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Abstrat
This thesis is about a study of the behaviour of linear and nonlinear eletrostati wavesin a variety of multi-omponent plasma on�gurations in spae physis, inluding speieswhose veloity distributions are represented by kappa distributions. Kappa distributionsommonly our in spae plasmas, and are haraterized by a spetral index parameter κ,whih ranges from low values (representing a more enhaned superthermal tail and �hard�partile spetra) to very high values (with κ→∞ representing a Maxwellian distribution).The linear theory of the eletron-aousti waves (EAWs), whih ommonly our intwo-temperature plasmas, is investigated within a kineti-theoretial paradigm using thekappa veloity distribution as metastable state. The results of this alulation are diretlyappliable to the Saturnian magnetosphere where the eletrons are well represented bythe superposition of two kappa distributions, with distint temperatures and values of κ.Aording to our �ndings, weakly damped EAWs are likely to our at around 13− 18RS ,where the densities of the hot and ool eletron populations are of similar magnitude, thekappa index values are more or less onstant around κc ≃ 2 and κh ≃ 4, and the hot toool temperature ratio is about 102.In the nonlinear wave studies desribed in this thesis, a variety of di�erent three-speiesplasma models are investigated, inluding dusty (omplex) plasmas whih are observed ina number of di�erent spae environments. In addition to eletrons and ions, dusty plasmasontain massive heavily harged dust grains typially of miron size. This additional om-ponent has a signi�ant e�et on the overall wave behaviour ompared to an eletron-ionviii



plasma, and introdues new eigenmodes suh as dust aousti waves and dust ion-aoustiwaves, as examples, whih are disussed in detail in this thesis.Nonlinear eletrostati waves, suh as solitons and double layers, are reported fromsatellite observations. Propagation of these solitary strutures, inluding their existenedomains, struture behaviour and harateristis, in a variety of di�erent multi-omponentplasma on�gurations is investigated in this thesis. These nonlinear studies enompassboth small amplitude (Korteweg-de Vries) and fully nonlinear (Sagdeev pseudopotential)investigations, and omparison of results from these methods is presented.Aording to the onventional Sagdeev and small amplitude (KdV) approahes, theexistene of solitons requires Mah numbers whih exeed a ritial value (Ms), the phaseveloity of the aousti waves in the plasma on�guration. The KdV soliton solutions haveamplitudes that go to zero as the Mah number approahes the ritial value. Resultsin this thesis show that in plasmas where solitons of both polarities an be supported,under ertain onditions, eletrostati solitons with �nite amplitudes an be obtained atthe ritial Mah number, and therefore suh strutures an propagate at the aoustiphase veloity. This is an important �nding that goes ounter to onventional wisdom onthis topi. In addition, the appearane of double layers has usually been onsidered tomark the end of soliton ourrene in plasma models. From the nonlinear studies of thedi�erent plasma on�gurations disussed in this thesis, it is shown that for some models,and for ertain plasma parameters, solitons an also be obtained for Mah numbers thatexeed those leading to the ourrene of double layers.
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CHAPTER 1
General Introdution

In this hapter we disuss the general aspets of kappa distributions, their harateristisand how they have been used in the analysis of observational data from spae satellitesand laboratory experimental data.Sine most of the work disussed in this thesis is linked to nonlinear solitary waves orstrutures (solitons and double layers) that exist in a number of plasma models, inludingdusty plasmas, in this hapter we also highlight properties of dust partiles or dust grainsand general harateristis of dusty plasmas. In addition, we brie�y desribe solitons anddouble layers, inluding the theoretial approahes to modelling these solitary strutures.1.1 Aspets of Kappa Distributions1.1.1 IntrodutionKappa distributions were �rst introdued by Olbert [1968℄ and o-workers when theywere analyzing the isotropi bakground urrents measured in the Earth's magnetosheathby the M.I.T detetor on IMP-1. Around the same time, based on observations of eletronsof energy in the range (125 eV to ∼ 2 keV), with OGO 1 satellite, and (40 eV to ∼ 2 keV),with OGO 3, Vasyliunas [1968℄ used the same distribution to �t the low-energy eletronpopulation in the Earth's magnetosphere. In the analysis of Olbert [1968℄ and oworkers,1



1. General Introdutionthey assumed that the eletron speed distribution in the satellite frame of referene is ofthe form [Olbert, 1968℄:
fev

2dv = onstant v2dv
(

1 + v2

κw2

0

)(κ+1)
, (1.1)where v is the atual speed, w0 is the most probable speed of the eletrons, and κ is a `free'parameter whose value is a measure of the departure of the distribution from its Maxwellianharater (with κ→∞ leading to the Maxwellian distribution). This distribution providesa good �t to those that are ommonly observed, being Maxwellian-like at low speeds andobeying a power-law form at high speeds.Following the empirial formula in Eq. (1.1), the isotropi (3-D) kappa veloity distri-bution of partiles of mass m is written in the form [Vasyliunas, 1968; Marsh and Livi,1985; Summers and Thorne, 1991; Kivelson and Russell, 1995℄

Fκ(v) = Aκ

[

1 +
v2

κ θ2

]−(κ+1)

, (1.2)where v2 = v2x+v2y+v2z ; Aκ is a normalization parameter, θ is an �e�etive or harateristithermal speed� parameter, that is, the most probable speed [Vasyliunas, 1968℄, and κ isa spetral index, whih is a free parameter. The parameters Aκ and θ are obtained self-onsistently from the lowest even moments [Podesta, 2005; Hellberg et al., 2009℄ of thedistribution funtion in (1.2).1.1.2 Kappa Distributions: Veloity Moments and the Most ProbableSpeedThe veloity moments of the kappa distribution are given by [Podesta, 2005℄
〈vn〉=4π

∫

∞

0
v(n+2)Fκ(v)dv = 4πAκ

∫

∞

0
v(n+2)

(

1 +
v2

κθ2

)−(κ+1)

dv

= 2πAκ(κθ
2)(n+3)/2B[(n+ 3)/2, κ− (n+ 1)/2]

=
2(κθ2)n/2√

π

Γ
(

n+3
2

)

Γ
(

κ− n+1
2

)

Γ(κ− 1/2)where Γ(a) and B(a, b) are the usual gamma and beta funtions, respetively. For arbitraryreal values of κ and n ≥ 0, the integral is �nite for n < (2κ − 1), that is, κ > (n + 1)/2.2



1.1. Aspets of Kappa DistributionsThe expression for Aκ is obtained from the zeroth moment of veloity, that is,
N0 = 〈v0〉=4π

∫

∞

0
v2Fκ(v)dv

= πAκ(κθ
2)3/2

Γ(κ− 1/2)

Γ(κ+ 1)
, giving

Aκ =
N0

(πκθ2)3/2
Γ(κ+ 1)

Γ(κ− 1/2)
. (1.3)In the normalization parameter expression (1.3), N0 is the unperturbed equilibrium density,given by N0 = 〈v0〉, the zeroth moment of the distribution, and Γ is the usual gammafuntion, Γ(a) = ∫∞

0 ta−1e−tdt;Also, for n = 2, the seond moment of veloity gives 〈v2〉 = 3κθ2/(2κ − 3) or θ2 =

〈v2〉(2κ−3)/3κ. Using the energy relationm〈v2〉/2 = 3KBT/2, whereKB is the Boltzmannonstant, and T is the harateristi kineti temperature, that is, the temperature of theequivalent Maxwellian distribution [Podesta, 2005; Hellberg et al., 2009; Livadiotis andMComas, 2009℄ with the same average kineti energy m〈v2〉/2 per partile, we obtain
〈v2〉 = 3KBT/m. Therefore the most probable speed, θ, is related to the thermal speedof the partile speies [Goldston and Rutherford, 1995; Shukla and Mamun, 2002℄, vth =

(KBT/m)1/2, by
θ2 = v2th

(2κ − 3)

κ
= v2mp (κ− 3/2)

κ
, (1.4)where vmp =

√
2 vth is the most probable speed for a Maxwellian veloity distribution [Kivel-son and Russell, 1995, p.38℄. However, we point out that in some textbooks [Swanson, 2003,p.86℄, the most probable speed is sometimes referred to as the thermal speed. The expres-sion in Eq. (1.4) shows learly that the harateristi thermal speed θ is κ dependent, andredues to the thermal speed vmp when κ→∞.The spetral index κ is a measure of the slope of the energy spetrum of the superther-mal partiles (v2 ≫ κθ2) forming the tail of the veloity distribution funtion. The kappadistribution thus approximates a family of �power law distributions� Fκ(v) ∝ v−2(κ+1) for

v ≫ θ. The smaller the value of κ the more superthermal partiles in the tail of the distri-bution funtion and the harder the energy spetrum. That is, low values of κ represent amore enhaned and �hard� spetrum (strong non-Maxwellian tail with more superthermalpartiles in the tail of the distribution funtion), resulting in an enhaned veloity distri-3



1. General Introdutionbution at low speeds, a depressed distribution that is Maxwellian-like at medium speedsand an enhaned power law tail at high speeds (see Fig. 1.1). As already mentioned, when
κ→∞ the Maxwellian distribution funtion,

F∞(v) = N0

(

m

2πKBT

)3/2 exp(−mv2

KBT

)

, (1.5)is reovered. The features desribed above are shown in Fig. 1.1, where we have plottedthe normalized distribution (1.2) as a funtion of the normalized veloity. In partiular,the �gure shows that kappa distributions have higher and narrower peaks, and broaderbase tails, than the Maxwellian distributions [Hellberg et al., 2009℄. In addition, very largevalues of κ approximate the Maxwellian distribution. Note that the expression for the
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1.1. Aspets of Kappa Distributionsspae oordinates, giving [Summers and Thorne, 1991℄
F1κ(v) =

N0

(πκθ2)1/2
Γ(κ)

Γ(κ− 1/2)

(

1 +
v2

κθ2

)−κ

, (1.6)where, here, v is a signed veloity omponent.1.1.3 Kappa Distributions: Appliation to Plasma Experiments andSpae Plasma ObservationsKappa distributions have been used by a number of authors [Summers and Thorne,1991; Mae and Hellberg, 1993; Mae and Hellberg, 1995; Hellberg and Mae, 2002;Podesta, 2005; Mae and Hellberg, 2009; Mae and Sydora, 2010℄ in studying the e�et ofLandau damping on various plasma modes. Summers and Thorne [1991℄ introdued themodi�ed plasma dispersion funtion Z∗

κ(ξ) analogous to the standard plasma dispersionfuntion, Z(ξ), based on the Maxwellian distribution [Fried and Conte, 1961℄. Mae andHellberg [1995℄ generalized Z∗

κ(ξ), lifting the onstraint that κ be an integer, and showedits lose relationship to the Gauss hypergeometri funtion.Kappa distributions are onvenient in analyzing and interpreting observational datain spae plasmas whih show a Maxwellian �ore� at low energies and a power-law taildistribution for higher energies. Some examples of its appliation inlude the Earth'smagnetospheri plasma sheet [Christon et al., 1988℄, the solar wind [Pierrard and Lemaire,1996℄ and solar orona [Sudder, 1992; Pierrard and Lemaire, 1996℄, the magnetospheresof Jupiter and Saturn [Krimigis et al., 1983; Sittler et al., 1983; Shippers et al., 2008;Dialynas et al., 2009℄, and the auroral region [Olsson and Janhunen, 1998℄.Based on the observational data from the European satellite Heos 1, Formisano et al.[1973℄ studied plasma properties as a result of the solar wind interations in the Earth'smagnetosheath. In their work, they desribed the proton veloity distribution funtionby a funtion similar to that used by Vasyliunas [1968℄, though they alled it a �K distri-bution funtion�, with the spetral index K (in their ase) hosen only from four values:
2, 3, 5, ∞. In partiular, when no upstream waves were deteted in the interplanetaryregion, the Maxwellian distribution funtion for protons did not learly �t the positiveion energy spetra observed inside the magnetosheath for higher energies (above 0.9 keV)while with a �K distribution funtion�, with K = 2, there was lose agreement with the5



1. General Introdutionexperimental data, as illustrated in their Fig. 2.In the early 1990s, Sudder [1992℄ proposed that the high oronal temperature is aonsequene of the �veloity �ltration e�et� when he assumed a non-Maxwellian veloitydistribution in the hromosphere (see also Pierrard and Lemaire [1996℄; Maksimovi et al.[1997℄; Shizgal [2007℄). With typial κ values ranging from 2.5 to 7, Sudder [1992℄ foundthat the plasma temperature inreased from 103 K at the altitude of the hromosphere upto (1 − 2) × 106 K in the solar orona without additional heat deposition or dissipationof wave energy in the solar orona [Pierrard and Lemaire, 1996℄. The �veloity �ltratione�et� was also found to apply to the topside ionopause [Pierrard and Lemaire, 1996℄to explain the inrease of the plasma temperature as a funtion of altitude in the outerplasmasphere. With κ = 3 − 5, temperatures in the outer plasmasphere inreased up tovalues of (10− 20)× 103 K whih are omparable to those measured with the satellites athigh altitudes (see Pierrard and Lemaire [1996℄).Results from the Voyager 1 and 2 spaeraft [Krimigis et al., 1983℄, during their enoun-ters with the magnetosphere of Saturn, indiated that the typial energy spetrum of theions (assumed protons) is like a Maxwellian at low energies (≤ 200 keV) and a power lawat high energies (≥ 200 keV). Krimigis et al. [1983℄ used κ distributions to �t ion spetralobservations in the magnetosphere of Saturn, with typial values of κ in the range 6 − 8and thermal energy KBT in the range ∼ 16 keV to ∼ 28 keV mathing the observationsextremely well in general, though with a few exeptions.In analyzing the �eld-aligned ondutane values, Olsson and Janhunen [1998℄ used theFreja eletron data to ompare the Maxwellian and kappa distribution �ts of low-orbitingsatellite eletron �ux spetra in the auroral region. Kappa �ts with κ ≃ 6 (κ in the range4-7) gave better �ts to the observed distribution, though the di�erene in ondutanevalues was not large.More reent measurements of Saturn's magnetosphere from the Cassini-Huygens satel-lite [Shippers et al., 2008℄ have shown that the eletron distribution is very well �tted bythe sum of two kappa distributions, the hot (superthermal) omponent having a muh lowerdensity than the bulk (`thermal' omponent). These bi-kappa1 �ts were observed over awide range of the magnetosphere, the measurements enompassing the range from 5.4 to1Bi-kappa is used in this thesis to refer to the sum of two omponents, eah being kappa-distributed6



1.1. Aspets of Kappa Distributions18 RS (Saturn radii). The bulk omponent has a very hard spetrum, with typial kappavalues ≤ 2, while the minority hot omponent (whih at 9 RS makes up less than 10% ofthe eletrons) has κ ∼ 4. A typial value for the bulk omponent is κ ≃ 2 throughout mostof the magnetosphere, apart from the region R < 7RS (where 2 < κbulk < 8, inreasingrapidly for dereasing R), whereas the hot omponent has a highly variable value of κ,lying between 3 and 9.1.1.4 Modi�ed Forms of Kappa Distributions and other Non-MaxwellianDistributionsSine the empirial formula of Olbert [1968℄ and Vasyliunas [1968℄, modi�ations toKappa distributions have been introdued and applied in the analysis of observation datafrom satellites.One suh form is the distribution funtion f0(v) of a test partile in the presene ofradiation �elds of nonequilibrium photons, introdued by Hasegawa et al. [1985℄. Thistakes the form
f0(v) = A

(

1 +
v2

2κ v2te

)−κ

, (1.7)where, vte is the thermal veloity, and with the normalization ∫∞

0 f0(v)4πv
2dv = 1,

A =
2κ− 3

4
√
2(πκ)3/2v3Te

Γ(κ)

Γ(κ− 1/2)
.Equation (1.7) has onsiderable resemblane to the one-dimensional standard kappa dis-tribution funtion in Eq. (1.6) used to �t partile data in spae plasmas [Hasegawa et al.,1985℄, although it is expressed in terms of the thermal veloity, and not the generalizedmost probable speed θ = θ(κ, vTe).Apart from kappa distributions, the Tsallis distribution [Tsallis, 1988, 1995℄, that isharaterized by a Tsallis parameter q (whih is losely related to κ), has been urged to bean alternative model for non-Maxwellian distributions. The Tsallis distribution, denoted

p is a probability distribution given by[Tsallis, 1995℄
pq(x) =

1

Zq

[

1− (1− q)βx2
]1/(q−1)

, (1.8)
7



1. General Introdutionwhere Zq =
∫ [

1− (1− q)βx2
]1/(q−1)

dx, and β is de�ned as the Lagrange parameter asso-iated with the q-expetation 〈x2〉q [in (1.11) below℄. The distribution in (1.8) extremizesthe Tsallis entropy Sq(p) de�ned by [Tsallis, 1988, 1995℄
Sq(p) =

KB

q − 1

(

1−
∫

[p(x)]qdx

)

, (1.9)with x a dimensionless parameter. Thus, the Tsallis entropy is a generalization of theBoltzmann-Gibbs entropy, sine it reovers the Boltzmann-Gibbs Shannon form,
S1(p) = −KB

∑

i piln(pi) in the limit q → 1. In addition, the Tsallis distribution (1.8)extremizes the generalized Tsallis entropy (1.9) subjet to the onstraints [Tsallis, 1995℄
∫

p(x)dx = 1, (1.10)and
〈x2〉q =

∫

x2[p(x)]qdx = σ2 <∞, (1.11)with q < 3, in order to satisfy (1.10) [Tsallis, 1995℄.Another approah, introdued by Leubner [2002℄, makes use of the Tsallis q-statistis[Tsallis, 1999℄. Using the generalized entropy from the Tsallis q-statistis, Leubner [2002℄showed that with the transformation κ = 1/(1 − q), where q is a parameter quantifyingthe degree of non-extensivity, and κ is a spetral index of the kappa distribution, theone-dimensional and isotropi three-dimensional equilibrium veloity spae distributions,in kappa notation, an be written as
FL1

(v) =
N

vth

1√
κ

Γ(κ)

Γ(κ− 1/2)

(

1 +
1

κ

v2

v2th

)−κ and (1.12)
FL3

(v) =
N

π3/2v3th

1

κ3/2
Γ(κ)

Γ(κ− 3/2)

(

1 +
1

κ

v2

v2th

)−κ for 3/2 < κ ≤ ∞, (1.13)respetively, where here vth = (2KBT/m)1/2 is the thermal veloity [Leubner, 2004℄, and Tand m are the temperature and mass respetively. Unusually, Leubner [2004℄ also onsiders
κ < 0. Note here that, the �thermal veloity�, Vth takes the same form as the most probablespeed for a Maxwellian distribution. The notation L1 and L3 refers to the one- and three-dimensional forms of Leubner [2002℄, with the latter also alled the �halo� distribution8



1.1. Aspets of Kappa Distributions(see Eq. (6) of Leubner [2004℄). Distributions of the form of Eq. (1.13) were used in theanalysis of results from the HELIOS observations of the double humped (ore-halo) solarwind proton veloity distributions [Leubner, 2004℄ between 0.3 and 1 a.u. Apart fromthe fat that Eqs. (1.12) and (1.13) are expressed in terms of the thermal veloity vth(independent of κ) and not in terms of the most probable speed θ = θ(κ, vth), (1.12) hasonsiderable resemblane to Eq. (1.6) for the one-dimensional kappa distribution. However,for the three-dimensional ase, there is a huge di�erene (in both the veloity and power-lawterms).In the same work of Leubner [2002℄ (see also Leubner [2004℄), the author indiates thata onventional isotropi three-dimensional κ-distribution is represented by
fL(v) =

N

π3/2v3th

1

κ3/2
Γ(κ+ 1)

Γ(κ− 1/2)

(

1 +
1

κ

v2

v2th

)−(κ+1)

. (1.14)Equation (1.14) looks similar to (1.2), the only di�erene here being that the distribution isexpressed in terms of the �thermal veloity� vth, and not the most probable or harateristispeed θ = θ(κ, vth). It is then surprising that one gets the generalized form of the �thermalspeed� Θ = vth[(κ/(κ − 3/2)]1/2 from the seond moments of the distribution funtionin (1.14), as Leubner [2004℄ puts it. Considering Eq. (1.14), the seond moments of thedistribution funtion gives
〈v2〉 = 3

2

(

κ

κ− 3/2

)

v2th (1.15)If we use 〈v2〉 = 3KBT/m = 3v2th/2 where here, vth = (2KBT/m)1/2, it then followsthat Eq. (1.15) an hold if and only if κ → ∞. In other words, the expression Θ =

vth[(κ/(κ − 3/2)]1/2 as the generalized thermal veloity in the work of Leubner [2004℄seems unlear.Another form of kappa distribution is that introdued by Fu and Hau [2005℄ and Hauand Fu [2007℄, whih was �rst applied in obtaining the Vlasov-Maxwell equilibrium solu-tions for the Harris sheet magneti �eld. This distribution funtion2 takes the form
fκ
H(v) =

N

2π(κ v2κ)
3/2

Γ(κ+ 1)

Γ(κ− 1/2)Γ(3/2)

(

1 +
1

κ

v2

v2κ

)−(κ+1)

, (1.16)2The subsript `H' refers to the Hau formalism 9



1. General Introdutionwhih after using the Gamma funtion relation Γ(α + 1) = αΓ(α), and Γ(1/2) = π1/2,redues to
fκ
H(v) =

N

(πκ v2κ)
3/2

Γ(κ+ 1)

Γ(κ− 1/2)

(

1 +
1

κ

v2

v2κ

)−(κ+1)

. (1.17)In Equations (1.16) and (1.17), vκ is de�ned as the thermal speed that is related to theharateristi temperature Tκ, and is given by
vκ =

{(

2κ− 3

κ

)(

KB Tκ

m

)}1/2

, (1.18)where Tκ is also related to the temperature T in the Maxwellian distribution, by [Fu andHau, 2005℄
Tκ =

(

κ− 3/2

κ

)

T (1.19)and [Hau and Fu, 2007℄
Tκ =

(

κ

κ− 3/2

)

T. (1.20)However, we shall use Eq. (1.20) in the disussion, as (1.19) seems to have a typographialerror. Otherwise, it does not make sense in that form. A simple inspetion of Eqs. (1.18)and (1.20) shows that atually
vκ =

(

2KB T

m

)1/2

= vth. (1.21)In other words, Eq. (1.16) [Fu and Hau, 2005; Hau and Fu, 2007℄ is simply the same asEq. (1.14), the �generalized onventional isotropi three-dimensional kappa distributionfuntion� of Leubner [Leubner, 2002, 2004℄, but di�ers from Eq. (1.13) that was derivedfrom the q-entropy statistis. Both Eqs. (1.16) and (1.14) do not give the appropriatemost probable speed θ = θ(κ, vth) that is de�ned, by appealing to equipartition of energy,by θ = vth[(κ − 3/2)/κ]1/2 . We point out that this approah (of Hau and Fu [2007℄) hasbeen ritiized [Hellberg et al., 2009℄. Generally, all the di�erent forms of κ distributionfuntions disussed in this Chapter have two ommon harateristis: (i) they all possesspower law behaviour and (ii) in the limit κ→∞ one reovers the Maxwellian distributionfuntion of the form of Eq. (1.5).The relationship of the kappa distributions to the Tsallis statistial mehanis was10



1.1. Aspets of Kappa Distributionsreently given by Livadiotis and MComas [2009℄, where they used the transformation
κ = 1/(q − 1) as opposed to κ = 1/(1 − q) used by Leubner [2002℄. In Tsallis statistialmehanis, there are two probability distributions that play a role in the theory: theanonial and esort probability distributions whih are, respetively, given by [Livadiotisand MComas, 2009℄

p(ǫ;Tq; q)∼ expq [− 1

Iq(3/2)

ǫ

KBTq

] and (1.22)
P (ǫ;Tq; q)∼ p(ǫ;Tq; q)

q ∼ expq [− 1

Iq(3/2)

ǫ

KBTq

]q

, (1.23)where ǫ = µu2/2 is the kineti energy (µ and u are the mass and veloity, respetively),
Tq is the physial temperature [Livadiotis and MComas, 2009℄ (see below), and q is the qindex; expq(x) = [1 + (1− q)x]1/(1−q) is the q-deformed exponential, and
Iq(u) = 1+ (1− q)u is the q-deformed �unit funtion�. From (1.23), the esort probability(or esort expetation), denoted 〈〉q , of a funtion of energy ǫ is given by [Livadiotis andMComas, 2009℄

〈f(ǫ)〉q =
∫

∞

0 P (ǫ;Tq; q)f(ǫ)gE(ǫ)dǫ
∫

∞

0 P (ǫ;Tq; q)gE(ǫ)dǫ
, (1.24)where gE(ǫ) = 2π(2/µ)3/2ǫ1/2 is the density of energy states of the system. Using theesort expetation, Livadiotis and MComas [2009℄ showed that the internal energy Uq isestimated as the esort expetation value 〈ǫ〉q , that is,

Uq = 〈ǫ〉q =
3

2
KBTq, (1.25)where Tq is the physial temperature, not the thermodynami temperature. Thus, Li-vadiotis and MComas [2009℄ argued that working with esort probability distributions

P (ǫ;Tq; q) (in the Tsallis statistial mehanis) and not the ordinary (or anonial) prob-ability distributions p(ǫ;Tq; q), the kineti temperature TK , de�ned by the internal energy
Uq = 3KBTK/2, oinides with the physial temperature Tq in the Tsallis formalism.They further argued that sine TK is idential to Tq , the appropriate temperature in Tsal-lis statistis is the kineti temperature, and not the thermodynami temperature, that is,the appropriate de�nition of temperature for out-of-equilibrium systems. In other words,the system is haraterized by the same internal energy (mean kineti energy) or kineti11



1. General Introdutiontemperature that is independent of the spei� stationary states. To put it di�erently, thekineti temperature is independent of the value of the q index (Tsallis statistis) or κ index(kappa distributions), see also Hellberg et al. [2009℄.Apart from kappa distributions, another form of non-thermal or non-Maxwellian distri-bution funtion that is used in theoretial papers is the so-alled Cairns distribution. Thisdistribution was introdued by Cairns et al. [1995℄ as an ad ho model for non-thermalveloity distributions, and takes the form
Fj(v) =

Nj0

(3α+ 1)

1
√

2π v2tj

(

1 +
α v4

v4tj

)

exp

(

− v2

2v2tj

)

, (1.26)where α is the non-thermal parameter, Nj0 the equilibrium number density and vtj thethermal veloity of the speies j. Cairns et al. [1995℄ used this distribution in explaining theeletrostati strutures with density depletions observed by the Freja satellite [Dovner etal., 1994℄, and showed that the presene of a population of energeti eletrons hanges theproperties of ion sound waves. The distribution funtion (1.26) redues to the Maxwelliandistribution form when α = 0. It is onvenient to introdue the parameter β = 4α/(1+3α).The normalized Cairns distribution funtion of (1.26) is shown in Fig. 1.2 for di�erentvalues of β, and we note that for β = 0 it redues to the Maxwellian distribution funtion.The �gure also shows that for β ≥ 1/2 (or α ≥ 0.2) the distribution funtion develops�wings� at high veloities, beoming multi-peaked there. In partiular, beyond β = 4/7(or α = 0.25) [Verheest, 2010a℄, the distribution is triple humped, and hene ould beunstable, leading to beam-instabilities. For suh high values of β, the Cairns distributionfuntion may not be good for physial appliations. In other words, the Cairns distributionis appropriate for a narrow range of parameters α, or β, that produe only small deviationsfrom the Maxwellian distribution funtion. As an appliation, a plasma model with partilespeies that follow the Cairns distribution given in Eq. (1.26) is disussed in Chap. 6. Sinethe introdution of the �Cairns non-thermal' veloity distribution, it has not been appliedextensively in the analysis of spae plasma observations from satellites. However, a numberof authors have used it in theoretial studies on solitary strutures, for instane, Mamun[1997℄, Verheest and Pillay [2008a,b℄, Pajouh and Abbasi [2008℄, and Verheest [2010a℄, tomention a few.12
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1. General Introdution1.2 Dusty Plasmas1.2.1 Dust and Dusty PlasmasA dusty plasma an be de�ned as a olletion of miro-sized eletrially harged dustpartiles immersed in a plasma onsisting of eletrons, ions and neutrals [Goertz, 1989;Shukla, 1996, 2000a; Shukla and Mamun, 2002; Verheest and Cattaert, 2004℄.Dust partiles are very small in size, of marosopi dimensions ompared to atomsand ionized nulei [Verheest, 2000, p. 2℄). Their sizes range from nano-meters to millime-ters [Shukla and Mamun, 2002, p. 2℄ and they have large masses. Di�erent authors givedi�erent dust mass ranges, for example, [Verheest, 2000, p. 6℄ gives a range of 106 − 1018times the proton mass (see also referenes therein) while Shukla and Mamun [2002℄ quotesthe dust mass to be billions times the proton mass; the atual value depends on the environ-ment of existene. Dust partiles are often observed to have negative harges several timesthe eletron harge, typially between 102− 104e, where e is the eletroni harge [Shukla,1996; Verheest, 1999; Mamun and Shukla, 2005℄, with variations depending on the envi-ronment where they our. On the other hand, positively harged dust partiles do alsoour in spae, depending on the harging proess in the surrounding environment. Thelarge values of mass and harge for dust partiles suggest that dust partiles have signi�-antly higher mass-to-harge ratio (md/Zde) than that of ions or eletrons. As a result, theharateristi dust frequenies (for example, the dust plasma frequeny ωpd ∝ (Zd/md)
1/2)are very small [Verheest, 2000, p. 7℄ ompared to those of eletrons and ions.Due to the presene of eletrons and ions in spae and the ubiquitous dust, dustyplasmas exist naturally in numerous spae and astrophysial environments. For example,dust is believed to our in planetary rings, ometary tails and omae, interstellar andirumstellar louds, Earth's mesosphere and ionosphere in the form of notiluent louds,the rings of Saturn (radial spokes in the B ring; braided strutures in the F ring; the D ringand the narrow ringlet in the A ring near the middle of the Enke gap), and the �gossamer�ring of Jupiter (see for example, Mendis and Rosenberg [1994℄; [Verheest, 2000, Chap. 3℄and [Shukla and Mamun, 2002, Chap. 1℄, and referenes therein).In laboratory experiments, dust partiles are usually found in many low-temperaturelaboratory devies and industrial proesses, suh as plasma proessing reators [Shukla and14



1.2. Dusty PlasmasMamun, 2002, p. 18℄ and ething [Verheest, 2000, p. 34℄, d and rf disharges where dustpartiles are more abundant in eletronegative gas mixtures, fusion plasma devies suhas tokamaks, stellarators [Shukla and Mamun, 2002, p. 20℄ where the dust partiles aregenerated as impurities through proesses like desorption, aring, sputtering, evaporation,et.Returning to the ourrene of dust partiles in spae and astrophysial environments,we list brie�y some examples:Planetary rings: In planetary rings, information obtained from Voyager 1 and 2 spaemissions has shown that most rings of the outer giant planets suh as Jupiter, Saturn,Uranus and Neptune are made of miron- to sub-miron-sized dust partiles (see [Ver-heest, 2000, pp. 46�56℄, [Shukla and Mamun, 2002, pp. 13�16℄, Postberg et al. [2006℄, andreferenes therein). In partiular:(i) dust partiles have been found by the Voyager 2 spaeraft to exist in a very tenuousring [Mendis and Rosenberg, 1994℄, the gossamer ring of Jupiter whih extends outwardfrom the brighter thin ring to the viinity of the satellite Thebes (∼ 3.11RJ ), RJ beingthe radius of Jupiter.(ii)The Ulysses mission to Jupiter also deteted high speed streams of dust grains duringits distant Jovian enounter (see Mendis and Rosenberg [1994℄ and referenes therein).(iii) The interesting features observed in Saturn's ring system by both Voyager 1 and 2,the nearly radial spokes [Shukla and Mamun, 2002℄, provided the impetus for the study ofdust-plasma interations in planetary magnetospheres.(iv) Observations of dust in the viinity of the moon, Rhea, whose orbital radius is ap-proximately 9 Rs were reported by the Cassini team [Jones et al., 2008℄.Comets: Comets suh as P/Halley [MDonnell et al., 1987; Thomas and Keller, 1991℄,observed by the Giotto and Vega spaeraft, Hale-Bopp, and others have been found tohave ometary dust partiles (see [Verheest, 2000, pp. 58�62℄; [Shukla and Mamun, 2002,pp. 9�12℄, and referenes therein). For instane, data from the Vega and Giotto spaeraftshowed that the dust size distribution is well �tted by a power law distribution, n(r) = r−β,with β ≃ 3.3 for Vega and 4.1 for Giotto [Verheest, 2000; Shukla and Mamun, 2002℄, and
r being the helioentri distane. 15



1. General IntrodutionEarth's Atmosphere: Naturally ourring dusty plasmas have been reported in the po-lar mesosphere at altitudes of 80 and 90 km [Verheest, 2000, p. 43℄, haraterized bynotiluent louds, polar mesospheri ehoes, and strong radar baksatter, observed atfrequenies ranging from 50 MHz to 1.3 GHz [Verheest, 2000; Shukla and Mamun, 2002℄.Large amounts of harged dust with average sizes of about 0.1µm at densities of several
109m−3 were deteted during the polar mesospheri summer ehoes and notiluent loudsonditions. Both positively and negatively harged dust partiles have been reported atdi�erene altitudes in the polar mesosphere [Verheest, 2000, p. 43℄.The o-existene of negative and positive dust was also found in the tropial mesopause[Gelinas et al., 1998℄, where a thik (5 km) layer of positively harged dust was reported atan altitude of above 90 km, near both the sporadi sodium layer and sporadi E layer allof whih ourred just above 90 km [Havnes, 2002℄. On the other hand, negatively hargeddust was reported near the bottom of the layer, overing a small part ompared with thepositively harged dust layer [Gelinas et al., 1998; Havnes, 2002℄. The presene of positivedust in the mesopause region was attributed to the di�erene in dust material ompositionfrom that of pure water ie [Havnes, 2002℄ whih lowers the work funtion of the dustpartiles, and as a result, dust harging by photoeletri emission dominates. In plasmaenvironments where both positively- and negatively harged dust partiles o-exist suh asomets [Horányi, 2002℄ and the tropial mesopause [Gelinas et al., 1998; Havnes, 2002℄, asexamples, the positively harged dust partiles are small in size but numerous [Gelinas etal., 1998; Shukla and Mamun, 2002℄ while the negatively harged dust grains are larger,enhaning oagulation [Goertz, 1989; Havnes, 2002℄ of dust partiles in suh senarios.1.2.2 Fundamental Length SalesIn the di�erentiation of dusty plasmas from other plasma systems, three essential dis-tint harateristi length parameters are used. These are: the dust grain radius (rd),the average inter-grain distane ad, and the plasma Debye length, λD. The inter-graindistane ad is de�ned by nd0 = 4π/3a3d, where nd0 is the unperturbed dust density, thoughin some books [Verheest, 2000, p. 5℄, the fator 4π/3 is negleted. The Debye length
λD is a measure of the distane over whih the eletri �eld e�et of a typial individualharged partile is felt by other surrounding harged partiles in the plasmas, and is given16



1.2. Dusty Plasmasby [Shukla, 2000b; Shukla and Mamun, 2002℄ λ−2
D = λ−2

De + λ−2
Di , where λDe(λDi) is theeletron (ion) Debye length. Sine the eletrons have high mobility ompared to the ions,Debye shielding is mainly due to the eletrons, and the Debye length expression approxi-mates to λD ≈ λDe = (ε0KBTe/n0ee2)1/2, where Te and ne0 are the eletron temperatureand equilibrium density, respetively. Usually the the dust grain radius is muh smallerthan the Debye length, i.e., rd ≪ λD, and is the smallest of the three lengths [Verheest,2000, p. 5℄. When rd ≪ λD < ad, the plasma onsists of isolated sreened dust grains,and the system is termed �dust-in-plasma� [Verheest, 2000; Shukla and Mamun, 2002℄. Inthis ase the loal plasma inhomogeneities need to be taken aount of [Shukla and Ma-mun, 2002; Horányi, 2002℄, and the harged dust partiles an be treated from a partiledynamis point of view [Shukla, 2000b, p. 2℄. On the other hand, when rd ≪ ad < λD,the system is alled a �dusty plasma�. Here, the dust partiles are treated as massive pointpartile speies [Shukla, 1996; Shukla and Mamun, 2002; Horányi, 2002℄ similar to multi-ply harged (negative or positive) ions in multi-omponent plasmas. Therefore the hargeddust partiles partiipate in the olletive behaviour of the dusty plasma.Apart from the harateristi length parameters disussed above, other fundamentalparameters for plasmas (and dusty plasma in partiular) are the plasma parameter (sometimes loosely referred to as the Coulomb oupling parameter) and the plasma beta. Thelatter applies to magnetized plasmas, see for example, [Boyd and Sanderson, 2003, p.83℄,and will therefore not be disussed here in detail.Plasma Parameter: In understanding the plasma parameter, we introdue two distaneparameters: (i) the average distane between partiles, a, given by a = (4π/3n0)

1/3,where n0 is the number density (ompare with the inter-grain distane ad), and (ii) thedistane of losest approah rc, de�ned as the distane at whih the Coulomb energy,
U(r, v) vanishes, where U(r, v) = (mv2/2) − (e2/4πǫ0 r) is the energy of a single hargedpartile in the eletri �eld of a neighbouring partile. Thus rc = e2/(4πǫ0 KBT ), wherewe have used mv2/2 = KBT . The plasma parameter, denoted by g, is a dimensionlessparameter [Kivelson and Russell, 1995; Boyd and Sanderson, 2003; Parks, 2004℄, given by
g = 1/Nd, where [Parks, 2004, p. 25℄

Nd =
4π

3
n0λ

3
D, 17



1. General Introdutionis the number of partiles in a plasma ontained in a Debye sphere, and n0 is the equilibriumnumber density. Note that in some books the fator 4π/3 is negleted. However, insome textbooks [Miyamoto, 1997℄, the plasma parameter is simply given by Nd. Using
λD = (ε0KBT/n0 e2)1/2 and n0 = 4π/3a3, the expression for Nd an easily be written as

Nd =
4π

3

(ε0KBT )
3/2e3 n1/2

=
1

4π
√
3

(

a

rc

)3/2

=
1

g
.From the expression above, the following is worth mentioning:(i) When the ratio a/rc is small, harged partiles are ontinuously dominated by oneanother's eletrostati in�uene; their kineti energies are small ompared to the potentialenergies, and the Debye sphere is sparsely populated (as we have fewer partiles), reminis-ent of old and dense plasmas. Suh plasmas (with g ≫ 1) are termed strongly oupledplasmas [Miyamoto, 1997; Shukla and Mamun, 2002℄.(ii)On the other hand, when the ratio a/rc is large, eletrostati interations between in-dividual partiles rarely ause any sudden hanges in the partile's motion. The plasmaonsists of a large number of hot and di�use partiles, and Debye sreening beomes mean-ingful. Suh plasmas (with g ≪ 1) are termed weakly oupled plasmas [Miyamoto, 1997;Shukla and Mamun, 2002℄. The ondition g ≪ 1 is also alled the plasma approxima-tion [Parks, 2004℄, whih is taken to be a measure of the ollision e�ets of the plasmapartiles; smaller g orresponds to fewer ollisions, and the plasma beomes ollisionless inthe limit g → 0 (valid in spae plasma with low densities and high temperatures.)The Coulomb oupling parameter [denoted Γ, not to be onfused with the usual Gammafuntion used in (1.3)℄, is de�ned as the ratio of the Coulomb interation potential energyto the mean kineti energy of the plasma partiles [Gilbert et al., 1988; Melzer et al., 1994;Fortov et al., 1997; Shukla and Mamun, 2002℄. Thus Γ is given by

Γ =
< P.Einteration >

< K.E >
.As an example, we onsider a partile of harge q separated from another by a distane

a. The Coulomb potential energy an be given by the Debye sreening potential [Parks,2004℄ [q/(4πǫ0 a)]exp(−a/λD) while the kineti energy is obtained from KBT . Note that18



1.2. Dusty Plasmasthe Debye sreening potential redues to the usual Coulomb potential q/(4πǫ0 a) in thelimit a≪ λD. The Coulomb oupling parameter then beomes [Melzer et al., 1994; Shuklaand Mamun, 2002℄
Γ =

q2

(4πǫ0 a)

1

KBT
exp(−a/λD).In the study of dusty plasmas, the value of Γ determines the possibility of formation ofdusty plasma rystals [Shukla and Mamun, 2002℄ by the proess of Wigner rystallization.This ours for strongly oupled plasmas, with Γ ≫ 1; Γ ≪ 1 orrespond to weaklyoupled plasmas. Thus �g� and �Γ� have the same e�et. In the determination of theharge on dust partiles, Melzer et al. [1994℄ observed a Coulomb rystal lattie with ahexagonal struture in an rf disharge. In their experiment, they also reported that theharged dust partiles form regular latties at Γ ≥ Γc, with Γc = 170 being the ritialoupling parameter for the liquid-solid transition phase [Fortov et al., 1997℄. With Γc ≈ 2,a transition from the gaseous phase to liquid phase was also predited [Gilbert et al., 1988;Dubin and O'Neil, 1988℄ where a liquid-like phase behaviour is exhibited by the plasma for

Γc > 2 , and a liquid-solid phase transition to a body-entered ubi (b) lattie ourredfor Γc ≈ 178 [Gilbert et al., 1988℄. The formation of dusty plasma rystals, onsistingof ordered arrangements of miro-sized dust grains (or rods) in low-temperature partiallyionized plasmas, was also observed experimentally in a high frequeny disharge near thelower eletrode in the boundary of the near-athode regions [Chu and I, 1994; Hayashi andTahibana, 1994; Melzer et al., 1994; Thomas et al., 1994℄.1.2.3 Charging Proess of Dust GrainsDust partiles immersed in a plasma an be harged negatively by olleting eletrons orpositively by emitting eletrons, depending on the relative �ux of eletrons and ions in thesystem [Gelinas et al., 1998; Shukla and Mamun, 2002℄. The elementary proesses that leadto the harging of dust grains are quite omplex and depend mainly on the environmentaround the dust grains. Suh elementary proesses inlude interation of dust grains withenergeti partiles (eletrons and ions), and interation of dust grains with photons [Shuklaand Mamun, 2002℄. In spae, olletion of eletrons and plasma ions by the dust grains,and photo-ionization [Verheest, 1999℄ are the most ommon harging proesses. 19



1. General IntrodutionNegative Charge proessesIn a dusty plasma, dust grains may be harged negatively by olletion of harges dueto thermal ions and eletrons [Barkan et al., 1995; Shukla and Mamun, 2002; D'Angelo,2004℄, provided the photoeletri e�et, seondary emission and other harging proessesare negligible. The negative harge results from: (i) the higher temperature, and thereforehigher thermal speed [Samarian et al., 2001℄, and (ii) the higher mobility of the eletrons, asompared to that of the ions. Thus the initial ion �ux is smaller than the initial eletron�ux and hene it is mostly the eletrons that will hit the grain [Verheest, 2000, p. 15℄.As the negative dust builds up on the dust grain, the resulting eletri �eld ats againstfurther eletron olletion (eletron �ux dereases) and in favor of ion olletion (ion �uxinreases). Eventually a dynamial equilibrium is reahed when the sum of the plasmaurrents to the grain is zero.This harging proess is ommon in the normal glow disharge experiments, where theemission proesses are insigni�ant [Samarian et al., 2001℄, for example, when onsideringlaboratory plasmas of low temperature [D'Angelo, 2004℄; negleting eletron emission, thehigher mobility of the eletrons with respet to the ions results in negatively harged dust.Positive Charge proessesOn the other hand, dust partiles an aquire appreiable positive harges by thermioniemission [Shukla, 2000b℄, emission of photoeletrons due to inident UV radiation, se-ondary eletron emission due to ollisions with energeti ions and eletrons, and absorp-tion of the plasma ions [Gelinas et al., 1998; Shukla, 2000b; Shukla and Mamun, 2002;D'Angelo, 2004℄. In this ase, the eletron density would be larger than that of the ions.Thermioni emission: In this proess, eletrons or ions are thermally emitted from thedust grain surfae when the latter is heated to a high temperature [Shukla and Mamun,2002℄, leaving the dust grain positively harged. The proess may be indued by laserheating, thermal infra-red heating or by hot �laments surrounding the dust grain.Photoeletron emission: This is more ommon in spae and astrophysial dusty plasmaenvironments where ultraviolet radiation is abundant and results in a positive hargingurrent, making the dust grains positively harged. During the proess, photoeletrons areemitted from the dust grain surfae when a �ux of photons with energy larger than the20



1.2. Dusty Plasmasphotoeletri work funtion of the dust grain is inident on the dust grain surfae [Goertz,1989; Shukla and Mamun, 2002℄.Seondary eletron emission: When energeti plasma partiles (eletrons and ions)are inident on a dust grain surfae, they are either baksattered/re�eted by the dustgrain [Shukla and Mamun, 2002, p. 40℄ or they pass through the dust grain (throughtunnelling, whih is important for very small dust grains [Verheest, 2000, p. 22;23℄) orreleases seondary eletrons. During their passage they may lose their energy partially orfully [Shukla and Mamun, 2002, p. 41℄. A portion of the lost energy may exite other ele-trons that in turn may esape from the material, resulting in seondary eletrons (emittedeletrons). The release of seondary eletrons from the dust grain tends to make the grainsurfae potential, as well as dust harge, positive [Goertz, 1989; Shukla and Mamun, 2002℄.In addition, if the dust grain absorbs more of the plasma ions than the eletrons, the dustgrain harge as well as its surfae potential beomes positive [Goertz, 1989; Shukla andMamun, 2002℄. This is beause, during absorption, the eletrons are attrated while theions are repelled, thus the grain urrent arried by the eletrons is inreased and thatarried by the ions is redued [Goertz, 1989; Shukla and Mamun, 2002℄.Absorption of plasma ions: In laboratory plasmas, one way of produing positivelyharged dust grains is by replaing the plasma eletrons with negative ions whose thermalspeed is smaller than the thermal speed of the positive ions [D'Angelo, 1995℄. Positivelyharged dust grains an be produed by introduing su�iently large amounts of SF6 gasinto a potassium (K+) plasma in a Q-mahine. Using this approah, D'Angelo [2004℄ wasable to experimentally investigate the exitation of dust ion-aousti and dust aoustiwaves in a plasma with positively harged dust. The SF6 gas has a large a�nity foreletrons, and thus replaes the eletrons with SF−

6 ions [D'Angelo, 2004; Kim and Merlino,2006℄, taking into aount the high mobility of K+ ions as ompared to SF−

6 ions. Ina similar method (using a Q-mahine operating on potassium ions in whih the highlyeletronegative SF6 gas is added), Kim and Merlino [2006℄ experimentally investigatedthe harging of dust partiles in a plasma onsisting of positive ions, negative ions andeletrons. In their experiment, the transition from negatively harged to positively hargeddust required that (i) ε = ne/n+, the ratio of the eletron density to positive ion density,21



1. General Introdutionbe su�iently small, and (ii) the positive ion mass be smaller than the negative ion mass.In these onditions, inreasing the onentration of negative ions in the plasma dereasesthe magnitude of the negative harge, and eventually a transition to positively hargeddust is observed [Kim and Merlino, 2006℄.1.2.4 Waves in Dusty PlasmasThe presene of the additional highly harged and massive dust grain speies in theplasma modify the properties of the usual plasma waves [Merlino et al., 1997; Shukla, 2000b;Shukla and Mamun, 2002; Hellberg et al., 2006℄, and also leads to instabilities [Samarian etal., 2001℄. Unmagnetized dust plasmas support new frequeny modes like the dust aousti(DA) waves and the dust-modi�ed ion-aousti (DIA) waves [Merlino et al., 1997; Shukla,2000b℄.The dust aousti wave, whih was �rst theoretially predited by Rao et al. [1990℄and later on�rmed experimentally by Barkan et al. [1995℄, is a long-wave length, lowfrequeny osillation mode [Merlino et al., 1997℄ with phase veloity that is far below theion-aousti veloity. In this mode, the eletron and ion pressures provide the restoringfore while the massive harged dust grains provide the inertia [Rao et al., 1990; Merlinoet al., 1997; Shukla, 2000a,b; Shukla and Mamun, 2003; Hellberg et al., 2006℄. Thus thedust partile dynamis play an essential role where the dust behaves as a harged partileplasma speies. The phase veloity of the wave is in the range vtd ≪ ω/k ≪ vti < vte suhthat eletron and ion Landau dampings are minimal.On the other hand, the dust ion-aousti waves, whih were �rst predited by Shuklaand Silin [1992℄ and on�rmed experimentally by Barkan et al. [1996℄, are ordinary fastion-aousti waves that are modi�ed by the presene of harged dust. In the preseneof negative dust, the phase veloity is higher than that of the usual ion-aousti wave inan eletron-ion plasma, and results in a redution in the strength of the Landau damp-ing [Merlino et al., 1997; Shukla, 2000b℄. The harateristi thermal speeds vtj of eletronsand ion in a DIA wave satisfy the riterion vtd < vti ≪ ω/k ≪ vte, that is, the phaseveloity of DIA waves (ω/k) is muh smaller than the eletron thermal speeds (vte) butmuh larger than the ion and dust thermal speeds (vtd, vti). In the DIA waves, the ionmass provides the inertia while the inertialess eletrons provide the restoring fore, with22



1.2. Dusty Plasmasthe dust partiles only providing a neutralizing bakground. Thus the ion and eletrondynamis is of paramount importane in the propagation of DIA waves.These two wave modes (DIA and DA waves) will be disussed in detail in Chapters 3and 4 in this thesis.
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1. General Introdution1.3 Solitons and Double Layers1.3.1 SolitonsThese are speial types of solitary waves (hump or dip shaped nonlinear waves ofpermanent pro�le) [Shukla and Mamun, 2002, p. 195℄. They travel at onstant speedand maintain a onstant waveform, thus preserving their shape (see also [Baluku, 2007℄.Solitons arise as a result of the balane between the e�ets of nonlinearity (leading tosteepening) and the e�ets of dispersion, assuming dissipation e�ets are negligible.In Fig. 1.3 we show a typial struture of a soliton, in terms of the eletrostati potential,
φ(ξ), and eletri �eld, E = − ▽ φ(ξ). The eletrostati potential soliton struture isharaterized by a single hump, ourring at the origin, while the eletri �eld struture hastwo humps (i.e., is bipolar), equidistant from the origin. It is the double hump struturesin E that are normally observed in spae data.
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EHΞLFigure 1.3: A graph showing a typial soliton struture in terms of the eletrostati po-tential (ontinuous urve) and eletri �eld (dotted urve).In studies of dusty plasmas, two types of aousti solitons are ommonly enounteredin ollisionless unmagnetized plasmas. These are dust ion-aousti solitons (analogous toion-aousti solitons in pure ion-eletron plasmas) and dust aousti solitons [Shukla andMamun, 2002, p. 94℄. These solitons are orrespondingly assoiated with di�erent eletro-stati waves, viz., the dust ion-aousti and dust aousti waves, respetively. However,24



1.3. Solitons and Double Layersif the plasma is magnetized we may obtain both eletrostati (aousti) and eletromag-neti (ylotron) waves, with the aousti wave modes propagating along the magneti�eld while the ylotron wave modes propagate (nearly but not exatly) perpendiularto the magneti �eld [Merlino et al., 1998℄. In this thesis, however, only solitons assoi-ated with dust ion-aousti and dust aousti waves in various multi-omponent unmag-netized dusty plasmas will be investigated in Chapters 3 and 4. Besides dusty plasmas,we will also investigate ion-aousti solitons in plasmas with two-temperature kappa ele-trons (Chap. 5), Cairns distributed eletrons (Chap. 6) and two-temperature Boltzmanneletrons (Chap. 7). Where appliable, double layers will also be disussed.1.3.2 Double LayersA double layer is a loal region in a plasma whih an sustain a potential di�ereneor high potential drops [Blok, 1978; Raadu and Carlqvist, 1981; Raadu and Rasmussen,1981℄. Double layers appear in urrent-arrying plasmas as nonlinear eletrostati shok-like or kink strutures with potentials transiting from one value to another over a smallspatial distane. They onsist of two adjaent layers with equal and opposite net harge,hene the term �double layer�. One layer has an exess of positive harges and the other anexess of negative harges [Raadu and Rasmussen, 1981℄. Inside the double layer the eletri�elds are strong but very weak outside. Thus the layer taken as a whole is pratiallyneutral [Blok, 1978; Raadu and Carlqvist, 1981; Raadu and Rasmussen, 1981℄.In various energeti phenomena in spae and astrophysial plasmas, double layers areonsidered as a possible means of aelerating partiles [Smith, 1985; Raadu and Ras-mussen, 1981℄, and have been invoked in suh diverse ontexts as terrestrial auroral dis-harges, magnetospheri substorms, solar �ares, Jovian radio emission, extragalati radiosoures, et.A double layer is said to be strong if eφdl/KBT ≫ 1, and is said to be weak if, say,eφdl/KBT < 10, where T is the temperature of the free eletrons, and φdl the height(amplitude) of the double layer [Raadu and Carlqvist, 1981℄.Strong double layers require two-sided boundary onditions [Hellberg et al., 1997℄, withthe assoiated partiles being spei�ed on both sides of the double layer. The partilesassoiated with the potential variation may be onveniently divided into four lasses: free25



1. General Introdutionand trapped (or re�eted) ions and eletrons, though in priniple, three of these four lassesare enough to maintain a double layer (quite ommon with weak double layers). The freepartiles an pass through the double layer while the re�eted/trapped partiles annotpenetrate the layer beause of the potential barrier. The free partiles are either aeleratedor deelerated depending on their diretion of motion with respet to the eletri �eld, andit is these free partiles that arry the urrent through the layer leading to emerging beamsof aelerated partiles [Raadu and Rasmussen, 1981℄. In this ase the eletri �elds arestrong and may lead to arbitrarily large amplitude double layers [Hellberg et al., 1997℄.A shemati piture showing a potential pro�le for a double layer as well as the free andre�eted ions and eletrons assoiated to the double layer is given in Fig. 1.4, from [Raaduand Carlqvist, 1981℄.Another form of double layers is that assoiated with �uid aousti models [Baboolalet al., 1988; Mae and Hellberg, 1993; Hellberg et al., 1997℄. This is haraterized by one-sided boundary onditions at in�nity, and the presene of a two-temperature plasma. Theresult here is, in most ases, weak or small amplitude double layers, though there may beexeptions [Bharuthram and Shukla, 1992℄.As we will see in the subsequent subsetion, the formation of double layers requiresthat (i) the eletri �eld be muh stronger inside the double layer than outside. Thusthe integrated positive and negative harges nearly anel eah other, leading to vanishingof the net harge of the double layer. This ondition is derived from the momentumbalane and Poisson's equation. (ii) Quasi-neutrality is loally violated in both spaeharge densities at the position of the double layer. These onditions will be disussed indetail in Se. 1.4.2.1.4 Methods Used in the Study of Solitary StruturesThe methods used in the study of solitary strutures are of two types, orrespondingto small amplitude (or weak) solitons and large amplitude or arbitrary solitons. When thewaves are weakly nonlinear (or quasi-linear) with aousti-like dispersion in the low fre-queny regime, the redutive perturbation analysis is appropriate. In the ase of large ampli-tude stationary waves, two methods are appropriate. These methods are: the �uid-dynamiparadigm, pioneered by MKenzie [MKenzie, 2002a,b, 2003℄ and o-workers [MKen-26



1.4. Methods Used in the Study of Solitary Strutures

Figure 1.4: A graph showing a shemati piture of (a) potential pro�le, (b) phase spaefor the ions, and () phase spae for the eletrons, for a typial double layer struture.In the shemati diagram, both the ions and eletrons onsist of a ombination of freepartiles and trapped or re�eted partiles; the free partiles are either aelerated ordeelerated depending on the diretion of motion relative to the eletri �eld. From Raaduand Carlqvist [1981℄.zie and Doyle, 2003; MKenzie et al., 2004b,a, 2005℄, and the Sagdeev pseudopotentialmethod [Sagdeev, 1966℄. The former (�uid-dynami analysis) will not be disussed in detailin this thesis. It was, however, applied elsewhere [Baluku et al., 2008℄ in the investigationof dust aousti and dust ion-aousti solitons in dusty plasma with positively harged27



1. General Introdutiondust partiles [Baluku, 2007℄. Thus in the investigations of large amplitude solitons in thevarious multi-omponent plasma models that will be investigated in this thesis, we shalluse the Sagdeev pseudopotential approah.1.4.1 The Redutive Perturbation TheoryOne of the ommonest approahes to the redutive perturbation tehnique is theKorteweg-de Vries (KdV) approah. A detailed derivation of the KdV equation (andits solution), obtained for a dusty plasma model onsisting of Boltzmann eletrons, �uidions and positively harged dust partiles an be found in the work of Baluku [2007℄. Thisapproah has been used in obtaining the KdV equations in Chaps. 4 and 5, here involvingkappa distributed eletrons instead of Boltzmann eletrons, and positively or negativelyharged dust partiles. In deriving the KdV equation, the following strethed oordinatesare used [Mae et al., 1991; Verheest, 2000; Shukla and Mamun, 2002℄: ζ = ǫ1/2(x − V t)and τ = ǫ3/2t, where V is the phase veloity of the waves, and ǫ a smallness parameter.The KdV equation then takes the form [Swanson, 2003, p.355℄
∂ϕ1

∂τ
+Aϕ1

∂ϕ1

∂ζ
+B

∂3ϕ1

∂ζ3
= 0, (1.27)where ϕ1 is the perturbed eletrostati potential, and A = A(V ) and B = B(V ) are fun-tions of the phase veloity V , where the latter is de�ned by the assoiated linear dispersionrelation of the plasma model. The expliit form of A(V ) and B(V ) are model depen-dent, and have been suppressed. The equation above is used to desribe one-dimensionalasymptoti behaviour of small but �nite amplitude waves suh as shallow water waves andollisionless magnetohydrodynami waves (see e.g., [Baluku, 2007, and referenes therein℄).The seond term in Eq. (1.27), proportional to A, orresponds to the ontribution of thenonlinearity e�ets while the third term (proportional to B) gives the dispersion term.When B = 0, the waves are non dispersive, resulting in a dispersion less aousti waverelation ω = Ak, where ω is the angular frequeny and k is the wavenumber. Thus boththe phase veloity ω/k, and the group veloity dω/dk, are equal to A [Baluku, 2007℄.Solutions to Eq. (1.27) take the form of nonlinear solitary wave strutures that prop-agate unhanged at onstant speed, say V0, in the laboratory frame [Chen, 1984℄. Trans-forming to a moving frame, χ(ζ, τ) = ζ − V0τ = ǫ1/2(x − vt), where v = V + δv; with V28



1.4. Methods Used in the Study of Solitary Struturesbeing the phase veloity of the solitary waves and δv = ǫV0, the KdV equation in (1.27)has solution [Mae et al., 1991; Verheest, 2000℄
ϕ1(χ) =

(

3V0

A

) seh2{( V0

4B

)1/2

χ

}

, (1.28)valid for A 6= 0 and V0/B > 0, that is, both V0 and B must be of the same sign. In thiswork we shall assume forward propagation (V0 > 0), thus B is positive, implying that thesign of the potential ϕ1 depends on the sign of A; positive potential solitons (ϕ1 > 0)require A > 0 while negative potential solitons (ϕ1 < 0) require A < 0. We also pointout that for given parameter values, only one sign of A is possible, implying that the KdVsolution does not allow �o-existene� of negative and positive potential solitons underthe same plasma parameter onditions, something that is possible in the large amplitudeapproah, as we will ome to see. The soliton amplitude and width are given by 3V0/A and
(4B/V0)

1/2, respetively. In other words, the soliton amplitude inreases with inreasingveloity of the solitary wave while the soliton width dereases with inreasing phase speed.For some plasma models, A is nonzero, so that both the nonlinear and dispersive termsan appropriately ontribute to the formation of a solitary struture. However, as wewill see in Chaps. 4 and 5, for some plasma parameters A an be equal to zero. In thatase, the nonlinearity e�et beomes very weak ompared to the dispersion ontribution.This leads to a breakdown of the KdV method, as the soliton amplitude would now goto in�nity. When that is the ase (A = 0), a more appropriate equation is the modi�edKorteweg-de Vries (mKdV) equation [Verheest, 2000, p. 112℄, whih is similar to the KdVequation (1.27), but di�ers from it in the nonlinearity term. The mKdV equation has beenderived for the plasma models desribed in Chaps. 4 and 5, and a detailed desription isgiven in Appendix C.1. When A(V ) = 0 in the KdV equation, Eq. (1.27), the solitonamplitude goes to in�nity. In overoming that senario in the perturbation approah, were-sale the strethed spae-time variables ζ and τ . Following the approah of Baboolal etal. [1989℄, we use the strethed variables ζ = ǫ(X − V t) and τ = ǫ3t instead of those usedin the KdV approah. This approah, as an be seen in Appendix C.1, leads to the mKdV
29



1. General Introdutionequation of the form
∂ϕ1

∂τ
+ C(V )ϕ2

1

∂ϕ1

∂ζ
+B(V )

∂3ϕ1

∂ζ3
= 0. (1.29)Note here that B = B(V ) takes the same form in equations (1.27) and (1.29). Likewise,

C(V ) is model dependent. It also has to be noted that the mKdV approah is only validfor plasma parameters for whih A is equal to or approahes zero.Again, using the transformation χ(ζ, τ) = ζ − u0τ ≡ ǫ(x − vt), where v = V + δv;
δv = ǫ2u0, with u0 being the phase veloity of the solitary wave, Eq. (1.29) takes the formof a �rst-order di�erential equation whose solution is given by [Verheest, 2000℄

ϕ1(χ) = ±
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C

)1/2 seh{(u0
D

)1/2
χ

} or (1.30)
ϕ(x, t) = ±

(

6δv

C

)1/2 seh{(δv

B

)1/2

(x− vt)

}

, (1.31)whih is valid for C > 0 and B > 0 provided δv > 0 (forward propagation assumed). InEq. (1.30) or (1.31), the soliton amplitude an be positive or negative due to the squareroot sign, thus for the same plasma parameters, the mKdV solution ould result in solitonsof the same amplitude (size) but opposite potential, unlike the KdV solution whih givesonly one sign of potential for the spei� plasma parameter values.1.4.2 The Sagdeev Pseudopotential TheoryThis is the most widely used approah in the study of large (arbitrary) amplitude non-linear solitary strutures (solitons and double layers). The method gives the neessaryonditions for the existene of solitons and double layers, but does not desribe the under-lying mehanisms leading to these solitary strutures as well as is the ase with the �uidparadigm of MKenzie [MKenzie, 2002a,b, 2003; MKenzie and Doyle, 2003; MKenzieet al., 2004a,b, 2005℄. In this approah we begin with the Poisson's equation
ε0

∂2ϕ

∂x2
+
∑

j

Nj qj = 0, (1.32)
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1.4. Methods Used in the Study of Solitary Strutureswhere qj , Nj , and ϕ are the harge and unnormalized density of speies j, and the loaleletrostati potential, respetively, where we have taken x as the unnormalized spae (orposition) variable. Poisson's equation (1.32) an easily be written in the form
ε0

d2ϕ

dx2
+

dV (ϕ)

dϕ
= 0 or ε0

2

(

dϕ

dx

)2

+ V (ϕ) = 0, (1.33)where V (ϕ) is the Sagdeev (pseudo)potential. Note that here, we are still working withunnormalized quantities. In normalized form, the potential will be denoted by φ, and theSagdeev potential or pseudopotential by Ψ(φ) instead of V (ϕ). In Eq. (1.33), V (ϕ) =

−
∫ ϕ
0 G(ϕ)dϕ is the pseudopotential, and G(ϕ) gives the sum of the harge densities Njqjfor the plasma onstituent speies j. This implies that to fully have V (ϕ) in terms of ϕwe also need the speies densities Nj = Nj(ϕ) for the integration to be possible. Thoughwe have written the Sagdeev potential as V (ϕ) as if it is only a funtion of ϕ, it is atuallya funtion of more quantities suh as the plasm speies temperatures, densities, masses,veloities, et.Equation (1.33) takes the same mathematial form as Newton's law of motion, d2χ/dt2 =

F(χ)/m = −dΦ(χ)/dχ, in Classial Mehanis where Φ(χ) is the potential energy, at o-ordinate χ, of a partile of mass m moving under the in�uene of a fore, F(χ). Thus theseond equation in (1.33) is equivalent to an energy integral of a pseudo partile of unitmass with potential energy V (ϕ) (alled the pseudopotential or Sagdeev potential) where
ϕ now plays the role of partile oordinate and x the role of time.With the Sagdeev potential de�ned in (1.33), it follows that at the origin (ϕ = 0) wehave

V (ϕ) =
dV

dϕ
(ϕ = 0) = 0. (1.34)This ondition ensures that the appropriate boundary onditions used in obtaining V (ϕ)are satis�ed. Provided ondition (1.34) is satis�ed, then the existene of solitons or doublelayers require that [Baboolal et al., 1988, 1990; Mae and Hellberg, 1993; Verheest, 2000;Verheest et al., 2008℄:(i) The Sagdeev potential V (ϕ) possesses a seond derivative suh that

d2V

dϕ2
(ϕ = 0) < 0. (1.35)31



1. General IntrodutionThus there is an unstable loal maximum at the origin φ = 0 suh that the pseudo partileomes to rest at the origin when ξ → ±∞. This ondition ensures that Ψ(φ) < 0 for
φ 6= 0 in the immediate neighbourhood of φ = 0, leading to the neessary onvexity at theorigin [Verheest et al., 2008℄. Equation (1.35) is loosely referred to as the �soliton ondition�,and gives the minimum (ritial) value of the struture speed (from d2V /dϕ2 = 0 at ϕ = 0)suh that wave propagation is only possible above the ritial speed. However, as we willsee later in Chaps. 4, 5, 6, and 7, this applies only to plasma parameters where solitonpotentials of only one sign are supported. For suh solitons, their eletrostati potentialgoes to zero as the Mah number approahes a ritial (lowest) Mah number.In the ase where solitary strutures of both polarity are supported by the same plasmaon�guration, Eq. (1.35) takes the form

d2V

dϕ2
(ϕ = 0) ≤ 0, (1.36)sine in this ase wave propagation may be possible even at the ritial struture speed.(ii) There exists a nonzero φm, whih is a minimum potential3 (or maximum potential) forsolitons or double layers, at whih

V (0) = V (ϕm) = 0 and dV (φm)

dϕ











< 0 for ϕm < 0,

> 0 for ϕm > 0.
(1.37)That is, ϕm may be the amplitude of the soliton or the potential orresponding to the higherpotential side of the double layer. In the ase of a double layer, the former ondition, thatis V (0) = V (ϕm) = 0, implies that the eletri �eld vanishes at the edges of the doublelayer, with ϕ = 0 and ϕ = ϕm being the potentials at the edges of the double layer.This requirement also ensures that the overall harge in the double layer vanishes, and theondition is known as the generalized Langmuir ondition.(iii) We also require

V (ϕ) < 0 for 0 < |ϕ| < |ϕm|. (1.38)This ondition ensures that (dϕ/dx)2 is positive for real solutions of the potential following3In the ase of solitons, minimum potential is assoiated with negative potential solitons (ϕ < 0) whilemaximum potential is assoiated with positive potential solitons (ϕ > 0)32



1.4. Methods Used in the Study of Solitary Struturesfrom dϕ/dx = (−2V (ϕ)/ε0)
1/2 in Eq. (1.33).(iv) In the ase of double layers, in addition to the above requirements in (1.35)�(1.38),we also require that the harge density must also vanish at the edges of the double layer.This implies that

dV (0)

dϕ
=

dV (ϕm)

dϕ
= 0. (1.39)Thus, in partiular, double layers satisfy

V (ϕm) =
dV (ϕm)

dϕ
= 0. (1.40)It an be shown that expanding the Sagdeev potential, V (ϕ) to the fourth order about

ϕ = 0 leads to a formalism equivalent to the redutive perturbation method [Verheest,1999℄. Thus one obtains
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+ C1ϕ
2 + C2ϕ

3 + C3ϕ
4 = 0, (1.41)where the oe�ients C1, C2 and C3 depend on the physial parameters, suh as tempera-ture, density et. In the ase of weak solitons, expansion of V (ϕ) to third order is su�ient,and that leads to the same solution as Eq. (1.28), obtained from the KdV approah forsmall amplitude solitons (see also Baluku and Hellberg [2008℄). Thus this approah is sim-ilar to the redutive perturbation methods for small amplitude solitons. However, for weakdouble layers, we need Eq. (1.41) (up to fourth order in ϕ). Upon applying the doublelayer existene onditions in Eq. (1.40), it follows that

C1 = C3ϕ
2
m and C2 = −2C3ϕm, (1.42)and thus Eq. (1.41) takes the form
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1. General IntrodutionA typial solution to Eq. (1.43) is given by [Verheest, 2000℄
φ = −ε0C2

4C3
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1− tanh
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)1/2
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, (1.44)whih after using Eq. (1.42) simply redues to
ϕ(x) =

ε0
2
ϕm

{

1− tanh [ϕm(−C3/2ε0)
1/2x

]}

; (C3 < 0). (1.45)In this thesis, the expanded Sagdeev potential approah is used in Chap. 3 (see also Balukuand Hellberg [2008℄) in the investigation of small amplitude solitons and double layers whenonsidering a dusty plasma with kappa distributed eletrons or ions and positively harged�uid dust partiles.1.5 Outline of ThesisIn this thesis, investigations of linear and nonlinear waves in various plasma models,whih may our in some spae plasma environments, are desribed. We �rst study lineareletron-aousti waves in bi-kappa plasmas, with emphasis on Saturn's magnetosphere,using a kineti theoretial approah. We next turn to nonlinear waves, where we use a�uid approah. In the �uid models we study dusty plasmas, where we look at two ases,�rst, the dust aousti waves, and seond, the dust ion-aousti waves. We extend thenonlinear studies to ion-aousti waves and solitary strutures (in the form of solitons anddouble layers) in bi-kappa plasmas. Finally, we deal with ion-aousti solitary waves intwo other three-omponent models, viz., one involving an eletron-ion-positron plasma,and one omposed of ions and two Boltzmann-distributed eletron omponents at di�erenttemperatures.After this general introdution to some of the key onepts underpinning the studiesin this thesis, we turn in Chapter 2 to our �rst researh problem. It involves a disus-sion of linear eletron-aousti waves in bi-kappa plasmas, using kineti theory, where theeletron omponents are kappa distributed. We disuss spei� examples relevant to themagnetosphere of Saturn, where two eletron omponents, of di�erent temperatures andwith nonthermal distributions that deviate signi�antly from the Maxwellian distribution,have been reported.34



1.5. Outline of ThesisIn hapter 3 we investigate existene domains of dust aousti solitons (and doublelayers), onsidering a plasma onsisting of old �uid dust grains, and kappa distributedeletrons and ions. Here, we derive an expression for the density of partiles (in terms ofthe eletrostati potential) satisfying a kappa distribution, whih has also been applied tothe models desribed in hapters 4 and 5.Chaprter 4 is a study of dust ion-aousti waves in a three omponent plasma, withold �uid ions, harged dust grains, and kappa distributed eletrons. This is a onsider-able extension of the work of Bharuthram and Shukla [1992℄, who studied a plasma modelonsisting of Boltzmann-distributed eletrons, old ions, and negative dust. In this study,we have onsidered both small amplitude solitons, using the redutive perturbation teh-nique, and arbitrary amplitude solitons, using the Sagdeev (pseudopotential) approah.In partiular, we have obtained novel results, namely, �nite solitons at the true aoustispeed of the DIA waves that are ontrary to the KdV theory desription, and also lead toa rede�nition of the requirements imposed on the Sagdeev pseudopotential.In Chapter 5 we onsider ion-aousti solitons in a plasma model onsisting of oolMaxwellian ions and two (ool and hot) kappa distributed eletron omponents. Thisplasma model is disussed with a view to appliation to the magnetosphere of Saturn,where two omponent eletrons have been reported to be kappa distributed [Shipperset al., 2008℄. In this hapter, we also report results that are ontrary to what is in theliterature. For instane we report that, depending on the plasma on�guration, solitonsmay be obtained even for Mah numbers greater than that at whih a double layer ours,a hitherto unreported phenomenon.Chapter 6 desribes solitary strutures in an eletron-positron-ion plasma, where theeletrons are nonthermally distributed, obeying the Cairns distribution, the positrons areBoltzmann-distributed, while the ions are old and �uid-like. The work desribed in thishapter is an extension of Pakzad [2009℄, however, we have provided more new resultsompared to what is in the literature, inluding showing the existene of negative solitonsand double layers in this on�guration.Chapters 7 deals with an investigation of ion-aousti solitary waves in a three-speiesplasma onsisting of double Boltzmann eletrons and old ions. In this model solitonsare also found to possess peuliar features, suh as �nite amplitudes at the veloity orre-35



1. General Introdutionsponding to the ion-aousti speed of the wave. In addition, positive double layers are alsoreported to be supported by the plasma model, for a limited parameter range, in ontrastto what is reported in the literature. In this range, again, solitons are found at Mahnumbers greater than that yielding a double layer.Finally, in Chap. 8 we present a brief summary of results for all the di�erent plasmamodels that are disussed in this thesis.
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CHAPTER 2
Eletron-Aousti Waves in Bi-kappa Plasmas

In this hapter we use kineti theory to investigate the possible existene of eletron aoustiwaves in Saturn's magnetosphere.2.1 IntrodutionThe o-existene of ool and hot eletron populations in Saturn's magnetosphere wasdedued using the Voyager PLS observations of Sittler et al. [1983℄ and later on�rmedusing the Cassini Plasma Spetrometer (CAPS) observations of Young et al. [2005℄. Thenonthermal nature of the eletron distributions in the outer magnetosphere was also re-vealed by the Voyager measurements of Barbosa and Kurth [1993℄, who showed that theeletrons possessed a superthermal tail that ould be �tted by a power law funtion insteadof a Maxwellian distribution funtion.More reently, the Cassini-Huygens spaeraft orbiting Saturn arried, among oth-ers, two instruments: the Eletron Spetrometer of the CAPS (CAPS/ELS) and theLow Energy Magnetospheri Measurement System of the Magnetospheri Imaging Instru-ment (MIMI/LEMMS). Using results from the CAPS/ELS and MIMI/LEMMS instru-ments, Shippers et al. [2008℄ have shown that both the ool and hot eletron populationsare non-Maxwellian. By �tting the Cassini data for the eletron populations with (a) twoMaxwellian populations, (b) Maxwellian ool eletrons and κ-distributed hot eletrons,37



2. Eletron-Aousti Waves in Bi-kappa Plasmasand () two κ-distributed eletron populations, Shippers et al. [2008℄ (see their Fig. 2)showed that the double kappa distribution model �ts best, with relatively low values of
κ (κc, κh ∼ 2− 4, where subsripts �� and �h� refer to ool and hot populations, respe-tively) over muh of the magnetosphere.Saturn's magnetosphere has been ategorized by many authors, using Voyager 1 and2 [Sittler et al., 1983℄ and Cassini data [Krimigis et al., 2005; Dougherty et al., 2005; Younget al., 2005; Gurnett et al., 2005; Shippers et al., 2008; André et al., 2008℄, as onsistingof three or more regions depending on the ativities taking plae and the omposition ofthe partiular portion of the magnetosphere. The main three regions are the inner mag-netosphere, the plasma sheet region (or loosely the middle magnetosphere), and the outermagnetosphere. The inner magnetosphere, extending to radial distanes up to (9−10)RS ,where RS ≈ 60, 268 km is the radius of Saturn, has the densest plasma in the Saturniansystem, with the plasma originating from the iy moons of Rhea (8.74RS with N+, O+and water group ions OH+ or H2O+), Dione (6.26RS) and Eneladus (3.95RS), as wellas neutral soures [Krupp et al., 2005; André et al., 2008℄. Inside the inner magnetospherelies the inner plasma torus (under 8RS) whih is haraterized by low temperatures andhigh equatorial densities, and is oupled to the ring system and the iy satellites [Andréet al., 2008℄. The region lying between around (7 − 9)RS and about (12 − 14)RS or-responds to the extended plasma sheet [Krupp et al., 2005; André et al., 2008℄. In thisregion, the energeti partiles are on�ned to the equatorial plane of Saturn in a disk-likelayer, and the plasma onsists of a mixture of hot and ool populations resulting fromtransport proesses [André et al., 2008℄, where the ool plasma population dominates thedensity and the hot plasma population dominates the pressure. The outer region of themagnetosphere, whih extends beyond (12 − 14RS) up to the magnetopause boundary(∼ 20RS), is haraterized by a low plasma density and is strongly in�uened by the solarwind. The magnetopause boundary separates the solar wind plasma from that within Sat-urn's magnetosphere. This outer magnetosphere onsists mainly of lighter ions with masses
mi . 10 amu (suh as H+), a tenuous hot plasma, and a quiet magneti �eld [Wahlund etal., 2005; André et al., 2008℄.Following the analysis of the Voyager data [Gurnett et al., 1981; Kurth et al., 1983;Barbosa and Kurth, 1993℄ and reently, the Cassini data [Gurnett et al., 2005; André et al.,38



2.1. Introdution2008℄, a range of wave ativity has been seen in the magnetosphere of Saturn. Whistler hissand horus were reported in the noise events at frequenies below the eletron ylotronfrequeny or gyrofrequeny (fg = eB/2πme) in the magnetosphere of Saturn [Kurth etal., 1983; Barbosa and Kurth, 1993; Gurnett et al., 2005℄. These low frequeny waves,entered at frequenies below the loal eletron plasma frequeny (fpe), were observed aseletrostati broadband bursts [Kurth et al., 1983℄ at a radial distane of about 15.6RS(in the outer magnetosphere), and in the inner magnetosphere at about 3.1RS < R <

8RS [Barbosa and Kurth, 1993℄. Earlier, Gurnett et al. [1981℄ had observed a strong bandof noise at frequenies below 2 kHz between 3.1 and 8RS in the appropriate frequenyrange of whistler mode hiss and horus emissions. At these frequenies, the emissions werefound to be in resonane with low energy (1− 5 keV) eletrons.Above fg, eletron ylotron harmoni (ECH) waves or (n+1/2)fg bands, where n is aninteger, were found to exist in the region inside 8RS provided fpe > fg [Kurth et al., 1983;Barbosa and Kurth, 1993℄ while narrow-band upper hybrid resonane (UHR) emissions atfrequenies between 25 and 100 kHz (under 6.81RS) were also reported by Gurnett et al.[2005℄; the latter were said to be due to eletrostati osillations at the UHR frequeny,
fUHR = (f2

pe+f2
g )

1/2. In addition, eletron plasma osillations [sometimes alled Langmuirwaves or eletron plasma waves (EPWs)℄ with frequenies of about 5.6− 10 kHz (between
13.6 and 17.7RS) and 10− 17 kHz (between 5.5 and 9.5RS) [Kurth et al., 1983; Barbosaand Kurth, 1993℄, and 10 and 17.8 kHz in the 4RS < R < 10RS region [Gurnett et al.,1981℄, were also observed in the magnetosphere of Saturn.Eletromagneti radio wave emissions at high frequenies, between about (3.6 − 5.6)kHz and 31 kHz [Gurnett et al., 1981; Barbosa and Kurth, 1993℄, were reported in the innermagnetosphere (between 3.1 and 6RS) while Gurnett et al. [2005℄ observed intense SaturnKilometri Radiation (SKR) on both the outbound and inbound trips of the spaeraft(under 8.33RS) with frequenies ranging from 100 to 400 kHz.Apart from EPWs and whistler mode waves, whih were reported in both the inner andouter magnetosphere, the majority of plasma waves were reported to have ourred in theinner magnetosphere of Saturn for radial distanes less than 10RS [Gurnett et al., 1981;Kurth et al., 1983; Barbosa and Kurth, 1993℄, where (i) the magnetosphere ontains iysatellites that are soures of protons and heavier ions like O+ and water group ions OH+ or39



2. Eletron-Aousti Waves in Bi-kappa PlasmasH2O+, and (ii) the ool and hot eletron population densities di�er quite signi�antly. Itshould be noted that the whistler mode hiss and horus waves, reported from the Voyagerplasma wave measurements, were assoiated with a loss-one pith angle distribution basedon the latitudinal dependeny of the �ux whih dereases with latitude. In addition, Kurthet al. [1983℄ pointed out that one of the reasons why low frequeny eletrostati modes maynot be easily observed in the magnetosphere of Saturn is primarily due to limitations ofthe instrument (in the ase of the Voyager plasma wave instrumentation), in that the noisespetrum that is produed by the spaeraft is most intense below frequenies of 1 kHz,and their spiky nature makes it very di�ult to di�erentiate between true signals andinterferene from the instrument itself.Bearing in mind that both ool and hot eletron populations in Saturn's magneto-sphere are κ-distributed [Shippers et al., 2008℄, using a kineti-theoretial model, weonsider the possible existene of eletron-aousti waves in the magnetosphere of Sat-urn. Eletron-aousti waves are eletrostati waves that propagate in plasmas with twoeletron omponents having widely disparate temperatures [Watanabe and Taniuti, 1977;Gary and Tokar, 1985℄. These EAWs are believed to propagate in both unmagnetized andmagnetized two-temperature plasma [Tokar and Gary, 1984℄.2.2 Desription of Eletron-Aousti WavesIn homogeneous ollisionless unmagnetized eletron-ion plasmas, only two weakly dampedeletrostati normal modes are possible: the eletron plasma (Langmuir) wave mode, whihours at frequenies above the eletron plasma frequeny (ωpe), and the ion-aousti wave,whih ours at frequenies below the ion plasma frequeny (ωpi). The latter requires thatthe ion temperature be muh less than the eletron temperature (Te/Ti ≫ 1) to avoid ionLandau damping. However, in the presene of two eletron omponents (of similar densitiesbut quite di�erent temperatures), a third weakly damped eletrostati mode may propa-gate, and this mode has been termed the eletron-aousti wave [Watanabe and Taniuti,1977; Tokar and Gary, 1984; Gary and Tokar, 1985; Gary, 1987℄. Thus an eletron-aoustiwave is onsidered to be a harateristi normal mode of an unmagnetized ollisionlessplasma in the presene of two eletron omponents with similar densities but strongly dis-parate temperatures. It propagates at a phase speed satisfying Vtc ≪ ω/k ≪ Vth, where40



2.2. Desription of Eletron-Aousti Waves
Vtc (Vth) is the thermal veloity of the ool (hot) eletrons, given by Vtj = (KBTj/me)

1/2(j = c or h). The EAW frequeny lies between the ion and eletron plasma frequenies,though the waves are strongly damped for small k [Gary and Tokar, 1985℄. In this mode,the ool eletron osillations are modi�ed (Debye sreened) by the hot eletrons, while theool ions essentially play a neutralizing role only.Suh waves have been studied in bi-Maxwellian plasmas [Watanabe and Taniuti, 1977;Gary and Tokar, 1985; Mae and Hellberg, 1990℄. Gary and Tokar [1985℄ have shown thatweak damping may be possible provided the ratio of the hot to ool eletron temperature,
Th/Tc ≫ 10, and frational ool eletron density, n0c/n0e < 0.8, where n0e is the totaleletron density. In addition, Mae and Hellberg [1990℄ generated ritial urves thatdelineate the regions in parameter spae in whih a higher order mode will exhibit weakerdamping (smallest imaginary frequeny). This approah was extended to a plasma withhot superthermal (κ-distributed) and ool Maxwellian eletrons by Mae et al. [1999℄.In suh weakly damped regions it is likely that, if su�ient free energy is added (forinstane, by a beam), the waves ould attain observable amplitudes [Ashour-Abdalla andOkuda, 1986; Mae and Hellberg, 1993; Singh and Lakhina, 2001℄. The higher-order modesreferred to here are those solutions of the dispersion relation that show strong damping(|γ| > ωr/2π, where ωr and γ are the real and imaginary parts of the omplex frequeny
ω = ωr + iγ), otherwise those with weak damping (|γ| ≤ ωr/2π) are alled normal modes.While investigating wave observations in the geomagneti tail, Ashour-Abdalla andOkuda [1986℄ showed that in the presene of ion beams, EAWs may be unstable if theeletron Landau damping is exeeded by the inverse ion Landau damping from the beamions, and that EAWs may exist provided Tec/Teh ≪ 1, with Teh ≈ 100 eV.Using a plasma model onsisting of stationary, Maxwellian ool and hot eletrons,an eletron beam drifting along the magneti �eld, and stationary, �uid ions, Singh andLakhina [2001℄ provided analytial onditions for the generation of eletron-aousti wavesin the Earth's magnetosphere, whih in a sense omplemented the numerial work of Tokarand Gary [1984℄. They applied their results to the analysis of the dayside auroral region,where the broadband eletrostati noise (BEN) emission was observed as a ommon phe-nomenon by the Viking satellite at heights of 2 000 to 10 000 km. With parameter valuestypial of the auroral region they obtained unstable EAWs with frequenies between the ion41



2. Eletron-Aousti Waves in Bi-kappa Plasmasplasma frequeny and the ool eletron plasma frequeny. In addition, Singh and Lakhina[2001℄ applied their results to the plasma sheet boundary layer, and the polar usp region.In the mid 1970's, Kawai et al. [1975℄ exited eletron waves by a three-mesh exiterin a large-volume plasma in the spae hamber at the Institute of Spae and AeronautialSiene, University of Tokyo. In addition to the Langmuir mode, they observed the free-streaming eletron mode and a new mode at frequenies less than the Langmuir frequeny,whih appeared to be the EAW. In their experiment, the energy distribution funtion of theeletrons, as measured by the Faraday up method for di�erent anode potential, showedthat the eletrons onsisted of a Maxwellian omponent and a non-Maxwellian omponent(modelled by a water-bag distribution funtion), sine the tail of the energy distributionfuntion was extended with inreased anode potential.Following on the experiment of Karlstad onduted in the Tromsø DP devie [Karlstadet al., 1984℄, Hellberg et al. [2000℄ showed that eletron-aousti waves were observed in thatexperiment. The plasma model involving ool Maxwellian and hot κ-distributed eletronsshowed minimal damping for κh ≃ 3 − 4, and both damping and dispersion were in goodagreement with the experimental results [Hellberg et al., 2000℄.Eletron-aousti wave solitons have been reported in the FAST satellite data in theauroral region of the geomagneti tail [Pottelette et al., 1999℄, in the presene of a two-omponent eletron plasma with one ool (< 60 eV) and a dominant hot (∼ keV) ompo-nent. Mae and Hellberg [2001℄ used a Korteweg-de Vries�Zakharov-Kuznestov (KdV-ZK)model to study the e�et of a magneti �eld on suh eletron-aousti solitons.To the best of our knowledge, observations of EAWs have not yet been reported inSaturn's magnetosphere. Nonetheless, in this hapter we investigate, by using a kineti-theoretial approah, whether they may potentially be observable. First we present aparameter survey of dispersion and damping urves for di�erent density ratios, tempera-ture ratios and spetral index values (κc and κh), of the two eletron omponents. Thenwe onsider parameter values that are representative of three regions of Saturn's magneto-sphere, as illustrated in Fig. 3 of Shippers et al. [2008℄. In partiular, we show that EAWswould be weakly damped in the outer magnetosphere and hene are likely to be observablethere, given a possible external soure of free energy.42



2.3. Theoretial Model and Basi Equations2.3 Theoretial Model and Basi EquationsWe onsider eletrostati waves in an unmagnetized, ollisionless plasma onsisting ofkappa distributed ool and hot eletrons, and singly harged ool Maxwellian ions. In theEAW, the ool eletron osillations are modi�ed by the hot eletrons, with the ool ionsplaying mainly a neutralizing role.We shall use the 3-d isotropi kappa distribution, given as
Fκ(v) =

1

(πκθ2)3/2
Γ(κ+ 1)

Γ(κ− 1/2)

(

1 +
v2

κθ2

)−(κ+1)

, (2.1)whih is of the form of Eq. (1.2), with κ, θ and Γ taking the usual meaning as in Eq. (1.2).The general dispersion relation for eletrostati waves in an unmagnetized plasma maybe written as [Krall and Trivelpiee, 1989℄
D(k, ω) = 1−

∑

α

ω2
pα

k2

∫

∞

−∞

∂fα0/∂vx
vx − ω/k

d3v = 0; Im ω > 0,where ωpα = (n0αq
2
α/ε0mα)

1/2 is the plasma frequeny, with the parameters in ωpα havingtheir usual meaning; fα0 the unperturbed veloity distribution funtion of speies α andthe wave vetor k is in the x̂− diretion. For two speies of κ-distributed eletrons andkappa distributed ions, the dispersion relation takes the form [Hellberg and Mae, 2002;Mae and Hellberg, 2009℄
D(k, ω) = 1−
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ω2
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k2θ2i
Z ′(κi; ξi) = 0, (2.2)where c and h denote the ool and hot eletrons, respetively, and i denotes the stationary,old ions; ξα = ω/(kθα) ∝ ω/(kVtα) is the omplex wave phase speed normalized tothe most probable speed θα of speies α, with ω being the omplex angular frequeny,given by ω = ωr + iγ = ωr(1 + iγ/ωr), and k the (magnitude of the) wave number. Inpartiular, θ2α = [(2κα − 3)/κα](KBTα/mα) = [(2κα − 3)/κα]V

2
tα, with T being the kinetitemperature [Summers and Thorne, 1991; Hellberg et al., 2009; Mae and Hellberg, 2009℄,and Vtα = (KBTα/mα)

1/2 being the thermal veloity of speies α.The plasma dispersion funtion whih we denote by Z(κα; ξα) is preisely the same43



2. Eletron-Aousti Waves in Bi-kappa Plasmasas ZκM(ξ), the modi�ed plasma dispersion funtion of Hellberg and Mae [2002℄, de�nedinitially for a Kappa-Maxwellian veloity distribution. Hellberg and Mae [2002℄ alsoindiated that ZκM (ξ) is related to the modi�ed plasma dispersion funtion Zκ(ξ) forthe isotropi three-dimensional kappa distribution [Mae and Hellberg, 1995; Hellberg andMae, 2002℄ by
ZκM (ξ) =

(κ− 1)3/2

[κ1/2(κ− 3/2)]
Zκ−1

[

{

(κ− 1)

κ

}1/2

ξ

]

,and thus ZκM (ξ) is also appliable to studies involving isotropi kappa distributions, as isthe ase here. Reently, Mae and Hellberg [2009℄ have shown that this plasma dispersionfuntion [Z(κα; ξα) or ZκM(ξ)℄, whih they denoted Uκ(ξ), an also be obtained startingfrom an isotropi kappa distribution, and therefore its appliation is not limited to plasmaswith Kappa-Maxwellian veloity distributions. In partiular, it an be applied to studiesinvolving ordinary isotropi kappa distributions. Therefore, for general purposes we shalluse the notation Z(κα; ξα) instead of ZκM (ξ) to refer to the plasma dispersion funtionfor kappa veloity distributions of the form given in Eq. (1.2).The integral and losed forms of the funtion Z(κα; ξα), are given by [Hellberg andMae, 2002; Mae and Hellberg, 2009℄
Z(κα, ξα) =
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, (2.4)respetively, where the losed form is expressed in terms of the hypergeometri funtion,
2F1 [Abramowitz and Stegun, 1972, p. 556℄. Though the integral expression (2.3) for
Z(κα, ξα) is de�ned only for Im(ξα) > 0, its behaviour for Im(ξα) ≤ 0 is obtained throughanalyti ontinuation. In fat, Eq. (2.4) is preisely the analyti ontinuation of it. Thefuntion Z ′(κα, ξα), the derivative of Z(κα, ξα) with respet to the argument ξα, takes theform [Hellberg and Mae, 2002℄
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. (2.5)Note that in the limit κα →∞, Z(κα, ξα) redues to the usual plasma dispersion funtion44



2.4. Analyti Solutions
Z(ξ) of Fried and Conte [Brambilla, 1989; Swanson, 1989℄. For Maxwellian ions we have
Z(κi; ξi) → Z(ξi); where here ξi = (ω/k)/

√
2Vti, sine θi →

√
2Vti when κi → ∞. In theanalytial disussion we shall use Z(ξ) for the ions. However, for the numerial evaluations,we have retained the full expression Z(κα; ξα) in (2.2) and used a high value of κi (e.g.,

κi = 50) to approximate to a Maxwellian.2.4 Analyti SolutionsOn the eletron-aousti wave time sale, the phase veloity satis�es (.f. Watanabeand Taniuti [1977℄; Gary and Tokar [1985℄) Vti ≪ Vtc ≪ ω/k ≪ Vth. For ξα ∝ ω/(kVtα),it follows that |ξi|, |ξc| ≫ 1, and |ξh| ≪ 1. Thus we approximate Z(κα; ξα) by using anasymptoti expansion for the ions and the ool eletrons. On the other hand, we use apower series expansion of Z(κα; ξα) for the hot eletrons. A detailed disussion is given inAppendix B.1.For frequenies and wavelengths, assuming ωpi ≪ ωpc; |γ| ≪ ωr; λDc ≪ λκh (whih isommonly valid); and kλDc ≪ 1, the dispersion relation [Eq. (2.2)℄ an be written in theapproximate form [see Appendix B.1 for details℄,
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, (2.6)where λκα = [(κα − 3/2)/(κα − 1/2)]1/2 λDα, with λDα =
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2
)1/2 being thestandard (Maxwellian) Debye length of speies α. Here, the parameter λκα is the appropri-ate Debye length in a kappa plasma [Bryant, 1996; Mae et al., 1998, 1999℄, whih reduesto λDα in the limit κα →∞. Equation (2.6) an be written in the equivalent form
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tc, (2.7)where Vtc = ωpcλDc is the thermal veloity of the ool eletrons, and Vsκ, the eletronsound speed in a kappa plasma, is given by
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. (2.8)This expression for V 2
sκ is the same as that found by Mae et al. [1999℄ for the EA speed in45



2. Eletron-Aousti Waves in Bi-kappa Plasmasa plasma with ool Maxwellian and hot kappa eletrons. Indeed, we note from (2.8) that
Vsκ is independent of κc and inreases with κh. For κh →∞, Vsκ redues to

Cse =

(

n0c

n0h

)1/2(KBTh

me

)1/2

, (2.9)the eletron-aousti speed in the Maxwellian limit [Gary and Tokar, 1985℄. Equation (2.7)is analogous to the standard ion aousti dispersion relation in a simple eletron-ion plasma(where Vs = ωpiλDe) [Chen, 1984℄. In that ase there is an additional term assoiated withthe ion thermal speed, whih here is replaed by Vtc, the ool eletron thermal speed. Wenote in passing that the adiabati behaviour, with the ratio of the spei� heat apaities,
Υ = 3, omes out naturally from the kineti-theoretial alulation. This Υ should notbe onfused with the growth rate, γ, disussed in this work. Expression (2.7) also showsthat the phase veloity ω/k is modi�ed by the hot eletron parameters (through the hoteletron κ-dependent Debye length, λκh

).We note that for typial parameters of interest below, and appropriate for muh ofSaturn's magnetosphere, with nc0 and nh0 of similar magnitude and Th ≫ Tc, it followsthat λκh ≫ λDc, and thus, while satisfying kλDc ≪ 1, it is possible to onsider the e�etof the additional onstraints kλκh ≪ 1 and kλκh ≫ 1 on the dispersion relations (2.6)and (2.7). The latter region should possibly be more orretly designated the �intermediatewavelength� region, as k satis�es kλκh ≫ 1≫ kλDc.We �rst onsider the onstraint kλκh ≪ 1 in the long wavelength regime (with kλDc ≪

1). Here, Eq. (2.7) redues to the form
ωr

2 = k2(V 2
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tc), or ωr
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. (2.10)In the limit κh → ∞, Vsκ → Cse, and therefore Eq. (2.10) redues to the usual longwavelength dispersion relation for EAWs in a plasma with Maxwellian eletrons [Gary andTokar, 1985℄. Equation (2.10) also indiates, signi�antly, that in this long wavelengthregime [with Vtc ≪ Vsκ in Eq. (2.10)℄, the EAWs are dispersionless and all wavelengths orfrequenies propagate at the same aousti speed, Vsκ.On the other hand, in the ase of intermediate wavelengths, imposing the onstraint46



2.4. Analyti Solutions
kλκh ≫ 1 in the numerator of Eq. (2.6), the dispersion relation yields the result of Maeet al. [1999℄:

ωr
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)

, (2.11)whih, in the limit κh → ∞, redues to the dispersion relation of Gary and Tokar [1985℄for a double Maxwellian plasma (see also Mae and Hellberg [1990℄). Equations (2.6)and (2.11) show that the EAW is essentially a ool eletron osillation sreened by thehot eletrons, with a sreening fator given by (1 + 1/[k2λ2
κh])

−1. Moreover, although wehave assumed that the ool eletrons are kappa-distributed, we note from (2.11) that theirdynamial ontribution is idential to that found in the Maxwellian ase, at least withinthe limits of the approximations leading to Eqs. (2.6)�(2.11).Further, if we onsider even larger k values, and apply the onstraint kλκh ≫ 1 to thedenominator of Eq. (2.7) [or in both the numerator and denominator of Eq. (2.6)℄, thenthe hot eletron Debye sreening is eliminated, and these equations show that the EAWmode redues to a Langmuir-like mode of the ool eletrons with dispersion relation [Kralland Trivelpiee, 1989℄
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, (2.12)Thus, in this short wavelength regime with λ ≪ λκh, the hot eletron Debye shieldingis insu�ient, and the e�ets of the exess superthermal eletrons assoiated with the
κ-distributed hot and ool eletrons are negligible.In summary, we stress that the EAW branh has di�ering behaviour in the long wave-length regime, where it is essentially aousti, with speed Vsκ [see Eq. (2.10)℄, and theintermediate wavelength regime (with, kλκh ≫ 1, but kλDc ≪ 1) where it behaves essen-tially like a Langmuir mode of the ool eletrons [Gary and Tokar, 1985℄, see Eqs. (2.11)and (2.12).Seondly, we draw attention to the fat that the analytial theory has onentrated on�nding ωr. The ompliated expression for the damping rate is not transparent even aftertaking approximations, but may be found in Appendix B.1.Finally, we note that, above the EAW frequeny range (ωpi < ωr < ωpe), one �nds thenormal eletron plasma wave (EPW), in whih all the eletrons play a role, and satisfying47



2. Eletron-Aousti Waves in Bi-kappa Plasmas
ωr/k ≫ Vth ≫ Vtc. It an easily be shown that the dispersion relation of the EPW in atwo-eletron plasma is given, using appropriate approximations, by
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= 0.The term in urly brakets an be simpli�ed to give
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= 1 + f [(1− f)β − (2− f)],where f = nh0/ne0 is the fration of the hot eletron equilibrium density, and β = Th/Tc isthe ratio of the hot to ool eletron temperatures. Thus the above approximate dispersionrelation for the EPWs is given by
ω2/ω2

pe =1 + 3k2λ2
Dc{1 + f [(1− f)β − (2− f)]} or

ω2 =ω2
pe(1 + 3k2λ2

Dc) + 3k2λ2
Dcω

2
pe f [(1− f)β − (2− f)]. (2.13)In terms of the ool and hot eletron thermal veloities Vtc and Vth, Eq. (2.13) is simply

ω2
r = ω2

pe + 3(nc0/ne0)k
2V 2

tc + 3(nh0/ne0)k
2V 2

th. (2.14)This approximate dispersion relation for EPW is thus independent of κh and κc, as expetedfrom earlier studies of single-eletron κ-plasmas [Mae and Hellberg, 1995℄.In Fig. 2.1 we ompare the analytial results following from Eqs. (2.6)�(2.13) with theanalytial solution of Eq. (2.2) without approximations. The exat numerial results aredepited by solid (blak) urves in the �gure. We hoose a plasma system with parameters
β = 98.04, f = 0.462, κc = 2.1 and κh = 4, orresponding to a radial distane of about
13.1RS in Saturn's magnetosphere. The approximate dispersion relation for EAWs, given48



2.4. Analyti Solutions
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Figure 2.1: Figure showing the analytial results disussed above, applied to a plasmasystem with parameters β = 98.04, f = 0.462, κc = 2.1 and κh = 4, orresponding toa radial distane of about 13.1RS in Saturn's magnetosphere. The dotted (blue) urve,labelled 1, is given by Eq. (2.10) while the dotted (red) urve, labelled 2, whih is theLangmuir-like branh of the ool eletrons, is given by Eq. (2.12). The assoiated numerialresults are shown by the solid (blak) urves.
by Eq. (2.6), is indiated by the dotted blue urve, labelled 1: it is approximate to ωr =

kVsκ (dot-dashed urve) in the small wavenumber limit [for kλκh ≪ 1 and Vtc ≪ Vsκ (seeEq. (2.10))℄, and is equivalent to the Langmuir-like branh of the ool eletrons [dottedred urve (starting at ωpc and labelled 2), given by Eq. (2.12)℄ for large wavenumbers. Theapproximate dispersion relation for the EPW, given by Eq. (2.13), is shown by the longdashed (green) urve. In the ase of the EPW we see that the two sets of results agreewell for small kλDc values only (kλDc < 0.1), while for large kλDc, the analytial resultsoverestimate the frequenies. Similarly, the EAW ase shows that the deviation in thefrequeny predited by the analytial approximations and numerial results is minimal forlow kλDc but steadily inreases beyond kλDc ∼ 0.4. 49



2. Eletron-Aousti Waves in Bi-kappa Plasmas2.5 Numerial SolutionsHere we return to the full dispersion relation, Eq. (2.2), and hoose the followingnormalization: the density is normalized to the total eletron equilibrium density ne0, wherethe latter is equal to the sum of the hot and ool eletron equilibrium densities nh0 and nc0.The frequeny ω is normalized to the eletron plasma frequeny ωpe = (ne0e
2/ε0me)

1/2, andthe temperature and spatial parameter are normalized to the ool eletron temperature Tcand Debye length λDc, respetively. With this hoie of normalization, we write Eq. (2.2)in the form
D(k, ω) = 1− fZ ′(κc; ξc) + (a f/β)Z ′[κh; (a/β)

1/2ξc] + bZ ′[κi; (bmi/me)
1/2ξc]

− (1− f) (2− 3/κc) k
2λ2

Dc = 0, (2.15)where Z ′ (κα; ξα) is de�ned by Eq. (2.5); mi (me) is the ion (eletron) mass; f = n0h/n0e isthe fration of the hot eletron equilibrium density; β = Th/Tc is the frational hot eletrontemperature, and the normalized omplex phase veloity of the ool eletrons ξc is relatedto the normalized frequeny (ω/ωpe) by ω/ωpe = [(1− f) (2− 3/κc)]
1/2 (kλDc) ξc, usingthe relation ξc = ω/k θc. The onstants a and b in Eq. (2.15) are given, respetively, by

a = κh(κc − 3/2)/[κc(κh − 3/2)] and b = κi(κc − 3/2)/[κc(κi − 3/2)Tc/Ti]. For numerialpurposes we have assumed the mass ratio, mi/me = 1836, the normalized ion temperature,
Ti/Tc = 10−3, and also used κi = 50.We shall next desribe a numerial study of Eq. (2.15) � �rst a parameter surveyrelevant to Saturn data, and then a study of wave behaviour in eah of the three regionsof Saturn's magnetosphere.In obtaining full solutions to the dispersion relation in Eq. (2.15), the following stepsare followed:(i) We �x the spetral indies κc and κh, and the density and temperature ratios f and β,respetively.(ii) We then assign a non-zero value to the normalized wave number kλDc, and solve forthe omplex argument ξc = ξc(ω) that satis�es the simultaneous equations Dr(k, ω) = 0

50



2.5. Numerial Solutionsand Di(k, ω) = 0, where here we have
Dr(k, ω) = 1− f Z ′

r(κc; ξc) + (a f/β)Z ′

r[κh; (a/β)
1/2ξc] + bZ ′

r[κi; (bmi/me)
1/2ξc]

− (1− f) (2− 3/κc) k
2λ2

Dc = 0, and
Di(k, ω) =−f Z ′

i(κc; ξc) + (a f/β)Z ′

i[κh; (a/β)
1/2ξc]

+ bZ ′

i[κi; (bmi/me)
1/2ξc] = 0,and subsripts r and i refer to the real part and imaginary part, respetively. Note herethat ξh and ξi are expressed in terms of ξc as made expliit in Eq. (2.15). This proessnormally leads to a series of solutions of ξc, inluding the prinipal mode solution andhigh-order mode solutions. In essene we determine the zero-level ontours of Dr(k, ω)and Di(k, ω).(iii) Eah solution obtained in step (ii) is used as an initial guess for a root of the fullfuntion D(k, ω), at the same assigned value of kλDc. A Mathematia root �nder isthen used to aurately obtain the root ξc, from whih we obtain the omplex frequeny

ω = k θc ξc. Iterating this proedure over a sequene of values of kλDc we obtain thedispersion relation ω = ω(k) and the damping rate γ = −γ(k).In this model, the solutions desribed here are either �aousti-like� (with zero frequeny ωat kλDc = 0) or �Langmuir-like� (with frequeny ω = ωpe at kλDc = 0). Note that we havenormalized ω with the eletron plasma frequeny ωpe. Thus, for the ool �Langmuir-like�wave mode the normalized frequeny equals √nc0/ne0 =
√

(1− f) at k = 0.(iv) The solutions, obtained from (iii), with the least damping rate (low |γ(k)| values) arethen onsidered to be normal modes. Depending on the plasma omposition, the valueof ξc orresponding to the prinipal mode (ξc value with lowest imaginary term) normallygives the least damped Langmuir wave mode (or eletron plasma wave) solution while oneof the higher-order modes (with relatively low imaginary value) gives the least damped�aousti-like� wave mode. For some plasma ompositions though, the prinipal value of
ξc may give the �aousti-like� solution while the Langmuir wave mode solution is given byone of the higher-order modes.An example showing the various solutions of ξc for a �xed kλDc and a given plasmaomposition is shown in Fig. 2.2 (left panel), obtained for the parameters: β = 10, f =51



2. Eletron-Aousti Waves in Bi-kappa Plasmas
0.35, κc = 1.8, κh = 7 and κi = 50, with normalized wavenumber kλDc = 1. The dotted(red) urves orrespond to the solutions of Dr(k, ω) = 0 while the ontinuous (blue) urvesorrespond to the solutions of Di(k, ω) = 0. Thus for kλDc = 1 used here, the initialguesses of ξc are obtained at the points of intersetion of the dotted (red) and ontinuous(blue) urves. In this partiular example, the prinipal mode is labeled P while the higher-order modes are labeled 1, 2, 3 and 4, depending on how far the solutions are loated fromthe Re(ξc) axis, that is, as |Im(ξc)| inreases. Note that other sets of urves (or solutions)an be obtained far below Re(ξc) = −30, but these have not been onsidered as they leadto strongly damped wave modes.In the right panel of Fig. 2.2 we show the full solutions to Eq. (2.15), obtained byusing the ξc estimates in the left panel and varying kλDc from 1.0→ 0.00001, for example.The �gure indiates that the prinipal mode is the Langmuir wave, and the higher-ordermodes are aousti-like wave modes. The frequeny (ω/ωpe) is shown on the positiveordinate-axis while the damping rate (γ/ωpe < 0) is shown on the negative ordinate axis.Considering the steepness of the damping rate urves, one sees that the higher order modeslabeled 2 − 4 show rapid inrease of damping rate as kλDc is inreased ompared to theone labeled 1. Thus, if there were an external soure of free energy to the plasma system,the prinipal mode and the �rst higher-order mode solutions ould be possible andidatesfor weakly damped or growing waves for observation. In the right panel of Fig. 2.2, thedashed urves have 1/|γ| < 2π/ωr (implying strong damping) while the ontinuous urveshave 1/|γ| > 2π/ωr, the latter denoting modes that are su�iently weakly damped to bealled observable.In order not to overrowd the graphs for the results presented in Setions 2.6 and 2.7,we have only inluded the �least damped� mode solutions arising from the prinipal valueof ξc and one of the higher-order mode solutions. However, for a few ases of results wehave also inluded solutions orresponding to other higher-order modes.2.6 Results: E�ets of Density, Temperature and SpetralIndexFrom the analytial results in Se. 2.4 [Eq. (2.6)℄, we see that the normalized frequenyis a�eted by a number of plasma parameters, and hene it an be expressed in the form,52



2.6. Results: E�ets of Density, Temperature and Spetral Index
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Figure 2.2: Left panel: A graph showing ξc = Re(ξc) + i Im(ξc) satisfying both Dr(k, ω) =
0 (dotted red urve) and Di(k, ω) = 0 (ontinuous blue urve) for kλDc = 1. Otherparameters used are: β = 10, f = 0.35, κc = 1.8, κh = 7 and κi = 50. The values of
ξc are obtained from the points of intersetion between the dotted (red) and ontinuous(blue) urves. Right panel: Dispersion and damping rate urves orresponding to theinitial estimates of ξc for a plasma system with parameters as in the left panel graph. Twodistint solutions are shown: the Langmuir wave, orresponding to the prinipal value of
ξc, and the �aousti wave� modes, orresponding to the higher-order modes, whih aredamped. In the right panel, the dashed urves imply strong damping (1/|γ| < 2π/ωr)while the ontinuous urves denote modes that are su�iently weakly damped to be alledobservable, sine 1/|γ| > 2π/ωr in those ases.
ωr/ωpe ≡ ωr/ωpe(kλDc;κh;Th/Tc;nh0/ne0). Likewise, the normalized damping rate, fromEq. (B.16), is formally a funtion of

γ

ωpe
≡ γ

ωpe

(

kλDc;κc;κh;
Th

Tc
;
Ti

Tc
;
nh0

ne0
;
mi

me

)

.Sine the ratios Ti/Tc and mi/me are �xed we do not fous on the dependene of ωr and
γ on these parameters. Instead we investigate the behaviour of the EAW as the plasmaparameters suh as the spetral index of eah of the eletron omponents, the frationaldensity of eletron speies, and the temperature ratio of the two eletron omponents arevaried. Based on typial Saturn data, we have, in this setion, arried out a parametersurvey for EAWs in a plasma with a hard eletron spetrum (low spetral indies) usingEq. (2.15), to investigate the e�et of the parameters listed above on the resulting wave53



2. Eletron-Aousti Waves in Bi-kappa Plasmasmodes supported by the plasma system.As we have noted above, it is di�ult to extrat any useful information about dampingrates from the approximate analyti theory, and thus the numerial solution of the fullequation is vital for suh studies. For the dispersion or damping urves in Figs. 2.3�2.12,dashed urves imply that the waves are strongly damped (|γ| > ωr/2π), while ontinuousparts indiate regions of weaker damping, with |γ| < ωr/2π, and in the presene of anexternal free energy soure (suh as a beam) the latter may grow to signi�ant amplitudes.In Figures 2.3�2.6, the dispersion urves (ω/ωpe) are shown on the left panel while thedamping rates (γ/ωpe) are on the right panel of eah �gure, respetively, both expressedas funtions of the wavenumber kλDc. Note that the frequeny ωr and damping rate γ arenormalized to the eletron plasma frequeny ωpe while the wave number k is normalizedto the reiproal of the ool eletron Debye length λDc.2.6.1 E�et of Eletron Spetral IndiesIn Figure 2.3 we illustrate the e�et of varying the ool eletron spetral index κc onthe wave behaviour for �xed κh = 4, a temperature ratio β = 100, and a frational hotdensity ratio, f = 0.5. We note �rst that the EPW solution shown in the left panel is asuperposition of all the EPW solutions for the κc values (2 ≤ κc ≤ 10) used in this �gure.Thus the �gure shows that the EPW are weakly damped for small k, and their behaviouris independent of κc for small k, on�rming the approximate solution, Eq. (2.12).On the other hand, the eletron aousti branh is strongly damped in the low wavenum-ber regime (here, kλDc < 0.12), but like the EPW, its phase veloity in this region isindependent of κc, on�rming the approximate analyti equations (2.8) and (2.10).In ontrast, for intermediate wavenumbers, the ool Langmuir region of the EA-branhis weakly damped for all κc, and in this range inreasing κc slightly inreases the wavefrequeny over whih these EAWs are weakly damped above the �knee� at ωpc, ontrary tothe analyti theory, whih predits that κc has no e�et on the dispersion of EAWs in thisrange. Though this e�et is signi�ant for large wavenumbers, the EAWs are too stronglydamped in that range to be observable.In the right panel of Figure 2.3, we onsider the damping rate of the weakly dampedEA-branh for �xed κh = 4. We see that for intermediate values of wavenumbers (in the54



2.6. Results: E�ets of Density, Temperature and Spetral Indexregion where the riterion 1/|γ| > 2π/ωr is satis�ed), an inrease in the superthermalpartile exess of the ool omponent, i.e., a derease in the value of κc, gives rise toinreased damping as ompared to what is found for ool eletron distributions loser to aMaxwellian distribution (e.g., κc = 10). However, the range in wavelengths that are moreweakly damped is not signi�antly a�eted by κc. This observation also applies to Fig. 2.4(see later), with �xed κc = 2 where we now vary κh. Therefore in the weakly dampedregime (with 1/|γ| > 2π/ωr), EAWs with more non-Maxwellian partiles (low κ values)are more damped than those with a small proportion of non-Maxwellian partiles (withrelatively high κ values).
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Figure 2.3: Dispersion and damping urves showing the e�et of ool eletron kappa indies,
κc, for β = 100, n0c = n0h, κh = 4. Values of κc used are: κc = 2 (blak, bottom), κc = 4(orange), κc = 6 (blue), κc = 8 (red), and κc = 10 (green, top), respetively. As in Fig. 2.2(right panel), the dashed urves have 1/|γ| < 2π/ωr (implying strong damping) whilethe ontinuous urves have 1/|γ| > 2π/ωr, the latter denoting modes that are su�ientlyweakly damped to be alled observable. This (dashing) pattern also applies to Figs. 2.4�2.12. Note that for the sake of not overrowding the graph, the damping urves (in theright panel) orresponding to the EPW modes are not shown, thus the results presented(in the right panel) are only for the EAW-like modes. This also applies to the dampingurves in Figs. 2.4�2.7, unless otherwise spei�ed.In Fig. 2.4 we show a similar study as in Fig. 2.3, here varying κh, for �xed κc = 2.In this ase we see a dependene of the frequeny of the EPW mode on the hot eletron
κ value, whih is partiularly strong near κh = 2. This re�ets the numerial results forEPW in a single-eletron plasma [Mae and Hellberg, 1995℄, as opposed to the analyti55



2. Eletron-Aousti Waves in Bi-kappa Plasmasapproximation, Eq. (2.13). In addition, the EPW branh shows oupling behaviour as
κh beomes small, where it behaves as a Langmuir wave for low wavenumbers while forintermediate wavenumbers it shows behaviour similar to the Langmuir-like region of theEAW branh.The phase speed of the strongly-damped aousti region of the EAW branh showssimilar κh dependene that is pronouned near κh = 2. This is to be expeted beause inthe aousti region ωr ∼ kVsκ and Vsκ is strongly κh-dependent [see Eq. (2.8)℄. Varying κhnear κh = 2 has a signi�ant e�et on the weakly damped range in k of the intermediatewavelength regime, whih is ool Langmuir-like. In partiular, one sees (see right panel ofFig. 2.4 for details) that the range 0.28 . kλDc . 0.44 is weakly damped for κh = 2, butthat inreases to 0.15 . kλDc . 0.52 for κh = 4 and hanges little for larger κh values.The latter �gure (Fig. 2.4) also shows that the strongly non-Maxwellian ase, κh = 2, ismuh more strongly damped than one �nds for large κh.We then observe that for large normalized wavenumbers (where the riterion 1/|γ| >

2π/ωr is not satis�ed), apart from the strongly non-Maxwellian ase (with κc = 2, κh = 4,as in Fig. 2.3 or κc = κh = 2, as in Fig. 2.4), the variation of κc in Fig. 2.3 or κh in Fig. 2.4has no signi�ant e�et on the damping of the resulting wave modes.In summary then, onsidering the weakly-damped region of the EAW branh at in-termediate wavelengths, we observe that the strongest e�ets of the exess superthermalpartiles assoiated with κ-distributions are entered on the extreme ase κh = 2 of thehot eletrons, where relatively large hanges in damping our. On the other hand, theinrease of exess superthermal ool eletrons with dereasing κc does have some e�et onthe dispersion of that EAW branh.In all the ases the entire eletron-aousti mode (branh) shows the three distintregimes desribed by Tokar and Gary [1984℄, and Gary and Tokar [1985℄. These threeregimes are:(i) The aousti regime whih ours for low wavenumbers (long wavelengths) with hara-teristi phase veloity of the order vφ ≈ vsκ = ωpcλκh. In the ase of Maxwellian eletrons,the phase veloity is of the order vφ ≈ (nc0/nh0)
1/2vth = Cse [see Eq. (2.9)℄, where vth isthe thermal veloity of the hot eletron omponent. In this regime, EAWs are stronglyLandau damped by the hot eletrons sine vφ ∼ vth, as an be seen from Eq. (2.8). The56



2.6. Results: E�ets of Density, Temperature and Spetral Indexe�et is most marked for low values of κh > 3/2. The ool eletrons have no signi�ante�et on the damping of these waves. This is illustrated by omparison of the EAW urvesin Figs 2.3 and 2.4 for kλDc < 0.15.(ii) The seond regime involves the ool Langmuir-like branh of the EAWs that are weaklydamped, and ours for intermediate values of wavenumbers (0.15 < kλDc < 0.55). Therange of wavenumbers (for weak damping) depends strongly on both the hot fration ofthe total eletron density (f = nh0/ne0) and the hot to ool eletron temperature ratio
β = Th/Tc [Hellberg et al., 2000℄. It also depends weakly on the value κh, essentially forlow κh only, and does not depend on κc at all.(iii) As the wavenumber inreases beyond the intermediate values desribed in (ii) we entera third regime where EAWs are strongly damped (by the ool eletrons) as vφ dereasesand approahes vth. Figures 2.3 and 2.4 show that in these two regimes the EAW dynam-is depend more on the ool eletron properties (spetral index) than on those of the hoteletrons, and therefore the two regimes lie in the old plasma region [Tokar and Gary,1984℄. In addition, the latter two regimes almost lie in the Langmuir-like region of theEAW branh, given by Eq. (2.12).
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Figure 2.4: Same as in Fig. 2.3, but now for hot eletron kappa indies, κh, with κc = 2.
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2. Eletron-Aousti Waves in Bi-kappa Plasmas2.6.2 E�et of Temperature RatioFigure 2.5 shows the e�et of eletron temperature ratio variation on the wave behaviourfor a plasma system with �xed low kappa values (κc = 2 and κh = 4), and a density ratioof f = 0.5. Following from the analytial solution for the EPW [Eq. (2.13)℄, we see thatthe dispersion relation for low k depends on the temperature ratio, β. This behaviouris learly illustrated in the left panel, where for low but �xed kλDc, the frequeny ω/ωpedereases with a derease in β. In addition, we see that the EPWs are weakly dampedover a muh larger range of kλDc for low β values than for high β values. However, theorresponding range of frequenies over whih the EPW is weakly damped remains fairlyonstant at ωpe < ω < 1.2ωpe. We also note that for β = 5, the assumption λDc ≪ λκh islose to breaking down. The latter follows from the fat that λDc ≪ λκh requires f ≪ f∗,where 1/f∗ = 1+ [(κh − 1/2)/(κh − 3/2)]/β (see Appendix B.1), and for κh = 4, β = 5 wehave f∗ ≃ 0.8, whih is lose to f = 0.5 (n0c = n0h) used in Fig. 2.5.In the ase of EAWs for the �xed parameters above, the left panel of Fig. 2.5 showsthat the wave frequeny is strongly dependent on β, both in the long and the intermediatewavelength regimes. The waves are weakly damped for intermediate wavenumbers when
β > 25 (see urves for β = 50 and 100), but are strongly damped for β ≤ 25 over theentire range of wavenumbers onsidered. In the aousti regime, the assoiated phaseveloity (≃ Vsκ) inreases with β as predited by Eq. (2.8). This illustrates that the �rstterm of Eq. (2.8) is dominant. The right panel of Fig. 2.5 shows that in the �intermediatewavenumber regime�, EAWs are weakly damped for higher temperature ratios, and for alarger range of �wavenumbers� as ompared to ases with low β values.2.6.3 E�et of the Hot Eletron Density FrationFigure 2.6 illustrates the e�et of varying the hot eletron density fration, f , on thewave behaviour for a hot to ool eletron temperature ratio, β = 100, and �xed indies
κc = 2 and κh = 4.The EAWs are weakly damped for intermediate wavenumbers (kλDc) for 0.3 ≤ f < 0.8,with the potentially observable range in kλDc (exhibiting weak damping) dereasing as finreases. For all f , the EAW is strongly damped for low kλDc, and the assoiated phaseveloity (∝ Vsκ) dereases with inreasing f , as may be expeted from (2.8). However, for58



2.6. Results: E�ets of Density, Temperature and Spetral Index
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Figure 2.5: Same as in Fig. 2.3, here showing the e�et of temperature ratios, β = Th/Tc,for n0c = n0h, κc = 2, κh = 4. The parameter labeling the urves is β, whih lies between
β = 100 (light-blue) and β = 5 (green). Intermediate values of β are 50, 25 and 10,respetively.
f ≥ 0.8, the EAW is strongly damped for the entire wave number range whih ontrastswith the Maxwellian ase for the same parameters [Mae, 1991, Fig. 2.1, p18℄. Theseresults show that the behaviour of EAWs is greatly in�uened by the density ratio, f .On the other hand, the EPWs are weakly damped for low kλDc for all the values of fused here. The �gure also shows that as f inreases, the ranges of both wavenumber (interms of kλDc) and frequeny over whih the EPWs are weakly damped inreases.While the EPW and EAW are learly two separate modes over the full range of kλDcfor f > 0.4, it is seen that for the lowest values of f in this �gure (f = 0.3 − 0.4), theEPW shows emerging signs of oupling with the ool Langmuir-like region of the EAWnear the �knee�. This oupling e�et is explored further in Fig. 2.7, whih is an extensionof Fig. 2.6, for very low hot eletron frational densities, f = 0.1, 0.2. In this �gure thereis strong oupling behaviour where the EPW makes ontat with the Langmuir-like EAWat the �knee�, displaying harateristis of both EAWs and EPWs [Mae et al., 1999℄. Theoupled EPW mode is weakly damped for a wide range of wavenumbers, from kλDc ≃ 0 towell beyond values found for the simple EPW or EAW observed in Fig. 2.6. On the otherhand, the aousti branh of the EAW persists into the intermediate wavelength regime,59



2. Eletron-Aousti Waves in Bi-kappa Plasmasand is strongly damped for all kλDc.
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2. Eletron-Aousti Waves in Bi-kappa PlasmasR (RS) κ values temperatures (eV) densities (m−3) β f

κc κh Tc Th nc nh5.4 8.0 3.0 1.8 300 10.5 0.02 166.7 0.0026.3 2.3 3.0 2.0 400 10.5 0.01 200.0 0.0017.0 1.8 4.0 9.0 1000 10.5 0.20 111.1 0.029.8 2.0 4.0 8.0 1100 2.5 0.07 137.5 0.02711.4 2.0 3.7 8.0 1500 0.9 0.11 187.5 0.1112.0 2.0 3.5 6.0 1200 1.00 0.11 200 0.1012.5 1.8 4.0 20.0 1100 0.45 0.15 55.0 0.2513.1 2.1 4.0 10.2 1000 0.21 0.18 98.0 0.4613.8 1.6 4.0 30 900 0.40 0.15 30.0 0.2714.0 2.1 6.0 30 900 0.15 0.10 30.0 0.4014.3 1.8 8.0 70 800 0.30 0.20 11.4 0.4015.0 2.0 6.0 40 1000 0.20 0.10 25.0 0.3315.2 2.0 4.0 70 900 0.25 0.10 12.9 0.2916.0 1.9 3.5 35 800 0.08 0.07 22.9 0.4716.8 1.8 3.8 30 900 0.15 0.08 30.0 0.3517.3 2.0 3.5 25 1000 0.15 0.07 40.0 0.3217.8 1.9 3.8 28 1000 0.15 0.07 35.7 0.32Table 2.1: Table showing parameter estimates from Fig. 3 of Shippers et al. [2008℄, or-responding to radial distanes (R) in Saturn's magnetosphere, here used in Figs. 2.8�2.12,with β = Th/Tc and f = nh0/ne0.in dispersion results observed for low kλDc may be attributed to the fat that the analytiapproximation is independent of the ool eletron spetral index κc, whih is not the asewith the full solution given by the numerial approah. Results similar to those shown inFig. 2.8 are given in Fig. 2.9, orresponding to radial distanes of 15.0RS (left panel) and
17.8RS (right panel), respetively (see Table 2.1 for parameters). Here, as in Fig. 2.8, theEAWs are weakly damped for intermediate wavenumbers, and are strongly damped for low
kλDc. However, the EPW shows some oupling behaviour at these larger radial distaneswhere the fration of ool eletrons exeeds 0.65.In Table 2.2 below we show the wavelengths, λ(m), and frequenies, f (kHz), orre-sponding to the EAW and EPW modes for the radial distanes where the former areweakly damped. The wavelengths are obtained from the expression

λ(m) =
2π

kλDc

[

ε0(C2N−1m−2)e2(C2)

]1/2 [
KBTc(J)
nc0(m−3)

]1/2

,where kλDc is the (dimensionless) normalized wavenumber that an be read from the62
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Figure 2.8: Dispersion (ωr/ωpe) and damping (γ/ωpe) versus kλDc for parameters orre-sponding to the Saturnian magnetosphere. Left panel: at about 13.1RS , with parame-ters n0c = 0.21 m−3, n0h = 0.18 m−3, Tc = 10.2 eV, Th = 1000 eV, κc = 2.1, κh = 4.Right panel: at about 14RS , with parameters n0c = 0.15 m−3, n0h = 0.1 m−3, Tc =
30 eV, Th = 900 eV, κc = 2.1, κh = 6. Analytial results [from Eq. (2.6) and (B.16)℄ areshown in red, whih for small kλDc agree with the numerial solution to some extent.
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Figure 2.9: Same as in Fig. 2.8, Left panel: at about 15RS with parameters, n0c =
0.2 m−3, n0h = 0.1 m−3, Tc = 40 eV, Th = 1000 eV, κc = 2.0, κh = 6.0. Right panel:at about 17.8RS , with parameters: n0c = 0.15 m−3, n0h = 0.08 m−3, Tc = 28 eV, Th =
950 eV, κc = 2.0; κh = 3.8. Here, we have also inluded the high-order mode solutions,whih are strongly damped. 63



2. Eletron-Aousti Waves in Bi-kappa Plasmasgraphs. These results show that weakly damped EAWs have frequenies in the range(3.33�4.81) kHz, and wavelengths approximately in the range (640�2580) m.R (RS) Wavelength, λ (km) Frequeny, f (kHz)EAW EPW EAW EPW13.1 0.64�2.21 λ > 4.15 3.61�4.81 5.61�6.6014.0 1.54�2.47 λ > 5.55 3.43�3.85 4.49�5.2415.0 1.38�2.58 λ > 4.43 3.98�4.53 4.92�5.5417.8 1.27�2.51 λ > 4.66 3.33�3.79 4.21�4.64Table 2.2: Table showing the range of wavelength, λ (m), and frequeny, f (kHz), of theEPW and EAW modes, orresponding to the partiular (four) radial distanes in Saturn'smagnetosphere, disussed in this work, where the waves are weakly damped.In summary, in the outer magnetosphere (13RS < R < 18RS) the Langmuir (EPW)wave is weakly damped (1/|γ| > ωr/2π) for small wave numbers kλDc; the EAW is weaklydamped for intermediate kλDc, where it exhibits Langmuir-like behaviour in the viinityof ωpc, but not for low or high kλDc.Figure 2.10 shows examples of wave behaviour in the intermediate region of Saturn'smagnetosphere (9RS < R < 13RS), here for radial distanes R = 12RS (left panel) and
R = 9.8RS (right panel), respetively. The EPW exhibit strong oupling behaviour withthe Langmuir-like region of the EAW branh. This oupled mode is weakly damped fora wide range of wavenumbers (kλDc . 0.56). We note that in the intermediate magneto-sphere of Saturn, the hot frational density ratio is very small, implying that ωpc is verylose to ωpe. Thus the Langmuir-like region of the EAW branh (whih is near ωpc) islose to the onventional EPW, induing oupling. However, the aousti region of theEAW mode is strongly damped in this ase (see dashed urves). We point out that similaroupling behaviour is also sometimes observed in the outer magnetosphere (R > 13RS), inases where the density ratio n0h/n0e is very small, and thus ωpc approahes ωpe. An exam-ple here is shown in Fig. 2.11 whih orrespond to data values at about 15.2 RS (left panel)and 16 RS (right panel). Here, the assoiated higher order modes, though aousti-like,do not satisfy the damping riterion 1/|γ| > 2π/ωr, and are therefore strongly damped,as an be seen from the dashed urves of Fig. 2.10. The oupled-EPW is weakly dampedfor a wide range of normalized wavenumber kλDc . 0.56. Finally we onsider the innermagnetosphere (R < 9RS), for example, as shown in Fig. 2.12, orresponding to radial dis-64



2.7. Results: Appliation to Saturn's Magnetosphere
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Figure 2.10: Same as in Fig. 2.8, Left panel: at about 12RS with parameters, n0c =
1.0 m−3, n0h = 0.11 m−3, Tc = 6 eV, Th = 1200 eV, κc = 2.0, κh = 3.5. Right panel:at about 9.8RS , with parameters: n0c = 10.9 m−3, n0h = 0.11 m−3, Tc = 8 eV, Th =
1500 eV, κc = 2; κh = 4.
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Figure 2.11: Same as in Fig. 2.10, Left panel: at about 15.2RS with parameters, n0c =
0.25 m−3, n0h = 0.07 m−3, Tc = 70 eV, Th = 1000 eV, κc = 2, κh = 4. Right panel:at about 16.0RS , with parameters: n0c = 0.2 m−3, n0h = 0.07 m−3, Tc = 35 eV, Th =
800 eV, κc = 1.85; κh = 3.5. The �aousti-like� modes, given by the high-order modesolutions of the dispersion relation, are strongly damped.tanes of R = 5.4RS (left panel) and R = 6.5RS (right panel), respetively. In these twoases, the density of the high-temperature omponent is typially very small, and therefore65



2. Eletron-Aousti Waves in Bi-kappa Plasmasvalues of f are small too, that is, 0.001 and 0.002, respetively (see Table 2.1). Here onlythe EPW is weakly damped while the �aousti modes� are too strongly damped to beobservable. In the ase of R = 5.4RS we have also inluded the analyti approximationsto the EPW mode (dotted green urve) and the Langmuir-like branh of the EAW given byEq. (2.12) (solid red urve). The �gure shows that in this ase, with f ≪ 1 and β ≫ 1, theEPW and the Langmuir-like branh of the EAW are lose to eah other for low normalizedwavenumbers. In addition, the numerial and analyti results for the EPW agree well inthis range.Mae and Hellberg [1990℄, for a bi-Maxwellian eletron distribution, and Mae et al.[1999℄, for a hot-kappa/ool-Maxwellian plasma mix, showed that eletron-aousti wavesan be weakly damped only for relatively high hot frational densities (n0h/n0e) and rela-tively high hot-to-ool eletron temperatures, above the threshold values. From the Voy-ager 1 and 2 inbound results of the PLS observations, Sittler et al. [1983℄ showed thatbetween 15RS and 20RS for Voyager 1, and between about 13RS and 20RS for Voyager2 observations, the outer magnetosphere of Saturn has relatively high superthermal fra-tional densities and pressure (see their Fig. 10). This trend is on�rmed by the Cassiniresults of Shippers et al. [2008℄, where beyond 13RS , the densities of the two eletronomponents are similar within an order of magnitude. However, for radial distanes below
13RS , though the temperature ratio Th/Tc is in some instanes large enough (∼ 100) tosupport EAWs, the ool and hot eletron densities are so disparate (orders of magnitudesapart), that the ratio n0h/n0e beomes too small. Our results show that �weakly damped�eletron-aousti waves require relatively high hot-to-ool temperature ratios, and hot-to-total eletron density ratios that are well above 0.2.2.8 Conlusions and Chapter SummaryUsing kineti theory, we have arried out a study of eletron-aousti waves in a plasmawith two kappa-distributed eletron omponents, having di�erent temperatures. Based ondata obtained from Saturn's magnetosphere [Shippers et al., 2008℄, we have arried outa parameter survey of dispersion and damping of the waves, for a variety of values of thehot and ool eletron κ values (κh, κc), with an emphasis on low κ values, the hot eletrondensity fration f , and the hot to ool eletron temperature ratio β = Th/Tc.66



2.8. Conlusions and Chapter Summary
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Figure 2.12: Same as in Fig. 2.8: Left panel: at about 5.4RS , with parameters:
n0c = 10.5 m−3, n0h = 0.02 m−3, Tc = 1.8 eV, Th = 300 eV, κc = κh = 5.0. Right panel:at about 6.3RS with parameters, n0c = 10.5 m−3, n0h = 0.01 m−3, Tc = 2 eV, Th =
400 eV, κc = 2.3, κh = 3.0. In the left panel, the analyti solution for the EPW [fromEq. (2.13)℄ is also shown in red, whih agrees with the numerial solution for smallwavenumbers (here kλDc < 0.2). In addition, we have inluded the analytial Langmuir-like solution from Eq. (2.12) (dotted, green urve). Thus for small kλDc, Eqs. (2.13)and (2.12) are equivalent when β ≫ 1 and f ≪ 1.Our results show that even in the presene of two strongly non-Maxwellian eletronomponents, it is essentially the dependene of the damping rate on the hot-to-ool eletrontemperature ratio β = Th/Tc and the frational hot eletron omponent density f =

nh0/ne0 that determines the range in wavenumber (in terms of kλDc) over whih EAWsare weakly damped; κh plays a weaker, albeit signi�ant role, partiularly for low values(∼ 2), while the e�et of κc, even for strongly non-Maxwellian values, is weak but notnegligible. In our studies we di�erentiate between wave ranges that are strongly damped(|γ| > ωr/2π), and thus will de�nitely not be observable, and those that are potentiallyobservable, either as a result of random thermal �utuations or a given soure of freeenergy. These results are then applied to three regions of Saturn's magnetosphere.In the outer magnetosphere, our results suggest that weakly damped eletron-aoustiwaves may our at radial distanes in the range 13− 18RS where(i) the densities of the hot and ool eletron populations are of the same order of magnitude;(ii) the temperatures di�er by about two orders of magnitude, that is Th/Tc ∼ 100, and67



2. Eletron-Aousti Waves in Bi-kappa Plasmas(iii) the kappa index values are more or less onstant around κc ≃ 2 and κh ≃ 4.It is thus likely that EAWs should be observable in this outer region. In terms of frequeniesand wavelengths, our results suggest that the weakly damped EAWs have frequenies inthe range (3.33�4.81) kHz, and wavelengths approximately in the range (640�2580) m.In the intermediate magnetosphere, f = nh0/ne0 is very small, and thus ωpc ∼ ωpe.The strong oupling between the ool Langmuir-like branh of the EAW (near ωpc) andthe EPW yields potentially observable waves that are Langmuir-like. This pattern is alsoobtained, for some ases, in the R > 13RS region, in ases where the density ratio nh0/ne0is very small, and hene the ool eletron omponent density nc0 ≃ ne0.Finally, in the inner magnetosphere (R < 9RS), EAWs are strongly damped and arehighly unlikely to be observed in the absene of a soure of free energy; only the EPW isweakly damped. This may be attributed to the fat that the frational hot eletron densityis very small.

68



CHAPTER 3
Dust Aousti Solitons in Plasmas with Kappa-Distributed Eletronsand/or Ions

In this Chapter, we investigate the existene onditions for dust aousti (DA) solitonsand double layers in a dusty plasma in whih the eletrons and/or ions have a kappadistribution, and the dust grains are modelled as a old, inertial �uid. This work enablesone to undertake a diret omparison between the e�ets of the Cairns and the kappadistribution, as examples of two nonthermal distributions, on DA solitary wave existenein dusty plasmas. Unlike the situation found for the Cairns distribution, we will show thateletrostati solitary strutures are restrited to negative (positive) potential solitons if thedust is made up of negatively (positively) harged grains.The results presented in this Chapter have been published as T. K. Balukuand M. A. Hellberg, Physis of Plasmas, 15, 123705 (2008)3.1 IntrodutionIn Se. 1.2, we disussed the main properties of dust partiles, and the various areaswhere they an exist in spae, astrophysial and laboratory environments.In studies of dust aousti waves in spae, the eletrons or ions are quite often modelledby the Boltzmann distribution, and the dust treated as a old �uid due to the great inertia69



3. Dust Aousti Solitons in Plasmas with Kappa-Distributed Eletrons and/or Ionsprovided by its mass. Using suh a model, for example, Mamun [1996℄ found that adusty plasma with old negatively harged inertial dust �uid and (Boltzmann distributed)thermal ions, with bakground (Boltzmann) eletrons would admit negative potentialsassoiated with small amplitude dust aousti solitary waves.In explaining the eletrostati strutures with density depletions observed by the Frejasatellite [Dovner et al., 1994℄, using a nonthermal veloity distribution funtion, Eq. (1.26),often referred to as the Cairns distribution, Cairns et al. [1995℄ showed that the preseneof a population of energeti eletrons hanges the properties of ion sound waves.Based on the Cairns distribution funtion in Eq. (1.26), a number of authors [Mamun,1997; Verheest and Pillay, 2008a,b℄, to mention a few, have studied the behaviour of solitarystrutures in nonthermal plasmas. Reently, Verheest and Pillay [2008a℄ investigated theexistene of large amplitude dust aousti solitary waves in plasmas onsisting of negativelyharged dust in the presene of either nonthermally distributed ions or eletrons using theCairns distribution. In their study, it was found that nonthermal eletrons support onlynegative potential solitary waves, while, for a limited range of f and α, nonthermal ionsadmit both positive and negative potential solitons, with f = Ne0/Ni0 being the ratioof the equilibrium eletron number density to that of the ions. Positive double layerswere also found under related onditions. For the ase of positive dust they [Verheest andPillay, 2008b℄ found equivalent results, the only di�erenes being a hange of sign of solitonpotential and of the light speies (ions versus eletrons) governing the proess.Here, we thus investigate the e�et of using a di�erent nonthermal distribution for theeletrons or the ions on the resulting DA wave strutures, viz. the kappa distribution.3.2 Model and Basi EquationsWe onsider a three omponent, homogeneous, unmagnetized dusty plasma omprisingeletrons, singly harged ions and negatively harged dust partiles, the latter satisfying theontinuity and momentum equations. In view of the typial harging timesales, it is ex-peted that harge �utuations would have a minimal e�et on dust aousti modes [Shuklaand Mamun, 2002℄, and so we assume that the dust harge is onstant. Both the ions andeletrons of mass mi (me) and temperature Ti (Te) follow a generalized three dimensional
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3.2. Model and Basi Equationskappa distribution given by
Fκ(vj) =

Nj0

(πκj θ2j )
3/2

Γ(κj + 1)

Γ(κj − 1/2)

[

1 +
v2j + 2 qj ϕ/mj

κj θ2j

]

−(κj+1)

, (3.1)where qj is the speies harge of the eletrons (j = e) or ions (j = i); ϕ the loal ele-trostati potential, vj and Nj0 the ion (eletron) speies veloity and equilibrium numberdensity, respetively; other parameters are as de�ned in Eq. (1.3). The gamma funtion,
Γ(a), is related to the beta funtion, B(a, b), where the latter arises from the normal-ization of Fκ(vj) suh that ∫ Fκ(vj)d

3vj = Nj0, that is, from omputing the statistial(veloity) moments 〈vn〉 of the distribution, with the integer n = 0. To obtain Eq. (3.1)from (1.2), we have taken into aount the energy assoiated with the position of thepartile speies [Goldston and Rutherford, 1995℄, and thus used the energy onservationrelation: mj v
2
j/2 + qjϕ = mj V

2/2, where qjϕ is the inrease in potential energy and Vis the veloity of the partiles in the initial equilibrium state (i.e.� mj V
2/2 = Wr givesthe total energy in the system). This family of veloity distribution funtions inludes theMaxwell-Boltzmann distribution for κi, κe →∞.Integrating the kappa distribution over veloity spae, one obtains the number densityfor the ions (j = i) and the eletrons (j = e), respetively, as

Nj(ϕ) = Nj0

(

1 +
2 qj ϕ

mj κj θ2j

)

−(κj−1/2)

, (3.2)where qj is the harge of speies j. Note that qjϕ = eϕ for positive ions of single harge,and −eϕ for eletrons, respetively. A full derivation is given in Appendix A.1.2. In thelimit eϕ≪ κj mj θ
2
j/2, Eq. (3.2) redues to Eq. (15) of Bryant [1996℄, with Eκ = mθ2/2,and is similar (for small perturbations) to Eq. (80) of Treumann [1999℄, whih follows fromhis distribution funtion (78) with φ → −eφ for eletrons instead of our Eq. (3.1). Inaddition, we point out that using the one dimensional κ-distribution [with the power inEq. (3.1) being −κ instead of −(κ+ 1)℄ leads to the same expressions in Eq. (3.2).For simpliity, we hoose the following normalizations: the loal eletrostati potentialis normalized to KBTi/e, number density to the ion number density, Ni0, and veloity tothe dust aousti speed, Cd = (Zd KBTi/md)

1/2, where md (Zd) is the dust grain mass71



3. Dust Aousti Solitons in Plasmas with Kappa-Distributed Eletrons and/or Ions(number of eletroni harges residing on the dust grain surfae of arbitrary harge qd, i.e.,
Zd = |qd/e|). For ompleteness, in one-dimensional geometry, the spae and time variablesare normalized to the �dust Debye length�, λDd = (ε0 KB Ti/Zd Nd0 e2)1/2 and dust plasmaperiod, ω−1

pd = [(Z2
d e2 Nd0/ε0 md]

−1/2, respetively.The normalized ion and eletron number densities are thus given by
ni(φ) =

(

1 +
φ

κi − 3/2

)

−(κi−1/2) (3.3)and
ne(φ) = f

(

1− σ φ

κe − 3/2

)

−(κe−1/2)

, (3.4)respetively, where σ = Ti/Te is the ratio of the ion temperature to that of eletrons,
f = Ne0/Ni0 the ratio of the equilibrium number density of eletrons to ions, and φ thenormalized potential. In the limit κi, κe →∞, Eqs. (3.3) and (3.4) redue to
ni(φ) = exp (−φ) and ne(φ) = f exp (σ φ), the Maxwellian distributions for the ions andeletrons, respetively.On the other hand, the �uid of old, negatively harged dust partiles, haraterizedby the normalized density nd and veloity ud, satis�es the ontinuity and momentumequations (in the absene of pressure, sine we assume the dust temperature, Td = 0):

∂nd

∂t
+

∂

∂x
(nd ud) = 0 (3.5)and

∂ud
∂t

+ ud
∂ud
∂x
− ∂φ

∂x
= 0. (3.6)The speies' densities are oupled by Poisson's equation

∂2φ

∂x2
+

Ni0

ZdNd0
(ni − ne − Zd nd) = 0. (3.7)In transforming to a stationary frame, we assume that all quantities depend on ξ = x−M t,where the Mah number M gives the veloity of the solitary wave normalized to the dustaousti speed Cd, i.e., it is equivalent to the normalized speed of the dust partiles in thestationary frame. With this transformation we have, ∂/∂x→ ∂/∂ξ and ∂/∂t→ −M ∂/∂ξ.72



3.2. Model and Basi EquationsBy imposing the appropriate boundary onditions for loalized disturbanes, that is, nd →

Nd0/Ni0, and φ, dφ/dξ → 0 as ξ → ±∞, equations (3.5) and (3.6) an be solved to get
nd(φ) =

(

Nd0

Ni0

)(

1 +
2φ

M2

)

−1/2

. (3.8)From Eqs. (3.3), (3.4) and (3.8) we observe that when f = 0, ne → 0 while nd is �nite,and similarly, when f = 1, nd → 0 while ne is �nite. Thus at these extreme values of f ,the model redues to a two-omponent plasma: an eletron-ion plasma for f = 1 and anion-dust plasma for f = 0.Also, with the transformation ξ = x−M t, Poisson's equation beomes
∂2φ

∂ξ2
+

Ni0

ZdNd0
(ni − ne − Zd nd) = 0. (3.9)In the unperturbed initial state, ∑ qj Nj0 = 0, and with f = Ne0/Ni0 we obtain

ZdNd0/Ni0 = 1− f , where f < 1 for negatively harged dust partiles.Substitution of the density expressions into Poisson's equation leads to
d2φ

dξ2
=

f

1− f

(

1− φσ

κe − 3/2

)

−(κe−1/2)

− 1

1− f

(

1 +
φ

κi − 3/2

)

−(κi−1/2)

+

(

1 +
2φ

M2

)

−1/2

. (3.10)Equation (3.10) an be written in the �energy integral� form
1

2

(

dφ

dξ

)2

+Ψ(φ) = 0, (3.11)where
Ψ(φ) =

f

(1− f)σ

[

1−
(

1− φσ

κe − 3/2

)

−(κe−3/2)
]

+
1

1− f

[

1−
(

1 +
φ

κi − 3/2

)

−(κi−3/2)
]

+M2

[

1−
(

1 +
2φ

M2

)1/2
] (3.12)73



3. Dust Aousti Solitons in Plasmas with Kappa-Distributed Eletrons and/or Ionsis the Sagdeev (pseudo)potential of the plasma system with φ the �oordinate� (pseudoposition) and ξ the �time�. Note that d2φ/dξ2 = −Ψ′(φ), the prime denoting the derivativewith respet to φ. Equation (3.12) has the property that at the origin (φ = 0), Ψ(φ) =

Ψ′(φ) = 0, thus by imposing the solitary struture requirements disussed in Se. 1.4 forthe Sagdeev pseudopotential theory, we are in a position to obtain existene domains ofthe DA solitons or double layers supported by the plasma model. These requirements aresummarized as follows:(i) Ψ′′(φ = 0) < 0 suh that there is a maximum at the origin (i.e., the �xed point at theorigin is unstable);(ii) there exists a nonzero φm, whih is a minimum (or maximum) value of φ, at whih
Ψ(φm) = 0;(iii) Ψ(φ) < 0 for 0 < |φ| < |φm|, and(iv) in the ase of double layers, both Ψ(φm) and Ψ′(φm) must be zero.The requirement in (i) leads to the �soliton ondition�,

M > Ms, (3.13)where
Ms =

{

f σ

1− f

(

2κe − 1

2κe − 3

)

+
1

1− f

(

2κi − 1

2κi − 3

)}

−1/2 (3.14)is the lower Mah number limit below whih no solitons (or double layers) an exist. For
κe, κi → ∞ this redues to the familiar expression obtained for Boltzmann eletrons andions [Verheest et al., 2005℄, i.e., M2

s = (1− f)/(1 + fσ) < 1.Solitons are inherently super aousti, but the �Mah number� referred to here is basedon a spei� normalization, and hene one may have M < 1. Whereas we have used anapproximate dust aousti speed Cd = (Zd KB Ti/md)
1/2 for the normalization, the atualdust aousti speed in the plasma under onsideration an be shown to be Cdκ = ωpdλDκ,where the global Debye length λDκ [Bryant, 1996; Mae et al., 1998, 1999℄ is given by

1

λ2
Dκ

=
e2

ε0 KB

{

Ne0

Te

(

2κe − 1

2κe − 3

)

+
Ni0

Ti

(

2κi − 1

2κi − 3

)}

,
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3.3. Small Amplitude Dust Aousti Solitons (DAS) and Double Layerswhih redues to the usual expression for λD when κe, κi →∞. It an also be written as
1

λ2
Dκ

=
ZdNd0e

2

ǫ0KBTe� ,where the e�etive temperature Te� is given by
Ti

Te� =
1

(1− f)

{

f σ

(

2κe − 1

2κe − 3

)

+

(

2κi − 1

2κi − 3

)}

.Thus we an see that
M2

dκ =
V 2

C2
dκ

=
M2C2

d

C2
dκ

=
M2Ti

Te� =
M2

M2
s

,where we have used the de�nitions of M, Ms, Mdκ, Cd, Cdκ and λDκ. It follows that if
M > Ms, the �true� Mah number Mdκ > 1, and the strutures are truly super aousti,as expeted.It is seen that in the absene of eletrons, when f → 0, the soliton ondition (3.14) isobviously independent of both σ and κe, both of whih are eletron-related. On the otherhand, for f = 1, the number densities of ions and eletrons are equal, there is no dust, and
Ms → 0.3.3 Small Amplitude Dust Aousti Solitons (DAS) and Dou-ble LayersTo study small amplitude solitary wave strutures, we shall use an expanded Sagdeevpotential approah, and thus arry out a series expansion of Ψ(φ) about the origin (φ = 0).As we require Ψ(0) = Ψ′(0) = 0, the onstant term and linear term vanish. To fourth orderthis gives

1

2

(

dφ

dξ

)2

+Aφ2 +B φ3 + C φ4 = 0, (3.15)where
A =

−(κi − 1/2)

2(1− f)(κi − 3/2)
− f σ (κe − 1/2)

2(1− f)(κe − 3/2)
+

1

2M2
, (3.16)

B =
(κi − 1/2)(κi + 1/2)

6(1 − f)(κi − 3/2)2
− f σ2 (κe − 1/2)(κe + 1/2)

6(1− f)(κe − 3/2)2
− 1

2M4
(3.17)75



3. Dust Aousti Solitons in Plasmas with Kappa-Distributed Eletrons and/or Ionsand
C =

5

8M6
− (κi − 1/2)(κi + 1/2)(κi + 3/2)

24(1 − f)(κi − 3/2)3

− f σ3 (κe − 1/2)(κe + 1/2)(κe + 3/2)

24(1 − f)(κe − 3/2)3
. (3.18)3.3.1 Small Amplitude SolitonsIn investigating small amplitude solitons, we �rst assume that the fourth order termin (3.15) is small enough to be negleted [Verheest and Hellberg, 1997℄ and only onsider

1

2

(

dφ

dξ

)2

+Aφ2 +B φ3 = 0. (3.19)The solution to Eq. (3.19) is the usual Korteweg-de Vries (KdV)-type solution
φ(ξ) = −A

B
seh2 [(−A/2)1/2 ξ] . (3.20)The maximum soliton potential and width are given by |A/B| and √−2/A, respetively.Thus, for the soliton width to be real we require A < 0 in (3.20), and B must be non-zero,sine we require φ → 0 as ξ → ±∞. The sign of the potential thus depends on the signof B: φ is positive when B > 0 and negative when B < 0. In other words, the sign ofthe oe�ient of φ3 in the Taylor expansion of Ψ(φ) about φ = 0 determines the sign ofthe potential of the small amplitude solitons that exist in the plasma model. This alsoapplies to small amplitude double layers, if they exist, as disussed below in this setion.As other plasma models will show, these small amplitude solitons have the property thattheir amplitudes go to zero as M approahes Ms. Suh solitons will be termed �KdV-like�solitons in this thesis.This approah, whih is valid for weak (small amplitude) solitons, is similar to theredutive perturbation tehnique that results in the Korteweg-de Vries equation of theform of Eq. (3.19).
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3.3. Small Amplitude Dust Aousti Solitons (DAS) and Double LayersSmall Amplitude Negative Potential Solitons:Considering the ase of small amplitude negative potential solitons, we require B < 0in (3.17), whih leads to a onstraint on the Mah number, viz.
M <

{

(κi − 1/2)(κi + 1/2)

3(1− f)(κi − 3/2)2
− f σ2 (κe − 1/2)(κe + 1/2)

3(1 − f)(κe − 3/2)2

}

−1/4

≡Mβ, (3.21)provided the expression in brakets is positive, i.e.,
f ≤ 1

σ2

(

κi + 1/2

κe + 1/2

)(

κi − 1/2

κe − 1/2

)(

κe − 3/2

κi − 3/2

)2

, (3.22)for real Mβ (and f < 1 and κe, κi > 3/2). Here Mβ is the upper Mah number limit abovewhih small amplitude negative potential solitons annot exist. That is, the existenedomain is restrited to the range Ms < M < Mβ. When κi = κe = κ, Mβ in Eq. (3.21)redues to
Mβ =

[

3(1− f)(κ− 3/2)2

(1− fσ2)(κ− 1/2)(κ + 1/2)

]1/4

, (3.23)whih at f → 0 is independent of σ, and goes to zero for f = 1 as long as σ 6= 1. Thease σ = 1 (i.e., Ti = Te) is a singular ase, in whih the �upper limit� Mβ is seen to beindependent of f . We shall return to this ase in our numerial evaluations. In addition,for κi = κe, Eq. (3.22) redues to f ≤ 1/σ2. Then the entire range of f , viz., 0 < f < 1, isovered for σ ≤ 1, but for σ > 1, the expression is valid for only a limited range.Small Amplitude Positive Potential Solitons:Next, we turn to the possible existene of positive potential solitons. We see fromEq. (3.20) that with A < 0, positive potential solitons (φ > 0) would require B > 0,that is, M > Mβ . This ondition dominates the soliton ondition, M > Ms, and leads tounbounded values of M. One of the less stringent onditions for the existene of solitons isthat the Sagdeev potential Ψ(φ) must have at least one harge neutral point, that is Ψ′(φ)must hange sign in the range 0 < φ < φm, where φm satis�es Ψ(φm) = 0. However, aswill be disussed for the arbitrary amplitude ase in Setion IV, numerial investigationsshow that Ψ′(φ) is never zero for any φ > 0 and M > Ms. That is, no harge neutralpoint outside the origin is found, and thus neither positive solitons nor double layers an77



3. Dust Aousti Solitons in Plasmas with Kappa-Distributed Eletrons and/or Ionsbe formed. Thus we shall not disuss further the ase of B > 0 in this setion.3.3.2 Small Amplitude Double LayersWe onsider the possible existene of small amplitude negative potential double layers.In a number of plasma models, double layers may at as limits of a sequene of solitons,and an thus give rise to a limit of an existene domain for solitons [Baboolal et al.,1990℄. The existene of double layers requires Ψ(φm) = Ψ′(φm) = 0, at a possible root
φ = φm 6= 0. Applying this double layer ondition to Eq. (3.15), one obtains φ2

m = A/Cand φm = −B/2C, i.e., B2 = 4AC. Using this transformation, (3.15) an then be writtenin the form [Verheest and Hellberg, 1997℄
1

2

(

dφ

dξ

)2

+ C φ2(φ− φm)2 = 0, (3.24)whih has a solution
φ = − B

4C

{

1− tanh

[

(

−A

2

)1/2

ξ

]}

, (3.25)provided A < 0. Also, using φ2
m = A/C it implies that C must be negative for real valuesof φm. Therefore the sign of the double layer given by (3.25) depends solely on whether Bis negative or positive. Here, C < 0 yields M > Mα where

Mα =

{

(κi − 1/2)(κi + 1/2)(κi + 3/2)

15(1 − f)(κi − 3/2)3

+
f σ3 (κe − 1/2)(κe + 1/2)(κe + 3/2)

15(1 − f)(κe − 3/2)3

}

−1/6

. (3.26)As was found to be the ase for both Ms and Mβ , we see that Mα → 0 for f → 1, whileat f = 0, of ourse, only the ions play a role.In general, the existene of (small amplitude) negative potential double layers thusrequires Max(Ms, Mα) < M < Mβ, provided the onstants A, B and C in Eqs. (3.15)-(3.18) satisfy the onstraint B2 = 4AC.Figures 3.1 and 3.2 show the behaviour of Ms, Mα and Mβ as funtions of f forpartiular values of σ, κe and κi. In Fig. 3.1 we have hosen σ = Ti/Te = 0.5. In the leftpanel both speies have a low spetral index (κi = κe = 2), while the right panel illustratesa ase in whih the eletrons and ions are essentially quasi-Maxwellian (κi = κe = 25).78



3.3. Small Amplitude Dust Aousti Solitons (DAS) and Double Layers
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Figure 3.1: Existene domain for weak negative potential dust aousti solitary waves,from the small amplitude theory (Ms, Mβ, Mα), for σ = 0.5 and κe = κi = 2 (leftpanel) and κe = κi = 25 (right panel). Solitons, satisfying Eq. (3.20), our in theregion Ms < M < Mβ , but no double layers exist sine Mα > Mβ . The dotted (light-blue)urves orrespond to the upper Mah number limit, from the arbitrary amplitude (Sagdeevpotential) theory, limiting the existene of negative solitons. This will be disussed furtherin Se. 3.4.3.
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Figure 3.2: Same as Fig. 3.1 but for σ = 1. Here, for a range of f we have Mα < Mβ ,implying that double layers an apparently exist, but ritial analysis shows this to bewrong.In both �gures, small amplitude negative potential solitons are on�ned to the regionbetween Ms and Mβ. The qualitative similarity between the two �gures indiates that the79



3. Dust Aousti Solitons in Plasmas with Kappa-Distributed Eletrons and/or Ionsenhaned superthermal eletron and ion omponents assoiated with a kappa distributionwith low κ have quantitative e�ets only - the values and ranges of Mah numbers thatsupport solitons are di�erent in the two ases. Further, as Mα > Mβ over the full rangeof possible number density ratios, f , it follows that small amplitude double layers annotexist. Similar results to those shown in Fig. 3.1 an be obtained for 0 < σ < 0.5.On the other hand, retaining the same spetral indies, but onsidering di�erent tem-perature ratios as shown, for example, in Fig. 3.2 (where Ti = Te), we an �nd a regionin parameter spae of (f, M) where Ms < Mα < Mβ is satis�ed for some values of f[f > 0.23 (left panel) and f > 0.463 (right panel), respetively℄. Note that for κi = κe = κand σ = 1, Eq. (3.23) gives Mβ = Mβ(κ), whih is independent of f , and only dependingon the spetral index κ of the ions or eletrons. Thus, we get the onstant urves, parallelto the f−axis in Fig. 3.2. Considering the fat that for some values of f we an have
Ms < Mα < Mβ, a ursory interpretation of this �gure may then lead one to suggest thatboth double layers and solitons may exist in suh a region of parameter spae for φ < 0,as one of the required double layer onditions is satis�ed. Similar apparent �existene do-mains� in the parameter spae of (f, M) an be obtained for other values of κe, κi and
σ. However, a more areful study of these ases indiates that although Mα < Mβ insome regions, the further double layer requirement B2 = 4AC, and in partiular, φm =

−
√

A/C = −B/2C, for φ < 0, is violated. This is illustrated in Table 3.1 for the parametervalues κi = κe = 2 and σ = 1 for the density ratio f = 0.8. For this ase, we have listedexamples of Mah numbers lying in the range Ms < Mα < M < Mβ , whih shouldapparently support double layers. For eah suh value, we have listed the orrespondingvalues of 4AC and B2 (whih are learly far from equal), and also the values of the root, φm,that may be alulated from the above two relations. The table shows that for the givenparameter values, no seond double root exists. A similar approah for other parametervalues (of κe, κi and σ ) that are admissible to the urrent plasma model leads to the sameonlusion. This appears to rule out the existene of negative potential double layers andtherefore, only negative potential solitons an exist in suh plasmas. As we shall see below,these results also agree with those obtained from the large amplitude treatment.80



3.4. Arbitrary Amplitude DAS and Double Layers
M 4AC B2 φm1 φm20.52 128.739 18.82 -0.785 -1.6340.53 289.558 14.72 -0.311 -1.7480.54 432.201 11.43 -0.184 -1.8670.55 558.996 8.786 -0.126 -2.0000.56 671.941 6.678 -0.092 -2.1460.57 772.758 5.003 -0.069 -2.3130.58 862.933 3.680 -0.053 -2.5030.59 943.749 2.645 -0.042 -2.7240.60 1016.320 1.844 -0.032 -2.9860.61 1081.611 1.235 -0.025 -3.3080.62 1140.460 0.781 -0.019 -3.7150.63 1193.607 0.454 -0.014 -4.2620.64 1241.690 0.231 -0.009 -5.0570.65 1285.256 0.091 -0.006 -6.3970.66 1324.810 0.018 -0.003 -9.5620.67 1360.781 3.5 × 10−4 3.4× 10−4 −25.703iTable 3.1: Table showing the double layer onditions arising from Eq. (3.15) for κi =

κe = 2, σ = 1 and f = 0.8; Ms = 0.19245, Mα = 0.51279 and Mβ = 0.66874. Here
φm1 = −B/2C and φm2 = −(A/C)1/2.
3.4 Arbitrary Amplitude DAS and Double Layers3.4.1 Positive Potential SolitonsFrom Eqs. (3.3) and (3.4) it follows that for positive potentials, the limitation on
φ would in priniple be provided by the eletrons at the ritial potential φce = (κe −

3/2)/σ, where κe > 3/2 , beyond whih the eletron density is omplex. At this limitingpotential, we require Ψ(φce) > 0, a ondition that is essential for obtaining the upper limitto the Mah number for positive dust aousti solitons to exist. However, substitution inEq. (3.12) shows that for κe > 3/2, Ψ(φce) = −∞ < 0, and thus this requirement is notsatis�ed. It follows that this �eletron density limit� annot provide an upper limit on Mfor positive potential solitons. Any suh upper limit on M , should it exist, then needs tobe given by the value of M at whih a double layer ours for partiular values of κi, κe, σand f , provided positive potential solitons and/or double layers exist in the model underonsideration.Generally, for solitons or double layers to exist, it is imperative that there exists aharge neutral point (CNP) for some φCNP > 0 between the origin and the potential81



3. Dust Aousti Solitons in Plasmas with Kappa-Distributed Eletrons and/or Ionsorresponding to the upper Mah number limit, whih here would our for φ = φce, i.e.,there exists an aessible value φCNP at whih the urve of Ψ(φ) against φ has zero slope,before a root of Ψ(φ) is enountered. We have arried out a numerial investigation overa wide range of parameter values and have not been able to �nd a position of hargeequilibrium outside the unperturbed state for positive φ, as Ψ′(φ) < 0 always, implyingthat ne + Zd nd > ni. Thus it appears that neither positive solitons nor double layers anbe obtained with a dusty plasma model with κ-distributed ions and/or eletrons.
φ Ψ′(φ, M)

M = 0.34 M = 0.35 M = 0.36 M = 0.37-0.0700 1.69+2.18i 1.69+2.65i 1.69+3.53i 1.69+6.65i-0.0675 1.66+2.44i 1.66+3.13i 1.66+4.90i -6.830-0.0650 1.63+2.83i 1.63+4.04i 1.63+18i -2.822-0.0625 1.61+3.51i 1.61+7i -3.702 -1.786-0.0600 1.58+5.13i -5.4209 -2.095 -1.267... ... ... ... ...-0.0200 -0.0531 -0.0351 -0.0192 -0.0052-0.0175 -0.0375 -0.0231 -0.0104 0.0010-0.0150 -0.0252 -0.0139 -0.0038 0.0052-0.0125 -0.0158 -0.0071 0.0007 0.0077-0.0100 -0.0088 -0.0024 0.0034 0.0086-0.0075 -0.0040 0.0006 0.0045 0.0082-0.0050 -0.0011 0.0017 0.0042 0.0065-0.0025 0.0002 0.0015 0.0027 0.00380 0 0 0 00.0025 -0.0015 -0.0027 -0.0037 -0.00470.0050 -0.0042 -0.0063 -0.0083 -0.01020.0075 -0.0079 -0.0110 -0.0138 -0.01640.0100 -0.0126 -0.0165 -0.0201 -0.02340.0125 -0.0182 -0.0228 -0.0270 -0.03100.0150 -0.0245 -0.0297 -0.0346 -0.03920.0175 -0.0316 -0.0374 -0.0428 -0.04790.0200 -0.0394 -0.0457 -0.0516 -0.0571... ... ... ... ...0.400 -10.7075 -10.7166 -10.7255 -10.73440.425 -16.7644 -16.7733 -16.7822 -16.79090.450 -31.1965 -31.2052 -31.2139 -31.22250.475 -89.0376 -89.0462 -89.0547 -89.06310.500 i∞ i∞ i∞ i∞Table 3.2: Table showing the behaviour of Ψ′(φ) for κi = κe = 2, σ = 1, f = 0.5, and
M > Ms = 0.33 for both φ < 0 and φ > 0.82



3.4. Arbitrary Amplitude DAS and Double LayersA simple illustration is shown in Table 3.2, whih shows some results for the parametervalues κi = κe = 2, σ = 1 and f = 0.5. For eah value of M shown, we observe that thereis no hange of sign of Ψ′(φ) for φ > 0, while for negative potentials a zero does ouruntil omplex values of Ψ′(φ, M) are enountered. The table also shows that for values ofpositive φ, Ψ′(φ, M) remains negative but �nite up to φ = 0.5, where it beomes in�niteand omplex.In addition to the above, reent investigations [Baluku et al., 2010a,b; Verheest andHellberg, 2010; Verheest, 2010a℄ have shown that if Ψ′′′(φ = 0,Ms) 6= 0, then for theparameters of the plasma system, the sign of Ψ′′′(φ = 0,Ms) orresponds to the sign ofthe soliton potential whose amplitude goes to zero as M → Ms. Otherwise for the sameplasma parameters, solitons with the sign opposite to that of Ψ′′′(φ = 0,Ms), if they exist,must have �nite amplitudes at Ms. With this approah, we an, for a given σ, obtainritial density ratios f , for orresponding κ (κe = κi = κ), suh that Ψ′′′(φ = 0,Ms) = 0.However, for all values of σ, Ψ′′′(φ = 0,Ms) = 0 gives values of f < 0, whih are unphysial.In other words, for the physial f domain [0, 1℄ in the ase of negative dust, Ψ′′′(φ = 0,Ms)does not hange sign, implying that only one potential sign (in this ase, negative) maybe supported. This also rules out the possibility of positive potential solitons (or doublelayers) for this plasma model.3.4.2 Negative Potential SolitonsAs shown in the example above, for φ < 0 a harge neutral point is often found fornegative potential. The existene of a harge neutral point is neessary but not su�ient forsoliton existene. Thus negative solitons may exist, but only if the Sagdeev pseudopotentialhas a root for an admissible value of φ before the uto� imposed by a physial limit. In thisase the limitations on φ are in priniple provided by the ion and dust grain speies withlimiting potentials φci = −(κi − 3/2) and φcd = −M2/2, respetively, where κi > 3/2.As disussed earlier, at these limiting potentials we require Ψ(φci orφcd) > 0 to ensureexistene of a root. However, for κi > 3/2, Ψ(φci) = −∞ < 0; the ion limit ondition
Ψ(φci) > 0 is thus meaningless, just as an �eletron limit� was found to be inadmissible forpossible positive solitons. Therefore only the dust limit ondition, Ψ(φcd) > 0, is neessaryto �nd the upper limit on M for the existene of negative potential dust aousti solitons83



3. Dust Aousti Solitons in Plasmas with Kappa-Distributed Eletrons and/or Ionsin the (f, M) spae. This ase is disussed further in the next setion. In priniple,negative double layers ould provide a limit on φ that is smaller in magnitude than |φcd|.In addition to the general soliton ondition [Eq. (3.13)℄, the existene of double layersrequires Ψ(φm, M) = Ψ′(φm, M) = 0 and Ψ′′(φm, M) < 0, where φm is the amplitude(see Se. 1.4). We have sought values of φm and M that satisfy the double layer onditions,over a wide range of values of the parameters κe, κi, σ and f , but our numerial explorationhas not yielded any arbitrary amplitude double layers based on this requirement.The Sagdeev potential for a soliton possesses a single harge neutral point lying betweenthe origin and the soliton amplitude while double layers have a harge neutral point betweentwo double roots, one of whih is at the origin - at the seond double root the slope of thepseudopotential is again zero. In our experiene, when φ < 0 and M > Ms, Ψ′(φ) remainsnegative after the �rst harge neutral point outside the origin. That is, it hanges signonly one as seen, for instane, in Table 3.2. Note that for φ < 0, Ψ′(φ) remains negative,until it beomes omplex for relatively small |φ|, in this ase for 0.06 < |φ| < 0.07 when Mis in the range 0.34�0.37, typially after Ψ(φ) has passed through a zero. Similar resultswere obtained for other values for the key parameters, viz., κi, κe > 3/2, σ > or < 1 and
0 < f < 1.We thus believe that it is highly unlikely that double layers are supported by a dustyplasma with kappa-distributed eletrons and/or ions, and thus the upper limit on M isbased on φcd.3.4.3 Numerial Results and DisussionIn this setion we disuss numerial results related to the existene of negative potentialsolitons.E�et of Spetral Index VariationIn Figure 3.3(a) we show the e�et on the negative soliton existene domain, of varyingthe spetral index of the eletron distribution, in assoiation with e�etively Maxwellian(high-κ) ions, for equal ion and eletron temperatures (σ = 1). The lower urves rep-resent the lower Mah number limit, Ms [obtained from Eq. (3.13)℄. The upper set ofurves orresponds to the upper limit of M , obtained from the ondition Ψ(−M2/2) = 0,using (3.12).84



3.4. Arbitrary Amplitude DAS and Double Layers

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

M

HaL

Κi=25 Σ=1

0.0 0.2 0.4 0.6 0.8 1.0
0.

0.5

1.

1.5

f

M

HbL

Κe=25 Σ=1

Figure 3.3: Existene domains for negative potential solitons for σ = 1 and varying κvalues. (a) Upper panel: κi = 25; κe = 2 (solid, red urves), κe = 4 (dashed, blue urves)and κe = 6 (dotted, green urves), respetively. (b) Lower panel: κe = 25; κi = 2 (solid,red urves), κi = 4 (dashed, blue urves) and κi = 6 (dotted, green urves), respetively.
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3. Dust Aousti Solitons in Plasmas with Kappa-Distributed Eletrons and/or IonsThus, for a given eletron spetral index value, κe, solitons may exist between the twourves. It is seen that for all ases, Ms → 1 for f → 0 (ion-dust plasma), and → 0 for
f → 1 (eletron-ion plasma). This agrees with our earlier analytial omments on the formof Ms. The upper limits, too, are the same for all κe values for f → 0 and f → 1. Further,all urves are qualitatively the same, and the di�erene between the urves (for both upperand lower limits) orresponding to κe = 4 and κe = 6 is insigni�ant. From this one maydedue that Maxwellian eletrons would yield a similar urve, and that only very low κvalues are di�erentiated from the rest.The lower panel of Figure 3.3 illustrates the e�ets of varying κi with quasi-Maxwellianeletrons. As in the upper panel, both sets of urves onverge to M = 0 for f → 1, butunlike the earlier ase, both upper and lower limits inrease with inreasing κi as f → 0.Again, the di�erene between the urves for κi = 4 and 6 is signi�antly smaller than thatbetween κi = 2 and 4. Importantly, an inrease in the superthermal ion omponent (e.g.,
κi = 2) results in a redution in the range of Mah numbers for whih solitons may exist.This appears to be the largest di�erene from the ase in whih both eletrons and ionshave Boltzmann distributions.Typial Sagdeev potential plots are shown in Fig. 3.4, where we have hosen near-Maxwellian eletrons (κe = 25), with f = 0.8, i.e., a plasma with 80% of the negativeharge arried by the eletrons, equal ion and eletron temperatures (σ = 1) and a Mahnumber M = 0.4, whih lies in the range for whih solitons would be expeted for all threevalues of κi used. As one might expet from Fig. 3.3(b), the soliton amplitudes dereaseas κi is inreased, as the hosen value of M is inreasingly lose to the lower limit, Ms.Comparison with Small Amplitude TheoryIn Figures 3.1 and 3.2 we indiated that the dotted (light-blue) urves orrespond tothe numerial solutions for the existene of arbitrary amplitude negative solitary strutures,using Eq. (3.12), as ompared to the Mβ limit, from the small amplitude approah. In thease of κi = κe = 2 (left panel of Fig. 3.1), omparing the analytial (Mβ) and numerialsolutions (dotted, light-blue urve) for the upper limit of M on the existene domain ofnegative solitons, we see that Mβ underestimates the range in M for f < 0.65 while for
f > 0.65, it is overestimated. In fat, no solitons exist above the dotted urve for f > 0.65.86



3.4. Arbitrary Amplitude DAS and Double LayersThe same applies to the right panel of Fig. 3.1 for approximately f > 0.3, and also toFig. 3.2 with σ = 1. Thus the results in Figs. 3.1 and 3.2 show that when κi = κe, theupper limit on M for the existene of negative potential solitons from the analyti solution(KdV approah) does not agree with the numerial results to a great extent. Here, inFig. 3.5, we onsider the ase of κi 6= κe, σ = 1, and ompare the existene domains ofnegative solitons from the KdV theory (or Expanded Sagdeev potential approah) and thefull Sagdeev approah. As was the ase of κi = κe,Mβ does not give a better approximationto the upper limit of M for the existene of solitons. In the ase of quasi-Maxwellian ionsand hard spetrum for eletrons (high κi and low κe, as in the left panel of Fig. 3.5), Mβdiverges far away from the numerial solutions for f & 0.18. On the other hand, in thease of quasi-Maxwellian eletrons (κe = 25) and strongly non-Maxwellian ions (κi = 4),as shown in the right panel of Fig. 3.5, Mβ overestimates the upper limit on M for f > 0.6.
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3. Dust Aousti Solitons in Plasmas with Kappa-Distributed Eletrons and/or Ions
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Figure 3.6: Existene domains for negative potential solitons for κe = κi = 2, with σ = 0.01(solid, red urves), σ = 1 (dashed, blue urves) and σ = 10 (dotted, green urves).As was shown in Fig. 3.3(a) when varying κe, we �nd that σ, too, has no e�et on Msand the upper limit of M for f → 0 and f → 1. As already indiated, at the extremevalues of f the model redues to a two-omponent plasma; an eletron-ion plasma for f = 1and an ion-dust plasma for f = 0. Thus the behaviour of the solitary strutures at theextreme f values is not of physial signi�ane for our model but an be used to omparewith other simpler plasma models. Varying σ does, however, have a signi�ant e�et onthe shape of the limiting urves. We note that the drop in Ms as f inreases from zero(i.e., inreasing eletron fration) is muh larger for σ > 1 (i.e., Ti > Te) than for σ ≤ 1.As a result, the existene domain has a slightly large range in Mah number for this asethan for the other two.3.5 Dust Aousti Strutures with Positive DustIn the previous setion, the disussion has been based on the dust being negativelyharged, whih is generally regarded as the more ommon situation. In this setion weonsider positively harged dust instead of negatively harged dust, where we show thatin the presene of positive dust only positive potential solitons are supported.In this ase the dust density expression analogous to that found in Eq. (3.8) is
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3.5. Dust Aousti Strutures with Positive Dustand substitution into the appropriate form of Poisson's equation leads to expressions forthe pseudopotential and soliton ondition [f. Eqs. (3.12) and (3.14)℄ taking the form
Ψ+(φ) =

f
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, (3.29)respetively, where f > 1, with f = Ne0/Ni0 as before.Following the same approah as used for the ase of negatively harged dust one �ndsthat solitary strutures in the presene of positively harged dust are restrited to positivepotentials, and that only solitons (no double layers) are supported. These positive potentialdust aousti solitons are bounded from below by Ms+ [de�ned in Eq. (3.29)℄ and fromabove by Mγ , where the latter is obtained from Ψ+(φ = M2/2) = 0 at M = Mγ inEq. (3.28). These results are illustrated in Fig. 3.7, equivalent to Figs. 3.3(a) and 3.6,respetively, but now with f > 1.On the other hand, if we normalize the densities with respet to the eletron density,instead of retaining our earlier de�nition of the density ratio f , we an rewrite the expres-sions for the pseudopotential (3.28) and soliton ondition (3.14) in terms of an appropriatealternative frational density variable, g = Ni0/Ne0 < 1, obtaining
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3. Dust Aousti Solitons in Plasmas with Kappa-Distributed Eletrons and/or Ions
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Figure 3.7: Upper panel: Existene domains for positive potential solitons in the preseneof positive dust for near-Maxwellian ions and varying κe, analogously to Fig. 3.3(a), butwith f > 1; σ = 1, κi = 25 and κe = 2 (solid, red urves), κe = 4 (dashed, blue urves)and κe = 6 (dotted, green urves), respetively. Lower panel: Similar to upper panel,now for κe = κi = 2, showing the variation with temperature ratio, σ = 0.01 (solid, redurves), σ = 1 (dashed, blue urves) and σ = 10 (dotted, green urves), respetively. Thisis analogous to Fig. 3.6, but with f > 1.
In that ase we see that for σ = 1, the expression is idential to that found in (3.12),apart from a simple reversal of the sign of the potential. Thus, for Ti = Te, the results areidential to those for negative dust, apart from a hange of the soliton polarity.However, for σ 6= 1 there an be signi�ant di�erenes between the two ases. Theseare illustrated with the aid of Fig. 3.8, whih shows the variation of the existene domainswith σ in a plasma with signi�ant superthermal ontributions for both the eletrons andthe ions. It is seen, in partiular, that for σ = 0.01 (i.e., Te ≫ Ti), the Mah number range90



3.5. Dust Aousti Strutures with Positive Dust
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Figure 3.8: Existene domains for positive potential solitons in a positive dusty plasma,plotted as a funtion of the alternative frational density variable, g = Ni0/Ne0 for κe =
κi = 2, with σ = 0.01 (solid, red urves), σ = 1 (dashed, blue urves) and σ = 10 (dotted,green urves), respetively. This is analogous to Fig. 3.6.
inreases rapidly as the normalized ion density, g, is dereased, i.e., the ions are replaedby positive dust grains. To understand that, let us onsider g → 0, in whih ase the upperlimiting ondition Ψ+(M

2/2) = 0 gives
(1 +M2σ)

(

1− M2σ

2κe − 3

)κe−3/2

= 1,whih for κe = κi = 2, as in Fig. 3.8, and M2 > 0, redues to M =
√

(1 +
√
5)/σ.Likewise, the lower Mah number limit, Ms, varies as √(2κe − 3)/[σ(2κe − 1)], as g → 0.Thus, as g → 0, both the lower and upper Mah number limits will vary inversely as thesquare root of the temperature ratio, hene leading to the shapes exhibited in the �gurefor σ = 0.01. Both these expressions are independent of κi.Thus it is lear that while for σ = 1, the positive dust ase is diretly analogous to thatwith negative dust, with a hange of soliton potential sign, a slightly more ompliatedset of di�erenes appears when one onsiders a ase in whih the two hot speies havetemperatures that are signi�antly di�erent from one another. 91



3. Dust Aousti Solitons in Plasmas with Kappa-Distributed Eletrons and/or Ions3.6 Chapter SummaryWe have investigated the existene of dust aousti solitons in dusty plasmas with
κ-distributed ions and/or eletrons, and found that only negative potential solitons existwhen the dust is negative. Reduing the spetral indies (κe, κi) only a�ets the existenedomains of the solitons quantitatively.In the presene of positively harged dust, only positive potential solitons are found,but the ion to eletron temperature ratio has signi�ant quantitative e�ets: partiularlyfor Te ≫ Ti the results are very di�erent from those for Te = Ti. In both ases we �ndthat the soliton polarity agrees with the sign of the harge of the inertial speies (dust), asobserved in a number of other plasma models, albeit not universally so. For instane, thisharateristi was also observed previously for positive dust in a plasma with polytropior Boltzmann eletrons and ions [Baluku et al., 2008℄. However there are quantitativedi�erenes, arising from the funtional form of the number density for a κ-distribution asin Eq. (3.2).Although the κ-distribution is nonthermal, the results reveal important di�erenes fromthose found when one of the hot plasma speies has a di�erent nonthermal distribution,viz., the Cairns distribution [Verheest and Pillay, 2008a,b℄. They showed that for negative(positive) dust, positive (negative) solitons ould also be found, limited by double layers,for su�ient nonthermality of the ions (eletrons) and su�iently low eletron (ion) density.For nonthermal eletrons (ions) only negative (positive) potential solitons were found, asin our ase. This di�erene in results ould be due to the fat that for the κ distributionthe main hange from a Maxwellian lies in the `tail' region, unlike the ase of the Cairnsdistribution.Comparing results from the small amplitude expansion (by expanding the Sagdeevpotential) with those from the arbitrary amplitude approah, our results show that theexistene domains for negative solitons from the former approah inlude a range in (f, M)spae that is unphysial, that is, lying in a region where no solitons an be obtained,following the arbitrary amplitude approah. This di�erene in results shows that smallamplitude approahes should not be relied on too muh when, for example, interpretingobservational data for solitary strutures.92



3.6. Chapter SummaryIn view of the observations of both kappa-distributed ions and eletrons in Saturn'smagnetosphere [Krimigis et al., 1983; Shippers et al., 2008℄, as well as dust [Jones et al.,2008℄, the results of this work an assist in the interpretation of nonlinear eletrostatisolitary waves that may be observed in that region.
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CHAPTER 4
Dust Ion-Aousti Solitons in a Plasma with Kappa-Distributed Eletrons

In this hapter we investigate solitary strutures that may be supported by dusty plasmasonsisting of kappa distributed eletrons, �uid adiabati ions and dust partiles. As dustpartiles are usually negatively harged (in most dust plasma environments), we disussour results mainly with negatively harged dust. However, we also disuss, brie�y, the asefor positively harged dust.The results presented in this Chapter have been published as Baluku et al.,Physis of Plasmas, 17, 053702 (2010)4.1 IntrodutionDust ion-aousti (DIA) waves in unmagnetized plasmas are low frequeny waves withphase veloity lying between the eletron and ion thermal veloities (Vtj = (KBTj/mj)
1/2; j =

e, i), that is, Vti < ω/k < Vte to avoid Landau damping. They were �rst studied theo-retially by Shukla and Silin [1992℄ and later on�rmed experimentally by Barkan et al.[1996℄.Dust ion-aousti waves are basially ion-aousti waves whose wave behaviour is mod-i�ed by the presene of dust grains. It has earlier been shown [Verheest et al., 2005; Balukuand Hellberg, 2008℄, using a �uid dynami paradigm, that the (normalized) phase veloity,here denoted vφ = (ω/k)/Cs, of the DIA wave an be expressed as v2φ = [1 + (f − 1)z]/f ,94



4.1. Introdutionwhere Cs = (KBTe/mi)
1/2 is the ion-aousti speed in the absene of dust, f = Ne0/Ni0is the ratio of the eletron to ion equilibrium densities, with f < 1 (f > 1) for negatively(positively) harged dust grains; z = Zdmi/md is the ratio of the harge-to-mass ratioof the ions to the dust partiles, with the ions assumed singly harged. Thus the phaseveloity of linear DIA wave is inreased (redued) when the dust is negatively (positively)harged.Nonlinear DIA waves have been studied by a number of authors [Bharuthram andShukla, 1992; Mamun and Shukla, 2002; MKenzie et al., 2005; Verheest et al., 2005;Hellberg et al., 2006; Mamun and Jahan, 2008; Sayed et al., 2008℄. However, most non-linear studies [Mamun and Shukla, 2002; Mamun and Jahan, 2008; Sayed et al., 2008℄used Redutive Perturbation Theory or equivalent expansions), to study various aspetsof small amplitude solitons and/or double layers while others [Bharuthram and Shukla,1992; Verheest et al., 2005; MKenzie et al., 2005; Hellberg et al., 2006℄ onsidered ar-bitrary amplitude DIA strutures, using the Sagdeev pseudopotential approah [Sagdeev,1966℄. In partiular, Bharuthram and Shukla [1992℄ onsidered a plasma model onsistingof Boltzmann-distributed eletrons, old ions and immobile negative dust. They soughtpositive potential solitons, and found existene ranges of both normalized soliton speed(M) and amplitude φ as a funtion of the fration of negative harge residing on the dust.In addition, they onsidered negative potential solitons. However, they only presentedSagdeev potential urves for two values of M and two values of mobility. In addition tostudying dust-aousti solitons, Verheest et al. [2005℄ examined DIA solitons in a plasmamodel whih allowed for arbitrary values of the polytropi index (γe) for the eletrons, oldions and mobile dust. Numerial evaluation of existene diagrams was arried out for twovalues of γe, viz., γe = 1 (isothermal, i.e., Boltzmann) and 3/2.While most authors have disussed dust ion-aousti waves and solitons, with Maxwellianeletrons or ions theoretially [Bharuthram and Shukla, 1992; Ghosh et al., 2000a,b; Ma-mun and Shukla, 2002; Rahman et al., 2007; Mamun and Jahan, 2008; Pajouh and Abbasi,2008; Sayed et al., 2008℄ and experimentally [Barkan et al., 1996℄, spae plasmas are ob-served to possess non-Maxwellian distributions [Krimigis et al., 1983; Hasegawa et al., 1985;Christon et al., 1988; Pierrard and Lemaire, 1996; Maksimovi et al., 1997; Pierrard et al.,2004℄ as we mentioned in Se. 1. These non-Maxwellian distributions an be modelled95



4. Dust Ion-Aousti Solitons in a Plasma with Kappa-Distributed Eletronsaurately by a kappa (or generalized Lorentzian) distribution [Olbert, 1968; Vasyliunas,1968℄, like the one given by Eq. (1.2).In this work we thus study the behaviour of and existene domains for dust ion aoustisolitons that may be supported by a plasma in whih the eletrons are non-Maxwellianand following a kappa-distribution. Small amplitude strutures are investigated using theredutive perturbation tehnique, while the Sagdeev pseudopotential approah is used forarbitrary amplitude soliton studies. While most of the investigation deals with the moreinteresting and relevant ase of negative dust, we also onsider positive dust. In partiularwe draw attention to the ourrene of �nite amplitude solitary waves at the dust ion-aousti speed in a negative dust plasma, and explore some of the harateristis of thisphenomenon.4.2 Basi EquationsWe onsider a plasma with kappa distributed eletrons of temperature Te and density
Ne, �uid adiabati ions of temperature Ti and density Ni, and old dust partiles. Theharge quasi-neutrality ondition for the system is

Ne0 = Ni0 + sZdNd0, (4.1)where Nj0 is the equilibrium density of speies j, (j = e, i, d for eletrons, ions and dust,respetively); Zd is the size of the dust harge, and s = ±1 is the sign of the dust harge(for positive or negative dust partiles). The ions are assumed to be singly harged, likeprotons, and therefore, throughout the disussion we shall take Zi = 1 in this plasmamodel.In the presene of an eletrostati potential, the κ-distributed eletrons have normalizeddensity ne = Ne/Ni0 given by [Baluku and Hellberg, 2008℄
ne(φ) = f

(

1− φ

κ− 3/2

)

−(κ−1/2)

, (4.2)where φ is the eletrostati potential, here normalized with respet to the eletron ther-mal energy (KBTe/e); f = Ne0/Ni0 = 1 + sZdNd0/Ni0 de�nes the fration of eletronequilibrium density with respet to the ion equilibrium density. The density expres-96



4.2. Basi Equationssion given above is only valid for κ > 3/2, and it redues to the usual Maxwellian form
f ne(φ) = exp(−φ) when κ → ∞. In unnormalized form, the eletron density expressionin Eq. (4.2) is obtained from Ne(ϕ) =

∫∫∫

Fκ(v)d
3v where Fκ(v) is the veloity distri-bution funtion de�ned in Eq.(1.2) with the transformation [Baluku and Hellberg, 2008℄

v2 → v2 + 2qeϕ/me, see Appendix. A.1 for details.The density of the ions (j = i) and dust partiles (j = d) are obtained from theontinuity, momentum and pressure equations
∂nj

∂t
+

∂

∂x
(nj uj) = 0, (4.3)

∂uj
∂t

+ uj
∂uj
∂x

+
mi

mj

σ

nj

∂pj
∂x

+
mi

mj

qj
e

∂φ

∂x
= 0, and (4.4)

∂pj
∂t

+ uj
∂pj
∂x

+ 3pj
∂uj
∂x

= 0, (4.5)respetively, where σ = Ti/Te; uj, nj and pj are the normalized ion veloity, density andpressure, of speies j, respetively, and φ the eletrostati potential.The independent variables, x and t, are normalized to an e�etive Debye length λDe� =

(ε0KBTe/Ni0e2)1/2 and the inverse ion plasma frequeny ω−1
pi = (Ni0e2/ε0mi)

−1/2, respe-tively; the dependent variables, uj , nj, pj and φ, are normalized to Cs = (KBTe/mi)
1/2,

Ni0, Pi0 = Ni0KBTi and KBTe/e, respetively.The marosopi variables, nj, pj , uj and φ satisfy the boundary onditions φ, ∂φ/∂x,
uj → 0; nj → Nj0/Ni0, and pj → Pj0/Pi0, as x→ ±∞.From Eqs. (4.3)�(4.5), and after transforming to a stationary frame where all quantitiesdepend on ξ = x−Mt, the normalized ion density is thus obtained as [Ghosh et al., 1996;Verheest et al., 2008℄

ni(φ) =
1

2
√
3σ

{

[

(

M +
√
3σ
)2
− 2φ

]1/2

±
[

(

M −
√
3σ
)2
− 2φ

]1/2
}

, (4.6)where M is the soliton speed or Mah number in the stationary frame of referene withposition ξ = x −Mt. From the boundary onditions, we have ni → 1 for φ → 0. Thisis only true if we take the minus sign in Eq. (4.6), and that will give us the appropriateexpression for ni(φ) that will be used in the disussion whih will follow. In the limit σ → 0(old ions), ni(φ) = (1− 2φ/M2)−1/2. This means that when φ = M2/2, ni →∞, and the97



4. Dust Ion-Aousti Solitons in a Plasma with Kappa-Distributed Eletronsions are in�nitely ompressed.Similarly the normalized density of the dust partiles is given by
nd(φ) =

Nd0/Ni0

2
√
3σD

{

[

(

M +
√
3σD

)2 − 2szφ
]1/2

±
[

(

M −
√
3σD

)2 − 2szφ
]1/2

}

. (4.7)where z = mi(Zd/md) is the fration of the the harge-to-mass ratio of dust to that of ions(with Zi = 1); σD = (miTd/mdTe) = σ σd with σd = V 2
td/V

2
ti . Here, Vti(Vtd) is the ion(dust)thermal veloity. Again, for the ± sign, we shall use the minus sign in our alulations asthat gives the appropriate boundary onditions as ξ →∞.Sine we shall onsider old dust partiles (σ = 0) in the model, the density of the dustpartiles takes the form

nd(φ) =
(f − 1)

sZd
(1− 2szφ/M2)−1/2. (4.8)However, if the dust motion is not inluded, nd → Nd0/Ni0 = (f − 1)/sZd, sine theimmobile dust partiles then only provide neutralization in the bakground. This willbe the ase when disussing small amplitude solitons using the redutive perturbationtehnique, but we shall allow for dust mobility in the pseudopotential alulations.The speies' densities, given by equations (4.2), (4.6) and (4.8), are oupled by Poisson'sequation

∂2φ

∂ξ2
+ ni(φ)− ne(φ) + sZd nd(φ) = 0. (4.9)4.3 Linear Dispersion RelationIn linearized form, the eletron density takes the form

ne1 ≃ f

(

κ− 1/2

κ− 3/2

)

φ1. (4.10)Next we Fourier analyze the ontinuity, pressure and momentum equations in terms ofnormalized angular frequeny ω and wavenumber k, and expand them to linear order. For
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4.3. Linear Dispersion Relationthe ions, this gives
ni1 =

k2

ω2 − 3σk2
φ1. (4.11)Alternatively, we an rewrite M as M = M0 + δM , where M0 and δM are the equilibrium(unperturbed) and perturbed values of Mah number. The unperturbed Mah numberoinides with the lowest Mah number value, below whih no solitons an be supportedby the plasma model, and also de�nes the phase veloity of the propagating waves, as wewill see later. If we assume that the perturbations in M are so small that they an benegleted (δM ≪ 1), them M ∼M0 = ω/k. Thus letting φ ≃ φ1 and ni(φ) ≃ 1 + ni1(φ1),the series expansion of Eq. (4.6) about φ = 0 leads to ni1(φ1) ≃ φ1/(M

2
0 − 3σ), suh thatwith the substitution M0 = ω/k we reover Eq. (4.11).Similarly,

nd1 ≃
z(f − 1)

Zd

k2

ω2
φ1. (4.12)In terms of φ1, Poisson's equation, (4.9), beomes

∂2φ1

∂ξ2
+ ni1(φ1)− ne1(φ1) + sZd nd1(φ1) = 0, (4.13)whih upon substitution of Eqs. (4.10)�(4.12) into (4.13), with ∂/∂ξ = ∂/∂x → ik, leadsto

k2φ1

{

1− 1

ω2 − 3σk2
+

f

k2

(

κ− 1/2

κ− 3/2

)

− s(f − 1)z

ω2

}

= 0.The non-trivial solution gives the linear dispersion relation as
1− 1

ω2 − 3σk2
+

f

k2

(

κ− 1/2

κ− 3/2

)

+
s(1− f)z

ω2
= 0. (4.14)We see that for the typial situation (z ≪ 1), Eq. (4.14) beomes

1− 1

ω2 − 3σk2
+

1

k2V 2
s0

= 0, (4.15)where the e�etive DIA speed Vs0 is given by
V 2
s0 =

1

f

(

κ− 3/2

κ− 1/2

)

=
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Ne0

)(

κ− 3/2

κ− 1/2

)

, (4.16)99



4. Dust Ion-Aousti Solitons in a Plasma with Kappa-Distributed Eletronsyielding 1/f in the limit κ→∞. In the long wavelength limit, k ≪ 1, one then obtains
ω2 = k2(V 2

s0 + 3σ). (4.17)However, in the long wavelength limit (k → 0, that is k ≪ 1) and z 6= 0 (not negligiblysmall), the dispersion relation (4.14) yields
ω2

k2
=

b

2a

[

1±
(

1− 4ac

b2

)1/2
]

, (4.18)provided b2−4ac ≥ 0 for non-omplex values of the phase veloity, and the onstants a, b,and c are, respetively, given by
a = f

(

κ− 1/2

κ− 3/2

)

, b = 1 + sz(f − 1) + 3σ a, and c = 3σsz(f − 1). (4.19)Of ourse when z ≪ 1, we have c→ 0 and b→ 1 + 3σ a, and therefore the e�etive phaseveloity takes the form ω/k = (b/a)1/2.Sine the phase veloity ω/k is normalized to the ion sound speed Cs = (KBTe/mi)
1/2,for a plasma system with old ions (σ → 0), immobile dust (z → 0) and Maxwellianeletrons (κ→∞) we get a→ f and b→ 1. Therefore we reover the dispersion relation

ω2 ≃ (Ni0/Ne0)k
2C2

s of Shukla and Silin [1992℄ with Zi = 1 .4.4 Small Amplitude Solitons: Redutive Perturbation Teh-niqueIn the redutive perturbation method, the eletron density is obtained from
ne(φ) = f

(

1− φ

κ− 3/2

)

−(κ−1/2)

≃ f + c1φ+ c2φ
2 + c3φ

3 + · · · , (4.20)
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4.4. Small Amplitude Solitons: Redutive Perturbation Tehniquewhere
c1 = f

(

κ− 1/2

κ− 3/2

)

,

c2 =
f(κ− 1/2)(κ + 1/2)

2!(κ − 3/2)2
,

c3 =
f(κ− 1/2)(κ + 1/2)(κ + 3/2)

3!(κ − 3/2)3
, · · · . (4.21)etA word of aution here is that the expansion of Eq. (4.2) [leading to Eq. (4.21)℄ is onlyvalid for κ > 3. For 1.5 < κ . 3 the higher order terms are large ompared to those oflower order, and therefore annot be negleted. This omparison is shown in Table 4.1,where we show values of the oe�ients cj/f for few values of κ ≤ 4. The table showsthat for κ = 2 and 2.5, the values in the fourth and �fth olumns are higher than the thirdolumn values. In the ase of κ = 2.9 and 3, although the fourth olumn values are lessthan the third olumn values, they are nevertheless not negligible. Thus when one usesthe redutive perturbation method for plasmas involving κ-distributed partiles, the rangeof κ values for whih it is valid imposes an important onstraint.

κ c1/f c2/f c3/f c4/f c5/f

2.0 3.000 7.500 17.50 39.38 86.63
2.5 2.000 3.000 4.000 5.000 6.000
2.9 1.714 2.082 2.181 2.103 1.923
3.0 1.667 1.944 1.944 1.782 1.545
3.1 1.625 1.828 1.752 1.533 1.265
3.2 1.588 1.728 1.593 1.335 1.052
3.5 1.500 1.500 1.250 0.934 0.656
4.0 1.400 1.260 0.924 0.601 0.360Table 4.1: Table showing the the oe�ients, cj/f in Eq. (4.21) for some values of κ. For

κ ≥ 3 the fourth order terms (c4/f ) are smaller than the third order terms (c3/f ) andtherefore an be negleted in the expansion. However, for κ < 3, c4/f is greater than c3/f ,provided κ is not very lose to 3.
In addition, we assume that the dust partiles are old and that they only provideneutralization in the bakground (nd → Nd0/Ni0), sine for DIAW, it is the ion andeletron dynamis that are more important. Thus Poisson's equation (4.9) may be written101



4. Dust Ion-Aousti Solitons in a Plasma with Kappa-Distributed Eletronsas
∂2φ

∂ξ2
+ ni(φ)− ne(φ) + f − 1 ≈ 0, (4.22)where ξ = x − Mt in the wave frame, and the ion density ni(φ) is obtained from theperturbation expansion of the ion �uid equations (4.3)�(4.5).4.4.1 Korteweg-de Vries (KdV) EquationIn deriving the KdV equation we use the usual strethed oordinates [Mae et al., 1991;Verheest, 2000; Shukla and Mamun, 2002℄ χ = ǫ1/2(x −Mat) and τ = ǫ3/2t, where Ma isthe phase veloity normalized to the �xed aousti speed in the absene of dust, and ǫ asmallness parameter. We then arrive at the KdV equation [Mae et al., 1991; Verheest,2000; Mamun and Shukla, 2002; Shukla and Mamun, 2002℄:

∂φ1

∂τ
+Aφ1

∂φ1

∂χ
+B

∂3φ1

∂χ3
= 0, (4.23)where the onstants A and B are obtained from

A = B(12σc31 + 3c21 − 2c2); B(2c21Ma) = 1; Ma = (3σ + 1/c1)
1/2, (4.24)and c1 and c2 are de�ned in Eq. (4.21).We use the transformation η = χ−M0τ = ǫ ξ; ξ = x−Mt, where M0 is the speed of thesolitary wave in the stationary frame, andM is the Mah number, given byM = Ma+ǫM0,equivalent to the normalized speed of the solitary waves in the laboratory frame. We thenobtain the solution to Eq. (4.23) as [Washimi and Taniuti, 1966; Mae et al., 1991; Verheest,2000; Mamun and Shukla, 2002; Shukla and Mamun, 2002℄

φ1(η) =
3M0

A
seh2{(M0

4B

)1/2

η

}

. (4.25)Finally, transforming bak to the laboratory frame [with oordinates (x, t)℄ we get [Maeet al., 1991; Verheest, 2000℄
φ(x, t) ∼ ǫφ1(x, t) =

3δM

A
seh2{(δM

4B

)1/2

[x−Mt]

}

, (4.26)
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4.4. Small Amplitude Solitons: Redutive Perturbation Tehniquewhere δM = ǫM0 = M − Ma. The amplitude and width of the soliton are given by
3δM/A and (4B/δM)1/2, respetively. Thus Eq. (4.26) shows that the KdV soliton haszero amplitude whenM = Ma (or δM = 0), and the amplitude inreases with δM . Sine Bis always positive (from the de�nition of B in (4.24), and Ma > 0 for forward propagation),the validity of Eq. (4.26) requires δM > 0, that is, M > Ma, as both B and δM must havethe same sign for real soliton width. Therefore the dust ion-aousti solitons that existin this model are super-aousti � and we shall see that it also follows from the standardarbitrary amplitude approah. It will be shown later (f. (4.38) in the limit z → 0) that
Ma = Ms, where Ms is the lowest Mah number below whih solitons annot exist. Also,with δM > 0, the sign of the potential solitons will depend on whether A is positive ornegative.Sine B is always positive for κ > 3/2, then from the expression of A in Eq. (4.24)one an, for given κ, �nd a ritial plasma omposition, i.e., a ritial value of f , heredenoted fc, for whih the oe�ient, A, of the nonlinear term (φ∂φ/∂χ) in the KdVequation [Eq. (4.23)℄ is zero, and the amplitude (3δM/A) in Eq. (4.26) goes to in�nity,and therefore the KdV approah breaks down. The ritial value of fc will be seen toplay a signi�ant role in determining the soliton harateristis in the arbitrary amplitude,pseudopotential study that will follow in the subsequent setion. It is worth noting thatfor f lose to fc, the arbitrary soliton amplitudes (obtained from the Sagdeev approah inthe next setion) show surprising behaviour in that the soliton amplitude at M = Ms isnonzero, and that in the neighbourhood of Ms solitons already possess large amplitudes.Suh a senario is shown in Fig. 4.8, for f = 0.5 (φ > 0, with κ = 2) and f = 0.9 (φ < 0).In Fig. 4.1 the ontinuous (red) urve shows the variation, with κ, of fc, the solutionof the equation A ≡ A(f, κ) = 0, for �xed σ and z. From the sign of A one an show thatpositive (negative) small amplitude potential solitons are obtained for f > fc (f < fc),i.e., above (below) the ontinuous red urve in Fig. 4.1. Therefore, solitons with eitherpolarity are in priniple supported by the plasma model. However, for �xed values of f, κ,and σ, and hene of c1 and c2, the sign of A and thus the soliton polarity, are uniquelyde�ned, i.e., for a given plasma on�guration, only a single sign of soliton potential ispermitted. This �gure also yields a further interesting physial result (I. Kourakis, 2009,103



4. Dust Ion-Aousti Solitons in a Plasma with Kappa-Distributed Eletronspers. omm.1) : for a plasma with, say, f = 0.4, the �gure shows that a Maxwellian-likedistribution (κ ≥ 10) supports positive KdV solitons (f > fc), while for κ ≈ 4, the KdVsolitons would be negative (f < fc).
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Figure 4.1: Continuous (red) urve: Variation of the ritial density fration, fc (wherethe KdV oe�ient A = 0) with κ for σ = 0.01 and z = 0.001. Dashed (light blue) urves:These represent the region in f over whih the mKdV oe�ient, C, is positive. Dotted(dark blue) urve: This oinides with the ontinuous (red) urve for fc, and representsvalues of f obtained from Ψ′′′(f, M = Ms, φ = 0) = 0, in the arbitrary amplitude ase(see next setion). Dot-dashed (dark blue) urve: This maximizes the parameter C inthe mKdV equation for small amplitude solutions in Eq. (4.29). For disussion purposes
κ values take the range 2 − 20, though we have indiated that for expansion of kappadistributed physial quantities κ must exeed 3.4.4.2 Modi�ed Korteweg-de Vries (mKdV) EquationWe have already indiated that the KdV method is invalid lose to the ritial omposi-tion, fc, sine the soliton amplitude goes to in�nity when A(f, κ) = 0. In overoming thatsenario we have to turn to the modi�ed KdV (mKdV) approah in that neighbourhood.In the mKdV approah we use the strethed oordinates χ = ǫ(x−Mat) and τ = ǫ3t, andthus obtain the mKdV equation [Verheest, 2000℄:

∂φ1

∂τ
+ Cφ2

1

∂φ1

∂χ
+B

∂3φ1

∂χ3
= 0, (4.27)where the quadrati nonlinear term of the KdV equation is now replaed by a ubi non-linearity. Here, in Eq. (4.27), B takes the same form as de�ned in the KdV equation while1Dr. I. Kourakis, Queen's University Belfast, Belfast BT7 1NN, Northern Ireland, U. K.104



4.4. Small Amplitude Solitons: Redutive Perturbation Tehnique
C is given by

C = B

{

36σc21(c2 − c21) + 2c1c2(5 + 2c1)− c31(2c1 + 19/2) − 3c3

}

,with c1, c2 and c3 de�ned in Eq. (4.21). Using the transformation η = χ −M0τ , it aneasily be shown that Eq. (4.27) has (the standard) solution [Mae et al., 1991; Verheest,2000℄,
φ1(η) = ±(6M0/C)1/2 seh{(M0/B)1/2η

}

. (4.28)Details for the derivation of Eq. (4.28) are given in Appendix C.2. Equation (4.28) analso be written as
φ(ξ) ∼ ǫ φ1(x, t) = ±(6δM/C)1/2 seh{(δM

B

)1/2

(x−Mt)

}

, (4.29)where ξ = x−Mt = (χ −M0τ)/ǫ; δM = ǫ2M0 = M −Ma, with parameters M, M0 and
Ma, as well as B de�ned as in the KdV expressions.The validity of Eq. (4.29) requires that all B, C and δM are of the same sign for realsoliton width and potential amplitude. However, for all κ > 3/2, B is always positive,therefore δM > 0, or M > Ma, whih gives the lower Mah number as Ma, and the onlyother restrition on the existene of small amplitude potential solitons (from the mKdVsolution) will be given by the ondition C > 0, whih imposes restritions on the rangeof f . From the form of Eq. (4.29), it follows that the polarity of mKdV solitons is notspei�ed.In Fig. 4.1 the range of validity for di�erent spetral indies κ lies between the twodashed (light blue) urves, orresponding to C = 0. Although the range of f over whih
C > 0 appears quite large in Fig. 4.1, the mKdV equation, like the KdV equation, appliesonly to small amplitude solitary waves. From Eq. (4.29) it is lear that small amplitudesolitons require C as large as possible. One an show that C peaks at f ∼ (fc − 0.1) forall κ ≥ 4, with typial maxima ≤ 0.5, see dot-dashed urve in Fig. 4.1.
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4. Dust Ion-Aousti Solitons in a Plasma with Kappa-Distributed Eletrons4.5 Arbitrary Amplitude Solitons: Pseudopotential ApproahWe now substitute Eqs. (4.2), (4.6) and (4.8) in Poisson's equation, Eq. (4.9). Afteran integration, we get the usual energy equation [Sagdeev, 1966; Verheest, 2000℄
1

2

(

∂φ

∂ξ

)2

+Ψ(φ, M) = 0,where the pseudopotential Ψ(φ, M) is given by
Ψ(φ, M) = f

[

1−
(

1− φ

κ− 3/2

)3/2−κ
]

− (1− f)
M2

s z

[

1−
(

1− 2s z φ

M2

)1/2
]

+

(

1

6
√
3σ

[

{

(M −
√
3σ)2 − 2φ

}3/2
−
{

(M +
√
3σ)2 − 2φ

}3/2
]

+M2 + σ

)

, (4.30)and the boundary onditions φ, ∂φ/∂ξ → 0 as ξ → ±∞ have been used. Equation (4.30)satis�es Ψ(0, M) = 0 and Ψ′(0, M) = 0, with the prime denoting derivative with respetto φ. The three terms in Eq. (4.30) represent the ontributions to the pseudopotential, ofthe κ-distributed eletrons, old mobile dust, and warm �uid ions, respetively.In the limit z → 0, the old dust partiles ontribution to Eq. (4.30) [the seond termin Eq. (4.30)℄ beomes (1 − f)φ. Thus, in the presene of ool moving ions and immobiledust partiles, Ψ(φ, M) takes the form
Ψ(φ, M)≈ f

[

1−
(

1− φ

κ− 3/2

)3/2−κ
]

− (1− f)φ+M2 + σ

+
1

6
√
3σ

[

{

(M −
√
3σ)2 − 2φ

}3/2
−
{

(M +
√
3σ)2 − 2φ

}3/2
]

. (4.31)Results from Eq. (4.31) will be ompared with the small amplitude solitons results for adusty plasma with ool moving ions, with the old dust partiles only providing a neutral-izing bakground.In the presene of stationary negatively harged dust partiles, old ions [σ = 0, and
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4.5. Arbitrary Amplitude Solitons: Pseudopotential Approah
ni = (1− 2φ/M2)−1/2℄, and Boltzmann eletrons (κ→∞), Eq. (4.30) redues to

Ψ(φ, M) = f
(

1− eφ)− (1− f)φ+M2[1− (1− 2φ/M2)1/2], (4.32)whih is essentially Eq. (8) of Bharuthram and Shukla [1992℄, with Ne = f and Nd = (1−f)in their notations. Similarly, in the presene of old ions, old moving dust and Boltzmanneletrons we reover their Eq. (19). In addition, we also observe that when f = 1, theplasma system is ompletely without dust, and therefore in the ase of old ions (τ = 0),we reover Eq. (19) of Saini et al. [2009℄, that is, the model redues to a old-ion/kappa-eletron plasma.It is easy to see thatΨ′(φ,M) gives the sum of the harge densities in the plasma system.Thus Ψ′(0,M) = 0 gives the harge neutrality ondition (4.1). In order to ensure that theorigin (φ = 0) is (loally) unstable for the propagating waves, we need Ψ′′(0, M) < 0. Thisrequirement, whih is sometimes referred to as the soliton ondition by some authors leadsto
Ψ′′(φ = 0, M) ≡ 1

M2 − 3σ
+ (f − 1)

s z

M2
− f

(

κ− 1/2

κ− 3/2

)

< 0. (4.33)Equation (4.33) an be simpli�ed and written as
M2 > 3σ + V2s0, (4.34)where

1

V2s0
= f

(

κ− 1/2

κ− 3/2

)

− (f − 1)
s z

M2
. (4.35)For larity, one an see that in the limit z ≪ 1 (suh that the last term in (4.35) isnegleted),

V2s0 ≈ V 2
s0 =

Ni0

Ne0

(

κ− 3/2

κ− 1/2

)

,and therefore (4.34) gives M2 > 3σ+V 2
s0, where the right hand side of the inequality givesthe phase veloity of the linear dust ion-aousti waves de�ned in Eq. (4.17).Note that Eq. (4.34) is not fully transparent in M as V2s0 is itself a funtion of M . By
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4. Dust Ion-Aousti Solitons in a Plasma with Kappa-Distributed Eletronstreating (4.33) as a quadrati in M2 we an instead write (4.34) as
M2 > M2

s ≡
b

2a

[

1±
(

1− 4ac

b2

)1/2
]

, (4.36)provided b2 − 4ac ≥ 0 for non-omplex values of M2
s , where the latter is evaluated at

Ψ′′(φ = 0, M) = 0. The onstants a, b, and c are, respetively, given by
a = f

(

κ− 1/2

κ− 3/2

)

, b = 1 + s(f − 1)z + 3σ a, and c = 3σsz(f − 1), (4.37)as in Eq. (4.19).Equation (4.36) represents the lower limit of the soliton existene domain in the (f, M)spae, and is the atual true speed of the dust ion-aousti waves in the plasma model underinvestigation. Also note that M2
s , in Eq. (4.36), is equivalent to the right-hand-side of thelinear phase veloity expression in Eq. (4.18).We have already stated that DIA waves require that the thermal veloities of theions and eletrons satisfy (in unnormalized form) Vti < ω/k < Vte, where ω/k is theunnormalized phase veloity of the DIA waves, and Vtj = (KBTj/mj)

1/2 is the thermalveloity for eletrons (j = e) and ions (j = i). Suppose we denote the normalized thermalveloity (with respet to the ion-aousti speed Cs = (KBTe/mi)
1/2) by Utj , that is, Utj =

Vti/Cs. It then follows that Uti =
√
σ and Ute =

√

mi/me ≫ 1, assumingmi ∼ 1836me forprotons. In other words, the eletron thermal speed varies proportionally with the squareroot of the ion-eletron temperature ratio, σ. Similarly, the eletron thermal veloity isproportional to the square root of the ion-eletron mass ratio, mi/me. Representing thenormalized phase veloity by Ms, it then implies that propagation of DIA waves require
Uti < Ms < Ute. Sine Ute is very large (in this model), we an make a omparison of Utiand Ms, with the latter de�ned in Eq. (4.36). We an also observe that when σ = 0 (oldions) or z = 0 (immobile dust), then c = 0 in (4.36), and therefore for the allowable valuesof Ms > 0 we an only use the plus sign in (4.36). For example, with τ = 0, κ → ∞,we get M2

s = [1 + s z(f − 1)]/f , whih redues to M2
s = 1/f for z ≪ 1. Thus onereovers the usual Ms = 1 lower Mah number limit for ion-aousti solitons in eletron-ion plasmas with old ions and Maxwell-Boltzmann eletrons [Chen, 1984℄ or polytropi108



4.5. Arbitrary Amplitude Solitons: Pseudopotential Approaheletrons [MKenzie et al., 2004a; Verheest et al., 2005℄. The question then remains: whatsign do we have to onsider as appropriate and physial in ases where σ 6= 0 or z 6= 0? Inthis ase we onsider the ratio Uti/Ms, whih may not give us any insight unless we makemany assumptions. However, numerial results show that with the minus sign in (4.36),the ratio Uti/Ms exeeds unity. In other words, the phase veloity of the wave is less thanthe thermal veloity of the plasma ion speies, leading to a breakdown of the model. Fordisussion purposes we hoose a dusty plasma with negatively harged dust grains (s = −1or f < 1) with �xed parameters σ = 0.01 and z = 0.001. Provided σ < 1 (ions assumed tobe ooler than the eletrons) and z < 1, the general trend here is obtained for other valuesof σ and z.
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4. Dust Ion-Aousti Solitons in a Plasma with Kappa-Distributed Eletrons
κ values. Therefore in this work we shall use the expression of Ms in Eq. (4.36) with theplus sign and neglet the inappropriate negative square root.In (4.36) we have expressed the Mah number in terms of the frational density of theeletrons, f . However, it is sometimes preferable to onsider the onstraint on the frationaldensity at �xed Mah number. Thus we rewrite Eq. (4.33) or (4.36) in the form [MKenzieet al., 2005; Verheest et al., 2008℄

f > fs(M) ≡ 1/(M2 − 3σ)− s z/M2

β1 − s z/M2
, (4.38)where M is the Mah number at the soliton ondition, implying that solitons or doublelayers will exist for all f > fs(M).4.5.1 Eletrostati potential limitationsIn the existene domains of solitons, soliton regions may be bounded by a numberof possible physial onstraints, e.g., (i) the ourrene of a double layer, (ii) when oneof the speies reahes a soni point (for simpler models that implies in�nite rarefationor ompression of the speies), or (iii) a density takes on a omplex value [MKenzie etal., 2005; Verheest et al., 2005; Cattaert et al., 2005; Hellberg and Verheest, 2008℄. Itis usual for the density limit arising from a speies of a given harge sign to lead tolimitation of that sign of potential, i.e., positive partiles provide positive potential limitsand vie versa [MKenzie et al., 2005; Verheest et al., 2005℄. However, it is easily seenfrom Eq. (4.2) that κ-distributed eletrons are well-behaved for all φ < 0. Although,learly, ne(φ) →∞ at φ → (κ − 3/2), loser examination shows that the pseudopotential

Ψ[(κ−3/2), M ]→ −∞ [Baluku and Hellberg, 2008℄. Thus the Sagdeev potential Ψ(φ, M)does not satisfy the requirement for limiting the potential, [MKenzie et al., 2005; Cattaertet al., 2005; Baluku et al., 2008; Saini et al., 2009℄ viz., Ψ[(κ− 3/2), M ] > 0.It follows that in the ase of negative dust, the positive ion and negative dust densitieswill limit the eletrostati potential for positive and negative potential solitary waves,respetively. On the other hand, for the ase of positive dust, positive potential solitonswill be limited typially by the ions, whih have the smaller limiting potential beause oftheir muh smaller mass. The limiting (maximum possible) potentials φlj (j = e, i, d) areobtained from the density expressions of ions or dust partiles when the speies densities110



4.5. Arbitrary Amplitude Solitons: Pseudopotential Approaheither beome non-real or when the speies are in�nitely ompressed [nj(φ) → ∞℄ orrare�ed [nj(φ) → 0℄. In addition, Ψ(φ, M) must remain positive and �nite lose to thelimiting potentials φlj . Sine the soliton amplitude [root of Ψ(φ, M) other than at theorigin℄ inreases with Mah number M , it follows that the maximum soliton Mah numberours for a soliton with amplitude φ = φlj . Thus the upper limit on M is given by
Ψ(φlj, M) = 0. Alternatively, the limitation on φ may be aused by the ourrene ofdouble layers [Baboolal et al., 1988℄, in whih ase the ondition Ψ(φm, M) = Ψ′(φm, M) =

0 must be satis�ed.The desription above agrees with the �uid paradigm for dust ion-aousti solitons[Verheest et al., 2005; Baluku et al., 2008℄ where, in the presene of negative dust, for
φ < 0 the (subsoni) eletrons, with veloity ue, are rare�ed (ue > 1) and move towardstheir soni point; the (supersoni) dust partiles, with veloity ud, are ompressed (ud < 1)and also move towards their soni point while the ions (also supersoni) are rare�ed andmove away from their soni point. Similarly for φ > 0, the eletrons are ompressed andmove away from their soni point; the ions are ompressed and move towards their sonipoint while the dust partiles are rare�ed and move away from their soni point. However,it is only the supersoni speies, whih move towards their soni point, that ontribute inlimiting the potential, based on the density or veloity dynamis of the plasma speies.An illustration is given in Fig. 4.3 showing the Bernoulli relation ǫj(uj) as a funtion ofthe speies veloity uj for adiabati eletrons [MKenzie, 2002a,b; Verheest et al., 2005;Baluku, 2007℄, given by
ǫj(uj) =

1

2
(u2j −1)+

1

(γj − 1)M2
j

(

1

u
γj−1
j

− 1

)

= −φ ≡ qjϕ/mjV
2; for γj 6= 1, (4.39)where (ϕ)φ is the (un)normalized eletrostati potential; V the veloity of the wave inthe referene frame; mj the speies mass; Mj the speies Mah number, and qj = Zj ethe speies harge, with Zj being the harge on the speies, j, whih an be positive ornegative depending on whether the individual speies are positively or negatively harged,respetively, and e being the harge of an eletron. Here, γj = 3/2 for adiabati speies.In the ase of positive dust, when φ < 0 all the speies are rare�ed, with the supersonispeies moving away from their soni points while the subsoni eletrons move towards111



4. Dust Ion-Aousti Solitons in a Plasma with Kappa-Distributed Eletronstheir soni points; for φ > 0, all the speies are ompressed, with the supersoni speiesmoving towards their soni points while the eletrons move away from their soni points.
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Figure 4.3: Shemati representation of Bernoulli integrals for ool, supersoni (Mj > 1)and hot, subsoni (Mj < 1) speies, having a minimum at their respetive soni points, S,for adiabati eletrons (γe = 3/2). In a potential hill (φ > 0), positively harged partiles(with qj > 0) are deelerated (uj < 1) and driven towards their soni points if the �owis supersoni (Mj > 1) while negatively harged partiles (with qj < 0) are aelerated(uj > 1) and driven away from their soni points if the �ow is subsoni (Mj < 1). Thereverse is true in a potential dip (φ > 0): positively harged partiles are aelerated anddriven away from their soni points if the �ow is subsoni (Mj < 1) while negatively hargedpartiles are deelerated and driven towards their soni points if the �ow is supersoni. Here
Mj is the speies Mah number. From [Baluku, 2007℄Limitations on Positive Potential SolitonsAs observed earlier [Baluku and Hellberg, 2008℄, whereas ne(φ) → ∞ at φ = φle ≡

(κ−3/2) > 0, the pseudopotential Ψ[φle, M ]→ −∞, whih is not �nite (and not a positivequantity). In other words, the ondition Ψ[φle, M ] > 0 is meaningless, and therefore ifpositive solitons exist, they must be limited by either the ions only (in the ase of a plasmawith negatively harged dust), or limited by the ions or positively harged dust (in thease of a plasma with positively harged dust), or limited by a double layer, but not by112



4.5. Arbitrary Amplitude Solitons: Pseudopotential Approahin�nite ompression of eletrons.Now, in the ase of double layers, we expet to get at least two roots of Ψ(φ, M) outsidethe origin (with the root lose to the origin giving the amplitude of the soliton); the rootsoalese into a double root when a double layer ours. However, the behaviour of Ψ(φ, M)as φ beomes large indiates that Ψ(φ, M) → ∞ (i∞) as φ → ∞ in the ase of negativedust (positive dust). This implies that in this plasma model Ψ(φ, M) an have at mostone root (other than at the origin), essentially ruling out the ourrene of double layersfor positive potentials. Thus positive potential solitons will be limited by the positivelyharged ions only (in the ase of a plasma with negatively harged dust) and positivelyharged ions or dust (when onsidering a plasma with positively harged dust).The restrition on M or f for positive potential solitons assoiated with the ion densityis given by Ψ(φℓi, M) > 0, sine for φ > φℓi = (M −
√
3σ)2/2 the ion density, ni(φ), isomplex. One an easily see that ni(φ) is also omplex for φ ≥ (M +

√
3σ)2/2, but, asthat potential exeeds φℓi, it follows that Ψ(φℓi, M) > 0 will be the pratial onstraintlimiting positive potential solitons. The ondition Ψ(φℓi, M) > 0 leads to an upper limiton f , viz.,

f < fℓi(M) ≡ fA(M)

fB(M)
, where (4.40)

fA(M) =
M2

s z

{

[

1− s z

M2
(M −

√
3σ)2

]1/2
− 1

}

+M2 + σ − 4M3/2
( σ

27

)1/4and
fB(M) =

[

1− (M −
√
3σ)2

(2κ− 3)

]3/2−κ

+
M2

s z

{

[

1− s z

M2
(M −

√
3σ)2

]1/2
− 1

}

− 1.Limitations on Negative Potential SolitonsFrom the density expressions of the plasma onstituents, in the presene of negativelyharged dust, negative potential solitons are limited by the negative dust while in thepresene of positively harged dust, negative potential solitons appear not to be limited byany of the plasma speies.However, onsidering the behaviour of Ψ(φ, M) as φ → −∞ we see that Ψ(φ, M) →

+i∞ (−∞) for a plasma with negatively (positively) harged dust, respetively. Therefore,113



4. Dust Ion-Aousti Solitons in a Plasma with Kappa-Distributed Eletronsin the ase of negative dust, you an have at most one root of Ψ(φ, M) outside the origin,implying that double layers may not be supported in suh a plasma model.In this ase, the neessary ondition that will yield a onstraint on the range of M or
f over whih negative potential solitons an exist will then be given by Ψ(φld, M) > 0,whih upon using Eq. (4.30) leads to

f < fℓd(M) ≡ fD(M)

fE(M)
, (4.41)where

fD(M) =
1

6
√
3σ

{

[

(M +
√
3σ)2 − M2

s z

]3/2

−
[

(M −
√
3σ)2 − M2

s z

]3/2
}

+ M2

(

1− 1

s z

)

+ σand
fE(M) =

[

1− M2

s z(2κ − 3)

]3/2−κ

− M2

s z
− 1.Equations (4.38)�(4.41) imply that in the ase of negative dust, for given parameters

κ, σ and M , positive potential solitons will exist in a region of parameter spae (M, f)satisfying fs(M) < f < fℓi(M) while negative solitons will be bounded by fs(M) < f <

fℓd(M). Note that the value of M orresponding to fs(M) gives the lower Mah numberbelow whih no solitons exist, that is, the value ofM at the soliton ondition, Ms. Likewise,the values of M assoiated with fℓi and fℓd will give the upper Mah number limits forpositive potential (Mℓi) and negative potential (Mℓd) solitons, respetively, at given f .The urves representing the lower and upper limits interset at a ritial value of f ,where, for positive solitons, fp ours for fs = fℓi, i.e., fp is de�ned by fp = fℓi(Ms).For negative solitons, the ritial value is fn = fℓd(Ms). These two ritial values provideuto�s in f below (above) whih, no positive (negative) solitons are supported in a plasmawith negative dust grains. Similarly, in the ase of positive dust, no positive solitons aresupported below fp.In general, it follows that for negative dust, (i) only negative solitons are observed for
0 < f < fp, (ii) solitons of both polarities are supported for fp < f < fn, and (iii) only114



4.6. Negative Dustpositive solitons are found for f > fn. When f → fp, φ→ φℓi = (M −
√
3σ)2/2 and ni(φ)beomes omplex, yielding a uto� for the existene domain. Similarly, when f → fn,

φ→ φℓd = M2/2z and nd(φ)→∞.4.6 Negative Dust4.6.1 E�et of Dust Grain Mass�Charge Ratio (through z)
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Figure 4.4: Existene domain for dust ion-aousti solitons with varying z for �xed σ =
0.01, and for the spetral indies κ as indiated on the graphs. The dashed urves are for
z = 0.001, the dotted ones for z = 0.01, and the ontinuous urves for z = 0.1, respetively.As in Fig. 4.6, positive potential solitons are bounded by the red and blue urves whilenegative potential solitons are bounded by the red and dark blue urves.Figure 4.4 shows the e�et of varying z = Zdmi/md on the existene domain of solitons,115



4. Dust Ion-Aousti Solitons in a Plasma with Kappa-Distributed Eletronsfor di�erent values of κ (κ = 2, 5, 10 and ∞), for a �xed temperature ratio, σ = 0.01. Ineah ase, dashed urves orrespond to z = 0.001, dotted urves to z = 0.01 and solid(ontinuous) urves to z = 0.1, respetively. In these �gures, positive solitons are boundedby urves labeled Ms (red) andMp (blue) while negative solitons are bounded by urvesMsand Mn (dark blue). The results in Fig. 4.4 show that the variation of z has an insigni�ante�et on both the lower and upper Mah numbers bounding positive potential solitons for�xed κ. On the other hand, di�erent κ values have a quantitative e�et on the range of
M over whih positive solitons exist. However, for negative potential solitons, the moremassive the dust partiles (smaller the value of z) the larger the range of f over whihsolitons will exist. For example, when κ = 2 and σ = 0.01, negative potential solitons willexist for f < 0.89 (z = 0.1), f < 0.93 (z = 0.01) and f < 0.97 (z = 0.001), respetively.Other upper limits of f , denoted fn, for di�erent spetral indies κ are shown in Table 4.2,where we see that for z . 0.001 and κ > 3/2 negative solitons exist for almost the entirerange of f , i.e., 0 < f < 1.

κ fn
z = 10−1 z = 10−2 z = 10−3 z = 10−4 z = 10−5 z = 10−6

2 0.891 0.929 0.972 0.990 0.997 0.999
5 0.854 0.920 0.971 0.990 0.997 0.999
10 0.844 0.919 0.970 0.990 0.997 0.999
50 0.837 0.918 0.970 0.990 0.997 0.999
100 0.837 0.918 0.970 0.990 0.997 0.999
∞ 0.836 0.918 0.970 0.990 0.997 0.999Table 4.2: Table showing the upper limit of frational density, f below whih both positiveand negative potential solitons an be obtained for di�erent values of z and spetral indies

κ. The ion temperature σ has been �xed at σ = 0.01. For f > fn we have positive potentialsolitons only4.6.2 E�et of Ion Temperature (through σ)Figure 4.5, whih is similar to Fig. 4.4, shows the e�et of normalized ion temperature(σ) on the existene domain of dust ion-aousti solitons for a dusty plasma with kappadistributed eletrons, here with κ = 2 and κ = ∞ (Maxwellian ase). Dashed urvesare for σ = 0.001, dotted urves for σ = 0.01 and solid (ontinuous) urves for σ = 0.1,respetively. Thus positive solitons are bounded by the pair of dashed, dotted or solidurves, for eah ase (σ = 0.001, 0.01, or 0.1).116



4.7. Results and Disussion
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Figure 4.5: Existene domain for dust ion-aousti solitons with varying σ for �xed z =
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4. Dust Ion-Aousti Solitons in a Plasma with Kappa-Distributed Eletrons[1992℄, of positive solitons in a plasma omposed of Maxwellian eletrons (κ = ∞), oldions (σ = 0), and immobile dust (z = 0). The ontinuous urves (whih appear to besuperimposed on other urves) essentially reprodue the results of Bharuthram and Shukla[1992℄, where positive solitons are supported in the domain bounded by the two urves,i.e., the lower, red (soliton existene) urve (fs or Ms), and the upper, blue urve (fℓi or
Mℓi). Thus positive solitons may exist for f > fp = 0.16, where fp is the lower uto� of fde�ned by fp = fℓi(Ms). At that value of f , one �nds the highest Mah number at whihpositive solitons an be supported, to be M ≃ 2.5. As expeted, for f = 1 the systemredues to ion-aousti solitons in a simple eletron-ion plasma, and we observe the usualrange [Chen, 1984℄ of Mah numbers, viz., 1.0 < M < 1.6.In this �gure (Fig. 4.6) we also onsider the e�ets of dust mobility, by inluding urvesfor four other values of z, viz., z = 0.001 (dotted), 0.01 (dashed), 0.1 (dot-dashed) and 1(ontinuous and marked with z = 1). Both the Ms urve and, for positive solitons, the Mℓiurve for the mobile ases are virtually indistinguishable from the ase z = 0. However, forthe ase z = 1 (valid for a negative ion plasma, but not for dust) mobility does a�et Mssigni�antly and inreases the lower uto� to fp ≃ 0.34 and dereases the highest aessiblevalue of M (at f = fp) to ≃ 2.2.For negative solitons to exist, the struture must have a speed exeeding Ms, but thereis e�etively no upper limit in M for z ≪ 1, though the same annot be said for z = 1, andfor the immobile dust model they an exist over the full range 0 < f < 1. In the seondpart of Bharuthram and Shukla [1992℄, they onsidered mobility brie�y (using z = 0.1), butonly presented examples of Sagdeev potentials for two values of M . From their results itis lear that mobility has a large e�et on the amplitudes of negative solitons [Bharuthramand Shukla, 1992℄. Our results in the left panel of our Figure 4.6 show that the almostvertial (blak) urves for fℓd or Mℓd are a�eted signi�antly by the value of the mobilityparameter, z, thereby introduing a nontrivial upper uto� in f for negative solitons. Thusthe existene domains for negative solitons are found to be smaller for mobile dust grainsthan for immobile dust. The upper limit fn dereases for inreasing mobility from 1.0(z = 0), through 0.97 (z = 0.001) and 0.93 (z = 0.01) to 0.89 (z = 0.1), see Table 4.2. Asseen, mobility auses a small shift in relevant Ms. In the ase of negative ions (z = 1),the pattern is di�erent, here fn inreases to 0.95, in ontrast to the dereasing pattern118



4.7. Results and Disussionobserved for z = 0.01 and z = 0.1, and the bounding urve shows fn varying signi�antlywith M .
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4. Dust Ion-Aousti Solitons in a Plasma with Kappa-Distributed Eletronspotential solitons are supported in the range (0.21, 0.97) in a Maxwellian plasma. For
κ = 4, the range is redued to (0.31, 0.97) and in a strongly non-Maxwellian plasma with
κ = 2, the range supporting both polarities is (0.43, 0.97). Thus dereasing the spetralindex κ from a Maxwellian to a hard spetrum has a signi�ant e�et on the range of f(through fp) and of M , over whih solitons of both polarities may exist.As we shall show below, the ritial values of the frational eletron density f that havebeen introdued above, viz., fc, fp and fn, play an important role in providing a betterunderstanding of the soliton harateristis in a three-omponent plasma for whih thereis a range in f in whih both positive and negative potential solitons are supported. Weshall later onsider in Fig. 4.9 a plasma with κ = 2, σ = 0.01, and z = 0.001. From
A(fc) = 0 or Ψ′′′(φ = 0,Ms, fc)=0, and (4.38)�(4.41), one �nds that for these parameters
fc ≃ 0.523, fp ≃ 0.428 and fn ≃ 0.97. We show the values fp, fc and fn expliitly in theexistene diagram for this ase in Fig. 4.6.In Fig. 4.7 we show the e�et of the spetral index κ on soliton amplitude for �xed Mahnumber M and f , and z = 0.001, σ = 0.01. For illustrative purposes, we have hosen aregion in parameter spae (f, M) for two di�erent values of f : f = 0.2 (left panel) and
f = 0.5 (right panel), respetively, where negative potential solitons are expeted to ourfor all spetral indies κ > 1.5, as seen in Fig. 4.6. Note that the limitations for positivepotential solitons for the allowable values of f and M do not allow suh omparison of φmwith κ for κ > 1.5, for the ion and dust parameters used in this plasma model. The graphsshow that the soliton amplitude |φm| inreases with dereasing κ, that is, the more super-thermal partiles are in the high energy tail of the distribution, the higher the amplitude ofthe assoiated solitons at �xed soliton speed. In the ase of higher κ values, the amplitudesremain almost onstant. However, as κ is dereased, the minimum soliton speed Ms is alsodereased, and so the speed relative to the DIA speed is inreased, thus explaining thehigher amplitude [Saini et al., 2009℄, Hene in Fig. 4.8, we prefer to show the e�et of κon the soliton amplitude as a funtion of the soliton speed normalized to the true aoustispeed (M/Ms).In Fig. 4.8 we show the e�et of κ on the soliton amplitude as we vary the Mah number(in terms ofM/Ms). Contrary to the results of Fig. 4.6 for �xed M , we now see that solitonamplitudes inrease as κ inreases for a partiular Mah number ratio M/Ms. Note that120



4.7. Results and Disussion
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4. Dust Ion-Aousti Solitons in a Plasma with Kappa-Distributed Eletrons
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4.7. Results and Disussionsolitons, M/Ms = 1, solitons have amplitudes |φm| ≃ 45 (κ = 2), 108 (κ = 4), 138(κ = 10) and 156 (κ = ∞, i.e., Maxwellian), respetively. Furthermore, as negativesolitons are e�etively unbounded in Mah number, inreasing M an yield extremelylarge amplitudes. Large amplitude negative solitons were also reported by Bharuthramand Shukla [1992℄ with Maxwellian eletrons, z = 0.1, σ = 0 and f = 0.7 (see their Fig. 4).However, they did not examine the peuliar behaviour at the lowest Mah numbers.To examine further these large amplitude negative potential solitons, we arried outalulations for di�erent parameters, as shown in Table 4.3. For omparison, the resultsof Bharuthram and Shukla [1992℄ for M = 1.75 are inorporated in the Table and markedwith an asterisk. The two sets of alulations are onsistent with one another; the ampli-tudes are virtually independent of the normalized ion temperature, σ, but they do dependstrongly on mobility, partiularly over the range 0.01 ≤ z ≤ 0.1.
φm

z σ = 0 σ = 10−2 σ = 10−1

10−1 -13.1∗ -13.1 -13.0
10−2 -35.1 -35.1 -34.6
10−3 -41.0 -40.9 -40.3
10−4 -41.6 -41.6 -41.0
10−5 -41.7∗ -41.6 -41.0Table 4.3: Table showing the soliton amplitude φm for the partiular parameters,

f = 0.7 and M = 1.75, with Maxwellian eletrons, where the values with asterisks arefrom Bharuthram and Shukla [1992℄.Using a spei� ase study, viz., a plasma with κ = 2, σ = 0.01, and z = 0.001, wenext examine in Fig. 4.9 the role of fc and its neighbourhood. Spei�ally, we onsiderthe dependene of soliton amplitude on the Mah number (in terms of M/Ms) for f in therange (fp, fn). We reall that for these parameter values, solitons of both polarities arefound in the range (0.43, 0.97), while fc ≃ 0.52In the upper left panel we present the amplitudes of positive solitons as a funtion of
M/Ms for some values of f . First, we note that for fc ≤ f < fn (for instane, f = fc,
0.55 and 0.6), the amplitudes of positive solitons vanish for M/Ms = 1, and they inreasemonotonially as f approahes fc. In addition, the range of M/Ms that supports solitonsbeomes narrower. Turning next to f < fc (e.g., f = 0.48 and 0.5), we see that, althoughthe trends of inreasing φm and dereasing range in M , with dereasing f , persists, one123
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4.7. Results and Disussionues of f (please note the hange of sale of φm). Again the amplitudes vary monotoniallywith f , but the solitons have zero amplitude for fp < f ≤ fc at M/Ms = 1, while in therange fc < f < fn amplitudes are nonzero at M = Ms. The negative solitons in generalhave larger amplitudes than their positive ounterparts. In the middle left panel of Fig. 4.9we show the pseudopotential plot for a ase with nonzero positive amplitude at M = Ms,viz., with f = 0.5,M = Ms, φm ≃ 0.09. Although we �nd that φm 6= 0 at the DIA speed forthis example in the range fp < f < fc, we see that the usual requirement of a maximum ofthe pseudopotential at the origin [Ψ′′(φ = 0, M) < 0℄ is not satis�ed. Instead, the funtion
Ψ(φ, M) has a point of in�exion at the origin, with Ψ′′(φ = 0, Ms) = 0, while the onvex-ity requirement at the origin is provided by the third derivative, Ψ′′′(φ = 0, Ms) < 0. Wepoint out that a �nite amplitude soliton at the aousti speed has reently been found ina study of dust-aousti solitons in another three-omponent plasma, viz., one omposedof negatively harged �uid dust and two positive ion speies, a ooler Boltzmann and ahotter nonthermal Cairns distribution [Verheest and Hellberg, 2010℄. In that ase, too, itwas found to our in onjuntion with a point of in�exion in the pseudopotential at theorigin[Verheest and Hellberg, 2010℄, rather than a maximum, as is normally required for asoliton.We emphasize that these strutures obtained at the aousti speed are indeed typialsolitons, as may be seen from the potential pro�le in the middle right panel, and alsoreported reently by Verheest and Hellberg [2010℄. This interesting result implies thatthe usual onvexity requirement at the origin [Ψ′′(φ = 0, M) < 0℄ is a neessary butnot a su�ient ondition for the existene of solitons, spei�ally for models that supportexistene of solitons of both polarities. Furthermore, these �nite amplitude solitary wavesannot be found by a KdV approah, as the latter solitons have φm = 0 for M = Ms, asdisussed for small amplitude solitons in Se. 4.4.1.In the lower left panel of Fig. 4.9 we show the pseudopotential for a marginally sub-aousti struture speed (M = Ms−0.0001). Clearly, the positive pulse seen in the middleleft panel disappears for M < Ms, however small the redution below the DIA speed �the pseudopotential has no well, and no soliton is found. On the other hand, for M > Ms(M = Ms + 0.0023) one sees that the positive soliton has a slightly inreased amplitude(φm ≈ 0.13), while a smaller amplitude negative soliton (|φm| ≈ 0.05), whih vanished at125



4. Dust Ion-Aousti Solitons in a Plasma with Kappa-Distributed Eletrons
M = Ms, is observed.This phenomenon is explored further in Fig. 4.10, whih shows soliton amplitudes at theDIA speed, Ms, as a funtion of f , in the range (fp, fn), for di�erent values of κ. Clearlythe points of intersetion with the line φ = 0 de�ne ritial values of f � they our where
Ψ′′′(φ = 0,M = Ms, f, κ) = 0. These values are plotted as a dotted urve in Fig. 4.1 andare seen to be the same as the value fc de�ned in Se. 4.4.1 as the solution to the equation
A(f ;κ) = 0. Here fc ≈ 0.523, 0.419, 0.365, and 0.329 for κ = 2, 4, 10, and∞, respetively.At fc, the amplitudes of both polarities of soliton vanish at the DIA speed 2, and, as wehave seen in Se. 4.4.1, KdV theory has to be replaed by the mKdV approah. As seenin Fig. 4.10, for eah value of κ, positive potential solitons have φm 6= 0 at M = Ms for
fp < f < fc, inreasing with |f−fc| as one approahes fp, but (not shown in �gure) we �ndthat the amplitudes vanish at the aousti speed for f > fc. For M > Ms, however, thesesolitons have �nite amplitude. On the other hand, negative solitons have zero amplitudeat Ms for f < fc (not shown in �gure; again, with nonzero amplitudes for M > Ms), andtake on �nite values at Ms for fc < f < fn, inreasing with |f −fc| as f → fn. The largestpositive and negative soliton amplitudes at the aousti speed our for f = fp and f = fn,respetively. In summary, as f is varied, the solitons of either polarity swith at fc from
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4.8. Positive Dustthe DIA speed. Equivalently, as f is inreased through fc, the �KdV-like� solitons hangesign from negative to positive, while the �nonKdV-like� strutures swith from positive tonegative potential. Of ourse, negative solitons are e�etively unbounded in M for z ≪ 1and an thus have very large amplitudes, but in Fig. 4.10 we have shown the amplitudesonly up to 2, although |φℓd| an be very large. For this model in partiular, sine negativesolitons are limited by the negatively harged dust, the resulting solitons must be less thanthe ritial potential amplitude φld = M2/2z, whih is 500 times M2 for z = 0.001 asused in the disussion. This shows that the size of the possible solitons greatly dependson the value of z = (Zd/md)/(Zi/mi), and therefore on the mass and size of harge onthe dust partiles. The maximum potential amplitudes at f = fn or fp for the parametersshown in Fig. 4.10 are shown in Table. 4.4 below. The table shows that for z = 0.001 and
σ = 0.01, fp dereases with inreasing superthermality (inreasing κ) while fn is almostonstant at f ≃ 0.97. The amplitude of the assoiated maximum potentials also inreasesslightly with inreasing κ, but lie below 2.1 for positive potential solitons. In the ase ofnegative solitons, these maximum amplitudes are huge (|φdl| is over 100 for all κ > 3/2).

κ fp Ms φli1 fn Ms φld2 0.426955 0.90064 0.264581 0.971858 0.610733 -186.4974 0.309592 1.52930 0.919495 0.970641 0.875164 -382.95610 0.245913 1.91603 1.518710 0.970391 0.975738 -476.03250 0.215603 2.13963 1.933410 0.970304 1.019710 -519.907
∞ 0.208418 2.19814 2.050180 0.970285 1.029880 -530.327Table 4.4: Table showing the maximum potential amplitudes, φli1 = (M2

s −
√
3σ)2/2 and

φld = M2
s /2z at f = fp and fn, respetively, for the parameters in Fig. 4.10, that is, for

σ = 0.01 and z = 0.001.4.8 Positive DustWe have already seen that in the ase of positive dust grains, positive solitons arelimited by ion ompression (as φℓi ≪ φℓd), while negative solitons, if they exist, wouldbe limited by the ourrene of double layers, if the latter are supported by this plasmamodel [Baluku and Hellberg, 2008℄, see also Chapter 3. However, the double layer require-ments [Ψ(φm, M) = Ψ′(φm, M) = 0℄ are not met for this model. Both the pseudopotential,
Ψ(φ, M), and its derivative, Ψ′(φ, M), go to −∞ as φ → −∞, so no double layers anform. This observation agrees, for the Maxwellian ase, with earlier work [Baluku et al.,127



4. Dust Ion-Aousti Solitons in a Plasma with Kappa-Distributed Eletrons2008℄. More insight into the existene of negative solitons an be obtained from the sign of
Ψ′′′(φ = 0;M = Ms). We saw in Se. 4.4.1 that small amplitude negative solitons an beobtained only for f < fc. As seen in Fig. 4.1, fc < 1 for all κ. This means that for positivedust (f > 1) only one sign of potential an be supported. Thus only positive potentialdust ion-aousti solitons an our in dusty plasmas with positive dust, kappa eletronsand �uid ions. On the other hand, omparison of the dust and ion limiting potentials,
φld = M2/2z and φli1 = (M −

√
3σ)2/2, respetively, shows that φld/φli1 ≫ 1, thus theion limit will be met before the dust ion limit an be invoked. Therefore, in the preseneof positively harged dust, positive potential solitons are limited only by the positive ions.The existene domains for positive solitons, bounded by the ontinuous (lower Mahnumber) and dotted (upper Mah number) urves, respetively, are shown in Fig. 4.11 (leftpanel) for κ = 2, 4 and ∞, and (for κ = 2) over an extended range in positive dust hargedensity in the right panel. These solitons all have amplitudes that are less than φli1. Wesee that the existene domains are extensions of those seen for f < 1, and that they appearsimilar to eah other, but for dereasing κ both the typial values of M and the aessibleranges in M are redued.
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4.9. Comment4.9 CommentIn a number of papers, suh as [Mendoza-Brieño et al., 2000; Mamun and Shukla,2002; Shukla and Mamun, 2002; Mamun and Shukla, 2008℄, Mamun and o-workers havesuggested that if one expands the Sagdeev potential Ψ(φ) around φ = 0, say up to the thirdorder in φ, then the sign of the oe�ient of φ3 in the expansion gives the appropriate signof the potential solitons supported by the plasma model at hand. Indeed suh formalismholds for small amplitude solitons only, that is, solitons whose amplitudes tend to zero as
M →Ms. In other words, the sign of the oe�ient of φ3 in the expansion of Ψ(φ) is onlyassoiated with the sign of the KdV-like solitons (with amplitudes that vanish at Ms) thatan exist in the plasma model. However, for plasma situations where both positive andnegative potential solitons an be supported, this formalism (Mamun approah), if appliedto the large amplitude (normally referred to as the arbitrary amplitude) methods, missessolitons of the opposite sign to the KdV-like solitons.In understanding this, we shall look at the ase of dust ion-aousti solitary waves inan unmagnetized dusty plasma in whih the �uid ions are treated as old, the eletrons areBoltzmann distributed, and the dust partiles are stationary and therefore only provide aneutralizing bakground. This partiular plasma model was disussed by Mamun [Mamunand Shukla, 2008℄ in the work he presented at the �2007 ICTP Summer College on PlasmaPhysis�. The Sagdeev potential is now given by Eq. (4.32), here rewritten as:

Ψ(φ, M) = f
(

1− eφ)− (1− f)φ+M2[1− (1− 2φ/M2)1/2], (4.42)where we have used f for µ and Ψ for V in their notation, but the meaning remains thesame. The ritial Mah number �above whih solitary wave solutions exist� is now givenby Mc = 1/
√
f , and the ritial value of f , here denoted fc evaluated at Ψ′′′(φ = 0, M =

Mc) = 0 now beomes fc = 1/3 suh that above or below fc, Ψ′′′(φ = 0, M) hangessign. In their study of the properties of arbitrary amplitude DIA solitary waves, followingfrom Eq. (4.42), the authors indiated that for any dusty plasma parameters satisfying
M > 1/

√
f and f < fc, DIA solitary waves with both φ > 0 and φ < 0 exist while for

M > 1/
√
f and f > fc, only DIA solitary waves with φ > 0 an exist. This is, however,129



4. Dust Ion-Aousti Solitons in a Plasma with Kappa-Distributed Eletronsnot quite orret. We emphasize that in the neighbourhood of fc one gets solitons withboth positive and negative potential signs, but the KdV approah or the expanded Sagdeevpotential only gives solitons assoiated with the sign of Ψ′′′(φ = 0, Ms) while that of theopposite sign is inaessible. For this ase we show Sagdeev potential pro�les for two ases;
f < fc and f > fc, in partiular, f = fc− 0.001 with M = Mc+0.0001 and f = fc+0.001with M = Mc + 0.001, respetively. Though not indiated here, provided one is in the
f -region where both positive and negative potential solitons exist, one gets �nite positive(negative) amplitude solitons at M = Mc for f < fc (f > fc), similar to the one shown inFig. (4.9) (middle left panel) for f < fc.
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Figure 4.12: Sagdeev potential for f < fc (left panel) and f > fc (right panel) for dust ionaousti solitons in a plasma with stati dust, old �uid ions and Maxwellian eletrons,after Mamun and Shukla [2008℄.4.10 Disussion and Chapter SummaryUsing the pseudopotential approah, we have studied arbitrary amplitude dust ion-aousti solitons in a plasma of positive ions, κ-distributed eletrons and harged dustgrains. This represents a onsiderable extension of the work of Bharuthram and Shukla[1992℄, who studied a plasma model onsisting of Boltzmann-distributed eletrons, oldions, and immobile negative dust in one ase, and mobile negative dust in another ase.For the ase of negative dust, we have shown that for all κ the model supports bothpositive and negative potential solitons, where the Mah number for positive (negative)potential solitons is limited from above by the ondition at whih the ion density beomesomplex (the dust is in�nitely ompressed). This agrees with the analysis of Verheest et130



4.10. Disussion and Chapter Summaryal. [2005℄ for polytropi eletrons, where following a �uid dynami paradigm, proposed byMKenzie [MKenzie, 2002a,b, 2003℄ and o-workers [MKenzie and Doyle, 2003; MKen-zie et al., 2004b,a, 2005℄, that emphasizes the hydrodynami rather than the eletrostatiproperties of the plasma system, it was found that both negative and positive potentialdust-ion-aousti solitons may exist in a dusty plasma with negatively harged dust, posi-tively harged ions and polytropi eletrons. We prefer not to use the ommonly used word�oexist� in this ontext, as oexistene seems to imply that in a spei� plasma on�gu-ration, both polarities an exist at the same time, whereas in fat only one will our, andwhih of the two polarities will be observed depends on details of the initial disturbane.Positive potential DIA solitons experiene a low-f uto� (fp) whih dereases with in-reasing κ (i.e., with a derease in exess super-thermal partiles), and hene this inreasesthe range in (f, M) spae over whih positive solitons exist. Allowing for �nite dust grainmobility has little or no e�et on the existene domain for positive solitons. On the otherhand, the smaller the value of z, that is the heavier the dust partiles (assuming onstantdust harge), the larger the domain in (f, M) spae over whih negative potential solitonsan be obtained. Also, the variation of the ion temperature (through σ) has a weak e�et,inreasing the size of the existene domain as σ is inreased. That is, the warmer the ions(the larger the value of σ) the larger the existene domain for solitons, with the region ofexistene dereasing as κ dereases.Negative potential solitons do not exist above a κ-independent uto� fn lying approxi-mately in the range 0.9−1, the exat value of whih depends signi�antly on the magnitudeof the dust mobility fator z = Zdmi/md. They are e�etively not subjet to an upperlimit in M as z ≪ 1 implies that φℓd ≫ 1, and thus negative solitons may be very large.A surprising result is that over the range of frational eletron density f in whihsolitons of both polarities are supported, �nite amplitude solitary strutures our even atthe DIA speed � behaviour whih ontradits KdV theory. Reently a similar result wasfound in another three-omponent plasma [Verheest and Hellberg, 2010℄, where, as here,the phenomenon is assoiated with a point of in�exion of the pseudopotential at φ = 0and M = Ms, rather than the usual maximum. The sign of Ψ′′′(φ = 0;M = Ms; f) thendesignates the polarity of the KdV-like soliton that vanishes at M = Ms.A ritial role is played by fc, the value of f at whih the KdV oe�ient A = 0,131



4. Dust Ion-Aousti Solitons in a Plasma with Kappa-Distributed Eletronswhih also satis�es the onstraint Ψ′′′(φ = 0;M = Ms; fc) = 0. In partiular, as f isvaried, solitons of eah polarity swith at f = fc from a �KdV-like� form to �nonKdV-like�behaviour. For fp < f < fc, positive solitons at M = Ms have �nite amplitude, inreasingin size with |f − fc| as f approahes fp, while negative solitons have zero magnitude at
M = Ms, as expeted from KdV theory. This situation reverses in polarity for solitonsfound for fc < f < fn.On the other hand, in a plasma with positive dust grains, only positive potential (�KdV-like�) solitons are supported by the plasma model, with the upper limit on M provided byin�nite ompression of the ions, and the positively harged dust partiles only ontributein neutralizing the eletrons in the bakground. The Maxwellian ase agrees with earlierresults, using the �uid dynami paradigm with polytropi eletrons [Baluku et al., 2008℄.Dereasing κ leads to small redutions in both the aessible M and the existene rangein M . The dusty plasma model with positive dust is similar to a two omponent ion-eletron plasma, with modi�ations to the dynamis due to the presene of weakly mobiledust. The results are reminisent of those found for ion-aousti solitons in a two-ionplasma [MKenzie et al., 2005℄, but for a muh heavier seond �positive ion�.
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CHAPTER 5
Ion-Aousti Solitons in a Plasma with Two-Temperature κ-distributedEletrons

In this hapter we investigate, and disuss existene domains of ion-aousti solitons inplasmas omposed of two eletron omponents (of di�erent temperatures) that are kappa-distributed, and a singly harged adiabati �uid ion speies (protons). Suh plasmas are ofinterest in the Saturnian magnetosphere where bi-kappa-distributed eletrons are reportedto exist [Shippers et al., 2008℄.5.1 IntrodutionIn Chap. 2 we indiated that both ool and hot eletron populations that are non-Maxwellian have been inferred to exist in Saturn's magnetosphere using the Voyager PLSobservations [Sittler et al., 1983; Barbosa and Kurth, 1993℄ and the Cassini CAPS obser-vations [Young et al., 2005℄. By �tting the CAPS/ELS and MIMI/LEMMS data from theCassini spaeraft orbiting Saturn over a range of 5.4−20RS where RS ≈ 60, 268 km is theradius of Saturn, Shippers et al. [2008℄ have shown that both the ool and hot eletronpopulations are κ-distributed.Ion-aousti solitons in a plasma with two eletron omponents have been studied bymany authors in di�erent plasma environments, both theoretially [Nishihara and Tajiri,133



5. Ion-Aousti Solitons in a Plasma with Two-Temperature κ-distributed Eletrons1981; Baboolal et al., 1990; Rie et al., 1993; Ghosh et al., 1996; Ghosh and Iyengar,1997℄ and experimentally [Nakamura et al., 1996℄. However, most of the studies have beenentered on Maxwellian plasmas. Sine plasmas in spae and astrophysial plasmas, aswell as in laboratory environments, possess non-Maxwellian distributions, studies on ion-aousti waves and solitary strutures have to be extended to non-Maxwellian ases toinorporate the deviation from the Maxwellian form in the analysis. Ion-aousti solitonsin non-Maxwellian plasmas (either in the form of the Cairns distribution [Cairns et al.,1995℄ or kappa-distribution [Abbasi and Pajouh, 2007; Chuang and Hau, 2009℄) with onlyone eletron omponent have been studied in the past.In this hapter we study a three omponent plasma omprising adiabati �uid ionsthat are singly positively harged like protons, and two eletron omponents, one ool andthe other hot, that are kappa-distributed, to explore existene domains of ion-aoustisolitons, using both the redutive perturbation analysis and arbitrary amplitude (Sagdeevpotential) approah. These results an be applied to the plasma system in the Saturnianmagnetosphere [Shippers et al., 2008℄ where the low energy (ool) and high energy (hot)eletron omponents are both kappa-distributed.Our results show that both ompressive (with a hump in the density as well as theeletrostati potential) and rarefative (with a dip in the density and eletrostati potential)an be supported by the model. However, a peuliar behaviour of soliton amplitudesours for density ratios that support oexistene of both hump (φ > 0) and dip (φ < 0)solitons. There exists a ritial frational ool eletron density ratio, fc, below whihnegative solitons have �nite (nonzero) amplitudes (nonKdV-like) at the lower Mah numberuto� while positive solitons have zero amplitudes (KdV-like) at the lower Mah number.The situation reverses when f > fc; positive solitons are nonKdV-like while negativesolitons are KdV-like.Comparison between the perturbation theory and the large amplitude tehniques showthat whereas the perturbation tehnique seem to be aurate for very small amplitudes,espeially for strutures that move with veloities lose to the phase veloity of the wave,the method beomes less reliable for veloities far from the phase veloity, espeially in aseswhere both signs of potential solitons exist. Thus the arbitrary amplitude approah, suhas the pseudopotential/Sagdeev method (whih we will disuss in detail) is indispensable.134



5.2. Model and Basi Equations5.2 Model and Basi EquationsWe onsider an in�nite, ollisionless and unmagnetized plasma omprising ool adia-bati �uid ions (with a single positive harge) that propagate only along the x−axis, anda mixture of both hot and ool κ-distributed eletrons.The kappa-distributed eletrons have unnormalized densities given by [Baluku et al.,2008℄
Ns(ϕ) = Ns0

[

1 +
1

(κs − 3/2)

qs ϕ

KBTs

]

−(κs−1/2)

, (5.1)where Ns0 and Ts are the equilibrium number density and temperature of speies s (s = cfor ool eletrons and h for hot eletrons); KB is the Boltzmann onstant, ϕ is the loaleletrostati potential, and κs is the spetral index of speies s, whih must be greater than
3/2 for non omplex harateristi thermal veloities (most probable speeds) assoiatedwith the kappa-distributed eletron omponents [Baluku et al., 2008℄. For this plasmamodel, qs = −e, the harge of the eletrons.We assume that the ions are adiabati (Pi ∝ Nγi

i , where γi = 3), with the ion densityhaving both inertial and pressure ontributions. Thus the ions satisfy the ontinuity andmomentum equations (in unnormalized form):
∂Ni

∂t′
+

∂

∂X
(Ni Vi) = 0, (5.2)

∂Vi

∂t′
+ Vi

∂Vi

∂X
+

C2
ti

N2
i0

Ni
∂Ni

∂X
+

qi
mi

∂ϕ

∂X
= 0, (5.3)and the speies' densities are oupled by Poisson's equation

ε0
∂2ϕ

∂X2
+

∑

j=c, h, i

Nj qj = 0, (5.4)with boundary onditions ϕ, ∂ϕ/∂X and Vi → 0, and Ni → Ni0 as X → ±∞. Inequations (5.2)�(5.4), Cti = (γiPi0/miNi0)
1/2 = (3KBTi/mi)

1/2 is the thermal veloity ofthe adiabati ions; Ni, Vi, Pi, andϕ are the unnormalized density, veloity and pressure ofthe ions, and loal eletrostati potential, respetively, while X and t′ are the spatial andtemporal unnormalized variables. 135



5. Ion-Aousti Solitons in a Plasma with Two-Temperature κ-distributed Eletrons5.3 The Linear Dispersion RelationIn the linearization proess we make the following substitutions:
Nj = Nj0 +Nj1

Pj = Pj0 + Pj1

Vj = Vj1

ϕ = ϕ1

∂Nj0/∂X = ∂Pj0/∂X = 0

∂Nj0/∂t
′ = ∂Pj0/∂t

′ = 0,

(5.5)
where Nj0, Pj0 are the unperturbed density and pressure quantities desribing the equilib-rium state, and Nj1, Pj1, Vj1 and ϕ1 are the small perturbations in these quantities. Theunperturbed veloity is zero and we have hosen ϕ0 = 0 (sine we have zero eletri �eldfor the unperturbed states).Sine the eletrons are kappa-distributed, the �rst order perturbations in density of theeletrons is obtained from Eq. (5.1), and is given by

Ns1 = −Ns0

(

κs − 1/2

κs − 3/2

)

qs ϕ1

KBTs
. (5.6)The perturbed system of the positively harged ions is governed by the �uid ontinuityand momentum equations (in linearized form). Then assuming a steady-state harmonitime-dependent perturbation solution for the osillating quantities of the form Ni1, Vi1, Pi1,

ϕ1 ∝ exp{i(kX−ωt′)}, the time-derivative and gradient an be replaed, by ∂/∂t′ → −iω,and ∂/∂X → ik, respetively. This proess gives
Vi1 =

kω qi/mi

(ω2 − k2C2
ti)

ϕ1, (5.7)
Ni1 =

k2Ni0qi/mi

(ω2 − k2C2
ti)

ϕ1 (5.8)
136



5.3. The Linear Dispersion Relationand hene
[

− ε0 k
2 −

∑

s=c, h

Ns0q
2
s

KBTs

(

κs − 1/2

κs − 3/2

)

+ k2
Ni0q

2
i /mi

ω2 − k2C2
ti

]

ϕ1 = 0. (5.9)Using the de�nition of the ion plasma frequeny, ωpi = (Ni0q
2
i /ε0 mi)

1/2, Eq. (5.9) an bewritten as
[

1 +
1

k2λ2
Dκ

−
ω2
pi

ω2 − k2C2
ti

]

ϕ1 = 0, (5.10)whih for ϕ1 6= 0 gives the linear dispersion relation for a plasma omprising κ-distributedhot and ool eletrons, and adiabati positively harged ions. That is,
ω2
pi

ω2 − k2C2
ti

− 1

k2λ2
Dκ

= 1. (5.11)The assoiated kappa dependent Debye length λDκ is given by
1

λ2
Dκ

=
∑

s=c, h

Ns0q
2
s

ε0 KB Ts

(

κs − 1/2

κs − 3/2

)

, (5.12)whih is an extension of the Debye length in kappa-plasmas [Chateau and Meyer-Vernet,1991; Bryant, 1996; Mae et al., 1998℄ to bi-kappa plasmas. When κs → ∞ (s = c, h),equation (5.12) redues to 1/λ2
D = 1/λ2

Dc + 1/λ2
Dh, where λDc and λDh are the Debyelengths of the ool and hot eletrons, respetively. In the long wavelength limit (k → 0)we have kλDκ ≪ 1, and Eq. (5.11) beomes

ω2 = k2C2
iκ + k2C2

ti, (5.13)where Ciκ = ωpiλDκ is the ion-aousti sound speed of the plasma model omprising ofool and hot kappa-distributed eletrons and �uid ions. Thus the phase veloity of thepropagating strutures is greater than the thermal veloity of the ions. In the limit κ→∞,
Ciκ → Cia = ωpiλDe,where Cia is the ion-aousti sound speed [Chen, 1984℄ for a plasma with ool and hotMaxwellian eletrons; λDe = (ε0 KBTe/Ne0e

2)1/2, and Ne0/Te = Nc0/Tc +Nh0/Th; Ne0 =137



5. Ion-Aousti Solitons in a Plasma with Two-Temperature κ-distributed Eletrons
Nc0 + Nh0. Thus Ne0 and Te are the e�etive (total) eletron density and temperature,respetively. Hene in the limit κ → ∞ and kλDe ≪ 1, Eq. (5.11) gives the Maxwellianform [Chen, 1984℄

ω2 = k2
(

KBTe

mi
+

γi KBTi

mi

)

.5.4 Small Amplitude Solitons5.4.1 The Korteweg-de Vries (KdV) EquationThe density of the κ-distributed ool and hot eletrons in Eq. (5.1) an be expandedto give
Ns(ϕ) = Ns0

∞
∑

r=0

(−1)rνsr ϕr, (5.14)where
νs0 = 1,

νs1 =

(

κs − 1/2

κs − 3/2

)

qs
KBTs

, (5.15)
νs2 =

1

2!

(κs − 1/2)(κs + 1/2)

(κs − 3/2)2

(

qs
KBTs

)2

, (5.16)
νs3 =

1

3!

(κs − 1/2)(κs + 1/2)(κs + 3/2)

(κs − 3/2)3

(

qs
KBTs

)3

, (5.17). . .et.Note that for �xed qs/KBTs and ϕ, the series expansion in Eq. (5.14) is valid only for κs > 3sine for 1.5 < κs . 3, higher order terms (νs4, · · · ) are large ompared to the lower orderones, and therefore annot be negleted (see also Se. 4.4). This implies that the redutiveperturbation method will not be appropriate for determination of small amplitude solitonsfor κs values in the range 1.5 < κs < 3.The positively harged ions are desribed by the �uid ontinuity and momentum equa-tions (5.2) and (5.3), respetively.Applying the redutive perturbation tehnique, we use the strethed oordinates [Nishi-hara and Tajiri, 1981; Mae et al., 1991; Verheest, 2000℄ ζ = ǫ1/2(X − V t′) and T = ǫ3/2t′whih orrespond to the spatial and temporal oordinates, with ǫ ≪ 1 being a smallness138



5.4. Small Amplitude Solitonsparameter that measures the strength of the wave amplitude and V is the soliton speed(whih is equivalent to the phase veloity of the wave in the long wavelength limit). Thevarying parameters, Nj , Vj and ϕ are expressed in terms of ǫ using the expansions [Nishi-hara and Tajiri, 1981; Mae et al., 1991℄:
Nj = Nj0 + ǫNj1 + ǫ2Nj2 + . . .

Vj = ǫ Vj1 + ǫ2Vj2 + . . .

ϕ = ǫ ϕ1 + ǫ2ϕ2 + . . .

(5.18)Thus Poisson's equation now beomes
ǫ ε0

∂2ϕ

∂ζ2
+Niqi +

∑

s=c, h

Ns0

∞
∑

r=0

(−1)rνsr ϕrqs = 0, (5.19)where Ni, Vi and ϕ are de�ned in Eq. (5.18). Equation (5.19) an be expanded to obtainthe following equations
©
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ǫ0
)

:
∑

s=c, h

Ns0qs + Ni0qi = 0, (5.20)
©
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ǫ1
)

: Ni1qi −
∑
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qsNs0 νs1 ϕ1 = 0, (5.21)
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ǫ2
)

: ε0
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+Ni2qi −

∑

s=c, h

qsNs0νs1 ϕ2 +
∑

s=c, h

qsNs0νs2 ϕ
2
1 = 0, (5.22)where Eq. (5.20) an be reognized as the harge neutrality ondition of the unperturbedplasma onstituents at equilibrium.Following from the ontinuity and momentum equations, the �rst-order perturbed ve-loity Vi1 and density Ni1 (in terms of ϕ1) are again given by Eqs. (5.7) and (5.8). ThusEq. (5.21) leads to the linear dispersion relation of the plasma model given in Eq. (5.13)in the long wavelength limit (kλDκ ≪ 1 or k → 0), that is, ω2 = k2C2

iκ + k2C2
ti.Also, di�erentiating equation (5.22) one with respet to ζ gives
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= 0, (5.23)where the seond-order perturbed density Ni2 an easily be obtained from the ontinuity139



5. Ion-Aousti Solitons in a Plasma with Two-Temperature κ-distributed Eletronsand momentum expressions (details not shown here) to give
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. (5.24)Combining equations (5.23) and (5.24) we get
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}

ϕ1
∂ϕ1

∂ζ
= 0. (5.25)However, the nontrivial (ϕ1 6= 0) solution of equation (5.25) requires that the oe�ient ofthe term involving the seond-order perturbed potential, ϕ2, must be zero. Clearly, withthe phase veloity V = ω/k, this follows from Eqs. (5.8) and (5.21) for ϕ1 6= 0. Equation(5.25) then beomes
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ϕ1
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∂ζ
= 0. (5.26)In terms of the �rst order-perturbed potential, ϕ1, Eq. (5.23) leads to the well known KdVequation [Mae et al., 1991; Verheest, 2000℄
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5.4. Small Amplitude Solitonswhere
A =

A2

A1
and B =

1

A1
; (5.28)
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ti
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ti)

3
, (5.30)with γi = 3 sine we onsider the ions to be adiabati. The phase veloity V in Eqs. (5.29)and (5.30) is obtained from the linear dispersion relation given in Eq. (5.13).In getting solutions to Eq. (5.27), we seek nonlinear solitary wave strutures that prop-agate unhanged at onstant speed V0 in the laboratory frame [Chen, 1984℄. Thus, we seekstationary solutions in a moving frame, χ(ζ,T ) = ζ −V0T = ǫ1/2(X − vt′), with boundaryonditions

ϕ1,
∂ϕ1

∂ζ
,
∂2ϕ1

∂ζ2
→ 0 as ζ → ±∞.Here, v = V + δv, where V is the phase veloity of the solitary waves and δv = ǫV0. Uponusing the transformation χ(ζ,T ) = ζ − V0T = ǫ1/2(X − vt′), the solution of the resultingdi�erential equation beomes [Mae et al., 1991; Verheest, 2000℄
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. (5.31)In terms of the laboratory frame oordinates (X, t′), the solution beomes
ϕ(X, t′) ∼ ǫ ϕ1(X, t′) =
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seh2{(δv A1(V )

4

)1/2

(X − v t′)

}

. (5.32)Equation (5.31) is valid for A 6= 0 and V0/B > 0, where the onstants A and B arede�ned in Eq. (5.28). Note that for V0 > 0, the ondition B > 0 implies V > Cti, that is,supersoni ions, whih justi�es the need of a sluggish speies (ooler or massive speies)that will provide inertia in the system for the generation of osillations [Verheest, 2000,p. 110℄.We now take the following normalization (as will be used in the arbitrary amplitude141



5. Ion-Aousti Solitons in a Plasma with Two-Temperature κ-distributed Eletronsapproah): temperature is normalized to the ool eletron temperature Tc; loal potentialto KBTc/e; number density to Ne0, where Ne0 = Nc0 +Nh0 = ZiNi0 is the total eletronequilibrium density with Nc0, Nh0 and Ni0 being the ool eletrons, hot eletrons andool ions equilibrium density. Here, Zi is the size of harge residing on the ions, whihis +1 for singly harged ions (protons in this ase). The veloity is normalized to theaousti speed Cs = (Zi KBTc/mi)
1/2; the spatial and time variables to the inverse ionplasma frequeny ω−1

pi = (ε0 mi/Ni0q
2
i )

1/2 = (ε0 mi/ZiNe0e2)1/2 and e�etive Debye length
λDe� = (Nc0/Ne0)

1/2λDc = ε0 KBTc/Ne0e2)1/2.The onstants A1 and A2 in Eq. (5.29) and (5.30) an then be written in the form:
A1 =

2

Cs

1

λ2
D e�α3/2

s1 (1 + 3τ αs1)
1/2 and (5.33)

A2 =
φ(ξ)/ϕ(χ)

λ2
D e� α2

s1

[

3(1 + 4τ αs1)−
αs2

α2
s1

]

, (5.34)where φ is the normalized eletrostati potential, and τ = (Ti/Tc)/Zi, whih simply be-omes Ti/Tc (the normalized ion temperature with Zi = 1), respetively; ξ = x −M t =

χ/λDe�, where M = v/Cs is the Mah number, and x and t are the normalized spatial andtime variables, respetively. Here, M = Ms + δM where Ms = V/Cs = (3τ + 1/αs1)
1/2is the phase veloity normalized to the e�etive sound speed, whih is equivalent to thelower Mah number, and δM = ǫM0 = ǫ(V0/Cs). The onstants αs1 and αs2 are given,respetively, by

αs1 =
∑

βs
Ns0

Ne0

κs − 1/2

κs − 3/2
and (5.35)

αs2 =
∑

β2
s

Ns0

Ne0

(κs − 1/2)(κs + 1/2)

(κs − 3/2)2
, (5.36)with s = c (h) for ool (hot) eletrons, and βs = T/Ts is the reiproal of the normalizedtemperature. For simpliity, β = βh = T/Th.Note that ϕ(χ) ∼ ǫ ϕ1(χ) and φ(ξ) ∼ ǫ φ1(ξ), thus to �rst order in ǫ, Eq. (5.32) an bewritten as

φ(ξ) = φ0 seh2(ξ/∆), (5.37)
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5.4. Small Amplitude Solitonswhere φ0 and ∆ are the soliton amplitude and width, respetively, given by
φ0 =6δM(Ms/Q) =

12/α2
s1

Q∆2
and (5.38)

1

∆
=

(

δM

2

)1/2

α
3/4
s1 (1 + 3τ αs1)

1/4, (5.39)where Q = 3(1 + 4ταs1) − αs2/α
2
s1. Equation (5.37) is valid (i) for δM > 0, leading to

M > Ms, and (ii) for Q 6= 0, that is, A2 6= 0, and therefore the sign of the potentialdepends on whether Q is positive or negative. Also, Eqs. (5.38) and (5.39) imply that
φ0 ∝ 1/∆2 ∝ δM , thus as δM (or M) inreases the soliton amplitude (φ0) inreases whilethe soliton width (∆) dereases.In getting the appropriate sign of the soliton potential, we determine a ritial densityratio fc, orresponding to Q = 0, at whih φ0 [from (5.38)℄ goes to in�nity. When f < fcwe get positive potential (ompressive) solitons while the reverse gives negative potential(rarefative) solitons. For example, when κc = 2, κh = 3, τ ≃ 1/300, β = 3/100, whihare typial parameter values for Saturn's outer magnetosphere [Shippers et al., 2008℄ atabout 16RS , we have fc ≃ 0.472. In the presene of Maxwellian ool and hot eletrons(κc = κh = ∞) and τ ≃ 1/300, β = 3/100, we have fc ≃ 0.704. Positive (negative)potential solitons will exist for f < (>)fc. These ritial density ratios will be referredto in the disussion of numerial results in the subsequent setions. For Q = 0 we have
A2(V ) = 0 in Eq. (5.27), and therefore the soliton amplitude goes to in�nity. For valuesof f for whih the nonlinearity term in the KdV equation vanishes, that is A2(V ) = 0, themKdV approah may be appropriate [Nishihara and Tajiri, 1981; Baboolal et al., 1989℄.We brie�y look at this approah in the subsequent subsetion.5.4.2 The Modi�ed Korteweg-de Vries (mKdV) EquationWe have already seen that when A2(V ) = 0 in Eq. (5.27), the soliton amplitude goesto in�nity. In dealing with that senario in the perturbation approah, we re-sale thestrethed spae-time variables ζ and T . Following the approahes of Baboolal et al. [1989℄and Roy Chowdhury et al. [1994℄, we use the strethed variables ζ = ǫ(X − V t′) and
T = ǫ3t′. With this saling, and proeeding as in the KdV ase above, the modi�ed KdV
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5. Ion-Aousti Solitons in a Plasma with Two-Temperature κ-distributed Eletronsequation takes the form (see Appendix C.1 for details)
∂ϕ1

∂T + C(V )ϕ2
1

∂ϕ1

∂ζ
+D(V )

∂3ϕ1

∂ζ3
= 0, (5.40)where again the phase veloity V is obtained from V 2 = C2
ti + C2

iκ, and
C(V ) =−A3/A1; D(V ) = B(V ) = 1/A1;

A1 =
2V ω2

pi

(V 2 − C2
ti)

2
and

A3 =
3

2

ω2
piV

2q2i /m
2
i

(V 2 − C2
ti)

4
+ 3

∑

s=c, h

qsNs0

ε0
νs3

+
ω2
pi[4V

2 + (3γi − 4)c2ti]

(V 2 − C2
ti)

2

∑

s=c, h

qsNs0

qiNi0
νs2. (5.41)Using the transformation, χ(ζ,T ) = ζ−u0T ≡ ǫ(X−vt′), where v = V +δv; δv = ǫ2u0,Eq. (5.40) then takes the form of a �rst-order di�erential equation whose solution is givenby (see Appendix C.2 for details)

ϕ1(χ) =

(

6u0
C

)1/2 seh{(u0
D

)1/2
χ

} or (5.42)
ϕ(X, t′) =

(

6δv

C

)1/2 seh{(δv

D

)1/2

(X − vt′)

}

, (5.43)whih is valid for C > 0 and D > 0 provided δv > 0.Again, with our hosen normalization, the onstant A1 is given by Eq. (5.29), while A3is given by
A3 = −

φ2(ξ)/ϕ2(χ)

2λ2
De� {

αs1αs2(4 + 9γiταs1)−
[

3(1 + 3ταs1)α
3
s1 + αs3

]}

, (5.44)where αs1 and αs2 are de�ned in Eqs. (5.35) and (5.36), respetively, and αs3 is given by
αs3 =

∑

β3
s

Ns0

Ne0

(κs − 1/2)(κs + 1/2)(κs + 3/2)

(κs − 3/2)3
. (5.45)It should be noted that the mKdV equation (or solution) is relevant only when the o-e�ient of ∂φ2

1/∂χ in the KdV equation is negligible. In this ase, that ours when144



5.4. Small Amplitude Solitons
A2(V ) = 0. We have already shown in the previous setion that A2 vanishes when Q =

3(1 + 4ταs1) − αs2/α
2
s1 = 0. Thus the mKdV solution will only be valid for αs4 =

αs2 − 3α2
s1(1 + 4ταs1) = 0.With ξ = x −M t = χ/λDe�, where M = v/Cs = Ms + δM ; Ms = V/Cs = (3τ +

1/αs1)
1/2; δM = δv/Cs, Eq. (5.43) then beomes

φ(ξ) = φ0sseh(ξ/∆w), (5.46)where φ0s and ∆w are the soliton amplitude and width, respetively, given by
φ0s = (24δM/αs5)

1/2[α3
s1(1 + 3τ αs1)]

1/4 =
2
√
3

∆w
√
αs5

; (5.47)
1

∆w
= (2δM )1/2 [α3

s1(1 + 3τ αs1)]
1/4; (5.48)

αs5 =αs1αs2(4 + 9γiταs1)−
[

3(1 + 3ταs1)α
3
s1 + αs3

]

,provided αs4 = 0, αs5 > 0, and δM > 0. Equations (5.47) and (5.48) imply that φ0s ∝

1/∆w ∝ δM1/2, thus �faster� solitons (with inreasing δM) have large amplitudes, and arethin in width. The expressions for αsl where l = (1 − 5) an be written in terms of thehot eletrons frational density f = Nh0/Ne0. If we denote f1 and f2 as the solutions of
αs4(f) = 0 and αs5(f) = 0, respetively, then αs5(f) > 0 requires f < f2, that is, f1 < f2for the mKdV to be meaningful.In Fig. 5.1 we show the variation of f with κ (with κ = κc = κh) for whih thenonlinear oe�ient A in the KdV equation (5.27) goes to zero (blue solid urve), whihsimply orresponds to the solutions of αs4(f) = 0. The dotted (blue) urve, superimposedon the ontinuous urve, orresponds to the ritial values of f , denoted, fc, for whih
Ψ′′′(φ,M, f) = 0 at M = Ms, that we will disuss in detail in the arbitrary amplitudeapproah. In addition, the dashed (light-blue) urve in Fig. 5.1, labelled f2 gives thevalues of f for whih αs5(f) = 0. Thus for f > f2, the mKdV solution (5.46) is omplex.We therefore note that for the parameters in Fig. 5.1, for all values of κc = κh we have
f1 > f2, and thus at f = f1, αs5(f) < 0, leading to omplex solutions of the solitonamplitude.Also, numerial results show that the variation of f1 and f2 with β = Tc/Th for τ =145



5. Ion-Aousti Solitons in a Plasma with Two-Temperature κ-distributed Eletrons
Ti/Tc = 1/300 and onstant spetral indies (κc = κh = 5 and ∞, as shown in Fig. 5.2 asexamples) shows that f1 > f2, implying that αs5(f) < 0 and hene the soliton amplitudeat f = f1 is omplex. These results indiate that the modi�ed KdV solution is notappropriate for small amplitude solitons with the parameters desribed above. Similarresults with τ = 1/300, β = 3/100 are obtained for both κc > κh, and κc < κh (not shownhere). However, when keeping the spetral indies and eletron temperatures �xed, the
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Figure 5.1: f -solutions of αs4(f) = 0 (dashed) and αs5(f) = 0 (dotted) as funtions of τfor τ = 1/300, β = 3/100, and κc = κh. For all values of κc = κh, we have f1 > f2, andthus at f = f1, αs5 < 0 and therefore will lead to omplex solutions of soliton potentialamplitudes.variation of f1 and f2 with the normalized ion temperature τ = Ti/Tc gives a di�erentpiture. For example, in Fig. 5.3 (left panel) we take β = 1/10. Here, the results aresimilar to those obtained in the ase of Fig. 5.2, that is, f2 is less than f1 for all τ . Whenwe redue β to 3/100, as shown in Fig. 5.3 (right panel), we se that f2 > f1 for some valuesof τ : with β = 3/100 and κc = κh = ∞, we get f2 > f1 provided 0.052 < τ < 8.143, andwith κc = κh = 5 we get f2 > f1 for 0.164 < τ < 6.813, implying that the mKdV approahmay be valid for that range of parameters. Note that Fig. 5.3 has been plotted only upto τ = 1. These results (for the variation of ion temperature) also suggest that the iondynamis may be essential when using the mKdV approah.While the perturbation tehnique seems to be aurate for very small amplitudes,espeially for Mah numbers very lose to Ms, that is, for strutures that move with146



5.4. Small Amplitude Solitons
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Figure 5.2: f -solutions of αs4 = 0 (dashed) and αs5 = 0 (dotted) as funtions of β for
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αs5 < 0 and therefore will lead to omplex solutions of soliton potential amplitudes.
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5. Ion-Aousti Solitons in a Plasma with Two-Temperature κ-distributed Eletronsthe nonlinear term in the KdV equation (∝ φ∂φ/∂ξ) vanishes and therefore the balanebetween the nonlinear term and the dispersive term (∝ ∂3φ/∂ξ3) is no longer attainablefor propagation of solitary strutures. Even applying the modi�ed KdV solutions doesnot seem fruitful in resolving this problem. Thus for suh ases, the arbitrary amplitudeapproah like the pseudopotential/Sagdeev method (whih we disuss below) is vital. Wewill show soliton potential strutures in Fig. 5.10 that annot be obtained from the KdVsolution for this partiular model.5.5 Arbitrary Amplitude IA SolitonsWith the hosen normalization, as used in the perturbation theory, equations (5.2)�(5.4) take the form:
∂ni

∂t
+

∂

∂x
(ni ui) = 0, (5.49)

∂ui
∂t

+ ui
∂ui
∂x

+ 3τni
∂ni

∂x
+

∂φ

∂x
= 0, (5.50)and

∂2φ

∂x2
+ ni(φ)− nc(φ)− nh(φ) = 0, (5.51)respetively, where again τ = (Ti/Tc)/Zi, whih simply beomes Ti/Tc with Zi = 1; ncand nh are the normalized density of the ool and hot eletrons, respetively; ni (ui) arethe normalized ion density (veloity) of the ool ions; x and t are the normalized spatialand temporal variables, and φ the eletrostati potential, respetively. The orrespondingboundary onditions are φ, ∂φ/∂x and ui → 0, and, ni → 1 as x→ ±∞.We seek simple traveling wave solutions of Eqs. (5.49)�(5.51) that are stationary in aframe moving with veloity M . Thus we transform to a stationary state, where we assumethat all the quantities depend on ξ = x −M t; M being the Mah number, equivalent tothe veloity of the solitary wave normalized to the aousti speed Cs = (ZiKBTc/mi)

1/2.With the boundary onditions stated above, Eqs. (5.49) and (5.50) an be solved for ni(φ),giving [Baboolal et al., 1989, 1990; Ghosh et al., 1996; Verheest et al., 2008℄
M2

(

1

n2
i

− 1

)

+ 3τ
(

n2
i − 1

)

+ 2φ = 0, (5.52)148



5.5. Arbitrary Amplitude IA Solitonswhih is quadrati in n2
i with solution

n2
i =

1

6τ

{

M2 + 3τ − 2φ±
[

(

M2 + 3τ − 2φ
)2 − 12M2τ

]1/2
}

. (5.53)The �rst term of the left-hand side of Eq. (5.52) is the inertial ontribution to the restoringfore while the seond term is the pressure ontribution. In the absene of pressure (τ → 0),the restoring fore is solely due to inertia and Eq. (5.52) gives ni(φ) = (1 − 2φ/M2)−1/2,whih an also be obtained by taking the limit, as τ → 0, of Eq. (5.53) with the minussign of the term under square brakets.Following the approahes of Ghosh et al. [1996℄ and Verheest et al. [2008℄, we rewritethe ion density in the form
ni(φ) = a(

√
A±
√
B),where a, A and B are onstants to be determined, and only the negative sign is physiallyrelevant. This gives

ni =
1

2
√
3τ

{

[

(

M +
√
3τ
)2
− 2φ

]1/2

−
[

(

M −
√
3τ
)2
− 2φ

]1/2
}

. (5.54)Note that the boundary onditions φ→ 0, ni(φ)→ 1 as ξ → ±∞ are satis�ed in Eq. (5.54)only when M >
√
3τ , that is, V > Cti as required for ion aousti strutures.With the transformation ξ = x−M t, Poisson's equation is now given by

∂2φ

∂ξ2
= nc(φ) + nh(φ) − ni(φ) ≡ G(φ), (5.55)where ni(φ) is obtained from Eq. (5.54), and nc(φ) and nh(φ) are obtained from Eq. 5.1,after normalization, as

ns(φ) =
Ns0

Ne0

(

1− βs φ

κs − 3/2

)

−(κs−1/2)

, (5.56)with s = c (h) for ool (hot) eletrons, and βs = T/Ts is the reiproal of the normalizedtemperature.
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5. Ion-Aousti Solitons in a Plasma with Two-Temperature κ-distributed EletronsPoisson's equation [Eq. (5.55)℄ an then easily be written in the form
d2φ

dξ2
+

dΨ(φ)

dφ
= 0 or 1

2

(

dφ

dξ

)2

+Ψ(φ) = 0, (5.57)where Ψ(φ) = −
∫ φ
0 G(φ)dφ is the pseudopotential of the plasma system and G(φ) =

nc(φ) + nh(φ) − ni(φ). The boundary onditions φ, ∂φ/∂ξ → 0 as ξ → ±∞ have beenused.5.5.1 Pseudopotential ApproahNow in seeking soliton solutions of Eq. (5.57), we need to on�rm that the pseudopo-tential Ψ(φ) satis�es Ψ(φ) = Ψ′(φ) = 0 at φ = 0 for all M as a �rst requirement (seeSe. 1.4.2). This proedure leads to the pseudopotential expression of the plasma systemas
Ψ(φ) =

f

β

[

1−
(

1− β φ

κh − 3/2

)(3/2−κh)
]

+ (1− f)

[

1−
(

1− φ

κc − 3/2

)(3/2−κc)
]

+
1

6
√
3τ

{

[

(

M −
√
3τ
)2
− 2φ

]3/2

−
[

(

M +
√
3τ
)2
− 2φ

]3/2
}

+M2 + τ. (5.58)Here, f = Nh0/Ne0 is the frational density of hot eletrons and β = βh = Tc/Th is theratio of the ool to hot eletron temperatures.In investigating the existene domain for solitary strutures, solitons or double layerswe require M > Ms, where
Ms =

{

3τ +

[

(1− f)(κc − 1/2)

(κc − 3/2)
+

β f(κh − 1/2)

(κh − 3/2)

]

−1}1/2 (5.59)is the lower limit of M restriting the existene of solitons, obtained at Ψ′′(φ = 0) = 0.The usual soliton ondition M > Ms implies that V 2 > C2
ti + C2

iκ, where Ciκ = ωpiλDκ isthe κ−dependent ion aousti speed. If we de�ne the �true� Mah number of the solitarywaves by Miκ = V/Ciκ, then M2
iκ > 1+C2

ti/C
2
iκ, whih is always greater than unity for alltemperatures, resulting in superaousti strutures as pointed out earlier.Further, with our hoie of normalization, the normalized phase veloity following from150



5.5. Arbitrary Amplitude IA SolitonsEq. (5.13) is given by
V 2
ph ≡

ω2/k2

C2
s

=
ω2
piλ

2
Dκ

C2
s

+
C2
ti

C2
s

,whih an easily be written as
V 2
ph = 3τ +

[

(1− f)(κc − 1/2)

(κc − 3/2)
+

β f(κh − 1/2)

(κh − 3/2)

]

−1

≡M2
s . (5.60)Equations (5.59) and (5.60) imply that the existene of solitary strutures (solitons ordouble layers) require the resulting strutures to move with veloities exeeding the phaseveloity of the assoiated waves. However, as our results will show, it turns out thatsolitons an have a veloity equal to the phase veloity of the wave, that is, with Mahnumbers, M = Ms. This peuliar senario ours in situations where both positive andnegative potential solitons an be supported by the plasma system under onsideration.5.5.2 Potential LimitationsFirstly, in the ase of positive potential solitons we observe from Eq. (5.54) that �nitenon-negative values of ni(φ) require φ ≤ (M−

√
3τ )2/2 ≡ φi1 and φ < (M+

√
3τ)2/2 ≡ φi2,sine at φ = φi1, ni =

(

M/
√
3τ
)1/2, whih is �nite, and at φ = φi2, ni = i

(

M/
√
3τ
)1/2,whih is omplex. The expression Ψ(φi1) > 0 or Ψ(φi2) > 0 will provide the upper limiton M for the existene of positive potential solitons (sine both φi1 and φi2 give positivereal values for all M and f ). However, φi1 being less than φi2 for all M and f impliesthat the limiting ondition Ψ(φi1) > 0 dominates Ψ(φi2) > 0, and the former will be usedhere. That is, we onsider φ ≤ φi1 so that the ion density is real and �nite to prevent wavebreaking [Baboolal et al., 1990℄.We also observe from Eq. (5.58) that Ψ(φ) → +∞ when φ → +∞, and as we require

Ψ(φ) to be negative in the viinity of the origin (φ = 0) and before a seond root (φm)is enountered, that is, Ψ(φ) < 0 for 0 < φ < φm, it follows that we an have at mostone single root before we approah the limiting potential φi1 on the positive potentialside [Verheest et al., 2008℄. In addition, sine soliton amplitudes inrease with inreasingMah number or soliton speed (see perturbation theory), it implies that the Mah numberorresponding to Ψ(φi1) = 0 must be the upper limit of M for φ > 0. Therefore the upperlimit of M for the existene of positive potential solitons is obtained from Ψ(φi1) = 0.151



5. Ion-Aousti Solitons in a Plasma with Two-Temperature κ-distributed Eletrons
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Figure 5.4: Restrition of solitons by double layers, obtained for the parameters: Ti =
0.1 eV, Tc = 30 eV, Th = 1 keV, κc = 2.0, κh = 3.0, f = 0.5, typial for Saturn's outermagnetosphere [Shippers et al., 2008℄ at about 16RS , where RS is the radius of Saturn.The double layer is obtained for Mc ≃ 1.38097, and has amplitude |φm| ≃ 21.55. Thussolitons will have amplitudes less than φm.Seondly, negative potential solitons in the plasma model are restrited from below bythe soliton ondition and from above by the double layer limit, where the latter oursfor Mah numbers, M satisfying the double layer ondition Ψ(φm) = Ψ′(φm) = 0 forpartiular values of f, τ, β, and spetral indies κc and κh. As we argued in the positivepotential ase, this follows from the following desription: �rstly, other than at the origin
φ = 0, we also require Ψ(φ) < 0 before we enounter another zero of Ψ(φ) on the negativepotential side. Seondly, sine the eletron ontributions in Eq. (5.58) remain �nite [salingas (1 − f) + f/β℄ as φ → −∞, we get Ψ(φ) → −∞ as φ → −∞. These two onditionsimply that in the interval [0,−∞] there exists is a root φd, satisfying Ψ(φd) = Ψ′(φd) = 0,and hene leading to double layers.As soliton amplitudes inrease with inreasing Mah number, in a number of plasmamodels the existene of a double layer brings an end to the existene of solitons [Baboolalet al., 1988℄. Thus the Mah number orresponding to the seond double root (i.e., otherthan at the origin) provides the upper limit on the Mah number for the existene ofnegative potential solitons. A typial example is shown in Fig. 5.4, where solitons willour for Mah numbers, M < Mc; Mc is the solution of the double layer ondition, and152



5.5. Arbitrary Amplitude IA Solitonsno soliton-like strutures will be obtained for M > Mc. However, we point out that theourrene of a double layer does not always provide an upper uto� for the existene ofsolitons of a partiular potential sign. Our results in Chapter 7 (Fig. 7.4) show that solitonsan be obtained even beyond a double layer, if the pseudopotential funtion has su�ientloal minima.5.5.3 Existene Domain for Ion-Aousti Solitons and Double Layers
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5. Ion-Aousti Solitons in a Plasma with Two-Temperature κ-distributed Eletronsredued for Saturnian parameter values than would be predited by a double-Maxwellianmodel. On the other hand, rarefative (negative potential) solitons are expeted to ourover a wider range of f for Saturnian than for Maxwellian eletrons. Spei�ally, they ourfor f > fn ≃ 0.239 (urves A1 and C1) in the ase of κc = 2, κh = 3, and f > fn ≃ 0.393(urves A2 and C2) in the ase of Maxwellian eletrons, respetively. Both positive andnegative potential solitons an �o-exist� for fn < f < fp, that is, 0.239 < f < 0.57 for
κc = 2, κh = 3, and 0.393 < f < 0.842 for the Maxwellian ase, respetively. The graphsalso show that for f = 1, that is, nc0 → 0, the lower and upper limits on the Mah numberoalese at M ≈ 4.43628 for low kappa values (κc = 2, κh = 3) ompared to M ≈ 5.5793for the ase of Maxwellian eletrons.The resulting e�et of spetral index κ on the existene domain of solitons (or dou-ble layers) is that in omparison to Maxwellian partiles, low kappa values (inreasedsuperthermal partiles in the high energy tail of the distribution) redue the existenedomain in the parameter spae of Mah number M and density ratio f = Nh0/Ne0 overwhih ompressive solitons or both ompressive and rarefative solitons an exist. How-ever, for onstant speies temperatures, densities and speed (in terms of Mah number),the variation of soliton amplitude with the spetral index κ shows that low values of κ re-sult into large amplitudes ompared with the Maxwellian ase. This variation is illustratedin Fig. 5.6 where the values of f and M used orrespond to a region in (f, M) parameterspae shown in Fig. 5.5 where rarefative (negative potential) solitons an be supportedfor both low (κc = 2, κc = 3) and high (κc = κc =∞) kappa values.5.5.4 Variation of Soliton Potential Amplitude (φm) with Mah NumberIn Figures 5.7 and 5.8, we plot the soliton potential amplitudes for di�erent valuesof δM = M −Ms, where M is the Mah number satisfying the soliton onditions and
Ms is given in Eq. (5.59). The end points of the urves orrespond to the upper limitin M , whih for example, in the ase of negative potential solitons our when a doublelayer is met. We have already seen from Fig. 5.5 that when κc = 2, κh = 3, for example,positive potential solitons our for f < fp ≃ 0.57 while negative potential solitons ourfor f > fn ≃ 0.24.From the (small amplitude) KdV approah we de�ned fc as being the density ratio at154



5.5. Arbitrary Amplitude IA Solitons
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5. Ion-Aousti Solitons in a Plasma with Two-Temperature κ-distributed Eletrons
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5.5. Arbitrary Amplitude IA Solitonsobtained in the ase of Maxwellian eletrons (κ =∞) than for the hard spetrum Saturnianase with low κ values. As shown in Fig. 5.9, �nite positive solitons exist atMs for fc < f <

fp ≃ 0.57 (in the ase of low kappa values shown on the graph) and for fc < f < fp ≃ 0.84(in the ase of Maxwellian eletrons), with the maximum amplitudes for these ritialvalues being φm = 0.30 and 2.5, respetively. Similarly, �nite negative solitons at Ms existfor fc > f > fn ≃ 0.24 (in the ase of low kappa values) and for fc > f > fn ≃ 0.4(Maxwellian ase), with the maximum amplitudes at M = Ms for these ritial values(not shown on graph) being |φm| = 20.7 and 28.8, respetively.We also point out that if one hooses the normalized density ratio to be f = Nc0/Ne0instead of f = Nh0/Ne0 as used in this work, then for the Maxwellian ase one arrives at asimilar pattern of results to those shown in Chapter 7, Fig. 7.3 for the double Maxwellianeletrons ase.
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0 [Verheest and Hellberg, 2010℄. This phenomenon is quite suprising but it brings out thepoint why small amplitude (perturbation) tehniques may not be appropriate in analyzingexperimental or observational results, espeially in the ase of plasmas whose density ratios(here, f = Nh0/Ne0) allow the oexistene of both positive and negative potential solitons.157



5. Ion-Aousti Solitons in a Plasma with Two-Temperature κ-distributed EletronsThe perturbation methods fail to pik up the �already large amplitude� solitons in theviinity of Ms and thus an only be obtained numerially from large amplitude methodslike the pseudopotential/Sagdeev approah employed in this work. The unreliability of theperturbation theory was also pointed out in the experiments of Nakamura et al. [1996℄,where, using negative ions (argon) and two Boltzmann eletrons in a multi-dipole plasmamahine experiment, they showed that the veloity and width of solitons from the KdVapproah deviated signi�antly from the pseudopotential and experimental results.In Fig. 5.10 we plot typial potential pro�les for two values of f (f = 0.75 and f = 0.65)whih are lose to fc ≈ 0.704 for the Maxwellian ase shown in Fig. 5.8. For example, for
f = 0.75 (left panel) the graph shows that a positive potential soliton an our at thelowest Mah number Ms (that is, for δM = 0) with quite a large amplitude of about 0.75in addition to both positive and negative potential solitons for M > Ms or δM > 0. Asimilar behaviour ours as f is lowered, say to f = 0.65 (right panel) in this ase, wherenow the solitary struture at Ms is negative and is of amplitude more than unity (with
|φ0| ≃ 1.312. The soliton potentials shown in Fig. 5.10 also show that as the Mah numberinreases, the soliton potential amplitudes inrease, aompanied by a redution in thesoliton width.
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5.5. Arbitrary Amplitude IA Solitons5.5.5 Sagdeev (Pseudopotential) Approah vs. Perturbation TehniqueA omparison between the large amplitude approah and the perturbation tehniqueis shown in Fig. 5.11 for τ = 1/300, β = 3/100, and κc = 2, κh = 3 (left panel, plotted for
f > fc in the ase of negative potential solitons, and κc = κh =∞ (right panel, plotted for
f < fc in the ase of positive potential solitons), respetively. In both ases the numerialresults are shown by the ontinuous lines. In omparison with results from the arbitraryamplitude approah, we observe from Fig. 5.5 that for κc = 2, κh = 3, τ = 1/300, β =

3/100, positive potential solitons will exist for f < fp = 0.56 while negative potentialsolitons will our for f > fn = 0.24. This means that the small amplitude (KdV) methodbreaks down for fc < f < fp (for φ > 0) and fn < f < fc (for φ < 0), respetively. Thoughwe expet both methods to be in agreement to some extent [i.e., for Mah numbers loseto Ms with f ≫ fc (φ < 0) and f ≪ fc (φ > 0)℄, we point out that for values of f loseto fc in this ase, results deviate quite signi�antly even for very small values of δM , forexample, as low as 0.0007 with f = 0.5 (red urves) ompared with f = 0.6 (light-blueurves) where the φm versus δM plots remain linear up to about 0.013 in Fig. 5.11, leftpanel. A similar trend is observed in the right panel graphs as f gets lose to fc.
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5. Ion-Aousti Solitons in a Plasma with Two-Temperature κ-distributed Eletrons5.6 Positive Potential Double LayersFirst of all, in this work we have used values of temperature ratio β = Tc/Th that aretypial of a partiular region in Saturn's magnetosphere. However, if we hoose β valuesthat are quite large, as we will see in this setion, then there are possibilities of gettingpositive double layers. Suh positive double layers are also disussed in Chapter 7 whenonsidering a plasma with Maxwellian eletron omponents and old ions. To investigatethe existene of positive double layers in plasmas with κ-distributed eletron omponents,we onsider two ases, viz., old ions (τ = 0) and ool ions (τ = 1/300).
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5.6. Positive Potential Double Layerseletrons. For urve I, βc ≃ 0.101021, ompared to βc ≃ 0.3406 and βc ≃ 0.3468 for urvesII and III, respetively. Thus ool ions inrease βc only marginally above the value foundfor old ions.In the searh for positive double layers for this plasma model we shall onsider two βvalues: β = 0.09, that is also disussed in Fig. 3 of Baluku et al. [2010b℄ and Fig. 7.1 inChapter 7, and orresponds to Maxwellian eletron omponents, and β = 0.3, orrespond-ing to non-Maxwellian eletron omponents. The ase for β = 0.09 is shown in Fig. 5.13.Here, we reover the results of Baluku et al. [2010b℄, that is, we get both positive andnegative double layers that are separated by one of the ritial values of fc. Negativesolitons are bounded by double layers [the dotted (light-blue) urve for 0.75 < f < 0.95℄while positive solitons, limited by the ion limit onstraint, are bounded by the ontinuous(blue) urve. For f > fc2, we get positive double layers along the dashed light-blue urve.Thus, for some range of f positive solitons exist even after a double layer has ourred, aswill be disussed in Chapter 7.
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5. Ion-Aousti Solitons in a Plasma with Two-Temperature κ-distributed Eletronsget solitons beyond the positive double layers as was the ase in Fig. 5.13 for Maxwellianeletrons. Here, the positive solitons limited by the ions (shown by the ontinuous blueurve) our for f < 0.753 far from the values of f for whih positive potential doublelayers an be supported. This also applies to τ 6= 0, here with τ = 1/300 as shown in theright panel of Fig. 5.14, where positive solitons limited by the ion limitation exist only for
f < 0.738. This e�et appears to be related to the dip in the ion ut-o� urve of Fig. 5.13,whih for smaller κ values is lowered, and uts the ritial axis M = Ms at some value of
f , above whih it no longer plays a role.Figure 5.14 also shows that the narrow region, where solitons of both potential signsan be supported (under the dotted and ontinuous urves), is bounded from below by theritial value of f , fc1. Reall from Fig. 5.12 that for β = 0.3 we have Ψ(φ = 0, Ms) < 0.Thus in the region fc1 < f < fc2, if positive potential solitons exist, they will have �niteamplitude solitons at M = Ms while for negative potential solitons, φ → 0 as M → Ms.Below fc1 (and above fc2) we have Ψ(φ = 0, Ms) > 0, thus the positive potential solitonsthat exist in those regions have amplitudes whih go to zero as M →Ms.
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5.7. Conlusions and Chapter Summary5.7 Conlusions and Chapter SummaryIn this hapter we have investigated in some details solitons supported by plasmaswith �uid ions and kappa-distributed two temperature eletrons. Our results reveal thefollowing main features:(i) Both ompressive and rarefative solitons an be supported by the model. The formerare haraterized by a hump in the density as well as the eletrostati potential (φ > 0)while the latter have a dip in the density and eletrostati potential (φ < 0).(ii) The e�et of spetral index κ on the existene domain of solitons (or double layers)is that, ompared to high values of kappa (whih represent Maxwellian partiles), lowkappa values, whih indiate inreased superthermal partiles in the high energy tail of thedistribution, redues the existene domain in the parameter spae of (f,M) over whihompressive solitons or both polarities an exist.(iii) A peuliar behaviour ours for density ratios that support oexistene of both hump(φ > 0) and dip (φ < 0) solitons. Here we have obtained a ritial density ratio, fc, whihin the KdV approah is assoiated with the vanishing of the oe�ient of the nonlinearterm in the KdV equation, and in the arbitrary amplitude approah is assoiated with
Ψ′′′(φ = 0, Ms) = 0. Below fc, solitons whih have the same sign as Ψ′′′(φ = 0, Ms), in thisase positive, are KdV-like, with vanishing amplitudes as M approahes Ms. However, forthe same plasma on�guration, with f < fc, we also obtain solitons with the sign oppositeto that of Ψ′′′(φ = 0, Ms) that are nonKdV-like, with �nite (nonzero) amplitudes at Ms.The reverse is true for f > fc.(iv) Comparison between the perturbation theory and the large amplitude tehnique showsthat whereas the perturbation tehnique seem to be aurate for very small amplitudes,espeially for Mah numbers lose to Ms, that is, for strutures that move with veloitieslose to the phase veloity of the wave, the method beomes less reliable for veloitiesfar from the phase veloity, espeially in ases where solitons of both polarities exist.Thus the arbitrary amplitude approah like the pseudopotential method is more useful.We have shown soliton potential strutures from the pseudopotential method that annotbe obtained from the perturbation theory, even for φ ≪ 1, for this partiular model inFig. 5.10,viz., those that are �nite at M = Ms. 163



5. Ion-Aousti Solitons in a Plasma with Two-Temperature κ-distributed Eletrons(v) The large rarefative potential solitons (φ < 0) reported for this plasma model may beattributed to the fat that the small but �nite eletron mass, whih is a measure of theeletron inertia, is negleted in the eletron density expression. In the parameter spaeof amplitude and ool eletron density for a two eletron temperature plasma, Rie etal. [1993℄ showed that whereas the inlusion of the eletron inertia in the plasma modelhas negligible e�et on the existene domain of ompressive (φ > 0) ion-aousti solitonsit does redues the range of density and amplitude over whih rarefative solitons exist.In this model suh a sheme would now require getting the eletron density expressionfrom the �uid equations of motion, with the assoiated kappa-distributed pressure terminorporated. The pressure expression assoiated with a kappa-distribution funtion hasbeen derived in Appendix A.1.2, though it has not been applied to this model. This isopen for further investigation.(vi) We have shown that positive double layers may be found over a narrow range offrational ool eletron density (< 10%), for both Maxwellian and low-κ distributions, therange being larger for the latter ase.(vii) Whereas for Maxwellian eletrons, one value of the ritial density fration, fc1, liesin the region where solitons of both polarities are supported (in this ase, the existenedomain for negative potential double layers), it is seen that for low-κ eletrons, both ritialdensity frations, fc1 and fc2, may lie at the boundary of the existene domain for negativepotential double layers.
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CHAPTER 6
Ion-Aousti Solitary Waves in an Eletron-Positron-Ion (e-p-i) Plasma

In this hapter we onsider ion-aousti solitary waves in a �uid plasma model onsistingof nonthermal eletrons, whih are desribed by the Cairns distribution funtion [Cairnset al., 1995℄, Boltzmann positrons and singly harged positive old �uid ions. This workfollows on a reent artile by Pakzad [2009℄.6.1 IntrodutionEletron-positron plasmas are haraterized as fully ionized gases, onsisting of ele-trons and positrons of equal mass. They are believed to exist in the ative galati nuleiand in the pulsar magnetospheres [Popel et al., 1995; Moslem et al., 2007℄. They werealso onsidered to have appeared in the early universe (see Popel et al. [1995℄, and ref-erenes therein), solar atmosphere, and in the inertial on�nement fusion shemes usingultra-intense lasers [Liang et al., 1998℄, see also Moslem et al. [2007℄, and referenes therein.Due to the abundant nature of ions in many astrophysial plasmas, the study of eletron-positron-ion plasmas has been of interest to many authors [Berezhiani et al., 1994; Popel etal., 1995; Nejoh, 1997; Saleem et al., 2003; Haque and Saleem, 2003; Moslem et al., 2007;Pakzad, 2009℄, and others. Popel et al. [1995℄ studied arbitrary amplitude ion-aoustisolitons in a three-omponent plasma onsisting of Boltzmann eletrons and positrons,and singly harged positive �uid ions. They reported the existene of positive potential165



6. Ion-Aousti Solitary Waves in an Eletron-Positron-Ion (e-p-i) Plasmasolitons, and showed that the presene of the positron omponent redues the propaga-tion speed of the solitons. The larger the fration of positron density the lower the Mahnumber for a soliton of �xed amplitude to propagate. In addition, they showed that theamplitude of the solitons drops o� drastially in the presene of a signi�ant fration ofpositrons. However, Popel et al. [1995℄ ould not obtain double layers.Kakati and Goswami [2000℄ investigated the existene of small amplitude double layersassoiated with kineti Alfvén waves in a magnetized eletron-positron-ion plasma. Here,it was shown that small-amplitude double layers an be supported by a plasma model withBoltzmann eletrons and positrons independently of the eletron-positron temperatureratio. Haque and Saleem [2003℄ studied large amplitude two-dimensional ion-aousti anddrift wave vorties in magnetized eletron-positron-ion plasmas, where the eletrons andpositrons were also assumed to be Boltzmann distributed.In studying two-dimensional propagation of nonlinear aousti exitations in e-p-i plas-mas, Moslem et al. [2007℄ applied their studies to the aretion disks of the ative galatinulei, where the ion temperatures are (3�300) times higher than those of the eletrons.However, due to the very high ion temperatures in the aretion dis, the ions were mod-elled by the Boltzmann distribution while the eletrons and positrons were governed bythe �uid equations. Thus Moslem's model [Moslem et al., 2007℄ was quite di�erent fromthat used by Popel et al. [1995℄.Using a nonthermal distribution funtion for eletrons in a simple eletron-ion plasma,Cairns et al. [1995℄ showed that the presene of nonthermal partiles modi�es the typeof solitary waves obtained. They reported both positive and negative potential solitonsoexisting, that ould not be obtained with thermal or Boltzmann eletrons. Thus it ouldbe of interest to onsider an e-p-i plasma in whih at least one of the leptons is modelledby a Cairns distribution.Pakzad [2009℄ reently disussed ion-aousti solitons propagating in a plasma withnonthermal eletrons, Boltzmann positrons and �uid ions, and reported that positive po-tential solitons are supported by the plasma model.In this work, we show that in addition to the positive solitons reported by Pakzad[2009℄, negative potential solitons and double layers an also be supported by the plasmamodel, though for a limited range of positron-to-eletron temperature ratios.166



6.1. Introdution6.1.1 Nonthermal Distributions: The Cairns DistributionIn the ontext of interpreting results from the Freja satellite, the Cairns distributionwas introdued in Ref. [Cairns et al., 1995℄ as an ad ho model for a population withexess fast partiles, in the analysis of the e�et of suh partiles on solitary waves. Inunnormalized form, the nonthermal Cairns distribution funtion is given by Eq. (1.26),rewritten here, for larity, as
Fj(v) =

Nj0

(2π v2tj)
1/2

[

1 + α(v/vtj)
4
]

(3α + 1)
exp

[

−(v/vtj)
2

2

]

, (6.1)where α is a parameter haraterizing the nonthermality of the individual partiles, and
vtj = (KBTj/mj)

1/2 is the speies thermal veloity.In the ase of eletrons, using the normalization u→ v/vte; ne → Ne/Ne0, the normal-ized distribution funtion F∗(u) ≡ vteFe(v)/Ne0 an be written as
F∗(u) =

1√
2π

ne0

(3α+ 1)

(

1 + α u4
) exp(−u2

2

)

. (6.2)Using the transformation u2 → u2 − 2φ, where φ is the normalized eletrostati potential(with respet to KBTe/e), the normalized eletron density an be obtained as [Cairns etal., 1995℄
ne(φ) = ne0(1− βφ+ βφ2)exp(φ), (6.3)where we have used the standard notation for this distribution. Note that with the hoieof normalization we have ne0 = 1. Also, if we normalize the veloities in (6.1) with respetto Cs = (KBTe/mi)

1/2, the ion-aousti speed (in the absene of positrons), instead of vte,we arrive at the same expression for the normalized eletron density as that in Eq. (6.3).The parameter1 β is de�ned by β = 4α/(1+3α): β = 0 (or α = 0) leads to the Boltzmann-Maxwellian density ne(φ) = ne0 exp(φ). Allowing α to run from 0 to ∞, one sees that β isrestrited to 0 ≤ β ≤ 4/3.For di�erent values of β, the normalized Cairns distribution, as a funtion of normalizedveloity, is shown in Fig. 1.2. The �gure shows that for β ≥ 0.5 (or α ≥ 0.2) the distribution1This parameter β should not be onfused with the temperature ratio β = Tc/Th used in Chapters 4and 5 167



6. Ion-Aousti Solitary Waves in an Eletron-Positron-Ion (e-p-i) Plasmafuntion develops wings at high veloities, beoming multi-peaked. For suh high valuesof β, the Cairns distribution funtion may not be good for physial appliations, as itmay be unstable. In partiular, Verheest and Pillay [2008a℄ put the limit on β (abovewhih the Cairns distribution eases to be monotonially dereasing) at β = 4/7 ≃ 0.571,whih orresponds to α = 1/4. In other words, the Cairns distribution is appropriateonly for a narrow range of the parameter α deviating from the Maxwellian distributionfuntion [Verheest and Pillay, 2008a; Verheest, 2010a℄.6.2 Plasma Model and Basi EquationsThe plasma model onsists of ool nonthermal eletrons (temperature Te and density
ne, given in (6.3)), Boltzmann distributed positrons (temperature Tp and density np), andold inertial ions (density ni).The densities of the positrons and ions are given by

np(φ) = np0 exp(−σ φ); σ = Te/Tp, (6.4)and
ni(φ) = ni0

(

1− 2φ

M2

)

−1/2

, (6.5)respetively, where we have used the transformation ξ = x −Mt to a moving frame withveloity M , the latter being normalized with respet to Cs. That is, normalization is withrespet to the ion sound speed, Cs, the reiproal of the ion plasma frequeny, ω−1
pi =

(ε0mi/Ni0e2)1/2, and a mixed Debye length λDe� = (ε0KBTe/e2Ni0)
1/2; the densities Njto Ne0, and eletri potential φ to KBTe/e. Reall also that the equilibrium densities nj0are normalized quantities with respet to Ne0, that is, np0 = Np0/Ne0 and ni0 = Ni0/Ne0.In obtaining Eq. (6.5) we have used the boundary onditions φ and u → 0, and ni → ni0as ξ → ±∞.We point out that the normalized ion density an take several forms depending on thehoie of normalization used, provided onsisteny is maintained. For example, if normal-ization is with respet to the eletron parameters, that is, the equilibrium eletron density

Ne0, the eletron thermal veloity, vte, the eletron Debye length λDe = (ε0KBTe/e2Ne0)
1/2
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6.3. Linear Dispersion Relationand the reiproal of the eletron plasma frequeny, ω−1
pe = (ε0me/Ne0e2)1/2, we obtain

ni(φ) = ni0

(

1− 2φ√
µM2

)

−1/2

, (6.6)where µ = mi/me is the ion to eletron mass ratio, and M is now normalized with re-spet to vte. Comparing equations (6.5) and (6.6), we see that normalizing with respetto the eletron parameters (vte, ω−1
pi and λDe), implies that allowed Mah numbers or-responding to solitary waves will be (mi/me)

1/4 times the Mah numbers assoiated withthe normalization in (6.5).The speies' densities in Eqs. (6.3), (6.4) and (6.5) are oupled with the help of Poisson'sequation [Popel et al., 1995℄
d2φ

dξ2
= ne(φ)− ni(φ)− np(φ) = 0. (6.7)6.3 Linear Dispersion RelationIon-aousti waves have harateristi veloities (KBTi/mi)

1/2 ≪ ω/k ≪ (KBTe/me)
1/2.In a two-omponent (e-i) plasma the dispersion relation takes the from

ω′2

k′2
=

C2
s

1 + k2λ2
De

, (6.8)where Cs = (KBTe/mi)
1/2 and λDe = (ε0KBTe/ne0e2)1/2. Note that in the above expres-sion, k′ and ω′ are unnormalized wavenumber and frequeny. It follows that one requires

Ti ≪ Te, otherwise if Ti ≈ Te, then the ion thermal veloity will be omparable to theion-aousti wave phase veloity, whih will lead to strong Landau damping.In the presene of positrons (e-p-i plasma), the normalized and linearized speies den-sities beome
ne1≈ ne0(1− β)φ1;

np1≈−np0 σ φ1 and
ni1≈ ni0(ω

2/k2)φ1, (6.9)
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6. Ion-Aousti Solitary Waves in an Eletron-Positron-Ion (e-p-i) Plasmarespetively, where nj1 (j = e, p, i) and φ1 are the perturbed density and eletrostatipotential, and now k and ω are normalized quantities. In addition, Poissons's equationbeomes
k2φ1 = (ni1 − ne1 + np1)/ni0. (6.10)Substituting the densities from Eq. (6.9) into Eq. (6.10) we get

k2/ω2 = [ni0k
2 + (1− β)ne0 + σ np0]/ni0. (6.11)With ne0 = 1, np0 = p and ni0 = 1− p, the dispersion relation in this ase then beomes

ω2

k2
=

{

k2 +
σ p+ (1− β)

1− p

}

−1 (6.12)
≡ 1

(k2 + 1/M2
s )

, (6.13)where, as we will see in the subsequent setion [see Eq. (6.16), for example℄, Ms =
√

(1− p)/(1 − β + p σ) is the ritial (minimum) speed of the solitary strutures in themoving frame. It follows from Eq. (6.13) that in the limit k → 0, ω/k → Ms, that is,
Ms is equivalent to the phase veloity of the propagating solitary strutures in the longwavelength regime (k → 0).From the de�nition ofMs we see that when p = 0 (no positrons), and β = 0 (Maxwellianeletrons), the dispersion relation (6.13) beomes ω2 = k2/(1+k2), whih in unnormalizedform is simply Eq. (6.8), for an eletron-ion plasma.6.4 Arbitrary Amplitude Solitary WavesWith the help of Eqs. (6.3), (6.4) and (6.5) we an integrate Eq. (6.7), leading to theenergy integral relation

1

2

(

dφ

dξ

)2

+Ψ(φ, M) = 0, (6.14)where the Sagdeev potential Ψ(φ, M) is de�ned by [Pakzad, 2009℄
Ψ(φ, M) = (1 + 3β)− [1 + β(3− 3φ+ φ2)] exp(φ) + p

σ
[1− exp(−φσ)]

+(1− p)M2[1− (1− 2φ/M2)1/2], (6.15)170



6.4. Arbitrary Amplitude Solitary Waveswith the shorthand p = np0 = Np0/Ne0 being the normalized equilibrium positron den-sity [Pakzad, 2009℄, and the harge neutrality ondition (in the form) ne0 = np0+ni0 (with
ne0 = 1) has been used. For Maxwellian eletrons (β = 0 or α = 0), Eq. (6.15) redues toEq. (10) of Popel et al. [1995℄.As a neessary (but not su�ient) ondition for the existene of solitons (or doublelayers), we require that Ψ′′(0, M) < 0 must hold. This ondition leads to the solitonrequirement [Pakzad, 2009℄

M > Ms =

√

(1− p)√
1− β + p σ

, (6.16)where Ms is the ritial Mah number, equivalent to the aousti phase veloity of thewave, obtained from Ψ′′(0, Ms) = 0. Similarly, in the ase of Maxwellian eletrons (with
β = 0), Eq. (6.16) is the same as Eq. (12) of Popel et al. [1995℄. We an easily on�rm thatPopel's result (Ms dereases with inreasing p) for β = 0 applies for all values of β. Wenote also that the value p = 0 implies an eletron-ion plasma; Ms → (1−β)−1/2, inreasingas β inreases, with a minimum value Ms = 1, as expeted for a Maxwellian distribution.On the other hand, for p = 1 we have a pure eletron-positron plasma, ion-aousti wavesannot be supported, and Ms → 0.If, instead of using Eq. (6.5) for the normalized ion density, we use the alternativenormalization, (6.6), in Poisson's equation, the Sagdeev potential beomes

Ψ(φ, M) =
{

(1 + 3β)− [1 + β(3− 3φ+ φ2)] exp(φ)}+ p

σ
[1− exp(−φσ)]

+
(1− p)√

µ
M2[1− (1− 2

√
µφ/M2)1/2]. (6.17)Therefore in this ase, the lower Mah number limit for the existene domain of solitonsor double layers beomes [Pakzad, 2009℄

M > M∗

s =
µ1/4

√

(1− p)√
1− β + p σ

, (6.18)where the fator √µ in (6.16) is a result of the di�erent normalization used here. Inpartiular, with the transformation M2 → (µ)1/2M2, we get Eq. (6.16).The lower bounding urves for solitons in Figs. 6.1 and 6.2 were obtained analytiallyusing Eq. (6.16). However, the upper bounding urves were obtained numerially by sub-171



6. Ion-Aousti Solitary Waves in an Eletron-Positron-Ion (e-p-i) Plasmastituting the upper soliton potential limit φli = M2/2 in Eq. (6.15), and solving for M(p)for given values of β.6.4.1 Numerial Results and DisussionWith the help of the Sagdeev potential in Eq. (6.15) we are in a position to delineateexistene domains of solitons supported by the plasma model. First, the positron andeletron densities are well behaved for all φ. However, it is easy to see from the ion densityrelation in Eq. (6.5) that the ions are in�nitely ompressed (ni → ∞) when φ → φli =

M2/2 > 0. Sine φli > 0 for all M > 0, it implies that the existene of positive potentialsolitons require S(φli, M) > 0 with the upper limit on M obtained at Ψ(φli, M) = 0.Negative solitons, if they exist, ould be limited by double layers, for whih we require therelation Ψ(φdl, Mdl) = Ψ′(φdl, Mdl) = 0, where Mdl and φdl are the Mah number andpotential amplitude orresponding to the negative double layer, respetively.Assuming equal positron and eletron temperatures (σ = 1), Pakzad [2009℄ showedtypial Sagdeev potential plots in his Figs. 1 and 2 for p = 0.01 and di�erent values of βbut for the same Mah number. Thus, Pakzad [2009℄ showed that the soliton amplitudedereases with inreasing β. However, his results for β = 0.6 (and M = 1.45) an not leadto a soliton solution, as that Mah number falls below Ms ≃ 1.554. Closer examination ofthe Sagdeev potential would have revealed that very lose to the origin there is a hump,with Ψ(φ) > 0, before it drops below zero, forming a well. As a result of the small positivehump, the pseudo partile would never be able to reah the well, and no soliton exists. Inaddition, as we have already pointed out, for β > 4/7 ≈ 0.571, the Cairns distribution isno longer appropriate as a steady-state distribution [Verheest and Pillay, 2008a; Verheest,2010a℄.In Fig. 6.1 (left panel) we show a plot of the Mah number M versus p for a plasma withpositrons having the same temperature as the eletrons, and β = 0.5. The graph showsthat positive potential solitons exist for the full range of p, bounded by the ontinuousand dotted green urves. These positive solitons are limited by in�nite ompression of theion density (ni →∞), that is, positive solitons have amplitudes less than φli = M2/2. Inaddition, we also observe negative solitons limited by double layers for a narrow range in
p (p . 0.05), bounded by the dashed red urve. Thus these negative solitons and double172



6.4. Arbitrary Amplitude Solitary Waveslayers our only in a plasma whih is essentially an eletron-ion plasma with positronimpurity. In the allowable range of β (β < 4/7), as we shall see below, we have onlyfound these negative solitary waves in a narrow range of β and p. These were not reportedby Pakzad [2009℄.In the right panel of Fig. 6.1 we show only positive potential solitons for di�erentvalues of β: dotted (β = 0.5), dashed (β = 0.3) and ontinuous (β = 0.1), respetively.The graphs show that the variation of β has only a quantitative e�et on the existenedomain of positive solitons, with the domain beoming a little narrower as β inreases. Inaddition, for �xed p in the range 0 < p < 1, both the lower and upper Mah number limitsfor the existene domain inreases as β inreases; thus the normalized solitary wave speedvalues also inrease. We see that for p = 0 (a pure eletron-ion plasma) and β = 0.1, therange of M lies between 1.054 and 1.591, whih is onsistent with the standard range of[1, 1.5852℄ that is well-known for the ase of a plasma with Boltzmann eletrons (β = 0)and �uid ions [Infeld and Rowlands, 2000℄.
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Figure 6.1: Left panel: Existene domain of solitons or double layers orresponding toa plasma with equal positron and eletron temperatures (σ = 1) and β = 0.5. Positivesolitons are bounded by the green (solid and dotted) urves; Negative solitons (limited bydouble layers) are bounded by the red dashed urve, ourring for low p = Np0/Ne0 values.Right panel: Existene domain for positive potential solitons for di�erent β values: dotted(β = 0.5), dashed (β = 0.3) and ontinuous (β = 0.1), respetively.In Fig. 6.2 we show the existene domain of positive solitons, in the [M − β℄ plane, fordi�erent values of p. For eah value of p, the lower urves orrespond to Ms (obtained usingEq. (6.16)) while the upper urves orrespond to the upper M limit, obtained numerially173



6. Ion-Aousti Solitary Waves in an Eletron-Positron-Ion (e-p-i) Plasmaby solving the expression S(φli, M) = 0. For the values of p used here (p = 0.1, 0.01, and
0.001) we on�rm the results of Pakzad [2009℄ in his Fig. 4. In partiular, our results showthat positive potential solitons exist for, say, β < 0.734 (p = 0.1), β < 0.626 (p = 0.01) and
β < 0.616 (p = 0.001), respetively, whih agree with those of Pakzad [2009℄ in his Fig. 5.While these results show ritial upper limits in β for the existene of positive potentialsolitons, they all orrespond to β > 4/7, and hene, as we have seen earlier, are physiallyinappropriate. Thus the existene domains are more orretly ut o� at β = 0.57 as shownin the �gure.We note that the alulations in Figs. 6.1 and 6.2 have been only for Te = Tp. It is phys-ially reasonable to assume this as a �rst approximation beause of rapid thermalizationof the leptons. We shall onsider some aspets of Te 6= Tp below.
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6.4. Arbitrary Amplitude Solitary Wavessolitons of both polarity.From Eq. (6.15) the third derivative of the Sagdeev potential Ψ(φ, M) evaluated at
φ = 0 and M = Ms is given by

Ψ′′′(0, Ms) = p σ2 − 1 +
3(1− β + p σ)2

1− p
. (6.19)In the limit p → 0, Ψ′′′(0, Ms) = 3β2 − 6β + 2, whih gives the ritial values of β as

βc1 = (3−
√
3)/3 ≃ 0.423 and βc2 = (3 +

√
3)/3 ≃ 1.577. However, from the de�nition of

β, i.e., β = 4α/(1+3α), the maximum allowable value of β is β = 4/3 ≃ 1.333. The lattervalue (βc2) is inappropriate as it exeeds this allowed upper limit. We note that p → 0yields an e-i plasma and thus β ould then play the role of the ritial parameter f whihwe enountered in previous hapters.Figure 6.3 (upper panel) shows a plot of p versus β satisfying Ψ′′′(0, Ms) = 0, fordi�erent values of σ < 1 (Te < Tp). The lower panel shows a small range of the �gure inthe upper panel. For 0 < σ < 1, Ψ′′′(0, Ms) is negative (positive) below (above) the urveorresponding to a partiular value of σ. Note that for β < βc1 we have Ψ′′′(0, Ms) > 0 forall values of p > 0, implying that �KdV-like� solitons2 (whose amplitudes vanish at Ms)supported for suh values of β will have positive polarity; and if negative solitons exist forsome values of p, they will be nonKdV-like with nonzero amplitudes at Ms [Baluku et al.,2010a,b; Verheest, 2010a; Verheest et al., 2010℄. Figure 6.3 (upper panel) thus shows thatfor the physially appropriate β range (β < 4/7), negative potential �KdV-like� solitons(or double layers) exist only for very low values of p (less than about 0.2 for σ ≥ 0.5).For �xed β, the range of p having negative solitary waves, dereases as σ inreases andbeomes negligible for Te signi�antly greater than Tp.On the other hand, for a partiular value of p, negative solitary strutures our for therange β1 < β < 4/3, where β1, whih may be less than or greater than βc1 depending onthe value of p, is the lower β uto� at whih the Mah number (Mdl) orresponding to anegative double layer equals Ms. In the ase of β1 < βc1, the ourrene of these negativesolitons or double layers would require a very small proportion of positrons (p values verylose to 0), and are nonKdV-like.2�KdV-like� solitons have amplitudes that go to zero as M goes to Ms while �nonKdV-like� solitonshave �nite nonzero amplitudes at Ms. 175



6. Ion-Aousti Solitary Waves in an Eletron-Positron-Ion (e-p-i) Plasma
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6.5. Summary and Remarksof p > pc (we onsider p = 0.0494 in the lower panel), we show a �nite negative soliton(|φ| ≃ 0.058, lower left panel) obtained at Ms, with Ψ′′(φ, M) = 0, Ψ′′′(φ = 0, M) > 0,but there is no positive soliton. Finally, at M ≃Ms+0.000018 (lower right panel) we get anegative double layer (|φ| ∼ 0.11) and a positive soliton (φ ∼ 0.016), again demonstratingoexistene. The examples in Fig. 6.4 show that the existene of a �nite positive (ornegative) roots of S(φ, M) implies that neighbouring Sagdeev potentials have solitons ofboth polarities [Verheest et al., 2010℄.
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Figure 6.4: Typial Sagdeev potential urves for σ = 1, β = 0.5, and p = 0.03 < pc =
0.04904 (upper panel) and p = 0.0494 > pc (lower panel). The left panel urves showSagdeev potential urves at M = Ms while the right panel urves are for Ms + 0.015(upper right panel) with two solitons (one large and the other very small), and for M =
Ms + 0.000018 (lower right panel) showing a negative double layer and a positive soliton.6.5 Summary and RemarksWe have studied ion-aousti solitary waves in an e-p-i plasma using the Sagdeev po-tential approah. This work is an extension of Pakzad [2009℄. As shown in Fig. 1.2, thenonthermal partile distribution is multi-humped for values of β > 4/7, and therefore isthen inappropriate to use as a stable non-Maxwellian distribution. Possibly another formof nonthermal distribution, suh as a kappa distribution, may be used instead.We have found (Fig. 6.2) that in addition to positive potential ion-aousti solitonswhih are supported over the full range of frational positron density, negative potential177



6. Ion-Aousti Solitary Waves in an Eletron-Positron-Ion (e-p-i) Plasmasolitons an be supported over a very limited range of low positron density (p . 0.05), andare limited by double layers. These negative solitary waves were not reported by Pakzad[2009℄.In addition, our results show that in the region where both positive and negative poten-tial solitons may be supported by the same plasma on�guration, �nite solitary struturesan be obtained at the ritial (minimum) Mah number, i.e., at the true ion-aoustispeed of the plasma mix.For some plasma on�guration, with a spei� value of β, there exists a ritial valueof the frational positron density, p (denoted pc) at whih Ψ′′′(φ, M) = 0 for φ = 0 and
M = Ms. For example, with σ = 1, we �nd pc ≃ 0.01734 (β = 0.45) and pc ≃ 0.04904(β = 0.5).If pc lies in the region where solitons of both polarity our for the same plasma param-eters, then for p < pc one gets negative �KdV-like� solitons and �nite amplitude positivepotential �nonKdV-like� solitons. Similarly, for p > pc one obtains positive �KdV-like�solitons that are of small amplitude and �nite amplitude negative potential �nonKdV-like�solitonsLastly, for a partiular value of p, the lower value of β supporting negative potentialsolitons or double layers orresponds to the double layer Mah number Mdl being equal to
Ms.
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CHAPTER 7
Ion-Aousti Solitary Waves in a Plasma With Two-Temperature Eletrons
In this hapter we use �uid equations to study ion-aousti solitons in two temperatureeletron plasmas onsisting of old inertial ions, and ool and hot Boltzmann eletrons.Though suh a plasma model has been studied in the past by a number of authors, ourfurther investigations have revealed new results that are presented in this work.The results presented in this Chapter have been published as Baluku et al.,Europhysis Letters 91, 15001 (2010)7.1 IntrodutionUsing a plasma with a single eletron omponent, Washimi and Taniuti [1966℄ dis-ussed the one-dimensional long-time asymptoti behaviour of ion-aousti waves of smallbut �nite amplitudes using the Korteweg-de Vries (KdV) equation. They showed that thewidth of the solitary wave beomes larger for small amplitude, implying that steepeningof the wave due to the weak nonlinearity is balaned by the dispersion in long wavelengthfor the weak solitary wave to be formed. Ion-aousti solitary waves in a two-temperatureplasma have been studied by a number of authors in the past [Buti, 1980; Nishihara andTajiri, 1981; Baboolal et al., 1990; Ghosh et al., 1996℄. Nishihara and Tajiri [1981℄ thenonsidered a two-eletron temperature plasma with both hot and ool eletron omponentsusing �uid equations. Here, they showed that there are two regions of wave propagation179



7. Ion-Aousti Solitary Waves in a Plasma With Two-Temperature Eletronsin the plasma model: the normal propagation and the anomalous propagation, where theanomalous propagation property is haraterized by the steepening of the wave so as toderease the density. Nishihara and Tajiri [1981℄ also showed that for a ertain parame-ter region, �nite amplitude rarefative and ompressive ion-aousti solitons an both besupported (loosely, �oexist�) in the plasma, with the small amplitude rarefative (or om-pressive) solitons existing only in the plasma on�guration having anomalous (or normal)propagation properties. As will be seen in Se. 7.3, in the terminology of the Sagdeevpotential [Sagdeev, 1966℄, the two regions are separated by a urved surfae obtained forparameters at whih both the seond and third derivatives of the Sagdeev potential vanishat the origin.As the terminology �ompressive� and �rarefative� is not well-de�ned in a multi-�uidplasma, we point out that in this model, rarefative solitons have negative potential whileompressive solitons have positive potential. In this work we show that in the region of�oexistene�, if the negative solitons have amplitudes that vanish at the aousti speed, asfor Korteweg-de Vries (KdV) solitons [Swanson, 2003℄, then the positive solitons have �niteamplitude at the aousti speed, whih annot be obtained from the KdV desription.In plasma models where large amplitude solitons an exist, the redutive perturbationanalysis, whih leads to a KdV equation and weakly nonlinear solitons, is not appropriate.The Sagdeev approah [Sagdeev, 1966℄ is a useful tool in seeking solutions of arbitraryamplitude nonlinear solitary wave strutures, far beyond the KdV results.Using the Sagdeev approah, Baboolal et al. [1990℄ investigated the uto� onditionsfor the existene of large amplitude ion-aousti solitons and double layers in �uid plas-mas onsisting, e.g., of two Boltzmann eletron speies (hot and ool) and a single oldion speies. They found that below a temperature threshold, both positive and negativepotential solitons existed for an intermediate range of ool eletron density ratio, withthe negative solitons limited by double layers. Elsewhere, only positive potential solitonsourred. In addition, in the �oexistene� region, �nite (nonzero) amplitude positive po-tential solitons were obtained at the ritial Mah number Ms, equivalent to the aoustispeed, but they did not omment on them.In this work we investigate these �nite amplitude results atMs in detail, and also reportthat positive double layers an also be supported by the plasma model for a restrited range180



7.2. Plasma Model and Basi Equationsof ool eletron densities. For a range of ool eletron densities where these positive doublelayers an exist, we also obtain solitons having Mah numbers exeeding those supportingdouble layers, i.e., the Mah numbers orresponding to double layers don't at as an upperMah number limit, as expeted.7.2 Plasma Model and Basi EquationsWe onsider a plasma model onsisting of two Boltzmann eletron omponents, one hot(temperature Th, density nh) and the other ool (temperature Tc, density nc), and oldinertial �uid ions that are singly harged. Suh a model has been disussed by a number ofauthors [Buti, 1980; Nishihara and Tajiri, 1981; Baboolal et al., 1990; Ghosh et al., 1996℄,where Ghosh et al. [1996℄ used a plasma model with warm �uid ions instead.The normalized densities of the ool and hot eletrons are, respetively, given by
nc(φ) = f exp(αcφ) and (7.1)
nh(φ) = (1− f)exp(αhφ), (7.2)where f = Nc0/Ni0 with Ni0 = Ne0 = Nc0 +Nh0, Nj0 (j = c, h, i) being the equilibriumdensities; 1/αc = Tc/Te� and 1/αh = Th/Te�; and φ is the eletrostati potential, normal-ized to KBTe�/e. Here, KB and e are the usual Boltzmann onstant and eletroni harge,respetively, while Te� is an e�etive eletron temperature de�ned by Te� = Tc/[f+(1−f)τ ],in terms of the temperature ratio τ = Tc/Th. Of ourse, nh will play a role only when

αh 6= 0, and hene τ 6= 0.The density of the old ions is given by
ni(φ) = (1− 2φ/M2)−1/2, (7.3)whereM is the Mah number, whih gives the veloity of the solitary strutures, normalizedto the aousti speed Cs = (KBTe�/mi)

1/2, mi being the mass of the ions.In the Sagdeev approah [Sagdeev, 1966℄, the simple traveling waves satisfying Eq. (7.5)are solitary waves whih are stationary in a frame moving with a veloity, M . Transformingto a moving frame with position ξ = x−Mt, the speies' densities are oupled by Poisson's181



7. Ion-Aousti Solitary Waves in a Plasma With Two-Temperature Eletronsequation to give
d2φ

dξ2
+G(φ) = 0, (7.4)where G(φ) is the sum of the speies' densities.After an integration, Eq. (7.4) an be expressed in the form of an energy integral [Sagdeev,1966℄

1

2

(

dφ

dξ

)2

+Ψ(φ, M) = 0, (7.5)where Ψ(φ,M) = −
∫ φ
0 G(φ)dφ is the pseudopotential or the Sagdeev potential of theplasma system.In obtaining the expression for the Sagdeev potential Ψ(φ,M), following from Eq. (7.5),we ensure that Ψ(φ,M) and its derivative (with respet to the potential φ) vanish at theorigin φ = 0. The former, Ψ(φ,M) = 0 for φ = 0 ensures that the boundary onditions aresatis�ed in the integration while the latter (the vanishing of the derivative of the Sagdeevpotential at the origin) ensures that the overall harge neutrality is zero in the absene ofdisturbanes.Thus the Sagdeev potential in Eq. (7.5) takes the form

Ψ(φ, M) =
f

αc
[1− exp(αcφ)] +

(1− f)

αh
[1− exp(αhφ)] + M2(1−

√

1− 2φ/M2). (7.6)As a prerequisite for the formation of solitary strutures, the origin should be a loal(unstable) maximum, whih ondition is usually interpreted as requiring that Ψ′′(0,M) < 0(where the prime denotes di�erentiation with φ). This ondition leads to super-aoustiwaves with M > Ms = 1, where Ms is the normalized aousti linear phase veloity,obtained from Ψ′′(0, Ms) = 0.Though the general pratie has been that the existene of solitons requires M > Ms,reent investigations [Baluku et al., 2010a,b; Baluku and Hellberg, 2010; Verheest, 2010a;Verheest et al., 2010℄ have shown that solitons an have �nite amplitudes at Ms in theparameter regime where solitons of both polarity exist. In these ases Ψ′′(0, M) = 0: theorigin is a triple root suh that the onvexity ondition is provided by the third derivativeof Ψ(φ, M). With a triple root at the origin, in the presene of positive (negative) potentialsolitons, the origin is unstable (stable) for φ > 0 (φ < 0) but stable (unstable) for φ < 0182



7.2. Plasma Model and Basi Equations(φ > 0).In some instanes the Mah number M may have an upper limit suh that solitarystrutures will our for a limited range in M , and in other instanes, M is unboundedsuh that solitary strutures an our for all M ≥ Ms; the equality sign only applies topartiular plasma parameters in the region where both signs of potential an be supported.The onstraints leading to the upper limit on M may be due to a number of fators suhas, ensuring that the speies densities remain real and nonzero, existene of soni points, orby the ourrene of double layers if both solitary strutures are supported by the plasmamodel in question.For this model positive potential solitons are limited by in�nite ompression of theinertial ions, reahed when φ → φli = M2/2, thus leading to a su�ient ondition
Ψ(M2/2, M) > 0. However, depending on the value of the temperature ratio τ , posi-tive potential double layers are also possible for a limited range in f . On the other hand,negative potential solitons are limited by double layers.We shall now investigate the existene domain for the solitons and double layers thatmay be supported by this model.From Eq. (7.6), the third derivative of Ψ(φ, M) at the origin (φ = 0) for M = Ms, isgiven by

Ψ′′′(0, Ms) = 3− f

(τ(1− f) + f)2
− (1− f)

(1− f + f/τ)2
. (7.7)If Ψ′′′(0, Ms) = 0, then for �xed τ , Eq. (7.7) gives the ritial values of the ool eletrondensity as

fc1, 2 =
(1− 5τ) ± (1− 10τ + τ2)1/2

6(1 − τ)
, (7.8)provided τ 6= 1. Here, fc1 and fc2 are the lower and upper values of the ritial density givenby the minus and plus signs in Eq. (7.8), respetively, and are real provided τ2−10τ+1 ≥ 0,leading to a ritial value of τ .Thus, the existene of a �nite, non omplex ritial density ratio f = fc requires

τ ≤ τc1, where τc1 = (5− 2
√
6) ≃ 0.10102, that is, Th ≥ (5 + 2

√
6)Tc ≃ 9.89898Tc, as wasreported by Bezzerides et al. [1978℄ for rarefative shoks in laser plasmas. At τ = τc1, theroots fc1 and fc2 in (7.8) oalese into a single root fc ≈ 0.092. In addition, when τ → 0we have fc1 → 0 and fc2 → 1/3. However, with the hoie of normalization, when τ → 0,183



7. Ion-Aousti Solitary Waves in a Plasma With Two-Temperature Eletrons
Tc/Te� → f and Th/Te� → ∞. Suh super hot onditions annot be ahieved in physialplasma situations, and, moreover, the model then breaks down.The ritial density fc an also be obtained from the KdV desription in the followingway. Here we onsider a normalized KdV equation of the form

dφ

dζ
+Aφ

dφ

dχ
+B

d3φ

dχ3
= 0, (7.9)where the seond term desribes the nonlinearity while the third term desribes dispersionor dissipation. In obtaining Eq. (7.9) we have used the strethed oordinates χ = ǫ1/2(x−

Ma t) and ζ = ǫ3/2t, where Ma is the phase veloity normalized to Cs, and ǫ is a smallnessparameter. The onstants A and B in Eq. (7.9), involve the equilibrium density andtemperature ratios, besides other parameters in the plasma model. In partiular, it aneasily be shown (see Chap. 5) that for this model
A=

Q

2
α
1/2
s1 (1 + 3ταs1)

−1/2; Q = 3− αs2/α
2
s1 and (7.10)

B=α
−3/2
s1 (1 + 3ταs1)

−1/2, (7.11)where αs1 =
∑

s τsNs0/Ne0; αs2 =
∑

s τ
2
sNs0/Ne0; τs = Tc/Ts, with s = c, h for the oolor hot eletron onstituent. Note that τc = 1 and τh = Tc/Th = τ .Solutions to Eq. (7.9) are valid only for A 6= 0. However, when A → 0, the balanebetween the nonlinearity and dispersion is not maintained for the solitary strutures topropagate. The ritial density fc is then obtained by solving the equation A = 0 for

f . For this partiular model, it is lear from Eq. (7.10) that A = 0 when Q = 0. Italso follows that Q = Ψ′′′(0,Ms) in Eq. (7.7), and hene the same ritial fc are foundas those in Eq. (7.8) above. We point out that the expression Q redues to Eq. (2.12)of Tajiri and Nishihara [1985℄. Using an analogous three omponent plasm model withontaminating negative ions (instead of the ool eletron omponent), Nakamura et al.[1985℄ experimentally observed a positive pulse, that propagated like a linear wave withouthange of its shape (exept by damping), at the ritial parameters for whih the nonlinearoe�ient A in the KdV equation vanished.
184



7.3. Numerial Results and Disussion
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Figure 7.1: Variation of the ritial density fration, fc, with τ . Along the urve,
Ψ′′′(0,Ms) = 0. Inside the urve, Ψ′′′(0,Ms) < 0 while outside the urve, Ψ′′′(0,Ms) > 0.Here, fc1 = fc2 at the ritial temperature ratio τc1 = 5− 2

√
6.7.3 Numerial Results and DisussionIn Fig. 7.1 we show the variation of fc with temperature ratio τ , using Eq. (7.8). Alongthe urve we have Ψ′′′(0,Ms) = 0; inside the urve Ψ′′′(0, Ms) < 0, and outside the urve

Ψ′′′(0, Ms) > 0. Figure 7.1 is similar to Fig. 3, urve labeled B, of Nishihara and Tajiri[1981℄ (see also Tajiri and Nishihara [1985℄) and Fig. 2 of Bezzerides et al. [1978℄, althoughin the latter, only one solution of fc is shown. The region bounded by Ψ′′′(0, Ms) < 0is what is referred to as the region of anomalous propagation in Bezzerides et al. [1978℄and Nishihara and Tajiri [1981℄, while the other region with Ψ′′′(0, Ms) > 0 is the regionof normal propagation.7.3.1 τ > τc1 = 5− 2
√
6To begin with, we onsider a value of τ that is above τc1 = 5 − 2

√
6 ≃ 0.10102, i.e.,where Ψ(0,Ms) > 0 for all f . Here an example is shown in Fig. 7.2, with τ = 1/5. Onlypositive potential solitons limited by the ion density onstraint (φ < φli = M2/2) aresupported by the model; The urve shows the Mah number (M = Mli) that gives themaximum amplitude limit due to the ion density onstraint (φli) at whih Ψ(φli,M) = 0.185



7. Ion-Aousti Solitary Waves in a Plasma With Two-Temperature EletronsPositive potential double layers do not exist, and negative potential solitons or double layersare not supported. For these positive potential solitons, at f = 0 or f = 1, orrespondingto a simple plasma with isothermal (Boltzmann) eletrons and old �uid ions, we reoverthe usual range [Infeld and Rowlands, 2000, p. 125℄ 1 < M < 1.5852. The nature of thesepositive solitons, having the sign of Ψ′′′(0, Ms), is that their amplitudes tend to zero as Mapproahes Ms. Basially for τ ≥ τc1 only positive potential solitons exist, as reported, forexample, by Baboolal et al. [1990℄.Figure 7.2 also shows that the maximum Mah number assoiated with positive solitons�rst derease as f inreases from f = 0, up to an intermediate value of f orrespondingto the dip in the urve, beyond whih the maximum Mah number inreases with f up to
f = 1. We have arried out some alulations and found that as τ dereases, the dip onthe urve ours for lower M values, and reahes Ms = 1 at ritial τ value τc2 ≈ 0.075, for
f ≈ 0.0212. Therefore, for τ < τc2, there is a range in f where any possible positive solitonsthat may exist, annot be limited by the ion density onstraint. If they are neverthelessto exist there, they must be limited by positive potential double layers. This point will beillustrated by some examples below.
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7.3. Numerial Results and Disussionfor all 0 ≤ f ≤ 1. For this purpose we �rst hoose τ = 0.09 for disussion. In Fig. 7.3 wepresent the existene domain (left panel) and soliton potentials at M = Ms (right panel)for τ = 0.09. The ontinuous (blue) urve is the upper limit for positive solitons. Thedashed (blue) urve represents positive double layers for f < fc1, while the dotted (red)urve shows negative double layers (for fc1 < f < fn), that limit negative solitons. Wenote that fc1 is the boundary between the two double layer polarities, and here it is alsothe lower limit for the existene of negative solitons. For f > fn, only positive solitonsare supported. Thus, we see in Fig. 7.3 (left panel) that positive and negative solitons areboth supported (�oexist�) over the range fc1 < f < fn. This region, bounding negativepotential double layers, is analogous to that orresponding to rarefative shoks in Fig. 3of Bezzerides et al. [1978℄. We also observe from Fig. 7.3 (left panel) that the other valueof fc (fc2 ≃ 0.161) lies in the �oexistene� region. In addition, there is a suprising set ofsolitons (limited by the ions, bounded by the ontinuous blue urve in Fig. 7.3, left panel)that our beyond the positive potential double layers [Baluku and Hellberg, 2010℄, i.e.,at values M > Mdl, where Mdl is the Mah number of the positive double layer. These
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fc1 ≃ 0.041, fc2 ≃ 0.161 and fn ≃ 0.225.positive double layers were not reported by the authors that have looked at this plasmamodel [Buti, 1980; Nishihara and Tajiri, 1981; Baboolal et al., 1990℄. However, using a�uid-dynamial approah, Verheest et al. [2006℄ showed that positive double layers that are187



7. Ion-Aousti Solitary Waves in a Plasma With Two-Temperature Eletronsvery weakly super-ion-aousti, ould be supported at small values of f in a two-eletrontemperature plasma with isothermal eletron omponents. Note that at f = 0, other thanat the origin (φ = 0), the double layer requirements Ψ(φ, M) = 0 and Ψ′(φ, M) = 0 arenot satis�ed.In the right panel of Fig. 7.3 we show the variation of soliton amplitude φ0 (at M = Ms)with ool eletron density f , over the interval [fc1, fn]. The ontinuous urve representsnegative solitons, the dotted urve, positive solitons. The �gure shows that between fc1 and
fc2, negative solitons have zero amplitude at Ms, (i.e., they are KdV-like) while positivesolitons have �nite nonzero amplitudes at Ms (i.e., they are nonKdV-like). These proper-ties reverse for for fc2 < f < fn. Results similar to those in Fig. 7.3 (right panel) were alsofound for dust ion-aousti solitons in a plasma with kappa-distributed eletrons [Balukuet al., 2010a℄.We have already observed from Fig. 7.3 (left panel) that in the region where positivedouble layers an be obtained, for a given value of f , one an get solitons for Mah numbersthat lie above those orresponding to the positive double layers.Figure 7.4 shows the variation of soliton amplitude with M for �xed f (left panel),and the orresponding typial Sagdeev potential urves (right panel). In the left panelof Fig. 7.4, the end points of the lower urves for the di�erent density ratios f give theamplitudes and Mah numbers of the positive double layers; after whih there is a `jump'in amplitude between the double layers and the next set of solitons (that are limited bythe ions, that is, those solitons whose amplitude must not exeed φli = M2/2, to ensurethat the ion density remains real). In the right panel of Fig. 7.4 all the Sagdeev potentialurves (A− F ) have a double root at the origin; the soliton urves A, B and D − F havea single root outside the origin, and the double layer urve C has another double rootoutside the origin and an inaessible single root beyond the double root. Suh solitonsforming beyond double layers for the same plasma omposition (with M > Mdl) were alsoreported by Verheest [2009℄ in nonthermal plasmas onsisting of old �uid positive andnegative dust partiles and Cairns distributed eletrons and ions (see his Fig. 4 and thedisussion aompanying it).In Fig. 7.5, we show typial soliton potential pro�les (left panel) for the parametersin Fig. 7.4. Solitons below the double layer (with M < Mdl) are bell-shaped while those188



7.3. Numerial Results and Disussion
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Mdl are very lose to Ms. For instane, the largest Mah number at whih negative doublelayers our are M ≃ 1.014041 (for τ = 0.009, see Fig. 7.3), M = Ma ≃ 1.000374 (for
τ = 0.1, see Fig. 7.6) and M ≃ 1.000001075 (for τ = 0.101, not shown), whih is very loseto Ms = 1. The region (of oexistene) eventually vanishes at τ = τc1, when fc1 and fc2merge at f ≃ 0.092 (see Fig. 7.1). In other words, negative potential solitons or double189
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7. Ion-Aousti Solitary Waves in a Plasma With Two-Temperature Eletronsa plot of the soliton amplitude at M = Ms = 1 versus density ratio f in the �oexistene�region. The �gure also shows that in the region of �oexistene� the potentials of thetwo soliton types vanish at M = Ms and f = fc2: below (above) fc2, positive (negative)solitons have �nite amplitudes at Ms while above (below) fc2, negative (positive) solitonshave �nite amplitudes at Ms, as was obtained with τ = 0.09 and τ = 0.1 [see Figs. 7.3and 7.6 (right panels)℄. Note that the �nite positive potential solitons at Ms = 1 do notour between fp2 and fc1, sine in this range only negative potential solitons (that are�KdV-like�) exist. As shown in the right lower panel of Fig. 7.7, we get positive doublelayers in the very narrow range, 0 < f < f∗ ≃ 0.002, with solitons beyond Mdl, but theyare limited by the ion density (ontinuous urve), as in Fig. 7.4. At f = f∗, the doublelayer at Mdl = Mli has φdl < φli. Despite the presene of the ion onstraint urve in
f∗ < f < fc1, it represents a spurious root, and positive solitons are limited by doublelayers (dashed urve). Thus fp1 also plays no physial role.Other aspets of our results in Fig. 7.8 are onsistent with those of Baboolal et al.[1990℄, where with τ = 1/15 they showed that negative potential double layers exist forthe ool eletron density ratio (f ) roughly between 0.02 and 0.35 (see their Fig. 2(b)).Compared to our ase, this region lies between fc1 ≃ 0.015 and fn ≃ 0.38. Similarly, inthe ase of positive potential solitons, Baboolal et al. [1990℄ obtained results with �niteamplitudes atMs = 1 for the range of f approximately between 0.1 and 0.25, although theynever ommented on them. In our ase they are in the range fp2 ≃ 0.05 < f < fc2 ≃ 0.22.In the same way their results for τ = 1/30 (see their Fig. 2(a)) are in agreement with ours,as an be seen in Fig. 7.11 (right upper panel) for τ = 1/30.The top panel of Fig. 7.8 shows the variation of solitary wave amplitude with densityratio f for τ = 1/15. The ontinuous blue urve shows the maximum amplitude limit dueto the ions (φli = M2/2 at whih Ψ(φli,M) = 0). Thus amplitudes of positive potentialsolitons limited by the ions need not exeed φli. Likewise, the dashed blue urve and thedotted red urve give the amplitudes of the positive and negative potential double layers,respetively. For graphial purposes we have saled up the amplitudes of the positivedouble layers (×10) thus in interpreting these results, one has to bear that in mind. Forinstane, when f < f∗ (see lower right panel of Fig. 7.7 or upper right panel of Fig. 7.8),solitons are ultimately limited by the ion ondition φ < φli = M2/2 (and not by the192
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7. Ion-Aousti Solitary Waves in a Plasma With Two-Temperature EletronsFig. 7.3 (right panel). However, in the other example shown in the lower right panel ofFig. 7.8, for f = 0.003 > f∗ but less than fp1, solitons are limited by the ourrene ofdouble layers (not by the ion limit onstraint), and no solitons exist beyond the doublelayer. For small τ , f∗ → 0, and positive solitons for f < fc1 are limited by double layersonly. Though the ool eletron density is very small (very low f ), in the ase of positivedouble layers the resulting soliton/double layer amplitudes are signi�antly large.Solitons for M > Mli?At f = f∗, the Mah number M = Mdl, orresponding to a positive double layer ofamplitude φdl, is equivalent to M = Mli, and satis�es Ψ(φli, M) = 0, where φli = M2/2is the potential at whih the ions beome in�nitely ompressed. Thus, at f = f∗ we get adouble layer of amplitude φdl < φli for M = Mli. On the one hand, when 0 < f < f∗ wehave Mdl < Mli: solitons are limited by the ion limit onstraint, and not by the ourreneof double layers. Thus solitons exist even beyond the double layers, as was the ase inFig. 7.4. On the other hand, when f∗ < f < fp1 we have Mdl > Mli: solitons are limitedby the ourrene of double layers, and not by the ion limit onstraint. Thus in the range
f < fp1, positive potential solitons are limited by the maximum of Mli and Mdl.
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7.3. Numerial Results and Disussionfor f = 0.003, a value in the range f∗ < f < fp1 (similar to Fig. 7.8, lower right panel).The ion limitation Ψ(φli = M2/2, M) = 0 leads to M = Mli ≃ 1.01911, and therefore
φli = M2

li/2 ≃ 0.5193. In other words, in�nite ompression of the ion density at M = Mliours at φ = φli. The right panel of Fig. 7.10 is the same as the one on the left; herewe show the behaviour of Ψ(φ, M) lose to the value φ = φli for whih the ion density isin�nitely ompressed when M = Mli. Clearly, the right panel of Fig. 7.10 shows that for
M ≥ Mli, Ψ(φ, M) does not have a root in the viinity of φli. However, as the left panel�gure shows, for M ≥ Mli it is even possible that the density an remain �nite suh thata root(s) of Ψ(φ, M) is (are) enountered in the range 0 < φ < φli. Atually, even at Mli,the ion density ni(φ) remains �nite provided φ < φli, and is omplex for φ > φli. Thus,for the value of f = 0.003, a positive double layer ours for M = Mdl ≃ 1.3458 > Mli,with amplitude φdl ≃ 0.2334. As seen from Fig 7.10, when M = Mli we get a soliton(�rst root of Ψ(φ, M) lose to the origin) of amplitude φ0 ≈ 0.09 ≪ φli. More roots of
Ψ(φ, M) lose to the origin in the interval 0 < φ < φli an also be obtained as M inreasesbeyond Mli, leading to solitons, until a double layer, with amplitude φdl ≃ 0.2334 < φli,is enountered. These roots are shown in Table. 7.1. Beyond the double layer, Ψ(φ, M)has no roots, thus solitons in the range f∗ < f < fp1 are limited by double layers, and notby the ion limitation onstraint; They are �KdV-like� (have amplitudes that go to zero as
M approahes Ms), and lie outside the oexistene region (fp2 < f < fn). Note that fp1exists only for τ in the range given, approximately by τc3 ≃ 0.0394 < τ < τc2 ≃ 0.075. Inthis range we get the same behaviour of positive solitons as desribed in Fig. 7.8 (lowerpanel) and Fig. 7.10. For τ < τc3, positive solitons that exist for f < fc1 are limited by theourrene of positive double layers; positive solitons limited by the ion limit onstraintour for fp2 < f < 1, and only negative solitons exist for fc1 < f < fp2. The ase for
τ < τc3 is disussed below, where we onsider τ = 1/30 and τ = 1/100.Case II: τ = 1/30 and τ = 1/100In the upper left panels of Figs. 7.11 and 7.12 we show plots of the variation of Mand amplitude φ with f for both negative and positive solitons. Negative solitons arebounded by double layers (red dotted urve labeled Mdl) and the size of the amplitudeof the negative double layers is indiated by the red dot-dashed urve (labeled |φdl| in195
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M φ01 φ∗

02 φ∗

03

Mli − 0.010 0.039 0.373 0.508
Mli − 0.005 0.062 0.356 0.514
Mli ≈ 1.019 0.086 0.338 xx
Mli + 0.005 0.113 0.318 xx
Mli + 0.010 0.146 0.292 xx
Mdl ≈ 1.035 0.233 0.233 xx
Mdl + 0.005 xx xx xxTable 7.1: Table showing roots (φ0) of Ψ(φ, M) (all below φli ≈ 0.52) for values of M loseto Mli, the Mah number orresponding to the ion limit, obtained from Ψ(M2/2, M) = 0.Roots with an asterisk are super�uous (inaessible in the ase of solitons as the solitononditions are not satis�ed beyond the �rst root, φ01), and xx implies that the root doesnot exist. Other parameters are τ = 1/15 and f = 0.003, lying in the range f∗ < f < fp1.Fig. 7.11 and 0.1|φdl| in Fig. 7.12, respetively). In other words, for a partiular densityratio f , negative solitons will have amplitudes less than φdl. Similarly, positive potentialsolitons (limited by the ions) are bounded by the ontinuous blue urve (labeled Mli) andthey have amplitudes less that φli (dot-dashed blue urve).The upper right panel plots in Figs. 7.11 and 7.12 are analogous to Fig. 7.3 (rightpanel), showing the amplitudes at M = Ms. For larity, the negative potential amplitudeat Ms for τ = 1/100 in Fig. 7.12 is suppressed (i.e., the atual amplitude is 10 times whatis shown on the graph).We also point out that as we redue τ to as low as τ = 1/30 [Fig. 7.11 (upper)℄ or196



7.3. Numerial Results and Disussionfurther to τ = 1/100 (as in Fig. 7.12), fc1 lies very lose to f = 0, and therefore an not bedi�erentiated from f = 0 as the range [0, fc1℄ beomes negligibly small, for example, seethe top panels of Fig. 7.11 and 7.12. Below fc1, only positive potential solitons (limitedby double layers) are supported. Their existene domains for τ = 1/30 and τ = 1/100 arelearly shown in Figs. 7.11 and 7.12 [lower panels (left)℄, respetively, and the assoiateddouble layer amplitudes are shown in the graphs on the right of the lower panels. As wasthe ase with τ = 1/15, positive potential solitons do not our for the full range of f(from 0 to 1).Another observation from Figs. 7.11 and 7.12 is that as we redue τ the Mah numberat whih negative double layers our (along the dotted red urves) inreases, implyingthat the amplitude of the double layer, for partiular density ratio f , also inreases. Forinstane, with f = 0.3 the amplitude inreases from |φdl| = 2.9 (τ = 1/15) to |φdl| = 6.5(τ = 1/30) and |φdl| = 25 (τ = 1/100). Thus we an say that a plasma with twotemperature eletron omponents, with a minimal ontribution of ool eletron densitysupports negative potential solitons with very large amplitudes, in addition to positivesolitons limited by the ions. As an be seen in Fig. 7.11 and 7.12 (upper right panels),negative solitons at M = Ms are several units large.When τ = 0, negative double layers disussed for the ases 0 < τ < τc1 are no longersupported, and thus negative solitons exist for unbounded Mah numbers. In addition,positive potential solitons, bounded by the ion limit φ < φli = M2/2, exist for fp2 < f < 1,and no positive potential double layers exist. This is due to the fat that for τ → 0, fc1,the lower value of fc goes to zero, as one may see from Eq. (7.8). However, as we mentionedearlier, this is an unlikely physial situation sine the model breaks down as τ → 0.
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7. Ion-Aousti Solitary Waves in a Plasma With Two-Temperature Eletrons7.4 Conlusions and Chapter SummaryIn this work we have revisited in detail the existene of ion-aousti solitary waves ina plasma with two isothermal eletron omponents. Our results have on�rmed a numberof earlier results [Buti, 1980; Nishihara and Tajiri, 1981; Baboolal et al., 1990; Ghosh etal., 1996; Verheest et al., 2006℄ and have also gone far beyond them.We have plotted the urve Ψ′′′(0,Ms) = 0 in the spae of ool density fration and tem-perature ratio (i.e., f − τ), and shown that it agrees with an earlier representation [Nishi-hara and Tajiri, 1981℄, found by other means. At �xed τ < τc1 ≃ 0.10102, it yields tworitial values of f (fc1 and fc2) whih merge at τ = τc1.Above τc1, only positive potential solitons (whih are limited by the ion density on-straint) are supported, as for a simple eletron-ion plasma, and no positive double layersexist. These positive solitons are �KdV-like� in that their amplitudes tend to zero as Mapproahes Ms.For 0 < τ < τc1 both negative and positive potential double layers may our overlimited ranges of ool eletron density fration f . The former are well-known [Baboolalet al., 1990; Ghosh et al., 1996℄, and Verheest et al. [2006℄ previously identi�ed a singlease of the latter. Our alulations show that positive double layers exist over a narrowrange f < fc1, while negative double layers our for fc1 < f < fn, below a ut-o�,
fn. Surprisingly, solitons may be obtained even beyond the positive double layer, i.e., for
M > Mdl, aompanied by a jump in amplitude. Thus, depending on the temperatureratio τ = Tc/Th, we may, for low f , get two sets of positive solitons, one bounded by thedouble layer limit, the other by the usual ion limit ondition [Baboolal et al., 1990℄. Asopposed to the usual bell-shape of the well-known positive solitons, the latter set have asharply-pointed pro�le.If τc2 ≃ 0.075 < τ < τc1 then fc1 also ats as the lower f limit of the �oexistene� regionin whih solitons of both polarities may exist. However, for τ < τc2, positive solitons areno longer supported for all f , and an interval fc1 < f < fp2 is found where only negativepotential solitons and double layers are obtained. As a result, the �oexistene� regionbeomes fp2 < f < fn.The existene of solitons even after a double layer has ourred depends on the position200



7.4. Conlusions and Chapter Summaryof fp1, where here we de�ne fp1 as the value of f (< fc1) at whih M = Ms satis�es
Ψ(M2/2, M) = 0. Also, fp1 exists only for τ in the range τc3 ≃ 0.0394 < τ < τc2. For
τ < τc3, and f < fc1, positive solitons are limited by the ourrene of positive doublelayers; when fp2 < f < 1, positive solitons are limited by the ion limit onstraint, and onlynegative solitons exist for fc1 < f < fp2.Provided fc (in this ase, fc2) lies in the region of existene of solitons of both polarities(fp2 < f < fn), we observe the following:(i) Contrary to the onventional wisdom that solitons are super-aousti (M > Ms), wehave found solitons at the ritial Mah number Ms, thus showing that they an propagateat the ion-aousti speed.(ii) For f < fc2 positive potential solitons have �nite amplitude at Ms while negativepotential solitons have zero amplitude at Ms, as is the ase for �KdV-like� solitons. Thenegative sign assoiated with Ψ′′′(0, Ms) for f < fc2 orresponds to the sign of the KdV-likesolitons. Similarly, for f > fc, the negative solitons have �nite amplitudes atMs (�nonKdV-like�) while the positive solitons are now KdV-like. The positive sign of Ψ′′′(0, Ms) for
f > fc2 thus orresponds to the sign of these positive potential (KdV-like) solitons near
Ms. Hene, for fp2 < f < fc2 one �nds KdV-like negative soliton potentials aompaniedby nonKdV-like positive solitons, and vie versa for fn > f > fc2.(iii) The amplitudes of the nonKdV-like solitons [i.e., those not orresponding to the signof Ψ′′′(0, Ms)℄ inrease monotonially with |f − fc|, but vanish at f = fc2. For smallvalues of τ , the negative nonKdV-like solitons develop large amplitudes at M = Ms when
f → fn. In addition, the largest value of Mdl inreases rapidly with dereasing τ . Henethe normalized φdl inreases rapidly and an reah several tens.(iv) Positive solitons are limited from above by the requirement that φ < M2/2 so that theion density remains real, and the negative solitons are limited by the ourrene of doublelayers.If one de�nes the density ratio f in terms of the equilibrium density of the hot eletronomponent Nh0/Ne0 instead of the ool eletron omponent Nc0/Ne0 (as we have usedhere), then the transformation f → (1 − f) in Eq. (7.8) gives the appropriate range of fwhere the results disussed here apply (see Chapter 5).We argue that the existene (and position) of a ritial parameter, in this ase, ritial201



7. Ion-Aousti Solitary Waves in a Plasma With Two-Temperature Eletronsdensity ratio, may give a hint on the polarity of solitons in a plasma model.

202



CHAPTER 8
General Summary and Conlusions

In this thesis, we have investigated linear and nonlinear aousti waves in various plasmamodels, whih may our in spae. In the ase of linear aousti waves we have used akineti theoretial approah in the study of eletron-aousti waves in bi-kappa plasmas,with emphasis on Saturn's magnetosphere. The rest of the thesis deals with aoustisolitons and double layers in a variety of relevant three-omponent plasmas. In all aseswe have used the Sagdeev pseudopotential (arbitrary amplitude) approah, while in somehapters we have also arried out expansions to �nd small amplitude solutions, along thelines of the KdV solutions.In Chap. 1, we have given a detailed desription of kappa distributions and their majorfeatures in Se. 1.1. This setion also highlights plasma environments where partileswhose veloity distribution funtions may be well desribed by kappa distributions havebeen reported to exist. We have also given a detailed disussion of dusty plasmas, solitarystrutures (solitons and double layers), and various methods that we have used to studythese strutures, in Se. 1.2.8.1 Linear Eletron-Aousti WavesUsing a kineti theoretial approah, we have arried out a parameter survey of the dis-persion and damping of eletron-aousti waves (EAW) and eletron plasma waves (EPW)203



8. General Summary and Conlusionsrelevant to the magnetosphere of Saturn, in whih the eletron distribution is well �ttedby a superposition of two kappa distributions at di�erent temperatures and kappa values.Our investigations for spei� regions of the magnetosphere have shown that:� Weakly damped eletron-aousti waves may our in Saturn's outer magnetospherearound 13 − 18RS where (i) the densities of the hot and ool eletron populationsare of about the same order of magnitude; (ii) the temperatures di�er by about twoorders of magnitude, that is Th/Tc ∼ 100, and (iii) the kappa index values are moreor less onstant around κc ≃ 2 and κh ≃ 4.� There is strong oupling between the EAW and the EPW in the intermediate magne-tosphere (9RS < R < 13RS) with potentially observable waves that are EAW-like.This pattern is also obtained, for some ases, in the R > 13RS region when thedensity ratio nh0/ne0 is very small sine the ool eletron omponent density is veryhigh ompared to the hot eletron omponent density.� EAWs are strongly damped in the inner magnetosphere (R < 9RS); only the EPWis weakly damped. This may be attributed to the fat that the density ratio is verysmall. Thus, our results show that even in the presene of a seond non-Maxwellianeletron omponent, it is the dependene of the damping rate on parameters suh asthe hot-to-ool eletron temperature ratio β = Th/Tc and the frational hot eletrondensity f = nh0/ne0 that determines the range in wavenumber (in terms of kλDc)over whih EAWs are weakly damped.8.2 Nonlinear Aousti WavesIn this thesis we have introdued a generalized density relation
Ns(ϕ) = Ns0

[

1 +

(

1

κs − 3/2

)

qs ϕ

KBTs

]

−(κs−1/2)for kappa distribution funtions, whih, in the limit κ → ∞, redues to the Maxwelliandensity funtion
Ns(ϕ) = Ns0 exp(−qs ϕ

KBTs

)
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8.2. Nonlinear Aousti WavesThis density relation has been applied to various plasma models, inluding dust aoustiwaves/solitons with κ-distributed ions and/or eletrons (disussed in Chap. 3), dust ion-aousti solitons (disussed in Chap. 4), and ion-aousti solitons in bi-kappa plasmas �with both the ool and hot eletrons being kappa distributed (disussed in Chap. 5).DA Solitons: In Chapter 3 we investigated the existene of dust aousti (DA) solitonsin dusty plasmas with κ-distributed ions and/or eletrons. We have used both the Sagdeev(pseudopotential) approah for the arbitrary amplitude solitary waves and the expandedSagdeev potential approah, equivalent to the redutive perturbation tehnique, for thesmall amplitude solitary waves. A double layer relation was derived for the small amplitudesolitary waves. However, in pratie it was found that double layers are not supported bythe plasma model.We found that when the dust is negative, only negative potential solitons exist, andreduing the spetral indies (κe, κi) only a�ets the existene domains of the solitonsquantitatively.In the presene of positively harged dust, only positive potential solitons are found,but the ion to eletron temperature ratio has signi�ant quantitative e�ets: partiularlyfor Te ≫ Ti the results are very di�erent from those for Te = Ti. In both ases we �nd thatthe soliton polarity agrees with the sign of the harge of the old, inertial speies (dust),as observed in a number of other plasma models, albeit not universally so.Our results are qualitatively similar to those obtained for dusty plasmas with Boltz-mann or polytropi eletrons and ions. However, there are quantitative di�erenes, arisingfrom the funtional form of the number density for a κ-distribution as in Eq. (3.2).Although the κ-distribution is nonthermal, the results reveal important di�erenes fromthose found when one of the hot plasma speies has a di�erent nonthermal distribution,viz., the Cairns distribution [Verheest and Pillay, 2008a,b℄. In the latter, it was shownthat for negative (positive) dust, positive (negative) solitons ould also be found, limitedby double layers, for su�ient nonthermality of the ions (eletrons) and su�iently loweletron (ion) density. For nonthermal eletrons (ions) only negative (positive) potentialsolitons were found, as in our ase. This di�erene in results ould be due to the fat thatfor the κ-distribution the main hange from a Maxwellian lies in the `tail' region, unlike205



8. General Summary and Conlusionsthe ase of the Cairns distribution.DIA Solitons: In Chapter 4 we used the pseudopotential approah in studying arbitraryamplitude dust ion-aousti solitons in a plasma of positive ions, κ-distributed eletronsand harged dust grains. This was an extension of the work of Bharuthram and Shukla[1992℄, who studied a plasma model onsisting of Boltzmann-distributed eletrons, oldions, and immobile negative dust in the bulk of the paper, and then presented a fewresults for mobile negative dust. In the ase of small amplitude waves/solitons, we usedthe redutive perturbation tehnique, where we derived the assoiated KdV and mKdVequations. For these small amplitude solitons, the mKdV approah was only valid forplasma situations where the KdV solutions are unattainable.For the ase of negative dust, we have shown that for all κ > 3/2 the model supports bothpositive and negative potential solitons in a spei� range of frational eletron density,where the Mah number for positive (negative) potential solitons is limited from above bythe ondition at whih the ion density beomes omplex (the dust is in�nitely ompressed).This agrees with the analysis of Verheest et al. [2005℄ for polytropi eletrons, where itwas found that both negative and positive potential dust ion-aousti solitons may existin a dusty plasma with negatively harged dust, positively harged ions and polytropieletrons.Positive potential DIA solitons experiene a low-f uto� (fp) whih dereases withinreasing κ (i.e., with a derease in exess superthermal partiles), and hene this inreasesthe range in (f, M) spae over whih positive solitons exist. Allowing for �nite dust grainmobility has little or no e�et on the existene domain for positive solitons; the smallerthe value of z, that is the heavier the dust partiles (assuming onstant dust harge), thelarger the domain in (f, M) spae over whih negative potential solitons an be obtained.Also, the variation of the ion temperature (through σ) has a weak e�et of inreasing thesize of the existene domain as σ is inreased. That is, the warmer the ions (the largerthe value of σ) the larger the existene domain for solitons, with the region of existenedereasing as κ dereases.Negative potential solitons do not exist above a κ-independent uto� fn lying approx-imately between 0.9− 1, the exat value of whih depends signi�antly on the magnitude206



8.2. Nonlinear Aousti Wavesof the dust mobility fator z = Zdmi/md. They are e�etively not subjet to an upperlimit in M as z ≪ 1 implies that φℓd ≫ 1, and thus negative solitons may be very large.A surprising result ours over the range of frational eletron density f in whihsolitons of both polarities are supported. Here, �nite amplitude solitary strutures existeven at the DIA speed � behaviour whih ontradits KdV theory. A similar result wasfound reently in another three-omponent plasma [Verheest and Hellberg, 2010℄, where,as here, the phenomenon is assoiated with a point of in�exion of the pseudopotential at
φ = 0 and M = Ms, rather than the usual maximum. The sign of Ψ′′′(φ = 0;M = Ms; f)then designates the polarity of the KdV-like soliton that vanishes at M = Ms.A ritial role is played by fc, the value of f at whih the KdV oe�ient A = 0, whihalso satis�es the onstraint Ψ′′′(φ = 0;M = Ms; fc) = 0. In partiular, as f is varied,solitons of eah polarity swith at f = fc from a KdV-like form to nonKdV-like behaviour.For fp < f < fc, positive solitons at M = Ms have �nite amplitude, inreasing in sizewith |f − fc| as f approahes fp, while negative solitons have zero magnitude at M = Ms,as expeted from KdV theory. This situation reverses in polarity for solitons found for
fc < f < fn.In a plasma with positive dust grains, only positive potential (�KdV-like�) solitons aresupported by the plasma model, with the upper limit onM provided by in�nite ompressionof the ions, and the positively harged dust partiles only ontribute in neutralizing theeletrons in the bakground. The Maxwellian ase agrees with earlier results, using the�uid dynami paradigm with polytropi eletrons [Baluku et al., 2008℄. Dereasing κ leadsto small redutions in both the aessible M and the existene range in M . The dustyplasma model with positive dust is similar to a two omponent ion-eletron plasma, withmodi�ations to the dynamis due to the presene of weakly mobile dust. The results arereminisent of those found for ion-aousti solitons in a two-ion plasma [MKenzie et al.,2005℄, but for a muh heavier seond �positive ion�.Double Kappa IAS: In Chapter 5 we onsidered a plasma model onsisting of warminertial �uid ions and two (ool and hot) eletron omponents, that are both kappa dis-tributed, as found in Saturn's magnetosphere.The main features of this work are: 207



8. General Summary and Conlusions(i) Both ompressive (φ > 0) and rarefative (φ < 0) solitons an be supported by themodel. Here, ompressive (rarefative) solitons have a hump (dip) in the density as wellas the eletrostati potential.(ii) The e�et of spetral index κ on the existene domain of solitons (or double layers)was that, ompared to high values of kappa (whih represent Maxwellian partiles), lowkappa values, whih indiate inreased superthermal partiles in the high energy tail ofthe distribution, redue the existene domain in the parameter spae of (f,M) over whihompressive solitons or both ompressive and rarefative solitons an exist.(iii) For plasma on�gurations that support the existene of both hump (φ > 0) and dip(φ < 0) solitons, we found that there exists a ritial density ratio, fc at whih both theseond and third derivatives of the Sagdeev potential vanish, when evaluated at the originfor the ritial Mah number Ms. In the viinity of fc, solitons of a polarity opposite tothe sign of Ψ′′′(0,Ms) remained �nite (nonzero) at Ms, a result that is ontrary to theKorteweg-de Vries desription. These solitons whih exist at Ms an therefore propagateat a veloity equivalent to the phase veloity of the wave. This result means that theusually quoted Sagdeev requirement Ψ′′(0,M) < 0 needs to be hanged to Ψ′′(0,M) ≤ 0.(iv) Comparison between the perturbation theory and the large amplitude tehniquesshowed that whereas the former approah seems to be aurate for very small amplitudes,espeially for Mah numbers lose to Ms, that is, for strutures that move with veloitieslose to the phase veloity of the wave, the method beomes less reliable for veloities farfrom the phase veloity. In addition, it annot represent the seond (nonKdV-like) solitonthat has �nite amplitude at M = Ms, when both polarities are supported. Thus the fullynonlinear (arbitrary amplitude) pseudopotential approah beomes indispensable.(v) The large rarefative potential solitons (φ < 0) reported for this plasma model maybe attributed to the fat that the small but �nite eletron mass, whih is a measure ofthe eletron inertia, is negleted in the eletron density expression. If the eletron inertiadue to the �nite eletron mass were inluded, suh a sheme would require obtaining theeletron density expression from the �uid equations of motion, with the assoiated kappadistributed pressure term inorporated. The pressure expression assoiated with a kappadistribution funtion has been derived in Appendix A.1.2. However, this approah has notbeen applied in this work, but shall be onsidered as an extension to getting omprehensive208



8.2. Nonlinear Aousti Wavesresults for this model in the foreseeable feature.IAS in Eletron-Positron-Ion Plasmas: In Chapter 6 we have onsidered a plasmaonsisting of eletrons, positrons and positive ions. The eletrons are nonthermally dis-tributed, following a Cairns distribution funtion [Cairns et al., 1995℄; the positrons areBoltzmann distributed while the ions are modeled by hydrodynami �uid equations. This isan extension of the plasma model disussed by Popel et al. [1995℄ for Boltzmann eletrons,and is similar to the model disussed by Pakzad [2009℄. In this work we on�rm some re-sults obtained by Pakzad [2009℄ and present more new results assoiated with ion-aoustisolitary waves in eletron-positron-ion plasmas where the eletrons are Cairns distributed.We have pointed out that low values of β are appropriate for the use of the Cairnsdistribution for nonthermal partiles. Values of β > 4/7 (see e.g., Verheest and Pillay[2008a℄) result in the nonthermal partile distribution being deformed (forming wings) sothat it may not appropriately represent a stable nonthermal distribution. In suh asesanother form of nonthermal distribution, suh as a kappa distribution, may be used instead.Though Pakzad [2009℄ reported only the existene of positive potential solitons in themodel under investigation, we have shown that in addition, negative potential solitons anddouble layers an also be supported, though for a limited range in the frational positrondensity p.In ontrast to the usual assumption that solitons are expliitly super-aousti, ourringfor Mah numbers M > Ms, we have also obtained solitons at Ms. This implies thatthese solitons an propagate at the aousti phase speed. This observation ours onlyin the region of �oexistene�, where both positive and negative potential solitons may besupported by the same plasma parameter values.In this work, we have obtained ritial values of p (denoted pc) at whih Ψ′′′(φ, M) = 0for φ = 0 and M = Ms. If pc lies in the region where solitons of both polarity our for thesame plasma parameters, then for p < pc one gets negative potential �KdV-like� solitonsand positive potential �nonKdV like� solitons at Ms. The reverse polarities are found for
p > pc.Double Boltzmann IAS: In Chapter 7 we onsider ion-aousti solitons in two tem-perature eletron plasmas, where the eletrons are Boltzmann-distributed. Suh a plasma209



8. General Summary and Conlusionsmodel has been studied in the past, with negative potential solitons and double layersreported to be supported in addition to positive potential solitons. In this work we havearried out further investigations and showed that positive potential double layers an formbelow a ritial density ratio, assoiated with the third derivative of the Sagdeev poten-tial evaluated at the origin for the aousti phase veloity of the wave. We also foundout that for density ratios that support positive double layers, solitons were also reportedbeyond the double layers, depending on the ool-to-hot eletron temperature ratio. Thisontradits the usual belief, based on simpler forms of the Sagdeev potential, that doublelayers always represent a Mah number limit for solitons. As we have already indiated inhapters 4 and 5, when both polarities an be supported, solitary strutures an propagateat the aousti phase veloity of the wave, ontrary to a KdV presriptionAt �xed τ < τc1 ≃ 0.10102, Ψ′′′(0,Ms) = 0 yields two ritial values of f (fc1 and fc2)whih merge at τ = τc1.Above τc1, only positive potential solitons (whih are limited by the ion density on-straint) are supported, as for a simple eletron-ion plasma, and no positive double layersexist. These positive solitons are �KdV-like� in that their amplitudes tend to zero as Mapproahes Ms.For 0 < τ < τc1 both negative and positive potential double layers may our overlimited ranges of ool eletron density fration f . The former are well-known [Baboolalet al., 1990; Ghosh et al., 1996℄, and Verheest et al. [2006℄ previously identi�ed a singlease of the latter. Our alulations show that positive double layers exist over a narrowrange f < fc1, while negative double layers our for fc1 < f < fn, below a ut-o�,
fn. Surprisingly, solitons may be obtained even beyond the positive double layer, i.e., for
M > Mdl, aompanied by a jump in amplitude. Thus, depending on the temperatureratio τ = Tc/Th, we may, for low f , get two sets of positive solitons, one bounded by thedouble layer limit, the other by the usual ion limit ondition [Baboolal et al., 1990℄. Asopposed to the usual bell-shape of the well-known positive solitons, the latter set have asharply-pointed pro�le.For τc2 ≃ 0.075 < τ < τc1, fc1 also ats as the lower f limit of the �oexistene� regionin whih solitons of both polarities may exist. However, for τ < τc2, positive solitons areno longer supported for all f , and an interval fc1 < f < fp2 is found where only negative210



8.2. Nonlinear Aousti Wavespotential solitons and double layers are obtained. Here, fp2 is the value of f (> fc1) atwhih M = Ms satis�es Ψ(M2/2, M) = 0.The existene of solitons even after a double layer has ourred depends on the positionof fp1, where here we de�ne fp1 as the value of f (< fc1) at whih M = Ms satis�es
Ψ(M2/2, M) = 0. Also, fp1 exists only for τ in the range τc3 ≃ 0.0394 < τ < τc2. For
τ < τc3, and f < fc1, positive solitons are limited by the ourrene of positive doublelayers; when fp2 < f < 1, positive solitons are limited by the ion limit onstraint, andonly negative solitons exist for fc1 < f < fp2. These results show that the existene (andposition) of a ritial parameter, in this ase, ritial density ratio, may give a hint on thepolarity of solitons in a plasma model.Finally, we reiterate that in our nonlinear studies of aousti waves in three-omponentplasmas we have found two key results with wider reperussions. They are:1. The existene of �nite amplitude solitons (and double layers) at the aousti speed,that are thus nonKdV-like, and also lead to a hange to the usual Sagdeev ondition
Ψ′′(0,M) < 0, whih now beomes Ψ′′(0,M) ≤ 0.2. The existene of solitons at Mah numbers exeeding that at whih a double layer ours,as opposed to the onventional wisdom that double layers always represent an upper Mahnumber limit to a sequene of solitons.
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APPENDIXA

A.1 Derivation of Density and Pressure for Kappa Distribu-tionsBefore going into the details of deriving the density and pressure expressions followingfrom kappa distribution funtions, we �rst introdue some speial integrals.A.1.1 Speial Integrals for Kappa DistributionsConsider the integral
I =

∫∫

∞

−∞

(

1 +
v2x + v2y + v2z

καθ2α

)

−(κα+2)

dvz dvy. (A.1)This an be written as
I =

∫

∞

−∞

(

1 +
v2x + v2y
καθ2α

)

−(κα+2)
∫

∞

−∞

(

1 +
v2z

καθ2α + v2x + v2y

)−(κα+2)

dvz dvy.Substituting v2z = (καθ
2
α + v2x + v2y)R, where R = R(vz) is a funtion of vz, we then have
dvz =

1

2
(καθ

2
α)

1/2

(

1 +
v2x + v2y
καθ2α

)1/2

R−1/2dR.
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A.1. Derivation of Density and Pressure for Kappa DistributionsThus (A.1) beomes
I = (καθ

2
α)

1/2B (1/2, κα + 3/2)

∫

∞

−∞

(

1 +
v2x + v2y
καθ2α

)

−(κα+3/2)

dvy,

= (καθ
2
α)B (1/2, κα + 3/2)B (1/2, κα + 1)

(

1 +
v2x

καθ2α

)−(κα+1)

,where the Beta funtion, B(a, b) is de�ned by [Arfken and Weber, 1995, p. 614℄; [Riley etal., 1998, p. 981℄
B(a, b) =

∫

∞

0
xa−1(1 + x)−(a+b)dx; a, b > 0. (A.2)Using the relations [Arfken and Weber, 1995; Riley et al., 1998℄

B(a, b) =
Γ(a) Γ(b)

Γ(a+ b)
; Γ(α+ 1) = αΓ(α) and Γ(1/2) = π1/2, (A.3)we obtain

I =
πκαθ

2
α

(κα + 1)

(

1 +
v2x

καθ2α

)−(κα+1)

. (A.4)Therefore
∫∫

∞

−∞

(

1 +
v2x + v2y + v2z

καθ2α

)

−(κα+2)

dvz dvy =
πκαθ

2
α

(κα + 1)

(

1 +
v2x

καθ2α

)−(κα+1)

. (A.5)Similarly,
∫∫

∞

−∞

(

1 +
v2x + v2y + v2z

κθ2

)

−(κ+1)

dvz dvy = πθ2
(

1 +
v2x
κθ2

)−κ

. (A.6)A.1.2 Density and Pressure Expressions for Kappa DistributionsWe onsider the three dimensional isotropi kappa distribution funtion Fκ(v), of par-tiles of mass m and harge q in a plasma with eletrostati potential ϕ, given by
Fk(v) = Aκ

(

1 +
v2 + 2qϕ/m

κθ2

)−(κ+1)

=

(

1 +
v2x + v2y + v2z + 2qϕ/m

κθ2

)

−(κ+1)

, (A.7)where
Aκ =

N0

(πκθ2)3/2
Γ(κ+ 1)

Γ(κ− 1/2)
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A.The average number of partiles per unit volume or simply the number density Nj forspeies of type j is given by [Gurnett and Bhattaharjee, 2005, p.138℄; [Kivelson andRussell, 1995, p.34℄
Nj =

∫∫∫

∞

−∞

Fκ(v)d
3v, where d3v = dvxdvydvz. (A.8)Using the proedure in appendix A.1.1 above, the density expression an easily be writtenin the form

Nj(ϕ) = Aκ(κθ
2)3/2B(1/2, κ+ 1/2)B(1/2, κ)B(1/2, κ− 1/2)

(

1 +
2qϕ

mκθ2

)

−(κ−1/2)

.(A.9)Upon using Eq. (A.3) and substituting for Aκ we obtain the density of speies j with mass
mj , harge qj , spetral index κj and initial density Nj0 as

Nj = Nj0

(

1 +
2qjϕ

mjκjθ2j

)

−(κj−1/2)

. (A.10)The pressure assoiated with a kappa distribution is obtained from the pressure tensor
←→
Ps = [Pij ], given by [Gurnett and Bhattaharjee, 2005, p.138℄

←→
Ps =

∫

V
ms(v −Us)(v −Us)f(v, r, t)d

3v, (A.11)where Us is the average veloity of partiles of type j, or simply the bulk veloity at whihthe distribution is peaked. Note that the pressure tensor←→Ps gives the average rate at whihmomentum is transported in the i diretion aross surfae j in a frame of referene movingat the average veloity, Us. In the pressure tensor expression, the term (v−Us)(v−Us)is given by the matrix [Gurnett and Bhattaharjee, 2005, p.138℄
(v−Us)(v −Us) =













(vx − Usx)(vx − Usx), (vx − Usx)(vy − Usy), (vx − Usx)(vz − Usz)

(vy − Usy)(vx − Usx), (vy − Usy)(vy − Usy), (vy − Usy)(vz − Usz)

(vz − Usz)(vx − Usx), (vz − Usz)(vy − Usy), (vz − Usz)(vz − Usz)
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A.1. Derivation of Density and Pressure for Kappa DistributionsThus if the bulk veloity is 0 (that is, the distribution funtion is peaked at v = 0) thenthe diali term gives
(v−Us)(v −Us) =













v2x vxvy vxvz

vyvx v2y vyvz

vzvx vzvy v2z













,and therefore the pressure tensor beomes
P =













Pxx Pxy Pxz

Pyx Pyy Pyz

Pzx Pzy Pzz













,where the omponents of Pij an be obtained as desribed below. For the distributionde�ned in Eq A.7 we have Pxx/m =
∫∫∫

v2xFκ(v)dvxdvydvz, giving
Pxx

m
= Aκ
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−∞
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∫∫

∞

−∞
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1 +
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κθ2
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dvzdvy







dvx.Using Eq. (A.6), the term in urly brakets is simply πθ2
(

1 +
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κθ2

)−κ, and thus
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−∞

v2x

(

1 +
v2x

κθ2 + 2qϕ/m

)−κ

dvx,whih simpli�es to
Pxx

m
= π(θ2)3/2AκB(3/2, κ− 3/2)

(

1 +
2qϕ/m

κθ2

)

−(κ−3/2)

=
N0θ

2

2

(

κ

κ− 3/2

)(

1 +
2qϕ/m

κθ2

)

−(κ−3/2)

.Substituting θ2 =

(

κ− 3/2

κ

)(

2KBT

m

) we then obtain
Pxx = N0KBT

(

1 +
1

κ− 3/2

qϕ

KBT

)

−(κ−3/2) (A.12)
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A.as the pressure of partiles propagating in one dimension. Similarly, Pyy = Pzz = Pxx.Note that in the limit κ → ∞, Pxx = N0KBT exp[−qϕ/KBT ], thus if the partiles havezero potential and pressure P0 in the unperturbed equilibrium state , then Pxx(ϕ→ 0) =

P0 = N0KBT , whih is the ideal gas pressure equation for Maxwellian partiles. However,
Pij , for i 6= j, may take a di�erent form and will not be onsidered here.
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APPENDIXB

B.1 Dispersion Relation of Eletron-Aousti Waves from Lin-ear Kineti Theory.In deriving the appropriate dispersion relation for eletron-aousti waves disussed inChap. 2 we use the assumption that on the eletron-aousti wave time sale, Vti ≪ Vtc ≪

ω/k ≪ Vth, and with ξα ∝ ω/(kVtα), it follows that |ξi|, |ξc| ≫ 1, suh that we an usethe asymptoti expansion of Z(κα, ξα) for the ions and ool eletrons. Similarly, |ξh| ≪ 1,leading to the need to use the power series expansion of Z(κα, ξα) for hot eletrons.As the ions are Maxwellian, Z ′(κi, ξi) → Z ′(ξ) in the limit κi → ∞, where Z ′(ξ) isthe derivative, with respet to the argument ξ, of the usual plasma dispersion funtion ofFried and Conte (see [Krall and Trivelpiee, 1989℄).The asymptoti expression for Z ′(ξ) (large ξ, |ξ−1| ≪ 1) beomes (see [Brambilla, 1989,pp.107�108℄; [Swanson, 1989, pp.375�376℄)
Z ′(ξ) ∼ 1

ξ2
+

3

2ξ4
+ · · · − σ(2i

√
π)ξ e−ξ2 , (B.1)
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B.where
σ =























0 for Im(ξ) > 0,

1 for Im(ξ) = 0,

2 for Im(ξ) < 0.

(B.2)Thus for the ions with |ξi| ≫ 1, we neglet terms of order higher than 0(ξ−2) in Eq. (B.1),giving
Z ′(ξi) ∼

(

2k2V 2
ti

ω2

)

− 2i σ

√

π

2

(

ω

kVti

)

exp

(

− ω2

2k2V 2
ti

)

. (B.3)For su�iently small and large argument ξ [Hellberg and Mae, 2002℄, the power seriesand asymptoti expansion of Z(κα, ξα) are, respetively, given by
Z(κα, ξα) =

i π1/2Γ(κ)

κ1/2Γ(κ− 1
2)

(κ)κ

(κ+ ξ2)κ
− 2

(

κ− 1
2

κ

)

ξ +
4

3

(κ+ 1
2)(κ− 1

2)

κ2
ξ3 + · · · , (B.4)and

Z(κα, ξα) =
π1/2κκ−1/2Γ(κ)

Γ(κ− 1
2)

[i− tan(κπ)]
(κ+ ξ2)κ

−
(

1

ξ
+

κ

2κ− 3

1

ξ3
+ · · ·

)

. (B.5)Note that Eq. (B.5) follows from Eq. (55) of Hellberg and Mae [2002℄, and orrets theirEq. (56).In the ase of hot eletrons, negleting terms of order higher than 0(ξ2h) for ξh ≪ 1,Eq. (B.4) gives
Z ′(κh, ξh) = −2

(

κh − 1/2

κh

)

− 2i
√
π Γ(κh)√

κh Γ(κh − 1/2)

ω

kθh

(

1 +
ω2

κh k2θ
2
h

)−(κh+1)

. (B.6)Similarly for the ool eletrons, the asymptoti expansion in Eq. (B.5) gives
Z ′(κc, ξc) ∼

−2√π Γ(κc) ξc√
κc Γ(κc − 1/2)

(i− tanκcπ)(1 + ξ2c/κc)
−(κc+1) +

1

ξ2c

[

1 +
3κc

2κc − 3

1

ξ2c

]

.
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B.1. Dispersion Relation of Eletron-Aousti Waves from Linear Kineti Theory.With |ξc| ≫ 1, we take the approximation ξc(1 + ξ2c/κc)
−(κc+1) ≈ κκc+1

c /ξ2κc+1
c , giving

Z ′(κc, ξc)∼
k2θ2c
ω2

[

1 +
3κc

2κc − 3

k2θ2c
ω2

]

−2
√
π κ

(κc+1/2)
c Γ(κc)

Γ(κc − 1/2)
(i− tanκcπ)( ω

kθc

)

−(2κc+1)

. (B.7)Substitution of equations (B.3), (B.6) and (B.7) into Eq. (2.2) gives
D(k, ω) =

(

1 +
1

k2λ2
κh

)

−
ω2
pc

ω2

(

1 +
ω2
pi

ω2
pc

)

− 3k2λ2
Dc

ω4
pc

ω4

−
√
π κ

(κc+1/2)
c Γ(κc + 1)

Γ(κc + 1/2)

(tan κcπ
k2λ2

κc

) (

ω

kθc

)

−(2κc+1)

+ i

{√
π κ

(κc+1/2)
c Γ(κc + 1)

Γ(κc + 1/2)

1

k2λ2
κc

(

ω

kθc

)

−(2κc+1)

+

√
π
√
κh Γ(κh)

Γ(κh + 1/2)

(

ω

k3λ2
κhθh

)(

1 +
ω2

κh k2θ
2
h

)−(κh+1)

+ σ

√

π

2

1

k2λ2
Di

(

ω

kVth, i

)

exp

(

− ω2

2k2V 2
ti

)

}

= 0, (B.8)where λκα = [(κα − 3/2)/(κα − 1/2)]1/2 λDα, with λDα =
(

ε0KBTα/n0αe
2
)1/2 being theDebye length of speies α. The parameter λκα is the appropriate Debye length in a kappaplasma [Bryant, 1996; Mae et al., 1998℄, whih redues to λDα in the limit κα →∞.In the ase of weak damping we an expand D(k, ω) about ωr, where ω = ωr + iγ.Negleting terms of order (ω − ωr)

2 we obtain [Krall and Trivelpiee, 1989, p.389℄
D(k, ω) ≃ D(k, ωr) + i γ

∂D(k, ωr)

∂ωr
. (B.9)However, D(k, ωr) is itself a omplex quantity (see Eq. (B.8)). Thus it an be written inthe form

D(k, ωr) = Dr(k, ωr) + i Di(k, ωr), (B.10)
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B.where
Dr(k, ωr) =

(

1 +
1

k2λ2
κh

)

−
ω2
pc

ω2
r

(

1 +
ω2
pi

ω2
pc

)

− 3k2λ2
Dc

ω4
pc

ω4
r

−
√
π κ

(κc+1/2)
c Γ(κc + 1)

Γ(κc + 1/2)

(tan κcπ
k2λ2

κc

) (

ωr

kθc

)

−(2κc+1) and (B.11)
Di(k, ωr) =

√
π κ

(κc+1/2)
c Γ(κc + 1)

Γ(κc + 1/2)

1

k2λ2
κc

(

ωr

kθc

)

−(2κc+1)

+

√
π
√
κh Γ(κh)

Γ(κh + 1/2)

(

ωr

k3λ2
κhθh

)(

1 +
ω2
r

κh k2θ
2
h

)−(κh+1)

+σ

√

π

2

1

k2λ2
Di

(

ωr

kVti

)

exp

(

− ω2
r

2k2V 2
ti

)

. (B.12)With the assumption that |γ| ≪ ωr and |Di(k, ωr)| ≪ |Dr(k, ωr)|, equations (B.9) and (B.10)give
D(k, ω) ≃ Dr(k, ωr) + i

{

Dr(k, ωr) + γ
∂Di(k, ωr)

∂ωr

}

= 0. (B.13)Therefore equating the real and imaginary parts to zero, we obtain, respetively, the disper-sion relation, ωr ≡ ωr(k), and the damping rate, γ ≡ γ(k) < 0 or growth rate, γ ≡ γ(k) > 0from [Krall and Trivelpiee, 1989, p.389℄:
Dr(k, ω) = 0 and γ =

−Di(k, ωr)

∂Dr(k, ωr)/∂ωr
. (B.14)Sine me/mi ≃ 1/1836 ≪ 1, it follows that provided nh0/nc0 ≤ 1 then ω2

pi/ω
2
pc ≪ 1 is avalid approximation. Now assuming ωpi ≪ ωpc and negleting the term proportional to

1/ξ2κc+1
c for ξc ≫ 1 in Eq. (B.11), we get

(

1 +
1

k2λ2
κh

)

ω4
r − ω2

pc ω
2
r − 3k2λ2

Dc ω
4
pc = 0,with solution ω2

r > 0 given by
ωr

2 = ω2
pc

{

1 +
[

1 + 12k2λ2
Dc(1 + 1/k2λ2

κh
)
]1/2

2
(

1 + 1/k2λ2
κh

)

}

. (B.15)
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B.1. Dispersion Relation of Eletron-Aousti Waves from Linear Kineti Theory.Similarly, as the frequenies have been normalized to ωpe, Eq. (B.14) gives
γ

ωpe
= −ωpc

ωpe

(

ωr

ωpe

)6 A1(κc, κh)

A2(κc)
= −

(

1− nh0

ne0

)1/2( ωr

ωpe

)6 A1(κc, κh)

A2(κc)
, (B.16)where

A1(κc, κh) =
C1(κc)

k2λ2
Dc

[

(

κc
2κc − 3

)1/2 1

(1− n0h/n0e)1/2
ωr/ωpe

kλDc

]

−(2κc+1)

+
C2(κh)

k3λ3
Dc

[

1 +
1/(1 − n0h/n0e)

(2κh − 3)(Th/Tc)

ω2
r/ω

2
pe

k2λ2
Dc

]

−(κh+1)

+
C3(σ)

k3λ3
Dc

exp[−1

2

mi/me

(Ti/Tc)(1− n0h/n0e)

ω2
r/ω

2
pe

k2λ2
Dc

]

; (B.17)
A2(κc) = 12k2λ2

Dc(1− nh0/ne0)
5/2 +

2(1 − nh0/ne0)
3/2

(ωr/ωpe)−2

[

1 +
me

mi

(

1− nh0

nne0

)

−1
]

+
√
2π

tan(κcπ) κκc+1
c

(ωr/ωpe)−5 k3λ3
Dc

(κ2c − 1/4)

(κc − 3/2)3/2

×
[

(2κc − 3)

κc

1

(1− nh0/ne0)1/2
ωr/ωpe

kλDc

]

−2(κc+1)

, (B.18)and
C1(κc) =

√
π
(κc − 1/2)

(κc − 3/2)

Γ(κc + 1)

Γ(κc + 1/2)

κ
(κc+1/2)
c

ωr/ωpe
;

C2(κh) =
(π/2)1/2

(Th/Tc)3/2
(κh − 1/2)

(κh − 3/2)3/2
Γ(κh + 1)

Γ(κh + 1/2)

(n0h/n0e)

(1− n0h/n0e)3/2
;

C3(σ) = σ
(π/2)1/2(mi/me)

1/2

(Ti/Tc)3/2(1− n0h/n0e)3/2
. (B.19)The normalized frequeny ωr/ωpe in Eqs. (B.16)�(B.18) satis�es Dr(k, ωr) = 0, and isobtained from (B.15).Already we have seen that eletron-aousti waves require ξh ≪ 1 and ξc ≫ 1, that is,

ξh ≪ ξc. The latter implies that λDc/λκh ≪ (n0h/n0c)
1/2[κc/(κc − 3/2)]1/2.Now, if (n0h/n0c)

1/2[κc/(κc−3/2)]1/2 & 1, that is, f = n0h/n0e & (2κc−3)/(4κc−3) ≡ fc,
λDc/λκh ≪ 1 is a valid approximation. Here, in the long wavelength regime, fc is thethreshold value of f below whih EAWs may not be weakly damped. Also, λDc/λκh ≪ 1221



B.implies that f ≪ 1/{1 + [(κh − 1/2)/(κh − 3/2)] /β} ≡ fh, where β = Th/Tc.Also we assume that 12k2λ2
Dc(1 + 1/k2λ2

κh
) ≪ 1 in (B.15), whih holds only in the longwavelength regime (kλDc ≪ 1) and when λDc ≪ λκh

(provided f ≪ fh and f & fc). Thusignoring the negative solution, (B.15) leads to
ωr

2 = ω2
pc

{

1 + 3k2λ2
Dc(1 + 1/k2λ2

κh
)

(

1 + 1/k2λ2
κh

)

}

. (B.20)With Vtc = ωpcλDc = (KBTc/me)
1/2 and Vsκ = ωpcλκh

, (B.20) an be written as
ωr

2 = k2
{

3V 2
tc +

V 2
sκ

1 + k2λ2
κh

}

, (B.21)whih learly shows that the phase veloity ω/k is modi�ed by the hot eletron parameters(through λκh
).However, if in addition we assume that λDc ≪ λκh, then Eq. (B.20) an be written inthe form [Mae et al., 1999℄

ωr
2 = ω2

pc

(

1 + 3k2λ2
Dc

1 + 1/k2λ2
κh

)

. (B.22)
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APPENDIXC

C.1 Derivation of the Modi�ed Korteweg de-Vries (mKdV)EquationWe already saw from the KdV equation (1.27) in Se. 1.2 that when the oe�ient of thenonlinearity term ∂ϕ2/∂ζ vanishes, the soliton amplitude goes to in�nity. In other words,the small amplitude method based on the KdV approah breaks down. In overoming thatsenario in the perturbation approah, we re-sale the strethed spae-time variables ζ and
T . In this work, we have used the approah of Baboolal et al. [1989℄, by making use ofthe strethed variables ζ = ǫ(X − V t′) and T = ǫ3t′. In addition, we expand the varyingplasma parameters Nj , Vj and ϕ, that is, the density, veloity and eletrostati potential,respetively, in terms of the smallness parameter, ǫ, using the expansion [Nishihara andTajiri, 1981; Mae et al., 1991℄:

Nj = Nj0 + ǫNj1 + ǫ2Nj2 + . . .

Vj = ǫ Vj1 + ǫ2Vj2 + . . .

ϕ = ǫ ϕ1 + ǫ2ϕ2 + . . .

(C.1)Here, parameters with subsript 0 orrespond to the equilibrium state while those withsubsripts 1, 2 · · · orrespond to the �rst-, seond-, · · · order perturbed sates. The veloityof the individual partiles in the equilibrium state is taken to be zero, and we have assumed223



C.zero equilibrium potential sine the eletri �eld is assumed to be zero in the equilibriumstate. We have not inluded the pressure expansion terms, sine in the plasma modelsthat will be disussed in this thesis, the pressure is expressed as a funtion of densityusing the adiabati relation PjN
−γj
j = onstant = Pj0N

−γj
j0 , where γ is the ratio of theheat apaities at onstant volume, equal to unity for isothermal partiles, and three foradiabati partiles.Using the strethed variables ζ = ǫ (X − V t′) and T = ǫ3t′, we have ∂/∂X = ǫ ∂/∂ζand ∂/∂t′ = ǫ3∂/∂T − ǫ V ∂/∂ζ. Thus the ontinuity, momentum and Poisson's equationsan be written, respetively, in the form:

ǫ3
∂Ni

∂T − ǫ V
∂Ni

∂ζ
+ ǫNi

∂Vi

∂ζ
+ ǫ Vi

∂Ni

∂ζ
= 0, (C.2)

miNi

(

ǫ3
∂Vi

∂T − ǫ V
∂Vi

∂ζ
+ ǫ Vi

∂Vi

∂ζ

)

+ ǫmiC
2
ti

(

Ni

Ni0

)(γi−1) ∂Ni

∂ζ
+ ǫNiqi

∂ϕ

∂ζ
= 0, (C.3)and

ǫ2 ε0
∂2ϕ

∂ζ2
+Niqi +

∑

s=c, h

Ns0

∞
∑

r=0

(−1)rνsr ϕrqs = 0, (C.4)where Ni, Vi and ϕ are de�ned in Eq. (C.1), and the thermal veloity of the ions, Cti isde�ned by C2
ti = γiPi0/miNi0. Re-arranging order by order we have the following:The ontinuity equation gives:
©
(

ǫ2
)

: Ni0
∂Vi1

∂ζ
− V

∂Ni1

∂ζ
= 0, (C.5)

©
(

ǫ3
)

: Ni0
∂Vi2

∂ζ
− V

∂Ni2

∂ζ
+Ni1

∂Vi1

∂ζ
= 0, (C.6)

©
(

ǫ4
)

:
∂Ni1

∂T − V
∂Ni3

∂ζ
+Ni0

∂Vi3

∂ζ
+Ni1

∂Vi2

∂ζ
+Ni2

∂Vi1

∂ζ
= 0. (C.7)
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C.1. Derivation of the Modi�ed Korteweg de-Vries (mKdV) EquationThe momentum equation gives:
©
(

ǫ2
)

:miC
2
ti

∂Ni1

∂ζ
+Ni0qi

∂ϕ1

∂ζ
−miNi0V

∂Vi1

∂ζ
= 0. (C.8)

©
(

ǫ3
)

:miNi0Vi1
∂Vi1

∂ζ
−miNi0V

∂Vi2

∂ζ
−miNi1V

∂Vi1

∂ζ
+ (γi − 1)mi C

2
ti

Ni1

Ni0

∂Ni1

∂ζ

+ mi C
2
ti

∂Ni2

∂ζ
+Ni0qi

∂ϕ2

∂ζ
+Ni1qi

∂ϕ1

∂ζ
= 0. (C.9)

©
(

ǫ4
)

:miNi0
∂Vi1

∂T −miNi0V
∂Vi3

∂ζ
−miNi1V

∂Vi2

∂ζ
−miV Ni2

∂Vi1

∂ζ
+miNi0Vi1

∂Vi2

∂ζ

+ miNi0Vi2
∂Vi1

∂ζ
+miNi1Vi1

∂Vi1

∂ζ
+miC

2
ti

∂Ni3

∂ζ
+Ni0qi

∂ϕ3

∂ζ
+Ni1qi

∂ϕ2

∂ζ

+ (γi − 1) miC
2
ti

Ni1

Ni0

∂Ni2

∂ζ
+ (γi − 1) miC

2
ti

Ni2

Ni0

∂Ni1

∂ζ
+Ni2qi

∂ϕ1

∂ζ
= 0. (C.10)Similarly, Poisson's equation gives:

©
(

ǫ0
)

:
∑

s=c, h

Ns0qs + Ni0qi = 0, (C.11)
©
(

ǫ1
)

: Ni1qi −
∑

s=c, h

qsNs0 νs1 ϕ1 = 0, (C.12)
©
(

ǫ2
)

: Ni2qi −
∑

s=c, h

qsNs0νs1 ϕ2 +
∑

s=c, h

qsNs0νs2 ϕ
2
1 = 0, (C.13)

©
(

ǫ3
)

: ε0
∂2ϕ1

∂ζ2
+Ni3qi −

∑

s=c, h

qsNs0νs1 ϕ3

+2
∑

s=c, h

qsNs0νs2 ϕ1 ϕ2 −
∑

s=c, h

qsNs0νs3 ϕ
3
1 = 0, (C.14)where Eq. (C.11) is the harge neutrality ondition of the un-perturbed plasma onstituentsat equilibrium.The© (ǫ2) equations, (C.5) and (C.8), an easily be solved for the �rst-order perturbedveloity Vi1 and density Ni1 in terms of ϕ1 giving

Vi1 =
V qi/mi

V 2 − c2ti
ϕ1 and Ni1 =

Ni0qi/mi

V 2 − c2ti
ϕ1. (C.15)Again, the © (ǫ1) terms in Poisson's equation, (C.12), gives the linear dispersion relation

ω2
pi

V 2 − C2
ti

− 1

λ2
Dκ

= 0 or ω2
pi

ω2 − k2C2
ti

− 1

k2λ2
Dκ

= 0, (C.16)from whih the phase veloity, V is obtained as V = (C2
iκ + C2

ti)
1/2, with Ciκ = ωpiλDκ225



C.being the ion-aousti sound speed of the plasma model.Similarly, the © (ǫ2) terms in Poissons's equation (C.13) together with the © (ǫ3)terms in the ontinuity equation (C.6) give,
Ni2 =

∑

s=c, h

qsNs0

qi
νs1ϕ2 −

∑

s=c, h

qsNs0

qi
νs2ϕ

2
1 and

Vi2 = V

{

∑

s=c, h

qsNs0

qiNi0
νs1ϕ2 −

∑

s=c, h

qsNs0

qiNi0
νs2ϕ

2
1 −

1

2

q2i /m
2
i

(V 2 − C2
ti)

2
ϕ2
1

}

.In order to eliminate the third-order perturbation terms Vi3 and Ni3, we use the© (ǫ4) on-tinuity and momentum equations, and the© (ǫ3) Poisson's equation. That is, Eqs. (C.7), (C.10)and (C.14). After a single di�erentiation, Eq. (C.14) then beomes
ε0

∂3ϕ1

∂ζ3
+

2Ni0V q2i /mi

(V 2 − C2
ti)

2

∂ϕ1

∂τ
+







Ni0q
2
i /mi

V 2 − C2
ti

−
∑

s=c, h

qsNs0νs1







∂ϕ3

∂ζ

+ϕ2
∂ϕ1

∂ζ

{

Ni0q
2
i /mi

(V 2 − C2
ti)

2
[2V 2 + (γi − 2)C2

ti]
∑

s=c, h

qsNs0

qiNi0
νs1 + 2

∑

s=c, h

qsNs0νs2

}

+ϕ1
∂ϕ2

∂ζ

{

2
∑

s=c, h

qsNs0νs2 +
Ni0q

2
i /mi

(V 2 − C2
ti)

2



1 + {V 2 + (γi − 1)C2
ti}

∑

s=c, h

qsNs0

qiNi0
νs1





}

−ϕ2
1

∂ϕ1

∂ζ

{

3
∑

s=c, h

qsNs0νs3 +
3

2

Ni0V
2q4i /m

3
i

(V 2 − C2
ti)

4

+
Ni0q

2
i /mi

(V 2 − C2
ti)

2
[4V 2 + (3γi − 4)C2

ti]
∑

s=c, h

qsNs0

qiNi0
νs2

}

= 0. (C.17)We observe from Eq. (C.12) that for ϕ1 6= 0, the oe�ient of ∂ϕ3/∂ζ in Eq. (C.17) iszero, and therefore those terms drop out. Also, we assume that the terms ϕ2∂ϕ1/∂ζ and
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C.2. Solution of the mKdV EquationThus from Eq. (C.18), the modi�ed KdV equation takes the form [Verheest, 2000℄
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C.and therefore the RHS of Eq. (C.21) is equivalent to In[(1 − Y (ϕ1))/(1 + Y (ϕ1))], i.e.,
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