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Abstract 

The concept of reconfigurable manufacturing is presently being researched due to the need for 

production systems that are able to economically respond to changes in markets and the rapid 

introduction of new products. Cellular Manufacturing Systems (CMS) are a central concept in 

just-in-time and lean manufacturing. Although CMS are able to provide a strategic operating 

advantage, machine cell clusters do not remain optimal over an extended period of time.  

The concept of a Dynamic CMS (DCMS) has received attention in recent years; a DCMS is a 

system where the layout of machines change in order to improve the responsiveness of CMS to 

changing production requirements. A deficiency in existing DCMS methods is that 

reconfiguration plans are generated without the consideration of an initial design of the factory 

floor space for future change. This research distinguishes Reconfigurable CMS (RCMS) from 

DCMS, as a system that is designed at the outset for changes to system layout and cell 

configurations. The concept of a Factory Configuration Template (FCT) is proposed in this 

research; the FCT is a design of the factory floor space to ensure the feasible implementation of 

reconfiguration plans generated by mathematical models. A nine step method for FCT design is 

presented that uses a Simultaneous Fuzzy Clustering Heuristic to develop manufacturing cells 

and part families. A Tabu Search algorithm was develop to generate the optimal arrangement of 

machine sites in cells. 

Three multi-period machine assignment models were developed that determine reconfiguration 

plans based on changing product demand and the introduction of new products. The models that 

were developed included two integer linear programs that determine the distribution of machine 

resources among cells over multiple periods. A quadratic zero-one programming model was 

developed that distributes machines among available sites in cells to promote unidirectional part 

flow. The results show that RCMS is able to provide a more economical solution than traditional 

CMS with the added advantage of improved part flow in the system.  

Keywords: Dynamic Cellular Manufacturing, Reconfigurable Manufacturing, Group 

Technology, Reconfiguration Planning 
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1 Introduction 

 Manufacturing Challenges 

The motivation for this research originates in the need to address manufacturing challenges that 

have emerged as a result of global economic competition in recent years.  Researchers such as 

Koren et al [1] have identified the following competitive strategies in modern manufacturing to 

achieve the objectives of profitability and increased market share:  

(i) the frequent introduction of new products with improved technology;  

(ii) the offering of increased product variety to the consumer; 

(iii) the production of high quality goods at competitive prices; 

(iv) a rapid response to market trends, demand and consumer needs.  

The manufacturing of products, while employing these competitive strategies presents a challenge 

to production planners and engineers. High product variety, technology innovation and unstable  

demand cause manufacturing systems to operate under rapidly changing conditions [2]. 

Challenges that arise from the implementation of competitive strategies include: 

(i) frequent adaptation of manufacturing processes to new products; 

(ii) large fluctuations in product demand and mix; 

(iii) frequent changes in process technology; 

(iv) the manufacturing of multiple product types on the same equipment. 

The cost effective initialization of manufacturing systems that facilitate the competitive strategies, 

has initiated the revision of manufacturing paradigms; this has been the inspiration for much 

research in recent years. This study addresses the Cellular Manufacturing Systems (CMS) 

paradigm in the context of coping with the introduction of new products, changes to part demand 

and mix, the phasing out of older product models and the practicality of addressing these 

challenges via system reconfiguration. 

 Introduction to Cellular Manufacturing Systems 

CMS are a manufacturing system design paradigm that emerged in the 1970’s and gained 

popularity in the 1980’s [3]. Cellular manufacturing is a central concept in achieving lean 

manufacturing and just-in-time manufacturing [4]. Lean manufacturing aims to minimize waste 

and underutilization of manufacturing resources and just-in-time manufacturing is an element 

within the context of lean manufacturing that deals with minimising Work-In-Process (WIP) and 

inventory levels. Both lean and just-in-time manufacturing find their roots in the development of 

the Toyota Production System [5]. The CMS is therefore an important and established 

manufacturing paradigm.   
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Figure 1.1: Types of manufacturing facility layouts. (adapted from [6]) 

Cellular Manufacturing Systems are higher variety, medium volume production systems, that are 

capable of greater product variety than Dedicated Manufacturing Systems (DMS) and higher 

production rates than job shops [7]. Figure 1.1 illustrates three common types of manufacturing 

system layouts. The product orientated layout is best suited to the manufacturing of a dedicated 

product type and is the least flexible in accommodating changes to products due to rigid flow 

paths. The process orientated layout, which is also known as a functional layout, is a typical job-

shop layout. It is capable of high part routing flexibility, however, this flexibility is accompanied 

by complex part flow.  

CMS exploit the concept of Group Technology (GT) to cluster parts into families and machines 

into cells. Figure 1.1 illustrates the concept of clustering machines into manufacturing cells and 

usually each cell is responsible for the production of a single part family. The objective of creating 

part families and machine cells is to exploit similarities in the manufacturing requirements of 

components and products. The benefits of CMS include reduced part set-up times on machines, 

better organization of tooling, lower work-in-process levels, reduced expenditure on material 

handling, less chaotic work flow, improved product quality, lower complexity scheduling and 

hassle free system management [3, 8]. Literature on CMS also contains reports of improved 

worker morale and productivity after the transformation of a system to a cellular type layout [6].  

The disadvantages of CMS include the lack of flexibility to accommodate changes to products, 

changes to the mix of parts being manufactured, the underutilization of machinery and the cost 
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incurred by having to re-layout cells [6]. Other disadvantages, from a theoretical perspective, 

include the lack of a single best method for cell formation and the planning of the re-layout of 

cells when cluster configurations cease to be optimal. Note that re-layout refers to the 

addition/removal and swapping of machines between cells to create new machine clusters. The 

terms re-layout and reconfiguration are used synonymously in this research. Re-layout results in 

modified cells with the appropriate manufacturing functions and production capacity to cope with 

change.   

The re-layout of a CMS is key to exploiting the benefits of a cellular layout and maintaining 

profitability and competitiveness over an extended period of time. Practical cases of re-layout in 

literature were found to be conducted in a reactive manner; after symptoms of poor system 

performance were prevalent.  The re-layout of a manufacturing system is an endeavour that bears 

significant financial risk. If the system is not designed at the outset, with the vision of adapting 

cellular configurations in the future, the cost of reconfiguration may be exorbitant. Other types of 

risk that will manifest due to the lack of an initial reconfigurable design include the risk of an 

extended system downtime and slow system ramp-up time; both of which equate to a loss of 

productivity and revenue. In addition to the various types of risk, a system that is not designed for 

re-layout may exhibit irreversibility; that is the installation of structures in the system that 

physically prohibit the movement of  some machines and other types of equipment to different 

cells. In these instances it may be impossible to implement the most optimal solution that may be 

proposed by a theoretical analysis.    

 Necessity for the Study 

The Reconfigurable Manufacturing Systems (RMS) paradigm was proposed by Koren et al [9, 

10], with   machine and system level configurability as the core mechanism to meet the demands 

of modern manufacturing. RMS’s were conceptualized through an international collaboration 

between researchers at universities that included the University of Stuttgart, Politechnico di 

Milano, Katholieke Universiteit Leuven and the University of Michigan. The definition of a RMS 

is as follows [1, 9]: 

 “A Reconfigurable Manufacturing System (RMS) is designed at the outset for rapid change in 

structure, as well as in hardware and software components, in order to quickly adjust production 

capacity and functionality within a part family in response to sudden changes in market or 

regulatory requirements.” 

The concept of reconfigurability, as defined here, is applicable to the design of Cellular 

Manufacturing Systems. The key characteristic in distinguishing a system as RMS is the initial 

design of the system for change, which includes changes in the facility layout. Other important 
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characteristics include the initial design of the system to be convertible and customisable [11]. 

Convertibility implies a system design for a rapid conversion of manufacturing functions and 

production capacity in response to changes within a product/part family. Customization implies 

system design and subsequent reconfiguration for exact functionality and capacity in response to 

changes in part demand and mix [1, 12].  

The re-layout or reconfiguration of a CMS does not imply that the system is a type of RMS.  The 

re-layout of CMS has been studied under the topic of Dynamic Cellular Manufacturing Systems 

(DCMS) since the 1990’s [13]. DCMS exploits the reorganization of machinery to alter cell 

configurations, however, the literature review has shown that little consideration is given to the 

initial design of the system for reconfigurability and the practicality of implementing layout 

changes as proposed by optimization models.  

In the literature that has been found, some research has been conducted on the topic of 

Reconfigurable Cellular Manufacturing Systems (RCMS), however, researchers have tended to 

use the terms RCMS and DCMS interchangeably, with no significant distinction between the 

concepts. Likewise, the works that have been published on the topic of RCMS have granted little 

or no consideration to the initial system design for future re-layout.  

This research involves the development of design methods for RCMS. Based on the inconsistent 

use of the terminology in the literature, the following definition is meant to bring a consistent 

understanding to the use of the term RCMS as it appears in this study: 

RCMS: is a system that is designed at the outset to be reconfigurable and reconfigurability is 

defined in this context to refer to the extent to which the system has been designed to 

accommodate future layout changes.  

The methods developed in this research adhered to the fundamental principle that for a CMS to 

be considered reconfigurable, the re-layout planning method must make provision for future re-

layout as an integral part of the initial design.  An appropriately designed RCMS should impart 

the flexibility to a system to add, remove or redistribute manufacturing equipment among cells 

without incurring inhibiting expenses and averting irreversibility in areas of the system structure. 

Reconfigurable CMSs, based on an initial design for re-layout, are envisioned to combine the 

benefits of traditional CMS with economical adjustments of production capability to provide a 

suitable solution to the challenges and demands of modern manufacturing.  
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 Aim and Objectives 

The aim of this research was to review existing CMS and DCMS design and reconfiguration 

planning techniques and formulate a methodology for the design and subsequent evolution of the 

layout of a Reconfigurable Cellular Manufacturing System (RCMS). This was to establish if an 

appropriately designed RCMS can respond to the introduction of new products and changing 

product demand in a manner that is economical and advantageous from a production management 

perspective.  

The objectives of this research were to: 

(i) Research and establish the deficiencies in existing CMS and DCMS design and 

reconfiguration planning methods. 

(ii) Research and develop an original method of imparting reconfigurability to a CMS at the 

design stage.  

(iii) Research and develop an original cell formation method that supports the initial design 

of the system for reconfigurability. 

(iv) Research and develop an original line analysis method that supports the initial design of 

a RCMS for reconfigurability. 

(v) Research and develop an original multi-period reconfiguration planning method for the 

re-layout of a RCMS within the provisions for reconfiguration created in the system at 

the design stage.  

(vi) Investigate the advantages of RCMS over CMS with fixed layouts through the application 

of the design and reconfiguration planning methods that have been developed.  

 Contributions of this Study 

This research provides an original design method and reconfiguration planning methods for 

RCMS. The design method imparts reconfigurability to the manufacturing facility at the outset. 

The methods that have been developed include: 

(i) the development of the concept of a Factory Configuration Template (FCT) that is to 

impart reconfigurability to RCMS at the design stage; 

(ii) the development of an original GT method, based on the concept of fuzzy clustering for 

cell formation, that supports future re-layout; 

(iii)  the development of an original line analysis method that pre-empts possible intra-cell 

rearrangements of machines to support unidirectional part flow.; 

(iv) the development of original models for multi-period planning of reconfigurations, based 

on integer programming methods, that propose both  inter-cell and intra-cell re-layout 

plans for machines within the provisions for reconfiguration made on the FCT.     
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The individual techniques are consolidated into a design and reconfiguration planning procedure 

that is demonstrated by application to the design of a RCMS. The RCMS responds to changing 

product demand, the introduction of new products and the termination of old products in a manner 

that is economical and reduces the complexity of part flow in the system.  

 Outline of Thesis 

Chapter 1 introduced the reader to the concept of a CMS, the motivation for the research and the 

resulting scientific contributions. The objectives of the research were also presented. Chapter 2 

reviews and analyses the inadequacies of classical and recent design methods for CMS, DCMS 

and RCMS.  The methods reviewed include group analysis methods and line analysis methods. 

Chapter 3 develops the concept of a Factory Configuration Template. The re-layout of CMSs 

within the flexibility provided by the template is a distinguishing characteristic between this 

research and other methods found in the literature. Chapter 4 presents the formation of 

manufacturing cells and families by the process of fuzzy clustering. The Fuzzy C-Medoids model, 

together a Simultaneous Fuzzy Clustering (SFC) heuristic, are used to identify the flexibility cells 

should possess in terms of their ability to host machines of different types over the planning 

horizon. This information is used in the creation of a suitable FCT. Chapter 5 presents a line 

analysis technique that is independent of the volume of specific product demand. The technique 

is based on a Tabu Search algorithm with the ability to propose duplicate sites for machines in 

cells. This information is also essential for the creation of a suitable FCT. Chapter 6 presents three 

models for the multi-period re-layout of a CMS. The models are based on integer programming 

techniques.  Chapter 7 demonstrates the design of a RCMS through methods developed in this 

research. The study demonstrates that an economic and production management advantage can 

be gained be re-layout of the manufacturing system. Chapter 8 discusses the performance of the 

system design and reconfiguration planning methods and areas for improvement and future 

research are identified. The implications of a FCT for RCMS are also discussed. Chapter 9 

concludes this thesis with a discussion of the highlights of this research and a summary of the 

problems that will require future research. 

 Chapter Summary 

This chapter introduced the reader to the challenges in modern manufacturing that have provided 

the motivation for this research. The scientific contributions of the research toward the design and 

planning of reconfigurations in cellular systems we discussed. The research objectives were 

presented, that contribute to the aim of formulating a methodology for the design and subsequent 

evolution of a RCMS.    
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2  A Review of Classical and Recent Design Methods for CMS  

 Chapter Introduction 

A literature review on the design methods for Cellular Manufacturing System is presented in this 

chapter. Two problems that are of particular importance in the design of CMS are the Group 

Analysis and Line Analysis problems. Methods for Group Analysis and Line Analysis were 

researched for both static and dynamic manufacturing requirements. The variety of approaches 

that have been developed to solve these problems has been documented here. The deficiencies in 

existing methods for the design of a viable reconfigurable CMS are discussed at the end of the 

chapter.  

 Elements of CMS Design 

The early works on the design of CMS  were conducted by Burbidge [14-16], who defined four 

stages for the design of cellular systems: 

1. Factory Flow Analysis (FFA): examines flows between shops and buildings. This 

eliminates unnecessary interdepartmental routes [14]. Backtracking is reduced by the 

redeployment of machinery. 

2. Group Analysis (GA): analyses process sequences of parts being produced in a particular 

shop/building in order to generate manufacturing cells. Each cell will have a complete set 

of machinery for manufacturing associated parts, inter-cellular material movements are 

allowed to/from vendors.  

3. Line Analysis (LA): analyses intra-cellular material routings in order to generate a layout 

that maximises unidirectional flow.  

4. Tooling Analysis (TA): Material size, shape, tooling and fixturing for parts are analysed. 

TA is necessary for the development of schedules such that there is maximum synergy 

between the operation sequence, tools and set-ups used by successive product batches. 

The objective is to reduce changeover delays and increase machine availability to 

alleviate high WIP and bottlenecks. 

The combination of the stages of analysis was collectively termed Production Flow Analysis 

(PFA). The GA and LA stages are concerned with the layout of manufacturing cells within a 

single building and are topics that are relevant to the development of a RCMS. 

 Fundamentals of Group Analysis  
Group Analysis is concerned with the generation of machine cells and part families. The science 

and practice of grouping machines and parts is commonly known as Group Technology (GT). 

Since the early works by Burbidge [14-16] a variety of methods have been proposed for the 
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development of machine cells and part families. Within the variety of methods that are available, 

there are three elementary strategies [17]:  

1. Simultaneous machine cell and part family formation. 

2. Machine cells are formed first and parts are grouped into families according to the cell 

that is able to provide common manufacturing services. 

3. Part families are formed first and machines are grouped into cells according to the family 

that has greatest need of those processes.  

Further distinction may be found between the various methods based on the criteria they consider 

such as part demeaned, balancing workloads between cells, tooling requirements and cell size. 

The majority of methods available begin with the analysis of a machine-component incidence 

matrix. Consider the example from King [18], shown in Table 2.1. Here row indices 1-5 signify 

machine types and column indices 1-6 signify part/component types.  The table captures the 

incidence data of parts on machines and the table is meant to be treated as a matrix with i and j as 

the respective row and column indices. Here aij = 1 indicates that the part corresponding to 

column index j requires the manufacturing services of the machine corresponding to index i; aij =0 

indicates no coupling between the corresponding part and machine. 

Table 2.1: Initial Machine - Component Incidence Matrix 

 

 

 

 

At the time of formulating the initial machine-component incidence matrix, process plans for 

parts have already been created. This enables the machines that are able to provide these processes 

to be identified.  The strategic issue of machine flexibility must also be addressed prior to 

formulating the incidence matrix. Wahab et al [19] emphasise the importance of machine 

flexibility in maintaining the future competitiveness of a manufacturing system. They also present 

different measures of machine flexibility that may assist decision in making. Machines that are 

available on the market must be evaluated and selected based on their ability to provide the 

processing operation of parts that are to be manufactured both in the present and the future.  Table 

2.2  is a rearranged version of Table 2.1; it shows two block structures along the diagonal of the 

matrix. These block structures identify individual machine cells and part families. Machine Cell 

(MC1) contains machines 3 and 5 and Part Family (PF1) contains parts 1, 4 and 6; i.e. 

PARTS 

M
A

C
H

IN
ES

 

 1 2 3 4 5 6 

1 0 0 1 0 1 0 

2 0 1 1 0 0 0 

3 1 0 0 1 1 0 

4 0 1 1 0 1 0 

5 1 1 0 1 0 1 
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MC1 = {3, 5} and PF1 = {1, 4, 6}. Likewise, MC2 = {1, 2, 4} while the corresponding part family 

is PF2 = {2, 3, 5}.  

Table 2.2: Modified Machine - Component Incidence Matrix with Block Structures 

 

 

 

 

 

An examination of the modified table reveals that parts 5 and 6 are dependent on machines not 

within their cell; these parts are referred to as exceptional parts. The corresponding off-diagonal 

elements a16 and a25 are referred to as exceptional elements.  Under the existing machine cell and 

part family configurations, machines 1 and 2 will process parts that are not within the 

corresponding family. These machines are referred to as bottleneck machines. In order for part 5 

and 6 to access machines 1 and 2, these parts will have to move between the first cell and the 

second cell; this type of material flow is referred to as inter-cell part flow.  

Table 2.2 shows that there are elements aij = 0 within the block diagonal structures, for example 

a13 = 0. Elements aij =0 within the block diagonal structures are referred to as voids. Voids are an 

indicator of machine underutilization by the corresponding part family. The number of voids and 

exceptional elements in a solution are widely used in metrics for determining the performance of 

a cell formation solution [20]. The minimization of voids and exceptional elements have also been 

used as objectives in optimization algorithms such as the multi-objective genetic algorithm 

developed by Arkat et al [21].  

The objective of the cell and part family formation process is to create maximum independence 

among cells by eliminating coupling due to parts requiring services from multiple cells. When the 

members of a part family require the services of multiple cells, this creates inter-cell material flow 

and corresponding inter-cell material handling costs. Other complications that arise from inter-

cell part flow include more a complex scheduling task, the requirement for additional buffering, 

increased work-in-process levels and increased difficulty in quality control. When each cell 

functions with autonomy by exclusively producing it’s corresponding part family, the result is 

hassle free system management and control [22]. In order to improve the autonomy of cells, 

duplicate machines may be purchased in order to eliminate exceptional elements. Another 

objective of the Group Analysis process is to determine the cell and part family configurations 

that will require the least number of duplicate machines cells [23].  
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 1 2 3 4 5 6 

1 1 1 0 0 0 1 

2 1 1 1 0 1 0 

3 0 0 0 1 0 1 

4 0 0 0 1 1 0 

5 0 0 0 1 1 1 
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There are numerous factors that are taken into consideration when designing machine cells. The 

term cell size is often used to refer to the number of machines in a cellular cluster. Cell size and 

the number of cells generally share inversely proportional relation. An increase in the number of 

cells is usually accompanied by a decrease in cell size. Cell size and the number of cells may be 

dictated by parts that are common to a set of machines, however, this is not without consideration 

of available floor space and operator requirements. A large number of small cells may require a 

larger work force. A smaller number of larger cells may benefit from fewer operators tending to 

multiple machines; however the control of a large cell may be challenging.  

 The Group Analysis Problem and Solution Approaches 

The classical group analysis problem involves the formation of machine cells and part families 

over a single period planning horizon based on machine-component incidence data such as that 

presented in Table 2.1. The problem of cell and part family formation from a zero-one incidence 

matrix is a NP-hard problem [24]. Another important class of GT problems are those that consider 

alternative process plans (alternative process routes for parts). These problems are referred to as 

generalized GT problems [25]. 

Burbidge [14-16] proposed a heuristic for group analysis that evaluates the usage frequency of 

machines by examining the machine-component incidence matrix. The heuristic then forms 

modular clusters around significant machines. Modules are split in cases where there are distinct 

sub-clusters. Modules that share a large number of common machines may be merged until the 

desired number of cells is obtained. Bottleneck machines may be redistributed among the modules 

at this point to eliminate exceptional parts. The final set of machine cells are verified by 

performing a load check to determine if the cells are able to meet the part demand. The reader is 

referred to [16] for a complete description of the PFA methodology and the charts and heuristics 

that are used to complete the process.  Hameri [26] reported that although the heuristic proposed 

by Burbidge is a well-documented and proven technique for simplifying complex material flow 

networks, the technique is not widely used. 

A variety of GT methods have been developed to produce improved results or consider additional 

factors with respect to the group analysis problem. Methods available include similarity 

coefficient generation and linkage analysis, part coding analysis such as the Opitz part 

classification system [27], array manipulation techniques, clique partitioning approaches, 

mathematical programming approaches, heuristic approaches such as genetic algorithms and 

simulated annealing, and artificial intelligence approaches such as expert systems and neural 

networks. A selection of literature based on these approaches will be discussed briefly.  
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2.4.1 Similarity Coefficient Approaches   

McAuley [28] was the first researcher to propose a cell formation method based on similarity 

coefficients, particularly the Jaccard Similarity coefficient. The similarity Sij, between two 

machines was based on the number of common parts that visited each machine and is given by: 

 
𝑆𝑖𝑗 =  

∑ 𝑋𝑖𝑗𝑘
𝑁
𝑘=1

∑ (𝑌𝑖𝑘 +  𝑍𝑗𝑘 + 𝑋𝑖𝑗𝑘)𝑁
𝑘=1

 (1) 

Where: Xijk = 1 if an operation on part k is performed on both machines i and j. 

Xijk = 0 otherwise. 

Yik = 1 if an operation on part k is performed on machine i. Yik = 0 otherwise.  

             Zjk = 1 if an operation on part k is performed on machine j. Zik = 0 otherwise 

Jaccard Similarity was computed with the incidence data obtained from the machine-component 

incidence matrix. The method then proceeded with Single Linkage Cluster (SLC) analysis, i.e. a 

linkage via a sufficiently high similarity with any member of an existing cluster warrants the 

admission of the additional machine into that cluster. The method first clusters machines with the 

highest calculated similarity and successively lowers the level of admission into a cell. The 

number of individual clusters decreases to produce less cells as the similarity criteria for clustering 

is reduced. Parts are then assigned to machine cells based on the cell that is able to provide most 

of the manufacturing operations. A weakness of the method is the use of SLC, where the machine 

being introduced into the cluster may have a strong similarity to one member of the cluster yet 

may still have a relatively low similarity to other members. Seifoddini [45] applied Average 

Linkage Cluster (ALC) analysis to the cell formation problem and found it to overcome the 

deficiencies found in SLC. The Jaccard similarity co-efficient, first used by McAuley [28] has 

been found to have the following limitations [29]: 

(i) there is no precise identification of the number of inter-cell movements  made by parts; 

(ii) the similarity is only between a pair of machines, it does not determine the similarity 

between a machine and a cluster; 

(iii) it does not give significance to a part that is not processed by machine pairs in a cluster. 
 

Researchers have therefore endeavoured to propose alternative similarity coefficients and 

dissimilarity coefficients. Ghosh and Dan [30] presented a hybrid clustering method that exploited 

Pearson’s sample correlation coefficient as a measure of similarity between two parts. Seifoddini 

and Djassemi [31] developed a production data similarity co-efficient  that considered part 

production volumes, combined with single linkage clustering.  In comparison to the Jaccard 

coefficient, it produced lower inter-cell and intra-cell material handling costs decreased in six out 

of ten cases. Gupta and Seifoddini [32] proposed an alternative similarity coefficient combined 

with Complete Linkage Clustering (CLC) Analysis for the purpose of cell formation. The co-



12 | P a g e  
 

efficient takes into consideration part routings, production volumes and unit operation time for 

each operation performed on a part. 

 

Wei and Kern [33] proposed the commonality score as an alternative to the Jaccard similarity 

coefficient. The authors proposed an algorithm called the Linear Cell Clustering Algorithm 

(LCCA) for cell formation using the commonality score. Chow and Hawaleshka [34] proposed 

an improved algorithm based on the concept of a Machine Unit (MU). The results were compared 

to an application of the methods proposed by Wei and Kern [33] and Sefoddini [35]. In both 

instances the algorithm proposed by Chow and Hawaleshka produced machine clusters with lower 

inter-cellular movement of parts.  

2.4.2 Array Manipulation Algorithms 

Array based cell formation algorithms rearrange the rows and columns of a machine-component 

matrix to obtain block diagonal structures; these algorithms simultaneously identify machine cells 

and part families. The Rank Order Clustering (ROC) algorithm was the first such algorithm to be 

applied to the problem; originally proposed by King [18, 36]. King and Nakornchai [37] later 

developed an extended version of the algorithm called ROC2, which includes bottleneck 

relaxation and exploits the properties of sparse matrices to address the issues of storage and matrix 

manipulation in large problems. ROC has been observed to be a fast converging algorithm, 

however Chandrasekharan and Rajagopalan [22] proved that the ROC algorithm does not always 

identify the block diagonal structures in a matrix. Chandrasekharan and Rajagopalan [22] 

developed the MODified Rank Order Clustering (MODROC) algorithm to overcome these 

deficiencies. The authors demonstrated the application of the MODROC algorithm on an 8 

machine 20 part matrix that was otherwise not capable of being block diagonalised in a suitable 

manner by an application of the ROC. Other matrix based clustering algorithms are the Bond 

Energy Algorithm presented by McCormick et al [38] and the Matching Algorithm presented by 

Bhat and Haupt  [39]. The work presented by these authors was not with specific intent on cell 

formation but rather as general matrix based clustering techniques. 

2.4.3 Non-Hierarchical Clustering  

Chandrasekharan and Rajagopalan [40] proposed a non-hierarchical clustering method for cell 

and part family formation.  The authors applied their method to the data set from King and 

Nakornchai [37]. The authors showed improved grouping by their method when compared to an 

extension of the Rank Order Cluster Algorithm. Chandrasekharan and Rajagopalan [41] presented 

an improved and extended version of the method called ZODIAC.  

Srinivasan and Narendran [42] proposed the use of a non-hierarchical clustering algorithm called 

GRAFICS for determining machine cells and part families. The authors compared GRAFICS and 

ZODIAC on 38 test problems. GRAFICS showed higher group efficiency for 14 problems and 
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higher group efficacy for 16 problems. ZODIAC produced higher group efficiency for 6 problems 

and higher group efficacy for 4 problems. In other cases both methods produced identical 

solutions.   

2.4.4 Clique Partitioning for Cell Formation   

Rajagopalan and Batra [43] proposed a graph-theoretic approach to the cell formation problem. 

They proposed that the machines be modelled as vertices. The relationship between two machines 

was modelled as edges. This relationship is created by the parts that visit a pair of machines and 

was formally modelled by the Jaccard similarity coefficient. The cell formation process begins 

by identifying cliques in the graph. In graph theory a clique is a sub-graph, identified as a subset 

of vertices with maximal connectivity between them. The Bron-Kerbosch algorithm was used for 

clique identification. Cliques are then merged and the graph is partitioned so as to minimize inter-

cell movement of parts. The Kernighan-Lin approach was used to partition the graph with 

limitation on cell size (i.e. number of vertices in a partition). No limit on the number of cells was 

imposed. Parts are allocated to formed cells such that inter-cell movement is minimized. The 

authors demonstrated the usefulness and feasibility of this approach although no comparative 

study was conducted against other methods.  

Wang et al [44] identified a computation problem in the work presented by Rajagopalan and Batra 

[43], in that for moderate to large size graphs the clique partitioning optimization model explodes 

in size, making it difficult to solve. The authors presented an alternative model for clique 

partitioning based on a 0-1 quadratic assignment formulation, solved by a Tabu Search heuristic.   

The authors applied the new clique partitioning approach to 36 test problems and demonstrated 

improvements in computational time, Grouping Measure and Grouping Efficiency (see section 

2.5). 

2.4.5 Methods based on the Travelling Salesman Problem 

Srinivasan et al [45] used a similarity coefficient matrix to solve the part-families assignment 

problem. A Travelling Salesman Problem (TSP) analogy was used to form part families from the 

coefficient matrix. The concept is to identify closed-loops or sub-tours, as they would appear in 

the solution to the TSP. These closed loops are the basis for grouping parts into families. The 

researchers proposed a nine step algorithm for solving the part families based on the TSP sub-

tour concept. The method and results were compared to the p-median assignment method 

(discussed in section 2.4.6) and the results were shown to be superior in quality and computational 

time.  

2.4.6 Mathematical Programming Models 

Kusiak [46] proposed an integer formulation to the GT problem; this model is known as the p-

median model. The model requires the prior calculation of a part-part similarity index sij. Kusiak 
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proposed an alternative similarity measure for parts based purely on the total number of common 

processes (machines). In the p-median model, a zero-one decision variable xij was used to allocate 

part i to part family j, i.e. xij = 1 if part i belongs to family j, xij = 0 otherwise. The objective of 

the formulation is to maximize the similarity of parts within a family for all families. Constraints 

ensures that each part is only assigned to one family and that exactly p families are formed. 

Machine cells were then created based on the needs of individual part families.  

Boctor [23] developed a zero-one model for the GT problem that explicitly considers restrictions 

on cell size and the objective of reducing the number of exceptional elements, in a solution.  The 

model simultaneously groups machines into cells and parts into families; unlike the p-median 

model which only forms part families. The model was solved using Simulated Annealing (SA) 

with 90 experiments applied on a set of ten test problems. In 64 % of the problems SA provided 

the optimal solution. 

Boctor [47] considered the effect of machine and part assignment costs in the GT problem through 

a linear Mixed Integer Program (MIP) formulation. The model simultaneously assigns machines 

and parts to cells. For a given set of machines and parts with acquisition and running costs, the 

problem was to minimize inter-cell material handling costs and machine acquisition and operating 

cost. An important point to note about this formulation is that it considers pre-existing machines 

as well as the possibility of purchasing new machines. Simulated annealing was used to solve the 

model and the optimal solution was found in 69 of 75 test problems.   

Saidi-Mehrabad and Ghezavati [48] proposed a stochastic model for cell formation as a linear 

MIP. The model takes into consideration that processing times for parts and part arrival times are 

stochastic; these times were modelled as exponential distributions. The model was tested by 

formulating random problems and solving them by the Branch and Bound algorithm. The authors 

presented eight test problems, each with 40 parts and 25 machines to be grouped into 6 cells. The 

results demonstrated a trend where machine utilization increased as inter-cell part movement 

increased. The economic objective was to determine the most profitable trade-off between these 

factors.  

2.4.7 Heuristic and Artificial Intelligence Approaches 

 Egilmez et al [49] proposed the use of a Genetic Algorithm (GA) for CMS design with capacity 

consideration. The problem formulation assumed a deterministic, unchanging demand and 

capacity requirements for 10 parts. The genetic algorithm used an integer string representation 

and the objective function was formulated to maximize the similarity between parts grouped into 

a cell. The results were compared to the capacitated p-median model and were shown to be within 

2.44 % of the global optimum.  
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Gomez et al [50]   approached the classical group analysis problem with a Tabu Search (TS) 

algorithm. The objective was to cluster parts and machines with an emphasis on shared tooling 

problem and minimization of machine set-up times. The results were compared to other Tabu 

Search approaches in literature and was demonstrated to produce improved production efficiency.  

Nouri and Hong [51] developed a Bacteria Foraging Optimization (BFO) algorithm for the 

creation of machine cells and part families. The algorithm was applied to twenty five different 

group analysis problems. The performance of the BFO algorithm was compared to algorithms 

such as the K-Means and C-link clustering algorithms and a genetic algorithm and was shown to 

outperform all of these on the given selection of problems.   

Won and Currie [52] developed a Fuzzy Adaptive Resonance Theory (ART) neural network for 

machine cell and part family formation in CMS. The method also considered operation sequences, 

multiple part visits to the same machine and production volumes as part of the cell formation 

problem. The strength of the algorithm and method proposed was the ability to be applied to large 

problems.   

Ghosh et al [53] presented a comprehensive literature review of meta-heuristics applied to the 

group analysis problem. The review includes the application of Simulated Annealing, 

Evolutionary Algorithms, Ant Colony Optimization and other novel approaches.  Chattopadhyay 

et al [54] presented a comprehensive literature review of artificial intelligence approaches  that 

included various types of neural network approaches to the machine cell and part family formation 

problem.  

 Measures of Performance in Group Analysis  

Researchers have aimed to improve the results of cell formation by exploring alternative heuristics 

and algorithms. Improvements in cell formation are measured against indicators such as 

exceptional elements, machine utilization, group efficiency and efficacy [20]. A selection of 

popular performance metrics are discussed here.  

Group Efficiency η, is a measure of performance in machine cell grouping that takes into 

consideration cell work load and the number of inter-cell movements made by parts. 

Chandrasekharan and Rajagopalan [22, 40] defined this performance measure as a function with 

weighting q: 

 𝜂 = 𝑞𝜂1 + (1 − 𝑞)𝜂2 (2) 

The authors defined the individual efficiencies as follows: 

 𝜂1 =
𝑒1

𝑒1 + 𝑒𝑣
 (3) 
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 𝜂2 =
𝑜 − 𝑒𝑣

(𝑜 − 𝑒𝑣) + (𝑒 − 𝑒1)
 (4) 

Where e1 is the number of 1’s in the block diagonals, ev is the number of voids in the block 

diagonal,  e is the total number of 1’s and o is the total number of 0’s in the entire machine-

component incidence matrix. A problem with Group Efficiency is that it is difficult to choose a 

weighting factor q because the formula yields a high value of η2; including problems with a large 

number of exceptional elements. Sarker [20] has also noted that the η2 has a diminishing influence 

on efficiency as problems get larger. 

The performance measure called Group Efficacy τ was introduced by Kumar and 

Chandrasekharan [55] to overcome the inadequacy of  the Group Efficiency indicator for large 

machine-component matrices.  Group Efficacy is defined as follows: 

 𝜏 =
𝑒 − 𝑒𝑜

𝑒 − 𝑒𝑣
 (5) 

Where eo is the number of exceptional elements in off-diagonal blocks. This performance measure 

has been known to be more sensitive to voids in a block diagonal as compared to the number of 

exceptional elements.  Ng [56] proposed a weighted average efficacy γ with weighting q to correct 

this bias: 

 
𝛾 =

𝑞(𝑒 − 𝑒𝑜)

𝑞(𝑒 + 𝑒𝑣 − 𝑒𝑜) + (1 − 𝑞)𝑒𝑜
 (6) 

Miltenburg and Zhang [57] proposed the concept of Grouping Measure ξg for a machine-

component group. Grouping Measure is the difference between the machine utilization rate ξu and 

the inter-cell part movement rate ξm; it is defined as follows: 

 𝜉𝑔 = 𝜉𝑢 − 𝜉𝑚 =
𝑒1

𝑒1 + 𝑒𝑣
−

𝑒𝑜

𝑒
 (7) 

Measures of performance for machine cell and part family formation that consider only the 

information contained in a machine-component incidence matrix are naive. The number of 

exceptional elements in off-diagonal blocks are only a crude indicator of the volume of inter-cell 

part flow. For instance, two exceptional elements corresponding to parts that are in relatively low 

demand may be more favourable to a manufacturer than one exceptional element for a part that 

is in great demand. Similarly, voids in the block diagonals of a machine-component incidence 

matrix are only a crude indicator of the underutilization of machines in a cell. The real extent of 

the underutilization of a machine is only known when the demands of different parts are taken 

under consideration. The measures of performance are therefore to be accompanied by other types 

of post-clustering analysis such as the cost of a solution, the actual inter-cell part volumes, etc.  
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 Dynamic and Reconfigurable Cellular Manufacturing Systems 

The classical Group Analysis problem and solution techniques consider a single-period planning 

horizon with a static part mix and fixed demand [58].  These methods are not suitable for dynamic 

manufacturing demands as the cells developed in one period may not be optimal in the next 

period.  The concept of Dynamic Cellular Manufacturing Systems (DCMS) was proposed by 

Rehault et al [13]. Note that in the literature, DCMS and Reconfigurable CMS (RCMS) are terms 

that are used interchangeably to refer to a system with cell configurations that changes over time.  
 

The concept of DCMS is illustrated in Figure 2.1, where machines are added, removed or 

relocated between cells as the manufacturing system progresses from one operating period to 

another. The reconfiguration/re-layout is initiated by a change in part types and market demand. 

In the example of Figure 2.1, in Period Two: machine 3 is relocated from Cell 1 to Cell 2, machine 

7 is relocated from Cell 2 to Cell 1 and  machine 1 is removed from Cell 1 and machine 8 is added 

in its place.  The advantages of the re-layout include simplified scheduling, higher machine 

utilization, lower work in process and lower inter-cell part flow volumes [59]. If cell 

configurations remain fixed, as in a traditional CMS, an increasing inter-cell part flow, reduced 

machine utilization and an increasing tardiness of parts will be observed when part types and 

demand change. These factors ultimately imply a reduction in the profitability of the system. It is 

therefore feasible to invest a portion of present profits toward the periodic re-layout of the system 

to ensure that profitability is maintained in the long-term. The term fixed CMS will henceforth be 

used to refer to systems where cell configurations do not change.   
 

 

Figure 2.1: Re-Layout of Cells in a DCMS (adapted from [59] ) 

Period One 

Period Two Cell 1 Cell 2 
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Rehault et al [13] presented a cost minimization quadratic assignment model to aid with the 

decisions of relocating workstations and machinery between cells.  The method proposed did not 

include any long term planning for re-layout but rather serves as a tool for determining the next 

configuration of the DCMS when the present configuration is no longer suitable.  

Safaei et al [58] developed a mixed integer program for a DCMS. The objective function 

minimises machine relocation, material handling and reconfiguration costs. The formulation 

considers inter- and intra-cell material handling, alternative process plans, machine duplication 

and re-layout via reconfiguration.  The model assumes that all machines are flexible, allowing 

operations to be performed on a variety of machines. The model also takes into consideration the 

sequence of operations in order to minimize intra-cell part movement. A fuzzy programming-

based approach was adopted to solve the model for a two period, two cell, eight part, six machine 

problem. The method was able to successfully generate new cell configurations in the second 

period with a demonstration of a cost trade-off between the re-layout of the system and other cost 

bearing factors such as inter-cell part movement. In a similar work Safaei et al [60] applied a 

hybrid Simulated Annealing algorithm to solve a larger three period, two cell, eight part, six 

machine problem. Safaei and Tavakkoli-Moghaddam [59] developed another similar MIP for a 

DCMS that considers the additional factors of subcontracting and inventory carrying costs.  

Mahdavi et al [61] proposed an integer programming model that considered worker assignment. 

The objective function included penalties for hiring and retrenchment of workers and salary costs 

when the manufacturing system is reconfigured. The model was able to determine optimal cell 

configurations over a three period planning horizon with two cells comprising of six machines 

and a total of six parts.  

Bayram and Sahin [62]  developed a non-linear mixed integer programming model that 

considered both inter and intra-cell material handling costs, costs for installing/uninstalling 

machines as well as the possibility of purchasing new machines in determining new system 

configurations. The model was solved by a combination of Simulated Annealing and a Linear 

Program (LP). Due to the complexity of the model it was also solved by a combination of a 

Genetic Algorithm and a Linear Program. Both SA-LP and GA-LP approaches were shown to 

obtain near optimal solutions.  

Sharifi et al [63] used a dynamic programming approach, combined with a Genetic Algorithm to 

solve the multi-period cell formation problem. The objective of this study was to use the DCMS 

design problem as a basis for evaluating the proposed algorithm against other optimization 

approaches such as LINGO (a modelling approach for solving linear and nonlinear optimization 

problems) and a Genetic Algorithm. 
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 Intra-Cell Layout and Line Analysis for CMS 

2.7.1 Common Cellular Layouts 

The layout of machines within a CMS may follow one of the common patterns as shown in Figure 

2.2. The circular layout is typical of a robot orientated cell where the robot is located at the centre 

of the loop. The U-Shaped layout is often referred to as a one piece flow layout or just-in-time 

layout [64].  

 
Figure 2.2: Common Cellular Layouts 

Irrespective of the type of layout selected for implementation, the ideal scenario is that all parts 

should flow in a single direction. Flow in a single direction is referred to as unidirectional flow. 

When the sequence of operations on a part does not follow the sequence in which machines are 

laid out, the part will bypass some machines. In order to follow the prescribed sequence of 

operations, the part may backtrack to machines that were previously bypassed. Part backtracking 

or the backward flow of parts against the planned flow direction increases the complexity of 

managing the cell and may incur costs due to the additionally material handling. The 

reconfigurability of DCMS/RCMS should be exploited, where possible, to eliminate part 

backtracking movements.  

2.7.2 Unidirectional flow by Part Family Design 

Unidirectional flow within cells may be promoted by appropriate part family formation. Goyal 

and Jain [65] presented a part family formation that promotes unidirectional flow within cells by 

an analysis of the similarities in operation sequences between parts. They proposed the BMIM 

(Bypassing Moves and Idle Machines) similarity coefficient and used the average linkage 

clustering method to generate part families.  

  

 

 
  

 

G 

  

  

  
  

    
  

  

      
Single Row Layout 

   

 

 

   

U Shaped Layout 

Circular Layout 

S Shaped Layout 



20 | P a g e  
 

2.7.3 Unidirectional Flow by Machine Sequence 

The primary method of promoting unidirectional flow is the appropriate design of the cell layout. 

The problem of cell design for unidirectional flow is referred to as Line Analysis.   Burbidge [15] 

presented a heuristic for Line Analysis that uses the sequence in which machines are visited by 

parts to iteratively simplify a network flow diagram that represents flow within a cell.   

An alternative method for obtaining unidirectional flow involves the use of a From-To matrix 

[66]. The development of a From-To matrix requires the sequence of operations for each part in 

a family to be taken under consideration. Table 2.3 presents an example part family consisting of 

parts 1-8 with the sequence of machines on which each manufacturing process will take place. 

For example, the first process on part 1 is performed on machine 2, the second process is 

performed on machine 5 etc.  

Table 2.3: Machine Visitation Sequence for Example Part Family 

Part Sequence of Machine Visitation 

1 2-1-5-6-3-4-7-8-9-7-5 

2 1-2-3-4-6-5-7-10-8 

3 2-3-1-4-5-6-8-9-10 

4 2-3-1-4-5-7-6-8-9-10-9 

5 1-2-3-6-4-7-9-8-10 

6 2-3-1-5-7-10-9 

7 3-1-4-6-10-9  

8 2-5-6-9-7-8-10-9  

By examining Table 2.3 it is clear that each part in the family visits machines for processing in 

different sequences. Promoting unidirectional flow (minimizing backtracking/back flow) is a 

challenge that is addressed by arranging machines in an optimized sequence.  

Table 2.4: From-To Frequency Matrix (M = Machine) 

 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 

M1 0 2 0 3 2 0 0 0 0 0 

M2 1 0 5 0 1 0 0 0 0 0 

M3 4 0 0 2 0 1 0 0 0 0 

M4 0 0 0 0 2 2 2 0 0 0 

M5 0 0 0 0 0 3 3 0 0 0 

M6 0 0 1 1 1 0 0 2 1 1 

M7 0 0 0 0 1 1 0 2 1 2 

M8 0 0 0 0 0 0 0 0 3 2 

M9 0 0 0 0 0 0 2 1 0 2 

M10 0 0 0 0 0 0 0 1 4 0 

Sum 5 2 6 6 7 7 7 6 9 7 
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Table 2.4 represents the ‘From-To’ frequency in which parts move from one machine to another. 

Here the prefix ‘M’ is added to machine numbers for additional clarity. Table 2.4 is populated 

from Table 2.3; as an example consider parts 1, 3  and 8 which move from machine 5 to machine 

6. The From-To frequency between machine 5 and machine 6 is 3, highlighted in green in Table 

2.3. The From-To matrix is used in practice to identify backtracking movements of parts; all 

numbers listed below the diagonal of the matrix indicate instances of parts backtracking in order 

to visit a machine that was previously bypassed. If the machines are arranged in the sequence 

1,2,3,4,5,6,7,8,9,10  there will be 18 instances of backtracking in the flow patterns of parts inside 

the cell.  

Table 2.5: Rearranged From-To Matrix (M=Machine) 

 M2 M3 M1 M4 M5 M7 M6 M8 M10 M9 

M2 0 5 1 0 1 0 0 0 0 0 

M3 0 0 4 2 0 0 1 0 0 0 

M1 2 0 0 3 2 0 0 0 0 2 

M4 0 0 0 0 2 2 2 0 0 0 

M5 0 0 0 0 0 3 3 0 0 0 

M7 0 0 0 0 1 0 1 2 2 0 

M6 0 1 0 1 1 0 0 2 1 0 

M8 0 0 0 0 0 0 0 0 2 0 

M10 0 0 0 0 0 0 0 1 0 0 

M9 0 0 0 0 0 2 0 1 2 0 

In order to reduce the number of backtracking movements, the sequence in which machines are 

arranged can be reordered to produce a smaller sum of numbers below the diagonal of the matrix. 

Table 2.5 shows a rearranged From-To matrix, where the number of instances of backtracking 

movements were reduced from 18 down to 12 by reordering the sequence in which machines 

would be placed on the factory floor.  

Hollier [67] proposed four heuristic methods that use the information in a From-To matrix to 

obtain acceptable machine layouts with minimum backtracking movements. The heuristics are 

based on the fundamental principle that machines with the fewest ‘to’ instances should be placed 

at the beginning of the sequence. By examining the column sum of Table 2.4 it is found that 

machine 2 has the lowest ‘to’ count and machine 9 has the highest ‘to’ count. In the rearranged 

matrix machine 2 is the first in the sequence and machine 9 is the last in the sequence.  

2.7.4 Single Row Layout Problem 

A problem related to  the Line Analysis problem is the Single Row Layout Problem (SRLP)  [68]. 

The SRLP aims to minimise the product of flow frequency and distance travelled; the objective 

is described by the following equation [69]: 
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𝑚𝑖𝑛 ∑ ∑ 𝑐𝑖𝑗𝑑𝑖𝑗

𝑛

𝑗=1+1

𝑛−1

𝑖=1

 (8) 

Where n is the number of facilities to be arranged in a single row, cij is the amount of flow between 

facility i and facility j and dij is the distance between the centres of the facilities. Ho and Moodie 

[70] explored the combination of Hollier’s methods with a Simulated Annealing algorithm 

applied to the SRLP to generate cell layouts that minimise total flow distance and the maximise 

the number of in-sequence part movements. Other works include the research by Solimanpur et 

al [71], who presented an alternative nonlinear zero-one programming model for the SRLP that 

minimizes the backtracking distances  travelled by material handling platforms.    

In the literature that has been reviewed, the problem of creating unidirectional part flow and the 

SRLP for DCMS/RCMS has received insufficient attention. The cost of intra-cell part flows has 

been considered by authors such as Safaei et al [60] and  Tavakkoli- Moghaddam [2] in the 

problem of cell creation. The intra-cell re-layout of machines was not fully exploited to improve 

the internal flow characteristics of cells.  

 Assessment of Existing DCMS and RCMS Methods 

The literature that has been reviewed reveals that researchers use the terms DCMS and RCMS 

interchangeably to refer to cellular systems where machine relocation is permitted. In all the cases 

reviewed the problem was first set-up as an integer or mixed integer optimization model before 

being processed and solved by the various methods available. The researchers did not integrate 

or modify any of the established classical solution techniques in order to adapt them to the multi-

period problem. Common optimization objectives included minimizing inter-cell material 

handling, intra-cell material handling and the cost of reconfiguration. Other objectives included 

minimizing labour costs and the costs of hiring and firing workers due to new factory 

configurations.  

In the literature reviewed in section 2.6, the problems were small, consisting of no more than ten 

parts and the planning horizon was no more than three periods. The size of the problems that 

could be solved was usually restricted by the complexity of the models. In many instances, part 

family combinations were also reconfigurable, where parts did not belong a definite family.  

In the cases reviewed, there was no initial design of the factory floor space to support 

reconfigurability. All machines were allowed to move to any cell without restriction, irrespective 

of physical constraints such as the need for sufficient floor space and supply connections such as 

compressed air, water and single-phase or three-phase electricity. The relative positioning of other 

machines when accepting new machines into a cell was also not considered. Although intra-cell 
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material handling costs were taken under consideration, insufficient attention was given to the 

internal design of cells to support unidirectional part flow. 

  
Figure 2.3: Impact of Relative Machine Position on Cell Reconfiguration 

Consider the scenario in Figure 2.3 where an additional copy of machine 3 has been assigned to 

a cell by a DCMS/RCMS multi-period group analysis model.  In order to support unidirectional 

part flow, the machine must be placed before machine 1 and 2 according to the flow sequence as 

shown in the ideal configuration. In this example no provision has been made for the cell to accept 

machine 3. In order to accept the additional machine two choices exist; in the first reconfiguration 

alternative, the machine is added to the end of the sequence. This does not support unidirectional 

flow and part backtracking moves are introduced. In the second reconfiguration alternative, 

machines 1 and 2 are relocated in order to create a space for the new machine. If this choice is 

adopted three machines machine movements are involved and the actual cost of reconfiguration 

is more than what may be reflected in the DCMS/RCMS optimization model. A closer 

investigation may reveal that the reconfiguration cost does not outweigh the benefit of the cell 

accepting the new machine.  

The situation may exist where reconfiguration as shown in the second alternative is infeasible.  If 

machine 1 or machine 2 are large and immovable machines, this creates an irreversibility. The 

ideal configuration for unidirectional part flow may therefore be impossible and the cell will be 

forced to operate under a sub-optimal configuration. 
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 Direction for this Research 

This research will address the design of Reconfigurable Cellular Manufacturing Systems. Koren 

et al [1, 9] define a reconfigurable manufacturing system as a system that is designed at the outset 

for changes in its structure (see  section 1.3) . Based on this definition, a RCMS is distinguished 

from a DCMS through its initial design for configuration changes. A significant portion of this 

research will be dedicated to the initial design of the factory floor space in order to support feasible 

and cost effective reconfigurations.  Attention will be given to both group analysis and line 

analysis to ensure that the process of reconfiguration enhances the functions of a manufacturing 

cell and that these manufacturing functions are arranged to support unidirectional flow.  

In this research the reconfiguration of manufacturing cells will occur within the context of part 

families; this is a distinguishing factor between this research and other DCMS literature. The 

decision to perform reconfiguration within the context of a part family is also consistent with the 

definition of a reconfigurable system offered by Koren et al [1, 9]. Parts within a family may be 

active or inactive during the various periods under review, however, members of a part family 

will not leave the cluster to become members of another part family. Each cell will be responsible 

for the manufacturing of a single part family, therefore the manufacturing of a part will never 

become the responsibility of another cell under future system configurations. Practically this can 

reduce the amount of operator retraining required after reconfigurations and will reduce the need 

to rotate operators between cells.  

 Chapter Summary 

This chapter presented a review of methods for the design of cellular manufacturing systems. 

Methods for the design of fixed CMS were presented to highlight the number of ways in which 

the problem of machine cell and part family formation may be approached. The design of a CMS 

with configuration changes to cells is a difficult problem that is subject to numerous cost bearing 

factors and physical limitations.  A review of recent literature in the field of DCMS and RCMS 

design was reviewed. The terms were found to be used interchangeably by authors referring to 

the problem of multi-period machine cell formation. By examining the literature it was found that 

the available methods do not consider the initial set-up of the factory floor to support future 

configuration changes. 

It was also found that insufficient attention was given to the intra-cell layout design to support 

unidirectional part flow when machines are added to cells in future periods.  This research will 

focus on the initial design of the manufacturing system floor space to support configuration 

changes. Thereafter, the matter of evolving cell configurations will be addressed within the 

context of the physical allowance that has been made for the re-layout of machines.  
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3 Designing RCMS for Reconfiguration 

 Chapter Introduction 

The design of a viable Reconfigurable Cellular Manufacturing System requires provision for 

reconfigurability to be included in the initial system installation. This chapter introduces the 

concept of a Factory Configuration Template (FCT). The FCT concept has been developed in 

order to create a floor layout design for a RCMS that supports future reconfigurations. If the FCT 

is implemented in the factory at the point of installing a CMS, the system will be reconfigurable 

from the outset. The features of the FCT are presented and matters pertaining to the creation of 

the FCT are discussed.  

 Re-layout of Cellular Manufacturing Systems  

Cellular Manufacturing Systems exploit similarities in the manufacturing requirements of parts 

and products. The benefits of CMS have been reported to include reduced part set-up times on 

machines, better organization of tooling, lower work-in-process levels, reduced expenditure on 

material handling, less chaotic work flow, improved product quality, lower complexity scheduling 

and hassle free system management [3, 8]. A CMS will remain optimal over a planning horizon 

in which part mix and demand do not change [7], however, the advantage of grouping a set of 

machines in one period may prove to be a disadvantage in the next period.  Over a period of time, 

the following will occur: 

 increased inter-cell material handling movements; 

 increased work-in-process; 

 longer manufacturing lead times; 

 lower machine utilization. 

These symptoms increase the difficulty of managing the system and reduce profitability. These 

symptoms indicate that the cell groupings and layout of the manufacturing system is no longer 

best suited to the production requirements of current parts and products. These symptoms occur 

due to the introduction of new parts, alterations to process plans and changes to process routings. 

These symptoms also occur when the relative demand characteristic of individual parts change as 

compared to what the system was initially designed to facilitate. Case studies have been 

documented where the reformulation of manufacturing cells and the re-layout of cells and 

machinery was necessary and beneficial to the long term productivity of the system. Allam and 

Irani [72] present a case study where cells were redesigned and equipment was rearranged in an 

unnamed small wheel manufacturing CMS. The result was improved material flow characteristics 

and a 46 % reduction in the material handling travel distance for parts visiting a mill-turn 

machining centre.    
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In cases where CMS were redesigned, the process of rearranging the layout of machines and cells 

was conducted after symptoms of inefficiency were observed. This research presents a 

methodology of pre-emptive planning for the reconfiguration of manufacturing cells, through the 

re-layout of machines, across multiple time periods in order to avoid the manifestation of the 

symptoms of inefficient machine clusters.  

 Reconfiguration Planning Strategy 

There are two approaches that may be adopted with respect to formulating manufacturing cells 

and planning subsequent reconfigurations. The first approach is to plan cellular reconfigurations 

based on forecast changes to the master production schedule; this is a short term approach. The 

second approach is to plan cellular reconfigurations based on the long term product release and 

market expansion strategy of the enterprise.  

Researches such as Safaei, Tavakkoli-Moghaddam and Sassani [59, 73]  have adopted the first 

approach, presenting methods for cell formation and reconfiguration that are tightly coupled to 

Production Planning (PP). Note that in this context, production planning refers to planning the 

management of production resources on the scale of weeks. This approach assumes that 

reconfiguration occurs frequently and is directly driven by anticipated changes in the master 

production schedule. The cell formation and reconfiguration methods developed by these authors 

consequently include inventory carrying costs, etc.  

The approach to cell formation and reconfiguration planning adopted in this work views 

reconfiguration as a long term strategy to maintaining the profitability of a CMS. Reconfiguration 

is therefore not performed in a manner that is reactive to the production schedule but rather pro-

active with respect to the long term product release and marketing expansion strategies of the 

business. Reconfiguration is an activity that is disruptive to the productivity of a manufacturing 

system, therefore frequent reconfiguration on the scale of weeks is practically undesirable. 

Manufacturing facilities have planned “shutdown and maintenance” periods that are determined 

by the seasonal behaviour of markets and national holidays. These periods are usually scheduled 

annually or biannually. The feasibility of performing reconfiguration during these planned 

shutdown and maintenance periods is higher and methods for planning the reconfiguration of 

manufacturing cells should be based on an appropriate scale of time (i.e. biannually and annually). 

The adoption of an appropriate scale of time ultimately determines the factors that are considered 

in the methods of designing Reconfigurable CMS.  

 Provision for Reconfigurable Machine Cells  

A RMS is a system that is designed for a rapid change in structure [1, 9]. A system cannot change 

its structure rapidly and economically if the current manufacturing system design does not 
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facilitate a changeover to a new configuration. A RCMS can therefore be defined from a design 

perspective as a system whose current manufacturing cells support a quick, seamless evolution to 

a new cellular configuration. Machines can only be relocated within a system if: 

 a budget has been made available for re-layout of cells;  

 a space is available for machines in a different cell; 

 the cell is able to provide the electricity, water, pressurized air or any other supply 

that the machine may need for its operation; 

 the machine is not confined by surrounding machines or structures that would prevent 

it from being moved.  

Machines that are likely to assume different locations across multiple time periods must be 

identified as early as the cell formation phase. If these machines are identified early, provision 

can be made during the commissioning of the system to ensure that cells are practically 

reconfigurable.  

 Factory Configuration Template  

This research introduces the concept of a Factory Configuration Template (FCT) for RCMS.  The 

FCT is a plan of the factory floor that has been designed to support reconfiguration. The plan is 

also a template because it defines all possible cell configurations that the RCMS will be allowed 

to assume over the planning horizon for which the FCT has been designed. The template defines 

possible reconfigurations that may be implemented to reduce material handling costs and improve 

the utilization of machinery while considering the long term profitability and production 

objectives of the business. At an elementary level, the template defines the machines that each 

cell is able to accept and also identify sites for fixed and mobile machines. Consider the following 

definitions of static and mobile machines: 

Fixed Machine: a machine that resides permanently in one cell, this may be due to its physical 

characteristics such as weight. A machine may also be classified as a fixed machine due to no 

advantage being found in the possibility of relocating it to other cells. 

Mobile Machine: a machine that may be located in multiple cells or multiple sites within a single 

cell to enable improved resource utilization and cost saving. The relocation of such a machine 

must be physically possible.  

Figure 3.1 illustrates the concept of the FCT for reconfigurable CMS. The template identifies sites 

for fixed and mobile machines within cells. Fixed machines may be automatically assigned to 

sites identified for them; for example machines 3 and 7 have one each and may be placed in the 

designated sites without further analysis. Sites that are occupied are shaded in red and sites that 

are available are outlined in green. Mobile machines 1, 2, 4, 5, 6, 8, 9 and 10 have multiple sites 
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that they may occupy as per the template, however, each site will remain empty until a need or an 

advantage has been identified in placing the machine at the site. 

 

Figure 3.1: Graphical Illustration of Factory Configuration Template 

As an example, consider machine 5 which has multiple possible locations. In the first year one 

copy of machine 5 is available and is required by Cell 3. In year two, an additional copy of 

machine 5 is purchased and the part family corresponding to Cell 1 has the greatest need for the 

new machine. In year three, the part family corresponding to Cell 2 may have a greater need of 

machine 5 and another unit of machine 5 is unavailable to the system. The machine may be 

relocated to this cell from either Cell 1 or Cell 3. Because the factory floor has been designed 

according to a plan that has made provision for reconfiguration, machine 5 may be placed in Cell 

3 without affecting the unidirectional flow of parts or requiring machine 9 to be moved.  

 Features of the Reconfiguration Template 

The FCT is effectively a plan of sites to be created on the factory floor and within cells to support 

reconfiguration. In addition to creating sites for the future re-layout of the system, the FCT must 

include provision for lanes in which machines can be moved. Material handling lanes may be 

created to be wide enough to allow machines to move. The FCT contains dedicated sites for each 

machine type, this is to avoid the need to move additional machines and to avoid irreversibility’s 

in the cell configuration. The example of Figure 2.3 is relevant. In addition to these factors, 

dedicated sites are also created on the factory floor since machines have individual floor space 

requirements. A larger machine cannot be placed in a site that was previously created for a 

machine with a smaller footprint. Many machines require a safe distance to be maintained 

between other machines. This is to avoid interference between machines and to create a safe 
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working environment. The FCT must include provision for distances between machines and a 

safe operating space for workers.  

Additional information that may be added to the FCT include the provision of supplies of water, 

electricity, compressed air and other types of connections that machines may need. These 

connections are often built into the physical structure of a building and the installation of these 

connections may be costly and inconvenient if installed or altered as an afterthought.  

From a theoretical point of view, the FCT will dictate the formulation of multi-period cell 

formation models in the following ways:  

 it defines a fixed number of cells for the planning horizon; 

 it identifies specific sites for fixed and mobile machines,; 

 a machine cannot be assigned to a cell if a site is not available for it according to the FCT; 

 it determines the number of machines of a single type that the cell may host; for example 

in Figure 3.1, a maximum of two machines of type 4 are allowed in Cell 3; 

 it imposes an upper bound on cell size (number of machines in a cell)  by the number of 

sites available; 

 it defines the shape and orientation of the cells that are to be implemented;  

 it defines the sequence in which machines may be placed within cells; 

 it defines the default direction of material/part flow in cells.  

 The RCMS Life Cycle under a Factory Configuration Template 

  

Figure 3.2: Reconfigurable Manufacturing Systems Life Cycle 
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The primary advantage of operating a RCMS within the constraints imposed by a Factory 

Configuration Template is that potential machine movements are known and this is factored into 

layout and space planning of the system. This ensures that configurations proposed by a 

theoretical model are feasible to implement.  The disadvantage of operating a RCMS within the 

constraints imposed by a FCT is that the template is restrictive and will eventually cease to allow 

optimal configurations to be implemented.  

Figure 3.2 illustrates the lifecycle of RCMS; the design process begins by first obtaining 

information pertaining to demand forecasts, product design information in relation to 

manufacturing requirements and information pertaining to the planned release of new products. 

This information is used to generate requirements and constraints that are then used to generate a 

FCT that is relevant for many years. 

Once a viable FCT has been established the system may be reconfigured within bounds. 

Advantageous configurations are obtained by the application of multi-period reconfiguration 

planning models that propose adjustments to cell functionality and capacity as needed. These 

models must also use reconfiguration to optimise the inter-cell and intra-cell flow of components. 

Over time, new information will become available on emerging market trends and the release of 

new products. Sub-contractor type manufacturing facilities will also obtain new contracts 

involving different parts with new demand requirements. When new information emerges this 

requires that the FCT be updated, however, this must be done in a manner that does not incur 

prohibitively cost intensive changes to the infrastructure within the production facility.  

 Prerequisite Information and Assumptions  

3.8.1 Part Demand and Mix 

A significant amount of prerequisite information is required prior to the implementation of a 

RCMS. Information pertaining to immediate and future products and their manufacturing 

requirements is required. Forecasting the demand of current and future products is essential to 

determining the types of parts and the volumes in which they must be produced. In subcontractor 

type manufacturing systems, operating on the make-to-order strategy, this information might be 

available due to contracts signed with other manufacturers or chain stores. These contracts may 

specify the types of products and the volumes in which they must be produced based a multi-year 

agreement.  

In other types of businesses, operating on the make-to-stock strategy; information on future part 

demand and mix may be determined through liaison with the ‘product development department’ 

and the ‘market research department’. Product developers can provide information on the parts to 

be used in future products and the corresponding manufacturing requirements.  Market 
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researchers can provide forecast information on the performance of future products in the market 

based on the performance of current products or the performance of competing products. 

Forecasting future part demand and mix is not an objective of this research. This research provides 

methods for RCMS design once such information is already available. 

3.8.2 Machine Flexibility and Machine Portfolios 

The formation of the FCT requires that the machines to be used by the system be determined 

beforehand. The flexibility of machines is an important aspect of ensuring the ability of a CMS 

to cope with changes to parts and product designs.  Researchers such as Taha and Rostam [74] 

have addressed the matter of appropriate machine selection to impart necessary flexibility to 

manufacturing cells. In this research, the process of developing the FCT begins with the same 

information as CMS and DCMS design problems; that is the assumption that relevant machines 

have been identified and relationships between parts and machines have been established. These 

relationships include processing times and sequences of operations on machines.  

3.8.3 Machine Sizes and Floor Space Requirements 

 The contributions of this research are the methods that may be used to identify sites on the FCT. 

The identification of sites on the factory floor is the component of FCT design that requires the 

development of new analytical tools. The relation of machine sizes to the floor area of sites is a 

rudimentary procedure and will not be given significant attention in this research.  

3.8.4 Design of Assembly Cells 

This research does not deal specifically with assembly cells. Gyulaia et al [75] stated that manual 

assembly of products is prevelant in systems where there is high part variety due to the rigidity of 

automation in accomodating part variations. Manual assembly processes are intrinsically 

reconfigurable due to human ability. Assembly cells may not require machines to be relocated but 

may require the re-layout of manual workstations. The methods developed in this research may 

be applied to the re-layout of assembly stations, however, no example is presented. This research 

focues on the re-layout of component manufacturing cells over multiple periods.  

 Chapter Summary  

This chapter presented the concept of a Factory Configuration Template as a means for making 

appropriate provision for future configuration changes in a reconfigurable CMS. The FCT 

identifies future potential sites that machines may occupy, this allows a manufacturer to make 

sufficient provision for floor space and other resources that machines may need. The FCT requires 

a significant amount of pre-requisite information to be designed. Assumptions with respect pre-

requisite information and other simplifying assumptions that are applicable to this research were 

addressed. The chapters that follow will proceed with methods that have been developed for FCT 

design and the models that are used to plan reconfigurations within the bounds of the FCT.    
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4 Site Identification for Factory Configuration Templates 

 Chapter Introduction 

The creation of a Factory Configuration Template requires that potential sites for machines in be 

identified in multiple cells. The machines may occupy these sites at the initial system installation 

or in future system configurations where the re-layout of machines has been conducted. This 

chapter presents the development of a fuzzy clustering method for site identification in the FCT. 

The suitable identification of sites is essential to ensuring that the FCT imparts the appropriate 

level of reconfigurability to cells in order to meet future manufacturing demands.  

 Significance of Fuzzy Clustering in FCT Formation 

The creation of the FCT requires the identification of sites for machines in cells.  Hard 

partitioning, which is a typical characteristic of well-known group analysis algorithms, restricts 

the membership µik of machine/part k in cluster i to hold a value in the set {0, 1}, ( 1≤i≤C and 

1≤k≤N). Hard partitioning therefore implies the definite placement of a machine in a cell and is 

not suitable for FCT creation. The membership of N data points with respect to C clusters usually 

represented in a C×N matrix: 

 𝑈 = [𝜇𝑖𝑘]𝑐×𝑁 (9) 

Fuzzy partitioning, which is a characteristic of fuzzy clustering methods, allows the membership 

µik of machine/part k in cluster i to hold real values in the range [0, 1]. A machine is not restricted 

to be an exclusive member of a cell as in conventional group analysis techniques. If the 

membership value of a machine in a cell is significant then it is justified that a site be created for 

the machine in that cell. The assignment of sites to machines in cells according to membership 

values is the approach that is adopted in this research. The method of obtaining membership 

values is determined by an appropriate dissimilarity coefficient, a membership model and the 

application of a fuzzy clustering model; these are presented in the sections that follow.  

 The Fuzzy C-Means and Fuzzy C-Medoids Models 

4.3.1 The Fuzzy C-Means Model 

The model selected for further investigation was the Fuzzy C-Means Clustering (FCM) model, 

first formulated by [76] and improved by Bezdek [77]. The model is a modification of the K-

Means (hard C-Means) algorithm originally developed by Macqueen [78].  The model is based 

on the concept of clustering around prototypes. Prototypes may be real elements from the data set 

or artificial elements that act as the nucleus for cluster formation.  
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The Fuzzy C-Means Clustering Model is as follows: 

 
𝑚𝑖𝑛 ∑ ∑(𝜇𝑖𝑘)𝑚‖𝑧𝑘 − 𝑣𝑖‖𝐴

2

𝑁

𝑘=1

𝐶

𝑖=1

 (10) 

Subject to: 

 
∑ 𝜇𝑖𝑘 = 1

𝐶

𝑖=1

, 1 ≤ 𝑘 ≤ 𝑁 (11) 

 
0 < ∑ 𝜇𝑖𝑘

𝑁

𝑘=1

< 𝑁, 1 ≤ 𝑖 ≤ 𝐶 (12) 

 𝜇𝑖𝑘 ∈ [0,1], 1 ≤ 𝑖 ≤ 𝐶, 1 ≤ 𝑘 ≤ 𝑁 (13) 

The objective function of the model minimises the product of membership values and the squared 

inner-product distance norm between a data point and the cluster prototype. The value m 

determines the fuzziness of clusters for m>1; in this research m=2 will be used throughout. The 

first constraint of the model ensures that the sum of memberships for each data element across all 

clusters equals one. The membership value is therefore comparable to a percentage. The second 

constraint ensures that all memberships are not allocated to a single cluster.  

 In this model zk is a data point existing in n-dimensional space: 

 𝑧𝑘 = [𝑧1𝑘 , … , 𝑧𝑛𝑘]𝑇, 𝑧𝑘 ∈ 𝑅𝑛 (14) 

and the set of N elements to be clustered is: 

 𝑍 = {𝑧𝑘|𝑘 = 1, … , 𝑁} (15) 

The vectors zk are usually represented by an n X N matrix, where the rows are the data elements 

and the columns are measured dimensions: 

 
𝑍 = [

𝑧11 ⋯ 𝑧1𝑁

⋮ ⋱ ⋮
𝑧𝑛1 ⋯ 𝑧𝑛𝑁

] (16) 

The objective of optimization problem represented in equation 10 requires the selection of cluster 

prototypes and the allocation of membership values to data elements, so as to minimize the “in 

cluster distance” or dissimilarity of clustered elements. The vector of cluster prototypes is: 

 𝑉 = [𝑣1, … , 𝑣𝑐], 𝑣𝑖 ∈ 𝑅𝑛 (17) 

For data in n-dimensional Euclidean space, the squared inner-product distance norm between a 

data point and the cluster prototype is given by equation 18, were A is the norm-inducing matrix. 

 𝐷𝑖𝑘𝐴
2 = ‖𝑧𝑘 − 𝑣𝑖‖𝐴

2 = (𝑧𝑘 − 𝑣𝑖)𝑇𝐴(𝑧𝑘 − 𝑣𝑖) (18) 
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4.3.2 Membership Models 

There is a variety of models that may be used to relate the membership of an element to a cluster; 

two examples provided by Krishnapuram et al [79]  are:  

 

𝜇𝑖𝑘 =
(

1
𝐷𝑖𝑘

)

1
(𝑚−1)⁄

∑ (
1

𝐷𝑗𝑘
)

1
(𝑚−1)⁄

𝐶
𝑗=1

  (19) 

 
𝜇𝑖𝑘

𝑚 =
𝑒𝑥𝑝{−𝛽𝐷𝑖𝑘}

∑ 𝑒𝑥𝑝{−𝛽𝐷𝑗𝑘}𝐶
𝑗=1

 (20) 

where β is a constant and Dik  is the dissimilarity between object k and cluster i. Usually Dik is the 

dissimilarity between object k and a representative object of cluster i (i.e. the cluster prototype). 

Equation 19 is the original Fuzzy C-Means membership model and will be adopted in this 

research. Other membership models, not listed here are documented in in Krishnapuram et al [79].   

4.3.3 Fuzzy C-Medoids Model 

The Fuzzy C-Medoids model is a special case of the Fuzzy C-Means model with the restriction 

that cluster prototypes are data elements from the set Z. The term medoid is used to refer to a 

cluster prototype from the set Z. This is useful for group analysis type problems where data in the 

machine-part incidence matrix are not elements of ℝ but elements of ℤ2. Most authors do not 

choose to distinguish this case as a new model from the standard Fuzzy C-Means model, however, 

for clarity, the special case is presented here: 

 𝑚𝑖𝑛 ∑ ∑(𝜇𝑖𝑘)𝑚𝐷𝑖𝑘

𝑘∈𝑍𝑖∈𝑉

 (21) 

Subject to: 

 
∑ 𝜇𝑖𝑘 = 1

𝐶

𝑖𝜖𝑉

, 𝑘 ∈ 𝑍 (22) 

 
0 < ∑ 𝜇𝑖𝑘

𝑁

𝑘𝜖𝑍

< 𝑁, 𝑖 ∈ 𝑉 (23) 

 𝜇𝑖𝑘 ∈ [0,1], 𝑖 ∈ 𝑉, 𝑘 ∈ 𝑍, 𝑉 ⊊ 𝑍 (24) 

In addition to requiring that cluster prototypes being members of the data set Z, the model also 

allows an arbitrary distance or dissimilarity measure Dik to be selected by the user. An 

investigation of an appropriate dissimilarity measure will be conducted in section 4.4.  

4.3.4 The Fuzzy C-Medoids Algorithm 

Krishnapuram et al [79] presented the Fuzzy C-Medoids (FCMdd) algorithm for fuzzy clustering 

based on partitioning around medoids. The algorithm is classified as an Alternating Cluster 

Estimation heuristic and is not guaranteed to always produce the best solution. The algorithm has 
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an alternating iteration architecture where elements from the data set are alternated as medoids in 

order to minimize the objective function. The solution to which the algorithm converges can 

change according to the initial selection of medoid elements from the data set; it is therefore 

advised that multiple experiments with varying initial medoids be conducted. The algorithm as 

presented in Krishnapuram et al [80] is as follows: 

FCMdd Algorithm 

//Pre-processing: Compute a square dissimilarity matrix D for all data elements within the set Z  

C=Clusters; //Fix number of clusters  
it_count = 0; //Set iteration counter to zero 
ITMAX= MaxIterations; //Define maximum number of iterations 
V={v1,…vc}, vi ϵ Z; //Randomly select an initial set of medoids from Z 

Repeat 
//Compute membership of all elements with respect to current medoids 
 for i = 1 to c 
  for k = 1 to N 
   compute μik ; // Compute using equation 19 
  end  
 end  
 Vold =  V ;//Store current medoids 
 for i = 1 to C 

  
11

argmin
mN

ik jkjk N
q D


 

  ; //Determine the index of the new medoid  

 vi = zq; // Add the new medoid to the set of medoids 
 end  

  it_count= it_count +1; 
Until (Vold = V or it_count=ITMAX) 

Prior to executing the algorithm a square dissimilarity matrix D must be calculated for all data 

elements in the set Z; if the cardinality of Z is n, then the dimensions of D is n×n.  The dissimilarity 

between each element in Z may be computed using any appropriate dissimilarity measure. 

The algorithm begins by fixing the number desired clusters C. The Fuzzy C-Means and Fuzzy C-

Medoids models do not have any means of identifying the natural number of clusters that exist in 

a data set. Cluster silhouettes,   developed by Rousseeuw [80], are a graphical aid in assessing the 

appropriate number of clusters in a dataset. The method will be presented in section 4.3.6.  

Once an appropriate number of clusters has been determined, the iteration counter is set to zero 

and a random set of prototype’s (medoids) V is selected from the set Z (V⊊Z). These elements 

serve as the initial set of cluster prototypes. The algorithm then enters a repeating main loop and 
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the first step within the loop is to compute the membership values µik. The membership is 

computed using equation 19 in the structure of a nested for loop. The current set of medoids is 

then stored and the algorithm proceeds to test new elements from the set Z as potential medoids 

for the next iteration of the main loop. The medoid that replaces the medoid vi is the one that 

minimizes the sum of the product of membership µik and distance Djk for all k and j.  

The main repeating loop of the algorithm terminates when there is no change to the set V or if the 

maximum number of iterations of the loop has been reached. The outputs of the algorithm are a 

final set of cluster prototypes V={v1,…vc} and the final membership matrix U=[µik]. The 

membership matrix is of particular interest as it can provide an indication of sites that should be 

created for machines in cells on a Factory Configuration Template.   

4.3.5 FCMdd Algorithm and Constraint Satisfaction  

The first constraint of the Fuzzy K-Medoids model requires that the sum of membership values 

for a single data element k across all C clusters must equal one. The FCMdd algorithm described 

here satisfies the first constraint (equation 22) of the model through the use if an appropriate 

membership model for µik. In particular, the membership model of equation 19 satisfies this 

constraint.  

The second constraint (equation 23) prevents all elements in the set Z from being allocated to one 

cluster. The algorithm does not include any mechanism for satisfying the second constraint of the 

model and it is possible that the membership of all elements in Z may be allocated to a single 

cluster. The algorithm may converge with a single element k’ being selected more than once, up 

to a total of C times, to serve as the medoid vi of a cluster. If the same element is selected more 

than once to serve as the medoid of different clusters it signifies an effective merging of those 

clusters. It is uncommon for the algorithm to select the same element k’ more than once to serve 

as a medoid unless the data has a distribution that would lead to a number of natural clusters that 

is less than the user prescribed number of clusters C. The algorithm may also exhibit this 

behaviour if the user has selected a dissimilarity measure with a poor discriminating ability. In 

the event that the algorithm violates constrain equation 23, the user should adjust the number of 

clusters C or choose a more appropriate dissimilarity measure.  

4.3.6 Silhouette Analysis 

The Fuzzy C-Medoids model does not have any inbuilt mechanism for identifying the natural 

number of clusters that exist in a data set. The model depends on the user of the algorithm to 

specify the number of clusters C that are to be created. The quality of a solution based on the 

parameter C may be verified by a post cluster analysis using cluster silhouettes.  Cluster 

silhouettes are a graphical aid in assessing the appropriate number of clusters in a dataset. The 
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method was developed by Rousseeuw [80] and is documented here briefly due to its future use in 

determining an appropriate number of machine cells to be created in a Factory Configuration 

Template design.  

 
Figure 4.1: Sample Silhouette Analysis for a Part Family 

Consider a data element k; the silhouette of k in the cluster it has been placed is calculated as 

follows: 

 𝑠(𝑘) = 1 − 𝑎(𝑘)
𝑏(𝑘)⁄ , 𝑖𝑓 𝑎(𝑘) < 𝑏(𝑘) (25) 

 𝑠(𝑘) = 0,                                𝑖𝑓 𝑎(𝑘) = 𝑏(𝑘) (26) 

 𝑠(𝑘) = 𝑏(𝑘)
𝑎(𝑘)⁄ − 1, 𝑖𝑓𝑎(𝑘) > 𝑏(𝑘)  (27) 

From the above definition the silhouette values are restricted as follows: -1≤ s(k) ≤ 1. In these 

equations a(k) is the average dissimilarity of member k with respect to other members of the same 

cluster and b(k) is the lowest dissimilarity between the element k and another cluster.  

The creation of a silhouette as defined by Rousseeuw [80] requires crisp clusters. In order to 

obtain crisp clusters from fuzzy clusters, elements may be assigned to the cluster in which it holds 

maximum membership. That is done by applying the following rule to the membership matrix: 

ik  = 1 if   
1

argmax ik
i C

i 
 

  and ik  = 0 otherwise. 
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The appropriate selection of the number of clusters C may then be verified by creating a silhouette 

plot. The features of a silhouette plot that are used to determine if a suitable number of clusters 

has been specified is the width of the silhouette, the average silhouette value and the presence of 

negative silhouettes.  A sample silhouette plot is provided in Figure 4.1. The silhouettes were 

obtained for the clustering of parts into families. The part data that was used in the example may 

be found in Table A - 1, in Appendix A.1.  The dissimilarity measure used in the clustering was 

Jaccard Dissimilarity (presented in section 4.4.1) and the algorithm was the Fuzzy-C Medoids 

algorithm.  

When the similarity between data elements decreases the horizontal width of the silhouette 

becomes narrower. A poor match between a data element and its cluster is identified by a negative 

s(k). Figure 4.1 shows values of the average s(k), or average silhouette width for a given number 

of clusters. The average silhouette is calculated by the following equation: 

 
𝑎𝑣𝑒 =

1

𝑁
∑ 𝑠(𝑘)

𝑁

𝑘=1

 (28) 

If three part families are used (i.e. C = 3) the average silhouette width is 0.1279. Although this is 

the highest average, this set of clusters has a higher number of poorly clustered elements as 

indicated by the negative silhouettes when compared to the case where two families are used (i.e. 

C = 2). A manufacturer may opt for three part families where many parts are well clustered with 

some outlying cases.  The manufacturer may opt for two part families where the similarities 

between parts are less strong yet with less significant outlying cases.  

The choice of C may also depend on other factors such as the feasibility of creating two or three 

cells and part families; for example two cells and two part families may be more cost effective 

from the point of view of labour requirements. The manufacturer may opt for three cells and three 

part families as smaller cells and families may enable easier control of the system. The silhouette 

plot is therefore an additional tool that may be used in determining the number of cells that should 

be created on a FCT.  

 Selection of a Dissimilarity Measure 

4.4.1 Available Binary Dissimilarity Measures 

The data used for Group Analysis for CMS is conventionally represented in a machine-component 

incidence matrix. These matrices will also be used for FCT design in this research.  The values of 

the matrix are binary (or zero-one values); where the value ‘1’ denotes that part j requires the 

services of machine i and ‘0’ otherwise. The Fuzzy C-Medoids model presented in section 4.3.3 

must be used with a suitable binary distance or dissimilarity measure for n-dimensional binary 

data.  
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Equations 29-  35  list some of the binary distance/dissimilarity measures documented in a survey 

of binary similarity and distance measures presented by Choi et al [81]. Jaccard Dissimilarity was 

not included in the survey by Choi et al, however the Jaccard Similarity, presented in equation 1, 

has been known for its usefulness in grouping parts and machines. The Jaccard Similarity is 

rewritten here, in equation 35, to represent dissimilarity. 

 𝐷𝑀𝐴𝑁𝐻𝐴𝑇𝑇𝐴𝑁/𝐻𝐴𝑀𝑀𝐼𝑁𝐺 = 𝑏 + 𝑐 (29) 

 
𝐷𝑀𝐸𝐴𝑁_𝑀𝐴𝑁𝐻𝐴𝑇𝑇𝐴𝑁 =

𝑏 + 𝑐

𝑎 + 𝑏 + 𝑐 + 𝑑
 (30) 

 
𝐷𝑉𝐴𝑅𝐼 =

𝑏 + 𝑐

4(𝑎 + 𝑏 + 𝑐 + 𝑑)
 (31) 

 
𝐷𝑆𝐼𝑍𝐸_𝐷𝐼𝐹𝐹𝐸𝑅𝐸𝑁𝐶𝐸 =

(𝑏 + 𝑐)2

(𝑎 + 𝑏 + 𝑐 + 𝑑)2
 (32) 

 
𝐷𝑆𝐻𝐴𝑃𝐸_𝐷𝐼𝐹𝐹𝐸𝑅𝐸𝑁𝐶𝐸 =

𝑛(𝑏 + 𝑐)−(𝑏 − 𝑐)2

(𝑎 + 𝑏 + 𝑐 + 𝑑)2
 (33) 

 
𝐷𝐿𝐴𝑁𝐶𝐸&𝑊𝐼𝐿𝐿𝐼𝐴𝑀𝑆 =

𝑏 + 𝑐

(2𝑎 + 𝑏 + 𝑐)
 (34) 

 𝐷𝐽𝐴𝐶𝐶𝐴𝑅𝐷 = 1 −
𝑎

𝑎 + 𝑏 + 𝑐
 (35) 

In these equations a is the number positive matches  or instances ‘1’ is present at the same index 

in both vector zi and zj ,b is the number of instances ‘1’ is present in vector zi and ‘0’ is present in 

vector zj at the same index, c is the number of instances ‘0’ is present in vector zi and ‘1’ is present 

in vector zj at the same index, d is the number of negative matches or instances ‘0’ is present at 

the same index in both vector zi and zj and n is defined by equation 36: 

 𝑛 = 𝑎 + 𝑏 + 𝑐 + 𝑑 (36) 

The measures presented here are those identified to have the greatest potential to correlate the 

objectives of cell and part family formation with the general objective of clustering which is to 

minimize in-cluster dissimilarity.  

Table 4.1: Machine-Part Incidence Matrix [23] 

 

 

 

 

 

PARTS 

M
A

C
H

IN
ES

 

 1 2 3 4 5 6 7 8 9 10 11 

1 1 0 1 0 0 0 1 0 0 0 1 

2 1 1 0 0 0 1 0 0 0 0 0 

3 0 1 0 0 0 1 0 0 1 0 0 

4 0 0 0 1 1 0 0 0 0 1 0 

5 0 0 1 0 0 0 1 0 0 0 0 

6 0 0 1 1 0 0 0 0 0 0 1 

7 0 0 0 0 1 0 0 1 0 1 0 
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As an example, consider the machine-component incidence matrix presented in Table 4.1, which 

was originally presented by Boctor [23].  The FCMdd algorithm requires a dissimilarity measure 

in order in order to perform fuzzy clustering. The algorithm can either generate fuzzy partitions 

for part families or machine cells; it cannot generate both simultaneously. If machine cells are to 

be identified, a machine-machine dissimilarity matrix must be created. Rows 1…7 are treated as 

the data elements and the information stored in the columns are treated as the “coordinates” of 

the element (data point) in each dimension.  If part families are to be identified, a part-part 

dissimilarity matrix must be created. Columns 1…11 are treated as the data elements and the 

information stored in the rows columns are treated as the “coordinates” of the element (data point) 

in each dimension.  

The part-part dissimilarity matrix shown in Table 4.2 was generated by applying the Lance & 

Williams dissimilarity measure. A sample calculation is presented in Appendix B.1. According 

to this measure, the dissimilarity between part 1 and part 2 is 0.5, etc.  

Table 4.2 Part-Part Dissimilarity Matrix Based on the Lance & Williams Coefficient (P=Part) 

 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 

P1 0.0 0.5 0.6 1.0 1.0 0.5 0.5 1.0 1.0 1.0 0.5 

P2 0.5 0.0 1.0 1.0 1.0 0.0 1.0 1.0 0.3 1.0 1.0 

P3 0.6 1.0 0.0 0.6 1.0 1.0 0.2 1.0 1.0 1.0 0.2 

P4 1.0 1.0 0.6 0.0 0.5 1.0 1.0 1.0 1.0 0.5 0.5 

P5 1.0 1.0 1.0 0.5 0.0 1.0 1.0 0.3 1.0 0.0 1.0 

P6 0.5 0.0 1.0 1.0 1.0 0.0 1.0 1.0 0.3 1.0 1.0 

P7 0.5 1.0 0.2 1.0 1.0 1.0 0.0 1.0 1.0 1.0 0.5 

P8 1.0 1.0 1.0 1.0 0.3 1.0 1.0 0.0 1.0 0.3 1.0 

P9 1.0 0.3 1.0 1.0 1.0 0.3 1.0 1.0 0.0 1.0 1.0 

P10 1.0 1.0 1.0 0.5 0.0 1.0 1.0 0.3 1.0 0.0 1.0 

P11 0.5 1.0 0.2 0.5 1.0 1.0 0.5 1.0 1.0 1.0 0.0 

4.4.2 Testing of Dissimilarity Measures with Fuzzy C-Medoids 

The use of an appropriate dissimilarity measure is essential to align the objectives machine cell 

and part family identification, with that of fuzzy clustering. A measure with a poor discriminating 

ability can be identified by a large number of ‘ties’ in the membership matrix. Let gk be the number 

of clusters for which the maximum membership value for element k is shared. The number of 

crisp clusters M that may be derived from the fuzzy partitioned membership matrix, by allocating 

an element to a cluster of maximum membership, is given by equation 37: 

 
𝑀 = ∏ 𝑔𝑘

𝑁

𝑘=1

 (37) 

The binary dissimilarity measures presented in the previous section were tested for their 

discriminating ability when used with the FCMdd algorithm. The measures where applied to a 
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list of well-known Group Analysis problems; these are listed in Table 4.3. The corresponding 

machine-component matrices are presented in Appendix A.2.  

Table 4.3: List of Problems for Testing of Dissimilarity Measures  

Problem Source Machines Parts Cluster 

1 McAuley [28] 4 6 Machines 

2 McAuley [28] 4 6 Parts 

3 Chandrasekharan &Rajagopalan  [22] 8 20 Machines 

4 Chandrasekharan &Rajagopalan  [22] 8 20 Parts 

5 Boctor  [23] 16 30 Machines 

6 Boctor [23] 16 30 Parts 

7 King[18] 16 43 Machines 

8 King[18] 16 43 Parts 

9 King & Nakornchai [37] 16 43 Machines 

10 King & Nakornchai [37] 16 43 Parts 

The problems were tested by clustering of parts and clustering of machines in order to highlight 

any difference in the number of possible crisp partitions M. The results are shown in Table 4.4. 

Table 4.4: Binary Dissimilarity Measures – Growth in M 

Problem 1 2 3 4 5 6 7 8 9 10 

Manhattan 1 1 1 16 2 1 32 8 48 2.99×106 

Mean Manhattan 1 1 1 16 2 1 32 2.99×106 48 2.99×106 

Vari 1 1 1 16 2 1 32 8 48 2.99×106 

 
Size Difference 1 1 1 16 2 1 16 3.11×104 32 3.11×104 

Shape Difference 1 1 1 16 2 4.19×106 4 6561 4 6561 

Lance & Williams 1 1 1 1 1 1 1 16 1 16 

Jaccard 1 1 1 16 1 2 1 16 1 16 

 

The results indicate that all binary dissimilarity measures display adequate discriminating ability 

for relatively small problems (problems 1 – 4). The Manhattan/Hamming, Mean Manhattan, Vari, 

Shape Difference and Size Difference measures do not perform well on larger problems, i.e. 

problems with more than 8 machines and 20 parts. This is indicated by the extreme increase in 

the number of crisp clusters that may be derived from the resulting fuzzy partitioning matrix. All 

dissimilarity measures display a larger value for M when the FCMdd algorithm is applied to the 

fuzzy clustering of parts when compared to the fuzzy clustering of machines. This is an expected 

result as there are usually more part types than machine types in a manufacturing system. The 

Lance & Williams and Jaccard dissimilarity measures displayed consistently good discriminating 

ability, with no drastic increases in the value of M with respect to increasing problem size. The 

Jaccard and Lance & Williams measures were used for further development.  
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 A Simultaneous Fuzzy Clustering Heuristic 

The outcome of the fuzzy clustering process or in this case the FCMdd algorithm is the C×N 

membership matrix and a set of medoids. These outputs may be obtained for either machine cells 

or part families and not both at the same time. In this section a heuristic is developed that 

simultaneously identifies multiple sites for machines in cells and creates part families.  

4.5.1 Architecture of a Simultaneous Clustering Heuristic 

The coupling between parts and machines via a machine-component incidence matrix creates the 

opportunity for clusters of machine sites to be created from a set of part families. It is therefore 

possible that secondary clusters (machine sites) can be derived from a primary clusters (part 

families) when a relational mapping is available. The following definitions are relevant: 

Primary Cluster: the clusters for which medoids and a membership matrix were originally 

generated by the FCMdd algorithm.  

Secondary Clusters: the clusters generated from a relational mapping to the primary cluster. 

In order to improve the match between primary clusters and secondary clusters it is possible to 

set-up an iterative procedure by using the secondary clusters to reformulate the primary clusters 

until no changes occur. In fuzzy clustering, the calculation of a membership matrix depends on 

cluster prototypes. When cluster prototypes change, the membership matrix changes and the crisp 

cluster derived from the membership matrix changes. The following definition is relevant: 

Primary Prototypes: the prototypes used to compute the membership matrix of primary clusters. 

A method has been identified for updating primary prototypes from secondary clusters; this is 

basis for the Simultaneous Fuzzy Clustering (SFC) heuristic proposed here. The architecture of 

the algorithm is displayed in Figure 4.2. 

 

 Figure 4.2 Architecture of the SFC heuristic  

The primary prototypes (medoids) are initially generated by the FCMdd algorithm. The primary 

prototypes and membership matrix are used to create primary clusters.  The SFC heuristic forms 

Generate 
Secondary 

Clusters
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Primary 

Prototypes
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Terminate When 
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secondary clusters from primary clusters; secondary clusters are then used to create updated 

primary prototypes. Updated primary prototypes allows the reformulation of primary clusters. 

The SFC heuristic terminates when there is no change to the updated primary prototypes. 

Figure 4.2 shows that the FCMdd algorithm serves the single purpose of providing an initial seed 

of primary cluster prototypes and a membership matrix as a seed to the SFC heuristic. The seed 

is determined by using part families as the primary cluster.  

4.5.2 The SFC Heuristic  

The SFC heuristic is presented in this section. It identifies sites for machines in cells on a FCT 

and determines part families simultaneously.  

Simultaneous Fuzzy Clustering Heuristic  

 [Medoids_FCMdd, U_FCMdd] = FCMdd(); // Generate seed using FCMdd algorithm 
T = Matrix; // Machine-component incidence matrix 
L = MinumumMembership; // Minumum membership value for a site to be created  

it_count = 0; //Initialize iteration counter 
ITMAX= MaxIterations; //Define maximum number of iterations 

Repeat 
it_count=it_count+1; //Update iteration counter 

if it_count=1 //For the first iteration 
 // Set medoids generated by FCMdd as the primary prototypes  

CurrentPrototypes = Medoids_FCMdd; 
//Set U generated by FCMdd clustering as initial parts membership matrix 
U_Parts = U_FCMdd; 

else //For every iteration after the first iteration 
 //Set prototypes generated in previous iteration as current prototypes 

CurrentPrototypes = NewPrototypes; 
//Calculate an updated membership matrix for parts using cluster prototypes 

 U_Parts = Generate_U_Parts (CurrentPrototypes); 
end 

//Generate part families (primary clusters) from membership matrix        
PartFamilies = ClusterParts (U_Parts); 

//Generate a membership matrix for machines using part family information  
 U_Machines = Generate_U_Machines (PartFamilies, T); 

//Generate machine sites (secondary clusters) from membership matrix        
 MachineSites = ClusterSites (U_Machines,L); 

 //Generate updated primary medoids from secondary cluster information  
 NewPrototypes = PrototypeGeneration (MachineSites); 
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Until (CurrentPrototypes = NewPrototypes or it_count=ITMAX ) 

[PartFamilies] = PostProcessing( PartFamilies) 
 

The SFC heuristic requires a membership matrix and medoids as a seed; this seed is generated by 

the FCMdd algorithm. Without a good initial seed the SFC heuristic may fail to find the best 

solution with high repeatability, particularly for larger problems. The primary cluster in the SFC 

heuristic are part families and the secondary clusters are machine sites.  An additional input to the 

algorithm is the machine-component incidence matrix. This matrix is required to calculate a 

membership matrix for the secondary cluster; in this instance machine cells.  The parameter L 

must also be defined by the user, this parameter is discussed in section 4.5.2.3.  

The algorithm requires the definition of an iteration counter and a maximum iteration count during 

initialization. This is defined because the algorithm has been tested and found to cycle indefinitely 

when a dissimilarity measure has a poor discriminating ability.  

The first iteration of the repeating loop takes the medoids and membership matrix generated by 

the FCMdd algorithm and uses it to form part families. Part family formation is achieved by the 

ClusterParts() function. The rule implemented in this function is presented in section 4.5.2.1.  

The algorithm proceeds to create a membership matrix for machines in the 

Generate_U_Machines() function. This ‘secondary’ membership matrix is not formed by the 

Fuzzy C-Means membership model; this membership matrix is formed by an affinity analysis of 

each machine with respect to individual part families. The more parts requiring the service of 

machine x in a family, the greater the affinity of the machine to that family and the higher the 

membership value. The method for forming this secondary membership matrix is described in 

section 4.5.2.2. The membership matrix U_Machines is then used to allocate machine sites to 

cells using the ClusterSites() function. The rule implemented in this function is presented in 

section 4.5.2.3.  

After machine sites have been allocated to cells,   the heuristic proceeds to formulate a set of new 

primary prototypes and formulate a new membership matrix for part family formation. The 

PrototypeGeneration() function and Generate_U_Parts() function is discussed further in section 

4.5.2.4.  

The process of forming primary and secondary clusters continues until the primary prototypes of 

the previous iteration match the updated primary prototypes of the current iteration, or the 

maximum iteration count is reached. The outputs of the algorithm are the clusters (machine sites 

and families) that were formed in the same iteration in which the algorithm was terminated. The 
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resulting part families are then post processed to remove any duplicate members that may still 

exist as a result of the cluster formation rule for parts. The PostProcessing() function is presented 

in section 4.5.2.5.  

The SFC heuristic is an original innovation of this research. The FCMdd algorithm and SFC 

heuristic were implemented in the Matlab® program development environment. The program 

code may be viewed on the accompanying CD.  

4.5.2.1 Cluster Formation for Parts 

The ClusterParts() function implements the crisp cluster formation rule: ik  = 1 if  

 
1

argmax ik
i C

i 
 

  and ik  = 0 otherwise.  

 In instances where the maximum membership value of a part is shared by more than one family, 

the part is allocated to all these families to allow the heuristic to more freely explore part family 

options. This is the only scenario under which parts are duplicated in families.  An example 

application of part family formation is provided in Appendix B.2. 

4.5.2.2 Affinity Analysis for Machine Membership Matrix Formation  

The process of developing a membership matrix for machines is not based on the Fuzzy C-Means 

membership model, it is formulated by analysing the affinity of each machine with respect to part 

families. The affinity matrix is a C×N matrix where C is the number of cells that have been 

prescribed and N is the number of machines: 

 𝐴 = [𝑎𝑖𝑘], 1 ≤ 𝑖 ≤ 𝐶, 1 ≤ 𝑘 ≤ 𝑁 (38) 

Here aik is the number of parts in cluster (family) i that require processing on machine k. The 

matrix A is populated from part family information and process routing data for parts stored in 

the machine-component incidence matrix. The elements of the membership matrix U_Machines 

are computed by equation 39: 

 𝜇𝑖𝑘 =
𝑎𝑖𝑘

∑ 𝑎𝑗𝑘
𝐶
𝑗=1

 (39) 

An example calculation corresponding to the Generate_U_Machines() function is presented in 

Appendix B.3.   

4.5.2.3 Cluster Formation for Machine Sites 

The ClusterMachines() function implements the cluster formation rule: ik  = 1 if  ik L   and ik  

= 0 otherwise. Here L is the minimum membership value of a machine with respect to a cell, 

which justifies the creation of a site for the machine in the cell. The manner in which ik is 

calculated for machines makes it an indicator of the relative part load that each cell will impose 

on a machine. L can therefore be thought of as a threshold of relative part load that justifies the 
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creation of a site for the machine in a cell. An example of the allocation of sites for machines in 

cells is presented in Appendix B.4.  

4.5.2.4 New Prototype Generation and Updating the Part Membership Matrix 

Updated part family prototypes are generated in each iteration of the SFC heuristic. These primary 

prototypes are generated by exploiting the relationship between primary prototypes and secondary 

clusters. Generated prototypes are used to create an updated membership matrix for parts. This is 

done by using equation 19. Examples for the PrototypeGeneration() function and 

Generate_U_Parts() functions are presented in Appendix B.5.  

4.5.2.5 The Post Processing Function 

The PostProcessing() function removes duplicate parts from families. Recall that duplicate parts 

are allowed to exist in families when maximum membership values are tied according to the 

cluster formation rule. The criteria used for removing duplicate parts from families was to remove 

the part from the family where the corresponding cell had the least available processes. If this 

criteria could not determine an appropriate family, the part was allowed to remain in the family 

with the least members.  

 Example - Site Allocation on a Factory Configuration Template 

The machine-component matrix of Table A - 1 was used to simultaneously identify machines 

sites within cells and part families. The SFC heuristic was used with the Jaccard Dissimilarity 

measure. Three cells were chosen for implementation on a FCT; the silhouette analysis presented 

in section 4.3.6  is relevant.  

If the parameter L = 0.4, the Clusters of Sites (CSi) and Part families (PFi) are: 

CS1 = {S2, S3, S8, S9, S12, S15, S17}; 

CS2 = {S1, S4, S5, S6, S13, S17}; 

CS3 = {S7, S10 , S11, S14, S16, S18}; 

PF1 = {3, 12, 13, 14, 15, 16, 17, 18, 19, 21, 26}; 

PF2 = {2, 4, 5, 6, 7, 9, 10, 11}; 

PF3 = {1, 8, 20, 22, 23, 24, 25, 27, 28, 29, 30}. 

Here CS1 denotes the cluster of sites allocated to the first cell, etc. The prefix ‘S’ denotes a site 

allocated to a cell for the corresponding machine number. For example, machine 2 has been 

allocated a site in the first cell. Based on L = 0.4 each machine has been allocated exactly one site 

that it may occupy in each cell with the exception of machine 17 which has a site in the first and 

second cells.  

If L = 0.2, the clusters of sites and families are: 

CS1 = {S2, S3, S5, S8, S9, S12, S13, S15, S17}; 



48 | P a g e  
 

CS2 = {S1, S2, S4, S5, S6, S7, S8, S13, S17}; 

CS3 = {S7, S9, S10, S11, S12, S14, S16, S18}; 

PF1 = {3, 12, 13, 14, 16, 17, 18, 19, 21, 26}; 

PF2 = {2, 4, 5, 6, 7, 9, 10, 11, 15}; 

PF3 = {1, 8, 20, 22, 23, 24, 25, 27, 28, 29, 30}. 

Based on L = 0.2 machines 2, 5, 7, 8, 9, 12, 13, 17 have been allocated two sites each. For example 

machine 9 has a sites available for occupation in the first and third cells. Notice that the part 

family clusters have changed; part 15 is now in the second family. 

Note that for the problems in this research the FCMdd algorithm and SFC heuristic were able to 

provide results rapidly, requiring a maximum of six iterations each.  

 Selection of Parameter L in FCT Creation 

The parameter L is the relative part load on a machine with respect to a cell.  The parameter may 

be selected based on the number of sites that are feasible for a given factory floor space. In the 

example of the previous section, 19 sites were generated across all cells for L=0.4 and 26 sites 

were generated for L=0.2. The parameter L may be adjusted until an acceptable number of sites 

are generated. Note that L should never bet set very high in the SFC heuristic as it may lead to no 

sites being created from some machines. It is recommended that the parameter L be varied in the 

range of 0-0.5.  

An alternative method of evaluating a solution is to assume that each site is occupied by a 

machine. This allows the creation of a machine-component incidence matrix where block 

diagonal structures can be identified. As an example, if every site is occupied by a machine in the 

solution corresponding to L=0.2, the resultant Machine Cells (MCi) will be: MC1 = {2, 3, 5, 8, 9, 

12, 13, 15, 17}, MC2 = {1, 2, 4, 5, 6, 7, 8, 13, 17}, MC3 = {7, 9, 10, 11, 12, 14, 16, 18}. The 

corresponding block diagonalised matrix is presented in Table A - 2, Appendix A.1. From Table 

A - 2 is clear that there are 7 exceptional elements are outside of the block structures and 163 

voids are within the block structures. Recall that exceptional elements are indicators of inter-cell 

part movement and voids are indicators of machine underutilization in a fixed CMS.  

In the operation of a RCMS every site will not be occupied at all times. When sites are empty the 

number of part types performing inter-cell part movements can only increase in order to access 

the necessary machine at another site. The exceptional elements obtained here are therefore a 

lower bound on the minimum number of part types requiring inter-cell material handling 

movements at any time.  It is desirable to make the lower bound as low as possible for a greater 

opportunity to eliminate inter-cell part moves by re-layout of machines. The re-layout of machines 

effectively reconfigures machine clusters.  
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The void count is the total number of instances for which parts will not use a machine allocated 

to a resident cell. An increasing void count, in the context of a fixed CMS indicates the increasing 

likelihood that machines will have low utilization. In the operation of a RCMS not every site will 

be occupied at all times. The void count, in the context of RCMS indicates the increasing 

likelihood that machine sites will have low utilization. The creation of additional sites for 

machines involves an investment risk since the creation of sites requires the outlay of finances for 

a larger factory floor space and the installation of infrastructure to support the machine that will 

be hosted.  

In summary, it desirable to reduce exceptional elements to increase opportunities for eliminating 

material handling costs and it is desirable to reduce voids to reduce the risk of investing in sites 

that may be underutilized. Naturally, an increase in opportunity is accompanied by an increase in 

risk. Figure 4.3 shows that reducing the value L in the SFC heuristic reduces the number of 

exceptional elements.  Figure 4.4 shows that reducing the value L in the SFC heuristic increases 

the number of voids.  

In this example, at L = 0.15, the number of exceptional elements is zero, however, this is 

accompanied by a sharp increase to over 250 voids. This is an increase of more than 100 voids 

for the benefit of 7 less exceptional elements when compared to L = 0.2.   In the example problem 

the solution generated for L = 0.2 represents the maximum reasonable opportunity-risk 

combination that should be adopted.  

 
Figure 4.3: Influence of L on Exceptional Elements for the Example Problem 
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Figure 4.4: Influence of L on Voids for the Example Problem 

 Chapter Summary 

In this chapter the concepts from fuzzy clustering theory were identified as useful for generating 

sites for machines in cells on a Factory Configuration Template. The concept was built into a 

Simultaneous Fuzzy Clustering heuristic that generates sites for machines in cells and part 

families simultaneously. 

The SFC heuristic generates crisp clusters based on rules that are applied to a fuzzy partitioned 

membership matrix. In the heuristic primary clusters are used to generate secondary clusters and 

secondary clusters are then used to reformulate the primary clusters to obtain well matched 

solutions.  

The membership concept from fuzzy clustering was used to identify if a site should be created 
for a machine in each cell based on the relative part load parameter L. The chapter concluded 
with a discussion on selecting an appropriate solution for various options of L.  
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5 Capacity Analysis and Site Arrangement in Manufacturing Cells 

 Chapter Introduction 

The SFC heuristic presented in chapter 4 identified sites that should be created for machines in 

cells in order to impart reconfigurability to a CMS. This reconfigurability exists within the 

provisions allowed for re-layout by a Factory Configuration Template. The previous chapter 

assigned machine sites to cells, however, these sites must be arranged in a manner that supports 

unidirectional flow. The problems associated with a lack of planning for unidirectional flow in 

future cell configurations was discussed in section 2.8.  

This chapter addresses the subject of site arrangements within cells to support unidirectional flow, 

in current and future manufacturing system configurations. The focus is on intra-cell site 

arrangement and not the arrangement of cells in relation to each other. The inter-cell layout design 

deals with the location of cells relative to each other. The location and orientation of cells with 

respect to each other may be studied as an optimization problem, however, it is not mandatory for 

demonstrating the use of a FCT and other methods developed in this research.   

A factor that must be considered when developing an intra-cell cell layout is the possibility of 

duplicate machines being required in series or parallel along the path of flow within a cell. 

Duplicate machines may be required in parallel in order to improve the production capacity of a 

cell. A duplicate machine placed in series may eliminate the backward flow of parts. These 

matters will be taken under consideration in this chapter as intra-cell design methods are 

developed for unidirectional flow.  

 Capacity Considerations in Duplicate Site Identification 

The SFC   heuristic developed in section 4.5 has the ability to allocate a maximum of one site per 

machine per cell. The heuristic cannot allocate additional sites because it is based on the 

information provided in a zero-one machine component incidence matrix without consideration 

for machine capacity requirements. The output of the SFC heuristic must be combined with 

capacity verification procedures to ensure that the FCT has an appropriate number of sites at a 

system and cell level.  

5.2.1 System Level Site Analysis 

The minimum number of machines required by a system must be calculated in order to ensure 

that the capacity is sufficient to meet the demand for parts. The system level requirement for 

machines is different from the cell level requirement for machines and both types of requirements 

must be considered. The cell level requirement for machines is always greater than the system 

level requirement of machines. For example, at a system level, the total part load may dictate that 

2 machines be made available; however, Cell 1 might require 1.2 machines and Cell 2 might 
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require 0.8 machines. Since a faction of a machine cannot be allocated to a cell, Cell 1 effectively 

requires 2 machines and Cell 2 requires 1 machine. The total machine requirement at a cellular 

level is therefore 3 machines. 

Machines are usually made available based on the system level requirement. These are the 

mandatory minimum machine numbers necessary to create sufficient production capacity. If 

additional capital is available a machine may be purchased to satisfy the cell level requirement. 

If no additional machine is made available, some parts may have to perform inter-cell movements.  

When designing a FCT, sufficient sites must be made available across all cells in order to host the 

mandatory minimum number of machines. Moreover, the mandatory number of machines must 

be determined for each period (i.e. year 1, year 2, etc.) to ensure that the FCT is appropriate for 

the entire planning horizon.  Depending on the parameter L, the SFC heuristic will create sites for 

the same machine type across multiple cells, however, a check must be performed to ensure that 

sufficient sites are made available.  

The following steps may be followed in order to calculate the minimum mandatory number of 

machines to be made available in each period: 

1. Determine the number of hours of processing time required on machine i, for each period 

k. This is calculated by summing the product of the anticipated volume of each part p and 

the cycle time of part p on machine i: 

 
𝐻𝑖𝑘 =

∑ 𝑣𝑜𝑙𝑢𝑚𝑒𝑝𝑘
𝑃
𝑝=1 × 𝑚𝑖𝑛𝑢𝑡𝑒𝑠𝑖𝑝

60
 (40) 

2. Determine the number of working hours available on machine i for each period k:  

 𝑊𝑘 = (ℎ𝑜𝑢𝑟𝑠/𝑑𝑎𝑦) × 𝑑𝑎𝑦𝑠 (41) 

3. Determine the number of machines of type i required by the system in period k: 

 
𝑁𝑖𝑘 =

𝐻𝑖𝑘

𝑊𝑘 × 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦
 (42) 

If Nik > 1 for any of the periods k, a check must be performed to ensure sufficient sites have been 

made available for machine i. Note that i ϵ I, where I is the set of all machine types, p ϵ {1,…,P} 

is the set of all part types and k ϵ K, where K is the set of periods (years, months, etc.) that are 

relevant.  Machine availability is represented as a percentage; usually 70 % - 80 %.  

Note that the manner in which the necessary number of machines does not consider the actual 

rate at which parts are capable of being produced by cells as dictated by the theory of constraints 

or the assignment of operators to cells. Nonetheless, this is the prescribed method for determining 
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mandatory numbers of machines according to the Handbook of Cellular manufacturing Systems 

[82]. 

5.2.2 Example - Analysis of System Level Site Requirements 

Assume that the following set of machine sites and part families have been determined by the 

SFC heuristic: 

CS1 = {S1, S2, S3, S4}; 

CS2 = {S2, S4, S5, S6}; 

PF1 = {1, 2, 3, 4, 5}; 

PF2 = {6, 7, 8, 9, 10}. 

Table 5.1 presents the anticipated annual part demand for parts 1-10. Table 5.2 presents the cycle 

time for each part on machine type 2; parts 4, 5, 9 and 10 do not use machine 2.  

Table 5.1: Anticipated Annual Part Demand in Thousands (P=Part, Y=Year) 

  P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 

Y1 6 6 4 3 0 0 0 2 9 9 

Y2 6 4 6 7 0 2 2 2 7 8 

Y3 0 0 0 11 9 7 6 2 5 3 

Y4 0 0 0 10 10 6 8 2 0 1 

Table 5.2: Cycle Times for Parts on Machine 2 (P=Part, M=Machine) 

 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 

M2 30 25 26 - - 27 28 28 - - 

Assuming a 350 day work year with 16 hours of working time per day; the total annual operating 

time is Wk = 5600 hours/year. In order to determine if a sufficient number of sites have been 

proposed for machine 2 the total hours of time required on the machine by parts must be 

calculated. The results are presented in Table 5.3 and a sample calculation is presented in 

Appendix C.1.  

Table 5.3: Hours of Operating Time Required (Y=Year, M=Machine) 

 Y1 Y2 Y3 Y4  

M2 8167 10033 6883 7367 

Assuming that machine availability is 70 %, the total number of machine type 2 required per year 

was calculated and is shown Table 5.4. A sample calculation is presented in Appendix C.2.  

Table 5.4: Numbers of Machines Required Per Year (Y=Year, M=Machine) 

 Y1 Y2 Y3 Y4  

M2 3 3 2 2 
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The results of Table 5.4 reveal that three machines of type 2 are required. Although two machines 

are required in year 3 and 4, it is likely that three machines will be available due to purchases in 

the previous years. A comparison of this result with the number of sites proposed reveals that one 

additional site is needed for machine type 2, this could be created in the first or second cell. The 

choice requires an analysis of the cell level machine requirements.  

The example here used machine 2 as the subject to demonstrate the importance of analysing the 

number of sites made available for machines throughout the system. This analysis must be 

performed for all machine types and tables such as Table 5.3 and Table 5.4 should be populated 

with the results of all machines.  

5.2.3 Cell Level Site Analysis 

Cell level site requirements must be analysed for each machine type to identify if a second site is 

required in the same cell. This analysis should be conducted even if the system level site analysis 

indicates that a sufficient number of sites are available. As a general rule, sites for machines 

should only be duplicated in cells where there is already one site.  

Additional sites for machines, as dictated by capacity requirements usually implies that the extra 

machines will be placed in parallel along the path of flow within the cell. Adding machines in 

parallel is not supported by all cell shapes; the circular layout presented in Figure 2.2 does not 

lend itself to the placement of machines in parallel. A multi-row layout, as shown in Figure 5.1 

supports the addition of machines in parallel. Multi-row layouts are characteristic of higher 

volume production systems and are not typical of a CMS. Nonetheless, the need may arise where 

machines in parallel are needed.  

 
Figure 5.1: A Multi-Row Layout 

If a multi-row layout is implemented with identical machines in parallel, methods for obtaining 

unidirectional flow as in a single row layout may still be applied. The duplicate machines are 

treated as a single entity as shown in Figure 5.1. An example will be presented that analyses if a 

cell requires machines (machine sites) in parallel. 

5.2.4 Example – Analysis of Cell Level Site Requirements 

In the example of section 5.2.2 it was shown that a minimum of three sites for machine 2 were 

required. Since the CFT consists of two cells, the creation of an additional site for machine 2 in 
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one of the cells is required. In this section the cell level site requirements for machines will be 

analysed using the information provided in section 5.2.2. 

Table 5.5 presents the calculations for the number of operating hours required in Cell 1 and Cell 

2 on an annual basis. The calculations were performed using equations 40-42, using the number 

of parts in the corresponding family for the calculation, i.e. not all parts in the system. A sample 

calculation is shown in Appendix C.3. 

Table 5.5: Hours of Operating Time per Cell for Machine Type 2 (Y=Year) 

Cell 1 Cell 2 

Y1 Y2 Y3 Y4 Y1 Y2 Y3 Y4 

7233 7267 0 0 933 2767 6883 7367 

Assuming that machine availability is 70 %, the total number of machine type 2 required by cells 

per year has been calculated and is shown Table 5.6. A sample calculation is presented in 

Appendix C.4.  
Table 5.6: Numbers of Machines Required per Cell per Year (Y=Year) 

Cell 1 Cell 2 

Y1 Y2 Y3 Y4 Y1 Y2 Y3 Y4 

2 2 0 0 1 1 2 2 

The system level site requirements are three sites for three essential copies of machine 2. Table 

5.6 reveals that there is merit in creating a duplicate site in Cell 1 and a duplicate site in Cell 2, 

i.e. a total of four sites in the system. If four sites are implemented the set of machine sites will 

be: CS1 = {S1, S2, S2 S3, S4} and CS2 = {S2, S2, S4, S5, S6}. If four sites are implemented with 

three machines, one site will be empty at all times; nonetheless, each site will be occupied at some 

point in time.   

The example here used machine 2 as the subject to demonstrate the importance of analysing cell 

level site requirements. This analysis must be performed for all machine types. In situations where 

the system level analysis does not require additional sites, the cell level requirements must be 

analysed as opportunities may exist for cells to exchange machines and gain an inter-cell material 

handling reduction.  

 Site Arrangement in Cells 

The capacity analysis of cells and determining if duplicate machine sites are required is a 

procedure that must be performed to determine if the cell layout shape is appropriate. Recall that 

cell shapes such as the circular layout do not allow machines to be placed in parallel while a multi-

row layout can easily facilitate duplicate machine sites in parallel.  
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Once suitable cell layout shapes have been established the arrangement of sites within the layout 

may be optimised for unidirectional flow. In this research, if a multi-row layout has been adopted, 

the assumption is that duplicate machines in parallel are treated as a single entity as shown in 

Figure 5.1. This allows the multi-row layout to be treated as a single row layout when optimising 

the sequence of machine sites in cells.  

5.3.1 Unidirectional Flow Optimization Model 

In this research, unidirectional flow will be optimised using the data in a From-To matrix. The 

optimization model is as follows 

The following notation is applicable to the model: 

Sets: 

I = { 1, 2, …, M} is the index set, corresponding to machine types; i denotes a machine type and 

i ϵ I, note that j ϵ I is a second index of the set of machine types.  

L = {1,2,…,N} is the set of locations available in a linear sequence for each machine site; for 

example if the set of sites to be arranges are {S1,S3,S5,S7,S9} then L = {1,2,3,4,5}. Index α ϵ L 

and β ϵ L.  

Decision variables: 

xiα is a zero-one assignment variable indicating the assignment of the site corresponding to 

machine i to location α  

xiβ is a zero-one assignment variable indicating the assignment of the site corresponding to 

machine j to location β  

Constants: 

uij indicates instances of part flow between type machine i and type j according to a From-To 

matrix.  

Note that the purpose of using two indices for the set of machines and two indices for the set of 

possible site locations is to enable an easier understanding and representation of the problem as 

mathematical program. Consider the expression: 

 𝑥𝑖𝛼𝑥𝑗𝛽𝑢𝑖𝑗  (43) 

If this expression is greater than zero, it indicates that there are uij instances of part flow between 

machine i and j, while the machines are in locations α and β respectively. Since α and β are indices 

referring to the same sequence of locations; if β>α, this indicates that the flow is proceeding 

forward according to the sequence; e.g. flow from machine i in location α=1 to machine j in 

location β=3 is considered flow in a forward direction. If α>β this indicates that the parts flow 

backward, i.e. part backtracking against the desired direction of intra-cell flow.  
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To minimize instances of back flow, the optimization problem can be written as 

 
𝑚𝑖𝑛 ∑ ∑ ∑ ∑ 𝑥𝑖𝛼𝑥𝑗𝛽𝑢𝑖𝑗

𝛼−1

𝛽=1

𝑁

𝛼=1

𝑀

𝑗≠𝑖

𝑀

𝑖=1

 

 

(44) 

Subject to: 

 𝑥𝑖𝛼 = 𝑥𝑗𝛽 , ∀(𝑖, 𝛼) = (𝑗, 𝛽) (45) 

 
∑ 𝑥𝑖𝛼

𝑀

𝑖=1

= 1, ∀𝛼 = 1, … , 𝑁 (46) 

 
∑ 𝑥𝑖𝛼

𝑁

𝛼=1

= 1, ∀𝑖 = 1, … , 𝑀 (47) 

  𝑥𝑖𝛼 ∈ {0,1} ; 𝑥𝑗𝛽 ∈ {0,1}  (48) 

The first constraint requires that xjβ = xiα for all (j, β) = (i, α); therefore xiα is the decision variable 

and any algorithm chosen to solve this problem need only manipulate values of xiα. The second 

constraint allows only one machine i to be placed in location α, i.e. two machines cannot be placed 

in the same position in a linear sequence. The third constraint allows machines (machine sites) to 

be assigned to only one location in a linear sequence. The final constraints restrict xiα and xiβ to 

zero-one variables.  

5.3.2 Tabu Search Algorithm for Unidirectional Flow Optimization 

The Tabu Search (TS) algorithm provides a way of solving the unidirectional flow optimization 

model without having to deal with some of the complex features of the model such as the quadratic 

objective function. TS was originally created and formalized by Glover [83-85]. It is a 

metaheuristic method that employs local search for the optimization of mathematical models.  

    General Tabu Search Algorithm 

//Preliminary Definitions 
it_count = 1; //Initialize iteration counter 
ITMAX= MaxIterations; //Define maximum number of iterations 
MAX_L = MaxLength; // Define a maximum size for the Tabu List 
T=Ø; //Define an empty Tabu List 

N = NumberCandidates; //Define number of candidate solutions to generate per iteration 

//Initialization 

So = InitialSolution(); //  

S = So; // Define an initial solution 

S* = S; //Set S as the best known solution  



58 | P a g e  
 

f* = ObjectiveFunction(S); //Determine the performance of S  

T= T+S; // Add solution S to the Tabu List 

Repeat 

 it_count=it_count+1; // Update Iteration Counter 

// Generate N candidate solutions in the neighbourhood of S 

{S’} = Neighbourhood(N,S);  

{S’}= {S’}- T; // Discard candidate solutions that appear in the Tabu List 

S”= argmin[ObjectiveFunction(S’)]; //  Evaluate and Select Best Candidate 

S=S”; //Change Current Active Search Point to Best Candidate Point 

if f”>f* //If the performance of best candidate surpasses that of the best known solution 

S*=S”;//Set best known solution to best candidate 

f* = f”;// Save the best known objective value 

end 

T=T+S”; // Add the Best Candidate to the Tabu List 

if size(T) = MAX_L; //If the Tabu List has reached its maximum size 

 T=RemoveOldest(T) ; // Remove the solution that is the oldest in the Tabu List 

end 

Until (it_count=ITMAX) 

The Tabu Search algorithm presented here requires the initialization of an iteration counter and 

the definition of a maximum iteration count. The algorithm requires that an empty Tabu List be 

defined at the outset and a maximum length for the list to be defined.  The Tabu List is a list of 

solutions for tweaks have has been conducted in an effort to find improved solutions in the 

‘neighbourhood’. The term ‘neighbourhood’ implies that the tweaks are minor enough for a 

modified solution to still be considered very similar to the original solution 

An initial solution is generated by the InitialSolution() function. Solution representation and 

initialization are discussed in section 5.3.2.1. The initial solution So is defined to be the active 

solution S on which tweaks will be conducted in order to find improved solutions. The initial 

solution is then set as the best known solution S* and added to the Tabu List. Solutions in the Tabu 

List will not be explored again by performing teaks. Prior to adding the initial solution to the Tabu 

List, the objective function value is computed and stored. The computation of objective function 

values is discussed in section 5.3.2.2. 

The TS algorithm tweaks a single active solution S in each iteration of the repeating loop. N 

candidate solutions are generated by performing tweaks to the solution S. The manner in which 
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these tweaks are formed is discussed in section 5.3.2.3.  Candidate solutions that match solutions 

in the Tabu List are immediately discarded. The remaining candidate solutions are evaluated for 

their best objective function values. The best performing candidate S’’ is then set as the active 

solution S. If the objective function value of the best candidate outperforms that of the best known 

solution, it is set as the best solution and the best objective function value is updated. The active 

solution is then added to the Tabu List and if the Tabu List has exceeded its length, the oldest 

solution in the list is removed. The process of continuously updating the active solution and 

generating candidate solutions continues until the iteration counter reaches the maximum count. 

The algorithm can also be terminated when f* converges onto a prescribed value however, this 

option was not implemented here.    

The TS algorithm as described here was implemented in the Matlab® program development 

environment. The program code may be viewed on the accompanying CD. 

5.3.2.1 Solution Representation and Initialization  

The solution to the flow problem is represented as an ordered set, e.g. S={1,3,2,4,6,5,9,8,10}. This 

implies that the site for machine 2 is at the third position in the sequence, etc. The initial solution 

is be generated by the InitialSolution() function by performing a random permutation without 

repetition of indices 1,…,M.  The method of representing a solution allows only one machine site 

to occupy one position in the sequence; it therefore ensures that the second and third constraints 

(equations 46 and 47) are satisfied.  

5.3.2.2 Objective Function Calculation  

The representation of the solution as an ordered set is easily converted to xiα and xjβ format. If 

machine i is in location α according to the set, fix xiα =1 and  xiα =0 for every other α. Set  xjβ = 

xiα for all (j,β) = (i,α). The objective value value is then calculated using equation 44.Note that 

the manner in which the set representation is converted in values for variables xiα and xjβ ensures 

that the first and last constraints (equations 45 and 48) are enforced.  

5.3.2.3 Generation of Candidate Solutions 

Candidate solutions in the neighbourhood of S are generated by the Neighbourhood() function as 

follows: 

1. Create a duplicate of S. 

2. If K is the cardinality of the set S, randomly select two positions in the interval 1 to K. 

3. Swap the elements in S that are stored at the two positions. 

4. Repeat steps 1-3 N times, to create N candidate solutions. 
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5.3.3 Sample Results 

The Tabu Search algorithm was applied to the problem given in Table 2.3 and Table 2.4.  For this 

problem the best sequence in which sites for machines should be arranged is given in Table 5.7 

and a plot of the best objective value per iteration is shown in Figure 5.2 

Table 5.7: TS Results – Best Arrangement of Machine Sites 

Location 1 2 3 4 5 6 7 8 9 10 
Cell x S2 S3 S1 S4 S5 S7 S6 S8 S10 S9 

 

 

Figure 5.2 Tabu Search Algorithm – Best f* per Iteration  

Ten candidate solutions were generated per iteration and the length of the Tabu List was forty. 

Figure 5.2 shows that the number of instances of part backtracking moves could have been as 

high as 30, however, with the optimised sequence in which machine sites are arranged, the 

instances of part backtracking movements is 12. No further improvement was found although the 

search continued for 1000 iterations. Note that in a RCMS all the parts that were used in the 

analysis will not be active in the system at all times. The machines may not be at their respective 

sites at all times either. A part cannot backtrack to a machine that is not present.  The backtracking 

count presented here is therefore represent an upper bound on the number of instances of part 

backtracking. It is desirable that the backflow in the worst case scenario be as low as possible. 



61 | P a g e  
 

 Site Arrangement with Duplicate Sites in Series 

When parts in the same family do not follow the same sequence of operations, the number of part 

backtracking movements is higher. The re-visitation of machines is another factor that may lead 

to a part backtracking to a machine that was visited previously. For example, a part may require 

a face milling operation on a milling machine. The same part may then visit other machines and 

then return to a milling machine for a slotting operation to be performed. 

 Backtracking part moves may be reduced by arrangement of machines (machine sites) in an 

optimised sequence; this was demonstrated in section 5.3.3. For a given set of parts and process 

sequences it may be impossible to reduce the amount of part backtracking any further without the 

introduction of additional machines in series along the path of flow. If machines are available 

further downstream according to the direction of flow, there will be no need for parts to backtrack.  

The following sections discuss the modification of the unidirectional flow optimization model in 

order to explore if an advantage can be gained by considering duplicate machines and machine 

sites in series.  

5.4.1 Modifications to the Unidirectional Flow Optimization Model 

The model presented in 5.3.1 does not explicitly consider multiple instances of the same machine 

type. If a maximum of ζ copies of each machine may be added to the system then constraint 47 

must be modified as follows:   

 
∑ 𝑥𝑖𝛼

𝑁

𝛼=1

≤ 𝜁, ∀𝑖 = 1, … , 𝑀 (49) 

In the previous model, every machine type was to be allocated to one site and one site was to be 

allocated to a single machine. The modified constraint now allows each machine type to be 

allocated to more than one site. This allows exploration to determine if any benefit may derived 

from duplicate machines in series. If some benefit may be derived then there is value in creating 

duplicate sites in series to host the additional machines.  

When there are multiple machines available, the challenge arises which requires determining 

which From-To pairs are valid for the objective function. Consider the definition of the objective 

function of equation 44. When duplicate sites are available, machine i may be available at α = 7 

and α = 6, machine j might be available at β = 3 and β = 1. The coefficient uij obtained using the 

From-To matrix is no longer valid. The new coefficient Uiαjβ defines the flow from machine type 

i in location α to machine type j in location β. A new objective function may is defined as: 

 
𝑚𝑖𝑛 ∑ ∑ ∑ ∑ 𝑥𝑖𝛼𝑥𝑗𝛽𝑈𝑖𝛼𝑗𝛽

𝛼−1

𝛽=1

𝑁

𝛼=1

𝑀

𝑗≠𝑖

𝑀

𝑖=1

 (50) 
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Where: 

 
𝑈𝑖𝛼𝑗𝛽 = ∑ 𝑓𝑝(𝑖, 𝛼, 𝑗, 𝛽),   

𝑇𝑜𝑡𝑎𝑙𝑃𝑎𝑟𝑡𝑠

𝑝=1

 𝑓𝑜𝑟 𝑥𝑖𝛼 = 𝑥𝑗𝛽 = 1 
(51) 

 𝑈𝑖𝛼𝑗𝛽 = 0, 𝑓𝑜𝑟 𝑥𝑖𝛼 = 0 𝑜𝑟 𝑥𝑗𝛽 = 0 (52) 

Here fp(i,α,j,β )  is a function that determines the number of instances in which part p will move 

from machine i to machine j while i is in location α and j is in location β. This function will 

henceforth be called the Alpha-Beta Flow Function and will be discussed in the next section. The 

complete updated model is presented in Appendix D.1.  

5.4.2 The Alpha-Beta Flow Function 

The Alpha-Beta Flow Function f, is a function that that determines the number of instances in 

which part p will move from machine i to machine j while i is in location α and j is in location β. 

Prior to defining this function, other definitions must be considered.  

Let Pp be the ordered set of processes required by part p. Recall that S’ is an ordered set indicating 

the location of each machine type in a sequence in the TS algorithm.   A Process-Machine 

Mapping Function g is defined as follows: 

 𝑔: 𝑃𝑝 × 𝑆′ → 𝑄𝑝 (53) 

Here g defines how each processes of part p is mapped to the machines at the various positions 

as defined by S’. Here Qp the ordered set of matched processes and machine locations, the 

elements of Qp are of the form (i,α) and (j,β) . Because Qp is an ordered set, each adjacent set of 

elements represents one From-To instance. The Alpha-Beta Flow Function operates on the set Qp 

in order to determine the number of instances δ, for which part p will move from machine i to j 

while in locations α and β respectively: 

 𝑓(𝑖, 𝛼, 𝑗, 𝛽): 𝑄𝑝 → 𝛿 (54) 

The working of functions g and f will be demonstrated with an example.  

5.4.3 Example - Implementation of Function f and Function g 

Consider the TS algorithm applied to solving the unidirectional flow optimization model; at an 

intermediate iteration the candidate solution S’ = {1,2,3,4,5,3,2,4,1,2}. S’ is an ordered set, which 

implies that machine type i=1 is available at the first and ninth locations, machine type i= 2 is 

available at the second and tenth locations, etc. Part p requires processes 1-7 on machines as 

follows: Pp = {2,4,3,5,3,4,1}. Pp is an ordered set, which implies that the first process is on 

machine type i=2, the second process is on machine type i=4, etc.   
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The From-To relationships for this problem are more complex since there are multiple instances 

of the same machine type in S*. Possible mapping of processes to the machines at various locations 

are listed in Table 5.8.  

Table 5.8 Mapping of Machine Locations to Manufacturing Process of Part p 

Process    1 2 3 4 5 6 7 
Machine Type (i) 2 4 3 5 3 4 1 
Location of Machines (α) 2,7,10 4,8     3,6 5 3,6 4,8 1,9 

In this instance there are 96 possible ways in which the processes could be mapped to the 

machines at various locations (3×2×2×1×2×2×2=96). The challenge of setting up a 

Process-Machine Mapping Function g, is that the function should map processes to machines at 

the various locations in an optimal manner. The function g may be setup as a mathematical 

programming problem, however, the number of alternative mappings is relatively small for the 

application of a fully-fledged optimization model and solver; an enumerative approach was 

adopted instead. Function g operates as follows: 

1. enumerate all possible process to machine mappings for machines available at various 

locations; 

2. evaluate each alternative based on number of machines used and part backtracking 

moves; 

3. select the mapping that has the highest machine utilization and lowest backtracking 

moves in this order of priority.  

To illustrate the enumeration approach for implementation of function g, the 96 alternatives for 

the mapping of processes to machines in this example are presented in Table D - 1. The 

characteristics of each solution with respect to machine utilization and part backtracking 

movements are listed in Table D - 2 (see Appendix D.2). The best solution to the example problem 

is Qp = {(2,2),(4,4),(3,3),(5,5),(3,6),(4,8),(1,9)}. The first element is (i,α)=(2,2), implying that the 

first process is performed on machine 2 which is in location 2. The second element is (j,β)=(4,4), 

implying that the second process is performed on machine 4 which is in location 4, etc. 

For the set Qp, the Alpha-Beta Flow Function f is defined as follows: 

 𝑓(𝑖, 𝛼, 𝑗, 𝛽) = 0  𝑖𝑓 (𝑖, 𝛼), (𝑗, 𝛽) ∉ 𝑄𝑝 (55) 

 𝑓(𝑖, 𝛼, 𝑗, 𝛽) =  𝛿 𝑖𝑓 (𝑖, 𝛼), (𝑗, 𝛽) ∈ 𝑄𝑝 (56) 

Here δ is the number of times the sequence {(i,α),(j,β)} appears in Qp. For example, the sequence 

{(5,5),(3,6)} appears once in Qp, therefore f(5,5,3,6) = 1.  
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In the set Qp there is only one instance of {(i,α),(j,β)} where β> α, that is {(4,4),(3,3)}. The 

objective function of equation 50 sums flow in the instance where β> α therefore, for part p and 

solution S’, f(4,4,3,3) = 1 is the contribution to the objective function.  

5.4.4 Tabu Search Algorithm with Duplicate Machines 

The generic structure of the Tabu Search algorithm, presented in section 5.3.2 is applicable to the 

solution of the unidirectional flow optimization model with duplicate machines in series. 

Modifications are only required to the following functions: InitialSolution(), ObjectiveFunction() 

and Neighbourhood(). The modifications are discussed in the subsections that follow.  

5.4.4.1 Initialization Function 

A  candidate solution is represented as an ordered set, e.g. S’={1,3,2,4,6,5,9,8,10}. The initial 

solution is be generated by the InitialSolution() function by performing a random permutation 

with repetition of machine indices 1,..,M.  The length of the permutation is M+X where X is the 

number of additional machines in the sequence that may be explored to minimize part 

backtracking. For consistency with the constraint equations, the cardinality of the set of locations 

L must equal M+X. i.e. |L|=M+X. With respect to constraint equation 49, ζ =X+1 for all machine 

types i, i =1,…,M.  

5.4.4.2 Objective Function  

The objective function is no longer calculated in the manner shown in section 5.3.2. Under a given 

solution S’, the set Qp must be created by the process-machine mapping function g for every part 

p.  Alpha-Beta Flow Function f is applied to every Qp to determine instances of part backtracking 

for machines located at various positions in the ordered set S’. For a given pair of machines and 

locations the instances of part backtracking are computed by equations 51 and 52. The total part 

backtracking for all pairs of machines and locations is calculated by equation 50.  

5.4.4.3 Generation of Candidate Solutions  

In order to optimize the sequence of machines and explore alternative duplicate machines, the 

Neighbourhood() function performs one of two possible operations to generate a new candidate: 

Operation one: swap the position of two elements in the sequence S’, as described in 5.3.2.3; 

Operation two: replace duplicate elements in the sequence with new, randomly selected elements. 

Each candidate S’ is created by subjecting the active solution S to one of the two procedures, but 

not both at the same time. Tabu Search is meant to explore in the neighbourhood of the active 

solution S; applying both exploratory mechanisms is likely to create a drastically different 

candidate that may no longer be considered as located in the neighbourhood of S. Operation one 

is selected when random variable x=1 and operation two is selected when x = 0. The probability 



65 | P a g e  
 

Pr(x=1) = p and probability of Pr(x= 0) = 1-p, with the statistical distribution being a Bernoulli 

distribution.  

 

To illustrate the working of operation two, consider the solution 6, 3, 7, 6, 2, 1, 5, 1, 2, 4. A 

candidate solution is generated as follows: 

1. Remove duplicate elements: 6, 3, 7, [ ], 2, 1, 5, [ ], [ ], 4; 

2. Randomly select elements in the range 1-M, for as many duplicate elements that are 

required: e.g. 1,1,3; 

3. Insert duplicate elements in empty positions: 6, 3, 7, [1], 2, 1, 5, [1], [3], 4. 

5.4.5 Sample Results  

The Tabu Search algorithm for unidirectional flow optimization with duplicate machines was 

applied to example problem presented in Table 2.3. The search took 19.43 seconds on a computer 

with an Intel® Core™ i7-4600 CPU operating at 2.7 GHz with 8.00 GB of ram.  

 
Figure 5.3  Tabu Search Algorithm – Best f* per Iteration 

Ten candidate solutions were generated per iteration and the length of the Tabu List was forty. 

The two operations for creating candidate solutions were performed with parameter p = 0.5. One 

additional copy of machine 9 placed in series reduces the number of part backtracking movements 

from 12 down to 10. No further improvement was found after approximately 180 iterations 

although the search was allowed to continue for 1000 iterations as shown in Figure 5.3.  The best 

arrangement for machines/sites is given in Table 5.9.  
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Table 5.9: TS Results – Best Arrangement of Machine Sites 

Location 1 2 3 4 5 6 7 8 9 10 11 
Cell x S2 S3 S1 S4 S5 S7 S6 S8 S9 S10 S9 

 

 

Figure 5.4 Arrangement of Machine Sits on FCT According to TC Result 

Figure 5.4 shows how the sites may be arranged of a Factory Configuration Template based on 

the results of the Tabu Search. Note that for the given FCT, the instances of part backtracking 

may still be as high as 12 when no duplicate copy of machine 9 is available.  Nonetheless, the 

additional site for machine 9 in series creates the opportunity to reduce this number although one 

copy of machine 9 may be available. A model for the intra-cell re-layout of machines will be 

presented in the next chapter; this model that enables additional sites to be exploited by identifying 

opportunities to eliminate part backtracking moves.   

 Method for Factory Configuration Template Creation 

In Chapter 4-5 and subsections that have been presented thus far, methods have been proposed 

that address individual elements of Factory Configuration Template design. These individual 

methods must be combined to create the FCT in the following sequence: 

1. Create a machine-component incidence matrix for all parts and machines for which the 

RCMS must be designed, including parts that are active in different periods. 

2. Perform a silhouette analysis on part clusters generated by the FCMdd algorithm for 

various values of C in order to determine a suitable number of part families and cells. 

3. Apply the FCMdd algorithm to generate a set of medoids and a membership matrix for 

parts for the chosen value of C. Use the membership matrix and medoids as a seed for the 

SFC heuristic. Apply the SFC heuristic to the machine-component incidence matrix in 

order to identify part families and sites for machines in cells. Generate multiple solutions 

for part and machine site clusters for various values of parameter L. It is recommended 

that experimentation begin from L = 0.5 down to L = 0.1 in steps of 0.1 or 0.05.  

4. Analyse machine and site clusters for various values of L in terms of the number of sites 

required or the number of exceptional elements and voids in the solution. A solution may 

be chosen based on the number of sites that a given factory floor space can accommodate. 
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A solution may also be chosen based on the combination of risk and opportunity. Recall 

that a lower number of exceptional elements indicates increased opportunity to eliminate 

inter-cell part flow by reconfiguration. The number of voids indicates an increasing risk 

that some sites may have low utilization. 

5.  Determine the number of machines of each type that are required by the system in order 

to meet production capacity requirements. Compare the number of machines required at 

the system level to the number of sites proposed across all cells by the SFC. This 

comparison reveals if a sufficient number of sites have been made available. If additional 

sites are required, the cells in which the sites should be created are identified by an 

analysis of cell level site requirements.   

6. Determine the number of each machine type that is required at the cell level. The number 

of machines required at the cell level is used to identify the cells in which sites in parallel 

should be created. Additional sites are only created in cells that already have one site as 

determined by the SFC heuristic. Note that the sites are added in parallel in order to enable 

a higher volume of flow through the cell. 

7. Select an appropriate layout shape for each cell based on the need for additional machine 

sites in parallel.   

8. Apply the TS algorithm to all part families and relevant machines in order to determine 

the optimal sequence in which machine sites should be arranged in cells. The optimal 

sequence is the one that supports unidirectional flow. Determine the mandatory instances 

of part backtracking that would be required by part families in order to complete all 

manufacturing processes in the prescribed order. 

9. Apply the TS algorithm with X additional machines in order to determine if the mandatory 

instances of part backtracking can be reduced further by the possibility of additional 

machines and sites in series. If an advantage can be gained that offsets the investment in 

additional sites, accept this solution.  

After steps 1-9 are complete, sufficient information is available that determines the number of 

sites that should be created for each machine in each cell. Information is also available on the 

shapes of cells and the order in which sites should be arranged within cells. This information is 

sufficient for a Factory Configuration Template to be created with the essential information for 

reconfiguration planning models to be applied. This nine step method is applied in the RCMS 

study of Chapter 7.  

In an actual RCMS implementation, the FCT requires the following information to be complete: 

1. Specification of machine sizes and footprint in order to determine the floor area dedicated 

to each site. 
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2. Specification of machine sizes so that lanes for machine movement can be created to 

support hassle free reconfigurations. 

3. Specification of mandatory minimum safe distances between machines and specification 

of space required by machine operators in order for sites to be arranged in a manner that 

creates a safe working environment. 

4. Specification of the relative orientation of cells with respect to each other and physical 

distances between cells. 

This list is non-exhaustive and other types of information may be added to the FCT according to 

the requirements of individual manufacturers. Once the FCT is complete, the floor space design 

must be implemented for the arrangement of machines and sites on the factory floor to support 

future re-layout of the system.  

 Chapter Summary 

In Chapter 4 the SFC heuristic was presented that generated sites for machines in multiple cells. 

The SFC heuristic had the ability to create a maximum of one site per machine type per cell. In 

this chapter methods were presented for the duplication of machine sites in parallel in order to 

facilitate future enhancements to cell capacity in order to meet the required the production 

volumes. A Tabu Search algorithm was also developed that optimises the arrangement of sites in 

cells in order to support unidirectional flow. The Tabu Search algorithm was then extended to 

propose the creation of additional machine sites in series, in order to further eliminate the 

backward flow of parts. 

The chapter concluded with a description of how individual methods and algorithms should be 

integrated in order to complete the design of a Factory Configuration Template. The FCT can 

include various levels of information; the methods proposed thus far identify sites for machines 

in cells, the shapes of cells and the arrangement of sites within the cell. This information is 

sufficient for reconfiguration planning models to be developed that propose periodic changes to 

the layout of the RCMS in response to changing production requirements. The reconfiguration 

planning models are presented in the next chapter.  
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6 Reconfiguration Planning Models  

 Chapter Introduction 

The concept of a Factory Configuration Template was proposed in Chapter 3 in order make the 

re-layout of manufacturing cells practically feasible. The problems associated with performing 

reconfigurations without an initial system design for re-layout were presented in section 2.8. The 

FCT is a design for the factory floor space that defines sites for machines; machines can be moved 

in and out of these sites in order to gain the advantages of increased machine utilization and less 

complex and lower cost part flows. 

Chapter 4 and Chapter 5 presented the techniques used for creating the FCT. Recall that the FCT 

indicates the reservation of space within a cell for a particular machine type, it does not indicate 

the presence of an actual machine. The question then arises: “how are available machines to be 

positioned in the sites available across multiple periods?” This question is answered by 

developing and solving appropriate assignment models. This chapter presents models that are 

used to assign machines to the sites that have been reserved for them in a manner that considers 

both current and future production requirements of the system  

 The Reconfiguration Planning Task 

The process of determining how the layout of a RCMS should evolve over multiple periods is 

referred to as reconfiguration planning. The series of changes that are to be implemented should 

be planned in a way that considers both the current and future requirements of the system in order 

to propose configurations that are optimal over a longer term.  

In a RCMS there are machine that are classified as fixed or mobile. In Chapter 3, fixed machines 

were defined as machines that did not have multiple sites available and could be assigned to the 

default sites on the FCT without any further analysis. The process of reconfiguration planning 

therefore deals with the assignment of mobile machines to the sites available on the FCT over 

multiple periods. The multi-period assignments will determine how the configuration of the 

RCMS evolves in response to change.  

Reconfiguration planning deals with the allocation of machines to sites and the development of 

assignment models are necessary to generate optimised plans for the re-layout of the system. Both 

inter-cell and intra-cell machine assignment models are developed in this chapter. Inter-cell 

assignment models deal with the allocation of machines among cells. In the case where more than 

one site is available for a machine in a cell, an intra-cell assignment model is developed that 

determines how a machine should be allocated between multiple sites in the same cell.  The inter-

cell and intra-cell multi-period assignment models are designed to achieve the following 

objectives: 
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 minimize the capacity surplus/deficit in cells; 

 maximize machine utilization; 

 minimize inter-cell material handling movements; 

 minimize the cost of system reconfiguration; 

 minimize the complexity of part flow in cells 

 minimize the cost of operating a RCMS.  

Many of these objectives are interrelated and not explicitly represented in a mathematical model. 

A RCMS only becomes economically viable when the cost of reconfiguration is offset by other 

types of costs such as inter- and intra-cell material handling costs. The economic trade-off will be 

investigated in the models that are developed. 

The reconfiguration planning task requires a significant amount of information to be available at 

the outset in order to set up and solve inter- and intra-cell machine assignment models. The 

following information is required for each period to be considered in the reconfiguration plan: 

 a relevant Factory Configuration Template; 

 the types of parts and demand volumes for each period; 

 the types of machines and machine numbers that will be made available in each period; 

 the process cycle times for each part on each machine; 

 the sequences in which each process will be performed for each part; 

 the cost per part for an inter-cell material handling movement ; 

 the cost per part for an intra-cell backtracking movement ; 

 the cost per inter-cell machine relocation; 

 the cost per intra-cell machine relocation; 

 the budget available for reconfiguration per period; 

 the total working hours per period. 

This chapter proceeds with the development of two models for inter-cell machine assignment, 

presented in sections 6.3 and 6.4 respectively. A model for intra-cell machine assignment is 

presented in section 6.5. Examples of reconfiguration plans are presented to demonstrate the 

ability and output of each model.  

 Capacity Based Machine Assignment Model 

6.3.1 Model Formulation 

The model presented in this chapter was formulated under the following assumptions: 
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1. The costs of inter-cell and intra-cell material handling movements per part are 

parameterised as a fixed rate per time period and are not directly correlated to distance 

travelled within the factory. 

2. The cost of reconfiguration (machine relocation) has been parameterised as a fixed rate 

per machine relocation and is not directly correlated to distance of relocation within the 

factory. 

3. A reconfiguration cost is brought into effect for the gain and removal of a machine from 

a cell. The cell from which the machine is removed incurs a cost, which is the cost of 

uninstalling the machine and restarting the cell under a new configuration.  The cell 

gaining a new machine incurs a cost. This is the cost of installing the machine and 

restarting the cell under a new configuration. 

4. The cost of gaining/losing a machine is averaged to be equal for the cell that gains a 

machine and the cell that loses a machine.  

5.  The implementation of a FCT allows machines to be rearranged without introducing an 

additional cost for rearranging material handling equipment such as conveyors, robots 

and Automated Guided Vehicles.  

The following notation is applicable to the model: 

Sets: 

I = { 1, 2, …, M} is the set of machine types; i denotes a machine type and i ϵ I. 

J = {1,2,…,N} is the set of cells; j denotes a single cell and j ϵ J. 

K= {1,2, …,T} is the set of periods; k denotes a single period of time and k ϵ K. 

Decision variables: 

xijk is a integer variable that signifies the number of machines of type i allocated to cell j in time 

period k. Note that all xijk = 0 for k=0. 

Parameters: 

Hijk is the operating hours on machine type i required by parts belonging to cell j in period k. 

Wk is the number of working hours prescribed for the factory in period k.   

rk is the cost of a cell gaining/losing a machine in period k. 

Rk is the budget available for reconfiguration (machine re-layout) in time period k. 

Nik   is the maximum number of machines of type i available for assignment in period k. 

Xij is the number of sites available for machine i in cell j according to the FCT. 

Mobile machines may be allocated to cells according to various objectives, the model presented 

here allocates machines to cells in each period, based on the machine capacity required by a cell. 

The capacity, represented as hours of machine time required by a cell, is determined by equation 

40.  
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The objective function, shown in equation 57, is designed is to minimize the sum of surplus and 

deficit hours of capacity for all cells, across multiple periods, through the appropriate assignment 

of machines.   

 𝑚𝑖𝑛 ∑ ∑ ∑|𝑊𝑘𝑥𝑖𝑗𝑘 −  𝐻𝑖𝑗𝑘|

𝑘∈𝐾𝑗∈𝐽𝑖∈𝐼

 (57) 

Subject to: 

 ∑ ∑ 𝑟𝑘

𝑗∈𝐽𝑖∈𝐼

|𝑥𝑖𝑗𝑘 − 𝑥𝑖𝑗(𝑘−1)| ≤ 𝑅𝑘 , ∀𝑘 ∈ 𝐾 (58) 

 ∑ 𝑥𝑖𝑗𝑘

𝑗∈𝐽

= 𝑁𝑖𝑘 , ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾 (59) 

 𝑥𝑖𝑗𝑘 ≤ 𝑋𝑖𝑗, ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾 (60) 

 𝑥𝑖𝑗𝑘 ∈ 𝑍+ (61) 

The first constraint restricts machine re-layout by a reconfiguration budget Rk. A cost rk is incurred 

for an increase or decrease in machine count, the reconfiguration cost is therefore borne by the 

cell that loses a machine and the cell that gains a machine. Reconfiguration cost and budget 

change in each period; this requires that a constraint of this type to be implemented for every kϵK. 

The second constraint allows a maximum of Nik machines of type i to be assigned to cells in period 

k; a constraint of this type is necessary for each machine type i in every period k. This constraint 

ensures that no additional machines are allocated than what is available. The third constraint 

restricts the number of machines of type i assigned to cell j to a maximum of Xij in all periods. 

The maximum number of machines that a cell can accept is determined by the number of sites 

that have been made available on the FCT. Note that Xij effectively places an upper bound on each 

variable xijk. The final constraint restricts the decision variables to positive integer values.  

6.3.2 Conversion of Capacity Based Model to Linear Integer Form 

The model presented in equations 57-61 is not in a form that can be solved by a software program. 

The absolute value terms in the objective function and constraints may be eliminated by variable 

substitution in order to convert the model to a linear integer program. The following variable 

substitutions are necessary: 

 𝑢𝑖𝑗𝑘 − 𝑣𝑖𝑗𝑘 = 𝑊𝑘𝑥𝑖𝑗𝑘 − 𝐻𝑖𝑗𝑘 , ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾 (62) 

  𝑝𝑖𝑗𝑘 − 𝑞𝑖𝑗𝑘 = 𝑥𝑖𝑗𝑘 − 𝑥𝑖𝑗(𝑘−1), ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾 (63) 

The variable substitution introduces four additional variables to the model as follows: 

 uijk is an integer variable indicating the hours of excess capacity with respect to 

machine type i, in cell j in period k. 
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 vijk is an integer variable indicating the hours of deficit capacity with respect to 

machine type i, in cell j in period k. 

 pijk is an integer variable indicating the number of machines of type i added to 

cell j in period k. 

 qijk is an integer variable indicating the number of machines of type i removed 

from  cell j in period k. 

 yijk is a zero-one variable that ensures that either pijk or qijk will assume a positive 

value while the while the other remains at zero. 

The capacity based assignment model in linear integer form after variable substitution is as 

follows: 

 𝑚𝑖𝑛 𝐹 =  ∑ ∑ ∑ 𝑢𝑖𝑗𝑘

𝑘∈𝐾𝑗∈𝐽𝑖∈𝐼

+ 𝑣𝑖𝑗𝑘 (64) 

Subject to: 

 −𝑢𝑖𝑗𝑘 + 𝑣𝑖𝑗𝑘 + 𝑊𝑘𝑥𝑖𝑗𝑘 = 𝐻𝑖𝑗𝑘 , ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾 (65) 

 ∑ ∑ 𝑟𝑘

𝑗∈𝐽𝑖∈𝐼

(𝑝𝑖𝑗𝑘 + 𝑞𝑖𝑗𝑘) ≤ 𝑅𝑘 , ∀𝑘 ∈ 𝐾 (66) 

 𝑝𝑖𝑗𝑘 − 𝑞𝑖𝑗𝑘 − 𝑥𝑖𝑗𝑘 + 𝑥𝑖𝑗(𝑘−1) = 0, ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾 (67) 

 𝑝𝑖𝑗𝑘 ≤ 𝑀𝑦𝑖𝑗𝑘 , ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾 (68) 

 𝑞𝑖𝑗𝑘 ≤ 𝑀(1 − 𝑦𝑖𝑗𝑘), ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾 (69) 

 ∑ 𝑥𝑖𝑗𝑘

𝑗∈𝐽

= 𝑁𝑖𝑘 , ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾 (70) 

 𝑥𝑖𝑗𝑘 ≤ 𝑋𝑖𝑗 , ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾 (71) 

 𝑦𝑖𝑗𝑘 ∈ {0,1}; 𝑥𝑖𝑗𝑘 , 𝑝𝑖𝑗𝑘 , 𝑞𝑖𝑗𝑘 , 𝑢𝑖𝑗𝑘 , 𝑣𝑖𝑗𝑘 ∈ 𝑍+ (72) 

The objective function minimizes the sum of surplus and deficit hours of machine capacity in 

manufacturing cells. Note that in the optimal solution either uijk or vijk will assume a value of zero 

while the other will assume a positive integer value. The first constraint enforces the variable 

substitution that was performed in order to eliminate the absolute value from the objective 

function.  The second constraint enforces the reconfiguration budget. Variables pijk and qijk were 

introduced into the model in order to eliminate the absolute value of equation 58. The third, fourth 

and fifth constraints enforce the variable substitution. Note that variable yijk, which features in the 

fourth and fifth constraints, is a zero-one variable that ensures the condition that either pijk or qijk 

will assume a positive value while the other remains at zero. This was necessary since pijk and qijk 

have objective function coefficients of zero.  The constant M, which ensures the correct 
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functioning of conditional constraints four and five, is an arbitrarily large integer. The only 

requirement on the constant M, is that it be larger than the largest possible number of machines 

entering or leaving a cell.  The sixth constraint allows a maximum of Nik machines of type i to be 

assigned to cells in time period k. The seventh constraint allows a maximum of Xij machines of 

type i in cell j in all time periods, this ensures that the reconfiguration occurs within the 

specification of the FCT. The final constraint restricts all variables to positive integer values, with 

the exception of yijk which is restricted to zero or one.  

The variable substitution, that was performed in order to convert an integer programming model 

with absolute values to a linear integer program, increases the number of decision variables by a 

factor of six.  

The model takes into consideration the initial placement/installation cost of machines when first 

purchased. The reconfiguration budget Rk must therefore include initial placement cost in addition 

to the budget made available for rearranging the positions of existing machines on a factory floor.  

The model treats the cost of adding/removing machines to/from cells in a uniform manner, i.e. 

the cost of adding/removing a machine is fixed at rk for a time period k, irrespective of machine 

type or distance moved. This is suitable for a factory where the distance between manufacturing 

cells is similar for all pairs of cells and the cost of relocating each machine type is approximately 

the same.  If a machine has a higher reconfiguration cost due to its size, weight, or other technical 

factor, this is dealt with by the parameterization of reconfiguration cost as rik as opposed to rk. 

6.3.3 Solution by Branch and Bound with Cutting Planes 

The capacity based assignment model is a model of the form: 

 𝑚𝑖𝑛 𝑓𝑇𝑋 (73) 

 𝐴. 𝑋 ≤ 𝑏 (74) 

 𝐴𝑒𝑞. 𝑋 = 𝑏𝑒𝑞 (75) 

 𝑋 ∈ ℤ+ (76) 

Where f is a vector of objective function coefficients, A and Aeq are arrays of coefficients 

corresponding to the left hand side of constraints, b and beq are the vectors corresponding to the 

right hand side values of constraints and X represents a vector of n decision variables.   

Since the model was possible to represent in a standard form, the Matlab® intlinprog solver was 

used to solve it.   This is the only commercial solver that was used in this research. All other 

algorithms were developed specifically for this research in the Matlab® program development 

environment.  
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The intlinprog solver implements a Branch and Bound or Branch and Cut algorithm to solve 

integer and mixed integer programs. The Branch and Bound algorithm was originally developed 

by Land and Doig [86] and later extended by researchers such as Balas et al [87] to include cutting 

planes. The Branch and Bound algorithm with cutting planes (Branch and Cut) for minimization 

problems is described here briefly.  

Branch and Bound With Cutting Planes 

//Initialisation 

P=Ø; // Define an empty set of problems 

po = InitialProblem; //Define the initial problem as the original ILP 

Zbest = ∞; //Define best objective function value 

UpperBound=Zbest; // Define the upper bound on the problem 

BestSolution = null; // Define the best solution as null 

P=P+po; // Add the initial problem to the set of problems 

Repeat 

p* = SelectProblem(P); // Select a problem from among active problems 

[solution, feasible ] = SolveRelaxation(p*); //Solve the LP relaxation of the problem 

if feasible = True // If the solution is feasible 

[F*] = ObjectiveValue(solution); // Determine the objective value of the solution 

if f<ZBest // If the objective value is lower than the best known solution 

Integer= isinteger(solution); // Determine if the solution is integer 

if Integer =  True // If the solution is integer 

 BestSolution=solution; // Set the solution as the best solution 

 ZBest=F*; // Set the objective value as the best value found 

// Update the upper bound on the problem 

 UpperBound=ZBest;  

else 

//Add cutting planes to the LP relaxation 

   p*= AddCuttingPlanes(p*,solution); 

   if CuttingPlanesFound(p*) 

    // Solve the LP relaxation again 

goto SolveRelaxation(p*); 

end 
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end 

end  

end 

 

[P] = Branch(P)// Branch on the existing problems to create new sub-problems 

// Identify active problems and establish a lower bound 

[P, LowerBound]= ActiveProblems(P);  

Until (P=Ø or UpperBound-LowerBound<ε) //Repeat until there are no active problems or the 

difference between upper and lower bounds is less than epsilon 

At initialization a data structure P is defined to hold the set of problems. Traditionally the Branch 

and Bound algorithm is conducted with a tree type data structure where each node holds a 

candidate problem. A candidate problem is a problem with a feasible region that is more restricted 

relative to the original problem. Initially the best objective value and upper bound are set to 

infinity and the best solution is set to null. The intlinprog solver has the ability to apply heuristics 

to obtain an initial integer feasible solution and an upper bound, however, this option was not 

used.  The upper bound on future solutions is the objective function value of the best integer 

feasible solution that has been found. The original problem po is added to the data structure P that 

contains all problems.  

In each iteration of the algorithm a problem is selected from the list of active problems. The 

problem is then solved as a linear programming problem by relaxing the integer restriction on 

variables. The primal-simplex algorithm was the option used with the intlinprog solver for all 

linear programming relaxations. The explanation of the primal-simplex algorithm does not add 

any value to the objectives of this research; for a description of the primal-simplex algorithm see 

Vanderbei [88]. If the solution to the relaxed problem is feasible the objective function value is 

computed. If the variables of the feasible solution are all integer the solution is compared to the 

best known solution. If the objective value is lower than that of the best known solution it replaces 

the best solution and the upper bound is updated. If the solution is feasible but with variables that 

are not integer, cutting planes may be added to problem p* to create a new problem with a tighter 

lower bound. Cutting planes are added by introducing additional linear constraints to the problem. 

If cutting planes have been found and added to p* then the problem is solved again as a linear 

programming relaxation.  If no cutting planes are found the algorithm proceeds to the branch 

function.  

The branch function creates two candidate problems from a selected parent problem by 

partitioning the feasible region. The list of active problems is then updated; problems that are 

fathomed are 'pruned' from the set of active problems P. A problem is considered to be fathomed 
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if the outcome has been determined without solving it.  If a problem has a lower bound that is 

higher than the established upper bound, this problem is considered to be fathomed and is pruned.  

The lower bound on a problem is the objective value that was obtained by solving the linear 

programing relaxation of the parent problem from which the new problem was derived.  

Note that the intlinprog solver is able to operate with or without the use of cutting planes. Cutting 

planes were only used in situations where solutions were not found in reasonable time. The 

intlinprog solver has multiple types of cutting planes that may be implemented. Types of cuts that 

were used to solve integer programming models in this research included Gomory cuts, developed 

by Gomory [89]; flow cover cuts, by Gu et al [90]; strong CG cuts, by Letchford and Lodi [91]; 

zero-half cuts, by Caprara and Fischetti [92] and clique cuts, by Atamtürk et al [93].  

6.3.4 Example - Application of Capacity Based Assignment Model 

 

Figure 6.1: Example Factory Configuration Template 

Consider the Factory Configuration Template shown in Figure 6.1. A reconfiguration plan must 

be developed for this RCMS, which will determine how the layout and clusters of cells will evolve 

in an optimal manner over three periods. Machines 1, 3, 8, 12 and 15 are mobile machines and 

the assignment of these machines to sites will be determined by the capacity based assignment 

model. Machines 2, 4, 5, 9, 10, 11, 13 and 14 have one site available on the FCT and have already 

been assigned to the respective sites as shown in Figure 6.1. These machines may be excluded 

from the assignment model.  
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Table 6.1:  Operating Hours Required per Machine per Cell per Period 

 Period 1 – Operating Hours Period 2  – Operating Hours Period 3 – Operating Hours 

Machine Cell 1 Cell 2 Cell 3 Cell 1 Cell 2 Cell 3 Cell 1 Cell 2 Cell 3 

1 0 6735 5560 0 3982 3768 0 0 6375 

2 0 3504 0 0 3231 0 0 3036 0 

3 5454 3700 0 4825 6394 0 5425 3700 0 

4  0 3895 0 0 3900 0 0 4137 

5 0 3938 0 0 3938 0 0 3938 0 

6 3928 0 0 3050 0 0 3351 0 0 

7 0 0 4126 0 0 3831 0 0 3217 

8 3716 3286 0 3716 4579 0 6973 2798 0 

9 0 0 3541 0 0 4125 0 0 3736 

10 0 3573 0 0 3573 0 0 3573 0 

11 3442 0 0 3996 0 0 3256 0 0 

12 6539 0 2360 5237 0 3099 5721 0 5601 

13 0 3259 0 0 3615 0 0 3551 0 

14 3292  0 3502  0 4284 0 0 

15 0 3154 0 0 4214 3020 0 6081 5781 
 

Table 6.2: Reconfiguration Expense and Budget 

 Period 1 Period 2 Period 3 

rk  R 5000.00 R 5500.00 R 6000.00 

Rk R 110000.00 R 30000.00 R 30000.00 

 Table 6.3: Machines Available per Period  

 Machines Available 

Machine Period 1 Period 2 Period 3 

1 3 3 3 

2 1 1 1 

3 3 3 3 

4 1 1 1 

5 1 1 1 

6 1 1 1 

7 1 1 1 

8 2 2 3 

9 1 1 1 

10 1 1 1 

11 1 1 1 

12 3 3 3 

13 1 1 1 

14 1 1 1 

15 1 2 3 



79 | P a g e  
 

The hours of machine capacity, Hijk, required by each cell in each period is presented in Table 

6.1. In this abbreviated example, individual part demands are not shown, however, the hours may 

be calculated from part cycle times and volumes using the procedure presented in section 5.2.  

 Each reconfiguration period is six months long (180 days) and each working day is 24 hours, the 

total working hours per period is therefore Wk = 4320 hours. The reconfiguration of the RCMS 

is restricted by a budget, the cost per gain/loss of a machine and the total budget per period is 

listed in Table 6.2. The machines that are to be made available to the system per period are listen 

in Table 6.3.  

Solution 

The capacity based assignment model minimises the sum of excess and deficit hours of capacity 

per machine per cell per period. Some excess capacity will always exist if sufficient machines are 

made available; consider that 2.5 machines cannot be made available, if 2.5 machines are required 

then 3 machines must be made available. The excess machine capacity Eik, represented as excess 

hours, is calculated by equation 77: 

 𝐸𝑖𝑘 = 𝑊𝑘𝑁𝑖𝑘 − ∑ 𝐻𝑖𝑗𝑘

𝑗∈𝐽

, ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾 (77) 

The calculation for this problem is presented in Table E - 1, Appendix E.1.  This calculation is 

significant because it is an indicator that the capacity based assignment model can never achieve 

an objective value below the figure of 41007 hours. This can be viewed as a type of basic lower 

bound on the model. A portion of the reconfiguration budget (R 50000.00) is used for the layout 

of the ten fixed machines in the first period. This leaves a balance of R 60000.00 for the layout of 

mobile machines in the first period.  

The capacity based assignment model for this problem is not shown here due to its size; for five 

transient machines allocated to three sells in three periods, the model consists of 270 variables 

and 243 constraint equations. A program was written in the Matlab® program development 

environment to automatically populate the A and Aeq arrays and f, b and beq vectors of equations 

73-75, using the essential information provided in Table 6.1 - Table 6.3. The program code is 

available on the accompanying CD. The model and solution are also available in a Microsoft® 

Excel spreadsheet on the accompanying CD. 

Figure 6.2 shows the convergence of the Matlab® intlinprog solver when applied to the capacity 

based assignment model for this problem. The figure shows that the Branch and Bound method 

was able to determine the best solutions without using cut generation. 
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Figure 6.2: Convergence of intlinprog solver for the Capacity Based Assignment Model 

The best solution of 50499 hours was found after the algorithm explored +90 nodes (candidate 

problems).  The assignment of mobile machines to various cells as determined by the model is 

shown in Table 6.4. The table is effectively a reconfiguration plan for three periods; the placement 

of a machine is indicated in green and the removal of a machine is indicated in red.  

Table 6.4: Three Period Reconfiguration Plan  

 Period 1 Period 2 Period 3 

Machine Cell 1 Cell 2 Cell 3 Cell 1 Cell 2 Cell 3 Cell 1 Cell 2 Cell 3 

1 0 2 1 0 1 2 0 1 2 

3 2 1 0 1 2 0 2 1 0 

8 1 1 0 1 1 0 2 1 0 

12 2 0 1 2 0 1 2 0 1 

15 0 1 0 0 1 1 0 2 1 

In the first period the machines are to be installed in their respective cells to form the initial 

manufacturing system configuration. R 60000.00 will be spent on the initial machine 

placement/installation of mobile machines. In the second period (6-12 months), the following 

configuration changes are proposed: 
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 one copy of machine type 1 to be relocated from cell 2 to cell 3; 

 one copy of machine type 3 to be relocated from cell 1 to cell 2; 

 one new copy of machine type 15 to be added to  the system and placed in cell 3; 

 a total of R 27500.00 will be spent on reconfiguration. 

In the third period (12-18 months), the following configuration changes are proposed: 

 one copy of machine type 3 to be relocated from cell 2 to cell 1; 

 one new copy of machine 8 to be added to  the system and placed in cell 1; 

 one new copy of machine 15 to be added to  the system and placed in cell 2; 

 a total of R 24000.00 will be spent on reconfiguration. 

Table 6.5 presents results on the assignment of machine capacity to cells. The objective function 

value for the problem with mobile machines only, yielded a result of F = 50499 hours of surplus 

and deficit capacity. The total surplus and deficit capacity in each period is calculated by applying 

equations 78 and 79 to the values of variables uijk and vijk in the optimal solution. 

 𝑈𝑘 = ∑ ∑ 𝑢𝑖𝑗𝑘

𝑗𝑖

 (78) 

 𝑉𝑘 = ∑ ∑ 𝑣𝑖𝑗𝑘

𝑗𝑖

 (79) 

The table shows the total surplus and deficit capacity per period Fk.   

Table 6.5: Capacity Allocation Results 

 Period 1 Period 2 Period 3 Total 

Uk (hours) 12576 14090 19087 45753 

Vk (hours) 1240 764 2742 4746 

Fk  = Uk +  Vk 13816 14854 21829 50499 

 ∑ 𝑬𝒊𝒌 (hours) 11336 13326 16345 41007 

Recall that excess capacity is introduced as the number of machines to be purchased must be 

rounded up to an integer value during calculations. Across the three periods 41007 hours of excess 

capacity was introduced by purchasing excess machine capacity. A total of 45753 hours of excess 

capacity existed in cells after the assignment, this is due to excess capacity existing in some cells 

while other cells experienced a capacity deficit.  This occurs because machines cannot be split 

between cells and are assigned using integer values. The total capacity deficit existing in cells is 

4746 hours; the parts that require the missing capacity will perform inter-cell material handing 

movements in order to access the required machines. Note that the following relationship exists 

between surplus and deficit capacity: 
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 ∑ ∑ 𝑣𝑖𝑗𝑘

𝑗∈𝐽𝑖∈𝐼

= ∑ ∑ 𝑢𝑖𝑗𝑘 − ∑ 𝐸𝑖𝑘

𝑖∈𝐼𝑗∈𝐽𝑖∈𝐼

, ∀ 𝑘 ∈ 𝐾 (80) 

That is, the surplus capacity purchased subtracted from the surplus capacity via machine 

assignment equals the surplus deficit. It is therefore possible to minimize the capacity deficit only 

and obtain the same result.  

 Cost Minimization Assignment Model 

6.4.1 Model Formulation  

The model presented in section 6.3 may be modified to demonstrate an economically 

advantageous trade-off between reconfiguration cost and the cost of inter-cell part movements. 

The capacity based assignment model is converted into a cost minimization model by removing 

the restriction on reconfiguration budget and adding the cost of reconfiguration to the objective 

function. A cost Cijk is incurred in the objective function for each hour of deficit capacity 

experienced in cell j with respect to machine i in period k. The assumption is that when a capacity 

deficit exists parts will make an inter-cell movement to another cell in order to access the required 

capacity. The model is as follows: 

 𝑚𝑖𝑛 Cost = ∑ ∑ ∑ 𝑟𝑘

𝑘∈𝐾𝑗∈𝐽

(𝑝𝑖𝑗𝑘 + 𝑞𝑖𝑗𝑘)

𝑖∈𝐼

+ ∑ ∑ ∑ 𝐶𝑖𝑗𝑘𝑣𝑖𝑗𝑘

𝑘∈𝐾𝑗∈𝐽𝑖∈𝐼

 (81) 

Subject to: 

 −𝑢𝑖𝑗𝑘 + 𝑣𝑖𝑗𝑘 + 𝑊𝑘𝑥𝑖𝑗𝑘 = 𝐻𝑖𝑗𝑘 , ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾 (82) 

 𝑝𝑖𝑗𝑘 − 𝑞𝑖𝑗𝑘 − 𝑥𝑖𝑗𝑘 + 𝑥𝑖𝑗(𝑘−1) = 0, ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾 (83) 

 𝑢𝑖𝑗𝑘 ≤ 𝑀𝑦𝑖𝑗𝑘 , ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾 (84) 

 𝑣𝑖𝑗𝑘 ≤ 𝑀(1 − 𝑦𝑖𝑗𝑘), ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾 (85) 

 ∑ 𝑥𝑖𝑗𝑘

𝑗∈𝐽

= 𝑁𝑖𝑘 , ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾 (86) 

 𝑥𝑖𝑗𝑘 ≤ 𝑋𝑖𝑗 , ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾 (87) 

 𝑦𝑖𝑗𝑘 ∈ {0,1}; 𝑥𝑖𝑗𝑘 , 𝑝𝑖𝑗𝑘 , 𝑞𝑖𝑗𝑘 , 𝑢𝑖𝑗𝑘 , 𝑣𝑖𝑗𝑘 ∈ 𝑍+ (88) 

The objective function minimizes the sum of reconfiguration cost and the sum of the cost of deficit 

hours of capacity in cells. The first constraint ensures that excess and deficit hours of capacity are 

represented as positive values. The second constraint ensures that the loss or gain of a machine is 

represented as a positive value. The excess capacity uijk has a zero coefficient in the objective 

function in this model since no cost is incurred for cells that possess more capacity than required. 

Constraints three and four ensure that uijk or vijk assumes a positive value but not both variables at 

the same time. The zero-one variable yijk is used in conjunction with a constant M to implement 
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the conditional constraints. M is an arbitrarily large constant; the only requirement on the constant 

M  is that it be larger than the largest possible capacity surplus or deficit.  The fifth constraint 

allows a maximum of Nik machines of type i to be assigned to cells in time period k. The sixth 

constraint allows a maximum of Xij machines of type i in cell j in all time periods, this ensures 

that the reconfiguration occurs within the allowance of the FCT. The final constraint restricts all 

variables to positive integer values, with the exception of yijk which is restricted to zero or one.  

6.4.2 Estimation of Cost Coefficients  

The cost Cijk of an hour of deficit capacity in a cell is difficult to determine precisely, however an 

acceptable approximation can be calculated as follows: 

 
𝐶𝑖𝑗𝑘 = ⌈

60 

𝑡𝑖̅𝑗
⌉ 𝑐𝑘 (89) 

The cost is based on the number of parts that will perform an inter-cell material handling 

movement for each hour of deficit capacity experienced in a cell. The number of parts affected 

by the deficit is determined by dividing 60 minutes by the average process cycle time 𝑡𝑖̅𝑗 of a 

parts on machine i in cell j. The product of the number of parts by the cost per inter-cell par 

movement ck yields the estimated cost per hour capacity deficit.  

6.4.3 Example Application of Cost Minimization Assignment Model 

The cost minimization assignment model can also be represented in the standard form shown in 

equations 73-76. The model was also solved using the Matlab® intlinprog solver. The problem 

used in this example is the same as the problem of section 6.3.4 with the additional assumption 

that the cost of an hour deficit capacity, Cijk, is R 10.00, R 12.00 and R 14.00 in periods 1, 2 and 

3 respectively.  

The cost minimization assignment model for this problem is not shown here due to it’s size; for 

five transient machines allocated to three sells in three periods, the model consists of 270 variables 

and 240 constraints. A program was written in the Matlab® program development environment to 

automatically populate the A and Aeq arrays and f, b and beq vectors of equations 73-76, using 

the essential information. The program code is available on the accompanying CD. The model 

and solution are available in a Microsoft® Excel spreadsheet on the accompanying CD. 

Figure 6.3 shows the convergence of the Matlab® intlinprog solver when applied to the cost 

minimization assignment model for this problem. The best cost solution of R 167284.00 was 

found after the algorithm explored +350 nodes (candidate problems) without the need for cutting 

planes. The cost consists of machine relocation between cells and the cost of inter-cell part 

movements due to a deficit in the required number of operating hours on the various types of 

mobile machines.  
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Figure 6.3: Convergence of intlinprog solver for the Cost Minimization Assignment Model 

The assignment of mobile machines to various cells as determined by the model is shown in Table 

6.6. A comparison between the reconfiguration plan of Table 6.6 and that of Table 6.4 reveals 

that the cost minimization assignment model has proposed two less machine relocations as 

compared to the capacity based assignment model.  

Table 6.6: Alternative Three Period Reconfiguration Plan 

 Period 1 Period 2 Period 3 

Machine Cell 1 Cell 2 Cell 3 Cell 1 Cell 2 Cell 3 Cell 1 Cell 2 Cell 3 

1 0 2 1 0 1 2 0 1 2 

3 2 1 0 2 1 0 2 1 0 

8 1 1 0 1 1 0 2 1 0 

12 2 0 1 2 0 1 2 0 1 

15 0 1 0 0 1 1 0 2 1 

The capacity results pertaining to the cost minimization assignment model were determined by 

applying equations 78 and 79 to the values of variables uijk and vijk in the optimal solution. The 

surplus and deficit capacity results are shown in Table 6.7. A comparison between Table 6.5 and 

Table 6.7 reveals that the cost minimization model has a larger deficit of 6315 hours as compared 

to 4746 hours in the previous solution. The choice between the reconfiguration plans depends on 
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what a manufacturer might deem as less inconvenient; two additional machine relocations or an 

additional 1569 hours of deficit capacity in cells.  

Table 6.7: Capacity Allocation Results 

 Period 1 Period 2 Period 3 Total 

Uk (hours) 12576 15659 19087 47322 

Vk (hours) 1240 2333 2742 6315 

Fk  = Uk +  Vk  13816 17992 21829 53637 

 ∑ 𝑬𝒊𝒌  11336 13326 16345 41007 

 Intra-Cell Machine Assignment Model 

The capacity based assignment model and the cost minimization model are classified as inter-cell 

machine assignment models. This is due to the fact that these models are able to assign machines 

among cells. In the case where there are duplicate machine sites in parallel, the inter-cell 

reconfiguration models are sufficient since it usually does not matter which site in parallel is 

occupied.  

In a cell where there are duplicate sites in series, an inter-cell assignment model does not specify 

exactly which sites should be occupied. When considering machines arranged in series, the site 

that is occupied by a mobile machine is significant since the choice of site can be used to eliminate 

some instances of part backtracking. In this section an intra-cell machine assignment model is 

developed that assists with this decision. Before proceeding with the model formulation, the terms 

first site and second site must be defined. The first site is the site that appears at an earlier location 

in a sequence of machines and the second site appears later in a sequence of machines. In Figure 

6.4 the first site with respect to machine type 4 is at the second location and the second site is at 

the fifth location in the sequence.  

 
Figure 6.4: Illustration of First and Second Sites for Machine Type 4 

6.5.1 Model Formulation  

A manufacturing cell may have multiple sites in series reserved for a single machine type; the 

sites are created for a machine that is used to negate the intra-cell backtracking movements of 

parts, as demonstrated in section 5.4.5. The model presented in this section is used to assign a 

1 4 2 5 3 

Flow Direction 
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single machine to sites within the cell when two possible sites are available. The problem of 

assigning multiple mobile machines to multiple sites in parallel is a topic for future research.  

The following notation is applicable to the intra-cell machine assignment model: 

Sets: 

K= {1, 2, …,T} is the index set of time periods; k denotes a single time period and k ϵ K. 

Decision variables: 

xk is a zero-one variable indicating the assignment of the machine to the first site. 

yk is a zero-one variable indicating the assignment of the machine to the second site. 

ak is a zero-one variable indicating that the machine in the first site has been gained by 

reconfiguration in period k. 

bk is a zero-one variable indicating that the machine in the first site has been removed by 

reconfiguration in period k. 

pk is a zero-one variable indicating that the machine in the second site has been gained by 

reconfiguration in period k. 

qk is a zero-one variable indicating that the machine in the second site has been removed by 

reconfiguration in period k. 

Parameters: 

αk is the volume of parts that will perform an intra-cell backtracking movement if a machine is 

not available in the first site in period k.   

βk is the volume of parts that will perform an intra-cell backtracking movement if a machine is 

not available in the second site in period k.   

ck is the cost per part, per intra-cell backtracking movement in period k.   

rk is the cost of relocating a single machine within the cell in period k. 

Nk   is the maximum number of machines of the specified type that have been made available to 

the cell in period k; Nk ϵ {0, 1, 2}.  

The objective of the model is to minimize the cost of backtracking flow and the cost of relocating 

a machine to negate the undesirable flow. The assignment models of sections 6.3 and 6.4 will 

propose the movements of machines in and out of cells. The number of machines of a given type 

that have been allocated to the cell in period k is indicated by the variable Nk. The challenge in 

representing the objective function is to impose a reconfiguration cost when a machine is 

relocated internally to the cell and not to impose a reconfiguration cost when sites xk or yk gain a 

machine from another cell. The cost of inter-cell machine relocation has already been taken into 

consideration by the previous inter-cell assignment models. The necessity to impose a 

reconfiguration cost only when a machine is relocated within the cell has resulted in the creation 

of additional variables ak, bk, pk and qk.  
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The first summation of the objective function (equation 90) represents the backtracking flow cost 

if the machine in question is not made available in the first site, i.e. if xk = 0  the cost ckαk is 

imposed. The second summation of the objective function represents the backtracking flow cost 

if the machine in question is not made available in the second site. Note that if xk = 0 and yk = 0, 

no backtracking cost is incurred at all since the parts will be performing an inter-cell part 

movement. This cost is already accounted for by the inter-cell machine assignment models. The 

third summation represents a reconfiguration cost if a machine is removed from the second site 

and placed in the first site. The fourth summation represents a reconfiguration cost if a machine 

is removed from the first site and placed in the second site. A reconfiguration cost is therefore 

imposed if a machine is moved internally. If a machine is lost/gained in either site to/from another 

cell, no reconfiguration cost is incurred in this model since inter-cell machine relocation costs are 

already accounted for. 

 𝑚𝑖𝑛 Cost = ∑ 𝑐𝑘𝛼𝑘𝑦𝑘(1 − 𝑥𝑘)

𝑘∈𝐾

+ ∑ 𝑐𝑘𝛽𝑘𝑥𝑘(1 − 𝑦𝑘)

𝑘∈𝐾

 

+ ∑ 𝑟𝑘(𝑎𝑘𝑞𝑘)

𝑘∈𝐾

+ ∑ 𝑟𝑘(𝑝𝑘𝑏𝑘)

𝑘∈𝐾

 
(90) 

Subject to: 

 𝑥𝑘 − 𝑥(𝑘−1) − 𝑎𝑘 + 𝑏𝑘 = 0, ∀ 𝑘 ∈ 𝐾  (91) 

 𝑦𝑘 − 𝑦(𝑘−1) − 𝑝𝑘 + 𝑞𝑘 = 0, ∀ 𝑘 ∈ 𝐾 (92) 

 𝑎𝑘 + 𝑏𝑘 ≤ 1, ∀ 𝑘 ∈ 𝐾  (93) 

 𝑝𝑘 + 𝑞𝑘 ≤ 1, ∀ 𝑘 ∈ 𝐾 (94) 

 𝑥𝑘 + 𝑦𝑘 = 𝑁𝑘 , ∀ 𝑘 ∈ 𝐾 (95) 

 𝑥𝑘 , 𝑦𝑘 , 𝑎𝑘 , 𝑏𝑘 , 𝑝𝑘 , 𝑞𝑘 ∈ {0,1} (96) 

The objective function does not add a charge for both a machine loss and gain at sites. In the inter-

cell machine assignment models the assumption is that the cost of restarting a cell after 

reconfiguration is included in the cost per machine loss/gain. When an inter-cell machine 

relocation occurs, two cells must start-up under a new configuration, therefore a cost is charged 

to the cell that gains a machine and the cell that loses a machine. With respect to an intra-cell 

machine swap between sites in series, a cost is charged to the objective function once since only 

one cell is affected.  

The first constraint of the model is a balance equation which will enforce ak =1 if a machine is 

gained in the first site and bk = 1 if a machine is removed from the first site. Likewise, the second 

constraint is also a balance equation that will cause pk and qk to indicate the gain or loss of a 

machine at the second site. The third and fourth constraints allow either a loss or gain to be 
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reflected in each site in each period k.  The third and fourth constraints ensure the correct 

functioning of the first and second constraints. The fifth constraint ensures that all machines that 

have been made available to the cell are allocated to the positions available. The final constraint 

restricts all variables to zero-one values.  

6.5.2 Notes on the Intra-Cell Machine Assignment Model 

The model presented here has two intuitive variables xk and yk; however four additional variables 

ak, bk, pk and qk have been added to the model in order to correctly account for the cost of 

reconfiguration. The additional variables increase the difficulty of finding a solution substantially, 

the number of possible solutions is determined by the following equation: 

 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 = 26𝑇 (97) 

Where T is the total number of periods for which the model will be attempted to be solved. As an 

example, for T=5 periods the total number of possible solutions is 1073741824.  

In many instances the solution to the problem of intra-cell machine assignment model is intuitive 

since the process sequence of parts may unanimously favour a machine placement in one site over 

the other. Moreover, if two machines of the same type are available both sites will be filled and 

the choice does not require the application of the model. The intra-cell machine assignment model 

was presented here to provide a complete set of tools for planning the reconfiguration of a RCMS, 

however, reconfiguration planners should examine the problem for a solution by inspection before 

proceeding to solve the model with an algorithm.   

6.5.3 Implicit Enumeration Algorithm for Quadratic Zero-One Models 

The model presented in section 6.5.1 is a type of quadratic multi-period assignment model. The 

model can be represented in standard form by the grouping of linear and quadratic terms in the 

objective function: 

 
𝑚𝑖𝑛 𝑍 = 𝐶𝑇𝑋 +

1

2
𝑋𝑇𝑄𝑋 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (98) 

 𝐴. 𝑋 ≤ 𝑏 (99) 

 𝐴𝑒𝑞. 𝑋 = 𝑏𝑒𝑞 (100) 

 𝑋𝑛 ∈ {0,1} (101) 

Here, C is a vector of coefficients to linear objective function terms, Q is an n×n symmetric matrix 

of coefficients to quadratic terms and X is a vector of decision variables; A and Aeq are arrays of 

coefficients corresponding to the left hand side of constraints, b and beq are the vectors 

corresponding to the right hand side values of constraints.   

The method of Implicit Enumeration is suitable for solving zero-one quadratic models. It is a 

variation of the Branch and Bound algorithm that exploits the zero-one characteristic of decision 
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variables. In a conventional Branch and Bound algorithm with integer variables, the integer 

restriction on variables is relaxed and candidate problems are solved as linear programs by the 

primal-simplex algorithm. In Implicit Enumeration the linear constraints are relaxed while the 

zero-one restriction is maintained. Variables are set using rules in order to solve the relaxed 

version of the problem.  

An Implicit Enumeration solver for zero-one quadratic programs was developed specifically for 

this research in the Matlab® program development environment. The program code is available 

on the accompanying CD. The Implicit Enumeration algorithm for minimization is as follows: 

Implicit Enumeration Algorithm 

P=Ø; // Define an empty set of problems 

po = InitialProblem; //Define the initial problem as the original problem 

Zbest = ∞; //Define best objective function value 

UpperBound=Zbest; // Define the upper bound on the problem 

LowerBound=LowerBound(po); // Define the initial lower bound using equation 102 

BestSolution = null; // Define the best solution as null 

P=P+po; // Add the initial problem to the set of problems 

Repeat 

p* = SelectProblem(P); // Select a problem from among active problems 

solution = SolveRelaxation(p*); //Solve the relaxation of the problem 

feasible= FeasibilityCheck(solution); //Determine if the solution is feasible 

if feasible = True // If the solution is feasible 

f = ObjectiveValue(solution); // Determine the objective value of the solution 

if f<ZBest // If the objective value is lower than the best known solution 

 BestSolution=solution; // Set the solution as the best solution 

 ZBest=f; // Set the objective value as the best value found 

// Update the upper bound on the problem 

 UpperBound=ZBest;  

end  

end 

 

P = Branch(P); // Branch on the existing problems to create new problems 
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// Identify active problems and establish a lower bound 

[P, LowerBound]= ActiveProblems(P);  

Until (P=Ø or UpperBound-LowerBound=0) //Terminate on condition 

The initialization procedures for the Implicit Enumeration algorithm are similar to that of the 

Branch and Bound algorithm presented in section 6.3.3. The exception is that the lower bound 

(LB) on the original problem is established by the LowerBound() function. The LowerBound() 

function implements the following calculation: 

 
𝐿𝐵 = ∑ 𝑚𝑖𝑛 {𝑐𝑖 +

1

2
𝑞𝑖𝑖 +

1

2
∑ 𝑚𝑖𝑛(𝑞𝑖𝑗 , 0)

𝑗≠𝑖

, 0}

𝑛

𝑖=1

 (102) 

Here, the negative contribution of each decision variable to the objective function, is added to LB 

(effectively xi = 1) and a positive contribution is omitted (effectively xi = 0). The nested 

summation considered that the contribution of a variable xi to the objective function also depends 

on the variable xj, since qijxixj = qij if both xi = 1 and xj = 1. The term qii is independent of any 

other decision variable and is separated from the nested summation.  

New problems with a smaller feasible region are created in each iteration of the algorithm. The 

SelectProblem() function chooses the next problem to solve. The approach adopted here is that 

the most recent problem added to P is the one that is solved next.  This is analogous to a Depth 

First Search (DFS) on a Branch and Bound tree.  

In Implicit Enumeration the definitions of free variables and fixed variables are essential: 

Fixed Variables: variables that have been fixed to either a zero or one value by 

branching. 

Free Variables:  variables that have not been fixed to hold a value 

Variables are fixed by the Branch() function in order from x1,..,xn. A variable may be fixed to 

xi = 0 or xi = 1. Every branching procedure fixes one variable at a time to produce two new 

candidate problems with an additional xi that is fixed. In the implementation developed in this 

research every candidate problem has a set of fixed variables and the task is to determine the 

values of free variables.   

Free variables are explored to develop trial solutions by the SolveRelaxation() function. The 

relaxed problem is generated by dropping the linear constraints and setting free variables in a 

manner that minimises the objective function value. Variable xi is set in a solution by first 

completing the following calculations: 
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𝑙𝑖 = 𝑐𝑖 +

1

2
𝑞𝑖𝑖 + ∑ 𝑚𝑖𝑛(0, 𝑞𝑖𝑗)

𝑗≠1

 (103) 

 
𝑢𝑖 = 𝑐𝑖 +

1

2
𝑞𝑖𝑖 + ∑ 𝑚𝑎𝑥(0, 𝑞𝑖𝑗)

𝑗≠1

 (104) 

Here li and ui are the lowest and highest possible contributions of the variable xi to the objective 

function. The variable xi is set by the following rules: if li > 0 then xi = 0; if ui < 0 the xi = 1.  

In Implicit Enumeration, the constraints of the model are temporarily dropped by the 

SolveRelaxation() function. The feasibility of a solution checked by the FeasibilityCheck() 

function after the relaxed problem is solved. The feasibility check is achieved by substituting the 

solution into the constraints listed as equations 99 and 100. If the solution does not violate the 

constraints it is feasible. The objective value is computed for all feasible solutions. If the objective 

value is less than that of the best solution, the current solution is set as the best known solution.  

The Branch() function, which has already been discussed, is executed prior to punning the set of 

active problems. If a problem has a lower bound that is higher than the established upper bound, 

this problem is considered to be fathomed and is pruned.  The lower bound on a problem is the 

objective value that was obtained by solving the relaxation of the parent problem from which the 

new problem was derived. 

The Implicit Enumeration algorithm will continue as long as there a problems to be explored. The 

algorithm will   terminate when the list of problems is empty or the difference between upper and 

lower bounds is zero.   

6.5.4 Example Application of Intra-Cell Machine Assignment Model 

The problem documented in Table 6.8 is used to demonstrate the application of the intra-cell 

machine assignment model. The table documents the backtracking flow values αk and βk if the 

machine in question is not available at the first or second site. Flow volumes are established by 

examining the sequence in which parts require processes and the volumes in which parts are to 

be produced. The example presented here is abbreviated and a comprehensive demonstration of 

how αk and βk values are determined is presented in the study of Chapter 7. 

The cost per intra-cell machine relocation and the cost per part for a backtracking movement are 

also listed in Table 6.8. At the point of designing a RCMS the capital cost of equipment used to 

facilitate the backtracking movements can be included into the cost per part for a backtracking 

move.  This will generate solutions that minimize equipment requirements along with other cost 

bearing factors that are associated with part backtracking.  
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Table 6.8: Intra-Cell Machine Assignment Problem 

  k=1 k=2 k=3 k=4 

αk  4000 3500 2000 1500 

βk  0 3000 3500 1500 

rk R 3100.00 R 3200.00 R 3300.00 R 3400.00 

ck R 1.00 R 1.10 R 1.20 R 1.30 

Nk 1 2 1 1 

 

Table 6.8 also specifies the number of copies of the machine type that are to be made available 

in each period. Values of Nk are determined by first applying the inter-cell machine assignment 

models in order to determine the machines that are allocated to each cell in each period.  

In this example problem, the intra-cell machine assignment model consists of 24 variables and 20 

constraints. Although the number of variables and constraints are relatively small, the various 

vectors and matrices that form the model are still large and cumbersome and are not presented 

here.  A program was written in the Matlab® program development environment to automatically 

populate the A, Aeq and Q arrays and the b, beq and C vectors of equations 98-101. The program 

code is available on the accompanying CD. The model and solution are also available in a 

Microsoft® Excel spreadsheet on the accompanying CD. 

 

Figure 6.5: Convergence of the Implicit Enumeration Algorithm 
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The Implicit Enumeration algorithm for the example problem converged after exploring 11765 

nodes (candidate problems). The best solution found had a cost of R 4350.00. The convergence 

plot of the Implicit Enumeration algorithm is shown in Figure 6.5. Note that the root lower bound, 

which is the lower bound on the original problem, is always zero for the intra-cell machine 

assignment model when computed with equation 102. It is also easy to establish an upper bound 

on the model quickly by generating a feasible solution. Feasible solutions may be generated by 

simply assigning an available machine to the first site and to the second site if an additional 

machine is available.  

Table 6.9: Best Solution Determined by the Implicit Enumeration Algorithm  

 xk ak bk yk pk qk 

k=1 1 1 0 0 0 0 

k=2 1 0 0 1 1 0 

k=3 0 0 1 1 0 0 

k=4 0 0 0 1 0 0 

The Implicit Enumeration algorithm for the example problem converged after exploring 11765 

nodes (candidate problems). The best solution found had a cost of R 4350.00. The convergence 

plot of the Implicit Enumeration algorithm is shown in Figure 6.5. Note that the root lower bound, 

which is the lower bound on the original problem, is always zero for the intra-cell machine 

assignment model when computed with equation 102. It is also easy to establish an upper bound 

on the model quickly by generating a feasible solution. Feasible solutions may be generated by 

simply assigning an available machine to the first site and to the second site if an additional 

machine is available.  

Table 6.9 presents the best solution obtained by the Implicit Enumeration algorithm. A machine 

is available in the first site for periods k = 1 and k = 2 and a machine is available at the second 

site for periods k = 2, k = 3 and k = 4.   All machines gains/losses at the respective sites were 

derived from the inter-cellular movement of machines therefore no reconfiguration cost is charged 

to the objective function. The cost as determined by the objective function is constituted of part 

backtracking costs only. This example verifies that intra-cell machine assignment model is 

consistent with the inter-cell machine assignment models.  

 Chapter Summary 

This chapter presented two models for the inter-cell assignment of machines and an intra-cell 

machine assignment model for machine re-layout within a cell. The models are all based on the 

principle that a machine may only be allocated to a cell if a site is available for it.  
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A capacity based assignment model was developed, that assigns machines based on the objective 

of minimizing the surplus and deficit capacity in cells.  This model allocates machines to cells 

within the constraint of a reconfiguration budget. If the reconfiguration budget is generous this 

model has the blind spot of possibly relocating a machine to a cell in order to gain a miniscule 

advantage with respect to deficit capacity. A cost minimization assignment model was developed 

that assigns machines to cells based on the optimal trade-off between reconfiguration cost and the 

cost of an hour of deficit capacity. Although this model has the ability to find the best economic 

trade-off, it has the blind spot of preventing a reconfiguration for a miniscule cost saving. The 

best reconfiguration plan can be determined by comparing the results of both models since each 

covers the other’s deficiency.  

 

The chapter concluded with a model for intra-cell machine assignments. This model has the ability 

to locate machines in a manner that eliminates part backtracking costs at an optimal trade-off to 

intra-cell machine relocation costs. This was demonstrated with an example. 
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7 RCMS Design and Reconfiguration Planning Study 

 Chapter Introduction 

In this chapter the methods and models developed in Chapters 4-6 will be applied as a study to 

the design and evolution of a RCMS. The Factory Configuration Template will be developed 

through the methods that have been researched and found to be suitable.  A multi-period 

reconfiguration plan will then be developed that determines how the configuration of cells will 

evolve in response to changing production requirements.  The purpose of the study is to illustrate 

the integrated use of individual methods at various stages of the FCT design and reconfiguration 

planning process. The study will also demonstrate that the RCMS can provide a better solution 

than a traditional, fixed CMS. The advantage of the RCMS reconfiguration planning models 

developed in this research, over other RCMS/DCMS models available in literature is that the 

plans developed here are generated, based on initial design of the factory floor space. This will 

enable the practical implementation of the plans.  

 RCMS Design Problem 

A tier one manufacturing company wishes to implement a Reconfigurable Cellular Manufacturing 

System that will fulfil manufacturing requirements over a six year period. The manufacturer is a 

small make-to-order business that manufactures products according to the requirements of a larger 

manufacturing company. During the period of six years the manufacturer is contracted to produce 

three different products that shall henceforth be known as Product A, Product B and Product C. 

The product quantities listed in Table 7.1  are to be used in the designed.   

Table 7.1: Guideline Quantities for Machine Capacity Calculations 

 Product A Product B Product C 

Year 1 4000 0 0 

Year 2 3500 3000 0 

Year 3 2000 4500 0 

Year 4 0 3200 1500 

Year 5 0 1500 3000 

Year 6 0 0 5000 

The products are assembled from part types and in related quantities as listed in Table 7.2. The 

relationships between individual parts and the machines that will be used to manufacture them 

are listed in Table 7.3. The table lists the sequence in which part are to visit machines; the process 

cycle time per machine is also listed. The cost of inter- and intra-cell machine relocation are listed 

in Table 7.4. The cost of an inter-cell flow per part and the cost of intra-cell backtracking flow 

per part is listed. The reconfiguration budget per period is also presented. Note that the cost of 
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unidirectional intra-cell part flow is not presented because this is the desired type of part flow and 

does not feature in any of the cost minimization models.  

Table 7.2: Product Bill of Components 

 

 

 

 

 

 

Table 7.3: Part Route Sheet 

Part Number Sequence of Machines Process Cycle Time  
(minutes per operation) 

1 7-8-11-12 7-9-10-10 
2 5-1-6-7-9 7-7-7-8-9 
3 6-7-8-9 7-7-7-9 
4 1-4-6-9 7-10-7-7 
5 10-1-7-9-12 10-7-8-8-8 
6 5-1-4-6-9 8-9-9-8-9 
7 2-8-12-10 10-8-9-10 
8 2-6-8-5 8-7-10-8 
9 1-4-12-5 9-8-7-7 
10 2-3-8-5 9-8-7-10 
11 2-8-11-12-10 9-10-8-7-10 
12 2-3-4-6-8 10-9-10-7-9 
13 1-2-3-4-12 9-8-9-10-9 
14 2-8-12-10 10-8-9-9 
15 10-1-7-9-12 9-8-8-9-8 
16 5-1-3-6-7 7-9-10-8-7 
17 1-7-11-12 8-7-9-10 
18 2-3-4-12 10-10-9-9 
19 6-7-8-9-11 8-7-9-8-9 
20 10-2-6-8-9-11 9-9-7-7-8-10 

Table 7.4: Finances Governing the RCMS Design Problem 

 Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 
rk (Inter-Cell ) R 4000.00 R 4200.00 R 4400.00 R 4600.00 R 4800.00 R 5000.00 

rk ( Intra-Cell) R 3100.00 R 3200.00 R 3300.00 R 3400.00 R 3500.00 R3600.00 

ck (Inter-Cell ) R 1.50 R 1.60 R 1.70  R 1.80 R 1.90 R 2.00 

ck ( Intra-Cell Backtracking) R 1.00 R 1.10 R 1.20 R 1.30 R 1.40 R 1.50 

Rk* (Budget) R 48  R10  R40  R 10 R 40 R 10 

* Budget amounts are represented in thousands of Rand 

 

 Product A 

Part Number 1 2 4 6 7 11 14 16 

Quantity 1 1 2 1 1 1 2 1 

 Product B 

Part Number 3 9 10 13 18 19 20  

Quantity 2 2 1 1 1 1 1  

 Product C 

Part Number 5 8 10 12 15 18 17  

Quantity 1 2 1 1 1 1 2  
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The cost of inter-cell machine relocation rk is based on the cost of uninstalling a machine in one 

cell and relocating it in another cell. In practice, the cost of lost production due to the downtime 

of both cells may be added to this cost. The cost of intra-cell machine relocation is based on 

uninstalling a machine and reinstalling it in the same cell. Inter- and intra-cell material handling 

costs are based on the cost of labour used to perform this task. In practice, the cost of material 

handling equipment such as dollies may be added to this cost.  

The annual operating hours of the manufacturing facility is Wk = 7200 hours made up of 360 

working days per year and 20 operating hours per day. Machine availability is assumed to be 

80 %. Additional considerations to be factored into the FCT design and reconfiguration plan are:  

 the preferred shape for cells is the U-Shaped layout; 

 budgeted amounts for reconfiguration in one year may not be carried over to the next; 

 all parts are to proceed to a common assembly cell that is based on manual assembly 

processes, the cell does not have to be designed or reconfigured.  

 Factory Configuration Template Design 

The FCT is a design for a RCMS; it determines the sites to be allocated to machines and the 

arrangement of sites on a factory floor. If the FCT is implemented on the factory floor the RCMS 

is considered to be designed and initialized for future reconfigurations. A nine step procedure was 

specified in section 5.5 for the creation of a FCT with sufficient information to proceed with 

reconfiguration planning; these steps will now be applied to the problem at hand. 

Step One 

The first step is to create a machine-component incidence matrix for all parts and machines for 

which the RCMS must be designed. The part route sheet presented in Table 7.3 was used to create 

the machine-component incidence matrix shown in Table F- 1, Appendix F.1. Although each part 

is active in different periods, all parts are still represented in this matrix. 

Step Two 

The second step is to perform a silhouette analysis on part clusters generated by the FCMdd 

algorithm for various values of C. Although the silhouette analysis may not ultimately determine 

the number of part families and cells to implement, it provides an indicator if the number of 

naturally existing part clusters in the data set. Recall that the data dimensions are the zero-one 

column vectors derived from the machine-component incidence matrix. 

The silhouette plot is presented in Figure 7.1; this plot was generated by application of the Jaccard 

dissimilarity measure and the FCMdd algorithm to the clustering of parts. According to Figure 

7.1 the case of C = 2 has the least outlying parts. Although C = 5 has the highest average silhouette 

value, there are two outlying parts. Moreover, five cells and families is excessive for 12 machines 
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and 20 parts. The RCMS design will proceed with two part families and two cells. Note that the 

Lance & Williams dissimilarity measure was also tested on this problem and was shown to 

provide no advantage in solutions over the Jaccard dissimilarity measure. 

 

Figure 7.1 Silhouette Analysis for FCT Design for RCMS 

Step Three 

The third step is to apply the SFC heuristic and generate multiple solutions for part and machine 

site clusters for various values of parameter L. Table 7.5 lists the parameters that were used with 

the FCMdd algorithm and the SFC heuristic. Recall that the FCMdd algorithm seeds the SFC 

heuristic with an initial set of part family prototypes and a membership matrix.  

Table 7.5: FCMdd Algorithm and SFC Heuristic Parameters 

FCMdd Algorithm SFC Heuristic 

Binary Dissimilarity Measure Jaccard L 0.2-0.5 

Maximum Iterations 10 Maximum Iterations 50 

m 2   

Number of Clusters 2 Number of Clusters 2 

Both the FCMdd algorithm and the SFC heuristic converged in three or less iterations for all 

values of L. Table 7.6 lists the exceptional elements and voids obtained for various values of 

parameter L. Recall that L is the relative part load for which a machine site can be created in a 

cell. The method of obtaining exceptional elements and voids as indicators was discussed in 

section 4.7. 
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Table 7.6:  Exceptional Elements (EE) and Voids for Various Values of L 

L EE Voids 

0.5 25 43 

0.4 15 66 

0.3 6 85 

0.2 0 99 

Step Four 

The fourth step is to analyse the solutions for various values of L. A lower number of exceptional 

elements indicates increased opportunity to reduce inter-cell part flows within the provisions for 

machine re-layout made by the FCT. An increasing number of voids indicates an increasing risk 

that some sites created on the FCT may never be used since these sites were created for low part 

loads. These loads may be too low to attract a machine when an assignment model is applied. 

Table 7.6 reveals a high number of exceptional elements for L = 0.4 to 0.5. The choice of solution 

was restricted to L<0.3. The problem at hand has zero exceptional elements at L = 0.2. This 

solution was selected for implementation. The part family and cell site clusters for this solution 

are: 

CS1 = {S1, S2, S3, S4, S5, S6, S7, S8, S9, S12}; 

CS2 = {S1, S2, S6, S7, S8, S9, S10, S11, S12}; 

PF1 = {2, 4, 6, 8, 9, 10, 12, 13, 16, 18}; 

PF2 = {1, 3, 5, 7, 11, 14, 15, 17, 19, 20}; 

Step Five 

The fifth step is to analyse the system level site requirements. This is to ensure that the number 

of sites made available throughout the system are sufficient to host the mandatory number of 

machines that will be purchased.  

Table 7.7: Mandatory Number of each Machine Type Required per Annum (M=Machine, Y = Year) 

 Y1 Y2 Y3 Y4 Y5 Y6 
M1 1 1 1 1 1 1 
M2 1 1 1 1 1 1 
M3 1 1 1 1 1 1 
M4 1 1 1 1 1 1 
M5 1 1 1 1 1 1 
M6 1 1 1 1 1 1 
M7 1 1 1 1 1 1 
M8 1 1 1 1 1 1 
M9 1 1 1 1 1 1 

M10 1 1 1 1 1 1 
M11 1 1 1 1 1 1 
M12 1 1 1 1 1 1 
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Mandatory numbers of machines will be purchased so that the system has sufficient capacity to 

meet production requirements. In order to determine the mandatory number to purchase, part 

volumes to be produced in each year must be determined. Individual part volumes, based on the 

demand for Product A, B and C, are presented in Table F- 2 , Appendix F.2. A sample calculation 

is also presented.  

The hours Hik of processing time required on each machine based on part volumes and process 

cycle times is presented in Table F- 3, AppendixF.3. The values of Hik were used to determine the 

mandatory number of machines of each type required to create sufficient machine capacity. The 

numbers are listed in Table 7.7; sample calculations are provided in Appendix F.4. Since a 

maximum of one unit of each machine type is required in all years there is no need to duplicate 

machine sites in parallel. The sets of cell sites CS1 and CS2 remain the same. 

Step Six 

The sixth step is to analyse the cell level site requirements. At a system level there are sufficient 

sites to host all machines, nonetheless to demonstrate the method a cell level verification will be 

performed. The cell level analysis of machine requirements may reveal additional opportunities 

of reduce the inter-cell flow of parts by introducing sites in parallel. This was demonstrated in the 

example of section 5.2.4. 

The hours Hijk of processing time required on each machine at the cell level are presented in Table 

F- 5, Appendix F.5. Sample calculations are also shown. The values of Hijk were used to determine 

the number of machines Nijk of each type required by each cell in each period. The results are 

presented in Table 7.8 and a sample calculation is presented in Appendix F.6. 

Table 7.8: Machines Required per Cell per Year (C=Cell, M = Machines, Y = Year) 

 Y1 Y2 Y3 Y4 Y5 Y6 

 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 

M1 1 0 1 0 1 0 1 1 1 1 0 1 

M2 0 1 1 1 1 1 1 1 1 1 1 0 

M3 1 0 1 0 1 0 1 0 1 0 1 0 

M4 1 0 1 0 1 0 1 0 1 0 1 0 

M5 1 0 1 0 1 0 1 0 1 0 1 0 

M6 1 0 1 1 1 1 1 1 1 1 1 0 

M7 1 1 1 1 1 1 0 1 0 1 0 1 

M8 0 1 1 1 1 1 1 1 1 1 1 0 

M9 1 0 1 1 1 1 0 1 0 1 0 1 

M10 0 1 0 1 0 1 0 1 0 1 0 1 

M11 0 1 0 1 0 1 0 1 0 1 0 1 

M12 0 1 1 1 1 1 1 1 1 1 1 1 
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The results of Table 7.8 reveals that each cell requires a maximum of one machine of the various 

types across all years. The sites made available in clusters CS1 and CS2 are sufficient. If one site 

was allocated to a machine in a cell by the SFC heuristic, but the case arose where the cell level 

analysis reveals that the cell could benefit from a second site, this additional site may be created 

in parallel. Note that additional sites should only be created for machines that already have a 

single site in the cell.  Further analysis of the table reveals multiple instances of both cells 

requiring the same machine at the same time. For example, a site is available for machine type 9 

in CS1 and CS2; however, only one mandatory machine of this type will be made available. If 

additional capital is available to place a machine at both sites this would reduce the inter-cell part 

flow volume.  

Step Seven 

The seventh step of the CFT design process is to select a shape for cells. In the design 

requirements specified in section 7.2, U-shaped cell layouts were the preferred layout shape. The 

system and cell level site analysis revealed that additional sites were not required in parallel. The 

U-shaped layouts may therefore be implemented. 

Step Eight 

The eighth step is to apply the unidirectional flow optimization model and the TS algorithm to 

determine the optimal sequence in which machine sites should be arranged in cells. In step eight 

the possibility of duplicate machine sites in series is not considered. The sequence in which 

operations are to be performed on individual parts is listed in Table 7.3. 

 

Figure 7.2 TS Algorithm – Best f* per Iteration – Cell 1 



102 | P a g e  
 

The TS algorithm was applied to CS1 and CS2 in order to determine the best arrangement of sites 

to support unidirectional part flow in Cell 1 and Cell 2 respectively. Figure 7.2  shows the 

performance of the best solution per iteration for the TS algorithm applied to cell 1. The best 

solution was found after +200 iterations with a minimum of three instances of part backtracking. 

Although the algorithm was allowed to continue for 1000 iterations no further improvement was 

found. The best arrangement of sites for cell 1 is presented in Table 7.9.  If this sequence of sites 

is implemented on the FCT, parts 2, 6 and 16 from the family PF1 will perform intra-cell 

backtracking moves in order to have processes completed in the prescribed order.  

Table 7.9: TS Results – Best Arrangement of Machine Sites 

Location 1 2 3 4 5 6 7 8 9 10 

Cell 1 S1 S2 S3 S4 S6 S8 S12 S7 S9 S5 

Cell 2 S2 S6 S1 S7 S8 S9 S11 S12 S10  

The best arrangement of sites for Cell 2 is also presented in Table 7.9.   If this sequence of sites 

are implemented on the FCT, parts 5, 15 and 20 from the family PF2 will perform intra-cell 

backtracking moves in order to have processes completed in the prescribed order. Figure 7.3 

shows that no improvement was found although the TS was allowed to search for more than 800 

iterations after this solution was found.  

 

Figure 7.3: TS Algorithm – Best f* per Iteration – Cell 2 

Step Nine 

In the ninth step the possibility of additional sites in series is investigated in order to further 

eliminate cases of the backward flow of parts. The TS algorithm was applied with X=1, i.e. one 

additional site in series. The results for both cells are shown in Table 7.10. 
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Table 7.10: TS Results – Best Arrangement of Machine Sites with X=1 

Location 1 2 3 4 5 6 7 8 9 10 11 

Cell 1 S5 S1 S2 S3 S4 S12 S6 S8 S5 S7 S9 

Cell 2 S10 S2 S1 S6 S7 S8 S9 S11 S12 S10  

Under the proposed arrangement of sites with an additional site in series for machine type 5, all 

instances of part backtracking have been eliminated in Cell 1. Figure 7.4 shows that the best 

solution was obtained in under 150 iterations.  

 

Figure 7.4:  TS Algorithm – Best f* per Iteration – Cell 1 

 

Figure 7.5: TS Algorithm – Best f* per Iteration – Cell 2 

With respect to Cell 2, an additional site for machine 10 in series has also eliminated all instances 

of part backtracking.  Figure 7.5 shows that the best solution was found in under 50 iterations.  
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Note that the TS algorithm as implemented in the Matlab® development environment, was only 

programmed to terminate after the prescribed iteration count was complete. The algorithm could 

be upgraded to terminate upon finding a zero solution, however, this does not add any value to 

the objectives of this research.  

When comparing the results of the TS algorithm for the case of no duplicate sites and the case of 

duplicate sites in series the interpretation in the RCMS context is important. In a RCMS every 

site is not occupied by a machine at all times. For the case of no duplicate sites, the result is an 

upper bound on all possible instances of part backtracking. For the case of one duplicate site in 

series, the result is a lower bound on all possible instances of part backtracking. The actual 

instances of part types backtracking will be between 0 - 3. 

The Factory Configuration Template 

 The FCT was created by implementing the sequences of sites, as determined in Table 7.10. The 

FCT with the necessary information to begin reconfiguration planning is shown in Figure 7.6. 

 

Figure 7.6: Proposed Factory Configuration Template 

According to the FCT machine types 1, 2, 6, 7, 8, 9 and 12 may be placed in either Cell 1 or Cell 

2. These machines must be strategically positioned to eliminate inter-cell part flow. The 

assignment of these machines to potential sites in each year must be determined by solving the 

capacity based assignment model or the cost minimization assignment model. Note that there are 

no default inter-cell material flows by the design of the FCT since the calculation of exceptional 

elements based on every site filled was zero. Actual inter-cell material flows will arise once 
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machines have been allocated to sites since the mandatory number of machines to be made 

available is less than the sites available.  

Machine types 5 and 10 have two potential sites each, however, the respective sites are both in 

the same cell. Machine types 5 and 10 are therefore used for the elimination of part backtracking 

flow within the respective cells and the location of these machines in each year must be 

determined by solving the intra-cell machine assignment model.   

The number of sites Xij reserved for each machine in each cell is listed in Table 7.11. These values 

are required by the inter-cell machine assignment models. Machines 3, 4 and 11 have only one 

space available on the FCT these machines may be allocated to their respective sites without the 

need for further reconfiguration planning. The placement of fixed machines is indicated by 

occupied sites on the FCT. 

Table 7.11: Sites Xij available for each machine in each cell (C= Cell, M = Machine) 

 C1 C2  C1 C2 

M1 1 1 M7 1 1 

M2 1 1 M8 1 1 

M3 1 0 M9 1 1 

M4 1 0 M10 0 2 

M5 2 0 M11 0 1 

M6 1 1 M12 1 1 

 Budget Update Prior to Reconfiguration Planning 

Prior to solving the inter-cell machine assignment models it is necessary to amend the budget 

allocated for factory layout. Fixed machines 3, 4 and 11 are placed in their respective cells without 

having to include these machines in any further analysis. Mobile machines 5 and 6 are also 

allocated to respective cells without being included in the inter-cell assignment models, since 

these machines will move within one cell. In the first year the costs of placing these machines is 

subtracted from the factory layout budget; this leaves a budget of R 28000 remaining in year 1 as 

shown in Table 7.12. These amounts will be used in the annual reconfiguration budget of the 

capacity based assignment model.  

Table 7.12: Amended Layout/Reconfiguration Budget* 

 Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 

Factory Layout Budget R 48 R10 R40 R 10 R 40 R 10 

Placement of Machines 3,4,11 R 12 R 0 R 0 R 0 R 0 R 0 

Placement  of Machines 5, 10 R 8 R 0 R 0 R 0 R 0 R 0 

Balance Remaining R28 R 10 R 40 R 10 R 40 R   10 

* Amounts are listed as thousands of Rand 
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 Inter-Cell Machine Assignment Models 

7.5.1 Note - Instances of Inter-Cell Part Moves 

Prior to applying the inter-cell machine assignment models, the volumes of parts requiring 

operations on each machine in each cell was determined, the results are presented in Table F- 6, 

Appendix F.7. These volumes were calculated to enable an evaluation of the instances of inter-

cell part flow that will result if a machine is not assigned to a cell according to the inter-cell   

machine assignment models.  

In this chapter one inter-cell part movement is counted for each machine required by a part, which 

is not within its resident cell. Upon closer inspection, it may be possible for the part to visit 

multiple machines that are not present in the resident cell by a single inter-cell move, i.e. combine 

inter-cell visits. Combined visits are only possible if the sequence in which processes must occur 

is favourable. Combined visits are not considered here and all calculations on instances of inter-

cell moves therefore represent the worst case scenario of one inter-cell move per part requiring a 

missing machine.   

7.5.2 Capacity Based Assignment Model 

The capacity based assignment model was used to assign machines to cells in multiple periods. 

The number of processing hours required of each machine in each cell in each period, i.e. Hijk has 

been calculated and is listed in Table F- 5, Appendix F.5. The total annual operating hours, Wk is 

7200 hours per year and was provided in the problem definition. The cost of removing a machine 

from a cell with the intention of installing it in another cell, i.e. rk, was also presented in the 

problem definition. Recall that the cost rk is charged by the model when a machine is uninstalled 

and it is charged again when the machine is installed in another cell. The cost of an inter-cell 

reconfiguration is therefore 2rk; in practice this must be taken into consideration when estimating 

this cost coefficient.  

The machine numbers available for assignment to sites within the FCT was calculated and is listed 

in Table 7.7. The number of sites reserved for each machine in each cell, Xij, is listed in Table 

7.11.  These parameters were implemented in the capacity based assignment model as shown in 

section 6.3. The model was solved with the Matlab® intlinprog solver. The model and solution 

are available in a Microsoft® Excel spreadsheet on the accompanying CD. 

The Branch and Bound algorithm converged after exploring 1801836 nodes (candidate problems) 

as shown in Figure 7.7.   The root lower bound on the objective function was 182311 hours of 

under and overcapacity in cells.  
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Figure 7.7: Convergence of the intlinprog solver for the Capacity Based Assignment Model 

The Branch and Bound algorithm converged with a best feasible solution of 228089 hours with 

no relative gap between the upper and lower bound on the model. Table 7.13 shows the 

assignment of machines to cells as determined by the intlinprog solver. The elements of the table 

shaded in green indicate the gain of a machine in a cell, red indicates that a machine was removed 

from a cell. In the first year machines will be allocated to sites to create an initial manufacturing 

system configuration. Configuration changes are proposed for the second, third and fifth year. No 

configuration changes are proposed for the fourth and sixth year of operation. 

Table 7.13: Six Period Reconfiguration Plan (C=Cell, M = Machine) 

 Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 

 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 

M1 1 0 1 0 1 0 1 0 0 1 0 1 

M2 0 1 0 1 1 0 1 0 1 0 1 0 

M6 1 0 1 0 0 1 0 1 1 0 1 0 

M7 1 0 0 1 0 1 0 1 0 1 0 1 

M8 0 1 0 1 0 1 0 1 1 0 1 0 

M9 1 0 1 0 0 1 0 1 0 1 0 1 

M12 0 1 0 1 1 0 1 0 0 1 0 1 
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Table 7.14 presents a summary of the total hours of overcapacity and under capacity exhibited by 

cells in each year based on the proposed assignment of machines. This table was populated from 

values of uijk and vijk in the final solution; the values per year were calculated by equations 78 and 

79.  A cell will exhibit hours of under capacity if necessary machines are not allocated to the cell. 

The same cell will also exhibit hours of overcapacity when more machines of other types are 

allocated to it than what is required. Hours of overcapacity are generally exhibited since a fraction 

of a machine cannot be assigned to a cell, the whole machine must be assigned to the cell. The 

hours of under capacity indicate that parts will travel to cells that exhibit hours of overcapacity in 

order to access machines. The total under capacity is therefore an indicator of inter-cell part flow.  

Table 7.14: Summary of Over and Under Capacity per Year 

 Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Total 

Over Capacity (hours) 33798 31989 32432 37207 37375 32399 205200 

Under Capacity (hours) 467 7325 6768 3954 3625 750 22889 

Total Over/Under Capacity 34265 39314 39200 41161 41000 33149 228089 

 

Based on these machine assignments the volumes of parts that will perform inter-cell part 

movements are listed in Table 7.15. The volume of inter-cell part flow that was determined by 

examining in Table F- 6, Appendix F.7. For example, in year 1, the table indicates that 8000 parts 

require the services of machine 7 in Cell 1 and 4000 parts require the services of machine 7 in 

Cell 2. The assignment model allocated machine 7 to Cell 1 in year 1, therefore 4000 parts will 

perform an inter-cell part movement, originating from Cell 2 and flowing to Cell 1.  

Table 7.15: Instances* of Inter-Cell Part Flow Originating from each Cell per Year (C=Cell, M=Machine) 

 Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 

 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 

M1 0 0 0 0 0 0 0 6 4.5 0 0 0 

M2 0 0 9 0 0 12.5 0 3.2 0 1.5 0 0 

M6 0 0 0 12 10 0 4.5 0 0 6 0 0 

M7 0 4 7 0 4 0 0 0 0 0 0 0 

M8 0 0 3 0 4.5 0 9.2 0 0 6 0 0 

M9 0 0 0 12 8 0 0 0 0 0 0 0 

M12 0 0 12 0 0 10 0 6 9 0 5 0 

Total 0 4 31 24 26.5 22.5 13.7 15.2 13.5 13.5 5 0 

*Instances of inter-cell flow are represented as thousands. 

The total instances of inter-cell part flow that may be anticipated if the current RCMS 

configuration is implemented is 168900 parts at a cost of R 290620.00. The calculation is shown 

in Table F- 9, Appendix F.8. Table 7.16 shows the planned use of the budget made available for 
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the layout of the manufacturing system. A total of R 110000.00 will be spend on the initial layout 

and subsequent re-layout if the proposed solution is adopted. The total expected cost of this 

solution is R 400620.00. The budget remaining may be used for intra-cell reconfiguration.  

Table 7.16: Planned Budget Expenditure on Inter-Cell Machine Re-layout* 

 Year 1 Year 2 Year 3 Year 4 Year 5 Year 5 Total 

Balance Brought Forward R 28 R 10 R 40 R 10 R 40 R   10 R 138 

Planned Use R 28 R 8.4 R 35.2 R 0 R 38.4 0 R 101.6 

Remaining R 0 R 1.6 R 4.8 R 10 R 1.6 R 10 R 28 

* Amounts are presented as thousands of Rand 

7.5.3 Cost Minimization Assignment Model 

The cost minimization assignment model determines a best economic trade-off between the inter-

cell relocation of parts versus the inter-cell relocation of machines. The model does not have the 

ability to precisely determine the number of parts performing an inter-cell movements, however, 

the model has the ability to determine the hours of deficit capacity with respect to machine i in 

cell j in time period k. The hours of deficit capacity are related to inter-cell part movements by 

means of a cost coefficient Cijk. The values of these coefficients are presented in  Table F- 10, 

Appendix F.9.  Sample calculations are also presented. All other model parameters are common 

to the capacity based assignment model described in section 7.5.  

 

Figure 7.8: Convergence of the intlinprog solver for the Cost Based Assignment Model 
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The model was solved with the Matlab® intlinprog solver.  The model and solution are available 

in a Microsoft® Excel spreadsheet on the accompanying CD. The Branch and Bound algorithm 

with cutting planes converged after exploring 1159 nodes as shown in Figure 7.8.   The root lower 

bound on the objective function was R 28000.00, estimated by relaxing the integer restriction on 

the variables and solving the original problem as a linear program using the primal-simplex 

algorithm. The solver applied 23 Gomory cuts, 81 flow cover cuts, 24 strong CG cuts, 29 zero-

half cuts, and 24 clique cuts.  The lower bound after cut generation was   R 368137.48. During 

experimentation, without cut generation, the intlinprog solver would explore up-to 10 million 

nodes (candidate problems) without convergence between upper and lower bounds. The use of 

cutting planes greatly reduced the computational effort required to solve this model. The 

algorithm converged with a best feasible solution at a cost of R 415514.09 with no relative gap 

between the upper and lower bound. 

Table 7.18 shows the assignment of machines to cells as determined by the intlinprog solver. In 

first year machines will be allocated to sites to create an initial manufacturing system 

configuration. Configuration changes then are proposed for the third and fifth year only. No 

configuration changes are proposed for the second, fourth and sixth year of operation. A 

comparison of this reconfiguration plan to that of Table 7.13 reveals that the cost based solution 

has one less machine relocation. In this solution machine type 7 never occupies the site available 

for it in Cell 1.  

Table 7.17: Alternative Six Period Reconfiguration Plan (C=Cell, M = Machine) 

 Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 

 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 

M1 1 0 1 0 1 0 1 0 0 1 0 1 

M2 0 1 0 1 1 0 1 0 1 0 1 0 

M6 1 0 1 0 0 1 0 1 1 0 1 0 

M7 0 1 0 1 0 1 0 1 0 1 0 1 

M8 0 1 0 1 0 1 0 1 1 0 1 0 

M9 1 0 1 0 0 1 0 1 0 1 0 1 

M12 0 1 0 1 1 0 1 0 0 1 0 1 

 

Table 7.18 was populated from values of uijk and vijk in the final solution; the values per year were 

calculated by equations 78 and 79.    When compared to Table 7.14 a discrepancy occurs between 

the two solutions in the first year. The cost based assignment model produces an extra 533 hours 

of overcapacity in one cell and 533 hours of capacity deficit in the other. The cost based solution 

is therefore expected to produce a larger volume of inter-cell part movements.  

 



111 | P a g e  
 

Table 7.18: Summary of Over and Under Capacity per Year 

 Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Row Total 

Over Capacity (hours) 34331 31989 32432 37207 37375 32399 205733 

Under Capacity (hours) 1000 7325 6768 3954 3625 750 23422 

Total Over/Under Capacity 35331 39314 39200 41161 41000 33149 229155 

Based on these machine assignments, the volumes of parts that will perform inter-cell part 

movements are listed in Table 7.19. The volume of inter-cell part flow that was determined by 

examining in Table F- 6, Appendix F.7. A comparison between Table 7.19 and Table 7.15 reveals 

that 4000 additional parts will perform an inter-cell part movement if this reconfiguration plan is 

implemented.  

Table 7.19: Instances of Inter-Cell Part Movement Originating from each Cell per Year 

 Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 

 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 

M1 0 0 0 0 0 0 0 6 4.5 0 0 0 

M2 0 0 9 0 0 12.5 0 3.2 0 1.5 0 0 

M6 0 0 0 12 10 0 4.5 0 0 6 0 0 

M7 8 0 7 0 4 0 0 0 0 0 0 0 

M8 0 0 3 0 4.5 0 9.2 0 0 6 0 0 

M9 0 0 0 12 8 0 0 0 0 0 0 0 

M12 0 0 12 0 0 10 0 6 9 0 5 0 

Total 8 0 31 24 26.5 22.5 13.7 15.2 13.5 13.5 5 0 

The total instances of inter-cell part flow that may be anticipated if the current RCMS 

configuration is implemented is 172900 parts at a cost of R 296620.00. The calculation is shown 

in Table F- 11, Appendix F.10. Table 7.20 shows the planned use of the budget made available 

for the layout of the manufacturing system.  

Table 7.20: Planned Budget Expenditure on Inter-Cell Machine Re-layout* 

 Year 1 Year 2 Year 3 Year 4 Year 5 Year 5 Total 

Balance Brought Forward R 28 R 10 R 40 R 10 R 40 R   10 R 138 

Planned Use R 28 R 0 R 35.2 R 0 R 38.4 R 0 R 101.6 

Remaining R 0 R 10 R 4.8 R 10 R 1.6 R 10 R 36.4 

* Amounts are presented as thousands of Rand 

A total of R 101600.00 will be spent on the initial layout and subsequent reconfiguration if the 

proposed reconfiguration plan is adopted. The total cost of this solution is R 398220.00. The 

budget remaining after allocating machines to cells may be used for intra-cell reconfiguration. 
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Note the discrepancy between the actual cost of the solution R 398220.00, and the cost estimated 

by the objective function, which is R 415514.09. The percentage error of 4.2 % occurs because 

of the manner in which the cost coefficients Cijk were estimated with respect to the cost of a deficit 

hour of capacity. Some small error will always exist as Cijk is approximated on average process 

cycle times; the percentage error in this example is relatively small.   

7.5.4 Selection of an Inter-Cell Reconfiguration Plan 

Table 7.21 presents a summary of the important characteristics of each solution. The solution 

proposed by the cost minimization assignment model has a saving of R 2400.00 if selected above 

the solution proposed by the capacity based assignment model. On the contrary the capacity based 

solution has a predicted saving of 4000 inter-cell part movements at the inconvenience of one 

additional machine relocation.  The cost difference is small, relative to the total cost of the 

solutions and should not dictate the choice.  

Table 7.21: Summary of Capacity and Cost Based Reconfiguration Plans 

 Capacity Based Solution Cost Based Solution 

Inter-Cell Reconfiguration Cost R 110000.00 R 101600.00 

Inter-Cell Material Handling Cost R 290620.00 R 296620.00 

Total Solution Cost R 400620.00 R 398220.00 

Inter-Cell Part Flow   168900 instances 172900 instances 

Inter-Cell Machine Movements  9 instances 8 instances 

The choice between the solutions may depend on the point of view as to which would cause the 

greater inconvenience, i.e. 4000 inter-cell part movements versus one inter-cell machine 

relocation. From a management perspective, 4000 inter-cell perspective part movements would 

be more complex to coordinate than one machine relocation. The 4000 inter-cell part movements 

also imply the need for additional buffering as well as increased work-in-process and longer 

manufacturing lead times. On the contrary, relocating a machine will present some risk of damage 

that management may be deemed as an unnecessary risk. 

The primary difference between each solution is the assignment of machine 7 in the first year. 

Two other factors that may be taken under consideration when determining the assignment is to 

examine the total part-load of each cell and the number of machines within each cell. In this 

context the total part-load refers to the total number of parts to be manufactured in the cell 

corresponding to its own part family. Considering part-load, the machine should be placed in the 

cell with a lower load, so as to reduce the number of parts arriving from other cells at the cell with 

the higher load. In the case being examined here, both cells have a part load of 20000 each in the 

first year (see Table F-12, Appendix F.11); therefore the part-load cannot be a deciding factor.  
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Considering machine numbers, the machine should be placed so as to balance the number of 

machines in each cell, thereby enabling an even balance of machine operators per cell. This could 

simplify the management and supervision of each cell. It may also boost worker morale as the 

workload among personnel would be more even. In the case being examined here, if the capacity 

based solution is adopted Cell 1 will possess 7 machines and Cell 2 will possess 5 machines. If 

cell the cost based solution is adopted both cells will possess six machines each.  

Based on the advantages of having an even number of machines per cell, as well as minimizing 

risk by eliminating a machine relocation, the cost based solution will be adopted here. Another 

advantage of this solution may be observed by examining The Branch and Bound algorithm 

converged with a best feasible solution of 228089 hours with no relative gap between the upper 

and lower bound on the model. Table 7.13 shows the assignment of machines to cells as 

determined by the intlinprog solver. The elements of the table shaded in green indicate the gain 

of a machine in a cell, red indicates that a machine was removed from a cell. In the first year 

machines will be allocated to sites to create an initial manufacturing system configuration. 

Configuration changes are proposed for the second, third and fifth year. No configuration changes 

are proposed for the fourth and sixth year of operation. 

Table 7.13, machine 7 occupies the site available in Cell 1 for the first year, thereafter the site 

remains unused. The alternative reconfiguration plan in Table 7.17 reveals that machine 7 does 

not occupy the site available in Cell 1 at all. This low site utilization was anticipated since the 

solution by the SFC heuristic for L = 0.2 was adopted; this is a very low admission criteria for a 

site to be created in a cell.  

The advantage of the cost based solution is that the site for machine 7 in Cell 1 may be eliminated 

from the FCT, thereby reducing the amount of space required to implement the solution. The cost 

based solution will be accepted and the revised FCT is shown in Figure F- 1, Appendix F.12. 

 Intra-Cell Machine Assignment Model 

The intra-cell machine assignment model assigned those machines that have multiple sites within 

a single cell to the exact site they will occupy in each year. The model should only be solved after 

machines have been assigned to cells by inter-cell machine assignment models. The FCT has two 

sites available for machine type 5 in Cell 1 and two sites available for machine type 10 in Cell 2. 

Since one copy of each machine is available, two separate intra-cell machine assignment models 

will be solved here.  

7.6.1 Cell 1 – Machine Type 5 

In order to set-up the intra-cell machine assignment model for machine 5, it is necessary to first 

determine the αk and βk flow coefficients. These coefficients are determined by examining the 
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dependency of parts belonging to family PF1 on machine 5. Consider Table 7.22 which contains 

the route sequence and of parts and the volumes in which they are anticipated to be produced year 

on year. The table was constructed from the information available in Table 7.3 and Table F- 2. 

Consider also, that the sequence in which machine sites are arranged on the FCT is: 5-1-2-3-4-

12-6-8-5-7-9.  

Table 7.22: Route Sequence and Volumes of Parts Depending on Machine Type 5 (Y=Year) 

Part 
Sequence of 

Machine Visitation 
Ideal Site 

Part Volumes* 

Y1 Y2 Y3 Y4 Y5 Y6 

2 5-1-6-7-9 First 4 3.5 2 0 0 0 

6 5-1-4-6-9 First 4 3.5 2 0 0 0 

8 2-6-8-5 Second 0 0 0 3 6 10 

9 1-4-12-5 Second 0 6 9 6.4 3 0 

10 2-3-8-5 Second 0 3 4.5 4.7 4.5 5 

16 5-1-3-6-7 First 4 3.5 2 0 0 0 

*Part volumes are represented in thousands 

By examining the required sequence of machine visitation of each part in comparison to the 

sequence in which sites are arranged as per the FCT, it is apparent that parts 2, 6 and 16 would 

benefit from machine 5 being placed in the first site and parts 8, 9 and 10 would benefit from 

machine 5 being placed in the second site. If machine 5 is not placed at the ideal site, the 

associated part would have to perform an intra-cell backtracking movement against the preferred 

direction of part flow in order to access the machine. Parts that would benefit from the machine 

being placed at the first site are associated with the αk coefficient and parts that benefit from the 

machine being placed at the second site are associated with the βk coefficient.  

The association of part volumes with flow coefficients requires an analysis of other mobile 

machines on which the parts depend. Mobile machine numbers are highlighted in red text in Table 

7.22. Consider part 16 which visits machine 1 after visiting machine 5. If machine 1 is not present 

in the cell, the part would have to perform an inter-cell material movement. In this instance the 

location of machine 5 would have no influence on part backtracking. In the case where machine 

1 is not present in the cell, the volume of part 16 would not contribute to the αk coefficient. The 

example of part 16 highlights the significance of examining the assignment of machines to cells, 

as documented in Table 7.17, in order to accurately determine the value of the coefficients. The 

following list describes when each of the parts listed in Table 7.22 will contribute to a coefficient: 

 Parts 2, 6 and 16 to will contribute to the αk coefficient when machine 1 is present in the 

cell, that is year’s 1, 2, 3 and 4. 

 Parts 8 and 10 will contribute to the βk coefficient when either machine 8 is present in the 

cell, which is year’s 5 and 6. 
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 Part 9 will contribute to the βk coefficient when machine 12 is present in the cell that is 

year’s 3 and 4. 

The years in which the volume of each part will not contribute to its respective flow coefficient 

are shaded in grey in Table 7.22. Table 7.23 documents the αk and βk coefficients for the intra-cell 

machine assignment model of cell 1. The coefficients indicate that the machine should be placed 

in the first site in year 1 and year 2 and be relocated to the second site in the third year, however, 

this will be verified by solving the model.  

Table 7.23: Flow Coefficients for the Intra-Cell Machine Assignment Model (Cell 1) 

 Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 
αk 12000 10500 6000 0 0 0 

βk 0 0 9000 6400 10500 15000 

The cost coefficients for intra-cell machine relocation rk and intra-cell backtracking ck were 

presented in Table 7.4. The model was solved by the Implicit Enumeration algorithm presented 

in section 6.5.3. A custom implementation of this algorithm was specifically created for solving 

the. The algorithm converged after exploring 1779 nodes (candidate problems) as shown in Figure 

7.9. Individual variable values in the best solution are presented in Table F- 13, Appendix F.13. 

The model and solution are available in a Microsoft® Excel spreadsheet on the accompanying 

CD. 

 

Figure 7.9: Convergence of the Implicit Enumeration Algorithm – Cell 1 
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The algorithm converged with a best solution cost of R 10500.00.  The results verify that machine 

5 should occupy the first site in year 1 and year 2 and the second site from year 3 onward. The 

cost of the solution is made up of the cost of intra-cell backtracking by parts 2, 6 and 16 in the 

third year, a total of 6000 instances at a cost of R 7200.00. Note that in practice, at the point of 

designing the system the capital cost of equipment can be integrated into the cost per part per 

backtracking move. The other cost contributing to the objective function value is the cost of 

machine relocation within the cell in the third year at R 3300.00.  

Recall that a cost is not charged when the machine is placed in the first or second site from an 

external source, i.e. from other cells or during the placement of machines in the first year. A cost 

is charged by the objective function only when a machine is swapped between two sites internally. 

This is because the cost of all inter-cell machine movements are accounted for by the capacity 

based assignment model and the cost minimization assignment model.  

7.6.2 Cell 2 – Machine Type 10 

The sequence in which machine sites are arranged in Cell 2, according to the FCT is: 10-2-1-6-7-

8-9-11-12-10. Table 7.24 lists the parts that depend on machine 10, which as two available sites 

in Cell 2.  The table was constructed from the information available in Table 7.3 and Table F- 2. 

The following list describes when each of the parts listed in Table 7.24 will contribute to the αk 

and βk coefficients of the intra-cell machine assignment model: 

 Parts 5 and 15 will contribute to the αk coefficient when machine 1 is present in the cell; 

that is year’s 5 and 6. 

 Part 20 will contribute to the αk coefficient when machine 2 is present in the cell; that is 

year’s 1 and 2. 

 Parts 7, 11 and 14 will contribute to the βk coefficient when machine 8 is present in the 

cell; that is year’s 1, 2, 3 4. 

Table 7.24: Route Sequence and Volumes of Parts Depending on Machine 10 (Y=Year) 

Part 
Sequence of 

Machine Visitation 
Ideal Site 

*Part Volumes 
Y1 Y2 Y3 Y4 Y5 Y6 

5 10-1-7-9-12 First 0 0 0 1.5 3 5 

7 2-8-12-10 Second 4 3.5 2 0 0 0 

11 2-8-11-12-10 Second 4 3.5 2 0 0 0 

14 2-8-12-10 Second 8 7 4 0 0 0 

15 10-1-7-9-12 First 0 0 0 1.5 3 5 

20 10-2-6-8-9-11 First 0 3 4.5 3.2 1.5 0 

*Part volumes are represented in thousands 
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Table 7.25 documents the αk and βk coefficients for the intra-cell machine assignment model of 

Cell 2. The cost coefficients for intra-cell machine relocation and part backtracking were 

presented in Table 7.4.  

Table 7.25: Flow Coefficients for the Intra-Cell Machine Assignment Model (Cell 2) 

 Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 
αk 0 3000 0 0 6000 10000 

βk 16000 14000 8000 0 0 0 

The model was solved by the Implicit Enumeration algorithm presented in section 6.5.3. The 

algorithm converged after exploring 18665 nodes (candidate problems) as shown in Figure 7.10. 

Individual variable values in the best solution are presented in Table F- 14, Appendix F.13. The 

model and solution are available in a Microsoft® Excel spreadsheet on the accompanying CD. 

 

Figure 7.10: Convergence of the Implicit Enumeration Algorithm – Cell 2 

The algorithm converged with a best solution cost of R 6700.00.  The model assigned machine 

10 to the second site in years 1, 2 and 3. The machine is then relocated to the first site in years 4, 

5 and 6. The machine is relocated in the fourth year due to the lower cost of reconfiguration, 

although no part flow advantage is gained since α4 = 0. In practice, this is a decision that may be 

reviewed and the machine may be relocated in the fifth year when the relocation becomes 

advantageous.  
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 The cost of the solution is made up of the cost of intra-cell backtracking by part 20 in the second 

year; a total of 3000 instances at a cost of R 3300.00. The other cost contributing to the objective 

function value is the cost of machine relocation within the cell in the fourth year at R 3400.00.  

7.6.3 Update of Reconfiguration Expenditure 

Table 7.26 presents the balance of the budget brought forward after the planned spending on inter-

cell re-layout is accounted for. The cost of intra-cellular re-layout is subtracted from the balance 

brought forward to reveal if any budget deficit occurs. In this instance a budget surplus of 

R 34100.00 exists after all reconfiguration (re-layout) costs are accounted for; furthermore there 

is no occurrence of over expenditure in any year.  

The reconfiguration plans proposed by the cost minimization assignment model and the intra-cell 

machine assignment model may be approved and implemented from a financial planning 

perspective.  

Table 7.26: Planned Budget Expenditure on Intra-Cell Machine Re-layout* 

 Year 1 Year 2 Year 3 Year 4 Year 5 Year 5 Total 

Balance Brought Forward R 0 R 10 R 4.8 R 10 R 1.6 R 10 R 36.4 

Planned Use R 0 R 0 R 3.3 R 3.4 R 0 R 0 R 6.7 

Remaining R 0 R 0 R 1.5 R 6.6 R 16 R 10 R 34.1 

* Amounts are presented as thousands of Rand 

 Combined Reconfiguration Plans 

The configurations of manufacturing cells to be implemented over six years based on the 

anticipated product demand is presented in Table 7.27.     

Table 7.27: Configuration of Manufacturing Cells ([ ] = Empty Site) 

 Sequence of Machines  

Location 1 2 3 4 5 6 7 8 9 10 
Site 

Utilization 

Cell 1 – Year 1 5 1 [ ] 3 4 [ ] 6 [ ] [ ] 9 6/10 

Cell 1 – Year 2 5 1 [ ] 3 4 [ ] 6 [ ] [ ] 9 6/10 

Cell 1 – Year 3 [ ] 1 2 3 4 12 [ ] [ ] 5 [ ] 6/10 

Cell 1 – Year 4 [ ] 1 2 3 4 12 [ ] [ ] 5 [ ] 6/10 

Cell 1 – Year 5 [ ] [ ] 2 3 4 [ ] 6 8 5 [ ] 6/10 

Cell 1 – Year 6 [ ] [ ] 2 3 4 [ ] 6 8 5 [ ] 6/10 

Cell 2 – Year 1 [ ] 2 [ ] [ ] 7 8 [ ] 11 12 10 6/10 

Cell 2 – Year 2 [ ] 2 [ ] [ ] 7 8 [ ] 11 12 10 6/10 

Cell 2 – Year 3 [ ] [ ] [ ] 6 7 8 9 11 [ ] 10 6/10 

Cell 2 – Year 4 10 [ ] [ ] 6 7 8 9 11 [ ] [ ] 6/10 

Cell 2 – Year 5 10 [ ] 1 [ ] 7 [ ] 9 11 12 [ ]  6/10 

Cell 2 – Year 6 10 [ ] 1 [ ] 7 [ ] 9 11 12 [ ]  6/10 
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The table was generated by combining the proposed plans for inter- and intra-cell reconfiguration. 

If there are no significant changes to the product demand and the types of parts that will enter and 

leave the system over the six year period these proposed configurations may be implemented. If 

changes occur, the models may be solved again with updated information. The next section will 

address how changes may be accounted for in order to determine adjusted cell configurations. 

An examination of Table 7.27 reveals that across the six years both cells are expected to have six 

out of ten (60 %) of sites being used at any time. The solution as presented here includes 172900 

inter-cell part movements, 9000 inter-cell part backtracking movements, 8 inter-cell  machine 

relocations and 2 intra-cell machine relocations.  

A total budget of R 158000.00 was made available at the outset for the placement of machines at 

sites across the six years. A budget surplus of R 34100.00 remained after all reconfigurations were 

accounted for. This implies that the total cost of factory layout and subsequent re-layout is 

R123900.00. The cost of all inter-cell material handling movements totals R 296620.00 and the 

cost of all intra-cell part backtracking movements totals R 10500.00. The total solution cost is 

therefore R 431020.00. Note that this figure includes the total cost of factory layout but does not 

account for the cost of the preferred type of part flow which is unidirectional flow contained 

within individual cells.  

 Strategies for Planning with Updated Information 

7.8.1 Sensitivity of Solutions to Cost 

In reconfiguration planning uncertainty increases with respect to parameter estimation over an 

extended number of periods. Changes with respect to the cost coefficients listed in Table 7.4 have 

the ability to change the optimal solution. Sensitivity analysis is useful for determining the degree 

of change to cost parameters for which the current solution remains optimal. The Cost Based 

Assignment model, which is a pure integer programming model will be examined here.  

In linear programs the relationship between cost parameter changes in the objective function and 

the optimal solution can be easily determined. In integer programming the relationship between 

cost parameter changes and the optimality of a solution is disjointed. Sensitivity analysis was 

therefore performed by perturbing cost coefficients and re-solving the model, as opposed to 

exploiting the primal-dual relationships used in linear programming.  For the Cost Based 

Assignment model, the costs of cells gaining/losing a machine could be decreased by as much as 

32% or increase by as much as 68 % with the current machine assignments remaining optimal. 

The cost of an hour capacity deficit could be decreased by as much as 40 % or increase by as 

much as 47% with the current machine assignment remaining optimal.  
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Changes to cost parameters outside of these ranges or changes to other parameters are handled by 

the strategies presented in the next section.  

7.8.2 Generation of Updated Reconfiguration Plans 

During the lifecycle of the RCMS, changes to product/part demand and the types of parts in the 

system may change. New process technology may become available and the types of machines 

that are made available to the system may also change. As the system begins to generate a profit, 

management may opt to purchase additional machines. The following strategies may be used in 

order to generate manufacturing system configurations that are optimal based new information. 

Case 1: Machine types and part types remain the same but product demand, available numbers of 

machines, or estimated costs change: 

1. Re-compute the hours of machine capacity required by each cell (i.e. Hijk). 

2. Update cost parameters and machine numbers.  

3. Solve the inter-cell machine assignment models; use the current state of the 

manufacturing system as the initial system configuration in these models. This may be 

achieved by fixing relevant variables by adding constraints to the model. For example, 

the constraint x121 = 1 will ensure that strictly one copy of machine type 1 will be placed 

in Cell 2 in year 1.  

4. Use the results of the assignment models to estimate new flow αk and βk coefficients for 

the intra-cell machine assignment models.  

5. Solve the intra-cell machine assignment models; fix the current location of relevant 

machines as the initial location in this model. This may be achieved by fixing relevant 

variables by adding constraints to the model. For example, the constraint x1 = 1 will 

ensure that the machine is placed at the first site in the sequence of machines in year 1.  

Case 2: Product design changes and a new part type is added to the system: 

1. Add the new part to the family with the greatest similarity. The Jaccard similarity index 

presented in equation 1, combined with SLC, ALC or CLC clustering may assist with this 

decision. 

2. Follow procedures 1-5 as listed in Case 1 to determine the final set of system 

configurations. 

Case 3: A new machine type is added to the system: 

1. Determine if a site should be created in each of the manufacturing cells. A site may be 

added to the cell if the corresponding part family has sufficient need of the machine. The 

need may be determined by examining the number of part types and part volumes that 

require the services of the machine. 
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2.  Determine the location of a new site for the machine within the relevant cell. This is 

determined by identifying sites that are no-longer in use and at an appropriate location in 

the sequence of sites, to best accommodate the needs of the part family. Once viable sites 

have been identified they may be repurposed by relevant physical alterations to be able 

to accommodate the new machine. 

3. Follow procedures 1-5 as listed in Case 1 to determine the final set of system 

configurations. 

No example of adjusting the planned system configurations according to updated information will 

be presented here.  

 Comparison of Reconfigurable and Fixed CMS  

In order to validate the concept of reconfigurable manufacturing cells, a comparative analysis will 

be conducted here on the performance of reconfigurable system versus a system with a fixed 

layout. A fixed cellular manufacturing system design has been created for the problem of section 

7.2. The fixed system was designed using the SFC heuristic, together with the Jaccard 

dissimilarity coefficient in order to determine the clusters of machine cells and part families. One 

machine of each type was made available, as in the case of the RCMS. The line analysis was 

conducted using the Tabu Search Algorithm presented in section 5.3.2. The group analysis, line 

analysis and other calculations pertaining to the design of the fixed CMS is presented in Appendix 

G.1-G.3. The methods used for the RCMS were also used for the fixed CMS since they have the 

flexibility for single or multi-period cell formation.  

Table 7.28 presents a cost comparison of RCMS and fixed CMS solutions. The layout cost of the 

fixed CMS was based on the placement of 12 machines at a cost of R 4000.00 per machine in the 

first year. The cost of inter-cell part flow for the fixed CMS is presented in Table G- 4 and the 

cost of intra-cell part backtracking flow is presented in Table G- 8.  

The cost difference between the fixed and reconfigurable designs is R 241930.00. The cost of the 

RCMS solution is 67 % of the cost of the CMS with a fixed layout, which is a cost saving of 

33 %. The reason why the RCMS outperforms the traditional type of CMS is because the RCMS 

has the ability to relocate machines to negate inter-cell part flow.  

Table 7.28: Cost Comparison of Reconfigurable and Fixed CMS 

 Reconfigurable CMS Fixed CMS 

Factory Layout Cost R 123900.00 R 48000.00 

Inter-cell part flow cost R 296620.00 R 526200.00 

Intra-cell part back flow cost R 10500.00 R 71750.00 

Total Cost of Solution  R 431020.00 R 645950.00 
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Table 7.29: Space Requirements and Flow Characterises of RCMS and Fixed CMS 

 Reconfigurable CMS Fixed CMS 

Space required 20 sites 12 sites 
Inter-cell flow  172900 instances 302500 instances 

Intra-cell back flow  9000 instances 66500 instances 

 

Table 7.29 lists the space requirements and flow characteristics of fixed and reconfigurable CMS. 

The inter-cell flow volumes for the fixed CMS are calculated in Appendix G.2 and the intra-cell 

flow volumes are calculated in Appendix G.3. According to Table 7.29 the RCMS requires 8 

more sites for machines placement than the traditional fixed CMS, this implies a larger factory 

with a larger cost of space. This is a factor that must be taken under consideration in practice 

when determining the economic benefits of the RCMS. The results of Table 7.27 revealed that 

only 60 % of the sites were used at any moment in time. Unutilized sites may be used to set-up 

buffers within the cell. The static CMS requires more buffers than the RCMS due to its 

undesirable part flow characteristics. When the placement of buffers within the cell is considered, 

the space requirements of a RCMS and a fixed CMS may be similar, however, the investigation 

of this is a topic for future research.  

The fixed CMS has 1.75 times inter-cell part flow of the RCMS and 7.38 times the intra-cell part 

backtracking flow. This makes it much more difficult to manage from the perspective of job 

scheduling and flow control. The fixed CMS is also expected to have significantly more work-in-

-process and longer manufacturing lead times than the RCMS.  

Table 7.30: GT Performance Measures for Reconfigurable CMS  

 Group 
Efficiency 

Group 
Efficacy 

Weighted Average 
Efficacy 

Grouping 
Measures 

Exceptional 
Elements Voids 

Year 1 0.83 1.55 0.68 0.65 2 14 
Year 2 0.71 1.71 0.5 0.37 15 37 
Year 3 0.68 1.79 0.46 0.29 18 40 
Year 4 0.72 1.65 0.51 0.38 12 29 
Year 5 0.72 1.65 0.51 0.38 12 29 
Year 6 0.85 1.58 0.7 0.68 1 12 

Measures of performance in the context of Group Technology, were calculated and documented 

in Table 7.30 and Table 7.31, sample calculations are provided in Appendix F.14 and Appendix 

G.4 respectively. A comparison between measures of performance would reveal that year on year, 

the RCMS generally outperforms the static CMS with higher values (except in the instance of the 

void count in which case a lower value is preferred).   
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Table 7.31: GT Performance Measures for Fixed CMS  

 Group 
Efficiency 

Group 
Efficacy 

Weighted Average 
Efficacy 

Grouping 
Measures 

Exceptional 
Elements Voids 

Year 1 0.71 1.75 0.5 0.36 8 20 

Year 2 0.7 1.73 0.49 0.34 16 38 

Year 3 0.7 1.73 0.49 0.34 16 38 

Year 4 0.7 1.68 0.49 0.35 13 30 

Year 5 0.7 1.68 0.49 0.35 13 30 

Year 6 0.7 1.85 0.49 0.35 7 18 

Note that these GT measures of performance do not include part volumes in the calculations. In 

the third year the fixed CMS outperforms the RCMS in measures such as group efficiency, 

weighted average group efficacy and others. When examining the machine-component incidence 

matrices the primary difference between the fixed CMS configuration and the reconfigurable 

CMS configuration is that in the fixed case, machine 6 is in Cell 1 and machine12 is in Cell 2.  

 The part load calculation on each machine presented in Table F- 6 is applicable to both fixed and 

reconfigurable CMS since the both solutions have identical part families. An inspection of the 

table in the third year reveals that the higher load on machine 6 comes from Cell 2 with 18000 

parts as compared to Cell 1 with 10000 parts. Likewise, an inspection of the table in the third year 

reveals that the higher load on machine 12 comes from Cell 1 with 18000 parts as compared to 

Cell 2 with 10000 parts. Although the GT measures show that the fixed CMS solution performs 

better than the reconfigurable solution, the reconfigurable solution is actually the better choice in 

the third year.  

 Reconfiguration without a FCT 

In the literature review it was found that the term RCMS and DCMS were used interchangeably 

by researchers to describe a cellular system that underwent configuration changes in cells by the 

re-layout of machines over multiple periods. The models and algorithms used to propose 

configuration changes did not consider an initial system design for future reconfiguration.  

The concept of a Factory Configuration Template was proposed in this research; the FCT is a 

design for the factory floor that facilitates future reconfiguration. In order to compare the 

reconfiguration plans of a RCMS based on the FCT concept to other DCMS methods, assume 

that all machines have the same footprint, allowing any machine to occupy any site.  If this 

assumption is correct then the FCT concept is at a disadvantage since the FCT allocates dedicated 

sites to specific machines. In the study developed in this chapter, the FCT contained 10 sites per 

cell. If the FCT concept is abandoned and any machine can occupy any site; a maximum of six 

sites are necessary.  

 



124 | P a g e  
 

Table 7.32: Cell Arrangements without FCT Restrictions  

 Sequence of Machines 

Location 1 2 3 4 5 6 

Cell 1 – Year 1 5 1 3 4 6 9 

Cell 1 – Year 2 5 1 3 4 6 9 

Cell 1 – Year 3 1 2 3 4 12 5 

Cell 1 – Year 4 1 2 3 4 12 5 

Cell 1 – Year 5 2 3 4 6 8 5 

Cell 1 – Year 6 2 3 4 6 8 5 

Cell 2 – Year 1 2 7 8 11 12 10 

Cell 2 – Year 2 2 7 8 11 12 10 

Cell 2 – Year 3 6 7 8 9 11 10 

Cell 2 – Year 4 10 6 7 8 9 11 

Cell 2 – Year 5 10 1 7 9 11 12 

Cell 2 – Year 6 10 1 7 9 11 12 

Table 7.32 presents the cell arrangements with unused sites removed. This table was developed 

from Table 7.27 under the assumption that any machine could occupy any site, thereby allowing 

the removal of unused sites. The order in which machines should appear to support maximum 

unidirectional flow has been maintained. The cell configurations as presented in Table 7.32 will 

therefore have identical inter-cell part flow volumes and intra-cell part backtracking volumes as 

the RCMS configurations developed in previous sections. Although the machine types and 

sequence in which machines appear are identical, the cost of achieving these machine layouts will 

not be the same.  

According to Table 7.32, the following configuration changes are implemented in Cell 1: 

Year 1: six machines are gained during the initial layout of the manufacturing system. 

Year 2: no changes are proposed for Cell 1. 

Year 3: machines 6 and 9 are removed, machines 2 and 12 are gained and machines 1 and 

5 have been relocated internally. 

Year 4: no changes are proposed to Cell 1. 

Year 5: machines 1 and 12 are removed, machines 6 and 8 are gained and machines 2, 3 

and 4 have been relocated internally. 

Year 6: no changes are proposed for Cell 1. 

According to Table 7.32, the following configuration changes are implemented in cell 2: 

Year 1: six machines are gained during the initial layout of the manufacturing system. 

Year 2: no changes are proposed for cell 2. 

Year 3: machines 2 and 12 are removed, machines 6 and 9 are gained and machine 11 is 

relocated internally. 
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Year 4: machines 6, 7, 8, 9, 10 and 11 are relocated internally. 

Year 5: machines 6 and 8 are removed, machines 1 and 12 are gained and machines 9 and 

11 are relocated internally. 

Year 6: no changes are proposed for cell 2. 

Table 7.33 summarises the total number of machines gained and removed and from cells and the 

cost of machine relocation at an inter-cell level. Table 7.34 summarises the total number of 

machine relocations inside cells and the associated cost. The total cost of initial machine 

placement and inter-cell machine relocation is R121600.00. Total cost of intra-cell machine 

relocation is R47800.00. Total cost of re-layout if the FCT is abandoned and any machine is 

allowed to occupy any site is R149400.00. In the RCMS design based on the FCT concept, the 

cost of machine re-layout was R 123900.00. The cost of re-layout without the FCT is 20.6 % 

higher, this is due to 12 additional intra-cell machine relocations.   

Table 7.33: Cost of Inter-Cell Machine Relocation 

 Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 

Machines Gained/Removed 12 0 8 0 8 0 

Cost per Machine Gained/Removed R 4000.00 R 4200.00 R 4400.00 R 4600.00 R 4800.00 R 5000.00 

Cost Per Year R 48000.00 R 0.00 R 35200.00 R 0.00 R 38400.00 R 0.00 

Table 7.34: Cost of Intra-Cell Machine Relocations 

 Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 

Machines Gained/Removed 0 0 3 6 5 0 

Cost per Internal Relocation R 3100.00 R 3200.00 R 3300.00 R 3400.00 R 3500.00 R 3600.00 

Cost Per Year R 0.00 R 0.00 R 9900.00 R 20400.00 R 17500.00 R 0.00 

In general a RCMS that allows any machine to occupy any site will require additional machine 

relocations in order to obtain the same flow characteristics as a RCMS with a FCT design that 

includes dedicated sites for specific machines. Nonetheless dedicates sites for machines, 

according to a FCT design, inflates the floor space requirements of a RCMS.  

At this point, the trade-off may appear to be additional machine relocations versus additional sites 

for machines. Returning to the assumption that all machine have the same floor space 

requirements; in reality this will not be true for all machines. Moreover, some machines will have 

specific requirements for supplies of water, compressed air, etc. that will prevent any machine 

from being allocated to any site.  

 Chapter Summary  

This chapter demonstrated the use of individual algorithms and methods in an integrated manner 

for the design of a Factory Configuration Template. A FCT was developed for a RCMS with 
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twelve machines and three products that are to be manufactured by contract with specified 

volumes over a six year period.  

The changing product demand caused the mix of parts and the part volumes to vary over the six 

year period. The objective of the FCT design was to create an arrangement of sites for machines 

in cells that facilitates the advantageous re-layout of machines across multiple periods.  

Inter-cell and intra-cell machine assignment models were used to assign machines to sites in cells 

over the six year period thereby creating a plan for reconfiguration. A comparison between the 

RCMS and a fixed CMS was conducted; the reconfigurable layout produced significantly less 

inter-cell part movements and intra-cell part movements. The RCMS was also shown to be more 

economical to operate than the fixed CMS.  

The generation of reconfiguration plans within the context of a FCT is what distinguished this 

work from other DCMS reconfiguration planning methods. The chapter concluded with an 

analysis of the benefits of performing reconfiguration within the context of an FCT. The 

disadvantage of the FCT concept was that only 60 % of the sites in cells were used at any instant 

in time. On the contrary the additional sites require that less machines be relocated internally in 

order to facilitate maximum unidirectional flow in cells.  
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8 Discussion 

 Chapter Introduction 

In the competitive global market companies frequently introduce new products in order to gain a 

larger market share. These new products usually include updated technology and have different 

manufacturing requirements. The frequent introduction of new products also implies that the 

production lifecycles are short. Frequent product changes and changes in market demand require 

manufacturing systems to be more responsive in accommodating change.   

Cellular Manufacturing Systems are a central concept in achieving lean manufacturing and just-

in-time manufacturing [4]. The benefits of CMS include reduced part set-up times on machines, 

lower work-in-process levels, reduced material handling costs, less chaotic work flow, etc. [3, 8]. 

The disadvantage of adopting a cellular layout is that the configuration of cells will only remain 

optimal for a specific part mix and demand [7]. The concept of Dynamic CMS has been around 

since the 1990’s, which advocates the change of cell configurations to accommodate product 

changes [13]. Case studies have been reported in CMS literature where the re-layout of the system 

and changes to the configurations of cell clusters were beneficial in coping with change [72]. 

These changes were not planned in advance at the point of installing the CMS.  

Since the early works on DCMS by Rehault et al [13] other researches such as Safaei et al [58-

60] and Bayram and Sahin[62] have developed multi-period reconfiguration plans that specify 

how the configurations of cells should evolve over time. The literature also showed that 

researchers have used the terms RCMS and DCMS interchangeably to refer to systems where cell 

configurations change. A gap found in existing DCMS/RCMS literature was the lack of an initial 

system design for future configuration changes. The lack of an initial system design for future 

changes to cells may lead to the solutions as proposed by optimization models being practically 

infeasible to implement.  

Researchers such as Koren et al [1],  and Malhotra  et al [94] have emphasised the concept of 

design for reconfigurability at the outset in order to accommodate product and market changes. 

The research and development of a method of imparting reconfigurability to a CMS at the design 

stage was an objective of this research. The concept of a Factory Configuration Template was 

developed in this research. The FCT is a design of the factory floor space which includes 

provisions for future configuration changes. Models for inter-cell and intra-cell reconfiguration 

planning were developed that generate configuration changes within the allowances made by the 

FCT. 
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The merits of the FCT concept and the methods used for its design will be discussed in this 

chapter. The models that have been developed for inter and intra-cell reconfiguration will also be 

considered with respect to their ability to propose suitable reconfiguration plans. 

 Elements of FCT Design 

A Factory Configuration Template is a design of the factory floor space in a cellular system. FCT 

concept was proposed to enable the future re-layout of a CMS. A  FCT design may be designed 

with different levels of information. In this research methods were proposed to create templates 

that specified: 

4. the number of cell in the system; 

5. the layout shapes of cells; 

6. sites for machine types in cells; 

7. machine types requiring duplicate sites in parallel; 

8. machine types requiring duplicate sites in series; 

9. the arrangement of machine sites within cells; 

10. the flow direction of parts within cells; 

11. machines that will move in the future to create new configurations; 

12. machines that will remain fixed in position irrespective of configuration changes. 

The generation of these types of information required the application of nine steps that used 

various heuristics, calculations and optimization algorithms. This formed a significant portion of 

the analytical contribution of this research.  

The rudimentary aspects of FCT design that do not require the application of optimization models 

and algorithms include the specification of the following information:  

1. space requirements of individual machines and cells; 

2. safe distances between machine sites; 

3. safe working spaces for humans inside sites; 

4. lanes with sufficient width for machine relocation; 

5. supplies of water, electricity, compressed air, etc. for machines at sites. 

Due to the rudimentary nature of generating this type of information, these aspects of FCT design 

were not given significant attention in this research. A further aspect of FCT design that is 

essential for the full specification of a design for the factory floor space includes the specification 

of the relative orientation of cells with respect to each. This could be explored as an optimization 

problem with the objective of minimizing the distance travelled by parts within cells and the 

distance travelled by machines during re-layout. This remains a topic for future research.  
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 Forecast Information Required for FCT Design 

The generation of a FCT that is relevant for an extended period of time requires information on 

the machines that are to be made available to the system and the relationship between parts and 

machines. The development of methods for the selection of machines was not conducted in this 

research. Researchers such as Taha and Rostam [74] have addressed the matter of appropriate 

machine selection to impart the necessary flexibility to the system to cope with current and future 

manufacturing requirements.  

Although methods for selecting appropriate machines are available, the challenge remains of 

determining the types of parts that are to be used in future products and the demand for these 

products. In a business, Product Development or Research and Development departments can 

provide information on the parts required by future product generations, however, the less 

deterministic aspect is estimating the performance of future products in markets.  

The Norton-Bass model is a model that can provide forecast information on how current and 

future products may perform in markets [95]. The original Bass Model was created by Bass [96] 

to forecast the performance of a new product in markets. The model is recognised as being one 

of the most frequently referenced, thoroughly researched and widely used marketing models in 

the world. The multi-generational forecasting model was created by Norton and Bass [97]. The 

Norton-Bass forecast for four generations of a single product type is given by equations 105-108: 

 𝑆1(𝑡) = 𝐹(𝑡)𝑚1[1 − 𝐹(𝑡 − 𝜏2)] (105) 

 𝑆2(𝑡) = 𝐹(𝑡 − 𝜏2)[𝑚2 + 𝐹(𝑡)𝑚1][1 − 𝐹(𝑡 − 𝜏3)], (106) 

 𝑆3(𝑡) = 𝐹(𝑡 − 𝜏3)[𝑚3 + 𝐹(𝑡 − 𝜏2)[𝑚2 + 𝐹(𝑡)𝑚1]][1 − 𝐹(𝑡 − 𝜏4)] (107) 

 𝑆4(𝑡) = 𝐹(𝑡 − 𝜏4)[𝑚4 + 𝐹(𝑡 − 𝜏3)[𝑚3 + 𝐹(𝑡 − 𝜏2)[𝑚2 + 𝐹(𝑡)𝑚1]]] (108) 

Here Si(t) is the total sales at time t, mi is the incremental market potential and τi is the time to 

market of the ith generation. The cumulative probability density of product adoption is given by: 

 
𝐹(∙) =

1 − 𝑒−(𝑝+𝑞)𝑡

1 +
𝑞
𝑝 𝑒−(𝑝+𝑞)𝑡

 (109) 

Here p is the innovation coefficient and q is the imitation coefficient. A detailed presentation of 

the Norton-Bass model is beyond the scope of this thesis, however equations 105-108 provide the 

information required to forecast sales at given time. This can be used to determine the part mix 

and volume to be produced at a given time. Figure 8.1 shows an example Norton-Bass model 

forecast for two products with two generations.  
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Figure 8.1: Norton-Bass Forecast for two Products in Two Generations (adapted from [95]) 

 Group Analysis and FCT Design  

An objective of this research was to research and develop an original cell formation method that 

supports the initial design of the system for reconfigurability. Conventional group analysis 

methods identify cells as clusters of machines. In this research cells were identified by creating 

clusters of sites for machines. These sites are occupied by machines when the need arises and are 

empty at other times. The identification and creation of these sites within cells is what imparts 

reconfigurability to the system.  

In this research the Simultaneous Fuzzy Clustering heuristic was presented as means of 

simultaneously identifying sites for machines in cells and generating the corresponding part 

families. The advantage of performing these activities simultaneously is that the cell 

configurations and part family configurations can be simultaneously adjusted in order to better 

match each other.  The SFC heuristic was able to successfully create clusters of sites for machines 

in cells, thereby fulfilling the objective of creating cells that support reconfigurability at the design 

stage.  

In this research the FCMdd algorithm was used to generate an initial set of part family prototypes 

and a membership matrix as a seed to the SFC heuristic. The combination of the FCMdd algorithm 

and the SFC heuristic provided a fast and robust solution to clustering machine sites and part 

families. The FCMdd algorithm and the SFC heuristic required a maximum of six iterations each 

in order to generate a result for the problems in this research. Nonetheless there is room for 

improvement and shortcomings and areas requiring improvement will be discussed in the sections 

that follow.   

8.4.1 Difficulty in Selecting Parameter L  

The SFC heuristic is based on principles of fuzzy clustering where entities belong to clusters 

based on varying degrees of membership. In this heuristic, if the membership of a machine in a 

cell was µik > L then this was considered sufficient for a site for machine i to be created in cell k. 

Parameter L represents the relative part load that a cell will impose on a machine type based on 

the manufacturing requirements of the corresponding part family. Lower values of L permit more 

sites to be added to a cell and if L =0, sites for every machine type will be added to the cell. 
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A difficulty of using the heuristic is the selection of an appropriate value of L. In this research 

solutions for various values of L were generated and compared. If the SFC heuristic is researched 

further a goal would be to eliminate the need for multiple experiments with the parameter L in 

order to arrive at an acceptable solution. The parameter can be eliminated by research and 

development of alternative cluster formation rules.  

8.4.2 Risk and Opportunity in Investing in Multiple Sites  

In this research, solutions were generated for various values of parameter L and compared. 

Multiple solutions were compared with respect to the number of exceptional elements and voids 

that occur in the block diagonalised machine-component incidence matrix. This matrix was 

generated under the assumption that every part is active and every site is occupied by a machine.  

In a RCMS every part will not be active and every site will not be filled with the corresponding 

machine at all times. A lower number of exceptional elements only indicates that a greater 

opportunity exists to reduce inter-cell flow by re-layout of machines. An increasing number of 

voids indicates that a greater risk exists that some cells may not be well utilised. In the RCMS 

study presented in Chapter 7, a solution for a very low value of L was accepted (L=0.2); 

consequently in the cost minimization assignment model, machine 7 was never assigned to the 

site that was available for it in Cell 1. This site was eventually eliminated by a review of the FCT. 

In general a lower value of L reduces exceptional elements and increases the number of voids. 

These relationships are weak and the RCMS design study presented in Chapter 7 provided a case 

where a lower value of L produced a lower number of voids in a solution. The weak relationship 

between L and exceptional elements and voids presents further difficulty in selecting an 

appropriate value of L without multiple experiments. 

Furthermore exceptional elements and voids only provide a loose indicator of the risks and 

opportunities that exist when investing in additional sites. The shortcoming is due to the fact that 

these indicators are based on the data available in a zero-one incidence matrix that does not 

include any additional production data such as product demand, etc. Improved indicators may be 

developed that include additional factors that influence site utilization.  

8.4.3 Alternative Dissimilarity Measurers  

In this research experiments were conducted with alternative types of dissimilarity measures. The 

Jaccard and Lance & Williams dissimilarity measures were shown to provide good performance 

when used with the Fuzzy C-Means membership model. In most instances the two measures 

provide identical solutions. Both the Jaccard and Lance & Williams dissimilarity measures are 

types of binary dissimilarity measures. An area in which further research may be conducted is the 

development of alternative dissimilarity measures for use with fuzzy membership models. These 

dissimilarity measures may include additional types of production data such as sequence of 
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machine visitation, etc. Under special circumstances alternative dissimilarity measures may prove 

to be of some advantage.  

 Line Analysis in FCT Design  

An objective of this research was to develop an original line analysis method that supports the 

initial design of a RCMS for reconfigurability. In this research the unidirectional flow 

optimization model was developed and solved with a Tabu Search algorithm. The model identifies 

how sites should be arranged within cells in the FCT to facilitate unidirectional flow within cells 

over multiple periods.  This objective has been fulfilled.  

The model was extended to identify duplicate sites for machines in cells that could be used to 

eliminate instances of part backtracking by the intra-cell re-layout of machines. The study of 

Chapter 7 showed that in a CMS with a fixed layout, the instances of part backtracking in cells 

was 66500. In the RCMS, with the same number of machines, the instances of part backtracking 

was 9000. This reduction in instances of part backtracking was facilitated by the re-layout of 

machines within cells. The intra-cell re-layout of machines within cells was possible due to the 

identification of duplicate sites for machines in cells during the FCT design. 

With respect to the Tabu Search algorithm, this algorithm was selected for ease of implementation 

and its ability to provide good results quickly. The unidirectional flow optimization model could 

have been solved by a variety of different techniques including Genetic Algorithms and Simulated 

Annealing. The experimentation of the unidirectional flow optimization model with alternative 

algorithms can be conducted as future research to determine if any advantage can be gained.  

In this research the case where bidirectional part flow is permitted in cells was not considered. 

Under bidirectional flow the arrangement of sites in cells should be generated with the objectives 

of minimizing the travel distance of parts in the cell. The investigation of site arrangement under 

bidirectional flow is a topic for future research. 

 Merits of the FCT concept 

An objective of this research was to develop an original method of imparting reconfigurability to 

a CMS at the design stage. The Factory Configuration Template is a design of the factory floor 

space to support the future reconfiguration of cells. The advantages of having an initial system 

design for future reconfiguration include: 

 the creation of machine movement lanes so that machines can be moved without 

interfering with other machines; 

 the early identification and installation of equipment that can assist with reconfigurations, 

e.g. gantry cranes;  
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 safe space between machines can be maintained in a manner that is orderly and planned 

when reconfigurations occur; 

 a safe working space for humans around machines can be maintained in a manner that is 

orderly and planned when reconfigurations occur; 

 advanced installation of supplies of compressed air, water and electricity at sites to 

shorten system downtime;  

 avoidance of irreversibility’s such as the installation of immovable machines and other 

types of infrastructure that may block pathways for machine movement.   

In general, any RCMS/DCMS method that generates reconfiguration plans without an initial 

system design for future reconfiguration can anticipate the following difficulties: 

 the generation of reconfiguration plans that are impractical to implement; 

 increased cost and difficulty in implementation; 

 increased system downtime and loss of profitability.  

 Dedicated Sites on a FCT 

8.7.1 Motivation for Dedicated Sites 

A characteristic of the FCT is that sites are dedicated to individual machine types. The motivation 

for creating dedicated sites for machines is multifaceted, however, the various motivations are all 

based on reconfiguration plans being practically feasible.  The first motivation for creating 

dedicated sites on a FCT is that individual machines have different footprints. A larger machine 

cannot be placed in a site that is tailored to a smaller machine.  

The second motivation is that each machine may have specific requirements of compressed air, 

water, etc. Some machines may have specific requirements with respect to electrical connections, 

e.g. single-phase versus three-phase power systems. These types of connections are usually 

integrated into the physical structure of a factory and can be costly or inconvenient to modify. 

Moreover, modification of these connections can slow the reconfiguration process, increasing 

system downtime. 

 The third motivation is that dedicated sites for machines can prevent additional unnecessary 

machine relocations in order to create the best part flow characteristics in the system.  In the study 

of section 7.10, without dedicated sites for machines, there was a total of 12 additional intra-cell 

machine relocations and the cost of re-layout increased by 20.6 %.  

8.7.2 Increasing Space Requirements 

The disadvantage of implementing dedicated sites for specific machine types on a FCT is that this 

increases the total number of sites in the system. An increasing number of sites increases the floor 
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space required to implement a RCMS. In the RCMS study of Chapter 7, two cells were created 

with ten sites each. On average only 60 % of the sites in a cell were utilised at any time.  

The advantage of the additional sites was that less machines would need to be relocated in order 

to obtain maximum unidirectional flow in cells (see section 7.10).  In general RCMS/DCMS that 

allows any machine to occupy any site will require additional machine relocations in order to 

obtain the same flow characteristics as a RCMS that uses dedicated sites for specific machines.   

A further advantage of a larger floor space with dedicated sites in a RCMS is that it imparts 

expansion flexibility to a system. Expansion flexibility is defined by Sethi and Sethi [98] as the 

ease in which the capacity or ability of a system can be increased.  The additional sites available 

for machines will allow the capacity of the system to be scaled through the purchase of additional 

machines. The availability of pre-existing sites for machines will allow system capacity to be 

scaled quickly, as needed. Rapid scalability was identified by Koren et al [1, 9] as a key 

requirement of reconfigurable systems that are capable of responding quickly to an increase in 

market demand.  

8.7.3 Sharing of Sites 

The possibility of multiple machine types sharing sites is feasible provided that the following 

requirements are fulfilled: 

1. the machines have the same space requirements or the sites are created to be large enough 

to accommodate a variety of machine sizes; 

2. the machines are not required in the same site at the same time; 

3. the machines have the same supply requirements (electricity, water, compressed air, etc.) 

or the manufacturer will willing to install new supplies accordingly. 

Consider the example which will now be presented.  

Example 
Table 8.1: Reconfiguration Plan for Cell 1 Based on Shared Sites.  

 

 

 

 

 

 Sequence of Machines 

Location 1 2 3 4 5 6 7 8 

Year 1 5 1 [ ] 3 4 6 [ ] 9 

Year 2 5 1 [ ] 3 4 6 [ ] 9 

Year 3 [ ] 1 2 3 4 12 [ ] 5 

Year 4 [ ] 1 2 3 4 12 [ ] 5 

Year 5 [ ] [ ] 2 3 4 6 8 5 

Year 6 [ ] [ ] 2 3 4 6 8 5 
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With respect to the example of Chapter 7, the number of sites in Cell 1 may be reduced to eight 

as shown in Table 8.1. This is based on machine type 5 and 9 sharing the site at location 8 in the 

sequence of sites. Machine 6 and 12 also share the site at location 6 in the sequence of machines. 

See Table 7.27 for a comparison.  

If the FCT specifies that two machine types may share a site then reconfiguration planning models 

require additional constraints to ensure that both machines are not allocated to the same site at the 

same time. The following constraint can be added to the capacity based assignment model and 

cost minimization model to ensure that machine 6 and 12 are not assigned to the cell at the same 

time: 

 𝑥6,1,𝑘 + 𝑥12,1,𝑘 = 1, ∀𝑘 ∈ 𝐾 (110) 

The addition of constraints of this type have the possibility to increase inter-cell part flow 

volumes. Consider the scenario where the part family corresponding to Cell 1 requires both 

machine 6 and 12 in the cell at the same time. Since machine 6 and 12 are not allowed in the cell 

at the same time, some parts will have to perform an inter-cell part movement.  

In the case of machine 5 and 9, machine 5 has two sites that it may occupy. Although machine 5 

and 9 are compatible for sharing sites, machine 9 is restricted to the site in the eighth location. A 

motivation for disallowing it at the first location is that this is guaranteed to introduce part 

backtracking. In this scenario machine 9 is given preferential access to location 8 and the 

placement of machine 5 at location 8 can only take place when machine 9 is absent. In order to 

enforce this variables must be fixed in the inter-cell machine assignment model as follows: yk = 0, 

pk = 0, qk = 0 for k ϵ F. Here F is the set of indices corresponding to years for which the machine 

is not allowed at the site, F K. The scenario may arise where preventing machine 5 from 

occupying the site at location 8 may result in some intra-cell part backtracking flow.  

In summary, allowing machines to share sites may reduce opportunities for eliminating inter-cell 

part flow and intra-cell part backtracking flow. This is due to the additional constraints and fixing 

of variables in reconfiguration planning models to ensure that two machines are not assigned to 

the same site at the same time.  

Opportunities for machines to share sites is best identified after FCT creation and after 

reconfiguration planning has been performed. This is the manner in which shared sites were 

identified here and without the need for additional constraints in planning models. If FCT creation 

and reconfiguration planning are performed at the same time, the results of the reconfiguration 

planning models may then be used to amend the FCT before its implementation on the factory 
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floor. Nonetheless, the argument remains that a reduction in the number of sites in a RCMS 

reduces opportunities to improve part flow and the ability of the system to respond to change. 

  Reconfiguration Planning Models  

An objective of this research was to develop an original multi-period reconfiguration planning 

method for the re-layout of a RCMS within the provision for reconfigurability imparted to the 

system at the design stage. Accordingly, two inter-cell machine assignment models and one intra-

cell machine assignment model was developed based on the FCT concept.  

8.8.1 Parameter Estimation 

 Inter and intra cell reconfiguration planning models both require information on the product 

volumes that the RCMS will produce over multiple periods in order for the evolution of 

configurations to be optimised over many years. The scenario where a system configuration is 

optimal in one year yet excessively costly to reconfigure in the next year is not desirable. In 

companies operating on a make-to-order strategy, product volumes may be specified in contracts. 

In companies operating on the make-to-stock strategy, the Norton-Bass model discussed in 

section 8.3 may be able to provide the forecast information required. 

With respect to the parts that will be used in future products, product development departments 

or research and development departments will have to provide the information required. The 

relationships between future parts and machines can be established by Computer Aided Design 

(CAD) and Computer Aided Manufacturing (CAM) software. CAM software such as 

VERICUT® [99] and the CAMWorks® Virtual Machine Module [100]can be used to establish 

process cycle times on machines  by simulation.  

Inter-cell part flow costs and intra-cell part backtracking costs are parameters that also require 

estimation. At the point of designing the system the costs associated with the purchase of material 

handling equipment may be integrated into the flow cost per part. Other factors that may be 

considered include the cost of hiring labour to perform the task, distances travelled, electricity 

consumption and in some cases, the cost of additional buffering. The cost of inter- and intra-cell 

machine relocation also require estimation. The cost of machine moving equipment, the hiring of 

labour, the use of specialist technicians and machine recalibration may be factored into the cost. 

In instances some preparation to the factory floor may be required in terms of providing a suitable 

foundation for precision machines, this cost may also be factored into inter- and intra-cell machine 

relocation costs.  

8.8.2 Inter-Cell Machine Assignment Models 

Two models for inter-cell machine assignment were developed in this research. The models assign 

machines to cells over multiple periods, thereby creating a reconfiguration plan. The two models 
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were the capacity based assignment model and the cost minimization assignment model. The 

Matlab® intlinprog solver was used to solve the models and was able to obtain optimal solutions 

in under an hour.  

A capacity based assignment model assigns machines to where the greatest need for machine 

capacity exists.  The reconfiguration budget is a constraint in this model. If the reconfiguration 

budget is generous this model has the blind spot of possibly relocating a machine to a cell to gain 

a miniscule capacity advantage.  

The cost based assignment model assigns machines to cells based on the optimal trade-off 

between reconfiguration cost and the cost of an hour of deficit capacity. This model assigns 

machines in a manner that determines the best economic trade-off between machine relocation 

and part relocations. This model has the blind spot of preventing a reconfiguration for a miniscule 

cost saving advantage.  

In the study of Chapter 7 the best reconfiguration plan was determined by comparing the results 

of both models since each covers the other’s deficiency. Criteria that may be used to determine 

which solution to accept was presented in section 7.5.4. 

In the cost based assignment model, the cost of an hour deficit capacity was calculated based on 

an approximation of the number of parts that will have to perform an inter-cell moves. In the study 

of Chapter 7 it was shown that a 4.2 % error existed in the cost estimation by the objective 

function, in comparison to the calculated cost based on the specified part volumes. This error is 

acceptably small but may be reduced further by performing a weighted average estimation of 

processing times on machine i. Part volumes to be produced per period may be used to determine 

the weighted average.  

In both reconfiguration planning models the factors that were considered were the cost of 

relocating machines and the cost of relocating parts. Another factor that may be of interest is the 

cost of purchasing additional machines. Additional machines can eliminate the need to relocate 

parts or machines between cells. The reconfiguration planning models may be extended further 

to include this possibility. This is a topic for future research. 

8.8.3 Intra-Cell Machine Assignment Model 

The intra-cell machine assignment model developed in this research was used to determine the 

location of a single machine in a cell when multiple sites were available for occupation by this 

machine. The Implicit Enumeration algorithm was used to solve the models and was able to obtain 

optimal solutions in under an hour.  
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The model was formulated to be consistent with the inter-cell machine assignment models. A cost 

was only charged to the objective function when a machine was relocated inside a cell and not 

when a machine was allocated to the cell by the inter-cell assignment models. The need for 

consistency with inter-cell assignment models lead to the model being a quadratic zero-one 

model.  

In the RCMS problems for which the intra-cell machine assignment model was applied, a 

maximum of one duplicate site in series was allowed per cell. In problems where more than one 

duplicate site in series exists the complex problem arises as to how to accurately determine the αk 

and βk flow coefficients. In the scenario where multiple machines have sites in series the αk and 

βk flow coefficients become functions of the positions of other machines. The development of 

improved models that are able to solve this complex problem is a topic for future research.  

 The Advantages and Disadvantages of RCMS  

An objective of this research was to investigate the advantages of RCMS over CMS with fixed 

layout. During the literature review it was determined that if any advantage is to be gained by 

reconfigurability then the initial system design must support future configuration changes. The 

lack of an initial system design for reconfigurability when planning reconfigurations is a 

shortcoming of other RCMS/DCMS methods. 

In the study of Chapter 7 it was shown that a RCMS requires a larger floor space than a CMS 

with a fixed layout. This is due to multiple sites being available for machines in cells. In section 

7.10 it was shown that the cost of reconfiguration increased with the use of an exact number of 

sites for machines. The allowance of additional sites for machines and a larger factory floor space 

is a significant factor in enabling hassle free reconfigurations. The need for a larger factory floor 

space and the lower utilization of the floor space is a disadvantage of RCMS.  

The comparative study conducted in section 7.9 revealed that the instances of inter-cell part flow 

was 1.75 times higher in the CMS with a fixed layout as compared to the RCMS. The instances 

of part backtracking was also 7.38 times higher in fixed CMS cells. The fixed CMS will also have 

significantly more work-in-process and longer manufacturing lead times than the RCMS. This 

makes the fixed CMS a system that is more difficult to manage. 

The study revealed that the drastic reduction in the instances of inter-cell part flow in RCMS 

caused the RCMS to be more cost effective to operate. Considering the cost of inter-cell part flow, 

intra-cell part backtracking and the cost of machine layout/re-layout, the RCMS solution cost was 

33 % less than the cost of the fixed CMS. The cost of unidirectional flow, which is the preferred 

type of flow in cells, was not added to the solution cost.  
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Well known group technology performance measures such as group efficiency, group efficacy, 

weighted average efficiency, grouping measure, void count and exceptional element count were 

applied to the block diagonalised machine-component incidence matrices in each of the six 

periods. The RCMS generally outperformed the fixed CMS in all of these measures. In one 

instance the fixed CMS outperformed the RCMS, however, a closer examination of part volumes 

revealed that the RCMS solution was more appropriate.  

In summary, a RCMS has advantages over a fixed CMS, however, these advantages are situation 

dependant. If the cost or complexity of relocating machines does not have an economical trade-

off against eliminating inter-cell part flow or  intra-cell part backtracking then the fixed CMS may 

be the better option.  

  Chapter Summary 

This chapter reviewed the methods that were used for FCT creation and reconfiguration planning 

for RCMS. The tasks of FCT creation and reconfiguration planning are complex and the success 

of the system design and reconfiguration plans depend on a large quantity of information being 

known in advance. Reference was made to methods that could be used to generate the information 

required and the factors that should be taken under consideration when estimating part flow and 

reconfiguration costs. The generation of accurate information on which to base FCT designs and 

reconfiguration plans is possibly the most crucial matter in the success of RCMS. 

The methods that have been developed for FCT design and reconfiguration planning have been 

demonstrated to be capable of providing acceptable solutions, nonetheless opportunities exists for 

further research, development and innovation. These opportunities were identified in the 

discussions of this chapter.  

The chapter presented discussions on the merits of RCMS design and reconfiguration planning 

based on the FCT concept in comparison to RCMS/DCMS reconfiguration planning methods that 

do not consider an initial system design for reconfiguration. The chapter concluded with a 

discussion on the advantages and disadvantages of RCMS over traditional CMS with fixed 

layouts.  
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9 Conclusion 

The aim of this research was to review existing CMS and DCMS design and reconfiguration 

planning techniques and formulate a methodology for the design and subsequent evolution of the 

layout of a Reconfigurable Cellular Manufacturing System. This was to establish if an 

appropriately designed RCMS can respond to the introduction of new products and changing 

product demand in a manner that is economical and advantageous from a production management 

perspective. The ability of a manufacturing system to respond to change rapidly and cost 

effectively is essential for business survival in competitive markets. The study of Chapter 7 

demonstrated that RCMS can respond to changing product demand, the introduction of new 

products and the phasing out of older products in a manner that is more economical than CMS.  

It was also shown that the RCMS has significantly less inter-cell work flow and intra-cell part 

backtracking; from a production management perspective this implies that the RCMS has the 

benefit of less complex part flow and reduced material handling requirements. The reduced inter-

cell part movement also implies less work-in-process and shorter manufacturing lead times since 

parts will not have to wait to be processed by more than one  cell.  

An objective of this research was to establish the deficiencies in existing CMS and DCMS design 

and reconfiguration planning methods. In the literature review it was found that reconfiguration 

planning methods were developed by researchers, without an initial manufacturing system design 

for future re-layout and configuration changes to clusters of machines in cells. Without an initial 

system design for future configuration changes the plans developed by application of theoretical 

models may not be practically implementable.  

An objective of this research was to develop an original method of imparting reconfigurability to 

a CMS at the design stage. In this research the concept of a Factory Configuration Template was 

proposed. The FCT is a design of the factory floor space for the future reconfiguration of the 

system. The FCT specifies the location of sites for specific machine types in cells and machines 

are moved in and out of sites in order to create the necessary capacity and manufacturing functions 

in cells when needed. When machines are no longer need by a cell or a greater need arises in 

another cell, the machines are redistributed accordingly.  

An objective of this research was to develop an original cell formation method that supports the 

initial design of the system for reconfigurability. The Simultaneous Fuzzy Clustering Heuristic is 

an original innovation of this research; it is able to identify manufacturing cells and part families 

simultaneously. The SFC identified manufacturing cells as clusters of machine sites, these sites 

are implemented on the FCT to create reconfigurability. Conventional GT methods identify cells 

as clusters of machines.  
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An objective of this research was to develop an original line analysis method that supports the 

initial design of a RCMS for reconfigurability. A model was developed for creating unidirectional 

flow in manufacturing cells. This model was solved by a custom implementation of a Tabu Search 

algorithm. The model was able to successfully minimise instances of part backtracking by 

proposing an optimal arrangement of machine sites on the FCT. The model was later extended 

for identifying duplicate sites for machine in series; these duplicate sites create additional 

opportunities for reconfiguration according to the FCT design. It was demonstrated that a single 

machine, moved between two locations in a cell, could eliminate some volume of intra-cell part 

backtracking. The case where bidirectional flow in cells is permitted or encouraged was not 

considered in this research. Bidirectional flow is usually more complex and more costly and was 

therefore not given significant attention in this research. The consideration of bidirectional flow 

is a topic for future research.  

An objective of this research was to develop an original multi-period reconfiguration planning 

method for the re-layout of a RCMS, within the provision for reconfiguration created in the 

system at the design stage. Two inter-cell machine assignment models and one intra-cell machine 

assignment model was developed. These models allow the creation of multi-period 

reconfiguration plans within the provisions for reconfiguration made by the FCT.  

The two inter-cell machine assignment models were developed as integer linear programs that 

were solved by the Matlab® intlinprog solver. The first model was the capacity based assignment 

model that assigned machines based on minimising the surplus and deficit capacity in cells. The 

second model was the cost minimization model that assigned machines to cells based on an 

optimal cost trade-off between machine relocation and the relocation of parts between cells. Both 

models used in conjunction, provide insight into how machines should be assigned over multiple 

periods; since neither cost nor capacity alone can serve as the basis for reconfiguration planning. 

An opportunity for further research on the models is the integration of the possibility of additional 

machine purchases. Additional machine purchases can eliminate the need for the relocation of 

both parts and machines.  

The two inter-cell machine assignment models that were developed, included the assumption that 

changes to the layout of machines does not necessitate changes to the layout of material handling 

equipment such as conveyors and robots. This assumption was justified based on an appropriately 

implemented FCT, where potential sites for machines were identified in advance and material 

handling equipment could be appropriately positioned during the installation of the RCMS. The 

case may exist where a manufacturer may wish to rearrange the layout of material handling 

equipment when the machine layout changes. The development of an inter-cell assignment model 
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that is capable of considering the cost of re-layout of material handling equipment remains a topic 

for future research. 

The intra-cell machine assignment model was developed as a zero-one quadratic program. The 

model was solved by the Implicit Enumeration algorithm; the algorithm was able to find optimal 

solutions quickly for problems solved in this research. The model determines the location of a 

single machine in a cell when two sites are available to the machine. The model assigns the 

machine to the available sites over multiple periods in order to negate instances of intra-cell part 

backtracking. A limitation of the model is that it is capable of assigning a single machine type at 

a time. The development of an intra-cell assignment model that is capable of simultaneously 

assigning multiple machine types to multiple sites in series remains a topic for future research.An 

objective of this research was to investigate the advantages of RCMS over CMS with fixed 

layouts, through the application of the design and reconfiguration planning methods that have 

been developed. The methods that were developed for FCT design and reconfiguration planning 

were demonstrated through a study in Chapter 7. The methods were used successfully to generate 

a FCT and generate reconfiguration plans for a six year period. The resulting RCMS was 

compared to a fixed CMS with the same product demand and the same number of machines. The 

RCMS was shown to provide a 33 % cost saving if implemented over the fixed CMS.  The RCMS 

also had significantly less inter-cell flow and inter-cell part backtracking, therefore making it a 

less chaotic system that is easier to control. The RCMS is also expected to have less work-in-

process and shorter manufacturing lead times due to the improved flow of work in the system. 

In this research it was observed that the RCMS concept becomes feasible if an economic trade-

off can be found between the cost of relocating parts and the cost of relocating machines. If the 

cost of machine relocation is not offset by the cost of relocating parts then a RCMS is not justified. 

It was also observed that a trade-off exists with respect to the size of the factory floor and the cost 

at which reconfiguration may be performed. A larger number of sites on the factory floor, 

dedicated to specific machines, allows the part flow in the manufacturing system to be improved 

while reducing machine movements. A further observation is that if machines are allowed to share 

sites, thereby reducing the number of sites, this results in reduced opportunities for eliminating 

inter-cell part flow and intra-cell part backtracking. In general, a RCMS can be expected to have 

a larger floor space than a CMS if the FCT concept is adopted.  

The methods for RCMS design and reconfiguration planning developed in this research can be 

used by manufacturers wishing to implement a reconfigurable system. Nonetheless, these 

methods are only to serve as additional tools in determining the best type of manufacturing system 

to implement. The choice to implement a RCMS is dependent on the specific requirements of the 

manufacturing system, which includes the future outlook with respect to the introduction of new 
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products and the anticipated product demand. The design of a RCMS and reconfiguration 

planning depend on a large amount of information pertaining to future products; this is difficult 

to determine with high accuracy at the outset. If it is difficult to generate such information or 

product variety is very high, a manufacturer may choose to emphasise flexibility rather than 

reconfigurability in the system design. Machines with high flexibility in cells can eliminate the 

need for inter-cell part flows and reconfiguration. Obtaining the best balance between flexibility 

and reconfigurability in a system is key to profitability, system responsiveness to change and 

simpler system control.  
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Appendix A  

Note: machines are represented in rows and parts are represented in columns in the matrices 

provided in this appendix.  

A.1 Random Generated Machine-Component Incidence Matrices 

Table A - 1: Generated Machine-Component Incidence Matrix - Matrix 1 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

1 1 1 0 1 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
2 0 1 0 0 1 0 0 0 0 0 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 
3 1 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
4 0 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
5 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
6 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
7 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 
8 0 0 0 0 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 
9 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 
10 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 1 0 
11 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 1 
12 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 1 0 0 0 0 0 
13 0 0 0 0 0 1 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
14 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 1 0 0 1 
15 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 
16 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 
17 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
18 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 0 0 
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Table A - 2: Machine-Component Matrix With Block Diagonals  

 3 12 13 14 16 17 18 19 21 26 1 8 20 22 23 24 25 27 28 29 30 2 4 5 6 7 9 10 11 15 

2 0 0 1 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 1 1 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

8 0 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

9 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

12 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

13 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

15 0 1 1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

17 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 

10 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

14 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 

16 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 

18 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 0 

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 

4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 

13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 

 

There are 7 exceptional elements (1’s) that are outside of the block diagonal structures. There 
are 163 voids (0’s) within the block diagonal structures.  
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A.2 Machine-Component Incidence Matrices 

Table A - 3: McAuley - 4x6[28] 

 1 2 3 4 5 6 

1 0 1 0 1 1 0 

2 1 0 1 0 0 1 

3 0 1 0 1 1 0 

4 0 0 1 0 0 1 

 

Table A - 4: Chandrasekharan and Rajagopalan - 8x20 [22] 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1 1 0 1 1 0 0 0 0 1 1 0 0 0 1 1 1 0 1 1 0 

2 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 0 0 1 0 1 

3 0 0 0 0 1 1 1 1 0 0 1 1 1 0 0 1 1 0 1 1 

4 0 0 1 1 0 0 1 1 1 1 0 0 1 1 1 0 1 1 1 1 

5 1 1 1 0 0 1 0 0 0 1 0 1 1 0 1 1 1 0 1 1 

6 1 1 0 0 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 0 

7 0 0 0 0 1 1 1 1 0 0 1 1 1 0 0 1 1 0 1 1 

8 1 1 1 1 1 0 0 1 1 1 0 0 1 1 0 1 1 0 0 0 

 
Table A - 5: Boctor -Test Problem 1 - 16x30 [23] 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

1 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0 0 1 0 

2 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 1 1 1 0 0 0 

3 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 

4 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 

5 0 0 1 1 0 0 0 0 0 0 1 1 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 1 1 

7 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

8 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

9 0 1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0 1 

10 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 1 

12 1 0 1 1 0 0 1 0 0 0 1 0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 

13 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 1 1 0 1 0 

14 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 

15 1 0 1 1 0 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

16 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 1 1 1 1 1 1 
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Table A - 6: King - 16x43 [36] 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 

2 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 1 0 1 0 

3 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 

4 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 1 0 0 1 1 0 0 0 0 1 1 1 0 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 

6 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 1 1 0 1 1 

7 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

8 1 1 1 0 0 0 0 1 1 0 1 1 0 0 1 0 0 0 1 1 1 0 1 1 0 0 1 1 0 0 1 0 0 0 0 0 1 1 0 0 1 0 1 

9 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 1 0 1 0 

10 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 

11 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

12 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

13 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

14 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

15 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 

16 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 
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Table A - 7: King and Nakornchai 16x43 [37] 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 

2 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 1 0 1 0 

3 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 

4 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 1 0 0 1 1 0 0 0 0 1 1 1 0 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 

6 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 1 1 0 1 1 

7 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

8 1 1 1 0 0 0 0 1 1 0 1 1 0 0 1 0 0 0 1 1 1 0 1 1 0 0 1 1 0 0 1 0 0 0 0 0 1 1 0 0 1 0 1 

9 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 1 0 1 0 

10 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 

11 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

12 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

13 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

14 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

15 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 

16 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 
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Appendix B  

B.1 Sample Calculation - Binary Dissimilarity 

Consider Table B - 1, which is an extract from Table 4.1 in section 4.4.1.  

Table B - 1: Machine-Component Incidence Matrix for Two Parts 

 

 

 

 

 

 

In this example part 1 and part 2 both make use of machine 2, therefore a =2. Part 1 makes 

exclusive use of machine 1 therefore b = 1. Part 2 makes exclusive use of machine 3, therefore 

c = 1. Both parts do not make use of machines 4, 5, 6, and 7 therefore d= 4.  The Lance & 

Williams dissimilarity for parts 1 and 2 is calculated as follows: 

𝐷𝐿𝐴𝑁𝐶𝐸&𝑊𝐼𝐿𝐿𝐼𝐴𝑀𝑆 =
𝑏+𝑐

(2𝑎+𝑏+𝑐)
=

1+1

(2×1+1+1)
= 0.5  

B.2 Example – Rule for Allocation of Parts to Families 

The machine-component incidence matrix presented in Table 4.1 and the part-part dissimilarity 

matrix presented in Table 4.2 will be used in this illustration. The cluster prototypes (medoids) 

and membership matrix presented here were generated by the FCMdd algorithm, using the part-

part dissimilarity matrix with three clusters (i.e. C=3): 

𝑉 = {𝑧2, 𝑧3, 𝑧5}  

𝑈𝑃𝑎𝑟𝑡𝑠 = [
0.43 1.00 0.00
0.36 0.00 1.00
0.21 0.00 0.00

   
0.21 0.00 1.00
0.36 0.00 0.00
0.43 1.00 0.00

    
0.14 0.20 0.60
0.71 0.20 0.20
0.14 0.60 0.20

    
0.00 0.14
0.00 0.71
1.00 0.14

]  

The resultant medoids for the problem were part 2 (z2) for cluster 1, part 3 (z3) for cluster 2 and 

part 5 (z5) for cluster 3. Each column of the membership matrix represents a part; in this instance 

parts 1-11.  If parts are allocated to families according to maximum membership, the part families 

would be: PF1 = {1, 2, 6, 9}, PF2 = {3, 7, 11}, PF 3 = {4, 5, 8, 10}. 

PARTS 

M
A

C
H

IN
ES

 

 1 2 

1 1 0 

2 1 1 

3 0 1 

4 0 0 

5 0 0 

6 0 0 

7 0 0 
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B.3 Example - Affinity Analysis for Machine Membership Matrix  

An example is presented here to demonstrate the calculation performed in the 

Generate_U_Machines() function. Consider the group analysis problem of Table 4.1 in the part 

families generated in Appendix B.2. If the part families are: PF1 = {1, 2, 6, 9}, PF2 = {3, 7, 11}, 

PF3 = {4, 5, 8, 10}.  The affinity rating aik for each machine k with respect to each part family i 

is: 

𝐴 = [
1 3 3
3 0 0
0 0 0

   
0 0 0
0 2 2
3 0 1

   
0
0
3

]  

The values of matrix A were populated by counting the number of parts in each family that utilise 

each machine. For example a12 pertains to the number of parts in PF1 that utilise machine 2. 

According to the machine-component incidence matrix (Table 4.1) parts 1, 2 and 6 use machine 

1 therefore a12 = 3. 

The U_Machines membership matrix calculated by equation 39 is: 

𝑈_𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝑠 = [
0.25 1.00 1.00
0.75 0.00 0.00
0.00 0.00 0.00

   
0.00 0.00 0.00
0.00 1.00 0.67
1.00 0.00 0.33

    
0.00
0.00
1.00

]  

A sample calculation for element µ11 is as follows:  

𝜇11 =
𝑎𝑖𝑘

∑ 𝑎𝑗𝑘
𝐶
𝑗=1

=
𝑎11

𝑎11+𝑎21+𝑎31
=

1

1+3+0
= 0.25  

B.4 Example – Rule for Allocation of Machines to Sites 

The ClusterSites() function uses the U_Machines matrix to allocate sites to machines in cells 

based on the rule ik  = 1 if  ik L   and ik  = 0 otherwise. Consider the matrix: 

𝑈_𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝑠 = [
0.25 1.00 1.00
0.75 0.00 0.00
0.00 0.00 0.00

   
0.00 0.00 0.00
0.00 1.00 0.67
1.00 0.00 0.33

    
0.00
0.00
1.00

]  

Based on this matrix and L= 0.25 (effectively 25 % part load), the sites for machines in cells 

would be as follows: CS1 = {S1, S2, S3}, CS2 = {S1, S5, S6}, CS3 = {S4, S6, S7}. Here CS 1 

denotes the cluster of sites allocated to Cell 1, etc. The prefix ‘S’ denotes a site allocated to a cell 

for a corresponding machine number. For example, machine 1 has been allocated sites in Cell 1 

and Cell 2.  
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B.5 Example – Generation of New Prototypes and Membership Matrix  

An example of the working of the PrototypeGeneration() function will be demonstrated here and 

a sample calculation corresponding to the Generate_U_Parts() function will be presented. The 

group analysis problem of Table 4.1 (section 4.4.1) is used in this example.  

Consider the set of machine sites: CS1 = {S1, S2, S3}, CS2 = {S1, S5, S6}, CS3 = {S4, S6, S7}, 

generated in Appendix B.4. The representation of the sites in cells as zero-one vectors gives rise 

to a new set of part family prototypes.  

Table B - 2: Updated Primary prototypes 

PART FAMILY MEDOIDS  
M

A
C

H
IN

ES
 S

IT
ES

 
 v1  v2  v3  

1 1 1 0 

2 1 0 0 

3 1 0 0 

4 0 0 1 

5 0 1 0 

6 0 1 1 

7 0 0 1 

The updated prototypes presented here are different to the medoids generated by the FCMdd 

algorithm. The original primary prototypes were the data vectors corresponding to parts 2, 3, and 

5 in Table 4.1 .The updated membership matrix is now: 

𝑈_𝑃𝑎𝑟𝑡𝑠 = [
0.65 0.71 0.00
0.22 0.14 1.00
0.13 0.14 0.00

    
0.13 0.14 0.71
0.22 0.14 0.14
0.65 0.71 0.14

    
0.22 0.25 0.50
0.65 0.25 0.25
0.13 0.50 0.25

    
0.14 0.20
0.14 0.60
0.71 0.20

] 

For illustrative purposes a sample calculation for µ11 will be provided.  Table B -  3 is an extract 

from Table 4.1, showing the machines required by part 1.  

Table B -  3:  Machine Incidence for Part 1 

 

 

 

 

M
A

C
H

IN
ES

 

 Part 1 

1 1 

2 1 

3 0 

4 0 

5 0 

6 0 

7 0 
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The dissimilarity between part 1 and the updated prototypes will now be determined using the 

Lance & Williams binary dissimilarity measure. 

Dissimilarity between v1 and part 1: 

𝐷11 =
𝑏+𝑐

(2𝑎+𝑏+𝑐)
=

1+0

(2×2+1+0)
= 0.2  

Dissimilarity between v2 and part 1: 

𝐷21 =
𝑏+𝑐

(2𝑎+𝑏+𝑐)
=

2+1

(2×1+2+1)
= 0.6 : 

Dissimilarity between v3 and part 1 

𝐷21 =
𝑏+𝑐

(2𝑎+𝑏+𝑐)
=

3+2

(2×0+3+2)
= 1.0 : 

The membership of part 1 with respect to cluster 1 is therefore: 

𝜇𝑖𝑘 =
(

1

𝐷𝑖𝑘
)

1
(𝑚−1)⁄

∑ (
1

𝐷𝑖𝑘
)

1
(𝑚−1)⁄

𝐶
𝑗=1

=
(

1

0.2
)

1
(1−1)⁄

(
1

0.2
)

1
(1−1)⁄

+(
1

0.6
)

1
(1−1)⁄

+(
1

1.0
)

1
(1−1)⁄

= 0.65  
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Appendix C  

C.1 Example – Calculation of Processing Hours Required on a Machine 

Consider the data in Table C - 1, which contains the part demand for year 1 and cycle times for 

parts on machine 2. Table C - 1 has been constructed from Table 5.1 and Table 5.2. 

Table C - 1: Part Demand and Process Cycle Times on Machine 2 in Year 1 (P=Parts) 

  P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 

Demand (thousands of units)  6 6 4 3 0 0 0 2 9 9 

Time (min) 30 25 26 - - 27 28 28 - - 

The total number of operating hours required on machine type 2 is calculated by: 

𝐻𝑖𝑘 =
∑ 𝑣𝑜𝑙𝑢𝑚𝑒𝑝𝑘

𝑃
𝑝=1 ×𝑚𝑖𝑛𝑢𝑡𝑒𝑠𝑖𝑝

60
  

𝐻21 =
(6×30+6×25+4×26+0×27+0×28+2×28)×103

60
= 8167 ℎ𝑜𝑢𝑟𝑠  

C.2 Example – Calculation of Machines Required by System 

If H12 = 8167 hours, W1 = 5600 hours and machine availability is 70 %; the number of machines 

of type 2 required in year 1 is calculated as follows:  

𝑁𝑖𝑘 =
𝐻𝑖𝑘

𝑊𝑘×𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦
=

8167

5600×0.7
= 2.1  

Machine numbers must be rounded up to ensure sufficient capacity, therefore a total of three 

machines of type 2 are required in year 1.  

C.3 Example – Calculation of Processing Hours Per Machine Per Cell 

Consider the data Table C - 2, which contains the part demand for Cell 1 in year 1 and cycle times 

for parts on machine 2. Table C - 2 has been constructed from Table 5.1 and Table 5.2. 

Table C - 2: Part Demand and Process Cycle Times on Machine 2/Cell 1/Year 1 

  P1 P2 P3 P4 P5 

Demand (thousands of units)  6 6 4 3 0 

Time (min) 30 25 26 - - 

The total number of operating hours required on machine type 2 in Cell 1 in year 1 is calculated 

by the following equation where j is the cell/part family number: 

𝐻𝑖𝑗𝑘 =
∑ 𝑣𝑜𝑙𝑢𝑚𝑒𝑝𝑘𝑝∈𝑃𝑎𝑟𝑡 𝐹𝑎𝑚𝑖𝑙𝑦 𝑗 ×𝑚𝑖𝑛𝑢𝑡𝑒𝑠𝑖𝑝

60
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𝐻211 =
(6×30+6×25+4×26)×103

60
= 7233 ℎ𝑜𝑢𝑟𝑠  

C.4 Example – Calculation of Machines Required by Cell 

If H211 = 7233 hours, W1 = 5600 hours and machine availability is 70 %; the number of machines 

of type 2 required by Cell 1 in year 1 is calculated as follows:  

𝑁𝑖𝑗𝑘 =
𝐻𝑖𝑗𝑘

𝑊𝑘×𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦
=

7233

5600×0.7
= 1.8  

Two machines of type 2 are required by Cell 1 in year 1.  
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Appendix D  

D.1 Unidirectional Flow Optimization Model With Duplicate Machines 

The updated unidirectional flow optimization model with machine sites in series is as follows: 

 
𝑚𝑖𝑛 ∑ ∑ ∑ ∑ 𝑥𝑖𝛼𝑥𝑗𝛽𝑈𝑖𝛼𝑗𝛽

𝛼−1

𝛽=1

𝑁

𝛼=1

𝑀

𝑗≠𝑖

𝑀

𝑖=1

  

Subject to: 

 𝑥𝑖𝛼 = 𝑥𝑗𝛽 , ∀(𝑖, 𝛼) = (𝑗, 𝛽)  

 
∑ 𝑥𝑖𝛼

𝑀

𝑖=1

= 1, ∀𝛼 = 1, … , 𝑁  

 
∑ 𝑥𝑖𝛼

𝑁

𝛼=1

≤ 𝜁, ∀𝑖 = 1, … , 𝑀  

  𝑥𝑖𝛼 ∈ {0,1} ; 𝑥𝑗𝛽 ∈ {0,1}   
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D.2 Sample PML Assignment Problem -  Possible Solutions  

Table D - 1:  Space of All Solutions for Process-Machine-Location Mappings  

Table D - 1  lists the locations corresponding to machine types, on which processes 1-7 may be 

performed for the problem of section 5.4.3.  

 

# Processes 1 – 7 # Processes 1 – 7 # Processes 1 – 7 

 1 2 3 4 5 6 7  1 2 3 4 5 6 7  1 2 3 4 5 6 7 

1 2 4 3 5 3 4 1 33 7 4 3 5 3 4 1 65 10 4 3 5 3 4 1 

2 2 4 3 5 3 4 9 34 7 4 3 5 3 4 9 66 10 4 3 5 3 4 9 

3 2 4 3 5 3 8 1 35 7 4 3 5 3 8 1 67 10 4 3 5 3 8 1 

4 2 4 3 5 3 8 9 36 7 4 3 5 3 8 9 68 10 4 3 5 3 8 9 

5 2 4 3 5 6 4 1 37 7 4 3 5 6 4 1 69 10 4 3 5 6 4 1 

6 2 4 3 5 6 4 9 38 7 4 3 5 6 4 9 70 10 4 3 5 6 4 9 

7 2 4 3 5 6 8 1 39 7 4 3 5 6 8 1 71 10 4 3 5 6 8 1 

8 2 4 3 5 6 8 9 40 7 4 3 5 6 8 9 72 10 4 3 5 6 8 9 

9 2 4 6 5 3 4 1 41 7 4 6 5 3 4 1 73 10 4 6 5 3 4 1 

10 2 4 6 5 3 4 9 42 7 4 6 5 3 4 9 74 10 4 6 5 3 4 9 

11 2 4 6 5 3 8 1 43 7 4 6 5 3 8 1 75 10 4 6 5 3 8 1 

12 2 4 6 5 3 8 9 44 7 4 6 5 3 8 9 76 10 4 6 5 3 8 9 

13 2 4 6 5 6 4 1 45 7 4 6 5 6 4 1 77 10 4 6 5 6 4 1 

14 2 4 6 5 6 4 9 46 7 4 6 5 6 4 9 78 10 4 6 5 6 4 9 

15 2 4 6 5 6 8 1 47 7 4 6 5 6 8 1 79 10 4 6 5 6 8 1 

16 2 4 6 5 6 8 9 48 7 4 6 5 6 8 9 80 10 4 6 5 6 8 9 

17 2 8 3 5 3 4 1 49 7 8 3 5 3 4 1 81 10 8 3 5 3 4 1 

18 2 8 3 5 3 4 9 50 7 8 3 5 3 4 9 82 10 8 3 5 3 4 9 

19 2 8 3 5 3 8 1 51 7 8 3 5 3 8 1 83 10 8 3 5 3 8 1 

20 2 8 3 5 3 8 9 52 7 8 3 5 3 8 9 84 10 8 3 5 3 8 9 

21 2 8 3 5 6 4 1 53 7 8 3 5 6 4 1 85 10 8 3 5 6 4 1 

22 2 8 3 5 6 4 9 54 7 8 3 5 6 4 9 86 10 8 3 5 6 4 9 

23 2 8 3 5 6 8 1 55 7 8 3 5 6 8 1 87 10 8 3 5 6 8 1 

24 2 8 3 5 6 8 9 56 7 8 3 5 6 8 9 88 10 8 3 5 6 8 9 

25 2 8 6 5 3 4 1 57 7 8 6 5 3 4 1 89 10 8 6 5 3 4 1 

26 2 8 6 5 3 4 9 58 7 8 6 5 3 4 9 90 10 8 6 5 3 4 9 

27 2 8 6 5 3 8 1 59 7 8 6 5 3 8 1 91 10 8 6 5 3 8 1 

28 2 8 6 5 3 8 9 60 7 8 6 5 3 8 9 92 10 8 6 5 3 8 9 

29 2 8 6 5 6 4 1 61 7 8 6 5 6 4 1 93 10 8 6 5 6 4 1 

30 2 8 6 5 6 4 9 62 7 8 6 5 6 4 9 94 10 8 6 5 6 4 9 

31 2 8 6 5 6 8 1 63 7 8 6 5 6 8 1 95 10 8 6 5 6 8 1 

32 2 8 6 5 6 8 9 64 7 8 6 5 6 8 9 96 10 8 6 5 6 8 9 
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Table D - 2: Performance of Solutions* 

# UM BM # UM BM # UM BM 
1 5 3 33 5 4 65 5 4 

2 5 2 34 5 3 66 5 3 

3 6 3 35 6 4 67 6 4 

4 6 2 36 6 3 68 6 3 

5 6 3 37 6 4 69 6 4 

6 6 2 38 6 3 70 6 3 

7 7 2 39 7 3 71 7 3 

8 7 1 40 7 2 72 7 2 

9 6 3 41 6 4 73 6 4 

10 6 2 42 6 3 74 6 3 

11 7 3 43 7 4 75 7 4 

12 7 2 44 7 3 76 7 3 

13 5 3 45 5 4 77 5 4 

14 5 2 46 5 3 78 5 3 

15 6 2 47 6 3 79 6 3 

16 6 1 48 6 2 80 6 2 

17 6 3 49 6 3 81 6 4 

18 6 2 50 6 2 82 6 3 

19 5 3 51 5 3 83 5 4 

20 5 2 52 5 2 84 5 3 

21 7 3 53 7 3 85 7 4 

22 7 2 54 7 2 86 7 3 

23 6 2 55 6 2 87 6 3 

24 6 1 56 6 1 88 6 2 

25 7 4 57 7 4 89 7 5 

26 7 3 58 7 3 90 7 4 

27 6 4 59 6 4 91 6 5 

28 6 3 60 6 3 92 6 4 

29 6 4 61 6 4 93 6 5 

30 6 3 62 6 3 94 6 4 

31 5 3 63 5 3 95 5 4 

32 5 2 64 5 2 96 5 3 

*UM = number of utilized machines, BM = number of backtracking movements, DT = distance travelled. 

The number of utilized machines is determined by counting the number of unique elements in a 

solution. The set A corresponding to the first solution in Table D - 1 is A = {2, 4, 3, 5, 3, 4, 1}. 

Although there are seven elements in the set, only five elements are unique. The number of 

machines used is therefore five.  Under this solution the part revisits the machines at locations 

α = 3 and α = 4 according to the ordered set S’. The number of backtracking movements is 

determined by counting the pairs of element in A that do not represent an ascending order.  
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For example, the pairs {4,3},{5,3} and {4,1} are not ascending order pairs and the number of 

backtracking for this solution is  three. 

The solution with the highest machines used and lowest instances of part backtracking is solution 

8, with seven machines used and one instance of part backtracking. The solution is 

A = {2,4,3,5,6,8,9}. Part p required processes 1-7 on machines as follows: Pp = {2,4,3,5,3,4,1}. 

The output of the process to machine mapping function g is therefore Qp = 

{(2,2),(4,4),(3,3),(5,5),(3,6),(4,8),(1,9)}. The first element is (i,α)=(2,2) implying that the first 

process is performed on machine 2 which is in location 2, etc. Notice that the third process is 

performed on machine type i=3 in location α = 3 and the fifth process is performed on machine 

type i= 3 in location α=6. The fifth process could have been performed on machine type i=3 in 

location α = 3, however this would unnecessarily inflate the instances of part backtracking for the 

sequence of machine locations as defined by S’.  
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Appendix E  

E.1 Calculation – Excess Capacity (Hours) 

For the example problem of section 6.3.4, the hours of excess capacity made available by machine 

purchases is listed in Table E - 1. The total hours of excess capacity for mobile machines 1, 3, 8, 

12 and 15 is 41007 hours. The breakdown of total excess hours per period is shown in the table.  

Table E - 1: Hours of Excess Capacity Available 

 Eik (hours) 

Machine (i) k= 1 k= 2 k= 3 

1 665 5210 6585 

2 816 1089 1284 

3 3806 1741 3835 

4 425 420 183 

5 382 382 382 

6 392 1270 969 

7 194 489 1103 

8 1638 345 3189 

9 779 195 584 

10 747 747 747 

11 878 324 1064 

12 4061 4624 1638 

13 1061 705 769 

14 1028 818 36 

15 1166 1406 1098 

Total Mobile Machines 11336 13326 16345 

Total Fixed Machines 6702 6439 7121 

Total 18038 19765 23466 

As a sample calculation consider the excess capacity with respect to machine type 1 in period 1. 

According to Table 6.1, Cell 1 requires 0 hours, Cell 2 requires 6735 hours and Cell 3 

requires 5560 hours. According to Table 6.3, three copies of machine type 1 are to be made 

available in period k=1. Period 1 is 180 days and each working day is 24 hours, the total working 

hours per period is therefore WK = 4320 hours. The total hours of excess capacity is calculated as 

follows: 

𝐸𝑖𝑘 = 𝑊𝑘𝑁𝑖𝑘 − ∑ 𝐻𝑖𝑗𝑘𝑗∈𝐽 = 4320 × 3 − (0 + 6735 + 5560) = 665 ℎ𝑜𝑢𝑟𝑠  

The total hours of excess capacity for mobile machines 1, 3, 8, 12 and 15 is calculated as follows: 

11336 + 13326 + 16345 = 41007 ℎ𝑜𝑢𝑟𝑠  
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Appendix F  

F.1  Machine-Component Incidence Matrix  

Table F- 1 presents the machine-component incidence matrix for the RCMS study of Chapter 7. 

Note: machines are represented in rows and parts are represented in columns in the matrix 

provided. 

Table F- 1: Machine-Component Incidence Matrix 

  1  2  3  4  5  6  7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1 0 1 0 1 1 1 0 0 1 0 0 0 1 0 1 1 1 0 0 0 

2 0 0 0 0 0 0 1 1 0 1 1 1 1 1 0 0 0 1 0 1 

3 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0 1 0 0 

4 0 0 0 1 0 1 0 0 1 0 0 1 1 0 0 0 0 1 0 0 

5 0 1 0 0 0 1 0 1 1 1 0 0 0 0 0 1 0 0 0 0 

6 0 1 1 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 1 1 

7 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 

8 1 0 1 0 0 0 1 1 0 1 1 1 0 1 0 0 0 0 1 1 

9 0 1 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 

10 0 0 0 0 1 0 1 0 0 0 1 0 0 1 1 0 0 0 0 1 

11 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 

12 1 0 0 0 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 0 

  

F.2  Part Quantities to be Produced per Annum 

Table F- 2 presents the quantities in which parts 1-20 must be produced in years 1-6 in order to 

match the demand for Product A, B and C.  

Table F- 2: Part Quantities* to be Produced per Year (Y=Year, P=Part) 

 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 

Y1 4 4 0 8 0 4 4 0 0 0 4 0 0 8 0 4 0 0 0 0 

Y2 3.5 3.5 6 7 0 3.5 3.5 0 6 3 3.5 0 3 7 0 3.5 0 3 3 3 

Y3 2 2 9 4 0 2 2 0 9 4.5 2 0 4.5 4 0 2 0 4.5 4.5 4.5 

Y4 0 0 6.4 0 1.5 0 0 3 6.4 4.7 0 1.5 3.2 0 1.5 0 3 4.7 3.2 3.2 

Y5 0 0 3 0 3 0 0 6 3 4.5 0 3 1.5 0 3 0 6 4.5 1.5 1.5 

Y6 0 0 0 0 5 0 0 10 0 5 0 5 0 0 5 0 10 5 0 0 

*Part quantities are represented in thousands. 

As a sample calculation consider part 18. According to Table 7.2, one unit of part 18 is required 

for each unit of Product B and one unit of part 18 is required for each unit of Product C. The 

individual demands of Product B and Product C are shown in Table 7.1. The annual demand for 

part 18 based on the demand for these products is calculates as follows: 
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Year 1: 

1 × 0 + 1 × 0 = 0 𝑝𝑎𝑟𝑡𝑠  

Year 2: 

 1 × 3000 + 1 × 0 = 3000 𝑝𝑎𝑟𝑡𝑠 

Year 3: 

 1 × 4500 + 1 × 0 = 4500  𝑝𝑎𝑟𝑡𝑠 

Year 4: 

 1 × 3200 + 1 × 1500 = 4700 𝑝𝑎𝑟𝑡𝑠 

Year 5: 

 1 × 1500 + 1 × 3000 = 4500 𝑝𝑎𝑟𝑡𝑠 

Year 6: 

 1 × 0 + 1 × 5000 = 5000 𝑝𝑎𝑟𝑡𝑠 

F.3  Hours of Processing Time Required on Machines 

Table F- 3 shows the hours of processing time requires on machines 1-12 for years 1-6. 

Table F- 3: Hours of Processing Time Required on Machines (M= Machine, Y = Year) 

 Y1 Y2 Y3 Y4 Y5 Y6 

M1 2600 3625 3325 2215 2225 2584 

M2 2600 4075 4000 3045 3150 0 

M3 667 1934 2359 2115 2025 0 

M4 1934 3442 3592 2342 1825 0 

M5 1467 2484 2534 1930 1900 0 

M6 2467 3609 3409 2072 1775 0 

M7 1467 2334 2309 1870 2025 2500 

M8 2867 4359 4209 2874 2725 0 

M9 2134 3567 3617 2239 1700 1417 

M10 2534 2667 1942 955 1175 1584 

M11 1200 2000 2025 1464 1375 1500 

M12 2934 4167 3867 2832 3050 3000 

As a sample calculation consider machine 1 in the first year. This machine is required by parts 2, 

4, 5, 6, 9, 13, 15, 16 and 17. According to  

Table 7.3 parts 2,4, and 5 have a process cycle time of seven minutes, parts 15 and 17 have a 

process cycle time of eight minutes and parts 6, 9, 13 and 16 have a process cycle time of nine 

minutes. Individual part volumes for the calculation were read from Table F- 2. The total hours 

of processing time required in machine type 1 is calculated by equation 40 as follows: 

𝐻𝑖𝑘 =
∑ 𝑣𝑜𝑙𝑢𝑚𝑒𝑝𝑘

𝑃
𝑝=1 ×𝑚𝑖𝑛𝑢𝑡𝑒𝑠𝑖𝑝

60
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𝐻𝑖𝑘 =
(4×7+8×7+0×7+4×9+0×9+0×9+0×8+4×9+0×8)×103

60
  

𝐻𝑖𝑘 = 2600 ℎ𝑜𝑢𝑟𝑠  

F.4  Sample Calculation - Mandatory  Machines Required Per Annum 

Consider the following sample calculations for the number of machine type 1 required in years 1-

6. Table F- 4 summarises the information required to determine the mandatory number of machine 

type 1 that is required by the RCMS in order to ensure sufficient production capacity.  The 

working hours and the machine availability were defined in the problem of section 7.2. 

Table F- 4: Information Required for the Machine Capacity Calculation 

 Total Hours 
Required 

 Working Hours 
Available 

Machine 
Availability 

Y1 2600 7200 80 % 

Y2 3626 7200 80 % 

Y3 3325 7200 80 % 

Y4 2215 7200 80 % 

Y5 2225 7200 80 % 

Y6 2584 7200 80 % 

The mandatory annual numbers of machine type 1 are calculated by equation 42 as follows: 

Year 1: 
𝑁𝑖𝑘 =

𝐻𝑖𝑘

𝑊𝑘×𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦
=

2600

0.8×7200
= 0.45 , say 1 machine 

 
Year 2: 
𝑁𝑖𝑘 =

𝐻𝑖𝑘

𝑊𝑘×𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦
=

3626

0.8×7200
= 0.63 , say 1 machine 

 
Year 3: 
𝑁𝑖𝑘 =

𝐻𝑖𝑘

𝑊𝑘×𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦
=

3325

0.8×7200
= 0.58 , say 1 machine 

Year 4: 
𝑁𝑖𝑘 =

𝐻𝑖𝑘

𝑊𝑘×𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦
=

2215

0.8×7200
= 0.38 , say 1 machine 

Year 5: 
𝑁𝑖𝑘 =

𝐻𝑖𝑘

𝑊𝑘×𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦
=

2225

0.8×7200
= 0.39 , say 1 machine 

Year 6: 
𝑁𝑖𝑘 =

𝐻𝑖𝑘

𝑊𝑘×𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦
=

2584

0.8×7200
= 0.45 , say 1 machine 
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F.5   Hours of Processing Time Required on Machines per Cell 

Table F- 5 presents the hours of processing time required on machine types 1-13 in years 1-6 in 

each cell.  

Table F- 5: Hours of Processing Time Required on Machines per Cell (C= Cell, M= Machine, Y = Year) 

 Y1  Y2 Y3 Y4 Y5 Y6 

 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 

M1 2600 0 3625 0 3325 0 1440 775 675 1550 0 2584 

M2 0 2600 1350 2725 2025 1975 2565 480 2925 225 3750 0 

M3 667 0 1934 0 2359 0 2115 0 2025 0 2250 0 

M4 1934 0 3442 0 3592 0 2342 0 1825 0 1584 0 

M5 1467 0 2484 0 2534 0 1930 0 1900 0 2167 0 

M6 2467 0 2159 1450 1234 2175 525 1547 1050 725 1750 0 

M7 1000 467 875 1459 500 1809 0 1870 0 2025 0 2500 

M8 0 2867 350 4009 525 3684 1274 1600 1975 750 3000 0 

M9 2134 0 1867 1700 1067 2550 0 2239 0 1700 0 1417 

M10 0 2534 0 2667 0 1942 0 955 0 1175 0 1584 

M11 0 1200 0 2000 0 2025 0 1464 0 1375 0 1500 

M12 0 2934 1600 2567 2400 1467 1932 900 1250 1800 750 3000 

As a sample calculation, consider the hours required on machine type 1 in cells in the first year. 

Machine type 1 is required by parts 2, 4, 6, 9, 13 and 16 corresponding to part family PF1 and 

parts 5, 15, 17 corresponding to PF2. The hours are calculated by an adaptation of equation 40 as 

follows: 

Year 1 – Cell 1: 

𝐻𝑖𝑗𝑘 =
∑ 𝑣𝑜𝑙𝑢𝑚𝑒𝑝𝑘𝑝∈𝑃𝑎𝑟𝑡 𝐹𝑎𝑚𝑖𝑙𝑦 𝑗 ×𝑚𝑖𝑛𝑢𝑡𝑒𝑠𝑖𝑝

60
  

 𝐻111 =
(7×4+7×8+9×4+9×0+9×0+9×4)×103

60
= 2600 ℎ𝑜𝑢𝑟𝑠 

Year 1 – Cell 2: 

𝐻121 =
(7×0+8×0+8×0)×103

60
= 0 ℎ𝑜𝑢𝑟𝑠  
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F.6   Sample Calculation - Machines Required per Cell per Year 

Consider machine on machine type 1 in year 1. The hours required on this machine by each cell 

were determined in Appendix F.5, this enables the numbers of machine type 1 required by each 

cell to be calculated by an adaptation of equation 42 as follows: 

Year 1 – Cell 1: 

𝑁111 =
𝐻𝑖𝑗𝑘

𝑊𝑘×𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦
=

2600

7200×0.8
= 0.45 , say 1 machine 

Year 1 – Cell 2: 

𝑁121 =
𝐻𝑖𝑗𝑘

𝑊𝑘×𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦
=

0

7200×0.8
= 0  

Note that the working hours Wk and machine availability were provided in the problem description 

of section 7.2. 

F.7  Part Volumes Requiring Operations on Machines per Cell per Annum 

Table F- 6 shows the volumes of parts that require operations on each machine for years 1-6.  If 

a machine is not available in a cell, the corresponding volume of parts will contribute to the total 

volume of inter-cell part flow.  

Table F- 6:  Parts* Requiring Operations on Machines per Cell per Annum (C=Cell, M=Machine, Y = Year) 

 Y1 Y2 Y3 Y4 Y5 Y6 

 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 

M1 20 0 26.5 0 23.5 0 9.6 6 4.5 12 0 20 

M2 0 16 9 17 13.5 12.5 17.1 3.2 19.5 1.5 25 0 

M3 4 0 12.5 0 15.5 0 14.1 0 13.5 0 15 0 

M4 12 0 22.5 0 24 0 15.8 0 12 0 10 0 

M5 12 0 19.5 0 19.5 0 14.1 0 13.5 0 15 0 

M6 20 0 17.5 12 10 18 4.5 12.8 9 6 15 0 

M7 8 4 7 12.5 4 15.5 0 15.6 0 16.5 0 20 

M8 0 20 3 29.5 4.5 28 9.2 12.8 13.5 6 20 0 

M9 16 0 14 12 8 18 0 15.8 0 12 0 10 

M10 0 16 0 17 0 12.5 0 6.2 0 7.5 0 10 

M11 0 8 0 13 0 13 0 9.4 0 9 0 10 

M12 0 20 12 17.5 18 10 14.3 6 9 12 5 20 

* Part volumes are represented as thousands of parts. 

As a sample calculation, consider machine 1. Machine 1 is required by parts 2, 4, 6, 9, 13 and 16 

corresponding to family PF1 and parts 5, 15 and 17 corresponding to PF2. 
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Table F- 7 shows the volume of parts requiring the services of machine type 1 in Cell 1 for years 

1-6. The total per year is calculated by summing the individual part volumes across rows. 

Individual part volumes were obtained from Table F- 2. 

 Table F- 7: Volume* of Parts Requiring Machine 1 in Cell 1 (P=Part, Y=Year) 

 P2 P4 P6 P9 P13 P16 Total   

Y1 4 8 4 0 0 4 20 

Y2 3.5 7 3.5 6 3 3.5 26.5 

Y3 2 4 2 9 4.5 2 23.5 

Y4 0 0 0 6.4 3.2 0 9.6 

Y5 0 0 0 3 1.5 0 4.5 

Y6 0 0 0 0 0 0 0 

* Part volumes are represented as thousands of parts. 

 Table F- 8 shows the volume of parts requiring the services of machine type 1 in Cell 1 for years 

1-6. The total per year is calculated by summing the individual part volumes across rows.  

Table F- 8:  Volume* of Parts Requiring Machine 1 in Cell 2 (P=Part, Y=Year) 

 P5 P15 P17 Total 

Y1 0 0 0 0 

Y2 0 0 0 0 

Y3 0 0 0 0 

Y4 1.5 1.5 3 6 

Y5 3 3 6 12 

Y6 5 5 10 20 

* Part volumes are represented as thousands of parts. 

F.8  Cost of Inter-Cell Part Flow – Capacity Based Assignment Model 

The cost of inter-cell part movements, corresponding to the reconfiguration plan of the capacity 

based assignment model, is calculated in Table F- 9 . The cost of inter-cell part movement per 

cell per year is the multiplication of the cost per part and the number of parts. Values of ck (inter-

cell) are presented in Table 7.4. The total cost of inter-cell material handling is R 290620.00, 

determined by summing individual costs. 

Table F- 9: Cost of Inter-Cell Part Flow (C = Cell, Y = Year) 

 Y1 Y2 Y3 Y4 Y5 Y6 
 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 

Flow Volume** 0 4 31 24 26.5 22.5 13.7 15.2 13.5 13.5 5 0 

ck (inter-cell) R 1.50 R 1.50 R 1.60 R 1.60 R 1.70 R 1.70 R1.80 R 1.80 R 1.90 R 1.90 R 2.00 R 2.00 

Cost* R 0.00 R 6.00 R 49.6 R 38.40 R 45.05 R 38.25 R 24.66 R 27.36 R 25.65 R 25.65 R 10.00 R 0.00 

* Amounts are in thousands of Parts, ** Amounts are in thousands of Rand.   
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F.9  Calculation of Cost Coefficients – Cost Based Assignment Model 

The cost of an hour of deficit capacity Cijk with respect to machine i in cell j in period k is based 

on the cost of inter-cell part movements that will result as a consequence of the deficit. The cost 

coefficient is determined by estimating the number of parts that are affected by the hour of deficit 

capacity, multiplied by the cost of an inter-cell movement per part.  Table F- 10 presents 

the coefficients corresponding to the problem of section 7.2.   

 Table F- 10: Cost Coefficients Cijk (C=Cell, M = Machine, Y=Year)  

 Y1 Y2 Y3 Y4 Y5 Y6 
 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 

M1 R 12.00 R 12.00 R 12.80 R 12.80 R 13.60 R 13.60 R 14.40 R 14.40 R 15.20 R 15.20 R 16.00 R 16.00 

M2 R 10.50 R 10.50 R 11.20 R 11.20 R 11.90 R 11.90 R 12.60 R 12.60 R 13.30 R 13.30 R 14.00 R 14.00 

M6 R 13.50 R 13.50 R 14.40 R 14.40 R 15.30 R 15.30 R 16.20 R 16.20 R 17.10 R 17.10 R 18.00 R 18.00 

M7 R 12.00 R 13.50 R 12.80 R 14.40 R 13.60 R 15.30 R 14.40 R 16.20 R 15.20 R 17.10 R 16.00 R 18.00 

M8 R 10.50 R 12.00 R 11.20 R 12.80 R 11.90 R 13.60 R 12.60 R 14.40 R 13.30 R 15.20 R 14.00 R 16.00 

M9 R 12.00 R 12.00 R 12.80 R 12.80 R 13.60 R 13.60 R 14.40 R 14.40 R 15.20 R 15.20 R 16.00 R 16.00 

M12 R 12.00 R 10.50 R 12.80 R 11.20 R 13.60 R 11.90 R 14.40 R 12.60 R 15.20 R 13.30 R 16.00 R 14.00 

As a sample calculation consider machine 1. This machine is required by parts 2, 4, 6, 9, 13 and 

16 corresponding to family PF1 and parts 5, 15, 17 corresponding to PF 2. Process cycle times 

for parts are presented in Table 7.3. 

The average processing time for parts corresponding to PF1 on machine 1 is: 

𝑡11 =
7+7+9+9+9+9

6
= 8.33 𝑚𝑖𝑛  

The average processing time for parts corresponding to PF2 is: 

𝑡12 =
7+8+8

3
= 7.67 𝑚𝑖𝑛  

The estimated cost per hour capacity deficit with respect to machine type 1 in Cell 1 in year 1 is 

calculated by equation 89 as follows: 

𝐶111 = ⌈
60 

𝑡̅11
⌉ 𝑐1 = ⌈

60 𝑚𝑖𝑛

8.33 𝑚𝑖𝑛
⌉ × 1.5 = 8 × 1.5 = 𝑅12  

Likewise the estimated cost per hour capacity deficit with respect to machine type 1 in Cell 2 in 

year 1 is: 

𝐶121 = ⌈
60 

𝑡̅12
⌉ 𝑐1 = ⌈

60 𝑚𝑖𝑛

7.67 𝑚𝑖𝑛
⌉ × 1.5 = 8 × 1.5 = 𝑅12  

Since the number of parts performing an inter-cell movement per hour capacity deficit is based 

on an average time. There will therefore be some discrepancy between the cost of inter-cell 
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movements as determined by the cost minimization assignment model and the actual inter-cell 

material cost associated with its solution.  

If a conservative approach is preferred, the use of the minimum cycle time among all parts in the 

family can be used with equation 89. This would result in higher cost coefficients and the model 

would effectively yield an upper bound on material handling cost if the associated solution is 

implemented. 

F.10 Cost of Inter-Cell Part Flow – Cost Minimization Assignment Model 

The cost of inter-cell part movements, corresponding to the reconfiguration plan of the capacity 

based assignment model, is calculated in Table F- 11. The cost of inter-cell part movement per 

cell per year is the multiplication of the cost per part and the number of parts. Values of ck (inter-

cell) are presented in Table 7.4. The total cost of inter-cell material handling is R 296620.00, 

determined by summing individual costs. 

Table F- 11: Cost of Inter-Cell Part Flow (C = Cell, Y = Year) 

 Y1 Y2 Y3 Y4 Y5 Y6 
 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 

Flow Volume** 8 0 31 24 26.5 22.5 13.7 15.2 13.5 13.5 5 0 

ck (inter-cell) R 1.50 R1.50 R1.60 R1.60 R1.70 R1.70 R1.80 R 1.80 R1.90 R1.90 R2.00 R2.00 

 Cost* R 12.00 R 0.00 R 49.6 R 38.4 R 45.05 R 38.25 R 24.66 R 27.36 R 25.65 R 25.65 R 10.00 R 0.00 

* Amounts are in thousands of Parts, ** Amounts are in thousands of Rand. 

F.11 Total Part Load per Cell per Year 

Table F-12 presents the total part load per cell per year. The total part load is the total number of 

parts to be manufactured by a cell, corresponding to its own part family.   

Table F-12: Total Part Load per Cell per Year (C=Cell, Y=Year) 

 Y1 Y2 Y3 Y4 Y5 Y6 

C1 20000 32500 32500 23500 22500 25000 

C2 20000 29500 28000 18800 18000 20000 

As a sample calculation consider Cell 1 in year 1. In year 1 parts 2, 4, 6 and 8 are to be 

manufactured in the cell. The sum of their individual volumes, as read from Table F- 2, is 

4000+8000+4000+4000 = 20000. 
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F.12  Revised Factory Configuration Template  

Figure F- 1 shows the updated FCT, the site corresponding to machine 7 in Cell 1 was eliminated.  

 

Figure F- 1: Updated Factory Configuration Template 

F.13  Intra-Cell Machine Assignment Model – Results 

Table F- 13  and Table F- 14 present the variable values to the best solution of the intra-cell 

machine assignment model for machine 5 and machine 10 respectively. 

Table F- 13: Best Solution - Intra-Cell Assignment for Machine 5 in Cell 1 

 xk ak bk yk ck dk 

k=1 1 1 0 0 0 0 

k=2 1 0 0 0 0 0 

k=3 0 0 1 1 1 0 

k=4 0 0 0 1 0 0 

k=5 0 0 0 1 0 0 

k=6 0 0 0 1 0 0 

Table F- 14: Best Solution Intra-Cell Assignment for Machine 10 in Cell 2 

 xk ak bk yk ck dk 

k=1 0 0 0 1 1 0 

k=2 0 0 0 1 0 0 

k=3 0 0 0 1 0 0 

k=4 1 1 0 0 0 1 

k=5 1 0 0 0 0 0 

k=6 1 0 0 0 0 0 
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F.14  Sample Calculation of GT Performance Measures 

Table F- 15: Machine Component Incidence Matrix with Block Structures – fixed CMS – Year 3 

 2 4 6 9 10 13 16 18 1 3 7 11 14 19 20 

1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 

2 0 0 0 0 1 1 0 1 0 0 1 1 1 0 1 

3 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 

4 0 1 1 1 0 1 0 1 0 0 0 0 0 0 0 

5 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 

12 0 0 0 1 0 1 0 1 1 0 1 1 1 0 0 

6 1 1 1 0 0 0 1 0 0 1 0 0 0 1 1 

7 1 0 0 0 0 0 1 0 1 1 0 0 0 1 0 

8 0 0 0 0 1 0 0 0 1 1 1 1 1 1 1 

9 1 1 1 0 0 0 0 0 0 1 0 0 0 1 1 

10 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 

11 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 

In this sample calculation, the cell and part family configurations will be examined in the third 

year of operation. Note that parts not being produced in this year are omitted from the machine-

component incidence matrix. Table F- 15 presents the machine-component incidence matrix with 

block structures; note that machine numbers are represented as row indices and part numbers are 

represented as column indices.  

The characteristics of the matrix are as follows: e1 = 50, ev = 40, eo = 18, e = 68, o = 112. Assume 

q=0.5, giving equal significance to machine utilization and inter-cell part movement. 

Group Efficiency  

𝜂1 =
𝑒1

𝑒1 + 𝑒𝑣
=

50

50 + 40
= 0.56 

𝜂2 =
𝑜 − 𝑒𝑣

(𝑜 − 𝑒𝑣) + (𝑒 − 𝑒1)
=

112 − 40

(112 − 40) + (68 − 50)
= 0.8 

𝜂 = 𝑞𝜂1 + (1 − 𝑞)𝜂2 = 0.5(0.56) + (1 − 0.5)0.8 = 0.68 

Group Efficacy  

𝜏 =
𝑒 − 𝑒𝑜

𝑒 − 𝑒𝑣
=

68 − 18

68 − 40
= 1.79 

Weighted Average Efficacy 

𝛾 =
𝑞(𝑒 − 𝑒𝑜)

𝑞(𝑒 + 𝑒𝑣 − 𝑒𝑜) + (1 − 𝑞)𝑒𝑜
=

0.5(68 − 18)

0.5(68 + 40 − 18) + (1 − 0.5)18
= 0.46 
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Group Measure 

𝜉𝑔 = 𝜉𝑢 − 𝜉𝑚 =
𝑒1

𝑒1 + 𝑒𝑣
−

𝑒𝑜

𝑒
=

50

50 + 40
−

18

68
= 0.29 

Utilization Measure 

𝑈 =  
𝑒1

𝑒1 + 𝑒𝑣
=

50

50 + 40
= 56 

Containment Measure 

𝐶 =
𝑒 − 𝑒𝑜

𝑒
=

68 − 18

68
= 74 

Exceptional Elements 

eo = 18 

Voids 

ev = 40 
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Appendix G  

In this appendix a CMS with a fixed layout is generated for the problem data presented in section 

7.2. The fixed CMS was developed using many of the same algorithms with the exception that 

each machine, once placed in a cell, could not be relocated.  

G.1 Group Technology Solution 

The cell and part family combinations for the CMS with a fixed layout were generated by a 

combination of the FCMdd algorithm and a modified version of the SFC heuristic. The structure 

of the modified SFC heuristic is exactly the same as described in section 4.5.2 with the exception 

of the cluster formation rule. For both machines and parts the following crisp cluster formation 

rule was applied: ik  = 1 if   
1

argmax ik
i C

i 
 

  and ik  = 0 otherwise. 

 In instances where a machine or part had a maximum membership that was tied across multiple 

clusters, the element was allocated to the cell/family with the least members. Under this cluster 

formation rule the parameter L is irrelevant. Table G- 1 lists the parameters that were used with 

the FCMdd algorithm and SFC heuristic.  

Table G- 1: Parameters – FCMdd algorithm and SFC heuristic 

FCMdd  Algorithm SFC Heuristic 

Binary Dissimilarity Measure Jaccard m 2 

Maximum Iterations 10 Number of Clusters 2 

m 2 Maximum Iterations 50 

Number of Clusters 2   

The resulting machine cells and part families were: 

 MC1 = {1, 2, 3, 4, 5, 6}; 

 MC2 = {7, 8, 9, 10, 11, 12}; 

 PF1 = {2, 4, 6, 8, 9, 10, 12, 13, 16, 18}; 

 PF2 = {1, 3, 5, 7, 11, 14, 15, 17, 19, 20}. 

The part families in this solution are the same as those established for the RCMS solution in 

section 7.3. The number of parts requiring the services of each machine in each in each cell will 

be the same and Table F- 6 applicable. The calculation of the mandatory number of machines to 

be purchased is also the same, as shown in Table 7.7 . One mandatory machine of each type will 

be made available. 



182 | P a g e  
 

Table G- 2 presents the machine cells and part families in the format of a machine-component 

incidence matrix with block diagonals. Note that machine numbers are listed as row indices and 

part numbers are listed as column indices. 

Table G- 2: Machine-Component Matrix with Block Diagonals 

 2 4 6 8 9 10 12 13 16 18 1 3 5 7 11 14 15 17 19 20 

1 1 1 1 0 1 0 0 1 1 0 0 0 1 0 0 0 1 1 0 0 

2 0 0 0 1 0 1 1 1 0 1 0 0 0 1 1 1 0 0 0 1 

3 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 

4 0 1 1 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 

5 1 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

6 1 1 1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 1 1 

7 1 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 1 1 1 0 

9 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 1 

8 0 0 0 1 0 1 1 0 0 0 1 1 0 1 1 1 0 0 1 1 

10 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 

11 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 1 

12 0 0 0 0 1 0 0 1 0 1 1 0 1 1 1 1 1 1 0 0 

 

An examination of Table G- 2 reveals that there are 16 exceptional elements outside of the block 

diagonal structures and 38 voids within the structures. The calculation of inter-cell part flow 

volumes per year based on the fixed cell configurations is presented in Appendix G.2.   

G.2 Calculation of Inter-Cell Part Movements and Cost 

Note that one inter-cell part movement is counted for each machine required by a part, which is 

not within its designed cell. Upon closer inspection, it may be possible for the part to visit multiple 

machines that are not present in the relevant cell by a single inter-cell move (i.e. combine inter-

cell visits). Combined visits are only possible if the sequence in which processes must occur is 

favourable. Combined visits are not considered here, as in the calculations with respect to the 

RCMS design. All calculations on volumes of inter-cell moves therefore represent the worst case 

scenario of one inter-cell move per missing machine.   

Table G- 3 shows the volumes of parts that will perform inter-cell movements based one the 

configurations of Cell 1 and Cell 2. Table G- 4 shows the cost of inter-cell part flow; the cost is 

calculated by the multiplication of the cost per part and the number of parts. There is a total of 

302500 inter-cell part movements at a total cost of R 526200.00.  
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Table G- 3: Inter-Cell Part Flow Volumes* (C=Cell, M=Machine,Y=Year) 

 Y1 Y2 Y3 Y4 Y5 Y6 

 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 

M1 0 0 0 0 0 0 0 6 0 12 0 20 

M2 0 16 0 17 0 12.5 0 3.2 0 1.5 0 0 

M3 0 0 0 0 0 0 0 0 0 0 0 0 

M4 0 0 0 0 0 0 0 0 0 0 0 0 

M5 0 0 0 0 0 0 0 0 0 0 0 0 

M6 0 0 0 12 0 18 0 12.8 0 6 0 0 

M7 8 0 7 0 4 0 0 0 0 0 0 0 

M8 0 0 3 0 4.5 0 9.2 0 13.5 0 20 0 

M9 16 0 14 0 8 0 0 0 0 0 0 0 

M10 0 0 0 0 0 0 0 0 0 0 0 0 

M11 0 0 0 0 0 0 0 0 0 0 0 0 

M12 0 0 12 0 18 0 14.3 0 9 0 5 0 

Total 24 16 36 29 34.5 30.5 23.5 22 22.5 19.5 25 20 

* Amounts are in thousands of Parts 

Table G- 4: Cost of Inter-Cell Part Flow (C = Cell, Y = Year) 

 Y1 Y2 Y3 Y4 Y5 Y6 
 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 

Flow Volume** 24 16 36 29 34.5 30.5 23.5 22 22.5 19.5 25 20 

Cost pp R 1.50 R 1.50 R 1.60 R 1.60 R 1.70 R 1.70 R 1.80 R 1.80 R 1.90 R 1.90 R 2.00 R 2.00 

Cost* R 36.00 R 24.00 R 57.60 R 46.40 R 58.65 R 51.85 R 42.30 R 39.60 R 42.75 R 37.05 R 50.00 R 40.00 

* Amounts are in thousands of Parts, ** Amounts are in thousands of Rand 

The arrangement of machines in cells for unidirectional flow will be presented in Appendix G.3. 

G.3 Line Analysis and Intra-Cell Back Flow Volumes 

One machine of each type is available to the fixed CMS. Since one machine of each type is 

available and the re-layout of machines is not permitted here, the arrangement of machines in 

cells will be optimized for unidirectional flow using the Tabu Search algorithm of section 5.3.2. 

The application of the TS algorithm to cell yielded the machine arrangements as shown in Table 

G- 5.  

Table G- 5: TS Results – Best Arrangement of Machines 

 

 

 

 Sequence of Machines 

Location 1 2 3 4 5 6 

Cell 1 1 2 3 4 6 5 

Cell 2 10 7 8 9 11 12 
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Figure G- 1 reveals that the best solution for Cell 1 imposed three part backtracking movements. 

Figure G- 2 reveals that the best solution for Cell 2 also imposed three part backtracking 

movements. In both cases no improvement was found although the algorithm was allowed to 

search for 1000 iterations.  

 

Figure G- 1: TS Algorithm – Best f* per Iteration – Cell 1 

 

Figure G- 2: TS Algorithm – Best f* per Iteration – Cell 2 

By examining the sequence in which machines will be arranged in Cell 1, parts 2, 6 and 16 will 

perform inter-cell backtracking movements. Parts 7, 11 and 14 will perform inter-cell 

backtracking movements in Cell 2. Table G- 6 and Table G- 7 present the volumes of parts that 

will perform intra-cell backtracking movements in Cell 1 and Cell 2 respectively.  
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Table G- 6: Volumes of Parts Performing Backtracking Movements in Cell 1* (P=Part, Y= Year) 

 P1 P6 P16 Total Back Flow 

Y1 4 4 4 12 

Y2 3.5 3.5 3.5 10.5 

Y3 2 2 2 6 

Y4 0 0 0 0 

Y5 0 0 0 0 

Y6 0 0 0 0 

* Amounts are in thousands of Parts 

Table G- 7: Volumes of Parts Performing Backtracking Movements in Cell 2* (P=Part, Y= Year) 

 P7 P11 P14 Total Back flow 

Y1 4 4 8 16 

Y2 3.5 3.5 7 14 

Y3 2 2 4 8 

Y4 0 0 0 0 

Y5 0 0 0 0 

Y6 0 0 0 0 

* Amounts are in thousands of Parts 

Table G- 8: Cost of Intra-Cell Part Back Flow (C = Cell, Y = Year) 

 Y1 Y2 Y3 Y4 Y5 Y6 
 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 

Flow Volume** 12 16 10.5 14 6 8 0 0 0 0 0 0 

Cost pp R 1.00 R 1.00 R 1.10 R 1.10 R 1.20 R 1.20 R 1.30 R 1.30 R 1.40 R 1.40 R 1.50 R 1.50 

 Cost* R 12.00 R 16.00 R 11.55 R 15.40 R 7.20 R 9.60 R 0.00 R 0.00 R 0.00 R 0.00 R 0.00 R 0.00 

* Amounts are in thousands of Parts, ** Amounts are in thousands of Rand 

The cost of intra-cell part backtracking is calculated in Table G- 8 using the cost per part provided 

in the problem definition of section 7.2. There is a total back flow volume of 66500 parts in cells 

at cost of R 71750.00.  
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G.4 Sample Calculation of GT Performance Measures 

In this sample calculation, the cell and part family configurations will be examined in the third 

year of operation. Note that parts not being produced in this year are omitted from the machine-

component incidence matrix. Table G- 9 presents the machine-component incidence matrix with 

block structures; note that machine numbers are represented as row indices and part numbers are 

represented as column indices.  

Table G- 9: Machine Component Incidence Matrix with Block Structures – fixed CMS – Year 3 

 2 4 6 9 10 13 16 18 1 3 7 11 14 19 20 

1 1 1 1 1 0 1 1 0        

2 0 0 0 0 1 1 0 1   1 1 1  1 

3 0 0 0 0 1 1 1 1        

4 0 1 1 1 0 1 0 1        

5 1 0 1 1 1 0 1 0        

6 1 1 1 0 0 0 1 0  1    1 1 

7 1      1  1 1 0 0 0 1 0 

8     1    1 1 1 1 1 1 1 

9 1 1 1      0 1 0 0 0 1 1 

10         0 0 1 1 1 0 1 

11         1 0 0 1 0 1 1 

12    1  1  1 1 0 1 1 1 0 0 

The characteristics of this matrix are as follows: e1 = 52, ev = 38, eo = 16, e = 68, o = 112. Assume 

q=0.5, giving equal significance to machine utilization and inter-cell part movement. 

Group Efficiency  

𝜂1 =
𝑒1

𝑒1 + 𝑒𝑣
=

52

52 + 38
= 0.58 

𝜂2 =
𝑜 − 𝑒𝑣

(𝑜 − 𝑒𝑣) + (𝑒 − 𝑒1)
=

112 − 38

(112 − 38) + (68 − 52)
= 0.82 

𝜂 = 𝑞𝜂1 + (1 − 𝑞)𝜂2 = 0.5(0.58) + (1 − 0.5)0.82 = 0.7 

Group Efficacy  

𝜏 =
𝑒 − 𝑒𝑜

𝑒 − 𝑒𝑣
=

68 − 16

68 − 38
= 1.73 
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Weighted Average Efficacy 

𝛾 =
𝑞(𝑒 − 𝑒𝑜)

𝑞(𝑒 + 𝑒𝑣 − 𝑒𝑜) + (1 − 𝑞)𝑒𝑜
=

0.5(68 − 16)

0.5(68 + 38 − 16) + (1 − 0.5)16
= 0.49 

Group Measure 

𝜉𝑔 = 𝜉𝑢 − 𝜉𝑚 =
𝑒1

𝑒1 + 𝑒𝑣
−

𝑒𝑜

𝑒
=

52

52 + 38
−

16

68
= 0.34 

Exceptional Elements 

eo = 16 

Voids 

ev = 38 
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