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Abstract

Financial data usually possess some characteristics, such as volatility clustering, asym-
metry, heavy and semi-heavy tails thus, making it difficult, if not impossible, to use
Normal distribution to model them. Statistical analyzis shows that the Generalized
hyperbolic distribution is appropriate for capturing these characteristics. This re-
search shows that the USD/ZAR, All shares, Gold mining as well as the the S&P
500 returns are best modeled with the Skew t, generalized hyperbolic, hyperbolic,
generalized hyperbolic distributions respectively based on AIC and Value-at-Risk
(VAR) backtesting. Further multivariate analyzis of these returns based on the kernel
smoothing goodness of fit shows that; the multivariate affine normal inverse gaussian
(MANIG) distribution provides the best fit for the affine models. Likewise, the multi-
variate normal inverse gaussian (MNIG) distribution based on AIC provides the best
model for the four returns. Finally, the positive tail dependencies exhibited between
the All shares and Gold mining returns as well as All shares and S&P 500 returns is
best modeled with the Gumbel and Clayton copulas respectively. While the negative
dependencies between the USD/ZAR returns and other returns is modeled with the
Frank copula.

Keywords

Financial returns, univariate distribution, multivariate distribution, generalized hy-
perbolic distribution, affine transformations, Kolmogorov-Smirnov, kernel smoothing,
tails, Value-at-Risk, Archimedean copula.

i



Acknowledgements

I thank and praise the almighty God for giving me the power and patience to do this
work right up to the end. Secondly, I thank my supervisors Mr. Knowledge Chinhamu
and Mr. Chun-Kai Huang for their guidance to make sure I am on track to conclude
this work.

I thank my parents Mr. Ofimboudem Signing Leon and Mrs. Nguetsa Celine,
including my siblings for making it possible for me to be here at UKZN today and for
their advice.

Finally, the financial assistance of the National Research Foundation (NRF) to-
wards this research is hereby acknowledged. Opinions expressed and conclusions ar-
rived at, are those of the author and are not necessarily to be attributed to the NRF

ii



Contents

Abstract i

Acknowledgements ii

List of Figures vii

List of Tables ix

Background 1

0.1 Review of literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

0.2 Statement of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

0.3 Aims and Objectives of the Study . . . . . . . . . . . . . . . . . . . . . . . 5

0.4 Significance of the research . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

0.5 Research layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Chapter 1: The Multivariate Generalized Hyperbolic Distributions (MGHDs) 7

1.1 Univariate Generalized Hyperbolic Distribution (GHD) . . . . . . . . . . . 7
1.1.1 The Normal Inverse-Gaussian (NIG) Distribution . . . . . . . . . . . 8
1.1.2 The Hyperbolic (HYP) Distribution . . . . . . . . . . . . . . . . . . . 9
1.1.3 The variance-gamma (VG) distribution . . . . . . . . . . . . . . . . . 10
1.1.4 The generalized hyperbolic skew student t (skew t) distribution . . . 10
1.1.5 Parametrizations of the GHDs . . . . . . . . . . . . . . . . . . . . . . 11

1.2 The MGHDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Multivariate Affine Generalized Hyperbolic Distribution (MAGHD) . . . . . 14

1.4 Parameter Estimation of MAGHD . . . . . . . . . . . . . . . . . . . . . . . 16

Chapter 2: Copulas 18

2.1 Implicit and explicit copulas . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.1.1 Implicit Copulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.1.2 Explicit copulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

iii



CONTENTS

Chapter 3: Methodology 26

3.1 Test For Stationarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.1 Autocorrelation Function (ACF) . . . . . . . . . . . . . . . . . . . . . 26
3.1.2 Augmented Dickey Fuller (ADF) Test . . . . . . . . . . . . . . . . . . 27
3.1.3 Phillips-Perron (PP) Test . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Measure of dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.1 Scatterplot matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.2 Covariance/Correlation matrices . . . . . . . . . . . . . . . . . . . . . 30
3.2.3 Kendall’s tau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.4 Tail dependency of Archimedean copulas . . . . . . . . . . . . . . . . 32

3.3 Goodness of fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.1 The Kolmogorov-Smirnov (KS) goodness of fit test . . . . . . . . . . 34
3.3.2 Two dimensional KS goodness of fit test . . . . . . . . . . . . . . . . 35
3.3.3 Anderson and Darling (A-D) Test . . . . . . . . . . . . . . . . . . . . 36
3.3.4 Kernel Smoothing goodness of fit test . . . . . . . . . . . . . . . . . . 36

3.4 Copula parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4.1 Full Maximum Likelihood (FML) . . . . . . . . . . . . . . . . . . . . 38
3.4.2 Inference from the margins (IFM) . . . . . . . . . . . . . . . . . . . . 40

3.5 Model selection criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.5.1 Akaike’s Information Criterion (AIC) . . . . . . . . . . . . . . . . . . 41
3.5.2 Bayesian Information Criterion (BIC) . . . . . . . . . . . . . . . . . . 41
3.5.3 Value-at-Risk (VaR) and Backtesting . . . . . . . . . . . . . . . . . . 42

Chapter 4: Application 43

4.1 Data description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Empirical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2.1 Time series plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2.2 Descriptive statistics of log returns . . . . . . . . . . . . . . . . . . . 45
4.2.3 Test for stationarity and autocorrelation . . . . . . . . . . . . . . . . 48

4.3 Fitting daily USD/ZAR exchange rate to univariate GHDs and model
comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3.1 Comparison of the estimated GHDs . . . . . . . . . . . . . . . . . . . 52

4.4 Fitting daily All shares returns to univariate GHDs and model comparison 55
4.4.1 Comparison of the estimated GHDs . . . . . . . . . . . . . . . . . . . 57

4.5 Fitting daily gold mining returns to univariate GHDs and model comparison59
4.5.1 Comparison of the estimated GHDs . . . . . . . . . . . . . . . . . . . 61

iv



CONTENTS

4.6 Fitting daily S&P 500 returns to univariate GHDs and model comparison . 63
4.6.1 Comparison of the estimated GHDs . . . . . . . . . . . . . . . . . . . 66

4.7 Fitting returns to MAGHDs . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.7.1 Goodness of fit of MAGHDs . . . . . . . . . . . . . . . . . . . . . . . 69

4.8 Fitting returns to four dimensional GHDs and assessing goodness of fit . . . 71
4.8.1 Assessing the goodness of fit of four dimensional GHDs . . . . . . . . 73

4.9 Fitting returns to Archimedean copulas . . . . . . . . . . . . . . . . . . . . 74

Chapter 5: Conclusion and recommendations 78

5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

References 84

Appendix 85

Analyzing the fit of the USD/ZAR and All shares returns . . . . . . . . . . 85
Analyzing the fit of the USD/ZAR and gold mining returns . . . . . . . . . 87
Analyzing the fit of the USD/ZAR and S&P 500 returns . . . . . . . . . . . 88
Analyzing the fit of the All shares and gold mining returns . . . . . . . . . 90
Analyzing the fit of the All shares and S&P 500 returns . . . . . . . . . . . 92
Analyzing the fit of the gold mining and S&P 500 returns . . . . . . . . . . 93

Bessel function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Likelihood equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Tail behavior of GHDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

v



List of Figures

Figure 4.1 Time series plots of (a) Daily USD/ZAR Exchange Rate, (b) Daily Gold

Mining Index, (c) All shares Index, and (d) S&P 500 Index for the Period 03/01/2000

to 03/09/2014 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Figure 4.2 Time series plots of (a) Daily USD/ZAR Exchange Returns, (b) Daily Gold

Mining Returns, (c) All Share Returns, and (d) S&P 500 Returns for the Period

03/01/2000 to 03/09/2014 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Figure 4.3 Time series plots of (a) Daily USD/ZAR Exchange Returns Histogram, (b)

Daily Gold Mining Returns Histogram, (c) All shares Returns Histogram, and (d)

S&P 500 Returns Histogram for the Period 03/01/2000 to 03/09/2014 . . . . . . . 47

Figure 4.4 Autocorrelation Function (ACF) of (a) Daily USD/ZAR Exchange Returns

, (b) Daily Gold Mining Returns , (c) All shares Returns, and (d) S&P500 Returns

for the Period 03/01/2000 to 03/09/2014 . . . . . . . . . . . . . . . . . . . . . . . . 49

Figure 4.5 Histogram(left), log(density) plot(middle), Q-Q plot(right) of USD/ZAR re-

turns using the Generalized Hyperbolic distribution. . . . . . . . . . . . . . . . . . . 50

Figure 4.6 Histogram(left), log(density) plot(middle), Q-Q plot(right) of USD/ZAR re-

turns using the hyperbolic distribution. . . . . . . . . . . . . . . . . . . . . . . . . . 51

Figure 4.7 Histogram(left), log(density) plot(middle), Q-Q plot(right) of USD/ZAR re-

turns using the Normal Inverse Gaussian distribution. . . . . . . . . . . . . . . . . 51

Figure 4.8 Histogram(left), log(density) plot(middle), Q-Q plot(right) of USD/ZAR re-

turns using the Skew t distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Figure 4.9 Histogram(left), log(density) plot(middle), Q-Q plot(right) of USD/ZAR re-

turns using the Variance Gamma distribution. . . . . . . . . . . . . . . . . . . . . . 52

Figure 4.10 Comparing the Fit Between the GHDs for Daily USD/ZAR Returns. . . . . 54

Figure 4.11 Histogram(left), log(density) plot(middle), Q-Q plot(right) of All shares re-

turns using the Generalized Hyperbolic distribution. . . . . . . . . . . . . . . . . . . 55

Figure 4.12 Histogram(left), log(density) plot(middle), Q-Q plot(right) of All shares re-

turns using the hyperbolic distribution. . . . . . . . . . . . . . . . . . . . . . . . . . 55

vi



LIST OF FIGURES

Figure 4.13 Histogram(left), log(density) plot(middle), Q-Q plot(right) of All shares re-

turns using the Normal Inverse Gaussian distribution. . . . . . . . . . . . . . . . . 56

Figure 4.14 Histogram(left), log(density) plot(middle), Q-Q plot(right) of All shares re-

turns using the Skew t distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Figure 4.15 Histogram(left), log(density) plot(middle), Q-Q plot(right) of All shares Re-

turns using the Variance Gamma distribution. . . . . . . . . . . . . . . . . . . . . . 56

Figure 4.16 Comparing the Fit Between the GHDs for Daily All Share Returns. . . . . . 59

Figure 4.17 Histogram(left), log(density) plot(middle), Q-Q plot(right) of daily gold min-

ing returns using the Generalized Hyperbolic distribution. . . . . . . . . . . . . . . . 59

Figure 4.18 Histogram(left), log(density) plot(middle), Q-Q plot(right) of daily gold min-

ing returns using the Hyperbolic distribution. . . . . . . . . . . . . . . . . . . . . . . 60

Figure 4.19 Histogram(left), log(density) plot(middle), Q-Q plot(right) of daily gold min-

ing returns using the Normal Inverse Gaussian distribution. . . . . . . . . . . . . . 60

Figure 4.20 Histogram(left), log(density) plot(middle), Q-Q plot(right) of daily gold min-

ing returns using the Skew t distribution. . . . . . . . . . . . . . . . . . . . . . . . . 60

Figure 4.21 Histogram(left), log(density) plot(middle), Q-Q plot(right) of daily gold min-

ing returns using Variance Gamma distribution. . . . . . . . . . . . . . . . . . . . . 61

Figure 4.22 Comparing the Fit Between the GHDs for Daily Gold Mining Returns. . . . 63

Figure 4.23 Histogram(left), log(density) plot(middle), Q-Q plot(right) of daily S&P 500

returns using the Generalized Hyperbolic distribution. . . . . . . . . . . . . . . . . . 64

Figure 4.24 Histogram(left), log(density) plot(middle), Q-Q plot(right) of daily S&P 500

returns using the Hyperbolic distribution. . . . . . . . . . . . . . . . . . . . . . . . . 64

Figure 4.25 Histogram(left), log(density) plot(middle), Q-Q plot(right) of daily S&P 500

returns using the Normal Inverse Gaussian distribution. . . . . . . . . . . . . . . . 64

Figure 4.26 Histogram(left), log(density) plot(middle), Q-Q plot(right) of daily S&P 500

returns using the Skew t distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Figure 4.27 Histogram(left), log(density) plot(middle), Q-Q plot(right) of daily S&P 500

returns using Variance Gamma distribution. . . . . . . . . . . . . . . . . . . . . . . 65

Figure 4.28 Comparing the Fit Between the GHDs for S&P 500 Returns. . . . . . . . . . 67

Figure 4.29 Bivariate scatter plots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

vii



List of Tables

Table 3.1 Tail dependency coefficients of Archimedean copula. . . . . . . . . . . . . . . 34

Table 4.1 Descriptive Statistics for daily returns . . . . . . . . . . . . . . . . . . . . . . 48

Table 4.2 Unit root tests for stationarity for daily Returns. . . . . . . . . . . . . . . . . 49

Table 4.3 Box-Ljung Test for Autocorrelation at some Lags Values . . . . . . . . . . . 50

Table 4.4 Parameter Estimates of the GHDs. for daily USD/ZAR exchange rate. . . . 52

Table 4.5 A-D goodness of fit test for daily USD/ZAR exchange returns . . . . . . . . 53

Table 4.6 AIC and log likelihood estimates of GHDs to Daily USD/ZAR returns . . . . 53

Table 4.7 p-values for the Kupiec test for each distribution at different levels of signifi-

cance of GHDs for Daily USD/ZAR returns . . . . . . . . . . . . . . . . . . . . . . 54

Table 4.8 Parameter Estimates of the GHDs. for Daily All shares Returns. . . . . . . . 57

Table 4.9 A-D goodness of fit for daily All shares Returns . . . . . . . . . . . . . . . . 57

Table 4.10 AIC and log likelihood estimates of GHDs to Daily All shares returns . . . . 58

Table 4.11 p-values for the Kupiec test for each distribution at different levels of signifi-

cance of GHDs for Daily All shares returns . . . . . . . . . . . . . . . . . . . . . . 58

Table 4.12 Parameter Estimates of the GHDs. for daily Gold Mining Returns. . . . . . . 61

Table 4.13 A-D goodness of fit for daily Gold mining Returns . . . . . . . . . . . . . . . 62

Table 4.14 AIC and log likelihood estimates of GHDs to Daily Gold Mining returns . . . 62

Table 4.15 p-values for the Kupiec test for each distribution at different levels of signifi-

cance of GHDs for Daily Gold Mining returns . . . . . . . . . . . . . . . . . . . . . 62

Table 4.16 Parameter Estimates of the GHDs. for daily S&P 500 Returns. . . . . . . . . 66

Table 4.17 A-D goodness of fit for daily S&P 500 Returns . . . . . . . . . . . . . . . . . 66

Table 4.18 AIC and log likelihood estimates of GHDs to Daily S&P 500 returns . . . . . 66

Table 4.19 p-values for the Kupiec test for each distribution at different levels of signifi-

cance of GHDs for Daily S&P 500 returns . . . . . . . . . . . . . . . . . . . . . . . 66

Table 4.20 MAGHYP Parameters Estimates . . . . . . . . . . . . . . . . . . . . . . . . 68

Table 4.21 MAHYP Parameters Estimate . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Table 4.22 MANIG Parameters Estimate . . . . . . . . . . . . . . . . . . . . . . . . . . 68

viii



LIST OF TABLES

Table 4.23 MAST Parameters Estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Table 4.24 MAVG Parameters Estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Table 4.25 Anderson and Darling goodness of fit test for affine transformed returns. . . 70

Table 4.26 Four dimensional kernel smoothing goodness of fit test of MAGHDs. . . . . . 71

Table 4.27 Goodness of fit of MGHDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Table 4.28 Kendall tau and Spearman rho correlations of the bivariate returns . . . . . 75

Table 4.29 Kolmogorov-Smirnov goodness of fit based on Kendall procedure for bivariate

copulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Table 4.30 Estimated copula dependency measures . . . . . . . . . . . . . . . . . . . . . 77

Table 5.1 Best model for univariate returns . . . . . . . . . . . . . . . . . . . . . . . . 78

Table 5.2 Goodness of fit of bivariate GHDs for USD/ZAR and All shares returns . . . 86

Table 5.3 Goodness of fit of bivariate GHDs for USD/ZAR and gold mining returns . . 88

Table 5.4 Goodness of fit of bivariate GHDs for USD/ZAR and S&P 500 returns . . . 90

Table 5.5 Goodness of fit of bivariate GHDs for All shares and gold mining returns . . 91

Table 5.6 Goodness of fit of bivariate GHDs for All shares and S&P 500 returns . . . . 93

Table 5.7 Goodness of fit of bivariate GHDs for gold mining and S&P 500 returns . . . 95

ix



Background

The assumption that financial data is normally distributed was long challenged by
analysts like Mandelbrot (1963) and Fama (1965). Using data consisting of daily
prices for each of thirty stocks of the Dow-Jones Industrial Average, Fama showed
that the empirical distribution of this data was more peaked in the center and had
larger tails than the normal distribution (Fama, 1965). He suggested the use of more
stable and heavy tailed distributions. Different econometric models over the years
were also widely suggested by researchers but they all proved to be inadequate to
fit financial returns. Thus, distributions that adequately represented these tails were
proposed.

Barndorff-Nielsen (1977) introduced the family of continuous type distributions
in which the logarithm of the probability density function is a hyperbola, called the
generalized hyperbolic distribution (GHD). This was purely motivated by the re-
search carried out by Bagnold to model the grain size distribution of wind blown sand
(Bagnold, 1954). These distributions proved to fit financial returns more adequately
compared to other distributions like the normal and student t-distributions. Over the
years, these distributions were widely introduced in finance to study data consisting
of daily prices of the 30 DAX over a period of three years (Eberlein & Keller, 1995).
They showed that the GHD presented the best fit to model data with high frequency.
Similar research was also carried out by Bibby & Sorensen (1997), as well as Prause
(1999). He (Prause) described algorithms to model financial returns of NYSE Indus-
trial Index and Bayer share. He found that the GHD presented a better fit to the
data compared to the normal distribution.

In this present work, we do not focus on the univariate case. We rather seek to in-
vestigate the fit of multivariate generalized hyperbolic distributions (MGHDs). Within
this context, we introduce an alternative class of multivariate distributions which con-
sist of affine linearly transformed random vectors with independent and generalized
hyperbolic marginals. Blæsild & Jensen (1981) showed that these distributions are
closed under margining, conditioning as well as affine transformations. Thus, these
affine transformed random variables/vectors of generalized hyperbolic marginals will
be considered here.

1



0.1. Review of literature

These analysis are carried out in such a way that later on, we incorporate these
into a copula model in order to assess the dependencies that exist between the vari-
ables. The notion of copula is one that analysis multivariate distributions in order
to describe the dependence that exist between multivariate variables without study-
ing the individual marginal distributions of the variables. The idea of copula came
into existence when Fréchet (1951) posed the following problem; given a random vec-
tor (X1, X2, . . . , Xn), with marginal distributions given by F1(x1), F2(x2), . . . , Fn(xn)
respectively, what can we say about the distribution of

(F1(x1), F2(x2), . . . , Fn(xn)),

denoted Γ(F1(x1), F2(x2), . . . , Fn(xn)), called the Fréchet class of the Fi. This set
is defined as

T ∈ Γ(F1(x1), F2(x2), . . . , Fn(xn))
⇔ T (+∞, . . . ,+∞, xi,+∞, . . . ,+∞) = FI(xi).

It was not until 1959 that a significant result was obtained when Sklar introduced
the concept of copula. Since then this concept has been extensively used within the
area of multivariate analysis. Even though this concept has been used in many fields
of multivariate analysis, the first applications in finance were brought about by Frees
& Valdez (1998) among others. They showed how data could be fitted to copulas but
also described their usefulness in pricing insurance. A lot of research in the field of
finance was also carried out by Embrechts et al. (1999) in his paper "Correlation:
pitfalls and alternatives.", with coauthors McNeil and Straumann.

Even though this concept applies to multivariate variables in general, most research
using copula make use of the bivariate case, and so in this project we will also explain
the interaction of bivariate variables.

0.1 Review of literature

As mentioned earlier, investigations carried out using the MGHDs showed that these
distributions are closed under marginalizing, conditioning as well as affine transfor-
mations (Blæsild & Jensen, 1981). Over the years, these distributions have been
significantly incorporated into the field of engineering and finance for modeling. Pro-
tassov (2003) used a series of five foreign exchange returns to fit into the GHD for
fixed parameter λ = −1/2 (Normal Inverse Gaussian Distribution). This research
was aimed at fitting this particular distribution to returns of dimensionality greater
than three. This is because such algorithms had always proved to be unsuccessful
in the past. Hence, a simple EM algorithm based on maximum likelihood was used

2



0.1. Review of literature

for a fixed GHD parameter λ. It should be noted that the version/parametrization
used to derive the GHD here were those generated by linear combination of mixing
generalized inverse Gaussian distributions.

However, Schmidt et al. (2006), introduced a particular class of these distributions
called the multivariate affine generalized hyperbolic distribution (MAGHD) which
proved to be easier to implement especially when dependence of extreme events was
considered. These affine distributions also proved to have better estimation properties
than the MGHDs themselves. Hence, these properties together with others such as
for some parameter restrictions, the marginal of the MAGHDs become independent
(which is not the case with the MGHDs), all contribute to the fact that any research
involving the MGHDs prefer to use the MAGHDs. Their research also provided a
backbone for further research that is carried out using the MGHDs. Moreover, they
provided clear distinctions about the power and weaknesses of these two families of
distributions. They went further by describing algorithms which can be used for
estimating these distributions with simulated data.

Practical application of these models was carried out by Fajardo et al. (2005)
in order to estimate the MAGHDs using some financial indices comprising: BVSP,
CAC, DAX, FTSE, NIKK, S&P 500. Within this context, univariate and bivariate, as
well as the six-dimensional distributions, were estimated and, using the Kolmogorov-
Smirnov distances, the goodness of fit was assessed for the Normal Inverse Gaussian
(NIG), Generalized Hyperbolic (GHYP) and Hyperbolic (HYP) classes. However,
they were more focused on how to model multivariate distributions in the presence of
correlation. This was the primary motivation for using the MAGHDs (in particular
the Multivariate Affine Normal Inverse Gaussian (MANIG) and Multivariate Affine
Hyperbolic (MAHYP)). This research showed the accuracy of the MAGHD in fitting
real financial data. However, this application of MAGHD to finance did not end there
as they went further to use a similar approach in order to show how to price multi-
variate derivatives when the underlying assets follow a MAGHD. As an application,
the Sao Paulo Stock Exchange as well as the Brazilian Real/US Dollar was considered
(Fajardo & Farias, 2010).

Thus, most of the research mentioned above illustrate that the GHDs seem ad-
equate to model financial data as a whole. However, none of them explained the
dependence that might exist between the variables, and more especially, they do not
focus on the South African data context.

Recently, Konlack & Wilcox (2014) carried out a research using daily log returns of
seven of the most liquid mining stock indices from the Johannesburg Stock Exchange
in order to calibrate the MGHD as well as it subclasses. But also, assessing the
stability of the estimated parameters of the MGHD. They found that the marginal
parameter estimates were not stable for the subclasses of the GHD, except for the
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Variance Gamma (VG) distribution. An interesting aspect of this research was the
calibration of the MGHD, in which principal component analysis was first employed
in order to reduce the dimension of the set of variables/stocks (due to correlation as
they all came from the same family of stock: mining). The reduced set was then
fitted with MGHDs. In this way, MGHDs were utilized to describe the dependencies
(Konlack & Wilcox, 2014).

One of the most fundamental concepts behind risk management is the identifi-
cation and quantification of dependency between the variables involved. While the
Pearson’s correlation is adequate for linear correlation, it is very inaccurate when other
forms of correlation is investigated. The Kendall’s tau as well as the Spearman’s rho
(which represent rank correlation measures) play a very important role in such cases.
According to Embrechts et al. (1999), the Kendall’s tau is very significant especially
within copulas, due to their flexibility and ability to model dependency. Though there
is a lot of theory about different copula models and calibrations, there exists very little
empirical analyzis.

In our present work, we will use an alternative to the MGHD. We introduce the
MAGHD due to their flexibility, as they allow the marginals to have a choice of
parameter estimation. Rather than inheriting the parameters of the multivariate
family in general. We will also extend the MAGHD and incorporate them into the
copula model which is more appropriate in describing the relationship that exist among
variables. Our analysis will not only involve indices from the same financial section
(as mining in the previous case), but will incorporate indices like exchange rate, All
shares index as well as S&P 500. At this point in time, no research has focused on
using copulas to model dependency between variables of a MAGH model, in particular
within the South African context.

0.2 Statement of the problem

Modeling multivariate data is usually not an easy task especially when such data is
characterized by heavy tails and volatility clustering, just to name a few. Even when
this is done, a suitable goodness of fit test has to be used to determine the accuracy
of the fit.

MGHD and MAGHD have been proposed in the literature of multivariate financial
data analysis. However, very few applications of these distributions exist and do not
really apply to South African financial indices. Moreover, the Kolmogorov-Smirnov
as a goodness of fit test has no practical application for dimension bigger than two.

Thus, considering four financial indices (three from the JSE and the S&P 500
index), how do we fit these distributions to MGHD and MAGHD? How do we then
assess the goodness of these distributions? Finally, how do these indices vary with
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respect to one another?

0.3 Aims and Objectives of the Study

Our main aim will be to fit financial indices from the Johannesburg Stock Exchange
using MGHD and MAGHD as well as their subclasses. We seek to find out which mem-
ber of these distributions provide the best possible fit by using the kernel smoothing
technique as a goodness of fit test. Finally, using Archimedean copulas, we investigate
pairwise dependencies between the tails (upper and lower) of these indices.

0.4 Significance of the research

This research provides an alternative class of multivariate distributions which ade-
quately fit multivariate indices within the South African context but as well as some
foreign indices. In view of risk management, we describe the relationship between
pairwise indices. Hence, enabling us to understand how the change in one index can
trigger a corresponding change in the other index. This enables practitioners to con-
trol some variables in order to obtain particular responses. Moreover, the estimated
models can also serve for forecasting and predicting for future, enhancing economic
management.

0.5 Research layout

Having outlined the core reasons behind the use of MGHDs above, the rest of the the-
sis is structured such that in Chapter 1, we introduce this general class of asymmetric
distributions. Firstly, we describe the univariate GHD as well as the parameters that
define this distribution. Then, we generalize this univariate distribution in order to
define the MGHD. Lastly in this chapter, we introduce the MAGHD as a particu-
lar case of the MGHD with affine transformed variables. Moreover, we discuss the
parameter estimation procedure for these affine linearly transformed distributions.

In Chapter 2, we introduce copula models that will be utilized later to ana-
lyze dependency between variables. However, emphasis is placed on the bivariate
Archimedean copulas. Hence, preliminary properties of copulas are discussed here
including generating functions of these bivariate copulas.

In Chapter 3, we describe the methodology that will be used; the different sta-
tistical tests, including stationarity, independence, goodness of fit as well as tail de-
pendency parameters for Archimedean copulas. We also look at the different copula
parameters estimation procedures as well as statistical model selection criterion. Fi-
nally in Chapter 4, we apply all the methodology described in the previous chapters
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0.5. Research layout

to the four returns under consideration. We begin with univariate distributions, then
move to MAGHDs. Then, we look at MGHDs fits without affine transformed vari-
ables. We carry out appropriate goodness of fit tests for these models. In addition,
we fit the bivariate returns to copulas and extract the tail dependencies.

Finally, in Chapter 5, we summarize all the analysis carried out in the conclusion
as well as useful recommendations. We finish by providing other useful information
related to this research in the appendix.
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Chapter 1

The Multivariate Generalized
Hyperbolic Distributions
(MGHDs)

Semi-heavy and heavy tails, non-Gaussianity, lack of autocorrelation and volatility
clustering are some features that characterize financial returns. Hence, the Normal
distribution proved inadequate to model such data (Prause, 1999). Thus, over the
years, the GHD has extensively been used as an alternative distribution for modeling.
In this chapter, we introduce the MGHDs as a family consisting of elliptical distri-
butions. Their ability to model dependencies between variables (especially extreme
events), make then ideal for modeling. We introduce the univariate GHDs and some
of their properties as preliminaries to their higher dimensional counterparts.

1.1 Univariate Generalized Hyperbolic Distribution (GHD)

Most of the theory related to univariate GHDs is referenced from Prause (1999). The
GHD is a five parameter continuous distribution. A random variable, X, follows a
generalized hyperbolic distribution denoted

X ∼ gh(x;λ, α, β, δ, µ),

where µ is a location parameter, δ the scale parameter, α determines the shape, β
determines the skewness, and λ influences the kurtosis and characterizes the classifi-
cation of the GHDs (Necula, 2009).
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1.1. Univariate Generalized Hyperbolic Distribution (GHD)

A random variable following this distribution has probability density function
given by (following Prause (1999))

gh(x;λ, α, β, δ, µ) = aλ(δ2 + (x− µ)2)(λ−1/2)/2

×Kλ−1/2(α
√
δ2 + (x− µ)2) exp (β(x− µ)),

where aλ = a(λ;α, β, δ) = (α2−β2)λ/2

√
2παλ−1/2δλKλ(δ

√
α2−β2)

, x, µ ∈ R, and Kλ is the modi-

fied Bessel function of the third kind.
It should also be noted that the domain of the parameters are as follows;

δ ≥ 0, |β| < α, if λ > 0
δ > 0, |β| < α, if λ = 0
δ > 0, |β| ≤ α, if λ < 0

The mean and variance of this distribution is given by (Barndorff-Nielsen & Stelzer,
2005)

E(X) = µ+
βδ√
α2 − β2

Kλ+1(ζ)
Kλ(ζ)

;

V ar(X) = δ2

(
Kλ+1(ζ)
ζKλ(ζ)

+
β2

α2 − β2

[
Kλ+1(ζ)
Kλ(ζ)

−
(
Kλ+1(ζ)
Kλ(ζ)

)2
])

,

where ζ = δ
√
α2 − β2. The GHD consists of the following main classes; the Hy-

perbolic distribution, the Normal-Inverse Gaussian distribution, the Skew Student
t-distribution, the Variance-Gamma distribution.

1.1.1 The Normal Inverse-Gaussian (NIG) Distribution

This is a sub-class of the GHD obtained when the parameter λ = −1
2 . A random

variable X is said to follow a normal Inverse Gaussian distribution denoted

X ∼ nig(x;α, β, δ, µ),

if its probability density function is given by
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1.1. Univariate Generalized Hyperbolic Distribution (GHD)

nig(x;α, β, δ, µ) =
αδ

π
exp

(
δ
√
α2 − δ2 + β(x− µ)

)
×
K1(α

√
δ2 + (x− µ)2)√

δ2 + (x− µ)2
,

with x, µ ∈ R and δ > 0, |β| ≤ α. Also (Aas & Haff, 2005),

E(X) = µ+
βδ√
α2 − β2

;

V ar(X) =
δα2

(α2 − β2)3/2
.

Similarly, the skewness and kurtosis are given by (Aas & Haff, 2005)

S = 3
β

α(α2 − β2)1/4δ1/2
,

K = 3

(
1 + 4(β

α)2
)

δ(α2 − β2)1/2
.

It should also be noted that this distribution has semi-heavy tails which decay ac-
cording to the equation (Aas & Haff, 2006)

f(x) ∼ const|x|−3/2 exp(−α|x|+ βx), for x→ ±∞. (1.1)

1.1.2 The Hyperbolic (HYP) Distribution

This is a sub-class of the GHD obtained when the parameter λ = 1 (Barndorff-Nielsen,
1997). Thus, a random variable X is said to follow a hyperbolic distribution denoted

X ∼ hyp(x;α, β, δ, µ),

if its probability density function is given by (Eberlein & Keller, 1995)

hyp(x;α, β, δ, µ) =

√
α2 − β2

2δαK1(δ
√
α2 − β2)

exp
(
−α
√
δ2 + (x− µ)2 + β(x− µ)

)
, (1.2)

with x, µ ∈ R.
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1.1. Univariate Generalized Hyperbolic Distribution (GHD)

1.1.3 The variance-gamma (VG) distribution

We also have a subclass of the GHD family which occurs when the parameter δ → 0;
called the variance-gamma distribution. A random variable X follows a variance-
gamma distribution, denoted

X ∼ V G(λ, α, β, µ),

if its probability density function is given by (Madan & Seneta, 1990)

V G(λ, α, β, µ) =
γ2λ

√
πΓ(λ)(2α)λ−1/2

|x− µ|λ−1/2

×Kλ−1/2(α|x− µ|) exp(β(x− µ)) x ∈ R,

where Γ(λ) is the Gamma function and γ2 = α2 − β2. The parameter domain is also
given by; λ > 0 and α > |β|. The mean and variance of this distribution are given by

E(X) = µ+ 2
βλ

γ2
,

V ar(X) =
2λ
γ2

(
1 + 2

(
β

γ

)2
)

1.1.4 The generalized hyperbolic skew student t (skew t) distribu-
tion

This definition follows from Aas & Haff (2006). As a subclass of the GHD, we also
have the skew student t distribution with the parameter λ = −ν

2 and α → |β|. A
random variable X is said to follow a skew student t distribution if its probability
density function is given by

f(x) =
2

1−ν
2 δν |β

ν+1
2 |K ν+1

2
(
√
β2(δ2 + (x− µ)2))

γ(ν
2 )
√
π(
√
δ2 + (x− µ)2)

ν+1
2

exp(β(x− µ)), β 6= 0,

f(x) =
Γ(ν+1

2 )
√
πδΓ(ν

2 )

(
1 +

(x− µ)2

δ2

)− (ν+1)
2

β = 0,

where we have used the fact that

Kν(x) =
√

π

2x
exp(−x), x→ ±∞.

These definitions are obtained using the properties of the Bessel functions documented
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1.1. Univariate Generalized Hyperbolic Distribution (GHD)

in Appendix 5.2 brought about by Abramowitz & stegun (1972). The mean and
variance of this distribution are given by (Aas & Haff, 2005)

E(X) = µ+
βδ2

ν − 2
,

V ar(X) = 2
β2δ4

(ν − 2)(ν − 4)
+

δ2

ν − 2

This distribution is the only subclass of the GHD which has one polynomial and one
exponential tail, thus enabling them to handle heavy tails data well. However, they
do not handle skewness adequately.

We also note that the tails of this distribution decay according to the equation
(Aas & Haff, 2006)

f(x) ∼ const|x|−ν/2−1 exp(−|β||x|+ βx).

The skewness and kurtosis of this distribution are given by

S = 2
(ν − 4)1/2βδ

(2β2δ2 + (ν − 2)(ν − 4))3/2

[
3(ν − 2) +

8β2δ2

ν − 6

]
,

K =
6

(2β2δ2 + (ν − 2)(ν − 4))2
[
(ν − 2)2(ν − 4)

+
16β2δ2(ν − 2)(ν − 4)

ν − 6
+

8β4δ4(5ν − 22)
(ν − 6)(ν − 8)

]
1.1.5 Parametrizations of the GHDs

It should also be noted that different parametrizations of the GHD and its subclasses
are also available with

ξ = (1 + δ
√
α2 − β2)−1/2,

χ =
ξβ

α
;

ζ = δ
√
α2 − β2;

ρ =
β

α
.

These parametrizations are very important in our analysis as they help us to determine
the behavior or nature of our data. For instance, the parameter ξ determines the
nature of the heaviness of the tails; the closer it is to 1, the heavier the tails are. Also,
for
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1.2. The MGHDs

χ < 0, the left tail is heavier than the right tail,

χ = 0, the distribution is symmetric,

χ > 0, the right tail is heavier than the left tail.

Hence, we can now introduce the MGHD based on two definitions that are often used
in the literature. We also look at the disadvantages of each, so as to motivate our
choice.

1.2 The MGHDs

In this section, we introduce the MGHD. However in this case, we introduce this
distribution following the definition of Generalized Inverse Gaussian (GIG) distri-
bution by mean-variance mixture McNeil et al. (2005). This is very important as
the linear transformations obtained from the GIG preserve the same properties as
those of the GHDs. Thus, we start by introducing the GIG distribution and Normal
Mean-Variance Mixture distributions which essentially are the building blocks of the
MGHDs.

Definition 1.1. The Generalized Inverse Gaussian (GIG) Distribution. Ac-
cording to McNeil et al. (2005), a random variable X is said to follow a GIG distri-
bution, denoted

X ∼ GIG(x;λ, χ, ψ)

if its probability density function is given by (Barndorff-Nielsen et al. 1992)

G(x;λ, χ, ψ) =
(ψχ)λ/2

2Kλ(
√
ψχ)

xλ exp
(
−1

2
(ψx−1) + ψx)

)
(1.3)

where Kλ is the modified Bessel function with index λ given by

Kλ(x) =
1
2

∫ ∞

0
uλ−1e−

x
2
(u+u−1), (1.4)
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1.2. The MGHDs

and the parameter domain for the GIG distribution is given by

χ > 0, ψ ≥ 0 if λ < 0,

χ > 0, ψ > 0 if λ = 0,

χ ≥ 0, ψ > 0 if λ > 0,.

It should be noted that different parameterizations of the GIG distribution also exist,
and for this distribution,

E(X) =

√
χ/ψKλ+1(

√
χψ)

Kλ(
√
χψ)

, (1.5)

where the parameters follow the same domain as above.

Definition 1.2. The Normal Mean-Variance Mixture Distribution. Let X ∈
Rd, be a random vector. We say X follows a normal mean-variance mixture distribu-
tion if

X = µ+Wγ +
√
WAZ, (1.6)

where

• Z ∼ Nk(0, Ik),

• W ≥ 0 is a positive, scalar valued random variable with Cov(W,Z) = 0,

• A ∈ Rd∗k is a matrix,

• Finally, µ, γ ∈ Rd are some parameter vectors.

This definition is referenced from Hu (2005).
For this distribution,

E(X) = µ+ E(W)γ

COV (X) = E(W )Σ + V ar(W )γγ′,

where Σ = AA′. In the formulation above, W is interpreted as the shock that changes
the volatility and mean of the normal distribution (Hu & Kercheval, 2007). Also, the
following can be drawn from the normal mean-variance mixture distribution;

X|W = Nd(µ+Wγ,WΣ). (1.7)

Definition 1.3. The Multivariate Generalized Hyperbolic Distribution (MGHD).
Let X ∈ Rd be a random vector and suppose W ∼ GIG(λ, χ, ψ) from Definition 1.2
above. Then we that say X follows the MGHD.
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1.3. Multivariate Affine Generalized Hyperbolic Distribution (MAGHD)

However, this definition of MGHD does not pass on some of the important proper-
ties possessed by the general multidimensional family to the subclasses. For instance,
the multivariate hyperbolic distribution (MHYP) does not have generalized hyper-
bolic marginal. As such, we introduce an alternative definition to the MGHD family
which is rather straight forward and does not involve other distributions like the
variance-mean mixtures described above.

Definition 1.4. Let X=(X1, X2, . . . , Xn) be a random vector. We say X follows
the MGHD with location vector µ ∈ Rn and scaling matrix, Σ ∈ Rn∗n, denoted
X ∼MGHDn(µ,Σ,ω), where ω = (λ, α, β), if it admits the representation (Blæsild
& Jensen 1981),

X = A′Y + µ,

where

• A′ ∈ Rn∗n is a lower triangular matrix with A′A=Σ positive definite,

• Y ∈ Rn has density given by

gY (y) =
αn/2(1− β′β)λ/2Kλ−n/2(α

√
1 + y′y)

(2π)n/2Kλ(α
√

1− β′β)(1 + y′y)n/4−λ/2
eαβ′y (1.8)

One important characteristic of this definition is that when λ = n+1
2 , we obtain the

multivariate hyperbolic (MHYP) distribution, and in particular λ = 1(n = 1) brings
us back to the univariate HYP distribution discussed earlier. Also, for λ = −1

2 , we
obtain the multivariate NIG (MNIG) distribution. Thus, an important aspect to note
about the parametrization above is that it is invariant under affine transformations.
Indeed, the following theorem explains this property (Hu & Kercheval, 2007). We will
state without proving.

Theorem 1.1. According to McNeil et al. (2005), suppose X ∼ GHn(λ, χ, ψ,µ,Σ,γ)
and Y = BX+b, B ∈ Rt∗n and b ∈ Rt. Then Y ∼ GHn(λ, χ, ψ,Bµ+b,BΣB′,Bγ).

Just like the univariate subclasses of the GHDs, the MGHD consists of the sub-
classes; multivariate generalized hyperbolic (MGHYP), multivariate hyperbolic (MHYP),
multivariate normal inverse gaussian (MNIG), multivariate variance gamma (MVG)
as well as the multivariate skew t (MST).

1.3 Multivariate Affine Generalized Hyperbolic Distribu-
tion (MAGHD)

Definition 1.5. According to Schmidt et al. (2006), suppose X = (X1, X2, . . . , Xn)
be a random vector. We say X follows the MAGHD with location vector ν ∈ Rn and
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1.3. Multivariate Affine Generalized Hyperbolic Distribution (MAGHD)

scaling matrix Σ ∈ Rn∗n, denoted X ∼MAGHDn(µ,Σ, ω) , where ω=(ω1, ω2, . . . ,
ωn) and ωi=(λi, αi, βi), if it admits the representation

X = A′Y + µ,

where Y = (Y1, Y2, . . . , Yn) and each Yi ∼MGHD1(0, 1, ωi); each Yi is univariate gen-
eralized hyperbolic distributed, and more importantly are mutually independent.

Thus, the multivariate subclasses will consist of; multivariate affine generalized
hyperbolic (MAGHYP), multivariate affine hyperbolic (MAHYP), multivariate affine
normal inverse gaussian (MANIG), multivariate affine variance gamma (MAVG) as
well as the multivariate affine skew t (MAST).

In most research carried out using MGHD, the multivariate affine version is mostly
used as it is more flexible. This allows each ωi to be calculated for each marginal dis-
tribution. Hence, providing more accurate fits as each marginal can now be fitted
independently with a GHD. This is not the case with the usual MGHD, as the pa-
rameters are predefined for the general family. Thus, the individual variables inherit
these parameters. If the scaling matrix Σ=I (the identity matrix) from the defini-
tion above, then the marginals are independent, and hence can be modeled with the
MAGHD. However, the MGHD cannot be used if the marginal are independent.

Another important point to note about these two families is that within the field
of risk assessment, MAGHD are used to model tail dependence while their MGHD
counterparts do not because they are always tail dependent (Schmidt et al. 2006).

If X ∼MGHDn(µ,Σ, ω), then the mean and covariance matrix of X are given by

E(X) = µ+ αRλ,1

(√
α2(1− β′β)

)
A′β, and

Cov(X) = Rλ,1

(√
α2(1− β′β)

)
Σ +

[
Rλ,2

(√
α2(1− β′β)

)
−R2

λ,1

(√
α2(1− β′β)

)]
A′ββ′A

1− β′β
,

where Rλ,i(x) = Kλ+i(x)
xiKλ(x)

. In particular, E(X) = 0 and Cov(X) = K2(α)
αK1(α) × Σ if

β = (0, 0, 0, . . . , 0)′ and λ = 1.
Similarly, the following are obtained for the MAGHD;

E(X) = µ+ A′E(Y),

Cov(X) = A′CA,

where E(Y) is a vector of expectation of independent Y ∼ MGHD1(0, 1, ωi), given
by
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1.4. Parameter Estimation of MAGHD

E(Yi) = Rλi,1

(√
α2

i (1− β2
i )
)
αiβi,

C = diag(c11, c22, c33, . . . , cnn)

with

cii = Rλi,1

(√
α2

i (1− β2
i )
)

Σ

+
[
Rλi,2

(√
α2

i (1− β2
i )
)
−R2

λi,1

(√
α2

i (1− β2
i )
)]

β2
i

1− β2
i

.

Furthermore, if cii = c, ∀i = 1, 2, 3, . . . , n, then Cov(X) = cΣ, (Schmidt et al. 2006).

1.4 Parameter Estimation of MAGHD

As mentioned earlier, the key features of the MAGHD is the freedom in which each
marginals can freely choose their parameters, which is not the case with the MGHD.
A two step procedure can be used to estimate the parameters of these multivariate
distributions (Schmidt et al. 2006). To this end, we state the following proposition.

Proposition 1.1. (Schmidt et al. 2006). Suppose X ∼ MAGHDn(µ,Σ, ω), then
Z=BX is a set of n independently GH(ω, δ, µ), where B is the inverse Cholesky
factorization of the X covariance matrix, S, where S−1 = B′B.

Proof. (Fajardo & Farias, 2009)
Indeed, suppose X ∼MAGHn(ω,Σ,ψ). Then, X = A′Y +ψ, where A is upper

triangular and Σ is positive definite, with A′A = Σ, and Yi ∼ GH(ωi, 1, 0) are
mutually independent, where A′ is the transpose of A.

Suppose S is the covariance matrix of X, then by Cholesky decomposition, S =
P′P.

Hence, S−1 = P−1(P′)−1 = P−1(P−1)′. Thus, if we define B = (P−1)′, then
S−1 = B′B and hence Z = BX = B(A′Y + ξ) = BA′Y+Bξ.

But we know that A′A is positive definite, thus BA′(BA′)′ = BA′AB′ is also
positive definite and hence, Z=BA′Y+Bξ. Thus, Z is a multivariate affine gener-
alized hyperbolic distributed vector and hence a vector of independently distributed
GH(ω, δ, µ) (theorem 1.1).
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1.4. Parameter Estimation of MAGHD

With this proposition in mind, a two step procedure is used for parameter es-
timation of the multivariate distributions. The steps involved are (Schmidt et al.
2006);

• In the first step, we compute/estimate the covariance matrix, S, of X vector
(random data sample). We then carry out the transformation described in the
proposition above in order to construct the vector Z=BX. This consists of
independent generalized hyperbolic distributed marginals, where the matrix B
is obtained by Cholesky decomposition of the covariance matrix, S. That is
S−1 = B′B.

• In the second step, we estimate the univariate marginal distributions in or-
der to obtain the parameter estimates; (αi, βi, λi). Hence using these marginal
parameter estimates, we can estimates the multivariate estimates. Indeed,
since Z=BX → X=B−1Z. But from above, X ∼ MAGH(ω,Σ, ξ) =⇒
X=A′Y + ξ and Z ∼MAGH(ω,Σ,µ) =⇒ Z=CY + µ.

Thus

X=B−1Z =⇒ A′Y + ξ = B′CY + µ),

⇐⇒ A′ = B−1C ξ = B−1µ,

where µ is the location vector for Z and ξ is the location vector for X. The
scaling matrix, Σ is obtained from the expression Σ = B′−1DB−1, where D is a
diagonal matrix with diagonal elements consisting of the scaling parameters of
each of the independent Zi marginals. Thus in this way we obtain the estimates
of the multivariate model.

It should be noted that this procedure is quite computationally easy as it requires the
estimation of n univariate distributions consisting of only five parameters each.
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Chapter 2

Copulas

Statistical analysis usually involves describing the nature in which a variable behaves
over time in a given random experiment. However, such single variables usually do
not vary individually, but depend on other variables as well. It becomes necessary to
not only analyze such single variables separately, but also how one variable affects or
interact with the other variables. As such, we can draw some pattern or dependencies
between these variables. Multivariate analysis involves the study or analysis of two or
more variables simultaneously; how these variables vary together, their dependencies
on each other. The concept of copula is one that helps to determine the dependence
that exists between variables in multivariate analysis. We begin with a few definitions
that will enable us to understand the concept behind copulas.

The following definitions are from Tsay (2005).

Definition 2.1. The uniform distribution. Consider X, a random variable. We
say X follows the uniform distribution on [a, b], denoted X ∼ U(a, b) if its probability
density function is given by

U(x; a, b) =

{
1

b−a , a ≤ x ≤ b;
0, otherwise.

(2.1)

For this distribution, E(X) = b+a
2 and V ar(X) = (b−a)2

12 .

Definition 2.2. (Tsay, 2005)The copula. A copula is a multivariate Cumulative
Distribution Function (CDF) of univariate U(0, 1) marginal distributions.

Thus, if X = (X1, X2, . . . , Xn) is a random vector such that each F (Xi) ∼ U(0, 1),
with CDF F1(x1), F2(x2), . . . , Fn(xn) respectively then the CDF of
F1(x1), F2(x2), . . . , Fn(xn), denoted

C(F1(x1), F2(x2), . . . Fn(xn)) = F (x1, x2, . . . , xn)

is a copula if the following conditions hold;
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• C : [0, 1]n ∈ Rd → [0, 1]

• Boundary condition;

C(x1, x2, . . . , xj−1, 0, xj+1, . . . , xn) = 0

C(1, 1, . . . 1, xi, 1, . . . , 1) = xi, ∀i = 1, 2, 3, . . . , n, xi ∈ [0, 1] (2.2)

•
∑2

i1=1 . . .
∑

in
= 12(−1)i1+i2+···+inC(x1i1

, . . . , xnin
) ≥ 0

Hence, given a copula C(x1, x2, x3, . . . , xn), our main aim is to explain the rela-
tionship that exists between the individual random variables with realizations
x1, x2, x3, . . . , xn, through the copula (Tsay, 2005).

Unlike the n-dimensional copula with very few construction schemes like in the
Archimedean and elliptical copulas, the 2-dimensional copula has widely and exten-
sively been discussed and used in the past. In this study, we will also consider the
2-dimensional copula.

Definition 2.3. The Bivariate Copula. Let X and Y be two univariate uniformly
distributed random variables on [0, 1], with CDF FX(x) and FY (y) respectively. Let
also C : [0, 1] × [0, 1] → [0, 1]. Then C(FX(x), FY (y)) = F (x, y) is a copula if the
following conditions hold;

• C(x, 0) = C(0, y) = 0, C(x, 1) = x, and C(1, y) = y,

• For any [x1, x2] ∗ [y1, y2] ∈ U(0, 1)2, such that x1 ≤ x2 and y1 ≤ y2,

C(x2, y2)− C(x2, y1)− C(x1, y2) + C(x1, y1) ≥ 0

Thus, this copula contains information about the dependency that exists between
the two random variables X and Y .

It is also relevant to note that most of the definitions and concepts associated with
copulas here are obtained from Ruppert (2011) and Tsay (2005)

Theorem 2.1. Sklar Theorem in n-Dimensions. According to Ruppert (2011),
let F be an n-dimensional distribution function with marginals F1, F2, . . . Fn. Then
there exists a copula C, such that

F (x1, x2, . . . , xn) = C(F1(x1), F2(x2), . . . , Fn(xn)).

If the margins F1, F2, . . . Fn are continuous, then the copula C is unique.

This theorem is very important in multivariate analysis as it provides the basis for
the construction of copula.
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However, our focus on the bivariate case allows us to give the 2 dimensional Sklar
theorem.

Theorem 2.2. The bivariate Sklar Theorem. Let X and Y be two random vari-
ables with distribution margins FX and FY respectively, and joint distribution F (x, y).
Then there exists a copula C such that

F (x, y) = C(FX(x), FY (y)), (2.3)

and if the marginal FX and FY are continuous, then the copula is unique (Tsay, 2005).

We now outline some characteristic features of copula models. Some of these
features may also describe some basic copula models that are usually included in the
theory of copula models. Some of these properties are given by Nelsen (2003), we just
list a few.

• Strictly increasing: If X = (X1, X2, . . . , Xn), and Y = (Y1, Y2, . . . , Yn) are
two random vectors such that fi is a strictly increasing function such that Yi =
fi(Xi). Then X and Y have the same copula.

• Symmetry: In this case we distinguish two kinds of symmetry;

Plain symmetry ; C(u, v) = C(v, u), ∀u, v ∈ [0, 1]

Radial symmetry ; C(u, v) = u+ v − 1 + C(1− u, 1− v), ∀u, v ∈ [0, 1]

• Fréchet Bound Copula: Let C be a copula function. We define the Fréchet
lower and upper bound Copulas respectively as CL(u, v) = max(u + v − 1, 0)
and CU (u, v) = min(u, v), u, v ∈ [0, 1]. Note that these are the bivariate cases
of the Fréchet Bound Copula. Furthermore, for any bivariate copula C, we have

CL(u, v) ≤ C(u, v) ≤ CU (u, v), u, v ∈ [0, 1]

• Comonotonicity: Suppose we have a random vector given by
Y = (X,X,X, . . . ,X), such that X ∼ U(0, 1); that is Y is the vector which
contains n identical copies of X. Then the n-dimensional comonotonicity copula
is the copula model of the cumulative distribution function (cdf) of Y , given by

C(x1, x2, . . . , xn) = min(x1, x2, . . . , xn),

that is the Fréchet upper bound Copula.

• Counter-monotonicity: Suppose now that Y = (X, 1−X), and X ∼ U(0, 1).
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Then the counter-monotonicity copula is the cdf of Y , defined by

C(u, v) = max(u+ v − 1, 0).

That is, the bivariate Fréchet lower bound Copula.

• Independence Copula: Let X = (X1, X2, . . . , Xn) be a random vector of n
independent variables such that each Xi ∼ U(0, 1), ∀i. Then we define the
n-dimensional copula as

C(x1, x2, . . . , xn) = Πn
i=1xi

As mentioned earlier, our main use of copula in this project is to model the de-
pendency that exist between our variables of interest. The reasons for using copula
to model dependency is due to factors which may be described as follows;

• the correlation described by such measures is ideal mostly in cases when the vari-
ables are linearly related. However, the correlation between financial variables
may be non-linear. Hence, copula within the context of non linear correlation
may be ideal.

• Secondly, financial variables are characterized by semi-heavy and heavy tails
and copulas are known to be adequate when such distributions are of interest.

• Finally, different estimation procedures are possible with copulas ranging from
non-parametric to semi-parametric and finally parametric estimations. Hence,
estimation using copulas usually involves a two stage procedure which in general
is quite easy and fast.

Correlation as a measure of dependency even though is commonly used, has some
limitations such as the fact that a correlation of 0 between two variables does not nec-
essarily mean the variables are uncorrelated (or independent). Similarly, a correlation
coefficient of 1 between a pair of variables does not necessarily means the variables are
perfectly correlated. Secondly, linear transformations of correlated variables may not
result in variables which are correlated in the same way as the original variables. Fur-
thermore, the correlation between a pair of variables is only defined in cases where the
variables under consideration have finite variances and covariances. However, some
variables have infinite variation; like that exhibited by extremely upper and lower
tailed variables.
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2.1. Implicit and explicit copulas

2.1 Implicit and explicit copulas

In this section, we consider some classical families of copula models that are often
used by practitioners in the field of statistics, as they form the bases for construction
of more complex copula models. Here, we classify them according to two sub groups;
implicit and explicit copulas.

2.1.1 Implicit Copulas

As their name might suggest, these copula models have no particular closed forms.
They are obtained from some known distribution functions. Amongst such copula
models, we find the Gaussian and student t copulas.

Suppose φ is a function representing the univariate standard normal distribution.
Then the density of the bivariate Gaussian copula is given by the integral equation
(Aas, 2004);

Cρ(u, v) =
∫ φ−1(u)

−∞

∫ φ−1(v)

−∞

1
2π(1− ρ2)1/2

exp
(
−x

2 − 2ρxy + y2

2(1− ρ2)

)
dxdy, (2.4)

where φ−1 is the inverse of the standard univariate Gaussian distribution and ρ is the
copula parameter.

On the other hand, suppose tν represents the univariate student t distribution with
ν degrees of freedom. Then, we define the bivariate Student t copula by the integral
equation

Cρ,ν(u, v) =
∫ t−1

ν (u)

−∞

∫ t−1
ν (v)

−∞

1
2π(1− ρ2)1/2

(
1 +

x2 − 2ρxy + y2

ν(1− ρ2)

)−(ν+2)/2

dxdy;

(2.5)
where, ρ and ν represent the copula parameters and t−1 represents the inverse of the
standard univariate t distribution with ν degrees of freedom.

It should also be noted that the student t copula allows for joint fat tailed distri-
butions even if the individual marginal do not allow for such tails (Aas, 2004).

2.1.2 Explicit copulas

Unlike the implicit copulas which do not assume a particular closed form, the explicit
copulas are characterized by having a particular closed form. In fact, they are com-
pletely specified by a generator function. Thus, unlike the implicit copulas, they are
not obtained from multivariate distribution functions. Amongst these class of copula
includes the well known Archimedean copulas.
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2.1. Implicit and explicit copulas

Definition 2.4. Let φ be a continuous, strictly decreasing convex function such that

φ : [0, 1] → [0,∞],

with φ(0) = ∞ and φ(1) = 0. The archimedean copula with strick generator is the
copula defined by (Ruppert, 2011)

C(u1, u2, u3, . . . , un) = φ−1(φ(u1) + φ(u2) + φ(u3) + · · ·+ φ(un)),

where φ is defined as above is a strick generator.

In particular, the bivariate Archimedean copula is given by

C(u, v) = φ−1(φ(u) + φ(v)).

It should be noted that such generator functions are not uniquely defined. Feller
(1971) suggests that the inverse of Laplace transform of cumulative distribution func-
tions also correspond to a very important class of generator functions for Archimedean
copulas. There are many Archimedean copulas in the theory of copulas but we will
only focus a few of them that are of direct interest to us. They include; Clayton
copula, Gumbel copula and Frank copula.

Clayton Copula

The Clayton copula is an asymmetric copula model with generator given by

φ(t) =
(t−θ − 1)1/θ

θ
, θ > 0.

Hence, the copula model is given by (Cherubini et al. 2004)

C(u1, u2, u3, . . . , un) =
(
u−θ

1 + u−θ
2 + u−θ

3 + · · ·+ u−θ
n − n+ 1

)−1/θ
. (2.6)

This representation is very straight forward using the above generator of Clayton
copula and the general copula model for Archimedean copulas. In particular, the
bivariate Clayton copula is given by

C(u, v) = (u−θ + v−θ − 1)−1/θ.

One important point to note about this copula model is that when the parameter
θ = 0, we obtain the independence copula (Ruppert, 2011). While on the other hand,
as θ →∞, we obtain dependency between the variables. Hence, θ is a parameter that
influences the dependency. This copula model is very often used in statistical analysis
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2.1. Implicit and explicit copulas

in order to asses variables with lower tail correlation, as they are well known for
estimating such correlation. It should also be noted that this copula model (Clayton)
is defined only when the generator is strict.

Gumbel copula

This is another asymmetric copula under the category of Archimedean copulas, with
generator function given by;

φ(t) = (− log(t))θ , θ ≥ 1.

In this case, the copula model is given by (Aas, 2004)

C(u1, u2, . . . , un) = exp
(
−
(
(− log u1)θ + (− log u2)θ + · · ·+ (− log un)θ

)1/θ
)
.

(2.7)
In particular, the bivariate Gumbel copula is defined by

C(u, v) = exp
(
−
(
(− log u)θ + (− log v)θ

)1/θ
)
.

Just like the Clayton copula, the parameter θ in the Gumbel copula influences the
dependence. Indeed, as θ = 0, we obtain the independence copula, but when θ →∞,
we obtain the comonotonicity copula. Unlike the Clayton copula which are used to
estimate lower tail dependency, the Gumbel copula on the other hand are used to
estimate upper tail dependencies.

Frank copula

This is another member of the Archimedean family of copulas with generator function
given by (Ruppert, 2011)

φ(t) = − log
(
e−θt − 1
e−θ − 1

)
, −∞ < θ <∞.

Using this generator and the genera representation for Archimedean copulas, we obtain
the following Frank copula model

C(u1, u2, . . . , un) = −1
θ

log
(

1 +
(e−θu1 − 1)(e−θu2 − 1) . . . e−θun − 1

(e−θ − 1)n−1

)
. (2.8)

In particular, for the bivariate case (n = 2), we obtain

C(u, v) = −1
θ

log
(

1 +
(e−θu − 1)(e−θv − 1)

(e−θ − 1)

)
.
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2.1. Implicit and explicit copulas

An important point to note is that, amongst the Archimedean copulas listed above,
this is the only one whose generator parameter can take any real number without
any restrictions. On the other hand, this Frank copula has no lower or upper tail
dependence like the other members. Hence, it cannot be used to model data with
strong tail dependence. There are many more copulas model that could be discussed
in the literature, however our analysis will only focus on these few copulas.

These implicit and explicit copulas are all referenced from Aas (2004). Details
about copulas and tail dependence may be found on the next chapter.
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Chapter 3

Methodology

3.1 Test For Stationarity

As mentioned earlier, financial returns like exchange rate are characterized by inter-
mittency (or variability), meaning that at any given point in time, financial returns
present a very high degree of variability. A series {r1, r2, . . . , rt} is said to be strictly
stationary if the joint density of {r1, r2, . . . , rt} is invariant under time shift. However,
this condition is often difficult to be proven and thus a simpler version is often used;
namely weakly stationary. A series is weakly stationary if both its mean and covari-
ance functions are time invariant. This is a very important feature of a time series
as most analysis are carried out on the basis of stationarity. However, most financial
time series literature assume that financial returns are weakly stationary and this as-
sumption is checked empirically in cases where we have sufficient historical data (Tsay,
2005). This means that we need to transform our data to make it stationary (such
as log, square root transformations, etc). Some techniques used to check whether a
given series is stationary includes what follow in the sequel.

3.1.1 Autocorrelation Function (ACF)

This is a rather graphical method of analyzing the nature of stationarity in our data, as
it gives an indication of stationarity beforehand. Firstly, we recall that if r1, r2, . . . , rn
is a series, then the autocorrelation function at lag k is defined by

ρt =
γk

γ0
, (3.1)

where γk is the covariance at lag k and γ0 is the variance, and −1 ≤ ρk ≤ 1. However
in general, we only deal with a sample of the observation, we talk about sample
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3.1. Test For Stationarity

autocorrelation function and in this case, we use

ρ̂t =
γ̂k

γ̂0
, (3.2)

where (Tsay, 2005)

γ̂k =
∑n

t=1(rt − r̄)(rt+k − r̄)
n

,

γ̂0 =
∑t=n

t=1 (rt − r̄)2

n
,

with n being the sample size. A graph of γ̂k against k is called the sample correlogram.
Thus, analysis of the likelihood of stationarity by this approach rely on the nature of
the correlogram;

• If the autocorrelations starts at a very high value and decay slowly but not to
zero, the series is likely non-stationary.

• if the autocorrelations hover around zero, then the series is likely to be stationary.

Once we are aware of the likelihood of the nature of stationarity, we may then
proceed to verify this. Two formal tests are often used in financial time series are the
Augmented Dickey Fuller (ADF) test and the Phillips-Perron (PP) test.

3.1.2 Augmented Dickey Fuller (ADF) Test

Consider the simple model
rt = ρrt−1 + µt, (3.3)

µt is a white noise process. Suppose we have data which follows this model. Then we
know that if ρ = 1, then the model is a pure random walk and thus is non-stationary.
However, if ρ < 1, then the model is stationary. The Dickey-Fuller test assumes that
the error terms, (ut), in the regression model above are uncorrelated and thus runs
the regression (Maddala & Kim, 1998)

∆rt = δ∆rt−1 + εt, (3.4)

where δ = ρ− 1, ∆rt = rt − rt−1 and ∆rt−1 = rt−1 − rt−2. Under the null hypothesis
that δ = 0 (series is non-stationary) against δ < 0 (series is stationary), the estimated
δ̂ follows the τ statistic (which is in fact the Dickey-Fuller (DF) distribution). It
should be noted that the values of this distribution are calculated using Monte Carlo
Simulations.
However, the Augmented Dickey Fuller (ADF) test is more general as it does not
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3.1. Test For Stationarity

assume that the error terms are uncorrelated. It has a similar implementation as the
DF test but rather estimates the model (Maddala & Kim, 1998)

∆rt = α1 + α2t+ δrt−1 +
m∑

i=1

βi∆rt−i + εt, (3.5)

where ∆rt−i = rt−i − rt−i−1 (the addition of α1 or α1 + α2t is just in case rt is
a process with drift or with drift around stochastic trends respectively). The value
of m is obtained by minimizing the AIC or BIC or using the sequential procedure
suggested by Campbell & Perron (1991). With this procedure, we start with a model
with a large pmax value and then estimate the model, until the last included value
of pmax (at this stage our max = m) is statistically significant at the 10% level of
significance. In this case, p = pmax. Hence, the number of lagged difference values
of rt is determined empirically but basically, we add as many as possible in order to
make the error terms serially uncorrelated. It should be noted that in our statistical
package selects/calculates this value automatically. Under the hypotheses

H0 : δ = 0, the data is non stationary,

H1 : δ < 0, the data is stationary,

the test statistic is given by

tδ =
δ̂

se(δ̂)
. (3.6)

This statistic follows the same DF distribution as the Dickey Fuller test above, and not
the usual t distribution. The values of this distribution are obtained by Monte Carlo
Simulations; however, the statistical package EV iews provides the correct critical
values for this test (Mohadeva & Robinson, 2004). Hence, we will use it for this test.
We reject the null hypothesis of non stationarity if tδ is bigger than the critical value
at the chosen level of significance.

3.1.3 Phillips-Perron (PP) Test

This is the most widely used test for stationary as an alternative to the ADF test. It
does not specify any assumption of serial correlation or about the error terms. It is
a non parametric method of analyzing whether a series is stationary or not. It also
does not include lagged values of the series, hence, is applicable to a wide variety of
problems. Suppose we have the model

∆rt = δ∆rt−1 + ut. (3.7)
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3.1. Test For Stationarity

If there are any serial correlations or heteroscedasticity in the error terms ut, then
this test will correct it. Hence, both unit root tests are very similar, but differ in
the way they both deal with serial correlation and heteroscedasticity. In general, the
pp test is viewed as the DF test that has been made robust to serial correlation by
using Newey-West (1987) heteroscedasticity and autocorrelation consistent covariance
matrix estimator. Just as in the ADF, the PP test runs the auxiliary regression
(Maddala & Kim, 1998)

∆rt = α1 + α2t+ δrt−1 + ut. (3.8)

Similar to the ADF test, the hypotheses are

H0 : δ = 0, the data is non stationary,

H1 : δ < 0, the data is stationary,

and the test statistics are given by (Maddala & Kim, 1998)

Zt =
(
σ̂2

Ŝ2

)1/2

× tδ=0 −
1
2

(
Ŝ2 − σ̂2

Ŝ2

)(
T.SE(δ̂)

σ̂2

)

Zδ = T δ̂ − T 2.SE(δ̂)
2σ̂2

(Ŝ2 − σ̂2),

where σ̂2 and Ŝ2 are respectively consistent estimators of σ2 and S2 given by (Maddala
& Kim, 1998)

σ2 = lim
T→∞

T−1
T∑

t=1

E(u2
t ).

S2 = lim
T→∞

T∑
t=1

E(T−1S2
T ),

and ST =
∑T

t=1 ut. It is also worth noting that this test statistic has the same
asymptotic distribution as the ADF test statistic. This test directly incorporates
any serial correlation or heteroscedasticity that may be found in the error terms by
calculating modified statistics above; for tδ=0 and T δ̂, given above.
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3.2. Measure of dependence

3.2 Measure of dependence

Analysis of multivariate data usually involves not only fitting such data to distribu-
tions. It also involves analyzing the dependency that exist between these variables;
explaining if and how two or more variables are related. This is very important as
this might enable us to control a variable in case we know how it is related to other
variables. Scatterplot matrices and correlation matrices are often used in this context
to explain the relationship between variables.

3.2.1 Scatterplot matrices

This matrix is used to determine if there exists a pairwise relationship between a
group of variables. In case there exists a relationship, it tells us the nature of the
relationship and the presence of outliers.

Thus, given n variables, X1, X2, . . . , Xn, a scatterplot matrix is a matrix in which
each row and column represents a plot characterizing the relationship between two
variables; row i contains the variable Xi and column j, the Xj variable. Usually,
the main diagonal contains the name of the variable in that row/column or is left
blank. This matrix is very important especially in case where the relation between
two variables is not exactly linear.

3.2.2 Covariance/Correlation matrices

This is a way of analyzing in cases where the variables are pairwise linearly related.
This technique is very accurate especially in cases where the underlying distribution of
our variables is elliptical or multivariate normally distributed. Thus, given n variables,
X = (X1, X2, . . . , Xn)′, we have E(X) = (E(X1), E(X2), . . . , E(Xn))′. Hence,

Cov(X) =


V ar(X1) Cov(X1, X2) . . . Cov(X1, Xn)

Cov(X2, X1) V ar(X2) . . . Cov(X2, Xn)
...

...
. . .

...
Cov(Xn, X1) Cov(Xn, X2) . . . V ar(Xn),

 (3.9)

where Cov(Xi, Xj) = E ((Xi − E(Xi))(Xj − E(Xj))) ,∀i = 1, 2, 3, . . . , n and V ar(Xi) =
Cov(Xi, Xi). In a similar manner, letting ρXi,Xj = Cov(Xi,Xj)√

V ar(X1)
√

V ar(X2)
; called the cor-

relation coefficient and Corr(Xi, Xi) = 1, we obtain the correlation matrix as

Corr(X) =


1 ρX1,X2 . . . ρX1,Xn

ρX2,X1 1 . . . ρX2,Xn

...
...

. . .
...

ρXn,X1 ρXn,X2 . . . 1,

 (3.10)
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3.2. Measure of dependence

Thus, dependency between a pair of variables (X,Y ) can be explained by the corre-
lation between X and Y . The closer the value of this correlation is to 1, the higher
the variables are assumed to be related either positively or negatively depending on
the sign of the correlation coefficient. The closer this value is to 0, the lower these
variables are linearly related (also positively or negatively, depending on the sign of
the coefficient). Thus, we have that |ρ| ≤ 1.

Also, if we let ψ = diag(σX1 , σX2 , . . . , σXn), where σXi =
√
V ar(Xi), that is,

the standard deviation of Xi, then we have the following relationship between the
correlation and covariance matrices;

Corr(X) = ψ−1COV (X)ψ−1,

or equivalently

Cov(X) = ψCorr(X)ψ.

One important use of correlation within the context of multivariate analysis is that
lack of correlation means independence of the variables especially in the case where the
variables have joint multivariate normal or elliptical distributions. Thus, one should
be careful when using correlation as a measure of dependency between variables.

3.2.3 Kendall’s tau

A significant aspect of this project is to assess the dependency that exist between
variables using copulas. The Kendall’s correlation is a very important way to assess
the dependency that exist between two variables, especially within the field of copula.
This is a non parameter measure of dependency between two variables. Unlike linear
correlation described above, which is not constant or preserved within the copula,
the Kendall’s Tau (or correlation) is preserved under copula. This means that any
pair of correlated variables under the same copula will have the same value of tau
of that copula. Thus, the Kendall’s tau simple measures the different between the
probability of concordance and the probability of discordance. According to Nelsen
(1992), Kendall’s tau measures the average likelihood ratio dependence and is given
by

τk =
2(a− b)
n(n− 1)

, (3.11)

where a is the of concordant pairs, b is the number of discordant pairs and n is the
sample size. Also, this Kendall’s tau is equivalent to the expression below which in
this case incorporates a copula model. Thus, for two random vectors, X = (X1, X2)′

and X̄ = (X̄1, X̄2)′, where X̄ is the independent copy of X, with both vectors having
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3.2. Measure of dependence

a common continuous distribution, F , and copula, C, the Kendall’s Tau is defined by
(Aas, 2004)

τ = Pr((X1 − X̄1)(X2 − X̄2) > 0)− Pr((X1 − X̄1)(X2 − X̄2) < 0)

= 4
∫

[0,1]2
C(u, v)dC(u, v)− 1

= 4E(C(u, v))− 1.

In particular, for the independent copulas, we know that C(u, v) = uv. Hence,

E(C(u, v)) =
∫

[0,1]2
C(u, v)dC(u, v)

=
∫

[0,1]2
uvdC(u, v)

=
1
2
.

Thus, τ = 1. The following theorem holds for the MAGHD and MGHD (Schmidt et
al. 2006).

Theorem 3.1. (Schmidt et al. 2006) Let ρ ∈ (−1, 1), be the correlation coefficient
between X1 and X2.

1. If X ∈MGH2(µ,Σ, ω), with β = 0, then

τ =
2
π

arcsin(ρ).

2. If X ∈MAGH2(µ,Σ, ω), where X = A′Y + µ, then if ρ 6= 0, then

τ =
4
|c|

∫
R2

fY1(x1)
(
x2 − x1

c

)
×
∫ x1

−∞
FY2

(
x2 − z

c

)
fY1(z)dzd(x1, x2)− 1

where c = sgn(ρ)
√

1/ρ2 − 1 and in particular τ = 0 when ρ = 0.

3.2.4 Tail dependency of Archimedean copulas

In financial risk analysis, we often are not just concerned about correlation of variables
but more specifically, we are concerned with extreme tail behavior of the variables.
That is, we try to explain the risk that exist between variables so as to correct for
any loss that occur as a result of the loss in a particular variable. As we have noted
earlier, we estimate the tail dependency between extreme events of variables through
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3.2. Measure of dependence

the use of Archimedean copulas. However, we restrict our analysis to only the three
Archimedean copulas discussed in section 2.1.2.

Copulas are very often used in practice in order to model tail dependency between
variables, as these copulas are related to some measures of dependency like the Kendall
tau. Indeed, the copula generator function, φ, is related to the Kendall tau (in the
bivariate case) by (Genest & Mackay, 1986),

τ = 1 + 4
∫ 1

0

φ(v)
φ′(v)

dv. (3.12)

There are other measures of dependencies that one might look at like the Spearman
correlation. However, this is similar to the Kendall’s tau. The relationship between
this Spearman’s rho, rhoτ , and Kendall’s tau as well as their respective copula models
can be written as (Cherubini et al. 2004)

ρk = 12
∫ 1

0

∫ 1

0
C(u, v)dudv − 3,

ρτ = 4
∫ 1

0

∫ 1

0
C(u, v)dC(u, v)− 1.

Furthermore, Joe (1997) showed that the relationship between Archimedean copulas
and tail dependency could be established in a theorem which can be summarized as;
If φ is a strict generator defined as in 3.12 and if 0 6= φ′(0) < ∞, then the copula
given by

C(u, v) = φ−1(φ(u) + φ(v))

has no tail dependency. However, if it does have an upper tail dependency, then
1

φ′(0) = +∞. In this case, the values of the lower and upper tail dependencies are
given by (Cherubini et al. 2004)

λL = 2 lim
t→+∞

φ′(t)
φ′(2t)

and λU = 2− 2 lim
t→0+

φ′(t)
φ′(2t)

(3.13)

Thus, the table below summarizes the coefficient of tail dependency for the three
members of the Archimedean family discussed above.
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Table 3.1 Tail dependency coefficients of Archimedean copula.

Copula Generator Kendall Tau Tail dependency
Clayton t−θ−1

θ , θ > 0 τk = θ
θ+2 λL = 2−1/θ

λU = 0
Gumbel (− log t)−θ, θ > 1 τk = 1− θ−1 λL = 0

λU = 2− 21/θ

Frank − log
(

e−θt−1
e−θ−1

)
, −∞ < θ <∞ τk = 1− 4(D1(θ)−1)

θ λL = 0
λU = 0

where D1(θ) = 1
θ

∫ θ
0

t
et−1 dt.

It is clear from the table that the Clayton copula has no estimate for the upper
tail dependency; it cannot account for positive dependency, while the Gumbel copula
has no lower tail dependency estimate and hence cannot account for negatively de-
pendency. The Frank copulas neither accounts for upper nor lower tail dependencies.

3.3 Goodness of fit

We now look at some statistical tests that are often used to assess the fit of a given
postulated distribution. They are used to determine how good a model or distri-
bution fits a given set of data. This is very important since the implementation of
statistical analysis depend on this test. Over the years, many goodness of fit tests in-
volving univariate distributions have been proposed (Kolmogorov-Smirnov, Anderson
and Darling, Chi square, just to name a few) and have proven adequate. However, not
many tests have been proposed for their multivariate counterparts. Nevertheless, mul-
tivariate tests such as the Chi-square test and the multivariate Kolmogorov-Smirnov
tests have been proposed too within the contest of multivariate distributions. In this
project, we will describe the Anderson and Darling as well as the one dimensional and
two dimensional Kolmogorov-Smirnov goodness of fit tests. But later on, we will also
consider the multivariate Kolmogorov-Smirnov goodness of fit test for copula as well
as the kernel smoothing test.

3.3.1 The Kolmogorov-Smirnov (KS) goodness of fit test

Given a random sample X1, X2, X3, . . . , Xn from a population with unknown distri-
bution, this sample is compared with a distribution function H(x) to find out if it
is reasonable to say that H(x) is the distribution function of our sample. The way
in which this is done is by use of a function, S(t), called the empirical distribution
function. The empirical distribution function, S(x), is a function of a random sample
X1, X2, X3, . . . , Xn which gives the fraction of the Xi values that are less than or equal
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3.3. Goodness of fit

to x for all x. That is

S(x) =
1
n

n∑
i=1

IXi≤x,

where IXi≤x is the indicator function defined by;

IXi≤x =

{
1, if Xi ≤ x

0, otherwise
(3.14)

It should be noted that this function is very useful in estimating S(x).
The K-S test simply compares the empirical distribution function, S(x), with a

hypothesized distribution function, H(x), and see if these distributions agree. This
is done by calculating the largest vertical distance between the two distribution func-
tions. The steps involved in the test are summarized below;

H0 : S(x) = H(x), for all x;

H1 : S(x) 6= H(x), for at least one x,

and our test statistic is given by;

T = sup
x
|S(x)−H(x)|. (3.15)

The critical region, Cr = [1− α,∞[, where α is the level of significance.
However, we will also consider the fit of two dimensional KS test. This is considered

in the sequel.

3.3.2 Two dimensional KS goodness of fit test

In this subsection, we discuss the two dimensional KS test following Peacock’s test
(Fasano & Franceschini, 1987). From the one dimensional test above, the test statistic
T simply calculates the maximum distance between the cumulative distribution and
the sample distribution. However, T turns out to be proportional to 1/

√
n (Fasano

& Franceschini, 1987), and hence, one often is interested in the distribution of Kn =
T/
√
n, where n is the sample size. The multivariate (two dimensional) approach

proposed by Peacock (1983) stipulates that one uses the maximum absolute distance
between the observed and predicted normalized cumulative distribution in all the
four possible ways to cumulate our data in the directions of the coordinate axes;
namely (x < Xi, y < Yj), (x < Xi, y > Yj), (x > Xi, y < Yj), (x > Xi, y > Yj),
i, j = 1, 2, 3, . . . , n. Thus in this case, we consider all the 4n2 quadrants of the plane.
However, it is clear that if the sample size is large, the implementation of this procedure
is quite expensive (both in computer time and memory). For this reason, instead of
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3.3. Goodness of fit

considering all the 4n2 point (xi, yj) in the plane to cumulate data points, we instead
use n points where detection is found. It should be noted that this procedure does
not compromise the efficiency/accuracy of the test. The maximum absolute distance
between the quantiles which have been normalized to 1 is calculated along all the four
quadrants. To the best of my knowledge, no research has been done on multivariate
distributions with the implementation of the K-S test with dimension bigger than two.
This is practically infeasible as will require a lot of resources. In addition, even the
two dimensional case has not been implemented in R so far. Thus, the need to look
for alternative goodness of fit tests for multi dimensional data.

3.3.3 Anderson and Darling (A-D) Test

This test is a modified version of the K-S test as it overcomes some of the shortcomings
of the K-S test. It is a more sensitive test and puts more emphasis on the tails. Just
like the K-S test, the A-D test compares a random sample to see if this sample comes
from a population with known distribution.

Unlike the K-S test which only makes use of the level of significance for calculating
the critical region, the A-D test makes us of the specific distribution.

The steps involved in the A-D test are as follows;

H0 : F (x) = H(x),

H1 : F (x) 6= H(x),

where F (x) is the distribution function of the random sample X1 < X2 < X3 <

. . . < Xn (which is not known) and H(x) is our hypothesized distribution function.
It should be noted that the random sample is first arranged in ascending order. The
test statistic is given by

A2 = −n− 1
n

n∑
i=1

(2i− 1) [lnF (Xi) + ln (1− F (Xn−i+1))] . (3.16)

Hence, since this test is distribution specific, the critical region depends on the hy-
pothesized distribution function.

3.3.4 Kernel Smoothing goodness of fit test

Due to the inability or practical infeasibility of the K-S test to be implemented in
higher dimension, an alternative test that can be used is based on the kernel density
of the returns. Unlike the K-S test that deals with a particular distribution, this test
is carried out with the assumption that no parametric distribution that describes the
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multi-dimensional data is known. This test is an extension of the histogram used in
order to determine the shape of a particular multivariate data. Unlike the histogram
that largely depends on the equal sub-intervals in which the whole data interval is
divided as well as the end points of these intervals, the kernel density depends on the
bandwidth.

For a given series (X1, . . . , Xn), a multivariate fixed width kernel density estimate
with kernel function, K, and fixed kernel width (bandwidth), h, gives the estimated
density f̂h(X) for a multivariate data X ∈ Rd based on (Hwang et al., 1994)

f̂h(X) =
1
nhd

n∑
r=1

K(
X −Xi

h
), (3.17)

where K satisfies the conditions

K(X) ≥ 0 and
∫

Rd

K(X)dY = 1. (3.18)

In most instance and also in rStudio, K is chosen as the Gaussian kernel defined by

K(X) = (2π)−p/2 exp(−1
2
XTX). (3.19)

According to Hwang et al. 1994, the kernel is symmetrical, with its value smoothly
decaying away from the kernel center. However, this kernel density estimator is largely
dependent on what bandwidth is used in the estimation. Incorrect values used may
result in either undersmoothed or oversmoothed curves in the estimation. Hence,
the value of the parameter that produces the most optimal density curves is used.
The value of this parameter that produces the most optimal curve is called the mean
integrated squared error (MISE) defined by

MISE(h) = E

(∫
f̂h(X)− f(X)

)2

dX. (3.20)

However, this estimator has no closed form and as a result, the asymptotic version is
used, which will not go into the details here (see Chacón & Duong (2010)).

This test is implemented up to dimension six, unlike the K-S test. It simply tests
two data sets and evaluates if both data come from the same distribution. The R
implementation of this test, called the kernel density based global two sample compar-
ison test is straight forward. Suppose X and Y are two random vectors with density
functions f1(x) and f2(x) respectively. Our aim is to find out if f1(x) = f2(x). Under
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the hypotheses

H0 : f1(x) = f2(x), for all x;

H1 : f1(x) 6= f2(x), for at least one x;

the test statistic is given by (Duong et al. 2012);

T = ψ0,1 − ψ0,12 − ψ0,21 + ψ0,2, (3.21)

where ψ0,uv =
∫
fu(x)fv(x)dx. This test statistic has a distribution which is asymptot-

ically normal distributed. In this case, the level of discrepancy is the integral squared
error given by ∫

(f1(x)− f2(x))dx

The steps used in this project will consist of the following;

• The data is fitted with the multivariate generalized hyperbolic distribution and
the parameters estimated.

• A random sample is then generated from the multivariate generalized hyperbolic
distribution with the parameters estimated above.

• Then, using the kernel smoothing, this randomly generated sample is compared
with our original data in order to assess if both data sets come from the same
distribution

3.4 Copula parameter estimation

The analysis of financial returns using copulas basically starts with fitting the returns
to a copula model and estimating the parameters of the copula model. In this section,
we discuss two techniques that are employed for parameter estimation of parametric
copulas such as Archimedean copulas. Various estimation techniques so far have been
discussed by various research on copulas (Bouyé et al. 2000). In this current work,
we will only discuss two techniques; full maximum likelihood and inference from the
margins.

3.4.1 Full Maximum Likelihood (FML)

This method is a direct method of estimating parameters of a model. It simply involves
calculating the likelihood function of the copula model and then using mathematical
differentiation, it maximizes this likelihood function. The advantage of this method
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3.4. Copula parameter estimation

is that it fits data to a parametric copula model irrespective of whether the marginal
distributions are parametric or not. Suppose we have a random vector X1, . . . , Xn,
such that each Xi = Xi,1, . . . , Xi,d, and marginal distribution functions F1, . . . , Fn

and copula C. We further assume that our parameter vector θ = (θ1, . . . , θN ). Then
the likelihood function is given by

l(θ) =
n∑

i=1

li(θ).

However, since we know by Sklar theorem that

F (x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)),

for a series of T observations, we obtain the likelihood function of the copula model
as

l(θ) =
T∑

i=1

ln c(F1(x1,i), . . . , Fk(xk,i), . . . , Fn(xn,i)) +
T∑

i=1

n∑
k=1

ln fk(xk,i),

where c is the copula density function. Our aim is to maximize this function, l(θ).
Using differentiation, we obtain the estimated vector

θ̂t = arg max
θ

n∑
i=1

ln ft(xt,i; θt).

However, the higher the dimension of the parameter vector to be estimated, the
more difficult it is to estimate these parameters. Thus, this method can prove
computationally difficult. We can reduce this likelihood function to the bivariate
case as follows; let (X1, X2) be a random vector with marginal distributions F1

and F2 respectively and copula model C. Then by Sklar theorem, we know that
F (x1, x2) = C (F1(x1), F2(x2)), and

f(x1, x2) = c (F1(x1), F2(x2)) f1(x1)f2(x2),

where

c (F1(x1), F2(x2)) =
∂2C (F1(x1), F2(x2))
∂F1(x1)∂F2(x2)

.

Hence, the bivariate likelihood equations will be given by

l(θ) =
T∑

i=1

ln c (F1(x1,i), F2(x2,i)) +
T∑

i=1

2∑
k=1

ln fk(xk,i).

Similarly as above, the parameters are estimated. It is also showed that these estimates
are asymptotically normally distributed and consistent estimators (Bouyé et al. 2000).
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In particular, √
T (θ̂ − θ0) → N(0, J−1(θ0)),

where θ0 is the actual parameter vector and J(θ0) is the Fisher Information Ma-
trix. Even though this approach is computationally intense, it however estimates the
marginal and copula parameters jointly, unlike the other techniques like inference of
the margins.

3.4.2 Inference from the margins (IFM)

This approach is very similar to the full maximum technique discussed above. They
only differ in that parameters belonging to the marginal distribution and the copula
model are estimated separately in a two step procedure. Thus, the parameters to be
estimated for the whole model are split into marginal distributions parameters, which
are estimated by maximum likelihood. These estimated marginal parameters are
used to estimate the common copula parameters. Hence, if θ = (θ1, . . . , θN , α), where
θ1, . . . , θN are the marginal parameters and α is the common copula parameter (which
can be the copula generator parameter vector), then, in order to estimate this model,
we begin by estimating the parameters originating from the marginal distribution by
maximizing the likelihood function. In this case, we obtain

l(θ) =
T∑

i=1

ln c (F1(x1,i; θ1), . . . , Fk(xk,i; θk), . . . , Fn(xn,i; θn);α) ,

+
T∑

i=1

N∑
k=1

ln fk(xk,i; θ),

and θ̂n = arg max
∑T

i=1 ln fn(xn,i; θn). In the second step, we then use the estimated
marginal parameter to estimate the common copula parameter by

α̂ = arg max
T∑

i=1

ln c
(
F1(x1,i; θ̂1), . . . , Fk(xk,i; θ̂k), . . . , Fn(xn,i; θ̂n);α

)
.

As this point, one may ask which technique then provides the best estimates for the
copula model. Well depending on some regularity conditions (Joe & James, 1996), the
estimators obtained by IFM are more efficient and also asymptotically and normally
distributed, compared to those obtained by FML.
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3.5 Model selection criteria

So far, we have discussed the concept of copula and how we fit data into a copula
model. However, selecting the best possible model (the model that accurately fits
the data, with the smallest number of parameters as possible) out of many models as
we know is a very important aspect in statistical analyzis. Thus, selecting the best
copula model describing the dependence between variables suggests that many copula
models have to be fitted. Then, we use well known established selection criteria to
select the best model. In this section, we present two of these information criteria; the
Akaike’s Information Criterion (AIC) and the Bayesian Information Criterion (BIC).
It should be noted that there are many more criteria, and modifications of these. But
in our context, we will only focus on the AIC and BIC.

3.5.1 Akaike’s Information Criterion (AIC)

This is a criterion that is widely used in statistical analysis (as it measures the quality
of a model for a given data set) to select the best possible model from a set of models.
This criterion suggests that the best possible model is the one with the smallest AIC
value, where AIC is given by

AIC = −2 ln(L) + 2k, (3.22)

where k is the number of parameters in the model and L is the likelihood of the
particular model. The value of AIC is often printed out by statistical packages.

3.5.2 Bayesian Information Criterion (BIC)

This is another approach to select the best model from a set of models. Its imple-
mentation is similar to that of the AIC, where the best model is that with the the
smallest BIC value, with BIC given by

BIC = −2 ln(L) + k ln(n), (3.23)

where L is the likelihood of the fitted model, k is the number of parameters in the
model and n is the sample size. The values of BIC are also provided by statistical
packages. It should also be noted that some key differences exist between both criteria
such the fact that the BIC tends to favor smaller models, as for n ≥ 8, k ln(n) > 2k.
Hence, this means that BIC tends to choose models which are more parsimonious (fits
the data more accurately with as few parameters as possible) than those selected by
AIC (Cavanaugh, 2012).
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3.5.3 Value-at-Risk (VaR) and Backtesting

Value-at-Risk (VaR) is the threshold value such that the probability of the market
loss on a portfolio, over a given time horizon, exceeds this value is equal to the given
probability level. It is widely used as a risk measure and utilized for assessments of
extreme behavior in financial returns (Jorion, 2006). More importantly, it can be used
to measure a distribution’s level of adequacy for tail fits, i.e., VaR backtesting. It is
relevant to note that that financial institutions are more prone to failure due to the
shortage of capital resulting from underestimation of VaR. Furthermore, under the
Basel framework, there is a negative profit impact due to the misestimation of VaR
in either direction (Beling et al. 2010). Hence, an adequate model for assessing the
risk of a return series, should neither underestimate VaR, nor should it overestimate
VaR. In the analysis of maximum loss for a portfolio, Kupiec likelihood ratio test
(Kupiec, 1995) is the most commonly used backtesting procedure. The test relies
on unconditional coverage, meaning that it verifies if the reported VaR estimate is
violated significantly more or less number of times compared to the level of significance,
α. In this case, if the ratio of number of violations is not significantly different from
the level of significance, then the overall adequacy of the model is verified. Thus,
under the null hypothesis that the ratio of expected number of violations is α, the
test statistic for the Kupiec test is given by

2

[
ln

((
rα

N

)rα (
1− rα

N

)N−rα
)
− ln(−αrα

(1− α)N−rα
)

]
, (3.24)

where N is the sample size and rα is the number of times the returns deflect below
(for long position) or above (for short position) the estimated VaR value, at α level of
significance. This test statistic asymptotically follows a chi-square distribution with
one degree of freedom
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Chapter 4

Application

Having discussed the statistical techniques and theory on multivariate generalized
hyperbolic distributions and copulas, we may now consider the applications of these
techniques to our data which consist of a series of three daily indices from the Johan-
nesburg Stock Exchange (JSE) and the S&P 500 return. However before we get into
the details of these techniques, a brief discussion of the data is done. The data con-
sist of daily USD/ZAR exchange rate, South African All shares Index (ALSI), South
African Gold Mining Index and finally the America All shares Index (S&P 500). All
data considered here range from the period January 03, 2000 to August 30, 2014.

4.1 Data description

The daily USD/ZAR exchange rate represents the daily South African ZAR per US
Dollar. The United States and South Africa are very much linked, especially when
we deal with imports and exports; ranging from organic food materials such as fruits
to inorganic compounds such as gold and diamonds. Thus, this index represents the
rate of currency exchange between these two countries.

The South African gold mining has been the main driving force behind South
African’s economy in the past. However, according to Statistics South Africa, monthly
gold production has decreased over the years due to temporal factors. The general
trend has decreased so drastically from an index of 359.0 in 1980 to about 48.4 in
2015. Thus, producing about 87% less than in 1980, and contributing only 1.7% to
the Gross Domestic Product in 2013. It is presently valued at about $4 billion USD
in South Africa and accounting for about 50% of the world’s gold reserves.

The South African All shares Index (ALSI) is a major index of the JSE mea-
sures/tracks the general performance of all the major companies within that estab-
lishment. These include domestic financial indices ranging from banks, to insurance
companies, mining companies, etc. As a leading index in the South African economy,
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this index provides investors with the overall performance of the capital as well as
market sectors of the South African economy.

The Standard and Poor’s (S&P) 500 is an American stock market index consisting
of 500 large companies (ranging from industrials, utilities, health care, information
technology, just to name a few) having common stock listed in the New York Stock
Exchange (NYSE). Having a market capital valued at $19.5 trillion USD, this stock is
is highly regarded and followed as it is considered the best representation of the U.S.
economy. Consisting of both growth and value stocks, is it regarded as the benchmark
of stocks in the United States.

4.2 Empirical results

4.2.1 Time series plots

We begin our analyzis by considering the time series plots of the four indices mentioned
above. It should be noted that in order to make our data smooth, a few data points
were deleted from the Gold mining, All shares as well as the S&P 500 indices so that
the data can tally with those of the daily USD/ZAR exchange rate. Deletion was opted
as a statistical procedure to deal with missing values as these points were assumed
to be missing completely at random and our sample was large (3803), hence resulting
in unbiased data. Apart from the deletion, no other form of data manipulation or
smoothing was carried out. Hence, the data presented here is exactly the same as
that from the JSE. The time series plots of the four indices are given below.

(a) USD/ZAR Exchange Rate. (b) Gold Mining Index.
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(c) All shares Index. (d) S&P 500 Index.

Figure 4.1: Time series plots of (a) Daily USD/ZAR Exchange Rate, (b) Daily Gold
Mining Index, (c) All shares Index, and (d) S&P 500 Index for the Period 03/01/2000
to 03/09/2014

Starting with the time series plot of the daily USD/ZAR exchange rate, we observe
a rapid increase from about R6 in 2000 to about R13 in 2002. However from there
onwards, we observe a rapid fall below R6 around 2005. Thus repeated increases are
observed over time intervals. This highly suggests that the series is not stationary.

Similarly to the exchange rate, the Gold mining index also shows a systematic
increase up to about the year 2002. However, the series starts decreasing thereafter.
Contrary to the other plots however, we observe a periodic pattern which is repeated
after about three and a half years. This also is an indication of non-stationarity.

The All shares index on the other hand shows an overall increase through out this
period, characterized by the general upward trend as observed from the plot (c).

Finally, the S&P 500 plot contrary to the other plots shows an overall decrease
from the year 2000 up to the year 2002. It increases for the next six years and then
starts decreasing again. However, the series shows an overall increase for the past four
years, reaching and overall high value of about 2000 in 2014. Thus, these observations
culminates to the point that these plots are all non stationary. On the other hand
though, we will be analyzing the log returns of these indices, which are stationary.

4.2.2 Descriptive statistics of log returns

Suppose xtt=1,...,n is a series which represents the price of an asset at time t over a
period of time. Then the log returns or simple returns of this series is defined by

rt = ln(xt)− ln(xt−1). (4.1)

Thus, in our case, Xt will simply represent the daily closing values of the individual
indices. Hence, the equation above will simply represent the one day returns. The
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returns plots are given below.

(a) USD/ZAR Exchange Returns. (b) Gold Mining Returns.

(c) All shares Returns. (d) S&P 500 Returns.

Figure 4.2: Time series plots of (a) Daily USD/ZAR Exchange Returns, (b) Daily
Gold Mining Returns, (c) All Share Returns, and (d) S&P 500 Returns for the Period
03/01/2000 to 03/09/2014

It is obvious from the plots that the returns are now stationary with a mean value
which hovers around zero. However, the most important point to note about the
plots is the pattern of volatility clustering as well as heteroscedasticity which is highly
expected as we are dealing with financial returns. This pattern (of volatility clustering)
is more predominant in the gold mining returns as well as All shares returns compared
to the other two returns. The leptokurtic behavior of these returns is also evident from
the histogram plots below; which shows a dense distribution of the returns along the
upper distribution than along the tails.
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(a) USD/ZAR Exchange Returns Histogram. (b) Gold Mining Returns Histogram.

(c) All shares Returns Histogram. (d) S&P 500 Returns Histogram.

Figure 4.3: Time series plots of (a) Daily USD/ZAR Exchange Returns Histogram,
(b) Daily Gold Mining Returns Histogram, (c) All shares Returns Histogram, and (d)
S&P 500 Returns Histogram for the Period 03/01/2000 to 03/09/2014

A further confirmation of this leptokurtic behavior is shown in Table 4.1, which
summarizes the descriptive statistics of our returns. It is evident from the table that
all returns have an excess kurtosis from the normal distribution. Most importantly is
the remarkable excess of about 13 for the USD/ZAR returns, followed by about 9.5
of the S&P 500 returns. Hence, even though our histogram may display an almost
bell shaped distribution like that of the normal distribution, the high kurtosis suggest
otherwise.
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Table 4.1 Descriptive Statistics for daily returns

Descriptive Statistic USD/ZAR Gold Mining All shares S&P 500
Minimum Returns -0.077362 -0.153505 -0.078968 -0.094828

Std. Dev. 0.011384 0.024727 0.012302 0.012920
Mean Returns 0.000147 0.000117 0.000480 0.000084

Skewness 0.967601 0.271464 -0.199373 -0.146497
Excess Kurtosis 13.378371 3.937869 3.853070 9.455758

Jarque-Bera Statistic 28983.83 2507.828 2381.49 14197.5
(P-value) 0.000000 0.000000 0.000000 0.000000

Maximun Returns 0.157251 0.163562 0.068340 0.109572
Number of Observations 3802 3802 3802 3802

Moreover, a formal test for normality, the Jarque-Bera test, also rejects the null
hypothesis of returns being normally distributed with all P-values below 0.05, at the
5% level of significance in this case. Another important observation that can be made
from the table is the skewness of the returns, with the USD/ZAR returns being highly
positively skewed. However, the All shares and S&P 500 returns are both negatively
skewed. The positive mean of all returns indices also indicate an overall increase in
our financial indices during our time period.

We may also proceed to assess the nature of stationarity of the returns using first
the autocorrelation function (ACF) and later two formal tests.

4.2.3 Test for stationarity and autocorrelation

The analyzis of financial returns usually is done on the bases that the returns under
consideration are stationary and are not autocorrelated. In this regards, we investigate
the nature of stationarity of our series by first considering the autocorrelation function
(ACF). Then, we verify our results with formal tests for stationarity; the Augmented
Dickey Fuller (ADF) and Phillips-Perron (PP) tests. The ACF plots are summarized
below.

(a) USD/ZAR Exchange Returns ACF. (b) Gold Mining Returns ACF.
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(c) All shares Returns ACF. (d) S&P 500 Returns ACF.

Figure 4.4: Autocorrelation Function (ACF) of (a) Daily USD/ZAR Exchange Returns
, (b) Daily Gold Mining Returns , (c) All shares Returns, and (d) S&P500 Returns
for the Period 03/01/2000 to 03/09/2014

With no significant spike in the plots above, the suggestion is that the returns
plots are all stationary (non stationarity will imply some spikes extending from the
lag axes up above the horizontal line in the plots). However, we may carry out formal
tests to verify these results. The ADF and P-P tests in Table 4.2 suggest that the
null hypothesis of returns having a unit root (non stationary) is rejected at the 5%
level of significance; since all p-values are below 0.05. Thus, we conclude the returns
are stationary.

Table 4.2 Unit root tests for stationarity for daily Returns.

Index USD/ZAR Gold Mining All shares S&P 500
ADF Statistic -15.7288 -16.52 -15.5489 -15.6396

(p-value) 0.01 0.01 0.01 0.01
PP Statistic -3854.966 -3545.054 -3358.184 -3899.515

(p-value) 0.01 0.01 0.01 0.01
PSR p-value 0.00 0.00 0.00 0.00

However, the stationary described above is only of first order. We may also com-
ment about second order stationarity by considering the Priestley-Subba Rao (PSR)
test, which we apply here without going into the details. The test principally focuses
on testing if a series is second order stationary after all the trend and seasonality have
been removed from the series. In this case thus, using the returns, Table 4.2 strongly
suggests that the null hypothesis of stationary is rejected (all p-values are 0.00 for
PSR test) in all the returns. Hence, although the returns are first order stationary,
they are not second order stationary.

One of the properties that characterizes financial data is the lack of autocorre-
lations, except in very small time scales when external factors come into play. This
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property is hence evident from Table 4.3, where the null hypothesis of no autocorre-
lations is rejected at 5% level of significance.

Table 4.3 Box-Ljung Test for Autocorrelation at some Lags Values

Returns Lag 1 Lag 2 Lag 3 Lag 11
USD/ZAR 8.3063 11.9071 12.5553 35.7247

(0.003951) (0.002597) (0.005704) (0.000188)
Gold Mining 3.5991 8.7551 9.088 16.8093

(0.05781) (0.01256) (0.02814) (0.1136)
All shares 8.7093 8.7761 20.935 39.524

(0.003166) (0.01242) (0.0001086) (4.314e-05)
S&P 500 36.247 41.9608 42.1723 58.6604

(1.738e-09) (7.733e-10) (3.688e-09) (1.643e-08)

4.3 Fitting daily USD/ZAR exchange rate to univariate
GHDs and model comparison

In this section, we consider the fit of the univariate generalized hyperbolic distribu-
tions relative to that of the normal distribution to daily USD/ZAR returns. We also
investigate which member of these distributions fits the return more accurately.

Figure 4.5: Histogram(left), log(density) plot(middle), Q-Q plot(right) of USD/ZAR
returns using the Generalized Hyperbolic distribution.
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Figure 4.6: Histogram(left), log(density) plot(middle), Q-Q plot(right) of USD/ZAR
returns using the hyperbolic distribution.

Figure 4.7: Histogram(left), log(density) plot(middle), Q-Q plot(right) of USD/ZAR
returns using the Normal Inverse Gaussian distribution.

Figure 4.8: Histogram(left), log(density) plot(middle), Q-Q plot(right) of USD/ZAR
returns using the Skew t distribution.
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Figure 4.9: Histogram(left), log(density) plot(middle), Q-Q plot(right) of USD/ZAR
returns using the Variance Gamma distribution.

Even though the histogram in Figure 4.5 suggest that the normal distribution
provides a better fit, the GHYP distribution is more accurate especially along the
tails. This is seen from the density and Q-Q plots. The GHYP captures more points
and hence the better distribution compared to the normal distribution.

Hence, in all cases, the GHDs portrays a better fit compared to the normal distri-
bution. In this case then, the parameters of the GHDs can be estimated in Table 4.4.

Table 4.4 Parameter Estimates of the GHDs. for daily USD/ZAR exchange rate.

Dist./Par. α δ β µ λ

GHYP 27.40321 0.01542617 8.674391 -0.0008933703 -1.819227
HYP 138.6539 0.00385099 6.941406 -0.0006869236 1
NIG 83.78933 0.01027212 7.627808 -0.0007922295 -0.5

Skew t 7.559395 0.01615183 7.559395 -0.0008098588 -2.019361
VG 148.7071 0 5.590765 -0.0005273284 1.331552

4.3.1 Comparison of the estimated GHDs

Having the parameters however, we have to assess the goodness of fit of these distri-
butions. In this case, we utilized the Anderson-Darling (A-D) goodness of fit test, the
combined Q-Q plot, and finally the loglikelihood and AIC values for model selection.
However, we will also make use of the value-at-risk (VAR) measure using the Kupiec
test to assess the fits of the models around the tails.

The A-D test is particularly significant when assessing the goodness of fit relative to
a particular hypothesized distribution (in this case the GHDs), in which more emphasis
is placed along the tails. This test measures the distance between the empirical
distribution of the data and the hypothesized distribution (GHDs). In addition, the
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loglikelihood and AIC will be employed to determine the overall best model in terms
of general performance or fit.

Table 4.5 A-D goodness of fit test for daily USD/ZAR exchange returns

Test GHYP HYP NIG Skew t VG
A-D Statistic 0.6138 0.7372 0.533 0.599 0.9913

(P-Value) 0.635 0.5285 0.7134 0.6489 0.3619

Table 4.5, clearly suggests that the data fits adequately with the GHD and its
sub classes. This is evident from the high p-values (of the A-D and K-S tests) which
clearly do not reject the null hypothesis of the data being sampled from the GHDs.
The NIG and skew t distributions having the lowest A-D statistics suggest that they
fit better compared to other members with emphasis along the tail. However, the
AIC and loglikelihood statistics from Table 4.6 suggest that the skew t distribution
provides the best overall fit for the data with the smallest AIC value of −23887.15,
and highest loglikelihood of 11947.57. It should also be noted that these statistics are
very close to each other for the different subclasses of GHDs which is an indication of
the goodness of the GHDs to fit the data.

Table 4.6 AIC and log likelihood estimates of GHDs to Daily USD/ZAR returns

Model AIC Log likelihood
GHYP -23884.87 11947.44
HYP -23859.06 11933.53
NIG -23878.52 11943.26

Skew t -23887.15 11947.57
VG -23850.87 11929.44

Even though the AIC as well as loglikelihood statistics suggest that the skew t

provides the best fit of the data, further analysis of the extreme left and right tails are
considered. To this end, we use the Value-at-Risk (using the Kupiec likelihood ratio)
which is conventionally used in financial statistics and econometrics to assess the fit
of data at the tails. In our case, the left and right tails fit of the GHDs as well as the
normal distribution are considered in table 4.7.
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Table 4.7 p-values for the Kupiec test for each distribution at different levels of
significance of GHDs for Daily USD/ZAR returns

Distribution 0.1% 0.5% 1% 99% 99.5% 99.9%
Normal 0.00001 0.05355 0.06252 0.00020 0.00000 0.00000
GHYP 0.91976 0.99817 0.86737 0.50464 0.81473 0.91976
HYP 0.55782 0.82143 0.40252 0.26888 0.37454 0.14238
NIG 0.91976 0.81473 0.23717 0.61783 0.65275 0.91976

Skew t 0.91976 0.81473 0.73974 0.61783 0.99817 0.91976
VG 0.5578247 0.9981653 0.31311 0.20796 0.18905 0.023629

At the 5% level of significance, Table 4.7 strongly suggests that the normal dis-
tribution provides a very poor fit to the daily returns, characterized by the small
p-values. This is highly expected as the returns are leptokurtic (see section 4.2.2).
Interestingly, the table also shows the VG distribution does not adequately depict the
uppermost tail of the data with a low p-value of 0.023629. On the other hand, while
the GHYP distribution accurately captures the lower tail of the USD/ZAR returns,
the skew t is shown to capture the upper tail best. This is also evident from the
combined Q-Q plot in figure 4.10 which displays these fits.

Figure 4.10: Comparing the Fit Between the GHDs for Daily USD/ZAR Returns.

Hence, based on the AIC and loglikelihood, but more importantly the VAR and
combined Q-Q plot, we can conclude that the skew t distribution is the best mem-
ber of the GHDs family to model daily USD/ZAR exchange returns for the period
03/01/2000 to 03/09/2014.
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4.4 Fitting daily All shares returns to univariate GHDs
and model comparison

In a similar manner like the USD/ZAR returns above, we will fit the GHDs to daily
All shares returns and find out which member of the GHDs provides the best fit.

Figure 4.11: Histogram(left), log(density) plot(middle), Q-Q plot(right) of All shares
returns using the Generalized Hyperbolic distribution.

Figure 4.12: Histogram(left), log(density) plot(middle), Q-Q plot(right) of All shares
returns using the hyperbolic distribution.
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Figure 4.13: Histogram(left), log(density) plot(middle), Q-Q plot(right) of All shares
returns using the Normal Inverse Gaussian distribution.

Figure 4.14: Histogram(left), log(density) plot(middle), Q-Q plot(right) of All shares
returns using the Skew t distribution.

Figure 4.15: Histogram(left), log(density) plot(middle), Q-Q plot(right) of All shares
Returns using the Variance Gamma distribution.

The leptokurtic behavior of the returns is well captured by the GHDs in all five
cases as is evident from the histogram plots. Secondly, the log(density) plots also show
the accuracy of the GHDs compared to the normal distribution in which more points
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especially along the tails are captured by the GHDs. This is also clearly evident from
the Q-Q plots. Hence, in all five cases, the GHDs display a better fit compared to the
normal distribution with parameter estimated in Table 4.8.

Table 4.8 Parameter Estimates of the GHDs. for Daily All shares Returns.

Dist./Par. α δ β µ λ

GHYP 61.83416 0.01273446 -5.419622 0.001306813 -0.8691459
HYP 123.7031 0.003598984 -4.727231 0.001174448 1
NIG 74.50546 0.0111189 -5.538746 0.001309138 -0.5

Skew t 4.868821 0.0172241 -4.868821 0.001235366 -1.933045
VG 128.0757 0 -0.5926151 0.0005699299 1.21221

4.4.1 Comparison of the estimated GHDs

Having estimated the parameters of the respective GHDs, we may assess the goodness
of fit of these distributions. Later on, we compare the estimated models with one
another. Table 4.9 summarizes the results of the A-D and K-S goodness of fit tests.

Table 4.9 A-D goodness of fit for daily All shares Returns

Test GHYP HYP NIG Skew t VG
A-D Statistic 0.9055 1.1171 0.9063 1.0478 2.0447

(P-Value) 0.4109 0.3013 0.4104 0.3331 0.08678

Being a goodness of fit test with emphasis laid on the tails, the A-D test in Table 4.9
suggests that the GHDs provide a good fit to the data (with all p-values above 0.05).
The NIG distribution provides the minimum distance between the actual distribution
of the data and the hypothesized distribution (in this case the GHDs distribution).
Thus, utilizing the AIC and loglikelihood to determine the best general fit, we obtain
from Table 4.10 that the GHYP as well as the NIG distributions. They both provide
the best possible fits compared to the other members. However an unusual observation
is made from the table where even though the GHYP distribution has the maximum
loglikelihood (11580.52), the lowest AIC value is obtained from the NIG (−23152.4).
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Table 4.10 AIC and log likelihood estimates of GHDs to Daily All shares returns

Model AIC Log likelihood
GHYP -23151.04 11580.52
HYP -23142.19 11575.09
NIG -23152.4 11580.2

Skew t -23147.04 11577.52
VG -23140.41 11574.21

A further and very insightful analyzis of these returns around the tails is carried
out using the Kupiec likelihood ratio test (Table 4.11). In this case, the normal
distribution is rejected at all levels of significance, justifying the fact that the All
shares return is not normally distributed (or is heavy tailed).

Table 4.11 p-values for the Kupiec test for each distribution at different levels of
significance of GHDs for Daily All shares returns

Distribution 0.1% 0.5% 1% 99% 99.5% 99.9%
Normal 0.00000 0.00000 0.00000 0.01429 0.00001 0.00000
GHYP 0.91976 0.47672 0.40252 0.99710 0.27038 0.55782
HYP 0.14238 0.50245 0.74896 0.74896 0.18904 0.02363
NIG 0.29868 0.47672 0.50464 0.99710 0.27038 0.55782

Skew t 0.66908 0.33832 0.31311 0.74896 0.27038 0.66908
VG 0.06095 0.37454 0.63148 0.61783 0.27038 0.14238

With the exception of the HYP distribution rejected at the right uppermost tail
(99.9%), the other members prove to be adequate. However, we cannot identify a
particular member as fitting the extreme left nor right tail better compared to the
other members. This is because they all provide adequate fits at different levels of
significance. This observation can also be evident from the combined Q-Q plot in
fig 4.16. Nonetheless, we can select the GHYP as the model presenting the best fit,
as it has more high p-values for the Kupiec test and maximum loglikelihood.
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Figure 4.16: Comparing the Fit Between the GHDs for Daily All Share Returns.

4.5 Fitting daily gold mining returns to univariate GHDs
and model comparison

In a similar manner as before, the gold returns are fitted with the GHDs and compared
with the normal distribution. The different subclasses are illustrated from Figure 4.17
down to Figure 4.21.

Figure 4.17: Histogram(left), log(density) plot(middle), Q-Q plot(right) of daily gold
mining returns using the Generalized Hyperbolic distribution.
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Figure 4.18: Histogram(left), log(density) plot(middle), Q-Q plot(right) of daily gold
mining returns using the Hyperbolic distribution.

Figure 4.19: Histogram(left), log(density) plot(middle), Q-Q plot(right) of daily gold
mining returns using the Normal Inverse Gaussian distribution.

Figure 4.20: Histogram(left), log(density) plot(middle), Q-Q plot(right) of daily gold
mining returns using the Skew t distribution.
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Figure 4.21: Histogram(left), log(density) plot(middle), Q-Q plot(right) of daily gold
mining returns using Variance Gamma distribution.

The histogram plots for the GHYP, NIG, HYP, and Skew t distributions show
that these distributions provide a better fit compared to the normal distribution.
This observation is well displayed in the log(density) and Q-Q plots, which show
these GHDs capturing more points than the normal distribution. This is highly due
to the leptokurtic nature of the GHDs. However, unlike the other members, the VG
distribution shows some degree of over fitting especially from the histogram plot. The
log(density) and Q-Q plots suggest that this distribution is not adequate as too many
points are left out by the VG. Thus, to verify these observations, we will carry out
a goodness of fit test. Before we proceed to the test, we consider the parameters
estimation of the GHDs.

Table 4.12 Parameter Estimates of the GHDs. for daily Gold Mining Returns.

Dist./Par. α δ β µ λ

GHYP 54.02455 3.494136e-07 0.01881145 -8.94528e-07 0.9100622
HYP 56.9853 1.402822e-06 0.2180549 -7.664291e-07 1
NIG 35.6466 0.02174905 2.017429 -0.001113406 -0.5

Skew t 1.916438 0.03425139 0.03425139 -0.001100534 -1.900404
VG 29.49628 0 -1.569527 -6.710295e-11 0.334238

4.5.1 Comparison of the estimated GHDs

Just as speculated above, the A-D goodness of fit test suggests that the VG provides
a poor fit for the data, with a very low p-value of 1.578e − 07. However, the other
members of the GHDs provide a good fit.
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Table 4.13 A-D goodness of fit for daily Gold mining Returns

Test GHYP HYP NIG Skew t VG
A-D Statistic 2.4573 1.801 1.0303 1.6535 63.4337

(P-Value) 0.05216 0.1185 0.3418 0.1437 1.578e-07

Given that the A-D test excludes the VG distribution to model the daily gold
returns, we then find out which member of the GHDs provides the best fit. This is
done using the AIC and loglikelihood statistics. Table 4.14 presents the results of the
tests.

Table 4.14 AIC and log likelihood estimates of GHDs to Daily Gold Mining returns

Model AIC Log likelihood
GHYP -17852.04 8931.019
HYP -17853.14 8930.568
NIG -17833.28 8920.642

Skew t -17818.22 8913.11

Similar observations made about the daily All shares returns is made about the
daily gold returns; even though the GHYP distribution has the maximum loglikeli-
hood of 8931.019, the lowest AIC statistics (of −17853.14) is obtained from the HYP
distribution. Hence as above our best model is chosen as the hyperbolic distribution.

We then shift our interest on the distribution of the gold returns along the tails.
Just like in the previous cases, the Kupiec likelihood ratio test is used and the results
summarized in table 4.15

Table 4.15 p-values for the Kupiec test for each distribution at different levels of
significance of GHDs for Daily Gold Mining returns

Distribution 0.1% 0.5% 1% 99% 99.5% 99.9%
Normal 0.00000 0.00001 0.00618 0.00020 0.00001 0.00000
GHYP 0.91976 0.33832 0.12494 0.50464 0.82143 0.14238
HYP 0.91976 0.47672 0.23717 0.61783 0.47672 0.14238
NIG 0.91976 0.63789 0.86737 0.31311 0.22674 0.29868

Skew t 0.66908 0.47672 0.87362 0.31311 0.02267 0.66908

Table 4.15 highly suggests that the NIG distribution is particularly adequate for
modeling the lower tail of the daily gold returns while the upper tail is in general best
fitted by the GHYP distribution. A combined Q-Q plot may also be used to visualize
the fits. This is presented in figure 4.28.
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Figure 4.22: Comparing the Fit Between the GHDs for Daily Gold Mining Returns.

Thus in summary, even though the GHYP distribution has the largest loglikeli-
hood, the best overall fit is obtained from the HYP distribution with the smallest
AIC value. However, more analyzis at the tails using the Kupiec likelihood ratio test
suggests that the lower tail is best fitted by the NIG distribution and the upper tail
by the GHYP distribution in general.

4.6 Fitting daily S&P 500 returns to univariate GHDs and
model comparison

Finally, we complete these univariate analyzis with the S&P 500 daily returns. As
before, the different subclasses of the GHD is fitted.
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Figure 4.23: Histogram(left), log(density) plot(middle), Q-Q plot(right) of daily S&P
500 returns using the Generalized Hyperbolic distribution.

Figure 4.24: Histogram(left), log(density) plot(middle), Q-Q plot(right) of daily S&P
500 returns using the Hyperbolic distribution.

Figure 4.25: Histogram(left), log(density) plot(middle), Q-Q plot(right) of daily S&P
500 returns using the Normal Inverse Gaussian distribution.
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Figure 4.26: Histogram(left), log(density) plot(middle), Q-Q plot(right) of daily S&P
500 returns using the Skew t distribution.

Figure 4.27: Histogram(left), log(density) plot(middle), Q-Q plot(right) of daily S&P
500 returns using Variance Gamma distribution.

From a graphical perspective, one will suggest that the GHDs seem to be provide
a good fit, more particularly compared to the normal distribution. However, the
goodness of fit test presented in table 4.17 suggests that only the GHYP as well as
the NIG distribution seems to fit the data. The parameters estimates for the different
fits is given in table 4.16
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Table 4.16 Parameter Estimates of the GHDs. for daily S&P 500 Returns.

Dist./Par. α δ β µ λ

GHYP 78.01076 0.003029988 -4.7603 0.0008442193 0.3142801
HYP 118.722 8.473528e-07 -2.672532 0.0004644861 1
NIG 45.07823 0.007441975 -4.999903 0.000915102 -0.5

Skew t 3.619791 0.01129065 -3.619791 0.0007807623 -1.236657
VG 100.2427 0 5.264963 5.672193e-12 0.7505957

4.6.1 Comparison of the estimated GHDs

One more important point to note about the goodness of fit of the GHYP and NIG
distributions is that although they are the only sub class that seem to fit the returns,
the small p-values is an indication that the fit is not the best. The fit of all the other
subclasses is rejected from Table 4.17.

Table 4.17 A-D goodness of fit for daily S&P 500 Returns

Test GHYP HYP NIG Skew t VG
A-D Statistic 1.1201 3.6235 1.6991 3.104 5.2993

(P-Value) 0.3 0.01335 0.1353 0.02424 0.002064

Hence, based on these results, we utilize the loglikelihood and AIC to find out
which member provides the better fit. Table 4.18 illustrates these statistics.

Table 4.18 AIC and log likelihood estimates of GHDs to Daily S&P 500 returns

Model AIC Log likelihood
GHYP -23477.1 11743.55
NIG -23467.18 11737.59

Hence, with the maximum loglikelihood and smallest AIC value, the GHYP dis-
tribution seem to provide a better fit compared to the NIG distribution in general.
However, more analyzis of the fits along the tails is carried out using the Kupiec
likelihood ratio test. This is carried out in Table 4.19.

Table 4.19 p-values for the Kupiec test for each distribution at different levels of
significance of GHDs for Daily S&P 500 returns

Distribution 0.1% 0.5% 1% 99% 99.5% 99.9%
Normal 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
GHYP 0.14238 0.65275 0.61783 0.63214 0.37454 0.06095
NIG 0.00581 0.00003 NAN 0.00000 NAN 0.00581

Table 4.19 clearly shows that the GHYP distribution provides the best fit com-
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pared to the NIG and normal distribution both along the lower and the upper tail as
well. We can hence assess the combined Q-Q plot to visualize the fit along the tails.

Figure 4.28: Comparing the Fit Between the GHDs for S&P 500 Returns.

Contrary to the AIC and Kupiec test, Figure 4.28 suggests that the NIG distribu-
tion provides a better fit along the tails. However, based on VAR and AIC, our best
model is selected as the GHYP distribution.

4.7 Fitting returns to MAGHDs

So far in this research, we have focused on fitting returns to univariate GHDs. Hence-
forth, we will consider the multivariate fit; by first considering the multivariate affine
GHDs, and secondly, the MGHDs without any affine transformation of the data.

As noted earlier, the MAGHDs provide more flexibility to the parameters; allowing
each ωi to be calculated for each marginal. This gives more accurate fits as each margin
can now be fitted independently with a GHD. However, affine transformations do not
allow to model dependencies when returns are dependent. The procedure discussed
in section 1.4 using our four indices from the JSE is then implemented in R using
the ghyp package and the parameters are estimated for each member of the MAGHD
family. The estimated models are summarized from Table 4.20 through to Table 4.24.
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Table 4.20 MAGHYP Parameters Estimates

Parameter Index
Alsi USD/ZAR Gold Mining S&P 500

α 0.7408859 0.1850786 1.134276 0.4017248
β -0.06743362 0.08137277 0.08313861 -0.02503719
λ -0.9050494 -1.966545 0.1830644 -1.2558
µ 8.737187 -4.008628 -7.255324 -3.707923

2.309348e-04 -3.587517e-05 1.126206e-04 5.395335e-05
-3.587517e-05 1.873834e-04 1.716552e-05 -3.424877e-05

Σ 1.126206e-04 1.716552e-05 3.068459e-04 -2.174626e-05
5.395335e-05 -3.424877e-05 -2.174626e-05 1.420914e-04

Table 4.21 MAHYP Parameters Estimate

Parameter Index
Alsi USD/ZAR Gold Mining S&P 500

α 1.527548 1.527548 1.446441 1.50671
β -0.05888042 -0.05888042 0.04852812 -0.03332752
λ 1.00000 1.00000 1.00000 1.00000
µ 7.8098903 9.7474070 -6.0509377 0.6885622

5.905211e-05 -8.345255e-06 2.098133e-05 8.293274e-06
Σ -8.345255e-06 4.806149e-05 3.000592e-06 -5.264445e-06 3

2.098133e-05 3.000592e-06 5.638157e-05 -3.342659e-06 4
8.293274e-06 -5.264445e-06 -3.342659e-06 2.184114e-05

Table 4.22 MANIG Parameters Estimate

Parameter Index
Alsi USD/ZAR Gold Mining S&P 500

α 0.9176057 0.9666203 0.8575087 0.7906841
β -0.06842726 0.08477563 0.08329543 -0.0288432
λ -0.50000 -0.50000 -0.50000 -0.50000
µ 8.662508 -4.160716 -7.365237 -3.427161

2.253549e-04 -2.059482e-05 1.712650e-04 3.973218e-05
Σ -2.059482e-05 1.231063e-04 2.135420e-05 -2.522139e-05

1.712650e-04 2.135420e-05 4.477567e-04 -1.601432e-05
3.973218e-05 -2.522139e-05 -1.601432e-05 1.046385e-04

68



4.7. Fitting returns to MAGHDs

Table 4.23 MAST Parameters Estimate

Parameter Index
Alsi USD/ZAR Gold Mining S&P 500

α 0.0599036 0.07955098 0.07955098 0.01962255
β -0.0599036 0.07955098 0.07955098 -0.01962255
λ -1.931949 -2.047566 -2.047566 -1.661972
µ 0.10061640 -0.05946072 -0.05946072 0.01568998

3.600800e-04 -3.122074e-05 2.929987e-04 6.184773e-05
Σ -3.122074e-05 1.930243e-04 3.584497e-05 -3.926001e-05

2.929987e-04 3.584497e-05 7.632863e-04 -2.492814e-05
6.184773e-05 -3.926001e-05 -2.492814e-05 1.628820e-04

Table 4.24 MAVG Parameters Estimate

Parameter Index
Alsi USD/ZAR Gold Mining S&P 500

α 1.323829 1.725265 1.467032 1.534956
β 0.03288869 0.0786658 0.01890113 -0.02507115
λ 0.8996854 1.385961 1.057008 1.095641
µ 2.038255e-08 -4.824887 -1.104842 2.630542e-01

2.575898e-09 -2.378413e-10 2.019783e-09 5.170912e-10
Σ -2.378413e-10 1.352923e-09 2.572827e-10 -3.282417e-10

2.019783e-09 2.572827e-10 5.302174e-09 -2.084170e-10
5.170912e-10 -3.282417e-10 -2.084170e-10 1.361810e-09

4.7.1 Goodness of fit of MAGHDs

Having estimated the parameters using the algorithm described by Schmidt et al.
(2006), the goodness of this fit can now be investigated. Keeping in mind that the
multivariate generalized hyperbolic distributions are obtained from affine transformed
univariate variables, we will first carry out a univariate Anderson and Darling goodness
of fit on these transformed variables.
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Table 4.25 Anderson and Darling goodness of fit test for affine transformed returns.

Returns Distribution AD statistic P-value
GHYP 0.2255 0.9818
HYP 0.432 0.8165

USD NIG 0.2127 0.9865
Skew t 0.242 0.9745

VG 0.6765 0.5787
GHYP 0.9111 0.4074
HYP 1.1039 0.3071

All shares NIG 0.9055 0.4109
Skew t 1.0471 0.3335

VG 7.0297 0.000321
GHYP 0.8555 0.4427
HYP 1.2241 0.2585

Gold mining NIG 0.9047 0.4114
Skew t 1.4057 0.2007

VG 2.003 0.09149
GHYP 0.5872 0.6601
HYP 0.4787 0.4787

S&P 500 NIG 0.4787 0.4787
Skew t 0.4787 0.4787

VG 0.8566 0.442

Table 4.25 shows that these affine transformed variables present a very good fit
with the generalized hyperbolic distributions. These results are even better than the
univariate marginal distributions of these returns with very low distances between the
actual and hypothesis distributions as well as the probability values. However, the All
shares returns rejects the fit with the VG distribution. It is also important to note
that even though the VG distribution is good, its provides an overall bad fit compared
to the other members of the GHDs. This is perhaps due to the parameter restriction
placed on the scale parameter, δ. Moving to the four dimensional multivariate affine
distributions, we propose the kernel smoothing technique. As we may recall, the affine
transformed variables are independent. As such, we use the following procedure (for
example for the MANIG);

• We carry out the necessary transformations described by Schmidt et al. 2006.
Then, we fit each of the returns with the univariate NIG distribution.

• We generate independent samples from the fit of each NIG distribution, since
the samples are independent.

• We bring these samples together to form our multivariate distribution (four
dimensional). This is possible since the affine variables are independent.
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• This multivariate sample is then compared with our returns using the kernel
smoothing.

Table 4.26 Four dimensional kernel smoothing goodness of fit test of MAGHDs.

Distribution kernel smoothing distance
MAGHYP 0.01165438
MAHYP 0.01074652
MANIG 0.01010627
MAST 0.01270463
MAVG 0.01020197

Table 4.26 shows that the kernel distances are very close together, showing how
similar the fits of these distributions are to one another. However, the MANIG has
the smallest distance and hence can be regarded as the model producing of best fit.

4.8 Fitting returns to four dimensional GHDs and assess-
ing goodness of fit

This section is devoted to the fit of multivariate generalized hyperbolic distributions
on which no particular transformations have been carried out on the data. As be-
fore, the Multi-Cycle Expectation Conditional Maximization (MCECM) algorithm as
well as the kernel smoothing goodness of fits are used in R with the (λ, ᾱ, µ,Σ, γ)-
parametrization. However, we present the four dimensional fit here while the two
dimensional fit (mainly because we will be analyzing the correlation between the vari-
ables later) is documented in the appendix. The goodness of fit test is done in such a
way that we compare the fit of the multivariate GHDs with the fits depicted by the
multivariate normal distribution.

For the MGHYP:

λ = 0.6485490 α̂ = 0.9923645

µ = (0010014882,−0.0004755705,−0.0003145183, 0.0006408145),

γ = (−0.0005410421, 0.0006458176, 0.0004480307,−0.0005777333)

Σ =


1.468555e− 04 −1.512471e− 05 1.151816e− 04 4.716599e− 05
−1.512471e− 05 1.266780e− 04 −5.242250e− 06 −2.805251e− 05
1.151816e− 04 −5.242250e− 06 6.037810e− 04 1.402439e− 06
4.716599e− 05 −2.805251e− 05 1.402439e− 06 1.448873e− 04


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For the MHYP:

λ = 2.5 α̂ = 0.3748423

µ = (0.0010665156,−0.0005576768,−0.0003651900, 0.0006896263)

γ = (−0.0006151161, 0.0007389395, 0.0005060401,−0.0006352074)

Σ =


1.419720e− 04 −1.494141e− 05 1.104862e− 04 4.628980e− 05
−1.494141e− 05 1.214818e− 04 −4.810835e− 06 −2.797471e− 05
1.104862e− 04 −4.810835e− 06 5.831227e− 04 3.913272e− 07
4.628980e− 05 −2.797471e− 05 3.913272e− 07 1.419618e− 04


For the MNIG:

λ = −0.5 α̂ = 0.9643238

µ = (0.0010279593,−0.0004914882,−0.0003335669, 0.0006534718)

γ = (−0.0005577392, 0.0006497949, 0.0004589355,−0.0005796815)

Σ =


1.499574e− 04 −1.508108e− 05 1.184344e− 04 4.760852e− 05
−1.508108e− 05 1.296561e− 04 −5.453881e− 06 −2.791123e− 05
1.184344e− 04 −5.453881e− 06 6.179283e− 04 2.024664e− 06
4.760852e− 05 −2.791123e− 05 2.024664e− 06 1.463836e− 04


For the MVG:

λ = 1.211898 α̂ = 0.0000

µ = (4.540003e− 04,−8.618414e− 05,−9.803782e− 05, 2.587738e− 04)

γ = (2.558839e− 05, 2.315635e− 04, 2.138884e− 04,−1.737041e− 04)

Σ =


1.530859e− 04 −1.603322e− 05 1.198265e− 04 4.911009e− 05
−1.603322e− 05 1.342963e− 04 −5.547762e− 06 −2.908930e− 05
1.198265e− 04 −5.547762e− 06 6.246844e− 04 2.440836e− 06
4.911009e− 05 −2.908930e− 05 2.440836e− 06 1.502529e− 04


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For the MST:

λ = −1.787308 ν = 3.574616

µ = (0.0010053447,−0.0004634910,−0.0003164931, 0.0006207394)

γ = (−0.0005256595, 0.0006107702, 0.0004340736,−0.0005371098)

Σ =


1.604177e− 04 −1.566209e− 05 1.274539e− 04 5.038383e− 05
−1.566209e− 05 1.388777e− 04 −5.840071e− 06 −2.898898e− 05
1.274539e− 04 −5.840071e− 06 6.623309e− 04 2.720059e− 06
5.038383e− 05 −2.898898e− 05 2.720059e− 06 1.548777e− 04


For the multivariate Normal:

µ = (4.797857e− 04, 1.471623e− 04, 1.174975e− 04, 8.373226e− 05)

Σ =


1.513398e− 04 −2.139560e− 05 1.124750e− 04 5.451118e− 05
−2.139560e− 05 1.295920e− 04 −5.754663e− 06 −3.935084e− 05
1.124750e− 04 −5.754663e− 06 6.114319e− 04 −3.025136e− 06
5.451118e− 05 −3.935084e− 05 −3.025136e− 06 1.669168e− 04


The parameter ν determines the degree of freedom of the distribution and is only

defined for the MST distribution. By definition, ν = −2× λ. Moreover, the location
vector, µ, dispersion matrix, Σ, as well as the skewness vector, γ, are also summarized.
It should be noted that the dispersion matrix is obtained with the returns listed in
the order; All shares, USD/ZAR, S&P 500, Gold Mining.

4.8.1 Assessing the goodness of fit of four dimensional GHDs

Once the parameters estimated, we can proceed to assess the fit of the MGHDs.
However, as mentioned earlier, we compare these fits with those of the four dimensional
normal distribution and find out which distribution has smallest distance (the distance
here estimated by kernel smoothing which compares the distribution of the data to
the hypothesized distributions). Table 4.27 summarizes the fits.
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Table 4.27 Goodness of fit of MGHDs

Multivariate distribution Kernel distance Loglikelihood AIC
MGHYP 2.451889 45010.98 -89981.95
MHYP 6.56303 44875.97 -89713.94
MNIG 4.21383 45042.92 -90047.84
MVG 4.305984 44971.08 -89904.15
MST 4.508078 45039.85 -90041.69

Multivariate normal 25.22783 43475.96 -86923.92

With a kernel distance of 25.22783, Table 4.27 strongly shows the poor fit of
the multivariate normal distribution relative to the MGHDs which have significantly
smaller distances. This suggests the better fit that MGHDs portray. However, even
though the MGHYP, has the smallest distance, it does not have the smallest AIC or
highest loglikelihood value. This does not however contradict the better fit indicated
by the MNIG, as these MGHDs are fitted with some parameter initialization. Thus,
changing these initializations will slightly influence the loglikelihood and AIC. Hence,
based on logliklihood and AIC, we can conclude that the MNIG (with highest loglik-
lihood and smallest AIC) presents the better fit compared to the other members of
the MGHD distribution.

4.9 Fitting returns to Archimedean copulas

Earlier in this chapter, the marginal distributions of the daily returns were fitted
with the different subclasses of the GHDs and the best fits were obtained. Now,
we utilize copulas in order to describe the dependence structure between pairwise
marginals. Before we go into these models, it is necessary to look at the scatter plots
of associated with these bivariate returns.
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Figure 4.29: Bivariate scatter plots.

Figure 4.29 shows some form of negative dependency between the USD/ZAR and
all other returns except the gold mining returns. Some negative dependency is also
exhibited by the S&P 500 and the gold mining returns. While on the other hand,
the gold mining and All shares as well as S&P 500 and All Share returns seem to be
positively dependent. Table 4.28 further illustrates these observations.

Table 4.28 Kendall tau and Spearman rho correlations of the bivariate returns

Returns Kendall tau Spearman rho
USD/ZAR and All shares -0.06676407 -0.09848042

UDS/ZAR and Gold mining -0.01040614 -0.0149537
USD/ZAR and S&P 500 -0.1216815 -0.1779649

All shares and Gold mining 0.2635787 0.3723275
All shares and S&P 500 0.2113006 0.3025654

Gold mining and S&P 500 0.0006230341 -0.0001758794

As discussed earlier, Clayton copulas are known for their ability to capture lower
tail dependencies. However, they cannot account for negative dependencies between
marginal. On the other hand, Gumbel copulas are suitable to capture upper tails
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dependencies and cannot also account for negative dependencies. This means that
only marginals that are positively dependent can be accounted for by the Clayton
and Gumbel copulas. The Frank copula even though accounts for positive as well as
negative dependencies, unfortunately does not model any tail dependencies. Thus, the
ability of the kolmogorov-Smirnov goodness of fit implemented in R, using Kendall
process will provide us with a preliminary idea of whether the observations from
Figure 4.29 seem correct.

Table 4.29 Kolmogorov-Smirnov goodness of fit based on Kendall procedure for
bivariate copulas

Bivariate returns Clayton copula Gumbel copula Frank copula
USD/ZAR and All shares NAN NAN 0.7768835

USD/ZAR and gold mining NAN NAN 1.152871
USD/ZAR and S&P 500 NAN NAN 0.8683853

All shares and gold mining 2.419068 1.960445 2.918488
All shares and S&P 500 1.472056 2.315072 1.897947

gold mining and S&P 500 NAN NAN 0.9152758

• NAN here means the statistic is unavailable.

The lack of fit depicted by Table 4.29 between USD/ZAR and all other marginals as
well as between the gold mining and the S&P 500 suggest that these bivariate returns
are all negatively dependent on one another. This is because this test (Kolmogorov-
Smirnov) applies only to positively dependent bivariate returns. Thus, in these cases,
we will use the Frank copula to assess the negative dependencies. When assessing the
fit between the All shares and gold mining returns, Table 4.29 also suggests that the
Gumbel copulas provides the best fit with the minimum distance compared to other
copula models. A similar observation is also made between the All shares and S&P
500, where the Clayton copula is shown to provide the best fit with minimum distance
of 1.472056. Thus, with the estimated copula models in Table 4.29, we may calculate
the copulas based dependency measures. This is given in Table 4.30.
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Table 4.30 Estimated copula dependency measures

Bivariate returns copula Kendall Spearman lower upper
(copula) parameter tau rho tail tail

USD/ZAR and All shares -0.62209 -0.068856 -0.10315 0 0
(Frank copula)

USD/ZAR and gold mining -0.095579 -0.010619 -0.015928 0 0
(Frank copula)

USD/ZAR and S&P 500 -1.1416 -0.12523 -0.18704 0 0
(Frank copula)

All shares and gold mining 1.3274 0.24667 0.36067 0 0.3143
(Gumbel copula)

All shares and S&P 500 0.46233 0.18776 0.27807 0.2233 0
(Clayton copula)

gold mining and S&P 500 0.001874 0.000208 0.0003124 0 0
(Frank copula)

As expected, Table 4.30 suggests some degree of negative dependence between the
USD/ZAR exchange rate and all other returns. However, this negative dependence
(indicated by Kendall tau as well as Spearman rho) is very close to 0 especially with the
All shares and gold mining indices, indicating almost independence (the Frank copula
parameter is close to 0, is an indication of independence). On the other hand, some
positive dependence is exhibited between the All shares and gold mining as well as
S&P 500. Thus, the Gumbel copula providing the best fit between the All shares and
gold mining with parameter close to one is also an indication of almost independence.
However, we have some upper tail dependence. We may thus conclude that even
though the dependency between the two returns is not very strong, it however exists
especially along the upper tails. Similar remarks are also made with the Clayton
copula when fitting the All shares and S&P 500 returns. In this case along the lower
tails. This is largely one of the disadvantages of these Archimedean copulas, as none
is able to capture both upper and lower tails of bivariate returns at same time. One
last point to note about these measures of dependency (Kendall tau and Spearman
rho) is how close these values are to their sample counterparts in Table 4.28. As these
lead to more flexibility when modeling dependencies with copulas.
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Chapter 5

Conclusion and recommendations

5.1 Conclusion

This research shows that the GHDs provide an alternative class (to the multivari-
ate normal and t) of distributions for modeling the heavy tails properties as well as
volatility of financial returns. Most importantly, these distributions can be extended
to model multivariate returns. This is very important as financial indices usually do
not vary independently, but may depend on other returns. Hence, the need to model
all these sequence of returns with multivariate distributions.

We started by modeling the individual univariate returns with each member of the
GHD. These distributions proved to provide a very good fit based on the Anderson-
Darling goodness of fit test. The value-at-risk using Kupiec test was then utilized
to further assess the extend to which these distribution were adequate and we mea-
sured the level of risk. The results obtained were similar to those obtained with the
Anderson-Darling test. Based on these results, as well as the AIC and loglikelihood,
the best models for univariate returns were selected.

Table 5.1 Best model for univariate returns

Return Distribution
USD/ZAR Skew t

All shares GHYP
Gold mining HYP

S&P 500 GHYP

The joint distribution of these four returns was then analyzed. Firstly, the returns
were transformed using affine transformations as described in Section 1.4. Then, each
individual series resulting from the transformation is fitted with the univariate GHD in
order to obtain the MAGHD. As a goodness of fit measure, the kernel smoothing was
used. This is due to its flexibility in handling higher dimensional returns(especially in
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practical applications). Based on this goodness of fit test, the MANIG was selected
as the best model for affinely transformed variables. It is also worth noting that the
univariate A-D test was used in order to assess the goodness of fit of the transformed
returns as these returns represent the model for MAGHD. These distributions proved
adequate, except for the VG used in the All shares transformed returns.

Secondly, using the MGHD, the returns were fitted to all five subclasses of this
distribution. Without any form of affine transformation carried out on these returns,
the kernel density approach to multivariate goodness of fit showed that the MGHYP
has the smallest statistic between the hypothesized and actual distribution. However,
the AIC as a model selection criterion showed that the MNIG is the best model for
these multivariate returns.

Furthermore, the bivariate MGHDs were also fitted and documented in the ap-
pendix. This is because the bivariate dependencies between these returns were also
relevant in our study. To this end, Archimedean copulas were used. Interestingly,
it was found that there is a very small negative dependency between the USD/ZAR
returns and other three returns. This is however unusual as one will expect the
USD/ZAR returns to be correlated to the other returns. Some degree of positive
correlation was also observed between the All shares and other two returns (gold min-
ing and S&P 500). Only in these two last cases were the upper as well as lower tail
dependencies calculated with the Gumbel and Clayton copulas respectively.

5.2 Recommendations

Once these multivariate returns are modeled, it is important to look at some of the
practical applications of these multivariate models.

• These models can be used to simulate future returns.

• They can also serve in the construction of efficiency frontier (Fajardo & Farias,
2009). That is, finding the model that represents the best possible combination
of returns to produce the maximum returns for a given level of risk.

• In risk analyzis, they also are use for value at risk purposes. Finally, However,
this last application has not been done yet in any research using MGHDs. Hence,
can be a good reference for future research.

• Furthermore, analysis of multivariate models usually involves analysis of linear
combinations of the returns under investigation. This is done in order to predict
or observe co-movements between returns (Lettau & Ludvigson, 2001).
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Appendix

Analyzing the fit of the USD/ZAR and All shares returns

For the MGHYP:

λ = 0.8459007, ᾱ = 1.0147183,

µ = (−0.0003292698, 0.0008205440),

γ = (0.0004861215,−0.0003476884)

Σ =

(
1.222358e− 04 −1.593618e− 05
−1.593618e− 05 1.465895e− 04

)

For the MHYP:

λ = 1.5, ᾱ = 0.9291942,

µ = (−0.0003534590, 0.0008336916)

γ = (0.0005121962,−0.0003620885)

Σ =

(
1.206342e− 04 −1.581632e− 05
1.206342e− 04 −1.581632e− 05

)

For the MNIG:

λ = −0.5, ᾱ = 0.9972694,

µ = (−0.0003554551, 0.0008373171)

γ = (0.0005077875,−0.0003612092)

Σ =

(
0.0001254576 −0.0000160079
−0.0000160079 0.0001504665

)
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For the MVG:

λ = 1.126088, ᾱ = 0.9291942,

µ = (−0.0003534590, 0.0008336916)

γ = (0.0005121962,−0.0003620885)

Σ =

(
1.206342e− 04 −1.581632e− 05
−1.581632e− 05 1.447984e− 04

)

For the MST:

λ = −1.779561, ᾱ = 0.0000, ν = 3.559121,

µ = (−0.0003408462, 0.0008235871)

γ = (0.0004880818− 0.0003438530

Σ =

(
1.366124e− 04− 1.691123e− 05
1.366124e− 04− 1.691123e− 05

)

For the Multivariate Normal:

µ = (0.0001471623, 0.0004797857)

Σ =

(
1.29592e− 04 −0.0000213956
−2.13956e− 05 0.0001513398

)

Table 5.2 Goodness of fit of bivariate GHDs for USD/ZAR and All shares returns

Multivariate distribution Kernel distance Loglikelihood AIC
MGHYP 1.412004 23554.66 -47091.33
MHYP -0.003910404 23538.93 -47061.85
MNIG -0.2786012 23570.56 -47125.11
MVG 0.6072332 23538.93 -47061.85
MST 1.432617 23565.65 -47115.29

Multivariate Normal 16.67545 22993.53 -45977.06
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Analyzing the fit of the USD/ZAR and gold mining returns

For the MGHYP:

λ = 0.8512479, ᾱ = 1.0005726,

µ = (−0.0002527845,−0.0003474230),

γ = (0.0004085910.000474969)

Σ =

(
1.224338e− 04 −4.726820e− 06
−4.726820e− 06 5.927193e− 04

)

For the MHYP:

λ = 1.5, ᾱ = 0.9126469,

µ = (−0.0002733085,−0.0003688009)

γ = (0.0004306993, 0.0004981282)

Σ =

(
1.208487e− 04 −4.628216e− 06
−4.628216e− 06 5.857365e− 04

)

For the MNIG:

λ = −0.5, ᾱ = 0.9901852,

µ = (−0.0002804200,−0.0003655655)

γ = (0.0004322565, 0.0004883437)

Σ =

(
1.256373e− 04 −4.881202e− 06
−4.881202e− 06 6.079826e− 04

)

For the MVG:

λ = 1.093149, ᾱ = 0.0000,

µ = (−0.0003534590, 0.0008336916)

γ = (0.0005121962,−0.0003620885)

Σ =

(
1.206342e− 04 −1.581632e− 05
−1.581632e− 05 1.447984e− 04

)
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For the MST:

λ = −1.775367, ᾱ = 0.0000, ν = 3.550734,

µ = (−0.0002704096,−0.0003534263)

γ = (0.0004176346, 0.0004709946)

Σ =

(
1.367810e− 04 −5.306861e− 06
−5.306861e− 06 6.623423e− 04

)

For the Multivariate Normal:

µ = (0.0001471623, 0.0001174975)

Σ =

(
1.295920e− 04 −5.754663e− 06
−5.754663e− 06 6.114319e− 04

)

Table 5.3 Goodness of fit of bivariate GHDs for USD/ZAR and gold mining returns

Multivariate distribution Kernel distance Loglikelihood AIC
MGHYP 1.180364 20871.34 -41724.69
MHYP 3.524017 20853.99 -41691.98
MNIG 0.6535838 20886.84 -41757.68
MVG 1.302692 20855.3 -41694.61
MST 0.8819064 20879.86 -41743.72

Multivariate Normal 18.36181 18.36181 -40580.21

Analyzing the fit of the USD/ZAR and S&P 500 returns

For the MGHYP:

λ = 0.7039140, ᾱ = 0.7039140,

µ = (−0.0003392368, 0.0005862007),

γ = (0.0005050174,−0.0005217019)

Σ =

(
1.231128e− 04 −2.865619e− 05
−2.865619e− 05 1.453043e− 04

)

88



BIBLIOGRAPHY

For the MHYP:

λ = 1.5, ᾱ = 0.8627276,

µ = (−0.0003617394, 0.0005991104)

γ = (0.0005289171,−0.0005356483)

Σ =

(
1.212781e− 04 −2.859505e− 05
−2.859505e− 05 1.440560e− 04

)

For the MNIG:

λ = −0.5, ᾱ = 0.9527169,

µ = (−0.0003641028, 0.0006014738)

γ = (0.0005251991,−0.0005318520)

Σ =

(
0.0001263767 −0.0000285861
−0.0000285861 0.0001473452

)

For the MVG:

λ = 1.064079, ᾱ = 0.0000,

µ = (6.774818e− 05, 1.508599e− 04)

γ = (8.034915e− 05,−6.791799e− 05)

Σ =

(
1.326392e− 04 −3.039094e− 05
−3.039094e− 05 1.538599e− 04

)

For the MST:

λ = −1.753040, ᾱ = 0.0000, ν = 3.506081,

µ = (−0.0003423536, 0.0005655998)

γ = (0.0004895895,−0.0004819400)

Σ =

(
1.374985e− 04 −3.009278e− 05
−3.009278e− 05 1.582403e− 04

)

For the Multivariate Normal:

µ = (1.471623e− 04, 8.373226e− 05)

Σ =

(
1.295920e− 04 −3.935084e− 05
−3.935084e− 05 1.669168e− 04

)
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Table 5.4 Goodness of fit of bivariate GHDs for USD/ZAR and S&P 500 returns

Multivariate distribution Kernel distance Loglikelihood AIC
MGHYP 4.144898 23721.12 -47424.25
MHYP 6.864506 23682.9 -47349.8
MNIG 3.184267 23757.86 -47499.72
MVG 4.336816 23710.79 -47405.59
MST 3.6726 23776.19 -47536.38

Multivariate Normal 21.68993 22903.6 -45797.2

Analyzing the fit of the All shares and gold mining returns

For the MGHYP:

λ = 0.8336270, ᾱ = 0.9751478,

µ = (0.0008425585,−0.0004491674),

γ = (−0.0003711640, 0.0005797724)

Σ =

(
0.0001449808 0.0001127419
0.0001127419 0.0005843908

)

For the MHYP:

λ = 1.5, ᾱ = 0.8732382,

µ = (0.0008526149,−0.0004684544)

γ = (−0.0003824607, 0.0006010891)

Σ =

(
0.0001432612 0.0001111331
0.0001111331 0.0005777306

)

For the MNIG:

λ = −0.5, ᾱ = 0.9699907,

µ = (0.0008706557,−0.0004654669)

γ = (−0.0003949053, 0.0005889830)

Σ =

(
0.0001484233 0.0001162599
0.0001162599 0.0005987365

)
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For the MVG:

λ = 0.9583156, ᾱ = 0.0000,

µ = (2.196377e− 04,−5.776083e− 05)

γ = (0.0002592507, 0.0001746538)

Σ =

(
0.0001534141 0.0001181439
0.0001181439 0.0006120017

)

For the MST:

λ = −1.764637, ᾱ = 0.0000, ν = 3.529275,

µ = (0.0008569230,−0.0004384037)

γ = (−0.0003771939, 0.0005559848)

Σ =

(
0.0001612016 0.0001272048
0.0001272048 0.0006510066

)

For the Multivariate Normal:

µ = (0.0004797857, 0.0001174975)

Σ =

(
0.0001513398 0.0001124750
0.0001124750 0.0006114319

)

Table 5.5 Goodness of fit of bivariate GHDs for All shares and gold mining returns

Multivariate distribution Kernel distance Loglikelihood AIC
MGHYP 10.8543 20889.35 -41760.7
MHYP 13.11752 20865.41 -41714.83
MNIG 10.34514 20908.2 -41800.4
MVG 7.53518 20989.35 -41962.7
MST 8.081153 20899.23 -41782.46

Multivariate Normal 29.30679 20278.86 -40547.72
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Analyzing the fit of the All shares and S&P 500 returns

For the MGHYP:

λ = 0.7005579, ᾱ = 0.9771152,

µ = (0.0009848865, 0.0005280862),

γ = (0.0009848865, 0.0005280862)

Σ =

(
1.460388e− 04 4.800569e− 05
4.800569e− 05 1.443437e− 04

)

For the MHYP:

λ = 0.7005579, ᾱ = 0.9771152,

µ = (0.0009848865, 0.0005280862)

γ = (−0.0005247864,−0.0004616719)

Σ =

(
1.460388e− 04 4.800569e− 05
4.800569e− 05 1.443437e− 04

)

For the MNIG:

λ = −0.5, ᾱ = 0.9392296,

µ = (0.0010119386, 0.0005301148)

γ = (−0.0005459903,−0.0004579897)

Σ =

(
0.0001495728 0.0000486828
0.0000486828 0.0001461658

)

For the MVG:

λ = 1.021717, ᾱ = 0.0000,

µ = (0.0004133312, 0.0001922438)

γ = (6.753222e− 05,−1.102713e− 04)

Σ =

(
1.571832e− 04 5.099958e− 05
5.099958e− 05 1.530909e− 04

)
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For the MST:

λ = −1.745295, ᾱ = 0.0000, ν = 3.49059,

µ = (0.0009843794, 0.0004937140)

γ = (−0.0005046695,−0.0004100434)

Σ =

(
1.624563e− 04 5.232955e− 05
5.232955e− 05 1.566982e− 04

)

For the Multivariate Normal:

µ = (4.797857e− 04, 8.373226e− 05)

Σ =

(
1.513398e− 04 5.451118e− 05
5.451118e− 05 1.669168e− 04

)

Table 5.6 Goodness of fit of bivariate GHDs for All shares and S&P 500 returns

Multivariate distribution Kernel distance Loglikelihood AIC
MGHYP 5.701713 23539.76 -47061.51
MHYP 7.804611 23539.76 -47061.51
MNIG 4.858352 23577.28 -47138.56
MVG 3.422572 23570.28 -47124.55
MST 3.347802 23591.75 -47167.5

Multivariate Normal 23.96084 22705.38 -45400.76

Analyzing the fit of the gold mining and S&P 500 returns

For the MGHYP:

λ = 0.7403650, ᾱ = 0.9633387,

µ = (−0.0002668656, 0.0005543552),

γ = (0.0003983104,−0.0004877003)

Σ =

(
5.990734e− 04 −1.158626e− 06
−1.158626e− 06 1.445869e− 04

)
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For the MHYP:

λ = 1.5, ᾱ = 0.8274115,

µ = (−0.0002838368, 0.0005661987)

γ = (0.0004164772,−0.0005006705)

Σ =

(
5.909923e− 04 −1.423322e− 06
−1.423322e− 06 1.434485e− 04

)

For the MNIG:

λ = −0.5, ᾱ = 0.9395966,

µ = (−0.0002895067, 0.0005663870)

γ = (0.0004162768,−0.0004936507)

Σ =

(
6.145014e− 04 −7.480313e− 07
−7.480313e− 07 1.463384e− 04

)

For the MVG:

λ = 0.96772, ᾱ = 0.0000,

µ = (−4.281344e− 06, 3.483396e− 05)

γ = (1.235734e− 04, 4.961888e− 05)

Σ =

(
−3.155260e− 08 1.539208e− 04
−3.155260e− 08 1.539208e− 04

)

For the MST:

λ = −1.746636, ᾱ = 0.0000, ν = 3.493273,

µ = (−0.0002791661, 0.0005361986)

γ = (0.0003967233,−0.0004525343)

Σ =

(
6.693127e− 04 −4.058751e− 07
−4.058751e− 07 1.568585e− 04

)

For the Multivariate Normal:

µ = (1.174975e− 04, 8.373226e− 05)

Σ =

(
6.114319e− 04 −3.025136e− 06
−3.025136e− 06 1.669168e− 04

)
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Table 5.7 Goodness of fit of bivariate GHDs for gold mining and S&P 500 returns

Multivariate distribution Kernel distance Loglikelihood AIC
MGHYP 5.254211 20613.19 -41208.38
MHYP 5.8566 20573.33 -41130.66
MNIG 5.543554 20644.96 -41273.92
MVG 4.643629 20691.58 -41367.16
MST 4.346161 20650.55 -41285.09

multivariate Normal 26.04928 19813.33 -39616.66

Bessel function

In this section, we present the Bessel function of the third kind, which forms and
integral part of generalized hyperbolic functions.

Let λ ∈ R, the modified Bessel function of the third kind with index λ is defined
by the equation (Abramowitz & stegun, 1972)

Kλ(x) =
1
2

∫ ∞

0
uλ−1e−

1
2
x(u+u−1)du x > 0.

Using the function above, the following results follow (Barndorff-Nielsen & Blæsild
(1981) and Abramowitz & stegun (1972)):

K−λ(x) = Kλ(x),

Kλ+1(x) =
2λ
x
Kλ(x) +Kλ−1(x),

K ′
λ(x) = −λ

x
Kλ(x)−Kλ−1(x)

Indeed, for the first one, we have

K−λ(x) =
1
2

∫ ∞

0
u−λ−1e−

1
2
x(u+u−1)du,

= −1
2

∫ 0

∞
vλ+1e−

1
2
x(v−1+v)v−2dv, (v =

1
u
, dv = − 1

u2
du),

=
1
2

∫ ∞

0
vλ−1e−

1
2
x(v+v−1)dv,

= Kλ(x).
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Secondly, we obtain

Kλ+1(x)−Kλ−1(x) =
1
2

∫ ∞

0
(uλ − uλ−2)e−

1
2
x(u+u−1)du

=
1
2

∫ ∞

0
uλ(1− u−2)e−

1
2
x(u+u−1)du.

Thus using integration by parts and letting{
v1 = uλ, ⇒ v′1 = λuλ−1

v′2 = (1− u−2)e−
1
2
x(u+u−1), ⇒ v2 = − 2

xe
− 1

2
x(u+u−1),

(5.1)

we obtain

Kλ+1(x)−Kλ−1(x) =
1
2

([
−2uλ

x
e−

1
2
x(u+u−1)

]∞
0

+
2λ
x

∫ ∞

0
uλ−1e−

1
2
x(u+u−1)du

)
,

=
2λ
x

(
1
2

∫ ∞

0
uλ−1e−

1
2
x(u+u−1)du

)
,

=
2λ
x
Kλ(x).

Lastly, we have

Kλ(x)′ = −1
2

∫ ∞

0
uλ−1 1

2
(u+ u−1)e−

1
2
x(u+u−1)du,

= −1
4

∫ ∞

0
uλ(1 + u−2)e−

1
2
x(u+u−1)du,

= −1
4

∫ ∞

0
uλe−

1
2
x(u+u−1)du− 1

4

∫ ∞

0
uλ−2e−

1
2
x(u+u−1)du

= −1
2
Kλ+1(x)−

1
2
Kλ−1(x)

= −1
2

(
2
λ

x
Kλ(x) +Kλ−1(x)

)
− 1

2
Kλ−1(x) from above,

= −λ
x
Kλ(x)−Kλ−1(x).

It should also be noted that when λ = n+ 1
2 , n = 0, 1, 2, . . . , we have that (Barndorff-

Nielsen & Blæsild, 1981)

Kn+ 1
2
(x) =

√
π

2x
e−x

{
1 +

n∑
i=1

(n+ i)!
(n− i)!i!

(2x)−i

}
.

It should also be noted that if λ > 0, then for very small values of it’s argument
(x ↓ 0), this function can be approximated by

Kλ ∼ Γ(λ)2λ−1x−λ,
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and for large values of the arguments, we have

Kλ =
√

π

2x
e−x

(
1 +

4λ2 − 1
8x

+
(4λ2 − 1)(4λ2 − 9)

2!(8x)2
+

(4λ2 − 1)(4λ2 − 9)(4λ2 − 25)
3!(8x)3

+ . . .

)

Likelihood equations

In this appendix, we present the log likelihood equations of the GHD. AS we know,
the pdf of the GHD is given by

gh(x;λ, α, β, δ, µ) = aλ(δ2 + (x− µ)2)(λ−1/2)/2Kλ−1/2(α
√
δ2 + (x− µ)2)

× expβ(x− µ),

where aλ = a(λ;α, β, δ) = (α2−β2)λ/2

√
2παλ−1/2δλKλ(δ

√
α2−β2)

, x, µ ∈ R, andKλ is the modified

Bessel function of the third kind. According to Prause (1999), the log likelihood of
this distribution is given by

L = n log(aλ) +
(
λ

2
− 1

4

) n∑
i=1

log(δ2 + (xi − µ)2)

+
n∑

i=1

logKλ−1/2(α
√
δ2 + (xi − µ)2) +

n∑
i=1

β(xi − µ).

It should be noted that we have considered the general case. Particular cases for
the HYP NIG and VG can be obtained similarly, by setting λ = 1, λ = −1/2 and
δ = 0 respectively. Hence, differentiating this equation with respect to the different
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parameters of the GHD, we obtain the following equations (Prause, 1999)

∂L

∂λ
= n

[
1
2

ln
α2 − β2

αδ
− kλ(δ

√
α2 − β2)

Kλ(δ
√
α2 − β2)

]

+
n∑

i=1

[
1
2

ln(δ2 + (xi − µ)2) +
k

λ−1/2(α
√

δ2+(xi−µ)2)

K
λ−1/2(α

√
δ2+(xi−µ)2)

]
,

∂L

∂α
= n

δα√
α2 − β2

Rλ(δ
√
α2 − β2)

−
n∑

i=1

√
δ2 + (xi − µ)2Rλ−1/2(α

√
δ2 + (xi − µ)2)

∂L

∂β
= −n

[
δβ√
α2 − β2

Rλ(δ
√
α2 − β2)µ

]
+

n∑
i=1

Xi,

∂L

∂δ
= n

[
−2

λ

δ
+
√
α2 − β2Rλ(δ

√
α2 − β2)

]
+

n∑
i=1

[
(2λ− 1)δ

δ2 + (xi − µ)2
−
αδRλ(α

√
δ2 + (xi − µ)2)√

δ2 + (xi − µ)2

]
∂L

∂µ
= −nβ +

n∑
i=1

xi − µ√
δ2 + (µ− xi)2

[
2λ− 1√

δ2 + (µ− xi)2

− αRλ−1/2(α
√
δ2 + (µ− xi)2)

]
.

where we have used the following properties of the Bessel function (Barndorff-Nielsen
& Blæsild, 1981);

dKλ

dλ
= kλ,

Rλ =
Kλ+1(x)
Kλ(x)

,

Sλ =
Kλ+2(x)Kλ(x)−K2

λ+1(x)
K2

λ(x)
, x > 0.

Thus setting the above equations to zero and solving, we obtain the estimates of the
parameters.

Tail behavior of GHDs

In this section, we will give details about the functions that describe the tail behavior
of the GHDs. In general, the equation governing the tail behavior of the GHD is given

98



BIBLIOGRAPHY

by
f(x) ∼ const|x|λ−1 exp((∓α+ β)x), x→ ±∞. (5.2)

However, we recall from Section 1.1 that the tail behavior of the NIG distribution is
given by

f(x) ∼ const|x|−3/2 exp(−α|x|+ βx), for x→ ±∞.

More precisely, this means that as x changes between ±∞, the tails behave as follows;
the heaviest tails of the distribution decays according to (Aas & Haff, 2005)

f(x) ∼ const|x|−3/2 exp(−α|x|+ |β||x|), as

{
β < 0, and x→ −∞;
β > 0, and x→ +∞.

while the lightest tails decay according to

f(x) ∼ const|x|−3/2 exp(−α|x| − |β||x|), as

{
β < 0, and x→ +∞;
β > 0, and x→ −∞.

Thus, given that the tails of our data are semi-heavy, we see that the heaviest and
lightest tails behave differently (Aas & Haff, 2005).

Similarly, for the GH student t distribution, we had that the tail decay according
to the equation

f(x) ∼ const|x|−ν/2−1 exp(−|β||x|+ βx).

More precisely, the heaviest tails decay according to the equation

f(x) ∼ const|x|−ν/2−1, as

{
β < 0, and x→ −∞;
β > 0, and x→ +∞.

while the lightest tails decay according to

f(x) ∼ const|x|−ν/2−1 exp(−2|β||x|) as

{
β < 0, and x→ +∞;
β > 0, and x→ −∞.

From this behavior comes the property that the GH skew student t distribution has
one heavy and one semi heavy tail, and it is the only subclass of the GHDs with this
property.
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