
  

 

 

 

 

Mesosphere-Lower Thermosphere Planetary and Tidal waves 

structure over the Southern Hemisphere using SANAE and Halley                                                                                    

SuperDARN HF RADAR 

 

                                                    

                                                      By 

 

 

                                       Perfect Privilege Chifoto 

 

 

Submitted in partial fulfilment of the academic requirements for the Degree of 

Master of Science in the School of Physics, University of KwaZulu-Natal 

(Westville). 

 

 

 

 

Supervisor: Prof. Sivakumar Venkataraman 

Co-supervisor: Dr. Nkanyiso  B. Mbatha 

                 October 2015 



1 

 

 

Abstract 

The  study  focuses  on planetary  and  tidal  wave  structure in  the  Mesosphere-Lower 

Thermosphere (MLT) region at  high latitude using SuperDARN High Frequency (HF)  radar 

observations over the South African National Antarctic Expedition (SANAE), (72°S, 3°W) and 

Halley (76°S, 27°W). Hourly  continuous zonal and  meridional wind  measurements  in  the 

MLT (~94 km) region  for  the year 2007 were  used  for  the  present  analysis. Fast Fourier 

Transform (FFT) and wavelet analysis methods were implemented for wave filtering and to 

reveal dominant wave periods and their time of occurrence. 

 

Planetary  waves  were  investigated for  their  origin  and  propagation upwards  as they 

distribute  energy  and  momentum. Wavelet analysis revealed tidal variability at planetary wave 

scale, with dominant periods below 30 days. This made it possible to investigate the day-to-day, 

seasonal and inter-annual variability of tidal waves with planetary waves, at major dynamical 

events like Sudden Stratospheric Warming (SSW). From  the  analysis  of  results, seasonal  

variations  of  the mean  wind  and  planetary wave  interaction  with  tidal  waves  was  

investigated and  proved a wave-wave  interaction in the  MLT. Minor Sudden stratospheric 

Warming events for the years 2007 and 2010 were investigated using NCEP reanalysis data from 

the United Kingdom Meteorological Office (UKMO) data assimilation. 
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Chapter 1: Introduction 

Understanding the structure and dynamics of the Mesosphere-Lower thermosphere (MLT) and 

the whole middle atmosphere is important as this region is known to be a sensitive indicator of 

the health of the middle atmosphere as a whole (e.g. Charne and Drazin 1961, Andrews et al., 

2007 and Anne, 2012). In particular, the middle atmosphere is an important region which is used 

to study global climate change and its accompanying processes. Specifically, the polar upper 

middle atmosphere and upper atmosphere provides a unique natural laboratory for studying the 

complex physical, dynamical and chemical processes in the earth’s atmosphere and space 

environment. However, the MLT region still remains the most difficult region to observe due to 

the limitation of the relevant instruments.  

 

When the fluid parcels are displaced from their equilibrium latitudes or altitudes, the balance 

between inertia and restoring forces results in wave motions namely planetary waves, tidal waves 

and gravity waves (Andrews et al., 1987). These wave motions have a fundamental impact on the 

lower-upper atmosphere coupling and are measured as fluctuations in wind, density, temperature 

and pressure. Atmospheric waves may propagate horizontally and vertically from their sources in 

the troposphere to the upper atmosphere carrying momentum and energy. Due to the intensely 

decreased air density in the upper atmosphere and the conservation of the wave energy, the wave 

amplitude becomes large enough to induce nonlinear wave breaking and turbulence (Matsuno, 

1971; Holton, 1976; Andrews et al., 1987 and Shepherd et al., 2000). Consequently, the energy 

and momentum of the waves are transferred by the mean flow. This wave breaking process 

determines the global circulation and temperature distribution of the upper atmosphere. The 

middle atmospheric dynamics also involves daily, seasonal to long-lasting wind variations. The 

dynamics of the middle atmosphere is well outlined in the work of Bremer et al., (1997), where 

they concluded that the zonal component of the prevailing wind as well as the semidiurnal tidal 

amplitude were weakly negatively correlated with solar activity during most months. The cause 

of such variation in the amplitude of the zonal wind and tides is the major concern for this study 

to investigate all the activities and consequences in cases where Sudden Stratospheric Warming 

events are simulated. 
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1.1 The Atmospheric Structure 

Figure 1.1: The MSISE (Mass Spectrometer Incoherent Scatter Extended) 90 Model vertical 

structure of atmospheric temperature year: 2007.  

 

Observations show that the vertical variations of pressure and temperature in the atmosphere 

follow an entirely different pattern. The basic vertical structure of the temperature distribution in 

the neutral atmosphere can be understood on radiative-convective grounds (e.g. Houghton, 1986 

and Andrews et al., 1987). It shows that the temperature varies differently in different 

atmospheric layers. The four principal layers of the atmosphere defined in Figure 1.1 are: the 

troposphere, the stratosphere, the mesosphere and the thermosphere. These are discussed in more 

detail in the following section. 

 

1.1.1 Troposphere 

The troposphere is the lowest layer which extends to a height varying between about 8 km at the 

poles to 16 km over the equator depending upon both the season and latitude. In this layer, the 
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temperature drops steadily with height at the rate of about 6.5 K.km-1 until a minimum value of 

between 207 K and 209 K is reached at a level called the tropopause. This layer is denser than all 

the layers of the atmosphere above and it constitutes up to 75% of the mass of the atmosphere. It 

is primarily composed of nitrogen (78%) and oxygen (21%) with only small concentrations of 

other trace gases. Nearly all atmospheric water vapour or moisture is found in the troposphere. 

The temperature distribution in the troposphere is maintained by the convective and turbulent 

transfer of heat due to absorption of solar radiation at the surface of the atmosphere. Sometimes 

in the troposphere, the temperature does not decrease with height but rather it increases. Such a 

situation is known as a temperature inversion. Temperature inversions limit or prevent the 

vertical mixing of air. Such atmospheric stability can lead to air pollution episodes, with air 

pollutants emitted at ground level, becoming trapped underneath the temperature inversion. 

 

1.1.2 Stratosphere 

Above the troposphere lies the stratosphere where the temperature increases gradually with 

height to reach a maximum of about 260 K at a height of about 50 km above the earth’s surface. 

This is based on figure 1.1 using similar method of analysis to the one employed by Saha, 

(2008), on U.S. standard atmosphere. The increase of temperature in this layer is due to the 

presence of ozone, which absorbs ultraviolet (UV) radiation from the sun and acts as a source of 

heat for the atmosphere. Since ozone controls the thermal structure of this layer, it is also 

sometimes called the ozonosphere and consequently, the stratosphere is almost completely free 

of clouds or other forms of weather. The top of the stratosphere is called the stratopause marking 

the beginning of the next layer called the mesosphere. 

 

1.1.3 Mesosphere 

The mesosphere or middle sphere is the third layer in the atmosphere, occupying the region 

between 50 km to 90 km above the Earth’s surface. Above the stratopause, the temperature drops 

again to reach a minimum of about 194 K to 196 K at about 96 km. The mesosphere is the 

coldest of all the atmospheric layers such that it is cold enough to freeze water vapor into ice 

clouds called noctilucent clouds which were well explained by Von Zahn et al., (2004). The level 

of this minimum temperature is called the mesopause which marks the beginning of the next 
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layer called the thermosphere. Chemical heating influences greatly the mesosphere region in a 

variety of ways, including increases in electrical conductivity and heating rates, as well as 

upward expansion. Large amounts of energy in the form of chemical potential energy are 

deposited in the MLT through the dissociation of molecular oxygen and ozone. The mesosphere 

is also a layer in which a number of meteors burn up while entering the earth's atmosphere.From 

the earth’s surface, they are seen as shooting stars.  

 

1.1.4 Thermosphere 

The mesopause marks the level from where the temperature starts rising again, this time almost 

monotonously to large values at a greater height of the atmosphere and this layer is called the 

thermosphere. The importance of this layer lies in the fact that it intercepts the highly charged 

solar rays from space and the high energy ultra-violet radiation from the sun which are both 

harmful to life on the earth’s surface. The atoms and molecules of gases such as oxygen and 

nitrogen present in this layer absorb the high energy short-wave radiation from the sun and get 

ionized. The ionized layer helps in global telecommunication by reflecting radio waves. For this 

reason, this layer is also sometimes called the ionosphere. The temperature of the thermosphere 

varies greatly with solar activity, with a value of about 2000 K at the time of ‘active sun’ and 500 

K at the time of ‘quiet sun’ at 500 km altitude (Banks and Kockarts 1973). Because of the large 

variation in the thermal structure of the thermosphere with active and quiet sun, this part of the 

thermosphere is often called the heterosphere.  

 

Above the heterosphere lies the exosphere. Absorption of solar ultraviolet radiation occurs 

principally in three regions which are: at the surface of the earth due to near-blackbody 

absorption (apart from albedo effects), in a broad layer centered at about 50 km altitude due 

primarily to ozone and above about 85 km altitude due primarily to molecular oxygen. The lower 

part of the thermosphere from 80 km to 550 km above the earth's surface contains the 

ionosphere. Beyond the ionosphere extending out to perhaps 10,000 km is the exosphere or outer 

thermosphere, which gradually merges into space. 
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The atmosphere can be treated like system which can attain a baroclinic state that is towards a 

radiative equilibrium due to the sun’s radiation. It is the propagation of thermal waves created by 

pressure difference that will re-establish a barotropic state. Generally, the dynamics of the 

atmosphere are catered to by the conservation of mass, momentum and thermodynamic energy. 

As such the atmospheric movements can in general be modeled by the laws of fluid dynamics 

that is when considering the atmosphere as a fluid. There are so many assumptions and 

approximations to be put into consideration when dealing with the middle atmosphere. The 

atmosphere is considered to be a classical, continuous Newtonian fluid that is acted upon by 

gravitational force. In some cases the horizontal component of the Coriolis force is neglected. In 

this study, the basic equations based on Forbes, (1995); Andrews, (2000); Holton, (2004) and 

Baumgaertner, (2007) which were further explained in the studies done by Mbatha, (2012) and 

Kleinknecht, (2010), were considered.  

 

1.2 Main Objectives 

The main objectives of this thesis are as follows; 

o Investigating the contribution of Planetary waves in MLT dynamics. 

o Verifying if there is a wave – wave interaction between planetary waves and tidal waves 

with the mean flow. 

o Extracting the type of waves and wave periods dominant during the occurrence of minor 

Sudden Stratospheric Warming.  

o Calculating the wavenumbers found in more dominant waves in the MLT. 

 

1.3 Thesis Outline 

Chapter one focuses on the atmosphere’s temperature profile background. In Chapter two 

atmospheric waves are discussed in detail (i.e. their origin, propagation and dissipation as they 

distribute momentum and energy). Instrumentation and Data analysis techniques are presented in 

Chapter 3. This includes the methodology of data capturing by Super DARN HF radar 

instruments and its subsequent processing. Data analysis techniques for further analysis was also 

presented in this chapter. Chapter 4 presents the investigation of planetary wave activity and 

tides using SANAE and Halley HF radar data. This involves the calculation of zonal 
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wavenumbers and noting dominant wave periods present. Chapter 5 presents the analysis of 

minor SSW during the year 2007 and 2010 using NCEP reanalysis data and UKMO assimilation 

data. For the specific year of this study year 2007, the data from SANAE and Halley HF radar 

was used to calculate zonal wavenumbers and the interaction of planetary waves with tides 

during the occurrence of minor SSW events.  The Summary and Conclusion of all the results in 

this thesis are presented in chapter 6 and thereafter, future work and references are provided. 
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Chapter 2: Atmospheric Waves and Sudden Stratospheric Warming 

(SSW) 

2.1 Introduction 

All atmospheric waves are periodic disturbances in the field of atmospheric variables such as 

wind, temperature, geo-potential height, etc. This chapter focuses on planetary waves which are 

atmospheric waves with periods from 2 to about 30 days (sometimes called Rossby waves). 

Figure 2.1 shows that planetary waves are forced modes generated in the troposphere by wind 

flow over continental scale topography, continent-ocean heating contrasts, nonlinear interactions 

among transient tropospheric wave disturbances, cyclones and thunderstorms. They are known to 

propagate both horizontally and vertically carrying momentum in the middle and upper 

atmosphere. Most importantly, these waves are responsible for setting up the polar stratosphere 

to conditions which favour the occurrence of Sudden Stratospheric Warming (SSW).  

 

Figure 2.1: Dynamics of the troposphere-stratosphere-mesosphere exchanges including the 

contribution of gravity waves and planetary waves (source: http://arise-project.eu/atmospheric-

dynamics.php). 

http://arise-project.eu/atmospheric-dynamics.php
http://arise-project.eu/atmospheric-dynamics.php
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This leads to the displacement or breakdown of the polar vortex and the split of the ozone hole as 

shown in Figure 2.1. The interaction of gravity waves, planetary waves and tides contribute to 

the dynamics of the troposphere-stratosphere-mesosphere wave activities which are more 

dominant during the winter season as shown.  

 

2.1.1 Planetary Waves 

Planetary waves (or Rossby waves) are excited due to the meridional gradient of potential 

vorticity. They have periods of two to several days and have one or more longitudinal peaks 

around the globe. Planetary wave propagation is variable since the Coriolis effect varies with 

latitude and is dependent upon the rotation and spherical geometry of the earth. The Coriolis 

effect is due to the earth’s rotation and deflects a portion of air to move to the right of its motion 

in the Northern Hemisphere and to the left in the Southern Hemisphere. Planetary waves are also 

forced modes generated in the troposphere by flow over continental scale topography, by 

continent-ocean heating contrasts, and by nonlinear interactions among transient tropospheric 

wave disturbances as studied in the work of Holton, (1975); Volland, (1988); Forbes, (1995) and 

Mbatha, (2012). 

 

Planetary waves are mostly generated in the troposphere around the equator and propagate 

upward into the stratosphere and towards the poles. In the stratosphere they break and deposit 

momentum, driving the stratospheric Brewer-Dobson circulation (Shepherd, 2000). The 

interaction between planetary waves and the zonal mean flow is known to be the major driver of 

winter stratospheric dynamics (Andrews, 1987). Classical studies showed that the zonal mean 

flow affects planetary wave propagation by changing the refractive index (Charney et al., 1961). 

The dissipating planetary waves interacting with the zonal mean flow are responsible for setting 

up the polar stratosphere to conditions which favour the occurrence of the SSW. 

 

2.1.2 Tidal Waves  

Atmospheric tidal waves (or commonly referred as tides) are generated because the atmosphere 

is periodically heated by the Sun. These solar tides profoundly affect the large-scale dynamics of 
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the mesosphere and lower thermosphere where they attain large amplitudes and dominate the 

large-scale wind and temperature fields. Like other waves the tidal components grow in 

amplitude with increasing altitude since atmospheric density decreases and energy must be 

conserved. Tidal waves are separated into three types, namely (diurnal ~24 h, semidiurnal ~12 h 

tides and terdiurnal ~8 h) however, this study focuses only on diurnal tides (DT) and semidiurnal 

tides (SDT). A diurnal tide has a single high tide and a single low tide per tidal day whilst a 

semidiurnal tide has two high tides and two low tides of approximately equal height each tidal 

day. The earth rotates at a diurnal cycle hence any point in the atmosphere is therefore subject to 

a diurnal cycled solar radiation force. If the radiation is absorbed and then released as heat, the 

solar heating may have the same cycle as the forcing.  Solar thermal heating and the tidal 

response can be expressed periodically as follows (Zhang et al., 2010); 

 

 

   ∑ ∑  𝐴𝑛,𝑠
𝑁
𝑛=1

𝑠=+𝐿
𝑠=−𝐿 (𝜃, ℎ) cos (𝑛Ω𝑡 + 𝑠𝜆 − 𝜙𝑛,𝑠(𝜃, ℎ)) ,                                                      (2.1) 

                 

 

where  𝐴𝑛,𝑠 is the amplitude of the tidal component specified by n and s, t is the universal time,    

 𝜆 is the longitude, 𝜃 the latitude, ℎ the altitude, 𝜙𝑛,𝑠 is the phase and Ω = 2𝜋 24⁄  per hour. The 

positive integers, 𝑛 = 1,2,3, …. denotes diurnal, semidiurnal, terdiurnal and so on. The radiation 

can either be absorbed by ozone in the stratosphere or by water vapour in the troposphere. Tides 

play an important role in the mesosphere and lower thermosphere in transporting momentum and 

wave energy upward which then dissipate through various instabilities and nonlinear wave 

interactions. 

 

2.2 Sudden Stratospheric Warming (SSW) 

The first explanation of the Sudden Stratospheric Warming was put forward by Matsuno (1971), 

who introduced a simple model of wave mean-flow interaction induced by dissipating planetary 

waves. There are four different types of SSW namely, minor SSW, major SSW, Canadian 

warming, and final Warming. Most of them come under the label of World Meteorological 

Organization (WMO), though there is no documented WMO definition.  
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2.2.1 Major Sudden Stratospheric Warming 

Major SSW is common in the Northern Hemisphere and this is due to high topographic features 

such as high mountains which excite planetary waves when the wind flows over continental scale 

topography. In this study a principle which states that a stratospheric warming can be said to be 

major, if at 10 hPa or below the latitudinal mean temperature increases abruptly pole ward from 

60° latitude with an associated wind circulation reversal (World Meteorological Organisation, 

WMO,( 1985)). The details of the year 2002 unprecedented Southern Hemisphere major 

stratospheric warming has been studied by others (e.g. Baldwin et al., 2003; Dowdy et al., 2004; 

Dowdy, 2005 and Mbatha et al., 2010b). 

 

2.2.2: Final Warming 

Final warming is a SSW which occurs in late winter mainly because the radiative cycle in 

the stratosphere is such that the mean flow is easterly and during summer it takes a westward 

direction of propagation in the Southern Hemisphere. A final warming occurs on this transition 

so that the polar vortex winds change direction for the warming; however it does not change 

back until the following winter. This is because the stratosphere has entered the summer westerly 

phase. It is referred to as final as there is no other warming expected to occur over the summer. 

 

2.2.3 Canadian Warming 

Canadian warming occurs in early winter and it is only common in the Northern Hemisphere and 

generally in Canada, because they have no counterpart in the Southern Hemisphere. Canadian 

warming can reverse the temperature gradients or partly change the wind direction, but they do 

not lead to the breakdown of the cyclonic polar vortex (Butler et al., 2015). 

 

2.2.4 Minor Sudden Stratospheric Warming  

A stratospheric warming is labeled as minor if there is a significant increase of temperature at 

any stratospheric level in any area of the winter time hemisphere, which does not lead to a 

reversal of zonal wind flow. This means that a SSW is classified as a minor warming if the 

criteria and conditions for determining a major warming mentioned above are not met. A study 

by Labitzke et al., (2000) classified the SSW as a minor warming if there is a significant increase 

http://en.wikipedia.org/wiki/Stratosphere
http://en.wikipedia.org/wiki/Polar_vortex
http://en.wikipedia.org/wiki/Stratosphere
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of temperature at least by 25 K per week below 10 hPa level in any area of the winter 

hemisphere.    

 

Stratospheric warming involves interactions between the zonal flow of the polar stratosphere and 

upward propagating planetary waves consisting primarily of zonal wavenumbers 1 and 2.    

Normally, the zonal flow is very strong in the wintertime lower polar stratosphere and vertically 

propagating waves tend to be deflected towards the equator. If the lower stratosphere is pre-

conditioned by the earlier wave activity, the zonal flow is weakened or moved pole ward and 

vertically propagating waves tend to be deflected pole ward (e.g. Matsuno, 1971; Holton, 1976; 

Andrews et al., 1987 and Mbatha et al., 2010b). The area above the heat flux maximum 

(divergence of wave forcing) acts to decelerate the eastward zonal flow. A residual circulation 

then induces sinking motion below and pole ward of this forcing region. The sinking motion 

causes the temperatures to increase due to adiabatic warming.  This reduces the thermal gradient 

which in turn reduces the zonal wind speed.  These large temperature and wind anomalies then 

propagate downward into the lower stratosphere (Baldwin et al., 1999 and Limpasuvan et al., 

2004). 
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Chapter 3: Instrumentation and Data Analysis Techniques  

 3.1 Introduction 

This chapter focuses on a brief description of the instruments used and also data analysis 

techniques such as Fourier analysis, and wavelet analysis. Fourier  transformation is a  very  

good  technique  which is used  to  determine  the  frequency content of the signal but  

unfortunately  it is unable to provide the time of occurrence and the time evolution of individual 

spectral components. Wavelet analysis has been chosen to study the time evolution of tidal 

variability because Fourier transforms cannot resolve transient frequencies.  

 

3.2.1 Operation of the SuperDARN HF Radars 

The SANAE (72°S, 3°W) and Halley (76°S, 27°W) High Frequency (HF) radar systems are part 

of the Super Dual Auroral Radar Network (SuperDARN) HF Radar network, which are located 

in Antarctica. SuperDARN is a network of coherent ground based HF Doppler radars 

(Greenwald et al., 1995). SuperDARN HF Radars were initially meant to monitor the backscatter 

from decameter-scale ionospheric irregularities (Hall et al., 1997). A study by Hall et al., (1997) 

confirmed that echoes at ranges close to the SuperDARN radars are actually due to scatter from 

meteor trails near approximately 94 km altitude, except when there is high geomagnetic 

disturbance. The near range scatter can be used to study and monitor neutral winds at meteor 

heights hence for this study, SuperDARN HF Radars are utilized. 

 

The network orientation allows the radars to work in pairs with a common area of view. This 

allows maps of two dimension high latitude plasma circulation to be obtained from the line of 

sight Doppler shifts observed by both radars (Greenwald et al., 1995). The coordination of 

SuperDARN radars is achieved by operating them in a common mode of operation (Greenwald 

et al., 1995).   The SuperDARN radar network for the year 2014 consisted of a total of about 21 

radars in the Northern Hemisphere and about 11 in the Southern Hemisphere.  Most SuperDARN 

radars are monitored by several institutions together with various funding agencies. The SANAE 

HF radar located in the Antarctic is monitored by the University of KwaZulu-Natal and it is one 

of the radars used in this study. SuperDARN radars are operated at very high frequencies of 
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between 8 and 20 MHz, which allows the radar signal to be refracted by ionospheric 

irregularities which results in either direct back scatter if the radar wavelength is twice that of the 

scattering ionospheric irregularity. At times the radar signal is scattered in the forward and 

backward motion along the direction of the signal path creating a field of view, (Lester, 2013). 

The field of view of radars (Figure 3.2) is a result of a 16 antenna array connected to a phasing 

matrix which permits the single beam to scan over 16 directions separated by 3.25° creating an 

azimuthal width of 52°. The azimuthal resolution ranges from about 2.5° at 20 MHz to 6° at 8 

MHz and the peak power is about 10 kW. A multi-pulse sequence with individual pulse lengths 

of 200 to 300 𝜇𝑠 is operated and such a pulse length gives a range resolution of between 30 to 45 

km. SuperDARN radars have another array of 4 antennas which are used to determine the angle 

of arrival of the backscattered signal. 

 

According to Lester, (2013), the Doppler velocity and spectral widths can be derived from an 

autocorrelation function (ACF) which can be computed from integrating the returned signal. By 

using multi-pulse sequence the SuperDARN radars calculate the back scatter power, mean 

Doppler velocity and the spectral width of the Doppler power for each range considering a 

certain  percentage of return signal as significant. The returning pulses are sampled and 

processed to yield the complex ACF for various time delays among the pulses. After every 7 

seconds the measurements are taken at each of the 16 beam positions. The pulse sequence is 

about 40 milliseconds and successive pulses have a duration of 60 milliseconds which results in 

60 ACFs in each of the 7 transmitting seconds to be averaged for each measurement. The 

measurements can be taken for up to 75 range gates along the beam where each range gate is 

equal to 45 km resulting in an approximate maximum range of 3600 km. The acquisition of the 

zonal and meridional winds in the meteor region is achieved by using the data from the first 

several range gates of the radar. This is mainly because the meteor trail echoes occur 

predominantly in and below the lower E region (~95 km) according to Hussey et al., (2000). The 

backscatter at this distance of approximately (90-95 km) is primarily due to meteors hence, 

hourly wind averages are calculated for each beam direction giving a line of sight wind velocity 

which is crucial in this study.  

The ACFs are averaged over the integration time and then this data is stored in files. These files 

usually store all complex ACF data for a 2 hour block. Concurrently, the ACFs are analysed in 
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real time by a program called FITACF and stored in files. These files can be used to create 

summary plots which typically display the power (dB), Doppler velocity (m.s-1) and spectral 

width (m.s-1). This process is repeated during the integrations performed on each of the 16 radar 

beams. The results saved in files can be presented in the form of summary plots as shown in 

Figure 3.1. 

Figure 3.1: Summary plot of power (dB) (top panel), velocity (m.s-1) (middle panel), and 

Lorentzian spectral width (m.s-1) (bottom panel) for Halley beam for May 2007. 
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There are so many studies in which SuperDARN radar data was utilized and hence, has become 

a stepping stone for further studies. Lima et al., (2012) investigated the sudden stratospheric 

warming effects on the mesospheric tides and 2 day wave dynamics using meteor HF radar at 

meteor radar measurements obtained at S�̃�o Jo�̃�o do Cariri, Brazil (7.4°S, 36.5°W). They 

concluded that from the year 2005 to 2006 there was some unusual MLT dynamics which was 

characterised by increased amplitude of the quasi-2-day and tidal oscillations. During this time 

interval a major SSW event was observed in the NH polar stratosphere. Pancheva et al., (2004) 

investigated the planetary waves and variability of the semidiurnal tide in the mesosphere and 

lower thermosphere over Esrange (68°N, 21°E) during winter. They found a 16-day wave from 

global wavelet spectrum analysis of data ranging from October 1999 to December 2002. (Hussey 

et al., 2000) compared horizontal wind data from near co-located medium frequency (MF) radar 

and SuperDARN radars at Saskatoon, Canada (52°N, 107°W). In their work they observed good 

agreement between the SuperDARN radar wind and those recorded by the MF radar at around 

~95 km. They have concluded that the two systems complement each other effectively.  

 

 Kumar et al., (2006) investigated the meteor radar observations of solar tides and planetary 

wave interaction in the MLT region over Trivandrum (8.5°N, 77°E). From continuous meteor 

radar observations of the MLT region during August 2004 to August 2005 they discovered that 

there was evidence of wave-wave interaction in the MLT region. Espy et al., (2005) combined 

simultaneous data recorded by SuperDARN and MF radars over Antarctica and studied the 

periods, wavenumber, and propagation direction of the planetary waves in the MLT. A study by 

Hibbins and Jarvis (2008) compared wind and tidal measurements in the upper mesosphere 

recorded with an imaging Doppler interferometer (IDI) and SuperDARN radar at Halley, 

Antarctica, and observed a correlation of approximately 0.2 between the SuperDARN meridional 

wind and tides with the IDI, at a height between 90 and 95 km above the earth’s surface. Mbatha 

et al., (2010b) studied the impact of sudden stratosphere warming in the upper mesosphere-lower 

thermosphere regions using satellite and HF radar measurements. They managed to show that the 

mean zonal wind from SANAE HF radar displayed an enhancement due to a series of large 

planetary wave amplifications in the stratosphere throughout the winter season of the year 2002 

at ∼94 km. In this thesis, data from SANAE and Halley radar stations was used. The 

geographical locations of SANAE and Halley high frequency radars are shown in Figure 3.2 and 
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their longitudinal difference of 24 degrees made them suitable for this study in estimating 

reliable wavenumbers. 

Figure 3.2: Geographical locations of SANAE and Halley high frequency radars. 

 

A list showing all Southern Hemisphere SuperDARN radars and their locations is tabulated in 

the following Table 3.1. Apart from the close proximity of the SANAE and Halley HF radars, 

the two radars were also chosen because of the availability of data during the period when the 

interaction between planetary waves and tides is investigated. 

  

Table 3.1: List of Southern Hemisphere SuperDARN radars and their geo-locations. 

                                 Southern Hemisphere SuperDARN Radars 

           Radar name                        Latitude                Longitude              Code     

Falwand Island -51.83 -58.98 Fir 

TIGER Unwin -46.51 168.38 Unw 

Kerguelen -49.22 70.14 Ker 

McMurdo -77.88 166.73 Mcm 

Halley -75.52 -26.63 Hal 
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SANAE -71.68 -2.85 San 

Syowa East -69.00 39.58 Sye 

Syowa South -69.00 39.58 Sys 

Zhongshan -69.38 76.38 Zho 

Tiger -43.40 147.20 Tig 

Unwin -46.51 168.38 Unw 

 

 

The SuperDARN network has been designed so that the fields of view of at least two radars 

overlap each other. In this study data from SANAE and Halley radar was used and these radars’ 

field of views overlaps as illustrated in figure 3.3 right panel, highlighted in blue.  

 

Figure 3.3: Schematic diagram showing SuperDARN radar geo-locations and their field of view. 

On the left panel is the Northern Hemisphere whilst right panel represents the Southern 

Hemisphere radar locations and their field-of-views. (Source: Virginia Tech, 

http://vt.superdarn.org/tiki-index.php). 
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Figure 3.4 shows the SANAE radar antenna consisting of 16 transmitting antennas in the main 

array at the Southern Hemisphere Antarctica, which are capable of about 600 Watts output each, 

for a maximum peak power of 9.6 kW.   The 16 T-shaped towers stood 15 m high in an east-west 

line more than 200 m long, supporting a grid of aluminum antenna elements which collectively 

transmit and receive signals allowing scientists to study the upper atmosphere over the South 

Pole. 

 

Figure 3.4: The SANAE 16 antenna array. 

 

The returned backscattered signal from the Radar comprises of the power, or signal to noise 

ratio, on a logarithmic scale (dB), which is a measure of the magnitude of the high frequency 

power is backscattered to the radar. The second parameter is known as the light of sight velocity, 

which is a measure of the motion of the irregularities in the atmosphere either towards or away 

from the radar. An irregularity (meteor or small particle) moving transverse to the beam may 

have a velocity of zero. The last parameter is the spectral width (Lorentzian), which is a measure 

of the full width at half maximum of the peak in a corresponding single-peaked Doppler 

spectrum.  

 

3.3.1 NCEP/NCAR Re-analysis Data 

Zonal wind and temperature data used in this work were obtained from the National Centre for 
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Environmental Prediction and National Centre for Atmospheric Research (NCEP/NCAR) 

reanalysis project from 2002-2013. The NCEP, formerly known as the National Meteorological 

Center (NMC)/NCAR, reanalysis project began in 1991 as an outgrowth of the NMC Climate 

Data Assimilation System (CDAS) project. From the collaboration of NCEP and NCAR for 

global analysis of atmospheric fields in support of the needs of the research and climate 

monitoring communities, daily meteorological values on 2.5 latitude by 2.5 longitude resolution 

for 17 pressure levels. NCEP/NCAR re-analysis data is a combination of assimilated data from 

globally scattered meteorological instruments. These instruments focus on land surface, ocean 

surface, upper air such as global radiosonde data, Comprehensive Ocean Atmosphere Data Set 

(COADS) marine surface data, aircraft data, surface landscape synoptic data and satellite 

sounder. NCEP/NCAR reanalysis data is used for data analysis as well as data assimilation, 

(Kalnay et al., 1996). 

 

3.3.2 UKMO Data Assimilation 

The technique of data assimilation was implemented since October 1991 by United Kingdom 

Meteorological Office (UKMO) to produce a global meteorological analysis of the troposphere 

and stratosphere. As described by Lorenc et al., (1991), the UKMO data assimilation system is 

advancement from the system previously used to analyse observations for operational weather 

forecasting. The data assimilation system is well described in the work of Swinbank et al., 

(1994). The UKMO data assimilation system produces the following elements among others on a 

daily basis, zonal wind, meridional wind and temperature from various pressure levels ranging 

from 1000 to 0.1 hPa. A global numerical model with a horizontal resolution of 2.5° and 3.75° 

steps in the latitude and longitude respectively is implemented. All recordings are subjected to a 

quality control system before they can be recommended for a numerical model. UKMO data was 

used for Comparison of U.K. Meteorological Office and U.S. National Meteorological Centre 

stratospheric analyses during the Northern and Southern winter (Manney et al., 1996). Using 

UKMO and medium frequency data it was observed that mesospheric cooling and stratospheric 

warming in the tropical regions is correlated with stratospheric warming events at middle and 

high latitudes (Shepherd et al., 2007). 

 

 



30 

 

Table 3.2: Pressure levels in (hPa) and their relevant altitudes in (km). 

 

Pressure (hPa) Altitude (km) 
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3.4 Data Analysis Techniques   

3.4.1 Fourier Transform 

The transformation from the time domain to the frequency domain is based on forward Fourier 

Transform (FT). Every signal can be written as a sum of sinusoids with different amplitudes and 

frequencies. Fourier Transform is a technique that is used to investigate the frequency content of 
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a signal. Using FT you can decompose a signal into sinusoids of different frequencies which add 

to the original signal. Brook et al., (1998) defined the Fourier Transform of a signal 𝑥(𝑡) as 

 

𝑋(𝜔) = ∫ 𝑥(𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡
∞

−∞
                                                                                                     (3.1) 

 

The inverse Fourier Transform is defined as 

 

𝑥(𝑡) =
1

2𝜋
∫ 𝑋(𝜔)

∞

−∞
𝑒𝑖𝜔𝑡𝑑𝜔                                                                                                 (3.2) 

 

Where  𝜔 = 2𝜋𝑓 

 

Equation 3.1 gives the Fourier Transform of a signal (i.e. presenting the frequency components 

in a signal) without actually providing the exact time of occurrence of each frequency. Such a 

technique will be of importance for a stationary signal. For this reason, Fourier  Transform  is not 

a  good  method  for signals whose spectral components vary with time, hence  other  methods  

like  Short Time  Fourier Transform (STFT)  or Wavelet  analysis  can  be  implemented. 

 

3.4.2 Short-Time Fourier Transform (STFT) 

Fourier Transform is not a good method for signals whose spectral components vary with time, 

hence Short Time Fourier Transform (STFT) method can be implemented to deduce the 

spectrum of the signal and the time of occurrence of spectral components to localize the 

frequency in time. When applying this technique, the signal is divided into small segments, and 

these segments are assumed to be stationary. The Fourier transform is then applied to the 

windowed signal segments advancing the window in time along the full length of the signal. 

Short Time Fourier Transform can be properly represented mathematically (Brook and Wynne, 

1988)  

 

 𝑋(𝜔, 𝑡) = ∫ 𝑥(𝑡)
∞

−∞
𝑔(𝑡 − 𝑘)𝑒−𝑖𝜔𝑡𝑑𝑡                                                                                (3.3) 
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 where 𝑔 is the windowing function which is systematically moved along the length of the signal 

𝑥(𝑡), and 𝜔 = 2𝜋𝑓.   

 

The result of the operation above is the time-frequency representation of the signal which shows 

the frequency components that are present in the signal and the corresponding time at which they 

occur. The narrower the window is, the better the time localization of the frequency spectrum, 

but giving a poorer frequency resolution. In a time frequency representation there is a trade-off 

between time localization and frequency resolution in the sense that good time-frequency 

resolution of the signal can be achieved by using a narrow window when looking for a high 

frequency and vice-versa. The disadvantage of this method is that once the window length has 

been chosen, that window will be the same for all frequencies, hence a technique with a window 

function that can be varied depending on whether high or low frequency spectral components are 

analysed is the best in order to obtain a better time-frequency resolution. With regard to the 

disadvantage mentioned above, the wavelet analysis method which will be discussed in the next 

chapter can be implemented. 

 

3.5. Wavelet Analysis 

Wavelet analysis has attracted attention for its ability to analyse rapidly changing transient 

signals. Any application using the Fourier Transform can be formulated using wavelets to 

provide more accurate localized temporal and frequency information. Wavelets are obtained 

from shifting and dilated or a scaled version of the mother wavelet and by construction. The 

advantage of wavelets is that they are much localized functions being able to resolve frequency 

transitions during short periods. There are different types of mother wavelets that can be used 

and these include among others, the Morlet, Paul, and Derivative of Gaussian (DOG) wavelets 

etc. (Torrence and Compo, 1998). In this study the Morlet wavelet function is used because the 

localization of signal characteristics in time and frequency domains can be accomplished with 

this wavelet function.  
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3.5.1 Wavelet Transform 

Considering a real or complex-valued continuous time function 𝜓 satisfying the following 

conditions: 

 

∫ |𝜓(𝑡)|2𝑑𝑡 < ∞
∞

−∞
                                                                                                                (3.4) 

 

 

𝑐𝜓 = 2𝜋 ∫
|𝝍(𝜔)|2

|𝜔|

∞

−∞
𝑑𝜔 < ∞                                                                                        (3.5) 

 

Where 𝝍 is  the  Fourier  Transform of 𝜓.The  first  condition implies that the function 𝜓 has  

finite  energy, and  the  second  condition which is the  admissibility condition, implies  that  if 

𝝍(𝜔)  is  smooth 𝝍(0)=0, meaning  the  function  integrates  to  zero. The function  𝜓(𝑡)  is a 

mother wavelet if the two above mentioned conditions and admissibility properties are met and it 

can be presented by the following equation. 

 

ψ𝑎𝑏(𝑡) =
1

√a
𝜓 (

t−b

a
)                                                                                                             (3.6) 

Where 𝑎 is the scale and 𝑏 is the position of  ψ. The complex  
1

√a
𝜓 (

t−b

a
) represents the wavelet 

basis function or the mother wavelet. The complex Morlet wavelet which was used in this study 

is given by the following equation; 

 

ψ(𝑡) = 𝑒−(𝑡
𝑐⁄ )

2

𝑒𝑖2𝜋𝑓0𝑡                                                                                                       (3.7) 

    

where 𝑓0 is the frequency parameter,  𝑡  is the time and c is the damping parameter. This 

represents a time domain function that is a product of a Gaussian and complex exponential with 

center frequency 𝑓0. 
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3.5.2 Continuous Wavelet Transform (CWT) 

If 𝜓  satisfies  the  conditions  described  above, then  the  wavelet  transform  of  a  real  signal 

𝑠(𝑡) with  respect  to  the  wavelet  function 𝜓(𝑡)is  defined  as 

 

Ws(b, a) =
1

√a
∫ S(t)

∞

−∞
ψ∗ (

t−b

a
) dt                                                                                        (3.8) 

 

 

Where  * denotes  the  complex  conjugate  and this  is  defined  on the  open (b, a)  half plane 

(b ∈ 𝐑 , a > 0 ). The parameter b corresponds to the time shift/translation and a, corresponds to 

the scale of the analyzing wavelet hence the scale and time parameters (a) and (b) are assumed to 

be continual values (Kumar, 1997).  

 

 

3.5.3 Time-Frequency Localization 

In this section time-frequency localization will be discussed considering time-frequency 

resolution. The above theory of Fourier Transform revealed its inability to present signals whose 

spectral components vary with time whilst wavelets has showed that the wavelet transforms have 

a good time-frequency resolution due to the fact that it uses a variable ‘window’ function by 

performing both the correlating and windowing process as illustrated in Figure 3.4. The wavelet 

transform technique can measure the time-frequency variations of spectral components like a 

windowed Fourier Transform, but it has a different time-frequency resolution (Mallat, 1998).  
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    Time                                                                               

Figure 3.5: Time-frequency localization, the vertical and horizontal dimensions represent 

frequency and time respectively.  

 

 

The frequency increase upward and time increases to the right. The change in time ∆t represents 

the horizontal dimension of each cell while ∆ω is the vertical dimension of each cell, hence the 

area of each cell is given by ∆t. ∆ω. Even if the dimensions of the cells changes, the area of each 

cell remains constant and it represents one value of the wavelet transform. 

 

 If the frequency is high, the horizontal dimensions of the cells are shorter which correspond to 

shorter window length. Therefore, the signal is better resolved in time and poorly resolved in 

frequency. In low frequencies the horizontal dimensions are longer and this corresponds to the 

longer window length, hence the signal is better resolved in frequency and poorly resolved in 

time. Wavelet analysis is designed to give good time resolution and poor frequency resolution at 

high frequencies, and vice versa (Kumar, 1997; Mthembu, 2006; Khanyile, 2011 and Mbatha, 

2012). 
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3.5.4 Frequency Filtering 

Frequency filtering refers to extracting the important part of any data while eliminating random 

contributions called "noise" or other unwanted features which obscure the ones that matter. 

Basically there are four common types of frequency filtering process which are low-pass, high-

pass, band-pass and band-reject filters. The pass band refers to the frequencies that are allowed 

to pass, while the stop band contains those frequencies that are blocked and the division between 

the pass band and transition band is called the cutoff frequency. A low-pass filter allows low 

frequencies to pass unaltered whilst it attenuates high frequencies and high-pass filter is 

completely the opposite that is, it attenuates low frequencies passing high frequencies unaltered. 

A band-pass filter works to screen out frequencies that are too low or too high, giving easy 

passage only to frequencies within a certain range. Lastly a band-reject filter is the one that 

passes most frequencies unaltered, but attenuates those in a specific range to very low levels. It is 

the opposite of a band-pass filter, as illustrated in the Figure 3.6. 

 

 

 

Figure 3.6: Four common frequency filter responses; low-pass (a), high-pass (b), band-pass (c), 

and band-reject (d), (Smith, 2003). 
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3.5.5 Complex Demodulation 

Complex demodulation is a technique used to extract the local amplitude and phase of a periodic 

non-stationary signal. In general, it is implemented by multiplying a given time series by a 

complex sinusoid (𝑒−𝑗𝜔 𝑑𝑡) where 𝑗 = √−1   and 𝜔𝑑 is the demodulation frequency, and then 

pass the result through a low pass filter. Considering a non-stationary signal as explained by 

Priestly (1981) and noise in the mathematical form of; 

 

𝑥(𝑡) = ∑ 𝑋𝑗(𝑡)𝑒𝑥𝑝(𝑖𝜔𝑡) + 𝑍(𝑡)𝑚
𝑗=1                                                                                        (3.9) 

 

where Xj(t) is the complex amplitude which shifts over the time showing the variation of the 

amplitude and phase of the jth harmonic component. Complex demodulation helps in the 

detection of a particular component in a signal and also estimates its change in amplitude and 

phase (Priestley, 1981). The amplitude  of  the complex demodulation  of  the  time  series is  a  

measure  of  the  amplitude  of  the  dominant  frequency  within  the band  pass around  the 

demodulation  frequency. The demodulated signal can be represented as; 

 

𝑥(𝑡) =
1

2
𝑋(𝑡)𝑒𝑥𝑝[𝑖∅(𝑡)] +  

1

2
𝑋(𝑡)𝑒𝑥𝑝[−𝑖(2𝜔𝑡 +  ∅(𝑡))] +  𝑍(𝑡)𝑒𝑥𝑝(𝑖𝜔𝑡)                       (3.10) 

 

On the right hand side the first term varies slowly with no power at or above the frequency 𝜔, 

the second term varies at frequency 2𝜔 and the third term varies at frequency 𝜔. The component 

𝑍(𝑡) has no power at frequency 𝜔 hence the shifted third term has no power at zero frequency. A 

low pass filter is applied to remove frequencies at or above the frequency 𝜔 thus removing the 

second and third terms yielding; 

 

𝑥′(𝑡) =
1

2
𝑋′(𝑡)𝑒𝑥𝑝(𝑖∅′𝑡)                                                     (3.11) 

 

Where the prime indicates smoothing and the type of smoothing used determines the output 

frequency band produced. The amplitude 𝑋′and phase ∅′ can then be extracted and presented as 

follows respectively; 
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𝑋′(𝑡) = 2|𝑥′| = 2[𝑅𝑒(𝑥′)2 + 𝐼𝑚(𝑥′)2]
1

2                            (3.12) 

 

∅′(𝑡) = 𝑎𝑡𝑎𝑛 [
𝐼𝑚(𝑥′)

𝑅𝑒(𝑥′)
]                    (3.13) 

 

where 𝑅𝑒 and 𝐼𝑚 represents the real and imaginary parts respectively. 
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Chapter 4: Planetary Wave Activity and Tides using SANAE and 

Halley 

4.1 Introduction 

The middle atmosphere plays a crucial role as much as the understanding of the whole 

atmosphere is concerned, (Houghton, 1986). The dynamics of the middle atmosphere is reported 

to be controlled by vertically propagating planetary waves of significant amplitudes (e.g. Holton, 

1979). As planetary waves propagate upwards through the middle atmosphere they attain large 

amplitudes as density decreases and they distribute momentum and energy from the lower to 

upper atmosphere (e.g. Clark et al., 1994; Fritts et al., 1999 and Mbatha et al., 2010b). Recent 

studies have revealed that wave-wave and mean flow wave interactions play a vital role in the 

dynamics of the middle atmosphere. During the process of planetary wave amplification a surf 

zone can be formed if the polar vortex is disturbed (e.g. Andrews et al., 1987 and Holton, 2004). 

As atmospheric waves interact with the mean flow processes such as wave filtering, wave 

breaking or mean wind reversal can be favoured (e.g. Dowdy, 2005; Mbatha et al., 2010b etc.). 

A study by Mayr et al., (2011), reported that as gravity waves propagates upwards they carry the 

accumulating imprints of non-linear interactions with the zonal mean flow, tides and planetary 

waves. 

 

This chapter focuses on the middle atmosphere interaction of planetary waves of period ranging 

from 2 to 30 days and tides. This will pay attention to tidal wave activity at planetary wave scale 

focusing on diurnal and semidiurnal waves.Wave variability will be monitored from the 

stratosphere to the lower mesosphere. So many factors have been accredited to several wind and 

temperature variations which occur in the MLT region, to include Quasi Biennial Oscillation 

(QBO) (Namboothiri et al., 1994), Semi-Annual Oscillation (SAO) (Reed, 1966), solar variations 

and SSW. Earlier it has been outlined how SuperDARN radars were made to be useful in 

monitoring the dynamics of the MLT region.  
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4.2 Planetary Waves 

The data used in this study was measured by two Southern Hemisphere high latitude HF radar 

stations, namely SANAE (72°S, 3°W) and Halley (76°S, 27°W). Using Torrence and Compo, 

(1998) wavelet analysis method, the wavelet spectra for the zonal wind and meridional wind 

variations for SANAE station were calculated and presented below. This method revealed the 

dominant wave activity of periods below 30 days which were noted for the years 2005 to 2007. 

Figure 4.1a, c, and e, the left column presents the zonal wind wavelet spectra and the right 

column (Figure 4.1b, d, and f) presents the meridional wavelet spectra. In general, the wave 

activity with a wave power of 500 m2.s-2 is observed around day 100 for the year 2005 and 2006.  

 

In the year 2007 it was a different case because around day 100 there is no significant planetary 

wave activity compared to the previous years, but during winter around day 250 an intense wave 

activity was noted. The zonal wind component shows more wave activity compared to the 

meridional wind component. Figure 4.1a shows that during the year 2005 a quasi-10-day wave 

was observed around day 100 with a wave power of 500 m2.s-2. Around day 225, a quasi-7-day 

was observed and it had a maximum wave power of 1000 m2.s-2. A study by Wayne et al., (2011) 

on the long term behaviour of the MLT quasi-7-day wave at two radar sites at the Northern polar 

latitudes concluded that the wave activity is highly sporadic in nature. This was mainly because 

it had stronger wave activity during winter, moderate during the equinoxes and minimum during 

summer.  
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Figure 4.1: Wavelet power spectrum versus time (for the years 2005-2007) and period (less than 

30 days) calculated for the zonal and meridional wind components for SANAE Super DARN HF 

radar wind at ~94km.  
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Compared to the years 2005 and 2007 the year 2006 (Figure 4.1c), shows a low maximum wave 

power of 600 m2.s-2. In Figure 4.1e the maximum zonal wind wave power of 1000 m2.s-2 and 

dominant periods between 8 and 14 days were noted during the winter season of the year 2007. 

In both zonal and meridional wind components, the winter months are observed to be 

characterised by bursts of wave activity with wave periods coinciding to quasi-10-day, quasi-14-

day and quasi-16-day waves. The more dominant wave activity observed on approximately day 

260 with a wave period centered at around 14 days with wavenumber s=0 and s=-1 is of greater 

importance to the dynamics of the MLT region. Less significantly, the wave activity of wave 

periods above 20 days with maximum wave power of 600 m2.s-2 and 400 m2.s-2  in the zonal and 

meridional winds respectively could have also contributed to the simulation of minor SSW. 

 

It can be noted that in all the years from 2005 to 2007, the zonal wind component shows more 

planetary wave activity compared to the meridional wind component, but in all the cases there is 

an amplification of planetary waves during the winter season. In the year 2005 a strong wave 

activity of periods between 8 and 16 days was observed in zonal wind during winter season, but 

the strongest was observed around day 250 with dominant wave periods between 5 and 10 days. 

Of the three years (2005-2007), the strongest wave activity was observed in the year 2007 in the 

zonal wind component during winter season and it was dominated by wave periods between 10 

and 16 days. A maximum wave power of about 1000 m2.s-2 was noted as mentioned above, hence 

this became the special year of interest for this study. A very strong planetary wave activity 

resembling traces of quasi-10-day and quasi-16-day waves centered at approximately 12 days 

was noted. Such a strong wave activity could be a result of wave-wave interaction. The zonal 

wave number, variation of tides amplitudes and investigation of minor SSW will be presented in 

the next chapter so that a complete analysis of the effects and possible strong wave activity can 

be classified. 

 

During the spring and autumn seasons a strong wave activity with a planetary wave period of 

around 8 to16 days and 16 to 30 days in the zonal component was observed and most probably 

because this period is a transition time with strong trends in mean wind (e.g. Chshyolkova et al., 

2006) and Mbatha, 2012). In this study, the year 2007 was chosen to be the year of interest to 
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investigate the interaction of planetary waves with tides during the period with strong wave 

activity. 

A similar method of analysis was applied to the Halley station for the same period of (2005-

2007) in both zonal and meridional wind components. Figure 4.2 shows the wavelet power 

spectra for Halley showing the wave activity of wave periods between 2 and 30 days. By merely 

looking, it can be noted that Halley is dominated by long period planetary waves compared to 

SANAE. In general, there is a good agreement between the two stations for example the zonal 

wind in each case shows more wave power activity compared to the meridional wind component. 

The interesting part with the Halley station is that the wave activity took place mostly during the 

winter season. 
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Figure 4.2: Wavelet power spectrum versus time (for years 2005-2007) and period (less than 30 

days) calculated for the zonal and meridional wind components for Halley Super DARN HF 

radar wind at ~94 km.  

 

Figure 4.2a, c, and e, presents the wavelet spectra of the zonal wind component. A trace of quasi-

10-day wave and long period planetary waves whose wave periods stretches from 14 to 28 days 

were noted. The year 2005 (Figure 4.2a) shows a strong planetary wave activity of wave power 

of about 700 m2.s-2, and the quasi-10-day wave which is clearly defined compared to the other 

years. The same wave characteristics of the year 2005 were observed in the year 2006 (Figure 

4.2c), but with less wave power. The planetary wave periods observed are a result of the 

amplification of 10-day, 14-day and 16-day planetary waves. The zonal component of the year 

2007 (Figure 4.2e) shows the lowest wave power compared to the years 2005 and 2006, but there 

are similar wave characteristics though. This brings about a complete annual variance analysis 

that during the three year period, the maximum wave power was noted in the year 2005 and it 

started to decrease in the year 2006 and 2007 as well. Also, considering the time of long period 

planetary wave activity occurrence, it started around day 210 for the years 2005 and 2006 whilst 

for the year 2007 it commences earlier around day 180. 

 

 Figure 4.2b, d, and f, presents the wavelet spectra for the meridional wind component for the 

years 2005-2007. In all the years from 2005 to 2007 it can be noted that there is a presence of 

quasi-10-day, quasi-14-day and quasi-16-day wave amplification. The maximum wave power 
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observed in the meridional wind component of all the years was 500 m2.s-2 and it was noted 

during the year 2007. In all the years the meridional component shows the presence of long 

period waves of periods between 8 to 30 days. Unlike the case of the zonal wind component 

where there was an annual decrease of wave power. In the meridional wind component there was 

an annual increase in wave power from the year 2005 to 2007. The long period planetary wave 

activity started earlier in the year 2007 around day 155 while in the years 2005 and 2006 it 

started around day 180. 

There is also a common trend showing internal wave amplification which goes along with the 

studies of Fedulina et al., (2004) and Chshyolkova et al., (2006), leading to longer period 

travelling waves in winter with periods ranging between 14 to 24 days in all the years but 

showing more wave power in zonal wind component. At low periods the wave activity is 

dominated by planetary waves of periods between 5 and 10 days and most significantly observed 

during the winter season of the year 2007 in zonal wind. The wave activity over the Halley 

station was more dominant during winter season, whilst at SANAE wave activity occurred in 

summer and winter and this could be a contribution of longitudinal difference of 24 degrees 

between the two stations. 

 

4.3 Diurnal and Semidiurnal Tides 

Since it was difficult to identify the shorter periods in the wavelet, the STFT was implemented. 

That was achieved by performing a dynamic Fourier spectrum using a 4 day data window that is 

shifted forward by 1 day at a time. The deduced power for a given data window was attributed to 

a central day given by day 2 of that particular 4 day data interval. This long data window result 

in the desired frequency resolution of 0.25 cycles per day. The four day average was considered 

to be significant if at least 55% of the hourly zonal or meridional wind values were captured.  

Figure 4.3 to Figure 4.5 presents the contour plots showing the dynamic spectral analysis applied 

to the zonal and meridional wind components of SANAE HF radar wind data for the normalised 

power at ~94 km for the years 2005 to 2007. The power spectra has been normalised by 𝛿2 𝑁⁄  

where N is the number of data points and 𝛿2 is the variance of the time series. White noise would 

have an expectation value of one at all frequencies for such normalization (Torrence and Compo, 

1998).  
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Figure 4.3: The normalised power spectra for the zonal (a) and meridional (b) wind component 

over SANAE station in 2005. 

 

In all the figures from Figure 4.3 to Figure 4.5, it can be clearly seen that the zonal wind power 

spectra is characterised by dominant peaks near to periods of 0.5 day (semidiurnal tide)  and 1 

day (diurnal tide) waves in the midwinter. Considering Figure 4.3 to Figure 4.5, it  is  observed  

that the meridional wind power spectra  is  characterised by dominant peaks near periods of 0.5 

day and  1 day waves,  but the  0.5 day wave is  more  dominant showing a maximum wave 

power of approximately 7 m2.s-2. Of all the three years, the year 2007 shows a good and clear 

trace of diurnal and semidiurnal tides and these will be further investigated in detail later. More 

wave activity is observed in the zonal wind component compared to the meridional wind 

component in all the years from 2005 to 2007.  
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Figure 4.4: Same as Figure 4.3 but for the year 2006. 
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Figure 4.5: Same as Figure 4.3 but for the year 2007. 

 

In Figure 4.6 to Figure 4.8 the horizontal grey thick line indicates the 90% confidence level using 

a chi-square test, assuming white noise as background spectrum (Torrence and Compo, 1998) 

while the dotted black line and the  red line represents the DT and SDT normalised power 

spectra respectively. Figure 4.6 presents the normalised power spectra (top panels) and phase 

(bottom panels) for the 12 hour wave (SDT) and 24 hour wave (DT) for the year 2005 whilst 

Figure 4.7 and Figure 4.8 is for the years 2006 and 2007 respectively. For the three years 2005 to 

2007 the normalised power of the SDT in the zonal and meridional wind components shows 

more power dominance thus more wave activity during winter and summer seasons. 
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Figure 4.6: Normalised power spectra for the zonal (a) and meridional (b) wind components (top 

panels) and phase in zonal wind (c) and meridional wind (d) (bottom panels) over SANAE for 

the year 2005 obtained from complex demodulation. The horizontal gray line represents 90% 

confidence level. 

 

 

 

 

Figure 4.7: Same as Figure 4.6 but for the year 2006. 
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Figure 4.8: Same as Figure 4.6 but for the year 2007. 

 

There is a common trend where by SDT is dominant most of the times, but DT in the zonal wind 

flow becomes slightly dominant during the winter season. During the year 2005 (Figure 4.6a), 

the SDT wave power dominates the DT except around day 220 and 270 when the DT becomes 

more dominant. In Figure 4.7a, the zonal wind DT for the year 2006 shows dominance around 

day 250 whilst during the year 2007 (Figure 4.8), it dominated around day 260. In general, it can 

be noted that the SDT wave activity dominated the DT wave by showing very large amplitudes 

especially in the meridional wind component. The years 2005 and 2006 were used as normal 

quiet years since no unusual SDT wave activity behavior was noted, unlike the year 2007 whose 

unique SDT wave characteristics considered being a specific year for this study.  It is clear from 

Figure 4.6 to Figure 4.8 that the zonal wind component of the DT and SDT waves has a seasonal 

pattern characterised by enhanced wave activity in winter superimposed by short-term 

fluctuations. More wave activity is observed in winter where the wave power is above the 90% 

confidence level.  

 

The phase variation of the year 2005 (Figure 4.6c, d), zonal wind component shows a general 

decrease in phase for both DT and SDT. The meridional wind shows noticeable phase 
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fluctuations for both DT and SDT. Around day 200 and day 230, the SDT phase increased and 

this coincided with an increase in amplitude. A sharp decrease in meridional DT phase is noted 

on approximately day number 225, exactly the same time when an increase in DT amplitude was 

taking place. Such an analysis goes well with a study by Clark et al., (2002) that, the phase 

decreases as the amplitude increases.  

 In Figure 4.7 the DT and SDT phase variation for the year 2006, shows that the two were out of 

phase since one increased as the other was decreasing. The zonal wind DT shows a general 

increase in phase whilst the SDT shows a general decrease in phase, (see Figure 4.7c). In the 

meridional component it can be noted that the DT shows a general decrease in phase whilst the 

SDT shows a general increase in phase, which shows that the two were out of phase as well, (see 

Figure 4.7d). 

 

For the year 2007 more phase variations were noted in the meridional wind component compared 

to the zonal wind component (see Figure 4.8c, d). The zonal wind component shows a general 

decrease in phase for both DT and SDT. The meridional wind component was characterised by 

phase fluctuations and an interesting feature is observed around day 260 where a sharp decrease 

in DT phase was accompanied with an increase in DT amplitude. This again agrees well with a 

study by Clark et al., (2002) that, the phase decreases as the amplitude increases. The meridional 

component of the SDT shows different behavior because as the amplitude increased, the phase 

increased as well especially from approximately day number 240 to 260. 

 

4.4 Zonal Wavenumber  

This topic presents the calculation of wavenumbers of planetary waves which were presented 

above in chapter 4.1. Wavenumbers gives detail about the wave propagation direction and 

mainly small wavenumbers such as s=0, s=1 and s=2 are of greater importance since they 

contribute much to the atmospheric dynamics. The propagation speed of a wave can be 

approximated by the following equation (Pierre, 1961); 

 

 𝑐 = 𝑢 ̅ −
𝛽

𝑠2
                                                                                                                              (4.1) 
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Where c is the wave propagation speed, 𝑢 ̅ is the mean zonal, 𝛽 is the planetary vorticity and 

𝑲2 = 𝑠2 + 𝑙2 with 𝑠 and 𝑙 being the zonal wavenumber and meridional wavenumber 

respectively. 

 

To analyse and understand the MLT atmospheric dynamics, important characteristics of waves 

such as the amplitude, propagation direction and zonal wavenumber must be calculated hence in 

this study complex demodulation method was implemented. The data from SANAE and Halley 

SuperDARN radar sites was used to estimate zonal wavenumbers mainly because their 

longitudinal separation of ~24 degrees is good enough to estimate reliable zonal wavenumbers. 

The zonal wavenumbers were calculated from the slope of the linear regression of the quasi-5-

day, quasi-10-day and quasi-14-day wave phases as a function of longitude during winter 

months. This method is similar to the one used to study the quasi-2-day wave (QTDW) using the 

Northern Hemisphere SuperDARN HF radars by Malinga et al., (2007).  

The wave number (s), derived from the phase as a function of longitude can be mathematically 

represented by the following equation, (Priestly, 1981 and Malinga et al., 2007);  

 

𝑠 =
(𝑎𝑡𝑎𝑛[

𝐼𝑚(𝑥′)

𝑅𝑒(𝑥′)
]

𝐻𝑎𝑙
(𝑡)−𝑎𝑡𝑎𝑛[

𝐼𝑚(𝑦′)

𝑅𝑒(𝑦′)
]

𝑆𝑎𝑛
(𝑡))

(𝐿𝑜𝑛𝐻𝑎𝑙−𝐿𝑜𝑛𝑆𝑎𝑛)
                                                                                (4.2) 

 

Where 𝐿𝑜𝑛 is the longitude and the phase is calculated from complex demodulation method 

presented earlier. The waves 𝑥 and 𝑦 corresponds to the wave obtained at Halley and SANAE 

stations respectively, propagating at common time (𝑡). 

 

The phase obtained in this analysis was from the 4 day Fourier spectral analysis method mainly 

because only phases that are well resolved in frequency were needed hence, a dynamic Fourier 

spectra method which uses a 4 day data window that is shifted forward by 1 day at a time was 

implemented. The phase deduced for a given data window was attributed to a central day given 

by day 2 of that particular 4 day data interval. This data window result in a frequency resolution 

of 0.025 cycles per day (cpd). The phases used are only those which correspond to the central 

days falling within the winter season, that is a time at which the spectral power tends to be above 

the 90% confidence level. For significance, the wavenumbers calculated were those at which 
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both sites (SANAE and Halley) had data, and the coefficient of determination was 55%. In the 

presentation of results the positive wavenumbers represent eastward propagating waves whilst 

negative wavenumbers represent the westward propagating waves.  

Figure 4.9 to Figure 4.11 presents the zonal wavenumbers for 5-day, 10-day and 14-day waves 

which were extracted during the winter season of the years from 2005 to 2007. The left panel 

presents the zonal component while the right panel presents the meridional component showing 

the distribution of wavenumbers. The year 2005 shows a noticeable distribution of zonal 

wavenumbers in both zonal and meridional wind components (see Figure 4.9). The 5-day wave 

shows significant zonal wavenumbers of s=-1, s=5 and s=6 in the zonal and meridional wind 

components but the most dominant are s=5 and s=6. The 10-day wave shows significant zonal 

wavenumbers of s=±4, s=±3, s=±2, s=±1, and s=0 in the zonal and meridional wind 

components, but the most dominant are s=-2 and, s=-1  followed by s=-3 and s=0. The 14-day 

wave shows significant zonal wavenumbers of s=±6, s=-5, s=-2, s=±1, s=0 and s=3 in the zonal 

and meridional wind components, but the most dominant are s=-2  followed by s=0 then s=-1.  

 

 

 

Figure 4.9: The distribution of the zonal wavenumber of the zonal wind component (left panel) 

and the meridional wind component (right panel) during the winter season of the year 2005. In 

the Figure, the negative wavenumbers represent the westward propagating wave. 
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For the year 2006 in the zonal and meridional wind components, the 5-day shows no significant 

zonal wavenumbers in both zonal and meridional components (see Figure 4.10). The 10-day 

wave shows significant zonal wavenumbers of s=±3, s=-1, s=2, s=4, s=5, s=6 in the zonal and 

meridional wind components, but the most dominant are s=3, s=4 and s=5 then followed by s=2. 

The 14-day wave shows significant zonal wavenumbers of s=±6, s=-4, s=-3, s=-2, s=-1 and s=0 

in the zonal and meridional wind components, but the most dominant are s=-2 followed by s=-1 

then s=-3. 

 

 

 

 
 

Figure 4.10: Same as Figure 4.9 but for the year 2006. 

 

For the year 2007 in the zonal and meridional wind components the 5-day wave shows 

significant wavenumbers of s=-2, s=0 and s=7 and in this case they approximately have the same 

counts (see Figure 4.11)  The 10-day wave shows significant zonal wavenumbers of s=±3, 

s=±1, s=1, s=2, s=3, s=4, s=5 and s=6 but the most dominant are s=2 followed by s=0 then s=3. 

The 14-day wave shows significant zonal wavenumbers of s=±6, s=-5, s=-2, s=±1 and s=0 in 
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the zonal and meridional wind components, but the most dominant are s=-1 followed by s=-2 

then s=0. 

 

 

 

 
 

Figure 4.11: Same as Figure 4.9 but for the year 2007. 

 

Generally, considering all the years from 2005 to 2007, it can be noted that the meridional wind 

component is dominated by short wavenumbers compared to the zonal wind component. There is 

an interesting trend in some years which shows dominance of a particular wavenumber for the 

same wave. The year 2005 wavenumber variation of the 14-day wave shows dominance of 

wavenumbers s=-2, s=-1 and s=0 which were observed in the other years except for s=0 which 

was not observed in the year 2006. The 10-day wave with wavenumbers s=2 and s=3 observed in 

the year 2006 were also noted in the year 2007. The presence of stationary waves (s=0), observed 

in the quasi-10-day and quasi-14-day is noted and such waves are known to propagate upward 

from the troposphere and are very strong but quite variable during winter (e.g. Pancheva et al., 

2004). 
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4.5 Discussion and Summary  

The zonal and meridional wind data components from the two radar stations, SANAE (72°S, 

3°W) and Halley (76°S, 27°W) were used to study the MLT dynamics over the Southern 

Hemisphere at ~94 km for the years 1997 to 2007. The comparison of the wavelet spectra from 

the two stations SANAE and Halley revealed a good agreement between the two HF radar 

instruments. Wavelet analysis and STFT techniques were implemented and a 4 day moving 

window was used with 1 day overlap. The wave periods were studied by means of wavelet 

transform method. The wavelet amplitudes of the HF radar wind components were calculated for 

a period below 30 days at ~94 km altitude. The data from 2005 to 2007 was used for a better 

assessment of planetary wave activity in the Southern Hemisphere, and the year of interest was 

the year 2007. The normalised power spectra for both  zonal and meridional wind components 

revealed dominant wave activity near periods of 0.5 day (semidiurnal tide) and  1 day waves 

(diurnal tide) which will be further analysed in this study. 

 

The wave activity for the years 2005 to 2007 was observed to be dominant in winter and summer 

seasons in the zonal wind component whilst, the meridional wind wave activity was centered to 

the winter season. Dominant wave periods centered at 10-day, 14-day, 16-day and long planetary 

waves centered at approximately 22 days were observed in each case showing planetary wave 

amplification in winter. This is mainly because the winter months are known for their strong 

planetary wave activity over a wide period (Mbatha, 2012).  
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Chapter 5: Minor Sudden Stratospheric Warming for the Years 

2007 and 2010 

5.1 Introduction 

This chapter presents the minor SSW events which occurred in the years 2007 and 2010. The 

interaction between planetary waves and tides during minor SSW will be investigated. The minor 

SSW event is investigated using NCEP re-analysis data, UKMO data assimilation and SANAE 

HF radar and Halley HF radar zonal wind. Much emphasis of this study is for the year 2007 

since it is the one with all required data sets available. The first part presents year 2010 minor 

SSW but unfortunately, due to the unavailability of HF radar data during this year the interaction 

of planetary waves with the tides was not investigated. Minor SSW for the year 2007 is 

presented later in detail, paying attention to dominant wave periods noted, wave-wave interaction 

and the wavenumbers present during the occurrence of minor SSW events. The wave numbers 

presented were calculated from the two HF radar stations, namely SANAE and Halley with a 

longitudinal separation of ~24 degrees, reasonable enough to estimate significant wavenumbers. 

 

5.2 Minor SSW Events during the Year 2010  

In this study, the SSW events which took place during the year 2010 in the Southern Hemisphere 

were investigated using NECP reanalysis data. Figure 5.1 shows the mean and standard deviation 

of the zonal wind and temperature from NCEP reanalysis data for the years from (2002-2013) at 

10 hPa. This Figure is going to be used as a measure of how the zonal wind at 60°S and the 

temperature at 80°S vary in any given year compared to the mean. Considering the general 

pattern obtained from the average of 11 years, it can be noted from Figure 5.1 that the standard 

deviation variations for both the zonal wind and temperature shows an increase from July to 

November. It is within this period of sudden increase of temperature accompanied by a decrease 

in zonal wind that we expect minor SSW events to take place. The figure clearly shows how the 

decrease in zonal wind as illustrated by the standard deviation, coincides with a significant 

increase in temperature for the months from July to November.  
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Figure 5.1: Mean and standard deviation of NCEP reanalysis zonal wind and temperature data 

for the years from 2002 to 2013. 

 

Figure 5.2 presents the daily zonal mean wind at 60°S (green solid line) and temperature at 80°S 

(blue dotted line) from NCEP reanalysis data for the year 2010. The temperature was plotted 

together with the zonal wind so that their variation with time can be investigated for minor SSW 

events. A minor SSW event was recorded based on the definition which had been mentioned and 

explained earlier in section 2.2.4, which states that a SSW is classified as minor if at 10 hPa and 

60° latitude there is a significant increase in temperature at any stratospheric level in any area of 

the winter time hemisphere, which leads to a slight decrease in the mean zonal wind which does 

not lead to the reversal of the wind direction. 
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Figure 5.2: Daily zonal mean wind at 60°S (solid line) and temperature at 80°S (dotted line) from 

NCEP reanalysis for the year 2010. In the boxes are the magnitudes of the zonal mean wind and 

temperature differences from the mean. 

 

In Figure 5.2a the first minor SSW event was noted at around day 173 and it took about 10 days, 

with zonal wind and temperature change of 4 m.s-1 and 4 K in magnitude, respectively. The 

second minor SSW event (Figure 5.2b), is noted to have occurred on approximately day 215, and 

it took about 31 days with a change in magnitude of about 10 m.s-1 and 18 K in zonal wind and 

temperature respectively. The third minor SSW event (Figure 5.2c), occurred on approximately 

day 258, taking about 10 days and there was a change in magnitude of 17 m.s-1 and 18 K in zonal 

wind and temperature, respectively. The last SSW event (Figure 5.2d), is classified as a final 

warming because it took place in late winter on approximately day 300, lasting for about 31 days 

and there was a change in magnitude of 21 m.s-1  and 18 K in zonal wind and temperature, 

respectively.  

 

From the second minor SSW event (Figure 5.2b), to the last minor SSW event (Figure 5.2d), 

there is an interesting trend and pattern on the magnitude of change in temperature of (18 K), 

which is almost the same between successive minor SSW events. Moreover, all minor SSW 

events occurred after the same duration of time had elapsed hence an average common period of 

approximately 42 days was estimated. Such minor SSW events can simulate a SSW that is when 

it leads to the reversal of zonal wind. According to the World Meteorological Organisation 

(WMO) a stratospheric warming can be said to be major, if at 10 hPa or below the latitudinal 

mean temperature increases abruptly pole ward from 60° latitude with an associated wind 

circulation reversal. Such a scenario is rare in the Southern Hemisphere as it just happened once 

in 2002 and it was studied by few researchers (e.g. Baldwin et al., 2003; Dowdy et al., 2004 and 

Mbatha et al., 2010b). The summary of all minor SSW events which took place during the year 

2010 are summarized in Table 5.1.  

 

 



60 

 

Table 5.1; The Minor Sudden Stratospheric Warming events for the year 2010 in the Southern 

Hemisphere using zonal wind and temperature data at 10 hPa. The corresponding day is 

mentioned in the form of Julian days. 

 

Start Day End Day Duration Magnitude of 

∆Velocity (m/s) 

Magnitude of 

∆Temperature (K) 

165 175 10 4 4 

195 226 31 10 18 

253 263 10 17 18 

294 302 8 21 18*(Final Warming) 

 

 

5.3 Planetary Wave Activity during 2010 Minor Sudden 

Stratospheric Warming  

Theoretical studies (e.g. Charney and Drazin, 1961 and Andrews et al., 1987) and observational 

studies, (e.g. Liu et al., 2002; Dowdy et al., 2004; Mbatha et al., 2010b and Liu, 2005) have 

shown that the amplification of planetary waves in winter stratosphere are responsible for the 

occurrence of sudden stratospheric warming. Due to the importance of planetary waves during 

the stratospheric warming occurrences, the present research also investigated the activity of 

planetary waves for the year 2010. 

 

Figure 5.3 presents the wavelet power spectra of the zonal mean wind and temperature for the 

NCEP reanalysis data of the year 2010. This was done to identify the periods which could have 

contributed to the formation of minor SSWs in the year 2010. It can be noted that, most of the 

wave activity was during the winter and spring months. The top panel  shows that the zonal wind 

reached a maximum wave power of 460 m2.s-2 around day 220 while the temperature (bottom 

panel), acquires a maximum wave power of approximately  300 m2.s-2 around day 280. The wave 

activity was characterised with commonly known planetary wave periods in the middle 

atmosphere which are; quasi-10-day, quasi-14-day and quasi-16-day waves. Long period 

planetary waves of wave periods ranging from 14 to 30 days and centered at approximately 20 
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days show dominance and could have played a major role in the MLT dynamics during the 

occurrence of minor SSW events. 

Figure 5.3: Wavelet spectra for zonal mean wind at 60°S and temperature at 80°S at 10 hPa 

using NCEP reanalysis data for the year 2010. 

 

Considering Figure 5.3a, it is clear that the zonal wind wave activity started on approximately 

day 120 before any wave activity was noted in the temperature variations (see Figure 5.3b). In 

the zonal mean temperature, the wave activity commenced on approximately day 225 which was 

well after the zonal wind had started to show fluctuations. It can be deduced that the change in 

zonal wind triggers the slowing down of mean flow and the increase in temperature. Also, the 

wave periods between 16 and 24 days with a wave power of about 400 m2.s-2 were more 

dominant, showing the amplification of quasi-16-day planetary wave. Overall, it is observed that 

the stratosphere was characterised by long period planetary waves with periods between 10 and 

25 days. The quasi-20-day wave observed during winter period seems to have contributed to the 
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change in dynamics of the stratosphere during winter months of 2010 due to its strength (see 

Figure 5.3a). 

The stratosphere background wind and stability fields have an important impact on the planetary 

wave vertical propagation in the stratosphere because at times critical level filtering can prevent 

waves from propagating through to deposit momentum and energy to higher altitudes (Espy et 

al., 2004 and Jacobi et al., 2005). This disturbs MLT dynamics in parameters such as density and 

stability (Holton and Alexander, 2000). Wave interactions in the MLT are important in 

maintaining equilibrium of propagating waves and dissipating waves (Pancheva et al., 2008). 

 

Figure 5.4 shows the variation of the UKMO zonal mean zonal wind at 60 degrees south for the 

year 2010 at 10, 3, 1, and 0.3 hPa pressure levels. In general an eastward zonal wind mean flow 

is observed to reach its maximum value of about 90 m.s-1 during winter months. Figure 5.5 

presents the UKMO meridional wind at 10 hPa, 3 hPa, 1 hPa and 0.3 hPa pressure levels (similar 

to Figure 5.4). In this figure it is observed that the strongest peaks of wind velocity are found in 

late winter month. However, there is overall evidence of weak wind strength in the meridional 

wind component compared to the zonal wind component. This is consistent with observations 

reported by Mbatha et al., (2012). At 0.3 hPa (Figure 5.5d) two sharp peaks can be identified, the 

first one at around day 210 reached maximum amplitude of approximately 9 m.s-1 and the second 

peak at around day 260 reached maximum amplitude of approximately 7 m.s-1. In general 

maximum amplitude is observed during the winter period and this could be due to wave-wave 

interactions. 
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Figure 5.4: UKMO zonal mean zonal wind at 60°S and at different pressure levels (10 hPa, 3 

hPa, 1 hPa, and 0.3 hPa) for the year 2010.  
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Figure 5.5: UKMO meridional mean wind at 80°S and at different pressure levels (10 hPa, 3 hPa, 

1 hPa, and 0.3 hPa) for the year 2010.  

 

It has been shown in several studies that planetary waves that originate from the lower 

atmosphere and propagate upwards are the main contributor to the formation of stratospheric 

warming events (e.g. Palo et al., 2005; Mbatha et al., 2010b and Chandran et al., 2013). Major 

stratospheric warming is an unusual phenomenon in the Southern Hemisphere hence minor 

sudden stratospheric warming is usually observed. In the year 2010, stronger minor SSW events 

were observed at approximated Julian day number 220, 270 and 300. A series of minor sudden 

stratospheric warming events took place during the Southern Hemisphere winter months of 2010.  

To examine the presence and temporal evolution of long period waves in the stratosphere before, 

during and after the onset of the stratospheric warming event, the wavelet power spectra of the 

UKMO zonal mean zonal wind for 10, 3, 1, and 0.3 hPa pressure levels were calculated for the 
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planetary wave periods between 2 and 28 days and the time interval from the 1st of January 2010 

to 31 December 2010. The contour plots of the wavelet power spectra obtained are presented in 

Figure 5.6. It is clearly observed that there is a strong presence of planetary waves of periods 

between 5 and 25 days during winter months. This planetary wave activity seems to dissipate in 

late winter. An interesting feature is what seems to be the amplification of this wave activity with 

increase in altitude (decrease in pressure).  

Figure 5.6: Wavelet spectra for UKMO zonal mean zonal wind at 60°S for the year 2010.  

 

A follow up study will be to investigate a possible coupling between stratosphere and 

mesosphere during this event. Considering part (d) of Figure 5.6, it can be noted that a dominant 

wave activity around day 200 with wave period centered around 20 days and a maximum wave 

power of approximately 3500 m2.s-2. The minor SSW events started at roughly Julian day 

number 165 to 302 which is the same period during which strong quasi-20-day was noted, hence 

Time (Days)

P
e

ri
o

d
 (

D
a

y
s
)

UKMO Zonal Wind  at 10hPa, 60 South: Year 2010  (a)

 

 

50 100 150 200 250 300 350

5

10

15

20

25

Time (Days)

P
e

ri
o

d
(D

a
y

s
)

UKMO Zonal Wind at 3hPa, 60 South: Year 2010  (b)

 

 

50 100 150 200 250 300 350

5

10

15

20

25

P
o

w
e

r 
(m

2
/s

2
)

0

500

1000

1500

2000

2500

3000

3500

4000

Time (Days)

P
e

ri
o

d
 (

D
a

y
s
)

UKMO Zonal Wind  at 1hPa, 60 South: Year 2010   (c)

 

 

50 100 150 200 250 300 350

5

10

15

20

25

Time (Days)

P
e

ri
o

d
 (

D
a

y
s
)

UKMO Zonal Wind  at 0.3hPa, 60 South: Year 2010   (d)

 

 

50 100 150 200 250 300 350

5

10

15

20

25

P
o

w
e

r 
(m

2
/s

2
)

0

500

1000

1500

2000

2500

3000

3500

4000



66 

 

this wave could have contributed to the deceleration of zonal mean wind or the formation of 

minor SSW events during this period. A study by Kishore et al., (2012) on the planetary waves in 

the upper stratosphere and lower mesosphere during 2009 arctic major stratospheric warming 

discovered the presence of an upward propagating 20–30 day planetary wave during the SSW 

period. This shows that a quasi-20-day wave can enhance the formation of a minor SSW. 

 

Another interesting feature observed in Figure 5.6a is that, at low altitude there is clear evidence 

of waves with wave periods below 5 days observed at around day 240. As these waves propagate 

upwards, their wave activity decreases until they diminish whilst long period waves become 

more active (see Figure 5.6d). This is consistent with a previous study by Pancheva et al, (2000a, 

b) in which they discovered that the interactions between different members of the ensemble of 

planetary waves at MLT heights resulted in significant modulation of the amplitude of one 

planetary wave at the period of another planetary wave. In this study, the non-linear interaction 

and modulation of planetary waves could have caused the deceleration of the zonal mean wind, 

thereby leading to the formation of minor SSW. 

 

5.4 Minor SSW Events during the Year 2007  

For the year 2007 detailed information about the comparison of the variation of zonal wind and 

temperature with the mean obtained for a period of 9 years (2002-2013) was presented. The 

mean was obtained in order to realize the general pattern expected in a quiet or normal year (year 

without SSW). Even though this period of time comprises of some years with minor SSW events 

taking the mean will represent a normal expected trend since the years with minor SSW events 

will be compensated with quiet years.  

 

Figure 5.7 presents the zonal wind for the year 2007 (solid black line) and mean zonal wind for 

nine years from 2002 to 2013 (red dotted line) at 10 hPa and 60°S (latitude). The figure clearly 

shows how the zonal wind for the year 2007 from January to December varies with time 

compared to the mean zonal wind. It can be noted that the two agrees well from day number 1 to 

approximately day 190. The zonal wind for the year 2007 shows strong wind variations during 

the winter period, thus when a significant difference compared to the mean is noted and this 

could be due to strong planetary wave activity during winter months. The major driver of the 
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winter stratospheric dynamics is centered on the interaction of planetary waves and the zonal 

mean flow (Andrews et al., 1987).  

 

 

 

Figure 5.7: Zonal wind for the year 2007 (solid black line) and mean zonal wind for nine years 

from 2002 to 2013 (red dotted line) at 10hPa and 60°S. 

 

 

Figure 5.8 presents temperature for the year 2007 (solid black line) and the mean temperature for 

nine years from 2002 to 2013 (red dotted line) at 10 hPa and 80°S. The temperature variation for 

the year 2007 and the mean shows good agreement from Julian day number 1 to day number 

120. A noticeable difference was observed from day number 200 when the temperature for the 

year 2007 started to show more variation during the winter months. This is primarily due to 

wave-wave interaction and wave-mean flow interaction in the MLT which leads to an abrupt 

increase in planetary waves and tides amplitudes until wave breaking occurs, that is if the 

amplitudes exceeds the instability thresholds (Lindzen, 1981 and Huang et al., 2013). A 

furthered analysis was done to verify the magnitude by which the zonal wind decreases as the 

temperature increased during the same period of zonal wind and temperature variations. 
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Figure 5.8: Temperature for the year 2007 (solid black line) and the mean temperature for nine 

years from 2002 to 2013 (red dotted line) at 10 hPa and 80°S. 

 

During the year 2007 stronger minor SSW events were observed on approximated Julian day 

numbers 220, 240, 250 and 265 (see Figure 5.9 and Table 5.2). As explained above, in the case 

of investigating minor SSW events which took place during the year 2010, the same method was 

applied for the year 2007.  From Table 5.2 it can be noted that there is approximately the same 

duration of about 10 days between two successive minor SSW events. The minor SSW event of 

greater magnitude was noted on approximately day number 263. This is indicated by zonal wind 

deceleration of 34 m.s-1 and an increase in temperature of about 25 K. 
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Figure 5.9: Daily zonal mean wind at 60°S (solid line) and temperature at 80°S (dotted line) from 

NCEP reanalysis for the year 2007. The values on the circled minor SSW incidents are the 

magnitudes of the zonal mean wind and temperature differences from the mean. 

 

 

Table 5.2; The analysis of Minor Sudden Stratospheric Warming events for the year 2007 in the 

Southern Hemisphere using zonal wind and temperature data at 10 hPa. 

 

Start Day End Day Duration Magnitude of 

∆Velocity (m/s) 

Magnitude of 

∆Temperature (K) 

215 223 8 11 5 

235 244 9 18 5 

247 253 6 15 6 

260 267 7 34 25 
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5.5 Minor SSW Events during the Year 2007 using UKMO and 

SANAE HF Radar 

To examine the presence and temporal evolution of long period waves in the stratosphere before, 

during and after the onset of the stratospheric warming event, the wavelet power spectra of the 

UKMO zonal mean zonal wind component for 10 hPa, 3 hPa, 1 hPa, and 0.3 hPa pressure levels 

were calculated for the period range from 2 to 28 days and the time interval from 1 January 2007 

to 31 December 2007. Unlike the task which was performed above for the year 2010, since the 

year 2007 is a specific year of interest for this study and have all the required data, the DT and 

SDT during the occurrence of minor SSW events will be investigated in detail.  

 

This will involve taking note of tidal wave amplitude variations and the wave periods which 

were dominant during minor SSW events. Figure 5.10 (top panel) presents the DT and SDT 

instantaneous amplitude from SANAE HF radar at ~94 km while the bottom panel presents 

SANAE daily mean (dotted line), UKMO zonal mean wind and Temperature at 10 and 3 hPa 

pressure levels for the year 2007. Concentrating on the approximate Julian day numbers 220, 

240, 250 and 265 when successive minor SSW were noted, DT and SDT wave variations were 

investigated. From Figure 5.10 (top panel) it can be noted that there was an increase in amplitude 

during the days corresponding to the occurrence of minor SSW events. 
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Figure 5.10: DT and SDT instantaneous amplitude from SANAE HF radar at ~94 km (top 

panel). SANAE daily mean (dotted line) and UKMO zonal mean wind and temperature at (10 

and 3) hPa pressure levels (bottom panel), for the year 2007.  

 

The bottom panel (c) shows the variation of SANAE daily mean zonal wind showing variations 

during minor SSW events illustrated with UKMO zonal mean wind at 10 and 3 hPa. Of the three 

last peaks observed from approximately day number 260 to 280 in the bottom panel (d) 

representing the UKMO temperature variations and similar peaks for the zonal wind variations in 

the bottom panel (c), only the first spike was classified as a significant minor SSW event in this 

study. This is mainly because the increase in temperature at 10 hPa (d) does not correspond to a 

noticeable zonal wind deceleration at the same pressure level (see Figure 5.10c), black solid line. 

It will be clearer if temperature variations at 3 hPa have been considered but that will not obey 

the World Meteorological Organisation classification of a SSW that, it has to be at 10 hPa 

pressure level. 

 

Figure 5.11 presents the contour plots of the wavelet power spectra obtained from UKMO zonal 

mean zonal wind at 60°S for the year 2007 from Julian day number 54 to 365 at 10, 3 and 1 hPa 

pressure levels. It can be observed that there is a very strong wave activity with long wave 
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periods ranging between 5 and 28 days during winter. There is evidence of wave activity 

amplification as the wave propagates upwards. Such wave amplification could be a result of 

wave-wave interaction and it may lead to the formation of minor SSW. At 10 hPa pressure level 

(Figure 5.11a), a maximum wave power of about 600 m2.s-2 is noted. As the wave propagates 

vertically upwards traces of wave amplification are noted at 3 hPa and 1 hPa pressure levels. At 

1 hPa pressure level (Figure 5.11c), a significant wave amplification is noted in the wave power 

which seems to have intensified to about 1500 m2.s-2.  

 

Figure 5.11: Wavelet spectra for UKMO zonal mean zonal wind at 60°S for the year 2007 at (10 

hPa, 3 hPa, 1 hPa, and 0.3 hPa) pressure levels. 

 

All the increase in wave activity or the maximum peaks of the spectra are identified during the 

winter months and this could have simulated the formation of minor SSW. When there is a non-

linear interaction of the upward propagating planetary waves and tides, the modulation of tides 

which results in very high amplitudes occurs. This will effect more MLT wave-wave interactions 

causing the deceleration of the zonal mean wind until the wave breaking occurs (e.g. Liu et al., 

2014). There will be a downward circulation which initiates adiabatic heating in the stratosphere 

resulting from the deceleration of the eastward flow by planetary waves (Liu and Roble, 2002). 
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5.6 Diurnal and Semidiurnal Tides in the Middle Atmosphere and 

their Interaction with Planetary Waves during Minor SSW 

MLT dynamics is characterised by planetary waves and tidal waves interaction with the mean 

flow. In this study the zonal and meridional wind for SANAE for the year 2007 was used to 

analyse diurnal and semidiurnal tides interaction with planetary waves. Figure 5.12 shows tidal 

variations or the instantaneous amplitude spectrum derived from band-pass filter for diurnal tide 

(with high and low cutoff frequencies of 0.8 and 1.2 Hz respectively) and semidiurnal tide (with 

high and low cutoff frequencies of 0.3 and 0.8 Hz respectively). The DT amplitude variations in 

both zonal and meridional wind components show a general increase in amplitude between day 

number 100 to 200 and 250 to 320 (see Figure 5.12a, c). Although amplitude variations are 

similar, the meridional wind shows smaller amplitudes compared to the zonal wind component. 

 

 

Figure 5.12: Diurnal and semidiurnal tides instantaneous amplitude spectrum using SANAE HF 

radar. 
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The DT amplitude variation attained maximum amplitude of approximately 21 m.s-1 in the zonal 

wind component and about 19 m.s-1 in the meridional wind component. There is a common 

feature noted in Figure 5.12b, d, that the SDT amplitude increased from approximately day 50 to 

day 100 reaching a maximum of approximately 22 m.s-1 in the zonal component and about 24 

m.s-1 in the meridional component. In general, the zonal wind component shows greater 

amplitude compared to the meridional wind component. There are instances where sharp peaks 

are observed and this could be a period during which modulation of tides by planetary wave is 

taking place. 

The instantaneous amplitude was subjected to wavelet analysis to study the tidal variability at 

planetary wave scale. Wavelet analysis (Torrence and Compo, 1998), for the zonal wind and 

meridional wind DT and SDT variations for SANAE are presented in Figure 5.13. This is to 

investigate the interaction and amplification of tides with quasi-10-day wave and quasi-16-day 

wave from dominant wave periods below 30 days for the year 2007.  In this figure it can be 

noted that tidal amplitudes show variability at different planetary wave scales showing evidence 

of wave-wave interaction in the MLT.  

Figure 5.13: Wavelet power spectrum versus time for the year 2007 for zonal wind (left panel) 

and meridional wind (right panel) for SANAE HF radar at ~94 km. DT is shown on the top panel 

whilst SDT is on the bottom panel. 
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The zonal wind diurnal tide (Figure 5.13a) shows dominance of wave oscillations with periods 

ranging from 14-18 days centered at around day 16. This reveals the presence of quasi-16-day 

wave at planetary wave scale (Kumar et al., 2006), and it was more dominant on approximately 

day 310 with a maximum wave power of 400 m2.s-2. Such an observation of tidal variability at 

quasi-16-day periodicity provides evidence of the modulation of tides by planetary waves. This 

goes along with a study by Kumar et al., (2006) in which they used meteor radar observations of 

solar tides and planetary wave interaction in the MLT region at ~94 km over Trivandrum (8.5°N, 

77°E). Using the wavelet analysis technique, they discovered that the zonal and meridional tides 

were modulated by the quasi-16-day planetary wave. In this study, the westward propagation 

quasi-16-day wave of zonal wavenumbers s=-1 and s=-2 observed at around day 310 interacted 

with the DT and may have contributed much to the change in dynamics of the MLT and 

occurrence of minor SSW. 

 

The meridional DT spectra (Figure 5.13b) show the presence of quasi-10-day and quasi-16-day 

waves which look similar to the waves observed in the zonal wind component though it is 

weaker. This is represented by the wave activity stretching from day 5 to  day 14 wave period 

centered at 10 days (quasi-10-day) with a maximum wave power of 140 m2.s-2 and the other 

stretching from day 14 to  day 18 wave period centered at day 16 (quasi-16-day wave) mostly 

around day number 270 to 310. The SDT variation in zonal and meridional wind components 

(Figure 5.13c, d) shows common wave periods of 8-12 days centered at 10 days wave period 

(quasi-10-day) with a maximum wave power of 150 m2.s-2. In general, the SDT is dominated by 

quasi-16-day wave at planetary wave scale with a maximum wave power of 250 m2.s-2 observed 

around day 70. This reveals that there is a wave-wave interaction of tidal waves by planetary 

waves. There is also another wave activity observed around day 15 in Figure 5.13a, c, which 

happens to be a weak quasi-5-day wave in the zonal wind. In general, the modulation of tides by 

quasi-10-day, quasi-14-day and quasi-16-day planetary waves was noted and this wave-wave 

interaction in the MLT could have contributed much to the simulation of minor SSW.  A study 

by Pancheva, (2000a) and Pancheva et al., (2003) concluded that there was a significant 

modulation of SDT amplitudes at periods of planetary waves, corresponding to quasi-10-day and 

quasi-16-day periods. They revealed that the non-linear interaction between the SDT and the 
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quasi-16-day wave was much stronger than those between the DT and the 16-day wave. In this 

study the same analysis is observed although the DT modulation shows more wave power around 

day 310 (see Figure 5.13). 

 

Considering the DT at Halley (Figure 5.14, top panel) a maximum wave power of 250 m2.s -2 

was noted at around day 120 in zonal wind and in the meridional wind a maximum wave power 

of 180 m2.s-2 was noted around day 310. In both cases, the DT revealed the presence of quasi-10-

day and quasi-16-day waves with more wave activity observed during the winter similar to what 

was observed for SANAE. The zonal wind DT shows long period planetary waves stretching 

from 8 to 30 days wave periods. At around day 210 the presence of a weak quasi-14-day wave is 

noted with a low wave power of 90 m2.s-2.  In Figure 5.14d the presence of quasi-5-day wave is 

noted though it is very weak.  Similarly, the presence of quasi-5-day wave was observed in the 

MLT region over the Northern Hemisphere, (Day et al., 2012). 

 

Figure 5.14: Wavelet power spectrum versus time for the year 2007 for zonal wind (left panel) 

and meridional wind (right panel) for Halley HF radar at ~94 km. DT is shown on the top panel 

whilst SDT is on the bottom panel. 
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Considering the SDT in zonal and meridional wind for Halley Figure 5.14 bottom panel the 

maximum wave power of 350 m2.s-2 is observed around day 250 where there is evidence of long 

period planetary wave activity with wave periods ranging from 10 to 30 days. In Figure 5.13 

(SANAE) and Figure 5.14 (Halley), there is a clear similarity and consistence of the results 

showing a good agreement between the SANAE and Halley HF radar instruments. The results 

from both stations revealed the dominance of quasi-10-day and quasi-16-day waves with the 

latter being the most dominant. The current study has revealed that dominant waves (quasi-10-

day and quasi-16-day) tidal amplitudes show variability at several scales less than a season and 

this could have played a major role in the formation of minor SSW events. 

 

5.7 Zonal Wavenumbers 

The data from SANAE and Halley SuperDARN radar sites was used to calculate zonal 

wavenumbers because the longitudinal difference between the radar sites of ~24 is good enough 

to obtain reliable zonal wavenumbers. The zonal wavenumbers during winter months which 

were calculated from the slope of linear regression of 5-day, 10-day and 16-day wave phases for 

DT and SDT as a function of longitude were presented in Figure 5.15. As explained earlier in 

chapter 4.3, the phase obtained in this analysis is from the 4 day Fourier spectral analysis method 

mainly because only phases that are well resolved in frequency were needed hence, a dynamic 

Fourier spectra method which uses a 4 day data window that is shifted forward by 1 day at a time 

was implemented. For significance, the wavenumbers calculated were those at which both sites 

(SANAE and Halley) had data, and the coefficient of determination was 55%. The positive 

wavenumbers represent eastward propagating waves whilst negative wavenumbers represent the 

westward propagating waves.  
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Figure 5.15: The distribution of the zonal wavenumber for the DT (left panel) and SDT (right 

panel) zonal wind component during the winter season of the year 2007. In the Figure, the 

negative wavenumbers represent the westward propagating wave. 

 

For the 5-day waves (Figure 5.15a, b), zonal wavenumbers of s=1, s=5 and s=8 are noted. An 

eastward quasi-5-day wave propagation in DT is significant since smaller wavenumbers are the 

ones contributing much to the MLT dynamics. The 10-day wave (Figure 5.15c, d) shows 

significant zonal wavenumbers of s=-1, s=-2, s=5, s=±6 and s=8 but the most dominant are s=2 

and s=5. Eastward propagation small wavenumbers s=2 and s=3 in the quasi-10-day wave in DT 

are of greater importance and could have contributed much to the formation of minor SSW 

events. Figure 5.15d, e shows the 16-day significant zonal wavenumbers of s=0, s=±1, s=±2, 

s=±3, s=±4 and s=5 but the most dominant are s=3 followed by s=1 then s=4. The stationary 

planetary wave and eastward propagating quasi-16-day in DT with zonal wavenumbers s=1, s=2, 

s=3 and s=4 could have contributed greatly on the wave interaction which resulted in the 
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formation of minor SSW. The quasi-16-day in SDT with an eastward propagation and zonal 

wavenumbers s=1 and s=4 and westward propagation with zonal wavenumbers s=-4, s=-2 and 

s=-1 were vital to the causes of minor SSW events as well. The stationary wave was present in 

both DT and SDT quasi-16-day wave and this wavenumber could have played a big role for the 

occurrence of minor SSW. 

 

Based on Wavelet power spectra on Figure 5.13 it can be observed that DT and SDT shows wave 

activity with wave period below 25. This analysis is in agreement with a study by (Pancheva et 

al., 2000a, b) in which they discovered amplitude variations by a significant nonlinear interaction 

between tides and planetary waves with periods between 2 and 20 days. Some previous studies 

have shown that planetary waves of smaller wavenumbers (e.g. s=0, s=±1 and s=±2) are the 

contributing factor for the deceleration of the mean flow and the mesospheric cooling in the 

MLT region during the major SSW in the Southern Hemisphere (e.g. Cho et al., 2004 and 

Mbatha et al., 2010b). In this study eastward zonal wavenumbers of s=1 and s=2 have been 

found in the Southern Hemisphere which agrees with a study by Macdonald et al., (2011), which 

reveals that the eastward propagating wavenumber s=1 is generally the largest amplitude mode 

in the Southern Hemisphere winter, followed by the eastward propagating s =2 mode. 

 

Considering the days on which minor SSW events took place as illustrated in Table 5.2 above, it 

can be noted that the quasi-10-day and quasi-16-day waves had more wave activity compared to 

the 5-day wave in both the DT and SDT. This means that the 5-day wave had a lesser 

contribution to the onset of minor SSW events. The nonlinear interaction of DT with quasi-10-

day wave with wavenumbers s=2 and s=3, eastward propagation could have imposed a 

significant contribution to the deceleration of the mean flow for the enhancement of minor SSW 

events. The modulation of DT by quasi-16-day wave with wavenumbers s=0, s=2 and s=3 could 

have contributed to the deceleration of the mean flow as well. The SDT interacted with westward 

propagation quasi-16-day wave with wavenumbers s=-1 and s=-2 and this might have enhanced 

the formation of minor SSW events. A study by Laskar et al., (2014) revealed that for those 

major SSW events in which the quasi-16-day amplitudes are high, the broad variations in the 

amplitudes of semidiurnal tide and the quasi-16-day amplitudes were quite similar.  
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A similarity of the significant wave numbers of s=-1, s=±5 and s=3 noted in the zonal wind for 

the quasi-10-day wave discussed earlier in chapter 4.3 (Figure 4.11) and the zonal wavenumbers 

for DT in Figure 5.15, was noted. This gives evidence of wave-wave interaction during the 

modulation of DT by quasi-10-day wave in the MLT. Such an analysis is similar to a convincing 

conclusion that stationary and traveling waves with the same zonal wave number when present 

together would interfere and this interference will result in transient fluctuations of the wave 

amplitude with time (e.g. Smith, 1985). Such non-linear interactions will decelerate the mean 

flow and leads to wave breaking, which will in turn form minor SSW.  

 

 5.8 Summary and Discussion  

In this chapter, the NCEP reanalysis data and the UKMO data assimilation were used to analyse 

the planetary wave activity during the years 2007 and 2010 minor SSW by investigating the 

variation of zonal mean wind at 60°S and temperature at 80°S with time. Four minor SSW events 

were noted in each case and the last SSW event for the year 2010 was classified as a final 

warming.  

To examine the presence and temporal evolution of long period waves in the stratosphere before, 

during and after the onset of the minor stratospheric warming events, the wavelet power spectra 

of the UKMO zonal mean zonal wind component for 10 hPa, 3 hPa, 1 hPa, and 0.3 hPa pressure 

levels were calculated for the period range from 2 to 28 days. A very strong presence of 

planetary waves of periods between 5 and 28 days during winter months was noted and it seemed 

to dissipate in late winter. The presence of quasi-10-day and quasi-16-day waves during minor 

SSW events was also noted. The amplification of the wave activity was concluded from the fact 

that the wave activity gets stronger and stronger as it propagate upwards. For the year 2007 the 

presence of quasi-10-day, quasi-16-day wave and quasi-14-day waves of zonal wavenumbers 

s=0 and s=-1 was noted.  

 

The diurnal tide and semidiurnal tide interaction with planetary waves was analysed. The zonal 

and meridional wind components for the year 2007, showed the amplification of the DT and 

SDT by quasi-10-day and quasi-16-day waves. The maximum wave activity was observed 

during the winter months. In general, the DT revealed traces of more planetary wave activity 

compared to the SDT. 
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Chapter 6 

6.1 Summary and Conclusion 

In this study, the dynamics of the Southern Hemisphere middle atmosphere was investigated 

using SANAE and Halley HF radars with the focus on waves with periods less than 30 days. 

UKMO data assimilation and NCEP reanalysis data were used to investigate minor Sudden 

Stratospheric Warming for the years 2007 and 2010. Chapter 3 presented all the instruments and 

data analysis techniques that were used in this study. This includes the Short-Time Fourier 

Transform, wavelet analysis and complex-demodulation techniques which were implemented for 

data processing.  

Planetary and tidal waves were investigated since they play an important role in the middle 

atmosphere dynamics. In Chapter 4 the zonal and meridional wind components of meteor wind 

data measured by the SANAE and Halley SuperDARN HF radars were used to investigate the 

variation of the daily mean wind, planetary and tidal waves of periods below 30 days in the MLT 

of the Southern Hemisphere for the years 2005 to 2007. There was a good agreement between 

the two instruments used and this coincides well with the expected, since the two instruments are 

separated by a longitudinal difference of ~24 degrees, good enough to estimate or measure the 

same variable in the common time mode of operation. The interaction of planetary waves with 

tides for the year 2007 was studied using zonal wind data from SANAE and Halley stations and 

there was good agreement between these two data sets as well. The DT and SDT showed the 

presence of quasi-10-day, quasi-14-day, quasi-16-day wave and some long period planetary 

waves. These waves could have interfered with the DT and SDT leading to the deceleration of 

the zonal mean flow, hence leading to the formation of minor SSW events. The wave activity 

was more dominant during the winter season though some traces of wave activity were noted in 

summer and spring.  

 

Significant short zonal wavenumbers were investigated for the years 2005 to 2007 from the 

linear regression of phase as a function of longitude. The specific year of interest for this study, 

the year 2007 revealed that the zonal and meridional wind components of the 5-day wave 
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showed significant wavenumbers of s=-2, s=0 and s=7 with approximately the same number of 

counts. 

The 10-day wave showed significant zonal wavenumbers of s=±3, s=±1, s=1, s=2, s=3, s=4, s=5 

and s=6 but the most dominant were s=2 followed by s=0 then s=3. The 14-day wave showed 

significant zonal wavenumbers of s=±6, s=-5, s=-2, s=±1 and s=0 in the zonal and meridional 

wind components, but the most dominant were s=-1 followed by s=-2 then s=0. The wave 

numbers s=0 and s=1 were the contributing factors for the deceleration of the mean flow and the 

mesospheric cooling in the MLT region during the year 2002, which is a major SSW in the 

Southern Hemisphere, similar to studies by Mbatha et al., (2010b)  and Chou et al., (2004). It can 

be concluded that short zonal wave in the quasi-10-day, quasi-14-day and quasi-16-day waves 

contributed to the enhancement of the year 2007 minor SSW events. In chapter 5 the NCEP 

reanalysis data was used to analyse the planetary wave activity during the minor SSW for the 

years 2007 and 2010. The tides and planetary wave interaction during the minor SSW for the 

year 2007 was investigated using the UKMO data assimilation and both the DT and SDT showed 

the presence of quasi-10-day and quasi-16-day waves.  

The minor Sudden Stratospheric Warming over the Southern Hemisphere for the year 2010 was 

studied and four minor SSW events including the final warming were observed during the winter 

season. All events managed to decelerate the mean flow associated with an increase in 

temperature, but did not manage to reverse wind propagation direction to cause a major sudden 

stratospheric warming which was the same case for the year 2007. Minor SSW events are 

responsible for the preconditioning of the stratosphere for a major sudden stratospheric warming 

to occur. The Major SSW phenomenon is common in the Northern Hemisphere unlike in the 

Southern Hemisphere, where it was once noted in the year 2002 and was reported by (e.g. 

Baldwin et al., 2003; Dowdy et al., 2004; Mbatha et al., 2010b and Dowdy, 2005). In the year 

2010 the reversal of zonal mean flow from eastward direction to a westward direction only took 

place from approximately day 300 which is a general change of season and no warming usually 

takes place until the next reason. 

The NCEP and UKMO data sets proved to be consistent and reliable in estimating minor SSW 

events since they displayed similar results when a similar year of interest was investigated. The 

two data sets showed exactly the same wave variation with time in both magnitude and time. The 
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UKMO data was used to investigate the planetary waves during minor SSW and it was found 

that there was wave amplification as the wave propagates vertically upwards.  

 

6.2 Future work 

In the climatology of planetary waves and tides coupling the mesosphere, the analysis can be 

done using more instruments (e.g. in situ instruments, satellite data and HF Radar data in order 

for the instruments to complement each other for best results). The variation of planetary waves 

and tides can be investigated at different latitudes to find their origin and how they propagate 

upwards. This involves investigating the coupling between stratosphere and mesosphere and 

interaction of planetary waves with tides during minor SSW events. Such an analysis will be 

useful in circumstances where by a wave propagates from the Northern Hemisphere causing 

effect on the Southern Hemisphere. This will give information of the origin and propagation of 

such waves which emanate from one Hemisphere to another and the comparison of events which 

occurs in different Hemispheres at the same time frame. An inter-annual comparative study over 

a long period of years can be used to find the trend of minor SSW patterns. This will be a 

stepping stone based on the minor SSW events observed during the pre-conditioning of the 

stratosphere prior to the occurrence of the once ever observed major Southern Hemisphere 

stratospheric warming in the year 2002 (e.g. Baldwin et al., 2003; Mbatha et al., 2010b; Dowdy 

et al., 2004 and Dowdy, 2005). Predictions of the next probable intense minor SSW or a major 

SSW can possibly be achieved.   
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