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ABSTRACT	
  
 
Organocatalysis has rapidly expanded in the last decade to encompass a wide variety of small 

organic molecules that are capable of either activating substrates or transforming them into 

more reactive forms.  The aim of this study was to develop novel chiral organocatalysts based 

on the tetrahydroisoquinoline backbone and evaluate them on asymmetric reactions.  Three 

organocatalytic modes of activation have been investigated for C-C bond forming 

asymmetric reactions.  In chapter 2, for the first time organocatalysts bearing a secondary 

nitrogen within a cyclohexane ring were evaluated in the asymmetric Diels–Alder reaction.  

These catalysts were tested over a range of dienes and dienophiles and displayed promising 

chemical conversions of up to 100 % with up to 64 % ee when triflic acid was employed as 

the cocatalyst.  Density functional theory computational studies and 2D NMR spectroscopy 

were used to determine the structure of the intermediate iminium ion formed between the 

most efficient catalyst and cinnamaldehyde.  Chapter 3 includes a series of novel 

tetrahydroisoquinoline chiral N-oxide organocatalysts and their evaluation in the asymmetric 

allylation reaction of aromatic and α-β-unsaturated aldehydes with allyltrichlorosilane.  The 

chiral homoallyl products were obtained with good chemical efficiency (up to 93 % yield) 

and high enantioselectivity (up to 91 % ee) under mild reaction conditions (23 °C).  Chapter 4 

is the simple and practical microwave-assisted synthesis of new tetrahydroisquinoline 

guanidine organocatalysts and their evaluation in the asymmetric Michael addition reaction 

of malonates and β-ketoesters with nitro-olefins.  In addition, a novel microwave assisted 

procedure of introducing the guanidine unit onto amino amide derivatives is reported.  The 

chiral products were obtained with quantitative chemical efficiency (up to 99 % yield) and 

excellent enantioselectivity (up to 97 % ee).  Chapter 5 is a collection of all X-ray crystal 

structures that were published from novel compounds synthesized pertaining to Chapters 2-4, 

it contains 15 published crystal structures while Chapters 3-4 contain 3 other X-ray crystal 

structures. 

It should be noted that with the exception of the introduction and Chapter 4 (submitted for 

publication), the remaining chapters of this thesis have been published in international peer 

reviewed journals.  In the next section (DECLARATION 2 – PUBLICATIONS) a precise 

description of my contribution to each of the publications/chapters is provided. 
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CHAPTER	
  1	
  
1.1 Origin and Importance of Chirality 

The pioneering work of scientists Hauy, Malus,1 Biot,2 Herschel3 and Pasteur4 during the nineteenth 

century led to an initial understanding of the concept of chirality.  Thereafter, further enlightenment 

on stereochemistry5,6 was brought about by Fisher, Van’t Hoff7 and Le Bel.8  Today, we understand 

that stereoisomers which rotate plane-polarised light through equal angles but in opposite directions 

must be related to each other as an object and its non-superimposable mirror image.  This 

phenomenon is attributed to the property possessed by all chiral molecules and the two forms of the 

optically active molecule are related to each other as three-dimensional non-superimposable mirror 

images (enantiomers) as illustrated with the example of the pair of human hands in Figure 1.9,10 

 
Figure 1. An example of enantiomers (handprints of Albert Einstein).11 

Chirality is a key element in nature and plays a crucial role in science and technology.12  Several 

biological and physical functions depend on the recognition of chiral molecules.  In the human body, 

the majority of the vital building blocks that make up biological macromolecules (e.g. DNA, RNA, 

sugars and proteins) exist predominantly in one enantiomeric form.  As a result, when a biologically 

active chiral compound such as a drug interacts with a chiral receptor site in biological systems the 

two enantiomers of the drug will interact differently and may lead to dissimilar biochemical effects.6,13  

There are several examples in literature showing the different effects of enantiomers.6  One of the 

most cited examples was from the fatal drug thalidomide, which was used in the 1960s.  Both 

enantiomers of the drug had the same sedative effect but only the (S)-(-) enantiomer resulted in death 

and deformities in foetuses when used by pregnant women.14,15   
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A further illustration of contrasting enantiomer properties comes from the markedly different scent of 

the terpene known as limonene, in which (R)-(+)-limonene and (S)-(_)-limonene have orange and 

lemon aromas respectively.16 

   
The synthesis of chiral molecules in optically pure form is not only imperative to the pharmaceutical 

industry but also in the generation of non-linear optical devices,17 the control of polymer structure and 

properties,18 the agrochemical industry,19 flavours, fragrances,20 the study of nearly all biochemical 

processes and the pursuit of understanding molecular recognition.21  Therefore, chirality has been an 

important concept in various fields of chemistry and has been extensively studied.  Today, the use and 

demand for optically active molecules is greater than ever, hence methodologies in asymmetric 

synthesis play a crucial role in science as they can provide materials and methods for various 

applications of chiral compounds. 

 

1.2 Routes to Obtain Optically Pure Compounds   

Amongst numerous routes to obtain optically pure or enriched compounds, the basic approaches can 

be divided into the following three classes as depicted in Figure 2:  

 

       
Figure 2. Methods to obtain enantiomerically pure compounds. 

The chiral pool strategy involves the use of nature’s ‘limited’ catalogue of enantiopure starting 

materials such as amino acids, carbohydrates, carboxylic acids, terpenes and related compounds.22  

Racemates Chiral pool Prochiral substrates 

Synthesis 
Asymmetric synthesis 

Kinetic Enzyme Chemical Auxiliary Reagent Substrate Catalyst 

Enantiomerically Pure Compounds 

Resolution Crystallisation 
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This serves as a convenient source to synthesize a vast range of enantiomerically pure compounds.  

Several pharmacologically relevant compounds have been obtained using this approach.  Despite this 

fact it suffers severe potential drawbacks, which include the cost and availability of the stoichiometric 

amounts of the suitable chiral precursors along with more challenging multi-step synthetic routes.  

Nevertheless, this method of asymmetric synthesis is still frequently utilized.  Chiral resolution is a 

process whereby racemic (equimolar) mixtures of the two enantiomers are separated.12,23  These 

methods include enzymatic methods or more commonly diastereomer formation in which 

crystallization or chromatographic techniques are used to separate the diastereomers.24,25  The major 

disadvantage of chiral resolution is that the theoretical yield is limited to 50 % unless alternative 

routes to convert the opposite enantiomer into the desired product (mainly enzymatic resolution) is 

further carried out.26  Asymmetric synthesis involves the conversion of a prochiral starting material 

into a single enantiomer induced by a chiral environment.  At present it is the most powerful and 

common approach to obtain optically active compounds.  The basic strategies for asymmetric 

synthesis can be divided into four classes as shown in Figure 2.6,12,23,27  Substrate-controlled catalysis 

utilizes a chiral starting substrate which serves to direct the formation of new chiral center/s on the 

product.  Auxiliary-controlled involves the use of a chiral auxiliary which is deliberately attached to 

an achiral substrate.  This serves to direct the diastereoselective reaction after which the auxiliary is 

removed or recycled and the enantiomerically pure compound is obtained when reacting with the 

reagent.  Reagent-controlled makes use of an achiral substrate that is directly converted into a chiral 

product using a chiral reagent e.g. a chiral reducing agent.  This is a relatively expensive option since 

reagents normally react in stoichiometric amounts.  Finally, catalyst-controlled utilizes a 

substiochiometric amount of a chiral catalyst that promotes the conversion of an achiral substrate into 

a chiral product with preference for the formation of one of the enantiomers.27  Remarkable progress 

has been made in this field resulting in several important asymmetric reactions primarily relying on 

this approach to generate chiral products.23  The enormous practical potential of asymmetric catalysis 

makes it one the most widely explored areas for both industrial and academic fields of research. 
6,12,23,28-30 

Asymmetric catalysis will now be described in more detail in the following section. 

1.3 Asymmetric Catalysis   

There are three main classes of asymmetric catalysts employed:   

1.3.1 Biocatalysts 

Biocatalysis makes use of enzymatic or microbial methods to effect stereoselective changes to 

unnatural substrates.31  These methods include the use of hydrolases, lipases, lyases etc.  The synthetic 

route of the antibiotic cefalexin has been shortened from ten to six steps using an enzymatic 
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procedure.31  There are problems with this methodology, as biocatalysts cannot be applied to a wide 

range of asymmetric reactions.  These methods are relatively expensive but recently a steady increase 

in research output in this field has emerged.5,25 

 

1.3.2 Metal-ligand Complexes as Catalysts  

These catalysts consist of metal-ligand complexes derived from chiral ligands.  From the 1950’s 

metal-ligand catalysts have had a significant impact on asymmetric catalysis.23  It has been 

extensively studied and provides flexible methods for many types of organic reactions leading to 

some spectacular practical applications.6,12,23  The tremendous progress in this field was illustrated in 

2001 when the Nobel prize in chemistry was awarded to William  R. Knowles, Ryoji Noyori and K. 

Barry Sharpless for their contribution to the development of transition metal-based asymmetric 

catalysis. 

 

1.3.3 Organocatalysts 

Chiral organocatalysis involves the use of organic molecules as catalysts to promote the conversion of 

achiral substrates into chiral products.5  This type of catalysts had not attracted much attention in 

asymmetric synthesis since the last decade, which has had an explosive growth in the number of 

studies in this field and is currently on of the ‘hottest’ topics in organic synthetic research, see Figure 

3.5,25,29   

 
Figure 3. Growth in organocatalysis from 2001-2011.   

The data for the above statistical graph was obtained by performing a search using ISI Web of 

Knowledge in September 2011 for the keyword organocatalysis.  This search is unlikely to have 
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found all publications on organocatalysis, and a conservative estimate is that more than 4,000 

manuscripts have been published on this topic so far.  

For the purpose of this project organocatalysis will be discussed in further detail.   

1.4 Organocatalytic systems 

The use of organocatalysts has been known for more than a century but only during the last ten years 

has this ‘new’ field blossomed within the domain of asymmetric synthetic research.32,33  In 1912, 

Bredig reported the first enantioselective alkaloid (quinine) catalyzed cyano-hydrin synthesis with an 

enantiomeric excess (ee) of less than 10 % for the reaction product. 34 

 
During the 1960’s, Pracejus discovered that organocatalysts can give significant enantioselectivities 

when methyl phenyl ketene was converted to (-) Methyl 2-phenylpropionate in 74 % ee by using O-

acetylquinine as a catalyst.35  

 
A milestone occurred in the 1970s when Hajos and Wiechert published the first highly 

enantioselective catalytic aldol reaction using the amino acid proline as the catalyst.36  

 
For a long time it was generally accepted that only metal complexes and enzymes were the most 

efficient catalysts for asymmetric reactions.  A change in perception occurred in the last decade when 
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several reports confirmed that relatively simple organic molecules could be highly efficient and 

selective catalysts for a variety of important asymmetric transformations.37-41  The preparative 

advantages of organocatalysts over the metal-ligand complexes and biocatalysts are remarkable.  

These catalysts are often inexpensive to prepare and the reactions can be performed under aerobic 

environments and in wet organic solvents or aqueous media.  They are usually more stable than both 

enzymes and organometallic catalysts and are less toxic to the environment.  Today, the advent of 

organocatalysis has captured the attention of chemists around the world and has initiated an explosive 

growth of research activities in both industry and in academia.5,32,33,42-52  Reactions that once needed 

metal-ligand catalysts can now be carried out with comparable efficiencies using organocatalysts that 

are more stable, cheaper and less toxic than their metal complex counterparts.  Organocatalytic modes 

of activation can be broadly divided into Lewis bases, Lewis acids, Brønsted bases, and Brønsted 

acids type catalysts.  The corresponding catalytic cycles are shown in Scheme 1.   

 

 

Scheme 1. Organocatalytic cycles.41 

Lewis base catalysts (B) start the catalytic cycle via nucleophilic addition to the substrate (S). The 

resulting intermediate undergoes a reaction and then releases the product (P) and the catalyst.  Lewis 

acid catalysts (A) activate nucleophilic substrates (S) in a similar way.  The catalytic sequence for 

Brønsted base and acid catalysts commence via a deprotonation or protonation, respectively.  Studies 

into the mechanistic details into these individual reaction pathways are continually growing and many 

unexplored modes of activation of organocatalysts are emerging.32,33,49-53  The extent of 

organocatalytic reactions has significantly expanded; well known transition-metal mediated reactions 

such as Suzuki, Diels-Alder, Sonogashira, Michael additions, aldol reactions, hydrogenations and 

Heck-type coupling reactions can now be achieved under metal free conditions with the same reaction 

efficiency.54 

For the purpose of this project only the following organocatalytic topics i.e. iminium catalysis, N-

oxide type and guanidine organocatalysts will be further expanded upon, in this introductory chapter.  
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1.5 Tetrahydroisoquinoline compounds 

The tetrahydroisoquinoline (TIQ) molecule and its derivatives have been widely investigated for their 

biological and pharmaceutical properties.55-59  Due to our ongoing pursuit to establish novel chiral 

catalysts,60-65 and L-DOPA/phenylanaline (Scheme 2) being commercially available, this class of 

compounds posed as an attractive skeleton for a source of chirality in asymmetric synthesis. 

NH2
OH

O
HO

HO NH
O

O
O

O

L-DOPA

substituted TIQ derivative

NH2
OH

O

NH
O

O

(S)-phenylanaline unsubstituted TIQ derivative  
Scheme 2. TIQ based precursors. 

 
Both substituted and unsubstituted TIQ derivatives served as the basic starting precursors for all 

compounds synthesized.  These precursors’ served as a readily tunable (both in terms of steric and 

electronic effects) backbone for the syntheses of a diverse range of catalysts that was made for the 

purpose of this project.  Progress made in this area will be discussed in Chapters 2-5. 

 

1.6 Iminium Catalysis 

The first enantioselective example of this type of organocatalysis strategy was reported in 2000 by 

MacMillan and co-workers.66  They took inspiration from conventional organometallic Lewis acid 

(LA) catalysts.  Lewis acid catalysts have been used to activate various π-systems towards 

nucleophilic attack by the mechanism outlined in Scheme 3.   

 
Scheme 3. Lewis acid catalysis.66 
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The Lewis acid reversible binds an electrophilic substrate, causing the π electron density of the 

substrate in the resulting adduct to shift towards the electron positive metal centre which lowers the 

energetic potential of the lowest unoccupied molecular orbital (LUMO).  This electronic 

redistribution, in turn, decreases the energy gap between the LUMO of the electrophile and the 

highest occupied molecular orbital (HOMO) of the incoming nucleophile, thus facilitating the reaction 

between the two reacting partners.  After bond formation occurs, the Lewis acid can then dissociate 

from the product to regenerate the catalyst.  This strategy was then cleverly applied to α,β-unsaturated 

aldehydes with a chiral secondary amine salt to mimic the Lewis acid catalyst or LUMO-lowering 

catalyst (Scheme 4) in a Diels-Alder reaction.66  This concept of LUMO-lowering catalysis using 

chiral secondary amines set the scene for an explosion of organocatalytic research into this area that is 

now referred to as amino-catalysis.   

 
Scheme 4. LUMO-lowering organo catalysis with secondary amines.66 

To date there are several examples of iminium catalysed reactions,42,44 however for the purpose of this 

project only its application in the Diels-Alder reaction utilizing using chiral secondary amines as the 

organocatalyst will be discussed further in Chapter 2.   

1.7 N-oxide type organocatalysts 

The usefulness of heterocyclic N-oxides has attracted much attention in organic chemistry.  These 

compounds have found applications as synthetic intermediates, protecting groups, oxidants, biological 

activity and more recently asymmetric catalysis (both metal-ligand67,68 and organocatalysis68-70).  The 

Nakajima group first developed a series of chiral Lewis basic N-oxide type organocatalysts for 

enantioselective allylation reactions.71  This was based on the inherent nucleophilicity of N-oxides 

toward organosilicon reagents.  The principle behind this mode of activation is based on the 

coordination of the N-oxide catalyst (which acts as a Lewis base) to a tetracoordinated silicon atom.  

This increases the Lewis acidity of the now hypervalent silicon centre.  As a result, the organosilicon 

species becomes a highly reactive carbon nucleophile.  The mechanism of the allylation reaction has 

been investigated by Denmark et al. (Scheme 5).72,73   
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O
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O
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Scheme 5. Lewis base catalyzed nucleophilic allylation.72, 73 

The key step is the initial binding of the allylsilane to the Lewis base (LB*) catalyst (chiral N-oxide) 

A to form the reactive species.  The intermediate then reacts with incoming aldehyde, which is also 

coordinated to the silicon atom.  This closed transition structure B provides dual activation of both 

substrates.  The Lewis base catalyst dissociates from C to further react in the cycle.  Upon completion 

of the reaction the trichlorosilane precursor D undergoes a basic workup to yield the chiral product.    

For the purpose of this project further information on N-oxide type organocatalysts will be discussed 

in Chapter 3. 

1.8 Guanidine based organocatalysts 

The guanidine moiety is well known in both chemistry and biology for its characteristic high pKa 

value and ability to form dual hydrogen bonds, which is used in molecular recognition.74-76  Therefore, 

the guanidine functional group has been an attractive target incorporated into several chiral catalysts 

used for both metal-ligand and organocatalysis.14,15,77-79  There is an array of excellent reviews 

highlighting the synthesis30,80-82 and the other vast applications16,83,84 of this remarkable functional 

group.   

In the field of organocatalysis, guanidine type catalysts have become popular by acting as Brønsted 

bases in asymmetric transformations.54   
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Figure 4. Guanidine type compound as a Brønsted base catalyst.74 

This type of compound (Figure 4) has been classed as one of the strongest bases in organocatalysis 

due to the resonance stabilization of its conjugate acid.  Since the discovery of the first chiral 

guanidine organocatalyst in 1994 which was demonstrated on a Henry reaction,85 the scope of 

guanidine derived catalysts has been expanded to various other important asymmetric reactions.74,77,78  

The mechanism of guanidine was proposed in 1999 in the Strecker reaction for the addition of HCN 

to imines which was catalyzed by Corey’s C2 symmetric catalyst, I (Scheme 6).28   

 
Scheme 6. Corey’s proposed catalytic cycle for guanidine catalyzed hydrocyanation.28 

The Corey group proposed that HCN underwent a Brønsted base interaction with the guanidine 

catalyst (II) allowing the activation of the nucleophile while simultaneously forming a hydrogen bond 

to the imine substrate that facilitates the attack (III).  

For the purpose of this project further information on guanidine organocatalysts will be discussed in 

Chapter 4. 
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1.9 Outline of this Thesis 

The development of novel TIQ based organocatalysts and their application in asymmetric reactions 

was the aim of this project.  Three organocatalytic asymmetric transformations with novel catalysts 

bearing the TIQ framework have been investigated and make up subsequent Chapters i.e 2-4.  

Chapter 5 is a collection of all crystallographic papers published of compounds synthesized from the 

work pertaining to Chapters 2-4. 

Chapter 6 is a book chapter that was written in collaboration with Prof. Per Arvidsson (Astrazeneca, 

Sweden) and Dr Partha Bose (University of Uppsala, Sweden) on Asymmetric Organocatalytic 

Cyclopropane Formation for the Elsevier book entitled Comprehensive Chirality and is currently with 

the editors in its final proof stage after acceptance. 

It must be noted that with the exception of Chapter 4 that has been submitted for publication, the 

remaining chapters of this thesis have already been published in international peer reviewed journals.  
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ABSTRACT 

For the first time an organocatalyst bearing a secondary nitrogen within a cyclohexane ring 

has been evaluated in the asymmetric Diels-Alder reaction.  This organocatalyst is also the 

first of its kind based on a (1R,3S)-6,7-dimethoxy-1-phenyl-1,2,3,4-tetrahydroisoquinoline 

backbone.  These catalysts were tested over a range of dienes and dienophiles and displayed 

promising chemical conversions up to 100 % with up to 64 % ee with triflic acid as the 

cocatalyst.  Density functional theory computational studies and 2D NMR spectroscopy were 

used to determine the structure of the intermediate iminium ion formed between the most 

efficient catalyst and cinnamaldehyde.  The reaction profile for each of the four possibilities 

in this reaction were calculated and it was found that the iminium intermediate leading to the 

major product is higher in energy but kinetically preferred.  The activation energies of all 

possible reaction paths were calculated and the results correlated with the observed products.  

These experiments revealed that the presence of both (E)- and (Z)-isomers of the 

cinnamaldehyde were contributing factors for the low enantioselectivity of the reaction 

products.   

                                                
∗ Corresponding author Email govenderthav@ukzn.ac.za  
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INTRODUCTION 

In the last decade there has been an explosive growth in the field of organocatalysis and it has 

emerged as a powerful method for accelerating various asymmetric transformations.1-3  

Within this topic, the in situ generation of iminium and enamine intermediates using chiral 

amines (aminocatalysis) to facilitate the catalysis of carbonyl transformations has received a 

tremendous amount of interest from several research groups.4-7  Significant contributions 

from the groups of List, MacMillan, and JØrgensen have reported the use of proline (i), 

imidazolinone (ii) and diaryl prolinols (iii) as successful chiral respectively.8-10  

 
Figure 1. Some examples of successful secondary amine organocatalysts. 

All of these organocatalysts consist of five membered hetero-atom rings and were evaluated 

for numerous important enantioselective reactions such as Diels-Alder cycloadditions, 

Michael additions, Mannich and Henry reactions.  Iminium activation of carbonyl 

compounds using secondary amines (the organocatalyst) allows for lowering of the lowest 

unoccupied molecular orbital (LUMO), thus emulating classical Lewis acid catalysts.8  The 

principle behind iminium activation is based on the reversible condensation between a 

secondary amine and an unsaturated aldehyde or ketone substrate to form a positively 

charged iminium intermediate.  This results in a redistribution of the π−electron density from 

the double bond on the substrate towards the iminium cation.  This lowers the energy of the 

LUMO on the unsaturated π-system and the iminium ion intermediate facilitates nucleophilic 

attack on the substrate.5  

The tetrahydroisoquinoline (TIQ) molecule and its derivatives have been widely investigated 

due to their biological and pharmaceutical properties.11-14  Due to our ongoing pursuit to 

establish novel chiral catalysts,15-17 and L-DOPA being commercially available, this class of 

compounds posed as an attractive skeleton for a source of chirality.  There are only a few 

reports that utilise the TIQ backbone as a catalyst precursor.18-21  From these reports only 

studies done by Stingl et al.21 and Basavaiah et al.18 made use of a TIQ derivative as an 

organocatalyst in borane-mediated hydrogenation reactions.  Given our recent success with 

TIQ based ligands for catalytic asymmetric transfer hydrogenation of prochiral ketones,22,23 

Henry reactions24 and hydrogenation of olefins,25 we decided to expand the potential of TIQ 
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derivatives as organocatalysts.  On route to the synthesis of a novel organocatalyst bearing 

the TIQ framework that would potentially behave as a bifunctional organocatalyst we 

discovered that one of its precursors was able to form an iminium ion.  This was unexpected; 

secondary amines that are part of five-, rather than six-, membered ring systems are known to 

be more efficient catalysts for enamine catalysis26, and to the best of our knowledge no 

previous report has shown that six-membered ring amines are capable of activating α,β-

unsaturated aldehydes or ketones through iminium ion formation. This sparked our interest to 

further investigate this compound and its derivatives for application on reactions known to 

proceed via iminium activation.  Herein we report the evaluation of novel organocatalysts 1-9 

in the asymmetric Diels-Alder cycloaddition between α,β-unsaturated aldehydes and 

cyclopentadiene.  This is the first report of a chiral organocatalyst with the 

tetrahydroisoquinoline backbone that contains two chiral centres. 

 
Figure 2. Catalysts evaluated for the Diels-Alder reaction.  

Catalyst Synthesis  

Compounds 5, 8 and 9 (Figure 2) are novel, whereas the syntheses of the remaining 

compounds have been reported in the literature for other applications.  However, this is the 

first report of these derivatives as organocatalysts.  Based on the simplicity of the structure, 

TIQ catalysts 1 and 2 were the first to be synthesized according to the literature procedure 

from (S)-phenylalanine.27  Thereafter the more complex TIQ derivatives 3-5 were derived 

from L-DOPA 10 (Scheme 1).  We recently reported a modification to the literature 

procedure for compound 11.22  L-DOPA 10 was treated with benzaldehyde in the presence of 

K2CO3 and aqueous ethanol to afford the trans-substituted derivative 11.  This compound 

was N-protected with benzyl chloroformate (Cbz) and then methylated at the phenolic and 

carboxylic acid positions to yield 12.  This was achieved by refluxing the compound in 

acetone in the presence of Me2SO4 and KHCO3.28  Deprotection of the Cbz group furnished 

catalyst 4.   
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Scheme 1. Synthetic route to catalysts 3-5. 

Hydrolysis of the ester group in 4 afforded the acid derivative 3 and catalyst 5 was then 

obtained by simple esterification of 3 with thionyl chloride in isopropanol.  Notably, catalysts 

3-5 and 7-9 possess a second chiral centre and could not be synthesized from phenylalanine 

as it was essential to employ the activated aromatic group of L-DOPA to facilitate the 

cyclisation.  Hence, methylation of the free phenolic hydroxyl groups had to be done after 

cyclization in order to simplify the synthesis.  In order to test the effect of these methoxy 

groups on the reactivity of the catalysts, derivative 6 was synthesized by a literature 

procedure (scheme not shown) from L-DOPA and formaldehyde followed by our modified 

methylation procedure for the hydroxyl and acid positions.29  Given the success of diaryl 

proline derivatives as organocatalysts30 we synthesized the six membered ring TIQ analogues 

7-9.  In order to introduce the phenyl groups, the secondary amine 4 was first benzyl 

protected to give 13, after which a Grignard reaction with phenyl magnesium bromide 

afforded 14.  Deprotection of 14 (Scheme 2) resulted in the formation of catalyst 7. 
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Scheme 2. Synthetic route for catalysts 7-9. 

 

Derivative 14 was then treated with NaH followed by MeI to yield the diphenyl methoxy N-

benzyl protected compound 15 which underwent debenzylation to give catalyst 8.  Catalyst 9 

was obtained by the hydroxyl protection of 7 using trimethylsilyl trifluoromethanesulfonate.31  

RESULTS AND DISCUSSION 

As a model, we investigated the reaction between cinnamaldehyde 16 and cyclopentadiene 17 

in the presence of various tetrahydroisoquinoline derivatives 1-9 as potential catalysts (Table 

1).  Organocatalysts tested for this reaction have shown to react well in either methanol or 

acetonitrile/water mixtures.8,32  Performing the reaction with our catalysts in methanol did 

show a slightly higher conversion than acetonitrile, nevertheless, acetonitrile was chosen as 

the solvent since it avoids hydrolysis of the dimethyl-acetal formed when methanol is used 

and thus, greatly simplifies the workup.   
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Table 1. Organocatalyzed [4+2] cycloaddition between trans-2-cinnamaldehdye 16 and 

cyclopentadiene 17 to give cycloaddition products exo- and endo-18.a    

Ph O +

(2R)-endo-18(2R)-exo-18

10 mol %
Catalyst 1-9

CH3CN-H2O

16 17

+
Ph

CHO
CHO

Ph

 
 

Entry Catalyst Conv. (%) 24 h Conv. (%) 48 h ee (%) 
exo-18b 

ee (%) 
endo-18b 

exo:endoc 

1 1 53 78 47 (2R) 48 (2R) 2:1 

2 2 67 94 43 (2R) 50 (2R) 2:1 

3 3 67 90 44 (2R)  50 (2R) 2:1 

4 4 73 94 45(2R)  51 (2R) 2:1 

5 5 73 94 46 (2R) 57 (2R) 2:1 

6 6 58 62 36 (2R) 36(2R)  2:1 

7 7 < 5 - - - 2:1 

8 8 < 5 - - - 2:1 

9 9 < 5 - - - 2:1 

aConditions: 3.0 equiv of diene, 1.0 equiv of dienophile, 0.1 equiv of catalyst and 0.1 equiv of HCl (37%) in 
475 µl of CH3CN and 25 µl of H20, all reactions were performed in duplicate.  bDetermined by GC analysis 
using a chiral capillary column and absolute and relative configurations were determined by correlation of GC 
retention times.  The absolute and relative configurations were initially determined by correlation to known 
compounds.  cThe product ratios were determined by 1H NMR recorded at ambient temperature.   

 

From the TIQ catalysts 1 and 2 the ester derivative 2 showed a higher conversion than the 

acid derivative 1 (entries 1-2).  Thereafter, it was decided to test the TIQ derivatives that 

contained a second chiral centre (entries 3-4).  At that point, compound 4 emerged as the 

most reactive catalyst amongst 1-4 (entry 4).  It appeared logical to substitute the methyl ester 

of compound 4 with a more bulky group in the hope of increasing the enantiomeric excess of 

the reaction products; in this case an isopropyl ester (5) was used (entry 5).  However, this 

had an insignificant effect on the enantioselectivity.  In order to evaluate if the higher 

conversion rate (c.f. the acid derivatives 1 and 3 (53 % and 67 % conversion after 24h, 

respectively) and the methyl esters 2 and 4 (67 % and 73 % conversion, respectively) was due 

to the introduction of the phenyl ring at the carbon adjacent to the nitrogen or the introduction 
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of the methoxy groups, catalyst 6 was synthesized and tested (entry 6).  It was clear that the 

methoxy groups were not responsible for the increased conversion.  The activity and 

selectivity of catalysts 3-5 compared to that of catalyst 1-2 were then attributed to the 

electron withdrawing nature of the phenyl ring, which increases the acidity of the nitrogen 

hence favoring iminium formation.  To further establish if this was the case, we attempted the 

reaction with pipecolic acid as catalyst as well, but obtained only low (<10 %) conversions, 

even in the presence of an acidic co-catalyst (vide supra). 

Given the success of the diaryl proline analogues as organocatalysts30 we synthesized the TIQ 

derivatives 7-9 to be tested on the model reaction.  The molecules showed very low 

conversion rates (entries 7-9).  Evidence for iminium formation from catalysts 7-9 with 

cinnamaldehyde was confirmed with proton NMR spectroscopy.  The low conversion could 

be due to one of two reasons, first, the diene could not attack the dienophile or second the 

reaction product is not released from the catalyst.   

As with other organocatalysts tested for this reaction, an acid co-catalyst proved to be 

necessary.  Therefore we investigated the effect of varying the type of acid with catalysts 2 

and 4 (Table 2).  The trend observed was that the conversion is proportional to the pKa of the 

acids.  Using a sterically large acid did not influence the enantioselectivity (entry 2).  The 

triflic counterion gave optimal conversion and enantioselectivity (entry 5).  The possibility of 

such a strong acid catalyzing this Diels-Alder reaction and compromising the 

enantioselectivity by a competing achiral process has been thoroughly investigated by Lemay 

et al.33  From their study it was concluded that triflic acid was not detrimental to the 

selectivity of the reaction.   
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Table 2. Organocatalyzed [4+2] cycloaddition between trans-2-cinnamaldehdye 16 and 

cyclopentadiene 17 using catalyst 2 and 4 in CH3CN with different acids.a 

Entry Catalyst.HCl Acids Conv. 
(%) 24 h 

Conv. 
(%) 48 h 

ee (%) 
exo-18b 

ee (%) 
endo-18b 

exo:endoc 

1 2 HCl  71 93 47 (2R) 48 (2R) 2:1 

2 2 p-TsOH  83 98 43 (2R) 50(2R)  2:1 

3 2 TFA  75 92 43 (2R) 50(2R)  2:1 

4 2 CH3SO2H  77 91 46 (2R) 46 (2R) 2:1 

5 2 TfOH  100 - 43 (2R) 51 (2R) 2:1 

6 4 HCl 73 90 45 (2R) 51(2R)  2:1 

7 4 p-TsOH 72 90 48 (2R) 47 (2R) 2:1 

8 4 TFA 65 90 49 (2R) 55(2R)  2:1 

9 4 CH3SO2H 70 90 47 (2R) 42 (2R) 2:1 

10 4 TfOH 95 - 47 (2R) 57 (2R) 2:1 

11 4 TfOH 85 (12hr) - 47 (2R) 57 (2R)  2:1 

aConditions: 3.0 equiv of diene, 1.0 equiv of dienophile, 0.1 equiv of catalyst and 0.1 equiv of acid in 475 µl 
of CH3CN and 25 µl of H20, all reactions were performed in duplicate.  bDetermined by GC analysis using a 
chiral capillary column and the absolute and relative configuration were determined by correlation of GC 
retention times.  The absolute and relative configuration were initially determined by correlation to known 
compounds.  cThe product ratios were determined by 1H NMR recorded at ambient temperature. 

 
Having optimized the conditions for the system, the scope of these new TIQ based catalysts 

using various other dienophiles and dienes was investigated (Table 3). 
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Table 3. Organocatalyzed Diels-Alder cycloadditions between various dienophiles and 

dienes utilizing catalyst 4 and TfOH in CH3CN.a  

Entry Dienophile Diene Conv. (%) 12h ee (%) 

exob 

ee (%) 

endob 

exo:endoc 

1 O   85 (55 d)  47 (64d)  57 (59) 2:1 

2 nPr O  
 

100  22  rac 1:1 

3 O  
 

100 rac 4 1.2:1 

4 O
   

100 5 10  3.5:1 

5 
O

O2N

 
 100 35 42 2:1 

6 
O

MeO

  
40 52 4 1.6:1 

7 O
  

100 30 - - 

8 
O

  
100 rac 38 7:1 

aConditions: 3.0 equiv of diene, 1.0 equiv of dienophile, 0.1 equiv of catalyst and 0.1 equiv of acid in 475 µl of 
CH3CN and 25 µl of H20.  bDetermined by GC analysis using a chiral capillary column.  cThe product ratios 
were determined by 1H NMR recorded at ambient temperature.  dReaction carried out at zero degrees Celsius 
and conversion tested after 36h.   

  

A range of aliphatic dienophiles including electron-withdrawing and -donating group 

substituents on the cinnamaldehyde aryl ring was tested with cyclopentadiene (entries 1-6).  

All substrates gave excellent conversion with the exception of 4-methoxy cinnamaldehyde.  

The TIQ catalyst also proved to be efficient when varying the diene (entries 7-8) producing 

excellent conversion and facial selectivity (entry 8) but unfortunately poor enantioselectivity.  



23 

Structural elucidation of the iminium ion intermediate by NMR spectroscopy and 

computational chemistry  

Seebach et al. have thoroughly investigated the structural characterization of reactive 

iminium ion intermediates derived from proline, diphenyl prolinol and imidazolidinones with 

cinnamaldehyde, employing X-Ray diffraction, NMR spectroscopy and Density Functional 

Theory (DFT) computational studies.34-37  They have concluded that (E)- and (Z)-isomers are 

possible for the iminium ion intermediates as illustrated in Scheme 3.  

  

N

E-configuration Z-configuration

N

 
Scheme 3.  Possible isomers of the iminium ion formed between trans-2-cinnamaldehyde 

and tetrahydroisoquinoline. 

We then decided to follow a similar methodology to elucidate the structure of the iminium 

ion formed between cinnamaldehyde and our catalyst 4.  We recently reported the X-ray 

crystal structures of precursors to catalyst 4 and 7 which revealed that the N-containing six 

membered ring could exist either as a half boat or half chair form respectively.38,39  Based on 

these forms of the catalyst together with the possibility of the (E)- and (Z)-isomers of the 

reacting aldehyde, the structure of the iminium ion formed between cinnamaldehyde and 

catalyst 4 (Figure 3) were examined.  The four possibilities A-D were computationally 

studied utilizing DFT calculations and are presented in Figure 3.  
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Figure 3. Optimized structures and relative energies (kcal mol-1) of the iminium ion formed 

between cinnamaldehyde and catalyst 4 at the B3LYP/6-31+G(d)  level of theory. (The 

cartesian coordinates of these four structures are available as supplementary material). 

The calculations indicated that intermediate B had the lowest energy conformation.  NMR 

spectra of cinnamaldehyde in the presence of catalyst 4 were obtained to determine the 

geometry of cinnamaldehyde in the resulting complex.  Specific features from the ROESY 

spectrum revealed that forms A and B coexist in the solution phase which corresponds to the 

(E)- and (Z)-isomers around the C=N bond respectively.  Formation of imines are reversible 

at room temperature,8 therefore it is possible for A and B to exist in equilibrium.  The 

presence of these structures was inferred from the ROESY correlations of protons H1 and H9 

to the HB protons on the substrate (see Figure 4).  
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Figure 4. Expanded ROESY spectrum of catalyst 4 and cinnamaldehyde in CD3CN at room 

temperature with characteristic cross-peaks marked. 

There was no indication of intermediate structures C or D from the correlations in the 

ROESY spectrum.  Peak integration1 of the H1 and H9 to the HB correlations showed a ratio 

of 2:1 between intermediate A and B.  However, the computational results reveal form A to 

be 1.45 kcal mol-1 higher in energy.  The ratio of A:B will depend on the energy barrier 

leading to imine formation, suggesting that the product ratio (A:B) at room temperature is 

kinetically determined.  Therefore based on the NMR evidence and the results of the iminium 

intermediate computations, it was concluded that both iminium structures A (E)-isomer and B 

                                                
1 Integration of the correlation dots on the ROESY spectrum was performed. 
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(Z)-isomer were present in solution at room temperature with the majority being the 

kinetically preferred structure A.   

Another interesting observation from the NMR experiments was that the iminium proton HA 

was not seen at room temperature.  However, proton signals HB and HC were clearly visible 

and confirmed using 2D NMR experiments that included HMBC, HSQC and COSY.  These 

signals were clearly distinguished from the free form of cinnamaldehyde.  Performing the 1H 

NMR experiment at -38 oC showed the appearance of two broad peaks in the expected 

iminium proton region see Figure 5.   

 
Figure 5. Expanded 1H NMR spectrum of catalyst 4 and cinnamaldehyde in CD3CN. 

We concluded that the iminium proton was in the intermediate exchange regime (µs to ms 

timescale) of a two-site exchange at room temperature and therefore only observable at a 

lower temperature (in this case -38 oC).  This confirmed our initial room temperature result of 

the interconversion between structures A and B.  

From the imine intermediates A and B (see Figure 3), the course of the [2+4]-cycloaddition 

reaction was then studied computationally following the method reported by Houk et al.40  

Four possible modes of attack for the incoming cyclopentadiene on each imine intermediate 

exist.  The first two products arise from “top side’’ attack of cyclopentadiene on the imine 

(see Figure 3) where one CH2 group of cyclopentadiene is pointing out of the plane of the 

page (indicated with the symbol I) and the other one with the CH2 pointing into the plane of 

the page (indicated as II).  The second pair of products arises from the corresponding 

“bottom side” attack.  The eight transitions states were calculated and the energy profile for 

each intermediate is presented in Figure 6. 
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Figure 6.  Calculated energy profiles for the catalyzed Diels-Alder reaction for the pathways 

corresponding to imine intermediate A (top) and B (bottom) respectively.  (The Cartesian 

coordinates of the calculated structures are available as supplementary material). 

The experimentally observed products are in the following order: exo-(R), endo-(R), exo (S) 

and endo-(S) (see Table 1 for the corresponding structures).  It is clear from the activation 

energies that the reaction preferably proceeded through intermediate A.  The transition state 

with the lowest energy barrier with respect to the imine intermediate A (TS-top-II) led to the 

major experimentally observed product.  This observation agreed with our NMR study, which 

confirmed the dominant presence of intermediate A.  The competing reaction product was the 

endo-(R)-adduct.  The transition state leading to that (TS-Top-I) has the second lowest 

activation energy (15.5 kcal mol-1 – see Figure 6).  The presence of both (E)- and (Z)-isomers 
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of the cinnamaldehyde/iminium ion complex is a contributing factor for the low 

enantioselectivity of the reaction products.  

The theoretical observation that attack of the cyclopentadiene is from the top (A1-top-II) of 

the substrate, which corresponds to the lowest activation energy, enabled us to rationalize the 

results observed with catalysts 7-9 (Table 1, entries 7-9) as well.  Although the iminium 

intermediate was forming with these catalysts (seen from 1H NMR), the two phenyl rings at 

the C9 position will prevent attack of the diene from the top face, hence leading to the poor 

conversion.   

CONCLUSIONS 

For the first time an organocatalyst bearing a secondary nitrogen within a cyclohexane ring 

has been evaluated in the asymmetric Diels-Alder reaction, thus leading to a new class of TIQ 

based organocatalysts. Catalyst 4 afforded good to excellent chemical conversion but poor 

selectivity with the addition of TfOH as the cocatalyst.  The poor selectivity was attributed to 

the presence of both (E)- and (Z)-isomers of the cinnamaldehyde, which was revealed, by 

both computational studies and 2D NMR spectroscopy.  Catalysts 2 and 4 were identified as 

good starting points for further development; based on the computational model presented, 

we believe that this class of novel organocatalysts can be further refined for increased 

enantioselectivity.  Studies into this class of organocatalysts are ongoing in our laboratory.   

 

EXPERIMENTAL SECTION 

General 

Reagents and solvents were purchased from Aldrich, Merck and Fluka. All NMR spectra 

were recorded on Bruker AVANCE III 400 MHz or 600 MHz instrument at room 

temperature unless otherwise stated. Chemical shifts are expressed in ppm relative to TMS 

unless otherwise stated and coupling constants are reported in Hz.  Thin layer 

chromatography (TLC) was performed using Merck Kieselgel 60 F254 plates.  Crude 

compounds were purified with column chromatography using silica gel (60–200 mesh). All 

solvents were dried using standard procedures.  All IR spectra were recorded on a Perkin 

Elmer spectrum 100 instrument with a universal ATR attachment.  Optical rotations were 

recorded on a Perkin Elmer Polarimeter.  High resolution mass spectrometric data was 

obtained using a Bruker microTOF-Q II instrument operating at ambient temperatures.  All 

melting points are uncorrected.  The enantiomeric excess of the chiral Diels-Alder products 
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were determined by gas chromatography Agilent 6890 GC-Ms with a Agilent 7683 auto 

injector system equipped with an Astec Chiraldex gamma-TA column (30m x 0.25mm), with 

helium gas as carrier gas and electron impact ionization (EI, 70 eV) or a Agilent 6820 

capillary gas chromatograph with a CP-Chirasil-β-Dex column (25 m x 0.25 mm), nitrogen as 

carrier gas and a flame ionization detector.   

Synthesis of (S)-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (1) 

This compound was prepared by following the literature procedure from (S)-phenylalanine.27 

Synthesis of (S)-methyl 1,2,3,4-tetrahydroisoquinoline-3-carboxylate (2) 

This compound was prepared by following the literature procedure from 1 which was in turn 

derived from (S)-phenylalanine.27 

Synthesis of (1R,3S)-6,7-dimethoxy-1-phenyl-1,2,3,4-tetrahydroisoquinoline-3-

carboxylic acid (3) 

This compound was prepared by following the literature procedure41 from L-DOPA with 

slight modification that we have recently reported.22  

Synthesis of (1R,3S)-methyl-6,7-dimethoxy-1-phenyl-1,2,3,4-tetrahydroisoquinoline-3-

carboxylate (4) 

This compound was prepared by following the literature procedure from compound 3.41  

Synthesis of (1R,3S)-isopropyl-6,7-dimethoxy-1-phenyl-1,2,3,4-tetrahydroisoquinoline-

3-carboxylate (5) 

To a stirred solution of compound 3 (1.00 g, 3.2 mmol) in dry isopropanol (100 ml) at 0 oC, 

thionyl chloride (4.6 ml, 64.8 mmol) was added dropwise.  The mixture was then allowed to 

warm up to room temperature and stirred overnight.  The solution was then concentrated in 

vacuo and the residue washed with sodium bicarbonate solution (50 ml) and extracted with 

ethyl acetate (2 × 25 ml).  The organic extracts were combined and dried over anhydrous 

Na2SO4 and the solvent was removed in vacuo.  The resulting residue was purified by column 

chromatography (50:50 EtOAc/Hexane, Rf 0.6) to afford the isopropyl TIQ ester 5 (0.95 g, 84 

%) as a solid.  Melting point 73-75 oC.  [α]20
D -70.0 (c 0.12 in CHCl3).  IR (neat) νmax: 2938, 

1724, 1512, 1246, 1218, 1103, 702 cm-1.  HRMS calculated for C21H25NO4 [M + H]1+  

356.1856, found 356.1856.  1H NMR (400 MHz, CDCl3) δ = 7.39 – 7.11 (m, 5H), 6.67 (s, 

1H), 6.34 (s, 1H), 5.26 (s, 1H), 5.02 (dq, J = 12.5, 6.3 Hz, 1H), 3.87 (s, 3H), 3.75 (dd, J = 8.6, 

5.0 Hz, 1H), 3.68 (s, 3H), 3.14 (dd, J = 16.0, 5.0 Hz, 1H), 2.98 (dd, J = 16.0, 8.7 Hz, 1H), 
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1.37 – 1.09 (m, 6H).  13C NMR (101 MHz, CDCl3) δ = 172.9, 147.8, 147.4, 144.6, 128.7, 

128.3, 128.0, 127.3, 125.8, 111.1, 110.8, 68.4, 58.8, 55.8, 51.4, 31.1, 21.8, 21.7. 

Synthesis of (S)-methyl 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylate (6) 

This compound was prepared by following the literature procedure from L-DOPA.29   

Synthesis of ((1R,3S)-6,7-dimethoxy-1-phenyl-1,2,3,4-tetrahydroisoquinolin-3-

yl)diphenylmethanol (7) 

We recently reported the synthesis of this compound that is derived from compound 3.22  

Synthesis of (1R,3S)-6,7-dimethoxy-3-(methoxydiphenylmethyl)-1-phenyl-1,2,3,4-

tetrahydroisoquinoline (8)31 

To a stirred solution of the N-benzyl protected derivative of compound 7 (0.50 g, 0.92 mmol) 

in dry THF (20 ml) was added sodium hydride (0.07 g, 3.0 mmol) at 0 oC under an inert 

atmosphere.  The reaction mixture was then stirred for three hours at room temperature and 

then MeI (0.2 ml, 2.4 mmol) was added.  The mixture was heated under reflux overnight.  

The excess NaH was hydrolysed with aqueous NH4Cl solution.  The organic layer separated 

and the aqueous layer extracted with ethyl acetate (2 × 10 ml).  The organic extracts were 

combined and dried over anhydrous Na2SO4 and the solvent was removed in vacuo.  The 

resulting residue was purified by column chromatography (30:70 EtOAc/Hexane, Rf 0.65) to 

afford the N-benzyl diphenyl methoxy derivative of compound 8 (0.40 g, 78 %) as a yellow 

oil.  [α]20
D -80.0 (c 0.10 in CHCl3).  IR (neat): 2939, 1509, 1446, 1241, 1093, 1079, 695 cm-1.  

HRMS calculated for C38H37NO3 (M + H+) 556.2844, found 556.2846.  1H NMR (400 MHz, 

CDCl3) δ = 7.28 – 7.00 (m, 18H), 6.96 – 6.89 (m, 2H), 6.77 (s, 1H), 6.31 (s, 1H), 4.68 (s, 

1H), 4.22 (dd, J = 12.5, 3.4 Hz, 1H), 4.11 – 4.02 (m, 1H), 3.92 (s, 3H), 3.67 (s, 3H), 3.29 – 

3.14 (m, 2H), 3.03 – 2.89 (m, 4H).  13C NMR (101 MHz, CDCl3) δ = 147.7, 147.5, 144.6, 

143.4, 142.9, 141.0, 130.3, 129.1, 128.9, 128.6, 128.3, 128.0, 127.6, 127.5, 127.2, 126.9, 

126.8, 126.5, 126.4, 125.9, 112.1, 111.5, 86.1, 65.2, 55.8, 55.8, 55.0, 53.1, 51.7, 24.9. 

The benzyl group was then removed following a procedure we have recently reported for the 

analogous compound 7 to yield compound 8 (0.2 g, 60 %) as a white solid.  Melting point 

190-192 oC.  [α]20
D -10.0 (c 0.11 in CHCl3).  IR (neat): 2934, 1514, 1448, 1244, 1224, 1063, 

698 cm-1.  HRMS calculated for C31H31NO3 (M + H+) 466.2377, found 466.2363.  1H NMR 

(400 MHz, CDCl3) δ = 7.47 – 7.12 (m, 12H), 7.08 (t, J = 7.6 Hz, 2H), 6.92 (d, J = 7.6 Hz, 

2H), 6.65 (s, 1H), 6.40 (s, 1H), 5.23 (s, 1H), 3.95 (dd, J = 11.5, 3.6 Hz, 1H), 3.86 (s, 3H), 

3.70 (s, 3H), 2.92 – 2.75 (m, 4H), 2.52 (dd, J = 16.2, 11.5 Hz, 3H).  13C NMR (101 MHz, 
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CDCl3) δ = 147.8, 147.1, 143.9, 141.6, 140.8, 129.6, 129.4, 129.0, 128.4, 128.0, 127.4, 127.3, 

127.3, 127.1, 127.1, 111.6, 110.5, 84.6, 59.9, 55.9, 55.8, 51.1, 49.4, 29.5. 

Synthesis of (1R,3S)-3-(diphenyl(trimethylsilyl)methyl)-6,7-dimethoxy-1-phenyl-1,2,3,4-

tetrahydroisoquinoline (9)31  

To a stirred solution of compound 7 (0.50 g, 1.1 mmol) and triethylamine (0.18 ml, 1.3 

mmol) in dry dichloromethane (20 ml) trimethylsilyl triflate (0.24 ml, 1.33 mmol) was added 

dropwise at 0 oC under an inert atmosphere.  The mixture was then allowed to warm up to 

room temperature and stirred overnight.  The mixture was washed with water and the organic 

extracts were combined, dried over anhydrous Na2SO4 and the solvent was removed in 

vacuo.  The resulting residue was purified by column chromatography (20:80 EtOAc/Hexane, 

Rf 0.55) to afford the diphenyl trimethylsilyl derivative 9 (0.52 g, 86 %) as a white solid.  

Melting point 79-81 oC.  [α]20
D -30.0 (c 0.10 in CHCl3).  IR (neat): 2952, 1513, 1446, 1245, 

1225, 1067, 834, 752, 698 cm-1.  HRMS calculated for C33H37NO3Si [M + H]1+  524.2615, 

found 524.2591.  NMR chemical shifts are expressed in ppm relative to the CHCl3 peak.  1H 

NMR (400 MHz, CDCl3) δ = 7.63 – 7.44 (m, 3H), 7.42 – 7.18 (m, 11H), 7.07 (d, J = 7.4 Hz, 

2H), 6.73 (s, 1H), 6.58 (s, 1H), 5.40 (s, 1H), 4.08 – 3.92 (m, 4H), 3.85 (s, 3H), 2.71 (dd, J = 

14.2, 11.1 Hz, 2H), -0.01 (s, 9H).  13C NMR (101 MHz, CDCl3) δ = 145.6, 144.9, 143.0, 

142.4, 142.0, 127.1, 126.4, 125.9, 125.8, 125.3, 125.2, 125.0, 124.7, 124.6, 109.4, 108.3, 

80.6, 57.9, 53.7, 53.6, 49.6, 27.1, -0.00. 

General procedure for Diels-Alder reaction 

To a vial containing the catalyst (0.1 mmol) and the acid (0.1 mmol) in 457 µl of CH3CN and 

25 µl of H2O was added the α,β-unsaturated aldehyde (1.0 mmol) followed by the diene (3.0  

mmol).  In the case of cyclopentadiene, it was freshly distilled before use.   The reaction 

mixture was stirred for the time specified in the text.  It was then was diluted with Et2O and 

washed successively with H2O and brine. The organic layer was dried over anhydrous 

Na2SO4, and concentrated in vacuo. The resulting residue was purified by silica gel 

chromatography and analyzed as described in the supporting information according to the 

following references Table 3, entry 18, entry 28, entry 38, entry 442, entry 543, entry 644, entry 

78, entry88.  Chromatographs and retention times for all chiral products were comparable to 

those reported. 
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NMR spectroscopy details 

Study of the intermediate iminium ion structure.   

To a solution of 4 (5.0 mg, 0.015 mmol) and TfOH (1.4 µl, 0.015 mmol) in 475 µl of CD3CN 

and 25 µl of H2O, (E)-cinnamaldehdye (9.6 µl, 0.075mmol) and was added.  1D 1H and 13C 

experiments were recorded according to the standard Bruker library, using 16 and 1024 

scans, respectively.  2D homonuclear COSY experiments and heteronuclear HSQC and 

HMBC experiments were recorded according the standard Bruker library with 8 and 512; 8 

and 256; and 16 and 512 scans and number of complex points in f1 dimension respectively.  

2D homonuclear.  ROESY experiments were recorded according to Thiele et al., with 40 

scans and 512 complex points.45 A mixing time of 250 ms was applied to achieve proper 

transfer and a relaxation delay of 2s was applied, when distances where extracted. ROE 

distances were used as a range from 2.5 to 5 Å for calculations to restrain. 

Computational details  

Complexes A-D and transitions states were optimized in the gas phase using GAUSSIAN 

0946 at the  at the density functional theory (DFT) level employing the B3LYP (Becke’s 

three-parameter non-local exchange function47-49 with the correlation functional of Lee, Yang 

and Par50 in conjunction with the 6-31+G(d) basis set. set.  Diffuse functions are typically 

used for a more accurate description where lone pair electrons are involved, while 

polarization functions remove some limitations of the basis set by expansion of the virtual 

space.  Solvation effects were not considered in order to simplify the model.  Cartesian 

coordinates of all the optimized structures are available as supporting information.  Geometry 

optimizations were performed without restrictions in order to locate extrema presented 

herein.  Frequency calculations were performed for all structures.  Transitions states were 

characterized by a single imaginary frequency, which corresponds to the movement of atoms 

consistent with the expected reaction.  To ensure that the lowest energy transition state for the 

first step (bond formation between atoms 1 and 2 in Figure 6) was found, a relaxed scan 

(using a semi-empirical calculation with Parameterized Model number 6)51 was performed 

with the atom distance for atoms 1 and 2 kept fixed at about 1.89Å.  The scan entailed a 360º 

rotation of the cyclopentadiene molecules in 15º steps.   The structure corresponding to the 

lowest energy structure on the energy profile was used for a normal unconstrained transition 

state for the DFT calculation.   
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ABSTRACT 

The short synthesis of a series of novel chiral N-oxide organocatalysts and their evaluation in the 

asymmetric allylation reaction of aromatic and α−β-unsaturated aldehydes with 

allytrichlorosilane is reported.  These readily modifiable organocatalysts are the first of its kind 

based on a tetrahydroisoquinoline framework.  The chiral homoallyl products were obtained 

with good chemical efficiency (up to 93 % yield) and high enantioselectivity (up to 91 % ee) 

under mild reaction conditions (23 °C).   

INTRODUCTION 

Organocatalysis has rapidly expanded in the last decade encompassing a wide variety of small 

organic molecules that are capable of either activating substrates or transforming them into more 

reactive forms.1-5  Various fundamental asymmetric reactions that once required metal-ligand 

catalysts can now be conducted with comparable efficiencies using organocatalysts that are 

more stable, cheaper and less toxic than their metal complex counterparts.6-8  A classic example 

is the promotion of the enantioselective allylation of aldehydes which was previously catalysed 

by Lewis acids (metal-complexes) to give chiral homoallylic alcohols.  This can now be carried 

out in the presence of a range of organic Lewis bases in the form of chiral phosphoramides, 
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formamides, imines, phosphine oxides, sulphoxides or N-oxides.6,7,9  Homoallylic alcohol 

products are important building blocks for more complex molecules.  One example, in which a 

homoallylic alcohol (i.e cinnamaldehdye as the substrate) is an important precursor, is in the 

synthesis of the natural product goniothalamin which exhibits antifungal10, immunosuppressive 

and anti-inflammatory11 activity as well as cytotoxic12 and anti-tumor13 properties.  Nakajima 

and co-workers reported the first chiral heterocyclic N-oxide type organocatalysts capable of 

acting as Lewis bases for the enantioselective allylation reactions via the activation of 

allyltrichlorosilane and its derivatives.9  This was based on the inherent nucleophilicity of N-

oxides towards organosilicon reagents or substrates.  The principle behind this mode of 

activation was based on the coordination of the N-oxide catalyst (which acts as a Lewis base) to 

a tetra-coordinated silicon atom.  This increases the Lewis acidity of the now hypervalent silicon 

centre which becomes a highly reactive carbon nucleophile.  Since Nakajima’s report, various 

N-oxide based organocatalysts have been developed.14,15  These can be largely classified into 

three types; the first being N,N-dioxides with two pyridine moieties bearing a stereogenic axis 

(I),9 the second having N-oxides incorporated into a pyridine ring within a chiral framework 

(II),16 and the third type in which the N-oxide is part of a pyrrolidine (III)17 or piperidine ring.18   

N

N

O
O

N

N
O

N

O

N
H Ph

O

II II III  
Figure 1. Examples of N-oxide based organocatalysts. 

Amongst these, the catalysts possess either monodentate or bidentate N-oxide moieties.  There 

are only a few examples of the third type of N-oxide catalysts with derivative (III) being 

currently the only example of a monodentate N-oxide bonded to an sp3 nitrogen atom.  With this 

in mind, we wanted to investigate catalysts derived from the tetrahydroisoquinoline (TIQ) 

backbone (1-8).  This would constitute the second example of a monodentate N-oxide bonded to 

sp3 nitrogen organocatalyst.   
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Figure 2. Catalysts evaluated for the allylation reaction.  

In addition to the allylation of aldehydes, N-oxide organocatalysts have been shown to promote 

several other important asymmetric transformations.14  However, preparation of these catalysts 

follows multi-step synthetic procedures and requires extensive optimization, such as low 

temperatures to ensure a high level of chiral induction.  In this study, we have introduced a new 

class of easily accessible (four steps or less) TIQ based N-oxide organocatalysts that function 

under mild reaction conditions (23 oC).  The TIQ molecule and its derivatives have been widely 

investigated due to their biological and pharmaceutical properties.19-23  We have recently had 

much success with TIQ based ligands for catalytic asymmetric reactions such as: transfer 

hydrogenation of prochiral ketones,24 Henry reaction,25 hydrogenation of olefins,26 and we also 

expanded the potential of these TIQ derivatives as organocatalysts in the Diels-Alder 

cycloaddition between α,β−unsaturated aldehydes and cyclopentadiene.27  Herein we report a 

logical approach to the synthesis of novel Lewis base N-oxide organocatalysts (1-8) possessing 

the TIQ as a readily tunable backbone for the asymmetric reaction of allyltrichlorosilane with 

aryl and α,β−unsaturated aldehydes.  

 

RESULTS AND DISCUSSION 

SYNTHESIS 

Catalysts 1-2 and 4-6 (Scheme 1) were synthesised from commercially available N-benzyl 

tetrahydroisoquinoline amino acid 9.  Amide bond formation of 9 with the respective amines 

yielded 10a–e.  Thereafter, oxidation of the tertiary amines with m-CPBA afforded the novel 

catalysts.  
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Scheme 1. Synthetic route to catalysts 1-2 and 4-6: (i) HBTU, DMF, respective amine, 4 hours 

at room temperature; (ii) m-CPBA, K2CO3, DCM, -78 oC, 3 hours. 

Once the N-oxide is formed the nitrogen atom becomes chiral and can form both diastereomers.  

It has been shown in literature with other pipecolic28,29 and proline30 derivatives that the N-oxide 

orientates syn (on the same side) to the hydrogen bond donor substituent and is stabilised by an 

intramolecular hydrogen bond.  Our catalysts displayed the same orientation as can be seen from 

the X-ray crystal structures of 4 and 5.  For catalysts 5 and 6 which contain an additional chiral 

centre, a single diastereomer was observed after both, coupling of the amide and oxidation steps 

from proton NMR. 

A similar procedure i.e for synthesis of catalysts 1-6 was followed for catalyst 3 except 

commercially available N-methyl tetrahydroisoquinoline amino acid 11 was used instead of 9. 
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i ii

11 12 3  
Scheme 2. Synthetic route to catalyst 3: (i) HBTU, DMF, benzyl amine, 4 hours at room 

temperature; (ii) m-CPBA, K2CO3, DCM, -78 oC, 3 hours. 

We have previously reported the synthesis of compound 13 which upon protection of the 

secondary amine with bromocyclohexanone afforded derivative 14.  This underwent oxidation 

with m-CPBA to produce catalyst 7.  From proton NMR a single diastereomer was observed for 

compounds 14 and 7.  
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Scheme 3. Synthetic route to catalyst 7: (i) Bromocyclohexane, K2CO3, DMSO, 70 oC, 48 

hours.; (ii) m-CPBA, K2CO3, DCM, -78 oC, 3 hours. 

Catalyst 8 was derived from commercially available amine 15.  Reductive amination of 15 with 

benzaldehyde followed by cyclisation of the imine yielded 16.  Diastereomers were obtained in a 

90:10 ratio of the cis:trans isomers of 16 which were easily separated using silica gel 

chromatography.  Thereafter the secondary amine underwent benzylation which was followed 

by microwave assisted acid hydrolysis of the ester.  The acid was reacted with 

diphenylmethanamine to furnish the amide 18 (only the cis isomer was observed from proton 

NMR) which was oxidised with m-CPBA to produce catalyst 8.   

 
Scheme 4. Synthetic route to catalyst 3: (i) PhCHO, DCM/MeOH, molecular sieves, 1.5 hours,  

TFA reflux, 3 hours; (ii) BnBr, K2CO3, overnight at room temperature.; (iii) Microwave assisted 

acid hydrolysis, HBTU, DMF, diphenylmethanamine, 4 hours at room temperature;  (iv) m-

CPBA, K2CO3, DCM, -78 oC, 3 hours. 

Notably, compounds 15-18 and 8 have a second chiral centre and could not be synthesized from 

phenylalanine as it was essential to employ the activated aromatic group 15 to facilitate the 

cyclization.   
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Catalyst Evaluation  

The benchmark reaction for the evaluation of N-oxide type organocatalysts has been the 

asymmetric reaction between benzaldehyde (19) and allyltrichlorosilane (20). 

Table 1. Allylation of benzaldehyde (19) and allyltrichlorosilane (20) facilitated by catalysts 1-8 

at room temperature in DCM. 

H

O

SiCl3

OH

*

19 20 21  
 

Entry Catalysta Yield (%)b ee(%)c,d 

1 1 81 <10 

2 2 85 <10 

3 3 80 <10 

4 4 85 15 (R) 

5 5 90 12 (R) 

6 6 91 20 (R) 

7 7 83 <10 

8 8 86 44 (R) 
[a]Reactions were carried out by using 10 mol-% of the organocatalyst; all reactions were performed in duplicate.  
[b]Isolated yield after column chromatography.  [c]Determined by chiral HPLC; the values are an average of two 

measurements.  [d]The configuration of the chiral product was established by the comparison of their HPLC 

retention times with the literature data. 

Our study was initiated by examining the modification of the catalyst’s C- and N-termini starting 

from the simple TIQ derivatives 1-3 (Table 1, entry 1-3).  Although low selectivities were 

observed, there was substantial conversion to the allylation product 21.  Encouraged by these 

results we set out to introduce a more bulky group at the C-termini in the hope of increasing the 

enantiomeric excess (ee) with catalyst 4 (Table 1, entry 4).  This moderately increased the ee, 

and we anticipated that another chiral centre at the amide position could enhance the selectivity 

(Table 1, entry 5-6).  However, the 20 % ee remained the highest enantioselectivity obtained.  

Since the use of a chiral amide resulted in a slighty higher ee, it was then decided to synthesise 

the analogue of proline-derived catalyst (III), i.e a cyclohexyl group on the nitrogen in hope that 

this may affect the selectivity.  Catalyst 7 displayed marginal difference on the enantioselectivity 

of the reaction product.   
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The X-ray crystal structures of catalyst 4 and 5 revealed further information on how the catalysts 

could be modified in order to enhance the enantiomeric excess as illustrated from the OLEX231 

generated Figures 3 and 4.  
 

 
Figure 3. OLEX2 generated drawing of the X-ray structure of catalyst 4 (CCDC-824790).  

 

 
Figure 4. OLEX2 generated drawing of the X-ray structure of catalyst 5 (CCDC 824789).  

It is evident from the crystal structures that the N-containing six membered ring assumes a half 

chair conformation with the N-oxide protruding up in order to hydrogen bond with the amide 

hydrogen.  This observation explained why the ee was not influenced by changing groups on the 
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secondary amine.  Catalysts 5 and 6 differ by the configuration at the chiral center in the coupled 

amine, and produced 12 % and 20 % ee respectively.  The crystal structures also explains why 

the best asymmetric induction was obtained when a bulky diphenyl moiety is present at C11 

(Figure 3), thereby creating a chiral pocket around the N-oxide functionality.  Based on these 

findings we postulated that a diphenyl group on the amide and more steric bulk closer to the 

oxide moiety was required.  It was synthetically possible to introduce a phenyl ring at C1 in 

either the cis or trans position.  The cis position seemed more viable for chiral induction as it 

was closer to the oxide atom.  Catalyst 8 was synthesised and significantly increased the 

selectively to 44 % (Table 1, entry 8).   

It has been shown in the literature that the appropriate choice of solvent is crucial for 

asymmetric induction, rate and yield of the allylation reaction.32  Therefore catalyst 8 was tested 

in the most common solvents used for this type of asymmetric reaction (Table 2).  The change in 

solvent had a noteworthy effect on the enantiomeric excess of the reaction product (Table 2, 

entry 4).   

Table 2. Allylation of benzaldehyde (19) and allyltrichlorosilane (20) catalyzed by derivative 8 

in different solvents (24 h) at room temperature. 

 

Entry Solventa Yield (%)b ee (%)c,d 

1 DCMe 85 44 

2 DCEf 80 53 

3 CH3CNg 65 <10 

4 THFh 85 65 
[a]Reactions were carried out by using 10 mol-% of the organocatalyst; all reactions were performed in duplicate.  
[b]Isolated yield after column chromatography.  [c]Determined by chiral HPLC; the values are an average of two 

measurements.  [d]The configuration of the chiral product was established by the comparison of their HPLC 

retention times with the literature data. [e]Dichloromethane. [f]1,2-Dichloroethane. [g]Acetonitrile.  
[h]Tetrahydrofuran. 

 

Having optimized the conditions for the system, the use of this new TIQ based organocatalyst 8 

was extended by applying it to various aromatic aldehydes and allyltrichlorosilane (Table 3, 

entries 1-7) at room temperature (23 oC) in THF. 
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Table 3. Allylation of aldehydes and allyltrichlorosilane (20) catalyzed by derivative 8 in THF 

(24 h) at room temperature. 

R H

O

SiCl3 R

OH

*  
 

Entry R Yield (%)a,b ee (%)c,d 

1 Ph 80 65 (R) 

2 4-MeOC6H5 87 60 (R) 

3 4-O2NC6H5 90 52 (R) 

4 4-ClC6H5 89 55 (R) 

5 4-FC6H5 93 65 (R) 

6 2-Naphthyl 87 51 (S) 

7 3,5-(OMe)2C6H3 50 62 (S) 

8 Ph-CH=CH 85 91 (S) 
[a]Reactions were carried out by using 10 mol % of the organocatalyst; all reactions were performed in duplicate.  
[b]Isolated yield after column chromatography.  [c]Determined by chiral HPLC; the values are an average of two 

measurements.  [d]The configuration of the chiral products was established by the comparison of their HPLC 

retention times with the literature data. 

All of the reactions proceeded with high conversions and reasonable selectivities.  From Table 3, 

it may be concluded that the catalyst is highly sensitive to steric bulk, while electronic changes 

seems to have less influence on the chiral induction (cf Table 3, entries 1-5 vs entries 6-7).  The 

configuration of the products changed from R to S upon increased steric bulk (Table 3, entries 6-

7), suggesting such aldehydes orient themselves differently in the catalyst pocket before attack 

of the silyl substituent. 

In order to evaluate if catalyst 8 was not limited to aromatic aldehydes, it was tested with an 

α,β−unsaturated aldehyde (i.e. cinnamaldehdye). The product from this reaction emerged with a 

high enantioselectivity of 91 % (Table 3, entry 8), again with opposite absolute configuration 

than the product originating from simple benzaldehyde substrates (i.e. Table 3, entries 1-5).  

This prompted us to re-examine the solvent choice for this substrate (Table 4).  
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Table 4. Allylation of cinnamaldehyde and allyltrichlorosilane (20) catalyzed by derivative 8 in 

different solvents (24 h) at room temperature. 

Entry Solventa Yield (%)b ee (%)c,d 

1 DCM 80 75 

2 DCE 75 87 

3 CH3CN 72 79 

4 THF 85 91 
[a]Reactions were carried out by using 10 mol-% of the organocatalyst; all reactions were performed in duplicate.  
[b]Isolated yield after column chromatography.  [c]Determined by chiral HPLC; the values are an average of two 

measurements.  [d]The configuration of the chiral product was established by the comparison of their HPLC 

retention times with the literature data. 

Similar to the result for benzaldehyde, THF appeared to be the solvent of choice again as can be 

seen from Table 4.  Based on this result and the fact that allylations of  α,β−unsaturated 

aldehydes have been rather neglected,33,34  it was decided to further expand the scope of this type 

of substrates with catalyst 8 (Table 5). 
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Table 5. Allylation of α,β unsaturated aldehydes and allyltrichlorosilane (20) catalyzed by 

derivative 8 in THF (24 h) at room temperature. 

H

O

SiCl3 *

R3
R1

R2 OH

R3

R1

R2

 
Entry R1

 R2 R3 Yield (%)a,b ee (%)c,d 

1 Ph H H 85 91 (S) 

2 4-MeOC6H5 H H 85 50 (S) 

3 2-MeOC6H5 H H 86 42 (S)e 

4 4-O2NC6H5 H H 90 30 (S) 

5 2-O2NC6H5 H H 90 51 (S) e 

6 4-BrC6H5 H H 82 40 (S) 

7 2-Furyl H H 87 43 (S)e 

8 Me H H 65 <10 (S) 

9 nPro  H H 0 - 

10 Me Me H 55 17 (S) 

11 Ph H Me 75 54 (R) 
[a]Reactions were carried out by using 10 mol-% of the organocatalyst; all reactions were performed in duplicate.  
[b]Isolated yield after column chromatography.  [c]Determined by chiral HPLC; the values are an average of two 

measurements.  [d]The configuration of the chiral products was established by the compa rison of their HPLC or GC 

retention times with the literature data.  [e]The absolute configuration was arbitrarily assigned based on the sign of 

optical rotation for known 1-phenyl-hexa-1,5-dien-3-ol (entry 1). 

A range of aromatic α,β−unsaturated aldehydes including electron-withdrawing and -donating 

group substituents on the cinnamaldehyde aryl ring were employed with allyltrichlorosilane 

(Table 5, entries 1-7).  All substrates displayed appreciable conversions, but moderate 

enantioselectivities.  The large drop in stereoselectivity observed upon modest changes in the 

substrate structure (cf. Table 5, entries 1, 6, 7) is surprising and difficult to rationalize, but it 

again advocates that this catalyst system is highly sensitive to steric variations in the substrate. 

In addition, aliphatic α,β−unsaturated aldehydes proved to have little or no activity (Table 5, 

entries 8-10).  Lastly a hydrogen atom on the α position of cinnamaldehdye was replaced with a 

methyl group to determine if this increased bulk would have a considerable effect on the ee of 

the chiral product, but a decreased yield and poor selectivity was observed (Table 5, entry 11).  

In addition, the configuration of this product changed, suggesting that the orientation of the 

aldehyde with respect the catalyst changed.  The best result observed from all of the substrates 
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screened with allyltrichlorosilane remained cinnamaldehyde (85 % yield, 91 % ee) at room 

temperature.  As mentioned earlier, the chiral homoallylic product derived from cinnamaldehdye 

is a key precursor in the synthesis of the natural product goniothalamin.  To the best of our 

knowledge, the highest ee reported to date for cinnamaldehdye is 79 % at room temperature 

when catalyst (III) was employed.17  

CONCLUSIONS 

In summary, we have identified a novel class of N-oxide TIQ organocatalysts that promotes the 

enantioselective allylation of both aromatic and α,β−unsaturated aldehydes.  The catalysts are 

easily prepared from commercially available substrates, readily modifiable (displayed by the 

efforts to optimize the reaction’s enantioselectivity) and the asymmetric allylation reaction can 

be done under mild reaction conditions (23 °C).  The products were obtained in up to 91 % ee 

(cinnamaldehdye).  Studies into this class of organocatalysts are ongoing in our laboratory.   

EXPERIMENTAL SECTION 

Reagents and solvents were purchased from Aldrich, Merck and Fluka.  All NMR spectra were 

recorded on a Bruker AVANCE III 400 MHz instrument. Chemical shifts are expressed in ppm 

relative to CDCl3 and coupling constants are reported in Hz.  NMR Spectra were obtained at 

room temperature.  Thin layer chromatography (TLC) was performed using Merck Kieselgel 60 

F254.  Crude compounds were purified with column chromatography using Silica gel 60 mesh 

All solvents were dried using standard procedures.  All IR spectra were recorded on a Perkin 

Elmer spectrum 100 instrument with a universal ATR attachment.  Optical rotations were 

recorded on a Perkin Elmer Polarimeter.  Microwave assisted reactions were carried out on a 

CEM Discover SP system.  All melting points are uncorrected.  High resolution mass 

spectrometric data was obtained using a Bruker microTOF-Q II instrument operating at ambient 

temperatures, using a sample concentration of approximately 1.0 ppm.  The enantiomeric excess 

of the chiral allylation products were determined by either gas chromatography by using an 

Agilent 6820 capillary gas chromatograph with a CP-Chirasil-β-Dex column (25 m × 0.25 mm), 

nitrogen as the carrier gas and a flame ionization detector or on an Agilent 1100 HPLC with 

either a Chiralpak IA, IB or AS-H column. 

Representative procedure for the synthesis of TIQ based amides 

(S)-2-benzyl-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (9) or (S)-2-methyl-1,2,3,4-

tetrahydroisoquinoline-3-carboxylic acid (11) (4.8 mmol) was dissolved in DMF (15 ml) and 

THF (5.0 ml) followed by addition of 2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethylaminium 
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hexafluorophosphate (HBTU, 5.8 mmol), N,N-diisopropylethylamine (DIPEA, 9.6 mmol) and 

the appropriate amine (5.3 mmol). The reaction mixture was then stirred at room temperature 

until no more starting material could be detected by TLC analysis (approximately 4 hours). The 

reaction mixture was poured into 30 volumes of chilled water; the mixture was then extracted 

thrice with ethyl acetate (20 ml). The extracts were dried over anhydrous Na2SO4 and then 

concentrated to dryness affording the crude product which was purified by column 

chromatography. 

(S)-N,2-dibenzyl-1,2,3,4-tetrahydroisoquinoline-3-carboxamide (10a) 

The crude product was purified by column chromatography (50:50 EtOAc/Hexane, Rf 0.50) to 

afford the product 1.20 g (92 %) as a yellow oil.  [α]20
D -25.00 (c 0.16 in  CHCl3).  1H NMR 

(400 MHz, CDCl3) δ 7.40 – 7.24 (m, 6H), 7.23 – 7.11 (m, 3H), 7.00 (d, J = 7.2 Hz, 1H), 3.80 (d, 

J = 15.2 Hz, 1H), 3.65 (dt, J = 13.3, 10.6 Hz, 3H), 3.52 (t, J = 6.8 Hz, 1H), 3.21 – 3.05 (m, 2H), 

2.78 (d, J = 5.0 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 173.68, 138.21, 134.62, 134.36, 128.86, 

128.82, 128.60, 128.56, 128.23, 127.50, 127.00, 126.45, 126.27, 62.18, 58.55, 51.12, 28.01, 

25.94. IR (neat): 3322, 2937, 1654, 1524, 731, 698 cm-1.  HRMS calculated for C18H21N2O [M + 

H]1+ 281.1648, found 281.1664. 

(S)-N,2-dibenzyl-1,2,3,4-tetrahydroisoquinoline-3-carboxamide (10b) 

The crude product was purified by column chromatography (50:50 EtOAc/Hexane, Rf 0.45) to 

afford the product 1.50 g (88 %) as a yellow oil.  [α]20
D 10.00 (c 0.10 in  CHCl3).  1H NMR (400 

MHz, CDCl3) δ 7.45 – 7.11 (m, 11H), 7.11 – 6.90 (m, 3H), 4.52 – 4.41 (dd, J = 15.0, 6.4 Hz, 

1H), 4.37 (dd, J = 15.0, 5.5 Hz, 1H), 3.85 – 3.55 (m, 5H). 13C NMR (101 MHz, CDCl3) δ 

173.11, 138.30, 137.98, 134.99, 134.52, 129.07, 128.95, 128.63, 128.59, 128.39, 128.19, 127.51, 

127.35, 127.26, 127.13, 126.48, 126.40, 62.17, 59.00, 51.42, 43.05, 28.59.  IR (neat): 3301, 

2929, 1654, 1264, 731, 696 cm-1.  HRMS calculated for C24H25N2O [M + H]1+ 357.1961, found 

357.1971. 

(S)-N-benzhydryl-2-benzyl-1,2,3,4-tetrahydroisoquinoline-3-carboxamide (10c) 

The crude product was purified by column chromatography (50:50 EtOAc/Hexane, Rf 0.45) to 

afford the product 1.88 g (91 %) as a colourless oil.  [α]20
D 5.263 (c 0.19 in  CHCl3).  1H NMR 

(400 MHz, CDCl3) δ 8.07 (d, J = 8.6 Hz, 1H), 7.36 – 6.68 (m, 20H), 6.11 (d, J = 8.7 Hz, 1H), 

3.84 – 3.53 (m, 5H), 3.21 (dd, J = 15.7, 5.2 Hz, 1H), 3.11 (dd, J = 15.7, 6.8 Hz, 1H).  13C NMR 

(101 MHz, CDCl3) δ 172.39, 141.99, 141.35, 137.90, 135.50, 134.80, 129.00, 128.96, 128.74, 

128.59, 128.45, 128.20, 128.16, 127.78, 127.52, 127.47, 127.35, 127.01, 126.82, 126.52, 126.44, 

126.08, 62.30, 60.41, 59.66, 56.49, 51.65, 29.76, 29.36, 21.05, 14.25.  IR (neat): 3319, 2919, 
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1663, 1493, 745, 697 cm-1.  HRMS calculated for C30H29N2O [M + H]1+ 433.2274, found 

433.2297. 

(S)-2-benzyl-N-((R)-1-phenylethyl)-1,2,3,4-tetrahydroisoquinoline-3-carboxamide (10d) 

The crude product was purified by column chromatography (30:70 EtOAc/Hexane, Rf 0.30) to 

afford the product 1.88 g (91 %) as a brown solid.  Melting point 96-99 oC.  [α]20
D 11.36 (c 0.22 

in  CHCl3).  1H NMR (400 MHz, CDCl3) δ 7.61 (d, J = 8.7 Hz, 1H), 7.37 – 7.12 (m, 11H), 7.05 

(d, J = 6.5 Hz, 1H), 6.88 (dd, J = 6.7, 2.6 Hz, 2H), 5.08 – 4.94 (m, 1H), 3.90 – 3.54 (m, 5H), 

3.12 (dd, J = 6.3, 2.2 Hz, 2H), 1.39 (d, J = 6.9 Hz, 3H).  13C NMR (101 MHz, CDCl3) δ 172.10, 

143.16, 138.16, 134.73, 134.49, 128.99, 128.79, 128.72, 128.66, 128.58, 128.38, 128.22, 127.44, 

127.32, 127.05, 126.45, 126.34, 126.19, 77.39, 62.15, 58.45, 51.45, 48.36, 28.38, 21.76.  IR 

(neat) : 3302, 2924, 1651, 1651, 1494, 743, 698 cm-1.  HRMS calculated C25H27N2O [M + H]1+ 

371.2118, found 371.2134. 

(S)-2-benzyl-N-((S)-1-phenylethyl)-1,2,3,4-tetrahydroisoquinoline-3-carboxamide (10e) 

The crude product was purified by column chromatography (30:70 EtOAc/Hexane, Rf 0.30) to 

afford the product 1.88 g (91 %) as a brown solid.  Melting point 96-99 oC.  [α]20
D -12.20 (c 0.41 

in  CHCl3).  1H NMR (400 MHz, CDCl3) δ 7.58 (d, J = 8.4 Hz, 1H), 7.42 – 7.10 (m, 13H), 7.02 

(d, J = 7.2 Hz, 1H), 5.12 – 4.90 (m, 1H), 3.89 – 3.53 (m, 4H), 3.53 (t, J = 6.7 Hz, 1H), 3.14 (d, J 

= 6.7 Hz, 2H), 1.54 (d, J = 12.2 Hz, 3H).  13C NMR (101 MHz, CDCl3) δ 172.26, 143.24, 

138.08, 135.21, 134.65, 129.14, 128.95, 128.79, 128.64, 128.58, 128.49, 128.37, 128.23, 128.16, 

127.54, 127.20, 126.90, 126.40, 125.67, 125.04, 62.25, 59.13, 51.86, 47.93, 29.72, 28.95, 22.07.  

IR (neat) : 3302, 2924, 1651, 1651, 1494, 743, 698 cm-1.  HRMS calculated for C25H27N2O [M + 

H]1+ 371.2118, found 371.2134. 

(S)-N-benzyl-2-methyl-1,2,3,4-tetrahydroisoquinoline-3-carboxamide (12) 

The crude product was purified by column chromatography (100 % EtOAc, Rf 0.50) to afford 

the product 1.00 g (77 %) as a brown solid.  Melting point 91-95 oC.  [α]20
D -7.93 (c 0.21 in  

CHCl3).  1H NMR (400 MHz, CDCl3) δ 7.37 – 7.14 (m, 7H), 7.04 (dd, J = 32.3, 6.5 Hz, 3H), 

4.56 – 4.45 (m, 1H), 4.30 (dd, J = 15.0, 5.2 Hz, 1H), 3.90 – 3.74 (m, 2H), 3.64 (d, J = 14.2 Hz, 

1H), 3.11 (d, J = 6.4 Hz, 2H), 2.43 (s, 3H).  13C NMR (101 MHz, CDCl3) δ 173.29, 138.33, 

135.35, 133.96, 128.79, 128.57, 128.03, 127.82, 127.48, 127.25, 127.18, 127.05, 126.32, 126.12, 

63.87, 55.09, 42.92, 42.89, 42.16, 29.43, 23.50.  IR (neat): 3302, 2924, 1651, 1651, 1494, 743, 

698 cm-1.  HRMS calculated for C18H21N2O [M + H]1+ 281.1648, found 281.1668. 

(S)-2-cyclohexyl-N-((S)-1-phenylethyl)-1,2,3,4-tetrahydroisoquinoline-3-carboxamide) (14) 

To a stirred solution of (S)-N-((S)-1-phenylethyl)-1,2,3,4-tetrahydroisoquinoline-3-carboxamide 

(13) (1.0 g, 3.6 mmol) in dry DMSO (50 ml), potassium bicarbonate (1.5 eq.) was added 
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followed by bromocyclohexane (2.5 eq.).  The reaction mixture was allowed to stir for 48 hours 

at 70 oC.  Thereafter, water (50 ml) was added to the reaction.  The aqueous layer was extracted 

with ethyl acetate (3 × 20 ml).  The organic extracts were combined and dried over anhydrous 

Na2SO4 and the solvent was removed in vacuo to yield the unpurified amide which was carried 

to the oxidation step. 

(1S,3S)-methyl 6,7-dimethoxy-1-phenyl-1,2,3,4-tetrahydroisoquinoline-3-carboxylate (16) 

To a stirred solution of 1:1 methanol: methylene chloride (6.0 ml) with 4 Ǻ molecular sieves,   

(S)-methyl 2-amino-3-(3,4-dimethoxyphenyl)propanoate 15 (1.0 g, 4.2 mmol) and benzaldehdye 

(1.1 eq.) was added under an inert atmosphere.  The reaction mixture was allowed to stir for 1.5 

hours.  Thereafter the reaction mixture was filtered and the solvents were removed in vacuo to 

yield the intermediate imine which was left on a high vaccum pump to remove any residual 

water for 2 hours.  The residue was then dissolved in trifluoroacetic acid (20 ml) and refluxed 

for 3 hours.  The reaction mixture was then neutralised with a saturated sodium bicarbonate 

solution and extracted with ethyl acetate (4 × 20ml).  The organic extracts were combined and 

dried over anhydrous Na2SO4 and the solvent was removed in vacuo.  The crude product 

(diastereomers) was purified by column chromatography (50:50 EtOAc/Hexane, Rf 0.5) to 

afford the product 1.20 g (88 %) as a white solid.  Melting point 97-99 oC.  1H NMR (400 MHz, 

CDCl3) δ 7.33 – 7.11 (m, 5H), 6.57 (s, 1H), 6.10 (s, 1H), 5.02 (s, 1H), 3.79 (s, 4H), 3.70 (s, 3H), 

3.52 (s, 3H), 3.01 (s, 2H).  13C NMR (101 MHz, CDCl3) δ 172.96, 147.76, 147.41, 143.87, 

130.22, 129.04, 128.59, 127.84, 126.07, 111.31, 110.56, 62.85, 56.54, 55.89, 55.84, 52.18, 

32.22. 

(1S,3S)-methyl-2-benzyl-6,7-dimethoxy-1-phenyl-1,2,3,4-tetrahydroisoquinoline-3-

carboxylate (17) 

To a stirred solution of 16 (1.5 g, 4.5 mmol) in acetonitrile (30 ml), potassium carbonate (1.5 

eq.) and benzylbromide (1.1 eq.) was added.  The reaction mixture was allowed to stir overnight 

at room temperature.  Thereafter, water (30 ml) and ethyl acetate (30 ml) was added to the 

reaction.  The organic layer separated and the aqueous layer extracted with ethyl acetate (3 × 20 

ml).  The organic extracts were combined and dried over anhydrous Na2SO4 and the solvent was 

removed in vacuo.  The crude product was purified by column chromatography (20:80 

EtOAc/Hexane, Rf 0.50) to afford the product 1.80 g (95 %) as a white solid.  Melting point 

146-148 oC.  [α]20
D 3.030 (c 0.10 in  CHCl3).  1H NMR (400 MHz, CDCl3) δ 7.35 (d, J = 7.7 Hz, 

4H), 7.22 (ddt, J = 14.3, 12.9, 7.1 Hz, 6H), 6.65 (s, 1H), 6.30 (s, 1H), 4.75 (s, 1H), 3.92 (d, J = 

14.2 Hz, 1H), 3.86 – 3.78 (m, 4H), 3.68 – 3.55 (m, 4H), 3.37 (s, 3H), 3.08 (dd, J = 15.3, 7.4 Hz, 

1H), 2.88 (dd, J = 15.3, 5.0 Hz, 1H).  13C NMR (101 MHz, CDCl3) δ 174.02, 147.81, 147.39, 
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143.22, 138.71, 129.63, 129.14, 129.12, 128.14, 127.98, 127.09, 126.98, 125.94, 111.44, 110.71, 

64.79, 60.69, 59.07, 55.93, 55.90, 51.53, 30.55.  IR (neat): 2944, 1729, 1511, 1152, 753, 699 cm-

1; HRMS calculated for C26H28NO4 [M + H]1+ 418.2018, found 418.2012. 

(1S,3S)-N-benzhydryl-2-benzyl-6,7-dimethoxy-1-phenyl-1,2,3,4-tetrahydroisoquinoline-3-

carboxamide (18) 

Derivative 17 (0.30 g) was dissolved in 10 % aqueous HCl (5.0 ml) and underwent microwave 

assisted hydrolysis for 2 hours at 120 oC.  The reaction mixture was then concentrated in vacuo, 

co-evapourated with toluene to ensure all water had been removed and used for the next 

coupling reaction.  The acid was dissolved (1.9 g, 4.7 mmol) was dissolved in DMF (15 ml) and 

THF (5.0 ml) followed by addition of HBTU (5.2 mmol), DIPEA (9.6 mmol) and 

diphenylmethanamine (5.2 mmol). The reaction mixture was then stirred at room temperature 

until no more starting material could be detected by TLC analysis (approximately 4 hours). The 

reaction mixture was poured into 30 volumes of chilled water; the mixture was then extracted 

thrice with ethyl acetate (20 ml). The extracts were dried over anhydrous Na2SO4 and then 

concentrated to dryness affording the crude product.  This crude product was purified by column 

chromatography (50:50 EtOAc/Hexane, Rf 0.6) to afford the product 2.50 g (92 %) as a brown 

oil.  [α]20
D -1.389 (c 0.24 in  CHCl3).  1H NMR (400 MHz, CDCl3) δ 7.62 (d, 1H), 7.37 – 7.13 

(m, 15H), 6.99 – 7.12 (m, 6H), 6.78 (s, 1H), 6.41 (s, 1H), 6.23 (s, 1H), 4.84 (s, 1H), 3.92 (s, 3H), 

3.80 (m, 1H), 3.72 (m, 4H), 3.50 (d, J = 13.4 Hz, 1H), 3.12 (dd, J = 17.3, 11.8 Hz, 1H), 3.02 (dd, 

J = 17.4, 5.5 Hz ,1H).  13C NMR (101 MHz, CDCl3) δ 175.59, 148.23, 147.75, 143.54, 138.48, 

129.05, 128.93, 128.68, 128.14, 127.56, 127.39, 127.26, 126.58, 126.32, 124.74, 116.87, 112.00, 

111.80, 62.73, 55.91, 55.90, 55.37, 52.20, 23.43.  IR (neat): 3026, 1681, 1493, 1241, 751, 698 

cm-1.  HRMS calculated for C38H37N2O3 [M + H]1+ 569.2820, found 569.2799. 

Representative procedure for the synthesis of TIQ based N-oxides. 

The TIQ amide (0.50 g) was dissolved in dry methylene chloride (20 ml).  Potassium carbonate 

(2.0 eq.) was added and the reaction cooled to -78 °C.  Meta-chloroperbenzoic acid (m-CPBA, 

1.2  eq.) was then added, and the reaction was allowed to stir at -78 °C for 3 hours.  At this time, 

the reaction was allowed to warm to room temperature.  After stirring for 2 hours at room 

temperature, methylene chloride (20 ml) was added to dilute the reaction and celite (200 mg) 

was added to aid filtration.  The reaction was filtered, and methylene chloride concentrated to 

dryness affording the crude product which was purified by column chromatography. 

(3S)-2-benzyl-3-(methylcarbamoyl)-1,2,3,4-tetrahydroisoquinoline 2-oxide (1) 

The crude product was purified by column chromatography (10:90 MeOH/DCM, Rf 0.25) to 

afford the product 0.44 g (85 %) as a white solid.  Melting point 146-148 oC.  [α]20
D 8.642 (c 
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0.27 in CHCl3).  1H NMR (400 MHz, CDCl3) δ 10.42 (s, 1H), 7.49 – 7.10 (m, 8H), 6.96 (d, J = 

7.4 Hz, 1H), 4.71 (d, J = 12.9 Hz, 1H), 4.59 (d, J = 12.9 Hz, 1H), 4.43 (d, J = 15.1 Hz, 1H), 4.34 

– 4.20 (m, 2H), 4.03 (dd, J = 9.5, 5.1 Hz, 1H), 3.83 (dd, J = 17.1, 9.6 Hz, 1H), 3.23 (dd, J = 17.1, 

5.0 Hz, 1H), 2.94 (d, J = 4.8 Hz, 3H).  13C NMR (101 MHz, CDCl3) δ 168.79, 132.59, 130.91, 

130.19, 130.05, 129.35, 128.97, 128.83, 128.11, 127.83, 126.92, 126.76, 73.56, 70.08, 65.03, 

30.15, 25.75.  IR (neat): 2928, 1670, 1271, 736, 703 cm-1.  HRMS calculated for C18H21N2O2 [M 

+ H]1+ 297.1598, found 297.1592. 

(3S)-2-benzyl-3-(benzylcarbamoyl)-1,2,3,4-tetrahydroisoquinoline 2-oxide (2) 

The crude product was purified by column chromatography (2:98 MeOH/DCM, Rf 0.20) to 

afford the product 0.50 g (96 %) as a white solid.  Melting point 155-157 oC.  [α]20
D 10.00 (c 

0.10 in CHCl3).  1H NMR (400 MHz, CDCl3) δ 11.11 (s, 1H), 7.52 (dd, J = 7.1, 2.3 Hz, 2H), 

7.47 – 7.11 (m, 12H), 6.94 (d, J = 7.3 Hz, 1H), 4.68 (d, J = 12.9 Hz, 1H), 4.61 – 4.38 (m, 4H), 

4.21 (d, J = 15.0 Hz, 1H), 4.01 (dd, J = 9.9, 4.9 Hz, 1H), 3.92 – 3.76 (m, 1H), 3.24 (dd, J = 17.0, 

4.9 Hz, 1H).  13C NMR (101 MHz, CDCl3) δ 168.28, 132.58, 130.19, 129.99, 129.42, 128.95, 

128.71, 128.10, 127.80, 127.36, 126.91, 126.74, 73.64, 69.96, 65.28, 43.10, 30.18.   IR (neat): 

3031, 1671, 1542, 734, 700 cm-1.  HRMS calculated for C24H25N2O2 [M + H]1+ 373.1911, 

found 373.1919. 

(3S)-3-(benzylcarbamoyl)-2-methyl-1,2,3,4-tetrahydroisoquinoline 2-oxide (3) 

The crude product was purified by column chromatography (5:95 MeOH/DCM, Rf 0.25) to 

afford the product 0.45 g (86 %) as a white solid.  Melting point 108-110 oC.  [α]20
D -5.556 (c 

0.18 in CHCl3).  1H NMR (400 MHz, CDCl3) δ 10.59 (s, 1H), 7.43 – 7.13 (m, 9H), 7.02 (d, J = 

7.1 Hz, 1H), 4.70 – 4.36 (m, 4H), 4.02 (dd, J = 10.1, 4.4 Hz, 1H), 3.78 (dd, J = 17.0, 10.3 Hz, 

1H), 3.39 (s, 3H), 3.26 – 3.11 (m, 2H).  13C NMR (101 MHz, CDCl3) δ 167.61, 137.99, 130.15, 

128.82, 128.76, 128.70, 128.61, 128.30, 128.02, 127.87, 127.70, 127.66, 127.38, 127.09, 126.53, 

126.23, 72.91, 69.92, 58.18, 43.60, 43.03, 30.14.  IR (neat): 3029, 1670, 1544, 736, 699 cm-1.  

HRMS calculated for C18H21N2O2 [M + H]1+ 297.1634, found 297.1598. 

(3S)-3-(benzhydrylcarbamoyl)-2-benzyl-1,2,3,4-tetrahydroisoquinoline 2-oxide(4) 

The crude product was purified by column chromatography (2:98 MeOH/DCM, Rf 0.25) to 

afford the product 0.48 g (94 %) as a white solid.  Melting point 157-158 oC.  [α]20
D -5.263 (c 

0.19 in CHCl3).  1H NMR (400 MHz, CDCl3) δ 11.74 (s, 1H), 7.05-7.40 (m, 18H) 6.86 (d, J = 

7.4 Hz, 1H), 6.30 (d, J = 8.8 Hz, 1H), 4.59 – 4.31 (m, 3H), 4.15 (d, J = 14.7 Hz, 1H), 3.77 (dd, J 

= 16.9, 10.0 Hz, 1H), 3.19 (dd, J = 17.1, 4.8 Hz, 1H).  13C NMR (101 MHz, CDCl3) δ 167.35, 

141.75, 141.50, 132.64, 130.05, 129.98, 128.91, 128.85, 128.67, 128.12, 127.90, 127.56, 127.50, 
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127.26, 127.07, 126.99, 126.74, 73.43, 65.39, 69.81, 56.83, 30.17.  IR (neat): 2918, 1677, 1545, 

749, 699 cm-1.  HRMS calculated for C30H29N2O2 [M + H]1+ 449.2224, found 449.2250. 

(3S)-2-benzyl-3-((R)-1-phenylethylcarbamoyl)-1,2,3,4-tetrahydroisoquinoline 2-oxide (5) 

The crude product was purified by column chromatography (2:98 MeOH/DCM, Rf 0.25) to 

afford the product 0.49 g (94 %) as a white solid.  Melting point 163-165 oC.  [α]20
D 66.67 (c 

0.12 in CHCl3).  1H NMR (400 MHz, CDCl3) δ 11.29 (d, J = 8.0 Hz, 1H), 7.61 (dd, J = 6.5, 3.0 

Hz, 2H), 7.52 – 7.29 (m, 7H), 7.29 – 7.03 (m, 4H), 6.94 (d, J = 7.2 Hz, 1H), 5.29 – 5.14 (m, 1H), 

4.80 (d, J = 13.0 Hz, 1H), 4.64 (d, J = 13.0 Hz, 1H), 4.46 (d, J = 14.9 Hz, 1H), 4.18 (d, J = 15.0 

Hz, 1H), 4.02 – 3.92 (m, 1H), 3.86 – 3.68 (m, 1H), 3.17 (dd, J = 17.0, 4.8 Hz, 1H), 1.58 (dd, J = 

18.6, 7.0 Hz, 3H).  13C NMR (101 MHz, CDCl3) δ 167.37, 143.31, 132.62, 130.22, 130.03, 

129.52, 129.03, 128.70, 128.10, 127.72, 127.18, 126.87, 126.72, 126.05, 73.78, 69.76, 65.35, 

48.83, 30.12, 22.92.  IR (neat): 2924, 1671, 1540, 736, 699 cm-1.  HRMS calculated for 

C25H27N2O2 [M + H]1+ 387.2084, found 387.2067. 

(3S)-2-benzyl-3-((S)-1-phenylethylcarbamoyl)-1,2,3,4-tetrahydroisoquinoline 2-oxide (6)  

The crude product was purified by column chromatography (2:98 MeOH/DCM, Rf 0.25) to 

afford the product 0.50 g (96 %) as a white solid.  Melting point 163-165 oC.  [α]20
D 66.67 (c 

0.12 in CHCl3).  1H NMR (400 MHz, CDCl3) δ 11.23 (d, J = 7.8 Hz, 1H), 7.52 – 7.25 (m, 10H), 

7.29 – 7.11 (m, 5H), 6.95 (d, J = 7.3 Hz, 1H), 5.29 – 5.13 (m, 1H), 4.57 – 4.36 (m, 3H), 4.17 (d, 

J = 14.9 Hz, 1H), 3.87 (dd, J = 26.3, 9.9 Hz, 2H), 3.26 (dd, J = 16.4, 4.1 Hz, 1H) 1.58 (dd, J = 

18.6, 7.0 Hz, 3H).  13C NMR (101 MHz, CDCl3) δ 167.41, 143.37, 132.55, 130.27, 129.88, 

129.38, 128.86, 128.75, 128.11, 128.07, 127.77, 127.31, 126.87, 126.77, 126.32, 73.35, 69.82, 

65.32, 48.95, 30.32, 22.55.  IR (neat): 2924, 1671, 1540, 736, 699 cm-1.  HRMS calculated for 

C25H27N2O2 [M + H]1+ 387.2084, found 387.2067. 

(3S)-2-cyclohexyl-3-((S)-1-phenylethylcarbamoyl)-1,2,3,4-tetrahydroisoquinoline 2-oxide 

(7) 

The crude product was purified by column chromatography (3:97 MeOH/DCM, Rf  0.25) to 

afford the product 0.47 g (90 %) as a yellow oil.  [α]20
D -69.05 (c 0.14 in CHCl3).  1H NMR (400 

MHz, CDCl3) δ 10.57 (d, J = 8.5 Hz, 1H), 7.47 – 7.40 (m, 2H), 7.35 (dd, J = 10.3, 4.8 Hz, 2H), 

7.28 – 7.13 (m, 5H), 7.00 (d, J = 6.5 Hz, 1H), 5.14 (dd, J = 8.8, 7.1 Hz, 1H), 4.38 (d, J = 15.0 

Hz, 1H), 4.21 (d, J = 15.1 Hz, 1H), 3.99 (d, J = 3.8 Hz, 1H), 3.93 – 3.79 (m, 1H), 3.22 – 3.08 (m, 

1H), 2.72 (d, J = 11.7 Hz, 1H), 1.59 – 1.14 (m, 10H).  13C NMR (101 MHz, CDCl3) δ 167.36, 

143.47, 131.01, 128.67, 128.30, 127.96, 127.46, 127.22, 126.87, 126.80, 126.64, 76.70, 69.35, 

60.60, 48.58, 30.54, 29.70, 28.04, 26.09, 25.52, 25.41, 25.26, 21.72.  IR (neat): 2923, 1670, 

1532, 1454, 739 cm-1.  HRMS calculated for C24H25N2O2 [M + H]1+ 379.2367, found 379.2401. 
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(1S,3S)-3-(benzhydrylcarbamoyl)-2-benzyl-6,7-dimethoxy-1-phenyl-1,2,3,4-

tetrahydroisoquinoline 2-oxide (8) 

The crude product was purified by column chromatography (3:97 MeOH/DCM, Rf 0.25) to 

afford the product 0.25 g (50 %) as a white solid.  Melting point 180-182 oC.  [α]20
D -100.00 (c 

0.11 in CHCl3).  1H NMR (400 MHz, CDCl3) δ 12.38 (d, J = 8.7 Hz, 1H), 7.43 (dd, J = 13.4, 7.3 

Hz, 3H), 7.38 – 7.14 (m, 16H), 7.11 – 7.01 (m, 2H), 6.87 (s, 1H), 6.34 (d, J = 8.8 Hz, 1H), 6.16 

(s, 1H), 4.90 (s, 1H), 4.32 (ddd, J = 29.1, 16.5, 9.7 Hz, 3H), 3.95 (s, 3H), 3.85 – 3.66 (m, 4H), 

3.58 – 3.45 (m, 1H).  13C NMR (101 MHz, CDCl3) δ 166.65, 149.48, 148.53, 142.42, 141.56, 

135.21, 133.08, 132.90, 129.64, 129.49, 128.89, 128.65, 128.43, 128.07, 127.69, 127.45, 127.20, 

127.07, 124.73, 123.62, 110.57, 109.89, 76.62, 66.04, 64.47, 57.28, 56.02, 56.00, 29.05.  IR 

(neat): 2924, 1667, 1531, 1228, 696 cm-1.  HRMS calculated for C38H37N2O4 [M + H]1+ 

585.2856, found 585.2748. 

General procedure for allylation reactions 

To an oven dried schlenck tube purging with argon, the catalyst (0.03 mmol) followed by dry 

THF (1.0 ml) and the aldehyde (0.3 mmol) was added, thereafter 156 µl of DIPEA (3.0 eq.) 

followed by allyltrichlorosilane (3.6 mmol) was added.  The reaction was sealed with a septum 

and kept under an argon atmosphere while stirring for 24 hours at room temperature (23 °C). To 

quench, saturated aqueous NaHCO3 (1.0 ml) was then added and the reaction was vigorously 

stirred for 1 hour. The reaction was then extracted with ethyl acetate (2 × 5 ml).  The organic 

layer was dried over anhydrous Na2SO4, and concentrated in vacuo. The resulting residue was 

purified by silica gel chromatography and analyzed as described below.  Chromatographs and 

retention times for all chiral products were comparable to the racemic samples.  NMR data for 

all racemic samples synthesised were in agreement with previously reported data. 

(R)-1-Phenyl-3-buten-3-ol (Table 3, entry 1)17  
1H NMR (400 MHz, CDCl3) δ 7.38-7.27 (m, 5H), 5.82 (ddt, J = 17.2, 10.0, 7.2 Hz ,1H), 5.17 

(dd, J = 17.2, 1.2 Hz, 1H), 5.15 (dd, J = 10.4, 1.2 Hz, 1H), 4.74 (dt, J = 6.4, 2.4 Hz, 1H), 2.58-

2.6 (m, 2H), 2.06 (d, J = 2.8 Hz, 1H). 

Optical purity was established by chiral HPLC analysis (Chiralpak IB, 99:1 Hexane:Isopropanol, 

0.8 mL/min, λ = 220 nm.)  

(R)-1-(4-methoxyphenyl)but-3-en-1-ol (Table 3, entry 2)17 
1H NMR (400 MHz, CDCl3) δ 7.23 (d, J = 8.6 Hz, 2H), 6.84 (t, J = 5.7 Hz, 2H), 5.87 – 5.65 (m, 

1H), 5.18 – 4.94 (m, 2H), 4.62 (t, J = 6.6 Hz, 1H), 3.76 (s, 3H), 2.39 (ddd, J = 70.6, 14.1, 9.3 Hz, 

2H). 
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Optical purity was established by chiral HPLC analysis (Chiralpak IB, 99:1 Hexane:Isopropanol, 

0.8 mL/min, λ = 220 nm 

(R)-1-(4-nitrophenyl)but-3-en-1-ol (Table 3, entry 3)35 
1H NMR (400 MHz, CDCl3) δ 8.21 (d, J = 8.8 Hz, 2H), 7.54 (d, J = 8.6 Hz, 2H), 5.79 (d, J = 7.8 

Hz, 1H), 5.20 (ddd, J = 11.1, 6.3, 1.0 Hz, 2H), 4.94 – 4.75 (m, 1H), 2.51 (ddd, J = 22.0, 10.1, 5.6 

Hz, 2H), 2.13 (d, J = 71.3 Hz, 1H). 

Optical purity was established by chiral HPLC analysis (Chiralpak IA, 97:3 

Hexane:Isopropanol, 0.7 mL/min, λ = 220 nm.)  

(R)-1-(4-chlorophenyl)but-3-en-1-ol (Table 3, entry 4)17 
1H NMR (400 MHz, CDCl3) δ 7.39 – 7.06 (m, 4H), 5.93 – 5.62 (m, 1H), 5.28 – 4.91 (m, 2H), 

4.75 – 4.52 (m, 1H), 2.46 (dt, J = 14.0, 6.5 Hz, 2H), 2.13 (s, 1H). 

Optical purity was established by chiral HPLC analysis (Chiralpak AS-H, 99:1 

Hexane:Isopropanol, 0.7 mL/min, λ = 220 nm.)  

(R)-1-(4-fluorophenyl)but-3-en-1-ol (Table 3, entry 5)36 
1H NMR (400 MHz, CDCl3) δ 7.21 (t, J = 8.4 Hz, 4H), 5.77 (qt, J = 52.1, 26.0 Hz, 1H), 4.92 

(ddd, J = 97.4, 16.5, 8.8 Hz, 2H), 4.11 (d, J = 7.1 Hz, 1H), 2.58 (t, J = 32.0 Hz, 2H), 2.38 – 2.13 

(m, 1H). 

Optical purity was established by chiral HPLC analysis (Chiralpak AS-H, 99:1 

Hexane:Isopropanol, 0.8 mL/min, λ = 220 nm.)  

(S)-1-(naphthalen-1-yl)but-3-en-1-ol (Table 3, entry 6)17 
1H NMR (400 MHz, CDCl3) δ 8.01 – 7.75 (m, 4H), 7.59 (dt, J = 14.9, 7.1 Hz, 3H), 7.51 – 7.37 

(m, 1H), 5.93 – 5.63 (m, 1H), 5.22 – 4.79 (m, 3H), 4.10 (q, J = 7.1 Hz, 1H), 2.25 (ddd, J = 42.5, 

19.9, 16.0 Hz, 2H). 

Optical purity was established by chiral HPLC analysis (Chiralpak AS-H, 99:1 

Hexane:Isopropanol, 0.8 mL/min, λ = 220 nm.)  

(S)-1-(3,5-dimethoxyphenyl)but-3-en-1-ol (Table 3, entry 7) 
1H NMR (400 MHz, CDCl3) δ 7.01 (d, J = 2.3 Hz, 2H), 6.70 (dd, J = 8.1, 5.9 Hz, 1H), 5.91 – 

5.71 (m, 1H), 5.25 – 5.02 (m, 2H), 4.74 – 4.58 (m, 1H), 3.82 (d, J = 21.6 Hz, 6H), 2.49 (dd, J = 

13.7, 6.7 Hz, 2H). 

Optical purity was established by chiral HPLC analysis (Chiralpak AS-H, 97:3 

Hexane:Isopropanol, 0.7 mL/min, λ = 220 nm.)  
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(1E,3S)-1-phenylhexa-1,5-dien-3-ol (Table 3, entry 8)17 
1H NMR (400 MHz, CDCl3) δ 7.28 (dddd, J = 13.7, 9.4, 5.2, 3.2 Hz, 5H), 6.59 (d, J = 15.9 Hz, 

1H), 6.23 (dd, J = 15.9, 6.3 Hz, 1H), 5.96 – 5.76 (m, 1H), 5.24 – 5.07 (m, 2H), 4.34 (d, J = 6.3 

Hz, 1H), 4.10 (q, J = 7.1 Hz, 1H), 2.41 (ddd, J = 14.5, 6.3, 4.3 Hz, 2H). 

Optical purity was established by chiral HPLC analysis (Chiralpak IB, 90:10 

Hexane:Isopropanol, 0.8 mL/min, λ = 220 nm.)  

(1E,3S)-1-(4-methoxyphenyl)hexa-1,5-dien-3-ol (Table 5, entry 2)33 
1H NMR (400 MHz, CDCl3) δ 7.28 (d, J = 8.6 Hz, 2H), 6.83 (d, J = 8.6 Hz, 2H), 6.51 (d, J = 

15.9 Hz, 1H), 6.08 (dd, J = 15.9, 6.6 Hz, 1H), 5.94 – 5.73 (m, 1H), 5.14 (dd, J = 12.1, 11.3 Hz, 

1H), 4.29 (d, J = 5.5 Hz, 1H), 4.10 (d, J = 7.1 Hz, 1H), 3.77 (s, 3H), 2.47 – 2.16 (m, 2H). 

Optical purity was established by chiral HPLC analysis (Chiralpak AS-H, 90:10 

Hexane:Isopropanol, 0.8 mL/min, λ = 220 nm.)  

(1E,3R)-1-(2-methoxyphenyl)hexa-1,5-dien-3-ol (Table 5, entry 3) 

[α]20
D -3.889 (c 1.2 in MeOH).  1H NMR (400 MHz, CDCl3) δ 7.43 (d, J = 7.5 Hz, 1H), 7.23 

(dd, J = 14.3, 6.3 Hz, 1H), 6.98 – 6.79 (m, 3H), 6.26 (dd, J = 16.1, 6.6 Hz, 1H), 5.97 – 5.75 (m, 

1H), 5.25 – 5.07 (m, 2H), 4.45 – 4.29 (m, 1H), 4.12 (q, J = 7.1 Hz, 1H), 3.83 (d, J = 10.3 Hz, 

3H).  HRMS calculated for C13H16O2 [M – H2O + H]1+ 187.1117, found 187.1172. 

Optical purity was established by chiral HPLC analysis (Chiralpak IB, 97:3 Hexane:Isopropanol, 

0.7 mL/min, λ = 220 nm.)  

(1E,3S)-1-(4-nitrophenyl)hexa-1,5-dien-3-ol (Table 5, entry 4)33 
1H NMR (400 MHz, CDCl3) δ 8.30 (d, J = 8.6 Hz, 1H), 8.18 (d, J = 8.6 Hz, 2H), 7.73 (d, J = 8.6 

Hz, 1H), 7.52 (dd, J = 12.1, 10.0 Hz, 1H), 6.81 (dd, J = 16.1, 7.4 Hz, 1H), 6.71 (d, J = 16.0 Hz, 

1H), 6.44 (dd, J = 15.9, 5.6 Hz, 1H), 5.98 – 5.72 (m, 1H), 5.30 – 5.11 (m, 2H), 4.43 (d, J = 5.8 

Hz, 1H), 2.57 – 2.07 (m, 2H).  13C NMR (101 MHz, CDCl3) δ 134.33, 132.27, 128.74, 126.91, 

126.04, 125.30, 120.65, 118.19, 110.87, 72.29, 55.43, 42.04.  IR (neat): 3418, 2931, 1489, 1243, 

781 cm-1 

Optical purity was established by chiral HPLC analysis (Chiralpak AS-H, 90:10 

Hexane:Isopropanol, 0.65 mL/min, λ = 230 nm.)  

(1E,3S)-1-(2-nitrophenyl)hexa-1,5-dien-3-ol (Table 5, entry 5) 

[α]20
D -5.556 (c 1.2 in MeOH).  1H NMR (400 MHz, CDCl3) δ 8.08 -7.93 (d, J = 8.2 Hz, 5H), 

7.40 (t, J = 7.5 Hz, 1H), 6.22 (dd, J = 15.8, 6.0 Hz, 1H), 5.87 (dd, J = 17.0, 10.2 Hz, 1H), 5.31 – 

5.13 (m, 2H), 4.95 (s, 1H), 4.42 (d, J = 6.3 Hz, 1H), 2.43 (dt, J = 13.9, 6.7 Hz, 2H).  13C NMR 

(101 MHz, CDCl3) δ 147.30, 133.82, 132.66, 131.14, 129.08, 128.15, 125.23, 118.87, 41.77, 
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36.86.  IR (neat) : 3329, 2843, 1681, 1312, 737 cm-1.  HRMS calculated for C12H13NO3 [M – 

C3H5 + H]1+ 180.0655, found 180.1315. 

Optical purity was established by chiral HPLC analysis (Chiralpak AS-H, 90:10 

Hexane:Isopropanol, 0.65 mL/min, λ = 230 nm.)  

(1E,3S)-1-(4-bromophenyl)hexa-1,5-dien-3-ol (Table 5, entry 6)33 
1H NMR (400 MHz, CDCl3) δ 7.57 (d, J = 8.4 Hz, 1H), 7.43 – 7.29 (m, 2H), 7.24 (t, J = 7.0 Hz, 

3H), 6.55 (d, J = 15.9 Hz, 1H), 6.23 (dd, J = 15.9, 6.1 Hz, 1H), 5.84 (ddd, J = 14.3, 10.1, 7.2 Hz, 

1H), 5.29 – 5.03 (m, 2H), 4.35 (dd, J = 12.2, 6.1 Hz, 1H), 2.51 – 2.13 (m, 2H). 

Optical purity was established by chiral HPLC analysis (Chiralpak AS-H, 97:3 

Hexane:Isopropanol, 0.60 mL/min, λ = 220 nm.)  

(1E,3S)-1-(furan-2-yl)hexa-1,5-dien-3-ol (Table 5, entry 7) 

[α]20
D -0.909 (c 1.1 in MeOH).  1H NMR (400 MHz, CDCl3) δ 6.38 – 6.23 (m, 3H), 6.17 – 6.00 

(m, 2H), 5.84 – 5.60 (m, 1H), 5.06 (dd, J = 14.2, 5.6 Hz, 2H), 4.21 (d, J = 5.3 Hz, 1H), 2.27 (qd, 

J = 14.3, 7.5 Hz, 2H).  13C NMR (101 MHz, CDCl3) δ 152.36, 141.97, 133.96, 130.18, 118.60, 

118.56, 111.29, 108.09, 71.23, 41.97.  IR (neat) : 3378, 2908, 1640, 1012, 733 cm-1.  HRMS 

calculated for C10H12O2 [M + Na]1+ 187.0729, found 187.1168. 

Optical purity was established by chiral HPLC analysis (Chiralpak AS-H, 90:10 

Hexane:Isopropanol, 0.80 mL/min, λ = 220 nm.)  

(S,E)-hepta-1,5-dien-4-ol (Table 5, entry 8)33 
1H NMR (400 MHz, CDCl3) δ 5.76 (dddd, J = 34.5, 21.6, 11.6, 6.7 Hz, 2H), 5.51 (dd, J = 15.3, 

6.8 Hz, 1H), 5.23 – 4.99 (m, 2H), 4.10 (dd, J = 12.5, 6.3 Hz, 1H), 2.44 – 2.11 (m, 5H). 

Optical purity was established by chiral GC analysis (80 °C for 1 min, then 1 °C/min to 160 °C, 

5 min at that temperature) 

(1E,3S)-6-methylhepta-1,5-dien-4-ol (Table 5, entry 10)33 
1H NMR (400 MHz, CDCl3) δ 7.05 (s, 1H), 5.92 – 5.67 (m, 1H), 5.28 – 4.93 (m, 3H), 4.38 (d, J 

= 8.1 Hz, 1H), 2.37 – 2.12 (m, 2H), 1.86 – 1.48 (m, 6). 

Optical purity was established by chiral GC analysis (80 °C for 1 min, then 1 °C/min to 160 °C, 

5 min at that temperature)  

(1E,3R)-2-methyl-1-phenylhexa-1,5-dien-3-ol (Table 5, entry 11)33 
1H NMR (400 MHz, CDCl3) δ 7.27 (ddd, J = 19.9, 14.3, 7.6 Hz, 5H), 6.52 (s, 1H), 5.84 (d, J = 

7.0 Hz, 1H), 5.16 (t, J = 14.0 Hz, 2H), 4.22 (s, 1H), 2.52 – 2.33 (m, 2H). 

Optical purity was established by chiral HPLC analysis (Chiralpak AS-H, 90:10 

Hexane:Isopropanol, 0.8 mL/min, λ = 220 nm.)  
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ABSTRACT 

The simple and practical syntheses of a novel class of chiral guanidine organocatalysts and their 

evaluation in the asymmetric Michael addition reaction of malonates and β-ketoesters with 

nitro-olefins is reported.  These organocatalysts are the first of its kind based on a 

tetrahydroisoquinoline framework.  In addition, a new microwave assisted procedure of 

introducing the guanidine unit onto amino amide derivatives is included.  The chiral products 

were obtained with quantitative chemical efficiency (up to 99 % yield) and excellent 

enantioselectivity (up to 97 % ee). 

 

INTRODUCTION 

The guanidine moiety has become well known in both chemistry and biology for its 

characteristic high pKa value and ability to form dual hydrogen bonds.1-3 Therefore, this 

functional group has been an attractive target incorporated into several chiral catalysts used for 

both metal-ligand4,5 and organocatalysis.6,7  It has been successfully employed as both Brønsted 

base/acid and phase transfer catalysts for several important asymmetric reactions such as the 
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Henry,8 Strecker9, Mannich, Diels-Alder, Michael and Claisen rearrangement.7,10  As a result, 

the roles of guanidine-based catalysts are steadily increasing in asymmetric synthesis.  Some 

excellent reviews on guanidine chemistry have emerged during the last decade.2,3,5-7,10-18 

Amino acid based organocatalysts have arisen as versatile and efficient candidates that promote 

a wide range of enantioselective transformations.19-22  The incorporation of naturally occurring 

α- amino acids as a source for chirality into guanidine organocatalysts however has not been 

widely investigated (Figure 1).23-25  As illustrated only a few organocatalysts have taken 

advantage of including guanidines into readily available amino acids.  

H
N

NH

H
N

H
N

NH

H
N

NHHN

Ph

NH

PhPh

H
N

N
H

N
H

H
N

NH

PhPh NH

H
N

NH

H
N CF3

CF3CF3

F3C

C16H37
Cl

IV

IH II III

N
N
H

O
Ad

N
HN Cy

Cy

N
H

O

N
HN Cy

Cy

N
N
H

O
t-Bu

N
HN Cy

Cy

N

V VI VII

iPr

iPr

 
Figure 1. Examples of chiral guanidine organocatalysts derived from α-amino acids (I-II23, IV24 

and V-VII25). 

Furthermore, the amino acid based guanidine catalysts developed thus far are molecules that are 

prepared through nontrivial syntheses.  Hence the development of a simple route to prepare 

other chiral guanidine’s is still of great interest.  We have set out to introduce a new class of 

easily accessible amino acid-based guanidine organocatalysts bearing a tetrahydroisoquinoline 

(TIQ) backbone.    
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Figure 2. TIQ guanidine organocatalysts evaluated in this study. 

This initiative was also partly encouraged by the observation that chiral pipecolic and pyrrole 

acid derived guanidines (Fig. 1) with an amide functional group (V-VII) have been shown to 

promote synthetically useful transformations such as the Michael addition25 and Domino 

reaction.26  The TIQ molecule and its derivatives have been extensively studied due to their 

biological and pharmaceutical properties.27-29  However, it has been sparsely used as a source for 

chirality in asymmetric catalysis.  Recently, we have made much progress with TIQ based 

ligands for catalytic asymmetric reactions such as: transfer hydrogenation of prochiral ketones30, 

Henry reaction31, hydrogenation of olefins32, and expanded the potential of these TIQ 

derivatives as organocatalysts for the Diels-Alder reaction33 and allylation of aldehydes.34 

Herein, we report the microwave assisted synthesis and catalytic activity of TIQ-based 

guanidines that promote the asymmetric 1,4-addition of β-ketoesters or malonates to nitro-

olefins in up to 97 % enantiomeric excess (ee).  The catalysts are insensitive to moisture or 

oxygen and are easily prepared from commercially available starting materials in three 

straightforward steps with 90-95 % isolated yield. 

RESULTS AND DISCUSSION 

Catalyst Synthesis  

As a preliminary study we chose the diisopropylphenyl (dipp) amide and 

dicyclohexylcarbodiimide (DCC) functional groups to be used on the TIQ skeleton.  These 

moieties proved to be optimal when used by Feng et al. on pipecolic acid for application as an  
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organocatalyst for Michael addition reactions.25  Catalyst 1 (Scheme 1) was synthesised in 95 % 

overall yield from commercially available tetrahydroisoquinoline amino acid 5 (phenylalanine 

derived). 

 

 

 

 

Scheme 1. Synthetic route to catalysts 1: (i) KHCO3, Cbz-Cl, dioxane/water in situ solvent 

evaporation DIPEA, ethyl chloroformate, diisopropylphenyl amine, dichloromethane,  0 °C-r.t, 

12 hours; (ii) 10 wt.-% Pd/C, H2 (1 atm), methanol, r.t, 1 hour; (iii) Yb(OTf)3, DCC, microwave 

irradiation, toluene, 120 °C, 3hours. 

The secondary amine 5 was protected by performing an in situ reaction with benzyl 

chloroformate (Cbz)30 followed by amide bond formation with diisopropylamine to yield 

compound 6.  Thereafter the amide was deprotected through hydrogenation.  This reaction was 

monitored by TLC until no starting material could be detected.  Upon filtration of the palladium 

on carbon and evaporation of the solvent the product was used directly for the next step.  In 

order to synthesize the guanidine unit, we applied the lithiation and subsequent addition of DCC 

procedure as done with pipecolic and pyrrole acid derivatives.25  However even after several 

attempts, the reaction resulted in many side products and proved difficult to purify.  Next we 

attempted the one pot procedure by Shen et al. which reported the catalytic use of Yb(OTf)3 for 

the addition of carbodiimides to non-chiral amines under solvent free conditions utilising 

conventional heating.35  However, low product yields (40 % isolated) and long reaction times (> 

24 hours) led us to modify this procedure making use of microwave irradiation. Initially the 

reaction was carried out under neat conditions in the microwave (Table 1, entries 1-3).  An 

increase in temperature resulted in higher yields of the product however for reactions greater 

than 100 °C charring of the reagents occurred.  Next we investigated adding a solvent to the 

reaction mixture (Table 1, entries 4-6).  Toluene proved to be optimal in the microwave at 120 

°C for three hours (Table 1, entry 8) with a 95 % isolated yield.  This is one of only few 

procedures employing microwave irradiation for guanidine attachment to chiral auxillaries.36-38 
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Table 1. Optimisation of microwave conditions for guanidine formation on TIQ derivatives. 

Entry Solvent Time (hours) Temperature (°C) Yield (%) 

1 Neat 3 80 20 

2 Neat 6 80 34 

3 Neat 1 100 41 

4 THF 1 80 35 

5 CH3CN 1 80 32 

6 Toluene 1 80 40 

7 Toluene 1 100 55 

8 Toluene 3 120 95 

 

A similar synthetic route (as that of catalyst 1) was followed for 2 except that the triflate salt of 

the final product was treated with Lawesson’s reagent to yield the TIQ thioamide guanidine 

organocatalyst. 

 

 

 

Scheme 2. Synthetic route to catalyst 2: (i) Lawesson’s reagent, toluene, reflux, 12 hours. 

We have previously reported the synthesis of both cis and trans substituted TIQ acid 7a-b.31,34  

The N-Cbz protected acid was reacted with diisopropylamine to furnish the amide 8a-b.  The 

protecting group was then removed and the guanidine moiety was attached following the same 

microwave procedure as that for the unsubstituted organocatalysts to furnish compounds 3-4.  

 

 

 

 

 

Scheme 3. Synthetic route to catalyst 3-4:(i) KHCO3, Cbz-Cl, dioxane/water in situ solvent 

evaporation DIPEA, ethylchloroformate, diisopropylphenyl amine, dichloromethane, 0 °C-r.t, 12 

hours; (ii) 10 wt.-% Pd/C, H2 (1 atm), methanol, r.t, 1 hour; (iii) Yb(OTf)3, DCC, microwave 

irradiation, toluene, 120 °C, 3 hours. 
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Notably, all compounds in Scheme 3 have a second chiral centre and could not be synthesized 

from a phenylalanine derivative since it was essential to employ the activated aromatic group 

7a-b(derived from L-DOPA) to facilitate the cyclization and in order to introduce the additional 

chiral group.  Moreover, for catalysts 3-4, a single diastereomer was observed from proton NMR 

after both coupling of the amide and carbodiimide groups. 

Catalyst Evaluation 

The TIQ guanidine organocatalysts was evaluated on the asymmetric 1,4 Michael addition 

reaction between dimethylmalonate (9) and nitrostyrene (10).  It has been shown in the literature 

that the appropriate choice of solvent was crucial for asymmetric induction.18,25,39-41  Therefore 

catalyst 1 was tested in the most common solvents used for this type of asymmetric reaction 

(Table 2).  The change in solvent had a noteworthy effect on the enantiomeric excess of the 

reaction product 11 (Table 2, entry 6). 

Table 2. Michael addition between dimethylmalonate (9) and nitrostyrene (10) with catalyst 1 at 

0 °C. 
 
 
 
 
 

 

Entry Solventa Yield (%)b ee (%)c,d 

1 Et2O 93 21(R) 

2 EtOAc 90 22(R) 

3 THF 92 23(R) 

4 DCM 90 5(R) 

5 MeOH 99 2(R) 

6 Toluene 99 45(R) 

7 CH3CN 95 3(R) 
[a]Reactions were carried out by using 10 mol-% of the organocatalysts 1 for 12 hours. [b]Isolated yield after column 

chromatography.[c]Determined by chiral HPLC.  [d]The configuration of the chiral product was established by the 

comparison of their HPLC retention times with the literature data. 

Although moderate selectivity was observed, there was excellent reactivity to the Michael 

addition product 11.  Encouraged by these results we set out to modify our catalyst in the hope 

of increasing the enantiomeric excess.  Feng and co-workers have reported that the amide 

hydrogen was imperative for both selectivity and conversion with their pipecolic 

O O

O O NO2
+

NO2
OO

O O

*

9 10 11



66 

organocatalysts.25  It has been shown in literature, for some organocatalysts in which the amide 

group played a significant role, that replacement of this group with a more acidic thioamide 

functionality could be beneficial.42-44  Hence catalyst 2 was synthesised; however, this change 

decreased both selectivity and yield of the reaction product (Table 3, entry 2).  This result 

indicated that the amide hydrogen was also important in our system for conversion and 

asymmetric induction.   

Table 3. Michael addition between dimethylmalonate (9) and nitrostyrene (10) with catalysts 1-4 

in toluene at 0 °C. 
 

Entry Catalysta Yield (%)b ee (%)c,d 

1 1 99 45 

2 2 90 20 

3 3 91 2 

4 4 95 31 
[a]Reactions were carried out by using 10 mol-% of the organocatalyst for 12 hours.  [b]Isolated yield after column 

chromatography.  [c]Determined by chiral HPLC.  [d]The configuration of the chiral product was established by the 

comparison of their HPLC retention times with the literature data.   

Next we looked at the X-ray crystal structure of catalyst 1 for further information on how the 

catalyst could be modified in order to enhance the enantiomeric excess as illustrated from the 

OLEX2 generated Figure 3. 

 

Figure 3. OLEX245generated drawing of the X-ray structure of catalyst 1as the triflate 

salt(CCDC 860511). 

It is evident from the crystal structures that the N-containing six membered ring assumes a half 

boat conformation with the guanidine moiety tilted downwards.  It is synthetically possible to 

introduce a phenyl ring at the C1 atom in either the cis or trans position in hope that this would 

have an effect on the chiral induction of the catalyst.  Derivatives 3-4 were synthesised and 
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tested, however marginal difference in enantiomeric excess was observed (Table 3, entries 3-4).  

It was optimal to proceed with catalyst 1 and toluene as the solvent of choice.   

This new TIQ based organocatalyst 1 was extended by applying it to other malonates or β-

ketoesters and nitrostyrene (Table 4, entries 1-6). 

Table 4. Michael addition between different malonates or β-ketoesters and nitrostyrene (10) with 

catalyst 1 at 0 °C in toluene. 
 

Entry Substratea Yield (%)b ee (%)c,d Syn:Antic 

1 
O O

O O

 
99 45(R) - 

2 
O O

O O

 
99 50(R) - 

3 
O O

O O

 
99 68(S) - 

4 
O

O O

 
99 63 99:1 

5 
O

O O

 
99 78 99:1 

6 
O

O O

 
99 82d 99:1 

[a]Reactions were carried out by using 10 mol % of the organocatalyst 1 for 12 hours.[b]Isolated yield after column 

chromatography.[c]  Determined by chiral HPLC.  [d]The configuration of the chiral products was established by the 

comparison of their HPLC retention times with the literature data.[d]Reaction carried out at -15 °C, after 20 hours 

(further decrease of the temperature did not increase the selectivity). 

All of the reactions proceeded with quantitative yields and reasonable increase in selectivities 

was observed.  This illustrated that catalyst 1 could be applied to both linear and cyclic esters.  

The cyclic esters gave rise to chiral products containing an additional stereogenic centre with 

excellent diasteromeric ratios (Table 4, entries 4-6).  The tert-butyl 2-

oxocyclopentanecarboxylate ester gave the highest selectivity (Table 4, entry 6) at -15 °C.  It 

was then decided to vary the nitro-olefin for both diisopropyl malonate and tert-butyl 2-

oxocyclopentanecarboxylate ester (Table 5). 
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Table 5. Michael addition between diisopropyl malonate or tert-butyl 2-

oxocyclopentanecarboxylate ester and different nitrostyrene derivatives with catalyst 1 at -15 °C 

in toluene. 
 
 
 

Entry Substratea  R Yield (%)b ee (%)c,d Syn:Antic 

1 
O O

O O

 
 H 99 73(S) - 

2   Me 94 92(S)e - 

3   NO2 92 77(S)e - 

4   OMe 85 97(S)e - 

5 
O

O O

 
 H 99 82 99:1 

6   Me 99 71 99:1 

7   NO2 95 72 96:4 

8   OMe 82 60 97:3 

[a]Reactions were carried out by using 10 mol-% of the organocatalyst 1 after 20 hours.  [b]Isolated yield after 

column chromatography.  [c]Determined by chiral HPLC.  [d]The configuration of the chiral product was established 

by the comparison of their HPLC retention times with the literature data.  [e]The absolute configuration was 

arbitrarily assigned based on the sign of the optical rotation for known diisopropyl 2-(2-nitro-1-

phenylethyl)malonate (Entry 1). 

Nitro-olefins including electron-withdrawing and -donating group substituents on the aryl ring 

of nitrostyrene were employed with both linear and cyclic esters (Table 5).  All substrates 

displayed very good conversions.  A decrease in activity for both ester systems was observed 

when 4-OMe was used as the substituent on the nitro-olefin suggesting electronics plays a role 

in this substrate’s reactivity.  For linear diisopropyl malonate substrate, in general, an increase of 

electron density from the 4- position of the aryl ring on the nitro-olefin resulted in an increase in 

stereoselectivity.  However this effect appears less pronounced when the tert-butyl 2-

oxocyclopentanecarboxylate ester was employed.  The best result observed from all of the 

substrates screened was with diisopropyl malonate and 4-OMe-nitrosytrene and (85 % yield, 97 

% ee). 

NO2

R
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CONCLUSIONS 

We have identified a novel class of TIQ based guanidine organocatalysts that promotes the 

enantioselective Michael addition of malonates and β-ketoesters with nitro-olefins. The catalysts 

are easily prepared from commercially available substrates and are insensitive to moisture or 

oxygen.  Furthermore, a new microwave assisted procedure of introducing the guanidine unit on 

to amino amide derivatives is reported.  The chiral products were obtained with quantitative 

chemical efficiency up to 99 % yield and excellent enantioselectivity up to 97 % ee.  Further 

studies of this class of organocatalysts are ongoing in our laboratory.   

EXPERIMENTAL SECTION 

Reagents and solvents were purchased from Aldrich, Merck or Fluka suppliers.  All solvents 

were dried prior to use according to standard procedures.  All NMR spectra were recorded on a 

Bruker AVANCE III 400 MHz instrument. Chemical shifts are expressed in ppm relative to 

CDCl3 and coupling constants are reported in Hz.  NMR spectra were obtained at room 

temperature.  Thin layer chromatography (TLC) was performed using Merck Kieselgel 60 F254.  

Crude compounds were purified with column chromatography using Silica gel 60 mesh. All 

solvents were dried using standard procedures.  All IR spectra were recorded on a Perkin Elmer 

spectrum 100 instrument with a universal ATR attachment. Optical rotations were recorded on a 

Perkin Elmer Polarimeter.  Microwave assisted reactions were carried out on a CEM Discover 

SP system.All melting points are uncorrected.  High resolution mass spectrometric data was 

obtained using a Bruker microTOF-Q II instrument.  The enantiomeric excess of the chiral 

products were determined on a Shimadzu Prominence HPLC with either a Chiralpak IA or IB 

column. 

Representative procedure for the Cbz protection and synthesis of TIQ based amides 

To a solution of TIQ carboxylic acid (1.0 g) in dioxane (20 mL) and water (10 mL) at 0 °C a 

solution of potassium hydrogen carbonate (5.0 eq.) was added dropwise for 15 minutes followed 

by addition of Cbz-Cl (1.1 eq.). The solution was stirred for 1.5 hours at 0 °C and then at 

ambient temperature for a further 1.5 hours. The reaction was monitored with LC-MS (by 

neutralizing the reaction mixture with 10 % HCl and extraction with ethyl acetate). The solvent 

was evaporated under reduced pressure and dried under high vacuum. The solid N-Cbz TIQ acid 

product (2.0 g) was dissolved in dichloromethane (20 mL), N,N-diisopropylethylamine (DIPEA, 

1.5 eq.) and ethyl chloroformate (1.5 eq.) was added at 0 °C.  After 1 hour, the diisopropylamine 

(1.1 eq.) was added and stirred at ambient temperature for 18 h.  Completion of the reaction was 



70 

monitored by TLC.  The reaction mixture was washed with saturated sodium hydrogen 

carbonate (20 mL) followed by brine (10 mL).  The organic layer was separated, dried over 

anhydrous magnesium sulfate and purified through using silca gel column chromatography 

using hexane/ethyl acetate as themobile phase. 

Representative procedure for deprotection of Cbz and guanidine formation 

A solution of the N-Cbz protected TIQ amide (1.0 g) in MeOH (20 mL) was added to a 

suspension of activated 10 wt.-% Pd/C (250 mg) in MeOH (5 mL).  The mixture was supplied 

with H2 under atmospheric pressure and stirred at room temperature for 1 hour. The reaction was 

monitored with TLC in hexane/ethyl acetate as the mobile phase. The Pd/C was filtered through 

a celite pad and washed with methanol (20 mL). The filtrate was then evaporated under reduced 

pressure affording the deprotected TIQ amide derivatives.  In a 10 mL microwave vessel, the 

TIQ amide (300 mg) was dissolved in toluene (5 mL) and Yb(OTf)3 (0.4 eq.) and DCC (1.1 eq.) 

was added.  The vessel was then placed in the microwave reactor and heated to 120 °C for 3 

hours.  The toluene was then evaporated under reduced pressure and the residue passed through 

a short plug of silica with 50:50 hexane/ethyl acetate (100 mL) as the mobile phase.  The solvent 

was then evaporated under reduced pressure and dissolved in a minimum amount of ethyl 

acetate and left in the refrigerator overnight.  This mixture was then filtered and the filtrate 

evaporated under reduced pressure to yield a residue that was purified through using silica gel 

column chromatography using hexane/ethyl acetate as the mobile phase.  The white foam 

product (triflate salt) was dissolved in dichloromethane and an equal amount of saturated 

aqueous NaOH was added in a separation flask which was shaken for 2 minutes.  The organic 

phase was dried over anhydrous MgSO4 and the solvent evaporated under reduced pressure to 

yield solids for all TIQ guanidine organocatalysts. 

(S)-benzyl3-(2,6-diisopropylphenylcarbamoyl)-3,4-dihydroisoquinoline-2(1H)-carboxylate 

(6) 

The crude product was purified by column chromatography (30:70 EtOAc/Hexane, Rf 0.40) to 

afford the product (51 %) as a yellow solid.  Melting point 60-62 °C.  [α]20
D-11.32 (c 0.53 in  

CHCl3).  (NMR spectra are reported for a mixture of two rotamers due to the Cbz group).30,46  
1H NMR (400 MHz, CDCl3) δ 7.52 – 6.93 (m, 12H), 5.58 – 5.00 (m, 3H), 4.93 – 4.52 (m, 2H), 

3.53 (m, 1H), 3.12 (m, 1H), 1.22 (m, 2H), 0.88 (m, 12H).13C NMR (101 MHz, CDCl3) ): δ 

170.6, 146.1, 132.6, 128.7, 128.4, 127.9, 123.2, 68.2, 56.6, 45.9, 32.2, 28.2, 23.6;  IR νmax/cm-1 

(neat): 3280, 1643, 1547, 1453, 1222, 1029, 963, 755, 694;IR (neat) : 3280, 1643, 1547, 1453, 

1222, 1029, 963, 755, 694cm-1.  HRMS calculated for C30H35N2O3 [M + H]1+471.2642, found 

471.2639. 
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(1S,3S)-benzyl3-(2,6-diisopropylphenylcarbamoyl)-6,7-dimethoxy-1-phenyl-3,4-

dihydroisoquinoline-2-(1H)-carboxylate (8a) 

The crude product was purified by column chromatography (50:50 EtOAc/Hexane, Rf 0.55) to 

afford the product (55 %) as a yellow oil.[α]20
D-5.26 (c 0.19 in  CHCl3).  (NMR spectra are 

reported for a mixture of two rotamers).  1H NMR (400 MHz, CDCl3) δ 7.39 – 6.69 (m, 16), 

6.63 (s, 1H), 6.30-6.11 (s, 0.5H), 5.49 (m, 0.5H), 5.26 – 4.85 (m, 2.3H), 4.52 – 4.28 (m, 0.5H), 

3.92 – 3.68 (m, 8H), 3.32 – 2.75 (m, 2H), 1.35 – 1.01 (m, 12H).13C NMR (101 MHz, CDCl3) δ 

171.36, 156,13,  148.98, 148.90, 146.40, 141.01, 135.71, 129.46, 128.72, 128.65, 128.58, 

127.85, 127.82, 126.95, 125.71, 125.37, 125.21, 123.45, 123.34, 123.26, 110.87,110.01, 110.46, 

68.35, 68.02, 60.11, 59.55, 58.45, 57.88, 56.15, 56.09, 55.77, 53.65, 31.00, 27.99, 23.93, 23.58, 

22.95.IR (neat) : 3298, 2962, 1688, 1513, 1224, 698 cm-1.  HRMS calculated for C24H25N2O  [M 

+ H]1+607.3166, found 607.3215. 

(1R,3S)-benzyl3-(2,6-diisopropylphenylcarbamoyl)-6,7-dimethoxy-1-phenyl-3,4-

dihydroisoquinoline-2-(1H)-carboxylate (8b) 

The crude product was purified by column chromatography (50:50 EtOAc/Hexane, Rf 0.55) to 

afford the product (58 %) as a yellow oil.  [α]20
D+8.19 (c  0.23 in CHCl3).  (NMR spectra are 

reported for a mixture of two rotamers).  1H NMR (400 MHz, CDCl3) δ 7.39 – 6.69 (m, 16), 

6.63 (s, 1H), 6.30-6.11 (s, 0.5H), 5.49 (m, 0.5H), 5.26 – 4.85 (m, 2.3H), 4.52 – 4.28 (m, 0.5H), 

3.92 – 3.68 (m, 8H), 3.32 – 2.75 (m, 2H), 1.35 – 1.01 (m, 12H).13C NMR (101 MHz, CDCl3) δ 

171.36, 156,13,  148.98, 148.90, 146.40, 141.01, 135.71, 129.46, 128.72, 128.65, 128.58, 

127.85, 127.82, 126.95, 125.71, 125.37, 125.21, 123.45, 123.34, 123.26, 110.87,110.01, 110.46, 

68.35, 68.02, 60.11, 59.55, 58.45, 57.88, 56.15, 56.09, 55.77, 53.65, 31.00, 27.99, 23.93, 23.58, 

22.95. 

(S,E)-2-(N,N'-dicyclohexylcarbamimidoyl)-N-(2,6-diisopropylphenyl)-1,2,3,4-

tetrahydroisoquinoline-3-carboxamide(1) 

The crude product was purified by column chromatography (50:50 EtOAc/Hexane, Rf 0.20) to 

afford the product (95 %) as a whitesolid.  Melting point 82-83°C.[α]20
D -70.71 (c 0.66 in 

CHCl3).  1H NMR (400 MHz, CDCl3) δ 10.53 (s, 1H), 7.32 – 6.72 (m, 8H), 4.98 (s, 1H), 4.43 (q, 

J = 16.5 Hz, 2H), 3.42 (t, J = 13.3 Hz, 1H), 2.88 (m, 5H), 1.92 – 1.32 (m, 12H), 1.32 – 0.55 (m, 

20H).13C NMR (101 MHz, CDCl3) δ 170.25, 158.55, 145.84, 131.69, 131.31, 130.08, 128.48, 

128.36, 127.98, 127.48, 126.04, 123.37, 122.01, 118.83, 77.36, 77.04, 76.72, 57.54, 55.56, 

48.89, 33.52, 33.20, 32.43, 29.70, 28.75, 28.49, 25.08, 24.81, 23.62.IR (neat) : 2926, 2853, 

1613, 799cm-1.  HRMS calculated C35H51N4O  [M + H]1+543.4059, found 543.4057. 
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(S,E)-2-(N,N'-dicyclohexylcarbamimidoyl)-N-(2,6-diisopropylphenyl)-1,2,3,4-

tetrahydroisoquinoline-3-carbothioamide (2) 

The triflate salt (white foam) of compound 1 (0.1g, 0.3 mmol) was dissolved in dry toluene (20 

mL) and Lawesson’s reagent (0.5 eq., 0.06 g) was added under a nitrogen atmosphere.  The 

mixture was gently refluxed under nitrogen for 12 hours.  Thereafter the solvent was evaporated 

under reduced pressure to yield a residue that was purified through using silca gel column 

chromatography, (50:50 EtOAc/Hexane, Rf 0.15) to afford the product (92 %) as a yellow solid.  

Melting point 100-102 °C.  [α]20
D -100.00 (c 0.20 in CHCl3).  1H NMR (400 MHz, CDCl3) δ 

7.44 – 6.67 (m, 8H), 5.15 (s, 1H), 4.37 (s, 2H), 4.00 (d, J = 16.2 Hz, 1H), 3.18 – 2.67 (m, 6H), 

2.32 – 1.95 (m, 4H), 1.61 (t, J = 42.6 Hz, 10H), 1.36 – 0.84 (m, 18H).13C NMR (101 MHz, 

CDCl3) δ 143.91, 132.77, 128.96, 127.25, 126.92, 125.36, 125.14, 123.40, 123.12, 77.33,  59.73, 

54.73, 46.85, 35.35, 34.17, 31.93, 30.93, 28.73, 28.52, 25.42, 25.06, 24.88, 24.43, 24.34, 23.57, 

23.13.IR (neat) : 3302, 2924, 1651, 1651, 1494, 743, 698 cm-1.  HRMS calculated for 

C35H51N4S  [M + H]1+ 559.3829, found 559.3840. 

(1S,3S)-2-((E)-N,N'-dicyclohexylcarbamimidoyl)-N-(2,6-diisopropylphenyl)-6,7-dimethoxy-

1-phenyl-1,2,3,4-tetrahydroisoquinoline-3-carboxamide (3) 

The crude product was purified by column chromatography (50:50 EtOAc/Hexane, Rf 0.20) to 

afford the product (90 %) as a white solid.  Melting point 100-103 °C.  [α]20
D -44.09 (c 0.93 in 

CHCl3).  1H NMR (400 MHz, CDCl3) δ 8.92 (s, 1H), 7.29 – 6.88 (m, 9H), 6.60 (s, 1H), 6.33 (s, 

1H), 6.16 (s, 1H), 4.58 (s, 1H), 3.85 – 3.46 (m, 7H), 3.34 (d, J = 10.0 Hz, 2H), 3.13 (s, 1H), 2.80 

(d, J = 32.8 Hz, 2H), 1.70 – 0.86 (m, 16H).13C NMR (101 MHz, CDCl3) δ 173.08, 153.99, 

147.87, 147.54, 146.29, 146.13, 145.70, 131.45, 129.59, 129.17, 127.81, 127.69, 126.66, 124.67, 

123.12, 111.56, 110.76, 59.94, 58.93, 55.79, 55.68, 53.36, 49.10, 36.34, 34.50, 34.05, 33.96, 

32.48, 28.67, 28.09, 25.98, 25.74, 25.63, 25.38, 24.95, 24.78, 24.07, 23.35, 22.74.IR (neat) : 

3349, 2926, 2852, 1629, 1254, 699 cm-1.  HRMS calculated for C43H59N4O3  [M + H]1+ 

679.4582, found 679.4564. 

(1R,3S)-2-((E)-N,N'-dicyclohexylcarbamimidoyl)-N-(2,6-diisopropylphenyl)-6,7-

dimethoxy-1-phenyl-1,2,3,4-tetrahydroisoquinoline-3-carboxamide (4) 

The crude product was purified by column chromatography (50:50 EtOAc/Hexane, Rf 0.20) to 

afford the product (95 %) as a white solid.1H NMR (400 MHz, CDCl3) δ 8.93 (s, 1H), 7.34 – 

6.82 (m, 9H), 6.60 (s, 1H), 6.33 (s, 1H), 6.18 (s, 1H), 4.59 (s, 1H), 3.87 – 3.43 (m, 7H), 3.29 (d, 

J = 63.6 Hz, 2H), 3.13 (s, 1H), 2.80 (d, J = 20.6 Hz, 2H), 1.59 – 0.86 (m, 17H).13C NMR (101 

MHz, CDCl3) δ 173.01, 154.06, 147.90, 147.59, 146.30, 146.12, 145.65, 131.44, 129.53, 129.12, 

128.23, 127.82, 127.75, 126.72, 124.62, 124.47, 123.98, 123.45, 123.13, 119.09, 111.55, 110.75, 
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59.99, 58.98, 55.80, 55.71, 53.39, 36.29, 34.47, 34.02, 32.50, 31.93, 31.44, 30.20, 28.66, 28.10, 

25.95, 25.70, 25.36, 24.96, 24.75, 24.03, 23.40. 

General procedure for Micheal addition reactions 

To a 10 mL microwave vial, the catalyst (0.02 mmol) followed bytoluene(1.0 mL) and the nitro-

olefin (0.20 mmol) was added, thereafter the malonate (0.20mmol.) was added.  The reaction 

was kept at the specified temperature while stirring for 12 hours (or some cases 20 hours). The 

toluene was directly evaporated under vaccum and resulting residue was purified by silica gel 

chromatography (40:60 Et2O/Hexane) and analyzed as described below.  NMR data and 

retention times for all chiral products were in agreement to the racemic samples or previously 

reported literature data. Chiral products are listed in order of how it has been reported in the 

Tables 2-5. 

(R)-dimethyl 2-(2-nitro-1-phenylethyl)malonate 
1H NMR (400 MHz, CDCl3): δ 7.19-7.38 (5H, m),4.92 (1H, dd, J = 13.0, 5.7 Hz), 4.89 (1H, dd, 

J = 13.0, 8.6 Hz), 4.25 (1H, td, J = 8.6, 5.7 Hz), 3.87 (1H, d, J = 8.6 Hz), 3.77 (3H, s), 3.56 (3H, 

s).  The ee was determined by HPLC analysis using a chiralpak IA column, hexane/2-propanol 

90:10, flow rate = 0.9 mL/min 210 nm (major enantiomer 15.2 min and minor enantiomer 20.0 

min). 

(R)-diethyl 2-(2-nitro-1-phenylethyl)malonate 
1H NMR (400 MHz, CDCl3): δ 7.21-7.36 (5H, m), 4.95 (1H, dd,  J = 13.1, 5.3 Hz), 4.87 (2H, dd, 

J = 13.1, 8.1 Hz), 4.17-4.34 (3H, m), 4.01 (2H, q, J = 7.2 Hz), 3.83 (1H, d, J = 9.5 Hz), 1.27 (3H, 

t, J = 1.2 1.05 Hz), (3H, t, J = 7.2 Hz).  The ee was determined by HPLC analysis using a 

chiralpak IA column, hexane/2-propanol 90:10, flow rate = 0.9 mL/min 210 nm (major 

enantiomer 12.8 min and minor enantiomer 16.8 min). 

(R)-diisopropyl 2-(2-nitro-1-phenylethyl)malonate 
1H NMR (400 MHz, CDCl3): δ 7.21-7.35 (5H, m), 5.09 (1H, septet, J = 6.2 Hz), 4.93 (1H, dd, J 

= 12.7, 9.5 Hz), 4.84 (1H, dd, J = 12.7, 9.5 Hz), 4.82 (1H, septet, J = 6.2 Hz), 4.21 (1H, td, J = 

9.5, 4.9 Hz), 3.76 (1H, d, J = 9.5 Hz), 1.24 (6H, d, J = 6.2 Hz), 1.07 (3H, d, J = 6.2 Hz), 1.02 

(3H, d, J = 6.2 Hz).  The ee was determined by HPLC analysis using a chiralpak IA column, 

hexane/2-propanol 90:10, flow rate = 0.9 mL/min 210 nm (major enantiomer 11.4 min and 

minor enantiomer 24.0 min). 

ethyl 1-(2-nitro-1-phenylethyl)-2-oxocyclopentanecarboxylate 
1H NMR (400 MHz, CDCl3): δ 7.22-7.32 (m, 5H), 4.75-4.87 (m, 2H), 4.11-4.20 (m,3H), 4.02 (q, 

J=6.8 Hz, 1H), 3.83 (d, J=9.6 Hz, 1H), 1.25 (t, J=7.2 Hz, 3H), 1.05 (t, J=7.2 Hz,3H).  The ee was 
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determined by HPLC analysis using a chiralpak IB column, hexane/2-propanol 95:5, flow rate = 

0.9 mL/min 210 nm (syn; major enantiomer11.9 min and minor enantiomer 24.5 min). 

tert-butyl 1-(2-nitro-1-phenylethyl)-2-oxocyclopentanecarboxylate 
1H NMR (400 MHz, CDCl3): δ = 7.31-7.24 (m, 5 H), 5.16 (dd, J = 13.44, 3.76 Hz, 1  H), 4.98 

(dd, J = 13.28, 11.16 Hz, 1  H), 4.04 (dd, J = 11.12, 3.72 Hz, 1 H), 2.38-2.25 (m, 2 H), 2.02-1.74 

(m, 4 H), 1.44 (s, 9 H) ppm.  The ee was determined by HPLC analysis using a chiralpak IA 

column, hexane/2-propanol 99:1, flow rate = 0.9 mL/min 210 nm (syn; major enantiomer12.8 

min and minor enantiomer 15.1 min). 

diisopropyl 2-(2-nitro-1-p-tolylethyl)malonate 
1H NMR (400 MHz, CDCl3): δ = 7.19 (s, 1H), 7.01 (m, 3H), 5.01 (q, J = 6.64, 12.611,1H), 4.80 

(m, , 3H), 4.09 (m, 1H), 3.66 (d, J = 8.77, 1H), 2.10 (s, 3H), 1.17 (m, 6H), 0.98 (m, 3H).  13C 

NMR (101 MHz, CDCl3) δ = 175.1, 133.2, 129.5, 127.9, 78.10, 69.8, 69.4, 55.3, 42.5, 21.6, 

21.4, 21.3, 21.2.  The ee was determined by HPLC analysis using a chiralpak IA column, 

hexane/2-propanol 90:10, flow rate = 0.9 mL/min 210 nm (major enantiomer 24.9 min and 

minor enantiomer 23.5 min). 

diisopropyl 2-(2-nitro-1-(4-nitrophenyl)ethyl)malonate 
1H NMR (400 MHz, CDCl3): δ = 8.75 (d, J = 8.75 Hz, 2H), 7.48 (d, J = 8.75 Hz, 2H), 5.10 (q, J 

= 6.06, 12.12 Hz, 1H), 4.92 (m, 3H), 4.35 (m, 1H), 3.78 9d, J= 9.3 Hz, 1H), 1.26 (m, 6H), 1.10 

(m, 6H).  13C NMR (101 MHz, CDCl3) δ = 166.0, 143.9, 137.4, 129.5, 124.2, 70.4, 70.2, 54.6, 

42.5, 21.5, 21.4,21.36, 21.33.  The ee was determined by HPLC analysis using a chiralpak IA 

column, hexane/2-propanol 90:10, flow rate = 0.9 mL/min 210 nm (major enantiomer 18.6 min 

and minor enantiomer 17.4 min). 

diisopropyl 2-(1-(4-methoxyphenyl)-2-nitroethyl)malonate 
1H NMR (400 MHz, CDCl3): δ = 7.08 (d, J = 8.36 Hz, 2H), 6.75 (d, J = 8.36 Hz, 2H), 5.10 (q, J 

= 7.76, 13.5 Hz, 1H), 4.77 (m, 3H), 4.08 (m, 1H), 3.69 (s, 3H), 3.65( d, J= 9.52 Hz, 1H), 1.16 

(m, 6H), 0.99 (m, 6H).  13C NMR (101 MHz, CDCl3) δ = 164.5, 142.1, 136.6, 129.3, 114,26, 

78.2, 69.8, 69.5, 55.3, 55.2, 21.6, 21.4, 21.34, 21.32.  The ee was determined by HPLC analysis 

using a chiralpak IA column, hexane/2-propanol 90:10, flow rate = 0.9 mL/min 210 nm (major 

enantiomer 11.1 min and minor enantiomer 9.7 min). 

tert-butyl 1-(2-nitro-1-p-tolylethyl)-2-oxocyclopentanecarboxylate 
1H NMR (400 MHz, CDCl3): δ = 7.18-7.16 (m, 2 H), 7.12-7.10 (m, 2 H), 5.16 (dd, J = 13.28, 

3.76 Hz, 1 H), 4.97 (dd, J = 13.32, 11.20 Hz, 1 H), 4.03 (dd, J = 11.16, 3.76 Hz, 1 H), 2.32 (s, 3 

H), 2.38-2.29 (m, 3 H), 2.02-1.77 (m, 4 H), 1.47 (s, 9 H) ppm.  The ee was determined by HPLC 
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analysis using a chiralpak IB column, hexane/2-propanol 98:2, flow rate = 1.0 mL/min 210 nm 

(syn; major enantiomer 12.0 min and minor enantiomer 16.9 min). 

tert-butyl1-(2-nitro-1-(4-nitrophenyl)ethyl)-2-oxocyclopentanecarboxylate 
1H NMR (400 MHz, CDCl3): δ = 8.19-8.17 (m, 2 H), 7.59-7.55 (m, 2 H), 5.23 (dd, J = 13.84, 

3.56 Hz, 1 H), 5.02 (dd, J = 13.84, 11.20 Hz, 1 H), 4.09 (dd,  J  = 11.20, 3.56 Hz, 1 H), 2.49-

2.40 (m, 1 H), 2.34-2.25 (m, 1 H), 2.14-1.84 (m, 4 H), 1.44 (s, 9 H) ppm.  The ee was 

determined by HPLC analysis using a chiralpak IB column, hexane/2-propanol 95:5, flow rate = 

1.0 mL/min 254 nm (syn; major enantiomer 22.9 min and minor enantiomer 49.5 min). 

tert-butyl1-(1-(4-methoxyphenyl)-2-nitroethyl)-2-oxocyclopentanecarboxylate 
1H NMR (400 MHz, CDCl3): δ = 7.23-7.21 (m, 2 H), 6.86-6.82 (m, 2 H), 5.14 (dd, J = 13.20, 

3.80 Hz, 1 H), 4.95 (dd, J = 13.20, 11.28 Hz, 1 H), 3.93 (dd, J = 13.20, 3.80 Hz, 1 H), 3.79 (s, 3 

H), 2.39-2.29 (m, 2 H), 2.02-1.77 (m, 4 H), 1.47 (s, 9 H) ppm.  The ee was determined by HPLC 

analysis using a chiralpak IB column, hexane/2-propanol 95:5, flow rate = 1.0 mL/min 210 nm 

(syn; major enantiomer 9.2 min and minor enantiomer 10.1 min). 
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CHAPTER	
  5	
  

CRYSTALLOGRAPHIC	
  PAPERS	
  
DESCRIPTION 

This chapter is a collection of all X-ray crystal structures that were published from novel 

compounds synthesized pertaining to Chapters 2-4 and were published in either journal i.e Acta 

Crystallographica Section C or Acta Crystallographica Section E.  It must be noted that only the 

title page and comment section of each paper is included.  For further supplementary 

information on these papers please refer to the copies that are on the cd accompanying this 

thesis.  This chapters contains 15 published crystal structures (excluding the 2 crystals currently 

submitted) while Chapters 3-4 contain 3 other X-ray crystal structures. 
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CHAPTER	
  6	
  
BOOK CHAPTER  

This is a book chapter that was written in collaboration with Prof. Per Arvidsson (Astrazeneca, Sweden) 

and Dr Partha Bose (University of Uppsala, Sweden) on Asymmetric Organocatalytic Cyclopropane 

Formation for the Elsevier book entitled Comprehensive Chirality and is currently with the editors in its 

final proof stage after acceptance. 

I (Tricia Naicker) wrote the subsections entitled Asymmetric cyclopropanation reactions through 

organocatalytic hydrogen bond activation of electron-deficient olefin derivatives, Asymmetric 

cyclopropanation reactions through organocatalytic activation of ylides and Organocatalytic asymmetric 

cyclopropanation through chiral phase transfer catalysis (6.11.4-6.11.6). 
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CHAPTER	
  7	
  
SUMMARY 

The development of novel chiral organocatalysts based on the tetrahydroisoquinoline backbone 

and their evaluation on asymmetric reactions was successfully achieved.  Three organocatalytic 

modes of activation have been investigated for C-C bond forming asymmetric reactions.  For the 

first time organocatalysts bearing a secondary nitrogen within a cyclohexane ring were 

evaluated in the asymmetric Diels–Alder reaction.  These catalysts were tested over a range of 

dienes and dienophiles and displayed promising chemical conversions of up to 100 % with up to 

64 % ee when triflic acid was employed as the cocatalyst.  Density functional theory 

computational studies and 2D NMR spectroscopy were used to determine the structure of the 

intermediate iminium ion formed between the most efficient catalyst and cinnamaldehyde.  The 

reaction profile for each of the four possibilities in this reaction were calculated and it was found 

that the iminium intermediate leading to the major product is higher in energy but kinetically 

preferred.  The activation energies of all possible reaction paths were calculated and the results 

correlated with the observed products.  These experiments revealed that the presence of both 

(E)- and (Z)-isomers of the cinnamaldehyde were contributing factors for the low 

enantioselectivity of the reaction products.  Thereafter, a series of novel tetrahydroisoquinoline 

chiral N-oxide organocatalysts and their evaluation in the asymmetric allylation reaction of 

aromatic and α-β-unsaturated aldehydes with allyltrichlorosilane was carried out.  The chiral 

homoallyl products were obtained with good chemical efficiency (up to 93 % yield) and high 

enantioselectivity (up to 91 % ee) under mild reaction conditions (23 °C).  Lastly, the simple and 

practical syntheses of new tetrahydroisquinoline guanidine organocatalysts and their evaluation 

in the asymmetric Michael addition reaction of malonates and β-ketoesters with nitro-olefins 

were performed.  In addition, a novel microwave assisted procedure of introducing the guanidine 

unit onto amino amide derivatives is reported.  The chiral products were obtained with 

quantitative chemical efficiency (up to 99 % yield) and excellent enantioselectivity (up to 97 % 

ee).  Furthermore, 18 X-ray crystal structures pertaining to Chapters 2-4 were published from 

this project. 

 


