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Abstract

In studies involving intercropping plant populations, the main interest is to locate the

position of the maximum response or to study the response pattern. Such studies

normally require many plant population levels. Thus, designs such as spacing systematic

designs that minimise experimental land area are desired. Randomised block designs

may not perform well as they allow few population levels which may not span the

maximum or enable exploration of other features of the response surface. However, lack

of complete randomisation in systematic designs may imply spatial variability (large­

scale and small-scale variations i.e. trend and spatial dependence) in observations. There

is no correct statistical method laid out for data analysis from such designs. Given

that spacing systematic designs are not well explored in literature, the main thrusts of

this study are two fold; namely, to explore the use of spatial modelling techniques in

analysing and modelling data from systematic designs, and to evaluate the efficiency of

systematic designs used in intercropping experiments. Three classes of models for trend

and error modelling are explored/introduced. These include spatial linear mixed models,

semi-parametric mixed models and beta-hat models incorporating spatial variability.

The reliability and precision of these methods are demonstrated. Relative efficiency of

systematic designs to completely randomised design are evaluated. The analysis of data

from systematic designs is shown be easily implemented. Measures of efficiency that

include <pp directed measures (A and E criteria), D1 and DB efficiencies for regression

parameters, and power are used. Systematic designs are shown to be efficient; on

average 72% for A and E- efficiencies and 93% for D1 and DB efficiencies. Overall, these

results suggest that systematic designs are suitable and reliable for intercropping plant

population studies.
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Chapter 1

Introduction

1.1 Background

Intercropping is an 'old-age' farming practice that refers to the growing of two or more

crops simultaneously on the same piece of land. During the past two decades or so

considerable research attention has been directed to understanding the possible inter­

cropping advantages (Osiru and Willey, 1972; Mead and Stern, 1980; Ocaya, 1998).

These advantages are measured in terms of responses such as crop yield, land equiva­

lent ratios, economic returns, coefficients of aggressivity, calorie value, etc. Despite these

substantial research efforts, little attention has been given to experimental designs. All

too often experimenters and statisticians feel that their choice of an experimental de­

sign is limited to those appearing in the tables or in the literature such as, for example

those in Cochran and Cox (1964). The experiment should be considered as it is to be

conducted, rather than being changed to fit a design published in the literature or in the

tables. Direct extensions of procedures and concepts for sole cropping to intercropping

are often inappropriate and can sometimes be misleading (Federer, 1993).

The need for designing experiments specifically for intercropping was first outlined

1



1.1 Background 2

by Willey (1979). Subsequently, many other agronomists and statisticians have similarly

expressed their concern about the inadequate consideration of the designs for intercrop­

ping experiments (Mead and Stern, 1980; Mead and Rilley, 1981; Finney, 1988; Federer,

1993; Peterson, 1994). There are indeed many aspects of intercropping experiments that

require careful considerations. However, the most pressing one is in the area of plant

populations i.e. plant density and spatial arrangements. Research in these factors (plant

density and spatial arrangements) has gone on for a long time, yet their individual ef­

fects have seldom been distinguished. Insufficient identification of the various relations

involved and little development of experimental designs to examine them could be the

contributing factors (Willey and Rao, 1981). Establishing the pattern of response and

identifying the optimal plant density combinations at early stages of intercropping ex­

periments, and also distinguishing their effects is very important. These two factors

define both species inter-competition and intra-competition, which in turn determines

the intercrop yields.

The position of the maximum response in an intercrop can vary considerably from

that predictable from monoculture (Federer, 1993). Determining such patterns based

on conventional randomised block factorial experiments has some limitations. Since

conventional randomised block designs do not allow very many treatment levels there

is a risk that the treatment levels so included do not span the optimum or that if they

do, they are so far apart that some vital feature of the response surface is not detected.

Some researchers have employed systematic designs suggested by Nelder (1962) to over­

come these problems (Willey and Lakhani, 1976; Huxley and Maingu, 1978; Wahua

and Miller, 1978; Mead and Riley, 1981). These designs allow many levels of plant

populations and use a minimum space of land compared to randomised designs since

they do not need guard rows. They thus for the same land area accommodate more

treatment levels than randomised designs.



Chapter 2

Review of Intercropping

Experiments

2.1 General overview

2.1.1 Introduction

The importance of plant populations in relation to the intercrop yields is discussed.

The evaluation of intercropping advantages and some experimental designs that are

employed in intercropping studies are briefly discussed. By definition, intercropping is

the growing of two or more crops simultaneously or sequentially on the same piece of

land (Federer, 1993). The practice is used extensively in tropical agriculture, and will

no doubt become important in temperate zone agriculture (Wahua and Miller, 1978;

Federer, 1993). Mixed cropping is one of the least expensive methods of increasing

productivity of crop fields with limited resource capacity.

Intercropping is a space-dependent form of multiple cropping. Thus, as already

mentioned, when two or more crops are grown together, each must have adequate

space to maximise co-operation within and minimise competition between them. The

5



2.1 General overview 6

following factors are necessary to consider when conducting an intercrop experiment:

spatial arrangement; plant density; maturity dates of crops being grown together and

plant architecture, and management. Spatial arrangement greatly contributes to the

performance of crops as it affects edaphic interactions and determines light penetration

into the canopies of both the taller and shorter components of an intercrop.

2.1.2 Plant population and spatial arrangement

Plant population refers to the total number of plants in an area. The plant population

per given area is called plant density. Spatial arrangement in intercropping studies

refers to both the relative positions on the ground of one plant to another within the

same species (rectangularity) and the relative arrangement of plants of one species to

another. Plant populations and spatial arrangement are factors that are commonly

studied in intercropping research (Willey and Rao, 1981). However, as mentioned in

Chapter 1 their individual effects have seldom been distinguished because there has

been insufficient investigation of the various relations involved and little development

in experimental designs to examine them (Willey and Rao, 1981).

Research efforts on the relationship between plant density or populations and crop

yield in monoculture has been widely studied (Nelder, 1962; Willey and Heath, 1969).

Generally, yield Yl; (i = 1,2, ... ,n) can be modelled as a function of density, fC);

Yl; = f(d l;) + El; (2.1)

where f(dd can be a polynomial, linear or quadratic in density levels (dd, or an inverse

quadratic polynomial, and El; are random errors. To extend the concept of the yield­

density model to intercropping, Wijesinha (1981) and Federer (1993) simply defined

an additive effect/interaction effect li(j) (li' lj) of density level lj of crop j grown with

density levelli of crop i. That is, additive effect li(j) (li' lj) is assumed to be the function
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of densities d ili and d jlj , where d ili is the density level li of crop i and d jlj is the density

level lj of crop j. Using the Federer (1993) notation,

(2.2)

where li = 0,1,2, ... ,a (a density levels of crop i) and lj = 0,1,2, ... ,b (b density levels

of crop j); li =I- lj and where Yi(j)lilj is the yield of crop i grown at plant density levelli

with plant density level lj of crop j. f (did is the function of density of crop i at levelli

while li(j)(dili , d jlj ) gives the additive effect, li(j) (li' lj), of crop j at density levellj on

yield of crop i. ci(j)(li, lj) is the random component of variation with variance at for

each individual observation of crop i. The covariance between the random components

of variation of individual yields of the intercrop of crop i and j is aij. The variance

structure of li(j)(li' lj) have been given in detail by Wijesinha (Federer, 1993).

In this work, the linear response model is adopted because it is easily lends itself to

the well-developed regression techniques. Thus

(2.3)

where Yi(j)liljh is the yield of the hth (h = 1, 2, ... , r) replicate for crop i grown at

plant density level li with plant density level lj of crop j. The random components of

variation, Ci(j)liljh' are assumed independent and identically normally distributed with

mean zero and common variance at i.e. Ci(j)lilj rv iidN(O, an, (JOi and (Jli are regression

parameters for intercept and slope respectively. The magnitudes of the parameters

indicate the importance of change in planting density, as well as the effect of intercrop

and its planting density on the crop being evaluated. A pattern in the li(j)(li' lj)'s or

Ij(i) (lj, li) 's would indicate the functional relationship due to planting densities of two

crops.

Apart from the above developments a general linear statistical model can be used to

model yield as a function of density. For example, the plant densities can be treated as
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variates or factors and a factorial analysis of variance can be performed. Further details

are provided in Section 2.2.

The determination of the effect of the range of planting densities, spatial arrange-

ments and other factors when two crops are grown together entails frequent use of

measures of advantages of intercropping. Some of these measures are outlined in the

following sections.

2.1.3 Some measures of intercropping advantages

The main purpose of this section is to present the review of derived responses of inter-

cropping studies in the context of plant population studies. These derived responses

and other directly observed responses provide the measures of intercropping advantages

over monoculture. In defining the advantages of intercropping, one needs to first define

whether the two crops grown together are both main crops or one is a supplemental

crop. The inclusion of a supplemental crop in a cropping system is partly to check the

effect it may have on the main crop, and thus, analysis differs slightly.

There are various indices for examining the benefits of intercrops. Later in this

chapter, in Section 2.2, modelling of these responses is suggested. The commonly used

indices/derived responses include among others the following.

Relative yield totals (RYT)

This was suggested by de Wit and Van den Bergh (1965) who were mainly interested

in replacement series competition experiments.

where

Yi(j)l; ..m d Yj(i)lj.mr i = _ an r j = -'--'_-'-'--
Yi.s Yj.s
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(2.4)

where fh(j)li ..m is the average yield of density level li of crop species i averaged over

various density levels (lj) of crop species j and r replicates, and fks is the sole crop

yields of crop species i averaged over r replicates. The terms Yj(i)li ..m and Yj.s are

defined similarly for crop species j. When the value of RYT > 1 then intercropping

offers an advantage over sole cropping otherwise no advantage is gained.

Land equivalent ratio (LER)

This is a measure of relative land area required to produce the same yields by sole

cropping as those achieved by intercropping (Willey and Osiru, 1972). An LER of more

than 1 means an intercropping advantage. For instance, an LER of 1.3 indicates a

yield advantage of 30% (in other words, 30% of more land would be required for sole

crops to produce the same yield as intercropping). It represents the increased biological

efficiency achieved by two crops grown together (Mead and Willey, 1980). It is defined

by Willey and Osiru (1972) as

where L i and L j are partial LERs of crop i and j respectively. For a given land area, Ymi

is the yield of crop i intercropped with crop j and Ymj is the yield of crop j intercropped

with crop i, and Yi and Yj are sole crop yields of crops i and j, respectively. Mead

and Willey (1980) referred to Yi and Yj as standardising factors. There are various

forms of standardizing intercrop yields (see for example, Federer, 1993). The form of

standardization should vary according to the objective of the experiment (Mead and

Willey, 1980). In this work, the following form of LER will be used.

L
+ _ Yi(j)li1jh Yj(i)li1jh
h · ·1 1 - + -'-'-'----'--tJ i j - -

Yi. Yj.

where Ltjlilj is hth replicate total LER computed at intercrop of density levels li and

lj and is thus a combination of partial LERs (Yi(i)li 1jh ) for crop 1 and (Yj(i)l.i 1jh ) for crop
Y,. Y].
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j. where fk and fh are the optimum yields of crop i and j respectively, when grown at

their optimum population and spacing averaged over farms or years or experiments, etc.

Huxley and Maingu (1978) suggested that LER be calculated using the optimum pure

stand yield for each component especially when the study involves plant populations

and spacings. The LER calculated using optimum pure stand yield for each component

avoids the confounding of beneficial interactions between component crops with response

to changes in plant population. Thus, a farmer can ascertain whether he is technically

better off with mixtures or sole crops. Federer (1993), indicates that LER calculated

using optimum pure stand yield are not prone to high correlations with each other. The

LER generated by this method has a distribution which does not deviate much from

normal distribution (Federer and Schwager, 1982).

Many extensions to LER exist and they include relative LER, staple LER, effective

LER, etc. (Mead and Riley, 1981). For example, of great importance for statistical

analysis is the relative LER which is given by

(2.5)

Relative LER, in general, can be taken as a linear combination of crop responses.

(2.6)

The coefficients K 1 and K 2 could be crop values; protein, carbohydrate conversion or

calorie values, prices, farmers' values, or coefficients obtained from multivariate analysis,

etc. (Balaam, 1986).

Area-time equivalent ratio (ATER)

Area-Time Equivalent Ratio takes into account the time the crop occupies the land from

sowing to harvesting. This method permits an evaluation of crops on a yield-per-day
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basis.

L·T1 + L·T2ATER= ~ J
T

11

where L i and L j are partial LERs of crop i and j respectively while T1 and T2 are their

respective durations. The term T (T1 + T2 :::; T) is the total duration of the intercrop.

An ATER > 1 indicates an advantage of intercropping.

Indices of competition

One of indices of competition is the Competitive Ratio (CR). It is computed as

eR (~;). (~:)
where Al and A2 are the sown proportions of crop species i and j respectively. An-

other index is the Relative Crowding Coefficient, K. A coefficient K = K 1K 2 , where

K i is defined for each species, where K 1 = Yi(j)li ..mAIA2/ (Yi.s - Yi(j)li ..m)Al, and K 2 =

Yi(j)lj ..mAl/ (Yj.s - Yj(i)lj ..m)A2 where Yi(j)li ..m and Yj(i)lj ..m are the intercrop yields of re­

spective crops i and j, Yi.s and Yj.s are the respective sole crop yields. A K i > 1 means

crop i yielded more than expected on the basis of the ratio of the two crops, Al : A2'

Where K > 1 gives an overall yield advantage. Another measure commonly used is

the Aggressivity Coefficient (A). It measures competitive ability/dominance of one crop

relative to the other when grown together and is defined by

Yi(j)li ..m

Yi.s A l

Yj(i)lj ..m

Yj. sA2 (~:) - (~~)
Positive values would indicate that crop i is more competitive than crop j in an inter­

crop. Indices of competition are important in determining the compatibility of crops

for intercropping.
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Economic returns (RE)

12

Economic returns are directly related to total yield of an intercrop. They are computed

as PIYi(j)li ..m + P2Yj(i)lj ..m or

RE (2.7)

where Yi(j)li ..m and Yj(i)ljoom are mean yields as defined previously and PI and P2 are

the market prices of crop 1 and 2, respectively. The R value is the ratio of P2/PI.

The economic return from each intercrop system is computed and compared with that

of sole cropping. The use of economic returns should also incorporate costs of inputs

to give an indication of profits. Other measures of intercropping benefits that can be

evaluated like economic returns are protein value, calorie value, farmers' value of the

two crops etc., and in these cases, R can be a ratio of protein or calorie or farmers'

values, respectively.

All these indices or measures can be applied to the same intercropping experiment

to answer particular questions. For example, for land use efficiency, LER and ATER

would be appropriate; for profit optimization, RE would be the most appropriate; and

indices of competition are important in determining the compatibility of growing two or

more crops or different crop density levels together. The weight attached to any of these

indices depends on researcher's objectives. In the present study, interest is centred on

LER, yield and RE since the discussion based on these measures can be generalised to

the others. It is to be noted that many other responses apart from yield are also used

to evaluate the cropping systems. These include among others soil erosion control, soil

structure improvement, insect and disease control, nitrogen fixation, etc.

The effective evaluation of these measures requires appropriate experimental designs

to be used. The next section is a review of some of the common designs that have been

employed to enable evaluation of the above mentioned advantages of intercropping.
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2.1.4 Some experimental designs common in intercropping

13

It has been noted that less attention is put on design and statistical analysis for data

involving more than one crop, i.e. in intercropping experiments (Mead and Riley, 1981;

Federer, 1993 ). The main purpose of this section therefore is to verify this statement

by a review of experimental designs commonly used in intercropping studies reported in

literature. Two surveys were conducted; one survey was conducted in Uganda in 2001

and another was conducted on literature reports in the Journal of Agricultural Science

Cambridge and the Journal of Experimental Agriculture.

Most of the intercropping work done at International Crop Research Institute for the

Semi-Arid Tropics (ICRISAT), UK, for instance, used simple designs (Mead and Riley,

1981). Over 90% of the intercropping studies reported in the Journal of Experimental

Agriculture for the last 20 years had a simple treatment structure with one or two

factors (Mead and Riley, 1981). Apart from the few systematic designs and two cross­

criss designs, the rest used either a simple randomised block or a split-plot design (Mead

and Riley, 1981).

The results from the survey on intercropping experiments reported in the Journal

of Agricultural Science, Cambridge and the Journal of Experimental Agriculture for

the last 30 years are reported in Table 2.1. A total of twenty eight articles and thirty

three articles in the Journal of Agricultural Science, Cambridge and the Journal of

Experimental Agriculture, respectively were concerned with intercropping studies. In

these articles more than 60% used RCBD or split-plot design. Less than 10% of them

used other designs such as bivariate factorial design and systematic design. A survey was

also conducted in Uganda on experimental designs used in intercropping experiments

carried out by National research institutes and Makerere University over the period of

ten years (1990 - 2001). The survey covered two national research institutes that are

involved in annual and biennial crop research. Review of technical reports and theses
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was done. Personal interviews with the agronomy researchers and graduate students of

agronomy was also done. Of the 59 experiments reported, 53 were carried out using

ordinary RCBD or split-plot in RCBD and 5 used replacement series and none used

systematic design, as shown in Table 2.1.

Table 2.1: Survey results on types of designs used in intercrops

Design type Frequency in a survey Percentages

Uganda Journals Uganda Journals

RCBD 38 33 64.41 54.10

RCBD with replacement series 5 4 8.47 6.56

RCBD with split plots 16 19 27.12 31.15

Other designs - 5 - 8.19

Total 59 61 100.00 100.00

Many existing experiments on intercropping, which include two or more factors, use

split-plot designs. At the International Institute of Tropical Agriculture (IITA) , the

most commonly used designs for intercropping experiments are the ordinary RCBD

and the split plot designs (cited from Federer, 1993). Other designs that have been

found very useful for intercropping studies are the systematic designs (Federer, 1993;

Mead and Riley, 1981). However, these designs have not been widely used (Mead

and Riley, 1981). Mead (1994) comments that these designs are an extremely useful

addition to the practical statisticians library of designs and they should not be discarded

because they do not satisfy the general principles that treatment allocation should be

randomised, or that the number of treatment levels should not exceed four. Mead (1994)

explains that many statisticians who are aware of the importance of randomisation in

the analysis of experimental data, have been slow to accept the advantages of the
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use of systematically arranged factor levels. He believes that this is based on narrow

view of experimentation and of methods of analysis which are appropriate for drawing

conclusions from experimental data.

2.2 Modelling responses

2.2.1 Nature of responses

Most of the analyses associated with measures of intercropping advantages that appear

in literature are deterministic. In this section, therefore, the main focus is to consider

some statistical models for density-yield relations to model these measures. The devel­

opments in this section are based on a RCBD. Consider a simple experiment consisting

of 3 factors, namely a densities of crop i, p spatial arrangements and b densities of

crop j. Assume r replicates. The responses that are possibly of interest for evaluating

different treatment combinations can be categorised into two, namely observed and de­

rived. The observed responses include yields of crop i and crop j and their respective

yield components, disease incidence, pest infestation, etc. The derived responses include

total yield, partial LER's, total LER, relative LER, economic returns, calorie values,

area-time equivalent ratio (ATER), etc.

From the range of equations in Section 2.1.3, the derived responses are expressed as

linear combinations of yield. For example, consider the following two general alternative

equations,

(2.8)

(2.9)

where Yi(j)liljh and Yj(i)liljh are the yields of crop i and crop j respectively, and QI, Q2

and A = ~~ are coefficients of interest. For instance, Y is the LER value for the case of
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(2.8) and relative LER value for the case of (2.9) when the coefficients Ql and Q2 are

reciprocals of sole crop yields. If these coefficients were the prices of the crops, then

y is the economic returns value, and y will be calorie value if the coefficients were the

caloric values of the two crops. These coefficients can also be farmers' values of the two

crops, coefficients from multivariate analysis such as bivariate analysis of component

yields, etc. If the yield data of the two crops are normally distributed, it follows that

their linear combination are also approximately normally distributed.

2.2.2 Modelling of the responses

The above mentioned responses can be categorised as follows;

• Univariate - Single crop analysis

(1) Yield and each yield component taken singly (2) Partial LERs

• Univariate - combined crop analysis

(1) Total yield/combined yield (2) Total LER, Relative LER, RE, ATER, etc.,

• Multivariate

(1) Bivariate yield analysis (2) Yield components of each crop

The mathematical modelling of these responses as a function of plant populations

may take various forms. Some of the suggested models given below are based on model

(2.3).
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Modelling yields

Various models can be employed to model intercropping yields or yield components.

Some of these models are now discussed below.

Model I: Regression or Response curve model

The following regression model can be fitted at each hth level of spatial arrangement.

(2.10)

where i = 0,1,2, ... ,a, j = 0,1,2, ... ,b, h = 1,2, ... ,r and k = 1,2, ... ,p. Note

that lj = 0 means a pure stand of crop i and the combination (li = 0, lj = 0) does

not exist, where Yhi(j)klil j is the yield for lith density level of crop i intercropped with

density level lj of crop j in kth spatial arrangement. Also dilik , dj1jk and dilik.djljk are

levels of densities of crop i, crop j and their interactions, respectively. A quadratic

effect in dilik can be included. This model (2.10) treats the two crop densities as quanti­

tative factors and spatial arrangements as a qualitative factor. The unknown regression

parameters f31ik, f32ik and f311(j)k are concerned with the effect of crop li density levels,

lj density levels and their interactions (additive effect). This regression model could

also be expressed using orthogonal polynomials since plant densities can be taken as

quantitative factors. Model (2.10) is an ordinary linear regression model and thus least

squares or maximum likelihood methods can be used to estimate the unknown param­

eters f30ik, f31ik, f32ik and f311(j)k' Graphical presentation of the response surfaces/curves

facilitates the identification of the maximum of the response.

Model 11: Factorial linear model

The data can be analysed as a 3-way factorial design on the yield (or any other

response variable) for each crop. For example, the yield of crop i can be analysed as an

(a - 1) x b x p factorial. Only (a - 1) levels of crop i are involved since the monocultures

of crop j would not contain yield responses of crop i. The factorial linear model can be



2.2 Modelling responses

expressed in the form
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where (Jh is the hth replicate effect, ak is the kth spatial arrangement effect, Ti is the

effect of density levels of crop i and Ij is the effect of the density levels of crop j, where

(Ta)ik is the interaction of spatial arrangement and density levels of crop i, (ra)jk

is the interaction of spatial arrangement and density levels of crop j and (T, )ij is the

interaction of densities of crop i and crop j. The remaining term (a,T)ijk is a three-way

interaction term. This model can also be extended to factorial orthogonal polynomial

models where a linear regression effect, quadratic linear effect, etc. for each crop density

factor and their interactions are computed.

Model III Regression model with additive effect term

Yield or any yield component of each crop can be analyzed separately as a function

of density using the model

(2.12)

where Yi(j)l;ljhk is the yield of crop i grown at density li in hth replicate together with

density levellj of crop j in spatial arrangement k. The unknown parameters (JOik and (Jlik

are the intercept and the slope, respectively. The term li(j)k is the measure of intercrop

additive effect of crop j on crop i in kth spatial arrangement. The assumption in this

set up is that yield observations are normally distributed and Ci(j)l;ljhk '" iid(O, (]"2). By

applying generalised least squares theory (Federer, 1993), best linear unbiased estimates

of the following parameters are obtained as

a a

Plik = L (dil; - di ) (Y11l;. - Y11 .. ) / L (dil ; - di .) 2

i=l i=l

1'i(j) (dil;, djlj ) = Yi(j)dil_ dJl _ - di l i Plik - POik
t J

(2.13)

(2.14)

(2.15)
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where Yll .. is sole crop i mean yield. The parameters i'1(2) (dUi' d 2lj ), Y1(2)dllid2Ij' !Jllk and

!J01k are obtained for each spatial arrangement. The parameters from different spatial

arrangements can be compared since each parameter estimate has its variance or can

be subjected to two-way analysis of variance with replicate and spatial arrangements as

two classifications. The t-test can also be conducted on additive effects. This idea will

be explored further in Chapter 4. A plot of i'i(j) (dilp d jlj ) (also represented as i'i(j) (li,zj))

parameter estimated against plant densities could be done and the pattern observed.

The variances of additive effects can be computed using the following equation (Federer,

1993)

where d ili is the lith density level of crop i, ni is the number of density levels used to

compute intercrop yield means, and r is the number of replications.

This model is illustrated on the following example.

Example 2.2.1 The data used in this example are from an intercropping experiment

on population studies of four densities of simsim (sI - s4) and four densities of finger

millet (11 - j4). The experiment was laid out in split plots in RCBD and replicated

three times. The main interest is to determine which density level combination gives

the maximum yield response. Included in Table 2.2 are the mean yields of simsim. This

experiment was carried out in Uganda by a student at Makerere University. The data

is included in Appendix D. The presented density levels are plant densities per hectare.

Consider fitting a simple regression model to simsim yields in pure stand

Yllih = /301 + /311dih + Ellih (2.18)
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Table 2.2: Mean yields (Kg/ha) of simsim from 3 replicates

Simsim densities

F. millet densities 44,400 (sI) 22,200 (s2) 11,100 (s3) 6,330 (s4) TOTAL

0 (£0) 723.23 488.90 450.00 352.23 2,014.36

10,000 (£1) 305.57 260.00 250.00 215.57 1,031.13

20,000 (f2) 493.33 387.40 316.03 260.00 1,456.76

40,000 (f3) 282.97 238.50 200.00 162.20 883.667

60,000 (f4) 419.97 333.33 253.33 213.33 1219.97

Total 2,225.06 1,708.13 1,469.36 1,203.33 6,605.89
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from which the estimates /:JOl = 503.59 and /:J11 = 0.00974 are obtained. Also ell. =

21008. The fitted mean yields for sole crop are computed using these estimates. These

are

Y~ISI = 503.59 + 0.00974(44400 - 21008) 731.43

Y~ls2 = 503.59 + 0.00974(22200 - 21008) 515.20

Y~ls3 = 503.59 + 0.00974(11100 - 21008) - 407.09

Y~ls4 = 503.59 + 0.00974(6330 - 21008) - 360.63

Using expression 2.15, the values of 11(2)(11,12) (ll = 6330, 11100,22200,44400 and l2 =

0, 10000, 20000, 40000, 60000) are computed. Some of these estimates are as follows

1'1(2) (44400, 0) = 723.23 - 731.43 = -8.20

1'1(2)(44400, 10000) = 305.57 - 731.43 = -425.86

1'1(2)(22200, 0) = 488.90 - 515.20 = -26.30

1'1(2)(6330, 10000) = 215.57 - 360.63 = -145.07

The summarised results of the additive effects are provided in Table 2.3.
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Table 2.3: Additive effects b1(2)(h, 12))

1'1(2)(44400,12) 11(2)(22200,12) 11(2)(11100,12) 11(2)(6330,12)

l2 = 0 -8.20 -26.30 42.91 -8.41

10,000 -425.86 -255.20 -157.09 -145.07

20,000 -238.10 -127.82 -133.97 -100.63

40,000 -448.50 -276.71 -207.09 -198.43

60,000 -311.50 -181.87 -153.76 -147.30
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Variances of these estimates can be computed and comparisons can be easily made.

Results from Table 2.3 suggest that that the pure stand of simsim performs better

than intercrops. Also the intercrop combination (6330, 20000) is the best among all

intercrop combinations since the yield of sole simsim is reduced the least in this combi-

nation. Consider comparing the maximum additive effect of 60,000 finger millet plants

on simsim (i.e. -147.30) with the best intercrop combination (i.e. -100.63). Their vari­

ances and covariance are computed using (2.16) and (2.17) where Var(1'l(2)(6330,20000)) =

Var(1'l(2)(6330,60000)) given by

8120 ( (6330 - 21008)2 1)
-3- 1 + (6330 _ 21008)2 + ... + (44400 _ 21008)2 + 4 = 0.5 x 8120

and their covariance computed similarly is 0.022 x 8120. From these results a calculated

t value (to test the whether there is significant difference in these additive effects) is

0.5237, i.e. from

1'1(2)(6330,60000) - 1'1(2)(6330,20000)
t =----,:.=:::::::::::=====================

Var (1'1(2)(6330,60000) - 1'1(2)(6330,20000))

-;::::---'.--(-_1_00_,_63_-_-_14_7_.3_0)'---_ = 0.52
J(0.5 x 8120 x 2 + 0.022 x 8120)

Then using the t-test with 38 degrees of freedom ((r -l)ni + (r -1)m1m 2 with m/s are

intercropped density levels for crop i), the calculated value is not significant at a = 0.05.

Therefore the two additive effects are not significantly different. Analysis of variance
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procedure in GenStat was also conducted on this data and the These conclusions agree

with those arrived at using ANOVA and treating plant densities as factors (where LSD

of 166.3 was used to test the yield mean difference corresponding to these effects and

concluded, not significant; Table I - Appendix A ). A quadratic effect could also be

fitted instead of only a simple linear function in di in (2.18)

Model IV: Bivariate Analysis:

Analysis can be done on similar observed variables on both crops jointly. Here crops

are used as variates and sole crop responses do not enter the analysis. The commonly

used response vectors are the yields of the two crops. This is referred to as bivariate

analysis of crop yields. In the present case the new response vector can be given as

Y = (Yhi(j)k, Yh(i)jk) where Yhi(j)k is the yield of crop i and Yh(i)jk is the yield of crop

j. A linear combination (canonical variable or discriminant function) of the two yields

are formed from MANOVA (multivariate analysis of variance). Univariate ANOVA can

then be conducted on this variable/function or a graphical presentation of results as

given by Pearce and Gullivar (1979) can be applied. Further details about this method

can be found in Pearce and Gullivar (1979) and Mead and Riley (1981). In the present

study, since the main interest is to study the response pattern and since this method

emphases significance testing, this method will not be pursued any further.

Modelling LER

Federer (1993) suggested analysis on relative LER's, since the distribution of relative

LER approximates more closely the distribution of the yield than that of ordinary

LERs. Assuming a normal bivariate distribution for the yields of the two crops and

taking LERs as random parameters or linear combination of the two yields, modelling

LER is possible. Partial LERs (LA) for crop i can be taken as a function of density and

thus replaces Yhi(j)k in models (2.10) or (2.11).
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Total LER or relative LER can be modelled as a function of total plant population

(T). Thus,

i = 1,2, ... ,n j = 1,2, ... ,p (2.19)

where L ij is the relative LER for the ith total population (T) from the jth spatial

arrangement (8). In the case where crop i has a constant crop density level, a = 1, the

effect of changing densities of crop j on LER can be modelled as a function of these

densities. Thus, for this case relative LER replaces Yhi(j)klil j in (2.12). This model (2.19)

is only limited to intercrop responses as it does not provide for sole crop responses.

Consider for example the data in Example 2.2.1. Using the averages of pure stand

yields as standardising factors, the relative LER values can be computed. The relative

LER's have a similar distribution to that of the two crop yields (Figure 2.1). Figure

2.1 (c) demonstrates that the distribution of relative LER is much closer to that of the

yields (Figure 2.1 (a) and (b)). The advantage of modelling relative LER is that both

crop yields are used for efficient intercrop evaluation.

Modelling economic returns (RE)

The economic returns can be modelled using the above models by simply replacing

Yhi(j)klil j in (2.10) or (2.11) or by replacing Lhij in (2.19) with RE. The assumptions

made above and the limitations cited also apply for RE model. Assuming ratio of the

cost of simsim to finger millet is 1.5:1, RE values were computed. Their distribution like

relative LER is the similar as that of yields (Figure 2.1(d)). Although the histogram

for simsim yields suggests that simsim data do not have an exact normal distribution,

the idea of presenting the histograms is to illustrate how the distribution of LER and

RE approximates closely to that of the crop yields.
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Figure 2.1: Data histograms of simsim and finger millet yjelds, LER and R.E
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General comments

The general matrix form of models I, II and III is given as

y = X{3 + e

25

(2.20)

where y is a vector of observations {3 is the vector of parameters corresponding to plant

populations and blocks X is the design matrix and e is an error vector. In the model­

based analysis block effects can be considered as random effects and this leads to a

model

y=X{3+Zu+e (2.21)

where {3 is the vector corresponding to fixed effects (factors consists of all levels of

interest e.g. plant populations levels) and X is a design matrix, u is a vector of coeffi­

cients corresponding to random effects (factors or factor levels selected at random from

a population e.g. main plot or block effects) with a design matrix Z. This is referred

to as a linear mixed model (Henderson, 1990). Most of the discussions in this study are

based on (2.21).

In this chapter the feasibility of handling intercropping data using the general linear

model has been demonstrated. A clear understanding of the response variable from

intercropping experiments is required in deciding on an appropriate model for analysis.

More importantly, it has been demonstrated that LER and RE in plant population

studies can be analysed in the same way as crop yield.



Chapter 3

Randomised and Systematic

Designs

3.1 Background

The primary objective of most agricultural field experiments is the unbiased and effi­

cient estimation of treatment effects, contrasts, and efficient exploration of the response

pattern. A broad inference space based on the results from such experiments is always

sought. In other words the conclusions arrived at from an experiment in one agricultural

field should apply to apply to other fields as well (Yates, 1939). Three key concepts,

namely replication, blocking and randomisation are fundamental in experimental de­

signs to enable this inference space. Contrary to the concept of randomisation is the

systematic allocation concept in experimental designs. The role of both randomisation

and systematic allocation in intercropping experiments in particular is addressed in the

subsequent sections.

Replication involves application of the same treatment independently to several alike

experimental units (plots) under identical conditions. Replication is necessary for the

26
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estimation of experimental error. Furthermore, it increases precision of treatment esti­

mates. The experimental material, divided into units to which a number of treatments

are to be applied are rarely sufficiently homogeneous. By appropriate blocking, each

block will contain uniform units. By allocating each treatment within uniform blocks,

units can be assumed to have constant mean within the blocks. Blocking controls vari­

ation due to local heterogeneity hence reducing the experimental error. Randomisation

is the process of randomly allocating or assigning treatments to experimental units.

The process is intended to average out systematic effects present in the field due to

extraneous factors that are not under the control of the experimenter at the time of

experiment layout. The concept of randomisation is a single most crucial principle in

the design of experiments and hence merits further discussion.

3.2 Randomisation theory

Randomisation was one of the ideas R.A. Fisher introduced in experimental design and

analysis in the 1920's and 1930's. The main reason for randomisation is to neutralise

spatial or temporal dependence that occurs in field observations. This ensures valid

statistical analysis (i.e. in those methods of analysis where spatial correlation is not

modelled). Prior to the work of Fisher, treatments have been assigned to experimental

units either on a systematic or on a subjective basis, without considering in consequence

the heterogeneity of the field. Such allocations of treatments may lead to systematic

error in the estimation of treatment effects and error variance and may lead to bias

in the results. Bias is introduced when one particular treatment is systematically as­

signed to a better environmental conditions than the others. The comparison of such

a treatment with others does not only reflect the treatment differences but also the

environmental effect. This effect is minimised when treatments are randomly assigned

to the experimental units and any systematic effects present in the field tend to aver-
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age out. Randomisation tends to eliminate the influence of extraneous factors (such as

environmental factors) which are not under the direct control of the experimenter and

also precludes the systematic error in estimation of error variance and treatment effects.

Randomisation neutralises spatial dependence by imposing a uniform/constant cor-

relation structure over all the possible permutations of the treatments on the designs.

As an example, the randomisation theory of complete block design is illustrated.

Consider n experimental units. Since each unit/plot (i) can receive only one treat­

ment, the yield of treatment k from block j is

where

t

Yjk = f-L + f3j + Tk + L O&Eij j = 1, ... ,r, k = 1, ... , t
i=l

Ok. = { 1 if unit i in block j receives treatment k
lJ

o Otherwise

(3.1)

f-L, f3j, and Ti denotes overall mean, block effects and treatment effects, respectively.

When treatments are assigned at random within each block the Ok. are random vari-, lJ

abIes whose joint probability distribution is induced by the randomisation (Kempthorne,

1952). They are characterised by

2.

for (i,j,k) = (i',j', k').

for i =I=- i' and any j, j'

(t(t - 1))-1 for j = j', k =I=- k', i =I=- i'
(3.2)

o otherwise

If the effect of experimental units are taken independently of the treatments, as

Wjk = 2:::=1 0tEij, Grondona and Cressie (1991) outlined the following points
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2.

2 j = j', k = k'.CJWj

COV[Wjk Wj1k/J = -CJ~ (t - It1 j = j', k =I k'
J

0 j =I j'
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(3.3)

where Ew (.) denotes expectation with respect to the probability distribution of the

random process W(·) (smooth small-scale variation), and ERe) is the expectation with

respect to randomisation distribution (Grondona and Cressie, 1991) where also

(3.4)

From (3.3) and (3.4), it is clear that randomisation does not remove the correlation

pattern but by making equally likely the fact that two treatments are adjacent, it

neutralises it to a small negative uniform correlation between treatments within the

same block. The null covariance between blocks can be understood intuitively since

randomisation is performed independently for each block.

Cochran and Cox (1964) have compared randomisation to an insurance policy in

that it is a precaution against disturbances that mayor may not occur, and that may

or may not be serious if they do occur. Randomisation enables the data analysis without

the necessity of modelling the plot effects and makes valid the usual tests of significance.

This is precisely the basis of design based inference.

A major drawback with randomised designs is that, when positive dependence exists,

they are on average less efficient than good systematic designs (Martin, 1996). Watson

(2000) notes that if spatial dependence is likely, the idea would be to use spatial de­

sign and spatial method of analysis. Williams (1952) suggested the use of systematic

designs and data analysed by assuming errors to be correlated in a stationary linear



3.3 Systematic designs 30

autoregressive process. If spatial dependence exists, the ordinary least square estima­

tors will be unbiased but will be less efficient (Watson, 2000). In model-based analysis

such as spatial analysis, the error structure is modelled directly and thus if the model is

well specified it gives more efficient estimators i.e. generalised least square estimators.

However, model-based analysis does not conflict with randomisation Le. sound design

but it is an adjunct to it. Nevertheless, unlike design-based inference, model-based

inference is not bound by randomisation. It is upon this argument that model-based

analysis, specifically spatial analysis of field experiments gained much attention. It is

more plausible as an analytical tool because it is not always easy to know a priori what

sort of variation will exist in the data.

Furthermore, in intercropping experiments the use of randomised block designs such

as the ordinary ReBD for studies where many levels of plant densities are involved would

result in blocks of enormous size. Experiments with large block sizes are not statistically

desirable and are not very practical in terms of resources (Bleasdale, 1967). Very large

sized blocks are associated with large error variances (Mead, 1994), especially in the

tropics where variability is very high and would render a large experiment imprecise.

The management of randomised designs in intercropping population studies is another

factor for consideration. Systematic arrangement of levels of one crop easily facilitates

management compared to randomised block designs.

3.3 Systematic designs

3.3.1 General description

Systematic design in general refers to a design where allocation of treatments to exper­

imental units is selected purposely, and is not an outcome of the valid randomisation

scheme. In this study focus is given to systematic designs where quantitative factor
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levels are arranged systematically, according to Nelder (1962). These designs are specif­

ically for spacing experiments. This kind of systematic design consists of a grid of

points, each representing the position of a plant, and having the property that the area

per plant and/or the rectangularity of the space available to a plant changes in some

consistent fashion over the different parts of the grid. Locally the design is assumed to

be approximately rectangular, so that any plant has immediate neighbours in positions

close to those that would occur in a strictly rectangular array. The grids are defined by

straight lines or arcs of concentric circles, and the contours of equal area and equal rect­

angularity of arrangement are either straight lines or arcs of concentric circles (Nelder,

1962). Of the systematic designs suggested by Nelder (1962), the two that have been

used in intercropping experiments include the 'fan' design (Huxley and Maingu, 1978;

Federer, 1993) and parallel row arrangement (Willey and Rao, 1980). Many other forms

of systematic designs apart from parallel row and fan design are also available. These

include snail-shaped and circular-shaped systematic designs or Okigbo circular designs

(Federer, 1993). In the Figures 3.1(1 - IV) and 3.2(1 - 11), various forms of systematic

designs are given. Different markings represent different crop species layout.

Systematic designs are used in experiments involving a spatial factor (spacing) and

other factors (e.g. nutrients, genotypes, etc) that are applied to the main systematic

plots (Mead, 1994). The systematic treatment of a spatial factor resembles that of a

split-plot factor. The spatial factor is systematically arranged within 'subplots' whereas

the other factors applied to 'whole plots' are randomised and mixed in the usual way

(Mead and Stern, 1980).
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spacing varied.
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(c) & (d); Equal-area contours

Source: Excerpts from Federer 0993, pp 214 - 219).

Figure 3.1: Snail, circular and fan systematic designs
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(b) Arrangement in a rectangular plot.

Source: Excerpt from Federer (1993, pp215)

Figure 3.2: Fan and parallel row systematic designs



3.3 Systematic designs 34

3.3.2 Advantages of systematic designs

Recalling the argmnents in Section 3.2, systematic designs have various advantages over

randomisecl designs. These include efficient use of the available experimental material

through reduction of planted and non-harvested areas. SeconcUy, systematic designs

are not tied to a particular objective. This is important when prior information about

parameters of a response model is little or not defined, a situation common in inter-

cropping studies (Mead, 1979). It enables efficient response surface exploration as the

inclusion of many plant population levels is possible on a small piece of land. In a

systematic design, the levels of a quantitative factor vary systematically within the sub­

plots, with a subsequent level being 10 - 15% higher or lower than the preceding level.

Each particular treatment level is surrounded by treatment levels differing only slightly,

and therefore guard rows are unnecessary (Mead, 1994). Use of systematic designs give

more information about the response surface than would do the conventional ReBD.

Consider, for example, Figure 3.3 obtained using the results in Table 2.3.
l00r---------- _

604020
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Figure 3.3: Plot of additive effects versus F. millet densities for each level of simsim

clensities
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Suppose that due to laying the experiment in a RCBD, the finger millet density

level of 60,000 plants per hectare was left out. Then the maximum for additive effect

on simsim density of 11,100 plants per hectare would have been excluded. Also, the

feature of the lowest additive effect for maize 44,400 plants per hectare would be missed

if finger millet density level 40,000 was was not included but instead 60,000 plants per

hectare included. The use of systematic designs which guarantee the span of all these

density levels would also more likely guarantee spanning the maximum than RCBD.

The counter argument is that if the density levels are selected carefully then the level

that gives the maximum would be included. This argument may not hold most of the

time because the range of densities in which the maximum lies in intercrops is not easily

predictable from monoculture.

3.3.3 Disadvantages of systematic designs

A disadvantage associated with the use of systematic designs is the lack of randomisa­

tion. The assurance that estimates of 'error' may be unbiased, does not hold (Yates,

1939). Other disadvantages advanced by Yates (1939) are that the comparisons of dif­

ferent pairs of treatments are subject to different standard errors. Data from systematic

designs are prone to spatial correlation and thus the conventional analysis of variance

cannot always be used. The precision of treatment comparisons is greater for treat­

ments falling on plots close together than those far apart in space (Steel and Torrie,

1990). In the case of intercropping studies the main interest is not in comparing sub­

plot treatments but rather in the nature of the response pattern for which unbiased

estimates of treatment effects and error variance can be obtained through modelling

the spatial correlation. The error structure that may be associated with systematic

designs is characterised by the correlation of spatial nature. Possible error structures

include spherical and first order autoregressive structures.
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Given a vector of correlated observations y and a model y = X{3 + e where (3 is

a vector of treatment effects and the error term e with covariance matrix V (A) that

depends on A, the unknown spatial correlation parameters. According to Zimmerman

and Harville (1989), and Bailey et al. (1995), if the distribution of the vector y - E(y)

is symmetric, and if generalised least squares (GLS) is performed using the covariance

matrix V(.\) after .\ is obtained using restricted maximum likelihood (REML) of a

symmetric distribution, then estimates of treatment effects are unbiased. In line with

this a simulation process was initiated to investigate the behaviour of the vector y ­

E(y) of data from systematic designs. A simulation of 400 Monte Carlo samples of

50 correlated random realizations assuming no treatment effects was conducted using

PROC IML in SAS. The simulation code is included in Appendix B. These samples

were analysed by modelling the correlation structure. A total of 89% of the samples

produced means and medians that coincided. These results assure us that the estimates

of fixed effects are unbiased. Furthermore, since the estimates of treatment effects are

unbiased and also because the yield response from different main plots or blocks are

independent, the analysis of variance is weakly valid (Bailey et al., 1995).

Another disadvantage is that the pattern of the systematic arrangement coinciding

with a field trend, for example with some field fertility pattern, may lead to biased

estimates of error variance. Nonetheless, the proponents of systematic design argue

that provided the blocking principle of design is maintained, any trend would affect a

systematic design and randomised design to more less to the same degree (Mead and

Riley, 1981). Cox (1951) indicated that for systematic designs, if treatment differences

are completely orthogonal to the trend, then the estimation of error variance of treat­

ment comparisons is estimated normally using least squares. If however, the treatment

differences are not orthogonal to the trend, a valid estimate of the error variance can

still be obtained although the error variance will be high i.e. there is loss in precision.
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Consider, for example t treatments each replicated r times and suppose the fertility

trend can be represented by a pth order polynomial, say

p<t

where {j is an orthogonal polynomial of order i for t equally spaced points and Ql, Q2, ... ,Qp

are coefficients. An example of this polynomial could be a four order polynomial in plots

such as O.2R(i) +O.6R(i) +o.12R[i) +O.3Rfi) where R(i) = the plot position number in the

row - average plot position number. Assuming the value of p is known, the population

mean of the data measurement (Yk) on the ith plot is
p

ak + L Qj~j k = 1,2, ... , t
j=l

where ak depends on only the kth treatment applied to the ith plot. Let Sjk == Lk ~j,

where Lk means the trend is summed over all the plots receiving treatment k. The

treatment differences are completely orthogonal to the trend if Sjk = 0 and Sjk =I­

o if there is no orthogonality. Cox (1951) has shown that in the presence of non-

orthogonality, to estimate ak, normalised orthogonal polynomials ~j that are simple

multiples of ~j are introduced such that

j=j'

j =I- j'
(3.5)

where summation is over all the plots. The trend can then be represented as L~=l Qj~j,

and the sum of squares to be minimized is then

t~ (Y - ak - tai<i)'
The least squares equations according to constraints in (3.5) are

(3.6)

(3.7)
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Cox (1951) showed that these equations can be expressed alternatively as Kb = y* ,

where K is a (t + P)th order square matrix

(
rIt s),
S Ip

{(it, ... , at, ch, ... ,ap }. Matrix It is a tth order unit matrix, S is a t x p matrix whose

(i, j)th element is L:k ~j. Solving these equations for t = 2 for example, yields

(3.8)

From (3.8) it is clear that a valid estimate of variance for comparing treatment effects

is obtainable though there is loss in the efficiency of comparing the treatments by a

factor of {1- ~ L:~=l sJ}. Again, the argument here is that in practice the designs will

be near orthogonality.

In intercropping experiments involving plant populations, systematic designs can

be used and the trend, error or both can be modelled to recover information which

would otherwise be lost because of systematic arrangement of plant densities. Through

modelling of spatial correlation and/or trend, less biased estimates and valid estimates of

treatment effects and error variance are obtainable. Secondly, since the main interest in

these experiments is in the understanding of the response pattern and not distinguishing

individual plant population levels, this can be achieved more efficiently using systematic

designs. In the section that follows, the scenarios in which systematic designs can be

used are enumerated.

3.3.4 Some scenarIOS for use of systematic designs

Three scenarios in which systematic designs can be used in intercropping experiments

are described. These scenarios are denoted as design I, Il and III for ease of reference
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in the subsequent sections. The descriptions are set up parallel to ordinary split plot

in RCBD for elaboration purposes. Scenario I or design I applies when both crops to

be grown are main crops and both have varying densities. Design H is also applicable

when the crop densities of the two crops are varying. Design IH is applicable when one

crop density is fixed and the other crop density is varying.

Scenario 1:

In a split-plot arranged in a RCBD, different density combinations are allocated ran­

domly to subplots while spatial arrangements are randomly made to the whole plots.

In a systematic design, the same procedure is followed except that the levels of crop

densities are arranged systematically in systematic 'subplots'; one crop density arranged

systematically column-wise while the other crop density levels arranged systematically

row-wise i.e. perpendicular to each other. The direction of systematic arrangement

being chosen at random in each 'main plot'. This design will be referred to as design I

(Figure 3.2(i)).

This setting is most applicable when both crops are of main interest. For example,

planting 8 densities of beans to columns and 6 densities of maize to rows. The most

probable analyses could be by evaluating the effect of one crop on another and deter­

mining optimum yield or partial LER and also jointly modelling relative LER or RE.

Among many others, model (2.12) can be applied for this case. The assumption is that

the yield observations are distributed normally.

Scenario II:

In a split-plot in a RCBD, different density levels of crop j are allocated randomly to

subplots while a combination of crop i densities and spatial arrangements, and other

factors are allotted randomly to the whole plots. In a systematic design, the same pro­

cedure is followed except that the levels of crop j densities are arranged systematically

in systematic 'subplots'. This design will be referred to as design H. This layout is
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different from design I in that only density levels of crop j are arranged systematically

unlike design I where both are arranged systematically. Model (2.12) and assumptions

as for scenario I also apply here.

Scenario Ill:

In a split plot design, different levels of j are randomised in sub plots while in systematic

design, they are systematically arranged. Spatial arrangements are allotted to main

plots randomly. This design will be referred to as design Ill. In this setting, crop i is

the main crop with fixed crop density and the interest is to investigate the effect of crop

j densities on its performance i.e. to search for density combination which can maximise

the responses. The probable models could be models (2.10) and (2.12).

For ease of reference, these arrangements will be referred to as R-by-C arrays where

R denotes number ofrows (main plots) while C denotes the number of columns (subplots

to which intercrops are applied) within a row. Model (2.21) applies where Z or X and

e are redefined to accommodate the trend and spatial dependence, respectively.

In classical analysis of randomised blocks, two underlying principles for analysis are

that plot errors are independent and that global trend does not exist i.e. no spatial

correlation. In systematic design, however, due to lack of randomisation, there may

be spatial correlation in the data due to global trend (if the systematic arrangement

falls on field trend) or local trend and extraneous trend (due to experimental materials

and other environmental factors). There is a need then for modelling spatial variability.

Modelling the systematic design data under different conditions of spatial variability

assuming a linear mixed model situation was undertaken. The process and results are

discussed in the following chapter.



Chapter 4

Modelling Systematic Design Data

4.1 Introduction

Models which encompass all the extra sources of variation that occur in the field pos­

sibly due to lack of randomisation within the main plots of the systematic designs are

presented. The model that identifies the three types of variation, namely global trend

(large-scale variation), local trend and also the extraneous trend which may be due to

lack of randomisation is given. Generally, such models accounts for spatial correlation

through modelling global trend directly and modelling local and extraneous variation

through plot errors. Unlike in many previous models where 'trend' has been assumed

to be due to natural variation (Martin, 1990; Cullis and Glesson, 1991; Zimmerman

and Harville, 1991; Brownie et al., 1993; Cressie and Hartfield, 1996), an extension to

account for extraneous sources of variations has been made. Noting that either global

trend, correlated errors or both may exist in the field data, the model formulations in

this chapter are based on knowledge of spatial models and generalized additive models

(GAMs). The subsequent sections give brief theoretical reviews and discussions of these

models. The understanding of this theory is essential in understanding the modelling

of intercropping experiments from systematic designs.

41
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4.1.1 Spatial models

Historical review
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Having realized that in many fields of agricultural experiments, there exists positive, or

more rarely negative correlation between the errors in adjacent plots, Fisher introduced

the concept of randomisation to neutralise it. This induces the assumption that errors

are independent and hence avoids modelling errors. However, recently, there has been

much interest in methods where experimental unit errors are modelled, especially for ex­

periments where randomisation has not managed to reduce error correlations (Bartlett,

1978; Wilkinson et al., 1983; Besag and Kempton, 1986; Williams, 1986; Martin, 1990,

Zimmerman and Harville, 1991; Frensham et al., 1997). This approach began with

the empirical observation that variability in large agricultural field trials was inconsis­

tent with an assumption of independence (Fairfield, 1938). There are two groups of

methods that have been proposed to account for spatial dependence between experi­

mental observations. The first group, built on the theory of time series, includes the

nearest neighbour models that were initiated by the work of Papadakis (1937). The

second group of methods, known as the random field approach, is based on the theory

of regionalised variables.

The nearest neighbour class of models have been widely studied and extended to two

dimensions from the original one-dimension setting (Bartlett, 1978; Cullis and Glesson,

1991) and alternative models suggested (Wilkinson et al., 1983; Besag and Kempton,

1986; Glesson and Cullis, 1987). These models are generally regarded as 'trend + error

models. The trend refers to a correlated random process represented by a low order

autoregressive integrated moving average (ARIMA) process (Cullis and Glesson, 1991).

In these models both trend and error are treated as random with covariance structure

corresponding to that for a separable lattice process.
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The random field approach is based on the theory of regionalised variables, a corner

stone of geostatistics. The concept of a random field is that any response variate

observed at location S (centroid of experimental unit) of experimental area D (D ~ Rd ,

ad-dimensional Euclidean space) and generally d = 2 for field experiments, is a random

variable y(s). Let ~ (i = 1,2, ... ,n) be the connected subsets Le. plots belonging to

D and let Yi denote the observed response on ~ and let y represent n x 1 vector of

these observations. Zimmerman and Harville (1991) have shown that Yl, Y2, ... ,Yn can

be modelled in terms of a random field

Y == {y(s) : sED ~ R2
}

whose members have the representation

y(S) = m(s; (3) + Z(s)

where m(.; (3) is a function of a two dimensional vector (describing the cartesian coordi­

nates of the plot centroids), {3 is a p x 1 vector of unknown parameters and {Z(s) : s E

D} is an unobservable random field such that E(Z(s)) = 0 and cOV(Z(Si), Z(Sj)) =

C(h; (I) ,where h = (Si - Sj), 'Vsi, Sj E D and (I is a vector of unknown parameters. The

function C(h) is called the covariogram or the covariance function of y(s). It is a second

order stationary process Le. depends on Si and Sj only through the displacement vector

Si - Sj commonly referred to as lag h. A model for the observations Yi is obtained from

that for random field Y (Zimmerman and Harville, 1991).

Another main concept in characterising random fields is a semi-variogram denoted ,(.)

and defined by
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2,(-;·) is called the variogram and ,(-;.) is called a semi-variogram. The covariance

functions and the variogram are related through the equation

,(h; (J) = C(O) - C(h; (J)

where C(O) = var[y(s)].

In general, but not always, as h increases, the semi-variogram tends to increase

from initial zero value (Journel and Huijbregts,1978). It may stop increasing beyond

a certain distance and becomes more or less stable around a limit value called a 'sill'

value which is simply the a priori variance of the random variable. At this distance

and beyond the plots are not correlated. In some cases there is a discontinuity of the

variogram at the origin called a 'nugget effect' which is due to measurement errors or

white noise.

The common covariance schemes

The covariance functions that have been suggested in line with this argument are

isotropic and are fitted with or without the nugget effect. Studies on uniformity tri-

als have indicated that the most common isotropic structures of dependence between

observations are the exponential, gaussian and spherical covariance functions (Samra

et al., 1990; Bhatti et al., 1991). The equations of the principal covariance/variogram

functions are presented below.

Spherical

0-
2 h=O

Gaussian

0-
2

( 1 - [~~ + 2
h
a
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]) 0 < h 5, a

o h>a

h=O
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Exponential

Nugget effect

{

a2

,(h; 0) = 0

h=O

h=/=O

h=O

h=/=O
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where 0 is the vector of parameters (a2
, a) and a is the practical range i.e. the distance

at which the model is at 95% of the sill. By definition the autocorrelation p of plot

observations is given by p = exp( -3/a).

Furthermore, in spatial analysis of field experiments, some authors (Martin, 1990;

Cullis and Gleeson, 1991; Zimmerman and Harvile, 1991; Verbyla and Cullis, 1992)

have postulated separability of the covariance functions. The covariance separability

implies that

where P.(-;·) are the correlation/covariance functions, hI = Sil - Sjl and h 2 = Si2 - Sj2

are the lags along both axes describing the plane, i.e. along rows and columns, 0 is a

vector of unknown spatial parameters.

Different from geostatistics setting are the autoregressive error (AR) structures

where autocorrelation between observations decreases as the time lag between them

increases. The use of an AR process for modelling error structures originated from time

series modelling and have been adopted to other fields including agricultural field exper­

iments. The adoption is based on assumption that the strength of correlation between

any two plot observations is greatest for adjacent plots and diminishes as the distance

between the plots increases i.e. decreases exponentially. Gilmour et. al. (1997) demon­

strated the equivalence of AR(1) models and exponential error models, thus adopting

the AR(1) models to model error structures of field experiments. The semi-variogram
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of AR(1) is given as

Estimation

46

The estimation of the variograms can be done using a method of moments; least squares

such as ordinary least squares, generalized or weighted least squares; and maximum

likelihood or restricted maximum likelihood (REML), and Bayessian methods. Re­

stricted/residual maximum likelihood (REML) estimates are said to posses less bias

(Lill et al., 1988; Baird and Mead, 1991). Most of the estimations in this study are

based on REML.

4.1.2 Generalized Additive Models

These belongs to a general class of models called non-parametric regression models. In

nonparametric regression, one is interested in estimating the mean function E(yIX) =

f(X) from a set of observations (Xl, YI), ... , (Xn,Yn) without specifying a fixed func­

tional form. X is a set of explanatory variables. That is the shape of the surface or

curve fit to the data is determined by the data themselves, and not by the dictates of

a predetermined model. Generalized additive models incorporate smoothed functions

of explanatory variables into a regression-like model. Many methods are available for

achieving smoothing and they include kernel-based methods, regression splines, smooth­

ing splines, and wavelet and Fourier series expansions. Smoothing splines in particular

are well known for their flexibility to fit a mean function. A model that contains

both smoothed functions and parametric functions is referred to as a Semi-Parametric

Additive Model (SAM). Recent research on smoothing splines have extended them to

more flexible forms i.e. mixed model forms (Wang and Taylor, 1995; Wang, 1998).

The GAM's can be useful in smoothing out the field trend in the data. In this work,
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smoothing splines will be investigated further in relation to systematic design data. The

assumption is that the trend may be represented as the sum smooth functions of plot

position in the field.

In the next sections, spatial models are adopted to modelling systematic design data.

Also beta-hat models are given in Section 4.4. For simplicity of reference, the spatial

model adoptions given in Section 4.2 will also be referred to as general spatial models.

This is to differentiate them from beta-hat models that incorporates spatial variability

modelling.

4.2 Models

Three sets of models are considered in turn, namely (i) models for correlated error (ii)

models for adjusting for global trend and (iii) combined models for trend and correlated

errors.

4.2.1 Error models

Spatial mixed linear model

General description

Consider the scenario where correlations in observations exist but global field trend

is absent. The interest then is to account for spatial variability in errors. A spatial

linear mixed model is considered here for that purpose. The e vector of subplot errors

in (2.21) consists of sub-vectors {ej} where ej is the vector of plot errors for jth main

plot or block. The sub-vector {ej} can be decomposed into components, ej, which is a

spatially dependent random error vector, and 'r/j, which is an independent white noise

process. Thus, for a single whole plot (j) for design Il and Ill, the response can be

modelled as
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(4.1)

where {3j is a t vector of treatment/fixed effects and X j is its design matrix while Uj is

q x 1 vector ofrandom effects with Zj as its design matrix. It is assumed that (Uj, ej, TJj)

are pairwise independent and the plot variance (white noise process) is O'~j and variance

of spatial random error vector ej is O'JE j (Q,j) where E j is a spatial covariance matrix

which is a function of parameters Q,j (i.e. lag and range). The error variance for the

main plot j can be represented as

(4.2)

The spatial covariance matrix E j can be modelled using covariance models reviewed in

Section 4. 1.1.

For each jth of block of design I the model (4.1) is used to model the responses with

exception that model terms now refer to block j and not whole plot j. For this design it

can also be assumed that ej is a two dimensional process which is separable and hence,

~j = ~cj @ ~rj' Where ~cj and ~rj are correlation matrices for columns and rows

respectively.

Thus for the complete experiment the following gives the complete model (2.21)

y = X{3 + Zu + e+ TJ (4.3)

where {3 is a vector of fixed effects whose subsets are {3j and X is its design matrix

while U has subsets Uj with Z as its design matrix consisting of Z/s. The sub-vectors

TJj and sub-vectors ej constitute TJ and e, respectively. All Z/s are independent since

observations from different main plots or blocks are independent. It is assumed that

(u, e, TJ) are pairwise independent and their joint distribution is Gaussian with mean
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zero and variance-covariance matrix

u Gb) 0 0

e rv N{0, a2
0 I: (a) 0 }

'fJ 0 0 'l/JI
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where, is a vector of variance components related to possible sub-vectors in u and :E is

a spatial covariance matrix which is a function of parameters a (h and a). The matrix

G is a function of a vector of unknown parameters, and mayor may not be completely

general i.e. completely unstructured. The notation Gb) stresses the dependence of G on

,. The matrix 'l/JI is associated with a plot variance, a~, with 'l/J = a~/a2. The marginal

distribution of y is assumed to be normal and is given as

y rv N(X{3, a 2 (ZGZ' + R(</»))

where R(</» = 'B(a)+'l/JI and </> =(a', 'l/J)'. Let H = ZGZ'+R(</» and R = R(</», then R

is error variance which models the structure of common covariance and residual variance

(Littell et al., 1996) and is a block diagonal matrix. Matrix H is a block diagonal matrix

since the observations from different main plots or blocks are assumed uncorrelated. In

all the discussions that are to follow an assumption that H- 1 exists is made. The

covariance models used in geostatistics such as spherical, gaussian and exponential, and

their directional forms are suggested for modelling € (spatial dependence). Also AR(l),

double first order autoregressive model (AR(l)xAR(l)) and first order autoregressive

moving average (ARMA (1, 1)) are suggested. There are more other covariance models

but the interest in the present study is to discuss those that can easily be implemented

in the available commercial statistical software.

The modelling of spatial variability using the above model will result in increased

precision in modelling of data from systematic designs. The advantage of increased

precision through modelling spatial variability has been demonstrated by many authors

(Gilmour et. al., 1997).



4.2 Models

Estimation
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The estimation of fixed effects and random effects in (4.3) are obtained by solving the

mixed model equations (MMEs) derived by Henderson (1984). For the spatial linear

mixed model (4.3), the joint probability density function of y and u is given by

f(y, ul,B, (J, (j2) = f(ylu)f(u)

exp { - ~ [(y - X,B - Zu)'R-I(y - X,B - Zu) + u'G-IU] }

(21r)0.5V{ det(R)} 0.5 {det(G)} 0.5

where v = n - t. Setting the partial derivatives of this function with respect to ,B and

u to zero, the following equations are obtained

[
X'R-IX X'R-IZ ] [/3] [X'R-Iy] (4.4)
Z'R-IX Z'R-IZ + G-I U - Z'R-Iy .

These equations are called mixed model equations. Note that the MMEs are extended

normal equations. Without G-I in the lower right hand sub-matrix, i.e. if G-I is

zero, the random effects are estimated as though they were fixed effects. Also observe

that in the above equations, it is assumed that G is non-singular. In the case where

it is singular, then modification by setting the elements of u corresponding to singular

portion of G equal to zero is effected (Henderson, 1984). The solution to the equations

(4.4) yields the generalized unbiased estimates (GLEs) of fixed effects and Best linear

unbiased predictors (BLUP) of random effects as,

u = GZ'Py

The variance of the estimates of fixed effects is given by

(4.5)

(4.6)

(4.7)
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while the joint variance-covariance matrix of /3 and fI is given by
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(

X'R-1X X'R-IZ )-
C = (J2 (4.8)

Z'R-1X Z'R-1Z + G-1

where (-) denotes a generalised inverse. Note that both variances (4.7) and (4.8) give

the same conclusions about the fixed effects (Robinson, 1991). The estimates of G (G)

and R (R) are used whenever they are unknown. In the present study the estimates of

G and R are estimated using restricted/residual likelihood method (REML). Although,

there are many other methods for estimation, REML estimates are said to possess low

bias (Lill et al., 1988; Baird and Mead, 1991).

The vector of variance components 0 (--y, rjJ) are obtained as REML estimates. Note

that H can also be written as H (0) to stress the dependence of the covariance matrix

on O. Assuming multivariate normal distribution, the REML likelihood can be given

by the expression below (Patterson and Thompson, 1971).

Minimising the above log-likelihood requires iterative methods such as Newton-Raphson

or Fisher scoring method. For numerical and computational efficiency both the first and

second derivatives of eR are obtained. According to McCulloch and Searle (2000) the

expectations of the second derivatives form the information matrix of the covariance

parameters, i.e.

[PeR [PeR

J(B(J2) -E
oB/JBi , oBi o(J2

(4.9)( )'02£R 02£R
oBi o(J2 0(J4

The inverse of this information matrix gives the asymptotic covariance matrix of the

covariance parameter estimates. This provides a basis of testing the fit of different
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covariance models to the data.
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The REML algorithm (e.g. as implemented in Genstat or PROC MIXED in SAS

(SAS Institute, 2001)) first obtains initial estimates of the variance components from

an ordinary least squares fit ignoring the random effects. These estimates are then

used to calculate the estimates of f3 and u by inverting the mixed model equations.

Using /3 and U, the first derivatives of £R and the elements of matrix J(Ba2) are formed.

Then using Fisher scoring (in Genstat) or Ridge stabilised Newton-Raphson (as in

PROC MIXED) method, the estimates of the variance components are updated. This

process is iterated till convergence of variance parameter estimates. Relative Hessian

convergence criterion with a default tolerance number of 1 x 10-8 is used to check for

convergence (SAS Institute Inc., 2001). This criterion makes use of first derivative (say

9k) of the objective or likelihood function at kth iteration and the inverse of the second

derivative/Hessian matrix (H;;l). This criterion is defined by 9~~Ggk ~ 1 X 10-8 where

Ilkl is the value of the objective function.

4.2.2 'Trend models

General description

Although, the blocking principle of experimental design is applied in the systematic

designs, the chances that treatments in a systematic design will fall on a global trend

are higher compared to randomised blocks. The global trend may exist within the main

plot and thus there is a need to account for it to remove biases in treatment effects

and error variance estimates. This is also referred to as trend analysis. Although the

presence of global trend cause a spatial correlation in the observations, the errors can

be assumed to be uncorrelated. The spatial trend is modelled as a function of plot

positions. Consider a rectangular q x p layout of plots, with row position indexed by Ri,

where i = 1, ... , q and column indexed by Cj, where j = 1, ... ,p or more compactly
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denote plot position by vector t for n total number of plots in the experiment. Two

models, namely a spatial mixed model with polynomial mean function in the field trend

and a GAM are presented.

Linear mixed model

General

A linear mixed model is extended to incorporate a trend (1ij), which is assumed to be a

polynomial function of ~ and Cj or can alternatively be represented using orthogonal

polynomials in ~ and Cj . For instance consider the trend modelled as a quadratic

function as

(4.10)

where b/s are regression parameters. As explained by Kirk et al. (1980), fitting a poly­

nomial response surface corresponds to partitioning out of error the systematic compo­

nent of heterogeneity and the estimates of precision are based on the remaining random

component. The trend, 1ij, can be assumed to have fixed and random components. 1ij

terms are included in the design matrix X part of model (2.21) to give;

y = X*f3* + Zu + e (4.11)

where f3* is a vector corresponding to fixed effects including treatment and trend effects

and X* is design matrix including both treatment effects and trend effects, and e is a

vector of residuals that are independent e rv (0, (J;1).

For this model (4.11), the variability among plots within the same block/main plot

is made up of two components, one due to the trend model and one due to plot-to-plot

variation. The entry of the trend in the mixed model induces some extra variability into

the traditional random component, (J2. Thus (J2 can be partitioned into two components

I.e.
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where
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1 r t

MSTrend = - L L (Thl - 'h.)2
rt k l

where Thl is the trend value in lth (i,jth) plot in the hth block or main plot. Thus, the

variance of y is given by

var(y)

ZGZ' +R = V

Estimation

Model (4.11) is a linear mixed model and thus the estimates of f3 and u are obtained

as solutions to the usual mixed model equations. The estimates are

u GZ'Py

The estimates of variance components ((j2, ,) are obtained as REML estimates.

Based on the above trend model, simulations were done to investigate the effect of

excluding modelling the effect of replicates/blocks. It was observed from 600 realizations

that the error variance and standard errors for treatment contrasts from a model with

blocks excluded are twice as those from the model with blocks included (Table V;

Appendix C). The realizations were generated by assuming twelve treatment effects and

four blocks of RCBD. In each simulation a normally distributed variates with varying

means (12 different mean values) and variance of 1 was generated using GenStat rendom

number generator. The 12 different means were randomly chosen in the range of 100

and 130 using GenStat random number generator to represent the 12 treatment effects.

Assuming the 12 treatments were arranged in a single row (i.e. a block consists of a single
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row) a quadratic trend effect (Tij = 1.89 + O.4R(i) - 0.18R(i») in rows was superimposed

on the generated variates where R(i) is the plot position number - average position

number of plots. The code for simulation is included in Appendix B. The choice was

therefore to include these effects in the model.

Semi-parametric mixed model

General description

In this approach, the trend is represented using the 'data-driven' smoothing method

of Generalized additive models. The generalized additive models (GAM's) were intro­

duced by Hastie and Tibshirani (1990) and assume that the trend may be represented

as the sum of smooth functions, without specifying a fixed functional form. This is in

contrast with modelling trend using a polynomial mean function where a polynomial

has to be specified. Suppose data Yi is observed on plot position ti . Then according to

Wahba (2000), smoothing is a penalized least squares problem in which the function f

is chosen as a solution to the penalized objective function

where n = rt for t treatments and r replicates. Equivalently in matrix form as

arg min {..!.(y - f)'(y - f) + oXIIPdW}
fE7-f. n

(4.12)

(4.13)

where f E H =HoEB HI with Ho a finite dimensional space containing basis functions

that are not to be penalized and HI is a Sobolev Hilbert space of functions with m-I

continuous derivatives UoI
[jm(t)j2). Thus, PI is the orthogonal projection of f onto

HI in H i.e. a penalty to the departure of f from the space Ho, i.e. a penalty to the

roughness of f. The parameter oX determines the smoothness and goodness of fit of the

function f. If m = 2 then a solution to this minimisation problem is a natural cubic

smoothing spline.
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In the present study the interest is in smoothing the possible field trend introduced

in the observations due to systematic arrangement of treatments. This is done by using

plot positions as variates. That is the model to be used is of the form

y = X f3 + h + ... + Iq + e (4.14)

where f3 is a vector of regression coefficients and X is the design matrix, li (i =

1,2, ... ,q) is the smooth term which is a function of covariate t i and e is a vector

of independent errors with common variance (J2. This is called the semi-parametric

additive model (SAM). The spline function I represents the sum of the smooth terms

Ns. Following Green (1987), the spline function I is of the form

where N s = V(V/V)-l and V is an n x r(t - 2) matrix satisfying V'X s = 0 and X s is

a block diagonal matrix with each block having the entries [1, xs ] where X s is a t x 1

vector of distinct t/s and 1 is a t x 1 vector of ones. Using Verbyla et. al. (1999)

definitions, V is a block diagonal matrix with each ith block (i = 1, ... ,r) being a

t x (t - 2) banded matrix. This matrix is also known as the difference matrix that

defines smoothing procedure the elements of which are

1 0 0 0

-2 1 0 0

1 -2 1 0

o 1 -2 1

o

o

o

o
(4.15)

Thus model (4.14) becomes

o o o 0 1

(4.16)
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where /3 is a vector of fixed effects (treatments and block effects) and X its design matrix

while the trend is represented by Xs/3s+Ns u s . In the present case, Xs/3 s represents a

fixed linear trend along the main plot or block and Nsus represents random non-linear

trends, with Us as a set of correlated random normal deviates with mean 0 and variance­

covariance of (J;As or (J2 / AAs . The residual e is an iid variable with variance (J2. The

diagonal blocks of matrix As associated with each Vi defined above are t x (t - 2)

matrices given by

4 1 0 0 0

1 4 1 0 0

0 1 4 1 0
Asi = (4.17)

0 0 1 4 0

o 0 0 0 4

In this set up equation (4.13) then becomes

arg rft}.fi {~(y - X/3 - f)'(y - X/3 - f) + AllPdW}

Estimation

(4.18)

Denote variance components () ((J2, (J;) and T = 1/A as parameters to be estimated.

Then by treating the above semi-parametric model (4.16) as a mixed-effects model, ()

and T are obtained as REML estimates. In this case, T is treated as an extra variance

component in a linear mixed model. The parameter T is equal to the ratio (J; / (J2 (Wang,

1998; Verbyla et al., 1999). Thus the variance components ((J2, (J;, A) are obtained by

minimising the residual log likelihood.

(4.19)
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The minimisation is an iterative process that makes use of first and second derivatives

The values of A vary from 0 (interpolation) to 00 (linear trend). Separate values of A

can be fitted for different blocks/main plots as the strength/nature of global trend may

be different in different blocks/main plots. A log likelihood ratio test (e = -2(eo - e1))

can be used to test for equality of different A'S. Where eo and e1 are values of the residual

log likelihood under Ho of equality of A'S and HI of at least one of the A'S different.

However, in this study common A would be assumed known.

The estimate of treatment effects adjusted for the trend obtained by solving the

mixed model equations is

!3 = (X'(I - M)X)-IX'(I - M)y = Ay. (4.20)

M is called a centered hat-matrix or smoothing matrix as defined by Durban et al.

(1997) and it is calculated as M n x n block diagonal matrix with block diagonal entries

Mi = Mi(A) = (I + AViA.;t~7~rl - 11'It. It is a hat-matrix of the smoothing terms

(additive part) of the model. The estimate of the trend is M(y - x(3) and the variance

of treatment estimates is Var(!3) = AA'(J2 . The estimate of (J2 above is identical to

conventional estimator &2 = L~1 (Yi - f(ti)) 2 /tr(M) for an additive model (Green

and Silverman, 1994). Thus, tr(M) also measures smoothness of f. It should be noted

that A and tr(M) are inversely related.
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4.2.3 Joint models for trend and error
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It is very possible that both strong field trend and correlation in errors may exist in

data observed from a systematic design. It has been shown that modelling both present

is more efficient than modelling only one of them (Brown and Gumpertz, 1995).

Although, it has been shown that fitting a covariance function 'soaks up' most

spatial heterogeneity (Zimmerman and Harville, 1991), modelling both is still most

effective (Brownie et al., 1993). Modelling error terms using covariance function and

trend terms using a cubic smoothing spline or a polynomial mean function would be

effective. A spatial linear mixed model with trend accounted for using a polynomial

mean function and a spatial semi-parametric mixed model where the trend is modelled

using a cubic smoothing spline are suggested for modelling systematic design data. A

brief introduction to these models is give below. The estimation in these models is

generalised from those models in Section 3.5.2.

Spatial linear mixed model with trend incorporated

This approach models large-scale spatial trends through fixed effect polynomial terms

and allows for small scale and extraneous variation through correlation between neigh­

bouring plots. This is correlated error modification of the trend analysis. That is

y = X*f3* + Zu + S + TJ (4.21)

This model is basically like model (4.11) except that e is decomposed into S+ TJ to allow

for the modelling of spatial variability. However, if block effects are assumed random

then model (4.21) can be rewritten as

y = Xf3 + Zu + S + TJ (4.22)
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All the estimation and prediction procedures for the above models are as for those given

for model (4.11), with R replaced by

R = (T2 (~(a) + 'l/JI)

Spatial semi-parametric mixed model

Extensions to model (4.16) to allow for correlation in e can be defined by decomposing

e rv N (0, (T2 R) and the extended model is given as

(4.23)

The local trend (spatial correlation in errors) is modelled through "l and white noise is

modelled through e with common variance (T2. In this setting, the marginal distribution

of y is

yrvN(X!3+Xs!3s, (T2H(O))

where H(O) = R + (T2(>\-INsAsND and R = R(q;) = ~(a) + 'l/JI, q; = (0', 'l/J)'

The estimation of the vector of smoothing parameters A and other components of

variance is achieved through minimising the residual log likelihood in (4.19) with V

replaced by H(O) and Mi = (I-I + XV'"iA';/V'ir1R-1.

The preceding discussions illustrate how data from systematic designs can be han­

dled using linear mixed model form of general linear models. The ease of modelling

spatial variability i.e. global trend and spatial error structure is shown by use of spatial

linear mixed models. In brief, analysis of data with spatial variability such as systematic

design data is easily implementable.
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4.2.4 Inference on linear models

Model selection
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All the models considered in this chapter are linear models. In fact all of them are

linear mixed models. This means that the usual available tools can be used to test for

adequacy of these models and testing hypotheses or setting confidence intervals (Cls).

The basic idea of model selection is that all models fitted have fixed effects which

may be fitted with or without the random effect terms or with different covariance

models. The interest is in selecting a model which provides the 'best' estimation of

fixed effects. The following tools are used to check for adequacy.

1. Residual log likelihood ratio test (LRT) or deviance. Consider the parameter

vector 'ljJ ={(},,B} that takes on its values in the parameter saturated/maximal

set \[1 (where all possible parameters as there are data points are included in

the model). Let \[10 be the subset of \[1 corresponding to the parameter set of a

restricted model. Then the LRT for Ho :'ljJ E \[10 is defined as -2lnA = -2(f('ljJ E

2. Akaike Information Criterion (AIC) and Schwarz's Bayesian Criterion (BIC). The

larger the values of the these two, the better the model. They are computed for

m covariance parameters as

m
AIG = f('l/J; y) - m and BIG = f('l/J; y) - -In(n - p)

2

where m is the number of covariance parameters and p is the number of fixed

parameters. In the present setup, the maximal value of p is 7 while that of m is

4. The term f('l/J; y) refers to the residualloglikelihood of a model fitted with only

fixed terms. The AIC and BIC measures the penalization due to incorporating a

covariance model with m parameters.
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3. Residual Mean Square Error of covariance parameter estimates and use of residual

plots (such as VPLOT in Genstat) and variograms plots provide an idea about

the adequacy of the model.

4. Asymptotic covariance matrix of estimates. The asymptotic covariance matrix

of covariance parameter estimates is also helpful in choosing the most appropri­

ate covariance model. This matrix is approximated from the Fisher Information

matrix. A rule of good sense is to choose the adjusted covariance model (sample

variogram) with the smallest covariances or standard errors. This criterion is used

along with other criteria.

Note that, during model selection, the inclusion of extra fixed term can be monitored

by changes in deviance or LRT.

Model inference

The estimates of fixed effects fJ are asymptotically normally distributed. Since each fJ

has its associated variance, the approximate confidence intervals can be constructed for

each individual parameter. The t-test can be used to test for significance. However,

some of these models have more than one source of variation and this implies that the

ratio of effect estimates to their standard errors does not follow a t-distribution (Levin,

1999) since these variances are sums of various stratum variances. Thus, Satterthwaite's

formula is used to calculate approximate degrees of freedom for t-tests.

To make inferences about treatments, observe that the multivariate normal distri­

bution assumption on y implies fJ(()) f'o.J N({3, (X'H(())-lX)-l) on which inference can

be based. In practice the covariance parameters () are not known and is replaced by its

estimate. Consider an estimable linear combinations or contrasts of the form L{3, and

test the hypothesis that Ho: L{3 = 0 against the general alternative. Then two available
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test are the Wald statistic (T) and approximate F-test (Littel et al., 1996)given by
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T = ~'L'(L(X'H(Ot1X)-lL'r1L~

~'L' (L(X'H(O)-l X)-l L') -1L~
F = (4.24)

rank(L)

F is approximately distributed as Fisher's F distribution with rank(L) as numerator

degrees of freedom and residual degrees of freedom (v) as denominator i.e F[rank(L),v,AL}

where AL is a non-centrality parameter. Under Ho, T is distributed as X;ank(L)' In

SAS PROC MIXED, T is given as a Type III statistic. The use of ESTIMATE and

CONTRAST statements provide a way of testing different hypotheses. Rank(L) is

usually approximated using Satterthwaite or Containment method. However, for small

samples the asymptotic distribution of the estimates may be inadequate. Kenward

and Roger (1997) suggested the use of a modified Wald statistic together with an F

approximation for the sampling distribution. This statistic uses an adjusted estimator

of covariance matrix of treatments and an adjusted residual degrees of freedom. This

procedure is referred to as Kenward-Roger method.

4.3 Validation of suggested models

Various methods exist for simulating data to be used in model validation. In this study

the Monte Carlo simulations technique was used. The method employed Cholesky

decomposition of the covariance structure (Cressie, 1991). To represent what possibly

would happen in the field, seven covariance functions were used. This is because it is not

possible to know the exact form of spatial variability until the data analysis stage, thus

the need to evaluate many covariance models. These included exponential, Gaussian,

spherical, AR(I), AR(I)x AR(I) and ARMA (1,1). The values of a practical range

parameter a (definition of a is given in Section 4.1.1) used included 2, 4, 6 and 8 (chosen

to cover a wide range of correlation). Three factors i.e. plant spatial arrangement (with
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1 to 3 levels), plant density of crop A (with 1 to 4 levels) and plant density of crop B

(with 6 to 12 levels) were assumed in the simulations.

The simulations were based on the designs I, Il and III discussed in Section 3.3 and

assumed no treatment effect. The level of spatial heterogeneity used was chosen to be

a representative of results from Brownie and Gumpertz (1997) and that generated from

two field data sets from intercropping experiments from Uganda. Data were simulated

for each of the mentioned covariance functions with and with out the global trend (regu­

lar or irregular) included and in some simulations only the presence of the global trend

is assumed. For each setting 600 Monte Carlo samples were simulated. Simulations

were done in SAS (other statistical softwares used were Gauss and SPLUS) and model

fitting was done using PROC MIXED and PROC GAM in SAS, (some implementations

were done using lme and sIr in SPLUS, and REML and GAM in Genstat procedures).

The computer simulations are used mainly because they offer a valuable and feasible al­

ternative to empirical modelling and in particular they enable the exploitation of many

spatial models and trends.

Simulation procedure

Suppose the levels of spatial arrangements are denoted as p, levels of crop A densities

are denoted as a and those of crop B as b. This gives a total of abp treatments. Consider

simulating observations for yields of crop A or B.

1. Let the vector (fn
) of dimension abp x 1 represent the variates for nth simulation

and let mijk(k = 1, ... ,p; i = 1, ... , a; j = 1, ... , b) represent random mean value

for (ijk)th treatment randomly chosen from a given range of numbers for each

nth simulation. Values of fijk are generated as normally distributed deviates with

means mijk and variance of 1 for each nth simulation. The vector fn of fijk

represents the effect of treatments on crop yields.
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2. Seven covariance matrices (H), namely exponential, Gaussian, spherical, AR(l),

AR(l) x AR(l) and ARMA (1,1) were generated in SAS using a program writ­

ten with SAS MACRO and PROC IML. The different global trends were also

generated using a program written in SAS IML.

3. The vector x of abp x 1 distributed variates with mean zero and variance 1 was

generated for the purpose of establishing error structure. The error vector e was

formed by e = Lx (where L is the lower triangular Cholesky factor of H). The

general equation used in simulations is y = fn + e* where y is the formed yield

data vector and e* is taken to be correlated or uncorrelated error vector depending

of whether e or x is chosen for simulations.

4. The design matrix for the designs I, Il and III were generated from GenStat

statistical software, each design containing abp plots. For each design, the design

matrix was combined with the yield data formed in step 3 i.e. yields were allocated

to the plots. This constituted an input file for the case of design II and Ill. For

design I step 5 was implemented.

5. Notice that the data generated in step 4 above when viewed under design I

give only spatial variability along rows. To incorporate spatial variability along

columns the column factor levels in each replicate are sorted in ascending order

and an appropriate e* vector added.

6. For the realizations that involved inclusion of the global trend, the values of trend

were generated and added to the data to form a complete input data file. A

vector t of quadratic global trend simulated using different functions depending

on number of plots per row was used in the simulations. For example using

results from the Uganda data, for six plots in a row t was generated by t =

1.85 +O.3R(i) - O.15R[i)· Where R(i) = subplot position number - average position
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number of subplots.
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The simulation procedures and GenStat and SAS codes are included in appendix E.

Simulation Results

From the construction point of view, design III contains some properties similar to

design II in reference to spatial variability. In other words the results pertaining to

design II concerning modelling spatial variability also applies to design Ill. Therefore,

only results for design II are presented here since these results were the same as those

from design Ill. The analysis of simulated data was done using PROC GAM and PROC

MIXED in SAS, and REML in GenStat. Except for the spherical model where ARMA(l,

1) model was also fitted to the data simulated using spherical model, models were

fitted to the data which was simulated using them. Simulation results of the spherical

covariance model are given in Table 4.1 and Table 4.2. In Table 4.1 the trend was

fitted using a polynomial in plots while in Table 4.2 the trend was fitted using the cubic

smoothing splines. Results for Gaussian and exponential covariances are given in Tables

4.3 and 4.4 respectively. Results for AR and ARMA models are presented in Table 4.5.

Discussion of simulation Results

The mean are the means of the given parameters from 600 Monte Carlo simulations/samples.

The following observations are based on results given in Tables 4.1 to 4.4.

1. Except for processes characterised by a range parameter larger than half the length

of the main plot, the covariance parameters are well estimated. The biases in the

parameters are less than 10%. The standard deviations (SD) for the parameter

estimates are generally low.

2. Smoothing splines seem to have performed better than polynomial mean functions
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Table 4.1: REML Covariance parameters for spherical errors: trend model using poly­

nomial mean function

Theoretical values Estimated values

Array Parameter Mean (no trend) Mean (+ trend)

0-
2 a 0-2 a SD(a) 0-2 a SD(a)

4 by 6 1 2 0.96 2.01 0.154 0.99 2.31 0.194

4 by 6 1 4 0.98 4.18 0.239 1.01 3.93 0.214

4 by 6 1 6 0.92 5.96 0.425 0.98 6.24 0.315

4 by 8 1 2 1.01 2.08 0.530 1.01 1.96 0.630

4 by 8 1 4 0.88 3.95 0.380 1.00 3.96 0.231

4 by 8 1 6 0.96 6.01 0.231 0.92 5.98 0.411

8 by 12 1 4 0.92 4.30 0.330 0.99 3.89 0.222

8 by 12 1 6 0.98 5.88 0.322 1.01 5.97 0.351

8 by 12 1 8 0.98 8.09 0.04 0.89 7.69 0.248

8 by 8 1 4 0.95 4.20 0.950 0.97 3.68 0.835

8 by 8 1 6 1.02 5.82 0.450 1.10 6.01 0.933

8 by 8 1 8 0.98 8.12 0.431 0.98 7.97 0.881

in accounting for the trend due to their flexibility. Although this difference is not

apparent, in practice where there is no knowledge about the nature of the trend,

smoothing splines are likely to fit the trend more efficiently than the polynomial

mean function. In some cases where data were simulated assuming a quadratic

trend, smoothing splines fitted a linear spline in the plots, the reason being that

accounting for spatial variation through correlation structure tend to 'soak up'

spatial heterogeneity (Brownie and Gumpertz, 1997) due to a trend reducing to
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Table 4.2: REML Covariance parameters for spherical errors: Using smoothing splines

Theoretical values Estimated values

Array Parameter Mean (no trend) Mean (+ trend)

(J2 a 0-2 a SD(a) 0-2 a SD(a)

4 by 6 1 2 0.96 2.01 0.502 0.99 2.31 0.379

4 by 6 1 4 0.98 4.16 0.314 1.00 3.86 0.169

4 by 6 1 6 1.22 5.36 0.502 1.08 5.69 0.241

4 by 8 1 2 1.01 2.08 0.861 1.01 1.98 0.308

4 by 8 1 4 0.88 3.95 0.563 1.01 3.86 0.397

4 by 8 1 6 0.96 6.01 1.010 0.97 5.98 0.103

8 by 12 1 4 0.92 4.30 0.225 0.98 3.89 0.614

8 by 12 1 6 0.98 5.88 0.981 1.01 5.97 0.262

8 by 12 1 8 0.98 8.02 1.010 0.87 7.88 0.414

8 by 8* 1 4 0.95 4.20 0.454 0.97 3.78 0.462

8 by 8* 1 6 1.02 5.82 0.877 1.10 6.01 0.814

8 by 8* 1 8 0.98 8.32 1.030 0.98 8.08 0.656

a linear one in these cases. This was also true for a polynomial mean function

whereby a quadratic was no longer significant and thus adjustment to avoid over

fitting was unavoidable.

3. Except in a few instances, the estimate of (J2 was generally higher in data with

a trend compared to that without a trend. Fitting only covariance structure to

data simulated with only trend (i.e. no incorporation of any covariance structure)

was found to account for the trend perfectly well and there was no need for fitting

a polynomial mean function or a smoothing spline. However, fitting a polynomial



4.3 Validation of suggested models

Table 4.3: REML Covariance parameters for exponential errors

Theoretical values Estimated values

Array Parameter Mean (no trend) Mean (+ trend)

(72 a 0-2 a SD(a) 0-2 a SD(a)

4 by 6 1 2 0.93 2.03 0.23 1.01 2.16 0.247

4 by 6 1 4 0.99 3.38 0.533 0.96 4.23 0.554

4 by 6 1 6 0.98 5.63 0.652 1.01 5.46 0.781

4 by 8 1 2 1.11 2.08 0.451 1.20 1.99 0.469

4 by 8 1 4 0.99 3.79 0.597 0.95 3.84 0.694

4 by 8 1 6 1.12 5.32 0.357 1.01 5.61 0.421

8 by 12 1 4 0.98 3.74 0.540 0.90 3.81 0.615

8 by 12 1 6 0.89 5.60 0.381 0.89 5.61 0.564

8 by 8* 1 4 0.95 3.74 0.816 0.89 3.88 0.665

8 by 8* 1 6 0.91 6.38 1.52 0.96 5.91 1.56
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mean function or a smoothing spline alone seem to reduce the variance of contrasts

i.e. it accounts for the trend better than covariance structure modelling.

General comments

The biases in estimating the value of p in AR(I) were less than 5% for both p =

0.3 and p = 0.6, while for AR(I) xAR(I) in some cases the biases were more than 10%.

Generally, the same conclusions as those given above apply to AR(I) structure too. This

confirms the theoretical basis of the models. Generally, convergence problems were less

than 5%. The exponential error modelling agrees with AR(I) error modelling and either

can be used to model the other. This is exactly the relation that was established by

Gilmour et. al. (1997).
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Table 4.4: REML Covariance parameters for Gaussian errors

Theoretical values Estimated values

Array Parameter Mean (no trend) Mean (+ trend)

(J2 a a-2 a SD(a) a-2 a SD(a)

4 by 6 1 2 0.98 2.04 0.321 0.89 2.40 0.641

4 by 6 1 4 0.90 3.45 0.337 0.78 3.37 0.278

4 by 6 1 6 1.24 6.41 0.632 1.26 6.36 0.781

4 by 8 1 2 0.92 1.84 0.864 1.06 1.83 0.642

4 by 8 1 4 0.97 3.32 0.189 1.01 3.38 0.144

4 by 8 1 6 0.94 6.50 0.860 0.98 6.53 1.431

8 by 12 1 4 0.91 3.74 0.447 0.97 3.74 0.421

8 by 12 1 6 0.86 5.64 0.911 1.04 6.02 1.34

8 by 8 1 4 0.95 4.20 0.454 0.97 3.68 0.462

8 by 8 1 6 0.89 5.66 1.34 1.06 5.89 1.32
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It was observed that the variances of contrast or mean treatment differences were

not significantly different if data simulated with a spherical model are fitted using

ARMA(l,l) model in SAS PROC MIXED. However, no further investigation into the

practical equivalence of ARMA(l,l) and spherical model was pursued in this work.

It was observed that, when a polynomial mean function is used, p or a is estimated

accurately especially when the correct trend model or higher order trend model is fitted.

However, if the true trend is under-fitted p or a is overestimated. There is thus some

'soaking up' of the spatial trend by the modelling of the error structure.

The above results about the validation of the suggested models for modelling system­

atic design data are reassuring. These methods are reliable and efficient in identifying
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Table 4.5: REML Covariance parameters for AR and ARMA errors

Theoretical values Estimated values

Array Parameter Mean (no trend) Mean (+ trend)

0-2 pi, &2 P/1 SDn &2 P/1 SDn

AR(I) 1 P = 0.6 0.987 0.597 0.103 1.010 0.588 0.111

1 P = 0.3 0.895 0.301 0.253 0.941 0.369 0.203

AR(I) 1 P = 0.6 0.946 0.521 0.301 0.091 0.507 0.142

x p= 0.6 0.498 0.231 0.429 0.530

AR(I) 1 P = 0.3 0.753 0.273 0.040 1.303 0.259 0.154

P = 0.3 0.238 0.054 0.331 0.112

ARMA 1 P = 0.6 0.879 0.594 0.201 0.990 0.542 0.142

(1,1) ,= 0.6 0.643 0.231 0.629 0.330

1 P = 0.3 1.030 0.333 0.120 1.303 0.340 0.114

,= 0.8 0.728 0.254 0.691 0.212
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and modelling spatial variability. It is an indication that data from systematic designs

that is assumed to contain spatial variability can easily be analysed and that the ex­

perimenter can reliably arrive at the same conclusions one would do if data was from a

RCBD (without spatial variability). The importance of modelling trend and correlated

errors is clearly underscored.
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4.4 Beta-hat models

4.4.1 Introduction
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Up to this point, discussion has centered around the assumption that the models are

to be fitted to the whole experimental data. However these same methodologies can be

applied to only subsets of data. For design II and design III in particular, these models

can be fitted to each main plot by taking subplot plant populations as covariates. For

design I, a single crop at a time can be analyzed. For example, to analyze the intercrop-­

ping effect of crop 2 on crop 1, the the plant densities of crop 2 are used as covariates

and models are fitted for each treatment combination of the spatial arrangement and

the plant populations of crop 1. To evaluate the effect of crop 1 on crop 2, the reverse is

taken. Since each main plot treatment/treatment combination is replicated, the fitted

response curves/surfaces of different main plot treatments are then compared by use

of parameter estimates. This is what is referred to as a beta-hat model (Milliken and

Johnson, 2002). In beta-hat modelling two stage data analysis is done. The first stage

involves obtaining of the regression parameters (beta's) and stage two involves mod­

elling of the beta's. The idea of a beta-hat model is that in an experiment where there

are more than one combinations of qualitative factors and many levels of a quantitative

factor, observations from each combination of qualitative factors can be regressed on the

levels of a quantitative factor independently. The different combinations of qualitative

factors are then compared through modelling their respective regression parameters.

In the sections that follow, two beta-hat models termed model I and model II are

introduced. Beta-hat model I allows further investigation of the effect of main plot treat­

ments on the beta's (regression coefficients). Beta-hat model II is mainly for response

surface exploration under different treatment combinations (e.g. main plot treatment

combinations). This model helps in revealing where the maximum response occurs for
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each treatment combination. The two models are complementary. The choice to use

beta-hat models for modelling intercropping plant population experiments is due to

their advantage in enabling efficient exploration of the response curve/surface. To mo­

tivate the discussion consider three factors a density levels of crop 1, b density levels of

crop 2 and p levels of spatial arrangements.

4.4.2 Beta-hat Model I

Consider, for example, the effect of plant populations of crop 2 on crop 1 at a given

level of spatial arrangement. The idea under beta-hat model I setting is to fit sim­

ple linear regression models to the subsets of data. Each subset of data Yikh (i =

0, ... ,a, k = 0, ... ,p; h = 1, 2, ... ,r) consisting of observations from ith density level

of crop 1 and kth spatial arrangement in hth replicate and use b levels of crop 2 as

variates/explanatory variables. Thus

(4.25)

where j = 0, ... , band X j are the levels of crop 2 that constitute an explanatory

variate. Yikh is b x 1 vector of observations for the (i, k, h)th combination at all levels

of crop 2/explanatory variable. This also can be expressed in the simple form

1 Xl Cilkh

1 X 2
[ ~ikh ]

Ci2kh
Yikh =

(3ikh +
(4.26)

1 X b Cibkh

With this setting therefore, a beta-hat model can be used to investigate the effect of

spatial arrangement and crop 1 densities on the slope or additive effects, (3ikh, associated

with factor combination (i, k, h), and the intercept /-likh using ANOVA model. The beta­

hat model for the slopes can be expressed as

(4.27)
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where J-l, Tk, Pi, and, (Tp)ik denote overall mean, effect of spatial arrangement, effect

of crop 1 density and their interactions respectively and c:ikh is an error term. In the

analysis of variance each parameter /3ikh is weighted using the square of its associated

standard error. Let the inverse of this squared standard error be denoted as w where

Var(/3ikh) = ()"2Wikh . Thus Eikh rv iid(O, ()"2Wikh ). A similar formulation can be con­

structed for the intercepts.

Estimation and test of hypotheses

Assuming treatment combinations are independent and assuming (3ikh are normally

distributed, a two-way analysis of variance can be carried out using weighted least

squares. The assumption of independence holds since within each main plot, treatments

are allocated independently i.e. the choice of directions of systematic arrangement are

independent. Since each parameter /3ikh is weighted using the square of its associated

standard error model (4.27) can also be regarded as a weighted linear model. Since, the

weights are inversely related to the variance, o-;kh' they reflect the information contained

in /3ikh' The smaller the variance O-;kh' the more the information /3ikh provides about the

expected value of the slope. Denote a matrix W as a diagonal matrix of weights, i.e.

W=

o

°

and express (4.27) in matrix form as,

(3 = FO + E: (4.28)

where F is a design matrix for 0 the vector of J-l, Tk, Pi and (TP )ik effects and E: is the

error vector with variance-covariance matrix ()"2W. Consider a positive definite matrix
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K such that K'K = W which leads to rewriting (4.28) as

where E(K- 1€)= 0 and

75

(4.29)

K-1Var(€)K-1

K-1(j2WK- 1

(j2K- 1KKK-1

(j2 I

Thus this set up satisfies the requirements of a linear model and ordinary least squares

method (OL8) can be applied. The normal equations for weighted least squares or

maximum likelihood estimation are given as

(F'K-1K-1F)O = F'K-1K-1{3

or (F'WF)O=F'W{3

The estimators are obtained as;

O=(F'WF)-lF'W{3 and Var(O)= (F'WF)-l (4.30)

Although in the above set up matrix F'WF is assumed to be of full, it is also

possible in some situation that matrix F'WF is not of full rank. In such a situation

only an estimable linear function of (), say L() is obtained where L' = a'F and rank(L)~

rank(()). The normal equations would be given as

where z is arbitrary and 8 denotes F'WF matrix while (91) denotes the generalized

inverse of S. These equations can then be solved using constraints.
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An F-test, that tests the hypothesis of common intercept and parallelism in slopes

is easily implemented. In this way, the main effects of spatial arrangements, crop 1

densities and their interactions can be compared. A significant F-test associated with

Tk or Pi means different spatial arrangements or plant densities perform differently in

presence of crop 2 plant densities. Of much interest, however, is the interaction of spa­

tial arrangements and plant densities, (Tp)ik, that measures performance of different

combinations of spatial arrangements and plant densities. The difference between re-

sponse means from different combinations, (Tp)ik, are conducted pairwise using t-tests,

least significant differences, etc. Optimum values/responses from different treatment

combinations can be compared using t-test.

Incorporating spatial variability

Global trend

To account for possible trend in the field an appropriate function !(tih), which may

be a polynomial mean function or a cubic smoothing spline in plot positions, tih, is

included. That is, (4.26) becomes,

(4.31)

Consider modelling tih using a polynomial mean function. Then for model (4.31),

the variance of Yikh will be made up of two components i.e.

The variance of (Jikh, alkh , is thus given by
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In the case of fitting a smoothing spline for tih i.e. a semi-parametric model, the

estimates for (3i and A are obtained by minimizing a penalized quasi-likelihood function

(4.32)

where f3i is a vector of f-likh and (3ikh and Yi denotes Yikh. Both PROC GAM in SAS and

gam in Splus fits this model and both f-likh and (3ikh are obtained with their respective

standard errors. The selection of A is done using Generalized cross validation (GCV)

and the deviance is provided testing for adequacy. The fitting of only the parametric

part of this model using GAM give the same results as those obtained using PROC

GLM a standard linear regression procedure in SAS.

Correlated errors

To incorporate the spatial correlation in errors, the proposed error structure is

AR(1), where

2 '_'1

COV(Cijkh, Cij1kh) = (J" pJ J for j i= j'

Let ei be a vector of Cikh then (4.25) becomes

(4.33)

where Ci rv N(O, (J"2R(O)), and R(O) is the variance covariance matrix that depends on

spatial parameters 0 (p, h). The estimates of 0 are obtained using REML by maximising

the residual likelihood

where R(O) is denoted by V. The estimates of f3 i are obtained using GLS as follows

0-2 = (Yi - X f3 i )'R(0) -1 (Yi - X f3 i )

(n - 1)
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Therefore
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Another possible model for handling spatial variability is the ARMA(l,l) process whose

semi-variogram is

where, is a moving average parameter that smooths out spatial fluctuations in the

observations. PROC MIXED in SAS fits both AR(l) and ARMA(l,l) error structures.

The covariance model ARMA(l,l) was found to give closely similar mean estimates of

treatments and treatment contrasts as models involving spherical and Gaussian models

for data simulated with spherical and Gaussian error structures, respectively. Harris

and Dallas (1996) through simulation studies indicated that f3i is less biased even when

R(0) is not known. These comments give confidence about the use of the proposed

models.

Joint Error + Trend model

The only covariance model that can easily be applied in such a situation is the

ARMA (1,1). This model was found to perform quite well through simulation studies.

Notice that in incorporating spatial variability in beta-hat model I only AR and

ARMA covariance models can easily be fitted since the other models such as spherical,

exponential and Gaussian require specification of a grid. The analysis under bet-hat

model I set up assumes only a single row/column layout. In other words the data

structure has no grid set up.

After accounting for spatial variability, the parameter estimates are then used to

construct model (4.27) or (4.28). Further analysis is as indicated under this model.
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4.4.3 Beta-hat Model 11
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Note that in model set up I, the regression model (4.25) is fitted to each factor combi­

nation responses from each replicate separately. Now consider fitting the same simple

regression model for each factor combination but over all its replicates. That is consider

the model

(4.34)

where Yik is br x 1 vector of observations from ith level of crop 1 density and kth spatial

arrangement. Clearly, the f-lik and f3ik are functions of treatment combinations. This

model set up is a fit of separate regression or response lines/curves to different treatment

combinations i.e response curve fitting. Assuming independence of parameters from each

response curve, formal t-tests can be conducted to test for separate curves or parallelism

in slopes i.e. to test whether the slopes or intercepts are significantly different from each

other. Response curve fitting has an advantage of revealing the pattern of the response

as plant populations increase.

The t-test is conducted on the hypothesis;

Ho : f311 = f312 = f313 = ... = f3ap = f3n (4.35)

Logically, this hypothesis is rejected if there exists at least one pair (i j) such that

HA: f3ik =1= f3i l k' i =1= i', k =1= k'

Formally, the appropriate t-test of difference between /3ik and /3i1kl is given by

Weighted regression (F-test) on the f3ik'S can also be conducted to test for differences

between them. Similarly, the same weighted regression using standard errors as weights
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can be done on /-lik'S. The significant differences in /-lik'S using F-test or t-test indicates

the difference in the performance of main plot treatments in absence of interaction with

'systematic' subplot treatments.

Incorporating spatial variability in beta-hat model Il takes the same steps used as

in general spatial models in the previous section. Models (4.3), (4.11), (4.16), (4.22) or

(4.23) are used to model spatial variability with the only exception that fixed effects

matrix, X, contains only systematically arranged crop densities (subplot treatments).

The treatment effect vector, {3, contains only the effects of subplot treatments. Thus, re­

gression of crop responses on subplot treatments is implemented with spatial variability

incorporated and the generated beta's are compared using F or t-test.

4.4.4 Beta-hat model validation

The data simulated in the previous section were used in validation. The data were fitted

using beta hat model I and Il. The results are presented in Tables 4.6 and 4.7. For model

set up I, the ARMA(1,1) model was used to fit data with spherical error structure while

the AR(l) model was also used to fit data with exponential error structure.

The results presented are reassuring in that beta hat models can be fitted and appro­

priate covariance models are still estimable. The beta-hat models are as good as general

models. Results from Table 4.6 and Table 4.7 indicated the following observations.

1. In beta-hat model I, the underestimation of a 2 at low values of p (i.e. p < 0.3)

was observed in 21% of the total of 600 samples. The use of this model needs

care and a pragmatic data exploration approach is necessary. A general pragmatic

approach is included in next section.

2. In beta hat model Il, the results for exponential and Gaussian model were similar

to those of the spherical model, that is, similar trend as under general models. 0-
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Table 4.6: REML Covariance parameters for AR and ARMA errors

Theoretical values Estimated values

Array Parameter Mean (no trend) Mean (+ trend)

(72 p (j2 P SD(p) (j2 P SD(p)

AR(l) 1 0.6 1.210 0.586 0.091 1.070 0.580 0.079

1 0.4 1.010 0.396 0.014 1.000 0.386 0.061

1 0.3 0.675 0.327 0.123 0.864 0.369 0.207

ARMA 1 0.6 1.230 0.591 0.201 0.990 0.598 0.042

(1,1) 1 0.3 0.970 0.321 0.025 0.980 0.309 0.030

1 0.8* 1.230 0.833 0.091 1.210 0.940 0.204

1 0.6* 0.970 0.528 0.284 0.870 0.691 0.438
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tice that the covariance parameter estimates are not as precise as those estimated

with general models.

From the results above, beta-hat models are shown to perform like general spa­

tial linear mixed models in that they effectively extract spatial variability. Their use,

therefore is reliable and they are also easily implemented. These results underscore

the importance of beta-hat models in handling systematic design data from intercrop­

ping experiments involving plant populations. beta-hat model II in particular has an

advantage of enabling effective response surface/pattern exploration.



4.5 Data modelling: a pragmatic approach

Table 4.7: Covariance parameters for Spherical errors for Model II

Theoretical values Estimated values

Array Parameter Mean (no trend) Mean (+ trend)

er2 a a2 a SD(a) a2 a SD(a)

4 by 6 1 2 0.867 1.911 0.440 1.054 1.854 0.392

4 by 6 1 4 1.240 3.948 0.167 1.186 3.692 1.082

4 by 6 1 6 1.259 5.798 1.036 1.306 5.650 1.197

4 by 8 1 2 1.024 5.728 1.024 1.218 5.871 0.995

4 by 8 1 4 1.129 3.948 0.987 1.082 3.538 0.670

4 by 8 1 6 1.116 5.725 1.135 1.142 5.692 1.122

8 by 12 1 4 0.978 4.289 0.813 1.369 4.342 0.941

8 by 12 1 6 1.155 5.710 1.120 1.163 5.858 1.119

8 by 12 1 8 1.280 7.708 0.243 1.285 7.768 1.013

4.5 Data modelling: a pragmatic approach
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In this section three simulated data sets will be used to illustrate the steps that should

be involved in model building. These are Monte Carlo realizations with the following

properties;

1. Data 81: Monte Carlo sample with a global trend in subplots (0.9 + O.7~ - 0.3Rl)

for a 4x8 array (global-trend-only data).

2. Data S2: Same Monte Carlo sample as in 81 with a global trend excluded. Instead

spherical random process errors (a = 4, er2 = 1) were included to give correlated

observations (correlated-errors-only data).

3. Data 83: A combination of global trend and spherical error process were simulated.
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When building up a model, because the decomposition of the observed process is not

unique, the first step is to look for large scale variation or trend in the data. One of the

methods is to fit a model to the data using OLS to estimate the residuals. The second

step involves computing residuals, ~;i = Yi - Y(s;), for i = 1, ... ,n, and plotting them

against the subplots or columns and rows. Figure 4.1(a) and (b) are plots of residuals

from SI. Clearly, there is a downwards trend i.e. decreasing trend with subplot number.

Also from Figure 4.1(b), it can be observed that the there is no trend in rowsjmainplots.

After identifying such a trend residuals can be treated as response variates to the rows

and columns and using OLS method an appropriate polynomial mean function can be

determined. Determination of an appropriate final mean function involves two steps.

Fit the residuals as indicated above and then include the function in data modelling.

Then delete the higher order terms in rows or subplots that are not significant according

to the F or t-test. This will lead to obtaining a parsimonious model.
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Figure 4.1: Plot of OLS residuals for data SI

Another way of investigating a trend is by simple plots (trellis) whereby the yields

are plotted against rows and columns per replicate. Any difference in the shape of

the plots may provide all insight into the trend in the data. Figure 4.2 for SI is all

example of a plot of yields against subplots per replicate. The block effects can clearly

be observed. Notice immediately that the shape of clistribution of yields in the third

replicate (Rep 3) is different from those in Rep 1.
Rep I 'ttop 2

2. J.

.. .
i

t. ~_ 6.

•.

Figure 4.2: Trellis plots for data SI
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The next step is to explore for spatial dependence between the observations. The

residual-based variogram or covariogram estimates provide an important tool in identify­

ing the spatial dependence. For example, under an isotropic process with E[~* (Si)] = 0,

the variogram can be computed as

where N (h) is the number of distinct pairs of plots separated by hand C (Si) are residuals

at position Si. This step is important as it gives an indication about possible spatial

covariance structure that may be appropriate. Consider data 82 whose variogram is

given in Figure 4.3(a). If there was no spatial dependence in the data the variogram

would remain constant as lag increases. Thus modelling will have to take into account

this spatial dependence. The shape of the empirical or sample variogram gives an idea

about selection of an appropriate covariance models. Non-linear least squares or REML

can be used to fit different covariance models and selection of the best can be done. In

the present example REML is used to fit the covariance models.

Furthermore, the behavior of the residual based variogram or covariogram may reveal

non-stationarity of the residual random process. The presence of a trend for example

may result in a quadratic increase of the variogram estimator in accordance with the lag.

Consider for instance, Figure 4.3(b) for 83. The variogram seem to increase indefinitely

with increasing lag. In such a case a trend model have to be adopted. Note that if the

trend has been successfully identified in the first step (i.e. using trellis or residual plots),

the variogram or covariogram would be based on residuals after adjusting for the trend.
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Figure 4.3: Sample variograms for data SI and S3

The final step is model checking for the adequacy of the covariance model and the

nature of the trend fitted. This is done using such tools as LRT, AIC, BIC and residual

plots. After exploring data for global trend, packages such as SAS PROC MIXED can

also enable one to determine the presence of spatial dependence in the data. Fit the

data without any covariance model and then fit the data with various covariance models.

The changes in LRT or deviance, AlC and BIC statistics can be used as an indicators

of adequacy. An improvement in this statistics on fitting covariance models will imply

a possible presence of spatial dependence in the data. Variogram exploration can also

be done. Consider fitting the true covariance model (spherical) and alternative models

for data 82. Clearly from the Table 4.8, the spherical model performs well according

to AIC and BIC criteria (have the highest AIC and BIC values). Notice that the fit

statistics of ARMA(l, 1) are close to those of spherical covariance model. In this data,

ARMA(I, 1) is the second best model according to AIC, AICC and BIC criteria.
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Table 4.8: REML covariance parameter estimates for data S2

Error Cov. Parameters Fit statistics

model &2 a LRT AIC AICC BIC

Exponential 0.7127 1.30 214.40 247.40 247.70 244.60

Gaussian 0.6723 1.01 242.90 248.90 249.20 246.20

Spherical 0.9645 4.02 244.10 250.10 250.40 247.40

AR(l) 0.7127 P = 0.46 214.40 247.40 247.70 244.60

ARMA(l,l) 0.9598 P = 0.42 241.30 249.3 249.8 245.7

,= 0.46

4.6 Case studies
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To illustrate the previous sections, a data set from an experiment conducted by students

at Makerere University in Uganda is considered. The cowpea - sorghum intercrop ex­

periment was set up in a parallel-row design. Two spatial arrangements (SA), two crop

density levels of cowpea (dC) and eight sorghum crop density levels (dS) were involved

in the experiment. The sorghum density levels were systematically arranged in sub­

plots while combinations of cowpea densities and spatial arrangements were randomly

allocated to the main plots. The interest was to determine intercropping advantages

through examining the response pattern. Only dry matter residuals were available for

analysis. Recall that the analysis of relative LER, RE and total yield are handled in the

same way. For example, relative LER or RE will entail combining the two crop yields

together and the variates so formed are modelled in a similar way like the yield (see

Section 2.2). The data is included in Appendix D.
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Data exploration

In the first step, the large scale variation or trend was considered for the data. SAS

PROC MIXED is used to fit the data with treatment effects only and the residuals are

obtained. Residuals were then plotted against rows (main plots) and cohunns (subplots)

(Figme 4.4). No trend was observed in resic1uals. The histograms of the residuals do not

show any outHer (Figme 4.5; (a) for cowpea yield and (b) for sorghum yield). Figme

4.6(a) and (b) are two dimensional grayscale plots of residuals in field positions for

cowpea and sorghum, respectively. There is no clear indication of any drift or trend

effect. The plot looks fairly uniform. This can be confirmed by trellis plots (Fig,11re 4.7;

(a) for cowpea and (b) for sorghum) where all the blocks have the same shape of yield

distribution.
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Figure 4.4: Plot of residuals against main plots and subplots
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Figure 4.8: Sample variograms for cowpea-sorghum intercrop yields
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Figure 4.8(a) and (b) are sample variograms of the cowpea and sorghum data, re­

spectively. The increase in the variograms before levelling off is an indication that there

is spatial dependence in the data sets. These plots also confirms that there is no trend

effect. From this figure, the sorghum data seem to have a slightly high sill than the

cowpea data. The sills for the two data sets are expected to be the same since the data

are taken on the same plots. However, without loss of generality, these sills can be taken

to be the same.

Data analysis: Spatial linear mixed model

Given that sorghum and cowpea data have the same properties, only one data set

(cowpea yield data) anlaysis was reported here. The advantage of similar properties

of crop yield observations is that the two crop yields can be combined into relative

LER or RE to obtain accurate results. The REML method was used to fit covariance

models to the data. Model (4.3) was used to fit the data. The parameter estimates and

fit statistics from PROC MIXED are presented in Table 4.9. The nugget effect model

alone and nugget effect and covariance models were fitted. Only covariance models

without a nugget variance are presented. This is because all the covariance models with

nugget variance had lower AIC and BIC values compared to models without the nugget

variance. The value of the LRT is higher in a model with nugget effect only. This

underscores the necessity of modelling spatial dependence between observations. The

AIC, BIC and LRT suggest the ARMA(l, 1) model as adequate. Table 4.10 provides

the statistical analysis of cowpea data using PROC MIXED. All fixed effects are not

significant at a = 0.05.
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Table 4.9: REML covariance parameter estimates for cowpea data

Error Cov. Parameters Fit statistics

model fJ2 ii LRT AIC AICC BIC

Nugget 0.3250 - 191.30 147.30 147.60 144.60

Exponential 0.3893 2.34 150.90 146.90 147.20 144.20

Gaussian 0.3286 1.16 160.70 156.70 157.00 154.00

Spherical 0.5132 5.46 155.9 151.90 152.20 149.20

AR(l) 0.3893 P = 0.65 150.90 146.90 147.20 144.20

ARMA(l,l) 0.4199 p = 0.87 148.20 156.20 156.30 152.60

'Y = 0.67

Table 4.10: PROC MIXED type III tests of fixed effects

Effect Num df Den df F value Pr> F

dC 1 84 0.13 0.7214

dS 1 2 0.06 0.8236

dC*dS 1 84 0.34 0.5639

SA 1 84 0.31 0.5818

SA*dC 1 84 0.02 0.8871

SA*dS 1 84 0.34 0.5607

SA*dC*dS 1 84 0.09 0.7698

Data analysis: beta-hat models
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Consider using beta-hat models. Fitting beta-hat model Il and testing for appropriate

covariance models on average AIC and BIC values led to the conclusion that ARMA(l,
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Table 4.11: PROC MIXED t-tests of fixed effects for beta-hat model II

Treatment /30 s.e. /31 s.e. t-test for /30 t-test for /31

1:1 4.4833 0.7495 0.000613 0.050440

2:1 4.8075 0.4695 -0.029740 0.044550 0.7271 0.6491

1:2 4.3256 0.2996 0.054900 0.056410 0.8430 0.4851

2:2 4.6086 0.4698 0.003329 0.038900 0.8850 0.9425
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1) is adequate. For example, ARMA(1, 1) had AIC and BIC values of 42.85 and 38.98,

respectively followed by Gaussian model with 42.00 and 38.29, respectively. Fitting

a simple linear regression and modelling spatial variability using ARMA(1, 1) led to

the following results (Table 4.11) for response surface parameters. The tests are in

reference to beta values at treatment combination level 1 : 1. All these tests and other

comparisons were not significant.The same conclusions for SA*dS and SA*dC*dS are

reached at as was in using general spatial linear mixed model.

Beta-hat model I was also fitted with spatial variability modelling through ARMA(1,l).

Although, for some (2 of 12 subdata sets) subdata sets the final hessian matrix was not

positive definite, the following results suffice to compare the fixed effects (Table 4.12).

Again tests on effect of SA and dC on the intercepts (f3o's) and slopes (f31'S) shows no

significance at Q' = 0.05. The same conclusion arrived at using general spatial linear

mixed models are also arrived at using beta-hat model 1.

From the preceding sections, it has been shown that it is quite imperative that

systematic design data starts with data exploration. The pragmatic approach illustrated

above have been shown to be effective in identifying data properties. Modelling spatial

correlation and global trend is an efficient method for data with spatial variability

(especially data from the systematic designs). This avoids loss of information due to
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Table 4.12: PROC MIXED fixed effect tests for beta-hat model I

Test on intercepts Test on slopes

Effect Num df Den df F-value Pr> F F-value Pr> F

SA 1 6 0.710 0.4304 0.350 0.5768

dC 1 6 0.100 0.7601 3.420 0.1141

SA*dC 1 6 0.030 0.8747 1.110 0.3329
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imprecisely estimating error variance and treatments. The models incorporating spatial

variability in data analysis are easily implemented in available statistical software such

as Genstat, SPLUS and SAS. Therefore, data with spatial variability is no longer a

problem during analysis. In this sense, therefore, systematic designs that have many

advantages in intercropping experiments involving plant populations can be used. This

is because the only assumed disadvantage of spatial variability has been shown to be

easily handled using the models suggested in this chapter.



Chapter 5

Evaluation of Design Efficiency

5.1 Introduction

The efficiency of systematic designs relative to randomised complete block design (ReBD)

is considered. In addition to the evaluation of design efficiency the cost effectiveness

of systematic designs, otherwise called efficiency under a cost function, is evaluated.

Section 5.2 introduces general design efficiency theory, while in Section 5.3 specific ef­

ficiency measures are presented and simulation results reported. Section 5.4 deals with

cost effectiveness of systematic designs in intercropping experiments.

5.2 Design efficiency theory

The efficiency of a design is its precision relative to an orthogonal design with the same

number of treatment replications. It is a measure of how precisely treatment means

or contrasts are estimated in a particular design. Efficiency is defined by the amount

of information, which is the reciprocal of error variance, obtained in an experiment.

The higher the information obtained from design ~ compared to the others from a set

of competing designs X, the higher the efficiency of~. Designs which minimize global
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measures of variance on treatment contrasts called optimality criteria (Kiefer, 1959) are

desired.

The classical formulation of optimal design theory is for a linear regression problem

in which certain variables Xi are chosen by the experimenter and p functions of interest

are known functions of Xi denoted h(Xi), h(Xi),"" fp(Xi)' The ith data point, Yi, is

then

P

Yi = L h(Xi){Jj + Ci

j=l
i = 1,2, ... , n

where {J1, {J2, ... ,{Jp are unknown parameters and Ci are the uncorrelated errors with

mean 0 and common variance (}"2. Writing

Y1 h(X1) h(X1) fp(X1) (J1

Y2
F=

h(X2) h(X2) fp(X2)
,{3=

(J2
(5.1)y= ,

Yn f1(Xn) h(xn) fp(xn) {Jp

the best linear unbiased estimator (BLUE) of {3 is given by (F'F)-l F'y, with covari­

ance matrix (F'F) -1(}"2. If ~ is viewed as an arbitrary probability measure on the

experimental space X, which puts weight ~ at each of the design points Xl, ... ,Xn , then

1 1 n 1 1
2" F'F = - Lf(Xi)f(xd = f(x)f(x)'d~(x) = 2"M(~)
()" n i=l x ()"

(5.2)

where M(~) is the information matrix of (3 and f(x) = (h (x), h(x), ... ,h(x))'. The

integral in the above equation is called the Stieltjes integral. Matrix M(~) is a measure

of accumulated 'precision' and for linear regression the variance-covariance matrix of

the least squares estimates i!J is the inverse of this matrix i.e. var{i!J} = :2 M(~)-l. The

variance of the predicted response at Xi, is given as d(x,~) = f(x)'M(~)-l f(x). Thus
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choosing a good design means making M(~) 'large' in some suitably defined sense and

this forms the basis of optimality criteria (Pukelsheim, 1993).

The typical information matrix functionals are the matrix means r/>p, for pE [-00; 1]

called r/>-efficiency measures.

The r/>-efficiency of a design ~ E X is defined by

r/> (~) = r/>[Cc(M(~))]
p v(r/»

It is a number between 0 and 1, and gives the extend to which design ~ exhausts

the maximum information v (r/» for c'f3 (c being a contrast matrix) with information

matrix Cc(M(O). The special forms of r/>p criteria include D-, A- and E-optimality for

p = 0,1,00 (Pukelsheim, 1993) which are defined below.

Definition 5.1 D-Optimality (r/>o) is the determinant criterion defined as

min{ -logIM(~)I}
~

z. e. the design that minimizes the generalized variance of the parameter estimators)

or equivalently minimizing the volume of a confidence ellipsoid region. Equivalently

a design that maximizes the product of eigenvalues of the matrix Cc(M(O)) I1i.Ai is

D-optimal.

Definition 5.2 A-Optimality (r/>1) is the trace criterion. It minimizes the average vari­

ance of the optimal parameter estimators. It is defined as max trace(Cc(M(~))).

Definition 5.3 E-Optimality (r/>oo) is the smallest eigenvalue criterion: It minimizes

the variance of the well estimated contrast or equivalently minimizes the max(l/.Ai)' It

minimises

max Var(c'B)
c'c=1

over the variances of all (normalised) linear combinations of parameter estimates (c'(J).
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In a set of designs, X, a design ~ E X, with the lowest <pp value is considered optimum

and thus more efficient than the others.

In the case of correlated errors with covariance matrix V the variance-covariance

matrix of /3 is given by

Var(/3) = (FV-1(~)F,)-1

and thus the information matrix is defined as

(5.3)

This information matrix (5.3) is not a sum of information matrices of single observations

as that under uncorrelated errors (5.2). It cannot be used directly in convex theory,

which is essentially based on additivity of information matrices. Thus, the optimal

designs cannot be solved analytically but can be determined numerically. Federov and

Muller (1989) and Muller (2000) devised the use of an approximate information matrix,

in algorithms for constructing spatial optimal designs, which is very close to the exact

information matrix. In this work the efficiency of systematic designs is done numerically.

In the next section a discussion of evaluation of systematic designs follows.

5.3 Estimation of design efficiency

In the present study the interest is in the evaluation of efficiency of systematic designs

relative to RCBD based on optimality criteria reviewed in the previous section. Each

systematic design will be assessed through a large number of data simulations and

analysing the resultant data sets and comparing the results with data simulations for

RCBD. Data analyses is to be done mainly in SAS and GenStat using PROC IML,

PROC MIXED, PROC GLM, PROC GAM in SAS and REML, ANOVA in GenStat.
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5.3.1 cjJp - directed efficiency
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Suppose interest is in drawing inferences regarding L independent parametric functions

of {3. The <pp-directed relative efficiency of systematic designs to RCBD is then based

on the information regarding L{3. The contrast matrix L consists of comparisons be­

tween main plot treatments, their interactions and also their interactions with split plot

treatments. The justification for defining L as above is from the assumption that the

researcher is not interested in testing for significance differences between split plot treat-

ments (systematically arranged plant densities). Basing on models given in the previous

chapter, the relative efficiencies are defined through the functionals of the information

matrices. Note that under assumptions of normality the variance-covariance matrix of

fixed effects estimates is the inverse of information matrix. That is if

Each of the models suggested in Chapter 4 has information matrix conditional on com­

ponents (0.', (3' , ,', 'l/J') present in a model of the form

Let Cd(~) and CR(~) denote information matrices for f3 conditional on covan­

ance components (0.', ,', 'l/J') and ('l/J) conditional on (0.', f3', ,'), respectively where

Cd(~) = qU.2], CR(~) = q22.1) and qii.jj = Cii - CijCjjCji, and where U- denotes

any generalised inverse (true inverse for nonsingular or pseudo-inverse for singular Cjj ).

From this setting the efficiency measures are defined using functions of Cd(~) and CR(~),

the treatment and residual effects information matrices. The information matrix of L{3,

for example, would then be
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where (-)+ denotes the Moore-Penrose inverse (Azzalini and Giovagnoli, 1987). The

matrix (Gdr can be also be partitioned as

Then the information matrix of L(3 is given by

(5.4)

Suppose RCBD is denoted as design ~IR and a systematic design as design ~§. Suppose

also that the identified dispersion matrix, an inverse of a matrix ML(~) in (5.4) for design

~§ is GL(~§) from spatial modelling and that of design ~IR is GL(6~). Then the Fisher

efficiency (considered for easy of computation) is given as

L'(GL(~IR))L

L' (GL(~§))L
(5.5)

Also if the F-test is considered for Ho : L(3 = do against HA : L(3 /: do under designs

~§ and ~IR, the Pitman efficiency of design ~IR relative to ~§ in testing Ho is given as the

ratio E(~IR,~§IL) = ).L(~IR)/).L(~§) i.e. a ratio defined by their non-centrality parameters

(AL'S) (Jensen and Ramirez, 1993). Thus

E(~IR, ~§IL) = (L(3 - do)'{L' (GL(~§))L}=\L(3 - £lo)

(L(3 - do)' {L'(GL(6R))L} \L(3 - do)

with Ho : L(3 - do= c, (5.6) assumes the form

(5.6)

(5.7)

Based on (5.5) and (5.7), the average of variances of contrasts of interest and mean

differences in the systematic design relative to the same contrasts in RCBD were used

(relative A - directed efficiency). The largest variances of contrasts and mean differences
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(relative E - directed efficiency) are also reported. In summary the variances or measures

that were computed include largest mean variance (comparison of treatment means),

largest contrasts variance, average mean variance and average contrasts variance.

Simulation studies

In the simulations three replications of treatments were assumed. The simulation pro­

cedures given in Section 4.3 are used except that for each simulation of y = fi + t + e*,

yT = fi + X was also simulated alongside it. Notice that yT is a vector without trend

or correlation in the data points. The data vector yT represented data from an RCBD.

The computer simulations were used basically because they offer a valuable and feasible

alternative to empirical tests of design efficiency. The main objective of these studies

is to illustrate the statistical efficiency of systematic designs relative to RCBD. All de­

signs I, Il and III were evaluated. The relative efficiency of design I for two dimensional

spatial variability was only evaluated under AR(l)xAR(l) covariance structure. For

each and every setting 400 samples were generated.

The effects of the strength and the nature of the global trend on design Il efficiency

were also evaluated for spherical (a = 6) and AR(l) (at p = 0.6) spatial models.

The values a = 6 and p = 0.6 were chosen because they had approximately average

relative efficiency for spherical and AR(l) covariance structures, respectively. The linear

trend was simulated using t = K(0.9 + 0.7R(i») and that of quadratic trend using

t = K(0.9+0.7R(i) -0.3Rti») where R(i) is as defined in the previous chapter and K is a

factor chosen to define trend strength. The settings used were 0.5, 1.0 and 1.5. Design

Il was chosen for illustration purposes.

The simulated data are analysed using among other statistical software packages

PROC MIXED in SAS. The SAS PROC MIXED allows specification of the contrast

matrix using CONTRAST statement. The effect of different values of the range param-
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eter on efficiency was investigated.
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Results are presented in Tables 5.1, 5.2, 5.3 and Table 5.4. In Table 5.1 and 5.3,

efficiency is based on variances of mean differences evaluated under spherical and AR(1),

and Gaussian and exponential models, respectively. In Table 5.2 and 5.4, efficiency is

based on the variances of contrasts evaluated under spherical and AR(1), and Gaussian

and exponential models, respectively. In both cases presented, the estimation is based

on solely covariance structure modelling. The figures in bold in these tables are means

for the sub-columns they immediately appear under. General results are presented

in Table 5.5 where the trend effect is reported. Also included in Table 5.5 are other

measures of efficiency and power to be described in the subsequent sections. The relative

efficiencies for contrasts in Table 5.5 are the means from Tables Tables 5.1, 5.2, 5.3 and

5.4. Generally, results for spherical, Gaussian and exponential error processes had a

common pattern. The assumption of one dimensional spatial variability for designs I,

II and III gave the same results.

Discussion of simulation results

From the results in Tables 5.1, 5.2, 5.3 and Table 5.4, and 5.5 the following conclusions

can be drawn;

1. Clearly, the relative efficiency decreases with the increase of the range parameter.

This is due to many observations being correlated. It can also be concluded for the

presence of an AR(1) error covariance structure that the stronger the correlation,

the lower the efficiency of the design. Notice that large a implies many treatment

levels and thus relatively large block size that may play a role in increasing the

associated variance.

2. The relative efficiencies based on contrast variances are generally slightly lower

than those based on mean variances. This is because the variance of contrasts is
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Table 5.1: Relative efficiency of systematic designs to RCBD

Error Spatial Variance of means ReI. effic. to RCBD

model parameter Large Average for Large for Average

Spherical a=2 0.5604 0.4112 69.63 71.32

a=4 0.4388 0.3760 69.58 70.43

a=6 0.6276 0.6150 66.86 66.84

a=8 0.5735 0.5635 66.49 66.80

68.14 68.85

AR(l) p= 0.3 0.5693 0.5569 88.98 88.36

p = 0.6 0.5822 0.5763 73.73 74.56

81.36 81.46

AR(l) xAR(l) P = 0.3 0.6194 0.6016 80.64 79.80

P = 0.6 0.6239 0.6146 67.28 69.91

75.46 75.86

more sensitive to spatial variation than variance of means.
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3. Generally, there is an increase in the average variances of means and contrasts

when the trend is present Table 5.5 (page 104). This is largely due to variance of

treatment means being inflated by global trend variance. Thus, the efficiency of

the design is reduced. This observation is in line with the argument that presence

of a trend reduces efficiency of treatment comparisons (see Chapter 3). From Table

5.6 (page 105), increasing the trend parameter, K, tends to increase the average

variance of contrasts. This implies a reduction in relative efficiency. However,

this increase in variance is not significant when the trend is correctly specified

or smoothed out. This supports the trend modelling approaches. Thus, from
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Table 5.2: Relative efficiency of systematic designs to RCBD

Error Spatial Variance of contrasts ReI. effic. to RCBD

model parameter Large Average for Large for Average

Spherical a=2 0.5892 0.5803 68.36 68.86

a=4 0.6659 0.6600 61.80 63.33

a=6 0.6202 0.6091 67.20 67.43

a=8 0.6288 0.6002 64.73 64.98

65.53 66.15

AR(l) P = 0.3 0.4326 0.3961 83.436 84.01

p = 0.6 0.4682 0.4466 76.46 75.86

79.95 80.00

AR(l) xAR(l) P = 0.3 0.6332 0.6234 79.64 79.80

P = 0.6 0.6144 0.6244 72.05 69.91

75.85 74.86
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Table 5.6 (page 96), it can be concluded that trend strength may have no effect

on treatment contrasts if the trend is correctly fitted. It was observed however,

that if the trend is under-fitted the variances of contrasts are significantly larger

than in well specified trend model. This is mainly for data with trend alone,

otherwise error modelling would partly 'soak up' the remaining trend. There are

no significant differences in the effect of nature of the trend.

4. The relative efficiencies are all well above 60% and on average 72%. Thus, in all

cases, RCBD is superior to systematic designs even if error structures and trends

are modelled. In other words, there is a statistical efficiency penalty due to use

of the systematic designs. Note that the 60% efficiency is for comparing the main
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Table 5.3: Relative efficiency of systematic designs to RCBD

Error Spatial Variance of means ReI. effic. to RCBD

model parameter Large Average for Large for Average

Exponential a=2 0.4930 0.4700 63.24 65.60

a=4 0.5685 0.5150 61.73 60.04

a=6 0.5380 0.5080 62.44 67.89

62.47 64.51

Gaussian a=2 0.5085 0.4887 81.39 82.86

a=4 0.5931 0.5839 77.40 82.40

a=6 0.5869 0.5389 75.82 75.37

78.87 80.21

Table 5.4: Relative efficiency of systematic designs to RCBD

Error Spatial Variance of contrasts ReI. effic. to RCBD

model parameter Large Average for Large for Average

Exponential a=2 0.6832 0.6234 64.36 64.64

a=4 0.6436 0.6241 62.31 60.30

a=6 0.6144 0.6143 64.24 64.20

63.63 63.05

Gaussian a=2 0.4460 0.3942 81.31 80.36

a=4 0.4487 0.4230 82.64 84.23

a=6 0.5947 0.5697 69.57 72.09

77.84 78.89
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Table 5.5: Summary of relative efficiencies and relative power of systematic designs

Error Trend Efficiency for Other measures

model present Means Contrasts Power D1effic. DSeffic.

AR(l) 81.46 80.00 0.954 93.77 98.23

AR(l) vi 79.43 79.52 0.943 93.73 97.05

AR(l) xAR(l) 75.86 74.86 0.944 93.12 96.84

Exponential 64.51 63.05 0.959 88.63 95.67

Exponential vi 62.49 60.78 0.896 86.25 93.04

Gaussian 80.21 78.89 0.937 95.36 99.32

Gaussian vi 68.32 67.53 0.937 93.08 97.43

Spherical 68.85 66.15 0.971 89.91 98.59

Spherical vi 63.34 63.48 0.973 87.52 97.07

iid vi 92.62 92.63 0.953 98.03 98.04

plot treatments. However, there is a counter argument in practice to this penalty.

In practice i.e. field conditions, the field trend or spatial variability will affect

both RCBD and systematic designs in the same way although the effect may be

more severe for systematic designs. This is based on the fact that in both classes

of designs blocking is applied. In such instances, the efficiency of RCBD will be

less than 100% and this will imply an increase in the relative efficiency of the

systematic designs. For example consider the presence of a field trend and assume

it affects the RCBD in the same way as it does a systematic design. From Table

5.5 the efficiency of the RCBD will be reduced to 92.62% for means or 96.63% for

contrasts. Now consider the lowest efficiency in Table 5.5 i.e. 60.78% associated

with exponential error correlation. In line with the above arguments this value
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Table 5.6: Effect of nature and strength of global trend on variance of contrasts and DB

efficiencies under spherical (a = 6) and AR(I) (p = 0.6) covariance structures

Error Strength of Nature of the Average contrast Relative

model trend (K) global trend variance efficiency Power

Spherical 0.5 linear 0.5716 66.34 0.903

0.5 quadratic 0.5798 65.91 0.863

1.0 linear 0.6022 66.16 0.903

1.0 quadratic 0.6051 66.31 0.915

1.5 linear 0.6047 63.02 0.914

1.5 quadratic 0.6038 63.13 0.903

AR(I) 0.5 linear 0.4479 70.13 0.929

0.5 quadratic 0.4490 70.29 0.912

1.0 linear 0.5321 68.94 0.893

1.0 quadratic 0.5316 68.48 0.905

1.5 linear 0.5214 69.14 0.903

1.5 quadratic 0.5321 69.10 0.912

can be updated to 65.62%, a 3.6% increase.

5. The relative design efficiency depends on the error/ covariance structure present

in the field. The efficiency is highest if AR(I) (80% on average for contrasts)

is present and lowest when exponential error correlations are present (62% on

average for contrasts).

6. Design I has lower efficiency compared to design Il and III if there is existence of

two dimensional spatial variability in the observations exists. This is evidenced by

the differences in efficiency results for AR(I) for designs Il and III in comparison
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with AR(1) x AR(1) for design I (Table 5.5, page 104).This is principally due to

reduction in design efficiency further along the column from that given by design Il

and Ill. The efficiency given by design Il and III can be viewed as design efficiency

affected by spatial variability along the rows. Otherwise, if one dimensional spatial

variability is assumed, the three designs have the same relative efficiency.

5.3.2 Relative design power

The average statistical power with which a particular hypothesis H is tested under the

systematic design relative to randomised designs was computed. Power is defined as the

probability of detecting departures from a null hypothesis of interest i.e. the probability

that the decision rule will lead to conclusion of Ha when in fact Ha holds. The main

idea is that from Pitman's efficiency equation (5.6), it is clear that hypothesis testing is

directly related to design efficiency. Hypothesis testing, for example, can be done using

the generalized F-statistic given in equation (4.24) which is distributed approximately

as F[rank(L),v,AL1. The non-centrality parameter, AL, is given by

(5.8)

Under Ho : AL = 0 (L'(3 = 0) but when Ho is false then AL > o. The exact value of AL

depends on L'/3, X and H((}), where these terms are the magnitude of departure from

Ho, the design and associated replication, and the variance and covariance components,

respectively. Power is given by expression

P(F[rank(L),v,ALI > F crit) (5.9)

where AL is the value of the non-centrality parameter under the alternative hypothesis

of interest and it is a measure of how unequal the treatment contrasts or means are

while F crit = F[rank(L),v,O,aj is the value of central F at the given a-level. A design that

maximises the power of the test is desired. Thus, given equal replications of treatments
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in designs ~§ and ~IR, and testing the same hypothesis L' j3 = 0, their power relative to

each other can be computed. Since variance and covariance components are defined by

a particular design in question, this reduces to comparing the designs. In this sense

power is directly related to design efficiency.

Simulation studies

The data simulated in Section 5.3.1 was used to compute design power. The power

of the designs was computed using CONTRAST statement of PROC MIXED and a

necessary program written in SAS. Results are presented in Table 5.5 (page 104).

1. The power of systematic designs is on average 94.2% (0.942) that of RCBD. This

shows that although the rpp directed efficiencies are low, the power of hypothesis

testing in systematic designs is almost as good as that of RCBD. Contrary to rpp

directed efficiencies, the power does not vary much according to the error structure

or trend present in the data. Possibly because the modelling of the trend or error

structure precludes their strong influence on comparison of treatments. This is

an assurance that the same conclusions for systematic design and RCBD can be

arrived at within 10% confidence interval.

2. From the above results, systematic designs perform well under hypothesis testing.

This at first sight appears to be contradictory i.e. measures of efficiency conflict.

However, it can immediately be recognised that different aspects of an experiment

are involved in these measures. A design can be optimum for one investigation but

not for the other. For instance, it may be optimal for hypothesis testing and not

optimal for point estimation of parameters (Kiefer, 1959). The systematic designs

are as almost efficient as RCBD under hypothesis testing about main plot treat­

ments, their interactions and also their interactions with split plot treatments.

Notice that systematic designs I, II and III have almost the same relative pow-
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ers of hypothesis testing. This again is indicated by the results associated with

AR(l) and AR(l)xAR(l) covariance structures. The reason could be that error

modelling precludes ifs influence on the power of the F test.

5.3.3 D-efficiency for regression parameters

Consider fitting a polynomial regression model (beta-hat model II) with a prime interest

in defining the shape or pattern of the response. For efficient evaluation of this response

surface the regression coefficients or parameters should be estimated as precisely as

possible. The efficiency of different designs can be evaluated based on how precise

these coefficients are estimated. Efficiency measures such as D 1 and DB can be used to

compare systematic designs.

DB efficiency

The standardised D-efficiency, DB, of an arbitrary design ~ with respect to aD-optimal

design C is defined as
1

I(~) = { IM(~)I }m
IM(~*)I

(5.10)

where m is the number of the parameters in the model, say m = 2, 3 or 4. In inter-

cropping plant population studies the second order (m = 2) and third order (m = 3)

parameters are very important. Thus for estimation of the optimum or proper eval­

uation of the response surface/pattern efficient estimation of these parameters is very

important. Since the denominator is constant in (5.10) the relative efficiency for each

parameter for systematic design (~§) with respect to RCBD (~IR) is given by

1

I(~ ) = {IM(~§)I} m
§ IM(~IR)I (5.11)

Observe that the asymptotic variances for the regression parameters are given as inverse

of their information matrices. Thus the DB efficiency for each parameter can be defined
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in terms of its asymptotic variance, i.e.

i = 1, 2, 3.
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(5.12)

The equation (5.12) provides the basis for evaluating the efficiency of systematic designs

to RCBD in this study.

D 1 efficiency

The D 1 efficiency of an arbitrary design ~ with respect to a D-optimal design C is

defined as

(5.13)

The D 1 efficiency maximises the power of the t-test or F-test for the significance of the

highest coefficient in the polynomial of degree m i.e. for the hypothesis that Ho : f3m = 0

(Dette and Franke, 2000) where f3m is a regression parameter of polynomial degree m. It

thus minimises the variance of the estimator for the coefficient f3m. Again in the present

study the denominator in (5.13) is a constant and thus the relative D1 efficiency can be

computed by considering the numerator i.e.

IMm(~*)1

IMm-l(~*)1

The critical region for testing the hypothesis Ho : f3m = 0 is given by

and

(5.14)

gives the power function of this critical region. Noting that the expression (5.14) has

a central F distribution under Ho and a non-central F distribution under HA, the non­

centrality parameter plays a major role in definig the power of F-test. This leads to
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comparative relative design power like that in Section 5.3.2 except in this case power is

specifically for regression parameters.

Simulation studies

The same simulations as in the previous sections were used. The D1 and DS efficiencies

were defined for linear and quadratic functions of crop densities. Regression analysis

was implemented using PROC MIXED in SAS (some implementations were undertaken

using REML in Genstat and slmr in SPLUS). Results for m = 2 are presented in Table

5.5 (page 97). Some additional results for m = 1 (linear effect) and m = 2 (quadratic

effect) are given in Table 5.7.

Table 5.7: Summary of standard errors and power for f3m; m = 1, 2

Error s.e for m = 1 s.e for m = 2 Power for m = 2

model ~§ ~lR ~§ ~lR ~§ ~§

AR(l) 0.2531 0.2305 0.0334 0.0328 0.5137 0.5229

Exponential 0.3888 0.3602 0.0422 0.03926 0.6301 0.6587

Gaussian 0.3167 0.3165 0.0393 0.0389 0.8010 0.8065

Spherical 0.2437 0.2221 0.0374 0.0367 0.6835 0.6972

1. The standard errors associated with regression parameters/ coefficients computed

under assumptions of designs I, II and III were considerably the same.

2. The relative D 1 and D S efficiencies (presented in Table 5.5, page 97)) of systematic

designs are on average above 89%. This indicates the merit of systematic design

and the opportunity of using them since regression parameters are well estimated.

The lowest relative D1 efficiency is 86.25% and the lowest DS efficiency is 93.04%

all associated with spatial variability involving exponential covariance structure
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and the global trend. Notice that if the same argument as in Section 5.3.1 is

employed (that is spatial variability affects systematic designs and RCBD in a

similar way), some relative efficiencies of systematic designs will be higher than

100% indicating superiority of systematic designs over RCBD. For example, con­

sider DS for Gaussian covariance structure (99.32%) and a corresponding 98.4%

for RCBD. The updated relative efficiency of systematic designs will be 101.3%.

3. Observe that the s.e's associated with regression parameters (both m = 1 and

m = 2) for systematic design and RCBD are close to one another in all the

covariance models. Thus, modelling error structure in systematic designs yields

precise estimates of regression parameters. It was observed that in more than 23%

of simulated data samples, systematic design gave higher precision of regression

parameters than RCBD.

5.4 Efficiency under cost function

Given the advantages of involving many plant populations in preliminary plant popu­

lation studies, the cost of conducting such factorial experiments is of great importance.

In addition to costs incurred in non-factorial experiments, factorial experiments incur

extra costs due to changing the levels of each of the factors. In this case, changing a

plant population level will involve a cost associated with introduction of a guard row.

Thus, if cost Ci is attached to a guard row the total cost can be defined in terms of

level changes.

Definition 5.4 For any factor Aj , j - 1,2, ... , n, in the design ~, the cost for the

factor is defined as;
r
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Where Ci(Aj ) is the number of times of level changes of factor Aj in the ith block/main

plot i.e. is the number of level changes in X j , design matrix of changes in Aj , except for

the changes between main plots and blocks. As an example, consider a level sequence

of a factor in a three-level factorial design given as follows;

o
(i) 1

2

o
(ii) 2

1

(5.15)

Although the level changes of the level of sequence (5.15(i)) is equal to 2, there will

be no cost incurred. This by definition of systematic designs being considered in this

study requires no guard rows. Consider factorial design with sequence in (5.15(ii)).

The level changes in this sequence is again equal to 2. This is a randomized sequence

and by definition of randomized designs, two guard rows are required. The cost is

therefore incurred due to introduction of guard rows. It will be shown in the subsequent

paragraphs that this cost limits on the number of practical replicates in a randomized

design in situations where land area is limited.

Another concept of comparison of systematic designs to randomised designs is the

harvestable land area. Normally, in field experiments it is a portion of the plot which is

harvested and not the whole plot, the argument being that there may be some carryover

of treatment effects from plots to neighbouring plots. That is a proportion 8i (i = 1, 2)

is harvested and this proportion can be thought of as a sample size where 81 is the

proportion of plot harvested in randomised design while 82 is the proportion harvested

in a systematic design. In systematic designs a larger size of a plot area is harvested

compared to randomised designs where only the inner rows in a plot are harvested.

Mead and Riley (1981) and Mead (1994) working empirically have shown that 82 is

about 80% while 81 is below 60%. Also in the 3 experiments described in Chapter 2,

the proportions of total harvestable area were 59.3%, 61.0% and 63.8%.
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For r replicates the information on each treatment mean assuming the variance

components are known is

(5.16)

where (J~ is error variance and (J;i is the variance associated with the proportion 8i with

the definition constraint

Since 82 > 81 the information from 82 is expected to be greater than that from 81.

The land area required by a split plot in RCBD and harvestable land area from the

same relative to a parallel-row systematic design were computed. The computations

were based on secondary data from technical reports at research institutes in Uganda

and theses at Makerere university concerning ten intercrop studies. Although these

studies were carried out using split plot in RCBD, the area that would be required

by the parallel-row systematic design was approximated by assuming absence of guard

rows. In other words the figures presented in Table 5.8 were calculated as a ratio of

total land area taken by intercrop in split plot design and the would-be area if guard

rows were excluded (to represent a systematic design). The relative harvestable area

figures were calculated basing on the assumption the parallel-row systematic design

would allow more than 60% of each plot to be harvested. The intercrops considered

include cowpea-maize, maize-beans, simsim-maize, sorghum-simsim, sorghum-cowpea,

cassava-maize, Gnuts-maize, simsim-finger millet and finger millet-pigeon peas. The

figures presented are averages over the area occupied by these intercrops. From the

table, it is clear that a parallel-row systematic design is more efficient in utilising land

compared to a split plot design.

Thus, on average for the same experiment RCBD will require 40% more land com­

pared to systematic designs. Also on average 80% more land area is harvested in the

case of systematic design compared to RCBD.
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Table 5.8: Ratio of land area of randomized block to systematic block

Experiment size Required land area Harvestable land area

6x6 1.33 1.63

8x6 1.25 1.77

8x8 1.40 1.94

6 x 12 1.63 1.83
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Consider the design ~ to have a cost K(~) continuous on space X and impose a

general constraint that the expected total cost of experimentation should not exceed

Ko. Thus,

1K(~)d~ ~ Ko

The problem is then to maximize M(~*) in some sense subject to this constraint.

Cost can be viewed as defining the number of replication or plot sizes to be used in an

experiment i.e. a function of the number of replications and or plot sizes. Assuming

a unit cost for each m2 of land, fixing the cost of experimentation at Ko is equivalent

to fixing amount of land area available. This would lead, for the same land area,

to fewer replications in RCBD compared to systematic designs. The K(O is then a

diagonal matrix with its elements being a ratio of replicates in systematic design to a

randomized design.

Example 5.4.1 Consider an experiment consisting of 2 spatial arrangements for 3

plant densities of maize and 6 beans plant densities laid out in a split plot or RCBD

with plot sizes 5 x 4 m. Each replicate would consist of 36 plots and there will be 30 level

changes. In this case, approximate land area under every 4 guard rows is equivalent to



5.4 Efficiency under cost function 117

area under a full plot. In total, an area equivalent to 10 plots would be available if a

parallel row design is used. Overall, therefore, for a land area that allows 3 replicates

in an RCBD, a parallel row design would allow 4 replicates.

Example 5.4.2 Consider an experiment with 2 spatial arrangements for 4 plant densi­

ties of sorghum and 6 cowpea plant densities laid out in a split plot with plot sizes 6 x 5.

Each replicate consists of 48 plots and if a given land area is enough for 5 replicates

using a parallel row design, only 4 replicates are possible with an RCBD.

Example 5.4.3 Consider an experiment with 2 spatial arrangements for 4 maize plant

densities and 8 cowpea plant densities laid out in a split plot with plot sizes 6 x 5 m.

Each replicate consists of 32 plots and if a given land area is enough for 4 replicates

using a parallel row design, only 3 replicates are allowable with an RCBD.

From equation (5.16), the information on each treatment mean would be lower under

fewer replications. Thus using a cost function constraint is like evaluating the effect of

replication on the efficiency of the design. The cPP directed efficiencies and relative power

of systematic design were revaluated under this cost function.

Presented in Table 5.9 are the results based on four replications for 200 realisa­

tions for each setting of trend and covariance models. There is an improvement in the

statistical relative efficiencies for systematic designs. The lowest relative efficiency in

the table being 64.42% compared to 60.78% associated with the exponential covariance

model previously under three replicates. Whereas reasoning out cost in terms of repli­

cates may be misleading, it is still informative about the relative efficiency of systematic

designs.

In closing this chapter, it is noted that systematic designs generally are efficient

designs compared to RCBD. Since the main purpose for population studies in inter­

cropping experiments is centered on response surface pattern, their use is very reliable
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Table 5.9: Relative efficiencies and Power of systematic designs for four replications

Error Trend Efficiency for Relative

model present Means Contrasts Power

AR(l) 83.55 82.10 0.961

AR(l) V 82.63 80.27 0.954

AR(l) xAR(l) 80.58 79.41 0.924

Exponential 64.82 64.42 0.987

Exponential V 64.06 63.43 0.949

Gaussian 84.89 84.91 0.960

Gaussian V 73.41 73.04 0.945

Spherical 70.98 70.48 0.967

Spherical V 68.32 69.32 0.897

iid V 94.85 94.86 0.986

and efficient as compared to RCBD. The additional advantages make systematic designs

more preferable to RCBD in plant population studies.



Chapter 6

Conclusions

This study has been on exploration and evaluation of spacing systematic designs with

respect to intercropping studies involving plant populations. The exploration and de­

velopment of methods of analysis and modelling of data and evaluation of efficiency of

these spacing systematic designs in intercropping experiments formed the basis of this

work. In this study the advantages of systematic designs have been elaborated through

a literature review and theoretical developments. It is shown that systematic designs

have a major role to play in intercropping population studies and examples of scenar­

ios where they are effectively applicable are given. The conceptual framework of the

study has been based on the existence of spatial variability in the data from systematic

designs. Existence of spatial variability has been the main argument against use of

systematic designs. In this study, it is shown that spatial variability is easily modelled.

It has been shown both through theoretical arguments in Chapter 3 and simulations

in Chapter 4 that the effect of spatial variability can easily be handled. The use of trend

and error modelling techniques such as spatial linear mixed models, semi-parametric

mixed models and beta-hat models incorporating spatial variability have shown to be

effective. Therefore apart from offering advantages such as allowing many treatment

119
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levels to enable effective exploration of response pattern and requiring small land area

compared to RCBD, systematic designs can be efficiently analysed.

The beta-hat models introduced have been shown to perform well in handling spatial

data from systematic designs. Since these models combine the information over system­

atic main plots and enable comparing them, they provide a powerful tool for handling

data from intercropping plant population studies. Through simulations or numerical

calculations these methods have been shown to be reliable and efficient.

Certain conclusions concerning the validity of the methods seem justified. Compared

to correctly fitting the global trend, over-fitting trend had little effect on the validity

of error modelling in the case where both trend and error correlation were present.

Under-fitting trend affects error modelling but had little effect on the validity of tests

and estimates of precision. The use of smoothing splines particularly provides a flexible

framework for identifying and modelling the trend. These methods are powerful and

are easily implemented. The use of the real field data set illustrates that the general

spatial mixed models and beta-hat models perform in a similar and satisfactory way.

There is more to be gained by good estimation of response pattern parameters.

Through simulations in this study it has been shown that systematic designs are almost

as efficient (93%) as RCBD in estimation of these parameters. With additional practical

advantages as argued out in Chapter 3 and Chapter 5, it is reasonable to conclude that

systematic designs provide the best alternative for preliminary plant population studies.

Besides this, systematic designs have been shown in general to enable comparing main

plot treatments with 72% relative efficiency. This is reassuring and guarantees correct

conclusions. All the three systematic designs scenarios (i.e. design I, II and Ill) are

equally good for preliminary plant population investigations.

It has been shown that modelling the intercropping effect as an additive effect to sole
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crop yield leads to same the conclusions as modelling yield itself. It has also been shown

theoretically that modelling of relative LER and ER in terms of plant populations is

also equivalent and similar in handling and modelling to crop yields.

The contributions of this study therefore has been two fold:

• the application of appropriate statistical analysis and modelling systematic design

data. It has been shown that trend modelling and error modelling are powerful,

reliable and efficient tools. They are also easily implemented. Thus, use of designs

that precludes error or trend modelling is not a strong prerequisite in efficient

experimentation anymore.

• the definition of systematic design efficiency. In the interest of response pattern

exploration and given cost advantage over ReBD, systematic designs provides an

efficient and reliable alternative. This is especially in early stages of intercropping

plant studies.

Further theoretical developments are needed to gain insight into the following

• The use and validity of spatial modelling techniques in bivariate analysis of inter­

cropping responses. Also research into other multivariate data handling methods

incorporating spatial variability is needed.

• The close relationship between ARMA(1, 1) and spherical covariance models needs

further investigation

• The distribution of intercropping additive effects and ER needs further research.

• The incorporation of covariates into the suggested models is yet an area requiring

investigation.
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Analysis of variance
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Variate: YSM (yield of simsim) (SpFM= density of finger millet, SpSM=
density of simsim)

Source of variation d.f. s. s. m.s. v.r. F pr.

Rep stratum 2 8305. 4153. 0.16
Rep.Row stratum
SpFM 4 597204. 149301. 5.58 0.019
Residual 8 213931. 26741. 8.48

Rep. Row. Spl t stratum
SpSM 3 337533. 112511. 35.67 <.001
SpSM. SpFM 12 85211. 7101. 2.25 0.035
Residual 30 94634. 3154.
Total 59 1336819.

Variate: YSM

SpSM SpFM 0.00 10000.00 20000.00 40000.00 60000.00
6330.00 352.2 215.6 260.0 162.2 213.3

11100.00 450.0 250.0 316.3 200.0 253.3
22200.00 488.9 260.0 387.4 238.5 286.0
44400.00 723.3 305.6 493.3 283.0 420.0

*** Least significant differences of means (5% level) ***

Table SpSM SpFM SpSM
SpFM

rep. 15 12 3
1. s. d. 41.88 153.95 166.40
d. f. 30 8 14.19
Except when comparing means with the same level(s) of

SpFM 93.66
d. f. 30



TABLE 11

Analysis of variance

Variate: RelLER

Source of variation
Rep stratum
Rep.Row stratum
SpFM
Residual
Rep.Row.Splt stratum
SpSM
SpFM. SpSM
Residual

Total

TABLE III
Variate: RelLER

d.f.
2

3
6

3
9

24

47

s. s.
8343.

88600.
86516.

524612.
69105.

260034.

1037211.

m. s. v.r. F pr.
4171. 0.29

29533. 2.05 0.209
14419. 1. 33

174871. 16.14 <.001
7678. 0.71 0.696

10835.
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SpFM SpSM 6330.00 11100.00 22200.00 44400.00
10000.00 437. 582. 565. 593.
20000.00 412. 584. 617. 753.
40000.00 316. 423. 487. 661.
60000.00 408. 478. 572. 736.

*** Least significant differences of means (5% level) ***

Table SpFM SpSM SpFM
SpSM

rep. 12 12 3
1. s .d. 120.0 87.7 181. 2
d. f. 6 24 27.99
Except when comparing means with the same level(s) of

SpFM 175.4
d. f. 24
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Appendix B

SAS simulation code for correlated data for testing y -E[y] term

data sample;
do samp = 1 to 400;

rho = 0.3;

/* first error term */
eps = rho * rannor( 47392 ) + rannor( 82745 );

do x = 1 to 150; /* to enable three replicates*/
y = 2 + 5 * x + eps;
eps=eps;
eps = rho * eps + rannor( 32815 );
output;

end;
end;

GenStat code for simulation of data used in testing block effect example

for n = 1 to 600
for mi = 121, 123,110,109,124,123, 100,110.5,129.3,

110.8,123.2,125.8 *chosen randomly*
for R = 1,2 ... 12

GRANDOM [DISTRIBUTION=Normal; NVALUES=12; SEED=31245; MEAN=O;
VARIANCE=l] f

calculate y = f+mi
& Ti = 1.89 + 0.4 R + 0.18R**2

calculate Y = y+Ti
endfor

endfor
print Y

endfor

Simulation codes for main simulations

Design I: AGHIERARCHICAL [Print=Design;Seed=32154]
BLOCKFACTORS=Block,Plots; TREATMENTFACTORS=*, !p(Treat1,Treat2,Treat3);
LEVELS=4, 'p(8, 4, 3,10) *4 blocks/replicates, 10 levels of crop B*

Design 11: AGHIERARCHICAL [Print=Design;Seed=41259]BLOCKFACTORS =B1ock,
WPlots, SPlots;
TREATMENTFACTORS=*, 'p(W_Treat1,W_Treat2),S_Treat1;LEVELS=4, 'p(4,2,)8

Design Ill: AGHIERARCHICAL [Print=Design;Seed=10070]
BLOCKFACTORS=Block, WPlots, S_Plots; TREATMENTFACTORS=*, 'p
(W_Treat1,S_Treat); LEVELS=4,3,12)
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(No randomization constraint was applied in design generation) .

proc iml;
seed=124517;

o 0,
o 0,
o 0,
o 0,
0.0081 0,
0.027 0.0081,
0.09 0.027,
0.3 0.09,
1 0.3,
0.3 1};

o
o

o
o

o

v =
H = root(V); /* define the covariance matrix V E.g. AR(l) with P =0.3
for 10 plots is given as
V = {1 0.3 0.09 0.027 0.0081 0
0.3 1 0.3 0.09 0.027 0.0081
0.09 0.3 1 0.3 0.09 0.027 0.0081
0.027 0.09 0.3 1 0.3 0.09 0.027 0.0081
0.0081 0.027 0.09 0.3 1 0.3 0.09 0.027
o 0.0081 0.027 0.09 0.3 1 0.3 0.09
o 0 0.0081 0.027 0.09 0.3 1 0.3
o 0 0 0.0081 0.027 0.09 0.3 1
o 0 0 0 0.0081 0.027 0.09 0.3
o 0 0 0 0 0.0081 0.027 0.09

*/

W = T (H) ;

f1 = normal (repeat(257715,24))+ mean value;/* mean values chosen
randomly from a ranges such as 100 - 130, 50 - 58, etc.*/

n1 normal (repeat(257715,24));
n2 normal (repeat(232715,24));
n3 normal (repeat(259915,24));
n4 normal (repeat(957715,24));

y1 f1 + W*n1;
do i = 1 to 3;
print y1;
end;
quit;

Example generating data for design I

Factor levels: a

Parameters: p =0.3 .
replicates.

b 10;

Design of 10
p l(fixed spatial arrangement).

rows and 10 columns per block with 3

Steps (SAS codes unless specified)

(1) Generate vector ,<1) = normal (repeat(257715,24»+ 10 mean values;/* mean values
chosen randomly from a ranges such as 100 - 130, 50 - 58, etc.*/
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(2) Generate Vc or Vr (say Vi)a correlation matrix for column or row

observations. h = 0,1,2,3,4,5,6,7,8,9; r = 0.3; R = rh; /* r stands for p * / print R;

Construct a 10 X 10 correlation matrix as

Vi =
{1 0.3 0.09 0.027 0.0081 0 0 0
0.3 1 0.3 0.09 0.027 0.0081 0 0
0.09 0.3 1 0.3 0.09 0.027 0.0081 0
0.027 0.09 0.3 1 0.3 0.09 0.027 0.0081
0.0081 0.027 0.09 0.3 1 0.3 0.09 0.027
o 0.0081 0.027 0.09 0.3 1 0.3 0.09
o 0 0.0081 0.027 0.09 0.3 1 0.3
o 0 0 0.0081 0.027 0.09 0.3 1
o 0 0 0 0.0081 0.027 0.09 0.3
o 0 0 0 0 0.0081 0.027 0.09

(3) Generate correlated errors by defining

x = normal (repeat(257715,24»;
H = root (W; L = T(H); /*transpose of H*/
e = L*x; /* construct error vector * /

o 0,
o 0,
o 0,
o 0,
0.0081 0,
0.027 0.0081,
0.09 0.027,
0.3 0.09,
1 0.3,
0.3 1);

(4) Form correlated observations. y(1) = t<1) + e; /* The sample y(l) will
represent observations for replicate 1. Replicate 2 and 3 are simulated
similarly except the randomization seed for generating x is changed.
Form a complete sample (y) by appending Form a complete sample by
appending y (1), Y (2) and y (3). Append y(1), y(2), y(3);

(5) Generate a design in GenStat and display it in spread sheet. Define
column positions as corresponding to 10 levels of crop B and rows as
corresponding to 10 levels of crop A. Enter the row positions in
ascending order.

AGHIERARCHICAL [Print=Design;Seed=32154]
BLOCKFACTORS=Block,Plots; TREATMENTFACTORS=*,! p(Treat2,Treat3);
LEVELS=3,ip(1 0,10) *3 blocks/replicates, 10 levels of both crops A and B*

Add the data into the spread sheet columns. This data is correlated
only along rows, to include correlation along columns sort the spread
sheet according to column (factor not to be confused with spread sheet
column) levels in ascending order. Then add to the y column the
replicated vector e.

(6) To add global trend along rows use T = 1.85 + 0.3 Ri - 0.15Ri
2 . where

average position number is 45/10 = 4.5. GenStat codes:
For n = 1 to 3

Calculate R = Row - 4.5
& T = 1.85 + 0.3*R - 0.15R**2

endfor

Add the vector T to column of y. Note the row positions should be
arranged in ascending order.



Appendix C

TABLE V: Some average variances of treatment contrasts from a model
with and without block or main plot effect term.

Model with block/main plot Model with block/main plot

effects included effects excluded

0.6638 1. 0840

0.6605 0.7042

0.7011 2.0184

0.5766 2.2753

0.6605 0.6627

0.7214 0.8561

0.6846 3.5224

0.6669 2.3221

0.6270 2.2025
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APPENDIX D

Sirnsim-finger millet data for Chapter 2 (Source: Makerere University

Agricultural research Institute, Kabanyolo, Uganda)

Rep! Row' SpIt! SpFM SpSM YFM YSM RLERfm RLERsm RLERt ER LER
1 1 1 60000 44400 518.7 503.3 0.6275 0.642 995.2 812.7 829.562
1 1 2 60000 22200 545.7 238 0.5534 0.3036 671. 9 510.9 581. 245
1 1 3 60000 11100 323.4 293.3 0.328 0.3741 550.4 455 496.719
1 1 4 60000 6330 397.7 250 0.0991 0.3189 327.7 298.9 500.153
1 2 4 40000 44400 455.97 313.3 0.6652 0.3996 834.8 641.2 600.105
1 2 3 40000 22200 485.2 277.8 0.4921 0.3543 663.6 520.4 582.991
1 2 2 40000 11100 349.2 213.3 0.3542 0.2721 491 387.9 432.947
1 2 1 40000 6330 342.2 173.3 0.3471 0.221 445.4 344.4 388.544
1 3 1 20000 44400 475.7 351.1 0.4825 0.4478 729.3 589 650.315
1 3 2 20000 22200 374.4 304.4 0.3797 0.3883 602.1 491. 6 539.898
1 3 3 20000 11100 360.4 297.8 0.3655 0.3798 584.4 478 524.492
1 3 4 20000 6330 298.7 242.2 0.3029 0.3089 479.7 391. 5 430.082
1 4 4 10000 44400 365.4 386.7 0.6748 0.4932 915.8 719.4 616.537
1 4 3 10000 22200 603.1 316.7 0.6117 0.404 796.2 618.2 696.05
1 4 2 10000 11100 377.4 290 0.3828 0.3699 590.1 478.7 527.385
1 4 1 10000 6330 363.4 286.7 0.3686 0.3657 575.7 468.4 515.279
1 5 1 0 44400 0 616.7 o 0.7866 616.7 616.7 *
1 5 2 0 22200 0 366.7 o 0.4677 366.7 366.7 *
1 5 3 0 11100 0 330 o 0.4209 330 330 *
1 5 4 0 6330 0 216.7 o 0.2764 216.7 216.7 *
2 5 1 60000 44400 401. 11 383.3 0.6096 0.4889 861. 3 683.9 635.598
2 5 2 60000 22200 407.4 350 0.4132 0.4464 673.9 553.7 606.255
2 5 3 60000 11100 364.7 286.7 0.3699 0.3657 576.7 469 516.096
2 5 4 60000 6330 344.7 266.7 0.3496 0.3402 540.8 439 483.516
2 4 4 40000 44400 571. 7 266.7 0.6812 0.3402 800.8 602.5 626.299
2 4 3 40000 22200 401. 7 173.3 0.4074 0.221 492.7 374.1 425.969
2 4 2 40000 11100 369.5 148.9 0.3747 0.1899 442.7 333.6 381. 316
2 4 1 40000 6330 230.7 128.9 0.234 0.1644 312.3 244.2 274.01
2 3 1 20000 44400 309.8 493.3 0.9423 0.6292 1232.1 957.9 688.164
2 3 2 20000 22200 490.4 477.8 0.5988 0.6094 947.2 773 786.262
2 3 3 20000 11100 285.4 420 0.2895 0.5357 646.9 562.7 599.517
2 3 4 20000 6330 169.1 388.9 0.1715 0.496 523.4 473.4 495.264
2 2 4 10000 44400 308.2 196.7 0.7638 0.2509 795.5 573.2 390.558
2 2 3 10000 22200 627 .3 193.3 0.7377 0.2466 771.7 557 587.872
2 2 2 10000 11100 597.4 193.3 0.6059 0.2466 668.3 492 569.065
2 2 1 10000 6330 302.1 156.7 0.5397 0.1999 579.8 422.8 346.721
2 1 1 0 44400 0 750 o 0.9566 750 750 *
2 1 2 0 22200 0 463.3 o 0.5909 463.3 463.3 *
2 1 3 0 11100 0 420 o 0.5357 420 420 *2 1 4 0 6330 0 406.7 o 0.5187 406.7 406.7 *
3 1 1 60000 44400 427.4 373.3 0.4335 0.4761 713.1 587 742.135
3 1 2 60000 22200 412.4 270 0.4183 0.3444 597.9 476.2 529.4
3 1 3 60000 11100 381. 7 180 0.3871 0.2296 483.5 370.9 420.089
3 1 4 60000 6330 187.4 123.3 0.1901 0.1573 272 .3 217 241.175
3 2 4 40000 44400 616.4 268.9 0.6252 0.343 759 577.1 756.616
3 2 3 40000 22200 300.4 264.4 0.6089 0.3372 741. 8 564.6 453.352
3 2 2 40000 11100 346.2 237.8 0.3511 0.3033 513 .1 410.9 455.56
3 2 1 40000 6330 159.3 184.4 0.06 0.2352 231. 5 214 284.6
3 3 1 20000 44400 453.2 635.6 0.8655 0.8107 1314.2 1062.3 920.663
3 3 2 20000 22200 230.1 380 0.7405 0.4847 960.5 745 524.733
3 3 3 20000 11100 633.2 231.1 0.7316 0.2948 804.7 591. 8 629.383
3 3 4 20000 6330 255.1 148.9 0.2587 0.1899 351.7 276.4 309.358
3 4 4 10000 44400 696.97 333.3 0.808 0.4251 966.8 731. 7 771. 694
3 4 3 10000 22200 223.7 270 0.734 0.3444 845.4 631.9 410.707
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3 4 2 10000 11100 608.7 266.7 0.5078 0.3402 664.8 517 649.572

3 4 1 10000 6330 392.1 203.3 0.3977 0.2593 515.1 399.4 449.931

3 5 1 0 44400 0 803.3 0 1.0246 803.3 803.3 *
3 5 2 0 22200 0 636.7 0 0.8121 636.7 636.7 *
3 5 3 0 11100 0 600 0 0.7653 600 600 *
3 5 4 0 6330 0 433.3 0 0.5527 433.3 433.3 *

Cowpea-sorghum data for Chapter 4 (Source: Serere Agricultural Research

Institute, Uganda. )

PlotNo Block WP S sA dC1! dS1! dC dS YC YS PredYC
1 1 2 1 1 1 8 105 224 1.0598 3.539 1. 03774
2 1 2 2 1 1 7 105 195 1.1628 2.84933 1. 04245
3 1 2 3 1 1 6 105 130 1.10412 2.90042 1.04715
4 1 2 4 1 1 5 105 113 1.17704 2.62756 1.05186
5 1 2 5 1 1 4 105 98 1.06055 2.73839 1.05657
6 1 2 6 1 1 3 105 85.1 0.975447 2.88234 1.06128
7 1 2 7 1 1 2 105 74 1.15407 3.36346 1.06599
8 1 2 8 1 1 1 105 63.3 1. 21722 3.17555 1.0707
9 2 1 1 1 1 1 105 63.3 1. 255 5.642 1. 04464

10 2 1 2 1 1 2 105 74 1. 20416 5.28099 1.03993
11 2 1 3 1 1 3 105 85.1 0.85262 5.11443 1.03522
12 2 1 4 1 1 4 105 98 0.938201 4.17128 1.03051
13 2 1 5 1 1 5 105 113 1.12401 5.17757 1.0258
14 2 1 6 1 1 6 105 130 1.1445 5.67644 1.02109
15 2 1 7 1 1 7 105 195 1.03821 5.25471 1.01638
16 2 1 8 1 1 8 105 224 1.06911 5.71132 1.01167
17 3 4 1 1 1 8 191 224 1.022 5.21 1. 03778
18 3 4 2 1 1 7 191 195 1.0626 4.90853 1. 04249
19 3 4 3 1 1 6 191 130 0.773909 5.14726 1. 0472
20 3 4 4 1 1 5 191 113 0.983474 4.28313 1.05191
21 3 4 5 1 1 4 191 98 1.01373 4.78399 1.05661
22 3 4 6 1 1 3 191 85.1 0.849917 5.35983 1.06132
23 3 4 7 1 1 2 191 74 0.784873 5.02623 1. 06603
24 3 4 8 1 1 1 191 63.3 0.975465 5.48077 1.07074
25 1 1 1 2 1 1 105 63.3 1. 251 3.791 1.11923
26 1 1 2 2 1 2 105 74 1.14361 3.21838 1. 09581
27 1 1 3 2 1 3 105 85.1 1. 00405 4.28715 1.07238
28 1 1 4 2 1 4 105 98 1. 07457 4.29585 1. 04896
29 1 1 5 2 1 5 105 113 1.21652 4.1181 1.02554
30 1 1 6 2 1 6 105 130 1.32645 4.06662 1. 00212
31 1 1 7 2 1 7 105 195 0.629904 4.24682 0.97869
32 1 1 8 2 1 8 105 224 0.646706 3.50669 0.95527
33 2 4 1 2 1 8 191 224 1.135 5.118 0.92921
34 2 4 2 2 1 7 191 195 1. 02021 5.20628 0.95263
35 2 4 3 2 1 6 191 130 1.07788 5.25722 0.97605
36 2 4 4 2 1 5 191 113 0.689641 4.92322 0.99947
37 2 4 5 2 1 4 191 98 0.846725 5.87214 1.0229
38 2 4 6 2 1 3 191 85.1 0.836116 5.89281 1. 04632
39 2 4 7 2 1 2 191 74 1.00102 5.12109 1.06974
40 2 4 8 2 1 1 191 63.3 1.10149 5.7932 1. 09316
41 3 1 1 2 1 1 105 63.3 1. 251 4.768 1.11927
42 3 1 2 2 1 2 105 74 1.14471 4.20722 1.09585



43 3 1 3 2 1 3 105 85.1 0.94779 5.37517 1.07242

44 3 1 4 2 1 4 105 98 0.883608 4.53206 1. 049

45 3 1 5 2 1 5 105 113 1. 06881 3.7281 1.02558

46 3 1 6 2 1 6 105 130 1.24159 4.86421 1.00216

47 3 1 7 2 1 7 105 195 0.750507 5.20477 0.97874

48 3 1 8 2 1 8 105 224 1.12314 4.63107 0.95531

49 1 3 1 1 2 1 191 63.3 1.163 4.259 1. 03816

50 1 3 2 1 2 2 191 74 1.13209 4.00786 1.01918
51 1 3 3 1 2 3 191 85.1 0.83856 4.13118 1.00019
52 1 3 4 1 2 4 191 98 0.939675 3.65629 0.9812
53 1 3 5 1 2 5 191 113 1.18956 4.63091 0.96222
54 1 3 6 1 2 6 191 130 1.06204 4.99428 0.94323
55 1 3 7 1 2 7 191 195 1. 0654 4.81034 0.92424
56 1 3 8 1 2 8 191 224 0.713388 4.24307 0.90526
57 2 2 1 1 2 8 105 224 0.966 5.272 0.87919
58 2 2 2 1 2 7 105 195 1.14702 4.26821 0.89818
59 2 2 3 1 2 6 105 130 0.795533 4.18 0.91717
60 2 2 4 1 2 5 105 113 0.698338 4.07752 0.93615
61 2 2 5 1 2 4 105 98 0.88019 4.83948 0.95514
62 2 2 6 1 2 3 105 85.1 1. 01169 5.03044 0.97412
63 2 2 7 1 2 2 105 74 1.19193 5.43747 0.99311
64 2 2 8 1 2 1 105 63.3 0.742634 4.97866 1.0121
65 3 3 1 1 2 1 191 63.3 0.981 4.272 1. 0382
66 3 3 2 1 2 2 191 74 1.25266 4.04436 1. 01922
67 3 3 3 1 2 3 191 85.1 0.997562 4.33128 1.00023
68 3 3 4 1 2 4 191 98 0.970937 4.36354 0.98124
69 3 3 5 1 2 5 191 113 1. 0832 4.07645 0.96226
70 3 3 6 1 2 6 191 130 0.993411 4.91885 0.94327
71 3 3 7 1 2 7 191 195 0.852378 4.81744 0.92429
72 3 3 8 1 2 8 191 224 0.803848 5.22578 0.9053
73 1 4 1 2 2 8 191 224 1. 02 4.3 0.92001
74 1 4 2 2 2 7 191 195 0.876089 4.50587 0.93524
75 1 4 3 2 2 6 191 130 0.620916 4.74349 0.95047
76 1 4 4 2 2 5 191 113 0.894019 3.95248 0.96571
77 1 4 5 2 2 4 191 98 0.986074 3.7314 0.98094
78 1 4 6 2 2 3 191 85.1 0.904726 4.21139 0.99617
79 1 4 7 2 2 2 191 74 1.10048 4.39868 1. 01141
80 1 4 8 2 2 1 191 63.3 1.20935 3.8144 1. 02664
81 2 3 1 2 2 1 191 63.3 0.689 5.921 1.00057
82 2 3 2 2 2 2 191 74 0.622043 6.01907 0.98534
83 2 3 3 2 2 3 191 85.1 0.755548 5.71257 0.97011
84 2 3 4 2 2 4 191 98 0.787971 5.19014 0.95487
85 2 3 5 2 2 5 191 113 0.895531 5.86722 0.93964
86 2 3 6 2 2 6 191 130 1.00113 5.29755 0.92441
87 2 3 7 2 2 7 191 195 0.997394 5.45649 0.90918
88 2 3 8 2 2 8 191 224 0.754516 5.0821 0.89394
89 3 2 1 2 2 8 105 224 1. 06 4.21 0.92005
90 3 2 2 2 2 7 105 195 1.12394 4.40221 0.93528
91 3 2 3 2 2 6 105 130 0.898669 4.6419 0.95051
92 3 2 4 2 2 5 105 113 1.04255 3.86108 0.96575
93 3 2 5 2 2 4 105 98 1.22494 3.68152 0.98098
94 3 2 6 2 2 3 105 85.1 1.10805 4.15105 0.99621
95 3 2 7 2 2 2 105 74 1.25242 4.16118 1.01145

96 3 2 8 2 2 1 105 63.3 1.28567 3.95564 1. 02668

139



C; run;

140

APPENDIX E

'Code for testing for error symmetry: SAS program'

data X;
input bloc Row Sbplt SA dA dB R1 R2 Y1; cards;
proc mixed;

class bloc Row Sbplt SA dA dB;
model Y1 = dAldBISA/out=pred;

random bloc bloc*dB;
repeated/ type = sp(spherical) (Row Sbplt) /* AR(l) also used */

subject = bloc*SA*dA;

ods output pred = C;
run;

C = Y1 - C;
proc print data

/*Then genstat6 was used to generate summary statistics */

DESCRIBE [SELECT=nobs,nmv,mean,median,min,max,q1,q3,var,kurtosis] C

'SAS Code for data handling and efficiency computations'
data X;
input bloc Row Sbplt SA dA dB R1 R2 Y1;/* Row = main plot, dA = crop A
density levels,
dB = crop B density leves, R1 = Sbplt position number - mean Sbplt
number, R2 = R1*R1 (second order polynomial; higher orders can
defined similarly, Y1 = yield */
cards;

proc mixed MMEq MMEqSol AsyCov; /* requests for mixed model equations
and solutions and asymptotic var-cov matrix of covariance parameters*/

class bloc Row Sbplt SA dA dB;
model Y1 = dAldBISAI InvCovB; 1* (1) Trend in Sbplt may be added by

introducing terms
R1 or R2 or higher polynomial terms (2) InvCovB requests for inverse

of var-cov matrix of fixed effects *1
random bloc bloc*dB;
random dBI type = sp() (Row Sbplt) 1* Define covariance model e.g.

sp(exp) for exponential */
subject = bloc*SA*dA; /* This whole term is included if

there is no spatial dependence in data */
/* or define repeated term as */

repeated/ type = ar(l) /* arma(l,l) can be used instead of ar(l) */
subject = bloc*SA*dA;

Ismeans dAISA/pdiff;



*/
estimate "
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/* Define matrix for treatment combinations/contrasts

contrast " /* Define contrast matrix */
contrast' '; /* Define matrix for orders of orthorgonal polynomials

in dB */
ods output contrasts = a;

run;

data power; set a;/* calculation of power of hypothesis testing under
contrasts */

alpha =0.05;
nc=numdf*Fvalue;
fcrit = finv(l-alpha,numdf,dendf,O};
power = 1 - probf(fcrit,numdf,dendf,nc);

proc print;
proc chart data=lsdiffsl;

by effect notsorted;
vbar stderr;
run;

QUIT;

'Genstat Code for data handling - smoothing splines and AR(l)xAR(l)'
Vcom[Fixed = dA*SA*dB] random = bloc +Row.Sbplt;Cos=pos
Vstructure[Term = Row.Sbplt]AR,AR;Factor = Row, Sbplt;Initial
=, (0.6)! (0.6)

Reml[ ]Yl "With splines the code is"

Vcom[Fixed = dA*SA*dB; Spline =Sbplt] random = bloc +Row.Sbplt;Cos=pos
Vstructure[Term = Row.Sbplt]AR,AR;Factor = Row, Sbplt;Initial
=, (0.6)' (0.6)
Reml [ ] Yl.
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