
Studies of Linear and Nonlinear A
ousti
 Waves in Spa
e PlasmasThomas K. Baluku
Submitted in ful�lment of the a
ademi
 requirementsfor the degree of Do
tor of Philosophyin the S
hool of Physi
sUniversity of KwaZulu-Natal,Durban

January, 2011



Prefa
e
The theoreti
al work des
ribed in this thesis was 
arried out in the S
hool of Physi
s, Uni-versity of KwaZulu-Natal, Durban, from August 2007 to June 2010, under the supervisionof Professor Manfred A. Hellberg and Prof. Ri
hard L. Ma
e.These studies represent original work by the author and have not otherwise been sub-mitted in any form for any degree or diploma to any tertiary institution. Where use hasbeen made of the work of others it is duly a
knowledged in the text.

i



De
laration 1 � Plagiarism
I, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , de
lare that1. The resear
h reported in this thesis, ex
ept where otherwise indi
ated, is my originalresear
h.2. This thesis has not been submitted for any degree or examination at any otheruniversity.3. This thesis does not 
ontain other persons' data, pi
tures, graphs or other informa-tion, unless spe
i�
ally a
knowledged as being sour
ed from other persons.4. This thesis does not 
ontain other persons' writing, unless spe
i�
ally a
knowledgedas being sour
ed from other resear
hers. Where other written sour
es have beenquoted, then:(a) Their words have been re-written but the general information attributed tothem has been referen
ed.(b) Where their exa
t words have been used, then their writing has been pla
ed initali
s and inside quotation marks, and referen
ed.5. This thesis does not 
ontain text, graphi
s or tables 
opied and pasted from theInternet, unless spe
i�
ally a
knowledged, and the sour
e being detailed in the thesisand in the Referen
es se
tions ii



Signed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

iii



De
laration 2 � Publi
ations
The resear
h work presented in this thesis in
ludes results in three arti
les (as a leadingauthor) that have been published in peer-review journals (with double asterisks) and threearti
les that are either in advan
ed stages to be submitted or have been submitted forpubli
ation in various journals (with an asterisk). Besides, I have also been involved intwo other published arti
les (as a third author).

∗∗Publi
ation 1: T. K. Baluku and M. A. Hellberg, Dust a
ousti
 solitons in plasmaswith kappa-distributed ele
trons and/or ions, Physi
s of Plasmas, 15, 123705 (2008)Publi
ation 2: M. A. Hellberg, R. L. Ma
e, T. K. Baluku, I. Kourakis and N. S. Saini,Comment on �Mathemati
al and physi
al aspe
ts of Kappa velo
ity distribution�[Phys. Plasmas 14, 110702 (2007)℄, Physi
s of Plasmas, 16, 094701 (2009)
∗∗Publi
ation 3: T. K. Baluku, M. A. Hellberg, I. Kourakis and S. N. Saini, Dust iona
ousti
 solitons in a plasma with kappa distributed ele
trons, Physi
s of Plasmas,17, 053702 (2010)
∗∗Publi
ation 4: T. K. Baluku, M. A. Hellberg and F. Verheest, New light on iona
ousti
 solitons in a plasma with two temperature ele
trons, Europhysi
s Letters91, 15001 (2010)

iv



In preparation:Publi
ation 5: F. Verheest, M. A. Hellberg and T. K. Baluku, Finite amplitudeele
trostati
 solitons at the a
ousti
 speed, Journal of Plasma Physi
s, submitted(2010)
∗Publi
ation 6: T. K. Baluku, M. A. Hellberg and R. L. Ma
e, Ele
tron-a
ousti
waves in double-kappa plasmas: Appli
ation to Saturn's magnetosphere, Journal ofGeophysi
al Resear
h, submitted (2010)
∗Publi
ation 7: T. K. Baluku and M. A. Hellberg, Ion a
ousti
 solitary waves in anele
tron-positron-ion plasma with nonthermal ele
trons, Plasma Physi
s and Con-trolled Fusion, submitted (2010)
∗Publi
ation 8: T. K. Baluku and M. A. Hellberg, Ion a
ousti
 solitons in a plasmawith two-temperature kappa distributed ele
trons (to be submitted to Planetary andSpa
e S
ien
e)

Signed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

v



Dedi
ation
In memory of our late daughter Masika Claret, and to my wife Biirah Judith for herenduring love.

vi



A
knowledgements
I express my sin
ere gratitude to Professors Manfred A. Hellberg and Ri
hard L. Ma
e, fortheir guidan
e during the 
ourse of this work. Their 
onstant 
riti
ism was inspiring andgave me 
on�den
e. I am greatly indebted to Prof. Manfred Hellberg for being patientwith and kind to me, and for his expertise and 
ommitment in nurturing young resear
hers.This has been an ex
iting experien
e, your support has been invaluable.I also would like to thank Professor Frank Verheest (Ghent Belgium), Do
tors IoannisKourakis (Belfast, Ireland) and Naresh N. S. Saini (Amritsar, India) for your 
ollaboration.I learnt a lot from you all.Finan
ial support of the National Astrophysi
s and Spa
e S
ien
e Programme (NASSP),the National Resear
h Foundation (NRF), and the University of KwaZulu-Natal (throughProf. Manfred Hellberg) is greatly a
knowledged.Finally, I thank my wife Biirah Judith for her love, en
ouragement and all the support.It is very unfortunate that I began this programme at a time when we still had freshmemories of the loss of our beloved daughter Claret. Thank you Judith, your e�orts andsupport are an invaluable asset.

vii



Abstra
t
This thesis is about a study of the behaviour of linear and nonlinear ele
trostati
 wavesin a variety of multi-
omponent plasma 
on�gurations in spa
e physi
s, in
luding spe
ieswhose velo
ity distributions are represented by kappa distributions. Kappa distributions
ommonly o

ur in spa
e plasmas, and are 
hara
terized by a spe
tral index parameter κ,whi
h ranges from low values (representing a more enhan
ed superthermal tail and �hard�parti
le spe
tra) to very high values (with κ→∞ representing a Maxwellian distribution).The linear theory of the ele
tron-a
ousti
 waves (EAWs), whi
h 
ommonly o

ur intwo-temperature plasmas, is investigated within a kineti
-theoreti
al paradigm using thekappa velo
ity distribution as metastable state. The results of this 
al
ulation are dire
tlyappli
able to the Saturnian magnetosphere where the ele
trons are well represented bythe superposition of two kappa distributions, with distin
t temperatures and values of κ.A

ording to our �ndings, weakly damped EAWs are likely to o

ur at around 13− 18RS ,where the densities of the hot and 
ool ele
tron populations are of similar magnitude, thekappa index values are more or less 
onstant around κc ≃ 2 and κh ≃ 4, and the hot to
ool temperature ratio is about 102.In the nonlinear wave studies des
ribed in this thesis, a variety of di�erent three-spe
iesplasma models are investigated, in
luding dusty (
omplex) plasmas whi
h are observed ina number of di�erent spa
e environments. In addition to ele
trons and ions, dusty plasmas
ontain massive heavily 
harged dust grains typi
ally of mi
ron size. This additional 
om-ponent has a signi�
ant e�e
t on the overall wave behaviour 
ompared to an ele
tron-ionviii



plasma, and introdu
es new eigenmodes su
h as dust a
ousti
 waves and dust ion-a
ousti
waves, as examples, whi
h are dis
ussed in detail in this thesis.Nonlinear ele
trostati
 waves, su
h as solitons and double layers, are reported fromsatellite observations. Propagation of these solitary stru
tures, in
luding their existen
edomains, stru
ture behaviour and 
hara
teristi
s, in a variety of di�erent multi-
omponentplasma 
on�gurations is investigated in this thesis. These nonlinear studies en
ompassboth small amplitude (Korteweg-de Vries) and fully nonlinear (Sagdeev pseudopotential)investigations, and 
omparison of results from these methods is presented.A

ording to the 
onventional Sagdeev and small amplitude (KdV) approa
hes, theexisten
e of solitons requires Ma
h numbers whi
h ex
eed a 
riti
al value (Ms), the phasevelo
ity of the a
ousti
 waves in the plasma 
on�guration. The KdV soliton solutions haveamplitudes that go to zero as the Ma
h number approa
hes the 
riti
al value. Resultsin this thesis show that in plasmas where solitons of both polarities 
an be supported,under 
ertain 
onditions, ele
trostati
 solitons with �nite amplitudes 
an be obtained atthe 
riti
al Ma
h number, and therefore su
h stru
tures 
an propagate at the a
ousti
phase velo
ity. This is an important �nding that goes 
ounter to 
onventional wisdom onthis topi
. In addition, the appearan
e of double layers has usually been 
onsidered tomark the end of soliton o

urren
e in plasma models. From the nonlinear studies of thedi�erent plasma 
on�gurations dis
ussed in this thesis, it is shown that for some models,and for 
ertain plasma parameters, solitons 
an also be obtained for Ma
h numbers thatex
eed those leading to the o

urren
e of double layers.

ix



Contents
1 General Introdu
tion 11.1 Aspe
ts of Kappa Distributions . . . . . . . . . . . . . . . . . . . . . . . . . 11.1.1 Introdu
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1.2 Kappa Distributions: Velo
ity Moments and the Most Probable Speed 21.1.3 Kappa Distributions: Appli
ation to Plasma Experiments and Spa
ePlasma Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . 51.1.4 Modi�ed Forms of Kappa Distributions and other Non-MaxwellianDistributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71.2 Dusty Plasmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141.2.1 Dust and Dusty Plasmas . . . . . . . . . . . . . . . . . . . . . . . . . 141.2.2 Fundamental Length S
ales . . . . . . . . . . . . . . . . . . . . . . . 161.2.3 Charging Pro
ess of Dust Grains . . . . . . . . . . . . . . . . . . . . 191.2.4 Waves in Dusty Plasmas . . . . . . . . . . . . . . . . . . . . . . . . . 221.3 Solitons and Double Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . 241.3.1 Solitons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241.3.2 Double Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251.4 Methods Used in the Study of Solitary Stru
tures . . . . . . . . . . . . . . . 261.4.1 The Redu
tive Perturbation Theory . . . . . . . . . . . . . . . . . . 281.4.2 The Sagdeev Pseudopotential Theory . . . . . . . . . . . . . . . . . . 30x



CONTENTS1.5 Outline of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342 Ele
tron-A
ousti
 Waves in Bi-kappa Plasmas 372.1 Introdu
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372.2 Des
ription of Ele
tron-A
ousti
 Waves . . . . . . . . . . . . . . . . . . . . 402.3 Theoreti
al Model and Basi
 Equations . . . . . . . . . . . . . . . . . . . . 432.4 Analyti
 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452.5 Numeri
al Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502.6 Results: E�e
ts of Density, Temperature and Spe
tral Index . . . . . . . . . 522.6.1 E�e
t of Ele
tron Spe
tral Indi
es . . . . . . . . . . . . . . . . . . . 542.6.2 E�e
t of Temperature Ratio . . . . . . . . . . . . . . . . . . . . . . . 582.6.3 E�e
t of the Hot Ele
tron Density Fra
tion . . . . . . . . . . . . . . 582.7 Results: Appli
ation to Saturn's Magnetosphere . . . . . . . . . . . . . . . . 602.8 Con
lusions and Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . 663 Dust A
ousti
 Solitons in Plasmas with Kappa-Distributed Ele
tronsand/or Ions 693.1 Introdu
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 693.2 Model and Basi
 Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 703.3 Small Amplitude Dust A
ousti
 Solitons (DAS) and Double Layers . . . . . 753.3.1 Small Amplitude Solitons . . . . . . . . . . . . . . . . . . . . . . . . 763.3.2 Small Amplitude Double Layers . . . . . . . . . . . . . . . . . . . . . 783.4 Arbitrary Amplitude DAS and Double Layers . . . . . . . . . . . . . . . . . 813.4.1 Positive Potential Solitons . . . . . . . . . . . . . . . . . . . . . . . . 813.4.2 Negative Potential Solitons . . . . . . . . . . . . . . . . . . . . . . . 833.4.3 Numeri
al Results and Dis
ussion . . . . . . . . . . . . . . . . . . . . 843.5 Dust A
ousti
 Stru
tures with Positive Dust . . . . . . . . . . . . . . . . . . 883.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 924 Dust Ion-A
ousti
 Solitons in a Plasma with Kappa-Distributed Ele
-trons 944.1 Introdu
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94xi



CONTENTS4.2 Basi
 Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 964.3 Linear Dispersion Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 984.4 Small Amplitude Solitons: Redu
tive Perturbation Te
hnique . . . . . . . . 1004.4.1 Korteweg-de Vries (KdV) Equation . . . . . . . . . . . . . . . . . . . 1024.4.2 Modi�ed Korteweg-de Vries (mKdV) Equation . . . . . . . . . . . . 1044.5 Arbitrary Amplitude Solitons: Pseudopotential Approa
h . . . . . . . . . . 1064.5.1 Ele
trostati
 potential limitations . . . . . . . . . . . . . . . . . . . . 1104.6 Negative Dust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1154.6.1 E�e
t of Dust Grain Mass�Charge Ratio (through z) . . . . . . . . . 1154.6.2 E�e
t of Ion Temperature (through σ) . . . . . . . . . . . . . . . . . 1164.7 Results and Dis
ussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1174.8 Positive Dust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1274.9 Comment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1294.10 Dis
ussion and Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . 1305 Ion-A
ousti
 Solitons in a Plasma with Two-Temperature κ-distributedEle
trons 1335.1 Introdu
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1335.2 Model and Basi
 Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 1355.3 The Linear Dispersion Relation . . . . . . . . . . . . . . . . . . . . . . . . . 1365.4 Small Amplitude Solitons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1385.4.1 The Korteweg-de Vries (KdV) Equation . . . . . . . . . . . . . . . . 1385.4.2 The Modi�ed Korteweg-de Vries (mKdV) Equation . . . . . . . . . . 1435.5 Arbitrary Amplitude IA Solitons . . . . . . . . . . . . . . . . . . . . . . . . 1485.5.1 Pseudopotential Approa
h . . . . . . . . . . . . . . . . . . . . . . . . 1505.5.2 Potential Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 1515.5.3 Existen
e Domain for Ion-A
ousti
 Solitons and Double Layers . . . 1535.5.4 Variation of Soliton Potential Amplitude (φm) with Ma
h Number . 1545.5.5 Sagdeev (Pseudopotential) Approa
h vs. Perturbation Te
hnique . . 1595.6 Positive Potential Double Layers . . . . . . . . . . . . . . . . . . . . . . . . 1605.7 Con
lusions and Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . 163xii



CONTENTS6 Ion-A
ousti
 Solitary Waves in an Ele
tron-Positron-Ion (e-p-i) Plasma1656.1 Introdu
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1656.1.1 Nonthermal Distributions: The Cairns Distribution . . . . . . . . . . 1676.2 Plasma Model and Basi
 Equations . . . . . . . . . . . . . . . . . . . . . . . 1686.3 Linear Dispersion Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1696.4 Arbitrary Amplitude Solitary Waves . . . . . . . . . . . . . . . . . . . . . . 1706.4.1 Numeri
al Results and Dis
ussion . . . . . . . . . . . . . . . . . . . . 1726.4.2 Criti
al Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . 1746.5 Summary and Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1777 Ion-A
ousti
 Solitary Waves in a Plasma With Two-Temperature Ele
-trons 1797.1 Introdu
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1797.2 Plasma Model and Basi
 Equations . . . . . . . . . . . . . . . . . . . . . . . 1817.3 Numeri
al Results and Dis
ussion . . . . . . . . . . . . . . . . . . . . . . . . 1857.3.1 τ > τc1 = 5− 2
√
6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1857.3.2 τc2 ≃ 0.075 < τ < τc1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 1867.3.3 τ < τc2 ≃ 0.075 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1907.4 Con
lusions and Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . 2008 General Summary and Con
lusions 2038.1 Linear Ele
tron-A
ousti
 Waves . . . . . . . . . . . . . . . . . . . . . . . . . 2038.2 Nonlinear A
ousti
 Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204A 212A.1 Derivation of Density and Pressure for Kappa Distributions . . . . . . . . . 212A.1.1 Spe
ial Integrals for Kappa Distributions . . . . . . . . . . . . . . . 212A.1.2 Density and Pressure Expressions for Kappa Distributions . . . . . 213B 217B.1 Dispersion Relation of Ele
tron-A
ousti
 Waves from Linear Kineti
 Theory. 217C 223xiii



CONTENTSC.1 Derivation of the Modi�ed Korteweg de-Vries (mKdV) Equation . . . . . . 223C.2 Solution of the mKdV Equation . . . . . . . . . . . . . . . . . . . . . . . . . 227

xiv



List of Figures
1.1 Comparison of generalized Lorentzian distributions for di�erent spe
tral in-di
es . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.2 The normalized form of Eq. (1.26) for di�erent values of β . . . . . . . . . . 131.3 A typi
al soliton stru
ture in terms of the ele
trostati
 potential and theele
tri
 �eld . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241.4 A s
hemati
 pi
ture of (a) potential pro�le, (b) phase spa
e for the ions,and (
) phase spa
e for the ele
trons, for a typi
al double layer stru
ture . . 272.1 Analyti
al results dis
ussed in Eqs. (2.6)�(2.14), applied to a plasma system
orresponding to a radial distan
e of about 13.1RS in Saturn's magnetosphere 492.2 A graph showing ξc = Re(ξc) + i Im(ξc) satisfying both Dr(k, ω) = 0 and

Di(k, ω) = 0 for kλDc = 1 (left panel), and dispersion and damping rate
urves 
orresponding to the initial estimates of ξc (right panel) . . . . . . . 532.3 Dispersion and damping for di�erent 
ool ele
tron kappa indi
es, κc . . . . . 552.4 Dispersion and damping for di�erent hot ele
tron kappa indi
es, κh . . . . . 572.5 Dispersion and damping for di�erent temperature ratios, β = Th/Tc . . . . . 592.6 Dispersion and damping for di�erent density ratios, f = n0h/n0e . . . . . . 602.7 Same as in Fig. 2.6, here for f = 0.1 (blue) and f = 0.2 (red), respe
tively . 61xv



LIST OF FIGURES2.8 Dispersion (ωr/ωpe) and damping (γ/ωpe) versus kλDc for parameters 
orre-sponding to the Saturnian magnetosphere at about 13.1RS (left panel) and
14RS (right panel) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 632.9 Same as in Fig. 2.8, at about 15RS (left panel) and 17.8RS (right panel) . . 632.10 Same as in Fig. 2.8, at about 12RS (left panel) and 9.8RS (right panel) . . 652.11 Same as in Fig. 2.8, at about 15.2RS (left panel) and 16RS (right panel) . . 652.12 Same as in Fig. 2.8, at about 5.4RS (left panel) and 6.3RS (right panel) . . 673.1 Existen
e domain for weak negative potential dust a
ousti
 solitary waves,from the small amplitude theory (Ms, Mβ , Mα) for σ = 0.5 . . . . . . . . . 793.2 Same as Fig. 3.1, here for σ = 1 . . . . . . . . . . . . . . . . . . . . . . . . . 793.3 Existen
e domains for negative potential solitons for σ = 1 and varying κvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 853.4 Typi
al Sagdeev potentials for the 
ase of Fig 3.3(b) . . . . . . . . . . . . . 853.5 Same as Fig. 3.3, here for κi = 25; κe = 4 (left panel) and κi = 4; κe = 25(right panel) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 873.6 Existen
e domains for negative potential solitons for κe = κi = 2 . . . . . . 883.7 Existen
e domains for positive potential solitons in the presen
e of positivedust for near-Maxwellian ions and varying κe (upper panel), and variationwith temperature ratio, σ for κe = κi = 2 (lower panel) . . . . . . . . . . . . 903.8 Existen
e domains for positive potential solitons in a positive dusty plasma,plotted as a fun
tion of the alternative fra
tional density variable, g = Ni0/Ne0 914.1 Variation of 
riti
al density fra
tion, fc, with κ in the small amplitude (KdV)theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1044.2 Variation of the thermal velo
ity-to-phase speed ratio, Uti/Ms with fra
-tional density, f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1094.3 S
hemati
 representation of Bernoulli integrals for 
ool, supersoni
 (Mj > 1)and hot, subsoni
 (Mj < 1) spe
ies . . . . . . . . . . . . . . . . . . . . . . . 1124.4 Existen
e domain for dust ion-a
ousti
 solitons with varying z . . . . . . . . 1154.5 Existen
e domain for dust ion-a
ousti
 solitons with varying σ . . . . . . . . 117xvi



LIST OF FIGURES4.6 Existen
e domain for DIA solitons with 
old ions (σ = 0), left panel, and
ool ions (σ = 0.01), right panel . . . . . . . . . . . . . . . . . . . . . . . . . 1194.7 Variation of potential amplitude, φm, with κ for di�erent values of M . . . 1214.8 Variation of potential amplitude, φm with the ratio M/Ms for various valuesof κ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1224.9 Plot of φm vs. M/Ms (upper panel), and pseudopotential plots (middle andlower panels) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1244.10 Soliton amplitudes obtained at M = Ms for f in the range (fp, fn) . . . . . 1264.11 Existen
e domains for positive potential DIA solitons, for both negatively
harged dust (f < 1) and positive dust (f > 1) . . . . . . . . . . . . . . . . 1284.12 Sagdeev potential for f < fc (left panel) and f > fc (right panel) . . . . . . 1305.1 f -solutions of αs4(f) = 0 and αs5(f) = 0 as fun
tions of τ . . . . . . . . . . 1465.2 f -solutions of αs4 = 0 and αs5 = 0 as fun
tions of β . . . . . . . . . . . . . . 1475.3 Same as in Fig. 5.2, here for β = 1/10 (left panel) and β = 3/100 (right panel)1475.4 Restri
tion of solitons by double layers, obtained for the parameters typi
alfor Saturn's outer magnetosphere at about 16RS . . . . . . . . . . . . . . . 1525.5 Existen
e domain for ion-a
ousti
 solitons . . . . . . . . . . . . . . . . . . . 1535.6 Soliton pro�les for di�erent spe
tral index values κ = κc = κh . . . . . . . . 1555.7 Variation of soliton potential amplitude with δM = M −Ms for a `hard'ele
tron spe
trum (low κ values) . . . . . . . . . . . . . . . . . . . . . . . . 1555.8 Same as in Fig. 5.7, now for the Maxwellian equivalent (κc = κh =∞) . . . 1565.9 Finite solitons at M = Ms in the �
oexisten
e� region . . . . . . . . . . . . . 1575.10 Typi
al soliton pro�les at the lowest Ma
h number Ms . . . . . . . . . . . . 1585.11 Soliton amplitude (φ0) as a fun
tion of Ma
h number, M . . . . . . . . . . 1595.12 Variation of fc with temperature ratio, β . . . . . . . . . . . . . . . . . . . . 1605.13 Existen
e domain for positive double layers for a plasma with Maxwellianele
tron 
omponents and 
old ions, with β = 0.09 . . . . . . . . . . . . . . . 1615.14 Same as in Fig. 5.13, now with β = 0.3 . . . . . . . . . . . . . . . . . . . . . 162xvii



LIST OF FIGURES6.1 Existen
e domain of solitons or double layers 
orresponding to a plasmawith equal positron and ele
tron temperatures (σ = 1) and β = 0.5 (leftpanel), and for di�erent β values (right panel) . . . . . . . . . . . . . . . . . 1736.2 Existen
e domain of positive potential solitons, in the (M − β) plane, fordi�erent values of p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1746.3 Curves for Ψ′′′(φ = 0, M = Ms) = 0 giving p = pc for di�erent values of
σ = Tp/Te . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1766.4 Typi
al Sagdeev potential 
urves for σ = 1, β = 0.5, and p = 0.03 < pc =

0.04904 (upper panel) and p = 0.0494 > pc (lower panel) . . . . . . . . . . . 1777.1 Variation of the 
riti
al density fra
tion, fc, with τ . . . . . . . . . . . . . . 1857.2 Existen
e domain of ion-a
ousti
 solitons for τ = 1/5 > τc1 . . . . . . . . . . 1867.3 Existen
e domain of ion-a
ousti
 solitons for τ = 0.09 (left panel), andtypi
al soliton potential amplitude at M = Ms = 1 (right panel) . . . . . . . 1877.4 Soliton amplitude variation with M for τ = 0.09 and di�erent f values (leftpanel), and typi
al Sagdeev 
urves for f = 0.01 and di�erent Ma
h numbers,both below and above Mdl (right panel) . . . . . . . . . . . . . . . . . . . . 1897.5 Typi
al soliton pulse 
urves 
orresponding to τ = 0.09, f = 0.01 in Fig. 7.4for di�erent Ma
h numbers, both below and above the positive double layer(left panel), and phase spa
e 
urves (right panel) . . . . . . . . . . . . . . . 1907.6 Existen
e domain (left panel) of ion-a
ousti
 solitons, and soliton amplitudesat M = Ms for the values of f en
ompassing the 
oexisten
e region (rightpanel), for τ = 0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1907.7 Existen
e domain of ion-a
ousti
 solitons for τ = 1/15, and amplitude vari-ation with f at M = Ms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1917.8 Variation of solitary stru
ture amplitude with f for τ = 1/15 (top panel),and typi
al Sagdeev potentials around Mdl(bottom panel) . . . . . . . . . . 1937.9 Sagdeev potential 
urves for τ = 1/15, f = f∗ and M around M = Mli = Mdl1947.10 Sagdeev potential 
urves for τ = 1/15, f∗ < f < fp1, for Ma
h numbersvery 
lose to Mli (left panel), and the behaviour of Ψ(φ, M) around φ = φli(right panel) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196xviii



LIST OF FIGURES7.11 Existen
e domain of ion-a
ousti
 solitons for τ = 1/30 (left panel), andamplitude variation at M = Ms with f in the 
oexisten
e region (right panel)1987.12 As in Fig. 7.11, for τ = 1/100 . . . . . . . . . . . . . . . . . . . . . . . . . . 199

xix



List of Tables
2.1 Parameter estimates from Fig. 3 of S
hippers et al. [2008℄, 
orresponding toradial distan
es (R) in Saturn's magnetosphere . . . . . . . . . . . . . . . . 622.2 Range of wavelength, λ (m), and frequen
y, f (kHz), of the EPW and EAWmodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 643.1 Double layer 
onditions arising from Eq. (3.15) . . . . . . . . . . . . . . . . 813.2 Behaviour of Ψ′(φ) for both φ < 0 and φ > 0 . . . . . . . . . . . . . . . . . 824.1 Coe�
ients, cj/f in Eq. (4.21) for some values of κ . . . . . . . . . . . . . . 1014.2 Upper limits of f for di�erent values of z and spe
tral indi
es, κ . . . . . . . 1164.3 Soliton amplitude, φm for f = 0.7 and M = 1.75, with Maxwellian ele
trons 1234.4 Maximum potential amplitudes, φli1 = (M2

s −
√
3σ)2/2 and φld = M2

s /2zat f = fp and fn, respe
tively, for the parameters in Fig. 4.10 . . . . . . . . 1277.1 Roots of Ψ(φ, M) for values of M 
lose to Mli . . . . . . . . . . . . . . . . 196

xx



CHAPTER 1
General Introdu
tion

In this 
hapter we dis
uss the general aspe
ts of kappa distributions, their 
hara
teristi
sand how they have been used in the analysis of observational data from spa
e satellitesand laboratory experimental data.Sin
e most of the work dis
ussed in this thesis is linked to nonlinear solitary waves orstru
tures (solitons and double layers) that exist in a number of plasma models, in
ludingdusty plasmas, in this 
hapter we also highlight properties of dust parti
les or dust grainsand general 
hara
teristi
s of dusty plasmas. In addition, we brie�y des
ribe solitons anddouble layers, in
luding the theoreti
al approa
hes to modelling these solitary stru
tures.1.1 Aspe
ts of Kappa Distributions1.1.1 Introdu
tionKappa distributions were �rst introdu
ed by Olbert [1968℄ and 
o-workers when theywere analyzing the isotropi
 ba
kground 
urrents measured in the Earth's magnetosheathby the M.I.T dete
tor on IMP-1. Around the same time, based on observations of ele
tronsof energy in the range (125 eV to ∼ 2 keV), with OGO 1 satellite, and (40 eV to ∼ 2 keV),with OGO 3, Vasyliunas [1968℄ used the same distribution to �t the low-energy ele
tronpopulation in the Earth's magnetosphere. In the analysis of Olbert [1968℄ and 
oworkers,1



1. General Introdu
tionthey assumed that the ele
tron speed distribution in the satellite frame of referen
e is ofthe form [Olbert, 1968℄:
fev

2dv = 
onstant v2dv
(

1 + v2

κw2

0

)(κ+1)
, (1.1)where v is the a
tual speed, w0 is the most probable speed of the ele
trons, and κ is a `free'parameter whose value is a measure of the departure of the distribution from its Maxwellian
hara
ter (with κ→∞ leading to the Maxwellian distribution). This distribution providesa good �t to those that are 
ommonly observed, being Maxwellian-like at low speeds andobeying a power-law form at high speeds.Following the empiri
al formula in Eq. (1.1), the isotropi
 (3-D) kappa velo
ity distri-bution of parti
les of mass m is written in the form [Vasyliunas, 1968; Mars
h and Livi,1985; Summers and Thorne, 1991; Kivelson and Russell, 1995℄

Fκ(v) = Aκ

[

1 +
v2

κ θ2

]−(κ+1)

, (1.2)where v2 = v2x+v2y+v2z ; Aκ is a normalization parameter, θ is an �e�e
tive or 
hara
teristi
thermal speed� parameter, that is, the most probable speed [Vasyliunas, 1968℄, and κ isa spe
tral index, whi
h is a free parameter. The parameters Aκ and θ are obtained self-
onsistently from the lowest even moments [Podesta, 2005; Hellberg et al., 2009℄ of thedistribution fun
tion in (1.2).1.1.2 Kappa Distributions: Velo
ity Moments and the Most ProbableSpeedThe velo
ity moments of the kappa distribution are given by [Podesta, 2005℄
〈vn〉=4π

∫

∞

0
v(n+2)Fκ(v)dv = 4πAκ

∫

∞

0
v(n+2)

(

1 +
v2

κθ2

)−(κ+1)

dv

= 2πAκ(κθ
2)(n+3)/2B[(n+ 3)/2, κ− (n+ 1)/2]

=
2(κθ2)n/2√

π

Γ
(

n+3
2

)

Γ
(

κ− n+1
2

)

Γ(κ− 1/2)where Γ(a) and B(a, b) are the usual gamma and beta fun
tions, respe
tively. For arbitraryreal values of κ and n ≥ 0, the integral is �nite for n < (2κ − 1), that is, κ > (n + 1)/2.2



1.1. Aspe
ts of Kappa DistributionsThe expression for Aκ is obtained from the zeroth moment of velo
ity, that is,
N0 = 〈v0〉=4π

∫

∞

0
v2Fκ(v)dv

= πAκ(κθ
2)3/2

Γ(κ− 1/2)

Γ(κ+ 1)
, giving

Aκ =
N0

(πκθ2)3/2
Γ(κ+ 1)

Γ(κ− 1/2)
. (1.3)In the normalization parameter expression (1.3), N0 is the unperturbed equilibrium density,given by N0 = 〈v0〉, the zeroth moment of the distribution, and Γ is the usual gammafun
tion, Γ(a) = ∫∞

0 ta−1e−tdt;Also, for n = 2, the se
ond moment of velo
ity gives 〈v2〉 = 3κθ2/(2κ − 3) or θ2 =

〈v2〉(2κ−3)/3κ. Using the energy relationm〈v2〉/2 = 3KBT/2, whereKB is the Boltzmann
onstant, and T is the 
hara
teristi
 kineti
 temperature, that is, the temperature of theequivalent Maxwellian distribution [Podesta, 2005; Hellberg et al., 2009; Livadiotis andM
Comas, 2009℄ with the same average kineti
 energy m〈v2〉/2 per parti
le, we obtain
〈v2〉 = 3KBT/m. Therefore the most probable speed, θ, is related to the thermal speedof the parti
le spe
ies [Goldston and Rutherford, 1995; Shukla and Mamun, 2002℄, vth =

(KBT/m)1/2, by
θ2 = v2th

(2κ − 3)

κ
= v2mp (κ− 3/2)

κ
, (1.4)where vmp =

√
2 vth is the most probable speed for a Maxwellian velo
ity distribution [Kivel-son and Russell, 1995, p.38℄. However, we point out that in some textbooks [Swanson, 2003,p.86℄, the most probable speed is sometimes referred to as the thermal speed. The expres-sion in Eq. (1.4) shows 
learly that the 
hara
teristi
 thermal speed θ is κ dependent, andredu
es to the thermal speed vmp when κ→∞.The spe
tral index κ is a measure of the slope of the energy spe
trum of the superther-mal parti
les (v2 ≫ κθ2) forming the tail of the velo
ity distribution fun
tion. The kappadistribution thus approximates a family of �power law distributions� Fκ(v) ∝ v−2(κ+1) for

v ≫ θ. The smaller the value of κ the more superthermal parti
les in the tail of the distri-bution fun
tion and the harder the energy spe
trum. That is, low values of κ represent amore enhan
ed and �hard� spe
trum (strong non-Maxwellian tail with more superthermalparti
les in the tail of the distribution fun
tion), resulting in an enhan
ed velo
ity distri-3



1. General Introdu
tionbution at low speeds, a depressed distribution that is Maxwellian-like at medium speedsand an enhan
ed power law tail at high speeds (see Fig. 1.1). As already mentioned, when
κ→∞ the Maxwellian distribution fun
tion,

F∞(v) = N0

(

m

2πKBT

)3/2 exp(−mv2

KBT

)

, (1.5)is re
overed. The features des
ribed above are shown in Fig. 1.1, where we have plottedthe normalized distribution (1.2) as a fun
tion of the normalized velo
ity. In parti
ular,the �gure shows that kappa distributions have higher and narrower peaks, and broaderbase tails, than the Maxwellian distributions [Hellberg et al., 2009℄. In addition, very largevalues of κ approximate the Maxwellian distribution. Note that the expression for the
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HΚ=¥LMaxwellianFigure 1.1: Comparison of generalized Lorentzian distributions for the spe
tral index κ =
1.6, and 2, 6, 25 and κ =∞ (the 
orresponding Maxwellian distribution), based on Fig. 1of Summers and Thorne [1991℄
hara
teristi
 velo
ity θ, (1.4), is only valid for κ > 3/2, and thus in the appli
ation of thephysi
al quantities derived from Eq. (1.2), like density, we shall use κ values that ex
eed1.5. The origin of this 
onstraint 
omes from the requirement that 〈v2〉 = 3κθ2/(2κ − 3)does not diverge.The 1-D kappa distribution is obtained from Eq. (1.2) by integrating over two velo
ity-4



1.1. Aspe
ts of Kappa Distributionsspa
e 
oordinates, giving [Summers and Thorne, 1991℄
F1κ(v) =

N0

(πκθ2)1/2
Γ(κ)

Γ(κ− 1/2)

(

1 +
v2

κθ2

)−κ

, (1.6)where, here, v is a signed velo
ity 
omponent.1.1.3 Kappa Distributions: Appli
ation to Plasma Experiments andSpa
e Plasma ObservationsKappa distributions have been used by a number of authors [Summers and Thorne,1991; Ma
e and Hellberg, 1993; Ma
e and Hellberg, 1995; Hellberg and Ma
e, 2002;Podesta, 2005; Ma
e and Hellberg, 2009; Ma
e and Sydora, 2010℄ in studying the e�e
t ofLandau damping on various plasma modes. Summers and Thorne [1991℄ introdu
ed themodi�ed plasma dispersion fun
tion Z∗

κ(ξ) analogous to the standard plasma dispersionfun
tion, Z(ξ), based on the Maxwellian distribution [Fried and Conte, 1961℄. Ma
e andHellberg [1995℄ generalized Z∗

κ(ξ), lifting the 
onstraint that κ be an integer, and showedits 
lose relationship to the Gauss hypergeometri
 fun
tion.Kappa distributions are 
onvenient in analyzing and interpreting observational datain spa
e plasmas whi
h show a Maxwellian �
ore� at low energies and a power-law taildistribution for higher energies. Some examples of its appli
ation in
lude the Earth'smagnetospheri
 plasma sheet [Christon et al., 1988℄, the solar wind [Pierrard and Lemaire,1996℄ and solar 
orona [S
udder, 1992; Pierrard and Lemaire, 1996℄, the magnetospheresof Jupiter and Saturn [Krimigis et al., 1983; Sittler et al., 1983; S
hippers et al., 2008;Dialynas et al., 2009℄, and the auroral region [Olsson and Janhunen, 1998℄.Based on the observational data from the European satellite Heos 1, Formisano et al.[1973℄ studied plasma properties as a result of the solar wind intera
tions in the Earth'smagnetosheath. In their work, they des
ribed the proton velo
ity distribution fun
tionby a fun
tion similar to that used by Vasyliunas [1968℄, though they 
alled it a �K distri-bution fun
tion�, with the spe
tral index K (in their 
ase) 
hosen only from four values:
2, 3, 5, ∞. In parti
ular, when no upstream waves were dete
ted in the interplanetaryregion, the Maxwellian distribution fun
tion for protons did not 
learly �t the positiveion energy spe
tra observed inside the magnetosheath for higher energies (above 0.9 keV)while with a �K distribution fun
tion�, with K = 2, there was 
lose agreement with the5



1. General Introdu
tionexperimental data, as illustrated in their Fig. 2.In the early 1990s, S
udder [1992℄ proposed that the high 
oronal temperature is a
onsequen
e of the �velo
ity �ltration e�e
t� when he assumed a non-Maxwellian velo
itydistribution in the 
hromosphere (see also Pierrard and Lemaire [1996℄; Maksimovi
 et al.[1997℄; Shizgal [2007℄). With typi
al κ values ranging from 2.5 to 7, S
udder [1992℄ foundthat the plasma temperature in
reased from 103 K at the altitude of the 
hromosphere upto (1 − 2) × 106 K in the solar 
orona without additional heat deposition or dissipationof wave energy in the solar 
orona [Pierrard and Lemaire, 1996℄. The �velo
ity �ltratione�e
t� was also found to apply to the topside ionopause [Pierrard and Lemaire, 1996℄to explain the in
rease of the plasma temperature as a fun
tion of altitude in the outerplasmasphere. With κ = 3 − 5, temperatures in the outer plasmasphere in
reased up tovalues of (10− 20)× 103 K whi
h are 
omparable to those measured with the satellites athigh altitudes (see Pierrard and Lemaire [1996℄).Results from the Voyager 1 and 2 spa
e
raft [Krimigis et al., 1983℄, during their en
oun-ters with the magnetosphere of Saturn, indi
ated that the typi
al energy spe
trum of theions (assumed protons) is like a Maxwellian at low energies (≤ 200 keV) and a power lawat high energies (≥ 200 keV). Krimigis et al. [1983℄ used κ distributions to �t ion spe
tralobservations in the magnetosphere of Saturn, with typi
al values of κ in the range 6 − 8and thermal energy KBT in the range ∼ 16 keV to ∼ 28 keV mat
hing the observationsextremely well in general, though with a few ex
eptions.In analyzing the �eld-aligned 
ondu
tan
e values, Olsson and Janhunen [1998℄ used theFreja ele
tron data to 
ompare the Maxwellian and kappa distribution �ts of low-orbitingsatellite ele
tron �ux spe
tra in the auroral region. Kappa �ts with κ ≃ 6 (κ in the range4-7) gave better �ts to the observed distribution, though the di�eren
e in 
ondu
tan
evalues was not large.More re
ent measurements of Saturn's magnetosphere from the Cassini-Huygens satel-lite [S
hippers et al., 2008℄ have shown that the ele
tron distribution is very well �tted bythe sum of two kappa distributions, the hot (superthermal) 
omponent having a mu
h lowerdensity than the bulk (`thermal' 
omponent). These bi-kappa1 �ts were observed over awide range of the magnetosphere, the measurements en
ompassing the range from 5.4 to1Bi-kappa is used in this thesis to refer to the sum of two 
omponents, ea
h being kappa-distributed6



1.1. Aspe
ts of Kappa Distributions18 RS (Saturn radii). The bulk 
omponent has a very hard spe
trum, with typi
al kappavalues ≤ 2, while the minority hot 
omponent (whi
h at 9 RS makes up less than 10% ofthe ele
trons) has κ ∼ 4. A typi
al value for the bulk 
omponent is κ ≃ 2 throughout mostof the magnetosphere, apart from the region R < 7RS (where 2 < κbulk < 8, in
reasingrapidly for de
reasing R), whereas the hot 
omponent has a highly variable value of κ,lying between 3 and 9.1.1.4 Modi�ed Forms of Kappa Distributions and other Non-MaxwellianDistributionsSin
e the empiri
al formula of Olbert [1968℄ and Vasyliunas [1968℄, modi�
ations toKappa distributions have been introdu
ed and applied in the analysis of observation datafrom satellites.One su
h form is the distribution fun
tion f0(v) of a test parti
le in the presen
e ofradiation �elds of nonequilibrium photons, introdu
ed by Hasegawa et al. [1985℄. Thistakes the form
f0(v) = A

(

1 +
v2

2κ v2te

)−κ

, (1.7)where, vte is the thermal velo
ity, and with the normalization ∫∞

0 f0(v)4πv
2dv = 1,

A =
2κ− 3

4
√
2(πκ)3/2v3Te

Γ(κ)

Γ(κ− 1/2)
.Equation (1.7) has 
onsiderable resemblan
e to the one-dimensional standard kappa dis-tribution fun
tion in Eq. (1.6) used to �t parti
le data in spa
e plasmas [Hasegawa et al.,1985℄, although it is expressed in terms of the thermal velo
ity, and not the generalizedmost probable speed θ = θ(κ, vTe).Apart from kappa distributions, the Tsallis distribution [Tsallis, 1988, 1995℄, that is
hara
terized by a Tsallis parameter q (whi
h is 
losely related to κ), has been urged to bean alternative model for non-Maxwellian distributions. The Tsallis distribution, denoted

p is a probability distribution given by[Tsallis, 1995℄
pq(x) =

1

Zq

[

1− (1− q)βx2
]1/(q−1)

, (1.8)
7



1. General Introdu
tionwhere Zq =
∫ [

1− (1− q)βx2
]1/(q−1)

dx, and β is de�ned as the Lagrange parameter asso-
iated with the q-expe
tation 〈x2〉q [in (1.11) below℄. The distribution in (1.8) extremizesthe Tsallis entropy Sq(p) de�ned by [Tsallis, 1988, 1995℄
Sq(p) =

KB

q − 1

(

1−
∫

[p(x)]qdx

)

, (1.9)with x a dimensionless parameter. Thus, the Tsallis entropy is a generalization of theBoltzmann-Gibbs entropy, sin
e it re
overs the Boltzmann-Gibbs Shannon form,
S1(p) = −KB

∑

i piln(pi) in the limit q → 1. In addition, the Tsallis distribution (1.8)extremizes the generalized Tsallis entropy (1.9) subje
t to the 
onstraints [Tsallis, 1995℄
∫

p(x)dx = 1, (1.10)and
〈x2〉q =

∫

x2[p(x)]qdx = σ2 <∞, (1.11)with q < 3, in order to satisfy (1.10) [Tsallis, 1995℄.Another approa
h, introdu
ed by Leubner [2002℄, makes use of the Tsallis q-statisti
s[Tsallis, 1999℄. Using the generalized entropy from the Tsallis q-statisti
s, Leubner [2002℄showed that with the transformation κ = 1/(1 − q), where q is a parameter quantifyingthe degree of non-extensivity, and κ is a spe
tral index of the kappa distribution, theone-dimensional and isotropi
 three-dimensional equilibrium velo
ity spa
e distributions,in kappa notation, 
an be written as
FL1

(v) =
N

vth

1√
κ

Γ(κ)

Γ(κ− 1/2)

(

1 +
1

κ

v2

v2th

)−κ and (1.12)
FL3

(v) =
N

π3/2v3th

1

κ3/2
Γ(κ)

Γ(κ− 3/2)

(

1 +
1

κ

v2

v2th

)−κ for 3/2 < κ ≤ ∞, (1.13)respe
tively, where here vth = (2KBT/m)1/2 is the thermal velo
ity [Leubner, 2004℄, and Tand m are the temperature and mass respe
tively. Unusually, Leubner [2004℄ also 
onsiders
κ < 0. Note here that, the �thermal velo
ity�, Vth takes the same form as the most probablespeed for a Maxwellian distribution. The notation L1 and L3 refers to the one- and three-dimensional forms of Leubner [2002℄, with the latter also 
alled the �halo� distribution8



1.1. Aspe
ts of Kappa Distributions(see Eq. (6) of Leubner [2004℄). Distributions of the form of Eq. (1.13) were used in theanalysis of results from the HELIOS observations of the double humped (
ore-halo) solarwind proton velo
ity distributions [Leubner, 2004℄ between 0.3 and 1 a.u. Apart fromthe fa
t that Eqs. (1.12) and (1.13) are expressed in terms of the thermal velo
ity vth(independent of κ) and not in terms of the most probable speed θ = θ(κ, vth), (1.12) has
onsiderable resemblan
e to Eq. (1.6) for the one-dimensional kappa distribution. However,for the three-dimensional 
ase, there is a huge di�eren
e (in both the velo
ity and power-lawterms).In the same work of Leubner [2002℄ (see also Leubner [2004℄), the author indi
ates thata 
onventional isotropi
 three-dimensional κ-distribution is represented by
fL(v) =

N

π3/2v3th

1

κ3/2
Γ(κ+ 1)

Γ(κ− 1/2)

(

1 +
1

κ

v2

v2th

)−(κ+1)

. (1.14)Equation (1.14) looks similar to (1.2), the only di�eren
e here being that the distribution isexpressed in terms of the �thermal velo
ity� vth, and not the most probable or 
hara
teristi
speed θ = θ(κ, vth). It is then surprising that one gets the generalized form of the �thermalspeed� Θ = vth[(κ/(κ − 3/2)]1/2 from the se
ond moments of the distribution fun
tionin (1.14), as Leubner [2004℄ puts it. Considering Eq. (1.14), the se
ond moments of thedistribution fun
tion gives
〈v2〉 = 3

2

(

κ

κ− 3/2

)

v2th (1.15)If we use 〈v2〉 = 3KBT/m = 3v2th/2 where here, vth = (2KBT/m)1/2, it then followsthat Eq. (1.15) 
an hold if and only if κ → ∞. In other words, the expression Θ =

vth[(κ/(κ − 3/2)]1/2 as the generalized thermal velo
ity in the work of Leubner [2004℄seems un
lear.Another form of kappa distribution is that introdu
ed by Fu and Hau [2005℄ and Hauand Fu [2007℄, whi
h was �rst applied in obtaining the Vlasov-Maxwell equilibrium solu-tions for the Harris sheet magneti
 �eld. This distribution fun
tion2 takes the form
fκ
H(v) =

N

2π(κ v2κ)
3/2

Γ(κ+ 1)

Γ(κ− 1/2)Γ(3/2)

(

1 +
1

κ

v2

v2κ

)−(κ+1)

, (1.16)2The subs
ript `H' refers to the Hau formalism 9



1. General Introdu
tionwhi
h after using the Gamma fun
tion relation Γ(α + 1) = αΓ(α), and Γ(1/2) = π1/2,redu
es to
fκ
H(v) =

N

(πκ v2κ)
3/2

Γ(κ+ 1)

Γ(κ− 1/2)

(

1 +
1

κ

v2

v2κ

)−(κ+1)

. (1.17)In Equations (1.16) and (1.17), vκ is de�ned as the thermal speed that is related to the
hara
teristi
 temperature Tκ, and is given by
vκ =

{(

2κ− 3

κ

)(

KB Tκ

m

)}1/2

, (1.18)where Tκ is also related to the temperature T in the Maxwellian distribution, by [Fu andHau, 2005℄
Tκ =

(

κ− 3/2

κ

)

T (1.19)and [Hau and Fu, 2007℄
Tκ =

(

κ

κ− 3/2

)

T. (1.20)However, we shall use Eq. (1.20) in the dis
ussion, as (1.19) seems to have a typographi
alerror. Otherwise, it does not make sense in that form. A simple inspe
tion of Eqs. (1.18)and (1.20) shows that a
tually
vκ =

(

2KB T

m

)1/2

= vth. (1.21)In other words, Eq. (1.16) [Fu and Hau, 2005; Hau and Fu, 2007℄ is simply the same asEq. (1.14), the �generalized 
onventional isotropi
 three-dimensional kappa distributionfun
tion� of Leubner [Leubner, 2002, 2004℄, but di�ers from Eq. (1.13) that was derivedfrom the q-entropy statisti
s. Both Eqs. (1.16) and (1.14) do not give the appropriatemost probable speed θ = θ(κ, vth) that is de�ned, by appealing to equipartition of energy,by θ = vth[(κ − 3/2)/κ]1/2 . We point out that this approa
h (of Hau and Fu [2007℄) hasbeen 
riti
ized [Hellberg et al., 2009℄. Generally, all the di�erent forms of κ distributionfun
tions dis
ussed in this Chapter have two 
ommon 
hara
teristi
s: (i) they all possesspower law behaviour and (ii) in the limit κ→∞ one re
overs the Maxwellian distributionfun
tion of the form of Eq. (1.5).The relationship of the kappa distributions to the Tsallis statisti
al me
hani
s was10



1.1. Aspe
ts of Kappa Distributionsre
ently given by Livadiotis and M
Comas [2009℄, where they used the transformation
κ = 1/(q − 1) as opposed to κ = 1/(1 − q) used by Leubner [2002℄. In Tsallis statisti
alme
hani
s, there are two probability distributions that play a role in the theory: the
anoni
al and es
ort probability distributions whi
h are, respe
tively, given by [Livadiotisand M
Comas, 2009℄

p(ǫ;Tq; q)∼ expq [− 1

Iq(3/2)

ǫ

KBTq

] and (1.22)
P (ǫ;Tq; q)∼ p(ǫ;Tq; q)

q ∼ expq [− 1

Iq(3/2)

ǫ

KBTq

]q

, (1.23)where ǫ = µu2/2 is the kineti
 energy (µ and u are the mass and velo
ity, respe
tively),
Tq is the physi
al temperature [Livadiotis and M
Comas, 2009℄ (see below), and q is the qindex; expq(x) = [1 + (1− q)x]1/(1−q) is the q-deformed exponential, and
Iq(u) = 1+ (1− q)u is the q-deformed �unit fun
tion�. From (1.23), the es
ort probability(or es
ort expe
tation), denoted 〈〉q , of a fun
tion of energy ǫ is given by [Livadiotis andM
Comas, 2009℄

〈f(ǫ)〉q =
∫

∞

0 P (ǫ;Tq; q)f(ǫ)gE(ǫ)dǫ
∫

∞

0 P (ǫ;Tq; q)gE(ǫ)dǫ
, (1.24)where gE(ǫ) = 2π(2/µ)3/2ǫ1/2 is the density of energy states of the system. Using thees
ort expe
tation, Livadiotis and M
Comas [2009℄ showed that the internal energy Uq isestimated as the es
ort expe
tation value 〈ǫ〉q , that is,

Uq = 〈ǫ〉q =
3

2
KBTq, (1.25)where Tq is the physi
al temperature, not the thermodynami
 temperature. Thus, Li-vadiotis and M
Comas [2009℄ argued that working with es
ort probability distributions

P (ǫ;Tq; q) (in the Tsallis statisti
al me
hani
s) and not the ordinary (or 
anoni
al) prob-ability distributions p(ǫ;Tq; q), the kineti
 temperature TK , de�ned by the internal energy
Uq = 3KBTK/2, 
oin
ides with the physi
al temperature Tq in the Tsallis formalism.They further argued that sin
e TK is identi
al to Tq , the appropriate temperature in Tsal-lis statisti
s is the kineti
 temperature, and not the thermodynami
 temperature, that is,the appropriate de�nition of temperature for out-of-equilibrium systems. In other words,the system is 
hara
terized by the same internal energy (mean kineti
 energy) or kineti
11



1. General Introdu
tiontemperature that is independent of the spe
i�
 stationary states. To put it di�erently, thekineti
 temperature is independent of the value of the q index (Tsallis statisti
s) or κ index(kappa distributions), see also Hellberg et al. [2009℄.Apart from kappa distributions, another form of non-thermal or non-Maxwellian distri-bution fun
tion that is used in theoreti
al papers is the so-
alled Cairns distribution. Thisdistribution was introdu
ed by Cairns et al. [1995℄ as an ad ho
 model for non-thermalvelo
ity distributions, and takes the form
Fj(v) =

Nj0

(3α+ 1)

1
√

2π v2tj

(

1 +
α v4

v4tj

)

exp

(

− v2

2v2tj

)

, (1.26)where α is the non-thermal parameter, Nj0 the equilibrium number density and vtj thethermal velo
ity of the spe
ies j. Cairns et al. [1995℄ used this distribution in explaining theele
trostati
 stru
tures with density depletions observed by the Freja satellite [Dovner etal., 1994℄, and showed that the presen
e of a population of energeti
 ele
trons 
hanges theproperties of ion sound waves. The distribution fun
tion (1.26) redu
es to the Maxwelliandistribution form when α = 0. It is 
onvenient to introdu
e the parameter β = 4α/(1+3α).The normalized Cairns distribution fun
tion of (1.26) is shown in Fig. 1.2 for di�erentvalues of β, and we note that for β = 0 it redu
es to the Maxwellian distribution fun
tion.The �gure also shows that for β ≥ 1/2 (or α ≥ 0.2) the distribution fun
tion develops�wings� at high velo
ities, be
oming multi-peaked there. In parti
ular, beyond β = 4/7(or α = 0.25) [Verheest, 2010a℄, the distribution is triple humped, and hen
e 
ould beunstable, leading to beam-instabilities. For su
h high values of β, the Cairns distributionfun
tion may not be good for physi
al appli
ations. In other words, the Cairns distributionis appropriate for a narrow range of parameters α, or β, that produ
e only small deviationsfrom the Maxwellian distribution fun
tion. As an appli
ation, a plasma model with parti
lespe
ies that follow the Cairns distribution given in Eq. (1.26) is dis
ussed in Chap. 6. Sin
ethe introdu
tion of the �Cairns non-thermal' velo
ity distribution, it has not been appliedextensively in the analysis of spa
e plasma observations from satellites. However, a numberof authors have used it in theoreti
al studies on solitary stru
tures, for instan
e, Mamun[1997℄, Verheest and Pillay [2008a,b℄, Pajouh and Abbasi [2008℄, and Verheest [2010a℄, tomention a few.12



1.1. Aspe
ts of Kappa Distributions
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Figure 1.2: Figure showing the normalized form of Eq. (1.26) for di�erent values of β. Notethat for β values above 0.5 the distribution develops wings at high velo
ities, and may notbe good for physi
al appli
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1. General Introdu
tion1.2 Dusty Plasmas1.2.1 Dust and Dusty PlasmasA dusty plasma 
an be de�ned as a 
olle
tion of mi
ro-sized ele
tri
ally 
harged dustparti
les immersed in a plasma 
onsisting of ele
trons, ions and neutrals [Goertz, 1989;Shukla, 1996, 2000a; Shukla and Mamun, 2002; Verheest and Cattaert, 2004℄.Dust parti
les are very small in size, of ma
ros
opi
 dimensions 
ompared to atomsand ionized nu
lei [Verheest, 2000, p. 2℄). Their sizes range from nano-meters to millime-ters [Shukla and Mamun, 2002, p. 2℄ and they have large masses. Di�erent authors givedi�erent dust mass ranges, for example, [Verheest, 2000, p. 6℄ gives a range of 106 − 1018times the proton mass (see also referen
es therein) while Shukla and Mamun [2002℄ quotesthe dust mass to be billions times the proton mass; the a
tual value depends on the environ-ment of existen
e. Dust parti
les are often observed to have negative 
harges several timesthe ele
tron 
harge, typi
ally between 102− 104e, where e is the ele
troni
 
harge [Shukla,1996; Verheest, 1999; Mamun and Shukla, 2005℄, with variations depending on the envi-ronment where they o

ur. On the other hand, positively 
harged dust parti
les do alsoo

ur in spa
e, depending on the 
harging pro
ess in the surrounding environment. Thelarge values of mass and 
harge for dust parti
les suggest that dust parti
les have signi�-
antly higher mass-to-
harge ratio (md/Zde) than that of ions or ele
trons. As a result, the
hara
teristi
 dust frequen
ies (for example, the dust plasma frequen
y ωpd ∝ (Zd/md)
1/2)are very small [Verheest, 2000, p. 7℄ 
ompared to those of ele
trons and ions.Due to the presen
e of ele
trons and ions in spa
e and the ubiquitous dust, dustyplasmas exist naturally in numerous spa
e and astrophysi
al environments. For example,dust is believed to o

ur in planetary rings, 
ometary tails and 
omae, interstellar and
ir
umstellar 
louds, Earth's mesosphere and ionosphere in the form of no
tilu
ent 
louds,the rings of Saturn (radial spokes in the B ring; braided stru
tures in the F ring; the D ringand the narrow ringlet in the A ring near the middle of the En
ke gap), and the �gossamer�ring of Jupiter (see for example, Mendis and Rosenberg [1994℄; [Verheest, 2000, Chap. 3℄and [Shukla and Mamun, 2002, Chap. 1℄, and referen
es therein).In laboratory experiments, dust parti
les are usually found in many low-temperaturelaboratory devi
es and industrial pro
esses, su
h as plasma pro
essing rea
tors [Shukla and14



1.2. Dusty PlasmasMamun, 2002, p. 18℄ and et
hing [Verheest, 2000, p. 34℄, d
 and rf dis
harges where dustparti
les are more abundant in ele
tronegative gas mixtures, fusion plasma devi
es su
has tokamaks, stellarators [Shukla and Mamun, 2002, p. 20℄ where the dust parti
les aregenerated as impurities through pro
esses like desorption, ar
ing, sputtering, evaporation,et
.Returning to the o

urren
e of dust parti
les in spa
e and astrophysi
al environments,we list brie�y some examples:Planetary rings: In planetary rings, information obtained from Voyager 1 and 2 spa
emissions has shown that most rings of the outer giant planets su
h as Jupiter, Saturn,Uranus and Neptune are made of mi
ron- to sub-mi
ron-sized dust parti
les (see [Ver-heest, 2000, pp. 46�56℄, [Shukla and Mamun, 2002, pp. 13�16℄, Postberg et al. [2006℄, andreferen
es therein). In parti
ular:(i) dust parti
les have been found by the Voyager 2 spa
e
raft to exist in a very tenuousring [Mendis and Rosenberg, 1994℄, the gossamer ring of Jupiter whi
h extends outwardfrom the brighter thin ring to the vi
inity of the satellite Thebes (∼ 3.11RJ ), RJ beingthe radius of Jupiter.(ii)The Ulysses mission to Jupiter also dete
ted high speed streams of dust grains duringits distant Jovian en
ounter (see Mendis and Rosenberg [1994℄ and referen
es therein).(iii) The interesting features observed in Saturn's ring system by both Voyager 1 and 2,the nearly radial spokes [Shukla and Mamun, 2002℄, provided the impetus for the study ofdust-plasma intera
tions in planetary magnetospheres.(iv) Observations of dust in the vi
inity of the moon, Rhea, whose orbital radius is ap-proximately 9 Rs were reported by the Cassini team [Jones et al., 2008℄.Comets: Comets su
h as P/Halley [M
Donnell et al., 1987; Thomas and Keller, 1991℄,observed by the Giotto and Vega spa
e
raft, Hale-Bopp, and others have been found tohave 
ometary dust parti
les (see [Verheest, 2000, pp. 58�62℄; [Shukla and Mamun, 2002,pp. 9�12℄, and referen
es therein). For instan
e, data from the Vega and Giotto spa
e
raftshowed that the dust size distribution is well �tted by a power law distribution, n(r) = r−β,with β ≃ 3.3 for Vega and 4.1 for Giotto [Verheest, 2000; Shukla and Mamun, 2002℄, and
r being the helio
entri
 distan
e. 15



1. General Introdu
tionEarth's Atmosphere: Naturally o

urring dusty plasmas have been reported in the po-lar mesosphere at altitudes of 80 and 90 km [Verheest, 2000, p. 43℄, 
hara
terized byno
tilu
ent 
louds, polar mesospheri
 e
hoes, and strong radar ba
ks
atter, observed atfrequen
ies ranging from 50 MHz to 1.3 GHz [Verheest, 2000; Shukla and Mamun, 2002℄.Large amounts of 
harged dust with average sizes of about 0.1µm at densities of several
109m−3 were dete
ted during the polar mesospheri
 summer e
hoes and no
tilu
ent 
louds
onditions. Both positively and negatively 
harged dust parti
les have been reported atdi�eren
e altitudes in the polar mesosphere [Verheest, 2000, p. 43℄.The 
o-existen
e of negative and positive dust was also found in the tropi
al mesopause[Gelinas et al., 1998℄, where a thi
k (5 km) layer of positively 
harged dust was reported atan altitude of above 90 km, near both the sporadi
 sodium layer and sporadi
 E layer allof whi
h o

urred just above 90 km [Havnes, 2002℄. On the other hand, negatively 
hargeddust was reported near the bottom of the layer, 
overing a small part 
ompared with thepositively 
harged dust layer [Gelinas et al., 1998; Havnes, 2002℄. The presen
e of positivedust in the mesopause region was attributed to the di�eren
e in dust material 
ompositionfrom that of pure water i
e [Havnes, 2002℄ whi
h lowers the work fun
tion of the dustparti
les, and as a result, dust 
harging by photoele
tri
 emission dominates. In plasmaenvironments where both positively- and negatively 
harged dust parti
les 
o-exist su
h as
omets [Horányi, 2002℄ and the tropi
al mesopause [Gelinas et al., 1998; Havnes, 2002℄, asexamples, the positively 
harged dust parti
les are small in size but numerous [Gelinas etal., 1998; Shukla and Mamun, 2002℄ while the negatively 
harged dust grains are larger,enhan
ing 
oagulation [Goertz, 1989; Havnes, 2002℄ of dust parti
les in su
h s
enarios.1.2.2 Fundamental Length S
alesIn the di�erentiation of dusty plasmas from other plasma systems, three essential dis-tin
t 
hara
teristi
 length parameters are used. These are: the dust grain radius (rd),the average inter-grain distan
e ad, and the plasma Debye length, λD. The inter-graindistan
e ad is de�ned by nd0 = 4π/3a3d, where nd0 is the unperturbed dust density, thoughin some books [Verheest, 2000, p. 5℄, the fa
tor 4π/3 is negle
ted. The Debye length
λD is a measure of the distan
e over whi
h the ele
tri
 �eld e�e
t of a typi
al individual
harged parti
le is felt by other surrounding 
harged parti
les in the plasmas, and is given16



1.2. Dusty Plasmasby [Shukla, 2000b; Shukla and Mamun, 2002℄ λ−2
D = λ−2

De + λ−2
Di , where λDe(λDi) is theele
tron (ion) Debye length. Sin
e the ele
trons have high mobility 
ompared to the ions,Debye shielding is mainly due to the ele
trons, and the Debye length expression approxi-mates to λD ≈ λDe = (ε0KBTe/n0ee2)1/2, where Te and ne0 are the ele
tron temperatureand equilibrium density, respe
tively. Usually the the dust grain radius is mu
h smallerthan the Debye length, i.e., rd ≪ λD, and is the smallest of the three lengths [Verheest,2000, p. 5℄. When rd ≪ λD < ad, the plasma 
onsists of isolated s
reened dust grains,and the system is termed �dust-in-plasma� [Verheest, 2000; Shukla and Mamun, 2002℄. Inthis 
ase the lo
al plasma inhomogeneities need to be taken a

ount of [Shukla and Ma-mun, 2002; Horányi, 2002℄, and the 
harged dust parti
les 
an be treated from a parti
ledynami
s point of view [Shukla, 2000b, p. 2℄. On the other hand, when rd ≪ ad < λD,the system is 
alled a �dusty plasma�. Here, the dust parti
les are treated as massive pointparti
le spe
ies [Shukla, 1996; Shukla and Mamun, 2002; Horányi, 2002℄ similar to multi-ply 
harged (negative or positive) ions in multi-
omponent plasmas. Therefore the 
hargeddust parti
les parti
ipate in the 
olle
tive behaviour of the dusty plasma.Apart from the 
hara
teristi
 length parameters dis
ussed above, other fundamentalparameters for plasmas (and dusty plasma in parti
ular) are the plasma parameter (sometimes loosely referred to as the Coulomb 
oupling parameter) and the plasma beta. Thelatter applies to magnetized plasmas, see for example, [Boyd and Sanderson, 2003, p.83℄,and will therefore not be dis
ussed here in detail.Plasma Parameter: In understanding the plasma parameter, we introdu
e two distan
eparameters: (i) the average distan
e between parti
les, a, given by a = (4π/3n0)

1/3,where n0 is the number density (
ompare with the inter-grain distan
e ad), and (ii) thedistan
e of 
losest approa
h rc, de�ned as the distan
e at whi
h the Coulomb energy,
U(r, v) vanishes, where U(r, v) = (mv2/2) − (e2/4πǫ0 r) is the energy of a single 
hargedparti
le in the ele
tri
 �eld of a neighbouring parti
le. Thus rc = e2/(4πǫ0 KBT ), wherewe have used mv2/2 = KBT . The plasma parameter, denoted by g, is a dimensionlessparameter [Kivelson and Russell, 1995; Boyd and Sanderson, 2003; Parks, 2004℄, given by
g = 1/Nd, where [Parks, 2004, p. 25℄

Nd =
4π

3
n0λ

3
D, 17



1. General Introdu
tionis the number of parti
les in a plasma 
ontained in a Debye sphere, and n0 is the equilibriumnumber density. Note that in some books the fa
tor 4π/3 is negle
ted. However, insome textbooks [Miyamoto, 1997℄, the plasma parameter is simply given by Nd. Using
λD = (ε0KBT/n0 e2)1/2 and n0 = 4π/3a3, the expression for Nd 
an easily be written as

Nd =
4π

3

(ε0KBT )
3/2e3 n1/2

=
1

4π
√
3

(

a

rc

)3/2

=
1

g
.From the expression above, the following is worth mentioning:(i) When the ratio a/rc is small, 
harged parti
les are 
ontinuously dominated by oneanother's ele
trostati
 in�uen
e; their kineti
 energies are small 
ompared to the potentialenergies, and the Debye sphere is sparsely populated (as we have fewer parti
les), reminis-
ent of 
old and dense plasmas. Su
h plasmas (with g ≫ 1) are termed strongly 
oupledplasmas [Miyamoto, 1997; Shukla and Mamun, 2002℄.(ii)On the other hand, when the ratio a/rc is large, ele
trostati
 intera
tions between in-dividual parti
les rarely 
ause any sudden 
hanges in the parti
le's motion. The plasma
onsists of a large number of hot and di�use parti
les, and Debye s
reening be
omes mean-ingful. Su
h plasmas (with g ≪ 1) are termed weakly 
oupled plasmas [Miyamoto, 1997;Shukla and Mamun, 2002℄. The 
ondition g ≪ 1 is also 
alled the plasma approxima-tion [Parks, 2004℄, whi
h is taken to be a measure of the 
ollision e�e
ts of the plasmaparti
les; smaller g 
orresponds to fewer 
ollisions, and the plasma be
omes 
ollisionless inthe limit g → 0 (valid in spa
e plasma with low densities and high temperatures.)The Coulomb 
oupling parameter [denoted Γ, not to be 
onfused with the usual Gammafun
tion used in (1.3)℄, is de�ned as the ratio of the Coulomb intera
tion potential energyto the mean kineti
 energy of the plasma parti
les [Gilbert et al., 1988; Melzer et al., 1994;Fortov et al., 1997; Shukla and Mamun, 2002℄. Thus Γ is given by

Γ =
< P.Eintera
tion >

< K.E >
.As an example, we 
onsider a parti
le of 
harge q separated from another by a distan
e

a. The Coulomb potential energy 
an be given by the Debye s
reening potential [Parks,2004℄ [q/(4πǫ0 a)]exp(−a/λD) while the kineti
 energy is obtained from KBT . Note that18



1.2. Dusty Plasmasthe Debye s
reening potential redu
es to the usual Coulomb potential q/(4πǫ0 a) in thelimit a≪ λD. The Coulomb 
oupling parameter then be
omes [Melzer et al., 1994; Shuklaand Mamun, 2002℄
Γ =

q2

(4πǫ0 a)

1

KBT
exp(−a/λD).In the study of dusty plasmas, the value of Γ determines the possibility of formation ofdusty plasma 
rystals [Shukla and Mamun, 2002℄ by the pro
ess of Wigner 
rystallization.This o

urs for strongly 
oupled plasmas, with Γ ≫ 1; Γ ≪ 1 
orrespond to weakly
oupled plasmas. Thus �g� and �Γ� have the same e�e
t. In the determination of the
harge on dust parti
les, Melzer et al. [1994℄ observed a Coulomb 
rystal latti
e with ahexagonal stru
ture in an rf dis
harge. In their experiment, they also reported that the
harged dust parti
les form regular latti
es at Γ ≥ Γc, with Γc = 170 being the 
riti
al
oupling parameter for the liquid-solid transition phase [Fortov et al., 1997℄. With Γc ≈ 2,a transition from the gaseous phase to liquid phase was also predi
ted [Gilbert et al., 1988;Dubin and O'Neil, 1988℄ where a liquid-like phase behaviour is exhibited by the plasma for

Γc > 2 , and a liquid-solid phase transition to a body-
entered 
ubi
 (b

) latti
e o

urredfor Γc ≈ 178 [Gilbert et al., 1988℄. The formation of dusty plasma 
rystals, 
onsistingof ordered arrangements of mi
ro-sized dust grains (or rods) in low-temperature partiallyionized plasmas, was also observed experimentally in a high frequen
y dis
harge near thelower ele
trode in the boundary of the near-
athode regions [Chu and I, 1994; Hayashi andTa
hibana, 1994; Melzer et al., 1994; Thomas et al., 1994℄.1.2.3 Charging Pro
ess of Dust GrainsDust parti
les immersed in a plasma 
an be 
harged negatively by 
olle
ting ele
trons orpositively by emitting ele
trons, depending on the relative �ux of ele
trons and ions in thesystem [Gelinas et al., 1998; Shukla and Mamun, 2002℄. The elementary pro
esses that leadto the 
harging of dust grains are quite 
omplex and depend mainly on the environmentaround the dust grains. Su
h elementary pro
esses in
lude intera
tion of dust grains withenergeti
 parti
les (ele
trons and ions), and intera
tion of dust grains with photons [Shuklaand Mamun, 2002℄. In spa
e, 
olle
tion of ele
trons and plasma ions by the dust grains,and photo-ionization [Verheest, 1999℄ are the most 
ommon 
harging pro
esses. 19



1. General Introdu
tionNegative Charge pro
essesIn a dusty plasma, dust grains may be 
harged negatively by 
olle
tion of 
harges dueto thermal ions and ele
trons [Barkan et al., 1995; Shukla and Mamun, 2002; D'Angelo,2004℄, provided the photoele
tri
 e�e
t, se
ondary emission and other 
harging pro
essesare negligible. The negative 
harge results from: (i) the higher temperature, and thereforehigher thermal speed [Samarian et al., 2001℄, and (ii) the higher mobility of the ele
trons, as
ompared to that of the ions. Thus the initial ion �ux is smaller than the initial ele
tron�ux and hen
e it is mostly the ele
trons that will hit the grain [Verheest, 2000, p. 15℄.As the negative dust builds up on the dust grain, the resulting ele
tri
 �eld a
ts againstfurther ele
tron 
olle
tion (ele
tron �ux de
reases) and in favor of ion 
olle
tion (ion �uxin
reases). Eventually a dynami
al equilibrium is rea
hed when the sum of the plasma
urrents to the grain is zero.This 
harging pro
ess is 
ommon in the normal glow dis
harge experiments, where theemission pro
esses are insigni�
ant [Samarian et al., 2001℄, for example, when 
onsideringlaboratory plasmas of low temperature [D'Angelo, 2004℄; negle
ting ele
tron emission, thehigher mobility of the ele
trons with respe
t to the ions results in negatively 
harged dust.Positive Charge pro
essesOn the other hand, dust parti
les 
an a
quire appre
iable positive 
harges by thermioni
emission [Shukla, 2000b℄, emission of photoele
trons due to in
ident UV radiation, se
-ondary ele
tron emission due to 
ollisions with energeti
 ions and ele
trons, and absorp-tion of the plasma ions [Gelinas et al., 1998; Shukla, 2000b; Shukla and Mamun, 2002;D'Angelo, 2004℄. In this 
ase, the ele
tron density would be larger than that of the ions.Thermioni
 emission: In this pro
ess, ele
trons or ions are thermally emitted from thedust grain surfa
e when the latter is heated to a high temperature [Shukla and Mamun,2002℄, leaving the dust grain positively 
harged. The pro
ess may be indu
ed by laserheating, thermal infra-red heating or by hot �laments surrounding the dust grain.Photoele
tron emission: This is more 
ommon in spa
e and astrophysi
al dusty plasmaenvironments where ultraviolet radiation is abundant and results in a positive 
harging
urrent, making the dust grains positively 
harged. During the pro
ess, photoele
trons areemitted from the dust grain surfa
e when a �ux of photons with energy larger than the20



1.2. Dusty Plasmasphotoele
tri
 work fun
tion of the dust grain is in
ident on the dust grain surfa
e [Goertz,1989; Shukla and Mamun, 2002℄.Se
ondary ele
tron emission: When energeti
 plasma parti
les (ele
trons and ions)are in
ident on a dust grain surfa
e, they are either ba
ks
attered/re�e
ted by the dustgrain [Shukla and Mamun, 2002, p. 40℄ or they pass through the dust grain (throughtunnelling, whi
h is important for very small dust grains [Verheest, 2000, p. 22;23℄) orreleases se
ondary ele
trons. During their passage they may lose their energy partially orfully [Shukla and Mamun, 2002, p. 41℄. A portion of the lost energy may ex
ite other ele
-trons that in turn may es
ape from the material, resulting in se
ondary ele
trons (emittedele
trons). The release of se
ondary ele
trons from the dust grain tends to make the grainsurfa
e potential, as well as dust 
harge, positive [Goertz, 1989; Shukla and Mamun, 2002℄.In addition, if the dust grain absorbs more of the plasma ions than the ele
trons, the dustgrain 
harge as well as its surfa
e potential be
omes positive [Goertz, 1989; Shukla andMamun, 2002℄. This is be
ause, during absorption, the ele
trons are attra
ted while theions are repelled, thus the grain 
urrent 
arried by the ele
trons is in
reased and that
arried by the ions is redu
ed [Goertz, 1989; Shukla and Mamun, 2002℄.Absorption of plasma ions: In laboratory plasmas, one way of produ
ing positively
harged dust grains is by repla
ing the plasma ele
trons with negative ions whose thermalspeed is smaller than the thermal speed of the positive ions [D'Angelo, 1995℄. Positively
harged dust grains 
an be produ
ed by introdu
ing su�
iently large amounts of SF6 gasinto a potassium (K+) plasma in a Q-ma
hine. Using this approa
h, D'Angelo [2004℄ wasable to experimentally investigate the ex
itation of dust ion-a
ousti
 and dust a
ousti
waves in a plasma with positively 
harged dust. The SF6 gas has a large a�nity forele
trons, and thus repla
es the ele
trons with SF−

6 ions [D'Angelo, 2004; Kim and Merlino,2006℄, taking into a

ount the high mobility of K+ ions as 
ompared to SF−

6 ions. Ina similar method (using a Q-ma
hine operating on potassium ions in whi
h the highlyele
tronegative SF6 gas is added), Kim and Merlino [2006℄ experimentally investigatedthe 
harging of dust parti
les in a plasma 
onsisting of positive ions, negative ions andele
trons. In their experiment, the transition from negatively 
harged to positively 
hargeddust required that (i) ε = ne/n+, the ratio of the ele
tron density to positive ion density,21



1. General Introdu
tionbe su�
iently small, and (ii) the positive ion mass be smaller than the negative ion mass.In these 
onditions, in
reasing the 
on
entration of negative ions in the plasma de
reasesthe magnitude of the negative 
harge, and eventually a transition to positively 
hargeddust is observed [Kim and Merlino, 2006℄.1.2.4 Waves in Dusty PlasmasThe presen
e of the additional highly 
harged and massive dust grain spe
ies in theplasma modify the properties of the usual plasma waves [Merlino et al., 1997; Shukla, 2000b;Shukla and Mamun, 2002; Hellberg et al., 2006℄, and also leads to instabilities [Samarian etal., 2001℄. Unmagnetized dust plasmas support new frequen
y modes like the dust a
ousti
(DA) waves and the dust-modi�ed ion-a
ousti
 (DIA) waves [Merlino et al., 1997; Shukla,2000b℄.The dust a
ousti
 wave, whi
h was �rst theoreti
ally predi
ted by Rao et al. [1990℄and later 
on�rmed experimentally by Barkan et al. [1995℄, is a long-wave length, lowfrequen
y os
illation mode [Merlino et al., 1997℄ with phase velo
ity that is far below theion-a
ousti
 velo
ity. In this mode, the ele
tron and ion pressures provide the restoringfor
e while the massive 
harged dust grains provide the inertia [Rao et al., 1990; Merlinoet al., 1997; Shukla, 2000a,b; Shukla and Mamun, 2003; Hellberg et al., 2006℄. Thus thedust parti
le dynami
s play an essential role where the dust behaves as a 
harged parti
leplasma spe
ies. The phase velo
ity of the wave is in the range vtd ≪ ω/k ≪ vti < vte su
hthat ele
tron and ion Landau dampings are minimal.On the other hand, the dust ion-a
ousti
 waves, whi
h were �rst predi
ted by Shuklaand Silin [1992℄ and 
on�rmed experimentally by Barkan et al. [1996℄, are ordinary fastion-a
ousti
 waves that are modi�ed by the presen
e of 
harged dust. In the presen
eof negative dust, the phase velo
ity is higher than that of the usual ion-a
ousti
 wave inan ele
tron-ion plasma, and results in a redu
tion in the strength of the Landau damp-ing [Merlino et al., 1997; Shukla, 2000b℄. The 
hara
teristi
 thermal speeds vtj of ele
tronsand ion in a DIA wave satisfy the 
riterion vtd < vti ≪ ω/k ≪ vte, that is, the phasevelo
ity of DIA waves (ω/k) is mu
h smaller than the ele
tron thermal speeds (vte) butmu
h larger than the ion and dust thermal speeds (vtd, vti). In the DIA waves, the ionmass provides the inertia while the inertialess ele
trons provide the restoring for
e, with22



1.2. Dusty Plasmasthe dust parti
les only providing a neutralizing ba
kground. Thus the ion and ele
trondynami
s is of paramount importan
e in the propagation of DIA waves.These two wave modes (DIA and DA waves) will be dis
ussed in detail in Chapters 3and 4 in this thesis.

23



1. General Introdu
tion1.3 Solitons and Double Layers1.3.1 SolitonsThese are spe
ial types of solitary waves (hump or dip shaped nonlinear waves ofpermanent pro�le) [Shukla and Mamun, 2002, p. 195℄. They travel at 
onstant speedand maintain a 
onstant waveform, thus preserving their shape (see also [Baluku, 2007℄.Solitons arise as a result of the balan
e between the e�e
ts of nonlinearity (leading tosteepening) and the e�e
ts of dispersion, assuming dissipation e�e
ts are negligible.In Fig. 1.3 we show a typi
al stru
ture of a soliton, in terms of the ele
trostati
 potential,
φ(ξ), and ele
tri
 �eld, E = − ▽ φ(ξ). The ele
trostati
 potential soliton stru
ture is
hara
terized by a single hump, o

urring at the origin, while the ele
tri
 �eld stru
ture hastwo humps (i.e., is bipolar), equidistant from the origin. It is the double hump stru
turesin E that are normally observed in spa
e data.

Ξ

ΦHΞL,EHΞL

ΦHΞL

EHΞLFigure 1.3: A graph showing a typi
al soliton stru
ture in terms of the ele
trostati
 po-tential (
ontinuous 
urve) and ele
tri
 �eld (dotted 
urve).In studies of dusty plasmas, two types of a
ousti
 solitons are 
ommonly en
ounteredin 
ollisionless unmagnetized plasmas. These are dust ion-a
ousti
 solitons (analogous toion-a
ousti
 solitons in pure ion-ele
tron plasmas) and dust a
ousti
 solitons [Shukla andMamun, 2002, p. 94℄. These solitons are 
orrespondingly asso
iated with di�erent ele
tro-stati
 waves, viz., the dust ion-a
ousti
 and dust a
ousti
 waves, respe
tively. However,24



1.3. Solitons and Double Layersif the plasma is magnetized we may obtain both ele
trostati
 (a
ousti
) and ele
tromag-neti
 (
y
lotron) waves, with the a
ousti
 wave modes propagating along the magneti
�eld while the 
y
lotron wave modes propagate (nearly but not exa
tly) perpendi
ularto the magneti
 �eld [Merlino et al., 1998℄. In this thesis, however, only solitons asso
i-ated with dust ion-a
ousti
 and dust a
ousti
 waves in various multi-
omponent unmag-netized dusty plasmas will be investigated in Chapters 3 and 4. Besides dusty plasmas,we will also investigate ion-a
ousti
 solitons in plasmas with two-temperature kappa ele
-trons (Chap. 5), Cairns distributed ele
trons (Chap. 6) and two-temperature Boltzmannele
trons (Chap. 7). Where appli
able, double layers will also be dis
ussed.1.3.2 Double LayersA double layer is a lo
al region in a plasma whi
h 
an sustain a potential di�eren
eor high potential drops [Blo
k, 1978; Raadu and Carlqvist, 1981; Raadu and Rasmussen,1981℄. Double layers appear in 
urrent-
arrying plasmas as nonlinear ele
trostati
 sho
k-like or kink stru
tures with potentials transiting from one value to another over a smallspatial distan
e. They 
onsist of two adja
ent layers with equal and opposite net 
harge,hen
e the term �double layer�. One layer has an ex
ess of positive 
harges and the other anex
ess of negative 
harges [Raadu and Rasmussen, 1981℄. Inside the double layer the ele
tri
�elds are strong but very weak outside. Thus the layer taken as a whole is pra
ti
allyneutral [Blo
k, 1978; Raadu and Carlqvist, 1981; Raadu and Rasmussen, 1981℄.In various energeti
 phenomena in spa
e and astrophysi
al plasmas, double layers are
onsidered as a possible means of a

elerating parti
les [Smith, 1985; Raadu and Ras-mussen, 1981℄, and have been invoked in su
h diverse 
ontexts as terrestrial auroral dis-
harges, magnetospheri
 substorms, solar �ares, Jovian radio emission, extragala
ti
 radiosour
es, et
.A double layer is said to be strong if eφdl/KBT ≫ 1, and is said to be weak if, say,eφdl/KBT < 10, where T is the temperature of the free ele
trons, and φdl the height(amplitude) of the double layer [Raadu and Carlqvist, 1981℄.Strong double layers require two-sided boundary 
onditions [Hellberg et al., 1997℄, withthe asso
iated parti
les being spe
i�ed on both sides of the double layer. The parti
lesasso
iated with the potential variation may be 
onveniently divided into four 
lasses: free25



1. General Introdu
tionand trapped (or re�e
ted) ions and ele
trons, though in prin
iple, three of these four 
lassesare enough to maintain a double layer (quite 
ommon with weak double layers). The freeparti
les 
an pass through the double layer while the re�e
ted/trapped parti
les 
annotpenetrate the layer be
ause of the potential barrier. The free parti
les are either a

eleratedor de
elerated depending on their dire
tion of motion with respe
t to the ele
tri
 �eld, andit is these free parti
les that 
arry the 
urrent through the layer leading to emerging beamsof a

elerated parti
les [Raadu and Rasmussen, 1981℄. In this 
ase the ele
tri
 �elds arestrong and may lead to arbitrarily large amplitude double layers [Hellberg et al., 1997℄.A s
hemati
 pi
ture showing a potential pro�le for a double layer as well as the free andre�e
ted ions and ele
trons asso
iated to the double layer is given in Fig. 1.4, from [Raaduand Carlqvist, 1981℄.Another form of double layers is that asso
iated with �uid a
ousti
 models [Baboolalet al., 1988; Ma
e and Hellberg, 1993; Hellberg et al., 1997℄. This is 
hara
terized by one-sided boundary 
onditions at in�nity, and the presen
e of a two-temperature plasma. Theresult here is, in most 
ases, weak or small amplitude double layers, though there may beex
eptions [Bharuthram and Shukla, 1992℄.As we will see in the subsequent subse
tion, the formation of double layers requiresthat (i) the ele
tri
 �eld be mu
h stronger inside the double layer than outside. Thusthe integrated positive and negative 
harges nearly 
an
el ea
h other, leading to vanishingof the net 
harge of the double layer. This 
ondition is derived from the momentumbalan
e and Poisson's equation. (ii) Quasi-neutrality is lo
ally violated in both spa
e
harge densities at the position of the double layer. These 
onditions will be dis
ussed indetail in Se
. 1.4.2.1.4 Methods Used in the Study of Solitary Stru
turesThe methods used in the study of solitary stru
tures are of two types, 
orrespondingto small amplitude (or weak) solitons and large amplitude or arbitrary solitons. When thewaves are weakly nonlinear (or quasi-linear) with a
ousti
-like dispersion in the low fre-quen
y regime, the redu
tive perturbation analysis is appropriate. In the 
ase of large ampli-tude stationary waves, two methods are appropriate. These methods are: the �uid-dynami
paradigm, pioneered by M
Kenzie [M
Kenzie, 2002a,b, 2003℄ and 
o-workers [M
Ken-26



1.4. Methods Used in the Study of Solitary Stru
tures

Figure 1.4: A graph showing a s
hemati
 pi
ture of (a) potential pro�le, (b) phase spa
efor the ions, and (
) phase spa
e for the ele
trons, for a typi
al double layer stru
ture.In the s
hemati
 diagram, both the ions and ele
trons 
onsist of a 
ombination of freeparti
les and trapped or re�e
ted parti
les; the free parti
les are either a

elerated orde
elerated depending on the dire
tion of motion relative to the ele
tri
 �eld. From Raaduand Carlqvist [1981℄.zie and Doyle, 2003; M
Kenzie et al., 2004b,a, 2005℄, and the Sagdeev pseudopotentialmethod [Sagdeev, 1966℄. The former (�uid-dynami
 analysis) will not be dis
ussed in detailin this thesis. It was, however, applied elsewhere [Baluku et al., 2008℄ in the investigationof dust a
ousti
 and dust ion-a
ousti
 solitons in dusty plasma with positively 
harged27



1. General Introdu
tiondust parti
les [Baluku, 2007℄. Thus in the investigations of large amplitude solitons in thevarious multi-
omponent plasma models that will be investigated in this thesis, we shalluse the Sagdeev pseudopotential approa
h.1.4.1 The Redu
tive Perturbation TheoryOne of the 
ommonest approa
hes to the redu
tive perturbation te
hnique is theKorteweg-de Vries (KdV) approa
h. A detailed derivation of the KdV equation (andits solution), obtained for a dusty plasma model 
onsisting of Boltzmann ele
trons, �uidions and positively 
harged dust parti
les 
an be found in the work of Baluku [2007℄. Thisapproa
h has been used in obtaining the KdV equations in Chaps. 4 and 5, here involvingkappa distributed ele
trons instead of Boltzmann ele
trons, and positively or negatively
harged dust parti
les. In deriving the KdV equation, the following stret
hed 
oordinatesare used [Ma
e et al., 1991; Verheest, 2000; Shukla and Mamun, 2002℄: ζ = ǫ1/2(x − V t)and τ = ǫ3/2t, where V is the phase velo
ity of the waves, and ǫ a smallness parameter.The KdV equation then takes the form [Swanson, 2003, p.355℄
∂ϕ1

∂τ
+Aϕ1

∂ϕ1

∂ζ
+B

∂3ϕ1

∂ζ3
= 0, (1.27)where ϕ1 is the perturbed ele
trostati
 potential, and A = A(V ) and B = B(V ) are fun
-tions of the phase velo
ity V , where the latter is de�ned by the asso
iated linear dispersionrelation of the plasma model. The expli
it form of A(V ) and B(V ) are model depen-dent, and have been suppressed. The equation above is used to des
ribe one-dimensionalasymptoti
 behaviour of small but �nite amplitude waves su
h as shallow water waves and
ollisionless magnetohydrodynami
 waves (see e.g., [Baluku, 2007, and referen
es therein℄).The se
ond term in Eq. (1.27), proportional to A, 
orresponds to the 
ontribution of thenonlinearity e�e
ts while the third term (proportional to B) gives the dispersion term.When B = 0, the waves are non dispersive, resulting in a dispersion less a
ousti
 waverelation ω = Ak, where ω is the angular frequen
y and k is the wavenumber. Thus boththe phase velo
ity ω/k, and the group velo
ity dω/dk, are equal to A [Baluku, 2007℄.Solutions to Eq. (1.27) take the form of nonlinear solitary wave stru
tures that prop-agate un
hanged at 
onstant speed, say V0, in the laboratory frame [Chen, 1984℄. Trans-forming to a moving frame, χ(ζ, τ) = ζ − V0τ = ǫ1/2(x − vt), where v = V + δv; with V28



1.4. Methods Used in the Study of Solitary Stru
turesbeing the phase velo
ity of the solitary waves and δv = ǫV0, the KdV equation in (1.27)has solution [Ma
e et al., 1991; Verheest, 2000℄
ϕ1(χ) =

(

3V0

A

) se
h2{( V0

4B

)1/2

χ

}

, (1.28)valid for A 6= 0 and V0/B > 0, that is, both V0 and B must be of the same sign. In thiswork we shall assume forward propagation (V0 > 0), thus B is positive, implying that thesign of the potential ϕ1 depends on the sign of A; positive potential solitons (ϕ1 > 0)require A > 0 while negative potential solitons (ϕ1 < 0) require A < 0. We also pointout that for given parameter values, only one sign of A is possible, implying that the KdVsolution does not allow �
o-existen
e� of negative and positive potential solitons underthe same plasma parameter 
onditions, something that is possible in the large amplitudeapproa
h, as we will 
ome to see. The soliton amplitude and width are given by 3V0/A and
(4B/V0)

1/2, respe
tively. In other words, the soliton amplitude in
reases with in
reasingvelo
ity of the solitary wave while the soliton width de
reases with in
reasing phase speed.For some plasma models, A is nonzero, so that both the nonlinear and dispersive terms
an appropriately 
ontribute to the formation of a solitary stru
ture. However, as wewill see in Chaps. 4 and 5, for some plasma parameters A 
an be equal to zero. In that
ase, the nonlinearity e�e
t be
omes very weak 
ompared to the dispersion 
ontribution.This leads to a breakdown of the KdV method, as the soliton amplitude would now goto in�nity. When that is the 
ase (A = 0), a more appropriate equation is the modi�edKorteweg-de Vries (mKdV) equation [Verheest, 2000, p. 112℄, whi
h is similar to the KdVequation (1.27), but di�ers from it in the nonlinearity term. The mKdV equation has beenderived for the plasma models des
ribed in Chaps. 4 and 5, and a detailed des
ription isgiven in Appendix C.1. When A(V ) = 0 in the KdV equation, Eq. (1.27), the solitonamplitude goes to in�nity. In over
oming that s
enario in the perturbation approa
h, were-s
ale the stret
hed spa
e-time variables ζ and τ . Following the approa
h of Baboolal etal. [1989℄, we use the stret
hed variables ζ = ǫ(X − V t) and τ = ǫ3t instead of those usedin the KdV approa
h. This approa
h, as 
an be seen in Appendix C.1, leads to the mKdV
29



1. General Introdu
tionequation of the form
∂ϕ1

∂τ
+ C(V )ϕ2

1

∂ϕ1

∂ζ
+B(V )

∂3ϕ1

∂ζ3
= 0. (1.29)Note here that B = B(V ) takes the same form in equations (1.27) and (1.29). Likewise,

C(V ) is model dependent. It also has to be noted that the mKdV approa
h is only validfor plasma parameters for whi
h A is equal to or approa
hes zero.Again, using the transformation χ(ζ, τ) = ζ − u0τ ≡ ǫ(x − vt), where v = V + δv;
δv = ǫ2u0, with u0 being the phase velo
ity of the solitary wave, Eq. (1.29) takes the formof a �rst-order di�erential equation whose solution is given by [Verheest, 2000℄

ϕ1(χ) = ±
(

6u0
C

)1/2 se
h{(u0
D

)1/2
χ

} or (1.30)
ϕ(x, t) = ±

(

6δv

C

)1/2 se
h{(δv

B

)1/2

(x− vt)

}

, (1.31)whi
h is valid for C > 0 and B > 0 provided δv > 0 (forward propagation assumed). InEq. (1.30) or (1.31), the soliton amplitude 
an be positive or negative due to the squareroot sign, thus for the same plasma parameters, the mKdV solution 
ould result in solitonsof the same amplitude (size) but opposite potential, unlike the KdV solution whi
h givesonly one sign of potential for the spe
i�
 plasma parameter values.1.4.2 The Sagdeev Pseudopotential TheoryThis is the most widely used approa
h in the study of large (arbitrary) amplitude non-linear solitary stru
tures (solitons and double layers). The method gives the ne
essary
onditions for the existen
e of solitons and double layers, but does not des
ribe the under-lying me
hanisms leading to these solitary stru
tures as well as is the 
ase with the �uidparadigm of M
Kenzie [M
Kenzie, 2002a,b, 2003; M
Kenzie and Doyle, 2003; M
Kenzieet al., 2004a,b, 2005℄. In this approa
h we begin with the Poisson's equation
ε0

∂2ϕ

∂x2
+
∑

j

Nj qj = 0, (1.32)
30



1.4. Methods Used in the Study of Solitary Stru
tureswhere qj , Nj , and ϕ are the 
harge and unnormalized density of spe
ies j, and the lo
alele
trostati
 potential, respe
tively, where we have taken x as the unnormalized spa
e (orposition) variable. Poisson's equation (1.32) 
an easily be written in the form
ε0

d2ϕ

dx2
+

dV (ϕ)

dϕ
= 0 or ε0

2

(

dϕ

dx

)2

+ V (ϕ) = 0, (1.33)where V (ϕ) is the Sagdeev (pseudo)potential. Note that here, we are still working withunnormalized quantities. In normalized form, the potential will be denoted by φ, and theSagdeev potential or pseudopotential by Ψ(φ) instead of V (ϕ). In Eq. (1.33), V (ϕ) =

−
∫ ϕ
0 G(ϕ)dϕ is the pseudopotential, and G(ϕ) gives the sum of the 
harge densities Njqjfor the plasma 
onstituent spe
ies j. This implies that to fully have V (ϕ) in terms of ϕwe also need the spe
ies densities Nj = Nj(ϕ) for the integration to be possible. Thoughwe have written the Sagdeev potential as V (ϕ) as if it is only a fun
tion of ϕ, it is a
tuallya fun
tion of more quantities su
h as the plasm spe
ies temperatures, densities, masses,velo
ities, et
.Equation (1.33) takes the same mathemati
al form as Newton's law of motion, d2χ/dt2 =

F(χ)/m = −dΦ(χ)/dχ, in Classi
al Me
hani
s where Φ(χ) is the potential energy, at 
o-ordinate χ, of a parti
le of mass m moving under the in�uen
e of a for
e, F(χ). Thus these
ond equation in (1.33) is equivalent to an energy integral of a pseudo parti
le of unitmass with potential energy V (ϕ) (
alled the pseudopotential or Sagdeev potential) where
ϕ now plays the role of parti
le 
oordinate and x the role of time.With the Sagdeev potential de�ned in (1.33), it follows that at the origin (ϕ = 0) wehave

V (ϕ) =
dV

dϕ
(ϕ = 0) = 0. (1.34)This 
ondition ensures that the appropriate boundary 
onditions used in obtaining V (ϕ)are satis�ed. Provided 
ondition (1.34) is satis�ed, then the existen
e of solitons or doublelayers require that [Baboolal et al., 1988, 1990; Ma
e and Hellberg, 1993; Verheest, 2000;Verheest et al., 2008℄:(i) The Sagdeev potential V (ϕ) possesses a se
ond derivative su
h that

d2V

dϕ2
(ϕ = 0) < 0. (1.35)31



1. General Introdu
tionThus there is an unstable lo
al maximum at the origin φ = 0 su
h that the pseudo parti
le
omes to rest at the origin when ξ → ±∞. This 
ondition ensures that Ψ(φ) < 0 for
φ 6= 0 in the immediate neighbourhood of φ = 0, leading to the ne
essary 
onvexity at theorigin [Verheest et al., 2008℄. Equation (1.35) is loosely referred to as the �soliton 
ondition�,and gives the minimum (
riti
al) value of the stru
ture speed (from d2V /dϕ2 = 0 at ϕ = 0)su
h that wave propagation is only possible above the 
riti
al speed. However, as we willsee later in Chaps. 4, 5, 6, and 7, this applies only to plasma parameters where solitonpotentials of only one sign are supported. For su
h solitons, their ele
trostati
 potentialgoes to zero as the Ma
h number approa
hes a 
riti
al (lowest) Ma
h number.In the 
ase where solitary stru
tures of both polarity are supported by the same plasma
on�guration, Eq. (1.35) takes the form

d2V

dϕ2
(ϕ = 0) ≤ 0, (1.36)sin
e in this 
ase wave propagation may be possible even at the 
riti
al stru
ture speed.(ii) There exists a nonzero φm, whi
h is a minimum potential3 (or maximum potential) forsolitons or double layers, at whi
h

V (0) = V (ϕm) = 0 and dV (φm)

dϕ











< 0 for ϕm < 0,

> 0 for ϕm > 0.
(1.37)That is, ϕm may be the amplitude of the soliton or the potential 
orresponding to the higherpotential side of the double layer. In the 
ase of a double layer, the former 
ondition, thatis V (0) = V (ϕm) = 0, implies that the ele
tri
 �eld vanishes at the edges of the doublelayer, with ϕ = 0 and ϕ = ϕm being the potentials at the edges of the double layer.This requirement also ensures that the overall 
harge in the double layer vanishes, and the
ondition is known as the generalized Langmuir 
ondition.(iii) We also require

V (ϕ) < 0 for 0 < |ϕ| < |ϕm|. (1.38)This 
ondition ensures that (dϕ/dx)2 is positive for real solutions of the potential following3In the 
ase of solitons, minimum potential is asso
iated with negative potential solitons (ϕ < 0) whilemaximum potential is asso
iated with positive potential solitons (ϕ > 0)32



1.4. Methods Used in the Study of Solitary Stru
turesfrom dϕ/dx = (−2V (ϕ)/ε0)
1/2 in Eq. (1.33).(iv) In the 
ase of double layers, in addition to the above requirements in (1.35)�(1.38),we also require that the 
harge density must also vanish at the edges of the double layer.This implies that

dV (0)

dϕ
=

dV (ϕm)

dϕ
= 0. (1.39)Thus, in parti
ular, double layers satisfy

V (ϕm) =
dV (ϕm)

dϕ
= 0. (1.40)It 
an be shown that expanding the Sagdeev potential, V (ϕ) to the fourth order about

ϕ = 0 leads to a formalism equivalent to the redu
tive perturbation method [Verheest,1999℄. Thus one obtains
ε0
2

(

dϕ

dx

)2

+ C1ϕ
2 + C2ϕ

3 + C3ϕ
4 = 0, (1.41)where the 
oe�
ients C1, C2 and C3 depend on the physi
al parameters, su
h as tempera-ture, density et
. In the 
ase of weak solitons, expansion of V (ϕ) to third order is su�
ient,and that leads to the same solution as Eq. (1.28), obtained from the KdV approa
h forsmall amplitude solitons (see also Baluku and Hellberg [2008℄). Thus this approa
h is sim-ilar to the redu
tive perturbation methods for small amplitude solitons. However, for weakdouble layers, we need Eq. (1.41) (up to fourth order in ϕ). Upon applying the doublelayer existen
e 
onditions in Eq. (1.40), it follows that

C1 = C3ϕ
2
m and C2 = −2C3ϕm, (1.42)and thus Eq. (1.41) takes the form

1

2

(

dϕ

dx

)2

+
C3

ε0
ϕ2(ϕ− ϕm)2 = 0. (1.43)
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1. General Introdu
tionA typi
al solution to Eq. (1.43) is given by [Verheest, 2000℄
φ = −ε0C2

4C3

{

1− tanh

[

(

−C1

2

)1/2

ξ

]}

, (1.44)whi
h after using Eq. (1.42) simply redu
es to
ϕ(x) =

ε0
2
ϕm

{

1− tanh [ϕm(−C3/2ε0)
1/2x

]}

; (C3 < 0). (1.45)In this thesis, the expanded Sagdeev potential approa
h is used in Chap. 3 (see also Balukuand Hellberg [2008℄) in the investigation of small amplitude solitons and double layers when
onsidering a dusty plasma with kappa distributed ele
trons or ions and positively 
harged�uid dust parti
les.1.5 Outline of ThesisIn this thesis, investigations of linear and nonlinear waves in various plasma models,whi
h may o

ur in some spa
e plasma environments, are des
ribed. We �rst study linearele
tron-a
ousti
 waves in bi-kappa plasmas, with emphasis on Saturn's magnetosphere,using a kineti
 theoreti
al approa
h. We next turn to nonlinear waves, where we use a�uid approa
h. In the �uid models we study dusty plasmas, where we look at two 
ases,�rst, the dust a
ousti
 waves, and se
ond, the dust ion-a
ousti
 waves. We extend thenonlinear studies to ion-a
ousti
 waves and solitary stru
tures (in the form of solitons anddouble layers) in bi-kappa plasmas. Finally, we deal with ion-a
ousti
 solitary waves intwo other three-
omponent models, viz., one involving an ele
tron-ion-positron plasma,and one 
omposed of ions and two Boltzmann-distributed ele
tron 
omponents at di�erenttemperatures.After this general introdu
tion to some of the key 
on
epts underpinning the studiesin this thesis, we turn in Chapter 2 to our �rst resear
h problem. It involves a dis
us-sion of linear ele
tron-a
ousti
 waves in bi-kappa plasmas, using kineti
 theory, where theele
tron 
omponents are kappa distributed. We dis
uss spe
i�
 examples relevant to themagnetosphere of Saturn, where two ele
tron 
omponents, of di�erent temperatures andwith nonthermal distributions that deviate signi�
antly from the Maxwellian distribution,have been reported.34



1.5. Outline of ThesisIn 
hapter 3 we investigate existen
e domains of dust a
ousti
 solitons (and doublelayers), 
onsidering a plasma 
onsisting of 
old �uid dust grains, and kappa distributedele
trons and ions. Here, we derive an expression for the density of parti
les (in terms ofthe ele
trostati
 potential) satisfying a kappa distribution, whi
h has also been applied tothe models des
ribed in 
hapters 4 and 5.Chaprter 4 is a study of dust ion-a
ousti
 waves in a three 
omponent plasma, with
old �uid ions, 
harged dust grains, and kappa distributed ele
trons. This is a 
onsider-able extension of the work of Bharuthram and Shukla [1992℄, who studied a plasma model
onsisting of Boltzmann-distributed ele
trons, 
old ions, and negative dust. In this study,we have 
onsidered both small amplitude solitons, using the redu
tive perturbation te
h-nique, and arbitrary amplitude solitons, using the Sagdeev (pseudopotential) approa
h.In parti
ular, we have obtained novel results, namely, �nite solitons at the true a
ousti
speed of the DIA waves that are 
ontrary to the KdV theory des
ription, and also lead toa rede�nition of the requirements imposed on the Sagdeev pseudopotential.In Chapter 5 we 
onsider ion-a
ousti
 solitons in a plasma model 
onsisting of 
oolMaxwellian ions and two (
ool and hot) kappa distributed ele
tron 
omponents. Thisplasma model is dis
ussed with a view to appli
ation to the magnetosphere of Saturn,where two 
omponent ele
trons have been reported to be kappa distributed [S
hipperset al., 2008℄. In this 
hapter, we also report results that are 
ontrary to what is in theliterature. For instan
e we report that, depending on the plasma 
on�guration, solitonsmay be obtained even for Ma
h numbers greater than that at whi
h a double layer o

urs,a hitherto unreported phenomenon.Chapter 6 des
ribes solitary stru
tures in an ele
tron-positron-ion plasma, where theele
trons are nonthermally distributed, obeying the Cairns distribution, the positrons areBoltzmann-distributed, while the ions are 
old and �uid-like. The work des
ribed in this
hapter is an extension of Pakzad [2009℄, however, we have provided more new results
ompared to what is in the literature, in
luding showing the existen
e of negative solitonsand double layers in this 
on�guration.Chapters 7 deals with an investigation of ion-a
ousti
 solitary waves in a three-spe
iesplasma 
onsisting of double Boltzmann ele
trons and 
old ions. In this model solitonsare also found to possess pe
uliar features, su
h as �nite amplitudes at the velo
ity 
orre-35



1. General Introdu
tionsponding to the ion-a
ousti
 speed of the wave. In addition, positive double layers are alsoreported to be supported by the plasma model, for a limited parameter range, in 
ontrastto what is reported in the literature. In this range, again, solitons are found at Ma
hnumbers greater than that yielding a double layer.Finally, in Chap. 8 we present a brief summary of results for all the di�erent plasmamodels that are dis
ussed in this thesis.
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CHAPTER 2
Ele
tron-A
ousti
 Waves in Bi-kappa Plasmas

In this 
hapter we use kineti
 theory to investigate the possible existen
e of ele
tron a
ousti
waves in Saturn's magnetosphere.2.1 Introdu
tionThe 
o-existen
e of 
ool and hot ele
tron populations in Saturn's magnetosphere wasdedu
ed using the Voyager PLS observations of Sittler et al. [1983℄ and later 
on�rmedusing the Cassini Plasma Spe
trometer (CAPS) observations of Young et al. [2005℄. Thenonthermal nature of the ele
tron distributions in the outer magnetosphere was also re-vealed by the Voyager measurements of Barbosa and Kurth [1993℄, who showed that theele
trons possessed a superthermal tail that 
ould be �tted by a power law fun
tion insteadof a Maxwellian distribution fun
tion.More re
ently, the Cassini-Huygens spa
e
raft orbiting Saturn 
arried, among oth-ers, two instruments: the Ele
tron Spe
trometer of the CAPS (CAPS/ELS) and theLow Energy Magnetospheri
 Measurement System of the Magnetospheri
 Imaging Instru-ment (MIMI/LEMMS). Using results from the CAPS/ELS and MIMI/LEMMS instru-ments, S
hippers et al. [2008℄ have shown that both the 
ool and hot ele
tron populationsare non-Maxwellian. By �tting the Cassini data for the ele
tron populations with (a) twoMaxwellian populations, (b) Maxwellian 
ool ele
trons and κ-distributed hot ele
trons,37



2. Ele
tron-A
ousti
 Waves in Bi-kappa Plasmasand (
) two κ-distributed ele
tron populations, S
hippers et al. [2008℄ (see their Fig. 2)showed that the double kappa distribution model �ts best, with relatively low values of
κ (κc, κh ∼ 2− 4, where subs
ripts �
� and �h� refer to 
ool and hot populations, respe
-tively) over mu
h of the magnetosphere.Saturn's magnetosphere has been 
ategorized by many authors, using Voyager 1 and2 [Sittler et al., 1983℄ and Cassini data [Krimigis et al., 2005; Dougherty et al., 2005; Younget al., 2005; Gurnett et al., 2005; S
hippers et al., 2008; André et al., 2008℄, as 
onsistingof three or more regions depending on the a
tivities taking pla
e and the 
omposition ofthe parti
ular portion of the magnetosphere. The main three regions are the inner mag-netosphere, the plasma sheet region (or loosely the middle magnetosphere), and the outermagnetosphere. The inner magnetosphere, extending to radial distan
es up to (9−10)RS ,where RS ≈ 60, 268 km is the radius of Saturn, has the densest plasma in the Saturniansystem, with the plasma originating from the i
y moons of Rhea (8.74RS with N+, O+and water group ions OH+ or H2O+), Dione (6.26RS) and En
eladus (3.95RS), as wellas neutral sour
es [Krupp et al., 2005; André et al., 2008℄. Inside the inner magnetospherelies the inner plasma torus (under 8RS) whi
h is 
hara
terized by low temperatures andhigh equatorial densities, and is 
oupled to the ring system and the i
y satellites [Andréet al., 2008℄. The region lying between around (7 − 9)RS and about (12 − 14)RS 
or-responds to the extended plasma sheet [Krupp et al., 2005; André et al., 2008℄. In thisregion, the energeti
 parti
les are 
on�ned to the equatorial plane of Saturn in a disk-likelayer, and the plasma 
onsists of a mixture of hot and 
ool populations resulting fromtransport pro
esses [André et al., 2008℄, where the 
ool plasma population dominates thedensity and the hot plasma population dominates the pressure. The outer region of themagnetosphere, whi
h extends beyond (12 − 14RS) up to the magnetopause boundary(∼ 20RS), is 
hara
terized by a low plasma density and is strongly in�uen
ed by the solarwind. The magnetopause boundary separates the solar wind plasma from that within Sat-urn's magnetosphere. This outer magnetosphere 
onsists mainly of lighter ions with masses
mi . 10 amu (su
h as H+), a tenuous hot plasma, and a quiet magneti
 �eld [Wahlund etal., 2005; André et al., 2008℄.Following the analysis of the Voyager data [Gurnett et al., 1981; Kurth et al., 1983;Barbosa and Kurth, 1993℄ and re
ently, the Cassini data [Gurnett et al., 2005; André et al.,38



2.1. Introdu
tion2008℄, a range of wave a
tivity has been seen in the magnetosphere of Saturn. Whistler hissand 
horus were reported in the noise events at frequen
ies below the ele
tron 
y
lotronfrequen
y or gyrofrequen
y (fg = eB/2πme) in the magnetosphere of Saturn [Kurth etal., 1983; Barbosa and Kurth, 1993; Gurnett et al., 2005℄. These low frequen
y waves,
entered at frequen
ies below the lo
al ele
tron plasma frequen
y (fpe), were observed asele
trostati
 broadband bursts [Kurth et al., 1983℄ at a radial distan
e of about 15.6RS(in the outer magnetosphere), and in the inner magnetosphere at about 3.1RS < R <

8RS [Barbosa and Kurth, 1993℄. Earlier, Gurnett et al. [1981℄ had observed a strong bandof noise at frequen
ies below 2 kHz between 3.1 and 8RS in the appropriate frequen
yrange of whistler mode hiss and 
horus emissions. At these frequen
ies, the emissions werefound to be in resonan
e with low energy (1− 5 keV) ele
trons.Above fg, ele
tron 
y
lotron harmoni
 (ECH) waves or (n+1/2)fg bands, where n is aninteger, were found to exist in the region inside 8RS provided fpe > fg [Kurth et al., 1983;Barbosa and Kurth, 1993℄ while narrow-band upper hybrid resonan
e (UHR) emissions atfrequen
ies between 25 and 100 kHz (under 6.81RS) were also reported by Gurnett et al.[2005℄; the latter were said to be due to ele
trostati
 os
illations at the UHR frequen
y,
fUHR = (f2

pe+f2
g )

1/2. In addition, ele
tron plasma os
illations [sometimes 
alled Langmuirwaves or ele
tron plasma waves (EPWs)℄ with frequen
ies of about 5.6− 10 kHz (between
13.6 and 17.7RS) and 10− 17 kHz (between 5.5 and 9.5RS) [Kurth et al., 1983; Barbosaand Kurth, 1993℄, and 10 and 17.8 kHz in the 4RS < R < 10RS region [Gurnett et al.,1981℄, were also observed in the magnetosphere of Saturn.Ele
tromagneti
 radio wave emissions at high frequen
ies, between about (3.6 − 5.6)kHz and 31 kHz [Gurnett et al., 1981; Barbosa and Kurth, 1993℄, were reported in the innermagnetosphere (between 3.1 and 6RS) while Gurnett et al. [2005℄ observed intense SaturnKilometri
 Radiation (SKR) on both the outbound and inbound trips of the spa
e
raft(under 8.33RS) with frequen
ies ranging from 100 to 400 kHz.Apart from EPWs and whistler mode waves, whi
h were reported in both the inner andouter magnetosphere, the majority of plasma waves were reported to have o

urred in theinner magnetosphere of Saturn for radial distan
es less than 10RS [Gurnett et al., 1981;Kurth et al., 1983; Barbosa and Kurth, 1993℄, where (i) the magnetosphere 
ontains i
ysatellites that are sour
es of protons and heavier ions like O+ and water group ions OH+ or39



2. Ele
tron-A
ousti
 Waves in Bi-kappa PlasmasH2O+, and (ii) the 
ool and hot ele
tron population densities di�er quite signi�
antly. Itshould be noted that the whistler mode hiss and 
horus waves, reported from the Voyagerplasma wave measurements, were asso
iated with a loss-
one pit
h angle distribution basedon the latitudinal dependen
y of the �ux whi
h de
reases with latitude. In addition, Kurthet al. [1983℄ pointed out that one of the reasons why low frequen
y ele
trostati
 modes maynot be easily observed in the magnetosphere of Saturn is primarily due to limitations ofthe instrument (in the 
ase of the Voyager plasma wave instrumentation), in that the noisespe
trum that is produ
ed by the spa
e
raft is most intense below frequen
ies of 1 kHz,and their spiky nature makes it very di�
ult to di�erentiate between true signals andinterferen
e from the instrument itself.Bearing in mind that both 
ool and hot ele
tron populations in Saturn's magneto-sphere are κ-distributed [S
hippers et al., 2008℄, using a kineti
-theoreti
al model, we
onsider the possible existen
e of ele
tron-a
ousti
 waves in the magnetosphere of Sat-urn. Ele
tron-a
ousti
 waves are ele
trostati
 waves that propagate in plasmas with twoele
tron 
omponents having widely disparate temperatures [Watanabe and Taniuti, 1977;Gary and Tokar, 1985℄. These EAWs are believed to propagate in both unmagnetized andmagnetized two-temperature plasma [Tokar and Gary, 1984℄.2.2 Des
ription of Ele
tron-A
ousti
 WavesIn homogeneous 
ollisionless unmagnetized ele
tron-ion plasmas, only two weakly dampedele
trostati
 normal modes are possible: the ele
tron plasma (Langmuir) wave mode, whi
ho

urs at frequen
ies above the ele
tron plasma frequen
y (ωpe), and the ion-a
ousti
 wave,whi
h o

urs at frequen
ies below the ion plasma frequen
y (ωpi). The latter requires thatthe ion temperature be mu
h less than the ele
tron temperature (Te/Ti ≫ 1) to avoid ionLandau damping. However, in the presen
e of two ele
tron 
omponents (of similar densitiesbut quite di�erent temperatures), a third weakly damped ele
trostati
 mode may propa-gate, and this mode has been termed the ele
tron-a
ousti
 wave [Watanabe and Taniuti,1977; Tokar and Gary, 1984; Gary and Tokar, 1985; Gary, 1987℄. Thus an ele
tron-a
ousti
wave is 
onsidered to be a 
hara
teristi
 normal mode of an unmagnetized 
ollisionlessplasma in the presen
e of two ele
tron 
omponents with similar densities but strongly dis-parate temperatures. It propagates at a phase speed satisfying Vtc ≪ ω/k ≪ Vth, where40



2.2. Des
ription of Ele
tron-A
ousti
 Waves
Vtc (Vth) is the thermal velo
ity of the 
ool (hot) ele
trons, given by Vtj = (KBTj/me)

1/2(j = c or h). The EAW frequen
y lies between the ion and ele
tron plasma frequen
ies,though the waves are strongly damped for small k [Gary and Tokar, 1985℄. In this mode,the 
ool ele
tron os
illations are modi�ed (Debye s
reened) by the hot ele
trons, while the
ool ions essentially play a neutralizing role only.Su
h waves have been studied in bi-Maxwellian plasmas [Watanabe and Taniuti, 1977;Gary and Tokar, 1985; Ma
e and Hellberg, 1990℄. Gary and Tokar [1985℄ have shown thatweak damping may be possible provided the ratio of the hot to 
ool ele
tron temperature,
Th/Tc ≫ 10, and fra
tional 
ool ele
tron density, n0c/n0e < 0.8, where n0e is the totalele
tron density. In addition, Ma
e and Hellberg [1990℄ generated 
riti
al 
urves thatdelineate the regions in parameter spa
e in whi
h a higher order mode will exhibit weakerdamping (smallest imaginary frequen
y). This approa
h was extended to a plasma withhot superthermal (κ-distributed) and 
ool Maxwellian ele
trons by Ma
e et al. [1999℄.In su
h weakly damped regions it is likely that, if su�
ient free energy is added (forinstan
e, by a beam), the waves 
ould attain observable amplitudes [Ashour-Abdalla andOkuda, 1986; Ma
e and Hellberg, 1993; Singh and Lakhina, 2001℄. The higher-order modesreferred to here are those solutions of the dispersion relation that show strong damping(|γ| > ωr/2π, where ωr and γ are the real and imaginary parts of the 
omplex frequen
y
ω = ωr + iγ), otherwise those with weak damping (|γ| ≤ ωr/2π) are 
alled normal modes.While investigating wave observations in the geomagneti
 tail, Ashour-Abdalla andOkuda [1986℄ showed that in the presen
e of ion beams, EAWs may be unstable if theele
tron Landau damping is ex
eeded by the inverse ion Landau damping from the beamions, and that EAWs may exist provided Tec/Teh ≪ 1, with Teh ≈ 100 eV.Using a plasma model 
onsisting of stationary, Maxwellian 
ool and hot ele
trons,an ele
tron beam drifting along the magneti
 �eld, and stationary, �uid ions, Singh andLakhina [2001℄ provided analyti
al 
onditions for the generation of ele
tron-a
ousti
 wavesin the Earth's magnetosphere, whi
h in a sense 
omplemented the numeri
al work of Tokarand Gary [1984℄. They applied their results to the analysis of the dayside auroral region,where the broadband ele
trostati
 noise (BEN) emission was observed as a 
ommon phe-nomenon by the Viking satellite at heights of 2 000 to 10 000 km. With parameter valuestypi
al of the auroral region they obtained unstable EAWs with frequen
ies between the ion41



2. Ele
tron-A
ousti
 Waves in Bi-kappa Plasmasplasma frequen
y and the 
ool ele
tron plasma frequen
y. In addition, Singh and Lakhina[2001℄ applied their results to the plasma sheet boundary layer, and the polar 
usp region.In the mid 1970's, Kawai et al. [1975℄ ex
ited ele
tron waves by a three-mesh ex
iterin a large-volume plasma in the spa
e 
hamber at the Institute of Spa
e and Aeronauti
alS
ien
e, University of Tokyo. In addition to the Langmuir mode, they observed the free-streaming ele
tron mode and a new mode at frequen
ies less than the Langmuir frequen
y,whi
h appeared to be the EAW. In their experiment, the energy distribution fun
tion of theele
trons, as measured by the Faraday 
up method for di�erent anode potential, showedthat the ele
trons 
onsisted of a Maxwellian 
omponent and a non-Maxwellian 
omponent(modelled by a water-bag distribution fun
tion), sin
e the tail of the energy distributionfun
tion was extended with in
reased anode potential.Following on the experiment of Karlstad 
ondu
ted in the Tromsø DP devi
e [Karlstadet al., 1984℄, Hellberg et al. [2000℄ showed that ele
tron-a
ousti
 waves were observed in thatexperiment. The plasma model involving 
ool Maxwellian and hot κ-distributed ele
tronsshowed minimal damping for κh ≃ 3 − 4, and both damping and dispersion were in goodagreement with the experimental results [Hellberg et al., 2000℄.Ele
tron-a
ousti
 wave solitons have been reported in the FAST satellite data in theauroral region of the geomagneti
 tail [Pottelette et al., 1999℄, in the presen
e of a two-
omponent ele
tron plasma with one 
ool (< 60 eV) and a dominant hot (∼ keV) 
ompo-nent. Ma
e and Hellberg [2001℄ used a Korteweg-de Vries�Zakharov-Kuznestov (KdV-ZK)model to study the e�e
t of a magneti
 �eld on su
h ele
tron-a
ousti
 solitons.To the best of our knowledge, observations of EAWs have not yet been reported inSaturn's magnetosphere. Nonetheless, in this 
hapter we investigate, by using a kineti
-theoreti
al approa
h, whether they may potentially be observable. First we present aparameter survey of dispersion and damping 
urves for di�erent density ratios, tempera-ture ratios and spe
tral index values (κc and κh), of the two ele
tron 
omponents. Thenwe 
onsider parameter values that are representative of three regions of Saturn's magneto-sphere, as illustrated in Fig. 3 of S
hippers et al. [2008℄. In parti
ular, we show that EAWswould be weakly damped in the outer magnetosphere and hen
e are likely to be observablethere, given a possible external sour
e of free energy.42



2.3. Theoreti
al Model and Basi
 Equations2.3 Theoreti
al Model and Basi
 EquationsWe 
onsider ele
trostati
 waves in an unmagnetized, 
ollisionless plasma 
onsisting ofkappa distributed 
ool and hot ele
trons, and singly 
harged 
ool Maxwellian ions. In theEAW, the 
ool ele
tron os
illations are modi�ed by the hot ele
trons, with the 
ool ionsplaying mainly a neutralizing role.We shall use the 3-d isotropi
 kappa distribution, given as
Fκ(v) =

1

(πκθ2)3/2
Γ(κ+ 1)

Γ(κ− 1/2)

(

1 +
v2

κθ2

)−(κ+1)

, (2.1)whi
h is of the form of Eq. (1.2), with κ, θ and Γ taking the usual meaning as in Eq. (1.2).The general dispersion relation for ele
trostati
 waves in an unmagnetized plasma maybe written as [Krall and Trivelpie
e, 1989℄
D(k, ω) = 1−

∑

α

ω2
pα

k2

∫

∞

−∞

∂fα0/∂vx
vx − ω/k

d3v = 0; Im ω > 0,where ωpα = (n0αq
2
α/ε0mα)

1/2 is the plasma frequen
y, with the parameters in ωpα havingtheir usual meaning; fα0 the unperturbed velo
ity distribution fun
tion of spe
ies α andthe wave ve
tor k is in the x̂− dire
tion. For two spe
ies of κ-distributed ele
trons andkappa distributed ions, the dispersion relation takes the form [Hellberg and Ma
e, 2002;Ma
e and Hellberg, 2009℄
D(k, ω) = 1−

ω2
pc

k2θ2c
Z ′(κc; ξc)−

ω2
ph

k2θ2h
Z ′(κh; ξh)−

ω2
pi

k2θ2i
Z ′(κi; ξi) = 0, (2.2)where c and h denote the 
ool and hot ele
trons, respe
tively, and i denotes the stationary,
old ions; ξα = ω/(kθα) ∝ ω/(kVtα) is the 
omplex wave phase speed normalized tothe most probable speed θα of spe
ies α, with ω being the 
omplex angular frequen
y,given by ω = ωr + iγ = ωr(1 + iγ/ωr), and k the (magnitude of the) wave number. Inparti
ular, θ2α = [(2κα − 3)/κα](KBTα/mα) = [(2κα − 3)/κα]V

2
tα, with T being the kineti
temperature [Summers and Thorne, 1991; Hellberg et al., 2009; Ma
e and Hellberg, 2009℄,and Vtα = (KBTα/mα)

1/2 being the thermal velo
ity of spe
ies α.The plasma dispersion fun
tion whi
h we denote by Z(κα; ξα) is pre
isely the same43



2. Ele
tron-A
ousti
 Waves in Bi-kappa Plasmasas ZκM(ξ), the modi�ed plasma dispersion fun
tion of Hellberg and Ma
e [2002℄, de�nedinitially for a Kappa-Maxwellian velo
ity distribution. Hellberg and Ma
e [2002℄ alsoindi
ated that ZκM (ξ) is related to the modi�ed plasma dispersion fun
tion Zκ(ξ) forthe isotropi
 three-dimensional kappa distribution [Ma
e and Hellberg, 1995; Hellberg andMa
e, 2002℄ by
ZκM (ξ) =

(κ− 1)3/2

[κ1/2(κ− 3/2)]
Zκ−1

[

{

(κ− 1)

κ

}1/2

ξ

]

,and thus ZκM (ξ) is also appli
able to studies involving isotropi
 kappa distributions, as isthe 
ase here. Re
ently, Ma
e and Hellberg [2009℄ have shown that this plasma dispersionfun
tion [Z(κα; ξα) or ZκM(ξ)℄, whi
h they denoted Uκ(ξ), 
an also be obtained startingfrom an isotropi
 kappa distribution, and therefore its appli
ation is not limited to plasmaswith Kappa-Maxwellian velo
ity distributions. In parti
ular, it 
an be applied to studiesinvolving ordinary isotropi
 kappa distributions. Therefore, for general purposes we shalluse the notation Z(κα; ξα) instead of ZκM (ξ) to refer to the plasma dispersion fun
tionfor kappa velo
ity distributions of the form given in Eq. (1.2).The integral and 
losed forms of the fun
tion Z(κα; ξα), are given by [Hellberg andMa
e, 2002; Ma
e and Hellberg, 2009℄
Z(κα, ξα) =

1

(πκα)1/2
Γ(κα)

Γ(κα − 1/2)

∫

∞

−∞

ds

(s− ξα)(1 + s2/κα)κα
; Im(ξα) > 0 and(2.3)

Z(κα, ξα) =
i(κα − 1/2)

κ
3/2
α

2F1

[

1, 2κα, κα + 1;
1

2

(

1− ξα
i
√
κα

)]

, (2.4)respe
tively, where the 
losed form is expressed in terms of the hypergeometri
 fun
tion,
2F1 [Abramowitz and Stegun, 1972, p. 556℄. Though the integral expression (2.3) for
Z(κα, ξα) is de�ned only for Im(ξα) > 0, its behaviour for Im(ξα) ≤ 0 is obtained throughanalyti
 
ontinuation. In fa
t, Eq. (2.4) is pre
isely the analyti
 
ontinuation of it. Thefun
tion Z ′(κα, ξα), the derivative of Z(κα, ξα) with respe
t to the argument ξα, takes theform [Hellberg and Ma
e, 2002℄

Z ′(κα, ξα) =
−(κα − 1/2)

κα(κα + 1)
2F1

[

2, 2κα + 1, κα + 2;
1

2

(

1− ξα
i
√
κα

)]

. (2.5)Note that in the limit κα →∞, Z(κα, ξα) redu
es to the usual plasma dispersion fun
tion44



2.4. Analyti
 Solutions
Z(ξ) of Fried and Conte [Brambilla, 1989; Swanson, 1989℄. For Maxwellian ions we have
Z(κi; ξi) → Z(ξi); where here ξi = (ω/k)/

√
2Vti, sin
e θi →

√
2Vti when κi → ∞. In theanalyti
al dis
ussion we shall use Z(ξ) for the ions. However, for the numeri
al evaluations,we have retained the full expression Z(κα; ξα) in (2.2) and used a high value of κi (e.g.,

κi = 50) to approximate to a Maxwellian.2.4 Analyti
 SolutionsOn the ele
tron-a
ousti
 wave time s
ale, the phase velo
ity satis�es (
.f. Watanabeand Taniuti [1977℄; Gary and Tokar [1985℄) Vti ≪ Vtc ≪ ω/k ≪ Vth. For ξα ∝ ω/(kVtα),it follows that |ξi|, |ξc| ≫ 1, and |ξh| ≪ 1. Thus we approximate Z(κα; ξα) by using anasymptoti
 expansion for the ions and the 
ool ele
trons. On the other hand, we use apower series expansion of Z(κα; ξα) for the hot ele
trons. A detailed dis
ussion is given inAppendix B.1.For frequen
ies and wavelengths, assuming ωpi ≪ ωpc; |γ| ≪ ωr; λDc ≪ λκh (whi
h is
ommonly valid); and kλDc ≪ 1, the dispersion relation [Eq. (2.2)℄ 
an be written in theapproximate form [see Appendix B.1 for details℄,
ωr

2 = ω2
pc

{

1 + 3k2λ2
Dc(1 + 1/k2λ2

κh
)

(

1 + 1/k2λ2
κh

)

}

, (2.6)where λκα = [(κα − 3/2)/(κα − 1/2)]1/2 λDα, with λDα =
(

ε0KBTα/n0αe
2
)1/2 being thestandard (Maxwellian) Debye length of spe
ies α. Here, the parameter λκα is the appropri-ate Debye length in a kappa plasma [Bryant, 1996; Ma
e et al., 1998, 1999℄, whi
h redu
esto λDα in the limit κα →∞. Equation (2.6) 
an be written in the equivalent form

ωr
2 = k2

{

V 2
sκ

1 + k2λ2
κh

}

+ 3V 2
tc, (2.7)where Vtc = ωpcλDc is the thermal velo
ity of the 
ool ele
trons, and Vsκ, the ele
tronsound speed in a kappa plasma, is given by

V 2
sκ = ω2

pcλ
2
κh

=

(

n0c

n0h

)(

KBTh

me

)(

κh − 3/2

κh − 1/2

)

. (2.8)This expression for V 2
sκ is the same as that found by Ma
e et al. [1999℄ for the EA speed in45



2. Ele
tron-A
ousti
 Waves in Bi-kappa Plasmasa plasma with 
ool Maxwellian and hot kappa ele
trons. Indeed, we note from (2.8) that
Vsκ is independent of κc and in
reases with κh. For κh →∞, Vsκ redu
es to

Cse =

(

n0c

n0h

)1/2(KBTh

me

)1/2

, (2.9)the ele
tron-a
ousti
 speed in the Maxwellian limit [Gary and Tokar, 1985℄. Equation (2.7)is analogous to the standard ion a
ousti
 dispersion relation in a simple ele
tron-ion plasma(where Vs = ωpiλDe) [Chen, 1984℄. In that 
ase there is an additional term asso
iated withthe ion thermal speed, whi
h here is repla
ed by Vtc, the 
ool ele
tron thermal speed. Wenote in passing that the adiabati
 behaviour, with the ratio of the spe
i�
 heat 
apa
ities,
Υ = 3, 
omes out naturally from the kineti
-theoreti
al 
al
ulation. This Υ should notbe 
onfused with the growth rate, γ, dis
ussed in this work. Expression (2.7) also showsthat the phase velo
ity ω/k is modi�ed by the hot ele
tron parameters (through the hotele
tron κ-dependent Debye length, λκh

).We note that for typi
al parameters of interest below, and appropriate for mu
h ofSaturn's magnetosphere, with nc0 and nh0 of similar magnitude and Th ≫ Tc, it followsthat λκh ≫ λDc, and thus, while satisfying kλDc ≪ 1, it is possible to 
onsider the e�e
tof the additional 
onstraints kλκh ≪ 1 and kλκh ≫ 1 on the dispersion relations (2.6)and (2.7). The latter region should possibly be more 
orre
tly designated the �intermediatewavelength� region, as k satis�es kλκh ≫ 1≫ kλDc.We �rst 
onsider the 
onstraint kλκh ≪ 1 in the long wavelength regime (with kλDc ≪

1). Here, Eq. (2.7) redu
es to the form
ωr

2 = k2(V 2
sκ + 3V 2

tc), or ωr
2 = ω2

pc

(

k2λ2
κh + 3k2λ2

Dc

)

. (2.10)In the limit κh → ∞, Vsκ → Cse, and therefore Eq. (2.10) redu
es to the usual longwavelength dispersion relation for EAWs in a plasma with Maxwellian ele
trons [Gary andTokar, 1985℄. Equation (2.10) also indi
ates, signi�
antly, that in this long wavelengthregime [with Vtc ≪ Vsκ in Eq. (2.10)℄, the EAWs are dispersionless and all wavelengths orfrequen
ies propagate at the same a
ousti
 speed, Vsκ.On the other hand, in the 
ase of intermediate wavelengths, imposing the 
onstraint46
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kλκh ≫ 1 in the numerator of Eq. (2.6), the dispersion relation yields the result of Ma
eet al. [1999℄:

ωr
2 = ω2

pc

(

1 + 3k2λ2
Dc

1 + 1/k2λ2
κh

)

, (2.11)whi
h, in the limit κh → ∞, redu
es to the dispersion relation of Gary and Tokar [1985℄for a double Maxwellian plasma (see also Ma
e and Hellberg [1990℄). Equations (2.6)and (2.11) show that the EAW is essentially a 
ool ele
tron os
illation s
reened by thehot ele
trons, with a s
reening fa
tor given by (1 + 1/[k2λ2
κh])

−1. Moreover, although wehave assumed that the 
ool ele
trons are kappa-distributed, we note from (2.11) that theirdynami
al 
ontribution is identi
al to that found in the Maxwellian 
ase, at least withinthe limits of the approximations leading to Eqs. (2.6)�(2.11).Further, if we 
onsider even larger k values, and apply the 
onstraint kλκh ≫ 1 to thedenominator of Eq. (2.7) [or in both the numerator and denominator of Eq. (2.6)℄, thenthe hot ele
tron Debye s
reening is eliminated, and these equations show that the EAWmode redu
es to a Langmuir-like mode of the 
ool ele
trons with dispersion relation [Kralland Trivelpie
e, 1989℄
ω2
r = ω2

pc + 3k2V 2
tc or ω2

r = ω2
pc

(

1 + 3k2λ2
Dc

)

, (2.12)Thus, in this short wavelength regime with λ ≪ λκh, the hot ele
tron Debye shieldingis insu�
ient, and the e�e
ts of the ex
ess superthermal ele
trons asso
iated with the
κ-distributed hot and 
ool ele
trons are negligible.In summary, we stress that the EAW bran
h has di�ering behaviour in the long wave-length regime, where it is essentially a
ousti
, with speed Vsκ [see Eq. (2.10)℄, and theintermediate wavelength regime (with, kλκh ≫ 1, but kλDc ≪ 1) where it behaves essen-tially like a Langmuir mode of the 
ool ele
trons [Gary and Tokar, 1985℄, see Eqs. (2.11)and (2.12).Se
ondly, we draw attention to the fa
t that the analyti
al theory has 
on
entrated on�nding ωr. The 
ompli
ated expression for the damping rate is not transparent even aftertaking approximations, but may be found in Appendix B.1.Finally, we note that, above the EAW frequen
y range (ωpi < ωr < ωpe), one �nds thenormal ele
tron plasma wave (EPW), in whi
h all the ele
trons play a role, and satisfying47
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tron-A
ousti
 Waves in Bi-kappa Plasmas
ωr/k ≫ Vth ≫ Vtc. It 
an easily be shown that the dispersion relation of the EPW in atwo-ele
tron plasma is given, using appropriate approximations, by

1−
(

ω2
pc

ω2
+ 3k2

V 2
tcω

2
pc

ω4

)

−
(

ω2
ph

ω2
+ 3k2

V 2
thω

2
ph

ω4

)

= 0.With ω2
pe = ω2

pc + ω2
ph, and in terms of kλDc, the above expression be
omes

1−
ω2
pe

ω2
− 3k2λ2

Dc

ω2
pe

ω2

{

ω4
pc

ω4
pe

+
λ2
Dh

λ2
Dc

ω4
ph

ω4
pe

}

= 0.The term in 
urly bra
kets 
an be simpli�ed to give
(1− f)2

[

1 +
f β

(1− f)

]

= 1 + f [(1− f)β − (2− f)],where f = nh0/ne0 is the fra
tion of the hot ele
tron equilibrium density, and β = Th/Tc isthe ratio of the hot to 
ool ele
tron temperatures. Thus the above approximate dispersionrelation for the EPWs is given by
ω2/ω2

pe =1 + 3k2λ2
Dc{1 + f [(1− f)β − (2− f)]} or

ω2 =ω2
pe(1 + 3k2λ2

Dc) + 3k2λ2
Dcω

2
pe f [(1− f)β − (2− f)]. (2.13)In terms of the 
ool and hot ele
tron thermal velo
ities Vtc and Vth, Eq. (2.13) is simply

ω2
r = ω2

pe + 3(nc0/ne0)k
2V 2

tc + 3(nh0/ne0)k
2V 2

th. (2.14)This approximate dispersion relation for EPW is thus independent of κh and κc, as expe
tedfrom earlier studies of single-ele
tron κ-plasmas [Ma
e and Hellberg, 1995℄.In Fig. 2.1 we 
ompare the analyti
al results following from Eqs. (2.6)�(2.13) with theanalyti
al solution of Eq. (2.2) without approximations. The exa
t numeri
al results aredepi
ted by solid (bla
k) 
urves in the �gure. We 
hoose a plasma system with parameters
β = 98.04, f = 0.462, κc = 2.1 and κh = 4, 
orresponding to a radial distan
e of about
13.1RS in Saturn's magnetosphere. The approximate dispersion relation for EAWs, given48
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Figure 2.1: Figure showing the analyti
al results dis
ussed above, applied to a plasmasystem with parameters β = 98.04, f = 0.462, κc = 2.1 and κh = 4, 
orresponding toa radial distan
e of about 13.1RS in Saturn's magnetosphere. The dotted (blue) 
urve,labelled 1, is given by Eq. (2.10) while the dotted (red) 
urve, labelled 2, whi
h is theLangmuir-like bran
h of the 
ool ele
trons, is given by Eq. (2.12). The asso
iated numeri
alresults are shown by the solid (bla
k) 
urves.
by Eq. (2.6), is indi
ated by the dotted blue 
urve, labelled 1: it is approximate to ωr =

kVsκ (dot-dashed 
urve) in the small wavenumber limit [for kλκh ≪ 1 and Vtc ≪ Vsκ (seeEq. (2.10))℄, and is equivalent to the Langmuir-like bran
h of the 
ool ele
trons [dottedred 
urve (starting at ωpc and labelled 2), given by Eq. (2.12)℄ for large wavenumbers. Theapproximate dispersion relation for the EPW, given by Eq. (2.13), is shown by the longdashed (green) 
urve. In the 
ase of the EPW we see that the two sets of results agreewell for small kλDc values only (kλDc < 0.1), while for large kλDc, the analyti
al resultsoverestimate the frequen
ies. Similarly, the EAW 
ase shows that the deviation in thefrequen
y predi
ted by the analyti
al approximations and numeri
al results is minimal forlow kλDc but steadily in
reases beyond kλDc ∼ 0.4. 49



2. Ele
tron-A
ousti
 Waves in Bi-kappa Plasmas2.5 Numeri
al SolutionsHere we return to the full dispersion relation, Eq. (2.2), and 
hoose the followingnormalization: the density is normalized to the total ele
tron equilibrium density ne0, wherethe latter is equal to the sum of the hot and 
ool ele
tron equilibrium densities nh0 and nc0.The frequen
y ω is normalized to the ele
tron plasma frequen
y ωpe = (ne0e
2/ε0me)

1/2, andthe temperature and spatial parameter are normalized to the 
ool ele
tron temperature Tcand Debye length λDc, respe
tively. With this 
hoi
e of normalization, we write Eq. (2.2)in the form
D(k, ω) = 1− fZ ′(κc; ξc) + (a f/β)Z ′[κh; (a/β)

1/2ξc] + bZ ′[κi; (bmi/me)
1/2ξc]

− (1− f) (2− 3/κc) k
2λ2

Dc = 0, (2.15)where Z ′ (κα; ξα) is de�ned by Eq. (2.5); mi (me) is the ion (ele
tron) mass; f = n0h/n0e isthe fra
tion of the hot ele
tron equilibrium density; β = Th/Tc is the fra
tional hot ele
trontemperature, and the normalized 
omplex phase velo
ity of the 
ool ele
trons ξc is relatedto the normalized frequen
y (ω/ωpe) by ω/ωpe = [(1− f) (2− 3/κc)]
1/2 (kλDc) ξc, usingthe relation ξc = ω/k θc. The 
onstants a and b in Eq. (2.15) are given, respe
tively, by

a = κh(κc − 3/2)/[κc(κh − 3/2)] and b = κi(κc − 3/2)/[κc(κi − 3/2)Tc/Ti]. For numeri
alpurposes we have assumed the mass ratio, mi/me = 1836, the normalized ion temperature,
Ti/Tc = 10−3, and also used κi = 50.We shall next des
ribe a numeri
al study of Eq. (2.15) � �rst a parameter surveyrelevant to Saturn data, and then a study of wave behaviour in ea
h of the three regionsof Saturn's magnetosphere.In obtaining full solutions to the dispersion relation in Eq. (2.15), the following stepsare followed:(i) We �x the spe
tral indi
es κc and κh, and the density and temperature ratios f and β,respe
tively.(ii) We then assign a non-zero value to the normalized wave number kλDc, and solve forthe 
omplex argument ξc = ξc(ω) that satis�es the simultaneous equations Dr(k, ω) = 0

50



2.5. Numeri
al Solutionsand Di(k, ω) = 0, where here we have
Dr(k, ω) = 1− f Z ′

r(κc; ξc) + (a f/β)Z ′

r[κh; (a/β)
1/2ξc] + bZ ′

r[κi; (bmi/me)
1/2ξc]

− (1− f) (2− 3/κc) k
2λ2

Dc = 0, and
Di(k, ω) =−f Z ′

i(κc; ξc) + (a f/β)Z ′

i[κh; (a/β)
1/2ξc]

+ bZ ′

i[κi; (bmi/me)
1/2ξc] = 0,and subs
ripts r and i refer to the real part and imaginary part, respe
tively. Note herethat ξh and ξi are expressed in terms of ξc as made expli
it in Eq. (2.15). This pro
essnormally leads to a series of solutions of ξc, in
luding the prin
ipal mode solution andhigh-order mode solutions. In essen
e we determine the zero-level 
ontours of Dr(k, ω)and Di(k, ω).(iii) Ea
h solution obtained in step (ii) is used as an initial guess for a root of the fullfun
tion D(k, ω), at the same assigned value of kλDc. A Mathemati
a root �nder isthen used to a

urately obtain the root ξc, from whi
h we obtain the 
omplex frequen
y

ω = k θc ξc. Iterating this pro
edure over a sequen
e of values of kλDc we obtain thedispersion relation ω = ω(k) and the damping rate γ = −γ(k).In this model, the solutions des
ribed here are either �a
ousti
-like� (with zero frequen
y ωat kλDc = 0) or �Langmuir-like� (with frequen
y ω = ωpe at kλDc = 0). Note that we havenormalized ω with the ele
tron plasma frequen
y ωpe. Thus, for the 
ool �Langmuir-like�wave mode the normalized frequen
y equals √nc0/ne0 =
√

(1− f) at k = 0.(iv) The solutions, obtained from (iii), with the least damping rate (low |γ(k)| values) arethen 
onsidered to be normal modes. Depending on the plasma 
omposition, the valueof ξc 
orresponding to the prin
ipal mode (ξc value with lowest imaginary term) normallygives the least damped Langmuir wave mode (or ele
tron plasma wave) solution while oneof the higher-order modes (with relatively low imaginary value) gives the least damped�a
ousti
-like� wave mode. For some plasma 
ompositions though, the prin
ipal value of
ξc may give the �a
ousti
-like� solution while the Langmuir wave mode solution is given byone of the higher-order modes.An example showing the various solutions of ξc for a �xed kλDc and a given plasma
omposition is shown in Fig. 2.2 (left panel), obtained for the parameters: β = 10, f =51
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0.35, κc = 1.8, κh = 7 and κi = 50, with normalized wavenumber kλDc = 1. The dotted(red) 
urves 
orrespond to the solutions of Dr(k, ω) = 0 while the 
ontinuous (blue) 
urves
orrespond to the solutions of Di(k, ω) = 0. Thus for kλDc = 1 used here, the initialguesses of ξc are obtained at the points of interse
tion of the dotted (red) and 
ontinuous(blue) 
urves. In this parti
ular example, the prin
ipal mode is labeled P while the higher-order modes are labeled 1, 2, 3 and 4, depending on how far the solutions are lo
ated fromthe Re(ξc) axis, that is, as |Im(ξc)| in
reases. Note that other sets of 
urves (or solutions)
an be obtained far below Re(ξc) = −30, but these have not been 
onsidered as they leadto strongly damped wave modes.In the right panel of Fig. 2.2 we show the full solutions to Eq. (2.15), obtained byusing the ξc estimates in the left panel and varying kλDc from 1.0→ 0.00001, for example.The �gure indi
ates that the prin
ipal mode is the Langmuir wave, and the higher-ordermodes are a
ousti
-like wave modes. The frequen
y (ω/ωpe) is shown on the positiveordinate-axis while the damping rate (γ/ωpe < 0) is shown on the negative ordinate axis.Considering the steepness of the damping rate 
urves, one sees that the higher order modeslabeled 2 − 4 show rapid in
rease of damping rate as kλDc is in
reased 
ompared to theone labeled 1. Thus, if there were an external sour
e of free energy to the plasma system,the prin
ipal mode and the �rst higher-order mode solutions 
ould be possible 
andidatesfor weakly damped or growing waves for observation. In the right panel of Fig. 2.2, thedashed 
urves have 1/|γ| < 2π/ωr (implying strong damping) while the 
ontinuous 
urveshave 1/|γ| > 2π/ωr, the latter denoting modes that are su�
iently weakly damped to be
alled observable.In order not to over
rowd the graphs for the results presented in Se
tions 2.6 and 2.7,we have only in
luded the �least damped� mode solutions arising from the prin
ipal valueof ξc and one of the higher-order mode solutions. However, for a few 
ases of results wehave also in
luded solutions 
orresponding to other higher-order modes.2.6 Results: E�e
ts of Density, Temperature and Spe
tralIndexFrom the analyti
al results in Se
. 2.4 [Eq. (2.6)℄, we see that the normalized frequen
yis a�e
ted by a number of plasma parameters, and hen
e it 
an be expressed in the form,52
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ts of Density, Temperature and Spe
tral Index
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Figure 2.2: Left panel: A graph showing ξc = Re(ξc) + i Im(ξc) satisfying both Dr(k, ω) =
0 (dotted red 
urve) and Di(k, ω) = 0 (
ontinuous blue 
urve) for kλDc = 1. Otherparameters used are: β = 10, f = 0.35, κc = 1.8, κh = 7 and κi = 50. The values of
ξc are obtained from the points of interse
tion between the dotted (red) and 
ontinuous(blue) 
urves. Right panel: Dispersion and damping rate 
urves 
orresponding to theinitial estimates of ξc for a plasma system with parameters as in the left panel graph. Twodistin
t solutions are shown: the Langmuir wave, 
orresponding to the prin
ipal value of
ξc, and the �a
ousti
 wave� modes, 
orresponding to the higher-order modes, whi
h aredamped. In the right panel, the dashed 
urves imply strong damping (1/|γ| < 2π/ωr)while the 
ontinuous 
urves denote modes that are su�
iently weakly damped to be 
alledobservable, sin
e 1/|γ| > 2π/ωr in those 
ases.
ωr/ωpe ≡ ωr/ωpe(kλDc;κh;Th/Tc;nh0/ne0). Likewise, the normalized damping rate, fromEq. (B.16), is formally a fun
tion of

γ

ωpe
≡ γ

ωpe

(

kλDc;κc;κh;
Th

Tc
;
Ti

Tc
;
nh0

ne0
;
mi

me

)

.Sin
e the ratios Ti/Tc and mi/me are �xed we do not fo
us on the dependen
e of ωr and
γ on these parameters. Instead we investigate the behaviour of the EAW as the plasmaparameters su
h as the spe
tral index of ea
h of the ele
tron 
omponents, the fra
tionaldensity of ele
tron spe
ies, and the temperature ratio of the two ele
tron 
omponents arevaried. Based on typi
al Saturn data, we have, in this se
tion, 
arried out a parametersurvey for EAWs in a plasma with a hard ele
tron spe
trum (low spe
tral indi
es) usingEq. (2.15), to investigate the e�e
t of the parameters listed above on the resulting wave53



2. Ele
tron-A
ousti
 Waves in Bi-kappa Plasmasmodes supported by the plasma system.As we have noted above, it is di�
ult to extra
t any useful information about dampingrates from the approximate analyti
 theory, and thus the numeri
al solution of the fullequation is vital for su
h studies. For the dispersion or damping 
urves in Figs. 2.3�2.12,dashed 
urves imply that the waves are strongly damped (|γ| > ωr/2π), while 
ontinuousparts indi
ate regions of weaker damping, with |γ| < ωr/2π, and in the presen
e of anexternal free energy sour
e (su
h as a beam) the latter may grow to signi�
ant amplitudes.In Figures 2.3�2.6, the dispersion 
urves (ω/ωpe) are shown on the left panel while thedamping rates (γ/ωpe) are on the right panel of ea
h �gure, respe
tively, both expressedas fun
tions of the wavenumber kλDc. Note that the frequen
y ωr and damping rate γ arenormalized to the ele
tron plasma frequen
y ωpe while the wave number k is normalizedto the re
ipro
al of the 
ool ele
tron Debye length λDc.2.6.1 E�e
t of Ele
tron Spe
tral Indi
esIn Figure 2.3 we illustrate the e�e
t of varying the 
ool ele
tron spe
tral index κc onthe wave behaviour for �xed κh = 4, a temperature ratio β = 100, and a fra
tional hotdensity ratio, f = 0.5. We note �rst that the EPW solution shown in the left panel is asuperposition of all the EPW solutions for the κc values (2 ≤ κc ≤ 10) used in this �gure.Thus the �gure shows that the EPW are weakly damped for small k, and their behaviouris independent of κc for small k, 
on�rming the approximate solution, Eq. (2.12).On the other hand, the ele
tron a
ousti
 bran
h is strongly damped in the low wavenum-ber regime (here, kλDc < 0.12), but like the EPW, its phase velo
ity in this region isindependent of κc, 
on�rming the approximate analyti
 equations (2.8) and (2.10).In 
ontrast, for intermediate wavenumbers, the 
ool Langmuir region of the EA-bran
his weakly damped for all κc, and in this range in
reasing κc slightly in
reases the wavefrequen
y over whi
h these EAWs are weakly damped above the �knee� at ωpc, 
ontrary tothe analyti
 theory, whi
h predi
ts that κc has no e�e
t on the dispersion of EAWs in thisrange. Though this e�e
t is signi�
ant for large wavenumbers, the EAWs are too stronglydamped in that range to be observable.In the right panel of Figure 2.3, we 
onsider the damping rate of the weakly dampedEA-bran
h for �xed κh = 4. We see that for intermediate values of wavenumbers (in the54



2.6. Results: E�e
ts of Density, Temperature and Spe
tral Indexregion where the 
riterion 1/|γ| > 2π/ωr is satis�ed), an in
rease in the superthermalparti
le ex
ess of the 
ool 
omponent, i.e., a de
rease in the value of κc, gives rise toin
reased damping as 
ompared to what is found for 
ool ele
tron distributions 
loser to aMaxwellian distribution (e.g., κc = 10). However, the range in wavelengths that are moreweakly damped is not signi�
antly a�e
ted by κc. This observation also applies to Fig. 2.4(see later), with �xed κc = 2 where we now vary κh. Therefore in the weakly dampedregime (with 1/|γ| > 2π/ωr), EAWs with more non-Maxwellian parti
les (low κ values)are more damped than those with a small proportion of non-Maxwellian parti
les (withrelatively high κ values).
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Figure 2.3: Dispersion and damping 
urves showing the e�e
t of 
ool ele
tron kappa indi
es,
κc, for β = 100, n0c = n0h, κh = 4. Values of κc used are: κc = 2 (bla
k, bottom), κc = 4(orange), κc = 6 (blue), κc = 8 (red), and κc = 10 (green, top), respe
tively. As in Fig. 2.2(right panel), the dashed 
urves have 1/|γ| < 2π/ωr (implying strong damping) whilethe 
ontinuous 
urves have 1/|γ| > 2π/ωr, the latter denoting modes that are su�
ientlyweakly damped to be 
alled observable. This (dashing) pattern also applies to Figs. 2.4�2.12. Note that for the sake of not over
rowding the graph, the damping 
urves (in theright panel) 
orresponding to the EPW modes are not shown, thus the results presented(in the right panel) are only for the EAW-like modes. This also applies to the damping
urves in Figs. 2.4�2.7, unless otherwise spe
i�ed.In Fig. 2.4 we show a similar study as in Fig. 2.3, here varying κh, for �xed κc = 2.In this 
ase we see a dependen
e of the frequen
y of the EPW mode on the hot ele
tron
κ value, whi
h is parti
ularly strong near κh = 2. This re�e
ts the numeri
al results forEPW in a single-ele
tron plasma [Ma
e and Hellberg, 1995℄, as opposed to the analyti
55



2. Ele
tron-A
ousti
 Waves in Bi-kappa Plasmasapproximation, Eq. (2.13). In addition, the EPW bran
h shows 
oupling behaviour as
κh be
omes small, where it behaves as a Langmuir wave for low wavenumbers while forintermediate wavenumbers it shows behaviour similar to the Langmuir-like region of theEAW bran
h.The phase speed of the strongly-damped a
ousti
 region of the EAW bran
h showssimilar κh dependen
e that is pronoun
ed near κh = 2. This is to be expe
ted be
ause inthe a
ousti
 region ωr ∼ kVsκ and Vsκ is strongly κh-dependent [see Eq. (2.8)℄. Varying κhnear κh = 2 has a signi�
ant e�e
t on the weakly damped range in k of the intermediatewavelength regime, whi
h is 
ool Langmuir-like. In parti
ular, one sees (see right panel ofFig. 2.4 for details) that the range 0.28 . kλDc . 0.44 is weakly damped for κh = 2, butthat in
reases to 0.15 . kλDc . 0.52 for κh = 4 and 
hanges little for larger κh values.The latter �gure (Fig. 2.4) also shows that the strongly non-Maxwellian 
ase, κh = 2, ismu
h more strongly damped than one �nds for large κh.We then observe that for large normalized wavenumbers (where the 
riterion 1/|γ| >

2π/ωr is not satis�ed), apart from the strongly non-Maxwellian 
ase (with κc = 2, κh = 4,as in Fig. 2.3 or κc = κh = 2, as in Fig. 2.4), the variation of κc in Fig. 2.3 or κh in Fig. 2.4has no signi�
ant e�e
t on the damping of the resulting wave modes.In summary then, 
onsidering the weakly-damped region of the EAW bran
h at in-termediate wavelengths, we observe that the strongest e�e
ts of the ex
ess superthermalparti
les asso
iated with κ-distributions are 
entered on the extreme 
ase κh = 2 of thehot ele
trons, where relatively large 
hanges in damping o

ur. On the other hand, thein
rease of ex
ess superthermal 
ool ele
trons with de
reasing κc does have some e�e
t onthe dispersion of that EAW bran
h.In all the 
ases the entire ele
tron-a
ousti
 mode (bran
h) shows the three distin
tregimes des
ribed by Tokar and Gary [1984℄, and Gary and Tokar [1985℄. These threeregimes are:(i) The a
ousti
 regime whi
h o

urs for low wavenumbers (long wavelengths) with 
hara
-teristi
 phase velo
ity of the order vφ ≈ vsκ = ωpcλκh. In the 
ase of Maxwellian ele
trons,the phase velo
ity is of the order vφ ≈ (nc0/nh0)
1/2vth = Cse [see Eq. (2.9)℄, where vth isthe thermal velo
ity of the hot ele
tron 
omponent. In this regime, EAWs are stronglyLandau damped by the hot ele
trons sin
e vφ ∼ vth, as 
an be seen from Eq. (2.8). The56



2.6. Results: E�e
ts of Density, Temperature and Spe
tral Indexe�e
t is most marked for low values of κh > 3/2. The 
ool ele
trons have no signi�
ante�e
t on the damping of these waves. This is illustrated by 
omparison of the EAW 
urvesin Figs 2.3 and 2.4 for kλDc < 0.15.(ii) The se
ond regime involves the 
ool Langmuir-like bran
h of the EAWs that are weaklydamped, and o

urs for intermediate values of wavenumbers (0.15 < kλDc < 0.55). Therange of wavenumbers (for weak damping) depends strongly on both the hot fra
tion ofthe total ele
tron density (f = nh0/ne0) and the hot to 
ool ele
tron temperature ratio
β = Th/Tc [Hellberg et al., 2000℄. It also depends weakly on the value κh, essentially forlow κh only, and does not depend on κc at all.(iii) As the wavenumber in
reases beyond the intermediate values des
ribed in (ii) we entera third regime where EAWs are strongly damped (by the 
ool ele
trons) as vφ de
reasesand approa
hes vth. Figures 2.3 and 2.4 show that in these two regimes the EAW dynam-i
s depend more on the 
ool ele
tron properties (spe
tral index) than on those of the hotele
trons, and therefore the two regimes lie in the 
old plasma region [Tokar and Gary,1984℄. In addition, the latter two regimes almost lie in the Langmuir-like region of theEAW bran
h, given by Eq. (2.12).
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Figure 2.4: Same as in Fig. 2.3, but now for hot ele
tron kappa indi
es, κh, with κc = 2.
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2. Ele
tron-A
ousti
 Waves in Bi-kappa Plasmas2.6.2 E�e
t of Temperature RatioFigure 2.5 shows the e�e
t of ele
tron temperature ratio variation on the wave behaviourfor a plasma system with �xed low kappa values (κc = 2 and κh = 4), and a density ratioof f = 0.5. Following from the analyti
al solution for the EPW [Eq. (2.13)℄, we see thatthe dispersion relation for low k depends on the temperature ratio, β. This behaviouris 
learly illustrated in the left panel, where for low but �xed kλDc, the frequen
y ω/ωpede
reases with a de
rease in β. In addition, we see that the EPWs are weakly dampedover a mu
h larger range of kλDc for low β values than for high β values. However, the
orresponding range of frequen
ies over whi
h the EPW is weakly damped remains fairly
onstant at ωpe < ω < 1.2ωpe. We also note that for β = 5, the assumption λDc ≪ λκh is
lose to breaking down. The latter follows from the fa
t that λDc ≪ λκh requires f ≪ f∗,where 1/f∗ = 1+ [(κh − 1/2)/(κh − 3/2)]/β (see Appendix B.1), and for κh = 4, β = 5 wehave f∗ ≃ 0.8, whi
h is 
lose to f = 0.5 (n0c = n0h) used in Fig. 2.5.In the 
ase of EAWs for the �xed parameters above, the left panel of Fig. 2.5 showsthat the wave frequen
y is strongly dependent on β, both in the long and the intermediatewavelength regimes. The waves are weakly damped for intermediate wavenumbers when
β > 25 (see 
urves for β = 50 and 100), but are strongly damped for β ≤ 25 over theentire range of wavenumbers 
onsidered. In the a
ousti
 regime, the asso
iated phasevelo
ity (≃ Vsκ) in
reases with β as predi
ted by Eq. (2.8). This illustrates that the �rstterm of Eq. (2.8) is dominant. The right panel of Fig. 2.5 shows that in the �intermediatewavenumber regime�, EAWs are weakly damped for higher temperature ratios, and for alarger range of �wavenumbers� as 
ompared to 
ases with low β values.2.6.3 E�e
t of the Hot Ele
tron Density Fra
tionFigure 2.6 illustrates the e�e
t of varying the hot ele
tron density fra
tion, f , on thewave behaviour for a hot to 
ool ele
tron temperature ratio, β = 100, and �xed indi
es
κc = 2 and κh = 4.The EAWs are weakly damped for intermediate wavenumbers (kλDc) for 0.3 ≤ f < 0.8,with the potentially observable range in kλDc (exhibiting weak damping) de
reasing as fin
reases. For all f , the EAW is strongly damped for low kλDc, and the asso
iated phasevelo
ity (∝ Vsκ) de
reases with in
reasing f , as may be expe
ted from (2.8). However, for58



2.6. Results: E�e
ts of Density, Temperature and Spe
tral Index
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Figure 2.5: Same as in Fig. 2.3, here showing the e�e
t of temperature ratios, β = Th/Tc,for n0c = n0h, κc = 2, κh = 4. The parameter labeling the 
urves is β, whi
h lies between
β = 100 (light-blue) and β = 5 (green). Intermediate values of β are 50, 25 and 10,respe
tively.
f ≥ 0.8, the EAW is strongly damped for the entire wave number range whi
h 
ontrastswith the Maxwellian 
ase for the same parameters [Ma
e, 1991, Fig. 2.1, p18℄. Theseresults show that the behaviour of EAWs is greatly in�uen
ed by the density ratio, f .On the other hand, the EPWs are weakly damped for low kλDc for all the values of fused here. The �gure also shows that as f in
reases, the ranges of both wavenumber (interms of kλDc) and frequen
y over whi
h the EPWs are weakly damped in
reases.While the EPW and EAW are 
learly two separate modes over the full range of kλDcfor f > 0.4, it is seen that for the lowest values of f in this �gure (f = 0.3 − 0.4), theEPW shows emerging signs of 
oupling with the 
ool Langmuir-like region of the EAWnear the �knee�. This 
oupling e�e
t is explored further in Fig. 2.7, whi
h is an extensionof Fig. 2.6, for very low hot ele
tron fra
tional densities, f = 0.1, 0.2. In this �gure thereis strong 
oupling behaviour where the EPW makes 
onta
t with the Langmuir-like EAWat the �knee�, displaying 
hara
teristi
s of both EAWs and EPWs [Ma
e et al., 1999℄. The
oupled EPW mode is weakly damped for a wide range of wavenumbers, from kλDc ≃ 0 towell beyond values found for the simple EPW or EAW observed in Fig. 2.6. On the otherhand, the a
ousti
 bran
h of the EAW persists into the intermediate wavelength regime,59



2. Ele
tron-A
ousti
 Waves in Bi-kappa Plasmasand is strongly damped for all kλDc.
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Figure 2.6: Same as in Fig. 2.3, here showing the e�e
t of density variation, for β =
100, κc = 2, κh = 4. The parameter labeling the 
urves is the density ratio, f = n0h/n0e,ranging from f = 0.9 to f = 0.3, in intervals of 0.1.2.7 Results: Appli
ation to Saturn's MagnetosphereWe solve Eq. (2.15) for parameter values whi
h are typi
al of the three regions ofthe Saturn's magnetosphere: the inner magnetosphere (for radial distan
es R ≤ 9RS),intermediate magnetosphere (9RS < R < 13RS) and the outer magnetosphere (≥ 13RS).In Table 2.1 we list the parameter values, extra
ted from Fig. 3 of S
hippers et al. [2008℄,where we have mainly used data values of the Cassini outbound traje
tory, though similarresults 
an be obtained using the inbound leg. We also point out that the temperatures inTable 2.1 and Figs. 2.8�2.12 are measured in energy units.Figures 2.8�2.12 show the real frequen
y (ωr/ωpe) and damping rate (γ/ωpe) as fun
-tions of kλDc. The dispersion 
urves are those 
orresponding to the positive ordinate whilethe damping rate 
urves 
orrespond to the negative ordinate. As in Figs. 2.3�2.7, the 
on-tinuous (solid) lines 
orrespond to weakly damped modes, whi
h may be observable, sin
etheir damping time (1/|γ|) ex
eeds the plasma wave period (2π/ωr) [Ma
e and Hellberg,1990℄. On the other hand, the dashed 
urves do not satisfy this 
riterion, and as the waves60
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Figure 2.7: Same as in Fig. 2.6, here for f = 0.1 (blue) and f = 0.2 (red), respe
tively,with dispersion on the positive ordinate axis and damping on the negative ordinate axis.are strongly damped, those modes will almost 
ertainly not be observable.Figure 2.8 shows the wave behaviour of both the EPW and the EAW, following fromthe full dispersion relation (2.2), for parameter values (see Table 2.1) 
orresponding toSaturn's outer magnetosphere [S
hippers et al., 2008℄ at R = 13.1RS (left panel) and
R = 14RS (right panel), respe
tively. In the �gure we have also in
luded the analyti
alapproximation, Eq. (2.6), to the EAW (dotted 
urves). The �gure shows that in both
ases (R = 13.1RS and 14RS), the EPW is weakly damped for low wavenumbers, viz.,
kλDc . 0.08 (R = 13.1RS) and kλDc . 0.12 (R = 14RS), respe
tively. Considering theEAW, the �gure shows that, as expe
ted, the wave is weakly damped for intermediate
kλDc, but not for low or high kλDc. In addition, the range in wavenumber over whi
hEAWs are weakly damped is larger for data values 
orresponding to R = 13.1RS , wherethe hot fra
tional density and temperature ratios are signi�
antly larger than is the 
aseat R = 14RS . This applies parti
ularly to the damping. Though the analyti
 solutionsto the EAW approximate the numeri
al results reasonably well in the small wavenumberrange, they di�er quite signi�
antly from the latter for large wavenumbers. The deviation61



2. Ele
tron-A
ousti
 Waves in Bi-kappa PlasmasR (RS) κ values temperatures (eV) densities (
m−3) β f

κc κh Tc Th nc nh5.4 8.0 3.0 1.8 300 10.5 0.02 166.7 0.0026.3 2.3 3.0 2.0 400 10.5 0.01 200.0 0.0017.0 1.8 4.0 9.0 1000 10.5 0.20 111.1 0.029.8 2.0 4.0 8.0 1100 2.5 0.07 137.5 0.02711.4 2.0 3.7 8.0 1500 0.9 0.11 187.5 0.1112.0 2.0 3.5 6.0 1200 1.00 0.11 200 0.1012.5 1.8 4.0 20.0 1100 0.45 0.15 55.0 0.2513.1 2.1 4.0 10.2 1000 0.21 0.18 98.0 0.4613.8 1.6 4.0 30 900 0.40 0.15 30.0 0.2714.0 2.1 6.0 30 900 0.15 0.10 30.0 0.4014.3 1.8 8.0 70 800 0.30 0.20 11.4 0.4015.0 2.0 6.0 40 1000 0.20 0.10 25.0 0.3315.2 2.0 4.0 70 900 0.25 0.10 12.9 0.2916.0 1.9 3.5 35 800 0.08 0.07 22.9 0.4716.8 1.8 3.8 30 900 0.15 0.08 30.0 0.3517.3 2.0 3.5 25 1000 0.15 0.07 40.0 0.3217.8 1.9 3.8 28 1000 0.15 0.07 35.7 0.32Table 2.1: Table showing parameter estimates from Fig. 3 of S
hippers et al. [2008℄, 
or-responding to radial distan
es (R) in Saturn's magnetosphere, here used in Figs. 2.8�2.12,with β = Th/Tc and f = nh0/ne0.in dispersion results observed for low kλDc may be attributed to the fa
t that the analyti
approximation is independent of the 
ool ele
tron spe
tral index κc, whi
h is not the 
asewith the full solution given by the numeri
al approa
h. Results similar to those shown inFig. 2.8 are given in Fig. 2.9, 
orresponding to radial distan
es of 15.0RS (left panel) and
17.8RS (right panel), respe
tively (see Table 2.1 for parameters). Here, as in Fig. 2.8, theEAWs are weakly damped for intermediate wavenumbers, and are strongly damped for low
kλDc. However, the EPW shows some 
oupling behaviour at these larger radial distan
eswhere the fra
tion of 
ool ele
trons ex
eeds 0.65.In Table 2.2 below we show the wavelengths, λ(m), and frequen
ies, f (kHz), 
orre-sponding to the EAW and EPW modes for the radial distan
es where the former areweakly damped. The wavelengths are obtained from the expression

λ(m) =
2π

kλDc

[

ε0(C2N−1m−2)e2(C2)

]1/2 [
KBTc(J)
nc0(m−3)

]1/2

,where kλDc is the (dimensionless) normalized wavenumber that 
an be read from the62
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Figure 2.8: Dispersion (ωr/ωpe) and damping (γ/ωpe) versus kλDc for parameters 
orre-sponding to the Saturnian magnetosphere. Left panel: at about 13.1RS , with parame-ters n0c = 0.21 
m−3, n0h = 0.18 
m−3, Tc = 10.2 eV, Th = 1000 eV, κc = 2.1, κh = 4.Right panel: at about 14RS , with parameters n0c = 0.15 
m−3, n0h = 0.1 
m−3, Tc =
30 eV, Th = 900 eV, κc = 2.1, κh = 6. Analyti
al results [from Eq. (2.6) and (B.16)℄ areshown in red, whi
h for small kλDc agree with the numeri
al solution to some extent.

0.0 0.2 0.4 0.6 0.8 1.0
-0.5

0.0

0.5

1.0

1.5

kΛDc

D
is

pe
rs

io
n
HΩ

r�
Ω

pe
L

an
d

D
am

pi
ng
HΓ
�Ω

pe
L

0.0 0.2 0.4 0.6 0.8 1.0
-0.5

0.0

0.5

1.0

1.5

kΛDc

D
is

pe
rs

io
n
HΩ

r�
Ω

pe
L

an
d

D
am

pi
ng
HΓ
�Ω

pe
L

Figure 2.9: Same as in Fig. 2.8, Left panel: at about 15RS with parameters, n0c =
0.2 
m−3, n0h = 0.1 
m−3, Tc = 40 eV, Th = 1000 eV, κc = 2.0, κh = 6.0. Right panel:at about 17.8RS , with parameters: n0c = 0.15 
m−3, n0h = 0.08 
m−3, Tc = 28 eV, Th =
950 eV, κc = 2.0; κh = 3.8. Here, we have also in
luded the high-order mode solutions,whi
h are strongly damped. 63



2. Ele
tron-A
ousti
 Waves in Bi-kappa Plasmasgraphs. These results show that weakly damped EAWs have frequen
ies in the range(3.33�4.81) kHz, and wavelengths approximately in the range (640�2580) m.R (RS) Wavelength, λ (km) Frequen
y, f (kHz)EAW EPW EAW EPW13.1 0.64�2.21 λ > 4.15 3.61�4.81 5.61�6.6014.0 1.54�2.47 λ > 5.55 3.43�3.85 4.49�5.2415.0 1.38�2.58 λ > 4.43 3.98�4.53 4.92�5.5417.8 1.27�2.51 λ > 4.66 3.33�3.79 4.21�4.64Table 2.2: Table showing the range of wavelength, λ (m), and frequen
y, f (kHz), of theEPW and EAW modes, 
orresponding to the parti
ular (four) radial distan
es in Saturn'smagnetosphere, dis
ussed in this work, where the waves are weakly damped.In summary, in the outer magnetosphere (13RS < R < 18RS) the Langmuir (EPW)wave is weakly damped (1/|γ| > ωr/2π) for small wave numbers kλDc; the EAW is weaklydamped for intermediate kλDc, where it exhibits Langmuir-like behaviour in the vi
inityof ωpc, but not for low or high kλDc.Figure 2.10 shows examples of wave behaviour in the intermediate region of Saturn'smagnetosphere (9RS < R < 13RS), here for radial distan
es R = 12RS (left panel) and
R = 9.8RS (right panel), respe
tively. The EPW exhibit strong 
oupling behaviour withthe Langmuir-like region of the EAW bran
h. This 
oupled mode is weakly damped fora wide range of wavenumbers (kλDc . 0.56). We note that in the intermediate magneto-sphere of Saturn, the hot fra
tional density ratio is very small, implying that ωpc is very
lose to ωpe. Thus the Langmuir-like region of the EAW bran
h (whi
h is near ωpc) is
lose to the 
onventional EPW, indu
ing 
oupling. However, the a
ousti
 region of theEAW mode is strongly damped in this 
ase (see dashed 
urves). We point out that similar
oupling behaviour is also sometimes observed in the outer magnetosphere (R > 13RS), in
ases where the density ratio n0h/n0e is very small, and thus ωpc approa
hes ωpe. An exam-ple here is shown in Fig. 2.11 whi
h 
orrespond to data values at about 15.2 RS (left panel)and 16 RS (right panel). Here, the asso
iated higher order modes, though a
ousti
-like,do not satisfy the damping 
riterion 1/|γ| > 2π/ωr, and are therefore strongly damped,as 
an be seen from the dashed 
urves of Fig. 2.10. The 
oupled-EPW is weakly dampedfor a wide range of normalized wavenumber kλDc . 0.56. Finally we 
onsider the innermagnetosphere (R < 9RS), for example, as shown in Fig. 2.12, 
orresponding to radial dis-64



2.7. Results: Appli
ation to Saturn's Magnetosphere
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Figure 2.10: Same as in Fig. 2.8, Left panel: at about 12RS with parameters, n0c =
1.0 
m−3, n0h = 0.11 
m−3, Tc = 6 eV, Th = 1200 eV, κc = 2.0, κh = 3.5. Right panel:at about 9.8RS , with parameters: n0c = 10.9 
m−3, n0h = 0.11 
m−3, Tc = 8 eV, Th =
1500 eV, κc = 2; κh = 4.
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Figure 2.11: Same as in Fig. 2.10, Left panel: at about 15.2RS with parameters, n0c =
0.25 
m−3, n0h = 0.07 
m−3, Tc = 70 eV, Th = 1000 eV, κc = 2, κh = 4. Right panel:at about 16.0RS , with parameters: n0c = 0.2 
m−3, n0h = 0.07 
m−3, Tc = 35 eV, Th =
800 eV, κc = 1.85; κh = 3.5. The �a
ousti
-like� modes, given by the high-order modesolutions of the dispersion relation, are strongly damped.tan
es of R = 5.4RS (left panel) and R = 6.5RS (right panel), respe
tively. In these two
ases, the density of the high-temperature 
omponent is typi
ally very small, and therefore65



2. Ele
tron-A
ousti
 Waves in Bi-kappa Plasmasvalues of f are small too, that is, 0.001 and 0.002, respe
tively (see Table 2.1). Here onlythe EPW is weakly damped while the �a
ousti
 modes� are too strongly damped to beobservable. In the 
ase of R = 5.4RS we have also in
luded the analyti
 approximationsto the EPW mode (dotted green 
urve) and the Langmuir-like bran
h of the EAW given byEq. (2.12) (solid red 
urve). The �gure shows that in this 
ase, with f ≪ 1 and β ≫ 1, theEPW and the Langmuir-like bran
h of the EAW are 
lose to ea
h other for low normalizedwavenumbers. In addition, the numeri
al and analyti
 results for the EPW agree well inthis range.Ma
e and Hellberg [1990℄, for a bi-Maxwellian ele
tron distribution, and Ma
e et al.[1999℄, for a hot-kappa/
ool-Maxwellian plasma mix, showed that ele
tron-a
ousti
 waves
an be weakly damped only for relatively high hot fra
tional densities (n0h/n0e) and rela-tively high hot-to-
ool ele
tron temperatures, above the threshold values. From the Voy-ager 1 and 2 inbound results of the PLS observations, Sittler et al. [1983℄ showed thatbetween 15RS and 20RS for Voyager 1, and between about 13RS and 20RS for Voyager2 observations, the outer magnetosphere of Saturn has relatively high superthermal fra
-tional densities and pressure (see their Fig. 10). This trend is 
on�rmed by the Cassiniresults of S
hippers et al. [2008℄, where beyond 13RS , the densities of the two ele
tron
omponents are similar within an order of magnitude. However, for radial distan
es below
13RS , though the temperature ratio Th/Tc is in some instan
es large enough (∼ 100) tosupport EAWs, the 
ool and hot ele
tron densities are so disparate (orders of magnitudesapart), that the ratio n0h/n0e be
omes too small. Our results show that �weakly damped�ele
tron-a
ousti
 waves require relatively high hot-to-
ool temperature ratios, and hot-to-total ele
tron density ratios that are well above 0.2.2.8 Con
lusions and Chapter SummaryUsing kineti
 theory, we have 
arried out a study of ele
tron-a
ousti
 waves in a plasmawith two kappa-distributed ele
tron 
omponents, having di�erent temperatures. Based ondata obtained from Saturn's magnetosphere [S
hippers et al., 2008℄, we have 
arried outa parameter survey of dispersion and damping of the waves, for a variety of values of thehot and 
ool ele
tron κ values (κh, κc), with an emphasis on low κ values, the hot ele
trondensity fra
tion f , and the hot to 
ool ele
tron temperature ratio β = Th/Tc.66



2.8. Con
lusions and Chapter Summary
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Figure 2.12: Same as in Fig. 2.8: Left panel: at about 5.4RS , with parameters:
n0c = 10.5 
m−3, n0h = 0.02 
m−3, Tc = 1.8 eV, Th = 300 eV, κc = κh = 5.0. Right panel:at about 6.3RS with parameters, n0c = 10.5 
m−3, n0h = 0.01 
m−3, Tc = 2 eV, Th =
400 eV, κc = 2.3, κh = 3.0. In the left panel, the analyti
 solution for the EPW [fromEq. (2.13)℄ is also shown in red, whi
h agrees with the numeri
al solution for smallwavenumbers (here kλDc < 0.2). In addition, we have in
luded the analyti
al Langmuir-like solution from Eq. (2.12) (dotted, green 
urve). Thus for small kλDc, Eqs. (2.13)and (2.12) are equivalent when β ≫ 1 and f ≪ 1.Our results show that even in the presen
e of two strongly non-Maxwellian ele
tron
omponents, it is essentially the dependen
e of the damping rate on the hot-to-
ool ele
trontemperature ratio β = Th/Tc and the fra
tional hot ele
tron 
omponent density f =

nh0/ne0 that determines the range in wavenumber (in terms of kλDc) over whi
h EAWsare weakly damped; κh plays a weaker, albeit signi�
ant role, parti
ularly for low values(∼ 2), while the e�e
t of κc, even for strongly non-Maxwellian values, is weak but notnegligible. In our studies we di�erentiate between wave ranges that are strongly damped(|γ| > ωr/2π), and thus will de�nitely not be observable, and those that are potentiallyobservable, either as a result of random thermal �u
tuations or a given sour
e of freeenergy. These results are then applied to three regions of Saturn's magnetosphere.In the outer magnetosphere, our results suggest that weakly damped ele
tron-a
ousti
waves may o

ur at radial distan
es in the range 13− 18RS where(i) the densities of the hot and 
ool ele
tron populations are of the same order of magnitude;(ii) the temperatures di�er by about two orders of magnitude, that is Th/Tc ∼ 100, and67



2. Ele
tron-A
ousti
 Waves in Bi-kappa Plasmas(iii) the kappa index values are more or less 
onstant around κc ≃ 2 and κh ≃ 4.It is thus likely that EAWs should be observable in this outer region. In terms of frequen
iesand wavelengths, our results suggest that the weakly damped EAWs have frequen
ies inthe range (3.33�4.81) kHz, and wavelengths approximately in the range (640�2580) m.In the intermediate magnetosphere, f = nh0/ne0 is very small, and thus ωpc ∼ ωpe.The strong 
oupling between the 
ool Langmuir-like bran
h of the EAW (near ωpc) andthe EPW yields potentially observable waves that are Langmuir-like. This pattern is alsoobtained, for some 
ases, in the R > 13RS region, in 
ases where the density ratio nh0/ne0is very small, and hen
e the 
ool ele
tron 
omponent density nc0 ≃ ne0.Finally, in the inner magnetosphere (R < 9RS), EAWs are strongly damped and arehighly unlikely to be observed in the absen
e of a sour
e of free energy; only the EPW isweakly damped. This may be attributed to the fa
t that the fra
tional hot ele
tron densityis very small.

68



CHAPTER 3
Dust A
ousti
 Solitons in Plasmas with Kappa-Distributed Ele
tronsand/or Ions

In this Chapter, we investigate the existen
e 
onditions for dust a
ousti
 (DA) solitonsand double layers in a dusty plasma in whi
h the ele
trons and/or ions have a kappadistribution, and the dust grains are modelled as a 
old, inertial �uid. This work enablesone to undertake a dire
t 
omparison between the e�e
ts of the Cairns and the kappadistribution, as examples of two nonthermal distributions, on DA solitary wave existen
ein dusty plasmas. Unlike the situation found for the Cairns distribution, we will show thatele
trostati
 solitary stru
tures are restri
ted to negative (positive) potential solitons if thedust is made up of negatively (positively) 
harged grains.The results presented in this Chapter have been published as T. K. Balukuand M. A. Hellberg, Physi
s of Plasmas, 15, 123705 (2008)3.1 Introdu
tionIn Se
. 1.2, we dis
ussed the main properties of dust parti
les, and the various areaswhere they 
an exist in spa
e, astrophysi
al and laboratory environments.In studies of dust a
ousti
 waves in spa
e, the ele
trons or ions are quite often modelledby the Boltzmann distribution, and the dust treated as a 
old �uid due to the great inertia69



3. Dust A
ousti
 Solitons in Plasmas with Kappa-Distributed Ele
trons and/or Ionsprovided by its mass. Using su
h a model, for example, Mamun [1996℄ found that adusty plasma with 
old negatively 
harged inertial dust �uid and (Boltzmann distributed)thermal ions, with ba
kground (Boltzmann) ele
trons would admit negative potentialsasso
iated with small amplitude dust a
ousti
 solitary waves.In explaining the ele
trostati
 stru
tures with density depletions observed by the Frejasatellite [Dovner et al., 1994℄, using a nonthermal velo
ity distribution fun
tion, Eq. (1.26),often referred to as the Cairns distribution, Cairns et al. [1995℄ showed that the presen
eof a population of energeti
 ele
trons 
hanges the properties of ion sound waves.Based on the Cairns distribution fun
tion in Eq. (1.26), a number of authors [Mamun,1997; Verheest and Pillay, 2008a,b℄, to mention a few, have studied the behaviour of solitarystru
tures in nonthermal plasmas. Re
ently, Verheest and Pillay [2008a℄ investigated theexisten
e of large amplitude dust a
ousti
 solitary waves in plasmas 
onsisting of negatively
harged dust in the presen
e of either nonthermally distributed ions or ele
trons using theCairns distribution. In their study, it was found that nonthermal ele
trons support onlynegative potential solitary waves, while, for a limited range of f and α, nonthermal ionsadmit both positive and negative potential solitons, with f = Ne0/Ni0 being the ratioof the equilibrium ele
tron number density to that of the ions. Positive double layerswere also found under related 
onditions. For the 
ase of positive dust they [Verheest andPillay, 2008b℄ found equivalent results, the only di�eren
es being a 
hange of sign of solitonpotential and of the light spe
ies (ions versus ele
trons) governing the pro
ess.Here, we thus investigate the e�e
t of using a di�erent nonthermal distribution for theele
trons or the ions on the resulting DA wave stru
tures, viz. the kappa distribution.3.2 Model and Basi
 EquationsWe 
onsider a three 
omponent, homogeneous, unmagnetized dusty plasma 
omprisingele
trons, singly 
harged ions and negatively 
harged dust parti
les, the latter satisfying the
ontinuity and momentum equations. In view of the typi
al 
harging times
ales, it is ex-pe
ted that 
harge �u
tuations would have a minimal e�e
t on dust a
ousti
 modes [Shuklaand Mamun, 2002℄, and so we assume that the dust 
harge is 
onstant. Both the ions andele
trons of mass mi (me) and temperature Ti (Te) follow a generalized three dimensional
70



3.2. Model and Basi
 Equationskappa distribution given by
Fκ(vj) =

Nj0

(πκj θ2j )
3/2

Γ(κj + 1)

Γ(κj − 1/2)

[

1 +
v2j + 2 qj ϕ/mj

κj θ2j

]

−(κj+1)

, (3.1)where qj is the spe
ies 
harge of the ele
trons (j = e) or ions (j = i); ϕ the lo
al ele
-trostati
 potential, vj and Nj0 the ion (ele
tron) spe
ies velo
ity and equilibrium numberdensity, respe
tively; other parameters are as de�ned in Eq. (1.3). The gamma fun
tion,
Γ(a), is related to the beta fun
tion, B(a, b), where the latter arises from the normal-ization of Fκ(vj) su
h that ∫ Fκ(vj)d

3vj = Nj0, that is, from 
omputing the statisti
al(velo
ity) moments 〈vn〉 of the distribution, with the integer n = 0. To obtain Eq. (3.1)from (1.2), we have taken into a

ount the energy asso
iated with the position of theparti
le spe
ies [Goldston and Rutherford, 1995℄, and thus used the energy 
onservationrelation: mj v
2
j/2 + qjϕ = mj V

2/2, where qjϕ is the in
rease in potential energy and Vis the velo
ity of the parti
les in the initial equilibrium state (i.e.� mj V
2/2 = Wr givesthe total energy in the system). This family of velo
ity distribution fun
tions in
ludes theMaxwell-Boltzmann distribution for κi, κe →∞.Integrating the kappa distribution over velo
ity spa
e, one obtains the number densityfor the ions (j = i) and the ele
trons (j = e), respe
tively, as

Nj(ϕ) = Nj0

(

1 +
2 qj ϕ

mj κj θ2j

)

−(κj−1/2)

, (3.2)where qj is the 
harge of spe
ies j. Note that qjϕ = eϕ for positive ions of single 
harge,and −eϕ for ele
trons, respe
tively. A full derivation is given in Appendix A.1.2. In thelimit eϕ≪ κj mj θ
2
j/2, Eq. (3.2) redu
es to Eq. (15) of Bryant [1996℄, with Eκ = mθ2/2,and is similar (for small perturbations) to Eq. (80) of Treumann [1999℄, whi
h follows fromhis distribution fun
tion (78) with φ → −eφ for ele
trons instead of our Eq. (3.1). Inaddition, we point out that using the one dimensional κ-distribution [with the power inEq. (3.1) being −κ instead of −(κ+ 1)℄ leads to the same expressions in Eq. (3.2).For simpli
ity, we 
hoose the following normalizations: the lo
al ele
trostati
 potentialis normalized to KBTi/e, number density to the ion number density, Ni0, and velo
ity tothe dust a
ousti
 speed, Cd = (Zd KBTi/md)

1/2, where md (Zd) is the dust grain mass71



3. Dust A
ousti
 Solitons in Plasmas with Kappa-Distributed Ele
trons and/or Ions(number of ele
troni
 
harges residing on the dust grain surfa
e of arbitrary 
harge qd, i.e.,
Zd = |qd/e|). For 
ompleteness, in one-dimensional geometry, the spa
e and time variablesare normalized to the �dust Debye length�, λDd = (ε0 KB Ti/Zd Nd0 e2)1/2 and dust plasmaperiod, ω−1

pd = [(Z2
d e2 Nd0/ε0 md]

−1/2, respe
tively.The normalized ion and ele
tron number densities are thus given by
ni(φ) =

(

1 +
φ

κi − 3/2

)

−(κi−1/2) (3.3)and
ne(φ) = f

(

1− σ φ

κe − 3/2

)

−(κe−1/2)

, (3.4)respe
tively, where σ = Ti/Te is the ratio of the ion temperature to that of ele
trons,
f = Ne0/Ni0 the ratio of the equilibrium number density of ele
trons to ions, and φ thenormalized potential. In the limit κi, κe →∞, Eqs. (3.3) and (3.4) redu
e to
ni(φ) = exp (−φ) and ne(φ) = f exp (σ φ), the Maxwellian distributions for the ions andele
trons, respe
tively.On the other hand, the �uid of 
old, negatively 
harged dust parti
les, 
hara
terizedby the normalized density nd and velo
ity ud, satis�es the 
ontinuity and momentumequations (in the absen
e of pressure, sin
e we assume the dust temperature, Td = 0):

∂nd

∂t
+

∂

∂x
(nd ud) = 0 (3.5)and

∂ud
∂t

+ ud
∂ud
∂x
− ∂φ

∂x
= 0. (3.6)The spe
ies' densities are 
oupled by Poisson's equation

∂2φ

∂x2
+

Ni0

ZdNd0
(ni − ne − Zd nd) = 0. (3.7)In transforming to a stationary frame, we assume that all quantities depend on ξ = x−M t,where the Ma
h number M gives the velo
ity of the solitary wave normalized to the dusta
ousti
 speed Cd, i.e., it is equivalent to the normalized speed of the dust parti
les in thestationary frame. With this transformation we have, ∂/∂x→ ∂/∂ξ and ∂/∂t→ −M ∂/∂ξ.72



3.2. Model and Basi
 EquationsBy imposing the appropriate boundary 
onditions for lo
alized disturban
es, that is, nd →

Nd0/Ni0, and φ, dφ/dξ → 0 as ξ → ±∞, equations (3.5) and (3.6) 
an be solved to get
nd(φ) =

(

Nd0

Ni0

)(

1 +
2φ

M2

)

−1/2

. (3.8)From Eqs. (3.3), (3.4) and (3.8) we observe that when f = 0, ne → 0 while nd is �nite,and similarly, when f = 1, nd → 0 while ne is �nite. Thus at these extreme values of f ,the model redu
es to a two-
omponent plasma: an ele
tron-ion plasma for f = 1 and anion-dust plasma for f = 0.Also, with the transformation ξ = x−M t, Poisson's equation be
omes
∂2φ

∂ξ2
+

Ni0

ZdNd0
(ni − ne − Zd nd) = 0. (3.9)In the unperturbed initial state, ∑ qj Nj0 = 0, and with f = Ne0/Ni0 we obtain

ZdNd0/Ni0 = 1− f , where f < 1 for negatively 
harged dust parti
les.Substitution of the density expressions into Poisson's equation leads to
d2φ

dξ2
=

f

1− f

(

1− φσ

κe − 3/2

)

−(κe−1/2)

− 1

1− f

(

1 +
φ

κi − 3/2

)

−(κi−1/2)

+

(

1 +
2φ

M2

)

−1/2

. (3.10)Equation (3.10) 
an be written in the �energy integral� form
1

2

(

dφ

dξ

)2

+Ψ(φ) = 0, (3.11)where
Ψ(φ) =

f

(1− f)σ

[

1−
(

1− φσ

κe − 3/2

)

−(κe−3/2)
]

+
1

1− f

[

1−
(

1 +
φ

κi − 3/2

)

−(κi−3/2)
]

+M2

[

1−
(

1 +
2φ

M2

)1/2
] (3.12)73



3. Dust A
ousti
 Solitons in Plasmas with Kappa-Distributed Ele
trons and/or Ionsis the Sagdeev (pseudo)potential of the plasma system with φ the �
oordinate� (pseudoposition) and ξ the �time�. Note that d2φ/dξ2 = −Ψ′(φ), the prime denoting the derivativewith respe
t to φ. Equation (3.12) has the property that at the origin (φ = 0), Ψ(φ) =

Ψ′(φ) = 0, thus by imposing the solitary stru
ture requirements dis
ussed in Se
. 1.4 forthe Sagdeev pseudopotential theory, we are in a position to obtain existen
e domains ofthe DA solitons or double layers supported by the plasma model. These requirements aresummarized as follows:(i) Ψ′′(φ = 0) < 0 su
h that there is a maximum at the origin (i.e., the �xed point at theorigin is unstable);(ii) there exists a nonzero φm, whi
h is a minimum (or maximum) value of φ, at whi
h
Ψ(φm) = 0;(iii) Ψ(φ) < 0 for 0 < |φ| < |φm|, and(iv) in the 
ase of double layers, both Ψ(φm) and Ψ′(φm) must be zero.The requirement in (i) leads to the �soliton 
ondition�,

M > Ms, (3.13)where
Ms =

{

f σ

1− f

(

2κe − 1

2κe − 3

)

+
1

1− f

(

2κi − 1

2κi − 3

)}

−1/2 (3.14)is the lower Ma
h number limit below whi
h no solitons (or double layers) 
an exist. For
κe, κi → ∞ this redu
es to the familiar expression obtained for Boltzmann ele
trons andions [Verheest et al., 2005℄, i.e., M2

s = (1− f)/(1 + fσ) < 1.Solitons are inherently super a
ousti
, but the �Ma
h number� referred to here is basedon a spe
i�
 normalization, and hen
e one may have M < 1. Whereas we have used anapproximate dust a
ousti
 speed Cd = (Zd KB Ti/md)
1/2 for the normalization, the a
tualdust a
ousti
 speed in the plasma under 
onsideration 
an be shown to be Cdκ = ωpdλDκ,where the global Debye length λDκ [Bryant, 1996; Ma
e et al., 1998, 1999℄ is given by

1

λ2
Dκ

=
e2

ε0 KB

{

Ne0

Te

(

2κe − 1

2κe − 3

)

+
Ni0

Ti

(

2κi − 1

2κi − 3

)}

,
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3.3. Small Amplitude Dust A
ousti
 Solitons (DAS) and Double Layerswhi
h redu
es to the usual expression for λD when κe, κi →∞. It 
an also be written as
1

λ2
Dκ

=
ZdNd0e

2

ǫ0KBTe� ,where the e�e
tive temperature Te� is given by
Ti

Te� =
1

(1− f)

{

f σ

(

2κe − 1

2κe − 3

)

+

(

2κi − 1

2κi − 3

)}

.Thus we 
an see that
M2

dκ =
V 2

C2
dκ

=
M2C2

d

C2
dκ

=
M2Ti

Te� =
M2

M2
s

,where we have used the de�nitions of M, Ms, Mdκ, Cd, Cdκ and λDκ. It follows that if
M > Ms, the �true� Ma
h number Mdκ > 1, and the stru
tures are truly super a
ousti
,as expe
ted.It is seen that in the absen
e of ele
trons, when f → 0, the soliton 
ondition (3.14) isobviously independent of both σ and κe, both of whi
h are ele
tron-related. On the otherhand, for f = 1, the number densities of ions and ele
trons are equal, there is no dust, and
Ms → 0.3.3 Small Amplitude Dust A
ousti
 Solitons (DAS) and Dou-ble LayersTo study small amplitude solitary wave stru
tures, we shall use an expanded Sagdeevpotential approa
h, and thus 
arry out a series expansion of Ψ(φ) about the origin (φ = 0).As we require Ψ(0) = Ψ′(0) = 0, the 
onstant term and linear term vanish. To fourth orderthis gives

1

2

(

dφ

dξ

)2

+Aφ2 +B φ3 + C φ4 = 0, (3.15)where
A =

−(κi − 1/2)

2(1− f)(κi − 3/2)
− f σ (κe − 1/2)

2(1− f)(κe − 3/2)
+

1

2M2
, (3.16)

B =
(κi − 1/2)(κi + 1/2)

6(1 − f)(κi − 3/2)2
− f σ2 (κe − 1/2)(κe + 1/2)

6(1− f)(κe − 3/2)2
− 1

2M4
(3.17)75



3. Dust A
ousti
 Solitons in Plasmas with Kappa-Distributed Ele
trons and/or Ionsand
C =

5

8M6
− (κi − 1/2)(κi + 1/2)(κi + 3/2)

24(1 − f)(κi − 3/2)3

− f σ3 (κe − 1/2)(κe + 1/2)(κe + 3/2)

24(1 − f)(κe − 3/2)3
. (3.18)3.3.1 Small Amplitude SolitonsIn investigating small amplitude solitons, we �rst assume that the fourth order termin (3.15) is small enough to be negle
ted [Verheest and Hellberg, 1997℄ and only 
onsider

1

2

(

dφ

dξ

)2

+Aφ2 +B φ3 = 0. (3.19)The solution to Eq. (3.19) is the usual Korteweg-de Vries (KdV)-type solution
φ(ξ) = −A

B
se
h2 [(−A/2)1/2 ξ] . (3.20)The maximum soliton potential and width are given by |A/B| and √−2/A, respe
tively.Thus, for the soliton width to be real we require A < 0 in (3.20), and B must be non-zero,sin
e we require φ → 0 as ξ → ±∞. The sign of the potential thus depends on the signof B: φ is positive when B > 0 and negative when B < 0. In other words, the sign ofthe 
oe�
ient of φ3 in the Taylor expansion of Ψ(φ) about φ = 0 determines the sign ofthe potential of the small amplitude solitons that exist in the plasma model. This alsoapplies to small amplitude double layers, if they exist, as dis
ussed below in this se
tion.As other plasma models will show, these small amplitude solitons have the property thattheir amplitudes go to zero as M approa
hes Ms. Su
h solitons will be termed �KdV-like�solitons in this thesis.This approa
h, whi
h is valid for weak (small amplitude) solitons, is similar to theredu
tive perturbation te
hnique that results in the Korteweg-de Vries equation of theform of Eq. (3.19).
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3.3. Small Amplitude Dust A
ousti
 Solitons (DAS) and Double LayersSmall Amplitude Negative Potential Solitons:Considering the 
ase of small amplitude negative potential solitons, we require B < 0in (3.17), whi
h leads to a 
onstraint on the Ma
h number, viz.
M <

{

(κi − 1/2)(κi + 1/2)

3(1− f)(κi − 3/2)2
− f σ2 (κe − 1/2)(κe + 1/2)

3(1 − f)(κe − 3/2)2

}

−1/4

≡Mβ, (3.21)provided the expression in bra
kets is positive, i.e.,
f ≤ 1

σ2

(

κi + 1/2

κe + 1/2

)(

κi − 1/2

κe − 1/2

)(

κe − 3/2

κi − 3/2

)2

, (3.22)for real Mβ (and f < 1 and κe, κi > 3/2). Here Mβ is the upper Ma
h number limit abovewhi
h small amplitude negative potential solitons 
annot exist. That is, the existen
edomain is restri
ted to the range Ms < M < Mβ. When κi = κe = κ, Mβ in Eq. (3.21)redu
es to
Mβ =

[

3(1− f)(κ− 3/2)2

(1− fσ2)(κ− 1/2)(κ + 1/2)

]1/4

, (3.23)whi
h at f → 0 is independent of σ, and goes to zero for f = 1 as long as σ 6= 1. The
ase σ = 1 (i.e., Ti = Te) is a singular 
ase, in whi
h the �upper limit� Mβ is seen to beindependent of f . We shall return to this 
ase in our numeri
al evaluations. In addition,for κi = κe, Eq. (3.22) redu
es to f ≤ 1/σ2. Then the entire range of f , viz., 0 < f < 1, is
overed for σ ≤ 1, but for σ > 1, the expression is valid for only a limited range.Small Amplitude Positive Potential Solitons:Next, we turn to the possible existen
e of positive potential solitons. We see fromEq. (3.20) that with A < 0, positive potential solitons (φ > 0) would require B > 0,that is, M > Mβ . This 
ondition dominates the soliton 
ondition, M > Ms, and leads tounbounded values of M. One of the less stringent 
onditions for the existen
e of solitons isthat the Sagdeev potential Ψ(φ) must have at least one 
harge neutral point, that is Ψ′(φ)must 
hange sign in the range 0 < φ < φm, where φm satis�es Ψ(φm) = 0. However, aswill be dis
ussed for the arbitrary amplitude 
ase in Se
tion IV, numeri
al investigationsshow that Ψ′(φ) is never zero for any φ > 0 and M > Ms. That is, no 
harge neutralpoint outside the origin is found, and thus neither positive solitons nor double layers 
an77



3. Dust A
ousti
 Solitons in Plasmas with Kappa-Distributed Ele
trons and/or Ionsbe formed. Thus we shall not dis
uss further the 
ase of B > 0 in this se
tion.3.3.2 Small Amplitude Double LayersWe 
onsider the possible existen
e of small amplitude negative potential double layers.In a number of plasma models, double layers may a
t as limits of a sequen
e of solitons,and 
an thus give rise to a limit of an existen
e domain for solitons [Baboolal et al.,1990℄. The existen
e of double layers requires Ψ(φm) = Ψ′(φm) = 0, at a possible root
φ = φm 6= 0. Applying this double layer 
ondition to Eq. (3.15), one obtains φ2

m = A/Cand φm = −B/2C, i.e., B2 = 4AC. Using this transformation, (3.15) 
an then be writtenin the form [Verheest and Hellberg, 1997℄
1

2

(

dφ

dξ

)2

+ C φ2(φ− φm)2 = 0, (3.24)whi
h has a solution
φ = − B

4C

{

1− tanh

[

(

−A

2

)1/2

ξ

]}

, (3.25)provided A < 0. Also, using φ2
m = A/C it implies that C must be negative for real valuesof φm. Therefore the sign of the double layer given by (3.25) depends solely on whether Bis negative or positive. Here, C < 0 yields M > Mα where

Mα =

{

(κi − 1/2)(κi + 1/2)(κi + 3/2)

15(1 − f)(κi − 3/2)3

+
f σ3 (κe − 1/2)(κe + 1/2)(κe + 3/2)

15(1 − f)(κe − 3/2)3

}

−1/6

. (3.26)As was found to be the 
ase for both Ms and Mβ , we see that Mα → 0 for f → 1, whileat f = 0, of 
ourse, only the ions play a role.In general, the existen
e of (small amplitude) negative potential double layers thusrequires Max(Ms, Mα) < M < Mβ, provided the 
onstants A, B and C in Eqs. (3.15)-(3.18) satisfy the 
onstraint B2 = 4AC.Figures 3.1 and 3.2 show the behaviour of Ms, Mα and Mβ as fun
tions of f forparti
ular values of σ, κe and κi. In Fig. 3.1 we have 
hosen σ = Ti/Te = 0.5. In the leftpanel both spe
ies have a low spe
tral index (κi = κe = 2), while the right panel illustratesa 
ase in whi
h the ele
trons and ions are essentially quasi-Maxwellian (κi = κe = 25).78
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Figure 3.1: Existen
e domain for weak negative potential dust a
ousti
 solitary waves,from the small amplitude theory (Ms, Mβ, Mα), for σ = 0.5 and κe = κi = 2 (leftpanel) and κe = κi = 25 (right panel). Solitons, satisfying Eq. (3.20), o

ur in theregion Ms < M < Mβ , but no double layers exist sin
e Mα > Mβ . The dotted (light-blue)
urves 
orrespond to the upper Ma
h number limit, from the arbitrary amplitude (Sagdeevpotential) theory, limiting the existen
e of negative solitons. This will be dis
ussed furtherin Se
. 3.4.3.
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Figure 3.2: Same as Fig. 3.1 but for σ = 1. Here, for a range of f we have Mα < Mβ ,implying that double layers 
an apparently exist, but 
riti
al analysis shows this to bewrong.In both �gures, small amplitude negative potential solitons are 
on�ned to the regionbetween Ms and Mβ. The qualitative similarity between the two �gures indi
ates that the79



3. Dust A
ousti
 Solitons in Plasmas with Kappa-Distributed Ele
trons and/or Ionsenhan
ed superthermal ele
tron and ion 
omponents asso
iated with a kappa distributionwith low κ have quantitative e�e
ts only - the values and ranges of Ma
h numbers thatsupport solitons are di�erent in the two 
ases. Further, as Mα > Mβ over the full rangeof possible number density ratios, f , it follows that small amplitude double layers 
annotexist. Similar results to those shown in Fig. 3.1 
an be obtained for 0 < σ < 0.5.On the other hand, retaining the same spe
tral indi
es, but 
onsidering di�erent tem-perature ratios as shown, for example, in Fig. 3.2 (where Ti = Te), we 
an �nd a regionin parameter spa
e of (f, M) where Ms < Mα < Mβ is satis�ed for some values of f[f > 0.23 (left panel) and f > 0.463 (right panel), respe
tively℄. Note that for κi = κe = κand σ = 1, Eq. (3.23) gives Mβ = Mβ(κ), whi
h is independent of f , and only dependingon the spe
tral index κ of the ions or ele
trons. Thus, we get the 
onstant 
urves, parallelto the f−axis in Fig. 3.2. Considering the fa
t that for some values of f we 
an have
Ms < Mα < Mβ, a 
ursory interpretation of this �gure may then lead one to suggest thatboth double layers and solitons may exist in su
h a region of parameter spa
e for φ < 0,as one of the required double layer 
onditions is satis�ed. Similar apparent �existen
e do-mains� in the parameter spa
e of (f, M) 
an be obtained for other values of κe, κi and
σ. However, a more 
areful study of these 
ases indi
ates that although Mα < Mβ insome regions, the further double layer requirement B2 = 4AC, and in parti
ular, φm =

−
√

A/C = −B/2C, for φ < 0, is violated. This is illustrated in Table 3.1 for the parametervalues κi = κe = 2 and σ = 1 for the density ratio f = 0.8. For this 
ase, we have listedexamples of Ma
h numbers lying in the range Ms < Mα < M < Mβ , whi
h shouldapparently support double layers. For ea
h su
h value, we have listed the 
orrespondingvalues of 4AC and B2 (whi
h are 
learly far from equal), and also the values of the root, φm,that may be 
al
ulated from the above two relations. The table shows that for the givenparameter values, no se
ond double root exists. A similar approa
h for other parametervalues (of κe, κi and σ ) that are admissible to the 
urrent plasma model leads to the same
on
lusion. This appears to rule out the existen
e of negative potential double layers andtherefore, only negative potential solitons 
an exist in su
h plasmas. As we shall see below,these results also agree with those obtained from the large amplitude treatment.80



3.4. Arbitrary Amplitude DAS and Double Layers
M 4AC B2 φm1 φm20.52 128.739 18.82 -0.785 -1.6340.53 289.558 14.72 -0.311 -1.7480.54 432.201 11.43 -0.184 -1.8670.55 558.996 8.786 -0.126 -2.0000.56 671.941 6.678 -0.092 -2.1460.57 772.758 5.003 -0.069 -2.3130.58 862.933 3.680 -0.053 -2.5030.59 943.749 2.645 -0.042 -2.7240.60 1016.320 1.844 -0.032 -2.9860.61 1081.611 1.235 -0.025 -3.3080.62 1140.460 0.781 -0.019 -3.7150.63 1193.607 0.454 -0.014 -4.2620.64 1241.690 0.231 -0.009 -5.0570.65 1285.256 0.091 -0.006 -6.3970.66 1324.810 0.018 -0.003 -9.5620.67 1360.781 3.5 × 10−4 3.4× 10−4 −25.703iTable 3.1: Table showing the double layer 
onditions arising from Eq. (3.15) for κi =

κe = 2, σ = 1 and f = 0.8; Ms = 0.19245, Mα = 0.51279 and Mβ = 0.66874. Here
φm1 = −B/2C and φm2 = −(A/C)1/2.
3.4 Arbitrary Amplitude DAS and Double Layers3.4.1 Positive Potential SolitonsFrom Eqs. (3.3) and (3.4) it follows that for positive potentials, the limitation on
φ would in prin
iple be provided by the ele
trons at the 
riti
al potential φce = (κe −

3/2)/σ, where κe > 3/2 , beyond whi
h the ele
tron density is 
omplex. At this limitingpotential, we require Ψ(φce) > 0, a 
ondition that is essential for obtaining the upper limitto the Ma
h number for positive dust a
ousti
 solitons to exist. However, substitution inEq. (3.12) shows that for κe > 3/2, Ψ(φce) = −∞ < 0, and thus this requirement is notsatis�ed. It follows that this �ele
tron density limit� 
annot provide an upper limit on Mfor positive potential solitons. Any su
h upper limit on M , should it exist, then needs tobe given by the value of M at whi
h a double layer o

urs for parti
ular values of κi, κe, σand f , provided positive potential solitons and/or double layers exist in the model under
onsideration.Generally, for solitons or double layers to exist, it is imperative that there exists a
harge neutral point (CNP) for some φCNP > 0 between the origin and the potential81



3. Dust A
ousti
 Solitons in Plasmas with Kappa-Distributed Ele
trons and/or Ions
orresponding to the upper Ma
h number limit, whi
h here would o

ur for φ = φce, i.e.,there exists an a

essible value φCNP at whi
h the 
urve of Ψ(φ) against φ has zero slope,before a root of Ψ(φ) is en
ountered. We have 
arried out a numeri
al investigation overa wide range of parameter values and have not been able to �nd a position of 
hargeequilibrium outside the unperturbed state for positive φ, as Ψ′(φ) < 0 always, implyingthat ne + Zd nd > ni. Thus it appears that neither positive solitons nor double layers 
anbe obtained with a dusty plasma model with κ-distributed ions and/or ele
trons.
φ Ψ′(φ, M)

M = 0.34 M = 0.35 M = 0.36 M = 0.37-0.0700 1.69+2.18i 1.69+2.65i 1.69+3.53i 1.69+6.65i-0.0675 1.66+2.44i 1.66+3.13i 1.66+4.90i -6.830-0.0650 1.63+2.83i 1.63+4.04i 1.63+18i -2.822-0.0625 1.61+3.51i 1.61+7i -3.702 -1.786-0.0600 1.58+5.13i -5.4209 -2.095 -1.267... ... ... ... ...-0.0200 -0.0531 -0.0351 -0.0192 -0.0052-0.0175 -0.0375 -0.0231 -0.0104 0.0010-0.0150 -0.0252 -0.0139 -0.0038 0.0052-0.0125 -0.0158 -0.0071 0.0007 0.0077-0.0100 -0.0088 -0.0024 0.0034 0.0086-0.0075 -0.0040 0.0006 0.0045 0.0082-0.0050 -0.0011 0.0017 0.0042 0.0065-0.0025 0.0002 0.0015 0.0027 0.00380 0 0 0 00.0025 -0.0015 -0.0027 -0.0037 -0.00470.0050 -0.0042 -0.0063 -0.0083 -0.01020.0075 -0.0079 -0.0110 -0.0138 -0.01640.0100 -0.0126 -0.0165 -0.0201 -0.02340.0125 -0.0182 -0.0228 -0.0270 -0.03100.0150 -0.0245 -0.0297 -0.0346 -0.03920.0175 -0.0316 -0.0374 -0.0428 -0.04790.0200 -0.0394 -0.0457 -0.0516 -0.0571... ... ... ... ...0.400 -10.7075 -10.7166 -10.7255 -10.73440.425 -16.7644 -16.7733 -16.7822 -16.79090.450 -31.1965 -31.2052 -31.2139 -31.22250.475 -89.0376 -89.0462 -89.0547 -89.06310.500 i∞ i∞ i∞ i∞Table 3.2: Table showing the behaviour of Ψ′(φ) for κi = κe = 2, σ = 1, f = 0.5, and
M > Ms = 0.33 for both φ < 0 and φ > 0.82



3.4. Arbitrary Amplitude DAS and Double LayersA simple illustration is shown in Table 3.2, whi
h shows some results for the parametervalues κi = κe = 2, σ = 1 and f = 0.5. For ea
h value of M shown, we observe that thereis no 
hange of sign of Ψ′(φ) for φ > 0, while for negative potentials a zero does o

uruntil 
omplex values of Ψ′(φ, M) are en
ountered. The table also shows that for values ofpositive φ, Ψ′(φ, M) remains negative but �nite up to φ = 0.5, where it be
omes in�niteand 
omplex.In addition to the above, re
ent investigations [Baluku et al., 2010a,b; Verheest andHellberg, 2010; Verheest, 2010a℄ have shown that if Ψ′′′(φ = 0,Ms) 6= 0, then for theparameters of the plasma system, the sign of Ψ′′′(φ = 0,Ms) 
orresponds to the sign ofthe soliton potential whose amplitude goes to zero as M → Ms. Otherwise for the sameplasma parameters, solitons with the sign opposite to that of Ψ′′′(φ = 0,Ms), if they exist,must have �nite amplitudes at Ms. With this approa
h, we 
an, for a given σ, obtain
riti
al density ratios f , for 
orresponding κ (κe = κi = κ), su
h that Ψ′′′(φ = 0,Ms) = 0.However, for all values of σ, Ψ′′′(φ = 0,Ms) = 0 gives values of f < 0, whi
h are unphysi
al.In other words, for the physi
al f domain [0, 1℄ in the 
ase of negative dust, Ψ′′′(φ = 0,Ms)does not 
hange sign, implying that only one potential sign (in this 
ase, negative) maybe supported. This also rules out the possibility of positive potential solitons (or doublelayers) for this plasma model.3.4.2 Negative Potential SolitonsAs shown in the example above, for φ < 0 a 
harge neutral point is often found fornegative potential. The existen
e of a 
harge neutral point is ne
essary but not su�
ient forsoliton existen
e. Thus negative solitons may exist, but only if the Sagdeev pseudopotentialhas a root for an admissible value of φ before the 
uto� imposed by a physi
al limit. In this
ase the limitations on φ are in prin
iple provided by the ion and dust grain spe
ies withlimiting potentials φci = −(κi − 3/2) and φcd = −M2/2, respe
tively, where κi > 3/2.As dis
ussed earlier, at these limiting potentials we require Ψ(φci orφcd) > 0 to ensureexisten
e of a root. However, for κi > 3/2, Ψ(φci) = −∞ < 0; the ion limit 
ondition
Ψ(φci) > 0 is thus meaningless, just as an �ele
tron limit� was found to be inadmissible forpossible positive solitons. Therefore only the dust limit 
ondition, Ψ(φcd) > 0, is ne
essaryto �nd the upper limit on M for the existen
e of negative potential dust a
ousti
 solitons83



3. Dust A
ousti
 Solitons in Plasmas with Kappa-Distributed Ele
trons and/or Ionsin the (f, M) spa
e. This 
ase is dis
ussed further in the next se
tion. In prin
iple,negative double layers 
ould provide a limit on φ that is smaller in magnitude than |φcd|.In addition to the general soliton 
ondition [Eq. (3.13)℄, the existen
e of double layersrequires Ψ(φm, M) = Ψ′(φm, M) = 0 and Ψ′′(φm, M) < 0, where φm is the amplitude(see Se
. 1.4). We have sought values of φm and M that satisfy the double layer 
onditions,over a wide range of values of the parameters κe, κi, σ and f , but our numeri
al explorationhas not yielded any arbitrary amplitude double layers based on this requirement.The Sagdeev potential for a soliton possesses a single 
harge neutral point lying betweenthe origin and the soliton amplitude while double layers have a 
harge neutral point betweentwo double roots, one of whi
h is at the origin - at the se
ond double root the slope of thepseudopotential is again zero. In our experien
e, when φ < 0 and M > Ms, Ψ′(φ) remainsnegative after the �rst 
harge neutral point outside the origin. That is, it 
hanges signonly on
e as seen, for instan
e, in Table 3.2. Note that for φ < 0, Ψ′(φ) remains negative,until it be
omes 
omplex for relatively small |φ|, in this 
ase for 0.06 < |φ| < 0.07 when Mis in the range 0.34�0.37, typi
ally after Ψ(φ) has passed through a zero. Similar resultswere obtained for other values for the key parameters, viz., κi, κe > 3/2, σ > or < 1 and
0 < f < 1.We thus believe that it is highly unlikely that double layers are supported by a dustyplasma with kappa-distributed ele
trons and/or ions, and thus the upper limit on M isbased on φcd.3.4.3 Numeri
al Results and Dis
ussionIn this se
tion we dis
uss numeri
al results related to the existen
e of negative potentialsolitons.E�e
t of Spe
tral Index VariationIn Figure 3.3(a) we show the e�e
t on the negative soliton existen
e domain, of varyingthe spe
tral index of the ele
tron distribution, in asso
iation with e�e
tively Maxwellian(high-κ) ions, for equal ion and ele
tron temperatures (σ = 1). The lower 
urves rep-resent the lower Ma
h number limit, Ms [obtained from Eq. (3.13)℄. The upper set of
urves 
orresponds to the upper limit of M , obtained from the 
ondition Ψ(−M2/2) = 0,using (3.12).84
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Figure 3.3: Existen
e domains for negative potential solitons for σ = 1 and varying κvalues. (a) Upper panel: κi = 25; κe = 2 (solid, red 
urves), κe = 4 (dashed, blue 
urves)and κe = 6 (dotted, green 
urves), respe
tively. (b) Lower panel: κe = 25; κi = 2 (solid,red 
urves), κi = 4 (dashed, blue 
urves) and κi = 6 (dotted, green 
urves), respe
tively.
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al Sagdeev potentials for the 
ase of Fig 3.3(b). The pairing f = 0.8,M =
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ted existen
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3. Dust A
ousti
 Solitons in Plasmas with Kappa-Distributed Ele
trons and/or IonsThus, for a given ele
tron spe
tral index value, κe, solitons may exist between the two
urves. It is seen that for all 
ases, Ms → 1 for f → 0 (ion-dust plasma), and → 0 for
f → 1 (ele
tron-ion plasma). This agrees with our earlier analyti
al 
omments on the formof Ms. The upper limits, too, are the same for all κe values for f → 0 and f → 1. Further,all 
urves are qualitatively the same, and the di�eren
e between the 
urves (for both upperand lower limits) 
orresponding to κe = 4 and κe = 6 is insigni�
ant. From this one maydedu
e that Maxwellian ele
trons would yield a similar 
urve, and that only very low κvalues are di�erentiated from the rest.The lower panel of Figure 3.3 illustrates the e�e
ts of varying κi with quasi-Maxwellianele
trons. As in the upper panel, both sets of 
urves 
onverge to M = 0 for f → 1, butunlike the earlier 
ase, both upper and lower limits in
rease with in
reasing κi as f → 0.Again, the di�eren
e between the 
urves for κi = 4 and 6 is signi�
antly smaller than thatbetween κi = 2 and 4. Importantly, an in
rease in the superthermal ion 
omponent (e.g.,
κi = 2) results in a redu
tion in the range of Ma
h numbers for whi
h solitons may exist.This appears to be the largest di�eren
e from the 
ase in whi
h both ele
trons and ionshave Boltzmann distributions.Typi
al Sagdeev potential plots are shown in Fig. 3.4, where we have 
hosen near-Maxwellian ele
trons (κe = 25), with f = 0.8, i.e., a plasma with 80% of the negative
harge 
arried by the ele
trons, equal ion and ele
tron temperatures (σ = 1) and a Ma
hnumber M = 0.4, whi
h lies in the range for whi
h solitons would be expe
ted for all threevalues of κi used. As one might expe
t from Fig. 3.3(b), the soliton amplitudes de
reaseas κi is in
reased, as the 
hosen value of M is in
reasingly 
lose to the lower limit, Ms.Comparison with Small Amplitude TheoryIn Figures 3.1 and 3.2 we indi
ated that the dotted (light-blue) 
urves 
orrespond tothe numeri
al solutions for the existen
e of arbitrary amplitude negative solitary stru
tures,using Eq. (3.12), as 
ompared to the Mβ limit, from the small amplitude approa
h. In the
ase of κi = κe = 2 (left panel of Fig. 3.1), 
omparing the analyti
al (Mβ) and numeri
alsolutions (dotted, light-blue 
urve) for the upper limit of M on the existen
e domain ofnegative solitons, we see that Mβ underestimates the range in M for f < 0.65 while for
f > 0.65, it is overestimated. In fa
t, no solitons exist above the dotted 
urve for f > 0.65.86



3.4. Arbitrary Amplitude DAS and Double LayersThe same applies to the right panel of Fig. 3.1 for approximately f > 0.3, and also toFig. 3.2 with σ = 1. Thus the results in Figs. 3.1 and 3.2 show that when κi = κe, theupper limit on M for the existen
e of negative potential solitons from the analyti
 solution(KdV approa
h) does not agree with the numeri
al results to a great extent. Here, inFig. 3.5, we 
onsider the 
ase of κi 6= κe, σ = 1, and 
ompare the existen
e domains ofnegative solitons from the KdV theory (or Expanded Sagdeev potential approa
h) and thefull Sagdeev approa
h. As was the 
ase of κi = κe,Mβ does not give a better approximationto the upper limit of M for the existen
e of solitons. In the 
ase of quasi-Maxwellian ionsand hard spe
trum for ele
trons (high κi and low κe, as in the left panel of Fig. 3.5), Mβdiverges far away from the numeri
al solutions for f & 0.18. On the other hand, in the
ase of quasi-Maxwellian ele
trons (κe = 25) and strongly non-Maxwellian ions (κi = 4),as shown in the right panel of Fig. 3.5, Mβ overestimates the upper limit on M for f > 0.6.
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Figure 3.5: Same as Fig. 3.3 but for κi = 25; κe = 4 (left panel) and κi = 4; κe = 25 (rightpanel). In both 
ases, the analyti
 approximation to the upper limit of M for the existen
eof negative solitons is the dashed 
urve labeled Mβ , while the numeri
al solution (obtainedby solving Ψ(−M2/2) = 0) is given by the dotted 
urve.E�e
t of Temperature VariationHaving explored the e�e
t of varying κe and κi on the soliton existen
e domains forequal ion and ele
tron temperatures, we 
onsider next the e�e
t of varying the temperatureratio for a plasma with signi�
ant ex
ess superthermal ele
trons and ions (small spe
tralindi
es). The results are shown in Figure 3.6. 87
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Figure 3.6: Existen
e domains for negative potential solitons for κe = κi = 2, with σ = 0.01(solid, red 
urves), σ = 1 (dashed, blue 
urves) and σ = 10 (dotted, green 
urves).As was shown in Fig. 3.3(a) when varying κe, we �nd that σ, too, has no e�e
t on Msand the upper limit of M for f → 0 and f → 1. As already indi
ated, at the extremevalues of f the model redu
es to a two-
omponent plasma; an ele
tron-ion plasma for f = 1and an ion-dust plasma for f = 0. Thus the behaviour of the solitary stru
tures at theextreme f values is not of physi
al signi�
an
e for our model but 
an be used to 
omparewith other simpler plasma models. Varying σ does, however, have a signi�
ant e�e
t onthe shape of the limiting 
urves. We note that the drop in Ms as f in
reases from zero(i.e., in
reasing ele
tron fra
tion) is mu
h larger for σ > 1 (i.e., Ti > Te) than for σ ≤ 1.As a result, the existen
e domain has a slightly large range in Ma
h number for this 
asethan for the other two.3.5 Dust A
ousti
 Stru
tures with Positive DustIn the previous se
tion, the dis
ussion has been based on the dust being negatively
harged, whi
h is generally regarded as the more 
ommon situation. In this se
tion we
onsider positively 
harged dust instead of negatively 
harged dust, where we show thatin the presen
e of positive dust only positive potential solitons are supported.In this 
ase the dust density expression analogous to that found in Eq. (3.8) is
nd+(φ) =

(

Nd0

Ni0

)(

1− 2φ

M2

)

−1/2

, (3.27)88



3.5. Dust A
ousti
 Stru
tures with Positive Dustand substitution into the appropriate form of Poisson's equation leads to expressions forthe pseudopotential and soliton 
ondition [
f. Eqs. (3.12) and (3.14)℄ taking the form
Ψ+(φ) =

f

(f − 1)σ

[

1−
(

1− φσ

κe − 3/2

)

−(κe−3/2)
]

+
1

f − 1

[

1−
(

1 +
φ

κi − 3/2

)

−(κi−3/2)
]

+M2

[

1−
(

1− 2φ

M2

)1/2
] (3.28)and

Ms+ =

{

f σ

f − 1

(

2κe − 1

2κe − 3

)

+
1

f − 1

(

2κi − 1

2κi − 3

)}

−1/2

, (3.29)respe
tively, where f > 1, with f = Ne0/Ni0 as before.Following the same approa
h as used for the 
ase of negatively 
harged dust one �ndsthat solitary stru
tures in the presen
e of positively 
harged dust are restri
ted to positivepotentials, and that only solitons (no double layers) are supported. These positive potentialdust a
ousti
 solitons are bounded from below by Ms+ [de�ned in Eq. (3.29)℄ and fromabove by Mγ , where the latter is obtained from Ψ+(φ = M2/2) = 0 at M = Mγ inEq. (3.28). These results are illustrated in Fig. 3.7, equivalent to Figs. 3.3(a) and 3.6,respe
tively, but now with f > 1.On the other hand, if we normalize the densities with respe
t to the ele
tron density,instead of retaining our earlier de�nition of the density ratio f , we 
an rewrite the expres-sions for the pseudopotential (3.28) and soliton 
ondition (3.14) in terms of an appropriatealternative fra
tional density variable, g = Ni0/Ne0 < 1, obtaining
Ψ+(φ) =

1

(1− g)σ

[

1−
(

1− φσ

κe − 3/2

)

−(κe−3/2)
]

+
g

1− g

[

1−
(

1 +
φ

κi − 3/2

)

−(κi−3/2)
]

+M2

[

1−
(

1− 2φ

M2

)1/2
] (3.30)and

Ms+ =

{

σ

1− g

(

2κe − 1

2κe − 3

)

+
g

1− g

(

2κi − 1

2κi − 3

)}

−1/2

. 89
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Figure 3.7: Upper panel: Existen
e domains for positive potential solitons in the presen
eof positive dust for near-Maxwellian ions and varying κe, analogously to Fig. 3.3(a), butwith f > 1; σ = 1, κi = 25 and κe = 2 (solid, red 
urves), κe = 4 (dashed, blue 
urves)and κe = 6 (dotted, green 
urves), respe
tively. Lower panel: Similar to upper panel,now for κe = κi = 2, showing the variation with temperature ratio, σ = 0.01 (solid, red
urves), σ = 1 (dashed, blue 
urves) and σ = 10 (dotted, green 
urves), respe
tively. Thisis analogous to Fig. 3.6, but with f > 1.
In that 
ase we see that for σ = 1, the expression is identi
al to that found in (3.12),apart from a simple reversal of the sign of the potential. Thus, for Ti = Te, the results areidenti
al to those for negative dust, apart from a 
hange of the soliton polarity.However, for σ 6= 1 there 
an be signi�
ant di�eren
es between the two 
ases. Theseare illustrated with the aid of Fig. 3.8, whi
h shows the variation of the existen
e domainswith σ in a plasma with signi�
ant superthermal 
ontributions for both the ele
trons andthe ions. It is seen, in parti
ular, that for σ = 0.01 (i.e., Te ≫ Ti), the Ma
h number range90



3.5. Dust A
ousti
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tures with Positive Dust
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Figure 3.8: Existen
e domains for positive potential solitons in a positive dusty plasma,plotted as a fun
tion of the alternative fra
tional density variable, g = Ni0/Ne0 for κe =
κi = 2, with σ = 0.01 (solid, red 
urves), σ = 1 (dashed, blue 
urves) and σ = 10 (dotted,green 
urves), respe
tively. This is analogous to Fig. 3.6.
in
reases rapidly as the normalized ion density, g, is de
reased, i.e., the ions are repla
edby positive dust grains. To understand that, let us 
onsider g → 0, in whi
h 
ase the upperlimiting 
ondition Ψ+(M

2/2) = 0 gives
(1 +M2σ)

(

1− M2σ

2κe − 3

)κe−3/2

= 1,whi
h for κe = κi = 2, as in Fig. 3.8, and M2 > 0, redu
es to M =
√

(1 +
√
5)/σ.Likewise, the lower Ma
h number limit, Ms, varies as √(2κe − 3)/[σ(2κe − 1)], as g → 0.Thus, as g → 0, both the lower and upper Ma
h number limits will vary inversely as thesquare root of the temperature ratio, hen
e leading to the shapes exhibited in the �gurefor σ = 0.01. Both these expressions are independent of κi.Thus it is 
lear that while for σ = 1, the positive dust 
ase is dire
tly analogous to thatwith negative dust, with a 
hange of soliton potential sign, a slightly more 
ompli
atedset of di�eren
es appears when one 
onsiders a 
ase in whi
h the two hot spe
ies havetemperatures that are signi�
antly di�erent from one another. 91



3. Dust A
ousti
 Solitons in Plasmas with Kappa-Distributed Ele
trons and/or Ions3.6 Chapter SummaryWe have investigated the existen
e of dust a
ousti
 solitons in dusty plasmas with
κ-distributed ions and/or ele
trons, and found that only negative potential solitons existwhen the dust is negative. Redu
ing the spe
tral indi
es (κe, κi) only a�e
ts the existen
edomains of the solitons quantitatively.In the presen
e of positively 
harged dust, only positive potential solitons are found,but the ion to ele
tron temperature ratio has signi�
ant quantitative e�e
ts: parti
ularlyfor Te ≫ Ti the results are very di�erent from those for Te = Ti. In both 
ases we �ndthat the soliton polarity agrees with the sign of the 
harge of the inertial spe
ies (dust), asobserved in a number of other plasma models, albeit not universally so. For instan
e, this
hara
teristi
 was also observed previously for positive dust in a plasma with polytropi
or Boltzmann ele
trons and ions [Baluku et al., 2008℄. However there are quantitativedi�eren
es, arising from the fun
tional form of the number density for a κ-distribution asin Eq. (3.2).Although the κ-distribution is nonthermal, the results reveal important di�eren
es fromthose found when one of the hot plasma spe
ies has a di�erent nonthermal distribution,viz., the Cairns distribution [Verheest and Pillay, 2008a,b℄. They showed that for negative(positive) dust, positive (negative) solitons 
ould also be found, limited by double layers,for su�
ient nonthermality of the ions (ele
trons) and su�
iently low ele
tron (ion) density.For nonthermal ele
trons (ions) only negative (positive) potential solitons were found, asin our 
ase. This di�eren
e in results 
ould be due to the fa
t that for the κ distributionthe main 
hange from a Maxwellian lies in the `tail' region, unlike the 
ase of the Cairnsdistribution.Comparing results from the small amplitude expansion (by expanding the Sagdeevpotential) with those from the arbitrary amplitude approa
h, our results show that theexisten
e domains for negative solitons from the former approa
h in
lude a range in (f, M)spa
e that is unphysi
al, that is, lying in a region where no solitons 
an be obtained,following the arbitrary amplitude approa
h. This di�eren
e in results shows that smallamplitude approa
hes should not be relied on too mu
h when, for example, interpretingobservational data for solitary stru
tures.92



3.6. Chapter SummaryIn view of the observations of both kappa-distributed ions and ele
trons in Saturn'smagnetosphere [Krimigis et al., 1983; S
hippers et al., 2008℄, as well as dust [Jones et al.,2008℄, the results of this work 
an assist in the interpretation of nonlinear ele
trostati
solitary waves that may be observed in that region.
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CHAPTER 4
Dust Ion-A
ousti
 Solitons in a Plasma with Kappa-Distributed Ele
trons

In this 
hapter we investigate solitary stru
tures that may be supported by dusty plasmas
onsisting of kappa distributed ele
trons, �uid adiabati
 ions and dust parti
les. As dustparti
les are usually negatively 
harged (in most dust plasma environments), we dis
ussour results mainly with negatively 
harged dust. However, we also dis
uss, brie�y, the 
asefor positively 
harged dust.The results presented in this Chapter have been published as Baluku et al.,Physi
s of Plasmas, 17, 053702 (2010)4.1 Introdu
tionDust ion-a
ousti
 (DIA) waves in unmagnetized plasmas are low frequen
y waves withphase velo
ity lying between the ele
tron and ion thermal velo
ities (Vtj = (KBTj/mj)
1/2; j =

e, i), that is, Vti < ω/k < Vte to avoid Landau damping. They were �rst studied theo-reti
ally by Shukla and Silin [1992℄ and later 
on�rmed experimentally by Barkan et al.[1996℄.Dust ion-a
ousti
 waves are basi
ally ion-a
ousti
 waves whose wave behaviour is mod-i�ed by the presen
e of dust grains. It has earlier been shown [Verheest et al., 2005; Balukuand Hellberg, 2008℄, using a �uid dynami
 paradigm, that the (normalized) phase velo
ity,here denoted vφ = (ω/k)/Cs, of the DIA wave 
an be expressed as v2φ = [1 + (f − 1)z]/f ,94



4.1. Introdu
tionwhere Cs = (KBTe/mi)
1/2 is the ion-a
ousti
 speed in the absen
e of dust, f = Ne0/Ni0is the ratio of the ele
tron to ion equilibrium densities, with f < 1 (f > 1) for negatively(positively) 
harged dust grains; z = Zdmi/md is the ratio of the 
harge-to-mass ratioof the ions to the dust parti
les, with the ions assumed singly 
harged. Thus the phasevelo
ity of linear DIA wave is in
reased (redu
ed) when the dust is negatively (positively)
harged.Nonlinear DIA waves have been studied by a number of authors [Bharuthram andShukla, 1992; Mamun and Shukla, 2002; M
Kenzie et al., 2005; Verheest et al., 2005;Hellberg et al., 2006; Mamun and Jahan, 2008; Sayed et al., 2008℄. However, most non-linear studies [Mamun and Shukla, 2002; Mamun and Jahan, 2008; Sayed et al., 2008℄used Redu
tive Perturbation Theory or equivalent expansions), to study various aspe
tsof small amplitude solitons and/or double layers while others [Bharuthram and Shukla,1992; Verheest et al., 2005; M
Kenzie et al., 2005; Hellberg et al., 2006℄ 
onsidered ar-bitrary amplitude DIA stru
tures, using the Sagdeev pseudopotential approa
h [Sagdeev,1966℄. In parti
ular, Bharuthram and Shukla [1992℄ 
onsidered a plasma model 
onsistingof Boltzmann-distributed ele
trons, 
old ions and immobile negative dust. They soughtpositive potential solitons, and found existen
e ranges of both normalized soliton speed(M) and amplitude φ as a fun
tion of the fra
tion of negative 
harge residing on the dust.In addition, they 
onsidered negative potential solitons. However, they only presentedSagdeev potential 
urves for two values of M and two values of mobility. In addition tostudying dust-a
ousti
 solitons, Verheest et al. [2005℄ examined DIA solitons in a plasmamodel whi
h allowed for arbitrary values of the polytropi
 index (γe) for the ele
trons, 
oldions and mobile dust. Numeri
al evaluation of existen
e diagrams was 
arried out for twovalues of γe, viz., γe = 1 (isothermal, i.e., Boltzmann) and 3/2.While most authors have dis
ussed dust ion-a
ousti
 waves and solitons, with Maxwellianele
trons or ions theoreti
ally [Bharuthram and Shukla, 1992; Ghosh et al., 2000a,b; Ma-mun and Shukla, 2002; Rahman et al., 2007; Mamun and Jahan, 2008; Pajouh and Abbasi,2008; Sayed et al., 2008℄ and experimentally [Barkan et al., 1996℄, spa
e plasmas are ob-served to possess non-Maxwellian distributions [Krimigis et al., 1983; Hasegawa et al., 1985;Christon et al., 1988; Pierrard and Lemaire, 1996; Maksimovi
 et al., 1997; Pierrard et al.,2004℄ as we mentioned in Se
. 1. These non-Maxwellian distributions 
an be modelled95



4. Dust Ion-A
ousti
 Solitons in a Plasma with Kappa-Distributed Ele
tronsa

urately by a kappa (or generalized Lorentzian) distribution [Olbert, 1968; Vasyliunas,1968℄, like the one given by Eq. (1.2).In this work we thus study the behaviour of and existen
e domains for dust ion a
ousti
solitons that may be supported by a plasma in whi
h the ele
trons are non-Maxwellianand following a kappa-distribution. Small amplitude stru
tures are investigated using theredu
tive perturbation te
hnique, while the Sagdeev pseudopotential approa
h is used forarbitrary amplitude soliton studies. While most of the investigation deals with the moreinteresting and relevant 
ase of negative dust, we also 
onsider positive dust. In parti
ularwe draw attention to the o

urren
e of �nite amplitude solitary waves at the dust ion-a
ousti
 speed in a negative dust plasma, and explore some of the 
hara
teristi
s of thisphenomenon.4.2 Basi
 EquationsWe 
onsider a plasma with kappa distributed ele
trons of temperature Te and density
Ne, �uid adiabati
 ions of temperature Ti and density Ni, and 
old dust parti
les. The
harge quasi-neutrality 
ondition for the system is

Ne0 = Ni0 + sZdNd0, (4.1)where Nj0 is the equilibrium density of spe
ies j, (j = e, i, d for ele
trons, ions and dust,respe
tively); Zd is the size of the dust 
harge, and s = ±1 is the sign of the dust 
harge(for positive or negative dust parti
les). The ions are assumed to be singly 
harged, likeprotons, and therefore, throughout the dis
ussion we shall take Zi = 1 in this plasmamodel.In the presen
e of an ele
trostati
 potential, the κ-distributed ele
trons have normalizeddensity ne = Ne/Ni0 given by [Baluku and Hellberg, 2008℄
ne(φ) = f

(

1− φ

κ− 3/2

)

−(κ−1/2)

, (4.2)where φ is the ele
trostati
 potential, here normalized with respe
t to the ele
tron ther-mal energy (KBTe/e); f = Ne0/Ni0 = 1 + sZdNd0/Ni0 de�nes the fra
tion of ele
tronequilibrium density with respe
t to the ion equilibrium density. The density expres-96



4.2. Basi
 Equationssion given above is only valid for κ > 3/2, and it redu
es to the usual Maxwellian form
f ne(φ) = exp(−φ) when κ → ∞. In unnormalized form, the ele
tron density expressionin Eq. (4.2) is obtained from Ne(ϕ) =

∫∫∫

Fκ(v)d
3v where Fκ(v) is the velo
ity distri-bution fun
tion de�ned in Eq.(1.2) with the transformation [Baluku and Hellberg, 2008℄

v2 → v2 + 2qeϕ/me, see Appendix. A.1 for details.The density of the ions (j = i) and dust parti
les (j = d) are obtained from the
ontinuity, momentum and pressure equations
∂nj

∂t
+

∂

∂x
(nj uj) = 0, (4.3)

∂uj
∂t

+ uj
∂uj
∂x

+
mi

mj

σ

nj

∂pj
∂x

+
mi

mj

qj
e

∂φ

∂x
= 0, and (4.4)

∂pj
∂t

+ uj
∂pj
∂x

+ 3pj
∂uj
∂x

= 0, (4.5)respe
tively, where σ = Ti/Te; uj, nj and pj are the normalized ion velo
ity, density andpressure, of spe
ies j, respe
tively, and φ the ele
trostati
 potential.The independent variables, x and t, are normalized to an e�e
tive Debye length λDe� =

(ε0KBTe/Ni0e2)1/2 and the inverse ion plasma frequen
y ω−1
pi = (Ni0e2/ε0mi)

−1/2, respe
-tively; the dependent variables, uj , nj, pj and φ, are normalized to Cs = (KBTe/mi)
1/2,

Ni0, Pi0 = Ni0KBTi and KBTe/e, respe
tively.The ma
ros
opi
 variables, nj, pj , uj and φ satisfy the boundary 
onditions φ, ∂φ/∂x,
uj → 0; nj → Nj0/Ni0, and pj → Pj0/Pi0, as x→ ±∞.From Eqs. (4.3)�(4.5), and after transforming to a stationary frame where all quantitiesdepend on ξ = x−Mt, the normalized ion density is thus obtained as [Ghosh et al., 1996;Verheest et al., 2008℄

ni(φ) =
1

2
√
3σ

{

[

(

M +
√
3σ
)2
− 2φ

]1/2

±
[

(

M −
√
3σ
)2
− 2φ

]1/2
}

, (4.6)where M is the soliton speed or Ma
h number in the stationary frame of referen
e withposition ξ = x −Mt. From the boundary 
onditions, we have ni → 1 for φ → 0. Thisis only true if we take the minus sign in Eq. (4.6), and that will give us the appropriateexpression for ni(φ) that will be used in the dis
ussion whi
h will follow. In the limit σ → 0(
old ions), ni(φ) = (1− 2φ/M2)−1/2. This means that when φ = M2/2, ni →∞, and the97



4. Dust Ion-A
ousti
 Solitons in a Plasma with Kappa-Distributed Ele
tronsions are in�nitely 
ompressed.Similarly the normalized density of the dust parti
les is given by
nd(φ) =

Nd0/Ni0

2
√
3σD

{

[

(

M +
√
3σD

)2 − 2szφ
]1/2

±
[

(

M −
√
3σD

)2 − 2szφ
]1/2

}

. (4.7)where z = mi(Zd/md) is the fra
tion of the the 
harge-to-mass ratio of dust to that of ions(with Zi = 1); σD = (miTd/mdTe) = σ σd with σd = V 2
td/V

2
ti . Here, Vti(Vtd) is the ion(dust)thermal velo
ity. Again, for the ± sign, we shall use the minus sign in our 
al
ulations asthat gives the appropriate boundary 
onditions as ξ →∞.Sin
e we shall 
onsider 
old dust parti
les (σ = 0) in the model, the density of the dustparti
les takes the form

nd(φ) =
(f − 1)

sZd
(1− 2szφ/M2)−1/2. (4.8)However, if the dust motion is not in
luded, nd → Nd0/Ni0 = (f − 1)/sZd, sin
e theimmobile dust parti
les then only provide neutralization in the ba
kground. This willbe the 
ase when dis
ussing small amplitude solitons using the redu
tive perturbationte
hnique, but we shall allow for dust mobility in the pseudopotential 
al
ulations.The spe
ies' densities, given by equations (4.2), (4.6) and (4.8), are 
oupled by Poisson'sequation

∂2φ

∂ξ2
+ ni(φ)− ne(φ) + sZd nd(φ) = 0. (4.9)4.3 Linear Dispersion RelationIn linearized form, the ele
tron density takes the form

ne1 ≃ f

(

κ− 1/2

κ− 3/2

)

φ1. (4.10)Next we Fourier analyze the 
ontinuity, pressure and momentum equations in terms ofnormalized angular frequen
y ω and wavenumber k, and expand them to linear order. For
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4.3. Linear Dispersion Relationthe ions, this gives
ni1 =

k2

ω2 − 3σk2
φ1. (4.11)Alternatively, we 
an rewrite M as M = M0 + δM , where M0 and δM are the equilibrium(unperturbed) and perturbed values of Ma
h number. The unperturbed Ma
h number
oin
ides with the lowest Ma
h number value, below whi
h no solitons 
an be supportedby the plasma model, and also de�nes the phase velo
ity of the propagating waves, as wewill see later. If we assume that the perturbations in M are so small that they 
an benegle
ted (δM ≪ 1), them M ∼M0 = ω/k. Thus letting φ ≃ φ1 and ni(φ) ≃ 1 + ni1(φ1),the series expansion of Eq. (4.6) about φ = 0 leads to ni1(φ1) ≃ φ1/(M

2
0 − 3σ), su
h thatwith the substitution M0 = ω/k we re
over Eq. (4.11).Similarly,

nd1 ≃
z(f − 1)

Zd

k2

ω2
φ1. (4.12)In terms of φ1, Poisson's equation, (4.9), be
omes

∂2φ1

∂ξ2
+ ni1(φ1)− ne1(φ1) + sZd nd1(φ1) = 0, (4.13)whi
h upon substitution of Eqs. (4.10)�(4.12) into (4.13), with ∂/∂ξ = ∂/∂x → ik, leadsto

k2φ1

{

1− 1

ω2 − 3σk2
+

f

k2

(

κ− 1/2

κ− 3/2

)

− s(f − 1)z

ω2

}

= 0.The non-trivial solution gives the linear dispersion relation as
1− 1

ω2 − 3σk2
+

f

k2

(

κ− 1/2

κ− 3/2

)

+
s(1− f)z

ω2
= 0. (4.14)We see that for the typi
al situation (z ≪ 1), Eq. (4.14) be
omes

1− 1

ω2 − 3σk2
+

1

k2V 2
s0

= 0, (4.15)where the e�e
tive DIA speed Vs0 is given by
V 2
s0 =

1

f

(

κ− 3/2

κ− 1/2

)

=

(

Ni0

Ne0

)(

κ− 3/2

κ− 1/2

)

, (4.16)99



4. Dust Ion-A
ousti
 Solitons in a Plasma with Kappa-Distributed Ele
tronsyielding 1/f in the limit κ→∞. In the long wavelength limit, k ≪ 1, one then obtains
ω2 = k2(V 2

s0 + 3σ). (4.17)However, in the long wavelength limit (k → 0, that is k ≪ 1) and z 6= 0 (not negligiblysmall), the dispersion relation (4.14) yields
ω2

k2
=

b

2a

[

1±
(

1− 4ac

b2

)1/2
]

, (4.18)provided b2−4ac ≥ 0 for non-
omplex values of the phase velo
ity, and the 
onstants a, b,and c are, respe
tively, given by
a = f

(

κ− 1/2

κ− 3/2

)

, b = 1 + sz(f − 1) + 3σ a, and c = 3σsz(f − 1). (4.19)Of 
ourse when z ≪ 1, we have c→ 0 and b→ 1 + 3σ a, and therefore the e�e
tive phasevelo
ity takes the form ω/k = (b/a)1/2.Sin
e the phase velo
ity ω/k is normalized to the ion sound speed Cs = (KBTe/mi)
1/2,for a plasma system with 
old ions (σ → 0), immobile dust (z → 0) and Maxwellianele
trons (κ→∞) we get a→ f and b→ 1. Therefore we re
over the dispersion relation

ω2 ≃ (Ni0/Ne0)k
2C2

s of Shukla and Silin [1992℄ with Zi = 1 .4.4 Small Amplitude Solitons: Redu
tive Perturbation Te
h-niqueIn the redu
tive perturbation method, the ele
tron density is obtained from
ne(φ) = f

(

1− φ

κ− 3/2

)

−(κ−1/2)

≃ f + c1φ+ c2φ
2 + c3φ

3 + · · · , (4.20)
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4.4. Small Amplitude Solitons: Redu
tive Perturbation Te
hniquewhere
c1 = f

(

κ− 1/2

κ− 3/2

)

,

c2 =
f(κ− 1/2)(κ + 1/2)

2!(κ − 3/2)2
,

c3 =
f(κ− 1/2)(κ + 1/2)(κ + 3/2)

3!(κ − 3/2)3
, · · · . (4.21)et
A word of 
aution here is that the expansion of Eq. (4.2) [leading to Eq. (4.21)℄ is onlyvalid for κ > 3. For 1.5 < κ . 3 the higher order terms are large 
ompared to those oflower order, and therefore 
annot be negle
ted. This 
omparison is shown in Table 4.1,where we show values of the 
oe�
ients cj/f for few values of κ ≤ 4. The table showsthat for κ = 2 and 2.5, the values in the fourth and �fth 
olumns are higher than the third
olumn values. In the 
ase of κ = 2.9 and 3, although the fourth 
olumn values are lessthan the third 
olumn values, they are nevertheless not negligible. Thus when one usesthe redu
tive perturbation method for plasmas involving κ-distributed parti
les, the rangeof κ values for whi
h it is valid imposes an important 
onstraint.

κ c1/f c2/f c3/f c4/f c5/f

2.0 3.000 7.500 17.50 39.38 86.63
2.5 2.000 3.000 4.000 5.000 6.000
2.9 1.714 2.082 2.181 2.103 1.923
3.0 1.667 1.944 1.944 1.782 1.545
3.1 1.625 1.828 1.752 1.533 1.265
3.2 1.588 1.728 1.593 1.335 1.052
3.5 1.500 1.500 1.250 0.934 0.656
4.0 1.400 1.260 0.924 0.601 0.360Table 4.1: Table showing the the 
oe�
ients, cj/f in Eq. (4.21) for some values of κ. For

κ ≥ 3 the fourth order terms (c4/f ) are smaller than the third order terms (c3/f ) andtherefore 
an be negle
ted in the expansion. However, for κ < 3, c4/f is greater than c3/f ,provided κ is not very 
lose to 3.
In addition, we assume that the dust parti
les are 
old and that they only provideneutralization in the ba
kground (nd → Nd0/Ni0), sin
e for DIAW, it is the ion andele
tron dynami
s that are more important. Thus Poisson's equation (4.9) may be written101



4. Dust Ion-A
ousti
 Solitons in a Plasma with Kappa-Distributed Ele
tronsas
∂2φ

∂ξ2
+ ni(φ)− ne(φ) + f − 1 ≈ 0, (4.22)where ξ = x − Mt in the wave frame, and the ion density ni(φ) is obtained from theperturbation expansion of the ion �uid equations (4.3)�(4.5).4.4.1 Korteweg-de Vries (KdV) EquationIn deriving the KdV equation we use the usual stret
hed 
oordinates [Ma
e et al., 1991;Verheest, 2000; Shukla and Mamun, 2002℄ χ = ǫ1/2(x −Mat) and τ = ǫ3/2t, where Ma isthe phase velo
ity normalized to the �xed a
ousti
 speed in the absen
e of dust, and ǫ asmallness parameter. We then arrive at the KdV equation [Ma
e et al., 1991; Verheest,2000; Mamun and Shukla, 2002; Shukla and Mamun, 2002℄:

∂φ1

∂τ
+Aφ1

∂φ1

∂χ
+B

∂3φ1

∂χ3
= 0, (4.23)where the 
onstants A and B are obtained from

A = B(12σc31 + 3c21 − 2c2); B(2c21Ma) = 1; Ma = (3σ + 1/c1)
1/2, (4.24)and c1 and c2 are de�ned in Eq. (4.21).We use the transformation η = χ−M0τ = ǫ ξ; ξ = x−Mt, where M0 is the speed of thesolitary wave in the stationary frame, andM is the Ma
h number, given byM = Ma+ǫM0,equivalent to the normalized speed of the solitary waves in the laboratory frame. We thenobtain the solution to Eq. (4.23) as [Washimi and Taniuti, 1966; Ma
e et al., 1991; Verheest,2000; Mamun and Shukla, 2002; Shukla and Mamun, 2002℄

φ1(η) =
3M0

A
se
h2{(M0

4B

)1/2

η

}

. (4.25)Finally, transforming ba
k to the laboratory frame [with 
oordinates (x, t)℄ we get [Ma
eet al., 1991; Verheest, 2000℄
φ(x, t) ∼ ǫφ1(x, t) =

3δM

A
se
h2{(δM

4B

)1/2

[x−Mt]

}

, (4.26)
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4.4. Small Amplitude Solitons: Redu
tive Perturbation Te
hniquewhere δM = ǫM0 = M − Ma. The amplitude and width of the soliton are given by
3δM/A and (4B/δM)1/2, respe
tively. Thus Eq. (4.26) shows that the KdV soliton haszero amplitude whenM = Ma (or δM = 0), and the amplitude in
reases with δM . Sin
e Bis always positive (from the de�nition of B in (4.24), and Ma > 0 for forward propagation),the validity of Eq. (4.26) requires δM > 0, that is, M > Ma, as both B and δM must havethe same sign for real soliton width. Therefore the dust ion-a
ousti
 solitons that existin this model are super-a
ousti
 � and we shall see that it also follows from the standardarbitrary amplitude approa
h. It will be shown later (
f. (4.38) in the limit z → 0) that
Ma = Ms, where Ms is the lowest Ma
h number below whi
h solitons 
annot exist. Also,with δM > 0, the sign of the potential solitons will depend on whether A is positive ornegative.Sin
e B is always positive for κ > 3/2, then from the expression of A in Eq. (4.24)one 
an, for given κ, �nd a 
riti
al plasma 
omposition, i.e., a 
riti
al value of f , heredenoted fc, for whi
h the 
oe�
ient, A, of the nonlinear term (φ∂φ/∂χ) in the KdVequation [Eq. (4.23)℄ is zero, and the amplitude (3δM/A) in Eq. (4.26) goes to in�nity,and therefore the KdV approa
h breaks down. The 
riti
al value of fc will be seen toplay a signi�
ant role in determining the soliton 
hara
teristi
s in the arbitrary amplitude,pseudopotential study that will follow in the subsequent se
tion. It is worth noting thatfor f 
lose to fc, the arbitrary soliton amplitudes (obtained from the Sagdeev approa
h inthe next se
tion) show surprising behaviour in that the soliton amplitude at M = Ms isnonzero, and that in the neighbourhood of Ms solitons already possess large amplitudes.Su
h a s
enario is shown in Fig. 4.8, for f = 0.5 (φ > 0, with κ = 2) and f = 0.9 (φ < 0).In Fig. 4.1 the 
ontinuous (red) 
urve shows the variation, with κ, of fc, the solutionof the equation A ≡ A(f, κ) = 0, for �xed σ and z. From the sign of A one 
an show thatpositive (negative) small amplitude potential solitons are obtained for f > fc (f < fc),i.e., above (below) the 
ontinuous red 
urve in Fig. 4.1. Therefore, solitons with eitherpolarity are in prin
iple supported by the plasma model. However, for �xed values of f, κ,and σ, and hen
e of c1 and c2, the sign of A and thus the soliton polarity, are uniquelyde�ned, i.e., for a given plasma 
on�guration, only a single sign of soliton potential ispermitted. This �gure also yields a further interesting physi
al result (I. Kourakis, 2009,103



4. Dust Ion-A
ousti
 Solitons in a Plasma with Kappa-Distributed Ele
tronspers. 
omm.1) : for a plasma with, say, f = 0.4, the �gure shows that a Maxwellian-likedistribution (κ ≥ 10) supports positive KdV solitons (f > fc), while for κ ≈ 4, the KdVsolitons would be negative (f < fc).
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Figure 4.1: Continuous (red) 
urve: Variation of the 
riti
al density fra
tion, fc (wherethe KdV 
oe�
ient A = 0) with κ for σ = 0.01 and z = 0.001. Dashed (light blue) 
urves:These represent the region in f over whi
h the mKdV 
oe�
ient, C, is positive. Dotted(dark blue) 
urve: This 
oin
ides with the 
ontinuous (red) 
urve for fc, and representsvalues of f obtained from Ψ′′′(f, M = Ms, φ = 0) = 0, in the arbitrary amplitude 
ase(see next se
tion). Dot-dashed (dark blue) 
urve: This maximizes the parameter C inthe mKdV equation for small amplitude solutions in Eq. (4.29). For dis
ussion purposes
κ values take the range 2 − 20, though we have indi
ated that for expansion of kappadistributed physi
al quantities κ must ex
eed 3.4.4.2 Modi�ed Korteweg-de Vries (mKdV) EquationWe have already indi
ated that the KdV method is invalid 
lose to the 
riti
al 
omposi-tion, fc, sin
e the soliton amplitude goes to in�nity when A(f, κ) = 0. In over
oming thats
enario we have to turn to the modi�ed KdV (mKdV) approa
h in that neighbourhood.In the mKdV approa
h we use the stret
hed 
oordinates χ = ǫ(x−Mat) and τ = ǫ3t, andthus obtain the mKdV equation [Verheest, 2000℄:

∂φ1

∂τ
+ Cφ2

1

∂φ1

∂χ
+B

∂3φ1

∂χ3
= 0, (4.27)where the quadrati
 nonlinear term of the KdV equation is now repla
ed by a 
ubi
 non-linearity. Here, in Eq. (4.27), B takes the same form as de�ned in the KdV equation while1Dr. I. Kourakis, Queen's University Belfast, Belfast BT7 1NN, Northern Ireland, U. K.104



4.4. Small Amplitude Solitons: Redu
tive Perturbation Te
hnique
C is given by

C = B

{

36σc21(c2 − c21) + 2c1c2(5 + 2c1)− c31(2c1 + 19/2) − 3c3

}

,with c1, c2 and c3 de�ned in Eq. (4.21). Using the transformation η = χ −M0τ , it 
aneasily be shown that Eq. (4.27) has (the standard) solution [Ma
e et al., 1991; Verheest,2000℄,
φ1(η) = ±(6M0/C)1/2 se
h{(M0/B)1/2η

}

. (4.28)Details for the derivation of Eq. (4.28) are given in Appendix C.2. Equation (4.28) 
analso be written as
φ(ξ) ∼ ǫ φ1(x, t) = ±(6δM/C)1/2 se
h{(δM

B

)1/2

(x−Mt)

}

, (4.29)where ξ = x−Mt = (χ −M0τ)/ǫ; δM = ǫ2M0 = M −Ma, with parameters M, M0 and
Ma, as well as B de�ned as in the KdV expressions.The validity of Eq. (4.29) requires that all B, C and δM are of the same sign for realsoliton width and potential amplitude. However, for all κ > 3/2, B is always positive,therefore δM > 0, or M > Ma, whi
h gives the lower Ma
h number as Ma, and the onlyother restri
tion on the existen
e of small amplitude potential solitons (from the mKdVsolution) will be given by the 
ondition C > 0, whi
h imposes restri
tions on the rangeof f . From the form of Eq. (4.29), it follows that the polarity of mKdV solitons is notspe
i�ed.In Fig. 4.1 the range of validity for di�erent spe
tral indi
es κ lies between the twodashed (light blue) 
urves, 
orresponding to C = 0. Although the range of f over whi
h
C > 0 appears quite large in Fig. 4.1, the mKdV equation, like the KdV equation, appliesonly to small amplitude solitary waves. From Eq. (4.29) it is 
lear that small amplitudesolitons require C as large as possible. One 
an show that C peaks at f ∼ (fc − 0.1) forall κ ≥ 4, with typi
al maxima ≤ 0.5, see dot-dashed 
urve in Fig. 4.1.
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4. Dust Ion-A
ousti
 Solitons in a Plasma with Kappa-Distributed Ele
trons4.5 Arbitrary Amplitude Solitons: Pseudopotential Approa
hWe now substitute Eqs. (4.2), (4.6) and (4.8) in Poisson's equation, Eq. (4.9). Afteran integration, we get the usual energy equation [Sagdeev, 1966; Verheest, 2000℄
1

2

(

∂φ

∂ξ

)2

+Ψ(φ, M) = 0,where the pseudopotential Ψ(φ, M) is given by
Ψ(φ, M) = f

[

1−
(

1− φ

κ− 3/2

)3/2−κ
]

− (1− f)
M2

s z

[

1−
(

1− 2s z φ

M2

)1/2
]

+

(

1

6
√
3σ

[

{

(M −
√
3σ)2 − 2φ

}3/2
−
{

(M +
√
3σ)2 − 2φ

}3/2
]

+M2 + σ

)

, (4.30)and the boundary 
onditions φ, ∂φ/∂ξ → 0 as ξ → ±∞ have been used. Equation (4.30)satis�es Ψ(0, M) = 0 and Ψ′(0, M) = 0, with the prime denoting derivative with respe
tto φ. The three terms in Eq. (4.30) represent the 
ontributions to the pseudopotential, ofthe κ-distributed ele
trons, 
old mobile dust, and warm �uid ions, respe
tively.In the limit z → 0, the 
old dust parti
les 
ontribution to Eq. (4.30) [the se
ond termin Eq. (4.30)℄ be
omes (1 − f)φ. Thus, in the presen
e of 
ool moving ions and immobiledust parti
les, Ψ(φ, M) takes the form
Ψ(φ, M)≈ f

[

1−
(

1− φ

κ− 3/2

)3/2−κ
]

− (1− f)φ+M2 + σ

+
1

6
√
3σ

[

{

(M −
√
3σ)2 − 2φ

}3/2
−
{

(M +
√
3σ)2 − 2φ

}3/2
]

. (4.31)Results from Eq. (4.31) will be 
ompared with the small amplitude solitons results for adusty plasma with 
ool moving ions, with the 
old dust parti
les only providing a neutral-izing ba
kground.In the presen
e of stationary negatively 
harged dust parti
les, 
old ions [σ = 0, and
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h
ni = (1− 2φ/M2)−1/2℄, and Boltzmann ele
trons (κ→∞), Eq. (4.30) redu
es to

Ψ(φ, M) = f
(

1− eφ)− (1− f)φ+M2[1− (1− 2φ/M2)1/2], (4.32)whi
h is essentially Eq. (8) of Bharuthram and Shukla [1992℄, with Ne = f and Nd = (1−f)in their notations. Similarly, in the presen
e of 
old ions, 
old moving dust and Boltzmannele
trons we re
over their Eq. (19). In addition, we also observe that when f = 1, theplasma system is 
ompletely without dust, and therefore in the 
ase of 
old ions (τ = 0),we re
over Eq. (19) of Saini et al. [2009℄, that is, the model redu
es to a 
old-ion/kappa-ele
tron plasma.It is easy to see thatΨ′(φ,M) gives the sum of the 
harge densities in the plasma system.Thus Ψ′(0,M) = 0 gives the 
harge neutrality 
ondition (4.1). In order to ensure that theorigin (φ = 0) is (lo
ally) unstable for the propagating waves, we need Ψ′′(0, M) < 0. Thisrequirement, whi
h is sometimes referred to as the soliton 
ondition by some authors leadsto
Ψ′′(φ = 0, M) ≡ 1

M2 − 3σ
+ (f − 1)

s z

M2
− f

(

κ− 1/2

κ− 3/2

)

< 0. (4.33)Equation (4.33) 
an be simpli�ed and written as
M2 > 3σ + V2s0, (4.34)where

1

V2s0
= f

(

κ− 1/2

κ− 3/2

)

− (f − 1)
s z

M2
. (4.35)For 
larity, one 
an see that in the limit z ≪ 1 (su
h that the last term in (4.35) isnegle
ted),

V2s0 ≈ V 2
s0 =

Ni0

Ne0

(

κ− 3/2

κ− 1/2

)

,and therefore (4.34) gives M2 > 3σ+V 2
s0, where the right hand side of the inequality givesthe phase velo
ity of the linear dust ion-a
ousti
 waves de�ned in Eq. (4.17).Note that Eq. (4.34) is not fully transparent in M as V2s0 is itself a fun
tion of M . By
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4. Dust Ion-A
ousti
 Solitons in a Plasma with Kappa-Distributed Ele
tronstreating (4.33) as a quadrati
 in M2 we 
an instead write (4.34) as
M2 > M2

s ≡
b

2a

[

1±
(

1− 4ac

b2

)1/2
]

, (4.36)provided b2 − 4ac ≥ 0 for non-
omplex values of M2
s , where the latter is evaluated at

Ψ′′(φ = 0, M) = 0. The 
onstants a, b, and c are, respe
tively, given by
a = f

(

κ− 1/2

κ− 3/2

)

, b = 1 + s(f − 1)z + 3σ a, and c = 3σsz(f − 1), (4.37)as in Eq. (4.19).Equation (4.36) represents the lower limit of the soliton existen
e domain in the (f, M)spa
e, and is the a
tual true speed of the dust ion-a
ousti
 waves in the plasma model underinvestigation. Also note that M2
s , in Eq. (4.36), is equivalent to the right-hand-side of thelinear phase velo
ity expression in Eq. (4.18).We have already stated that DIA waves require that the thermal velo
ities of theions and ele
trons satisfy (in unnormalized form) Vti < ω/k < Vte, where ω/k is theunnormalized phase velo
ity of the DIA waves, and Vtj = (KBTj/mj)

1/2 is the thermalvelo
ity for ele
trons (j = e) and ions (j = i). Suppose we denote the normalized thermalvelo
ity (with respe
t to the ion-a
ousti
 speed Cs = (KBTe/mi)
1/2) by Utj , that is, Utj =

Vti/Cs. It then follows that Uti =
√
σ and Ute =

√

mi/me ≫ 1, assumingmi ∼ 1836me forprotons. In other words, the ele
tron thermal speed varies proportionally with the squareroot of the ion-ele
tron temperature ratio, σ. Similarly, the ele
tron thermal velo
ity isproportional to the square root of the ion-ele
tron mass ratio, mi/me. Representing thenormalized phase velo
ity by Ms, it then implies that propagation of DIA waves require
Uti < Ms < Ute. Sin
e Ute is very large (in this model), we 
an make a 
omparison of Utiand Ms, with the latter de�ned in Eq. (4.36). We 
an also observe that when σ = 0 (
oldions) or z = 0 (immobile dust), then c = 0 in (4.36), and therefore for the allowable valuesof Ms > 0 we 
an only use the plus sign in (4.36). For example, with τ = 0, κ → ∞,we get M2

s = [1 + s z(f − 1)]/f , whi
h redu
es to M2
s = 1/f for z ≪ 1. Thus onere
overs the usual Ms = 1 lower Ma
h number limit for ion-a
ousti
 solitons in ele
tron-ion plasmas with 
old ions and Maxwell-Boltzmann ele
trons [Chen, 1984℄ or polytropi
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4.5. Arbitrary Amplitude Solitons: Pseudopotential Approa
hele
trons [M
Kenzie et al., 2004a; Verheest et al., 2005℄. The question then remains: whatsign do we have to 
onsider as appropriate and physi
al in 
ases where σ 6= 0 or z 6= 0? Inthis 
ase we 
onsider the ratio Uti/Ms, whi
h may not give us any insight unless we makemany assumptions. However, numeri
al results show that with the minus sign in (4.36),the ratio Uti/Ms ex
eeds unity. In other words, the phase velo
ity of the wave is less thanthe thermal velo
ity of the plasma ion spe
ies, leading to a breakdown of the model. Fordis
ussion purposes we 
hoose a dusty plasma with negatively 
harged dust grains (s = −1or f < 1) with �xed parameters σ = 0.01 and z = 0.001. Provided σ < 1 (ions assumed tobe 
ooler than the ele
trons) and z < 1, the general trend here is obtained for other valuesof σ and z.
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Figure 4.2: Variation of the thermal velo
ity-to-phase speed ratio, Uti/Ms with fra
tionaldensity, f = Ni0/Ne0 for a dusty plasma with negatively 
harged warm dust grains (z =
0.001), warm ions (σ = 0.01) and kappa ele
trons: κ = 2 (dashed), κ = 4 (dotted), κ = 10(dot-dashed), and κ =∞ (
ontinuous). Left panel: Results 
orrespond to Ms in Eq. (4.36)with the minus sign. Right panel: Results 
orrespond to Ms in Eq. (4.36) with the plussign.In Fig. 4.2 we show 
urves 
orresponding to the ratio Uti/Ms as a fun
tion of fra
tionaldensity f for di�erent values of κ. In the left panel, where we have 
onsidered the minus signin (4.36), results show that there is no signi�
ant di�eren
e between low kappa values (withmany superthermal parti
les in the distribution tail) and high kappa values (approximatinga Maxwellian 
ase), with the main result being that Uti ≫Ms. Here, Uti is over 18 times
Ms for 0 < f < 1. On the other hand, in the right panel where we have used the plus signin the expression of Ms, results show that Uti < Ms for the full range of 0 < f < 1, withthe Maxwellian 
ase (κ → ∞) giving mu
h lower ratios 
ompared to the 
ases with low109
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trons
κ values. Therefore in this work we shall use the expression of Ms in Eq. (4.36) with theplus sign and negle
t the inappropriate negative square root.In (4.36) we have expressed the Ma
h number in terms of the fra
tional density of theele
trons, f . However, it is sometimes preferable to 
onsider the 
onstraint on the fra
tionaldensity at �xed Ma
h number. Thus we rewrite Eq. (4.33) or (4.36) in the form [M
Kenzieet al., 2005; Verheest et al., 2008℄

f > fs(M) ≡ 1/(M2 − 3σ)− s z/M2

β1 − s z/M2
, (4.38)where M is the Ma
h number at the soliton 
ondition, implying that solitons or doublelayers will exist for all f > fs(M).4.5.1 Ele
trostati
 potential limitationsIn the existen
e domains of solitons, soliton regions may be bounded by a numberof possible physi
al 
onstraints, e.g., (i) the o

urren
e of a double layer, (ii) when oneof the spe
ies rea
hes a soni
 point (for simpler models that implies in�nite rarefa
tionor 
ompression of the spe
ies), or (iii) a density takes on a 
omplex value [M
Kenzie etal., 2005; Verheest et al., 2005; Cattaert et al., 2005; Hellberg and Verheest, 2008℄. Itis usual for the density limit arising from a spe
ies of a given 
harge sign to lead tolimitation of that sign of potential, i.e., positive parti
les provide positive potential limitsand vi
e versa [M
Kenzie et al., 2005; Verheest et al., 2005℄. However, it is easily seenfrom Eq. (4.2) that κ-distributed ele
trons are well-behaved for all φ < 0. Although,
learly, ne(φ) →∞ at φ → (κ − 3/2), 
loser examination shows that the pseudopotential

Ψ[(κ−3/2), M ]→ −∞ [Baluku and Hellberg, 2008℄. Thus the Sagdeev potential Ψ(φ, M)does not satisfy the requirement for limiting the potential, [M
Kenzie et al., 2005; Cattaertet al., 2005; Baluku et al., 2008; Saini et al., 2009℄ viz., Ψ[(κ− 3/2), M ] > 0.It follows that in the 
ase of negative dust, the positive ion and negative dust densitieswill limit the ele
trostati
 potential for positive and negative potential solitary waves,respe
tively. On the other hand, for the 
ase of positive dust, positive potential solitonswill be limited typi
ally by the ions, whi
h have the smaller limiting potential be
ause oftheir mu
h smaller mass. The limiting (maximum possible) potentials φlj (j = e, i, d) areobtained from the density expressions of ions or dust parti
les when the spe
ies densities110



4.5. Arbitrary Amplitude Solitons: Pseudopotential Approa
heither be
ome non-real or when the spe
ies are in�nitely 
ompressed [nj(φ) → ∞℄ orrare�ed [nj(φ) → 0℄. In addition, Ψ(φ, M) must remain positive and �nite 
lose to thelimiting potentials φlj . Sin
e the soliton amplitude [root of Ψ(φ, M) other than at theorigin℄ in
reases with Ma
h number M , it follows that the maximum soliton Ma
h numbero

urs for a soliton with amplitude φ = φlj . Thus the upper limit on M is given by
Ψ(φlj, M) = 0. Alternatively, the limitation on φ may be 
aused by the o

urren
e ofdouble layers [Baboolal et al., 1988℄, in whi
h 
ase the 
ondition Ψ(φm, M) = Ψ′(φm, M) =

0 must be satis�ed.The des
ription above agrees with the �uid paradigm for dust ion-a
ousti
 solitons[Verheest et al., 2005; Baluku et al., 2008℄ where, in the presen
e of negative dust, for
φ < 0 the (subsoni
) ele
trons, with velo
ity ue, are rare�ed (ue > 1) and move towardstheir soni
 point; the (supersoni
) dust parti
les, with velo
ity ud, are 
ompressed (ud < 1)and also move towards their soni
 point while the ions (also supersoni
) are rare�ed andmove away from their soni
 point. Similarly for φ > 0, the ele
trons are 
ompressed andmove away from their soni
 point; the ions are 
ompressed and move towards their soni
point while the dust parti
les are rare�ed and move away from their soni
 point. However,it is only the supersoni
 spe
ies, whi
h move towards their soni
 point, that 
ontribute inlimiting the potential, based on the density or velo
ity dynami
s of the plasma spe
ies.An illustration is given in Fig. 4.3 showing the Bernoulli relation ǫj(uj) as a fun
tion ofthe spe
ies velo
ity uj for adiabati
 ele
trons [M
Kenzie, 2002a,b; Verheest et al., 2005;Baluku, 2007℄, given by
ǫj(uj) =

1

2
(u2j −1)+

1

(γj − 1)M2
j

(

1

u
γj−1
j

− 1

)

= −φ ≡ qjϕ/mjV
2; for γj 6= 1, (4.39)where (ϕ)φ is the (un)normalized ele
trostati
 potential; V the velo
ity of the wave inthe referen
e frame; mj the spe
ies mass; Mj the spe
ies Ma
h number, and qj = Zj ethe spe
ies 
harge, with Zj being the 
harge on the spe
ies, j, whi
h 
an be positive ornegative depending on whether the individual spe
ies are positively or negatively 
harged,respe
tively, and e being the 
harge of an ele
tron. Here, γj = 3/2 for adiabati
 spe
ies.In the 
ase of positive dust, when φ < 0 all the spe
ies are rare�ed, with the supersoni
spe
ies moving away from their soni
 points while the subsoni
 ele
trons move towards111



4. Dust Ion-A
ousti
 Solitons in a Plasma with Kappa-Distributed Ele
tronstheir soni
 points; for φ > 0, all the spe
ies are 
ompressed, with the supersoni
 spe
iesmoving towards their soni
 points while the ele
trons move away from their soni
 points.
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Figure 4.3: S
hemati
 representation of Bernoulli integrals for 
ool, supersoni
 (Mj > 1)and hot, subsoni
 (Mj < 1) spe
ies, having a minimum at their respe
tive soni
 points, S,for adiabati
 ele
trons (γe = 3/2). In a potential hill (φ > 0), positively 
harged parti
les(with qj > 0) are de
elerated (uj < 1) and driven towards their soni
 points if the �owis supersoni
 (Mj > 1) while negatively 
harged parti
les (with qj < 0) are a

elerated(uj > 1) and driven away from their soni
 points if the �ow is subsoni
 (Mj < 1). Thereverse is true in a potential dip (φ > 0): positively 
harged parti
les are a

elerated anddriven away from their soni
 points if the �ow is subsoni
 (Mj < 1) while negatively 
hargedparti
les are de
elerated and driven towards their soni
 points if the �ow is supersoni
. Here
Mj is the spe
ies Ma
h number. From [Baluku, 2007℄Limitations on Positive Potential SolitonsAs observed earlier [Baluku and Hellberg, 2008℄, whereas ne(φ) → ∞ at φ = φle ≡

(κ−3/2) > 0, the pseudopotential Ψ[φle, M ]→ −∞, whi
h is not �nite (and not a positivequantity). In other words, the 
ondition Ψ[φle, M ] > 0 is meaningless, and therefore ifpositive solitons exist, they must be limited by either the ions only (in the 
ase of a plasmawith negatively 
harged dust), or limited by the ions or positively 
harged dust (in the
ase of a plasma with positively 
harged dust), or limited by a double layer, but not by112



4.5. Arbitrary Amplitude Solitons: Pseudopotential Approa
hin�nite 
ompression of ele
trons.Now, in the 
ase of double layers, we expe
t to get at least two roots of Ψ(φ, M) outsidethe origin (with the root 
lose to the origin giving the amplitude of the soliton); the roots
oales
e into a double root when a double layer o

urs. However, the behaviour of Ψ(φ, M)as φ be
omes large indi
ates that Ψ(φ, M) → ∞ (i∞) as φ → ∞ in the 
ase of negativedust (positive dust). This implies that in this plasma model Ψ(φ, M) 
an have at mostone root (other than at the origin), essentially ruling out the o

urren
e of double layersfor positive potentials. Thus positive potential solitons will be limited by the positively
harged ions only (in the 
ase of a plasma with negatively 
harged dust) and positively
harged ions or dust (when 
onsidering a plasma with positively 
harged dust).The restri
tion on M or f for positive potential solitons asso
iated with the ion densityis given by Ψ(φℓi, M) > 0, sin
e for φ > φℓi = (M −
√
3σ)2/2 the ion density, ni(φ), is
omplex. One 
an easily see that ni(φ) is also 
omplex for φ ≥ (M +

√
3σ)2/2, but, asthat potential ex
eeds φℓi, it follows that Ψ(φℓi, M) > 0 will be the pra
ti
al 
onstraintlimiting positive potential solitons. The 
ondition Ψ(φℓi, M) > 0 leads to an upper limiton f , viz.,

f < fℓi(M) ≡ fA(M)

fB(M)
, where (4.40)

fA(M) =
M2

s z

{

[

1− s z

M2
(M −

√
3σ)2

]1/2
− 1

}

+M2 + σ − 4M3/2
( σ

27

)1/4and
fB(M) =

[

1− (M −
√
3σ)2

(2κ− 3)

]3/2−κ

+
M2

s z

{

[

1− s z

M2
(M −

√
3σ)2

]1/2
− 1

}

− 1.Limitations on Negative Potential SolitonsFrom the density expressions of the plasma 
onstituents, in the presen
e of negatively
harged dust, negative potential solitons are limited by the negative dust while in thepresen
e of positively 
harged dust, negative potential solitons appear not to be limited byany of the plasma spe
ies.However, 
onsidering the behaviour of Ψ(φ, M) as φ → −∞ we see that Ψ(φ, M) →

+i∞ (−∞) for a plasma with negatively (positively) 
harged dust, respe
tively. Therefore,113



4. Dust Ion-A
ousti
 Solitons in a Plasma with Kappa-Distributed Ele
tronsin the 
ase of negative dust, you 
an have at most one root of Ψ(φ, M) outside the origin,implying that double layers may not be supported in su
h a plasma model.In this 
ase, the ne
essary 
ondition that will yield a 
onstraint on the range of M or
f over whi
h negative potential solitons 
an exist will then be given by Ψ(φld, M) > 0,whi
h upon using Eq. (4.30) leads to

f < fℓd(M) ≡ fD(M)

fE(M)
, (4.41)where

fD(M) =
1

6
√
3σ

{

[

(M +
√
3σ)2 − M2

s z

]3/2

−
[

(M −
√
3σ)2 − M2

s z

]3/2
}

+ M2

(

1− 1

s z

)

+ σand
fE(M) =

[

1− M2

s z(2κ − 3)

]3/2−κ

− M2

s z
− 1.Equations (4.38)�(4.41) imply that in the 
ase of negative dust, for given parameters

κ, σ and M , positive potential solitons will exist in a region of parameter spa
e (M, f)satisfying fs(M) < f < fℓi(M) while negative solitons will be bounded by fs(M) < f <

fℓd(M). Note that the value of M 
orresponding to fs(M) gives the lower Ma
h numberbelow whi
h no solitons exist, that is, the value ofM at the soliton 
ondition, Ms. Likewise,the values of M asso
iated with fℓi and fℓd will give the upper Ma
h number limits forpositive potential (Mℓi) and negative potential (Mℓd) solitons, respe
tively, at given f .The 
urves representing the lower and upper limits interse
t at a 
riti
al value of f ,where, for positive solitons, fp o

urs for fs = fℓi, i.e., fp is de�ned by fp = fℓi(Ms).For negative solitons, the 
riti
al value is fn = fℓd(Ms). These two 
riti
al values provide
uto�s in f below (above) whi
h, no positive (negative) solitons are supported in a plasmawith negative dust grains. Similarly, in the 
ase of positive dust, no positive solitons aresupported below fp.In general, it follows that for negative dust, (i) only negative solitons are observed for
0 < f < fp, (ii) solitons of both polarities are supported for fp < f < fn, and (iii) only114



4.6. Negative Dustpositive solitons are found for f > fn. When f → fp, φ→ φℓi = (M −
√
3σ)2/2 and ni(φ)be
omes 
omplex, yielding a 
uto� for the existen
e domain. Similarly, when f → fn,

φ→ φℓd = M2/2z and nd(φ)→∞.4.6 Negative Dust4.6.1 E�e
t of Dust Grain Mass�Charge Ratio (through z)
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Figure 4.4: Existen
e domain for dust ion-a
ousti
 solitons with varying z for �xed σ =
0.01, and for the spe
tral indi
es κ as indi
ated on the graphs. The dashed 
urves are for
z = 0.001, the dotted ones for z = 0.01, and the 
ontinuous 
urves for z = 0.1, respe
tively.As in Fig. 4.6, positive potential solitons are bounded by the red and blue 
urves whilenegative potential solitons are bounded by the red and dark blue 
urves.Figure 4.4 shows the e�e
t of varying z = Zdmi/md on the existen
e domain of solitons,115



4. Dust Ion-A
ousti
 Solitons in a Plasma with Kappa-Distributed Ele
tronsfor di�erent values of κ (κ = 2, 5, 10 and ∞), for a �xed temperature ratio, σ = 0.01. Inea
h 
ase, dashed 
urves 
orrespond to z = 0.001, dotted 
urves to z = 0.01 and solid(
ontinuous) 
urves to z = 0.1, respe
tively. In these �gures, positive solitons are boundedby 
urves labeled Ms (red) andMp (blue) while negative solitons are bounded by 
urvesMsand Mn (dark blue). The results in Fig. 4.4 show that the variation of z has an insigni�
ante�e
t on both the lower and upper Ma
h numbers bounding positive potential solitons for�xed κ. On the other hand, di�erent κ values have a quantitative e�e
t on the range of
M over whi
h positive solitons exist. However, for negative potential solitons, the moremassive the dust parti
les (smaller the value of z) the larger the range of f over whi
hsolitons will exist. For example, when κ = 2 and σ = 0.01, negative potential solitons willexist for f < 0.89 (z = 0.1), f < 0.93 (z = 0.01) and f < 0.97 (z = 0.001), respe
tively.Other upper limits of f , denoted fn, for di�erent spe
tral indi
es κ are shown in Table 4.2,where we see that for z . 0.001 and κ > 3/2 negative solitons exist for almost the entirerange of f , i.e., 0 < f < 1.

κ fn
z = 10−1 z = 10−2 z = 10−3 z = 10−4 z = 10−5 z = 10−6

2 0.891 0.929 0.972 0.990 0.997 0.999
5 0.854 0.920 0.971 0.990 0.997 0.999
10 0.844 0.919 0.970 0.990 0.997 0.999
50 0.837 0.918 0.970 0.990 0.997 0.999
100 0.837 0.918 0.970 0.990 0.997 0.999
∞ 0.836 0.918 0.970 0.990 0.997 0.999Table 4.2: Table showing the upper limit of fra
tional density, f below whi
h both positiveand negative potential solitons 
an be obtained for di�erent values of z and spe
tral indi
es

κ. The ion temperature σ has been �xed at σ = 0.01. For f > fn we have positive potentialsolitons only4.6.2 E�e
t of Ion Temperature (through σ)Figure 4.5, whi
h is similar to Fig. 4.4, shows the e�e
t of normalized ion temperature(σ) on the existen
e domain of dust ion-a
ousti
 solitons for a dusty plasma with kappadistributed ele
trons, here with κ = 2 and κ = ∞ (Maxwellian 
ase). Dashed 
urvesare for σ = 0.001, dotted 
urves for σ = 0.01 and solid (
ontinuous) 
urves for σ = 0.1,respe
tively. Thus positive solitons are bounded by the pair of dashed, dotted or solid
urves, for ea
h 
ase (σ = 0.001, 0.01, or 0.1).116



4.7. Results and Dis
ussion
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Figure 4.5: Existen
e domain for dust ion-a
ousti
 solitons with varying σ for �xed z =
0.001, and κ = 2 (left panel) and κ = ∞ (right panel), respe
tively. The dashed 
urvesare for σ = 0.001, the dotted 
urves for σ = 0.01, and the 
ontinuous 
urves for σ = 0.1,respe
tively. As in Fig. 4.6, positive potential solitons are bounded by the red and blue
urves while negative potential solitons are bounded by the red and dark blue 
urves.The graphs show that the warmer the ions (the higher the value of σ), the bigger therange in (f, M) spa
e over whi
h solitons 
an be obtained, with the region of existen
e ofsolitons de
reasing with in
reasing ex
ess superthermality of the ele
trons (lower κ). Wehave 
hosen z = 0.001 for illustrative purposes as a typi
al value with z ≪ 1, and thereforethe dust grains may be regarded as immobile in most 
ases. The assumption of z ≪ 1 isdue to the high dust 
harge zd (of the order ≃ 102 − 104), and high md/mi ratio (of theorder ≃ 106 − 1012) depending on the dust environment. This value of z will also be usedin the subsequent results dis
ussed below.However, in the 
ase of negative solitons, the variation of σ, for �xed z and κ, has noe�e
t on the upper limit of M in the existen
e domain. Thus the almost verti
al 
urve(labeled Mn) shown in the graphs is a superposition of 
urves 
orresponding to the threevalues of σ used in this �gure.4.7 Results and Dis
ussionIn Fig. 4.6 we dis
uss existen
e domains, delineated by Eqs. (4.38)�(4.41), of dustion-a
ousti
 solitons in the parameter spa
e of Ma
h number (M) and fra
tional ele
trondensity (f ). In the left panel, we 
onsider the 
ase studied by Bharuthram and Shukla117



4. Dust Ion-A
ousti
 Solitons in a Plasma with Kappa-Distributed Ele
trons[1992℄, of positive solitons in a plasma 
omposed of Maxwellian ele
trons (κ = ∞), 
oldions (σ = 0), and immobile dust (z = 0). The 
ontinuous 
urves (whi
h appear to besuperimposed on other 
urves) essentially reprodu
e the results of Bharuthram and Shukla[1992℄, where positive solitons are supported in the domain bounded by the two 
urves,i.e., the lower, red (soliton existen
e) 
urve (fs or Ms), and the upper, blue 
urve (fℓi or
Mℓi). Thus positive solitons may exist for f > fp = 0.16, where fp is the lower 
uto� of fde�ned by fp = fℓi(Ms). At that value of f , one �nds the highest Ma
h number at whi
hpositive solitons 
an be supported, to be M ≃ 2.5. As expe
ted, for f = 1 the systemredu
es to ion-a
ousti
 solitons in a simple ele
tron-ion plasma, and we observe the usualrange [Chen, 1984℄ of Ma
h numbers, viz., 1.0 < M < 1.6.In this �gure (Fig. 4.6) we also 
onsider the e�e
ts of dust mobility, by in
luding 
urvesfor four other values of z, viz., z = 0.001 (dotted), 0.01 (dashed), 0.1 (dot-dashed) and 1(
ontinuous and marked with z = 1). Both the Ms 
urve and, for positive solitons, the Mℓi
urve for the mobile 
ases are virtually indistinguishable from the 
ase z = 0. However, forthe 
ase z = 1 (valid for a negative ion plasma, but not for dust) mobility does a�e
t Mssigni�
antly and in
reases the lower 
uto� to fp ≃ 0.34 and de
reases the highest a

essiblevalue of M (at f = fp) to ≃ 2.2.For negative solitons to exist, the stru
ture must have a speed ex
eeding Ms, but thereis e�e
tively no upper limit in M for z ≪ 1, though the same 
annot be said for z = 1, andfor the immobile dust model they 
an exist over the full range 0 < f < 1. In the se
ondpart of Bharuthram and Shukla [1992℄, they 
onsidered mobility brie�y (using z = 0.1), butonly presented examples of Sagdeev potentials for two values of M . From their results itis 
lear that mobility has a large e�e
t on the amplitudes of negative solitons [Bharuthramand Shukla, 1992℄. Our results in the left panel of our Figure 4.6 show that the almostverti
al (bla
k) 
urves for fℓd or Mℓd are a�e
ted signi�
antly by the value of the mobilityparameter, z, thereby introdu
ing a nontrivial upper 
uto� in f for negative solitons. Thusthe existen
e domains for negative solitons are found to be smaller for mobile dust grainsthan for immobile dust. The upper limit fn de
reases for in
reasing mobility from 1.0(z = 0), through 0.97 (z = 0.001) and 0.93 (z = 0.01) to 0.89 (z = 0.1), see Table 4.2. Asseen, mobility 
auses a small shift in relevant Ms. In the 
ase of negative ions (z = 1),the pattern is di�erent, here fn in
reases to 0.95, in 
ontrast to the de
reasing pattern118



4.7. Results and Dis
ussionobserved for z = 0.01 and z = 0.1, and the bounding 
urve shows fn varying signi�
antlywith M .
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fnFigure 4.6: Existen
e domain for DIA solitons. Left panel: Maxwellian ele
trons, 
old ions(σ = 0): immobile dust (z = 0, 
ontinuous 
urves), after Bharuthram and Shukla [1992℄:and mobile dust [z = 0.001 (dotted 
urves), z = 0.01 (dashed 
urves), z=0.1 (dot-dashed
urves)℄. Positive solitons have a lower 
uto� at f ≃ 0.16. Negative solitons have a z-dependent upper 
uto� at f ≃ 0.85 − 1. Right panel: Cool ions (σ = 0.01), mobile dust(z = 0.001); 
ontinuous 
urves (κ = ∞), dotted 
urves (κ = 4), dashed 
urves (κ = 2),respe
tively. Positive solitons are bounded at low f while negative solitons have a κ-independent upper bound 
lose to f = 1. We also show the values fp, fc and fn expli
itlyfor κ = 2.In the right panel of Figure 4.6 we investigate the e�e
ts of ex
ess super-thermal ele
-trons (through 
hoi
e of the parameter κ) on the range of existen
e of DIA solitons, formobile dust (z = 0.001) and an ion-ele
tron temperature ratio of σ = 0.01. The 
ontinu-ous 
urves represent a Maxwellian ele
tron distribution (κ = ∞), a typi
al spa
e plasma(κ = 4) is given by dotted 
urves, and the dashed 
urves are for a strongly non-Maxwellianplasma with κ = 2. The ranges in both f and M that 
an support positive potentialsolitons are seen to de
rease with in
reased ex
ess superthermality (de
reasing κ). The�gure also shows that, as above, negative potential solitons exist for unbounded Ma
hnumbers, M > Ms over a large range of f , with the 
uto� being virtually independent of κ(fn ≃ 0.97). In addition we point out that, although not shown expli
itly in this �gure, thepre
ise value of σ, within the range of appropriate values, has little e�e
t on the existen
edomains.From Fig. 4.6 one sees that for the 
hosen parameter values, both positive and negative119



4. Dust Ion-A
ousti
 Solitons in a Plasma with Kappa-Distributed Ele
tronspotential solitons are supported in the range (0.21, 0.97) in a Maxwellian plasma. For
κ = 4, the range is redu
ed to (0.31, 0.97) and in a strongly non-Maxwellian plasma with
κ = 2, the range supporting both polarities is (0.43, 0.97). Thus de
reasing the spe
tralindex κ from a Maxwellian to a hard spe
trum has a signi�
ant e�e
t on the range of f(through fp) and of M , over whi
h solitons of both polarities may exist.As we shall show below, the 
riti
al values of the fra
tional ele
tron density f that havebeen introdu
ed above, viz., fc, fp and fn, play an important role in providing a betterunderstanding of the soliton 
hara
teristi
s in a three-
omponent plasma for whi
h thereis a range in f in whi
h both positive and negative potential solitons are supported. Weshall later 
onsider in Fig. 4.9 a plasma with κ = 2, σ = 0.01, and z = 0.001. From
A(fc) = 0 or Ψ′′′(φ = 0,Ms, fc)=0, and (4.38)�(4.41), one �nds that for these parameters
fc ≃ 0.523, fp ≃ 0.428 and fn ≃ 0.97. We show the values fp, fc and fn expli
itly in theexisten
e diagram for this 
ase in Fig. 4.6.In Fig. 4.7 we show the e�e
t of the spe
tral index κ on soliton amplitude for �xed Ma
hnumber M and f , and z = 0.001, σ = 0.01. For illustrative purposes, we have 
hosen aregion in parameter spa
e (f, M) for two di�erent values of f : f = 0.2 (left panel) and
f = 0.5 (right panel), respe
tively, where negative potential solitons are expe
ted to o

urfor all spe
tral indi
es κ > 1.5, as seen in Fig. 4.6. Note that the limitations for positivepotential solitons for the allowable values of f and M do not allow su
h 
omparison of φmwith κ for κ > 1.5, for the ion and dust parameters used in this plasma model. The graphsshow that the soliton amplitude |φm| in
reases with de
reasing κ, that is, the more super-thermal parti
les are in the high energy tail of the distribution, the higher the amplitude ofthe asso
iated solitons at �xed soliton speed. In the 
ase of higher κ values, the amplitudesremain almost 
onstant. However, as κ is de
reased, the minimum soliton speed Ms is alsode
reased, and so the speed relative to the DIA speed is in
reased, thus explaining thehigher amplitude [Saini et al., 2009℄, Hen
e in Fig. 4.8, we prefer to show the e�e
t of κon the soliton amplitude as a fun
tion of the soliton speed normalized to the true a
ousti
speed (M/Ms).In Fig. 4.8 we show the e�e
t of κ on the soliton amplitude as we vary the Ma
h number(in terms ofM/Ms). Contrary to the results of Fig. 4.6 for �xed M , we now see that solitonamplitudes in
rease as κ in
reases for a parti
ular Ma
h number ratio M/Ms. Note that120
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Figure 4.7: Variation of potential amplitude, φm with κ for σ = 0.01, z = 0.001 anddi�erent values of M (labeled on the graphs), with f = 0.2 (left panel) and f = 0.5 (rightpanel), respe
tively.
Ms = Ms(κ), thus a �xed value of the ratio M/Ms 
orresponds to varying values of Msfor di�erent values of κ.In the upper left panel of Fig. 4.8, we 
onsider positive potential solitons in plasmaswith di�erent κ values, for the 
ase f = 1, i.e., for ion-a
ousti
 solitons in a pure ele
tron-ion plasma, as dis
ussed in detail previously [Saini et al., 2009℄. However, whereas in thelatter paper the plot was made against M−Ms, we have here usedM/Ms. As found earlier,the �φm−M � 
urves de
rease monotoni
ally with de
reasing κ, i.e., with in
reasing ex
esssuperthermal ele
trons. The upper limit in M for positive solitons also de
reases withde
reasing κ, as found for IA solitons by Saini et al. [2009℄. While for κ = 2 one has smallamplitude solitons over the full existen
e range, they go beyond the KdV range for higher
κ [Saini et al., 2009℄. The upper right panel of Fig. 4.8 shows that when some dust isin
luded (f = 0.9) the results for positive solitons are very similar to those for IA solitons,but with slightly larger amplitudes.Considering a 
ase with a larger dust 
harge density (f = 0.5), the amplitudes in
reaseeven further, although they are still of order one in normalized magnitude, as seen in thelower left panel of Fig. 4.8. In addition, however, two important 
hanges are observed.First, the 
urves no longer vary monotoni
ally � they 
ross ea
h other. Se
ondly, we �nd121
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Figure 4.8: Variation of potential amplitude φm with the ratio M/Ms for σ = 0.01, z =
0.001, and various values of κ; positive solitons (f = 1, 0.9 and 0.5); and (lower rightpanel) negative solitons (f = 0.9). The 
urves represent κ = 2 (dashed), 4 (dotted), 10(dot-dashed), and∞ (
ontinuous), respe
tively. The negative solitons have large amplitudeat M = Ms: |φm| ≃ 45.3, 108.2, 138.5 and 156 for κ = 2, 4, 10, and ∞, respe
tively. Asthey are unbounded in M , they have extremely large amplitudes for M ≫Ms.the surprising result that for κ = 2 the amplitude φm is nonzero for M/Ms = 1, i.e., anonzero soliton exists at the a
ousti
 speed, something that goes 
ompletely against KdVtheory for small amplitude solitary waves.Finally, in the lower right panel of Fig. 4.8 we show negative potential solitons for f =

0.9 (i.e., the 
ompanion �gure to the upper right panel). In this 
ase, we �nd that the 
urvesagain vary monotoni
ally with κ, but for all κ, negative solitons with �nite amplitude arefound at the a
ousti
 speed. These solitons are orders of magnitude larger than the positivesolitons for the same plasma 
on�guration, e.g., at the lowest Ma
h number supporting122



4.7. Results and Dis
ussionsolitons, M/Ms = 1, solitons have amplitudes |φm| ≃ 45 (κ = 2), 108 (κ = 4), 138(κ = 10) and 156 (κ = ∞, i.e., Maxwellian), respe
tively. Furthermore, as negativesolitons are e�e
tively unbounded in Ma
h number, in
reasing M 
an yield extremelylarge amplitudes. Large amplitude negative solitons were also reported by Bharuthramand Shukla [1992℄ with Maxwellian ele
trons, z = 0.1, σ = 0 and f = 0.7 (see their Fig. 4).However, they did not examine the pe
uliar behaviour at the lowest Ma
h numbers.To examine further these large amplitude negative potential solitons, we 
arried out
al
ulations for di�erent parameters, as shown in Table 4.3. For 
omparison, the resultsof Bharuthram and Shukla [1992℄ for M = 1.75 are in
orporated in the Table and markedwith an asterisk. The two sets of 
al
ulations are 
onsistent with one another; the ampli-tudes are virtually independent of the normalized ion temperature, σ, but they do dependstrongly on mobility, parti
ularly over the range 0.01 ≤ z ≤ 0.1.
φm

z σ = 0 σ = 10−2 σ = 10−1

10−1 -13.1∗ -13.1 -13.0
10−2 -35.1 -35.1 -34.6
10−3 -41.0 -40.9 -40.3
10−4 -41.6 -41.6 -41.0
10−5 -41.7∗ -41.6 -41.0Table 4.3: Table showing the soliton amplitude φm for the parti
ular parameters,

f = 0.7 and M = 1.75, with Maxwellian ele
trons, where the values with asterisks arefrom Bharuthram and Shukla [1992℄.Using a spe
i�
 
ase study, viz., a plasma with κ = 2, σ = 0.01, and z = 0.001, wenext examine in Fig. 4.9 the role of fc and its neighbourhood. Spe
i�
ally, we 
onsiderthe dependen
e of soliton amplitude on the Ma
h number (in terms of M/Ms) for f in therange (fp, fn). We re
all that for these parameter values, solitons of both polarities arefound in the range (0.43, 0.97), while fc ≃ 0.52In the upper left panel we present the amplitudes of positive solitons as a fun
tion of
M/Ms for some values of f . First, we note that for fc ≤ f < fn (for instan
e, f = fc,
0.55 and 0.6), the amplitudes of positive solitons vanish for M/Ms = 1, and they in
reasemonotoni
ally as f approa
hes fc. In addition, the range of M/Ms that supports solitonsbe
omes narrower. Turning next to f < fc (e.g., f = 0.48 and 0.5), we see that, althoughthe trends of in
reasing φm and de
reasing range in M , with de
reasing f , persists, one123
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4.7. Results and Dis
ussionues of f (please note the 
hange of s
ale of φm). Again the amplitudes vary monotoni
allywith f , but the solitons have zero amplitude for fp < f ≤ fc at M/Ms = 1, while in therange fc < f < fn amplitudes are nonzero at M = Ms. The negative solitons in generalhave larger amplitudes than their positive 
ounterparts. In the middle left panel of Fig. 4.9we show the pseudopotential plot for a 
ase with nonzero positive amplitude at M = Ms,viz., with f = 0.5,M = Ms, φm ≃ 0.09. Although we �nd that φm 6= 0 at the DIA speed forthis example in the range fp < f < fc, we see that the usual requirement of a maximum ofthe pseudopotential at the origin [Ψ′′(φ = 0, M) < 0℄ is not satis�ed. Instead, the fun
tion
Ψ(φ, M) has a point of in�exion at the origin, with Ψ′′(φ = 0, Ms) = 0, while the 
onvex-ity requirement at the origin is provided by the third derivative, Ψ′′′(φ = 0, Ms) < 0. Wepoint out that a �nite amplitude soliton at the a
ousti
 speed has re
ently been found ina study of dust-a
ousti
 solitons in another three-
omponent plasma, viz., one 
omposedof negatively 
harged �uid dust and two positive ion spe
ies, a 
ooler Boltzmann and ahotter nonthermal Cairns distribution [Verheest and Hellberg, 2010℄. In that 
ase, too, itwas found to o

ur in 
onjun
tion with a point of in�exion in the pseudopotential at theorigin[Verheest and Hellberg, 2010℄, rather than a maximum, as is normally required for asoliton.We emphasize that these stru
tures obtained at the a
ousti
 speed are indeed typi
alsolitons, as may be seen from the potential pro�le in the middle right panel, and alsoreported re
ently by Verheest and Hellberg [2010℄. This interesting result implies thatthe usual 
onvexity requirement at the origin [Ψ′′(φ = 0, M) < 0℄ is a ne
essary butnot a su�
ient 
ondition for the existen
e of solitons, spe
i�
ally for models that supportexisten
e of solitons of both polarities. Furthermore, these �nite amplitude solitary waves
annot be found by a KdV approa
h, as the latter solitons have φm = 0 for M = Ms, asdis
ussed for small amplitude solitons in Se
. 4.4.1.In the lower left panel of Fig. 4.9 we show the pseudopotential for a marginally sub-a
ousti
 stru
ture speed (M = Ms−0.0001). Clearly, the positive pulse seen in the middleleft panel disappears for M < Ms, however small the redu
tion below the DIA speed �the pseudopotential has no well, and no soliton is found. On the other hand, for M > Ms(M = Ms + 0.0023) one sees that the positive soliton has a slightly in
reased amplitude(φm ≈ 0.13), while a smaller amplitude negative soliton (|φm| ≈ 0.05), whi
h vanished at125
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trons
M = Ms, is observed.This phenomenon is explored further in Fig. 4.10, whi
h shows soliton amplitudes at theDIA speed, Ms, as a fun
tion of f , in the range (fp, fn), for di�erent values of κ. Clearlythe points of interse
tion with the line φ = 0 de�ne 
riti
al values of f � they o

ur where
Ψ′′′(φ = 0,M = Ms, f, κ) = 0. These values are plotted as a dotted 
urve in Fig. 4.1 andare seen to be the same as the value fc de�ned in Se
. 4.4.1 as the solution to the equation
A(f ;κ) = 0. Here fc ≈ 0.523, 0.419, 0.365, and 0.329 for κ = 2, 4, 10, and∞, respe
tively.At fc, the amplitudes of both polarities of soliton vanish at the DIA speed 2, and, as wehave seen in Se
. 4.4.1, KdV theory has to be repla
ed by the mKdV approa
h. As seenin Fig. 4.10, for ea
h value of κ, positive potential solitons have φm 6= 0 at M = Ms for
fp < f < fc, in
reasing with |f−fc| as one approa
hes fp, but (not shown in �gure) we �ndthat the amplitudes vanish at the a
ousti
 speed for f > fc. For M > Ms, however, thesesolitons have �nite amplitude. On the other hand, negative solitons have zero amplitudeat Ms for f < fc (not shown in �gure; again, with nonzero amplitudes for M > Ms), andtake on �nite values at Ms for fc < f < fn, in
reasing with |f −fc| as f → fn. The largestpositive and negative soliton amplitudes at the a
ousti
 speed o

ur for f = fp and f = fn,respe
tively. In summary, as f is varied, the solitons of either polarity swit
h at fc from
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4.8. Positive Dustthe DIA speed. Equivalently, as f is in
reased through fc, the �KdV-like� solitons 
hangesign from negative to positive, while the �nonKdV-like� stru
tures swit
h from positive tonegative potential. Of 
ourse, negative solitons are e�e
tively unbounded in M for z ≪ 1and 
an thus have very large amplitudes, but in Fig. 4.10 we have shown the amplitudesonly up to 2, although |φℓd| 
an be very large. For this model in parti
ular, sin
e negativesolitons are limited by the negatively 
harged dust, the resulting solitons must be less thanthe 
riti
al potential amplitude φld = M2/2z, whi
h is 500 times M2 for z = 0.001 asused in the dis
ussion. This shows that the size of the possible solitons greatly dependson the value of z = (Zd/md)/(Zi/mi), and therefore on the mass and size of 
harge onthe dust parti
les. The maximum potential amplitudes at f = fn or fp for the parametersshown in Fig. 4.10 are shown in Table. 4.4 below. The table shows that for z = 0.001 and
σ = 0.01, fp de
reases with in
reasing superthermality (in
reasing κ) while fn is almost
onstant at f ≃ 0.97. The amplitude of the asso
iated maximum potentials also in
reasesslightly with in
reasing κ, but lie below 2.1 for positive potential solitons. In the 
ase ofnegative solitons, these maximum amplitudes are huge (|φdl| is over 100 for all κ > 3/2).

κ fp Ms φli1 fn Ms φld2 0.426955 0.90064 0.264581 0.971858 0.610733 -186.4974 0.309592 1.52930 0.919495 0.970641 0.875164 -382.95610 0.245913 1.91603 1.518710 0.970391 0.975738 -476.03250 0.215603 2.13963 1.933410 0.970304 1.019710 -519.907
∞ 0.208418 2.19814 2.050180 0.970285 1.029880 -530.327Table 4.4: Table showing the maximum potential amplitudes, φli1 = (M2

s −
√
3σ)2/2 and

φld = M2
s /2z at f = fp and fn, respe
tively, for the parameters in Fig. 4.10, that is, for

σ = 0.01 and z = 0.001.4.8 Positive DustWe have already seen that in the 
ase of positive dust grains, positive solitons arelimited by ion 
ompression (as φℓi ≪ φℓd), while negative solitons, if they exist, wouldbe limited by the o

urren
e of double layers, if the latter are supported by this plasmamodel [Baluku and Hellberg, 2008℄, see also Chapter 3. However, the double layer require-ments [Ψ(φm, M) = Ψ′(φm, M) = 0℄ are not met for this model. Both the pseudopotential,
Ψ(φ, M), and its derivative, Ψ′(φ, M), go to −∞ as φ → −∞, so no double layers 
anform. This observation agrees, for the Maxwellian 
ase, with earlier work [Baluku et al.,127



4. Dust Ion-A
ousti
 Solitons in a Plasma with Kappa-Distributed Ele
trons2008℄. More insight into the existen
e of negative solitons 
an be obtained from the sign of
Ψ′′′(φ = 0;M = Ms). We saw in Se
. 4.4.1 that small amplitude negative solitons 
an beobtained only for f < fc. As seen in Fig. 4.1, fc < 1 for all κ. This means that for positivedust (f > 1) only one sign of potential 
an be supported. Thus only positive potentialdust ion-a
ousti
 solitons 
an o

ur in dusty plasmas with positive dust, kappa ele
tronsand �uid ions. On the other hand, 
omparison of the dust and ion limiting potentials,
φld = M2/2z and φli1 = (M −

√
3σ)2/2, respe
tively, shows that φld/φli1 ≫ 1, thus theion limit will be met before the dust ion limit 
an be invoked. Therefore, in the presen
eof positively 
harged dust, positive potential solitons are limited only by the positive ions.The existen
e domains for positive solitons, bounded by the 
ontinuous (lower Ma
hnumber) and dotted (upper Ma
h number) 
urves, respe
tively, are shown in Fig. 4.11 (leftpanel) for κ = 2, 4 and ∞, and (for κ = 2) over an extended range in positive dust 
hargedensity in the right panel. These solitons all have amplitudes that are less than φli1. Wesee that the existen
e domains are extensions of those seen for f < 1, and that they appearsimilar to ea
h other, but for de
reasing κ both the typi
al values of M and the a

essibleranges in M are redu
ed.
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4.9. Comment4.9 CommentIn a number of papers, su
h as [Mendoza-Bri
eño et al., 2000; Mamun and Shukla,2002; Shukla and Mamun, 2002; Mamun and Shukla, 2008℄, Mamun and 
o-workers havesuggested that if one expands the Sagdeev potential Ψ(φ) around φ = 0, say up to the thirdorder in φ, then the sign of the 
oe�
ient of φ3 in the expansion gives the appropriate signof the potential solitons supported by the plasma model at hand. Indeed su
h formalismholds for small amplitude solitons only, that is, solitons whose amplitudes tend to zero as
M →Ms. In other words, the sign of the 
oe�
ient of φ3 in the expansion of Ψ(φ) is onlyasso
iated with the sign of the KdV-like solitons (with amplitudes that vanish at Ms) that
an exist in the plasma model. However, for plasma situations where both positive andnegative potential solitons 
an be supported, this formalism (Mamun approa
h), if appliedto the large amplitude (normally referred to as the arbitrary amplitude) methods, missessolitons of the opposite sign to the KdV-like solitons.In understanding this, we shall look at the 
ase of dust ion-a
ousti
 solitary waves inan unmagnetized dusty plasma in whi
h the �uid ions are treated as 
old, the ele
trons areBoltzmann distributed, and the dust parti
les are stationary and therefore only provide aneutralizing ba
kground. This parti
ular plasma model was dis
ussed by Mamun [Mamunand Shukla, 2008℄ in the work he presented at the �2007 ICTP Summer College on PlasmaPhysi
s�. The Sagdeev potential is now given by Eq. (4.32), here rewritten as:

Ψ(φ, M) = f
(

1− eφ)− (1− f)φ+M2[1− (1− 2φ/M2)1/2], (4.42)where we have used f for µ and Ψ for V in their notation, but the meaning remains thesame. The 
riti
al Ma
h number �above whi
h solitary wave solutions exist� is now givenby Mc = 1/
√
f , and the 
riti
al value of f , here denoted fc evaluated at Ψ′′′(φ = 0, M =

Mc) = 0 now be
omes fc = 1/3 su
h that above or below fc, Ψ′′′(φ = 0, M) 
hangessign. In their study of the properties of arbitrary amplitude DIA solitary waves, followingfrom Eq. (4.42), the authors indi
ated that for any dusty plasma parameters satisfying
M > 1/

√
f and f < fc, DIA solitary waves with both φ > 0 and φ < 0 exist while for

M > 1/
√
f and f > fc, only DIA solitary waves with φ > 0 
an exist. This is, however,129



4. Dust Ion-A
ousti
 Solitons in a Plasma with Kappa-Distributed Ele
tronsnot quite 
orre
t. We emphasize that in the neighbourhood of fc one gets solitons withboth positive and negative potential signs, but the KdV approa
h or the expanded Sagdeevpotential only gives solitons asso
iated with the sign of Ψ′′′(φ = 0, Ms) while that of theopposite sign is ina

essible. For this 
ase we show Sagdeev potential pro�les for two 
ases;
f < fc and f > fc, in parti
ular, f = fc− 0.001 with M = Mc+0.0001 and f = fc+0.001with M = Mc + 0.001, respe
tively. Though not indi
ated here, provided one is in the
f -region where both positive and negative potential solitons exist, one gets �nite positive(negative) amplitude solitons at M = Mc for f < fc (f > fc), similar to the one shown inFig. (4.9) (middle left panel) for f < fc.
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Figure 4.12: Sagdeev potential for f < fc (left panel) and f > fc (right panel) for dust iona
ousti
 solitons in a plasma with stati
 dust, 
old �uid ions and Maxwellian ele
trons,after Mamun and Shukla [2008℄.4.10 Dis
ussion and Chapter SummaryUsing the pseudopotential approa
h, we have studied arbitrary amplitude dust ion-a
ousti
 solitons in a plasma of positive ions, κ-distributed ele
trons and 
harged dustgrains. This represents a 
onsiderable extension of the work of Bharuthram and Shukla[1992℄, who studied a plasma model 
onsisting of Boltzmann-distributed ele
trons, 
oldions, and immobile negative dust in one 
ase, and mobile negative dust in another 
ase.For the 
ase of negative dust, we have shown that for all κ the model supports bothpositive and negative potential solitons, where the Ma
h number for positive (negative)potential solitons is limited from above by the 
ondition at whi
h the ion density be
omes
omplex (the dust is in�nitely 
ompressed). This agrees with the analysis of Verheest et130



4.10. Dis
ussion and Chapter Summaryal. [2005℄ for polytropi
 ele
trons, where following a �uid dynami
 paradigm, proposed byM
Kenzie [M
Kenzie, 2002a,b, 2003℄ and 
o-workers [M
Kenzie and Doyle, 2003; M
Ken-zie et al., 2004b,a, 2005℄, that emphasizes the hydrodynami
 rather than the ele
trostati
properties of the plasma system, it was found that both negative and positive potentialdust-ion-a
ousti
 solitons may exist in a dusty plasma with negatively 
harged dust, posi-tively 
harged ions and polytropi
 ele
trons. We prefer not to use the 
ommonly used word�
oexist� in this 
ontext, as 
oexisten
e seems to imply that in a spe
i�
 plasma 
on�gu-ration, both polarities 
an exist at the same time, whereas in fa
t only one will o

ur, andwhi
h of the two polarities will be observed depends on details of the initial disturban
e.Positive potential DIA solitons experien
e a low-f 
uto� (fp) whi
h de
reases with in-
reasing κ (i.e., with a de
rease in ex
ess super-thermal parti
les), and hen
e this in
reasesthe range in (f, M) spa
e over whi
h positive solitons exist. Allowing for �nite dust grainmobility has little or no e�e
t on the existen
e domain for positive solitons. On the otherhand, the smaller the value of z, that is the heavier the dust parti
les (assuming 
onstantdust 
harge), the larger the domain in (f, M) spa
e over whi
h negative potential solitons
an be obtained. Also, the variation of the ion temperature (through σ) has a weak e�e
t,in
reasing the size of the existen
e domain as σ is in
reased. That is, the warmer the ions(the larger the value of σ) the larger the existen
e domain for solitons, with the region ofexisten
e de
reasing as κ de
reases.Negative potential solitons do not exist above a κ-independent 
uto� fn lying approxi-mately in the range 0.9−1, the exa
t value of whi
h depends signi�
antly on the magnitudeof the dust mobility fa
tor z = Zdmi/md. They are e�e
tively not subje
t to an upperlimit in M as z ≪ 1 implies that φℓd ≫ 1, and thus negative solitons may be very large.A surprising result is that over the range of fra
tional ele
tron density f in whi
hsolitons of both polarities are supported, �nite amplitude solitary stru
tures o

ur even atthe DIA speed � behaviour whi
h 
ontradi
ts KdV theory. Re
ently a similar result wasfound in another three-
omponent plasma [Verheest and Hellberg, 2010℄, where, as here,the phenomenon is asso
iated with a point of in�exion of the pseudopotential at φ = 0and M = Ms, rather than the usual maximum. The sign of Ψ′′′(φ = 0;M = Ms; f) thendesignates the polarity of the KdV-like soliton that vanishes at M = Ms.A 
riti
al role is played by fc, the value of f at whi
h the KdV 
oe�
ient A = 0,131



4. Dust Ion-A
ousti
 Solitons in a Plasma with Kappa-Distributed Ele
tronswhi
h also satis�es the 
onstraint Ψ′′′(φ = 0;M = Ms; fc) = 0. In parti
ular, as f isvaried, solitons of ea
h polarity swit
h at f = fc from a �KdV-like� form to �nonKdV-like�behaviour. For fp < f < fc, positive solitons at M = Ms have �nite amplitude, in
reasingin size with |f − fc| as f approa
hes fp, while negative solitons have zero magnitude at
M = Ms, as expe
ted from KdV theory. This situation reverses in polarity for solitonsfound for fc < f < fn.On the other hand, in a plasma with positive dust grains, only positive potential (�KdV-like�) solitons are supported by the plasma model, with the upper limit on M provided byin�nite 
ompression of the ions, and the positively 
harged dust parti
les only 
ontributein neutralizing the ele
trons in the ba
kground. The Maxwellian 
ase agrees with earlierresults, using the �uid dynami
 paradigm with polytropi
 ele
trons [Baluku et al., 2008℄.De
reasing κ leads to small redu
tions in both the a

essible M and the existen
e rangein M . The dusty plasma model with positive dust is similar to a two 
omponent ion-ele
tron plasma, with modi�
ations to the dynami
s due to the presen
e of weakly mobiledust. The results are reminis
ent of those found for ion-a
ousti
 solitons in a two-ionplasma [M
Kenzie et al., 2005℄, but for a mu
h heavier se
ond �positive ion�.
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CHAPTER 5
Ion-A
ousti
 Solitons in a Plasma with Two-Temperature κ-distributedEle
trons

In this 
hapter we investigate, and dis
uss existen
e domains of ion-a
ousti
 solitons inplasmas 
omposed of two ele
tron 
omponents (of di�erent temperatures) that are kappa-distributed, and a singly 
harged adiabati
 �uid ion spe
ies (protons). Su
h plasmas are ofinterest in the Saturnian magnetosphere where bi-kappa-distributed ele
trons are reportedto exist [S
hippers et al., 2008℄.5.1 Introdu
tionIn Chap. 2 we indi
ated that both 
ool and hot ele
tron populations that are non-Maxwellian have been inferred to exist in Saturn's magnetosphere using the Voyager PLSobservations [Sittler et al., 1983; Barbosa and Kurth, 1993℄ and the Cassini CAPS obser-vations [Young et al., 2005℄. By �tting the CAPS/ELS and MIMI/LEMMS data from theCassini spa
e
raft orbiting Saturn over a range of 5.4−20RS where RS ≈ 60, 268 km is theradius of Saturn, S
hippers et al. [2008℄ have shown that both the 
ool and hot ele
tronpopulations are κ-distributed.Ion-a
ousti
 solitons in a plasma with two ele
tron 
omponents have been studied bymany authors in di�erent plasma environments, both theoreti
ally [Nishihara and Tajiri,133



5. Ion-A
ousti
 Solitons in a Plasma with Two-Temperature κ-distributed Ele
trons1981; Baboolal et al., 1990; Ri
e et al., 1993; Ghosh et al., 1996; Ghosh and Iyengar,1997℄ and experimentally [Nakamura et al., 1996℄. However, most of the studies have been
entered on Maxwellian plasmas. Sin
e plasmas in spa
e and astrophysi
al plasmas, aswell as in laboratory environments, possess non-Maxwellian distributions, studies on ion-a
ousti
 waves and solitary stru
tures have to be extended to non-Maxwellian 
ases toin
orporate the deviation from the Maxwellian form in the analysis. Ion-a
ousti
 solitonsin non-Maxwellian plasmas (either in the form of the Cairns distribution [Cairns et al.,1995℄ or kappa-distribution [Abbasi and Pajouh, 2007; Chuang and Hau, 2009℄) with onlyone ele
tron 
omponent have been studied in the past.In this 
hapter we study a three 
omponent plasma 
omprising adiabati
 �uid ionsthat are singly positively 
harged like protons, and two ele
tron 
omponents, one 
ool andthe other hot, that are kappa-distributed, to explore existen
e domains of ion-a
ousti
solitons, using both the redu
tive perturbation analysis and arbitrary amplitude (Sagdeevpotential) approa
h. These results 
an be applied to the plasma system in the Saturnianmagnetosphere [S
hippers et al., 2008℄ where the low energy (
ool) and high energy (hot)ele
tron 
omponents are both kappa-distributed.Our results show that both 
ompressive (with a hump in the density as well as theele
trostati
 potential) and rarefa
tive (with a dip in the density and ele
trostati
 potential)
an be supported by the model. However, a pe
uliar behaviour of soliton amplitudeso

urs for density ratios that support 
oexisten
e of both hump (φ > 0) and dip (φ < 0)solitons. There exists a 
riti
al fra
tional 
ool ele
tron density ratio, fc, below whi
hnegative solitons have �nite (nonzero) amplitudes (nonKdV-like) at the lower Ma
h number
uto� while positive solitons have zero amplitudes (KdV-like) at the lower Ma
h number.The situation reverses when f > fc; positive solitons are nonKdV-like while negativesolitons are KdV-like.Comparison between the perturbation theory and the large amplitude te
hniques showthat whereas the perturbation te
hnique seem to be a

urate for very small amplitudes,espe
ially for stru
tures that move with velo
ities 
lose to the phase velo
ity of the wave,the method be
omes less reliable for velo
ities far from the phase velo
ity, espe
ially in 
aseswhere both signs of potential solitons exist. Thus the arbitrary amplitude approa
h, su
has the pseudopotential/Sagdeev method (whi
h we will dis
uss in detail) is indispensable.134



5.2. Model and Basi
 Equations5.2 Model and Basi
 EquationsWe 
onsider an in�nite, 
ollisionless and unmagnetized plasma 
omprising 
ool adia-bati
 �uid ions (with a single positive 
harge) that propagate only along the x−axis, anda mixture of both hot and 
ool κ-distributed ele
trons.The kappa-distributed ele
trons have unnormalized densities given by [Baluku et al.,2008℄
Ns(ϕ) = Ns0

[

1 +
1

(κs − 3/2)

qs ϕ

KBTs

]

−(κs−1/2)

, (5.1)where Ns0 and Ts are the equilibrium number density and temperature of spe
ies s (s = cfor 
ool ele
trons and h for hot ele
trons); KB is the Boltzmann 
onstant, ϕ is the lo
alele
trostati
 potential, and κs is the spe
tral index of spe
ies s, whi
h must be greater than
3/2 for non 
omplex 
hara
teristi
 thermal velo
ities (most probable speeds) asso
iatedwith the kappa-distributed ele
tron 
omponents [Baluku et al., 2008℄. For this plasmamodel, qs = −e, the 
harge of the ele
trons.We assume that the ions are adiabati
 (Pi ∝ Nγi

i , where γi = 3), with the ion densityhaving both inertial and pressure 
ontributions. Thus the ions satisfy the 
ontinuity andmomentum equations (in unnormalized form):
∂Ni

∂t′
+

∂

∂X
(Ni Vi) = 0, (5.2)

∂Vi

∂t′
+ Vi

∂Vi

∂X
+

C2
ti

N2
i0

Ni
∂Ni

∂X
+

qi
mi

∂ϕ

∂X
= 0, (5.3)and the spe
ies' densities are 
oupled by Poisson's equation

ε0
∂2ϕ

∂X2
+

∑

j=c, h, i

Nj qj = 0, (5.4)with boundary 
onditions ϕ, ∂ϕ/∂X and Vi → 0, and Ni → Ni0 as X → ±∞. Inequations (5.2)�(5.4), Cti = (γiPi0/miNi0)
1/2 = (3KBTi/mi)

1/2 is the thermal velo
ity ofthe adiabati
 ions; Ni, Vi, Pi, andϕ are the unnormalized density, velo
ity and pressure ofthe ions, and lo
al ele
trostati
 potential, respe
tively, while X and t′ are the spatial andtemporal unnormalized variables. 135



5. Ion-A
ousti
 Solitons in a Plasma with Two-Temperature κ-distributed Ele
trons5.3 The Linear Dispersion RelationIn the linearization pro
ess we make the following substitutions:
Nj = Nj0 +Nj1

Pj = Pj0 + Pj1

Vj = Vj1

ϕ = ϕ1

∂Nj0/∂X = ∂Pj0/∂X = 0

∂Nj0/∂t
′ = ∂Pj0/∂t

′ = 0,

(5.5)
where Nj0, Pj0 are the unperturbed density and pressure quantities des
ribing the equilib-rium state, and Nj1, Pj1, Vj1 and ϕ1 are the small perturbations in these quantities. Theunperturbed velo
ity is zero and we have 
hosen ϕ0 = 0 (sin
e we have zero ele
tri
 �eldfor the unperturbed states).Sin
e the ele
trons are kappa-distributed, the �rst order perturbations in density of theele
trons is obtained from Eq. (5.1), and is given by

Ns1 = −Ns0

(

κs − 1/2

κs − 3/2

)

qs ϕ1

KBTs
. (5.6)The perturbed system of the positively 
harged ions is governed by the �uid 
ontinuityand momentum equations (in linearized form). Then assuming a steady-state harmoni
time-dependent perturbation solution for the os
illating quantities of the form Ni1, Vi1, Pi1,

ϕ1 ∝ exp{i(kX−ωt′)}, the time-derivative and gradient 
an be repla
ed, by ∂/∂t′ → −iω,and ∂/∂X → ik, respe
tively. This pro
ess gives
Vi1 =

kω qi/mi

(ω2 − k2C2
ti)

ϕ1, (5.7)
Ni1 =

k2Ni0qi/mi

(ω2 − k2C2
ti)

ϕ1 (5.8)
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5.3. The Linear Dispersion Relationand hen
e
[

− ε0 k
2 −

∑

s=c, h

Ns0q
2
s

KBTs

(

κs − 1/2

κs − 3/2

)

+ k2
Ni0q

2
i /mi

ω2 − k2C2
ti

]

ϕ1 = 0. (5.9)Using the de�nition of the ion plasma frequen
y, ωpi = (Ni0q
2
i /ε0 mi)

1/2, Eq. (5.9) 
an bewritten as
[

1 +
1

k2λ2
Dκ

−
ω2
pi

ω2 − k2C2
ti

]

ϕ1 = 0, (5.10)whi
h for ϕ1 6= 0 gives the linear dispersion relation for a plasma 
omprising κ-distributedhot and 
ool ele
trons, and adiabati
 positively 
harged ions. That is,
ω2
pi

ω2 − k2C2
ti

− 1

k2λ2
Dκ

= 1. (5.11)The asso
iated kappa dependent Debye length λDκ is given by
1

λ2
Dκ

=
∑

s=c, h

Ns0q
2
s

ε0 KB Ts

(

κs − 1/2

κs − 3/2

)

, (5.12)whi
h is an extension of the Debye length in kappa-plasmas [Chateau and Meyer-Vernet,1991; Bryant, 1996; Ma
e et al., 1998℄ to bi-kappa plasmas. When κs → ∞ (s = c, h),equation (5.12) redu
es to 1/λ2
D = 1/λ2

Dc + 1/λ2
Dh, where λDc and λDh are the Debyelengths of the 
ool and hot ele
trons, respe
tively. In the long wavelength limit (k → 0)we have kλDκ ≪ 1, and Eq. (5.11) be
omes

ω2 = k2C2
iκ + k2C2

ti, (5.13)where Ciκ = ωpiλDκ is the ion-a
ousti
 sound speed of the plasma model 
omprising of
ool and hot kappa-distributed ele
trons and �uid ions. Thus the phase velo
ity of thepropagating stru
tures is greater than the thermal velo
ity of the ions. In the limit κ→∞,
Ciκ → Cia = ωpiλDe,where Cia is the ion-a
ousti
 sound speed [Chen, 1984℄ for a plasma with 
ool and hotMaxwellian ele
trons; λDe = (ε0 KBTe/Ne0e

2)1/2, and Ne0/Te = Nc0/Tc +Nh0/Th; Ne0 =137



5. Ion-A
ousti
 Solitons in a Plasma with Two-Temperature κ-distributed Ele
trons
Nc0 + Nh0. Thus Ne0 and Te are the e�e
tive (total) ele
tron density and temperature,respe
tively. Hen
e in the limit κ → ∞ and kλDe ≪ 1, Eq. (5.11) gives the Maxwellianform [Chen, 1984℄

ω2 = k2
(

KBTe

mi
+

γi KBTi

mi

)

.5.4 Small Amplitude Solitons5.4.1 The Korteweg-de Vries (KdV) EquationThe density of the κ-distributed 
ool and hot ele
trons in Eq. (5.1) 
an be expandedto give
Ns(ϕ) = Ns0

∞
∑

r=0

(−1)rνsr ϕr, (5.14)where
νs0 = 1,

νs1 =

(

κs − 1/2

κs − 3/2

)

qs
KBTs

, (5.15)
νs2 =

1

2!

(κs − 1/2)(κs + 1/2)

(κs − 3/2)2

(

qs
KBTs

)2

, (5.16)
νs3 =

1

3!

(κs − 1/2)(κs + 1/2)(κs + 3/2)

(κs − 3/2)3

(

qs
KBTs

)3

, (5.17). . .et
.Note that for �xed qs/KBTs and ϕ, the series expansion in Eq. (5.14) is valid only for κs > 3sin
e for 1.5 < κs . 3, higher order terms (νs4, · · · ) are large 
ompared to the lower orderones, and therefore 
annot be negle
ted (see also Se
. 4.4). This implies that the redu
tiveperturbation method will not be appropriate for determination of small amplitude solitonsfor κs values in the range 1.5 < κs < 3.The positively 
harged ions are des
ribed by the �uid 
ontinuity and momentum equa-tions (5.2) and (5.3), respe
tively.Applying the redu
tive perturbation te
hnique, we use the stret
hed 
oordinates [Nishi-hara and Tajiri, 1981; Ma
e et al., 1991; Verheest, 2000℄ ζ = ǫ1/2(X − V t′) and T = ǫ3/2t′whi
h 
orrespond to the spatial and temporal 
oordinates, with ǫ ≪ 1 being a smallness138



5.4. Small Amplitude Solitonsparameter that measures the strength of the wave amplitude and V is the soliton speed(whi
h is equivalent to the phase velo
ity of the wave in the long wavelength limit). Thevarying parameters, Nj , Vj and ϕ are expressed in terms of ǫ using the expansions [Nishi-hara and Tajiri, 1981; Ma
e et al., 1991℄:
Nj = Nj0 + ǫNj1 + ǫ2Nj2 + . . .

Vj = ǫ Vj1 + ǫ2Vj2 + . . .

ϕ = ǫ ϕ1 + ǫ2ϕ2 + . . .

(5.18)Thus Poisson's equation now be
omes
ǫ ε0

∂2ϕ

∂ζ2
+Niqi +

∑

s=c, h

Ns0

∞
∑

r=0

(−1)rνsr ϕrqs = 0, (5.19)where Ni, Vi and ϕ are de�ned in Eq. (5.18). Equation (5.19) 
an be expanded to obtainthe following equations
©
(

ǫ0
)

:
∑

s=c, h

Ns0qs + Ni0qi = 0, (5.20)
©
(

ǫ1
)

: Ni1qi −
∑

s=c, h

qsNs0 νs1 ϕ1 = 0, (5.21)
©
(

ǫ2
)

: ε0
∂2ϕ1

∂ζ2
+Ni2qi −

∑

s=c, h

qsNs0νs1 ϕ2 +
∑

s=c, h

qsNs0νs2 ϕ
2
1 = 0, (5.22)where Eq. (5.20) 
an be re
ognized as the 
harge neutrality 
ondition of the unperturbedplasma 
onstituents at equilibrium.Following from the 
ontinuity and momentum equations, the �rst-order perturbed ve-lo
ity Vi1 and density Ni1 (in terms of ϕ1) are again given by Eqs. (5.7) and (5.8). ThusEq. (5.21) leads to the linear dispersion relation of the plasma model given in Eq. (5.13)in the long wavelength limit (kλDκ ≪ 1 or k → 0), that is, ω2 = k2C2

iκ + k2C2
ti.Also, di�erentiating equation (5.22) on
e with respe
t to ζ gives

ε0
∂3ϕ1

∂ζ3
+ qi

∂Ni2

∂ζ
−
∑

s=c, h

qsNs0νs1
∂ϕ2

∂ζ
+ 2

∑

s=c, h

qsNs0νs2 ϕ1
∂ϕ1

∂ζ
= 0, (5.23)where the se
ond-order perturbed density Ni2 
an easily be obtained from the 
ontinuity139



5. Ion-A
ousti
 Solitons in a Plasma with Two-Temperature κ-distributed Ele
tronsand momentum expressions (details not shown here) to give
∂Ni2

∂ζ
=

{

2Ni0V qi/mi

(V 2 − C2
ti)

2

}

∂ϕ1

∂T +

(

Ni0qi/mi

V 2 − C2
ti

)

∂ϕ2

∂ζ

+

{

Ni0q
2
i /m

2
i (3V

2 + (γi − 2)C2
ti)

(V 2 − C2
ti)

3

}

ϕ1
∂ϕ1

∂ζ
. (5.24)Combining equations (5.23) and (5.24) we get

ε0
∂3ϕ1

∂ζ3
+2V

Ni0q
2
i /mi

(V 2 − C2
ti)

2

∂ϕ1

∂T +





Ni0q
2
i /mi

V 2 − C2
ti

−
∑

s=c, h

qsNs0νs1





∂ϕ2

∂ζ

+

{

2
∑

s=c, h

qsNs0νs2 +
Ni0q

3
i /m

2
i [3V

2 + (γi − 2)C2
ti]

(V 2 − C2
ti)

3

}

ϕ1
∂ϕ1

∂ζ
= 0. (5.25)However, the nontrivial (ϕ1 6= 0) solution of equation (5.25) requires that the 
oe�
ient ofthe term involving the se
ond-order perturbed potential, ϕ2, must be zero. Clearly, withthe phase velo
ity V = ω/k, this follows from Eqs. (5.8) and (5.21) for ϕ1 6= 0. Equation(5.25) then be
omes

∂3ϕ1

∂ζ3
+

2V ω2
pi

(V 2 − C2
ti)

2

∂ϕ1

∂T

+

[

2
∑

s=c, h

qsNs0

ε0
νs2 +

(3V 2 + (γi − 2)C2
ti)ω

2
piqi/mi

(V 2 − C2
ti)

3

]

ϕ1
∂ϕ1

∂ζ
= 0. (5.26)In terms of the �rst order-perturbed potential, ϕ1, Eq. (5.23) leads to the well known KdVequation [Ma
e et al., 1991; Verheest, 2000℄

∂ϕ1

∂T +Aϕ1
∂ϕ1

∂ζ
+B

∂3ϕ1

∂ζ3
= 0, (5.27)
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5.4. Small Amplitude Solitonswhere
A =

A2

A1
and B =

1

A1
; (5.28)

A1 =
2V ω2

pi

(V 2 − C2
ti)

2
and (5.29)

A2 = 2
∑

s=c, h

qsNs0

ε0
νs2 +

[

3V 2 + (γi − 2)C2
ti

]

ω2
piqi/mi

(V 2 − C2
ti)

3
, (5.30)with γi = 3 sin
e we 
onsider the ions to be adiabati
. The phase velo
ity V in Eqs. (5.29)and (5.30) is obtained from the linear dispersion relation given in Eq. (5.13).In getting solutions to Eq. (5.27), we seek nonlinear solitary wave stru
tures that prop-agate un
hanged at 
onstant speed V0 in the laboratory frame [Chen, 1984℄. Thus, we seekstationary solutions in a moving frame, χ(ζ,T ) = ζ −V0T = ǫ1/2(X − vt′), with boundary
onditions

ϕ1,
∂ϕ1

∂ζ
,
∂2ϕ1

∂ζ2
→ 0 as ζ → ±∞.Here, v = V + δv, where V is the phase velo
ity of the solitary waves and δv = ǫV0. Uponusing the transformation χ(ζ,T ) = ζ − V0T = ǫ1/2(X − vt′), the solution of the resultingdi�erential equation be
omes [Ma
e et al., 1991; Verheest, 2000℄

ϕ1(χ) =

(

3V0

A

) se
h2{( V0

4B

)1/2

χ

}

. (5.31)In terms of the laboratory frame 
oordinates (X, t′), the solution be
omes
ϕ(X, t′) ∼ ǫ ϕ1(X, t′) =

3δv A1(V )

A2(V )
se
h2{(δv A1(V )

4

)1/2

(X − v t′)

}

. (5.32)Equation (5.31) is valid for A 6= 0 and V0/B > 0, where the 
onstants A and B arede�ned in Eq. (5.28). Note that for V0 > 0, the 
ondition B > 0 implies V > Cti, that is,supersoni
 ions, whi
h justi�es the need of a sluggish spe
ies (
ooler or massive spe
ies)that will provide inertia in the system for the generation of os
illations [Verheest, 2000,p. 110℄.We now take the following normalization (as will be used in the arbitrary amplitude141



5. Ion-A
ousti
 Solitons in a Plasma with Two-Temperature κ-distributed Ele
tronsapproa
h): temperature is normalized to the 
ool ele
tron temperature Tc; lo
al potentialto KBTc/e; number density to Ne0, where Ne0 = Nc0 +Nh0 = ZiNi0 is the total ele
tronequilibrium density with Nc0, Nh0 and Ni0 being the 
ool ele
trons, hot ele
trons and
ool ions equilibrium density. Here, Zi is the size of 
harge residing on the ions, whi
his +1 for singly 
harged ions (protons in this 
ase). The velo
ity is normalized to thea
ousti
 speed Cs = (Zi KBTc/mi)
1/2; the spatial and time variables to the inverse ionplasma frequen
y ω−1

pi = (ε0 mi/Ni0q
2
i )

1/2 = (ε0 mi/ZiNe0e2)1/2 and e�e
tive Debye length
λDe� = (Nc0/Ne0)

1/2λDc = ε0 KBTc/Ne0e2)1/2.The 
onstants A1 and A2 in Eq. (5.29) and (5.30) 
an then be written in the form:
A1 =

2

Cs

1

λ2
D e�α3/2

s1 (1 + 3τ αs1)
1/2 and (5.33)

A2 =
φ(ξ)/ϕ(χ)

λ2
D e� α2

s1

[

3(1 + 4τ αs1)−
αs2

α2
s1

]

, (5.34)where φ is the normalized ele
trostati
 potential, and τ = (Ti/Tc)/Zi, whi
h simply be-
omes Ti/Tc (the normalized ion temperature with Zi = 1), respe
tively; ξ = x −M t =

χ/λDe�, where M = v/Cs is the Ma
h number, and x and t are the normalized spatial andtime variables, respe
tively. Here, M = Ms + δM where Ms = V/Cs = (3τ + 1/αs1)
1/2is the phase velo
ity normalized to the e�e
tive sound speed, whi
h is equivalent to thelower Ma
h number, and δM = ǫM0 = ǫ(V0/Cs). The 
onstants αs1 and αs2 are given,respe
tively, by

αs1 =
∑

βs
Ns0

Ne0

κs − 1/2

κs − 3/2
and (5.35)

αs2 =
∑

β2
s

Ns0

Ne0

(κs − 1/2)(κs + 1/2)

(κs − 3/2)2
, (5.36)with s = c (h) for 
ool (hot) ele
trons, and βs = T
/Ts is the re
ipro
al of the normalizedtemperature. For simpli
ity, β = βh = T
/Th.Note that ϕ(χ) ∼ ǫ ϕ1(χ) and φ(ξ) ∼ ǫ φ1(ξ), thus to �rst order in ǫ, Eq. (5.32) 
an bewritten as

φ(ξ) = φ0 se
h2(ξ/∆), (5.37)
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5.4. Small Amplitude Solitonswhere φ0 and ∆ are the soliton amplitude and width, respe
tively, given by
φ0 =6δM(Ms/Q) =

12/α2
s1

Q∆2
and (5.38)

1

∆
=

(

δM

2

)1/2

α
3/4
s1 (1 + 3τ αs1)

1/4, (5.39)where Q = 3(1 + 4ταs1) − αs2/α
2
s1. Equation (5.37) is valid (i) for δM > 0, leading to

M > Ms, and (ii) for Q 6= 0, that is, A2 6= 0, and therefore the sign of the potentialdepends on whether Q is positive or negative. Also, Eqs. (5.38) and (5.39) imply that
φ0 ∝ 1/∆2 ∝ δM , thus as δM (or M) in
reases the soliton amplitude (φ0) in
reases whilethe soliton width (∆) de
reases.In getting the appropriate sign of the soliton potential, we determine a 
riti
al densityratio fc, 
orresponding to Q = 0, at whi
h φ0 [from (5.38)℄ goes to in�nity. When f < fcwe get positive potential (
ompressive) solitons while the reverse gives negative potential(rarefa
tive) solitons. For example, when κc = 2, κh = 3, τ ≃ 1/300, β = 3/100, whi
hare typi
al parameter values for Saturn's outer magnetosphere [S
hippers et al., 2008℄ atabout 16RS , we have fc ≃ 0.472. In the presen
e of Maxwellian 
ool and hot ele
trons(κc = κh = ∞) and τ ≃ 1/300, β = 3/100, we have fc ≃ 0.704. Positive (negative)potential solitons will exist for f < (>)fc. These 
riti
al density ratios will be referredto in the dis
ussion of numeri
al results in the subsequent se
tions. For Q = 0 we have
A2(V ) = 0 in Eq. (5.27), and therefore the soliton amplitude goes to in�nity. For valuesof f for whi
h the nonlinearity term in the KdV equation vanishes, that is A2(V ) = 0, themKdV approa
h may be appropriate [Nishihara and Tajiri, 1981; Baboolal et al., 1989℄.We brie�y look at this approa
h in the subsequent subse
tion.5.4.2 The Modi�ed Korteweg-de Vries (mKdV) EquationWe have already seen that when A2(V ) = 0 in Eq. (5.27), the soliton amplitude goesto in�nity. In dealing with that s
enario in the perturbation approa
h, we re-s
ale thestret
hed spa
e-time variables ζ and T . Following the approa
hes of Baboolal et al. [1989℄and Roy Chowdhury et al. [1994℄, we use the stret
hed variables ζ = ǫ(X − V t′) and
T = ǫ3t′. With this s
aling, and pro
eeding as in the KdV 
ase above, the modi�ed KdV
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5. Ion-A
ousti
 Solitons in a Plasma with Two-Temperature κ-distributed Ele
tronsequation takes the form (see Appendix C.1 for details)
∂ϕ1

∂T + C(V )ϕ2
1

∂ϕ1

∂ζ
+D(V )

∂3ϕ1

∂ζ3
= 0, (5.40)where again the phase velo
ity V is obtained from V 2 = C2
ti + C2

iκ, and
C(V ) =−A3/A1; D(V ) = B(V ) = 1/A1;

A1 =
2V ω2

pi

(V 2 − C2
ti)

2
and

A3 =
3

2

ω2
piV

2q2i /m
2
i

(V 2 − C2
ti)

4
+ 3

∑

s=c, h

qsNs0

ε0
νs3

+
ω2
pi[4V

2 + (3γi − 4)c2ti]

(V 2 − C2
ti)

2

∑

s=c, h

qsNs0

qiNi0
νs2. (5.41)Using the transformation, χ(ζ,T ) = ζ−u0T ≡ ǫ(X−vt′), where v = V +δv; δv = ǫ2u0,Eq. (5.40) then takes the form of a �rst-order di�erential equation whose solution is givenby (see Appendix C.2 for details)

ϕ1(χ) =

(

6u0
C

)1/2 se
h{(u0
D

)1/2
χ

} or (5.42)
ϕ(X, t′) =

(

6δv

C

)1/2 se
h{(δv

D

)1/2

(X − vt′)

}

, (5.43)whi
h is valid for C > 0 and D > 0 provided δv > 0.Again, with our 
hosen normalization, the 
onstant A1 is given by Eq. (5.29), while A3is given by
A3 = −

φ2(ξ)/ϕ2(χ)

2λ2
De� {

αs1αs2(4 + 9γiταs1)−
[

3(1 + 3ταs1)α
3
s1 + αs3

]}

, (5.44)where αs1 and αs2 are de�ned in Eqs. (5.35) and (5.36), respe
tively, and αs3 is given by
αs3 =

∑

β3
s

Ns0

Ne0

(κs − 1/2)(κs + 1/2)(κs + 3/2)

(κs − 3/2)3
. (5.45)It should be noted that the mKdV equation (or solution) is relevant only when the 
o-e�
ient of ∂φ2

1/∂χ in the KdV equation is negligible. In this 
ase, that o

urs when144



5.4. Small Amplitude Solitons
A2(V ) = 0. We have already shown in the previous se
tion that A2 vanishes when Q =

3(1 + 4ταs1) − αs2/α
2
s1 = 0. Thus the mKdV solution will only be valid for αs4 =

αs2 − 3α2
s1(1 + 4ταs1) = 0.With ξ = x −M t = χ/λDe�, where M = v/Cs = Ms + δM ; Ms = V/Cs = (3τ +

1/αs1)
1/2; δM = δv/Cs, Eq. (5.43) then be
omes

φ(ξ) = φ0sse
h(ξ/∆w), (5.46)where φ0s and ∆w are the soliton amplitude and width, respe
tively, given by
φ0s = (24δM/αs5)

1/2[α3
s1(1 + 3τ αs1)]

1/4 =
2
√
3

∆w
√
αs5

; (5.47)
1

∆w
= (2δM )1/2 [α3

s1(1 + 3τ αs1)]
1/4; (5.48)

αs5 =αs1αs2(4 + 9γiταs1)−
[

3(1 + 3ταs1)α
3
s1 + αs3

]

,provided αs4 = 0, αs5 > 0, and δM > 0. Equations (5.47) and (5.48) imply that φ0s ∝

1/∆w ∝ δM1/2, thus �faster� solitons (with in
reasing δM) have large amplitudes, and arethin in width. The expressions for αsl where l = (1 − 5) 
an be written in terms of thehot ele
trons fra
tional density f = Nh0/Ne0. If we denote f1 and f2 as the solutions of
αs4(f) = 0 and αs5(f) = 0, respe
tively, then αs5(f) > 0 requires f < f2, that is, f1 < f2for the mKdV to be meaningful.In Fig. 5.1 we show the variation of f with κ (with κ = κc = κh) for whi
h thenonlinear 
oe�
ient A in the KdV equation (5.27) goes to zero (blue solid 
urve), whi
hsimply 
orresponds to the solutions of αs4(f) = 0. The dotted (blue) 
urve, superimposedon the 
ontinuous 
urve, 
orresponds to the 
riti
al values of f , denoted, fc, for whi
h
Ψ′′′(φ,M, f) = 0 at M = Ms, that we will dis
uss in detail in the arbitrary amplitudeapproa
h. In addition, the dashed (light-blue) 
urve in Fig. 5.1, labelled f2 gives thevalues of f for whi
h αs5(f) = 0. Thus for f > f2, the mKdV solution (5.46) is 
omplex.We therefore note that for the parameters in Fig. 5.1, for all values of κc = κh we have
f1 > f2, and thus at f = f1, αs5(f) < 0, leading to 
omplex solutions of the solitonamplitude.Also, numeri
al results show that the variation of f1 and f2 with β = Tc/Th for τ =145



5. Ion-A
ousti
 Solitons in a Plasma with Two-Temperature κ-distributed Ele
trons
Ti/Tc = 1/300 and 
onstant spe
tral indi
es (κc = κh = 5 and ∞, as shown in Fig. 5.2 asexamples) shows that f1 > f2, implying that αs5(f) < 0 and hen
e the soliton amplitudeat f = f1 is 
omplex. These results indi
ate that the modi�ed KdV solution is notappropriate for small amplitude solitons with the parameters des
ribed above. Similarresults with τ = 1/300, β = 3/100 are obtained for both κc > κh, and κc < κh (not shownhere). However, when keeping the spe
tral indi
es and ele
tron temperatures �xed, the
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Figure 5.1: f -solutions of αs4(f) = 0 (dashed) and αs5(f) = 0 (dotted) as fun
tions of τfor τ = 1/300, β = 3/100, and κc = κh. For all values of κc = κh, we have f1 > f2, andthus at f = f1, αs5 < 0 and therefore will lead to 
omplex solutions of soliton potentialamplitudes.variation of f1 and f2 with the normalized ion temperature τ = Ti/Tc gives a di�erentpi
ture. For example, in Fig. 5.3 (left panel) we take β = 1/10. Here, the results aresimilar to those obtained in the 
ase of Fig. 5.2, that is, f2 is less than f1 for all τ . Whenwe redu
e β to 3/100, as shown in Fig. 5.3 (right panel), we se that f2 > f1 for some valuesof τ : with β = 3/100 and κc = κh = ∞, we get f2 > f1 provided 0.052 < τ < 8.143, andwith κc = κh = 5 we get f2 > f1 for 0.164 < τ < 6.813, implying that the mKdV approa
hmay be valid for that range of parameters. Note that Fig. 5.3 has been plotted only upto τ = 1. These results (for the variation of ion temperature) also suggest that the iondynami
s may be essential when using the mKdV approa
h.While the perturbation te
hnique seems to be a

urate for very small amplitudes,espe
ially for Ma
h numbers very 
lose to Ms, that is, for stru
tures that move with146
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0.00 0.05 0.10 0.15 0.20
0.4

0.5

0.6

0.7

0.8

0.9

1.0

Β=Tc�Th

f

Β=3�100

f1HΒ, Κ=¥L

f1HΒ, Κ=5L

f2HΒ, Κ=5L

f2HΒ, Κ=¥L

Ti=0.1eV

Tc=30eV

Figure 5.2: f -solutions of αs4 = 0 (dashed) and αs5 = 0 (dotted) as fun
tions of β for
τ = 1/300, and κc = κh = κ, with κ = 5 and ∞. Again, we have f1 > f2; thus at f = f1,
αs5 < 0 and therefore will lead to 
omplex solutions of soliton potential amplitudes.
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Figure 5.3: f -solutions of αs4 = 0 (dashed) and αs5 = 0 (dotted) for β = 1/10 (left panel)and β = 3/100 (right panel), and for κc = κh = κ, with κ = 5 and 50. Here, we see thatfor β small, as in the right panel, we have f1 < f2 for some values of τ . Therefore for theparameters in the right panel graph, the mKdV approa
h may be used.velo
ities 
lose to the phase velo
ity of the wave. As will be shown in Fig. 5.11, themethod be
omes less reliable for Ma
h numbers far from Ms in 
ases where solitons ofboth polarity exist. For su
h 
ases, there exists a density ratio f = Nh0/Ne0 for whi
h147



5. Ion-A
ousti
 Solitons in a Plasma with Two-Temperature κ-distributed Ele
tronsthe nonlinear term in the KdV equation (∝ φ∂φ/∂ξ) vanishes and therefore the balan
ebetween the nonlinear term and the dispersive term (∝ ∂3φ/∂ξ3) is no longer attainablefor propagation of solitary stru
tures. Even applying the modi�ed KdV solutions doesnot seem fruitful in resolving this problem. Thus for su
h 
ases, the arbitrary amplitudeapproa
h like the pseudopotential/Sagdeev method (whi
h we dis
uss below) is vital. Wewill show soliton potential stru
tures in Fig. 5.10 that 
annot be obtained from the KdVsolution for this parti
ular model.5.5 Arbitrary Amplitude IA SolitonsWith the 
hosen normalization, as used in the perturbation theory, equations (5.2)�(5.4) take the form:
∂ni

∂t
+

∂

∂x
(ni ui) = 0, (5.49)

∂ui
∂t

+ ui
∂ui
∂x

+ 3τni
∂ni

∂x
+

∂φ

∂x
= 0, (5.50)and

∂2φ

∂x2
+ ni(φ)− nc(φ)− nh(φ) = 0, (5.51)respe
tively, where again τ = (Ti/Tc)/Zi, whi
h simply be
omes Ti/Tc with Zi = 1; ncand nh are the normalized density of the 
ool and hot ele
trons, respe
tively; ni (ui) arethe normalized ion density (velo
ity) of the 
ool ions; x and t are the normalized spatialand temporal variables, and φ the ele
trostati
 potential, respe
tively. The 
orrespondingboundary 
onditions are φ, ∂φ/∂x and ui → 0, and, ni → 1 as x→ ±∞.We seek simple traveling wave solutions of Eqs. (5.49)�(5.51) that are stationary in aframe moving with velo
ity M . Thus we transform to a stationary state, where we assumethat all the quantities depend on ξ = x −M t; M being the Ma
h number, equivalent tothe velo
ity of the solitary wave normalized to the a
ousti
 speed Cs = (ZiKBTc/mi)

1/2.With the boundary 
onditions stated above, Eqs. (5.49) and (5.50) 
an be solved for ni(φ),giving [Baboolal et al., 1989, 1990; Ghosh et al., 1996; Verheest et al., 2008℄
M2

(

1

n2
i

− 1

)

+ 3τ
(

n2
i − 1

)

+ 2φ = 0, (5.52)148



5.5. Arbitrary Amplitude IA Solitonswhi
h is quadrati
 in n2
i with solution

n2
i =

1

6τ

{

M2 + 3τ − 2φ±
[

(

M2 + 3τ − 2φ
)2 − 12M2τ

]1/2
}

. (5.53)The �rst term of the left-hand side of Eq. (5.52) is the inertial 
ontribution to the restoringfor
e while the se
ond term is the pressure 
ontribution. In the absen
e of pressure (τ → 0),the restoring for
e is solely due to inertia and Eq. (5.52) gives ni(φ) = (1 − 2φ/M2)−1/2,whi
h 
an also be obtained by taking the limit, as τ → 0, of Eq. (5.53) with the minussign of the term under square bra
kets.Following the approa
hes of Ghosh et al. [1996℄ and Verheest et al. [2008℄, we rewritethe ion density in the form
ni(φ) = a(

√
A±
√
B),where a, A and B are 
onstants to be determined, and only the negative sign is physi
allyrelevant. This gives

ni =
1

2
√
3τ

{

[

(

M +
√
3τ
)2
− 2φ

]1/2

−
[

(

M −
√
3τ
)2
− 2φ

]1/2
}

. (5.54)Note that the boundary 
onditions φ→ 0, ni(φ)→ 1 as ξ → ±∞ are satis�ed in Eq. (5.54)only when M >
√
3τ , that is, V > Cti as required for ion a
ousti
 stru
tures.With the transformation ξ = x−M t, Poisson's equation is now given by

∂2φ

∂ξ2
= nc(φ) + nh(φ) − ni(φ) ≡ G(φ), (5.55)where ni(φ) is obtained from Eq. (5.54), and nc(φ) and nh(φ) are obtained from Eq. 5.1,after normalization, as

ns(φ) =
Ns0

Ne0

(

1− βs φ

κs − 3/2

)

−(κs−1/2)

, (5.56)with s = c (h) for 
ool (hot) ele
trons, and βs = T
/Ts is the re
ipro
al of the normalizedtemperature.
149



5. Ion-A
ousti
 Solitons in a Plasma with Two-Temperature κ-distributed Ele
tronsPoisson's equation [Eq. (5.55)℄ 
an then easily be written in the form
d2φ

dξ2
+

dΨ(φ)

dφ
= 0 or 1

2

(

dφ

dξ

)2

+Ψ(φ) = 0, (5.57)where Ψ(φ) = −
∫ φ
0 G(φ)dφ is the pseudopotential of the plasma system and G(φ) =

nc(φ) + nh(φ) − ni(φ). The boundary 
onditions φ, ∂φ/∂ξ → 0 as ξ → ±∞ have beenused.5.5.1 Pseudopotential Approa
hNow in seeking soliton solutions of Eq. (5.57), we need to 
on�rm that the pseudopo-tential Ψ(φ) satis�es Ψ(φ) = Ψ′(φ) = 0 at φ = 0 for all M as a �rst requirement (seeSe
. 1.4.2). This pro
edure leads to the pseudopotential expression of the plasma systemas
Ψ(φ) =

f

β

[

1−
(

1− β φ

κh − 3/2

)(3/2−κh)
]

+ (1− f)

[

1−
(

1− φ

κc − 3/2

)(3/2−κc)
]

+
1

6
√
3τ

{

[

(

M −
√
3τ
)2
− 2φ

]3/2

−
[

(

M +
√
3τ
)2
− 2φ

]3/2
}

+M2 + τ. (5.58)Here, f = Nh0/Ne0 is the fra
tional density of hot ele
trons and β = βh = Tc/Th is theratio of the 
ool to hot ele
tron temperatures.In investigating the existen
e domain for solitary stru
tures, solitons or double layerswe require M > Ms, where
Ms =

{

3τ +

[

(1− f)(κc − 1/2)

(κc − 3/2)
+

β f(κh − 1/2)

(κh − 3/2)

]

−1}1/2 (5.59)is the lower limit of M restri
ting the existen
e of solitons, obtained at Ψ′′(φ = 0) = 0.The usual soliton 
ondition M > Ms implies that V 2 > C2
ti + C2

iκ, where Ciκ = ωpiλDκ isthe κ−dependent ion a
ousti
 speed. If we de�ne the �true� Ma
h number of the solitarywaves by Miκ = V/Ciκ, then M2
iκ > 1+C2

ti/C
2
iκ, whi
h is always greater than unity for alltemperatures, resulting in supera
ousti
 stru
tures as pointed out earlier.Further, with our 
hoi
e of normalization, the normalized phase velo
ity following from150



5.5. Arbitrary Amplitude IA SolitonsEq. (5.13) is given by
V 2
ph ≡

ω2/k2

C2
s

=
ω2
piλ

2
Dκ

C2
s

+
C2
ti

C2
s

,whi
h 
an easily be written as
V 2
ph = 3τ +

[

(1− f)(κc − 1/2)

(κc − 3/2)
+

β f(κh − 1/2)

(κh − 3/2)

]

−1

≡M2
s . (5.60)Equations (5.59) and (5.60) imply that the existen
e of solitary stru
tures (solitons ordouble layers) require the resulting stru
tures to move with velo
ities ex
eeding the phasevelo
ity of the asso
iated waves. However, as our results will show, it turns out thatsolitons 
an have a velo
ity equal to the phase velo
ity of the wave, that is, with Ma
hnumbers, M = Ms. This pe
uliar s
enario o

urs in situations where both positive andnegative potential solitons 
an be supported by the plasma system under 
onsideration.5.5.2 Potential LimitationsFirstly, in the 
ase of positive potential solitons we observe from Eq. (5.54) that �nitenon-negative values of ni(φ) require φ ≤ (M−

√
3τ )2/2 ≡ φi1 and φ < (M+

√
3τ)2/2 ≡ φi2,sin
e at φ = φi1, ni =

(

M/
√
3τ
)1/2, whi
h is �nite, and at φ = φi2, ni = i

(

M/
√
3τ
)1/2,whi
h is 
omplex. The expression Ψ(φi1) > 0 or Ψ(φi2) > 0 will provide the upper limiton M for the existen
e of positive potential solitons (sin
e both φi1 and φi2 give positivereal values for all M and f ). However, φi1 being less than φi2 for all M and f impliesthat the limiting 
ondition Ψ(φi1) > 0 dominates Ψ(φi2) > 0, and the former will be usedhere. That is, we 
onsider φ ≤ φi1 so that the ion density is real and �nite to prevent wavebreaking [Baboolal et al., 1990℄.We also observe from Eq. (5.58) that Ψ(φ) → +∞ when φ → +∞, and as we require

Ψ(φ) to be negative in the vi
inity of the origin (φ = 0) and before a se
ond root (φm)is en
ountered, that is, Ψ(φ) < 0 for 0 < φ < φm, it follows that we 
an have at mostone single root before we approa
h the limiting potential φi1 on the positive potentialside [Verheest et al., 2008℄. In addition, sin
e soliton amplitudes in
rease with in
reasingMa
h number or soliton speed (see perturbation theory), it implies that the Ma
h number
orresponding to Ψ(φi1) = 0 must be the upper limit of M for φ > 0. Therefore the upperlimit of M for the existen
e of positive potential solitons is obtained from Ψ(φi1) = 0.151
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Figure 5.4: Restri
tion of solitons by double layers, obtained for the parameters: Ti =
0.1 eV, Tc = 30 eV, Th = 1 keV, κc = 2.0, κh = 3.0, f = 0.5, typi
al for Saturn's outermagnetosphere [S
hippers et al., 2008℄ at about 16RS , where RS is the radius of Saturn.The double layer is obtained for Mc ≃ 1.38097, and has amplitude |φm| ≃ 21.55. Thussolitons will have amplitudes less than φm.Se
ondly, negative potential solitons in the plasma model are restri
ted from below bythe soliton 
ondition and from above by the double layer limit, where the latter o

ursfor Ma
h numbers, M satisfying the double layer 
ondition Ψ(φm) = Ψ′(φm) = 0 forparti
ular values of f, τ, β, and spe
tral indi
es κc and κh. As we argued in the positivepotential 
ase, this follows from the following des
ription: �rstly, other than at the origin
φ = 0, we also require Ψ(φ) < 0 before we en
ounter another zero of Ψ(φ) on the negativepotential side. Se
ondly, sin
e the ele
tron 
ontributions in Eq. (5.58) remain �nite [s
alingas (1 − f) + f/β℄ as φ → −∞, we get Ψ(φ) → −∞ as φ → −∞. These two 
onditionsimply that in the interval [0,−∞] there exists is a root φd, satisfying Ψ(φd) = Ψ′(φd) = 0,and hen
e leading to double layers.As soliton amplitudes in
rease with in
reasing Ma
h number, in a number of plasmamodels the existen
e of a double layer brings an end to the existen
e of solitons [Baboolalet al., 1988℄. Thus the Ma
h number 
orresponding to the se
ond double root (i.e., otherthan at the origin) provides the upper limit on the Ma
h number for the existen
e ofnegative potential solitons. A typi
al example is shown in Fig. 5.4, where solitons willo

ur for Ma
h numbers, M < Mc; Mc is the solution of the double layer 
ondition, and152



5.5. Arbitrary Amplitude IA Solitonsno soliton-like stru
tures will be obtained for M > Mc. However, we point out that theo

urren
e of a double layer does not always provide an upper 
uto� for the existen
e ofsolitons of a parti
ular potential sign. Our results in Chapter 7 (Fig. 7.4) show that solitons
an be obtained even beyond a double layer, if the pseudopotential fun
tion has su�
ientlo
al minima.5.5.3 Existen
e Domain for Ion-A
ousti
 Solitons and Double Layers
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Figure 5.5: Existen
e domain for ion-a
ousti
 solitons for the parameters: Ti = 0.1 eV, Tc =
30 eV, Th = 1 keV. For κc = 2.0, κh = 3.0, positive, and negative potential solitons arebounded by 
urves A1 and B1, and A1 and C1, respe
tively. Similarly, for κc = κh = ∞(Maxwellian 
ase), positive, and negative potential solitons are bounded by 
urves A2 and
B2, and A2 and C2, respe
tively.Figure 5.5 shows the existen
e domain of ion-a
ousti
 solitons for a plasma with both
ool and hot ele
trons having a 
onsiderable ex
ess of superthermal parti
les in bothele
tron 
omponents, as seen in Saturn's magnetosphere [S
hippers et al., 2008℄ (
urves
A1, B1, C1, with κc = 2, κh = 3), and the Maxwellian equivalent (
urves A2, B2, C2, with
κc = κh =∞). Here, we introdu
e the notations fn and fp, de�ned by the values of f su
hthat below fn you don't get negative potential solitons limited by the existen
e of doublelayers while above fp you don't get positive potential solitons limited by the ions. Thusthe �gure shows that 
ompressive (positive potential) solitons will o

ur for f < fp ≃ 0.57(
urves A1 and B1) when κc = 2, κh = 3, and for f < fp ≃ 0.842 (
urves A2 and B2) forthe Maxwellian 
ool and hot ele
trons, respe
tively. Thus the range in f is 
onsiderably153



5. Ion-A
ousti
 Solitons in a Plasma with Two-Temperature κ-distributed Ele
tronsredu
ed for Saturnian parameter values than would be predi
ted by a double-Maxwellianmodel. On the other hand, rarefa
tive (negative potential) solitons are expe
ted to o

urover a wider range of f for Saturnian than for Maxwellian ele
trons. Spe
i�
ally, they o

urfor f > fn ≃ 0.239 (
urves A1 and C1) in the 
ase of κc = 2, κh = 3, and f > fn ≃ 0.393(
urves A2 and C2) in the 
ase of Maxwellian ele
trons, respe
tively. Both positive andnegative potential solitons 
an �
o-exist� for fn < f < fp, that is, 0.239 < f < 0.57 for
κc = 2, κh = 3, and 0.393 < f < 0.842 for the Maxwellian 
ase, respe
tively. The graphsalso show that for f = 1, that is, nc0 → 0, the lower and upper limits on the Ma
h number
oales
e at M ≈ 4.43628 for low kappa values (κc = 2, κh = 3) 
ompared to M ≈ 5.5793for the 
ase of Maxwellian ele
trons.The resulting e�e
t of spe
tral index κ on the existen
e domain of solitons (or dou-ble layers) is that in 
omparison to Maxwellian parti
les, low kappa values (in
reasedsuperthermal parti
les in the high energy tail of the distribution) redu
e the existen
edomain in the parameter spa
e of Ma
h number M and density ratio f = Nh0/Ne0 overwhi
h 
ompressive solitons or both 
ompressive and rarefa
tive solitons 
an exist. How-ever, for 
onstant spe
ies temperatures, densities and speed (in terms of Ma
h number),the variation of soliton amplitude with the spe
tral index κ shows that low values of κ re-sult into large amplitudes 
ompared with the Maxwellian 
ase. This variation is illustratedin Fig. 5.6 where the values of f and M used 
orrespond to a region in (f, M) parameterspa
e shown in Fig. 5.5 where rarefa
tive (negative potential) solitons 
an be supportedfor both low (κc = 2, κc = 3) and high (κc = κc =∞) kappa values.5.5.4 Variation of Soliton Potential Amplitude (φm) with Ma
h NumberIn Figures 5.7 and 5.8, we plot the soliton potential amplitudes for di�erent valuesof δM = M −Ms, where M is the Ma
h number satisfying the soliton 
onditions and
Ms is given in Eq. (5.59). The end points of the 
urves 
orrespond to the upper limitin M , whi
h for example, in the 
ase of negative potential solitons o

ur when a doublelayer is met. We have already seen from Fig. 5.5 that when κc = 2, κh = 3, for example,positive potential solitons o

ur for f < fp ≃ 0.57 while negative potential solitons o

urfor f > fn ≃ 0.24.From the (small amplitude) KdV approa
h we de�ned fc as being the density ratio at154
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urvesis the density ratio f = nh0/ne0. The solid (
ontinuous) green 
urves 
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riti
al density ratio f = fc ≃ 0.472 at whi
h the soliton amplitudes from the KdV (smallamplitude) method goes to in�nity (see dis
ussion of the subsequent se
tion). Note the
hange of s
ale for φ between the two �gures.
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Figure 5.8: Same as in Fig. 5.7, now for the Maxwellian equivalent (κc = κh = ∞), with
fc ≃ 0.704.whi
h the nonlinearity term in the KdV equation vanishes, and hen
e the soliton amplitudegoes to in�nity su
h that for f < (>)fc the potential is positive (negative). In the arbitraryamplitude approa
h, fc 
an also be obtained by �nding a value of f that satis�es Ψ′′′(φ =

0,M = Ms, f) = 0 [Baluku et al., 2010a℄, see also Chap. 4. Thus Fig. 5.1 
learly showsthat the nonlinear term in the KdV equation vanishes at the same density fra
tion, f1, asthat at whi
h the third derivative of the Sagdeev potential, evaluated at the origin for astru
ture moving at the minimum soliton speed, M = Ms, be
omes zero.Figures 5.7 and 5.8 show that for some density ratios in the range fc < f < fp (for
φ > 0) or fn < f < fc (for φ < 0), the soliton amplitude at M = Ms is nonzero, and thussolitons exist even at the lowest Ma
h number Ms (δM = M −Ms = 0). We also see thatfor a very small in
rement in M , the amplitude is large 
ompared to 
ases of f far fromthe 
riti
al f values (for whi
h only one potential sign 
an be supported). Note that thenegative solitons have mu
h greater amplitude than the positive potential solitons.Soliton amplitudes obtained atM = Ms, for f values in the region where both polaritiesare supported for the parameter values used in Fig. 5.5, are shown in Fig. 5.9. For ea
h
ase, fc 
orresponds to the value of f for whi
h φm = 0. that is, fc ≃ 0.472, and 0.712,respe
tively. The graph shows that for a parti
ular potential sign, the soliton amplitudeat M = Ms in
reases monotoni
ally as you move away from fc, with larger amplitudes156



5.5. Arbitrary Amplitude IA Solitonsobtained in the 
ase of Maxwellian ele
trons (κ =∞) than for the hard spe
trum Saturnian
ase with low κ values. As shown in Fig. 5.9, �nite positive solitons exist atMs for fc < f <

fp ≃ 0.57 (in the 
ase of low kappa values shown on the graph) and for fc < f < fp ≃ 0.84(in the 
ase of Maxwellian ele
trons), with the maximum amplitudes for these 
riti
alvalues being φm = 0.30 and 2.5, respe
tively. Similarly, �nite negative solitons at Ms existfor fc > f > fn ≃ 0.24 (in the 
ase of low kappa values) and for fc > f > fn ≃ 0.4(Maxwellian 
ase), with the maximum amplitudes at M = Ms for these 
riti
al values(not shown on graph) being |φm| = 20.7 and 28.8, respe
tively.We also point out that if one 
hooses the normalized density ratio to be f = Nc0/Ne0instead of f = Nh0/Ne0 as used in this work, then for the Maxwellian 
ase one arrives at asimilar pattern of results to those shown in Chapter 7, Fig. 7.3 for the double Maxwellianele
trons 
ase.
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Figure 5.9: Finite solitons at M = Ms in the �
oexisten
e� region: Above fc the amplitudeat Ms is �nite for φ < 0 and goes to zero for φ > 0. The reverse is true for f < fc.Sin
e Ψ′′(φ = 0) = 0 at the lowest Ma
h number M = Ms, that is, Ψ′′(φ) has adouble root, and Ψ(φ) has a triple root at the origin (φ = 0) when M = Ms, it impliesthat in these pe
uliar 
ases the 
onvexity 
ondition Ψ′′(φ = 0) < 0 is now taken overby Ψ′′′(φ = 0,M = Ms) < 0, whi
h ensures that the origin remains unstable for φ <

0 [Verheest and Hellberg, 2010℄. This phenomenon is quite suprising but it brings out thepoint why small amplitude (perturbation) te
hniques may not be appropriate in analyzingexperimental or observational results, espe
ially in the 
ase of plasmas whose density ratios(here, f = Nh0/Ne0) allow the 
oexisten
e of both positive and negative potential solitons.157



5. Ion-A
ousti
 Solitons in a Plasma with Two-Temperature κ-distributed Ele
tronsThe perturbation methods fail to pi
k up the �already large amplitude� solitons in thevi
inity of Ms and thus 
an only be obtained numeri
ally from large amplitude methodslike the pseudopotential/Sagdeev approa
h employed in this work. The unreliability of theperturbation theory was also pointed out in the experiments of Nakamura et al. [1996℄,where, using negative ions (argon) and two Boltzmann ele
trons in a multi-dipole plasmama
hine experiment, they showed that the velo
ity and width of solitons from the KdVapproa
h deviated signi�
antly from the pseudopotential and experimental results.In Fig. 5.10 we plot typi
al potential pro�les for two values of f (f = 0.75 and f = 0.65)whi
h are 
lose to fc ≈ 0.704 for the Maxwellian 
ase shown in Fig. 5.8. For example, for
f = 0.75 (left panel) the graph shows that a positive potential soliton 
an o

ur at thelowest Ma
h number Ms (that is, for δM = 0) with quite a large amplitude of about 0.75in addition to both positive and negative potential solitons for M > Ms or δM > 0. Asimilar behaviour o

urs as f is lowered, say to f = 0.65 (right panel) in this 
ase, wherenow the solitary stru
ture at Ms is negative and is of amplitude more than unity (with
|φ0| ≃ 1.312. The soliton potentials shown in Fig. 5.10 also show that as the Ma
h numberin
reases, the soliton potential amplitudes in
rease, a

ompanied by a redu
tion in thesoliton width.
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Figure 5.10: Typi
al soliton pro�les at the lowest Ma
h number Ms shown (
orrespondingto δM = 0) for f = 0.75 > fc (left panel) and f = 0.65 < fc (right panel). The parameters,as shown on the �gure, are the same as those of Fig. 5.8.158



5.5. Arbitrary Amplitude IA Solitons5.5.5 Sagdeev (Pseudopotential) Approa
h vs. Perturbation Te
hniqueA 
omparison between the large amplitude approa
h and the perturbation te
hniqueis shown in Fig. 5.11 for τ = 1/300, β = 3/100, and κc = 2, κh = 3 (left panel, plotted for
f > fc in the 
ase of negative potential solitons, and κc = κh =∞ (right panel, plotted for
f < fc in the 
ase of positive potential solitons), respe
tively. In both 
ases the numeri
alresults are shown by the 
ontinuous lines. In 
omparison with results from the arbitraryamplitude approa
h, we observe from Fig. 5.5 that for κc = 2, κh = 3, τ = 1/300, β =

3/100, positive potential solitons will exist for f < fp = 0.56 while negative potentialsolitons will o

ur for f > fn = 0.24. This means that the small amplitude (KdV) methodbreaks down for fc < f < fp (for φ > 0) and fn < f < fc (for φ < 0), respe
tively. Thoughwe expe
t both methods to be in agreement to some extent [i.e., for Ma
h numbers 
loseto Ms with f ≫ fc (φ < 0) and f ≪ fc (φ > 0)℄, we point out that for values of f 
loseto fc in this 
ase, results deviate quite signi�
antly even for very small values of δM , forexample, as low as 0.0007 with f = 0.5 (red 
urves) 
ompared with f = 0.6 (light-blue
urves) where the φm versus δM plots remain linear up to about 0.013 in Fig. 5.11, leftpanel. A similar trend is observed in the right panel graphs as f gets 
lose to fc.
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Figure 5.11: Soliton amplitude (φ0) as a fun
tion of Ma
h number, M, for τ = 1/300, β =
3/100; Left panel: κc = 2, κh = 3, f = 0.5 (red) and f = 0.6 (light blue), both greaterthan fc ∼ 0.47, Right panel: κc = κh =∞, f = 0.4 (red), f = 0.5 (light blue), and f = 0.6(blue), all less than fc ≃ 0.7. The 
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urves are the numeri
al solutions (from thepseudopotential method) while the broken 
urves follow from Eq. (5.38). 159



5. Ion-A
ousti
 Solitons in a Plasma with Two-Temperature κ-distributed Ele
trons5.6 Positive Potential Double LayersFirst of all, in this work we have used values of temperature ratio β = Tc/Th that aretypi
al of a parti
ular region in Saturn's magnetosphere. However, if we 
hoose β valuesthat are quite large, as we will see in this se
tion, then there are possibilities of gettingpositive double layers. Su
h positive double layers are also dis
ussed in Chapter 7 when
onsidering a plasma with Maxwellian ele
tron 
omponents and 
old ions. To investigatethe existen
e of positive double layers in plasmas with κ-distributed ele
tron 
omponents,we 
onsider two 
ases, viz., 
old ions (τ = 0) and 
ool ions (τ = 1/300).
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Figure 5.12: Variation of fc with temperature ratio, β. The parameters 
orresponding tothe 
urves are: Curve I: κc = κh =∞, τ = Ti/Tc = 0, 
urve II: κc = 2; κh = 3, τ = 0, and
urve III: κc = 2; κh = 3, τ = 1/300, respe
tively.In Fig. 5.12 we show a plot of density ratio, f = Nh0/Ne0 versus temperature ratio
β = Tc/Th at whi
h the third derivative of the pseudopotential, Ψ(φ,M), 
hanges signwhen φ = 0 and M = Ms. The 
urve labeled I depi
ts a plasma with Maxwellian 
ool andhot ele
tron 
omponents in the presen
e of 
old ions. This �gure is essentially the same asFig. 1(a) of Baluku et al. [2010b℄ (see also Fig. 7.1 in Chapter 7), only that here we havede�ned the density ratio in terms of the fra
tion of hot ele
tron density. In 
urves II andIII we look at a plasma with a large ex
ess of superthermal ele
trons (with a hard spe
trumor low κ values) in the presen
e of 
old ions (τ = 0, 
urve II) and 
ool ions (τ = 1/300,
urve III), respe
tively. Figure 5.12 shows that the 
riti
al temperature ratio, βc, abovewhi
h Ψ(φ = 0,Ms) does not 
hange sign, in
reases in the presen
e of non-Maxwellian160



5.6. Positive Potential Double Layersele
trons. For 
urve I, βc ≃ 0.101021, 
ompared to βc ≃ 0.3406 and βc ≃ 0.3468 for 
urvesII and III, respe
tively. Thus 
ool ions in
rease βc only marginally above the value foundfor 
old ions.In the sear
h for positive double layers for this plasma model we shall 
onsider two βvalues: β = 0.09, that is also dis
ussed in Fig. 3 of Baluku et al. [2010b℄ and Fig. 7.1 inChapter 7, and 
orresponds to Maxwellian ele
tron 
omponents, and β = 0.3, 
orrespond-ing to non-Maxwellian ele
tron 
omponents. The 
ase for β = 0.09 is shown in Fig. 5.13.Here, we re
over the results of Baluku et al. [2010b℄, that is, we get both positive andnegative double layers that are separated by one of the 
riti
al values of fc. Negativesolitons are bounded by double layers [the dotted (light-blue) 
urve for 0.75 < f < 0.95℄while positive solitons, limited by the ion limit 
onstraint, are bounded by the 
ontinuous(blue) 
urve. For f > fc2, we get positive double layers along the dashed light-blue 
urve.Thus, for some range of f positive solitons exist even after a double layer has o

urred, aswill be dis
ussed in Chapter 7.

0.75 0.80 0.85 0.90 0.95 1.00
1.00

1.02

1.04

1.06

1.08

1.10

f=Nh0�Ne0

M
�M

s

Κc=Κh=¥

Β=0.09

Τ=0

fc1

fc2

Figure 5.13: Existen
e domain for positive double layers for a plasma with Maxwellianele
tron 
omponents and 
old ions, with β = 0.09. The 
riti
al values of fc are fc1 ≃ 0.8391and fc2 ≃ 0.9595.However, with β = 0.3 (in the presen
e of non-Maxwellian ele
trons), as in Fig-ure 5.14 (left panel), though we get solitons limited by the positive double layers, we don't161



5. Ion-A
ousti
 Solitons in a Plasma with Two-Temperature κ-distributed Ele
tronsget solitons beyond the positive double layers as was the 
ase in Fig. 5.13 for Maxwellianele
trons. Here, the positive solitons limited by the ions (shown by the 
ontinuous blue
urve) o

ur for f < 0.753 far from the values of f for whi
h positive potential doublelayers 
an be supported. This also applies to τ 6= 0, here with τ = 1/300 as shown in theright panel of Fig. 5.14, where positive solitons limited by the ion limitation exist only for
f < 0.738. This e�e
t appears to be related to the dip in the ion 
ut-o� 
urve of Fig. 5.13,whi
h for smaller κ values is lowered, and 
uts the 
riti
al axis M = Ms at some value of
f , above whi
h it no longer plays a role.Figure 5.14 also shows that the narrow region, where solitons of both potential signs
an be supported (under the dotted and 
ontinuous 
urves), is bounded from below by the
riti
al value of f , fc1. Re
all from Fig. 5.12 that for β = 0.3 we have Ψ(φ = 0, Ms) < 0.Thus in the region fc1 < f < fc2, if positive potential solitons exist, they will have �niteamplitude solitons at M = Ms while for negative potential solitons, φ → 0 as M → Ms.Below fc1 (and above fc2) we have Ψ(φ = 0, Ms) > 0, thus the positive potential solitonsthat exist in those regions have amplitudes whi
h go to zero as M →Ms.
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Figure 5.14: Same as in Fig. 5.13, now with β = 0.3. Left panel: τ = 0, the lower value of
fc is fc1 ≃ 0.6868 while the upper value is fc2 ≃ 0.9319. Right panel: τ = 1/300, the lowervalue of fc is fc1 ≃ 0.7046 while the upper value is fc2 ≃ 0.9292 .
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5.7. Con
lusions and Chapter Summary5.7 Con
lusions and Chapter SummaryIn this 
hapter we have investigated in some details solitons supported by plasmaswith �uid ions and kappa-distributed two temperature ele
trons. Our results reveal thefollowing main features:(i) Both 
ompressive and rarefa
tive solitons 
an be supported by the model. The formerare 
hara
terized by a hump in the density as well as the ele
trostati
 potential (φ > 0)while the latter have a dip in the density and ele
trostati
 potential (φ < 0).(ii) The e�e
t of spe
tral index κ on the existen
e domain of solitons (or double layers)is that, 
ompared to high values of kappa (whi
h represent Maxwellian parti
les), lowkappa values, whi
h indi
ate in
reased superthermal parti
les in the high energy tail of thedistribution, redu
es the existen
e domain in the parameter spa
e of (f,M) over whi
h
ompressive solitons or both polarities 
an exist.(iii) A pe
uliar behaviour o

urs for density ratios that support 
oexisten
e of both hump(φ > 0) and dip (φ < 0) solitons. Here we have obtained a 
riti
al density ratio, fc, whi
hin the KdV approa
h is asso
iated with the vanishing of the 
oe�
ient of the nonlinearterm in the KdV equation, and in the arbitrary amplitude approa
h is asso
iated with
Ψ′′′(φ = 0, Ms) = 0. Below fc, solitons whi
h have the same sign as Ψ′′′(φ = 0, Ms), in this
ase positive, are KdV-like, with vanishing amplitudes as M approa
hes Ms. However, forthe same plasma 
on�guration, with f < fc, we also obtain solitons with the sign oppositeto that of Ψ′′′(φ = 0, Ms) that are nonKdV-like, with �nite (nonzero) amplitudes at Ms.The reverse is true for f > fc.(iv) Comparison between the perturbation theory and the large amplitude te
hnique showsthat whereas the perturbation te
hnique seem to be a

urate for very small amplitudes,espe
ially for Ma
h numbers 
lose to Ms, that is, for stru
tures that move with velo
ities
lose to the phase velo
ity of the wave, the method be
omes less reliable for velo
itiesfar from the phase velo
ity, espe
ially in 
ases where solitons of both polarities exist.Thus the arbitrary amplitude approa
h like the pseudopotential method is more useful.We have shown soliton potential stru
tures from the pseudopotential method that 
annotbe obtained from the perturbation theory, even for φ ≪ 1, for this parti
ular model inFig. 5.10,viz., those that are �nite at M = Ms. 163



5. Ion-A
ousti
 Solitons in a Plasma with Two-Temperature κ-distributed Ele
trons(v) The large rarefa
tive potential solitons (φ < 0) reported for this plasma model may beattributed to the fa
t that the small but �nite ele
tron mass, whi
h is a measure of theele
tron inertia, is negle
ted in the ele
tron density expression. In the parameter spa
eof amplitude and 
ool ele
tron density for a two ele
tron temperature plasma, Ri
e etal. [1993℄ showed that whereas the in
lusion of the ele
tron inertia in the plasma modelhas negligible e�e
t on the existen
e domain of 
ompressive (φ > 0) ion-a
ousti
 solitonsit does redu
es the range of density and amplitude over whi
h rarefa
tive solitons exist.In this model su
h a s
heme would now require getting the ele
tron density expressionfrom the �uid equations of motion, with the asso
iated kappa-distributed pressure termin
orporated. The pressure expression asso
iated with a kappa-distribution fun
tion hasbeen derived in Appendix A.1.2, though it has not been applied to this model. This isopen for further investigation.(vi) We have shown that positive double layers may be found over a narrow range offra
tional 
ool ele
tron density (< 10%), for both Maxwellian and low-κ distributions, therange being larger for the latter 
ase.(vii) Whereas for Maxwellian ele
trons, one value of the 
riti
al density fra
tion, fc1, liesin the region where solitons of both polarities are supported (in this 
ase, the existen
edomain for negative potential double layers), it is seen that for low-κ ele
trons, both 
riti
aldensity fra
tions, fc1 and fc2, may lie at the boundary of the existen
e domain for negativepotential double layers.
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CHAPTER 6
Ion-A
ousti
 Solitary Waves in an Ele
tron-Positron-Ion (e-p-i) Plasma

In this 
hapter we 
onsider ion-a
ousti
 solitary waves in a �uid plasma model 
onsistingof nonthermal ele
trons, whi
h are des
ribed by the Cairns distribution fun
tion [Cairnset al., 1995℄, Boltzmann positrons and singly 
harged positive 
old �uid ions. This workfollows on a re
ent arti
le by Pakzad [2009℄.6.1 Introdu
tionEle
tron-positron plasmas are 
hara
terized as fully ionized gases, 
onsisting of ele
-trons and positrons of equal mass. They are believed to exist in the a
tive gala
ti
 nu
leiand in the pulsar magnetospheres [Popel et al., 1995; Moslem et al., 2007℄. They werealso 
onsidered to have appeared in the early universe (see Popel et al. [1995℄, and ref-eren
es therein), solar atmosphere, and in the inertial 
on�nement fusion s
hemes usingultra-intense lasers [Liang et al., 1998℄, see also Moslem et al. [2007℄, and referen
es therein.Due to the abundant nature of ions in many astrophysi
al plasmas, the study of ele
tron-positron-ion plasmas has been of interest to many authors [Berezhiani et al., 1994; Popel etal., 1995; Nejoh, 1997; Saleem et al., 2003; Haque and Saleem, 2003; Moslem et al., 2007;Pakzad, 2009℄, and others. Popel et al. [1995℄ studied arbitrary amplitude ion-a
ousti
solitons in a three-
omponent plasma 
onsisting of Boltzmann ele
trons and positrons,and singly 
harged positive �uid ions. They reported the existen
e of positive potential165



6. Ion-A
ousti
 Solitary Waves in an Ele
tron-Positron-Ion (e-p-i) Plasmasolitons, and showed that the presen
e of the positron 
omponent redu
es the propaga-tion speed of the solitons. The larger the fra
tion of positron density the lower the Ma
hnumber for a soliton of �xed amplitude to propagate. In addition, they showed that theamplitude of the solitons drops o� drasti
ally in the presen
e of a signi�
ant fra
tion ofpositrons. However, Popel et al. [1995℄ 
ould not obtain double layers.Kakati and Goswami [2000℄ investigated the existen
e of small amplitude double layersasso
iated with kineti
 Alfvén waves in a magnetized ele
tron-positron-ion plasma. Here,it was shown that small-amplitude double layers 
an be supported by a plasma model withBoltzmann ele
trons and positrons independently of the ele
tron-positron temperatureratio. Haque and Saleem [2003℄ studied large amplitude two-dimensional ion-a
ousti
 anddrift wave vorti
es in magnetized ele
tron-positron-ion plasmas, where the ele
trons andpositrons were also assumed to be Boltzmann distributed.In studying two-dimensional propagation of nonlinear a
ousti
 ex
itations in e-p-i plas-mas, Moslem et al. [2007℄ applied their studies to the a

retion disks of the a
tive gala
ti
nu
lei, where the ion temperatures are (3�300) times higher than those of the ele
trons.However, due to the very high ion temperatures in the a

retion dis
, the ions were mod-elled by the Boltzmann distribution while the ele
trons and positrons were governed bythe �uid equations. Thus Moslem's model [Moslem et al., 2007℄ was quite di�erent fromthat used by Popel et al. [1995℄.Using a nonthermal distribution fun
tion for ele
trons in a simple ele
tron-ion plasma,Cairns et al. [1995℄ showed that the presen
e of nonthermal parti
les modi�es the typeof solitary waves obtained. They reported both positive and negative potential solitons
oexisting, that 
ould not be obtained with thermal or Boltzmann ele
trons. Thus it 
ouldbe of interest to 
onsider an e-p-i plasma in whi
h at least one of the leptons is modelledby a Cairns distribution.Pakzad [2009℄ re
ently dis
ussed ion-a
ousti
 solitons propagating in a plasma withnonthermal ele
trons, Boltzmann positrons and �uid ions, and reported that positive po-tential solitons are supported by the plasma model.In this work, we show that in addition to the positive solitons reported by Pakzad[2009℄, negative potential solitons and double layers 
an also be supported by the plasmamodel, though for a limited range of positron-to-ele
tron temperature ratios.166



6.1. Introdu
tion6.1.1 Nonthermal Distributions: The Cairns DistributionIn the 
ontext of interpreting results from the Freja satellite, the Cairns distributionwas introdu
ed in Ref. [Cairns et al., 1995℄ as an ad ho
 model for a population withex
ess fast parti
les, in the analysis of the e�e
t of su
h parti
les on solitary waves. Inunnormalized form, the nonthermal Cairns distribution fun
tion is given by Eq. (1.26),rewritten here, for 
larity, as
Fj(v) =

Nj0

(2π v2tj)
1/2

[

1 + α(v/vtj)
4
]

(3α + 1)
exp

[

−(v/vtj)
2

2

]

, (6.1)where α is a parameter 
hara
terizing the nonthermality of the individual parti
les, and
vtj = (KBTj/mj)

1/2 is the spe
ies thermal velo
ity.In the 
ase of ele
trons, using the normalization u→ v/vte; ne → Ne/Ne0, the normal-ized distribution fun
tion F∗(u) ≡ vteFe(v)/Ne0 
an be written as
F∗(u) =

1√
2π

ne0

(3α+ 1)

(

1 + α u4
) exp(−u2

2

)

. (6.2)Using the transformation u2 → u2 − 2φ, where φ is the normalized ele
trostati
 potential(with respe
t to KBTe/e), the normalized ele
tron density 
an be obtained as [Cairns etal., 1995℄
ne(φ) = ne0(1− βφ+ βφ2)exp(φ), (6.3)where we have used the standard notation for this distribution. Note that with the 
hoi
eof normalization we have ne0 = 1. Also, if we normalize the velo
ities in (6.1) with respe
tto Cs = (KBTe/mi)

1/2, the ion-a
ousti
 speed (in the absen
e of positrons), instead of vte,we arrive at the same expression for the normalized ele
tron density as that in Eq. (6.3).The parameter1 β is de�ned by β = 4α/(1+3α): β = 0 (or α = 0) leads to the Boltzmann-Maxwellian density ne(φ) = ne0 exp(φ). Allowing α to run from 0 to ∞, one sees that β isrestri
ted to 0 ≤ β ≤ 4/3.For di�erent values of β, the normalized Cairns distribution, as a fun
tion of normalizedvelo
ity, is shown in Fig. 1.2. The �gure shows that for β ≥ 0.5 (or α ≥ 0.2) the distribution1This parameter β should not be 
onfused with the temperature ratio β = Tc/Th used in Chapters 4and 5 167



6. Ion-A
ousti
 Solitary Waves in an Ele
tron-Positron-Ion (e-p-i) Plasmafun
tion develops wings at high velo
ities, be
oming multi-peaked. For su
h high valuesof β, the Cairns distribution fun
tion may not be good for physi
al appli
ations, as itmay be unstable. In parti
ular, Verheest and Pillay [2008a℄ put the limit on β (abovewhi
h the Cairns distribution 
eases to be monotoni
ally de
reasing) at β = 4/7 ≃ 0.571,whi
h 
orresponds to α = 1/4. In other words, the Cairns distribution is appropriateonly for a narrow range of the parameter α deviating from the Maxwellian distributionfun
tion [Verheest and Pillay, 2008a; Verheest, 2010a℄.6.2 Plasma Model and Basi
 EquationsThe plasma model 
onsists of 
ool nonthermal ele
trons (temperature Te and density
ne, given in (6.3)), Boltzmann distributed positrons (temperature Tp and density np), and
old inertial ions (density ni).The densities of the positrons and ions are given by

np(φ) = np0 exp(−σ φ); σ = Te/Tp, (6.4)and
ni(φ) = ni0

(

1− 2φ

M2

)

−1/2

, (6.5)respe
tively, where we have used the transformation ξ = x −Mt to a moving frame withvelo
ity M , the latter being normalized with respe
t to Cs. That is, normalization is withrespe
t to the ion sound speed, Cs, the re
ipro
al of the ion plasma frequen
y, ω−1
pi =

(ε0mi/Ni0e2)1/2, and a mixed Debye length λDe� = (ε0KBTe/e2Ni0)
1/2; the densities Njto Ne0, and ele
tri
 potential φ to KBTe/e. Re
all also that the equilibrium densities nj0are normalized quantities with respe
t to Ne0, that is, np0 = Np0/Ne0 and ni0 = Ni0/Ne0.In obtaining Eq. (6.5) we have used the boundary 
onditions φ and u → 0, and ni → ni0as ξ → ±∞.We point out that the normalized ion density 
an take several forms depending on the
hoi
e of normalization used, provided 
onsisten
y is maintained. For example, if normal-ization is with respe
t to the ele
tron parameters, that is, the equilibrium ele
tron density

Ne0, the ele
tron thermal velo
ity, vte, the ele
tron Debye length λDe = (ε0KBTe/e2Ne0)
1/2
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6.3. Linear Dispersion Relationand the re
ipro
al of the ele
tron plasma frequen
y, ω−1
pe = (ε0me/Ne0e2)1/2, we obtain

ni(φ) = ni0

(

1− 2φ√
µM2

)

−1/2

, (6.6)where µ = mi/me is the ion to ele
tron mass ratio, and M is now normalized with re-spe
t to vte. Comparing equations (6.5) and (6.6), we see that normalizing with respe
tto the ele
tron parameters (vte, ω−1
pi and λDe), implies that allowed Ma
h numbers 
or-responding to solitary waves will be (mi/me)

1/4 times the Ma
h numbers asso
iated withthe normalization in (6.5).The spe
ies' densities in Eqs. (6.3), (6.4) and (6.5) are 
oupled with the help of Poisson'sequation [Popel et al., 1995℄
d2φ

dξ2
= ne(φ)− ni(φ)− np(φ) = 0. (6.7)6.3 Linear Dispersion RelationIon-a
ousti
 waves have 
hara
teristi
 velo
ities (KBTi/mi)

1/2 ≪ ω/k ≪ (KBTe/me)
1/2.In a two-
omponent (e-i) plasma the dispersion relation takes the from

ω′2

k′2
=

C2
s

1 + k2λ2
De

, (6.8)where Cs = (KBTe/mi)
1/2 and λDe = (ε0KBTe/ne0e2)1/2. Note that in the above expres-sion, k′ and ω′ are unnormalized wavenumber and frequen
y. It follows that one requires

Ti ≪ Te, otherwise if Ti ≈ Te, then the ion thermal velo
ity will be 
omparable to theion-a
ousti
 wave phase velo
ity, whi
h will lead to strong Landau damping.In the presen
e of positrons (e-p-i plasma), the normalized and linearized spe
ies den-sities be
ome
ne1≈ ne0(1− β)φ1;

np1≈−np0 σ φ1 and
ni1≈ ni0(ω

2/k2)φ1, (6.9)
169



6. Ion-A
ousti
 Solitary Waves in an Ele
tron-Positron-Ion (e-p-i) Plasmarespe
tively, where nj1 (j = e, p, i) and φ1 are the perturbed density and ele
trostati
potential, and now k and ω are normalized quantities. In addition, Poissons's equationbe
omes
k2φ1 = (ni1 − ne1 + np1)/ni0. (6.10)Substituting the densities from Eq. (6.9) into Eq. (6.10) we get

k2/ω2 = [ni0k
2 + (1− β)ne0 + σ np0]/ni0. (6.11)With ne0 = 1, np0 = p and ni0 = 1− p, the dispersion relation in this 
ase then be
omes

ω2

k2
=

{

k2 +
σ p+ (1− β)

1− p

}

−1 (6.12)
≡ 1

(k2 + 1/M2
s )

, (6.13)where, as we will see in the subsequent se
tion [see Eq. (6.16), for example℄, Ms =
√

(1− p)/(1 − β + p σ) is the 
riti
al (minimum) speed of the solitary stru
tures in themoving frame. It follows from Eq. (6.13) that in the limit k → 0, ω/k → Ms, that is,
Ms is equivalent to the phase velo
ity of the propagating solitary stru
tures in the longwavelength regime (k → 0).From the de�nition ofMs we see that when p = 0 (no positrons), and β = 0 (Maxwellianele
trons), the dispersion relation (6.13) be
omes ω2 = k2/(1+k2), whi
h in unnormalizedform is simply Eq. (6.8), for an ele
tron-ion plasma.6.4 Arbitrary Amplitude Solitary WavesWith the help of Eqs. (6.3), (6.4) and (6.5) we 
an integrate Eq. (6.7), leading to theenergy integral relation

1

2

(

dφ

dξ

)2

+Ψ(φ, M) = 0, (6.14)where the Sagdeev potential Ψ(φ, M) is de�ned by [Pakzad, 2009℄
Ψ(φ, M) = (1 + 3β)− [1 + β(3− 3φ+ φ2)] exp(φ) + p

σ
[1− exp(−φσ)]

+(1− p)M2[1− (1− 2φ/M2)1/2], (6.15)170



6.4. Arbitrary Amplitude Solitary Waveswith the shorthand p = np0 = Np0/Ne0 being the normalized equilibrium positron den-sity [Pakzad, 2009℄, and the 
harge neutrality 
ondition (in the form) ne0 = np0+ni0 (with
ne0 = 1) has been used. For Maxwellian ele
trons (β = 0 or α = 0), Eq. (6.15) redu
es toEq. (10) of Popel et al. [1995℄.As a ne
essary (but not su�
ient) 
ondition for the existen
e of solitons (or doublelayers), we require that Ψ′′(0, M) < 0 must hold. This 
ondition leads to the solitonrequirement [Pakzad, 2009℄

M > Ms =

√

(1− p)√
1− β + p σ

, (6.16)where Ms is the 
riti
al Ma
h number, equivalent to the a
ousti
 phase velo
ity of thewave, obtained from Ψ′′(0, Ms) = 0. Similarly, in the 
ase of Maxwellian ele
trons (with
β = 0), Eq. (6.16) is the same as Eq. (12) of Popel et al. [1995℄. We 
an easily 
on�rm thatPopel's result (Ms de
reases with in
reasing p) for β = 0 applies for all values of β. Wenote also that the value p = 0 implies an ele
tron-ion plasma; Ms → (1−β)−1/2, in
reasingas β in
reases, with a minimum value Ms = 1, as expe
ted for a Maxwellian distribution.On the other hand, for p = 1 we have a pure ele
tron-positron plasma, ion-a
ousti
 waves
annot be supported, and Ms → 0.If, instead of using Eq. (6.5) for the normalized ion density, we use the alternativenormalization, (6.6), in Poisson's equation, the Sagdeev potential be
omes

Ψ(φ, M) =
{

(1 + 3β)− [1 + β(3− 3φ+ φ2)] exp(φ)}+ p

σ
[1− exp(−φσ)]

+
(1− p)√

µ
M2[1− (1− 2

√
µφ/M2)1/2]. (6.17)Therefore in this 
ase, the lower Ma
h number limit for the existen
e domain of solitonsor double layers be
omes [Pakzad, 2009℄

M > M∗

s =
µ1/4

√

(1− p)√
1− β + p σ

, (6.18)where the fa
tor √µ in (6.16) is a result of the di�erent normalization used here. Inparti
ular, with the transformation M2 → (µ)1/2M2, we get Eq. (6.16).The lower bounding 
urves for solitons in Figs. 6.1 and 6.2 were obtained analyti
allyusing Eq. (6.16). However, the upper bounding 
urves were obtained numeri
ally by sub-171



6. Ion-A
ousti
 Solitary Waves in an Ele
tron-Positron-Ion (e-p-i) Plasmastituting the upper soliton potential limit φli = M2/2 in Eq. (6.15), and solving for M(p)for given values of β.6.4.1 Numeri
al Results and Dis
ussionWith the help of the Sagdeev potential in Eq. (6.15) we are in a position to delineateexisten
e domains of solitons supported by the plasma model. First, the positron andele
tron densities are well behaved for all φ. However, it is easy to see from the ion densityrelation in Eq. (6.5) that the ions are in�nitely 
ompressed (ni → ∞) when φ → φli =

M2/2 > 0. Sin
e φli > 0 for all M > 0, it implies that the existen
e of positive potentialsolitons require S(φli, M) > 0 with the upper limit on M obtained at Ψ(φli, M) = 0.Negative solitons, if they exist, 
ould be limited by double layers, for whi
h we require therelation Ψ(φdl, Mdl) = Ψ′(φdl, Mdl) = 0, where Mdl and φdl are the Ma
h number andpotential amplitude 
orresponding to the negative double layer, respe
tively.Assuming equal positron and ele
tron temperatures (σ = 1), Pakzad [2009℄ showedtypi
al Sagdeev potential plots in his Figs. 1 and 2 for p = 0.01 and di�erent values of βbut for the same Ma
h number. Thus, Pakzad [2009℄ showed that the soliton amplitudede
reases with in
reasing β. However, his results for β = 0.6 (and M = 1.45) 
an not leadto a soliton solution, as that Ma
h number falls below Ms ≃ 1.554. Closer examination ofthe Sagdeev potential would have revealed that very 
lose to the origin there is a hump,with Ψ(φ) > 0, before it drops below zero, forming a well. As a result of the small positivehump, the pseudo parti
le would never be able to rea
h the well, and no soliton exists. Inaddition, as we have already pointed out, for β > 4/7 ≈ 0.571, the Cairns distribution isno longer appropriate as a steady-state distribution [Verheest and Pillay, 2008a; Verheest,2010a℄.In Fig. 6.1 (left panel) we show a plot of the Ma
h number M versus p for a plasma withpositrons having the same temperature as the ele
trons, and β = 0.5. The graph showsthat positive potential solitons exist for the full range of p, bounded by the 
ontinuousand dotted green 
urves. These positive solitons are limited by in�nite 
ompression of theion density (ni →∞), that is, positive solitons have amplitudes less than φli = M2/2. Inaddition, we also observe negative solitons limited by double layers for a narrow range in
p (p . 0.05), bounded by the dashed red 
urve. Thus these negative solitons and double172



6.4. Arbitrary Amplitude Solitary Waveslayers o

ur only in a plasma whi
h is essentially an ele
tron-ion plasma with positronimpurity. In the allowable range of β (β < 4/7), as we shall see below, we have onlyfound these negative solitary waves in a narrow range of β and p. These were not reportedby Pakzad [2009℄.In the right panel of Fig. 6.1 we show only positive potential solitons for di�erentvalues of β: dotted (β = 0.5), dashed (β = 0.3) and 
ontinuous (β = 0.1), respe
tively.The graphs show that the variation of β has only a quantitative e�e
t on the existen
edomain of positive solitons, with the domain be
oming a little narrower as β in
reases. Inaddition, for �xed p in the range 0 < p < 1, both the lower and upper Ma
h number limitsfor the existen
e domain in
reases as β in
reases; thus the normalized solitary wave speedvalues also in
rease. We see that for p = 0 (a pure ele
tron-ion plasma) and β = 0.1, therange of M lies between 1.054 and 1.591, whi
h is 
onsistent with the standard range of[1, 1.5852℄ that is well-known for the 
ase of a plasma with Boltzmann ele
trons (β = 0)and �uid ions [Infeld and Rowlands, 2000℄.
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Figure 6.1: Left panel: Existen
e domain of solitons or double layers 
orresponding toa plasma with equal positron and ele
tron temperatures (σ = 1) and β = 0.5. Positivesolitons are bounded by the green (solid and dotted) 
urves; Negative solitons (limited bydouble layers) are bounded by the red dashed 
urve, o

urring for low p = Np0/Ne0 values.Right panel: Existen
e domain for positive potential solitons for di�erent β values: dotted(β = 0.5), dashed (β = 0.3) and 
ontinuous (β = 0.1), respe
tively.In Fig. 6.2 we show the existen
e domain of positive solitons, in the [M − β℄ plane, fordi�erent values of p. For ea
h value of p, the lower 
urves 
orrespond to Ms (obtained usingEq. (6.16)) while the upper 
urves 
orrespond to the upper M limit, obtained numeri
ally173



6. Ion-A
ousti
 Solitary Waves in an Ele
tron-Positron-Ion (e-p-i) Plasmaby solving the expression S(φli, M) = 0. For the values of p used here (p = 0.1, 0.01, and
0.001) we 
on�rm the results of Pakzad [2009℄ in his Fig. 4. In parti
ular, our results showthat positive potential solitons exist for, say, β < 0.734 (p = 0.1), β < 0.626 (p = 0.01) and
β < 0.616 (p = 0.001), respe
tively, whi
h agree with those of Pakzad [2009℄ in his Fig. 5.While these results show 
riti
al upper limits in β for the existen
e of positive potentialsolitons, they all 
orrespond to β > 4/7, and hen
e, as we have seen earlier, are physi
allyinappropriate. Thus the existen
e domains are more 
orre
tly 
ut o� at β = 0.57 as shownin the �gure.We note that the 
al
ulations in Figs. 6.1 and 6.2 have been only for Te = Tp. It is phys-i
ally reasonable to assume this as a �rst approximation be
ause of rapid thermalizationof the leptons. We shall 
onsider some aspe
ts of Te 6= Tp below.
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Figure 6.2: Existen
e domain of positive potential solitons, in the (M − β) plane, fordi�erent values of p; p = 0.1 (dotted), p = 0.01 (solid), and p = 0.001 (dashed). Solitonsexist for β < 0.734 (p = 0.1), β < 0.626 (p = 0.01) and β < 0.616 (p = 0.001).6.4.2 Criti
al CompositionIn re
ent studies on solitary waves dis
ussed in Chapters 4 and 5 [Baluku et al., 2010a,b℄,and in [Verheest et al., 2010℄, as well as in [Verheest and Hellberg, 2010℄, it has beenfound that the sign of Ψ′′′(φ = 0, Ms) for a parti
ular plasma 
on�guration 
an aid inunderstanding the sign of the solitons, and whether �
oexisten
e of solitons� is supportedby the plasma model. In addition, if Ψ(φ,Ms) has a �nite amplitude soliton, then forthe same plasma parameters, Sagdeev potentials 
orresponding to M > Ms will result in174



6.4. Arbitrary Amplitude Solitary Wavessolitons of both polarity.From Eq. (6.15) the third derivative of the Sagdeev potential Ψ(φ, M) evaluated at
φ = 0 and M = Ms is given by

Ψ′′′(0, Ms) = p σ2 − 1 +
3(1− β + p σ)2

1− p
. (6.19)In the limit p → 0, Ψ′′′(0, Ms) = 3β2 − 6β + 2, whi
h gives the 
riti
al values of β as

βc1 = (3−
√
3)/3 ≃ 0.423 and βc2 = (3 +

√
3)/3 ≃ 1.577. However, from the de�nition of

β, i.e., β = 4α/(1+3α), the maximum allowable value of β is β = 4/3 ≃ 1.333. The lattervalue (βc2) is inappropriate as it ex
eeds this allowed upper limit. We note that p → 0yields an e-i plasma and thus β 
ould then play the role of the 
riti
al parameter f whi
hwe en
ountered in previous 
hapters.Figure 6.3 (upper panel) shows a plot of p versus β satisfying Ψ′′′(0, Ms) = 0, fordi�erent values of σ < 1 (Te < Tp). The lower panel shows a small range of the �gure inthe upper panel. For 0 < σ < 1, Ψ′′′(0, Ms) is negative (positive) below (above) the 
urve
orresponding to a parti
ular value of σ. Note that for β < βc1 we have Ψ′′′(0, Ms) > 0 forall values of p > 0, implying that �KdV-like� solitons2 (whose amplitudes vanish at Ms)supported for su
h values of β will have positive polarity; and if negative solitons exist forsome values of p, they will be nonKdV-like with nonzero amplitudes at Ms [Baluku et al.,2010a,b; Verheest, 2010a; Verheest et al., 2010℄. Figure 6.3 (upper panel) thus shows thatfor the physi
ally appropriate β range (β < 4/7), negative potential �KdV-like� solitons(or double layers) exist only for very low values of p (less than about 0.2 for σ ≥ 0.5).For �xed β, the range of p having negative solitary waves, de
reases as σ in
reases andbe
omes negligible for Te signi�
antly greater than Tp.On the other hand, for a parti
ular value of p, negative solitary stru
tures o

ur for therange β1 < β < 4/3, where β1, whi
h may be less than or greater than βc1 depending onthe value of p, is the lower β 
uto� at whi
h the Ma
h number (Mdl) 
orresponding to anegative double layer equals Ms. In the 
ase of β1 < βc1, the o

urren
e of these negativesolitons or double layers would require a very small proportion of positrons (p values very
lose to 0), and are nonKdV-like.2�KdV-like� solitons have amplitudes that go to zero as M goes to Ms while �nonKdV-like� solitonshave �nite nonzero amplitudes at Ms. 175
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Figure 6.3: Upper panel: Curves for Ψ′′′(φ = 0, M = Ms) = 0 giving p = pc for di�erentvalues of σ = Tp/Te. Under the 
urves, Ψ′′′(φ = 0, M = Ms) < 0 and outside the 
urves
Ψ′′′(φ = 0, M = Ms) > 0. The sign of Ψ(φ = 0, M = Ms) 
orresponds to the sign of the�KdV-like� solitons. Lower panel: Similar to the upper panel, here showing a small rangeof p and β.Evaluating Ψ′′′(0, Ms) = 0 from Eq. (6.19), for β = 0.5 and σ = 1, one �nds a 
riti
alvalue of p, i.e., pc ≃ 0.04904. Typi
al examples of the Sagdeev potential 
urves are shownin Fig. 6.4 for p = 0.03 < pc (upper panel) and p = 0.0494 > pc (lower panel). For p = 0.03we have Ψ′′(φ = 0, M) = 0, Ψ′′′(φ = 0, M) < 0 , and obtain a positive soliton at Ms with�nite amplitude φ ≃ 0.5 (upper left panel). With a small in
rement in M of about 0.015 wealso �nd a negative soliton of amplitude |φ| ≈ 0.35 (upper right panel), while the positivesoliton has in
reased to φ ∼ 0.6. Thus this is a region where the two soliton polarities may
oexist. In addition, if we in
rease M to M = Ms + 0.019 = 1.372, a negative potentialdouble layer, of amplitude |φ| ∼ 0.573 
an be obtained (not shown). Choosing a value176



6.5. Summary and Remarksof p > pc (we 
onsider p = 0.0494 in the lower panel), we show a �nite negative soliton(|φ| ≃ 0.058, lower left panel) obtained at Ms, with Ψ′′(φ, M) = 0, Ψ′′′(φ = 0, M) > 0,but there is no positive soliton. Finally, at M ≃Ms+0.000018 (lower right panel) we get anegative double layer (|φ| ∼ 0.11) and a positive soliton (φ ∼ 0.016), again demonstrating
oexisten
e. The examples in Fig. 6.4 show that the existen
e of a �nite positive (ornegative) roots of S(φ, M) implies that neighbouring Sagdeev potentials have solitons ofboth polarities [Verheest et al., 2010℄.
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Figure 6.4: Typi
al Sagdeev potential 
urves for σ = 1, β = 0.5, and p = 0.03 < pc =
0.04904 (upper panel) and p = 0.0494 > pc (lower panel). The left panel 
urves showSagdeev potential 
urves at M = Ms while the right panel 
urves are for Ms + 0.015(upper right panel) with two solitons (one large and the other very small), and for M =
Ms + 0.000018 (lower right panel) showing a negative double layer and a positive soliton.6.5 Summary and RemarksWe have studied ion-a
ousti
 solitary waves in an e-p-i plasma using the Sagdeev po-tential approa
h. This work is an extension of Pakzad [2009℄. As shown in Fig. 1.2, thenonthermal parti
le distribution is multi-humped for values of β > 4/7, and therefore isthen inappropriate to use as a stable non-Maxwellian distribution. Possibly another formof nonthermal distribution, su
h as a kappa distribution, may be used instead.We have found (Fig. 6.2) that in addition to positive potential ion-a
ousti
 solitonswhi
h are supported over the full range of fra
tional positron density, negative potential177



6. Ion-A
ousti
 Solitary Waves in an Ele
tron-Positron-Ion (e-p-i) Plasmasolitons 
an be supported over a very limited range of low positron density (p . 0.05), andare limited by double layers. These negative solitary waves were not reported by Pakzad[2009℄.In addition, our results show that in the region where both positive and negative poten-tial solitons may be supported by the same plasma 
on�guration, �nite solitary stru
tures
an be obtained at the 
riti
al (minimum) Ma
h number, i.e., at the true ion-a
ousti
speed of the plasma mix.For some plasma 
on�guration, with a spe
i�
 value of β, there exists a 
riti
al valueof the fra
tional positron density, p (denoted pc) at whi
h Ψ′′′(φ, M) = 0 for φ = 0 and
M = Ms. For example, with σ = 1, we �nd pc ≃ 0.01734 (β = 0.45) and pc ≃ 0.04904(β = 0.5).If pc lies in the region where solitons of both polarity o

ur for the same plasma param-eters, then for p < pc one gets negative �KdV-like� solitons and �nite amplitude positivepotential �nonKdV-like� solitons. Similarly, for p > pc one obtains positive �KdV-like�solitons that are of small amplitude and �nite amplitude negative potential �nonKdV-like�solitonsLastly, for a parti
ular value of p, the lower value of β supporting negative potentialsolitons or double layers 
orresponds to the double layer Ma
h number Mdl being equal to
Ms.
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CHAPTER 7
Ion-A
ousti
 Solitary Waves in a Plasma With Two-Temperature Ele
trons
In this 
hapter we use �uid equations to study ion-a
ousti
 solitons in two temperatureele
tron plasmas 
onsisting of 
old inertial ions, and 
ool and hot Boltzmann ele
trons.Though su
h a plasma model has been studied in the past by a number of authors, ourfurther investigations have revealed new results that are presented in this work.The results presented in this Chapter have been published as Baluku et al.,Europhysi
s Letters 91, 15001 (2010)7.1 Introdu
tionUsing a plasma with a single ele
tron 
omponent, Washimi and Taniuti [1966℄ dis-
ussed the one-dimensional long-time asymptoti
 behaviour of ion-a
ousti
 waves of smallbut �nite amplitudes using the Korteweg-de Vries (KdV) equation. They showed that thewidth of the solitary wave be
omes larger for small amplitude, implying that steepeningof the wave due to the weak nonlinearity is balan
ed by the dispersion in long wavelengthfor the weak solitary wave to be formed. Ion-a
ousti
 solitary waves in a two-temperatureplasma have been studied by a number of authors in the past [Buti, 1980; Nishihara andTajiri, 1981; Baboolal et al., 1990; Ghosh et al., 1996℄. Nishihara and Tajiri [1981℄ then
onsidered a two-ele
tron temperature plasma with both hot and 
ool ele
tron 
omponentsusing �uid equations. Here, they showed that there are two regions of wave propagation179



7. Ion-A
ousti
 Solitary Waves in a Plasma With Two-Temperature Ele
tronsin the plasma model: the normal propagation and the anomalous propagation, where theanomalous propagation property is 
hara
terized by the steepening of the wave so as tode
rease the density. Nishihara and Tajiri [1981℄ also showed that for a 
ertain parame-ter region, �nite amplitude rarefa
tive and 
ompressive ion-a
ousti
 solitons 
an both besupported (loosely, �
oexist�) in the plasma, with the small amplitude rarefa
tive (or 
om-pressive) solitons existing only in the plasma 
on�guration having anomalous (or normal)propagation properties. As will be seen in Se
. 7.3, in the terminology of the Sagdeevpotential [Sagdeev, 1966℄, the two regions are separated by a 
urved surfa
e obtained forparameters at whi
h both the se
ond and third derivatives of the Sagdeev potential vanishat the origin.As the terminology �
ompressive� and �rarefa
tive� is not well-de�ned in a multi-�uidplasma, we point out that in this model, rarefa
tive solitons have negative potential while
ompressive solitons have positive potential. In this work we show that in the region of�
oexisten
e�, if the negative solitons have amplitudes that vanish at the a
ousti
 speed, asfor Korteweg-de Vries (KdV) solitons [Swanson, 2003℄, then the positive solitons have �niteamplitude at the a
ousti
 speed, whi
h 
annot be obtained from the KdV des
ription.In plasma models where large amplitude solitons 
an exist, the redu
tive perturbationanalysis, whi
h leads to a KdV equation and weakly nonlinear solitons, is not appropriate.The Sagdeev approa
h [Sagdeev, 1966℄ is a useful tool in seeking solutions of arbitraryamplitude nonlinear solitary wave stru
tures, far beyond the KdV results.Using the Sagdeev approa
h, Baboolal et al. [1990℄ investigated the 
uto� 
onditionsfor the existen
e of large amplitude ion-a
ousti
 solitons and double layers in �uid plas-mas 
onsisting, e.g., of two Boltzmann ele
tron spe
ies (hot and 
ool) and a single 
oldion spe
ies. They found that below a temperature threshold, both positive and negativepotential solitons existed for an intermediate range of 
ool ele
tron density ratio, withthe negative solitons limited by double layers. Elsewhere, only positive potential solitonso

urred. In addition, in the �
oexisten
e� region, �nite (nonzero) amplitude positive po-tential solitons were obtained at the 
riti
al Ma
h number Ms, equivalent to the a
ousti
speed, but they did not 
omment on them.In this work we investigate these �nite amplitude results atMs in detail, and also reportthat positive double layers 
an also be supported by the plasma model for a restri
ted range180



7.2. Plasma Model and Basi
 Equationsof 
ool ele
tron densities. For a range of 
ool ele
tron densities where these positive doublelayers 
an exist, we also obtain solitons having Ma
h numbers ex
eeding those supportingdouble layers, i.e., the Ma
h numbers 
orresponding to double layers don't a
t as an upperMa
h number limit, as expe
ted.7.2 Plasma Model and Basi
 EquationsWe 
onsider a plasma model 
onsisting of two Boltzmann ele
tron 
omponents, one hot(temperature Th, density nh) and the other 
ool (temperature Tc, density nc), and 
oldinertial �uid ions that are singly 
harged. Su
h a model has been dis
ussed by a number ofauthors [Buti, 1980; Nishihara and Tajiri, 1981; Baboolal et al., 1990; Ghosh et al., 1996℄,where Ghosh et al. [1996℄ used a plasma model with warm �uid ions instead.The normalized densities of the 
ool and hot ele
trons are, respe
tively, given by
nc(φ) = f exp(αcφ) and (7.1)
nh(φ) = (1− f)exp(αhφ), (7.2)where f = Nc0/Ni0 with Ni0 = Ne0 = Nc0 +Nh0, Nj0 (j = c, h, i) being the equilibriumdensities; 1/αc = Tc/Te� and 1/αh = Th/Te�; and φ is the ele
trostati
 potential, normal-ized to KBTe�/e. Here, KB and e are the usual Boltzmann 
onstant and ele
troni
 
harge,respe
tively, while Te� is an e�e
tive ele
tron temperature de�ned by Te� = Tc/[f+(1−f)τ ],in terms of the temperature ratio τ = Tc/Th. Of 
ourse, nh will play a role only when

αh 6= 0, and hen
e τ 6= 0.The density of the 
old ions is given by
ni(φ) = (1− 2φ/M2)−1/2, (7.3)whereM is the Ma
h number, whi
h gives the velo
ity of the solitary stru
tures, normalizedto the a
ousti
 speed Cs = (KBTe�/mi)

1/2, mi being the mass of the ions.In the Sagdeev approa
h [Sagdeev, 1966℄, the simple traveling waves satisfying Eq. (7.5)are solitary waves whi
h are stationary in a frame moving with a velo
ity, M . Transformingto a moving frame with position ξ = x−Mt, the spe
ies' densities are 
oupled by Poisson's181



7. Ion-A
ousti
 Solitary Waves in a Plasma With Two-Temperature Ele
tronsequation to give
d2φ

dξ2
+G(φ) = 0, (7.4)where G(φ) is the sum of the spe
ies' densities.After an integration, Eq. (7.4) 
an be expressed in the form of an energy integral [Sagdeev,1966℄

1

2

(

dφ

dξ

)2

+Ψ(φ, M) = 0, (7.5)where Ψ(φ,M) = −
∫ φ
0 G(φ)dφ is the pseudopotential or the Sagdeev potential of theplasma system.In obtaining the expression for the Sagdeev potential Ψ(φ,M), following from Eq. (7.5),we ensure that Ψ(φ,M) and its derivative (with respe
t to the potential φ) vanish at theorigin φ = 0. The former, Ψ(φ,M) = 0 for φ = 0 ensures that the boundary 
onditions aresatis�ed in the integration while the latter (the vanishing of the derivative of the Sagdeevpotential at the origin) ensures that the overall 
harge neutrality is zero in the absen
e ofdisturban
es.Thus the Sagdeev potential in Eq. (7.5) takes the form

Ψ(φ, M) =
f

αc
[1− exp(αcφ)] +

(1− f)

αh
[1− exp(αhφ)] + M2(1−

√

1− 2φ/M2). (7.6)As a prerequisite for the formation of solitary stru
tures, the origin should be a lo
al(unstable) maximum, whi
h 
ondition is usually interpreted as requiring that Ψ′′(0,M) < 0(where the prime denotes di�erentiation with φ). This 
ondition leads to super-a
ousti
waves with M > Ms = 1, where Ms is the normalized a
ousti
 linear phase velo
ity,obtained from Ψ′′(0, Ms) = 0.Though the general pra
ti
e has been that the existen
e of solitons requires M > Ms,re
ent investigations [Baluku et al., 2010a,b; Baluku and Hellberg, 2010; Verheest, 2010a;Verheest et al., 2010℄ have shown that solitons 
an have �nite amplitudes at Ms in theparameter regime where solitons of both polarity exist. In these 
ases Ψ′′(0, M) = 0: theorigin is a triple root su
h that the 
onvexity 
ondition is provided by the third derivativeof Ψ(φ, M). With a triple root at the origin, in the presen
e of positive (negative) potentialsolitons, the origin is unstable (stable) for φ > 0 (φ < 0) but stable (unstable) for φ < 0182



7.2. Plasma Model and Basi
 Equations(φ > 0).In some instan
es the Ma
h number M may have an upper limit su
h that solitarystru
tures will o

ur for a limited range in M , and in other instan
es, M is unboundedsu
h that solitary stru
tures 
an o

ur for all M ≥ Ms; the equality sign only applies toparti
ular plasma parameters in the region where both signs of potential 
an be supported.The 
onstraints leading to the upper limit on M may be due to a number of fa
tors su
has, ensuring that the spe
ies densities remain real and nonzero, existen
e of soni
 points, orby the o

urren
e of double layers if both solitary stru
tures are supported by the plasmamodel in question.For this model positive potential solitons are limited by in�nite 
ompression of theinertial ions, rea
hed when φ → φli = M2/2, thus leading to a su�
ient 
ondition
Ψ(M2/2, M) > 0. However, depending on the value of the temperature ratio τ , posi-tive potential double layers are also possible for a limited range in f . On the other hand,negative potential solitons are limited by double layers.We shall now investigate the existen
e domain for the solitons and double layers thatmay be supported by this model.From Eq. (7.6), the third derivative of Ψ(φ, M) at the origin (φ = 0) for M = Ms, isgiven by

Ψ′′′(0, Ms) = 3− f

(τ(1− f) + f)2
− (1− f)

(1− f + f/τ)2
. (7.7)If Ψ′′′(0, Ms) = 0, then for �xed τ , Eq. (7.7) gives the 
riti
al values of the 
ool ele
trondensity as

fc1, 2 =
(1− 5τ) ± (1− 10τ + τ2)1/2

6(1 − τ)
, (7.8)provided τ 6= 1. Here, fc1 and fc2 are the lower and upper values of the 
riti
al density givenby the minus and plus signs in Eq. (7.8), respe
tively, and are real provided τ2−10τ+1 ≥ 0,leading to a 
riti
al value of τ .Thus, the existen
e of a �nite, non 
omplex 
riti
al density ratio f = fc requires

τ ≤ τc1, where τc1 = (5− 2
√
6) ≃ 0.10102, that is, Th ≥ (5 + 2

√
6)Tc ≃ 9.89898Tc, as wasreported by Bezzerides et al. [1978℄ for rarefa
tive sho
ks in laser plasmas. At τ = τc1, theroots fc1 and fc2 in (7.8) 
oales
e into a single root fc ≈ 0.092. In addition, when τ → 0we have fc1 → 0 and fc2 → 1/3. However, with the 
hoi
e of normalization, when τ → 0,183
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ousti
 Solitary Waves in a Plasma With Two-Temperature Ele
trons
Tc/Te� → f and Th/Te� → ∞. Su
h super hot 
onditions 
annot be a
hieved in physi
alplasma situations, and, moreover, the model then breaks down.The 
riti
al density fc 
an also be obtained from the KdV des
ription in the followingway. Here we 
onsider a normalized KdV equation of the form

dφ

dζ
+Aφ

dφ

dχ
+B

d3φ

dχ3
= 0, (7.9)where the se
ond term des
ribes the nonlinearity while the third term des
ribes dispersionor dissipation. In obtaining Eq. (7.9) we have used the stret
hed 
oordinates χ = ǫ1/2(x−

Ma t) and ζ = ǫ3/2t, where Ma is the phase velo
ity normalized to Cs, and ǫ is a smallnessparameter. The 
onstants A and B in Eq. (7.9), involve the equilibrium density andtemperature ratios, besides other parameters in the plasma model. In parti
ular, it 
aneasily be shown (see Chap. 5) that for this model
A=

Q

2
α
1/2
s1 (1 + 3ταs1)

−1/2; Q = 3− αs2/α
2
s1 and (7.10)

B=α
−3/2
s1 (1 + 3ταs1)

−1/2, (7.11)where αs1 =
∑

s τsNs0/Ne0; αs2 =
∑

s τ
2
sNs0/Ne0; τs = Tc/Ts, with s = c, h for the 
oolor hot ele
tron 
onstituent. Note that τc = 1 and τh = Tc/Th = τ .Solutions to Eq. (7.9) are valid only for A 6= 0. However, when A → 0, the balan
ebetween the nonlinearity and dispersion is not maintained for the solitary stru
tures topropagate. The 
riti
al density fc is then obtained by solving the equation A = 0 for

f . For this parti
ular model, it is 
lear from Eq. (7.10) that A = 0 when Q = 0. Italso follows that Q = Ψ′′′(0,Ms) in Eq. (7.7), and hen
e the same 
riti
al fc are foundas those in Eq. (7.8) above. We point out that the expression Q redu
es to Eq. (2.12)of Tajiri and Nishihara [1985℄. Using an analogous three 
omponent plasm model with
ontaminating negative ions (instead of the 
ool ele
tron 
omponent), Nakamura et al.[1985℄ experimentally observed a positive pulse, that propagated like a linear wave without
hange of its shape (ex
ept by damping), at the 
riti
al parameters for whi
h the nonlinear
oe�
ient A in the KdV equation vanished.
184



7.3. Numeri
al Results and Dis
ussion
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Figure 7.1: Variation of the 
riti
al density fra
tion, fc, with τ . Along the 
urve,
Ψ′′′(0,Ms) = 0. Inside the 
urve, Ψ′′′(0,Ms) < 0 while outside the 
urve, Ψ′′′(0,Ms) > 0.Here, fc1 = fc2 at the 
riti
al temperature ratio τc1 = 5− 2

√
6.7.3 Numeri
al Results and Dis
ussionIn Fig. 7.1 we show the variation of fc with temperature ratio τ , using Eq. (7.8). Alongthe 
urve we have Ψ′′′(0,Ms) = 0; inside the 
urve Ψ′′′(0, Ms) < 0, and outside the 
urve

Ψ′′′(0, Ms) > 0. Figure 7.1 is similar to Fig. 3, 
urve labeled B, of Nishihara and Tajiri[1981℄ (see also Tajiri and Nishihara [1985℄) and Fig. 2 of Bezzerides et al. [1978℄, althoughin the latter, only one solution of fc is shown. The region bounded by Ψ′′′(0, Ms) < 0is what is referred to as the region of anomalous propagation in Bezzerides et al. [1978℄and Nishihara and Tajiri [1981℄, while the other region with Ψ′′′(0, Ms) > 0 is the regionof normal propagation.7.3.1 τ > τc1 = 5− 2
√
6To begin with, we 
onsider a value of τ that is above τc1 = 5 − 2

√
6 ≃ 0.10102, i.e.,where Ψ(0,Ms) > 0 for all f . Here an example is shown in Fig. 7.2, with τ = 1/5. Onlypositive potential solitons limited by the ion density 
onstraint (φ < φli = M2/2) aresupported by the model; The 
urve shows the Ma
h number (M = Mli) that gives themaximum amplitude limit due to the ion density 
onstraint (φli) at whi
h Ψ(φli,M) = 0.185



7. Ion-A
ousti
 Solitary Waves in a Plasma With Two-Temperature Ele
tronsPositive potential double layers do not exist, and negative potential solitons or double layersare not supported. For these positive potential solitons, at f = 0 or f = 1, 
orrespondingto a simple plasma with isothermal (Boltzmann) ele
trons and 
old �uid ions, we re
overthe usual range [Infeld and Rowlands, 2000, p. 125℄ 1 < M < 1.5852. The nature of thesepositive solitons, having the sign of Ψ′′′(0, Ms), is that their amplitudes tend to zero as Mapproa
hes Ms. Basi
ally for τ ≥ τc1 only positive potential solitons exist, as reported, forexample, by Baboolal et al. [1990℄.Figure 7.2 also shows that the maximum Ma
h number asso
iated with positive solitons�rst de
rease as f in
reases from f = 0, up to an intermediate value of f 
orrespondingto the dip in the 
urve, beyond whi
h the maximum Ma
h number in
reases with f up to
f = 1. We have 
arried out some 
al
ulations and found that as τ de
reases, the dip onthe 
urve o

urs for lower M values, and rea
hes Ms = 1 at 
riti
al τ value τc2 ≈ 0.075, for
f ≈ 0.0212. Therefore, for τ < τc2, there is a range in f where any possible positive solitonsthat may exist, 
annot be limited by the ion density 
onstraint. If they are neverthelessto exist there, they must be limited by positive potential double layers. This point will beillustrated by some examples below.
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Figure 7.2: Existen
e domain of ion-a
ousti
 solitons for τ = 1/5 > τc1. Positive potentialsolitons exist for the entire range of f from 0 to 1, and are bounded by the dashed blue
urve.7.3.2 τc2 ≃ 0.075 < τ < τc1For the next example we 
onsider a value of τ in the range τc2 < τ < τc1. In thisrange, Ψ′′′(0, Ms) < 0 for some f , but ion density-limited positive solitons do still o

ur186



7.3. Numeri
al Results and Dis
ussionfor all 0 ≤ f ≤ 1. For this purpose we �rst 
hoose τ = 0.09 for dis
ussion. In Fig. 7.3 wepresent the existen
e domain (left panel) and soliton potentials at M = Ms (right panel)for τ = 0.09. The 
ontinuous (blue) 
urve is the upper limit for positive solitons. Thedashed (blue) 
urve represents positive double layers for f < fc1, while the dotted (red)
urve shows negative double layers (for fc1 < f < fn), that limit negative solitons. Wenote that fc1 is the boundary between the two double layer polarities, and here it is alsothe lower limit for the existen
e of negative solitons. For f > fn, only positive solitonsare supported. Thus, we see in Fig. 7.3 (left panel) that positive and negative solitons areboth supported (�
oexist�) over the range fc1 < f < fn. This region, bounding negativepotential double layers, is analogous to that 
orresponding to rarefa
tive sho
ks in Fig. 3of Bezzerides et al. [1978℄. We also observe from Fig. 7.3 (left panel) that the other valueof fc (fc2 ≃ 0.161) lies in the �
oexisten
e� region. In addition, there is a suprising set ofsolitons (limited by the ions, bounded by the 
ontinuous blue 
urve in Fig. 7.3, left panel)that o

ur beyond the positive potential double layers [Baluku and Hellberg, 2010℄, i.e.,at values M > Mdl, where Mdl is the Ma
h number of the positive double layer. These
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Figure 7.3: Left panel: Existen
e domain of ion-a
ousti
 solitons for τ = 0.09. Right panel:Typi
al soliton potential amplitude at the lowest Ma
h number M = 1 
overing the rangeof f for �
o-existen
e� of solitons of both polarities, shown in the left panel graph. Here
fc1 ≃ 0.041, fc2 ≃ 0.161 and fn ≃ 0.225.positive double layers were not reported by the authors that have looked at this plasmamodel [Buti, 1980; Nishihara and Tajiri, 1981; Baboolal et al., 1990℄. However, using a�uid-dynami
al approa
h, Verheest et al. [2006℄ showed that positive double layers that are187



7. Ion-A
ousti
 Solitary Waves in a Plasma With Two-Temperature Ele
tronsvery weakly super-ion-a
ousti
, 
ould be supported at small values of f in a two-ele
trontemperature plasma with isothermal ele
tron 
omponents. Note that at f = 0, other thanat the origin (φ = 0), the double layer requirements Ψ(φ, M) = 0 and Ψ′(φ, M) = 0 arenot satis�ed.In the right panel of Fig. 7.3 we show the variation of soliton amplitude φ0 (at M = Ms)with 
ool ele
tron density f , over the interval [fc1, fn]. The 
ontinuous 
urve representsnegative solitons, the dotted 
urve, positive solitons. The �gure shows that between fc1 and
fc2, negative solitons have zero amplitude at Ms, (i.e., they are KdV-like) while positivesolitons have �nite nonzero amplitudes at Ms (i.e., they are nonKdV-like). These proper-ties reverse for for fc2 < f < fn. Results similar to those in Fig. 7.3 (right panel) were alsofound for dust ion-a
ousti
 solitons in a plasma with kappa-distributed ele
trons [Balukuet al., 2010a℄.We have already observed from Fig. 7.3 (left panel) that in the region where positivedouble layers 
an be obtained, for a given value of f , one 
an get solitons for Ma
h numbersthat lie above those 
orresponding to the positive double layers.Figure 7.4 shows the variation of soliton amplitude with M for �xed f (left panel),and the 
orresponding typi
al Sagdeev potential 
urves (right panel). In the left panelof Fig. 7.4, the end points of the lower 
urves for the di�erent density ratios f give theamplitudes and Ma
h numbers of the positive double layers; after whi
h there is a `jump'in amplitude between the double layers and the next set of solitons (that are limited bythe ions, that is, those solitons whose amplitude must not ex
eed φli = M2/2, to ensurethat the ion density remains real). In the right panel of Fig. 7.4 all the Sagdeev potential
urves (A− F ) have a double root at the origin; the soliton 
urves A, B and D − F havea single root outside the origin, and the double layer 
urve C has another double rootoutside the origin and an ina

essible single root beyond the double root. Su
h solitonsforming beyond double layers for the same plasma 
omposition (with M > Mdl) were alsoreported by Verheest [2009℄ in nonthermal plasmas 
onsisting of 
old �uid positive andnegative dust parti
les and Cairns distributed ele
trons and ions (see his Fig. 4 and thedis
ussion a

ompanying it).In Fig. 7.5, we show typi
al soliton potential pro�les (left panel) for the parametersin Fig. 7.4. Solitons below the double layer (with M < Mdl) are bell-shaped while those188
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Figure 7.4: Left panel: Soliton amplitude variation with M for τ = 0.09, and f = 0.01(
ontinuous 
urves), f = 0.02 (dashed 
urves) and f = 0.03 (dotted 
urves), respe
tively.Right panel: Typi
al Sagdeev 
urves 
orresponding to the results in the left panel with
f = 0.01 and di�erent Ma
h numbers, both below and above Mdl where Mdl ≃ 1.0345 isthe Ma
h number that gives the positive double layer marked C. Other values of M are
1.033 (A), 1.034 (B), 1.036 (D), 1.04 (E) and 1.05 (F).with M > Mdl have a spiky shape. In Fig. 7.5 (right panel) we also show the phase spa
e
urves [Sagdeev, 1966; Infeld and Rowlands, 2000℄ for the Ma
h numbers used in Fig. 7.4.The �gure shows that the amplitude size in
reases as M in
reases, and beyond the doublelayer, solitons have a �attened edge at the maximum potential while the double layer 
urvehas an ina

essible extended 
losed lobe. The 
urves beyond the double layer 
orrespondto the soliton 
urves D − F in Fig. 7.4 (right panel).Though we have given results for τ = 0.09, we have also looked at other values of τ(espe
ially 
lose to τc1 ≃ 0.10102, su
h as τ = 0.10 (Fig. 7.6, upper panel) and τ = 0.101(not shown). In these 
ases we get the same trend of results as those dis
ussed for τ = 0.09:a �
oexisten
e region� between fc1 and fn, and below fc1, positive potential double layersare also supported, i.e., fc1 separates negative from positive double layers.As τ approa
hes τc1, the region of 
oexisten
e be
omes very narrow, and the asso
iated
Mdl are very 
lose to Ms. For instan
e, the largest Ma
h number at whi
h negative doublelayers o

ur are M ≃ 1.014041 (for τ = 0.009, see Fig. 7.3), M = Ma ≃ 1.000374 (for
τ = 0.1, see Fig. 7.6) and M ≃ 1.000001075 (for τ = 0.101, not shown), whi
h is very 
loseto Ms = 1. The region (of 
oexisten
e) eventually vanishes at τ = τc1, when fc1 and fc2merge at f ≃ 0.092 (see Fig. 7.1). In other words, negative potential solitons or double189
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Figure 7.5: Upper panel: Typi
al soliton pulse 
urves 
orresponding to τ = 0.09, f = 0.01in Fig. 7.4 for di�erent Ma
h numbers, both below and above the positive double layer:
M = 1.033 (A), 1.034 (B), 1.036 (D), 1.04 (E) and 1.05 (F). Lower panel: Phase spa
e
urves for the parameters in (the right panel) Fig. 7.4. The innermost 
urve 
orrespond toA and the outermost one to F (labels in Fig. 7.4).layers exist only for τ < τc1.
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Figure 7.6: Existen
e domain (left panel) of ion-a
ousti
 solitons, and soliton amplitudes at
M = Ms for the values of f en
ompassing the 
oexisten
e region (right panel), for τ = 0.1.Here, fc1 ≈ 0.0741 and fc2 ≈ 0.1111.7.3.3 τ < τc2 ≃ 0.075In the next examples we 
onsider 
ases where τ is less than τc2. Here we look at threespe
i�
 
ases, that is, τ = 1/15 ≈ 0.067, τ = 1/30 ≈ 0.033 and τ = 1/100 = 0.01. Asthe dip in the 
urve of Fig. 7.2 drops below Ms, it yields two apparent ion density 
uto�s,viz., fp1, 
lose to f = 0, and fp2, the new lower limit of the 
oexisten
e region, satisfying
fp2 ≥ fc1. However, as we shall see, fp1 plays no physi
al role.190
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al Results and Dis
ussionCase I: τ = 1/15
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Figure 7.7: Existen
e domain of ion-a
ousti
 solitons for τ = 1/15 (upper left panel)and amplitude variation with f at M = Ms (upper right panel), with fc1 = 0.0153,
fc2 = 0.2228, fn = 0.3786 and fp2 = 0.0516. Only positive solitons exist for f > fn and
f < fc1, both positive and negative potential solitons exist between fp2 and fn, and onlynegative potential solitons exist between fc1 and fp2. The lower panel shows the existen
edomain for values of f 
lose to fc1. In the lower panel, f∗ ≈ 0.0012 and fp1 ≈ 0.0044. For
f∗ < f < fp1, the o

urren
e of positive potential double layers dominate over the ion limit
ondition φ < φli = M2/2 in providing a limitation on the existen
e of positive potentialsolitons, and the reverse is true for f < f∗.Figure 7.7 (upper left panel) shows the existen
e domain for τ = 1/15 ≈ 0.067, withthe range f < fc1 
learly shown in more detail in the lower panels. Between 0 and fc1only positive solitons and double layers are found; for fc1 < f < fp2 only negative doublelayers and solitons o

ur; fp2 < f < fn is the 
oexisten
e region, and fn < f < 1 supportspositive solitons. The upper right panel, whi
h is analogous to Fig. 7.3 (right panel), shows191



7. Ion-A
ousti
 Solitary Waves in a Plasma With Two-Temperature Ele
tronsa plot of the soliton amplitude at M = Ms = 1 versus density ratio f in the �
oexisten
e�region. The �gure also shows that in the region of �
oexisten
e� the potentials of thetwo soliton types vanish at M = Ms and f = fc2: below (above) fc2, positive (negative)solitons have �nite amplitudes at Ms while above (below) fc2, negative (positive) solitonshave �nite amplitudes at Ms, as was obtained with τ = 0.09 and τ = 0.1 [see Figs. 7.3and 7.6 (right panels)℄. Note that the �nite positive potential solitons at Ms = 1 do noto

ur between fp2 and fc1, sin
e in this range only negative potential solitons (that are�KdV-like�) exist. As shown in the right lower panel of Fig. 7.7, we get positive doublelayers in the very narrow range, 0 < f < f∗ ≃ 0.002, with solitons beyond Mdl, but theyare limited by the ion density (
ontinuous 
urve), as in Fig. 7.4. At f = f∗, the doublelayer at Mdl = Mli has φdl < φli. Despite the presen
e of the ion 
onstraint 
urve in
f∗ < f < fc1, it represents a spurious root, and positive solitons are limited by doublelayers (dashed 
urve). Thus fp1 also plays no physi
al role.Other aspe
ts of our results in Fig. 7.8 are 
onsistent with those of Baboolal et al.[1990℄, where with τ = 1/15 they showed that negative potential double layers exist forthe 
ool ele
tron density ratio (f ) roughly between 0.02 and 0.35 (see their Fig. 2(b)).Compared to our 
ase, this region lies between fc1 ≃ 0.015 and fn ≃ 0.38. Similarly, inthe 
ase of positive potential solitons, Baboolal et al. [1990℄ obtained results with �niteamplitudes atMs = 1 for the range of f approximately between 0.1 and 0.25, although theynever 
ommented on them. In our 
ase they are in the range fp2 ≃ 0.05 < f < fc2 ≃ 0.22.In the same way their results for τ = 1/30 (see their Fig. 2(a)) are in agreement with ours,as 
an be seen in Fig. 7.11 (right upper panel) for τ = 1/30.The top panel of Fig. 7.8 shows the variation of solitary wave amplitude with densityratio f for τ = 1/15. The 
ontinuous blue 
urve shows the maximum amplitude limit dueto the ions (φli = M2/2 at whi
h Ψ(φli,M) = 0). Thus amplitudes of positive potentialsolitons limited by the ions need not ex
eed φli. Likewise, the dashed blue 
urve and thedotted red 
urve give the amplitudes of the positive and negative potential double layers,respe
tively. For graphi
al purposes we have s
aled up the amplitudes of the positivedouble layers (×10) thus in interpreting these results, one has to bear that in mind. Forinstan
e, when f < f∗ (see lower right panel of Fig. 7.7 or upper right panel of Fig. 7.8),solitons are ultimately limited by the ion 
ondition φ < φli = M2/2 (and not by the192
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Figure 7.8: Top panel (left): Variation of solitary stru
ture amplitude with density ratio,
f for τ = 1/15. Top panel (right): Similar to the �gure on the left, now 
learly showingamplitudes for positive potential double layers for f < fc1. Bottom panel: Typi
al Sagdeevpotential plots for f = 0.0005 (just 0.05% 
ontribution to density from the 
ool ele
trons)on the left for three di�erent Ma
h numbers, Mdl ≈ 1.1066, M1 = Mdl − 0.0350 and
M2 = Mdl +0.0075, with a positive double layer o

urring at M = Mdl, and for f = 0.003on the right for Mdl ≈ 1.0346 (
ontinuous 
urve), M1 = Mdl − 0.0035 (dashed 
urve) and
M2 = Mdl + 0.0035 (dotted 
urve). Note that the double layer in the lower right panel�gure has amplitude less than φli = M2/2, the latter 
orresponding to a Ma
h number atwhi
h the ion density is in�nitely 
ompressed.o

urren
e of double layers). The double layer amplitude in those 
ases is less that thepotential limit φli, and solitons exist even beyond the double layer. A typi
al example isshown in the left lower panel of Fig. 7.8 with Sagdeev potential 
urves for f = 0.0005 < f∗for three values of M , namely, Mdl ≈ 1.1066, M1 = Mdl − 0.0350 and M2 = Mdl +0.0075.At M = Mdl we get a double layer with amplitude, φdl ≈ 0.43. For M < Mdl (M1) we geta soliton with amplitude φ0 ∼ 0.23, and for M > Mdl (M2) we get a soliton with amplitude
φ0 ∼ 0.62 > φdl. It is also observed that there is a large jump in amplitude between thedouble layer and the next set of solitons forming beyond the double layer, as was seen in193



7. Ion-A
ousti
 Solitary Waves in a Plasma With Two-Temperature Ele
tronsFig. 7.3 (right panel). However, in the other example shown in the lower right panel ofFig. 7.8, for f = 0.003 > f∗ but less than fp1, solitons are limited by the o

urren
e ofdouble layers (not by the ion limit 
onstraint), and no solitons exist beyond the doublelayer. For small τ , f∗ → 0, and positive solitons for f < fc1 are limited by double layersonly. Though the 
ool ele
tron density is very small (very low f ), in the 
ase of positivedouble layers the resulting soliton/double layer amplitudes are signi�
antly large.Solitons for M > Mli?At f = f∗, the Ma
h number M = Mdl, 
orresponding to a positive double layer ofamplitude φdl, is equivalent to M = Mli, and satis�es Ψ(φli, M) = 0, where φli = M2/2is the potential at whi
h the ions be
ome in�nitely 
ompressed. Thus, at f = f∗ we get adouble layer of amplitude φdl < φli for M = Mli. On the one hand, when 0 < f < f∗ wehave Mdl < Mli: solitons are limited by the ion limit 
onstraint, and not by the o

urren
eof double layers. Thus solitons exist even beyond the double layers, as was the 
ase inFig. 7.4. On the other hand, when f∗ < f < fp1 we have Mdl > Mli: solitons are limitedby the o

urren
e of double layers, and not by the ion limit 
onstraint. Thus in the range
f < fp1, positive potential solitons are limited by the maximum of Mli and Mdl.
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Figure 7.9: Sagdeev potential 
urves for τ = 1/15, f = f∗ ≈ 0.001212, Mli = Mdl ≈
1.06925 (
ontinuous 
urve), giving a double layer of amplitude φdl ≈ 0.328 < φli = 0.572.The dotted and dashed 
urves are for M = Mdl−0.005 and M = Mdl+0.005, respe
tively.In understanding the behaviour of solitons in the region f∗ < f < fp1, we look atFig. 7.10 (left panel) showing Sagdeev potential 
urves for Ma
h numbers 
lose toM = Mli194



7.3. Numeri
al Results and Dis
ussionfor f = 0.003, a value in the range f∗ < f < fp1 (similar to Fig. 7.8, lower right panel).The ion limitation Ψ(φli = M2/2, M) = 0 leads to M = Mli ≃ 1.01911, and therefore
φli = M2

li/2 ≃ 0.5193. In other words, in�nite 
ompression of the ion density at M = Mlio

urs at φ = φli. The right panel of Fig. 7.10 is the same as the one on the left; herewe show the behaviour of Ψ(φ, M) 
lose to the value φ = φli for whi
h the ion density isin�nitely 
ompressed when M = Mli. Clearly, the right panel of Fig. 7.10 shows that for
M ≥ Mli, Ψ(φ, M) does not have a root in the vi
inity of φli. However, as the left panel�gure shows, for M ≥ Mli it is even possible that the density 
an remain �nite su
h thata root(s) of Ψ(φ, M) is (are) en
ountered in the range 0 < φ < φli. A
tually, even at Mli,the ion density ni(φ) remains �nite provided φ < φli, and is 
omplex for φ > φli. Thus,for the value of f = 0.003, a positive double layer o

urs for M = Mdl ≃ 1.3458 > Mli,with amplitude φdl ≃ 0.2334. As seen from Fig 7.10, when M = Mli we get a soliton(�rst root of Ψ(φ, M) 
lose to the origin) of amplitude φ0 ≈ 0.09 ≪ φli. More roots of
Ψ(φ, M) 
lose to the origin in the interval 0 < φ < φli 
an also be obtained as M in
reasesbeyond Mli, leading to solitons, until a double layer, with amplitude φdl ≃ 0.2334 < φli,is en
ountered. These roots are shown in Table. 7.1. Beyond the double layer, Ψ(φ, M)has no roots, thus solitons in the range f∗ < f < fp1 are limited by double layers, and notby the ion limitation 
onstraint; They are �KdV-like� (have amplitudes that go to zero as
M approa
hes Ms), and lie outside the 
oexisten
e region (fp2 < f < fn). Note that fp1exists only for τ in the range given, approximately by τc3 ≃ 0.0394 < τ < τc2 ≃ 0.075. Inthis range we get the same behaviour of positive solitons as des
ribed in Fig. 7.8 (lowerpanel) and Fig. 7.10. For τ < τc3, positive solitons that exist for f < fc1 are limited by theo

urren
e of positive double layers; positive solitons limited by the ion limit 
onstrainto

ur for fp2 < f < 1, and only negative solitons exist for fc1 < f < fp2. The 
ase for
τ < τc3 is dis
ussed below, where we 
onsider τ = 1/30 and τ = 1/100.Case II: τ = 1/30 and τ = 1/100In the upper left panels of Figs. 7.11 and 7.12 we show plots of the variation of Mand amplitude φ with f for both negative and positive solitons. Negative solitons arebounded by double layers (red dotted 
urve labeled Mdl) and the size of the amplitudeof the negative double layers is indi
ated by the red dot-dashed 
urve (labeled |φdl| in195
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Figure 7.10: Left panel: Sagdeev potential 
urves for τ = 1/15, f = 0.003, lying between
f∗ and fp1, for Ma
h numbers very 
lose to Mli ≈ 1.019, the value of M at whi
h ni(φ) isin�nitely 
ompressed. Values of M used are: M = Mli − 0.005 (dotted 
urve), M = Mli(
ontinuous 
urve), M = Mli + 0.005 (dashed 
urve), M = Mli +0.01 (dot-dashed 
urve),
M = Mdl ≈ 1.03458 (long dashed 
urve) and M = Mdl+0.005 (short dashed 
urve). Rightpanel: Similar to left panel, now showing the behaviour of Ψ(φ, M) around φ = φli.

M φ01 φ∗

02 φ∗

03

Mli − 0.010 0.039 0.373 0.508
Mli − 0.005 0.062 0.356 0.514
Mli ≈ 1.019 0.086 0.338 xx
Mli + 0.005 0.113 0.318 xx
Mli + 0.010 0.146 0.292 xx
Mdl ≈ 1.035 0.233 0.233 xx
Mdl + 0.005 xx xx xxTable 7.1: Table showing roots (φ0) of Ψ(φ, M) (all below φli ≈ 0.52) for values of M 
loseto Mli, the Ma
h number 
orresponding to the ion limit, obtained from Ψ(M2/2, M) = 0.Roots with an asterisk are super�uous (ina

essible in the 
ase of solitons as the soliton
onditions are not satis�ed beyond the �rst root, φ01), and xx implies that the root doesnot exist. Other parameters are τ = 1/15 and f = 0.003, lying in the range f∗ < f < fp1.Fig. 7.11 and 0.1|φdl| in Fig. 7.12, respe
tively). In other words, for a parti
ular densityratio f , negative solitons will have amplitudes less than φdl. Similarly, positive potentialsolitons (limited by the ions) are bounded by the 
ontinuous blue 
urve (labeled Mli) andthey have amplitudes less that φli (dot-dashed blue 
urve).The upper right panel plots in Figs. 7.11 and 7.12 are analogous to Fig. 7.3 (rightpanel), showing the amplitudes at M = Ms. For 
larity, the negative potential amplitudeat Ms for τ = 1/100 in Fig. 7.12 is suppressed (i.e., the a
tual amplitude is 10 times whatis shown on the graph).We also point out that as we redu
e τ to as low as τ = 1/30 [Fig. 7.11 (upper)℄ or196



7.3. Numeri
al Results and Dis
ussionfurther to τ = 1/100 (as in Fig. 7.12), fc1 lies very 
lose to f = 0, and therefore 
an not bedi�erentiated from f = 0 as the range [0, fc1℄ be
omes negligibly small, for example, seethe top panels of Fig. 7.11 and 7.12. Below fc1, only positive potential solitons (limitedby double layers) are supported. Their existen
e domains for τ = 1/30 and τ = 1/100 are
learly shown in Figs. 7.11 and 7.12 [lower panels (left)℄, respe
tively, and the asso
iateddouble layer amplitudes are shown in the graphs on the right of the lower panels. As wasthe 
ase with τ = 1/15, positive potential solitons do not o

ur for the full range of f(from 0 to 1).Another observation from Figs. 7.11 and 7.12 is that as we redu
e τ the Ma
h numberat whi
h negative double layers o

ur (along the dotted red 
urves) in
reases, implyingthat the amplitude of the double layer, for parti
ular density ratio f , also in
reases. Forinstan
e, with f = 0.3 the amplitude in
reases from |φdl| = 2.9 (τ = 1/15) to |φdl| = 6.5(τ = 1/30) and |φdl| = 25 (τ = 1/100). Thus we 
an say that a plasma with twotemperature ele
tron 
omponents, with a minimal 
ontribution of 
ool ele
tron densitysupports negative potential solitons with very large amplitudes, in addition to positivesolitons limited by the ions. As 
an be seen in Fig. 7.11 and 7.12 (upper right panels),negative solitons at M = Ms are several units large.When τ = 0, negative double layers dis
ussed for the 
ases 0 < τ < τc1 are no longersupported, and thus negative solitons exist for unbounded Ma
h numbers. In addition,positive potential solitons, bounded by the ion limit φ < φli = M2/2, exist for fp2 < f < 1,and no positive potential double layers exist. This is due to the fa
t that for τ → 0, fc1,the lower value of fc goes to zero, as one may see from Eq. (7.8). However, as we mentionedearlier, this is an unlikely physi
al situation sin
e the model breaks down as τ → 0.
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Figure 7.11: Upper left panel: Existen
e domain of ion-a
ousti
 solitons for τ = 1/30.Between fp2 ≈ 0.1115 and fn ≈ 0.59, both positive and negative potential solitons aresupported; between fc1 ≈ 0.0028 and fp2, only negative potential solitons are supported,and elsewhere (f < fc1 and f > fn), only positive potential solitons (limited by doublelayers) are supported. Upper right panel: Soliton amplitude variation at M = Ms with f inthe region of 
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lose to fc1. For β = 1/30, fc2 ≈ 0.2846.
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7. Ion-A
ousti
 Solitary Waves in a Plasma With Two-Temperature Ele
trons7.4 Con
lusions and Chapter SummaryIn this work we have revisited in detail the existen
e of ion-a
ousti
 solitary waves ina plasma with two isothermal ele
tron 
omponents. Our results have 
on�rmed a numberof earlier results [Buti, 1980; Nishihara and Tajiri, 1981; Baboolal et al., 1990; Ghosh etal., 1996; Verheest et al., 2006℄ and have also gone far beyond them.We have plotted the 
urve Ψ′′′(0,Ms) = 0 in the spa
e of 
ool density fra
tion and tem-perature ratio (i.e., f − τ), and shown that it agrees with an earlier representation [Nishi-hara and Tajiri, 1981℄, found by other means. At �xed τ < τc1 ≃ 0.10102, it yields two
riti
al values of f (fc1 and fc2) whi
h merge at τ = τc1.Above τc1, only positive potential solitons (whi
h are limited by the ion density 
on-straint) are supported, as for a simple ele
tron-ion plasma, and no positive double layersexist. These positive solitons are �KdV-like� in that their amplitudes tend to zero as Mapproa
hes Ms.For 0 < τ < τc1 both negative and positive potential double layers may o

ur overlimited ranges of 
ool ele
tron density fra
tion f . The former are well-known [Baboolalet al., 1990; Ghosh et al., 1996℄, and Verheest et al. [2006℄ previously identi�ed a single
ase of the latter. Our 
al
ulations show that positive double layers exist over a narrowrange f < fc1, while negative double layers o

ur for fc1 < f < fn, below a 
ut-o�,
fn. Surprisingly, solitons may be obtained even beyond the positive double layer, i.e., for
M > Mdl, a

ompanied by a jump in amplitude. Thus, depending on the temperatureratio τ = Tc/Th, we may, for low f , get two sets of positive solitons, one bounded by thedouble layer limit, the other by the usual ion limit 
ondition [Baboolal et al., 1990℄. Asopposed to the usual bell-shape of the well-known positive solitons, the latter set have asharply-pointed pro�le.If τc2 ≃ 0.075 < τ < τc1 then fc1 also a
ts as the lower f limit of the �
oexisten
e� regionin whi
h solitons of both polarities may exist. However, for τ < τc2, positive solitons areno longer supported for all f , and an interval fc1 < f < fp2 is found where only negativepotential solitons and double layers are obtained. As a result, the �
oexisten
e� regionbe
omes fp2 < f < fn.The existen
e of solitons even after a double layer has o

urred depends on the position200



7.4. Con
lusions and Chapter Summaryof fp1, where here we de�ne fp1 as the value of f (< fc1) at whi
h M = Ms satis�es
Ψ(M2/2, M) = 0. Also, fp1 exists only for τ in the range τc3 ≃ 0.0394 < τ < τc2. For
τ < τc3, and f < fc1, positive solitons are limited by the o

urren
e of positive doublelayers; when fp2 < f < 1, positive solitons are limited by the ion limit 
onstraint, and onlynegative solitons exist for fc1 < f < fp2.Provided fc (in this 
ase, fc2) lies in the region of existen
e of solitons of both polarities(fp2 < f < fn), we observe the following:(i) Contrary to the 
onventional wisdom that solitons are super-a
ousti
 (M > Ms), wehave found solitons at the 
riti
al Ma
h number Ms, thus showing that they 
an propagateat the ion-a
ousti
 speed.(ii) For f < fc2 positive potential solitons have �nite amplitude at Ms while negativepotential solitons have zero amplitude at Ms, as is the 
ase for �KdV-like� solitons. Thenegative sign asso
iated with Ψ′′′(0, Ms) for f < fc2 
orresponds to the sign of the KdV-likesolitons. Similarly, for f > fc, the negative solitons have �nite amplitudes atMs (�nonKdV-like�) while the positive solitons are now KdV-like. The positive sign of Ψ′′′(0, Ms) for
f > fc2 thus 
orresponds to the sign of these positive potential (KdV-like) solitons near
Ms. Hen
e, for fp2 < f < fc2 one �nds KdV-like negative soliton potentials a

ompaniedby nonKdV-like positive solitons, and vi
e versa for fn > f > fc2.(iii) The amplitudes of the nonKdV-like solitons [i.e., those not 
orresponding to the signof Ψ′′′(0, Ms)℄ in
rease monotoni
ally with |f − fc|, but vanish at f = fc2. For smallvalues of τ , the negative nonKdV-like solitons develop large amplitudes at M = Ms when
f → fn. In addition, the largest value of Mdl in
reases rapidly with de
reasing τ . Hen
ethe normalized φdl in
reases rapidly and 
an rea
h several tens.(iv) Positive solitons are limited from above by the requirement that φ < M2/2 so that theion density remains real, and the negative solitons are limited by the o

urren
e of doublelayers.If one de�nes the density ratio f in terms of the equilibrium density of the hot ele
tron
omponent Nh0/Ne0 instead of the 
ool ele
tron 
omponent Nc0/Ne0 (as we have usedhere), then the transformation f → (1 − f) in Eq. (7.8) gives the appropriate range of fwhere the results dis
ussed here apply (see Chapter 5).We argue that the existen
e (and position) of a 
riti
al parameter, in this 
ase, 
riti
al201
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ousti
 Solitary Waves in a Plasma With Two-Temperature Ele
tronsdensity ratio, may give a hint on the polarity of solitons in a plasma model.
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CHAPTER 8
General Summary and Con
lusions

In this thesis, we have investigated linear and nonlinear a
ousti
 waves in various plasmamodels, whi
h may o

ur in spa
e. In the 
ase of linear a
ousti
 waves we have used akineti
 theoreti
al approa
h in the study of ele
tron-a
ousti
 waves in bi-kappa plasmas,with emphasis on Saturn's magnetosphere. The rest of the thesis deals with a
ousti
solitons and double layers in a variety of relevant three-
omponent plasmas. In all 
aseswe have used the Sagdeev pseudopotential (arbitrary amplitude) approa
h, while in some
hapters we have also 
arried out expansions to �nd small amplitude solutions, along thelines of the KdV solutions.In Chap. 1, we have given a detailed des
ription of kappa distributions and their majorfeatures in Se
. 1.1. This se
tion also highlights plasma environments where parti
leswhose velo
ity distribution fun
tions may be well des
ribed by kappa distributions havebeen reported to exist. We have also given a detailed dis
ussion of dusty plasmas, solitarystru
tures (solitons and double layers), and various methods that we have used to studythese stru
tures, in Se
. 1.2.8.1 Linear Ele
tron-A
ousti
 WavesUsing a kineti
 theoreti
al approa
h, we have 
arried out a parameter survey of the dis-persion and damping of ele
tron-a
ousti
 waves (EAW) and ele
tron plasma waves (EPW)203



8. General Summary and Con
lusionsrelevant to the magnetosphere of Saturn, in whi
h the ele
tron distribution is well �ttedby a superposition of two kappa distributions at di�erent temperatures and kappa values.Our investigations for spe
i�
 regions of the magnetosphere have shown that:� Weakly damped ele
tron-a
ousti
 waves may o

ur in Saturn's outer magnetospherearound 13 − 18RS where (i) the densities of the hot and 
ool ele
tron populationsare of about the same order of magnitude; (ii) the temperatures di�er by about twoorders of magnitude, that is Th/Tc ∼ 100, and (iii) the kappa index values are moreor less 
onstant around κc ≃ 2 and κh ≃ 4.� There is strong 
oupling between the EAW and the EPW in the intermediate magne-tosphere (9RS < R < 13RS) with potentially observable waves that are EAW-like.This pattern is also obtained, for some 
ases, in the R > 13RS region when thedensity ratio nh0/ne0 is very small sin
e the 
ool ele
tron 
omponent density is veryhigh 
ompared to the hot ele
tron 
omponent density.� EAWs are strongly damped in the inner magnetosphere (R < 9RS); only the EPWis weakly damped. This may be attributed to the fa
t that the density ratio is verysmall. Thus, our results show that even in the presen
e of a se
ond non-Maxwellianele
tron 
omponent, it is the dependen
e of the damping rate on parameters su
h asthe hot-to-
ool ele
tron temperature ratio β = Th/Tc and the fra
tional hot ele
trondensity f = nh0/ne0 that determines the range in wavenumber (in terms of kλDc)over whi
h EAWs are weakly damped.8.2 Nonlinear A
ousti
 WavesIn this thesis we have introdu
ed a generalized density relation
Ns(ϕ) = Ns0

[

1 +

(

1

κs − 3/2

)

qs ϕ

KBTs

]

−(κs−1/2)for kappa distribution fun
tions, whi
h, in the limit κ → ∞, redu
es to the Maxwelliandensity fun
tion
Ns(ϕ) = Ns0 exp(−qs ϕ

KBTs

)

.204



8.2. Nonlinear A
ousti
 WavesThis density relation has been applied to various plasma models, in
luding dust a
ousti
waves/solitons with κ-distributed ions and/or ele
trons (dis
ussed in Chap. 3), dust ion-a
ousti
 solitons (dis
ussed in Chap. 4), and ion-a
ousti
 solitons in bi-kappa plasmas �with both the 
ool and hot ele
trons being kappa distributed (dis
ussed in Chap. 5).DA Solitons: In Chapter 3 we investigated the existen
e of dust a
ousti
 (DA) solitonsin dusty plasmas with κ-distributed ions and/or ele
trons. We have used both the Sagdeev(pseudopotential) approa
h for the arbitrary amplitude solitary waves and the expandedSagdeev potential approa
h, equivalent to the redu
tive perturbation te
hnique, for thesmall amplitude solitary waves. A double layer relation was derived for the small amplitudesolitary waves. However, in pra
ti
e it was found that double layers are not supported bythe plasma model.We found that when the dust is negative, only negative potential solitons exist, andredu
ing the spe
tral indi
es (κe, κi) only a�e
ts the existen
e domains of the solitonsquantitatively.In the presen
e of positively 
harged dust, only positive potential solitons are found,but the ion to ele
tron temperature ratio has signi�
ant quantitative e�e
ts: parti
ularlyfor Te ≫ Ti the results are very di�erent from those for Te = Ti. In both 
ases we �nd thatthe soliton polarity agrees with the sign of the 
harge of the 
old, inertial spe
ies (dust),as observed in a number of other plasma models, albeit not universally so.Our results are qualitatively similar to those obtained for dusty plasmas with Boltz-mann or polytropi
 ele
trons and ions. However, there are quantitative di�eren
es, arisingfrom the fun
tional form of the number density for a κ-distribution as in Eq. (3.2).Although the κ-distribution is nonthermal, the results reveal important di�eren
es fromthose found when one of the hot plasma spe
ies has a di�erent nonthermal distribution,viz., the Cairns distribution [Verheest and Pillay, 2008a,b℄. In the latter, it was shownthat for negative (positive) dust, positive (negative) solitons 
ould also be found, limitedby double layers, for su�
ient nonthermality of the ions (ele
trons) and su�
iently lowele
tron (ion) density. For nonthermal ele
trons (ions) only negative (positive) potentialsolitons were found, as in our 
ase. This di�eren
e in results 
ould be due to the fa
t thatfor the κ-distribution the main 
hange from a Maxwellian lies in the `tail' region, unlike205



8. General Summary and Con
lusionsthe 
ase of the Cairns distribution.DIA Solitons: In Chapter 4 we used the pseudopotential approa
h in studying arbitraryamplitude dust ion-a
ousti
 solitons in a plasma of positive ions, κ-distributed ele
tronsand 
harged dust grains. This was an extension of the work of Bharuthram and Shukla[1992℄, who studied a plasma model 
onsisting of Boltzmann-distributed ele
trons, 
oldions, and immobile negative dust in the bulk of the paper, and then presented a fewresults for mobile negative dust. In the 
ase of small amplitude waves/solitons, we usedthe redu
tive perturbation te
hnique, where we derived the asso
iated KdV and mKdVequations. For these small amplitude solitons, the mKdV approa
h was only valid forplasma situations where the KdV solutions are unattainable.For the 
ase of negative dust, we have shown that for all κ > 3/2 the model supports bothpositive and negative potential solitons in a spe
i�
 range of fra
tional ele
tron density,where the Ma
h number for positive (negative) potential solitons is limited from above bythe 
ondition at whi
h the ion density be
omes 
omplex (the dust is in�nitely 
ompressed).This agrees with the analysis of Verheest et al. [2005℄ for polytropi
 ele
trons, where itwas found that both negative and positive potential dust ion-a
ousti
 solitons may existin a dusty plasma with negatively 
harged dust, positively 
harged ions and polytropi
ele
trons.Positive potential DIA solitons experien
e a low-f 
uto� (fp) whi
h de
reases within
reasing κ (i.e., with a de
rease in ex
ess superthermal parti
les), and hen
e this in
reasesthe range in (f, M) spa
e over whi
h positive solitons exist. Allowing for �nite dust grainmobility has little or no e�e
t on the existen
e domain for positive solitons; the smallerthe value of z, that is the heavier the dust parti
les (assuming 
onstant dust 
harge), thelarger the domain in (f, M) spa
e over whi
h negative potential solitons 
an be obtained.Also, the variation of the ion temperature (through σ) has a weak e�e
t of in
reasing thesize of the existen
e domain as σ is in
reased. That is, the warmer the ions (the largerthe value of σ) the larger the existen
e domain for solitons, with the region of existen
ede
reasing as κ de
reases.Negative potential solitons do not exist above a κ-independent 
uto� fn lying approx-imately between 0.9− 1, the exa
t value of whi
h depends signi�
antly on the magnitude206



8.2. Nonlinear A
ousti
 Wavesof the dust mobility fa
tor z = Zdmi/md. They are e�e
tively not subje
t to an upperlimit in M as z ≪ 1 implies that φℓd ≫ 1, and thus negative solitons may be very large.A surprising result o

urs over the range of fra
tional ele
tron density f in whi
hsolitons of both polarities are supported. Here, �nite amplitude solitary stru
tures existeven at the DIA speed � behaviour whi
h 
ontradi
ts KdV theory. A similar result wasfound re
ently in another three-
omponent plasma [Verheest and Hellberg, 2010℄, where,as here, the phenomenon is asso
iated with a point of in�exion of the pseudopotential at
φ = 0 and M = Ms, rather than the usual maximum. The sign of Ψ′′′(φ = 0;M = Ms; f)then designates the polarity of the KdV-like soliton that vanishes at M = Ms.A 
riti
al role is played by fc, the value of f at whi
h the KdV 
oe�
ient A = 0, whi
halso satis�es the 
onstraint Ψ′′′(φ = 0;M = Ms; fc) = 0. In parti
ular, as f is varied,solitons of ea
h polarity swit
h at f = fc from a KdV-like form to nonKdV-like behaviour.For fp < f < fc, positive solitons at M = Ms have �nite amplitude, in
reasing in sizewith |f − fc| as f approa
hes fp, while negative solitons have zero magnitude at M = Ms,as expe
ted from KdV theory. This situation reverses in polarity for solitons found for
fc < f < fn.In a plasma with positive dust grains, only positive potential (�KdV-like�) solitons aresupported by the plasma model, with the upper limit onM provided by in�nite 
ompressionof the ions, and the positively 
harged dust parti
les only 
ontribute in neutralizing theele
trons in the ba
kground. The Maxwellian 
ase agrees with earlier results, using the�uid dynami
 paradigm with polytropi
 ele
trons [Baluku et al., 2008℄. De
reasing κ leadsto small redu
tions in both the a

essible M and the existen
e range in M . The dustyplasma model with positive dust is similar to a two 
omponent ion-ele
tron plasma, withmodi�
ations to the dynami
s due to the presen
e of weakly mobile dust. The results arereminis
ent of those found for ion-a
ousti
 solitons in a two-ion plasma [M
Kenzie et al.,2005℄, but for a mu
h heavier se
ond �positive ion�.Double Kappa IAS: In Chapter 5 we 
onsidered a plasma model 
onsisting of warminertial �uid ions and two (
ool and hot) ele
tron 
omponents, that are both kappa dis-tributed, as found in Saturn's magnetosphere.The main features of this work are: 207



8. General Summary and Con
lusions(i) Both 
ompressive (φ > 0) and rarefa
tive (φ < 0) solitons 
an be supported by themodel. Here, 
ompressive (rarefa
tive) solitons have a hump (dip) in the density as wellas the ele
trostati
 potential.(ii) The e�e
t of spe
tral index κ on the existen
e domain of solitons (or double layers)was that, 
ompared to high values of kappa (whi
h represent Maxwellian parti
les), lowkappa values, whi
h indi
ate in
reased superthermal parti
les in the high energy tail ofthe distribution, redu
e the existen
e domain in the parameter spa
e of (f,M) over whi
h
ompressive solitons or both 
ompressive and rarefa
tive solitons 
an exist.(iii) For plasma 
on�gurations that support the existen
e of both hump (φ > 0) and dip(φ < 0) solitons, we found that there exists a 
riti
al density ratio, fc at whi
h both these
ond and third derivatives of the Sagdeev potential vanish, when evaluated at the originfor the 
riti
al Ma
h number Ms. In the vi
inity of fc, solitons of a polarity opposite tothe sign of Ψ′′′(0,Ms) remained �nite (nonzero) at Ms, a result that is 
ontrary to theKorteweg-de Vries des
ription. These solitons whi
h exist at Ms 
an therefore propagateat a velo
ity equivalent to the phase velo
ity of the wave. This result means that theusually quoted Sagdeev requirement Ψ′′(0,M) < 0 needs to be 
hanged to Ψ′′(0,M) ≤ 0.(iv) Comparison between the perturbation theory and the large amplitude te
hniquesshowed that whereas the former approa
h seems to be a

urate for very small amplitudes,espe
ially for Ma
h numbers 
lose to Ms, that is, for stru
tures that move with velo
ities
lose to the phase velo
ity of the wave, the method be
omes less reliable for velo
ities farfrom the phase velo
ity. In addition, it 
annot represent the se
ond (nonKdV-like) solitonthat has �nite amplitude at M = Ms, when both polarities are supported. Thus the fullynonlinear (arbitrary amplitude) pseudopotential approa
h be
omes indispensable.(v) The large rarefa
tive potential solitons (φ < 0) reported for this plasma model maybe attributed to the fa
t that the small but �nite ele
tron mass, whi
h is a measure ofthe ele
tron inertia, is negle
ted in the ele
tron density expression. If the ele
tron inertiadue to the �nite ele
tron mass were in
luded, su
h a s
heme would require obtaining theele
tron density expression from the �uid equations of motion, with the asso
iated kappadistributed pressure term in
orporated. The pressure expression asso
iated with a kappadistribution fun
tion has been derived in Appendix A.1.2. However, this approa
h has notbeen applied in this work, but shall be 
onsidered as an extension to getting 
omprehensive208



8.2. Nonlinear A
ousti
 Wavesresults for this model in the foreseeable feature.IAS in Ele
tron-Positron-Ion Plasmas: In Chapter 6 we have 
onsidered a plasma
onsisting of ele
trons, positrons and positive ions. The ele
trons are nonthermally dis-tributed, following a Cairns distribution fun
tion [Cairns et al., 1995℄; the positrons areBoltzmann distributed while the ions are modeled by hydrodynami
 �uid equations. This isan extension of the plasma model dis
ussed by Popel et al. [1995℄ for Boltzmann ele
trons,and is similar to the model dis
ussed by Pakzad [2009℄. In this work we 
on�rm some re-sults obtained by Pakzad [2009℄ and present more new results asso
iated with ion-a
ousti
solitary waves in ele
tron-positron-ion plasmas where the ele
trons are Cairns distributed.We have pointed out that low values of β are appropriate for the use of the Cairnsdistribution for nonthermal parti
les. Values of β > 4/7 (see e.g., Verheest and Pillay[2008a℄) result in the nonthermal parti
le distribution being deformed (forming wings) sothat it may not appropriately represent a stable nonthermal distribution. In su
h 
asesanother form of nonthermal distribution, su
h as a kappa distribution, may be used instead.Though Pakzad [2009℄ reported only the existen
e of positive potential solitons in themodel under investigation, we have shown that in addition, negative potential solitons anddouble layers 
an also be supported, though for a limited range in the fra
tional positrondensity p.In 
ontrast to the usual assumption that solitons are expli
itly super-a
ousti
, o

urringfor Ma
h numbers M > Ms, we have also obtained solitons at Ms. This implies thatthese solitons 
an propagate at the a
ousti
 phase speed. This observation o

urs onlyin the region of �
oexisten
e�, where both positive and negative potential solitons may besupported by the same plasma parameter values.In this work, we have obtained 
riti
al values of p (denoted pc) at whi
h Ψ′′′(φ, M) = 0for φ = 0 and M = Ms. If pc lies in the region where solitons of both polarity o

ur for thesame plasma parameters, then for p < pc one gets negative potential �KdV-like� solitonsand positive potential �nonKdV like� solitons at Ms. The reverse polarities are found for
p > pc.Double Boltzmann IAS: In Chapter 7 we 
onsider ion-a
ousti
 solitons in two tem-perature ele
tron plasmas, where the ele
trons are Boltzmann-distributed. Su
h a plasma209



8. General Summary and Con
lusionsmodel has been studied in the past, with negative potential solitons and double layersreported to be supported in addition to positive potential solitons. In this work we have
arried out further investigations and showed that positive potential double layers 
an formbelow a 
riti
al density ratio, asso
iated with the third derivative of the Sagdeev poten-tial evaluated at the origin for the a
ousti
 phase velo
ity of the wave. We also foundout that for density ratios that support positive double layers, solitons were also reportedbeyond the double layers, depending on the 
ool-to-hot ele
tron temperature ratio. This
ontradi
ts the usual belief, based on simpler forms of the Sagdeev potential, that doublelayers always represent a Ma
h number limit for solitons. As we have already indi
ated in
hapters 4 and 5, when both polarities 
an be supported, solitary stru
tures 
an propagateat the a
ousti
 phase velo
ity of the wave, 
ontrary to a KdV pres
riptionAt �xed τ < τc1 ≃ 0.10102, Ψ′′′(0,Ms) = 0 yields two 
riti
al values of f (fc1 and fc2)whi
h merge at τ = τc1.Above τc1, only positive potential solitons (whi
h are limited by the ion density 
on-straint) are supported, as for a simple ele
tron-ion plasma, and no positive double layersexist. These positive solitons are �KdV-like� in that their amplitudes tend to zero as Mapproa
hes Ms.For 0 < τ < τc1 both negative and positive potential double layers may o

ur overlimited ranges of 
ool ele
tron density fra
tion f . The former are well-known [Baboolalet al., 1990; Ghosh et al., 1996℄, and Verheest et al. [2006℄ previously identi�ed a single
ase of the latter. Our 
al
ulations show that positive double layers exist over a narrowrange f < fc1, while negative double layers o

ur for fc1 < f < fn, below a 
ut-o�,
fn. Surprisingly, solitons may be obtained even beyond the positive double layer, i.e., for
M > Mdl, a

ompanied by a jump in amplitude. Thus, depending on the temperatureratio τ = Tc/Th, we may, for low f , get two sets of positive solitons, one bounded by thedouble layer limit, the other by the usual ion limit 
ondition [Baboolal et al., 1990℄. Asopposed to the usual bell-shape of the well-known positive solitons, the latter set have asharply-pointed pro�le.For τc2 ≃ 0.075 < τ < τc1, fc1 also a
ts as the lower f limit of the �
oexisten
e� regionin whi
h solitons of both polarities may exist. However, for τ < τc2, positive solitons areno longer supported for all f , and an interval fc1 < f < fp2 is found where only negative210



8.2. Nonlinear A
ousti
 Wavespotential solitons and double layers are obtained. Here, fp2 is the value of f (> fc1) atwhi
h M = Ms satis�es Ψ(M2/2, M) = 0.The existen
e of solitons even after a double layer has o

urred depends on the positionof fp1, where here we de�ne fp1 as the value of f (< fc1) at whi
h M = Ms satis�es
Ψ(M2/2, M) = 0. Also, fp1 exists only for τ in the range τc3 ≃ 0.0394 < τ < τc2. For
τ < τc3, and f < fc1, positive solitons are limited by the o

urren
e of positive doublelayers; when fp2 < f < 1, positive solitons are limited by the ion limit 
onstraint, andonly negative solitons exist for fc1 < f < fp2. These results show that the existen
e (andposition) of a 
riti
al parameter, in this 
ase, 
riti
al density ratio, may give a hint on thepolarity of solitons in a plasma model.Finally, we reiterate that in our nonlinear studies of a
ousti
 waves in three-
omponentplasmas we have found two key results with wider reper
ussions. They are:1. The existen
e of �nite amplitude solitons (and double layers) at the a
ousti
 speed,that are thus nonKdV-like, and also lead to a 
hange to the usual Sagdeev 
ondition
Ψ′′(0,M) < 0, whi
h now be
omes Ψ′′(0,M) ≤ 0.2. The existen
e of solitons at Ma
h numbers ex
eeding that at whi
h a double layer o

urs,as opposed to the 
onventional wisdom that double layers always represent an upper Ma
hnumber limit to a sequen
e of solitons.
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APPENDIXA

A.1 Derivation of Density and Pressure for Kappa Distribu-tionsBefore going into the details of deriving the density and pressure expressions followingfrom kappa distribution fun
tions, we �rst introdu
e some spe
ial integrals.A.1.1 Spe
ial Integrals for Kappa DistributionsConsider the integral
I =

∫∫

∞

−∞

(

1 +
v2x + v2y + v2z

καθ2α

)

−(κα+2)

dvz dvy. (A.1)This 
an be written as
I =

∫

∞

−∞

(

1 +
v2x + v2y
καθ2α

)

−(κα+2)
∫

∞

−∞

(

1 +
v2z

καθ2α + v2x + v2y

)−(κα+2)

dvz dvy.Substituting v2z = (καθ
2
α + v2x + v2y)R, where R = R(vz) is a fun
tion of vz, we then have
dvz =

1

2
(καθ

2
α)

1/2

(

1 +
v2x + v2y
καθ2α

)1/2

R−1/2dR.
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A.1. Derivation of Density and Pressure for Kappa DistributionsThus (A.1) be
omes
I = (καθ

2
α)

1/2B (1/2, κα + 3/2)

∫

∞

−∞

(

1 +
v2x + v2y
καθ2α

)

−(κα+3/2)

dvy,

= (καθ
2
α)B (1/2, κα + 3/2)B (1/2, κα + 1)

(

1 +
v2x

καθ2α

)−(κα+1)

,where the Beta fun
tion, B(a, b) is de�ned by [Arfken and Weber, 1995, p. 614℄; [Riley etal., 1998, p. 981℄
B(a, b) =

∫

∞

0
xa−1(1 + x)−(a+b)dx; a, b > 0. (A.2)Using the relations [Arfken and Weber, 1995; Riley et al., 1998℄

B(a, b) =
Γ(a) Γ(b)

Γ(a+ b)
; Γ(α+ 1) = αΓ(α) and Γ(1/2) = π1/2, (A.3)we obtain

I =
πκαθ

2
α

(κα + 1)

(

1 +
v2x

καθ2α

)−(κα+1)

. (A.4)Therefore
∫∫

∞

−∞

(

1 +
v2x + v2y + v2z

καθ2α

)

−(κα+2)

dvz dvy =
πκαθ

2
α

(κα + 1)

(

1 +
v2x

καθ2α

)−(κα+1)

. (A.5)Similarly,
∫∫

∞

−∞

(

1 +
v2x + v2y + v2z

κθ2

)

−(κ+1)

dvz dvy = πθ2
(

1 +
v2x
κθ2

)−κ

. (A.6)A.1.2 Density and Pressure Expressions for Kappa DistributionsWe 
onsider the three dimensional isotropi
 kappa distribution fun
tion Fκ(v), of par-ti
les of mass m and 
harge q in a plasma with ele
trostati
 potential ϕ, given by
Fk(v) = Aκ

(

1 +
v2 + 2qϕ/m

κθ2

)−(κ+1)

=

(

1 +
v2x + v2y + v2z + 2qϕ/m

κθ2

)

−(κ+1)

, (A.7)where
Aκ =

N0

(πκθ2)3/2
Γ(κ+ 1)

Γ(κ− 1/2)
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A.The average number of parti
les per unit volume or simply the number density Nj forspe
ies of type j is given by [Gurnett and Bhatta
harjee, 2005, p.138℄; [Kivelson andRussell, 1995, p.34℄
Nj =

∫∫∫

∞

−∞

Fκ(v)d
3v, where d3v = dvxdvydvz. (A.8)Using the pro
edure in appendix A.1.1 above, the density expression 
an easily be writtenin the form

Nj(ϕ) = Aκ(κθ
2)3/2B(1/2, κ+ 1/2)B(1/2, κ)B(1/2, κ− 1/2)

(

1 +
2qϕ

mκθ2

)

−(κ−1/2)

.(A.9)Upon using Eq. (A.3) and substituting for Aκ we obtain the density of spe
ies j with mass
mj , 
harge qj , spe
tral index κj and initial density Nj0 as

Nj = Nj0

(

1 +
2qjϕ

mjκjθ2j

)

−(κj−1/2)

. (A.10)The pressure asso
iated with a kappa distribution is obtained from the pressure tensor
←→
Ps = [Pij ], given by [Gurnett and Bhatta
harjee, 2005, p.138℄

←→
Ps =

∫

V
ms(v −Us)(v −Us)f(v, r, t)d

3v, (A.11)where Us is the average velo
ity of parti
les of type j, or simply the bulk velo
ity at whi
hthe distribution is peaked. Note that the pressure tensor←→Ps gives the average rate at whi
hmomentum is transported in the i dire
tion a
ross surfa
e j in a frame of referen
e movingat the average velo
ity, Us. In the pressure tensor expression, the term (v−Us)(v−Us)is given by the matrix [Gurnett and Bhatta
harjee, 2005, p.138℄
(v−Us)(v −Us) =













(vx − Usx)(vx − Usx), (vx − Usx)(vy − Usy), (vx − Usx)(vz − Usz)

(vy − Usy)(vx − Usx), (vy − Usy)(vy − Usy), (vy − Usy)(vz − Usz)

(vz − Usz)(vx − Usx), (vz − Usz)(vy − Usy), (vz − Usz)(vz − Usz)













.
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A.1. Derivation of Density and Pressure for Kappa DistributionsThus if the bulk velo
ity is 0 (that is, the distribution fun
tion is peaked at v = 0) thenthe diali
 term gives
(v−Us)(v −Us) =













v2x vxvy vxvz

vyvx v2y vyvz

vzvx vzvy v2z













,and therefore the pressure tensor be
omes
P =













Pxx Pxy Pxz

Pyx Pyy Pyz

Pzx Pzy Pzz













,where the 
omponents of Pij 
an be obtained as des
ribed below. For the distributionde�ned in Eq A.7 we have Pxx/m =
∫∫∫

v2xFκ(v)dvxdvydvz, giving
Pxx

m
= Aκ

∫

∞

−∞

v2x







∫∫

∞

−∞

[

1 +
v2x + v2y + v2z + 2qϕ/m

κθ2

]

−(κ+1)

dvzdvy







dvx.Using Eq. (A.6), the term in 
urly bra
kets is simply πθ2
(

1 +
v2x + 2qϕ/m

κθ2

)−κ, and thus
Pxx

m
= πθ2Aκ

(

1 +
2qϕ/m

κθ2

)

−κ ∫ ∞

−∞

v2x

(

1 +
v2x

κθ2 + 2qϕ/m

)−κ

dvx,whi
h simpli�es to
Pxx

m
= π(θ2)3/2AκB(3/2, κ− 3/2)

(

1 +
2qϕ/m

κθ2

)

−(κ−3/2)

=
N0θ

2

2

(

κ

κ− 3/2

)(

1 +
2qϕ/m

κθ2

)

−(κ−3/2)

.Substituting θ2 =

(

κ− 3/2

κ

)(

2KBT

m

) we then obtain
Pxx = N0KBT

(

1 +
1

κ− 3/2

qϕ

KBT

)

−(κ−3/2) (A.12)
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A.as the pressure of parti
les propagating in one dimension. Similarly, Pyy = Pzz = Pxx.Note that in the limit κ → ∞, Pxx = N0KBT exp[−qϕ/KBT ], thus if the parti
les havezero potential and pressure P0 in the unperturbed equilibrium state , then Pxx(ϕ→ 0) =

P0 = N0KBT , whi
h is the ideal gas pressure equation for Maxwellian parti
les. However,
Pij , for i 6= j, may take a di�erent form and will not be 
onsidered here.
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APPENDIXB

B.1 Dispersion Relation of Ele
tron-A
ousti
 Waves from Lin-ear Kineti
 Theory.In deriving the appropriate dispersion relation for ele
tron-a
ousti
 waves dis
ussed inChap. 2 we use the assumption that on the ele
tron-a
ousti
 wave time s
ale, Vti ≪ Vtc ≪

ω/k ≪ Vth, and with ξα ∝ ω/(kVtα), it follows that |ξi|, |ξc| ≫ 1, su
h that we 
an usethe asymptoti
 expansion of Z(κα, ξα) for the ions and 
ool ele
trons. Similarly, |ξh| ≪ 1,leading to the need to use the power series expansion of Z(κα, ξα) for hot ele
trons.As the ions are Maxwellian, Z ′(κi, ξi) → Z ′(ξ) in the limit κi → ∞, where Z ′(ξ) isthe derivative, with respe
t to the argument ξ, of the usual plasma dispersion fun
tion ofFried and Conte (see [Krall and Trivelpie
e, 1989℄).The asymptoti
 expression for Z ′(ξ) (large ξ, |ξ−1| ≪ 1) be
omes (see [Brambilla, 1989,pp.107�108℄; [Swanson, 1989, pp.375�376℄)
Z ′(ξ) ∼ 1

ξ2
+

3

2ξ4
+ · · · − σ(2i

√
π)ξ e−ξ2 , (B.1)
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B.where
σ =























0 for Im(ξ) > 0,

1 for Im(ξ) = 0,

2 for Im(ξ) < 0.

(B.2)Thus for the ions with |ξi| ≫ 1, we negle
t terms of order higher than 0(ξ−2) in Eq. (B.1),giving
Z ′(ξi) ∼

(

2k2V 2
ti

ω2

)

− 2i σ

√

π

2

(

ω

kVti

)

exp

(

− ω2

2k2V 2
ti

)

. (B.3)For su�
iently small and large argument ξ [Hellberg and Ma
e, 2002℄, the power seriesand asymptoti
 expansion of Z(κα, ξα) are, respe
tively, given by
Z(κα, ξα) =

i π1/2Γ(κ)

κ1/2Γ(κ− 1
2)

(κ)κ

(κ+ ξ2)κ
− 2

(

κ− 1
2

κ

)

ξ +
4

3

(κ+ 1
2)(κ− 1

2)

κ2
ξ3 + · · · , (B.4)and

Z(κα, ξα) =
π1/2κκ−1/2Γ(κ)

Γ(κ− 1
2)

[i− tan(κπ)]
(κ+ ξ2)κ

−
(

1

ξ
+

κ

2κ− 3

1

ξ3
+ · · ·

)

. (B.5)Note that Eq. (B.5) follows from Eq. (55) of Hellberg and Ma
e [2002℄, and 
orre
ts theirEq. (56).In the 
ase of hot ele
trons, negle
ting terms of order higher than 0(ξ2h) for ξh ≪ 1,Eq. (B.4) gives
Z ′(κh, ξh) = −2

(

κh − 1/2

κh

)

− 2i
√
π Γ(κh)√

κh Γ(κh − 1/2)

ω

kθh

(

1 +
ω2

κh k2θ
2
h

)−(κh+1)

. (B.6)Similarly for the 
ool ele
trons, the asymptoti
 expansion in Eq. (B.5) gives
Z ′(κc, ξc) ∼

−2√π Γ(κc) ξc√
κc Γ(κc − 1/2)

(i− tanκcπ)(1 + ξ2c/κc)
−(κc+1) +

1

ξ2c

[

1 +
3κc

2κc − 3

1

ξ2c

]

.
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B.1. Dispersion Relation of Ele
tron-A
ousti
 Waves from Linear Kineti
 Theory.With |ξc| ≫ 1, we take the approximation ξc(1 + ξ2c/κc)
−(κc+1) ≈ κκc+1

c /ξ2κc+1
c , giving

Z ′(κc, ξc)∼
k2θ2c
ω2

[

1 +
3κc

2κc − 3

k2θ2c
ω2

]

−2
√
π κ

(κc+1/2)
c Γ(κc)

Γ(κc − 1/2)
(i− tanκcπ)( ω

kθc

)

−(2κc+1)

. (B.7)Substitution of equations (B.3), (B.6) and (B.7) into Eq. (2.2) gives
D(k, ω) =

(

1 +
1

k2λ2
κh

)

−
ω2
pc

ω2

(

1 +
ω2
pi

ω2
pc

)

− 3k2λ2
Dc

ω4
pc

ω4

−
√
π κ

(κc+1/2)
c Γ(κc + 1)

Γ(κc + 1/2)

(tan κcπ
k2λ2

κc

) (

ω

kθc

)

−(2κc+1)

+ i

{√
π κ

(κc+1/2)
c Γ(κc + 1)

Γ(κc + 1/2)

1

k2λ2
κc

(

ω

kθc

)

−(2κc+1)

+

√
π
√
κh Γ(κh)

Γ(κh + 1/2)

(

ω

k3λ2
κhθh

)(

1 +
ω2

κh k2θ
2
h

)−(κh+1)

+ σ

√

π

2

1

k2λ2
Di

(

ω

kVth, i

)

exp

(

− ω2

2k2V 2
ti

)

}

= 0, (B.8)where λκα = [(κα − 3/2)/(κα − 1/2)]1/2 λDα, with λDα =
(

ε0KBTα/n0αe
2
)1/2 being theDebye length of spe
ies α. The parameter λκα is the appropriate Debye length in a kappaplasma [Bryant, 1996; Ma
e et al., 1998℄, whi
h redu
es to λDα in the limit κα →∞.In the 
ase of weak damping we 
an expand D(k, ω) about ωr, where ω = ωr + iγ.Negle
ting terms of order (ω − ωr)

2 we obtain [Krall and Trivelpie
e, 1989, p.389℄
D(k, ω) ≃ D(k, ωr) + i γ

∂D(k, ωr)

∂ωr
. (B.9)However, D(k, ωr) is itself a 
omplex quantity (see Eq. (B.8)). Thus it 
an be written inthe form

D(k, ωr) = Dr(k, ωr) + i Di(k, ωr), (B.10)
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B.where
Dr(k, ωr) =

(

1 +
1

k2λ2
κh

)

−
ω2
pc

ω2
r

(

1 +
ω2
pi

ω2
pc

)

− 3k2λ2
Dc

ω4
pc

ω4
r

−
√
π κ

(κc+1/2)
c Γ(κc + 1)

Γ(κc + 1/2)

(tan κcπ
k2λ2

κc

) (

ωr

kθc

)

−(2κc+1) and (B.11)
Di(k, ωr) =

√
π κ

(κc+1/2)
c Γ(κc + 1)

Γ(κc + 1/2)

1

k2λ2
κc

(

ωr

kθc

)

−(2κc+1)

+

√
π
√
κh Γ(κh)

Γ(κh + 1/2)

(

ωr

k3λ2
κhθh

)(

1 +
ω2
r

κh k2θ
2
h

)−(κh+1)

+σ

√

π

2

1

k2λ2
Di

(

ωr

kVti

)

exp

(

− ω2
r

2k2V 2
ti

)

. (B.12)With the assumption that |γ| ≪ ωr and |Di(k, ωr)| ≪ |Dr(k, ωr)|, equations (B.9) and (B.10)give
D(k, ω) ≃ Dr(k, ωr) + i

{

Dr(k, ωr) + γ
∂Di(k, ωr)

∂ωr

}

= 0. (B.13)Therefore equating the real and imaginary parts to zero, we obtain, respe
tively, the disper-sion relation, ωr ≡ ωr(k), and the damping rate, γ ≡ γ(k) < 0 or growth rate, γ ≡ γ(k) > 0from [Krall and Trivelpie
e, 1989, p.389℄:
Dr(k, ω) = 0 and γ =

−Di(k, ωr)

∂Dr(k, ωr)/∂ωr
. (B.14)Sin
e me/mi ≃ 1/1836 ≪ 1, it follows that provided nh0/nc0 ≤ 1 then ω2

pi/ω
2
pc ≪ 1 is avalid approximation. Now assuming ωpi ≪ ωpc and negle
ting the term proportional to

1/ξ2κc+1
c for ξc ≫ 1 in Eq. (B.11), we get

(

1 +
1

k2λ2
κh

)

ω4
r − ω2

pc ω
2
r − 3k2λ2

Dc ω
4
pc = 0,with solution ω2

r > 0 given by
ωr

2 = ω2
pc

{

1 +
[

1 + 12k2λ2
Dc(1 + 1/k2λ2

κh
)
]1/2

2
(

1 + 1/k2λ2
κh

)

}

. (B.15)
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B.1. Dispersion Relation of Ele
tron-A
ousti
 Waves from Linear Kineti
 Theory.Similarly, as the frequen
ies have been normalized to ωpe, Eq. (B.14) gives
γ

ωpe
= −ωpc

ωpe

(

ωr

ωpe

)6 A1(κc, κh)

A2(κc)
= −

(

1− nh0

ne0

)1/2( ωr

ωpe

)6 A1(κc, κh)

A2(κc)
, (B.16)where

A1(κc, κh) =
C1(κc)

k2λ2
Dc

[

(

κc
2κc − 3

)1/2 1

(1− n0h/n0e)1/2
ωr/ωpe

kλDc

]

−(2κc+1)

+
C2(κh)

k3λ3
Dc

[

1 +
1/(1 − n0h/n0e)

(2κh − 3)(Th/Tc)

ω2
r/ω

2
pe

k2λ2
Dc

]

−(κh+1)

+
C3(σ)

k3λ3
Dc

exp[−1

2

mi/me

(Ti/Tc)(1− n0h/n0e)

ω2
r/ω

2
pe

k2λ2
Dc

]

; (B.17)
A2(κc) = 12k2λ2

Dc(1− nh0/ne0)
5/2 +

2(1 − nh0/ne0)
3/2

(ωr/ωpe)−2

[

1 +
me

mi

(

1− nh0

nne0

)

−1
]

+
√
2π

tan(κcπ) κκc+1
c

(ωr/ωpe)−5 k3λ3
Dc

(κ2c − 1/4)

(κc − 3/2)3/2

×
[

(2κc − 3)

κc

1

(1− nh0/ne0)1/2
ωr/ωpe

kλDc

]

−2(κc+1)

, (B.18)and
C1(κc) =

√
π
(κc − 1/2)

(κc − 3/2)

Γ(κc + 1)

Γ(κc + 1/2)

κ
(κc+1/2)
c

ωr/ωpe
;

C2(κh) =
(π/2)1/2

(Th/Tc)3/2
(κh − 1/2)

(κh − 3/2)3/2
Γ(κh + 1)

Γ(κh + 1/2)

(n0h/n0e)

(1− n0h/n0e)3/2
;

C3(σ) = σ
(π/2)1/2(mi/me)

1/2

(Ti/Tc)3/2(1− n0h/n0e)3/2
. (B.19)The normalized frequen
y ωr/ωpe in Eqs. (B.16)�(B.18) satis�es Dr(k, ωr) = 0, and isobtained from (B.15).Already we have seen that ele
tron-a
ousti
 waves require ξh ≪ 1 and ξc ≫ 1, that is,

ξh ≪ ξc. The latter implies that λDc/λκh ≪ (n0h/n0c)
1/2[κc/(κc − 3/2)]1/2.Now, if (n0h/n0c)

1/2[κc/(κc−3/2)]1/2 & 1, that is, f = n0h/n0e & (2κc−3)/(4κc−3) ≡ fc,
λDc/λκh ≪ 1 is a valid approximation. Here, in the long wavelength regime, fc is thethreshold value of f below whi
h EAWs may not be weakly damped. Also, λDc/λκh ≪ 1221



B.implies that f ≪ 1/{1 + [(κh − 1/2)/(κh − 3/2)] /β} ≡ fh, where β = Th/Tc.Also we assume that 12k2λ2
Dc(1 + 1/k2λ2

κh
) ≪ 1 in (B.15), whi
h holds only in the longwavelength regime (kλDc ≪ 1) and when λDc ≪ λκh

(provided f ≪ fh and f & fc). Thusignoring the negative solution, (B.15) leads to
ωr

2 = ω2
pc

{

1 + 3k2λ2
Dc(1 + 1/k2λ2

κh
)

(

1 + 1/k2λ2
κh

)

}

. (B.20)With Vtc = ωpcλDc = (KBTc/me)
1/2 and Vsκ = ωpcλκh

, (B.20) 
an be written as
ωr

2 = k2
{

3V 2
tc +

V 2
sκ

1 + k2λ2
κh

}

, (B.21)whi
h 
learly shows that the phase velo
ity ω/k is modi�ed by the hot ele
tron parameters(through λκh
).However, if in addition we assume that λDc ≪ λκh, then Eq. (B.20) 
an be written inthe form [Ma
e et al., 1999℄

ωr
2 = ω2

pc

(

1 + 3k2λ2
Dc

1 + 1/k2λ2
κh

)

. (B.22)
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APPENDIXC

C.1 Derivation of the Modi�ed Korteweg de-Vries (mKdV)EquationWe already saw from the KdV equation (1.27) in Se
. 1.2 that when the 
oe�
ient of thenonlinearity term ∂ϕ2/∂ζ vanishes, the soliton amplitude goes to in�nity. In other words,the small amplitude method based on the KdV approa
h breaks down. In over
oming thats
enario in the perturbation approa
h, we re-s
ale the stret
hed spa
e-time variables ζ and
T . In this work, we have used the approa
h of Baboolal et al. [1989℄, by making use ofthe stret
hed variables ζ = ǫ(X − V t′) and T = ǫ3t′. In addition, we expand the varyingplasma parameters Nj , Vj and ϕ, that is, the density, velo
ity and ele
trostati
 potential,respe
tively, in terms of the smallness parameter, ǫ, using the expansion [Nishihara andTajiri, 1981; Ma
e et al., 1991℄:

Nj = Nj0 + ǫNj1 + ǫ2Nj2 + . . .

Vj = ǫ Vj1 + ǫ2Vj2 + . . .

ϕ = ǫ ϕ1 + ǫ2ϕ2 + . . .

(C.1)Here, parameters with subs
ript 0 
orrespond to the equilibrium state while those withsubs
ripts 1, 2 · · · 
orrespond to the �rst-, se
ond-, · · · order perturbed sates. The velo
ityof the individual parti
les in the equilibrium state is taken to be zero, and we have assumed223



C.zero equilibrium potential sin
e the ele
tri
 �eld is assumed to be zero in the equilibriumstate. We have not in
luded the pressure expansion terms, sin
e in the plasma modelsthat will be dis
ussed in this thesis, the pressure is expressed as a fun
tion of densityusing the adiabati
 relation PjN
−γj
j = 
onstant = Pj0N

−γj
j0 , where γ is the ratio of theheat 
apa
ities at 
onstant volume, equal to unity for isothermal parti
les, and three foradiabati
 parti
les.Using the stret
hed variables ζ = ǫ (X − V t′) and T = ǫ3t′, we have ∂/∂X = ǫ ∂/∂ζand ∂/∂t′ = ǫ3∂/∂T − ǫ V ∂/∂ζ. Thus the 
ontinuity, momentum and Poisson's equations
an be written, respe
tively, in the form:

ǫ3
∂Ni

∂T − ǫ V
∂Ni

∂ζ
+ ǫNi

∂Vi

∂ζ
+ ǫ Vi

∂Ni

∂ζ
= 0, (C.2)

miNi

(

ǫ3
∂Vi

∂T − ǫ V
∂Vi

∂ζ
+ ǫ Vi

∂Vi

∂ζ

)

+ ǫmiC
2
ti

(

Ni

Ni0

)(γi−1) ∂Ni

∂ζ
+ ǫNiqi

∂ϕ

∂ζ
= 0, (C.3)and

ǫ2 ε0
∂2ϕ

∂ζ2
+Niqi +

∑

s=c, h

Ns0

∞
∑

r=0

(−1)rνsr ϕrqs = 0, (C.4)where Ni, Vi and ϕ are de�ned in Eq. (C.1), and the thermal velo
ity of the ions, Cti isde�ned by C2
ti = γiPi0/miNi0. Re-arranging order by order we have the following:The 
ontinuity equation gives:
©
(

ǫ2
)

: Ni0
∂Vi1

∂ζ
− V

∂Ni1

∂ζ
= 0, (C.5)

©
(

ǫ3
)

: Ni0
∂Vi2

∂ζ
− V

∂Ni2

∂ζ
+Ni1

∂Vi1

∂ζ
= 0, (C.6)

©
(

ǫ4
)

:
∂Ni1

∂T − V
∂Ni3

∂ζ
+Ni0

∂Vi3

∂ζ
+Ni1

∂Vi2

∂ζ
+Ni2

∂Vi1

∂ζ
= 0. (C.7)
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C.1. Derivation of the Modi�ed Korteweg de-Vries (mKdV) EquationThe momentum equation gives:
©
(

ǫ2
)

:miC
2
ti

∂Ni1

∂ζ
+Ni0qi

∂ϕ1

∂ζ
−miNi0V

∂Vi1

∂ζ
= 0. (C.8)

©
(

ǫ3
)

:miNi0Vi1
∂Vi1

∂ζ
−miNi0V

∂Vi2

∂ζ
−miNi1V

∂Vi1

∂ζ
+ (γi − 1)mi C

2
ti

Ni1

Ni0

∂Ni1

∂ζ

+ mi C
2
ti

∂Ni2

∂ζ
+Ni0qi

∂ϕ2

∂ζ
+Ni1qi

∂ϕ1

∂ζ
= 0. (C.9)

©
(

ǫ4
)

:miNi0
∂Vi1

∂T −miNi0V
∂Vi3

∂ζ
−miNi1V

∂Vi2

∂ζ
−miV Ni2

∂Vi1

∂ζ
+miNi0Vi1

∂Vi2

∂ζ

+ miNi0Vi2
∂Vi1

∂ζ
+miNi1Vi1

∂Vi1

∂ζ
+miC

2
ti

∂Ni3

∂ζ
+Ni0qi

∂ϕ3

∂ζ
+Ni1qi

∂ϕ2

∂ζ

+ (γi − 1) miC
2
ti

Ni1

Ni0

∂Ni2

∂ζ
+ (γi − 1) miC

2
ti

Ni2

Ni0

∂Ni1

∂ζ
+Ni2qi

∂ϕ1

∂ζ
= 0. (C.10)Similarly, Poisson's equation gives:

©
(

ǫ0
)

:
∑

s=c, h

Ns0qs + Ni0qi = 0, (C.11)
©
(

ǫ1
)

: Ni1qi −
∑

s=c, h

qsNs0 νs1 ϕ1 = 0, (C.12)
©
(

ǫ2
)

: Ni2qi −
∑

s=c, h

qsNs0νs1 ϕ2 +
∑

s=c, h

qsNs0νs2 ϕ
2
1 = 0, (C.13)

©
(

ǫ3
)

: ε0
∂2ϕ1

∂ζ2
+Ni3qi −

∑

s=c, h

qsNs0νs1 ϕ3

+2
∑

s=c, h

qsNs0νs2 ϕ1 ϕ2 −
∑

s=c, h

qsNs0νs3 ϕ
3
1 = 0, (C.14)where Eq. (C.11) is the 
harge neutrality 
ondition of the un-perturbed plasma 
onstituentsat equilibrium.The© (ǫ2) equations, (C.5) and (C.8), 
an easily be solved for the �rst-order perturbedvelo
ity Vi1 and density Ni1 in terms of ϕ1 giving

Vi1 =
V qi/mi

V 2 − c2ti
ϕ1 and Ni1 =

Ni0qi/mi

V 2 − c2ti
ϕ1. (C.15)Again, the © (ǫ1) terms in Poisson's equation, (C.12), gives the linear dispersion relation

ω2
pi

V 2 − C2
ti

− 1

λ2
Dκ

= 0 or ω2
pi

ω2 − k2C2
ti

− 1

k2λ2
Dκ

= 0, (C.16)from whi
h the phase velo
ity, V is obtained as V = (C2
iκ + C2

ti)
1/2, with Ciκ = ωpiλDκ225



C.being the ion-a
ousti
 sound speed of the plasma model.Similarly, the © (ǫ2) terms in Poissons's equation (C.13) together with the © (ǫ3)terms in the 
ontinuity equation (C.6) give,
Ni2 =

∑

s=c, h

qsNs0

qi
νs1ϕ2 −

∑

s=c, h

qsNs0

qi
νs2ϕ

2
1 and

Vi2 = V

{

∑

s=c, h

qsNs0

qiNi0
νs1ϕ2 −

∑

s=c, h

qsNs0

qiNi0
νs2ϕ

2
1 −

1

2

q2i /m
2
i

(V 2 − C2
ti)

2
ϕ2
1

}

.In order to eliminate the third-order perturbation terms Vi3 and Ni3, we use the© (ǫ4) 
on-tinuity and momentum equations, and the© (ǫ3) Poisson's equation. That is, Eqs. (C.7), (C.10)and (C.14). After a single di�erentiation, Eq. (C.14) then be
omes
ε0

∂3ϕ1

∂ζ3
+

2Ni0V q2i /mi

(V 2 − C2
ti)

2

∂ϕ1

∂τ
+







Ni0q
2
i /mi

V 2 − C2
ti

−
∑

s=c, h

qsNs0νs1







∂ϕ3

∂ζ

+ϕ2
∂ϕ1

∂ζ

{

Ni0q
2
i /mi

(V 2 − C2
ti)

2
[2V 2 + (γi − 2)C2

ti]
∑

s=c, h

qsNs0

qiNi0
νs1 + 2

∑

s=c, h

qsNs0νs2

}

+ϕ1
∂ϕ2

∂ζ

{

2
∑

s=c, h

qsNs0νs2 +
Ni0q

2
i /mi

(V 2 − C2
ti)

2



1 + {V 2 + (γi − 1)C2
ti}

∑

s=c, h

qsNs0

qiNi0
νs1





}

−ϕ2
1

∂ϕ1

∂ζ

{

3
∑

s=c, h

qsNs0νs3 +
3

2

Ni0V
2q4i /m

3
i

(V 2 − C2
ti)

4

+
Ni0q

2
i /mi

(V 2 − C2
ti)

2
[4V 2 + (3γi − 4)C2

ti]
∑

s=c, h

qsNs0

qiNi0
νs2

}

= 0. (C.17)We observe from Eq. (C.12) that for ϕ1 6= 0, the 
oe�
ient of ∂ϕ3/∂ζ in Eq. (C.17) iszero, and therefore those terms drop out. Also, we assume that the terms ϕ2∂ϕ1/∂ζ and
ϕ1∂ϕ2/∂ζ are proportional to the produ
t of ϕ1 and ϕ2, and therefore are of higher orderand will be negle
ted. We then get
−
{

3

2

ω2
piV

2q2i /m
2
i

(V 2 − C2
ti)

4
+ 3

∑

s=c, h

qsNs0

ε0
νs3 +

ω2
pi[4V

2 + (3γi − 4)C2
ti]

(V 2 − C2
ti)

2

∑

s=c, h

qsNs0

qiNi0
νs2

}

ϕ2
1

∂ϕ1

∂ζ

+
∂3ϕ1

∂ζ3
+

2V ω2
pi

(V 2 − C2
ti)

2

∂ϕ1

∂T = 0. (C.18)
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C.2. Solution of the mKdV EquationThus from Eq. (C.18), the modi�ed KdV equation takes the form [Verheest, 2000℄
∂ϕ1

∂T + C(V )ϕ2
1

∂ϕ1

∂ζ
+D(V )

∂3ϕ1

∂ζ3
= 0, (C.19)where again the phase velo
ity V is obtained from V 2 = C2
ti + C2

iκ, and
C(V ) =−A3/A1; D(V ) = B(V ) = 1/A1; A1 =

2V ω2
pi

(V 2 − C2
ti)

2
and

A3 =
3

2

ω2
piV

2q2i /m
2
i

(V 2 − C2
ti)

4
+ 3

∑

s=c, h

qsNs0

ε0
νs3 +

ω2
pi[4V

2 + (3γi − 4)c2ti]

(V 2 − C2
ti)

2

∑

s=c, h

qsNs0

qiNi0
νs2.C.2 Solution of the mKdV EquationIn getting the solution to the mKdV equation [(C.19)℄ we use the transformation χ =

ξ − u0T . Thus Eq. (C.19) be
omes
D
∂2ϕ1

∂χ
+

C

3
ϕ3
1

∂ϕ1

∂χ
− u0 ϕ1

∂ϕ1

∂χ
= 0,whi
h 
an also be simpli�ed, and written in the form:

∂ϕ1

∂χ
=
(u0
D

)1/2
ϕ1

[

1−
(

C

6u0

)

ϕ2
1

]1/2

. (C.20)Integrating Eq. (C.20), χ(ϕ1) is obtained from the expression
(u0
D

)1/2
χ =

∫

∂ϕ1

ϕ1

[

1−
(

C
6u0

)

ϕ2
1

]1/2
. (C.21)Introdu
ing the substitution Y (ϕ1) =

[

1− (C/6u0)ϕ
2
1

]1/2 gives
ϕ1 =

(

6u0
C

)1/2

[1− Y (ϕ1)
2]1/2, (C.22)
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C.and therefore the RHS of Eq. (C.21) is equivalent to In[(1 − Y (ϕ1))/(1 + Y (ϕ1))], i.e.,
2
(u0
D

)1/2
χ= In [1− Y (ϕ1)

1 + Y (ϕ1)

] or
Y (ϕ1) =

1− exp[2(u0/D)1/2χ]

1 + exp[2(u0/D)1/2χ]
. (C.23)Equations (C.22) and (C.23) give

ϕ1 =

(

6u0
C

)1/2 2exp[(u0/D)1/2χ+ exp[−(u0/D)1/2χ

=

(

6u0
C

)1/2 se
h [(u0
D

)1/2
χ

]

. (C.24)
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