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RESEARCH SUMMARY 

 

A general lack of strict regulations in South Africa to monitor processed foodstuff increases 

chances of unfair producers and traders to intentionally mislabel and adulterate high valued food 

products with inferior lookalikes. Recently, unripe banana flour (UBF) has gained global 

attention and has been identified as a replacement for cereals flours due to its gluten free traits 

and resistant starch nutritional qualities, yet has no quality control standards. The objective of 

this research was to develop rapid prediction models based on a visible to near infrared (Vis-

NIR) spectroscopy (Vis-NIRS) combined with multivariate analysis to classify, detect, and 

quantify different adulteration levels of staple flours (i.e. wheat and maize flours) in unripe 

banana flour. The other aim was to identify important biomarkers of unripe banana flour that 

could be used to discriminate unripe banana flour adulteration at different concentration levels.  

A critical evaluation of the portable Vis-NIR spectroscopy combined with chemometrics 

analysis indicated that it was possible to discriminate between unripe banana flour with wheat 

and maize flours and assosciated different adulteration levels. The partial least square (PLS) 

regression (PLSR) analysis quantified individually maize and wheat flours, based on different 

adulteration levels, showed that optimal PLSR detection models performances were obtained 

using the first derivative Savitsky-Golay (7-point smoothing, 2nd order polynomial) and the 

second derivative Savitsky-Golay (19-point smoothing, 2nd order polynomial). The study to 

optimise and test the handheld Vis-NIR instruments’ feasibilty to simulteniously develop a 

standard model for rapid solution to detect both maize and wheat flours adulteration indicated 

high classification and prediction accuracies could be achived through principal component 

analysis (PCA) and partial least squeres regression (PLSR). The study found that gluten could 

be utilised as a biomarker to test for unwanted adulteration of unripe banana flour with wheat 

flour, and showed good and reliable rapid spectroscopic PLSR model was achieved with high 

precision. Near infrared spectroscopy showed great potential to detect the nutritional changes 
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of unripe banana flour during adulteration based on resistant starch content. The results of this 

investigation indicated that wheat adulteration is a threat to unripe banana flour importnt 

attribute as signification reduction of this parameter was observed with the increasing levels 

wheat adultearation.  Vis-NIR spectroscopy with multivariate analysis detected the varying 

resistant starch concentration unripe banana flour samples successfully with high accuracy. The 

results and stability of the models developed in this study demonstrated clearly that the Vis-

NIRS method has a potential of providing unripe banana flour processing industry with a rapid 

and non-destructive technique to manage unripe banana flour quality as well as adulteration by 

staple flours, therefore ensuring fair and safe trading of the product in retail markets of South 

Africa.  
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PREFACE 

 

This thesis represents a compilation of manuscripts where chapters are presented 

independently. Therefore, some repetitions between chapters have been unavoidable.  
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CHAPTER 1 - GENERAL INTRODUCTION 

1. Introduction  

Fruit-derived powdered food products are highly valued commodities globally, both for food 

security and health purposes (Chandra and Kumari, 2015). Unripe banana flour, is a product 

manufactured from a variety of fully mature green banana fruit (Musa acuminate and Musa 

balbisiana) (Anyasi et al., 2013). In South Africa, banana flour processing is at a pionner stage 

and this type of food has recently entered the retail market due to anormous health promoting 

attributes.   

 

The global banana flour industry is strengthened by a large scale production of different banana 

cultivars, making the crop available throughout the year. Popularly, in South Africa, bananas 

are consumed fresh when the fruit is ripe. By contrast, as climacteric fruit, bananas undergo 

certain changes in the metabolic rate and biochemical mechanism like an increase in respiration 

and rise in ethylene production accumulate during the process of fruit ripening (Paul et al., 

2012). Normally, bananas are harvested fully mature green (i.e. at the pre-climacteric stage). At 

this phase, the fruit experiences various physicochemical changes such as colour, texture, 

aroma, nutritional composition and taste (Payasi and Sanwal, 2010). This entail, post-harvest 

special care is required in order to maintain the fruit fresh for longer periods, in a state acceptable 

by the industry/market and that also meet consumers’ expectations (Zhu et al., 2015).  

 

For producers to keep the banana fruit for fresh consumption, an extra effort need to be taken 

like using low temperature storages. However, according to Morrelli et al. (2003), bananas 

susceptibility to chilling injury limit the fruit opportunity to be stored for longer at environments 

below ambient temperature. Based on the research evidence of these authors, banana fruit could 

tolerate temperature of 10 ℃ only for a minimum duration of a week prior the initiation of 
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chilling injury symptoms. However, the use of post-harvest treatments and low temperatures 

involves relatively higher investment (Mujumbar and Low, 2010). Given over 1200 banana 

varieties cultivated around the globe, South Africa grows about 70 different banana cultivars of 

which 20-50% of harvested fruit still go to waste due to the commodities perishable nature 

(composed of 65-75% moisture content), insufficient post-harvest handling techniques and little 

knowledge to process the fruit into different forms (Mashau et al., 2012). Some local banana 

varieties grown in the country are small sized fruit, with unique colours (e.g. Green Red cv.), 

tastes and unusual curve shapes when compared to dessert cultivars such as Williams, Gros 

Michel, Chinese Cavendish (Anyasi et al., 2013). Due to this, these local genotypes receive less 

acceptance both in the local market and don not even qualify for exportation (Kibazohi et al., 

2017). 

 

Conversely, cereal/or grain flours nowadays are usually produced from genetically modified 

organisms (GMOs) in order to fulfill the demand of the food industry (Zhao and Shewry, 2011).  

In essence, the majority of the functional properties contained in these flours are artificial. The 

rise in uncommunicable health issues linked with cereal/grain flours has lead modernised 

consumers and the rest of the public to seek for products containing natural functional properties 

(for example resistant starch, phenolic compounds, dietary fibres, carotenoids, phytonutrients, 

ascorbic acid, to mention a few (Khoozani et al., 2019).  

 

Regarding economic, health challenges and banana fruit physiological constrains, the alternative 

route that banana producers have adopted around the globe is drying the fruit while still at the 

preclimacteric stage. The dehydration of banana fruit at an unripe phase is an effective industrial 

technique that most SA producers need to adopt  in order to accommodate the fruit surplus, 

optimise the fruit shelf-life and quality (Karam et al., 2016). Another advantage with this 
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approach is that products are characterised with low moisture content which also contribute 

towards product low bulk weight, consequently, relatively low storage and exportation costs are 

incurred (Da Silva et al., 2014). Therefore, the post-harvest processing of unripe bananas into 

powdered form is one of the convenient approach to reducing postharvest losses, increase shelf 

life and availability of the crop throughout the year and preserve nutritional composition (Yani 

et al., 2013, Bezerra et al., 2013) and also enable farmers, both in commercial and small-scale 

settings, to diversify on their on-farm business activities (Mohapatra et al., 2011). 

 

It is believed that the production of unripe banana powder and its consumption began in the 

1900, where in various parts of Africa and Jamaica society utilised it as a natural gluten-free 

food sourceand a substitute to cereal-based flours (Ashwar et al., 2016). Unripe banana flour 

contains good health promoting antioxidants and phytochemical properties which in various 

research has been proven to reduce degenerative illnesses such as diabetes, colon cancer, obesity 

(Menezes et al. 2010). Resistant starch type II is the main component, accounting for about 45-

75 percent in unripe banana flour (Raigond et al., 2015). Unlike other commonly known cereal 

and grain flours, the type of resistant starch contained in the banana flour resist hydrolysis in 

the small intestine and reaches large intestine where it functions as a fermentable dietary fiber 

feeding the systems microbiota (Sardá et al., 2016b). These health attributes are of benefit for 

celiac disease sufferers and other patients with many non-communicable diseases (Tavares da 

Silva et al., 2014). With this, unripe banana flour has gained the attention of nutritional 

researchers and health conscious consumers. This has also contributed in the accelerated 

production and marketing unripe banana flour. 

 

A large proportion is used as a primarily ingredient in the food industry which is further 

segmented into bakery, snacks, confectionery, weaning products (Gumisiriza et al., 2017, 
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Adeniji, 2015) The global consumer demand for the product has increased market trade as well 

as its derived products. During the 2014-2018 forecast, global market sales increased by 

approximately 3.8% compound annual growth rate (CAGR) (Future Market Insights Report, 

2018). By 2023, the global banana flour market is estimated to reach USD 537 million from 

USD 397 million obtained in 2017. Recently, it has been report that for the period 2018-2023 

the CAGR is expected to reach 4.2 percent. During this period, the Middle East and African 

(MEA)countries combined with SA are estimated to reach a market value of USD 300 million. 

The Latin American countries market value to reach an amount of USD 730 million by the end 

of 2027 and as the largest banana flour producers, the industry is anticipated to reach an annual 

compound growth rate of 6.5% towards the end of 2027 (Future Market Insight, 2019).  

 

Standards regarding safety and quality control of agricultural food products states “business 

manufacturing operations must ensure end product supplied in the retail market is pure, safe and 

free from contamination and pathogens” (Akkerman et al., 2010). Despite growth in revenues 

associated with rising consumer demand, the concern with the banana flour market is that, there 

is a scarcity of technologies put in place to ensure and monitor quality (Sardá et al., 2016a). This 

gap of information encourages unfaithful processors to cheat the identity of banana flour by 

adding or substituting it with low value undesired substances.  This act is referred to as economic 

adulteration and is a very difficult case to solve and to distinguish if it happened intentionally 

as a result of negligence (Manning and Soon, 2014, Khan, 2013).The common underlying 

reasons for food fraud is usually motivated by greed, high profits linked to the practice; owes to 

the abundance and easy access to low-cost substitutes and/or artificial illegal matrices with 

shared homogenous sensory qualities (taste, texture and colour) and chemical characteristics as 

natural products (Lohumi et al., 2015, Manning, 2016, Thangavel and Dhivya, 2019). As 

reported by Sardá et al. (2016a), adulteration of unripe banana flour can reach up to 80 percent 
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with many low-cost edible flours, including wheat and maize flours. The widespread of 

processed foodstuff adulteration in South Africa is common and has been in the past reported 

for products such as honey (Downey et al., 2003) and grounded meat (Cawthorn et al., 2013), 

to mention a few. As suggested in various studies in the literature, outcomes of adulteration 

practices disrupts business relationships between countries, deteriorates product quality, causes 

produce and economic loss, and possess health risks (Nasreen and Ahmed, 2014, Rahman et al., 

2015, Handford et al., 2016).  

 

The authentication of unripe banana flour is, therefore, a crucial factor in the SA food industry 

as many consumers and health organisations have become informed about the product benefits. 

South Africa is one of the developing countries with porous import boarders, and currently the 

country has one company involved in the banana flour processing (i.e. M-Pak, in Limpopo). 

Having one company monopolizing banana flour processing means that the industry in SA is 

still growing, and allows imports of the product from other regions. In order to strengthen the 

country’s competitive edge in banana flour trade, the South African banana flour industry seeks 

techniques to monitor adulteration acts regarding the product.  

 

Various analytical methods have been employed in the identification of certain product 

adulteration. These include wet chemistry involving high performance liquid chromatography 

(HPLC) (Salghi et al., 2014), mass spectroscopy (Azad and Ahmed, 2016) and enzyme linked 

immunosorbent assay (ELISA) (Doosti et al., 2014, Song et al., 2014). However, the utilisation 

of such methods is time-consuming and in various literature considered these are insufficient 

for adulteration detection as they tend to focus or target specific components or compounds 

during analysis (Haughey et al., 2013).  
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These analytical methods also give insignificant outputs since food imitators would always be 

in search for alternative adulterants when a specific adulterant is discovered and included in the 

list of target analytes (Xu et al., 2015). With that being said, visible-near infrared spectroscopy 

(Vis-NIRS) is a well recommended non-destructive, rapid and sensitive technique for 

accommodating the assessment of food adulteration (Zhang et al., 2014, Fu et al., 2014).  In this 

regard, and owing to its simplicity and robustness nature when accompanied by chemometrics 

modelling, Vis-NIRS is the most suitable tool for qualitative and quantitative evaluation 

(Cattaneo and Holroyd, 2013, Huang et al., 2016) of banana flour adulteration. 

  

Due to its capability to operate in the region (400-2500 nm) of the electromagnetic spectrum, 

infrared technologies collect the molecular fingerprints of product under investigation (Cubero-

Leon et al., 2014, Riedl et al., 2015), so that the desired quality characteristics and unauthorised 

added foreign substances in food product can be detected. Each measured fingerprint is then 

stored as a single wavelength consisting both useful and irrelevant information (Hong et al., 

2017). The irrelevant data represented by broad, sharp and overlapping peaks at a later stage 

during the construction of prediction models are reduced through the application of different 

preprocessing tools (Teye et al., 2014). The use of visible to near infrared technology has been 

used extensively in the agro-food industries for the authentication of various products but not 

yet has it been applied in the process monitoring of unripe banana flour in South Africa. This is 

also the case for European regions, United states, China, Brazil, India so as the Middle East and 

West African countries, yet are heavy producers of banana flour and its related commodities. 

This research study intends to introduce a new scientific approach that manufactures and retail 

market operators can use to identify and monitor of banana flour with possible adulteration with 

relative cheap staple flours. Hence, considerable knowledge and understanding of Vis-NIRS 

ability to detect less desirable materials (wheat and maize flours) in unripe banana flour is 
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important not only for economic gain and health reasons but also to ensure fair trade amongst 

producers.  

 

2. Aims and objetives 

The main aim of this research was to develop prediction models based on a Vis-NIRS combined 

with multivariate analysis to identify quality attribute of unripe banana flour and to classify, 

detect, and quantify adulteration of levels of staple flours (i.e. wheat and maize flours) in unripe 

banana flour.  

This aim was achieved through the following specific objectives:  

• To evaluate Vis-NIRS along with suitable chemometrics tools (PCA and PLSR) to 

discriminate pure unripe banana flour samples from samples adulterated with wheat 

flour and build prediction models to quantify different adulterant doses. 

• To develop an optimum non-destructive partial least squares regression model to 

quantify unripe banana flour adulteration with different mixes of maize flour. 

• To determine the robustness of the technique with associated chemometrics 

preprocessing analysis to construct a standard prediction model that can detect both 

adulterants (wheat and maize flours) various concentrations in unripe banana flour.  

• Additionally, exploring Vis-NIRS to identify potential quality attributes that can be 

used to separate unripe banana flour with staple flours under investigation.  
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CHAPTER 2 - A REVIEW OF DESTRUCTIVE AND RAPID NON-INVASIVE 

METHODS USED TO DETECT ADULTERATION OF DRIED POWDERED 

HORTICULTURAL PRODUCTS 

Abstract  

 

Powdered foods derived from horticultural produce, include spices and herbs, fruit and 

vegetable flours, hot beverages and medicinal powdered products. They are vital components 

of the modern human diet and lifestyles. Horticultural powdered products constitute good 

sensory attributes (flavour and aromas); powerful antioxidants (phenolics, flavonoids, 

carotenoids); important proteins, starch, minerals, and vitamins, which have specific 

physiological functions towards improving human health. An exponential rise in the incidences 

involving adulteration of processed foods is encountered in many agro-food industries globally. 

The impacts on consumers’ health may lead to allergic reactions, chronic illnesses, and 

sometimes death. Thus, quality evaluation and the maintenance of natural authenticity of these 

products is the primary concern. Non-destructive spectroscopic techniques such as visible to 

near infrared spectroscopy (Vis/NIRS), Fourier transform infrared (FT-IR), hyperspectral 

imaging and Raman spectroscopy are the fourth industrial revolution methods, preferred over 

traditional methods, for application in the value addition chain to monitor adulteration of 

horticultural powdered products. The aim of this chapter is to provide an overview of literature 

on the potential applications of destructive and non-destructive technologies to assess 

adulteration with emphasis to powdered horticultural foods. An understanding of food 

adulteration and adulterants concepts and potential impact on health and agri-food industry is 

elaborated. Potential applications and technical limitations related to the use of destructive 

methods assessment of adulterated horticultural powdered food is highlighted. This review also 

discusses operational principles of the infrared technologies including Vis/NIRS, FT-IR, 
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hyperspectral imaging and Raman spectroscopy. Given the recent studies conducted on 

powdered food adulteration, chemometric analysis applications towards developing 

identification models to effectively determine the extent of adulteration levels of various 

products are illustrated.    

Keywords: Vis/NIRS, Hyperspectral imaging, Raman spectroscopy, Multivariate techniques, 

Powdered foodstuff   

 

1. Introduction  

 

Post-harvest processing of horticultural produce is a transformation process of material in their 

fresh state to various forms (Floros et al., 2010). The aim is to reduce postharvest losses, add 

value to underutilized, ‘fall-outs’ or ‘downgraded’ produce, a better shelf-life extension of 

fruits and vegetables for future utilisation (FAO, 1997; Mhazo et al., 2012; Mlambo et al., 

2019). After harvest, many food processing activities are involved in the fruit and vegetable 

value-adding chain. These include different divisions that start from the production method, 

packaging and storage, distribution and marketing of products. These activities also involve 

the maintenance of technologies that guarantees the quality of the product at different stages of 

the value chain.   

In South Africa about 29% of horticultural produce is used in processing, whereas 71% is sold 

as fresh material. Processed food contributes an estimated 30.5% to SA gross domestic product 

(Thandisa, 2014; Department of Trade Industry, 2014). With many technologies in the food 

processing sector, drying is one of the processing methods that is used to develop powdered 

horticultural commodities (Weaver et al., 2014). Various published research indicates that 

powdered products are generated from a variety of plant materials, the majority being fruit 

pulp, leaves, peels, stems, tubers, roots, and pods, to mention a few. Essentially, dried 
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horticultural powdered foods are developed simple by dehydrating plant parts and milling them 

into powder (Su and Sun, 2018). Compared to fresh produce, powdered horticultural 

commodities are concentrated with different health-promoting antioxidants and 

phytochemicals of which, with constant daily intake, promote a healthy lifestyle and assist in 

reducing life-threatening illnesses (Sun-Waterhouse, 2011). The natural ingredients potency of 

powdered horticultural products greatly influences the consumers purchasing perceptions and 

demand for the product. 

In developed and developing countries, dried horticultural foodstuffs are used for 

pharmaceutical and consumption purposes. Furthermore, these are highly valued products for 

everyday life as their state enables versatile applications during the preparation of many foods. 

Several foods are incorporated in the powdered products’ category with a wide range of unique 

flavors, aromas, tastes, and attractive chromophores (Su et al., 2017). In this review, four 

groups, namely, 1) spices and herbs, 2) fruits and vegetables, 3) hot beverages, and 4) medicinal 

powdered products have been identified to fall in the category of powdered horticultural 

products. 

Quality evaluation for these foodstuffs is imperative for the recognition of unauthorized 

addition of ingredients (Su and Sun, 2018). Worldwide, adulteration of powdered foodstuff is 

a common practice in the agro-processing firms. The success in this act is made possible by 

the easy accessibility of adulterants which mimic the nature of existing or newly established 

products (Granato et al., 2018).  

One of the critical and crucial concepts in many agricultural sectors is to determine and ensure 

that food quality is guaranteed. Essentially, processed goods undergo varied complex 

morphological structure alteration/or modification phases (Kamruzzaman et al., 2015a). Figure 

1 gives an exemplary illustration of the necessary steps taken during the preparation of the 
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South African unripe banana flour. Processes involved in food manufacturing makes the final 

product bear little or no resemblance from their fresh original form (Weaver et al., 2014) 

(Figure 1). Additionally, during manufacturing, foods are prone to various types of 

contaminations, not conforming to food safety and quality standards (September, 2011). The 

adulteration of food may be intentional or unintentional. Deliberate adulteration is motivated 

by greed whereby unfair producers substitute closely relates products with aims of maximizing 

their output and profit margins. Unintentional adulteration often arises due to negligence and 

improper post-harvest processing of produce. All these cases are summed under one phrase 

and referred to as economic adulteration (Mohammed et al., 2014, Keim et al., 2015, Lohumi 

et al., 2015). Food adulteration compromises product quality which as a consequence impact 

on the health of consumers.  

To safeguard product quality and mitigate adulteration of powdered horticultural foods, 

agricultural researchers, engineers and food scientists around the world have developed 

expertise and methodologies to verify product authenticity. Recent research studies 

recommend the use of non-destructive tools such as vibrational spectroscopies (visible to near 

infrared (Vis-NIR)), fourier transform infrared (FT-IR), hyperspectral imaging, Raman 

spectroscopy) to evaluate adulterants in powdered foods (López et al., 2014; Ding et al., 2015; 

Pasquini, 2018). However, there is still a body of literature reporting on the successful 

applications of destructive methods (immunological assay, deoxyribonucleic acid (DNA) 

techniques, microscopic methods, electrophoretic procedures and chromatographic methods) 

for this regard (Dhanya and Sasikumar, 2010; Bansal et al., 2017; Galvin-King et al., 2018).  

In the current century, destructive techniques are less desirable for use in the food value chain 

since they are time-consuming, laborious, require continuous utilization of chemical reagents, 

and in some instances inaccurate since they tend to be compound-specific (McGrath et al., 

2018). There is a limitation of reviews that discusses the use of destructive and non-destructive 
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methods applications on food adulteration with more emphasis on different groups of 

horticultural powdered products.   

This literature review aims to provide current knowledge on the range of technologies 

developed for evaluating the adulteration of horticultural powdered foodstuffs. It briefly 

outlines the basic concept of food adulteration and its related impacts. This review chapter also 

discusses the basic application principles, challenges and future recommendations of these 

techniques in improving the security of new and existing product authenticity to the processing 

industry.  

 

2. Theory/Terminology: Understanding food adulteration, adulterants and its 

associated consequences in the agri-food industry chain 

 

The adulteration of processed foods has been a universal practice and the first research into it 

entitled “A treatise on adulterations of food and culinary poison” was documented by Frederick 

Accum in the 1820s. The author surveyed adulteration and possible contamination of various 

products, owing to false manufacturing procedures, not in line with the food safety standards 

and regulations. Identified amongst many, tea, coffee and spices (e.g. pepper) along with 

sawdust, plaster, lead, copper, were detected as potential non-permitted adulterants used in the 

agro-food industry to heighten the bulk and used as colour agents mentioned products and other 

confectionery products. Accum’s research exposed many fraudulent agro-processing firms, 

traders and also suggested methods for detecting food adulteration and contamination, 

applicable during that era (Accum, 1820; André, 2018).  

‘Food fraud’ and/or ‘economical motivated adulteration’ (EMA) are interchangeable terms 

used in the scientific literature referring to adulteration of powdered foods (Ellis et al., 2005; 
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Manning, 2016a; Hong et al., 2017). Moreover, the collective term declaring extraneous 

substances found within natural food products, limiting their quality and effectiveness, is called 

an adulterant (Calahan et al., 2016).  

As adopted by the food and agricultural organization (FAO) of the United Nation and in other 

research publications, adulteration of agricultural products means an illegal phenomenon 

which involves intentional substitution, or accidental addition of various adulterants to pure 

products to reduce cost of production and increase sales and profit for those products (Spink 

and Moyer, 2011; Esteki et al., 2018).  

Food is considered adulterated if/when the label/package description (i) does not comply with 

the content of the product; (ii) false stated products geographic origin; (iii) incorrect declaration 

of the production methods used during growing (e.g. organic versus conventional process); (iv) 

untruthful statements regarding product preparation method (this includes the type of 

machinery used i.e. hot air drying, freeze-drying, vacuum drying, sun drying, etc.) and 

tampered expiry dates (Scarano and Rao, 2014; Manning and  Soon, 2016). 

There has been significant economic losses and health risks associated with food adulteration. 

An annual estimated loss ranging from 10 to 40 billion US dollars has been reported globally 

to result from food adulteration (McGrath et al., 2018). According to Galvin-King et al. (2018), 

depending on the toxicity of adulterants, approximately 2 -15% annual profits can be lost due 

to a single adulteration incident per company/or industry. During the 2003-2004 period, the 

spices and herbs industry experienced an economic loss of about 481 million US dollar 

following the adulteration scandal of Sudan dyes in products such as red pepper, chilli powder, 

turmeric, paprika powder and saffron powder (Tarantelli, 2017; Galvin-King et al, 2018). In 

2014, different regions of the United States, Canada and European countries experienced over 

675 recalls of cumin and taco spice products, as a result of adulteration with almond, peanut 
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and tree nuts (Garber et al., 2016). Previous and recent research have reported that the 

consumption of adulterated food may result in allergic reactions to sensitive individuals (Bock 

et al., 2001; Everstine et al., 2013), which consequently lead to the occurrence of a public health 

outbreak in the long run (Esslinger et al., 2014; Tibola et al., 2018). For instance, intake of 

coffee powder adulterated with tamarind and date seeds powder may lead to individuals 

contracting stomach disorders (Lakshima, 2012). The swelling of the face may be an immediate 

allergy effect response after the consumption of turmeric contaminated with yellow chalk 

powder (Nallappan et al., 2013). Greater than 60% individuals were hospitalised as a result of 

unknowingly consuming spices adulterated with lead oxide in some regions of India and 

European countries (Everstine and Kennedy, 2013). It is under such circumstances that the 

challenges to market powdered horticultural products rises, consumers trust and confidence to 

purchase the valuable powdered food decline (Johnson, 2014). 

 

3. An overview of destructive tools for adulteration detection of powdered products 

derived from horticultural produce 

 

Destructive methods in different applications have illustrated their potential to identify and 

detect adulterants in various categories of powdered horticultural products (Table 1 and Table 

2 below). The determination of powdered food adulteration can be performed destructively 

through the use of (i) chemical /or biochemical methods (i.e. electrophoretic and 

chromatographic techniques), (ii) microscopic methods (iii) protein antibody based methods 

(i.e. enzyme-linked immunological assay (ELISA)), and (iv) DNA based techniques (i.e. 

polymerase chain reaction (PCR)). The fundamental operations of these methods significantly 

differ, as their abilities to detect adulterants in various food mixtures is sensitive to specific 

marker compounds (Sørensen et al., 2016).  
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As mentioned in a recent review by Teye et al. (2013), destructive techniques are good as being 

tools for laboratory research institutions. This is simply because estimates of product quality 

using these methods is normally based on a few randomly selected food samples (Grassi and 

Alamprese, 2018). The main disadvantage with small-scale routine quality analysis system is 

that in a nutshell, a food product can be contaminated with more than one potential adulterants. 

In many instances this means there are much higher probabilities to provide insufficient 

information about the authenticity and adulteration of particular food products (Peng et al., 

2017; Ballin and Laursen, 2019); hence, many possible types of adulterated food samples can 

go to different markets undetected (Sørensen et al., 2016).  

Given the complex nature of the food supply chains; food production industries, wholesale 

suppliers and retail markets are required to make it a priority that before distribution every food 

item is routinely checked for defaults, are authentic and that they comply with the food safety 

and quality regulations (Callao and Ruisànchez, 2018). Unless stated otherwise, destructive 

techniques have become less competent and undesirable for use in in-line/ on-line industrial 

applications due to several technical issues. They are generally expensive, erroneous, time 

consuming, laborious, continuously require buying of chemical reagents, and the need for 

highly trained personnel to carry out the analysis (Manfredi et al., 2015; McGrath et al., 2018). 

The presence of these challenges prompted a need for a shift to more cost-effective and novel 

rapid techniques.   

 

3.1. Chemical /or biochemical techniques 

 

The detection of powdered food adulteration by electrophoretic and chromatographic methods 

is associated with the following powerful profiling techniques viz capillary electrophoresis 

(CE), gas and high-performance liquid chromatography (GC and HPLC) (Toci et al., 2016). 
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The basic concept underlying the use of these analytical approaches require knowledge on the 

use of suitable extraction solvent, removal or clean-up of interfering components, separation 

and selective detection of chemical compounds (García-Cañas et al., 2014; Pérez-Míguez et 

al., 2016). 

 Capillary electrophoresis and HPLC enables the detection, identification and quantification of 

adulterants through profiling a variety of food related molecules (such as proteins, phenolics, 

amino acids, and carbohydrate compounds, amongst many) with different chemical properties 

(František Kvasniěka, 2005; Bansal et al., 2017). Pérez-Míguez et al. (2016) reported the 

determination of non-protein amino acids as quality descriptors in variety of adulterated 

powders including chive, tomatoes, garlic, onions, and cocoa product samples by CE approach. 

A report by Nogueira and do Lago (2019) demonstrated the use of CE through the 

characterization of glucose and xylose as quality markers to detect the adulteration of coffee 

husks and corn flour in instant coffee powder.  

Jham et al. (2007, 2008) employed the HPLC technique to demonstrate that the adulteration of 

coffee powder (Coffea arabica) with maize could be identified by the separation of tocopherol 

profiles and fatty acid methyl ester profiles. In order to detect the adulterants in coffee matrix, 

Domingues et al. (2014) reported that the monosaccharides profiles could be used as 

characteristic components of roasted and ground coffee and their adulterated samples with 

triticale and acaí by HPLC system. Through the profiling of polysaccharides, Yang et al. (2015) 

established a method to identify adulterated cocoa powder mixed with several adulterants 

(cocoa shell powder, chestnut shell powder, peanut shell powder, longan shell powder, starch, 

wheat flour and pumpkin powder) using HPLC and principal component analysis. In a pilot 

study, Vadivel et al. (2017) considered piperine as a chemical marker to discriminate between 

pure black pepper from adulterated samples with papaya seed powder using high performance 

thin layer chromatography (HPTLC) method. Vandekerckhove et al. (2017) established a 
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chromatographic approach based on an ultra-high performance liquid chromatography with 

mass spectroscopy (UHPLC-MS) for the detection analysis of peanut adulteration in chilli 

pepper powder. Sáez Vigo (2019) analysed polyphenols using high performance liquid 

chromatography ultraviolet (HPLC-UV) and fluorescence (HPLC-FL) coupled with 

chemometric methods and was able to identify and quantify almond flour adulteration by 

peanut and hazelnut flours.  

GC has detected the adulteration of powdered products by means of separating volatile or semi 

volatile natural compounds (Haneef et al., 2013; Bansal et al., 2017). The demonstration of the 

techniques’ capability, combined with mass spectroscopy (GC-MS), to distinguish between 

roasted coffee and their adulteration mixtures roaster barley have been reported by Oliveira et 

al. (2009). The profiling of fatty acids by GC coupled with multivariate analysis methods was 

proven to be an eligible method for testing almond powder adulteration with apricot kernel 

(Esteki et al., 2017). It was possible to distinguish differences in the phytochemical constituents 

(such as flavonoids, tannins, sterols, coumarins, lignins, proteins and sugars) of black pepper, 

and adulterated black pepper powder samples with its adulterant papaya seed powder by GC-

MS method (Vadivel et al., 2017). Although electrophoretic and chromatographic techniques 

are available to differentiate the adulteration of horticultural powdered products, there is 

limited research studies on their use to detect adulteration of medicinal powders (Table 1). 

These techniques involve the use of sophisticated instrumentation systems which needs skilled 

technicians to reconnect. On the other hand, various chemicals involved during the analysis 

generate chemical waste. This requires careful disposal, which is associated with relatively 

high additional expenses. As a significant drawback, these approaches are not environmental 

friendly (Haneef et al., 2012; Domingues et al., 2014; Daniel et al., 2018). 
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 3.2. Microscopic based tools 

Several microscopic techniques such as electron, optic, light and scanning microscopy have 

been used by researchers to diagnose the adulteration of powdered horticultural products.  As 

depicted in Table 1, microscopic methods determine the product that is adulterated with other 

substances through detailed examination of foods different morphological characters, tissue, 

cell types and bioactive structural features like proteins, starch, etc. (Ballin and Laursen, 2019). 

A qualitative identification of starch granule patterns was performed under a light microscopy 

to detect the authenticity, mislabeling and suspected substitution of unripe banana flour with 

tuber and cereal flours (Sardá et al., 2016).  

Zho and Zhao, (2014) showed the efficiency of using microscopic technique to clearly 

distinguish the micro-morphology characteristics of pure seasoning powders (cumin, chilli, 

pepper and mustard powders) from the adulterating substances (starch, plant straws, and 

monosodium glutamate). Moreover, the adulteration of papaya seed powder in black pepper 

powder could be identified by careful microscopic examination of fatty oils, oil globules, starch 

granule, fibres, and different parenchyma cell characteristics (Vadivel et al., 2018). 

Serrano et al. (2010) was able to discriminate and identify African potato (Hypoxis 

hemerocallide) from its counterparts including Artemisia annua L, and Guiera senegalensis by 

application of light and scanning microscopy. These authors also argued and emphasized on 

the difficulty to analyze powdered samples compared to fresh samples using the technique. In 

a review by Pastor et al. (2019) it was also indicated that even though microscopic methods are 

able to differentiate powdered food products by plant species, it may not enable accurate 

analysis when a mixture of unknown flours is analyzed. Hot beverage powders adulteration has 

not been investigated by the microscopic application (Table 1). Other than being expensive, 

microscopic methods require precise sample preparation done by highly trained staff. 
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Table 1: Recent applications of electrophoretic, chromatographic and microscopic methods to detect adulteration of horticultural powdered 

products. 

Product category  Potential Adulterants Potential attribute/s Detection method Reference  

Spices and herbs     

Black pepper powder Papaya seed powder  

 

Piperine HPTLC Vadivel et al. (2018) 

 

 

 Flavonoids, tannins, 

sterols, coumarins, lignins, 

proteins and sugars 

 

Fatty oils, oil globules, 

starch granule, fibres, 

parenchyma cell shapes 

GC-MS 

 

 

 

Microscopy 

 

 

 

 

 

Cumin, chilli, pepper and 

mustard powders 

Starch, plant straws, and 

monosodium glutamate 

Stomata, starch and fibre 

structures 

Microscopy  Zho and Zhao, (2014) 

Chilli pepper powder Peanut  Proteins  UHPLS-MS Vandekerckhove et al. 

(2017) 

Fruit and vegetable flours     

Almond flour Hazelnut and peanut flours Polyphenols HPLC-UV; HPLC-

FL with PCA, PLS, 

PLS-DA  

Sáez Vigo (2019) 

Unripe banana flour Wheat and corn flours Starch granule Microscopy  Sardá et al., (2016) 

     

Hot beverage powders     

Instant coffee powder Coffee husk and corn flour Glucose and xylose EC Nogueira and do Lago 

(2019) 

Coffee powder Maize flour Tocopherol and fatty acids 

methyl ester 

HPLC Jham et al. (2007, 2008) 

Roasted and ground coffee Triticale and acaí Monosaccharides  HPLC Domingues et al. (2014) 
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Table 1: Recent applications of electrophoretic, chromatographic and microscopic methods to detect adulteration of horticultural powdered 

products.  

Product category Potential adulterant/s Potential attribute/s Detection method  Reference  

Hot beverage powders     

Cocoa powder Cocoa shell, chestnut shell 

peanut shell, longan shell, 

wheat starch and pumpkin 

powders 

Polysaccharides  HPLC with PCA Yang et al. (2015) 

Roasted coffee Roasted barley  Aroma compounds GC-MS Oliveira et al. (2009) 

Almond powder Apricot kernel powder Fatty acids GC with PCA, PCA-LDA, 

PLS 

Esteki et al., (2017) 

Medicinal powders     

African potato (Hypoxis 

hemerocallide) 

Jateorhiza palmate, 

Artemisia annua L, and 

Guiera senegalensis 

Starch granule, stomata 

shape, calcium oxalate 

crystals 

Microscopy  Serrano et al. (2010) 
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3.3. Protein antibody-based technique 

Enzyme-linked immunological assay (ELISA) has been reported as an effective immunological 

method for screening adulteration in various commercial powdered products. Briefly, ELISA 

is based on an enzyme/ or a protein that catalyzes a biochemical reaction, in order to detect the 

presence of an antibody or antigen of interest in a food sample (Asensio et al., 2008). The 

analytical procedure may be conducted qualitatively or quantitatively. A qualitative ELISA is 

performed using lateral flow immunosticks or dipstick tests based on a simple positive or 

negative result of a food sample. Where; a positive result means the product is adulterated, and 

a negative output depicts that a product is authentic and no adulterant is detected (Cawthorn et 

al., 2010).  

A dipstick test is a very convenient and low-cost procedure since all reagents are in the dry 

form, and the results could be obtained on site within several minutes (Trantakis et al., 2012). 

Whilst, a quantitative assay is a lengthy method which involves a series of standard solution 

which requires dilutions of reagents, multiple pipetting, and incubation steps. The detection of 

food allergen is measured with specialized equipment (microtiter plate reader) (Cawthorn et 

al., 2010).  

In different research investigations (Table 2), ELISA tests have been mostly applied to evaluate 

and ascertain that processed powdered food products labelled not to contain residues of allergy 

causing proteins are authentic and safe (Haraszi et al., 2014; Bustamante et al., 2017; Ballin 

and Lauren, 2019). For instance, Trantakis et al. (2012) by dipstick test quickly determined the 

authenticity between Arabica and Robusta coffee species and could discriminate 5% 

adulteration of Robusta coffee in Arabica coffee powder samples. 

Sletten et al. (2005) showed that the ELISA could be used as a method to verify inadequate 

allergen labelling and detect casein (a cow milk protein of which some consumers are 
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intolerant) traces in products such as instant potato flour and spice mix foodstuffs.  Moreover, 

the adulteration of several products including cocoa powder, hazelnut, and walnut flours with 

abrin (an allergen protein in beans of Abrus precatorious species) was detected by Garber et 

al. (2008) through this technique.  

Moreover, Sharma et al. (2014) preformed a market survey using various ELISA kits to 

determine the safety of different horticultural food categories (including: tapioca starch, dried 

cranberries, chilli curry powders, tomato and mushroom soup mix, quinoa, amaranth, almond 

and coconut flours) and their compliance with gluten free labelling. Different walnut-based 

powdered products (including sesame and jujube powders) with no label content of walnut 

proteins, were identifiable through the use of indirect ELISA method (Fang et al., 2015).  

Vandekerckhove et al. (2017) verified several chilli pepper powder samples to contain 

undeclared allergenic peanut traces by ELISA analysis.  

Although several studies have utilised this technique with success, some research have found 

this method to be producing false positive or false negative results. As previously mentioned, 

ELISA approach mainly targets protein allergens towards identifying different products 

adulteration. However, due to different thermal processing techniques, particular proteins may 

be denatured during industrial processing of raw food materials (Asensio et al., 2008). 

Consequently, protein strands of interest may not be present in the condition detectable by the 

antibodies or antigens of the assay, thus leading into possible errors and inconsistent findings 

(Manfredi et al., 2015; Prado et al., 2016). 

Prior ELISA analysis, it has been reported that powdered food products may require extensive 

purification in order to eliminate cross-reactivity effect of antibodies with other proteins in the 

food sample mixture and improve on the techniques’ sensitivity and accuracy to detect the 

adulterated products (Dhanya and Sasikumar, 2010; Fang et al., 2015). The lack of sensitivity 
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of several ELISA methods to determine undeclared peanut proteins in a variety of cumin spice 

samples have been recently reported by Garber et al. (2016). The generated inconsistencies in 

their findings demonstrate the disadvantage of using single analyte-specific assays. These 

authors emphasized on the need to use multiplex techniques and have alternative analytical 

methods to address and/ or detect incorrect labelling of allergens in food powders, even if 

present at trace levels. 

 

3.4. DNA based techniques 

Adulterants detection using DNA methods are mainly performed using polymerase chain 

reaction (PCR) assay procedures. DNA testing procedures are based on the extraction of short 

or whole sequence of target biological genes, and amplifying those genes for further molecular 

analyses using various PCR primers (Lockley and Bardsley, 2000; Dhanya et al., 2008, Bansal 

et al., 2017). Different PCR approaches (Table 2) that have been proven robust to detect the 

adulteration of powdered horticultural foodstuffs include random amplified polymorphic DNA 

(RAPD), sequence characterized amplified regions (SCAR), DNA barcoding and real-time 

PCR, among others (Dhanya and Sasikumar, 2010).   

RAPD assay is a simple, low cost, and a quick procedure. It does not require previous sequence 

information, and this gives it an ability to detect different varieties of plant based adulterants 

(Bansal et al., 2017; Galvin-King et al., 2018). Using RAPD primers, Dhanya et al. (2010) 

reported successful detection of the adulteration of chilli powder with its adulterants dried red 

beet powder, almond shell dust and powdered jujube (Ziziphus nummularia) fruit. Even though 

RAPD is simpler and allows the detection of different adulterants, its main problem is that it 

lacks sensitivity whenever a change in experimental conditions occurs. This may result into 

inconsistent findings when the analysis is repeated (Dhanya and Sasikumar, 2010).  
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SCAR-PCR assay is an alternative of RAPD, it facilitates sensitive and specific screening of 

adulterants in commercial powdered products. Studies that have demonstrated the potential use 

of SCAR-PCR include the detection of cashew husk in dry tea samples (Dhiman and Singh, 

2003); differentiation of pawpaw seeds in black pepper (Sasikumar et al., 2005; Khan et al., 

2010); and discrimination of saffron from safflower herbs (Javanmardi et al., 2011).  

Other research studies have used DNA barcoding technique to authenticate and detect the 

substitution between products derived from the same genus which differ in quality grades 

(Lockley et al., 2000; Newmaster et al., 2013). The technique has been reported by Parvathy et 

al. (2015) as a method that can be used to discriminate between different turmeric powder 

varieties. These authors also observed that this was a potential method to identify the molecular 

variability in the turmeric powder samples caused by the presence of undeclared plant-based 

traces of cassava, wheat, barley and rye starches.  Moreover, DNA barcoding was proven to be 

an efficient tool to discriminate the diversity between related spices and herbs (thyme, turmeric, 

basil, ginger, cardamom, and anise powders) and was shown to be able to identify wheat and 

rice genes in adulterated ginger powder and milled thyme medicinal herbs (Mosa et al., 2018).  

However, it is a challenge to possibly use DNA barcoding for a routine quality analysis as one 

requires to have in place a database of species DNA sequences as a reference (Mattia et al., 

2010). Real-time PCR is another effective DNA method that recently have been acceptable for 

authentication and adulteration evaluation of powdered horticultural foodstuffs. Alary et al. 

(2007) developed chestnut specific primers to detect possible presence of cereal (such as 

common wheat, durum wheat, maize, barley, oat, rye and rice flours) and leguminous 

(including: kidney bean, soybean, chickpea and flava bean flours) species adulteration in 

chestnut flour. Sanchiz et al. (2020) also developed a real-time PCR based method to detect 

hulled wheat flour in chestnut flour of Miquelenca variety.  
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Compared to other PCR methods, real-time PCR method is highly quantitative since it can 

simultaneously characterize DNA sequences and detect undeclared adulterants even if the 

DNA strand has experienced alteration and fragmentation (Bansal et al., 2017). The unique 

DNA and its stability across plant species have made DNA based techniques deliver reliable 

and efficient results for the detection of a vast range of adulteration involving different 

horticultural products (Habza-Kowalska et al., 2019). However, challenges associated with 

cost as well as the requirement to have highly trained stuff to run the analyses and interpret 

results limit the use of DNA methods in food industry for routine quality analysis (Sheikha, 

2019). 
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Table 2: Applications of antibody and DNA based techniques to identify adulterants in horticultural powder products. 

Product type Potential adulterant/allergens Detection test kit/primer References  

Spices and herbs    

Chilli curry powder Gluten - wheat, rye and barley 

cereal flours 

R7001 Sandwich ELISA Sharma et al. (2015) 

Cumin, Taco spice Peanut and almond protein  Veratox ELISA 

xMAP Multiplex ELISA 

Taylor et al. (2015); Garber et al. 

(2016) 

Chilli pepper powder Peanut protein  R6202 Sandwich ELISA Vandekerckhove et al. (2017) 

Spice curry powder mix Casein - milk protein  

Ovalbumin - egg protein  

Casein - milk protein 

Gluten - wheat flour 

Peanut  

Competitive ELISA 

M2101, M2102, M2103 and 

M2104 Quantitative ELISA  

Sletten et al. (2005) 

Surojanametakul et al. (2012) 

Chilli powder Dried red beet powder, almond 

shell dust and powdered jujube 

RAPD - PCR Dhanya et al. (2010) 

Black pepper Pawpaw seeds SCAR - PCR Sasikumar et al. (2005); Khan et 

al. (2010) 

Saffron Safflower SCAR - PCR Javanmardi et al. (2011) 

Turmeric powder Cassava, wheat, barley and rye 

starches 

DNA - barcoding Parvathy et al. (2015) 

Ginger powder and pulverized 

thyme 

Wheat and rice species DNA - barcoding Mosa et al. (2018) 

    

Fruit and vegetable flours    

Instant potato flour Casein - milk protein Competitive ELISA Sletten et al. (2005) 

Hazelnut and walnut flours Abrin - Abrus precatorious Poly-poly Sandwich ELISA and  

Poly-mono Sandwich ELISA 

Garber et al. (2008) 

Sesame and jujube powder Walnut protein  Indirect ELISA Fang et al. (2015) 
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Table 2: Applications of antibody and DNA based techniques to identify adulterants in horticultural powder products. 

Product category Potential adulterant/ allergens  Detection test kit/primer References  

Fruit and vegetable flour    

Chestnut flour Cereals - wheat, durum wheat, 

maize, barley, oat, rye and rice 

flours 

Legumes - kidney bean, 

soybean, chickpea and flava 

bean flours 

Real-time PCR Alary et al. (2007) 

Tapioca starch, dried 

cranberries, tomato, mushroom, 

quinoa, amaranth, coconut and 

almond flours 

Gluten - wheat, rye and barley 

cereal flours 

R7001 Sandwich ELISA Sharma et al., (2015) 

Chestnut flour Spelt wheat flour Real-time PCR Sanchiz et al. (2020) 

    

Hot beverage powders    

Tea  Cashew husk SCAR-PCR Dhiman and Singh (2003) 

Cocoa powder Abrin - Abrus precatorious Poly-poly Sandwich ELISA and 

Poly-mono Sandwich ELISA  

Garber et al. (2008) 

Arabica coffee Robusta coffee Dipstick test Trantakis et al. (2012 

 



35 
 

4. Fundamentals of non-destructive spectroscopic methods 

4.1. Theory and principle of operation 

In principle, non-destructive methods are an evolution from destructive wet chemistry 

laboratory analysis. Their rapidity and robustness contribute to detect, monitor and prevent 

problems arising from the production processes of several kinds of powdered foodstuff which 

may, if unnoticed, result in noncompliance with product specification and food quality 

standards (Esteki et al., 2018). Non-destructive techniques inspect or evaluate characteristics 

of food material without affecting or hampering its biological components and potency (Black 

et al., 2016). In addition -, these tools enable the manufacturer and everyone within the food 

value chain to ascertain that the final product does not have any hidden defect. Product quality 

can be determined through several non-destructive techniques. Among spectroscopic tools, 

visible-near infrared/mid-infrared (Vis-NIR/MIR) spectroscopies; Fourier transform infrared 

(FT-IR), hyperspectral imaging and Raman spectroscopy are most used methods in the agro-

processing industry to address issues of adulteration and authenticity of powdered commodities 

(Nawrocka and Lamorska, 2013).  

Ideally, near-infrared spectroscopy operates in the range between 400-700 nm (visible range) 

and 700-2500 nm (near-infrared range) of the electromagnetic spectrum (Ding et al., 2015). 

The light received by food material, is absorbed/reflected/transmitted back to the instrument 

detector. The interaction between the instruments electromagnetic radiation and the food 

matrix results into an NIR spectrum which is a reflection of that particular products 

composition (Haughey et al., 2015).  

Generally, NIR spectra is characterised by very weak and sharp imposed absorption bands 

(Lohumi et al., 2015). This makes the visual evaluation of useful information by the naked eye 

impossible. The broad peaks of NIR spectra for food material correlate with overtones and 
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combination bands of carbon-hydrogen (C-H), oxygen-hydrogen (O-H), nitrogen-hydrogen 

(N-H), sulphur-hydrogen (S-H) chemical molecules (Nicolai et al., 2007). Briefly, overtones 

result from vibrational excitations of molecules from the ground state to higher vibrational 

energy levels. A combination is generated when two or more vibrational modes of food 

materials simultaneously get altered or excited (Rébufa et al., 2018; Mishra et al., 2018). 

According to the literature, molecular bonds universal in biological food matrixes relate to 

carbohydrates (C-H), proteins/or lipids (N-H), water (O-H), and natural pigmentation 

structures (C=C, C=O) (Fu et al., 2017; Rodríguez et al., 2019). Moreover, in dehydrated food 

material, C-H, N-H, O-H strongly absorb in the near-infrared region (700-2500 nm). Whereas 

pigmentation structures dominate the visible region (400-700 nm) and relate to conjugate and 

aromatic ring structure, not limited to carotenoids, anthocyanins, of powdered foodstuffs 

(Magwaza et al., 2016; Su and Sun, 2018; Peleng et al., 2019). 

The bands noticed in the Vis/NIR region of the electromagnetic spectrum are usually 

accompanied by unnecessary noise and baselines shifts that hide the useful spectra. The 

irrelevant data may result either from the instrument scattering effects, noise, temperature 

effects and/or products changing molecules after being illuminated by incident light from an 

instrument (Lohumi et al., 2015). Consequently, it becomes a challenging task to view 

absorption peaks and assign molecular compounds of food materials (Tao and Peng, 2014; 

Pasquini, 2018). The information acquired in the form of spectra/or images acts as a fingerprint 

that allows for the identification of distinct molecular characteristics of powdered foodstuffs 

(Cozzolino, 2014). Food analysists then make use of that fingerprint to differentiate products 

according to their authenticity without the repetitions of laboratory extraction procedures 

(Alender et al., 2013).   
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4.2. Infrared (IR) Instrument specification and setup 

The commercial non-destructive spectrophotometer operates at various wavelength regions.  

Data of a food material could be processed using a visible to near-IR (NIR) (400-2500 nm); 

mid-IR (MIR) at a region of 2500-15000 nm, and far-IR (FIR) at 15000-10000 nm (Gosh and 

Jayas, 2009). In addition, infrared methods are equipped with various system configurations. 

Briefly, a spectroscopy consists of a reference tile, sample compartment, lens/light source (such 

as a tungsten-halogen lamp), detector (e.g. indium-gallium-arsenide (InGaAs), photodiode, 

lead sulphide and silicon detectors), wavelength selection setup option and spectra signal 

processor/ computer system (Cozzolino, 2014).  

However, portable infrared spectroscopies design slightly differs, depending on a brand, they 

are battery-operated, have fixed wavelength setup, which could start from (285/350 nm) visible 

region (1200 nm) short to the near-infrared region (Peleng et al., 2019; Teye et al., 2019). On 

the other hand, the stable benchtop instruments are designed with full wavelength region (400-

2500 nm), which then gives the operator an opportunity to choose the region they want to base 

their analysis (Pasquini, 2018). Handheld and benchtop visible to near-infrared spectroscopies, 

and other NIR based methods, are light powered integrated systems. They send particles of 

light into the product. From there, the projected IR radiation interacts with the external and 

internal molecular components of materials that are later used to quantify the intended quality 

characteristics of foods selected by a researcher (Nicolai et al., 2007).  

 

5. Mathematical methods used for adulteration classification and quantification  

 

An ancient drawback of non-destructive tools has been the issue of not being able to 

immediately and directly allocate discrimination wavelength regions where the constituents of 
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the adulterant and natural product interact with light in the electromagnetic region. Various 

factors could affect the spectra of powdered food matrices during the data analysis and model 

establishment. Such factors include particle size distribution of samples, chemical bonds and 

molecular interactions complexity between materials, environmental conditions inconsistent, 

noise, baseline drifts to mention a few (Nicolai et al., 2007; Magwaza et al., 2016; Quelal-

Vásconez et al., 2018).   

The theory of operating NIR devises for adulteration evaluation of powdered products is based 

on the spectroscopies conjunction with multivariate analysis methods. Specialised essential 

mathematical/or statistical tools, which come as software packages called chemometrics 

techniques, are implemented to spectral data to identify relevant information and achieve useful 

model predictions of adulterants concentrations in powdered food matrixes of interest. 

Moreover, multivariate analytical methods ability to predict adulteration level between 

commodities works better when their application is examined through the use of pre-processing 

tools. The most practically used chemometrics and pre-treatment methods in the analysis of 

powdered horticultural food are illustrated (Figure 1), respectively. 

 

5.1. Multivariate analysis methods  

 

Multivariate analysis is an approach to visual NIRS data, enables the management, 

identification and understanding of patterns in a large spectroscopic raw dataset (Magwaza et 

al., 2016). Two approaches of chemometrics analysis exist for the evaluation of adulteration in 

powdered food samples i.e. unsupervised classification and discriminant methods and 

supervised regression procedures (Figure 2).  

Multivariate unsupervised methods are exploratory tools used to link the relationship between 

samples and the concentration gradient of adulterants. During the process to screen for 
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adulteration, information about samples disseminates whether the product is natural 

(pure/authentic/ or unadulterated) and shows a trend in sample distribution concerning the 

variation in adulterant concentrations. In this regard, principal component analysis (PCA) and 

hierarchical cluster analysis (HCA) are the most commonly used unsupervised chemometric 

exploratory tools when the objective is to classify/ or group powdered products based on purity, 

adulterant dilution level, production regions and processing methods (Cebi et al., 2017).  

In many near-infrared spectroscopic data analyses, PCA is the first step applied to map and 

describe spectral data patterns, and that many analysts used as the go-ahead before the 

development of a calibration regression models. For PCA classification, correlated spectral 

data is digested into a set of principal components (PCs) holding meaningful interpretable 

results about the explained variance between products under research. Ideally, principal 

component one (PC-1) explains the larger portion of the variance in studied samples and the 

subsequent PC-2 will explain the remaining variance not accounted in PC-1, and so on.   

Multivariate supervised methods aim to find the best linear combination relationships between 

the spectroscopic data and the reference concentration of an adulterant (Despagne et al., 2000). 

Partial least squares regression (PLSR); multivariate linear regression (MLR), partial least 

squares linear discriminant (PLS-DA), soft independent modelling of class analogy (SIMCA) 

are all quantification techniques used for modelling and developing adulteration prediction 

regressions. PLSR is the most powerful modelling method used to build calibration/prediction 

models to evaluate adulteration. The choice on which chemometric approach to use depends 

on the researcher and the type of experimental data at hand.  

Several aspects must be taken into consideration for a successful classification or PLS 

regression model. A good NIR model relies on the suitability of a set collected to train the 

model (Xu et al., 2015). A reference method is required to characterise useful features of the 
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authentic product to obtain a distribution of samples and to distinguish the unadulterated and 

adulterated product. However, before that, through the implementation of a chemometric 

software, raw data is organised in rows and columns matrix. Where the rows represent 

adulterant concentrations (Y) and the column contains visible-near infrared spectroscopic 

wavelengths (X). An NIRS regression model is constructed based on dividing the experimental 

spectroscopic dataset into two sets. The first dataset is utilised as the training/ and or calibration 

set. It is recommended that the dataset assigned to develop the calibration/ and cross validation 

model consists of at least 70 or 75% of the collected spectral data and reference lab data of the 

adulterant content. However, this percentage value is determined by how spread out is the 

representative sample datasets. This dataset is all used to develop the calibration prediction 

model (Bagchi et al., 2016).  

The first important step to analysing Vis/NIRS data is to learn the spectra for areas of potential 

noise and baseline shifts. This step of data handling assists in excluding irrelevant and 

redundant wavebands not efficient to develop a robust prediction model (Ge et al., 2011). The 

practical role of wavelength deletion selection is to view the appropriate NIR region explaining 

the characteristics of the studied products and to avoid overfitting the modelling analysis. The 

second step is to search for spectral outliers which are a hindrance during regression analysis. 

Outliers can overestimate or underestimate the developed model. Therefore, their removal is 

pivotal for reliable adulteration assessments. Lastly, a validation method that will test/validate 

the developed model based on new measured variables (Riedl et al., 2015).   

The second data selection is the validation or test set data which usually consists 30 or 25% of 

the collected spectroscopic and lab reference values and is used to test the models for future 

stability (Paradkar et al., 2003). In some situations, an adulteration prediction model is 

developed by doing a 50% data split of the obtained dataset (Contal et al., 2002). An 

appropriate adulteration detection model can be constructed with various latent variable 
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selection procedures, i.e. leave one out cross-validation method or a test set validation method. 

The former, also known as full cross-validation, estimates the statistic on the performance of a 

predictive model while testing the models’ ability to predict new data not included in the 

calibration set. The later compute the prediction model by interchanging calibration and 

validation/test set samples during model development (Despagne et al., 2000; Yang et al., 

2013). 

 

5.2. Pre-processing techniques and their application to detect powdered products 

adulteration  

 

The proper implementation of a pre-processing method is a necessary step towards improving 

spectral data quality and highlight signal differences caused by the contents of adulterants. 

Moreover, the pre-processing methods are applied to spectral data in order to exclude unwanted 

spectral noises, to improve waveband selection of NIR characteristics, and the models overall 

performance (Duchesne et al., 2012). Different chemometric pre-processing measures are 

evaluated individually or in combination during the research assessment of adulteration, each 

with specific functions. Common pre-processing methods include smoothing, normalization, 

derivatives (first and second), baseline correction, standard normal variate (SNV), and multiple 

scatter correlation (MSC) Figure 2. Smoothing and derivative methods interpret spectral data 

by drawing out noise through the application of Savitsky-Golay logarithm and gap filters (Næs 

et al., 2004). The first and second derivatives are responsible for removing noise and improving 

on the quality of spectral resolution (Savitsky-Golay, 1964). Normalization aims to reduce 

baseline variation (Downey et al., 1997), while MSC and SNV minimise scattering effects 

caused by sample particle size effects (Dhanoa et a., 1994).  
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In many Vis-NIR studies, researchers have evaluated the effect of different pre-processing 

methods on the development of applicable quality control models that can possibly predict the 

adulteration of various horticultural powdered products. Liu et al. (2013) evaluated five 

mathematical pre-treatments (baseline correction, normalization, smoothing, 1st and 2nd 

derivatives (Savitsky-Golay) at 5, 9 and 13 different point gaps) to investigate the use of mid-

infrared Fourier transform spectroscopy for the determination of potato and sweet potato 

starches in lotus root powder. From this study it was observed that pre-processing spectral with 

1st derivative (Savitsky-Golay) with 9-point gaps, smoothing, baseline correction and 

normalization resulted in 99% optimised adulteration PLS prediction models than the other 

pre-processing methods. Working on a similar investigation, Xu et al. (2013) using NIR 

spectroscopy with Savitsky-Golay Smoothing, 2nd derivative and SNV pre-treatments studied 

the adulteration of starches from cassava, maize, potato and sweet potato in lotus root powder. 

The authors observed that the SNV pre-processing method resulted in superior SIMCA and 

partial least square class model (PLSCM) predictions with 93% accuracy compared to other 

pre-treatments.  

Five types of data transformation methods (mean centering, MSC, SNV, first and second-order 

derivatives) were employed by Hu et al. (2018) to discriminate sorghum and Sichuan pepper 

in black pepper powder. In this study, accurate and reliable FT-IR classification models using 

PCA, PLS-DA and genetic optimized support vector machine (GA-SVM) obtained in the range 

400-4000 cm-1, showed mean centering as the optimal pre-processing (PCA = 80.7%; PLS-DA 

= 98% and GA-SVM = 98%) for all classification models. Orrilli et al. (2019) performed a 

PCA, SIMCA and PLSR analysis to investigate NIR hyperspectral imaging for the detection 

of black pepper adulteration with grounded papaya seeds. The authors evaluated individual 

pre-treatments (1st and 2nd derivatives (Savitsky-Golay), SNV, MSC, OSC) as well as 

combined pre-treatments (SNV+1st derivative (Savitsky-Golay), SNV+2nd derivative 
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(Savitsky-Golay), OSC+1st derivative (Savitsky-Golay), OSC+2nd derivative (Savitsky-Golay) 

and Smoothing (Savitsky-Golay) +2nd derivative (Savitsky-Golay). Observations from this 

study showed that pre-processing with SNV+2nd derivative (Savitsky-Golay) resulted in better 

PLSR models (R2 = 0.930; RMSEP = 2.51%) than models developed with one pre-treatment; 

while Smoothing (Savitsky-Golay) +2nd derivative (Savitsky-Golay) pre-processing achieved 

86% and 100% classification accuracy for PCA and SIMCA models, respectively.  

Using NIR spectroscopy (1100-2500 nm), Quelal-Vásconez et al. (2018) applied a combination 

of two pre-processing techniques (second derivative Savitsky-Golay Smoothing+orthogonal 

signal correction (OSC)) to identify and determine pure cocoa powder in a mixture adulterated 

with carob flour. The authors obtained good classification and prediction models, showing 

PCA model with 91% explained variance, PLS-DA model with 100% classification and PLS 

prediction of 0.97 (R2) and RMSEP of 3.2%. A follow up study on the fast-screening detection 

of cocoa shells adulteration in cocoa powder was performed by the same group of researchers. 

Under uniform NIR technique specifications, a total of seven PLS models were constructed 

with the extended MSC, SNV, 2nd derivative (Savitsky-Golay), OSC, including combination 

of all with OSC. The results from this research showed that pre-processing spectra with 

extended MSC+OSC gave PLS-DA classification of 74% and superior prediction model (R2 = 

0.97; RMSEP = 2.43%) than the other pre-treatments (Quelal-Vásconez et al., 2019). 

Deduced from these studies, it can be collectively stated that there has been no rule of thumb 

which clearly states when to avoid or make use of certain pre-processing methods. The 

diversity amongst pre-processing methods makes it difficult to conclude on having only one 

pre-treatment, exclusively designed to fulfil all adulteration determination across different 

categories of powdered horticultural products (Rinnan et al., 2009; Engel et al., 2013; Horn et 

al., 2018). However, the accuracy of a pre-processing method is mostly based on its capability 

to remove unwanted spectral variation while retaining the spectral features that enables the 
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recognition between authentic and adulterated samples (Hu et al., 2018; Horn et al., 2018). This 

argument is further supported by observing maximum explained variance percentage (for 

classification model), and lowest error of prediction and highest R2 for the external dataset (for 

quantitative prediction model).  

 

 5.3. Measuring adulteration through regression model and statistical criterions 

 

The regression models accuracy is usually measured through the application of equations and 

indexes. Drawn from trends of various research, depicted in Table 4 are global statistical 

parameters for assessing the performance of the adulteration prediction model. These indices 

are a set of mathematical simplified equations suitable to adequately explain, describe the 

accuracy of the prediction model, give the sensitivity of the NIR spectroscopy and also 

differentiate where the model can be applied in practical situations (Lohumi et al., 2017). 

Optimal NIR regression models are usually evaluated based on the values of the coefficient of 

determination/ correlation coefficient (R2), root mean square errors (RMSEs), residual 

predictive deviations (RPD), the range error ratio (RER) and bias. R2 measures the accuracy of 

the proportion of explained variance of the response variables both in the calibration and 

validation or prediction model. As a general rule of thumb, an appropriate regression model to 

identify and predict adulteration in pure products is the one showing high R2 values that are 

closest to one as possible. Concisely according to Williams (2003), R2 is the percentage of the 

variance in Y variable (measured reference value) that is accounted for by the X variable 

(Spectra). A model resulting in a value between 0.5 and 0.65 depicts that more than 50% of the 

variance in Y was accounted by the variability in X to discriminate between sample 

concentration, while R2 values between 0.66 and 0.81 means an appropriate prediction 

quantification, the models with R2 values between 0.82 and 0.90 indicate good prediction 

models whilst calibration models with R2 values above 0.91 are excellent models. 
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RMSE measures the sensitivity of the model and these values must be lower than the R2 values 

(Magwaza et al., 2016). RPD, the dimensionless ratio of the standard error of prediction to the 

standard deviation of lab measured reference values. It represents models applicability using 

three modes i.e. RPD values less than 1.5 are considered unreliable, those between 1.5 and 2 

are considered good for rapid screening in breeding programs, while RPD values above 3 are 

excellent models for product quality assessments (Davey et al., 2009). Another statistical 

parameter to evaluate the goodness of fit of the calibration model is the range error ratio (RER). 

According to Yasmin et al. (2019) RER is calculated as a ratio of the difference between the 

maximum and the minimum reference values in the prediction set. The RER value close to or 

greater than 10 is an indication of a good model (Williams and Norris, 2001; Yasmin et al., 

2019). Bias, is another statistical parameter for evaluation of regression model performance 

and this parameter should show the low average difference between predicted and measured 

values for good model accuracy (Bellon-Maurel et al., 2010).  

 

6. Applications of vibrational spectroscopies in agri-food industry for adulteration 

assessment of horticultural powders 

 

6.1. Vis-NIR techniques 

 Vis/NIR spectroscopies have demonstrated potential in the agro-processing industry to address 

the adulteration and authenticity of powdered commodities (Table 3). The technique is based 

on either the reflectance, absorption and transmittance modes of data acquisition. The spectrum 

acquisition is obtained over the entire NIR region range (400-2500 nm) (Esteki et al., 2018). 

The application of NIR spectroscopy coupled with PCA, and radial basis function-partial least 

squared (RBF-PLS) distinguished successfully between pure purple sweet potato powder from 

white sweet potato adulterated mixtures (Ding et al, 2015). A portable micro NIR spectroscopy 
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was used to identify and quantify adulterants (corn peel and corn stocks) in Robusta coffee 

using PCA and PLS and gave a limit of quantification range of 5-8% and 92-98% prediction 

accuracy (Correia et al., 2018). Using NIR spectroscopy, adulteration of chilli powder with 

Suden dye I was evaluated through PCA and PLS-DA and the resulted model gave 0.25% limit 

of detection (Haughey et al. 2015). Recently, the adulteration of unripe banana flour was 

evaluated using a handheld Visible and near-infrared spectroscopy, through PCA and PLSR 

analysis. In this study, PCA resulted in a 95% classification of the variability between pure 

unripe banana flour from samples having wheat flour adulteration levels while, PLSR was able 

to give a 99% (R2
p) prediction accuracy and RMESP of 1.993 g/kg (Ndlovu et al., 2019). 

Moreover, rosin powder, cornflour, wheat and rice bran using NIRS and PLSR were identified 

as potential adulterants in Sichuan pepper powder, resulting in determination coefficients of 

prediction (R2
p) range 95-99% and standard error of prediction (SEP) of 1.1-3.2% (Wu et al., 

2017). From previous research on visible and near-infrared spectroscopy, the technology has 

demonstrated the feasibility to undoubtedly be used by food industries to guarantee quality for 

a variety of powdered products.   

 

 6.2. Fourier-transform infrared (FT-IR)  

FT-IR is another set of near-infrared instruments commercially used for detecting food 

adulteration. Their potential has been demonstrated with success in different product 

adulteration research (Table 3). These technologies are an improvement of Vis/NIR 

spectrometers and they operate under a similar principle (as Vis/NIRS explained above). 

However, FT-IR instruments after taking the measurements of food sample, the detector 

converts the radiated electromagnetic energy to a food matrix and represents it as an 

interferogram instead of a spectrum (Su and Sun, 2018). The use of Fourier transform mid-

infrared spectroscopy investigated by Hu et al, (2018) both identified adulteration of sorghum 
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and Sichuan pepper and examine the origin and authenticity of 150 black pepper samples and 

for GA-SVM and PLS-DA calibration and prediction models achieved 100% accurate 

classification rate.  

By using synergy interval PLS (siPLS), models with an improved performance developed using 

FT-IR spectroscopy, demonstrated detection limits ranging from 1.0% to 3.1% (w/w) during 

the authenticity of saffron with various plant derive adulterants (Petrakis and Polissiou, 2017). 

Fourier transform infrared (FT-IR) spectroscopy made it possible to detect corn starch 

adulteration in onion powder and demonstrated PLSR model prediction (R2
p) of 0.90 and 

standard error of prediction (SEP) of 3.12% (Lohumi et al, 2015). Corn and barley in roasted 

and ground coffee were detected using FTIR spectroscopy coupled with linear discriminant 

analysis (LDA) and the classification models gave 100% prediction being able to predict levels 

of adulteration as low as 1% (Reis et al., 2013). 

 

6.3. Hyperspectral imaging 

As for hyperspectral imaging spectroscopy, the acquired information about food material 

involves the fusion of images and NIR spectroscopy. It is characterised by remote sensing 

abilities. Hence, during the analysis, this technique identifies and maps adulterated powdered 

food without any physical contact (Duchesne et al., 2012, Esteki et al., 2018). Chinese tea 

(green, yellow, white, black and oolong tea) were classified according to brand for 

authentication purposes using hyperspectral imaging and a 98.4% prediction accuracy was 

obtained with library support vector machine (Ning et al., 2017). For quality control, herbal tea 

(rooibos, honeybush, buchu and cancer bush tea) were successfully separated in terms of 

categories with hyperspectral imaging (Kiani et al., 2018). 
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6.4. Raman spectroscopy 

The Raman spectroscopy, a more advance approach for adulteration inspection since 

measurements of a biochemical composition containing important information can easily be 

explained through observing on a computer system (Li et al., 2015) and without pre-processing, 

even if they contain the same attributes in different arrangement bands (Yaseen et al., 2017).  

Sudan dye I-IV are common adulterants detected in many fraud incidents of spices, usually 

used as agents to enhance the appearance, increase bulk and market sales. Raman spectroscopy 

was investigated to detect chilli powder adulteration with Suden dye were discriminated 

through applying PCA and PLS-DA, the resultant models gave the limit of detection of 0.88% 

(Haughey et al., 2015). 

 

6.5. NIR spectroscopy research and applications to horticultural powdered foodstuff 

adulteration and quality analysis 

Rapid technologies have a range of applications in the food processing industries and scientific 

research institutions (Huang et al., 2008). These methods have been used for authenticity 

analysis for a variety of processed products including fruit puree, honey, milk powder 

(Paradkar et al., 2003; Yang et al., 2013; Kamruzzaman et al., 2015a) among many. NIR 

spectroscopies have the feasibility to differentiate adulteration and assess the authenticity of 

products such as spices and herbs, hot beverage powders (i.e. tea and coffee), fruit and 

vegetable-derived flours and medicinal powdered products. The recent trends of research and 

applications of infrared methods are illustrated in Table 3 below. Over five years, hyperspectral 

imaging is the most adopted method to online quality determination, safety and authenticity of 

tea and coffee products. Its application has been suitable during verification of various product 

brands, sensory appearance, identifying geographic traits and type of preparation method used 

(Liu et al., 2017). There has also been a deficit of recent research conducted with Raman 
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spectroscopy assessing fruit and vegetable flour adulteration. It can be attributed from recent 

literature that Vis-NIRS and FT-IT are the most commonly researched methods for the 

monitoring of powdered horticultural product adulteration (Table 3). Even though in the South 

Africa context, it can be argued that little research or investigations have been made on the 

subject under review (adulteration monitoring) with more attention to powdered products. 

However, evidence on other literature shows that adulteration monitoring of spices (September, 

2011; McGoverin et al., 2012) as well as fruit derived flour (Ndlovu et al., 2019) and other 

processed products (outside scope of this review) such as honey (Downey et al., 2003) meat 

has been scientifically reported (Cawthorn et al., 2013, Payne, 2019) using the novel non-

destructive techniques. 

 

7. Challenges and future remarks  

By looking at the gap between when adulteration problems started (the early 1800s till today), 

a variety of methods have been continuously designed and tested to be good to evaluate and 

inspect adulteration in agro-food industries. Having said that, despite new and evolutional 

technology one can hypothesize that adulteration is a food quality problem that is not going 

anywhere. The assumption that expensive food on the market is nutritionally most superior has 

been for the longest period circulating as a false perception that consumers use to judge product 

integrity (Charlebois et al., 2016). The moment an adulterant, through research, is identified 

and a proper technique to evaluate it is established, eventually the perpetrators/unfaithful 

producers already seek out the next low-price lookalike material they can use (Kar et al., 2018). 

Food quality control researchers are thus challenged to keep up with learning and predicting 

new potential adulterants on the market. This to consumers is a concern because scientific 

research discoveries/ or information regarding an adulteration event of specific foods becomes 

available post-illness diagnosis. Research progression regarding adulteration issues occurrence 
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is evidence that food manufacturing industries nowadays depend on the availability of 

technology, its advancements and this is being guided by laboratory/experimental findings to 

trace product quality. Moreover, this means the dissemination of NIRS methods should come 

to recognition irrespective of the region (i.e. whether developed or underdeveloped regions) to 

harness the full benefits the technology comes with.  

Considering that the non-destructive technology also has shortfalls. For instance, NIRS 

calibration models to predict purity of powdered horticultural products and subsequent 

adulteration contents are limited to predicting the type of adulterant(s) you have trained the 

models with (Esteki et al., 2018). Moreover, for spectroscopy to perform with precision it 

requires accurate reference method for sample quantification measurements (Lohumi et al., 

2015). This holds for all non-destructive methods i.e. Vis-NIRS, FT-IR, hyperspectral imaging 

and Raman spectroscopies, they need constant improvement of models. Their cost of 

implementation is high given the fact that to make sense of spectral data one requires additional 

software with different chemometrics to draw important features of products (Huang et al., 

2008; Kamruzzaman et al., 2015a). On top of that, instruments and software need technical 

servicing and upgrading from time to time (Su et al., 2017). This also means personnel 

performing the analysis of complex spectra must be highly trained. The increasing demand for 

authentic products and/ food adulteration analyses alerts the requirement to reduce the costs of 

non-invasive technologies for effective monitoring in commercial applications (Zhang et al., 

2018). 
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8. Conclusion  

For the past decade, near-infrared spectroscopies appear to be the methods of excellence to 

detect the adulteration of a wide range of horticultural powdered commodities. Compared to 

time-consuming, manual laborious methods that require highly trained personnel and 

continuous usage of reagents, NIR spectroscopies mode of action is fast, rapid and accurate. 

These methods are reagent free, no sample preparation is needed after the model is developed. 

Non-destructive technologies vary in terms of how they are being operated. However, the 

principle in their application is similar as their power is centered on using molecular vibrations 

to search for invisible differences of food powders that the naked eye is limited to. 

It should also be noted, throughout the improvement and progression of NIR techniques to 

monitor adulteration, the availability of these technologies is arguably outspread to the 

commercial industries, production lines, in harbors where imported food are initially inspected, 

etc., however, these techniques are restricted at the supermarket nor the household. This then 

justifies quite a several incidents of purchasing imitation and adulterated foods. The agro-food 

industry is one of many country’s greatest assets and it requires constant new products 

development, improvements and investments for its growth. From the authors perspective, as 

the food production industries are engaging more in adopting the 4th industrial revolution (4IR) 

technologies, comprehensive adulteration monitoring methods, NIRS in particular, need to be 

made accessible in every step of the food value chain (i.e. their utilisation and availability 

should be included even at the supermarket service tills), along with the models researchers 

have developed to evaluate food adulteration and quality issues. Perhaps this could play a 

significant role and contribution in mitigating adulteration problems and that’s where 

consumers could be assured and satisfied that the food is authentic.  
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Figure 1: Process flow chart illustrating necessary steps to follow during the preparation of unripe banana flour. Source of (A): Original 

pictures by Mr Lucio Zuma and Mr John Mthethwa (Agricultural Research Council – Tropical and Subtropical Crops (ARC-TSC). Source 

of (F) and (G) M-Pak South African Food Review (2018). https://www.foodreview.co.za/green-banana-flour-for-a-healthy-lifestyle/ 

(Accessed 28 January 2019). 
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Figure 2: Frequently used chemometric methods to examine adulteration in powdered 

products. Adapted from (Pasquini, 2018).  
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Table 3: Recently published research on non-destructive techniques and chemometrics used to monitor adulteration of various categories of 

powdered horticultural products using. 

Product type  Technique  Potential adulterant/s Statistical Analysis References 

Spices and herbs FT-IR    

Paprika powder  Suden dye, congo red dye PLS-DA Lohumi et al. (2017) 

Paprika powder  Sudan I, Sudan IV, Lead (II, IV) 

oxide, Silicon dioxide,  

Polyvinly chloride, gum arabic 

 

PCA, SIMCA Horn et al. (2018) 

Saffron  Turmeric, buddleja, gardenia, 

safflower, calendula 

PCA, PLS-DA, siPLS Petrakis and Polissiou (2017) 

Oregano  Olive leaves, myrtle, sumac, cistus and 

hazelnut leaves 

PCA, PLS-DA Black et al. (2016) 

Black pepper  Sorghum, Sichuan pepper, papaya 

seeds chili, black pepper husk, 

pinheads and defatted spent material 

PCA GA-SVM, PLS-DA Hu et al. (2018); Wilde et al. 

(2019) 

Turmeric powder  Metalin yellow PCR, PLSR Dhakal et al. (2016) 

Ceylon cinnamon  FT-NIR and 

FT-IR 

Cassia cinnamon PLSR Yasmin et al. (2019) 

Turmeric powder FT-NIR Corn starch PCA, PLSR Kar et al. (2019) 

Chilli powder  Raman 

spectroscopy  

Sudan dye I PCA, PLS-DA Haughey et al. (2015) 

Paprika powder   Suden dye I PCA, PLSR  Gao et al. (2015) 
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Table 3: Recently published research on non-destructive techniques and chemometrics used to monitor adulteration of various categories of 

powdered horticultural products using.  

Product type  Technique  Potential adulterant/s Statistical Analysis References 

Spices and herbs     

Turmeric powder Vis-NIR 

spectroscopy  

Metalin yellow PCR, PLSR Kar et al. (2018) 

Paprika powder NIR 

spectroscopy 

Corn flour LDA, PLSR Zaukuu et al. (2019) 

Chilli powder UV-Vis 

spectroscopy 

Suden III and Suden IV ANN, PCR, PLSR Ismal et al. (2018) 

  Rhodamine B and red textile dye PCA, PCA-DA Rohaeti et al. (2018) 

Black pepper 

powder  

Hyperspectral 

imaging 

Dried papaya seeds  

Buckwheat and millet 

PCA, SIMCA 

PLSR 

 

McGoverin et al. (2012) 

Orrillo et al. (2019) 

Grounded red chilli  Salt, wheat flour, wheat bran and rice 

bran 

SVM, PLSR Khan et al. (2019) 

Fruit and 

vegetable flour 

    

Onion powder FT-IR Corn starch  PLSR Lohumi et al. (2014) 

Cassava flour  Maleic acid  OCPLS, LS-SVM Fu et al. (2017) 

Garlic powder  Corn starch PLSR Lohumi et al. (2015) 

Quinoa flour  Soybean, maize and wheat flours SIMCA, PLS-DA Rodriguez et al. (2019) 
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Table 3: Recently published research on non-destructive techniques and chemometrics used to monitor adulteration of various categories of 

powdered horticultural products using.  

Product type  Technique  Potential adulterant/s Statistical Analysis References 

Fruit and  

vegetable flour 

    

Purple sweet potato 

flour 

Vis-NIR 

spectroscopy  

White sweet potato flour  PCA 

RBF-PLS, KNN, LDA 

Ding et al. (2015) 

Hazelnut flour   Almond and chickpea flour SIMCA  Lopez et al. (2014) 

Unripe banana 

flour 

 Wheat flour PCA, PLSR  

 

Ndlovu et al. (2019) 

Nutmeg powder Hyperspectral 

imaging 

Spent powder PCA, ANN, PLS-DA Kiani et al. (2019) 

Hot beverage 

powders 

    

Grounded roasted 

coffee 

Hyperspectral 

imaging 

Roasted coffee husks, corn, barley, 

spent coffee 

PLS-DA Reis et al. (2017) 

Cocoa powder NIR  Carob flour 

  

PCA, PLS-DA, PLSR  Quelal-Vásconez et al. (2018)  

Cocoa powder NIR Cocoa shells PCA, PLS-DA, PLSR Quelal-Vásconez et al. (2019) 

Green tea, green 

coffee  

FT-IR Sibutramine  PCA, HCA Cebi et al. (2017) 

LongJing tea Raman  

spectroscopy 

Lead chrome green PLSR Li et al. (2015) 

Peaberry coffee 

(Coffea 

canephora) 

UV-Vis-NIR  Normal coffee PLS-DA, SIMCA Suhandy and Yulia (2017) 
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Table 3: Recently published research on non-destructive techniques and chemometrics used to monitor adulteration of various categories of 

powdered horticultural products using.  

Product type  Technique  Potential adulterant/s Statistical Analysis References 

Medicinal powders     

Mixed herbal tea FT-IR Sibutramine  PCA, HCA Cebi et al. (2017) 

Notoginseng 

powder 

Vis-NIR  

spectroscopy 

Sophora flavescens powder and corn 

flour  

PLS  Chen et al. (2019) 

Lotus root powder NIR  

spectroscopy 

Cassava, sweet potato, potato and 

maize starches 

PLSCM, SIMCA  Xu et al. (2013) 

 

Gleditsia 

Sinensis thorn 

powder 

FT-IR 

FT-NIR 

spectroscopy 

Potato and sweet potato starches 

Rosa multiflora thumb and Rosa 

rugose thumb 

PCA, PLS 

PLSR, LDA, SVM, BPNN 

Lui et al. (2013) 

Wang et al. (2018) 
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Table 4: Commonly used regression equations and statistical parameters measuring 

calibration and prediction accuracy of a PLS based model. 

Description   Equation expression Reference  

Coefficient of determination 
R² = 1 −

Ʃ(У𝑐𝑎𝑙 − У𝑎𝑐𝑡)²

Ʃ(У𝑐𝑎𝑙 − У𝑚𝑒𝑎𝑛)²
 

Williams (2003)  

   

Root mean square error of 

calibration 
𝑅𝑀𝑆𝐸𝐶 =  √Ʃ(У𝑐𝑎𝑙 − У𝑎𝑐𝑡)2 /𝑛  

Næs et al., (2004); 

Root mean square error of 

cross validation 
𝑅𝑀𝑆𝐸𝐶𝑉 =  √Ʃ(У𝑐𝑎𝑙 − У𝑎𝑐𝑡)2 /𝑛 Nicolai (2007);  

Magwaza, et al., (2016) 

Root mean square error of 

prediction 
𝑅𝑀𝑆𝐸𝑃 =  √Ʃ(У𝑝𝑟𝑒𝑑 − У𝑎𝑐𝑡)2 /𝑛  

   

Residual predictive 

deviation 
RPD =

𝑆𝐷

𝑅𝑀𝑆𝐸𝑃
    

Davey et al. (2009);  

Bellon-Maurel et al. 

(2010) 

Range error ratio 
RER =

У𝑚𝑎𝑥 − У𝑚𝑖𝑛

𝑅𝑀𝑆𝐸𝑃
 

Yasmin et al. (2019) 
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CHAPTER 3 - RAPID VISIBLE-NEAR INFRARED (VIS-NIR) SPECTROSCOPIC 

DETECTION AND QUANTIFICATION OF UNRIPE BANANA FLOUR 

ADULTERATION WITH WHEAT FLOUR 

Abstract 

 

Unripe banana flour is a premium nutritious product with a potential to curb degenerative diseases 

through resistant starch and gluten free traits, however, with scant techniques to monitor 

adulteration practices. The objective of the present study was to determine the efficacy of visible-

near infrared spectroscopy (Vis-NIR) spectroscopy (Vis-NIRS) in the detection and quantification 

of unripe banana flour adulteration with wheat flour. Simulated adulteration of a composite banana 

flour was performed with different levels of wheat flour, in intervals of  (2%) 20 g. kg-1,  ranging 

from 0-800 g. kg-1. Each level was acquired in duplicate giving a total of 82 samples. Vis-NIR 

spectral data was acquired using a portable F-750 spectrometer in the range 447-1005 nm. Spectral 

data was analysed chemometrically using principle components analysis (PCA) and partial least 

squares regression (PLSR), with 41 samples used as a calibration set and 41 for validation. The 

first two principal components (PCs) accounted for 95% of spectral data variation, revealing five 

distinct clusters related to 0 g. kg-1, 20-200 g. kg-1, 220-400 g. kg-1, 420-600 g. kg-1 and 620-800 

g. kg-1 adulterated samples. The 2nd derivative Savisky-Golay (19-point smoothing, 2nd order 

polynomial) gave the best PLSR model, showing the highest R2
c (0.991); R2

p (0.993); RPD 

(12.021) and the lowest RMSEC (2.226 g. kg-1) and RMSEP (1.993 g. kg-1) values. In this dtudy, 

the developed Vis-NIRS PLSR models could therefore assist in controlling quality of unripe 

banana flour in the processing industries and in retail markets during product verification. 
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Keywords: Rapid detection, Unripe banana flour, Non-destructive technology, Chemometrics, 

Principal component analysis (PCA), Partial least squares regression (PLSR) 

 

1. Introduction 

 

Unripe banana flour (UBF) is one nutritious food product derived from a variety of Musa species 

(Singh et al. 2018), prepared by dehydrating fully matured green banana fruit pulp and milling 

them into powder (Agama-Acevedo et al. 2016). In various parts of Africa and international 

regions (Apostolopoulos et al. 2017), unripe banana flour is utilised as a staple food product and 

considered a substitute for cereal flours (Anyasi et al. 2013). Recently, commercial production and 

marketing of unripe banana flour has increased globally and this stems from its capacity to possess 

unique nutritional qualities (Farage et al. 2017). Banana flour is gluten free and contains high 

proportions of resistant starch (Patiño-Rodríguez et al. 2018). Daily consumption of unripe banana 

flour improves insulin sensitivity in vitro (Dan et al. 2015), stabilise blood glucose levels, promote 

gastrointestinal hormones and induces satiety, in vivo (Scarminio et al. 2012). Moreover, prebiotic 

properties of unripe banana flour have been reported to induce high production of short chain fatty 

acids, responsible for intestinal tissue protection (Almeida-Junior et al. 2017). Thus, health 

strategies to treat and combat illnesses such as colon cancer recommends the inclusion of unripe 

banana flour as food ingredient for gluten intolerant individuals (Torres et al. 2017). 

 

In general, unripe banana flour by visual or colour inspection resembles similar physical properties 

as those of cereal flours, depending on the cultivar source (Kongolo et al. 2017). Wheat flour is 

among the inexpensive commercially traded staple cereal flours (Su et al. 2017). For these reasons, 
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and as a highly priced commodity, intentional and incidental banana flour adulteration practices 

with cheaper wheat flours, is thus anticipated and suspected to be a common practice (McGoverin 

et al. 2012). Adulteration is usually motivated by greed for increasing output and profit margins 

by the producers (Lohumi 2015). Economic food adulteration compromises the nutritional quality, 

threatens consumers’ health and causes unnecessary product loss (Jha et al. 2015). Adulteration 

scandal of spices with lead oxide for colour enlightenment resulted in more than 60% individuals 

hospitalised in some parts of India and European countries (Everstine and Kennedy 2013). Over a 

million pounds of Asian honey were banned in the European markets due to an illegal antibiotic 

and artificial sweeteners found in honey (Schneider 2011). Through light microscopy, over 80% 

adulteration incidents in commercial unripe banana flour was reported in Brazil (Sardá et al. 2016). 

Findings by these authors revealed that flours commercially labelled as unripe banana flour 

products had starch granule structures matching those found in cereal flours and the majority of 

unripe banana flour samples evaluated were identified to have been prepared from ripe bananas 

with peels rather that unripe banana pulp. Therefore, to comply with food safety and quality control 

standards, it is of paramount importance to develop techniques that can rapidly detect and separate 

between the real and simulated unripe banana flour products. 

 

In combination with chemometrics analysis, visible-near infrared spectroscopy (Vis-NIRS) 

technique serves as a reliable, rapid, non-destructive and considerably low cost method to 

investigate unauthorized food practices by simply constructing calibration and validation models 

(Qu et al. 2015). Chemometrics, usually applied to spectral data in the form of multivariate 

techniques, such as principal component analysis (PCA) and partial least squares regression 



79 

 

(PLSR) (Mahesh et al. 2015), provide interpretation to relevant invisible chemical information 

captured in the spectral region (Moscetti et al. 2015).  

 

There has been no research on the use of the Vis-NIRS technique to detect adulteration of unripe 

banana flour with wheat flour. Therefore, the aim of the current study was to evaluate the potential 

of using a portable NIR spectrometer in association with multivariate analysis to develop 

prediction models for detecting unripe banana flour adulteration with wheat flour. The output 

obtained from this research could provide an approach for commercial mill factories to monitor 

process quality control of unripe banana flour, its derived products, and could facilitate product 

verification in retail markets.  

 

2. Materials and methods 

 

2.1. Preparation of unripe banana and wheat flours 

 

Composite unripe banana flour was prepared from 23 fully matured (fingers at three quarters full 

stage) green bananas. The fruit were from different varieties of dessert and plantain cultivated at 

the Agricultural Research Council-Tropical and Subtropical Crops (ARC-TSC) farm in 

Burgershall Research Station, South Africa (25° 6′0′′ S, 31° 4′60′′ E). The fruit included 10 desserts 

(Chinese Cavendish, Dwarf Cavendish, Gros Michel, Grand Negra, Valery, Williams, and ARC-

TSC breed selections: D11, MCC, PK6, and Sordwana) and 11 additional Musa genotypes 

(Calcutta 4, Ducasse, Fhia-01, Fhia-18, Foconnah, Hinoon, Green Red, Gold Finger, IPB5-61, 

Khai Thong, Lady Finger, Prata Anna, Pome) varieties.  Green bananas were rinsed with tap water, 

carefully hand peeled to ensure complete skin removal.  To prevent browning, the pulp was 
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immediately immersed in sodium metabisulphite solution (1.25 g. L-1) for approximately 10-20 

minutes. The pulp was then sliced using a vegetable cutting machine (HLC-300, Omcan, Niagara, 

NY) equipped with a P4 disc. The slices were dried at 50 °C for 15 hours using a commercial scale 

convective hot-air dryer (AD3000 Agri-Dryer, Dryers for Africa, Limestone Hill, SA). The 

relative humidity (RH) and air velocity were kept constant at 15±2% and 0.3 m. s-1, respectively. 

Hot air-dried banana chips were ground in a laboratory milling machine (S8 Range, Drotsky Aktief 

(Pty) Ltd, SA) fitted with 0.8 mm sieve.  

 

The obtained banana flour was immediately packed in high density polyethylene bags (300 mm x 

450 mm), sealed and stored in boxes at room temperature till further use. To obtain the composite 

flour, about 100 grams, from each of the 23 prepared banana flour types, were combined to produce 

single composite banana flour. The banana flour was determined to contain ash (22.4 g. kg-1), 

crude fibre (16.2 g. kg-1), protein content (55.1 g. kg-1) and had a moisture content of 9.5. The 

adulterant, wheat flour (SASKO, Pioneer Foods (Pty) Ltd, South Africa) contianing the following 

typical nutritional contents i.e. protein (102 g. kgˉ¹), carbohydrate (710 g. kg-1), total fat (9 g. kg-

1) dietary fibre (37 g. kg-1) ((AOAC 991.43) (nutritional information as packed)) was procured 

from the local market. Prior adulteration runs and spectra acquisition, unripe banana and wheat 

flours were further filtered (repeated 3 times) in a 355 microns sieve (Universal laboratory test 

sieve, SABS, SA) in order to ensure particle size homogeneity. Approximately 200 g. kg-1 

composite unripe banana flour was weighed (Electronic Balance (BL-3200H), Shimadzu 

Corporation, Japan), and decanted into airtight plastic mixing container where subsequent 

adulterant levels of (0-800 g. kg-1) wheat flour were added and thoroughly mixed.   
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2.2. Visible-Near infrared (Vis-NIR) spectra collection  

 

Training set spectra were obtained using a portable Vis-NIR spectrometer (F-750 Produce Quality 

meter, Felix Instruments, Camas, WA 98607, USA) equipped with a Xenon Tungsten lamp, and 

recorded each spectral measurement in absorbance/and reflectance mode at 3 nm interval 

sampling. Approximately, 5 g (+/- 1 g) adulterated mixture was weighed (Electronic Balance (BL-

3200H), Shimadzu Corporation, Japan) and transferred into petri dishes (50 mm x 55 mm), evenly 

distributed and enclosed in machine sample holder during scanning to prevent light escape. Each 

sample was scanned three times at three different controlled temperature environments (20, 25 and 

30 °C), and a total of 82 spectra were collected per temperature.  However, no significant variations 

were observed in developed calibration models at the afore-mentioned temperatures. Similar 

observations were reported by Ncama et al. (2018) using the same instrument. Thus, the results 

reported herein were on calibration models developed at 20 °C. 

 

 2.3. Chemometric analysis 

 

Chemometric analysis was performed using the Unscrambler chemometric software (The 

Unscrambler X Version 10.3; Camo Process, SA, Trondheim, Norway). The margins of the 

acquired spectral range were curtailed to a range of 447-1005 nm to reduce noise in the dataset. 

For more precise prediction models, it is necessary to pre-process data in order to autocorrect for 

possible spectral shifts not relating to samples desired characteristics resulting from either light 

scatter or materials changing molecular response to light (Nicolai et al. 2007). Thus, in this study 

prior to PCA examination and PLSR modelling, pre-processing was done using Savitzky-Golay 

smoothing (Savitzky and Golay 1964), normalisation, Savitzky-Golay first derivative (7-point 
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smoothing, 2nd order polynomial), Savitzky-Golay second derivative (19-point smoothing, 2nd 

order polynomial), baseline correction and standard normal variate (SNV) (Rinnan et al. 2009). In 

each case, the resultant outputs were evaluated and juxtaposed. Both the number of principal 

components (7 PCs) used in PCA classification and the number of factors (7) for constructing 

PLSR models for the detection of unripe banana flour adulteration were from Unscrambler X 

software default settings.  

 

2.3.1. Principal components analysis and outlier detection  

 

PCA analysis, based on the adulterant percentage added into UBF, the spectra were split into 4 

category variable groups, which consisted 10 spectral data sets each ranging from (20-800 g. kg-1) 

20-200 g. kg-1, 220-400 g. kg-1, 420-600 g. kg-1, 620-800 g. kg-1, excluding the pure/unadulterated 

UBF samples 0% (0 g. kg-1). The data were mean centred, and then using random sampling cross 

validation the similarities and differences in samples chemical composition were assessed in PCA 

scores plot. Loadings plot was used to select, establish effective wavelengths, eliminate possible 

noise and spectral outliers. In order to identify outliers, which are samples far away from the zero 

line of the influence plot, Hoteling’s T2 with a 5% cut off set was implemented, and no outliers 

were diagnosed.  

 

2.3.2. Partial least squares regression analysis  

 

Partial least squares regression modelling was also constructed on mean-centred spectral dataset 

based on the test set validation method. The calibration set consisted of 41 specimen and 41 

specimen were utilsed as the validation set. Using non-linear iterative partial least squares 
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(NIPALS) algorithm, spectroscopic absorbance intensities were converted to log absorbance 

values (log 1/R) and a linear correlation between the intensities and corresponding adulterating 

wheat concentrations was established. The performance of the resultant PLSR models was 

compared. 

 

2.3.3. Determination of model accuracy 

 

The optimal model performance was based on evaluating the calibration and validation sets using 

the following statistical parameters: coefficient of determination (R2
c and R2

p) (Eq. 1), root mean 

square error of calibration (RMSEC) (Eq. 2) and root mean square error validation/prediction 

(RMSEP) (Eq. 3) (Naes and Nyvold 2004). Bias, referred to as the average difference between 

predicted and reference values (Eq. 4) and the residual predictive deviation (RPD), considered as 

the dimensionless ratio of standard error of prediction to standard deviation of lab measured 

reference values as shown in (Eq. 5) (Davey et al. 2009) were included as statistical measures. 

 

R² = 1 −
Ʃ(𝑦𝑐𝑎𝑙−У𝑎𝑐𝑡)²

Ʃ(У𝑐𝑎𝑙−У𝑚𝑒𝑎𝑛)²
       (1) 

𝑅𝑀𝑆𝐸𝐶 =  √Ʃ(У𝑐𝑎𝑙 − У𝑎𝑐𝑡)2 /𝑛      (2) 

𝑅𝑀𝑆𝐸𝑃 =  √Ʃ(У𝑝𝑟𝑒𝑑 − У𝑎𝑐𝑡)2 /𝑛     (3)  

𝐵𝑖𝑎𝑠 =
1

𝑛
√Ʃ(У𝑝𝑟𝑒𝑑 − У𝑎𝑐𝑡)2       (4)   

RPD =
SD

RMSEP
           (5) 

where: ycal is the calculated value, yact is the actual measured value, ypred is predicted value, ymean 

is average value of predicted data, n is number of spectra and SD is the standard deviation of 

reference measured values.  
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3. Results and discussion 

 

3.1. Vis-NIR spectra characterisation 

 

Pure (UBF) and adulterated (UBF+ wheat flour) spectra before pre-processing are presented in 

Fig. 1 while Fig. 2 represent spectra which underwent second derivative (Savitzky-Golay-& 19-

point smoothing, 2nd order polynomial) pre-treatment. As can be observed from the spectral 

patterns (Fig. 1 and Fig. 2), adulterated and pure UBF samples revealed similar spectra 

appearances and patterns except in some distinct wavelength throughout the spectral region studied 

(447-1005 nm). This suggested that spectra assignment bands for both pure UBF and with wheat 

flour contamination exhibit similar physical and chemical constituents. The application of 2nd 

derivative transformation had a positive influence in making hidden spectral peaks visible (Fig. 1) 

in both pure and adulterated UBF samples (Fig. 2). This is clearly shown in Fig. 2 where 

differences in absorbance peaks across the studied region are revealed, possibly due to the variation 

in functional groups (C-H, O-H, N-H) in the sample mixture (UBF + wheat flour) resulting from 

the increase in the adulterant levels.  

 

The most noticeable difference in wavelength bands that were useful in detecting the presence of 

wheat flour in UBF were obvious in the visible region (i.e. 479-483, 519, 573, 654 nm) and near 

infrared region (i.e. 717, 870; 897 and 951 nm) (Fig. 2). These absorption bands are a 

representative of specific functional groups describing physical, and chemical properties of various 

compounds found or picked up by the spectroscopy (Magwaza et al. 2016). Most prominently 

found absorption assignment peaks of Vis-NIR spectra of foods relate to overtones and 

combination bands of the fundamental molecular vibrations of C-H, O-H, N-H (Magwaza et al. 
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2016) and possibly C=O organic groups (Nawrocka and Lamorska 2013). Therefore, the 

separation between pure and adulterated UBF samples observed in the spectral region in this study 

(477-1005 nm) was based on matching the revealed spectral peaks with corresponding functional 

groups (related to chemical compounds) that absorbs in the Vis-NIR region. 

 

From Fig. 2, a stretch/bending of wavelength pattern occurring from positive towards negative 

absorption assignment at 479-483 nm was revealed. In addition, a continuous shift in wavelength 

assignments from low absorption to high absorption state at 519 nm and wavebands at 573 and 

654 nm region were observed. The absorption bands observed in the visible region (i.e. 479-483, 

519, 573, 654 nm) of the study were associated to the transition of chromophores (Mishra et al. 

2015), which are molecules that give agricultural food matrices colour/pigmentation and that 

strongly absorb light in the visible region (400-700 nm) of the electromagnetic spectrum (Ambrose 

and Cho 2014). Chromophores in powdered food materials involve a series of conjugated bonds 

and aromatic ring compounds containing C=O and C=C organic molecules (Mishra et al. 2015). 

Therefore, in the current research, the observed wavelength bands separating the adulterated UBF 

samples with pure UBF samples at 479-483 nm; 519, 573 and 654 nm (Fig. 2) could then be 

suggested to have resulted from a sequence of conjugated double bonds of C=O and or, C=C 

associated with different colour compounds formulation resulting from interaction of wheat flour 

and UBF samples. The absorption peaks at 717 nm were related to combination of C-S stretching, 

while wavebands at 870; 897 and 951 nm were ascribed to second overtone of N-H and O-H; and 

third overtone of C-H and N-H stretching organic compounds as suggested by (Stuart 2004; 

Osborne 2006).  
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3.2. Chemometric analysis 

 

A combined explained variance of > 90% for the first and second principal components (PCs) was 

observed for all the pre-processing techniques.  The principal component analysis (PCA) scores 

plot in Fig. 3 depicts first derivative corrected spectra classification patterns between the 0% (0 g. 

kg-1 or no wheat flour added) and adulterated 2-20% (20-200 g. kg-1), 22-40% (220-400 g. kg-1), 

44-60% (420-600 g. kg-1) and 62-80% (620-800 g. kg-1) UBF samples. The first two principal 

components yielded 95% explained variation in sample data set, with PC1 having 92% variation 

while PC2 had 3% having PC1 = 92% and PC2 = 3%.  

 

Table 1 provides a summary of PLSR modelling results obtained using raw spectra and different 

spectral pre-processing techniques along with statistical parameters used for determining models 

accuracy in predicting wheat in UBF samples. The performance of PLS regression models and 

optimum pre-processing method to describe the variation between spectral (X) variables and 

adulterants concentration (Y) was selected based on higher R2
p and RPD; i.e. with R2

p values 

approaching one and RPD greater than three and lower RMSEP (Bellon-Maurel et al. 2010). All 

models developed to predict wheat flour in UBF were successful and showed good stable 

coefficient of determination for calibration and prediction sets (R2
c and R2

p) above 0.98.  

 

The generated regression models revealed that models performance created using the raw spectra 

were similar to those pre-treated with S-Golay Smoothing technique, however, pre-processing 

improved the resultant models (Table 1). PLS regression developed using second derivative (S-

Golay 19-point smoothing, 2nd order polynomial) showed R2
c (0.991), RMSEC (2.226 g. kg-1), R2

p 

(0.993) and RMSEP (1.993 g. kg-1) in the calibration and validation models, respectively. 
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Furthermore, constructed prediction models were verified for reliability by calculating their RPD 

values. The RPD values of 1-1.5 infer unreliable models; values between ≥ 1.5-2.5 are considered 

fair for rough predictions in screening and breeding programs; RPD values ≥ 3 are potentially 

regarded as satisfactory and useful in monitoring quality in food analysis systems, according to 

(Bellon-Maurel 2010). In this study, the RPD values for determining models’ reliability were 

above 3 throughout the PLSR modelling results obtained (Table 1). This inferred that our generated 

PLSR models could be beneficial during quality control in the detection of unripe banana flour 

adulteration with wheat flour.  

 

The best PLSR model with optimal pre-processing method selected based on higher R2
p and lower 

RMSEP and high RPD value was the second derivative (Savitzky-Golay, 19-point smoothing, 2nd 

order polynomial). This model showed the best capabilities to detect adulteration of banana flour 

with wheat flour (Table 1), indicating the power of pre-treating spectra before modelling improves 

the quality and robustness of the prediction models. PLSR prediction plots confirming the linear 

mathematical relationships between spectral variation (X) and corresponding actual measured 

wheat flour values (Y) for calibration (training) and validation/test sets are depicted in Fig. 4.  

 

4. Conclusion 

 

The detection of wheat flour adulteration contents in unripe banana flour using Vis-NIR 

spectroscopy coupled with chemometrics tools were performed successfully. PCA applied to Vis-

NIRS data showed successful pattern visualisation between pure and adulterated banana flour 

samples with the use of Savisky-Golay derivative pre-treatment. PLS regression showed excellent 

prediction models with similar accuracy throughout used pre-processing methods with second 
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derivative Savisky-Golay having the highest prediction precision R2
p (0.993); RPD value of 12.021 

and lowest RMSEP = (1.993 g. kg-1) values. This is the first report on the application of Vis-NIR 

spectroscopy to detect adulteration of unripe banana flour with a cereal flour. The results from the 

present study will facilitate development of methods for rapid detection of banana flour 

adulteration with wheat flours.     
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Figure 1: Typical unripe banana flour reduced-average absorbance spectra Log (1/R) with different levels of adulteration before pre-treatment. 
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Figure 2: Reduced to average spectra of UBF (0%) with different mixes of wheat flour adulterant (2-20%; 22-40%; 42-60% & 62-80%) after 2nd 

derivative Savisky-Golay (19- point smoothing, 2nd order polynomial).  
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Figure 4: PLS calibration (A) and validation (B) scatter plots showing linear relationship between NIR predicted against corresponding added 

wheat flour percentages (20-800 g. kg-1) taken after 2nd derivative (S-Golay, 19- point smoothing, 2nd order polynomial). 
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Table 1: Performance of PLSR models in predicting the amount of adulterant (wheat flour) in 

unripe banana flour using absorbance spectra and different pre-treatment methods. 

No. of  

Factors 

Pre-processing 

method 

 

Training  

 

set 

Statistical 

Validation  

Parameters 

set 

  

  

R²c RMSEC      R²p  RMSEP Bias   RPD 

3 Raw spectra 0,987 2,709 0,987 2,737 0,023              8.753 

3 S-G Smoothing  0,987 2,718 0,987 2,741 0,025               8.740 

2 Normalisation 0,985 2,868 0,983 3,063 -0,156              7.822 

2 1st Deriv. S-G (7 Point) 0,989 2,375 0,991 2,189 -0,129              10.945 

2 2nd Deriv. S-G (19 Point) 0,991 2,226 0,993 1,993 0,052               12,021 

2 Baseline  0,989 2,437 0,988 2,6075 0,187                 9,188 

1 SNV 0,978 3,505 0,979 3,404 -0,081                7,038 

R2
c: coefficient of determination for calibration; R2

p: coefficient of determination for 

validation; RMSEC: root mean square error of calibration; RMSEP: root mean square error of 

prediction; RPD: residual predictive deviation; S-G: Savitzky-Golay; 1st Deriv.: first 

derivative; 2nd Deriv.: second derivative; SNV: Standard Normal Variate. 
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CHAPTER 4 - DEVELOPMENT OF A NON-DESTRUCTIVE PARTIAL LEAST 

SQUARES REGRESSION (PLSR) MODEL TO ASSESS UNRIPE BANANA FLOUR 

ADULTERATION WITH MAIZE (ZEA MAYS) FLOUR USING VISIBLE-NEAR 

INFRARED SPECTROSCOPY 

 

Abstract  

 

Rapid detection of processed products’ economic adulteration is necessary since the presence 

of various adulterants is very likely to reduce the functional ingredient potency, and in worst 

cases, impacts negatively on the health of consumers. A portable visible-near infrared (Vis-

NIR) quality meter was utilised as a tool to detect maize flour adulteration in unripe banana 

flour (UBF). To quantify UBF adulteration with maize flour, the relationship between UBF 

spectra and the adulterant were examined by partial least squares regression using Kernel 

algorithm through selected wavelengths (full wavelength region 447-1020 nm, visible region 

447-702 nm and near infrared region 705-1020 nm) and pre-processing methods (MSC and 1st 

derivative Savitsky-Golay, 2nd order polynomial). A total of 126 data samples were collected 

for training (n = 84) and validation (n = 42) of PLSR models with an additional 126 data 

samples gathered for external testing the models. Coefficient of determination for validation 

models (R2
v) ranged from 0.949 to 0.961 at 447-1020 nm, 0.813 to 0.834 at 447-702 nm and 

0.902 to 0.906 at 705-1020 nm wavelength. Prediction models based on the external test set 

samples demonstrated that the developed PLS regression models could be confidently utilised 

for the prediction of UBF adulteration with maize flour despite change in wavelength and 

temperature surroundings; giving significant R2
p, ranging from 0.904 to 0.922 (447-1020 nm), 

0.694 to 0.831 (477- 702 nm), 0.534 to 0.761 (705-1020 nm). RPD values ranged from 3.239 

to 3.603 at 447-1020 nm; 1.816 to 2.445 at 447-702 nm and 1.471 to 2.052 at 705-1020 nm.  
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Good prediction models developed in this study with full Vis-NIR region demonstrated the 

suitability of a handheld visible-near infrared (Vis-NIR) spectroscopy as a non-destructive, 

robust and environmental friendly measure to monitor quality and screen for possible 

adulteration by banana flour producers in pack houses and processing units.   

 

Keywords: F-750 NIR spectroscopy, chemometric analysis, effective wavelength, maize flour 

quantification, banana flour authentication  

 

1. Introduction 

 

The rise in the consumption of unripe banana flour (UBF) in recent years has been driven by 

its acknowledgement as a natural gluten-free alternative for the ordinary staple flours (Singh 

et al., 2016). Research findings in various literature revealed that multiple utilisation of unripe 

banana flour depends on consumers’ changing lifestyle patterns and preferences which are in 

turn driven by growing awareness concerning resistant starch functionality (Zandonadi et al., 

2012; De Gouveia et al., 2013). Banana flour applications in the food industry have 

demonstrated to have a significant potential during the development of gluten-free snacks 

(Agama-Acevedo et al., 2009), pasta (Flores-Silva et al., 2015; Almanza-Benitez, et al., 2015), 

weaning products, various bakery and beverage products (Anyasi et al., 2013; Sarawong et al., 

2014).  

 

In developing countries such as South Africa, banana flour has been endorsed by organizations 

like Diabetes SA to control blood glucose and insulin level for diabetic patients (Future Market 

Insight, 2018). However, the concern with banana flour industry is that currently there are no 

specific quality and safety monitoring system in place for the major producing countries which 
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include Canada, Brazil, China, Australia, India, United States, including Africa and Southern 

African countries (Sardá et al., 2016a). Most recent research studies on banana flour have 

focused on physico-chemical properties (Savlak et al., 2016), in vitro and in vivo studies for 

reducing the risk of non-communicable diseases (Sardá et al., 2016b; Bi et al., 2017), its 

utilization to create edible and biodegradable films (Gutiérrez et al, 2016) to mention a few.  

 

Nowadays, consumers are becoming skeptical about the quality, authenticity, the manner in 

which food products are processed, chemical and nutritional composition as well as the 

safeguard with respect to microbial, toxic and inferior contamination of edible agricultural 

products (Borràs et al., 2015). In the fore-mentioned countries involved in the production of 

banana flour, to our knowledge no studies have been reported regarding assessing the products’ 

adulteration incidents despite valuable health benefits it has on human physiology and is 

considered a replacement for stable flours. With this gap of information, in a niche market, 

opportunities for the products’ exposure to unfair trade involving contamination due to 

negligence may be introduced. Moreover, economic adulteration, which is a widespread issue 

in the processing industry of powdered food materials accompanied with false product labelling 

is also motivated by unfair producers.  

 

Food products most likely targets for adulteration practices include those in demand by the 

populace, of high-value and which go through strict processing protocols before marketing 

(Manning et al., 2016; Hong et al., 2017). Strictly, unripe banana flour is produced from 

matured green banana fruit pulp and processed before any ripening initiation within the first 48 

hours’ post-harvest (Menezes et al., 2011). Issues of authentication and adulteration in the 

commercial unripe banana flour supply chain have been documented, coincidently, with greater 

than seventy percent incidents in developed countries’ such as Brazil for the year 2016. It is 
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worthy to note that adulteration with respect to unripe banana flour comes in different forms 

viz, flour processed from banana fruit pulp in an advanced stage of ripening, UBF prepared 

from pulp with peel traces, and banana flour which has undergone entire substitution or mixing 

with staple flours (Sardá et al., 2016a). With the latter, considering the sensory nature (i.e. 

colour, texture and particle size) of cereal flours, such as maize (Zea mays) flour, makes 

adulteration of banana flour possible without the consumer noticing. 

 

From the nutrition perspective, dilution or complete substitution of unripe banana flour with 

commonly known flours deteriorates the premium quality of the product. In addition, in the 

food operating systems, engagement of any sort of fraud interrupts product distribution chains 

(Bogadi et al., 2016), mislead various diet and raises health problems as certain consumers may 

be allergic to the adulterant material as mentioned in various studies in the literature (Spink et 

al., 2011; Fu et al., 2014; Xu et al., 2015). Thus, in order to prevent the occurrence of unripe 

banana flour adulteration in the national and international market, the industry seeks and 

requires a rapid and sensitive economic tool to enable banana flour protection against 

sophisticated adulteration acts.  

 

The authentication of unripe banana flour is crucial for public health and the industry, hence 

the requirement of techniques to monitor its processing involving adulteration practices. In this 

regard, visible-near infrared (Vis-NIR) spectroscopy, is one of the well-researched and 

approved vibrational method deemed advanced to cater for adulteration problems which has 

not yet been highly applied to studies pertaining banana flour. The robustness of the technique 

made understandable with multivariate analysis partial least squares regression (PLSR) have 

identified contamination of milk with melamine (Fu et al., 2014; Domingo et al., 2014) purple 

sweet potato flour mixed with white sweet potato (Ding et al., 2015) to mention a few. As 
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recommended by many authors PLSR is the most suitable statistical analysis for dealing with 

successive near-infrared spectra and building spectroscopic calibration models (Balabin and 

Lomakina, 2011) as it can relate spectral training data matrix (X) to the reference measured 

variables of analyte (Y) (Godoy, et al., 2014). The objective of the current study was, therefore 

undertaken to investigate the applicability of portable Vis-NIR spectroscopy to detect 

adulteration of unripe banana flour with maize (Zea mays) flour. In doing this, partial least 

squares regression (PLSR) was employed to construct detection models to differentiate UBF 

adulteration mixes with maize flour. The developed monitoring and quality evaluation models 

based on infrared technology (Vis-NIRS) are anticipated to provide banana flour producers 

with a fast strategy to assess the authenticity of the product. It is believed that the result obtained 

from this research would optimize the guaranteed quality of the product, increase consumers’ 

confidence during purchasing of banana flour, hence, harnessing economic growth for 

producing countries.  

 

2. Materials and methods 

 2.1. Sample preparation: unripe banana and maize flours 

 

Unripe banana flour samples were prepared from 23 cultivars of fully matured green banana 

fruit at stage one according to the standards banana colour chat by SH Pratt & Co (Bananas) 

Ltd. (Luton) (Tapre and Jain, 2012). The fruit comprised dessert and plantain varieties 

cultivated at the Agricultural Research Council-Tropical and Subtropical Crops (ARC-TSC) 

farm in Burgershall Research Station, South Africa (25° 6′0′′ S, 31° 4′60′′ E). The fruit included 

10 desserts (Chinesse Cavendish (AAA), Dwarf Cavendish (AAA), Grand Negra (AAA), Gros 

Michel (AAA), Valery (AAA, Williams (AAA),), and ARC-TSC breed selections: Sordwan 

(AAA), PK6 (AAAB), MCC (AAA), D11 (AAA)) and 13 additional Musa-genotypes (Calcutta 
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(AAA), IPB5-61 (AAA), Green Red (AAA), Pome (AAB), Lady Finger (AAB), Hinoon 

(AAAB), Fhia-18 (AAAB), Fhia-1 (AAAB), Gold Finger (AAB), Prata Anna (AAB), Ducasse 

(ABB), Khuai Thong Raung (AA), Foconnah (ABB) varieties.  

Concisely, unripe banana flour samples were prepared by first peeling and uniformly slicing 

green banana pulp (HLC-300, Omcan, Niagara, NY). Prior dehydration, slices were immersed 

in sodium metabisulphite solution (0.0125 kg/L) for approximately 10-20 minutes, to prevent 

enzymatic browning. Dehyhdration of samples was performed utilising a convective hot-air 

dryer (AD3000 Agri-Dryer, Dryers for Africa, Limestone Hill, SA) at 50 ºC for a maximum 

duration of 15 hours. The conditions inside the dryer relating to relative humidity (RH) and air 

speed were maintained constant at 15±2% and 0.3 m/s, respectively, throughout the drying 

period. Taking equal weight (0.1 kg) each 23 prepared banana flour samples were 

miscellenoulsy combined in one bowl, with an aim to create a standard unripe banana flour 

which was then used in subsequent adulteration experiments.  

 

To prepare maize flour (MF), IWISA samp (i.e. roughly or coarse grounded dried white maize 

seeds) were procured from a local supermarket and milled using a laboratory machine (S8 

Range, Drotsky Aktief (Pty) Ltd, SA). Prior adulteration experiments and spectra acquisition, 

unripe banana and maize flours were further filtered (repeated thrice) in a 355 microns sieve 

(Universal laboratory test sieve, SABS, SA) in order to ensure particle size uniformity. 

Approximately 200 g/kg composite unripe banana flour was weighed (Electronic Balance (BL-

3200H), Shimadzu Corporation, Japan), and decanted into airtight plastic mixing container 

where subsequent adulterant levels of (20-800 g/kg) maize flour were added and thoroughly 

mixed.   
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 2.2. Vis-NIR data acquisition  

 

The absorbance spectra of pure unripe banana and pure maize flours; and the adulterated UBF 

samples were recorded over a wavelength range of 285-1200 nm as programmed by a portable 

Vis-NIR spectrometer (F-750 Produce Quality meter, Felix Instruments, Camas, WA 98607, 

USA) at 20 ℃ controlled environment. The spectrophotometer was equipped with a Xenon 

Tungsten lamp and recorded each spectral measurement in absorbance mode at 3 nm interval 

sampling. Prior adulteration experiments, n = 3 scans of pure UBF and n = 3 pure samples from 

maize flour were collected, following the mixtures of UBF samples adulterated with maize 

flour. All measurements were prepared in triplicate in the range of 2-80% (20-800 g/kg) in 

increments of 2% resulting in a subtotal of 126 successive scans. The visible to near-infrared 

spectra acquired simultaneously (447-102 nm) were used in subsequent PLSR chemometrics 

analyses.  

 

2.3. Spectra pre-processing and PLS modelling 

 

Chemometrics analysis computations were implemented using the Unscrambler software (The 

Unscrambler X Version 10.3; Camo Process, SA, Trondheim, Norway). The beginning and 

ends of raw spectra gathered from the Vis-NIR spectrometer range (285-1200 nm) were 

characterised by noise and background shift in addition to samples important information. 

Hence, the regions at 285-444 nm and 1023-1200 nm were removed prior calibration and a 

new Vis-NIR range (447-1020 nm) was established and further divided into visible (447-702 

nm) and NIR (705-1020 nm) wavelength regions. These wavelength segments were 

independently subjected to different pre-treatment tools in order to select the ideal wavelength 

region for best PLSR models.  
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Data modelling using selected chemometrics transformation techniques viz, 1st derivative 

Savitsky-Golay (2nd order polynomial), and multiplicative scatter correlation (MSC) were 

studied in order to reduce the dimensionality of the sample spectra data, to extract useful 

information from the complex spectra, and to obtain reliable accurate and stable models. To 

construct the PLS models spectral data were grouped into a 2:1 ratio. Using Kernel algorithm 

PLSR models were developed based on test set validation method. The test set validation 

method can be regarded as a dual approach of constructing the calibration model and testing 

for its stability by interchanging calibration data set and validation data samples during model 

development whilst observing that the obtained differences in the regression statistics are 

minimal. Randomly selected, 84 dataset samples were considered for building calibration 

models and 42 samples were used as a separate set for validating the models. Outliers were 

assessed by Hoteling’s T2 at 5% and F-residual, and no outliers were detected.  

 

To test for models robustness and stability for future applications, it was thought necessary to 

examine the models using a new set of data samples obtained from a different experiment and 

environmental temperature settings. The external data set comprise a group of 126 samples (0-

800 g/kg at 2% interval of adulterant dilution) each collected from independent experiments at 

temperature settings of 25 °C.  

 

2.4. Evaluation of PLSR models 

 

Statistical indexes such as coefficients of determination for calibration, validation and 

prediction (R2
c, and R2

p), root mean square errors for calibration, validation and prediction 

(RMSEC and RMSEP), the bias which refers to as the average difference between predicted 

and reference values as well as the ratio of performance to deviation (RPD) were evaluated. 

RPD measure the reliability of the PLSR models and is calculated by diving the standard 
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deviation of the measured adulteration concentration for the prediction set by RMSEP. As 

reported by Delin et al. (2012) when the RPD values are below 1.5 it means the calibration 

model is unusable, if the RPD values are between 2 and 2.5 then the calibration model is 

feasible, for values between 2.5 and 3.0 and above 3.0 it means the prediction accuracy of the 

model is excellent. The quality of the model for the study was evaluated by comparing each 

pre-processing method applied and selected based on lower RMSEs, higher R2 and higher RPD 

values. 

 

3. Results and discussion 

3.1. Interpretation of spectral features for pure and adulterated samples 

 

Near-infrared spectroscopies’ ability to identify and discriminate between materials is based 

on the vibrational responses of chemical bonds to Vis-NIR radiation (Cozzolino and Murray, 

2004). Moreover, Vis-NIR spectrometer intensities are better enhanced when utilised in 

combination with chemometric statistical tools and preprocessing techniques (Pomerantsev 

and Rodionova, 2012). Derivatives are mathematical transformation known to result in better 

illustrations of spectral data highlighting absorptions peaks with useful information that allows 

samples to be discriminated apart (Alishahi et al., 2010). Shown in Figure 1 are average 1st 

derivative Savitsky-Golay log (1/R) (2nd order polynomial) original spectra of pure UBF, pure 

MF and MF adulterated UBF samples for the entire visible-near infrared range. Comparable 

bands between pure spectra of UBF and MF samples could be observed in the Vis-NIR regions, 

however, with different intensities and this could be attributed to differences in the physical 

and chemical matrixes amongst the two products.  From Figure 1, it can be observed that the 

absorption bands for pure MF are higher than that of pure UBF as well as the adulterated spectra 

(20-400 g/kg and 420-800 g/kg). The absorbance spectra for different concentrations of 
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adulterant in Figure 1 reveal that with the increase in the dose of adulterant there was also an 

increase in absorbance. From this observation it can then be suggested that PLSR 1st derivative 

Savitsky-Golay (7-point smoothing, 2nd order polynomial) could be used as an identification 

tool to discriminate pure UBF samples from those adulterated with maize flour. 

 

In general, well-defined signatures with remarkable absorption bands were observed 

throughout the electromagnetic spectrum (447-1020 nm). As reported in various literature, light 

absorbance by infrared spectroscopy in the NIR (labelled as region B on Figure 1) associates 

with overtones and combination bands of broad overlapping fundamental vibrations of 

hydrogen bonds such as C-H, N-H and O-H (relating to carbohydrates, proteins and moisture; 

respectively) (Riedl et al., 2015) whilst the visible absorption bands (region A in Figure 1) 

involve the presence of different chromophores containing conjugated double bonds (C=C; 

C=O) (Zandomeneghi et al., 2000). Differences revealed in region A and B (visible and near 

infrared regions) were attributed to be due to changes in concentrations of principal functional 

groups relating to C=O, C=C, O-H, N-H and C-H, overtones and combination vibrations. The 

observed spectral peaks were related to pigmentation, moisture, proteins and carbohydrates 

structures; and these were implied to have been the important determinants of maize flour 

adulteration level in UBF samples.   
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3.2. PLSR calibration and prediction models 

 

Partial least squares regression (PLSR) analysis is one of the commonly used methods applied 

in the quantification of adulteration contents in various food products (Kasemsumran et al., 

2005). Multivariate calibration analysis performed by PLSR allows observations of linear 

mathematical correlation between independent variables X (spectral data) and dependent 

variable Y (concentration of adulterant) (Godoy et al., 2014).  During the PLSR examination 

spectral dataset are compressed into orthogonal structures called latent variables (LV) or 

factors, and these are used to describe the maximum covariance between X (spectra) and Y 

(level of adulterant) variables (Vadivel et al., 2018).  Various mathematical pre-treatment 

methods (i.e. MSC,1st derivative Savitsky-Golay, 7-point smoothing, 2nd order polynomial) 

were examined prior the development PLSR calibration models to discriminate pure UBF 

samples from different percentages of adulterant (maize flour) added based on the level of 

adulteration (20-800 g/kg). PLSR models were developed using the full wavelength range 

(447-1020 nm), the visible range (447-702 nm) and NIR segment (705-1020 nm) of the 

electromagnetic spectrum.  

 

Depicted in Table 1 are PLSR models obtained from the study. In the current study, the 

application of PLSR with and without preprocessing method generated the most stable and 

accurate regression models from calibration to test set based on the evaluated full wavelength 

(447-1020 nm), visible (447-702 nm) and NIR (705-1020 nm) regions. To the best of our 

knowledge, this is the first research reporting on the non-destructive prediction of maize flour 

adulteration in unripe banana flour with NIR handheld spectroscopy. Thus, close observations 

were made with respect to temperature range (20 and 25 °C) and wavelength selection range. 

In this study, all calibration models were constructed and validated with separate samples 

obtained from an environmental setting of 20 °C. Thereafter the obtained models were tested 
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for future stability with spectra obtained on a separated set experiment at 25 °C. This was done 

to mimic possible future commercial applications of the handheld Vis-NIR spectrophotometer 

at a different ambient temperature environment. The external test set models reveal that the 

performance of the developed calibration and prediction models will remain satisfactory 

despite the change in temperature and wavelength range, provided un-preprocessed full Vis-

NIR wavelength region is used (Table 1). As illustrated in Table 1, models obtained in the 

range of 447-1020 nm showed higher prediction R2 of 90-96% accuracy and excellent RPD 

values ranging at 3.23-3.60 indicating the models are fit for quantitative prediction of maize 

flour adulteration in unripe banana flour. Whilst, the tested pre-treatment methods showed low 

predictive ability especialy in the range of 447-702 nm (1st Der. S-Golay, (0.694)) and 705-

1020 nm for both MSC (0.679) and 1st Der.S-Golay (0.534), respectively. Even though this 

was the case, their RPD values (Table 1) indicated that these models were still appropriate for 

rough predictions as suggested by Saeys et al. (2005) and Zimmermann et al. (2007).  

 

Plots showing actual versus the predicted concentration of maize flour in unripe banana flour 

from the PLS regression model for both temperature modes (20 and 25 °C) are displayed in 

Figure 2 below. Where Figure 2(A) demonstrates the validation plot model (at 20 °C) and 

Figure 2(B) is for external test set model (at 25 °C). In overall, the PLSR calibration models 

generated in this study have versatile applications and revealed adequate accuracy and stability.  

 

On the authors perspective, calibration and prediction models with more accuracy fit were 

obtained with full Vis-NIR spectra (447-1020 nm) using raw spectra. As shown in Table 1 the 

R2 for the full range was 0.955 for calibration, 0.961 for validation and 0.922 for external test 

prediction (Table 1). Based on the results of R2 accuracy, RMSEP and RPD, models for un-

preprocessed spectra gave better predictions, small RMSEP (4.801 (validation set), 6.734 



112 

 

(external tests set)) and high RPD (5.094 (validation data), 3.603 (test set data)) values. The 

authors then would recommend manufacture to consider using models for a full wavelength 

range for better quality and monitoring control during unripe banana flour adulteration 

detection with maize flour in future.  



113 

 

Table 1: Statistical parameters of PLSR models for prediction of maize flour in unripe banana flour based on selected wavelength regions and 

different transformation methods. 

π: Wavelength, R2
c: Coeffiecient of determination for calibration, R2

v: Coefficient of determination for validation, R2
p: Coefficient of determination 

for prediction, RMSEC: root mean square error for calibration, RMSEP: root mean square error for validation/prediction, RPD: ration of 

performance to deviation, MSC: multiplicative scatter correlation, 1st Der. S-G: first derivative Savitsky-Golay, a: 7-point smoothing, 2nd order 

polynomial.  

  

   Calibration  

(20 °C) 

 Validation   

(20 °C) 

   Test   

(25 °C)  

   

Pre-

treatment 

π 

(nm) 

 

LV 

R2
c RMSEC R2

v RMSEP Bias RPD R2
p RMSEP Bias  RPD  

Raw spectra 447-1020 6 0.955 5.138 0.961 4.801 -0.629 5.094 0.922 6.734 -0.224 3.603 

MSC  4 0.949 5.407 0.952 5.290 -1.437 4.623 0.904 7.489 -3.458 3,239 
a1st Der.S-G  3 0.949 5.415 0.951 5.334 -0.802 4.485 0.909 7.297 -3.239 3.325 

             

             

Raw spectra 447-702 4 0.847 9.462 0.813 10.446 0.807 2.341 0.831 9.921 -2.012 2.445 

MSC  4 0.875 8.555 0.834 9.840 0.836 2.485 0.764 11.741 -4.125 2.066 
a1st Der.S-G  6 0.903 7.539 0.824 10.145 -0.755 2.411 0.694 13.359 -6.381 1.816 

             

             

Raw spectra 705-1020 4 0.899 7.658 0.903 7.529 -0.449 3.248 0.761 11.825 -3.005 2.052 

MSC  3 0.893 7.919 0.906 7.403 -1.192 3.304 0.679 13.683 -10.015 1.773 
a1st Der.S-G   4 0.878 8.426 0.902 7.558 -0435 3.236 0.534 16.491 -12.944 1.471 
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4. Conclusion 

 

The visible to near-infrared PLSR models developed in this research for the non-destructive 

prediction of maize flour adulteration in unripe banana flour was demonstrated to be accurate 

and showed stable robustness even when applied at a different environment mode. The 

handheld F-750 NIR quality meter appears to be a good tool in detecting unripe banana flour 

adulteration in processing factories. The PLSR evaluation enables the researcher to 

discriminate between pure and adulterated banana flour samples and also to quantify the level 

of adulteration with good consistent R2 fit and satisfactory RPD.  All studied wavelength 

regions were effective to give satisfactory prediction models. Therefore, portable NIR 

spectroscopy embedded with chemometrics is a potential method to be used in online 

monitoring and detection of adulteration and routine analysis of banana flour quality.  
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CHAPTER 5 - SIMULTANEOUS PREDICTION OF UNRIPE BANANA FLOUR 

ADULTERATION WITH WHEAT (TRITICUM AESTIVUM) AND MAIZE (ZEA 

MAYS) FLOUR BY INFRARED SPECTROSCOPY AND MULTIVARIATE 

ANALYSIS 

 

Abstract 

 

Handheld visible-near infrared (Vis-NIR) spectroscopy is a novel and rapid tool that is used to 

quantify the adulteration of powdered processed foodstuff. This research was conducted to 

develop NIR spectroscopic models to predict adulteration of unripe banana flour with two less 

expensive staple flours, maize and wheat flours. Spectroscopic data was acquired using F-750 

NIR spectrometer. Quantitative and qualitative analyses were performed on the 75% of dataset 

by leave-one-out cross validation approach through partial least squares regression (PLSR) and 

principal component analysis (PCA). Model performance was tested using the remaining 25% 

dataset for prediction. NIR models were developed after using several pre-treatment methods 

and compared based on maximum coefficient of determination of cross-validation (R2
cv) and 

prediction (R2
p), residual predictive deviation (RPD) and minimum root mean square error of 

prediction (RMSEP). PCA gave informative clusters between unadulterated and adulterated 

unripe banana flour samples against pure maize and wheat flour samples, showing 94% 

accuracy, with PC-1 and PC-2 accounting for 76% and 18% explained variance, respectively. 

First derivative Savisky-Golay (2nd order polynomial with 9-gap smoothing) gave the optimum 

standard model, showing maximum R2
cv (0.99), R2

p (0.99), RPDp (10.88) and minimum 

RMSEP of 2.42 g/kg. From the study, it was shown that the tested handheld F-750 NIR 

spectrometer a potential feasible tool that could rapidly detect and quantify adulteration of 

unripe banana flour. NIR spectroscopic models developed in this study could be employed to 
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simultaneously classify and predict maize and wheat flours unwanted adulteration to unripe 

banana flour product. 

 

Keywords: Rapid screening; Product quality; First derivative; F-750 NIR spectrometer  

 

1. Introduction  

 

Unripe banana flour is one of the most valued commodities globally due to its gluten-free and 

resistant starch natural characteristics. It can be utilized as an ingredient in baked products, 

pasta and confectionaries (Adeniji, 2015). It is mostly processed in tropical and subtropical 

countries among which India, China, USA and Africa (such as Uganda and Tanzania) are 

leading producers (Padam et al., 2014; Chauhan and Jethva, 2016). The global banana flour 

market is estimated to reach a growth of US$735 million and consumption of 400 billion tons 

by 2027 (Future Market Insights Research, 2018). Approximately, 45 percent of total banana 

flour market revenues comes from the Middle, East and Western countries of Africa. In these 

regions, banana flour is popular and considered the primary source of carbohydrate (Ng et al., 

2014; Joshi and Sarangi, 2014). A larger portion of its applications mostly goes to the food 

industry during the formulation of bakery, culinary, confectionery and beverage products 

(Adeniji, 2015). 

 

The premium quality of powdered products like banana flour is crucial, especially for 

consumers, retailers, and processing industries involved in its importation and exportation. 

Moreover, the authenticity of unripe banana flour as a functional food is vital for both public 

health and economic gain. The preparation of powdered food is a complex agribusiness 

especially when large quantities of products to be processed involves different strict protocols 
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(Yolmeh and Jafari, 2017). During post-harvest operations, a lot of commodities become 

exposed to various types of adulteration (i.e. intentional and unintentional). In the presence of 

cheap products (Lohumi et al., 2015; Silvis et al., 2017), adulteration acts are easily performed. 

Unripe banana flour is included in the basket of noble and essential products of which 

temptations to easily be imitated with staple flours (e.g. wheat and maize flours) is common. 

 

Generally, price is one of the factors consumers use to distinguish products quality between 

purchases (Mascarello et al., 2015). The processing of green banana flour in countries such as 

South Africa is new and a growing industry owing to an increasing number of the public 

adoptions on gluten free diets and healthy living standards. A price of a 1 kg of banana flour, 

ranges between $32 to $64 in local supermarket and health shops compared to staple flours 

such as wheat and maize which costs about $0.86 and $1.92 for a kilogram (kg), respectively 

(National Agricultural Marketing Council (NAMC), 2018; Stat SA, 2019). However, the price 

per kilogram varies between $10 - $80 (unripe banana flour); $0.77 - $1.96 (wheat flour); and 

$0.86 - $10.13 (maize flour) depending on the region (Global Price Info, 2020; The Statistics 

Portal, 2018). Another option that purchasers use is the description information about product 

ingredients displayed on the label (Olbrich and Christian, 2014). However, as specified by 

Mascarello et al. (2015), the use of these as indicators of product quality is inadequate and 

subjective when purchasing a product. 

 

The differences in price range among commodities makes it vital for the agro-food industry, 

manufactures and retail market to adopt more objective tools with precision to make it possible 

to control food quality and to exchange their premium products at fair prices (Dabbene, 2014). 

Food processors and food inspection agencies can use a variety of vibrational spectroscopies 
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to guarantee unripe banana flour quality and monitor any sort of possible adulteration by unfair 

producers (Nenadis and Tsimidou, 2017).  

 

Handheld near infrared (NIR) spectrophotometers are novel, recent on the market devices that 

food researchers, together with multivariate techniques, suitably utilise for the authentication 

and detection of adulteration of powdered food materials (Qu et al., 2015). The technique is 

user and environmentally friendly, non-destructive, rapid, and robust. Unlike the old age 

bench-top spectroscopies, handheld instruments allow manufactures to maneuver around with 

ease during the production process inspection. Moreover, in the food industry, NIR 

spectroscopy aids in controlling quality and quantity of food products (Sørensen, et al., 2016). 

In various literature, portable NIR tools have been proven to be a reliable method for the 

analyses of a variety of compounds present in different agricultural food products. For instance, 

Basri et al. (2016) studied the adulteration of lard in palm oil using portable NIR in combination 

with partial least squares regression (PLSR) and quantified the percentage of adulterant with 

99% coefficient of determination (R2) accuracy using transreflectance and transmission modes. 

 

With F-750 NIR spectrophotometers (Felix instruments, WA, USA), information about the 

materials chemical structures is extracted empirically from the wavelength(s) (Wang et al., 

2017). For a successful prediction model, adequate training data set along with ingredient of 

interest data, obtainable from a reference method, are required. In the process of model 

construction, chemometrics such as principal components analysis (PCA) and partial least 

squares regression (PLSR) are applied to give meaning to spectral data and extrapolate 

important features of materials studied (Correia et al., 2018). PCA is usually applied for 

classification analysis while PLSR is implemented for quantifying the ratios of adulteration. 

Once the prediction model is developed and tested for stability it can be installed back to the 
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instrument for future prediction of the characteristics studied (Basri et al 2016; Wang et al., 

2017). 

 

Quantification of adulteration in unripe banana flour has recently been investigated with 

visible-NIR spectroscopy indicating that the method is feasible and robust to predict staple 

wheat flour adulterant in unripe banana flour (Ndlovu et al., 2019). NIR technologies 

application to control food fraud are believed to miniaturize diverse false presentation of 

products. Moreover, the use of portable NIR technologies makes it convenient to monitor and 

regularly check product authenticity at pack-houses, prior off-loading at supermarkets and 

directly on shelf (Schmutzler and Huck, 2016).  

 

In this work, NIR F-750 spectroscopy in conjunction with chemometrics is evaluated to provide 

a simultaneous qualitative and quantitative detection of maize and wheat flours adulteration in 

unripe banana flour. Developing standard NIR based model(s) to discriminate unripe banana 

flour adulteration from South African staple flours will be a quick and efficient approach for 

commercial scale producers. Given that NIR devices are one of the green technologies, that is, 

easy portability, no chemicals nor continuous sample preparations are required during the 

analysis. The work reported herein was to determine an NIR F-750 spectroscopy can be used 

to predict varying degrees of both maize and wheat flours adulteration in unripe banana flour. 

This was achieved through comparing NIR based pre-processing methods by (a) evaluating the 

F-750 NIR tool capability to discriminate maize-wheat adulterated banana flour samples by 

PCA and (b) quantifying adulteration concentrations for both adulterants in banana flour 

through PLSR analysis.  
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2. Materials and methods  

 2.1. Preparation of samples 

2.1.1. Composite unripe banana flour 

 

The green (unripe) banana fruit were provided by the Agricultural Research Council-Tropical 

and Subtropical Crops (ARC-TSC), Burgershall Research Station, South Africa (25° 6′0′′ S, 

31° 4′60′′ E). Using the standards banana colour chat by SH Prattt & Co (Bananas) Ltd (Luton) 

(Tapre and Jain, 2012); twenty-two cultivars utilised in this study were determined fully 

matured green banana fruit at stage one of ripening. The harvested bananas used for the study 

were a collection of diploids, triploids and tetraploids Musa-genotypes as shown in Table 1.  

The unripe banana flour developed for this research was prepared entirely from the pulp of fruit 

not subjected to any ripening following the method by Ndlovu et. al (2019). The blending of 

banana flour cultivars to formulate a composite banana flour was introduced in this research as 

the concept emphasized and initiated by the Food and Health Organization (FAO) 1964 (Fellers 

and Bean, 1998). Concisely, the composite flours were implemented as an approach of using 

uncommon food products intended to replace wheat flour with novel functional properties for 

human nutrition (Noorfarahzilah et al., 2014). The development of composite green banana 

flour is ideal for developing countries like South Africa to increase production and supply of 

gluten-free and high resistant starch food products to meet health demand of various 

individuals. It also establishes a foundation to encourage the utilization of locally grown native 

banana fruits as flour by farmers and individual households.  

 

2.1.2. Maize and wheat flours  

 

Maize flour (MF) was prepared from rough or coarse grounded dried white maize grains (Iwisa 

maize rice, Premier Foods, (Pty) Ltd, South Africa), purchased from a local supermarket and 
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milled using a laboratory machine (S8 Range, Drotsky Aktief (Pty) Ltd, SA). Wheat flour (WF) 

(SASKO cake wheat flour, Pioneer Foods (Pty) Ltd, South Africa) sample were purchased 

from a local supermarket. Prior adulteration experiments and spectra acquisition, unripe banana 

and maize flours were further filtered (repeated 3 times) in a 355-mesh sieve (Universal 

laboratory test sieve, SABS, SA) to ensure particle size uniformity. Approximately 200 g/kg 

unripe banana flour was weighed (Electronic Balance (BL-3200H), Shimadzu Corporation, 

Japan), and decanted into airtight plastic mixing container where subsequent adulterant levels 

of (20-800 g/kg) maize flour were added and thoroughly mixed. 

 

Table 1: Banana varieties used to prepare composite unripe banana flour  

Species Cultivar Name Genome Group 

M. acuminata (AA) x M. acuminata (AA) Chinese Cavendish  AAA 

 Gros Michel AAA 

 Grand Negra AAA 

 Valery AAA 

 Williams AAA 

 D11*ǂ AAA 

 MCC*ǂ AAA 

 Calcutta 4 AAA 

 Sordwana*ǂ AAA 

 IPB5-61 AAA 

 Green Red AAA 

 Khuai Thong Raung AA 

M. acuminata (AA) x M. balbisiana (BB)  PK6*ǂ AAAB 

 Fhia-01 AAAB 

 Fhia-18 AAAB 

 Hinoon AAAB 

 Gold Finger AAB 

 Lady Finger  AAB 

 Prata Anna AAB 

 Pome AAB 

 Foconnah ABB 

  Ducasse ABB 

*ǂ ARC-TSC selections.  

Source: Perrier and Tézenas du Montcel, (1990).  
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2.2. Measurement of NIR spectra 

 

A 5 g (± 1) sample of unadulterated and adulterated mixtures was weighed (Electronic Balance 

(BL-3200H), Shimadzu Corporation, Japan) in triplicates, placed individually into petri dishes 

(50 mm x 55 mm), and enclosed in machine sample holder. In reflectance mode, spectra of 

pure maize, wheat and unripe banana flour and the subsequence adulterated UBF samples were 

collected using the F-750 NIR spectrometer (Felix Instrument, WA, USA). The instrument was 

equipped with a Xenon Tungsten lamp. It recorded each spectra measurement at 3 nm interval 

sampling in the range of 315-1200 nm with spectral resolution of 8-13 nm. Spectra of pure 

samples as well as adulteration mixtures were acquired as shown on figure 1 below. A total of 

110 spectra were obtained. The acquisition of data was managed by the F-750 Data Viewer 

software (Version 1.2.0.75, Felix Instruments, WA, USA). A common characteristic when 

working with NIR devices is that noise is normally experienced at the beginning and end of the 

spectra. As noise was noted in this study, the initial range of 315-1200 nm was trimmed and an 

NIR wavelength zone between 444-1026 nm was used for analysis. 
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Figure 1: Setup flow diagram of adulteration mix experiments and spectra acquisition
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2.3. Multivariate data modelling 

2.3.1. Principal component analysis (PCA) and partial least squares regression 

(PLSR) 

 

The obtained spectral and reference data sets of pure and adulterated unripe banana flour 

samples were analysed by partial least squares regression (PLSR) and principal component 

analysis (PCA). These two chemometric techniques are powerful quantitative and qualitative 

multivariate tools useful to describe the fundamental relationship between spectral dataset and 

analyte concentrations. Moreover, they are responsible for minimising dimensionality of 

collinear variables. PCA was conducted on the input data to discriminate and partition samples 

according to spectral variation with respect to adulterants and their subsequent adulteration 

levels (mentioned above) through non-linear iterative partial least squares (NIPALS) 

algorithm.  

 

PLSR is adequate for expression of the linear mathematical combinations between spectra and 

the reference parameters (Morsy and Sun, 2013). It involves the decomposition of independent 

spectral data into latent variables describing the maximum covariance between spectra and 

contents of parameter of interest (Sunoj et al., 2016). The quantification of adulterants 

concentration was analysed by orthogonal partial least squares logarithm. This log filters noise 

in the dataset, and reduces the model complexity by lowering the number of latent variables 

(LVs) in addition to allowing the identification analysis and investigation of the main source 

of samples variation (Word et al., 1998). The lowest number of latent variables holds relevant 

information regarding the prediction model and also is an indicator of the optimum models 

efficiency.  Calibration models were constructed by leave-one-out cross-validation method. 
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The cross-validation approach allows an opportunity of a calibration model to estimate the 

expected level of fit of a model to a dataset that is independent of the data that were used to 

train the model (Mabood et al., 2017).   

 

The concept of leave-one-out cross validation method is that each spectrum or sample gets to 

be omitted from the analysis as the remaining dataset are used to build and predict a model. 

This process of omitting spectrum is repeated until all samples in the training dataset are being 

used for calibration and validation to give a complete series of predictions for the whole dataset. 

Seventy-five percent of the data was assigned to develop calibration models (n = 65). The 

resultant calibration models were tested for performance on the 25% remainder of spectral 

dataset (n = 43). All quantitative and qualitative analysis were performed on mean centred data 

executed by the Unscrambler X software (The Unscrambler X Version 10.3; CAMO, 

Trondheim, Norway). 

  

2.3.2. Chemometrics spectral transformation for quantifying adulterants 

 

Various chemometrics pre-processing methods were performed on spectral data to address 

undesirable effects resulting from external factors such as particle size variation among 

samples, light scatter, random noise and to smooth spectral data. The untreated spectra were 

compared against the original 1st and second derivatives, 1st and 2nd derivatives (Savisky - 

Golay logarithm, second polynomial) with 9 and 13 smoothing gaps, respectively; 

multiplicative scatter correction (MSC) and standard normal variate (SNV). Their 

combinations (1st Deriv + SNV + MSC and 2nd Deriv + SNV + MSC) were evaluated to 

optimise on model prediction performances. In each case a new PCA classification was 

examined and a new PLSR model was developed, results were evaluated. 
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2.3.3. Assessment of PLSR adulteration prediction models 

 

The best PLSR models were estimated based on the highest coefficients of determination value 

for cross-validation (R2
cv), prediction (R2

p) and residual predictive deviation (RPD); and lowest 

root mean square error of cross validation (RMSECV) and root mean square error of prediction 

(RMSEP) as illustrated on equations 1-4. (Saeys et al., 2005; Jiang et al., 2015)   

 

R² = 1 −
Ʃ(У𝑐𝑎𝑙−У𝑎𝑐𝑡)²

Ʃ(У𝑐𝑎𝑙−У𝑚𝑒𝑎𝑛)²
         (1) 

 

𝑅𝑀𝑆𝐸𝐶𝑉 =  √Ʃ(У𝑐𝑎𝑙 − У𝑎𝑐𝑡)2 /𝑛        (2) 

 

𝑅𝑀𝑆𝐸𝑃 =  √Ʃ(У𝑝𝑟𝑒𝑑 − У𝑎𝑐𝑡)2 /𝑛       (3) 

 

Where ycal is the calculated value, yact is the actual measured value, ypred is predicted value of 

the adulterant concentration, ymean is average value of predicted data; and n is number of 

spectra.  

 

RPD =
𝑆𝐷

𝑅𝑀𝑆𝐸𝑃
             (4) 

 

 

where SD is the standard deviation of reference measured adulterant concentrations.  
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3. Results and discussion 

3.1. Individual spectra characterization of pure flour samples 

 

The F-750 NIR spectroscopy is a rapid and a sensitive tool that could be utilized to rapidly 

screen quality of unripe banana flour during industrial application, since its ability to 

differentiate between the pure wheat and maize flours was possible even before they were 

merged at varying adulteration concentrations (Figure 1). The diagnosed spectral differences 

of pure samples in the visible to near infrared region (444 - 1026 nm) of this study associates 

with overtones or combinations of fundamental stretching bands (Agelet and Hurburgh, 2010). 

There was an overlap of sharp absorption intensities at the visible region. Wheat flour (WF) 

exhibited the most prominent peaks at 438 nm, 498 nm and 685 nm, pure maize flour (MF) had 

notable peaks at 464 nm and 531 nm, while unripe banana flour (UBF) spectrum showed 

intermediate band at 498 nm. Other peaks at 608 nm, 626 nm, 746 - 842 nm, 865 nm, 885 nm, 

908 nm 938 nm and 967 nm were observed and maintained a similar wavelength pattern with 

varying absorption wavebands between pure samples. The spectrum of each pure sample varied 

and this difference could be assigned to the flours surface traits and unique biochemical 

constituents (Sunoj et al., 2016).  

 

3.2. Spectra of the adulterated samples 

 

The spectra for wheat and maize adulterated UBF samples observed on Figure 2 also showed 

that the adulterated samples had a similar trend in absorbance. The obtained differences in 

absorption peaks can be attributed to the stretching of hydrogen groups -O-H-; and -N-H- of 

the samples and vibrations from -C-H-; first and second overtones as well as second overtones 

of -C=O- groups and the combination of amides and amines (Osborne, 2006; Sunoj et al., 

2016).  
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Figure 1: Typical wavelength spectra of differences between unadulterated samples  
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Figure 2: All spectra showing pure flours before mixing and adulterated unripe banana flours with different pure wheat and maize flour levels.  



136 

 

3.3. Principal Component Analysis model 

PCA is an un-supervised chemometrics method which aids to explore and visualize spectral 

data into clusters. This technique diminishes dimensionality issues of spectral matrix in a 

manner that correlate a set of variables into reduced dimensional positions (called principal 

components (PCs)), thus, displaying data trends containing the most relevant information of 

food materials (Kiers et al., 2007; Singh et al., 2010). First derivative Savisky-Golay (2nd order 

polynomial, 9-smoothing gap points) transformed the original spectra and removed 

background shift, giving simultaneous discrimination of pure samples and corresponding 

concentration mixtures of adulterants.  

 

The PCA modelling showed a 94% diversity between samples for the first two principal 

components mapping twelve categories among which three groups are for pure flour samples 

and the remaining nine are adulterated mixture samples (Figure 2). From the PCA plot, pure 

banana flour samples are positioned on the positive component loadings on PC1 while cluster 

relating to pure maize and wheat flour samples are located on the oppositive negative 

component loadings. Samples with lower concentration (2-4% and 10-12%) of adulterants 

were close to unadulterated banana flour samples. This observation could imply that it would 

not be easy to distinguish adulterated banana flour by visual inspection alone. Hence, the 

requirement to implement NIR spectroscopy for adulteration monitoring routines. Moreover, 

as the level of adulterants increased (20-22% until 80%) the diversity between samples was 

getting more visibly spread towards pure cereals flour samples.  

 

The loadings plot of PC-1 and PC-2 of all samples (Figure 3) showed wavelength peaks that 

were the most informative and characteristic in the current adulteration investigation. The most 

visible bands on PC1 (515 nm, 676 nm) and PC2 (498 nm, 676 nm) were assigned to the 
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3.4. PLSR adulteration prediction 

Table 2 compares statistical indexes of models obtained with different data pre-treatments.  

Depending on spectral data pre-processing method, models generated in the study gave good 

fit with satisfactory predictive R2 values and low RMSE values acceptable for developing 

calibration and prediction models. The predictive models generated resulted in RPD values 

higher than 3. This was an indication that these models could be considered excellent and most 

reliable for analytical prediction of wheat and maize flour adulteration in unripe banana flour. 

The prediction model developed using 1st derivative Savisky-Golay with 9 smoothing points 

(2nd order polynomial) was observed to give the highest R2 for prediction (0.99), lowest 

detection limit (RMSEP) of 2.42 g/kg and highest RPD value of 10.88 (Table 2).  

 

The pre-treatment of spectral data is essential and in some other scenarios need to be optimized 

individually by combining pre-processing methods in order to achieve better accuracy and 

prediction reliability. The calibration models developed with original 2nd derivative had highest 

number of factors, highest RMSECV (11.5 g/kg) and lowest RPD (1.4) values and this model 

was considered not fit for the assessment of unripe banana flour adulteration. Subsequently, 

further smoothing of the original derivatives and merging them with other pre-processing 

methods turned out to be of significance importance and this resulted into improve prediction 

ability of the models (Table 2). Considering these findings, it can be portrayed that the 

independent test set prediction models in Figure 4 has good performance in predicting maize 

and wheat flour adulteration in unripe banana flour. 
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Table 2: PLSR prediction models and the influence of different transformation methods on calibration models performance  

R2
c: coefficient of determination for calibration; RMSEC: root mean square error of calibration: R2

cv:  coefficient of determination for cross-

validation; RMSECV: root mean square error of cross-validation; R2
p: coefficient of determination for prediction; RMSEP: root mean square error 

of prediction, RPD: residual predictive deviation; 1st Der.: first derivative Savisky-Golay; 2nd Der.: second derivative Savisky-Golay; MSC: 

multiplicative scatter correlation; SNV: standard normal variate. 

 

 

 

Pre-treatment   Factor R2
c RMSEC R2

cv RMSECV R2
p RMSEP RPD Bias Slope 

Original spectra  3 0.993 2.251 0.992 2.418 0.991 2.325 11.305 0.228 0.992 

Original 1st Der.  2 0.989 2.695 0.983 3.466 0.985 3.117 8.432 -1.228 0.970 

Original 2nd Der. 7 0.988 2.901 0.812 11.498 0.483 18.069 1.455 0.144 0.589 

SNV 2 0.985 3.153 0.983 3.480 0.977 3.811 6.897 0.339 0.964 

MSC 2 0.985 3.223 0.983 3.483 0.977 3.849 6.829 0.336 0.963 

1st Der. 9-pt 2 0.991 2.489 0.989 2.687 0.991 2.416 10.881 -0.127 0.984 

2nd Der. 13-pt      1   0.969   4.574   0.968     4.755   0.980   3.597   7.307 -1.549   0.955 

MSC+SNV+1st Der. 9-pt 1 0.990 2.645 0.989 2.736 0.991 2.425 10.840 -0.434 0.988 

MSC+SNV+2nd Der. 13-pt 1 0.977 3.962 0.976 4.113 0.985 3.120 8.424 -1.290 0.970 
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4. Conclusion 

 

The obtained results demonstrated spectral pre-processing significantly enhances the predictive 

performance of the models. Excellent calibration, cross-validation and prediction models 

generated in the current research confirms that the F-750 handheld near infrared spectroscopy 

together with chemometrics holds a promising role to the food industry as a real time tool to screen 

for unripe banana flour adulteration with wheat and maize staple flours. In conclusion, the robust 

prediction models developed in this study are believed to be suitably applied to control banana 

flour quality by industry and retailers’ prior distribution and shelf display. 
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CHAPTER 6 - RAPID SPECTROSCOPIC METHOD FOR QUANTIFYING GLUTEN 

CONCENTRATION AS A POTENTIAL BIOMARKER TO TEST ADULTERATION OF 

GREEN BANANA FLOUR 

 

Abstract 

 

The demand for gluten-free banana flour has led manufactures to enforce strict measures for 

quality control. A need has arisen for the development of more sensitive and reliable methods to 

test the quality of green banana flour (GBF). The objective of this study was to develop rapid 

visible to near-infrared (Vis-NIR) based spectroscopic calibration models to quantify gluten 

concentration, as a biomarker to detect wheat flour adulteration in green banana flour (GBF). 

Spectroscopic data were acquired using a desktop (FOSS®) Vis-NIR spectroscopy ranging from 

400 to 2500 nm of the electromagnetic spectrum. The spectral and reference data were submitted 

to partial least squares regression (PLSR) for the development of gluten adulteration detection 

models. Calibration models were constructed based on a full cross-validation approach, consisting 

of 51 samples for the calibration set and 21 samples for the test set. The optimal prediction model 

was obtained after a combination of baseline (offset and baseline linear correlation) and standard 

normal variate (SNV) pre-processing technique. This model showed a 94% coefficient of 

determination of cross-validation (R2
cv) and prediction (R2

p); root mean square error of cross-

validation (RMSECV) of 3.7 mg/kg, root mean square error of prediction (RMSEP) of 3.9 mg/kg; 

and RPD value of 4. This work has demonstrated that Vis-NIRS method is a robust and feasible 

technology that may be used to ensure the safety of banana flour and that this product stays gluten-

free by providing good and reliable gluten detection and quantification prediction models. 
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Keywords: Non-destructive technology; gluten prediction; partial least square regression; product 

safety; consumer protection 

 

1. Introduction 

Green banana flour (GBF) is one of the important horticultural products in global trade. It is a 

significant component in the diet of many African populace as well as other international countries 

such as China, the United States, Europe and India, to mention a few. A considerable growth in 

the market for gluten-free products is estimated to reach $7.91 billion by 2026 from $4.35 billion 

in 2018 (Global Market Insight, 2019). As a result of the significant research in previous years 

which generated information about gluten-free products has allowed food processing firms to 

expand in competition to offer a high number of foodstuffs with gluten-free claims (Witczak et al., 

2016).  Currently, powdered bananas are preferred for their superior nutritional quality, diversity 

taste and applications to various dishes or products and their health benefits to reduce chronic 

illnesses (Ranjha et al., 2020). 

  

It is no doubt that the expansion of green banana flour processing has stimulated competition 

among the producing countries. Nowadays, it is inadequate to view emerging food products only 

on the proximate components (viz proteins, minerals, moisture content, etc.). However, consumers 

need to be aided with specific relevant important knowledge and awareness of the benefits 

representing the foods they eat (Başlar and Ertugay, 2011).   

 

In that regard, natural biomarkers are important quality food fingerprints to consider during the 

manufacture and processing of any foodstuff (Malheiro et al., 2013). They can be mainly used as 
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a precise indicator of the nutritional status of food products (Pico et al., 2019) and could act as a 

guide to modernized consumers which assist to make informed decisions during purchases 

(Medina et al., 2019). The identification of molecular biomarkers would be an excellent area for 

research investigation with regards to green banana flour. It would provide producers with more 

effective means to maintain the products’ nutritional quality as well as to be able to screen and 

detect possible food contamination exposure and food adulteration incidents (Medina et al., 2019). 

Various reports in the literature claim GBF is a natural ‘gluten-free’ product (Singh et al., 2016), 

thus, a distinct novel biological characteristic.  Concisely, to conform to this claim a gluten-free 

product such as GBF, according to the Codex Alimentarius Standard 118-1979 (2008), are dietary 

foods with a gluten level not exceeding 20 mg/kg irrespective of whether the product contains no 

wheat, barley, rye and their crossbred varieties or especially have been formulated to eliminate 

gluten.   

 

However, gluten-free powdered foodstuff including GBF may become easily contaminated at any 

point during the production cycle with physical or chemical materials that should not be included 

owing to shared processing equipment (Erkinbaev et al., 2017). Due to manufacturers increased 

awareness of the growth in the number of consumers willing to pay premium prices for gluten-free 

products, it is also practically possible that a product such as GBF may be subjected to false 

labeling for either careless or illegal adulteration reasons (Guelpa et al., 2017). A recent research 

study revealed that commercial food products in developing countries such as South Africa may 

have misleading and insufficient labelling information with regards to their wheat allergens or 

gluten claims (Cawthorn et al., 2010).  
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Gluten is a complex protein that is naturally found in powdered cereal grains such as wheat flour. 

It is made up of two components, namely, gliadin and glutenin, which give wheat flour its viscosity 

and elastic properties that are responsible for sensory traits based on several baked products 

(Haraszi et al., 2011). However, wheat gluten protein is also a common allergen of which a 

significant proportion of the population around the world is intolerant (Czaja et al., 2016). 

Particularly in the Western regions, approximately 0.6 to 1% of the population is genetically 

susceptible to wheat and gluten-containing products (Falcomer et al., 2020). Furthermore, wheat 

gluten is capable of inducing a wide range of adverse allergies and disorders. For example, 

allergies such as bakers’ asthma, wheat-dependent exercise-induced anaphylaxis and atopic 

dermatitis may occur via inhalation or skin contact due to physical occupational exposures with 

wheat flours (Rongfei et al., 2014). In addition to that, the intake of gluten-rich foods has been 

reported to induce celiac disease, which affects both adults and children at various rates from 0.1 

to >1.6% (Abadie et al., 2011; Rosell et al., 2014).  

 

Celiac disease is an immune-mediated chronic inflammatory of the small intestine, which typically 

results in nutrient malabsorption (Haraszi et al., 2011; Chu et al., 2012). Consequently, giving rise 

also to secondary illnesses such as anemia and vitamin deficiency (Nassef et al., 2008), amongst 

many. Until to date, there has been no reported cure for celiac disease (Cawthorn et al., 2010). 

However, the only effective therapy for sufferers is the lifelong exclusion of gluten and subsequent 

products (Allred et al., 2010). This makes a gluten-free product as GBF an essential and desirable 

product in the diet of individuals with the above-mentioned gluten intolerance conditions as well 

as consumers who, as a lifestyle choice, choose to stick to a gluten-free diet (Almeida-Junior et al. 

2017). 
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Wheat gluten adulteration diagnostics requires countries to put in place strict protocols to monitor 

what is produced locally and shipped inside as imports. This also implies that manufactures of 

gluten-free GBF should be cautious and practice running frequent quality inspection routines 

against wheat contamination to safeguard sensitive individuals and to protect their business 

profiles (Cawthorn et al., 2010; Erkinbaev et al., 2017). To avoid serious health complications, 

people suffering from gluten-induced conditions primarily rely on accurate food labelling to make 

good choices during purchasing (Jabri et al., 2005). Therefore, producing high-quality gluten-free 

GBF is of high socio-economic importance and the scientific approach to assess and quantify its 

adulteration by wheat gluten is a significant necessity. Various analytical methods have been 

developed to facilitate the testing or monitoring of gluten adulteration in gluten-free products. The 

Codex Alimentarius Committee (2008) declared several types of enzyme-linked immunosorbent 

assay (ELISA), which are the commercial destructive methods for the analysis of gluten in cereal 

and pseudo-cereal derived products and many as described by Haraszi et al. (2011). Researchers 

have also established other classical methods such as liquid chromatography-mass spectroscopy 

(LC-MS) (Lock, 2014) and polymerase chain reaction (PCR) (Mujico et al., 2011) for the detection 

of undeclared wheat allergens in gluten-free food products.  

 

However, these analytical approaches are time-consuming, laborious, need chemical reagents, and 

trained staff to perform the analysis (Chu et al., 2012). In this regard, visible to near-infrared 

spectroscopy (Vis-NIRS) technology combined with chemometrics is a fast, robust, sensitive and 

environmentally friendly method (Wang, 2019). It has been used to screen for quality and quantify 

wheat gluten in several adulterated agricultural food samples (Ahmad et al., 2017). Although GBF 
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has been researched for its phenolic and antioxidant capacities (Sarawong et al., 2014), 

physicochemical, pasting and textural properties (Flores-Silva et al., 2015). To our knowledge, 

Vis-NIRS has been little explored for the detection of gluten adulteration in GBF. Therefore, to 

fill this knowledge gap, the main objective of this study was to evaluate the potential of Vis-NIRS 

coupled with partial least squares regression (PLSR) for detection and quantification of GBF 

adulteration by wheat gluten. 

 

2. Material and methods 

2.1. Pure and adulterated samples preparation  

 

All banana fruit were provided by the Agricultural Research Council - Institute for Tropical and 

Subtropical Crops (ARC-TSC), South Africa. Table 1 shows the banana genotypes utilized in this 

research to generate green banana flour samples. Wheat flour was already prepared and was 

obtained from a local supermarket.  The green banana flour developed for this research was 

prepared entirely from the pulp of fruit not subjected to any ripening at stage I (Tapre and Jain, 

2012).  Prior to peeling and slicing of pulp, all banana fruit samples were rinsed with water to 

remove farm debris.  

 

Banana fruit pulps were dried for 15 hours at 50 °C in a hot air dehydrated (AD3000 Agri-Dryer, 

Dryers for Africa, Limestone Hill, South Africa). The grinding of samples into flour was carried 

out in a laboratory-scale electric miller with 0.8 mm size sieve (S8 Range, Drotsky Aktief (Pty) 

Ltd, South Africa). For a finer particle size distribution filtered all pure flours were filtered in a 

355 mm sieve (Universal Laboratory test sieve, SABS, South Africa). The blending of banana 
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flour from different cultivars to formulate a composite banana flour was adopted in this research 

as the concept emphasized and initiated by the Food and Health Organization (FAO) 1964 (Fellers 

and Bean, 1998). For uniform particle size distribution, before the mixing of samples and spectra 

acquisition. In two set of experiments, the combinations of adulterated 20 g GBF samples were 

prepared by mixing wheat flour at levels of 0%, 2%; 10%, 20%, 30%, 40% 50%, 60%, 70%, 80%, 

90% and 100%, with three samples at each level.  A total of thirty-nine sample batches which 

consisted of thirty-three adulterated samples, three pure GBF and three wheat flour samples were 

prepared for wet analysis and near-infrared spectroscopic study. The prepared samples were stored 

at -20 °C for further analysis.  

 

2.2. Acquisition of Vis-NIRS spectra  

 

A laboratory bench-top monochromator NIR Systems Model XDS spectroscopy (Foss NIR 

Systems, Inc., Maryland, USA). The instrument was facilitated with a quartz halogen lamp and 

lead sulfur (PbS) detector, used to measure the reflectance spectra of samples. To reduce the 

influence of instrumental shifts, the NIRS instrument system was calibrated with a one hundred 

percent white reference tile before and after every 30 minutes in between sample measurements.  

Spectra of all homogenous samples (5 grams) were acquired with a round cup sample holder with 

a quart glass (38 mm diameter and 10 mm in thickness) which was placed in the instruments’ 

enclosed compartment to prevent light escape. The NIR system was operated with Vision software 

(Vision TM, version 3.5.0.0, Tidestone Technologies Inc., KS, USA). Using a full wavelength 

range (400-2498 nm) spectra were collected at 2 nm interval.  Each recorded sample spectrum 

consisted of 32 scans which were then automatically averaged and stored as log (1/R); where R 

represents reflected intensity. The acquisition of spectra was done in duplicate. 
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2.3. Chemical analysis 

2.3.1. Pure sample reference characteristics 

 

To ensure there was no cross-contamination between raw samples, in this study pure samples of 

unripe banana flour and wheat flour were initially measured for their common proximate profile. 

All raw samples were analyzed in triplicates. The moisture contents (MC %) of green banana flour 

and that of wheat flour samples were determined to be 7.83% and 8.62%, respectively (Horwitz 

and Latimer, 2006). Pure flours were determined for their crude protein by the Dumas combustion 

(AOAC official methods (1980). Briefly, 2 g of samples were weighed in ceramic boats and added 

with 2 grams of EDTA catalyst. The samples were loaded into Leco instrument analyzer (Leco, 

corporation, USA) initiated with TruMac software (Leco, corporation, USA). The crude protein 

content was calculated by multiplication of nitrogen % of each sample by 6.25. 

 

2.3.2. Gliadin/gluten extraction and quantification by enzyme-linked immunosorbent 

assay (ELIZA) 

 

The R5 ELISA RIDASCREEN Gliadin R7001 (R-Biopharm, AG, Darmstadt, Germany) test kit 

was used for the extraction and confirmation of gliadin and/ gluten-free properties in pure GBF 

samples. In addition to that pure wheat samples and GBF samples with corresponding wheat flour 

contaminations were quantified for the presence of gluten contents. The R7001 is an effective 

quantitative method for the analysis of gliadin and gluten antibodies from cereals such as wheat, 

rye and barley.  The test kit has the capability to assess the quality of ‘very low gluten’ and ‘gluten-
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free’ declared powdered foods. Samples were extracted following the guidelines of the manual as 

provided by the manufacture of the test kit. 

 

Briefly, in corning culture tubes (16 x 125 mm), homogenous samples of 0.25 g were extracted 

with 2.5 mL cocktail patented (R7006) and incubated for 40 minutes at 50 °C. The samples were 

then treated with 7.5 mL of 80% ethanol-distilled water, shaken upside down in a rotator for about 

an hour at 20 ± 5 °C room temperature (RT). The sample extract (2 mL) was centrifuged in a high-

speed microcentrifuge (2500 g) for 10 minutes. The supernatant of 80 µL was diluted with the 

gliadin diluent (920 µL) and used immediately for the analysis. A 100 µL of the sample solutions, 

were pipetted to the microtiter plate wells in duplicates. Each well coated with R5 antibodies to 

recognize and capture gliadins of the samples, forming an antibody-antigen complex. Post 

incubation of 30 minutes at RT, the pipetted sample solution was discarded and wells washed 

thrice with a 250 µL washing buffer with vigorous upside down tapping of the microtiter plate 

against absorbance paper towel, to ensure removal of liquid from the wells. Freshly prepared 

conjugate (100 µL) was added to each well and incubated for a further 30 minutes at RT. 

  

The unbound conjugate was removed by washing each well with 250 µL washing buffer (three 

repetitions as above). An enzyme-substrate (50 µL) and chromogen (50 µL) were added and 

incubated in the dark for another 30 minutes RT. A stop solution (100 µL) was added to each well, 

mixed gently by shaking the microtiter plate and the absorbance measured within 30 minutes using 

a microtiter plate spectrophotometer (450 nm). The absorbance of the samples is proportional to 

the gliadin concentration which is multiplied by a dilution factor of 500. The gluten concentration 
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of the samples was estimated by multiplication of the gliadin result by a factor of 2 and results 

were expressed as mg/kg gluten.  

 

2.4. Chemometrics 

 

In this study, models were generated by partial least squares regression (PLSR) using a leave one 

out cross-validation method. PLSR is a powerful chemometric analysis technique commonly 

applied in the quantification of adulteration contents in various food products (Kasemsumran et 

al., 2005). Multivariate calibration analysis through PLSR allows observations of linear 

mathematical correlation between independent variables X (spectral data) and dependent variable 

Y (concentration of adulterant) (Godoy et al., 2014).  During the PLSR examination, the spectral 

dataset is compressed into orthogonal structures called latent variables (LV) or factors, and these 

are used to describe the maximum covariance between X (spectra) and Y (level of adulterant) 

variables (Xu et al., 2015). 

 

With the seventy-two spectra collected, 70% of the dataset was assigned as calibration set and the 

remaining 30% for the validation set. Prior calibration modelling, raw spectra of pure and 

adulterated samples were corrected for noise and the effects of scatter using standard normal 

variate (SNV), baseline (baseline offset and linear baseline correction) and a combination of 

SNV+Baseline preprocessing methods (Barnes et al., 1989). Mathematical pre-treatment methods 

were independently examined to construct PLSR prediction models of distinct GBF biomarkers. 

PLSR models were initially developed using the full range (400-2498 nm) and the pre-processing 

method with the best performance was further studied for variable selection to optimize the 
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prediction model using subinterval regions 1100-2498 nm and 1200-2200 nm as proposed by 

Leardi and Nørgaard (2004). 

 

Models were compared and the accuracy of the predictive PLS model was assessed by the 

coefficient of determination for cross-validation (R2
cv) and coefficient of determination for 

prediction (R2
p); root mean square error of cross-validation (RMSECV) and prediction (RMSEP); 

and residual predictive deviation (RPD). As a rule of thumb, an optimal predictive model results 

in a coefficient of determination close to one, lowest root mean square errors and must indicate 

good practicality by yielding RPD values of 3 and above (Ye et al., 2018). 

 

2.5. Statistical analysis  

 

Data of reference sample characteristics were expressed as mean ± standard deviation and were 

subjected to SPSS Statistics Version 20 (IBM Corp., Armonk, NY, USA). The means were 

compared using Independent Sample T-test at a 95% confidence interval.   For spectral data 

analysis and development of quantitative chemometric models, the Unscrambler X (Version 10.3, 

Camo Process, SA., Norway) software program was employed. 

 

3. Results and discussion 

3.1. Raw flours general characteristics 

 

The reference traits of pure flour samples are shown on Table 1. There was a highly significant (P 

< 0.001) difference in the gliadin and gluten of samples. Pure GBF samples showed absence of 

gliadin (-5.28 ± 0.07 mg/kg) and gluten (-10.57 ± 0.13 mg/kg). Pure wheat flour showed gliadin 
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and gluten contents of 43.20 ± 1.78 and 86.40 ± 3.55 mg/kg, respectively. The total crude protein 

composition of samples showed a highly significant (P < 0.001) difference with wheat flour having 

more proteins (11.94 ± 0.12 %) than banana flour (3.91 ± 0.15 %). Banana flour and wheat flour 

samples contained crude protein composition in-agreement to those reported by Lioa and Hung 

(2015); and Adhikari et al. (2016), respectively. This observation was therefore an indication that 

there was no-cross contamination between pure flours. With the obtained general characteristic 

results, it was attributed that indeed GBF in the current study was gluten-free whereas wheat flour 

was rich in gluten proteins. This gave further attributions that changes to adulterated banana flour 

samples would be contributed by wheat flour compositions of gliadin and gluten attributes. 

 

Table 1: Reference characteristics of pure flours before adulteration. 

Reference parameter Flour type 

 GBF WF 

Crude protein (%) 3.91 ± 0.15a 11.94 ± 0.12b 

Gliadin (mg/kg) -5.28 ± 0.07a 43.20 ± 1.78b 

Gluten (mg/kg) -10.57 ± 0.13a 86.40 ± 3.55b 

Samples mean ± standatd deviation. Measurements were taken in triplicate (n = 3). 

Means with different letter within the same raw were significantly different (p < 0.05). 

GBF: green banana flour; WF: wheat flour. 

 

3.2. NIR profile of adulterated and unadulterated GBF samples 

 

A full range of visible to near-infrared (400-2498 nm) spectra depiction of all samples is illustrated 

in Figure 1. There was an overlapping of sample separation at the beginning of the spectral region, 

however, with minimal prominent peaks (Figure 1). The differences between spectra of samples 
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were visibly obtained at ten positions and these were clear from 1201-2392 nm. The observed 

wavebands resulted from the overlapping of overtones and a combination of vibrational bands 

which correspond mainly to –CH deformation; -OH; -NH2 groups stretching as well as S-H 

combination (Lindsay et al., 1999). Where -CH; -OH could be associated with carbohydrates, 

whilst -NH2 with protein structures.  

 

The S-H could be related to sulfuric compounds, attributed to two fractions of monomeric gliadins 

and polymeric glutenin single polypeptide chains (Bruun et al., 2007b); and these are the main 

feature characteristics of the gluten protein network that are linked by intermolecular disulfide 

bonds (Žilić et al. 2011; Barak et al., 2015). The absorption band at 1201 nm was assigned to the 

second overtone of C-H and O-H combination. The peaks at 1450; 1936 and 2012, 2106, 2224, 

2320, 2392 nm were attributed to result from the first C-H; N-H and O-H stretching overtone as 

well as combinations of amide vibrations specific to proteins. Fundamentally amide bands II 

(represent N-H deformation) and III (denotes N-H and CH2 deformation) are important in the NIR 

region as they show sensitivity and possible assignment of gluten structures (Bruun et al., 2007b). 

Therefore, wavebands identified at 2101-2392 nm were attributed to N-H, C-H combinations of 

quantified protein (Bruun et al., 2007a).  



161 

 

 

Figure 1: Typical infrared spectra with information bands derived from the NIR profile of samples obtained using SNV+Baseline 

transformation.
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3.3. Modelling by partial least squares regression (PLSR) 

 

Table 2 depicts the results of PLSR cross-validation and prediction models for the quantification 

of gluten protein adulteration. Good and reliable coefficients of determination were observed in 

all NIR wavelength cases. The visualization of calibration, cross-validation and prediction 

regression is presented in Figure 2, showing the PLS model for the experimental reference versus 

the predicted values. The model with the lowest root mean square error of prediction (3.9 mg/kg) 

was obtainable for the combined pre-processing method (SNV + Baseline). This obtained limit of 

detection entailed that due to the instruments’ sensitiveness, the Vis-NIRS was able to respond to 

even low traces of gluten adulteration changes as influenced by the addition of wheat flour in GBF 

samples.  

 

This predictive model also resulted in a high RPD value of 3.9 for the external test set, indicating 

overall accuracy and that this model would be an excellent quality control (Ye et al., 2018) in 

production lines to measure for gluten adulteration which will provide a satisfying banana flour 

product for the industry and the retail market, hence consumer protection. The model also fitted 

the prediction of wheat gluten very well and had the highest accuracy (R2
p) of 0.94 (Table 2). By  

 subjecting the model with good performance to the various spectral region it was assumed that 

was going to further optimize the model. However, this exercise improved model complexity by 

reducing the number of latent variables from 9 to 6 LV, while the predictive accuracy remained 

significantly satisfactory (Table 2).  To the best of our knowledge, this is the first report on wheat 

gluten protein adulteration in green banana flour. Both wheat and banana flours are natural 

products characterized by complex chemical composition and different active ingredients. Given 

the fact that the best performing model went up to factor 9 during model development at the full 



163 

 

wavelength range is indicative that there may be other biochemical components (such as amino 

acids) that possibly influence the spectra. These components may be present in very small 

quantities in the adulterated sample mixtures and that correlates highly to the gluten protein, joined 

during modelling convey effective information to discriminate green banana flour adulteration by 

wheat flour concentrations. The logic inferences made from this research were drawn from Qian 

et al. (2008) who argued that the characterization of wheat gluten proteins may be interfered by 

relatively low levels of amino acids such as arginine and lysine which produces peptides with close 

similarity in sequence as gluten proteins; and Fontaine et al. (2002) study who concluded that NIR 

technique could measure amino acids concentrations by deriving them indirectly from other 

nitrogen-containing molecules. 

  



164 

 

Table 2: Partial least squares calibration, cross-validation and prediction models for quantifying adulteration of wheat flour gluten in 

adulterated unripe banana flour showing statistical parameters of spectral data using various preprocessing methods. 

R2
C: Coefficient of determination of calibration; RMSEC: Root mean square error of calibration; R2

cv: Coefficient of determination of 

cross-validation; RMESCV: Root mean square error or cross-validation; R2
p: Coefficient of determination of prediction; RPD: Residual 

predictive deviation; LV: latent variable; SNV: Standard normal variate; SNV + BSN: a combination of standard normal variate and 

baseline (baseline offset and linear baseline correction). 

     Cross-validation  Test set     

Region (nm) Pre-treatment R2
C RMSEC R2

CV RMSECV BIAS R2
P RMSEP BIAS RPD LV 

400-2498 RAW 0.998 0.623 0.917 4.539 -0.084 0.911 4.661 -2.235 3.300 10 

 BASELINE 0.998 0.709 0.933 4.081 0.218 0.918 4.477 -2.354 3.436 10 

 SNV 0.979 2.191 0.905 4.852 0.039 0.863 5.785 -2.479 2.659 5 

 SNV + BSN 0.998 0.726 0.942 3.799 0.161 0.936 3.944 -2.318 3.900 9 

            

1200-2200  SNV + BSN 0.951 3.317 0.831 6.478 0.215 0.841 6.231 -1.007 2.634 6 

1100-2498  SNV + BSN 0.962 2.911 0.837 6.348 0.408 0.856 5.934 -2.170 2.766 6 



165 
 

 

 

 

Figure 2: Scatter plots of NIR predicted versus reference gluten contents in adulterated unripe 

banana flour samples measured using the ELISA method.
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4. Conclusion 

 

The results from this study have demonstrated that Vis-NIRS combined with the PLSR 

technique can effectively detect adulteration of GBF by gluten protein from wheat. The results 

of this study also showed that the presence of this adulteration could be identified by ten strong 

and broad absorption bands observed in the NIR region. The optimal PLS predictive model 

showed the lowest error of prediction (3.9 mg/kg), and this was found to be below the threshold 

of 20 mg/kg as recommended for celiac patients. This was an indication of the spectroscopy 

sensitiveness and the ability of the model to detect low traces of gluten adulteration in banana 

flour samples. The authors believe that this approach could be a definite primary determinant 

of GBF processing quality that will safeguard manufacturers; protect consumers with various 

gluten intolerances, especially celiac disease sufferers as well as those choosing to adhere to a 

gluten-free diet as a lifestyle when making informed decisions during purchases. Therefore, 

Vis-NIRS is a very valuable, sensitive and robust non-invasive technology feasible for 

industrial applications to ensure the safety of GBF and related products. 
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CHAPTER 7 - VIS-NIR SPECTROSCOPIC AND CHEMOMETRIC MODELS FOR 

DETECTING CONTAMINATION OF PREMIUM GREEN BANANA FLOUR WITH 

WHEAT BY QUANTIFYING RESISTANT STARCH CONTENT 

 

Abstract 

 

This study investigated the effect of nine different wheat adulteration levels (10%, 20%, 30%, 

40%, 50%, 60%, 70%, 80% and 90% added wheat) on the concentration of resistant starch 

(RS) of green banana flour (GBF). The study further evaluated the potential application of 

visible to near infrared (Vis-NIR) spectroscopy with multivariate analysis to detect changes in 

the concentration of resistant starch of GBF caused thereof by wheat adulteration. Principal 

component analysis (PCA) and partial least squares (PLS) regression (PLSR) independently 

paired with 2nd derivative Savitsky-Golay (with 21 smoothing gaps, 2nd order polynomial); 

Detrend and the combination of these spectral pre-treatments were applied to compare the 

distribution of spectral data; model and predict the concentration of RS. A significant reduction 

trend in the concentration of RS of GBF samples was observed as the advancement of wheat 

adulteration from 38.65 ± 1.27 g/100 g (pure GBF) to as low as 5.37 ± 0.47 g/100 g (with 90% 

added wheat). The PCA method was able to clearly group samples and gave 93% accuracy 

based on RS concentration variation. The optimal PLSR models obtained after the combination 

2nd derivative Savitsky-Golay (with 21 smoothing gaps, 2nd order polynomial) + Detrend 

demonstrated high accuracy with the coefficient of determination for prediction (R2
p) of 0.97; 

root mean square error of prediction (RMSEP) of 2.43; residual predictive deviation (RPD) of 

6.24 and a range error range (RER) of 14.27. Based on the research findings, wheat adulteration 

is a nutritional threat to the production and marketing of green banana flour. There is a strong 

potential for the tested Vis-NIR technique to rapidly monitor banana flour nutritional changes 
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or deteriorations caused by wheat on RS concentration. This research could provide the banana 

flour industry with a novel quality index to determine GBF authenticity. 

 

Keywords: Enzyme hydrolysis, Starch crystallinity, Partial least squares regression, Quality 

index 

 

1. Introduction 

 

Powdered agricultural products are ranked the second most susceptible to adulteration after 

edible oils (Wielogorska et al., 2018). Green banana flour (GBF) is one of the novel and 

premium food products that recently has been found to be prone to intentional or unintentional 

adulteration. Adulteration undermines the foods’ functional qualities shared with consumers' 

well-being. It also has a negative impact on the domestic and international opportunities of the 

product (Gebremariam and Brhane, 2014). 

 

According to previous reports, the starch content of different food powders is rated on the 

extent of its absorption and digestibility in the small intestines (Raigond et al., 2015) as well 

as on the therapeutic contributions to human non-communicable diseases (Sharavathy et al., 

2001).  Food items such as GBF and wheat flours are judged on their nutritional importance of 

the starch fraction. Starch can be classified as rapidly available, slowly digestible and resistant 

starch (Fuentes-Zaragoza et al., 2010). Rapidly available starch is a type of starch that is 

digestible in the small intestines into glucose molecules within 20 minutes after a meal; 

whereas slowly digestible starch is the starch fraction that is converted into glucose molecules 

after 120 minutes after ingestion (Englyst et al., 1992; Chung and Hoover, 2009; Raigond et 

al., 2015). 
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From the viewpoint of GBF processing, resistant starch is considered an important dietary fibre 

and a novel quality attribute of this end-product (Fuentes‐Zaragoza et al., 2011). The potent 

function of GBF RS to human physiology arises from the fact that it is not hydrolysed after 

120 minutes of ingestion (Englyst et al., 1992; Raigond et al., 2015) in the small intestines. 

However, it is fermented by the colon microflora and at a later stage releases short-chain fatty 

acids which act as energy substrates that promote the growth of a good gut microbiome that 

induce minerals absorption and help inhibit the formation of colon cancer and other chronic 

bowel inflammatory-related illnesses such as ulcers (Mohapatra et al., 2011; Joshi and Sarangi, 

2014; Dupuis et al., 2014; Ashwar et al., 2016). 

 

In the Western regions, previous research on the applications of resistant starch includes an in 

vivo clinical study by Raban et al. (2002) where ten healthy normal weight male subjects were 

given for consumption meals containing no resistant starch and meals with 50 grams resistant 

starch content showed significantly lower concentrations of blood glucose and insulin, 

postprandial (after the intake of a high resistant starch meal). Moreover, Reader et al. (2002) 

on seven men and three women diabetic (type II) participants evaluated a variety of snack bars 

and showed a decrease in postprandial blood glucose and insulin levels after the consumption 

of snack bars composed of high resistant starch content versus low resistant starch content to 

no resistant starch snack bars. As for developing countries such as South Africa, a clinical study 

examined the effect of a high resistant starch diet on 14 male subjects who had defunctioning 

colostomies. The results showed that a meal rich in resistant starch increased the fermentation 

of short-chain fatty acids (butyrate) providing evidence that resistant starch-containing food 

has the potential to protect people against colorectal cancer and other bowel diseases (Ahmed 

et al., 2000). 

 



177 
 

Due to associated health benefits, recent studies have employed GBF in the preparation and 

enrichment of other food products to increase the resistant starch portion (Aparicio-Saguilan et 

al., 2013; Khoozani et al., 2019). Green banana flour and its resistant starch applications have 

encompassed the improvement of dietary fibre, water holding capacity and textural 

characteristics of foodstuffs such as bread (Mohamed et al., 2010); pasta (Filipović et al., 2010; 

Zheng et al., 2016); and confectionaries (Aparicio-Saguilán, et al. 2007; Park et al., 2010; 

Agama-Acevedo et al., 2012; Segundo et al., 2017). 

 

 The potential of GBF RS to provide good health benefits to consumers could be limited by the 

bulking with conventional cereal wheat flours mainly because they are the source of slowly 

and rapidly digestible starch (Hager et al., 2013). In the context of human nutrition, rapidly 

digestible starch is ascribed to trigger undesirable high blood glucose and insulin levels which 

is not good for the health of diabetes and obese individuals (Englyst et al., 1999; Hager et al., 

2013). To facilitate consumers' informed decisions, novel quality properties for GBF should be 

protected from fraud practices which may limit consumers from obtaining full health benefits 

(Ashwar et al., 2016). 

 

Traditional in vitro analytical methods for the determination of starches are time-consuming, 

involve the use of chemicals and likely to be very expensive for this evaluation at the industrial 

scale. A rapid method such as visible to near infrared spectroscopy (Vis/NIRS) is the key to 

the consistent growth and production of natural horticultural products. Along with 

chemometrics, Vis/NIRS is the fastest and useful technique for providing information 

regarding food material that has undergone minor, moderate and major composition alterations. 

Vis/NIRS has been successfully applied in the food industry as a quality control measure at in-
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line/ and on-line process monitoring of the adulteration for various types of fruit and vegetable-

derived powdered foodstuff (Fu et al., 2017; Rodriguez et al., 2019; Kiani et al., 2019). 

 

Although in the literature most reported conventional food adulteration analysis using non-

destructive methods has been based on the detection of adulteration by the measurement of 

weights percentages without evaluating the effects or possible changes that the adulterant could 

impose on the important bioactive attribute/s. An attempt made by Ding et al. (2015) on the 

use of reflectance near infrared (600 - 2500 nm) spectroscopy to differentiate white and purple 

sweet potato flours and the adulterated purple sweet potato samples showed a possibility of 

generating good NIR prediction models for the quantification of biochemical properties, i.e. 

total anthocyanins and total antioxidant activity, by radial basis function partial least squares 

(RBF-PLS). 

 

However, the scientific investigation on the changes of green banana flour resistant starch (RS) 

due to wheat adulteration as well as the non-destructive assessment of the effects of this 

adulteration on this attribute has not yet been reported. Therefore, a rapid detection method and 

an analytical procedure to ensure the quality and safety of green banana flour resistant starch 

composition is necessary. This research aims to investigate the effects that wheat adulteration 

could cause on the RS contents of GBF and to evaluate the ability of Vis/NIRS paired with 

chemometrics to quantitatively predict the adulteration based on the RS concentration changes. 

 

2. Materials and methods 

2.1. Banana flour preparation  

Banana fruit material was provided by the Agricultural Research Council - Tropical and 

Subtropical Crops (ARC-TSC). A set of 23 banana fruit cultivars (Table 1) were prepared into 
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flour. In a 1:1 ratio, all 23 prepared flours were blended to develop a good representative of a 

composite green banana flour (Ndlovu et al., 2019). Wheat flour was already prepared and 

obtained from a local supermarket, Mills Spar Supermarket, Pietermaritzburg, South Africa. 

 

Adulterated banana flour samples were prepared by mixing 20 g (n = 27) banana flour samples 

with different proportions of wheat flour in treatment ranges of 0%, 10%, 20%, 30%, 40%, 

50%, 60%, 70%, 80%, and 90%. A total of 33 batches (including n = 3 each of the pure flour 

samples) of green banana-wheat flour adulteration combinations were stored in polythene 

zipper bags at -20 °C till further use.    

 

 Table 1: Banana cultivars used for the preparation of GBF 

Species Cultivar Name Genome Group 

M. acuminata (AA) x M. acuminata (AA) Chinese Cavendish  AAA 

 Gros Michel AAA 

 Grand Negra AAA 

 Valery AAA 

 Williams AAA 

 D11*ǂ AAA 

 MCC*ǂ AAA 

 Calcutta 4 AAA 

 Sordwana*ǂ AAA 

 IPB5-61 AAA 

 Green Red AAA 

 Khuai Thong Raung AA 

M. acuminata (AA) x M. balbisiana (BB)  PK6*ǂ AAAB 

 Fhia-01 AAAB 

 Fhia-18 AAAB 

 Hinoon AAAB 

 Gold Finger AAB 

 Lady Finger  AAB 

 Prata Anna AAB 

 Pome AAB 

 Foconnah ABB 

  Ducasse ABB 

*ǂ ARC-TSC selections.  
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Source: Perrier and Tézenas du Montcel, (1990). 

 

2.2. Destructive (reference) analyses 

2.2.1. In vitro measurement of resistant starch 

 

The contents of resistant starch in the samples were estimated enzymatically using a glucose-

oxidase-peroxidase (GOPOD) colorimetric assay (R-RSTAR 08/15, Megazyme International 

Ireland Ltd, Wicklow, Ireland) as described by McCleary (2002). In short, approximately 100 

mg of samples were placed in corning culture tubes (16 x 125 mm) and treated with 4.0 mL 

pancreatic α-amylase and amyloglucosidase. The sample mixture was incubated for 16 hours 

at 37 ℃ in a shaking water bath. The samples were then treated with 4.0 mL 99% ethanol 

followed by centrifugation at 1500 g for 10 minutes. The centrifugation procedure was repeated 

twice by re-suspending pellets with 8 mL of 50% ethanol. Tubes with pellets were added with 

a magnetic stirrer bar and treated with 2 mL of 2 M KOH. The tubes were placed in an ice bath 

over a magnetic stirrer, 8 mL of 1.2 M Sodium acetate buffer (pH 3.8) were added with starring 

on the magnetic stirrer for approximately 20 minutes. Immediately, 0.1 mL amyloglucosidase 

was added, mixed well and tubes incubated for 30 minutes in a water bath at 50 °C. After 

incubation samples had their volume adjusted to 100 mL with distilled water and an aliquot of 

15 mL of the solution centrifuged at 1500 g for 10 minutes. An aliquot of 0.1 mL was 

transferred onto glass test tubes, added with 3 mL of glucose oxidase peroxidase (GOPOD) 

reagent enzyme, and incubated for 20 minutes at 50 °C. The sample absorbance was measured 

using a spectrophotometer at 510 nm against a mixture of 0.1 mL of 100 mM sodium acetate 

buffer (pH 4.5) and 3.0 mL GOPOD reagent. The concentration of resistant starch of samples 

was estimated using Eq. 1 and expressed as g/ 100g of dry weight. 
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Furthermore, pure flour samples were initially checked and verified for possible contamination 

before adulteration by measurement of solubilised (non-resistant) starch (SS) and total starch 

(TS) contents. For the determination of solubilised starch, supernatant obtained from the 50% 

ethanol washing were combined with the ones of 99% suspension, with the volume adjusted to 

100 mL using 100 mM sodium acetate buffer (pH 4.5). An aliquot (0.1 mL) of the solutions 

was added with 10 µL (amyloglucosidase and 0.1 M sodium maleate buffer (pH 6)) and 

incubated for 20 minutes at 50 °C. A 3 mL of glucose oxidase peroxidase (GOPOD) reagent 

was added and samples incubated for a further 20 minutes at 50 °C. The sample absorbance 

was measured using a spectrophotometer at 510 nm against a reagent blank (a mixture of 0.1 

mL of 100 mM sodium acetate buffer (pH 4.5) and 3.0 mL GOPOD reagent). The absorbance 

data were converted by reference formula (Eq. 1) into g/100g of dry weight. The total starch 

content of pure flour samples was calculated as the sum of the resistant starch and solubilised 

(non-resistant) starch (McCleary, 2002). 

 

Resistant starch (RS)/ solubilised (non-resistant) starch = ∆E x F/W x 90  (1) 

 

Where ∆E = absorbance against reagent blank;  

F = conversion factor (100 divided by the GOPOD absorbance); 

W = dry weight of analysed sample 

 

2.3. Spectra acquisition by Vis-NIRS  

 

A laboratory bench-top monochromator NIR 6500 Systems Model XDS spectroscopy (Foss 

NIR Systems, Inc., Maryland, USA) was utilised to acquire spectra of pure and contaminated 

flours. The instrument was facilitated with a quartz halogen lamp and lead sulfur (PbS) 
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detector, used to measure the reflectance spectra of samples. To reduce the influence of 

instrumental shifts, the NIRS instrument system was calibrated with a one hundred percent 

white reference tile before and after every 30 minutes in between sample measurements.  

Spectra of pure and contaminated samples were measured in a sample cup holder with a quart 

glass and the flours were slightly compressed with a spatula to ensure even distribution before 

taking measurements. The NIR system was connected with Vision software (Vision TM, 

version 3.5.0.0, Tidestone Technologies Inc., KS, USA). Using a full wavelength range (400-

2500 nm) spectra were collected at 2 nm interval.  Each recorded sample spectrum consisted 

of 32 scans which were then automatically averaged and stored as log (1/R); where R represents 

reflected intensity.   

 

2.4. Multivariate analysis 

2.4.1. Pre-processing of the spectral dataset 

 

Several spectral transformation methods were examined to correct for effects caused by various 

light scattering of spectroscopy measurements, obtain useful information and improve on the 

signal to noise ratio. The second derivative Savitsky-Golay log (2nd order polynomial, 21 points 

smoothing), detrend (2nd polynomial), and the combination of 2nd derivative Savitsky-Golay 

(2nd order polynomial, 21 points smoothing) + detrend were independently applied to the 

spectra.   

 

2.4.2. Spectra analysis and Vis-NIRS model development 

 

The spectral data were submitted to principal component analysis (PCA) to determine the 

distribution of samples according to the level of adulteration, identify outliers and determine 

informative wavelengths. Quantification of spectral data was performed by partial least squares 
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(PLS) regression (PLSR) for the construction of calibration models. The collected sixty-six 

spectra were randomly divided into different dataset, as calibration set (70%, n = 44) and 

remaining 30% (n = 22) for independent external validation set. The PLS calibration regression 

analysis included a duplicate of raw spectra of pure wheat and pure banana flour samples, 

whilst PLS validation analysis a single spectrum of each pure sample was included. The PLS 

calibration models were developed by the leave-one-out cross-validation method. 

 

2.4.3. Evaluation of PLS models accuracy and performance 

 

The PLSR models’ accuracies were determined by the coefficient of determination of cross-

validation (R2
cv), root mean square errors of cross-validation (RMSECV), the coefficient of 

determination for prediction (R2
p) and root mean square error of prediction (RMSEP). The 

developed calibration models’ performances were evaluated by calculating the RPD and RER 

values. The RPD is the ratio of the standard deviation of reference data for the validation set to 

RMSEP and the RER is the ratio between the difference of the maximum and minimum 

reference values for the data in the prediction set to RMSEP (William and Norris, 2001; Yasmin 

et al., 2019). 

 

2.5. Statistical analysis 

 

Data collected were submitted to a one-way analysis of variance (ANOVA) using a Least 

Significant Different (LSD) post hoc test, set at p < 0.05 significant level. Data were expressed 

as mean ± standard deviation. The analyses were performed using the SPSS statistical software, 

Version 20 (IBM Corp., Armonk, NY, USA). Spectral data analyses were conducted using the 

Unscrambler X version 10.3 (CAMO Software AS, OSLO, Norway). Graphical presentations 

were done in Microsoft Excel. 
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3. Results and Discussion 

3.1. Starch composition of raw green banana and wheat flours 

 

The resistant starch (RS), solubilised (non-resistant) starch (SS) and total starch (TS) 

concentrations of pure GBF and WF samples were confirmed to significantly (p < 0.05) 

differed from each other (Table 2). GBF significantly exhibited a high concentration of RS 

(38.65 ± 1.27 g/100g) and low concentration values of SS (20.88 ± 0.47 g/ 100 g) compared to 

wheat flour which contained higher concentrations of RS (5.37 ± 0.33 g/100 g) and high levels 

of SS (64.57 ± 0.46 g/100 g). The overall starch composition of pure GBF was significantly 

lower (59.53 ± 1.74 g/100 g) than that of wheat flour (69.52 ± 0.78 g/100g) prior to the actual 

adulteration dilutions (Table 2). The concentrations of starch between pure flours were 

comparable to those reported by Tribess et al. (2009) and Cahyana et al., (2019), as a required 

standard of these flours.  

 

Table 2: Typical variation of the proportions of RS, SS and TS composition of pure flours 

Flour sample RS (g/100 g) (d.w) SS (g/100 g) (d.w) TS (g/100 g) (d.w) 

GBF 38.649 ± 1.268a 20.881 ± 0.469b 59.530 ± 1.735b 

WF 5.374 ± 0.329b 64.574 ± 0.459a  69.948 ± 0.783a 

GBF; green banana flour; WF; wheat flour; RS; resistant starch; SS; solubilised starch; TS; 

total starch; d.w; dry weight basis. Mean ± SD. Column with different letters are statistically 

different (p < 0.05; LSD post hoc test). 
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3.2. The resistant starch (RS) contents of green banana flour (GBF) as affected by 

different wheat adulteration levels 

 

The findings of this study showed that the concentration of RS in raw GBF differed 

significantly (p < 0.001) from that of 40%WF to 90%WF adulterated samples (Figure 1). The 

concentration of resistant starch of pure GBF significantly decreased with advancing 

adulteration level from 38.649 ± 1.268 g/100 g to 23.573 ± 0.886 g/100 g (40%WF); 6.862 ± 

3.651 g/100 g (50%WF); 5.939 ± 0.670 g/100 g (60%WF); 5.371 ± 0.185 g/100 g (70%WF); 

5.371 ± 0.469 g/100 g (80%WF) and 5.367 ± 0.469 g/100 g (90%WF) dry weight basis. It was 

also observed that pure GBF resistant starch content was not significantly different from 

samples adulterated with 10 – 30% wheat flour (Figure 1). The concentrations of RS in banana 

flour samples with 40 and 50% wheat flour were significantly different (p < 0.05) from all 

adulteration levels. There were also no significant differences (p > 0.05) in the RS 

concentration of pure wheat flour and the GBF samples added with 60 – 90% wheat flour. A 

gradual deterioration in the RS concentration of GBF was more observable at the adulteration 

levels of 40 to 50%. Thereafter, the adulteration combinations of the samples containing 60 – 

90% showed a consistent significant decline in the contents of RS compared to raw GBF. It 

was also noted that in samples containing 60 – 90% wheat flour, their RS concentrations were 

significantly the lowest and relatively comparable to that of raw wheat flour. 

 

RS is a homo-polysaccharide made up of several monosaccharide units joined by linear 

amylose and branched amylopectin polymers of α-D glucose units bonded together by α-1,4 

and α-1,6 glycosidic linkages, respectively (Ma and Boye, 2018, Egharevba, 2019). 

Amylopectin gives starchy foods its crystalline character that distinguishes cereal from pseudo-

cereal starches. In general, green bananas are of B-type crystallinity and are not easily digested 
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by enzymes whereas wheat starches are of type A crystallinity and susceptible to enzyme attack 

(Sajilata et al., 2006). 

 

In a study about factors affecting RS levels in food systems, Ashwar et al. (2016) reported that 

a decrease in RS levels of starch cointaing foods could result from any treatment causing 

disintegrations of the crystalline structure of the amylopectin chains. At this stage, our results 

demonstrated that wheat adulteration promotes a progressive deterioration of the resistant 

starch content, thereby negatively impacting the nutritional status of GBF. Our observations 

could mean that wheat starch adulteration formed associations that caused disorganisation of 

the granule structure and the disintegration of the crystallinity of the starch network of banana 

flour. High levels (40 - 90%) of wheat adulteration promoted microstructural modifications 

that enhanced the susceptibility of banana flour starch to hydrolysis by the enzymes, hence the 

decrease in RS yield. This study shows adulteration of wheat results in banana flour products 

of low nutritional value.  
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Figure 1: Changes in the resistant starch (RS) content of pure green banana flour (GBF) as 

affected by different levels of wheat flour (WF) adulteration. Data presented are Means ± 

Standard Error (SE). Vertical bars signify standard errors (SE) of the difference of means. Error 

bars with the same letter are not significantly different (p < 0.05) according to the LSD test.   

 

3.3. Spectral analysis interpretation  

 

The spectroscopic measurement of RS has been performed using Vis-NIR to investigate the 

changes in the amorphous and crystallinity (i.e. amylose and amylopectin molecular structure 

traits), changes in chain conformation and variability in the combinations of hydrogen bonding 

generate during the resistant starch formation (Ma and Boye, 2018). The important resistant 

starch-related absorption peaks were identified by the combination of detrending and second 

derivative Savitsky-Golay (with 21 smoothing gaps, 2nd order polynomial) pre-treatment. 

Initially, the spectra of the two flours (green banana and wheat flours) were compared (Figure 

2), then the variation in absorbance peaks caused by different adulteration levels was assessed 

(Figure 3). There were no clear bands observed in the visible region, however, most of the 

variation in absorption bands of GBF changed following the increase in wheat adulteration 

dose were clear in the NIR region (Figure 2 and 3). The broadened vibration bands suggest 

intermolecular differences in the hydrogen bond strength of banana flour starch with and 

without added wheat. This occurred at absorption bands between 1456 - 2372 nm, recognised 

to be the region characteristic to the analyses of starch (Subedi and Walsh, 2011). The bands 

at 1456 - 1556 nm can be attributed to the first overtone stretch of the hydroxyl group, causing 

interference on the alignment of resistant starch chains (Lv et al., 2020). 

 

The absorption peaks between  ̴1964 - 2236 nm characterises the combination bands that 

involves the C-O stretch combination, C-C stretch vibrations (Noah et al., 1997); correspond 
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to the O-H stretch, O-H band combination and H-O-H deformation combination (López et al., 

2017) while bands at  ̴ 2304 - 2372 nm arise from the combination of C-H bonds stretching 

(Aenugu et al., 2011), representing the quantified starch contents. It can therefore be said that 

during the adulteration, banana flour starch presumably formed cross-linkages, using hydrogen 

bonding, with wheat starch that interfered with the crystallinity and granular organisation of 

resistant starch pattern. This led to increased access to fragmentation by enzyme, hence affected 

banana flour RS yield.  

 

 

Figure 2: Spectra of unadulterated samples for the whole Vis-NIR region (400-2498 nm) after 

a combination of detrend and 2nd derivative Savitsky-Golay (2nd order polynomial, 21 

smoothing points) pre-treatment. The blue and orange lines show spectrums for pure wheat 

flour (100%WF) and green banana flour (100%GBF), respectively. 
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Figure 3: Typical average Vis-NIR showing differences in spectra absorption bands resulting 

from different wheat adulteration level.  

 

3.4. Vis-NIR analysis using principal component analysis (PCA) 

 

Good distributions between the samples were clearly observed in the PCA scores plot (Figure 

3) on spectra transformed by the 2nd derivative Savitsky-Golay (2nd order polynomial, 21 

smoothing points) and detrend (2nd order polynomial). The results of the PCA analysis showed 

that most of the distribution of Vis-NIR data was explained in principal component one (PC-

1) and two (PC-2). Gross variability obtained between different adulteration levels amounts to 

93% accuracy, where scores of PC-1 and PC-2 illustrated 88% and 5% separation between 

samples, respectively. The scores portrayed on PC-1 indicated a distribution of sample 

groupings with low adulteration level. PCA results showed that the technique can provide chat 

that directly indicates the quality of unripe banana flour based on the variation of the resistant 

starch concentration. 
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Figure 4: The PC-1 and PC-2 score plot of the combined 2nd derivative Savitsky-Golay (2nd 

order polynomial, 21 smoothing points) and detrend (2nd order polynomial) corrected data 

showing the distribution between samples with different levels of adulteration. 

 

3.5. Quantitative prediction of RS content by partial least squares regression (PLSR) 

analysis 

 

To develop Vis-NIR chemometric models, spectroscopic data with added wheat flour 

percentages was quantified by developing PLSR models. Shown in Table 3 are models 

generated to quantify and predict the wheat adulteration based on the biochemical changes of 

RS. The models presented a robust correlation between the actual measured values and 

predicted wheat concentrations. The selection of the optimal number of latent variables to use 

in PLSR models was based on the lowest value of the root mean square error in the cross-
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validation process (Lohumi et al., 2014). The optimal models for RS were obtained with both 

the 2nd derivative Savitsky-Golay (21 gap smoothing points) as well as the combination of 

detrend and 2nd derivative Savitsky-Golay (2nd order polynomial, 21 smoothing points) pre-

processed Vis-NIR spectroscopic data. These models showed accurate predictions with higher 

R2
cv = 0.979, similar RMSECV = 2.231 and 2.229, respectively. The external validation models 

for these pre-processing methods have a higher R2
p = 0.973, similar RMSEP = 2.437 and 2.433 

and Bias = 0.491 and 0.490, respectively. As depicted on the plot of residual y-variance versus 

the number of factors (Figure 4); the models were stable at a latent variable of 5. This suggested 

that the number of latent variables was enough to correlate 97% of the relevant information to 

detect green banana powder RS adulterated with different wheat flour levels. Any addition of 

the latent variable would have overfitted the model (Magwaza et al., 2016). 

 

The significant correlation between the NIR predicted and actual reference values of the 

prediction models were additionally assessed by checking the residual predictive deviation 

(RPD) as well as the range error ratio (RER). As established from previous researches, an RPD 

value above 3 and an RER value around or greater than 10 indicate a good and excellent model 

(Williams and Norris, 2001). As depicted in Table 3, both the RPD and RER results show that 

the models were properly developed and satisfactory for the prediction of GBF RS adulteration 

by wheat. Figure 5 illustrates the linear regression relationship of measure reference and NIR 

predicted values of the optimal cross-validation and external validation model. 
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Figure 5: Residual y-variance as the function of the number of latent variables showing the 

optimal number of factors in the calibration model for predicting RS adulteration of GBF with 

wheat-based on the combination of detrend and 2nd derivative Savitsky-Golay (21 gap 

smoothing points, 2nd order polynomial) pre-processing method (400-2489 nm). 
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Table 3: Calibration and external validation models performances using full Vis-NIR (400-2498 nm) region for the prediction of banana flour RS 

adulteration with different wheat flour levels. 

 

Calibration models 

 

Validation models 

    
Pretreatment R2

c RMSEC R2
cv RMSECV R2

p RMSEP Bias RPD RER Slope LV 

Untreated  0.992 1.362 0.975 2.436 0.964 2.808 0.702 5.408 12.357 1.002 8 

D2 S-G21 0.991 1.472 0.979 2.231 0.973 2.437 0.492 6.231 14.238 0.987 5 

Detrend 0.991 1.448 0.973 2.527 0.968 2.648 0.709 5.736 13.107 0.993 7 

D2 S-G21+Dt 0.991 1.474 0.979 2.229 0.973 2.433 0.490 6.243 14.265 0.987 5 

R2
c: Coefficient of determination of calibration; RMSEC: Root mean square error of calibration; R2

cv: Coefficient of determination of cross-

validation; RMSECV: Root mean square error or cross-validation; R2
p: Coefficient of determination of prediction; RPD: Residual predictive 

deviation; RER: Range error ratio; LV: latent variable; D2 S-G21: 2
nd derivative Savitsky-Golay (2nd order polynomial, 21 points smoothing points); 

Dt: Detrend. 
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Figure 6: Scatter plot showing optimal PLS model performance to predict green banana flour 

adulteration with wheat-based on the resistant starch (RS).  

 

4. Conclusion 

 

This study has shown marked variations in the resistant starch contents of green banana flour when 

compared to wheat flour adulterated samples. Indeed, the advancements of wheat adulteration 

levels significantly reduced the resistant starch content. In other words, the potency of this novel 

bioactive compound is very likely to deteriorate owing to the influence caused by the adulteration 

of wheat. From the consumers' point of view, wheat adulteration remains a major nutritional issue 

and a threat to the processing and marketing of green banana flour. Vis-NIR proved to be a useful 

technique and explained the structural features characteristic to the variations of banana flour 
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starch which led to the resistant starch reduction. The Vis/NIR spectroscopic method developed in 

this study is fast and time saving compared to enzymatic methods. The overall accuracy of the 

method is effective for producers to analyse banana flour nutritional value based on the resistant 

starch contents. The findings of this research could enable the banana flour industry with a novel 

quality index to determine GBF authenticity. It is believed that the differences induced by different 

added wheat concentrations can be used to grade the severity of the adulteration, could allow 

producers to create formulations for the development of other green banana-wheat flour composite 

products, which might help reduce product loss induced by wheat adulteration in various food 

industries. Future studies should include a range of other cereals, legume or pseudo-cereal flour 

products, to obtain a wide variability of the impact of adulteration in banana flour RS.  
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CHAPTER 8 - GENERAL DISCUSSION, CONCLUSION AND FUTURE RESEARCH 

RECOMMENDATIONS 

 

1. Introduction  

 

Unripe banana flour (UBF) is one of the vital fruit developed products appreciated for the natural 

gluten free characteristics and it being the source of resistant starch. In the modern society these 

nutritional qualities are deemed important and desirable especially for the individuals with 

pressing health issues such as coeliac disease, type II diabetes as well as for consumers who 

voluntary follow certain diets (Rodríguez‐Damian et al., 2013). The processing of a high-quality 

unripe banana flour is therefore a priority. Regardless, there are no specific quality and safety 

monitoring system in place for the major producing countries which include Canada, Brazil, China, 

Australia, India, United States, including Africa and Southern African countries (Sardá et al., 

2016a). 

Unripe banana flour is one of the products susceptible to adulteration with cereal flours due to 

shared physical traits (Ndlovu et al., 2019). Maize and wheat flours are staples present in the daily 

diets of many African and Western consumers. Amongst the two, wheat flour contains a well-

known allergen (gluten) of which not everybody in different parts of the world could tolerate 

(Scherfet al., 2016).  The research study first objective was to investigate the potential of visible 

to near infrared (Vis-NIR) spectroscopy (Vis-NIRS) combined with multivariate analysis to 

develop robust prediction models that can rapidly detect and quantify different adulteration of 

levels of staple flours (i.e. wheat and maize flours) in unripe banana flour. the second part of the 

study was to explore Vis-NIRS potential to quantify quality attributes that can be used to identify 

unripe banana flour adulteration. 
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2. Destructive and rapid non-invasive methods for the detection of powdered 

horticultural products adulteration 

The objective of Chapter 2 was to review and discuss the concept of powdered horticultural 

product adulteration the driving forces and its related impacts; and to discuss previous and recent 

researches on different techniques developed for monitoring powdered products adulteration. A 

literature review study showed that the adulteration of powdered food materials has been a 

common issue in food industries to different parts of the globe for so many years (Su an Sun., 

2018). It involves the deliberate or unintentional substitution or addition of cheaper materials to 

high value products for the aim of increasing profits (Lohumi et al., 2015). 

 

Practices regarding powdered products imitations are mainly influenced by greed and ease 

accessibility of adulterants. In addition to that, adulteration acts are sophisticated since substituting 

material tend to physically match the characteristics of high value products (Everstine et al., 2013; 

Esteki et al., 2019). There have been improvements from traditional analytical methods to non-

destructive tools to monitor adulteration practices. Literature relating to existing destructive 

analytical methods such as chromatographic, microscopic, enzyme-linked immunological assay 

(ELISA), to mention a few, showed that these technologies might not be efficient for a large 

industrial scale. They are time consuming, expensive, need specialized sample preparation and are 

related to producing bias and inadequate outputs since they are usually performed on few number 

of samples (Ellis et al., 2012).  The review study also revealed that although infrared techniques 

have been approved as a robust method for adulteration evaluation, its applications are not as 

advanced with unripe banana flour as it is with other powdered horticultural products (see Chapter 

2 - Table 3).  Recently, consumers demand for the assurance of good quality processed products 
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is high. Given that unripe banana flour is an innovative product, the lack of research and utilization 

of non-destructive rapid method in its processing could be a challenge to the leading producing 

countries as well as the food industry at large. Therefore, the use of non-invasive tools such as the 

Vis-NIR spectroscopy to monitor adulteration of unripe banana flour is imperative and should be 

thoroughly researched. 

 

3. Portable Vis-NIR spectroscopy evaluation to detect different levels of wheat and 

maize flour adulteration in unripe banana flour  

A handheld F-750 spectrophotometer was extensively explored for its ability to detect, classify 

and quantify independent adulteration levels of wheat and maize flours in unripe banana flour. In 

Chapter 3, the potential of the F-750 instrument (285-1020 nm) to detect wheat flour and maize 

flour adulteration levels from 0-80% was evaluated. Pattern recognition models developed using 

the 2nd derivative Savitsky-Golay (19-point smoothing, 2nd order polynomial)) pre-processed 

spectral data and principal component analysis (PCA) indicated a 95% accurate classification 

among adulterated and unadulterated unripe banana flour samples. Calibration and validation 

predictive performance of the models obtained through the 2nd derivative Savitsky-Golay (19-point 

smoothing, 2nd order polynomial) partial least squares regression (PLSR) also indicated excellent 

accuracy of the Vis-NIR F-750 spectroscopy.  

Maize flour adulteration of unripe banana flour was studied using PLSR (Chapter 4). Various 

factors including temperature and wavelength range could influence the development of 

calibration NIR models (Campos et al., 2018). The essence of this study was to closely evaluate 

the feasibility of the F-750 device, by comparing how the wavelength selection range (full 

wavelength (447-1020 nm), visible (447-702 nm) and NIR (705-1020 nm) regions) and 
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temperature differences (20 and 25 °C) influences on the identification of maize flour adulterant. 

The optimal PLSR model showed that the Vis-NIR F-750 spectroscopy could be used as an 

identification tool to discriminate unripe banana flour from being adulterated with maize flour 

despite temperature changes, however using a full wavelength (477-1020 nm). The first derivative 

Savitsky-Golay (7-point smoothing, 2nd order polynomial) showed identifiable band differences 

between adulterated versus unadulterated banana flour. The bands noticeable were associated with 

changes in chemical and physical functional groups assigned to C=O, C=C, O-H, N-H and C-H, 

overtones and combination vibrations (Riedl et al., 2015). The results of the study showed that the 

Vis-NIR F-750 spectroscopy could be used as an identification tool to discriminate unripe banana 

flour from being adulterated with maize flour despite temperature changes. The results of PLSR 

predictive model for a raw full wavelength (477-1020 nm) were more superior than for the pre-

processed spectra of visible (447-702 nm) and NIR (705-1020 nm) regions. This added a better 

understating of utilizing the instrument, another adulterant that can be detected and widened the 

feasibility of the spectroscopy and multivariate regression for analyzing complex adulterations for 

unripe banana flour.   

Chapter 5 objective was to optimize the capabilities of the F-750 spectroscopy to build one global 

PCA classification and PLS regression models that will simultaneously predict both the 

adulteration of maize and wheat flours. The first derivative Savisky-Golay (2nd order polynomial, 

9-smoothing gap points) transformed the Vis-NIR spectra and gave a simultaneous discrimination 

of pure flours and corresponding adulteration combination of adulterants. The PCA scores chart 

demonstrated a 94% accurate separation; and the loading plots of PC-1 and PC-2 illustrated 

informative and characteristic bands diversity between samples. The bands on PC-1 (515 nm, 676 

nm, 742 nm to 961 nm) and PC2 (498 nm, 676 nm, 970 nm) loading were due to the stretching of 
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–C=O-H- and -C=C-C- of carbonyl aromatic and benzene ring compounds; and second overtone 

of hydrogen stretch and –N-H-, amides and amines; and third overtone stretching of –O-H- and –

C-H- organic groups of starch carbohydrates (Stewart, 2004; Osborne, 2006, Coates, 2006). High 

prediction PLSR models also showed the use of F-750 spectroscopy poses a great potential in the 

food industry, since a large amount of adulterant concentrations from different botanical sources 

were identifiable and detected in a few seconds. This was an indication that the technology is 

capable of storing more information from single measurement, which will aid in rapid monitoring 

of unripe banana flour, ensuring better product quality security for consumers. 

The overall observations of chapter 3 to 5 demonstrated that the F-750 technology combined with 

multivariate data analysis techniques is useful for applications to the banana flour processing 

industry. The feasibility of the technique is based on its robustness, on the fact that it is easy to 

handle, no sample preparations and reagents are required, environmentally friendly and it cost 

effective. The qualities of this technology point to a brighter near future for post-processing quality 

control as well as the management of unripe banana flour containing addition of un-declared cereal 

or grain flours in South Africa and abroad.  

 

4. Identification of unripe banana flour adulteration by quantifying effective quality 

parameters - a benchtop spectroscopic study 

It is inadequate to develop a postharvest technique for quality monitoring without having 

quantified that products’ highly appreciated attributes. The marketing of unripe banana flour is 

motivated by its gluten free natural traits. Gluten is a major wheat allergen (Sharma et al., 2015; 

Scherf et al., 2016) and also a biological marker known to uniquely separate wheat from unripe 
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banana flour. In chapter 6, this study introduced a good adulteration control parameter for unripe 

banana flour, which has direct relationship with the nutritional quality of unripe banana flour. 

Wheat gluten was quantified up to an adulteration concentration level of 100%.  

This was an excellent way to develop a robust predictive model for detection the authenticity of 

unripe banana flour and distinguishing adulteration with wheat. High significant difference (p < 

0.001) was observed between unripe banana flour and wheat flour based on gluten protein 

characteristics, with our banana flour showing no traces of gluten in its natural pure state. The 

identification of wheat gluten adulteration, made by studying the variations of spectral bands 

across the spectral region (1201-2392 nm) were assigned to C-H; N-H and O-H stretching overtone 

as well as combinations of amide vibrations (Bruun et al.,2007a; Bruun et al, 2007b). Good and 

reliable gluten detection PLSR model obtained from a combination of baseline (offset and baseline 

linear correlation) and standard normal variate (SNV) demonstrated the power of combining 

preprocessing method for better predictability. 

 

A development of a method that can measure the extent of adulteration, based on the nutritional 

and microstructural changes of a product is imperative. Resistant starch (RS) is a major attribute 

of unripe banana flour that constitutes a high potion of the starch component (Pragatiet al., 2014). 

The quality of unripe banana flour depends on the resistant starch composition.  An in-depth study 

on the effects of the addition of different concentrations of wheat flour on the resistant starch 

concentration of unripe banana flour was investigated and reported in Chapter 7. The assessed 

adulteration concentrations of wheat range from 10% to 90%, at a 10% increase interval. It was 

observed that wheat flour adulteration has a negative effect of the nutritional quality of unripe 

banana flour. The results showed a significant decrease of RS contents from adulteration level of 
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40% to 90%; while RS content of unripe banana flour samples with 10% to 30% wheat 

concentration were significantly affected to a small extent. This decrease in RS contents was 

associated with increased susceptibility of banana flour starch to enzyme hydrolysis promoted by 

wheat adulteration. These observations supported the hypothesis that adulteration is a food quality 

problem (Esteki et al., 2019). 

Further into the study, a Vis-NIR (400 - 2498 nm) spectral data which undergone transformation 

(2nd order polynomial, 21 points smoothing points) + Detrend (2nd order polynomial)) showed 

bands from 1456 nm - 2372 nm with possible microstructural modifications based on resistant 

starch of product under investigation. The principal component analysis (PCA) classification 

model pre-processed with the 2nd order polynomial, 21 points smoothing points) + Detrend (2nd 

order polynomial) demonstrated a successful distribution of sample separation based on resistant 

starch concentration changes and achieved a 93% accuracy. Partial least square regression (PLSR) 

model developed with the 2nd derivative Savitsky-Golay (2nd order polynomial, 21 points 

smoothing points) + Detrend (2nd order polynomial) pre-treatments predicted the changes caused 

by wheat adulteration with high accuracy. The stability of the prediction models support that Vis-

NIR spectroscopy combined with multivariate data analysis tools can be used to discriminate 

nutritional changes of the product in question as a results of wheat adulteration.  

 

5. Conclusion and Future recommendations 

In conclusion, two variety of non-destructive spectroscopies showed their potential to develop 

models to inspect adulteration of unripe banana flour. The results of this research showed that the 

Vis-NIR tools combine with chemometrics are suitable non-chemical techniques for monitoring 
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unripe banana flour adulteration with staple flours. The F-750 quality meter is recommended for 

testing authenticity of unripe banana flour as it can be flexible to take measurements at varying 

temperature surroundings. Moreover, its portable nature makes it easy to carry around and take 

measurements for a large number of samples at any place.    

 

However, adulteration research is complex, as unfair producers are always on the lookout for 

inferior lookalike material to use. On the other hand, the NIR spectroscopy has a shortcoming of 

developing product specific predictive models (Cortés et al., 2019). This means the models 

constructed herein are sensitive to the type of adulterants investigated (i.e., wheat and maize flours) 

as well as the quality parameters quantified. Our findings serve as a foundation for future research 

using other non-destructive methods. It is recommended that the research should be furthered and 

consider investigating other potential adulterants such as leguminous flours, as well as gluten free 

pseudo-cereal flours. Future studies should also consider the non-destructive differentiation of 

unripe banana flour from ripe banana flour, as these products differ in nutritional value and 

substitution is possible. The outputs of this study could provide unripe banana flour production 

firms with a fast, accurate, reliable and cost-effective method to monitor near future adulteration 

issues of unripe banana flour with staple flours, thereby ensuring that consumers are supplied with 

a good quality product. 
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