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ABSTRACT 

The negative impacts of air pollution have made monitoring of air quality increasingly 

important. This is primarily true for industrial areas such as the South Durban Basin 

(SDB) within the eThekwini Municipal Area (EMA), South Africa. Bioindicators can 

complement the process of monitoring air quality. For the establishment of Brachylaena 

discolor DC. tree leaves as a bioindicator of air pollution, this study investigated the 

effects of sulphur dioxide (SO2) pollution on various biochemical (intracellular 

superoxide [·O2
-], hydrogen peroxide [H2O2] production, total aqueous [TAA] and 

enzymic antioxidants [superoxide dismutase and catalase], lipid peroxidation [LPO] and 

electrolyte leakage), physiological (leaf chlorophyll fluorescence and chlorophyll 

content) and morphological (leaf area [LA]) biomarkers of stress. Leaves were sampled 

from (four) trees growing at three industrial sites (Prospecton, Ganges and Southern 

Works) within the SDB and from greenhouse-grown trees that served as an ex situ 

control. The sampling (n=24, per parameter) accommodated directional and seasonal 

effects. Annual [SO2] measured at all three treatment sites (Prospecton [4.39±3.92 ppb], 

Ganges [5.10±4.73 ppb] and Southern Works [6.71±5.47 ppb]) during the study were 

high compared to global standards. Values for all biomarkers did not differ significantly 

for leaves from different cardinal points within sites but seasonal differences were 

evident in some cases; ·O2
-, LPO, electrolyte leakage, leaf chlorophyll fluorescence, and 

LA were significantly (p<0.05) correlated with seasonal [SO2]. Except for ·O2
-, 

superoxide dismutase and catalase, all other biomarkers investigated could differentiate 

between SO2 exposed and unexposed leaves. However, only electrolyte leakage was 

sensitive enough to reflect differences in [SO2] across the treatment sites. Qualitative 

data on land-use practices at each site suggests that the pollution sources/pollutants 

differed across the SDB and that the use of SO2 as the sole proxy of air pollution may 

not be ideal. Actually, ·O2
-, H2O2, lipid peroxidation and LA data suggested that trees at 

Ganges were exposed to the highest levels of stress, even though annual average [SO2] 

was highest at Southern Works. Nevertheless, the investigated biomarkers provide 

motivation for the establishment of B. discolor a bioindicator of air pollution within the 

SDB. If the appropriate biomarkers are measured (e.g. LPO, electrolyte leakage, leaf 

chlorophyll fluorescence and LA in this study), B. discolor leaves can serve as reliable 

bioindicators complementing current air monitoring techniques within the EMA. 
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CHAPTER 1 INTRODUCTION 

1.1. Preamble 

The unprecedented rate of climate change has led to uncertainty regarding the responses 

of ecosystems and the appropriate regulations that need to be established for mitigation 

of its consequences (Ramanathan and Feng, 2009). Air pollution and climate change 

have been acknowledged as related entities, yet, they are still often viewed as separate 

factors in terms of their effects (Swart et al., 2004; Bytherowicz et al., 2007; Paoletti et 

al., 2007). Further separation between air pollution and climate change can be seen in 

the approach taken by policy-makers: policies for air pollution are usually short-term, 

whilst those for climate change are long-term (Swart et al., 2004).  

Air pollution and climate change share common drivers such as anthropogenic activities 

(mainly the burning of fossil fuels) that result in the emission of harmful gases, which 

react with other atmospheric constituents to produce air pollutants and greenhouse gases 

(Mickley et al., 2004; Swart et al., 2004; Paoletti et al., 2007; Ramanathan and Feng, 

2009). Air pollutants of concern include: carbon monoxide (CO), nitrogen oxides 

(NOx), sulphur dioxide (SO2), ozone (O3), methane (CH4) and particulate matter (Taylor 

et al., 1994; Emberson et al., 2001). By appreciating the responses of ecosystems to 

both air pollution and climate change the implementation of more appropriate and 

effective mitigation strategies may be possible (Swart et al., 2004). 

The current and future effects of air pollution, in particular, on different vegetation 

types remains uncertain but it is clear that biochemical, physiological and 

morphological responses of certain species to pollution are measurable (Conti and 

Cecchetti, 2001; Tiwari et al., 2006; Tripathi and Gautam, 2007). This has created 

opportunities for the use of plants/trees as bioindicators of air pollution (Mičieta and 

Murín, 1998; Conti and Cecchetti, 2001; Novak et al., 2003; Bermudez and Pignata, 

2011). However, the establishment of pollutant-specific plant bioindicators has been 

challenging since plant responses to air pollution are dependent on many factors: 

rate/duration of exposure, concentration of the pollutant and the combination of 

pollutants acting together, amongst others (Winner, 1994; Novak et al., 2003; Rai et al., 

2011). Another factor to consider is that the responses of plants to air pollution vary 
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across species and on temporal and spatial scales (Novak et al., 2003; Rai et al., 2011). 

Nevertheless, understanding the biochemical, physiological and morphological 

responses of specific species to air pollution, can lead to the establishment of reliable 

bioindicators (Taylor et al., 1994; Rai et al., 2011). Bioindicators, i.e. representative 

organisms that are used to evaluate human-induced stresses within the specific 

ecosystems (Conti and Cecchetti, 2001), can be useful for monitoring air quality, 

particularly in rapidly developing countries like South Africa (Emberson et al., 2001). 

The establishment of bioindicators of air pollution is also essential for the development 

of suitable conservation and climate change mitigation strategies (Taylor et al., 1994; 

Rai et al., 2011). The present study focuses on the utility of Brachylaena discolor DC. 

as a bioindicator of air pollution within selected industrial areas in KwaZulu-Natal, 

South Africa. 

1.2. Problem identification 

Having established the link between air pollution and climate change above, it is 

evident that these factors impact negatively on ecosystems (Taylor et al., 1994; Paoletti 

et al., 2007) and human health (Matooane and Diab, 2001; 2003). The increasing need 

to monitor air pollution and understand its impacts on ecosystems has necessitated the 

use of active or passive air samplers (Taylor et al., 1994; Paoletti et al., 2007) in various 

parts of the world (also see Conti and Cecchetti, [2001] and Snyder et al., [2013] for 

details). However, these techniques are often extremely costly to install/maintain, 

especially in developing countries where the cost is unjustifiable when compared to 

social and economic challenges (Tyson et al., 1988; Conti and Cecchetti 2001; 

Emberson et al., 2001; 2003; Moodley et al., 2011; Rai et al., 2011; Naiker et al., 

2012); one such developing country is South Africa (Naiker et al., 2012; Venter et al., 

2012). Within South Africa, local municipalities have been tasked with monitoring air 

pollution, implementing and enforcing mitigation policies (Naiker et al., 2012). 

However, eThekwini Municipality (Durban, South Africa) is one in which the collection 

of air pollution data, maintenance of monitoring stations and reporting are severely 

compromised due to the lack of financial resources and expertise (Diab et al., 2002; 

Moodley et al., 2011; Naiker et al., 2012). This has resulted in poor enforcement of air 

pollution emission policies and as a result allowed for air pollution emissions to exceed 

global limits as well as those set out in the Air Quality Act of South Africa (Josipovic et 
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al., 2010; Naiker et al., 2012). There is, therefore, a pressing need for the use of 

inexpensive and effective air pollution monitoring strategies such as bioindicators 

(Moodley et al., 2011). 

1.3. Motivation of the study  

Still viewed as a third world country, South Africa’s GDP is based largely on the 

industrial and mining sector (Tyson et al., 1988; Naiker et al., 2012; Venter et al., 

2012). For this reason, managing developmental needs and conserving the environment 

represents a great challenge for the country. Huge investment into the industrial 

processing of raw materials and increased urbanization has led to increased air pollution 

levels across the country (Tyson et al., 1988; Diab et al., 2002; Venter et al., 2012). 

This threatens the country’s rich biodiversity and emphasises the need for air quality 

monitoring and control (Winner, 1994). Reports of vegetation damage that are generally 

associated with air pollution in commercial forest species in South Africa has raised 

alarm over the potentially detrimental effects of air pollution on wild vegetation 

(Emberson et al., 2001; 2003). 

Increased atmospheric concentrations of SO2, the major by-product of industrial hubs, 

are of immense concern given its negative impacts on human and environment health 

(Taylor et al., 1994; Emberson et al., 2001; Diab et al., 2002; Naiker et al., 2012). 

Industries within the eThekwini Municipal Area (EMA) have been reported to produce 

levels of SO2 that exceed the tolerable threshold set out by the municipality’s guidelines 

(Diab et al., 2002; Areington et al., 2015). The financial resources invested into 

monitoring air pollution levels within the EMA are therefore necessary but not entirely 

viable, nor effective (Conti and Cecchetti 2001; Diab and Motha, 2007; Moodley et al., 

2011; Naiker et al., 2012). This highlights the need for alternative, more feasible 

methods of monitoring air pollution, such as the use of bioindicators within the EMA. 

The formulation and evaluation of air quality monitoring mitigation strategies must be 

based on sound, accessible and scientifically relevant data. As alluded to above, one 

way of generating such data involves using biological organisms as indicators of air 

pollution (Mičieta and Murín, 1998; Moraes et al., 2002; Madejón et al., 2004). These 

bioindicators can be used to identify and measure the effects of human-induced stresses 

on the environment (Conti and Cecchetti 2001). Novak et al. (2003) argued that it is 
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best to use an indigenous species as a bioindicator, but irrespective of their origin of the 

species the bioindicators must be able to withstand high pollution levels, have a wide 

geographical distribution, be abundant, easily accessible and must be negatively 

impacted by pollution levels in the surrounding environment (Conti and Cecchetti 

2001). Many trees, lichens and mosses are actively used as bioindicators of pollution 

within the Northern Hemisphere (Santamaría and Martín, 1997; Conti and Cecchetti 

2001; Madejón et al., 2004). The use of plants and trees as bioindicators of air pollution 

has been reported in many countries (Mičieta and Murín, 1998; Moraes et al., 2002; 

Madejón et al., 2004). In South Africa, researchers have previously suggested lichens 

(Olowoyo et al., 2011), tree bark (Mandiwana et al., 2006), river crabs (Schuwerack et 

al., 2001) and ants (Majer et al., 2007) as useful bioindicators. Numerous studies (e.g. 

Conti and Cecchetti, 2001; Moraes et al., 2002; Novak et al., 2003; Tiwari et al., 2006; 

Tripathi and Gautam, 2007; Bermudez and Pignata, 2011; Rai et al., 2011) highlight the 

benefits of using bioindicators for monitoring air quality which include, provision of 

quick and accessible information on pollutant levels that allow for appropriate and 

timeous management interventions. Though not as popular in the Southern Hemisphere 

as it is in the North, tree leaves can serve as effective bioindicators (Lau and Luk 2000, 

Madejón et al., 2004; Hijano et al., 2005). This motivated the present study on the 

utility of B. discolor as a bioindicator of air pollution within selected industrial areas 

within the EMA, which is one of the most rapidly developing parts of the province of 

KwaZulu-Natal, South Africa. This study adds to the growing body of knowledge on 

the use of plants as bioindicators of air pollution. 

1.4. Research aims and objectives 

The broad aim of the present study was to assess the utility of B. discolor as a 

bioindicator of air pollution within selected industrial areas in the eThekwini 

Municipality, KwaZulu-Natal, South Africa.  

This involved comparing the efficacy of selected leaf biochemical, physiological and 

morphological stress biomarkers in reflecting B. discolor exposure to different levels of 

atmospheric SO2. For this purpose, biomarkers were measured during all four seasons 

for trees located at three industrial (treatment) sites and an ex situ, greenhouse-based, 

control (unpolluted) site. In each case, biomarker levels were related to [SO2]. 
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Specific objectives included the following: 

i. To measure and compare biomarkers related to oxidative stress 

(biochemical biomarkers) across trees at industrial (treatment) sites and 

the control. 

ii. To measure and compare biomarkers related to photosynthetic capacity 

(physiological biomarkers) across trees at industrial (treatment) sites and 

the control. 

iii. To measure and compare biomarkers related to light harvesting capacity 

(a morphological biomarker) across trees at industrial (treatment) sites 

and the control. 

iv. To assess the effects of cardinal direction and season of sampling on SO2 

biomarker relationships for leaves from trees growing at industrial 

(treatment) sites and the control.  

v.  Comparing relationships between the individual biomarkers and [SO2] 

across leaves from trees growing at industrial (treatment) sites and the 

control to identify the biomarkers that are most suitable for measuring 

the effects of SO2 exposure in B. discolor leaves.  

1.5. Methodological approach  

All biomarker measurements were performed on B. discolor leaves based on previous 

biomonitoring studies which have shown leaves to be very effective at reflecting the 

effects of various air pollutants; this includes: SO2 (Lau and Luk, 2000; Hijano et al., 

2005; Rai et al., 2011), O3 (Novak et al., 2003; Jochner et al., 2015) and particulate 

matter (PM) (Lau and Luk, 2000; Jochner et al., 2015). The biomarkers used in this 

study were measured for trees growing at three industrial sites at which ground-level 

SO2 levels were measured. Based on the findings of Areington et al. (2015), biomarkers 

were also measured for ex situ control trees which were grown within a greenhouse 

prior to and during the study. 

This study compared the utility of leaf biochemical (intracellular superoxide [·O2
-] and 

hydrogen peroxide [H2O2], total aqueous antioxidant [TAA] activity, superoxide 

dismutase [SOD], catalase [CAT], lipid peroxidation [LPO] and electrolyte leakage), 

physiological (leaf chlorophyll fluorescence and chlorophyll content) and 
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morphological (leaf area [LA]) stress biomarkers in reflecting the effects of SO2 

pollution. The selection of the biomarkers were also based on the findings of Areington 

et al. (2015) who showed that leaf H2O2, electrolyte leakage, chlorophyll content and 

leaf area (LA) in B. discolor were affected by industrial air pollution. Other studies have 

also shown various parameters related to leaf oxidative metabolism (for example, 

superoxide dismutase [Tripathi and Gautam, 2007; Bermudez and Piagnata, 2011], 

catalase [Tripathi and Gautam, 2007; Bermudez and Piagnata, 2011], lipid peroxidation 

[Conti and Cecchetti, 2001; Bermudez and Piagnata, 2011], electrolyte leakage [Conti 

and Cecchetti, 2001]), physiology (e.g., chlorophyll fluorescence [Conti and Cecchetti, 

2001; Flowers et al., 2007], chlorophyll content [Assadi et al., 2011]) and morphology 

(e.g. leaf area [Assadi et al., 2011; Rai et al., 2011]) to be useful stress biomarkers. 

Leaves were sampled in all four seasons and from different cardinal directions on the 

trees based on suggestions that the effects of air pollution can vary within seasons 

(Novak et al., 2003; Hijano et al., 2005) and/or with changes in wind direction (Rai et 

al., 2011).  

1.6. Study sites 

This study was conducted within the SDB, which occupies approximately 96 km2, along 

the eastern seaboard of KwaZulu-Natal in South Africa (Batterman et al., 2008). The 

EMA is home to a number of industrial hubs, most notably the South Durban Basin 

(SDB) which is dominated by petroleum-based industries that give rise to numerous 

pollutants (Diab and Motha, 2007; Batterman et al., 2008; Buthelezi and Davies, 2015). 

The selection of the three treatment sites was based on the location of eThekwini 

Municipality-controlled air quality monitoring stations within the SDB (Fig. 1.1). Also, 

consideration was given to whether the air quality monitoring station could provide 

ground-level [SO2] data for the duration of the study (April 2014–September 2015). A 

further pre-requisite was the presence of sufficient B. discolor trees growing within 

1000 m of these monitoring stations. The following three air quality monitoring stations 

met the requirements: Prospecton (30˚ 0' 10.44"S; 30˚ 55' 43.64"E); Ganges (29˚56' 

54.60"S; 30˚57' 52.63"E), Southern Works (29˚57' 25.20" S; 30˚58' 23.77"E), 

KwaZulu-Natal, South Africa.  
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Figure 1.1 Air quality monitoring station (A, encircled) at one of the treatment sites 

(Prospecton) at which B. discolor trees (B, indicated by arrow) were sampled (Photos 

by: Minoli Appalasamy and Candyce Areington). 

The control trees were grown in a greenhouse located on the Westville campus of the 

University of KwaZulu-Natal (29˚49'3.76"S; 30˚56'23.56"E), which is in the EMA but 

ca.19 km away from the SDB.  

1.7. Study species  

This study was conducted on the leaves of Brachylaena discolor DC. (Fig. 1.2 A), 

commonly known as silver oak, which is a member of the Asteraceae family (Cilliers, 

1993; Pooley, 1993; Boon, 2010). Brachylaena discolor is a multi-stemmed small tree, 

almost shrub-like with a very irregular growth form and grooved stems (Cilliers, 1993; 

Boon, 2010). Leaves are bicoloured with a green adaxial and white abaxial surface 

(Boon, 2010) (Fig. 1.2 B). Brachylaena discolor flowers from July to September and 

fruits until November (Pooley, 1993; Boon, 2010). This indigenous species was selected 

based on its widespread distribution along the KwaZulu-Natal coast line (Fig. 1.3), and 

also based on reports that it is sensitive to industrial air pollution and known to survive 

in polluted areas (Cilliers, 1993; Pooley, 1993; Boon, 2010; Areington et al., 2015) 

(Fig. 1.2 C). Brachylaena discolor trees sampled in this study were taxonomically 

identified based on the descriptions of Cilliers (1993), Pooley (1993) and Boon, (2010).  

 

A B 
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Figure. 1.2 B. discolor (A) at Ganges treatment site; B. discolor leaves (B) showing 

white abaxial surface; B. discolor (B) at Southern Works study site surviving in polluted 

area. (Photos by: Minoli Appalasamy and Candyce Areington). 

 

 

 

 

 

 

Figure. 1.3 Distribution of Brachylaena discolor along the eastern coastline of South 

Africa (Source: Cilliers, 1993, pp. 182)  

A C 
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1.8. Structure of dissertation  

This dissertation comprises six chapters. The present chapter (Chapter 1) identifies the 

problems that motivated this study, frames the study rationale and approach, states its 

aim and objectives and briefly describes the methodological approach, study sites and 

species. Chapter 2 reviews the relevant literature on air pollution with special focus on 

its effects on plants and the use of bioindicators in order to contextualise the study’s 

design, methodology and conclusions. Chapter 3 details the sampling framework and 

methods used for all biomarker measurements and the data processing, and analyses. 

Chapter 4 present the results obtained (using graphs and tables) and describes the major 

trends/differences observed in relation to the statistical analyses conducted. Chapter 5 

discusses the key findings of the study in relation to the broader literature on the effects 

of air pollution on plants. Finally, Chapter 6 provides the conclusions of the study and 

offers recommendations for future research based on the challenges/ difficulties 

encountered.  

1.9. Conclusion  

This study which builds on earlier research on the use of B. discolor as a bioindicator of 

air pollution (conducted by Areington et al., 2015) could assist the EMA in establishing 

this species as a bioindicator of air pollution within one of South Africa’s most polluted 

industrial areas. The range of biomarkers assessed in the study, also allow for the 

identification of suitable markers for measuring the effects of air pollution in tree 

leaves. The study’s findings highlight the value of using trees as bioindicators of air 

pollution within rapidly developing cities such as eThekwini and contribute to the 

growing body of knowledge on the use of plants as bioindicators of environmental 

change/disturbance. 
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CHAPTER 2 REVIEW OF LITERATURE 

2.1. Air pollution  

Air pollution refers to changes in the concentration of atmospheric gases to an extent 

that can be detrimental to environmental and human health (Taylor et al., 1994; Hijano 

et al., 2005; Assadi et al., 2011; Rai et al., 2011). Air pollution is a result of many 

anthropogenic activities, specifically the burning of fossil fuels for energy and 

transportation (Taylor et al., 1994; Bytherowicz et al., 2007; Ramanathan and Feng, 

2009). During the combustion of fossil fuels air pollutants are emitted into the 

atmosphere and once in the atmosphere, these pollutants can chemically interact and 

combine with one another to form secondary pollutants such as particulate matter (PM) 

and O3 (Ramanathan and Feng, 2009; Henneman et al., 2016). The main pollutant gases 

are: carbon dioxide (CO2), carbon monoxide (CO), nitrogen oxides (NOₓ), sulphur 

oxides (SOₓ) and ozone (O3) (Taylor et al., 1994; Ramanathan and Feng, 2009; Assadi 

et al., 2011; Rai et al., 2011). Air pollution is a transboundary event with no particular 

area being immune to it (Ramanathan and Feng, 2009). Furthermore, where the effects 

are being experienced may not necessarily be where the air pollution was emitted (Diab 

et al., 2002; Ramanathan and Feng, 2009; Rai et al., 2011). An example of this was 

discussed by Ramanathan and Feng (2009), where air pollution emitted in Europe could 

travel to Africa in less than a week due to the air flow and air transportation routes. 

2.2. Linking air pollution to climate change  

Air pollution and climate change are more interconnected than originally assumed 

(Bytherowicz et al., 2007). One link made between climate change and air pollution is 

that both arise from common sources (Swart et al., 2004). The element/compound 

chemistry that makes up the atmosphere is altered both chemically and physically when 

pollutants are released into the atmosphere (Mickley et al., 2004; Swart et al., 2004; 

Ramanathan and Feng, 2009). This altered atmosphere is what has been affecting 

current climatic conditions and will continue to do so, unless appropriate action such as 

a drastic reduction in the emission of greenhouse gases by developed and developing 

countries are undertaken (Mickley et al., 2004; Swart et al., 2004; Ramanathan and 

Feng, 2009).  
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The various pollutants and their concentrations play a role within the atmosphere when 

it comes to reflecting and/or absorbing incoming/outgoing UV radiation (Swart et al., 

2004; Ramanathan and Feng, 2009). Some pollutants (PM, O3 and SO2) can absorb and 

reflect incoming radiation promoting a phenomenon known as global cooling (Swart et 

al., 2004; Ramanathan and Feng, 2009), while others (such as CO2) trap outgoing UV 

radiation resulting in a phenomenon known as global warming, which is the current 

situation facing the planet (Swart et al., 2004; Bytherowicz et al., 2007; Ramanathan 

and Feng, 2009). These pollutants have negative impacts on the climate and weather 

patterns as well as on the hydrological cycle (from evaporation rates to precipitation) 

(Swart et al., 2004; Ramananthan and Feng, 2009). 

Even though air pollution is one of the established causes of climate change, policy 

makers as well as a few scientists still view the two as separate, unrelated events (Swart 

et al., 2004; Bytherowicz et al., 2007). Currently, policies for air pollution are short-

term while those for climate change are long-term; they also fail to recognise the link 

between the two (Swart et al., 2004). So, if climate change and air pollution are 

interlinked and affect the environment at both local and regional scales, then, mitigation 

policies should incorporate these linkages (Swart et al., 2004). 

2.3. Air pollution in South Africa  

Air pollution poses a major concern globally, but is especially heightened in developing 

countries such as South Africa (Emberson et al., 2001; Matooane and Diab, 2001; Rai et 

al., 2011; Henneman et al., 2016). More specifically, industrial areas of South Africa 

have the highest pollution concern (Emberson et al., 2001; Matooane and Diab, 2001; 

Josipovic et al., 2010; Naiker et al., 2012; Buthelezi and Davies, 2015; Henneman et 

al., 2016). Due to the high dependence on industries for economic growth, developing 

countries such as South Africa often overlook the damage these industries inflict on 

natural/indigenous vegetation, unless it is impacting on agricultural vegetation 

(Emberson et al., 2001; Matooane and Diab, 2001; Josipovic et al., 2010; Naiker et al., 

2012; Henneman et al., 2016). The pollutants that are associated with industrial 

activities that are of concern for South Africa are SO2, NO2, CO and O3 (Buthelezi and 

Davies, 2015). In the present study we examined the effects of SO2 pollution on an 

indigenous tree species (viz. Brachylaena discolor) growing within a highly polluted 
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industrial hub in the eThekwini Municipal Area (EMA, South Africa), specifically the 

South Durban Basin (SDB). 

2.4. Sulphur dioxide levels in South Africa  

Sulphur dioxide has been chosen as the reference pollutant for this study because SO2 

has been identified as a key pollutant in South Africa; it is the most predominant 

pollutant emitted within industrial areas across the country, and has damaging effects on 

vegetation (Emberson et al., 2001; Matooane and Diab, 2001; Diab et al., 2002; Hijano 

et al., 2005; Diab and Motha, 2007; Assadi et al., 2001; Buthelezi and Davies 2015). 

Sulphur dioxide is a problem in many developing countries including South Africa 

(Emberson et al., 2001; Rai et al., 2011). Sulphur dioxide is also the precursor to other 

harmful pollutants such as PM and acid rain which have serious ecological 

consequences (Ramanathan and Feng, 2009; Josipovic et al., 2010; Ramllal et al., 

2015). 

Air pollution, especially in terms of SO2, within the SDB (the area of interest in this 

study), is of major concern within South Africa (Matooane and Diab, 2001). The SO2 

levels within the SDB have been well documented over the years and previous studies 

have suggested it to be the major pollutant released by the petrochemical and chemical 

industries (Matooane and Diab, 2001; Diab et al., 2002; Diab and Motha, 2007; Rai et 

al., 2011). The focus on SDB is due to the fact that it is infamous for its high air 

pollution levels and has been deemed a “hotspot” for industrial air pollution 

(Matoooane and Diab, 2001; Diab and Motha, 2007; Buthelezi and Davies, 2015).  

2.5. Air pollution monitoring  

To avoid unnecessary damage to plants, animals and humans that may be caused by air 

pollution (Matooane and Diab, 2003; Ramanathan and Feng, 2009) monitoring air 

quality has become invaluable (Emberson et al., 2001; Josipovic et al., 2010). 

Monitoring air pollution efficiently allows for more effective air pollution mitigation 

strategies (Josipovic et al., 2010). Josipovic et al. (2010) highlighted the need for 

studies such as the present one, in saying that not much effort has gone into evaluating 

the effects of air pollution on indigenous vegetation within South Africa. Air pollution 

needs to be accurately monitored in order to completely understand these effects and 

strategies need to be accurately informed so that the appropriate policies are developed 
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in order to prevent unnecessary damage to the environment (Moodley et al., 2011). This 

monitoring of air pollution can be achieved by means of technology and/or biological 

methods (Conti and Cecchetti, 2001).  

2.5.1. Air pollution monitoring technology  

There are two main technological methods used in air pollution monitoring, analytical 

(active) and passive techniques (Conti and Cecchetti, 2001; Bogdal et al., 2013; 

Moodley et al., 2011; Snyder et al., 2013). Most instrumental samplers of air pollution 

are pollutant specific and generally monitor only one pollutant at a time (Josipovic et 

al., 2010; Snyder et al., 2013). In order for such samplers to be effective individuals 

making use of this technology also require extensive knowledge on how to access, 

process and interpret the data (Moodley et al., 2011; Bogdal et al., 2013; Snyder et al., 

2013). 

Passive samplers involve the molecular diffusion of the gases across a filter, which is 

specific to each pollutant species (Moodley et al., 2011; Josipovic et al., 2010; Snyder 

et al., 2013). They are more cost-effective than the conventional methods currently 

being used (Bogdal et al., 2013; Snyder et al., 2013). They are portable, unlike the 

analytical methods of monitoring, and offer more opportunity for air pollution data to be 

shared with the public (Moodley et al., 2011; Bogdal et al., 2013; Snyder et al., 2013). 

However, passive samplers cannot be left in the field to record data continuously over a 

prolonged period as there are limits to their operational time (which are product 

dependent) (Snyder et al., 2013). Passive samplers are also not reliable over large 

distances and therefore multiple samplers would be required, increasing the cost 

(Snyder et al., 2013). Those authors also insist that a large number of passive samplers 

measuring simultaneously would increase the reliability of the data being received. 

Passive samplers are still under rigorous scrutiny with respect to the level of accuracy 

when compared to analytical samplers (Josipovic et al., 2010; Snyder et al., 2013). 

Josipovic et al. (2010) reports the use of passive sampling in their study where these 

samplers were distributed across the Mpumalanga Highveld industrial area. However, 

the administrative responsibilities involved in a study of such magnitude are enormous 

(Josipovic et al., 2010). 
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The most conventional method of monitoring air pollution is by means of analytical 

monitoring techniques (Conti and Cecchetti, 2001). Analytical methods do however, 

require long periods of continuous data to attain accurate air pollution data for a specific 

region (Conti and Cecchetti, 2001; Diab and Motha, 2007; Moodley et al., 2011). They 

are also expensive to install, require extensive maintenance and man power to ensure 

that the equipment is accurate (Conti and Ceccehetti, 2001; Emberson et al., 2001; 

2003; Moodley et al., 2011; Naiker et al., 2012). Analytical techniques are stationary 

and require a continuous power source; this makes them vulnerable to data gaps and 

equipment malfunction (Moodley et al., 2011; Snyder et al., 2013). Due to the extensive 

knowledge needed to operate/interpret and cost associated with maintenance, the data 

received have often been limited to the party that install the monitoring station, which in 

the present study is the air quality monitoring stations owned by the eThekwini 

Municipality (Diab et al., 2002; Moodley et al., 2011; Snyder et al., 2013).  

 

A number of studies have used air pollution data generated using analytical techniques. 

Tripathi and Gautam (2007) for example, made use of analytical methods for 

monitoring air quality at various sites in India; the bioindicator stations were used to 

measure SO2, NOx and suspended PM. South African examples include Diab et al. 

(2002) and Diab and Motha (2007) who obtained data from some of the eThekwini 

Municipality air quality monitoring stations used in this study. Due to political and 

socio-economic circumstances within the EMA, air quality monitoring and enforcement 

of air pollution mitigation policies have not been prioritised over the years (Naiker et 

al., 2012; Buthelezi and Davies, 2015). This once again highlights the need for 

biological monitoring techniques within municipalities, such as eThekwini, as they offer 

a cheaper and more comprehensive alternative for monitoring air pollution (Conti and 

Cecchetti, 2001). 

2.5.2. Biological monitoring of air pollution 

Nature offers a quick, more feasible option for monitoring air pollution in the form of 

biological organisms known as bioindicators (Conti and Cecchetti, 2001; Moraes et al., 

2002; Madejón et al., 2004; Hijano et al., 2005). Bioindicators can be used to evaluate 

the detrimental effects of anthropogenically caused environmental stresses, such as air 

pollution, on abiotic and biotic components in a specific ecosystem (Conti and 
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Cecchetti, 2001; Hijano et al., 2005; Bermudez and Pignata, 2011). In order for an 

organism to qualify as a bioindicator it must fulfil certain requirements (Conti and 

Cecchetti, 2001). Some of those criteria include whether the potential bioindicator is an 

indigenous species, is able to withstand high pollution levels, has a wide geographical 

distribution, is abundant, easily accessed and is negatively impacted, without 

succumbing, as a result of the pollution levels in the surrounding atmosphere (Conti and 

Cecchetti, 2001; Manning et al., 2002; Moraes et al., 2002; Novak et al., 2003). Native 

in situ bioindicators allow for continuous monitoring over prolonged periods of time 

(Mičieta and Murín, 1998; Conti and Cecchetti, 2001; Novak et al., 2003). Monitoring 

air quality with bioindicators can prevent irreversible damage to ecosystems, aid with 

appropriate policy making, guard against global/local pollution standards being 

breached, complementing existing air quality monitoring technology, and ultimately 

alleviate the financial strain that air quality monitoring technology places on developing 

countries (Conti and Cecchetti, 2001; Naumann et al., 2007; Tripathi and Gautam, 

2007; Moodley et al., 2011; Naiker et al., 2012; Ismail et al., 2014). Bioindicators are 

also beneficial since they react to the cumulative effect of air pollution on the ecosystem 

rather than just individual pollutants as is the case with monitoring technologies (Conti 

and Cecchetti, 2001; Hijano et al., 2005; Ismail et al., 2014). Additionally, bioindicators 

belong to the biological system under air pollution threat and only biological organisms 

have the ability to reflect the tolerance limits of that specific environment (Conti and 

Cecchetti, 2001).  

A review of the literature illustrates the successful use of many bioindicators of air 

pollution. For example, a number of studies have shown the utility of lichens in 

monitoring air pollution (Conti and Cecchetti, 2001; Hijano et al., 2005). Furthermore, 

Moraes et al. (2002) successfully established tree species, viz. Pisidium guajava L. and 

Pisidium cattlyanum Sabine., as bioindicators of air pollution within Brazil. The authors 

placed tree saplings around various petrochemical and other industrial sites, with known 

air pollution levels, and evaluated the response of the saplings to the levels of air 

pollution. Successful attempts to establish trees as bioindicators of air pollution include 

Tillandsia capillaries Ruín & Pav, Tillandsia recurvata L., and Tillandsia tricholepis 

Baker. in Argentina (Bermudez and Pignata, 2011), Mangifera indica Linn., Cassia 

fistula Linn., and Eucalyptus hybrid in India (Tripathi and Gautam, 2007), Pinus 
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sylvestris L., Pinus nigra Arn. and Pinus mugo L. in Slovakia (Mičieta and Murín, 

1998), and Bauhinia blakeana Dunn. in Hong Kong (Lau and Luk, 2007). 

While research on bioindicators is extensive in other parts of the world there is little, to 

no, knowledge on their applicability within South Africa (Josipovic et al., 2010). These 

authors emphasised the need for more systematic and detailed research on indigenous 

vegetation in South Africa to examine whether the threshold for air pollution is being 

breached. While there are examples of bioindicators identified in South Africa, these are 

few and highly diverse. For example, ants were used as bioindicators in Richards Bay to 

monitor the heavy metals deposited around industrial areas (Majer and de Kock, 1992; 

Majer et al., 2007). Potamonautes warreni (Calman, 1918), a river crab was also used 

as a bioindicator of heavy metals in the Mooi River in the North West Province, South 

Africa (Schuwerack et al., 2001). Olowoyo et al. (2011) established lichens as a 

bioindicator for trace elements in Tshwane Municipality, South Africa; while tree bark 

of Acacia karroo Hayne was used as a bioindicator of hexavalent chromium (Cr VI) in 

the North West Province, South Africa (Mandiwana et al., 2006). 

There is, however, a critical need for more widespread and easily available bioindicators 

due to the lack of legislation and knowledge on threshold for South African vegetation 

to air pollution (Josipovic et al., 2010). 

2.6. Air pollution effects on plants  

To date, the focus has been largely on the effects of air pollution on human health and 

very few studies have focused on its effects on local vegetation (Emberson et al., 2001; 

Matooane and Diab, 2003). Air pollution can have detrimental effects on plants growing 

in different habitats (Emberson et al., 2001; Tiwari et al., 2006; Ramanathan and Feng, 

2009; Rai et al., 2011; Jochner et al., 2015). These effects cannot be ignored since 

plants are an important part of ecosystems and humans are dependent on them (Assadi 

et al., 2011; Rai et al., 2011). The effects of air pollution on plants are still not entirely 

known and the way a plant responds to air pollution is dependent on the combination of 

pollutants acting together, the concentration of each pollutant and the duration of 

exposure (Novak et al., 2003; Hijano et al., 2005; Assadi et al., 2011; Rai et al., 2011; 

Li and Yi, 2012). The response of plants to air pollution also varies across species 

(Hijano et al., 2005; Gillespie et al., 2011; Assadi et al., 2011; Minibayeva et al., 2009). 



 

17 

Exposure to air pollution for extended periods of time or short periods of very high 

levels of pollution can result in plant death (Hijano et al., 2005; Rai et al., 2011). 

Therefore, understanding the mechanisms of plant responses to stresses, such as air 

pollution in this study, is essential for the development of suitable conservation and 

climate change mitigation strategies (Chapin 1991; Taylor et al., 1994; Naumann et al., 

2007; Rai et al., 2011; Jochner et al., 2015). Plant responses to stress, in particular air 

pollution stress, can be biochemical, physiological and/or morphological (Naumann et 

al., 2007; Tripathi and Gautam, 2007; Assadi et al., 2011; Rai et al., 2011; Jochner et 

al., 2015).  

Some general responses of plants to air pollution stress include: damage to 

photosynthetic apparatus and mechanisms, which influences growth and development 

of the plant, premature senescence, programmed cell death, altered metabolic activity, 

gene expression, and eventually plant death (Naumann et al., 2007; Rai et al., 2011; 

Seyyednejad and Koochak, 2011; Li and Yi, 2012; Ahmad et al., 2014; Ismail et al., 

2014). Air pollution could also cause morphological damage such as chlorosis and 

necrosis (Rai et al., 2011; Seyyednejad and Koochak, 2011; Li and Yi, 2012; Jochner et 

al., 2015) and alter leaf area (Burton et al., 1991; Conti and Cecchetti, 2001; Tiwari et 

al., 2006). 

2.6.1. Biochemical effects 

Air pollution affects plants at the biochemical level when the air pollutants are taken up 

through the stomata of the leaves (Fig. 2.1 A) which results in the formation of intra or 

extracellular reactive oxygen species (ROS) (Arora et al., 2002; Gill and Tuteja, 2010; 

Rai et al., 2011). The production of ROS is a natural consequence of various metabolic 

processes in all organisms (Vranová et al., 2002; Minibayeva et al., 2009; Gill and 

Tuteja, 2010; Li and Yi, 2012). In fact, ROS has been implicated in signalling for other 

necessary metabolic activities such as germination, plant growth, development and 

programmed cell death; ROS can even cause the expression of stress-tolerant genes 

(Arora et al., 2002; Vranová et al., 2002; Minibayeva et al., 2009; Gill and Tuteja, 

2010; Li and Yi, 2012). Abiotic and biotic stresses disrupt the normal metabolic 

processes within organisms (Mittler et al., 2004; Ahmad et al., 2014). Organisms in 

general, and plants in particular, can control/manage natural ROS production and 
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understanding this relationship is vital in characterising plant biochemical responses to a 

stress (Mittler et al., 2004; Suzuki and Mittler, 2006). These biochemical responses are 

also usually among the first to occur under stressful conditions (Tripathi and Gautam, 

2007). 

2.6.1.1. Reactive oxygen species  

Biological redox reactions involving oxygen are a natural occurrence within cells of all 

biotic organisms (Arora et al., 2002; Vranová et al., 2002; Gill and Tuteja, 2010). 

Reactive oxygen species consist of free radicals, molecules and ions that evolve from 

oxygen (O2) (Sharma et al., 2012; Ahmad et al., 2014). The unique properties of the O2 

molecule are that it possesses two valence electrons (Gill and Tuteja, 2010). This makes 

O2 more inclined to absorb energy that reverses the spin on the valance electron to form 

singlet oxygen or to accept unpaired electrons/protons (to form all other ROS) (Gill and 

Tuteja, 2010; Sharma et al., 2012). These excess electrons are donated by the electron 

transport chain (ETC), which is responsible for the creation of the necessary energy 

(adenosine triphosphate [ATP]) required for cell metabolism such as photosynthesis in 

plants (Gill and Tuteja, 2010). The ETC within the mechanics of the photosynthetic 

process allows for the formation of ROS such as singlet oxygen (1O2), hydroxyl radical 

(·OH), superoxide anion radical (·O2
-) and hydrogen peroxide molecule (H2O2) (Fig 2.1 

C) (Arora et al., 2002; Vranová et al., 2002; Gill and Tuteja, 2010; Foyer and Shigeoka, 

2011). The sites where most ROS production occurs in plants are the mitochondria (the 

power station of the plants) and chloroplasts (Mittler et al., 2004; Gill and Tuteja, 2010; 

Suzuki et al., 2012; Ahmad et al., 2014). For example, excess electrons are released in 

the chloroplasts, and become highly reactive; due to this the electrons are more inclined 

to donate themselves to atmospheric O2 by the electron carrier ferredoxin (Fdred) and 

thus creating ·O2
- (Fig. 2.1 B) (Arora et al., 2002; Sharma et al., 2012). 

 

 

 



 

 

Figure 2.1 Flow diagram illustrating pro- and anti- oxidative metabolism in plants: (A) Leaf from a B. discolor tree at a sampling site, 

exposed to the air pollution, (B) Energy transformation processes and by-products produced via the electron transport chain, (C) Some of 

the reactions that lead to ROS formation, (D) The antioxidant system, (E) The delicate balance between the antioxidant system and ROS 

production in the context of stress, (F and G) the possible damage that can occur as a result of oxidative stress (Photo A and G: Minoli 

Appalasamy and Candyce Areington) (adapted from: Arora et al., 2002; Vranová et al., 2002; Gill and Tuteja, 2010). 
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Superoxide is the first ROS to be formed and is the precursor to other more harmful 

species (Fig 2.1 C) (Arora et al., 2002; Fleck et al., 2003; Gill and Tuteja, 2010; 

Sharma et al., 2012). Superoxide has a relatively short life span (usually micro seconds) 

within the tissue and is the least toxic ROS, ·O2
- is generally the precursor to other more 

long lived and toxic ROS (Vranová et al., 2002; Tripathi and Gautam, 2007; Ahmad et 

al., 2014). The formation of other ROS is commonly catalysed by the means of an 

enzyme or metal (Sharma et al., 2012). For example, the dismutase of ·O2
- (by means of 

superoxide dismutase [SOD]) leads to the formation of H2O2 (Vranová et al., 2002; 

Fleck et al., 2003; Gill and Tuteja, 2010; Sharma et al., 2012; Ahmad et al., 2014). 

Unlike ·O2
-, H2O2 is more toxic and long lived; making mobility across membranes 

easier and hence the potential range of damage larger than that of any other ROS (Fleck 

et al., 2003; Ahmad et al., 2009; Gill and Tuteja, 2010; Sharma et al., 2012). The fact 

that H2O2 does not have any unpaired electrons is what makes this a more stable 

molecule that is easy to move around the organism (Sharma et al., 2012). Hydrogen 

peroxide is the precursor to one of the most toxic ROS, the hydroxyl radical (·OH), 

which is produced through a Fenton’s reaction when H2O2 reacts with Fe2+ and/or 

through the Haber-Weiss reaction where H2O2 and ·O2
- react with each another (Bolwell 

and Wojtaszek, 1997; Fleck et al., 2003; Ahmad et al., 2009; Gill and Tuteja, 2010; 

Sharma et al., 2012). 

Leaves are in direct contact with the atmosphere, and hence, can be negatively 

influenced by air pollution (Fig 2.1 A) (Lau and Luk, 2000). Rai et al. (2011) explained 

that water within the apoplastic region of the leaf dissolves atmospheric SO2, which is 

taken up by the leaves through the stomata and once within the cytoplasm of leaf cells it 

is converted into sulphurous acid. This, in turn, is initiated by light and forms sulphite 

(SO3
2-) and bisulfite (HSO3

-) which further decomposes into sulphates (SO4
2-) (Arora et 

al., 2002; Hijano et al., 2005; Tripathi and Gautam, 2007; Rai et al., 2011; Li and Yi, 

2012). Sulphur dioxide breaks down into anions, which is facilitated by the ETC and 

can then evolve into various toxic species of itself (e.g. SO3
2-, SO3

-, HSO3
-) with by-

products such as ·OH, ·O2
- and H2O2 (Arora et al., 2002; Tripathi and Gautam, 2007; 

Rai et al., 2011) (Fig 2.1 C). Studies have shown that air pollution stress can lead to 

excessive production of many of these ROS within the plant tissues (Arora et al., 2002; 
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Tiwari et al., 2006; Tripathi and Gautam, 2007; Li and Yi, 2012), including leaving 

(Lau and Luk, 2000; Areington et al., 2015). 

2.6.1.2. ROS induced damage  

All organisms have the ability to counter the formation of ROS; however, excessive and 

uncontrolled production of ROS can undermine the survival of an organism 

(Minibayeva et al., 2009; Rai et al., 2011; Li and Yi, 2012). Abiotic or biotic stresses 

such as air pollution (increase in [SO2]) for example, can result in a ‘burst’ of ROS 

(Arora et al., 2002; Gill and Tuteja, 2010; Sharma et al., 2012). Should ROS be left 

unquenched, it could cause oxidative damage, that could severely hinder cellular 

functioning (Seyyednejad and Koochak, 2011; Gill and Tuteja, 2010). Irreparable 

damage to nucleic acids, proteins and lipids could also be consequential to excess ROS 

production and this can lead to programmed cell death and ultimately the death of the 

organism (Gill and Tuteja, 2010; Seyyednejad and Koochak, 2011; Li and Yi, 2012) 

(Fig. 2.1 F and G). 

The polyunsaturated fatty acids (PUFAs) in the cell membranes of organisms are 

particularly susceptible to attack by ROS (specifically ·OH), which in excess can lead to 

irreversible damage to membranes (Valavanidis et al., 2006; Ahmad et al., 2009; 

Sharma et al., 2012). Reactive oxygen species can break the double bond between the 

carbon atoms or sever the ester link between glycerol and fatty acids (Sharma et al., 

2012). This compromises the PUFAs by breaking the chains which lead to the 

breakdown of cell membranes and eventual loss of cell membrane integrity (Sharma et 

al., 2012). Peroxidation of cell membrane lipids is a common and most damaging 

consequence of oxidative stress in most organisms (Gill and Tuteja, 2010; Seyyednejad 

and Koochak, 2011; Li and Yi, 2012; Sharma et al., 2012). Lipid peroxidation (LPO) 

consists of three distinct stages: initiation, propagation and termination (being 

controlled by the antioxidant systems [discussed later]) (Gill and Tuteja, 2010; Sharma 

et al., 2012). The initiation stage involves the transfer of a hydrogen atom from a PUFA 

(specifically the unsaturated fatty acyl chain) to, generally, ·OH radicals which then 

forms a lipid alkyl radical (R·) (Gill and Tuteja, 2010; Sharma et al., 2012). The 

propagation stage involves the uptake of O2 which leads to a lipid peroxy radical 

(ROO·), which then through a further transfer of hydrogen atoms from an adjacent 
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PUFA results in other secondary reactive species such as: lipid alkoxyl radicals, 

aldehydes (e.g. malonyldialdehyde [MDA]), alkanes, and lipid expoxides (Gill and 

Tuteja, 2010; Sharma et al., 2012). These reactive species are then responsible for the 

breakdown of the PUFA chains which causes membrane damage which could cause 

leakage of electrolytes and an abnormal increase in membrane fluidity and permeability 

(Gill and Tuteja, 2010; Sharma et al., 2012). 

Reactive oxygen species can also modify the components that makeup proteins (e.g. 

amino acids) (Gill and Tuteja, 2010; Sharma et al., 2012). They do this through protein 

oxidation which is essentially irreversible. Reactive oxygen species will generally attack 

proteins that contain sulphur (Gill and Tuteja, 2010; Sharma et al., 2012). These 

modifications can lead to DNA damage (Gill and Tuteja, 2010; Sharma et al., 2012). 

The ·OH radical is generally known to attack purine, pyrimidine bases and deoxyribose; 

while singlet oxygen (1O2) attacks guanine (Gill and Tuteja, 2010; Sharma et al., 2012). 

These lesions can ultimately lead to the deletion of bases, cross links, strand breaks or 

base modification, all of which can affect the physiology and morphology of the 

organism (Gill and Tuteja, 2010; Sharma et al., 2012). 

2.6.1.2. Natural defence mechanisms 

Due to the natural occurrence of oxidative metabolism within organisms, there are 

natural/house-keeping defence mechanisms in place to aid in the detoxification of 

harmful and/or excessive ROS into less toxic ROS or other chemicals (Arora et al., 

2002; Vranová et al., 2002; Ahmad et al., 2008; Gill and Tuteja, 2010; Varjovi et al., 

2015). A plant’s survival is dependent on the balance between ROS production and the 

antioxidant system (Arora et al., 2002; Mittler et al., 2004; Ahmad et al., 2008; Ahmad 

et al., 2014; Varjovi et al., 2015) (Fig. 2.1 E). The antioxidant system that is 

responsible for ensuring the quenching and detoxification of ROS includes enzymatic 

and non-enzymatic antioxidants (Vranová et al., 2002; Ahmad et al., 2008; Gill and 

Tuteja, 2010; Ahmad et al., 2014; Varjovi et al., 2015). The main enzymatic antioxidant 

systems includes: superoxide distmutase (SOD), catalase (CAT), ascorbate peroxidise 

(APX), glutathione peroxidise (GPX) and glutathione S-transferase (GST) (Mittler et 

al., 2004; Gill and Tuteja, 2010; Ahmad et al., 2014; Varjovi et al., 2015) (Fig 2.1 D). 

Non-enzymatic antioxidants which were not examined in this study include: ascorbic 
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acid (vitamin C), glutathione (GSH), proline (Pro), α-tocopherols (vitamin E), 

carotenoids (Car) and flavonoids (Gill and Tuteja, 2010; Ahmad et al., 2014). These 

antioxidants can be located at different antioxidant-specific locations within the cells 

(Varjovi et al., 2015). 

Superoxide dismutase is central to defending the organism against oxidative stress; for 

example, SOD dismutases ·O2
- by converting it to H2O2 (which is then quenched further 

by CAT) and O2, hence avoiding the formation of ·OH (Ahmad et al., 2008; Sharma et 

al., 2012; Ahmad et al., 2014). Superoxide dismutase has been suggested to be a very 

important antioxidant against excessive ROS (Arora et al., 2002; Tripathi and Gautam, 

2007; Gill and Tuteja, 2010; Li and Yi, 2012; Sharma et al., 2012; Ahmad et al., 2014). 

The increased SOD activity during a stress condition can result in an increase in the 

stress tolerance of the organism (Ahmad et al., 2014). Catalase is the enzyme that can 

be specific for quenching H2O2 by converting it to O2 and H2O (Arora et al., 2002; 

Fleck et al., 2003; Gill and Tuteja, 2010; Ahmad et al., 2008; Sharma et al., 2012; 

Ahmad et al., 2014). Catalase is also said to be the most active enzyme among the 

enzymatic antioxidants, having the highest turnover rate making it irreplaceable to an 

organism under stress conditions (Ahmad et al., 2008; Arora et al., 2002; Gill and 

Tuteja, 2010; Sharma et al., 2012). This is largely because CAT is generally found 

across all parts of the cell (Varjovi et al., 2015). According to Sharma et al. (2012), both 

SOD and CAT activity in plants increase with an increase in abiotic/biotic stress.  

Ascorbic acid, a non-enzymatic antioxidant, has been extensively studied (Ahmad et al., 

2008; Gill and Tuteja, 2010; Sharma et al., 2012; Ahmad et al., 2014). Ascorbic acid is 

an overall detoxifier for excessive ROS due to its ability to donate electrons to help 

minimise damage to/and protect membranes, but ascorbic acid has also been known to 

quench H2O2 (Ahmad et al., 2008; Gill and Tuteja, 2010; Sharma et al., 2012; Ahmad et 

al., 2014). Glutathione is responsible for the protection of many cellular components 

(e.g. the protection of nucleic acids, proteins and membrane activity); being a general 

scavenger it has the ability to quench: 1O2, H2O2 and ·OH (Ahmad et al., 2008; Gill and 

Tuteja, 2010; Sharma et al., 2012; Ahmad et al., 2014). Alpha (α)-tocopherols acts as a 

protective shield for lipids against lipid radicals and hence protects the cells from lipid 
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peroxidation (Ahmad et al., 2008; Gill and Tuteja, 2010; Sharma et al., 2012; Ahmad et 

al., 2014).  

2.6.2. Physiological effects  

2.6.2.1 Chlorophyll fluorescence 

Light is necessary for photosynthesis to occur and chlorophyll is responsible for 

harvesting the light energy (Murchie and Lawson, 2013). However, all the light that is 

absorbed by plants cannot all be effectively utilised; therefore plants have strategies that 

safely dispose of the excess light (Naumann et al., 2007). These mechanisms include 

the re-emittance of light by means of heat, fluorescence or non-photochemicals (such as 

the xanthophyll cycle) (Naumann et al., 2007). Chlorophyll fluorescence, in essence, is 

the measurement of light that is re-emitted by photosystem II (PSII) (Murchie and 

Lawson, 2013).  

Chlorophyll fluorescence is directly linked to the plant’s ability to photosynthesise; 

hence this biomarker has the potential to monitor the overall health of the plant 

(Murchie and Lawson, 2013). When measuring chlorophyll fluorescence, there are 

various parameters that can be considered, for example, Fo represents the minimum 

value for chlorophyll fluorescence (when PSII has been exposed to light); Fm is the 

maximum value for chlorophyll fluorescence (when PSII has not been exposed to light) 

(Naumann et al., 2007; Murchie and Lawson, 2013; Ismail et al., 2014) and Fv is the 

difference between Fo and Fm. This gives rise to the commonly used indicator of stress 

in plants, viz. Fv/Fm, which is a measure of the maximum quantum yield of PSII under 

dark adaptation conditions (Naumann et al., 2007; Murchie and Lawson, 2013; Ismail et 

al., 2014). Chlorophyll fluorescence has been used as a biomarker of various plants’ 

stress (e.g. Myrica cerifera L. and Phragmites australis Cav. to salt and drought stress 

[Naumann et al., 2007]; and Pisum sativum L. to O3 stress [Ismail et al., 2014]). 

Murchie and Lawson (2013) state that healthy leaves will experience a Fv/Fm value of 

ca. 0.83 and this value will decrease if the plant is exposed to a stress (Naumann et al., 

2007; Murchie and Lawson, 2013; Ismail et al., 2014). It is also important to note that 

chlorophyll fluorescence can indicate stress before physical manifestations or even 

before chlorophyll content is altered (Naumann et al., 2007; Ismail et al., 2014). 



 

25 

2.6.2.2. Chlorophyll content  

Chlorophyll is the main pigment in chloroplasts and is responsible for the absorption of 

light, which aids in the production of the energy plants require for survival (Assadi et 

al., 2011; Tanee and Albert, 2013). Chlorophyll absorbs light to initiate a process of 

conversion of water and oxygen to carbohydrates that are necessary for plant growth 

and survival (Tanee and Albert, 2013). Assadi et al. (2011) stated that the chlorophyll 

content provides valuable information on the overall health of the plant, especially in 

terms of its photosynthetic capabilities. An example would be the study of Rai et al. 

(2011) who showed that high [SO2] would lead to the breakdown of chlorophyll within 

leaves. Both an increase or a decrease in chlorophyll content as a result of air pollution 

have been reported; however, this is dependent on the species observed, as well as the 

combination of pollutants involved (Hijano et al., 2005; Tiwari et al., 2006; Tripathi 

and Gautam, 2007; Assadi et al., 2011; Tanee and Albert, 2013; Areington et al., 2015).  

2.6.3. Morphological effects 

2.6.3.1. Leaf area  

Leaves house the photosynthesis machinery and therefore a change in leaf area (LA) 

affects these processes (Burton et al., 1991). Gas exchange, light absorption, 

evapotranspiration and photosynthesis are dependent on leaf area (Burton et al., 1991). 

Leaf area has been reported to be negatively affected by SO2 levels and air pollution in 

general (Burton et al., 1991; Conti and Cecchetti, 2001; Tiwari et al., 2006; Assadi et 

al., 2011; Rai et al., 2011). A plant may reduce its leaf area as a defence mechanism, in 

order to limit the amount of surface that is being exposed to air pollution (Assadi et al., 

2011; Jochner et al., 2015). This parameter can reflect long term effects of air pollution 

on the plants and provides evidence as to whether or not the plant is coping with the 

stress (Assadi et al., 2011; Jochner et al., 2015).  

2.7. Biomarkers  

A bioindicator can respond morphologically, physiologically and biochemically to an 

environmental stress (Tripathi and Gautam, 2007; Assadi et al., 2011; Bermudez and 

Pignata, 2011; Jochner et al., 2015). These responses represent biomarkers and by 

measuring various biomarker responses to air pollution stress and the air quality of a 

specific ecosystem can be monitored (Tripathi and Gautam, 2007; Bermudez and 
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Pignata, 2011). Oxidative metabolism has been considered to be a reliable biomarker for 

air pollution stress by many authors (Tripathi and Gautam, 2007; Ismail et al., 2014). 

When any organism is placed under stress, the biochemical responses are the first to be 

initiated (Tripathi and Gautum, 2007; Rai et al., 2011). Biochemical biomarkers can, 

therefore, act as an early form of stress detection (Tripathi and Gautam, 2007; Rai et al., 

2011; Ismail et al., 2014). By determining whether thresholds for air pollution have 

been reached within a specific ecosystem before physiological and morphological 

manifestations occur thereby increases the chance of survival for the ecosystem and 

shortens the recovery time (Hijano et al., 2005; Naumann et al., 2007; Tripathi and 

Gautam, 2007; Rai et al., 2011; Seyyednejad and Koochak, 2011; Ismail et al., 2014).  

A biomarker should be easily measurable and produce specific trends unique to the 

stress that is being monitored as to not be confused with other environmental 

processes/stresses (Bermudez and Pignata, 2011). The biomarkers selected in this study 

were based on published reports of their value in reflecting/responding to a wide range 

of environmental stresses. The ROS that will be examined in this study, viz. ·O2
- and 

H2O2, have been used in previous studies on plant responses to air pollution (Tripathi 

and Gautum, 2007). Bermudez and Pignata (2011) explained that although it is widely 

known that the antioxidant system is a defence mechanism for excess stress, it has 

rarely been used as a biomarker. With previous studies showing the value of this system 

as a potential biomarker (Moraes et al., 2002; Bremudez and Pignata, 2011), it was 

examined here. The antioxidants measured include: TAA, SOD and CAT. Electrolyte 

leakage is another biomarker that has been shown to be widely reported as a useful 

biomarker of air pollution (Conti and Cecchetti, 2001; Bremudez and Pignata, 2011). 

Lipid peroxidation, an indicator of excess ROS mediated oxidative damage has also 

been used as a biomarker in many previous studies (Conti and Cecchetti, 2001; Tiwari 

et al., 2006; Li and Yi, 2012; Sharma et al., 2012) and was examined here. 

The physiological biomarkers used included chlorophyll fluorescence and chlorophyll 

content (Tiwari et al., 2006; Assadi et al., 2011; Murchie and Lawson, 2013; Tanee and 

Albert, 2013). Chlorophyll fluorescence is especially valuable due to its non-destructive 

way of assessing plant health (Murchie and Lawson, 2013; Ismail et al., 2014). 

Physiological changes/responses generally occur after biochemical and before 
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morphological responses, thus making it a useful biomarker of air pollution as well 

(Naumann et al., 2007; Assadi et al., 2011; Ismail et al., 2014).  

Morphological biomarkers such as LA, which was also measured in this study, have 

been used in many studies with great sucess (Novak et al., 2003; Tiwari et al., 2006). 

Chlorosis and necrosis were not examined in this study (Moraes et al., 2002; Novak et 

al., 2003; Hijano et al., 2005; Bermudez and Pignata, 2011; Jochner et al., 2015). 

Though chlorosis and necrosis are quick and easy to determine they usually manifest 

when the leaves are at a point of no return (Tripathi and Gautam, 2007; Assadi et al., 

2011; Seyyednejad and Koochak, 2011) and are not easily quantifiable. 

The organ of choice for this study was the leaf. Leaves are in direct contact with the 

atmosphere and are thus the most exposed to air pollution (Madejón et al., 2004; Rai et 

al., 2011; Seyyednejad and Koochak, 2011) (Fig. 2.1. A). Leaves have stomata which 

allow for gaseous exchange in order for photosynthesis to occur, making the leaf 

vulnerable to the infiltration of harmful pollutants (Rai et al., 2011). In order to 

establish a bioindicator, the correct biomarkers that are sensitive enough to the air 

pollution that are best reflected within the species being examined need to be first 

determined. Moraes et al. (2002) emphasised the value of examining biochemical, 

physiological and morphological biomarkers when establishing trees as bioindicators 

for air pollution. A similar approach was undertaken which compared the responses of 

various biochemical, physiological and morphological biomarkers of plant stress to SO2 

pollution in B. discolor tree leaves. 
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CHAPTER 3 MATERIALS AND METHODS 

3.1. Site selection  

Selection of the industrial (treatment) sites used in this study was based on two factors: 

(a) the presence of an air quality monitoring station that measured ground-level SO2 

levels and, (b) the presence of a minimum of four mature B. discolor trees, within 1000 

m of the monitoring station.  

The following three study sites met the requirements mentioned above (co-ordinates of 

monitoring station given in parenthesis): Prospecton (30˚ 0' 10.44"S; 30˚ 55' 43.64"E), 

Ganges (29˚56' 54.60"S; 30˚57' 52.63"E) and Southern Works (29˚57' 25.20" S; 30˚58' 

23.77"E). As shown in Fig. 3.1, all three treatment sites were located within the SDB, 

which forms part of the EMA, in KwaZulu-Natal, South Africa. Geographic co-

ordinates of the individual trees sampled are given in Table A (see Appendix). The 

control trees were housed for one month before and for the duration of the study in a 

greenhouse (after Areington et al., 2015) on the Westville Campus, University of 

KwaZulu-Natal (29˚ 49'3.76"S; 30˚56'23.56"E), located within the EMA, ca. 19 km 

from the SDB.  

3.2. Air pollution data  

The air pollution, more specifically SO2 data used in this study, was measured by 

eThekwini Municipality-owned monitoring stations at each of the three treatment sites. 

Ground-level SO2 concentrations were measured hourly for the duration of the study. 

The SO2 detector installed at these monitoring stations used a fluorescent analyser 

(Monitor lab 9850B, 2003, Europe/Scotland). Sulphur dioxide was selected as an 

indicator of air pollution in this study since it is the only common pollutant measured 

across all three monitoring stations selected; however, it should be noted that a number 

of other pollutants have been associated with industries in the SBD (e.g. CO, O3, NO2 

[Buthelezi and Davies, 2015]). The data received was processed to remove all erroneous 

values prior to any statistical analyses. 



 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Location of eThekwini Municipal Area within South Africa, (A) and study sites within the South Durban Basin (B). Locations 

of the monitoring station and the four trees (1-4) sampled within a 1 km buffer zone at each study site (Prospecton [C], Ganges [D] and 

Southern Works [E]) (Source for Base Maps and aerial photos: NatGeo Mapmaker Interactive; adapted by Candyce Areington).
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Due to the limited availability of the equipment, SO2 levels were measured within the 

greenhouse in which the control trees were housed and at three random points (n=8), 

within 1 km of the greenhouse (on the same university campus) only during autumn 

(March-May, 2014). Measurements were carried out using a portable gas analyser (PG-

350E, HORIBA, Ltd, UK). The SO2 detector operates with a cross-flow modulation 

using a cross flow modulation non-dispersive infrared (NDIR) absorption method 

(according to the European Standard: DIN EN 15267-3, DIN EN 14181). 

3.3. Plant material and sampling regime 

Leaves were used for measurement of biomarker responses to SO2 (after Lau and Luk, 

2001; Tripathi and Gautam, 2007; Suzuki et al., 2009 and Areington et al., 2015). Trees 

at the treatment and control sites were always sampled >24 h after a rain event, with no 

tree being sampled more than once on any particular day. Sampling was carried out in 

each of the four seasons: autumn (March-May, 2014), winter (June–August, 2014), 

spring (September–November, 2014) and summer (December–February, 2014-2015), 

since plant biomarker responses to air pollution can differ across seasons (Novak et al., 

2003; Hijano et al., 2005). To accommodate for the potential effects of wind direction 

(Rai et al., 2011), leaves from each of the four trees were collected from all four 

cardinal directions (north, east, south and west) at each sampling event. The four trees at 

each site were sampled until a sample size n=24 was achieved for each parameter, for 

each season.  

On each sampling day four 30-40 cm branches (one from each cardinal direction) were 

detached from the sampled tree and placed into water. The branches were transported 

back to the lab where the leaves were plucked and gently rinsed in deionised water 

(d.H2O), to remove particulate matter before being processed for a range of bioassays. 

In order to avoid the confounding effects of leaf age (Rai et al., 2011), the third leaf 

from the top of each branch (excluding immature leaves that were yet to shed its white 

tomentulose, which commonly coats the adaxial surface in young B. discolor leaves 

[authors observations; Appendix B]) was used for all bioassays. 

3.4. Ex situ control  

Based on recommendations made by Areington et al. (2015) with regards to the use of a 

greenhouse-based control in a study of this nature, the control trees were for one month 
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before (to allow acclimation) and for the duration of the study were grown in a 

greenhouse that exhibited no measureable levels of SO2. Furthermore, to avoid other 

stresses the control trees were watered (ca. 500 ml) thrice a week and treated with 

nutrients (0.1 g Dr. Fisher’s Multifeed® Classic [Grovida Horticultural Products CC, 

Durban, South Africa] in 100 ml d.H2O) once a month.  

The greenhouse was constructed of clear 5 mm thick Naxel polycarbonate sheeting 

(Mazey Plastics, South Africa) which has a light transmittance of ±90%. Nevertheless, 

light intensity, measured using a portable photosynthesis system (Li-6400, LI-COR, 

Lincoln, NE, USA) at midday on four clear sunny days; was slightly lower in the 

greenhouse than at the treatment sites. In order to investigate whether this difference in 

light intensity had any confounding effects on the results obtained, the light-dependent 

biomarkers measured in this study, viz. chlorophyll content and leaf area were also 

measured (in autumn and spring) for four trees located within 1 km of the greenhouse in 

which the control trees were housed. These data were in turn related to the SO2 

measurements carried out within 1 km of the greenhouse (describe above) in order to 

validate the trends observed for chlorophyll content and leaf area data collected at the 

treatment and control sites.  

3.5. Biochemical parameters  

All fine chemicals used in the biochemical assays described below were supplied by 

Sigma-Aldrich (Germany), unless otherwise stated. Additionally, all centrifugation of < 

5,000 rpm, whenever needed was carried out using a Eppendorf™ 5 ml tube centrifuge 

(Eppendorf Centrifuge 5702, Hamburg, Germany): while all centrifugation of > 10,000 

rpm was carried out using a Eppendorf™ cooling centrifuge (Microcentrifuge 5415 R, 

Hamburg, Germany). Spectrophotometric measurements were carried out using a 

Shimadzu-UV Vis spectrophotometer (Model UV-2600, Shimadzu, Japan). All 

biochemical assays were carried out on control and treatment leaves (n=24, for each 

season). 

3.5.1. Intracellular superoxide  

Estimation of leaf intracellular superoxide production was carried out as per Elstner and 

Heupel (1976). The fresh leaves were weighed and then ground using liquid nitrogen 

(LN) pre-chilled mortar and pestle with 100 mg of insoluble PVP 
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(polyvinylpyrrolidone) and 4 ml of ice cold phosphate buffer (65 mM, pH 7.8). The 

homogenate was centrifuged at 4,400 rpm for 30 min. One ml of this supernatant was 

mixed with 1 ml of 10 mM hydroxylamine HCl (1.7 mg hydroxylamine HCl dissolved 

in 25 ml of 65 mM phosphate buffer, pH 7.8) and incubated for 30 min in the dark. 

After incubation, 0.5 ml of the above mixture was mixed with 0.5 ml of 17 mM 

sulphanilamide (29.27 mg sulphanilamide in 10 ml of phosphate buffer, pH 7.8) and 0.5 

ml of 7 mM 2-naphthylamine (prepared by dissolving 20.04 mg 2-naphthylamine in 400 

μl of 100% ethanol and then brought to a final volume of 20 ml using 65 mM phosphate 

buffer, pH 7.8). Finally 30 μl of 5 N HCl was added and the solution was left for 30 min 

in the dark. This mixture was centrifuged at 13,000 rpm for 5 min at 4°C and the 

absorbance of the supernatant was measured at 530 nm using a spectrophotometer. A 

standard curve was constructed using sodium nitrite (NaNO2) at concentrations 0.1 μM 

to 50 μM and was used to estimate superoxide concentration which was expressed in 

nmol g-1 on a fresh weight (FW) basis. 

3.5.2. Intracellular hydrogen peroxide  

Leaf intracellular hydrogen peroxide production was measured according to Jana and 

Choudhuri (1981) and modified by Hung et al. (2008). Using 4 ml of phosphate buffer 

(50 mM, pH 6.5), which contained 1 mM hydroxylamine; fresh leaves were ground 

with LN using a pre-chilled mortar and pestle with 100 mg of insoluble PVP. The 

homogenate was centrifuged at 4,400 rpm for 30 min. The supernatant was removed 

and mixed with 0.1% titanium (III) chloride in 20% sulphuric acid. After incubation in 

the dark for 15 min, the mixture was centrifuged at 4,400 rpm for 30 min. The 

absorbance of the supernatant was read at 410 nm using a spectrophotometer. The levels 

of H2O2 within the leaves were calculated using the extinction co-efficient 0.28 μmol g-1 

and expressed as μmol H2O2 g-1 FW. 

3.5.3. Total aqueous antioxidants  

Brachylaena discolor leaves were measured for total aqueous activity (TAA) using the 

using 2,2’-azino-bis-3-ethylbbenzthiazoline-6-sulphonic acid (ABTS) assay (after Re et 

al., 1999; as described by Berjak et al., 2011). Fresh leaves were weighed and ground 

with LN in a pre-chilled mortar and pestle along with 100 mg of insoluble PVP. The 

ground tissue was then extracted using 4 ml of a 50 mM potassium phosphate buffer, 
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pH 7.0 (containing 1 mM CaCl2, 1 mM KCl and 1 mM EDTA) then placed in 5 ml 

tubes. The extract was then centrifuged at 4,400 rpm and then the extract transferred 

into chilled 2 ml Eppendorf® tubes. The extract was briefly vortexed (Heidolph® Reax 

2000, Gemini BV, the Netherlands) every 5 min for 15 min and then centrifuged at 

14,000 rpm for 30 min at 4°C. The supernatant was then collected and held on ice for 

the assay. 

Approximately 12-16 h prior to the assay, the ABTS solution (7 mM ABTS and 2.45 

mM potassium persulphate in 1 ml of d.H2O) was prepared. In order to ensure an initial 

absorbance of 0.68-0.72 at 734 nm, the ABTS was diluted with a 0.1 M phosphate 

buffer saline (PBS; pH 7.4) to generate the working solution. Five μl of the antioxidant 

extract was then added to 1 ml of the working solution and the absorbance measured at 

0 and 120 seconds using a spectrophotometer at 734 nm. Using 0.1-1.5 M Trolox™ (6-

hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid) dissolved in PBS, a standard 

curve was constructed and used to calculate TAA activity which was expressed as μmol 

Trolox equivalent g-1 FW. 

3.5.4. Superoxide dismutase 

Leaf superoxide dismutase (SOD) activity was measured according to Beauchamp and 

Fridovich (1971) as discussed by Varghese et al. (2011). Fresh leaves were processed as 

described for TAA extraction, up until the stage where the supernatant was incubated on 

ice.  Immediately thereafter, the supernatant was transferred to the dark and 50 µl of the 

extract was mixed in a cuvette with 1715.4 µl of 50 mM sodium phosphate (pH 7.8), 

23.4 µl (17 µM) riboflavin, 200 µl (0.01 M) methionine and 11.2 µl (0.056 mM) 

nitroblue tetrazolium (NBT). The cuvette was inverted and then read, at 0 min at 560 

nm using a spectrophotometer.  The cuvette was then placed in a container lined with 

aluminium foil and a 55-W fluorescent light, to activate of the reaction. After 10 min 

under the light the absorbance was read again at 560 nm. The auto-oxidation of NBT 

was used to calculate the enzymic activity of SOD. One unit of SOD was equivalent to 

50% inhibition of photoreduction of NBT by the enzyme. SOD activity was expressed 

as units of SOD g-1 FW. 
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3.5.5. Catalase activity 

The Catalase (CAT) activity was measured as per Claiborne (1985). Fresh leaves were 

processed as described for TAA extraction, up until the stage where the supernatant was 

incubated on ice. A decline in absorbance due to the breakdown of H2O2 was measured 

by mixing 250 µl of the tissue extract with 1750 µl of 0.05 M phosphate buffer (pH 7.0) 

and 1000 µl of 0.019 M H2O2 (30%) to give a total volume of 3000 µl (kept in the 

dark). The decline in absorbance of the supernatant was measured by reading it at 240 

nm at 0 sec and 180 sec, using a spectrophotometer. CAT activity was expressed as 

µmol CAT min-1 g-1 FW. 

3.5.6. Lipid peroxidation  

Fresh leaves were ground with LN in a pre-chilled mortar and pestle with 5 ml of 20% 

trichloroacetic acid (TCA) in 0.5% thiobarbituric acid (TBA), as described by Heath 

and Packer (1968). The homogenate was then boiled in a water bath for 30 min at 95°C 

after which the homogenate was immediately cooled on ice for 10 min. The homogenate 

was then centrifuged for 45 min at 4,400 rpm. The absorbance of the supernatant was 

measured at three wavelengths: 440 nm, 532 nm for malondialdehyde (MDA) 

estimation and 600 nm for turbidity estimation. To ensure that there was no interference 

of sugar in the estimation, the absorbance at 440 nm was used in the formula as per Du 

and Bramlage (1992) to calculate the MDA (Refer to Appendix, Formula C.). The 

calculations for lipid peroxidation were expressed as µmol g-1 FW. 

3.5.7. Electrolyte Leakage 

Fresh leaves were cut into 1 cm2 segments weighing ca. 0.1 g and used to measure 

electrolyte leakage according to Santamaría and Martín (1997). These leaf segments 

were placed into test tubes filled with 20 ml d.H2O. The tubes were then incubated in a 

water bath held at 30°C for 2 h, after which 1.5 ml of leachate (from each tube) was 

pipetted into two cells (per sample) of the conductivity plate. Electrolyte leakage was 

then measured using an electrical conductivity meter (CM 100-2 Conductivity Meter, 

Reid and Associates, South Africa). The two pseudoreplicated readings for each sample, 

expressed as Sm-1 g-1 FW, were averaged prior to any further analyses. 
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3.6. Physiological parameters 

3.6.1. Leaf chlorophyll fluorescence  

Leaf maximum quantum efficiency of PSII (Fv/Fm) was measured using a portable pulse 

amplitude modulated fluorometer (Li-6400XT, LI-COR, Lincoln, NE, USA). The 

branches that were collected from the treatment sites were placed in the dark for 40 min, 

to allow for all electrons to drain from the photosystems (Kitajima and Butler 1975; 

Moradi and Ismail, 2007). One measurement per leaf was taken on the lamina, midway 

between the base and the apex of the third leaf from the top. 

3.6.2. Leaf chlorophyll content  

Leaf chlorophyll content was measured using a hand-held chlorophyll meter SPAD 

(Minolta SPAD-502, Minolta Camera Co. Ltd.). The SPAD was then used to take three 

measurements: one at the apex, one to the right and one to the left of the midrib as 

shown in Fig 3.2 (after Coste et al., 2010). The pseudoreplicates were averaged for each 

and chlorophyll content was expressed in terms of SPAD units. As discussed earlier, in 

order to validate the trends observed, leaves (n=24) of B. discolor trees located 1 km 

from the greenhouse were measured for chlorophyll content in autumn and spring. 

 

 

 

 

 

 

 

 

Figure 3.2 Three points (indicated with circles) on a B. discolor leaf where the 

chlorophyll content was measured using a hand-held chlorophyll meter. (Photo: Minoli 

Appalasamy and Candyce Areington) 
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3.7. Morphological parameter 

3.7.1 Leaf area 

Leaf area (LA) was measured in cm2 using a leaf area meter (CID, Inc., CI-202 Area 

Meter; Lincoln, Nebraska, USA) as per Tiwari et al. (2006). As discussed earlier, in 

order to validate the trends observed, leaves (n=24) of B. discolor from trees located 

with 1 km of the greenhouse were also measured for leaf area in autumn and spring. 

3.8. Qualitative data 

A series of driven transects were carried out each site in order to characterise the 

potential air pollution sources and land-use practices that could have impacted on the 

trees sampled. Photographic images were used to capture information on the location of 

the sampled trees relative to different land-use types, e.g. industrial, residential, 

commercial, green spaces and roads. 

3.9. Statistics 

All statistical analyses were performed (at level of 0.05 level of significance) using 

PASW 23 statistic version 23 (SPSS Inc., Chicago, Illinois, USA). All biomarkers data 

were tested for normality using the Shapiro-Wilk test, while the Kolmogorov-Smirnov 

test was used to test the air pollution data for normality. Non-parametric data was 

subject to one of two transformations: log or square root. Where biomarker data was not 

normally distributed, a non-parametric Analysis of Variance (ANOVA) was run on 

untransformed ranked data. For normally distributed data, a two-way ANOVA was used 

to test for significant differences, across the cardinal directions within sites and seasons; 

within sites across seasons; across sites within seasons; and finally across sites with 

annual data (i.e. biomarker data for different seasons pooled). A Kruskal-Wallis 

test/ANOVA was used to test for seasonal differences in [SO2] across sites within 

season and for annual data (i.e. SO2 data for different seasons pooled). The Pearson’s 

correlation test was used to test for relationships between individual biomarkers and 

seasonal [SO2] (if the assumptions for normality, even after transformations, were not 

met a non-parametric Spearman’s correlation test was used).  
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CHAPTER 4 RESULTS 

4.1. Introduction 

This chapter presents the primary and secondary data generated in this study. It also 

reports on the results of the statistical analyses used to compare data for individual 

biomarkers across the three industrial (treatment) sites and the control. Statistical 

relationships between individual biomarkers and seasonal atmospheric [SO2] at the 

different sites are also described, in order to assess the suitability of the various 

biomarkers. The light intensity was slightly significantly different between the 

greenhouse control (1938.65±100.28 µmol of photons m-2 s-1) and the treatment sites 

(2027.65± 124.25 µmol of photons m-2 s-1) (n=20, p<0.05, T-test). This then led to the 

additional chlorophyll content and leaf area measurements data for B. discolor trees 

located outside (but within 1 km) of the greenhouse in which the controls were housed. 

These data are also presented in order to validate the trends reported for these two light 

dependent biomarkers.  

Initial analyses of data for all biomarkers revealed no significant difference (p>0.05, 

ANOVA) across leaves from different cardinal directions within sites; so data for the 

different cardinal directions were pooled for each site in all subsequent analyses. For 

these analyses biomarker data was compared within sites across seasons, across sites 

within seasons and across sites with biomarker data for different seasons pooled 

(henceforth referred to as ‘annual data’). Biomarker data across sites were also related 

to seasonal SO2 levels via correlation analyses.  

4.2. Air pollution 

Within sites, SO2 levels were significantly different across seasons, except for Southern 

Works where levels were comparable in summer, autumn and spring but significantly 

lower in winter (Table 4.1). When compared within sites, across seasons, SO2 levels at 

Prospecton and Ganges were highest in winter, followed by autumn, spring and 

summer. The highest SO2 levels were recorded at Ganges (in winter) and the lowest at 

Prospecton (in summer). Annual average atmospheric SO2 levels were significantly 

higher at Southern Works and lowest at Prospecton. The levels of SO2 at the control site 

(within a greenhouse) were below the detectable limits of the instrument. The SO2 

levels measured during autumn at three random points exterior to, but within 1 km of 
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the greenhouse (ex situ) control site (in the same university campus) were lower 

(2.73±0.31 ppb) than the treatment sites but higher than the control (statistical analysis 

was not possible due to n=8 for the control validation site as opposed to n>3500 for the 

treatment sites). 

Table 4.1 Ground level SO2 concentrations (ppb) measured at the three industrial sites 

investigated. Values of ground-level SO2 levels represent means±SD (n ranged from 

172 to 1752 for seasonal data and from 3632 to 4827 for annual data), measured at the 

three treatment sites for the seasons of 2014. Values labeled with upper case letters 

indicate significant differences in annual [SO2] (i.e. seasonal data pooled) across sites 

(p<0.001; ANOVA), while values labeled with lower case letters are significantly 

different when compared across the different site×season combinations (p<0.001, 

ANOVA). 

Study Sites  Seasonal [SO2] (ppb) 
(Annual [SO2], 
ppb) 

Summer Autumn Winter Spring 

Prospecton 
(4.39C±3.92) 

2.61g ±1.91 4.03d±3.32 6.58c±5.07 3.97de±3.36 

Ganges 
(5.10B±4.73) 

3.31ef±2.48 6.54bc±5.04 9.52a±6.67 3.79d±2.87 

Southern Works 
(6.71A±5.47) 

6.92c±5.76 7.69c±5.63 3.24f±2.64 6.09c±5.08 

4.3. Biochemical biomarkers 

4.3.1. Intracellular superoxide 

High levels of variation of ·O2
-  levels (indicated by the high standard deviations) within 

treatment sites during summer, winter and spring made statistical comparisons largely 

irrelevant and negated the need to carry out measurements for this biomarker in autumn 

(Fig. 4.1). Nevertheless, ·O2
- levels differed significantly across seasons, within sites for 

the control and Prospecton; with the lowest values recorded during summer. The ·O2
- 

levels at the treatments sites were higher than the control across all three seasons; 

however, these differences were only significant for Ganges and Southern Works during 

summer. There were no significant differences within seasons, across the treatment 

sites. Comparisons of annual data showed no significant difference with respect to ·O2
- 

levels across all treatment sites. However, ·O2
- levels at Ganges were observed to be 
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significantly higher than the control. Annual ·O2
- levels therefore did not reflect annual 

[SO2] across sites very well (Table 4.1). Despite the high levels of variation observed 

for the treatment sites, ·O2
- levels were significantly positively correlated, in terms of, 

seasonal [SO2] and leaf ·O2
- levels (p=0.041; r=0.596, Pearson’s correlation). 

 

 

 

 

 

 

 

 

 

Figure 4.1 Intracellular superoxide (·O2
-) levels in B. discolor leaves at the treatment 

sites and the control. Columns represent mean±SD (n=24). Upper case letters indicate 

significant differences across sites when data for different seasons were pooled 

(p<0.001, ANOVA). Lower case letters indicate significant differences across different 

site×seasons combinations (p<0.001, ANOVA). Annual [SO2] in ppb is given in 

parenthesis for each site. 

4.3.2. Intracellular hydrogen peroxide  

Although leaf H2O2 levels differed significantly within sites, across seasons, there were 

no apparent trends in this regard (Fig. 4.2). Within seasons, H2O2 levels were higher at 

the treatment sites when compared to the control; these differences were significant 

across all treatments, during all seasons, except for the H2O2 levels at Prospecton during 

autumn. Levels of H2O2 during summer were comparable between Ganges and 

Southern Works but significantly lower at Prospecton. During summer, levels of H2O2 
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were comparable across the treatment sites in autumn. The levels of H2O2 appeared 

lower at Prospecton during winter; however, this was not significant between Southern 

Works and Prospecton, though. During spring, H2O2 levels across treatment sites were 

significantly highest at Prospecton and lowest at Southern Works, whereas annual H2O2 

levels were significantly highest at Ganges, lowest in the control and comparable 

between Southern Works and Prospecton. Annual H2O2 levels therefore reflect 

differences in [SO2] between the control and the treatment sites but this did not apply to 

differences in annual [SO2] across the treatment sites (Table 4.1). Seasonal [SO2] was 

not significantly correlated with seasonal H2O2 production (p=0.058, r=0.483, Pearson’s 

correlation). 

Figure 4.2 Intracellular hydrogen peroxide (H2O2) levels in B. discolor leaves at the 

treatment sites and the control. Columns represent mean±SD (n=24). Upper case letters 

indicate significant differences across sites when data for different seasons were pooled 

(p<0.001, ANOVA). Lower case indicate significant differences across site×season 

combination (p<0.001, ANOVA). Annual [SO2] in ppb is given in parenthesis for each 

site. 
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4.3.3. Total aqueous antioxidants  

Leaf total aqueous antioxidant (TAA) activity was significantly higher in winter and 

comparable across summer, autumn and spring, except with Prospecton spring which 

was significantly higher than summer and autumn, within treatment sites (Fig. 4.3). 

Figure 4.3 Total aqueous antioxidant (TAA) activity in B. discolor leaves at the 

treatment sites and the control. Columns represent mean±SD (n=24). Upper case letters 

indicate significant differences across sites when data for different seasons were pooled 

(p<0.001, ANOVA). Lower case indicate significant differences across different 

site×season combinations (p<0.001, ANOVA). Annual [SO2] in ppb is given in 

parenthesis for each site.  

The TAA activity was comparable across seasons for the control. With the exception of 

winter for all sites and Prospecton in spring (in which TAA activity was comparable 

across the treatment sites and the control), TAA activity in the control was significantly 

higher than the treatments. Total aqueous antioxidant activity was comparable across 

the treatment sites within summer, autumn and winter, whereas TAA activity during 

spring was significantly higher at Prospecton when compared to Ganges and Southern 

Works. Annual TAA data were significantly highest in the control, lower at Prospecton 

and lowest at Southern Works and Ganges. Annual TAA levels could therefore reflect 
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differences in [SO2] to the control and across treatment sites (Table 4.1). Seasonal TAA 

activity was not significantly correlated with seasonal SO2 levels (p=0.147, rs= ‒0.379, 

Spearman’s rank correlation). 

4.3.5. Superoxide dismutase  

Leaf superoxide dismutase (SOD) activity showed no significant differences across the 

seasons within sites (except for winter at Southern Works, which was significantly 

higher than spring and in winter at the control, which was significantly lower than the 

other seasons) (Fig. 4.4).  

 

Figure 4.4 Superoxide dismutase (SOD) activity within B. discolor leaves at the 

treatment sites and the control. Columns represent mean±SD (n=24). Upper case letters 

indicate significant differences across sites when data for different seasons were pooled 

(p<0.001, ANOVA). Lower case letters indicate significant differences across different 

site×seasons combinations (p<0.001, ANOVA). Annual [SO2] in ppb is given in 

parenthesis for each site.  

Within seasons, SOD activity in leaves during winter was significantly higher across all 

treatment sites than the control, while during summer and spring, SOD activities at the 

treatment sites were relatively lower than the control but these differences were not 
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always significant. Superoxide dismutase activity at Southern Works was significantly 

lower than the control during summer, autumn and spring. At Prospecton also, SOD 

activity during autumn was significantly lower than the control. Across the treatment 

sites, SOD was comparable within seasons, apart from Southern Works during spring 

which was significantly lower than Prospecton and Ganges. When annual data was 

compared, Ganges and the control had the highest SOD activity followed (in decreasing 

order) by Prospecton and Southern Works (p<0.001). Annual SOD activities could 

therefore not discriminate between the control and the treatment sites, nor could it 

reflect the differences in annual [SO2] across the treatment sites (Table 4.1). There was 

no significant correlation between seasonal SOD activity and seasonal SO2 levels 

(p=0.475, r=0.192, Pearson’s correlation). 

4.3.5. Catalase activity  

Within the treatment sites leaf catalase (CAT) activitirs across the seasons were lower 

during summer (significant in all cases except for spring and summer at Southern 

Works) (Fig. 4.5). Within the control, CAT activity was significantly highest in autumn. 

Catalase activity in the control was significantly higher than Ganges during summer and 

Southern Works during autumn; the control was significantly lower than all the 

treatment sites during winter and lower than Prospecton and Ganges in spring. When 

the treatment sites were compared within seasons, CAT activity was comparable in 

summer but tended to be relatively (but not always significantly) lower at Southern 

Works in the remaining seasons. Comparisons of annual data revealed CAT activity at 

Prospecton to be significantly higher than the control and Southern Works; lower at 

Southern Works than at Ganges and comparable between Southern Works and the 

control. Southern Works exhibited the lowest annual CAT activity and Prospecton the 

highest, across treatment sites. These data suggest that annual CAT activities did not 

reflect differences in [SO2] between the control and the treatment sites very well but did 

indicated that there were differences reflected in annual [SO2] across the treatment sites 

(Table 4.1). Seasonal SO2 levels were not significantly correlated with seasonal CAT 

activities (p=0.503, r=0.181, Pearson’s correlation). 
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Figure 4.5 Catalase activity (CAT) within B. discolor leaves at the treatment sites and 

the control. Columns represent mean±SD (n=24). Upper case letters indicate significant 

differences across sites when data for different seasons were pooled (p<0.001, 

ANOVA). Lower case letters labeled different indicate significant differences across 

different site×season combinations (p<0.001, ANOVA). Annual [SO2] in ppb is given 

in parenthesis for each site. 

4.3.6. Lipid peroxidation 

Leaf LPO levels exhibited no consistent trends when compared across seasons within 

sites. At Prospecton LPO levels during winter and spring were significantly higher than 

summer and autumn, at Ganges summer and winter levels were significantly higher than 

autumn and spring, while at Southern Works winter levels were significantly higher 

than spring (Fig. 4.6). In the leaves from the control trees, LPO levels were comparable 

across seasons; however, these levels were lower than all treatment sites when 

compared within seasons. This was significant for most seasons except for spring at 

Southern Works. When LPO levels were compared within seasons, across treatment 

sites no consistent trends were evident. For example, during summer, LPO levels at 

Ganges were significantly higher than the other sites and during autumn levels at 

Ganges were significantly higher than at Southern Works. During winter, the levels of 
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LPO at Southern Works were significantly lower than the other treatment sites, and 

during spring Prospecton levels were significantly higher than the other sites. 

Comparisons of annual data revealed lipid peroxidation levels to be significantly highest 

at Ganges followed (in decreasing order) by Prospecton, Southern Works and the 

control (p<0.001). Annual lipid peroxidation levels could therefore reflect differences in 

[SO2] between the control and the treatment sites but this did not apply to differences in 

annual [SO2] across the treatment sites (Table 4.1). Seasonal lipid peroxidation levels 

were significantly, positively correlated with seasonal SO2 levels (p=0.015, r=0.593; 

Pearson’s correlation). 

Figure 4.6 Lipid peroxidation levels in B. discolor leaves at the treatment sites and the 

control. Columns represent mean±SD (n=24). Upper case letters indicate significant 

differences across sites when data for different seasons were pooled (p<0.001, 

ANOVA). Lower case letters indicate significant differences across different 

site×season combinations (p<0.001, ANOVA). Annual [SO2] in ppb is given in 

parenthesis for each sites. 

4.3.7. Electrolyte leakage  

Leaf electrolyte leakage values were significantly higher during winter, at all sites 

(treatment and control), when compared across seasons within a site (Fig. 4.7).  
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Figure 4.7 Electrolyte leakage of B. discolor leaves at the treatment sites and the 

control. Columns represent mean±SD (n=24). Upper case letters indicate significant 

differences across sites when data for different seasons were pooled (p<0.001, 

ANOVA). Lower case letters indicate significant differences across different 

site×season combinations (p<0.001, ANOVA). Annual [SO2] in ppb is given in 

parenthesis for each site. 

Additionally, electrolyte leakage values for autumn at Prospecton were significantly 

higher than summer and spring; whereas at Ganges, electrolyte leakage during spring 

was significantly lower than autumn. In the control leaves, during winter, these values 

were significantly higher than during the other seasons. When the treatment sites were 

compared to the control within seasons, control electrolyte leakage values were 

significantly lower than Ganges and Southern Works for all seasons but significantly 

lower than Prospecton only during autumn. Annually, leakage levels were found to be 

highest at Southern Works, followed (in decreasing order) by Ganges, Prospecton and 

the control. Annual electrolyte leakage levels could therefore reflect differences in 

[SO2] between the control and the treatment sites and differences in annual [SO2] across 

the treatment sites (Table 4.1). Seasonal [SO2] were also significantly, positively 
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correlated with seasonal electrolyte leakage levels (p=0.002, r=0.702, Pearson’s 

correlation). 

4.4. Physiological biomarkers 

4.4.1. Leaf chlorophyll fluorescence 

Chlorophyll fluorescence (specifically Fv/Fm) was analyzed across the seasons within 

sites; values were comparable between Prospecton and the control for all seasons, while 

summer and spring values at Ganges were significantly higher than autumn and winter 

(Fig 4.8).  

 

 

 

 

 

 

 

 

 

Figure 4.8 Chlorophyll fluorescence (LCF) in B. discolor leaves at the treatment sites 

and the control. Columns represent mean±SD (n=24). Upper case letters indicate 

significant differences across sites when data for different seasons were pooled 

(p<0.001, ANOVA). Lower case letters indicate significant differences across different 

site×season combinations (p<0.001, ANOVA). Annual [SO2] in ppb is given in 

paraenthesis for each site.  

At Southern Works only spring values were significantly higher than winter, while 

values for all other seasons were comparable. Within seasons, values for the control 
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were higher than the treatment sites for all seasons (significant for all treatment sites in 

autumn, Prospecton in summer, winter and spring and only Ganges in winter). When 

compared within seasons across treatment sites, chlorophyll fluorescence values were 

comparable across sites in summer; values at Ganges were significantly lower than at 

Southern Works in autumn and winter, whilst values at Prospecton were significantly 

lower than at Southern Works in spring. Annual chlorophyll fluorescence values in the 

control were significantly higher than all other treatment sites while values at 

Prospecton and Ganges were significantly lower than at Southern Works. Annual 

chlorophyll fluorescence could therefore reflect differences in [SO2] between the control 

and treatment sites, but this did not apply to differences in annual [SO2] across the 

treatment sites (Table 4.1). There was also a significant and negative correlation 

between seasonal [SO2] and seasonal chlorophyll fluorescence (p=0.006, r= ‒0.656, 

Pearson’s correlation). 

4.4.2. Chlorophyll content  

When chlorophyll content was compared across seasons, within sites, there were no 

clear trends (Fig. 4.9). Within individual sites, chlorophyll content at Prospecton during 

winter were significantly higher than summer and spring and autumn content was 

significantly higher than summer. At Ganges, chlorophyll content during autumn and 

spring were comparable, but significantly lower than summer and winter (which were 

comparable). At Southern Works chlorophyll content during summer were significantly 

lower than the other seasons. In the control chlorophyll content for autumn were 

significantly higher than the other seasons (which were comparable). Chlorophyll 

content values at Ganges during summer and autumn were significantly higher and 

lower, respectively than the controls, whilst in winter and spring values at Ganges were 

comparable to the control. Within seasons, across treatment sites, chlorophyll content 

during autumn and spring at Ganges were significantly lower than the other sites; winter 

values at Ganges were significantly lower than at Prospecton and summer values at 

Southern Works were significantly lower than at the other sites. When annual data was 

analysed chlorophyll content at Prospecton and Southern Works were significantly 

higher than Ganges and the control. With the exception of Ganges, annual chlorophyll 

content could only reflect differences in [SO2] between the control, Prospecton and 

Southern Works, however this did not apply to differences in annual [SO2] across the 
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treatment sites (Table 4.1). Seasonal chlorophyll content and seasonal [SO2] were not 

significantly correlated (p=0.276, r=0.290, Pearson’s correlation).  

 

 

 

 

 

 

 

 

 

Figure 4.9 Chlorophyll content of B. discolor leaves at the treatment sites and the 

control. Columns represent mean±SD (n=24). Upper case letters indicate significant 

differences across sites when data for different seasons were pooled (p<0.001, 

ANOVA). Lower case letters indicate significant differences across different 

site×season combinations (p<0.001, ANOVA). Annual [SO2] in ppb is given in 

parenthesis for each site. 

Chlorophyll content values for trees growing in the university campus site within 1 km 

of the greenhouse (where the control trees were housed) that were in autumn exposed to 

[SO2]of 2.73±0.31 ppb as 50.62±2.25 SPAD units. During autumn the chlorophyll 

content for the ‘campus site’ was comparable to Ganges but significantly higher than 

Prospecton, Southern Works and the control. During spring the chlorophyll content for 

the ‘campus site’ was 51.17±3.52 SPAD units, which was comparable to the control and 

Ganges but were higher than Prospecton and Southern Works, but only significantly so 

at Southern Works (p<0.001, ANOVA). Correlations between chlorophyll content and 
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[SO2] (for autumn) for the control, treatments sites and the ‘campus site’ were not 

significant for autumn (p=0.671, r= ‒0.261, Pearson’s correlation). 

4.5. Morphological biomarkers 

4.5.1. Leaf area 

When LA was compared across the different seasons within sites, no clear trend could 

be established (Fig 4.10). 

Figure 4.10 Leaf area of B. discolor leaves at the treatment sites and the control. 

Columns represent mean±SD (n=24). Upper case letters indicate significant differences 

across sites when data for different seasons were pooled (p<0.001, ANOVA). Lower 

case letters indicate significant differences across different site×season combinations 

(p<0.001, ANOVA). Annual [SO2] in ppb is given in parenthesis for each site. 

At Prospecton, leaf area was significantly highest during spring and significantly lowest 

in winter. At Ganges, leaf area was relatively higher in summer and spring and lower in 

winter (but these differences were not always significant). At Southern Works, during 

winter LA values were significantly lower than the other seasons, while LA was 

comparable across seasons in the control. Leaf area in the control was significantly 

higher than all treatment sites within all seasons. When LA was compared within 
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seasons across treatment sites values for Prospecton and Southern Works were 

comparable, while values at Ganges were relatively lower (significant for autumn and 

spring). Annual LA was significantly highest in the control and significantly lowest at 

Ganges. Annual LA could therefore reflect differences in [SO2] between the control and 

treatment sites, but this did not apply to differences in annual [SO2] across the treatment 

sites (Table 4.1) There was also a significantly strong negative correlation between 

seasonal LA and seasonal [SO2] (p<0.001, r= ‒0.816). The ‘campus site’ trees which 

were exposed to [SO2] of 2.73±0.31 ppb in autumn yielded LA values (23.98±5.62 cm2) 

that followed the seasonal trends of LA and [SO2] (Fig. 4.10 and Table 4.1). Spring LA 

(29.50±5.24 cm2) for the ‘campus site’ followed the trend established in autumn, with  

control which was significantly higher across all treatment sites, followed in decreasing 

value by campus (which was comparable to all other sites, except Ganges), LA was 

significantly lowest at Ganges (for both spring and autumn, p<0.001, ANOVA). 

Correlations between leaf area and [SO2] (for autumn) for the control, treatment sites 

and the ‘campus site’ were not significant for autumn (p=0.054, r= ‒0.872, Pearson’s 

correlation). 

4.6 Location of and land-use practices at treatment sites  

Systematic observations of the geographical location of the treatment sites relative to 

the industrial hub of the SDB and land-use practices at each site revealed that trees 

could have been variably impacted upon by air pollution sources other than the 

petroleum industries that dominate the SDB. More specifically, the trees at the 

Prospecton site, situated on the outskirts of the SDB (Fig. 3.1), were located within a 

business park with relatively low levels of light motor vehicle traffic [associated with 

the carbon monoxide (CO) emissions] with no major industries associated with air 

pollution (Fig. 4.11 A and B). The trees at the Ganges site were located alongside a 

major highway [viz. Southern/Northern highway (M4)] and a secondary road (viz. off of 

Himalayas Road) prone to high levels of light and heavy motor vehicle traffic industrial 

(Fig. 4.11 C and D). The Ganges site was also situated more inland than Prospecton and 

more central of the SDB’s industrial hub, which was dominated by petroleum-based 

industries (Fig. 3.1). The trees at Southern Works site were located within residential 

areas, subjected to low light motor vehicle traffic levels (Fig. 4.11 E and F); however, 
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though this site was located closer to the coast-line than the Ganges site, it was still 

within close proximity to the SDB’s industrial hubs. 

 

Figure 4.11 Summary of qualitative observations of land-use practices at the treatment 

sites: Prospecton: (A & B); Ganges (C & D); Southern Works (E & F). Red arrow 

indicates location of B. discolor trees sampled at each site (Photos by: Minoli 

Appalasamy and Candyce Areington). 
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4.7. Conclusion 

Average SO2 levels differed across seasons within sites, across sites within seasons and 

annually across the three treatment sites (Table 4.1). Values for all biomarkers differed 

across seasons within sites but these differences were more often significant between 

the treatment sites and the control, than across the treatment sites themselves. 

Seasonally, SO2 levels were higher at Prospecton and Ganges in winter; this was 

reflected by most biomarkers (except: H2O2, CAT, chlorophyll content). 

Annual values for a number of biomarkers differed significantly across the treatment 

sites and the control (viz. H2O2, TAA, lipid peroxidation, electrolyte leakage, LCF and 

LA). The correlation analyses revealed seasonal [SO2] to be significantly correlated 

with seasonal ·O2
- levels, lipid peroxidation, electrolyte leakage, LCF and LA averages. 

Biomarkers that reflected differences in annual [SO2] across the treatment sites (i.e. that 

suggest Southern Works has the highest [SO2]) include TAA and electrolyte leakage 

(whilst electrolyte leakage being the only significantly positively correlated). 
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CHAPTER 5 DISCUSSION 

Although air pollution is a serious threat to environmental and human health within 

many parts of the eThekwini Municipal Area (EMA), the monitoring regime/methods 

currently employed by the eThekwini Municipality are insufficient for long-term and 

multiple pollutant monitoring (Diab et al., 2002; Carmichael et al., 2003). Long-term 

and multiple pollutant monitoring is essential for the design of effective air pollution 

mitigation strategies (Conti and Cecchetti, 2001; Carmichael et al., 2003; Assadi et al., 

2011). Bioindicators such as plants offer a more feasible means of monitoring air 

quality than monitoring instruments/stations, especially within developing countries 

(Novak et al., 2003; Tiwari et al., 2006; Tripathi and Gautam 2007; Rai et al., 2011). 

Their use does, however, demand a fundamental understanding of the biochemical, 

physiological and morphological response of the plant(s) to air pollution in order to 

select the most suitable biomarker(s) to be used (Emberson et al., 2001; Tiwari et al., 

2006; Tripathi and Gautam 2007; Assadi et al., 2011; Rai et al., 2011). This formed the 

focus of the present study which was conducted on the leaves of an indigenous tree, B. 

discolor, growing at three industrial sites within the highly industrialised South Durban 

Basin (SDB). 

Sulphur dioxide which was selected as the reference (indicator) pollutant for this study, 

is one of the most damaging pollutants to natural and agricultural vegetation, and a 

major pollutant within the SDB (Emberson et al., 2001; Diab et al., 2002; Matooane 

and Diab, 2003; Diab and Motha, 2007; Rai et al., 2011). The decision to use SO2 was 

based on the fact that this is the only pollutant monitored across all air quality 

monitoring stations within the EMA. Annual average SO2 levels ranged from 4.39–6.71 

ppb across the three treatment sites investigated (Table 4.1). Josipovic et al. (2010) 

placed the threshold range of [SO2] for natural and agricultural crops between 3.8–11.4 

ppb, where irreversible damage may be inflicted. This reinforces suggestions by 

Matooane and Diab (2001) that the SDB has already reached its carrying capacity in 

terms of SO2. Like other industrialised areas in South Africa (e.g. Elandsfontein which 

exhibited a [SO2] of ca. 6.99 ppb [Carmichael et al., 2003]), the [SO2] across the 

industrial sites investigated here also appear to be relatively high by global standards 

(Carmichael et al., 2003) and well within the range reported to be detrimental to plants 

(Josipovic et al., 2010). 
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Air pollution is a transboundary event and the location of the pollution source may not 

necessarily overlap with the site at which this pollution inflicts the most damage 

(Ramanathan and Feng, 2009). This is largely due to the dispersal of air pollution, 

which is influenced by air pressure systems, prevailing winds, wind speeds and 

seasonality (Scott and Diab 2000, Diab et al., 2002; Batterman et al., 2008). Leaves 

sampled from different cardinal directions on the trees sampled in this study were, 

however, comparable in terms of all the biomarkers assessed (data not shown) and this 

is why data for different cardinal directions were pooled for all subsequent analyses. 

There were, however, distinct differences in SO2 levels across seasons within sites, with 

the highest [SO2] being recorded at Ganges in winter (Table 4.1). Both Ganges and 

Prospecton recorded their highest SO2 readings in winter, which is in accordance with 

previous reports that SO2 levels are generally higher within the SDB in winter (Scott 

and Diab, 2000; Matooane and Diab, 2001; Diab et al., 2002; Batterman et al., 2008). 

Winter brings about high pressure systems (colder weather), which can lead to the 

retention of air pollution within the SDB by reducing atmospheric mixing and dispersal 

of air pollution (Scott and Diab, 2000; Diab et al., 2002; Batterman et al., 2008). 

Furthermore, this high pressure system together with berg winds (a characteristic of 

winter) bring all the inland air pollution towards the coast (Scott and Diab, 2000; Diab 

et al., 2002; Batterman et al., 2008). However, SO2 levels at Southern Works, which is 

located closer to the coastline than the other two treatment sites, were significantly 

lower in winter (Table 4.1). This may be due to the prevailing north-easterly (NE) and 

south-westerly (SW) winds along the coastline which are likely to move air pollution 

away from Southern Works (Scott and Diab, 2000; Diab et al., 2002; Batterman et al., 

2008). 

Topography also influences pollution (Scott and Diab, 2000; Moraes et al., 2002); for 

example, the unique shallow basin shape of the SDB may prevent air flow which would 

hinder pollutant dispersal (Batterman et al., 2008). The Prospecton station is located at 

the southern end of the basin, while the Ganges station is located more centrally and 

further inland, and the Southern Works station is located close to the coastline (Diab et 

al., 2002) (Fig. 3.1). The topography of the SDB, provide the perfect directing system 

for the prevailing NE and SW winds (Batterman et al., 2008) which do have an impact 

on the monitoring stations (Scott and Diab, 2000; Diab et al., 2002). This may have also 
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contributed to the differences in annual average SO2 levels across sites: highest at 

Southern Works followed by Ganges and then Prospecton (Table 4.1). 

Plant responses to a stress are often interactive and therefore should not be considered in 

isolation (Tripathi and Gautam, 2007; Assadi et al., 2011). These responses can be 

biochemical, physiological and/or morphological (Tripathi and Gautam, 2007; Assadi et 

al., 2011), but the first response to any stress, including pollution, is usually 

biochemical (Tripathi and Gautam, 2007; Rai et al., 2011), in the form of uncontrolled 

reactive oxygen species (ROS) production (Gill and Tuteja, 2010; Bermudez and 

Pignata, 2011). Superoxide is, usually, the first free radical to be produced under stress 

conditions (Gill and Tuteja, 2010; Bermudez and Pignata, 2011). Li and Yi (2012) 

showed an increase in ·O2
- levels in the shoots of Arabidopsis thaliana L. when exposed 

to high SO2 levels. In the present study, seasonal [SO2] was significantly positively 

correlated with ·O2
- levels; however, the high variability (evidenced by the high SD) in 

·O2
- values within sites (treatment and control) led to a lack of significant differences 

between the treatment sites and the control (Fig. 4.1). Furthermore, when ·O2
- values for 

winter, spring and summer were pooled they did not reflect annual differences in [SO2] 

across the treatment sites. For these reasons, ·O2
- did not represent a suitable biomarker 

in this study. Areington et al. (2015) when measuring ·O2
- production in B. discolor 

leaves from trees growing at various distances from an oil refinery within the SDB also 

found leaf ·O2
- levels to be unsuitable for predicting air pollution levels. Superoxide is 

the precursor to more toxic ROS molecules making it an important indicator of stress in 

plants but the lack of sensitivity of the ·O2
- assay used here and elsewhere (Areington et 

al., 2015) may be based on the extremely short lifespan and high reactivity of ·O2
- in 

plant tissues (Arora et al., 2002; Minibayeva et al., 2009; Gill and Tuteja, 2010).  

Hydrogen peroxide is relatively more toxic and long-lived than ·O2
- in plant tissue 

(Scandalios et al., 1997; Gill and Tuteja, 2010) and in this study its levels in SO2 

exposed leaves (at all three treatment sites) were significantly higher than the control 

leaves (Fig. 4.2). Tissues of a number of plant species have been shown to exhibit 

higher H2O2 levels upon exposure to a wide range of stressors: physical wounding 

(Minibayeva et al., 2009), heavy metals (Tewari et al., 2013; Srivastava et al., 2014), 

chilling (Prasad et al., 1994), heat stress (Volkov et al., 2006) and air pollution (Li and 
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Yi, 2012) etc. More specifically, Li and Yi (2012) showed an increase in H2O2 

production levels within the shoots of Arabidopsis thaliana when exposed to an 

increase in [SO2]. Although it is evident from literature that excess levels of SO2 can 

lead to increased H2O2 production in plants (Gill and Tuteja, 2010; Rai et al., 2011), at 

the time of this report there were no published reports on an SO2 exposed increase in 

H2O2 in tree leaves of any other tree species other than the species investigated here 

(Areington et al., 2015). Seasonal H2O2 levels were, however, not significantly 

correlated with seasonal [SO2] and annual H2O2 averages did not reflect differences in 

annual average [SO2] across the treatment sites. Hydrogen peroxide’s lack of sensitivity 

therefore suggests that it may not represent an ideal biomarker of SO2 pollution in B. 

discolor leaves. However, B. discolor leaves were able to discriminate, significantly so, 

between the treatment and control, suggesting further research with other pollutants to 

asses this parameter as potential biomarker for air pollution. Areington et al. (2015) 

showed H2O2 levels in B. discolor leaves to be significantly negatively correlated with 

distance from a point source of petroleum-based air pollution. However, it should be 

noted that although those authors used the same assay, they did not sample across 

seasons and worked with a considerable smaller sample size. 

The production of ·O2
- and H2O2 and other ROS is a natural consequence of metabolic 

activity and organisms have a natural defence system to quench these ROS if their 

levels are within certain limits (Arora et al., 2002; Mittler et al., 2004; Tiwari et al., 

2006; Valavanidis et al., 2006; Gill and Tuteja, 2010; Bermudez and Pignata, 2011). In 

the present study, total antioxidant activity (TAA), which does not differentiate between 

enzymatic and non-enzymatic antioxidants, in SO2 exposed leaves (at all three treatment 

sites) was significantly lower than the control leaves (Fig. 4.3). This suggests that SO2 

exposure may have compromised the ability of B. discolor leaves to quench ROS. 

Studies have shown plant tissues such as roots to increase their TAA in response to 

stress-induced ROS production (e.g. Ramlall et al., 2015); which involved root 

exposure to acid rain. However, at the time of this study, there were no published 

reports on tree leaf TAA responses to SO2 exposure except for the report on the same 

species B. discolor by Areington et al. (2015). Even though TAA could be used to 

discriminate between SO2-exposed and control leaves in this study, seasonal TAA was 

not significantly correlated with seasonal [SO2] and annual average TAA values did not 
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reflect the annual differences in annual average [SO2] across the treatment sites. This 

supports previous findings (Areington et al., 2015) that TAA may not be an ideal 

biomarker of SO2 pollution in B. discolor leaves; but further research would be required 

to establish TAA as a biomarker of air pollution. 

Superoxide dismutase, an enzymatic antioxidant, is directly responsible for quenching 

·O2
-, whilst CAT is directly responsible for quenching H2O2 (Li and Yi, 2012). Both an 

increase and decrease in SOD and CAT activity is possible in stressed plants, depending 

on the stressor, the stress intensity, duration and the plant organ (Tripathi and Gautam, 

2007; Bermudez and Pignata, 2011; Li and Yi, 2012). For example: Bermudez and 

Pignata (2011) reported an increase in both SOD and CAT in Tillandisia recurvata 

leaves exposed to various air pollution sources; Li and Yi (2012) reported a decrease in 

CAT activity and an increase in SOD in Arabidopsis shoots exposed to high levels of 

SO2; while Tripathi and Gautam (2007) showed an increase in SOD activity in leaves of 

Mangifera indica and a Eucalyptus hybrid exposed to high levels of air pollution. The 

SOD and CAT activities in SO2 exposed B. discolor leaves in this study were not able to 

clearly discriminate between those in control leaves (Fig. 4.4 and 4.5, respectively). 

Furthermore, seasonal CAT and SOD activities were not significantly correlated with 

seasonal [SO2], while only CAT activity was able to reflect the difference between 

annual [SO2] across the treatment sites. The delicate balance between oxidative stress 

and oxidative damage is controlled by the plant’s antioxidant systems (Mittler et al., 

2004; Valavanidids et al., 2006; Gill and Tuteja, 2010), but like TAA, CAT and SOD 

activity also do not appear to be suitable biomarkers of SO2 pollution in B. discolor. Lin 

and Kao (2000) also showed that Oryza sativa leaves exhibited no significant change in 

CAT when exposed to a sodium chloride (NaCl; salt) stress. A lack of a response by 

antioxidants is still not a clear indication that the plants are not coping with a stress 

though (Bermudez and Pignata, 2011). Since the antioxidant system is involved in both 

signaling and acting as a defence system and also that responses are often species-

specific, interpreting the results of antioxidant studies may be far too complex (Vranová 

et al., 2002; Tripathi and Gautam, 2007; Minibayeva et al., 2009; Gill and Tuteja, 2010) 

(and probably beyond the scope) for bioindicator studies such as the present one. 
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When ROS becomes excessive and overrides the antioxidant capacities of the plant, 

oxidative damage occurs (Arora et al., 2002; Mittler et al., 2004; Tiwari et al., 2006; 

Valavanidis et al., 2006; Gill and Tuteja, 2010; Bermudez and Pignata, 2011). This 

damage usually encompasses lipid peroxidation which if quantified can serve as an 

indication of membrane integrity (Conti and Cecchetti, 2001; Valavanidis et al., 2006; 

Li and Yi 2012; Tewari et al., 2013; Srivastava et al., 2014). In the present study lipid 

peroxidation levels in SO2-exposed leaves were significantly higher than those in the 

control (Fig. 4.6). Lipid peroxidation has been shown to increase in plants exposed to 

various stresses: heavy metals (Morus alba leaves [Tewari et al., 2013]), chilling 

(Keshavkant and Naithani, 2001), air pollution (lichens [Conti and Cecchetti, 2001]), 

specifically SO2 (carrot seedlings [Tiwari et al., 2006]; Arabidopsis shoots [Li and Yi, 

2012]). Bermudez and Pignata (2011) also found an increase in lipid peroxidation in 

Tillandsia recurvata leaves in response to increased [SO2]. Although annual lipid 

peroxidation average did not reflect annual [SO2] averages across the treatment sites, 

seasonal lipid peroxidation levels were significantly positively correlated with seasonal 

[SO2]. Given the previous reports on the utility of lipid peroxidation as a biomarker of 

plant stressors (including air pollution) and the results described above for this 

parameter may represent a suitable biomarker of SO2 pollution in B. discolor leaves. 

Electrolyte leakage is an indirect way of measuring the oxidative damage, particularly 

lipid peroxidation in plant tissues (Santamaría and Matrín, 1997; Conti and Cecchetti, 

2001). In the present study (Fig. 4.7), SO2-exposed leaves (at all three treatment sites) 

had a significantly higher electrolyte leakage than the control. Tree bark from Quercus 

ilex L. (Santamaría and Matrín, 1997), lichens (Conti and Cecchetti, 2001) and the 

leaves of Tillandsia tricholepis (Bermudez and Pignata, 2011) have all exhibited a 

stress-induced increase in electrolyte leakage. In the present study, seasonal electrolyte 

leakage was significantly positively correlated with seasonal [SO2], and annual 

electrolyte leakage averages reflected annual average [SO2] across the treatment sites. 

Areington et al. (2015) also found electrolyte leakage to be significantly negatively 

correlated with distance from an air pollution source in B. discolor leaves. Electrolyte 

leakage may therefore represent an ideal biomarker of SO2 pollution in B. discolor 

leaves. While lipid peroxidation, measures the actual damage to lipids within the cell 

membranes due to excess ROS, electrolyte leakage measures the electrolytes that leak 
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out of cell as a consequence of this membrane damage (Valavanidis et al., 2006; 

Bermudez and Pignata, 2011). These parameters were not significantly correlated 

(p=0.059, r=0.481; Pearson’s correlation) in this study but given their physiological link 

these two biomarkers should be measured in combination, in studies of this nature. 

A plant’s ability to utilize light; often measured in terms of chlorophyll fluorescence can 

serve as a reliable indication of its overall health (Naumann et al., 2007; Murchie and 

Lawson, 2013). In this regard Fv/Fm (maximum quantum yield) has been reported to 

decline in plants under conditions of increased pollution (i.e. O3 [Guidi et al., 1997; 

Tiwari et al., 2006; Flowers et al., 2007], and NO2 and SO2 [Tiwari et al., 2006]). In the 

present study Fv/Fm (Fig. 4.8) was significantly lower in B. discolor leaves exposed to 

SO2 pollution (at all three sites), which is indicative of some level of photoinhibition 

(Naumann et al., 2007). Seasonal chlorophyll fluorescence was significantly negatively 

correlated with seasonal [SO2]; however, annual chlorophyll fluorescence averages did 

not reflect the annual average [SO2] across the treatment sites. So whilst there are 

indications that this biomarker may be able to reflect the effects of SO2 pollution there is 

a need for further investigation.  

Chlorophyll is necessary for photosynthesis and photosynthesis which is essential for 

plant growth and survival (Hijano et al., 2005; Assadi et al., 2011). Both an increase (as 

previously seen in the species investigated here) and a decrease in chlorophyll content 

has been reported for a range of abiotic and biotic stressors including air pollution 

(Hijano et al., 2005; Tiwari et al., 2006; Tripathi and Gautam, 2007; Assadi et al., 2011; 

Tanee and Albert, 2013; Areington et al., 2015). While a decrease in chlorophyll may 

suggest the plant’s inability to cope with the air pollution stress, an increase can be 

induced by a pollution-induced reduction in leaf area (Burton et al., 1991; Tanee and 

Albert, 2013; Areington et al., 2015). In the present study, however, chlorophyll content 

appeared to be unaffected by SO2 exposure (Fig. 4.9) with seasonal average chlorophyll 

content being unrelated to seasonal average [SO2]. This is in contrast with results 

obtained by Areington et al. (2015) for B. discolor chlorophyll content and which was 

significantly positively correlated with distance from the air pollution source. However, 

it must be mentioned that whilst Areington et al. (2015) assayed chlorophyll content via 

a biochemical method that used photometric measurements of solvent-extracted 
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chlorophyll (Arnon, 1949), in the present study chlorophyll content was measured using 

a non-destructive, inexpensive hand-held SPAD meter (Coste et al., 2010). 

The last responses of a plant to a stress are usually morphological in nature; leaf area for 

example, has been widely used as a biomarker for a range of stressors (Burton et al., 

1991; Dineva, 2004; Tiwari et al., 2006; Assadi et al., 2011; Tewari et al., 2013). In the 

present study leaf area of SO2 exposed leaves of B. discolor exhibited a significantly 

lower leaf area than control leaves (Fig. 4.10). Seasonal leaf area was also significantly 

negatively correlated with seasonal [SO2]; however, annual leaf area across the 

treatment sites did not reflect annual [SO2]. Leaf area has been suggested to be a reliable 

biomarker of air pollution, with many species showing a decrease in leaf area in 

response air pollution (Burton et al., 1991; Tiwari et al., 2006; Dineva, 2004; Assadi et 

al., 2011). The findings of Areington et al. (2015), which also showed a decrease in leaf 

area in B. discolor trees closest to the pollution source, together with the data obtained 

here suggest leaf area may represent a useful biomarker of SO2 pollution in this species.  

Light is a crucial part for photosynthesis and light intensity can alter the plant 

photosynthetic capabilities (Bolhár-Nordenkampf et al., 1989; Hijano et al., 2005; 

Assadi et al., 2011), morphological/anatomical features and biochemical activity 

(Hijano et al., 2005; Assadi et al., 2011). Light intensity differed slightly between the 

treatment sites and inside the greenhouse in which the control trees were housed. This 

provided impetus for the validation light measurement comparisons study which was 

performed in autumn and spring on B. discolor trees growing on the same university 

campus at which the greenhouse-based control trees were located. The results validated 

the trends observed for chlorophyll content and leaf area in this study and also 

highlighted the need to consider potentially confounding factors such as inter-site 

differences in photosynthetically active radiation when interpreting data for biomarkers 

such as leaf area and chlorophyll content.  

It is also important to note that the air pollution stress imposed on plants within the SDB 

is not solely a consequence of SO2 and can also differ in terms of severity across the 

SDB (Buthelezi and Davies, 2015). Qualitative observations of land-use practices at the 

treatment sites in this study support this statement. Brachylaena discolor trees at the 

Ganges treatment site for example, were located near a major highway (the 
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Southern/Northern highway, M4) and off a secondary road (Himalayas Road), which 

would have exposed them to higher levels of carbon monoxide and other vehicular 

pollutants than trees at the other treatment sites (Fig. 3.1 and Fig. 4.11). High levels of 

light and heavy motor vehicle traffic have also been suggested to contribute towards air 

pollution within the SDB, particularly in terms of carbon monoxide (CO) (Diab et al., 

2002; Rai et al., 2011). Heavy traffic during industrial working hours can lead to CO 

plumes (Diab et al., 2002) that may explain why trees at Ganges for example, appeared 

to be more stressed (in terms of·O2
-, H2O2, SOD, lipid peroxidation, leaf chlorophyll 

fluorescence and LA) than those at Southern Works, even though annual SO2 levels 

were highest at Southern Works. The inland location of Ganges (as opposed to Southern 

Works which is located on the coast-line and influenced by a NE or SW winds) could 

have also exacerbated the effects of pollution at Ganges relative to the other sites. The 

effects on all forms of pollution and their synergetic effects were beyond the scope of 

the present study. However, findings of this study emphasise the importance of 

considering topography and weather when interpreting effects of air pollution on 

specific biomarkers and suggests that biomarkers should ideally be related to more than 

one pollutant (i.e. proxy of pollution).  

In summary, all biomarkers appear to have been negatively affected by air pollution 

relative to the control but the degree of these effects varied across biomarkers and 

within biomarkers sites and seasons. Seasonal averages for five of the 10 biomarkers 

compared, viz. ·O2
-, lipid peroxidation, electrolyte leakage, chlorophyll fluorescence 

and LA, were significantly correlated with [SO2]. However, only electrolyte leakage 

was sensitive enough to reflect differences in SO2 levels across the treatment sites. 

Electrolyte leakage would therefore be the most suitable biomarkers of SO2 pollution 

for establishing B. discolor as a bioindicator of air pollution within the SDB.  

The establishment of B. discolor and trees in general as bioindicators of air pollution 

within industrialised areas in South Africa can help alleviate some of the present 

limitations to active (instrumental) air quality monitoring experienced by numerous 

municipalities across the country. 
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CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER 

RESEARCH 

6.1. Major findings  

This study aimed to compare the effects of varying levels of SO2 pollution on a range of 

biochemical, physiological and morphological stress biomarkers in B. discolor leaves. 

This was done with the intention of identifying biomarkers that can be used to establish 

B. discolor leaves as a bioindicator of air pollution within the SDB. 

As in other studies (Hijano et al., 2005; Tripathi and Gautam, 2007; Li and Yi, 2012) 

[SO2] was used as a proxy for air pollution at three industrial sites (viz., Prospecton, 

Ganges and Southern Works) within the SDB in the present study. Analysis of SO2 data 

received from air quality monitoring stations at each of these sites revealed SO2 levels 

within the SDB to be relatively high in terms of global standards (Matooane and Diab, 

2001; Diab et al., 2002; Josipovic et al., 2010), with Southern Works exhibiting the 

highest SO2 levels in the general study area. These data, however suggests that [SO2] 

can vary greatly both temporally and spatially within the SDB, as reported by other 

authors (Scott and Diab, 2000; Diab et al., 2002; Batterman et al., 2008).  

The suitability of the biomarkers investigated in this study was based on whether: (i) the 

biomarker could discriminate between SO2 exposed and unexposed leaves, (ii) the 

biomarkers were significantly correlated with seasonal [SO2], and (iii) the biomarker 

could reflect exposure to different levels of SO2. In this regard, six of the ten biomarkers 

(viz., H2O2, TAA, lipid peroxidation, electrolyte leakage, leaf chlorophyll fluorescence, 

and leaf area) were able to discriminate between SO2 exposed and unexposed leaves. It 

should be noted that these included biochemical, physiological and morphological 

parameters, which emphasises the need to consider a wide range of parameters in order 

to gauge the effects of a stress on plants and the environment in general (Moraes et al., 

2002; Tiwari et al., 2006; Tripathi and Gautam, 2007; Assadi et al., 2011). Of the six 

biomarkers mentioned above, only four (viz. lipid peroxidation, electrolyte leakage, leaf 

chlorophyll fluorescence, and leaf area) were significantly correlated with seasonal 

[SO2]. Seasonal·O2
- was significantly correlated with seasonal [SO2] but it was not able 

to discriminate between SO2 exposed and unexposed leaves. Electrolyte leakage was, 

however, the only biomarker sensitive enough to reflect differences in [SO2] across the 
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treatment sites. The results also suggest that biomarker responses were strongly 

influenced by seasonal variations in [SO2] which may also have been influenced by site 

topography. 

6.2 Challenges and short comings  

The lack of data for pollutants other than SO2 represented a major challenge during the 

study. Furthermore, where SO2 data were available there were a number of either 

missing or erroneous data points. This limited the data available for this study to just 

three of the 12 air quality monitoring stations (Ganges, Southern Works and 

Prospecton) in eThekwini. Diab and Motha (2007) have also acknowledged gaps in the 

data received from eThekwini Municipality operated monitoring stations. This validates 

the need to establish bioindicators that can provide complementary monitoring 

mechanisms of air quality within the EMA and particularly for areas like the SDB. 

The qualitative data collected indicated that there are a diverse range of pollution 

sources and hence pollutants across the three sites were investigated. Selecting SO2 as 

the sole proxy for air pollution was therefore not ideal since pollutants act cumulatively 

on the environment (Novak et al., 2003; Assadi et al., 2011; Rai et al., 2011; Li and Yi 

2012; Buthelezi and Davis, 2015). This may also explain why trees at Ganges which did 

not exhibit the highest SO2 levels often exhibited higher levels of stress (in terms of 

biomarkers such as ·O2
-, H2O2, LPO and LA, at least) than those at Southern Works, at 

which SO2 levels were highest. 

6.3 Recommendations for future research  

The SO2, qualitative and biomarker data presented in this study provide ample 

motivation for the need to establish bioindicators of air pollution in areas like the SDB, 

to complement and support current air quality monitoring techniques (Tripathi and 

Gautam, 2007). According to Conti and Cecchetti (2001) bioindicators act as an alarm 

of human induced stress on ecosystems, and in rapidly developing cities like eThekwini 

bioindicators are likely to become increasingly important. Knowing, the responses of 

bioindicators to specific pollutants, will also allow for the quick and appropriate 

mitigation strategies (Hijano et al., 2005; Tripathi and Gautam, 2007). On this note, the 



 

65 

biomarkers shown to be useful in reflecting the effects of [SO2] in this study should be 

ideally be related with other pollutants to further validate their use. 

Based on the results obtained here, future research on the establishment of leaves of 

other tree species as bioindicators must seek to include/compare a range of biomarkers 

(biochemical, physiological and morphological) and consider physiological interactions 

between/among them as well. For example, the activity of non-photochemical 

quenching (NPQ) strategies are severely compromised in plants exposed to stress 

(Ismail et al., 2014), and could therefore be measured in combination with chlorophyll 

fluorescence in studies of this nature. Another biomarker for future studies to consider 

is the hydroxyl radical (·OH). This radical is only formed if SOD and CAT are unable 

to handle stress levels (Sharma et al., 2012) and  may prove more useful than 

superoxide as a biomarker since plants do not have a ·OH specific antioxidant making it 

potentially more harmful (Sharma et al., 2012). It is also recommended that before 

chlorophyll content is disregarded as a biomarker for B. discolor, a comparison between 

biochemically determined chlorophyll content and SPAD units be performed to evaluate 

how sensitive the SPAD instrument is to changes in chlorophyll content (Yamamoto et 

al., 2002; Coste et al., 2010).  

Finally, the results of the present study provide ample motivation for the establishment 

of leaves of B. discolor as bioindicators of air pollution within the EMA. Further 

refinement may be needed in terms of the exact combination of leaf biomarkers to be 

used but for now it is evident that in B. discolor, leaf LPO, electrolyte leakage, 

chlorophyll fluorescence and LA can provide valuable information on air pollution 

levels within industrial areas such as the SDB. 
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APPENDIX 

A 

Table A GPS co-ordinates of the four B. discolor trees sampled at each treatment sites. 

 Tree 1 Tree 2 Tree 3 Tree 4 

Prospecton 
30˚0'8.8"S 

30˚55'46.6"E 

30˚0'11.8"S 

30˚55'45.9"E 

30˚0'8.0"S 

30˚55'45.1"E 

30˚0'8.0"S 

30˚55'44.2"E 

Ganges 
29˚56'50.5"S 

30˚57'58.7"E 

29˚56'51.8"S 

30˚57'57.3"E 

29˚56'50.3"S 

30˚57'59.2"E 

29˚56'48.9"S 

30˚58'00.9"E 

Southern 

Works 

29˚56'58.4"S 

30˚58'43.1"E 

29˚57'02.4"S 

30˚58'39.7"E 

29˚57'10.0"S 

30˚58'33.6"E 

29˚57'28.1"S 

30˚58'58.7"E 

 

 

B 

 

Figure B Immature B. discolor leaf (left), a leaf in the process of shedding the 

tomentulose (middle) and a mature leaf (right) that was suitable for testing various 

parameters used in this study (scale bar = 1 cm). 
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C  Du and Bramlage (1992) equation to correct for interference of sugars MDA  

 

 

 

 

 

1. 𝐴 = (𝐴𝑏𝑠532 − 𝐴𝑏𝑠600) 

2. 𝐵 = (𝐴𝑏𝑠440 × 0.0571) 

3. 𝑀𝐷𝐴 𝑡𝑜𝑡𝑎𝑙  (𝑛 𝑚𝑜𝑙 𝑚𝑙−1) =
𝐴−𝐵

157000 (𝑀−1𝑐𝑚−1)
× 106 


