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Abstract

This thesis is about a study of the behaviour of linear and nonlinear electrostatic waves
in a variety of multi-component plasma configurations in space physics, including species
whose velocity distributions are represented by kappa distributions. Kappa distributions
commonly occur in space plasmas, and are characterized by a spectral index parameter x,
which ranges from low values (representing a more enhanced superthermal tail and “hard”
particle spectra) to very high values (with k — oo representing a Maxwellian distribution).

The linear theory of the electron-acoustic waves (EAWs), which commonly occur in
two-temperature plasmas, is investigated within a kinetic-theoretical paradigm using the
kappa velocity distribution as metastable state. The results of this calculation are directly
applicable to the Saturnian magnetosphere where the electrons are well represented by
the superposition of two kappa distributions, with distinct temperatures and values of «.
According to our findings, weakly damped EAWs are likely to occur at around 13 — 18 Rg,
where the densities of the hot and cool electron populations are of similar magnitude, the
kappa index values are more or less constant around k. ~ 2 and kj =~ 4, and the hot to
cool temperature ratio is about 102.

In the nonlinear wave studies described in this thesis, a variety of different three-species
plasma models are investigated, including dusty (complex) plasmas which are observed in
a number of different space environments. In addition to electrons and ions, dusty plasmas
contain massive heavily charged dust grains typically of micron size. This additional com-

ponent has a significant effect on the overall wave behaviour compared to an electron-ion

viii



plasma, and introduces new eigenmodes such as dust acoustic waves and dust ion-acoustic
waves, as examples, which are discussed in detail in this thesis.

Nonlinear electrostatic waves, such as solitons and double layers, are reported from
satellite observations. Propagation of these solitary structures, including their existence
domains, structure behaviour and characteristics, in a variety of different multi-component
plasma configurations is investigated in this thesis. These nonlinear studies encompass
both small amplitude (Korteweg-de Vries) and fully nonlinear (Sagdeev pseudopotential)
investigations, and comparison of results from these methods is presented.

According to the conventional Sagdeev and small amplitude (KdV) approaches, the
existence of solitons requires Mach numbers which exceed a critical value (Mj), the phase
velocity of the acoustic waves in the plasma configuration. The KdV soliton solutions have
amplitudes that go to zero as the Mach number approaches the critical value. Results
in this thesis show that in plasmas where solitons of both polarities can be supported,
under certain conditions, electrostatic solitons with finite amplitudes can be obtained at
the critical Mach number, and therefore such structures can propagate at the acoustic
phase velocity. This is an important finding that goes counter to conventional wisdom on
this topic. In addition, the appearance of double layers has usually been considered to
mark the end of soliton occurrence in plasma models. From the nonlinear studies of the
different plasma configurations discussed in this thesis, it is shown that for some models,
and for certain plasma parameters, solitons can also be obtained for Mach numbers that

exceed those leading to the occurrence of double layers.
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CHAPTER 1

General Introduction

In this chapter we discuss the general aspects of kappa distributions, their characteristics
and how they have been used in the analysis of observational data from space satellites
and laboratory experimental data.

Since most of the work discussed in this thesis is linked to nonlinear solitary waves or
structures (solitons and double layers) that exist in a number of plasma models, including
dusty plasmas, in this chapter we also highlight properties of dust particles or dust grains
and general characteristics of dusty plasmas. In addition, we briefly describe solitons and

double layers, including the theoretical approaches to modelling these solitary structures.

1.1 Aspects of Kappa Distributions

1.1.1 Introduction

Kappa distributions were first introduced by Olbert [1968] and co-workers when they
were analyzing the isotropic background currents measured in the Earth’s magnetosheath
by the M.I.T detector on IMP-1. Around the same time, based on observations of electrons
of energy in the range (125 eV to ~ 2 keV), with OGO 1 satellite, and (40 eV to ~ 2 keV),
with OGO 3, Vasyliunas [1968] used the same distribution to fit the low-energy electron

population in the Earth’s magnetosphere. In the analysis of Olbert [1968] and coworkers,



1. General Introduction

they assumed that the electron speed distribution in the satellite frame of reference is of

the form [Olbert, 1968|:

v2dv

><n+1>’

fov’dv = constant

(1.1)

(14325

RwWwq

where v is the actual speed, wq is the most probable speed of the electrons, and « is a ‘free’
parameter whose value is a measure of the departure of the distribution from its Maxwellian
character (with k — oo leading to the Maxwellian distribution). This distribution provides
a good fit to those that are commonly observed, being Maxwellian-like at low speeds and
obeying a power-law form at high speeds.

Following the empirical formula in Eq. (1.1), the isotropic (3-D) kappa velocity distri-
bution of particles of mass m is written in the form [Vasyliunas, 1968; Marsch and Livi,

1985; Summers and Thorne, 1991; Kivelson and Russell, 1995]

2 7 —(k+1)
v } , (1.2)

FH(U) = An |:1 + m

where v? = v? +Uz21 +v2; A, is a normalization parameter, @ is an “effective or characteristic
thermal speed” parameter, that is, the most probable speed [Vasyliunas, 1968], and & is
a spectral index, which is a free parameter. The parameters A, and 6 are obtained self-
consistently from the lowest even moments [Podesta, 2005; Hellberg et al., 2009] of the

distribution function in (1.2).

1.1.2 Kappa Distributions: Velocity Moments and the Most Probable

Speed

The velocity moments of the kappa distribution are given by [Podesta, 2005]

o 00 2\ —(k+1)
(™) :477/ v("“)FH(v)dv — 47TAH/ 02 (1 4 v do
0 0 K62

= 21 A (k02 I2B[(n + 3)/2, k — (n 4+ 1)/2]
2(r6°)" 2T (") T (k= ")
NG T(k—1/2)

where I'(a) and B(a, b) are the usual gamma and beta functions, respectively. For arbitrary

real values of xk and n > 0, the integral is finite for n < (2x — 1), that is, kK > (n +1)/2.
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The expression for A, is obtained from the zeroth moment of velocity, that is,

No= (%) = 477/ v?F,(v)dv
0

gy D=1/
= ()P L)
N() F(K+1)

A= 2P T (s~ 1/2) (1.3)

giving

In the normalization parameter expression (1.3), Ny is the unperturbed equilibrium density,
given by Ny = (v°), the zeroth moment of the distribution, and T is the usual gamma
function, [(a) = [~ t* Te~dt;

Also, for n = 2, the second moment of velocity gives (v?) = 3k6%/(2x — 3) or 6% =
(v2)(2k—3)/3k. Using the energy relation m(v?)/2 = 3KgT/2, where K is the Boltzmann
constant, and 7" is the characteristic kinetic temperature, that is, the temperature of the
equivalent Maxwellian distribution [Podesta, 2005; Hellberg et al., 2009; Livadiotis and
McComas, 2009] with the same average kinetic energy m(v?)/2 per particle, we obtain
(v2) = 3KgT/m. Therefore the most probable speed, 6, is related to the thermal speed
of the particle species [Goldston and Rutherford, 1995; Shukla and Mamun, 2002|, vy, =

(KBT/m)1/27 by
02 — 42 (2r-3) 02 (r—=3/2) (1.4)

th K — Ymp P )

where v, = V/2 vy, is the most probable speed for a Maxwellian velocity distribution [Kivel-
son and Russell, 1995, p.38]. However, we point out that in some textbooks [Swanson, 2003,
p.86], the most probable speed is sometimes referred to as the thermal speed. The expres-
sion in Eq. (1.4) shows clearly that the characteristic thermal speed 6 is x dependent, and
reduces to the thermal speed vy, when £ — oo.

The spectral index & is a measure of the slope of the energy spectrum of the superther-
mal particles (v? > k6?) forming the tail of the velocity distribution function. The kappa
distribution thus approximates a family of “power law distributions” Fy(v) oc v~2(5+1) for
v > 0. The smaller the value of x the more superthermal particles in the tail of the distri-
bution function and the harder the energy spectrum. That is, low values of k represent a
more enhanced and “hard” spectrum (strong non-Maxwellian tail with more superthermal

particles in the tail of the distribution function), resulting in an enhanced velocity distri-
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bution at low speeds, a depressed distribution that is Maxwellian-like at medium speeds
and an enhanced power law tail at high speeds (see Fig. 1.1). As already mentioned, when

Kk — oo the Maxwellian distribution function,

3/2 2
m —mvuv
Foo(v) = No <m> exXp ( KT ) : (15)

is recovered. The features described above are shown in Fig. 1.1, where we have plotted

the normalized distribution (1.2) as a function of the normalized velocity. In particular,
the figure shows that kappa distributions have higher and narrower peaks, and broader
base tails, than the Maxwellian distributions [Hellberg et al., 2009]. In addition, very large

values of k approximate the Maxwellian distribution. Note that the expression for the
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Figure 1.1: Comparison of generalized Lorentzian distributions for the spectral index x =
1.6, and 2, 6, 25 and k = oo (the corresponding Maxwellian distribution), based on Fig. 1
of Summers and Thorne [1991]

characteristic velocity 6, (1.4), is only valid for x > 3/2, and thus in the application of the
physical quantities derived from Eq. (1.2), like density, we shall use k values that exceed
1.5. The origin of this constraint comes from the requirement that (v?) = 3k6%/(2x — 3)
does not diverge.

The 1-D kappa distribution is obtained from Eq. (1.2) by integrating over two velocity-
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space coordinates, giving [Summers and Thorne, 1991|

N T'(k LA
Fiev) = (mezo)l/z T(r E 1)/2) <1 * m) ’ (1.6)

where, here, v is a signed velocity component.

1.1.3 Kappa Distributions: Application to Plasma Experiments and

Space Plasma Observations

Kappa distributions have been used by a number of authors [Summers and Thorne,
1991; Mace and Hellberg, 1993; Mace and Hellberg, 1995; Hellberg and Mace, 2002;
Podesta, 2005; Mace and Hellberg, 2009; Mace and Sydora, 2010] in studying the effect of
Landau damping on various plasma modes. Summers and Thorne [1991] introduced the
modified plasma dispersion function Z7(§) analogous to the standard plasma dispersion
function, Z(&), based on the Maxwellian distribution [Fried and Conte, 1961]. Mace and
Hellberg [1995] generalized Z}(€), lifting the constraint that x be an integer, and showed
its close relationship to the Gauss hypergeometric function.

Kappa distributions are convenient in analyzing and interpreting observational data
in space plasmas which show a Maxwellian “core” at low energies and a power-law tail
distribution for higher energies. Some examples of its application include the Earth’s
magnetospheric plasma sheet [Christon et al., 1988], the solar wind [Pierrard and Lemaire,
1996] and solar corona [Scudder, 1992; Pierrard and Lemaire, 1996|, the magnetospheres
of Jupiter and Saturn [Krimigis et al., 1983; Sittler et al., 1983; Schippers et al., 2008;
Dialynas et al., 2009], and the auroral region [Olsson and Janhunen, 1998].

Based on the observational data from the European satellite Heos 1, Formisano et al.
[1973] studied plasma properties as a result of the solar wind interactions in the Earth’s
magnetosheath. In their work, they described the proton velocity distribution function
by a function similar to that used by Vasyliunas [1968], though they called it a “K distri-
bution function”, with the spectral index K (in their case) chosen only from four values:
2, 3, 5, oco. In particular, when no upstream waves were detected in the interplanetary
region, the Maxwellian distribution function for protons did not clearly fit the positive
ion energy spectra observed inside the magnetosheath for higher energies (above 0.9 keV)

while with a “K distribution function”, with K = 2, there was close agreement with the
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experimental data, as illustrated in their Fig. 2.

In the early 1990s, Scudder [1992| proposed that the high coronal temperature is a
consequence of the “velocity filtration effect” when he assumed a non-Maxwellian velocity
distribution in the chromosphere (see also Pierrard and Lemaire [1996]; Maksimovic et al.
[1997]; Shizgal [2007]). With typical x values ranging from 2.5 to 7, Scudder [1992] found
that the plasma temperature increased from 103 K at the altitude of the chromosphere up
to (1 —2) x 10% K in the solar corona without additional heat deposition or dissipation
of wave energy in the solar corona [Pierrard and Lemaire, 1996]. The “velocity filtration
effect” was also found to apply to the topside ionopause [Pierrard and Lemaire, 1996]
to explain the increase of the plasma temperature as a function of altitude in the outer
plasmasphere. With x = 3 — 5, temperatures in the outer plasmasphere increased up to
values of (10 — 20) x 103 K which are comparable to those measured with the satellites at
high altitudes (see Pierrard and Lemaire [1996]).

Results from the Voyager 1 and 2 spacecraft [Krimigis et al., 1983], during their encoun-
ters with the magnetosphere of Saturn, indicated that the typical energy spectrum of the
ions (assumed protons) is like a Maxwellian at low energies (< 200keV) and a power law
at high energies (> 200keV). Krimigis et al. [1983] used  distributions to fit ion spectral
observations in the magnetosphere of Saturn, with typical values of k in the range 6 — 8
and thermal energy Kp7 in the range ~ 16keV to ~ 28keV matching the observations
extremely well in general, though with a few exceptions.

In analyzing the field-aligned conductance values, Olsson and Janhunen [1998] used the
Freja electron data to compare the Maxwellian and kappa distribution fits of low-orbiting
satellite electron flux spectra in the auroral region. Kappa fits with x ~ 6 (x in the range
4-7) gave better fits to the observed distribution, though the difference in conductance
values was not large.

More recent measurements of Saturn’s magnetosphere from the Cassini-Huygens satel-
lite [Schippers et al., 2008] have shown that the electron distribution is very well fitted by
the sum of two kappa distributions, the hot (superthermal) component having a much lower
density than the bulk (‘thermal’ component). These bi-kappa! fits were observed over a

wide range of the magnetosphere, the measurements encompassing the range from 5.4 to

!Bi-kappa is used in this thesis to refer to the sum of two components, each being kappa-distributed
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18 Rg (Saturn radii). The bulk component has a very hard spectrum, with typical kappa
values < 2, while the minority hot component (which at 9 Rg makes up less than 10% of
the electrons) has k ~ 4. A typical value for the bulk component is xk ~ 2 throughout most
of the magnetosphere, apart from the region R < 7 Rg (where 2 < kpyx < 8, increasing
rapidly for decreasing R), whereas the hot component has a highly variable value of x,

lying between 3 and 9.

1.1.4 Modified Forms of Kappa Distributions and other Non-Maxwellian

Distributions

Since the empirical formula of Olbert [1968] and Vasyliunas [1968|, modifications to
Kappa distributions have been introduced and applied in the analysis of observation data
from satellites.

One such form is the distribution function fo(v) of a test particle in the presence of
radiation fields of nonequilibrium photons, introduced by Hasegawa et al. [1985]. This

takes the form
2

folw) = A (1 + >_H, (1.7)

2K V7,

where, vy is the thermal velocity, and with the normalization fooo fo(w)dmv?dv = 1,

s 2k —3 (k)
4V2(mR)3203, T (s —1/2)

Equation (1.7) has considerable resemblance to the one-dimensional standard kappa dis-
tribution function in Eq. (1.6) used to fit particle data in space plasmas [Hasegawa et al.,
1985], although it is expressed in terms of the thermal velocity, and not the generalized
most probable speed 6 = 0(k, vre).

Apart from kappa distributions, the Tsallis distribution [Tsallis, 1988, 1995], that is
characterized by a Tsallis parameter ¢ (which is closely related to k), has been urged to be
an alternative model for non-Maxwellian distributions. The Tsallis distribution, denoted

p is a probability distribution given by|Tsallis, 1995]

po(@) = 5 [1 - (1 - q)pa?] 17 (19)
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where Z, = [ [1— (1 — q)B2?] V=1 dz, and (3 is defined as the Lagrange parameter asso-
ciated with the g-expectation (z2), [in (1.11) below|. The distribution in (1.8) extremizes
the Tsallis entropy S,(p) defined by |Tsallis, 1988, 1995]

$.0) = 22 (1 [toras). (19)

with = a dimensionless parameter. Thus, the Tsallis entropy is a generalization of the
Boltzmann-Gibbs entropy, since it recovers the Boltzmann-Gibbs Shannon form,
Si(p) = —Kp > ;piIn(p;) in the limit ¢ — 1. In addition, the Tsallis distribution (1.8)

extremizes the generalized Tsallis entropy (1.9) subject to the constraints [Tsallis, 1995]

/p(w)dw =1, (1.10)

and

(x?%), = /wQ[p(x)]qu = 0% < 00, (1.11)

with ¢ < 3, in order to satisfy (1.10) [Tsallis, 1995].

Another approach, introduced by Leubner [2002], makes use of the Tsallis g-statistics
[Tsallis, 1999]. Using the generalized entropy from the Tsallis g-statistics, Leubner [2002]
showed that with the transformation k = 1/(1 — ¢), where ¢ is a parameter quantifying
the degree of non-extensivity, and k is a spectral index of the kappa distribution, the
one-dimensional and isotropic three-dimensional equilibrium velocity space distributions,

in kappa notation, can be written as

K 02\ "
FLl(v):%%% <1+ 17) and (1.12)

K02
N 1 (k) <1 1 02

- w3203 k32T (k —3/2) K2,

Fr,(v) ) for 3/2<k<o0, (1.13)

respectively, where here vy, = (2K 5T /m)'/? is the thermal velocity [Leubner, 2004|, and T
and m are the temperature and mass respectively. Unusually, Leubner [2004] also considers
k < 0. Note here that, the “thermal velocity”, Vj;, takes the same form as the most probable
speed for a Maxwellian distribution. The notation Lq and Lg refers to the one- and three-

dimensional forms of Leubner [2002], with the latter also called the “halo” distribution
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(see Eq. (6) of Leubner [2004]). Distributions of the form of Eq. (1.13) were used in the
analysis of results from the HELIOS observations of the double humped (core-halo) solar
wind proton velocity distributions [Leubner, 2004] between 0.3 and 1 a.u. Apart from
the fact that Eqgs. (1.12) and (1.13) are expressed in terms of the thermal velocity vy,
(independent of k) and not in terms of the most probable speed 6 = 0(k, vy,), (1.12) has
considerable resemblance to Eq. (1.6) for the one-dimensional kappa distribution. However,
for the three-dimensional case, there is a huge difference (in both the velocity and power-law
terms).

In the same work of Leubner [2002] (see also Leubner [2004]), the author indicates that

a conventional isotropic three-dimensional x-distribution is represented by

N 1 r(h;+1)< 1v2>‘(”+”

fo(v) = TR R Tk = 1/2) (1.14)

Equation (1.14) looks similar to (1.2), the only difference here being that the distribution is
expressed in terms of the “thermal velocity” vy, and not the most probable or characteristic
speed 6 = 0(k, vyp,). It is then surprising that one gets the generalized form of the “thermal
speed” © = vy,[(k/(k — 3/2)]"/? from the second moments of the distribution function
in (1.14), as Leubner [2004] puts it. Considering Eq. (1.14), the second moments of the

distribution function gives
K

(v?) = B <m> Ui (1.15)

If we use (v?) = 3KpT/m = 3v? /2 where here, vy, = (2KpT/m)'/?, it then follows
that Eq. (1.15) can hold if and only if K — oco. In other words, the expression © =
vin[(k/(k — 3/2)]'/? as the generalized thermal velocity in the work of Leubner [2004]
seems unclear.

Another form of kappa distribution is that introduced by Fu and Hau [2005] and Hau
and Fu [2007|, which was first applied in obtaining the Vlasov-Maxwell equilibrium solu-

tions for the Harris sheet magnetic field. This distribution function? takes the form

Ky N N(k+1) 12\ "D
i) = S R T = 12T (3/2) (1 ET,%) ’ (1.16)

2The subscript ‘H’ refers to the Hau formalism
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which after using the Gamma function relation T'(a + 1) = oI'(a), and T'(1/2) = 7'/2,

reduces to

fi(v) =

N r(m+1)< 1f>(”+1)_ (1.17)

(rkv2)3/2T(k — 1/2) )

In Equations (1.16) and (1.17), v, is defined as the thermal speed that is related to the

characteristic temperature 7T, and is given by

() ()

where T, is also related to the temperature 7" in the Maxwellian distribution, by [Fu and

Hau, 2005]

K

T, = <“_3/2>T (1.19)

and [Hau and Fu, 2007]

T, = <H _“3/2> T. (1.20)

However, we shall use Eq. (1.20) in the discussion, as (1.19) seems to have a typographical
error. Otherwise, it does not make sense in that form. A simple inspection of Eqs. (1.18)

and (1.20) shows that actually

OK5T\ "2
vR:< B > — vy, (1.21)
m

In other words, Eq. (1.16) [Fu and Hau, 2005; Hau and Fu, 2007] is simply the same as
Eq. (1.14), the “generalized conventional isotropic three-dimensional kappa distribution
function” of Leubner |Leubner, 2002, 2004|, but differs from Eq. (1.13) that was derived
from the g-entropy statistics. Both Egs. (1.16) and (1.14) do not give the appropriate
most probable speed § = 6(k, vy,) that is defined, by appealing to equipartition of energy,
by 6 = va,[(k — 3/2)/x]"/?. We point out that this approach (of Hau and Fu [2007]) has
been criticized [Hellberg et al., 2009]. Generally, all the different forms of x distribution
functions discussed in this Chapter have two common characteristics: (i) they all possess
power law behaviour and (ii) in the limit kK — oo one recovers the Maxwellian distribution
function of the form of Eq. (1.5).

The relationship of the kappa distributions to the Tsallis statistical mechanics was

10
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recently given by Livadiotis and McComas [2009]|, where they used the transformation
k =1/(qg — 1) as opposed to k = 1/(1 — q) used by Leubner [2002]. In Tsallis statistical
mechanics, there are two probability distributions that play a role in the theory: the
canonical and escort probability distributions which are, respectively, given by [Livadiotis

and McComas, 2009]

1 €
T o) ~ _ _ d 1.22
p(e;Ty5q) equ[ T.03/2) KBTq] an (1.22)
P(e; Ty;q) ~ple; Ty q)? ~ @ S (1.23)
€: . ~ €: . ~ X — .
9 Q7q p I qvq pq Iq(3/2) BTq Y

where € = pu?/2 is the kinetic energy (u and u are the mass and velocity, respectively),
Ty is the physical temperature [Livadiotis and McComas, 2009| (see below), and ¢ is the ¢
index; exp,(z) = [1+ (1 - q)z]*/(1=9 is the g-deformed exponential, and

I,(u) =1+ (1 —q)u is the g-deformed “unit function”. From (1.23), the escort probability
(or escort expectation), denoted ()4, of a function of energy e is given by [Livadiotis and

McComas, 2009]
Jo~ P& Ty;0)f(€)ge(e)de

e = T B e T, qlgp(e)de

(1.24)

where gp(e) = 2m(2/u)3/?€'/? is the density of energy states of the system. Using the
escort expectation, Livadiotis and McComas [2009] showed that the internal energy U, is

estimated as the escort expectation value (€)4, that is,

3
Uy = (€)g = 5 K51, (1.25)

where T is the physical temperature, not the thermodynamic temperature. Thus, Li-
vadiotis and McComas [2009] argued that working with escort probability distributions
P(e;Ty;q) (in the Tsallis statistical mechanics) and not the ordinary (or canonical) prob-
ability distributions p(e; Ty; q), the kinetic temperature Tk, defined by the internal energy
U, = 3KpTk/2, coincides with the physical temperature 7, in the Tsallis formalism.
They further argued that since T is identical to T}, the appropriate temperature in Tsal-
lis statistics is the kinetic temperature, and not the thermodynamic temperature, that is,
the appropriate definition of temperature for out-of-equilibrium systems. In other words,

the system is characterized by the same internal energy (mean kinetic energy) or kinetic

11
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temperature that is independent of the specific stationary states. To put it differently, the
kinetic temperature is independent of the value of the ¢ index (Tsallis statistics) or x index
(kappa distributions), see also Hellberg et al. [2009)].

Apart from kappa distributions, another form of non-thermal or non-Maxwellian distri-
bution function that is used in theoretical papers is the so-called Cairns distribution. This
distribution was introduced by Cairns et al. [1995] as an ad hoc model for non-thermal

velocity distributions, and takes the form

N, 1 avt v?
Fi(v) = z 1+ — - 1.26
i (v) Gat1) Jonet ( + o )eXp< 22}%), (1.26)
\/ J

where « is the non-thermal parameter, Njo the equilibrium number density and v;; the
thermal velocity of the species j. Cairns et al. [1995] used this distribution in explaining the
electrostatic structures with density depletions observed by the Freja satellite [Dovner et
al., 1994], and showed that the presence of a population of energetic electrons changes the
properties of ion sound waves. The distribution function (1.26) reduces to the Maxwellian
distribution form when av = 0. It is convenient to introduce the parameter 8 = 4a/(1+3a).
The normalized Cairns distribution function of (1.26) is shown in Fig. 1.2 for different
values of 5, and we note that for 5 = 0 it reduces to the Maxwellian distribution function.
The figure also shows that for 5 > 1/2 (or a > 0.2) the distribution function develops
“wings” at high velocities, becoming multi-peaked there. In particular, beyond = 4/7
(or a« = 0.25) [Verheest, 2010a], the distribution is triple humped, and hence could be
unstable, leading to beam-instabilities. For such high values of 3, the Cairns distribution
function may not be good for physical applications. In other words, the Cairns distribution
is appropriate for a narrow range of parameters «, or 5, that produce only small deviations
from the Maxwellian distribution function. As an application, a plasma model with particle
species that follow the Cairns distribution given in Eq. (1.26) is discussed in Chap. 6. Since
the introduction of the “Cairns non-thermal’ velocity distribution, it has not been applied
extensively in the analysis of space plasma observations from satellites. However, a number
of authors have used it in theoretical studies on solitary structures, for instance, Mamun
[1997], Verheest and Pillay [2008a,b], Pajouh and Abbasi [2008], and Verheest [2010a], to

mention a few.

12
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Figure 1.2: Figure showing the normalized form of Eq. (1.26) for different values of 3. Note
that for 5 values above 0.5 the distribution develops wings at high velocities, and may not
be good for physical applications.
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1.2 Dusty Plasmas

1.2.1 Dust and Dusty Plasmas

A dusty plasma can be defined as a collection of micro-sized electrically charged dust
particles immersed in a plasma consisting of electrons, ions and neutrals [Goertz, 1989;
Shukla, 1996, 2000a; Shukla and Mamun, 2002; Verheest and Cattaert, 2004].

Dust particles are very small in size, of macroscopic dimensions compared to atoms
and ionized nuclei [Verheest, 2000, p. 2|). Their sizes range from nano-meters to millime-
ters [Shukla and Mamun, 2002, p. 2] and they have large masses. Different authors give
different dust mass ranges, for example, [Verheest, 2000, p. 6] gives a range of 10% — 108
times the proton mass (see also references therein) while Shukla and Mamun [2002] quotes
the dust mass to be billions times the proton mass; the actual value depends on the environ-
ment of existence. Dust particles are often observed to have negative charges several times
the electron charge, typically between 102 — 10%e, where e is the electronic charge [Shukla,
1996; Verheest, 1999; Mamun and Shukla, 2005|, with variations depending on the envi-
ronment where they occur. On the other hand, positively charged dust particles do also
occur in space, depending on the charging process in the surrounding environment. The
large values of mass and charge for dust particles suggest that dust particles have signifi-
cantly higher mass-to-charge ratio (my/Z4e) than that of ions or electrons. As a result, the
characteristic dust frequencies (for example, the dust plasma frequency wpq o< (Zg/ mg)'/?)
are very small [Verheest, 2000, p. 7] compared to those of electrons and ions.

Due to the presence of electrons and ions in space and the ubiquitous dust, dusty
plasmas exist naturally in numerous space and astrophysical environments. For example,
dust is believed to occur in planetary rings, cometary tails and comae, interstellar and
circumstellar clouds, Earth’s mesosphere and ionosphere in the form of noctilucent clouds,
the rings of Saturn (radial spokes in the B ring; braided structures in the F ring; the D ring
and the narrow ringlet in the A ring near the middle of the Encke gap), and the “gossamer”
ring of Jupiter (see for example, Mendis and Rosenberg [1994]; [Verheest, 2000, Chap. 3]
and [Shukla and Mamun, 2002, Chap. 1|, and references therein).

In laboratory experiments, dust particles are usually found in many low-temperature

laboratory devices and industrial processes, such as plasma processing reactors [Shukla and
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Mamun, 2002, p. 18] and etching [Verheest, 2000, p. 34|, dc and rf discharges where dust
particles are more abundant in electronegative gas mixtures, fusion plasma devices such
as tokamaks, stellarators [Shukla and Mamun, 2002, p. 20] where the dust particles are
generated as impurities through processes like desorption, arcing, sputtering, evaporation,
etc.

Returning to the occurrence of dust particles in space and astrophysical environments,

we list briefly some examples:

Planetary rings: In planetary rings, information obtained from Voyager 1 and 2 space
missions has shown that most rings of the outer giant planets such as Jupiter, Saturn,
Uranus and Neptune are made of micron- to sub-micron-sized dust particles (see [Ver-
heest, 2000, pp. 46-56], [Shukla and Mamun, 2002, pp. 13-16|, Postberg et al. [2006], and
references therein). In particular:

(i) dust particles have been found by the Voyager 2 spacecraft to exist in a very tenuous
ring [Mendis and Rosenberg, 1994], the gossamer ring of Jupiter which extends outward
from the brighter thin ring to the vicinity of the satellite Thebes (~ 3.11R;), R; being
the radius of Jupiter.

(ii)The Ulysses mission to Jupiter also detected high speed streams of dust grains during
its distant Jovian encounter (see Mendis and Rosenberg [1994] and references therein).
(iii) The interesting features observed in Saturn’s ring system by both Voyager 1 and 2,
the nearly radial spokes [Shukla and Mamun, 2002|, provided the impetus for the study of
dust-plasma interactions in planetary magnetospheres.

(iv) Observations of dust in the vicinity of the moon, Rhea, whose orbital radius is ap-

proximately 9 Ry were reported by the Cassini team [Jones et al., 2008|.

Comets: Comets such as P/Halley [McDonnell et al., 1987; Thomas and Keller, 1991],
observed by the Giotto and Vega spacecraft, Hale-Bopp, and others have been found to
have cometary dust particles (see [Verheest, 2000, pp. 58—62[; [Shukla and Mamun, 2002,
pp. 9-12|, and references therein). For instance, data from the Vega and Giotto spacecraft
showed that the dust size distribution is well fitted by a power law distribution, n(r) = r=p,
with 8 ~ 3.3 for Vega and 4.1 for Giotto [Verheest, 2000; Shukla and Mamun, 2002|, and

r being the heliocentric distance.
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Earth’s Atmosphere: Naturally occurring dusty plasmas have been reported in the po-
lar mesosphere at altitudes of 80 and 90 km [Verheest, 2000, p. 43|, characterized by
noctilucent clouds, polar mesospheric echoes, and strong radar backscatter, observed at
frequencies ranging from 50 MHz to 1.3 GHz [Verheest, 2000; Shukla and Mamun, 2002].
Large amounts of charged dust with average sizes of about 0.1um at densities of several
10°m~3 were detected during the polar mesospheric summer echoes and noctilucent clouds
conditions. Both positively and negatively charged dust particles have been reported at
difference altitudes in the polar mesosphere [Verheest, 2000, p. 43].

The co-existence of negative and positive dust was also found in the tropical mesopause
[Gelinas et al., 1998], where a thick (5 km) layer of positively charged dust was reported at
an altitude of above 90 km, near both the sporadic sodium layer and sporadic E layer all
of which occurred just above 90 km [Havnes, 2002]. On the other hand, negatively charged
dust was reported near the bottom of the layer, covering a small part compared with the
positively charged dust layer [Gelinas et al., 1998; Havnes, 2002]. The presence of positive
dust in the mesopause region was attributed to the difference in dust material composition
from that of pure water ice [Havnes, 2002] which lowers the work function of the dust
particles, and as a result, dust charging by photoelectric emission dominates. In plasma
environments where both positively- and negatively charged dust particles co-exist such as
comets [Hordnyi, 2002| and the tropical mesopause |Gelinas et al., 1998; Havnes, 2002, as
examples, the positively charged dust particles are small in size but numerous [Gelinas et
al., 1998; Shukla and Mamun, 2002] while the negatively charged dust grains are larger,

enhancing coagulation [Goertz, 1989; Havnes, 2002| of dust particles in such scenarios.
1.2.2 Fundamental Length Scales

In the differentiation of dusty plasmas from other plasma systems, three essential dis-
tinct characteristic length parameters are used. These are: the dust grain radius (rg),
the average inter-grain distance ag, and the plasma Debye length, Ap. The inter-grain
distance agq is defined by ngy = 47/ 3a2, where ngg is the unperturbed dust density, though
in some books [Verheest, 2000, p. 5], the factor 47 /3 is neglected. The Debye length
Ap is a measure of the distance over which the electric field effect of a typical individual

charged particle is felt by other surrounding charged particles in the plasmas, and is given
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1.2.  Dusty Plasmas

by [Shukla, 2000b; Shukla and Mamun, 2002] A\;,* = A2 + Ap3, where Ape(Ap;) is the
electron (ion) Debye length. Since the electrons have high mobility compared to the ions,
Debye shielding is mainly due to the electrons, and the Debye length expression approxi-
mates to A\p & Ape = (60KBTe/n06e2)1/2, where T, and n.g are the electron temperature
and equilibrium density, respectively. Usually the the dust grain radius is much smaller
than the Debye length, i.e., 7y < Ap, and is the smallest of the three lengths [Verheest,
2000, p. 5. When r4y < Ap < ag, the plasma consists of isolated screened dust grains,
and the system is termed “dust-in-plasma” [Verheest, 2000; Shukla and Mamun, 2002|. In
this case the local plasma inhomogeneities need to be taken account of [Shukla and Ma-
mun, 2002; Horanyi, 2002], and the charged dust particles can be treated from a particle
dynamics point of view [Shukla, 2000b, p. 2|. On the other hand, when r4; < aq < Ap,
the system is called a “dusty plasma”. Here, the dust particles are treated as massive point
particle species [Shukla, 1996; Shukla and Mamun, 2002; Horanyi, 2002| similar to multi-
ply charged (negative or positive) ions in multi-component plasmas. Therefore the charged
dust particles participate in the collective behaviour of the dusty plasma.

Apart from the characteristic length parameters discussed above, other fundamental
parameters for plasmas (and dusty plasma in particular) are the plasma parameter (some
times loosely referred to as the Coulomb coupling parameter) and the plasma beta. The
latter applies to magnetized plasmas, see for example, [Boyd and Sanderson, 2003, p.83],

and will therefore not be discussed here in detail.

Plasma Parameter: In understanding the plasma parameter, we introduce two distance
parameters: (i) the average distance between particles, a, given by a = (47/3ng)"/3,
where ng is the number density (compare with the inter-grain distance ag), and (ii) the
distance of closest approach 7., defined as the distance at which the Coulomb energy,
U(r, v) vanishes, where U(r, v) = (mv?/2) — (e?/4megr) is the energy of a single charged
particle in the electric field of a neighbouring particle. Thus r. = e?/(4meg KgT'), where
we have used mv?/2 = KgT. The plasma parameter, denoted by g, is a dimensionless
parameter [Kivelson and Russell, 1995; Boyd and Sanderson, 2003; Parks, 2004], given by

g = 1/Ng4, where [Parks, 2004, p. 25|
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is the number of particles in a plasma contained in a Debye sphere, and ng is the equilibrium
number density. Note that in some books the factor 47 /3 is neglected. However, in
some textbooks [Miyamoto, 1997], the plasma parameter is simply given by Ny. Using

Ap = (e0KT/nge?)'/? and ng = 47/3a3, the expression for Ny can easily be written as

Ar (g9 KgT)>3/? 1 (a >3/2 1
Ng=—

3 enl/2 47/3 g

Te

From the expression above, the following is worth mentioning:

(i) When the ratio a/r. is small, charged particles are continuously dominated by one
another’s electrostatic influence; their kinetic energies are small compared to the potential
energies, and the Debye sphere is sparsely populated (as we have fewer particles), reminis-
cent of cold and dense plasmas. Such plasmas (with g > 1) are termed strongly coupled
plasmas [Miyamoto, 1997; Shukla and Mamun, 2002|.

(ii)On the other hand, when the ratio a/r. is large, electrostatic interactions between in-
dividual particles rarely cause any sudden changes in the particle’s motion. The plasma
consists of a large number of hot and diffuse particles, and Debye screening becomes mean-
ingful. Such plasmas (with ¢ < 1) are termed weakly coupled plasmas [Miyamoto, 1997,
Shukla and Mamun, 2002]. The condition g < 1 is also called the plasma approxima-
tion |[Parks, 2004|, which is taken to be a measure of the collision effects of the plasma
particles; smaller g corresponds to fewer collisions, and the plasma becomes collisionless in
the limit ¢ — 0 (valid in space plasma with low densities and high temperatures.)

The Coulomb coupling parameter [denoted I', not to be confused with the usual Gamma
function used in (1.3)], is defined as the ratio of the Coulomb interaction potential energy
to the mean kinetic energy of the plasma particles [Gilbert et al., 1988; Melzer et al., 1994;
Fortov et al., 1997; Shukla and Mamun, 2002]. Thus T is given by

T = < P-Einteraction >
< K.E >

As an example, we consider a particle of charge ¢ separated from another by a distance
a. The Coulomb potential energy can be given by the Debye screening potential [Parks,

2004] [¢/(4mep a)lexp(—a/Ap) while the kinetic energy is obtained from KpT. Note that
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1.2.  Dusty Plasmas

the Debye screening potential reduces to the usual Coulomb potential q/(4mega) in the
limit a < Ap. The Coulomb coupling parameter then becomes [Melzer et al., 1994; Shukla

and Mamun, 2002]

q2

1
r=—4
(dmega) KT

exp(—a/Ap).

In the study of dusty plasmas, the value of I' determines the possibility of formation of
dusty plasma crystals [Shukla and Mamun, 2002] by the process of Wigner crystallization.
This occurs for strongly coupled plasmas, with I' > 1; I' < 1 correspond to weakly
coupled plasmas. Thus “g” and “I'” have the same effect. In the determination of the
charge on dust particles, Melzer et al. [1994] observed a Coulomb crystal lattice with a
hexagonal structure in an rf discharge. In their experiment, they also reported that the
charged dust particles form regular lattices at I' > I';, with I'; = 170 being the critical
coupling parameter for the liquid-solid transition phase [Fortov et al., 1997]. With I'. ~ 2,
a transition from the gaseous phase to liquid phase was also predicted [Gilbert et al., 1988;
Dubin and O’Neil, 1988] where a liquid-like phase behaviour is exhibited by the plasma for
I'. > 2, and a liquid-solid phase transition to a body-centered cubic (bcc) lattice occurred
for T'. ~ 178 [Gilbert et al., 1988]. The formation of dusty plasma crystals, consisting
of ordered arrangements of micro-sized dust grains (or rods) in low-temperature partially
ionized plasmas, was also observed experimentally in a high frequency discharge near the
lower electrode in the boundary of the near-cathode regions [Chu and I, 1994; Hayashi and
Tachibana, 1994; Melzer et al., 1994; Thomas et al., 1994].

1.2.3 Charging Process of Dust Grains

Dust particles immersed in a plasma can be charged negatively by collecting electrons or
positively by emitting electrons, depending on the relative flux of electrons and ions in the
system [Gelinas et al., 1998; Shukla and Mamun, 2002]. The elementary processes that lead
to the charging of dust grains are quite complex and depend mainly on the environment
around the dust grains. Such elementary processes include interaction of dust grains with
energetic particles (electrons and ions), and interaction of dust grains with photons [Shukla
and Mamun, 2002]. In space, collection of electrons and plasma ions by the dust grains,

and photo-ionization [Verheest, 1999] are the most common charging processes.
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Negative Charge processes

In a dusty plasma, dust grains may be charged negatively by collection of charges due
to thermal ions and electrons [Barkan et al., 1995; Shukla and Mamun, 2002; D’Angelo,
2004], provided the photoelectric effect, secondary emission and other charging processes
are negligible. The negative charge results from: (i) the higher temperature, and therefore
higher thermal speed [Samarian et al., 2001], and (ii) the higher mobility of the electrons, as
compared to that of the ions. Thus the initial ion flux is smaller than the initial electron
flux and hence it is mostly the electrons that will hit the grain [Verheest, 2000, p. 15].
As the negative dust builds up on the dust grain, the resulting electric field acts against
further electron collection (electron flux decreases) and in favor of ion collection (ion flux
increases). Eventually a dynamical equilibrium is reached when the sum of the plasma
currents to the grain is zero.

This charging process is common in the normal glow discharge experiments, where the
emission processes are insignificant [Samarian et al., 2001], for example, when considering
laboratory plasmas of low temperature [D’Angelo, 2004]; neglecting electron emission, the

higher mobility of the electrons with respect to the ions results in negatively charged dust.
Positive Charge processes

On the other hand, dust particles can acquire appreciable positive charges by thermionic
emission [Shukla, 2000b], emission of photoelectrons due to incident UV radiation, sec-
ondary electron emission due to collisions with energetic ions and electrons, and absorp-
tion of the plasma ions [Gelinas et al., 1998; Shukla, 2000b; Shukla and Mamun, 2002;

D’Angelo, 2004|. In this case, the electron density would be larger than that of the ions.

Thermionic emission: In this process, electrons or ions are thermally emitted from the
dust grain surface when the latter is heated to a high temperature [Shukla and Mamun,
2002], leaving the dust grain positively charged. The process may be induced by laser

heating, thermal infra-red heating or by hot filaments surrounding the dust grain.

Photoelectron emission: This is more common in space and astrophysical dusty plasma
environments where ultraviolet radiation is abundant and results in a positive charging
current, making the dust grains positively charged. During the process, photoelectrons are

emitted from the dust grain surface when a flux of photons with energy larger than the
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photoelectric work function of the dust grain is incident on the dust grain surface [Goertz,

1989; Shukla and Mamun, 2002].

Secondary electron emission: When energetic plasma particles (electrons and ions)
are incident on a dust grain surface, they are either backscattered/reflected by the dust
grain [Shukla and Mamun, 2002, p. 40| or they pass through the dust grain (through
tunnelling, which is important for very small dust grains [Verheest, 2000, p. 22;23]) or
releases secondary electrons. During their passage they may lose their energy partially or
fully [Shukla and Mamun, 2002, p. 41|. A portion of the lost energy may excite other elec-
trons that in turn may escape from the material, resulting in secondary electrons (emitted
electrons). The release of secondary electrons from the dust grain tends to make the grain
surface potential, as well as dust charge, positive [Goertz, 1989; Shukla and Mamun, 2002].
In addition, if the dust grain absorbs more of the plasma ions than the electrons, the dust
grain charge as well as its surface potential becomes positive [Goertz, 1989; Shukla and
Mamun, 2002|. This is because, during absorption, the electrons are attracted while the
ions are repelled, thus the grain current carried by the electrons is increased and that

carried by the ions is reduced [Goertz, 1989; Shukla and Mamun, 2002].

Absorption of plasma ions: In laboratory plasmas, one way of producing positively
charged dust grains is by replacing the plasma electrons with negative ions whose thermal
speed is smaller than the thermal speed of the positive ions [D’Angelo, 1995]. Positively
charged dust grains can be produced by introducing sufficiently large amounts of SFg gas
into a potassium (K*) plasma in a Q-machine. Using this approach, D’Angelo [2004| was
able to experimentally investigate the excitation of dust ion-acoustic and dust acoustic
waves in a plasma with positively charged dust. The SFg gas has a large affinity for
electrons, and thus replaces the electrons with SFy ions [D’Angelo, 2004; Kim and Merlino,
2006], taking into account the high mobility of KT ions as compared to SF; ions. In
a similar method (using a Q-machine operating on potassium ions in which the highly
electronegative SFg gas is added), Kim and Merlino [2006] experimentally investigated
the charging of dust particles in a plasma consisting of positive ions, negative ions and
electrons. In their experiment, the transition from negatively charged to positively charged

dust required that (i) € = n./n4, the ratio of the electron density to positive ion density,
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be sufficiently small, and (ii) the positive ion mass be smaller than the negative ion mass.
In these conditions, increasing the concentration of negative ions in the plasma decreases
the magnitude of the negative charge, and eventually a transition to positively charged

dust is observed [Kim and Merlino, 2006].
1.2.4 Waves in Dusty Plasmas

The presence of the additional highly charged and massive dust grain species in the
plasma modify the properties of the usual plasma waves [Merlino et al., 1997; Shukla, 2000b;
Shukla and Mamun, 2002; Hellberg et al., 2006|, and also leads to instabilities [Samarian et
al., 2001]. Unmagnetized dust plasmas support new frequency modes like the dust acoustic
(DA) waves and the dust-modified ion-acoustic (DIA) waves [Merlino et al., 1997; Shukla,
2000b].

The dust acoustic wave, which was first theoretically predicted by Rao et al. [1990]
and later confirmed experimentally by Barkan et al. [1995], is a long-wave length, low
frequency oscillation mode [Merlino et al., 1997| with phase velocity that is far below the
ion-acoustic velocity. In this mode, the electron and ion pressures provide the restoring
force while the massive charged dust grains provide the inertia [Rao et al., 1990; Merlino
et al., 1997; Shukla, 2000a,b; Shukla and Mamun, 2003; Hellberg et al., 2006]. Thus the
dust particle dynamics play an essential role where the dust behaves as a charged particle
plasma species. The phase velocity of the wave is in the range vy < w/k < vy < vy such
that electron and ion Landau dampings are minimal.

On the other hand, the dust ion-acoustic waves, which were first predicted by Shukla
and Silin [1992] and confirmed experimentally by Barkan et al. [1996], are ordinary fast
ion-acoustic waves that are modified by the presence of charged dust. In the presence
of negative dust, the phase velocity is higher than that of the usual ion-acoustic wave in
an electron-ion plasma, and results in a reduction in the strength of the Landau damp-
ing [Merlino et al., 1997; Shukla, 2000b]. The characteristic thermal speeds vy; of electrons
and ion in a DIA wave satisfy the criterion vy < vy < w/k < vy, that is, the phase
velocity of DIA waves (w/k) is much smaller than the electron thermal speeds (vse) but
much larger than the ion and dust thermal speeds (vq, v4). In the DIA waves, the ion

mass provides the inertia while the inertialess electrons provide the restoring force, with
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the dust particles only providing a neutralizing background. Thus the ion and electron
dynamics is of paramount importance in the propagation of DIA waves.

These two wave modes (DTA and DA waves) will be discussed in detail in Chapters 3

and 4 in this thesis.
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1.3 Solitons and Double Layers

1.3.1 Solitons

These are special types of solitary waves (hump or dip shaped nonlinear waves of
permanent profile) [Shukla and Mamun, 2002, p. 195]. They travel at constant speed
and maintain a constant waveform, thus preserving their shape (see also [Baluku, 2007].
Solitons arise as a result of the balance between the effects of nonlinearity (leading to
steepening) and the effects of dispersion, assuming dissipation effects are negligible.

In Fig. 1.3 we show a typical structure of a soliton, in terms of the electrostatic potential,
(&), and electric field, E = — 57 ¢(§). The electrostatic potential soliton structure is
characterized by a single hump, occurring at the origin, while the electric field structure has
two humps (i.e., is bipolar), equidistant from the origin. It is the double hump structures

in F that are normally observed in space data.

$(©),E(©)

E@) -

Figure 1.3: A graph showing a typical soliton structure in terms of the electrostatic po-
tential (continuous curve) and electric field (dotted curve).

In studies of dusty plasmas, two types of acoustic solitons are commonly encountered
in collisionless unmagnetized plasmas. These are dust ion-acoustic solitons (analogous to
ion-acoustic solitons in pure ion-electron plasmas) and dust acoustic solitons [Shukla and
Mamun, 2002, p. 94]. These solitons are correspondingly associated with different electro-

static waves, viz., the dust ion-acoustic and dust acoustic waves, respectively. However,
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if the plasma is magnetized we may obtain both electrostatic (acoustic) and electromag-
netic (cyclotron) waves, with the acoustic wave modes propagating along the magnetic
field while the cyclotron wave modes propagate (nearly but not exactly) perpendicular
to the magnetic field [Merlino et al., 1998|. In this thesis, however, only solitons associ-
ated with dust ion-acoustic and dust acoustic waves in various multi-component unmag-
netized dusty plasmas will be investigated in Chapters 3 and 4. Besides dusty plasmas,
we will also investigate ion-acoustic solitons in plasmas with two-temperature kappa elec-
trons (Chap. 5), Cairns distributed electrons (Chap. 6) and two-temperature Boltzmann

electrons (Chap. 7). Where applicable, double layers will also be discussed.
1.3.2 Double Layers

A double layer is a local region in a plasma which can sustain a potential difference
or high potential drops [Block, 1978; Raadu and Carlqvist, 1981; Raadu and Rasmussen,
1981]. Double layers appear in current-carrying plasmas as nonlinear electrostatic shock-
like or kink structures with potentials transiting from one value to another over a small
spatial distance. They consist of two adjacent layers with equal and opposite net charge,
hence the term “double layer”. One layer has an excess of positive charges and the other an
excess of negative charges [Raadu and Rasmussen, 1981]. Inside the double layer the electric
fields are strong but very weak outside. Thus the layer taken as a whole is practically
neutral [Block, 1978; Raadu and Carlqgvist, 1981; Raadu and Rasmussen, 1981].

In various energetic phenomena in space and astrophysical plasmas, double layers are
considered as a possible means of accelerating particles [Smith, 1985; Raadu and Ras-
mussen, 1981], and have been invoked in such diverse contexts as terrestrial auroral dis-
charges, magnetospheric substorms, solar flares, Jovian radio emission, extragalactic radio
sources, etc.

A double layer is said to be strong if e¢y/KpT > 1, and is said to be weak if, say,
edpq/KpT < 10, where T is the temperature of the free electrons, and ¢4 the height
(amplitude) of the double layer [Raadu and Carlqvist, 1981].

Strong double layers require two-sided boundary conditions [Hellberg et al., 1997], with
the associated particles being specified on both sides of the double layer. The particles

associated with the potential variation may be conveniently divided into four classes: free
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and trapped (or reflected) ions and electrons, though in principle, three of these four classes
are enough to maintain a double layer (quite common with weak double layers). The free
particles can pass through the double layer while the reflected/trapped particles cannot
penetrate the layer because of the potential barrier. The free particles are either accelerated
or decelerated depending on their direction of motion with respect to the electric field, and
it is these free particles that carry the current through the layer leading to emerging beams
of accelerated particles [Raadu and Rasmussen, 1981]. In this case the electric fields are
strong and may lead to arbitrarily large amplitude double layers [Hellberg et al., 1997].
A schematic picture showing a potential profile for a double layer as well as the free and
reflected ions and electrons associated to the double layer is given in Fig. 1.4, from [Raadu
and Carlqvist, 1981].

Another form of double layers is that associated with fluid acoustic models [Baboolal
et al., 1988; Mace and Hellberg, 1993; Hellberg et al., 1997]. This is characterized by one-
sided boundary conditions at infinity, and the presence of a two-temperature plasma. The
result here is, in most cases, weak or small amplitude double layers, though there may be
exceptions [Bharuthram and Shukla, 1992].

As we will see in the subsequent subsection, the formation of double layers requires
that (i) the electric field be much stronger inside the double layer than outside. Thus
the integrated positive and negative charges nearly cancel each other, leading to vanishing
of the net charge of the double layer. This condition is derived from the momentum
balance and Poisson’s equation. (ii) Quasi-neutrality is locally violated in both space
charge densities at the position of the double layer. These conditions will be discussed in

detail in Sec. 1.4.2.

1.4 Methods Used in the Study of Solitary Structures

The methods used in the study of solitary structures are of two types, corresponding
to small amplitude (or weak) solitons and large amplitude or arbitrary solitons. When the
waves are weakly nonlinear (or quasi-linear) with acoustic-like dispersion in the low fre-
quency regime, the reductive perturbation analysisis appropriate. In the case of large ampli-
tude stationary waves, two methods are appropriate. These methods are: the fluid-dynamic

paradigm, pioneered by McKenzie [McKenzie, 2002a,b, 2003] and co-workers [McKen-
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Figure 1.4: A graph showing a schematic picture of (a) potential profile, (b) phase space
for the ions, and (c) phase space for the electrons, for a typical double layer structure.
In the schematic diagram, both the ions and electrons consist of a combination of free
particles and trapped or reflected particles; the free particles are either accelerated or
decelerated depending on the direction of motion relative to the electric field. From Raadu
and Carlqvist [1981].

zie and Doyle, 2003; McKenzie et al., 2004b,a, 2005], and the Sagdeev pseudopotential
method [Sagdeev, 1966]. The former (fluid-dynamic analysis) will not be discussed in detail
in this thesis. It was, however, applied elsewhere [Baluku et al., 2008] in the investigation

of dust acoustic and dust ion-acoustic solitons in dusty plasma with positively charged
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dust particles [Baluku, 2007]. Thus in the investigations of large amplitude solitons in the
various multi-component plasma models that will be investigated in this thesis, we shall

use the Sagdeev pseudopotential approach.
1.4.1 The Reductive Perturbation Theory

One of the commonest approaches to the reductive perturbation technique is the
Korteweg-de Vries (KdV) approach. A detailed derivation of the KdV equation (and
its solution), obtained for a dusty plasma model consisting of Boltzmann electrons, fluid
ions and positively charged dust particles can be found in the work of Baluku [2007]. This
approach has been used in obtaining the KdV equations in Chaps. 4 and 5, here involving
kappa distributed electrons instead of Boltzmann electrons, and positively or negatively
charged dust particles. In deriving the KdV equation, the following stretched coordinates
are used [Mace et al., 1991; Verheest, 2000; Shukla and Mamun, 2002]: ¢ = €'/?(z — V' t)
and 7 = €%/2t, where V is the phase velocity of the waves, and e a smallness parameter.

The KdV equation then takes the form [Swanson, 2003, p.355]

=0, (1.27)

where ¢ is the perturbed electrostatic potential, and A = A(V) and B = B(V) are func-
tions of the phase velocity V', where the latter is defined by the associated linear dispersion
relation of the plasma model. The explicit form of A(V) and B(V) are model depen-
dent, and have been suppressed. The equation above is used to describe one-dimensional
asymptotic behaviour of small but finite amplitude waves such as shallow water waves and
collisionless magnetohydrodynamic waves (see e.g., [Baluku, 2007, and references therein]).
The second term in Eq. (1.27), proportional to A, corresponds to the contribution of the
nonlinearity effects while the third term (proportional to B) gives the dispersion term.
When B = 0, the waves are non dispersive, resulting in a dispersion less acoustic wave
relation w = Ak, where w is the angular frequency and k is the wavenumber. Thus both
the phase velocity w/k, and the group velocity dw/dk, are equal to A [Baluku, 2007].
Solutions to Eq. (1.27) take the form of nonlinear solitary wave structures that prop-
agate unchanged at constant speed, say Vp, in the laboratory frame [Chen, 1984]. Trans-

forming to a moving frame, x(¢,7) = ¢ — Vor = €'/2(x — vt), where v = V + dv; with V
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being the phase velocity of the solitary waves and dv = €Vj, the KAV equation in (1.27)
has solution [Mace et al., 1991; Verheest, 2000]

a100= () sear { <f—;)/x} , (1.25)

valid for A # 0 and V/B > 0, that is, both V) and B must be of the same sign. In this
work we shall assume forward propagation (V) > 0), thus B is positive, implying that the
sign of the potential ¢ depends on the sign of A; positive potential solitons (¢ > 0)
require A > 0 while negative potential solitons (¢1 < 0) require A < 0. We also point
out that for given parameter values, only one sign of A is possible, implying that the KdV
solution does not allow “co-existence” of negative and positive potential solitons under
the same plasma parameter conditions, something that is possible in the large amplitude
approach, as we will come to see. The soliton amplitude and width are given by 3V /A and
4B/ Vo)l/ 2 respectively. In other words, the soliton amplitude increases with increasing
velocity of the solitary wave while the soliton width decreases with increasing phase speed.

For some plasma models, A is nonzero, so that both the nonlinear and dispersive terms
can appropriately contribute to the formation of a solitary structure. However, as we
will see in Chaps. 4 and 5, for some plasma parameters A can be equal to zero. In that
case, the nonlinearity effect becomes very weak compared to the dispersion contribution.
This leads to a breakdown of the KdV method, as the soliton amplitude would now go
to infinity. When that is the case (A = 0), a more appropriate equation is the modified
Korteweg-de Vries (mKdV) equation [Verheest, 2000, p. 112], which is similar to the KdV
equation (1.27), but differs from it in the nonlinearity term. The mKdV equation has been
derived for the plasma models described in Chaps. 4 and 5, and a detailed description is
given in Appendix C.1. When A(V) = 0 in the KdV equation, Eq. (1.27), the soliton
amplitude goes to infinity. In overcoming that scenario in the perturbation approach, we
re-scale the stretched space-time variables ( and 7. Following the approach of Baboolal et
al. [1989], we use the stretched variables ¢ = ¢(X — V' t) and 7 = €3t instead of those used

in the KdV approach. This approach, as can be seen in Appendix C.1, leads to the mKdV
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equation of the form

o1
8—7' + C(V)QD — + B(V)

= 0. (1.29)

Note here that B = B(V) takes the same form in equations (1.27) and (1.29). Likewise,
C(V) is model dependent. It also has to be noted that the mKdV approach is only valid
for plasma parameters for which A is equal to or approaches zero.

Again, using the transformation x(¢,7) = ( — ugT = €(x — vt), where v = V + Jv;
dv = €2y, with ug being the phase velocity of the solitary wave, Eq. (1.29) takes the form

of a first-order differential equation whose solution is given by [Verheest, 2000]

o1(x) =+ <6—g°>1/2 sech { (%)1/2 x} or (1.30)
oz, t) = + <%> Y et { (%”) v (z — vt)} , (1.31)

which is valid for C > 0 and B > 0 provided év > 0 (forward propagation assumed). In
Eq. (1.30) or (1.31), the soliton amplitude can be positive or negative due to the square
root sign, thus for the same plasma parameters, the mKdV solution could result in solitons
of the same amplitude (size) but opposite potential, unlike the KdV solution which gives

only one sign of potential for the specific plasma parameter values.
1.4.2 The Sagdeev Pseudopotential Theory

This is the most widely used approach in the study of large (arbitrary) amplitude non-
linear solitary structures (solitons and double layers). The method gives the necessary
conditions for the existence of solitons and double layers, but does not describe the under-
lying mechanisms leading to these solitary structures as well as is the case with the fluid
paradigm of McKenzie [McKenzie, 2002a,b, 2003; McKenzie and Doyle, 2003; McKenzie
et al., 2004a,b, 2005]. In this approach we begin with the Poisson’s equation

0%p
6()@—1—2]\7]'(]]‘ :0, (1.32)
J
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1.4. Methods Used in the Study of Solitary Structures

where g;, N;j, and ¢ are the charge and unnormalized density of species j, and the local
electrostatic potential, respectively, where we have taken z as the unnormalized space (or

position) variable. Poisson’s equation (1.32) can easily be written in the form

¢ | dV(p) g0 (dp\?
— =0 — | = %4 =0 1.33
i+ T =0 o 2 (%) +vie -0, (1.33)

where V' (¢) is the Sagdeev (pseudo)potential. Note that here, we are still working with
unnormalized quantities. In normalized form, the potential will be denoted by ¢, and the
Sagdeev potential or pseudopotential by ¥(¢) instead of V(). In Eq. (1.33), V(¢) =
— J G(g)dy is the pseudopotential, and G(g) gives the sum of the charge densities Njg;
for the plasma constituent species j. This implies that to fully have V(p) in terms of ¢
we also need the species densities N; = N;(¢) for the integration to be possible. Though
we have written the Sagdeev potential as V() as if it is only a function of ¢, it is actually
a function of more quantities such as the plasm species temperatures, densities, masses,
velocities, etc.

Equation (1.33) takes the same mathematical form as Newton’s law of motion, d2y /dt? =
F(x)/m = —d®(x)/dx, in Classical Mechanics where ®(y) is the potential energy, at co-
ordinate y, of a particle of mass m moving under the influence of a force, F(x). Thus the
second equation in (1.33) is equivalent to an energy integral of a pseudo particle of unit
mass with potential energy V() (called the pseudopotential or Sagdeev potential) where
w now plays the role of particle coordinate and x the role of time.

With the Sagdeev potential defined in (1.33), it follows that at the origin (¢ = 0) we

have

Vi(e)=——=(p=0)=0. (1.34)

This condition ensures that the appropriate boundary conditions used in obtaining V(i)
are satisfied. Provided condition (1.34) is satisfied, then the existence of solitons or double
layers require that [Baboolal et al., 1988, 1990; Mace and Hellberg, 1993; Verheest, 2000;
Verheest et al., 2008|:
(i) The Sagdeev potential V (¢) possesses a second derivative such that

d?v

d—(pZ(w —=0) < 0. (1.35)
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Thus there is an unstable local maximum at the origin ¢ = 0 such that the pseudo particle
comes to rest at the origin when & — +oo. This condition ensures that ¥U(¢) < 0 for
¢ # 0 in the immediate neighbourhood of ¢ = 0, leading to the necessary convexity at the
origin [Verheest et al., 2008|. Equation (1.35) is loosely referred to as the “soliton condition”,
and gives the minimum (critical) value of the structure speed (from d?V /dp? = 0 at ¢ = 0)
such that wave propagation is only possible above the critical speed. However, as we will
see later in Chaps. 4, 5, 6, and 7, this applies only to plasma parameters where soliton
potentials of only one sign are supported. For such solitons, their electrostatic potential
goes to zero as the Mach number approaches a critical (lowest) Mach number.
In the case where solitary structures of both polarity are supported by the same plasma
configuration, Eq. (1.35) takes the form
2

=0 <o (1.36)
since in this case wave propagation may be possible even at the critical structure speed.
(ii) There exists a nonzero ¢, which is a minimum potential® (or maximum potential) for

solitons or double layers, at which

0 for o, <0,
V(0) = Vign) =0 and D/ (m) J <D 108 @m< (1.37)

¥ >0 for ¢, >0.

That is, ¢,, may be the amplitude of the soliton or the potential corresponding to the higher
potential side of the double layer. In the case of a double layer, the former condition, that
is V(0) = V(pm) = 0, implies that the electric field vanishes at the edges of the double
layer, with ¢ = 0 and ¢ = ¢, being the potentials at the edges of the double layer.
This requirement also ensures that the overall charge in the double layer vanishes, and the
condition is known as the generalized Langmuir condition.

(iii) We also require

V(p) <0 for 0<|g| < |oml (1.38)

This condition ensures that (dy/dx)? is positive for real solutions of the potential following

®In the case of solitons, minimum potential is associated with negative potential solitons (¢ < 0) while
maximum potential is associated with positive potential solitons (¢ > 0)
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from dy/dz = (—2V () /e0)"/? in Eq. (1.33).

(iv) In the case of double layers, in addition to the above requirements in (1.35)-(1.38),
we also require that the charge density must also vanish at the edges of the double layer.

This implies that
dv(0) _ dV(em)

=0. 1.39
e do (1.39)
Thus, in particular, double layers satisfy
dV (pm)
V(pm) = ——2 = 0. 1.40
(om) = =2 (1.40)

It can be shown that expanding the Sagdeev potential, V' (¢) to the fourth order about
¢ = 0 leads to a formalism equivalent to the reductive perturbation method [Verheest,

1999]. Thus one obtains

15 do\?
50 <d—i> FO10% 4 Ood® 4 Oyt =0, (1.41)

where the coefficients C, C and C5 depend on the physical parameters, such as tempera-
ture, density etc. In the case of weak solitons, expansion of V() to third order is sufficient,
and that leads to the same solution as Eq. (1.28), obtained from the KdV approach for
small amplitude solitons (see also Baluku and Hellberg [2008]). Thus this approach is sim-
ilar to the reductive perturbation methods for small amplitude solitons. However, for weak
double layers, we need Eq. (1.41) (up to fourth order in ). Upon applying the double

layer existence conditions in Eq. (1.40), it follows that
Cl = C’g(p%1 and CQ = _2C3<Pm7 (1.42)

and thus Eq. (1.41) takes the form

- (2= 4 —om)? = 0. 1.4
2<dx>+60s0(s0 om)" =0 (1.43)
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A typical solution to Eq. (1.43) is given by [Verheest, 2000]

1/2
¢:_Tg§ {1—tanh [(—%) E]}, (1.44)

which after using Eq. (1.42) simply reduces to

€0

p(x) = 5 ¥m {1 — tanh [cpm(—C’g/%o)l/Qx] } ;o (C3<0). (1.45)

In this thesis, the expanded Sagdeev potential approach is used in Chap. 3 (see also Baluku
and Hellberg [2008]) in the investigation of small amplitude solitons and double layers when
considering a dusty plasma with kappa distributed electrons or ions and positively charged

fluid dust particles.

1.5 Outline of Thesis

In this thesis, investigations of linear and nonlinear waves in various plasma models,
which may occur in some space plasma environments, are described. We first study linear
electron-acoustic waves in bi-kappa plasmas, with emphasis on Saturn’s magnetosphere,
using a kinetic theoretical approach. We next turn to nonlinear waves, where we use a
fluid approach. In the fluid models we study dusty plasmas, where we look at two cases,
first, the dust acoustic waves, and second, the dust ion-acoustic waves. We extend the
nonlinear studies to ion-acoustic waves and solitary structures (in the form of solitons and
double layers) in bi-kappa plasmas. Finally, we deal with ion-acoustic solitary waves in
two other three-component models, viz., one involving an electron-ion-positron plasma,
and one composed of ions and two Boltzmann-distributed electron components at different
temperatures.

After this general introduction to some of the key concepts underpinning the studies
in this thesis, we turn in Chapter 2 to our first research problem. It involves a discus-
sion of linear electron-acoustic waves in bi-kappa plasmas, using kinetic theory, where the
electron components are kappa distributed. We discuss specific examples relevant to the
magnetosphere of Saturn, where two electron components, of different temperatures and
with nonthermal distributions that deviate significantly from the Maxwellian distribution,

have been reported.
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In chapter 3 we investigate existence domains of dust acoustic solitons (and double
layers), considering a plasma consisting of cold fluid dust grains, and kappa distributed
electrons and ions. Here, we derive an expression for the density of particles (in terms of
the electrostatic potential) satisfying a kappa distribution, which has also been applied to
the models described in chapters 4 and 5.

Chaprter 4 is a study of dust ion-acoustic waves in a three component plasma, with
cold fluid ions, charged dust grains, and kappa distributed electrons. This is a consider-
able extension of the work of Bharuthram and Shukla [1992|, who studied a plasma model
consisting of Boltzmann-distributed electrons, cold ions, and negative dust. In this study,
we have considered both small amplitude solitons, using the reductive perturbation tech-
nique, and arbitrary amplitude solitons, using the Sagdeev (pseudopotential) approach.
In particular, we have obtained novel results, namely, finite solitons at the true acoustic
speed of the DIA waves that are contrary to the KdV theory description, and also lead to
a redefinition of the requirements imposed on the Sagdeev pseudopotential.

In Chapter 5 we consider ion-acoustic solitons in a plasma model consisting of cool
Maxwellian ions and two (cool and hot) kappa distributed electron components. This
plasma model is discussed with a view to application to the magnetosphere of Saturn,
where two component electrons have been reported to be kappa distributed [Schippers
et al., 2008]. In this chapter, we also report results that are contrary to what is in the
literature. For instance we report that, depending on the plasma configuration, solitons
may be obtained even for Mach numbers greater than that at which a double layer occurs,
a hitherto unreported phenomenon.

Chapter 6 describes solitary structures in an electron-positron-ion plasma, where the
electrons are nonthermally distributed, obeying the Cairns distribution, the positrons are
Boltzmann-distributed, while the ions are cold and fluid-like. The work described in this
chapter is an extension of Pakzad [2009], however, we have provided more new results
compared to what is in the literature, including showing the existence of negative solitons
and double layers in this configuration.

Chapters 7 deals with an investigation of ion-acoustic solitary waves in a three-species
plasma consisting of double Boltzmann electrons and cold ions. In this model solitons

are also found to possess peculiar features, such as finite amplitudes at the velocity corre-
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sponding to the ion-acoustic speed of the wave. In addition, positive double layers are also
reported to be supported by the plasma model, for a limited parameter range, in contrast
to what is reported in the literature. In this range, again, solitons are found at Mach
numbers greater than that yielding a double layer.

Finally, in Chap. 8 we present a brief summary of results for all the different plasma

models that are discussed in this thesis.
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CHAPTER 2

Electron-Acoustic Waves in Bi-kappa Plasmas

In this chapter we use kinetic theory to investigate the possible existence of electron acoustic

waves in Saturn’s magnetosphere.

2.1 Introduction

The co-existence of cool and hot electron populations in Saturn’s magnetosphere was
deduced using the Voyager PLS observations of Sittler et al. [1983] and later confirmed
using the Cassini Plasma Spectrometer (CAPS) observations of Young et al. [2005]. The
nonthermal nature of the electron distributions in the outer magnetosphere was also re-
vealed by the Voyager measurements of Barbosa and Kurth [1993], who showed that the
electrons possessed a superthermal tail that could be fitted by a power law function instead
of a Maxwellian distribution function.

More recently, the Cassini-Huygens spacecraft orbiting Saturn carried, among oth-
ers, two instruments: the Electron Spectrometer of the CAPS (CAPS/ELS) and the
Low Energy Magnetospheric Measurement System of the Magnetospheric Imaging Instru-
ment (MIMI/LEMMS). Using results from the CAPS/ELS and MIMI/LEMMS instru-
ments, Schippers et al. [2008] have shown that both the cool and hot electron populations
are non-Maxwellian. By fitting the Cassini data for the electron populations with (a) two

Maxwellian populations, (b) Maxwellian cool electrons and k-distributed hot electrons,
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2. Electron-Acoustic Waves in Bi-kappa Plasmas

and (c) two r-distributed electron populations, Schippers et al. [2008] (see their Fig. 2)
showed that the double kappa distribution model fits best, with relatively low values of
K (Key Kp ~ 2 — 4, where subscripts “c” and “h” refer to cool and hot populations, respec-
tively) over much of the magnetosphere.

Saturn’s magnetosphere has been categorized by many authors, using Voyager 1 and
2 [Sittler et al., 1983] and Cassini data [Krimigis et al., 2005; Dougherty et al., 2005; Young
et al., 2005; Gurnett et al., 2005; Schippers et al., 2008; André et al., 2008|, as consisting
of three or more regions depending on the activities taking place and the composition of
the particular portion of the magnetosphere. The main three regions are the inner mag-
netosphere, the plasma sheet region (or loosely the middle magnetosphere), and the outer
magnetosphere. The inner magnetosphere, extending to radial distances up to (9—10) Rg,
where Rg &~ 60,268 km is the radius of Saturn, has the densest plasma in the Saturnian
system, with the plasma originating from the icy moons of Rhea (8.74 Rg with NT, O*
and water group ions OH" or HoO™), Dione (6.26 Rg) and Enceladus (3.95 Rg), as well
as neutral sources [Krupp et al., 2005; André et al., 2008]. Inside the inner magnetosphere
lies the inner plasma torus (under 8 Rg) which is characterized by low temperatures and
high equatorial densities, and is coupled to the ring system and the icy satellites [André
et al., 2008]. The region lying between around (7 — 9) Rg and about (12 — 14) Rg cor-
responds to the extended plasma sheet [Krupp et al., 2005; André et al., 2008|. In this
region, the energetic particles are confined to the equatorial plane of Saturn in a disk-like
layer, and the plasma consists of a mixture of hot and cool populations resulting from
transport processes [André et al., 2008|, where the cool plasma population dominates the
density and the hot plasma population dominates the pressure. The outer region of the
magnetosphere, which extends beyond (12 — 14 Rg) up to the magnetopause boundary
(~ 20 Rg), is characterized by a low plasma density and is strongly influenced by the solar
wind. The magnetopause boundary separates the solar wind plasma from that within Sat-
urn’s magnetosphere. This outer magnetosphere consists mainly of lighter ions with masses
m; < 10amu (such as HT), a tenuous hot plasma, and a quiet magnetic field [Wahlund et
al., 2005; André et al., 2008|.

Following the analysis of the Voyager data |[Gurnett et al., 1981; Kurth et al., 1983;

Barbosa and Kurth, 1993] and recently, the Cassini data [Gurnett et al., 2005; André et al.,
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2008|, a range of wave activity has been seen in the magnetosphere of Saturn. Whistler hiss
and chorus were reported in the noise events at frequencies below the electron cyclotron
frequency or gyrofrequency (f;, = e B/2mm,) in the magnetosphere of Saturn [Kurth et
al., 1983; Barbosa and Kurth, 1993; Gurnett et al., 2005]. These low frequency waves,
centered at frequencies below the local electron plasma frequency (fpe), were observed as
electrostatic broadband bursts [Kurth et al., 1983] at a radial distance of about 15.6 Rg
(in the outer magnetosphere), and in the inner magnetosphere at about 3.1 Rg < R <
8 Rg |Barbosa and Kurth, 1993|. Earlier, Gurnett et al. [1981] had observed a strong band
of noise at frequencies below 2 kHz between 3.1 and 8 Rg in the appropriate frequency
range of whistler mode hiss and chorus emissions. At these frequencies, the emissions were
found to be in resonance with low energy (1 — 5keV) electrons.

Above fg, electron cyclotron harmonic (ECH) waves or (n+1/2) f, bands, where n is an
integer, were found to exist in the region inside 8 Rg provided fpe > f, [Kurth et al., 1983;
Barbosa and Kurth, 1993] while narrow-band upper hybrid resonance (UHR) emissions at
frequencies between 25 and 100 kHz (under 6.81 Rg) were also reported by Gurnett et al.
[2005]; the latter were said to be due to electrostatic oscillations at the UHR frequency,
Jubrr = ( ge—i— f;)l/ 2. In addition, electron plasma oscillations [sometimes called Langmuir
waves or electron plasma waves (EPWs)| with frequencies of about 5.6 — 10 kHz (between
13.6 and 17.7 Rg) and 10 — 17kHz (between 5.5 and 9.5 Rg) [Kurth et al., 1983; Barbosa
and Kurth, 1993|, and 10 and 17.8kHz in the 4 Rg < R < 10 Rg region [Gurnett et al.,
1981], were also observed in the magnetosphere of Saturn.

Electromagnetic radio wave emissions at high frequencies, between about (3.6 — 5.6)
kHz and 31 kHz [Gurnett et al., 1981; Barbosa and Kurth, 1993], were reported in the inner
magnetosphere (between 3.1 and 6 Rg) while Gurnett et al. [2005] observed intense Saturn
Kilometric Radiation (SKR) on both the outbound and inbound trips of the spacecraft
(under 8.33 Rg) with frequencies ranging from 100 to 400 kHz.

Apart from EPWs and whistler mode waves, which were reported in both the inner and
outer magnetosphere, the majority of plasma waves were reported to have occurred in the
inner magnetosphere of Saturn for radial distances less than 10 Rg [Gurnett et al., 1981,
Kurth et al., 1983; Barbosa and Kurth, 1993], where (i) the magnetosphere contains icy

satellites that are sources of protons and heavier ions like O" and water group ions OH™ or
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HoO™", and (ii) the cool and hot electron population densities differ quite significantly. It
should be noted that the whistler mode hiss and chorus waves, reported from the Voyager
plasma wave measurements, were associated with a loss-cone pitch angle distribution based
on the latitudinal dependency of the flux which decreases with latitude. In addition, Kurth
et al. [1983] pointed out that one of the reasons why low frequency electrostatic modes may
not be easily observed in the magnetosphere of Saturn is primarily due to limitations of
the instrument (in the case of the Voyager plasma wave instrumentation), in that the noise
spectrum that is produced by the spacecraft is most intense below frequencies of 1kHz,
and their spiky nature makes it very difficult to differentiate between true signals and
interference from the instrument itself.

Bearing in mind that both cool and hot electron populations in Saturn’s magneto-
sphere are r-distributed [Schippers et al., 2008], using a kinetic-theoretical model, we
consider the possible existence of electron-acoustic waves in the magnetosphere of Sat-
urn. Electron-acoustic waves are electrostatic waves that propagate in plasmas with two
electron components having widely disparate temperatures [Watanabe and Taniuti, 1977,
Gary and Tokar, 1985|. These EAWs are believed to propagate in both unmagnetized and

magnetized two-temperature plasma [Tokar and Gary, 1984].

2.2 Description of Electron-Acoustic Waves

In homogeneous collisionless unmagnetized electron-ion plasmas, only two weakly damped
electrostatic normal modes are possible: the electron plasma (Langmuir) wave mode, which
occurs at frequencies above the electron plasma frequency (wpe ), and the ion-acoustic wave,
which occurs at frequencies below the ion plasma frequency (wp;). The latter requires that
the ion temperature be much less than the electron temperature (7, /7; > 1) to avoid ion
Landau damping. However, in the presence of two electron components (of similar densities
but quite different temperatures), a third weakly damped electrostatic mode may propa-
gate, and this mode has been termed the electron-acoustic wave [Watanabe and Taniuti,
1977, Tokar and Gary, 1984; Gary and Tokar, 1985; Gary, 1987]. Thus an electron-acoustic
wave is considered to be a characteristic normal mode of an unmagnetized collisionless
plasma in the presence of two electron components with similar densities but strongly dis-

parate temperatures. It propagates at a phase speed satisfying V. < w/k < Vy,, where
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Vie (Vi) is the thermal velocity of the cool (hot) electrons, given by Vi; = (Kp5T;/me)'/?
(j = cor h). The EAW frequency lies between the ion and electron plasma frequencies,
though the waves are strongly damped for small k& [Gary and Tokar, 1985]. In this mode,
the cool electron oscillations are modified (Debye screened) by the hot electrons, while the
cool ions essentially play a neutralizing role only.

Such waves have been studied in bi-Maxwellian plasmas [Watanabe and Taniuti, 1977;
Gary and Tokar, 1985; Mace and Hellberg, 1990]. Gary and Tokar [1985] have shown that
weak damping may be possible provided the ratio of the hot to cool electron temperature,
Ty/T. > 10, and fractional cool electron density, ng./nge < 0.8, where ng. is the total
electron density. In addition, Mace and Hellberg [1990] generated critical curves that
delineate the regions in parameter space in which a higher order mode will exhibit weaker
damping (smallest imaginary frequency). This approach was extended to a plasma with
hot superthermal (k-distributed) and cool Maxwellian electrons by Mace et al. [1999].

In such weakly damped regions it is likely that, if sufficient free energy is added (for
instance, by a beam), the waves could attain observable amplitudes [Ashour-Abdalla and
Okuda, 1986; Mace and Hellberg, 1993; Singh and Lakhina, 2001]. The higher-order modes
referred to here are those solutions of the dispersion relation that show strong damping
(Iy] > wy/2m, where w, and ~ are the real and imaginary parts of the complex frequency
w = w, +i7), otherwise those with weak damping (|| < w,./27) are called normal modes.

While investigating wave observations in the geomagnetic tail, Ashour-Abdalla and
Okuda [1986] showed that in the presence of ion beams, EAWs may be unstable if the
electron Landau damping is exceeded by the inverse ion Landau damping from the beam
ions, and that EAWs may exist provided T./T;, < 1, with T, &~ 100€V.

Using a plasma model consisting of stationary, Maxwellian cool and hot electrons,
an electron beam drifting along the magnetic field, and stationary, fluid ions, Singh and
Lakhina [2001] provided analytical conditions for the generation of electron-acoustic waves
in the Earth’s magnetosphere, which in a sense complemented the numerical work of Tokar
and Gary [1984|. They applied their results to the analysis of the dayside auroral region,
where the broadband electrostatic noise (BEN) emission was observed as a common phe-
nomenon by the Viking satellite at heights of 2 000 to 10 000 km. With parameter values

typical of the auroral region they obtained unstable EAWs with frequencies between the ion
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plasma frequency and the cool electron plasma frequency. In addition, Singh and Lakhina
[2001] applied their results to the plasma sheet boundary layer, and the polar cusp region.

In the mid 1970’s, Kawai et al. [1975] excited electron waves by a three-mesh exciter
in a large-volume plasma in the space chamber at the Institute of Space and Aeronautical
Science, University of Tokyo. In addition to the Langmuir mode, they observed the free-
streaming electron mode and a new mode at frequencies less than the Langmuir frequency,
which appeared to be the EAW. In their experiment, the energy distribution function of the
electrons, as measured by the Faraday cup method for different anode potential, showed
that the electrons consisted of a Maxwellian component and a non-Maxwellian component
(modelled by a water-bag distribution function), since the tail of the energy distribution
function was extended with increased anode potential.

Following on the experiment of Karlstad conducted in the Tromsg DP device [Karlstad
et al., 1984], Hellberg et al. [2000] showed that electron-acoustic waves were observed in that
experiment. The plasma model involving cool Maxwellian and hot k-distributed electrons
showed minimal damping for k; ~ 3 — 4, and both damping and dispersion were in good
agreement with the experimental results [Hellberg et al., 2000].

Electron-acoustic wave solitons have been reported in the FAST satellite data in the
auroral region of the geomagnetic tail [Pottelette et al., 1999], in the presence of a two-
component electron plasma with one cool (< 60 eV) and a dominant hot (~ keV) compo-
nent. Mace and Hellberg [2001] used a Korteweg-de Vries—Zakharov-Kuznestov (KdV-ZK)
model to study the effect of a magnetic field on such electron-acoustic solitons.

To the best of our knowledge, observations of EAWs have not yet been reported in
Saturn’s magnetosphere. Nonetheless, in this chapter we investigate, by using a kinetic-
theoretical approach, whether they may potentially be observable. First we present a
parameter survey of dispersion and damping curves for different density ratios, tempera-
ture ratios and spectral index values (k. and k), of the two electron components. Then
we consider parameter values that are representative of three regions of Saturn’s magneto-
sphere, as illustrated in Fig. 3 of Schippers et al. [2008]. In particular, we show that EAWs
would be weakly damped in the outer magnetosphere and hence are likely to be observable

there, given a possible external source of free energy.
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2.3 Theoretical Model and Basic Equations

We consider electrostatic waves in an unmagnetized, collisionless plasma consisting of
kappa distributed cool and hot electrons, and singly charged cool Maxwellian ions. In the
EAW, the cool electron oscillations are modified by the hot electrons, with the cool ions
playing mainly a neutralizing role.

We shall use the 3-d isotropic kappa distribution, given as

1 T(e+1 v2 \ T
Fv) = gy r(,i ~1 /;) <1 * @) ! (2.1)

which is of the form of Eq. (1.2), with x, 6 and T taking the usual meaning as in Eq. (1.2).
The general dispersion relation for electrostatic waves in an unmagnetized plasma may

be written as [Krall and Trivelpiece, 1989

Ofa 63&
kw—l—z / f—O/w;)k 30 =0; Imw >0,

where wyq = (n0ag2/ Eoma)l/ 2 is the plasma frequency, with the parameters in wp, having
their usual meaning; f,o the unperturbed velocity distribution function of species o and
the wave vector k is in the X— direction. For two species of k-distributed electrons and
kappa distributed ions, the dispersion relation takes the form [Hellberg and Mace, 2002;

Mace and Hellberg, 2009]

2 2

Wpe h J
D(ka LU) =1- k;;gzl(’{c; gc) - k21792 Z/( Kh; éh) ]C;;QZ/(I%; 52) = Oa (22)

where ¢ and h denote the cool and hot electrons, respectively, and ¢ denotes the stationary,
cold ions; &, = w/(kO,) x w/(kVi,) is the complex wave phase speed normalized to
the most probable speed 6, of species «, with w being the complex angular frequency,
given by w = w, + iy = w,(1 + iy/w,), and k the (magnitude of the) wave number. In
particular, 02 = [(2k4 — 3)/ka)(KBTa/ma) = [(26a — 3)/ka|V,2, with T being the kinetic
temperature [Summers and Thorne, 1991; Hellberg et al., 2009; Mace and Hellberg, 2009],
and Vj, = (KBTOé/mOé)l/2 being the thermal velocity of species a.

The plasma dispersion function which we denote by Z(kq; &) is precisely the same
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as Zxn(€), the modified plasma dispersion function of Hellberg and Mace [2002], defined
initially for a Kappa-Maxwellian velocity distribution. Hellberg and Mace [2002] also
indicated that Z,p(€) is related to the modified plasma dispersion function Z,(&) for

the isotropic three-dimensional kappa distribution [Mace and Hellberg, 1995; Hellberg and

K —1)3/2 k—1 1/2
Zn(©) = e e [{( 1 5]’

and thus Z,57(€) is also applicable to studies involving isotropic kappa distributions, as is

Mace, 2002| by

the case here. Recently, Mace and Hellberg [2009] have shown that this plasma dispersion
function [Z(ka; €a) or Zenr(€)], which they denoted U, (&), can also be obtained starting
from an isotropic kappa distribution, and therefore its application is not limited to plasmas
with Kappa-Maxwellian velocity distributions. In particular, it can be applied to studies
involving ordinary isotropic kappa distributions. Therefore, for general purposes we shall
use the notation Z(kq; £a) instead of Z,pr(€) to refer to the plasma dispersion function
for kappa velocity distributions of the form given in Eq. (1.2).

The integral and closed forms of the function Z(k.; &), are given by [Hellberg and
Mace, 2002; Mace and Hellberg, 2009]

1 NS © ds
2l )= (e T o BT e ) >0 a2
Z(Ka, €0) = Z(“";g;/;/z) o Fy [1,2@,%@ +1; % (1 - %)] : (2.4)

respectively, where the closed form is expressed in terms of the hypergeometric function,
oF1 |Abramowitz and Stegun, 1972, p. 556]. Though the integral expression (2.3) for
Z(Ka, &q) 1s defined only for Im(&,) > 0, its behaviour for Im(¢,) < 0 is obtained through
analytic continuation. In fact, Eq. (2.4) is precisely the analytic continuation of it. The
function Z'(ka, &), the derivative of Z(k,, &) with respect to the argument &, takes the
form [Hellberg and Mace, 2002]

Z' (Kas &) = W = V2 b o one 41,50 +2: - <1 _ _ta )} . (2.5)

Ka(Ka + 1) 2 i/ Fo
Note that in the limit K, — 00, Z(Kq, £q) reduces to the usual plasma dispersion function
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Z (&) of Fried and Conte |[Brambilla, 1989; Swanson, 1989|. For Maxwellian ions we have
Z(ki; &) — Z(&); where here & = (w/k)/v/2Vy;, since 0; — /2Vj; when k; — co. In the
analytical discussion we shall use Z(&) for the ions. However, for the numerical evaluations,
we have retained the full expression Z(kq; &u) in (2.2) and used a high value of k; (e.g.,

k; = 50) to approximate to a Maxwellian.

2.4 Analytic Solutions

On the electron-acoustic wave time scale, the phase velocity satisfies (c.f. Watanabe
and Taniuti [1977]; Gary and Tokar [1985]) Vi < Vi < w/k < Vi, For &, x w/(kVia),
it follows that |&], || > 1, and || < 1. Thus we approximate Z(kq; &) by using an
asymptotic expansion for the ions and the cool electrons. On the other hand, we use a
power series expansion of Z(kq; &) for the hot electrons. A detailed discussion is given in
Appendix B.1.

For frequencies and wavelengths, assuming wy; < wpe; 7] < wr; Ape < Agp (which is
commonly valid); and kAp. < 1, the dispersion relation [Eq. (2.2)] can be written in the

approximate form [see Appendix B.1 for details|,

(2.6)

pc

s o J1HBEPAL(1+1/E2A7))
Wy = W )
(1+1/k2X%,)

where Aea = [(Ka — 3/2)/(ka — 1/2)]Y2 Apa, with Apa = (aoKBTa/noae2)1/2 being the
standard (Maxwellian) Debye length of species a. Here, the parameter ., is the appropri-
ate Debye length in a kappa plasma [Bryant, 1996; Mace et al., 1998, 1999|, which reduces

to Apq in the limit x, — oo. Equation (2.6) can be written in the equivalent form

2 2 V2 2
wrm =k {$} + 3V, (27)
L+ k22,

where Vi, = wpcApe is the thermal velocity of the cool electrons, and V., the electron

sound speed in a kappa plasma, is given by

vz =g, = (Do) (Bl (ra =32 (28)
petfn non Me kp—1/2

This expression for V.2, is the same as that found by Mace et al. [1999] for the EA speed in
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2. Electron-Acoustic Waves in Bi-kappa Plasmas

a plasma with cool Maxwellian and hot kappa electrons. Indeed, we note from (2.8) that

Vs 1s independent of k. and increases with xj. For k; — oo, Vi, reduces to

1/2 1/2
Cse = <n0c> <KBTh> ) (29)
ok Me

the electron-acoustic speed in the Maxwellian limit [Gary and Tokar, 1985]. Equation (2.7)

is analogous to the standard ion acoustic dispersion relation in a simple electron-ion plasma
(where Vs = wpiApe) [Chen, 1984]. In that case there is an additional term associated with
the ion thermal speed, which here is replaced by V,., the cool electron thermal speed. We
note in passing that the adiabatic behaviour, with the ratio of the specific heat capacities,
T = 3, comes out naturally from the kinetic-theoretical calculation. This YT should not
be confused with the growth rate, -, discussed in this work. Expression (2.7) also shows
that the phase velocity w/k is modified by the hot electron parameters (through the hot
electron x-dependent Debye length, A, ).

We note that for typical parameters of interest below, and appropriate for much of
Saturn’s magnetosphere, with n.y and npg of similar magnitude and T}, > T, it follows
that A«p > Ape, and thus, while satisfying kAp. < 1, it is possible to consider the effect
of the additional constraints kA, < 1 and kXg, > 1 on the dispersion relations (2.6)
and (2.7). The latter region should possibly be more correctly designated the “intermediate
wavelength” region, as k satisfies kAgp > 1> kXpe.

We first consider the constraint k)., < 1 in the long wavelength regime (with kAp. <

1). Here, Eq. (2.7) reduces to the form
we? =K (VE +3Vi2), or w? =uw, (kA% +3k*\D,.) . (2.10)

In the limit k;, — 00, Vs — Cse, and therefore Eq. (2.10) reduces to the usual long
wavelength dispersion relation for EAWs in a plasma with Maxwellian electrons [Gary and
Tokar, 1985|. Equation (2.10) also indicates, significantly, that in this long wavelength
regime [with V;. < Vi, in Eq. (2.10)], the EAWs are dispersionless and all wavelengths or
frequencies propagate at the same acoustic speed, V.

On the other hand, in the case of intermediate wavelengths, imposing the constraint
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2.4. Analytic Solutions

kEXcp > 1 in the numerator of Eq. (2.6), the dispersion relation yields the result of Mace

et al. [1999]:

1+ 3k2\2
2 2 Dc
w?=w?, [ ——LDe ) 2.11
PC<1+1/k2Aih> (211)

which, in the limit k; — oo, reduces to the dispersion relation of Gary and Tokar [1985]
for a double Maxwellian plasma (see also Mace and Hellberg [1990]). Equations (2.6)
and (2.11) show that the EAW is essentially a cool electron oscillation screened by the
hot electrons, with a screening factor given by (1 + 1/[k*A2,])~!. Moreover, although we
have assumed that the cool electrons are kappa-distributed, we note from (2.11) that their
dynamical contribution is identical to that found in the Maxwellian case, at least within
the limits of the approximations leading to Eqgs. (2.6)—(2.11).

Further, if we consider even larger k values, and apply the constraint kA.p > 1 to the
denominator of Eq. (2.7) [or in both the numerator and denominator of Eq. (2.6)], then
the hot electron Debye screening is eliminated, and these equations show that the EAW
mode reduces to a Langmuir-like mode of the cool electrons with dispersion relation [Krall
and Trivelpiece, 1989]

r T

w? wf,c +3K*V2 or w? = wfw (1+ 3k2)\%c) , (2.12)

Thus, in this short wavelength regime with A < Axp, the hot electron Debye shielding
is insufficient, and the effects of the excess superthermal electrons associated with the
k-distributed hot and cool electrons are negligible.

In summary, we stress that the EAW branch has differing behaviour in the long wave-
length regime, where it is essentially acoustic, with speed Vi, [see Eq. (2.10)], and the
intermediate wavelength regime (with, kA, > 1, but kAp. < 1) where it behaves essen-
tially like a Langmuir mode of the cool electrons [Gary and Tokar, 1985], see Egs. (2.11)
and (2.12).

Secondly, we draw attention to the fact that the analytical theory has concentrated on
finding w,. The complicated expression for the damping rate is not transparent even after
taking approximations, but may be found in Appendix B.1.

Finally, we note that, above the EAW frequency range (wp; < wr < wpe), one finds the

normal electron plasma wave (EPW), in which all the electrons play a role, and satisfying
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2. Electron-Acoustic Waves in Bi-kappa Plasmas

wr/k > Vi, > Vie. It can easily be shown that the dispersion relation of the EPW in a

two-electron plasma is given, using appropriate approximations, by

2 2,2 2 2, .2
wpc 2 ‘/tcwpc wph 2 V;hwph .

With wge = wgc + wgh, and in terms of kAp., the above expression becomes

2 2 4 2 4

1 Wpe 32)2 Wpe wp0+)‘Dh “ph —0

w2 De’ 2 4 A2 WA (T
Dc *p

pe e

The term in curly brackets can be simplified to give

fB
(1-1)

<1—f>2[1+ ]:1+f[<1—f>/3—<2—f>],

where f = npo/neo is the fraction of the hot electron equilibrium density, and 5 = T}, /T, is
the ratio of the hot to cool electron temperatures. Thus the above approximate dispersion

relation for the EPWs is given by

W fwpe =14 3k°Ab {1 + f[(1 = f)B = (2= f)]} or

w? =wpo (14 3K2AD.) + 3K Abuwpe fI(1 = F)B = (2 /). (2.13)
In terms of the cool and hot electron thermal velocities V;. and Vi, Eq. (2.13) is simply

wp = Wiy + 3(neo/ne0) k> Vi + 3(nno /me0) k> Vi, (2.14)

r =

This approximate dispersion relation for EPW is thus independent of xj and k., as expected
from earlier studies of single-electron x-plasmas [Mace and Hellberg, 1995].

In Fig. 2.1 we compare the analytical results following from Eqs. (2.6)—(2.13) with the
analytical solution of Eq. (2.2) without approximations. The exact numerical results are
depicted by solid (black) curves in the figure. We choose a plasma system with parameters
5 =98.04, f = 0.462, k. = 2.1 and Kk = 4, corresponding to a radial distance of about

13.1 Rg in Saturn’s magnetosphere. The approximate dispersion relation for EAWSs, given
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20—

1.5+

w/wpe
H
o

0.5+

0_ T T T S T T A O S A S S
%.O 0.2 04 0.6 0.8 1.0
kApc

Figure 2.1: Figure showing the analytical results discussed above, applied to a plasma
system with parameters 8 = 98.04, f = 0.462, k. = 2.1 and Kk, = 4, corresponding to
a radial distance of about 13.1 Rg in Saturn’s magnetosphere. The dotted (blue) curve,
labelled 1, is given by Eq. (2.10) while the dotted (red) curve, labelled 2, which is the
Langmuir-like branch of the cool electrons, is given by Eq. (2.12). The associated numerical
results are shown by the solid (black) curves.

by Eq. (2.6), is indicated by the dotted blue curve, labelled 1: it is approximate to w, =
kV. (dot-dashed curve) in the small wavenumber limit [for kA, < 1 and Vi < Vi, (see
Eq. (2.10))], and is equivalent to the Langmuir-like branch of the cool electrons [dotted
red curve (starting at wp. and labelled 2), given by Eq. (2.12)] for large wavenumbers. The
approximate dispersion relation for the EPW, given by Eq. (2.13), is shown by the long
dashed (green) curve. In the case of the EPW we see that the two sets of results agree
well for small kAp. values only (kAp. < 0.1), while for large kAp., the analytical results
overestimate the frequencies. Similarly, the EAW case shows that the deviation in the
frequency predicted by the analytical approximations and numerical results is minimal for

low kAp. but steadily increases beyond kAp. ~ 0.4.
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2. Electron-Acoustic Waves in Bi-kappa Plasmas

2.5 Numerical Solutions

Here we return to the full dispersion relation, Eq. (2.2), and choose the following
normalization: the density is normalized to the total electron equilibrium density neg, where
the latter is equal to the sum of the hot and cool electron equilibrium densities nyo and nq.

12 and

The frequency w is normalized to the electron plasma frequency wpe = (neoe2 Jeome)
the temperature and spatial parameter are normalized to the cool electron temperature 7T,
and Debye length Ap., respectively. With this choice of normalization, we write Eq. (2.2)

in the form

D(k,w) =1 fZ'(ke; &) + (a f/B) 2 [kn; (a/B)/7E] + b2 ki3 (bmi/me) /€]

— (1= ) (2= 3/ PN, =0, (2.15)

where Z’ (kq;&q) is defined by Eq. (2.5); m; (m.) is the ion (electron) mass; f = ngp/noe is
the fraction of the hot electron equilibrium density; 8 = T} /T, is the fractional hot electron
temperature, and the normalized complex phase velocity of the cool electrons &, is related
to the normalized frequency (w/wpe) by w/wpe = [(1 — f) (2 — 3//40)]1/2 (kADec) &, using
the relation & = w/kf.. The constants a and b in Eq. (2.15) are given, respectively, by
a = kp(ke —3/2)/[Re(kn — 3/2)] and b = ki(ke — 3/2)/[ke(ki — 3/2)T:/T;]. For numerical
purposes we have assumed the mass ratio, m;/m. = 1836, the normalized ion temperature,
T;/T. = 1073, and also used x; = 50.

We shall next describe a numerical study of Eq. (2.15) — first a parameter survey
relevant to Saturn data, and then a study of wave behaviour in each of the three regions
of Saturn’s magnetosphere.

In obtaining full solutions to the dispersion relation in Eq. (2.15), the following steps
are followed:

(i) We fix the spectral indices k. and kjp, and the density and temperature ratios f and 3,
respectively.
(ii) We then assign a non-zero value to the normalized wave number kAp., and solve for

the complex argument £, = {.(w) that satisfies the simultaneous equations D, (k,w) = 0
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and D;(k,w) = 0, where here we have

Dy(k,w) =1~ f Zl(ke; &) + (a f/B)ZL[kn; (a/B)2E] + b ZL[ks; (bmi/me)'/?E]
— (1= f)(2-3/ke) k*X3, =0, and
Di(k,w) = —f Z{(re; &) + (a f/B)Z][kn; (a/B)/El]

+ b Z[ki; (bmi/me)Y?E,] =0,

and subscripts r and i refer to the real part and imaginary part, respectively. Note here
that &, and &; are expressed in terms of . as made explicit in Eq. (2.15). This process
normally leads to a series of solutions of &., including the principal mode solution and
high-order mode solutions. In essence we determine the zero-level contours of D, (k,w)
and D;(k,w).
(iii) Each solution obtained in step (ii) is used as an initial guess for a root of the full
function D(k, w), at the same assigned value of kAp.. A Mathematica root finder is
then used to accurately obtain the root &., from which we obtain the complex frequency
w = k6.&. Tterating this procedure over a sequence of values of kAp. we obtain the
dispersion relation w = w(k) and the damping rate v = —v(k).
In this model, the solutions described here are either “acoustic-like” (with zero frequency w
at kApe = 0) or “Langmuir-like” (with frequency w = wpe at kAp. = 0). Note that we have
normalized w with the electron plasma frequency wy.. Thus, for the cool “Langmuir-like”
wave mode the normalized frequency equals \/W = \/(1 —f)atk=0.
(iv) The solutions, obtained from (iii), with the least damping rate (low |y(k)| values) are
then considered to be normal modes. Depending on the plasma composition, the value
of & corresponding to the principal mode (&, value with lowest imaginary term) normally
gives the least damped Langmuir wave mode (or electron plasma wave) solution while one
of the higher-order modes (with relatively low imaginary value) gives the least damped
“acoustic-like” wave mode. For some plasma compositions though, the principal value of
&, may give the “acoustic-like” solution while the Langmuir wave mode solution is given by
one of the higher-order modes.

An example showing the various solutions of &, for a fixed kAp. and a given plasma

composition is shown in Fig. 2.2 (left panel), obtained for the parameters: 5 = 10, f =
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2. Electron-Acoustic Waves in Bi-kappa Plasmas

0.35, k. = 1.8, kK, = 7 and k; = 50, with normalized wavenumber kAp. = 1. The dotted
(red) curves correspond to the solutions of D, (k,w) = 0 while the continuous (blue) curves
correspond to the solutions of D;(k,w) = 0. Thus for kAp. = 1 used here, the initial
guesses of &. are obtained at the points of intersection of the dotted (red) and continuous
(blue) curves. In this particular example, the principal mode is labeled P while the higher-
order modes are labeled 1, 2, 3 and 4, depending on how far the solutions are located from
the Re(&.) axis, that is, as |Im(&.)| increases. Note that other sets of curves (or solutions)
can be obtained far below Re(£.) = —30, but these have not been considered as they lead
to strongly damped wave modes.

In the right panel of Fig. 2.2 we show the full solutions to Eq. (2.15), obtained by
using the &, estimates in the left panel and varying kAp. from 1.0 — 0.00001, for example.
The figure indicates that the principal mode is the Langmuir wave, and the higher-order
modes are acoustic-like wave modes. The frequency (w/wpe) is shown on the positive
ordinate-axis while the damping rate (v/wpe < 0) is shown on the negative ordinate axis.
Considering the steepness of the damping rate curves, one sees that the higher order modes
labeled 2 — 4 show rapid increase of damping rate as kAp. is increased compared to the
one labeled 1. Thus, if there were an external source of free energy to the plasma system,
the principal mode and the first higher-order mode solutions could be possible candidates
for weakly damped or growing waves for observation. In the right panel of Fig. 2.2, the
dashed curves have 1/|y| < 27 /w, (implying strong damping) while the continuous curves
have 1/|y| > 27 /w,, the latter denoting modes that are sufficiently weakly damped to be
called observable.

In order not to overcrowd the graphs for the results presented in Sections 2.6 and 2.7,
we have only included the “least damped” mode solutions arising from the principal value
of &, and one of the higher-order mode solutions. However, for a few cases of results we

have also included solutions corresponding to other higher-order modes.

2.6 Results: Effects of Density, Temperature and Spectral

Index

From the analytical results in Sec. 2.4 [Eq. (2.6)], we see that the normalized frequency

is affected by a number of plasma parameters, and hence it can be expressed in the form,
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Figure 2.2: Left panel: A graph showing . = Re(&.) + i Im(&.) satisfying both D, (k,w) =
0 (dotted red curve) and D;(k,w) = 0 (continuous blue curve) for kAp. = 1. Other
parameters used are: 5 = 10, f = 0.35, k. = 1.8, Kk, = 7 and k; = 50. The values of
&. are obtained from the points of intersection between the dotted (red) and continuous
(blue) curves. Right panel: Dispersion and damping rate curves corresponding to the
initial estimates of £, for a plasma system with parameters as in the left panel graph. Two
distinct solutions are shown: the Langmuir wave, corresponding to the principal value of
&, and the “acoustic wave” modes, corresponding to the higher-order modes, which are
damped. In the right panel, the dashed curves imply strong damping (1/|v| < 27/w,)
while the continuous curves denote modes that are sufficiently weakly damped to be called
observable, since 1/|y| > 27 /w, in those cases.

Wy /Wpe = wr/wpe(kADe; ki Th/Te; nho/Meo). Likewise, the normalized damping rate, from

Eq. (B.16), is formally a function of

Y Iy Ti npo my
= kADes Kes By i s —— — | -
Wpe Wpe T, T. neo me

Since the ratios T;/T. and m;/m. are fixed we do not focus on the dependence of w, and
~ on these parameters. Instead we investigate the behaviour of the EAW as the plasma
parameters such as the spectral index of each of the electron components, the fractional
density of electron species, and the temperature ratio of the two electron components are
varied. Based on typical Saturn data, we have, in this section, carried out a parameter
survey for EAWs in a plasma with a hard electron spectrum (low spectral indices) using

Eq. (2.15), to investigate the effect of the parameters listed above on the resulting wave
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2. Electron-Acoustic Waves in Bi-kappa Plasmas

modes supported by the plasma system.

As we have noted above, it is difficult to extract any useful information about damping
rates from the approximate analytic theory, and thus the numerical solution of the full
equation is vital for such studies. For the dispersion or damping curves in Figs. 2.3-2.12,
dashed curves imply that the waves are strongly damped (|| > w,./27), while continuous
parts indicate regions of weaker damping, with |y| < w,/27, and in the presence of an
external free energy source (such as a beam) the latter may grow to significant amplitudes.

In Figures 2.3-2.6, the dispersion curves (w/wp.) are shown on the left panel while the
damping rates (7/wpe) are on the right panel of each figure, respectively, both expressed
as functions of the wavenumber kAp.. Note that the frequency w, and damping rate ~ are
normalized to the electron plasma frequency wp. while the wave number k is normalized

to the reciprocal of the cool electron Debye length Ap..
2.6.1 Effect of Electron Spectral Indices

In Figure 2.3 we illustrate the effect of varying the cool electron spectral index k. on
the wave behaviour for fixed k;, = 4, a temperature ratio g = 100, and a fractional hot
density ratio, f = 0.5. We note first that the EPW solution shown in the left panel is a
superposition of all the EPW solutions for the x. values (2 < k. < 10) used in this figure.
Thus the figure shows that the EPW are weakly damped for small k, and their behaviour
is independent of k. for small k, confirming the approximate solution, Eq. (2.12).

On the other hand, the electron acoustic branch is strongly damped in the low wavenum-
ber regime (here, kAp. < 0.12), but like the EPW, its phase velocity in this region is
independent of k., confirming the approximate analytic equations (2.8) and (2.10).

In contrast, for intermediate wavenumbers, the cool Langmuir region of the EA-branch
is weakly damped for all ., and in this range increasing k. slightly increases the wave
frequency over which these EAWs are weakly damped above the “knee” at wy,, contrary to
the analytic theory, which predicts that k. has no effect on the dispersion of EAWs in this
range. Though this effect is significant for large wavenumbers, the EAWSs are too strongly
damped in that range to be observable.

In the right panel of Figure 2.3, we consider the damping rate of the weakly damped

EA-branch for fixed k;, = 4. We see that for intermediate values of wavenumbers (in the
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2.6. Results: Effects of Density, Temperature and Spectral Index

region where the criterion 1/]y| > 27w /w, is satisfied), an increase in the superthermal
particle excess of the cool component, 4.e., a decrease in the value of k., gives rise to
increased damping as compared to what is found for cool electron distributions closer to a
Maxwellian distribution (e.g., k. = 10). However, the range in wavelengths that are more
weakly damped is not significantly affected by k.. This observation also applies to Fig. 2.4
(see later), with fixed k. = 2 where we now vary kj,. Therefore in the weakly damped
regime (with 1/]y| > 27/w,), EAWs with more non-Maxwellian particles (low x values)
are more damped than those with a small proportion of non-Maxwellian particles (with

relatively high x values).
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Figure 2.3: Dispersion and damping curves showing the effect of cool electron kappa indices,
Ke, for =100, no. = nop, kn = 4. Values of k. used are: k. = 2 (black, bottom), k. = 4
(orange), k. = 6 (blue), k. = 8 (red), and k. = 10 (green, top), respectively. As in Fig. 2.2
(right panel), the dashed curves have 1/|y| < 27 /w, (implying strong damping) while
the continuous curves have 1/|y| > 27 /w,., the latter denoting modes that are sufficiently
weakly damped to be called observable. This (dashing) pattern also applies to Figs. 2.4
2.12. Note that for the sake of not overcrowding the graph, the damping curves (in the
right panel) corresponding to the EPW modes are not shown, thus the results presented
(in the right panel) are only for the EAW-like modes. This also applies to the damping
curves in Figs. 2.4-2.7, unless otherwise specified.

In Fig. 2.4 we show a similar study as in Fig. 2.3, here varying ky, for fixed k. = 2.
In this case we see a dependence of the frequency of the EPW mode on the hot electron
k value, which is particularly strong near xp = 2. This reflects the numerical results for

EPW in a single-electron plasma [Mace and Hellberg, 1995], as opposed to the analytic

95



2. Electron-Acoustic Waves in Bi-kappa Plasmas

approximation, Eq. (2.13). In addition, the EPW branch shows coupling behaviour as
kp, becomes small, where it behaves as a Langmuir wave for low wavenumbers while for
intermediate wavenumbers it shows behaviour similar to the Langmuir-like region of the
EAW branch.

The phase speed of the strongly-damped acoustic region of the EAW branch shows
similar xj, dependence that is pronounced near x; = 2. This is to be expected because in
the acoustic region w, ~ kVy, and V, is strongly xj,-dependent [see Eq. (2.8)]. Varying s
near xp = 2 has a significant effect on the weakly damped range in k of the intermediate
wavelength regime, which is cool Langmuir-like. In particular, one sees (see right panel of

Fig. 2.4 for details) that the range 0.28 < kAp. < 0.44 is weakly damped for kp = 2, but

that increases to 0.15 < kAp. < 0.52 for k; = 4 and changes little for larger j values.
The latter figure (Fig. 2.4) also shows that the strongly non-Maxwellian case, kj, = 2, is
much more strongly damped than one finds for large xp,.

We then observe that for large normalized wavenumbers (where the criterion 1/|y| >
27 /w, is not satisfied), apart from the strongly non-Maxwellian case (with k. = 2, kj = 4,
as in Fig. 2.3 or k. = Kk, = 2, as in Fig. 2.4), the variation of . in Fig. 2.3 or ky in Fig. 2.4
has no significant effect on the damping of the resulting wave modes.

In summary then, considering the weakly-damped region of the EAW branch at in-
termediate wavelengths, we observe that the strongest effects of the excess superthermal
particles associated with x-distributions are centered on the extreme case k;, = 2 of the
hot electrons, where relatively large changes in damping occur. On the other hand, the
increase of excess superthermal cool electrons with decreasing x. does have some effect on
the dispersion of that EAW branch.

In all the cases the entire electron-acoustic mode (branch) shows the three distinct
regimes described by Tokar and Gary [1984], and Gary and Tokar [1985]. These three
regimes are:

(i) The acoustic regime which occurs for low wavenumbers (long wavelengths) with charac-
teristic phase velocity of the order vy ~ vsx = WpeAsn- In the case of Maxwellian electrons,

124, = Oy [see Eq. (2.9)], where vy, is

the phase velocity is of the order vy =~ (nco/nno)
the thermal velocity of the hot electron component. In this regime, EAWs are strongly

Landau damped by the hot electrons since vg ~ vy, as can be seen from Eq. (2.8). The
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effect is most marked for low values of k, > 3/2. The cool electrons have no significant
effect on the damping of these waves. This is illustrated by comparison of the EAW curves
in Figs 2.3 and 2.4 for kAp. < 0.15.

(ii) The second regime involves the cool Langmuir-like branch of the EAWs that are weakly
damped, and occurs for intermediate values of wavenumbers (0.15 < kAp. < 0.55). The
range of wavenumbers (for weak damping) depends strongly on both the hot fraction of
the total electron density (f = npo/neo) and the hot to cool electron temperature ratio
B = Ty /T, |Hellberg et al., 2000]. It also depends weakly on the value ky, essentially for
low kj, only, and does not depend on k. at all.

(iii) As the wavenumber increases beyond the intermediate values described in (ii) we enter
a third regime where EAWs are strongly damped (by the cool electrons) as vy decreases
and approaches vy,. Figures 2.3 and 2.4 show that in these two regimes the EAW dynam-
ics depend more on the cool electron properties (spectral index) than on those of the hot
electrons, and therefore the two regimes lie in the cold plasma region [Tokar and Gary,
1984]. In addition, the latter two regimes almost lie in the Langmuir-like region of the

EAW branch, given by Eq. (2.12).
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Figure 2.4: Same as in Fig. 2.3, but now for hot electron kappa indices, xp, with k. = 2.
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2. Electron-Acoustic Waves in Bi-kappa Plasmas

2.6.2 Effect of Temperature Ratio

Figure 2.5 shows the effect of electron temperature ratio variation on the wave behaviour
for a plasma system with fixed low kappa values (k. = 2 and k;, = 4), and a density ratio
of f = 0.5. Following from the analytical solution for the EPW [Eq. (2.13)], we see that
the dispersion relation for low k& depends on the temperature ratio, 8. This behaviour
is clearly illustrated in the left panel, where for low but fixed kAp., the frequency w/wp.
decreases with a decrease in 8. In addition, we see that the EPWs are weakly damped
over a much larger range of kAp. for low § values than for high § values. However, the
corresponding range of frequencies over which the EPW is weakly damped remains fairly
constant at wpe < w < 1.2wp.. We also note that for 3 = 5, the assumption Ap. < A.p, is
close to breaking down. The latter follows from the fact that A\p. < A\gp requires f < fs,
where 1/f, = 14 [(kn, — 1/2)/(kn — 3/2)]/8 (see Appendix B.1), and for k;, =4, 8 =5 we
have f, ~ 0.8, which is close to f = 0.5 (ng. = ngp) used in Fig. 2.5.

In the case of EAWs for the fixed parameters above, the left panel of Fig. 2.5 shows
that the wave frequency is strongly dependent on 3, both in the long and the intermediate
wavelength regimes. The waves are weakly damped for intermediate wavenumbers when
B > 25 (see curves for 5 = 50 and 100), but are strongly damped for 5 < 25 over the
entire range of wavenumbers considered. In the acoustic regime, the associated phase
velocity (=~ Vi) increases with 8 as predicted by Eq. (2.8). This illustrates that the first
term of Eq. (2.8) is dominant. The right panel of Fig. 2.5 shows that in the “intermediate
wavenumber regime”, EAWs are weakly damped for higher temperature ratios, and for a

larger range of “wavenumbers” as compared to cases with low [ values.
2.6.3 Effect of the Hot Electron Density Fraction

Figure 2.6 illustrates the effect of varying the hot electron density fraction, f, on the
wave behaviour for a hot to cool electron temperature ratio, § = 100, and fixed indices
ke = 2 and K, = 4.

The EAWSs are weakly damped for intermediate wavenumbers (kAp.) for 0.3 < f < 0.8,
with the potentially observable range in kAp. (exhibiting weak damping) decreasing as f
increases. For all f, the EAW is strongly damped for low kAp., and the associated phase

velocity (ox Vi) decreases with increasing f, as may be expected from (2.8). However, for

o8
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Figure 2.5: Same as in Fig. 2.3, here showing the effect of temperature ratios, 8 = T} /T,
for ng. = nop, ke = 2, kp = 4. The parameter labeling the curves is 8, which lies between
B = 100 (light-blue) and 5 = 5 (green). Intermediate values of § are 50, 25 and 10,
respectively.

f > 0.8, the EAW is strongly damped for the entire wave number range which contrasts
with the Maxwellian case for the same parameters [Mace, 1991, Fig. 2.1, p18]. These
results show that the behaviour of EAWs is greatly influenced by the density ratio, f.

On the other hand, the EPWs are weakly damped for low kAp. for all the values of f
used here. The figure also shows that as f increases, the ranges of both wavenumber (in
terms of kAp.) and frequency over which the EPWs are weakly damped increases.

While the EPW and EAW are clearly two separate modes over the full range of kAp.
for f > 0.4, it is seen that for the lowest values of f in this figure (f = 0.3 — 0.4), the
EPW shows emerging signs of coupling with the cool Langmuir-like region of the EAW
near the “knee”. This coupling effect is explored further in Fig. 2.7, which is an extension
of Fig. 2.6, for very low hot electron fractional densities, f = 0.1, 0.2. In this figure there
is strong coupling behaviour where the EPW makes contact with the Langmuir-like EAW
at the “knee”, displaying characteristics of both EAWs and EPWs [Mace et al., 1999]. The
coupled EPW mode is weakly damped for a wide range of wavenumbers, from kAp. >~ 0 to
well beyond values found for the simple EPW or EAW observed in Fig. 2.6. On the other

hand, the acoustic branch of the EAW persists into the intermediate wavelength regime,
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2. Electron-Acoustic Waves in Bi-kappa Plasmas

and is strongly damped for all kAp..
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Figure 2.6: Same as in Fig. 2.3, here showing the effect of density variation, for § =
100, k. = 2, K, = 4. The parameter labeling the curves is the density ratio, f = ngn/noe,
ranging from f = 0.9 to f = 0.3, in intervals of 0.1.

2.7 Results: Application to Saturn’s Magnetosphere

We solve Eq. (2.15) for parameter values which are typical of the three regions of
the Saturn’s magnetosphere: the inner magnetosphere (for radial distances R < 9 Rg),
intermediate magnetosphere (9 Rg < R < 13 Rg) and the outer magnetosphere (> 13 Rg).

In Table 2.1 we list the parameter values, extracted from Fig. 3 of Schippers et al. [2008],
where we have mainly used data values of the Cassini outbound trajectory, though similar
results can be obtained using the inbound leg. We also point out that the temperatures in
Table 2.1 and Figs. 2.8-2.12 are measured in energy units.

Figures 2.8-2.12 show the real frequency (w,/wp.) and damping rate (y/wpe) as func-
tions of kAp.. The dispersion curves are those corresponding to the positive ordinate while
the damping rate curves correspond to the negative ordinate. As in Figs. 2.3-2.7, the con-
tinuous (solid) lines correspond to weakly damped modes, which may be observable, since
their damping time (1/|7y|) exceeds the plasma wave period (27/w,) [Mace and Hellberg,

1990]. On the other hand, the dashed curves do not satisfy this criterion, and as the waves
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Figure 2.7: Same as in Fig. 2.6, here for f = 0.1 (blue) and f = 0.2 (red), respectively,
with dispersion on the positive ordinate axis and damping on the negative ordinate axis.

are strongly damped, those modes will almost certainly not be observable.

Figure 2.8 shows the wave behaviour of both the EPW and the EAW, following from
the full dispersion relation (2.2), for parameter values (see Table 2.1) corresponding to
Saturn’s outer magnetosphere [Schippers et al., 2008] at R = 13.1 Rg (left panel) and
R = 14 Rg (right panel), respectively. In the figure we have also included the analytical
approximation, Eq. (2.6), to the EAW (dotted curves). The figure shows that in both
cases (R = 13.1 Rg and 14 Rg), the EPW is weakly damped for low wavenumbers, viz.,
EApe < 0.08 (R =13.1Rg) and kAp. < 0.12 (R = 14 Rg), respectively. Considering the
EAW, the figure shows that, as expected, the wave is weakly damped for intermediate
kApe, but not for low or high kAp.. In addition, the range in wavenumber over which
EAWs are weakly damped is larger for data values corresponding to R = 13.1 Rg, where
the hot fractional density and temperature ratios are significantly larger than is the case
at R = 14 Rg. This applies particularly to the damping. Though the analytic solutions

to the EAW approximate the numerical results reasonably well in the small wavenumber

range, they differ quite significantly from the latter for large wavenumbers. The deviation
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R (Rs) k values temperatures (eV) densities (cm™3) 2 f
ke kp 1. Ty Ne np

5.4 80 3.0 1.8 300 10.5 0.02 166.7  0.002
6.3 23 3.0 20 400 10.5 0.01 200.0 0.001
7.0 1.8 4.0 9.0 1000 10.5 0.20 111.1  0.02
9.8 20 4.0 80 1100 25 0.07 137.5 0.027
114 20 3.7 8.0 1500 0.9 0.11 187.5 0.11
12.0 20 3.5 6.0 1200 1.00 0.11 200 0.10
12.5 1.8 4.0 20.0 1100 0.45 0.15 095.0  0.25
13.1 2.1 4.0 10.2 1000 0.21 0.18 98.0 0.46
13.8 1.6 4.0 30 900 0.40 0.15 30.0 0.27
14.0 21 6.0 30 900 0.15 0.10 30.0 0.40
14.3 1.8 8.0 70 800 0.30 0.20 114 0.40
15.0 20 6.0 40 1000 0.20 0.10 25.0 0.33
15.2 20 4.0 70 900 0.25 0.10 129  0.29
16.0 1.9 35 35 800 0.08 0.07 229 047
16.8 1.8 38 30 900 0.15 0.08 30.0 0.35
17.3 20 35 25 1000 0.15 0.07 40.0  0.32
17.8 1.9 3.8 28 1000 0.15 0.07 35.7  0.32

Table 2.1: Table showing parameter estimates from Fig. 3 of Schippers et al. [2008], cor-
responding to radial distances (R) in Saturn’s magnetosphere, here used in Figs. 2.8-2.12,
with = T},/T, and f = npg/neo-

in dispersion results observed for low kAp. may be attributed to the fact that the analytic
approximation is independent of the cool electron spectral index ., which is not the case
with the full solution given by the numerical approach. Results similar to those shown in
Fig. 2.8 are given in Fig. 2.9, corresponding to radial distances of 15.0 Rg (left panel) and
17.8 Rg (right panel), respectively (see Table 2.1 for parameters). Here, as in Fig. 2.8, the
EAWSs are weakly damped for intermediate wavenumbers, and are strongly damped for low
kApc. However, the EPW shows some coupling behaviour at these larger radial distances
where the fraction of cool electrons exceeds 0.65.

In Table 2.2 below we show the wavelengths, A(m), and frequencies, f(kHz), corre-
sponding to the EAW and EPW modes for the radial distances where the former are

weakly damped. The wavelengths are obtained from the expression

o [50(02N1m2)r/2 [KBTC(J)T/Q’

)\(m) = kAo 62(02)

Mo (m73)

where kAp. is the (dimensionless) normalized wavenumber that can be read from the
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Figure 2.8: Dispersion (w,/wpe) and damping (y/wpe) versus kAp. for parameters corre-
sponding to the Saturnian magnetosphere. Left panel: at about 13.1 Rg, with parame-
ters nge = 0.21cm ™2, ngp, = 0.18cm ™3, T, = 10.2eV, T), = 10006V, k. = 2.1, Kk, = 4.
Right panel: at about 14 Rg, with parameters ng. = 0.15cm™3, ng, = 0.1em™3, T, =
30eV, Ty, = 900€eV, k. = 2.1, Kk, = 6. Analytical results [from Eq. (2.6) and (B.16)] are
shown in red, which for small kAp. agree with the numerical solution to some extent.
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Figure 2.9: Same as in Fig. 2.8, Left panel: at about 15 Rg with parameters, ng. =

0.2cm™3, ngp, = 0.1cm™3, T, = 406V, T}, = 10006V, k.
at about 17.8 Rg, with parameters: ng. = 0.15cm ™3, ngy,

which are strongly damped.

= 2.0, kp, = 6.0. Right panel:

0.08cm ™3, T, = 28¢eV, T}, =
950eV, k. = 2.0; kp = 3.8. Here, we have also included the high-order mode solutions,
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2. Electron-Acoustic Waves in Bi-kappa Plasmas

graphs. These results show that weakly damped EAWSs have frequencies in the range

(3.33-4.81) kHz, and wavelengths approximately in the range (640-2580) m.

R (Rs) Wavelength, A (km)  Frequency, f (kHz)

EAW EPW EAW EPW
13.1 0.64-2.21 A >4.15 3.61-4.81 5.61-6.60
14.0 1.54-2.47 A >5.55 3.43-3.85 4.49-5.24
15.0 1.38-2.58 A >443 3.98-4.53 4.92-5.54
17.8 1.27-2.51 A >4.66 3.33-3.79 4.21-4.64

Table 2.2: Table showing the range of wavelength, A (m), and frequency, f (kHz), of the
EPW and EAW modes, corresponding to the particular (four) radial distances in Saturn’s
magnetosphere, discussed in this work, where the waves are weakly damped.

In summary, in the outer magnetosphere (13 Rg < R < 18 Rg) the Langmuir (EPW)
wave is weakly damped (1/]y| > w,/2m) for small wave numbers kAp.; the EAW is weakly
damped for intermediate kAp., where it exhibits Langmuir-like behaviour in the vicinity
of wpe, but not for low or high kAp..

Figure 2.10 shows examples of wave behaviour in the intermediate region of Saturn’s
magnetosphere (9 Rg < R < 13 Rg), here for radial distances R = 12 Rg (left panel) and
R = 9.8 Rg (right panel), respectively. The EPW exhibit strong coupling behaviour with
the Langmuir-like region of the EAW branch. This coupled mode is weakly damped for
a wide range of wavenumbers (kAp. < 0.56). We note that in the intermediate magneto-
sphere of Saturn, the hot fractional density ratio is very small, implying that w,. is very
close to wpe. Thus the Langmuir-like region of the EAW branch (which is near wy.) is
close to the conventional EPW, inducing coupling. However, the acoustic region of the
EAW mode is strongly damped in this case (see dashed curves). We point out that similar
coupling behaviour is also sometimes observed in the outer magnetosphere (R > 13 Rg), in
cases where the density ratio nop/no. is very small, and thus w,. approaches wpe. An exam-
ple here is shown in Fig. 2.11 which correspond to data values at about 15.2 Rg (left panel)
and 16 Rg (right panel). Here, the associated higher order modes, though acoustic-like,
do not satisfy the damping criterion 1/|y| > 27/w,, and are therefore strongly damped,
as can be seen from the dashed curves of Fig. 2.10. The coupled-EPW is weakly damped
for a wide range of normalized wavenumber kAp. < 0.56. Finally we consider the inner

~

magnetosphere (R < 9 Rg), for example, as shown in Fig. 2.12, corresponding to radial dis-
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Figure 2.10: Same as in Fig. 2.8, Left panel: at about 12 Rg with parameters, ng. =
1.0cm™3, ngp, = 0.11cm™3, T, = 6eV, Tj, = 12006V, k. = 2.0, k;, = 3.5. Right panel:
at about 9.8 Rg, with parameters: ng. = 10.9cm™3, ngp, = 0.11ecm™3, T, = 8¢V, T}, =
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Figure 2.11: Same as in Fig. 2.10, Left panel: at about 15.2 Rg with parameters, ng. =

0.25ecm ™3, ngp, = 0.07cm ™3, T, = 70eV, T},

1000eV, k. = 2, kp,

4. Right panel:

at about 16.0 Rg, with parameters: ng. = 0.2cm ™2, ngp, = 0.07cm ™3, T, = 356V, T}, =
800eV, k. = 1.85; kp = 3.5. The “acoustic-like” modes, given by the high-order mode
solutions of the dispersion relation, are strongly damped.

tances of R = 5.4 Rg (left panel) and R = 6.5 Rg (right panel), respectively. In these two

cases, the density of the high-temperature component is typically very small, and therefore
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values of f are small too, that is, 0.001 and 0.002, respectively (see Table 2.1). Here only
the EPW is weakly damped while the “acoustic modes” are too strongly damped to be
observable. In the case of R = 5.4 Rg we have also included the analytic approximations
to the EPW mode (dotted green curve) and the Langmuir-like branch of the EAW given by
Eq. (2.12) (solid red curve). The figure shows that in this case, with f < 1 and 8> 1, the
EPW and the Langmuir-like branch of the EAW are close to each other for low normalized
wavenumbers. In addition, the numerical and analytic results for the EPW agree well in
this range.

Mace and Hellberg [1990], for a bi-Maxwellian electron distribution, and Mace et al.
[1999], for a hot-kappa/cool-Maxwellian plasma mix, showed that electron-acoustic waves
can be weakly damped only for relatively high hot fractional densities (ngp/no.) and rela-
tively high hot-to-cool electron temperatures, above the threshold values. From the Voy-
ager 1 and 2 inbound results of the PLS observations, Sittler et al. [1983] showed that
between 15 Rg and 20 Rg for Voyager 1, and between about 13 Rg and 20 Rg for Voyager
2 observations, the outer magnetosphere of Saturn has relatively high superthermal frac-
tional densities and pressure (see their Fig. 10). This trend is confirmed by the Cassini
results of Schippers et al. [2008], where beyond 13 Rg, the densities of the two electron
components are similar within an order of magnitude. However, for radial distances below
13 Rg, though the temperature ratio T, /T, is in some instances large enough (~ 100) to
support EAWS, the cool and hot electron densities are so disparate (orders of magnitudes
apart), that the ratio ngp/nge becomes too small. Our results show that “weakly damped”
electron-acoustic waves require relatively high hot-to-cool temperature ratios, and hot-to-

total electron density ratios that are well above 0.2.

2.8 Conclusions and Chapter Summary

Using kinetic theory, we have carried out a study of electron-acoustic waves in a plasma
with two kappa-distributed electron components, having different temperatures. Based on
data obtained from Saturn’s magnetosphere [Schippers et al., 2008|, we have carried out
a parameter survey of dispersion and damping of the waves, for a variety of values of the
hot and cool electron x values (kp, k), with an emphasis on low x values, the hot electron

density fraction f, and the hot to cool electron temperature ratio 5 = Ty, /7.
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Figure 2.12: Same as in Fig. 2.8: Left panel: at about 5.4 Rg, with parameters:
noe = 10.5cm™3, ngp, = 0.02cm ™3, T, = 1.8eV, T}, = 300€V, k. = Ky = 5.0. Right panel:
at about 6.3 Rg with parameters, ng. = 10.5cm ™3, ngp, = 0.0lcm ™3, T, = 26V, T}, =
400eV, k. = 2.3, kp = 3.0. In the left panel, the analytic solution for the EPW [from
Eq. (2.13)] is also shown in red, which agrees with the numerical solution for small
wavenumbers (here kAp. < 0.2). In addition, we have included the analytical Langmuir-
like solution from Eq. (2.12) (dotted, green curve). Thus for small kAp., Eqgs. (2.13)
and (2.12) are equivalent when 5> 1 and f < 1.

Our results show that even in the presence of two strongly non-Maxwellian electron
components, it is essentially the dependence of the damping rate on the hot-to-cool electron
temperature ratio 8 = Tj/T. and the fractional hot electron component density f =
nho/Meo that determines the range in wavenumber (in terms of kAp.) over which EAWs
are weakly damped; kj plays a weaker, albeit significant role, particularly for low values
(~ 2), while the effect of k., even for strongly non-Maxwellian values, is weak but not
negligible. In our studies we differentiate between wave ranges that are strongly damped
(Iy] > wy/27), and thus will definitely not be observable, and those that are potentially
observable, either as a result of random thermal fluctuations or a given source of free
energy. These results are then applied to three regions of Saturn’s magnetosphere.

In the outer magnetosphere, our results suggest that weakly damped electron-acoustic
waves may occur at radial distances in the range 13 — 18 Rg where
(i) the densities of the hot and cool electron populations are of the same order of magnitude;

(ii) the temperatures differ by about two orders of magnitude, that is T} /7. ~ 100, and
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(iii) the kappa index values are more or less constant around k. ~ 2 and kj, ~ 4.

It is thus likely that EAWSs should be observable in this outer region. In terms of frequencies
and wavelengths, our results suggest that the weakly damped EAWs have frequencies in
the range (3.33-4.81) kHz, and wavelengths approximately in the range (640-2580) m.

In the intermediate magnetosphere, f = npg/neo is very small, and thus wp. ~ wpe.
The strong coupling between the cool Langmuir-like branch of the EAW (near wy.) and
the EPW yields potentially observable waves that are Langmuir-like. This pattern is also
obtained, for some cases, in the R > 13 Rg region, in cases where the density ratio npg/neo
is very small, and hence the cool electron component density n.g =~ neop.

Finally, in the inner magnetosphere (R < 9 Rg), EAWs are strongly damped and are
highly unlikely to be observed in the absence of a source of free energy; only the EPW is
weakly damped. This may be attributed to the fact that the fractional hot electron density

is very small.
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CHAPTER 3

Dust Acoustic Solitons in Plasmas with Kappa-Distributed Electrons

and/or lons

In this Chapter, we investigate the existence conditions for dust acoustic (DA) solitons
and double layers in a dusty plasma in which the electrons and/or ions have a kappa
distribution, and the dust grains are modelled as a cold, inertial fluid. This work enables
one to undertake a direct comparison between the effects of the Cairns and the kappa
distribution, as examples of two nonthermal distributions, on DA solitary wave existence
in dusty plasmas. Unlike the situation found for the Cairns distribution, we will show that
electrostatic solitary structures are restricted to negative (positive) potential solitons if the
dust is made up of negatively (positively) charged grains.

The results presented in this Chapter have been published as T. K. Baluku
and M. A. Hellberg, Physics of Plasmas, 15, 123705 (2008)

3.1 Introduction

In Sec. 1.2, we discussed the main properties of dust particles, and the various areas
where they can exist in space, astrophysical and laboratory environments.
In studies of dust acoustic waves in space, the electrons or ions are quite often modelled

by the Boltzmann distribution, and the dust treated as a cold fluid due to the great inertia
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provided by its mass. Using such a model, for example, Mamun [1996] found that a
dusty plasma with cold negatively charged inertial dust fluid and (Boltzmann distributed)
thermal ions, with background (Boltzmann) electrons would admit negative potentials
associated with small amplitude dust acoustic solitary waves.

In explaining the electrostatic structures with density depletions observed by the Freja
satellite [Dovner et al., 1994], using a nonthermal velocity distribution function, Eq. (1.26),
often referred to as the Cairns distribution, Cairns et al. [1995] showed that the presence
of a population of energetic electrons changes the properties of ion sound waves.

Based on the Cairns distribution function in Eq. (1.26), a number of authors [Mamun,
1997; Verheest and Pillay, 2008a,b], to mention a few, have studied the behaviour of solitary
structures in nonthermal plasmas. Recently, Verheest and Pillay [2008a| investigated the
existence of large amplitude dust acoustic solitary waves in plasmas consisting of negatively
charged dust in the presence of either nonthermally distributed ions or electrons using the
Cairns distribution. In their study, it was found that nonthermal electrons support only
negative potential solitary waves, while, for a limited range of f and «, nonthermal ions
admit both positive and negative potential solitons, with f = Ngy/N;p being the ratio
of the equilibrium electron number density to that of the ions. Positive double layers
were also found under related conditions. For the case of positive dust they [Verheest and
Pillay, 2008b| found equivalent results, the only differences being a change of sign of soliton
potential and of the light species (ions versus electrons) governing the process.

Here, we thus investigate the effect of using a different nonthermal distribution for the

electrons or the ions on the resulting DA wave structures, viz. the kappa distribution.

3.2 Model and Basic Equations

We consider a three component, homogeneous, unmagnetized dusty plasma comprising
electrons, singly charged ions and negatively charged dust particles, the latter satisfying the
continuity and momentum equations. In view of the typical charging timescales, it is ex-
pected that charge fluctuations would have a minimal effect on dust acoustic modes [Shukla
and Mamun, 2002], and so we assume that the dust charge is constant. Both the ions and

electrons of mass m; (m.) and temperature T; (7¢) follow a generalized three dimensional

70



3.2.  Model and Basic Equations

kappa distribution given by

Nj F(I{j + 1)
(7'('/{]' 9]2)3/2 F(Hj — 1/2)

Fn(vj) =

U2+2 ) M —(Hj+1)
it 2450/ ]] , (3.1)

2
/4]9j

where ¢; is the species charge of the electrons (j = e) or ions (j = 7); ¢ the local elec-
trostatic potential, v; and Njo the ion (electron) species velocity and equilibrium number
density, respectively; other parameters are as defined in Eq. (1.3). The gamma function,
I'(a), is related to the beta function, B(a,b), where the latter arises from the normal-
ization of F(vj) such that [ F(v;)d3v; = Njo, that is, from computing the statistical
(velocity) moments (v™) of the distribution, with the integer n = 0. To obtain Eq. (3.1)
from (1.2), we have taken into account the energy associated with the position of the
particle species [Goldston and Rutherford, 1995], and thus used the energy conservation
relation: m; v?/2 + qjp = m; V?/2, where g;¢ is the increase in potential energy and V
is the velocity of the particles in the initial equilibrium state (i.e., m; V2/2 = W, gives
the total energy in the system). This family of velocity distribution functions includes the
Maxwell-Boltzmann distribution for x;, ke, — 0.

Integrating the kappa distribution over velocity space, one obtains the number density

for the ions (j =) and the electrons (j = e), respectively, as

2gip \
Nj(¢) = Njo (1 + 7m';02> : (3.2)
j 05

where g; is the charge of species j. Note that gjo = e for positive ions of single charge,
and —e for electrons, respectively. A full derivation is given in Appendix A.1.2. In the
limit e < Kk;m; 9]2-/2, Eq. (3.2) reduces to Eq. (15) of Bryant [1996], with E, = m 6%/2,
and is similar (for small perturbations) to Eq. (80) of Treumann [1999], which follows from
his distribution function (78) with ¢ — —e¢ for electrons instead of our Eq. (3.1). In
addition, we point out that using the one dimensional s-distribution [with the power in
Eq. (3.1) being —« instead of —(k + 1)| leads to the same expressions in Eq. (3.2).

For simplicity, we choose the following normalizations: the local electrostatic potential
is normalized to KpT;/e, number density to the ion number density, N;o, and velocity to

the dust acoustic speed, Cy = (Z4 KpTi/mg)"/?, where my (Zg) is the dust grain mass
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(number of electronic charges residing on the dust grain surface of arbitrary charge ¢q4, i.e.,
Zq = |qa/e|). For completeness, in one-dimensional geometry, the space and time variables
are normalized to the “dust Debye length”, Apgy = (e0 K T;/Zq Nao e2)1/2 and dust plasma

—-1/2

period, wp_l = [(Z2 €% Nao/e0 ma) , respectively.

The normalized ion and electron number densities are thus given by

b —(ki—1/2)
ni(¢) = <1 + m) (3.3)

and y 1)
ne(¢) = f (1 - m) ) (3.4)

respectively, where o = T;/T, is the ratio of the ion temperature to that of electrons,
f = Neo/Njo the ratio of the equilibrium number density of electrons to ions, and ¢ the
normalized potential. In the limit x;, ke — o0, Eqgs. (3.3) and (3.4) reduce to
ni(¢) = exp (—¢) and ne(¢) = fexp (o @), the Maxwellian distributions for the ions and
electrons, respectively.

On the other hand, the fluid of cold, negatively charged dust particles, characterized
by the normalized density ng and velocity wug, satisfies the continuity and momentum

equations (in the absence of pressure, since we assume the dust temperature, T; = 0):

ong 0O
— 4+ — =0 3.5
5 +8x(ndud) (3.5)
and
8ud 8ud 3¢ o
BN + ug 9z Br =0 (3.6)
The species’ densities are coupled by Poisson’s equation
70+ N0 (= o= Zuna) = 0 3.1)
8902 Zdeo n; Ne dang) = U. .

In transforming to a stationary frame, we assume that all quantities depend on £ = x— M ¢,
where the Mach number M gives the velocity of the solitary wave normalized to the dust
acoustic speed CYy, i.e., it is equivalent to the normalized speed of the dust particles in the

stationary frame. With this transformation we have, 9/0x — 0/9¢ and 0/0t — —M 0/ 0.
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By imposing the appropriate boundary conditions for localized disturbances, that is, ng —

Ngo/Nio, and ¢, dop/dé — 0 as £ — +00, equations (3.5) and (3.6) can be solved to get

ng(¢) = (%d°> (1 + ;4—‘752>_1/2. (3.8)

From Egs. (3.3), (3.4) and (3.8) we observe that when f = 0, n, — 0 while ng is finite,

and similarly, when f =1, ngy — 0 while n, is finite. Thus at these extreme values of f,
the model reduces to a two-component plasma: an electron-ion plasma for f = 1 and an
ion-dust plasma for f = 0.

Also, with the transformation & = = — M ¢, Poisson’s equation becomes

o, N
082 ZyNg

(ni —me — Zgng) = 0. (3.9)

In the unperturbed initial state, > g; Njo = 0, and with f = N¢o/N;o we obtain
ZqNgo/Nip =1 — f, where f < 1 for negatively charged dust particles.
Substitution of the density expressions into Poisson’s equation leads to

¢ f go T
] e ),

1 . é —(ki—1/2) (1 2 ~1/2
1—f ki — 32 M? '

(3.10)
Equation (3.10) can be written in the “energy integral” form
LY gy =0 (3.11)
2 \ d¢ - '

where

f b\ (Ke32)
Y= [1 (%)
1 ) —(ri—3/2)
Y [1 - (1 * Tp) ]

(1 fwi)/] (31
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is the Sagdeev (pseudo)potential of the plasma system with ¢ the “coordinate” (pseudo
position) and ¢ the “time”. Note that d?¢/d¢? = —VU/(¢), the prime denoting the derivative
with respect to ¢. Equation (3.12) has the property that at the origin (¢ = 0), ¥(¢) =
U’(¢) = 0, thus by imposing the solitary structure requirements discussed in Sec. 1.4 for
the Sagdeev pseudopotential theory, we are in a position to obtain existence domains of
the DA solitons or double layers supported by the plasma model. These requirements are
summarized as follows:

(i) ¥"(¢ = 0) < 0 such that there is a maximum at the origin (i.e., the fixed point at the
origin is unstable);

(ii) there exists a nonzero ¢,,, which is a minimum (or maximum) value of ¢, at which
Y (¢m) = 0;

(iii) W(¢p) < 0 for 0 < |¢| < |¢m]|, and

(iv) in the case of double layers, both W(¢,,) and ¥'(¢,,) must be zero.

The requirement in (i) leads to the “soliton condition”,

M > M, (3.13)

where

_f fo (2k—1 1 /2m—1\) /2
Ms_{l—f<2/§6—3>+1_f<2,.{i_3>} (3.14)

is the lower Mach number limit below which no solitons (or double layers) can exist. For
Ke, k; — 0o this reduces to the familiar expression obtained for Boltzmann electrons and
ions [Verheest et al., 2005], i.e., M2 = (1 — f)/(1+ fo) < 1.

Solitons are inherently super acoustic, but the “Mach number” referred to here is based
on a specific normalization, and hence one may have M < 1. Whereas we have used an

approximate dust acoustic speed Cyq = (Zy K T;/mq)'/?

for the normalization, the actual
dust acoustic speed in the plasma under consideration can be shown to be Cy, = wpgAps,

where the global Debye length Ap, [Bryant, 1996; Mace et al., 1998, 1999] is given by

1 e Neo [ 2ke — 1 +Ni0 2k; — 1
22, coKp | T. \2ke—3 T, \2s:i—3) )"’
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which reduces to the usual expression for A\p when ke, k; — oco. It can also be written as

1 . Zde(] 62
. €KpTen’

where the effective temperature Tog is given by

T, 1 g — 1 %y — 1
Tor  (1—f) {f‘7<2ne—3>+<2m—3>}'

Thus we can see that

V2 M?C3  M?T, M?
Cgﬁ a Cgﬁ a Teﬂ a M2

S

2 _
Md/@_

where we have used the definitions of M, My, My., Cy, Cy. and Ap,. It follows that if
M > My, the “true” Mach number My, > 1, and the structures are truly super acoustic,
as expected.

It is seen that in the absence of electrons, when f — 0, the soliton condition (3.14) is
obviously independent of both ¢ and k., both of which are electron-related. On the other
hand, for f = 1, the number densities of ions and electrons are equal, there is no dust, and

My — 0.

3.3 Small Amplitude Dust Acoustic Solitons (DAS) and Dou-

ble Layers

To study small amplitude solitary wave structures, we shall use an expanded Sagdeev
potential approach, and thus carry out a series expansion of W(¢) about the origin (¢ = 0).
As we require ¥(0) = ¥'(0) = 0, the constant term and linear term vanish. To fourth order
this gives

2
%(d—¢> AR+ B+ Cot =0, (3.15)

where
B —(ki —1/2) B fo(ke—1/2) 1
AT N -32) 20N -3/ 2T (310)
(ki =1/2)(ki +1/2)  fo? (ke —1/2)(ke +1/2) 1
6(1 — f)(ri —3/2) 6(1 — f)(Ke — 3/2)? 2M4

B= (3.17)
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and

5 (ki —1/2)(ki +1/2)(ki +3/2)
8M6 24(1 — f) (ks — 3/2)3
_ fo® (ke = 1/2)(re +1/2) (ke +3/2)
24(1 = f)(ke — 3/2)°

(3.18)

3.3.1 Small Amplitude Solitons

In investigating small amplitude solitons, we first assume that the fourth order term
in (3.15) is small enough to be neglected [Verheest and Hellberg, 1997] and only consider

1 (do\® 2 3 _
§<d—§> AP LB =0, (3.19)

The solution to Eq. (3.19) is the usual Korteweg-de Vries (KdV)-type solution

6(€) = —g sech? [(—A/2)1/2 g] . (3.20)

The maximum soliton potential and width are given by |A/B| and \/—2/A, respectively.
Thus, for the soliton width to be real we require A < 0 in (3.20), and B must be non-zero,
since we require ¢ — 0 as £ — +oo. The sign of the potential thus depends on the sign
of B: ¢ is positive when B > 0 and negative when B < 0. In other words, the sign of
the coefficient of ¢ in the Taylor expansion of W($) about ¢ = 0 determines the sign of
the potential of the small amplitude solitons that exist in the plasma model. This also
applies to small amplitude double layers, if they exist, as discussed below in this section.
As other plasma models will show, these small amplitude solitons have the property that
their amplitudes go to zero as M approaches M. Such solitons will be termed “KdV-like”
solitons in this thesis.

This approach, which is valid for weak (small amplitude) solitons, is similar to the
reductive perturbation technique that results in the Korteweg-de Vries equation of the

form of Eq. (3.19).
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Small Amplitude Negative Potential Solitons:

Considering the case of small amplitude negative potential solitons, we require B < 0

in (3.17), which leads to a constraint on the Mach number, viz.

(5 =12 +1/2) [0 (e =1/ +1/2) | _
v { 31— ki —3/2)2  3(1— f)(re —3/2)2 } = Ms, (3.21)

provided the expression in brackets is positive, i.e.,

r< 5 (255) ((50) (5550) 022

for real Mg (and f < 1 and ke, k; > 3/2). Here Mp is the upper Mach number limit above

which small amplitude negative potential solitons cannot exist. That is, the existence
domain is restricted to the range My, < M < Mg. When k; = k. = k, Mg in Eq. (3.21)

reduces to
B 31— Nx—-3/2° 1
Mo = 10— 12w+ 1/2)) (3.23)

which at f — 0 is independent of o, and goes to zero for f = 1 as long as o # 1. The
case 0 = 1 (i.e., T; = T,) is a singular case, in which the “upper limit” Mgz is seen to be
independent of f. We shall return to this case in our numerical evaluations. In addition,
for k; = ke, Eq. (3.22) reduces to f < 1/02. Then the entire range of f, viz., 0 < f < 1, is

covered for o < 1, but for o > 1, the expression is valid for only a limited range.
Small Amplitude Positive Potential Solitons:

Next, we turn to the possible existence of positive potential solitons. We see from
Eq. (3.20) that with A < 0, positive potential solitons (¢ > 0) would require B > 0,
that is, M > Mpg. This condition dominates the soliton condition, M > M, and leads to
unbounded values of M. One of the less stringent conditions for the existence of solitons is
that the Sagdeev potential U(¢$) must have at least one charge neutral point, that is ¥/(¢)
must change sign in the range 0 < ¢ < ¢,,, where ¢,, satisfies U(¢,,) = 0. However, as
will be discussed for the arbitrary amplitude case in Section IV, numerical investigations
show that ¥/(¢) is never zero for any ¢ > 0 and M > M. That is, no charge neutral

point outside the origin is found, and thus neither positive solitons nor double layers can
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be formed. Thus we shall not discuss further the case of B > 0 in this section.
3.3.2 Small Amplitude Double Layers

We consider the possible existence of small amplitude negative potential double layers.
In a number of plasma models, double layers may act as limits of a sequence of solitons,
and can thus give rise to a limit of an existence domain for solitons [Baboolal et al.,
1990]. The existence of double layers requires ¥(¢,,) = V' (¢,,) = 0, at a possible root
¢ = ém # 0. Applying this double layer condition to Eq. (3.15), one obtains ¢2, = A/C
and ¢,, = —B/2C, i.e., B> = 4AC. Using this transformation, (3.15) can then be written
in the form [Verheest and Hellberg, 1997]

1 (dg)? 2 2 _
§<%> +C ¢ (¢ = dm)” =0, (3.24)

1/2
gb:—%{l—tanh [<—§) 5]}, (3.25)

provided A < 0. Also, using ¢2, = A/C it implies that C must be negative for real values

which has a solution

of ¢p,. Therefore the sign of the double layer given by (3.25) depends solely on whether B

is negative or positive. Here, C' < 0 yields M > M, where

15(1 = f)(ki — 3/2)°

. f0,3 (Ke_1/2)(,«,;64—1/2)(/"3@"‘3/2)}1/6_ (3.26)

MQ:{Ow—lﬂﬂm+lﬂXm+3ﬂ)

15(1 — f) (e — 3/2)°

As was found to be the case for both My and Mg, we see that M, — 0 for f — 1, while
at f =0, of course, only the ions play a role.

In general, the existence of (small amplitude) negative potential double layers thus
requires Max(Ms, M,) < M < Mg, provided the constants A, B and C in Egs. (3.15)-
(3.18) satisfy the constraint B2 =4 AC.

Figures 3.1 and 3.2 show the behaviour of My, M, and Mgz as functions of f for
particular values of o, k. and k;. In Fig. 3.1 we have chosen o0 = T;/T, = 0.5. In the left
panel both species have a low spectral index (k; = k. = 2), while the right panel illustrates

a case in which the electrons and ions are essentially quasi-Maxwellian (k; = ke = 25).
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Figure 3.1: Existence domain for weak negative potential dust acoustic solitary waves,
from the small amplitude theory (M, Mg, M,), for 0 = 0.5 and ke = r; = 2 (left
panel) and ke = k; = 25 (right panel). Solitons, satisfying Eq. (3.20), occur in the
region My < M < Mg, but no double layers exist since M, > Mgz. The dotted (light-blue)
curves correspond to the upper Mach number limit, from the arbitrary amplitude (Sagdeev

potential) theory, limiting the existence of negative solitons. This will be discussed further
in Sec. 3.4.3.
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Figure 3.2: Same as Fig. 3.1 but for 0 = 1. Here, for a range of f we have M, < Mg,

implying that double layers can apparently exist, but critical analysis shows this to be
wrong.

In both figures, small amplitude negative potential solitons are confined to the region

between M, and Mpg. The qualitative similarity between the two figures indicates that the
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enhanced superthermal electron and ion components associated with a kappa distribution
with low x have quantitative effects only - the values and ranges of Mach numbers that
support solitons are different in the two cases. Further, as M, > Mg over the full range
of possible number density ratios, f, it follows that small amplitude double layers cannot
exist. Similar results to those shown in Fig. 3.1 can be obtained for 0 < o < 0.5.

On the other hand, retaining the same spectral indices, but considering different tem-
perature ratios as shown, for example, in Fig. 3.2 (where T; = T.), we can find a region
in parameter space of (f, M) where M, < M, < Ms is satisfied for some values of f
[f > 0.23 (left panel) and f > 0.463 (right panel), respectively|. Note that for k; = ke = K
and o = 1, Eq. (3.23) gives Mg = Mg(x), which is independent of f, and only depending
on the spectral index « of the ions or electrons. Thus, we get the constant curves, parallel
to the f—axis in Fig. 3.2. Considering the fact that for some values of f we can have
My < M, < Mg, a cursory interpretation of this figure may then lead one to suggest that
both double layers and solitons may exist in such a region of parameter space for ¢ < 0,
as one of the required double layer conditions is satisfied. Similar apparent “existence do-
mains” in the parameter space of (f, M) can be obtained for other values of k., x; and
.

However, a more careful study of these cases indicates that although M, < Mg in
some regions, the further double layer requirement B?> = 4 AC, and in particular, ¢,, =
—\/A/C = —B/2C, for ¢ < 0, is violated. This is illustrated in Table 3.1 for the parameter
values k; = ke = 2 and o = 1 for the density ratio f = 0.8. For this case, we have listed
examples of Mach numbers lying in the range M, < M, < M < Mpg, which should
apparently support double layers. For each such value, we have listed the corresponding
values of 4AC and B? (which are clearly far from equal), and also the values of the root, ¢,,,
that may be calculated from the above two relations. The table shows that for the given
parameter values, no second double root exists. A similar approach for other parameter
values (of ke, k; and o ) that are admissible to the current plasma model leads to the same
conclusion. This appears to rule out the existence of negative potential double layers and
therefore, only negative potential solitons can exist in such plasmas. As we shall see below,

these results also agree with those obtained from the large amplitude treatment.
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M 4AC B2 ¢m1 ¢m2

0.52  128.739 18.82 -0.785 -1.634
0.53  289.558 14.72 -0.311 -1.748
0.54 432201 11.43 -0.184 -1.867
0.55  558.996 8.786 -0.126 -2.000
0.56 671.941 6.678 -0.092 -2.146
0.57 772758 5.003 -0.069 -2.313
0.58 862.933 3.680 -0.053 -2.503
0.59  943.749 2.645 -0.042 -2.724
0.60 1016.320 1.844 -0.032 -2.986
0.61 1081.611 1.235 -0.025 -3.308
0.62 1140.460 0.781 -0.019 -3.715
0.63 1193.607 0.454 -0.014 -4.262
0.64 1241.690 0.231 -0.009 -5.057
0.65 1285.256 0.091 -0.006 -6.397
0.66 1324.810 0.018 -0.003 -9.562

0.67 1360.781 35x10"%* 34x10~* —25.703i

Table 3.1: Table showing the double layer conditions arising from Eq. (3.15) for x; =
ke =2 0=1and f =08 M, = 019245, M, = 0.51279 and My = 0.66874. Here
Gm1 = —B/2C and ¢e = —(A/C)Y2.

3.4 Arbitrary Amplitude DAS and Double Layers

3.4.1 Positive Potential Solitons

From Egs. (3.3) and (3.4) it follows that for positive potentials, the limitation on
¢ would in principle be provided by the electrons at the critical potential ¢o = (ke —
3/2)/o, where k. > 3/2 , beyond which the electron density is complex. At this limiting
potential, we require W(¢..) > 0, a condition that is essential for obtaining the upper limit
to the Mach number for positive dust acoustic solitons to exist. However, substitution in
Eq. (3.12) shows that for ke > 3/2, ¥(¢ee) = —00 < 0, and thus this requirement is not
satisfied. It follows that this “electron density limit” cannot provide an upper limit on M
for positive potential solitons. Any such upper limit on M, should it exist, then needs to
be given by the value of M at which a double layer occurs for particular values of k;, ke, o
and f, provided positive potential solitons and/or double layers exist in the model under
consideration.

Generally, for solitons or double layers to exist, it is imperative that there exists a

charge neutral point (CNP) for some ¢cnyp > 0 between the origin and the potential
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corresponding to the upper Mach number limit, which here would occur for ¢ = ¢, i.e.,
there exists an accessible value ¢onp at which the curve of U(¢) against ¢ has zero slope,
before a root of U(¢) is encountered. We have carried out a numerical investigation over
a wide range of parameter values and have not been able to find a position of charge
equilibrium outside the unperturbed state for positive ¢, as ¥/(¢) < 0 always, implying
that ne + Zgng > n;. Thus it appears that neither positive solitons nor double layers can

be obtained with a dusty plasma model with s-distributed ions and/or electrons.

¢ (¢, M)
M=034 M=035 M=036 M=037

-0.0700  1.69+2.187 1.69+42.652 1.69+3.537 1.69+46.657
-0.0675 1.66+2.44: 1.66+3.137 1.66+4.90¢ -6.830

-0.0650 1.63+2.837 1.63+4.04: 1.63+18: -2.822
-0.0625 1.61+3.51% 1.61+7: -3.702 -1.786
-0.0600 1.58+5.13: -5.4209 -2.095 -1.267
-0.0200 -0.0531 -0.0351 -0.0192 -0.0052
-0.0175 -0.0375 -0.0231 -0.0104 0.0010
-0.0150 -0.0252 -0.0139 -0.0038 0.0052
-0.0125 -0.0158 -0.0071 0.0007 0.0077
-0.0100 -0.0088 -0.0024 0.0034 0.0086
-0.0075 -0.0040 0.0006 0.0045 0.0082
-0.0050 -0.0011 0.0017 0.0042 0.0065
-0.0025 0.0002 0.0015 0.0027 0.0038
0 0 0 0 0
0.0025 -0.0015 -0.0027 -0.0037 -0.0047
0.0050 -0.0042 -0.0063 -0.0083 -0.0102
0.0075 -0.0079 -0.0110 -0.0138 -0.0164
0.0100 -0.0126 -0.0165 -0.0201 -0.0234
0.0125 -0.0182 -0.0228 -0.0270 -0.0310
0.0150 -0.0245 -0.0297 -0.0346 -0.0392
0.0175 -0.0316 -0.0374 -0.0428 -0.0479
0.0200 -0.0394 -0.0457 -0.0516 -0.0571
0.400 -10.7075 -10.7166 -10.7255 -10.7344
0.425 -16.7644 -16.7733 -16.7822 -16.7909
0.450 -31.1965 -31.2052 -31.2139 -31.2225
0.475 -89.0376 -89.0462 -89.0547 -89.0631
0.500 1 00 1 00 1 00 100

Table 3.2: Table showing the behaviour of ¥'(¢) for k; = ke = 2, 0 = 1, f = 0.5, and
M > My = 0.33 for both ¢ < 0 and ¢ > 0.
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3.4. Arbitrary Amplitude DAS and Double Layers

A simple illustration is shown in Table 3.2, which shows some results for the parameter
values k; = ke =2, 0 =1 and f = 0.5. For each value of M shown, we observe that there
is no change of sign of W/'(¢) for ¢ > 0, while for negative potentials a zero does occur
until complex values of U/(¢, M) are encountered. The table also shows that for values of
positive ¢, U'(¢, M) remains negative but finite up to ¢ = 0.5, where it becomes infinite
and complex.

In addition to the above, recent investigations [Baluku et al., 2010a,b; Verheest and
Hellberg, 2010; Verheest, 2010a] have shown that if ¥ (¢ = 0, M) # 0, then for the
parameters of the plasma system, the sign of ¥ (¢ = 0, M) corresponds to the sign of
the soliton potential whose amplitude goes to zero as M — M. Otherwise for the same
plasma parameters, solitons with the sign opposite to that of (¢ = 0, M), if they exist,
must have finite amplitudes at M;. With this approach, we can, for a given o, obtain
critical density ratios f, for corresponding k (k. = Kk; = k), such that ¥"”'(¢ =0, M) = 0.
However, for all values of o, " (¢ = 0, M) = 0 gives values of f < 0, which are unphysical.
In other words, for the physical f domain [0, 1] in the case of negative dust, ¥ (¢ = 0, M)
does not change sign, implying that only one potential sign (in this case, negative) may
be supported. This also rules out the possibility of positive potential solitons (or double

layers) for this plasma model.
3.4.2 Negative Potential Solitons

As shown in the example above, for ¢ < 0 a charge neutral point is often found for
negative potential. The existence of a charge neutral point is necessary but not sufficient for
soliton existence. Thus negative solitons may exist, but only if the Sagdeev pseudopotential
has a root for an admissible value of ¢ before the cutoff imposed by a physical limit. In this
case the limitations on ¢ are in principle provided by the ion and dust grain species with
limiting potentials ¢o; = —(k; — 3/2) and ¢og = —M?/2, respectively, where x; > 3/2.
As discussed earlier, at these limiting potentials we require W(¢.; or ¢oq) > 0 to ensure
existence of a root. However, for k; > 3/2, ¥(¢.;) = —oo < 0; the ion limit condition
U(¢ei) > 0 is thus meaningless, just as an “electron limit” was found to be inadmissible for
possible positive solitons. Therefore only the dust limit condition, ¥(¢.q) > 0, is necessary

to find the upper limit on M for the existence of negative potential dust acoustic solitons
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3. Dust Acoustic Solitons in Plasmas with Kappa-Distributed Electrons and/or Ions

in the (f, M) space. This case is discussed further in the next section. In principle,
negative double layers could provide a limit on ¢ that is smaller in magnitude than |¢p.q|.
In addition to the general soliton condition [Eq. (3.13)], the existence of double layers
requires V(¢,,, M) = V' (¢, M) = 0 and V" (¢,,,, M) < 0, where ¢,, is the amplitude
(see Sec. 1.4). We have sought values of ¢,, and M that satisfy the double layer conditions,
over a wide range of values of the parameters k., k;, o and f, but our numerical exploration
has not yielded any arbitrary amplitude double layers based on this requirement.

The Sagdeev potential for a soliton possesses a single charge neutral point lying between
the origin and the soliton amplitude while double layers have a charge neutral point between
two double roots, one of which is at the origin - at the second double root the slope of the
pseudopotential is again zero. In our experience, when ¢ < 0 and M > M, ¥/(¢$) remains
negative after the first charge neutral point outside the origin. That is, it changes sign
only once as seen, for instance, in Table 3.2. Note that for ¢ < 0, U'(¢) remains negative,
until it becomes complex for relatively small |¢|, in this case for 0.06 < |¢| < 0.07 when M
is in the range 0.34-0.37, typically after U(¢) has passed through a zero. Similar results
were obtained for other values for the key parameters, viz., k;, ke > 3/2, 0 > or < 1 and
0< f<l.

We thus believe that it is highly unlikely that double layers are supported by a dusty
plasma with kappa-distributed electrons and/or ions, and thus the upper limit on M is

based on ¢.4.
3.4.3 Numerical Results and Discussion

In this section we discuss numerical results related to the existence of negative potential

solitons.
Effect of Spectral Index Variation

In Figure 3.3(a) we show the effect on the negative soliton existence domain, of varying
the spectral index of the electron distribution, in association with effectively Maxwellian
(high-x) ions, for equal ion and electron temperatures (¢ = 1). The lower curves rep-
resent the lower Mach number limit, M, [obtained from Eq. (3.13)]. The upper set of
curves corresponds to the upper limit of M, obtained from the condition W(—M?/2) = 0,
using (3.12).
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Figure 3.3: Existence domains for negative potential solitons for ¢ = 1 and varying &
values. (a) Upper panel: k; = 25; ke = 2 (solid, red curves), ke = 4 (dashed, blue curves)
and k. = 6 (dotted, green curves), respectively. (b) Lower panel: k. = 25; k; = 2 (solid,
red curves), k; = 4 (dashed, blue curves) and x; = 6 (dotted, green curves), respectively.
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Figure 3.4: Typical Sagdeev potentials for the case of Fig 3.3(b). The pairing f = 0.8, M =
0.4 lies within the expected existence domain for all three values of k;. For larger values
of k;, fixed M is closer to the lower soliton limit, M, and thus the amplitude is smaller.
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3. Dust Acoustic Solitons in Plasmas with Kappa-Distributed Electrons and/or Ions

Thus, for a given electron spectral index value, k., solitons may exist between the two
curves. It is seen that for all cases, My — 1 for f — 0 (ion-dust plasma), and — 0 for
f — 1 (electron-ion plasma). This agrees with our earlier analytical comments on the form
of M. The upper limits, too, are the same for all k. values for f — 0 and f — 1. Further,
all curves are qualitatively the same, and the difference between the curves (for both upper
and lower limits) corresponding to k. = 4 and k. = 6 is insignificant. From this one may
deduce that Maxwellian electrons would yield a similar curve, and that only very low
values are differentiated from the rest.

The lower panel of Figure 3.3 illustrates the effects of varying x; with quasi-Maxwellian
electrons. As in the upper panel, both sets of curves converge to M = 0 for f — 1, but
unlike the earlier case, both upper and lower limits increase with increasing x; as f — 0.
Again, the difference between the curves for k; = 4 and 6 is significantly smaller than that
between k; = 2 and 4. Importantly, an increase in the superthermal ion component (e.g.,
k; = 2) results in a reduction in the range of Mach numbers for which solitons may exist.
This appears to be the largest difference from the case in which both electrons and ions
have Boltzmann distributions.

Typical Sagdeev potential plots are shown in Fig. 3.4, where we have chosen near-
Maxwellian electrons (k. = 25), with f = 0.8, i.e., a plasma with 80% of the negative
charge carried by the electrons, equal ion and electron temperatures (o = 1) and a Mach
number M = 0.4, which lies in the range for which solitons would be expected for all three
values of k; used. As one might expect from Fig. 3.3(b), the soliton amplitudes decrease

as k; is increased, as the chosen value of M is increasingly close to the lower limit, Mj.
Comparison with Small Amplitude Theory

In Figures 3.1 and 3.2 we indicated that the dotted (light-blue) curves correspond to
the numerical solutions for the existence of arbitrary amplitude negative solitary structures,
using Eq. (3.12), as compared to the Mg limit, from the small amplitude approach. In the
case of k; = ke = 2 (left panel of Fig. 3.1), comparing the analytical (Mg) and numerical
solutions (dotted, light-blue curve) for the upper limit of M on the existence domain of
negative solitons, we see that My underestimates the range in M for f < 0.65 while for

f > 0.65, it is overestimated. In fact, no solitons exist above the dotted curve for f > 0.65.
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3.4. Arbitrary Amplitude DAS and Double Layers

The same applies to the right panel of Fig. 3.1 for approximately f > 0.3, and also to
Fig. 3.2 with ¢ = 1. Thus the results in Figs. 3.1 and 3.2 show that when k; = k., the
upper limit on M for the existence of negative potential solitons from the analytic solution
(KdV approach) does not agree with the numerical results to a great extent. Here, in
Fig. 3.5, we consider the case of k; # ke, 0 = 1, and compare the existence domains of
negative solitons from the KdV theory (or Expanded Sagdeev potential approach) and the
full Sagdeev approach. As was the case of k; = k., Mg does not give a better approximation
to the upper limit of M for the existence of solitons. In the case of quasi-Maxwellian ions
and hard spectrum for electrons (high x; and low k., as in the left panel of Fig. 3.5), Mg
diverges far away from the numerical solutions for f = 0.18. On the other hand, in the
case of quasi-Maxwellian electrons (k. = 25) and strongly non-Maxwellian ions (k; = 4),

as shown in the right panel of Fig. 3.5, Mg overestimates the upper limit on M for f > 0.6.
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Figure 3.5: Same as Fig. 3.3 but for k; = 25; ke = 4 (left panel) and k; = 4; k. = 25 (right
panel). In both cases, the analytic approximation to the upper limit of M for the existence
of negative solitons is the dashed curve labeled Mg, while the numerical solution (obtained
by solving W(—M?2/2) = 0) is given by the dotted curve.

Effect of Temperature Variation

Having explored the effect of varying k. and k; on the soliton existence domains for
equal ion and electron temperatures, we consider next the effect of varying the temperature
ratio for a plasma with significant excess superthermal electrons and ions (small spectral

indices). The results are shown in Figure 3.6.

87



3. Dust Acoustic Solitons in Plasmas with Kappa-Distributed Electrons and/or Ions

0.8

0.6
Mo0.4

0.2

0.0

Figure 3.6: Existence domains for negative potential solitons for k. = x; = 2, with 0 = 0.01
(solid, red curves), o = 1 (dashed, blue curves) and o = 10 (dotted, green curves).

As was shown in Fig. 3.3(a) when varying ke, we find that o, too, has no effect on M
and the upper limit of M for f — 0 and f — 1. As already indicated, at the extreme
values of f the model reduces to a two-component plasma; an electron-ion plasma for f =1
and an ion-dust plasma for f = 0. Thus the behaviour of the solitary structures at the
extreme f values is not of physical significance for our model but can be used to compare
with other simpler plasma models. Varying o does, however, have a significant effect on
the shape of the limiting curves. We note that the drop in My as f increases from zero
(i.e., increasing electron fraction) is much larger for o > 1 (i.e., T; > T.) than for o < 1.
As a result, the existence domain has a slightly large range in Mach number for this case

than for the other two.

3.5 Dust Acoustic Structures with Positive Dust

In the previous section, the discussion has been based on the dust being negatively
charged, which is generally regarded as the more common situation. In this section we
consider positively charged dust instead of negatively charged dust, where we show that
in the presence of positive dust only positive potential solitons are supported.

In this case the dust density expression analogous to that found in Eq. (3.8) is

nasto) = (32 (1- @—‘f’)/ (3.27)
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and substitution into the appropriate form of Poisson’s equation leads to expressions for

the pseudopotential and soliton condition [cf. Eqgs. (3.12) and (3.14)] taking the form

F b0\ (e
AT [1 ) ]

1 ) —(k;—3/2)
i1 [1 - (“ m) ]

- <1 _ %)ml (3.28)

f fo [(2ke—1 1 2 — 1\ ) /2
Ms+_{f—1<2K6—3>+f_1<2,{i_3>} ’ (329)

respectively, where f > 1, with f = N.o/N;o as before.

+ M?

and

Following the same approach as used for the case of negatively charged dust one finds
that solitary structures in the presence of positively charged dust are restricted to positive
potentials, and that only solitons (no double layers) are supported. These positive potential
dust acoustic solitons are bounded from below by Mg, [defined in Eq. (3.29)] and from
above by M., where the latter is obtained from W, (¢ = M?/2) = 0 at M = M, in
Eq. (3.28). These results are illustrated in Fig. 3.7, equivalent to Figs. 3.3(a) and 3.6,
respectively, but now with f > 1.

On the other hand, if we normalize the densities with respect to the electron density,
instead of retaining our earlier definition of the density ratio f, we can rewrite the expres-
sions for the pseudopotential (3.28) and soliton condition (3.14) in terms of an appropriate

alternative fractional density variable, g = N;o/N¢o < 1, obtaining

o bo N\ re3/2)
O =T g0 [1 (%)
g ) —(ki—3/2)
1 [1 - (1 " m) ]

- (1 _ %)1/2] (3.30)
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and
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Figure 3.7: Upper panel: Existence domains for positive potential solitons in the presence
of positive dust for near-Maxwellian ions and varying k., analogously to Fig. 3.3(a), but
with f > 1; 0 = 1, k; = 25 and k. = 2 (solid, red curves), k. = 4 (dashed, blue curves)
and k. = 6 (dotted, green curves), respectively. Lower panel: Similar to upper panel,
now for k. = k; = 2, showing the variation with temperature ratio, o = 0.01 (solid, red
curves), 0 = 1 (dashed, blue curves) and o = 10 (dotted, green curves), respectively. This
is analogous to Fig. 3.6, but with f > 1.

In that case we see that for 0 = 1, the expression is identical to that found in (3.12),
apart from a simple reversal of the sign of the potential. Thus, for T; = T, the results are
identical to those for negative dust, apart from a change of the soliton polarity.

However, for o # 1 there can be significant differences between the two cases. These
are illustrated with the aid of Fig. 3.8, which shows the variation of the existence domains
with ¢ in a plasma with significant superthermal contributions for both the electrons and

the ions. It is seen, in particular, that for o = 0.01 (i.e., T, > T;), the Mach number range
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Figure 3.8: Existence domains for positive potential solitons in a positive dusty plasma,
plotted as a function of the alternative fractional density variable, g = Njo/Ngo for ke =
k; = 2, with ¢ = 0.01 (solid, red curves), o = 1 (dashed, blue curves) and o = 10 (dotted,
green curves), respectively. This is analogous to Fig. 3.6.

increases rapidly as the normalized ion density, g, is decreased, i.e., the ions are replaced
by positive dust grains. To understand that, let us consider g — 0, in which case the upper

limiting condition W, (M?/2) = 0 gives

M2 Ke—3/2
o ) .

1+ M? 1-—
(1+ U)< 2Kke — 3

which for k. = k; = 2, as in Fig. 3.8, and M? > 0, reduces to M = /(1 ++/5)/o.

Likewise, the lower Mach number limit, Mj, varies as \/(2k. — 3)/[0(2ke — 1)], as g — 0.

Thus, as g — 0, both the lower and upper Mach number limits will vary inversely as the
square root of the temperature ratio, hence leading to the shapes exhibited in the figure
for 0 = 0.01. Both these expressions are independent of x;.

Thus it is clear that while for o = 1, the positive dust case is directly analogous to that
with negative dust, with a change of soliton potential sign, a slightly more complicated
set of differences appears when one considers a case in which the two hot species have

temperatures that are significantly different from one another.
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3.6 Chapter Summary

We have investigated the existence of dust acoustic solitons in dusty plasmas with
k-distributed ions and/or electrons, and found that only negative potential solitons exist
when the dust is negative. Reducing the spectral indices (k., ;) only affects the existence
domains of the solitons quantitatively.

In the presence of positively charged dust, only positive potential solitons are found,
but the ion to electron temperature ratio has significant quantitative effects: particularly
for T, > T; the results are very different from those for T, = 7;. In both cases we find
that the soliton polarity agrees with the sign of the charge of the inertial species (dust), as
observed in a number of other plasma models, albeit not universally so. For instance, this
characteristic was also observed previously for positive dust in a plasma with polytropic
or Boltzmann electrons and ions [Baluku et al., 2008]. However there are quantitative
differences, arising from the functional form of the number density for a x-distribution as
in Eq. (3.2).

Although the x-distribution is nonthermal, the results reveal important differences from
those found when one of the hot plasma species has a different nonthermal distribution,
viz., the Cairns distribution [Verheest and Pillay, 2008a,b]. They showed that for negative
(positive) dust, positive (negative) solitons could also be found, limited by double layers,
for sufficient nonthermality of the ions (electrons) and sufficiently low electron (ion) density.
For nonthermal electrons (ions) only negative (positive) potential solitons were found, as
in our case. This difference in results could be due to the fact that for the s distribution
the main change from a Maxwellian lies in the ‘tail’ region, unlike the case of the Cairns
distribution.

Comparing results from the small amplitude expansion (by expanding the Sagdeev
potential) with those from the arbitrary amplitude approach, our results show that the
existence domains for negative solitons from the former approach include a range in (f, M)
space that is unphysical, that is, lying in a region where no solitons can be obtained,
following the arbitrary amplitude approach. This difference in results shows that small
amplitude approaches should not be relied on too much when, for example, interpreting

observational data for solitary structures.
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3.6.  Chapter Summary

In view of the observations of both kappa-distributed ions and electrons in Saturn’s
magnetosphere [Krimigis et al., 1983; Schippers et al., 2008|, as well as dust [Jones et al.,
2008], the results of this work can assist in the interpretation of nonlinear electrostatic

solitary waves that may be observed in that region.
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CHAPTER 4

Dust lon-Acoustic Solitons in a Plasma with Kappa-Distributed Electrons

In this chapter we investigate solitary structures that may be supported by dusty plasmas
consisting of kappa distributed electrons, fluid adiabatic ions and dust particles. As dust
particles are usually negatively charged (in most dust plasma environments), we discuss
our results mainly with negatively charged dust. However, we also discuss, briefly, the case
for positively charged dust.

The results presented in this Chapter have been published as Baluku et al.,
Physics of Plasmas, 17, 053702 (2010)

4.1 Introduction

Dust ion-acoustic (DIA) waves in unmagnetized plasmas are low frequency waves with
phase velocity lying between the electron and ion thermal velocities (Vi; = (KgT;/m;)'/?; j
e, 1), that is, Vj; < w/k < Vi to avoid Landau damping. They were first studied theo-
retically by Shukla and Silin [1992] and later confirmed experimentally by Barkan et al.
[1996].

Dust ion-acoustic waves are basically ion-acoustic waves whose wave behaviour is mod-
ified by the presence of dust grains. It has earlier been shown [Verheest et al., 2005; Baluku
and Hellberg, 2008], using a fluid dynamic paradigm, that the (normalized) phase velocity,
here denoted vy = (w/k)/Cs, of the DIA wave can be expressed as v?b =[1+(f—-12z]/f,
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where Cy = (KBTe/ml-)l/2 is the ion-acoustic speed in the absence of dust, f = N.o/N;o
is the ratio of the electron to ion equilibrium densities, with f < 1 (f > 1) for negatively
(positively) charged dust grains; z = Zym;/mg is the ratio of the charge-to-mass ratio
of the ions to the dust particles, with the ions assumed singly charged. Thus the phase
velocity of linear DIA wave is increased (reduced) when the dust is negatively (positively)
charged.

Nonlinear DIA waves have been studied by a number of authors [Bharuthram and
Shukla, 1992; Mamun and Shukla, 2002; McKenzie et al., 2005; Verheest et al., 2005;
Hellberg et al., 2006; Mamun and Jahan, 2008; Sayed et al., 2008|. However, most non-
linear studies [Mamun and Shukla, 2002; Mamun and Jahan, 2008; Sayed et al., 2008|
used Reductive Perturbation Theory or equivalent expansions), to study various aspects
of small amplitude solitons and/or double layers while others [Bharuthram and Shukla,
1992; Verheest et al., 2005; McKenzie et al., 2005; Hellberg et al., 2006] considered ar-
bitrary amplitude DIA structures, using the Sagdeev pseudopotential approach [Sagdeev,
1966]. In particular, Bharuthram and Shukla [1992] considered a plasma model consisting
of Boltzmann-distributed electrons, cold ions and immobile negative dust. They sought
positive potential solitons, and found existence ranges of both normalized soliton speed
(M) and amplitude ¢ as a function of the fraction of negative charge residing on the dust.
In addition, they considered negative potential solitons. However, they only presented
Sagdeev potential curves for two values of M and two values of mobility. In addition to
studying dust-acoustic solitons, Verheest et al. [2005] examined DIA solitons in a plasma
model which allowed for arbitrary values of the polytropic index (~,) for the electrons, cold
ions and mobile dust. Numerical evaluation of existence diagrams was carried out for two
values of 7., viz., 7. = 1 (isothermal, i.e., Boltzmann) and 3/2.

While most authors have discussed dust ion-acoustic waves and solitons, with Maxwellian
electrons or ions theoretically [Bharuthram and Shukla, 1992; Ghosh et al., 2000a,b; Ma-
mun and Shukla, 2002; Rahman et al., 2007; Mamun and Jahan, 2008; Pajouh and Abbasi,
2008; Sayed et al., 2008] and experimentally [Barkan et al., 1996], space plasmas are ob-
served to possess non-Maxwellian distributions [Krimigis et al., 1983; Hasegawa et al., 1985;
Christon et al., 1988; Pierrard and Lemaire, 1996; Maksimovic et al., 1997; Pierrard et al.,

2004] as we mentioned in Sec. 1. These non-Maxwellian distributions can be modelled
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accurately by a kappa (or generalized Lorentzian) distribution [Olbert, 1968; Vasyliunas,
1968], like the one given by Eq. (1.2).

In this work we thus study the behaviour of and existence domains for dust ion acoustic
solitons that may be supported by a plasma in which the electrons are non-Maxwellian
and following a kappa-distribution. Small amplitude structures are investigated using the
reductive perturbation technique, while the Sagdeev pseudopotential approach is used for
arbitrary amplitude soliton studies. While most of the investigation deals with the more
interesting and relevant case of negative dust, we also consider positive dust. In particular
we draw attention to the occurrence of finite amplitude solitary waves at the dust ion-
acoustic speed in a negative dust plasma, and explore some of the characteristics of this

phenomenon.

4.2 Basic Equations

We consider a plasma with kappa distributed electrons of temperature 7T, and density
N, fluid adiabatic ions of temperature 7; and density N;, and cold dust particles. The

charge quasi-neutrality condition for the system is
Neo = Nig + sZaNao, (4.1)

where Njg is the equilibrium density of species j, (j = e, i, d for electrons, ions and dust,
respectively); Zy is the size of the dust charge, and s = +1 is the sign of the dust charge
(for positive or negative dust particles). The ions are assumed to be singly charged, like
protons, and therefore, throughout the discussion we shall take Z; = 1 in this plasma
model.

In the presence of an electrostatic potential, the x-distributed electrons have normalized
density n. = N./N;y given by [Baluku and Hellberg, 2008]

~(k—1/2)
ne(¢) = f <1 - H%%) : (4.2)

where ¢ is the electrostatic potential, here normalized with respect to the electron ther-
mal energy (KpTe/e); f = Neo/Nio = 1 4+ s Z3Ngo/Nio defines the fraction of electron

equilibrium density with respect to the ion equilibrium density. The density expres-
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sion given above is only valid for £ > 3/2, and it reduces to the usual Maxwellian form
fne(p) = exp(—¢) when kK — oco. In unnormalized form, the electron density expression
in Eq. (4.2) is obtained from N.(¢) = [[[ F,(v)d3v where F,(v) is the velocity distri-
bution function defined in Eq.(1.2) with the transformation [Baluku and Hellberg, 2008|
v? — 0?2 4 2¢ep/me, see Appendix. A.1 for details.

The density of the ions (j = i) and dust particles (j = d) are obtained from the

continuity, momentum and pressure equations

on; 0
Bu] Gu] m; o Op; ~ m; q; 09

Rt VAT Rl 4.4
ot T dxr mjn; 0xr  m; e Ox » and (44)
Ip; Ipj Ouy
S it +3p 5t =0, (4.5)

respectively, where o = T;/T.; u;, n; and p; are the normalized ion velocity, density and
pressure, of species j, respectively, and ¢ the electrostatic potential.

The independent variables, x and ¢, are normalized to an effective Debye length Apeg =

1 1/2

(e0KBT,/Nije?)'/? and the inverse ion plasma frequency Wy = (Nioe? Jegm;)~ /2, respec-

tively; the dependent variables, u;, nj, p; and ¢, are normalized to C = (KBTe/mi)1/2,
Nio, Pjo = NioKpT; and KgT,/e, respectively.

The macroscopic variables, n;, pj, u; and ¢ satisfy the boundary conditions ¢, d¢/0zx,
uj — 0; nj = Njo/Njo, and p; = Pjo/Pjo, as © — £o0.

From Eqgs. (4.3)-(4.5), and after transforming to a stationary frame where all quantities

depend on ¢ = x — Mt, the normalized ion density is thus obtained as [Ghosh et al., 1996;

Verheest et al., 2008|

ni($) = { [(M + \/_> - 2¢] v [(M - \/3_0>2 - 2¢] v } (4.6)

2V 30

where M is the soliton speed or Mach number in the stationary frame of reference with
position ¢ = x — Mt. From the boundary conditions, we have n; — 1 for ¢ — 0. This
is only true if we take the minus sign in Eq. (4.6), and that will give us the appropriate
expression for n;(¢) that will be used in the discussion which will follow. In the limit ¢ — 0

(cold ions), ni(¢) = (1 —24/M?)~1/2. This means that when ¢ = M?/2, n; — oo, and the
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ions are infinitely compressed.

Similarly the normalized density of the dust particles is given by

~ Nao/Nio /2

~ 2\Bop
+ [(M - \/E)2 - 282(4 i } (4.7)

na(6) { (0 + V3op)” — 2520]

where z = m;(Z4/my) is the fraction of the the charge-to-mass ratio of dust to that of ions
(with Z; = 1); op = (m;Ta/myT.) = 0 04 with 04 = V2 /V,2. Here, V;;(Viq) is the ion(dust)
thermal velocity. Again, for the + sign, we shall use the minus sign in our calculations as
that gives the appropriate boundary conditions as £ — oc.

Since we shall consider cold dust particles (o = 0) in the model, the density of the dust

particles takes the form

na(¢) = (";;d” (1= 2s2¢/M?) 712, (4.8)

However, if the dust motion is not included, ng — Ngo/Nyo = (f — 1)/sZy, since the
immobile dust particles then only provide neutralization in the background. This will
be the case when discussing small amplitude solitons using the reductive perturbation
technique, but we shall allow for dust mobility in the pseudopotential calculations.
The species’ densities, given by equations (4.2), (4.6) and (4.8), are coupled by Poisson’s
equation
0%¢

Jez T (0) = neld) + s Zana(9) = 0. (+9)

4.3 Linear Dispersion Relation

In linearized form, the electron density takes the form

e = f (Z - ;;;) é1. (4.10)

Next we Fourier analyze the continuity, pressure and momentum equations in terms of

normalized angular frequency w and wavenumber k, and expand them to linear order. For
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the ions, this gives
k2

ni1 =

Alternatively, we can rewrite M as M = My + 0M, where My and § M are the equilibrium
(unperturbed) and perturbed values of Mach number. The unperturbed Mach number
coincides with the lowest Mach number value, below which no solitons can be supported
by the plasma model, and also defines the phase velocity of the propagating waves, as we
will see later. If we assume that the perturbations in M are so small that they can be
neglected (0M < 1), them M ~ My = w/k. Thus letting ¢ ~ ¢1 and n;(¢) ~ 1+ n;1(é1),
the series expansion of Eq. (4.6) about ¢ = 0 leads to n;1(¢1) =~ ¢1/(MZ — 30), such that
with the substitution My = w/k we recover Eq. (4.11).

Similarly,

2R 4. (4.12)

In terms of ¢, Poisson’s equation, (4.9), becomes

0%¢1
ezt (o) —nei(dn) + 5 Zanai(é1) =0, (4.13)

which upon substitution of Eqs. (4.10)—(4.12) into (4.13), with /9§ = 0/0x — ik, leads

9 1 f(rk—=1/2 s(f—1z |
k¢1{1_w2—3ak2+ﬁ</§—3/2>_ w? }_0'

The non-trivial solution gives the linear dispersion relation as

1 f (k=12 s(1—f)z
L 30k R2 (/{—3/2) L R 0 (4.14)

to

We see that for the typical situation (z < 1), Eq. (4.14) becomes

1 n 1
w? —30k?2 k2 VSQO

1— =0, (4.15)

where the effective DIA speed Vg is given by
1 (k—3/2 Nio\ [k —3/2
2 7
= — pu— 4.1
=5 (5=15) - () (=) 10
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yielding 1/f in the limit K — co. In the long wavelength limit, & < 1, one then obtains
w? = E2(V2 + 30). (4.17)

However, in the long wavelength limit (k — 0, that is £ < 1) and z # 0 (not negligibly

small), the dispersion relation (4.14) yields

1/2
14 (1 - %) ] , (4.18)

provided b? — 4ac > 0 for non-complex values of the phase velocity, and the constants a, b,

and c are, respectively, given by

a:f<z:;g>, b=1+sz(f—1)+30a, and ¢ =30sz(f —1). (4.19)

Of course when z < 1, we have ¢ — 0 and b — 1 + 30 a, and therefore the effective phase
velocity takes the form w/k = (b/a)'/?.

Since the phase velocity w/k is normalized to the ion sound speed Cs = (KpT,/m;)"/?,
for a plasma system with cold ions (¢ — 0), immobile dust (2 — 0) and Maxwellian

electrons (k — 00) we get a — f and b — 1. Therefore we recover the dispersion relation

w? = (Njo/Neo)k?C? of Shukla and Silin [1992] with Z; =1 .
4.4 Small Amplitude Solitons: Reductive Perturbation Tech-

nique

In the reductive perturbation method, the electron density is obtained from

5 \-t12)
no)=1 (1~ —475)

~f4e1p+cad® + ezt 4+ (4.20)
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where

L (k—=1)2
Cl_f<m—3/2>’
L J=1/2)(s+1/2)
Nk —3/22

o f(r=1/2)(k +1/2)(k +3/2)
T 31(k — 3/2)3 ’

(4.21)

etc

A word of caution here is that the expansion of Eq. (4.2) [leading to Eq. (4.21)] is only
valid for k > 3. For 1.5 < k < 3 the higher order terms are large compared to those of
lower order, and therefore cannot be neglected. This comparison is shown in Table 4.1,
where we show values of the coefficients ¢;/f for few values of x < 4. The table shows
that for k = 2 and 2.5, the values in the fourth and fifth columns are higher than the third
column values. In the case of Kk = 2.9 and 3, although the fourth column values are less
than the third column values, they are nevertheless not negligible. Thus when one uses
the reductive perturbation method for plasmas involving k-distributed particles, the range

of k values for which it is valid imposes an important constraint.

Kk alf alf alf alf c/f
2.0 3.000 7.500 17.50 39.38 86.63
2.5 2.000 3.000 4.000 5.000 6.000
29 1.714 2.082 2.181 2.103 1.923
3.0 1.667 1.944 1.944 1.782 1.545
3.1 1625 1.828 1.752 1.533 1.265
3.2 1588 1.728 1.593 1.335 1.052
3.5 1.500 1.500 1.250 0.934 0.656
4.0 1400 1.260 0.924 0.601 0.360

Table 4.1: Table showing the the coefficients, ¢;/f in Eq. (4.21) for some values of . For
k > 3 the fourth order terms (c4/f) are smaller than the third order terms (c3/f) and
therefore can be neglected in the expansion. However, for k < 3, ¢4/ f is greater than c3/f,
provided & is not very close to 3.

In addition, we assume that the dust particles are cold and that they only provide
neutralization in the background (ngy — Ngo/Nig), since for DIAW, it is the ion and

electron dynamics that are more important. Thus Poisson’s equation (4.9) may be written
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as

2
g—gf +ni(p) —ne(d) + f—1 =0, (4.22)

where { = x — Mt in the wave frame, and the ion density n;(¢) is obtained from the

perturbation expansion of the ion fluid equations (4.3)—(4.5).
4.4.1 Korteweg-de Vries (KdV) Equation

In deriving the KdV equation we use the usual stretched coordinates [Mace et al., 1991;
Verheest, 2000; Shukla and Mamun, 2002] x = €'/2(z — M,t) and 7 = €%/%t, where M, is
the phase velocity normalized to the fixed acoustic speed in the absence of dust, and € a
smallness parameter. We then arrive at the KdV equation [Mace et al., 1991; Verheest,

2000; Mamun and Shukla, 2002; Shukla and Mamun, 2002]:

091 Op1 B P

— + Ap;—— =0 4.23
or + Ao ox * o3 ' (423)

where the constants A and B are obtained from
A= B(120¢} + 3¢2 — 2¢3); B(262M,) =1; M, = (30 + 1/¢1)"/?, (4.24)

and ¢; and ¢y are defined in Eq. (4.21).

We use the transformation n = y— Mom = €&; £ = x— Mt, where M is the speed of the
solitary wave in the stationary frame, and M is the Mach number, given by M = M,+eMj,
equivalent to the normalized speed of the solitary waves in the laboratory frame. We then
obtain the solution to Eq. (4.23) as [Washimi and Taniuti, 1966; Mace et al., 1991; Verheest,

2000; Mamun and Shukla, 2002; Shukla and Mamun, 2002]

1/2
¢1(77) = %Sech2 { <%> 77} . (4.25)

Finally, transforming back to the laboratory frame [with coordinates (x, t)] we get [Mace

et al., 1991; Verheest, 2000]

1/2
bz, 1) ~ e (z, 1) = 3‘;M sech? { <5ﬁ> o — Mt]} , (4.26)
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where 0M = eMy = M — M,. The amplitude and width of the soliton are given by
30M/A and (4B/5M)'/?, respectively. Thus Eq. (4.26) shows that the KdV soliton has
zero amplitude when M = M, (or M = 0), and the amplitude increases with §M. Since B
is always positive (from the definition of B in (4.24), and M, > 0 for forward propagation),
the validity of Eq. (4.26) requires dM > 0, that is, M > M,, as both B and § M must have
the same sign for real soliton width. Therefore the dust ion-acoustic solitons that exist
in this model are super-acoustic — and we shall see that it also follows from the standard
arbitrary amplitude approach. It will be shown later (cf. (4.38) in the limit z — 0) that
M, = M, where My is the lowest Mach number below which solitons cannot exist. Also,
with 0M > 0, the sign of the potential solitons will depend on whether A is positive or
negative.

Since B is always positive for k > 3/2, then from the expression of A in Eq. (4.24)
one can, for given k, find a critical plasma composition, i.e., a critical value of f, here
denoted f., for which the coefficient, A, of the nonlinear term (¢d¢/Jx) in the KdV
equation [Eq. (4.23)] is zero, and the amplitude (30M /A) in Eq. (4.26) goes to infinity,
and therefore the KdV approach breaks down. The critical value of f. will be seen to
play a significant role in determining the soliton characteristics in the arbitrary amplitude,
pseudopotential study that will follow in the subsequent section. It is worth noting that
for f close to f., the arbitrary soliton amplitudes (obtained from the Sagdeev approach in
the next section) show surprising behaviour in that the soliton amplitude at M = Mj is
nonzero, and that in the neighbourhood of Mj solitons already possess large amplitudes.
Such a scenario is shown in Fig. 4.8, for f = 0.5 (¢ > 0, with x = 2) and f = 0.9 (¢ < 0).

In Fig. 4.1 the continuous (red) curve shows the variation, with s, of f., the solution
of the equation A = A(f, k) =0, for fixed o and z. From the sign of A one can show that
positive (negative) small amplitude potential solitons are obtained for f > f. (f < fe),
i.e., above (below) the continuous red curve in Fig. 4.1. Therefore, solitons with either
polarity are in principle supported by the plasma model. However, for fixed values of f, k,
and o, and hence of ¢; and co, the sign of A and thus the soliton polarity, are uniquely
defined, i.e., for a given plasma configuration, only a single sign of soliton potential is

permitted. This figure also yields a further interesting physical result (I. Kourakis, 2009,
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pers. comm.") : for a plasma with, say, f = 0.4, the figure shows that a Maxwellian-like
distribution (k > 10) supports positive KdV solitons (f > f.), while for k ~ 4, the KdV

solitons would be negative (f < f.).

1.0
0.8/
06!

f
0.4f

025 1

ool

Figure 4.1: Continuous (red) curve: Variation of the critical density fraction, f. (where
the KdV coefficient A = 0) with & for o = 0.01 and z = 0.001. Dashed (light blue) curves:
These represent the region in f over which the mKdV coefficient, C, is positive. Dotted
(dark blue) curve: This coincides with the continuous (red) curve for f., and represents
values of f obtained from ¥ (f, M = M, ¢ = 0) = 0, in the arbitrary amplitude case
(see next section). Dot-dashed (dark blue) curve: This maximizes the parameter C in
the mKdV equation for small amplitude solutions in Eq. (4.29). For discussion purposes
k values take the range 2 — 20, though we have indicated that for expansion of kappa
distributed physical quantities x must exceed 3.

4.4.2 Modified Korteweg-de Vries (mKdV) Equation

We have already indicated that the KdV method is invalid close to the critical composi-
tion, f., since the soliton amplitude goes to infinity when A(f,x) = 0. In overcoming that
scenario we have to turn to the modified KdV (mKdV) approach in that neighbourhood.
In the mKdV approach we use the stretched coordinates xy = e(x — M,t) and 7 = €3¢, and

thus obtain the mKdV equation [Verheest, 2000]:

0 P
%+C¢2 991 , g

o1
ox3

=0, (4.27)

where the quadratic nonlinear term of the KdV equation is now replaced by a cubic non-

linearity. Here, in Eq. (4.27), B takes the same form as defined in the KdV equation while

'Dr. 1. Kourakis, Queen’s University Belfast, Belfast BT7 1NN, Northern Treland, U. K.
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C'is given by
C = 3{3600%(02 — ) 4 2c169(5 + 2¢1) — 3 (2¢; +19/2) — 303},

with ¢1, ¢ and c¢3 defined in Eq. (4.21). Using the transformation n = x — My, it can
easily be shown that Eq. (4.27) has (the standard) solution [Mace et al., 1991; Verheest,
2000],

61(n) = H(6Mo/C)"/? sech { (Mo/B)/*n} (4.28)

Details for the derivation of Eq. (4.28) are given in Appendix C.2. Equation (4.28) can

also be written as
1/2
¢@)~e¢ﬂat):iﬂ%AUCﬂpsmh{<%¥> @—wa}, (4.29)

where £ =z — Mt = (x — Mo7)/e; M = My = M — M, with parameters M, My and
M,, as well as B defined as in the KdV expressions.

The validity of Eq. (4.29) requires that all B, C' and §M are of the same sign for real
soliton width and potential amplitude. However, for all k > 3/2, B is always positive,
therefore M > 0, or M > M,, which gives the lower Mach number as M,, and the only
other restriction on the existence of small amplitude potential solitons (from the mKdV
solution) will be given by the condition C' > 0, which imposes restrictions on the range
of f. From the form of Eq. (4.29), it follows that the polarity of mKdV solitons is not
specified.

In Fig. 4.1 the range of validity for different spectral indices x lies between the two
dashed (light blue) curves, corresponding to C' = 0. Although the range of f over which
C > 0 appears quite large in Fig. 4.1, the mKdV equation, like the KdV equation, applies
only to small amplitude solitary waves. From Eq. (4.29) it is clear that small amplitude
solitons require C' as large as possible. One can show that C' peaks at f ~ (f. —0.1) for

all k > 4, with typical maxima < 0.5, see dot-dashed curve in Fig. 4.1.
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4.5 Arbitrary Amplitude Solitons: Pseudopotential Approach

We now substitute Eqgs. (4.2), (4.6) and (4.8) in Poisson’s equation, Eq. (4.9). After

an integration, we get the usual energy equation [Sagdeev, 1966; Verheest, 2000]

1 (06\* B
5(8_§> + (o, M) =0,

where the pseudopotential W (¢, M) is given by

U(p, M)=f [1— (1_ K_¢3/2>3/2n] _ (1—f)];4—j [1_ (1_ ZEW—Z;Z5>1/2]
(6\/3_0[{(M V30)? —2<75} {(M+\/§)2_2¢}3/2]

M2y a>, (4.30)

and the boundary conditions ¢, d¢/9¢ — 0 as & — 00 have been used. Equation (4.30)
satisfies W(0, M) = 0 and ¥'(0, M) = 0, with the prime denoting derivative with respect
to ¢. The three terms in Eq. (4.30) represent the contributions to the pseudopotential, of
the k-distributed electrons, cold mobile dust, and warm fluid ions, respectively.

In the limit z — 0, the cold dust particles contribution to Eq. (4.30) [the second term
in Eq. (4.30)] becomes (1 — f)¢. Thus, in the presence of cool moving ions and immobile

dust particles, U(¢, M) takes the form

3/2—k
\If(qb,M)%f[l—(l— ¢ ) ]—(1—f)¢+M2+a

Kk—3/2

1 3/2
+ {(r-v3 —2} — {1+ VEo2 =201 |, (@31
e [ (M1 - V3o — 20} 220} | @3
Results from Eq. (4.31) will be compared with the small amplitude solitons results for a
dusty plasma with cool moving ions, with the cold dust particles only providing a neutral-
izing background.

In the presence of stationary negatively charged dust particles, cold ions [ = 0, and
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n; = (1 — 2¢/M?)~/2], and Boltzmann electrons (x — 00), Eq. (4.30) reduces to
W(g, M) = (1=¢®) = (L= o+ M2[1 = (1 - 20/M2)!/?, (4.32)

which is essentially Eq. (8) of Bharuthram and Shukla [1992], with N, = f and Ny = (1—f)
in their notations. Similarly, in the presence of cold ions, cold moving dust and Boltzmann
electrons we recover their Eq. (19). In addition, we also observe that when f = 1, the
plasma system is completely without dust, and therefore in the case of cold ions (7 = 0),
we recover Eq. (19) of Saini et al. [2009], that is, the model reduces to a cold-ion/kappa-
electron plasma.

It is easy to see that W/ (¢, M) gives the sum of the charge densities in the plasma system.
Thus W'(0, M) = 0 gives the charge neutrality condition (4.1). In order to ensure that the
origin (¢ = 0) is (locally) unstable for the propagating waves, we need ¥”(0, M) < 0. This
requirement, which is sometimes referred to as the soliton condition by some authors leads

to

V(¢ =0, M)EM%%Hf—l)ﬁ— <:::1£> <0. (4.33)

Equation (4.33) can be simplified and written as
M? > 30 + V2, (4.34)

where

1 k—1/2 sz
=1 (=5) - U -V (4.35)

For clarity, one can see that in the limit z < 1 (such that the last term in (4.35) is

neglected),

Nio (k—3/2

2 2 7

~VE =

Voo = Vio = (x— 1/2) ’

and therefore (4.34) gives M? > 30 + V2, where the right hand side of the inequality gives

the phase velocity of the linear dust ion-acoustic waves defined in Eq. (4.17).

Note that Eq. (4.34) is not fully transparent in M as V2 is itself a function of M. By
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treating (4.33) as a quadratic in M? we can instead write (4.34) as

A\ 12
1+ <1 - g) ] , (4.36)

provided b?> — 4ac > 0 for non-complex values of M2, where the latter is evaluated at

b
M? > M?=—
> Ms 2a

U”(¢p =0, M) =0. The constants a, b, and ¢ are, respectively, given by

a:f<2:;g>, b=1+4+s(f—1)z+30a, and ¢ =30sz(f — 1), (4.37)

as in Eq. (4.19).

Equation (4.36) represents the lower limit of the soliton existence domain in the (f, M)
space, and is the actual true speed of the dust ion-acoustic waves in the plasma model under
investigation. Also note that M2, in Eq. (4.36), is equivalent to the right-hand-side of the
linear phase velocity expression in Eq. (4.18).

We have already stated that DIA waves require that the thermal velocities of the
ions and electrons satisfy (in unnormalized form) V; < w/k < Vi, where w/k is the

1/2 {5 the thermal

unnormalized phase velocity of the DIA waves, and V;; = (KgT}/m;)
velocity for electrons (j = e) and ions (j = 4). Suppose we denote the normalized thermal
velocity (with respect to the ion-acoustic speed Cs = (KBTe/mi)lﬁ) by Uy, that is, Uy; =
Vii/Cs. Tt then follows that Uy = /o and Uy, = \/W > 1, assuming m; ~ 1836 m, for
protons. In other words, the electron thermal speed varies proportionally with the square
root of the ion-electron temperature ratio, o. Similarly, the electron thermal velocity is
proportional to the square root of the ion-electron mass ratio, m;/m.. Representing the
normalized phase velocity by Mg, it then implies that propagation of DIA waves require
Uy < Mg < Uge. Since Uy is very large (in this model), we can make a comparison of Uy
and My, with the latter defined in Eq. (4.36). We can also observe that when ¢ = 0 (cold
ions) or z = 0 (immobile dust), then ¢ = 0 in (4.36), and therefore for the allowable values
of Mgy > 0 we can only use the plus sign in (4.36). For example, with 7 = 0, Kk — o0,
we get M2 = [1 + sz(f — 1)]/f, which reduces to M2 = 1/f for = < 1. Thus one

recovers the usual My = 1 lower Mach number limit for ion-acoustic solitons in electron-

ion plasmas with cold ions and Maxwell-Boltzmann electrons [Chen, 1984] or polytropic
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electrons [McKenzie et al., 2004a; Verheest et al., 2005]. The question then remains: what
sign do we have to consider as appropriate and physical in cases where o # 0 or z # 07 In
this case we consider the ratio U /My, which may not give us any insight unless we make
many assumptions. However, numerical results show that with the minus sign in (4.36),
the ratio Uy /M exceeds unity. In other words, the phase velocity of the wave is less than
the thermal velocity of the plasma ion species, leading to a breakdown of the model. For
discussion purposes we choose a dusty plasma with negatively charged dust grains (s = —1
or f < 1) with fixed parameters ¢ = 0.01 and z = 0.001. Provided o < 1 (ions assumed to
be cooler than the electrons) and z < 1, the general trend here is obtained for other values

of o and z.

0.20

. 0.00 ‘ ‘ ‘ ‘
00 02 04 06 08 10 00 02 04 06 08 10

Figure 4.2: Variation of the thermal velocity-to-phase speed ratio, Uy /M, with fractional
density, f = N;o/Neo for a dusty plasma with negatively charged warm dust grains (z =
0.001), warm ions (o = 0.01) and kappa electrons: x = 2 (dashed), x = 4 (dotted), x = 10
(dot-dashed), and k = oo (continuous). Left panel: Results correspond to M in Eq. (4.36)
with the minus sign. Right panel: Results correspond to M, in Eq. (4.36) with the plus
sign.

In Fig. 4.2 we show curves corresponding to the ratio Uy; /M; as a function of fractional
density f for different values of k. In the left panel, where we have considered the minus sign
in (4.36), results show that there is no significant difference between low kappa values (with
many superthermal particles in the distribution tail) and high kappa values (approximating
a Maxwellian case), with the main result being that Uy > M. Here, Uy is over 18 times
My for 0 < f < 1. On the other hand, in the right panel where we have used the plus sign
in the expression of My, results show that U; < M, for the full range of 0 < f < 1, with

the Maxwellian case (k — o0) giving much lower ratios compared to the cases with low

109



4. Dust Ton-Acoustic Solitons in a Plasma with Kappa-Distributed Electrons

 values. Therefore in this work we shall use the expression of M, in Eq. (4.36) with the
plus sign and neglect the inappropriate negative square root.

In (4.36) we have expressed the Mach number in terms of the fractional density of the
electrons, f. However, it is sometimes preferable to consider the constraint on the fractional
density at fixed Mach number. Thus we rewrite Eq. (4.33) or (4.36) in the form [McKenzie

et al., 2005; Verheest et al., 2008]

2 g)— Sz 2
f > fS(M) = 1/(M51 —38 ,)Z/M2 /M ’ (438)

where M is the Mach number at the soliton condition, implying that solitons or double

layers will exist for all f > fs(M).
4.5.1 Electrostatic potential limitations

In the existence domains of solitons, soliton regions may be bounded by a number
of possible physical constraints, e.g., (i) the occurrence of a double layer, (ii) when one
of the species reaches a sonic point (for simpler models that implies infinite rarefaction
or compression of the species), or (iii) a density takes on a complex value [McKenzie et
al., 2005; Verheest et al., 2005; Cattaert et al., 2005; Hellberg and Verheest, 2008]. Tt
is usual for the density limit arising from a species of a given charge sign to lead to
limitation of that sign of potential, i.e., positive particles provide positive potential limits
and vice versa [McKenzie et al., 2005; Verheest et al., 2005]. However, it is easily seen
from Eq. (4.2) that s-distributed electrons are well-behaved for all ¢ < 0. Although,
clearly, n.(¢) — oo at ¢ — (k — 3/2), closer examination shows that the pseudopotential
U[(k—3/2), M] — —oo [Baluku and Hellberg, 2008]. Thus the Sagdeev potential (¢, M)
does not satisfy the requirement for limiting the potential, [McKenzie et al., 2005; Cattaert
et al., 2005; Baluku et al., 2008; Saini et al., 2009]| viz., V[(x — 3/2), M] > 0.

It follows that in the case of negative dust, the positive ion and negative dust densities
will limit the electrostatic potential for positive and negative potential solitary waves,
respectively. On the other hand, for the case of positive dust, positive potential solitons
will be limited typically by the ions, which have the smaller limiting potential because of
their much smaller mass. The limiting (maximum possible) potentials ¢;; (j = e,4,d) are

obtained from the density expressions of ions or dust particles when the species densities

110



4.5. Arbitrary Amplitude Solitons: Pseudopotential Approach

either become non-real or when the species are infinitely compressed [n;(¢) — oo| or
rarefied [n;(¢) — 0]. In addition, ¥(¢, M) must remain positive and finite close to the
limiting potentials ¢;;. Since the soliton amplitude [root of W(¢, M) other than at the
origin| increases with Mach number M, it follows that the maximum soliton Mach number
occurs for a soliton with amplitude ¢ = ¢;;. Thus the upper limit on M is given by
U(¢y5, M) = 0. Alternatively, the limitation on ¢ may be caused by the occurrence of
double layers [Baboolal et al., 1988], in which case the condition ¥(¢,,,, M) = ¥/ (¢,,, M) =
0 must be satisfied.

The description above agrees with the fluid paradigm for dust ion-acoustic solitons
[Verheest et al., 2005; Baluku et al., 2008] where, in the presence of negative dust, for
¢ < 0 the (subsonic) electrons, with velocity wu,, are rarefied (u. > 1) and move towards
their sonic point; the (supersonic) dust particles, with velocity ug, are compressed (ug < 1)
and also move towards their sonic point while the ions (also supersonic) are rarefied and
move away from their sonic point. Similarly for ¢ > 0, the electrons are compressed and
move away from their sonic point; the ions are compressed and move towards their sonic
point while the dust particles are rarefied and move away from their sonic point. However,
it is only the supersonic species, which move towards their sonic point, that contribute in
limiting the potential, based on the density or velocity dynamics of the plasma species.
An illustration is given in Fig. 4.3 showing the Bernoulli relation €;(u;) as a function of
the species velocity u; for adiabatic electrons [McKenzie, 2002a,b; Verheest et al., 2005;
Baluku, 2007], given by

1, 5 1 1 2
ei(u) = —(u2—1)+ — — 1| == =qjpo/m;V°;, for ~;,#1, (4.39
.]( .]) 2( 7 ) ('7_] _1)7‘[]2 (u]% 1 > J / ) J ( )

where ()¢ is the (un)normalized electrostatic potential; V' the velocity of the wave in
the reference frame; m; the species mass; M; the species Mach number, and ¢; = Zje
the species charge, with Z; being the charge on the species, j, which can be positive or
negative depending on whether the individual species are positively or negatively charged,
respectively, and e being the charge of an electron. Here, v; = 3/2 for adiabatic species.
In the case of positive dust, when ¢ < 0 all the species are rarefied, with the supersonic

species moving away from their sonic points while the subsonic electrons move towards
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their sonic points; for ¢ > 0, all the species are compressed, with the supersonic species

moving towards their sonic points while the electrons move away from their sonic points.

$»<0
@ M;qg>1 Me<1
) id
ye=15
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e(u))
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Figure 4.3: Schematic representation of Bernoulli integrals for cool, supersonic (M; > 1)
and hot, subsonic (M; < 1) species, having a minimum at their respective sonic points, S,
for adiabatic electrons (v, = 3/2). In a potential hill (¢ > 0), positively charged particles
(with g; > 0) are decelerated (u; < 1) and driven towards their sonic points if the flow
is supersonic (M; > 1) while negatively charged particles (with ¢; < 0) are accelerated
(uj > 1) and driven away from their sonic points if the flow is subsonic (M; < 1). The
reverse is true in a potential dip (¢ > 0): positively charged particles are accelerated and
driven away from their sonic points if the flow is subsonic (M; < 1) while negatively charged
particles are decelerated and driven towards their sonic points if the flow is supersonic. Here
M; is the species Mach number. From [Baluku, 2007]

Limitations on Positive Potential Solitons

As observed earlier [Baluku and Hellberg, 2008], whereas n.(¢) — oo at ¢ = ¢ =
(k—3/2) > 0, the pseudopotential ¥[¢;., M| — —oo, which is not finite (and not a positive
quantity). In other words, the condition W¥[¢., M] > 0 is meaningless, and therefore if
positive solitons exist, they must be limited by either the ions only (in the case of a plasma
with negatively charged dust), or limited by the ions or positively charged dust (in the

case of a plasma with positively charged dust), or limited by a double layer, but not by
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infinite compression of electrons.

Now, in the case of double layers, we expect to get at least two roots of ¥(¢, M) outside
the origin (with the root close to the origin giving the amplitude of the soliton); the roots
coalesce into a double root when a double layer occurs. However, the behaviour of W (¢, M)
as ¢ becomes large indicates that U(¢, M) — oo (ico) as ¢ — oo in the case of negative
dust (positive dust). This implies that in this plasma model ¥(¢, M) can have at most
one root (other than at the origin), essentially ruling out the occurrence of double layers
for positive potentials. Thus positive potential solitons will be limited by the positively
charged ions only (in the case of a plasma with negatively charged dust) and positively
charged ions or dust (when considering a plasma with positively charged dust).

The restriction on M or f for positive potential solitons associated with the ion density
is given by (¢, M) > 0, since for ¢ > ¢y = (M — \/30)?/2 the ion density, n;(¢), is
complex. One can easily see that n;(¢) is also complex for ¢ > (M + v/30)?/2, but, as
that potential exceeds ¢y;, it follows that W(¢g, M) > 0 will be the practical constraint

limiting positive potential solitons. The condition W(¢y;, M) > 0 leads to an upper limit

on f, viz.,
f< fu(M) = ;2% ; where (4.40)
2 g
Fa(M) = { 12200 - VAo " - 1} ca o - (Z)
and

3/2—k

Limitations on Negative Potential Solitons

From the density expressions of the plasma constituents, in the presence of negatively
charged dust, negative potential solitons are limited by the negative dust while in the
presence of positively charged dust, negative potential solitons appear not to be limited by
any of the plasma species.

However, considering the behaviour of (¢, M) as ¢ — —oo we see that U(¢p, M) —

+ioco (—oo) for a plasma with negatively (positively) charged dust, respectively. Therefore,

113
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in the case of negative dust, you can have at most one root of W(¢, M) outside the origin,
implying that double layers may not be supported in such a plasma model.

In this case, the necessary condition that will yield a constraint on the range of M or
f over which negative potential solitons can exist will then be given by W(¢yq, M) > 0,

which upon using Eq. (4.30) leads to

_ fp(M)
f < fgd(M) = fE(M)’ (4.41)
where
1 213/2 M2 3/2
fD(M):6\/3_U{ [(M+\/3_a)2—§] — [(M—\/?)_J)?— ;] }
+ M? (1 - i) +o
and

M2 3/271{ M2
i)

fe(M) = [1 T 5a2n—3)

Equations (4.38)—(4.41) imply that in the case of negative dust, for given parameters
k, o and M, positive potential solitons will exist in a region of parameter space (M, f)
satisfying fs(M) < f < fu(M) while negative solitons will be bounded by f(M) < f <
fea(M). Note that the value of M corresponding to fs(M) gives the lower Mach number
below which no solitons exist, that is, the value of M at the soliton condition, M. Likewise,
the values of M associated with fy; and fyq will give the upper Mach number limits for
positive potential (My;) and negative potential (My,) solitons, respectively, at given f.

The curves representing the lower and upper limits intersect at a critical value of f,
where, for positive solitons, f, occurs for f; = fy, i.e., f, is defined by f, = fu(Ms).
For negative solitons, the critical value is f,, = fpq(Ms). These two critical values provide
cutoffs in f below (above) which, no positive (negative) solitons are supported in a plasma
with negative dust grains. Similarly, in the case of positive dust, no positive solitons are
supported below f,.

In general, it follows that for negative dust, (i) only negative solitons are observed for

0 < f < fp, (ii) solitons of both polarities are supported for f, < f < fp, and (iii) only
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positive solitons are found for f > f,. When f — f,, ¢ — ¢ = (M —/30)?/2 and n;(¢)
becomes complex, yielding a cutoff for the existence domain. Similarly, when f — f,,

¢ — dgg = M?/2z and ng(¢p) — oo.

4.6 Negative Dust

4.6.1 Effect of Dust Grain Mass—Charge Ratio (through 2)
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Figure 4.4: Existence domain for dust ion-acoustic solitons with varying z for fixed o =
0.01, and for the spectral indices s as indicated on the graphs. The dashed curves are for
z = 0.001, the dotted ones for z = 0.01, and the continuous curves for z = 0.1, respectively.
As in Fig. 4.6, positive potential solitons are bounded by the red and blue curves while
negative potential solitons are bounded by the red and dark blue curves.

Figure 4.4 shows the effect of varying z = Zym;/mg on the existence domain of solitons,
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for different values of k (k = 2, 5, 10 and o), for a fixed temperature ratio, o = 0.01. In
each case, dashed curves correspond to z = 0.001, dotted curves to z = 0.01 and solid
(continuous) curves to z = 0.1, respectively. In these figures, positive solitons are bounded
by curves labeled M; (red) and M, (blue) while negative solitons are bounded by curves M,
and M,, (dark blue). The results in Fig. 4.4 show that the variation of z has an insignificant
effect on both the lower and upper Mach numbers bounding positive potential solitons for
fixed k. On the other hand, different x values have a quantitative effect on the range of
M over which positive solitons exist. However, for negative potential solitons, the more
massive the dust particles (smaller the value of z) the larger the range of f over which
solitons will exist. For example, when k£ = 2 and ¢ = 0.01, negative potential solitons will
exist for f < 0.89 (z =0.1), f < 0.93 (z =0.01) and f < 0.97 (z = 0.001), respectively.
Other upper limits of f, denoted f,, for different spectral indices x are shown in Table 4.2,
where we see that for z < 0.001 and k > 3/2 negative solitons exist for almost the entire

range of [, 1.e., 0< f < 1.

K fn

2=10"1 2=10"2 2=10"7° 2=10"* 2=10"° 2=10"°6
2 0.891 0.929 0.972 0.990 0.997 0.999
5 0.854 0.920 0.971 0.990 0.997 0.999

10 0.844 0.919 0.970 0.990 0.997 0.999
50  0.837 0.918 0.970 0.990 0.997 0.999
100 0.837 0.918 0.970 0.990 0.997 0.999
oo 0.836 0.918 0.970 0.990 0.997 0.999

Table 4.2: Table showing the upper limit of fractional density, f below which both positive
and negative potential solitons can be obtained for different values of z and spectral indices
k. The ion temperature o has been fixed at o = 0.01. For f > f,, we have positive potential
solitons only

4.6.2 Effect of Ion Temperature (through o)

Figure 4.5, which is similar to Fig. 4.4, shows the effect of normalized ion temperature
(o) on the existence domain of dust ion-acoustic solitons for a dusty plasma with kappa
distributed electrons, here with k = 2 and k = oo (Maxwellian case). Dashed curves
are for o = 0.001, dotted curves for o = 0.01 and solid (continuous) curves for o = 0.1,
respectively. Thus positive solitons are bounded by the pair of dashed, dotted or solid

curves, for each case (¢ = 0.001, 0.01, or 0.1).
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Figure 4.5: Existence domain for dust ion-acoustic solitons with varying o for fixed z =
0.001, and k = 2 (left panel) and x = oo (right panel), respectively. The dashed curves
are for o = 0.001, the dotted curves for ¢ = 0.01, and the continuous curves for ¢ = 0.1,
respectively. As in Fig. 4.6, positive potential solitons are bounded by the red and blue
curves while negative potential solitons are bounded by the red and dark blue curves.

The graphs show that the warmer the ions (the higher the value of o), the bigger the
range in (f, M) space over which solitons can be obtained, with the region of existence of
solitons decreasing with increasing excess superthermality of the electrons (lower k). We
have chosen z = 0.001 for illustrative purposes as a typical value with z < 1, and therefore
the dust grains may be regarded as immobile in most cases. The assumption of z < 1 is
due to the high dust charge z4 (of the order ~ 10? — 10%), and high mgy/m; ratio (of the
order ~ 10% — 10'2) depending on the dust environment. This value of z will also be used
in the subsequent results discussed below.

However, in the case of negative solitons, the variation of o, for fixed z and &, has no
effect on the upper limit of M in the existence domain. Thus the almost vertical curve
(labeled M,,) shown in the graphs is a superposition of curves corresponding to the three

values of ¢ used in this figure.

4.7 Results and Discussion

In Fig. 4.6 we discuss existence domains, delineated by Eqs. (4.38)—(4.41), of dust
ion-acoustic solitons in the parameter space of Mach number (M) and fractional electron

density (f). In the left panel, we consider the case studied by Bharuthram and Shukla
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[1992], of positive solitons in a plasma composed of Maxwellian electrons (k = o0), cold
ions (¢ = 0), and immobile dust (z = 0). The continuous curves (which appear to be
superimposed on other curves) essentially reproduce the results of Bharuthram and Shukla
[1992], where positive solitons are supported in the domain bounded by the two curves,
i.e., the lower, red (soliton existence) curve (fs or M), and the upper, blue curve (fy; or
My;). Thus positive solitons may exist for f > f, = 0.16, where f, is the lower cutoff of f
defined by f, = fu(M,). At that value of f, one finds the highest Mach number at which
positive solitons can be supported, to be M ~ 2.5. As expected, for f = 1 the system
reduces to ion-acoustic solitons in a simple electron-ion plasma, and we observe the usual
range |[Chen, 1984] of Mach numbers, viz., 1.0 < M < 1.6.

In this figure (Fig. 4.6) we also consider the effects of dust mobility, by including curves
for four other values of z, viz., z = 0.001 (dotted), 0.01 (dashed), 0.1 (dot-dashed) and 1
(continuous and marked with z = 1). Both the M, curve and, for positive solitons, the My;
curve for the mobile cases are virtually indistinguishable from the case z = 0. However, for
the case z = 1 (valid for a negative ion plasma, but not for dust) mobility does affect Mj
significantly and increases the lower cutoff to f, ~ 0.34 and decreases the highest accessible
value of M (at f = f,) to ~2.2.

For negative solitons to exist, the structure must have a speed exceeding M, but there
is effectively no upper limit in M for z < 1, though the same cannot be said for z = 1, and
for the immobile dust model they can exist over the full range 0 < f < 1. In the second
part of Bharuthram and Shukla [1992], they considered mobility briefly (using z = 0.1), but
only presented examples of Sagdeev potentials for two values of M. From their results it
is clear that mobility has a large effect on the amplitudes of negative solitons [Bharuthram
and Shukla, 1992]. Our results in the left panel of our Figure 4.6 show that the almost
vertical (black) curves for fyq or My, are affected significantly by the value of the mobility
parameter, z, thereby introducing a nontrivial upper cutoff in f for negative solitons. Thus
the existence domains for negative solitons are found to be smaller for mobile dust grains
than for immobile dust. The upper limit f, decreases for increasing mobility from 1.0
(z = 0), through 0.97 (2 = 0.001) and 0.93 (z = 0.01) to 0.89 (z = 0.1), see Table 4.2. As
seen, mobility causes a small shift in relevant M. In the case of negative ions (z = 1),

the pattern is different, here f,, increases to 0.95, in contrast to the decreasing pattern
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observed for z = 0.01 and z = 0.1, and the bounding curve shows f,, varying significantly

with M.
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Figure 4.6: Existence domain for DIA solitons. Left panel: Maxwellian electrons, cold ions
(¢ = 0): immobile dust (z = 0, continuous curves), after Bharuthram and Shukla [1992]:
and mobile dust [z = 0.001 (dotted curves), z = 0.01 (dashed curves), z=0.1 (dot-dashed
curves)|. Positive solitons have a lower cutoff at f ~ 0.16. Negative solitons have a z-
dependent upper cutoff at f ~ 0.85 — 1. Right panel: Cool ions (o = 0.01), mobile dust
(z = 0.001); continuous curves (k = 00), dotted curves (k = 4), dashed curves (k = 2),
respectively. Positive solitons are bounded at low f while negative solitons have a x-
independent upper bound close to f = 1. We also show the values f,, f. and f,, explicitly
for Kk = 2.

In the right panel of Figure 4.6 we investigate the effects of excess super-thermal elec-
trons (through choice of the parameter k) on the range of existence of DIA solitons, for
mobile dust (z = 0.001) and an ion-electron temperature ratio of ¢ = 0.01. The continu-
ous curves represent a Maxwellian electron distribution (k = c0), a typical space plasma
(k = 4) is given by dotted curves, and the dashed curves are for a strongly non-Maxwellian
plasma with x = 2. The ranges in both f and M that can support positive potential
solitons are seen to decrease with increased excess superthermality (decreasing ). The
figure also shows that, as above, negative potential solitons exist for unbounded Mach
numbers, M > M, over a large range of f, with the cutoff being virtually independent of &
(frn = 0.97). In addition we point out that, although not shown explicitly in this figure, the
precise value of o, within the range of appropriate values, has little effect on the existence
domains.

From Fig. 4.6 one sees that for the chosen parameter values, both positive and negative
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potential solitons are supported in the range (0.21, 0.97) in a Maxwellian plasma. For
k = 4, the range is reduced to (0.31, 0.97) and in a strongly non-Maxwellian plasma with
k = 2, the range supporting both polarities is (0.43, 0.97). Thus decreasing the spectral
index k from a Maxwellian to a hard spectrum has a significant effect on the range of f
(through f,) and of M, over which solitons of both polarities may exist.

As we shall show below, the critical values of the fractional electron density f that have
been introduced above, wiz., f., f, and f,, play an important role in providing a better
understanding of the soliton characteristics in a three-component plasma for which there
is a range in f in which both positive and negative potential solitons are supported. We
shall later consider in Fig. 4.9 a plasma with x = 2, ¢ = 0.01, and z = 0.001. From
A(f.) =0or ¥ (¢ =0, My, f.)=0, and (4.38)—(4.41), one finds that for these parameters
fe >~ 0.523, f, ~ 0.428 and f, ~ 0.97. We show the values f,, f. and f, explicitly in the
existence diagram for this case in Fig. 4.6.

In Fig. 4.7 we show the effect of the spectral index x on soliton amplitude for fized Mach
number M and f, and z = 0.001, o = 0.01. For illustrative purposes, we have chosen a
region in parameter space (f, M) for two different values of f: f = 0.2 (left panel) and
f = 0.5 (right panel), respectively, where negative potential solitons are expected to occur
for all spectral indices x > 1.5, as seen in Fig. 4.6. Note that the limitations for positive
potential solitons for the allowable values of f and M do not allow such comparison of ¢,,
with x for k > 1.5, for the ion and dust parameters used in this plasma model. The graphs
show that the soliton amplitude |¢,,| increases with decreasing k, that is, the more super-
thermal particles are in the high energy tail of the distribution, the higher the amplitude of
the associated solitons at fixed soliton speed. In the case of higher x values, the amplitudes
remain almost constant. However, as k is decreased, the minimum soliton speed Mj is also
decreased, and so the speed relative to the DIA speed is increased, thus explaining the
higher amplitude [Saini et al., 2009], Hence in Fig. 4.8, we prefer to show the effect of k
on the soliton amplitude as a function of the soliton speed normalized to the true acoustic
speed (M /My).

In Fig. 4.8 we show the effect of x on the soliton amplitude as we vary the Mach number
(in terms of M /M,). Contrary to the results of Fig. 4.6 for fixed M, we now see that soliton

amplitudes increase as k increases for a particular Mach number ratio M /M. Note that
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Figure 4.7: Variation of potential amplitude, ¢,, with « for ¢ = 0.01, z = 0.001 and
different values of M (labeled on the graphs), with f = 0.2 (left panel) and f = 0.5 (right
panel), respectively.

My = M(k), thus a fixed value of the ratio M /Mg corresponds to varying values of Mj
for different values of k.

In the upper left panel of Fig. 4.8, we consider positive potential solitons in plasmas
with different s values, for the case f = 1, i.e., for ion-acoustic solitons in a pure electron-
ion plasma, as discussed in detail previously [Saini et al., 2009]. However, whereas in the
latter paper the plot was made against M — My, we have here used M /M,. As found earlier,
the “¢,, — M” curves decrease monotonically with decreasing s, i.e., with increasing excess
superthermal electrons. The upper limit in M for positive solitons also decreases with
decreasing x, as found for TA solitons by Saini et al. [2009]. While for x = 2 one has small
amplitude solitons over the full existence range, they go beyond the KdV range for higher
k [Saini et al., 2009]. The upper right panel of Fig. 4.8 shows that when some dust is
included (f = 0.9) the results for positive solitons are very similar to those for TA solitons,
but with slightly larger amplitudes.

Considering a case with a larger dust charge density (f = 0.5), the amplitudes increase
even further, although they are still of order one in normalized magnitude, as seen in the
lower left panel of Fig. 4.8. In addition, however, two important changes are observed.

First, the curves no longer vary monotonically — they cross each other. Secondly, we find
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Figure 4.8: Variation of potential amplitude ¢,, with the ratio M /M, for o = 0.01, z =
0.001, and various values of k; positive solitons (f = 1, 0.9 and 0.5); and (lower right
panel) negative solitons (f = 0.9). The curves represent x = 2 (dashed), 4 (dotted), 10
(dot-dashed), and oo (continuous), respectively. The negative solitons have large amplitude
at M = My: |¢p| ~ 45.3, 108.2, 138.5 and 156 for x = 2, 4, 10, and oo, respectively. As
they are unbounded in M, they have extremely large amplitudes for M > M.

the surprising result that for k = 2 the amplitude ¢,, is nonzero for M/M; = 1, i.e., a
nonzero soliton exists at the acoustic speed, something that goes completely against KdV
theory for small amplitude solitary waves.

Finally, in the lower right panel of Fig. 4.8 we show negative potential solitons for f =
0.9 (i.e., the companion figure to the upper right panel). In this case, we find that the curves
again vary monotonically with , but for all k, negative solitons with finite amplitude are
found at the acoustic speed. These solitons are orders of magnitude larger than the positive

solitons for the same plasma configuration, e.g., at the lowest Mach number supporting
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solitons, M /My = 1, solitons have amplitudes |¢,,| ~ 45 (k = 2), 108 (k = 4), 138
(k = 10) and 156 (kK = oo, i.e.,, Maxwellian), respectively. Furthermore, as negative
solitons are effectively unbounded in Mach number, increasing M can yield extremely
large amplitudes. Large amplitude negative solitons were also reported by Bharuthram
and Shukla [1992] with Maxwellian electrons, z = 0.1, 0 = 0 and f = 0.7 (see their Fig. 4).
However, they did not examine the peculiar behaviour at the lowest Mach numbers.

To examine further these large amplitude negative potential solitons, we carried out
calculations for different parameters, as shown in Table 4.3. For comparison, the results
of Bharuthram and Shukla [1992] for M = 1.75 are incorporated in the Table and marked
with an asterisk. The two sets of calculations are consistent with one another; the ampli-
tudes are virtually independent of the normalized ion temperature, o, but they do depend

strongly on mobility, particularly over the range 0.01 < z < 0.1.

Om
z c=0 oc=10"%2 o=10""1
10-1 -13.1* -13.1 -13.0
1072 -35.1 -35.1 -34.6
1073 -41.0 -40.9 -40.3
107% 416 -41.6 -41.0
107°  -41.7% -41.6 -41.0

Table 4.3: Table showing the soliton amplitude ¢,, for the particular parameters,
f=07and M = 1.75, with Maxwellian electrons, where the values with asterisks are
from Bharuthram and Shukla [1992].

Using a specific case study, viz., a plasma with k = 2, ¢ = 0.01, and z = 0.001, we
next examine in Fig. 4.9 the role of f. and its neighbourhood. Specifically, we consider
the dependence of soliton amplitude on the Mach number (in terms of M/Mj) for f in the
range (fp, fn). We recall that for these parameter values, solitons of both polarities are
found in the range (0.43,0.97), while f. ~ 0.52

In the upper left panel we present the amplitudes of positive solitons as a function of
M /M for some values of f. First, we note that for f. < f < f, (for instance, f = f,
0.55 and 0.6), the amplitudes of positive solitons vanish for M /M, = 1, and they increase
monotonically as f approaches f.. In addition, the range of M /M, that supports solitons
becomes narrower. Turning next to f < f. (e.g., f = 0.48 and 0.5), we see that, although

the trends of increasing ¢,, and decreasing range in M, with decreasing f, persists, one
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Figure 4.9: Upper panel: Plot of ¢, vs. M/M; for positive (left) and negative (right)
solitons, for different f in the range (fp; fn). Note the two different scales for ¢,,. Pa-
rameter values: kK = 2, ¢ = 0.01 and z = 0.001. Middle panel: Pseudopotential plot at
f=0.5,M = Mg ~ 0.835, and the associated potential profile of the soliton. Lower panel:
Pseudopotential plots at Mg — 0.0001 (left) and M + 0.0023 (right).

now finds that the amplitude of positive solitons is not zero at M = M.

In the upper right panel we present similar curves for negative solitons for the same val-
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4.7.  Results and Discussion

ues of f (please note the change of scale of ¢,,). Again the amplitudes vary monotonically
with f, but the solitons have zero amplitude for f, < f < f. at M /Mg = 1, while in the
range f. < f < f, amplitudes are nonzero at M = M. The negative solitons in general
have larger amplitudes than their positive counterparts. In the middle left panel of Fig. 4.9
we show the pseudopotential plot for a case with nonzero positive amplitude at M = Mj,
viz., with f = 0.5, M = M, ¢, =~ 0.09. Although we find that ¢,, # 0 at the DIA speed for
this example in the range f, < f < f., we see that the usual requirement of a maximum of
the pseudopotential at the origin [U”(¢ = 0, M) < 0] is not satisfied. Instead, the function
W(¢p, M) has a point of inflexion at the origin, with U”(¢ = 0, M) = 0, while the convex-
ity requirement at the origin is provided by the third derivative, ¥"”'(¢ = 0, M) < 0. We
point out that a finite amplitude soliton at the acoustic speed has recently been found in
a study of dust-acoustic solitons in another three-component plasma, viz., one composed
of negatively charged fluid dust and two positive ion species, a cooler Boltzmann and a
hotter nonthermal Cairns distribution [Verheest and Hellberg, 2010]. In that case, too, it
was found to occur in conjunction with a point of inflexion in the pseudopotential at the
origin[Verheest and Hellberg, 2010], rather than a maximum, as is normally required for a
soliton.

We emphasize that these structures obtained at the acoustic speed are indeed typical
solitons, as may be seen from the potential profile in the middle right panel, and also
reported recently by Verheest and Hellberg [2010]. This interesting result implies that
the usual convexity requirement at the origin [U”(¢ = 0, M) < 0] is a necessary but
not a sufficient condition for the existence of solitons, specifically for models that support
existence of solitons of both polarities. Furthermore, these finite amplitude solitary waves
cannot be found by a KdV approach, as the latter solitons have ¢,,, = 0 for M = Mj, as
discussed for small amplitude solitons in Sec. 4.4.1.

In the lower left panel of Fig. 4.9 we show the pseudopotential for a marginally sub-
acoustic structure speed (M = M, —0.0001). Clearly, the positive pulse seen in the middle
left panel disappears for M < M, however small the reduction below the DIA speed —
the pseudopotential has no well, and no soliton is found. On the other hand, for M > M,
(M = M + 0.0023) one sees that the positive soliton has a slightly increased amplitude

(¢m =~ 0.13), while a smaller amplitude negative soliton (|¢,,| ~ 0.05), which vanished at
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M = My, is observed.

This phenomenon is explored further in Fig. 4.10, which shows soliton amplitudes at the
DIA speed, M, as a function of f, in the range (fp, fn), for different values of . Clearly
the points of intersection with the line ¢ = 0 define critical values of f — they occur where
U"(p=0,M = My, f,x) = 0. These values are plotted as a dotted curve in Fig. 4.1 and
are seen to be the same as the value f. defined in Sec. 4.4.1 as the solution to the equation
A(f;k) = 0. Here f. =~ 0.523, 0.419, 0.365, and 0.329 for k = 2, 4, 10, and oo, respectively.
At f., the amplitudes of both polarities of soliton vanish at the DIA speed 2, and, as we
have seen in Sec. 4.4.1, KdV theory has to be replaced by the mKdV approach. As seen
in Fig. 4.10, for each value of k, positive potential solitons have ¢, # 0 at M = M; for
fp < f < fe, increasing with | f — f.| as one approaches f,, but (not shown in figure) we find
that the amplitudes vanish at the acoustic speed for f > f.. For M > M;, however, these
solitons have finite amplitude. On the other hand, negative solitons have zero amplitude
at M for f < f. (not shown in figure; again, with nonzero amplitudes for M > Mj), and
take on finite values at Mj for f. < f < f,, increasing with |f — f.| as f — f,,. The largest
positive and negative soliton amplitudes at the acoustic speed occur for f = f, and f = f,,,

respectively. In summary, as f is varied, the solitons of either polarity switch at f. from

pmaM

Figure 4.10: Soliton amplitudes obtained at M = M, for z = 0.001 and o = 0.01, f in the
range (fp, fn); and k = 2 (dashed curve), 4 (dotted), 10 (dot-dashed), and oo (continuous).

“KdV-like” behaviour (vanishing at M = Mj), to a “nonKdV-like” form with ¢,, # 0 at

2Below (above) f. we get “nonKdV-like” (“KdV-like”) positive potential solitons and “KdV-like”
(“nonKdV-like”) negative potential solitons, respectively.
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4.8. Positive Dust

the DIA speed. Equivalently, as f is increased through f., the “KdV-like” solitons change
sign from negative to positive, while the “nonKdV-like” structures switch from positive to
negative potential. Of course, negative solitons are effectively unbounded in M for z < 1
and can thus have very large amplitudes, but in Fig. 4.10 we have shown the amplitudes
only up to 2, although |¢gg| can be very large. For this model in particular, since negative
solitons are limited by the negatively charged dust, the resulting solitons must be less than
the critical potential amplitude ¢;q = M?/2z, which is 500 times M? for z = 0.001 as
used in the discussion. This shows that the size of the possible solitons greatly depends
on the value of z = (Z3/mq)/(Z;/m;), and therefore on the mass and size of charge on
the dust particles. The maximum potential amplitudes at f = f, or f, for the parameters
shown in Fig. 4.10 are shown in Table. 4.4 below. The table shows that for z = 0.001 and
o = 0.01, f, decreases with increasing superthermality (increasing x) while f, is almost
constant at f ~ 0.97. The amplitude of the associated maximum potentials also increases
slightly with increasing x, but lie below 2.1 for positive potential solitons. In the case of

negative solitons, these maximum amplitudes are huge (|¢4| is over 100 for all x > 3/2).

K fp M P11 fn M, P1d

2 0.426955 0.90064 0.264581 0.971858 0.610733 -186.497
4 0.309592 1.52930 0.919495 0.970641 0.875164 -382.956
10 0.245913 1.91603 1.518710 0.970391 0.975738 -476.032
50 0.215603 2.13963 1.933410 0.970304 1.019710 -519.907
oo 0.208418 2.19814 2.050180 0.970285 1.029880 -530.327

Table 4.4: Table showing the maximum potential amplitudes, ¢;1 = (M2 — v/30)?/2 and
g = M2/2z at f = fp and f,, respectively, for the parameters in Fig. 4.10, that is, for
o =0.01 and z = 0.001.

4.8 Positive Dust

We have already seen that in the case of positive dust grains, positive solitons are
limited by ion compression (as ¢y < ¢¢q), while negative solitons, if they exist, would
be limited by the occurrence of double layers, if the latter are supported by this plasma
model [Baluku and Hellberg, 2008], see also Chapter 3. However, the double layer require-
ments [V(¢y,, M) = ¥ (¢,,, M) = 0] are not met for this model. Both the pseudopotential,
U(p, M), and its derivative, ¥/ (¢, M), go to —oo as ¢ — —oo, so no double layers can

form. This observation agrees, for the Maxwellian case, with earlier work [Baluku et al.,
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2008|. More insight into the existence of negative solitons can be obtained from the sign of
U"(¢p = 0; M = Mg). We saw in Sec. 4.4.1 that small amplitude negative solitons can be
obtained only for f < f.. Asseen in Fig. 4.1, f. < 1 for all x. This means that for positive
dust (f > 1) only one sign of potential can be supported. Thus only positive potential
dust ion-acoustic solitons can occur in dusty plasmas with positive dust, kappa electrons
and fluid ions. On the other hand, comparison of the dust and ion limiting potentials,
$rg = M?/2z and ¢y = (M — \/30)?/2, respectively, shows that ¢yq/¢y1 > 1, thus the
ion limit will be met before the dust ion limit can be invoked. Therefore, in the presence
of positively charged dust, positive potential solitons are limited only by the positive ions.
The existence domains for positive solitons, bounded by the continuous (lower Mach
number) and dotted (upper Mach number) curves, respectively, are shown in Fig. 4.11 (left
panel) for k = 2,4 and oo, and (for kK = 2) over an extended range in positive dust charge
density in the right panel. These solitons all have amplitudes that are less than ¢;1. We
see that the existence domains are extensions of those seen for f < 1, and that they appear

similar to each other, but for decreasing x both the typical values of M and the accessible

ranges in M are reduced.

1.0
0.8} (=2
] 0=0.01
06} z=0.001
Mo
0.4 >,
0l -....'.'.'.‘.'.::'.:-.'.j
0.0 ‘ | |
0 5 10 15 20
f f

Figure 4.11: Existence domains for positive potential DIA solitons for o = 0.01, z = 0.001,
and k = oo (continuous curve), 4 (dashed) and 2 (dotted), covering both negatively charged

dust (f < 1) and positive dust (f > 1). The right panel shows the results over a larger
range of positive dust charge density for k = 2.
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4.9 Comment

In a number of papers, such as [Mendoza-Briceno et al., 2000; Mamun and Shukla,
2002; Shukla and Mamun, 2002; Mamun and Shukla, 2008], Mamun and co-workers have
suggested that if one expands the Sagdeev potential ¥(¢) around ¢ = 0, say up to the third
order in ¢, then the sign of the coefficient of ¢ in the expansion gives the appropriate sign
of the potential solitons supported by the plasma model at hand. Indeed such formalism
holds for small amplitude solitons only, that is, solitons whose amplitudes tend to zero as
M — Mj. In other words, the sign of the coefficient of ¢ in the expansion of W(¢) is only
associated with the sign of the KdV-like solitons (with amplitudes that vanish at M) that
can exist in the plasma model. However, for plasma situations where both positive and
negative potential solitons can be supported, this formalism (Mamun approach), if applied
to the large amplitude (normally referred to as the arbitrary amplitude) methods, misses
solitons of the opposite sign to the KdV-like solitons.

In understanding this, we shall look at the case of dust ion-acoustic solitary waves in
an unmagnetized dusty plasma in which the fluid ions are treated as cold, the electrons are
Boltzmann distributed, and the dust particles are stationary and therefore only provide a
neutralizing background. This particular plasma model was discussed by Mamun [Mamun
and Shukla, 2008] in the work he presented at the “2007 ICTP Summer College on Plasma

Physics”. The Sagdeev potential is now given by Eq. (4.32), here rewritten as:
U(g, M) = f (1=) = (1= f)o+ M1 - (1 - 29/M)"/2) (4.42)

where we have used f for p and ¥ for V in their notation, but the meaning remains the
same. The critical Mach number “above which solitary wave solutions exist” is now given
by M. = 1/+/f, and the critical value of f, here denoted f. evaluated at ¥"'(¢ =0, M =
M.) = 0 now becomes f. = 1/3 such that above or below f., ¥"'(¢ = 0, M) changes
sign. In their study of the properties of arbitrary amplitude DIA solitary waves, following
from Eq. (4.42), the authors indicated that for any dusty plasma parameters satisfying
M > 1/y/f and f < f., DIA solitary waves with both ¢ > 0 and ¢ < 0 exist while for

M > 1/y/f and f > f., only DIA solitary waves with ¢ > 0 can exist. This is, however,
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not quite correct. We emphasize that in the neighbourhood of f. one gets solitons with
both positive and negative potential signs, but the KdV approach or the expanded Sagdeev
potential only gives solitons associated with the sign of ¥"”'(¢ = 0, M) while that of the
opposite sign is inaccessible. For this case we show Sagdeev potential profiles for two cases;
f < feand f > f., in particular, f = f.—0.001 with M = M.+ 0.0001 and f = f.+ 0.001
with M = M, + 0.001, respectively. Though not indicated here, provided one is in the
f-region where both positive and negative potential solitons exist, one gets finite positive
(negative) amplitude solitons at M = M, for f < f. (f > f.), similar to the one shown in
Fig. (4.9) (middle left panel) for f < f..
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Figure 4.12: Sagdeev potential for f < f. (left panel) and f > f. (right panel) for dust ion
acoustic solitons in a plasma with static dust, cold fluid ions and Maxwellian electrons,
after Mamun and Shukla [2008].

4.10 Discussion and Chapter Summary

Using the pseudopotential approach, we have studied arbitrary amplitude dust ion-
acoustic solitons in a plasma of positive ions, s-distributed electrons and charged dust
grains. This represents a considerable extension of the work of Bharuthram and Shukla
[1992], who studied a plasma model consisting of Boltzmann-distributed electrons, cold
ions, and immobile negative dust in one case, and mobile negative dust in another case.

For the case of negative dust, we have shown that for all x the model supports both
positive and negative potential solitons, where the Mach number for positive (negative)
potential solitons is limited from above by the condition at which the ion density becomes

complex (the dust is infinitely compressed). This agrees with the analysis of Verheest et
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al. [2005] for polytropic electrons, where following a fluid dynamic paradigm, proposed by
McKenzie [McKenzie, 2002a,b, 2003] and co-workers [McKenzie and Doyle, 2003; McKen-
zie et al., 2004b,a, 2005], that emphasizes the hydrodynamic rather than the electrostatic
properties of the plasma system, it was found that both negative and positive potential
dust-ion-acoustic solitons may exist in a dusty plasma with negatively charged dust, posi-
tively charged ions and polytropic electrons. We prefer not to use the commonly used word
“coexist” in this context, as coexistence seems to imply that in a specific plasma configu-
ration, both polarities can exist at the same time, whereas in fact only one will occur, and
which of the two polarities will be observed depends on details of the initial disturbance.

Positive potential DIA solitons experience a low-f cutoff (f,) which decreases with in-
creasing k (i.e., with a decrease in excess super-thermal particles), and hence this increases
the range in (f, M) space over which positive solitons exist. Allowing for finite dust grain
mobility has little or no effect on the existence domain for positive solitons. On the other
hand, the smaller the value of z, that is the heavier the dust particles (assuming constant
dust charge), the larger the domain in (f, M) space over which negative potential solitons
can be obtained. Also, the variation of the ion temperature (through o) has a weak effect,
increasing the size of the existence domain as ¢ is increased. That is, the warmer the ions
(the larger the value of o) the larger the existence domain for solitons, with the region of
existence decreasing as k decreases.

Negative potential solitons do not exist above a k-independent cutoff f,, lying approxi-
mately in the range 0.9—1, the exact value of which depends significantly on the magnitude
of the dust mobility factor z = Zym;/mg4. They are effectively not subject to an upper
limit in M as z < 1 implies that ¢yq > 1, and thus negative solitons may be very large.

A surprising result is that over the range of fractional electron density f in which
solitons of both polarities are supported, finite amplitude solitary structures occur even at
the DIA speed — behaviour which contradicts KdV theory. Recently a similar result was
found in another three-component plasma [Verheest and Hellberg, 2010], where, as here,
the phenomenon is associated with a point of inflexion of the pseudopotential at ¢ = 0
and M = M, rather than the usual maximum. The sign of W"'(¢ = 0; M = My; f) then
designates the polarity of the KdV-like soliton that vanishes at M = M.

A critical role is played by f., the value of f at which the KdV coefficient A = 0,
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which also satisfies the constraint ¥ (¢ = 0; M = Ms; f.) = 0. In particular, as [ is
varied, solitons of each polarity switch at f = f. from a “KdV-like” form to “nonKdV-like”
behaviour. For f, < f < f., positive solitons at M = M, have finite amplitude, increasing
in size with |f — f.| as f approaches f,, while negative solitons have zero magnitude at
M = Ms, as expected from KdV theory. This situation reverses in polarity for solitons
found for f. < f < fn.

On the other hand, in a plasma with positive dust grains, only positive potential (“KdV-
like”) solitons are supported by the plasma model, with the upper limit on M provided by
infinite compression of the ions, and the positively charged dust particles only contribute
in neutralizing the electrons in the background. The Maxwellian case agrees with earlier
results, using the fluid dynamic paradigm with polytropic electrons [Baluku et al., 2008|.
Decreasing « leads to small reductions in both the accessible M and the existence range
in M. The dusty plasma model with positive dust is similar to a two component ion-
electron plasma, with modifications to the dynamics due to the presence of weakly mobile
dust. The results are reminiscent of those found for ion-acoustic solitons in a two-ion

plasma [McKenzie et al., 2005], but for a much heavier second “positive ion”.
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CHAPTER b

lon-Acoustic Solitons in a Plasma with Two-Temperature x-distributed

Electrons

In this chapter we investigate, and discuss existence domains of ion-acoustic solitons in
plasmas composed of two electron components (of different temperatures) that are kappa-
distributed, and a singly charged adiabatic fluid ion species (protons). Such plasmas are of
interest in the Saturnian magnetosphere where bi-kappa-distributed electrons are reported

to exist [Schippers et al., 2008].

5.1 Introduction

In Chap. 2 we indicated that both cool and hot electron populations that are non-
Maxwellian have been inferred to exist in Saturn’s magnetosphere using the Voyager PLS
observations [Sittler et al., 1983; Barbosa and Kurth, 1993| and the Cassini CAPS obser-
vations [Young et al., 2005|. By fitting the CAPS/ELS and MIMI/LEMMS data from the
Cassini spacecraft orbiting Saturn over a range of 5.4 —20 Rg where Rg =~ 60,268 km is the
radius of Saturn, Schippers et al. [2008] have shown that both the cool and hot electron
populations are r-distributed.

Ton-acoustic solitons in a plasma with two electron components have been studied by

many authors in different plasma environments, both theoretically [Nishihara and Tajiri,
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1981; Baboolal et al., 1990; Rice et al., 1993; Ghosh et al., 1996; Ghosh and Iyengar,
1997] and experimentally [Nakamura et al., 1996]. However, most of the studies have been
centered on Maxwellian plasmas. Since plasmas in space and astrophysical plasmas, as
well as in laboratory environments, possess non-Maxwellian distributions, studies on ion-
acoustic waves and solitary structures have to be extended to non-Maxwellian cases to
incorporate the deviation from the Maxwellian form in the analysis. Ion-acoustic solitons
in non-Maxwellian plasmas (either in the form of the Cairns distribution [Cairns et al.,
1995] or kappa-distribution [Abbasi and Pajouh, 2007; Chuang and Hau, 2009|) with only
one electron component have been studied in the past.

In this chapter we study a three component plasma comprising adiabatic fluid ions
that are singly positively charged like protons, and two electron components, one cool and
the other hot, that are kappa-distributed, to explore existence domains of ion-acoustic
solitons, using both the reductive perturbation analysis and arbitrary amplitude (Sagdeev
potential) approach. These results can be applied to the plasma system in the Saturnian
magnetosphere [Schippers et al., 2008] where the low energy (cool) and high energy (hot)
electron components are both kappa-distributed.

Our results show that both compressive (with a hump in the density as well as the
electrostatic potential) and rarefactive (with a dip in the density and electrostatic potential)
can be supported by the model. However, a peculiar behaviour of soliton amplitudes
occurs for density ratios that support coexistence of both hump (¢ > 0) and dip (¢ < 0)
solitons. There exists a critical fractional cool electron density ratio, f., below which
negative solitons have finite (nonzero) amplitudes (nonKdV-like) at the lower Mach number
cutoff while positive solitons have zero amplitudes (KdV-like) at the lower Mach number.
The situation reverses when f > f.; positive solitons are nonKdV-like while negative
solitons are KdV-like.

Comparison between the perturbation theory and the large amplitude techniques show
that whereas the perturbation technique seem to be accurate for very small amplitudes,
especially for structures that move with velocities close to the phase velocity of the wave,
the method becomes less reliable for velocities far from the phase velocity, especially in cases
where both signs of potential solitons exist. Thus the arbitrary amplitude approach, such

as the pseudopotential/Sagdeev method (which we will discuss in detail) is indispensable.
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5.2 Model and Basic Equations

We consider an infinite, collisionless and unmagnetized plasma comprising cool adia-
batic fluid ions (with a single positive charge) that propagate only along the x—axis, and
a mixture of both hot and cool x-distributed electrons.

The kappa-distributed electrons have unnormalized densities given by [Baluku et al.,

2008]
g |77

(ks — 3/2) KT, ’

No() = Nuo |1+ (5.1)

where Ny and Ty are the equilibrium number density and temperature of species s (s = ¢
for cool electrons and h for hot electrons); Kp is the Boltzmann constant, ¢ is the local
electrostatic potential, and k; is the spectral index of species s, which must be greater than
3/2 for non complex characteristic thermal velocities (most probable speeds) associated
with the kappa-distributed electron components [Baluku et al., 2008]. For this plasma
model, ¢, = —e, the charge of the electrons.

We assume that the ions are adiabatic (P; o< N;", where v; = 3), with the ion density
having both inertial and pressure contributions. Thus the ions satisfy the continuity and

momentum equations (in unnormalized form):

ON; 0
57 T ax NiVi) =0, (5.2)

oV; oV Cth‘ ON; 3 8_@ B

Vi —= N; =0 5.3
o " ZaX“LNZ?O "0X  m;0X (5:3)
and the species’ densities are coupled by Poisson’s equation
0
z’fom + Z Nj q; = 0, (5.4)

j=c,h,i

with boundary conditions ¢, dp/0X and V; — 0, and N; — N;p as X — +oo. In
equations (5.2)-(5.4), Cy = (’yiPiQ/miNio)l/2 = (?)KjggTi/mi)l/2 is the thermal velocity of
the adiabatic ions; N;, V;, P;, and ¢ are the unnormalized density, velocity and pressure of
the ions, and local electrostatic potential, respectively, while X and ¢’ are the spatial and

temporal unnormalized variables.
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5.3 The Linear Dispersion Relation

In the linearization process we make the following substitutions:

N; = Njo+ Nj1

P; = Pjo + Pj

Yi="Va (5.5)
Y =¥

ON;o/0X = OPjo/0X =0
ONjo/0t = OPjo /0t = 0,

where Njo, Pjo are the unperturbed density and pressure quantities describing the equilib-
rium state, and Nj1, Pj1, Vj1 and ¢ are the small perturbations in these quantities. The
unperturbed velocity is zero and we have chosen ¢y = 0 (since we have zero electric field
for the unperturbed states).

Since the electrons are kappa-distributed, the first order perturbations in density of the

electrons is obtained from Eq. (5.1), and is given by

ks —1/2\ gs ¢
Ny = —N, . .
! 0 </~£s—3/2> KpT, (5.6)

The perturbed system of the positively charged ions is governed by the fluid continuity
and momentum equations (in linearized form). Then assuming a steady-state harmonic
time-dependent perturbation solution for the oscillating quantities of the form N;y, Vi1, Py,
1 x exp{i(kX —wt’)}, the time-derivative and gradient can be replaced, by 9/0t' — —iw,

and 0/0X — ik, respectively. This process gives

kw q;/m;

Vi = — o, 5.7
k2NZ’ 5/ TG

Ny = - Niogi/mi (58)

@ —kC2)
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and hence

Y1 = 0. (59)

Nyq? (ks —1/2 Niog?/ mi
o k‘2— s04s s k‘2 104; 7
[ =0 Z KgT, (Hs—3/2 + w? — k2C2

s=c, h

Using the definition of the ion plasma frequency, wy = (Njg? /<o m;)'/?, Eq. (5.9) can be

written as
2
1 Wpi

k223, w?— k2C

1+ 01 =0, (5.10)

which for ¢ # 0 gives the linear dispersion relation for a plasma comprising x-distributed
hot and cool electrons, and adiabatic positively charged ions. That is,
w? 1

I =1. (5.11)
w2 —K2C2 k2%

The associated kappa dependent Debye length Ap, is given by

2
b ()
K s=c,h
which is an extension of the Debye length in kappa-plasmas [Chateau and Meyer-Vernet,
1991; Bryant, 1996; Mace et al., 1998] to bi-kappa plasmas. When ks — oo (s = ¢, h),
equation (5.12) reduces to 1/A% = 1/A%_ + 1/)\2, | where Ap. and Apj are the Debye
lengths of the cool and hot electrons, respectively. In the long wavelength limit (kK — 0)

we have kAp, < 1, and Eq. (5.11) becomes
w? = K2C2 + K*C2, (5.13)

where Cj, = wp;Apyk is the ion-acoustic sound speed of the plasma model comprising of
cool and hot kappa-distributed electrons and fluid ions. Thus the phase velocity of the

propagating structures is greater than the thermal velocity of the ions. In the limit kK — oo,
Cm — Cia = wpi)\Dea

where Cj, is the ion-acoustic sound speed [Chen, 1984] for a plasma with cool and hot

Maxwellian electrons; Ap, = (g9 K5T,/Neoe?)'/2, and Neg/T. = Noo/T. + Nio/Th; Neg =
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5. Ton-Acoustic Solitons in a Plasma with Two-Temperature s-distributed Electrons

Ny + Npo. Thus Ngy and T, are the effective (total) electron density and temperature,
respectively. Hence in the limit kK — oo and kApe < 1, Eq. (5.11) gives the Maxwellian
form [Chen, 1984]

W2 — 2 <KBT6 L KBTi> .

my; my;

5.4 Small Amplitude Solitons

5.4.1 The Korteweg-de Vries (KdV) Equation

The density of the k-distributed cool and hot electrons in Eq. (5.1) can be expanded
to give

NS(SD) = NSOZ(_l)TVsr gpr’ (514)
r=0

where

vso = 1,
ks — 1/2 qs

Vg1 = <’fs _3/2> KBTS, (515)
(R —1/2)(hs +1/2) (g \?

V2 S 0T (s = 3/2)2 <KBTS> ! (5.16)
1 (ks = 1/2)(ks +1/2)(ks +3/2) (a5 \®

Vs3 = g (5s —3/2)8 <KBTS> , (5.17)
etc.

Note that for fixed ¢s/KpTs and ¢, the series expansion in Eq. (5.14) is valid only for kg > 3
since for 1.5 < ks < 3, higher order terms (vgq, - - - ) are large compared to the lower order
ones, and therefore cannot be neglected (see also Sec. 4.4). This implies that the reductive
perturbation method will not be appropriate for determination of small amplitude solitons
for ks values in the range 1.5 < ks < 3.

The positively charged ions are described by the fluid continuity and momentum equa-
tions (5.2) and (5.3), respectively.

Applying the reductive perturbation technique, we use the stretched coordinates [Nishi-
hara and Tajiri, 1981; Mace et al., 1991; Verheest, 2000] ¢ = ¢'/2(X —V #/) and T = 3/%¢'

which correspond to the spatial and temporal coordinates, with ¢ < 1 being a smallness
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parameter that measures the strength of the wave amplitude and V is the soliton speed
(which is equivalent to the phase velocity of the wave in the long wavelength limit). The
varying parameters, N;, V; and ¢ are expressed in terms of € using the expansions [Nishi-

hara and Tajiri, 1981; Mace et al., 1991]:

Nj :Nj0+6Nj1+€2Nj2+...
Vi=eVii+e*Vig+... (5.18)

gozegol—i—62g02+...

Thus Poisson’s equation now becomes

a T
ccoggs Nt 3 N D (1) ver g, =0, (5.19)
s=c,h r=0

where N;, V; and ¢ are defined in Eq. (5.18). Equation (5.19) can be expanded to obtain

the following equations

O (") : Z Nsogs + Niogi = 0, (5.20)
s=c, h
O(e"): Nagi— Y ¢sNsovs1 o1 =0, (5.21)
s=c, h
2 &1 2
O (E ) BN 8—42 + Niog; — Z qs NsoVs1 o2 + Z qs Nsovs2 01 = 0, (522)
s=c, h s=c, h

where Eq. (5.20) can be recognized as the charge neutrality condition of the unperturbed
plasma constituents at equilibrium.

Following from the continuity and momentum equations, the first-order perturbed ve-
locity Vi1 and density N;; (in terms of ¢;) are again given by Egs. (5.7) and (5.8). Thus
Eq. (5.21) leads to the linear dispersion relation of the plasma model given in Eq. (5.13)
in the long wavelength limit (kAp, < 1 or k — 0), that is, w? = k?C2, + k?C3.

Also, differentiating equation (5.22) once with respect to ¢ gives

9?3 GNZ 01
€0 (92‘21 i 2 Z qs sol/s1 —|—2 Z qs NsoVs2 o1 —— ac =0, (5.23)

S=cC,

where the second-order perturbed density N;o can easily be obtained from the continuity
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and momentum expressions (details not shown here) to give

ONig {2NiOVQi/mi} 01 i <NiOQi/mi> 02

o ve_c2e [ aT T\vz_c2) ¢
n {Nioqg/m?(?)vz + (v — 2)C3) } o dip1
(V2-Cp)? ¢
(5.24)
Combining equations (5.23) and (5.24) we get
o1 Niog?/mi O¢r Niog?/m; 0p2
2V L L — s NsoVs —
e T or_czpar |\ vE-c2 s:zc,:hq ovst | ¢
i Z Nover + Niog} /mi[3V? + (vi — 2)C7)] dp1 0. (5.25)
SZChQs s0Vs2 (V2_Ct2i)3 P1 8C = u. .

However, the nontrivial (¢; # 0) solution of equation (5.25) requires that the coefficient of
the term involving the second-order perturbed potential, s, must be zero. Clearly, with
the phase velocity V' = w/k, this follows from Egs. (5.8) and (5.21) for ¢ # 0. Equation

(5.25) then becomes

D1 VW O

acc TvP_c2eoT
s Nso (3V2 + (Vi — Q)Ctzz)w;znqz/ml dp1
2 s =0. 2
+12 ) et ooy prye =0 (5:20)

s=c, h

In terms of the first order-perturbed potential, ¢1, Eq. (5.23) leads to the well known KdV
equation [Mace et al., 1991; Verheest, 2000|

=0, (5.27)
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where

A= m and B = A—l; (5.28)
2Vw12)i
Al = W and (529)

[3V2 + (i — 2)CE] wligi/mi
amrey

SNS
Ap=231 - 0o + (5.30)

3
s=c, h

with 7; = 3 since we consider the ions to be adiabatic. The phase velocity V' in Egs. (5.29)
and (5.30) is obtained from the linear dispersion relation given in Eq. (5.13).

In getting solutions to Eq. (5.27), we seek nonlinear solitary wave structures that prop-
agate unchanged at constant speed Vj in the laboratory frame [Chen, 1984|. Thus, we seek
stationary solutions in a moving frame, x(¢,7T) = ( — Vo7 = €'/2(X —vt’), with boundary
conditions

dp1 0%py

P15 8( ) a<2

—0 as ¢ — +o0.

Here, v =V + dv, where V is the phase velocity of the solitary waves and dv = €Vj. Upon
using the transformation x(¢,7) = ¢ — Vo7 = €'/2(X — vt’), the solution of the resulting

differential equation becomes [Mace et al., 1991; Verheest, 2000]

e1(x) = (%) sech? { (Z—é)l/zx} : (5.31)

In terms of the laboratory frame coordinates (X, t), the solution becomes

v v 1/2
P(X, ) ~epi(X, t)) = %%/()V)secﬁ { <%1(V)> (X - vt/)} . (5.32)

Equation (5.31) is valid for A # 0 and Vy/B > 0, where the constants A and B are
defined in Eq. (5.28). Note that for V) > 0, the condition B > 0 implies V' > C};, that is,
supersonic ions, which justifies the need of a sluggish species (cooler or massive species)
that will provide inertia in the system for the generation of oscillations [Verheest, 2000,
p. 110].

We now take the following normalization (as will be used in the arbitrary amplitude
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approach): temperature is normalized to the cool electron temperature T,; local potential
to KpT,./e; number density to Neg, where Ny = Neg + Npg = Z; Ny is the total electron
equilibrium density with Ny, Npg and N,o being the cool electrons, hot electrons and
cool ions equilibrium density. Here, Z; is the size of charge residing on the ions, which
is +1 for singly charged ions (protons in this case). The velocity is normalized to the
acoustic speed Cs = (Z; KBTC/mi)1/2; the spatial and time variables to the inverse ion
plasma frequency w,; b= (eomi/Ning?)"? = (20 mi/Zi Nepe?)'/? and effective Debye length
Apeft = (Neo/Neo)/?Ape = €0 KpTe/Neoe?) /2.

The constants A; and Ay in Eq. (5.29) and (5.30) can then be written in the form:

2 1
A== ——a’’(1+37ra4)"? and (5.33)
C >\Deff
Qs
AFi(A)?/@( ) o2 (301 + 47 ap) - = (5.34)
D eff sl

where ¢ is the normalized electrostatic potential, and 7 = (7;/T.)/Z;, which simply be-
comes T;/T. (the normalized ion temperature with Z; = 1), respectively; { = x — Mt =
X/Apefr, where M = v/Cj is the Mach number, and x and ¢ are the normalized spatial and
time variables, respectively. Here, M = My + 0M where My, = V/Cs = (37 + 1/0z31)1/2
is the phase velocity normalized to the effective sound speed, which is equivalent to the
lower Mach number, and 0M = eMy = €(Vy/Cs). The constants ag; and age are given,

respectively, by

1= 8 (O) : - ;Z and (5.35)
Nyo (ks — 1/2)(ks +1/2)
ZﬁfN P Py U (5.36)

with s = ¢(h) for cool (hot) electrons, and S5 = T, /T is the reciprocal of the normalized
temperature. For simplicity, 8 = 8, = Tc/Th.
Note that ¢(x) ~ ep1(x) and ¢(&) ~ e p1(£), thus to first order in €, Eq. (5.32) can be

written as

$(€) = ¢o sech?(¢/A), (5.37)
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where ¢p and A are the soliton amplitude and width, respectively, given by

12/a2
do=065M(M,/Q) = Q/ Agl and (5.38)
1 M\ 2
=397 atassrans, (539

where Q = 3(1 + 47ag) — asa/a?. Equation (5.37) is valid (i) for §M > 0, leading to
M > M, and (ii) for Q # 0, that is, Ay # 0, and therefore the sign of the potential
depends on whether @ is positive or negative. Also, Egs. (5.38) and (5.39) imply that
$o x 1/A% o< §M, thus as M (or M) increases the soliton amplitude (¢g) increases while
the soliton width (A) decreases.

In getting the appropriate sign of the soliton potential, we determine a critical density
ratio f., corresponding to @ = 0, at which ¢¢ [from (5.38)] goes to infinity. When f < f.
we get positive potential (compressive) solitons while the reverse gives negative potential
(rarefactive) solitons. For example, when k. = 2, k;, = 3, 7 ~ 1/300, = 3/100, which
are typical parameter values for Saturn’s outer magnetosphere [Schippers et al., 2008] at
about 16 Rg, we have f. ~ 0.472. In the presence of Maxwellian cool and hot electrons
(ke = kp = 00) and 7 ~ 1/300, 5 = 3/100, we have f. ~ 0.704. Positive (negative)
potential solitons will exist for f < (>)f.. These critical density ratios will be referred
to in the discussion of numerical results in the subsequent sections. For @ = 0 we have
A9(V) = 0 in Eq. (5.27), and therefore the soliton amplitude goes to infinity. For values
of f for which the nonlinearity term in the KdV equation vanishes, that is A2(V') = 0, the
mKdV approach may be appropriate [Nishihara and Tajiri, 1981; Baboolal et al., 1989].

We briefly look at this approach in the subsequent subsection.

5.4.2 The Modified Korteweg-de Vries (mKdV) Equation

We have already seen that when As(V) = 0 in Eq. (5.27), the soliton amplitude goes
to infinity. In dealing with that scenario in the perturbation approach, we re-scale the
stretched space-time variables ¢ and 7. Following the approaches of Baboolal et al. [1989]
and Roy Chowdhury et al. [1994], we use the stretched variables ¢ = €(X — V') and

T = 3¢’. With this scaling, and proceeding as in the KdV case above, the modified KdV
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equation takes the form (see Appendix C.1 for details)

91 201 PP
C(V)e DV =0 5.40
where again the phase velocity V is obtained from V2 = Cth + CZQH, nd
C(V):—Ag/Al; D(V):B(V) :1/A1;
2V %2)1‘
A= 7(‘/2 — 0152@)2 and
5= §w;2)zv QS 50
2 (V2 — C’EZ Nt
W2 [4V2 + (3y; — 4)c?
pi 7 tz QS 50
5.41
(V2 CEZ szch Z i ( )

Using the transformation, x(¢,7) = (—uoT = (X —vt'), where v = V +dv; v = 2ug,
Eq. (5.40) then takes the form of a first-order differential equation whose solution is given

by (see Appendix C.2 for details)

e1(x) = (%)m sech {<D>1/2X} or (5.42)
S(X, 1) = (%) Y et { (%”) Y vt')} , (5.43)

which is valid for C' > 0 and D > 0 provided dv > 0.

Again, with our chosen normalization, the constant A is given by Eq. (5.29), while A

}, (5.44)

where a1 and g are defined in Egs. (5.35) and (5.36), respectively, and a3 is given by

is given by

4 = PO

5 3(1 4 3Tas)ad; + a3
2)‘Deﬁ“

{04510452(4 + 97i7a81) -

g = 253]\@0 —1/2)(ks +1/2)(5s +3/2)

(. —3/2) o4

It should be noted that the mKdV equation (or solution) is relevant only when the co-

efficient of 9¢?/dx in the KAV equation is negligible. In this case, that occurs when
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As(V) = 0. We have already shown in the previous section that As vanishes when @ =
3(1 + 4ras1) — Oésg/agl = 0. Thus the mKdV solution will only be valid for ag =
as2 — 302, (1 + 41ag) = 0.

With £ =z — Mt = x/Apest, where M = v/Cs = Mg+ 6M; My = V/Cs = (317 +
1/as)?; M = 6v/Cs, Eq. (5.43) then becomes

¢(§) = dossech(§/Ay), (5.46)

where ¢gs and A,, are the soliton amplitude and width, respectively, given by

2V3

Bos = (246 M /v )2 [0, (1 4 37 ag )]/ = X ; (5.47)
wy/ Ash
1
A = 0M)2 [ady (1 + 37 o)V (5.48)

Qg5 = aslas2(4 + 9’7@'7_0531) - [3(1 + 3’7’0[51)04§)1 + Oés3] s

provided a4 = 0, ags > 0, and §M > 0. Equations (5.47) and (5.48) imply that ¢ps o
1/A oc SMY/? | thus “faster” solitons (with increasing §M) have large amplitudes, and are
thin in width. The expressions for ag where [ = (1 — 5) can be written in terms of the
hot electrons fractional density f = Npg/Neo. If we denote fi and fy as the solutions of
as4(f) = 0 and as5(f) = 0, respectively, then ass(f) > 0 requires f < fo, that is, f1 < fo
for the mKdV to be meaningful.

In Fig. 5.1 we show the variation of f with x (with x = k. = kj;) for which the
nonlinear coefficient A in the KdV equation (5.27) goes to zero (blue solid curve), which
simply corresponds to the solutions of agy(f) = 0. The dotted (blue) curve, superimposed
on the continuous curve, corresponds to the critical values of f, denoted, f., for which
U (p, M, f) = 0 at M = Mg, that we will discuss in detail in the arbitrary amplitude
approach. In addition, the dashed (light-blue) curve in Fig. 5.1, labelled fy gives the
values of f for which ag;(f) = 0. Thus for f > fo, the mKdV solution (5.46) is complex.
We therefore note that for the parameters in Fig. 5.1, for all values of k. = kj; we have
f1 > fa2, and thus at f = fi, as(f) < 0, leading to complex solutions of the soliton
amplitude.

Also, numerical results show that the variation of f; and fo with g = T,./T}, for 7 =
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T;/T. = 1/300 and constant spectral indices (k. = k;, = b and oo, as shown in Fig. 5.2 as
examples) shows that f; > fo, implying that ass(f) < 0 and hence the soliton amplitude
at f = f1 is complex. These results indicate that the modified KdV solution is not
appropriate for small amplitude solitons with the parameters described above. Similar
results with 7 = 1/300, 8 = 3/100 are obtained for both k. > kp, and k. < K; (not shown

here). However, when keeping the spectral indices and electron temperatures fixed, the

0.75
0.70¢
0.65¢
0.60¢
oo
0.55}

0.50}

0.45/

odob—rtt
5 10 15 20
Kc=Kh

Figure 5.1: f-solutions of as4(f) = 0 (dashed) and ag5(f) = 0 (dotted) as functions of 7
for 7 = 1/300, g = 3/100, and k. = Kj. For all values of k. = kp, we have f; > fo, and
thus at f = f1, ags < 0 and therefore will lead to complex solutions of soliton potential
amplitudes.

variation of f; and fy with the normalized ion temperature 7 = T; /T, gives a different
picture. For example, in Fig. 5.3 (left panel) we take § = 1/10. Here, the results are
similar to those obtained in the case of Fig. 5.2, that is, fy is less than f; for all 7. When
we reduce [ to 3/100, as shown in Fig. 5.3 (right panel), we se that fo > f for some values
of 71 with g = 3/100 and k. = Kk, = 00, we get fo > fi provided 0.052 < 7 < 8.143, and
with k. = Kk, = 5 we get fo > fi for 0.164 < 7 < 6.813, implying that the mKdV approach
may be valid for that range of parameters. Note that Fig. 5.3 has been plotted only up
to 7 = 1. These results (for the variation of ion temperature) also suggest that the ion
dynamics may be essential when using the mKdV approach.

While the perturbation technique seems to be accurate for very small amplitudes,

especially for Mach numbers very close to My, that is, for structures that move with
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1.0
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Figure 5.2: f-solutions of asy = 0 (dashed) and ag5 = 0 (dotted) as functions of 3 for
7 =1/300, and k. = Kk, = Kk, with £ = 5 and co. Again, we have f; > fo; thus at f = fi,
a5 < 0 and therefore will lead to complex solutions of soliton potential amplitudes.
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Figure 5.3: f-solutions of agy = 0 (dashed) and a5 = 0 (dotted) for = 1/10 (left panel)
and B = 3/100 (right panel), and for k. = kp = k, with kK = 5 and 50. Here, we see that
for B small, as in the right panel, we have f; < fo for some values of 7. Therefore for the
parameters in the right panel graph, the mKdV approach may be used.

velocities close to the phase velocity of the wave.

As will be shown in Fig. 5.11, the

method becomes less reliable for Mach numbers far from M in cases where solitons of

both polarity exist. For such cases, there exists a density ratio f = Np/Neo for which
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the nonlinear term in the KdV equation (o< ¢0¢/J€) vanishes and therefore the balance
between the nonlinear term and the dispersive term (x 93¢/0¢3) is no longer attainable
for propagation of solitary structures. Even applying the modified KdV solutions does
not seem fruitful in resolving this problem. Thus for such cases, the arbitrary amplitude
approach like the pseudopotential /Sagdeev method (which we discuss below) is vital. We
will show soliton potential structures in Fig. 5.10 that cannot be obtained from the KdV

solution for this particular model.

5.5 Arbitrary Amplitude IA Solitons

With the chosen normalization, as used in the perturbation theory, equations (5.2)—

(5.4) take the form:

ani 0 .

5 + a(nl u;) =0, (5.49)

ou; ou; on; 0 B

ot +u2%+37n2 o %_0’ (5_50)
and

0%

a2 T (@) —ne(9) —na(¢) =0, (5.51)

respectively, where again 7 = (T;/71.)/Z;, which simply becomes T;/T, with Z; = 1; n,
and nj, are the normalized density of the cool and hot electrons, respectively; n; (u;) are
the normalized ion density (velocity) of the cool ions; x and ¢ are the normalized spatial
and temporal variables, and ¢ the electrostatic potential, respectively. The corresponding
boundary conditions are ¢, d¢/0x and u; — 0, and, n; — 1 as z — +oo.

We seek simple traveling wave solutions of Eqs. (5.49)-(5.51) that are stationary in a
frame moving with velocity M. Thus we transform to a stationary state, where we assume
that all the quantities depend on £ = © — M t; M being the Mach number, equivalent to
the velocity of the solitary wave normalized to the acoustic speed Cs = (Z; KpT./m;)"/?.

With the boundary conditions stated above, Egs. (5.49) and (5.50) can be solved for n;(¢),
giving [Baboolal et al., 1989, 1990; Ghosh et al., 1996; Verheest et al., 2008|

M <% — 1) +37 (nf — 1) +2¢ =0, (5.52)

)
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which is quadratic in nl2 with solution

n2 = é{MQ £ 37— 20+ [(M2 +37 —2¢)° — 12M27] 2 } (5.53)

The first term of the left-hand side of Eq. (5.52) is the inertial contribution to the restoring
force while the second term is the pressure contribution. In the absence of pressure (7 — 0),
the restoring force is solely due to inertia and Eq. (5.52) gives n;(¢) = (1 — 2¢/M?)~1/2,
which can also be obtained by taking the limit, as 7 — 0, of Eq. (5.53) with the minus
sign of the term under square brackets.

Following the approaches of Ghosh et al. [1996] and Verheest et al. [2008], we rewrite

the ion density in the form

ni(¢) = a(VA=VB),

where a, A and B are constants to be determined, and only the negative sign is physically

relevant. This gives

1/2

n; = L{ [<M+x/§>2 —2¢]

e - (- Va7~ 29 " } (5.54)

Note that the boundary conditions ¢ — 0, n;(¢) — 1 as £ — oo are satisfied in Eq. (5.54)
only when M > /37, that is, V > (Y} as required for ion acoustic structures.

With the transformation & = x — M ¢, Poisson’s equation is now given by

0%¢

Jgz = 7el9) T m(9) — nil6) = G(). (5.55)

where n;(¢) is obtained from Eq. (5.54), and n.(¢) and n(¢) are obtained from Eq. 5.1,

after normalization, as

ns(¢) =

—(rs—1/2)
NSO < 58 ¢ > ’ (556)

157
Neo ks — 3/2

with s = ¢(h) for cool (hot) electrons, and S5 = T, /T is the reciprocal of the normalized

temperature.
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Poisson’s equation [Eq. (5.55)] can then easily be written in the form

Py dV(¢) 1 (dg\’ _

where ¥(¢) = —fo(b G(¢)d¢ is the pseudopotential of the plasma system and G(¢) =
ne(P) + np(¢) — ni(¢). The boundary conditions ¢, dp/0¢ — 0 as { — foo have been

used.
5.5.1 Pseudopotential Approach

Now in seeking soliton solutions of Eq. (5.57), we need to confirm that the pseudopo-
tential W(¢) satisfies U(¢p) = ¥ (¢p) = 0 at ¢ = 0 for all M as a first requirement (see
Sec. 1.4.2). This procedure leads to the pseudopotential expression of the plasma system

as

(3/2—kp)
w):f[ —(1—ﬂ) fa-p

Kp — 3/2

b (3/2—ke)
b (1_ “0_3/2>

sy

+%{ [(M— @)2 —243/2 = [(M+J§)2 —243/2}
MR (5.58)

Here, f = Np/Neo is the fractional density of hot electrons and 8 = 8, = T./T} is the
ratio of the cool to hot electron temperatures.
In investigating the existence domain for solitary structures, solitons or double layers

we require M > M, where

—1y 1/2
(1= ) (ke —1/2) N B f(kn— 1/2)] } (5.59)

M= {?” T e -3 (kn — 3/2)

is the lower limit of M restricting the existence of solitons, obtained at ¥”(¢ = 0) = 0.

The usual soliton condition M > M; implies that V? > C2 + C2

=, where Cj,. = wpidpy 18

the k—dependent ion acoustic speed. If we define the “true” Mach number of the solitary
waves by M;, = V/Cj, then Mii > 1+ C’fi / Ci2m which is always greater than unity for all
temperatures, resulting in superacoustic structures as pointed out earlier.

Further, with our choice of normalization, the normalized phase velocity following from
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Eq. (5.13) is given by
Wk wpdby  C
oo

2
Von =

which can easily be written as

(L= Pl =1/2) | 87— 1/2)
(e=3/2) (=372

Vi, =37+ = M2, (5.60)
Equations (5.59) and (5.60) imply that the existence of solitary structures (solitons or
double layers) require the resulting structures to move with velocities exceeding the phase
velocity of the associated waves. However, as our results will show, it turns out that
solitons can have a velocity equal to the phase velocity of the wave, that is, with Mach
numbers, M = M. This peculiar scenario occurs in situations where both positive and

negative potential solitons can be supported by the plasma system under consideration.
5.5.2 Potential Limitations

Firstly, in the case of positive potential solitons we observe from Eq. (5.54) that finite
non-negative values of n;(¢) require ¢ < (M —+/37)%/2 = ¢;1 and ¢ < (M++/37)%/2 = ¢j0,
since at ¢ = ¢;1, n; = (M/\/3_7')1/2, which is finite, and at ¢ = ¢;0, n; = ¢ (M/\/3_T)1/2,
which is complex. The expression WU(¢;1) > 0 or ¥(¢;2) > 0 will provide the upper limit
on M for the existence of positive potential solitons (since both ¢;; and ¢;o give positive
real values for all M and f). However, ¢;; being less than ¢;, for all M and f implies
that the limiting condition W(¢;;) > 0 dominates ¥(¢p;2) > 0, and the former will be used
here. That is, we consider ¢ < ¢;1 so that the ion density is real and finite to prevent wave
breaking [Baboolal et al., 1990].

We also observe from Eq. (5.58) that U(¢) — +oo when ¢ — +o00, and as we require
U(¢) to be negative in the vicinity of the origin (¢ = 0) and before a second root (¢,)
is encountered, that is, ¥(¢) < 0 for 0 < ¢ < ¢, it follows that we can have at most
one single root before we approach the limiting potential ¢;; on the positive potential
side [Verheest et al., 2008|. In addition, since soliton amplitudes increase with increasing
Mach number or soliton speed (see perturbation theory), it implies that the Mach number
corresponding to ¥(¢;1) = 0 must be the upper limit of M for ¢ > 0. Therefore the upper

limit of M for the existence of positive potential solitons is obtained from W(¢;1) = 0.
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¥(9)

Figure 5.4: Restriction of solitons by double layers, obtained for the parameters: T; =
0.1eV, T, = 30eV, Ty, = 1keV, k. = 2.0, k, = 3.0, f = 0.5, typical for Saturn’s outer
magnetosphere [Schippers et al., 2008] at about 16 Rg, where Rg is the radius of Saturn.
The double layer is obtained for M. ~ 1.38097, and has amplitude |¢,,| ~ 21.55. Thus
solitons will have amplitudes less than ¢,.

Secondly, negative potential solitons in the plasma model are restricted from below by
the soliton condition and from above by the double layer limit, where the latter occurs
for Mach numbers, M satisfying the double layer condition ¥(¢,,) = ¥'(¢,,) = 0 for
particular values of f, 7, 8, and spectral indices k. and k. As we argued in the positive
potential case, this follows from the following description: firstly, other than at the origin
¢ = 0, we also require ¥(¢) < 0 before we encounter another zero of ¥(¢) on the negative
potential side. Secondly, since the electron contributions in Eq. (5.58) remain finite [scaling
as (1 — f)+ f/B] as ¢ — —o0, we get U(¢) — —o0 as ¢ — —oo. These two conditions
imply that in the interval [0, —oo] there exists is a root ¢g4, satisfying ¥(¢4) = V'(¢g) = 0,
and hence leading to double layers.

As soliton amplitudes increase with increasing Mach number, in a number of plasma
models the existence of a double layer brings an end to the existence of solitons [Baboolal
et al., 1988]. Thus the Mach number corresponding to the second double root (i.e., other
than at the origin) provides the upper limit on the Mach number for the existence of
negative potential solitons. A typical example is shown in Fig. 5.4, where solitons will

occur for Mach numbers, M < M,.; M, is the solution of the double layer condition, and
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no soliton-like structures will be obtained for M > M,.. However, we point out that the
occurrence of a double layer does not always provide an upper cutoff for the existence of
solitons of a particular potential sign. Our results in Chapter 7 (Fig. 7.4) show that solitons
can be obtained even beyond a double layer, if the pseudopotential function has sufficient

local minima.

5.5.3 Existence Domain for Ion-Acoustic Solitons and Double Layers

Figure 5.5: Existence domain for ion-acoustic solitons for the parameters: 7; = 0.1eV, T, =
30eV, Ty, = 1keV. For k. = 2.0, k, = 3.0, positive, and negative potential solitons are
bounded by curves A; and Bi, and Ay and C1, respectively. Similarly, for k. = k; = o
(Maxwellian case), positive, and negative potential solitons are bounded by curves Ay and
Bs, and Ay and Cs, respectively.

Figure 5.5 shows the existence domain of ion-acoustic solitons for a plasma with both
cool and hot electrons having a considerable excess of superthermal particles in both
electron components, as seen in Saturn’s magnetosphere [Schippers et al., 2008] (curves
A1, By, Cq, with k. = 2, Kk, = 3), and the Maxwellian equivalent (curves Ay, Bo, Co, with
ke = kp, = 00). Here, we introduce the notations f,, and f,, defined by the values of f such
that below f,, you don’t get negative potential solitons limited by the existence of double
layers while above f, you don’t get positive potential solitons limited by the ions. Thus
the figure shows that compressive (positive potential) solitons will occur for f < f, ~ 0.57
(curves A; and B;) when k. = 2, K, = 3, and for f < f, >~ 0.842 (curves Az and Bs) for

the Maxwellian cool and hot electrons, respectively. Thus the range in f is considerably
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reduced for Saturnian parameter values than would be predicted by a double-Maxwellian
model. On the other hand, rarefactive (negative potential) solitons are expected to occur
over a wider range of f for Saturnian than for Maxwellian electrons. Specifically, they occur
for f > fn ~0.239 (curves A; and Cq) in the case of k. = 2, kK, = 3, and f > f, ~ 0.393
(curves As and C5) in the case of Maxwellian electrons, respectively. Both positive and
negative potential solitons can “co-exist” for f, < f < fp, that is, 0.239 < f < 0.57 for
ke =2, kp = 3, and 0.393 < f < 0.842 for the Maxwellian case, respectively. The graphs
also show that for f = 1, that is, n,g — 0, the lower and upper limits on the Mach number
coalesce at M ~ 4.43628 for low kappa values (k. = 2, k, = 3) compared to M = 5.5793
for the case of Maxwellian electrons.

The resulting effect of spectral index x on the existence domain of solitons (or dou-
ble layers) is that in comparison to Maxwellian particles, low kappa values (increased
superthermal particles in the high energy tail of the distribution) reduce the existence
domain in the parameter space of Mach number M and density ratio f = Npo/Ngo over
which compressive solitons or both compressive and rarefactive solitons can exist. How-
ever, for constant species temperatures, densities and speed (in terms of Mach number),
the variation of soliton amplitude with the spectral index s shows that low values of k re-
sult into large amplitudes compared with the Maxwellian case. This variation is illustrated
in Fig. 5.6 where the values of f and M used correspond to a region in (f, M) parameter
space shown in Fig. 5.5 where rarefactive (negative potential) solitons can be supported

for both low (k. = 2, k. = 3) and high (k. = k. = c0) kappa values.
5.5.4 Variation of Soliton Potential Amplitude (¢,,) with Mach Number

In Figures 5.7 and 5.8, we plot the soliton potential amplitudes for different values
of M = M — Mg, where M is the Mach number satisfying the soliton conditions and
M; is given in Eq. (5.59). The end points of the curves correspond to the upper limit
in M, which for example, in the case of negative potential solitons occur when a double
layer is met. We have already seen from Fig. 5.5 that when k. = 2, K, = 3, for example,
positive potential solitons occur for f < f, ~ 0.57 while negative potential solitons occur
for f > f, ~0.24.

From the (small amplitude) KAV approach we defined f. as being the density ratio at
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Figure 5.6: Variation of soliton amplitude for different spectral index values k = k. = kp,
for the temperature values in Fig. 5.5, with f = 0.85 and M = 2.614.
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Figure 5.7: Variation of soliton potential amplitude with éM = M — Mg for a ‘hard’
electron spectrum (low k values) with spectral indices and temperature values as in the
figure, Left panel: (¢ > 0) and Right panel: (¢ < 0). The parameter labeling the curves
is the density ratio f = npg/nep. The solid (continuous) green curves correspond to the
critical density ratio f = f. ~ 0.472 at which the soliton amplitudes from the KdV (small
amplitude) method goes to infinity (see discussion of the subsequent section). Note the
change of scale for ¢ between the two figures.
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Figure 5.8: Same as in Fig. 5.7, now for the Maxwellian equivalent (k. = K, = 00), with
fe = 0.704.

which the nonlinearity term in the KdV equation vanishes, and hence the soliton amplitude
goes to infinity such that for f < (>)f. the potential is positive (negative). In the arbitrary
amplitude approach, f. can also be obtained by finding a value of f that satisfies ¥"'(¢ =
0,M = M, f) = 0 [Baluku et al., 2010a], see also Chap. 4. Thus Fig. 5.1 clearly shows
that the nonlinear term in the KAV equation vanishes at the same density fraction, fi, as
that at which the third derivative of the Sagdeev potential, evaluated at the origin for a
structure moving at the minimum soliton speed, M = M, becomes zero.

Figures 5.7 and 5.8 show that for some density ratios in the range f. < f < f, (for
¢ >0)or f, < f < fe(for ¢ <0), the soliton amplitude at M = Mj is nonzero, and thus
solitons exist even at the lowest Mach number M (M = M — My = 0). We also see that
for a very small increment in M, the amplitude is large compared to cases of f far from
the critical f values (for which only one potential sign can be supported). Note that the
negative solitons have much greater amplitude than the positive potential solitons.

Soliton amplitudes obtained at M = Mg, for f values in the region where both polarities
are supported for the parameter values used in Fig. 5.5, are shown in Fig. 5.9. For each
case, f. corresponds to the value of f for which ¢,, = 0. that is, f. ~ 0.472, and 0.712,
respectively. The graph shows that for a particular potential sign, the soliton amplitude

at M = M increases monotonically as you move away from f., with larger amplitudes
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obtained in the case of Maxwellian electrons (k = oo) than for the hard spectrum Saturnian
case with low k values. Asshown in Fig. 5.9, finite positive solitons exist at M, for f. < f <
fp = 0.57 (in the case of low kappa values shown on the graph) and for f, < f < f, ~ 0.84
(in the case of Maxwellian electrons), with the maximum amplitudes for these critical
values being ¢,,, = 0.30 and 2.5, respectively. Similarly, finite negative solitons at M exist
for fo > f > fn =~ 0.24 (in the case of low kappa values) and for f. > f > f, ~ 04
(Maxwellian case), with the maximum amplitudes at M = M; for these critical values
(not shown on graph) being |¢,,,| = 20.7 and 28.8, respectively.

We also point out that if one chooses the normalized density ratio to be f = Ng/Neg
instead of f = Np/Neo as used in this work, then for the Maxwellian case one arrives at a
similar pattern of results to those shown in Chapter 7, Fig. 7.3 for the double Maxwellian

electrons case.

5=3/100
7=1/300

=M

fma M

Kc=Kn=00 i

0.6 0.8 1.0

Figure 5.9: Finite solitons at M = Mj in the “coexistence” region: Above f. the amplitude
at My is finite for ¢ < 0 and goes to zero for ¢ > 0. The reverse is true for f < f..

Since ¥”(¢ = 0) = 0 at the lowest Mach number M = Mj, that is, U”(¢) has a
double root, and ¥(¢) has a triple root at the origin (¢ = 0) when M = Mj, it implies
that in these peculiar cases the convexity condition ¥”(¢ = 0) < 0 is now taken over
by (¢ = 0, M = M) < 0, which ensures that the origin remains unstable for ¢ <
0 [Verheest and Hellberg, 2010]. This phenomenon is quite suprising but it brings out the
point why small amplitude (perturbation) techniques may not be appropriate in analyzing
experimental or observational results, especially in the case of plasmas whose density ratios

(here, f = Npo/Neo) allow the coexistence of both positive and negative potential solitons.
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The perturbation methods fail to pick up the “already large amplitude” solitons in the
vicinity of My and thus can only be obtained numerically from large amplitude methods
like the pseudopotential /Sagdeev approach employed in this work. The unreliability of the
perturbation theory was also pointed out in the experiments of Nakamura et al. [1996],
where, using negative ions (argon) and two Boltzmann electrons in a multi-dipole plasma
machine experiment, they showed that the velocity and width of solitons from the KdV
approach deviated significantly from the pseudopotential and experimental results.

In Fig. 5.10 we plot typical potential profiles for two values of f (f = 0.75 and f = 0.65)
which are close to f. ~ 0.704 for the Maxwellian case shown in Fig. 5.8. For example, for
f = 0.75 (left panel) the graph shows that a positive potential soliton can occur at the
lowest Mach number M (that is, for M = 0) with quite a large amplitude of about 0.75
in addition to both positive and negative potential solitons for M > Mg or éM > 0. A
similar behaviour occurs as f is lowered, say to f = 0.65 (right panel) in this case, where
now the solitary structure at M; is negative and is of amplitude more than unity (with
|po| ~ 1.312. The soliton potentials shown in Fig. 5.10 also show that as the Mach number

increases, the soliton potential amplitudes increase, accompanied by a reduction in the

soliton width.
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Figure 5.10: Typical soliton profiles at the lowest Mach number My shown (corresponding

todM = 0) for f = 0.75 > f. (left panel) and f = 0.65 < f. (right panel). The parameters,
as shown on the figure, are the same as those of Fig. 5.8.

158



5.5.  Arbitrary Amplitude IA Solitons

5.5.5 Sagdeev (Pseudopotential) Approach vs. Perturbation Technique

A comparison between the large amplitude approach and the perturbation technique
is shown in Fig. 5.11 for 7 = 1/300, 8 = 3/100, and k. = 2, k;, = 3 (left panel, plotted for
f > fe in the case of negative potential solitons, and k. = k;, = oo (right panel, plotted for
f < fe in the case of positive potential solitons), respectively. In both cases the numerical
results are shown by the continuous lines. In comparison with results from the arbitrary
amplitude approach, we observe from Fig. 5.5 that for k. = 2, Kk, = 3, 7 = 1/300, 5 =
3/100, positive potential solitons will exist for f < f, = 0.56 while negative potential
solitons will occur for f > f,, = 0.24. This means that the small amplitude (KdV) method
breaks down for f. < f < f, (for ¢ > 0) and f, < f < f. (for ¢ < 0), respectively. Though
we expect both methods to be in agreement to some extent [i.e., for Mach numbers close
to M with f> f. (¢ <0) and f < f. (¢ > 0)], we point out that for values of f close
to f. in this case, results deviate quite significantly even for very small values of § M, for
example, as low as 0.0007 with f = 0.5 (red curves) compared with f = 0.6 (light-blue
curves) where the ¢,, versus 0M plots remain linear up to about 0.013 in Fig. 5.11, left

panel. A similar trend is observed in the right panel graphs as f gets close to f..
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Figure 5.11: Soliton amplitude (¢p) as a function of Mach number, M, for 7 = 1/300, 8 =
3/100; Left panel: k. = 2, kp, = 3, f = 0.5 (red) and f = 0.6 (light blue), both greater
than f. ~ 0.47, Right panel: k. = K = oo, f = 0.4 (red), f = 0.5 (light blue), and f = 0.6
(blue), all less than f. ~ 0.7. The continuous curves are the numerical solutions (from the
pseudopotential method) while the broken curves follow from Eq. (5.38).
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5.6 Positive Potential Double Layers

First of all, in this work we have used values of temperature ratio 5 = T./T}, that are
typical of a particular region in Saturn’s magnetosphere. However, if we choose g values
that are quite large, as we will see in this section, then there are possibilities of getting
positive double layers. Such positive double layers are also discussed in Chapter 7 when
considering a plasma with Maxwellian electron components and cold ions. To investigate
the existence of positive double layers in plasmas with k-distributed electron components,

we consider two cases, viz., cold ions (7 = 0) and cool ions (7 = 1/300).
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Figure 5.12: Variation of f. with temperature ratio, 8. The parameters corresponding to
the curves are: Curve I: k. = kp, = 00, 7 = T;/T. = 0, curve II: k. = 2; K, = 3, 7 =0, and
curve III: k. = 2; K, = 3, 7 = 1/300, respectively.

In Fig. 5.12 we show a plot of density ratio, f = Npg/Neo versus temperature ratio
B = T./T}, at which the third derivative of the pseudopotential, ¥ (¢, M), changes sign
when ¢ = 0 and M = M. The curve labeled I depicts a plasma with Maxwellian cool and
hot electron components in the presence of cold ions. This figure is essentially the same as
Fig. 1(a) of Baluku et al. [2010b] (see also Fig. 7.1 in Chapter 7), only that here we have
defined the density ratio in terms of the fraction of hot electron density. In curves II and
ITT we look at a plasma with a large excess of superthermal electrons (with a hard spectrum
or low  values) in the presence of cold ions (7 = 0, curve II) and cool ions (7 = 1/300,
curve III), respectively. Figure 5.12 shows that the critical temperature ratio, ., above

which ¥U(¢ = 0, M,) does not change sign, increases in the presence of non-Maxwellian
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electrons. For curve I, 5. ~ 0.101021, compared to 8. ~ 0.3406 and S, ~ 0.3468 for curves
IT and III, respectively. Thus cool ions increase . only marginally above the value found
for cold ions.

In the search for positive double layers for this plasma model we shall consider two
values: = 0.09, that is also discussed in Fig. 3 of Baluku et al. [2010b| and Fig. 7.1 in
Chapter 7, and corresponds to Maxwellian electron components, and 5 = 0.3, correspond-
ing to non-Maxwellian electron components. The case for 8 = 0.09 is shown in Fig. 5.13.
Here, we recover the results of Baluku et al. [2010b], that is, we get both positive and
negative double layers that are separated by one of the critical values of f.. Negative
solitons are bounded by double layers [the dotted (light-blue) curve for 0.75 < f < 0.95]
while positive solitons, limited by the ion limit constraint, are bounded by the continuous
(blue) curve. For f > feo, we get positive double layers along the dashed light-blue curve.

Thus, for some range of f positive solitons exist even after a double layer has occurred, as

will be discussed in Chapter 7.
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Figure 5.13: Existence domain for positive double layers for a plasma with Maxwellian
electron components and cold ions, with 8 = 0.09. The critical values of f. are f.; ~ 0.8391
and feo >~ 0.9595.

However, with 5 = 0.3 (in the presence of non-Maxwellian electrons), as in Fig-

ure 5.14 (left panel), though we get solitons limited by the positive double layers, we don’t

161



5. Ton-Acoustic Solitons in a Plasma with Two-Temperature s-distributed Electrons

get solitons beyond the positive double layers as was the case in Fig. 5.13 for Maxwellian
electrons. Here, the positive solitons limited by the ions (shown by the continuous blue
curve) occur for f < 0.753 far from the values of f for which positive potential double
layers can be supported. This also applies to 7 # 0, here with 7 = 1/300 as shown in the
right panel of Fig. 5.14, where positive solitons limited by the ion limitation exist only for
f < 0.738. This effect appears to be related to the dip in the ion cut-off curve of Fig. 5.13,
which for smaller x values is lowered, and cuts the critical axis M = My at some value of
f, above which it no longer plays a role.

Figure 5.14 also shows that the narrow region, where solitons of both potential signs
can be supported (under the dotted and continuous curves), is bounded from below by the
critical value of f, f.1. Recall from Fig. 5.12 that for 5 = 0.3 we have ¥(¢ = 0, M) < 0.
Thus in the region f.1 < f < feo, if positive potential solitons exist, they will have finite
amplitude solitons at M = M, while for negative potential solitons, ¢ — 0 as M — M.
Below f.1 (and above f.o) we have ¥(¢ = 0, M) > 0, thus the positive potential solitons

that exist in those regions have amplitudes which go to zero as M — M.
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Figure 5.14: Same as in Fig. 5.13, now with 5 = 0.3. Left panel: 7 = 0, the lower value of
feis fe1 ~ 0.6868 while the upper value is feo ~ 0.9319. Right panel: 7 = 1/300, the lower
value of f. is f.1 ~ 0.7046 while the upper value is f.o ~ 0.9292 .
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5.7 Conclusions and Chapter Summary

In this chapter we have investigated in some details solitons supported by plasmas
with fluid ions and kappa-distributed two temperature electrons. Our results reveal the
following main features:

(i) Both compressive and rarefactive solitons can be supported by the model. The former
are characterized by a hump in the density as well as the electrostatic potential (¢ > 0)
while the latter have a dip in the density and electrostatic potential (¢ < 0).

(ii) The effect of spectral index x on the existence domain of solitons (or double layers)
is that, compared to high values of kappa (which represent Maxwellian particles), low
kappa values, which indicate increased superthermal particles in the high energy tail of the
distribution, reduces the existence domain in the parameter space of (f, M) over which
compressive solitons or both polarities can exist.

(iii) A peculiar behaviour occurs for density ratios that support coexistence of both hump
(¢ > 0) and dip (¢ < 0) solitons. Here we have obtained a critical density ratio, f., which
in the KdV approach is associated with the vanishing of the coefficient of the nonlinear
term in the KdV equation, and in the arbitrary amplitude approach is associated with
V" (¢ =0, Ms) = 0. Below f., solitons which have the same sign as ¥"'(¢ = 0, M), in this
case positive, are KdV-like, with vanishing amplitudes as M approaches M. However, for
the same plasma configuration, with f < f., we also obtain solitons with the sign opposite
to that of ¥"”(¢ = 0, M) that are nonKdV-like, with finite (nonzero) amplitudes at Mj.
The reverse is true for f > f..

(iv) Comparison between the perturbation theory and the large amplitude technique shows
that whereas the perturbation technique seem to be accurate for very small amplitudes,
especially for Mach numbers close to M, that is, for structures that move with velocities
close to the phase velocity of the wave, the method becomes less reliable for velocities
far from the phase velocity, especially in cases where solitons of both polarities exist.
Thus the arbitrary amplitude approach like the pseudopotential method is more useful.
We have shown soliton potential structures from the pseudopotential method that cannot
be obtained from the perturbation theory, even for ¢ < 1, for this particular model in

Fig. 5.10,viz., those that are finite at M = M.
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(v) The large rarefactive potential solitons (¢ < 0) reported for this plasma model may be
attributed to the fact that the small but finite electron mass, which is a measure of the
electron inertia, is neglected in the electron density expression. In the parameter space
of amplitude and cool electron density for a two electron temperature plasma, Rice et
al. [1993] showed that whereas the inclusion of the electron inertia in the plasma model
has negligible effect on the existence domain of compressive (¢ > 0) ion-acoustic solitons
it does reduces the range of density and amplitude over which rarefactive solitons exist.
In this model such a scheme would now require getting the electron density expression
from the fluid equations of motion, with the associated kappa-distributed pressure term
incorporated. The pressure expression associated with a kappa-distribution function has
been derived in Appendix A.1.2, though it has not been applied to this model. This is
open for further investigation.

(vi) We have shown that positive double layers may be found over a narrow range of
fractional cool electron density (< 10%), for both Maxwellian and low-x distributions, the
range being larger for the latter case.

(vii) Whereas for Maxwellian electrons, one value of the critical density fraction, f.1, lies
in the region where solitons of both polarities are supported (in this case, the existence
domain for negative potential double layers), it is seen that for low-x electrons, both critical
density fractions, f.1 and f.o, may lie at the boundary of the existence domain for negative

potential double layers.
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CHAPTER D

lon-Acoustic Solitary Waves in an Electron-Positron-lon (e-p-i) Plasma

In this chapter we consider ion-acoustic solitary waves in a fluid plasma model consisting
of nonthermal electrons, which are described by the Cairns distribution function [Cairns
et al., 1995|, Boltzmann positrons and singly charged positive cold fluid ions. This work

follows on a recent article by Pakzad [2009].

6.1 Introduction

Electron-positron plasmas are characterized as fully ionized gases, consisting of elec-
trons and positrons of equal mass. They are believed to exist in the active galactic nuclei
and in the pulsar magnetospheres [Popel et al., 1995; Moslem et al., 2007]. They were
also considered to have appeared in the early universe (see Popel et al. [1995], and ref-
erences therein), solar atmosphere, and in the inertial confinement fusion schemes using
ultra-intense lasers [Liang et al., 1998], see also Moslem et al. [2007], and references therein.
Due to the abundant nature of ions in many astrophysical plasmas, the study of electron-
positron-ion plasmas has been of interest to many authors [Berezhiani et al., 1994; Popel et
al., 1995; Nejoh, 1997; Saleem et al., 2003; Haque and Saleem, 2003; Moslem et al., 2007;
Pakzad, 2009|, and others. Popel et al. [1995] studied arbitrary amplitude ion-acoustic
solitons in a three-component plasma consisting of Boltzmann electrons and positrons,

and singly charged positive fluid ions. They reported the existence of positive potential
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solitons, and showed that the presence of the positron component reduces the propaga-
tion speed of the solitons. The larger the fraction of positron density the lower the Mach
number for a soliton of fixed amplitude to propagate. In addition, they showed that the
amplitude of the solitons drops off drastically in the presence of a significant fraction of
positrons. However, Popel et al. [1995] could not obtain double layers.

Kakati and Goswami [2000] investigated the existence of small amplitude double layers
associated with kinetic Alfvén waves in a magnetized electron-positron-ion plasma. Here,
it was shown that small-amplitude double layers can be supported by a plasma model with
Boltzmann electrons and positrons independently of the electron-positron temperature
ratio. Haque and Saleem [2003] studied large amplitude two-dimensional ion-acoustic and
drift wave vortices in magnetized electron-positron-ion plasmas, where the electrons and
positrons were also assumed to be Boltzmann distributed.

In studying two-dimensional propagation of nonlinear acoustic excitations in e-p-i plas-
mas, Moslem et al. [2007] applied their studies to the accretion disks of the active galactic
nuclei, where the ion temperatures are (3-300) times higher than those of the electrons.
However, due to the very high ion temperatures in the accretion disc, the ions were mod-
elled by the Boltzmann distribution while the electrons and positrons were governed by
the fluid equations. Thus Moslem’s model [Moslem et al., 2007] was quite different from
that used by Popel et al. [1995].

Using a nonthermal distribution function for electrons in a simple electron-ion plasma,
Cairns et al. [1995] showed that the presence of nonthermal particles modifies the type
of solitary waves obtained. They reported both positive and negative potential solitons
coexisting, that could not be obtained with thermal or Boltzmann electrons. Thus it could
be of interest to consider an e-p-i plasma in which at least one of the leptons is modelled
by a Cairns distribution.

Pakzad [2009] recently discussed ion-acoustic solitons propagating in a plasma with
nonthermal electrons, Boltzmann positrons and fluid ions, and reported that positive po-
tential solitons are supported by the plasma model.

In this work, we show that in addition to the positive solitons reported by Pakzad
[2009], negative potential solitons and double layers can also be supported by the plasma

model, though for a limited range of positron-to-electron temperature ratios.
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6.1. Introduction

6.1.1 Nonthermal Distributions: The Cairns Distribution

In the context of interpreting results from the Freja satellite, the Cairns distribution
was introduced in Ref. [Cairns et al., 1995] as an ad hoc model for a population with
excess fast particles, in the analysis of the effect of such particles on solitary waves. In
unnormalized form, the nonthermal Cairns distribution function is given by Eq. (1.26),

rewritten here, for clarity, as

N; 14 av/vg)* )2
Fj(v) = ; [ (v/v) ] exp —L/Ut]) ) (6.1)
@2rog)t? (Ba+1) 2
where « is a parameter characterizing the nonthermality of the individual particles, and
vy; = (KpTj/m;)"/? is the species thermal velocity.

In the case of electrons, using the normalization u — v/vie; ne — N./Ngg, the normal-

ized distribution function F(u) = v Fe(v)/Ngo can be written as

1 TeQ u?
Fi(u) = Vo BatD) (1+a u) exp <—?> . (6.2)

Using the transformation u? — u? — 2¢, where ¢ is the normalized electrostatic potential
(with respect to KgT,/e), the normalized electron density can be obtained as [Cairns et

al., 1995
ne(gb) = neO(l - Bo + ﬁ¢2)exp(¢)’ (63)

where we have used the standard notation for this distribution. Note that with the choice
of normalization we have n.y = 1. Also, if we normalize the velocities in (6.1) with respect
to Cy = (KBTe/mi)l/Q, the ion-acoustic speed (in the absence of positrons), instead of vy,
we arrive at the same expression for the normalized electron density as that in Eq. (6.3).
The parameter® 3 is defined by 8 = 4a/(1+3a): 8 =0 (or a = 0) leads to the Boltzmann-
Maxwellian density n¢(¢) = nep exp(¢). Allowing « to run from 0 to oo, one sees that [ is
restricted to 0 < 5 < 4/3.

For different values of 3, the normalized Cairns distribution, as a function of normalized

velocity, is shown in Fig. 1.2. The figure shows that for 5 > 0.5 (or a > 0.2) the distribution

!This parameter 3 should not be confused with the temperature ratio 3 = T./T} used in Chapters 4
and 5
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6. Ton-Acoustic Solitary Waves in an Electron-Positron-Ion (e-p-i) Plasma

function develops wings at high velocities, becoming multi-peaked. For such high values
of B, the Cairns distribution function may not be good for physical applications, as it
may be unstable. In particular, Verheest and Pillay [2008a] put the limit on 8 (above
which the Cairns distribution ceases to be monotonically decreasing) at § = 4/7 ~ 0.571,
which corresponds to o = 1/4. In other words, the Cairns distribution is appropriate
only for a narrow range of the parameter « deviating from the Maxwellian distribution

function [Verheest and Pillay, 2008a; Verheest, 2010a].

6.2 Plasma Model and Basic Equations

The plasma model consists of cool nonthermal electrons (temperature 7, and density
Ne, given in (6.3)), Boltzmann distributed positrons (temperature 7, and density n,), and
cold inertial ions (density n;).

The densities of the positrons and ions are given by

np(¢) = npoexp(—o ¢); o =1Tc/T), (6.4)

and

) (6-5)

respectively, where we have used the transformation £ = x — Mt to a moving frame with
velocity M, the latter being normalized with respect to Cs. That is, normalization is with
respect to the ion sound speed, Cs, the reciprocal of the ion plasma frequency, wp_l-l =
(60mi/Ni0e2)1/2, and a mixed Debye length Apeg = (60KBT6/62NZ'0)1/2; the densities IV;
to Neo, and electric potential ¢ to KgT¢/e. Recall also that the equilibrium densities njo
are normalized quantities with respect to Neo, that is, nyo = Npo/Neo and nig = Nio/Neo.
In obtaining Eq. (6.5) we have used the boundary conditions ¢ and u — 0, and n; — n4
as & — +oo.

We point out that the normalized ion density can take several forms depending on the
choice of normalization used, provided consistency is maintained. For example, if normal-
ization is with respect to the electron parameters, that is, the equilibrium electron density

Neo, the electron thermal velocity, v, the electron Debye length Ape = (EOKBTe/e2Neo)1/2
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6.3. Linear Dispersion Relation

and the reciprocal of the electron plasma frequency, w;el = (e0me/Nege?)'/2, we obtain

-1/2

where = m;/m, is the ion to electron mass ratio, and M is now normalized with re-
spect to vg. Comparing equations (6.5) and (6.6), we see that normalizing with respect
to the electron parameters (v, w;il and Ap.), implies that allowed Mach numbers cor-
responding to solitary waves will be (m;/me)'/* times the Mach numbers associated with
the normalization in (6.5).
The species’ densities in Egs. (6.3), (6.4) and (6.5) are coupled with the help of Poisson’s
equation [Popel et al., 1995]
d*¢

gz = el®) = mi(6) —my(@) =0. (6.7)

6.3 Linear Dispersion Relation

Ton-acoustic waves have characteristic velocities (KgT;/m;)'/? < w/k < (KpT./me)"/?.
In a two-component (e-i) plasma the dispersion relation takes the from

w'? C?

wo by 6.8
K214 k2N (68)

where C5 = (KBTe/mi)l/2 and Ap, = (60KBTe/neoe2)1/2. Note that in the above expres-
sion, k' and w’ are unnormalized wavenumber and frequency. It follows that one requires
T; < T, otherwise if T; =~ T,, then the ion thermal velocity will be comparable to the
ion-acoustic wave phase velocity, which will lead to strong Landau damping.

In the presence of positrons (e-p-i plasma), the normalized and linearized species den-

sities become

Ne1 R neo(1 — B)o1;
Np1 = —npoo ¢1 and

ni = no(w?®/k*) e, (6.9)
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6. Ton-Acoustic Solitary Waves in an Electron-Positron-Ion (e-p-i) Plasma

respectively, where nj1 (j = e, p, i) and ¢; are the perturbed density and electrostatic
potential, and now k£ and w are normalized quantities. In addition, Poissons’s equation
becomes

kg1 = (nin — ne1 + np1) /nio. (6.10)

Substituting the densities from Eq. (6.9) into Eq. (6.10) we get
k?z/LUQ = [niok‘Q + (1 —ﬁ)neo—}—dnpo]/nio. (611)

With neo = 1, nyo = p and n;o = 1 — p, the dispersion relation in this case then becomes

ﬁ:{kz+w}_l (6.12)

= (CESVITE] (6.13)

where, as we will see in the subsequent section [see Eq. (6.16), for example], M, =

V(1 —p)/(1 —B+po) is the critical (minimum) speed of the solitary structures in the
moving frame. It follows from Eq. (6.13) that in the limit & — 0, w/k — Mj, that is,
My is equivalent to the phase velocity of the propagating solitary structures in the long
wavelength regime (k — 0).

From the definition of M we see that when p = 0 (no positrons), and § = 0 (Maxwellian
electrons), the dispersion relation (6.13) becomes w? = k?/(1+ k?), which in unnormalized

form is simply Eq. (6.8), for an electron-ion plasma.

6.4 Arbitrary Amplitude Solitary Waves

With the help of Egs. (6.3), (6.4) and (6.5) we can integrate Eq. (6.7), leading to the
energy integral relation

2
% (3—?) +(p, M) =0, (6.14)

where the Sagdeev potential W(¢, M) is defined by [Pakzad, 2009]

(¢, M) = (1+38) — [1+ B(3 = 3¢ + ¢%) exp(6) + 2 [1 = exp(~¢0)]

+(1 = p)M?[1 — (1 —2¢/M>*)/?], (6.15)
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6.4. Arbitrary Amplitude Solitary Waves

with the shorthand p = n,0 = Npo/Neo being the normalized equilibrium positron den-
sity |Pakzad, 2009], and the charge neutrality condition (in the form) neo = npo+mnio (with
neo = 1) has been used. For Maxwellian electrons (8 = 0 or a = 0), Eq. (6.15) reduces to
Eq. (10) of Popel et al. [1995].

As a necessary (but not sufficient) condition for the existence of solitons (or double
layers), we require that W”(0, M) < 0 must hold. This condition leads to the soliton

requirement [Pakzad, 2009]
(1—-p)
VI=F+po’

where Mj is the critical Mach number, equivalent to the acoustic phase velocity of the

M > M, = (6.16)

wave, obtained from W”(0, M) = 0. Similarly, in the case of Maxwellian electrons (with
B =0), Eq. (6.16) is the same as Eq. (12) of Popel et al. [1995]. We can easily confirm that
Popel’s result (M decreases with increasing p) for 5 = 0 applies for all values of 5. We

—1/2 'increasing

note also that the value p = 0 implies an electron-ion plasma; My — (1—7)
as f increases, with a minimum value My = 1, as expected for a Maxwellian distribution.
On the other hand, for p = 1 we have a pure electron-positron plasma, ion-acoustic waves
cannot be supported, and M; — 0.

If, instead of using Eq. (6.5) for the normalized ion density, we use the alternative

normalization, (6.6), in Poisson’s equation, the Sagdeev potential becomes

(o, M) ={(1+38) — [1 + B3 — 36 + )] exp(@)} + £ [1 = exp(~p0)]

+%M2u (1 2y /M) ) (6.17)

Therefore in this case, the lower Mach number limit for the existence domain of solitons

or double layers becomes [Pakzad, 2009]

pt4/(1=p)

M > M; = eyt

(6.18)

where the factor /zz in (6.16) is a result of the different normalization used here. In
particular, with the transformation M2 — (u)'/2M?, we get Eq. (6.16).
The lower bounding curves for solitons in Figs. 6.1 and 6.2 were obtained analytically

using Eq. (6.16). However, the upper bounding curves were obtained numerically by sub-
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stituting the upper soliton potential limit ¢;; = M?/2 in Eq. (6.15), and solving for M (p)

for given values of 3.
6.4.1 Numerical Results and Discussion

With the help of the Sagdeev potential in Eq. (6.15) we are in a position to delineate
existence domains of solitons supported by the plasma model. First, the positron and
electron densities are well behaved for all ¢. However, it is easy to see from the ion density
relation in Eq. (6.5) that the ions are infinitely compressed (n; — oo) when ¢ — ¢ =
M?/2 > 0. Since ¢y; > 0 for all M > 0, it implies that the existence of positive potential
solitons require S(¢y;, M) > 0 with the upper limit on M obtained at ¥(¢y, M) = 0.
Negative solitons, if they exist, could be limited by double layers, for which we require the
relation U (pg, My) = V'(da, Mg) = 0, where My and ¢g are the Mach number and
potential amplitude corresponding to the negative double layer, respectively.

Assuming equal positron and electron temperatures (o = 1), Pakzad [2009] showed
typical Sagdeev potential plots in his Figs. 1 and 2 for p = 0.01 and different values of 3
but for the same Mach number. Thus, Pakzad [2009] showed that the soliton amplitude
decreases with increasing 5. However, his results for 5 = 0.6 (and M = 1.45) can not lead
to a soliton solution, as that Mach number falls below M, ~ 1.554. Closer examination of
the Sagdeev potential would have revealed that very close to the origin there is a hump,
with ¥(¢) > 0, before it drops below zero, forming a well. As a result of the small positive
hump, the pseudo particle would never be able to reach the well, and no soliton exists. In
addition, as we have already pointed out, for § > 4/7 ~ 0.571, the Cairns distribution is
no longer appropriate as a steady-state distribution [Verheest and Pillay, 2008a; Verheest,
2010a).

In Fig. 6.1 (left panel) we show a plot of the Mach number M versus p for a plasma with
positrons having the same temperature as the electrons, and § = 0.5. The graph shows
that positive potential solitons exist for the full range of p, bounded by the continuous
and dotted green curves. These positive solitons are limited by infinite compression of the
ion density (n; — oo), that is, positive solitons have amplitudes less than ¢;; = M?/2. In
addition, we also observe negative solitons limited by double layers for a narrow range in

p (p < 0.05), bounded by the dashed red curve. Thus these negative solitons and double
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6.4. Arbitrary Amplitude Solitary Waves

layers occur only in a plasma which is essentially an electron-ion plasma with positron
impurity. In the allowable range of § (8 < 4/7), as we shall see below, we have only
found these negative solitary waves in a narrow range of 8 and p. These were not reported
by Pakzad [2009].

In the right panel of Fig. 6.1 we show only positive potential solitons for different
values of 3: dotted (8 = 0.5), dashed (8 = 0.3) and continuous (5 = 0.1), respectively.
The graphs show that the variation of § has only a quantitative effect on the existence
domain of positive solitons, with the domain becoming a little narrower as 3 increases. In
addition, for fixed p in the range 0 < p < 1, both the lower and upper Mach number limits
for the existence domain increases as 3 increases; thus the normalized solitary wave speed
values also increase. We see that for p = 0 (a pure electron-ion plasma) and 5 = 0.1, the
range of M lies between 1.054 and 1.591, which is consistent with the standard range of
[1, 1.5852] that is well-known for the case of a plasma with Boltzmann electrons (8 = 0)
and fluid ions [Infeld and Rowlands, 2000].

15 15] e M=145 i
“‘\‘ \\'\’--\.:.-:7 BZO 5
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Mo M O =01
05! 05 L %
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Figure 6.1: Left panel: FExistence domain of solitons or double layers corresponding to
a plasma with equal positron and electron temperatures (o = 1) and § = 0.5. Positive
solitons are bounded by the green (solid and dotted) curves; Negative solitons (limited by
double layers) are bounded by the red dashed curve, occurring for low p = Npg/Neo values.
Right panel: Existence domain for positive potential solitons for different S values: dotted
(8 =0.5), dashed (8 = 0.3) and continuous (S = 0.1), respectively.

In Fig. 6.2 we show the existence domain of positive solitons, in the [M — ] plane, for
different values of p. For each value of p, the lower curves correspond to My (obtained using

Eq. (6.16)) while the upper curves correspond to the upper M limit, obtained numerically
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6. Ton-Acoustic Solitary Waves in an Electron-Positron-Ion (e-p-i) Plasma

by solving the expression S(¢y;, M) = 0. For the values of p used here (p = 0.1, 0.01, and
0.001) we confirm the results of Pakzad [2009] in his Fig. 4. In particular, our results show
that positive potential solitons exist for, say, 8 < 0.734 (p = 0.1), 8 < 0.626 (p = 0.01) and
B < 0.616 (p = 0.001), respectively, which agree with those of Pakzad [2009] in his Fig. 5.
While these results show critical upper limits in S for the existence of positive potential
solitons, they all correspond to 8 > 4/7, and hence, as we have seen earlier, are physically
inappropriate. Thus the existence domains are more correctly cut off at 5 = 0.57 as shown
in the figure.

We note that the calculations in Figs. 6.1 and 6.2 have been only for T, = T),. It is phys-
ically reasonable to assume this as a first approximation because of rapid thermalization

of the leptons. We shall consider some aspects of T, # T}, below.
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Figure 6.2: Existence domain of positive potential solitons, in the (M — ) plane, for
different values of p; p = 0.1 (dotted), p = 0.01 (solid), and p = 0.001 (dashed). Solitons
exist for 8 < 0.734 (p = 0.1), B < 0.626 (p = 0.01) and 8 < 0.616 (p = 0.001).

6.4.2 Critical Composition

In recent studies on solitary waves discussed in Chapters 4 and 5 [Baluku et al., 2010a,b],
and in [Verheest et al., 2010, as well as in [Verheest and Hellberg, 2010], it has been
found that the sign of ¥"”(¢ = 0, M;) for a particular plasma configuration can aid in
understanding the sign of the solitons, and whether “coexistence of solitons” is supported
by the plasma model. In addition, if W(¢, M) has a finite amplitude soliton, then for

the same plasma parameters, Sagdeev potentials corresponding to M > M, will result in
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solitons of both polarity.
From Eq. (6.15) the third derivative of the Sagdeev potential ¥(¢, M) evaluated at
¢ =0 and M = M is given by

31— B+po)

"0, M) =po?—1+ T

(6.19)

In the limit p — 0, ¥ (0, M) = 332 — 63 + 2, which gives the critical values of 3 as
Ber = (3 —1/3)/3 ~0.423 and S = (3 + v/3)/3 ~ 1.577. However, from the definition of
B, i.e., f =4a/(1+4 3a), the maximum allowable value of 8 is § = 4/3 ~ 1.333. The latter
value (B.2) is inappropriate as it exceeds this allowed upper limit. We note that p — 0
yields an e-i plasma and thus S could then play the role of the critical parameter f which
we encountered in previous chapters.

Figure 6.3 (upper panel) shows a plot of p versus (8 satisfying ¥ (0, M) = 0, for
different values of o < 1 (T, < T},). The lower panel shows a small range of the figure in
the upper panel. For 0 < o < 1, U"/(0, My) is negative (positive) below (above) the curve
corresponding to a particular value of o. Note that for 5 < 8.1 we have U (0, M) > 0 for
all values of p > 0, implying that “KdV-like” solitons? (whose amplitudes vanish at M)
supported for such values of 8 will have positive polarity; and if negative solitons exist for
some values of p, they will be nonKdV-like with nonzero amplitudes at M [Baluku et al.,
2010a,b; Verheest, 2010a; Verheest et al., 2010]. Figure 6.3 (upper panel) thus shows that
for the physically appropriate § range (5 < 4/7), negative potential “KdV-like” solitons
(or double layers) exist only for very low values of p (less than about 0.2 for o > 0.5).
For fixed (3, the range of p having negative solitary waves, decreases as ¢ increases and
becomes negligible for T, significantly greater than 7.

On the other hand, for a particular value of p, negative solitary structures occur for the
range 51 < [ < 4/3, where (1, which may be less than or greater than /3.; depending on
the value of p, is the lower § cutoff at which the Mach number (M) corresponding to a
negative double layer equals M;. In the case of 81 < .1, the occurrence of these negative
solitons or double layers would require a very small proportion of positrons (p values very

close to 0), and are nonKdV-like.

24K dV-like” solitons have amplitudes that go to zero as M goes to M, while “nonKdV-like” solitons
have finite nonzero amplitudes at M.
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Figure 6.3: Upper panel: Curves for ¥ (¢ = 0, M = M) = 0 giving p = p. for different
values of ¢ = T,,/T,. Under the curves, ¥"(¢ = 0, M = M) < 0 and outside the curves
V" (¢ =0, M = Ms) > 0. The sign of W(¢ =0, M = Mj) corresponds to the sign of the
“KdV-like” solitons. Lower panel: Similar to the upper panel, here showing a small range
of p and .

Evaluating ¥"'(0, M) = 0 from Eq. (6.19), for § = 0.5 and o = 1, one finds a critical
value of p, i.e., p. >~ 0.04904. Typical examples of the Sagdeev potential curves are shown
in Fig. 6.4 for p = 0.03 < p. (upper panel) and p = 0.0494 > p. (lower panel). For p = 0.03
we have U/ (¢ =0, M) =0, " (¢ =0, M) <0, and obtain a positive soliton at My with
finite amplitude ¢ ~ 0.5 (upper left panel). With a small increment in M of about 0.015 we
also find a negative soliton of amplitude |¢| ~ 0.35 (upper right panel), while the positive
soliton has increased to ¢ ~ 0.6. Thus this is a region where the two soliton polarities may
coexist. In addition, if we increase M to M = M, + 0.019 = 1.372, a negative potential

double layer, of amplitude |¢| ~ 0.573 can be obtained (not shown). Choosing a value
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of p > p. (we consider p = 0.0494 in the lower panel), we show a finite negative soliton
(|| =~ 0.058, lower left panel) obtained at M, with ¥’ (¢, M) = 0, " (¢ =0, M) > 0,
but there is no positive soliton. Finally, at M ~ M;+0.000018 (lower right panel) we get a
negative double layer (|¢| ~ 0.11) and a positive soliton (¢ ~ 0.016), again demonstrating
coexistence. The examples in Fig. 6.4 show that the existence of a finite positive (or
negative) roots of S(¢, M) implies that neighbouring Sagdeev potentials have solitons of

both polarities [Verheest et al., 2010].
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Figure 6.4: Typical Sagdeev potential curves for 0 = 1, § = 0.5, and p = 0.03 < p. =
0.04904 (upper panel) and p = 0.0494 > p. (lower panel). The left panel curves show
Sagdeev potential curves at M = M, while the right panel curves are for M, + 0.015
(upper right panel) with two solitons (one large and the other very small), and for M =
M+ 0.000018 (lower right panel) showing a negative double layer and a positive soliton.

6.5 Summary and Remarks

We have studied ion-acoustic solitary waves in an e-p-i plasma using the Sagdeev po-
tential approach. This work is an extension of Pakzad [2009]. As shown in Fig. 1.2, the
nonthermal particle distribution is multi-humped for values of § > 4/7, and therefore is
then inappropriate to use as a stable non-Maxwellian distribution. Possibly another form
of nonthermal distribution, such as a kappa distribution, may be used instead.

We have found (Fig. 6.2) that in addition to positive potential ion-acoustic solitons

which are supported over the full range of fractional positron density, negative potential
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solitons can be supported over a very limited range of low positron density (p < 0.05), and
are limited by double layers. These negative solitary waves were not reported by Pakzad
[2009].

In addition, our results show that in the region where both positive and negative poten-
tial solitons may be supported by the same plasma configuration, finite solitary structures
can be obtained at the critical (minimum) Mach number, i.e., at the true ion-acoustic
speed of the plasma mix.

For some plasma configuration, with a specific value of 5, there exists a critical value
of the fractional positron density, p (denoted p.) at which ¥ (¢, M) = 0 for ¢ = 0 and
M = M;. For example, with ¢ = 1, we find p. ~ 0.01734 (8 = 0.45) and p. ~ 0.04904
(8=0.5).

If p. lies in the region where solitons of both polarity occur for the same plasma param-
eters, then for p < p. one gets negative “KdV-like” solitons and finite amplitude positive
potential “nonKdV-like” solitons. Similarly, for p > p. one obtains positive “KdV-like”
solitons that are of small amplitude and finite amplitude negative potential “nonKdV-like”
solitons

Lastly, for a particular value of p, the lower value of 8 supporting negative potential
solitons or double layers corresponds to the double layer Mach number My being equal to

Ms.
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CHAPTER [

lon-Acoustic Solitary Waves in a Plasma With Two-Temperature Electrons

In this chapter we use fluid equations to study ion-acoustic solitons in two temperature
electron plasmas consisting of cold inertial ions, and cool and hot Boltzmann electrons.
Though such a plasma model has been studied in the past by a number of authors, our
further investigations have revealed new results that are presented in this work.

The results presented in this Chapter have been published as Baluku et al.,
Europhysics Letters 91, 15001 (2010)

7.1 Introduction

Using a plasma with a single electron component, Washimi and Taniuti [1966] dis-
cussed the one-dimensional long-time asymptotic behaviour of ion-acoustic waves of small
but finite amplitudes using the Korteweg-de Vries (KdV) equation. They showed that the
width of the solitary wave becomes larger for small amplitude, implying that steepening
of the wave due to the weak nonlinearity is balanced by the dispersion in long wavelength
for the weak solitary wave to be formed. Ion-acoustic solitary waves in a two-temperature
plasma have been studied by a number of authors in the past [Buti, 1980; Nishihara and
Tajiri, 1981; Baboolal et al., 1990; Ghosh et al., 1996]. Nishihara and Tajiri [1981] then
considered a two-electron temperature plasma with both hot and cool electron components

using fluid equations. Here, they showed that there are two regions of wave propagation
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in the plasma model: the normal propagation and the anomalous propagation, where the
anomalous propagation property is characterized by the steepening of the wave so as to
decrease the density. Nishihara and Tajiri [1981] also showed that for a certain parame-
ter region, finite amplitude rarefactive and compressive ion-acoustic solitons can both be
supported (loosely, “coexist”) in the plasma, with the small amplitude rarefactive (or com-
pressive) solitons existing only in the plasma configuration having anomalous (or normal)
propagation properties. As will be seen in Sec. 7.3, in the terminology of the Sagdeev
potential [Sagdeev, 1966], the two regions are separated by a curved surface obtained for
parameters at which both the second and third derivatives of the Sagdeev potential vanish
at the origin.

As the terminology “compressive” and “rarefactive” is not well-defined in a multi-fluid
plasma, we point out that in this model, rarefactive solitons have negative potential while
compressive solitons have positive potential. In this work we show that in the region of
“coexistence”; if the negative solitons have amplitudes that vanish at the acoustic speed, as
for Korteweg-de Vries (KdV) solitons [Swanson, 2003], then the positive solitons have finite
amplitude at the acoustic speed, which cannot be obtained from the KdV description.

In plasma models where large amplitude solitons can exist, the reductive perturbation
analysis, which leads to a KdV equation and weakly nonlinear solitons, is not appropriate.
The Sagdeev approach [Sagdeev, 1966| is a useful tool in seeking solutions of arbitrary
amplitude nonlinear solitary wave structures, far beyond the KdV results.

Using the Sagdeev approach, Baboolal et al. [1990] investigated the cutoff conditions
for the existence of large amplitude ion-acoustic solitons and double layers in fluid plas-
mas consisting, e.g., of two Boltzmann electron species (hot and cool) and a single cold
ion species. They found that below a temperature threshold, both positive and negative
potential solitons existed for an intermediate range of cool electron density ratio, with
the negative solitons limited by double layers. Elsewhere, only positive potential solitons
occurred. In addition, in the “coexistence” region, finite (nonzero) amplitude positive po-
tential solitons were obtained at the critical Mach number M, equivalent to the acoustic
speed, but they did not comment on them.

In this work we investigate these finite amplitude results at M in detail, and also report

that positive double layers can also be supported by the plasma model for a restricted range
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of cool electron densities. For a range of cool electron densities where these positive double
layers can exist, we also obtain solitons having Mach numbers exceeding those supporting
double layers, i.e., the Mach numbers corresponding to double layers don’t act as an upper

Mach number limit, as expected.

7.2 Plasma Model and Basic Equations

We consider a plasma model consisting of two Boltzmann electron components, one hot
(temperature T}, density np) and the other cool (temperature T, density n.), and cold
inertial fluid ions that are singly charged. Such a model has been discussed by a number of
authors [Buti, 1980; Nishihara and Tajiri, 1981; Baboolal et al., 1990; Ghosh et al., 1996],
where Ghosh et al. [1996] used a plasma model with warm fluid ions instead.

The normalized densities of the cool and hot electrons are, respectively, given by

ne(@) = f exp(acg) and (7.1)
na(6) = (1 = fexp(ang), (7.2)

where f = Neo/Njo with Njg = Neog = Neo + Nio, Njo (j = ¢, h, i) being the equilibrium
densities; 1/a. = T./Ter and 1/ay, = Ty /Tenr; and ¢ is the electrostatic potential, normal-
ized to KpTur/e. Here, Kp and e are the usual Boltzmann constant and electronic charge,
respectively, while T, is an effective electron temperature defined by Teg = T, /[f+(1—f)7],
in terms of the temperature ratio 7 = T./T},. Of course, n, will play a role only when
ayp # 0, and hence 7 # 0.

The density of the cold ions is given by

ni(¢) = (1 —2¢/M?)~"/2, (7.3)

where M is the Mach number, which gives the velocity of the solitary structures, normalized
to the acoustic speed Cs = (KBTeﬁ‘/mi)l/z, m; being the mass of the ions.

In the Sagdeev approach [Sagdeev, 1966|, the simple traveling waves satisfying Eq. (7.5)
are solitary waves which are stationary in a frame moving with a velocity, M. Transforming

to a moving frame with position & = x — Mt, the species’ densities are coupled by Poisson’s
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equation to give
d*¢

ae2 + G(¢) =0, (7.4)

where G(¢) is the sum of the species’ densities.

After an integration, Eq. (7.4) can be expressed in the form of an energy integral [Sagdeev,

1966]
1 /do\?
ol V(b M) = )
5 (G) + v an =0, (7.5)
where W(p, M) = —f0¢ G(¢)d¢ is the pseudopotential or the Sagdeev potential of the

plasma system.

In obtaining the expression for the Sagdeev potential W(¢, M), following from Eq. (7.5),
we ensure that W(¢, M) and its derivative (with respect to the potential ¢) vanish at the
origin ¢ = 0. The former, ¥(¢, M) = 0 for ¢ = 0 ensures that the boundary conditions are
satisfied in the integration while the latter (the vanishing of the derivative of the Sagdeev
potential at the origin) ensures that the overall charge neutrality is zero in the absence of
disturbances.

Thus the Sagdeev potential in Eq. (7.5) takes the form

w6, M) = L1 - el + I eplane) + 120 - VT 267802). (70

h

As a prerequisite for the formation of solitary structures, the origin should be a local
(unstable) maximum, which condition is usually interpreted as requiring that W” (0, M) < 0
(where the prime denotes differentiation with ¢). This condition leads to super-acoustic
waves with M > My, = 1, where M, is the normalized acoustic linear phase velocity,
obtained from ¥”(0, M) = 0.

Though the general practice has been that the existence of solitons requires M > M,
recent investigations [Baluku et al., 2010a,b; Baluku and Hellberg, 2010; Verheest, 2010a;
Verheest et al., 2010] have shown that solitons can have finite amplitudes at M in the
parameter regime where solitons of both polarity exist. In these cases ¥”(0, M) = 0: the
origin is a triple root such that the convexity condition is provided by the third derivative
of W(¢, M). With a triple root at the origin, in the presence of positive (negative) potential

solitons, the origin is unstable (stable) for ¢ > 0 (¢ < 0) but stable (unstable) for ¢ < 0
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(¢ >0).

In some instances the Mach number M may have an upper limit such that solitary
structures will occur for a limited range in M, and in other instances, M is unbounded
such that solitary structures can occur for all M > My; the equality sign only applies to
particular plasma parameters in the region where both signs of potential can be supported.
The constraints leading to the upper limit on M may be due to a number of factors such
as, ensuring that the species densities remain real and nonzero, existence of sonic points, or
by the occurrence of double layers if both solitary structures are supported by the plasma
model in question.

For this model positive potential solitons are limited by infinite compression of the
inertial ions, reached when ¢ — ¢; = M?/2, thus leading to a sufficient condition
U(M?%/2, M) > 0. However, depending on the value of the temperature ratio 7, posi-
tive potential double layers are also possible for a limited range in f. On the other hand,
negative potential solitons are limited by double layers.

We shall now investigate the existence domain for the solitons and double layers that
may be supported by this model.

From Eq. (7.6), the third derivative of U(¢, M) at the origin (¢ = 0) for M = M, is
given by

\I]”/(O, Ms) —3_ f _ (1 - f) (77)

(rA=H+f2 A=f+f/7)*

If ¥(0, M) = 0, then for fixed 7, Eq. (7.7) gives the critical values of the cool electron

density as
(1—57) (1 — 107 4 72)1/2
6(1—1) ’

Je,2 = (7.8)

provided 7 # 1. Here, f.1 and f.o are the lower and upper values of the critical density given
by the minus and plus signs in Eq. (7.8), respectively, and are real provided 72—107+1 > 0,
leading to a critical value of 7.

Thus, the existence of a finite, non complex critical density ratio f = f. requires
7 < 7.1, where 7.1 = (5 — 2v/6) ~ 0.10102, that is, T}, > (5 + 2v/6) T ~ 9.89898 T, as was
reported by Bezzerides et al. [1978] for rarefactive shocks in laser plasmas. At 7 = 71, the
roots f.1 and feo in (7.8) coalesce into a single root f. &~ 0.092. In addition, when 7 — 0

we have f.q — 0 and f.o — 1/3. However, with the choice of normalization, when 7 — 0,
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T./Teg — f and T} /Teg — oo. Such super hot conditions cannot be achieved in physical
plasma situations, and, moreover, the model then breaks down.
The critical density f. can also be obtained from the KdV description in the following

way. Here we consider a normalized KdV equation of the form

do do  d’¢ _

where the second term describes the nonlinearity while the third term describes dispersion
or dissipation. In obtaining Eq. (7.9) we have used the stretched coordinates x = €'/?(z —
M,t) and ¢ = €3/2t, where M, is the phase velocity normalized to Cs, and € is a smallness
parameter. The constants A and B in Eq. (7.9), involve the equilibrium density and
temperature ratios, besides other parameters in the plasma model. In particular, it can

easily be shown (see Chap. 5) that for this model

A= Qa1 ) Q=3 anfoly and 710

B=a_"*(1+3raq)""2, (7.11)

where a1 = ) TeNogo/Neo; 2 = Y 72Nyo/Neo; 7s = T./Ts, with s = ¢, h for the cool
or hot electron constituent. Note that 7. =1 and 7, = T./T}, = 7.

Solutions to Eq. (7.9) are valid only for A # 0. However, when A — 0, the balance
between the nonlinearity and dispersion is not maintained for the solitary structures to
propagate. The critical density f. is then obtained by solving the equation A = 0 for
f. For this particular model, it is clear from Eq. (7.10) that A = 0 when @ = 0. It
also follows that @ = ¥"”(0, M) in Eq. (7.7), and hence the same critical f. are found
as those in Eq. (7.8) above. We point out that the expression @ reduces to Eq. (2.12)
of Tajiri and Nishihara [1985]. Using an analogous three component plasm model with
contaminating negative ions (instead of the cool electron component), Nakamura et al.
[1985] experimentally observed a positive pulse, that propagated like a linear wave without
change of its shape (except by damping), at the critical parameters for which the nonlinear

coefficient A in the KdV equation vanished.
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Figure 7.1: Variation of the critical density fraction, f., with 7. Along the curve,
U0, M) = 0. Inside the curve, ¥"”(0, M) < 0 while outside the curve, ¥"”(0, M) > 0.
Here, f.1 = feo at the critical temperature ratio 7.; = 5 — 21/6.

7.3 Numerical Results and Discussion

In Fig. 7.1 we show the variation of f. with temperature ratio 7, using Eq. (7.8). Along
the curve we have W"”'(0, M) = 0; inside the curve W (0, M) < 0, and outside the curve
U0, Ms) > 0. Figure 7.1 is similar to Fig. 3, curve labeled B, of Nishihara and Tajiri
[1981] (see also Tajiri and Nishihara [1985]) and Fig. 2 of Bezzerides et al. [1978], although
in the latter, only one solution of f. is shown. The region bounded by ¥ (0, M) < 0
is what is referred to as the region of anomalous propagation in Bezzerides et al. [1978]
and Nishihara and Tajiri [1981], while the other region with U"/(0, M) > 0 is the region

of normal propagation.
731 7>7,=5-2V6

To begin with, we consider a value of 7 that is above 7.1 = 5 — 2v/6 ~ 0.10102, i.e.,
where ¥(0, M) > 0 for all f. Here an example is shown in Fig. 7.2, with 7 = 1/5. Only
positive potential solitons limited by the ion density constraint (¢ < ¢;; = M?/2) are
supported by the model; The curve shows the Mach number (M = Mj;) that gives the

maximum amplitude limit due to the ion density constraint (¢;;) at which (¢, M) = 0.
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Positive potential double layers do not exist, and negative potential solitons or double layers
are not supported. For these positive potential solitons, at f = 0 or f = 1, corresponding
to a simple plasma with isothermal (Boltzmann) electrons and cold fluid ions, we recover
the usual range [Infeld and Rowlands, 2000, p. 125] 1 < M < 1.5852. The nature of these
positive solitons, having the sign of (0, M), is that their amplitudes tend to zero as M
approaches M. Basically for 7 > 7.1 only positive potential solitons exist, as reported, for
example, by Baboolal et al. [1990].

Figure 7.2 also shows that the maximum Mach number associated with positive solitons
first decrease as f increases from f = 0, up to an intermediate value of f corresponding
to the dip in the curve, beyond which the maximum Mach number increases with f up to
f = 1. We have carried out some calculations and found that as 7 decreases, the dip on
the curve occurs for lower M values, and reaches My = 1 at critical 7 value 7.9 = 0.075, for
f = 0.0212. Therefore, for 7 < 7.9, there is a range in f where any possible positive solitons
that may exist, cannot be limited by the ion density constraint. If they are nevertheless
to exist there, they must be limited by positive potential double layers. This point will be

illustrated by some examples below.

1.6
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f
Figure 7.2: Existence domain of ion-acoustic solitons for 7 = 1/5 > 7.1. Positive potential
solitons exist for the entire range of f from 0 to 1, and are bounded by the dashed blue

curve.

7.3.2 To,>~007<7<74

For the next example we consider a value of 7 in the range 7.0 < 7 < 7.;. In this

range, ¥ (0, M) < 0 for some f, but ion density-limited positive solitons do still occur
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for all 0 < f < 1. For this purpose we first choose 7 = 0.09 for discussion. In Fig. 7.3 we
present the existence domain (left panel) and soliton potentials at M = M, (right panel)
for 7 = 0.09. The continuous (blue) curve is the upper limit for positive solitons. The
dashed (blue) curve represents positive double layers for f < f.1, while the dotted (red)
curve shows negative double layers (for f.; < f < fy,), that limit negative solitons. We
note that f.; is the boundary between the two double layer polarities, and here it is also
the lower limit for the existence of negative solitons. For f > f,, only positive solitons
are supported. Thus, we see in Fig. 7.3 (left panel) that positive and negative solitons are
both supported (“coexist”) over the range f.; < f < fn. This region, bounding negative
potential double layers, is analogous to that corresponding to rarefactive shocks in Fig. 3
of Bezzerides et al. [1978]. We also observe from Fig. 7.3 (left panel) that the other value
of fe (fe2 = 0.161) lies in the “coexistence” region. In addition, there is a suprising set of
solitons (limited by the ions, bounded by the continuous blue curve in Fig. 7.3, left panel)
that occur beyond the positive potential double layers [Baluku and Hellberg, 2010], i.e.,

at values M > My, where My is the Mach number of the positive double layer. These

[ / ] os, ..
120} 7=0.09 : I fp f |
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Figure 7.3: Left panel: Existence domain of ion-acoustic solitons for 7 = 0.09. Right panel:
Typical soliton potential amplitude at the lowest Mach number M = 1 covering the range
of f for “co-existence” of solitons of both polarities, shown in the left panel graph. Here
fe1 = 0.041, foo ~0.161 and f,, ~ 0.225.

positive double layers were not reported by the authors that have looked at this plasma
model [Buti, 1980; Nishihara and Tajiri, 1981; Baboolal et al., 1990]. However, using a

fluid-dynamical approach, Verheest et al. [2006] showed that positive double layers that are
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very weakly super-ion-acoustic, could be supported at small values of f in a two-electron
temperature plasma with isothermal electron components. Note that at f = 0, other than
at the origin (¢ = 0), the double layer requirements ¥(¢, M) = 0 and V'(¢, M) = 0 are
not satisfied.

In the right panel of Fig. 7.3 we show the variation of soliton amplitude ¢¢ (at M = M)
with cool electron density f, over the interval [f.1, fn]. The continuous curve represents
negative solitons, the dotted curve, positive solitons. The figure shows that between f.; and
fe2, negative solitons have zero amplitude at My, (i.e., they are KdV-like) while positive
solitons have finite nonzero amplitudes at M; (i.e., they are nonKdV-like). These proper-
ties reverse for for f.o < f < f,. Results similar to those in Fig. 7.3 (right panel) were also
found for dust ion-acoustic solitons in a plasma with kappa-distributed electrons [Baluku
et al., 2010al.

We have already observed from Fig. 7.3 (left panel) that in the region where positive
double layers can be obtained, for a given value of f, one can get solitons for Mach numbers
that lie above those corresponding to the positive double layers.

Figure 7.4 shows the variation of soliton amplitude with M for fixed f (left panel),
and the corresponding typical Sagdeev potential curves (right panel). In the left panel
of Fig. 7.4, the end points of the lower curves for the different density ratios f give the
amplitudes and Mach numbers of the positive double layers; after which there is a ‘jump’
in amplitude between the double layers and the next set of solitons (that are limited by
the ions, that is, those solitons whose amplitude must not exceed ¢;; = M?/2, to ensure
that the ion density remains real). In the right panel of Fig. 7.4 all the Sagdeev potential
curves (A — F') have a double root at the origin; the soliton curves A, B and D — F have
a single root outside the origin, and the double layer curve C has another double root
outside the origin and an inaccessible single root beyond the double root. Such solitons
forming beyond double layers for the same plasma composition (with M > M) were also
reported by Verheest [2009] in nonthermal plasmas consisting of cold fluid positive and
negative dust particles and Cairns distributed electrons and ions (see his Fig. 4 and the
discussion accompanying it).

In Fig. 7.5, we show typical soliton potential profiles (left panel) for the parameters

in Fig. 7.4. Solitons below the double layer (with M < My;) are bell-shaped while those
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Figure 7.4: Left panel: Soliton amplitude variation with M for 7 = 0.09, and f = 0.01
(continuous curves), f = 0.02 (dashed curves) and f = 0.03 (dotted curves), respectively.
Right panel: Typical Sagdeev curves corresponding to the results in the left panel with
f =0.01 and different Mach numbers, both below and above My where Mg ~ 1.0345 is
the Mach number that gives the positive double layer marked C. Other values of M are
1.033 (A), 1.034 (B), 1.036 (D), 1.04 (E) and 1.05 (F).

with M > My have a spiky shape. In Fig. 7.5 (right panel) we also show the phase space
curves [Sagdeev, 1966; Infeld and Rowlands, 2000| for the Mach numbers used in Fig. 7.4.
The figure shows that the amplitude size increases as M increases, and beyond the double
layer, solitons have a flattened edge at the maximum potential while the double layer curve
has an inaccessible extended closed lobe. The curves beyond the double layer correspond
to the soliton curves D — F' in Fig. 7.4 (right panel).

Though we have given results for 7 = 0.09, we have also looked at other values of 7
(especially close to 7.1 =~ 0.10102, such as 7 = 0.10 (Fig. 7.6, upper panel) and 7 = 0.101
(not shown). In these cases we get the same trend of results as those discussed for 7 = 0.09:
a “coexistence region” between f.; and f,, and below f.;, positive potential double layers
are also supported, i.e., f.1 separates negative from positive double layers.

As 7 approaches 7.1, the region of coexistence becomes very narrow, and the associated
My, are very close to M. For instance, the largest Mach number at which negative double
layers occur are M ~ 1.014041 (for 7 = 0.009, see Fig. 7.3), M = M, ~ 1.000374 (for
7 = 0.1, see Fig. 7.6) and M ~ 1.000001075 (for 7 = 0.101, not shown), which is very close
to Ms = 1. The region (of coexistence) eventually vanishes at 7 = 7.1, when f. and feo

merge at f =~ 0.092 (see Fig. 7.1). In other words, negative potential solitons or double
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Figure 7.5: Upper panel: Typical soliton pulse curves corresponding to 7 = 0.09, f = 0.01
in Fig. 7.4 for different Mach numbers, both below and above the positive double layer:
M = 1.033 (A), 1.034 (B), 1.036 (D), 1.04 (E) and 1.05 (F). Lower panel: Phase space

curves for the parameters in (the right panel) Fig. 7.4. The innermost curve correspond to
A and the outermost one to F (labels in Fig. 7.4).

layers exist only for 7 < 71.
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Figure 7.6: Existence domain (left panel) of ion-acoustic solitons, and soliton amplitudes at

M = M for the values of f encompassing the coexistence region (right panel), for 7 = 0.1.
Here, f.1 =~ 0.0741 and f.o ~ 0.1111.

7.3.3 T <Tn>~0.075

In the next examples we consider cases where 7 is less than 7.5. Here we look at three
specific cases, that is, 7 = 1/15 ~ 0.067, 7 = 1/30 =~ 0.033 and 7 = 1/100 = 0.01. As
the dip in the curve of Fig. 7.2 drops below My, it yields two apparent ion density cutoffs,

viz., fp1, close to f =0, and f,2, the new lower limit of the coexistence region, satisfying

fp2 > fe1. However, as we shall see, f,1 plays no physical role.
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Figure 7.7: Existence domain of ion-acoustic solitons for 7 =

f

f

1/15 (upper left panel)

and amplitude variation with f at M = M, (upper right panel), with f.; = 0.0153,
feo = 0.2228, f,, = 0.3786 and fp2 = 0.0516. Only positive solitons exist for f > f, and
f < fe1, both positive and negative potential solitons exist between fp2 and f,,, and only
negative potential solitons exist between f.; and f,2. The lower panel shows the existence
domain for values of f close to f.;. In the lower panel, f, ~ 0.0012 and f,1 ~ 0.0044. For
f« < [ < fp1, the occurrence of positive potential double layers dominate over the ion limit
condition ¢ < ¢y; = M?/2 in providing a limitation on the existence of positive potential
solitons, and the reverse is true for f < f,.

Figure 7.7 (upper left panel) shows the existence domain for 7 = 1/15 ~ 0.067, with
the range f < fe1 clearly shown in more detail in the lower panels. Between 0 and f.q
only positive solitons and double layers are found; for f. < f < f,2 only negative double
layers and solitons occur; fp2 < f < f, is the coexistence region, and f, < f < 1 supports

positive solitons. The upper right panel, which is analogous to Fig. 7.3 (right panel), shows
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a plot of the soliton amplitude at M = M, = 1 versus density ratio f in the “coexistence”
region. The figure also shows that in the region of “coexistence” the potentials of the
two soliton types vanish at M = M, and f = f.o: below (above) f.o, positive (negative)
solitons have finite amplitudes at My while above (below) f.2, negative (positive) solitons
have finite amplitudes at M;, as was obtained with 7 = 0.09 and 7 = 0.1 [see Figs. 7.3
and 7.6 (right panels)]. Note that the finite positive potential solitons at My = 1 do not
occur between fp2 and fe1, since in this range only negative potential solitons (that are
“KdV-like”) exist. As shown in the right lower panel of Fig. 7.7, we get positive double
layers in the very narrow range, 0 < f < fi =~ 0.002, with solitons beyond My, but they
are limited by the ion density (continuous curve), as in Fig. 7.4. At f = f,, the double
layer at Mg = My has ¢gq < ¢p;. Despite the presence of the ion constraint curve in
fe < f < fe1, it represents a spurious root, and positive solitons are limited by double
layers (dashed curve). Thus f,; also plays no physical role.

Other aspects of our results in Fig. 7.8 are consistent with those of Baboolal et al.
[1990], where with 7 = 1/15 they showed that negative potential double layers exist for
the cool electron density ratio (f) roughly between 0.02 and 0.35 (see their Fig. 2(b)).
Compared to our case, this region lies between f.; ~ 0.015 and f, ~ 0.38. Similarly, in
the case of positive potential solitons, Baboolal et al. [1990] obtained results with finite
amplitudes at My = 1 for the range of f approximately between 0.1 and 0.25, although they
never commented on them. In our case they are in the range f,2 ~ 0.05 < f < feo ~ 0.22.
In the same way their results for 7 = 1/30 (see their Fig. 2(a)) are in agreement with ours,
as can be seen in Fig. 7.11 (right upper panel) for 7 = 1/30.

The top panel of Fig. 7.8 shows the variation of solitary wave amplitude with density
ratio f for 7 = 1/15. The continuous blue curve shows the maximum amplitude limit due
to the ions (¢;; = M?/2 at which W(¢y;, M) = 0). Thus amplitudes of positive potential
solitons limited by the ions need not exceed ¢;;. Likewise, the dashed blue curve and the
dotted red curve give the amplitudes of the positive and negative potential double layers,
respectively. For graphical purposes we have scaled up the amplitudes of the positive
double layers (x10) thus in interpreting these results, one has to bear that in mind. For
instance, when f < f, (see lower right panel of Fig. 7.7 or upper right panel of Fig. 7.8),

solitons are ultimately limited by the ion condition ¢ < ¢;; = M?/2 (and not by the
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Figure 7.8: Top panel (left): Variation of solitary structure amplitude with density ratio,
f for 7 = 1/15. Top panel (right): Similar to the figure on the left, now clearly showing
amplitudes for positive potential double layers for f < f.;. Bottom panel: Typical Sagdeev
potential plots for f = 0.0005 (just 0.05% contribution to density from the cool electrons)
on the left for three different Mach numbers, My ~ 1.1066, My = My — 0.0350 and
Ms = Mg +0.0075, with a positive double layer occurring at M = My, and for f = 0.003
on the right for My ~ 1.0346 (continuous curve), M; = My — 0.0035 (dashed curve) and
My = My + 0.0035 (dotted curve). Note that the double layer in the lower right panel

figure has amplitude less than ¢;; = M?/2, the latter corresponding to a Mach number at
which the ion density is infinitely compressed.

occurrence of double layers). The double layer amplitude in those cases is less that the
potential limit ¢;;, and solitons exist even beyond the double layer. A typical example is
shown in the left lower panel of Fig. 7.8 with Sagdeev potential curves for f = 0.0005 < f,
for three values of M, namely, My ~ 1.1066, My = My — 0.0350 and My = My + 0.0075.
At M = My we get a double layer with amplitude, ¢4 ~ 0.43. For M < My (M) we get
a soliton with amplitude ¢y ~ 0.23, and for M > My (Ms) we get a soliton with amplitude
oo ~ 0.62 > ¢g. It is also observed that there is a large jump in amplitude between the

double layer and the next set of solitons forming beyond the double layer, as was seen in
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Fig. 7.3 (right panel). However, in the other example shown in the lower right panel of
Fig. 7.8, for f = 0.003 > f, but less than fy, solitons are limited by the occurrence of
double layers (not by the ion limit constraint), and no solitons exist beyond the double
layer. For small 7, f, — 0, and positive solitons for f < f.; are limited by double layers
only. Though the cool electron density is very small (very low f), in the case of positive

double layers the resulting soliton/double layer amplitudes are significantly large.
Solitons for M > M;;?

At f = f., the Mach number M = My, corresponding to a positive double layer of
amplitude ¢g, is equivalent to M = Mj;, and satisfies W(¢y;, M) = 0, where ¢;; = M?/2
is the potential at which the ions become infinitely compressed. Thus, at f = f. we get a
double layer of amplitude ¢q < ¢y; for M = M;;. On the one hand, when 0 < f < f, we
have My < Mj;: solitons are limited by the ion limit constraint, and not by the occurrence
of double layers. Thus solitons exist even beyond the double layers, as was the case in
Fig. 7.4. On the other hand, when f, < f < fp1 we have My > M;;: solitons are limited
by the occurrence of double layers, and not by the ion limit constraint. Thus in the range

f < fp1, positive potential solitons are limited by the maximum of M;; and M.
Y(e)

0.001

—0.001 ST

—0.002}

~0.003"
Figure 7.9: Sagdeev potential curves for 7 = 1/15, f = f. ~ 0.001212, M;; = My ~

1.06925 (continuous curve), giving a double layer of amplitude ¢4 ~ 0.328 < ¢;; = 0.572.
The dotted and dashed curves are for M = My —0.005 and M = Mg + 0.005, respectively.

In understanding the behaviour of solitons in the region f. < f < fp1, we look at

Fig. 7.10 (left panel) showing Sagdeev potential curves for Mach numbers close to M = M;
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for f = 0.003, a value in the range f, < f < fp1 (similar to Fig. 7.8, lower right panel).
The ion limitation W(¢y; = M?/2, M) = 0 leads to M = Mj; ~ 1.01911, and therefore
o1 = Ml% /2 ~0.5193. In other words, infinite compression of the ion density at M = M;;
occurs at ¢ = ¢y;. The right panel of Fig. 7.10 is the same as the one on the left; here
we show the behaviour of ¥(¢, M) close to the value ¢ = ¢;; for which the ion density is
infinitely compressed when M = My;. Clearly, the right panel of Fig. 7.10 shows that for
M > My;, W(¢p, M) does not have a root in the vicinity of ¢;;. However, as the left panel
figure shows, for M > Mj; it is even possible that the density can remain finite such that
a root(s) of U(¢p, M) is (are) encountered in the range 0 < ¢ < ¢y;. Actually, even at M;;,
the ion density n;(¢) remains finite provided ¢ < ¢y;, and is complex for ¢ > ¢;;. Thus,
for the value of f = 0.003, a positive double layer occurs for M = My ~ 1.3458 > M,
with amplitude ¢4 ~ 0.2334. As seen from Fig 7.10, when M = M) we get a soliton
(first root of W(¢p, M) close to the origin) of amplitude ¢g ~ 0.09 < ¢;;. More roots of
U(¢p, M) close to the origin in the interval 0 < ¢ < ¢y; can also be obtained as M increases
beyond M;j;, leading to solitons, until a double layer, with amplitude ¢4 ~ 0.2334 < ¢y,
is encountered. These roots are shown in Table. 7.1. Beyond the double layer, U (¢, M)
has no roots, thus solitons in the range f, < f < f,1 are limited by double layers, and not
by the ion limitation constraint; They are “KdV-like” (have amplitudes that go to zero as
M approaches M), and lie outside the coexistence region (fp2 < f < fp). Note that fp;
exists only for 7 in the range given, approximately by 7.3 ~ 0.0394 < 7 < T2 =~ 0.075. In
this range we get the same behaviour of positive solitons as described in Fig. 7.8 (lower
panel) and Fig. 7.10. For 7 < 7.3, positive solitons that exist for f < f.; are limited by the
occurrence of positive double layers; positive solitons limited by the ion limit constraint
occur for fp2 < f < 1, and only negative solitons exist for f.; < f < fpo. The case for

T < T¢3 is discussed below, where we consider 7 = 1/30 and 7 = 1/100.
Case II: 7=1/30 and 7 = 1/100

In the upper left panels of Figs. 7.11 and 7.12 we show plots of the variation of M
and amplitude ¢ with f for both negative and positive solitons. Negative solitons are
bounded by double layers (red dotted curve labeled My ) and the size of the amplitude

of the negative double layers is indicated by the red dot-dashed curve (labeled |¢g| in
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Figure 7.10: Left panel: Sagdeev potential curves for 7 = 1/15, f = 0.003, lying between
[« and fp1, for Mach numbers very close to M;; ~ 1.019, the value of M at which n;(¢) is
infinitely compressed. Values of M used are: M = M;; — 0.005 (dotted curve), M = M;;
(continuous curve), M = M;; + 0.005 (dashed curve), M = M;; +0.01 (dot-dashed curve),
M = My ~ 1.03458 (long dashed curve) and M = Mg +0.005 (short dashed curve). Right
panel: Similar to left panel, now showing the behaviour of (¢, M) around ¢ = ¢y;.

M o1 Ph  Pos
M;; —0.010  0.039 0.373 0.508
M;; —0.005 0.062 0.356 0.514
M;; = 1.019 0.086 0.338 xx
Mi;; +0.005  0.113 0.318 xx
M;; +0.010  0.146  0.292 xx
Mg ~1.035 0.233 0.233 xx
Mg +0.005 xx XX XX

Table 7.1: Table showing roots (¢g) of ¥(¢, M) (all below ¢y; ~ 0.52) for values of M close
to Mj;, the Mach number corresponding to the ion limit, obtained from W(M?/2, M) = 0.
Roots with an asterisk are superfluous (inaccessible in the case of solitons as the soliton
conditions are not satisfied beyond the first root, ¢g1), and xz implies that the root does
not exist. Other parameters are 7 = 1/15 and f = 0.003, lying in the range f, < f < fp1.

Fig. 7.11 and 0.1|¢g| in Fig. 7.12, respectively). In other words, for a particular density
ratio f, negative solitons will have amplitudes less than ¢4. Similarly, positive potential
solitons (limited by the ions) are bounded by the continuous blue curve (labeled M;;) and
they have amplitudes less that ¢;; (dot-dashed blue curve).

The upper right panel plots in Figs. 7.11 and 7.12 are analogous to Fig. 7.3 (right
panel), showing the amplitudes at M = M. For clarity, the negative potential amplitude
at M for 7 = 1/100 in Fig. 7.12 is suppressed (i.e., the actual amplitude is 10 times what

is shown on the graph).

We also point out that as we reduce 7 to as low as 7 = 1/30 [Fig. 7.11 (upper)| or
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further to 7 = 1/100 (as in Fig. 7.12), f¢ lies very close to f = 0, and therefore can not be
differentiated from f = 0 as the range [0, f.1] becomes negligibly small, for example, see
the top panels of Fig. 7.11 and 7.12. Below f.1, only positive potential solitons (limited
by double layers) are supported. Their existence domains for 7 = 1/30 and 7 = 1/100 are
clearly shown in Figs. 7.11 and 7.12 [lower panels (left)], respectively, and the associated
double layer amplitudes are shown in the graphs on the right of the lower panels. As was
the case with 7 = 1/15, positive potential solitons do not occur for the full range of f
(from 0 to 1).

Another observation from Figs. 7.11 and 7.12 is that as we reduce 7 the Mach number
at which negative double layers occur (along the dotted red curves) increases, implying
that the amplitude of the double layer, for particular density ratio f, also increases. For
instance, with f = 0.3 the amplitude increases from |¢g4| = 2.9 (7 = 1/15) to |¢q| = 6.5
(tr = 1/30) and |pg| = 25 (7 = 1/100). Thus we can say that a plasma with two
temperature electron components, with a minimal contribution of cool electron density
supports negative potential solitons with very large amplitudes, in addition to positive
solitons limited by the ions. As can be seen in Fig. 7.11 and 7.12 (upper right panels),
negative solitons at M = M, are several units large.

When 7 = 0, negative double layers discussed for the cases 0 < 7 < 7, are no longer
supported, and thus negative solitons exist for unbounded Mach numbers. In addition,
positive potential solitons, bounded by the ion limit ¢ < ¢y; = M?/2, exist for fpo < f < 1,
and no positive potential double layers exist. This is due to the fact that for 7 — 0, f.1,
the lower value of f. goes to zero, as one may see from Eq. (7.8). However, as we mentioned

earlier, this is an unlikely physical situation since the model breaks down as 7 — 0.
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Figure 7.11: Upper left panel: Existence domain of ion-acoustic solitons for 7 = 1/30.
Between fp2 ~ 0.1115 and f,, ~ 0.59, both positive and negative potential solitons are
supported; between f.; ~ 0.0028 and fp2, only negative potential solitons are supported,
and elsewhere (f < f. and f > f,), only positive potential solitons (limited by double
layers) are supported. Upper right panel: Soliton amplitude variation at M = M with f in
the region of coexistence (between fp2 and f,). Lower panel: Similar to upper panel, now
showing the range of existence of positive double layers (lower left panel) and the associated
amplitudes (right left panel) in the region close to f.;. For 8 =1/30, f.o =~ 0.2846.
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Figure 7.12: Existence domain of ion-acoustic solitons (upper left panel) and amplitude
variation at M = M, with f in the coexistence region (upper right panel) for 7 = 1/100.
Lower panel: Similar to upper panel, now showing the existence of positive double layers
for f < fo1. Here, fo = 0.0002, feo =~ 0.3197, fp2 ~ 0.1433 and f,, = 0.7784.
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7.4 Conclusions and Chapter Summary

In this work we have revisited in detail the existence of ion-acoustic solitary waves in
a plasma with two isothermal electron components. Our results have confirmed a number
of earlier results |[Buti, 1980; Nishihara and Tajiri, 1981; Baboolal et al., 1990; Ghosh et
al., 1996; Verheest et al., 2006] and have also gone far beyond them.

We have plotted the curve (0, M) = 0 in the space of cool density fraction and tem-
perature ratio (i.e., f —7), and shown that it agrees with an earlier representation [Nishi-
hara and Tajiri, 1981], found by other means. At fixed 7 < 7, ~ 0.10102, it yields two
critical values of f (f.1 and f.o) which merge at 7 = 7.1.

Above 7.1, only positive potential solitons (which are limited by the ion density con-
straint) are supported, as for a simple electron-ion plasma, and no positive double layers
exist. These positive solitons are “KdV-like” in that their amplitudes tend to zero as M
approaches M.

For 0 < 7 < 7. both negative and positive potential double layers may occur over
limited ranges of cool electron density fraction f. The former are well-known [Baboolal
et al., 1990; Ghosh et al., 1996], and Verheest et al. [2006] previously identified a single
case of the latter. Our calculations show that positive double layers exist over a narrow
range f < f.1, while negative double layers occur for f. < f < fn, below a cut-off,
fn- Surprisingly, solitons may be obtained even beyond the positive double layer, i.e., for
M > My, accompanied by a jump in amplitude. Thus, depending on the temperature
ratio 7 = T, /Ty, we may, for low f, get two sets of positive solitons, one bounded by the
double layer limit, the other by the usual ion limit condition [Baboolal et al., 1990]. As
opposed to the usual bell-shape of the well-known positive solitons, the latter set have a
sharply-pointed profile.

If 7.9 >~ 0.075 < 7 < 7,1 then f.q also acts as the lower f limit of the “coexistence” region
in which solitons of both polarities may exist. However, for 7 < 7.9, positive solitons are
no longer supported for all f, and an interval f.; < f < fp2 is found where only negative
potential solitons and double layers are obtained. As a result, the “coexistence” region
becomes fpo < f < fn.

The existence of solitons even after a double layer has occurred depends on the position
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of fp1, where here we define f,; as the value of f (< f.1) at which M = Mj satisfies
U(M?/2, M) = 0. Also, fp1 exists only for 7 in the range 7.3 ~ 0.0394 < 7 < 7co. For
T < Tq3, and f < fe1, positive solitons are limited by the occurrence of positive double
layers; when fp2 < f < 1, positive solitons are limited by the ion limit constraint, and only
negative solitons exist for fo < f < fpo.

Provided f. (in this case, f.o) lies in the region of existence of solitons of both polarities
(fp2 < f < fn), we observe the following:

(i) Contrary to the conventional wisdom that solitons are super-acoustic (M > M,), we
have found solitons at the critical Mach number Mj, thus showing that they can propagate
at the ion-acoustic speed.

(ii) For f < feo positive potential solitons have finite amplitude at M, while negative
potential solitons have zero amplitude at M, as is the case for “KdV-like” solitons. The
negative sign associated with " (0, M;) for f < f.o corresponds to the sign of the KdV-like
solitons. Similarly, for f > f., the negative solitons have finite amplitudes at M (“nonKdV-
like”) while the positive solitons are now KdV-like. The positive sign of ¥"'(0, M;) for
f > fe2 thus corresponds to the sign of these positive potential (KdV-like) solitons near
My. Hence, for fps < f < feo one finds KdV-like negative soliton potentials accompanied
by nonKdV-like positive solitons, and vice versa for f,, > f > feo.

(iii) The amplitudes of the nonKdV-like solitons [i.e., those not corresponding to the sign
of " (0, My)] increase monotonically with |f — fc|, but vanish at f = f.. For small
values of 7, the negative nonKdV-like solitons develop large amplitudes at M = M when
f — fn. In addition, the largest value of My increases rapidly with decreasing 7. Hence
the normalized ¢4 increases rapidly and can reach several tens.

(iv) Positive solitons are limited from above by the requirement that ¢ < M?/2 so that the
ion density remains real, and the negative solitons are limited by the occurrence of double
layers.

If one defines the density ratio f in terms of the equilibrium density of the hot electron
component Npo/Ngo instead of the cool electron component N.o/Ney (as we have used
here), then the transformation f — (1 — f) in Eq. (7.8) gives the appropriate range of f
where the results discussed here apply (see Chapter 5).

We argue that the existence (and position) of a critical parameter, in this case, critical

201



7. Ton-Acoustic Solitary Waves in a Plasma With Two-Temperature Electrons

density ratio, may give a hint on the polarity of solitons in a plasma model.
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CHAPTER 8

General Summary and Conclusions

In this thesis, we have investigated linear and nonlinear acoustic waves in various plasma
models, which may occur in space. In the case of linear acoustic waves we have used a
kinetic theoretical approach in the study of electron-acoustic waves in bi-kappa plasmas,
with emphasis on Saturn’s magnetosphere. The rest of the thesis deals with acoustic
solitons and double layers in a variety of relevant three-component plasmas. In all cases
we have used the Sagdeev pseudopotential (arbitrary amplitude) approach, while in some
chapters we have also carried out expansions to find small amplitude solutions, along the
lines of the KAV solutions.

In Chap. 1, we have given a detailed description of kappa distributions and their major
features in Sec. 1.1. This section also highlights plasma environments where particles
whose velocity distribution functions may be well described by kappa distributions have
been reported to exist. We have also given a detailed discussion of dusty plasmas, solitary
structures (solitons and double layers), and various methods that we have used to study

these structures, in Sec. 1.2.

8.1 Linear Electron-Acoustic Waves

Using a kinetic theoretical approach, we have carried out a parameter survey of the dis-

persion and damping of electron-acoustic waves (EAW) and electron plasma waves (EPW)
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relevant to the magnetosphere of Saturn, in which the electron distribution is well fitted

by a superposition of two kappa distributions at different temperatures and kappa values.

Our investigations for specific regions of the magnetosphere have shown that:

e Weakly damped electron-acoustic waves may occur in Saturn’s outer magnetosphere

around 13 — 18 Rg where (i) the densities of the hot and cool electron populations
are of about the same order of magnitude; (ii) the temperatures differ by about two
orders of magnitude, that is T}, /T, ~ 100, and (iii) the kappa index values are more

or less constant around k. >~ 2 and xj, >~ 4.

There is strong coupling between the EAW and the EPW in the intermediate magne-
tosphere (9 Rg < R < 13 Rg) with potentially observable waves that are EAW-like.
This pattern is also obtained, for some cases, in the R > 13 Rg region when the
density ratio npg/neo is very small since the cool electron component density is very

high compared to the hot electron component density.

EAWSs are strongly damped in the inner magnetosphere (R < 9 Rg); only the EPW
is weakly damped. This may be attributed to the fact that the density ratio is very
small. Thus, our results show that even in the presence of a second non-Maxwellian
electron component, it is the dependence of the damping rate on parameters such as
the hot-to-cool electron temperature ratio 5 = T}, /T, and the fractional hot electron
density f = mpo/neo that determines the range in wavenumber (in terms of kAp.)

over which EAWs are weakly damped.

8.2 Nonlinear Acoustic Waves

In this thesis we have introduced a generalized density relation

) e

Ny(p) = Ny |1
(%) SO[ +<n5—3/2 KT,

for kappa distribution functions, which, in the limit x — oo, reduces to the Maxwellian

density function
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8.2.  Nonlinear Acoustic Waves

This density relation has been applied to various plasma models, including dust acoustic
waves/solitons with s-distributed ions and/or electrons (discussed in Chap. 3), dust ion-
acoustic solitons (discussed in Chap. 4), and ion-acoustic solitons in bi-kappa plasmas —

with both the cool and hot electrons being kappa distributed (discussed in Chap. 5).

DA Solitons: In Chapter 3 we investigated the existence of dust acoustic (DA) solitons
in dusty plasmas with x-distributed ions and/or electrons. We have used both the Sagdeev
(pseudopotential) approach for the arbitrary amplitude solitary waves and the expanded
Sagdeev potential approach, equivalent to the reductive perturbation technique, for the
small amplitude solitary waves. A double layer relation was derived for the small amplitude
solitary waves. However, in practice it was found that double layers are not supported by
the plasma model.

We found that when the dust is negative, only negative potential solitons exist, and
reducing the spectral indices (ke, ;) only affects the existence domains of the solitons
quantitatively.

In the presence of positively charged dust, only positive potential solitons are found,
but the ion to electron temperature ratio has significant quantitative effects: particularly
for T, > T; the results are very different from those for T, = T;. In both cases we find that
the soliton polarity agrees with the sign of the charge of the cold, inertial species (dust),
as observed in a number of other plasma models, albeit not universally so.

Our results are qualitatively similar to those obtained for dusty plasmas with Boltz-
mann or polytropic electrons and ions. However, there are quantitative differences, arising
from the functional form of the number density for a s-distribution as in Eq. (3.2).

Although the x-distribution is nonthermal, the results reveal important differences from
those found when one of the hot plasma species has a different nonthermal distribution,
viz., the Cairns distribution [Verheest and Pillay, 2008a,b]. In the latter, it was shown
that for negative (positive) dust, positive (negative) solitons could also be found, limited
by double layers, for sufficient nonthermality of the ions (electrons) and sufficiently low
electron (ion) density. For nonthermal electrons (ions) only negative (positive) potential
solitons were found, as in our case. This difference in results could be due to the fact that

for the r-distribution the main change from a Maxwellian lies in the ‘tail’ region, unlike
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the case of the Cairns distribution.

DIA Solitons: In Chapter 4 we used the pseudopotential approach in studying arbitrary
amplitude dust ion-acoustic solitons in a plasma of positive ions, k-distributed electrons
and charged dust grains. This was an extension of the work of Bharuthram and Shukla
[1992], who studied a plasma model consisting of Boltzmann-distributed electrons, cold
ions, and immobile negative dust in the bulk of the paper, and then presented a few
results for mobile negative dust. In the case of small amplitude waves/solitons, we used
the reductive perturbation technique, where we derived the associated KdV and mKdV
equations. For these small amplitude solitons, the mKdV approach was only valid for
plasma situations where the KdV solutions are unattainable.

For the case of negative dust, we have shown that for all k > 3/2 the model supports both
positive and negative potential solitons in a specific range of fractional electron density,
where the Mach number for positive (negative) potential solitons is limited from above by
the condition at which the ion density becomes complex (the dust is infinitely compressed).
This agrees with the analysis of Verheest et al. [2005] for polytropic electrons, where it
was found that both negative and positive potential dust ion-acoustic solitons may exist
in a dusty plasma with negatively charged dust, positively charged ions and polytropic
electrons.

Positive potential DIA solitons experience a low-f cutoff (f,) which decreases with
increasing k (i.e., with a decrease in excess superthermal particles), and hence this increases
the range in (f, M) space over which positive solitons exist. Allowing for finite dust grain
mobility has little or no effect on the existence domain for positive solitons; the smaller
the value of z, that is the heavier the dust particles (assuming constant dust charge), the
larger the domain in (f, M) space over which negative potential solitons can be obtained.
Also, the variation of the ion temperature (through o) has a weak effect of increasing the
size of the existence domain as o is increased. That is, the warmer the ions (the larger
the value of o) the larger the existence domain for solitons, with the region of existence
decreasing as x decreases.

Negative potential solitons do not exist above a x-independent cutoff f,, lying approx-

imately between 0.9 — 1, the exact value of which depends significantly on the magnitude
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of the dust mobility factor z = Zym;/mg4. They are effectively not subject to an upper
limit in M as z < 1 implies that ¢gq > 1, and thus negative solitons may be very large.

A surprising result occurs over the range of fractional electron density f in which
solitons of both polarities are supported. Here, finite amplitude solitary structures exist
even at the DIA speed — behaviour which contradicts KdV theory. A similar result was
found recently in another three-component plasma [Verheest and Hellberg, 2010], where,
as here, the phenomenon is associated with a point of inflexion of the pseudopotential at
¢ =0 and M = M, rather than the usual maximum. The sign of " (¢ = 0; M = My; f)
then designates the polarity of the KdV-like soliton that vanishes at M = Mj.

A critical role is played by f., the value of f at which the KdV coefficient A = 0, which
also satisfies the constraint ¥ (¢ = 0; M = M;; f.) = 0. In particular, as f is varied,
solitons of each polarity switch at f = f. from a KdV-like form to nonKdV-like behaviour.
For f, < f < f., positive solitons at M = M, have finite amplitude, increasing in size
with |f — fc| as f approaches f,, while negative solitons have zero magnitude at M = M,
as expected from KdV theory. This situation reverses in polarity for solitons found for
fe < f < [

In a plasma with positive dust grains, only positive potential (“KdV-like”) solitons are
supported by the plasma model, with the upper limit on M provided by infinite compression
of the ions, and the positively charged dust particles only contribute in neutralizing the
electrons in the background. The Maxwellian case agrees with earlier results, using the
fluid dynamic paradigm with polytropic electrons [Baluku et al., 2008|. Decreasing x leads
to small reductions in both the accessible M and the existence range in M. The dusty
plasma model with positive dust is similar to a two component ion-electron plasma, with
modifications to the dynamics due to the presence of weakly mobile dust. The results are
reminiscent of those found for ion-acoustic solitons in a two-ion plasma [McKenzie et al.,

2005], but for a much heavier second “positive ion”.

Double Kappa TAS: In Chapter 5 we considered a plasma model consisting of warm
inertial fluid ions and two (cool and hot) electron components, that are both kappa dis-
tributed, as found in Saturn’s magnetosphere.

The main features of this work are:
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(i) Both compressive (¢ > 0) and rarefactive (¢ < 0) solitons can be supported by the
model. Here, compressive (rarefactive) solitons have a hump (dip) in the density as well
as the electrostatic potential.

(ii) The effect of spectral index k on the existence domain of solitons (or double layers)
was that, compared to high values of kappa (which represent Maxwellian particles), low
kappa values, which indicate increased superthermal particles in the high energy tail of
the distribution, reduce the existence domain in the parameter space of (f, M) over which
compressive solitons or both compressive and rarefactive solitons can exist.

(iii) For plasma configurations that support the existence of both hump (¢ > 0) and dip
(¢ < 0) solitons, we found that there exists a critical density ratio, f. at which both the
second and third derivatives of the Sagdeev potential vanish, when evaluated at the origin
for the critical Mach number M. In the vicinity of f., solitons of a polarity opposite to
the sign of ¥ (0, M) remained finite (nonzero) at Mj, a result that is contrary to the
Korteweg-de Vries description. These solitons which exist at M can therefore propagate
at a velocity equivalent to the phase velocity of the wave. This result means that the
usually quoted Sagdeev requirement ¥ (0, M) < 0 needs to be changed to ¥”(0, M) < 0.
(iv) Comparison between the perturbation theory and the large amplitude techniques
showed that whereas the former approach seems to be accurate for very small amplitudes,
especially for Mach numbers close to M, that is, for structures that move with velocities
close to the phase velocity of the wave, the method becomes less reliable for velocities far
from the phase velocity. In addition, it cannot represent the second (nonKdV-like) soliton
that has finite amplitude at M = M, when both polarities are supported. Thus the fully
nonlinear (arbitrary amplitude) pseudopotential approach becomes indispensable.

(v) The large rarefactive potential solitons (¢ < 0) reported for this plasma model may
be attributed to the fact that the small but finite electron mass, which is a measure of
the electron inertia, is neglected in the electron density expression. If the electron inertia
due to the finite electron mass were included, such a scheme would require obtaining the
electron density expression from the fluid equations of motion, with the associated kappa
distributed pressure term incorporated. The pressure expression associated with a kappa
distribution function has been derived in Appendix A.1.2. However, this approach has not

been applied in this work, but shall be considered as an extension to getting comprehensive
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results for this model in the foreseeable feature.

IAS in Electron-Positron-Ion Plasmas: In Chapter 6 we have considered a plasma
consisting of electrons, positrons and positive ions. The electrons are nonthermally dis-
tributed, following a Cairns distribution function [Cairns et al., 1995]; the positrons are
Boltzmann distributed while the ions are modeled by hydrodynamic fluid equations. This is
an extension of the plasma model discussed by Popel et al. [1995] for Boltzmann electrons,
and is similar to the model discussed by Pakzad [2009]. In this work we confirm some re-
sults obtained by Pakzad [2009] and present more new results associated with ion-acoustic
solitary waves in electron-positron-ion plasmas where the electrons are Cairns distributed.

We have pointed out that low values of 8 are appropriate for the use of the Cairns
distribution for nonthermal particles. Values of § > 4/7 (see e.g., Verheest and Pillay
[2008a]) result in the nonthermal particle distribution being deformed (forming wings) so
that it may not appropriately represent a stable nonthermal distribution. In such cases
another form of nonthermal distribution, such as a kappa distribution, may be used instead.

Though Pakzad [2009] reported only the existence of positive potential solitons in the
model under investigation, we have shown that in addition, negative potential solitons and
double layers can also be supported, though for a limited range in the fractional positron
density p.

In contrast to the usual assumption that solitons are explicitly super-acoustic, occurring
for Mach numbers M > M,, we have also obtained solitons at M. This implies that
these solitons can propagate at the acoustic phase speed. This observation occurs only
in the region of “coexistence”, where both positive and negative potential solitons may be
supported by the same plasma parameter values.

In this work, we have obtained critical values of p (denoted p.) at which W (¢, M) =0
for ¢ = 0 and M = M. If p. lies in the region where solitons of both polarity occur for the
same plasma parameters, then for p < p. one gets negative potential “KdV-like” solitons
and positive potential “nonKdV like” solitons at M. The reverse polarities are found for
P> Pe-

Double Boltzmann TAS: In Chapter 7 we consider ion-acoustic solitons in two tem-

perature electron plasmas, where the electrons are Boltzmann-distributed. Such a plasma
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model has been studied in the past, with negative potential solitons and double layers
reported to be supported in addition to positive potential solitons. In this work we have
carried out further investigations and showed that positive potential double layers can form
below a critical density ratio, associated with the third derivative of the Sagdeev poten-
tial evaluated at the origin for the acoustic phase velocity of the wave. We also found
out that for density ratios that support positive double layers, solitons were also reported
beyond the double layers, depending on the cool-to-hot electron temperature ratio. This
contradicts the usual belief, based on simpler forms of the Sagdeev potential, that double
layers always represent a Mach number limit for solitons. As we have already indicated in
chapters 4 and 5, when both polarities can be supported, solitary structures can propagate
at the acoustic phase velocity of the wave, contrary to a KdV prescription

At fixed 7 < 71 = 0.10102, ¥"(0, M) = 0 yields two critical values of f (fe1 and fe2)
which merge at 7 = 7.1.

Above 7.1, only positive potential solitons (which are limited by the ion density con-
straint) are supported, as for a simple electron-ion plasma, and no positive double layers
exist. These positive solitons are “KdV-like” in that their amplitudes tend to zero as M
approaches M.

For 0 < 7 < 7. both negative and positive potential double layers may occur over
limited ranges of cool electron density fraction f. The former are well-known [Baboolal
et al., 1990; Ghosh et al., 1996], and Verheest et al. [2006] previously identified a single
case of the latter. Our calculations show that positive double layers exist over a narrow
range f < f.1, while negative double layers occur for f.; < f < fn, below a cut-off,
fn- Surprisingly, solitons may be obtained even beyond the positive double layer, i.e., for
M > My, accompanied by a jump in amplitude. Thus, depending on the temperature
ratio 7 = T, /Ty, we may, for low f, get two sets of positive solitons, one bounded by the
double layer limit, the other by the usual ion limit condition [Baboolal et al., 1990]. As
opposed to the usual bell-shape of the well-known positive solitons, the latter set have a
sharply-pointed profile.

For 7.9 ~ 0.075 < 7 < 7.1, fe1 also acts as the lower f limit of the “coexistence” region
in which solitons of both polarities may exist. However, for 7 < 7.9, positive solitons are

no longer supported for all f, and an interval f.; < f < fp2 is found where only negative
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potential solitons and double layers are obtained. Here, fy2 is the value of f (> f1) at
which M = Mj satisfies W(M?2/2, M) = 0.

The existence of solitons even after a double layer has occurred depends on the position
of fp1, where here we define f,; as the value of f (< f.1) at which M = M satisfies
U(M?%/2, M) = 0. Also, fp1 exists only for 7 in the range 7.3 ~ 0.0394 < 7 < 7co. For
T < Tq3, and f < fe1, positive solitons are limited by the occurrence of positive double
layers; when fp2 < f < 1, positive solitons are limited by the ion limit constraint, and
only negative solitons exist for fo; < f < fp2. These results show that the existence (and
position) of a critical parameter, in this case, critical density ratio, may give a hint on the
polarity of solitons in a plasma model.

Finally, we reiterate that in our nonlinear studies of acoustic waves in three-component

plasmas we have found two key results with wider repercussions. They are:

1. The existence of finite amplitude solitons (and double layers) at the acoustic speed,
that are thus nonKdV-like, and also lead to a change to the usual Sagdeev condition

U’ (0, M) < 0, which now becomes ¥”(0, M) < 0.

2. The existence of solitons at Mach numbers exceeding that at which a double layer occurs,
as opposed to the conventional wisdom that double layers always represent an upper Mach

number limit to a sequence of solitons.
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APPENDIX A

A.1 Derivation of Density and Pressure for Kappa Distribu-

tions

Before going into the details of deriving the density and pressure expressions following

from kappa distribution functions, we first introduce some special integrals.
A.1.1 Special Integrals for Kappa Distributions

Consider the integral

2, .2, .2\ (kat2)
= 2 402 402
I— // (1 + %) dv, dv, (A1)

This can be written as

—(kat2) _ 2)
() ,U2 _|_,U2 ) ’U2 (Rori’
I= 142y / <1+—2> dv. dv,.
/Oo ( Kab? ) oo KabZ + v2 + vl =Y

Substituting v = (k02 + v2 + UZ)R, where R = R(v,) is a function of v,, we then have

1 1)2 4 1)2 1/2
dv, = 5 (ka02)")? (1 + m—ﬁ) R™V24R.

Ralg,
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Thus (A.1) becomes

o ’U2 + ’1)2 *(Ha+3/2)
I=(kat?)Y?B(1/2, ka +—3/2)j/ <1-+— - y) dvy,

2
S Kab?

2 (ka+1)
— (kab2)B (1/2, fia +3/2) B(1/2, o +1) (1 + ”92) |

where the Beta function, B(a, b) is defined by [Arfken and Weber, 1995, p. 614]; [Riley et
al., 1998, p. 981]
B(a, b) = / 2711 +2)" @ dz;  a, b > 0. (A.2)
0

Using the relations [Arfken and Weber, 1995; Riley et al., 1998]

I'(a) I'(b) 1/2
B =—Z2 2T 1)=al T'(1/2) = A3
(0.0)= Fperpy T+t =aTl@) and T2 =7 (A3)
we obtain )
ko032 p2 | (el
= *a z . A4
=ty () A
Therefore

7(I€a+2) *(/fori’l)
v2 +v + v? T K02 v2
_ o z ) A
// ( /<;a6?2 ) dv: dv, (Ko +1) (1 * naeg) (4.5)

Similarly,

—(k+1) —K
v2 + v + vZ 2
// < /4192 > d’Uz d’l)y = 7T02 <1 =+ ?> . (AG)

A.1.2 Density and Pressure Expressions for Kappa Distributions

We consider the three dimensional isotropic kappa distribution function Fy(v), of par-

ticles of mass m and charge ¢ in a plasma with electrostatic potential ¢, given by

0% + 2q0/m —(k+1) v§+v§+v§+2qcp/m —(k+1)
N =\ 0 (AT

Fiu(v) = A, (1 +

where
NQ F(H + 1)

A= R T — 1)
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The average number of particles per unit volume or simply the number density N; for
species of type j is given by [Gurnett and Bhattacharjee, 2005, p.138]; [Kivelson and

Russell, 1995, p.34]

N; = /// F.(v)d®v, where d*v= dv,dv,dv,. (A.8)

Using the procedure in appendix A.1.1 above, the density expression can easily be written

in the form

mrbh?

Ni(o) = Ax(w?) B2, + D BO/2 ) BO/2 5= 172) (14 228 )MW) |

(A.9)
Upon using Eq. (A.3) and substituting for A, we obtain the density of species j with mass

m;, charge ¢, spectral index x; and initial density IV;o as

2oy \ ")
N;=Njp |1+ CWQQ . (A.10)
mjk;U;

The pressure associated with a kappa distribution is obtained from the pressure tensor

ﬁs = [Py;], given by [Gurnett and Bhattacharjee, 2005, p.138]
P - / my(v — U)(v — U f(v, 1,8)d, (A.11)
\%4

where Uy is the average velocity of particles of type j, or simply the bulk velocity at which
the distribution is peaked. Note that the pressure tensor ﬁs gives the average rate at which
momentum is transported in the 4 direction across surface j in a frame of reference moving
at the average velocity, Ug. In the pressure tensor expression, the term (v — Uy)(v — Uy)

is given by the matrix [Gurnett and Bhattacharjee, 2005, p.138]

(v-Uyv-U,) =
(Ve = Usa) (02 = Use), (Vo — Usa)(vy = Usy), (V2 = Usa) (vz = Usz)
(vy = Usy)(ve = Usa), (vy = Usy)(vy — Usy), (vy — Usy)(v2 — Usz)
(v = Usz) (e = Usa), (vz = Usz)(vy = Usy), (02 — Ussz) (vz — Usz)
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Thus if the bulk velocity is 0 (that is, the distribution function is peaked at v = 0) then

the dialic term gives

2 Vg Uy VgV
(v—-Us)(v-Us) = Uy Uy v2

VyVz | »

VU Vzy vg

and therefore the pressure tensor becomes

P:m:Pmmez
P = Py Py Py, | s
szszPzz

where the components of P;; can be obtained as described below. For the distribution

defined in Eq A.7 we have P, /m = [[[v2F,(v)dv,dv,dv,, giving

m K62

—(k+1)
P o0 o0 V2 + v+ 02 + 290/m
= AH/ vg // [1 + =¥ = a0/ dv.dvy » dv,.
—0o0 —0o0

v+ 2qp/m
K62

T 2qp/m\ " /Oo 2 vy -
— = 92AH 1 1 = dvy
mo ( T > e T + 2qp/m Ve

which simplifies to

Using Eq. (A.6), the term in curly brackets is simply 762 (1 + > , and thus

"U

Py 2\3/2 2qp/m s
—= =n(0%) 2A.B(3/2, k —3/2) (1 + =

_ Nyb? K 14 2qp/m —(k=3/2)
2 \k—3/2 k0> '

—3/2 2KpT
Substituting 6% = (K 3/ ) < 5 ) we then obtain
K m

1 4y >(n3/2)

Pyp = NoKpT (1 L
wr T 0N <+/-e—3/2KBT

(A.12)
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as the pressure of particles propagating in one dimension. Similarly, Py, = P.., = P,;.
Note that in the limit k — oo, Py, = NoKpTexp|—qp/KpT], thus if the particles have
zero potential and pressure Py in the unperturbed equilibrium state , then Py, (¢ — 0) =
Py = NoKpT, which is the ideal gas pressure equation for Maxwellian particles. However,

P, for @ # j, may take a different form and will not be considered here.
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APPENDIX B

B.1 Dispersion Relation of Electron-Acoustic Waves from Lin

ear Kinetic Theory.

In deriving the appropriate dispersion relation for electron-acoustic waves discussed in
Chap. 2 we use the assumption that on the electron-acoustic wave time scale, Vy; < Vi <
w/k < Vi, and with &, x w/(kViy), it follows that |&;], || > 1, such that we can use
the asymptotic expansion of Z(kq, &) for the ions and cool electrons. Similarly, || < 1,
leading to the need to use the power series expansion of Z(kq, &) for hot electrons.

As the ions are Maxwellian, Z'(k;, &) — Z'(§) in the limit xk; — oo, where Z/(&) is
the derivative, with respect to the argument &, of the usual plasma dispersion function of
Fried and Conte (see [Krall and Trivelpiece, 1989]).

The asymptotic expression for Z/(¢) (large &, |€71| < 1) becomes (see [Brambilla, 1989,
pp.107-108]; [Swanson, 1989, pp.375-376])

Z(€) ~ =+ oiyT)E e (B.1)

g2 o¢t
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where

0 for Im(¢) >0,
oc=41 for Im(&) =0, (B.2)
2 for Im(¢) <O0.

Thus for the ions with |&;| > 1, we neglect terms of order higher than 0(¢6~2) in Eq. (B.1),

2Kk2V/ 2 T w w?
Z/ D~ i1 _2 _ — . B
@~ (%5) 205 (7)o (-zz) ®3)

For sufficiently small and large argument ¢ [Hellberg and Mace, 2002], the power series

giving

and asymptotic expansion of Z(kq, &) are, respectively, given by

i 2T (ke K k— 1L ki) (g1
Z(ka, ) = ﬁ1/2r(:(_ )%) (K(Jr)é?)ﬁ —2 (TQ) ¢+ g(ﬂi#gs beer, (BA)
and
B w2512 (k) [i — tan(km)] 1 ko1
Z(/ﬁ;a,fa)— F(I{—%) (/<;+§2)"‘ —<E+m?+> (B.5)

Note that Eq. (B.5) follows from Eq. (55) of Hellberg and Mace [2002], and corrects their
Eq. (56).

In the case of hot electrons, neglecting terms of order higher than 0(&7) for &, < 1,
Eq. (B.4) gives

,-@h—1/2> 2 FT(ky) <1+ w? >(W1). (B.6)

Rp Kp k20i2z

Z'(kp, &p) = —2 ( ~ JEnT(kn — 1/2) K6y,

Similarly for the cool electrons, the asymptotic expansion in Eq. (B.5) gives

/ ~ _2\/EF(/€C)§C . 2 —(Ke+1) i ke l
Fltier ) ~ =N, — 1/2) U A Aem) (L Lo/ he) e
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With |£.| > 1, we take the approximation &.(1 + &2/k, )~ (Fetl) a ghetl /¢2het] giving

k262 3ke k202

/ c c c

Zlhes &)~ - 1 5—3 7 }
2/ gt/ (k)

w —(2kc+1)
T e 1) (1 — tan Kk.m) <k00> .

Substitution of equations (B.3), (B.6) and (B.7) into Eq. (2.2) gives

1 Whe Wi 2y2 Whe
K

pc
\/7_TI€((;HC+1/2) [(ke+ 1) [tanker w \ T ZretD
T(re + 1/2) 22, ) \ ko,

+ ‘ \/7_TH£HC+1/2) F(Kc + 1) 1 L _(2:"€c+1)
! T(re+1/2)  k2\2, \ kb,

+\/7_T\/@F(Hh)< w ><1+ w? >—(nh+1)

P(/ﬁ;h + 1/2) kBAihah Kh k‘29]21
T 1 w w?
- (= - =0 B.8
o () oo () | -0 B

where Ae, = [(ka — 3/2)/(ka — 1/2)]Y2 Apa, With Apa = (aoKBTa/noae2)1/2 being the

Debye length of species a. The parameter A\, is the appropriate Debye length in a kappa
plasma [Bryant, 1996; Mace et al., 1998], which reduces to Ap, in the limit £, — oo.

In the case of weak damping we can expand D(k,w) about w,, where w = w, + 7.
Neglecting terms of order (w — w,)? we obtain [Krall and Trivelpiece, 1989, p.389]

aD (k, wy)

D(k,w) ~ D(k,w,) +1i~ %

(B.9)

However, D(k,w,) is itself a complex quantity (see Eq. (B.8)). Thus it can be written in

the form

D(k,w,) = Dy(k,w,) + i Di(k,w,), (B.10)
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1 Whe Wi 2\2 Wpe
DAth=<L+p¥;)—w2<1+w2 —3k"Abe 3

r pC r
B N3 gl t1/2) [(ke+1) [tan kem w, \ ~@retl) and  (B11)
T(re + 1/2) 22 ) \ ko, '

e P e 1 1/2) K202, \ k6,

ﬁﬁﬂ%)( w, ><1+ w? >(Fuh+1)

F(I-{h + 1/2) k3)\ih0h Kh /{?2(9]21
T 1 W w?
— ——r . B.12
e \f2 K2 AD <Wt) o < 2’42‘4?) B2

With the assumption that |y| < w, and | D;(k,w,)| < |D;(k,w,)|, equations (B.9) and (B.10)

give

D(k,w) ~ Dy(k,w,) +i {Dr(kz,wr) + %j,w)} = 0. (B.13)

Therefore equating the real and imaginary parts to zero, we obtain, respectively, the disper-
sion relation, w, = w,(k), and the damping rate, v = v(k) < 0 or growth rate, v = (k) > 0
from [Krall and Trivelpiece, 1989, p.389]:

_Dl(kawr)

D,(k,w) =0 and T=3D oooon) 0y

(B.14)

Since me/m; ~ 1/1836 < 1, it follows that provided npg/nq < 1 then wﬁi/wgc <lisa
valid approximation. Now assuming w,; < wp. and neglecting the term proportional to

1/€28<+ for €. > 1 in Eq. (B.11), we get

1 4_ 2 2 242 4
<1+]€2—)\ih) Wy — Wpew, — 3k“Apwpe =0,

with solution w? > 0 given by

1 [14 126202 (14 1/k222 )] Y2
2 2 { +[ + He(l+1/ nh)] . (B.15)

2(1+1/k2X2,)
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Similarly, as the frequencies have been normalized to wp., Eq. (B.14) gives

T _ (w)ﬁAchwh) :_(1_“h0>”2(“7">6w, (B.16)

Wpe Wpe \ Wpe A2(/‘€c) Neo Wpe A2(/‘€c)

where

kQA%C 2/430 -3 1-— noh/noe)l/Q k)\Dc

K K 1/2 wr Jw ~(net)
A1(/<ac,f£h):01( c) [( < ) ( ! r/ pe]

+

—(rn+1)
Ca(kn) 14 1/(1 — non/noe) Wi /we "
k3D (25 — 3)(Th/T2) K2M3,

Cs(0) 1 m;/me w%/w,%e] '

+
B,

2 (T,/T.)(1 — non/noe) k2X3, (B.17)

2(1 — nho/neo)3/2
(wr /wpe) ™2

tan(kem) ket (k2 —1/4)
V2
e (wr fwpe) 5 k3D, (ke — 3/2)3/2

Ag(ke) =122 X5 .(1 — npo /ne0)®? +

(2K — 3) 1 Wy Wpe —2(ket+1)
Re (1 — nho/neo)1/2 k)\Dc :| ’ (B.18)
and
(ke 1/2) T(ret1) w2
Cr(ke) = V'm (Fe — 3/2) T(rie + 1/2) wy/wpe
C (K ) _ (7T/2)1/2 ('L{h - 1/2) F(’{h + 1) (nOh/nOe) .
2T T T3 (ko — 3/2)32 T (ki + 1/2) (1 — non/noe) 32
03(0_) _ (77/2)1/2 (mi/m€)1/2 (B]_g)

(T;/T.)3/2(1 — nop/noe)3/2

The normalized frequency w;,/wpe in Eqgs. (B.16)-(B.18) satisfies D, (k,w,) = 0, and is
obtained from (B.15).

Already we have seen that electron-acoustic waves require &, < 1 and &. > 1, that is,
£ < & The latter implies that Ape/Aen < (non/n0c) Y [ke/ (ke — 3/2)]Y/2.

Now, if (non/noe)?[ke/ (ke —3/2)]Y/? > 1, that is, f = nop/n0e = (26 —3)/(4ke—3) = fo,
ADe/Axn < 1 is a valid approximation. Here, in the long wavelength regime, f. is the

threshold value of f below which EAWs may not be weakly damped. Also, Ap./Aqp < 1
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implies that f < 1/{1 + [(kn, — 1/2)/(kn — 3/2)] /B} = fn, where =T} /T..
Also we assume that 12k2)%, (1 + 1/k2)\ih) < 1 in (B.15), which holds only in the long
wavelength regime (kAp. < 1) and when Ap. < A, (provided f < fj and f 2 f.). Thus

ignoring the negative solution, (B.15) leads to

14 3k2X2 (14 1/k>\2
we? = w2, pell + /KX, . (B.20)
P (1+1/k2X2)
With Vie = wpeApe = (KBTC/me)l/2 and Vi, = wpeAy,, (B.20) can be written as
wp? = k? 3V2+L (B.21)
T te 1+ kg)\%h ) .

which clearly shows that the phase velocity w/k is modified by the hot electron parameters
(through A, ).
However, if in addition we assume that Ap. < Aqp, then Eq. (B.20) can be written in

the form [Mace et al., 1999]

1+ 3k2)2
2 2 Dc
w2 = w? [ —=" 2De B.22
PC<1+1/k2A§h> (B.22)
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APPENDIX C

C.1 Derivation of the Modified Korteweg de-Vries (mKdV)

Equation

We already saw from the KdV equation (1.27) in Sec. 1.2 that when the coefficient of the
nonlinearity term dy?/9¢ vanishes, the soliton amplitude goes to infinity. In other words,
the small amplitude method based on the KdV approach breaks down. In overcoming that
scenario in the perturbation approach, we re-scale the stretched space-time variables ¢ and
7. In this work, we have used the approach of Baboolal et al. [1989], by making use of
the stretched variables ¢ = ¢(X — V') and T = 3t. In addition, we expand the varying
plasma parameters N;, V; and ¢, that is, the density, velocity and electrostatic potential,

respectively, in terms of the smallness parameter, €, using the expansion [Nishihara and

Tajiri, 1981; Mace et al., 1991]:

Nj :Nj0+6Nj1+62Nj2+...
Vi=eVii+e*Vig+ ... (C.1)

gozegol—i—62g02+...

Here, parameters with subscript 0 correspond to the equilibrium state while those with
subscripts 1, 2 --- correspond to the first-, second-, - - - order perturbed sates. The velocity

of the individual particles in the equilibrium state is taken to be zero, and we have assumed
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C.

zero equilibrium potential since the electric field is assumed to be zero in the equilibrium
state. We have not included the pressure expansion terms, since in the plasma models
that will be discussed in this thesis, the pressure is expressed as a function of density
using the adiabatic relation P;N j—%' = constant = PjoN ]BW , where v is the ratio of the
heat capacities at constant volume, equal to unity for isothermal particles, and three for
adiabatic particles.

Using the stretched variables ¢ = € (X — V#') and T = 3/, we have 0/0X = €9/(
and 9/0t' = 30/0T — eV9/0¢. Thus the continuity, momentum and Poisson’s equations

can be written, respectively, in the form:

3Z° v Tt . v
€ eV c +eN; C+€[/Z c

oV oV, oV N\ Y 9N, B
miNi (6387- —cV 8§ +eVia—<> —i—em,Cfi (N ) GC —i—eNiqia—(g = 0, (03)

=0, (C.2)

and

0% >
2 r r
€ & a<2 + NiQi + E NsO E (_1) Vsr @ 4s = 0, (04)

s=c, h r=0
where N;, V; and ¢ are defined in Eq. (C.1), and the thermal velocity of the ions, Cy; is
defined by C% = ~; P,o/m;Nj. Re-arranging order by order we have the following:

The continuity equation gives:

aVv; ON;
2\ . ' _zl _ il _
O(e ).NZO ac Vv ac 0, (C.5)
oV ON; oV
3 Nipp 2 = Vo2 4 Ny 2 = :
O (€°) = Nig 5~V ac tNage =0 (C.6)
ON; ON; oV aV; aV;
4 il i3 i3 12 il
: — Nijg—— + Njij—— + Nipo—— = 0. .
O(e) o7 Vv ac + Njo ¢ + Ni1 ac + Nj2 ac 0 (C.7)
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C.1. Derivation of the Modified Korteweg de-Vries (mKdV) Equation

The momentum equation gives:

9 ON;1 8901 ) oV

O (62) :m; Cp ac + Nioqia—C —m NioVa—< =0. (C.8)
O () :maioVa B2 = miioV G2 — i S+ (3 = 1yms 2 31 2
+m; Cj aé\gz + Niog 6(;22 + Ni1g; 85? = 0. (C.9)
O (¢") imz‘NiO%—Zz—l zova(;/és miNﬂVa(;/? VNQ@(;E +m; 20‘/218(;2_2
+m; zovzzaaVC +miNiVia 3(;221 m; Cj; 8853 + Nio zaais + Na 28522
= ) m AT - 1) mi G O 4 Nag 52— 0. (C1o)
Similarly, Poisson’s equation gives:
O (60) : Z Nsogs + Nipgi = 0, (C.11)
s=c,h
O (51) : Ning; — Z qs Nsovs1 o1 = 0, (C.12)
s=c,h
O (€%) : Niags — Z qs Nsovs1 g2 + Z qs Nsovs2 91 = 0, (C.13)
- s=c,h s=c,h
O (63) t€o aCQ Nisqi — Zh qs NsoVs1 3
+2 Z s NsoVs2 01 p2 — Z qs Noovss o} = 0, (C.14)
s=c,h s=c,h

where Eq. (C.11) is the charge neutrality condition of the un-perturbed plasma constituents
at equilibrium.

The O (€?) equations, (C.5) and (C.8), can easily be solved for the first-order perturbed
velocity V;1 and density IV;; in terms of ¢ giving

Vgi/m;

vz_ 2! and Nilzm
t1

T L (C.15)

Vit =

Again, the ') terms in Poisson’s equation, (C.12), gives the linear dispersion relation
g Y q. ) ) g

Wi 1 Wi 1
VZ_c2 2 0or — 202 122
— Uy Dk we — ti Dk

=0, (C.16)

from which the phase velocity, V' is obtained as V = (C’Z?K + C’fi)l/ 2 with Gy, = WpiADk
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being the ion-acoustic sound speed of the plasma model.

Similarly, the O (€?) terms in Poissons’s equation (C.13) together with the O (€®)

terms in the continuity equation (C.6) give,

4sNso gs V.
12—2 g1 2—2 s‘s veopi and

s=c, h di s=c, h di
QS 50 qg 50 2 1 /m 2
Vio= { Vsl Y2 — Vs2p1 — 2(V2 — (2)2 (V2 02) 51 }

In order to eliminate the third-order perturbation terms V;3 and N;3, we use the O (64) con-

tinuity and momentum equations, and the O (63) Poisson’s equation. That is, Egs. (C.7), (C.10)

and (C.14). After a single differentiation, Eq. (C.14) then becomes

3 o1 2N; qu@ /m; Oy zoqZ 2 /m; i3
8C3 + ( CtQZ)Q or Ctgl SZCh qsNsoVs1 ac
8801 quZ /ml 2 2 qsNso
+p2 2 [2V - 2 Ctl Z Vg1 + 2 Z QSNSOVSQ
aC ( Ctl) s=c,h Z s=c, h
+801 8902 Z q Va2 + zOqz /mz 1+ {V2 _1 CQ Z qg 50
=, s4Vs0Vs (V2 Ctzl) ti S z Vs1
o1 3 NOV2 d/m3
2 2 7
Nioqz/mi 2 | 2 qs N, 50,
i 4V 3 i — C Vso p = 0. C.17
+_(V2 — 0252@)2[ 7 ti szc:h z ( )

We observe from Eq. (C.12) that for ¢1 # 0, the coefficient of dp3/9¢ in Eq. (C.17) is
zero, and therefore those terms drop out. Also, we assume that the terms p20¢1/9¢ and

©10p2 /OC are proportional to the product of ¢1 and @9, and therefore are of higher order

and will be neglected. We then get

2 (V2 (V2 - C2)2 17a¢

s=c, h

2 2 2 2
{3wpzv /m 43 Z qsV, sO pi[4v (3% Ctz Z qsN, sO } agpl
s=c,h Z
63801 2vai 1

T e TvE_c2eaT

= 0. (C.18)

226



C.2. Solution of the mKdV Equation

Thus from Eq. (C.18), the modified KdV equation takes the form [Verheest, 2000]

91 dp1 P
57 T C(V)ps— o + D(V) 505 = 0, (C.19)
where again the phase velocity V is obtained from V2 = Ctzz + CZZH, nd
2V an‘
A 3 w2 V2 /m qs NV, sO [4V + 37@ ctz Z qs IV, sO
- (V2 s=c, h (V2 Ct22 s=c,h Z

C.2 Solution of the mKdV Equation

In getting the solution to the mKdV equation [(C.19)] we use the transformation y =
¢ —uoT. Thus Eq. (C.19) becomes

()2()01 C 3()801 ()()01
éX 3 ! EX 1o ! X '

which can also be simplified, and written in the form:

6@1 (U0 1/2 C 1/2
o =(p) @ [1— <6u )*"] - (€-20)

Integrating Eq. (C.20), x(¢1) is obtained from the expression

(%)1/2X :/ 91 . (C.21)

o[- (&) e

Introducing the substitution Y (¢1) = [1 — (C/6uq) 7] 12 gives

un\ 12
o= () n-vere, (©:22)

227



and therefore the RHS of Eq. (C.21) is equivalent to In[(1 — Y (¢1))/(1 + Y (¢1))], i.e.,

2 (%) 1/2)(:In [%&ZH or

1 — exp[2(uo/D)"x]

Y = . C.23
(1) 1+ exp[2(ug/ D)/ 2] (C-23)
Equations (C.22) and (C.23) give
_ (5w :
PN ) expl(uo/D) 2 + exp|—(uo/D) Py
o 6u0 1/2 uo 1/2
= <7> sech <5> X - (C.24)
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