth (Ismail et al., 1994). However, other studies have 

observed surface accumulation of K irrespective of tillage intensity (Duiker and Beegle, 2006). 

 



26 

 

2.5.2.4 Phosphorus 

 

A number of studies have reported extractable P levels to be higher under no-till than in PT (Duiker 

and Beegle, 2006; Thomas et al., 2007; López-Fando and Pardo, 2009). High levels of P have been 

commonly observed in the topsoil surface layer by several authors (Ismail et al.,1994; 

Franzluebbers and Hons,1996; Matowo et al., 1999) compared to deeper layers (Duiker and 

Beegle, 2006). In no-till system, the top 0–5 cm layer has been reported by several authors to have 

higher P concentration (Ismail et al., 1994; Franzluebbers and Hons, 1996; Matowo et al., 1999). 

Verhulst et al. (2010) highlighted that higher levels of P in the top layer is due to limited mixing 

of soil with fertilizer P and this, in turn, decreases P fixation. Duiker and Beegle (2006) argued 

that this is beneficial for crops when P is a limiting nutrient. The authors further argued that high 

levels of P in no-till may be a threat when P is an environmental problem because of the possibility 

of soluble P loses in runoff water. High levels of P in no-till may imply less need for P fertilizer 

application as a starter (Duiker and Beegle, 2006). This may be beneficial also under CA where 

residue retention may provide moisture, as a result, there may be no need for P incorporation in 

the deeper layers. 

 

2.5.2.5 Cation exchange capacity 

 

Soil organic matter and clay content are commonly associated with an increase in CEC due to the 

larger surface area to volume ratio as compared with sand and silt. Cation exchange capacity may 

be expected to be higher under no-till or in CA as compared to PT system due to observed higher 

concentration of SOM in the top 0– 5 cm layer. However, different authors have reported different 
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results under different circumstances. López-Fando and Pardo (2009) reported a reduced CEC in 

in the top 0–5 cm depth in no-tillage as compared with PT system. The lower CEC under no-till 

was attributed to lower pH in no-till as compared to PT system that was observed. Lower pH is a 

common trend that is usually observed under no-till system and this can be a potential limitation 

of this system in conservation agriculture when effective lime application management strategies 

are not implemented. Other authors have reported an increase in CEC on permanently raised beds 

in the 0–5 cm layer compared to soils from which residues were removed (Govaerts et al., 2007). 

 

2.5.2.6 Soil pH 

 

Soil pH under zero tillage is usually lower than in PT system and this is more pronounced in the 

0–5 cm than in 5–10 and 10–20 cm depth (López-Fando and Pardo, 2009; Verhulst et al., 2010). 

In layers below 5 cm, several authors reported a more uniform pH due to thorough soil mixing by 

tillage each growing season (Lal, 1997; Thomas et al., 2007; López-Fando and Pardo, 2009). Other 

authors, however, have reported a decline in soil pH in zero-tillage even in layers below 5 cm 

depth (Verhulst et al., 2010). The observation that the soil becomes more acidic under no-till than 

in PT system has been attributed to different processes in the mineralization of SOM, the 

nitrification of the surface applied nitrogen fertilizer and root exudation (López-Fando and Pardo, 

2009). However, other authors suggested that pH under no-till was buffered because of the higher 

organic matter content (Duiker and Beegle, 2006). Duiker and Beegle (2006) on the other hand 

reported that lower pH in zero-tillage could be due to acidifying effect on N and P fertilizers 

applied more on the surface under zero-tillage than PT. 
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2.6 Tillage effects on selected biological properties 

 

2.6.1 Macrofauna 

 

Macrofauna includes those organisms with an average body width greater than 2 mm (Lavelle, 

1997; Kladivko, 2001). This group of organisms is divided into two, based on their function. These 

are litter transformers and ecosystem engineers (Lavelle, 1997). Litter transformers consist mostly 

of larger arthropods and soil mesofauna while ecosystem engineers on the other hand comprised 

mainly of termites and earthworms. Verhulst et al. (2010) stated that ecosystem engineers have a 

large impact on influencing soil structure and aggregation as compared with litter transformers. In 

contrast, litter transformers concentrate their activities on the soil surface where they physically 

fragment litter and deposit mainly faecal organic pellets. In addition, ecosystem engineers ingest 

a mixture of organic matter and mineral soil and are reported to be responsible for the gradual 

introduction of dead organic material onto the soil (Verhulst et al., 2010). Plow tillage has been 

widely reported to affect the availability of soil macrofauna through direct physical disruption as 

well as habitat destruction (Kladivko, 2001). The impact has been more pronounced on larger 

organisms with less negative impact on species with high mobility and higher population growth 

potential (Decaëns and Jiménez, 2002). 

 

2.6.1.1 Earthworms 

 

Earthworms play a key role in the formation of soil structure. This, according to Six et al., (2004), 

has been recognized since Charles Darwin times in the late 1800s. The effect of earthworms on 
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the soil structure is not only mediated by abundance but also by the functional diversity of their 

communities (Verhulst et al., 2010). Therefore, they vary in their ecological behaviour, thus, their 

effect on soil structure is different (Kladivko, 2001). Epigeic earthworms concentrate their 

activities on the soil surface while anaecic earthworms have their activities mainly confined inside 

the soil surface (Kladivko, 2001). 

 

Moreover, earthworms play a major role in the recycling of nutrients and the formation of stable 

aggregates. They remove organic material from the soil and incorporate them as a stable aggregate. 

They ingest the organic matter and incorporate them with an inorganic material, pass the mixture 

through their gut and excrete it as a cast. Earlier research in temperate pastures has shown that up 

to 50% of surface layer soil aggregates are earthworm casts (Van de Westeringh, 1972). 

 

Earthworms mediate soil aggregates through burrowing and cast formation (Brown et al., 2000). 

External pressure is exerted during burrowing on the surrounding soil and the mucus is deposited 

on the burrow walls (Six et al., 2004). This, in turn, assists in the formation of stable macro 

aggregates (>250 mm), when allowed to dry and age, due to organic mucilage and/stable organo-

mineral complexes and oriented clays left lined in the burrowing walls (Six et al., 2004). In 

contrast, when the cast is exposed to rainfall, it can be easily dispersed and contribute to nutrient 

loss and soil erosion (Blanchart et al., 2004). Several studies have shown more stable structure of 

soil aggregation when the cast are present than the same soil with no cast (Marinissen, 1994; 

Lavelle, 2011; Lipiec et al., 2015). In addition, the stability of cast depends on the quality of 

ingested material (Six et al., 2004). 
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With regards to the effect of tillage to earthworm population, the general trend is that NT 

conservation agriculture tends to increase their population and activity compared to PT, especially 

in long-term experiments (Peigne et al., 2009). However, this depends on the frequency of tillage, 

plow depth and the amount of crop residue returned to the soil (Eriksen-Hamel et al., 2009). ). 

Frequent tillage disrupts earthworm soil habitats and exposes them to predation and desiccation 

(Holland, 2004). On the other hand, deep tillage damages earthworm burrows, causing them to 

expend energy on rebuilding new burrows in unstructured soil rather than on reproduction (Chan, 

2001). The population of both epigeic (found on the soil surface) and anecic (found on the vertical 

burrows) earthworms are negatively affected by tillage operation (Kladivko, 2001). However, 

tillage operation that aimed at removing soil compaction or incorporating crop residue serving as 

a food source for earthworms can enhance or maintain earthworm population (Metzke et al., 2007). 

For example, Bostrom (1995) found that rotary cultivation and plowing reduced earthworm 

populations by 73–77%, but one year later, there were five times more large adult earthworms and 

earthworm biomass was similar to pre-tillage levels. The incorporation of ready decomposed 

material such as meadow and alfalfa consumed by the dominant endogeic earthworm 

Allolobophora caliginosa, was considered to be a major factor in earthworm population recovery.  

 

2.6.1.2 Termites and ants 

 

Lee and Foster (1991), Verhulst et al., (2010) and Six et al. (2004) pointed out that there is less 

quantitative literature focusing on the effect of termites and ants on soil structure in different 

agroecosystems as compare to earthworms. Six et al. (2004) concluded that more research is 

needed focusing on the true structural building capacity of termites. These organisms are 
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predominantly found in semi-arid to arid areas where the presence of earthworm is normally 

limiting (Lobry de Bruyn and Conacher, 1990) and their roles may be similar to that of earthworms 

in soil transformation on the drier regions (Verhulst et al., 2010). 

 

These species have been reported to improve structural stability of soil particularly micro-

aggregates (Holt and Lepage, 2000). Bignell and Holt (2002) stated that they form micro-

aggregates, either by passing soil material through their intestinal system and deposit it as faecal 

pellets or by mixing the soil with saliva using their mandibles. Six et al. (2004) also added that the 

stability of such structures varies with the amount incorporated into them by the species. Nkem et 

al. (2000) reported that ants and termites, both subterranean and mound building species, can 

increase soil infiltration by improving aggregation and porosity even in situation low clay content 

and organic matter (Nkem et al., 2000). 

  

Although there is less literature describing the ecological function of ants and termites on soil 

structure and different tillage operations, some studies have indicated that the population of these 

macrofauna groups decreases under PT due to the destruction of soil habitat. Sanabria et al (2016) 

reported a decrease in termites’ population in annual cropping system compared to savannas, 

highlighting that the former was important in determining termites’ assemblage. Other authors 

reported that this system does not provide the ideal conditions for the establishment of termite 

colonies due to tillage and application of pesticides (Costa-Milanez et al., 2014) and the absence 

of permanent vegetation.  
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Costa-Milazez et al. (2014) further reported that ant communities are strongly influenced by 

habitat type vegetation structure and tillage operation. This is attributed to the fact that vegetation 

is a major regulator of microclimatic conditions, which influences ant activity. This was supported 

by the study conducted by Sanabria et al. (2016) where the difference between savanna and 

improved pastures was observed with regards to ants’ population. Ants were higher under savanna 

than in improved pastures.  

 

2.6.1.3 Arthropods 

 

Arthropods are sensitive to the change in vegetation and play an important role in the functioning 

of agroecosystem (Rodríguez et al., 2006). These organisms are favored by the availability of crop 

residues in soil as in the case of conservation agriculture (Kladivko, 2001). They partly play an 

important role in recycling of nutrients through degradation of organic matter (Giesy et al., 2000). 

Verhulst et al. (2010) reported that not all arthropods are litter transformers even most of them 

concentrate their activity above and/within the topsoil. The communities of arthropods are affected 

by mechanical disturbance of the soil through tillage operation, modification of quantity and 

location of plant residues and alteration of weed communities (Rodríguez et al., 2006). 

 

2.6.2 Microfauna 

 

Microfauna are small organisms of less than 0.2 mm body width and they live in water-filled pore 

space and consist mainly of nematodes and protozoa (Verhulst et al., 2010). Soil management 

practices, such as tillage type, influence soil microorganisms and soil microbial processes through 
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changes in quality and quantity of organic residues entering the soil, their seasonal distribution and 

spatial distribution, input ratio between above and below ground, and changes in nutrient inputs 

(Kandeler et al., 1999). Soil microbial biomass (SMB) is the main driving force of decomposition 

of SOM and is frequently used as an early indicator of changes in soil properties resulting from 

soil management practice and environmental stress in the agroecosystem. On the other hand, soil 

enzymes are essential in catalysing the reactions necessary for organic matter decomposition and 

nutrient cycling (Verhulst et al., 2010). The measurement of both enzyme activity and SMB has 

been suggested as an early indicator of soil quality because of its relationship to soil biology and 

ease of measurement, rapid response to soil management and high sensitivity to temporal soil 

changes originating from management and environmental factors (Nannipieri, 1994). 

 

2.6.2.1 Microbial biomass 

 

Maintaining SMB and micro-flora activity and diversity is a fundamental for sustainable 

agricultural management (Insam, 2001). Soil microbial biomass is a reflection of soil to store and 

recycle nutrients, such as C, N, P & S and SOM and has a high turnover rate relative to total SOM 

(Carter et al., 1999). Microorganisms play an important role in physical stabilization of soil 

aggregates (Doran et al., 1998) and this was found to be linked to glomalin content which is an 

indication of the degree of hyphal network development (Douds et al., 2007). These fungal hyphae 

form an extended network in cultivated soil and are activated by contact with seedlings (Roger-

Estrade et al., 2010). Zuberer (2008) further reported that SMB produces polysaccharides which 

promote cementation of soil aggregates. The hyphae produced by fungi growing in the soil allows 

for entanglement of soil properties (Zuberer, 2008). During PT tillage, the fungal networks are 
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fragmented and this potentially results in the loss of cell content (Roger-Estrade et al., 2010). In 

contrast to the tillage system, in no-till conservation agriculture, the mycorrhizal system is more 

stable (Souza-Andrade et al., 2003). In addition, SMB contributes to soil health through disease 

suppression by being antagonistic to potential plant pathogens (Weller et al., 2002). 

 

The dominant factor controlling the availability of SMB is the rate of C input (Campbell et al., 

1997) and also the availability of N resources in the soil (Six et al., 2004). A uniform and 

continuous supply of C from organic crop residues serve as the energy source for microorganisms. 

Previous studies have shown that as the total organic C pool increased or decreases, as results of 

changes in C input in the soil, the microbial pool also increases or decreases (Franzluebbers et al., 

1999). Plow tillage promotes the release and decomposition of previously protected SOM in the 

soil, initially increasing soil microbial biomass (Roger-Estrade et al., 2010). However, the long-

term effects are less obvious because they depend on the amount of C re-injected in the soil each 

year to compensate for mineralization (Roger-Estrade et al., 2010). In the early stages of CA 

adoption, the availability of nitrogen usually decreases in the soil due to increase in microbial 

activity due to surface residue decomposition and lack of incorporation in the soil and this is more 

pronounced in the organic material with higher C/N ratios. In the long-run, however, studies have 

shown that they may be a significant increase in C or SMB in the topsoil in various CA system 

(Vian et al., 2009). 

 

The effect of tillage practice on SMB-C and N seems to be mainly confined in the surface layers 

with stronger stratification when tillage is reduced (Salinas-Garcia et al., 2002). Aslam et al., 

(1999) found that SMB content was twice in permanent pasture and no-till treatments in 0–5 cm 
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depth as in 5–20 cm depth soil after 2 years of cropping following permanent pasture in a silt 

loamy soil (Gleyic Luvisol (FAO)). Similar results were reported by Alvear et al. (2005) and 

Pankhurst et al. (2002) in different soil types. This can be attributed to higher level of C substrate 

available for microorganism growth, better soil physical condition and water retention under 

reduced tillage. 

 

2.6.2.2 Enzyme activity 

 

Soil enzymes play a crucial role in catalysing reactions associated with organic matter 

decomposition and nutrient cycling (Jin et al., 2009). They have been suggested as potential 

indicators of soil quality because of their important function in soil biology, ease of measurements 

and rapid response to changes in soil management practices and environmental conditions (Dick 

et al., 1996). They respond to management practices such as tillage, fertilizer application, crop 

rotation, residue management and pesticides and in this way, they may alter the availability of 

plant nutrients (Verhulst et al., 2010). They are a valuable tool for assessing soil’s ability to 

function or bounce back after disturbance (Jin et al., 2009). 

 

Generally, the activities of enzymes decrease with soil depth (Green et al., 2007) and they vary 

with seasons and depend on physical, chemical and biological characteristics of the soil (Niemi et 

al., 2005). No-till management practice increase stratification of soil enzyme activities near the 

soil surface, perhaps due to the similar vertical distribution of SOM in NT than in PT and the 

activity of microbes (Green et al., 2007). The activities of enzymes are mainly confined in the 0–

5 cm depth in NT practice for different soil in different environmental conditions than in PT and 
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below 5 cm depth, no difference has been found in enzyme activities between NT and PT (Alvear 

et al., 2005; Roldan et al., 2007). Furthermore, seasonal variability also affects the enzyme activity. 

As a result, a single enzyme assay may not be a representative of overall microbial community 

activity and do not take into account seasonal changes and inherent differences in enzyme activity 

(Roldan et al., 2005). 

 

2.7 Conservation agriculture and maize yield 

 

Maize is one of the most staple crop consumed in South Africa and the rest of Sub-Saharan Africa. 

Drought occurrence (Sithole and Modi, 2015), poor inherent soil properties, soil degradation, in 

the adequate application and incorrect timing of fertilizer (Chuma et al., 2000) are the frequent 

factors commonly cited that lead to poor maize yield in Sub-Saharan Africa. In such cases, CA has 

been promoted in most countries of Sub-Saharan Africa to buffer the effects of soil degradation 

and erratic rainfall distribution during the growing season and to improve soil fertility status. On-

farm trials that capture some of the agroecological regions found in the region have been conducted 

in countries such as Zimbabwe, Malawi, Zambia, Kenya, Ethiopia and some other African 

countries within the region. However, South Africa has not benefited in this development with 

scant information found in peer-reviewed literature. Nevertheless, some reports from farmer’s 

organisations such as No-Till Club in KwaZulu-Natal Province pioneered by no-till legend Antony 

Muirhead; Farmer’s Weekly and a research institute, Agricultural Research Council have reported 

soil improvements and soil water conservation (Phillips, 2015; Findlay, 2015) which ultimately 

led to yield gains in maize in some subsistence (Phillips, 2012) and most commercial farmers in 

most of the dry regions of South Africa (Table 1). Figure 1 below shows a rough estimation of CA 
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adoption in South Africa where Western Cape Province is leading with more than 70% followed 

by the Province of KwaZulu-Natal with 50-60%.  A farmer in North West Province, Hannes Otto, 

reported a yield increase in maize from an average of 4.8 t/ha to 5.5 t/ha after two years of no-till 

conservation agriculture and the farmer was surprised by this results as he expected the yield 

decline on the first three years of adoption (Hittersay, 2010). Ralf Kusel who has been practicing 

CA for 14 years in high rainfall area (>900 mm/ year) of KwaZulu-Natal achieved an average of 

more than 10 t/ha maize grain yield (Phillips, 2013). The author further reported that they 

experience a 5–15% yield reduction in the maize-after-maize rotation (11 t/ha average yield) 

compared with maize-after-soya bean (12.5 t/ha average yield). Hittersay (2012) reported the 

results on the trial conducted by Agricultural Research Council at its Zeekoegat experimental farm 

in Roodeplaat established in 2007 that the average grain yield over four years was 4.13 t/ha under 

no-till CA compared with 3.89 t/ha under PT. But when different years were compared, it was 

observed that reduced tillage CA performed better (7.04 t/ha in one season compared with 6.29 

t/ha under PT) while in other years PT was better (5.06 t/ha in two seasons compared with 4.8 t/ha 

under reduced tillage CA). In all cases, maize was planted in a rotation with legumes and some 

other few crops depending on the farmer’s conditions. Table 1 summarises some on the success 

stories reported by farmers in different provinces of South Africa while Fig. 1 presents a rough 

estimate of CA adoption in the country. 

 

Furthermore, when looking also in Sub-Saharan Africa where there has been a lot of CA research, 

recent reviews have shown positive improvements on maize yield although some negative impacts 

were also reported. In their review to evaluate yield response of maize to conservation agriculture 

on four countries representing major agroecological regions found in Southern Africa, Thierfelder 
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et al. (2015) found that 80% of the cases yield was higher in CA as compared with conventional 

tillage. In 20% of the cases, there was a negative response to CA and the authors attributed this to 

lack of experience by farmers in the initial years, slow increase in soil fertility at the representative 

sites and water logging in some years due to high rainfall. Yield benefits increased with the 

increase in years of practice of CA and this was more pronounced in trials with more clay and silt 

content in the topsoil and was more resilient to seasonal rainfall variability than conventionally 

tilled treatments. Brouder and Gomez-Mcpherson (2014) reviewed evidence on the impact of CA 

and crop yields in Sub-Saharan Africa and South Asia, based on recent literature, and reported that 

zero-tillage (key CA component) may not be initially beneficially for crop yield (in the short term) 

and the authors attributed this to direct impact of weed pressure in the initial stage of CA adoption 

which becomes less severe in the long term. The authors concluded that the negative short-term 

impact on maize yield decreases over time and may eventually lead to a yield advantage especially 

in those systems linked with mulching. In contrast, in this review, it was found that most of the 

studies lacked critical data needed for systematic reviews and statistical analysis necessary to meet 

the criteria for credible meta-analysis. The authors concluded with important recommendations for 

future studies and this includes minimum data set requirements, an adequate description of 

management practices, and systematic approaches in the meta-analysis for CA and appropriate 

statistical analysis. In no-till soil with residues removed Fuentes et al. (2009) observed the poorest 

soil quality (low SOC and N, compaction, low aggregate stability and, lack of moisture and acidity) 

which produced the lowest yield especially with a maize monoculture. Similar results were 

observed by Govaerts et al. (2005). 
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In contrast to low rainfall rainfed low input areas, Sayre et al. (2005) observed that on irrigated 

agricultural systems, the application of irrigation appears to hide or postpone the expression of 

degradation of many soil properties until they reach the level that they can no longer sustain yields, 

even with irrigation. In addition, a reverse relationship between soil quality and crop yields has 

also been documented by some authors. For example, Lal (1995) estimated that yield reduction in 

Africa due to past soil erosion may range between 2 and 40% and this according to Verhulst et al. 

(2010) may depend on soil type, weather conditions during the growing season, soil management, 

farming system and ameliorative input used. 

 

Many stakeholders of maize production in the region are becoming aware of the plight of our 

environmental conditions. Sometimes, fear and panic are the reactions we get from fanatics, media, 

and authorities. Although the situation has deteriorated to the current state, conservation 

agriculture, including no-till or minimum tillage is one of the positive practices with the potential 

of restoring some of the negatives done to the environment. This is true considering that South 

Africa losses close to 400 million ton of topsoil annually from water erosion which end up as 

sediments in dams (Venter, 2016). However, the advantage of CA does not come without certain 

trade-offs. An example is over-reliance of CA on the use of herbicides to control weeds. 

Cultivation is the way in which conventional agriculture controls weeds, both before and after 

planting. In no-till farming, at least as it is practiced today, herbicides take the place of the plow. 

More often, significantly more herbicides are used in no-till farming compared to what is typically 

applied to tilled fields. However, several weed species have developed resistance to glyphosate 

and other herbicide mechanisms of action (Beckie, 2007). Hence, the threat to gains of CA is 

growing because of the dire need to manage these resistant weeds through other means necessary, 
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including tillage. Furthermore, in a CA system, crop residues may harbour insect pests, leading to 

the use of insecticides as well, which might threaten soil macrofauna and microfauna (Giller et al., 

2009). 

 

Fig. 1: Estimate of CA adoption in South Africa. Source: Richard Findlay, committee member and 

coordinator, No-Till Club of KwaZulu-Natal, South Africa, unpublished data. 
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Table 1: Summary of farmers reports on yield after CA adoption. 

Author Source Farm type Farm size 

(ha) 

Farmer’s name Year of 

adoption 

Province/ 

town 

Mean 

annual 

rainfall 

(mm) 

Soil 

conditions 

Yields 

(t/ha) 

Findlay 

2015 

Personal 

comm. 

Large scale 400 Antony 

Muirhead 

23 KwaZulu-Natal, 

Bergville 

643 Improved + 

Phillips 

(2013) 

Farmer’s 

Weekly 

Large scale 1250 George Steyn 5 North West 550 Improved + 

Phillips 

(2012) 

Farmer’s 

Weekly 

Small holder 1.8 (+29 

other 

farmers) 

Nicholas 

Madondo 

10 KwaZulu-Natal 745 Improved + 

(4-5) 

Hittersay 

(2012) 

Farmer’s 

Weekly 

Agricultural 

research 

council (ARC) 

ND Zeekoegat 

experimental 

farm 

4 Pretoria, 

Roodeplant 

704 Improved + 

(4.8-5.5) 

Hittersay 

(2013) 

No-Till Club Commercial 2600 Jan Grey 5 Mpumalanga, 

Ermelo 

- Improved + 

(4-6.5) 

Hittersay 

(2014) 

No-Till Club Large scale 2814 Manjoh Ranch 7 Mpumalanga, 

Delmas 

687 Improved + 

(7.5) 

Phillips 

(2013) 

Farmer’s 

Weekly 

Large scale 690 Ralf Kusel 14 KwaZulu-Natal, 

Paulpietersburg 

950 Improved + 

(12.5) 

ND, no data provided.  

+indicates yield gains compared to plow tillage. 
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2.8 The use of visible and near infrared spectroscopy (VIS-NIRS) in predicting SOC and N 

 

Soil organic carbon is a key component of the soil where it plays a central role in important 

functions of the soil. It is regarded as a key indicator of soil quality because of its involvement in 

physical, chemical and biological processes of soil functioning. Its quantification enables to assess 

soil quality through its structural stability, water retention, as well as biological and chemical 

fertility (Reeves, 1997). Therefore, its decline in soil is one of the main threat to soil degradation. 

Moreover, monitoring of SOC and N in soil has become expensive with the use of a traditional 

chemical method (Walkley, 1947; Jackson, 1973) and recently the use of machinery (Leco 

Corporation, 2012). Traditional chemical methods require chemical reagent and tedious sample 

preparation. Therefore, a rapid and accurate approach for measurements of SOC allowing huge 

analysis of samples within a short period of time, low effort and budget, and for precision 

agriculture is ideal. 

 

The visible and near infrared spectroscopy (VIS-NIRS) present such an opportunity. Spectroscopy 

is the science that studies the interaction between matter (solid, liquid and gas) and its 

electromagnetic radiation (Crouch and Skoog, 2007). The visible region of the electromagnetic 

spectrum is from 400-700 mm and the near infrared region in from 780-2500 nm (NASA, 2014) 

in this study. The VIS-NIRS (400-2500 nm) has been used successfully in many industries such 

as such as pharmaceuticals, petrochemicals, crop production and food processing (Minasny et al., 

2011). VIS-NIRS provide a large number of information on the organic and inorganic component 

on soil (Milos and Bensa, 2007). The absorption on the visible range (400-700 nm) provides a 

measure or SOM and soil colour (Ben-Dor et al., 1999) and iron minerals (Sherman and Waite, 
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1985). On the other hand, the NIR (780 nm-2500 nm) portion of the electromagnetic spectrum is 

associated with the stretching and bending of CH, OH and NH groups (Viscarra Rossel and 

Behrens, 2010).  

 

In recent years, there has been an increased interest in studies of SOC. This is caused by its 

predicted effects on climate change (Guerrero et al., 2016) and the increased effort for sustainable 

agricultural management such as CA. The amount of SOC varies spatially due to natural soil 

variability, climate and management practices. Thus, measurements of SOC require a large number 

of samples to hold high statistical robustness, otherwise, they would be limited by huge 

uncertainties causing misleading inferences (Muukkonen et al., 2009). Therefore, the application 

of visible to near infrared spectroscopy (VIS-NIRS) for assessing SOC is arguably the most 

appropriate technique, than the mid infrared (MIR) for example, possessing the afore-mentioned 

requirements of low cost, fast, less time for preparation and accuracy.  

 

This limits the innovation possibility and articulation of research institutions to perform relevant 

experiments linked to SOC, the principal indicator of soil quality. This is particularly true for 

countries is SSA which lack infrastructural funding and other developing countries. 

 

2.9 Conclusion and future prospect for South Africa 

 

Continued and increased crop production to ensure food security for future generations requires 

sustainability in the management of natural resource base. Conventional tillage system has, over 

many years, resulted in degradation of natural land resource base. Although, it for many years has 
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resulted in increased yields due to improvement in seedbed preparation, weed control and better 

placement of seed and mixing of fertilizers and agrochemicals with soil. It has resulted in the 

substantial loss of soil and SOM which is a key factor in soil quality because of its intrinsic 

relationship with soil physical, chemical and biological properties. Conventional tillage has 

resulted in physical disruption of the soil structure, displacement of the macrofauna population 

and exposing SOM to microbial attach and thus, facilitating its oxidation process and the loss of 

nutrients. This has resulted in a reduced aggregate stability of many farmlands due to disruption 

of soil structure and as a results soil has become highly exposed to various soil types of erosion 

and many areas in the world have been degraded due to this practice. This has been more 

pronounced in African countries, particularly the Sub-Saharan African region. This is of great 

concern in ensuring food security for increasing population and protection of natural resource base 

for the current and future generations in light of the predicted impacts of climate change. In 

response to these challenges, CA has been proposed as one such avenue in which farmers can 

better utilise the natural resources to their disposal by following it three fundamentals i.e., 

permanent soil cover, minimum soil disturbance and systematic crop rotation. 

 

In South Africa, although there has been some success in the adoption of CA, the adoption rate 

has remained rather too low accounting for about 2.8% of the country arable land. The statistics 

on adoption rate for subsistence and commercial farmers has remained unclear because there has 

been hardly any extensive information or research to account for adoption rate. Various farmers’ 

organizations have been formed to advocate for CA with No-Till Club being the leader in 

KwaZulu-Natal Province. The Club has reported less than 500 of the small-scale farmers that have 

adopted CA. However, most of these farmers are being subsidised by Government and commercial 
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farmers for their inputs for instance herbicides, fertilizer and seeds. Various farmers’ organisations, 

formal and informal, have reported CA to reduce production cost and to improve soil quality and 

yield. However, the reported information is based on farmers’ experiences and it is too narrative 

and is not available in scientific literature. Most farmers may have this information available on 

indigenous knowledge system or “grey literature” of which both are not peer-reviewed. This, 

therefore, necessitates more research on CA practices and its impact on soil quality and yield for 

different agroecosystems and socio-economic niches relevant to South African context to ensure 

sustainability in the management of our natural resource base. 

 

2.10 Thesis structure 

 

A number of experiments were conducted to answer specific objectives of this study. The thesis is 

structured in manuscript or paper format answering a specific objective of the study. Each chapter 

is formatted according to the guideline of a specific journal in which the paper was submitted to 

or accepted. It must be noted also that although the literature review has been published it also 

contains some additional information to align it with the whole thesis. 

 

Chapter 2: This paper answers the specific objective on the soil biological properties. In this 

study, we focused only on soil macrofauna. 

 

Chapter 3: This manuscript answers the specific objective about some important soil physical 

properties. However, it also deals with C because it is difficult to discuss soil physical properties 

without including C as a principal soil health indicator. 
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Chapter 4: This manuscript answers specific objective about soil chemical properties. Again, here 

there is some overlap with the previous chapter in relation to C. 

 

Chapter 5: This manuscript combines what has been observed in soil biological, physical and 

chemical properties in relation to yield over time. It answers specific objectives on maize yield. 

 

Chapter 6: This manuscript answers the specific objectives about the use of VIS-NIRS in SOC 

and N prediction. 

 

Chapter 7: The general discussion. It provides the holistic discussion that combines all individual 

manuscripts and highlights the major findings of the study. 
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2.1 Abstract  

 

Unsuitable soil management in agricultural land is known to results in the deterioration of soil 

health and the decline of biodiversity, which in turn threatens food security. The experiment tested 

whether (1) no-tillage with mulch (NT), which has been shown to restore maize production, could 

boost biological activity of macrofauna population in a maize continuous monocropping system 

compared with (2) rotational tillage with mulch, (RT) every after 5 years, and (3) conventional 

tillage (CT) tillage system. This was evaluated, in Ferralsols Haplic, 13 years after implementation 

of NT treatment in Bergville KwaZulu-Natal Province, South Africa. Soil macrofauna was 

sampled at the end of the 2014/2015 growing season using 25 × 25 × 25 cm steel monoliths. The 

mean density of individual orders was significantly higher (p < 0.001) under NT (46%) and RT 

(38%) compared with CT (16%). However, the Shannon-Weaver index (H, E index) revealed that 

the diversity and evenness of orders were similar, H= 2.6 and E~ 1, for all treatments. Examination 

of macrofauna patterns revealed that NT and RT contained a significantly (p < 0.001) higher 

population of orders Isoptera and Diplopoda. Order Isoptera was 51% and 17% higher in NT and 

RT than CT, while order Diplopoda was 39% and 2% higher in NT than RT and CT, respectively. 

Order Coleoptera was among the dominant orders, however, there were no significant differences 

in all treatments although it showed trends toward high population in NT treatment. It was 

concluded that NT and RT mulch-based system, in Ferralsols Haplic, favoured the development 

of macrofauna communities in the studied maize continuous monoculture cropping system but did 

not favour order diversity of macrofauna. This suggests the importance of crop rotation for the 

development of the more diverse macrofaunal population. 
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2.2 Introduction 

 

Agriculture in the sub-Saharan Africa faces the challenge of increasing food production without 

significantly increasing the area of land under agricultural production, while protecting natural 

resources, due to increasing population (Stevenson et al., 2013) and high levels of human-induced 

soil degradation (Bai and Dent, 2007). In South Africa, one-third of the surface land and about 

40% of the agricultural land is degraded due to combined effects of CT, overgrazing (Bai and 

Dent, 2007; Vlek et al., 2010) and continuous maize mono-cropping, particularly in small 

subsistence farmers. According to these authors, soil degradation in South Africa is severe and 

widespread. The increase in demand for food on the limited available dry land in light of highly 

degraded soil and declining soil fertility and future threats of climate change and variability have 

increased the need for more sustainable crop production management systems (Thierfelder et al., 

2014). Soil management system such as conventional tillage and removal of soil biomass from 

cropland have, for many years, resulted in the decline of soil organic matter content, deterioration 

of important soil physical properties and has increased the risk of soil erosion (Ouedraogo et al., 

2006). The reduction in soil organic matter further affects soil macrofauna which has an important 

role in key soil processes such as soil structural formation, decomposition of soil organic matter 

and recycling of nutrients.  
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The effect of macrofauna on soil physical properties, particularly, the soil structural formation has 

been well documented (Mando and Midiema, 1997; Brown et al., 2000; Six et al., 2004) with 

earthworms and termites considered “ecosystem engineers” because of their key role in reworking 

the soil. Earthworms modify soil structure through biological and physicochemical changes and 

through their burrowing and casting activities, both of which have a significant effect on soil 

physical properties such as water infiltration and aeration (Blanchart et al., 2004). On the other 

hand, termites through their activities of selecting, transporting, manipulating and cementing soil 

particles, bring an immediate change in soil structure and its properties (Mando and Midiema, 

1997). Other groups of soil macrofauna which have, however, minor effect on soil structure are 

litter transformers, such as epigeic earthworms and Mollusca (Lavelle, 1997). These organisms 

concentrate their activities on the soil surface where they physically fragment litter and deposit 

mainly organic faecal pellets (Verhulst et al., 2010). Therefore, maintaining conditions that are 

conducive for macrofauna settlement in the cropped land is important for long-term soil health and 

sustainability of agricultural production. 

 

Soil management systems such as tillage type and nitrogen fertilizer application rate, climate 

condition of the area and soil type all influence macrofauna population and diversity (Chan, 2001; 

Blankinship et al., 2011). This combined with negative effects of continuous monocropping, such 

as the build-up of pest and diseases and ever-increasing levels of chemical inputs, may have serious 

implication on yields and thus food security.  Inappropriate soil management system leads to 

reduced functionality, a reduction in ecosystem services and in some cases, permanent damage to 

the ecosystem (Cardinale et al., 2012). With maize being the staple crop in many countries in the 

sub-Saharan Africa, both for humans and animal feed, inappropriate soil management may have 
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serious implication on food security. This may results in unsustainable agriculture if measures to 

ensure the protection and rehabilitation of degraded land are not taken.  

 

To ensure the sustainability of agricultural land and crop yield, the South African Department of 

Agriculture, No-Till Cub, and the Agricultural Research Council have embarked on implementing 

soil restoration measures with conservation agriculture (CA) being the main focus (Sithole et al., 

2016).  While the introduction of CA has been shown to improve soil quality and yield in South 

Africa (Sithole et al., 2016) and other parts of the world (Stevenson et al., 2014; Thierfelder et al., 

2015), to our knowledge, fewer or no studies in South Africa has focused on long-term impact on 

macrofauna organisms particular in semi-arid agroecosystem of a particular soil conditions, yet 

similar organisms are also important in the sustainability of the soil health. Similar observations 

have also been made in other developing countries (Brevault et al., 2007; Mutema et al., 2013). 

Therefore, the ultimate mechanisms that influence the abundance and diversity of macrofauna 

communities in the contrasting soil environment have not been well elucidated and in general, the 

data on the impact of soil management systems on macrofauna are scarce.  

 

Therefore, the objective of this experiment was to evaluate macrofauna order diversity and 

abundance of the continuous maize mulch-based monocropping system that has been managed for 

over 10 years under no-till conservation agriculture. This was compared with conventional tillage 

and rotational tillage treatments.  It was hypothesised, therefore, that less soil disturbance with 

residue mulch will result in better settlement of macrofauna communities than a more disturbed 

system and that continuous monocropping will result in reduced faunal diversity between tillage 

systems. 
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2.3 Materials and methods 

 

2.3.1 Experimental site 

 

The experiment was established in 2003/2004 growing season, in a field that has been managed 

since 1990 under no-till, in Gourton Farm (28°55'26.83"S, 29°33'38.64"E) (Fig. 1) by Department 

of Agriculture and Environmental Affairs in KwaZulu-Natal Province, South Africa. The 

experiment was initiated to investigate the combined effects of tillage intensity (conventional 

tillage and no-till) and nitrogen fertilizer application rate (limestone ammonium nitrate (LAN) and 

urea) on soil fertility and maize yield. Previously, the site has been part of the dryland commercial 

production field to maize and soybean in the rotation that has been managed under no-till since 

1990/1992 and it was converted into different tillage treatment in the 2002/2003 crop growing 

season. Prior to that, the land was under conventional tillage to maize. The soil was classified as 

Hutton non-swelling with clay loamy soil texture (Soil Classification Working Group, 1991) or 

Ferralsols Haplic (FAO, 2006). The mean annual rainfall of the area is 643 mm per annum which 

is received mostly in the summer months, between October and March and the mean air 

temperature of the site is 19.3 °C in June and 27.9 °C in January (SA Explorer, 2009). The 

temperature and the amount of rainfall received in the 2015/2016 growing season when sampling 

took place are shown in Fig. 2. The trial is planted with dryland maize in summer and left fallow 

during the winter season. Soil analysis of the trial in the 0-20 cm depth showed that the pH (KCl) 

ranged from 5.39 in tilled plots to 5.80 in the untilled plots trials, bulk density, ranged from 1.33 
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g/cm3 in tilled plots trials to 1.43 g/cm3 in untilled plots and SOC ranged from 3.9 % on un-tilled 

plots to 1.7 % in tilled plots. 

 

Fig. 1: The location of the study area (28°55'26.83"S, 29°33'38.64"E) 
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Fig. 2: The rainfall distribution and temperature data of the experimental area (Bergville, 

KwaZulu-Natal Province in South Africa) during the sampling season (2015/2016). 
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2.3.2 Experimental design 

 

The trial was arranged as a split plot with randomized tillage strips forming the whole plot and N 

source and rate of application forming the sub-plots which are randomized within the whole plots. 

The sub-plots had 9.5 m × 12 rows of maize at a density of 70 000 plants/ha. The experiment 

included three tillage treatments: 1) no-till (NT), 2) annual conventional tillage (CT) and 3) 

rotational tillage (RT). In NT and RT treatments maize residues were left in the soil surface to 

cover the soil every year, thus forming permanent soil cover, while in CT treatments residues were 

removed in the soil surface after harvest. No-tillage involved direct seeding into the undisturbed 

soil using NT planter, CT, on the other hand, involved ploughing with mould board plough up to 

a depth of 30 cm and disking to a depth of 10 cm while RT involved CT after every four years of 

NT. The treatments were replicated three times. Nitrogen was applied at five rates (0, 50, 100, 150 

and 200 kg/ha) as either urea or LAN. For this particular experiment, only LAN trials were 

investigated due to logistical constraints. However, before the 2008/2009 season, the application 

rate was 0, 40, 80, 120 and 160 kg/ha. However, due to the linear response observed in 2007/2008 

maize production to fertilizer application rate, the rates were adjusted to 0, 50, 100, 150 and 200 

kg/ha. Nitrogen was applied as top dressing four weeks after planting. For this particular 

experiment, nitrogen rates were ignored when analysing data due to insignificant differences 

observed in different tillage treatments. Potassium and Phosphorous were applied at planting in 

the band at a rate of 50 and 20 kg/ha, respectively. Lime was applied at a rate of 2 Mg/ha every 

second season to the entire plot. It was incorporated during ploughing in CT plots and surface 

applied in NT plots. Weeds were controlled chemically using a combination of mesotrione, 

atrazine, S-metolachlor and 2,4-D. The only pesticide applied at planting was pyrethroid (Decis 
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Forte) to control cutworms. Leaf fungal disease (grey leaf spot, northern corn leaf blight and rust) 

were controlled using carbendazim plus flusilazole and azoxystobin. Tractor-drawn ring equipped 

with an 18 m wide boom sprayer was used in the application of chemicals.  

 

2.3.3 Sampling  

 

Macrofauna sampling was done only once at the end of 2015/2016 rainy season using the method 

previously described by Anderson and Ingram (1993). Briefly, steel monoliths of 25 cm x 25 cm 

x 25 cm were driven through the soil using a steel hammer on all plots of each treatment replicated 

three times on the randomly selected positions. Thereafter, macrofauna were collected by sifting 

through the monoliths and preserved in glass bottles containing 70 % alcohol for subsequent 

laboratory identification. Macrofauna included all the organisms visible by eye (4-80 mm) which 

spend most of their important life cycle in soil or immediate surface including surface litter (Gobat 

et al. 1998). Finally, all the organisms collected were classified according to their typical 

ecological behaviour. These data allowed the computation of diversity (Shannon-Weaver index, 

H’), abundance (number of collected individuals per surface unit) and evenness (Pielou index, E). 

At the beginning of the experiment, controlled traffic was implemented where the same lanes were 

used and all samples were taken from the inter-row of non-traffic lanes. 

 

2.3.4 Data analysis 

 

Macrofauna abundance (density) was computed using Eq. 1 as demonstrated by Shannon-Wiener 

(1963).  
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𝑁 =  
𝑃

𝐴
           1 

 

Where: 

N = macrofauna abundance (density) 

P = fauna population in soil cube 

A = monolith surface area 

 

The Shannon-Weaver index (Shannon-Wiener, 1963) was calculated using Eq. 2. 

 

𝐻 =  − ∑(𝑃𝑖 𝐼𝑛 𝑃𝑖)         2 

 

It takes into account the number of orders encountered. With 𝑖 = 1 to s, where 𝑃𝑖 = probability of 

meeting a taxon 𝑖 on a plot, s= total number of taxa encountered on the plot (Brevault et al., 2007). 

H = 0 when there is only 1 taxa and is at maximum a when all taxa are of equal abundance. 

(Brevault et al., 2007).  

 

Macrofauna evenness is the ratio between calculated diversity and the theoretical maximum 

diversity and is computed by the method described by Pielou (1977) using Eq. 3. 

 

 𝐸 =  
𝐻

𝐼𝑛𝑆
          3 
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The evenness index represents the distribution of taxa and this is used to compare communities 

that present a different number of taxa, with the aim of evaluating the balance of the populations. 

E tends to 0 when one taxon largely dominates the community and is equal to 1 when all taxa are 

of equal abundance (Brevault et al., 2007).  

 

2.3.5 Statistical analysis 

 

All data were subjected to analysis of variance (ANOVA) using GenStat® (Version 15.1, VSN 

International, UK). Means of significant different variables were separated using least significant 

differences (LSD) at a probability level of 5%. Kruskal-Wallis test was used to analyse the 

diversity of orders and species. 

 

2.4 Results 

 

There were highly significant differences (p < 0.01) observed in mean density of individual orders 

in the soil cubes with respect to different soil management systems, with NT treatment harbouring 

more individuals than RT and CT, respectively (Fig. 3). Isoptera, Coleoptera and Diplopoda were 

amongst the top 3 dominant orders of macrofauna observed in all treatments, with NT treatment 

harbouring more individuals than other treatments (Fig. 4). 
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Table 1: Major macrofauna taxa recorded in different tillage treatments after 13 years of 

implementation.  

Phylum Class Order Family Number of individuals 

collected 

    NT RT CT 

Arthropoda Insecta Coleoptera 

(Beetles) 

Carabidae 1 2 2 

   Tenebrionidae 11 10 10 

   Scarabaeidae 7 8 11 

   Meloidae 0 1 1 

   Coccinellidae 0 0 1 

  Isoptera 

(Termites) 

Termitidae 52 36 0 

  Diplopoda 

(Millipedes) 

- 29 28 5 

  Chilopoda 

(Centipedes) 

- 1 4 4 

  Isopoda 

(Woodlice) 

- 2 1 0 

  Dermaptera 

(Earwigs) 

Forficulidae 9 5 2 

   Labiduridae 0 1 1 

 Arachnida Araneae 

(Spiders) 

- 3 4 4 

Annelida Oligochaeta 

(Earthworms) 

- - 3 1 0 

  Hemiptera 

(True bugs) 

Pentatomidae 2 0 0 

   Reduviidae 0 3 0 

  Orthoptera 

(Grasshoppers) 

Gryllidae 1 1 0 

  Lepidoptera 

(Butterflies) 

 0 1 0 

Mollusca Gastropoda 

(Snails) 

- - 0 0 1 

Total    121 106 42 

Note: NT= no-till treatment with mulch, RT= rotational tillage with mulch and CT= 

conventional tillage. 
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Fig. 3: The abundance of soil macrofauna in different tillage treatments after 13 years of 

implementation. Note: NT = no-till treatment with mulch, RT = rotational tillage with mulch and 

CT = conventional tillage. 

 

Significant effects (p < 0.001) were also observed in mean density of individuals in the soil cubes, 

within the same orders, in different tillage treatments (Fig. 4) with the order Isoptera, Diplopoda 

and Dermaptera showing higher population in NT and RT than in CT (Fig. 4). There were no 

significant differences observed in orders such as Araneae, Gastropoda, Hemiptera, Isopoda, 

Chilopoda, Lepidoptera, Oligochaeta and Orthoptera in all tillage treatments. While the mean 

density of individuals (abundance) in the soil cubes was significantly higher in the NT and RT, the 

diversity (Figs. 5 and 7) and evenness (Fig. 5) of these organisms were observed to be similar in 

all treatments. Although at the order level there were no significant differences observed in the 

diversity of macrofauna, NT and RT were observed to have a significantly higher number of 

species than CT treatment, respectively (Fig. 6). 
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Fig. 4: The abundance of macrofauna and order diversity in different tillage treatments after 13 

years of implementation. Note: NT = no-till treatment with mulch, RT = rotational tillage with 

mulch and CT = conventional tillage. 

 

Fig. 5: Diversity (H) and Evenness (E) index of soil macrofauna in different tillage treatments after 

13 years of implementation. Note: NT = no-till treatment with mulch, RT = rotational tillage with 

mulch and CT = conventional tillage. 
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Fig. 6: The diversity of species observed in different tillage treatments after 13 years of 

implementation. Note: NT = no-till treatment with mulch, RT = rotational tillage with mulch and 

CT = conventional tillage. 
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Fig. 7: The diversity of orders observed in different tillage treatments after 13 years of 

implementation. Note: NT = no-till treatment with mulch, RT = rotational tillage with mulch and 

CT = conventional tillage. 

 

2.5 Discussion 

 

The results showed that the abundance of macrofauna was significantly higher under mulch-based 

cropping system, after 13 years of implementation of NT, with NT (No-till) and RT (Rotational 

tillage) treatments yielding more organisms than CT (Conventional tillage), respectively (Figure 

3). Similar findings were observed by Marasas et al. (2001); Sileshi and Mafongoya (2005); 

Blanchart et al. (2007); Mutema et al. (2013) in providing evidence that reduced tillage (NT & 

RT) soil management strategy with mulch provide better conditions for macrofauna settlement 

which resulted in a large population of these soil organisms. Reduced soil tillage with mulch 
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improved the environmental condition for macrofauna settlement through reduction of habitat 

destruction by tillage implements and by reducing soil erosion through the impact of raindrop and 

wind. Soil cover with mulch further protect the soil organisms by protecting the habitat against 

extreme variation in temperature and humidity and increasing soil organic matter as a source of 

food, therefore providing a stable environment for macrofauna settlement (Kladivko, 2001; 

Blanchart et al., 2006). In contrast to NT, native soil organisms may migrate from cropland due to 

mechanical habitat destruction and removal of soil organic matter under CT, thus increasing 

predation risk (Thorbek and Bilde, 2004; Brevault et al., 2007) and the outbreak of crop pest and 

diseases if proper measures to control these are not taken into consideration. 

 

However, the diversity and evenness of macrofauna did not vary under different soil tillage 

treatments as shown in Fig. 5. The similarity of organisms (diversity) and evenness observed in 

different tillage treatments may be explained by the continuous similar type of organic resource 

feed. It appears that continuous maize farming where maize straw is the only biomass that provides 

fresh organic input has provided the type of feeding environment that enhances the similar type of 

organisms in all treatments. A similar observation has also been made in continuous monocropping 

sorghum farming conditions (Zida et al., 2011). On the other hand, when crop rotation (the third 

leg of CA principle) is implemented, it appears that the diversity of macrofauna population 

increases (Verhulst et al., 2010). Hence, macrofauna population and diversity is not only 

influenced by the quantity of organic input retained in soil but it is also a function of the quality of 

diverse organic feed resource input. Species diversity in agroecosystem is vital due to their 

differences in ecologically behaviour which in turn influence soil structural properties such as, 

porosity, water infiltration, aggregate stability (Mando and Midiema, 1997; Brown et al., 2000; 
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Six et al., 2004; Bottinelli et al., 2015) and soil physiochemical characteristics such as soil organic 

C, CEC and the availability of nutrients in soil (Lal, 1988). 

 

The results also showed that the termites (Isoptera) were the most abundant macrofauna group 

under continuous maize monocropping system with NT having the highest density than RT and 

CT, respectively (Fig. 4). This has been observed also by other authors (Giller et al., 1997; Brady 

and Weil, 1999; Zida et al., 2011) that termites’ population increases under monoculture cropping 

system particularly in semi-arid to arid environments where other ecosystem engineers 

(earthworms) are limiting. Termites are primary shredders of most dry organic materials and they 

are the main agent that break down surface mulches under CA (Mutema et al., 2013) and their 

abundance has been shown to be strongly correlated with the availability of recalcitrant organic 

material over easily decomposable organic resources (Ouedraogo et al., 2004). Therefore, 

increasing soil organic residues under dryland cropping system may serve as a strategy to increase 

the availability of these organisms which are important also in soil structural formation and 

recycling of nutrients. Their abundance has been correlated with increased soil water infiltration 

(Mando and Miedema, 1997). This proves that the application of two CA principles, no-till and 

permanent soil cover, has the potential to increase termite prevalence. Similar observations have 

also been made by Mutsamba et al. (2016).  

 

This experiment yielded similar results with that of other authors (Kladivko, et al. 1997; Kladivko, 

2001; Chan, 2001) who showed that earthworm population tends to be very low under dryland 

cropping system especially under CT, where there is more soil disturbance, as compare with RT 

and NT treatments, respectively. It has been also suggested that earthworms are also influenced by 
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the type of organic resource input and they are more competitive than termites in decomposing 

easily decomposable organic material (Zida et al., 2011). This suggests that earthworms are more 

effective in a decomposing material with lower C/N ratio, which in turn explain the abundance of 

termites in this experiment due to higher C/N ratio of maize stubble. 

 

Furthermore, the experiment also showed a significant effect on millipedes (Diplopoda) abundance 

with NT and RT treatments yielded a significantly higher population than CT (Fig. 4). On the other 

hand, although beetle (Coleoptera) population was high and comparable to that of termites and 

millipedes, there were no significant differences observed in all tillage treatments although NT 

treatment showed trends towards high density than CT and RT. This may probably be due to high 

mobility and higher population growth potential of this order which make it less sensitive to change 

in tillage management. Other studies, however, have revealed that beetles are sensitive to 

anthropogenic changes (Kromp, 1999) and hence the similarity in all treatments may be due to the 

mobility of these organisms resulting from the close proximity of different treatments.  Millipedes 

and beetles sampled were both mixture of carnivores (beetles) and herbivores arthropods, which 

are important in the decomposition of organic matter and recycling of nutrients in the soil. The 

abundance of millipedes in NT and RT treatments suggest their preference to dwell under maize 

debris and thus performing their important roles in facilitating ecosystem processes such as soil 

structure and chemistry. Similar observations were made under no-till with mulch in a cotton plant 

where millipedes’ population was high under the soil with mulch (Brevault et al., 2007). However, 

the negative impact of these organisms may rise if the food source (debris) is depleted and become 

a pest to the growing crop (Brevault et al., 2007), for example, Mutsamba et al. (2016), Ayuke 

(2010) and Sands (1977) found that in the absence of crop residue at harvest crop attach may arise 
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irrespective of whether initial residue application rates were high or low. This, in turn, highlights 

the importance of quantifying the amount of crop residues enough for macrofauna population in a 

specific environment. With regards to the observed high population of beetles in all treatments, it 

has been reported that most species are natural enemies of agricultural pests (Kromp, 1999) which 

in turn may help in the control of pests. However, negative results may also arise. For example, in 

rice grown with mulch in Madagascar, black beetles (Heteronychus spp.) were observed to cause 

damage in rice seedlings. The current data has, however, shown that the majority of the species 

observed belongs to Tenebrionidae and Scarabaeidae family (Table 1) of which both can feed on 

plant debris. 

 

Although the abundance of other orders was available in such a smaller population, they are 

important in maintaining the predator-prey relationship, thus contributing to the biological control 

of pests. Earwigs (Dermaptera) under family Forficulidae, centipedes (Chilopoda) and spiders 

(Aranaeae) observed (Table 1) are amongst the predators observed feeding on other arthropods. 

According to Stinner and House (1990), this fauna group contributes to the regulation of biological 

activity by acting on top of the food chain by feeding on other organisms. 

 

The results of this experiment have indicated that no-till conservation agriculture with permanent 

mulch cover has a positive effect on influencing macrofauna population as compared with 

traditional mould board plow system under continuous maize monocropping. This was attributed 

to reduced soil disturbance and higher SOC content on untilled plots as compared with CT plots 

which provided a better condition for macrofauna settlement. These organisms are important in 

soil structural formation and the recycling of important nutrients into the soil, thus maintaining 
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good quality which is vital for the sustainability of agricultural production. Rotating tillage after 

every 4 years has proved to be a viable alternative in the maintenance of soil quality parameters 

since the macrofauna population was comparable to NT plots. This is particularly important where 

soils with a problem of compaction and soil-borne diseases are a problem and there is need of 

ripping the soil from the subsoil. In this experiment, no differences were observed, however, in 

the diversity and evenness in different tillage treatment and this was attributed to continuous 

monocropping which supplies similar type of organic feed which may in turn influence 

macrofauna species distribution. Orders Isoptera, Diplopoda and Coleoptera were amongst the 

three dominant orders observed in this experiment. The organisms belonging to these orders have 

a crucial function in soil structural formation, soil health and functioning of the ecosystem. Other 

orders which were not dominant were reported to play a vital role in controlling the predator-prey 

relationship thus contributing to the control of pest cropland. 
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3.1 Abstract 

 

Soil degradation associated with the loss of soil organic carbon (SOC) has been a major concern 

in sub-Saharan Africa because of the subsequent yield reduction. It is not fully understood how 

long-term addition of C through biomass and N-fertilizers impact on C distribution in soil 

aggregates and its effects on soil aggregate stability and infiltration in sub-tropical maize 

monocropping system. The study, therefore, assessed long-term changes in total SOC (TSOC), 

aggregate-associated C, particulate organic C (POC), aggregate stability (MWD) and infiltration 

in the 0-10, 10-20 and 20-30 cm depths under different tillage systems after 13 years of 

implementation of the trial. The three tillage systems were no-till (NT), rotational tillage (RT) both 

with permanent residue cover and conventional tillage (CT) with residue removed. N-fertilizer was 

applied at a rate of 0, 100 and 200 kg/ha. On average, TSOC did not vary (p > 0.05) across the 

tillage treatments, 27.1 t/ha NT vs 26.0 t/ha RT and 26.6 t/ha CT, but varied with depth where it 

was stratified in the 0-10 cm depth in NT and RT. Particulate organic C, however, varied 

significantly (p < 0.05) across the treatments where it decreased with increase in tillage intensity 

but only in the 0-10 cm depth. Carbon associated with large aggregates (> 2000 µm) differed 

marginally (p = 0.085) with tillage treatment with NT having 38.0 t/ha, RT 36.6 t/ha and CT 29.7 

t/ha. However, differences (p < 0.05) were observed in small macroaggregates (250-2000 µm) 

with NT having 37.8 t/ha, RT 33.5 t/ha and CT 30.4 t/ha in the surface depth. The results found a 

strong effect of residue retention in NT and RT in the soil surface with aggregate stability which 

was correlated with the high rate of infiltration rate in these treatments. The results of this study 

indicated that reduced soil disturbance improves physical protection of SOC, soil structure and 

infiltration.  
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Keywords: aggregate-associated C, soil organic matter, mean weight diameter, ferralsol haplic 

 

3.2 Introduction 

 

Meeting the needs of the increasing population requires the protection of our arable land base and 

improvement of productivity (Lafond et al., 2011). This is particularly true for countries in the 

sub-Saharan Africa (SSA), which face significant challenges of increasing food production 

without significantly increasing the area under agricultural production (Stevenson et al., 2013). 

However, meeting these demands seems impossible because of high levels of human-induced soil 

degradation (FAO, 2010a) and low to medium agricultural potential due to low inherent soil 

fertility (Eswaran et al., 1997) and mining of nutrients in agricultural fields (Drechsel et al., 2001; 

Henao and Baanante, 2006). Global estimates indicate that 45% of the arable land is affected by 

degradation (Lal, 2007). A large portion of land degradation is ascribed to sub-Saharan Africa 

where the levels are exceptionally high, ~ 65% (Bai and Dent, 2007). In South Africa, Bai and 

Dent (2007) reported that the level of soil degradation is severe and approximately 40% of the 

cultivated land is degraded due to human-induced activities such as conventional tillage, 

continuous cropping with insufficient inorganic and organic fertilizers inputs which leads to 

production of insufficient amount of organic matter (Oldeman et al., 1991). This, in turn, possesses 

more threat to food security in this region considering the growing population, water shortages and 

the predicted negative impacts of climate change. In response to these challenges, conservation 

agriculture (CA) has been proposed by many researchers as a widely adopted set of management 

principles that can encounter the negative impact associated with these challenges and ensure more 
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sustainable agricultural production (Hobbs, 2007; Hobbs et al., 2008; Giller et al., 2009, Verhulst 

et al., 2010).  

 

Conservation agriculture has been defined as a concept for resource-saving agricultural 

productivity that strives to achieve acceptable profits while concurrently minimising negative 

impacts on the environment (FAO, 2010b). In SSA, it is promoted to reverse the negative impacts 

on cultivated land such as degradation and to increase stock in the soil (Erenstein et al., 2008). 

According to Wall (2007), the term “conservation agriculture” has been used to distinguish this 

more sustainable agriculture from the narrow-defined term “conservation tillage” which is a 

widely used terminology to describe soil management system that leaves at least 30% of the crop 

residues in the soil surface after seeding of the subsequent crop (Jarecki and Lal, 2003). 

Conservation agriculture is based on three basic principles, namely, a) the reduction in tillage 

and/or no-till, b) retention of adequate levels of crop residues and soil cover and c) the use of 

diversified crop rotations (FAO, 2008; Verhulst et al., 2010). Potential benefits of CA includes an 

increase in SOM, C sequestration and soil aggregation (Rusinamhodzi, 2015); increase in crop 

sequence intensification (Brouder and Gomez-Macpherson, 2014). It also improves infiltration 

rate and soil water retention (Findlater, 2013); better use of the cropping season window permitted 

by earlier field entry (Hobbs et al., 2008) and increased and more stable yields (Hobbs, 2007). In 

contrast to developed countries such as America and Australia, CA adoption in SSA has been very 

low, accounting for 0.78% of the world total, (Friedrich et al., 2012) and reportedly in South Africa 

it only constitutes 2.8% of the country’s arable land (Sithole et al., 2016) and larger percentage of 

this adoption (> 98%) is ascribed to commercial farmers. Therefore, more work that needs to be 
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done in order to increase its adoption rate and improve soil quality in different agro-ecological 

regions of the country relevant to farmers situations. 

 

Soil aggregate size distribution and stability are the vital factors of soil physical quality that reflect 

the impact of soil management and land use on aggregation and degradation (Castro Filho et al., 

2002). In this, soil organic matter serves as a major binding agent of mineral particles into 

aggregates while on the other hand soil aggregates protect SOM from rapid decomposition by 

microorganisms and act as a storage for C and other key important soil nutrients (Elliot et al., 

1986). Soil organic matter further stimulates the activities of the soil biota (Ayuke et al., 2011) and 

maintain physiochemical conditions of the soil such as cation exchange capacity (CEC) and pH 

(Vanlauwe et al., 2005). The aggregate-associated C and N are protected from mineralization 

because of their being less vulnerable to microbial, enzymic and physical degradation (Six et al., 

2004). In addition, stable aggregates reduce soil erosion and degradation, surface runoff and 

crusting.  

  

Further, changes in total SOC and N with management, climate or land use is difficult to detect 

since these changes occur slowly and are relatively small compared to the abundant SOC stock 

and natural soil variability which vary both spatially and temporally (Franzluebbers et al., 1995; 

Six et al., 2002). In addition, various pools of SOC/N do not react and transform at a similar rate 

(Cheng and Kimble, 2001), thus, isolating SOC pools sensitive to management, climate or land 

use change could be useful in detecting these changes. Particulate organic matter (POM) is a labile 

fraction composed of partially decomposed material with a turnover rate of weeks to months or 

even years and with particle size ranging between 53 and 2000 µm (Wander, 2004) compared with 
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a more recalcitrant pool, the mineral associated organic matter (Zhong et al., 2015). POM is young 

minimally transformed and less associated with mineral constituents of the soil and therefore 

constitute a dynamic fraction that is associated with short-term nutrient availability (Galantini et 

al., 2004). In addition to this, it has a fast recycling rate and is associated with soil microbes, soil 

particle aggregation and aggregate stability (Six et al., 2000).  

 

Bergville forms the most important part of the cropping area in KwaZulu-Natal Province in South 

Africa (Lamprecht et al., 2008) and commercial farmers in this area have adopted CA ranging 

from continuous monocropping to a full package of CA. Therefore, it is important to increase the 

knowledge base of the local soils in South Africa because the magnitude and direction of the 

tillage-induced changes are soil and site-specific. This, in turn, will ensure that the country 

increases its maize productivity which is a staple food crop for a larger population.  In addition, 

despite the considerable interest on CA in developed countries, rigorous data on CA practices and 

its benefits in sub-Saharan Africa is largely inconsistent (Paul et al., 2013) and missing in the 

scientific literature particularly in South Africa (Sithole et al., 2016). Therefore, the present study 

investigated soil aggregate stability, infiltration, SOC and its size fractions at different depth of 0-

30 cm in soil planted with maize monocrop in an area that has received different rates of N-

fertiliser since 2003/2004 growing season.  
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3.3 Materials and methods 

 

3.3.1 Experimental site and climatic condition 

 

The experiment was conducted in Bergville, Winterton (28°55'26.83"S, 29°33'38.64"E, 1038 asl), 

KwaZulu-Natal Province, South Africa in an already existing trial that was established in 

2002/2003 growing season. The field trial was established and has been managed by the 

Department of Agriculture and Environmental Affairs in KwaZulu-Natal Province to assess the 

combined effects of tillage intensity and fertilizer application rates on soil fertility and maize yield. 

The mean annual rainfall is 643 mm.year-1 received mostly during the summer season between 

October and March and the mean air temperature of the site is 19.3 °C in June and 27.9 °C in 

January. Previously, the trial site has been managed under no-till since 1990 under dry land maize 

commercial production in rotation with soybean until the establishment of the trial in 2002/2003 

growing season. Currently, since the beginning of the experiment, the trial site is planted to dry 

maize continuous monocrop in summer and left fallow during the winter months. The soil was 

classified as Ferralsols Haplic (FAO, 2006) or Hutton non-swelling with clay loam soil texture 

(Soil Classification Working Group, 1991). The average pH (KCl) of the top 30 cm of the trial 

was 6.62. 

 

3.3.2 Experimental design and trial management 

 

The field experiment was set up as a split plot design with randomized tillage strips forming the 

whole plot and N source and the rate of application forming the sub-plots which are randomized 
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within the whole plots. The sub-plots had 9.5 m × 12 rows of maize at a density of 70 000 plants/ha. 

The experiment included three tillage treatments, namely, no-till (NT), annual conventional tillage 

(CT) and rotational tillage (RT). In NT and RT treatments, about 10-12 t/ha/yr maize residues were 

left in the soil surface, thus forming permanent soil cover, while in CT treatments residues were 

removed in the soil surface after harvest. No-tillage involved direct seeding into the undisturbed 

soil using NT planter. CT, on the other hand, involved ploughing with mouldboard plough up to a 

depth of 30 cm and disking to a depth of 10 cm while RT involved CT after every four years of 

NT. The treatments were replicated three times. Nitrogen was applied at five rates (0, 50, 100, 150 

and 200 kg/ha) as lime ammonium nitrate (LAN). For this particular experiment, only three 

fertilizer application rates were investigated, at 0, 100 and 200 kg/ha. Nitrogen was applied as top 

dressing four weeks after planting. Potassium (K) and phosphorous (P) were applied at planting in 

the band at a rate of 50 and 20 kg/ha, respectively. Lime was applied at a rate of 2 Mg/ha every 

second season to the entire plot. It was incorporated during ploughing in CT plots and surface 

applied in NT plots. Weeds were controlled chemically using a combination of mesotrione, 

atrazine, S-metolachlor and 2,4-D. The only pesticide applied at planting was pyrethroid (Decis 

Forte) to control cutworms. Leaf fungal disease (grey leaf spot, northern corn leaf blight and rust) 

were controlled using carbendazim plus flusilazole and azoxystobin. Tractor-drawn ring equipped 

with an 18 m wide boom sprayer was used in the application of chemicals. 

 

3.3.3 Soil analysis 

 

3.3.3.1 Aggregate size fraction 
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Three undisturbed soil samples were collected from randomly selected positions of each treatment 

at three depths: 0-10, 10-20 and 20-30 cm depth. The soil was then air dried and passed through 8 

mm then to 5 mm sieve. Aggregates were then separated by wet sieving the soil through a series 

of three sieves (2000, 250 and 53 µm) to obtain four aggregate size classes (Elliott, 1986), large 

macroaggregates (> 2000 µm), small macroaggregates (250-2000 µm), microaggregates (53-250 

µm) and silt and clay (< 53 µm). A subsample of 80 g was submersed in distilled water on top of 

2000 µm sieve for five minutes before sieving. The sieving was done manually by moving the 

sieve 3 cm, 50 times in 2 minutes (Six et al., 2002). Water plus the soil that went through 2000 µm 

sieve was poured to the next sieve and sieving was repeated. The aggregates received at each sieve 

were carefully back washed and oven dried at 60 °C for 48 hours weighed back and stored for C 

and N analysis. Mean weight diameter was determined as a sum of weighed mean diameters of all 

fraction classes using Eq. 1 described by Elliott (1986). 

 

𝑀𝑊𝐷 =  ∑ x̅iwi𝑛
𝑛=1          1 

Where: 

MWD = mean weight diameter (mm) 

x̅i = mean diameter of each size faction 

Wi = proportion of total sample weight  

N = number of size fractions 

 

3.3.3.2 Infiltration 
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Infiltration was measured using a method described by Johnson (1963). Briefly, double-ring 

infiltrometer was hammed to a depth of 30 mm. Water was applied to fill up, first the outer 

compartment, and then the inner compartment. Timing was made immediately. Using the ruler in 

mm, the drop in height of water level in the inner compartment was measured. The time was 

recorded for every 5 mm decline in water level.  

 

3.3.3.3 Bulk density 

 

Soil bilk density was determined by the method described by Cresswell and Hamilton (2002). 

Briefly, four replicate of undisturbed soil samples of each treatment which were collected 

randomly from 0-20 cm (A-horizon) and 20-40cm (B-horizon) and oven dried at 105 °C for 12 

hours. A spade was used to collect soil samples to avoid the shearing effect of soil auger. The bulk 

density was expressed as the mass per unit volume. 

 

3.3.3.4 Soil organic C 

 

Soil organic C was analysed by the Automated Dumas dry combustion method using a LECO 

CNS-2000 (Leco Corporation, Michigan, USA) (Matejovic, 1996). Briefly, this method involves 

weighing samples into a ceramic crucible to which 0.5g of vanadium pentoxide is added as a 

combustion catalyst. The crucible is introduced into a horizontal furnace, where the sample is 

burned in a stream of oxygen at 1350ºC. The gases produced are passed through two infra-red 

cells where C is determined as CO2 and nitrogen are determined N2 in a thermal conductivity cell. 
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3.3.4 Statistical analysis 

 

The data collected was subjected to analysis of variance using GenStat 17th Edition (VSN 

International, Hemel Hempstead, UK) and means were separated using Tukey’s least significant 

difference (LSD) at 5% level of significance. Correlation analysis and linear regression were used 

to assess the strength of the relationship between fertilizer level and SOC and aggregation. 

 

3.4 Results 

 

3.4.1 Aggregate fractions 

 

Significant differences (p < 0.001) in aggregate size fraction were found across the tillage 

treatments (Fig. 1). No-till treatment contained larger macroaggregates (11.6 g/100g) than RT (5.9 

g/100g) and CT (6.4 g/100g), although the differences in the latter two treatments were not 

statistically significant. In small macroaggregates, the CT treatment had a significantly (p < 0.001) 

lower aggregate fractions (41.2 g/100g) than NT (47.3 g/100g) and RT (47.3 g/100g). In contrast 

to what was observed in large and small macroaggregates, CT had a significantly higher 

microaggregates (45.5 g/100g) than RT and NT with 41.5 g/100g and 36.5 g/100g, respectively. 

Silt and clay were also found to be higher in CT treatment (4.36 g/100g) than in NT (3.41 g/100g) 

and RT (3.34 g/100g) treatments. 
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Fig. 1: Aggregate fractions of different tillage treatments after 13 years of implementation of the 

trial. Note: LM = large macroaggregates (> 2000 µm), SM= small macroaggregates (250-2000 

µm), Mi = microaggregates (53-250 µm) and SC = silt and clay (< 53 µm). 
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depths, 10-20 and 20-30 cm, there were no significant differences (p > 0.05) in large 

macroaggregates, although NT treatment showed a trend towards larger aggregates. Small 

macroaggregates were consistently and significantly (p < 0.05) lower, under CT than in NT and 

RT (Fig. 2). However, the differences were not observed in these treatments, in 0-10, 10-20 and 

20-30 cm depth. Microaggregates were significantly (p < 0.05) higher in CT than in NT treatments 

in all treatment depths. This was more pronounced in 0-10 cm depth with CT treatment having 

12% and 2% more microaggregates than NT and RT treatment, respectively. Silt and clay content 
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observed to decrease with depth, with no significant differences observed between NT and RT 

treatments. 

 

Fig. 2: Aggregate fractions at 0-10, 10-20 and 20-30 cm depths measured 13 years after 

implementation of the trial. Note: NT = no-till with mulch, RT = rotational tillage with mulch, CT 

= conventional tillage, LM = larger macroaggregates (> 2000 µm), SM= smaller 

macroaggregates (250-2000 µm), Mi = microaggregates (53-250 µm) and SC = silt and clay (< 

53 µm). 

 

There was a weak insignificant correlation as determined by the regression coefficient (R2) 

between fertilizer application rates and aggregate formation in all tillage treatments (Fig. 3). 

Application rate at 200 kg/ha was observed to weaken the regression between NT and CT tillage 

treatments. 
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Fig. 3: Relationship between fertilizer application rate and aggregate formation in three tillage 

treatments of NT (no-till), RT (rotational tillage) and CT (conventional tillage). 
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by 200 and 100 LAN treatments which were not different (p > 0.05). On the other hand, there were 

no differences (p > 0.05) observed in CT treatment.  

 

Fig. 4: Aggregate mean weight diameter (MWD) in different treatments, depths and levels of 

nitrogenous fertilizer measured 13 years after implementation of the trial.  

 

 

Fig. 5: Relationship between MWD and fertilizer application rate in NT, RT and CT treatments. 
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3.4.2 Infiltration and bulk density 

 

Cumulative infiltration was significantly higher (p < 0.001) across the treatments with CT having 

a significantly lower infiltration rate than RT and NT treatments (Fig. 6). No-till treatment took 

less than 5 minutes to reach 160 mm while on the other hand, CT treatment took more than 50 

minutes and RT it took about 20 minutes.  Lastly, there were no differences (p > 0.05) found in 

bulk density across the tillage treatments (Fig. 7).  

 

 

Fig. 6: Cumulative infiltration measured in 13 years after implementation of the field trial. 
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Fig. 7: The bulk density of different tillage treatments measured 13 years after implantation of 

the field trial. 

 

3.4.3 Soil organic carbon 
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Carbon associated with large macroaggregates varied marginally (p = 0.085) with tillage 

treatments and the differences were only observed in the 0-10 cm depth. No-till treatment had the 

highest C concentration (38.0 t/ha) associated with large macroaggregates compared with RT (36.6 

t/ha) and CT (29.7 t/ha). Significant differences in large macroaggregates C were only observed 

across the depths in NT and RT treatments with CT treatment showing a more uniform distribution 

of C across the tillage depths. Carbon associated with small macroaggregates varied significantly 

with tillage treatment where it decreased significantly with increase in tillage intensity; NT (37.8 

t/ha), RT (33.5 t/ha) and CT (30.4 t/ha); in the 0-10 cm depth. In the lower depths, 10-20 cm and 

20-30 cm it was found to be distributed uniformly across the treatments where no significant 

differences were found. However, significant effects were clear in tillage × depth interactions with 

C amount decreased with depth. No significant interactions were found in C associated with 

microaggregates in the 0-10 cm and 10-20 cm across the tillage treatments although the amount 

showed a decrease with increase in tillage intensity in the 0-10 cm depth, CT (25.2 t/ha), RT (23.0 

t/ha) and CT (22.7 t/ha), respectively. Carbon amount decreased significantly with depth in NT 

and RT treatments and in CT, no significant difference was observed. Similar trends were observed 

in C associated with silt and clay as in microaggregates. There were no significant trends found 

between fertilizer application rate and total SOC in NT and CT treatments (Fig. 9). The strong 

positive correlation was only found in RT treatment. On the other hand, significantly higher 

differences (p < 0.001) were observed in aggregate-associated C in each tillage treatment with 

large and small macroaggregate having the higher concentrations than the micro-aggregates (Fig 

10). Larger macroaggregates were having higher amounts of SOC than the small macroaggregates 

and micro-aggregates.  
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Fig. 8: Total soil organic carbon of different tillage treatments in different soil depth measured 13 

years after implementation of the trial. 

 

 

Fig. 9: Correlation between total soil organic carbon (SOC) and fertilizer application rate at 

different tillage treatments after 13 years of implementation of the trial. 
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Fig. 10: Comparison of aggregate-associated C in NT, RT and CT treatments observed after 13 

years of implementation of the trial. Note: LM= large macroaggregates (> 2000 µm), SM= small 

macroaggregates (250-2000 µm) and Mi= microaggregates (53-250 µm). 
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Table 2. Particulate SOC and aggregate size fraction C at 0-10, 10-20 and 20-30 cm depth after 13 years of implementation of the trial.  

Note: NT= no-till with mulch, RT= rotational tillage with mulch, CT= conventional tillage, LM= large macroaggregates (> 2000 µm), 

SM= small macroaggregates (250-2000 µm), Mi= microaggregates (53-250 µm) and SC= silt and clay (< 53 µm). t= tillage, d= depth 

and f= fertilizer leve. 

 

 0-10 cm 10-20 cm 20-30 cm  

Treatment 
Fertilizer 

level 

Aggregate fraction C (t/ha) Aggregate fraction C (t/ha) Aggregate fraction C (t/ha) 

POC LM SM Mi SC POC LM SM Mi SC POC LM SM Mi SC 

NT 0  24.2bcde 35.0abc 37.2cde 24.5bcd 35.5c 17.3abc 26.5abc 25.4abcd 17.5abc 25.9abc 16.2ab 25.9abc 22.0a 16.8ab 23.3ab 

100 26.9e 42.7bc 38.9e 25.9d 33.9c 18.7abcde 28.9abc 27.3abcde 18.7abcd 25.5abc 18.2abcd 24.8ab 27.7abcde 20.2abcd 28.4abc 

200  24.7cde 36.3abc 37.4de 25.1cd 35.1c 17.4abc 24.9ab 27.2abcde 17.4abc 26.6abc 16.2ab 24.0a 24.1ab 16.8ab 21.4a 

 Mean  25.3d 38.0b 37.8d 25.2c 34.9c 17.8ab 26.8a 26.6ab 17.9a 26.0a 16.9ab 24.9a 24.6ab 17.9a 24.4a 

RT 0  20.5abcde 30.0abc 29.5abcde 22.5abcd 27.1abc 17.3abc 24.8ab 25.3abcd 19.0abcd 25.5abc 15.1a 22.8a 21.2a 16.4a 23.2ab 

100  23.5bcde 36.5abc 35.0bcde 22.5abcd 32.7bc 16.2ab 22.4a 23.9ab 18.4abcd 27.1abc 17.0abc 26.5abc 23.5ab 18.2abcd 27.4abc 

200  25.8de 43.3c 35.9bcde 24.1abcd 34.4c 18.2abcd 25.7abc 26.8abcde 20.3abcd 30.8abc 16.9abc 23.7a 24.6abc 19.2abcd 25.6abc 

 Mean 23.3cd 36.6b 33.5cd 23.0bc 31.4bc 17.2ab 24.3a 25.3ab 19.3ab 27.8ab 16.3a 24.3a 23.1a 17.9a 25.4a 

CT 0  20.3abcde 31.2abc 28.8abcde 21.3abcd 28.7abc 17.7abcd 25.4abc 26.4abcde 18.9abcd 28.6abc 19.1abcde 24.7ab 27.3abcde 24.5bcd 31.6abc 

100  22.0abcde 29.0abc 33.4abcde 25.4cd 28.9abc 20.5abcde 28.4abc 29.7abcde 23.7abcd 31.2abc 18.3abcd 25.3abc 27.4abcde 20.6abcd 28.0abc 

 200  19.9abcde 28.7abc 29.1abcde 21.6abcd 27.8abc 19.0abcde 25.7abc 29.6abcde 20.7abcd 27.7abc 17.5abcd 24.0a 25.1abcd 20.7abcd 26.8abc 

 Mean 20.7bc 29.7ab 30.4bc 22.7bc 28.5ab 19.0ab 26.5a 28.6abc 21.1ab 29.2ab 13.3ab 24.7a 26.6ab 21.9bc 28.8ab 

t × d × f LSDPOC= 4.3, LSDLM= 9.3, LSDSM= 6.5, LSDMi= 4.1, LSDSC= 5.4 
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3.5 Discussion 

 

3.5.1 Tillage system and fertilizer application rate on soil aggregation and infiltration 

 

Tillage intensity affected aggregate size distribution in all treatments (Fig 1). Larger 

macroaggregate decreased significantly with the increase in tillage intensity and this was more 

pronounced on the 0-10 cm depth where RT and CT were found to be significantly lower than NT 

treatment. Mechanically disruption of tillage may have a bigger impact on larger aggregates 

compared with smaller aggregates. Smaller macroaggregates were also affected by tillage intensity 

where it was found to be significantly reduced under CT than RT and NT where differences were 

not observed in these treatments across soil depth. However, the impact and magnitude of tillage 

in small macroaggregates was much reduced compared to large macroaggregates. The increase of 

large macroaagregates in NT system, especially in the 0-10 cm depth, could be attributed to less 

mechanical disturbance and permanent return and placement of organic soil cover and larger 

biological activity under this system. Soil organic matter is a major binding agent which binds soil 

particles together into soil aggregates. Further, NT in this trial was, on the other study conducted 

on the same trial, found to contain a higher population of termites, beetles and millipedes (Sithole 

et al., 2017) and these might have an influence on soil aggregation under dry conditions where 

other ecosystem engineers (earthworms) are limiting. Although studies on termites in soil 

aggregation are limiting, but it is evident that they influence microstructure through the formation 

of fecal and oral pellets in microaggregates size class under semi-arid to dry conditions (Fall et al., 

2001). These results were in agreement with those of Paul et al. (2013) in the study conducted in 

Ferralsols which indicated that the amount of large and small macroaggregates were consistently 
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higher under reduced tillage compared with conventional tillage in the trial that has been for over 

five years under high rainfall region. Higher large and smaller macroaggregates and more abundant 

soil macrofauna, particularly termites and millipedes, in these treatments may also have increased 

infiltration rate in the NT and RT treatments as compared with CT treatment. Mando et al. (1996) 

reported that termites may have a great impact on soil properties and genesis.  The dense network 

of termite galleries improve porosity and aeration, infiltration and water storage and as a result, 

improves soil primary productivity.  

 

Water stable aggregates represented by mean weight diameter (MWD) was also influenced by 

tillage intensity (Fig 4) where NT was found to be 10% higher than both CT and RT. The effect 

of tillage treatment on MWD was only observed in the soil surface, 0-10 cm, where NT treatment 

had a significantly higher water stable aggregates than RT and CT treatments, respectively. This 

was also attributed to the increase in bulk SOC concentration in the soil surface under these 

treatments. Similar results were also reported by Zhang-liu et al. (2013). In addition, non-

significant water stable aggregate observed in CT treatment across the tillage depth could be 

attributed to a more even distribution of soil organic residues in the soil profile caused by tillage. 

For example, in a study conducted in 26 agricultural soils using wet sieving method, it was found 

that high significant correlation for the relationship between SOM and aggregate stability and no 

other soil constituent investigated had a significant relationship with aggregate stability indicating 

that SOM was mainly responsible for the stabilization of the aggregates in these soils (Chaney and 

Swift, 1984). 
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With respect to the effect of fertilizer application rate on soil aggregation and aggregate stability, 

there were no significant correlation trends found in all treatments which can be explained with 

certainty. From 0 N to 100 kg/ha N application rate, aggregate stability and aggregation increased 

and at a high rate, 200 kg/ha N application, these decreased perhaps due to the observed similar 

trend found in SOC correlation with N-fertilizer application rate. Soil organic carbon is the major 

binding agent of the soil particles and its changes across the treatments may also influence soil 

aggregation and stability. This is in contrast with some studies which have suggested that the 

increase in N-fertilizer application rate will increase biomass production and consequently SOC 

and aggregate stability. This could be attributed to the complex interaction of soil type, climate 

and the environment which in turn highlight the importance of site-specific studies to improve our 

understanding of mechanisms involved in sustainable soil management practices.  

 

3.5.2 Tillage system and N-fertilizer application rate on SOC  

 

In the present study, no significant changes were detected in the SOC even after 13 years of 

implementation of NT with permanent soil residue cover and application of higher rates of nitrogen 

fertilizer. Significant differences were only observed in the depth distribution of SOC as affected 

by tillage type with NT and RT having high SOC in the soil surface than in sub-soil. This is 

consistent with the recent literature which have shown that overall C stock is often not enhanced 

under CA when considering the upper 0-30 cm depth or deeper despite the higher C content in the 

upper centimeters of the soil (Bationo et al., 2007; Govaerts et al., 2009; Luo et al., 2010; 

Anyanzwa et al., 2010). Particulate organic C, on the other hand, varied significantly with tillage 

treatments but only in the top 0-10 cm depth where it decreased with increase in tillage intensity. 
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On reduced tillage treatments, it was found to be stratified on the top 0-10 cm depth and in CT 

treatment it was distributed uniformly across the treatment depths. Similar results of high SOC in 

the soil surface under NT have been reported (Blanco-Moure et al., 2013). The stratification of the 

SOC pool in the soil surface is due to the residue placement on the surface and reduces disturbance 

and decomposition in the soil surface (Lopez-Garrido et al., 2011).  

 

Carbon associated with large and small macroaggregates decreased marginally with an increase in 

tillage intensity in the top 0-10 cm depth and it significantly decreased across the sampling depth. 

When looking at each treatment, C associated with large macroaggregates was higher than that 

associated small macroaggregates and microaggregates in all treatments which indicates that 

implementation of reduced tillage and application of residues soil cover results in the formation of 

larger stable aggregates which can sequester more C. Similar results were observed by Sainju et 

al. (2009). Aggregates protect the mineralization of soil C by reducing microbial access that binds 

them (Six et al., 2000). Macroaggregates has a higher concentration of C than smaller 

macroaggregates and microaggregates because macroaggregate is composed of binding agents 

plus microaggregates (Elliott, 1986). However, different results have been reported in other studies 

where there were no differences in aggregate-associated C between tilled and reduced tillage 

systems (Ayuke et al., 2011; Paul et al., 2013). The differences in these studies indicate the 

importance of site-specific studied to better understand C stabilization across different 

agroecosystems. 
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3.6 Conclusion 

 

The results of this study clearly showed that tillage practice affects the distribution of aggregates 

and aggregate stability over time. Conventional tillage practice negatively affected aggregate 

stability compared with NT management practice indicating the increasing susceptibility to soil 

degradation. Tillage practice did not affect total SOC across the treatments, but it affected POC 

only in the soil top surface of the 0-10 cm indicating that this C pool is a sensitive indicator of 

tillage-induced changes. Macroaggregates increases C protection in the studied soil. The weak 

interaction between residue retention and/SOC and fertilizer application rate has highlighted the 

need for a better scientific understanding of carbon stabilization across different semi-arid of 1:1 

clay minerals in sub-tropical soils. 
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 4.1 Abstract 

 

Soil management practices may change soil chemical properties and thus fertility. The magnitude 

of change varies depending on soil type, cropping systems, climate and management practices. 

The objective of this study was to evaluate the effect of no-till (NT), rotational tillage (RT) and 

conventional tillage (CT) treatment on soil chemical properties of a semi-arid Ferralsols Haplic in 

Bergville (28°55'26.83"S, 29°33'38.64"E) South Africa. Soil chemical properties were measured 

13 years after the implementation of the trial. Differences (p < 0.05) were found in total soil organic 

carbon (SOC) with NT having the highest concentration (81.3 t/ha) compared to RT (78.0 t/ha) 

and CT (79.6 t/ha). The concentration of Nitrogen (N) followed the same trend where it was found 

to be higher under NT than RT and CT, respectively. SOC and N were found to be highly 

concentrated in the 0-10 cm depth. Phosphorus was significantly higher (p < 0.001) under NT 

(0.0213 t/ha) than RT (0.0127 t/ha) and CT (0.00704 t/ha). A large amount of phosphorus was in 

the 0-10 cm depth in NT and it was distributed more uniformly under RT and CT. Potassium was 

also higher (p < 0.05) under NT (9.73t/ha) than RT (9.52t/ha) and CT (8.00 t/ha). It was found to 

be uniformly distributed across the soil depths in all tillage treatments. No significant differences 

were found in the concentration of calcium across the tillage treatments, however, it was observed 

to increase with an increase in depth under NT and RT and to decrease with increase in depth in 

CT. The soil of NT and RT treatments had lower pH values (5.80 and 5.86) than CT (6.68) at 0-

10 cm depth while in the lower depths, 10-20 and 20-30 cm depth was observed to increase 

significantly, by 1.2 and 0.9 units in NT and RT respectively. Similar trends were observed in 

CEC. These results indicated that NT treatment increase nutrient availability in the studied soil 
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which was more linked to the distribution of SOC and variability of pH along the soil profile, thus 

indicating the potential of implementing NT in the semi-arid environment. 

 

Keywords: Ferralsols Haplic, soil chemistry, no-till, conservation agriculture 

 

4.2 Introduction 

 

Long-term sustainability of crop production depends on soil quality and fertility. Poor soil 

management practices such as the use of conventional mouldboard plow can lead to soil 

degradation and a decline in environmental quality and consequently crop yields (Karlen et al., 

1997). Soils under no-till conservation agriculture have been recognised widely that they generally 

contain higher soil organic carbon (SOC) than conventional mouldboard plow system (Conant et 

al., 2007). Differences in nutrient distribution and transformation have been observed which are 

linked more to SOC (Galantini et al., 2000). Interacting factors such as less soil disturbance and 

mixing, increased residue return, decreased risk of soil erosion, reduced soil temperature and 

higher moisture content are reported to results in this increase of SOC under no-till system (Blevins 

and Frye, 1993; Franzluebbers et al., 1995; Hussain et al., 1999).  

 

Tillage type has been also shown to affect other important soil chemical characteristics and 

differences between no-till and conventional mouldboard plow system has been observed with 

respect to pH, cation exchange capacity (CEC) and other important plant nutrients (Lopez-Fando 

and Pardo, 2009). However, the response of soil fertility to tillage is site-specific and depends on 

soil type, cropping systems, climate, fertilizer application and other management practices 
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(Thomas et al., 2007; Rahman et al., 2008; Verhulst et al., 2010). For instance, long-term 

experiments have shown that the effects of no-till on SOC and other nutrients are positive although 

most of these studies were concentrated on temperate, cooler environment (West and Marland, 

2002; Six et al., 2002; Thomas et al., 2007). In sub-tropical environments, there may be higher 

chances for soil organic matter (SOM) decomposition because of higher temperatures. And a semi-

arid climate condition may have a low biomass production and C input than humid and a sub-

humid region (Dalal and Chan, 2001). As a result, the effect of tillage on SOC and other soil 

important nutrients in sub-tropical, semi-arid areas may be different from temperate, cooler and 

wetter climates. Consequently, Ishaq et al. (2002) concluded that studies that are site specific are 

more important so that more accurate generalisation can be made regarding the conditions required 

for sustainable tillage. 

 

Bergville in South Africa has a sub-tropical and semi-arid climate and it forms the most important 

part of the dryland maize production system in KwaZulu-Natal Province. One of the potential 

constraints to long-term adoption of continuous no-till is the possibility of densification. This is 

particularly true in this region and other arid and semi-arid areas in the country and rest of sub-

Saharan Africa, particularly in the commercial cropping enterprises, and this may complicate well-

established fertilization methods. In addition, low levels of SOM, the predominance of 1:1 low 

activity clay and lack of freezing and thawing and soil compaction can be a severely limiting factor 

in these areas. This may alter water and chemical movement resulting in environmental problems 

(Hamza and Anderson, 2005). In such cases where continuous no-till has been practiced over an 

extended period, periodic or rotational tillage and different tillage methods have been 

recommended to encounter the problem (Lopez-Fando and Pardo, 2009).   
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Therefore, the objective of this study was to assess the effects of tillage system, residue retention 

and fertiliser application rate on the amount and distribution of SOC and nutrients in the 0-10, 10-

20 and 20-30 cm depth of a Ferralsols Haplic in a sub-tropical and semi-arid environment.  

 

4.3 Materials and methods 

 

4.3.1 Experimental site 

 

The experimental site was located approximately 35 km south of Bergville in Winterton, Gourton 

Farm (28°55'26.83"S, 29°33'38.64"E, 1038 m above sea level), KwaZulu-Natal Province. The trial 

was established in 2002/2003 growing season in an area that was under no-till since 1990. The 

mean annual rainfall of the area is 643 mm/year receive mostly during the summer season between 

October and March and the mean air temperature of the site is 19.3 °C in June and 27.9 °C in 

January. Previously, the trial site has been under dry maize commercial production in rotation with 

soybean until the establishment of the trial in 2002/2003 growing season. Since the beginning of 

the experiment, the trial site was planted to dry maize continuous monocropping, in summer and 

left fallow during the winter months. The soil was classified as Ferralsols Haplic (FAO, 2006) 

equivalent to Hutton non-swelling with clay loam soil texture (Soil Classification Working Group, 

1991). The average bulk density of the top 0-30 cm depth was 1.6 g/cm3 for NT and CT and 1.7 

g/cm3 for RT. 
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4.3.2 Experimental details 

 

The experiment included three tillage treatments, namely, no-till (NT), annual conventional tillage 

(CT) and rotational tillage (RT). In NT and RT treatments about 10-12 t/ha/year of maize residues 

were left on the soil surface, thus forming permanent soil cover, while in CT treatments residues 

were removed on the soil surface after harvest. The field experiment was set up as a split plot 

design with randomized tillage strips forming the whole plot and N-fertilizer application rates 

forming the sub-plots which were randomized within the whole plots. The sub-plots had 9.5 m × 

12 rows of maize at a density of 70 000 plants/ha. The treatments were replicated three times. No-

tillage involved direct seeding into the undisturbed soil using NT planter. CT, on the other hand, 

involved ploughing with mouldboard plow to a depth of 30 cm and disking to a depth of 10 cm 

while RT involved CT after every four years of NT. Nitrogen was applied at three rates, 0, 100 

and 200, as lime ammonium nitrate (LAN). Nitrogen was applied as top dressing four weeks after 

planting. Potassium (K) and phosphorous (P) were applied at planting in the band at a rate of 50 

and 20 kg/ha, respectively. Lime (Calcitic) was applied at a rate of 2 Mg/ha every second season 

to the entire treatments. It was incorporated during ploughing in CT plots and surface applied in 

NT plots. Weeds were controlled chemically using a combination of mesotrione, atrazine, S-

metolachlor and 2,4-D. The only pesticide applied at planting was pyrethroid (Decis Forte) to 

control cutworms. Leaf fungal disease (grey leaf spot, northern corn leaf blight and rust) were 

controlled using carbendazim plus flusilazole and azoxystobin. Tractor-drawn ring equipped with 

an 18 m wide boom sprayer was used in the application of chemicals. 
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4.3.3 Soil sampling and analysis 

 

Soil samples were taken at the end of 2015/2016 growing season from three undisturbed soil 

samples on a randomly selected position of each treatment at three depths: 0-10, 10-20 and 20-30 

cm using the soil auger. Soil samples were air-dried, sieved through 8 mm sieve then 5 mm sieve 

and mixed before the analysis.  

 

The pH was measured using 1M KCl at a ratio of 1:2.5 (Diez et al., 2004). The supernatant liquid 

was stirred with a glass rod and allowed to stand for 30 minutes. An electrode pH meter (PHM 

210) was used to measure the pH of the supernatant liquid.  

 

Soil organic C and N were analysed by an automated Dumas dry combustion method using a 

LECO CNS-2000 (Leco Corporation, Michigan, USA) (Leco Corporation, 2012). Briefly, air-

dried soil samples were passed through a 0.5 mm sieve size, then a 0.5 g sample was then measured 

and put into the LECO for analysis of C and N. The procedure was based on dry combustion of 

air-dried samples in crucibles, subjected to a 1350 C furnace temperature for about 7 minutes.  

 

Exchangeable bases and P were extracted using 70% nitric acid by EPA 3052 method (EPA, 1996). 

Briefly, 0.5 g soil samples were placed in reaction vessels and 8 mL of nitric acid was added. The 

soil was then heated at 180°C for 30 minutes then filtered into 0.45 micropores syringes before 

analysis. The soil was then analyzed using Inductively Coupled Plasma Optical Emission 

Spectrometry (ICP-OES, 5300 DV, Perkin Elmer, USA), 5300 DV, for Ca, Mg, K and Na using a 

wavelength of 550 nm (Wolf and Beegle, 2009). CEC was determined as the sum of bases. 
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4.3.4 Statistical analysis 

 

The data collected was subjected to analysis of variance using GenStat 17th Edition (VSN 

International, Hemel Hempstead, UK) and means were separated using Tukey’s least significant 

difference (LSD) at 5% level of significance. Correlation of physio-chemical properties were 

subjected to principal component analysis (PCA) based on correlation matrix and biplots for all 

tillage regimes and fertilizer application rate. 

 

4.4 Results and discussion 

 

4.4.1 pH response to tillage management 

 

Soil pH was significantly different (p < 0.001) among the different tillage treatments. The pH of 

CT (6.30) and RT (6.35) was observed to be significantly higher than of NT (6.06) treatment (Fig. 

1). However, there were no differences between NT and RT. There were also no differences (p > 

0.05) found with respect to fertilizer application rate. This may be due to the lime that was applied 

every second season in the field trial which may have decreased the acidifying effects of nitrogen 

fertilizer at the higher rates of application. Many studies (Franzluebbers and Hons, 1996; Matowo 

et al., 1999; Limousin and Tessier, 2007) have reported the decrease in pH with the increase in the 

application of nitrogen fertilizers where lime was not applied at all. As a result, the pH was reduced 

at higher rates of application in these studies. Furthermore, NT treatment and RT exhibited a strong 

pH vertical gradient than CT. The pH of NT and RT increased significantly by 1.2 and 0.9 units 
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respectively with the increase in soil depth (from the soil surface to a depth of 30 cm) while that 

of CT treatment was more uniform. Our results are in line with those previously reported by Lopez-

Fando and Pardo (2009) where a more uniform pH distribution in CT with an increase in depths 

was observed. Uniform pH distribution is probably due to thorough cultivation of the soil every 

season. Numerous studies (Franzluebbers and Hons, 1996; Limousin and Tessier, 2007; Thomas 

et al., 2007) have reported that the soil becomes more acidic under NT than CT because of the 

greater soil organic matter accumulation in the topsoil in NT which led to acidity from 

decomposition of organic material (Franzluebbers and Hons, 1996). 

 

 

Fig. 1: Soil profile distribution of pH as affected by tillage and N-fertilizer application rate at 0-

10, 10-20 and 20-30 cm depth. Note CT= conventional tillage, NT= no-till and RT= rotational 

tillage. 
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4.4.2 Soil organic C and N  

 

Marginal differences of C concentration were found in different tillage treatments in the 0-30 cm 

depth with NT having the highest C concentration (Table 1). In reduced tillage treatments (RT & 

NT) a large amount of SOC was concentrated in the top 0-10 cm depth while in CT treatment SOC 

was uniformly distributed across the profile within 0-30 cm depth. Similar trends were observed 

in soil organic nitrogen (SON) (Table 1). Other authors have also reported similar results of a 

strong concentration gradient of SOC and N under NT from the surface to subsurface layers (Dalal 

et al., 1991; Heenan et al., 1995; Limousin and Tessier, 2007). Our expectations were to find 

significant differences between NT and CT treatment in total SOC concentration after 13 years of 

implementation of NT system where about 10 t/ha/yr of residue were left each year in the soil 

surface, however, the results only showed marginal differences. Verhulst et al. (2010) cited that 

the mechanisms that govern the balance between increased, similar or lower SOC after conversion 

to NT are not clear especially in tropical and sub-tropical areas. Our results, therefore, might 

indicate that the biochemical kinetics of the processes involved in the breakdown of soil organic 

matter after conversion to NT occurs very slowly in the studied soil, Ferralsols Haplic. 

 

The C/N ratios of the top 0-20 cm of all tillage treatments were similar (Table 1). However, 

significant (p < 0.05) differences were observed in NT and RT treatments with increase in depth. 

In both cases, C/N ratio was observed to increase with depth while in CT it remained uniform. The 

increase in C/N ratio low layers, especially under NT where significant differences were observed 

between 0-20 and 20-30 cm (Table 1), may indicate that SOC is less humified perhaps due to low 

nitrogen needed by microorganisms. Thomas et al. (2007) in semi-arid subtropic Luvisol observed 
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an increase in N in the top 0-10 cm compared to lower depth, 20-30 cm, which suggested greater 

immobilization of N in the soil surface than in the subsoil which resulted in increase in C/N ratios. 

 

Table 1: Soil organic carbon, soil organic nitrogen and C/N ratio of different tillage treatments. 

    Tillage system  

  Soil depth (cm) NT RT CT 

   

Soil organic C (t/ha) 

0-10  34.0d 31.1cd 27.8bc 

10-20  24.3ab 24.2ab 26.3abc 

20-30  23.0a 22.7a 25.5ab 

Total  81.3b 78.0a 79.6ab 
Pt= 0.46, LSD= 1.72 

Pt*d < 0.001, LSD= 3.00     

Soil organic N (t/ha) 

0-10  2.30d 1.69c 1.58c 

10-20  1.47bc 1.21abc 1.35bc 

20-30  0.86a 1.00ab 1.31abc 

Total  4.63b 3.90a 4.24a 
Pt = 0.024, LSD= 0.17 

Pt*d < 0.001, LSD= 0.30     

C:N ratio 

0-10  14.8a 18.4ab 17.6ab 

10-20  16.5a 20.0ab 19.5ab 

20-30  26.7c 22.7bc 19.5ab 

Total  17.5a 20.0a 18.8a 
Pt= 0.33, LSD= 3.04 

Pt*d= 0.003, LSD= 5.27     

Note: t= tillage, t*d= tillage*depth. Numbers in the same cilumn not sharing the same letter 

differ significantly at LSD (P= 0.05). 

 

4.4.3 Nutrient stocks 

 

Phosphorus concentration was significantly (p < 0.001) higher under NT (0.0213 t/ha) compared 

to RT (0.0127 t/ha) and CT (0.00704 t/ha) (Table 2a). Depth distribution of P concentration was 

uniform under CT and RT while in NT treatment was observed to be stratified in the soil top 0-10 

cm layer although it increased again in the 20-30 cm depth in 100 and 200 N-fertilizer application 
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rate. Nitrogen fertilizer application rate did not seem to affect P in the studied soil. Our results are 

similar to those of Thomas et al. (2007) and Lopez-Fando and Pardo (2009) who reported that the 

concentration of P was higher in the top 0-10 cm of the soil depth. These authors reported this 

effect to result from less mixing of fertilizer P with soil resulting from no tillage or less tillage, 

possible increase of organic P and shielding of P adsorption sites (Schomberg et al., 1994).  

 

Significant differences (p < 0.05) were found between the tillage treatments in K concentration in 

the soil with NT having the highest concentration (10.4 t/ha) followed by CT (9.73 t/ha) and RT 

(9.52) (Table 2b). Potassium concentration was found to be uniformly distributed across the tillage 

depths in all tillage treatments and no trend was observed on the effect of N-fertilizer application 

rate on K distribution. These results support those by Limousin and Tessier (2007) as well as 

Lopez-Fando (2009) who observed higher concentration of K under NT but contradict other 

studies which found higher concentration gradient of K in the top 10 cm of the soil depth (Lal et 

al., 1990; Asghar et al., 1996; Thomas et al., 2007).  This could have been due to the lower pH 

observed under NT which may increase the weathering of minerals, thus making K exchangeable 

(Limousin and Tessier, 2007). While in the treatment of CT and RT, higher pH could have 

increased the availability of K in the soil surface. 

 

No significant differences (p > 0.05) were found in Ca concentration across the tillage treatments 

(Table 2c). Significant differences (p < 0.001) were only observed in the tillage × depth interaction. 

In NT and RT treatments, Ca increased with increase in depth but only in the 0-10 and 10-20 cm 

depth and it decreased in the 20-30 cm depth while in CT treatment the concentration decreased 

with increase in depth. Calcium concentration in CT treatment in the 20-30 cm depth was 68%, 
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34% and 36% smaller in 0, 100 and 200 N-fertilizer application rates. Our results are in line with 

those by Lopez-Fando and Pardo (2009) on the study that was conducted in the semi-arid area in 

Calcic Luvisol which found an increase in Ca concentration with depth in reduced tillage 

treatments and an increase in its concentration in conventional tillage treatments. This may be due 

to increase in pH with an increase in depth which may increase the availability of Ca. Limousin 

and Tessier (2007) also observed similar results where they found a strong correlation (r2= 0.95) 

between exchangeable Ca and pH under NT as compared to CT system.  

 

No differences (p > 0.05) were found between the tillage treatments in Mg concentration. 

Differences (p < 0.05) were only found in tillage × depth interaction but only in CT treatment. The 

concentration of magnesium decreased (p < 0.05) with an increase in depth. Magnesium and Ca 

are two divalent cations similar in nature (Table 2d). However, Mg did not seem to follow the 

behavior of Ca. Limousin and Tessier (2007) argued that plants could have influenced the 

distribution of this element and their uptake could have been more important for Mg than Ca. 

Furthermore, this could be attributed also to the fact that Mg is involved in isomorphic substitution 

of clay minerals while Ca is not. As a result, this could have influenced the retention of Mg in the 

upper layers in reduced tillage treatments. Sodium (Na) on the other hand was found to be 

distributed uniformly across the tillage treatments and across the treatment depths (Table 2e). 

Mineralogical nature and climate condition could probably have influenced the distribution of this 

mineral (. Limousin and Tessier, 2007) 
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Table 2a: Extractable P as affected by tillage system and N-fertilizer application rate. 

Treatment Depth (cm) 
Fertilizer level (t/ha) 

0N 100N 200N 

CT 

0-10 0.007a 0.011ab 0.008a 

10-20 0.002a 0.013ab 0.004a 

20-30 0.003a 0.002a 0.011ab 
     

RT 

0-10 0.010a 0.013ab 0.025ab 

10-20 0.010a 0.008a 0.009a 

20-30 0.014ab 0.017ab 0.010a 
     

NT 

0-10 0.069c 0.025ab 0.038b 

10-20 0.003a 0.010a 0.010a 

20-30 0.000a 0.015ab 0.022ab 

Pt < 0.001, LSDt = 0.004 

Pt*d < 0.001, LSDt*d = 0.008 

Pt*d*f < 0.001, LSDt*d*f = 0.013 

Note: t= tillage, t*d= tillage*depth and t*d*f= tillage*depth*fertilizer level of nitrogen. Numbers 

in the same cilumn not sharing the same letter differed significantly at LSD (P= 0.05). 

 

Table 2b: Extractable K as affected by tillage system and N-fertilizer application rate. 

Treatment Depth (cm) 
Fertilizer level (t/ha) 

0N 100N 200N 

CT 

0-10 9.17ab 9.44ab 10.5ab 

10-20 8.18ab 11.0b 11.2b 

20-30 9.09ab 10.7ab 8.3ab 
     

RT 

0-10 8.88ab 10.5ab 10.4ab 

10-20 9.60ab 10.2ab 9.39ab 

20-30 7.41a 10.1ab 9.26ab 
     

NT 

0-10 10.4ab 10.4ab 10.6ab 

10-20 9.66ab 10.5ab 10.9b 

20-30 9.84ab 10.9b 10.8b 

Pt = 0.007, LSDt = 0.58 

Pt*d = 0.44, LSDt*d = 1.00 

Pt*d*f = 0.08, LSDt*d*f = 1.74 

Note: t= tillage, t*d= tillage*depth and t*d*f= tillage*depth*fertilizer level of nitrogen. Numbers 

in the same cilumn not sharing the same letter differed significantly at LSD (P= 0.05). 
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Table 2c: Extractable Ca as affected by tillage system and N-fertilizer application rate. 

Treatment Depth (cm)  
Fertilizer level (t/ha) 

0N 100N 200N 

CT 

0-10 7.06d 5.13bcd 4.78abcd 

10-20 3.66abc 3.95abc 3.73abc 

20-30 2.27a 3.41abc 3.06abc 
    

0-10 3.73abc 3.89abc 4.19abc 

RT 
10-20 4.14abc 3.60abc 5.54cd 

20-30 3.49abc 2.56ab 3.23abc 
    

0-10 3.71abc 3.54abc 3.41abc 

CT 
10-20 3.95abc 4.19abc 4.05abc 

20-30 4.50abcd 3.58abc 3.63abc 

Pt = 0.38, LSDt = 0.48 

Pt*d <0.01, LSDt*d = 0.83 

Pt*d*f = 0.092, LSDt*d*f = 1.44 

  

Note: t= tillage, t*d= tillage*depth and t*d*f= tillage*depth*fertilizer level of nitrogen. Numbers 

in the same column not sharing the same letter differed significantly at LSD (P= 0.05) 

Table 2d: Extractable Mg as affected by tillage system and N-fertilizer application rate. 

Treatment Depth (cm) 
Fertilizer level (t/ha) 

0N 100N 200N 

CT 

0-10 3.54bc 3.47bc 3.90c 

10-20 2.50ab 3.20abc 3.10abc 

20-30 2.54ab 3.14abc 2.32a 
     

RT 

0-10 2.74ab 3.44abc 3.57bc 

10-20 3.01abc 3.02abc 3.06abc 

20-30 2.34a 2.69ab 2.69ab 
     

NT 

0-10 3.01abc 2.91abc 3.33abc 

10-20 2.90abc 3.15abc 3.18abc 

20-30 3.07abc 3.07abc 3.12abc 

Pt = 0.32, LSDt = 0.19 

Pt*d = 0.002, LSDt*d = 0.33 

Pt*d*f = 0.22, LSDt*d*f = 0.58 

Note: t= tillage, t*d= tillage*depth and t*d*f= tillage*depth*fertilizer level of nitrogen. Numbers 

in the same column not sharing the same letter differed significantly at LSD (P= 0.05). 
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Table 2e: Extractable Na as affected by tillage system and N-fertilizer application rate. 

Treatment Depth 
Fertilizer level (t/ha)   

0N 100N 200N 

CT 

0-10 0.33a 0.34a 0.81b 

10-20 0.28a 0.38a 0.40a 

20-30 0.29a 0.45a 0.28a 
     

RT 

0-10 0.30a 0.36a 0.33a 

10-20 0.33a 0.35a 0.31a 

20-30 0.28a 0.32a 0.29a 
     

NT 

0-10 0.32a 0.31a 0.32a 

10-20 0.32a 0.32a 0.35a 

20-30 0.33a 0.33a 0.37a 

Pt= 0.005, LSDt = 0.05 

Pt*d > 0.02, LSDt*d = 0.08 

Pt*d*f > 0.05, LSDt*d*f = 0.317 

Note: t= tillage, t*d= tillage*depth and t*d*f= tillage*depth*fertilizer level of nitrogen. Numbers 

in the same column not sharing the same letter differed significantly at LSD (P= 0.05). 

 

4.4.4 Cation exchange capacity 

 

Highly significant differences (p < 0.001) were observed in CEC as affected by tillage practice 

(Fig. 2). On average, conventional tillage had a significantly lower (86.9 mmolc.kg-1) CEC than 

RT (98.3 mmolc.kg-1) and NT (102.6 mmolc.kg-1). Significant differences were also found in the 

interaction of tillage × depth. Cation exchange capacity increased with increase in depth in NT and 

RT and it remained relatively uniform in the CT treatment. This was similar to what was observed 

in pH results. The vertical gradient of CEC followed that of pH (Fig. 1). Similar trends were 

observed by other authors where pH was positively correlated to CEC regardless of the tillage 

system (Limousin and Tessier, 2007; Lopez-Fando and Pardo, 2009). According to Morais et al. 

(1976), as the pH decreased, CEC associated with organic matter decreases due to a reduction in 



142 

 

pH-dependent cation exchange sites. Thus, the observed trend of lower pH in NT treatment than 

CT may have resulted in lower CEC in the top 0-10 cm soil depth with higher SOC under NT 

(Table 1). The impact of pH on CEC is on pH-dependent charges mainly of oxides of Al and Fe. 

The negative charges responsible for retaining bases/cations become less negative as pH drops due 

to the introduction of a proton (H+). The variable charges are not associated with O.M but Fe and 

Al oxides OH- functional groups which are subject to protonation a process common in the soil 

reported in the study (Limousin and Tessier, 2007). 

 

 

Fig. 2: Soil profile distribution of CEC 13 years after implementation of the trial as affected by 

tillage and N-fertilizer application rate at 0-10, 10-20 and 20-30 cm depth. Note: CT= conventional 

tillage, NT= no-till and RT= rotational tillage. 
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4.4.5 Correlation of soil major chemical properties 

 

The results of the study showed a strong positive correlation between SOC, N and P (Fig. 3). These 

elements were found to be highly concentrated in the top 0-10 cm depth and they decreased with 

increase in depth (Table 1 & Table 2). This was attributed to more SOM that is found in the soil 

surface which increases the availability of these soil nutrients and decreases their availability with 

its decrease. Thomas et al. (2007) also found similar results where the concentration of these 

nutrients was highly correlated with the availability of SOC. Cation exchange capacity and pH 

were also found to be positively correlated. The pH is a master variable that controls the 

availability of soil nutrients. When pH increases the amount of nutrients in the exchange sites also 

increases and when it decreases, the amount of nutrients also decreases due to increase in 

aluminum toxicity and other trace elements. On the other hand, Ca and Na occupied the same 

position and direction meaning that they were exactly correlated. This is where there were no 

differences between the tillage treatments. Magnesium and K were also closely correlated with 

each other.  
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 Fig. 3: Principal component (PC) analysis biplot showing the relationship between the measured 

soil chemical properties. 

 

4.5 Conclusion  

 

In conclusion, Ferralsols Haplic in this study was significantly affected by different tillage 

practices and residue retention. However, N-fertilizer application rate did not seem to have any 

effect. Soil pH, distribution of SOC and N, nutrients and CEC were affected as a result of various 

tillage treatments. Soil organic carbon accumulated in the soil surface in no-till and rotational 
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tillage treatments compared to conventional tillage. The pH of NT and RT was lower in the soil 

surface and increased with increase in depth compared to CT where a more uniform distribution 

of organic matter was found. Similar trends were observed for CEC. Phosphorus and K 

concentration was found to be high under NT treatment compared to CT. Phosphorus was stratified 

in the soil surface while K was uniformly distributed across the tillage treatments. Calcium was 

high under NT and RT and increased with increase in depth while in CT it decreased with increase 

in depth. These results suggest that in the semi-arid area, nutrients are increased and this increase 

is not just concentrated in the topsoil but the entire plowing profile. They also indicate that the 

acidification under NT can be better managed by periodic addition of lime which accumulates in 

the sub-soil over time thus increasing the pH. They have shown that the decomposition of SOC 

sequestration is very slow in the studied soil. 
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5.1 Abstract 

 

Resilient and sustainable soil management systems are needed to overcome soil degradation, 

reduce soil fertility decline and to offset the predicted negative impact of climate change. 

Conservation agriculture (CA) has been recommended as the possible alternative for improving 

soil quality parameters and yields. However, maize yields under rain-fed conditions are usually 

variable and concerns have been raised about lack of evidence for CA benefits in sub-Saharan 

Africa. This study assessed the long-term effect of no-till (NT) with mulch, rotational tillage (RT) 

with mulch, conventional tillage (CT) without mulch removed, rainfall and soil quality parameters 

on maize yield.  On average maize, yields were increased in NT (12.3 t/ha) and RT (12.4 t/ha) 

under higher rate of N application (200 kg/ha) than CT (11.8 t/ha) than low and medium N 

application rates. However, yields decreased in NT with the reduction of N rate to medium N rate 

(100 kg/ha) and low rate (0 t/ha) and it was 10.6 t/ha and 6.6 t/ha as compared to RT and CT. 

Under low rainfall < 400 mm/year, the average yield in higher N rate was 9.13 t/ha, 7.96 t/ha and 

7.00 t/ha in NT, RT and CT, respectively across the years. However, when the average rainfall was 

above 600 mm/year, yields averaged at 13.3 t/ha, 13.7 t/ha and 13.5 t/ha in NT, RT and CT under 

high N rate (200 kg/ha) across the years. Principal component analysis (PCA) to assess some 

biological, physical and chemical components of the soil that contributed to maize yield showed 

no parameter that seemed to be related to maize yield. This was attributed to the complex 

interaction of bio-physio-chemical parameters with the environment. The results of this study 

found that yields improve over time under CA and this is more pronounced during the drought 

period. Yields improvements under CA require the application of the higher rate of N fertilizer in 
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correct amount. Therefore, it is recommended that CA is implemented in semi-arid areas to 

improve soil conditions, water conservation and to achieve optimum yields. 

 

Keywords: Maize yield, clay loam, feralsols Haplic, conservation agriculture 

 

5.2 Introduction 

 

Soil degradation is a major problem in sub-Saharan Africa (SSA). This combined with water 

scarcity, the predicted impacts of climate change and ever-increasing population poses a threat to 

the region’s ability to self-supply enough food for current and future generations. In such cases, 

conservation agriculture (CA) has been endorsed by many researchers because of its powerful 

mechanism to adapt by increasing resilience to land degradation, drought and increasing water use 

efficiency (Hobbs, 2007; Hobbs et al., 2008; Giller et al., 2009). Its effectiveness in resilience 

characteristics is expected to be measured in terms of crop yield. CA is defined as a concept for 

resource-saving agricultural productivity that strives to achieve acceptable profits while 

concurrently minimising negative impacts on the environment (FAO, 2010). It involves reduced 

tillage or no-till, permanent soil cover and crop rotations to protect soil against soil erosion, 

enhance soil fertility and to supply food for the increasing population (Rusinamhodzi et al., 2011). 

Other benefits associated with CA include the reduction in input cost and profit maximisation 

(Dumanski et al., 2006; Knowler and Bradshaw, 2007).  

 

In South Africa, CA is mostly adopted by mechanized commercial farmers (Sithole et al., 2016) 

with the wide use of glyphosate for weed control (Derpsch, 2005; Friedrich et al., 2012). However, 
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implementing CA in SSA, particularly in semi-arid regions by smallholder farmers, present 

different challenges from where CA originated, (i.e Australia and Americas). Farming systems in 

SSA are predominantly mixed crop-livestock systems with low crop productivity, maize grain 

yield average at 1.5 t/ha, and the majority of crop residues are grazed in field by livestock 

(Mapfumo and Giller, 2001; Zingore et al., 2007). Thus, the success of CA in semi-arid region 

depends on farmer's ability to retain enough crop residue cover and to ensure adequate weed 

control (Giller et al., 2009) and systematic crop rotation to increase soil fertility and reduce root 

borne pathogens. 

 

However, the interactions between CA components and their effects on crop yields are complex 

(depends on climate, soil type and management system) and often site-specific and long-term trials 

are needed to give a better understanding (Rusinamhodzi et al., 2011). They provide a unique 

information about sustainable crop production systems and interaction between different 

management practices and the broader environment (Powlson et al., 2006). Thus, the knowledge 

of crop specific responses to the type of tillage, crop permanent residue cover as affected by soil 

type, climate and nitrogen fertilization is vital in the selection of suitable tillage and crop residue 

management for improved crop production (Aina et al., 1991).  Maize being the important staple 

crop for a larger population in SSA, we investigated the long-term impact of soil quality parameters 

and rainfall on maize grain yield in a sub-humid semi-arid region in South Africa under different 

tillage treatments. This area forms the larger part of the dryland maize production in South Africa. 
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5.3 Materials and methods 

 

This study combined the materials and methods of soil biological, chemical and biological 

properties (please refer to chapter 2, 3 and 4). The chapter summarizes the effects of soil quality 

parameters and their effect on maize grain yield as affected by the rainfall. Maize was harvested 

manually and the grain yield for different tillage treatments and nitrogen fertilizer application rate 

was measured in each plot for the whole trial just after harvest. 

 

5.3.1 Statistical data analysis 

 

Statistical analyses of yield data were carried out using GenStat® statistical software (GenStat®, 

17th edition, VSN International, UK) and means were separated using Tukey’s least significant 

difference (LSD) at 5% level of significance. The principal component analysis was performed 

out using The Unscrambler® X chemometric software (The Unscrambler® X v10.5, CAMO 

SOFTWARE AS, Oslo Science Park, NORWAY). 

 

5.4 Results and discussion 

 

5.4.1 Effect of N fertilizer rates and rainfall on maize yield 

 

On average yield was 12.3, 12.4 and 11.8 t/ha in NT, RT and CT treatments, respectively under 

high N fertilizer application rate (200 kg/ha) across the years (Table 1). In medium N fertilizer 
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application rate (100 kg/ha) it was 10.6, 11.3 and 11.4 t/ha in NT, RT and CT, respectively while 

in 0 kg/ha N fertilizer application rate it was 6.6, 7.6 and 8.3 t/ha in NT, RT and CT, respectively. 

 

Moreover, significant yield (p < 0.05) variation and non-variation (p > 0.05) was observed in 

tillage × N fertilizer application rate in tillage treatments within and across the years (Table 1). In 

the first three years, there were no significant yield variation (p > 0.05) in tillage × N fertilizer 

application rate. This may be ascribed to the fact that the whole farm where the trial was conducted 

was under no-till since 1990 hence there were no much differences and disturbances in terms of 

nutrient distribution across the soil profile in different N fertilizer application rate treatments. From 

2006/07 growing season to 2009/10 growing season, significant yield variation (p < 0.05) was 

observed in tillage × N fertilizer application rate with the higher N application rate (200 kg/ha) 

yielding higher maize yield (in most cases) than mid-rate (100 kg/ha) and no N application (0 N 

kg/ha), respectively. This was due to that N is the most required nutrient by plants and from a 

management point of view applying 200 kg/ha of N may be ideal to achieve a higher yield. 

Srivastava et al. (2018) also reported similar results that higher amount of N increases maize yield 

but also pointed out that it can also cause serious environmental problems. In such cases, the 

authors suggested the reduction of N fertilizer input and improved N use efficiency which is crucial 

for the sustainable production of maize crop.  

 

In this study, variation in yield across the years seemed to be mostly influenced by the amount of 

rainfall received and its distribution during the growing season (Fig. 1). When rainfall received 

during the season was low (less than or equal to 400 mm/year) for example in season 2006/07, 

2014/2015 and 2015/16, the average grain yield in 200 kg/ha N fertilizer application rate was 9.13 
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t/ha, 7.96 t/ha and 7.00 t/ha in NT, RT and CT, respectively. However, when the average rainfall 

was above 600 mm/year, yields averaged at 13.3 t/ha, 13.7 t/ha and 13.5 t/ha in no-till, rotational 

tillage and conventional tillage in 200 kg/ha N fertilizer application rate. Although there was no 

much variation in yield between the tillage treatments, what was most apparent and interesting is 

that yield improved in reduced tillage treatments (NT and RT) during the period of drought, in 

2014/15 and 2015/16 growing season than CT treatment after eleven years of trial establishment. 

However, this is contrary to what was observed in 2006/07 growing season where yield was lower 

under NT treatment during the period of drought. This may be attributed to low resilient 

characteristics of reduced tillage treatments during early staged of implementation.  

 

These results agree with the meta-analysis study conducted by Rusinamhodzi et al. (2011) which 

showed that yield under conservation agriculture was high when the mean annual rainfall was low, 

< 600 mm. This can be attributed to higher infiltration and the residue cover (Chapter 3) which 

enhances moisture conservation in conservation agriculture during the period of drought. Hussain 

et al. (1999) also reported that yield was 10-100% higher in CA in relatively dry seasons than in 

CT treatments. The temporary yield fluctuation is mainly influenced by environmental factors with 

rainfall having the strongest effect (Mallory and Porter 2007; Grover et al. 2009).  

 

Furthermore, specific responses of yield to CA is also dependent on soil type. In the current study 

with clay loam soil (Ferralsols Haplic), although difficult to assess overtime because of the 

complex interaction of various CA components and the environment, it can be argued that yield 

under CA improves due to improved soil physio-chemical properties such as soil organic carbon 

and N, pH, aggregate stability, infiltration, bulk density and soil important nutrients under CA 
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(Chapter 3 and 4). Rusinamhodzi et al. (2011) reported no differences in maize grain yield between 

NT and CT treatments on silt clay loams over time but found improvements on sandy and loamy 

soil. In heavy clay poorly drained soil, Dick and Van Doren (1985) found that a reduction in maize 

associated with reduced tillage treatments or no-till and suggested crop rotation as a possible cause. 

Other authors, however, have reported that maize yield are insensitive to tillage over a wide range 

of soil textures, climate conditions and the duration of the experiment as long as adequate weed 

control and equal plant densities are maintained (Van Doren et al., 1976). In poorly drained soils, 

yield reduction has been reported (Yakle and Cruse 1984) and improvements in yields on well-

drained soil have also been reported (Griffith et al. 1986). This was attributed the efficient use of 

water and improved physical conditions of the soil in well-drained soil. 

 

Nitrogen is the most limiting input in maize production in sub-Saharan Africa (Edmonds et al., 

2009). Our results have shown yields improvements in NT under high N rate (200 kg/ha) than CT 

treatment (Fig. 3). However, this advantage diminished with the decrease in N rates. These results 

are in line with the study conducted semi-arid sub-humid region which showed that yields were 

more increased by N fertilization than tillage (Diaz-Zorita et. al., 2002). This indicates that CA is 

input intensive and requires the application of the correct proportion of fertilizer to improve yield 

(Rusinamhodzi et al., 2011.  
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Table 1: Maize grain yield observed from 2003/2004 growing season to 2016/2017 growing 

season. The LSD shown is for tillage × nitrogen rate at 5% level of significance. 

season 

N applied 

(kg/ha) NT RT CT LDS (0.05) 

2003/04 

0 12.50 13.81 13.16 

NS 100 12.86 13.25 13.45 

200 13.23 13.53 13.74 

2004/05 

0 10.35 11 10.3 

NS 100 11.89 11.06 10.88 

200 11.92 11.33 11.24 

2005/06 

0 8.85 10.43 11.01 

NS 100 10.24 11.95 12.78 

200 12.16 13.26 13.04 

2006/07 

0 3.73 4.36 5.46 

0.88 100 6.63 7.18 7.39 

200 7.09 7.26 7.18 

2007/08 

0 5.41 6.31 8.85 

1.32 100 10.93 11.96 14.21 

200 16.36 16.53 15.48 

2008/09 

0 4.63 6.87 6.29 

0.8 100 10.68 12.07 12.11 

200 13.93 14.53 13.64 

2009/10 

0 6.38 7.63 7.65 

1.06 100 10.92 11.55 10.97 

200 12.94 12.19 10.06 

2010/11 

0 5.42 6.5 8.31 

NS 100 9.35 10.17 13.43 

200 12.81 14.38 15.07 

2011/12 

0 7.55 8.3 9.54 

1.06 100 12.49 12.56 12.49 

200 13.24 13.35 12.4 

2012/13 

0 5.61 6.17 7.54 

NS 100 9.7 9.67 10.94 

200 10.22 9.79 11.1 

2013/14 

0 6.53 8.75 8.78 

1.54 100 14 14.87 15.37 

200 17.06 17.28 16.41 

2014/15 

0 3.94 4.46 4.01 

1.03 100 8.81 8.89 7.56 

200 8.83 8.19 7.04 

2015/16 

0 5.4 5.53 5.76 

0.68 100 8.6 8.35 7.06 

200 9.46 8.43 6.78 

2016/17 

0 6.11 6.4 8.77 

1.02 100 11.08 11.04 11 

200 12.59 12.97 11.84 

Average 

Low 6.6 7.6 8.3   

Medium 10.6 11.0 11.4   

High 12.3 12.4 11.8   
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Fig. 1: Maize grain yield trends as affected by rainfall from 2003/04 growing season to 2016/17 growing season. Note: 0 = 0 kg/ha N-

fertilizer, 100 = 100 kg/ha N-fertilizer and 200 = 200 kg/ha N-fertilizer. 
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5.4.2 Principal component analysis (PCA) models 

 

The principal component analysis was performed to compare maize grain yield (t/ha) in different 

tillage treatments (Fig. 2). The distribution of PCA score plots of grain yield showed different 

clusters between the different tillage treatments although there were some overlap in clusters, 

particularly in NT and RT treatments. No-till (NT) and Rotational tillage (RT) showed wide 

variation in clusters while in conventional tillage (CT) treatments the distribution of clusters was 

much reduced. The PCA score for the first two PCs explained 88% of the total variability, PC1 

explained 81% of the total variance and PC2 explained 7% of the variance. The overlap in clusters 

for NT and RT treatments indicates that the grain yield between the two was more similar and 

different to that of CT treatments. 

 

The principal component analysis was also performed to assess some of the soil physical, chemical 

and biological properties that contributed to maize grain yield (Fig. 3). The PCA score for the first 

two PCs also explained 81% of the total variability with PC1 contributing 81% of the total variance 

and PC2 contributing 7% of the total variance. However, there was no parameter that seemed to 

be related to maize yield. This was attributed to the complex interaction of bio-physio-chemical 

parameters with the environment. Dam et al. (2005) reported that maize yields after 11 years were 

not affected by tillage and residue, which affect soil physical, chemical and biological properties, 

but climate-related differences seemed to have a greater influence on yield variation. 
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Fig. 2: Principal component analysis (PCA) similarity map for the first two principal components 

(PCs) showing yield variation in different tillage treatments. Note: NT = no-till, RT = rotational 

tillage and CT = conventional tillage. 

 

Fig. 3: Principal component analysis (PCA) similarity map for the first two principal components 

(PCs) showing. 
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5.5 Conclusion 

 

The results of this study showed a significant variation of yield within and across the years and 

across the tillage treatments. Rainfall received during the growing season and its distribution was 

identified as the main factor that influences the variability of yield as compared to bio-physio-

chemical characteristics of the soil which are difficult to assess due to the complex interaction of 

various CA components with climate. In the long-term, > 10 years, yield was found to improve 

under conservation agriculture and this was more apparent during the drought period experienced 

in 2014/15 and 2015/16 growing seasons. The results also showed that successful application of 

conservation agriculture requires the application of the high rate of N fertilizer. 
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Abstract 

 

In this study, the use of visible to near infrared spectroscopy (VIS-NIRS) was explored as a 

technique to predict soil organic carbon (SOC) and soil organic nitrogen (SON) in soils collected 

from different tillage management practices. Tillage treatments were no-till (NT), rotational tillage 

(RT) and conventional tillage (CT). The reflectance spectra of samples from 0-10, 10-20 and 20-

30 cm depths were acquired from all tillage treatments using a laboratory bench-top 

monochromator NIR Systems Model XDS spectrometer. Partial least square regression (PLSR) 

models were developed using the leave-one-out cross validation method. The models were then 

tested on independent samples (54) randomly selected from the total 324 samples. Principal 

component analysis (PCA) was used to differentiate SOC in different tillage treatments. The best 

prediction model was observed for SOC with the coefficient of determination (R2) = 0.993, root 

mean square error of prediction (RMSEP) = 0.157% and residual predictive deviation (RPD) = 

2.55 compared with R2= 0.661, RMSEP= 0.019%, RPD= 2.11 for SON. Clusters of SOC 

distribution in the PCA for different tillage treatments showed slight differences in SOC stock 

between the treatments with NT having quite different stock than CT treatment. Therefore, 

considering the predictive statistics and accuracy created by the model in SOC prediction, VIS-

NIRS can be recommended as a fast, accurate technique for SOC determination in Feralsols 

Haplic. This will reduce cost significantly associated with SOC and SON analysis for researchers 

and farmers. 

 

Key words: VIS-NIRS, SOC, chemometrics, PLSR, RPD 
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6.1 Introduction 

 

Soil organic carbon (SOC) is widely recognised as a principal indicator of soil quality because of 

its influence on various processes linked to physical, chemical and biological soil properties. Its 

decline in soil due to management practices such as tillage which breaks soil stable aggregates 

leads into slacking, soil erosion and eventually, soil degradation. There has been an increased 

interest in studies of SOC in recent years. This is caused by its predicted effects on climate change 

(Guerrero et al., 2016). The amount of SOC varies spatially due to natural soil variability, climate 

and management practices. Thus, measurements of SOC require a large number of samples to hold 

high statistical robustness, otherwise, they would be limited by huge uncertainties causing 

misleading inferences (Muukkonen et al., 2009). Furthermore, quantification of SOC is expensive, 

and requires the use of chemical reagents (Walkley, 1947; Jackson, 1973) and recently, the use of 

sophisticated laboratory instruments (Matejovic, 1996; Leco Corporation, 2012). Therefore, there 

is an urgent need for a rapid and accurate approach for measurements of SOC allowing huge 

analysis of samples within a short period of time, low effort and budget, and for precision 

agriculture.  

 

The application of visible to near infrared radiation spectroscopy (VIS-NIRS) for assessing SOC 

is arguably the best technique than mid infrared (MIR) for example, possessing the afore-

mentioned requirements (Guerrero et al., 2016). Reportedly, the use of MIR is more suitable than 

VIS or NIR, however, this method has proven to be more expensive and complex than using VIS-

NIRS (Viscarra Rossel et al., 2006a).  VIS-NIRS technique requires the only collection of samples 

at preparation and provides accurate information of several soil properties from one spectral 
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reading (Vohland and Emmerling, 2011). Application of VIS-NIRS collects large information 

about soil physical, chemical and biological properties of a sample and therefore, permits 

measurements of many soil properties from the single measurement (Minasny et al., 2011). The 

VIS-NIRS technology has been used successfully in many industries, for several decades, such as 

pharmaceuticals, petrochemicals, crop production and food processing (Minasny et al., 2011). It 

reflects structural and compositional information of molecules as absorptions at spectral 

wavelengths between 350 and 2500 nm (Nawar et al., 2016). The absorptions are associated with 

the stretching and bending of bonds forming the OH, NH and CH groups (Clark, 1999; Viscarra 

Rossel and Behrens, 2010). Several authors (Brown et al., 2006; Viscarra Rossel et al., 2006b; 

Viscarra Rossel and Behrens, 2010) have reported that different wavelengths and spectral ranges 

can be responsible for prediction of SOC content. For example, Sudduth and Hummel (1991) 

pointed out that NIR (near-infrared region) reflectance data provided a better prediction of SOC 

than VIS (visible region). On the other hand, Islam et al. (2003) examined the ability of reflectance 

spectroscopy to predict numerous soil properties, including SOC, in the UV, VIS and NIR ranges 

and they found that overall prediction was better with the whole spectral range (VIS-NIRS) than 

VIS or NIR.  

 

A number of studies that have been conducted at global, continental, national, regional and local 

scale field scale using VIS-NIR spectroscopy to analyse SOC have shown that estimates of SOC 

have been with the substantial range of accuracy (Milos and Bensa, 2017). Most studies were done 

in heterogeneous soil samples with respect to soil forming factors and the possible factors of 

relatively large differences that relate to accuracy of estimation relates to factors such as parent 

material, heterogeneity of soil type, high SOC variability, land uses and size of the sampling area 
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(Milos and Bensa, 2017). More homogenous soils and geographically closer soil samples with 

similar characteristics have resulted in better model predictions (Wijewardane et al., 2016). Vis-

NIR spectroscopy techniques have also been applied and expanded to the analysis of SOC and N 

fractions, assessment of SOC and N of different management practice such as tillage type and the 

analysis of these in different soil depths. Hence the successful application of this technique in soil 

properties can significantly reduce the cost and time needed in sample preparation for wet 

chemistry chemical analysis.   

 

This study explored the accuracy of using VIS-NIR spectroscopy for the prediction of SOC and N 

of the soil samples that are similar in soil type but differing in management practices. Therefore, 

the objective of this study was to assess the accuracy of using VIS-NIR spectroscopy, in a long-

term trial, for the prediction of SOC in soil (Feralsols Haplic) that has been managed under no-till, 

rotational tillage and conventional tillage.  

 

6.2 Materials and methods 

 

6.2.1 Soil samples 

 

Soil samples used in this study were collected in Bergville, Winterton (28°55'26.83"S, 

29°33'38.64"E, 1038 asl), KwaZulu-Natal Province, South Africa, at the end of the 2015/2016 

growing season in the trial that was established in 2003/2004 growing season. This area has a sub-

tropical humid climate, characterized by cold dry winters (May to August) and warm rainy 

summers (October to March). The mean annual rainfall is 643 mm/year receive mostly during the 
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summer months. The soil was classified as Ferralsols Haplic (FAO, 2006) equivalent to Hutton 

non-swelling with clay loam soil texture (Soil Classification Working Group, 1991). Previously, 

the trial site has been managed under no-till since 1990 under dryland-maize commercial 

production in rotation with soybean until the establishment of the trial in the 2003/2004 growing 

season. Since the beginning of the experiment, the trial site has been planted to dry maize 

continuous monocrop in summer and left fallow during the winter months. The average pH (KCl) 

of the top 30 cm of the trial was 6.62. A total of 324 soil samples from no-till (NT), rotational 

tillage (RT, which consists of conventional tillage after every four season of NT) and conventional 

tillage (CT, which consists of annual ploughing with moldboard plough to a depth of 30 cm, 

followed by disking to a depth of 1 cm) treatments in the 0-10 cm, 10-20 cm and 20-30 cm depths 

were taken to the laboratory at the University of KwaZulu-Natal for Vis-NIR analysis and for stand 

chemical analysis. 

 

6.2.2 VIS-NIR spectroscopy collection 

 

The reflectance spectra from the soil samples were measured in the laboratory using a laboratory 

bench-top monochromator NIR Systems Model XDS spectrometer (FOSS NIR Systems, Inc.; 

Maryland, USA) equipped with a quartz halogen lamp and lead sulfide (PbS) detector. The 

spectrometer was calibrated by scanning a 100% white reference tile before scanning the first 

sample and at 30 minutes intervals during scanning of samples to reduce baseline shift of spectral 

response. The full VIS-NIR (450-2500 nm) spectra were collected from the soil samples. Each 

spectrum was the average of 32 scans recorded using Vision software (Vision TM, version 3.5.0.0, 

Tidestone Technologies Inc., KS, USA). 
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6.2.3 Chemical analysis of Carbon and Nitrogen from soil samples 

 

Soil organic C and N were analysed by an automated Dumas dry combustion method using a 

LECO CNS-2000 (Leco Corporation, Michigan, USA) (Leco Corporation, 2012). Briefly, air-

dried soil samples were passed through a 0.5 mm sieve size, then a 0.5 g sample was then measured 

and put into the LECO for analysis of C and N. The procedure was based on dry combustion of 

air-dried samples in crucibles, subjected to a 1350 C furnace temperature for about 7 minutes.  

 

6.2.4 Data analysis 

 

6.2.4.1 Chemometric analysis 

 

To observe normality of the collected spectra, exploratory analysis of spectra was done by plotting 

all spectra and seeing if they followed a similar trend. Chemometric analysis of data was carried 

out using The Unscramble® X chemometric software (The Unscrambler® X v10.5, CAMO 

Software AS, Oslo Science Park, Norway). The collected spectral data was subjected to different 

pre-processing techniques to improve its dependence on chemical data.  Pre-processing techniques 

tested included smoothing and transformation of spectral data using Savitzky-Golay algorithms, 

area normalization, standard normal variate transformation and selection of wavelength band that 

reflected best results on models performance. Outlier samples were selected based on F-residuals 

and Hotelling T2 outlier detection at 5%. No outliers were observed and 75% of data was used for 

calibration whilst 25% was assigned to an independent test set. Kernel algorithm was used to 

develop partial least square regression (PLS) models, the most improved regression technique for 
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VIS-NIRS models (Naes et al., 2002; Nicolai et al., 2007; Davey et al., 2009, Cozzolino et al., 

2009).  

 

The optimum chemometric conditions of each PLS model was based on the ability of a model to 

obtain high regression coefficient during cross validation (R2
cv; Eq. 1) and low root mean square 

error of cross validation (RMSECV).  The R2
p -value and ratio of performance deviation (RPD; 

Eq. 2) as well as low unfairness contribution of each sample (Bias; Eq. 3) and root mean square 

error of prediction (RMSEP; Eq. 4) were used as a measure of models accuracy in predicting the 

independent test set. 
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ycal -calculated value; n-number of samples used in calculation; yref - actual value measured 

by chemical method; ymean- average value of predicted data; ypred - value predicted by Vis-

NIRS, and SD- standard deviation of measured data values. 
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6.2.4.2 Statistical data analysis 

 

Statistical analyses of chemical soil data were carried out using GenStat® statistical software 

(GenStat®, 17th edition, VSN International, UK). The coefficient of variation (CV%) was 

calculated as the ratio of the standard deviation to the mean, multiplied by 100 and reported as a 

percentage. 

 

6.3 Results and discussion 

 

6.3.1 Spectra-based PCA models 

 

Principal component analysis (PCA) was performed on VIS-NIRS spectra to compare the effect 

of tillage system and N-fertilizer application rate on SOC (Figs. 1-4). This grouping was only 

possible with spectra transformed using Savitzky Golay second derivatives pre-processing method 

(Fig. 1-4). The distribution of the PCA score plot of soil spectra showed an overlap in clusters 

between NT and RT, while CT was slightly different from the two (Fig. 1). The PCA scores for 

the first two PCs (Fig. 1) show slight SOC variation in different tillage treatments. The first two 

PCs explained 76% of the total variability, PC1 explained 52% of the variance and PC2 explained 

24% of the variance. This was similar to what was observed in soil chemical analysis which 

showed marginal differences in total SOC between the tillage treatments (Chapter 3). Spectral data 

collected in soil samples which were subjected to different N-fertilizer application rate were also 

subjected to similar analysis. The distribution of PCA score plots of soil spectra acquired in 

different tillage treatments showed three slight distinctive clusters corresponding to three N-
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fertilizer application rates (Fig. 2-4). The first two PCs accounted for the 89% of the total 

variability, PC1 explained 55% of the variance while PC2 explained 34% of the variance (Fig. 2). 

Variation in SOC under RT treatment (Fig. 3) was clearly observed with RT (0N) dominating the 

positive side of PC1 while RT (100 kg N) and RT (200 kg N) were clustered along the negative 

side of PC1. The first two PCs accounted also for 89% total variability. Lastly, the separation of 

clusters in CT treatment with respect to N-fertilizer application rate was observed (Fig. 4). In this 

case, the two components explained 94% of the total variability, PC1 explained 77% of the total 

variance and PC2 explained 17% of the total variance. This indicates the potential power of VIS-

NIRS base technology in predicting SOC in the soil. 

 

 

Fig. 1: Principal component analysis (PCA) similarity map for the first two principal components 

(PCs) showing soil organic carbon (SOC) variation in different tillage treatments (CT = 

conventional tillage, RT = rotational tillage and NT = no-till). 
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Fig. 2: Principal component analysis (PCA) similarity map for the first two principal components 

(PCs) showing soil organic carbon (SOC) variation with N-fertilizer level (0, 100 & 200) in NT 

(no-till) treatment. Note: 0 = no fertilizer applied, 100 = 100 kg/ha nitrogen applied and 200 = 200 

kg/ha nitrogen applied. 
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Fig. 3: Principal component analysis (PCA) similarity map for the first two principal components 

(PCs) showing the variation on soil organic carbon (SOC) with N-fertilizer level (0, 100 & 200) 

in RT (rotational tillage) treatment. Note: 0 = no fertilizer applied, 100 = 100 kg/ha nitrogen 

applied and 200 = 200 kg/ha nitrogen applied. 
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Fig. 4: Principal component analysis (PCA) similarity map for the first two principal components 

(PCs) showing variation in soil organic carbon (SOC) with N-fertilizer level (0, 100 & 200) in CT 

(conventional tillage) treatment. Note: 0 = no fertilizer applied, 100 = 100 kg/ha nitrogen applied, 

and 200 = 200 kg/ha nitrogen applied. 

 

6.3.2 Description spectra 

 

The graph presented in Fig. 5A shows the typical spectra obtained in soil under different tillage 

systems. The different spectral lines represent the mean spectra obtained from all tested samples 

and the reflectance spectrum varied from 400 to 2500 nm. Spectral features obtained such as 

reflectance picks were similar to those obtained by Milos and Bensa (2017). The beginning of the 

spectrum (450-700 nm) was characterized by noise and hence was removed before calibration. 

Strong absorption band around 740-1100 nm, 1100-1660 nm, 1700-2140 nm and 2180-2280 nm 

were observed. According to Sherman and Waite (1985) and Ben-Dor et al. (1999) wavelengths 
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from 740-1100 nm spectral region are associated with organic carbon and chromophorous 

constituents (iron oxides) mainly goethite and haematite. The spectral range from 1100-2500 nm 

is characterized by the features of absorption bands around 1400, 1700, 1860, 2150, 2300 and 2240 

nm. These absorption bands are associated with overtones and combination absorptions of C=O, 

C-H, N-H and O-H (Clark, 1999; Viscarra Rossel and Behrens, 2010) and as a result contains 

information about the spectral response of SOC for soil samples (Milos and Bensa, 2017). The 

absorption picks observed at 1400 and around 1860, on the other hand, are associated with the 

absorption of water and OH- (Milos and Bensa, 2017). Other authors (Sarkhot et al., 2011; 

Magwaza et al., 2014) has also reported the same trends of high contributing wavelengths of water 

adsorption features at these picks. Moreover, the spectrum also has the highest picks around 2200 

nm (maximum pick at 2220 nm), 2240 nm, 2300 nm (maximum 2340 nm) and 2500 nm. This may 

indicate the contribution of these wavelengths in SOC predictions. Many authors have also 

reported that the wavelengths contributing most to SOC predictions are around 2200 and 2300 nm 

(Ben-Dor and Banin, 1995; Stenberg et al., 2010; Viscarra Rossel and Behrens, 2010). This is due 

to Al-OH bends plus O-H stretch combinations that are diagnostic absorption features in clay 

mineral identification (Clark et al., 1990).  
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Fig. 5: A typical average VIS-NIRS (400-2500 nm) absorbance intensity spectra and regression 

coefficient curve of soil organic carbon (SOC) model of different tillage treatments and NIR 

spectral range of 700-2500 nm. 
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6.3.3 VIS-NIR models for accurate determination of SOC and N from soil samples 

 

The prediction statistics for the best model developed for SOC and SON predictions are presented 

in Table 1. The models were most accurate in predicting SOC (R2 = 0.993, RMSEP = 0.157%, 

RPD = 2.55) than predicting soil organic N (R2 = 0.661, RMSEP = 0.019%, RPD = 2.11). Scatter 

plots of the relationship between NIR and conventionally measured SOC and SON are presented 

in Fig. 6 and 7, respectively. High regression coefficient (R2 = 0.993) between SOC measured by 

Leco and predicted by VIS-NIRS was observed (Fig. 6). Low regression coefficient (R2 = 0.661) 

between SON measured and predicted was also observed (Fig. 7). The means of both parameters 

were predicted with a substantial range of accuracy, with minor differences of < 0.05 between 

them (Table 2). The standard deviation of the predicted data was slightly lower than that of the 

reference data for both SOC and SON. This means that these values were closer to the mean when 

compared to the reference data. This implies that there were low chances of predicting a sample 

as an outlier if its actual value was close to the mean (Ncama et al., 2017). Moreover, according 

to the interpretation given by Viscarra Rossel (2006b), the RPD values obtained for SOC (2.55) 

and SON (2.11) indicate excellent model prediction and very good quantitative model predictions, 

respectively. 

 

The SOC prediction model in this study was more accurate than what has been usually observed 

in other studies (Table 1) with higher R2 value. Leone et al. (2012) obtained R2 values ranging 

from 0.84-0.93 and RPD values ranging from 2.36-2.53 from local soil predictive models. On the 

other hand, Gras et al. (2014), Wijewardane et al. (2016) and Knadel et al. (2012) obtained R2 

values of 0.82, 0.83 and 0.81 and RPD of 2.40, 2.41 and 2.40, respectively. Other studies by Kuang 
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and Mouazen (2012) have shown a very wide range of R2 and RPD, 0.12-0.96 and 1.07-4.95, 

respectively. Those studies were conducted at a farm scale in four European countries. Milos and 

Bensa (2017) highlighted that the differences in accuracy of predicting SOC relate to high soil 

variability, heterogeneity of soil types, parent material, land uses and size of sampling area which 

could not be easily identified. In this study, therefore, based on high R2 value, it can be concluded 

that the soil studied was more homogenous than what has been observed in other studies. 

 

Table 1: Calibration and validation results of soil organic carbon and soil organic nitrogen (SON) 

models at 450-2500 nm spectral range. 

 
Calibration Set (n = 270)  Test Set (n = 54) 

 

Latent 

variables 
R2cv RMSECV Slope  R2p RMSEP Slope Bias RPD 

Soil organic C 

(%) 4 0.998 0.015 0.997  0.993 0.157 0.981 -0.135 2.55 

Soil organic N 

(%) 6 0.694 0.018 0.693  0.661 0.019 0.653 0.003 2.11 

 

 

Table 2: Statistical description of the soil organic carbon content (%) for the reference 

(chemically analysed) and NIR predicted values. 

Chemically-analyzed (n = 270)  NIR Predicted values (n = 54) 

  
Mean SD CV% Range  Mean SD CV% Range 

Soil organic C 

(%) 1.67 0.40 23.9 3.36  1.64 0.26 15.6 1.49 

Soil organic N 

(%) 0.08 0.04 49.0 0.21  0.09 0.02 26.5 0.14 
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Fig. 6: PLS models showing the capability of VIS/NIR spectral analysis in predicting soil 

organic carbon (SOC) in soil differing in tillage treatments. 

 

Fig. 7: PLS models showing the capability of VIS/NIR spectral analysis in predicting soil 

organic nitrogen (SON) in soil differing in tillage treatments. 
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6.4 Conclusion 

 

The capability of VIS-NIRS together with chemometrics analysis of spectra to predict SOC and 

SON from soil under different tillage treatments was demonstrated. Spectral range from 700 nm 

to 2500 nm was found to be optimum in predicting SOC in the studied soil. VIS-NIRS predicted 

SOC more accurately than SON confirmed by parameters of cross-validated predictions diagnostic 

such as high R2 and RPD, and low RMSEP values obtained in SOC than in SON. Therefore, 

considering the predictive statistics and accuracy created by the models, VIS-NIRS can be 

recommended as a fast and accurate technique for SOC determination in Feralsols Haplic. This 

could be a great benefit to researchers and farming community where larger samples of SOC are 

needed for monitoring and evaluation. 
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CHAPTER 7 

GENERAL DISCUSSION 

 

The world population is expected to reach a 50 billion mark in the year 2050. This increase is 

expected to come more from the developing countries particularly in the sub-Saharan Africa 

region. Therefore, the pressing need to increase the food supply and ensure food security is clear. 

However, meeting these needs seem impossible because of the high level of human-induced soil 

degradation. Approximately, 45% of the world arable land is affected by degradation and a larger 

percentage of this, ~ 68%, is confined to sub-Saharan Africa. In South Africa, about 45% of the 

arable land is degraded (Bai and Dent, 2007). This combined with water scarcity in the country 

and the predicted impacts of climate change put more pressure on arable land and in such cases 

conservation agriculture has been recommended because of its resilience characteristics to land 

degradation, drought and its effect on water use efficiency. Conservation agriculture is based on 

three principles i.e. no-till, permanent residue cover and diversified crop rotation. Conservation 

agriculture permanently covers the soil thus protecting it from erosion, degradation and increase 

soil organic matter which is important for soil quality. However, the quantification of soil organic 

matter is very expensive and time-consuming. As a result, experiments aimed at assessing 

management, climate, soil type and their interaction effects on soil organic carbon may be limited 

by the lack of resources and therefore, a different cheaper approach has to be explored. Visible to 

near infrared spectroscopy present such opportunity because it permits the analysis of a large 

number of samples within a short period, low effort and budget and for precision agriculture. 

 



189 

 

Moreover, studies on conservation agriculture in South Africa are very scarce and its adoption is 

very low compared to the developed countries. The majority of the published literature on 

conservation agriculture comes from temperate cooler environments. The responses of soil quality 

characteristics in sub-tropical and semi-arid environments may differ from those observed in 

temperate cooler environments. Brouder and Gomez-Macpherson (2014) concluded that the 

potential and environmental benefits of conservation agriculture adoption for crops in 

agroecological region beyond the intensively studied Australia and America remains uncertain and 

controversial.  

 

Thus, the overall aim of this study was to evaluate the effect of no-till conservation agriculture on 

soil quality, and maize yield and secondary to this, to explore the use of visible to near infrared 

spectroscopy as a possible tool for soil organic carbon analysis in the studied soil. The study 

investigated the effects of no-till with permanent residue cover, rotational tillage with permanent 

residue cover and conventional tillage with residue removed on selected soil biological, physical 

and chemical properties. In soil biology, the study investigated the effect of various tillage 

treatments and nitrogen fertilizer application rates on the abundance and diversity of macrofauna. 

On the soil selected physical properties, the study investigated the effect of various tillage 

treatments on soil aggregate stability, infiltration rate, bulk density and aggregate-associated 

carbon. On selected soil chemical properties, the study investigated the effect of different tillage 

practices and N-fertilizer application rates on total C and N, P, K, Ca, Mg, Na, pH and CEC. 

Thereafter, the study investigated the studied soil quality parameters and their association with 

maize yield. Lastly, the study explored the use of visible to near infrared spectroscopy on soil 

organic carbon prediction. 
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The results of the study have indicated that the overall macrofauna population improves under NT 

conservation agriculture compared to CT. Order Isoptera (termites), Coleoptera (beetles) and 

Diplopoda (millipedes) were amongst the top three dominant order found in this study. However, 

there were no significant differences found in diversity and evenness of orders. These results have 

provided the evidence that mulch-based system and less soil disturbance provide a better condition 

for macrofaunal settlement through reduction of habitat destruction. Mulch protects these 

organisms against extreme changes in temperature and humidity and provide organic residues as 

a source of food thus providing a stable environment for macrofaunal settlement. These organisms, 

in turn, play a crucial role in ecosystem functioning. Termites for example, through their activities 

of selecting, transporting, manipulating and cementing soil properties bring an immediate change 

in soil physical properties such as infiltration and aeration. This was evident in this study as 

significantly higher infiltration rate was observed under reduced tillage treatments as compared to 

conventional tillage practice (Chapter 3). The similarity of organisms observed in different tillage 

treatments provided the evidence of the importance of crop rotation. It appears that the constant 

supply of similar organic feed over a long-term may have influenced the similar type of organisms 

which dwell on similar feeds. The review of the literature has shown that crop rotation under NT 

conservation agriculture influences both the quantity and the quality of the organic material. For 

example, the rotation of cereal with leguminous crop provide the organic matter with low C/N 

ratio as compared to the only cereal-based material. This, in turn, influences microbial activities 

and the development of diverse macrofauna groups which are important in ecosystem functioning 

such as the recycling of soil nutrients. In addition, it appeared that, due to the low number of 

earthworms found, termites are mostly found in dry areas as compared to earthworms. This may 
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suggest that earthworms prefer organic feeds input with lower C/N ratio while on the other hand, 

termites are adopted to feed on organic resources with higher C/N ratio. 

 

Furthermore, soil macrofauna is well known to play a role in soil structural formation with termites 

and earthworms considered and ecosystem engineers because of their profound contribution in 

reworking the soil. In this study, it was found that aggregate stability and infiltration greatly 

improves under reduced tillage treatments (NT and RT) than conventional tillage. However, 

aggregate stability was only significantly higher in the top soil as compared to the subsoil and this 

was attributed to the SOC stratification in the top layer of the soil as compared to the subsoil. On 

the other hand, there were no significant differences in aggregate stability across the tillage depth 

in conventional tillage treatment and this was attributed to the more even distribution of soil SOC 

in the soil profile. Soil organic matter is the major binding agent of soil particles and its presence 

in higher concentration is associated with soil aggregation and more stable aggregates. This, in 

turn, protects the soil against soil erosion and thus degradation. Higher infiltration observed in 

reduced tillage treatments was associated with the presence of larger macrofaunal groups in these 

treatments. With respect to the effect of fertilizer application rate on soil aggregation and aggregate 

stability, there were no significant correlation trends found in all treatments which can be explained 

with certainty. Differences were not observed in soil total carbon across the tillage treatments. 

However, particulate organic carbon decreased with increase in tillage intensity. These particular 

results indicate that soil organic carbon takes time to change and transform because of the abundant 

pool in soil and the more sensitive indicator for small changes is particulate soil organic carbon. 

This pool is minimally transformed and has the fast recycling rate compare to recalcitrant pool 

associated with minerals which take weeks to months or even years to transform. Moreover, 



192 

 

significant differences in soil total carbon were only observed in depth distribution. Soil total 

carbon was found to be significantly higher in the top 0-10 cm in reduced tillage treatments as 

compared to the lower depth while in conventional tillage was more uniform. This was attributed 

to reduced soil mixing in reduced tillage treatments as compared to conventional tillage. 

 

In addition, unlike with what is usually observed in other studies, particularly, those conducted in 

temperate and cooler regions where soil organic matter usually increases in the long-term trials 

under NT. This study has shown that the total soil organic carbon takes time to increase in semi-

arid area, particularly, in 1:1 low activity clay minerals. However, this slow improvement of total 

soil organic matter does not put this tillage operation in a disadvantageous position over CT 

because the soil is permanently protected from erosion and it improves its physical conditions. For 

example, it was found that yields were significantly improved in reduced tillage treatments than in 

CT during the period of severe drought (i.e. 2014/15 and 2015/16 growing season). This important 

feature of CA provides an insight or evidence that yields can be significantly be improved in sub-

Saharan Africa if this system can be adopted by both small-scale and commercial farmers. This 

will ensure the protection of our arable land base and significantly improve food security. The 

resilient feature of CA to water stress is associated with permanent soil cover which increases 

moisture conservation of the system than CT. The higher rate of N application was found to 

increase yield than mid and lower rate. Yields were more reduced in NT in mid and lower rate than 

in RT and CT treatments because of perhaps immobilization process by microorganisms. The yield 

was also found to be influenced by climate factors, rainfall, as compared to soil quality parameters. 

Maize yield increased with an increase in rainfall and the opposite was true. What was most 
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apparent in the study was the resilient effect of reducingd tillage treatments during the period of 

drought. 

 

The results on soil chemical characteristics found that the pH of the soil was lower under no-till as 

compared to conventional tillage and rotational tillage. With respect to depth distribution, pH 

increased with increase in depth under no-till and rotational tillage treatments while in 

conventional tillage it was relatively uniform. The increase in pH in lower depths in reduced tillage 

treatment was attributed to slow leaching lime due to the larger pores created by macrofauna while 

acidity in the soil surface may have been due to greater soil organic matter decomposition which 

led to acidity. With respect to nitrogen application rates, it remained relatively uniform across the 

tillage treatments and this was attributed to lime that was applied every second season in each 

tillage treatment. Furthermore, significant differences were observed in P concentration amongst 

the tillage treatments with no-till having the highest P concentration than rotational tillage and 

conventional tillage. Significant differences were also found in tillage × depth interaction where 

the concentration P in no-till treatment was found to be stratified in the soil surface compared to 

rotational tillage and conventional tillage where it was relatively uniform across the soil profile. 

Significant differences were also found between the tillage treatments where no-till was found to 

contain higher concentration K than rotational tillage and conventional tillage treatments. 

However, unlike N and P where the stratification in the soil surface was observed, K concentration 

was uniformly distributed across the treatment depth in all tillage treatments. From a management 

point of view, these results clearly indicate that conservation agriculture increases the availability 

of the major nutrients (NPK) in the soil surface. Bearing in mind that crop rotation was not 

practiced as one of the management strategies to improve soil fertility in the current study, this 
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may suggest that inclusion of the several crops in the rotation such as leguminous crops may have 

even a bigger impact on the soil in improving fertility. This may also improve the quality of soil 

organic matter and hence the diversity of macrofaunal population because of the quality and the 

quantity of different organic input in the soil. In addition, no significant differences were found in 

Ca concentration across the tillage treatments. The differences were only found across the 

treatment depths. In reduced tillage treatments, Ca was found to increase with an increase in depth 

while in conventional tillage treatment, it was found to decrease with increase in depth. This was 

attributed to lower pH in the soil surface in reduced tillage treatments and higher pH in the 

underground soil profile. Lower pH in the soil surface may have decreased the availability of Ca 

and higher pH in the sub-soil may have increased its availability. In Mg concentration, there were 

no significant differences across the tillage treatments and differences were only observed in the 

tillage × depth interactions. The concentration of Mg decreased with increase in depth mostly in 

the in the 0-20 cm depth and this was contrary to what was observed in Ca another divalent cation. 

Differences in distribution of these nutrients across the soil profile may have been influenced by 

crop and the weeds nutrient preferences and different root distribution. The uptake of Mg could 

have been more important than Ca. Moreover, Mg is involved in isomorphic substitution of clay 

minerals while Ca is not, and this could have influenced the retention of Mg in the upper layers in 

reduced tillage treatments. Lastly, sodium was found to be uniformly distributed across the tillage 

treatments and across the treatment depths. Mineralogical nature and climate condition could 

probably have influenced the distribution of this mineral. 

 

Lastly, VIS-NIRS predicted SOC more accurately than SON confirmed by parameters of cross-

validated predictions diagnostic such as high R2 and RPD, and low RMSEP values obtained in 
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SOC than in SON. Therefore, considering the predictive statistics and accuracy created by the 

models, VIS-NIRS can be recommended as a fast and accurate technique for SOC determination 

in the studied soil. This could be a great benefit to researchers and farming community where 

larger samples of SOC are needed for monitoring and evaluation. 
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