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• Semen is a major vector for HIV-1 transmission across mucosal
surfaces, during male to female or male to male sexual intercourse.

• The immune correlates of risk in the male genital tract remain poorly
defined although HIV-specific antibodies may play an important role.

• The profiles of HIV-specific antibodies in seminal fluid was
investigated to understand if prior genital inflammation in the
presence or absence of antiretroviral- (ARV) treatment modulates
genital tract antibody titres in HIV-infected (HIV+) and HIV-exposed
seronegative (HIV-) men.

• Semen from 36 HIV+ and 40 HIV- men was used to measure HIV-specific
binding antibodies (gp120, gp41, p66 and p24), isotypes to measure
immunoglobulin (Ig) profiles and cytokines using multiplex assays.

• Higher IgG1 and IgG3 subclass profiles in the genital compartment in
HIV+ men may indicate HIV- mediated changes to antibody subclasses
which likely mediate specific functions like antibody-dependent
cellular cytotoxicity or phagocytosis.

• IL-6 and MIP-1α may elicit modulating effects on certain HIV-specific
antibodies in HIV+ARV+ men, whilst TNF-α and MIP-1β may modify
the levels of certain HIV-specific antibodies in the genital tract in the
background of inflammation in HIV+ARV- men.

• Together, these data show that HIV-induced local inflammation can
influence humoral immunity and can inform future vaccine research
on the immune correlates of risk or protection in male genital tract in
the presence or absence of ARVs.

The detection of HIV gp120, gp41, p66 and gag p24 antibodies 
were  higher in the semen of HIV+ than HIV- men (p<0.05 for 

all).

Conclusions

Background

Methods

Results

Acknowledgements

The magnitudes of the genital HIV-specific antibodies was not different in 

HIV+ARV- compared to HIV+ARV- group indicating that ARVs do not impact on 

the genital HIV-specific humoral immunity.

Semen IgG1 and IgG3 were significantly higher in HIV+ men 
than HIV- men.

Study Participants

P24 and gp120 antibody titres correlated significantly with TNF-α in 
HIV+ARV- men. P24 antibody titres correlated significantly with 

MIP-1β in HIV+ARV- men.

The authors would like to thank the college of Health Sciences (University of KwaZulu-Natal, Nelson Mandela
Medical School Campus) and The National Research foundation, Dr. D. Archary of CAPRISA (RCA 13101656388) for
funding this study. We would also like to thank the participants and the staff at the Empilisweni Clinic, Athlone.

Characteristic HIV- HIV+ARV- HIV+ARV+

N 40 25 11

Age, y (median [IQR]) 44 (37-51) 39 (34-44) 43 (39-46)

CD4 count, cell/mm3 (median [IQR]) - 391 (278–507) 340 (234–532)

Number of men with detectable HIV RNA in 

plasma, (N/total [%])

- 25/25 (100) 2/11 (18.2)b

Genital tract viral load, RNA copies/mL (median 

[IQR])

- 1389 (LDLa-20 060) LDLa (LDL-LDL)

Number of men with detectable HIV RNA in 

semen, N/total (%)

- 19/25 (76) 2/11 (18.2)b

Number of men with detectable CMV in 

semen, N/total (%)

6/20 13/25 4/11

Genital tract CMV viral load, DNA copies/mL 

(median [IQR])

LDLa (LDLa-

800)

374 (LDLa-174 025) LDLa (LDLa-43 375)

Table 1. Participant demographic profile

HIV-

(n/N)

HIV+ARV-

(n/N)

HIV+ARV+

(n/N)

p24 72.5%

(29/40)

100% 

(25/25)

100% 

(11/11)

p66 82.5% 

(33/40)

100% 

(25/25)

100% 

(11/11)

gp41 2.5% 

(1/40)

80% 

(20/25)

100% 

(11/11)

gp120 2.5% 

(1/40)

80% 

(20/25)

90% 

(10/11)
Detectability is deemed positive if the Mean Fluorescence Intensity (MFI) cut-off value is 100 MFI and above.
If the MFI > 100 MFI, then detectable and value analysed are taken to second level of analysis

Table 2. Detectability of HIV antibodies in the semen

P66 antibody titres inversely correlated with IL-6 in HIV+ARV+ 

men. Gp41 antibody titres inversely correlated with MIP-1α in 

HIV+ARV+ men.

Genital HIV-specific antibodies correlated significantly to total IgG(1-4) in 
HIV+ARV+ men.

Abbreviations: CMV, cytomegalovirus; HAART, highly active antiretroviral therapy; HIV, human immunodeficiency virus; IQR, interquartile range; LDL, 
lower than detection level.
a LDL, 70 HIV-1 RNA copies/mL.
b Two participants had plasma viral loads of 740 and 880 copies/mL; an additional 2 participants had seminal viral loads of 414 and 60 200 copies/mL.

Key:
• HIV+ARV-
▪ HIV+ARV+

Cytokines p24 p66 gp41 gp120

r-value p-value r-value p-value r-value p-value r-value p-value

IL-6 -0,4636 0,1546 -0,6545 0,0336 -0,4364 0,1826 -0,1636 0,6337

MIP-1α -0,5000 0,1217 -0,3273 0,3269 -0,7273 0,0144 -0,0909 0,7964

Table 3: Semen cytokine association with HIV-specific antibodies 
observed in HIV+ARV+ (n=11 ) men

Cytokines p24 p66 gp41 gp120

r-value p-value r-value p-value r-value p-value r-value p-value

TNF-α 0,4832 0,0144 0,3608 0,0764 0,3646 0,0732 0,4399 0,0278

MIP-1β 0,4101 0,0418 0,2585 0,2121 0,3001 0,145 0,3537 0,0828

Table 4: Semen cytokine association with HIV-specific antibodies 
observed in HIV+ARV- (n=25) men
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ABSTRACT  

 

Background: Sexual transmission of HIV across the mucosal surface remains the main route of infection 

in women. There are several biological and immunological predictors that may enhance mucosal HIV 

susceptibility, especially in women in high HIV incidence areas. Young women with genital inflammation 

are at a heightened risk of HIV acquisition. Local inflammation in the female genital tract may play a crucial 

role in altering the antibody isotypes and IgG subclass profiles that may prevail. Discerning whether this 

altered immunity may be a consequence of risk or protection against HIV infection may be important in 

both vaccine-induced and passive immunity studies. Thus, the antibody isotypes, IgG subclasses and 

cytokine signatures in women with and without genital tract inflammation who acquired HIV infection was 

investigated. 

 

Methods: Cervicovaginal lavages (CVL) from HIV seroconverters (n=61) and HIV-uninfected women 

(n=61) and matching plasma samples from the same HIV seroconverters (n=66) and HIV-uninfected women 

(n=66) who were enrolled in the CAPRISA 004 phase 2 trial and CAPRISA 008 tenofovir gel 

implementation trial was used to measure HIV-specific binding antibodies (p66, p24, gp41 and gp120), 

antibody isotypes to measure immunoglobulin profiles and cytokines using multiplex assays. 

 

Results: At the pre-HIV infection time point, HIV-infected women had significantly higher mucosal total 

IgG, IgG1 and IgM titres compared to HIV-uninfected women (p≤0.05 for all). Prior to HIV infection, 

women who subsequently became infected and had genital inflammation had significantly higher mucosal 

IgM titres (p=0.05) compared to HIV-uninfected women who had no genital inflammation. At 3 and 6 

months post-infection, HIV-infected women had higher HIV-specific activities for p66, p24, gp41 and 

gp120 in the genital tract (p<0.05 for all) compared to HIV-uninfected women. Additionally, HIV-infected 

women with genital inflammation had significantly higher HIV-specific activities for mucosal p66, p24, 

gp41 and gp120 compared to women without genital inflammation (p<0.05) at 3 and 6 months. In HIV-

infected women, HIV-specific activities for p66, p24, gp41 and gp120 evolved over time in the genital 

compartment (p≤0.05 for all). Similarly, at 3 and 6 months post-infection, plasma-specific responses also 

evolved over time for p66, p24, gp41 and gp120 in HIV-infected women and HIV-infected women with 

genital inflammation (p<0.05 for all). In HIV-infected women without genital inflammation, significant 

and positive correlations were seen for p66 (at baseline) (r=0.45, p=0.02) and p24- (at 6 months) (r=0.46, 

p=0.04) between the systemic and the genital compartments. At baseline, at least 5 of the 9 pro-

inflammatory cytokines and chemokines (MIP1β, MIP1α, IL1β, IL6, TNFα) were positively and strongly 

associated with IgG1, IgG2, IgG3, IgG4, IgA and IgM in the genital tract (β≤0.51 ng/ml for all;  p<0.05 for 
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all). Additionally, mucosal IP10 and IL18 were significantly associated with increased p66- (IP10: β=0.23 

MFI*dilution factor/ngml-1, p=0.03; IL18: β=0.38 MFI*dilution factor/ngml-1, p=0.003) and p24-specific 

(IP10: β=0.20 MFI*dilution factor/ngml-1; IL18: β=0.26 MFI*dilution factor/ngml-1, p=0.02 for both) 

activities respectively, in the genital tract. Prior to HIV infection, IP10 was significantly associated with 

increased p66-specific responses (β=0.25 MFI*dilution, p=0.05), whilst IL8 and MCP1 was negatively 

associated with gp41 (IL8: β=-0.64 MFI*dilution factor, p=0.002) and gp120-specific (IL8: β=-0.47 

MFI*dilution factor, p=0.01; MCP1: β=-0.24 MFI*dilution factor, p=0.02) responses in the systemic 

compartment. 

 

Conclusion: Pro-inflammatory cytokines and chemokines showed strong associations with antibody 

isotypes and IgG subclasses, as well as HIV-specific antibodies in the female genital tract. Together, these 

data suggest that the local genital tract cytokine milieu may impact the antibody isotypes and specificities 

in the mucosal compartment, which are important considerations for vaccine induced and passive immunity 

studies.  

 



 

1 
 

INTRODUCTION 

 

In 2017, an estimated 36.9 million people were living with HIV, 1.8 million people became newly infected 

and 940 000 people died from Acquired Immunodeficiency Syndrome (AIDS)-related illnesses globally 

(UNAIDS, 2017). Sub-Saharan Africa bears the highest burden of HIV infection accounting for 66% people 

living with HIV in 2017 (UNAIDS, 2018a). Women in particular, bear a disproportionate burden of HIV 

infection accounting for the majority of new infections in South Africa in 2017 (UNAIDS, 2018a). 

Additionally, it is estimated that women are twice as likely to be HIV-infected than men (Ramjee and 

Daniels, 2013). Importantly, there are many factors (immunological, biological, anatomical and 

physiological) that contribute to HIV susceptibility and further increase HIV infection rates globally. 

 

Factors that increase risk for HIV acquisition in women include, among others, the mucosal and epithelial 

barrier integrity, semen viral load, immune activation, availability of sub-mucosal T cell targets for 

infection, the presence of other sexually transmitted infections (STIs), vaginal hygiene practices and the 

increased mucosal surface area of the female genital tract (Kaul et al., 2015). Further, Masson et al., (2015) 

have shown that women with genital inflammation, defined as having 5 of 9 key pro-inflammatory 

cytokines [interleukin (IL): IL6, IL8, IL1α, interleukin 1 beta (IL1β), tumor necrosis factor-alpha (TNFα), 

interferon-gamma inducible protein 10 (IP10), monocyte chemoattractant protein 1 (MCP1), macrophage 

inflammatory protein 1 alpha (MIP1α), and macrophage inflammatory protein 1 beta (MIP1β)] elevated in 

the genital tract, had more than a three-fold increased HIV risk compared to women who did not have 

genital inflammation. Additionally, further studies have shown that in HIV-uninfected women, elevated 

genital pro-inflammatory cytokines correlated with increased numbers of CD4 target T cells (Kaul et al., 

2015, Nkwanyana et al., 2009) and with a proteomic profile indicative of mucosal epithelial cell damage 

(Arnold et al., 2016).  In both HIV-infected men and women, elevated mucosal pro-inflammatory cytokines 

have been shown to correlate with increased viral loads both in the semen (Gianella et al., 2012, Olivier et 

al., 2014, Sheth et al., 2005, Politch et al., 1997) and in the vaginal secretions (Gumbi et al., 2008) 

respectively.  

 

The transudation of HIV-1 specific antibodies from the systemic circulation into secretions in the lower 

female genital tract has been described in detail by others (Archary et al., 2016, Johansson and Lycke, 2003, 

Mkhize et al., 2016). Many factors may affect the transudation of antibodies across the mucosa, including 

vaginal pH (Gupta et al., 2013, Li et al., 2011), the type of antibody glycosylation (Ackerman et al., 2013a), 

and heterogeneity among individuals. The impact of genital tract inflammation on the isotype, subclass and 

HIV-binding antibody profile, and the transudation of antibodies into the mucosal compartment are 
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important areas not fully understood. Genital tract inflammation may have important consequences in the 

transudation dynamics of various HIV-specific antibodies, isotypes or Ig subclasses in active vaccination 

or passive immunization strategies.  

 

Given the diverse biological and immunological factors that govern antibody development and transudation 

either during vaccination or natural infection, understanding whether genital inflammation may skew or 

alter these profiles, at the site of vulnerability, is important. In populations with pre-existing genital tract 

inflammation, the alteration of the antibody profiles may have consequences for protection against HIV 

infection in both vaccine and passive immunity studies. Therefore, this study aimed to characterize these 

humoral immune parameters in this cohort of women with and without genital tract inflammation who 

acquired HIV infection. In the context of natural infection, this study investigates how genital inflammation 

may alter the HIV-specific antibody profiles, and the transudation dynamics at both the isotype and IgG 

subclass level. 
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1. LITERATURE REVIEW 

 

1.1 HIV epidemiology 

Since the start of the epidemic in 1981, more than 70 million people globally have been infected by the 

Human Immunodeficiency virus (HIV) with approximately 35 million people having succumbed to the 

disease (UNAIDS, 2018b). The global adult HIV prevalence rate was 0.8% in 2017 (Figure 1), with 1.8 

million people newly infected in 2017 (UNAIDS, 2018b). Sub-Saharan Africa bears the brunt of the HIV 

epidemic and accounts for 19.6 million people living with HIV (UNAIDS, 2018b). To curb HIV infection 

rates and alter the trajectory of the HIV epidemic, a safe and efficacious vaccine remains a public health 

priority, however the development of such a vaccine remains a global challenge. 

 

 
 

Figure 1: World map illustrating the global adult HIV prevalence in 2017 (Figure adapted from: Kaiser 

Family Foundation based on UNAIDS). 

 

Young women and adolescent girls are particularly vulnerable to HIV infection in sub-Saharan Africa [as 

reviewed in (Abdool Karim et al., 2015)]. Compared to men, women aged 15-24 years, have about three-

fold higher HIV rates, and acquire HIV infection at least 5-7 years earlier [as reviewed in (Abdool Karim 

et al., 2017, Shisana et al., 2009)]. KwaZulu-Natal remains the epicenter of the HIV epidemic in South 

Africa (Shisana et al., 2009), and despite the implementation of pre-exposure prophylaxis (PrEP) (Fonner 
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et al., 2016), young women remain the most challenging group to protect in an effort toward an AIDS-free 

generation. 

 

1.2 Behavioural and social risk factors that predispose women to HIV acquisition 

Several risk factors predispose young women and adolescent girls to HIV acquisition, these include 

behavioural, biological, socioeconomic factors (Butler and Eng, 1997) and cultural practices (Sovran, 

2013). The lack of education and sexual/reproductive health care services (Butler and Eng, 1997), gender 

norms (Gupta, 2002, Jewkes et al., 2003), and poverty and violence (Gupta, 2002, Murphy et al., 2006, 

Higgins et al., 2010, Ackermann and Klerk, 2002) increase the risk for HIV acquisition in women. 

Intergenerational sexual partnering is an important contributing factor to the HIV epidemic in high-risk 

populations in South Africa (de Oliveira et al., 2017, Muula, 2008). Although behavioural changes may 

mitigate the risk of HIV in women, it is unlikely that behaviour alone can alter the trajectory of the epidemic. 

 

1.3 Biological risk factors that predispose women to HIV acquisition 

Aside from behavioural factors, there are also several biological risks factors associated with HIV 

acquisition. Women are more susceptible to HIV risk compared to their male counterparts (Ramjee and 

Daniels, 2013). This is possibly due to having a greater mucosal surface area, that, coupled with virus 

exposure and damage to the mucosal epithelia, further increases the risk for HIV acquisition (Abbai et al., 

2016). Additional factors that contribute to HIV acquisition include, vaginal insertive practices (Low et al., 

2011), the use of particular contraceptive methods (Baeten et al., 2007), STIs [as reviewed in (Abdool 

Karim et al., 2015, Coombs et al., 2003)], and an inflammatory environment in the female genital tract 

(Masson et al., 2015). 

 

1.4 HIV-1 Genomic structure 

HIV is an enveloped retrovirus which belongs to the genus lentivirus [as reviewed in (Rajarapu, 2014)]. 

HIV, composed of two copies of single stranded RNA, is primarily made up of nine genes which encode 

nine polyproteins which are subsequently processed into fifteen protein subunits (Watts et al., 2009). Of 

these nine genes, gag, pol and env namely, have the information required to produce structural proteins to 

be used for new virion production. The remaining six genes are tat, rev, nef, vif, vpr and vpu, which code 

for regulatory or accessory proteins and determine how HIV is able to infect new target cells, produce new 

viral copies, and affect and impact disease progression [as reviewed in (Frankel and Young, 1998)]. 
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1.5 HIV envelope structure 

The HIV-1 envelope spikes represent the HIV surface antigens and is made from a glycoprotein (gp) 160 

precursor and processed into a trimer containing three gp120 and three gp41 subunits (Figure 2), which 

each make up the heterodimer [as reviewed in (Munro and Mothes, 2015)]. The envelope interacts with the 

CD4 binding site on gp120 to initiate the binding process (Kwong et al., 1998). Susceptible CD4 helper T 

cells and macrophages bear either co-receptors,  CXCR4 or CCR5 on their surfaces, which facilitate the 

binding between this co-receptor and the CD4 receptor by gp120 (Chan and Kim, 1998). The interaction 

between gp120 and the CD4 receptor on the target cell leads to a conformational rearrangement of gp120, 

and further engagement between gp120 (V3 loops present on its surface) (Figure 2) and the CCR5/CXCR4 

co-receptor binding site, facilitates viral entry into the cell, following gp41 membrane fusion activity [as 

reviewed in (Munro and Mothes, 2015)]. 

 

 
 

Figure 2: Diagram of the gp120 and gp41 heterodimer [adapted from (Wilen et al., 2012)]. This diagram 

illustrates the heterodimer structure comprising 3 subunits each of gp120 and gp41, which mediates the 

binding and fusion of HIV into a target cell.   

 

1.5.1 Glycoprotein 41 (gp41) 

Gp41 makes up a subunit of the HIV-1 envelope protein complex and has several sites necessary for 

infection of host cells within its ectodomain (Mao et al., 2012). This transmembrane protein is a potential 

target in HIV vaccines as a result of its importance in host cell infection. In a free virion, fusion peptides 

that reside at the amino termini of gp41 are hidden within the envelope protein complex (Mao et al., 2012). 

A non-covalent bond with gp120 stabilizes this inactive non-fusogenic state.  Gp120 rearranges to expose 

the binding sites for the co-receptors (CCR5 or CXCR4) (Mao et al., 2012). A cascade of conformational 

changes is induced within gp120 when it engages with the target cell with subsequent changes in the gp41 

subunits. The gp41 core folds into a six-helical coiled structure and exposes the hidden gp41 hydrophobic 

fusion peptides that are inserted in the membrane of the host cell, thus allowing fusion to occur. 
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1.5.2 Glycoprotein 120 (gp120) 

On the crystal structure of the gp120 core, there is an outer domain and inner domain which is held together 

by a bridging sheet. Non-covalent bonds with gp41 ensures that gp120 is anchored to the viral membrane 

(Zhu et al., 2008). The heterodimer facilitates attachment to and entry into the host cell (Zhu et al., 2008). 

The CD4 binding site, which is found above the bridging sheet, is positioned between the inner and outer 

domains of the pocket, and these domains are central for CD4 and co-receptor binding (Yoon et al., 2010). 

Binding between gp120 and a chemokine receptor takes place in the bridging sheet (Liu et al., 2003). Upon 

binding between the CD4 receptor and gp120, the structure of gp120 is altered and this permits exposure 

of the bridging sheet, and a more stabilized conformation (Thali et al., 1993) (Sattentau et al., 1993). 

However, the heterodimer exists as open and closed conformations and reveals different faces to the 

immune system. Additionally, the evolving glycan shield of gp120 further evades immune recognition by 

extensive glycosylation [as reviewed in (Crispin et al., 2018, Pantophlet and Burton, 2006)]. Gp120 is also 

becoming increasingly important in its role in HIV pathogenesis [as reviewed in (Acharya et al., 2015)]. 

 

1.5.3 P66 reverse transcriptase (p66 RT) 

HIV-1 reverse transcriptase (RT) is encoded in the gag-pol Pr160 precursor protein (Mulky and Kappes, 

2005). During the course of, and after viral particle assembly, a 66-kDa RT subunit is produced by viral 

protease (PR) cleavage of Pr160, and a 51-kDa RT subunit is produced by further cleavage of the C-terminal 

domain of p66 (Mulky and Kappes, 2005). These two subunits dimerize in the virion to form the functional 

RT p66 and p51 heterodimer (di Marzo Veronese et al., 1986). The structural and functional characteristics 

of p66 and p51 are distinct (Mulky and Kappes, 2005). 

 

1.5.4 Protein of 24 (p24) 

Two identical single-stranded RNA molecules of HIV virus are enclosed by a viral nucleocapsid protein or 

p24 [as reviewed in (Rajarapu, 2014)]. P24 makes up most of the viral core, and is detected just before 

seroconversion (Sabin et al., 2001). Each HIV-1 virus contains between 1500 to 3000 p24 molecules, 

making it the most abundant viral protein (Summers et al., 1992, Vogt and Simon, 1999). P24 is present at 

high amounts in blood during the acute and chronic stages of HIV, which renders it a good diagnostic 

marker, and for monitoring disease progression, evaluation of antiretroviral therapy (ART) and blood donor 

screening (Allain et al., 1987, Wolf et al., 1988, Fiebig et al., 2003, Petersen et al., 1994).  

 

1.6 HIV-1 life cycle 

HIV-1 enters a host cell through the interaction of the CD4 receptor on the target cell and the surface 

envelope glycoprotein (gp120). The viral membrane and cellular membrane undergo fusion through this 
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viral envelope glycoprotein gp120/CD4 receptor engagement and the exposed CCR5 or CXCR4 co-

receptor binding sites within the V3 crown motif of gp120. (Coffin et al., 1997). Thereafter, co-receptor 

binding occurs which induces a conformational change within the transmembrane glycoprotein (gp41) 

region (Sarafianos et al., 2009). Reverse transcriptase (RT) which is enclosed inside the viral core is 

transcytosed to the cytoplasm of the target cell following membrane fusion. The core is modified by a 

process of un-coating to facilitate reverse transcription of the viral RNA into the host cell’s DNA 

(Sarafianos et al., 2009). Integration of viral RNA by the reverse transcriptase enzyme copies the viral RNA 

into complimentary DNA (cDNA) (Coffin et al., 1997). Splicing of viral DNA into the host’s DNA by an 

integrase enzyme occurs within the nucleus to generate the provirus [as reviewed in (Turner and Summers, 

1999)]. Messenger RNA, which has the information required for the production of HIV proteins, is 

transported out of the nucleus of the cell to the endoplasmic reticulum where translation of mRNA into HIV 

viral proteins occur [as reviewed in (Rajarapu, 2014)]. The new HIV proteins along with viral RNA migrate 

toward the cells’ surface along with envelope and attachment spikes (gp41 and gp120) in preparation for 

packaging and budding of the new virions [as reviewed in (Rajarapu, 2014)]. Viral protease ensures 

cleavage of the immature virions into the actual matrix, capsid and nucleocapsid proteins. The various 

structural components then assemble to produce a mature HIV virion and buds out of the host cell [as 

reviewed in (Gelderblom, 1997)]. Mature virions are capable of infecting new target cells, and this 

continuing process ultimately leads to the dysfunction and collapse of the host’s immune system [as 

reviewed in (Rajarapu, 2014)].  

 

1.7 Immune response to HIV infection 

The immune system is divided into the innate and adaptive immune system. Cells of the innate immune 

system, such as natural killer (NK) cells, macrophages, neutrophils and mast cells respond to a breach in 

the mucosal barrier by HIV, and is the first line of defence against invading HIV [as reviewed in (Vivier et 

al., 2011)]. Adaptive immunity, defined as the second line of defence, can be further divided into humoral 

and cell-mediated immunity. In response to HIV infection, the humoral immune response is mediated by 

antibodies produced by B cells, mostly targeted to cell-free HIV. Therefore, in the context of HIV infection, 

it is important to understand the developmental process of B cells and antibody responses.  

 

1.7.1 B cell development and their response to antigens 

Within a quiescent population of B cells, each B cell expresses a B cell antigen receptor (BCR) with a 

unique specificity [as reviewed in (Tobón et al., 2013)]. The interaction of a BCR with a specific antigen 

generates several intracellular signals leading to activation, differentiation, and plasma cell expansion and, 

ultimately memory B cell formation [as reviewed in (Tobón et al., 2013)].  
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The process of B cell development [as reviewed in (Bonilla and Oettgen, 2010, Fuxa and Skok, 2007, 

LeBien and Tedder, 2008)] firstly involves the production of B lymphocytes, which occurs from stem cells 

present in the bone marrow. B lymphocytes are derived from the early lymphoid progenitor which then 

passes to the common lymphoid progenitor, and subsequently produces natural killer and dendritic cells, 

and secondly produces the common lymphoid-2 progenitor that is responsible for the B cell lineage [as 

reviewed in (Tobón et al., 2013)]. B cells are able to pass through many distinct developmental processes 

in the bone marrow [as reviewed in (Tobón et al., 2013)].  

 

B lymphocytes are activated when the antigen binds to receptors on the B cell surface. The BCR complex 

is generated during B cell development as B cells acquire their antigen specificity and follows a program 

of differential surface antigen expression and sequential heavy and light chain rearrangements [as reviewed 

in (Tobón et al., 2013)]. This BCR complex, which is initially immunoglobulin M (IgM), determines the 

cell maturation stage [as reviewed in (Tobón et al., 2013)]. B cells then exit the bone marrow as immature 

transitional B cells because they transition from the primary lymphoid tissues to the secondary lymphoid 

tissues. The final stage of maturation and positive and negative selection occurs in the spleen (secondary 

lymphoid tissue), where the resulting B cells can either be fully matured, anergic or deleted [as reviewed in 

(Tobón et al., 2013)]. Fully mature B cells, which are characterized by high levels of IgD and intermediate 

levels of IgM on their cell surface, recirculate between the lymph, blood and the secondary lymphoid 

tissues. Mature B cells leave the B cell zone and transition into the T cell zone of the lymph node, where 

they recognize T cells [as reviewed in (Tobón et al., 2013)]. T cells become important for B cell activation 

during an antigen encounter.  

 

B cells are activated in the secondary lymphoid tissues either by T-cell dependent or T-cell independent 

activation pathways. T-cell dependent B cell activation involves the activation of both T cells and B cells, 

upon an antigen encounter (Figure 3). T cells provide ‘help’ to B cells and aid in maturation by two co-

stimulatory signals [as reviewed in (Chaplin, 2010)]. Antigens that activate these T cells and B cells are 

able to establish immunoglobulin (Ig) responses [as reviewed in (Chaplin, 2010, Wu et al., 2016)]. A B cell 

captures, internalizes and processes the antigen intracellularly via the B cell receptor (BCR), and present 

the peptides on the cell surface of a B cell via the HLA class Ⅱ molecule, to the T cell receptor (TCR) on 

the T cell surface, and constitutes the first signal of T cell help (Figure 3) [as reviewed in (Chaplin, 2010)]. 

Uptake of the antigen intracellularly influences increased class Ⅱ expression and CD80 and CD86 

expression given off from the B cell (Figure 3) (Wu et al., 2016). A second signal is reciprocated by the T 

cell after the interaction between the HLA class Ⅱ molecule and the TCR. The CD40 ligand (CD40L) 
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expressed on the surface of the T cell, binds to the CD40 receptor found on the surface of the B cell and 

initiates B cell proliferation and differentiation (Figure 3) [as reviewed in (Chaplin, 2010, Wu et al., 2016)], 

and interleukin 2, (IL2), interleukin 4 (IL4) and interleukin 5 (IL5) secreted by T cells further aids in the 

activation of the B cell. Signaling between the CD40L on a T cell and CD40 receptor on a B cell are 

important for isotype/class switching [as reviewed in (Chaplin, 2010)].
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Figure 3: T-cell dependent B cell activation [adapted from (Wu et al., 2016). T-cell help to B cells involves 

two signals, the first being the presentation of the peptide on the B cell surface via HLA class II molecule 

to the T-cell receptor on a T cell. The second signal occurs when the CD40L on the T cell binds to the 

CD40 receptor on the B cell and initiates proliferation and differentiation. These two signals constitute the 

T-cell dependent B cell activation response to an antigen. 

 

B cells can also be activated in the absence of T cell help, and constitutes T-cell independent B cell 

responses [as reviewed in (Chaplin, 2010)]. Antigens that stimulate B cells in the absence of T cells include 

bacterial lipopolysaccharide (LPS) and other polymeric proteins and polysaccharides [as reviewed in 

(Chaplin, 2010)]. There are two subgroups of T-cell independent antigens, these are thymus-independent 

antigen I (TI-1) and thymus-independent antigen II (TI-2). TI-1 antigens function independently of BCR 

specificity, and can induce proliferation and differentiation of B cells without directly stimulating B cells. 

Whilst, TI-2 antigens mediate cross-linking a number of BCRs and cross activation of these receptors to 

induce B cell proliferation, differentiation and antibody production [as reviewed in (Maddaly et al., 2010).   

 

1.7.2 Isotype switching, memory B cells and plasma cells 

Isotype switching is induced by cytokines derived from T cells [as reviewed in (Chaplin, 2010)]. IL10 

expressed by T cells induces switching to IgG1 and IgG3, interferon gamma (IFNγ) of Th1 cells induces 

switching to IgG2, and transforming growth factor beta (TGFβ) induces switching to IgA [as reviewed in 

(Chaplin, 2010)]. As B cells undergo isotype switching, somatic hypermutation occurs, whereby random 

mutations in the antigen-binding regions of the heavy and light chains occur [as reviewed in (Chaplin, 

2010)]. Such mutations can result in decreased antigen affinity and cause B cell death. Or an increase in 

antigen affinity results in B cells producing high affinity antibodies preferentially selected for proliferation 

[as reviewed in (Chaplin, 2010)]. Clonal expansion and somatic hypermutation occur in the germinal 
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centers of secondary lymphoid tissues [as reviewed in (Chaplin, 2010) (Schmidlin et al., 2009)]. Memory 

B cells activate upon re-exposure to its specific antigen and is involved in the secondary immune response 

[as reviewed in (Chaplin, 2010) (Tangye and Tarlinton, 2009)]. The importance of B cell memory becomes 

particularly essential in the development of vaccines against pathogenic infections and diseases [as 

reviewed in (Chaplin, 2010)]. 

 

On the other hand, B cells which differentiate and proliferate into plasma cells have the ability to produce 

antibodies. Each B cell has one unique specificity on its plasma membrane which is specific for a single 

antigen. A plasma cell produces a single antibody isotype or subclass, each with a unique antigen binding 

site. Plasma cells are unable to further proliferate and differentiate after antibody secretion, and many 

undergo apoptosis, or some may survive in the bone marrow for months or years and continue antibody 

secretion into the blood [as reviewed in (Alberts et al., 2002b)].  

 

1.7.3 What are antibodies? 

Antibodies, also known as immunoglobulins, are Y-shaped protein molecules produced by B cells. 

Antibodies usually appear during a primary immune response as part of the adaptive arm of immunity. An 

antibody can form a complex with an antigen by binding to a complementary site on the pathogen, resulting 

in disabling the pathogen and providing signals for other immune defenses. 

 

1.7.4 Diverse functions of antibodies 

Antibodies are diverse and can be characterized by the functions that they elicit, this can either be by direct 

neutralization or engagement of effector cell function through the fragment crystallizable (Fc) receptors. 

Direct neutralization allows for the fragment antigen-binding (Fab) arm of the antibody to lock directly to 

the specific antigenic site directly inactivating the pathogen and preventing the pathogen from interacting 

with healthy cells (Figure 4A) [as reviewed in (Klasse and Sattentau, 2002, Huber and Trkola, 2007)]. The 

discovery of broadly neutralizing antibodies (bNAbs) that target epitopes spanning the HIV envelope has 

added optimism to the design of a protective novel vaccine against HIV infection [as reviewed in (Wibmer 

et al., 2015)]. Some of the HIV-specific bNAbs involved in eliciting direct neutralization function displays 

great breadth, through the coverage of a wide range of HIV reference strains, and potency, where very small 

amount of the antibody is need to be effective [as reviewed in (Moore and Williamson, 2016)]. These 

bNAbs (mostly isolated from HIV-infected individuals) targets specific sites on the HIV envelope including 

the CD4 binding site antibodies (VRC01,VRC07 and N6) (Walker et al., 2011, Huang et al., 2016), V1V2-

specific binding antibodies (PG9, PG16 and CAP256) (Walker et al., 2009, Moore et al., 2011), V3-specific 

binding antibodies (PGT121) (Walker et al., 2011), gp120/gp41 interface neutralizing antibodies (PGT151) 
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(Falkowska et al., 2014), and membrane proximal external region (MPER) neutralizing antibodies (2F5, 

4E10, 10E8) (Oakes et al., 2018, Chen et al., 2014, Binley et al., 2004). The CAP256 antibody, isolated 

from a woman who participated in the CAPRISA 002 acute infection study, demonstrated great breadth 

and potency defined by having a low IC50 titre (Moore et al., 2011). CAP256 neutralized 76% of 

heterologous viruses and had a subtype bias towards subtype C and A viruses over subtype B viruses 

(Moore et al., 2011). More recently, the CAP256-VRC26.25 antibody that was isolated from the same 

CAP256 antibody lineage, displayed 70% neutralization breadth against subtype C viruses, with a 

remarkably low amount of antibody required to effect neutralization, making this antibody highly potent 

(Doria-Rose et al., 2016). Two V2-specific bNAbs, PGDM1400 and CAP256-VRC26.25 (Doria-Rose et 

al., 2014, Doria-Rose et al., 2016), was effective in preventing SHIV infection when passively infused in 

SHIV-challenged rhesus macaques (Julg et al., 2017). Another preclinical non-human primate study 

showed modest potency and neutralization breadth against SHIV reference strains when passively infused 

with monoclonal antibodies (VRC01, NIH45-46, 45-46G54W, 45-46m2, 3BNC117, 12A12, 1NC9, 

8ANC195, 10–1074, PGT121, and PGT126) (Shingai et al., 2014). The identification of such bNAbs that 

confers a degree of protection against HIV are an attractive prevention modality and are currently being 

evaluated alone and in combinations in passive immunization studies in humans [as reviewed in (Morris 

and Mkhize, 2017, Julg et al., 2017, Huang et al., 2016)].  

 

Whilst direct neutralization against pathogens is an efficient mode of antibody-mediated defence, non-

neutralizing antibodies have also been explored to define additional effector functions used for viral 

clearance through various mechanisms, i.e. complement lysis, opsonization and phagocytosis/antibody 

dependent cellular phagocytosis (ADCP), antibody-dependent cellular cytotoxicity (ADCC).  

 

Complement lysis is achieved when the Fab arm of the antibody binds to the surface of the pathogen, and 

the Fc region binds to the first complement component (Figure 4B). This activating complement cascade 

allows the first complement component to activate a pool of enzymes which induce the lysis of the organism 

via the membrane attack complex which causes perforation and ultimately cytolysis of the pathogen or 

organism [as reviewed in (Kopf et al., 2002)].  

 

ADCP, also described as opsonization and phagocytosis, uses neutrophils, monocytes and macrophages to 

destroy the pathogens. The Fab arm of the antibody binds to the antigen and forms an antibody-antigen 

complex. The antibody is then recognized by the phagocytic cell, which has specific receptors on their 

surface (Figure 4C). The phagocytic cell, either macrophages or neutrophils, bind to the antibody via their 

Fc receptor, and the pathogen is then eliminated via phagocytosis. Here, the antibody acts as an opsonin, 
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which forms a bridge between the phagocytic cell and the pathogen to ensure phagocytosis of the pathogen. 

IgG is abundant and binds easily to the Fc receptor on the surface of phagocytic cells, making opsonization 

and phagocytosis the primary mechanisms for viral clearance [as reviewed in (Mayr et al., 2017, Huber and 

Trkola, 2007)].  

 

ADCC also uses effector cells, such as NK cells or eosinophils to carry out destruction of the pathogen 

(Figure 4D). In this case, the Fab arm of the antibody binds to the pathogen or foreign antigen on the 

infected cell, thus leaving the Fc region free to bind to receptors on the NK cell. This binding complex thus 

signals the degranulation of NK cells and releases perforin or granzymes which disrupt the cell membrane 

of the infected target cell, and results in the lysis of the pathogen or infected cell (Sinclair et al., 1988).  

 

 

 

Figure 4: Diverse functions of antibodies [adapted from (Huber and Trkola, 2007)]. (A) Direct 

neutralization of a pathogen, (B) complement-mediated lysis of free virus by an antibody, (C) opsonization 

and phagocytosis of a pathogen, and (D) ADCC against infected target cells.  
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1.7.5 Antibody isotypes and subclasses (IgG1-IgG4) 

The five main antibody isotypes are IgA, IgD, IgE, IgM and IgG. IgA is a dimeric antibody found in 

mucosal surfaces (respiratory tract and the gut), with monomeric (approximately 90%) IgA1 predominantly 

found in serum, while locally produced polymeric IgA2 is present in external secretions. The secretory 

component of IgA (sIgA) offers protection against immunoglobulin degradation by proteolytic enzymes 

and can therefore survive harsh environments like the gastrointestinal tract, thus playing an important role 

in protective immunity and the prevention of pathogen colonization [as reviewed in (Woof and Kerr, 2006)]. 

IgD serves as an antigen receptor on B cells that have not been exposed to antigens (Geisberger et al., 2006). 

IgD causes the activation of basophils and mast cells for the production of antimicrobial factors (Chen et 

al., 2009). IgE effectively binds to allergens thereby releasing histamine from basophils and mast cells 

involved in allergy (Galli and Tsai, 2012). IgM is a monomeric antibody and is expressed on the B cell 

surface, it is a pentamer in a secreted form, which has a high avidity (Geisberger et al., 2006). IgM is the 

largest antibody compared to other antibody isotypes and presents during the acute infection stage in 

response to initial antigen exposure. IgG offers the most antibody-mediated immunity against pathogens 

(Twigg III, 2005). 

 

IgG is the predominant class found in the serum, and in the male (Haimovici et al., 1997, Wolff et al., 1992) 

and female (Johansson and Lycke, 2003) genital tracts and non-mucosal tissues. IgG plays a role in 

protective immunity against pathogens and toxins [as reviewed in (Roopenian and Akilesh, 2007)]. IgG is 

the only antibody that is actively transferred from mother to offspring and confers short-term passive 

immunity (Morphis and Gitlin, 1970, Brambell, 1966). The neonatal Fc receptor (FcRn) carries out this 

specific transportation of IgG across the placenta (Simister and Rees, 1985, Simister and Mostov, 1989), 

and the interaction between the Fc receptor and IgG shows the IgG transport mechanism [as reviewed in 

(Roopenian and Akilesh, 2007)]. The FcRn prolongs the IgG antibody half-life in serum, thus ensuring high 

concentrations of this antibody in the circulation [as reviewed in (Roopenian and Akilesh, 2007)]. Recent 

studies have shown that FcRn in the vaginal epithelium has the ability to facilitate bidirectional 

transportation of IgG (Li et al., 2005, Ye et al., 2011, Gupta et al., 2013) between the lumen and sub-luminal 

space in the genital tract for immune protection. 

 

1.7.6 HIV-1 specific IgG subclass responses 

The IgG antibody has four subclasses, IgG1, IgG2, IgG3 and IgG4 (Figure 5). IgG1 antibody in HIV-1 

binds to Fc region and mediates ADCC of HIV-1 infected cells (Figure 5A) . IgG1 predominate as anti-

Env antibodies in HIV infection (Klasse and Blomberg, 1987, McDougal et al., 1987b, Khalife et al., 1988, 

Mathiesen et al., 1989, Mergener et al., 1987, Sundqvist et al., 1986) during the acute and chronic stages, 
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and has the broadest response to gag, env and pol proteins (Wilson et al., 2004). IgG1 mediates antiviral 

functions, through the binding of the Fc receptors on NK cells to facilitate ADCC of HIV infected cells 

(Ljunggren et al., 1988) and IgG1 can effectively directly neutralize HIV [as reviewed in (French et al., 

2017)]. IgG1 is normally the most abundant subclass, but a lack of IgG1 is seen in a variety of primary and 

secondary antibody deficiencies such as hypogammaglobinemia (Vidarsson et al., 2014). IgG1 deficiencies 

in combination with other IgG subclass deficiencies are associated with recurrent infections underscoring 

their importance in infection control and immunity (Jefferis and Kumararatne, 1990). 

 

At various stages throughout HIV-1 infection, IgG2 can be detected (Chiodi et al., 1989, Lambotte et al., 

2009), but is less abundant than the other IgG subclasses (Figure 5B) (Klasse and Blomberg, 1987, 

McDougal et al., 1987a, Khalife et al., 1988). The lack of IgG2 antibodies correlated to the progression to 

AIDS (Lal et al., 1991) while the detection of IgG2 antibodies in long-term non-progressors correlated with 

control of viral load (Ngo-Giang-Huong et al., 2001).  

 

IgG3 is the second most predominant IgG subclass (Broliden et al., 1989), and enhanced flexibility of the 

immunoglobulin hinge region provides IgG3 with a greater in vitro neutralizing ability (Figure 5C). During 

acute HIV infection, anti-gag IgG3 antibodies appear and then declines (Wilson et al., 2004). Previous 

studies have shown higher levels of IgG3 were found in HIV-infected individuals with higher viral loads 

and enhanced B-cell dysfunction compared to healthy individuals (Béniguel et al., 2004). IgG3 has a shorter 

half-life (Morell et al., 1970), and is particularly effective in the induction of ADCC and ADCP (Vidarsson 

et al., 2014).  

 

The HIV-1 specific IgG4 antibody is found more readily in chronically HIV-1 infected patients (Figure 5D) 

(Tomaras and Haynes, 2009). IgG4 antibodies arise in response to chronic antigenic stimulation in the 

setting of chronic parasite exposure and may become more dominant subclass in this setting (Vidarsson et 

al., 2014).
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Figure 5: Subclasses of IgG (IgG1, IgG2, IgG3 and IgG4) [adapted from (Liu and May, 2012). The 

Fragment antigen binding (Fab) arm and Fragment crystallizable (Fc) part of the antibody is linked by the 

flexible hinge region. Among the IgG subclasses, the length and flexibility of the hinge varies, and as a 

result this affects the possible conformations of the Fab arms relative to the Fc domain as well as to each 

other.  

 

1.7.7 HIV-specific antibody responses 

HIV-specific antibody responses can be studied at a proteome and epitope level [as reviewed in (Gallerano 

et al., 2015)]. At a proteomic level, it is possible to identify which HIV proteins are capable of eliciting 

antibody responses and at an epitope level, it is possible to determine which sites of a protein are bound by 

antibodies [as reviewed in (Gallerano et al., 2015)]. A mixture of antibody isotypes and many HIV-1 

specificities constitute a humoral immune response to HIV-1 throughout infection [as reviewed in 

(Gallerano et al., 2015)].  

 

Progression of HIV through the early acute phase of infection can be marked by antibody responses to the 

proteins from the gag, pol and env genes, in addition to the detection of viral RNA and p24 proteins [as 

reviewed in (Gallerano et al., 2015)]. The initial response to HIV-1 are anti-gp41 IgM antibodies, thereafter 

class switching to IgG and IgA occurs (Tomaras et al., 2008). The p24-specific IgG is present at 

approximately 18 days post-infection [as reviewed in (Gallerano et al., 2015)]. Antibody responses to gp41 

and gp120 occur at 13 and 28 days respectively after the presence of detectable viral RNA levels [as 

reviewed in (Gallerano et al., 2015)]. However, these binding antibodies have no detectable effect on 
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viremia (Tomaras et al., 2008) and do not exert any selective immune pressure on the envelope (Keele et 

al., 2008).  

 

One of the approaches to prevent HIV infection at the portal of entry and block productive viral replication 

in the reproductive tract of women can be through antibody secretion at this mucosal portal of HIV entry 

(Devito et al., 2000, Belyakov et al., 2004, Smith et al., 2014). In the context of infection, preclinical non-

human primate models infected intravenously with live attenuated virus SIVmac239Δnef elicited plasma B 

cells produced antibodies that were gp41 trimer specific. Histological examination of the macaque female 

genital tract showed that plasma B cells were present in the submucosa and ectopic tertiary lymphoid 

follicles of the ectocervix and vagina, and that the gp41-trimer specific IgGs through the FcRn were found 

lining the vaginal epithelium (Li et al., 2014, Zeng et al., 2016). Subsequent studies have confirmed that 

the gp41 trimer specific antibodies produced through SIV gp41 trimer immunogens were present both 

systemically and found complexed to the FcRn in the vaginal epithelium (Voss et al., 2016), indicating a 

possible role for these HIV specific antibodies to elicit effector functions at the mucosal portal of entry. In 

humans, mucosal Env-specific antibodies in highly-exposed seronegative (HESN) women correlated with 

protection (Tudor et al., 2009, Kaul et al., 2001, Seaton et al., 2014), while in the HPTN 035 microbicide 

trial, mucosal gp120-specific IgAs correlated with protection in these HESN women (Seaton et al., 2014). 

The immune correlates of protection for the RV144 vaccine trial showed that plasma V1/V2-specific IgG 

correlated with protection in the presence of low Env-specific IgA (Bonsignori et al., 2012, Pollara et al., 

2014). The functional immune responses showed that V1/V2 IgG1 and IgG3 mediated superior ADCC and 

ADCP activities (Yates et al., 2014) indicating the possible role of circulating HIV-specific antibodies 

conferring protection. However, whether these antibodies conferred protection through transudation or 

local production in the genital tract remains undefined as no mucosal samples were taken from participants 

in the RV144 vaccine trial. 

 

Additionally, HIV-1 specific antibodies have been shown to transudate from the systemic circulation to the 

female genital tract (Letvin et al., 2011) and 90% of the HIV-specific antibodies found circulating correlated 

significantly with those in the genital tract (Archary et al., 2016). Vaginal pH, heterogeneity among 

individuals and the type of antibody glycosylation (Hessell et al., 2007), are a few of the many factors which 

affect antibody transudation across the mucosa [as reviewed in (Horton and Vidarsson, 2013)].  The 

transudation from the systemic compartment to the female genital tract highlight the importance of locally 

produced or transduced antibody responses in the female genital tract to prevent infection (Zhou and 

Ruprecht, 2014, Sholukh et al., 2015, Neutra and Kozlowski, 2006). 
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1.8 Antibodies as correlates of protection 

Extracellular pathogens travel to their target cells or tissues via the bloodstream, and most vaccines confer 

protection from these pathogens through the stimulation of antibodies (Plotkin, 1999). Pathogens can also 

reach their target cells by secreting toxins that can be neutralized by antitoxins, however, there are some 

pathogens that replicate on mucosal surfaces that become susceptible to antibodies which diffuse from 

serum (Plotkin and Plotkin, 2008). Antibodies serve as correlates of protection, and one way of 

demonstrating this principle is by administering them passively by means of an injection, or to detect a 

protective effect of maternal antibodies in the newborn baby [as reviewed in (Zinkernagel and Hengartner, 

2006)]. Vaccines which have been effective and worked against diseases include smallpox, diphtheria, 

tetanus, pertussis, Haemophilus influenzae type b (Hib) infection, pneumococcus infection, hepatitis A, 

hepatitis B, varicella, measles, rubella, polio, and rabies (Plotkin and Plotkin, 2008). Locally secreted IgA 

or transcytosed IgG antibodies found on mucosal surfaces can confer protection against pathogenic 

organisms on that surface and against pathogens that colonize the mucosa before systemic invasion (Plotkin 

and Plotkin, 2008). The main goal of vaccines in HIV infection is to induce neutralizing antibodies that 

block infection (Gunn and Alter, 2016). However, antibodies cannot confer protection from pathogens by 

neutralization alone, most often recruitment of additional antibody effector functions (complement 

activation and phagocytic clearance) are needed to kill pathogens against which they are directed (Gunn 

and Alter, 2016). In the context of antibody protection in the female genital tract, Mkhize et al (2016) and 

later Archary et al (2016) showed transudation dynamics of IgG from the systemic compartment into the 

genital secretions, and that the induction of systemic HIV-specific bNAbs can prevent viral replication at 

the portal of entry (Mkhize et al., 2016, Archary et al., 2016). 

 

1.9 The female genital tract 

The female genital tract is divided into the lower and upper tracts. The lower tract comprises the ectocervix 

and vagina, which is lined by squamous epithelium tissue, and the upper tract comprises the endocervix, 

fallopian tubes and endometrium lined by a single layer of columnar epithelium tissue [as reviewed in 

(Kaushic et al., 2010, Hickey et al., 2011, Horbul et al., 2011)]. The female genital tract is vulnerable to 

HIV infection and is the main portal of entry to invading microorganisms and STIs (Ganz, 2002, Mowat, 

2003, Nagler-Anderson, 2006, Shacklett et al., 2009). Despite its vulnerability to infection, the female 

genital tract has particular innate immune defences that act as a primary barrier. The innate immune defence 

in the female genital tract consists of the secretion of mucus, includes the production of antimicrobial 

factors, and soluble proteins such as cytokines (Pitman and Blumberg, 2000, Mowat, 2003, Shacklett et al., 

2009, Masson et al., 2014). Additionally, the mucosal immune system normally tolerates the commensal 

microbes present (Shin and Kaul, 2008), and any microbial dysbiosis can lead to a disruption of local 
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immunity. Anatomical, biological, immunological and behavioural factors all impact on HIV risk in 

women. 

 

1.9.1 Epithelial cell damage, genital tract inflammation and immune activation 

A healthy reproductive tract is generally not permissive to external pathogens and is characterized by having 

an intact epithelial barrier with a predominance of Lactobacilli (Figure 6) [as reviewed in (Burgener et al., 

2015)]. Lactobacilli plays a role in metabolising glycogen to lactic acid in the lower reproductive tract [as 

reviewed in (Danielsson et al., 2011)], thus lowering pH levels, creating a hostile environment for microbial 

growth thereby preventing pathogen invasion [as reviewed in (Valenti et al., 2018, Aroutcheva et al., 

2001)]. However, a microbial imbalance that exists in the female genital tract may facilitate easy pathogen 

invasion and a breach in the mucosal barriers. Sexual intercourse alone can cause microabrasions or tears 

to the vaginal epithelium increasing the risk for HIV acquisition (Fraser et al., 1999).  

 

HIV can migrate through epithelial cells allowing pathogen translocation (Nazli et al., 2010) via 

microabrasions or gaps in the epithelial barrier (Figure 6) [as reviewed in (Burgener et al., 2015)], mediation 

of transcytosis via the FcRn, or through paracellular movement between epithelial cells (Rodriguez-Garcia 

et al., 2013). In addition, genital tract inflammation has come under the spotlight as a factor that further 

increases the risk for HIV infection (Arnold et al., 2016).  

 

The body triggers an immune response to the invading pathogen, and the first responders that are recruited 

to the site of breach include myeloid target cells, such as macrophages, neutrophils, and dendritic cells 

(Figure 6) [as reviewed in (Burgener et al., 2015)]. These myeloid cells express pattern recognition 

receptors (PRRs) on their surface, including toll-like receptors (TLRs) [as reviewed in (Alberts et al., 2002a, 

Schroder and Tschopp, 2010)], which are designed to detect viral or bacterial ligands. These innate cells, 

via their PRRS, initiate an antigen-specific adaptive immune response and release soluble pro-inflammatory 

cytokines [as reviewed in (Kumar et al., 2011, Takeda et al., 2003). The secretion of pro-inflammatory 

cytokines such as IL1, IL8, and IL22 enhance inflammation of the epithelial barrier likely leading to a 

leakier epithelium (Figure 6) [as reviewed in (Burgener et al., 2015)]. In addition, these cytokines signal 

CD4 T cells to the breached site, and CD4 T cells become activated. The level of activation of CD4 T cells 

are measured through the expression of surface markers such as CCR5, CD25, CD38, CD69, CD71, CD95 

and HLA-DR (Imlach et al., 2001, Mueller et al., 2001, Li et al., 2012). Therefore, activated CD4 T cells 

have an upregulated expression of the surface CCR5 co-receptor to which HIV uses opportunistically to 

bind and gain entry to further replicate and cause viral dissemination.  
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Another subset of CD4 T-cells, T-helper 17 (Th17) cells that are particularly important in maintaining 

mucosal barrier integrity also contribute to pathogen clearance at mucosal surfaces. However, the loss of 

Th17 cells at mucosal surfaces has been linked to inflammation [as reviewed in (Guglani and Khader, 2010, 

Stieh et al., 2016)]. In contrast, Stieh et al (2016) identified Th17 cells as being the primary targets of SIV 

during vaginal transmission. Thus, an increase of Th17 cells at the mucosal surface may increase 

vulnerability for HIV infection and may emphasize its role in HIV pathogenesis [as reviewed in (Klatt and 

Brenchley, 2010)].     

 

 

Figure 6: Proposed mechanisms of epithelial barrier damage in the female reproductive tract [adapted from 

(Burgener et al., 2015)]. In a healthy reproductive tract, there is an intact epithelial barrier which is generally 

free of invading pathogens. However, in the presence of HIV infection, there is opportunity for microbial 

pathogens to attach to epithelial cells or innate immune cells (neutrophils, dendritic cells and macrophages) 

and cause an inflamed environment through the secretion of pro-inflammatory cytokines. Another 

consequence of this is disruption of the vaginal microbiome with increased barrier trauma and pH levels.     

 

1.9.2 Sexually transmitted infections (STIs) and bacterial vaginosis (BV) 

Inflammation is a double edged sword that can afford the clearance of STIs on one hand, but on the other 

hand facilitate deeper penetration of pathogens into the tissues thereby resulting in further immune 

activation and inflammation and ultimately epithelial barrier damage (Svanborg et al., 1999, McGee et al., 

1999). STIs are the major cause for the recruitment of immune cells and the upregulation of inflammatory 

cytokines in the genital mucosa [as reviewed in (Kalichman et al., 2011)]. STIs are often persistent or 

recurrent and in rare cases, few women are able to clear an infection in the absence of antimicrobial 

treatment in the presence of bacterial STIs [as reviewed in (Golden et al., 2000)]. STIs can either be 
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symptomatic, where symptoms present soon after exposure, or asymptomatic, with no signs or symptoms 

of an infection often making their diagnoses difficult (Connolly et al., 2002).  

 

Herpes simplex virus (HSV) is a common STI, of which there are two major groups HSV-1 (which 

commonly cause cold sores) and HSV-2 (Lou et al., 2012). HSV-2 itself elicits a very pro-inflammatory 

response leading to increased HIV susceptibility (Kaul et al., 2008). In addition, HSV-2 primarily causes 

genital ulcers, leading to a compromised epithelial barrier which facilitates HIV infection [as reviewed in 

(Abdool Karim et al., 2015, Freeman et al., 2006)]. Other STIs which can increase the risk for HIV 

acquisition include Human papilloma virus (HPV), Chlamydia trachomatis, Neisseria gonorrhoea and 

Trichomonas vaginalis [as reviewed in (Coombs et al., 2003)].     

 

Apart from STIs, there are other conditions such as BV that can further predispose women to increased 

HIV acquisition. BV has been shown to directly increase genital tract inflammation leading to increased 

HIV susceptibility (Mirmonsef et al., 2012). BV is characterized by the lack of Lactobacillus species 

leading to a dysbiotic mucosal environment in the vagina that favours the growth of BV-associated 

organisms (Cook et al., 1992), such as Gardnerella vaginalis, Atopobium vaginae, Megasphaera Type 1 

and Type 2, Bacteroides species, Mobiluncus species, Mycoplasma species, and Ureaplasma urealyticum. 

Symptomatically, BV is characterized by a thin homogeneous white discharge. The gold standard for 

diagnosing BV is by gram staining of vaginal smears and is based on a Nugent scoring system (Beverly et 

al., 2005, Nugent et al., 1991). A score of 7 to 10 is consistent with a BV diagnosis (Beverly et al., 2005, 

Nugent et al., 1991). Another method of BV diagnosis is through the use of an Amsel test, which should 

fulfil three of any of the following four criteria, (1) abnormal vaginal discharge, (2) a vaginal pH of more 

than 4.5, (3) a positive amine odour test, (4) and the microscopic confirmation of clue cells (Cook et al., 

1992, Amsel et al., 1983). 

 

An upregulation and down-regulation of pro-inflammatory cytokines may occur in women who have BV 

(Yudin et al., 2003, Sturm-Ramirez et al., 2000, Ryckman et al., 2008). In the CAPRISA 004 trial, which 

tested the safety and efficacy of tenofovir gel, HIV acquisition was reduced by approximately 39% overall, 

and by 54% in women with high gel adherence (Abdool Karim et al., 2010). However, Klatt et al (2017) 

showed that the tenofovir gel was only able to reduce HIV incidence by 18% in women with a non-

Lactobacillus dominant vaginal microbiome, while in women with a Lactobacillus dominant vaginal 

microbiome, HIV incidence was reduced by 61%. In addition, the amount of tenofovir detected in the 

mucosa was also lower in non-Lactobacillus dominant women (29.8%), compared to the Lactobacillus 

dominant women (46.2%) (Klatt et al., 2017). The in vitro mechanism proposed for the stark differences in 
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tenofovir gel efficacy was that Gardnerella vaginalis (the predominant microbe responsible for BV) 

metabolized the tenofovir thereby undermining the efficacy of tenofovir and leading to increased  HIV risk 

(Klatt et al., 2017). Besides the increased HIV acquisition risk associated with STIs and BV, onward 

transmission of HIV has been associated in the background of STIs and BV through increased viral 

shedding in the genital tract secretions leading to the increased infectiousness of HIV-infected individuals 

(Herold et al., 2013).  

 

1.9.3 Vaginal (douching) and contraception 

In addition to biological factors, there are also behavioural risks factors such as vaginal douching and 

contraceptive use which contribute to HIV acquisition and an inflamed genital tract. Vaginal douching is a 

common practice in some southern African countries (Maleche and Day, 2011). Vaginal practices, 

including douching (Low et al., 2011), involves the insertion of drying agents including  various household 

chemicals, alum, herbs, powders, creams or a dry cloth to create a tight, “hot” and dry vagina often 

perceived as desirable and highly pleasurable to their male partners (Zhang et al., 1997). These practices 

create an environment susceptible to tearing of the mucosal epithelia through friction during sexual 

intercourse. These microabrasions or tears disrupts the commensal vaginal bacteria leading to microbial 

dysbiosis (Hilber et al., 2007, Myer et al., 2005, McClelland et al., 2006). These drying agents can disrupt 

the natural pH level leading to inflammation, thereby increasing the risk of acquiring HIV.  

 

Depot medroxyprogesterone acetate (DMPA) is one of the most common contraceptive choices in South 

Africa (Darroch and Singh, 2013) and some studies have shown that its use is associated with higher HIV 

risk [as reviewed in (Brind et al., 2015)], while other studies showed no such associations (Kleinschmidt et 

al., 2007, Myer et al., 2007, Kiddugavu et al., 2003). The underlying mechanism for the increased HIV risk 

is not well defined. However, some studies have found that DMPA causes vaginal thinning and reduced 

density of intracellular junction proteins in the stratified epithelial layer (Chandra et al., 2013, Ildgruben et 

al., 2003, Miller et al., 2000, Wieser et al., 2001, Wira et al., 2011). Vaginal epithelial cell thinning permits 

easy viral entry (Hel et al., 2009) and contact between HIV target cells within the cervicovaginal mucosa 

and HIV viral particles entering the vaginal lumen. Efficient transmission of SIV was shown in macaques 

that were vaginally challenged, and the mechanism purported is that the prior use of high-dose DMPA 

caused sufficient vaginal epithelium thinning leading to efficient vaginal SIV transmission (Abel et al., 

2004, Marx et al., 1996, Trunova et al., 2006, Wieser et al., 2001). 
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1.10 Cytokines in response to inflammation and HIV susceptibility 

Cytokines have a pleiotropic nature and local cytokines produced in response to pathogenic organisms may 

have a variety of effects on local immune and inflammatory responses during mucosal infections (Hedges 

et al., 1998). Cytokines are grouped according to pro-inflammatory, anti-inflammatory, chemokines, 

adaptive and growth factors.   

 

The immunologic environment of the female genital tract is distinct from the systemic compartment 

(Barnabas et al., 2013). Genital inflammation has been shown to contribute to HIV pathogenesis, with high 

levels of inflammatory cytokines correlating with increased frequency of HIV shedding in the genital tract 

(Barnabas et al., 2013) and with markers of long-term HIV disease progression, such as CD4 T-cell loss 

and higher viral load set-point in the plasma (Barnabas et al., 2013). 

 

Genital tract inflammation is defined as having a profile of five of any of the nine inflammatory cytokines 

above the 75th percentile concentration for each cytokine (MIP1α, MIP1β, IP10, IL8, MCP1, IL1α, IL1β, 

IL6, and TNFα) in the genital tract (Table 1) (Masson et al., 2015). Masson et al (2015) showed that women 

with genital tract inflammation (≥5 of 9 inflammatory cytokines elevated) were at significantly increased 

risk of HIV acquisition. Another study re-affirmed the association of genital tract inflammation and the 

increased risk for HIV acquisition in women (McKinnon et al., 2018). This study of the same women 

confirmed that having the median concentrations in the upper quartile for ≥3 of 9; ≥4 of 9; ≥5 of 9; ≥6 of 9 

and ≥7 of 9 pro-inflammatory cytokines (IL6, IL8, IL1α, IL1β, TNFα, IP10, MCP1, MIP1α, and MIP1β) 

across all longitudinal time points defined genital tract inflammation in women (McKinnon et al., 2018). 

In this study, genital tract inflammation significantly undermined the efficacy of tenofovir gel in preventing 

HIV in women with genital inflammation compared to women without genital tract inflammation (3% 

versus 57% respectively) (McKinnon et al., 2018). 

 

Liebenberg et al (2017) showed that mucosa-biased gradients (increased genital tract cytokine levels 

relative to the plasma cytokine levels) of IP10, MIP1β, IL8, and MCP1, were significantly associated with 

increased HIV risk. MIP1α and MIP1β recruit CCR5 target cells required for the establishment of HIV 

infection (Grivel et al., 2011), and IP10 is the ligand for CXCR3 which is expressed on overlapping T-

helper type 1 cells as CCR5 (Groom and Luster, 2011). Evidence of elevated CCR5-binding chemokines 

and regulated on activation, normal T-cell expressed and secreted (RANTES) were also associated with 

increased HIV risk (Morrison et al., 2014). The table below lists the role of some of the main cytokines that 

are associated with genital tract inflammation. 
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Table 1.1: Overview of the cytokines used in the definition of genital tract inflammation (Masson et al., 2015). 

Class Cytokine Producing cell type Function/role Reference 

Pro-inflammatory IL6 Macrophages, T-cells Mediation of an inflammatory environment, 

activation, proliferation, apoptosis and 

differentiation. 

(Shah et al., 2011) 

Pro-inflammatory IL1α, 

IL1β 

Activated macrophages Promotes enhanced inflammatory responses, 

activation, fever, synthesis of acute phase 

Proteins. 

(Dunn et al., 2001) 

Pro-inflammatory TNFα Macrophages, monocytes Occurs during acute inflammation and signals 

events with cells, which triggers necrosis or 

apoptosis. 

(Alfano and Poli, 

2005) 

Chemokine IL8 Tissue and blood cells Recruits and attracts neutrophils in inflammatory 

regions. 

(Bickel, 1993) 

Chemokine IP10 Leukocytes, activated 

neutrophils, eosinophils, 

monocytes, epithelial 

cells, endothelial cells, and 

fibroblasts 

Regulates innate and adaptive immune responses 

by affecting the function of activated T cells, NK 

cells, inflammatory dendritic cells, macrophages, 

and B cells. 

(Liu et al., 2011) 

Chemokine MCP1 Osteoblasts Recruitment of monocytes, memory T cells, 

and dendritic cells to the sites of inflammation. 

(Carr et al., 1994) 

Chemokine MIP1α, 

MIP1β 

Macrophages Activates human granulocytes such as 

neutrophils, eosinophils and basophils, which lead 

to acute neutrophilic inflammation, and induces 

the synthesis and release of pro-inflammatory 

cytokines such as IL1, IL6 and TNFα. 

(Wolpe et al., 

1988) 

https://en.wikipedia.org/wiki/Monocyte
https://en.wikipedia.org/wiki/Memory_T_cells
https://en.wikipedia.org/wiki/Dendritic_cells
https://en.wikipedia.org/wiki/Inflammation
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1.11 Cytokines regulate B cell responses and antibody isotypes 

In addition to cytokines playing a role in inflammatory responses in the genital tract, antibody isotypes 

and immunoglobulin subclasses may also be altered or skewed owing to the effects of cytokines. 

Cytokines may impact the type and quality of antibodies that are locally produced or transduced into 

the genital tract. Upon a pathogen encounter, innate cells (macrophages and dendritic cells) direct 

phagocytic clearance, and in doing so, these cells also secrete cytokines. And depending on whether a 

Th1 or Th2 driven-response may arise against an intracellular (viral or bacterial) or extracellular 

(helminths or parasite) pathogen, the type of antibody produced may also be influenced by type of 

cytokines secreted during either given response.  

  

During a Th1 response, IL2 and IFNγ are secreted and carry out phagocytic activity, whilst during a 

Th2 response, IL4, IL5, IL9, IL10 and IL13 are secreted and stimulate high titres of antibody production 

[as reviewed in (Spellberg and Edwards, 2001, Seder and Paul, 1994, Del Prete et al., 1994)]. IFNγ 

secreted during a Th1 response (Vazquez et al., 2015) controls class switch recombination from IgM to 

the IgG1 and IgG3 subclasses [as reviewed in (Spellberg and Edwards, 2001)]. On the other hand, IL4 

was shown to enhance B cell activation and drive class switch recombination to IgG2, IgG4 and IgE, 

driving a Th2 immune response (Vazquez et al., 2015). Thus, cytokines which are secreted during a 

Th1 or Th2 response play a critical role in protective immunity by helping B cells produce antibodies 

against foreign pathogens (Naradikian, 2016).  

 

However, in the background of inflammation, we do not understand what the interplay is between how 

genital tract inflammation may affect the different antibody isotypes or subclass responses both locally, 

or through the transudation from the systemic into the genital compartment. Although there are several 

promising biomedical HIV prevention strategies, in the case of active vaccination or passive 

immunization, we need to understand if genital inflammation can undermine vaccine efficacy or 

functional antibody responses at the portal of entry, the genital mucosae.  
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1.12 Strategies for HIV prevention 

HIV prevention strategies are of particular importance in women who are unable to negotiate safer sex 

with their partner [as reviewed in (Abdool Karim et al., 2015)] and more robust methods are needed to 

reduce the burden of disease. Several HIV prevention strategies have been explored. Topical PrEP was 

the first to prove the concept that ARVs can reduce HIV transmission (Abdool Karim et al., 2010), yet 

confirmatory studies such as VOICE (Marrazzo et al., 2015) and FACTS 001 (Rees et al., 2015) failed 

to confirm the findings, and thus there are no licensed topical products [as reviewed in (Abdool Karim 

et al., 2015, Abdool Karim et al., 2010)]. Oral PrEP, however, has been shown to reduce the risk of 

HIV acquisition in a range of populations (Grant et al., 2010, Baeten et al., 2012, Thigpen et al., 2012) 

and is currently recommended by the World Health Organisation (WHO) as a prevention option. 

Although PrEP has been successful in lowering HIV risk (Grant et al., 2010, Baeten et al., 2012, 

Thigpen et al., 2012, Choopanya et al., 2013), young women still remain vulnerable to HIV infection 

owing to their lack of commitment and adherence to PrEP.   

 

The use of long-acting injectable PrEP (rilpivirine and cabotegravir) and intravaginal rings are 

promising  biomedical HIV prevention strategies that are being developed [as reviewed in (Baxter and 

Abdool Karim, 2016)]. Long-acting injectable PrEP and intravaginal rings may be more acceptable and 

feasible for women, however failure to adhere to such prevention methods as prescribed, still pose a 

challenge in preventing HIV transmission [as reviewed in (Meyers and Golub, 2015)].  

 

A novel HIV prevention strategy being investigated is the use of bNAbs, which have been shown in 

pre-clinical studies using non-human primate models to prevent SHIV infection, as passive 

immunization (Julg et al., 2017, Shingai et al., 2014). bNAbs which have been previously tested in 

preclinical studies and which are currently underway into passive immunity studies in human clinical 

trials include VRC01, VRC07, PGT121 and CAP256-VRC26.25LS (Julg et al., 2017, Dosenovic et al., 

2015, Lynch et al., 2015, Rudicell et al., 2014).  

 

Although there have been several biomedical prevention strategies proposed to prevent HIV infection 

particularly in women, we still do not understand what the effect of genital tract inflammation may have 

on the efficacy of various biomedical prevention strategies and what this could mean for vaccine-

induced immunity in the genital tract. Efforts which aim to generate appropriate immune responses in 

the genital tract that could confer protection against HIV is central to the development of a vaccine. 

Hence, this study investigated the effect of prior genital tract inflammation on antibody isotypes and 

subclasses, and HIV-specific antibody responses prior to and post-HIV infection in the female genital 

tract. This study included women enrolled in the CAPRISA 004 phase IIb trial, which assessed the 

efficacy of the tenofovir gel in a randomized double-blinded placebo control trial, and the CAPRISA 

008 1% tenofovir gel implementation trial, based in KwaZulu-Natal, South Africa.  
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2. HYPOTHESIS 

 

Genital tract inflammation alters the Ig isotype, subclass and HIV-specific binding antibody profiles 

during natural infection. 

 

3. OBJECTIVES 

 

3.1  PRIMARY OBJECTIVES 

3.1.1 To measure the pre-infection and early HIV infection (3 months and 6 months post-infection) 

immunoglobulin isotypes, IgG subclasses and HIV-1 specific binding antibody profiles in plasma 

(n=66) and CVLs (n=61) of women who acquired HIV while participating in the CAPRISA 004 and 

CAPRISA 008 trials (45 women from CAPRISA 004 trial and 21 women from the CAPRISA 008 trial). 

3.1.2 To measure the early HIV infection phase (3 months and 6 months post-infection) cytokine 

profiles in the plasma (n=66) and CVLs (n=61) of the HIV seroconverters for whom pre-infection CVL 

cytokine data has been collected.  

 

3.2 SECONDARY OBJECTIVES 

3.2.1 To determine whether there were associations between the various immunoglobulin isotypes, 

IgG subclasses or HIV-specific binding antibody profiles with pro-inflammatory cytokines during pre-

infection stage and early post-HIV-infection stage in the blood or genital tract. 

3.2.2 To determine if the levels of HIV-specific antibodies or IgG subclasses or isotypes during early 

HIV infection were altered (lower or higher) in the women with pre-infection or post-infection genital 

tract inflammation compared to women with no genital tract inflammation. 
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4. METHODS  

4.1 Study design 

This is a retrospective sub-study of women from the CAPRISA 004 (CAP 004) (BREC Reference: 

E111/06) (Abdool Karim et al., 2010) and CAPRISA 008 (CAP 008) (BREC Reference: BFC237/010) 

(Mansoor et al., 2014) studies.  

 

In this sub-study (BREC Reference number: BE0207/17, Appendix II) stored cervico-vaginal lavage 

(CVL) supernatant (n=61) samples and plasma (n=66) samples were used for each of the women 

enrolled in the CAP 004 (n=45) and CAP 008 (n=21) trials. The women were matched on the basis of 

HIV status; HIV-1 seroconverted (cases) or remained HIV-uninfected (controls). All the samples were 

chosen according to a 1:1 ratio of case: control. The follow-up specimens from these women included 

matched specimens for the 3 month and 6 month time-points. In the women who seroconverted, the 3 

and 6 month specimens were used as the post-infection time-points, whereas the controls were matched 

in the study for time and remained HIV-uninfected. Baseline samples for each of the women was taken 

as their last HIV negative test result before becoming HIV-infected. Post-infection time-points were 

chosen and matched as the closest available sample plus/minus two weeks either side of the 3 months 

and 6 months follow-up to ensure each case and control were matched accordingly. Controls were 

matched to each of the cases based on the estimated date of infection, and followed the same criteria as 

the cases.  

 

4.2 Participant flow diagrams 

Genital inflammation was defined as having a profile of ≥5 of the 9 inflammatory cytokines elevated 

across all timepoints in the study (IL1α, IL1β, IL6, TNFα, IL8, IP10, MCP1, MIP1α, MIP1β) in CVL 

in this cohort of women, and were at risk of HIV acquisition. The number of women who participated 

in the CAP 004 and CAP 008 trial who provided CVL and matching plasma samples is provided in 

Figure 1.    
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Figure 1: Flow diagram of samples used in the CAP 004 and CAP008 trials.  

Collection of CVLs and matching plasma from these women in the CAP 004 trial and CAP 008 trial 

was before seroconversion, and then follow up visits at 3 months and 6 months. The CVL and matching 

plasma samples taken from the women who remained HIV-uninfected were taken at the same follow 

up visits. There were fewer CVL samples available at the time of the study, hence the reduced number 

of women in the CVL arm compared to the matched plasma arm for the CAP004 and CAP008 trials. 
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4.3 Specimen collection and processing 

4.3.1 Cervico-vaginal lavage (CVL) collection 

Participants consented to the specimen collection procedure for genital specimens during the original 

studies (CAP 004 and CAP 008). A plastic bulb pipette was adapted for dispensing saline and collection 

of the lavage fluids as follows: the plastic bulb pipettes were cut just below the bulbs and the tips of the 

pipettes were fixed onto 10ml syringes. A volume of 5mls of sterile phosphate buffered saline (PBS) or 

normal saline was drawn up through the pipette and passed through a previously lubricated speculum 

(the speculum was lubricated with water only), after it was inserted into the vagina. The PBS or normal 

saline was directed toward the cervical os in order to let the saline bathe the cervix and the posterior 

fornix. The fluids were then aspirated into the same adapted pipette. This procedure of bathing the 

cervix was repeated three times using the same fluid that was drawn into the pipette to ensure a thorough 

collection of cervical fluids. The final volume was aspirated and dispensed into a sterile 30ml urine 

container or 15ml conical tube. The CVL samples were stored on ice and transported to the laboratory 

for further processing. The time between the collection of the CVL to processing and storage was 

approximately 5 to 6 hours. 

 

4.3.2 Cervico-vaginal lavage (CVL) specimen processing 

The CVL specimen samples were then processed to recover the cellular material and the supernatant 

fluids for downstream experiments. The CVL specimen was transferred aseptically into a sterile 15ml 

screw-capped centrifuge tube, and thereafter centrifuged at 400xg (Centrifuge 5810R, Eppendorf, South 

Africa) for 10 minutes in order to separate the pellet containing the cellular component from the 

supernatant. The supernatant was aliquoted into cryovials and stored at -70℃. The cell pellet was stored 

in vapour phase liquid nitrogen at approximately -140℃ according to the standard operating procedures 

(SOPs) for sample storage at CAPRISA. Collection time, the time the samples were processed in the 

laboratory and the time at which the samples were stored was recorded.      

 

4.3.3 Plasma collection and processing 

Participants consented to the blood specimen collection procedure during the original studies (CAP 004 

and CAP 008). Collection of blood by venipuncture was performed according to the CAPRISA SOP 

Nr CPBL006, version 005, and collected in vacutainer tubes. Plasma was separated from the blood by 

centrifugation and stored in cryovials at -80℃ until required. 
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4.4 Isotyping assay 

Total IgG, IgA and IgM in CVL was quantified using a 6-plex Bio-Plex Pro™ Human Isotyping Panel 

kit (Bio-Rad, USA) on the Bio-Plex 200 multiplex system (Bio-Rad, Hercules, CA), according to the 

manufacturer’s instructions. Serial dilutions of CVL using PBS was 1:100, 1:50 and mostly 1:10 for 

samples in the CAP 008 and CAP 004. The principle of the isotyping assay is illustrated in Figure 2.  

 

Figure 2: Principle of Bio-Plex sandwich immunoassay used for the isotyping assays. 

 

4.4.1 Initial preparation 

The plate layout was planned according to the kit instructions and samples were thawed on ice at -4℃. 

The Bio-Plex system (Bio-Rad, Hercules, CA) was warmed up for 30 minutes, and thereafter calibrated 

for a further 10 minutes. Calibration of the machine was done in a MCV (maintenance, calibration and 

validation) plate by adding 6 drops each of the CAL1 and CAL2 beads provided in a Bio-Plex 

calibration kit (Bio-Rad, Hercules, CA). A further 70% isopropanol (Appendix I), 10% bleach 

(Appendix I) and deionized water was dispensed in the required volumes in the MCV plate.  

 

The 10X wash buffer, assay buffer and isotyping diluent were vortexed and brought to room 

temperature until it was needed. The 1X wash buffer called the isotyping buffer was prepared by adding 

60ml of the 10X wash buffer to 540ml deionized water. The Bio-Plex Pro™ Wash station (Bio-Rad, 

Hercules, CA) system was then primed using the isotyping (1X) wash buffer. The vial of the kit supplied 

standard was reconstituted in 781µl of PBS, and the vial of quality controls were each reconstituted in 

250µl of PBS and incubated on ice for 30 minutes after a quick vortex of a few seconds. Samples were 

prepared in a 96 well round bottom plate referred to as the master plate -according to the designed plate 



 

32 
 

layout (Figure 3). A volume of 15µl of the desired CVL sample was added to 135µl of the assay diluent 

to each well to result in a 1:10 dilution. The same volume of sample to assay diluent was carried out for 

all the samples.  

 

 

Figure 3: Layout of the of a master plate design for the Isotyping assays. The above 96 well master 

plate was designed to accommodate standards, control, blanks and samples all in duplicate.     

 

A volume of 150µl of the quality controls was added to the master plate. After the 30 minute incubation 

period, a fourfold standard serial dilution was prepared as shown in Figure 3.  

Figure 4: Preparation of a fourfold dilution series (Figure adapted from the Bio-Plex Pro instruction 

manual). 

 

A volume of 150µl of each of the standards (S1 to S8), and the blank was transferred into their respective 

wells in the master plate. The coupled beads were vortexed for 30 seconds and 288µl of the 20X beads 

were added to 5,472µl of assay buffer in a 15ml conical tube to make 1X coupled beads solution.         

 

Sample List

1 2 3 4 5 6 7 8 9 10 11 12 1 200093 (pre) 1:10

2
200093/LL812 

(6m) 1:10

A 3
120050/LL465 

(pre/c) 1:10

4 200103 (pre) 1:10

5 200103 (3m) 1:10

B S2 S2 6 200449(pre/c) 1:10

7 200449 (6m/c) 1:10

8 200113 (pre) 1:10

C 9 200113 (3m) 1:10

10 200152/LL568 (pre/c) 1:10

11 200129 (pre) 1:10

D S4 S4 12 200154 (pre) 1:10

13 120059 (pre/c) 1:10

14 200185 (pre) 1:10

E 15 200185 (3m) 1:10

16
200185/100368 

(6m)
1:10

17
200507/LL656 

(pre/c)
1:10

F S6 S6 18 200507 (3m/c) 1:10

19 200231 (pre) 1:10

20
200231/100299 

(3m) 1:10

G S7 S7 21 200242 (pre) 1:10

22 200242 (3m) 1:10

23 200242 (6m) 1:10

H S8 S8 CONTROL CONTROL BLANK BLANK 24
200255/LL230 

(pre/c) 1:10

25 200255 (3m/c) 1:10

26 200256 (pre) 1:10

27 200264 (pre/c) 1:10

28 200317 (pre) 1:10

29 200317 (3m) 1:10

30 200317/100367 (6m) 1:10

31 200341 (pre/c) 1:10

32 200341 (3m/c) 1:10

33 200320 (pre) 1:10

34 200320 (3m) 1:10

35 200338  (pre) 1:10

36
200338/100333  

(3m) 1:10

37 200027  (pre/c) 1:10

38 200614  (pre/c) 1:10

200103 (3m)          

1:10 

(15+135)

200103 (3m)          

1:10 

(15+135)

120050/LL46

5 (pre/c)        

1:10 

(15+135)

120050/LL46

5 (pre/c)        

1:10 

(15+135)

200449(pre/c

)          1:10 

(15+135)

200449(pre/c

)          1:10 

(15+135)

200103 (pre)          

1:10 

(15+135)

200103 (pre)          

1:10 

(15+135)

200449 

(6m/c)         

1:10 

(15+135)

200449 

(6m/c)         

1:10 

(15+135)
120059 

(pre/c)          

1:10 

(15+135)

120059 

(pre/c)          

1:10 

(15+135)

200152/LL56

8 (pre/c)          

1:10 

(15+135)

200152/LL56

8 (pre/c)          

1:10 

(15+135)

200185 (pre)          

1:10 

(15+135)

200185 (pre)          

1:10 

(15+135)

200113 (pre)          

1:10 

(15+135)

200113 (pre)          

1:10 

(15+135)

200113 (3m)          

1:10 

(15+135)

200113 (3m)          

1:10 

(15+135)

200242 (6m)          

1:10 

(15+135)

200242 (6m)          

1:10 

(15+135)

200231 (3m)          

1:10 

(15+135)

200231 (3m)          

1:10 

(15+135)

200255/LL23

0 (pre/c)          

1:10 

(15+135)

200255/LL23

0 (pre/c)          

1:10 

(15+135)

200255 

(3m/c)          

1:10 

(15+135)

200255 

(3m/c)          

1:10 

(15+135)

Day 1
ISOTYPING EXPERIMENTS FOR CVL 

12/Dec/2017

Plate 1:  CAP008

S1 S1

200093 (pre)          

1:10 

(15+135)

200093 (pre)          

1:10 

(15+135)

200093/LL81

2 (6m)          

1:10 

(15+135)

200093/LL81

2 (6m)          

1:10 

(15+135)

S3 S3

200129 (pre)          

1:10 

(15+135)

200129 (pre)          

1:10 

(15+135)

200154 (pre)          

1:10 

(15+135)

200154 (pre)          

1:10 

(15+135)

200185 (3m)          

1:10 

(15+135)

200185 (3m)          

1:10 

(15+135)

200185/1003

68 (6m)          

1:10 

(15+135)

200185/1003

68 (6m)          

1:10 

(15+135)

200507/LL65

6 (pre/c)          

1:10 

(15+135)

200507/LL65

6 (pre/c)          

1:10 

(15+135)

200507 

(3m/c)          

1:10 

(15+135)

200507 

(3m/c)          

1:10 

(15+135)

200231 (pre)          

1:10 

(15+135)

200231 (pre)          

1:10 

(15+135)

S5 S5

200242 (pre)         

1:10 

(15+135)

200242 (pre)         

1:10 

(15+135)

200242/         

100376 (3m)         

1:10 

(15+135)

200242/         

100376 (3m)         

1:10 

(15+135)

200256 (pre)          

1:10 

(15+135)

200256 (pre)          

1:10 

(15+135)

200264 

(pre/c)          

1:10 

(15+135)

200264 

(pre/c)          

1:10 

(15+135)

200317 (pre)          

1:10 

(15+135)

200317 (pre)          

1:10 

(15+135)

200317 (3m)          

1:10 

(15+135)

200317 (3m)          

1:10 

(15+135)

200317/               

100367 (6m)          

1:10 

(15+135)

200317/               

100367 (6m)          

1:10 

(15+135)
200341 

(pre/c)          

1:10 

(15+135)

200341 

(pre/c)          

1:10 

(15+135)

200341 

(3m/c)          

1:10 

(15+135)

200341 

(3m/c)          

1:10 

(15+135)

200320 (pre)          

1:10 

(15+135)

200320 (pre)          

1:10 

(15+135)

200320 (3m)     

1:10 

(15+135)

200320 (3m)     

1:10 

(15+135)

200338  

(pre)        

1:10 

(15+135)

200338  

(pre)        

1:10 

(15+135)
200338/                

100333  

(3m)        

1:10 

200338/                

100333  

(3m)        

1:10 

200027  

(pre/c)        

1:10 

(15+135)

200027  

(pre/c)        

1:10 

(15+135)

200614  

(pre/c)        

1:10 

(15+135)

200614  

(pre/c)        

1:10 

(15+135)
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4.4.2 Running the isotyping assay 

The coupled 1X bead solution was vortexed and 50µl was added to each well on the assay plate. The 

assay plate was washed twice with 100µl of the isotyping wash buffer on the Bio-Plex Pro™ Wash 

station (Bio-Rad, Hercules, CA). A volume of 50µl of the standards, blank, control and samples was 

then transferred from the master plate into the assay plate and incubated on a plate shaker (Stuart® 

orbital shaker, UK) at 850 ± 50 rpm at room temperature for 1 hour. The assay plate was covered with 

sealing tape and aluminum foil to avoid light exposure as the beads are photosensitive. During the last 

10 minutes of the 1 hour incubation period, the detection antibodies were vortexed for 15 seconds and 

150µl of the 20X detection antibody was added to 2,850µl of detection antibody diluent in a 15ml 

conical tube, to make 1X solution. The assay plate was then washed three times with 100µl of the 

isotyping wash buffer on the Bio-Plex Pro™ Wash station (Bio-Rad, Hercules, CA). The prepared 1X 

detection antibody solution was then vortexed thoroughly and a volume of 25µl was added to each well 

in the plate. The plate was covered and incubated on the plate shaker (Stuart® orbital shaker, UK) at 

850 ± 50 rpm at room temperature for 30 minutes. At this stage, calibration of the Bio-Plex manager 

software version 6.1 passed and the protocol which contained the standard S1 values and units as 

provided in the kit was entered into the Bio-Plex 200 manager programme. With the last 10 minutes of 

the 30 minute incubation period, the 100X streptavidin-PE (SA-PE) was vortexed for 5 seconds and 

diluted to a 1X solution. A volume of 60µl was added to 5,940µl of assay buffer and transferred into a 

15ml conical tube. Once the 30 minute incubation elapsed, the assay plate was washed three times with 

100µl of the isotyping wash buffer on the Bio-Plex Pro™ Wash station (Bio-Rad, Hercules, CA). 

Thereafter, 1X streptavidin–PE was vortexed and 50µl was transferred to each well in the assay plate. 

The plate was then covered and subjected to last incubation step on the plate shaker (Stuart® orbital 

shaker, UK) for 10 minutes at 850 ± 50 rpm at room temperature. Following this final incubation, the 

plate was washed three times with 100µl of the isotyping wash buffer, and re-suspended in 125µl of 

assay buffer. The plate was covered and placed on the plate shaker (Stuart® orbital shaker, UK) for 30 

seconds at 850 ± 50 rpm. The sealing tape was removed and the plate was inserted into the Bio-Plex 

200 system (Bio-Rad, Hercules, CA) to read at a low RPT which was adjusted to account for a 5,000 

gate and 50 bead events.        
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4.5 Bead coupling procedure for a two-step carbodiimide coupling of protein to carboxylated 

microspheres 

In order to detect HIV specific IgGs, naked polystyrene beads had to be coupled with HIV-1 specific 

proteins. 

 

4.5.1 Initial preparation 

All low binding tubes (USA Scientific 1.5ml micro-centrifuge tubes) were labelled according to the 

HIV protein and microsphere it was coupled to, and the necessary calculations (Appendix I) were made 

according to the protocol. The 100mM Monobasic Sodium Phosphate Activation buffer (Appendix I) 

and Luminex (BAMA) wash buffer (Appendix I) were brought to room temperature and left to shake 

on the magnetic stir plate (Stuart stir plate, UK) until it was ready for use. The microspheres were 

protected from light throughout the entire procedure by covering with foil after each step. One of each 

of the protein-microsphere sets of low binding tubes was used throughout the entire procedure, until it 

was ready to be transferred into the respective tubes in the end. A doubling reaction was performed 

throughout the entire experiment.    

 

4.5.2 Microsphere activation 

The stock microsphere bead sets: 42 (Bio-Rad, USA), 44 (Bio-Rad, USA), 19 (Bio-Rad, USA), 10 (Bio-

Rad, USA) and 53 (Bio-Rad, USA) were vortexed and then sonicated (Ultrasonic CleanernLT-918A, 

China) for at least 30 seconds to re-suspend the beads into a homogenous mixture to prevent aggregate 

and clumping of beads that lead to assay and detection inaccuracies and errors.  

A volume of 800µl of each microsphere stock was then transferred into low titre binding tubes (USA 

Scientific micro-centrifuge tube). The stock microspheres were pelleted by micro-centrifugation at 

8,000xg (Jouan Centrifuge, France) for 4 minutes. The supernatant was discarded and poured out in the 

opposite direction of the pellet. The pellet was re-suspended in the small volume of supernatant left 

over in the tube and vortexed thoroughly. A volume of 200µl of deionized water (dH2O) was then added 

to each of the microspheres and vortexed thoroughly and sonicated for 30 seconds to wash the 

microspheres. The microspheres were pelleted by micro-centrifugation at 8,000xg (Jouan Centrifuge, 

France) for 4 minutes. The supernatant was removed and the microspheres were washed again with 

200µl of dH2O, and subjected to micro-centrifuguation at 8,000xg (Jouan Centrifuge, France) for 4 

minutes. Thereafter 160µl of the activation buffer (100mM Monobasic Sodium Phosphate) was added 

to the washed microspheres after the supernatant was removed and each of the tubes vortexed. The 

activation buffer together with the microspheres were then vortexed and sonicated for 30 seconds, and 

left aside covered in foil. Thereafter 13.1mg of (N-Hydroxysulfosuccinimide) Sulfo-NHS (Thermo 

Scientific, USA) was measured using the analytical balance (AB104 Mettler Toledo Balance, 

Switzerland) and dissolved immediately in 262µl of dH2O to yield a 50mg/ml solution of Sulfo-NHS. 
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An amount of 10mg was measured and dissolved in 200µl of dH2O immediately to yield a 50mg/ml 

solution of EDC [(1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride)] (Thermo 

Scientific, USA). A volume of 20µl of the 50mg/ml Sulfo-NHS and 20µl of the 50mg/ml EDC was 

added to each of the microspheres and vortexed. The microspheres were incubated on a shaker (Mix 

Mate, Eppendorf, Germany) for 20 minutes at room temperature and protected from light. The activated 

microspheres were then pelleted by microcentrifugation at 8,000xg (Jouan Centrifuge, France) for 4 

minutes. The supernatant was removed and the microspheres were re-suspended in 500µl of the 

coupling buffer (PBS) and vortexed and sonicated for 30 seconds. The microspheres were then pelleted 

by microcentrifugation at 8,000xg (Jouan Centrifuge, France) for 4 minutes. After centrifugation, the 

activated microspheres were sonicated before washing with 500µl of PBS for the second wash and 

micro-centrifuged at 8,000xg (Jouan Centrifuge, France) for 4 minutes. The supernatant was removed 

and the activated washed microspheres were washed in 950µl of PBS that accounted for the volume of 

antigen that was used. A volume of 1,000µl of PBS was used to wash the blank microsphere (labelled 

bead set 53).  

Numerous washing steps of the microspheres was done to ensure antimicrobials and storage solution 

was removed. The EDC (Thermo Scientific, USA) and Sulfo-NHS (Thermo Scientific, USA) activated 

the surface carboxyl groups and yielded a long lived intermediate Sulfo-NHS Ester. All the unreacted 

EDC and Sulfo-NHS was then removed by several washes to prevent the activation of the carboxyl 

groups on the protein molecule which result in protein-protein coupling rather than protein-microsphere 

coupling.  

 

4.5.3 Coupling microspheres to HIV proteins 

A volume of 50µl of each of the HIV proteins to achieve a 50µg concentration for a doubling reaction 

was added to the respective microspheres (p66/bead set 42, gp41/bead set 44, p24/bead set 19, and 

gp120/bead set 10). The proteins used included gp120 (Jena Bioscience, Germany), gp41 recombinant 

HIV-1 MN (ImmunoDX, USA), p66 HIV-1 R (Protein Sciences Corporation, USA) and p24 HIV-

1/Clade B/C (Immune Technology, USA). The coupling reaction tube was vortexed to mix the 

microspheres together with the antigens for 30 seconds. The micro-centrifuge tubes were incubated on 

a shaker (Mix Mate, Eppendorf, Germany) for 2 hours at 1,100 rpm at room temperature and covered 

with foil to prevent light exposure. After incubation, the coupled microspheres were then subjected to 

microcentrifugation at 8,000xg for 4 minutes.  

 

The activated microspheres together with the Sulfo-NHS esters on the surface were combined with a 

protein solution and allowed to mix for 2 hours to ensure that free amines on the protein side chains 

interacted with the intermediate to form a covalent bond with the microspheres. 

 



 

36 
 

4.5.4 Washing and blocking  

The supernatant was removed and the pelleted microspheres were flicked in the remaining fluid volume 

to ensure easy reconstitution. The beads were finally re-suspended in 1ml of the BAMA wash buffer 

and vortexed for 30 seconds. In order to circumvent bead aggregates, the beads were allowed to mix on 

the titer plate shaker (Mix Mate, Eppendorf, Germany) for 1 minute at 1,100 rpm to ensure thorough 

mixing to achieve a homogenous solution. The coupled microspheres were then pelleted by micro-

centrifugation at 8,000xg (Jouan Centrifuge, France) for 4 minutes. The supernatant was removed and 

a second wash using 1ml of the BAMA wash buffer was done. The microspheres were vortexed and 

allowed to shake on the titer plate shaker (Mix Mate, Eppendorf, Germany) for 1 minute at 1,100 rpm. 

The coupled microspheres were then pelleted by micro-centrifugation at 8,000xg (Jouan Centrifuge, 

France) for 4 minutes. The supernatant was removed and the microspheres were re-suspended in 1ml 

of the BAMA wash buffer and vortexed thoroughly. In separate micro-centrifuge tubes, 1µl of each of 

the microspheres was added to 19µl of BAMA wash buffer to yield a 1:20 dilution. A volume of 10µl 

from each of the micro-centrifuge tubes was added to a glass fast reader slide to count the microsphere 

suspension. A successful coupling reaction resulted in bead counts for each of the protein being more 

than 7,500 microspheres/µl. Lastly, the remaining volume in each of the primary micro-centrifuge tubes 

was transferred equally (100µl) to the respective low binding labelled tubes that was initially prepared, 

and stored at -80℃ until ready to use for the BAMA assay.  

The coupled microspheres was washed several times in BAMA wash buffer to ensure that any 

uncoupled hydrophobic patches on the microsphere surface was blocked and any uncoupled protein in 

solution was removed.    
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4.6 Binding Antibody Multiplex Assay (BAMA) 

HIV-specific antibodies against HIV-1 specific Env and Gag proteins were measured in plasma (1:100; 

1:10,000 and 1:100,000 dilutions) and CVL (1:3 and 1:10 dilutions) using a customized HIV-1 binding 

antibody multiplex assay (BAMA) (Archary et al., 2015, Archary et al., 2016, Haynes et al., 2012, 

Tomaras et al., 2008, Yates et al., 2011, Yates et al., 2013, Yates et al., 2014). The principle of BAMA 

is illustrated in Figure 5. All assays were run under good clinical laboratory practice (GCLP)-compliant 

conditions, and included tracking of positive controls by Levey-Jennings charts. Positivity cut-offs for 

binding antibody responses in plasma and CVL for antibody-antigen pairs were pre-determined from 

the available 61 and 60 HIV-1 negative individuals at the time of the study, respectively [Mean 

Fluorescent Intensity (MFI) + 3 standard deviations)]. Positive controls included titrations of HIV-1+ 

purified IgG (HIVIG).  

  

 

Figure 5: Principle of Customized Binding Antibody Multiplex Assay. 
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4.6.1 Initial preparation for the BAMA assay 

The plate layout was planned and samples were retrieved and thawed on ice and stored at -4℃. Milk 

blotto/blocking buffer (Appendix I) used as the assay diluent and BAMA wash buffer (Appendix I) 

were prepared in advance of the assay. 

 

The beads were removed and thawed on ice in a closed ice bucket, protected from light at all times. The 

BAMA wash buffer and milk blotto were brought to room temperature and left to shake on the magnetic 

stir plate (Stuart stir plate, UK) until required. The Bio-Plex Pro™ Wash station (Bio-Rad, Hercules, 

CA) was primed with BAMA wash buffer. The working bead mixture was prepared in a 15ml conical 

tube by adding 60µl of each bead set to 5,700µl of BAMA wash buffer. The mixture was covered in 

foil and vortexed thoroughly. The Bio-Plex system was warmed up for 30 minutes, and thereafter 

calibrated for a further 10 minutes. Calibration of the machine was performed as mentioned previously. 

 

4.6.2 Running the BAMA assay 

The Bio-Rad 96 well vacuum filter plate was pre-incubated with 100µl of BAMA wash buffer in order 

to wet the filter paper and aspirated thereafter. The working bead mixture initially prepared was 

vortexed thoroughly again, and 50µl was transferred into each well on the filter plate and covered in 

foil at all times. The filter plate was left to rotate on a plate shaker (Stuart® orbital shaker, UK) at 220 

rpm until needed. Samples were prepared in a 96 well round bottom plate (to facilitate ease of mixing) 

referred to as the master plate, and according to the designed plate layout and at the respective dilutions 

(Figure 6). Samples were diluted in assay diluent (milk blotto). 
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Figure 6: Master plate layout design used for the BAMA assays for the plasma and CVL samples. The 

above 96 well master plate was designed to accommodate a standard curve, a control which is normal 

human serum, a blank and samples all in duplicate.   

 

The HIVIG standard curve was performed as per the plate layout, and further serially diluted in assay 

diluent (milk blotto) by transferring 40µl from the 1st well to the 2nd well, and so on, until the 10th well. 

Normal human serum (NHS) and milk blotto (blank) was added to the respective wells on the master 

plate. The filter plate which had the bead mixture was aspirated using the Bio-Plex Pro™ Wash station 

(Bio-Rad, Hercules, CA). A volume of 25µl of the patient samples and control sera, as well as the blank 

was transferred to the appropriate wells on the 96 well filter plate. It was covered with foil and protected 

from light, and left to rotate at 220 rpm for 30 to 35 minutes on the plate shaker (Stuart® orbital shaker, 

UK). During this incubation step, the new protocol was loaded onto the Bio-Plex Manager 6.0 software 

(Bio-Rad, Hercules, CA). In the remaining last 10 minutes of the incubation, the detection antibodies 

were prepared in a 15ml conical tube by adding 120µl of Streptavidin-PE (SA-PE) antibody to 11,880µl 

of milk blotto. The detection antibody was covered in foil and vortexed thoroughly. Once the incubation 

elapsed, the filter plate was aspirated and washed three times with 100µl of BAMA wash buffer in each 

well. The detection antibody was vortexed thoroughly again, and 100µl was added to each well on the 

filter plate and left to rotate for 30 to 35 minutes at 220 rpm on the plate shaker (Stuart® orbital shaker, 

UK). Once the incubation time elapsed, the filter plate was aspirated and washed three times with 100µl 

per well of BAMA wash buffer. The beads were then re-suspended in 100 µl of the BAMA wash buffer 

and left to rotate at 220 rpm on the plate shaker (Stuart® orbital shaker, UK) for 5 minutes. The foil 

was removed and the filter plate was inserted into the Bio-Plex 200 system to read at a high RPT which 

was adjusted to account for a 5,000 gate and 50 bead events.        

 

Sample List

1 2 3 4 5 6 7 8 9 10 11 12 1 110003 (pre/case) 1:100

2 110003 (pre/case) 1:10000

A 3 110003 (pre/case) 1:100000

4 110003 (3m/case) 1:100

5 110003 (3m/case) 1:10000

B 6 110003 (3m/case) 1:100000

7 110003/100426 (6m/case) 1:100

8 110003/100426 (6m/case) 1:10000

C 9 110003/100426 (6m/case) 1:100000

10 110008 (pre/control) 1:100

11 110008 (pre/control) 1:10000

D 12 110008 (pre/control) 1:100000

13 110008 (6m/control) 1:100

14 110008 (6m/control) 1:10000

E 15 110008 (6m/control) 1:100000

16 110012 (pre/case) 1:100

17 110012 (pre/case) 1:10000

F 18 110012 (pre/case) 1:100000

19 110012 (3m/case) 1:100

HPVIG HPVIG HPVIG HPVIG HPVIG HPVIG HPVIG HPVIG HPVIG HPVIG NHS 56 20 110012 (3m/case) 1:10000

G 500 ug/ml 83.3 ug/ml 13.8 ug/ml 2.31 ug/ml 0.38 ug/ml0.064 ug/ml 0.0107 ug/ml0.0018 ug/ml0.0003 ug/ml0.00005 ug/ml1 : 500 Blank 21 110012 (3m/case) 1:100000

3+297 40+200 40+ 200 40 + 200 40 + 200 40 + 200 40 + 200 40 + 200 40 + 200 40 + 200 40+160 22 110012/100455 (6m/case) 1:100

HIVIG HIVIG HIVIG HIVIG HIVIG HIVIG HIVIG HIVIG HIVIG HIVIG (1:100) 23 110012/100455 (6m/case) 1:10000

H 1:100 1:600 1:3600 1:21600 1:129600 1:777600 1:4665600 1:27993600 1:167961600 1:1007769600 3 +297 Blank 24 110012/100455 (6m/case) 1:100000

25 120065 (pre/control) 1:100

26 120065 (pre/control) 1:10000

27 120065 (pre/control) 1:100000

HPV IG Standard Curve 28 120065 (3m/control) 1:100

Bead Mixture #  Blank, gp41, gp120, p66, p24 29 120065 (3m/control) 1:10000

30 120065 (3m/control) 1:100000

Bead MIX 31 110066 (pre/control) 1:100

96 wells + 24 cushion =120µl of each bead/2 BECAUSE HALF BEAD MIX 32 110066 (pre/control) 1:10000

60ul of each bead x5 Bead sets= 300ul of bead total µl 33 110066 (pre/control) 1:100000

Total working volume = 120 X50ul=6000ul or 6ml Detection Antibodies:

6000 -300ul of total bead mix = 5,700ml of luminex wash buffer (or 5700µl) Streptavidin PE (BD Pharmingen)  4°C    Catalog# 554061  (100 ul)

Streptavidin PE (BD Pharmingen)  4°C    Catalog# 554061  (100 ul) Dilute IgG Secondary to 1 µg/ml (Stock Conc.= 100 µg/ml or 0.1mg/ml)

120 wells X 100=  120X 1ug/ml = 120ug

therefore 120ug in total/100ug (stock concentration of the PE ab)= 0.120ml =120ul of PE Ab

Control Titrations: 120ul + 11,880 ml of assay diluent

HIVIG Positive Control Titration: 100, 6-fold, 10 places Only one secondary antibody step

NHS-56 Negative Control Single Dilution: 500

NB: Remember to enter standard curve info into controls info

Tighten sheath fluid when running experiment, loosen when done. Loosen waste bottle at all times

240ul + 23,760 ml of assay diluent

Only one secondary antibody step

Control Titrations: 

HIVIG Positive Control Titration: 1:100, 6-fold, 10 places

NHS-56 Negative Control Single Dilution: 1:500
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Immunoglobulin (Ig) concentrations were determined by 4-PL logistic regression using the Bio-Plex 

manager software version 6.1 (Bio-Rad, Hercules, CA). HIV-1 specific activity (SA) was defined as 

the antigen-specific Mean Fluorescent Intensity (MFI) (adjusted for dilution factor) divided by the total 

immunoglobulin amount (antigen-specific MFI*dilution/ng/ml total IgG) in order to adjust for 

individual variation in total Ig recovered when performing CVL. HIV-1 antibody responses were 

considered positive if they met both antigen-specific positivity criteria and specific activity criteria 

(mean SA + 3 standard deviations) from a set of 60 seronegative CVLs collected from these women 

pre-infection. Samples that did not meet the positivity cut-off for specific activity was set to 1/10 of the 

specific activity cut-off for statistical analysis and visualization purposes. 

For mucosal specimens a two-level cut-off is applied. The first level cut-off is based on the raw MFIs 

and the second level cut-off is based on the specific activity cut-off, which have been based on 

seronegative individuals in the study.  

To determine the first level cut-off (based on the raw MFIs) and the proportion of samples with 

detectable responses at the three time points, all values that had a MFI above 100 were deemed 

detectable, while samples with a MFI below 100 were deemed as undetectable responses. For further 

analysis on magnitude of responses, only detectable (i.e. after cut-off) responses were considered. The 

MFI values were multiplied by the corresponding dilution factors (Table 2.1), and then divided by Total 

IgG in order to determine specific activity. A log10 transformation was applied before analysis.  

 

Table 2.1: Dilution factors for CVL IgG, MFI cut-offs and Specific activity cut-offs determined in 

HIV-uninfected women. 

 

To determine the second level cut-off (based on specific activity) and the proportion of samples with 

detectable specific activity at the three time points, all the values which were above 100 MFI and 

detectable, were then divided by the total IgG. A specific activity pre-determined on seronegative 

samples was used for the second level of cut-off. If each antigen was above the specific activity cut-off 

as found in Table 1 and the pre-determined values, then the values were Log10  Transformed [Log10(MFI 

x dilution)/Total IgG]. 

 

For plasma specimens, the HIV-specific responses was based on 61 seronegative samples, to which the 

raw MFIs were averaged and log10 transformed. All women who satisfied the specific activity cut-off 

as found in Table 2.2, were considered detectable for that antigen. 

Antigen 
Dilution factor for 

IgG 

First level Cut-Off 

MFI Cut-off 

Second level cut-off 

Specific Activity (MFI*dilution/Total 

IgG) in the CAP 004 and CAP008 trial 

gp41 3 100 -0.55 

p24 3 100 -1.45 

gp120 3 100 -1.99 

p66 (RT) 3 100 -1.05 
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Table 2.2: Dilution factors for plasma IgG and Specific response cut-offs determined in HIV-uninfected 

women. 

Antigen Dilution factor for IgG 

First level cut-off 

Specific responses (MFI*dilution/Total IgG) in 

the CAP 004 and CAP008 trial 

gp41 10000 5.28 

gag p24 10000 6.64 

gp120 10000 5.25 

p66 (RT) 10000 6.94 
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4.7 The 27-Plex Cytokine Assay 

The concentrations of 27 cytokines were measured using a 27-plex Bio-Plex Pro™ Human Cytokine 

Group Ⅰ 27-Plex Panel (Bio-Rad, USA) on the Bio-Plex 200 multiplex system (Bio-Rad, Hercules, CA), 

according to the manufacturer’s instructions. The principle of the cytokine assay is illustrated in Figure 

7. The cytokine panel included the following: basic FGF, eotaxin, granulocyte colony-stimulating factor 

(G-CSF), granulocyte macrophage colony-stimulating factor (GM-CSF), IFNγ, IL10, IL12p70, IL13, 

IL15, IL17A, IL1β, IL1ra, IL2, IL4, IL5, IL6, IL7, IL8, IL9, IP10, MCP1, MIP1α, MIP1β, PDGFββ, 

RANTES, TNFα and vascular endothelial growth factor (VEGF). Data was collected using Bio-Plex 

manager software version 6.1, and a 5 PL regression formula was used to calculate sample 

concentrations from the standard curves. Cytokine levels below the lower limit of detection (LLOD) of 

the assay was reported as the mid-point between the lowest concentration measured for each cytokine 

and zero. 

 

 

Figure 7: The principle of the cytokine assay (Figure adapted from the Bio-Plex Pro instruction 

manual). 

 

4.7.1 Initial preparation 

The plate layout was planned according to the kit instructions and samples were thawed on ice at -4℃. 

The Bio-Plex system (Bio-Rad, Hercules, CA) was warmed up for 30 minutes, and thereafter calibrated 

for a further 10 minutes. Calibration of the machine was performed as mentioned previously.  

The 10X wash buffer, assay buffer and sample diluent were vortexed and brought to room temperature 

until it was needed. The 1X wash buffer called the 27-plex cytokine wash buffer was prepared by adding 

60ml of the 10Xwash buffer to 540ml deionized water. The Bio-Plex Pro™ Wash station (Bio-Rad, 

Hercules, CA) system was then primed using the 27-plex cytokine (1X) wash buffer. The vial of 

standards were reconstituted in 500µl of Standard diluent HB, and incubated on ice for 30 minutes after 
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a quick vortex of seconds. Samples were prepared in a 96 well round bottom plate referred to as the 

master plate (Figure 8), and according to the designed plate layout. A volume of 25µl of the desired 

CVL/plasma sample was added to 75µl of the sample diluent to each well to result in a 1:4 dilution. 

The same volume of sample to sample diluent was carried out for all the samples.  

 

 
 

Figure 8: Layout of the of a master plate design for the 27-plex cytokine assays. The above 96 well 

master plate was designed to accommodate standards, control, blanks and samples all in duplicate.     

 

A volume of 25µl of the plasma serum control diluted in 75µl of sample diluent was added to 

appropriate well on the master plate. After the 30 minute incubation period a fourfold standard serial 

dilution was prepared into 9 vials labelled S2 to S10, an additional vial which was labelled as the blank. 

A volume of 150µl of Standard diluent HB was transferred into vials S2 to S10, and the blank vial. A 

volume of 128µl from the reconstituted vial of standards was added to the 1st vial with 72µl of Standard 

Diluent HB, also labelled S1, and 50µl of this volume was transferred into S2. Serial dilutions of 50µl 

was transferred respectively from S2 into S3, and so on, until S10. After each transfer of volume the 

vials were properly vortexed and ready for the next transfer. A volume of 150µl of each of the standards 

(S1 to S10), and the blank was transferred into their respective wells in the master plate. The coupled 

beads were vortexed for 30 seconds, and 575µl of the 10X beads was added to 5,175µl of assay buffer 

in a 15ml conical tube, to make 1X coupled beads solution.         

 

4.7.2 Running the 27-plex Cytokine assay 

The coupled 1X bead solution was vortexed and 50µl was added to each well on the assay plate. The 

assay plate was washed twice with 100µl of the 27plex cytokine wash buffer on the Bio-Plex Pro™ 

Wash station (Bio-Rad, Hercules, CA). A volume of 50µl of the standards, blank, control and samples 

was then transferred from the master plate into the assay plate and incubated on a plate shaker (Stuart® 

orbital shaker, UK) at 850 ± 50 rpm at room temperature for 30 minutes. The assay plate was covered 
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with sealing tape and aluminum foil to avoid light exposure as the beads are photosensitive. During the 

last 10 minutes of the 30 minute incubation period, the detection antibodies were vortexed for 15 

seconds and 300µl of the 10X detection antibody was added to 2,700µl of detection antibody diluent in 

a 15ml conical tube, to make 1X solution. The assay plate was then washed three times with 100µl of 

the 27-plex cytokine wash buffer on the Bio-Plex Pro™ Wash station (Bio-Rad, Hercules, CA). The 

prepared 1X detection antibody solution was then vortexed thoroughly and a volume of 25µl was added 

to each well in the plate. The plate was covered and incubated on the plate shaker (Stuart® orbital 

shaker, UK) at 850 ± 50 rpm at room temperature for 30 minutes. At this stage, calibration of the Bio-

Plex manager software version 6.1 passed and the protocol which contained the standard S1 values and 

units as provided in the kit was entered into the Bio-Plex 200 manager programme. With the last 10 

minutes of the 30 minute incubation period, the 100X streptavidin-PE (SA-PE) was vortexed for 5 

seconds and diluted to a 1X solution. A volume of 60µl was added to 5940µl of assay buffer and 

transferred into a 15ml conical tube. Once the 30 minute incubation elapsed, the assay plate was washed 

three times with 100µl of the 27-plex cytokine wash buffer on the Bio-Plex Pro™ Wash station (Bio-

Rad, Hercules, CA). Thereafter, 1X streptavidin–PE was vortexed and 50µl was transferred to each 

well in the assay plate. The plate was then covered and subjected to last incubation step on the plate 

shaker (Stuart® orbital shaker, UK) for 10 minutes at 850 ± 50 rpm at room temperature. Following 

this final incubation, the plate was washed three times with 100µl of the 27-plex cytokine wash buffer, 

and re-suspended in 125µl of assay buffer. The plate was covered and placed on the plate shaker 

(Stuart® orbital shaker, UK) for 30 seconds at 850 ± 50 rpm. The sealing tape was removed and the 

plate was inserted into the Bio-Plex 200 system (Bio-Rad, Hercules, CA) to read at a low RPT which 

was adjusted to account for a 5,000 gate and 50 bead events.        
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4.8 IL1 alpha (IL1α) Cytokine assay 

The cytokine concentration of IL-1α was measured using a single-plex Human Magnetic Luminex 

Assay (R&D systems, USA) on the Bio-Plex 200 multiplex system (Bio-Rad, Hercules, CA), according 

to the manufacturer’s instructions. Serial dilutions of CVL and plasma using Calibrator diluent RD6-

52 was 1:2 for samples. This kit measured a single analyte coupled to a particular cytokine (IL1α). Data 

was collected using Bio-Plex manager software version 6.1, and a 5 PL regression formula was used to 

calculate sample concentrations from the standard curves. Cytokine levels below the lower limit of 

detection (LLOD) of the assay was reported as the mid-point between the lowest concentration 

measured for IL1α and zero. 

 

4.8.1 Initial preparation 

The plate layout was planned according to the kit instructions and samples were thawed on ice at -4℃. 

All reagents in the kit were vortexed and brought to room temperature until it was needed. A 1x wash 

buffer called the IL1α- cytokine wash buffer was prepared for example by adding 20ml of the 

concentrated wash buffer to 480ml deionized water. The Bio-Plex Pro™ Wash station (Bio-Rad, 

Hercules, CA) system was then primed using the IL1α cytokine (1x) wash buffer. The vial of standards 

was reconstituted in 900µl of Calibrator diluent RD6-52, and incubated at room temperature for 15 

minutes with gentle agitation prior to making the dilutions. Samples were prepared in a 96 well round 

bottom plate referred to as the master plate and according to the designed plate layout (Figure 9). A 

volume of 50µl of the desired CVL/plasma sample was added to 50µl of the Calibrator diluent RD6-52 

to each well to result in a 1:2 dilution. The same volume of sample to Calibrator diluent RD6-52 was 

carried out for all the samples.  

 
 

Figure 9: Layout of the of a master plate design for the IL1α cytokine assays. The above 96 well master 

plate was designed to accommodate standards, control, blanks and samples all in duplicate.     

 

A volume of 50µl of the plasma serum control diluted in 50µl of Calibrator diluent was added to 

appropriate well on the master plate. After the 15 minute incubation period a threefold standard serial 
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dilution was prepared into 9 vials labelled S1 to S10, an additional vial which was labelled as the blank. 

A volume of 200µl of Calibrator diluent RD6-52 was transferred into vials S2 to S10, and the blank 

vial. A volume of 1,000µl from the reconstituted vial of standards was added to the 1st vial, also labelled 

S1, and 100µl of this volume was transferred into S2. Serial dilutions of 100µl was transferred 

respectively from S2 into S3, and so on, until S10. After each transfer of volume the vials were properly 

vortexed and ready for the next transfer. A volume of 150µl of each of the standards (S1 to S10), and 

the blank was transferred into their respective wells in the master plate. The coupled beads were 

vortexed for 30 seconds, and 500µl of the microparticle cocktail was added to 5ml of Diluent RD2-1 in 

a mixing bottle (provided), to make the coupled beads solution. 

 

4.8.2 Running the IL1α Cytokine assay 

A volume of 50µl of the standards, blank, control and samples was transferred from the master plate 

into the assay plate. The coupled bead solution was vortexed and 50µl was added to each well on the 

assay plate, and incubated on a plate shaker (Stuart® orbital shaker, UK) at 850 ± 50 rpm at room 

temperature for 2 hours. The assay plate was covered with sealing tape and aluminum foil to avoid light 

exposure as the beads are photosensitive. During the last 10 minutes of the 2 hour incubation period, 

the detection antibodies were vortexed for 15 seconds and 500µl of the biotin antibody cocktail was 

added to 5ml of Diluent RD2-1. This was prepared in the mixing bottle (provided). The assay plate was 

then washed three times with 100µl of the IL1α cytokine wash buffer on the Bio-Plex Pro™ Wash 

station (Bio-Rad, Hercules, CA). The prepared detection antibody solution was then vortexed 

thoroughly and a volume of 50µl was added to each well in the plate. The plate was covered and 

incubated on the plate shaker (Stuart® orbital shaker, UK) at 850 ± 50 rpm at room temperature for 1 

hour. At this stage, the standard S1 value and unit as provided in the kit was entered into the Bio-Plex 

200 manager programme. With the last 10 minutes of the 1 hour incubation period, the streptavidin-PE 

(SA-PE) was vortexed for 5 seconds and diluted. A volume of 220µl was added to 5.35ml of the IL1α 

wash buffer and transferred into a 15ml conical tube (wrapped with aluminum foil). Once the 1 hour 

incubation elapsed, the assay plate was washed three times with 100µl of the IL1α cytokine wash buffer 

on the Bio-Plex Pro™ Wash station (Bio-Rad, Hercules, CA). Thereafter, the prepared streptavidin–PE 

was vortexed and 50µl was transferred to each well in the assay plate. The plate was then covered and 

subjected to last incubation step on the plate shaker (Stuart® orbital shaker, UK) for 30 minutes at 850 

± 50 rpm at room temperature. Following this final incubation, the plate was washed three times with 

100µl of the IL1α cytokine wash buffer, and re-suspended in 100µl of assay buffer. The plate was 

covered and placed on the plate shaker (Stuart® orbital shaker, UK) for 2 minutes at 850 ± 50 rpm. The 

sealing tape was removed and the plate was inserted into the Bio-Plex 200 system (Bio-Rad, Hercules, 

CA) to read at a low RPT which was adjusted to account for a 5,000 gate and 50 bead events. 
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4.9 Statistical Analysis 

Parametric paired T-tests were used to determine the differences between cases and controls for HIV-

specific responses, HIV-specific activities, Isotypes and IgG subclasses. The non-parametric Kruskal-

Wallis test was used to determine the differences in the HIV-specific responses, HIV-specific activity, 

isotype and IgG subclasses between women with genital tract inflammation versus women who did not 

have inflammation, and Dunn’s Post-test was used to adjust for multiples comparisons between each of 

the groups. Conditional regression analyses was used to determine cytokine concentrations, antibody 

isotypes and IgG subclasses in the genital tract and plasma at the pre-infection time point. Pearson’s 

correlation was used to check the compartment relationship between the genital tract and the blood for 

the HIV specific Ig responses. Multivariate linear mixed models were used to determine whether 

inflammation is associated with Ig specific responses. This model was adjusted for STIs and other 

covariates. Statistical analysis was performed using SAS version 9.4 (SAS Institute Inc., Cary).   
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5. RESULTS 

 

5.1 Baseline Demographics 

In this sub-study of women from the CAP004 trial, the demographic and clinical characteristics of 45 

HIV-infected (HIV+) and 45 HIV-uninfected (HIV-) South African women are presented in Table 3.1. 

Of these women, 38% (n=17) were assigned to the 1% tenofovir gel arm, while 62% (n=28) were 

assigned to the placebo gel. The majority of the HIV-infected (89%) and HIV-uninfected women (80%) 

reported being in a stable relationship, with no significant difference (p>0.05) at first sexual debut 

[median age 17 years (16-18 years) and 18 years (17-19 years) respectively]. Depo-Provera was the 

commonest contraceptive method used by HIV-infected (76%) and HIV-uninfected (73%) women, with 

no significant differences (p>0.05) between these women. HSV-2 was the predominant STI found in 

67% of the HIV-infected and 53% of the HIV-uninfected women.  

 

As mentioned previously, genital tract inflammation is defined as having a profile of five of any of the 

nine inflammatory cytokines above the 75th percentile concentration for each cytokine (MIP1α, MIP1β, 

IP10, IL8, MCP1, IL1α, IL1β, IL6, and TNFα) elevated across all timepoints in the genital tract. When 

the 45 HIV-infected women were further stratified according to the presence or absence of genital 

inflammation (GI), n=6 women were classified as HIV+GI+, and n=35 were classified as HIV+GI-. When 

the 45 HIV-uninfected women were further stratified according to the presence or absence of genital 

inflammation (GI), n=7 women were classified as HIV-GI+, and n=33 were classified as HIV-GI-. When 

the women were stratified according to inflammation status, the samples for 4 and 5 of HIV-infected 

and HIV-uninfected women respectively, were unavailable at the time of this sub-study and therefore 

the total numbers for these groups are n=41 and n=40 respectively (Table 3.1).   

 

Of the HIV+GI+ women, 33% (n=2) were assigned to the 1% tenofovir gel arm, while 67% (n=4) were 

assigned to the placebo gel. Of the HIV+GI- women, 43% (n=15) were assigned to the 1% tenofovir gel 

arm, while 57% (n=20) were assigned to the placebo gel. All of the HIV+GI+ women (100%, n=6) and 

most of the HIV+GI- women (89%, n=31) reported being in a stable relationship. Age at first sexual 

debut of the HIV+GI+ and HIV+GI- women were the same [median age 17 years (16-18 years). Depo-

Provera was the commonest contraceptive method used by HIV+GI+ (100%) and HIV+GI- (69%) 

women. Positive HSV-2 status (which was available at the time of the study) was found in 50% of the 

HIV+GI+ and 71% of the HIV+GI- women (Table 3.1).   

 

Of the HIV-GI+ women, 43% (n=3) were assigned to the 1% tenofovir gel arm, while 57% (n=4) were 

assigned to the placebo gel. Of the HIV-GI- women, 39% (n=13) were assigned to the 1% tenofovir gel 

arm, while 61% (n=20) were assigned to the placebo gel. Most of the HIV-GI+ women (57%, n=4) and  

HIV-GI- women (82%, n=27) reported being in a stable relationship. Age at first sexual debut of the 
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HIV-GI+ and HIV-GI- women was similar [median age 18 years (17-19 years). The use of Depo-Provera 

was the commonest contraceptive method used by HIV-GI+ (86%) and HIV-GI- (73%) women. Positive 

HSV-2 status (which was available at the time of the study) was found in 29% of the HIV-GI+ and 58% 

of the HIV-GI- women (Table 3.1).    
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Table 3.1: Baseline characteristics of women in the CAP004 trial. 
Demograph

ics 

HIV+ 

(N=45) 

HIV- 

(N=45) 
p-value 

HIV+GI+ 

(N=6) 

HIV+GI- 

(N=35) 

HIV-GI+ 

(N=7) 

HIV-GI- 

(N=33) 

Age in 

years 

(Median)  

(IQR) 

22 

(20-25) 

22 

(20-27) 
0.21 

20.5 

(20-22) 

22 

(20-25) 

21 

(20-22) 

23 

(20-28) 

Highest 

level of 

Education 

completed: 

  >0.99     

Primary 

school not 

complete % 

(n) 

7 (3) 2 (1)  17 (1) 6 (2) - 3 (1) 

Primary 

school 

complete % 

(n) 

2 (1) 2 (1)  - 3 (1) - 3 (1) 

High school 

not complete 

% (n) 

49 (22) 58 (26)  83 (5) 47 (17) 57 (4) 58 (19) 

High school 

complete % 

(n) 

33 (15) 38 (17)  - 31 (11) 43 (3) 36 (12) 

Tertiary 

education 

incomplete 

% (n) 

7 (3) -  - 9 (3) - - 

Tertiary 

education 

complete % 

(n) 

2 (1) -  - 3 (1) - - 

Relationshi

p status: 
  0.47     

Married % 

(n)  
2 (1) 11 (5)  - - 14 (1) 12 (4) 

Stable 

partner % 

(n) 

89 (40) 80 (36)  100 (6) 89 (31) 57 (4) 82 (27) 

Casual 

partner % 

(n) 

2 (1) 2 (1)  - 3 (1) - 3 (1) 

Other % (n) 7 (3) 7 (3)  - 9 (3) 29 (2) 3 (1) 

Sexual 

Behaviour: 
       

Age (yrs) of 

first sex act 

(Median)  

(IQR) 

17 

(16-18) 

18 

(17-19) 
0.07 

17 

(16-18) 

17 

(16-18) 

18 

(17-19) 

18 

(17-19) 

Number of 

lifetime 

partners 

(Median)  

(IQR) 

2 

(1-4) 

2 

(2-3) 
0.92 

2 

(1-2) 

2 

(1-4) 

2 

(2-3) 

2 

(1-3) 

Number of 

vaginal sex 

acts in the 

last 30 days 

[Median 

(IQR)] 

4 

(3-8) 

6 

(4-12) 
0.09 

4 

(2-11) 

4 

(3-8) 

16 

(4-17) 

6 

(3-9) 
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Contracepti

ve use: 
  >0.99     

Depo-

Provera % 

(n) 

76 (34) 73 (33)  100 (6) 69 (24) 86 (6) 73 (24) 

Oral 

contraceptiv

e % (n) 

7 (3) 16 (7)  - 9 (3) - 15 (5) 

Nur-isterate 

% (n) 
18 (8) 7 (3)  - 23 (8) 14 (1) 6 (2) 

Tubal 

ligation % 

(n) 

- 4 (2)  - - - 6 (2) 

Condom 

use: 
  0.50     

Always 

% (n) 
36 (16) 27 (12)  50 (3) 37 (13) 14 (1) 30 (10) 

Sometim

es % 

(n) 

64 (29) 73 (33)  50 (3) 63 (22) 86 (6) 70 (23) 

STI 

Testing- 

Positive 

only: 

       

HSV-2 % 

(n) 
67 (30) 53 (24)  50 (3) 71 (25) 29 (2) 58 (19) 

*Median 

months to 

infection  

(IQR) 

12 

(7-16) 

20 

(18-24) 
 13 

(10-18) 

13 

(8-16) 

19 

(11-22) 

21 

(18-25) 

Treatment 

arm: 
  >0.99     

Placebo % 

(n) 
62 (28) 62 (28)  67 (4) 57 (20) 57 (4) 61 (20) 

Tenofovir % 

(n) 
38 (17) 38 (17)  33 (2) 43 (15) 43 (3) 39 (13) 

p<0.05 were statistically significant. IQR, interquartile range. HSV-2, Herpes simplex virus-2. BV, Bacterial vaginosis. HIV+ 

and HIV- women were further stratified according to the presence (HIV+GI+ and HIV-GI+) or absence (HIV+GI- and HIV-GI-) 

of genital inflammation. When the women were stratified according to inflammation status, the samples for 4 and 5 of HIV+ 

and HIV- women respectively, were unavailable at the time of this sub-study and therefore the total numbers for these groups 

are n=41 and n=40.  

* Time (median months) to infection from enrolment. 
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In this sub-study of women from the CAP008 trial, the demographic and clinical characteristics of 21 

HIV-infected (HIV+) and 21 HIV-uninfected (HIV-) South African women are presented in Table 3.2. 

In this sub-study, all of the women used the 1% tenofovir microbicide gel. The majority of the HIV+ 

(76%) and HIV-women (95%) reported being in a stable relationship, with no significant difference 

(p>0.05) in median age at first sexual debut of 17 years (16-18 years) and 18 years (15-19 years), 

respectively. Depo-Provera was the commonest contraceptive method used by HIV+ (62%) and HIV- 

(67%) women. with no significant differences (p>0.05) between these women. Of all the STIs tested, 

HSV-2 was the predominant STI with 86% and 91% in the HIV+ and HIV-groups, respectively. 

Additionally, there was no significant difference (p>0.05) in the median BV score of 2 (range 0-7) and 

3 (range 1-6) between HIV+ and HIV- women respectively. 

 

When the 21 HIV+ women were further stratified according to the presence or absence of genital 

inflammation (GI), n=4 women were classified as HIV+GI+, and n=15 were classified as HIV+GI-. When 

the 21 HIV- women were further stratified according to the presence or absence of genital inflammation 

(GI), n=2 women were classified as HIV-GI+, and n=17 were classified as HIV-GI-. When the women 

were stratified according to genital inflammation status, the samples for 2 of the HIV+ and 2 of the HIV- 

women were unavailable at the time of this sub-study and therefore the total numbers for each of these 

groups is n=19 (Table 3.2).   

 

The questionnaires that were used to assess the demographic characteristics of the women from the 

CAP004 trial versus the CAP008 trial were different, therefore the respective tables contain data that 

show the different parameters measured for or enquired after.  
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Table 3.2: Baseline characteristics of women in the CAP008 trial. 
Demographics HIV+ (N= 21) HIV- (N= 21) p-value HIV+GI+ (N=4) HIV+GI- (N=15) HIV-GI+ (N=2) HIV-GI- (N=17) 

Age in years (median)  

(IQR) 

27 

(25-33) 

27 

(25-33) 

0.88 30.5 

(28-35) 

27 

(25-31) 

23.5 

(23-24) 

27 

(26-30) 

Highest level of education completed: 
  

0.09 
    

Less than primary % (n) 48 (10) 19 (4) 
 

25 (1) 47 (7) - 24 (4) 

Primary complete % (n) 5 (1) 10 (2) 
 

25 (1) - - 6 (1) 

High school complete % (n) 43 (9) 67 (14) 
 

50 (2) 47 (7) 50 (1) 71 (12) 

Tertiary complete % (n) 5 (1) 5 (1) 
 

- 7 (1) 50 (1) - 

Participants partner information:  
       

Age of regular/stable partner in years [Median (IQR)] 32 (28-37) 31 (27-37) 0.79 33.5 (31-39) 32 (28-37) 26 (26-26) 32 (29-37) 

HIV status of regular/stable partner 
  

0.79 
    

Positive % (n)  - 5 (1) 
 

- - - 6 (1) 

Negative % (n) 67 (14) 57 (12) 
 

75 (3) 73 (11) 50 (1) 53 (9) 

Unknown % (n) 33 (7) 33 (7) 
 

25 (1) 27 (4) - 41 (7) 

No answer % (n) - 5 (1) 
 

- - 50 (1) - 

Relationship status: 
  

0.41 
    

Married % (n)  10 (2) 5 (1) 
 

25 (1) 7 (1) - 6 (1) 

Stable partner % (n) 76 (16) 95 (20) 
 

25 (1) 87 (13) 100 (2) 94 (16) 

Casual partner % (n) 14 (3) - 
 

50 (2) 7 (1) - - 

Sexual behaviour: 
       

Age in years of first sex act [Median (IQR)] 17 (16-18) 18 (15-19) 0.77 16 (15-17) 17 (17-18) 19 (18-19) 18 (15-19) 

Number of lifetime partners [Median (IQR)] 4 (2-5) 2 (1-4) 0.11 4 (3-5) 3 (2-5) 3 (2-4) 2 (1-4) 

Number of vaginal sex acts in the last 30 days [Median (IQR)] 4 (3-5.5) 5 (3-9) 0.19 7 (5.3-10) 4 (2.5-5) 6 (5-7) 5 (3-10) 

Contraceptive use: 
  

0.63 
    

Depo-Provera % (n) 62 (13) 67 (14) 
 

50 (2) 60 (9) 100 (2) 65 (11) 

Oral contraceptive % (n) 19 (4) 10 (2) 
 

50 (2) 13 (2) - 12 (2) 

Nur-isterate % (n) 19 (4) 10 (2) 
 

- 27 (4) - 6 (1) 

Other % (n) - 14 (3) 
 

- - - 18 (3) 

Condom use: 
  

0.25 
    

Always % (n) 27 (6) 43 (9) 
 

25 (1) 27 (4) 50 (1) 41 (7) 

Sometimes % (n) 52 (11) 48 (10) 
 

50 (2) 53 (8) 50 (1) 47 (8) 

Never % (n) 19 (4) 10 (2) 
 

25 (1) 20 (3) - 12 (2) 

STI Testing- Positive only: 
       

Gonorrhoea % (n) 10 (2) - 
 

25 (1) - - - 

Chlamydia % (n) 10 (2) - 
 

- 13.3 (2) - - 

Trichomonas % (n) 10 (2) 5 (1) 
 

- 13.3 (2) - 5.9 (1) 

Mycoplasma % (n) 10 (2) 5 (1) 
 

- 13.3 (2) - 5.9 (1) 

HSV-2 % (n) 86 (18) 91 (19) 
 

75 (3) 86.7 (13) 100 (2) 88.2 (15) 

BV [Median (IQR)] 2 (0-7) 3 (1-6) 0.99 1 (0-2) 2 (2-7) 4 (3-6) 3 (0-4) 

Time (months) to infection from enrolment [Median (IQR)] 13 (6-17) 24 (23-25) 
 

10 (5-16) 12 (6-17) 21 (19-22) 24 (23-25) 

p<0.05 were statistically significant. IQR, interquartile range. HSV-2, Herpes simplex virus-2. HIV+ and HIV- women were further stratified according to the presence (HIV+GI+ and HIV-GI+) or absence 

(HIV+GI- and HIV-GI-) of genital inflammation. When the women were stratified according to inflammation status, the samples for 2 of the HIV+ and 2 of the HIV- women were unavailable at the time 

of this sub-study and therefore the total numbers for these groups are n=19 for each group.   
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All participants’ data for the various analytes measured in the women from the CAP004 and the CAP008 

trials were included together in all subsequent analyses. 

 

5.2 Mucosal cytokine profiles between HIV-infected and HIV-uninfected women 

To assess genital inflammation, 48 cytokines were measured at baseline (this is the pre-infection time point) 

in HIV+ women and in the matched controls (HIV-) from both CAP004 and CAP008 studies in the CVL. 

Subsequently, at 3 and 6 months, we further measured 28 cytokines in the CVL for both studies in both 

groups of women that included the HIV+ women and (HIV) controls to understand if the genital 

inflammation persisted at those time points (Figure 1). Of the 48 cytokines measured at baseline in the 

women who became HIV+ (Supplementary Table 1), higher median cytokine concentrations were found 

for the majority of the cytokines compared to HIV- women. Likewise, of the 28 cytokines measured at 3 

and 6 months post-infection (Supplementary Table 1), HIV+ women maintained higher median cytokine 

concentrations for the majority of the cytokines compared to HIV- women. Overall, at baseline, 18 cytokines 

(IL17α, IL1β, TNFα, IL1α, IFNγ, IL13, IL4, IL2Rα, IL8, IP10, CTACK, Groα, IL16, MCP3, MIG, HGF, 

IL3, and SDF1α) (Figure 1A-1R) were significantly higher (p<0.05) in HIV+ (n=61) compared to HIV- 

(n=60) women. Of these 18 cytokines, 5 of the pro-inflammatory cytokines and chemokines [IL1β (Figure 

1B) and TNFα (Figure 1C) and IL1α (Figure 1D), IL8 (Figure 1I) and IP10 (Figure 1J)] satisfied the 

definition of genital inflammation as previously reported (Masson et al., 2015). At 3 months, three adaptive 

cytokines and growth factors (IL15, IL5 and VEGF) (Figure 1S-1U) were significantly higher (p<0.05) in 

HIV+ (n=45) compared to HIV- (n=19) women. At 6 months, four adaptive cytokines and growth factors 

(IL15, GMCSF, PDGFββ and VEGF (Figure 1V-1Y) were significantly higher (p<0.05) in HIV+ (n=36) 

compared to HIV- (n=25) women. 

 

Thereafter, HIV+ and HIV- women were further stratified according to the presence (HIV+G.I+ and HIV-

G.I+) or absence (HIV+G.I- and HIV-G.I-) of genital inflammation based on the definition of  having ≥ 5 of 

the 9 cytokines above the 75th median percentile, taking the baseline, 3 month and 6 month time points into 

account. This was the classification used going forward for the subsequent analyses including the IgG 

subclasses, Ig isotypes and the HIV-specific activities and HIV-specific responses in the genital tract and 

plasma. 
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Figure 1: Longitudinal analyses of mucosal cytokine profiles between cases and controls in the CAP004 and CAP008 trials at baseline, 3 and 6 months. Paired T 

tests were used to compare between groups and p<0.05 were considered statistically significant. Each data point represents an individual sample. The scatter dot plot 

includes the medians and interquartile ranges. At baseline, HIV+ represents women who subsequently became HIV infected. Red triangles represent women from 

the CAP004 trial and blue circles represent women from the CAP008 trial.
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5.3 Antibody isotypes and IgG subclass profiles in the female genital tract 

 

5.3.1 At baseline HIV-infected women (pre-HIV-infection) had significantly higher IgG1 titres 

compared to HIV-uninfected women- intergroup analyses 

To assess the levels of antibody isotypes and IgG subclasses in the female genital tract, quantification of 

IgG subclasses (IgG1, IgG2, IgG3 and IgG4), IgA and IgM were performed and compared between HIV+ 

and HIV- women at baseline, 3 and 6 months (Table 3.3). At baseline, Total Ig titres were significantly 

higher in HIV+ [median 4.50 log10 ng/ml (IQR 4.33-4.61 log10 ng/ml)] compared to HIV- [(median 4.40 

log10 ng/ml (IQR 4.18-4.61 log10 ng/ml); p=0.05] women. (Table 3.3). In addition, subclass differences 

were evident at baseline (Table 3.3) in HIV+ [4.12 (4.02-4.19)] compared to HIV- [4.05 (3.90-4.18)] 

(p=0.04) women for IgG1. In addition, significantly higher IgM titres were found in the HIV+ [3.05 (2.78-

43.54)] compared to HIV- [2.89 (2.55-3.39)] (p=0.05) women at baseline. The median titres of total IgG, 

IgG subclasses, IgA and IgM were similar between HIV+ and HIV- women at the 3 and 6 months (Table 

3.3). When the HIV+ and HIV- women were further stratified for inflammation (Figure 2), IgM was higher 

at baseline in HIV+GI+ [3.42 (2.86-4.03)] compared to the HIV-GI- [2.83 (2.52-3.33)] (p=0.05) women 

(Figure 2S). 

 

Table 3.3: Antibody isotypes and subclasses between cases and controls in the CAP004 and CAP008 trials. 
  Baseline 3 months 6 months 

Antibody 

isotype/ 

subclass 

HIV+ 

[Median 

(IQR)] 

N= 53 

HIV- 

[Median 

(IQR)] 

N= 61 

p-

value 

HIV+ 

[Median 

(IQR)] 

N=46 

HIV- 

[Median 

(IQR)] 

N=17 

p-

value 

HIV+ 

[Median 

(IQR)] 

N=36 

HIV- 

[Median 

(IQR)] 

N=23 

p-

value 

Total 

IgG 

4.5  

(4.33-4.61) 

4.40  

(4.18-4.61) 

0.05 4.35  

(4.04-4.47) 

4.38  

(3.93-4.47) 

0.68 4.15  

(3.88-4.45) 

4.23  

(3.94-4.41) 

0.36 

IgG1 4.12  

(4.02-4.19) 

4.05  

(3.90-4.18) 

0.04 4.07  

(3.88-4.15) 

4.08  

(3.77-4.11) 

0.96 4.01  

(3.78-4.12) 

4.08  

(3.82-4.12) 

0.86 

IgG2 3.77  

(3.56-4.32) 

3.68  

(3.41-4.14) 

0.17 3.43  

(2.81-3.71) 

3.56  

(3.13-3.70) 

0.16 3.00  

(2.29-3.49) 

3.17  

(2.62-3.52) 

0.15 

IgG3 3.61  

(3.16-3.87) 

3.54  

(3.13-3.81) 

0.52 3.40  

(2.90-3.73) 

3.55  

(2.83-3.87) 

0.82 3.33  

(2.25-3.78) 

3.09  

(2.74-3.42) 

0.08 

IgG4 3.50  

(2.91-3.90) 

3.21  

(2.80-3.85) 

0.16 3.46  

(2.95-3.84) 

3.56  

(2.72-3.80) 

0.82 3.12  

(2.35-3.55) 

3.25  

(2.82-3.70) 

0.19 

IgA 4.08  

(3.93-4.25) 

3.93  

(3.85-4.15) 

0.08 4.04  

(3.91-4.20) 

4.07  

(3.901-4.23) 

0.58 3.95  

(3.74-4.12) 

4.05  

(3.94-44.21) 

0.90 

IgM 3.05  

(2.78-3.54) 

2.89  

(2.55-3.39) 

0.05 3.00  

(2.35-3.37) 

2.70 

(2.103.11) 

0.60 2.52  

(1.93-3.12) 

2.48  

(2.09-2.93) 

0.73 

Abbreviations: IQR, interquartile range; Ig, immunoglobulin. At baseline, HIV+ represents women who subsequently became HIV+. 

p<0.05 was considered statistically significant. 
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Figure 2.1: Comparison of the Total IgG (sum of IgG1to IgG4), IgG subclasses IgG1 and IgG2 in CVL 

from HIV+GI+, HIV+GI-, HIV-GI+ and HIV-GI- women. Each data point represents an individual sample. 

The scatter dot plot includes the medians and interquartile ranges. The Kruskal Wallis test was used to 

compare between groups and p<0.05 were considered statistically significant. At baseline, HIV+GI+ and 

HIV+GI- represents women who subsequently became HIV infected. Red triangles represent women from 

the CAP004 trial and blue circles represent women from the CAP008 trial. Numbers of women in each 

category varied from baseline to 6 months as follows, at baseline  [HIV+GI+ (n=9), HIV+GI- (n=45), HIV-

GI+ (n=8) and HIV-GI- (n=17)] (A, D, G, J, M, P, and S), at 3 months [HIV+GI+ (n=7), HIV+GI- (n=39) and 

HIV-GI- (n=53)] (B, E, H, K, N, Q and T) and at 6 months [HIV+GI+ (n=2), HIV+GI- (n=34), HIV-GI+ (n=4) 

and HIV-GI- (n=20)] (C, F, I, L, O, R, and U). 
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Figure 2.2: Comparison of IgG subclasses, IgG3, IgG4, IgA and IgM in CVL from HIV+GI+, HIV+GI-, 

HIV-GI+ and HIV-GI- women Each data point represents an individual sample. The scatter dot plot includes 

the medians and interquartile ranges. The Kruskal Wallis test was used to compare between groups and 

p<0.05 were considered statistically significant. At baseline, HIV+GI+ and HIV+GI- represents women who 

subsequently became HIV infected. Red triangles represent women from the CAP004 trial and blue circles 

represent women from the CAP008 trial. Numbers of women in each category varied from baseline to 6 

months as follows, at baseline [HIV+GI+ (n=9), HIV+GI- (n=45), HIV-GI+ (n=8) and HIV-GI- (n=17)] (A, 

D, G, J, M, P, and S), at 3 months [HIV+GI+ (n=7), HIV+GI- (n=39) and HIV-GI- (n=53)] (B, E, H, K, N, Q 

and T) and at 6 months [HIV+GI+ (n=2), HIV+GI- (n=34), HIV-GI+ (n=4) and HIV-GI- (n=20)] (C, F, I, L, 

O, R, and U).
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5.3.2 Genital tract baseline (pre-HIV-infection) IgG subclasses and isotypes were significantly higher 

than the subsequent time points- intragroup analyses  

The levels of antibody isotypes and IgG subclasses were evaluated longitudinally in the HIV+ and HIV- 

women based on their genital inflammation status (Figure 3 and Figure 4). Irrespective of genital 

inflammation status, the total IgG, IgG subclasses (IgG1, IgG2, IgG3 and IgG4), IgA and IgM profiles were 

assessed in HIV+ and HIV- women at baseline, at 3 and at 6 months (Figure 3 and Figure 4).  

 

In the HIV+ women, total IgG were significantly higher at baseline [median 4.50 log10 ng/ml (IQR 4.34-

4.61 log10 ng/ml)] compared to 3 and 6 months [median 4.35 log10 ng/ml (IQR 4.04-4.47 log10 ng/ml) and 

median 4.15 log10 ng/ml (IQR 3.88-4.45 log10 ng/ml) respectively; p<0.0001 for all] (Figure 3A). Similarly, 

IgG1 was significantly higher at baseline [4.12 (4.02-4.19)] than at 3 or at 6 months [4.07 (3.88-4.15) and 

4.01 (3.78-4.12) respectively; p<0.005 for all] (Figure 3B). In addition, IgG2 was significantly higher at 

baseline [3.77 (3.56-4.32)] than at 3 or at 6 months [(3.43 (2.81-3.71) and 3.00 (2.29-3.49 respectively, 

p<0.005 for all] (Figure 3C). IgG3 was significantly higher at baseline [3.61 (3.16-3.87)] than at 3 or at 6 

months [3.40 (2.90-3.73) and 3.33 (2.25-3.78) respectively, p=0.001] (Figure 3D). IgG4 was also 

significantly higher at baseline [3.50 (2.91-3.90)] than at 3 or at 6 months [3.46 (2.95-3.84) and 3.12 (2.35-

3.55) respectively, p=0.003] (Figure 3E). IgA was significantly higher at baseline [4.08 (3.93-4.25)] than 

at 3 or at 6 months [(4.04 (3.91-4.20) and 3.95 (3.74-4.12) respectively, p<0.005 for all] (Figure 3F). IgM 

was significantly higher at baseline [3.05 (2.78-3.54)] than at 3 or at 6 months [3.00 (2.35-3.37) and 2.52 

(1.93-3.12) respectively, p<0.05 for all] (Figure 3G).  

 

A similar trend was seen in HIV- women, Total IgG was significantly higher at baseline [4.40 (4.18-4.62)] 

than at 3 or at 6 months [4.38 (3.93-4.47) and 4.23 (3.94-4.41) respectively, p=0.0006] (Figure 4A). IgG1 

was significantly higher at baseline [4.05 (3.90-4.18)] than at 3 or at 6 months [4.08 (3.77-4.11) and 4.08 

(3.82-4.12)] respectively, p=0.03] (Figure 4B). IgG2 was significantly higher at baseline [3.68 (3.41-4.14)] 

than at 3 or at 6 months [3.56 (3.13-3.70) and 3.17 (2.62-3.52) respectively, p<0.05] (Figure 4C). IgG3 was 

significantly higher at baseline [3.54 (3.13-3.81)] than at 3 or at 6 months [3.55 (2.83-3.87) and 3.09 (2.74-

3.42) respectively, p=0.002] (Figure 4D). IgM was significantly higher at baseline [2.89 (2.55-3.39)] than 

at 3 or at 6 months [2.70 (2.10-3.11) and 2.48 (2.09-2.93) respectively, p=0.002] (Figure 4G).  
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Figure 3: Comparison of the total Immunoglobulins (IgG1-IgG4) (A), IgG1 (B), IgG2 (C), IgG3 (D), IgG4 (E) (IgG1-IgG4) subclasses, IgA (F) and IgM (G) in 

CVL from HIV+ women at baseline (n=53), at 3 months (n=46) and at 6 months (n=36). Each data point represents an individual sample. The scatter dot plot includes 

the medians and interquartile ranges. The Wilcoxon test was used to compare groups and p<0.05 were considered statistically significant. At baseline, HIV+ represents 

women who subsequently became HIV infected. Red triangles represent women from the CAP004 trial and blue circles represent women from the CAP008 trial.
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Figure 4: Comparison of the total Immunoglobulins (IgG1-IgG4) (A), IgG1 (B), IgG2 (C), IgG3 (D), IgG4 (E) (IgG1-IgG4) subclasses, IgA (F) and IgM (G) in 

CVL from HIV- women at baseline (n=61), at 3 months (n=17) and at 6 months (n=23). Each data point represents an individual sample. The scatter dot plot includes 

the medians and interquartile ranges. The Wilcoxon test was used to compare groups and p<0.05 were considered statistically significant. Red triangles represent 

women from the CAP004 trial and blue circles represent women from the CAP008 trial. 
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5.3.3 HIV-infected women without genital inflammation had significantly higher mucosal IgG 

subclasses and isotypes at baseline compared to their subsequent time points- intragroup analyses 

based on inflammation 

The levels of antibody isotypes and IgG subclasses were evaluated longitudinally (baseline, 3 and 6 

months) in the HIV+ and HIV- women based on their genital inflammation status. Although no 

differences were seen in the women who had genital inflammation, irrespective of HIV infection status, 

(HIV+GI+, Figure 5 and HIV-GI+, Figure 7), there were significant isotype and subclass differences for 

HIV+GI- (Figure 6) and HIV-GI- women (Figure 8). In the HIV+GI- women, total IgG was significantly 

higher at baseline [4.45 (4.19-4.57)] than at 3 or at 6 months [4.30 (4.04-4.46)] and 4.15 (3.96-4.44) 

respectively, p<0.0005 for all] (Figure 6A). IgG1 was also significantly higher at baseline [4.09 (4.01-

4.17] than at 3 months or at 6 months [4.07 (3.89-4.45) and 4.03 (3.83-4.13) respectively, p<0.05 for 

all] (Figure 6B). Significantly higher IgG2 was present at baseline [3.79 (3.58-4.11) compared to 3 

months [3.48 (2.82-3.77)] and at 6 months [3.04 (2.36-3.58)]; p<0.005 for all (Figure 6C). At 6 months, 

only IgG4 showed a significant decrease from 3 months [3.54 (2.99-3.91) and 3.24 (2.47-3.68) 

respectively, p=0.03] (Figure 6E). IgA similarly showed significant decreases from baseline [4.08 

(3.95-4.24)] to 3 months and 6 months [4.06 (3.93-4.19) and 3.97 (3.78-4.12) respectively, p<0.01 for 

both] (Figure 6F). Furthermore, IgM also significantly decreased from baseline [3.18 (2.80-3.73)] 

compared to 3 and 6 month levels [3.03 (2.41-3.45) and 2.75 (1.95-3.24) respectively, p<0.02 for all 

comparisons] in HIV+GI- women (Figures 6G).  
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Figure 5: Comparison of the total Immunoglobulins (IgG1-IgG4) (A), IgG1 (B), IgG2 (C), IgG3 (D), IgG4 (E) (IgG1-IgG4) subclasses, IgA (F) and IgM (G) in 

CVL from HIV+GI+ women at baseline (n=9), at 3 months (n=7) and at 6 months (n=2). Each data point represents an individual sample. The scatter dot plot includes 

the medians and interquartile ranges. The Wilcoxon test was used to compare groups and p<0.05 were considered statistically significant. At baseline, HIV+GI+ 

represents women who subsequently became HIV infected. Red triangles represent women from the CAP004 trial and blue circles represent women from the CAP008 

trial. 
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Figure 6: Comparison of the total Immunoglobulins (IgG1-IgG4) (A), IgG1 (B), IgG2 (C), IgG3 (D), IgG4 (E) (IgG1-IgG4) subclasses, IgA (F) and IgM (G) in 

CVL in CVL from HIV+GI- women at baseline (n=51), at 3 months (n=43) and at 6 months (n=38). Each data point represents an individual sample. The scatter dot 

plot includes the medians and interquartile ranges. The Wilcoxon test was used to compare groups and p<0.05 were considered statistically significant. At baseline, 

HIV+GI- represents women who subsequently became HIV infected. Red triangles represent women from the CAP004 trial and blue circles represent women from 

the CAP008 trial. 
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Figure 7: Comparison of the total Immunoglobulins (IgG1-IgG4) (A), IgG1 (B), IgG2 (C), IgG3 (D), IgG4 (E) (IgG1-IgG4) subclasses, IgA (F) and IgM (G) in 

CVL from HIV-GI+ women at baseline (n=8) and at 6 months (n=3). Each data point represents an individual sample. The scatter dot plot includes the medians and 

interquartile ranges. The Wilcoxon test was used to compare groups and p<0.05 were considered statistically significant. Red triangles represent women from the 

CAP004 trial and blue circles represent women from the CAP008 trial. 
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5.3.4 In healthy women without genital inflammation, mucosal IgG1, IgG4 and IgA remained 

unchanged while significant decreases in total IgG, IgG2, IgG3 and IgM were seen from baseline to 6 

months  

In HIV-GI- women, total IgG was significantly higher at baseline [4.40 (4.17-4.62)] than at 6 months [4.22 

(3.98-4.28)] (p=0.0006) (Figure 8A).  Similarly, IgG3 was significantly higher at baseline [3.51 (3.09-

3.73)] than at 6 months [3.07 (2.72-3.38)] (p=0.002) (Figure 8D) and IgM showed significant decreases at 

baseline [2.83 (2.52-3.25)] compared to 6 months [2.43 (2.09-2.68)] (p=0.002) (Figure 8G) in HIV-GI- 

women. IgG2 was the only subclass to show consistently significant decreases from baseline [3.68 (3.40-

4.25)] to 3 months and 6 months [3.56 (3.13-3.70) and 3.16 (2.64-3.52) and at 6 months respectively, 

p<0.005 for all] (Figure 8C). In contrast, IgG1 (Figure 8B), IgG4 (Figure 8E) and IgA (Figure 8F) remained 

unchanged over time.   
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Figure 8: Comparison of the total Immunoglobulins (IgG1-IgG4) (A), IgG1 (B), IgG2 (C), IgG3 (D), IgG4 (E) (IgG1-IgG4) subclasses, IgA (F) and IgM (G) in 

CVL from HIV-GI- women at baseline (n=57), at 3 months (n=17) and at 6 months (n=20). Each data point represents an individual sample. The scatter dot plot 

includes the medians and interquartile ranges. The Wilcoxon test was used to compare groups and p<0.05 were considered statistically significant. P-values that 

were not statistically significant are indicated by a #. Red triangles represent women from the CAP004 trial and blue circles represent women from the CAP008 trial.
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5.4 Mucosal HIV-specific antibody activities in women 

5.4.1 HIV-infected women with genital inflammation had significantly higher HIV-specific activities 

compared to women without genital inflammation - intergroup analyses 

To control for the inter-subject heterogeneity for genital specimen recovery, the HIV-IgG-specific activity 

was normalized against the total IgG (IgG1+IgG2+IgG3+IgG4) in the CVL specimens.  

 

HIV-specific activities for all four antibody-specificities were higher in HIV+ women compared to HIV- 

women at 3 months (p<0.0001). At 3 months, p24-specific activity was significantly higher in HIV+ women 

[median -0.38 Log10 (MFI*dilution factor ng ml-1) (IQR -1.44 to -0.09 Log10 (MFI*dilution factor ng ml-

1)] compared to HIV- women [median -1.89 Log10 (MFI*dilution factor ng ml-1) (IQR -2.50 to -1.43 Log10 

(MFI*dilution factor ng ml-1)] (p=0.009) (Figure 9E). Additionally, significantly higher gp41-specific 

activity was found in HIV+ [-0.75 (-1.25 to -0.24)] than in HIV- women [-3.17 (-3.51 to -2.61)] (p=0.002) 

(Figure 9H). Gp120 also showed significantly higher median specific activity in HIV+ [-2.80 (-4.63 to -

1.92)] than in HIV- [-4.63 (-4.63 to -4.63)] (p=0.02) women (Figure 9K). Additionally, at 6 months p66 was 

significantly higher in HIV+ [-0.46 (-0.79-0.12)] than in HIV- [-2.00 (-2.39 to -1.13)] (p<0.0001) women 

(Figure 9C). P24-specific activities were similarly significantly higher in HIV+ [0.06 (0.03-1.05)] than in 

HIV- [-2.28 (-2.56 to -1.72)] (p<0.0001) (Figure 9F).  Gp41-specific activities were significantly higher at 

6 months in HIV+ [ -0.07 (-0.56-0.51)] than in HIV- [-3.17 (-3.40 to -3.00)] (p<0.0001) (Figure 9I) 

women.Gp120-specific activities were also significantly higher in HIV+ [-1.49 (-2.29 to -0.931)] than in 

HIV- [-4.63 (-4.63 to -3.58)] (p<0.0001) (Figure 9L) were also significantly higher in HIV+ compared to 

HIV- women.  

 

When the HIV+ and HIV- women were further stratified according to GI status, p24-specific activity at 

baseline was significantly higher in HIV+GI+ [-1.73 (-2.43 to -1.44)] compared to HIV+GI- [-2.42 (-2.80 to 

-2.04)] (p=0.03) women (Figure 10D). At 3 months, p24- (Figure 10E), gp41- (Figure 10H) and gp120-

specific activities (Figure 10K) were notably higher in HIV+GI+ and HIV-GI-  compared to HIV-GI- women 

(p<0.05). Additionally, HIV-specificities to all four HIV-specific antibodies were higher in HIV+GI- 

(p<0.0001 for all) compared to HIV-GI- women (Figure 10C, Figure 10F, Figure 10I and Figure 10L) at 6 

months. 
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Figure 9: HIV-specific activity Log10 (MFI*dilution factor/ngml-1) in CVL from HIV+ and HIV- women 

for p66 (A, B and C), p24 (D, E and F), gp41 (G, H and I) and gp120 (J, K and L). Each data point represents 

an individual sample. The scatter dot plot includes the medians and interquartile ranges. The Wilcoxon tests 

were used to compare groups and p<0.05 were considered statistically significant. P-values that were not 

statistically significant are indicated by a #. All values falling below the detectable specific activities [based 

on average CVL specific activities of (n=60) HIV- women] are reflected on or below the dotted lines. At 

baseline, HIV+ represents women who subsequently became HIV infected. Red triangles represent women 

from the CAP004 trial and blue circles represent women from the CAP008 trial. Numbers of women in 

each category varied from baseline to 6 months as follows, at baseline [HIV+ (n=53) and HIV- (n=59)], 3 

months [HIV+ (n=46) and HIV- (n=15)] and 6 months [HIV+ (n=36) and HIV- (n=23)]. 
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Figure 10: HIV-specific activity Log10 (MFI*dilution factor/ngml-1) in CVL from HIV+GI+, HIV+GI-, HIV-

GI+ and HIV-GI- women for p66 (A, B and C), p24 (D, E and F), gp41 (G, H and I) and gp120 (J, K and L). 

Each data point represents an individual sample. The scatter dot plot includes the medians and interquartile 

ranges. The Wilcoxon tests were used to compare groups and p<0.05 were considered statistically 

significant. P-values that were not statistically significant are indicated by a #. All values falling below the 

detectable specific activities [based on average CVL specific activities of (n=60) HIV- women] are reflected 

on or below the dotted lines. At baseline, HIV+ represents women who subsequently became HIV infected. 

Red triangles represent women from the CAP004 trial and blue circles represent women from the CAP008 

trial. Numbers of women in each category varied from baseline to 6 months as follows, at baseline [HIV+GI+ 

(n=9), HIV+GI- (44), HIV-GI+ (n=8) and HIV-GI- (n=51)], at 3 months [HIV+GI+ (n=7), HIV+GI- (n=39) and 

HIV-GI- (n=15)], and at 6 months [HIV+GI+ (n=2), HIV+GI- (n=34), HIV-GI+ (n=3) and HIV-GI- (n=20)]. 
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5.4.2 HIV-specific activities significantly increase in HIV-infected women over time- intragroup 

analyses 

HIV-specific activities were evaluated longitudinally in HIV+ and HIV- women. Significantly higher p66- 

(Figure 11A), p24- (Figure 11B), gp41- (Figure 11C) and gp120-specific activities (Figure 11D) (p<0.05 

for all) were found only in HIV+ women at baseline, 3 and 6 months and unsurprisingly not in HIV- 

(Supplementary Figure 1A-D) women at baseline, 3 and 6 months. When the women were further stratified 

according to their genital inflammation status, a similar trend was seen only in HIV+GI- women (p<0.0001) 

(Figure 12A- D). There were no significant differences in HIV-specific activities in the HIV+GI+ 

(Supplementary Figure 2), HIV-GI+ (Supplementary Figure 3) and HIV-GI- (Supplementary Figure 4) 

women. 

 
 

Figure 11: HIV-specific activity Log10 (MFI*dilution factor/ngml-1) in CVL for p66 (A), p24 (B), gp41 

(C) and gp120 (D) from HIV+ women at baseline (n=52), at 3 months (n=45) and at 6 months (n=37). Each 

data point represents an individual sample. The scatter dot plot includes the medians and interquartile 

ranges. The Wilcoxon test was used to compare groups and p<0.05 were considered statistically significant. 

All values falling below the detectable specific activities [based on average CVL specific activities of 

(n=60) HIV- women] are reflected on or below the dotted lines. At baseline, HIV+ represents women who 

subsequently became HIV infected. Red triangles represent women from the CAP004 trial and blue circles 

represent women from the CAP008 trial.  
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Figure 12: HIV-specific activity Log10 (MFI*dilution factor/ngml-1) in CVL for p66 (A), p24 (B), gp41 

(C) and gp120 (D) from HIV+GI- women at baseline (n=44), at 3 months (n=38) and at 6 months (n=35). 

Each data point represents an individual sample. The scatter dot plot includes the medians and interquartile 

ranges. The Wilcoxon test was used to compare groups and p<0.05 were considered statistically significant. 

All values falling below the detectable specific activities [based on average CVL specific activities of 

(n=60) HIV- women] are reflected on or below the dotted lines. At baseline, HIV+GI- represents women 

who subsequently became HIV infected. Red triangles represent women from the CAP004 trial and blue 

circles represent women from the CAP008 trial. 
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5.5 Systemic HIV-specific antibody responses in women 

5.5.1 HIV infection leads to significantly higher systemic HIV-specific responses in HIV-infected 

women - intergroup analyses  

Next, the HIV-specific IgG responses in the plasma were evaluated in HIV+ and HIV- women. At 3 months, 

p66-specific responses were higher in HIV+ [median 6.67 Log10 (MFI*dilution factor) (IQR 6.24-6.91 Log10 

(MFI*dilution factor)] than in HIV- [median 5.95 Log10 (MFI*dilution factor) (IQR 5.45-6.37 Log10 

(MFI*dilution factor)] (p<0.0001) (Figure 13B) women. At 3 months, p24-specific responses were higher 

in HIV+ [7.16 (6.62-7.84] than in HIV- [5.36 (4.97-5.71] (p<0.0001) women (Figure 13E). At 3 months, 

gp41-specific responses were higher in HIV+ [7.03 (6.51-7.44)] than in HIV- [4.00 (4.00-4.46)] (p<0.0001) 

women (Figure 13H).  At 3 months, gp120-specific responses were higher in HIV+ [5.51 (5.00-5.80)] than 

in HIV- [4.00 (4.00-4.18)] (p<0.0001) women (Figure 13K). 

 

Likewise, at 6 months, p66-specific responses were higher in HIV+ [7.01 (6.72-7.46)] than in HIV- [5.92 

(5.36-6.46)] (p=0.0003) women (Figure 13C). At 6 months, p24-specific responses were higher in HIV+ 

[7.40 (6.63-8.10)] than in HIV- [5.44 (5.11-5.90)] (p<0.0001) women (Figure 13F). At 6 months, gp41-

specific responses were higher in HIV+ [7.24 (6.67-7.68)] than in HIV- [4.08 (4.00-5.03)] (p<0.0001) 

women (Figure 13I). At 6 months, gp120-specific responses were higher in HIV+ [5.94 (5.36- 6.25)] than 

in HIV- [4.00 (4.00-4.60)] (p<0.0001) women (Figure 13L).  

 

At 3 months, when the HIV+ and HIV- women were further stratified according to genital inflammation 

status, HIV+GI+ and HIV+GI- women had significantly higher  p66- (Figure 14B), p24- (Figure 14E), gp41- 

(Figure 14H) and gp120-specific responses (Figure 14K) compared to HIV-GI+ and HIV-GI- women 

(p<0.05 for all). This trend remained unchanged for p66- (Figure 14C), p24- (Figure 14F), gp41- (Figure 

14I), and gp120-specific responses (Figure 14L) between HIV+GI+ and HIV+GI- compared to HIV-GI+ and 

HIV-GI- women at 6 months (p<0.05 for all).    
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Figure 13: Plasma HIV-specific responses [Log10 (MFI*dilution factor)] from HIV+ and HIV- women for 

p66 (A, B and C), p24 (D, E and F), gp41 (G, H and I) and gp120 (J, K and L). Each data point represents 

an individual sample. The scatter dot plot includes the medians and interquartile ranges. The Wilcoxon tests 

were used to compare groups and p<0.05 were considered statistically significant. All values falling below 

the detectable specific responses [based on average plasma specific responses of (n=61) HIV- women] are 

reflected on or below the dotted lines. At baseline, HIV+GI- represents women who subsequently became 

HIV infected. Red triangles represent women from the CAP004 trial and blue circles represent women from 

the CAP008 trial. Numbers of women in each category varied from baseline to 6 months as follows, at 

baseline [HIV+ (n=56) and HIV- (n=61)], at 3 months [HIV+ (n=47) and HIV- (n=22)] and at 6 months [HIV+ 

(n=48) and HIV- (n=29)].   
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Figure 14: Plasma HIV-specific responses [Log10 (MFI*dilution factor)] from HIV+GI+, HIV+GI-, HIV-GI+ 

and HIV-GI- women for p66 (A, B and C), p24 (D, E and F), gp41 (G, H and I) and gp120 (J, K and L). 

Each data point represents an individual sample. The scatter dot plot includes the medians and interquartile 

ranges. The Wilcoxon tests were used to compare groups and p<0.05 were considered statistically 

significant. All values falling below the detectable specific responses [based on average plasma specific 

responses of (n=61) HIV- women] are reflected on or below the dotted lines. At baseline, HIV+GI- represents 

women who subsequently became HIV infected. Red triangles represent women from the CAP004 trial and 

blue circles represent women from the CAP008 trial. Numbers of women in each category varied from 

baseline to 6 months as follows, at baseline [HIV+GI+ (n=13), HIV+GI- (n=43), HIV-GI+ (n=10) and HIV-

GI- (n=51)], at 3 months [HIV+GI+ (n=14), HIV+GI- (n=33), HIV-GI+ (n=7) and HIV-GI- (n=18)], and at 6 

months [HIV+GI+ (n=15), HIV+GI- (n=33), HIV-GI+ (n=9) and HIV-GI- (n=20)]. 
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5.5.2 Plasma HIV-specific responses significantly increase in HIV-infected women over time- 

intragroup analyses 

HIV-specific responses were evaluated longitudinally in HIV+ and HIV- women. Significantly higher p66- 

(Figure 15A), p24- (Figure 15B), gp41- (Figure 15C) and gp120-specific responses (Figure 15D) (p<0.05 

for all) were found in HIV+ at baseline, 3 and 6 months. As expected, there were no significant HIV-specific 

responses in HIV- women, except for p24 (p=0.02) (Figure 16B). When the women were further stratified 

according to their genital inflammation status, a similar trend was seen in HIV+GI+ (Figure 17) and HIV+GI- 

women (Figure 18) (p<0.05 for all). There were no significant differences in HIV-specific responses in the 

HIV-GI+ (Supplementary Figure 5) and HIV-GI- women (Supplementary Figure 6).  

 
 

Figure 15: Plasma HIV-specific responses [Log10 (MFI*dilution factor)] for p66 (A), p24 (B), gp41 (C) 

and gp120 (D) from HIV+ women at baseline (n=57), at 3 months (n=48) and at 6 months (n=48). Each 

data point represents an individual sample. The scatter dot plot includes the medians and interquartile 

ranges. The Wilcoxon test was used to compare groups and p<0.05 were considered statistically significant. 

All values falling below the detectable specific responses [based on average plasma specific responses of 

(n=61) HIV- women] are reflected on or below the dotted lines. At baseline, HIV+GI- represents women 

who subsequently became HIV infected. Red triangles represent women from the CAP004 trial and blue 

circles represent women from the CAP008 trial.  
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Figure 16: Plasma HIV-specific responses [Log10 (MFI*dilution factor)] for p66 (A), p24 (B), gp41 (C) 

and gp120 (D) from HIV- women at baseline (n=61), at 3 months (n=22) and at 6 months (n=29). Each data 

point represents an individual sample. The scatter dot plot includes the medians and interquartile ranges. 

The Wilcoxon test was used to compare groups and p<0.05 were considered statistically significant. All 

values falling below the detectable specific responses [based on average plasma specific responses of 

(n=61) HIV- women] are reflected on or below the dotted lines. Red triangles represent women from the 

CAP004 trial and blue circles represent women from the CAP008 trial.  
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Figure 17: Plasma HIV-specific responses [Log10 (MFI*dilution factor)] for p66 (A), p24 (B), gp41 (C) 

and gp120 (D) from HIV+GI+ women at baseline (n=13), at 3 months (n=14) and at 6 months (n=15). Each 

data point represents an individual sample. The scatter dot plot includes the medians and interquartile 

ranges. The Wilcoxon test was used to compare groups and p<0.05 were considered statistically significant. 

All values falling below the detectable specific responses [based on average plasma specific responses of 

(n=61) HIV- women] are reflected on or below the dotted lines. At baseline, HIV+GI- represents women 

who subsequently became HIV infected. Blue circles represent women from the CAP008 trial.  
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Figure 18: Plasma HIV-specific responses [Log10 (MFI*dilution factor)] for p66 (A), p24 (B), gp41 (C) 

and gp120 (D) from HIV+GI- women at baseline (n=47), at 3 months (n=37) and at 6 months (n=39). Each 

data point represents an individual sample. The scatter dot plot includes the medians and interquartile 

ranges. The Wilcoxon test was used to compare groups and p<0.05 were considered statistically significant. 

All values falling below the detectable specific responses [based on average plasma specific responses of 

(n=61) HIV- women] are reflected on or below the dotted lines. At baseline, HIV+GI- represents women 

who subsequently became HIV infected. Red triangles represent women from the CAP004 trial and blue 

circles represent women from the CAP008 trial.  

  



 

82 
 

5.6 In the absence of genital inflammation, p66 and p24-specific responses directly correlate 

between the systemic and the genital compartments 

Next, the relationship between HIV-specific responses in the plasma and the genital tract were investigated 

longitudinally according to inflammation status. At baseline, there was a significant and positive correlation 

in HIV+ women for p66 (r=0.45, p=0.002) (Figure 19A). This trend continued over time in the same HIV+ 

women at 3 months, with more significant and positive correlations seen for p66 (r=0.42, p=0.006), p24 

(r=0.50, p=0.0001), gp41 (r=.046, p=0.002) and gp120 (r=0.37, p=0.02) (Figure 19E-Figure 19H). At 6 

months, there was also significant and positive correlations seen for p66 (r=0.39, p=0.03), p24 (r=0.55, 

p=0.001), gp41 (r=.040, p=0.03) and gp120 (r=0.44, p=0.01) (Figure 19I-Figure 19L).  

 

When these women were further stratified according to inflammation, significant and positive correlations 

were seen in the absence of genital inflammation in HIV+GI- women for p66 (at baseline) (r=0.45, p=0.02) 

(Figure 20A) and p24- (at 6 months) (r=0.46, p=0.04) (Figure 20J).  
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Figure 19: Correlations of HIV-specific responses in the plasma and CVL of HIV+ women for p66 (A, E 

& I), p24 (B, F & J), gp41 (C, G & J) and gp120 (D, H & L). Pearson’s correlations were used to check the 

compartment relationship between the plasma and the CVL for the HIV specific IgG responses. At baseline, 

HIV+ represents women who subsequently became HIV infected. 
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Figure 20: Correlations of HIV-specific responses in the plasma and CVL of HIV+GI- women for p66 (A, 

E & I), p24 (B, F & J), gp41 (C, G & J) and gp120 (D, H & L). Pearson’s correlations were used to check 

the compartment relationship between the plasma and the CVL for the HIV specific IgG responses. At 

baseline, HIV+GI- represents women who subsequently became HIV infected. 
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5.7 Baseline mucosal cytokine signatures predict HIV acquisition risk   

In order to determine the predictors of HIV acquisition risk, various cytokine profiles, antibody isotypes, 

IgG subclasses and HIV-specific antibodies were investigated (Table 3.4). Conditional regression analyses 

were performed at a univariate and multivariate level. In the univariate analysis, HIV acquisition increased 

more than four-fold with CTACK [OR, 4.33; (95% CI, 1.14-16.43); p=0.03] and MIG [OR, 2.11; (95% CI, 

1.18-3.77); p=0.012]. After adjusting for age, sexual debut, frequency of condom use, number of vaginal 

sex acts, tenofovir use and HSV-2, higher levels of IFNγ [OR, 3.89; (95% CI, 1.14-13.32); p=0.03], 

CTACK [OR, 4.83; (95% CI, 1.13-20.74); p=0.03], MIG [OR, 2.50; (95% CI, 1.18-5.28); p=0.02] and 

SDF1α [OR, 7.63; (95% CI, 1.17-49.77); p=0.03] were associated with increased HIV acquisition risk. 

Apart from these chemokines and growth factors, none of the antibody isotypes, IgG subclasses and HIV-

specific antibodies were associated with HIV acquisition risk before and after adjusting for the multiple 

variables.  
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Table 3.4: Mucosal cytokine signatures, antibody isotypes, IgG subclasses and HIV-specific antibody 

profiles associated with HIV acquisition risk  
  Univariate Analysis Multivariate Analysis 

Analyte Odds Ratio 

(OR) 

95% CI      

Lower 

95% CI     

Upper 

P value Adjusted Odds Ratio 

(AOR) 

95% CI     

Lower 

95% CI     

Upper 

P value 

IL12p70 1.44 0.71 2.95 0.31 1.43 0.59 3.48 0.43 

IL17α 1.35 0.47 3.86 0.58 1.80 0.52 6.24 0.35 

IL1β 1.31 0.80 2.14 0.28 1.14 0.62 2.08 0.67 

IL6 1.10 0.60 2.02 0.76 1.35 0.62 2.92 0.45 

TNFα 2.01 0.87 4.67 0.10 2.38 0.91 6.22 0.08 

IL12p40 2.04 0.57 7.37 0.28 2.36 0.59 9.48 0.23 

IL18 1.46 0.76 2.79 0.26 1.70 0.81 3.53 0.16 

IL1α 2.19 0.99 4.86 0.05 2.13 0.84 5.39 0.11 

MIF 0.98 0.57 1.70 0.95 1.50 0.71 3.19 0.29 

TNFβ 2.86 0.84 9.77 0.09 3.00 0.75 12.01 0.12 

TRAIL 1.09 0.68 1.74 0.73 1.23 0.71 2.12 0.46 

IL10 1.15 0.50 2.63 0.74 1.10 0.41 2.97 0.84 

IL1Rα 0.94 0.30 2.95 0.91 1.35 0.38 4.79 0.64 

IFNγ 2.39 0.86 6.64 0.09 3.89 1.14 13.32 0.03 

IL13 2.02 0.72 5.68 0.18 2.00 0.61 6.54 0.25 

IL15 0.82 0.49 1.38 0.46 1.31 0.61 2.81 0.49 

IL2 0.95 0.62 1.45 0.80 1.18 0.70 1.99 0.53 

IL4 3.35 0.70 16.05 0.13 4.36 0.66 29.03 0.13 

IL5 1.10 0.66 1.83 0.72 1.32 0.72 2.43 0.37 

IL2Rα 4.08 0.97 17.06 0.05 3.91 0.86 17.69 0.08 

Eotaxin 1.09 0.69 1.71 0.72 1.15 0.63 2.08 0.66 

IL8 1.35 0.90 2.02 0.15 1.45 0.91 2.31 0.12 

IP10 1.36 0.88 2.10 0.17 1.42 0.84 2.39 0.19 

MCP1 0.84 0.34 2.08 0.71 0.75 0.26 2.15 0.59 

MIP1α 1.63 0.71 3.73 0.25 1.98 0.69 5.71 0.21 

MIP1β 0.94 0.48 1.85 0.85 0.96 0.42 2.18 0.91 

RANTES 1.14 0.66 1.95 0.64 1.27 0.69 2.32 0.45 

CTACK 4.33 1.14 16.43 0.03 4.83 1.13 20.74 0.03 

Groα 1.21 0.78 1.87 0.39 1.45 0.83 2.53 0.19 

IFNα2 3.18 0.58 17.51 0.18 3.00 0.52 17.31 0.22 

IL16 1.76 0.85 3.64 0.13 2.11 0.92 4.83 0.08 

MCP3 1.83 0.83 4.06 0.13 1.87 0.79 4.39 0.15 

MIG 2.11 1.18 3.77 0.01 2.50 1.18 5.28 0.02 

Basic FGF 2.14 0.48 9.64 0.32 3.57 0.52 24.45 0.20 

GCSF 1.12 0.65 1.93 0.69 1.27 0.63 2.60 0.50 

GMCSF 1.03 0.19 5.54 0.97 0.77 0.11 5.35 0.80 

IL7 1.59 0.73 3.43 0.24 1.77 0.71 4.40 0.22 

IL9 0.93 0.46 1.90 0.85 1.00 0.45 2.23 0.10 

PDGFββ 1.36 0.58 3.18 0.48 1.70 0.61 4.75 0.31 

HGF 2.00 0.91 4.41 0.08 2.62 0.93 7.39 0.07 

IL3 4.33 0.91 20.52 0.07 5.54 0.94 32.68 0.06 

LIF 2.04 0.53 7.80 0.30 2.21 0.50 9.77 0.30 

MCSF 1.37 0.57 3.31 0.48 0.98 0.35 2.73 0.97 

SCF 1.25 0.78 2.01 0.35 1.28 0.71 2.29 0.41 

SCGFβ 1.03 0.76 1.41 0.83 1.12 0.78 1.59 0.55 

SDF1α 3.30 0.80 13.61 0.10 7.63 1.17 49.77 0.03 

βNGF 1.27 0.77 2.09 0.34 0.68 2.27 0.477 0.65 

VEGF 1.54 0.69 3.43 0.29 1.55 0.60 3.97 0.36 

Total IgG 2.31 0.47 11.40 0.30 2.32 0.38 14.39 0.37 

IgG1 1.84 0.47 7.17 0.38 1.50 0.32 7.13 0.61 

IgG2 1.23 0.33 4.56 0.76 1.03 0.23 4.72 0.97 

IgG3 0.73 0.28 1.89 0.52 0.62 0.21 1.83 0.38 

IgG4 1.31 0.58 2.98 0.51 1.18 0.45 3.09 0.73 

IgA 4.08 0.72 23.07 0.11 5.06 0.61 41.81 0.13 

IgM 1.36 0.58 3.18 0.48 1.28 0.49 3.35 0.61 

p66 1.07 0.63 1.82 0.80 1.00 0.56 1.79 0.99 

p24 0.67 0.32 1.42 0.30 0.50 0.20 1.23 0.13 

gp41 0.96 0.33 2.83 0.94 0.85 0.22 3.30 0.82 

gp120 0.92 0.40 2.12 0.84 0.94 0.35 2.51 0.90 

Abbreviations: IQR, interquartile range; OR, odds ratio; AOR, adjusted odds ratio; CI, confidence interval; IL, interleukin; TNF, tumor necrosis factor; MIF, macrophage 

migration inhibitory factor; TRAIL, TNF-related apoptosis-inducing ligand; IFNγ, interferon gamma; IP10, interferon-γ inducible protein 10; MCP1, monocyte 

chemoattractant protein 1; MIP1, macrophage inflammatory protein 1; RANTES, regulated on activation, normal T expressed and secreted; CTACK, cutaneous T cell-

attracting chemokine; Groα, growth-regulated oncogene alpha; MCP3, monocyte chemoattractant protein 3; MIG, monokine induced by gamma; Basic FGF, Basic 

fibroblast growth factor; GCSF, granulocyte colony-stimulating factor; GMCSF, granulocyte macrophage colony-stimulating factor; PDGFββ, platelet-derived growth 

factor beta; HGF, hepatocyte growth factor; LIF, Leukemia inhibitory factor; MCSF, macrophage colony-stimulating factor; SCF, stem cell factor; SCGFβ, stem cell 

growth factor beta; SDF1α, stromal cell-derived factor 1 alpha; βNGF, nerve growth factor beta; VEGF, vascular endothelial growth factor; gp, glycoprotein. p<0.05 

were considered statistically significant.  The model was adjusted for age, sexual debut, the number of vaginal sex acts, tenofovir use, HSV-2 and frequency of condom 

use.
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5.8 The relationship between cytokines, antibody isotypes, IgG subclasses and HIV-specific 

antibodies in the genital tract 

5.8.1 Prior to HIV infection, mucosal inflammatory cytokines directly associate with antibody isotypes, 

IgG subclasses and HIV-specific activities  

To determine whether genital inflammation alters or skews the antibody isotypes, and IgG subclasses, a 

linear mixed model analyses was performed. The univariate mixed model was adjusted for HIV infection 

status, and the multivariate mixed model was adjusted for HIV-infection status, age, sexual debut, the 

number of vaginal sex acts, tenofovir use, and HSV-2.  

 

Overall, the antibody isotypes and IgG subclasses (IgG1-IgG4) (Figure 21-Figure 24) were significantly 

associated with the majority of the cytokines (pro-inflammatory cytokines, chemokines, growth factors, 

adaptive cytokines and anti-inflammatory cytokines) at the pre-HIV infection time point in the univariate 

analyses. After adjusting for the variables (HIV-infection status, age, sexual debut, the number of vaginal 

sex acts, tenofovir use, and HSV-2), the antibody isotypes and IgG subclasses (IgG1-IgG4) remained 

significantly associated with most of the cytokines (pro-inflammatory cytokines, chemokines, growth 

factors, adaptive cytokines and anti-inflammatory cytokines) at the pre-HIV infection time point.  

 

Most notably, of the 9 pro-inflammatory cytokines and chemokines that was used in the definition of genital 

inflammation, at least 6 of these cytokines were significantly associated with the IgG subclasses (IgG1-

IgG4) and antibody isotypes in the multivariate analyses (Figure 21- Figure 24). Total IgG was positively 

associated with IL8, IP10, MIP1β, MIP1α, IL1β, IL1α, IL6 and TNFα in the multivariate analysis, for 

example, for every 1 pg/ml increase in IL8, there was a 0.09 ng/ml (p=0.03) increase in total IgG (Figure 

21B). IgG1 was positively associated with IL8, IP10, MCP1, MIP1β, MIP1α, IL1β, IL6 and TNFα in the 

multivariate analyses (Figure 21D). IgG2 was positively associated with IP10, MIP1β, MIP1α, IL1β, IL1α, 

IL6 and TNFα in the multivariate analyses (Figure 22B). IgG3 was positively associated with IP10, MIP1β, 

MIP1α, IL1β, IL6 and TNFα in the multivariate analyses (Figure 22D). IgG4 was positively associated with 

IL8, IP10, MIP1β, MIP1α, IL1β, IL1α, IL6 and TNFα in the multivariate analyses (Figure 23B). IgA was 

positively associated with MCP1, MIP1β, MIP1α, IL1β, IL6 and TNFα in the multivariate analyses (Figure 

23D). IgM was positively associated with IL8, IP10, MIP1β, MIP1α, IL1β, IL6 and TNFα in the 

multivariate analyses (Figure 24B).  
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Figure 21: Association between genital cytokines and Total IgG (A & B) and IgG1 (C & D). β-coefficients, p-values and corresponding false discovery values were 

determined using linear regression models. The model was adjusted for HIV-infection status, age, sexual debut, the number of vaginal sex acts, tenofovir use, HSV-

2 and frequency of condom use. β-coefficients are indicated by shaded circles and error bars indicate 95% confidence intervals. P-values <0.05 are represented by 

*, and those p-values that are significant after false discovery rate adjustment are represented by #. (Refer to the raw data attached at the end of the thesis). 
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Key: 

Figure 22: Association between genital cytokines and IgG2 (A & B) and IgG3 (C & D). β-coefficients, p-values and corresponding false discovery values were 

determined using linear regression models. The model was adjusted for HIV-infection status, age, sexual debut, the number of vaginal sex acts, tenofovir use, HSV-

2 and frequency of condom use. β-coefficients are indicated by shaded circles and error bars indicate 95% confidence intervals. P-values <0.05 are represented by 

*, and those p-values that are significant after false discovery rate adjustment are represented by #. (Refer to the raw data attached at the end of the thesis). 
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Key:  

Figure 23: Association between genital cytokines and IgG4 (A & B) and IgA (C & D). β-coefficients, p-values and corresponding false discovery values were 

determined using linear regression models. The model was adjusted for HIV-infection status, age, sexual debut, the number of vaginal sex acts, tenofovir use, HSV-

2 and frequency of condom use. β-coefficients are indicated by shaded circles and error bars indicate 95% confidence intervals. P-values <0.05 are represented by 

*, and those p-values that are significant after false discovery rate adjustment are represented by #. (Refer to the raw data attached at the end of the thesis).  

Anti-inflammatory Adaptive Growth factors Chemokines Pro-inflammatory 
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Key: 

Figure 24: Association between genital cytokines and IgM (A & B). β-coefficients, p-values and corresponding false discovery values were determined using linear 

regression models. The model was adjusted for HIV-infection status, age, sexual debut, the number of vaginal sex acts, tenofovir use, HSV-2 and frequency of 

condom use. β-coefficients are indicated by shaded circles and error bars indicate 95% confidence intervals. P-values <0.05 are represented by *, and those p-values 

that are significant after false discovery rate adjustment are represented by #. (Refer to the raw data attached at the end of the thesis).

Anti-inflammatory Adaptive Growth factors Chemokines Pro-inflammatory 
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5.8.2 Mucosal IP10 and IL18 significantly associated with increased p66- and p24-specific activities in 

the genital tract 

To determine whether genital inflammation alters the levels of HIV-specific antibodies, a linear mixed 

model analysis was performed. The univariate mixed model was adjusted for HIV infection status, and the 

multivariate mixed model was adjusted for HIV-infection status, age, sexual debut, the number of vaginal 

sex acts, tenofovir use, and HSV-2.  

 

After adjusting for the variables, p66 specific IgG activity was significantly associated with IL2Rα, βNGF, 

GCSF, IL3, PDGFββ, SCGFβ, IP10, MIP1β, RANTES, IL18 and TNFβ (Figure 25B). For example, every 

1 pg/ml increase in IL2Rα, there was a 0.45 MFI*dilution factor/ngml-1 (p=0.02) increase in p66 IgG 

specific activity (Figure 25B). Similarly, p24 specific IgG activity was significantly associated with IL1Rα, 

GCSF, PDGFββ, SCGFβ, VEGF, IL16, IP10, MIG and IL18 in the multivariate analysis (Figure 25D). In 

addition, the HIV-specific activities for gp41 and gp120 were positively associated with LIF (Figure 26B) 

and IL17α (Figure 26D) respectively. 
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Key: 

 

Figure 25: Association between genital cytokines and p66 (A & B) and p24 (C & D). β-coefficients, p-values and corresponding false discovery values were 

determined using linear regression models. The model was adjusted for HIV-infection status, age, sexual debut, the number of vaginal sex acts, tenofovir use, HSV-

2 and frequency of condom use. β-coefficients are indicated by shaded circles and error bars indicate 95% confidence intervals. P-values <0.05 are represented by 

*, and those p-values that are significant after false discovery rate adjustment are represented by #. (Refer to the raw data attached at the end of the thesis). 
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Key: 

Figure 26: Association between genital cytokines and gp41 (A & B) and gp120 (C & D). β-coefficients, p-values and corresponding false discovery values were 

determined using linear regression models. The model was adjusted for HIV-infection status, age, sexual debut, the number of vaginal sex acts, tenofovir use, HSV-

2 and frequency of condom use. β-coefficients are indicated by shaded circles and error bars indicate 95% confidence intervals. P-values <0.05 are represented by 

*, and those p-values that are significant after false discovery rate adjustment are represented by #. (Refer to the raw data attached at the end of the thesis).

Anti-inflammatory Adaptive Growth factors Chemokines Pro-inflammatory 
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5.9 Systemic IP10 was consistently significantly higher over time in HIV-infected compared to HIV-

uninfected women  

In order to determine the cytokine profiles longitudinally in the systemic compartment of women, 28 

cytokines were measured at baseline, at 3 months and at 6 months in HIV+ and HIV- women (Supplementary 

Table 2). Of the 28 cytokines measured at baseline, HIV+ women had lower median concentrations in their 

plasma to majority of the cytokines compared to HIV- women, while at 3 and at 6 months, plasma cytokines 

were higher. At baseline, IP10 was significantly lower (p=0.005) in the plasma of HIV+ (n=48) compared 

to HIV- (n=29) women (Figure 27A). At 3 months, IP10 (p=0.001) and GMCSF (p=0.05) was significantly 

higher in HIV+ (n=43) (Figure 27B and Figure 27C) compared to HIV- (n=46) women. At 6 months, IP10, 

MCP1, IL2 and IL7 were significantly higher (p<0.05) in HIV+ (n=47) compared to HIV- (n=22) women 

(Figure 27D- Figure 27G).        

 

 
 

Figure 27: Longitudinal analysis of systemic cytokine profiles between cases and controls in the CAP004 

and CAP008 trials. Paired T tests were used to compare between groups and p<0.05 were considered 

statistically significant. Each data point represents an individual sample. The scatter dot plot includes the 

medians and interquartile ranges. At baseline, HIV+GI- represents women who subsequently became HIV 

infected. Red triangles represent women from the CAP004 trial and blue circles represent women from the 

CAP008 trial.
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5.10 Baseline systemic cytokines IP10 and TNFα predict HIV acquisition risk  

In order to determine the predictors of HIV acquisition risk, various cytokine profiles and HIV-specific 

antibodies in the plasma were investigated (Table 5). Conditional regression analyses were performed at a 

univariate and multivariate level. In the univariate analysis, the risk of HIV acquisition increased with 

higher levels of IP10 [OR, 5.52; (95% CI, 1.35-22.51); p=0.02]. After adjusting for age, sexual debut, 

frequency of condom use, number of vaginal sex acts, tenofovir use and HSV-2, higher levels of IP10 [OR, 

6.22; (95% CI, 1.44-26.78); p=0.02], and TNFα [OR, 10.66; (95% CI, 1.14-99.43); p=0.04] were associated 

with increased HIV acquisition risk (Table 3.5). Apart from these pro-inflammatory cytokines and 

chemokines being associated with increased HIV risk, none of the HIV-specific antibodies were associated 

with HIV acquisition risk before and after adjusting for the multiple variables.  

 

Table 3.5: Systemic cytokine signatures and HIV-specific antibody profiles associated with HIV 

acquisition risk   
Univariable Analysis Multivariable Analysis 

Analyte Odds Ratio 

(OR) 

95% CI     

Lower 

95% CI     

Upper 

P value Adjusted 

Odds Ratio 

(AOR) 

95% CI     

Lower 

95% CI     

Upper 

P value 

IL1β 0.40 0.14 1.13 0.08 0.47 0.16 1.38 0.17 

IL6 1.37 0.54 3.49 0.51 1.35 0.43 4.25 0.61 

TNFα 2.95 0.58 14.90 0.19 10.66 1.14 99.43 0.04 

IL1α 0.78 0.33 1.87 0.58 0.73 0.26 2.03 0.54 

IL10 1.19 0.67 2.10 0.56 1.30 0.69 2.44 0.42 

IL8 0.46 0.14 1.56 0.21 0.51 0.13 1.93 0.32 

IP10 5.52 1.35 22.51 0.02 6.22 1.44 26.78 0.01 

MCP1 0.61 0.27 1.36 0.23 0.49 0.19 1.29 0.15 

MIP1α 1.03 0.55 1.94 0.92 1.53 0.67 3.50 0.32 

MIP1β 0.97 0.32 2.92 0.95 0.97 0.29 3.31 0.97 

IL7 1.35 0.31 5.86 0.69 1.96 0.35 10.82 0.44 

p66 0.97 0.55 1.69 0.91 0.99 0.51 1.93 0.98 

p24 1.07 0.53 2.17 0.84 0.94 0.42 2.14 0.89 

gp41 0.56 0.29 1.07 0.08 0.51 0.26 1.03 0.06 

gp120 0.65 0.32 1.32 0.24 0.49 0.20 1.25 0.14 

Abbreviations: IQR, interquartile range; OR, odds ratio; AOR, adjusted odds ratio; CI, confidence interval; IL, interleukin; TNF, 

tumor necrosis factor; IP10, interferon-γ inducible protein 10; MCP1, monocyte chemoattractant protein 1; MIP1, macrophage 

inflammatory protein 1; gp, glycoprotein. p<0.05 were considered statistically significant.  The model was adjusted for age, sexual 

debut, the number of vaginal sex acts, tenofovir use, HSV-2 and frequency of condom use. 
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5.11 IL8 and MCP1 are negatively associated with gp41- and gp120-specific responses in the 

systemic compartment  

To determine whether genital inflammation alters the levels of HIV-specific antibodies, a linear mixed 

model analyses was performed. The univariate mixed model was adjusted for HIV infection status, and the 

multivariate mixed model was adjusted for HIV-infection status, age, sexual debut, the number of vaginal 

sex acts, tenofovir use, and HSV-2. 

 

In the univariate analyses, IL8 was significantly and positively associated with a p66-specific IgG response, 

for every 1 pg/ml increase in IL8, there was a 0.46 MFI (p=0.02) increase in p66 (Table 3.6). Additionally, 

IL6, IP10 and IL7 was significantly and positively associated with p24-specific IgG responses (p<0.05) in 

the systemic compartment (Table 3.6). However, there were significant but negative associations for IL8, 

TNFα and MCP1 with gp120-specific IgG responses (p<0.05) in the systemic compartment (Table 3.6).    

 

After adjusting for the variables, IL8 was significantly but negatively associated with gp41- and gp120 

specific IgG responses , for every 1 pg/ml increase in IL8, there was a 0.64 MFI (p=0.002) decrease in 

gp41, and 0.47 MFI*dilution (p=0.01) decrease in gp120- specific IgG responses in the systemic 

compartment (Table 3.7). Another chemokine, MCP1 was significantly but negatively associated with 

gp120 specific IgG responses in the systemic compartment (Table 3.7).   

 

Additionally, after adjusting for HIV-infection status, age, sexual debut, the number of vaginal sex acts, 

tenofovir use, and HSV-2, IP10 was significantly and positively associated with a p66-specific IgG 

response , for every 1 pg/ml increase in IP10, there was a 0.25 MFI (p=0.05) increase in  a p66-specific 

IgG response in the systemic compartment (Table 3.7).  
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Table 3.6: Univariable analysis between genital cytokines and HIV-specific antibodies (p66, p24, gp41 and gp120)  
p66 p24 gp41 gp120 

Cytokines β 

coefficient 

95% CI p value β 

coefficient 

95% CI p value β 

coefficient 

95% CI p value β 

coefficient 

95% CI p 

value 

IL1β 0.22 -0.11-0.55 0.19 0.24 -0.04-0.52 0.09 -0.10 -0.40-0.20 0.50 -0.11 -0.36-0.14 0.39 

IL6 -0.02 -0.31-0.27 0.91 0.28 0.05-0.51 0.02 -0.09 -0.35-0.17 0.50 -0.13 -0.35-0.08 0.23 

TNFα 0.11 -0.31-0.52 0.61 0.21 -0.13-0.56 0.22 -0.26 -0.63-0.11 0.17 -0.31 -0.62 to -0.008 0.05 

IL1α -0.06 -0.40-0.28 0.72 0.04 -0.23-0.32 0.75 -0.16 -0.45-0.15 0.32 -0.18 -0.44-0.09 0.19 

IL10 0.08 -0.14-0.29 0.49 0.07 -0.11-0.25 0.46 -0.13 -0.33-0.06 0.18 -0.06 -0.22-0.11 0.50 

IL8 0.46 0.06-0.85 0.02 0.05 -0.29-0.39 0.77 -0.37 -0.72 to -0.008 0.05 -0.39 -0.68 to -0.09 0.01 

IP10 0.16 -0.02-0.35 0.08 0.19 0.04-0.34 0.02 0.03 -0.13-0.20 0.70 -0.10 -0.24-0.04 0.16 

MCP1 0.05 -0.19-0.30 0.67 0.01 -0.20-0.21 0.96 -0.09 -0.31-0.14 0.45 -0.20 -0.38 to -0.02 0.03 

MIP1α 0.09 -0.14-0.33 0.44 -0.10 -0.30-0.10 0.31 -0.05 -0.26-0.16 0.66 -0.13 -0.30-0.05 0.16 

IL7 0.09 -0.27-0.44 0.63 0.29 0.001-0.58 0.05 -0.06 -0.38-0.26 0.70 -0.22 -0.49-0.04 0.09 

Abbreviations: CI, confidence interval; IL, interleukin; TNF, tumor necrosis factor; IP10, interferon-γ inducible protein 10; MCP1, monocytee chemoattractant protein 1; MIP1, 

macrophage inflammatory protein 1; gp, glycoprotein. p<0.05 were considered statistically significant.   

 

Table 3.7: Multivariable analysis between genital cytokines and HIV-specific antibodies (p66, p24, gp41 and gp120)  
p66 p24 gp41 gp120 

Cytokines β 

coefficient 

95% CI p value β 

coefficient 

95% CI p value β 

coefficient 

95% CI p value β 

coefficient 

95% CI p value 

IL1β 0.21 -0.16-0.58 0.27 0.15 -0.14-0.43 0.30 -0.15 -0.47-0.18 0.37 -0.09 -0.36-0.19 0.54 

IL6 -0.06 -0.40-0.28 0.73 0.18 -0.08-0.43 0.17 -0.16 -0.45-0.13 0.27 -0.08 -0.33-0.17 0.53 

TNFα -0.01 -0.57-0.56 0.98 0.05 -0.38-0.47 0.82 -0.40 -0.88-0.07 0.10 -0.27 -0.68-0.14 0.20 

IL1α -0.05 -0.40-0.31 0.79 -0.07 -0.35-0.21 0.61 -0.20 -0.53-0.12 0.22 -0.19 -0.48-0.10 0.20 

IL10 0.04 -0.21-0.28 0.78 0.004 -0.18-0.19 0.97 -0.15 -0.35-0.06 0.16 -0.02 -0.20-0.15 0.79 

IL8 0.37 -0.11-0.84 0.13 -0.22 -0.58-0.15 0.24 -0.64 -1.03 to-0.25 0.002 -0.47 -0.82 to -0.13 0.01 

IP10 0.25 0.005-0.50 0.05 0.15 -0.04-0.34 0.12 -0.03 -0.25-0.19 0.80 -0.10 -0.28-0.09 0.30 

MCP1 0.08 -0.20-0.36 0.56 0.05 -0.16-0.26 0.64 -0.15 -0.39-0.09 0.21 -0.24 -0.44 to -0.04 0.02 

MIP1α 0.05 -0.22-0.32 0.70 -0.19 -0.39-0.01 0.06 -0.19 -0.42-0.04 0.11 -0.19 -0.38-0.01 0.06 

IL7 -0.003 -0.45-0.44 0.99 0.16 -0.17-0.50 0.33 -0.28 -0.66-0.10 0.14 -0.25 -0.57-0.08 0.14 

Abbreviations: CI, confidence interval; IL, interleukin; TNF, tumor necrosis factor; IP10, interferon-γ inducible protein 10; MCP1, monocyte chemoattractant protein 1; MIP1, 

macrophage inflammatory protein 1; gp, glycoprotein. p<0.05 were considered statistically significant. The model was adjusted for age, sexual debut, the number of vaginal sex acts, 

tenofovir use, HSV-2 and frequency of condom use. 
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6.  DISCUSSION 

The interplay of the factors that contribute to genital tract inflammation (STIs, BV, epithelial barrier 

damage) and increased HIV acquisition risk have been studied (Masson et al., 2015, Masson et al., 2014, 

Abbai et al., 2016, Mirmonsef et al., 2012). The characterization of antibody isotypes, IgG subclasses, as 

well as HIV-specific antibody profiles in the female genital tract  (Archary et al., 2016) have also been 

studied. However, the underlying effect that genital inflammation may have on the antibody isotypes, IgG 

subclasses and HIV-specific antibody profiles in the female genital tract has not been investigated. In this 

study, we tested the hypothesis that genital inflammation altered or skewed the mucosal antibody isotypes 

and subclasses, as well as the HIV-specific antibody profiles in the female genital tract. In this study we 

found that genital inflammation did in fact skew the antibody isotypes, IgG subclasses and HIV-specific 

antibody profiles in the female genital tract.  

 

The cytokine profile at baseline showed that 18 cytokines were increased in women who subsequently 

became HIV-infected compared to women that remained HIV-uninfected. Of these 18 cytokines, 5 pro-

inflammatory cytokines and chemokines (IL1β, TNFα, IL1α, IL8 and IP10) satisfied the definition of 

inflammation (Masson et al., 2015). Additionally, HIV seroconversion was positively associated with a 

raised genital inflammatory cytokine profile (MIP1α, MIP1β, IL8 and IP10) (Masson et al., 2015), which 

is consistent with the IL8 and IP10 levels shown in the present study. Data from animal studies showed that 

following vaginal SHIV exposure, chemotactic IL8 in rhesus macaques was essential to establish SHIV 

infection (Li et al., 2009). In addition, chemotactic IP10 was found to recruit HIV target cells such as T 

cells, dendritic cells, macrophages and monocytes and was associated with HIV risk (Stanford and Issekutz, 

2003, Liebenberg et al., 2017). These data further affirmed the findings that genital cytokine levels were 

raised prior to HIV infection, and the occurrence of higher genital concentrations of HIV target cell-

recruiting chemokines and a genital pro-inflammatory milieu contribute to HIV acquisition risk in these 

women (Masson et al., 2015). These data are further verified in a study by Liebenberg et al (2017) showing 

that raised genital tract IP10, along with other cytokines like MIP1β, IL8 and MCP1 that were significantly 

associated with increased HIV risk in women. IP10, MIP1β, IL8 and MCP1 all showed a mucosa-biased 

gradient that strongly predicted HIV infection risk in women (Liebenberg et al., 2017). 

 

At the pre-HIV infection stage (in women who subsequently became infected), the total IgG, IgG1 and IgM 

antibody titres were significantly higher compared to women who remained HIV-uninfected for the 

duration of the study. These data indicate that at the pre-HIV infection stage, prior sexual exposures to HIV 

[as reviewed in (Marfatia et al., 2017, Jain and Mayer, 2014)] may have elicited both the increased IgG1 

and IgM titres. Whether these are HIV-specific IgG or IgM antibodies remains an important question. 
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Inflammation also impacted on IgM antibody titres, where increases were observed in women who were 

inflamed compared to women who were not inflamed and subsequently became HIV-infected. Naturally 

occurring IgM present in the umbilical cord blood at birth, is the first antibody to respond to an infection 

and known to increase during an inflammatory response (Lobo et al., 2012). Therefore these findings 

underscore the need to investigate increased IgM in the genital tract prior to HIV infection and the 

possibility that this immunoglobulin may be a marker of risk or protection against HIV in women with 

genital tract inflammation. Lobo et al (2012) showed that increased IgM titres increase with Th17 cell 

responses, and inhibits HIV infectivity (Lobo et al., 2008b). IgM dampens inflammation and inhibits 

leucocyte production of certain pro-inflammatory cytokines, such as TNFα and IL2 (Lobo et al., 2008a). In 

addition, human serum derived-IgM was shown to inhibit T cell activation and viral entry by binding to 

CD3 and CD4, and directly blocking the co-receptors CXCR4 and CCR5 from binding to chemokines 

which in turn inhibited chemotaxis (Lobo et al., 2008a, Lobo et al., 2008b) which in turn reduces targets 

for HIV infection. Recently Env-specific IgM was shown to protect against mucosal SHIV infections in the 

macaque model (Gong et al., 2018), underscoring a potential role of Env-specific IgM in humans.  However 

a limitation of this study was that Env-specific IgM was not measured, and whether this antibody can 

efficiently reduce inflammation and block or inhibit the chemokine receptors on target cells or directly 

capture and inhibit virions in the mucosal compartment remains unknown.   

 

In the absence or presence of genital inflammation, in the HIV-uninfected woman without genital 

inflammation the IgG1, IgG4 and IgA titres remained unchanged over time. In contrast, in HIV-infected 

women without genital inflammation, there were decreased IgG1, IgG2, IgG4, IgA and IgM titres from pre-

HIV infection to six months post infection. Whereas IgG3 titres did not differ over time in the HIV-infected 

women without genital inflammation, our data showed that the IgG3 titres did indeed significantly decrease 

over time in HIV-uninfected women also without inflammation. These data may indicate that HIV infection 

alone drives the heterogeneous antibody responses in the genital compartment where some of the antibody 

isotypes and IgG subclasses may be up- or down-regulated (Haimovici et al., 1997). IgG3 in the serum has 

been shown to be a marker of recent HIV-infection (Ljunggren et al., 1988, Viana et al., 2018, Wilson et 

al., 2004, McGowan et al., 2005), however, it may also play a role in the genital compartment to elicit or 

effect neutralizing and non-neutralizing antibody functionalities (Yates et al., 2014, Chung et al., 2014). 

The VAX003 trial elicited higher gp120-specific IgG1 and gp120-specific IgG3 antibody titres and higher 

Fc effector profiles compared to RV144 (Chung et al., 2014). However, despite these findings, VAX003 

did not confer protection compared to the RV144 albeit moderate protection levels (31.2% efficacy) 

(Haynes et al., 2012). These data suggest that neither the quantity of antibody nor the function alone could 

explain the reduced HIV infections in the RV144 vaccine study compared to the VAX003 (Chung et al., 



 

101 
 

2014). Essentially, it is the quality and not the quantity of the antibodies that matter. Among the IgG 

subclasses, IgG1 and IgG3 have higher affinity towards the FcRn which facilitates their transcytosis across 

the epithelial cells (Gupta et al., 2013). In comparison to IgG2 and IgG4 subclasses, IgG1 and IgG3 also 

demonstrate higher affinity for FcγRIIIa on NK cells, which leads to NK cell activation and subsequent 

ADCC (Bruhns et al., 2009, Smalls-Mantey et al., 2012, Lux et al., 2013). Increased phagocytic activities 

were found in HIV untreated chronic progressors and HIV controllers due to the differential interaction of 

the Fc part of the antibody with the FcγRIIb and FcγRIIa receptors expressed by phagocytic cells 

(Ackerman et al., 2013b). This differential interaction may also be due to the Fc glycosylation of the 

antibodies (Ackerman et al., 2013b). However, in HIV elite controllers, despite having lower IgG1 and 

IgG3 titres, potent polyfunctional antibody-mediated responses were found compared to viraemic 

individuals, further supporting the protective role antibodies may exert in controlling HIV infection (Lai et 

al., 2014, Ackerman et al., 2016). Therefore, additional studies are required to determine whether these 

subclass profiles can be fine-tuned to exploit polyfunctional IgG responses at the vulnerable mucosal site, 

the female genital tract.  

 

In HESN women participating in the HPTN035 microbicide trial, IgA was found to be the predominant 

isotype in vaginal secretions (Seaton et al., 2014). The gp120-specific IgA responses exerted a protective 

role in these HESN women (Seaton et al., 2014), which may indicate that the presence of mucosal IgA may 

be a proxy of protection against HIV exposure in individuals enrolled in HIV prevention trials 

(Mackelprang et al., 2012). Mucosal Env-specific antibody responses mainly directed towards gp41 (IgA, 

IgG and IgM) were shown to develop early in HIV infection [as reviewed in (Gallerano et al., 2015, Yates 

et al., 2013)]. Haimovici et al., (1997) showed that mucosal p24-specific IgA was elevated in women with 

genital inflammation. Furthermore, elevated titres of anti-HIV IgG antibodies (p24-specific antibodies) 

were found in the genital tracts of women with a history of heterosexual HIV transmission (Haimovici et 

al., 1997) and increased gp160-specific IgG activity in women with concurrent STIs (Artenstein et al., 

1997).  

 

In the genital mucosa, as expected, women who subsequently became HIV-infected had significantly higher 

mucosal HIV-specific IgG activities for p66, p24, gp41 and gp120 at three and six months compared to 

HIV-uninfected women. Additionally, evolving HIV-specific activities were seen over time in the genital 

tract of HIV-infected women. HIV-infected women without genital inflammation also displayed 

significantly higher and evolving HIV-specific activities to p66, p24, gp41 and gp120 over time. In contrast, 

in HIV-infected women with genital inflammation, HIV-specific activities declined from three months to 

six months. These data suggests that genital inflammation can undermine the specific antibody titres in the 
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mucosal compartment despite overall increasing titres systemically during HIV infection. A major 

limitation to these findings is the limited sample size that precluded significant findings in HIV-infected 

women with genital inflammation. Apart from genital inflammation undermining the HIV-specific antibody 

responses prevailing in the genital tract, these data have important consequences for vaccine induced 

immunity at the vulnerable site of exposure which may in turn affect vaccine efficacy. 

 

The HIV-specific responses in the plasma also displayed similar profiles as that of the genital tract, with 

significantly higher and evolving responses in HIV-infected than in the HIV-uninfected women. It is 

noteworthy that even in the women who remained HIV-uninfected, two of the women had consistent 

detectable plasma HIV-specific antibody responses to three HIV-specific proteins: p66, p24 and gp41 

despite the assay stringent cut-offs to determine detectability. These data suggest that these women may 

have had repeated exposures to HIV to develop these antibodies (Schaefer et al., 2005, Mazzoli et al., 1997, 

Beyrer et al., 1999). We did not anticipate to see the impact of genital inflammation on the HIV-specific 

antibody responses in the systemic compartment, HIV-infected women with genital inflammation had 

similar plasma HIV-antibody specific responses for p24, p66, gp41 and gp120 at three months and six 

months post-infection compared to the HIV-infected women without genital inflammation. Only at 

baseline, a p24-specific IgG responses in the plasma were significantly higher in HIV-infected women 

without inflammation compared to HIV-infected women with inflammation. These data suggest that the 

magnitude and kinetics of HIV-specific responses in the blood were not altered and that the presence of 

inflammation in the genital tract is more likely to have local effects in the mucosal compartment. 

Unsurprisingly, irrespective of inflammation status, the plasma HIV-specific responses remained higher in 

the HIV-infected compared to the uninfected women who mostly had undetectable responses. When the 

HIV-specific responses were correlated between the compartments in the HIV-infected women, all four 

plasma HIV-specific antibody responses were positively associated with those in the genital tract. However, 

when the data was further stratified for inflammation, women without inflammation were more likely to 

have p66 and p24 responses significantly and positively associated between the compartments, and no such 

associations were seen for the inflamed women suggesting that genital inflammation can alter these 

compartmental correlations. Studies have shown that the there is a close concordance between the blood 

and genital tract for HIV-specific antibody responses (Mkhize et al., 2016) even in the presence of prior 

topical PrEP in the form of the 1% tenofovir microbicide gel (Archary et al., 2016). However, how genital 

inflammation may have impacted these cross compartmental associations was not factored into these 

studies.  
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Overall, the HIV-specific activities and responses for all four HIV-specific antibodies showed a similar 

pattern between women who received the topical tenofovir gel and those who used the placebo gel. These 

data suggests that tenofovir did not impact on the HIV-specific activities and responses in the mucosal and 

systemic compartments, respectively. Although, previous studies have established that ARVs modulate the 

avidity of HIV-specific antibodies in patients with primary HIV-infection irrespective of the class of drugs 

used (Selleri et al., 2007, Laeyendecker et al., 2015, Killian et al., 2006), others have demonstrated that 

ARVs did not affect antibody binding or maturation kinetics (Adalid‐Peralta et al., 2006, Wendel et al., 

2013). ARVs, however, are known to reduce immune activation and CD4 T cell loss in macaques with no 

delay in antibody seroconversion (Curtis et al., 2011, Kersh et al., 2012). Another study in healthy 

individuals on short-term PrEP of oral tenofovir-emtricitabine (Truvada™) showed that relative to the 

baseline, the months usage of PrEP significantly lowered the circulating T cell activation and soluble CD27 

(CD27 is secreted by activated T cells) profiles (Castillo-Mancilla et al., 2015). However, the other pro-

inflammatory cytokines and other soluble markers of inflammation (CD14 and hs-CRP) remained 

unchanged (Castillo-Mancilla et al., 2015).These data indicate that prior oral PrEP may have a differential 

immunomodulatory effect on certain markers of systemic immune activation and cytokines causing 

inflammation in healthy individuals. However, how prior oral PrEP may affect the genital tract immunity 

and markers of inflammation is not fully understood. 

 

Cytokines have been shown to influence immunoglobulin class switching (Tangye et al., 2002) as well as 

subclass synthesis (Kawano et al., 1994). Prior to HIV infection, all four IgG subclasses and isotypes in the 

genital tract were positively and strongly associated with IL8, IP10, MIP1α, MIP1β, IL1β, IL6 and TNFα 

after adjusting for potential confounders. These data suggest that in the presence of a pro-inflammatory 

environment, these subclasses and isotypes do prevail. The levels of p66- and p24-specific activities were 

also shown to be positively and strongly associated with pro-inflammatory cytokines -IP10 and IL18, and 

growth factors- GCSF, PDGFββ and SCGFβ. IL8 is a chemokine which is responsible for attracting 

neutrophils to an inflammatory environment (Dinarello, 2000), and may bear a protective role in clearing 

inflammation in the presence of such antibody isotypes or IgG subclasses prior to HIV infection in the 

mucosal compartment of women. However, it is uncertain whether this chemotactic profile in the genital 

secretions of HIV-infected or HIV-uninfected women may be a correlate of risk or protection against HIV 

acquisition, or alternatively, it may be a reflection of the general immunity that is present in the mucosal 

compartment of these women. Innate IP10 is produced in response to bacteria, viruses, fungi and parasites 

(Liu et al., 2011). One study demonstrated that at the primary stage of HIV infection, systemic IP10 

increased significantly before the development of clinical symptoms in parallel to viral loads (Stacey et al., 

2009). Other studies show that IP10 in plasma was also associated with immune activation (Noel et al., 
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2014) and can be used as a predictor of rapid HIV progression (Liovat et al., 2012, Jiao et al., 2012), thus 

representing an earlier biomarker than that of viraemia or CD4 T cell counts (Liovat et al., 2012). In 

addition, IP10 was shown to be a useful screening tool to identify individuals with acute HIV infection 

from other patients with undifferentiated fever in a cohort of HIV-seronegative individuals (Pastor et al., 

2017). Macrophage inflammatory proteins have been shown to mechanistically drive cellular resistance to 

R5-tropic HIV viruses in some elite controllers (Walker et al., 2015).  

 

Furthermore, increased levels of IL1β was also shown to be associated with HIV disease progression and 

may likely lead to CD4 T cell depletion, increased viral loads and immune dysregulation (Guo et al., 2014). 

A limitation of the current study is the absence of genital viral load data in HIV-infected women (this was 

not included as a test in the main trials). Other studies report that genital tract specimens with detectable 

viral loads had increased levels of IL6 and TNFα than genital tract specimens without detectable viral loads 

(Mukura et al., 2012), and is consistent with the findings that IL6 and TNFα increase with increased HIV 

expression (Zara et al., 2004, Poli and Fauci, 1993, Poli et al., 1990). 

 

In the systemic compartment, the univariate analyses showed that plasma gp41- and gp120-specific IgG 

responses were negatively associated with plasma IL8 and MCP1. After adjusting for potential confounders, 

p66-specific IgG positively associated with IP10 in the plasma. It is also noteworthy that women who 

subsequently became HIV-infected, had consistently and significantly higher IP10 levels from the pre-HIV 

infection to six months post-infection, thus highlighting its putative role as a marker in the blood for HIV 

acquisition. In fact, the adjusted conditional regression analyses highlighted a more than six-fold increased 

risk for HIV acquisition with IP10 and TNFα. However, in the context of inflammation in the 

cervicovaginal mucosa, the limited numbers of samples from each group of women based on their 

inflammation status precluded a stratified analysis to determine which cytokines may be more strongly 

influencing which type of antibody in the female genital tract. 

 

A major strength of this study is the availability and investigation of a cohort of women longitudinally from 

the pre-HIV infection stage to the post HIV infection stage (cases) that were recruited into large scale 

clinical studies testing a topical form of PrEP as an ARV containing microbicide gel. In addition, the cases 

and the controls (women who remained uninfected) were effectively matched reducing any selection bias 

among HIV-infected and HIV-uninfected women who shared similar clinical and demographical profiles. 

Furthermore, this study was one of the few studies that was able to show the association between 

inflammatory cytokines and antibody isotypes, IgG subclasses and HIV-specific binding antibodies in the 

genital tract of women prior to HIV infection. Another strength of the study is the matching plasma and 
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genital tract specimens which allowed for some of the compartmental correlative analyses. Several 

limitations also exist within the present study and prevents the investigators from making conclusions about 

some of the analyses presented. One of the central issues is that we have no functional data to verify the 

role of HIV-specific antibodies in protection or viral control. Cytokines are also known to degrade over 

time and this could have also presented a limitation as these were stored samples and may have lower 

cytokine concentrations than usually expected. Another caveat to the present study is the unavailability of 

samples which precluded analyses of some of the significant associations between antibody isotypes, IgG 

subclasses and HIV-specific binding antibodies in women who were HIV-infected with genital 

inflammation. Owing to the unavailability of samples, some of the statistical tests could not be performed. 

Data is also lacking regarding the CD4 counts and viral loads of these women, viral loads of sexual 

partner/s, HIV partner status of some of the women, and their partners’ exposure to ARVs or PrEP. 

 

7.  CONCLUSIONS 

In conclusion, this study provided evidence of higher IgG1 and IgM in the genital tract of women prior to 

HIV-infection compared to HIV-uninfected women, suggesting that prior sexual exposures to HIV may 

have elicited both the increased IgG1 and IgM titres. Women who subsequently became HIV-infected had 

significantly higher and evolving mucosal HIV-specific IgG activities compared to HIV-uninfected women. 

In the presence of genital inflammation, HIV-specific activities decreased from three to six months in HIV-

infected women. These data suggest that although HIV may drive these HIV-specific antibody activities, 

genital inflammation may also undermine HIV-specific responses prevailing in the genital tract. HIV-

specific responses of all four antibody specificities correlated between the systemic and genital 

compartments in HIV-infected women over time. Upon further stratification into inflammation status, this 

study showed that p66- and p24-specific responses significantly associated between the compartments in 

HIV-infected women without genital inflammation. In HIV-infected women with genital inflammation 

such significant cross compartmental associations were not found, these data may suggest that genital 

inflammation could impact and undermine these compartmental correlations which otherwise showed 

strong and significant associations in women without genital inflammation. In addition, this study provided 

evidence that genital pro-inflammatory cytokines were strongly associated with antibody isotypes and IgG 

subclasses, suggesting that even in a pro-inflammatory environment, these isotypes and IgG subclasses do 

prevail. Certain pro-inflammatory cytokines and growth factors were also strongly associated with p66- 

and p24-specific activities in the genital tract. This study provided evidence of the different antibody 

isotypes and IgG subclasses, as well as the HIV-specific binding antibody profiles in the mucosal 

compartment of women during natural infection. Taken together, this study showed the relationship 
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between genital cytokine signatures and these parameters in the genital tract of HIV-infected and HIV-

uninfected women.  

 

7.1 Future Directions 

Going forward, it would be important to see if there are qualitative functional differences of antibodies in 

women with genital tract inflammation compared to those women without genital tract inflammation. 

Functional studies investigating the ADCC or ADCP may inform us of what the potential differences may 

be in an inflamed genital tract environment and how this may inform future vaccine studies aimed at 

protecting this vulnerable mucosal surface. Indeed, if there is scope to investigate the IgM isotype in the 

future on a larger cohort of women from the pre-HIV infection stage to the post-HIV infection stage in both 

the blood and genital tract as a potential additional marker of genital inflammation. If the IgM correlates 

significantly between the compartments then we may be able to confirm its role as a potential new 

biomarker that may be easier to test for in the blood rather than in the genital tract. This would require large 

numbers of women. These data and findings may also inform us about the quality of the antibodies and the 

structural and molecular characteristics of the Fc portion of the antibodies that may be different in the 

inflamed genital tract compared to the uninflamed genital tract. Additionally, as the genital microbiome 

plays a key role in also modulating inflammation, investigating the interplay between the microbiome and 

antibody responses in the genital tract may also provide clues as to what types of antibodies may likely be 

prevalent in a microbially diverse versus a non-diverse vagina.  Together, these future studies may better 

inform our understanding of biological and immunological factors to mitigate HIV-infection risk among 

women. 
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9. SUPPLEMENTARY 

Table S1: Mucosal cytokine profiles between cases and controls in the CAP004 and CAP008 trials at baseline, 3 and 6 months   
Cytokine Baseline (case) 

[Median (IQR)] 

N=61 

Baseline (control) 

[Median (IQR)] 

N=60 

p-value 3 months Post-

infection (case) 

[Median (IQR)] 

N=45 

3 month time point 

(control) 

[Median (IQR)] 

N=19 

p-value 6 months Post-

infection (case) 

[Median (IQR)] 

N=36 

6 month time point 

(control) 

[Median (IQR)] 

N=25 

p-value 

IL12p70 1.64 (1.34-1.97) 1.57 (1.24-1.81) 0.07 0.48 (-0.04-0.71) 0.76 (0.48-1.61) 0.32 0.48 (-0.05-0.71) 0.48 (-0.02-1.26) 0.22 

IL17α 1.26 (1.01-1.59) 1.09 (0.95-1.33) 0.02 1.39 (1.23-1.62) 1.27 (1.13-1.43) 0.09 1.22 (1.10-1.34) 1.27 (1.09-1.52) 0.32 

IL1β 1.71 (1.27-2.40) 1.41 (0.94-1.95) 0.01 1.48 (0.97-2.04) 1.50 (0.86-1.76) 0.42 0.94 (0.56-1.41) 1.09 (0.44-1.79) 0.33 

IL6 0.89 (0.54-1.25) 0.77 (0.47-1.26) 0.50 0.60 (0.33-0.85) 0.62 (0.38-0.98) 0.36 0.43 (0.33-0.56) 0.50 (0.26-0.86) 0.25 

TNFα 1.15 (0.80-1.47) 0.88 (0.64-1.17) 0.01 1.27 (1.14-1.54) 1.05 (0.77-1.27) 0.07 1.17 (0.95-1.33) 1.04 (0.87-1.26) 0.72 

IL12p40 2.57 (2.44-2.71) 2.54 (2.42-2.62) 0.05 - - - - - - 

IL18 2.44 (1.95-2.82) 2.11 (1.71-2.75) 0.35 - - - - - - 

IL1α 2.24 (1.86-2.76) 1.99 (1.68-2.35) 0.00 1.59 (0.76-1.89) 1.47 (1.04-2.22) 0.93 1.10 (0.64-1.54) 1.31 (1.09-1.85) 0.44 

MIF 3.72 (3.08-3.94) 3.61 (3.13-3.95) 0.59 - - - - - - 

TNFβ 0.67 (0.46-0.95) 0.63 (0.40-0.82) 0.10 - - - - - - 

TRAIL 1.57 (0.94-2.15) 1.34 (0.86-1.78) 0.18 - - - - - - 

IL10 1.54 (1.18-1.72) 1.42 (1.16-1.61) 0.06 1.32 (1.17-1.42) 1.36 (0.95-1.43) 0.72 1.36 (1.24-1.43) 1.22 (1.17-1.33) 0.19 

IL1Rα 4.01 (3.84-4.15) 3.99 (3.77-4.24) 0.71 5.00 (4.45-5.39) 4.43 (3.62-4.9) 0.64 5.02 (4.63-5.68) 4.35 (3.53-5.01) 0.19 

IFNγ 1.58 (1.27-1.84) 1.34 (1.16-1.59) 0.01 0.99 (0.85-1.11) 1.02 (0.89-1.42) 0.76 1.03 (0.89-1.07) 1.05 (0.99-1.23) 0.13 

IL13 0.54 (0.24-0.73) 0.36 (0.08-0.61) 0.02 0.12 (-0.25-0.14) 0.14 (-0.08-0.42) 0.27 -0.03 (-0.10-0.14) -0.03 (-0.03-0.16) 0.51 

IL15 0.27 (-1.2-0.91) 0.47 (-1.1-0.8) 0.35 2.70 (2.46-2.79) 2.21 (0.34-2.56) 0.02 2.70 (2.64-2.81) 2.35 (0.85-2.59) 0.01 

IL2 0.41 (0.05-0.67) 0.46 (0.19-0.68) 0.51 0.89 (0.51-1.07) 0.50 (0.04-0.7) 0.48 0.76 (0.52-0.9) 0.60 (0.37-0.73) 0.23 

IL4 -0.03 (-0.20-0.17) -0.13 (-0.20-0.07) 0.02 0.37 (0.14-0.58) 0.15 (-0.30-0.32) 0.13 0.34 (0.15-0.47) 0.13 (-0.26-0.31) 0.43 

IL5 -0.13 (-1.20-0.32) -0.42 (-1.20-0.23) 0.35 1.49 (1.32-1.61) 1.26 (-0.92-1.41) 0.00 1.46 (1.36-1.51) 1.37 (-1.22-1.43) 0.07 

IL2Rα 1.49 (1.29-1.79) 1.35 (1.23-1.52) 0.01 - - - - - - 

Eotaxin 0.86 (-0.70-1.19) 0.64 (-0.40-0.95) 0.19 0.22 (-0.03-0.40) 0.16 (-0.05-0.74) 0.95 0.10 (0.00-0.22) 0.30 (-0.03-0.62) 0.23 

IL8 2.78 (2.35-3.43) 2.47 (2.07-2.98) 0.01 3.02 (2.35-3.7) 2.87 (2.43-3.18) >0.99 2.91 (2.16-3.15) 2.21 (2.00-3.54) 0.55 

IP10 2.62 (1.73-3.12) 2.16 (1.31-2.84) 0.01 1.67 (1.42-2.67) 1.54 (1.32-2.04) 0.28 1.89 (1.45-2.47) 1.62 (1.35-2.81) 0.74 

MCP1 1.35 (1.12-1.54) 1.28 (1.01-1.46) 0.20 1.19 (0.89-1.52) 1.05 (0.85-1.33) 0.56 0.99 (0.69-1.22) 1.08 (0.68-1.51) 0.85 

MIP1α 0.31 (-0.12-0.52) 0.18 (-0.20-0.36) 0.09 0.23 (0.04-0.47) 0.21 (0-0.40) 0.64 0.08 (-0.06-0.23) 0.22 (0.08-0.38) 0.14 

MIP1β 1.25 (0.66-1.73) 1.05 (0.64-1.53) 0.49 0.87 (-0.09-1.24) 0.81 (0.33-1.32) 0.27 0.40 (-0.77-0.8) 0.82 (0.26-1.24) 0.17 

RANTES 1.06 (0.53-1.33) 0.72 (0.33-1.11) 0.06 1.05 (0.88-1.16) 1.00 (0.48-1.21) 0.49 1.02 (0.94-1.16) 0.97 (0.70-1.11) 0.24 

CTACK 1.40 (1.13-1.59) 1.21 (1.00-1.41) 0.02 - - - - - - 

Groα 3.17 (2.34-3.63) 2.52 (1.70-3.27) 0.02 - - - - - - 

IFNα2 1.37 (1.25-1.6) 1.32 (1.18-1.42) 0.10 - - - - - - 

IL16 1.69 (1.46-2.07) 1.54 (1.25-1.76) 0.01 - - - - - - 

MCP3 1.24 (0.95-1.52) 1.09 (0.70-1.24) 0.04 - - - - - - 

MIG 2.91 (2.38-3.52) 2.36 (1.91-3.00) - - - - - - - 

Basic FGF 
1.41 (1.32-1.55) 1.38 (1.29-1.45) 0.05 1.61 (1.37-1.81) 1.47 (1.15-1.68) 0.58 1.56 (1.37-1.65) 1.41 (1.19-1.57) 0.21 

GCSF 2.52 (1.92-2.83) 2.36 (1.68-2.87) 0.28 2.49 (2.34-2.74) 2.32 (1.95-2.68) 0.85 2.46 (2.28-2.62) 2.35 (2.04-2.69) 0.83 

GMCSF 1.91 (1.81-2.02) 1.91 (1.80--2.03) >0.99 0.31 (0.02-0.51) 0.46 (0.30-2.01) 0.41 0.19 (0.02-0.4) 0.39 (0.30-1.94) 0.01 
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IL7 0.69 (0.21-0.87) 0.50 (0.13-0.76) 0.06 0.69 (-0.06-1.02) 0.13 (-0.13-0.78) 0.39 0.87  (-0.12-1.1) -0.076 (-0.13-0.67) 0.12 

IL9 0.75 (0.47-1.16) 0.66 (0.46-0.88) 0.07 1.26 (1.01-1.56) 1.01 (0.76-1.18) 0.17 1.25 (1.02-1.37) 0.93 (0.64-1.36) 0.28 

PDGFββ 1.08 (0.79-1.3) 0.92 (0.65-1.15) 0.06 1.84 (1.44-2.08) 0.99 (0.29-1.67) 0.15 1.84 (1.57-1.99) 0.91 (0.48-1.67) 0.01 

HGF 2.52 (2.13-2.89) 2.07 (1.78-2.64) 0.00 - - - - - - 

IL3 2.17 (2.03-2.46) 2.09 (1.95-2.26) 0.04 - - - - - - 

LIF 1.27 (1.14-1.57) 1.23 (1.05-1.43) 0.09 - - - - - - 

MCSF 1.93 (1.70-2.22) 1.91 (1.55-2.13) 0.22 - - - - - - 

SCF 1.04 (0.72-1.51) 0.91 (0.55-1.27) 0.07 - - - - - - 

SCGFβ 2.51 (2.06-3.04) 2.38 (0.70-2.84) 0.06 - - - - - - 

SDF1α 2.17 (2.01-2.32) 2.00 (1.84-2.27) 0.01 - - - - - - 

Βngf 0.21 (-0.4-0.79) -0.10 (-0.4-0.3) 0.13 - - - - - - 

VEGF 2.52 (2.16-2.94) 2.37 (2.02-2.64) 0.08 2.92 (2.83-3.04) 2.78 (2.47-2.91) 0.05 2.88 (2.84-2.97) 2.79 (2.03-2.93) 0.04 

Abbreviations: IQR, interquartile range; IL, interleukin; TNF, tumor necrosis factor; MIF, macrophage migration inhibitory factor; TRAIL, TNF-related apoptosis-inducing ligand; IFNγ, interferon 

gamma; IP10, interferon-γ inducible protein 10; MCP1, moncoyte chemoattractant protein 1; MIP1, macrophage inflammatory protein 1; RANTES, regulated on activation, normal T expressed and 

secreted; CTACK, cutaneous T cell-attracting chemokine; Groα, growth-regulated oncogene alpha; MCP3, moncoyte chemoattractant protein 3; MIG, monokine induced by gamma; Basic FGF, Basic 

fibroblast growth factor; GCSF, granulocyte colony-stimulating factor; GMCSF, granulocyte macrophage colony-stimulating factor; PDGFββ, platelet-derived growth factor beta; HGF, hepatocyte 

growth factor; LIF, Leukemia inhibitory factor; MCSF, macrophage colony-stimulating factor; SCF, stem cell factor; SCGFβ, stem cell growth factor beta; SDF1α, stromal cell-derived factor 1 alpha; 

βNGF, nerve growth factor beta; VEGF, vascular endothelial growth factor. p<0.05 were considered statistically significant. Blank cells indicate that those specific cytokines were not measured at 3 

months and 6 months. 
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Figure S1: HIV-specific activities Log10 (MFI*dilution factor/ngml-1) in CVL for p66 (A), p24 (B), gp41 

(C) and gp120 (D) from HIV- women at baseline (n=60), at 3 (n=15) and at 6 months (n=23). Each data 

point represents an individual sample. The scatter dot plot includes the medians and interquartile ranges. 

The Wilcoxon test was used to compare groups and p<0.05 were considered statistically significant. All 

values falling below the detectable specific activities [based on average CVL specific activities of (n=60) 

HIV- women] are reflected on or below the dotted lines. Red triangles represent women from the CAP004 

trial and blue circles represent women from the CAP008 trial.  
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Figure S2: HIV-specific activities Log10 (MFI*dilution factor/ngml-1) in CVL for p66 (A), p24 (B), gp41 

(C) and gp120 (D) from HIV+GI+ women at baseline (n=8), 3 months (n=7) and 6 months (n=2). Each data 

point represents an individual sample. The scatter dot plot includes the medians and interquartile ranges. 

The Wilcoxon test was used to compare groups and p<0.05 were considered statistically significant. All 

values falling below the detectable specific activities [based on average CVL specific activities of (n=60) 

HIV- women] are reflected on or below the dotted lines. At baseline, HIV+GI+ represents women who 

became HIV infected. Red triangles represent women from the CAP004 trial and blue circles represent 

women from the CAP008 trial. 
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Figure S3: HIV-specific activities Log10 (MFI*dilution factor/ngml-1) in CVL for p66 (A), p24 (B), gp41 

(C) and gp120 (D) from HIV-GI+ women at baseline (n=8) and at 6 months (n=3). Each data point represents 

an individual sample. The scatter dot plot includes the medians and interquartile ranges. The Wilcoxon test 

was used to compare groups and p<0.05 were considered statistically significant. All values falling below 

the detectable specific activities [based on average CVL specific activities of (n=60) HIV- women] are 

reflected on or below the dotted lines. Red triangles represent women from the CAP004 trial and blue 

circles represent women from the CAP008 trial.  
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Figure S4: HIV-specific activity Log10 (MFI*dilution factor/ngml-1) in CVL for p66 (A), p24 (B), gp41 

(C) and gp120 (D) from HIV-GI- women at baseline (n=51), 3 months (n=15) and 6 months (n=19) post-

infection. Each data point represents an individual sample. The scatter dot plot includes the medians and 

interquartile ranges. The Wilcoxon test was used to compare groups and p<0.05 were considered 

statistically significant. All values falling below the detectable specific activities [based on average CVL 

specific activities of (n=60) HIV- women] are reflected on or below the dotted lines. Red triangles represent 

women from the CAP004 trial and blue circles represent women from the CAP008 trial. 
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Table S2: Longitudinal analysis of plasma cytokine profiles between cases and controls in the CAP004 and CAP008 trials. 
Cytokine Baseline (case) 

[Median (IQR)] 

N=48 

Baseline (control) 

[Median (IQR)] 

N=29 

p-value 3 months Post-

infection (case) 

[Median (IQR)] 

N=43 

3 month time point 

(control) 

[Median (IQR)] 

N=46 

p-value 6 months Post-infection 

(case) [Median (IQR)] 

N=47 

6 month time point 

(control) [Median (IQR)] 

N=22 

p-value 

IL12p70 1.02 (0.66-1.56) 1.11 (0.97-1.34) 0.88 0.87 (0.42-1.91) 0.84 (-0.16-1.76) 0.99 0.65 (-0.82-1.41) 0.76 (-0.82-1.29) 0.19 

IL17α 1.13 (-0.31-1.62) 1.29 (0.25-1.52) >0.99 0.87 (0.42-1.91) 0.84 (-0.16-1.76) 0.99 0.92 (0.11-1.80) 0.87 (0.32-1.88) 0.32 

IL1β -1 (-2.30 to -0.57) -2 (-2.30 to -0.65) 0.06 -0.02 (-0.30-0.65) -0.15 (-0.59-0.61) 0.07 0.01 (-0.37-0.72) 0.01 (-0.39-0.59) 0.30 

IL6 0.08 (-0.42-0.53) -0.04 (-0.53-0.42) 0.25 0.18 (-0.27-1.04) 0.18 (-0.22-1.01) 0.97 0.32 (-0.43-1.10) 0.40 (-0.43-0.99) 0.15 

TNFα 0.64 (0.52-0.78) 0.63 (0.38-0.86) 0.23 1.77 (1.55-1.98) 1.60 (1.44-1.95) 0.15 1.71 (1.53-2.05) 1.63 (1.40-1.88) 0.09 

IL1α -0.17 (-0.17 to -0.17) -0.17 (-0.17 to -0.17) 0.56 -0.16 (-0.82-0.10) -0.16 (-0.33-0.10) 0.99 -0.16 (-0.29-0.10) -0.005 (-0.29-0.21) 0.85 

IL10 0.33 (-0.62-0.99) -0.47 (-0.62-0.86) 0.16 0.82 (0.25-1.13) 0.42 (-0.920-1.21) 0.15 0.77 (-0.26-1.34) 0.72 (-0.15-1.06) 0.38 

IL1Rα 1.98 (1.76-2.23) 2.07 (1.89-2.25) 0.88 2.23 (2.02-2.37) 2.35 (2.08-2.56) 0.96 2.20 (1.97-2.48) 2.12 (1.96-2.47) 0.33 

IFNγ 2.39 (0.93-2.43) 2.36 (2.03-2.68) 0.88 0.77 (0.55-2.17) 0.73 (0.50-2.04) 0.21 0.77 (0.54-2.20) 0.80 (0.28-2.05) 0.09 

IL13 0.94 (0.47-1.45) 1.07 (0.77-1.57) >0.99 0.74 (0.40-1.13) 0.53 (0.23-1.29) 0.37 0.77 (0.40-1.18) 0.83 (0.47-1.25) 0.77 

IL15 0.81 (0.013-1.44) 0.01 (0.01-0.32) 0.50 1.22 (0.73-1.46) 1.08 (0.43-1.28) 0.23 0.81 (0.81-1.32) 0.89 (0.61-1.81) 0.97 

IL2 0.009 (-0.46-0.68) 0.007 (0.007-0.31) >0.99 0.62 (0.02-0.90) 0.41 (-0.24-0.84) 0.62 0.51 (0.22-0.86) 0.12 (-0.92-0.90) 0.02 

IL4 0.43 (-0.37-0.62) 0.51 (0.43-0.63) 0.88 0.36 (-1.00-0.88) 0.37 (-0.66-0.73) 0.88 0.25 (-0.59-0.83) 0.44 (-1.00-0.77) 0.07 

IL5 0.71 (0.04-0.95) 0.96 (0.64-1.12) >0.99 0.71 (0.04-0.95) 0.96 (0.64-1.12) >0.99 1.24 (0.82-1.52) 1.12 (0.84-1.59) 0.55 

Eotaxin 1.98 (1.39-2.16) 1.99 (1.80-2.22) >0.99 1.41 (1.17-1.74) 1.39 (1.17-1.76) 0.51 1.34 (1.13-1.83) 1.40 (1.18-1.97) 0.21 

IL8 0.33 (-0.10-0.59) 0.43 (-2.00-0.78) 0.65 1.05 (0.77-1.40) 1.06 (0.58-1.27) 0.68 1.10 (0.67-1.36) 0.94 (0.46-1.23) 0.18 

IP10 2.17 (1.99-2.37) 2.35 (2.15-2.55) 0.01 2.60 (2.44-2.91) 2.24 (2.08-2.76) 0.001 2.72 (2.36-3.19) 2.46 (2.27-2.84) 0.0007 

MCP1 2.16 (1.94-2.24) 2.16 (1.92-2.34) 0.52 1.47 (1.18-1.67) 1.45 (1.04-1.63) 0.30 1.37 (1.12-1.62) 1.36 (0.64-1.57) 0.05 

MIP1α 0.52 (-0.68-0.80) 0.37 (-0.68-0.82) 0.48 0.29 (0.00-0.72) 0.30 (-0.17-0.68) 0.99 0.34 (-0.01-0.67) 0.29 (-0.18-0.70) 0.21 

MIP1β 1.34 (1.15-1.50) 1.43 (1.24-1.49) 0.62 1.69 (1.47-1.87) 1.77 (1.41-1.92) 0.58 1.63 (1.50-1.81) 1.77 (1.56-1.92) 0.93 

RANTES 3.26 (3.02-3.73) 3.41 (3.05-3.55) 0.63 3.33 (3.02-8.92) 3.26 (2.82-3.70) 0.28 3.09 (2.93-4.11) 3.28 (2.93-8.92) 0.67 

Basic FGF 1.37 (0.66-1.62) 1.41 (1.31-1.68) 0.88 1.52 (1.35-2.02) 1.42 (0.86-1.79) 0.52 1.52 (1.08-1.96) 1.60 (1.27-1.84) 0.64 

GCSF 1.84 (0.93-2.05) 1.84 (1.70-2.00) 0.88 1.90 (1.15-2.32) 1.73 (0.19-2.25) 0.57 1.83 (0.81-2.40) 1.78 (0.42-2.21) 0.39 

GMCSF 0.09 (-0.29-0.37) -0.06 (-0.35-0.06) 0.18 0.43 (-0.58-1.38) -0.17 (-2.30-1.15) 0.05 0.46 (-1.22-1.33) 0.84 (-0.85-1.62) 0.64 

IL7 -2.30 (-2.30 to -0.22) -2.30 (-2.30 to -0.34) 0.12 1.36 (0.49-1.66) 1.25 (-1.06-1.60) 0.92 1.38 (0.49-1.67) 1.05 (-0.28-1.50) 0.01 

IL9 1.47 (0.41-1.59) 1.09 (0.92-1.39) 0.63 1.78 (1.55-1.98) 1.70 (1.50-1.99) 0.85 1.75 (1.57-1.94) 1.78 (1.51-2.04) 0.25 

PDGFββ 2.14 (1.27-3.04) 2.51 (2.23-2.90) >0.99 2.36 (1.61-2.99) 2.16 (0.92-2.67) 0.38 2.09 (0.92-2.65) 2.32 (1.23-2.76) 0.58 

VEGF 1.37 (1.32-1.93) 1.48 (1.20-1.77) 0.63 1.97 (1.52-2.28) 1.70 (1.32-2.19) 0.45 1.77 (1.47-2.23) 1.60 (1.32-2.24) 0.76 

Abbreviations: IQR, interquartile range; IL, interleukin; TNF, tumor necrosis factor; IP10, interferon-γ inducible protein 10; MCP1, moncoyte chemoattractant protein 1; MIP1, macrophage inflammatory 

protein 1; RANTES, regulated on activation, normal T expressed and secreted; Basic FGF, Basic fibroblast growth factor; GCSF, granulocyte colony-stimulating factor; GMCSF, granulocyte 

macrophage colony-stimulating factor; PDGFββ, platelet-derived growth factor beta; VEGF, vascular endothelial growth factor. 

p<0.05 were considered statistically significant 
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Figure S5: HIV-specific responses [Log10 (MFI*dilution factor)] in plasma for (A) p66, (B) p24, (C) gp41 

and (D) gp120 from HIV-GI+ women at baseline (n=10), at 3 months (n=7) and 6 months (n=9). Each data 

point represents an individual sample. The scatter dot plot includes the medians and interquartile ranges. 

The Wilcoxon test was used to compare groups and p<0.05 were considered statistically significant. All 

values falling below the detectable HIV-specific responses [based on average plasma HIV-specific 

responses of (n=61) HIV- women] are reflected on or below the dotted lines. Red triangles represent women 

from the CAP004 trial and blue circles represent women from the CAP008 trial. 
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Figure S6: HIV-specific responses [Log10 (MFI*dilution factor)] in plasma for (A) p66, (B) p24, (C) gp41 

and (D) gp120 from HIV-GI- women at baseline (n=51), at 3 months (n=15) and 6 months (n=20). Each 

data point represents an individual sample. The scatter dot plot includes the medians and interquartile 

ranges. The Wilcoxon test was used to compare groups and p<0.05 were considered statistically significant. 

All values falling below the detectable HIV-specific responses [based on average plasma HIV-specific 

responses of (n=61) HIV- women] are reflected on or below the dotted lines. Red triangles represent women 

from the CAP004 trial and blue circles represent women from the CAP008 trial. 
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10. APPENDIX I 

10.1 Solutions 

10.1.1 70% Isopropanol 

175ml of 100% Isopropanol added to 75ml of deionized water (dH2O). 

10.1.2 10% Bleach (NaOH) 

167ml of 15% NaOH added to 83ml of deionized water (dH2O). 

10.1.3 100mM Monobasic Sodium Phosphate Activation buffer pH 6.2 

Monobasic Sodium Phosphate in Deionized H2O/pH 6.2 

 

Components required Mass Molarity 

Sodium phosphate dibasic heptahydrate (mw: 268 g/mol) 6.032 g 0.0225 M 

Sodium phosphate monobasic monohydrate (mw: 138 g/mol) 10.694 g 0.0775 M 

A volume of 800ml of deionized water was added to a 1L glass bottle. To this bottle, 6.032g of Sodium 

phosphate dibasic heptahydrate was added. Thereafter, 10.694 g of Sodium phosphate monobasic 

monohydrate to the solution. The solution was adjusted to the desired pH of 6.2 using HCL or NaOH. 

Lastly, deionized water was added until the volume was 1L.  

10. 1.4 Luminex BAMA wash buffer 

A volume of 10ml of the 50X luminex wash buffer was added to 490ml of PBS. To this, 0.25g of sodium 

azide and 250µl of Tween 20 was added to the BAMA wash buffer bottle. A magnetic stirrer was placed 

inside the flask and allowed to shake until all the components was thoroughly mixed, and then kept 

overnight in a -20 ֯C fridge.      

10.1.5 Milk Blotto 

A volume of 95ml of PBS, 5ml goat serum, 50µl tween 20 and 1g of milk powder was added to a tissue 

culture flask. A magnetic stirrer was placed inside the flask to ensure all the components were thoroughly 

mixed, and then kept overnight in a -20 ֯c fridge. 

10.1.6 HIV Protein Calculations 

A volume of  50μg of each antigen (p24 100μg/0.1ml, p66 μg/μl, gp41 100 μg/0.1ml, gp120 100mg/0.1mg) 

was coupled to their respective mircospheres (bead set 19, bead set 42, bead set 44, and bead set 10). To 

achieve this desired concentration, a volume of 50μl of each antigen was added to 950μl of PBS in their 

respective low binding titre tubes.  
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11. APPENDIX II 

11.1 BREC Acceptance letter for the study 
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12. APPENDIX III 

 

12.1 Previous Publication 

 

Please refer to the publication attached at the end of the thesis. 
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