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ABSTRACT 

The environment is currently experiencing the negative effects of globalisation and 

unsustainable development with environmentally harmful activities increasing at an alarming 

rate in South Africa and other developing countries. This is due to these countries 

circumventing the implementation of environmental policies against foreign investors, such 

as vehicle manufacturers and chemical industries, to allow for a reduction in fiscal austerity 

by increasing the gross domestic product. The effects of these activities have a greater impact 

on the environment and population of developing nations than developed ones. Heavy metal 

contamination is one of the major concerns related to vehicle manufacturers and toxic 

chemical industries in terms of environmental management.  

The aim of this research was to assess the impact of vehicle pollution along the South African 

National Road (N3) between Durban and Hilton as it is one of the major transportation routes 

from the harbour. The elemental concentrations in the leaves of Bidens pilosa, that are picked 

and cooked by communities that live along the roadside, were investigated. The 

concentrations of thirteen elements were selectively investigated to determine the impact of 

soil quality on elemental uptake by vegetation and to assess for potential metal toxicities. Soil 

was evaluated for metal pollution by calculation of geoaccumulation indices and enrichment 

factors. Common sources of contamination were identified by principal component analysis 

and spatial distribution of toxic elements; lead and cadmium was developed via geographic 

information system (GIS). 

The study showed Bidens pilosa to contain high concentrations of toxic metals especially that 

of lead, which were linked to high soil concentrations. Soil quality indicators showed soils to 

be moderately to heavily contaminated in some areas and moderately contaminated in others. 

Enrichment results showed moderate to significantly enriched soils.  
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Statistical analyses indicated different sources for the toxic metals (cadmium and lead) and 

the Kriging interpolation study depicted and demonstrated the spatial diffusion of both 

cadmium and lead concentrations throughout the study area of the N3. The road transport 

sector is a key source for heavy metal contamination as it is the preferred method of transport 

by most industries in South Africa and other developing countries. This study therefore 

provides insight into the impacts of vehicle pollution in the surrounding environment. 
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ABBREVIATIONS 

 

CBD – Central business district 

CRM – Certified reference material 

DOH – Department of Health, South Africa 

DWAF – Department of Water Affairs and Forestry 

EF – Enrichment factor 

FAO – Food and Agricultural Organisation 

GIS – Geographic information system 

ICP-OES – Inductively coupled plasma – optical emission spectrometry 

Igeo – Geoaccumulation index 

ND – Not determinable 

NEM: WA – National Environmental Management Waste Act  

PM – Particulate matter 

WHO – World Health Organisation 
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CHAPTER 1 : INTRODUCTION 

 

Whilst development in South Africa and other developing nations is increasing rapidly, the 

negative impact on the environment is increasing exponentially. Heavy metal contamination 

is one of the major concerns directly related to industrial development in terms of 

environmental management (Zaidi et al, 2005). Natural land has been transformed for urban 

land use at an increasing rate since industrialisation, with brought about chemical, physical 

and biological changes as well as changes in biodiversity (Nogaim et al, 2013). These 

impacts are due to an increase in all forms of waste and effluent from a plethora of land uses 

and alterations in the natural landscape, which alter properties of soil and concentrations of 

heavy metals (D’Mello, 2003). The soil along roads is a reservoir for pollutants and heavy 

metals which result from vehicular emissions and improper waste disposal (Nogaim et al, 

2013). Pollution and soil contamination processes have become a serious environmental 

concern in both developed and developing countries. In particular, heavy metals and its 

impact on environmental health are of great concern as these metals are introduced into the 

food chain via plants that absorb them from the soil (Steenland and Boffetta, 2000). 

The elemental content in plants is indicative of the surrounding environment. Trace metal 

analysis of edible vegetation and soil characteristics are excellent environmental indicators of 

the link between pollution and human impacts. Currently, the assessment of trace metals in 

soil has become increasingly important due to public awareness on the link between soil and 

food. Pollution of the environment by metals, whether essential or non-essential, poses major 

risks to living organisms as metals are not biodegradable and accumulate within soils over 

time which results in higher uptake by living organisms (Singh, 2005). Pollution by industries 

and other fossil fuel burning innovations, such as automobiles, are typically the cause of 
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increased concentrations of trace metals in soils and the environment (Palige & Chmielewski, 

1996). Rivers are also affected by the burning of fossil fuels. To assess for pollution by 

industries and potential toxicities to human health, the quality of soil needs to be determined 

and its influence on plant uptake evaluated. 

The direct and indirect impact of pollution on the environment and humans are often 

unnoticed by local communities in third world countries due to the mind-set of individuals, 

cultivated by poverty and the basic need for survival (Steyn & Herselman, 2005). Rural 

communities in South Africa are alerted to pollution via the health of their livestock and wild 

animals. For example, chronic copper toxicities were found in ruminants in the vicinity of the 

Kruger National Park in Mpumalanga as the poisoning of cattle and impala occurred due to 

inefficient management of emissions from a copper mine (Herselman et al, 2005). A 

concerning detail is that mitigation measures were minimal and the impact on human health 

and other affected species of the food chain were not evaluated. Studies and assessment of the 

environment with regards to accumulation of trace metals should be prioritised, particularly 

metals such as arsenic (As), lead (Pb), copper (Cu), cadmium (Cd), chromium (Cr), nickel 

(Ni), selenium (Se), mercury (Hg), and zinc (Zn), due to its adverse effects on human health, 

if at elevated levels (McLaughlin et al, 1999). By identifying sources of pollution and 

implementing change to manage pollution, soil and plant contamination can be reduced 

which would then reduce exposure to humans through the food chain. Sources of pollution 

can be identified and mitigation measures implemented if studies are conducted to assess this 

accumulating health risk. Total soil concentrations of heavy metals provide an estimate of the 

risk of exposure to plants and animals but it does not indicate the extent and effects thereof 

(Alloway, 2005). 
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Due to economic conditions and cultural preferences, people in both rural and urban areas 

have been moving towards indigenous vegetation which is picked from the wild, as these 

types of vegetation have a much lower commercial value and are abundantly available 

(Schippers, 2000). However, there has been an increase in food poisoning amongst both 

humans and animals due to contamination of these foods which results from many factors 

such as pesticides and other forms of pollution which contain heavy metals (D’Mello, 2003).  

 

1.1 Problem Statement 

Vehicular emissions are a crucial environmental concern in the twenty first century.  South 

Africa is a developing country and a nation with a high poverty index; therefore, a large 

number of motor cars, trucks, taxis and buses are older model vehicles which emit higher 

levels of environmental contaminants compared to newer, more technologically advanced 

vehicles that are designed to abide by laws imposed on vehicle manufacturers. However, 

even these newer models emit cumulatively high levels of environmental contaminants 

including trace metals. Road infrastructure, which is generally in close proximity to 

agricultural land and along which wild edible vegetation grows, is a route of exposure to 

heavy metals in humans and animals alike. Bidens pilosa L. is a herb that forms part of a 

staple diet to many people living in rural areas across South Africa, due to traditional 

knowledge on creating dishes such as imifino and isigwamba and due to high poverty levels 

which force communities to eat these inexpensive and readily available forms of nutrition. 

Rural communities that live in close proximity to roads pick and eat this herb from the 

roadside due to accessibility.  However, by consuming this herb along roadsides, there is 

danger of exposure to toxic chemicals emitted by vehicles. 
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1.2 Aims and Objectives 

The aim of this study is to assess the impact of vehicle pollution in the surrounding 

environment of the South African National Road (N3) between Durban and Hilton as it is one 

of the major transportation routes from the harbour. The elemental concentrations in the 

leaves of Bidens pilosa which grows along the N3 and is picked and eaten by communities 

that live along the roadside is also investigated as a function of soil quality. This was 

achieved by collecting plant and soil samples from the roadside along the N3. 

The objectives of the research are: 

1. To determine the concentrations of selected elements As, Cd, Ca, Cr, Co, Cu, Fe, Mg, 

Mn, Ni, Pb, Se and Zn in soil and vegetation that grow along the South African 

National Road (N3), using inductively coupled plasma – optical emission 

spectrometry (ICP-OES). 

2. To compare the elemental content in vegetation and to assess for potential toxicities 

by comparing to maximum permissible limits. 

3. To evaluate the levels of contamination and enrichment in the soil for each metal by 

calculating the geoaccumulation index (Igeo) and enrichment factor (EF). 

4. To investigate whether contamination, if present, is as a result of vehicular emissions 

or other sources. 

5. To determine the spatial distributions of the two major toxic heavy metals, Pb and Cd, 

along roadside using geographic information system (GIS). 
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CHAPTER 2 : LITERATURE REVIEW 

 

Particulate matter (both organic and inorganic forms) within urban atmospheres is mainly as 

a result of vehicular emissions. This includes metals, at trace amounts, due to different 

vehicular emissions with each source contributing a unique set of emissions. Exposure to 

particulate matter (PM) by humans occur simultaneously via PM10 (coarse dust particles 

between 2.5 and 10 µm in diameter) and PM2.5 (fine particles 2.5 µm or smaller in diameter 

which can only be detected by a microscope) (Lohse, 2001). Heavy metal pollution is a 

problem on a global scale as heavy metals are imperishable and toxic at high concentrations. 

The trace metals, Cd, Cr, Pb, Zn, Fe and Cu are most prominent in contaminated soils (Wong, 

2006). 

Industrial activities together with vehicular emissions contribute substantially to heavy metal 

contamination in roadside soils. This affects vegetation, animals and humans that live in the 

vicinity of the road. The construction of road networks and infrastructure to meet industry 

demands has led to major changes in land use of many areas. These include de-forestation, 

loss of wetlands and natural habitats which, in-turn, affect the biodiversity of the area. 

Previous studies on trace metal concentrations of vehicular emissions have found 

concentrations of Pb, Cu, Zn, Cd and Ni to decrease with distance away from the roadside 

(Joshi et al, 2010; Pagotto et al, 2001). However, contaminated soils and dust particles were 

also found to be dispersed across a large area along the road due to the erosive properties of 

wind and rainfall.  

Heavy metal concentrations in the environment are caused primarily due to air pollution 

which is via vehicular emissions, industrial effluents, and other waste producing activities 

(Figure 2.1). Vehicle congestion within road structures contributes significantly to particulate 
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matter numbers. This occurs in both first and third world countries. Central business districts 

and peripheral industrial hubs of urban nodes have a higher concentration of emissions due to 

the high traffic flow and are therefore considered to act as a sink to chemicals and metals 

leaching into the environment. This is a serious health and environmental concern which 

would ultimately affect quality of life and increases mortality rates if allowed to accumulate 

without a proactive plan of rehabilitation and reduction (Fabietti et al, 2010). 

 

 

 

 

 

 

 

 

 

2.1 Vehicular Emissions 

Schauer et al (2006) conducted a study which assessed the composition of vehicular 

emissions such as exhaust emissions via a tunnel emissions test. These were compared to 

source profiles developed from road dust and road dust formed from brakes, tyres and other 

component wear (Table 2.1). They concluded that trace metal concentrations were dependent 

on many factors such as type of vehicles in an area (heavy, light, petrol, diesel and engine 

Metalliferous mining and smelting 

(As, Cd, Pb and Hg) 

ANTHROPOGENIC SOURCES 

OF METAL CONTAMINATION 

Agriculture 

(As, Cd, Cu, Pb, Se, U and Zn) 

Industry 

(As, Cd, Cr, Co, Cu, Hg Ni and 

Zn) 

Water disposal 

(As, Cd, Cr, Cu, Pb, Hg and Zn) 

Atmospheric deposition 

(As, Cd, Cr, Cu, Pb, Hg and U) 

Figure 2.1: Anthropogenic activities leading to contamination of soils by heavy metals  

(Gupta et al, 2016). 
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capacity), type of driving (high speed or stop and go) and environmental factors such as 

climate, topography and geology of the area. 

Tunnel tests measure emissions of a large fleet under real-world driving conditions, but all 

measurements include brake wear which contributes significantly to metal emissions, notably 

for Fe (64%–84%), Cr (23%– 43%), Mn (53%–75%), Cu (72%–91%), Zn (17%–56%), Sr 

(22%–36%), Sb (99%–100%), and Ba (85%–92%). Gasoline tailpipe emissions contributed 

up to 20% to roadway emissions for Mg and Ca, up to 32% for Pb, and more than 20% for Zn 

and Mo. These emissions were also the sole source of Pt in some tests. Metals were also 

attributed to diesel tailpipe emissions, including Zn (up to 11%), Pb (up to 32%), Cd (up to 

41%), and V (up to 34%) (Schauer et al, 2006).  

Table 2.1: Average particulate matter (PM2.5)
 
tailpipe emission composition profiles  

(Schauer et al, 2006). 

 

Petrol Vehicles Diesel Vehicles 

As 41.3 565 

Ca 3856 4004 

Co ND ND 

Cu 215 321 

Cr 51.4 123 

Cd 0.07 15.4 

Fe 796 2797 

Mg 1208 945 

Mn 22.5 74.3 

Se ND ND 

Ni ND ND 

Pb 83.5 137 

Zn 4953 2966 
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The accumulation of heavy metals in the top horizons of soils is due to sedimentation, 

impaction and interception. The cumulative properties of soil and its retention capacity are of 

grave concern in terms of environmental impact and human exposure. Trace metals, being 

non-biodegradable and having long biological half-lives within biological beings, cause 

hepatic, renal, neurological and hematopoietic toxic effects which are detrimental to human 

health (Rimmer et al, 2006). 

Ingestion of agricultural crops and affected animals via the food chain is another route of 

trace metals entering the human body (Logan et al, 1997). Leafy green vegetables have been 

shown to accumulate high concentrations of trace metals; the uptake of which is dependent 

on factors such as pH, soil organic matter and cation exchange capacity (Chaney et al, 1997).  

Previous studies on trace metal concentrations within soil horizons have concluded that the 

traffic sector is a primary contributor to concentrations in soil in both rural and urban areas 

(Sorme, 2001). Previous studies have also shown vehicular emissions (tyre and brake wear, 

exhaust emissions and oil spillage) and traffic density to contribute significant amounts of 

heavy metals to the atmosphere and surrounding environment (Hjortenkrans et al, 2006; 

Okunola et al, 2008). 

Nutrients are chemical elements or compounds that are vital to the physiology or metabolism 

of an organism. Essential elements are obtained from food and are not synthesised in the 

organism; non-essential elements are not required for proper functioning of the body. 

Elements essential to man include Ca, Cu, Co, Cr, Mg, Mn, Ni, Se, and Zn and most of these 

elements are essential at low concentrations (Harrison and Mora, 1996). The accumulation of 

trace metals, usually due to anthropogenic causes, in organs such as the liver and kidneys of 

humans are of concern due to adverse health effects which include abnormal functioning of 

many biochemical processes (WHO, 1992), the development of cancer (Trichopoulos, 1997) 
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and the development of abnormalities amongst children (Gobbes and Chen, 1989). The 

metals of concern include As, Cd, Cr, Hg and Pb. Elements, both essential and non-essential, 

are found in soil; exposure of consumers to heavy metals is primarily via crops grown on 

contaminated soil.  

 

2.2 Elements 

2.2.1 Toxic elements 

Lead (Pb) is a heavy, non-essential, toxic metal, which, in high doses, can affect the nervous 

system and other organs of the body. Lead can accumulate in the bodies of humans and 

animals even through long term, low-level exposure (Herselman, 2007). Lead, which was 

present in petrol, was phased out in South Africa in 2006. Industrial emissions, vehicle 

exhaust emissions and paint (including road-marking paint containing Pb) are the primary 

sources of Pb emissions into the environment and atmosphere (Bigdeli and Seilsepour, 2008). 

The breakdown of tyres from vehicles also introduces Pb into the environment (Giannouli et 

al, 2007). Gołuchowska and Strzyszcz (1999) found cement dust to contain high amounts of 

Pb.  

Lead is toxic to humans since the body does not metabolise it and absorbs about 20% of 

ingested amounts directly into the bloodstream (Department of Environmental Affairs, 2010). 

Constant exposure to relatively low levels of Pb causes neurological impairment in children 

and constant or isolated exposure to relatively high levels of Pb causes serious damage to the 

brain and organs of the human body such as the liver and kidneys in adults and children, 

which ultimately leads to death (Singh, 2005). The acceptable limit for Pb in vegetables is 0.3 

mg kg
-1

 (Nogaim et al, 2013). High levels of Pb are associated with high traffic areas since 
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Pb is released into the environment through the exhaust of internal combustion engines 

(Bigdeli and Seilsepour, 2008). In recent years, regulatory authorities have been on high alert 

due to contamination by Pb as a result of its highly toxic nature and adverse health effects for 

both humans and animals. Lead accumulation in humans and animals is via the respiratory 

tract by inhaling contaminated dust and via consumption of contaminated food (Bigdeli and 

Seilsepour, 2008).  

Lead can be found in car batteries within a lead-acid or lead-oxide electro-chemical system 

and, on average, weighs 8 kg per 13 kg battery. It is also used to manufacture wheel balance 

weights which are placed, non-permanently, within the rims of the vehicle. These weights 

have a tendency to fall off after time due to rotation of the wheels and impact with roads and 

potholes; each vehicle, on average, contains 200 – 250 g of Pb per car (Root, 2000). Lead is 

also found within electrical components and circuit board solders (175 g per vehicle); spark 

plugs (1.8 g per vehicle) and lighting bulbs (12 g per vehicle). It is also used within many 

steel components of the vehicle to assist with improved machinability, which signifies a high 

usage of Pb in the vehicle manufacturing process and within the product itself. On average, 

these steel items contain 0.35% Pb by weight. Lead is found within copper alloys which are 

predominantly used within the internal combustion chamber of engines. A rough estimate of 

8 to 12 kg of Pb containing copper alloys is found within a single vehicle. It is also found as a 

lining inside petrol tanks due to a hot dip process. Vibration dampers contain Pb of between 

4.7 to 20 kg in newer vehicles to reduce road and motion noise and increase stability. 

Vulcanizing agents for high pressure fuel and water hoses contain Pb of up to 4.7% by 

weight. Stabilisers in protective paints contain Pb of between 10 and 50 g per vehicle. Lead 

forms, on average, 2% of the weight of materials used for brakes and brake linings (Lohse, 

2001). The concentration range of Pb in South African soils is 0.93 – 11.9 mg kg
-1
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(Herselman, 2007) and the worldwide mean (earth’s crust) is calculated to be 17 mg kg
-1

 

(Rudnick, 2014).  

Arsenic (As) is a toxic and carcinogenic element which can lead to fatality if ingested in large 

quantities (Saldivar and Soto, 2014). Usual symptoms of an overdose of As are stomach 

related conditions. Arsenic is found in organic and inorganic states due to the weathering of 

parent rock, in soil, natural gas from shale and water. Arsenic is used in a few commercial 

products, for example, preservatives and fertilisers (Saldivar and Soto, 2014). The worldwide 

mean (earth’s crust) of As is calculated to be 4.8 mg kg
-1

 (Rudnick, 2014) and the 

concentration range of As in South African soils is 0.4 – 7 mg kg
-1 

(Pillay et al, 2003).  

Cadmium (Cd) is a naturally occurring, non-essential, toxic element. In recent studies, it has 

been shown to have adverse effects on environmental health such as in soil, plants, animals 

and human health. Cadmium accumulates in the bones and kidneys of humans and animals 

and can lead to adverse effects of the kidneys (Herselman, 2007). High levels of Cd found in 

soils indicate poor waste management from industries and public sectors relating to metal 

processing, fertilisers and raw sewage (Bremner and Beattie, 1995). Cadmium has been 

shown to be absorbed by the roots and leaves of plants. High levels of Cd in plants is due to 

uptake from contaminated soil as a result of fertilisers in agriculture, smelting of metals in 

industries and exposure to untreated sewerage in close proximity to waste water treatment 

works and unmaintained sewerage pipelines (Gulten, 2011).  

Cadmium is found in automobiles and the manufacturing processes of vehicles. Cadmium is 

found in high levels in batteries designed for specific electric and hybrid vehicles which aid 

in a more efficient usage of battery power which extends the range of motion; each vehicle 

contains, on average, about 38 kg of Cd. It is used in electrical components in a glass matrix 

as it enhances the adhesion properties of thick films; approximately 10 µg are used per 
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vehicle in this application (Lohse, 2001). The concentration range of Cd in South African 

soils is 0.89 - 1.17 mg kg
-1

 (Herselman, 2007) and the worldwide mean (earth’s crust) is 

calculated to be 0.53 mg kg
-1

 (Rudnick, 2014).  

2.2.2 Macro-elements 

Calcium (Ca) is an element that is required for optimal functioning of the human body and its 

deficiency affects the skeletal structure of the body. Calcium is also vital for plants as it 

regulates the absorption of nutrients within different plant cells (Sela, 2012). 

Magnesium (Mg) is a vital element which occurs in large quantities within our bones, tissues 

and organs. Magnesium is responsible for muscle, heart and nerve functions and is required 

by the immune system. Magnesium is found in chlorophyll therefore its uptake by humans is 

mainly via green leafy vegetables (Magnesium Resource Centre, 2012). 

2.2.3 Micro-elements 

Chromium (Cr) is an element which is essential for proper body functions of living organisms 

(Mertz, 1967). Chromium (III) is present in a plethora of fruit, vegetables, grains and meat. 

Industrial processes frequently produce Cr (VI), which may serve as an indicator of 

contamination within the environment due to Cr (VI) being more leachable than Cr (III). 

Elevated concentrations have been found in the run-off of Cr from stainless steel and concrete 

(Persson and Kucera, 2001). Chromium (VI) is extremely toxic to all organisms and is 

carcinogenic (Wetterhahn and Hamilton, 1987).  

Copper (Cu) is a trace element which is essential to living organisms. Copper is required 

within the bodies of humans and animals for the formation of haemoglobin in blood and is 

also essential for bones (Herselman, 2007). Exposure to high levels of Cu to humans and 

animals occurs via dust inhalation primarily from industrial processing such as refineries and 
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smelters (Department of Environmental Affairs, 2010). Copper enhancement in soils may be 

connected to the traffic sector as Cu is used in brake linings (Hjortenkrans et al, 2006). 

Possible health effects to humans and animals due to an ingestion of high concentrations of 

Cu are organ damage (liver and kidneys), gastrointestinal impacts and red blood cell 

disturbances (Department of Environmental Affairs, 2010). 

Manganese (Mn) is an essential element for living organisms which is found naturally in soil, 

rocks, food and water. Although Mn is essential for plant growth, high concentrations can be 

toxic (McLaughlin, 1999). Plants are the main source of Mn and are the most important route 

of exposure to humans.  

Nickel (Ni) is an essential element which performs a vital function in metabolism. Extensive 

distribution of Ni in the environment is due to anthropogenic activities such as the burning of 

fossil fuels in industrial and other processes. Nickel present in refinery dust is carcinogenic 

(Department of Environmental Affairs, 2010). Health effects to humans and animals due to 

ingestion or exposure to high concentrations of Ni directly affects the development of unborn 

offspring in pregnant females (Department of Environmental Affairs, 2010). Nickel released 

from concrete surfaces may also add to total Ni emissions (Persson and Kucera, 2001).  

Zinc (Zn) is an essential element for the efficient functioning of an organism’s physiology 

and metabolism. Above acceptable limits of Zn in plants can suppress crop yields and can 

render the soil unproductive (Shipp and Baker, 1975). Humans have a high tolerance for Zn. 

Zinc is an important material used in the galvanizing process and in processing other metals 

such as alloys, bronze and brass. Zinc exposure is primarily through ingestion. Elevated 

concentrations were observed in run-off for Zn from galvanised steel and surfaces painted 

with Zn-containing paints whilst most of the Zn enhancement may be connected to the traffic 

sector (Hjortenkrans et al, 2006). The present use of zinc oxide (ZnO) in rubber is a major 
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source of Zn (Hjortenkrans et al, 2006). Zinc oxide is also used for concrete manufacture to 

improve the processing time and the resistance of concrete against water (Brown, 1976). 

Gołuchowska and Strzyszcz (1999) found cement dust to contain high amounts of Zn which 

can be released into the air and eventually settle onto the soil.  

Iron (Fe) is one of the most abundant metals on earth; it is essential to most life forms and to 

normal human physiology.  In humans, Fe is an essential component of protein involved in 

oxygen transport (Institute of Medicine, Food and Nutrition Board, 2001).  Excess amounts 

of Fe can result in toxicity and even death (Department of Environmental Affairs, 2010).   

Cobalt (Co) is also essential to the human body due to its vital role in a number of 

biochemical metalloenzyme reactions. In plants, it assists with nitrogen absorption and 

chlorophyll production (Petitto et al, 2004). Cobalt is required in minimal amounts for proper 

body functions in both humans and animals therefore, there is a possibility (although not 

common) for Co toxicity in humans and animals (Herselman, 2007).  

Selenium (Se), found within the proteins of tissues in fauna and flora have a negative impact 

on human health if the acceptable levels are surpassed. Selenium is found in higher amounts 

within foods such as seafood and cereals due to the higher amounts of proteins within these 

foods. A high level of Se in plants is generally due to high levels in soil (Hathaway et al, 

2014). 

 

2.3 Bidens pilosa L. 

Bidens pilosa L. (which is commonly known as the Blackjack plant in English, Ucucuza / 

Uqadolo in isiZulu, Gewone Knasekerel, Umhlabangubo, Mushiji and Muchize in other 

languages) comes from the plant family, Asteraceae (DAFF, 2011) (Figure 2.2). Bidens 
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pilosa, which originated from South America grows in subtropical and tropical areas such as 

South Africa, China, Spain and Mexico (Weinberger and Msuya, 2004).  Bidens pilosa 

usually grows in areas with higher average temperatures (Brazier, 2003) and is commonly 

recognised as an inedible weed which has a high tolerance to external factors, therefore, it 

grows wildly. It has been eaten for millennia as a vegetable or pot herb by cultural South 

African tribes such as the Zulu and Xhosa people (DAFF, 2011). The leaves are cooked as an 

herb which is called imifino in isiZulu; the addition of leaves to a mealie meal dish is called 

isigwamba in isiZulu.  The plant is harvested across South Africa during seasons with 

plentiful rain and is found in the local markets at early hours of the morning to maintain 

freshness (DAFF, 2011). It has high nutritional value, serves as a medium for traditional 

medication for illnesses such as anaemia, toothache and blood flow problems, has antiseptic, 

anti-inflammatory and analgesic properties and is used as a tea and spice (Weinberger and 

Msuya, 2004). Due to the lack of literature on this plant and its increasing popularity as a 

food source, it is important to assess for its nutritional value by gathering information on its 

elemental content. 

  

Figure 2.2: Bidens pilosa (http://www.tropilab.com/bidens-pil.html) 

 

http://www.tropilab.com/bidens-pil.html
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Minimal scientific literature is available on Bidens pilosa as a form of food due to a general 

misconception that this plant is an inedible weed. However, indigenous knowledge is 

available via elder members of communities in South Africa, which is gradually being lost 

with each new generation. Bidens pilosa has been identified as a possible hyper-accumulator, 

which is characterised as a plant species capable of absorbing and accumulating extremely 

high amounts of trace metals (Baker and Brooks, 1989). The hyper-accumulator plant can 

take up high concentrations of specific trace metals without indicating toxicity within the 

structure of the plant. Current trends in the science of combatting soil toxicity include the use 

of hyper-accumulators species for decontamination of soils. Few species of plants have the 

ability to accumulate trace metals without toxic effects. Sun et al (2009) conducted a study in 

which the responses by Bidens pilosa through the many stages of growth to Cd and As uptake 

and accumulation was investigated. The results confirmed Bidens pilosa to possess all the 

required characteristics for a Cd hyper-accumulator whilst excluding As. This relationship 

could be investigated for the phytoremediation of soils with As and Cd toxicities. 

 

2.4 Geographic Information System (GIS) 

The geographic information system (GIS) is a tool which is used for a plethora of 

applications. It is a technological cartographic tool in which data can be measured and 

modelled, manipulated and analysed in a spatial framework (Figure 2.3). Geographic 

information system can be used for geochemical mapping of trace metals in which the 

relationship between the trace metals, spatial and geographic features are visually represented 

by mapping analysed features and layers of the above-mentioned features (Awange, 2013). 

An appropriate understanding of the interactions between human activities and natural 

processes is required, as negative consequences could delay the management and 
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conservation of eco-systems and its dependants. The analysis of trace metals in the natural 

environment is fundamental to ecological research as it can be used to acquire a better 

understanding of human technological impacts on the environment and can assist in 

developing mitigation measures to control such impacts. The complex nature of trace metals 

in the natural environment creates difficulties in quantifying data which has a qualitative 

element in terms of social and agricultural best practice. However, advances in computer 

technology such as GIS, in the past decade, have allowed natural scientists and members of 

social and political backgrounds to converge requirements for assessments and policy 

implementation (Burrough and McDonnell, 2015). 

 

 

Figure 2.3: Geographic information system (GIS) 

(https://www.nationalgeographic.org/encyclopedia/geographic-information-system-gis/) 

 

2.5 Geographic Information System (GIS) Based Studies 

Bakir et al (2015) conducted a study in the Hamedan Province of Iran, in which their 

objective was to use GIS coupled with soil analysis via inductively coupled plasma - atomic 

https://www.nationalgeographic.org/encyclopedia/geographic-information-system-gis/
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emission spectrometry (ICP-AES) to assess the effects of anthropogenic activities on trace 

metal concentrations. Total concentrations of trace metals (As, Cd, Co, Cr, Cu, Ni, Pb, V and 

Zn) in samples were analysed via ICP-AES and interpolated via Kriging. The analysis of 

interpolated maps such as in Figure 2.4 indicated As, Cd, Pb and Zn to be from geological 

and agricultural origins such as fertilisers whilst it indicated Cr, Co, Ni and V to be from 

geological origins. 

 

Figure 2.4: Interpolated map for lead (Pb) 

 

2.6 Past Studies on Pollution Conducted in Africa 

Mmolawai et al (2011) assessed for heavy metal pollution along roadside soils in Botswana. 

The geoaccumulation index (Igeo), enrichment factor (EF), contamination factor and pollution 

load index were calculated to assess for metal contamination. Five demarcated zones were 
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classified for analysis, wherein three of the zones where impacted by trace metal pollution. 

Multivariate analysis indicated sources of pollution to be from mixed origins; Pb and Ni, 

were from vehicular emissions; Fe and Mn were from lithogenic processes. The findings of 

the study were targeted to policy makers in Botswana with regards to mitigation of pollution 

from vehicular emissions as there was minimal monitoring and policy implementation in this 

regard.    

 

2.7 Past Studies on Pollution Conducted in South Africa 

Herselman (2007) developed baseline concentrations for heavy and trace metals across South 

African soils in 2007 by analysing approximately 4500 soil profiles. Selected soil samples 

were analysed by inductively coupled plasma - mass spectrometry (ICP-MS) for total and 

exchangeable concentrations of Cd, Co, Cr, Cu, Ni, Pb and Zn.  

Table 2.2: Baseline concentrations of trace metals in each class (mg kg
-1

) 

 

Cd Co Cu Ni Pb Zn 

Class 1 0.001-0.03 0.01-4.72 0.06-3.38 0.02-1.74 0.07-7.20 0.06-2.19 

Class 1-2 0.001-0.04 0.01-13.4 0.06-6.16 0.02-4.18 0.07-12.6 0.06-3.33 

Class 2-3 0.001-0.05 0.03-18.0 0.22-7.91 0.03-6.62 0.27-13.2 0.06-3.53 

Class 3-4 0.002-0.05 0.07-29.1 0.30-12.3 0.04-11.9 0.3-14.7 0.06-3.98 

Class 4-5 0.002-0.06 0.23-58.6 0.44-26.5 0.09-31.3 0.4-15.7 0.08-4.64 

Verification: 

% correct 
92 93 96 95 95 89 

*class descriptions are displayed in figure 2.5  

The results were used to update the current framework on trace metal background 

concentrations in South Africa. Geographic information system maps of the distribution of 

trace metals were developed with 500 random samples serving as a comparison for accuracy. 



20 
 

The theoretical trace metal distribution map is depicted in Figure 2.5 (Herselman, 2007), with 

the corresponding baseline concentration of each metal within the class seen in Table 2.2. 

The resultant maximum threshold values for trace metals (in mg kg
-1

) in South African soils 

are (total and exchangeable): Cd (2 and 3), Co (20 and 50), Cr (80 and 350), Cu (100 and 

120), Ni (50 and 150), Pb (56 and 100), and Zn (185 and 200). Four-fifths of all soils were 

found to be Zn deficient, one-third Cu deficient and one-fifth Co deficient (Herselman, 2007). 

 

 

 

 

Figure 2.5: Theoretical trace metal distribution in South Africa  
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Olowoyo et al (2012) analysed the concentrations and sources of several trace metals in 

Pretoria, South Africa. The samples were collected from ten locations spread across Pretoria, 

in which, varying external factors affected trace metal concentrations. The samples were 

analysed by ICP-MS. Results revealed inconsistent concentrations of trace metals at all ten 

sites. The findings showed high concentrations of Pb, Cu and Zn to be linked to areas with 

high traffic densities such as highways and city centres. Vehicular emissions were determined 

to be one of the major contributing factors of high trace metal concentrations in soils.  

Bvenura and Afokeyan (2012) studied the accumulation of the trace metals Cd, Cr, Mg, Pb 

and Zn in cultivated vegetables (cabbage, carrot, onion, spinach and tomato) in Alice, Eastern 

Cape, South Africa. Random samples were collected from subsistence farms in the locality. 

All samples were digested, and analysed by inductively coupled plasma - optical emission 

spectrometry (ICP-OES). Results showed soils to have low levels of metals which made 

vegetation safe for human consumption. 

Mahlangeni et al (2016) evaluated the distribution of trace metals in Laportea peduncularis 

as a function of soil characteristics. Laportea peduncularis was chosen because it is a 

medicinal plant which is consumed by many local South Africans. Trace metals (As, Ca, Cd, 

Co, Cr, Cu, Fe, Mg, Mn, Ni, Pb and Zn) were assessed for total soil concentrations in the soil 

and leaves by ICP-OES. Geoaccumulation indices and enrichment factors were calculated 

and showed soil samples to be moderately contaminated with significant enrichment. The 

results indicated that concentrations of trace metals in Laportea peduncularis and the soil 

were affected by site specific conditions however, the accessibility and absorption of the 

metals exclusively relied upon the control of the plant. 
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2.8 Environmental Legislation in South Africa 

2.8.1. National Environmental Management: Air Quality Act No.39 of 2004 

The National Environmental Management: Air Quality Act No.39 of 2004 (NEM: AQA), 

which falls under the umbrella National Environmental Management Act (NEMA), has 

replaced the outdated Atmospheric Pollution Prevention Act (No. 45 of 1965) (APPA). 

However, NEM: AQA contains vague legislation against vehicle emissions as it focuses more 

on industries whilst local authorities, such as district and local municipalities, take 

responsibility for monitoring air pollution and meeting nationally to set ambient air quality 

limits.  To reach these air quality limits, an Air Quality Management Plan (AQMP) is to be 

developed via an external consulting company in which strategies and an assessment on 

structures in place is to be analysed and documented. The AQMP then becomes a part of the 

integrated development plan of the Municipality. This encourages appropriate by-laws to be 

passed in accordance with the recommendations of the AQMP. However, sufficient 

legislation and by-laws in all municipalities against vehicular emissions requires immediate 

updating as the traffic sector and associated emissions from it are ever increasing due to 

increased population and current technological and industrial advancements (Department of 

Environmental Affairs, 2004). 

2.8.2 National Environmental Management: Waste Act No.59 of 2008 

The National Environmental Management: Waste Act No.59 of 2008 (NEM: WA), states that 

contaminated land refers to “the presence in or under any land, site, buildings or structures of 

a substance or micro-organism above the concentration that is normally present in or under 

that land, which substance or micro-organism directly or indirectly affects or may affect the 

quality of soil or the environment adversely” (Department of Environmental Affairs, 2012). 
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NEM: WA section 36 (5) provides that: 

“An owner of land that is significantly contaminated, or a person who undertakes an activity 

that caused the land to be significantly contaminated, must notify the Minister and MEC of 

that contamination as soon as that person becomes aware, of that contamination” 

(Department of Environmental Affairs, 2012). 

It is now obligatory by the owner of the contaminated land or by the individual responsible 

for the activities in which the contamination occurred, to notify the minister of such 

contamination. However, areas of contamination must also, by obligation, be noted and 

monitored for remediation by the minister. Such persons convicted of contaminating land are 

liable to a fine not exceeding five million or imprisonment not exceeding five years 

(Department of Environmental Affairs, 2012). 

NEM: WA section 36 (6) provides that the minister can issue a written notice to any 

individual that has been identified as a potential polluter and section 36 (7) allows the 

minister to direct the individual identified in section 36 (6) to undertake a site assessment at 

their own cost. 

NEM: WA provides screening values in which contaminated land should be rehabilitated to a 

specified concentration of trace metals (Table 2.3). 

 

 

 

 

 

 

 



24 
 

 

 

 

 

 

Table 2.3: National Environmental Management: Waste Act No.59 of 2008 (NEM: WA) 

screening values in which contaminated land should be rehabilitated to a specified 

concentration of trace metals (Department of Environmental Affairs, 2012) 

Parameter SSV1 SSV2 SSV2 SSV2   

Metals and 

metalloids 

All land uses 

protective of 

the water 

resources 

Informal 

Residential 

Standard 

Residential 

Commercial/ 

Industrial 

Protection of 

Ecosystem 

Health 

  mg kg 
-1

  

Arsenic 5.8 23 48 150 580 

Cadmium 7.5 15 32 260 37 

Chromium 

(III) 
46000 46000 96000 790000 n/a 

Chromium(VI) 6.5 6.5 13 40 260 

Cobalt 300 300 630 5000 22000 

Copper 16 1100 2300 19000 16 

Lead 20 110 230 1900 100 

Manganese 740 740 1500 12000 36000 

Mercury 0.93 0.93 1 6.5 4.1 

Nickel 91 620 1200 10000 1400 

Vanadium 150 150 320 2600 - 

Zinc 240 9200 19000 150000 240 
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2.8.3 Government initiatives 

Scorgie (2005) states that government led initiatives to reduce vehicle emissions have been 

underway since post-apartheid policy implementation in South Africa. This includes: 

 Removal of lead from fuel which had been implemented in 1996. 

 Equipping vehicles with catalytic converters and other forms of technology to reduce 

emissions from the manufacturer. 

 Recent changes in fuel compositions such as in reduction of sulphur in diesel. 

 Adapting EURO technologies across manufacturers 

 Taxation on CO2 emissions 

 Upgrading of public transport 

 Upgrading of highways 

South Africa is responding to its pollution challenges in various ways.  These include 

legislative reform, revision of pollution limits, proactive planning by local authorities, and 

sector-specific controls. 

  



26 
 

CHAPTER 3 : EXPERIMENTAL 

 

This chapter will discuss, in detail, the experimental techniques and methodologies adopted 

to meet the objectives of this study. 

 

3.1 Experimental Techniques 

3.1.1 Digestion 

The total concentration of heavy metals in soil, water and crops can be determined by a 

number of sample preparation methods. Total metal concentration in soil is the metal 

concentration representing the total amount of metals determined in soil after digestion in a 

strong acid (Dean, 2005). For solid samples, the sample matrix has to be destroyed thereby 

liberating the metals present, before analysis. There are a variety of decomposition 

techniques, of which, acid-digestion is most common. Acid-digestion involves the use of 

oxidising acids e.g. nitric acid (HNO3) and an external heat source to decompose the sample 

matrix. Usually, acid digestion is carried out in an open glass vessel like a beaker on a hot 

plate. An alternative approach to conventional heating involves the use of microwave heating 

(Figure 3.1). Microwave digestion is more efficient than conventional heating since the 

digestion mixture is heated directly and there is no loss of analyte if a closed vessel is used 

(Dean, 2005).  
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Figure 3.1: Pressurised microwave digestion system (Herbert and Hashemi, 2008) 

3.1.2 Inductively coupled plasma - optical emission spectrometry (ICP-OES) 

Techniques such as inductively coupled plasma-optical emission spectrometry (ICP-OES) are 

employed to measure the total metal content present in a medium (Dean, 2005).  Inductively 

coupled plasma - optical emission spectrometry is one of the most versatile analytical 

techniques for quantitative multi-element analysis and it allows for the detection of low 

concentration levels (Dean, 2005). The ICP source produces a stream of high-energy ionized 

gas called plasma, by inductively coupling an inert gas such as argon with a high frequency 

field.  When a sample is injected through the centre of the plasma, a temperature of 10 000 K 

allows for the desolvation, dissociation, atomization and excitation of the elements in the 

sample.  This results in emission of light of unique frequencies for the given elements (Figure 

3.2). The light is proportionate to the concentration of the elements in the sample and is 

measured by an emission spectrometer. The spectrometer is capable of separating the unique 

frequencies into discrete wavelengths and quantifies the results. Some advantages of ICP-

OES due to its high temperatures are the wide linear dynamic range, increase in detection 

limits, lack of chemical interferences, minimum inter-element effects and high accuracy and 

precision. 
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Figure 3.2: Instrumental set-up of ICP-OES (Charles and Fredeen, 1997) 

3.2 Experimental Methods 

3.2.1 Sampling 

The study was conducted on the South African National Road (N3) from Hilton to Durban. 

The study area was selected due to high automobile activity and as a main logistic route for 

trucks from Durban harbour to Johannesburg. The South African National Road (N3) starts in 

the Central Business District (CBD) of Durban heading west via a dual carriageway through 

Westville and Pinetown, through to the Toll Plaza situated at Marianhill which leads to Cato 

Ridge, Camperdown and Pietermaritzburg, after which, is a steep incline up Townhill 

towards Hilton and Howick, en route to Johannesburg. To evaluate the impact of soil quality 

on elemental uptake by wild edible plants that grow across the study area, Bidens pilosa (a 

wild herb) was selected for analysis as the species is known to grow in the vicinity of the N3 

(KwaZulu-Natal) and is picked and eaten by the surrounding rural communities. Bidens 

pilosa was selected  and not agricultural or commercial crops, to reduce the impact on sample 

readings by other variables relating to the cumulative effects of fertilisers and pesticides on 

commercial and agricultural crops. 

The soil samples were obtained from twenty pre-determined sampling locations along the N3 

(Figure 3.3). The sampling locations were mapped out via GIS to be a proportionate and 
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statistically reduced variation of 5 km apart while taking into consideration safe vehicle 

stopping areas. At each sampling location, three soil samples were collected. The first sample 

point was approximately one metre away from the roadside; the next sample point was ten 

metres away from the first point (11 m away from the roadside) and the last sample point was 

ten metres away from the second one (21 m away from the roadside). Sixty soil samples were 

collected in total to compare concentrations relative to distance from the road. Sampling was 

conducted in April 2015 on a warm day (24 ºC) with no rainfall or wind. Due to the horizon 

of the soil known as the plough layer which hosts plant roots that uptake nutrients from the 

soil, all soil samples were collected from a depth of 30 cm by the use of a hand auger 

(Nyangababo and Hamya, 1986).  

Soil aliquots were manually homogenised using a plastic spoon after removal of extraneous 

material such as leaves and rocks. The composited soil volume (500 mg) was reduced to 100 

mg by coning and quartering. Plant samples (B. pilosa) were collected from ten of the twenty 

soil sampling sites due to dispersed growing patterns of the plant. These samples were 

collected from roadside soils approximately one meter away from the road. All samples 

(plant and soil) were placed in polyethylene bags and stored in cooler bags for transportation. 

Schauer et al (2006) reported that trace metal concentrations in soil are dependent on many 

factors such as types of vehicles in the area, driving styles and environmental factors such as 

climate, topography and geology of the area. Table 3.1 lists the sample locations with 

environmental factors for the area.  
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Figure 3.3: Study area in relation to country and province  

 

 



31 
 

Table 3.1: Soil and plant sample locations along the South African National Road (N3) and selected environmental factors 

Site 

Plant 

Sample Town Land use Geological Formation 
Mean annual 

temp (°C) 

Rainfall 

Index 

(mm) 

Latitude Longitude Altitude (m) 

1  Durban Harbour Urban area Bluff/Berea (QB) 16 to 22 15 to 50 -29.861644 31.032464 7.73 

2  Durban CBD Urban area Dwyka (C-Pd) 16 to 22 15 to 50 -29.845316 30.984819 81.18 

3 1 Westville Urban area Natal (O-Sn) 16 to 22 15 to 50 -29.846915 30.935437 177.69 

4  Pinetown Urban area Natal (O-Sn) 16 to 22 15 to 50 -29.834026 30.888884 267.44 

5 2 Marianhill Urban area Natal (O-Sn) 16 to 22 15 to 50 -29.830242 30.840739 335.91 

6  Marianhill Toll Urban area Natal (O-Sn) 16 to 22 15 to 50 -29.823759 30.801042 379.36 

7  Hillcrest Commercial sugarcane Natal (O-Sn) 16 to 22 15 to 50 -29.807418 30.752936 568.65 

8 
 

Shongweni Plantation 
Maphumulo 

metamorphic suite (Nbi) 
16 to 22 15 to 50 -29.784705 30.715724 726.41 

9 3 Drummond Grassland Natal (O-Sn) 10 to 22 15 to 60 -29.763381 30.677502 515.08 

10  Inchanga Grassland Dwyka (C-Pd) 10 to 22 15 to 60 -29.741661 30.63336 746.8 

11  Cato-Ridge Urban area Dwyka (C-Pd) 10 to 22 15 to 60 -29.734245 30.585172 758.92 

12 4 Camperdown Grassland Dwyka (C-Pd) 10 to 22 15 to 60 -29.730827 30.533137 755.53 

13 
 

Lynfield Park 
Annual commercial crops 

dryland 
Dwyka (C-Pd) 10 to 22 15 to 60 -29.70506 30.494042 795.19 

14  Ashburton Grassland/bush clumps mix Dwyka (C-Pd) 10 to 22 15 to 60 -29.666533 30.460618 638.64 

15 5 Scottsville Urban area Dolerite (Jd) 10 to 22 15 to 60 -29.637878 30.415325 693.47 

16 6 Pietermaritzburg Urban area Pietermaritzburg(Pp) 10 to 22 15 to 60 -29.596508 30.401905 622.15 

17 7 Town Bush Urban area Pietermaritzburg(Pp) 10 to 22 15 to 60 -29.585488 30.347501 815.82 

18 8 Montrose Plantation Vryheid(Pv) 10 to 22 15 to 60 -29.569432 30.316402 1015.58 

19 9 Hilton grassland Volkrust (Pvo) 10 to 22 15 to 60 -29.542249 30.299699 1137.21 

20 10 Cedara Bushland Volkrust (Pvo) 10 to 22 15 to 60 -29.538983 30.27709 1061.65 
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3.2.2 Reagents and standards 

Analytical reagent grade chemicals were used and were supplied by Merck (Kenilworth, NJ, 

USA). All glassware was soaked in HNO3 (3M) then rinsed in double distilled water prior to 

use.  

3.2.3 Sample preparation 

Soil samples were air-dried, passed through a 2 mm mesh sieve to obtain the soil fraction and 

crushed using a mortar and pestle to reduce particle size to a powderised form, for microwave 

digestion. Plant samples were washed with double distilled water to remove extraneous 

matter, oven dried at 40 ºC then ground in a food processor (Russell Hobbs range) to obtain a 

powder. All samples (plant and soil) were placed in polyethylene bottles and stored in a 

refrigerator at 4 ºC until digestion, which was within a week of collection.  

3.2.4 Digestion and elemental analysis of samples 

Prior to analysis, the sample matrix has to be simplified by destroying the organic matrix; one 

of the ways to do this is by decomposition of the sample using strong oxidising agents such 

as nitric acid (HNO3).  Digested samples prevent carbon deposits on the cones of the 

instrument via ICP-OES and build-up of salt which maintains long-term stability of the 

instrument, reduces interferences (spectral and non-spectral), improves the overall throughput 

of the method and allows for the analysis of larger sample sizes (Moodley et al, 2012). In this 

study, microwave-assisted digestion was utilised. This method allows for rapid dissolution of 

the sample matrix, requires low volumes of oxidising reagents and minimises contamination 

due to the use of a closed vessel.  For this study, digestions were performed using the CEM 

microwave accelerated reaction system (MARS 6, CEM Corporation, USA) according to the 

method as described by Moodley et al (2012). The maximum temperature was 260 ºC with 
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maximum pressure of 75 bar. Three replicates each of plant material (B. pilosa leaves and 

certified reference material (CRM) (0.5 g)) and soil samples (0.25 g) were digested in HNO3 

(70%, 10 mL) in MARSXpress™ vessels (Teflon PFA, Dupont, Wilmington, DE, USA) after 

pre-digestion for 30 min. The microwave power was set at 100% at 1600 W and the 

temperature was ramped to 180 ºC for plant samples and 200
 
ºC for soil samples, where it 

was held for 15 min. After the digests were cooled (15 min) they were gravity filtered 

through Whatman No. 1 filter papers into volumetric flasks (50 mL) and the volume was 

made up to the graduation mark with double distilled water. All samples were stored in a 

refrigerator at 4 ºC in polyethylene bottles until elemental analysis which was done within a 

week of digestion. 

All soil and plant samples were analysed for arsenic (As), cadmium (Cd), calcium (Ca), 

chromium (Cr), cobalt (Co), copper (Cu), iron (Fe), magnesium (Mg), manganese (Mn), 

nickel (Ni), lead (Pb), selenium (Se), and zinc (Zn) by ICP-OES. These metals are considered 

to be of most interest since they are the likely contaminants from vehicle emissions (Bushell 

and Williamson, 1995) and they include essential (Ca, Co, Cr, Cu, Fe, Mg, Mn, Ni, Se and 

Zn) and toxic (As, Cd, Pb) elements. In order to eliminate matrix effects, external standards 

and reagent blanks were prepared for calibration by addition of double distilled water to 70% 

HNO3 using the same volume as the samples.  Working standards were prepared from stock 

standard solutions (1000 mg L
-1

) and HNO3 (70%) to match the matrix of digested samples. 

Calibration curves were obtained by preparing a blank and five standard solutions within the 

estimated ranges for each element.  Wavelengths were chosen based on maximum analytical 

performance and minimum spectral interference. Spectral overlaps and inter-element 

interferences were eliminated by choosing the best of the three most sensitive lines. The 

Background Equivalent Concentration was checked daily by realigning the Hg lamp before 

analysis. Method validation was performed using the CRM, White Clover (BCR-402) 
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(Institute for Reference Materials and Measurement, European Commission, Joint Research 

Centre, Belgium) and Metals in Soil (D081-540) for soil samples (ERA, A Water Company, 

Milford, MA, USA). Certified reference materials were prepared and analysed similar to 

samples for method validation. All samples (plant material, soil and CRMs) were analysed in 

triplicate. 

3.2.5 Statistical analysis 

All statistical analyses were done using International Business Machines Statistical Package 

for the Social Sciences (IBM SPSS, Version 25, IBM Corporation, Cornell, New York). 

Principal component analysis (PCA) using the Varimax Rotation Method with Kaiser 

Normalization was used to reduce correlated observed variables to a smaller set of important 

independent variables. Cases used for statistics were based on cases with no missing values 

for any variable used. 

 

3.3 Baseline/Background Concentrations 

Defining background concentrations for trace and heavy metals in soils is essential for the 

recognition and management of pollution as well as deficiencies and toxicities for plants and 

animals (Herselman et al, 2005). The background concentration is intended to convey some 

idea of the natural range in concentration of elements in soil that can be expected prior to 

contamination through anthropogenic activities. With this natural range of concentrations, it 

is possible to assess the likelihood of contamination. Background concentrations (EPA 3050 

method, acid extraction) were used from a study conducted by Herselman (2007) in which 

she updated the background concentration of soils in South Africa by analysing 4500 samples 

across South Africa as follows: 
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Table 3.2: Background concentrations of trace metals in soil (mg kg
-1

) 

 

South Africa
 

(Herselman, 2007)    

Upper continental crust  

(Rudnick, 2014) 

Cd 0.1 0.09 

Cr 71.9 92 

Ni 38.7 47 

Pb 21.7 17 

Zn 45.2 67 

Cu 29.5 28 

Co 18 17.3 

As ND 4.8 

Se ND 0.09 

 

Due to unavailability of baseline concentrations in South Africa for As and Se, trace element 

composition estimates of the upper continental crust were used in this study which were 

calculated by Rudnick (2014). 

3.3.1 Geoaccumulation index (Igeo) 

The estimation of enrichment (contamination) of metal concentrations above background 

concentrations in soil can be accomplished by calculating the geoaccumulation index (Igeo) as 

proposed by Muller (1969). The degree of metal pollution in seven grades ranging from 

uncontaminated to extremely contaminated are assessed in this method. The degree of 

anthropogenic pollution is established in this study by calculating the Igeo according to the 

equation proposed by Muller (1969): 

Igeo= log
2

[
Cn

1.5 Bn

] 
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Cn is the concentration of element in sample and Bn is the background/baseline concentration 

of the same element. The factor 1.5 is incorporated into the equation to minimise any 

variations in the background value due to lithologic (rock composition) variations (Stoffers et 

al, 1986). 

The background concentrations for this study were used from a study conducted by 

Herselman (2007) and Rudnick (2014) (Table 3.2). The following categories for soil were 

used for Igeo values: Igeo ≤ 0 uncontaminated, 0 > Igeo < 1 uncontaminated to moderately 

contaminated, 1 > Igeo < 2 moderately contaminated, 2 > Igeo < 3 moderately to heavily 

contaminated, 3 > Igeo < 4 heavily contaminated, 4 > Igeo < 5 heavily to extremely 

contaminated and Igeo > 5 extremely contaminated (Müller 1969). 

3.3.2 Enrichment factor (EF) 

An alternative method for determining levels of soil contamination is by use of the 

enrichment factor (EF). The EF compares the concentration of an element in the soil to 

concentrations of the element in the earth’s crust. Due to Zn concentrations being known in 

South Africa, Zn is used as the reference element (Herselmann, 2005; Mendiola et al, 2008). 

Enrichment factors are calculated using the following equation: 

𝑬𝑭 =
(

𝑪𝒙

𝑪𝒓𝒆𝒇

𝑩𝒙

𝑩𝒓𝒆𝒇
 
)

 

 

Cx is the content of the examined element in the examined environment; Cref is the content of 

the examined element in the reference environment, Bx is the content of the reference element 

in the examined environment and Bref is the content of the reference element in the reference 
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environment. The background concentrations for this study were used from a study 

conducted by Herselman (2007) and Rudnick (2014) (Table 3.2). EF values were interpreted 

as follows: EF < 1 background concentration, 1 > EF < 2 depletion to minimal enrichment, 2 

> EF < 5 moderate enrichment, 5 > EF < 20 significant enrichment, 20 > EF < 40 very high 

enrichment, and EF > 40 extremely high enrichment (Sutherland, 2000). 

 

3.4 Geographic Information System (GIS) Analysis 

Soil samples were obtained from 20 predetermined points along the South African National 

Road (N3). Each soil sample consisted of three sampling points, ten meters apart, moving 

away from the roadside therefore, 60 soil sample points were obtained, in total. These points 

were interpolated, i.e. an estimation of a variable at an unmeasured location from observed 

values at surrounding locations. Each sample point was analysed in triplicate, and the mean 

was obtained and captured. This process was incorporated to reduce errors in the field and to 

adopt a constant and structured approach. Sample points were split into four subsets due to 

altitude and slope, which assisted in a higher accuracy in interpolation and assisted with 

visually representing the information in smaller subsets. 

Subsets were broken up as follows: 1. Durban to Marianhill Toll (5 – 381 m above sea level), 

2. Marianhill Toll to Cato Ridge (568 – 758 m above sea level), 3. Camperdown to 

Pietermaritzburg (758 – 625 m above sea level), 4. Pietermaritzburg to Hilton (820 – 1061 m 

above sea level). Each subset was interpolated via Kriging to a 200 m buffer of the N3 for Pb 

and Cd. The process depicted in Figure 3.4 was followed. 
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3.4.1 Goodness of fit test 

Data was assessed for normality via the Shapiro-Wilk test (Figure 3.5). Data was calculated 

by the following equation: 

𝐖 =
(∑ 𝒂𝒊𝒙(𝒊)

𝒏
𝒊=𝟏 )𝟐

∑ (𝒙𝒊 
𝒏
𝒊=𝟏 − 𝒙̅)𝟐

 

 

Null hypothesis: The data are normally distributed. (α = 0.05) 

 

Figure 3.5: Shapiro-Wilks test: P < 0.001 

Figure 3.4: Geographic information system (GIS) interpolation process  
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P-value = 0.001 < 0.05, therefore the null hypothesis is rejected and we conclude with 

95% confidence that the data is not normally distributed. Values were then transformed to 

normally distributed data via logarithmic transformation (Figure 3.6). 

 

Figure 3.6: Logarithmic transformed data 

A critical technique in interpolation via any Kriging technique is to create and fit an 

experimental variogram to the data. The model used is unimportant given that parameters 

such as the nugget effect and slope on the original are properly chosen and the modelled 

semi-variogram has the same estimation with the experimental data. Frequency distributions 

within the mining industry have predominantly skewed distributions with outliers. Fitting a 

semi-variogram based on the skewed data with many outliers proves difficult therefore 

transforming the data by logarithmic equation improves the semi-variogram model 

(Armstrong & Thurston, 1987). 

Bohling (2005) defined the following terms in a semi-variogram as follows: 

Sill: The semi-variance value at which the variogram levels off. 

Range: The lag distance at which the semi-variogram reaches the sill value. 

Nugget: Represents variability at distances smaller than the typical sample spacing, including 

measurement error.  
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The experimental semi-variogram was fitted to the model as depicted in Figure 3.7 to 

increase the accuracy in the Kriging process. 

 

Figure 3.7: Exponential variogram was fitted for the model 

 

The interpolation technique used was Kriging due to the type of data sets and the required 

output. Kriging is an interpolation technique in which the surrounding measured values are 

weighted to develop a predicted value for an unmeasured location. Weights are based on the 

distance between the measured points; Kriging is distinctive among the interpolation methods 

in that it provides an easy method in describing the variance, or the accuracy of predictions 

(Burrough and McDonnell, 2015). Kriging is based on Regionalised Variable Theory, which 

assumes that the spatial variation in the data is similar across the surface, therefore the same 

pattern of variation can be observed at all locations on the surface. Kriging is a method which 

weights of the value sum to unity. It uses an average of a subset of neighbouring points to 

produce a particular interpolation point (Bohling, 2005). 
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The Empirical Bayesian Kriging Method was used in this study, which is a geostatistical 

method of interpolation which automatically adjusts parameters via the sub setting and 

simulation processes in the Kriging model and accounts for errors introduced into the model 

via prediction of the semi-variogram to develop as accurate results as possible with the most 

user friendly application (Krivoruchko, 2012). 

3.4.2 Accuracy assessment 

Generally, the best model is the one that has the standardised mean nearest to zero, the 

smallest root-mean-squared prediction error and the standardised root-mean-squared 

prediction error nearest to one (Heuvelink, 2007). 

 

 

Figure 3.8: Prediction error plot 

Mean = 0.0122, Root-mean-square error = 0.276, Mean standardized error = 0.043, Root-

mean-square standardized error = 0.0984, Average standard error = 0.278, r = 0.585 which 

indicates that the accuracy of the interpolation is good. 
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There are two concerns to consider when comparing the results from different models which 

are optimality and validity (Figure 3.8). For example, the root-mean-squared prediction error 

may be smaller for a particular model. Therefore, one might conclude that it is the optimal 

model. However, when comparing to another model, the root-mean-squared prediction error 

may be closer to the average estimated prediction standard error. This is a more valid model 

as when you predict at a point without data, you have only the estimated standard errors to 

assess your uncertainty of that prediction. When the average estimated prediction standard 

errors are close to the root-mean-squared prediction errors from cross validation, you can be 

confident that the prediction standard errors are appropriate (Heuvelink, 2007). 
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CHAPTER 4 : AUTOMOTIVE TRACE METAL CONCENTRATIONS ON THE 

SOUTH AFRICAN NATIONAL ROAD (N3) AND ITS IMPACT ON THE 

ENVIRONMENT 

 

4.1 Introduction 

Heavy metal contamination in the environment is through both anthropogenic and natural 

sources. Vehicular emissions contribute substantial amounts of heavy metals in roadside 

soils, which biaccumulate and adversely affect biota. Heavy metals are also non-

biodegradable and may remain in the environment for long periods of time, even if point 

sources of pollution are removed. Biotic effects of heavy metals vary depending on the type 

of metal and whether essential or non-essential.  

In this chapter, the impact of vehicle pollution in the surrounding environment of the South 

African National Road (N3) between Durban and Hilton (a major transportation route from 

the harbour) will be discussed. The elemental concentrations of macro, micro and toxic 

metals in the leaves of Bidens pilosa and surrounding soils was determined to evaluate the 

impact of soil concentrations on elemental uptake by the plant. The analytes of interest 

included As, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Ni, Pb, Se and Zn. Soil contamination was 

determined by calculating Igeo and EF values for a metal. Statistical analyses were performed 

to determine sources of metals. 
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4.2 Results and Discussion 

4.2.1 Quality assurance 

The accuracy of the method used in this study was measured by comparing the certified 

values for the CRMs (White Clover (BCR-402) for plants and Metals in Soil (D081-540) for 

soil) with experimental values. Certified reference materials are reference materials 

accompanied by a certificate; the certified concentrations of elements are accompanied by an 

uncertainty at a stated level of confidence. Analysis of the CRM was to ensure that digestion 

was complete, instrument parameters were optimised and calibration errors were removed. 

The CRM was treated from start to finish in the same manner as dried and powdered plant 

and soil samples. The experimental values obtained on analysis of the CRM are presented in 

Table 4.1. The investigation showed that the experimental values compared well to certified 

values thereby validating the method. 

Table 4.1: Comparison of measured and certified/indicative values (Mean (SD), n = 3), 

based on dry mass, in the certified reference materials for plant (BCR-402) and soil (D081-

540) 

 

 

Element 

BCR-402 (µg g
-1

) D081-540 (µg g
-1

)  

Acceptable limit Measured Certified Measured Certified 

As 0.20 (0.01) 0.09 (0.01) 98 (5.00) 101 (5.92) 61.0-116 

Ca - - 6200 (20.00) 7530 (7.27) 6210-8850 

Co 0.16 (0.02) 0.18 (0.01) 200 (10.50) 199 (4.10) 116-159 

Cr 5.10 (0.15) 5.19 85.5 (4.8) 86.8 (6.1) 69.3-104 

Fe 246 (10) 244 12780 (120) 12800 (180) 5380-20100 

Ni 8.30 (1.0) 8.25 228 (10.34) 236 (4.17) 175-302 

Zn 25.01 (0.10) 25.02 140 (2.11) 130 (11.50) 113-184 
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4.2.2 Analysis of the impact of soil concentrations on plant concentrations 

The growth and development of flora is reliant on the accumulation of trace metals, within 

limits, which is a normal and essential process.  Elemental uptake and distribution may also 

vary in different parts of the plants. Nickel, Cu, Zn, and Mn are trace metals that are readily 

taken up by plants but kill plants at levels below those associated with adverse health effects; 

therefore, phytotoxicity prevents transfer of these metals from soil through the food chain 

(McLaughlin et al, 1999). Golmohammed and Rezapour (2014) stated that the concentration 

and dynamics of soil trace metals in natural ecosystems, in particular, is dependent on the 

lithology of parent rock as well as topography and geopedological processes. The macro-

nutrients that plants must obtain from their environment for growth and development 

include Ca and Mg; the micro-nutrients include Fe, Mn, Zn, Co and Ni. 

Table 4.2: Acceptable limits for trace metals in vegetable (mg kg
-1

) 

 

DWAF
a 

(2005) 

DOH
b  

(2004) 

CODEX
c 

(2001) 

FAO
d 

(1985) 

WHO
e
  

(1996) 

This 

study 

Ca 175 - - - - 16643.9 

Co 0.7 - - - - 0.95 

Cu 2.3 30 40 0.2 10 54.3 

Cr 0.11 - 2.3 - - 11.2 

Fe - - - 5 150 743 

Mg - - - - - 5187.2 

Mn 4.9 - - - 6.61 268.3 

Ni 0.18 - - 0.2 - 3.12 

Zn 11 40 0.6 2 - 181.6 

a
 - DWAF – Department of Water Affairs and Forestry, 

b
 - DOH – Department of Health, South Africa, 

c
 - 

CODEX – Codex Alimentarius International Food Standards, 
d
 - FAO – Food and Agricultural Organisation, 

e
 - 

WHO – World Health Organisation 
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Figure 4.1 shows the concentrations of Ca and Mg in the plant (Bidens pilosa) and soil 

samples from ten different sites across the N3. Plant Ca ranged from 11016 mg kg
-1

 

(Pietermaritzburg) to 21074 mg kg
-1

 (Town Bush) whilst total soil Ca ranged from 593 mg 

kg
-1

 (Westville) to 4200 mg kg
-1

 (Pietermaritzburg) (Figure 4.1). Calcium concentrations in 

plant material are below the acceptable health limits (Table 4.2) (Department of Water 

Affairs and Forestry, 2005). Plant Mg ranged from 3189 mg kg
-1

 (Cedara) to 6414 mg kg
-1

 

(Marianhill) whilst total soil Mg ranged from 191 mg kg
-1

 (Drummond) to 2773 mg kg
-1

 

(Pietermaritzburg). Maximum permissible limits in South African soils for trace metals, Ca 

and Mg, have not been established. However, for both metals, the highest soil concentrations 

were obtained from the capital of KwaZulu-Natal (Pietermaritzburg). In this study, 

concentrations of both Ca and Mg were also found to be considerably higher in plant material 

than soil. This indicates that the plant tends to accumulate these metals to meet physiological 

needs. 

 

Figure 4.1: Concentration (in mg kg
-1

, Mean (SD), n=3) of Ca and Mg in plants (P) and soil 

(S) from 10 sites along the South African National Road (N3) 

0

5000

10000

15000

20000

25000

1 2 3 4 5 6 7 8 9 10

C
o

n
ce

n
tr

at
io

n
 (

m
g 

kg
-1

) 

Sites 

CaP CaS MgP MgS



47 
 

Sites: 1. Westville, 2. Marianhill, 3. Drummond, 4. Camperdown, 5. Scottsville, 6. Pietermaritzburg, 7. Town 

Bush, 8. Montrose, 9. Hilton, 10. Cedara 

Plant Fe ranged from 504 mg kg
-1

 (Westville) to 1104 mg kg
-1

 (Town Bush) whilst total soil 

Fe ranged from 101 mg kg
-1

 (Camperdown) to 47798 mg kg
-1

 (Hilton) (Figure 4.2). 

Excessive levels of Fe absorbed by plants are toxic and may inhibit their growth (Chaney, 

1980). The plant had high concentrations of Fe across all samples, above the acceptable limit 

for Fe in vegetable (150 mg kg
-1

) as set by the World Health Organisation (WHO) (World 

Health Organisation, 1996) (Table 4.2). However, Fe concentrations in the plant are 

consistent with previous studies on leafy vegetable in South Africa (Table 4.3). Maximum 

permissible limits for Fe in South African soils have not been established. However, in this 

study, total soil Fe was predominantly higher than concentrations in plant material. This 

indicates the plants ability to exclude the element. Sample areas with high concentrations of 

total soil Fe include areas which have shale as the predominant bedrock within Dwyka and 

Pietermaritzburg geological formations. De vos et al (2005) predicted a 4.7 mg kg
-1 

world 

mean concentration of Fe in shale bedrock which indicates Fe enriched soil content (Table 

4.4). 

Plant Mn ranged from 81 mg kg
-1

 (Westville) to 350 mg kg
-1

 (Scottsville) whilst total soil Mn 

ranged from 105 mg kg
-1

 (Westville) to 1680 mg kg
-1

 (Cedara) (Figure 4.2). The levels of Mn 

are high across all sites, which are above acceptable limits for Mn in vegetation (6.6 mg kg
-1

) 

(Table 4.2) (World Health Organisation, 1996). When compared to other South African 

studies (Table 4.3), higher Mn values appear to be the trend, such as 260 mg kg
-1 

in Laportea 

alatipes (Mahlangeni et al, 2016). Maximum permissible limits for Mn in South African soils 

have not been established. However, Mn soil rehabilitation screening values as specified by 

the National Environmental Management: Waste Act (NEM: WA) in all land uses is 740 mg 

kg
-1

. Three of the ten sites (Scottsville, Pietermaritzburg and Cedara) exceeded this limit. 
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This could possibly be due to high trucking activities in these areas and naturally high Mn 

levels in the soil as Mn is commonly found within the earth’s lithosphere.  

 

 

Figure 4.2: Concentration (in mg kg
-1

, Mean (SD), n=3) of Fe, Mn and Zn in plants (P) and 

soil (S) from 10 sites along the South African National Road (N3) 

Sites: 1. Westville, 2. Marianhill, 3. Drummond, 4. Camperdown, 5. Scottsville, 6. Pietermaritzburg, 7. Town 

Bush, 8. Montrose, 9. Hilton, 10. Cedara 

 

Plant Zn ranged from 48 mg kg
-1

 (Pietermaritzburg) to 379 mg kg
-1

 (Drummond) whilst total 

soil Zn ranged from 5 mg kg
-1

 (Marianhill) to 391 mg kg
-1

 (Camperdown) (Figure 4.2). The 

maximum acceptable limit for Zn in foods, as set by the South African Department of Health, 

is 40 mg kg
-1

 (Department of Health, 2004). The average concentration of Zn in the plant was 

found to be 181 mg kg
-1

 which is much higher than the maximum acceptable limit. Plants are 

quite sensitive to Zn, with phytotoxicity of Zn being one of the primary concerns of excess 

Zn in soils (Brown et al, 2004). However, the results show the plant to accumulate Zn at most 
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sites, as plant concentrations are higher than soil concentrations, with no phytotoxic effects. 

Zinc concentrations in the plant are also higher than those of other vegetation from previous 

studies done in South Africa (Table 4.3).  The maximum permissible limit for Zn in South 

African soils is 185 mg kg
-1

 (Table 4.5). Zinc screening values for rehabilitation in all land 

uses as specified by NEM: WA is 240 mg kg
-1

. Three of the ten sites (Camperdown, 

Pietermaritzburg and Town Bush) that are in close proximity to major urban areas are above 

these acceptable limits. High bedrock concentrations of Zn in shale, the predominant bedrock 

in the high concentration areas, are 50 to 90 mg kg
-1

, which therefore indicates that Zn 

concentrations are much higher naturally in these areas (De Vos et al, 2005) (Table 4.4).  

Zinc enhancement may also be connected to the traffic sector since ZnO used in the rubber of 

motor vehicle tyres is a major source of Zn (Hjortenkrans et al, 2006).  

Table 4.3: Average concentrations for trace metals in leafy green vegetable (mg kg
-1

) 

Vegetation Country Co Cr Cu Fe Mn Ni Zn References 

Lettuce 

Egypt - - 1.97 - - - 9.76 Radwan & Salam (2006) 

Greece - 0.036 0.17 4.04 0.95 0.05 1.01 Stalikas et al (1997) 

Tanzania - - 5.8 - - - 15.9 

Bahemuka & Mubofu 

(1999) 

Spinach 

Egypt - - 4.48 - - - 20.9 Radwan & Salam (2006) 

Greece 0.026 0.13 2.45 21.5 4.42 0.52 2.99 Stalikas et al (1997) 

South 

Africa - 10.05 10.64 2840 140 5.11 70 Lion & Olowoya (2013) 

Tanzania - - 13.7 - - - 48.1 

Bahemuka & Mubofu 

(1999) 

Cabbage 

South 

Africa - - 1.18 - 23.56 - 29.6 

Bvenura & Afokeyan 

(2012) 

Tanzania - - 5.6 - - - 41.8 

Bahemuka & Mubofu 

(1999) 

Zimbabwe - 0.5 0.2 - - 0.5 32.15 Mapanda et al (2007) 

Laportea 

alatipes 

South 

Africa 1.42 12.1 19.1 6114 260 6.36 60.7 Mahlangeni et al (2016) 

Obetia tenax 
South 

Africa 6.64 87.7 23.9 12045 206 15.8 34.3 Mahlangeni et al (2016) 

Laportea 

peduncularis 

South 

Africa 0.33 3.1 23 1310 152 4.79 26 Mahlangeni et al (2016) 
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Urtica dioica 
South 

Africa - 1.06 17.6 208 25.6 2.4 37.5 Mahlangeni et al (2016) 

Bidens pilosa 
South 

Africa 0.95 11.2 54.3 743 268.3 3.12 181.6 This Study 

 

Table 4.4: Mean concentrations for trace metals in different bedrock (mg kg
-1

)
a
  

 

Cu Fe Zn Cr Pb Ni Co 

Ultramafic 40 9.6 50 1600 1 - 0.09 

Sandstone - 0.5 - 35 10 20 - 

Shale 50 4.7 50-90 90 23 90 0.8 

Limestone - 0.98 50 11 - <5 - 

a
 - (De vos et al, 2005) 

 

 

Figure 4.3: Concentration (in mg kg
-1

, Mean (SD), n=3) of Co, Cr, Cu and Ni in plants (P) 

and soil (S) from 10 sites along the South African National Road (N3) 

Sites: 1. Westville, 2. Marianhill, 3. Drummond, 4. Camperdown, 5. Scottsville, 6. Pietermaritzburg, 7. Town 

Bush, 8. Montrose, 9. Hilton, 10. Cedara 
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Plant Co ranged from 0.3 mg kg
-1

 (Westville) to 1.7 mg kg
-1

 (Hilton) whilst total soil Co 

ranged from 0.9 mg kg
-1

 (Drummond) to 17.2 mg kg
-1

 (Camperdown) (Figure 4.3). Cobalt 

concentrations in the plant are above the acceptable health limits of 0.7 mg kg
-1 

at 

Drummond, Town Bush, Montrose and Hilton (Table 4.2) (Department of Water Affairs and 

Forestry, 2005). However, Co concentrations in the plant are consistent with other vegetation 

from previous studies done in South Africa (Table 4.3).  Maximum permissible limits in 

South African soils for Co have not been established. However, the Co soil screening value 

for rehabilitation in all land uses as specified by NEM: WA is 300 mg kg
-1

. The world mean 

concentration of Co in shale, the predominant bedrock of the study area, is 0.8 mg kg
-1

 (Table 

4.4). 

Plant Cr ranged from 9 mg kg
-1

 (Montrose, Hilton and Cedara) to 15 mg kg
-1

 (Drummond) 

whilst total soil Cr ranged from 2 mg kg
-1

 (Drummond) to 216 mg kg
-1

 (Cedara) (Figure 4.3). 

Chromium concentrations across all samples of the plant exceed the threshold value of 2.3 

mg kg
-1

 (Table 4.2) (Codex Alimentarius, 2001). However, Cr concentrations in the plant are 

consistent with other vegetation from previous studies done in South Africa (Table 4.3). The 

maximum permissible limit for Cr in South African soils is 80 mg kg
-1

 (Table 4.5). All soil 

samples are above the acceptable limit, with Hilton and Cedara having extremely high 

concentrations (168.7 mg kg
-1

 and 216.1 mg kg
-1

, respectively). Accumulation of Cr within 

soil is primarily due to industrial wastes and untreated sewage exposure. Chromium is also 

used in corrosive preventative coatings in vehicle manufacture at approximately 10 g per 

vehicle. Herselman (2007) found the natural concentration of Cr in South African soils to be 

high, higher than the world mean concentrations of other landscapes such as bedrock shale 

(90 mg kg
-1

) and sandstone (35 mg kg
-1

) (Table 4.4). 

Plant Cu ranged from 43 mg kg
-1

 (Marianhill) to 69 mg kg
-1

 (Scottsville) whilst total soil Cu 

ranged from 5 mg kg
-1

 (Camperdown) to 155 mg kg
-1

 (Cedara) (Figure 4.3). The maximum 
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acceptable limit for Cu in foods set by the South African Department of Health is 30 mg kg
-1 

(Department of Health, 2004). The plant exhibited high levels of Cu with all samples 

exceeding permissible levels. Copper concentrations in the plant are considerably higher than 

other vegetable from previous studies done in South Africa (Table 4.3). The maximum 

permissible limit for Cu in South African soils is 100 mg kg
-1

 (Table 4.5).
 
Except for Cedara,

 

all sites had soil concentrations below this limit. The world mean concentration for Cu in 

bedrock shale, the predominant bedrock of the study area is 50 mg kg
-1

 (Table 4.4).  

Plant Ni ranged from 1 mg kg
-1

 (Marianhill) to 9.3 mg kg
-1

 (Hilton) whilst total soil Ni 

ranged from 1 mg kg
-1

 (Drummond) to 24.2 mg kg
-1

 (Pietermaritzburg) (Figure 4.3). All plant 

samples had Ni concentrations above the permissible limit of 0.18 mg kg
-1 

for Ni in vegetable 

(Table 4.2) (Department of Water Affairs and Forestry, 2005). The maximum permissible 

limit for Ni in South African soils is 50 mg kg
-1

 (Table 4.5); all samples were below this 

limit. The world mean concentration for Ni in bedrock shale and sandstone is 90 and 20 mg 

kg
-1

, respectively (Table 4.4). 

Table 4.5: Guidelines for maximum permissible levels of micro-elements in soil (mg kg
-1

) 

 

EU
a
 USA

b
 Germany

c
 

Australia & 

New Zealand
a
 

South 

Africa 

1991
d
 

South 

Africa 

1997
e
 

South 

Africa 

2007
f
 

This 

Study 

Cr - 1500 400 50 80 80 80 84.96 

Cu 50-140 750 135 60 100 66 100 130.02 

Ni 30-75 210 75 60 15 50 50 12.15 

Zn 150-300 1400 300 200 185 46.5 185 147.66 

a
 - McLaughlin et al (1999), 

b
 – US EPA (1995), 

c
 - Adriano (2001), 

d
 - National Department of Health & 

Population Development (1991), 
e
 - Water Research Commission (1997), 

f
 - Herselman (2007) 
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Sites: 1. Westville, 2. Marianhill, 3. Drummond, 4. Camperdown, 5. Scottsville, 6. Pietermaritzburg, 7. Town 

Bush, 8. Montrose, 9. Hilton, 10. Cedara 

 

Plant Pb ranged from 8 mg kg
-1

 (Marianhill) to 74 mg kg
-1

 (Pietermaritzburg) whilst total soil 

Pb ranged from 2.9 mg kg
-1

 (Drummond) to 318 mg kg
-1

 (Town Bush) (Figure 4.4). The 

maximum acceptable limit for Pb in vegetation is set at 0.3 mg kg
-1 

by the South African 

Department of Health (Table 4.2) (Department of Health, 2004); all plant samples exceeded 

this limit. An informal settlement, on-ramps and industrial activities, dense populations 

(Pietermaritzburg), forestry and increased motor vehicle strains and run-off due to 

topography (Town Bush) are likely contributors to high concentrations of Pb; these are 

activities of an urban setting as depicted in Figure 4.6. 
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Figure 4.4: Concentration (in mg kg
-1

, Mean (SD), n=3) of Pb in plants (P) and soil (S) from 10 

sites along the South African National Road (N3) 
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Table 4.6: Acceptable limits for toxic metals (As, Cd and Pb) in vegetation (mg kg
-1

) 

 
DWAF

a
 (2005) DOH

b
 (2004) 

CODEX
c 

(2001) 

FAO
d 

(1985) 

WHO
e
 

(1996) 
This Study 

As 0.002 1 - - - 1.64 

Cd 0.04 0.2 0.3 0.01 0.02 1.23 

Pb 0.02 0.3 0.3 5 2 25.2 

a
 - DWAF – Department of Water Affairs and Forestry, 

b
 - DOH – Department of Health, South Africa, 

c
 – 

CODEX Alimentarius – International Food Standards, 
d
 - FAO – Food and Agricultural Organisation, 

e
 - WHO 

– World Health Organisation 

 

 

 

 

Sites: 1. Westville, 2. Marianhill, 3. Drummond, 4. Camperdown, 5. Scottsville, 6. Pietermaritzburg, 7. Town 

Bush, 8. Montrose, 9. Hilton, 10. Cedara 

 

 

Plant As ranged from 0.4 mg kg
-1

 (Hilton) to 2.9 mg kg
-1

 (Marianhill) whilst total soil As 

ranged from 0.01 mg kg
-1

 (Marianhill) to 9 mg kg
-1

 (Hilton) (Figure 4.5). Most samples have 

higher values than the acceptable exposure limit for As as set by the South African 
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Department of Health (Table 4.2) (Department of Health, 2004). Sites 1 and 5 have the 

highest values with all being two-fold the set limit, with an average concentration of 2.3 mg 

kg
-1

. This indicates an increased As concentration in plants closer to the coast rather than 

inland. These areas are in close proximity to the two major industrial hubs, Pinetown and 

Mkondeni in an urban setting (Figure 4.6), which indicates a possible link between industrial 

effluents and increased As concentrations in surrounding plants. 

Plant Cd ranged from 0.5 mg kg
-1

 (Pietermaritzburg and Cedara) to 2.3 mg kg
-1

 

(Camperdown) whilst total soil Cd ranged from 0.1 mg kg
-1

 (Town Bush) to 3 mg kg
-1

 

(Cedara) (Figure 4.6). Cadmium concentrations in the plant are also above the acceptable 

limit of 0.2 mg kg
-1 

as set by the South African Department of Health (Table 4.2) 

(Department of Health, 2004). Plants at Sites 3 (2.2 mg kg
-1

) and 4 (2.3 mg kg
-1

)
 
have the 

highest concentrations in this study. This region is in close proximity to the tollgate and 

forestry (Figure 4.6). Possible fertiliser, herbicide and pesticide usage in the area, run-off due 

to topography and increased mechanical wear from vehicles due to the tollgate could be 

potential sources of Cd toxicity. 
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Figure 4.6: Land use map of the study area 
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4.2.3 Analysis of toxic metals (As, Cd and Pb) in soil samples collected across the South 

African National Road (N3) 

The analysis of soil samples collected from 20 sites across the N3 and three distances away 

from the main road (one metre away from the roadside, ten metres away from the first point 

and ten metres away from the second point) will be discussed hereunder. 

Previous studies on trace metal concentrations of vehicular emissions have shown Cu, Cd, Ni, 

Pb and Zn to decrease with distance away from the roadside (Joshi et al, 2010; Pagotto et al, 

2001). Therefore, As, Cd and Pb, being the most toxic trace metals analysed in this study, 

will be analysed to determine the effects on concentration with regards to distance away from 

the road. 

Table 4.7: Guidelines for maximum permissible levels of toxic metals (arsenic, cadmium and 

lead) in soil (mg kg
-1

) 

 

EU
a
 USA

b
 Germany

c
 

Australia & 

New 

Zealand
a
 

South 

Africa 

1991
d
 

South 

Africa 

1997
e
 

South 

Africa 

2007
f
 

This 

Study 

As - 21 - 20 2 2 2 2.32 

Cd 1-3 20 3 3 2 2 2 0.77 

Pb 50-300 150 300 300 56 66 56 118.93 

a
 - McLaughlin et al (1999), 

b
 – United States, Environmental Protection Agency (1995), 

c
 - Adriano (2001), 

d
 - 

National Department of Health & Population Development (1991), 
e
 – Water Research Council, South Africa 

(1997), 
f
 - Herselman (2007) 

The maximum acceptable limit for Pb in South African soils is 56 mg kg
-1

 (Table 4.7); only 

five of the 20 sites (Durban Harbour, Drummond, Inchanga, Cato-Ridge and Montrose) had 

Pb concentrations below this limit at D1 (1 m away from the roadside) (Figure 4.7). 

Herselman (2007) found a high natural total concentration of Pb in South African soils which 

would contribute to higher Pb concentrations in soil compared to other landscapes of the 
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world. The mean world concentration for Pb in bedrock shale is 23 and sandstone is 10 

(Table 4.4). 

 

Figure 4.7: Concentration of lead (Pb) in soil samples collected along the South African 

National Road (N3) with distance away from the roadside (D1 - one metre away from the 

roadside, D2 - ten metres away from D1 and D3 - ten metres away from D2) 

Sites - 1. Durban Harbour, 2. Durban CBD, 3. Westville, 4. Pinetown, 5. Marianhill, 6. Marianhill Toll,                      

7. Hillcrest, 8. Shongweni, 9. Drummond, 10. Inchanga, 11. Cato-Ridge, 12. Camperdown, 13. Lynfield Park,        

14. Ashburton, 15. Scottsville, 16. Pietermaritzburg, 17. Town Bush, 18. Montrose, 19. Hilton, 20. Cedara 

 

In terms of concentrations of trace metals in the soil with distance away from the roadside, 

the results show average Pb concentrations from samples closest to the road (D1) to be 

118.93 mg kg
-1

, 11 metres away from the road (D2) to be 99.40 mg kg
-1

 and 21 m away from 

the road (D3) to be 71.83 mg kg
-1

. Typically soil Pb concentrations decrease with an increase 

in distance from the roadside.  

High soil Pb concentrations close to the roadside (1 m away) are evident in the Ashburton 

and Mkondeni areas (Site 14) due to high industrial activities and truck depots. The emerging 
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rural and small holding land uses in the area (Figure 4.6) could possibly be at risk as 

subsistence crops grown in contaminated soils could absorb high levels of Pb which may 

result in plant, human and animal toxicities.  

Lead concentrations spike 11 m away from the roadside at Site 2 (Durban CBD), 13 

(Lynfield Park) and 17 (Town Bush). Samples from Durban CBD were collected closer to the 

Spaghetti Junction, near Berea. This is a high traffic zone, with many on- and off-ramps and 

start-stop conditions for vehicles, which in turn, has the potential for higher emissions from 

different directions. High Pb concentrations at Lynfield Park are possibly due to leaching of 

fertilisers from agricultural activities in the vicinity and a rock quarrying mine and industrial 

activities very close to the N3 (Figure 4.6). High Pb concentrations at Town Bush or at the 

foot of Town Hill could be due to engine strain on vehicles and trucks to power up a steep 

hill, excessive breaking downhill and storm water run-off of herbicides, pesticides and 

fertilisers from plantations in the vicinity (Figure 4.6) which are carried further away from 

the roadside.  

Lead concentrations spike 21 m away from the roadside at Site 4 (Pinetown) and 16 

(Pietermaritzburg). Pinetown is a high industrial activity zone with high trucking activities. 

Pietermaritzburg is the capital and second largest city in KwaZulu-Natal.  It is a regionally 

important industrial hub and the main economic hub of the UMgungundlovu District 

Municipality. 

Areas with Pb toxicity are to be rehabilitated to a concentration of 20 mg kg
-1

 in all land uses 

and 100 mg kg
-1

 for the protection of ecosystem health in accordance with NEM: WA in 

South Africa. This indicates high Pb concentrations along the N3. 
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Figure 4.8: Concentration of arsenic (As) and cadmium (Cd) in soil samples collected along 

the South African National Road (N3)  with distance away from roadside ((D1 - one metre 

away from the roadside, D2 - ten metres away from D1 and D3 - ten metres away from D2) 

Sites - 1. Durban Harbour, 2. Durban CBD, 3. Westville, 4. Pinetown, 5. Marianhill, 6. Marianhill Toll,                      

7. Hillcrest, 8. Shongweni, 9. Drummond, 10. Inchanga, 11. Cato-Ridge, 12. Camperdown, 13. Lynfield Park,        

14. Ashburton, 15. Scottsville, 16. Pietermaritzburg, 17. Town Bush, 18. Montrose, 19. Hilton, 20. Cedara 

 

The maximum acceptable limit for As in South African soils is 2 mg kg
-1

 (Table 4.7); five of 

the 20 sites (Drummond, Inchanga, Camperdown, Lynfield Park and Hilton) had As 

concentrations above this limit at D1 (1 m away from the roadside) (Figure 4.8). In terms of 

concentrations of trace metals in the soil with distance away from the roadside, the results 

show average As concentrations from samples closest to the road (D1) to be 1.54 mg kg
-1

, 11 

metres away from the road (D2) to be 1.85 mg kg
-1

 and 21 m away from the road (D3) to be 

2.25 mg kg
-1

. It is clear from the results that soil As concentrations increase with an increase 

in distance from the roadside.  
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Arsenic concentrations spiked at Sites 12 (Camperdown), 14 (Ashburton), 19 (Hilton) and 20 

(Cedara). The high concentrations of As at Hilton and Cedara could be due to forestry, 

plantations and agricultural practices (fertilisers, pesticides and herbicides) in close proximity 

to the sample points (Figure 4.6). Atafar et al (2010) found fertilisers used in agricultural 

practices to cause dramatic spikes in As, Cd and Pb concentrations in soils. Areas with As 

toxicity are to be rehabilitated to a concentration of 5.8 mg kg
-1

 in all land uses and 580 mg 

kg
-1

 for the protection of ecosystem health in accordance with NEM: WA, South Africa.  

The maximum acceptable limit for Cd in South African soils is 2 mg kg
-1

 (Table 4.7). With 

the exception of Site 6 (Marianhill Toll, 2.8 mg kg
-1

) and 20 (Cedara, 3.0 mg kg
-1

), all soil 

samples were below this limit.  High soil Cd at Marianhill Toll Plaza could be due to traffic 

density and the impacts thereof whilst high soil Cd at Cedara could be due to agricultural 

practices in the area (Atafar et al, 2010) and close proximity to a freeway interchange with 

moderate increase in traffic (not too high as the region is not densely populated) (Figure 4.6). 

Areas with Cd toxicity are to be rehabilitated to a concentration of 7.5 mg kg
-1

 in all land uses 

and 37 mg kg
-1

 for the protection of ecosystem health in accordance with NEM: WA, South 

Africa. 

 

4.3 Soil Contamination 

Geoaccumulation indices (Igeo) and enrichment factors (EFs) were calculated for trace metals 

As, Cd, Co, Cr, Cu, Ni, Pb and Zn to evaluate for soil contamination (Table 4.8). 

Geoaccumulation indices and EFs for Co indicate soil to be uncontaminated with background 

concentrations. Geoaccumulation indices and EFs for Cr indicate soil to be uncontaminated 

with minimal enrichment. Geoaccumulation indices for Cu indicate soil to be uncontaminated 
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to moderately contaminated with Sites 2 (Durban CBD) and 6 (Marianhill Toll) being heavily 

contaminated. Enrichment factors indicate background concentrations and minimal 

enrichment with Sites 8, 9, 13, 14, 16, 17, 19 and 20 being moderately enriched and Sites 2 

(Durban CBD) and 6 (Marianhill Toll) being significantly enriched.  Geoaccumulation 

indices and EFs for Ni indicate soil to be uncontaminated with background concentrations. 

Geoaccumulation indices for Zn indicate soil to be uncontaminated to moderately 

contaminated with Sites 2 (Durban) and 17 (Town Bush) being moderately to heavily 

contaminated. Enrichment factors indicate background concentrations and minimal 

enrichment with Sites 4, 8, 13, 14, 15, 16, 17 and 20 being moderately enriched and Sites 2 

(Durban CBD) and 12 (Camperdown) being significantly enriched.   

For the toxic metals, Igeo values for Pb indicate soil to be uncontaminated to moderately 

contaminated with Sites 14 (Ashburton) and 17 (Town Bush) being moderately to heavily 

contaminated. Enrichment factors indicate background concentrations with minimal 

enrichment with Sites 3, 15, 16, 19 and 20 being moderately enriched and Sites 2 (Durban 

CBD), 14 (Ashburton) and 17 (Town Bush) being significantly enriched. Geoaccumulation 

indices for Cd indicate soil to be uncontaminated and moderately contaminated with Sites 6, 

8, 11, 12 and 20 being moderately to heavily contaminated. Enrichment factors indicate 

background concentrations and minimal enrichment with Sites 2, 8, 9, 12 and 13 being 

moderately enriched and Site 6 (Marianhill Toll), 11 (Cato-Ridge) and 20 (Cedara) being 

significantly enriched. Geoaccumulation indices for As indicate uncontaminated soils; EF 

results indicate background concentrations and minimal enrichment. 
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Table 4.8: Geoaccumulation index (Igeo) and enrichment factors (EF) for each element from 

the twenty sites along the South African National Road (N3) 

Sites 
As Cd Co Cr Cu Ni Pb Zn 

EF Igeo EF Igeo EF Igeo EF Igeo EF Igeo EF Igeo EF Igeo EF Igeo 

1 0.1 -3.0 1.9 0.9 0.2 -2.3 1.1 0.1 1.6 0.6 0.2 -2.6 1.9 0.9 1.9 0.9 

2 0.1 -3.9 2.8 1.5 0.4 -1.4 1.6 0.6 11.5 3.5 0.4 -1.2 6.5 2.7 5.4 2.4 

3 0.0 ND 0.8 -0.4 0.1 -3.3 0.3 -1.6 0.6 -0.8 0.1 -3.5 2.9 1.5 0.4 -1.2 

4 0.0 -7.7 1.4 0.5 0.7 -0.6 0.7 -0.6 6.6 2.7 0.3 -1.9 6.6 2.7 3.1 1.6 

5 0.0 ND 0.7 -0.5 0.0 -4.6 0.1 -2.9 0.3 -1.8 0.0 -5.5 0.2 -2.6 0.1 -3.7 

6 0.1 -2.9 6.3 2.6 0.5 -1.1 1.1 0.1 14.5 3.8 0.3 -2.0 2.0 1.0 0.2 -2.2 

7 0.1 -2.8 1.0 -0.1 0.1 -3.6 0.4 -1.4 0.3 -1.7 0.1 -4.0 0.9 -0.2 0.4 -1.2 

8 0.1 -2.8 4.3 2.1 0.2 -2.6 0.5 -1.1 2.2 1.1 0.1 -3.0 1.4 0.5 2.1 1.1 

9 0.3 -1.5 3.4 1.7 0.0 -4.9 0.0 -6.0 2.0 0.9 0.0 -5.8 0.1 -4.2 1.6 0.6 

10 0.4 -1.3 1.0 0.0 0.0 -8.3 0.0 -6.0 1.5 0.6 0.0 -7.4 0.0 -8.7 1.5 0.6 

11 0.4 -1.2 6.2 2.6 0.4 -1.4 0.1 -4.3 1.1 0.1 0.0 -4.8 0.8 -0.3 1.6 0.6 

12 0.6 -0.7 4.4 2.1 0.6 -0.7 0.0 -4.4 0.1 -3.3 0.1 -4.3 0.8 -0.4 5.8 2.5 

13 0.2 -2.6 2.0 1.0 0.5 -1.1 0.7 -0.4 2.0 1.0 0.2 -2.2 5.4 2.4 2.5 1.3 

14 0.4 -1.5 1.9 0.9 0.4 -1.3 0.7 -0.4 2.7 1.4 0.4 -1.5 8.3 3.0 2.4 1.3 

15 0.0 -4.7 0.7 -0.5 0.6 -0.8 1.0 0.0 1.7 0.8 0.3 -1.9 2.6 1.4 2.0 1.0 

16 0.2 -2.0 1.3 0.3 0.6 -0.7 1.2 0.2 2.4 1.3 0.4 -1.3 4.3 2.1 3.9 1.9 

17 0.5 -0.9 1.0 0.0 0.4 -1.2 1.7 0.7 2.0 1.0 0.4 -1.3 10.5 3.4 4.2 2.1 

18 0.4 -1.4 1.1 0.1 0.4 -1.4 1.1 0.1 0.7 -0.5 0.2 -2.1 0.8 -0.3 0.8 -0.4 

19 1.3 0.3 1.2 0.3 0.6 -0.7 1.6 0.6 2.2 1.1 0.4 -1.5 2.2 1.1 1.5 0.5 

20 1.2 0.2 9.7 3.3 0.6 -0.8 2.0 1.0 3.5 1.8 0.4 -1.4 2.0 1.0 2.7 1.4 

* High enrichment or contamination 

Sites - 1. Durban Harbour, 2. Durban CBD, 3. Westville, 4. Pinetown, 5. Marianhill, 6. Marianhill Toll,                      

7. Hillcrest, 8. Shongweni, 9. Drummond, 10. Inchanga, 11. Cato-Ridge, 12. Camperdown, 13. Lynfield Park,        

14. Ashburton, 15. Scottsville, 16. Pietermaritzburg, 17. Town Bush, 18. Montrose, 19. Hilton, 20. Cedara 
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4.4 Statistical Analysis 

Principal component analysis (PCA) is used to identify the source of metals in soil and is an 

effective tool to define anthropogenic or lithogenic sources of metals. Both the eigenvalues 

and percentage of variance calculated by PCA are shown in Table 4.9. Three principal 

components were extracted. 

Table 4.9: Eigenvalues and percentage of variance calculated by principal component 

analysis 

Total Variance Explained 

Component 

Initial Eigenvalues Rotation Sums of Squared Loadings 

Total 
% of 

Variance 

Cumulative 

% 
Total 

% of 

Variance 

Cumulative 

% 

1 5.56 46.335 46.335 3.286 27.382 27.382 

2 2.23 18.584 64.918 3.225 26.872 54.254 

3 1.576 13.131 78.05 2.855 23.796 78.05 

 

Principal component 1, with high loadings of Mg, Co, Ni, Zn and Pb, explained 27.4% of the 

total variation (78.1%). Principal component 2, with high loading of Mn, Ca, Cu and Cd, 

explained 26.9% of the total variation and principal component 3, with high loadings of Fe, 

Cr and As, explained 23.8% of the total variation (Figure 4.9). 

Lead in the environment results from industrial emissions, vehicle exhaust emissions and 

paint including road-marking paint containing Pb (Bigdeli and Seilsepour, 2008). The 

breakdown of tyres from vehicles introduces Pb into the environment and Pb is also used in 

other vehicle manufacturing processes (Giannouli et al, 2007). Elevated concentrations of Zn 

in the environment are due to run-off from galvanised steel and surfaces painted with zinc-
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containing paints while most of the Zn enhancement may be connected to the traffic sector 

(Gołuchowska and Strzyszcz, 1999). The use of ZnO in rubber of tyres is also a major source 

of Zn in the environment (Hjortenkrans et al, 2006). Extensive distribution of Ni has occurred 

due to anthropogenic activities such as the burning of fossil fuels in industrial and other 

processes such as vehicle emissions (Department of Environmental Affairs, 2010). Cobalt is 

used in car batteries and is critical to the proper functioning of electrical cars. Magnesium is 

preferred to Al for automotive use. When alloyed, Mg has the highest strength-to-weight ratio 

of all the structural materials (Total Materia, 2005). Therefore, vehicular emissions appear to 

be a possible common source for trace metals in the environment due to principal component 

1. 

High levels of Cd in the environment is usually attributed to fertilisers in agriculture, 

smelting of metals in industries and exposure to untreated sewerage in close proximity to 

waste water treatment works and unmaintained sewerage pipelines (Gulten, 2011). Cadmium 

is also found in many processes involved in the manufacturing of vehicles (Lohse, 2001). 

Copper emission sources are usually industrial processing such as refineries and smelters 

(Department of Environmental Affairs, 2010). Copper enhancement in soils may be 

connected to the traffic sector as Cu is used in brake linings (Hjortenkrans et al, 2006). The 

major anthropogenic sources of environmental Mn include municipal waste water discharges, 

sewage sludge, mining and mineral processing, emissions from alloys, steel and Fe 

production, combustion of fossil fuels and emissions from the combustion of fuel additives. 

Therefore, emissions given off by industries in the region and possibly by vehicles in the 

wear and tear processes appear to be possible common sources for trace metals in the 

environment due to principal component 2. 
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Arsenic is used in a few commercial and industrial products for example preservatives and 

fertilisers (Saldivar and Soto, 2014). Industrial processes frequently produce Cr which may 

serve as an indicator of contamination within the environment due to Cr leaching into the soil 

(Persson and Kucera, 2001). Iron is also commonly used in industrial and commercial 

activities. Therefore, industrial and commercial activities in the region and possibly 

contaminated groundwater appear to be possible common sources for trace metals in the 

environment due to principal component 3. 

 

Figure 4.9: Component plot in rotated space 
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CHAPTER 5 : GEOGRAPHIC INFORMATION SYSTEM (GIS) ANALYSIS OF 

TOXIC TRACE ELEMENTS, LEAD AND CADMIUM, WITHIN THE STUDY AREA 

 

5.1 Introduction 

Mapping the spatial distribution of toxic trace metals in the soil is essential for accurately 

estimating areas which have been contaminated. These areas require attention and 

remediation from the responsible bodies of government, therefore a tool such as geographic 

information system (GIS) and the use of geostatistics and interpolation provides effective 

methods to quantify and depict the impact on soil in the specified area in a way that 

specialists across many fields of academia will easily understand. This will support effective 

and efficient decision-making processes (Burrough & McDonnell, 2015). 

Lead and Cd are two of the most toxic trace metals that dominate vehicular emissions. These 

metals form part of the materials and manufacturing processes of vehicles and contribute to 

the total tail pipe emissions. Lead and Cd have been analysed via chemical analysis in this 

study; the GIS analysis was therefore conducted on the spatial data of these two toxic trace 

metals. The objective of determining the spatial distributions of the two major toxic heavy 

metals, Pb and Cd, in the roadside verges by using GIS as an analytical tool was determined 

in this chapter. 

 

5.2 Results and Discussion  

Interpolated distribution maps for Cd and Pb, with a 200 m buffer of the N3, with analysis of 

possible contributors to high emissions are depicted and discussed below. 
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Table 5.1: Lead and cadmium concentrations used for interpolation 

Site Town 

Pb 

concentrations 

Cd 

concentrations 

1 Durban Harbour 59.61±18.11 0.28±0.04 

2 Durban CBD 210.37±124.81 0.42±0.21 

3 Westville 94.20±76.02 0.12±0.02 

4 Pinetown 212.92±136.65 0.21±0.10 

5 Marianhill 5.51±3.97 0.11±0.03 

6 Marianhill Toll 65.70±44.68 0.93±1.42 

7 Hillcrest 28.48±25.71 0.14±0.07 

8 Shongweni 45.26±62.07 0.64±0.92 

9 Drummond 1.82±1.03 0.50±0.47 

10 Inchanga 0.08±0.06 0.15±0.01 

11 Cato-Ridge 26.14±9.35 0.93±0.83 

12 Camperdown 24.66±28.18 0.65±0.39 

13 Lynfield Park 173.87±125.66 0.30±0.25 

14 Ashburton 266.27±95.59 0.28±0.33 

15 Scottsville 83.23±56.85 0.11±0.01 

16 Pietermaritzburg 137.41±48.61 0.19±0.13 

17 Town Bush 337.13±313.85 0.15±0.07 

18 Montrose 27.23±3.08 0.16±0.11 

19 Hilton 69.50±48.87 0.18±0.28 

20 Cedara 65.00±26.82 1.44±1.52 
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Figure 5.1: Interpolation of lead (Pb) 
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Figure 5.2: Interpolation of cadmium (Cd) 
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Mico et al (2006), Lu et al (2007) and Facchinelli et al (2001) found high Pb and Cd 

concentrations in soil to be predominantly due to anthropogenic sources such as the settling 

of vehicle emissions and the runoff from the use of fertilisers used in agricultural practices.  

In this study, Pb concentrations spike closer to the Spaghetti Junction near Westville and 

Berea, due to high traffic density and an increase in start-stop conditions for vehicles, which 

in turn, has the potential for higher emissions (Figure 5.1). A major spike is evident in the 

vicinity of Pinetown due to industrial activities and higher trucking activities. High Pb 

concentrations are seen till Hillcrest due to atmospheric, water and other forms of pollution, 

transportation from the toll area and from industrial areas of Pinetown and its surrounding. 

Extremely high Pb levels are evident in the Ashburton and Mkondeni areas due to high 

industrial activities and truck depots; the prominence of rural and small holding land uses in 

the area could be at risk; crops from subsistence farming could absorb high levels of Pb and 

traverse the food chain.  

High Pb concentrations are evident at Lynfield Park, which are possibly due to leaching of 

fertilisers from agricultural activities in the vicinity and a rock quarrying mine and industrial 

activities near the N3. High Pb levels at the foot of Town Hill which is at the bottom of a 

steep hill could be due to engine strain on vehicles and trucks, excessive breaking down and 

storm water run-off of herbicides, pesticides and fertilisers from plantations in the vicinity.  

Golmohammed and Rezapour (2014) stated that the concentrations and dynamics of soil 

trace metals in natural ecosystems are dependent on the lithology of parent rock as well as 

topography and geopedological processes. When concentrations of Pb are overlaid onto a 

geological map, there is an apparent correlation between concentrations in the soil and the 

lithology of parent rock. However, further analysis of the composition of parent rock is 

required to accurately predict a correlation between the findings and the natural content of Pb 
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within the soil which is related to the trace metal composition of the parent rock. Herselman 

(2007) stated that there is a high natural total concentration of Pb in South African soils, 

therefore Pb concentrations would appear higher than other landscapes of the world. The 

trend evident from the interpolated distribution maps of Pb indicates high concentrations in 

densely populated areas and the immediate surrounding areas. This indicates that high Pb 

concentrations are linked to anthropogenic causes even though there is a high natural Pb 

presence in the soils of South Africa. 

Cadmium concentrations spike in Pinetown which is an industrial region and towards 

Marianhill Toll due to stop and go emissions from vehicles (Figure 5.2). Cadmium 

concentrations are generally high from the tollgate to Cato Ridge however, concentrations 

spike at Cato Ridge due to industrial activities in the area. High Cd concentrations continue 

till Camperdown from Cato Ridge due to industrial activities. Extremely high Cd levels are 

evident in Hilton and Cedara due to a truck weigh bridge in the vicinity of Hilton which 

increases vehicle stop-start emissions as well as agricultural practices and forestry in the 

vicinity. Forest ecosystems are usually characterised as being good receptors of heavy metals 

which remain trapped in the canopy via air transportation of soil and dust and is leached into 

the soil profile via rainfall and run-off.  

Natural Cd concentrations in parent rock are usually below the threshold. It is evident in the 

interpolated distribution maps that high Cd concentrations are not correlating with high Pb 

concentrations, which therefore indicates different sources of these toxic elements and that 

the deposition characteristics of the two metals are different in relation to the natural 

environment. This was also seen by the statistical analysis (PCA). Concentrations of Pb and 

Cd in the study area are directly impacted by the topography and geopedological processes of 

the area. However, accurate correlations cannot be determined due to the scope of the study.  
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CHAPTER 6 : CONCLUSIONS AND RECOMMENDATIONS  

 

The current research was aimed at assessing the impact of vehicle pollution in the 

surrounding environment of the South African National Road (N3) between Durban and 

Hilton by investigating the elemental concentrations in the leaves of Bidens pilosa and 

surrounding soils.  

 

6.1 Conclusions 

The findings for micro-elements (Co, Cr, Cu, Fe, Mn and Ni) in the plant are consistent with 

other studies conducted in South Africa. However, when compared to acceptable limits in 

vegetation Cu, Cr, Fe, Mn, Ni and Zn are above the acceptable limits with Zn being 

considerably higher. For the toxic metals (As, Cd and Pb), levels were higher than acceptable 

limits, with Cd being significantly high and Pb being extremely high. 

The findings for soil indicate all concentrations of micro-elements were lower than the 

acceptable limits. For the toxic metals, As concentrations were marginally above the 

acceptable limit. Cadmium concentrations were below the acceptable limit at most sites. Lead 

concentrations were extremely high and above the acceptable limits across the study area. For 

soil contamination and enrichment analysis, the findings show uncontaminated soils for 

micro-elements with Cu and Zn showing moderate to heavy contamination in some areas. 

Also, results for micro-elements showed background concentrations, minimal enrichment and 

moderate enrichment across most sites with Cu and Zn having significant enrichment in some 

areas.  
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For the toxic element, As, the results indicate soils to be uncontaminated to moderately 

contaminated with background concentrations and minimal enrichment. For the toxic 

element, Cd, the results show soils to be moderately to heavily contaminated in some areas 

and uncontaminated and moderately contaminated in the rest. Enrichment results indicated 

background concentrations, minimal enrichment and moderate enrichment across the sample 

area with specific areas being significantly enriched. For the toxic element, Pb, the results 

show soils to be moderately to heavily contaminated in some areas and uncontaminated and 

moderately contaminated in the rest. Enrichment results show background concentrations, 

minimal enrichment and moderate enrichment with some areas being significantly enriched at 

a higher frequency than the other toxic elements. 

The results show Bidens pilosa to accumulate the toxic metals Pb and Cd, but not As. This 

trend could be investigated for phytoremediation of soils with Pb and Cd toxicities. Statistical 

analyses indicated common sources for different metals. The sources could possibly be 

vehicle tail pipe emissions, wear and tear of vehicles, agricultural practices, commercial and 

industrial activities and contaminated groundwater.  

Success in the reduction of accumulated toxic metals such as Pb and Cd in contaminated 

environments is possible. The advent of industrialisation, the transport sector, commercial 

agricultural practices and forestry have contributed the most to the pollution of the 

surrounding environments by toxic trace metals. The accumulation of these toxic trace metals 

could therefore be reduced, going into the future, by reducing the impacts by the sources via 

technological advancements in environmentally responsible forms of practises in the specific 

industry. Further to reducing future impacts, specific sectors should be required, via policy on 

social and environmental responsibility, to rehabilitate the impacts of the past by their 

specific industrial and commercial sector via proper implementation of the National 
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Environmental Waste Act (NEM: WA) which provides screening values in which 

contaminated land should be rehabilitated to a specified concentration of trace metals 

possibly via hyper-accumulator plant species as discussed and a plethora of other natural and 

technically engineered methods.  

A health risk assessment for humans and animals, via food sources with metal contamination, 

may also be calculated with the data that has been obtained in this study. 

The process of rehabilitation and reducing the concentration of toxic heavy metals in 

contaminated soils is very difficult and complex, such as in many areas, heavy metals may 

still be accumulated by plants and subsequently move into the food chain for many decades. 

However, via holistic thinking in terms of the technical, social and monetary requirements 

and a responsible industrial and commercial sector backed by proper policy and 

implementation by government and the private sector, reduction of past and future impacts to 

acceptable concentrations are achievable.  

It is evident from the findings of interpolation that natural factors such as slope with regards 

to storm water run-off and other factors such as vehicle emissions due to engine strain, 

anthropogenic factors such as effluents from industrial areas, agricultural and forestry 

practices, and high traffic density, primarily contribute to high Pb and Cd concentrations 

along the N3. Areas of high Pb and Cd concentrations do not correlate as is evident in the 

interpolated maps (and seen by PCA) indicating different emission sources. The Kriging 

interpolation study depicted and demonstrated the spatial diffusion of both Cd and Pb 

concentrations throughout the study area of the N3 and a conclusion that Pb and Cd pollution 

dominate different regions of the study area can be determined due to the above-mentioned 

factors. 
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This study has demonstrated that vehicular emissions are the primary route of exposure to 

toxic heavy metals along transportation routes, such as the N3. However, high concentrations 

of toxic metals and other trace metals found in roadside soils are not solely due to vehicular 

emissions but also due to a combination of industrial, agricultural and social impacts. 
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6.2 Recommendations for Further Study 

 

 Trace metal analysis of soils found along the South African National Road (N3) from 

Hilton to Johannesburg to complete the continuous route taken by logistics companies 

from the main harbour to the economic hub of South Africa. 

 Potential usage of Bidens pilosa as a means for phytoremediation in South Africa. 
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