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Abstract

Space plasmas support a wide range of plasma wave modes. This thesis focuses on the

L and R mode waves. In particular, a theoretical investigation of (i) the whistler wave,

and (ii) the electromagnetic ion cyclotron (EMIC) wave, is performed. These are electro-

magnetic waves that propagate parallel to the ambient magnetic field. They exist in a

diverse range of plasma conditions and, hence, there is a need to investigate their dispersive

characteristics and growth rates under a variety of plasma parameters.

Setting this work apart from previous studies of the whistler and EMIC instabilities is the

choice of particle velocity distribution. In situ measurements have shown that the kappa

distribution provides the best fit to particle velocity distributions in a variety of space

plasmas. Motivated by this, all particle species in this thesis shall have a velocity distribu-

tion modelled by the kappa or bi-kappa distribution. This allows for the overabundance of

superthermal particles, which are ever present in space plasmas, to be taken into account.

The electron thermal anisotropy driven parallel propagating whistler instability in the

Saturnian magnetosphere, is investigated first. Motivated by observations, the hot and

cool electron species are each modelled by a bi-kappa distribution with different index κ.

A parameter survey, using parameter values for the Saturnian magnetosphere as a guide, is

performed. It is found that the growth rate of the whistler instability is highly dependent

on the spectral indices and temperature anisotropy of each electron species, as well as the

plasma parallel beta value of the hot electrons.

Secondly, a study of the EMIC instability in the terrestrial magnetosphere for a variety

of relative abundances of the ion species is performed. Here it is assumed that the hot

ring current ions (H+, He+ and O+), cool ions of plasmaspheric origin (H+, He+ and

O+), as well as the electrons, have particle velocity distributions modelled by the bi-kappa

distribution. The plasmaspheric ion populations play a relatively minor role in governing

the dispersive characteristics and growth rates of the branches of the EMIC instability. On

the other hand, it is found that the EMIC instabilities are highly sensitive to the relative

abundance of the ring current ions, especially the proton and helium branches.
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Chapter 1

General introduction
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2 CHAPTER 1. GENERAL INTRODUCTION

1.1 L and R mode waves

Space plasmas support a wide range of wave modes. The two modes that are of interest

in this study are the left- and right-handed polarised electromagnetic waves, also known

as the L and R mode, respectively (Swanson, 2003). In this introduction we shall briefly

explore the theory of these two modes. A more detailed discussion of each mode will be

carried out in the relevant chapters to follow.

Both the L and R modes are electromagnetic in nature and arise when we restrict our

study to waves that propagate parallel to the magnetic field. The dispersion relation,

D(k, ω) = 0, of any plasma wave is important as it relates the wave number, k, of a wave

to its frequency, ω. The L and R modes have dispersion relations given by (Gurnett and

Bhattacharjee, 2005, Eq. 9.3.33)

D(k‖, w) = 1−
k2‖c

2

ω2
− π

∑
j

ω2
pj

ω2

∫ ∞
−∞

dv‖

∫ ∞
0

dv⊥v
2
⊥

1(
k‖v‖ − ω ± Ωj

)
·
[(
ω − k‖v‖

) ∂fj0
∂v⊥

+ k‖v⊥
∂fj0
∂v‖

]
= 0 Im(ω) > 0, (1.1)

where the choice of “+Ωj” gives that of the L mode and the choice of “−Ωj” gives

that of the R mode. In Equation (1.1) the signed gyrofrequency for the jth species is

given by Ωj = qjB0/mj and is characterised by mass mj and charge qj which may take

positive or negative values. The plasma frequency ωpj , for the jth species is given by

ωpj = (n0jq
2
j /ε0mj)

1/2, where n0j is the equilibrium number density. The parameters v⊥

and v‖ are the perpendicular and parallel components of the velocity, respectively, and the

function fj0 is the zeroth-order velocity distribution function of species j. Other parame-

ters in Equation (1.1) are the parallel component of the wave number k‖, where |k‖| = k,

since we are considering the case of parallel propagation with respect to the magnetic

field, B0. The wave frequency, ω, is complex and given by ω = ωr + iγ. An outline of the

derivation of the dispersion relations, Equation (1.1), is given in Appendix A.

The R mode waves which occur at frequencies below the electron gyrofrequency correspond

to whistler waves. They are right hand circularly polarised, corresponding to the sense

of electron gyration around the ambient magnetic field, B0. L mode waves that occur
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at frequencies below the local proton gyrofrequency correspond to electromagnetic ion

cyclotron (EMIC) waves. They are left hand circularly polarised, corresponding to the

sense of ion gyration around B0. It is emphasised here that the polarisations in this study

are expressed relative to the external (average) magnetic field as opposed to the frequently

used convention of specifying polarisations with respect to the wave normal.

Whistler waves are among the most common naturally occurring waves found in the

Earth’s magnetosphere (Storey , 1953; Helliwell , 1969; Gurnett et al., 1976; Scarf et al.,

1984; Kennel et al., 1986). They have also been detected in the magnetospheres of other

planets, such as Jupiter (Scarf et al., 1979; Gurnett et al., 1979; Kurth et al., 1985), Nep-

tune (Gurnett et al., 1990) and Saturn (Gurnett et al., 2005; Akalin et al., 2006). Their

existence in a diverse range of plasma conditions reinforces the need to investigate their

dispersive characteristics and growth rates for a variety of plasma parameters.

Whistler waves propagate above the proton gyrofrequency but below the electron gyrofre-

quency (Helliwell , 1969). Kennel and Petschek (1966) proposed the first comprehensive

theory on how wave-particle interactions affect the dynamics of the Earth’s magneto-

sphere. Since then, it has been generally accepted that whistler instabilities can lead to

particle precipitation in the magnetosphere. Whistler waves play an important role in

the acceleration and pitch angle scattering of radiation belt electrons (Horne and Thorne,

1998; Shprits et al., 2006; Thorne, 2010).

Electromagnetic ion cyclotron (EMIC) waves are generated in the equatorial region of

the magnetosphere by wave-particle interactions with ring current ions (Roux et al., 1982;

Fraser et al., 2006, 2010). They are frequently detected as Pc 1 and Pc 2 waves in ground

based observations, which provides a well-understood identifier for these waves (Anderson

et al., 1992a; Fraser et al., 2006). These pulsations were found to occur predominantly

during the recovery phase (4-7 days after onset) of geomagnetic storms (Wentworth, 1964).

Jordanova et al. (2001) investigated the excitation of EMIC waves in the equatorial plane

during the pre-storm, main and recovery phases of the storm that occurred May 14-16,

1997. They found EMIC wave activity to be an important mechanism which contributes

to proton precipitation from the ring current during geomagnetic storms. Meredith et al.
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(2003) conducted a statistical survey of electron and proton minimum resonant energies.

They concluded that EMIC waves play an important role in relativistic electron loss during

storm conditions and may contribute to electron acceleration in the radiation belts.

1.2 Wave-particle interactions

Wave-particle interactions play a critical role in space plasma phenomena such as the

formation of the magnetopause boundary layer, plasmaspheric hiss emissions, precipita-

tion of particles causing auroras, etc. The resonant interaction between electromagnetic

waves and particles has been studied extensively (Kennel and Petschek , 1966; Lyons and

Williams, 1984). The interaction of low frequency waves with charged particles can trans-

port energy from one region of the magnetosphere to another (Tsurutani and Lakhina,

1997). Such an example is how EMIC and whistler waves interact with Van Allen belt

particles. This interaction can cause energetic protons and electrons to be scattered into

the loss cone and, therefore, lead to ring current decay during the recovery phase of ge-

omagnetic storms (Tsurutani and Lakhina, 1997). The loss cone is the set of angles in

velocity space within which particles will precipitate. Particles with pitch angles (angle

between the instantaneous particle velocity vector and the magnetic field vector) outside

the loss cone will mirror and continue to be trapped (Tsurutani and Lakhina, 1997).

It is well known that the motion of charged particles in magnetic fields is a combination

of circular motion around the field and translational motion along the field. A charged

particle interacts strongly with a circularly polarised wave of frequency, ω, and wave

vector, k, if its translational or guiding centre velocity produces the necessary Doppler

shift to make the wave frequency in the guiding centre frame an integral multiple of its

gyrofrequency. This is known as the cyclotron resonance interaction between the particles

and waves and can be written as (Tsurutani and Lakhina, 1997),

ω − k · v = nΩ. (1.2)

In Equation (1.2), ω is the wave angular frequency (with ω > 0), k is the wave vector, Ω

and v are the gyrofrequency and the velocity, respectively, of the particle in question and
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n is an integer.

The special case with n = 0 in Equation (1.2) corresponds to the Landau resonance. At

this resonance the particles do not see a rapid fluctuation in electric field of the wave,

thus, they interact strongly. Those particles with velocities marginally less than the phase

velocity of the wave, vph, will be accelerated up to the phase velocity by the wave electric

field. Those particles with velocities slightly faster than vph will be decelerated down

to vph (Tsurutani and Lakhina, 1997). If the number of slower particles is greater than

the number of faster particles (in any interval around vph), the average energy lost to

the particles by the wave will be greater than that gained on average and, therefore, the

wave will be damped (Tsurutani and Lakhina, 1997). This is known as Landau damping

(Landau, 1946).

In the case of the L and R mode waves, n = ±1, Equation (1.2) becomes (Tsurutani and

Lakhina, 1997),

ω − k‖v‖ = ±Ω. (1.3)

where k‖ and v‖ are the parallel wave number and parallel velocity, respectively, due to

the L and R modes being restricted to parallel propagation. The v‖ satisfying Equation

(1.3) correspond to the poles in the integrand of Equation (1.1). The case of the L mode

(“+Ω”) was discussed at length by Mace et al. (2011). They recognised that the pole,

vres‖ , in the integrand satisfies the phase locking condition (Mace et al., 2011),

ω − k‖vres‖ = Ω. (1.4)

Equation (1.4) gives the frequency, ω, and wave number, k‖, of a wave whose frequency

in the particle guiding centre frame travelling at vres‖ matches the particle’s own gyrofre-

quency. As such, the difference between the wave electric field phase and the particle

gyrophase will remain fixed (phase locking) (Mace et al., 2011). This allows particles

whose parallel velocity, v‖, lies close to vres‖ , to have a strong interaction with the wave,

depending on relative phase (Mace et al., 2011). For the R mode the considerations are

similar, but now it is electrons with Ω < 0 that interact with waves (normal resonance

- see below). Since Ω < 0 in this case and we have selected the minus sign in Equation
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(1.3), the condition for resonance can be written as ω − k‖v‖ = |Ω|, which is discussed

below and in Chapter 2.

There are two major types of resonances between particles and waves for n 6= 0: (i)

normal resonances and (ii) anomalous resonances. Normal resonance between charged

particles and waves is illustrated in Figure 1.1, reproduced from Tsurutani and Lakhina

(1997). For normal resonance, the waves and particles propagate toward each other (in

opposite directions). Left hand circularly polarised waves interact with positive ions,

whose gyromotion follows the left hand rule, as depicted in the top diagram of Figure

1.1. Electrons (whose gyromotion follows the right hand rule) interact with right hand

circularly polarised waves as depicted in the bottom diagram of Figure 1.1. Consequently,

the Doppler shift term (−k · v) is positive such that (Tsurutani and Lakhina, 1997),

ω − k‖vres‖ = |Ω|, (1.5)

and the wave frequency is shifted up to the particle gyrofrequency, |Ω|, i.e, the Doppler

shifted frequency is positive for normal resonance irrespective of whether it is a left hand

circularly polarised wave interacting with a positively charged ion or a right hand circularly

polarised wave interacting with a negatively charged electron.

Anomalous resonance occurs when positive ions interact with right hand circularly po-

larised waves (as illustrated in Figure 1.2) and/or electrons interact with left hand circu-

larly polarised waves. This kind of resonance occurs when the particle parallel velocity

is considerably greater than the phase velocity of the wave and the particle “overtakes”

the wave. In doing so, the Doppler shift produces a wave polarisation in the ion (elec-

tron) guiding centre frame of reference that is left (right) hand circularly polarised. By

the resonance condition, Equation (1.3), the Doppler shift term is negative and, there-

fore, the Doppler shift term decreases the wave frequency to that of the negative of the

gyrofrequency turning around the sense of polarisation (Tsurutani and Lakhina, 1997).
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Figure 1.1: Normal cyclotron resonance between charged particles and circularly polarised

electromagnetic waves. The top diagram gives a schematic illustration of a left hand

circularly polarised wave interacting with a positive ion. The bottom diagram gives a

schematic illustration of a right hand circularly polarised wave interacting with an electron.

This figure is reproduced from Tsurutani and Lakhina (1997).
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Figure 1.2: Anomalous resonance between an ion and a right hand circularly polarised

wave. This figure is reproduced from Tsurutani and Lakhina (1997).

1.3 Kappa velocity distribution

The Maxwellian distribution has long been the chosen particle distribution to model plas-

mas found in space, despite the fact that these space plasmas are frequently found to be

far from equilibrium. In situ measurements of space plasmas by spacecraft have shown

mounting evidence that velocity space distributions exhibit a non-Maxwellian form. The

primary reason for this is because of an overabundance of superthermal particles which

are distributed in energy, or momentum, according to a power law (Christon et al., 1988;

Maksimovic et al., 1997a; Schippers et al., 2008; Dialynas et al., 2009; Arridge et al.,

2009). The kappa distribution best describes the superthermal particle populations which

are ever present in space plasmas (Pierrard and Lazar , 2010). It provides a good fit to

particle velocity distributions in plasmas, as it has a power law superthermal tail and

smoothly merges it with a Gaussian core.

Vasyliunas (1968) was the first to use the family of κ distributions while trying to fit OGO

1 and OGO 2 solar wind electron data. The isotropic kappa distribution (Summers and

Thorne, 1991) is given by

f(v) = (πκθ2)−3/2
Γ(κ+ 1)

Γ(κ− 1/2)

(
1 +

v2

κθ2

)−(κ+1)

, (1.6)

where the generalised thermal speed θ is given by

θ =

[
2

(
κ− 3

2

κ

)]1/2(
T

m

)1/2

. (1.7)
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Figure 1.3: Plots of the kappa distribution for κ = 1.6 —, κ = 2.0 —, κ = 3.0 — and

κ =∞ — (the Maxwellian case).

Parameters in the above equations are the spectral index, κ, the gamma function, Γ, the

kinetic temperature, T , and mass, m . It is important to note that κ > 3
2 , otherwise

T diverges (Summers and Thorne, 1991). In the limit κ → ∞, the kappa distribution

function, Equation (1.6), reduces to a Maxwellian distribution (Summers and Thorne,

1991). In practical terms, however, quasi-Maxwellian behaviour can be attained for κ as

low as 10 (Hellberg and Mace, 2002).

Over the years, the kappa distribution has gained popularity amongst researchers and

has become, for many, the model of choice for velocity distributions of charged particle

species in space plasmas. It has been shown to be the equilibrium velocity distribution

for a plasma in a superthermal radiation field (Hasegawa et al., 1985). Christon et al.

(1988) and Christon et al. (1989) showed that the electrons and the central plasma sheet

ions can be well fitted by a kappa distribution. The kappa distribution has been shown to

be a useful model for electrons and protons escaping from the solar corona (Maksimovic
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et al., 1997b). It has also been shown to be the best model for particle populations

in the Saturnian magnetosphere (Krimigis et al., 1983; Schippers et al., 2008; Arridge

et al., 2009). In fact, Schippers et al. (2008) found that the electron velocity distribution

functions in the Saturnian magnetosphere were best characterised by the sum of two kappa

distributions. This idea was reinforced by Arridge et al. (2009) who used the sum of two

kappa distributions as the electron distribution function in their study of Saturn’s nightside

and pre-dawn electron plasma sheet.

The kappa distribution has also been used in theoretical studies of plasma waves. Summers

and Thorne (1991) derived a modified dispersion function based on the kappa distribution

valid for integer values of κ. Mace and Hellberg (1995) extended this idea and generalised

the dispersion function of Summers and Thorne (1991) to allow for arbitrary real values of

κ by demonstrating its close relationship to the Gauss hypergeometric function. Hellberg

and Mace (2002) suggested that in some cases, magnetised plasmas may have anisotropic

power law distributions. Owing to this, they present the idea of a kappa-Maxwellian

distribution, which has a one dimensional kappa distribution along a preferred direction

in velocity space and a two dimensional Maxwellian distribution in the plane perpendicular

to this direction. Mace and Hellberg (2009) showed the more general applicability of the

plasma dispersion function, ZκM , introduced by Hellberg and Mace (2002) for plasmas

having a kappa-Maxwellian distribution. Mace (2004) and Henning et al. (2011) used

the kappa distribution as the electron particle velocity distribution for a study of electron

Bernstein waves. Henning et al. (2011) used the kappa distribution to model both electron

populations (hot and cool) and applied their model to conditions observed in the Saturnian

magnetosphere.

Many mechanisms have been proposed to account for the origin of the superthermal tails

of the velocity distributions and occurrence of the kappa distribution in space plasmas

(Pierrard and Lazar (2010) and references therein). There is also theoretical justification

for the use of the kappa distribution from the emerging field of non-extensive statistical

mechanics. The introduction of a thermo-statistical theory based on non-extensive entropy

provides a statistical mechanical basis for the existence of the kappa distribution (Tsal-
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lis, 1988). Leubner (2002) showed that the kappa distribution arises as a consequence

of the generalised entropy by non-extensive statistics. Livadiotis and McComas (2009)

have shown the kappa distribution to be equivalent to the q-distribution function that

results from the maximisation of the Tsallis entropy (Pierrard and Lazar , 2010) under

the constraints of the canonical ensemble. The q-distribution has been applied to investi-

gate plasmas with non-Maxwellian distributions in studies of the solar interior (Du, 2006),

the solar wind (Leubner and Voros, 2005), ion acoustic waves (Liu and Du, 2008), and

interplanetary space (Leubner , 2004), among others.

How Tsallis statistics underpins the theory of the kappa distribution was clearly discussed

by Livadiotis and McComas (2009). They explained at length how the kappa distribu-

tion arises naturally from Tsallis statistical mechanics, essentially as the so-called escort

probability function. This link between the kappa distribution and the non-extensive sta-

tistical mechanics of Tsallis provides a solid theoretical basis for the existence of the kappa

distribution and raises its status above that of only a useful fit function.

1.4 Thesis outline

In the work to follow, we study instability of both the L and R mode waves under a

variety of conditions. In both of the studies presented, we solve the dispersion relations

for EMIC (L mode) and whistler waves (R mode) numerically and without approxima-

tion. We assume that the velocity distributions of all particle species is given by the

bi-kappa distribution (Summers and Thorne, 1991) which is the kappa analogue of the

bi-Maxwellian. Using the bi-kappa distribution allows for different temperatures perpen-

dicular and parallel to B0.

Firstly, in Chapter 2, we investigate the parallel propagating whistler instability in the

Saturnian magnetosphere, driven by temperature anisotropy in both the hot and cool

electron species. Schippers et al. (2008) found that the electron velocity distribution

functions in the Saturnian magnetosphere were best characterised by the sum of two

kappa distributions. Therefore, we shall assume that the velocity distribution of both

hot and cool electron species is that of the bi-kappa distribution. This chapter presents
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results from a parameter survey of the dispersion relation and growth rate for different

anisotropies, temperatures and spectral indices of the two electron components.

Next, in Chapter 3, we present the results from a study of the behaviour of EMIC wave

dispersion relation and growth rate for a variety of relative abundances of the ion species.

Following the model of Mace et al. (2011), it is assumed that the hot ring current ions, cool

ions of plasmaspheric origin, as well as the electrons, have particle velocity distributions

modelled by the bi-kappa distribution. In this chapter, the effects of varying the relative

ion abundances and how this influences wave growth and damping, are investigated.

Finally, in Chapter 4, we provide the general summary of the thesis.
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Whistler mode instability
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2.1 Introduction

Saturn is a gas planet surrounded by nine rings and orbited by sixty-two known moons

(Gombosi and Hansen, 2005). Saturn’s magnetic field is mostly dipolar, with north and

south poles at the end of a single magnetic axis (Russell , 1993). However, its magnetic

field has also been found to have a weaker quadrupole, octupole and higher components

(Russell , 1993).

A wealth of data has been sent back by the Cassini spacecraft about the Saturnian mag-

netosphere. It has been shown to be highly variable and influenced by the solar wind,

sources of plasma within the planetary system, as well as the planet’s rotation (Gombosi

and Hansen, 2005). The Saturnian magnetosphere extends between 20 and 25 Saturnian

radii (Rs ≈ 60268km) towards the Sun. The solar wind strongly affects the magnetic

field by compressing it on the day side and drawing it out on the night side to form a

long magnetotail (Russell , 1993). This magnetotail forms the channel through which solar

plasma enters the inner magnetosphere (Russell , 1993).

The Saturnian magnetosphere can be divided into three main regions. Region 1, the inner

magnetosphere, is found within 9-10 Rs. Region 2 is a dynamic and extended plasmasheet

and is between 9-10 Rs and 12-14 Rs, depending on solar activity. The extension of the

plasmasheet is a consequence of the rapid rotation of Saturn (T = 10.2 hours). Region

3 is found beyond 12-14 Rs and forms the high-latitude magnetosphere (Sittler et al.,

1983; Gurnett et al., 2005; Young et al., 2005; André et al., 2008). The positions of the

boundaries that define these regions are largely dependent on solar activity and while

these positions to not overlap, the position of these boundaries is variable. A schematic of

the regions of the Saturnian magnetosphere and plasma populations derived from Voyager

data is provided in Figure 2.1 (Sittler et al., 1983).

The primary source of plasma in Saturn’s magnetosphere originates within the magneto-

sphere itself (Gombosi and Hansen, 2005). The moons (primarily Enceladus) and rings

of Saturn provide a substantial amount of heavy ions making up the dense plasma of the

inner magnetosphere. Neutral gas provided by the moons is ionised in the inner magne-

tosphere, loading the closed magnetic field lines with heavy ions (Gombosi and Hansen,



2.1. INTRODUCTION 15

Figure 2.1: Regions and plasma populations in Saturn’s magnetosphere as derived from

Voyager data (Sittler et al., 1983).

2005). The plasmasheet region is composed of a mixture of both cool and hot plasma

populations. This is a highly variable region with stretched magnetic field lines (André

et al., 2008). The outer magnetosphere has a quiet magnetic field, low plasma density and

is strongly influenced by the solar wind (André et al., 2008).

The area of the Saturnian magnetosphere which is of particular interest in this chapter is

that of the plasmasheet region, where both hot and cool electron populations are found.

Rymer et al. (2007) performed phase space density analysis of electron measurements

made by the Cassini CAPS instrument. They used this to investigate the sources of two

different electron components. The two electron components of interest were the hot (1 -

100 keV) and cool (1 - 100 eV) electrons. Rymer et al. (2007) found that the source of the

cool electrons exists within the boundaries of 4 Rs and 11 Rs. This source is most likely

the neutral cloud (Jurac and Richardson, 2005). The hot electrons, on the other hand,

originate in the outer magnetosphere and are transported radially inward via centrifugal

interchange instability (Hill , 2006). The energy of the hot electrons tends to increase

with a decrease in radial distance, which is consistent with invariant-conserving transport

(Rymer et al., 2007).

As previously discussed in Chapter 1, Section 1.1, whistler waves are electromagnetic waves
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in a magnetised plasma which occur at frequencies below the electron cyclotron frequency.

They are right hand circularly polarised (R mode), corresponding to the sense of electron

gyration around the ambient magnetic field. The study of whistler waves in planetary

magnetospheres is vital as they play a key role in many space plasma phenomena, such as

the pitch-angle scattering and hence precipitation loss of trapped radiation belt electrons

(Kennel and Petschek , 1966; Scarf and Russell , 1976; Tsurutani and Lakhina, 1997; Xiao

et al., 2009). This was discussed in detail in Chapter 1, Section 1.2.

Whistler waves in the Saturnian magnetosphere have long been studied (Gurnett et al.,

1981; Scarf et al., 1982; Gurnett et al., 2005). Voyager 1 encountered Saturn in November

1980 and provided the first opportunity to investigate plasma waves in the Saturnian mag-

netosphere. Gurnett et al. (1981) reported that whistler mode hiss and chorus emissions

were observed. They found that the whistler mode emissions reached a maximum as Voy-

ager 1 approached the equator. Voyager 2 was launched shortly after and was expected

to supplement and extend the measurements from plasma wave phenomena of Voyager

1 (Scarf et al., 1982). Scarf et al. (1982) reported that Voyager 2 also detected whistler

mode emissions in the Saturnian magnetosphere, complementing the findings of Voyager

1. Whistler mode emissions were also reported by Gurnett et al. (2005) using data from

Cassini’s first approach and its orbit of Saturn.

The magnetospheres of planets contain many sources of free energy able to produce plasma

instabilities which lead to the emission of waves propagating in the whistler mode (Singhal

and Tripathi , 2006). These instabilities usually arise due to anisotropic electron distribu-

tions, such as beams, rings, loss cones and temperature anisotropy. The source of free

energy of interest in this study is that of electron temperature anisotropy, T⊥/T‖ > 1,

where T⊥ and T‖ are the perpendicular and parallel kinetic temperatures, respectively.

The whistler instability driven by electron temperature anisotropy in a plasma has been

studied extensively using both the Maxwellian (Gary and Wang , 1996; Gary and Cairns,

1999; Quan-Ming et al., 2004; Gary et al., 2011, 2012) and the kappa (Mace, 1998; Xiao

et al., 2006a,b; Singhal and Tripathi , 2006; Tripathi and Singhal , 2008; Mace and Sydora,

2010; Lazar et al., 2013) distributions to model the electron velocity distributions.
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Mace (1998) investigated the electron temperature anisotropy driven whistler instability

in the vicinity of the Earth’s foreshock. Taking note of the non-Maxwellian nature of

the plasma in this region (Gary , 1981) and the presence of power law tails on the particle

distributions (Feldman et al., 1982), the bi-Lorentzian distribution was used as the particle

velocity distribution. The investigation assumed a single electron component and a single

proton component, each having the bi-Lorentzian as their statistical distribution in phase

space. The conclusion was that when the electrons have a velocity distribution modelled

by the bi-Lorentzian distribution, the instability growth rate far exceeds that predicted

by the Maxwellian model with similar electron anisotropy.

Xiao et al. (2006a) investigated the parallel propagating whistler instability in a plasma

using the fully relativistic kappa-loss-cone (KLC) distribution. They evaluated the growth

rates of the whistler instability in a plasma composed of a dominant cold electron popu-

lation, a small hot electron population and background neutralising ions. They compared

the results using the KLC distribution to those obtained using the typical kappa distribu-

tion under various conditions. They found that the wave growth produced by the kappa

distribution was less than that of the KLC distribution in the lower wave frequency range

(ω . 0.1Ωe). This trend is reversed at higher wave frequencies. This is due to the KLC

distribution having a higher fractional number of resonant electrons (responsible for wave

growth) in the lower wave frequency case. The results show that the hot electrons play

a dominant role in the whistler instability. They also concluded that the growth rates

increase with an increase in thermal anisotropy, but the peak growth rate increased more

rapidly for the kappa distribution than for the KLC distribution.

Xiao et al. (2006b) considered the whistler instability driven by electron temperature

anisotropy. They used a bi-kappa distribution to model the energetic electrons in the

presence of a cold plasma (cold isotropic electrons and cold protons). They investigated

the instability threshold condition and how it is affected by both the spectral index κ, and

the parallel electron beta value (the ratio of electron kinetic pressure to magnetic pressure).

The instability threshold in this instance refers to the minimum anisotropy of electrons

needed to drive the whistler wave instability. Xiao et al. (2006b) found that as the spectral
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index is increased, the instability threshold condition for the kappa distribution decreases.

Singhal and Tripathi (2006) investigated parallel propagating whistler waves in a plasma

composed of both hot and cool electron components. The cool electron component was

represented by the Maxwellian distribution, while the hot electron component was given

by the bi-Lorentzian distribution. The instability was driven by temperature anisotropy

in the hot electrons, while the cool electrons were taken to be isotropic. This model was

applied to the Saturnian magnetosphere and the effects on the temporal growth rate of

varying the spectral index, temperature, temperature anisotropy and electron density of

the hot electron species was investigated. It was found that the greatest electron density of

the hot electrons investigated (nh = 2.0cm−3) produced the broadest instability bandwidth

(window of growing frequencies). When the hot electron temperature was increased, this

resulted in an increase in growth rate and instability bandwidth. The results of Singhal

and Tripathi (2006) also show that an increase in the anisotropy of the hot electrons

results in an increase in the growth rate as well as an increase in the window of growing

frequencies. As the anisotropy is increased, wave growth is observed at higher frequencies.

The growth rate was shown to increase as the spectral index of the hot electrons was

decreased. The bandwidth was found to increase as the spectral index decreased with

wave growth seen at smaller frequencies for lower values of κ. While Singhal and Tripathi

(2006) found their results were a good fit to observations made by Voyager and Cassini,

they used parameters typically observed at low Saturnian radii (R = 2.2 − 6 Rs), where

the number density of the hot electron species is small (nh = 0.001− 0.007 ne).

Tripathi and Singhal (2008) studied the whistler instability using an anisotropic kappa

loss cone (KLC) distribution and compared it to observations made by Voyager 2 in

the outer planets of Uranus and Neptune. They considered a plasma where the cool

(thermal) electrons and protons were represented by a Maxwellian distribution and the

hot (superthermal) electrons and protons by the bi-kappa distribution (KLC distribution

with l = 0). They found that an increase in hot electron temperature resulted in a larger

instability bandwidth at both Neptune and Uranus. An increase in hot electron anisotropy

produced an increase in the window of growing frequencies with wave growth found at
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higher frequencies for larger anisotropies. These results are similar to those of Singhal and

Tripathi (2006) for the Saturnian magnetosphere. Tripathi and Singhal (2008) found that

an increase in hot electron number density results in an increase in growth rate at both

planets. However, an increase in hot electron number density gives a larger instability

bandwidth at Uranus, while at Neptune there is no systematic change in bandwidth.

Mace and Sydora (2010) extended the work done by Mace (1998) by conducting a pa-

rameter survey of the parallel propagating whistler instability. Keeping their investigation

confined to the single electron component case, they found that the growth rate of the

instability is highly dependent on not only the spectral index, κe, but also the anisotropy

and plasma parallel beta value of the electrons. They found that for small anisotropies, the

harder the tail (the smaller the spectral index) on the electron velocity distribution, the

larger the maximum growth rate. This trend is reversed at large temperature anisotropies.

At intermediate anisotropies, there exists a particular κe which produces the maximum

growth rate. The κe dependence of the peak maximum growth rate is in this case non-

monotonic. Most importantly, Mace and Sydora (2010) found that there is a vital parallel

electron beta dependence of the whistler instability. For a fixed value of the electron

temperature anisotropy, the growth rate of the instability is strongly controlled by the

parallel electron beta value. They found that the smaller the parallel electron beta value,

the smaller the growth rate and vice versa. It is also the parallel electron beta value that

governs at which intermediate value of the anisotropy the variation in peak growth rate

becomes non-monotonic with an increase in κe.

Lazar et al. (2013) used the kappa distribution as the particle velocity distribution to

investigate the threshold conditions for the whistler instability driven by temperature

anisotropy for parameters typically found in the solar wind. They found that the instability

threshold can be very sensitive to the spectral index and the effect of the superthermal

electrons is dependent on both the temperature anisotropy and plasma beta value. The

lowest thresholds were found to decrease with an increase in superthermal electrons at low

anisotropies. At larger anisotropies, this trend is reversed and the presence of superthermal

particles was found to suppress the growth rate and increase the threshold.
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2.2 Motivation and aim

Schippers et al. (2008) analysed the radial distribution of electron populations in Sat-

urn’s magnetosphere using data collected by instruments on board the Cassini satellite.

They used a forward modelling method to test different distribution functions which were

compared to the observational data. Specifically, they tried three different distribution

functions:

(i) a Maxwellian distribution was used to model both cool (thermal) and hot (superther-

mal) electron species,

(ii) a Maxwellian distribution was used to model the thermal electron population, while a

kappa distribution was chosen to represent the superthermal electrons and

(iii) separate kappa distributions were used to model each electron population.

The results of the various models are illustrated in Figure 2.2, reproduced from Schippers

et al. (2008).

Schippers et al. (2008) found that when both electron species were modelled by a Maxwellian

distribution, the model produced fluxes that were too low compared to the original data.

This is clearly evident in Figure 2.2a. Additionally, it did not reproduce the tail distri-

bution of the superthermal electron population. While using a Maxwellian distribution

to model the thermal electrons and a kappa distribution for the superthermal electrons

(Figure 2.2b) resolved the pitfalls of the dual Maxwellian model, the model only appeared

to fit the data well at low radial distances. At larger radial distances the model was not

accurate enough due to the broadening of the thermal peak. On the other hand, Schippers

et al. (2008) found that the dual kappa distribution model (Figure 2.2c) always provided

the best fit to the electron velocity distribution.

Arridge et al. (2009) reinforced the idea that in the Saturnian magnetosphere the electron

components exhibit a distinctly non-thermal character that requires a weighted sum of two

kappa distributions to properly model their velocity distribution. They used dual kappa

distributions as the electron distribution functions in their study of Saturn’s nightside

and pre-dawn electron plasma sheet. The most common state of the nightside and pre-

dawn electron plasma sheet is the quiescent state which has a steady electron temperature
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of approximately 100 eV. In this state they found that in this region of the Saturnian

magnetosphere the electron distribution functions were best characterised by the dual

kappa distribution.

The aim of this chapter is to investigate the parallel propagating whistler instability in

the Saturnian magnetosphere driven by temperature anisotropy in both the hot and cool

electron species. Following the results of Schippers et al. (2008), we shall assume that the

velocity distributions of both hot and cool electron species are that of the bi-kappa distri-

bution. Using parameter values derived by Schippers et al. (2008) as a guide, this chapter

presents results from a parameter survey of the dispersion relation and growth rate for

different anisotropies, temperatures and spectral indices of the two electron components.
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Figure 2.2: (Reproduced from Schippers et al. (2008)) Composite CAPS/ELS and MIMI/

LEMMS (energy channels C0 - C7) spectral plots of electron intensities versus energy,

observed at (top) 2200 UT (R = 9Rs, local time 18.32 h, latitude 0.23 degrees) and at

(bottom) 0727 UT (R = 12.8Rs, local time 19.82 h, latitude 0.35 degrees) on days of

142 and 143 of year 2006 during Rev. 24, respectively. Original data are represented

in black, Schippers et al. (2008) interpolated data is represented in red, and the results

of the various models used by Schippers et al. (2008) are represented in blue. Left (a):

Model with two Maxwellian distributions. Middle (b): Model with one Maxwellian and

one kappa distribution. Right (c) Model with two kappa distributions.
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2.3 Model and basic equations

The model and basic equations used in this chapter are similar to those used by Mace and

Sydora (2010), in which the plasma is assumed to be uniform, collisionless and immersed

in a uniform magnetic field, B0. Without loss of generality, the direction of B0 is taken

to be the z-axis of the Cartesian coordinate system. It is assumed that all particle species

have a bi-kappa velocity distribution (Summers and Thorne, 1991),

f(v⊥, v‖) = π−3/2
1

θ2⊥θ‖

Γ(κ+ 1)

κ3/2Γ(κ− 1
2)

(
1 +

v2⊥
κθ2⊥

+
v2‖

κθ2‖

)−(κ+1)

, (2.1)

where κ is the spectral index, Γ is the gamma function and v⊥ and v‖ are the perpendicular

and parallel components of the velocity, respectively, with respect to B0. The parameters

θ⊥ and θ‖ are generalised thermal speeds perpendicular and parallel to B0, respectively,

and are related to the kinetic temperatures, T⊥ and T‖ via (Summers and Thorne, 1991),

θ⊥ =

[
2

(
κ− 3

2

κ

)]1/2(
T⊥
m

)1/2

, (2.2)

θ‖ =

[
2

(
κ− 3

2

κ

)]1/2(
T‖

m

)1/2

. (2.3)

The dispersion relation for parallel propagating R mode waves in a plasma with arbitrary

velocity distribution, fj0, is given by (Gurnett and Bhattacharjee, 2005; Mace and Sydora,

2010) (see Appendix A for the derivation)

k2‖c
2

ω2
=1− π

∑
j

ω2
pj

ω2

∫ ∞
−∞

dv‖

∫ ∞
0

dv⊥v
2
⊥

1

k‖v‖ − ω − Ωj

·
[(
ω − k‖v‖

) ∂fj0
∂v⊥

+ k‖v⊥
∂fj0
∂v‖

]
(Im ω > 0), (2.4)

where Ωj = qjB0/mj is the signed gyrofrequency, where qj and mj are the charge and

mass of the j th component, respectively. The plasma frequency of the j th component is

given by ωpj = (n0jq
2
j /ε0mj)

1/2 with n0j being the equilibrium number density. Other

parameters are the parallel component of the wave number k‖, where |k‖| = k since we are
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considering the case of parallel propagation with respect to B0, and the wave frequency,

ω, which is complex and given by ω = ωr + iγ.

In Equation (2.4) it is observed that there is a pole in the integrand. This has been

discussed for the L mode wave case in Chapter 1, Section 1.2. The same principles apply

to R mode waves whose underlying microphysics of wave-particle interactions is similar.

The pole in the integrand at v‖ = vres‖j , corresponds to the cyclotron resonance condition

(Mace et al., 2011)

ω − k‖vres‖j = −Ωj . (2.5)

Equation (2.5) indicates that a particle in the distribution whose parallel velocity, v‖, lies

close to vres‖j can have a strong interaction with the wave, allowing for momentum and

energy exchange between them (Mace et al., 2011; Tsurutani and Lakhina, 1997).

We seek to obtain the dispersion relation for parallel propagating electromagnetic R mode

waves in a plasma where the velocity distribution for each plasma species, j, is given by

the bi-kappa distribution, Equation (2.1). The derivatives of Equation (2.1) with respect

to v‖ and v⊥ are

∂f

∂v‖
= −π−3/2 2

θ2⊥θ
3
‖

Γ(κ+ 2)

κ5/2Γ(κ− 1
2)
v‖

(
1 +

v2⊥
κθ2⊥

+
v2‖

κθ2‖

)−(κ+2)

, (2.6)

and

∂f

∂v⊥
= −π−3/2 2

θ4⊥θ‖

Γ(κ+ 2)

κ5/2Γ(κ− 1
2)
v⊥

(
1 +

v2⊥
κθ2⊥

+
v2‖

κθ2‖

)−(κ+2)

, (2.7)

respectively. Substituting Equations (2.6) and (2.7) into Equation (2.4) yields,

k2‖c
2

ω2
= 1 +

∑
j

π−1/2
2

θ2⊥jθ‖j

Γ(κj + 2)

κ
5/2
j Γ(κj − 1

2)

ωpj
2

ω2

∫ ∞
−∞

dv‖

k‖v‖ − ω − Ωj

·

[
ω

θ2⊥j
+

(
1

θ2‖j
− 1

θ2⊥j

)
k‖v‖

]∫ ∞
0

dv⊥v
3
⊥

(
1 +

v2⊥
κjθ2⊥j

+
v2‖

κjθ2‖j

)−(κ+2)

. (2.8)

Using standard integrals (Gradshteyn and Ryzhik , 2000) to evaluate Equation (2.8) (see

Appendix B for a full derivation), we arrive at the dispersion relation for parallel propa-

gating electromagnetic R mode waves in a plasma where the velocity distribution for each
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plasma species, j, is given by the bi-kappa distribution (Mace and Sydora, 2010)

k2c2

ω2
= 1 +

∑
j

ω2
pj

ω2

{
Aj +

[
Aj

(
ω + Ωj

kθ‖j

)
+

ω

kθ‖j

]
Uκj

(
ω + Ωj

kθ‖j

)}
, (2.9)

where k = |k‖|. The function Uκ is the dispersion plasma function (Mace and Hellberg ,

2009) defined in terms of the Gauss hypergeometric function 2F1 by

Uκ(ζ) = i
(κ− 1

2)

κ3/2
2F1

[
1, 2κ;κ+ 1;

1

2

(
1− ζ

iκ1/2

)]
. (2.10)

The thermal anisotropy of particle species j is defined by

Aj =
θ2⊥j
θ2‖j
− 1 =

T⊥j
T‖j
− 1. (2.11)

Mace and Sydora (2010) derived an estimate of the growth rate of the whistler instability

in an electron-ion plasma. Using the same procedure we can extend it to the dual electron

case. We begin by making the assumption that (Mace and Sydora, 2010)∣∣∣∣ω + Ωj

kθ‖j

∣∣∣∣� 1, (2.12)

for each species j. This allows for the asymptotic expansion of the dispersion plasma

function Uκ such that (Mace and Sydora, 2010),

Uκ(ζ) = π1/2
Γ(κ)

κ1/2Γ(κ− 1/2)

(
1 +

ζ2

κ

)−κ
(i− tanκπ)

− 1

ζ
− 1

2

(
κ

κ− 3/2

)
1

ζ3
+ ............. (2.13)

Substituting the first three terms of Equation (2.13) with ζ = (ω+Ωj)/(kθ‖j) into Equation

(2.9) yields

k2c2

ω2
= 1 +

∑
j

ω2
pj

ω2

{
Aj +

[
Aj

(
ω + Ωj

kθ‖j

)
+

ω

kθ‖j

]

·

[
iπ1/2

Γ(κj)

κ
1/2
j Γ(κj − 1/2)

(
1 +

1

κj

(
ω + Ωj

kθ‖j

)2
)−κj

−
kθ‖j

ω + Ωj
− 1

2

(
κj

κj − 3/2

)
(kθ‖j)

3

(ω + Ωj)3

]}
. (2.14)
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It is noted that for tractability purposes we have ignored the small term proportional to

tanκπ in Equation (2.14). For cases where κ is a non-integer, it only gives rise to a small

additional term in the real part, and vanishes identically when κ is an integer. Expanding

the brackets in Equation (2.14) yields,

k2c2

ω2
= 1 +

∑
j

ω2
pj

ω2

{
−1

2

(
κj

κj − 3/2

)
Aj(kθ‖j)

2

(ω + Ωj)2
− ω

ω + Ωj
− 1

2

(
κj

κj − 3/2

)
(kθ‖j)

2ω

(ω + Ωj)3

}

+ iπ1/2
∑
j

ω2
pj

ω2

Γ(κj)

κ
1/2
j Γ(κj − 1/2)

[
Aj

(
ω + Ωj

kθ‖j

)
+

ω

kθ‖j

][
1 +

1

κj

(
ω + Ωj

kθ‖j

)2
]−κj

= 1−
∑
j

ω2
pj

ω(ω + Ωj)

{
1 +

1

2

(
κj

κj − 3/2

)
Aj(kθ‖j)

2

ω(ω + Ωj)
+

1

2

(
κj

κj − 3/2

)
(kθ‖j)

2

(ω + Ωj)2

}

+ iπ1/2
∑
j

ω2
pj

ω2

Γ(κj)

κ
1/2
j Γ(κj − 1/2)

[
Aj

(
ω + Ωj

kθ‖j

)
+

ω

kθ‖j

][
1 +

1

κj

(
ω + Ωj

kθ‖j

)2
]−κj

.

(2.15)

Simplifying Equation (2.15) we arrive at the approximate dispersion relation (Mace and

Sydora, 2010),

k2c2

ω2
= 1−

∑
j

ω2
pj

ω(ω + Ωj)

{
1 +

1

2

(
κj

κj − 3/2

) k2θ2‖j

ω(ω + Ωj)2
[Aj (ω + Ωj) + ω]

}

+ iπ1/2
∑
j

ω2
pj

ω2

Γ(κj)

κ
1/2
j Γ(κj − 1/2)

[
Aj

(
ω + Ωj

kθ‖j

)
+

ω

kθ‖j

][
1 +

1

κj

(
ω + Ωj

kθ‖j

)2
]−κj

.

(2.16)

Mace and Sydora (2010) noted an interesting phenomenon in Equation (2.16), which we

repeat here. If we substitute θ‖j as defined in Equation (2.3) into Equation (2.16) it is

observed that all κj dependence vanishes in the real part. This is due to the chosen order

of expansion of Uκ (Equation (2.13)) and effectively shows that the κj dependence in the

real part of the dispersion relation only enters at higher orders (Mace and Sydora, 2010).

Specialising Equation (2.16) to a plasma composed of ions “i”, hot electrons “h”, and cool
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electrons “c”, gives,

k2c2

ω2
= 1−

ω2
ph

ω(ω − |Ωe|)
−

ω2
pc

ω(ω − |Ωe|)
−

ω2
pi

ω(ω + Ωi)

+ iπ1/2
∑
j=h,c

ω2
pj

ω2

Γ(κj)

κ
1/2
j Γ(κj − 1/2)

[
Aj

(
ω − |Ωe|
kθ‖j

)
+

ω

kθ‖j

][
1 +

1

κj

(
ω − |Ωe|
kθ‖j

)2
]−κj

,

(2.17)

where we have ignored the thermal effects in the real part of Equation (2.17) for tractability

reasons. We emphasise that the sum over particle species j in the imaginary term of

Equation (2.17) is only over hot “h”, and cool “c”, electron species. The small ion damping

term has been ignored due to its negligible contribution compared to that of the electron

terms.

To find weakly damped/growing solutions to Equation (2.17), let ω = ωr + iγ, where

|γ| � ωr is assumed. Using the usual method (Krall and Trivelpiece, 1986, p. 389) of

performing a Taylor expansion about some real frequency ω = ωr (γ = 0) of both the real

and imaginary parts of Equation (2.17) and ignoring terms O(γ2) and higher yields

k2c2

ω2
r

= 1−
ω2
ph

ωr(ωr − |Ωe|)
−

ω2
pc

ωr(ωr − |Ωe|)
−

ω2
pi

ωr(ωr + Ωi)

+ i
γ

ωr

[
2
k2c2

ω2
r

+ ω2
ph

(2ωr − |Ωe|)
ωr(ωr − |Ωe|)2

+ ω2
pc

(2ωr − |Ωe|)
ωr(ωr − |Ωe|)2

+ ω2
pi

(2ωr + Ωi)

ωr(ωr + Ωi)2

]
.

+ iπ1/2
∑
j=h,c

Γ(κj)

κ
1/2
j Γ(κj − 1/2)

ω2
pj

ω2
r

[
Aj

(
ωr − |Ωe|
kθ‖j

)
+

ωr
kθ‖j

][
1 +

1

κj

(
ωr − |Ωe|
kθ‖j

)2
]−κj

.

(2.18)

Solving for the real part of Equation (2.18) we arrive at

k2c2

ω2
r

= 1−
ω2
ph

ωr(ωr − |Ωe|)
−

ω2
pc

ωr(ωr − |Ωe|)
−

ω2
pi

ωr(ωr + Ωi)
, (2.19)

while the imaginary part of Equation (2.18) yields an expression for the growth/damping

rate, γ, such that

γ

ωr
= −π1/2

∑
j=h,c

Γ(κj)

κ
1/2
j Γ(κj − 1/2)

ω2
pj

ω2
r

1

R(ωr)

[
Aj

(
ωr − |Ωe|
kθ‖j

)
+

ωr
kθ‖j

]

·

[
1 +

1

κj

(
ωr − |Ωe|
kθ‖j

)2
]−κj

. (2.20)
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This expression for the growth rate, Equation (2.20), is similar to that derived by Mace

and Sydora (2010) with the exception being that here we have the sum over two electron

species rather than the single electron species case considered by Mace and Sydora (2010).

The function R(ωr) is defined analogously to that of Mace and Sydora (2010) as

R(ωr) = 2
k2c2

ω2
r

+ ω2
ph

(2ωr − |Ωe|)
ωr(ωr − |Ωe|)2

+ ω2
pc

(2ωr − |Ωe|)
ωr(ωr − |Ωe|)2

+ ω2
pi

(2ωr + Ωi)

ωr(ωr + Ωi)2
, (2.21)

and is identical to their form, upon noting that ω2
pe = ω2

ph + ω2
pc. Equation (2.21) can

be simplified by eliminating k2c2/ω2
r using Equation (2.19) and, therefore [cf. Mace and

Sydora (2010)],

R(ωr) = 2 +
ω2
ph|Ωe|

ωr(ωr − |Ωe|)2
+

ω2
pc|Ωe|

ωr(ωr − |Ωe|)2
−

ω2
piΩi

ωr(ωr + Ωi)2
. (2.22)

The expression for the growth rate, Equation (2.20), provides great insight into the insta-

bility criteria. In Equation (2.20) it is evident that the contribution to the growth rate of

an electron species j with thermal anisotropy Aj will be zero for frequencies ωr satisfying

(Mace and Sydora, 2010)

Aj (ωr − |Ωe|) + ωr = 0. (2.23)

This, in turn, implies that the electron species j will make a positive contribution to the

growth rate when

Aj (ωr − |Ωe|) + ωr < 0, (2.24)

or synonymously, when [cf. Mace and Sydora (2010)]

ωr <
Aj

Aj + 1
|Ωe| ≡ ω∗j . (2.25)

Conversely, for ωr > ω∗j the electron species j produces cyclotron damping and the overall

growth rate of the wave at such frequencies is reduced.
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Table 2.1: Table of the baseline parameters used in the parameter survey. The subscripts,

“h” and “c” correspond to hot and cool electron species, respectively, while “i” corresponds

to the ion species. This data has been extracted by Baluku et al. (2011) from Schippers

et al. (2008) for 13.1Rs.

T (eV) n0 (cm−3) κ

h 1000 0.18 4.0

c 10.2 0.21 2.1

i 0.102 0.39 5.0

2.4 Numerical results

In this section the numerical solutions to Equation (2.9) without approximations, for

a plasma composed of two electron species with disparate temperatures and a single,

singly charged ion species (proton) is presented. The aim of this section is to provide a

parameter survey of the whistler instability driven by electron thermal anisotropy within

the environment of the Saturnian magnetosphere. For this purpose, baseline parameter

values as presented in Table 2.1 are used. The electron parameters in Table 2.1 were

extracted from the Saturnian magnetospheric electron model of Schippers et al. (2008) by

Baluku et al. (2011). These parameter values are indicative of those found in the vicinity of

13.1Rs where B0 = 9.412 nT in the standard dipolar model (Baumjohann and Treumann,

1996). The ion parameters in Table 2.1 are representative only, and are characteristic

of the isotropic ion parameters typically seen in space plasmas (Christon et al., 1988,

1989). The objective is to account for the innate temporal variability of a dynamic system

such as the Saturnian magnetosphere, giving rise to variations in spectral indices, electron

anisotropies and temperatures.

An important parameter governing the whistler instability is the parallel electron beta

value of each electron species j. It is given by (Mace and Sydora, 2010),

β‖j =
n0jT‖j

B2
0/(2µ0)

= 2
ω2
pj/Ω

2
e

c2/v2th‖j
. (2.26)

From Equation (2.26) it can be seen that this value is dependent on both the number
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density and temperature of the electron species for a given magnetic field strength, B0.

Attention should also be drawn to the fact that all parallel wave numbers k = |k‖|, in the

figures to follow, are normalised with respect to the inverse of the hot electron thermal

gyroradius, ρh = vth‖h/|Ωe|. The wave frequency, ω, has been normalised with respect to

the electron gyrofrequency, |Ωe|.

2.4.1 Variation of the spectral index of the hot electrons, κh

In this section the effects of varying the spectral index of the hot electrons on the parallel

whistler instability are investigated for various anisotropies of both electron species and

two different β‖h values.

Variation of κh with β‖h = 0.816992 and β‖c = 0.00972221

The parameters in this section are as in Table 2.1 with B0 = 9.412 nT and, therefore,

β‖h = 0.816992 and β‖c = 0.00972221. The parameter survey begins with an investigation

into the effects of varying the spectral index of the hot electrons with a variety of Ah values

and with Ac = 0. Figure 2.3 illustrates the dispersion relation ωr(k) and growth rate γ(k)

curves for a sequence of plasmas with different κh values and fixed Ah = 0.1 and Ac = 0.

The real part of the dispersion relation (top panel) shows very little dependence on κh

at small and intermediate wave numbers (kρh . 0.7). The κh dependence is enhanced

as the wave number is increased with a significant difference in dispersive characteristics

emerging beyond kρh ≈ 0.7. Over the interval 0.7 . kρh . 1.0, we notice that an increase

in κh produces an increase in frequency.

The middle panel of Figure 2.3 illustrates the growth rate curves of the instability. It is

noted here that in the figures to follow only the values of the growth rate, γ, corresponding

to instability are illustrated as this study is focused on the variability of wave growth.

Whether the instability will experience growth (or be cyclotron damped) depends on the

contribution to the growth rate provided by each electron species. To investigate this

further we follow the approach of Mace and Sydora (2010). Specialising Equation (2.20)

to a plasma composed of hot electrons with anisotropy Ah, and cool electrons with Ac = 0,
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gives

γ

ωr
= −π1/2 Γ(κh)

κ
1/2
h Γ(κh − 1/2)

ω2
ph

ω2
r

1

R(ωr)
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(
ωr − |Ωe|
kθ‖h

)
+

ωr
kθ‖h

]

×

[
1 +

1

κh

(
ωr − |Ωe|
kθ‖h

)2
]−κh

− π1/2 Γ(κc)

κ
1/2
c Γ(κc − 1/2)

ω2
pc

ω2
r

1

R(ωr)

[
ωr
kθ‖c

][
1 +

1

κc

(
ωr − |Ωe|
kθ‖c

)2
]−κc

. (2.27)

From Equation (2.27) it is evident that for the chosen anisotropies, the cool electrons will

always produce cyclotron damping since they are isotropic and, therefore, the second term

is always negative. The hot electrons on the other hand, will contribute positively to the

growth rate when [cf. Mace and Sydora (2010)]

Ah (ωr − |Ωe|) + ωr < 0, (2.28)

i.e., for all frequencies satisfying

ωr <
Ah

Ah + 1
|Ωe| = ω∗h. (2.29)

For the case with Ah = 0.1, according to Equation (2.29) the hot electrons will make a pos-

itive contribution to the growth rate for all frequencies satisfying ωr < ω∗h = 0.0909091|Ωe|.

For a plasma composed of hot anisotropic electrons and cool electrons with Ac = 0, the

instability will experience growth as long as the positive contribution provided by the hot

electrons in Equation (2.27) is greater in magnitude than the magnitude of the second term

in that equation, responsible for cool electron cyclotron damping. This is only possible for

frequencies ωr < ω∗h, otherwise both electron species are a source of cyclotron damping.

In all cases investigated in Figure 2.3, increasing the spectral index of the hot electrons

with Ah = 0.1 and Ac = 0, resulted in a decrease in the window of growing wave numbers,

i.e., the greater κh, the smaller the instability bandwidth. This is illustrated in the mid-

dle panel of Figure 2.3. An interesting phenomenon is observed at small wave numbers

(kρh . 0.1). In this region, an increase in κh results in a monotonic decrease in the growth

rate. This relates to an earlier discussion in Chapter 1, Section 1.2. When the spectral
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index is small there are more superthermal particles in the tail of the particle velocity dis-

tribution. Owing to this, there are more particles with parallel velocities, v‖, large enough

to induce the Doppler shift required for cyclotron resonance at these small wave numbers

(Mace et al., 2011). The more particles that participate in this cyclotron resonance pro-

cess, the greater the contribution to the growth rate. As the spectral index is increased

the probability of these wave-particle interactions occurring is decreased, therefore, wave

growth is suppressed.

In the middle panel of Figure 2.3, it is seen that with the exception of the case where

κh = 1.6, an increase in κh results in a monotonic decrease in the peak growth rate with

the peak maximum growth rate corresponding to the case κh = 2.0. In the case of the

curve representing κh = 1.6, the peak growth rate lies below the curve corresponding to

κh = 4.0 but above the case where κh = 20.0.

In their investigation of the single electron species case Mace and Sydora (2010) deter-

mined that there exists a single frequency and wave number at which all electron thermal

effects and all κ dependency, vanish. This point is seen graphically as a common point of

intersection in the plots of the real part of the dispersion relation and the wave number

corresponding to this frequency defines the upper bound of the interval of growing wave

numbers. This does not apply to the two electron species case when Ah 6= Ac as there is no

single point at which γ = 0 for all curves. This is illustrated in the bottom panel of Figure

2.3. From Equation (2.27) it is evident that the wave number at which γ = 0 (k∗ρh) is

dependent on both κc and κh. It is at this point (k∗ρh) that the negative contribution

from the cool electron term in Equation (2.27) equals in magnitude the magnitude of the

positive contribution provided by the hot electrons. The bottom panel of Figure 2.3 illus-

trates the dependence of k∗ρh on κh for a fixed κc = 2.1. To interpret this figure we note

that the values of k∗ρh are those where the growth rate curve γ/|Ωe| passes through zero.

For Ah = 0.1, Ac = 0 the wave number at which γ = 0, k∗ρh, is greatest for κh = 3.0. For

κh < 3.0 there is a monotonic increase in k∗ρh with an increase in κh. For κh > 3.0 this

monotonic trend is reversed, i.e., an increase in κh results in a decrease in k∗ρh.

Figure 2.4 is similar to Figure 2.3 except that here the anisotropy of the hot electrons has
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Figure 2.3: Whistler mode dispersion relation (top) and growth rate (middle) for a se-

quence of plasmas having different κh values, fixed temperature anisotropies corresponding

to Ac = 0, Ah = 0.1 and all other parameters are as in Table 2.1. The bottom panel illus-

trates the dependence of k∗ρh on κh for a fixed κc by magnifying the middle panel around

the values of kρh where γ = 0 (see text).
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been increased so that Ah = 0.2. The κh dependence of the real part of the dispersion

relation has not been greatly affected by the increase in anisotropy of the hot electrons.

The dependence of the real frequency on κh is again only seen at large wave numbers,

0.7 . kρh . 1.0, with an increase in κh producing an increase in frequency over this

range. At smaller wave numbers, kρh . 0.7, there is no significant difference between the

curves for different values of κh within graphical accuracy.

The growth rate on the other hand has been significantly altered by an increase in Ah.

In the middle panel of Figure 2.4 it is observed that the peak maximum growth rate

corresponds to κh = 4.0 rather than κh = 2.0 as was seen in the case where Ah = 0.1. For

Ah = 0.2, plasmas with κh < 4.0 will experience a monotonic increase in peak growth rate

with an increase in κh. For cases where κh > 4.0, the maximum growth rate monotonically

decreases with an increase in κh.

At this level of anisotropy, the hot electrons will contribute positively to the growth rate

for all frequencies ωr < ω∗h = 0.16667|Ωe| corresponding to Ah = 0.2. The cool electrons

remain a source of damping. The instability will have a resultant positive growth rate

as long as (i) ωr < ω∗h and (ii) the positive contribution provided by the hot electrons is

greater than the damping term from the cool electrons, as mentioned before.

The dependency on κh of the wave number at which γ = 0, k∗ρh, is monotonic for the

case Ah = 0.2, Ac = 0. An increase in κh results in an increase in k∗ρh as seen in the

bottom panel of Figure 2.4. However, the differences between each case are small and do

not affect the overall trend with regard to the window of growing wave numbers, which

is dominated by the growth rate behaviour at small wave numbers, kρh . 0.1 . In all

cases of κh investigated, an increase in the spectral index of the hot electrons results in

a decrease in the instability bandwidth. As explained previously, this is because as the

spectral index of the hot electrons is increased, the probability of cyclotron resonance of

the particles at small wave numbers (kρh . 0.1) is decreased.

Figure 2.5 shows the dispersion relation and growth rate for the case where Ah = 0.5

(Ac = 0). At this level of hot electron anisotropy, a variation in the spectral index of the hot

electrons results in a more significant change in the real part of the dispersion relation. For
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Figure 2.4: Whistler mode dispersion relation (top) and growth rate (middle) for a se-

quence of plasmas having different κh values, fixed temperature anisotropies corresponding

to Ac = 0, Ah = 0.2 and all other parameters are as in Table 2.1. The bottom panel illus-

trates the dependence of k∗ρh on κh for a fixed κc by magnifying the middle panel around

the values of kρh where γ = 0 (see text).
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wave numbers in the range kρh . 0.6, the curves show a greater κh dependency than in the

previous two cases (Ah = 0.1, Ah = 0.2). In the wave number range 0.6 . kρh . 0.8 this

dependency lessens but then increases again at larger wave numbers (0.8 . kρh . 1.0) with

an increase in κh producing an increase in frequency at most wave numbers investigated.

For this value of the anisotropy of the hot electrons (Ah = 0.5), an increase in their spectral

index results in a monotonic increase in the maximum growth rate, with peak maximum

growth rate corresponding to κh = 20.0 (quasi-Maxwellian). This is clearly illustrated in

the middle panel of Figure 2.5. This trend is opposite to that seen in Figure 2.3 for the

Ah = 0.1 case.

The hot electrons contribute positively to the growth rate for all frequencies below ωr =

ω∗h = 0.33333|Ωe| for the chosen value of Ah. The cool electrons on the other hand, remain

a constant source of cyclotron damping. For Ah = 0.5, an increase in κh results in a

monotonic increase in k∗ρh (bottom panel). As in the previous cases (Ah = 0.1, Ah = 0.2)

an increase in κh results in a decrease in the window of growing wave numbers.

Figures 2.6 - 2.11 address the question of varying the cool and hot electron anisotropies

in unison. In these figures the two electron species differ in most characteristics but have

equal thermal anisotropy.

Figure 2.6 illustrates the whistler mode dispersion relation for a sequence of plasmas having

different κh values, fixed temperature anisotropies corresponding to Ac = Ah = 0.1 and

all other parameters are as in Table 2.1. Figure 2.7 illustrates the whistler mode growth

rate curves for the same set of parameters.

In Figure 2.6 (top panel), it is observed that varying the spectral index of the hot electrons

has very little effect on the dispersion curves at small and intermediate wave numbers

(kρh . 0.65). As the wave number is increased so is the κh dependence of the curves, with

a significant difference emerging at larger wave numbers (0.65 . kρh . 1.0). At these

larger wave numbers, an increase in κh produces an increase in frequency.

As previously mentioned, in the investigation of the single electron species case considered

by Mace and Sydora (2010), they determined that there exists a single frequency and wave

number at which all electron thermal effects and all κ dependency, vanish. This point is
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Figure 2.5: Whistler mode dispersion relation (top) and growth rate (middle) for a se-

quence of plasmas having different κh values, fixed temperature anisotropies corresponding

to Ac = 0, Ah = 0.5 and all other parameters are as in Table 2.1. The bottom panel illus-

trates the dependence of k∗ρh on κh for a fixed κc by magnifying the middle panel around

the values of kρh where γ = 0 (see text).
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seen graphically as a common point of intersection in the plots of the real part of the

dispersion relation. In addition, they found that the wave number of this point defines

the upper bound of the interval of growing wave numbers. This point of intersection is

also present in the two electron species case for the special case when Ah = Ac. On closer

examination (lower panel of Figure 2.6), it is found that there exists a common point of

intersection of all the curves at ωr = ω∗h = 0.0909091|Ωe| (horizontal dashed line).

To determine the frequency at which the intersection occurs in the case of two electron

species, in a manner similar to Mace and Sydora (2010), an asymptotic expansion of the

ion term is performed, leaving all other terms in the dispersion relation, Equation (2.9),

in their original form

k2c2

ω2
=1 +

ω2
ph

ω2

{
Ah +

[
Ah

(
ω − |Ωe|
kθ‖h

)
+

ω

kθ‖h

]
Uκh

(
ω − |Ωe|
kθ‖h

)}
+
ω2
pc

ω2

{
Ac +

[
Ac

(
ω − |Ωe|
kθ‖c

)
+

ω

kθ‖c

]
Uκc

(
ω − |Ωe|
kθ‖c

)}
(2.30)

−
ω2
pi

ω(ω + ωci)
.

From Equation (2.30) it is evident that, for all thermal effects of both electron species to

vanish, both Ah(ω − |Ωe|) + ω = 0 and Ac(ω − |Ωe|) + ω = 0 need to be satisfied. The

solutions to these equations with ω = ωr + iγ are

ωr =

(
Ah

Ah + 1

)
|Ωe| = ω∗h γ = 0 (2.31)

and

ωr =

(
Ac

Ac + 1

)
|Ωe| = ω∗c γ = 0, (2.32)

respectively. From the above equations it is evident that if Ah = Ac the solutions to

both Equations (2.31) and (2.32) will be the same. Thus, thermal effects of both electron

species will vanish at the same frequency.

The wave number at which this frequency (where all thermal effects vanish) occurs can be

estimated by substituting the conditions Ah(ω−|Ωe|)+ω = 0 and Ac(ω−|Ωe|)+ω = 0 into

Equation (2.30) and letting Ah = Ac = Ae so that Equations (2.31) and (2.32) become

ωr =
Ae

(Ae + 1)
|Ωe| γ = 0. (2.33)
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Substituting Equation (2.33) into Equation (2.30), the wave number at which all thermal

effects of both electron species vanish can be approximated by [cf. Mace and Sydora

(2010)]

k2c2 =

(
Ae

Ae + 1

)2

|Ωe|2 + ω2
phAe + ω2

pcAe −
Aeω

2
pi|Ωe|

Ae|Ωe|+ (Ae + 1)ωci
. (2.34)

This is precisely the result obtained by Mace and Sydora (2010) upon noting that ω2
pe =

ω2
ph + ω2

pc. The above equations for ω (Equation (2.33)) and k (Equation (2.34)) are

independent of the spectral index of both electron species. Therefore, the equations give

a common point through which all parallel whistler mode dispersion curves must pass,

irrespective of the spectral index or any other thermal effects. Since the imaginary part

of this point has γ = 0 (see Equation (2.31) and (2.32)) it corresponds to the upper limit

of wave growth, both in terms of ωr and in terms of k. At this wave number all curves

will have γ = 0 irrespective of the value of the spectral index.

Applying this concept to the current case with Ah = Ac = 0.1, there now exists a single

frequency (and wave number) in the dispersion curves at which all thermal effects and

κ dependency of both electron species vanish. This is illustrated in detail in the bottom

panel of Figure 2.6, where it is clearly evident that there is a single point of intersection of

all the curves at the frequency corresponding to ωr = ω∗h (dashed horizontal line). In the

growth rate curves, a sharp cutoff of the growth rate is seen at a value of k corresponding

to ωr = ω∗h = 0.0909091|Ωe|. All wave growth is confined below this frequency. This is

clearly evident in the bottom panel of Figure 2.7, which shows the growth rate curves

corresponding to Figure 2.6.

The top panel of Figure 2.7 illustrates the κh dependence of the growth rate of the parallel

whistler instability for the chosen anisotropy of Ah = Ac = 0.1. With the exception of

the curve corresponding to κh = 1.6, an increase in κh results in a monotonic decrease in

the peak growth rates with a peak maximum growth rate corresponding to the case where

κh = 2.0. The case κh = 1.6 has a peak growth rate which lies below the curve κh = 4.0

but above κh = 20.0.

In all cases investigated in Figure 2.7, increasing the spectral index of the hot electrons

resulted in a decrease in the window of growing wave numbers. At small wave numbers
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(kρh . 0.1), an increase in κh results in a monotonic decrease in the growth rate. As

explained previously, this is because at low values of κh there are more tail electrons with

large enough parallel velocities for cyclotron resonance (leading to wave amplification) at

smaller wave numbers than in the higher κh cases. Therefore, the greater κh, the smaller

the instability bandwidth.

Figures 2.8 and 2.9 are similar to Figures 2.6 and 2.7 but in this case the anisotropy of

the electrons has been increased to Ah = Ac = 0.2. The top panel of Figure 2.8 illustrates

the real part of the dispersion relation and like Figure 2.6, varying κh has very little effect

at small and intermediate wave numbers (kρh . 0.65). However, the κh dependence of

the dispersion curves becomes more prominent as it moves toward larger wave numbers.

An increase in κh results in an increase in frequency in the range 0.65 . kρh . 1.0. The

frequency at which the κ dependency of both electron species vanishes and the curves

intersect is illustrated in the bottom panel of Figure 2.8 and found to occur at ωr = ω∗h =

ω∗c = 0.16667|Ωe| (horizontal dashed line) for Ah = Ac = 0.2.

The growth rate has been altered significantly by an increase in Ah and is illustrated in

the top panel of Figure 2.9. The peak maximum growth rate corresponds to κh = 4.0.

For Ah = Ac = 0.2, plasmas with κh < 4.0 will experience a monotonic increase in peak

growth rate with an increase in κh. For cases where κh > 4.0, the maximum growth rate

of each case monotonically decreases with an increase in κh. In all cases of κh investigated,

an increase in the spectral index of the hot electrons results in a decrease in the instability

bandwidth.

At the wave number corresponding to the frequency at which all thermal effects of both

electron species vanish, it is found that γ = 0 for all curves irrespective of their value of

κh or κc. As previously explained, this is due to the anisotropies of both electron species

being equal and, therefore, ω∗h = ω∗c . This results in a single value of the wave number

below which all wave growth is confined and is shown in the bottom panel of Figure 2.9.

Figures 2.10 and 2.11 show the dispersion relation and growth rate for the case where

Ah = Ac = 0.5, respectively. In the top panel of Figure 2.10, it is observed that a

variation in κh results in a more significant change in the real part of the dispersion
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Figure 2.6: Whistler mode dispersion relation for a sequence of plasmas having different

κh values, fixed temperature anisotropies corresponding to Ac = Ah = 0.1 and all other

parameters are as in Table 2.1 (top panel). The bottom panel illustrates the dispersion

relation zoomed in around the point of intersection (see main text). The dashed horizontal

line represents ω∗h = ω∗c = 0.0909091|Ωe|.
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Figure 2.7: Whistler mode growth rate for a sequence of plasmas having different κh

values, fixed temperature anisotropies corresponding to Ac = Ah = 0.1 and all other

parameters are as in Table 2.1 (top panel). The bottom panel illustrates the dispersion

relation zoomed in around the point where γ = 0 for all curves (see main text).
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Figure 2.8: Whistler mode dispersion relation for a sequence of plasmas having different

κh values, fixed temperature anisotropies corresponding to Ac = Ah = 0.2 and all other

parameters are as in Table 2.1 (top panel). The bottom panel illustrates the dispersion

relation zoomed in around the point of intersection (see main text). The dashed horizontal

line represents ω∗h = ω∗c = 0.1666667|Ωe|.
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Figure 2.9: Whistler mode growth rate for a sequence of plasmas having different κh

values, fixed temperature anisotropies corresponding to Ac = Ah = 0.2 and all other

parameters are as in Table 2.1 (top panel). The bottom panel illustrates the dispersion

relation zoomed in around the point where γ = 0 for all curves (see main text).
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relation at small and intermediate wave numbers (kρh . 0.65) than in previous cases with

smaller anisotropies (A = 0.1 and A = 0.2). At most of the intermediate to large wave

numbers (0.2 . kρh . 1.0) a larger value of κh will produce a higher frequency. The

exception to this being the point at which all thermal effects and κ dependence vanishes

at ωr = ω∗h = ω∗c = 0.33333|Ωe| (horizontal dashed line). This is shown in the bottom

panel of Figure 2.10.

The growth rate is illustrated in Figure 2.11. It is observed that the growth rate is greatly

affected by the increase in anisotropy of both electron species. For Ah = Ac = 0.5, an

increase in κh results in a monotonic increase in the maximum growth rate with peak

maximum growth rate corresponding to the quasi-Maxwellian case (κh = 20.0). This is

shown in the top panel of Figure 2.11. This trend is opposite to that seen in Figure 2.7

for the Ah = Ac = 0.1 case. Since Ah = Ac, ω
∗
h = ω∗c and hence, there is a single value

of k (corresponding to ω∗h = ω∗c ) at which γ = 0 for all values of κh investigated. This is

illustrated in the bottom panel of Figure 2.11. As is expected, an increase in κh results in

a decrease in the window of growing wave numbers.

Variation of κh with β‖h = 0.0816992 and β‖c = 0.00972221

The parameters in this section are similar to that of the previous section (as in Table

2.1) except that here the hot electron temperature has been lowered from Th = 1000 eV

to Th = 100 eV. This change in hot electron temperature, results in a change in plasma

parallel beta value of the hot electrons such that β‖h has decreased from β‖h = 0.816992

to β‖h = 0.0816992. The parameter β‖c is unchanged as Tc has remained constant as per

Table 2.1. How the lowering of β‖h affects the effects of varying the spectral index of the

hot electrons in a sequence of plasmas will be investigated in Figures 2.12 - 2.19. This

will be done firstly, in a sequence of plasmas with varying Ah and Ac = 0 and secondly,

for the a sequence of plasmas with Ah = Ac.

Figure 2.12 illustrates the dispersion relation and growth rate for a sequence of plasmas

with different κh values and fixed Ah = 0.1, Ac = 0. The real part of the dispersion relation

(top panel) shows very little dependence on κh at small wave numbers (kρh . 0.2). The
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Figure 2.10: Whistler mode dispersion relation for a sequence of plasmas having different

κh values, fixed temperature anisotropies corresponding to Ac = Ah = 0.5 and all other

parameters are as in Table 2.1 (top panel). The bottom panel illustrates the dispersion

relation zoomed in around the point of intersection (see main text). The dashed horizontal

line represents ω∗h = ω∗c = 0.3333333|Ωe|.
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Figure 2.11: Whistler mode growth rate for a sequence of plasmas having different κh

values, fixed temperature anisotropies corresponding to Ac = Ah = 0.5 and all other

parameters are as in Table 2.1 (top panel). The bottom panel illustrates the dispersion

relation zoomed in around the point where γ = 0 for all curves (see main text).
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κh dependence is enhanced as the wave number is increased with a significant difference in

dispersive characteristics emerging at larger wave numbers (kρh & 0.2). At intermediate

wave numbers (0.2 . kρh . 0.375) an increase in κh produces lower frequencies. However,

this trend is reversed at larger wave numbers (0.375 . kρh . 0.5) with an increase in

κh producing higher frequencies in this range. For this chosen anisotropy of the hot

electrons, the frequency below which the hot electrons will make a positive contribution

to the growth rate is ωr = ω∗h = 0.0909091|Ωe|. The cool electrons will always provide a

source of damping, as discussed previously, since they are taken to be isotropic.

The growth rate is illustrated in the bottom panel of Figure 2.12. It is observed that there

is a monotonic decrease in peak growth rate with an increase in κh. The peak maximum

growth rate corresponds to the case where κh = 1.6. The cases κh = 4.0 and κh = 20.0

show no growth over the entire range of wave numbers investigated. This implies that

in all cases where κh ≥ 4.0, the damping term provided by the cool electrons will always

be greater in magnitude than the magnitude of the positive contribution provided by the

anisotropic hot electrons.

Since Ah 6= Ac, there is no single value of k where γ = 0 for all spectral indices. The wave

number at which γ = 0, k∗ρh, is dependent on the spectral index of both electron species.

For a fixed spectral index of the cool electrons, κc = 2.1, the curve with the greatest

value of k∗ρh is found for the case where κh = 2.0, this is then followed by the curves

representing the cases κh = 1.6 and κh = 3.0, respectively. In all cases investigated in

Figure 2.12, increasing the spectral index of the hot electrons resulted in an overall decrease

in the window of growing wave numbers, i.e., the greater κh, the smaller the instability

bandwidth due to fewer resonant electrons at smaller wave numbers (kρh . 0.1).

Figure 2.13 is similar to Figure 2.12 except that here the anisotropy of the hot electrons

has been increased to Ah = 0.2. The κh dependence of the real part of the dispersion

relation (top panel) has not been greatly affected by the increase in anisotropy of the

hot electrons. Any dependence is again only seen at intermediate to larger wave numbers

(0.2 . kρh . 0.5).

An increase in κh results in lower frequencies for intermediate wave numbers (0.2 . kρh .
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Figure 2.12: Whistler mode dispersion relation (top) and growth rate (bottom) for a se-

quence of plasmas having different κh values, fixed temperature anisotropies corresponding

to Ah = 0.1, Ac = 0 and hot electron temperature, Th = 100 eV. All other parameters are

as in Table 2.1.
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0.375), while the reverse is observed at large wave numbers (0.375 . kρh . 0.5). This

overall trend is similar to that seen in Figure 2.12.

The growth rate (bottom panel) has been significantly altered by an increase in Ah. Here

the peak maximum growth rate corresponds to κh = 2.0 rather than κh = 1.6, as was the

case for Figure 2.12, where Ah = 0.1. For Ah = 0.2, plasmas with κh < 2.0 will experience

a monotonic increase in peak growth rate with an increase in κh. For cases where κh > 2.0,

the maximum growth rate of each case monotonically decreases with an increase in κh.

In Figure 2.12 (Ah = 0.1) it was illustrated that γ < 0 (no growth) for all wave numbers

investigated in the case κh = 4.0. An increase in hot electron anisotropy from Ah = 0.1 to

Ah = 0.2 is sufficient to allow for a range of wave numbers over which γ > 0 for the case

κh = 4.0. However, there is still no overall positive contribution to the growth rate for

the case κh = 20.0, i.e., the cyclotron damping of the cool electrons is always greater in

magnitude than the magnitude of the positive contribution provided by the hot electrons

for the case κh = 20.0.

The hot electrons will provide a positive contribution to the growth rate at all frequencies

below ωr = ω∗h = 0.16667|Ωe| corresponding to Ah = 0.2. The wave number at which this

positive contribution to the growth rate equals, in magnitude, the damping term provided

by the cool electrons is dependent on κh for a fixed κc. This dependency of the wave

number at which γ = 0, k∗ρh, is non-monotonic for the case Ah = 0.2. The maximum

value of k∗ρh corresponds to the case where κh = 2.0. For cases where κh > 2.0, an

increase in κh results in a monotonic decrease in k∗ρh as seen in the bottom panel of

Figure 2.13. For cases where κh < 2.0, an increase in κh results in a monotonic increase

in k∗ρh. In all cases of κh investigated in Figure 2.13, an increase in the spectral index of

the hot electrons results in an overall decrease in the instability bandwidth.

Figure 2.14 shows the dispersion relation and growth rate curves for the case where Ah =

0.75, Ac = 0. Due to the chosen anisotropy of the hot electrons, ω∗h = 0.42857|Ωe| and,

therefore, the hot electrons will make a positive contribution to the growth rate for all

frequencies below ω∗h. The dispersion curves (top panel) are not significantly affected by

the variation in the spectral index of the hot electrons at small and intermediate wave
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Figure 2.13: Whistler mode dispersion relation (top) and growth rate (bottom) for a se-

quence of plasmas having different κh values, fixed temperature anisotropies corresponding

to Ah = 0.2, Ac = 0 and hot electron temperature, Th = 100 eV. All other parameters are

as in Table 2.1.
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numbers (kρh . 0.4). The κh dependency of the curves only becomes more prominent

at larger wave numbers (0.4 . kρh . 0.5). In this range, an increase in κh results in an

increase in frequency.

The growth rates for the case where Ac = 0, Ah = 0.75 (middle panel) are markedly

different to the previous cases investigated with lower hot electron anisotropies. For Ah =

0.75, the peak maximum growth rate corresponds to κh = 3.0. Plasmas with κh < 3.0

will experience a monotonic increase in peak growth rate with an increase in κh. For cases

where κh > 3.0, the maximum growth rate of each case monotonically decreases with an

increase in κh. This case with Ah = 0.75, differs significantly from those previously looked

at (Figures 2.12 and 2.13) as in this instance, all curves have a range of wave numbers

where γ > 0.

An increase in the spectral index of the hot electrons results in an overall decrease in the

window of growing wave numbers for all cases investigated in Figure 2.14 (middle panel).

This is because it is only for low values of κh that there are statistically more tail electrons

with parallel velocities large enough to be Doppler shifted up to the cyclotron frequency

at small wave numbers (kρh . 0.1). Unlike the previous cases (Figures 2.12 and 2.13),

the dependency of the wave number at which γ = 0, k∗ρh, is monotonic for Ah = 0.75.

An increase in κh results in a monotonic increase in k∗ρh for all κh values studied and is

clearly illustrated in the bottom panel.

Figure 2.15 shows the case where Ah = 1.0 (Ac = 0). The dispersion relation curves are

illustrated in the top panel while the growth rates are depicted in the bottom panel. At

this level of hot electron anisotropy, a variation in the spectral index of the hot electrons

results in very little change in the real part of the dispersion relation than previously seen

with smaller anisotropies. The most notable difference emerges at large wave numbers

(0.4 . kρh . 0.5) where an increase in κh results in an increase in frequency. The

frequency below which the hot electrons make a positive contribution to the growth rate

is ωr = ω∗h = 0.5|Ωe|, while the cool electrons provide a source of cyclotron damping for

all frequencies.

For this value of the anisotropy of the hot electrons is it evident from the bottom panel of
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Figure 2.14: Whistler mode dispersion relation (top) and growth rate (middle) for a se-

quence of plasmas having different κh values, fixed temperature anisotropies corresponding

to Ah = 0.75, Ac = 0 and hot electron temperature, Th = 100 eV. All other parameters

are as in Table 2.1. The bottom panel illustrates the dependence of k∗ρh on κh for a fixed

κc.
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Figure 2.15 that an increase in κh results in a monotonic increase in the maximum growth

rate with peak maximum growth rate corresponding to κh = 20.0 (quasi-Maxwellian) .

This trend is opposite to that seen in Figure 2.12 with Ah = 0.1. An increase in κh results

in a decrease in the window of growing wave numbers. For the case with Ah = 1.0 and

Ac = 0, an increase in κh results in a monotonic increase in k∗ρh.

The effects of varying the spectral index of the hot electron species with β‖h = 0.0816992

and the anisotropies of both electron species being equal, i.e., Ah = Ac, is investigated in

Figures 2.16 - 2.19. Figure 2.16 illustrates the whistler mode dispersion relation and growth

rate for a sequence of plasmas having different κh values, fixed temperature anisotropies

corresponding to Ac = Ah = 0.1, hot electron temperature Th = 100 eV and all other

parameters are as in Table 2.1. In the real part of the dispersion relation (top panel),

varying the spectral index of the hot electrons has very little effect on the dispersion

curves at small wave numbers (kρh . 0.2). As the wave number is increased so is the κh

dependence of the curves. At intermediate wave numbers (0.2 . kρh . 0.375) an increase

in κh results in a decrease in frequency. However, this trend is reversed at larger wave

numbers (0.375 . kρh . 0.5) with an increase in κh producing higher frequencies in this

range. The frequency at which all thermal effects of both electron species vanish is found

to be ωr = ω∗h = ω∗c = 0.0909091|Ωe| since Ah = Ac = 0.1. This is illustrated in the middle

panel of Figure 2.16. The vanishing of the κ dependence of the curves is not clearly notable

as a variation of κh has little consequence at small wave numbers, kρh . 0.2 .

The wave number corresponding to the point at which all thermal effects of both electron

species vanish in the real dispersion relation clearly defines an upper boundary of the

interval of growing wave number in the growth rate curves (bottom panel). In the case

with Ah = Ac = 0.1, a sharp cutoff of the growth rate at a value of k corresponding to

ω∗h = ω∗c = 0.0909091|Ωe| is observed. All wave growth is confined below this value. This

is clearly evident in the bottom panel of Figure 2.16.

The bottom panel of Figure 2.16 clearly depicts the κh dependence of the growth rate of

the parallel whistler instability for the chosen anisotropy of Ah = Ac = 0.1. An increase in

κh results in a monotonic decrease in the peak growth rates with a peak maximum growth
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Figure 2.15: Whistler mode dispersion relation (top) and growth rate (bottom) for a se-

quence of plasmas having different κh values, fixed temperature anisotropies corresponding

to Ah = 1.0, Ac = 0 and hot electron temperature, Th = 100 eV. All other parameters are

as in Table 2.1.
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rate corresponding to the case where κh = 1.6. In all cases of κh investigated in Figure

2.16, increasing the spectral index of the hot electrons resulted in a decrease in the window

of growing wave numbers, i.e., the greater κh, the smaller the instability bandwidth due

to fewer resonant electrons at small wave numbers kρh . 0.1.

Figure 2.17 is similar to Figure 2.16 but the anisotropy of both electron species has been

increased from Ah = Ac = 0.1 to Ah = Ac = 0.2. The top panel illustrates the real part

of the dispersion relation. Varying the spectral index of the hot electrons has very little

effect at small wave numbers (kρh . 0.2), however, as the wave number is increased so

is the κh dependence. At intermediate wave numbers (0.2 . kρh . 0.375) an increase in

κh results in a decrease in frequency, while at large wave numbers (0.375 . kρh . 0.5) an

increase in κh produces higher frequencies.

The frequency at which all κ dependency vanishes and the curves intersect is found to

be ωr = ω∗h = ω∗c = 0.16667|Ωe| (horizontal dashed line) corresponding to Ah = Ac =

0.2. This is clearly depicted in the middle panel of Figure 2.17. At the wave number

corresponding to this frequency, it is found that γ = 0, for all curves (bottom panel). This

wave number is independent of both κh and κc. As previously explained, this is due to

the anisotropies of both electron species being equal.

The growth rate (bottom panel) has been notably modified by an increase in Ah. The

peak maximum growth rate corresponds to κh = 2.0, rather than κh = 1.6, as was seen

in the case where Ah = 0.1. For Ah = 0.2, plasmas with κh < 2.0 will experience a

monotonic increase in peak growth rate with an increase in κh. For cases where κh > 2.0,

the maximum growth rate of each case monotonically decreases with an increase in κh. In

all cases of κh investigated, an increase in the spectral index of the hot electrons results

in a decrease in the instability bandwidth.

Figure 2.18 shows the dispersion relation and growth rate for the case where Ah = Ac =

0.75. In the real part of the dispersion relation (top panel), at this level of electron

anisotropy, the effects of varying the spectral index of the hot electrons are only seen

at larger wave numbers (0.4 . kρh . 0.5). At small and intermediate wave numbers

(kρh . 0.4) there is no noteworthy change in dispersive characteristics, while at large
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Figure 2.16: Whistler mode dispersion relation (top) and growth rate (bottom) for a se-

quence of plasmas having different κh values, fixed temperature anisotropies corresponding

to Ac = Ah = 0.1 and hot electron temperature, Th = 100 eV. All other parameters are as

in Table 2.1. The dashed horizontal line represents ω∗h = ω∗c = 0.0909091|Ωe|. The middle

panel illustrates the dispersion relation zoomed in around the point of intersection (see

main text).
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Figure 2.17: Whistler mode dispersion relation (top) and growth rate (bottom) for a se-

quence of plasmas having different κh values, fixed temperature anisotropies corresponding

to Ac = Ah = 0.2 and hot electron temperature, Th = 100 eV. All other parameters are as

in Table 2.1. The dashed horizontal line represents ω∗h = ω∗c = 0.1666667|Ωe|. The middle

panel illustrates the dispersion relation zoomed in around the point of intersection (see

main text).
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wave numbers the variation is clearly evident. In this range, 0.4 . kρh . 0.5, an increase

in κh results in higher frequencies. The frequency at which all the curves intersect and

the κ dependence vanishes is ωr = ω∗h = ω∗c = 0.42857|Ωe| for Ah = 0.75. This is clearly

illustrated in the middle panel of Figure 2.18.

The growth rate (bottom panel) is greatly affected by the increase in anisotropy of both

electron species. The peak maximum growth rate for this anisotropy corresponds to the

case where κh = 3.0. Plasmas with κh < 3.0 will experience a monotonic increase in peak

growth rate with an increase in κh. For cases where κh > 3.0, the maximum growth rate

of each case monotonically decreases with an increase in κh. An increase in κh results in

a decrease in the window of growing wave numbers. Since Ah = Ac, ω
∗
h = ω∗c , thus, there

is a single value of k (corresponding to ωr = 0.42857|Ωe|) at which γ = 0.

Figure 2.19 shows the case where Ah = Ac = 1.0. At this level of electron anisotropy, a

variation in κh results in very little variation in the real part of the dispersion relation (top

panel) compared to that observed with small anisotropies (Figures 2.16 and 2.17). Only

at larger wave numbers (0.4 . kρh . 0.5) are the effects of varying κh observed. In this

region, an increase in κh results in higher frequencies. The frequency below which both

electron species make a positive contribution to the growth rate is ωr = ω∗h = ω∗c = 0.5|Ωe|

for the chosen value of Ah = Ac = 1.0. This corresponds to the point at which all κ

dependence vanishes and is illustrated in the middle panel of Figure 2.19.

For this value of both hot and cool electron anisotropy, an increase in κh results in a

monotonic increase in the maximum growth rate with peak maximum growth rate corre-

sponding to κh = 20.0 (quasi-Maxwellian). This trend is opposite to that seen in Figure

2.16 with Ah = 0.1 and illustrated in the bottom panel of Figure 2.19. An increase in

κh results in a decrease in the window of growing wave numbers due to the decrease in

the number of tail electrons with great enough parallel velocities to result in cyclotron

resonance at small wave numbers (kρh . 0.1). Since Ah = Ac and ω∗h = ω∗c , there is a

single value of k (corresponding to ω∗h = ω∗c = 0.5|Ωe|) setting an upper bound, below

which all wave growth is confined.
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Figure 2.18: Whistler mode dispersion relation (top) and growth rate (bottom) for a se-

quence of plasmas having different κh values, fixed temperature anisotropies corresponding

to Ac = Ah = 0.75 and hot electron temperature, Th = 100 eV. All other parameters are

as in Table 2.1. The dashed horizontal line represents ω∗h = ω∗c = 0.42857|Ωe|. The middle

panel illustrates the dispersion relation zoomed in around the point of intersection (see

main text).
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Figure 2.19: Whistler mode dispersion relation (top) and growth rate (bottom) for a se-

quence of plasmas having different κh values, fixed temperature anisotropies corresponding

to Ac = Ah = 1.0 and hot electron temperature, Th = 100 eV. All other parameters are

as in Table 2.1. The dashed horizontal line represents ω∗h = ω∗c = 0.5|Ωe|. The middle

panel illustrates the dispersion relation zoomed in around the point of intersection (see

main text).
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2.4.2 Variation of the spectral index of the cool electrons, κc

In this section the effects of varying the spectral index of the cool electrons on the parallel

whistler instability are investigated for various anisotropies of both electron species and

two different β‖h values.

Variation of κc with β‖h = 0.816992 and β‖c = 0.00972221

The parameters in this section are as in Table 2.1 with B0 = 9.412nT, thus, β‖h = 0.816992

and β‖c = 0.00972221. The effects of varying the spectral index of the cool electrons with

a variety of Ac values and Ah = 0 is investigated in Figures 2.20 - 2.22. Figure 2.20

illustrates the case for Ac = 0.1, Ah = 0. For this chosen anisotropy of the cool electrons,

ω∗c = 0.0909091|Ωe| and, therefore, the cool electrons will make a positive contribution to

the growth rate for all frequencies ωr < ω∗c . The hot electrons on the other hand, have

Ah = 0 and hence, will always provide a negative contribution to the growth rate for all

frequencies ωr > 0 since ω∗h = 0. The dispersion curves, illustrated in the top panel of

Figure 2.20, are not significantly affected by the variation of κc at small or intermediate

wave numbers (kρh . 0.9). The κc dependency of the curves is only seen as kρh approaches

1.0 with an increase in κc resulting in a negligible decrease in frequency in this range.

For Ac = 0.1, Ah = 0 the lowest value of the spectral index of the cool electrons, κc = 1.6,

produces the greatest peak maximum growth rate and the broadest spectrum of wave

numbers for which there is a positive growth rate. This is clearly illustrated in the bottom

panel of Figure 2.20. The only other value of κc that results in a positive growth rate is for

the case κc = 2.0. For all other values of κc, the positive contribution to the growth rate

of cool electrons is not great enough to overcome the damping effects of the hot electrons

and, thus, γ < 0. Since Ah 6= Ac, the wave number at which γ = 0, k∗ρh, is variable and

dependent on κc for a fixed value of κh = 4.0. An increase in κc results in a monotonic

decrease in k∗ρh for our chosen parameter set in Figure 2.20

Figure 2.21 is similar to Figure 2.20, except in this case Ac = 0.5. The dispersion curves,

illustrated in the top panel of Figure 2.21, show very little κc dependency at small or

intermediate wave numbers (kρh . 0.9). The effects of varying κc are only seen at large
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Figure 2.20: Whistler mode dispersion relation (top) and growth rate (bottom) for a se-

quence of plasmas having different κc values, fixed temperature anisotropies corresponding

to Ac = 0.1, Ah = 0 and all other parameters are as in Table 2.1.
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wave numbers with an increase in κc resulting in a minor decrease in frequency in the range

0.9 . kρh . 1.0. Since Ac = 0.5, the cool electrons will make a positive contribution to

the growth rate for all frequencies below ω∗c = 0.33333|Ωe|. The hot electrons remain a

source of damping for all frequencies.

In the bottom panel of Figure 2.21, it is clearly evident that the cases κc = 1.6 and 2.0

produce a positive growth rate for a range of wave numbers. For the case κc = 3.0, there

is a range of wave numbers where γ > 0, however, it is of the order of 10−14. This is

not illustrated in Figure 2.21 but the fact that κc = 3.0 does produce a range of wave

numbers with a positive growth rate must be duly noted. The peak maximum growth rate

corresponds to κc = 1.6. An increase in κc results in a monotonic decrease in peak growth

rate. The dependence of k∗ρh on the spectral index of the cool electrons is monotonic,

with an increase in κc resulting in a decrease in k∗ρh.

Figure 2.22 illustrates the effect of varying the spectral index of the cool electrons for the

case where Ac = 2.0, Ah = 0. In the top panel, the effects of varying κc are only seen as

kρh approaches 1.0 in the real part of the dispersion relation. For Ac = 2.0, Ah = 0, an

increase in κc results in a marginal increase in frequency in the range 0.9 . kρh . 1.0.

The cool electrons will make a positive contribution to the growth rate for a considerably

wider range of frequencies than in the previous cases (Ac = 0.1 and Ac = 0.5) since

ω∗c = 0.666667|Ωe| for Ac = 2.0.

In the bottom panel we observe that at this level of anisotropy, the case with κc = 1.6

produces the greatest peak maximum growth rate. This is followed by the case where

κc = 2.0. For the case κc = 3.0, there is a small range of wave numbers that produce a

positive growth rate, however, this is only of the order 10−12. For all other values of κc,

γ < 0 for the entire range of wave numbers investigated. An increase in κc results in a

monotonic decrease in k∗ρh as it did in the previous case for Ac = 0.1 and 0.5.

In Figures 2.20 - 2.22, it is clearly illustrated how at small wave numbers (kρh . 0.2) a

decrease in spectral index of the cool electrons results in statistically more tail electrons

with parallel velocities great enough to induce the Doppler shift required for cyclotron

resonance. It is owing to this that at small wave numbers (kρh . 0.2) a decrease in κc
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Figure 2.21: Whistler mode dispersion relation (top) and growth rate (bottom) for a se-

quence of plasmas having different κc values, fixed temperature anisotropies corresponding

to Ac = 0.5, Ah = 0 and all other parameters are as in Table 2.1.
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always results in a monotonic increase in growth rate.

The effects of varying the spectral index of the cool electron species with the anisotropies

of both electron species being equal, i.e., Ah = Ac, is investigated in the Figures 2.23 -

2.25 to follow. Figure 2.23 illustrates the whistler mode dispersion relation and growth

rate for a sequence of plasmas having different κc values, fixed temperature anisotropies

corresponding to Ac = Ah = 0.1 and all other parameters are as in Table 2.1.

In the real part of the dispersion relation (top panel), varying the spectral index of the

cool electrons has very little effect on the dispersion curves with a slight dependency only

emerging as kρh approaches 1.0. In this region, an increase in κc results in a decrease in

frequency. Because Ah = Ac, ω
∗
h = ω∗c , thus, there exists a single frequency at which all

thermal effects of both electron species vanish. This is seen in the dispersion curves as a

common point of intersection at ωr = ω∗h = ω∗c = 0.0909091|Ωe| (horizontal dashed line)

for Ah = Ac = 0.1. The wave number corresponding to this point also defines an upper

boundary of the interval of growing wave numbers. For Ah = Ac = 0.1, we see a sharp

cutoff of the growth rate at a value of k, corresponding to ω∗h = ω∗c = 0.0909091|Ωe|, below

which all wave growth is confined. This is clearly evident in the middle panel of Figure

2.23.

The middle panel of Figure 2.23 illustrates the κc dependence of the growth rate of the

parallel whistler instability for the chosen anisotropy of Ah = Ac = 0.1. It initially appears

as if the growth rate is not affected by a variation in κc. However, if we examine the curves

more closely (bottom panel), it is evident that the peak growth rates are dependent on

κc. The peak maximum growth rate corresponds to the case κh = 1.6. The peak growth

rate decreases monotonically with an increase in κc.

Figure 2.24 shows the case for Ac = Ah = 0.5 with all other parameters as in Figure 2.23.

Similar to the previous case (Ah = Ac = 0.1), there is no marked difference in dispersion

curves at most wave numbers investigated. However, there is a marginal κc dependency

which is seen at large wave numbers (0.9 . kρh . 1.0). In this range an increase in κc

results in a marginal decrease in frequency. Since Ah = Ac = 0.5, ω∗h = ω∗c = 0.33333|Ωe|,

defining the frequency at which all thermal effects and κ dependency vanishes for both
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Figure 2.22: Whistler mode dispersion relation (top) and growth rate (bottom) for a se-

quence of plasmas having different κc values, fixed temperature anisotropies corresponding

to Ac = 2.0, Ah = 0 and all other parameters are as in Table 2.1.
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Figure 2.23: Whistler mode dispersion relation (top) and growth rate (middle) for a se-

quence of plasmas having different κc values, fixed temperature anisotropies corresponding

to Ac = Ah = 0.1 and all other parameters are as in Table 2.1. The dashed horizontal

line represents ω∗h = ω∗c = 0.0909091|Ωe|. The bottom panel illustrates the growth rate

zoomed in around the peak growth rates.
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electron species. This is represented by the horizontal dashed line in the top panel of

Figure 2.24. This point of intersection also defines the frequency below which both electron

species contribute positively to the growth rate and in turn creates an upper boundary of

the interval of growing wave numbers (middle panel).

The κc dependence of the growth rate is illustrated in the middle panel of Figure 2.24.

Very little variation in the growth rate curves is seen (within graphical accuracy) for the

range of cool electron spectral indices investigated. The κc dependency of the peak growth

rate is best illustrated in the bottom panel, where it is evident that an increase in spectral

index of the cool electrons results in a monotonic decrease in peak growth rate. The

maximum peak growth rate corresponds to κc = 1.6.

Figure 2.25 illustrates the whistler mode dispersion relation and growth rate for a sequence

of plasmas having different κc values and fixed temperature anisotropies corresponding to

Ac = Ah = 2.0. This dramatic increase in anisotropy of both electron species has resulted

in a decidedly broader spectrum of wave numbers for which there is a positive growth

rate. This is due to the frequency ω∗h = ω∗c = 0.666667|Ωe| corresponding to a larger wave

number than the previous cases (A = 0.1 and A = 0.5). Owing to this, we explore the κc

dependency of the dispersion curves and growth rate over a larger range of wave numbers

than that explored previously (Figures 2.23 and 2.24).

In the real part of the dispersion relation (top panel), we see very little κc dependence

of the curves for kρh . 1.3, thereafter, the dependence increases. At large wave numbers

(1.3 . kρh . 2.0) an increase in κc results in a decrease in frequency. At the frequency

ω∗h = ω∗c = 0.666667|Ωe| (horizontal dashed line) all thermal effects and κ dependency

vanishes for both electron species, resulting in a common point of intersection for all

curves.

The middle panel illustrates the growth rate curves. The sharp cutoff in growth rate is

clearly evident at the wave number corresponding to ω∗h = ω∗c = 0.666667|Ωe|. At small

wave numbers (kρh . 0.5) there is no significant difference in the growth rate curves with

a variation in κc. However, as the wave number is increased so is the κc dependency. At

larger wave numbers (kρh & 0.5) an increase in κc results in a decrease in growth rate.
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Figure 2.24: Whistler mode dispersion relation (top) and growth rate (middle) for a se-

quence of plasmas having different κc values, fixed temperature anisotropies corresponding

to Ac = Ah = 0.5 and all other parameters are as in Table 2.1. The dashed horizontal line

represents ω∗h = ω∗c = 0.33333|Ωe|. The bottom panel illustrates the growth rate zoomed

in around the peak growth rates.
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The bottom panel of Figure 2.16 illustrates the κc dependence of the peak growth rate

of the parallel whistler instability for the chosen electron anisotropy of Ah = Ac = 2.0.

An increase in κc results in a monotonic decrease in the peak growth rates with a peak

maximum growth rate corresponding to the case where κh = 1.6.

Variation of κc with β‖h = 0.0816992 and β‖c = 0.00972221

The parameters in this section are similar to that of the previous section (as in Table

2.1), except that here the hot electron temperature has been lowered from Th = 1000 eV

to Th = 100 eV. This change in hot electron temperature results in a change in plasma

parallel beta value of the hot electrons such that β‖h = 0.0816992 (β‖c remains unchanged).

How the lowering of β‖h affects the effects of varying of κc firstly in a sequence of plasmas

with varying Ac and Ah = 0 and then in a sequence of plasmas with Ah = Ac, will be

investigated in the figures to follow.

Figure 2.26 illustrates the dispersion relation ωr(k) and growth rate γ(k) curves for a

sequence of plasmas with different κc values and fixed Ac = 0.1, Ah = 0. The real part

of the dispersion relation (top panel) shows very little dependence on κc at small and

intermediate wave numbers (kρh . 0.4). The κc dependence is enhanced as the wave

number is increased with a significant difference in dispersive characteristics emerging in

the range (0.4 . kρh . 0.5). In this range, an increase in κc produces a decrease in

frequency.

In all cases of κc investigated in Figure 2.26, increasing the spectral index of the cool

electrons with Ac = 0.1 and Ah = 0, resulted in a decrease in the window of growing wave

numbers, i.e., the greater κc, the smaller the instability bandwidth. In the bottom panel

of Figure 2.26, it is seen that at small wave numbers (kρh . 0.1) an increase in κc results

in a monotonic decrease in the growth rate. As previously discussed, this is because as the

spectral index is increased the probability of the particles participating in the cyclotron

resonance process is decreased and wave growth is suppressed. The dependence of k∗ρh

on κc for a fixed κh = 4.0 is also illustrated here. For Ac = 0.1, Ah = 0 the wave number

at which γ = 0, k∗ρh, is greatest for κc = 1.6. An increase in κc results in a monotonic
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Figure 2.25: Whistler mode dispersion relation (top) and growth rate (middle) for a se-

quence of plasmas having different κc values, fixed temperature anisotropies corresponding

to Ac = Ah = 2.0 and all other parameters are as in Table 2.1. The dashed horizontal line

represents ω∗h = ω∗c = 0.666667|Ωe|. The bottom panel illustrates the growth rate zoomed

in around the peak growth rates.
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decrease in k∗ρh.

In the bottom panel of Figure 2.26, we observe that an increase in κc results in a monotonic

decrease in the peak growth rate with the peak maximum growth rate corresponding to

κc = 1.6. Although there exists a range of wave numbers where γ > 0 for the case

κc = 3.0, this is not within graphical accuracy and is found to be of the order of 10−11.

The cool electrons contribute positively to the growth rate for all frequencies below ω∗c =

0.0909091|Ωe| for the chosen value of Ac. The hot electrons on the other hand, are a

constant source of cyclotron damping.

Figure 2.27 is similar to Figure 2.26 but in this case the anisotropy of the cool electrons

has been increased from Ac = 0.1 to Ac = 0.5. The real part of the dispersion relation (top

panel) shows very little dependence on κc at small and intermediate wave numbers (kρh .

0.4). At larger wave numbers (0.4 . kρh . 0.5) the κc dependence is more pronounced

with an increase in κc resulting in a decrease in frequency in this range. The cool electrons

contribute positively to the growth rate for all frequencies below ωr = ω∗c = 0.33333|Ωe|.

In the bottom panel of Figure 2.27, we observe that an increase in κc results in a monotonic

decrease in the peak growth rate with the peak maximum growth rate corresponding to

κc = 1.6. For the case κc = 3.0, there exists a range of wave numbers where γ > 0.

However, this is not within graphical accuracy and is found to be of the order of 10−9.

All other values of κc investigated contribute negatively to the growth rate for all wave

numbers considered.

The bottom panel of Figure 2.27 clearly illustrates how an increase in κc results in a

decrease in the window of growing wave numbers due to fewer resonant electrons at small

wave numbers (kρh . 0.15). The dependence of k∗ρh on κc for a fixed κh = 4.0, is clearly

shown. An increase in κc results in a monotonic decrease in k∗ρh.

Figure 2.28 shows the dispersion relation and growth rate for the case where Ac = 2.0

(Ac = 0). At this level of cool electron anisotropy, a variation in κc results in an interesting

phenomenon in the real part of the dispersion relation. At small and intermediate wave

numbers (kρh . 0.35) the curves show little κc dependency, as was seen in the previous

two cases (Ac = 0.1, Ac = 0.5). However, unlike the previous two cases, here we witness a



74 CHAPTER 2. WHISTLER MODE INSTABILITY

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5

ω
r
 /

 |Ω
e
|

kρ
h

n
c
 = 0.21 cm

-3
, T

c
 = 10.2 eV, A

c
 = 0.1, β||,c = 0.00972221

 κ
h
 = 4.0, n

h
 = 0.18 cm

-3
, T

h
= 100 eV, A

h
 = 0, β||,h = 0.0816992

κ
c
 = 1.6

κ
c
 = 2.0

κ
c
 = 3.0

κ
c
 = 4.0

κ
c
 = 20.0

 0

 5e-07

 1e-06

 1.5e-06

 2e-06

 0  0.1  0.2  0.3  0.4  0.5

γ 
/ 

|Ω
e
|

kρ
h

κ
c
 = 1.6

κ
c
 = 2.0

κ
c
 = 3.0

κ
c
 = 4.0

κ
c
 = 20.0

Figure 2.26: Whistler mode dispersion relation (top) and growth rate (bottom) for a se-

quence of plasmas having different κc values, fixed temperature anisotropies corresponding

to Ah = 0, Ac = 0.1 and hot electron temperature, Th = 100 eV. All other parameters are

as in Table 2.1.
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Figure 2.27: Whistler mode dispersion relation (top) and growth rate (bottom) for a se-

quence of plasmas having different κc values, fixed temperature anisotropies corresponding

to Ah = 0, Ac = 0.5 and hot electron temperature, Th = 100 eV. All other parameters are

as in Table 2.1.
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cross over in trend. At kρh ≈ 0.4 an increase in κc produces an increase in frequency. As

kρh is increased to kρh = 0.5 a reverse in the trend is observed.

For this value of the anisotropy of the cool electrons, an increase in spectral index of the

cool electrons results in a monotonic decrease in the maximum growth rate with peak

maximum growth rate corresponding to κc = 1.6. This is clearly illustrated in the bottom

panel of Figure 2.28. The case κc = 3.0 does experience a positive growth rate but it is of

the order 10−8 and hence, not within graphical accuracy. The dependence of k∗ρh on κc, is

clearly demonstrated in the bottom panel, with an increase in κc resulting in a monotonic

decrease in k∗ρh. In all cases investigated in Figure 2.28, increasing the spectral index

of the cool electrons with Ac = 2.0 and Ah = 0, resulted in a decrease in the window of

growing wave numbers. The cool electrons contribute positively to the growth rate for

all frequencies below ω∗c = 0.666667|Ωe|. The hot electrons remain a constant source of

cyclotron damping.

Figures 2.29 - 2.31 address the question of varying the cool and hot electron anisotropies

in unison. In these figures the two electron species differ in most characteristics but have

equal thermal anisotropy. Figure 2.29 illustrates the whistler mode dispersion relation and

growth rate for the case where Ac = Ah = 0.1. In the real part of the dispersion relation

(top panel), varying the spectral index of the cool electrons has very little effect on the

dispersion curves at small and intermediate wave numbers (kρh . 0.35). As the wave

number is increased so is the κc dependence of the curves. More significant differences in

dispersion curves emerge at large wave numbers (0.35 . kρh . 0.5). In this range, an

increase in κc results in a decrease in frequency. There is a common point of intersection

at ωr = ω∗h = ω∗c = 0.0909091|Ωe| (dashed line in top panel) signifying a single frequency

at which all thermal effects of both electron species vanish.

The bottom panel of Figure 2.29 illustrates the κc dependence of the growth rate of the

parallel whistler instability for the chosen anisotropy of Ah = Ac = 0.1. An increase in

κc results in a monotonic decrease in the peak growth rate with a peak maximum growth

rate corresponding to the case where κh = 1.6. Increasing the spectral index of the cool

electrons resulted in a decrease in the window of growing wave numbers for all cases
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Figure 2.28: Whistler mode dispersion relation (top) and growth rate (bottom) for a se-

quence of plasmas having different κc values, fixed temperature anisotropies corresponding

to Ah = 0, Ac = 2.0 and hot electron temperature, Th = 100 eV. All other parameters are

as in Table 2.1.
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investigated in Figure 2.29, i.e., the greater κc, the smaller the instability bandwidth.

The wave number corresponding to the point of intersection in the dispersion relation

curves defines an upper boundary of the interval of growing wave numbers due to the fact

that Ah = Ac. In this case with Ah = Ac = 0.1, we observe a sharp cutoff of the growth

rate at a value of k corresponding to ωr = ω∗h = ω∗c = 0.0909091|Ωe| in the bottom panel

of Figure 2.29. Both electron species will make a positive contribution to the growth rate

for all wave numbers below this.

Figure 2.30 is similar to Figure 2.29 except in this case the anisotropy of the electrons has

been increased from Ah = Ac = 0.1 to Ah = Ac = 0.5. The top panel illustrates the real

part of the dispersion relation. Varying the spectral index of the cool electrons has very

little effect at small and intermediate wave numbers (kρh . 0.35), however, as the wave

number is increased so is the κc dependence. An increase in κc results in a decrease in

frequency in the range 0.35 . kρh . 0.5.

The frequency at which all κ dependency vanishes and the curves intersect is found to be

ωr = ω∗h = ω∗c = 0.33333|Ωe| (dashed line in top panel). At the wave number corresponding

to this frequency, we find that γ = 0 for all curves irrespective of the value of κc (κh is

fixed). As previously explained, this is due to the anisotropies of both electron species

being equal.

The peak maximum growth rate corresponds to κh = 1.6. An increase in κc results in

a monotonic decrease in the peak growth rates. In all cases of κc investigated in Figure

2.30, an increase in the spectral index of the cool electrons results in a decrease in the

instability bandwidth. This is due to an increase in κc resulting in a decrease in growth

rate at small wave numbers (kρh . 0.15) owing to there being fewer tail electrons with v‖

large enough to induce the Doppler shift required for cyclotron resonance.

Figure 2.31 illustrates the whistler mode dispersion relation and growth rate for a sequence

of plasmas having different κc values and fixed temperature anisotropies corresponding to

Ac = Ah = 2.0. In the real part of the dispersion relation (top panel), we see very little κc

dependence of the curves. The effects of varying κc are only seen as kρh approaches 0.5.

As kρh approaches 0.5, an increase in cool electron spectral index results in a decrease
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Figure 2.29: Whistler mode dispersion relation (top) and growth rate (bottom) for a se-

quence of plasmas having different κc values, fixed temperature anisotropies corresponding

to Ac = Ah = 0.1 and hot electron temperature, Th = 100 eV. All other parameters are

as in Table 2.1. The dashed horizontal line represents ω∗h = ω∗c = 0.0909091|Ωe|.
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Figure 2.30: Whistler mode dispersion relation (top) and growth rate (bottom) for a se-

quence of plasmas having different κc values, fixed temperature anisotropies corresponding

to Ac = Ah = 0.5 and hot electron temperature, Th = 100 eV. All other parameters are

as in Table 2.1. The dashed horizontal line represents ω∗h = ω∗c = 0.33333|Ωe|.
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in frequency. At the frequency ωr = ω∗h = ω∗c = 0.666667|Ωe| all thermal effects and κ

dependency of both electron species vanishes. This frequency is illustrated by the dashed

line in the top panel of Figure 2.31.

The bottom panel illustrates the growth rate curves. The sharp cutoff in growth rate is

clearly observed at the wave number corresponding to ωr = ω∗h = ω∗c = 0.666667|Ωe|.

At small wave numbers (kρh . 0.2) the growth rates are less affected by a change in κc

(compared to Figures 2.29 and 2.30), however, as the wave number is increased so is the

κc dependency. For this chosen set of parameters, an increase in κc results in a monotonic

decrease in the peak growth rates with a peak maximum growth rate corresponding to

the case where κc = 2.0. The case κc = 1.6 is the exception to this trend having a peak

growth rate that lies between κc = 2.0 and κc = 3.0.
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Figure 2.31: Whistler mode dispersion relation (top) and growth rate (bottom) for a se-

quence of plasmas having different κc values, fixed temperature anisotropies corresponding

to Ac = Ah = 2.0 and hot electron temperature, Th = 100 eV. All other parameters are

as in Table 2.1. The dashed horizontal line represents ω∗h = ω∗c = 0.666667|Ωe|.
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2.5 Discussion and conclusions

This chapter has presented a parameter survey of the parallel propagating whistler in-

stability driven by temperature anisotropy in both the hot and cool electron species, for

a plasma in which the velocity distribution of each plasma species is modelled by the

bi-kappa distribution. The dispersion relation, Equation (2.9), was solved numerically for

different anisotropies, temperatures and spectral indices of the two electron components

using parameter values derived by Schippers et al. (2008) for the Saturnian magnetosphere

as a guide. This was done to account for the innate temporal variability of a dynamic

magnetosphere such as that of Saturn.

The effects of varying the spectral index of the hot electrons, κh, with a variety of hot

electron temperature anisotropy values, Ah, and fixed cool electron temperature anisotropy

Ac = 0 at hot electron plasma parallel beta values, β‖h, close to unity are evident in Figures

2.3 - 2.5. These figures revealed that the real part of the dispersion relation becomes

increasingly dependent on κh as the value of Ah is increased from 0.1 to 0.5. In all cases

of Ah investigated, the dependency of the dispersion curves on the spectral index of the

hot electrons, κh, is clearly evident at large wave numbers (0.8 . kρh . 1.0). As Ah is

increased, the dependency of the dispersion curves on κh becomes visible at smaller wave

numbers (kρh . 0.8). The variation of the spectral index of the cool electrons, κc, with a

variety of cool electron temperature anisotropy, Ac, values and Ah = 0 for the same β‖h

value (Figures 2.20 - 2.22), revealed a very different trend. For all cases of Ac investigated,

the real part of the dispersion relation showed very little κc dependence for all kρh . 1.0.

Only as kρh approached 1.0 did a marginal κc dependency emerge.

For hot electron parallel beta values, β‖h � 1, the effects of varying κh with a variety of

Ah values and Ac = 0 is markedly different to the β‖h ≈ 1 case. At small anisotropies

(Ah = 0.1 and Ah = 0.2), a variation in κh results in a distinct difference in dispersion

curves at intermediate and large wave numbers (0.2 . kρh . 0.5) as illustrated in Figures

2.12 and 2.13. At larger anisotropies (Ah = 0.75 and Ah = 1.0), the κh dependence of the

curves is only seen at large wave numbers (0.4 . kρh . 0.5) as observed in Figures 2.14

- 2.15. The dependency of the dispersion curves on a variation of κc with a variety of Ac
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values and Ah = 0 for β‖h � 1 is only evident at large wave numbers (0.4 . kρh . 0.5),

for all values of Ac investigated as observed in Figures 2.26 - 2.28. However, the trend of

the curves is significantly dependent on Ac. At Ac = 0.1 and 0.5 the trend is monotonic

over the range 0.4 . kρh . 0.5, with an increase in κc resulting in a decrease in frequency.

When Ac = 2.0, the trend is non-monotonic. At kρh ≈ 0.4, an increase in κc results in an

increase in frequency. This trend is then reversed as kρh increases, with an increase in κc

resulting in a decrease in frequency as kρh approaches 0.5.

We defined a parameter k∗ρh (in Section 2.4) as the wave number at which the growth

rate, γ, vanishes for plasmas where the temperature anisotropy of the hot electrons is

not equal to that of the cool electrons, i.e., Ah 6= Ac. At this point the wave number

at which the positive contribution provided by one electron species equals, in magnitude,

the negative contribution provided by the other. This parameter arises because we have

Ah 6= Ac and, therefore, there is no single wave number, independent of κ, at which the

growth rate vanishes for all curves. For the cases Ac = 0 at β‖h close to unity (Figures 2.3

- 2.5), the dependency of k∗ρh on κh is non-monotonic at very low values of Ah (Ah = 0.1).

As Ah is increased the dependency becomes monotonic with an increase in κh resulting in

an increase in k∗ρh for Ah = 0.5. For Ah = 0 with β‖h close to unity (Figures 2.20 - 2.22),

an increase in κc results in a monotonic decrease in k∗ρh for all cool electron anisotropies

investigated.

For values of β‖h � 1 and Ac = 0 (Figures 2.12 - 2.15), the variation of k∗ρh with κh is

non-monotonic for small anisotropies (Ah = 0.1 and 0.2). The the largest value of k∗ρh is

found for the case where κh = 2.0. For κh < 2.0 an increase in κh results in an increase in

k∗ρh. For κh > 2.0 an increase in κh results in a decrease in k∗ρh. For larger anisotropies

(Ah = 0.75 and Ah = 1.0), there is a monotonic increase in k∗ρh with an increase in κh.

For Ah = 0 with β‖h � 1 (Figures 2.26 - 2.28), an increase in κc results in a monotonic

decrease in k∗ρh for all cool electron anisotropies investigated.

For the cases Ac = 0 at β‖h close to unity (Figures 2.3 - 2.5), the peak growth rates are

highly dependent on both Ah and κh. At the lowest anisotropy (Ah = 0.1), an increase in

κh results in a monotonic decrease in peak growth rate (with the exception being for case
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close to the theoretical minimum). As the anisotropy of the hot electrons is increased,

this trend is gradually reversed with a peak maximum growth rate corresponding to the

quasi-Maxwellian case for the largest anisotropy (Ah = 0.5). For Ah = 0 at β‖h close to

unity (Figures 2.20 - 2.22), in all cases of Ac investigated, the maximum peak frequency

always corresponded to the case where κc = 1.6. This was followed by κc = 2.0. There

was no overall positive contribution to the growth rate for higher values of κc investigated.

For β‖h � 1 and Ac = 0 (Figures 2.12 - 2.15), an increase in κh results in a monotonic

decrease in peak growth rate for the lowest anisotropy (Ah = 0.1). This trend is gradually

reversed as Ah increases. At the largest anisotropy (Ah = 1.0), the peak maximum growth

rate corresponds to κh = 20.0. For β‖h � 1 and Ah = 0 (Figures 2.26 - 2.28), an increase in

κc results in a monotonic decrease in the peak growth rate with the peak maximum growth

rate corresponding to κc = 1.6. This is followed by the case with κc = 2.0. Although there

exists a range of wave numbers where γ > 0 for the cases where κc = 3.0, this is not

within graphical accuracy. For κc > 3.0, no wave growth is observed for all wave numbers

investigated.

When Ah = Ac, there exists a single frequency at which all thermal effects of both electron

species vanish. The wave number corresponding to this frequency sets an upper boundary

below which all wave growth is confined, i.e., there exists a single value of k at which all

curves will have γ = 0 irrespective of the spectral indices. During our investigation of

the effects of varying κh with Ah = Ac and β‖h close to unity (Figures 2.6 - 2.11), it was

found that increasing the anisotropy of both electron species results in the real part of

the dispersion relation becoming increasingly dependent on κh at smaller wave numbers

(kρh . 0.4). At values of β‖h � 1 (Figures 2.16 - 2.19), the reverse is true. The real

part of the dispersion relation curves become decreasingly dependent on κh as Ah and Ac

are increased with significant differences between dispersion curves only emerging in the

range 0.4 . kρh . 0.5 when Ah = Ac = 1.0.

In our investigation of the effects of varying κc with Ah = Ac and β‖h ≈ 1 (Figures 2.23

- 2.25), it was found that as the anisotropy of both electron species was increased, the

dependency of the real part of the dispersion relation on κc was only seen at large wave
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numbers (kρh & 1.0). For β‖h � 1 (Figures 2.29 - 2.31), as Ac and Ah increase, the

effects of varying κc decreases at larger wave numbers (0.4 . kρh . 0.5) with hardly any

variation in dispersion curves observed in this range for Ah = Ac = 2.0.

For the case Ah = Ac, the peak growth rates are highly dependent on κh for both β‖h � 1

and β‖h ≈ 1. For β‖h ≈ 1 (Figures 2.6 - 2.11), at low anisotropies (Ah = Ac = 0.1) there

is a monotonic decrease in peak growth rate (with the exception being for κh = 1.6) with

an increase in κh. This trend is reversed as the anisotropy of the hot electrons is increased

with a peak maximum growth rate corresponding to the quasi-Maxwellian case for large

anisotropies (Ah = Ac = 0.5). This trend also holds true for the case β‖h � 1 (Figures

2.16 - 2.19). An increase in κh results in a monotonic decrease in peak growth rate at

small anisotropies (Ah = Ac = 0.1) with a reverse in trend observed at large anisotropies

(Ah = Ac = 1.0). However, the range of anisotropies over which the aforementioned trend

is seen depends on the value of β‖h. In other words, for a fixed value of β‖h there exists

a range of anisotropies for which an increase in κh results in a decrease in peak growth

rate. The size of this interval depends on β‖h. The smaller the value of β‖h the larger the

interval. At a critical value of Ah and Ac (which is again dependent on β‖h) the reverse is

observed and an increase in κh results in an increase in peak growth rate.

When investigating the κc dependence of the growth rate with Ah = Ac, it was found that

for β‖h ≈ 1 (Figures 2.23 - 2.25), an increase in κc results in a monotonic decrease in peak

growth rate with peak maximum growth rate corresponding to κc = 1.6 for all electron

anisotropies investigated. This trend in peak growth rate holds true even for electron

anisotropy of both species as high as 2.0.

For β‖h � 1 (Figures 2.29 - 2.31), an increase in κc results in a monotonic decrease in peak

growth rate at the smallest anisotropy investigated, Ah = Ac = 0.1. This trend continues

for the case Ah = Ac = 0.5. As the anisotropy is increased, this trend slowly starts to

reverse. However, even at anisotropies as high as Ah = Ac = 2.0, a complete reversal

in trend is not seen. For this electron anisotropy (Ah = Ac = 2.0), the peak maximum

growth rate corresponds to the case κc = 2.0.

An increase in the spectral index of the hot or cool electron species will always result
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in a decrease in the window of growing wave numbers. This was evident in all of the

cases investigated in this parameter survey. This is due to a phenomenon that occurs

at small wave numbers. In this region, a small spectral index implies that there are

more superthermal particles in the tail of the particle velocity distribution. Owing to

this, there are more tail electrons at small wave numbers with parallel velocities, v‖,

large enough to induce the Doppler shift required for cyclotron resonance, in accordance

with Equation (2.5) (Mace et al., 2011). The more particles that participate in this

cyclotron resonance process, the greater the contribution to the growth rate, leading to

wave amplification. As the spectral index of either species is increased, the probability of

these wave-particle interactions occurring is decreased and, therefore, so is the window of

growing wave numbers (Mace et al., 2011).

It is also important to note that in all cases investigated, an increase in β‖h resulted in an

increase in peak growth rate as well as an increase in the window of growing wave numbers

for a fixed value of anisotropy of both electron species. As β‖h is decreased a much larger

anisotropy of the electron species is needed to produce significant wave growth. This is

expected, as the particle pressure is considerably less than the magnetic pressure for small

β‖h, thus, the magnetic field produces a stabilising effect (Mace and Sydora, 2010).

In all cases investigated, an increase in anisotropy of an electron species always resulted in

an increase in peak growth rate for a fixed spectral index of both electrons. An increase

in anisotropy always resulted in a larger window of growing wave numbers and frequencies

due to the condition for wave growth Equation (2.25).
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The results of this chapter are summarised in the paper, Henning, F. D. and Mace,

R. L. (2014), “Effects of ion abundances on electromagnetic ion cyclotron

wave growth rate in the vicinity of the plasmapause”, Physics of Plasmas,

21(4):042905.

3.1 Introduction

Electromagnetic ion cyclotron (EMIC) waves are naturally occurring plasma emissions

commonly observed in the Earth’s magnetosphere (Anderson et al., 1992b,a; Erlandson

and Ukhorskiy , 2001; Fraser and Nguyen, 2001). They occur at frequencies below the

local proton gyrofrequency and are left hand circularly polarised (L mode), corresponding

to the sense of ion gyration, when propagating parallel to the ambient magnetic field, B0.

They play an important role in the overall dynamics of Earth’s magnetosphere as they

contribute to the loss and energisation of magnetospheric particles due to their resonant

interaction with ions and relativistic electrons by altering their pitch angles and energies

(Summers and Thorne, 2003; Albert and Bortnik , 2009; Xiao et al., 2011, 2012, 2013).

This was previously discussed in greater detail in Chapter 1, Sections 1.1 and 1.2.

EMIC waves are predominantly excited in the vicinity of the plasmapause where the

thermally anisotropic ring current and the cool plasmaspheric plasmas overlap (Thorne

and Horne, 1997). The ring current is one of the main sources of free energy for the

excitation of electromagnetic ion cyclotron waves in the terrestrial magnetosphere. It is a

toroidally shaped electric current which flows westward around the Earth. It has variable

density and is found at geocentric distances of between 2 and 9 Earth radii (RE) (Daglis

et al., 1999) (see Figure 3.1). Geomagnetically trapped particles gyrate around the ambient

magnetic field as a result of the Lorentz force. However, these particles are also subject

to drift motions due to the gradient and curvature of the magnetic field (Baumjohann

and Treumann, 1996). The gradient drift motion, the curvature drift motion and gyration

are the three basic motions of charged particles in the presence of an inhomogeneous

magnetic field (Daglis et al., 1999) (see Figure 3.2). These give rise to an azimuthal drift

with electrons moving eastward and most ions moving westward resulting in a net charge
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Figure 3.1: A schematic diagram of the terrestrial magnetosphere (Daglis et al., 1999).

transport.

The ring current has a permanent existence due to the natural properties of charged par-

ticles in the geospace environment. However, its intensity is highly variable (Daglis et al.,

1999). During magnetic storms, for instance, its intensity is increased. These increases

in the ring current intensity are responsible for global decreases in the Earth’s surface

magnetic field (Baker and Daglis, 2001). Such a global decrease in the surface magnetic

field strength is the defining feature of geomagnetic storms. Intense geomagnetic storms

can have adverse effects on technology systems such as navigation satellites, telecommu-

nication cables and power grids (Daglis et al., 1999).

The terrestrial ring current is enhanced by the injection of plasma sheet ions into the in-

ner magnetosphere during magnetic storms (Kavanagh et al., 1968; Ejiri , 1978; Williams,

1983; Wolf et al., 1998; Nosé et al., 2005). An enhanced dawn-dusk electric field con-

vects, via E ×B drift, the plasma sheet particles towards Earth on the night side of the

Earth’s magnetosphere (Williams, 1983). These convecting ions experience both betatron

and Fermi acceleration as they are transported to low altitudes to form the ring current

(Williams, 1983). As pointed out by Mace et al. (2011), since the plasma sheet ions are a

direct source of the ring current plasma (Jordanova et al., 2003; Nosé et al., 2005; Lavraud
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Figure 3.2: The cyclotron motion and bounce motion of a charged particle along a geo-

magnetic field line (Daglis et al., 1999).

and Jordanova, 2007), the two plasma systems share many of the same characteristics,

such as ion composition and energy density. The plasma sheet ions have been shown to

have velocity distributions that exhibit power law tails (Ipavich and Scholer , 1983; Ipavich

et al., 1985) and have previously been well fitted by a kappa distribution function under a

wide variety of geomagnetic conditions (Christon et al., 1989, 1991). Owing to this, it is

expected that the velocity distribution of the ring current ions would also be best modelled

by the kappa distribution (Mace et al., 2011). In fact, due to the acceleration mechanisms

previously mentioned, it is possible that the power law tails of the ring current ions may

be enhanced as they convect inward (Mace et al., 2011).

Electromagnetic ion cyclotron waves driven by thermally anisotropic ions having veloc-

ity distributions that exhibit power law tails have been previously studied (Xue et al.,

1996a,b; Chaston et al., 1997; Vega et al., 1998; Xiao et al., 2007; Mace et al., 2011; Zhou

et al., 2013a,b). Xue et al. (1996a) examined the dispersive properties and growth rate of

oblique EMIC waves for conditions in the Earth’s outer magnetosphere (L = 7) with the

energetic particle distribution being that of the Lorentzian distribution. They found that,

for the real part of the wave frequency, there is little discrepancy between the Maxwellian

case and that of the Lorentzian. However, the growth and damping rates of each are signif-

icantly different. For small wave normal angles to the ambient magnetic field, the growth

and damping rates were larger for the Maxwellian distribution case than its Lorentzian



3.1. INTRODUCTION 93

counter part. For large wave normal angles, the growth and damping rates are relatively

small in both cases. They found that the largest wave growth rate (temporal), for both

distributions, was observed for parallel propagation.

Xue et al. (1996b) investigated the growth rate of field-aligned EMIC waves in the terres-

trial magnetosphere. They used a bi-kappa velocity distribution to model the energetic

ring current ions and compared their results to those obtained with its bi-Maxwellian

counterpart. They explored the sensitivity of the growth rate to various plasma param-

eters that are typical of the outer magnetosphere. Their results showed an increase in

convective growth rate in the outer magnetosphere (L ≥ 5) that maximised near the mag-

netopause (L ≈ 9). The most significant increase was seen in the bands above and below

the helium gyrofrequency (ΩHe+). In this instance bands refers to the range of frequencies.

The band above ΩHe+ is the frequency range ΩHe+ < ωr < ΩH+ , while below refers to the

frequency range ΩO+ < ωr < ΩHe+ . The oxygen ions are a minor species whose presence

only has a modest effect on the growth rate and, thus, Xue et al. (1996b) chose to confine

the majority of their study to a plasma composed exclusively of protons and helium ions.

When investigating the effects that varying the spectral index, κ, would have on the wave

convective growth rate, Xue et al. (1996b) observed that as the value of κ decreased, so

did the peak growth rate. As pointed out by Mace et al. (2011), this result is due to their

choice of plasma beta value being relatively high (β ≈ 1), as it is in the outer magneto-

sphere. Other parameters investigated were the anisotropy, density and temperature of

the energetic protons, the ambient plasma density, and the concentration and temperature

of the thermal helium ions. The results of Xue et al. (1996b) show that as the anisotropy

of the energetic protons is increased, so are the peak growth rates in both the bands above

and below ΩHe+ . As the number density of the energetic protons is increased, so is the

peak growth rate in both bands above and below ΩHe+ . The same trend is seen for the

investigation into the temperature variation.

An increase in concentration of the helium ions decreases the peak growth rate in the band

above ΩHe+ , while growth in the lower band (ΩO+ < ωr < ΩHe+) is relatively insensitive

to helium concentration. An increase in the temperature of the helium ions decreases the
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peak growth rate in both bands above and below ΩHe+ . For all of these investigations, Xue

et al. (1996b) compared numerical results obtained using a bi-kappa particle distribution to

model the energetic ring current ions to similar results using a bi-Maxwellian distribution.

They concluded that the use of the Maxwellian distribution to describe the energetic ring

current ions overestimates the peak convective growth rates in all cases. During their

investigation of the effects of varying the ambient plasma density, they observed that for

high densities (ne ≥ 10cm−3) there is a comparable convective gain both above and below

ΩHe+ . However, when looking at peak growth rates in the band above ΩHe+ , they found

that an increase in density results in a decrease in the peak growth rate, while in the band

below ΩHe+ the reverse is true.

Chaston et al. (1997) derived the electromagnetic dispersion relation for parallel propaga-

tion from the linearised Vlasov equation for both the bi-kappa distribution and a crescent

shaped distribution (given by the generalised distribution function presented in Gary and

Sinha (1989)). They examined the effects that both these distributions have on elec-

tromagnetic instabilities driven by the proton temperature anisotropy and relative drift

between components in a plasma. Their study focused on the plasma sheet and the plasma

sheet boundary layer regions. They investigated the effects of varying the spectral index,

κ. It was found that a decrease in κ resulted in a decrease in the peak frequency growth

rate and an increase in the frequency range over which the instability occurs. These re-

sults are consistent with those found by Xue et al. (1996b) in regions where they too use

a relatively high value of plasma beta, β.

Vega et al. (1998) studied the L mode in electromagnetic proton-cyclotron waves in plasmas

modelled by a Lorentzian distribution function. They considered a plasma consisting of

only energetic anisotropic protons and an isotropic cool proton component both having

bi-kappa velocity distributions. Their investigation revealed that the convective growth

rate showed a significant dependence on the spectral index of the hot proton species, κ.

The maximum growth rate was found to always decrease, or increase until κ reached some

optimum value and then increased, or decreased, depending on both the thermal anisotropy

of the hot protons and the cool proton concentration. Like Xue et al. (1996b), they too
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showed that the maximum growth rates decrease with a decrease in the thermal anisotropy

of the hot protons. Vega et al. (1998) showed that the influence of a high energy tail on the

amplification and generation of electromagnetic proton-cyclotron waves depends on both

the cool proton population as well as the values of thermal anisotropies. The temporal and

convective growth rates can be larger than, equal to or smaller than those of Maxwellian

plasmas, depending on the cool proton concentration and the anisotropy of the hot proton

distribution.

Xiao et al. (2007) examined the EMIC instability driven by the thermal anisotropy

(T⊥/T‖ > 1) of superthermal protons modelled with a typical kappa distribution in a

cool multi-species plasma composed of electrons, H+, He+ and O+. They derived a rep-

resentation of the superthermal proton instability threshold condition associated with

the kappa distribution under the marginal stability condition (Xiao et al., 2007, Equa-

tion (10)). They found that as the spectral index κ, increased, the instability threshold

condition generally decreased, tending to the lowest limiting values of the bi-Maxwellian

model. This lead them to the conclusion that the bi-Maxwellian model overestimates the

maximum growth rate.

Zhou et al. (2013a) used THEMIS simultaneous measurements of fields and particle veloc-

ity distributions to model some EMIC wave events observed in the outer magnetosphere

(L ∼ 6 – 7). They fitted the observed overall ion velocity distributions with (i) a sum of

bi-Maxwellian distributions and (ii) a sum of bi-kappa distributions, fixing κ = 2 for each.

They show that the bi-kappa fits are more consistent with the measured particle velocity

distributions than the corresponding bi-Maxwellian ones. They were able to determine

the path-integrated wave gain by ray tracing, using the EMIC growth rate in the small

approximation limit, |γ|/ωr � 1. It was found that the smaller growth rate predicted by

the Vlasov theory using the bi-kappa distribution produced wave gains that were more

consistent with those measured, while those predicted by the bi-Maxwellian distribution

tended to overestimate this value.

Zhou et al. (2013b) use similar techniques to Zhou et al. (2013a) to analyse an electron

heating event observed by THEMIS. The heating event was analysed in terms of Landau
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damping of oblique EMIC waves in the outer magnetosphere. Their results suggest that

the frequencies of EMIC waves in the He+ branch produced by ion thermal anisotropy

correlate well with the expected regions of strong Landau damping by cool electrons for

the event considered. Zhou et al. (2013b) argue that this gives rise to an efficient transfer

of energy from EMIC waves to the electrons and as a result could in turn provide a

mechanism responsible for stable auroral red arcs.

All of the above mentioned works (Xue et al., 1996a,b; Chaston et al., 1997; Vega et al.,

1998; Xiao et al., 2007; Zhou et al., 2013a,b) consider EMIC waves in the outer mag-

netosphere (L ≥ 6). In this region the parallel plasma beta is high, with the bi-kappa

model yielding smaller growth rates than the bi-Maxwellian one (Mace et al., 2011). As

the above mentioned references (Zhou et al. (2013a) and Zhou et al. (2013b)) illustrated,

the resulting diminished rate of growth is more consistent with wave measurements in this

region than growth rates predicted by bi-Maxwellian theory.

On the other hand, Mace et al. (2011) investigated the EMIC instability driven by hot

ring current ions having velocity distributions that exhibit thermal anisotropy and power

law tails of varying hardness for parameters consistent with the inner magnetosphere.

They used a model whereby both the cool plasmaspheric ions as well as the hot ring

current ions have velocity distributions that are modelled by the bi-kappa distribution.

This investigation differed from those previously mentioned as it focused on the region of

the magnetosphere in the vicinity of L = 4, i.e., the inner magnetosphere, where plasma

beta values are smaller. They assumed an ion composition of cool protons, cool helium

ions and cool oxygen ions provided by the plasmasphere and hot protons, hot helium ions

and hot oxygen ions provided by the ring current.

Their investigation illustrated the effects of a ring current composed solely of energetic

protons. In this case they found that all branches of the EMIC wave are destabilised,

with the peak maximum growth rate corresponding to waves on the helium branch and

the smallest corresponding to waves on the oxygen branch. In their investigation of the

effects that the spectral index of the ring current protons has on the growth rates, they

found that in both the proton and helium branches, an increase in the spectral index
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resulted in a decrease in peak growth rate for all values of kappa besides κ = 1.6. In the

oxygen branch, they found that there is a threshold value of kappa for which waves on the

branch will be destabilised. These results were used as a reference case to compare with

the results for a multi-species ring current.

Mace et al. (2011) then turned their attention to a plasma with ion composition of cool

protons, cool helium ions and cool oxygen ions provided by the plasmasphere and hot

protons, hot helium ions and hot oxygen ions provided by the ring current. For the

parameters chosen, their results show that only the oxygen branch is destabilised and that

the choice of spectral index for the ring current ions affects the peak maximum growth

rate of this branch. They found that an increase in the spectral index decreased the peak

growth rate. Their further investigations used a proton-rich ring current. In the case of

the proton-rich ring current they found that the helium branch can be destabilised when

κ = 1.6 but is otherwise damped. The oxygen branch, on the other hand, continues to be

the only branch that is destabilised.

Mace et al. (2011) concluded that in this region of the magnetosphere (L = 4), the presence

of power law tails on the ring current ions resulted in an increase in the growth rate of

the EMIC instability, when compared to that of a bi-Maxwellian model, for the majority

of cases investigated. In particular, it was found that the smaller the spectral index (the

harder the tail) of the kappa distribution, the larger the maximum growth rate of the

instability.

3.2 Motivation and aim

The main motivation for the work presented in this chapter was provided by the investi-

gation of Mace et al. (2011). The model of Mace et al. (2011) was based on a previous

bi-Maxwellian model of Kozyra et al. (1984). It considered groups of ion species from two

sources, namely the hot anisotropic ring current and the cool plasmasphere. Mace et al.

(2011) took the relative abundances of the cool plasmaspheric proton, helium and oxygen

ion species to be 65%, 30% and 5%, respectively, similar to those of Kozyra et al. (1984).

Although these abundances are possible in the vicinity of the plasmapause, they are not
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typical. A more accurate representation of the plasmaspheric ion abundances would be

∼80% protons, 10% - 20% helium ions and 1% - 5% oxygen ions (Young et al., 1977; Xue

et al., 1996a; Craven et al., 1997). For the anisotropic ring current ion species, Mace et al.

(2011) used equal number densities of protons, helium and oxygen ions, as used by Kozyra

et al. (1984), which is not a typical representation of the ring current ions.

While the number densities of the plasmaspheric and ring current ion species used by

Mace et al. (2011) are plausible, they do not span the full range of observed parameters.

As previously discussed, the ring current is highly variable and largely dependent on solar

activity (Daglis et al., 1999). Consequently, the abundances of the ionic species can differ

markedly from storm to storm. During some magnetic storms, for example, the abundance

of energetic O+ ions of ionospheric origin increases dramatically, resulting in the EMIC

wave growth being suppressed or its occurrence being confined to frequencies below the

oxygen gyrofrequency (Thorne and Horne, 1997; Daglis et al., 1998, 1999; Nosé et al.,

2005).

Motivated by the work of Mace et al. (2011), this chapter presents results from a study

of the behaviour of EMIC wave growth rate for a variety of relative abundances of the

ion species. Following Mace et al. (2011), it is assumed that the hot ring current ions,

cool ions of plasmaspheric origin, as well as the electrons, have particle velocity distribu-

tions modelled by the bi-kappa distribution. However, the effects of varying the relative

ion abundances and how this influences wave growth and damping, are addressed more

completely.

3.3 Model and basic equations

The model used here is the same as that used by Mace et al. (2011), in which the plasma

is assumed to be uniform, collisionless and immersed in a uniform magnetic field, B0.

Without loss of generality, the direction of B0 is taken to be along the z-axis of our

Cartesian coordinate system. Following Mace et al. (2011), it is assumed that all particle

species have a bi-kappa velocity distribution (Summers and Thorne, 1991),
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where κ is the spectral index, Γ is the gamma function and v⊥ and v‖ are the perpendicular

and parallel components of the velocity, respectively, relative to B0. The parameters θ⊥

and θ‖ are generalised thermal speeds perpendicular and parallel to B0, respectively, and

are related to the kinetic temperatures, T⊥ and T‖ via (Summers and Thorne, 1991),
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The dispersion relation for parallel propagating L mode waves in a plasma with arbitrary

velocity distribution, fj0, is given by (Gurnett et al., 2005) (see Appendix A for an outline

of the derivation),
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In the above equation, Ωj = qjB0/mj is the signed gyrofrequency, where qj and mj are

the charge and mass of the j th component, respectively. The plasma frequency of the

j th component is given by ωpj = (n0jq
2
j /ε0mj)

1/2 with n0j being the equilibrium number

density. Other parameters are the parallel component of the wave number k‖, where

|k‖| = k since we are considering the case of parallel propagation with respect to B0, and

the wave frequency, ω, which is complex and given by ω = ωr + iγ.

Substituting Equation (3.1) into Equation (3.4) yields the dispersion relation for parallel-

propagating electromagnetic L mode waves in a plasma with a bi-kappa distribution (Mace

et al., 2011) (see Appendix B for full derivation),
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where k = |k‖|. The function Uκ is the plasma dispersion function for a plasma with a

kappa distribution (Mace and Hellberg , 2009), defined in terms of the Gauss hypergeo-

metric function 2F1 by

Uκ(ζ) = i
(κ− 1

2)

κ3/2
2F1

[
1, 2κ;κ+ 1;

1

2

(
1− ζ

iκ1/2

)]
, (3.6)

and the thermal anisotropy of particle species j is defined by

Aj =
θ2⊥j
θ2‖j
− 1 =

T⊥j
T‖j
− 1. (3.7)

Assuming |γ| � ωr and ignoring the thermal effects in the real part of the dispersion

relation, such that (Mace et al., 2011)
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Mace et al. (2011) derived an estimate of the growth rate of the EMIC instability,
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where (Mace et al., 2011)

R(ωr) = 2 +
1
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∑
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The above expression for the growth rate, Equation (3.9), provides great insight into the

instability criteria of each wave branch and determines the role that each ion species will

play in either damping or contributing to positive growth of each wave branch. Using

this estimate it was shown that an ion species j, with thermal anisotropy Aj , will make a

positive contribution to wave growth only for those frequencies ωr satisfying (Mace et al.,

2011)

ωr <
Aj

Aj + 1
Ωj ≡ ω∗j . (3.11)

For a fixed positive Aj , this inequality sets the maximum wave frequency for which species

j will provide a positive contribution to wave growth. Conversely, for ωr > ω∗j , the species
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Table 3.1: The contribution of each ion species to the growth rate of each wave branch.

Table adapted from Mace et al. (2011).

Ion Species Proton Branch Helium Branch Oxygen Branch

H+ +/- +/- +/-

He+ - +/- +/-

O+ - - +/-

j produces cyclotron damping and the overall growth rate of the wave at such frequencies

is reduced. In particular, regardless of the value of Aj , for wave frequencies above the

gyrofrequency of species j, it is observed from Equation (3.11) that species j necessarily

provides a damping contribution. The possible contribution of an ion species to the growth

rate in our model have been tabulated in Table 3.1 (adapted from Mace et al. (2011)) for

ease of reference.

For our choice of plasma composition, the approximate dispersion relation for EMIC waves,

Equation (3.8), can be written as (Mace et al., 2011)

k2c2

ω2
r

= 1−
ω2
pH+

ωr(ωr − ΩH+)
−

ω2
pHe+

ωr(ωr − ΩHe+)

−
ω2
pO+

ωr(ωr − ΩO+)
−

ω2
pe

ωr(ωr + |Ωe|)
, (3.12)

where

ω2
pj = ω2

pj,c + ω2
pj,h,

is the square of the total plasma frequency of an ion species (calculated using both cool,

“c”, and hot, “h”, components) and the index j can be any one of H+, He+ or O+. The

resonances (k → ∞) at the ion gyrofrequencies are plainly evident in Equation (3.12).

The cutoff frequencies must be numerically determined by solving Equation (3.12) for ωr

in the limit as k → 0. It is obvious from Equation (3.12) that these cutoff frequencies are

strongly dependent on the plasma frequencies and, hence, the number densities of the ion

components (Mace et al., 2011).
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3.4 Numerical results

The EMIC wave dispersion relation in a multi-ion species plasma is composed of a single

branch for each ion species. Each branch is bound by a cutoff frequency at small wave

numbers and a resonant frequency at large wave numbers. The exception to this is the

lowest frequency branch, which connects with the Alfvén mode.

The gyrofrequency of an ion species, Ωj , determines the resonant frequency below which

the wave branch of species j is confined at large wave numbers. This resonant frequency

depends largely on the ambient magnetic field strength, B0, which remains relatively con-

stant for a given region of the magnetosphere. In the current investigation, the magnetic

field strength has been set to represent the region of the magnetosphere in the vicinity

of L = 4, which gives B0 = 487.66nT in the standard dipolar model (Baumjohann and

Treumann, 1996).

The cutoff frequency, defining the lower boundary of the wave branch, is quite variable.

It depends largely on the number densities of the ion species (Kozyra et al., 1984; Mace

et al., 2011) through Equation (3.12) with k → 0. In the region of the magnetosphere rep-

resenting L = 4, the number density of each ion species can vary dramatically depending

on geomagnetic conditions. The position of the cutoff frequency of a wave branch relative

to ω∗j (Equation (3.11)) determines whether or not there exists a range of frequencies for

which species j contributes positively to the growth rate of the wave branch (Mace et al.,

2011). Bearing in mind condition (3.11), it follows that the position of a cutoff frequency

relative to the ω∗j is an important determinant of wave growth and indicates that the

relative ion abundances (or number densities) play an important role in governing the

growth/damping of a particular EMIC branch (Mace et al., 2011).

To investigate how the cutoff frequencies of the proton and helium branches vary with

ion species abundances, we solve Equation (3.12) numerically for ωr in the limit k → 0.

Although the temperature of the ion species and their thermal anisotropies do not enter

into the equations at the level of approximation of Equation (3.12), they are important

for the calculation of ω∗j . For the current investigation we shall set the anisotropy of the

hot ions (T = 10 keV) to Ai,h = 1.0 and Ai,c = 0 (isotropic) for the cool ion species
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(T = 10 eV). Since all cool ion species are isotropic, ω∗j,c = 0 such that, ωr > ω∗j,c for all

frequencies investigated. This implies that all cool ion species will be a constant source of

cyclotron damping to all wave branches considered.

Figure 3.3 shows how the proton branch cutoff frequency (red line) and the helium branch

cutoff frequency (blue line) vary with proton (nH+/ni) and oxygen (nO+/ni) relative ion

abundances. The frequencies ω∗H+ and ω∗
He+

, calculated by Equation (3.11) using AH+,h =

AHe+,h = 1.0 are found such that ω∗H+ = 0.5 ΩH+ and ω∗
He+

= 0.125 ΩH+ . These are

illustrated by the dashed, horizontal lines in Figure 3.3. The total number density of

the ions (sum of number densities of all ion species) and the total number density of the

helium ions (hot and cool) have been kept constant at ni = 25cm−3 and nHe+ = 2.25cm−3

(nHe+ = 0.09 ni), respectively. These values were chosen to coincide with the numerical

investigation of the dispersion relation, Equation (3.5), which will be used later.

From Figure 3.3 we deduce that the hot anisotropic protons will only contribute positively

to the growth rate of the proton branch of the EMIC instability if the total (hot plus cool)

proton number density nH+ is greater than 0.575 ni (red line). This is because it is only

for this range that the cutoff frequency lies below the line representing ω∗H+ . Therefore, it

is only for this range of number densities that there will exist a range of frequencies where

ωr < ω∗H+ . All other ion species will be a constant source of damping of the proton branch

for all number densities investigated here since ωr > ω∗
He+

> ω∗O+ .

If nH+ < 0.575 ni then the hot ring current protons are a source of cyclotron damping of

the proton branch, as are all the other ion species. For nH+ < 0.575ni, the cutoff frequency

lies above ω∗H+ , so ωr > ω∗H+ and, therefore, the protons are a source of damping in the

proton branch. In fact, for this range of number densities ωr > ω∗H+ > ω∗
He+

> ω∗O+ , and

as a result, all ion species are a source of cyclotron damping for this branch (see Table

3.1). In other words, the proton branch of the EMIC instability is necessarily damped

when nH+ < 0.575 ni.

The blue line in Figure 3.3 denoting that the helium branch cutoff frequency always lies

below ω∗H+ irrespective of the ion abundances of the proton or oxygen ions. Consequently,

the hot anisotropic ring current protons will always provide a positive contribution to the
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growth rate of the helium branch. On the other hand we observe that the helium ions will

contribute positively to the growth rate of the helium branch only when the total proton

number density nH+ , exceeds 0.81 ni. This implies that both the hot anisotropic protons

and helium ions make a positive contribution to the growth rate of the helium branch for

this range of proton ion abundances.

When nH+ < 0.81 ni, the cutoff frequency of the helium branch exceeds ω∗
He+

and, there-

fore, the helium ions are a source of damping of the helium branch. Since the helium

branch cutoff frequency always exceeds ω∗O+ (for all values of nH+ and nO+), the ring

current oxygen ions will always be a source of damping of the helium branch (see Table

3.1). In other words, for nH+ < 0.81 ni both the helium and oxygen ions (both hot and

cool species) are a source of damping of the helium branch as ωr > ω∗
He+

> ω∗O+ .

It follows then that the question as to whether the helium EMIC branch is growing or

damped depends on whether (i) in the case where nH+ > 0.81ni, the positive contributions

to the growth rate provided by the protons and helium ions exceeds in magnitude the

magnitude of the negative contribution provided by the oxygen ions, or (ii) in the case

where nH+ < 0.81ni, the positive contribution to the growth rate provided by the protons

exceeds in magnitude the magnitude of the negative contributions provided by the helium

and oxygen ions.

Figure 3.4 illustrates, in a format similar to Figure 3.3, how the cutoff frequencies of

the proton (red line) and helium (blue line) EMIC wave branches vary with the relative

ion abundance of the protons and helium ions. In the case presented in Figure 3.4, the

total number density of the oxygen ions has been kept constant at nO+ = 1.25 cm−3 (or

nO+ = 0.05 ni). The total number density of the ions, ni, has been kept constant with

ni = 25 cm−3. The anisotropies of the hot protons and helium ions have been set such

that AH+,h = AHe+,h = 1.0 as in Figure 3.3. By Equation (3.11) this gives ω∗H+ = 0.5 ΩH+

and ω∗
He+

= 0.125 ΩH+ . These are illustrated by the dashed, horizontal lines in Figure 3.4.

The red line in Figure 3.4, denoting the proton branch cutoff frequency, shows that the hot

anisotropic protons will only contribute positively to the growth rate of the proton branch

of the EMIC instability if the total proton number density nH+ , is greater than 0.655 ni.
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Figure 3.3: The cutoff frequencies for varying proton and oxygen ion relative abundances.

The red line denotes the cutoff of the proton branch while the blue line denotes that of the

helium branch. The dashed horizontal lines denote ω∗H+/ΩH+ and ω∗
He+

/ΩH+ for AH+,h =

AHe+,h = 1.0. The other fixed parameters are ni = 25cm−3 and nHe+ = 2.25cm−3(0.09ni).

The vertical lines labelled “A” and “B” represent the chosen parameters for an oxygen

rich ring current (case 4) and a predominantly proton ring current (case 3), respectively,

which will be used later.
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It is only for this range of number densities that the cutoff frequency lies below the line

representing ω∗H+ . All other ions are a source of damping of the proton branch since the

proton cutoff frequency lies above ω∗
He+

and ω∗O+ for all number densities investigated.

On the other hand, when nH+ < 0.655 ni, the hot ring current protons are a source of

cyclotron damping of the proton branch. For this range of number densities the cutoff

frequency lies above the line representing ω∗H+ , therefore, there will be no range of fre-

quencies for which ωr < ω∗H+ . In fact, for this range of number densities, all ions will be a

source of damping of the proton branch and the branch will be necessarily damped since

ωr > ω∗H+ > ω∗
He+

> ω∗O+ .

Figure 3.4 illustrates that the helium branch cutoff frequency (blue line) always lies be-

low both ω∗H+ and ω∗
He+

for the chosen anisotropies of the hot proton and helium ions.

Therefore, the hot anisotropic ring current protons and helium ions will provide a positive

contribution to the growth rate of the helium branch for all number densities investigated.

The helium branch cutoff frequencies exceed the oxygen ion gyrofrequency (the maximum

value of ω∗O+) for all cases considered, thus, the oxygen ions are a source of damping

of the helium branch. However, the relatively small number density of the oxygen ions

(nO+ = 0.05 ni), ensures a minor damping contribution from them. This negative contri-

bution is unlikely to exceed in magnitude the magnitude of the positive contributions to

the growth rate provided by the hot ring current protons and helium ions. Although the

cutoff frequency of the helium branch is less than ω∗
He+

for all values of nH+/ni, Figure 3.4

shows that a decrease in the relative abundance of the helium ions results in an increase

in the cutoff frequency of the helium branch.

Figures 3.3 and 3.4 provide great insight into how the cutoff frequencies are affected

by a variation in proton, helium and oxygen ion abundances. They also highlight the

importance of the position of the cutoff frequency of each wave branch relative to ω∗j .

Below we proceed with a numerical investigation of the dispersion relation, Equation (3.5).

The wave number in Equation (3.5) is normalised with respect to the reciprocal of the

thermal gyroradius of the cool protons, ρH+,c, defined by ρH+,c = vH+,c,‖/ΩH+ , where

vH+,c,‖ =
(
TH+,c,‖/mH+

)1/2
is their parallel thermal speed. The frequency, ω, is normalised
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Figure 3.4: The cutoff frequencies for varying proton and helium ion relative abundances.

The red line denotes the cutoff frequency of the proton branch while the blue line denotes

that of the helium branch. The dashed horizontal lines denote ω∗H+/ΩH+ and ω∗
He+

/ΩH+

for AH+,h = AHe+,h = 1.0. Other fixed parameters are ni = 25cm−3 and nO+ = 1.25cm−3 .

The vertical lines labelled “C” and “D” represent the chosen parameters for case 5 and

case 6, respectively, which will be used later.
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with respect to the gyrofrequency of the protons, ΩH+ . The normalised dispersion relation

is solved numerically, without approximation.

Figure 3.5 illustrates the dispersion relation (top panel) and growth rate (bottom panel)

of each EMIC wave branch for the parameters of case 1 and case 2, given in Table 3.2.

The ring current ion abundances are fixed and equal in both cases investigated. Figure 3.5

illustrates how a variation in the cool ion number density affects the dispersive character-

istics and growth rate of each wave branch. Case 1 (blue line) represents the parameters

as used in Mace et al. (2011). The red line denotes case 2 where more typical cool ion

number densities have been used.

A change in cool ion number density has a significant effect on the dispersion relation of

both the proton and helium EMIC wave branches. The most important feature of Fig-

ure 3.5 is the difference in cutoff frequencies of each branch, brought about by the number

density changes. The proton branch cutoff frequency has decreased from ≈ 0.628 ΩH+ , for

the parameters chosen by Mace et al. (2011) (case 1), to ≈ 0.576 ΩH+ in the case of more

typical plasmaspheric ion number densities (case 2). This decrease in cutoff frequency can

be attributed to the increase in total proton number density from 11.5 cm−3, in case 1,

to 13.0 cm−3, in case 2. This is in agreement with earlier findings presented in Figure

3.3 and Figure 3.4. The latter figures illustrate how an increase in total proton number

density will result in a decrease in the cutoff frequency of the proton branch.

The growth rate of the proton branch is absent from the bottom panel of Figure 3.5 because

there is no range of wave numbers for which γ > 0 in either case, i.e., the proton branch

is damped for both case 1 and case 2. This is expected since ωr > ω∗H+ > ω∗
He+

> ω∗O+

in both cases investigated. Because of these inequalities, all ion species (hot and cool)

will contribute negatively to the growth rate resulting in overall cyclotron damping of the

proton branch.

For the helium branch, the change in plasmaspheric ion number densities have resulted in a

small increase in the cutoff frequency from ≈ 0.131ΩH+ in case 1 (blue line) to ≈ 0.138ΩH+

in case 2 (red line). This is consistent with the results illustrated in Figure 3.4. Figure

3.4 demonstrates how a decrease in the total number density of the helium ions results in
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only a marginal increase in the cutoff frequency of the helium branch. In this instance,

the cool helium ion number density has decreased from 8 cm−3 in case 1 to 6.5 cm−3 in

case 2, leading to a decrease in total helium ion number density and results in a minor

increase in the cutoff frequency.

In both case 1 and case 2 the helium branch has ωr < ω∗H+ . Therefore, the hot anisotropic

ring current protons will provide a positive contribution to the growth rate for all wave

numbers investigated. In the helium branch, the cutoff frequencies are above ω∗
He+

and

ω∗O+ in both cases 1 and 2 and, therefore, both the helium and oxygen ions contribute

negatively to the growth rate. In the bottom panel of Figure 3.5, illustrating the growth

rate of each branch, it is seen for both case 1 and case 2 that γ < 0 for all wave numbers

investigated for the helium branch. This is because the sum of the negative contributions

to the growth rate provided by the helium and oxygen ions is greater in magnitude than

the magnitude of the positive contribution provided by the hot ring current protons.

Altering the cool ion number densities to more typically observed values has not had a great

effect on the dispersion relation curves of the oxygen branch (see upper panel of Figure 3.5).

The oxygen branch has no cutoff frequency and, therefore, it is relatively insensitive to ion

composition. With reference to the lower panel of Figure 3.5, we observe that the oxygen

branch is the only branch that has a positive wave growth rate (γ > 0). This is as expected

since it is also the only branch that satisfies the condition ωr < ω∗O+ < ω∗
He+

< ω∗H+ , thus,

all hot anisotropic ions make a positive contribution to the overall growth rate. However,

we do note that the change in plasmaspheric ion abundances to more typical values resulted

in a very minor decrease in peak growth rate of the oxygen branch even though the relative

abundance of the oxygen ions remained constant.

The results derived from Figure 3.5 suggest that the plasmaspheric (cool) ions play a

relatively minor role in governing the dispersive characteristics and determining wave

growth of the branches of the EMIC instability. Owing to this, we proceed with an

investigation into the effects of varying the relative ion abundances of the hot anisotropic

ring current ions on the dispersion relation and growth rate of each EMIC wave branch.

To investigate these effects, we begin with a comparison of the dispersion relation and
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Figure 3.5: The EMIC waves branches (top panel) and their growth rates (bottom panel)

shown for varying relative abundances of the plasmaspheric ions. The blue lines denote the

numerical solutions to Equation (3.5) for case 1. The red lines denote numerical solutions

to the same equation but with more typical plasmaspheric ion abundances, case 2. For the

full set of parameters refer to Table 3.2. The horizontal dashed lines represent ω∗H+/ΩH+

and ω∗
He+

/ΩH+ as calculated by Equation (3.11).
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Table 3.2: Table of parameters chosen for Figure 3.5.

Species n (cm−3) T‖ (eV) A = T⊥/T‖ − 1 κ

case 1 case 2

nH+,c 6.5 8 10 0 3

nHe+,c 3 1.5 10 0 3

nO+,c 0.5 0.5 10 0 3

nH+,h 5 5 104 1 2

nHe+,h 5 5 104 1 2

nO+,h 5 5 104 1 2

ne 25 25 10 0 3

growth rates between a ring current composed of 90% protons, 5% helium ions and 5%

oxygen ions (case 3 in Table 3.3) and that of a ring current with 60% protons, 5% helium

ions and 35% oxygen ions (case 4 in Table 3.3). These parameter choices correspond to

the lines labelled “B” and “A”, respectively, in Figure 3.3. The plasmaspheric ion number

densities have been kept constant at typically observed values (see Table 3.3 for a full set

of parameters).

With reference to the top panel of Figure 3.6, we observe that in case 3, for a ring cur-

rent composed of predominantly protons (red lines), the proton branch is confined to the

frequencies 0.332 ΩH+ < ωr < ΩH+ . For case 4, the oxygen rich ring current (blue lines),

the frequency range is 0.42 ΩH+ < ωr < ΩH+ . For the chosen hot proton anisotropy

AH+,h = 1.0, ω∗H+ = 0.5 ΩH+ , the cutoff frequencies, in both cases, lie below ω∗H+ and

hence, in both cases, there exists a range of frequencies where the condition ωr < ω∗H+

holds true. For such frequencies, the hot protons will contribute positively to the growth

rate of the proton branch. The helium and oxygen ring current ions both provide a source

of damping of the proton branch, since ωr > ω∗
He+

> ω∗O+ . However, it is clearly evident in

the bottom panel of Figure 3.6, that there exists a range of wave numbers where γ > 0 for

both cases 3 and 4. For these wave numbers the magnitude of the positive contribution to

the growth rate provided by the ring current protons is greater than the magnitude of the
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negative contributions of the other ion species; therefore, the proton branch is destabilised.

Although the proton branch is destabilised in both cases 3 and 4, we note that the growth

rate is far greater in magnitude and over a broader range of wave numbers for case 3 than

that of case 4. This is due to the former having more energetic protons (90%) than that of

the latter (60%). These results are, of course, consistent with the findings in Figure 3.3.

Comparing lines “A” (case 4) and “B” (case 3) in Figure 3.3, it is seen how an increase

in the total number density of the protons (from 0.68 ni in “A” to 0.86 ni in “B”) lowers

the cutoff frequency of the proton branch and hence, increases the frequency range over

which there will be a positive growth rate contribution by the hot proton component.

The change in ion abundances also affects the wave numbers at which the instabilities

occur in the proton branch. A positive growth rate is seen at smaller wave numbers in

the case of the oxygen rich ring current (case 4), 0.002 . kρH+,c . 0.004, than that of the

predominantly proton ring current case (case 3), 0.0045 . kρH+,c . 0.0075.

For case 3, the predominantly proton ring current (red line), the helium branch has a

cutoff at ωr = 0.095 ΩH+ (see upper panel). This is as predicted by the vertical line “B”

in Figure 3.3, for the parameters in case 3. The cutoff frequency is well below ω∗
He+

,

so the condition for the ring current helium ions to make a positive contribution to the

growth rate of the helium branch, ωr < ω∗
He+

= 0.125 ΩH+ , is satisfied over a broad

range of ωr. Therefore, there exists a range of frequencies for which the hot anisotropic

helium ions make a positive contribution to the growth rate of the helium branch. This

range of frequencies is illustrated in the top panel of Figure 3.6. As discussed before

for the anisotropy considered, the hot ring current protons will always provide a positive

contribution to the growth rate of the helium branch since ωr < ω∗H+ , and, therefore, for

this range of frequencies, both the ring current protons and helium ions will contribute

positively to the growth rate. The oxygen ions are a constant source of cyclotron damping

of the helium branch since ωr > ω∗O+ . However, there is a range of wave numbers where

the positive contribution provided by the ring current protons and helium ions is greater in

magnitude than the magnitude of the negative contribution provided by the ring current

oxygen ions (and all cool ion species). Therefore, the helium branch is destabilised for
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case 3. This is illustrated in the bottom panel of Figure 3.6.

For the case of the oxygen rich ring current, case 4, the helium branch has a cutoff

frequency at ωr = 0.1756 ΩH+ as predicted by the vertical line “A” in Figure 3.3 and

evident in the top panel of Figure 3.6 (blue lines). This is larger than the cutoff frequency

in case 3 due to the increase in the total number density of the oxygen ions (see Table

3.3). A positive contribution to the growth rate of the helium branch is provided by the

ring current protons since ωr < ω∗H+ . However, its cutoff frequency is above both ω∗
He+

and ω∗O+ , resulting in the ring current helium and oxygen ions being a source of cyclotron

damping of the helium branch in this case. The total negative contribution to the growth

rate is greater in magnitude than the magnitude of the positive contribution of the hot

ring current protons resulting in the wave being damped for all wave numbers investigated.

The oxygen branch, as mentioned previously, has no cutoff frequency and satisfies ωr <

ω∗O+ < ω∗
He+

< ω∗H+ in both cases 3 and 4. This results in a range of wave numbers with

a positive growth rate (γ > 0) in both cases as all ring current ion species contribute

positively to the growth rate of the oxygen branch. However, the bottom panel of Figure

3.6 shows that the frequency range over which there is a positive contribution to the

growth rate is greater for the oxygen rich ring current (case 4) and occurs over a larger

range of wave numbers than that of the predominantly proton case (case 3). This is

due to the relative abundance of the ring current oxygen ions being greater in case 4

(nO+,h = 5.25 cm−3) than in case 3 (nO+,h = 0.75 cm−3) and, thus, the magnitude of their

positive contribution to the growth rate of the oxygen branch is greater.

Figure 3.7 illustrates how an alternative relative abundance parameter choice (see Table

3.4) for the ring current ions influences the dispersion relation and growth rates of each

EMIC wave branch. Parameters for the cool plasmaspheric plasma and electron compo-

nents are kept constant and the same as those in Figure 3.6 (see Table 3.4 for a full set of

parameters). To investigate the effects of the relative abundances of the hot ring current

ions on the dispersion curves and growth rates of the EMIC wave branches, we compare

how they are affected by a ring current composed of 30% protons, 65% helium ions and

5% oxygen ions (case 5) to that of a ring current with 88.3% protons, 6.7% helium ions
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Figure 3.6: The EMIC waves branches (top panel) and their growth (bottom panel) rates

shown for varying relative abundance of the ring current ions. The red lines denote the

numerical solutions to Equation (3.5) with a predominantly proton ring current, case 3.

The blue lines denote solutions to the same equation but for an oxygen rich ring current,

case 4. For the full set of parameters refer to Table 3.3. The horizontal dashed lines

represent ω∗H+/ΩH+ and ω∗
He+

/ΩH+ as calculated by Equation (3.11).
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Table 3.3: Table of parameters chosen for Figure 3.6.

Species n (cm−3) T‖ (eV) A = T⊥/T‖ − 1 κ

case 3 case 4

nH+,c 8 8 10 0 3

nHe+,c 1.5 1.5 10 0 3

nO+,c 0.5 0.5 10 0 3

nH+,h 13.5 0.6 104 1 2

nHe+,h 0.75 0.75 104 1 2

nO+,h 0.75 5.25 104 1 2

ne 25 25 10 0 3

and 5% oxygen ions (case 6). These parameter choices correspond to the lines labelled

“C” and “D” in Figure 3.4, respectively. The line labelled “C” represents case 5 with total

proton and helium number density of 0.5 ni and 0.45 ni, respectively. The vertical line

labelled “D” represents case 6 with a total proton and helium number density of 0.85 ni

and 0.1 ni, respectively.

The top panel of Figure 3.7 illustrates the EMIC wave branches for case 5 (red lines)

and case 6 (blue lines). For case 5 the proton branch is confined to the frequencies

0.515 ΩH+ < ωr < ΩH+ while, for case 6 the frequency range is 0.292 ΩH+ < ωr < ΩH+ . In

case 5 the cutoff frequency (defining the lower boundary) is greater than ω∗H+ = 0.5ΩH+ .

Thus, the hot ring current protons are a source of damping along with all other ion species,

since ωr > ω∗H+ > ω∗
He+

> ω∗O+ . In case 6, there exists a range of frequencies which satisfy

the condition ωr < ω∗H+ = 0.5 ΩH+ . Therefore, there is a range of frequencies for which

the hot ring current protons will contribute positively to the growth rate of the proton

branch.

In the bottom panel of Figure 3.7 it is clear that there is a range of wave numbers cor-

responding to the proton branch for case 6 for which γ > 0. This indicates that for this

range of wave numbers, the positive contribution provided by the hot ring current protons

is greater in magnitude than the magnitude of the negative contributions provided by the
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other ion species. In case 5, however, γ < 0 and the proton branch is damped for all wave

numbers investigated, and the red line corresponding to this growth rate is absent in the

lower panel. These results are consistent with the predictions of Figure 3.4. By comparing

lines “C” and “D” in Figure 3.4, it is seen how an increase in the total number density

of the protons (from 0.5 ni to 0.85 ni) lowers the cutoff frequency of the proton branch

so that there will be a range of ωr satisfying ωr < ω∗H+ = 0.5 ΩH+ , allowing the hot ring

current protons to make a positive growth rate contribution to that branch.

In the helium branch both cases 5 and 6 have a range of frequencies, ωr, satisfying the

condition ωr < ω∗H+ = 0.5 ΩH+ and, therefore, the hot ring current protons will always

make a positive contribution to the growth rate of the helium branch for all frequencies

investigated (see top panel of Figure 3.7). For the chosen set of parameters, both cases

5 and 6 have a range of frequencies which satisfy ωr < ω∗
He+

= 0.125 ΩH+ and, therefore,

in both instances, the ring current helium ions (along with the ring current protons) will

contribute positively to the growth rate of the helium branch. In particular, we observe

in the top panel of Figure 3.7 that the helium branch for case 5 satisfies ωr < ω∗
He+

for

0 . kρH+,c . 0.0043, while in case 6 this condition is satisfied over the range 0 . kρH+,c .

0.0034. These results are consistent with those of Figure 3.4. In case 5 the helium branch

has a cutoff at ω = 0.068 ΩH+ , as predicted by “C” in Figure 3.4. In case 6 the helium

branch has a cutoff at ω = 0.069 ΩH+ as predicted by “D” in Figure 3.4. Although the

helium branch is destabilised in both cases, we note in the bottom panel of Figure 3.7, that

the growth rate is greater for case 6 than for case 5. This is due to the larger hot proton

number density in case 6 and, therefore, the magnitude of the total positive contribution

to the growth rate of the helium branch is greater.

The oxygen branch has no cutoff frequency and, therefore, satisfies ωr < ω∗O+ < ω∗
He+

<

ω∗H+ for case 5 as well as case 6. In both instances, all ring current ion components

contribute positively to the growth rate of the oxygen branch. This gives rise to overall

instability in both cases. However, the range of frequencies over which there is a resultant

positive contribution to the growth rate (γ > 0) is greater for case 5 and occurs over a

larger range of wave numbers than that of case 6.
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Figure 3.7: The EMIC waves branches (top panel) and their growth rates (bottom panel)

shown for varying relative abundance of the ring current ions. The red lines denote the

numerical solutions to Equation (3.5) with parameters for case 5. The blue lines denote

solutions to the same equation but for case 6. For the full set of parameters refer to

Table 3.4. The horizontal dashed lines represent ω∗H+/ΩH+ and ω∗
He+

/ΩH+ as calculated

by Equation (3.11).
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Table 3.4: Table of parameters chosen for Figure 3.7.

Species n (cm−3) T‖ (eV) A = T⊥/T‖ − 1 κ

case 5 case 6

nH+,c 8 8 10 0 3

nHe+,c 1.5 1.5 10 0 3

nO+,c 0.5 0.5 10 0 3

nH+,h 4.5 13.25 104 1 2

nHe+,h 9.75 1 104 1 2

nO+,h 0.75 0.75 104 1 2

ne 25 25 10 0 3

3.5 Discussion and conclusions

This chapter has presented the results from an investigation of how the electromagnetic

ion cyclotron (EMIC) instability is affected by the relative abundance of both the cool ions

(of plasmaspheric origin) as well as the hot, anisotropic ring current ions. The dispersion

relation for parallel propagating EMIC instabilities in a multi-component kinetic plasma

model, whose species have velocity distributions described by the bi-kappa distribution

(Equation (3.5)), was solved numerically. This investigation was motivated by the work

done by Mace et al. (2011). While the parameters used by Mace et al. (2011) were

plausible, this chapter addresses how a more typical representation of the ion abundances,

observed in the region of Earth’s magnetosphere containing the ring current, could affect

the EMIC instability.

We initially investigated how the cutoff frequencies of the proton and helium branches

varied with the relative ion abundances of the proton, helium and oxygen ions. The

position of the cutoff frequency of a wave branch relative to ω∗j determines whether there

exists a range of frequencies for which species j contributes positively to the growth rate

of the wave branch (Mace et al., 2011). The position of the cutoff frequency of a wave

branch is dependent on the total number density of the ion species. In our model, the cool

ions as well as the electrons have anisotropies such that A = 0, and hence, by condition
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(3.11), these species will be a source of cyclotron damping of all EMIC wave branches at

all frequencies ωr > 0. The hot anisotropic ions, on the other hand, can be either a source

of damping or a positive contributor to wave growth.

The proton branch cutoff frequency is dependent on the total number density of the protons

(hot and cool). The larger the proton ion abundance, the lower the cutoff frequency of

the proton branch. Therefore, for a given hot proton anisotropy, AH+,h, it is possible to

select a proton ion abundance that ensures that the hot anisotropic protons will make a

positive contribution to the growth rate of the proton branch. Depending on the magnitude

of this contribution, this allows for that branch to be destabilised despite the negative

contributions provided by the other ion species.

For our choice of anisotropies of the hot ring current ions, A = 1.0, there always exists

a range of frequencies, ωr < ω∗H+ , for which the hot ring current protons will make a

positive contribution to the growth rate of the helium branch. The hot oxygen ions will

always be a source of cyclotron damping of the helium branch since ωr > ω∗O+ . The

hot helium ions, however, can either contribute to the damping or destabilisation of the

helium branch. This depends on where the cutoff frequency of the helium branch lies with

respect to ω∗
He+

. As long as the cutoff frequency lies below ω∗
He+

, there will exist a range

of frequencies for which the hot helium ions will contribute positively to the growth rate

of the helium branch.

How the different wave branches of the EMIC instability are affected by a change in the

plasmaspheric number density is illustrated in Figure 3.5. Here we compare case 1, with

the cool ion abundance as used by Mace et al. (2011), to case 2, with typically observed

cool ion abundances. It is evident from our investigation that while altering the ion

abundances of the plasmaspheric ions does have an effect on the cutoff frequency of each

branch, this effect is not as significant as expected. Even though there was a significant

increase in the total number density of the protons from case 1 to case 2, the proton

branch is still damped since the cutoff frequency remains above ω∗H+ for all wave numbers.

The helium branch is also damped, despite the positive contribution from the hot protons.

Since ωr > ω∗
He+

in both cases, the hot helium ions contributed to the cyclotron damping
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of the helium branch along with the hot oxygen ions and cool plasmaspheric ions. In both

cases investigated, it is only the oxygen branch which is destabilised. This is because, in

both cases, it is the only branch that satisfies the condition ωr < ω∗O+ < ω∗
He+

< ω∗H+ and,

therefore, all hot ion species make a positive contribution to the growth rate of the oxygen

branch, which exceeds the cumulative damping of the cool isotropic ions.

The relative abundances of the hot ring current ions are highly variable and, therefore,

four sets of parameters were used to investigate their influence on the dispersion curve and

growth rate of each EMIC wave branch. We began with a comparison of the dispersion

relations and growth rates for a ring current composed of 90% protons, 5% helium ions

and 5% oxygen ions (case 3) and a ring current with 60% protons, 5% helium ions and

35% oxygen ions (case 4). These results are illustrated in Figure 3.6.

In case 3, all three branches were destabilised. It was found that for each of the EMIC

branches there was in each case a finite range of ωr such that ωr < ω∗j . For the proton

branch, the positive contribution from the anisotropic ring current protons was sufficient

to destabilise it. The helium branch received a positive contribution to the growth rate

from both the ring current protons and helium ions (ωr < ω∗
He+

< ω∗H+ for some range of

ωr) resulting in its destabilisation. The oxygen branch has ωr < ω∗O+ < ω∗
He+

< ω∗H+ and

hence, all anisotropic ions make a positive contribution to the oxygen wave branch. In

case 4, it is only the proton and oxygen branches that are destabilised, while the helium

branch is cyclotron damped (ωr > ω∗
He+

).

While the proton branches of both case 3 and case 4 are destabilised, the magnitude of

the growth rate is far greater for case 3 than that of case 4. This can be expected since

case 3 has more energetic protons (90%) than that of case 4 (60%) and, in agreement

with Figure 3.3, should therefore, have a lower cutoff frequency. The helium branch is

destabilised for case 3 but cyclotron damped in case 4. This is because, as predicted by

Figure 3.3, the inequality ωr < ω∗
He+

only holds true for case 3 and, therefore, both the hot

protons and helium ions contribute positively to the helium branch. This in turn results

in a range of wave numbers where γ > 0. In case 4, the positive contribution provided

by the hot protons is insufficient to overcome the negative contributions of the other ions
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to the helium branch and it is, therefore, damped. In both cases the oxygen branch is

destabilised as expected. However, the growth rate is greater in case 4 than in case 3 due

to case 4 having more energetic ring current oxygen ions (see Table 3.2) that contribute

positively to the growth rate of the oxygen branch.

The second investigation into the effects of the relative abundances of the hot ring current

ions on the dispersion relation and growth rates of the EMIC wave branches is illustrated

in Figure 3.7. How EMIC wave growth rate is affected by a ring current composed of 30%

protons, 65% helium ions and 5% oxygen ions (case 5) was compared to that for a ring

current with 88.3% protons, 6.7% helium ions and 5% oxygen ions (case 6). In case 5, it

is only the helium and oxygen branches that are destabilised, while the proton branch is

cyclotron damped. In case 6, all 3 branches were destabilised.

The proton branch is cyclotron damped for case 5 but destabilised for case 6. This is

expected as case 6 has far more energetic ring current protons than case 5 (see Table 3.3).

The cutoff frequency for case 6 is well below ω∗H+ , predicting growth, whereas for case

5 the cutoff lies above ω∗H+ , predicting damping. This is clearly evident by the vertical

line labelled “D” in Figure 3.4. The lower cutoff frequency in case 6 allows for a range

of frequencies for which the hot protons contribute positively to the growth rate of the

proton branch. For case 5, the cutoff frequency is greater than ω∗H+ , resulting in the hot

protons making a negative contribution to the growth rate of the proton branch for all

frequencies. This negative contribution, along with the negative contributions provided

by the other ion species, results in the proton branch being damped in case 5.

For both cases 5 and 6, the helium branch is destabilised. The helium branch cutoff

frequency for both cases is below ω∗
He+

and thus, both the hot protons and helium ions

will make a positive contribution to the growth rate of the helium branch over some range

of frequencies. This results in the helium branch being destabilised in both cases despite

the damping effects of the hot oxygen ions and the other cool ion species. It is interesting

to note that the growth rate of this branch for case 6 is greater than that for case 5

even though the cutoff frequency of case 5 is lower than in case 6 . This lower cutoff

frequency is due to case 5 having more energetic ring current helium ions than in case 6 as
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Figure 3.4 predicts. The reason the growth rate of case 6 is greater than that of case 5 is

most probably because case 6 has a larger hot proton number density and, therefore, the

magnitude of the positive contribution by the hot protons to the growth rate is greater

than for case 5. In both cases, the oxygen branch is destabilised; however, the contribution

to the growth rate is greater in case 5 than case 6 even though the number densities of

the oxygen ions are equal in both cases.

The results of this chapter have shown how EMIC instabilities are sensitive to the relative

abundance of each ion species. This is especially true for the proton and helium branches.

The contribution to the growth rate of each branch of the EMIC wave is dependent on the

temperature anisotropy of each anisotropic ion species as well as the relative abundance

of each ion species. Whether a wave branch experiences growth depends on both of these

parameters, as they determine whether or not there exists a range of frequencies for which

anisotropic ions can make a positive contribution to the growth rate, resulting in a range

of wave numbers where γ > 0. The most significant effects were observed when we varied

the relative ion abundance of the anisotropic ring current ions.
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In this chapter, a general overview of the thesis is presented. Detailed conclusions have

been presented in the appropriate chapters, however, here we give a general summary of

our results.

In this thesis we have performed a study of both the L and R mode waves. In Chapter 1,

Sections 1.1 and 1.2, we discussed how these two modes are important as their interaction

with energetic particles can transport energy from one region of the magnetosphere to

another (Tsurutani and Lakhina, 1997). They also play an important role in the acceler-

ation and pitch angle scattering of energetic particles (Kennel and Petschek , 1966). The

interaction between these waves and particles is greatest when the particles’ streaming

velocity is such that the Doppler shifted wave frequency equals a harmonic of its gyrofre-

quency. This is known as the cyclotron resonance interaction between the particles and

waves. Left hand circularly polarised waves (such as electromagnetic ion cyclotron waves)

interact with positive ions and electrons interact with right hand circularly polarised waves

(such as whistler waves), although anomalous interactions can occur (see Chapter 1, Sec-

tion 1.2). Both the whistler and EMIC waves exist in a diverse range of plasma conditions,

which reinforces the need to investigate their dispersive characteristics and growth rates

for a variety of plasma parameters.

In Chapter 1, Section 1.3, we discussed how in situ measurements of space plasmas by

spacecraft have shown mounting evidence that velocity space distributions are best de-

scribed by the kappa distribution (Pierrard and Lazar , 2010). This is because of an over-

abundance (relative to the Maxwellian) of superthermal particles which are distributed

in energy, or momentum, according to a power law (Christon et al., 1988; Maksimovic

et al., 1997a; Schippers et al., 2008; Dialynas et al., 2009; Arridge et al., 2009). The kappa

distribution provides a good fit to particle velocity distributions in space plasmas, as it

has a power law superthermal tail that smoothly merges with a Gaussian core at smaller

speeds.

Schippers et al. (2008) and Arridge et al. (2009) found that the dual kappa distribution

model always provided the best fit to the electron velocity distribution in the Saturnian

magnetosphere regardless of the region considered. In Chapter 2, the dispersion relation



125

for the parallel propagating whistler instability in the Saturnian magnetosphere driven by

temperature anisotropy in both the hot and cool electron species, in a plasma where the

velocity distribution for each plasma species is modelled by a bi-kappa distribution, was

solved numerically. Using parameter values derived by Schippers et al. (2008) as a guide,

a parameter survey of the dispersion relation for different anisotropies, temperatures and

spectral indices of the two electron components was performed.

Whether the anisotropies of the two electron species are equal or not greatly affects the

dispersive characteristics and growth rate. When they are equal there exists a single

frequency and wave number at which all thermal effects and κ dependence vanish (Mace

and Sydora, 2010). This point sets upper boundaries in frequency and wave number below

which all wave growth is confined.

When the anisotropies are not equal, no such point exists. In such cases, we defined a

wave number k∗ρh, corresponding to the point at which the growth rate is zero. This wave

number is dependent on the spectral indices of both electron species. The dependence of

k∗ρh on the spectral index of the hot electrons is non-monotonic at very low values of Ah

(Ah = 0.1). However, we see a monotonic increase in k∗ρh with an increase in spectral

index of the hot electrons as Ah is increased. An increase in the spectral index of the cool

electrons, on the other hand, resulted in a monotonic increase in k∗ρh for all anisotropies

investigated.

The dependence of peak growth rates on κ of each electron species is strongly influenced

by both the anisotropy and plasma parallel beta value, β‖h, of the hot electrons. In most

cases investigated, an increase in the spectral index of the hot electrons resulted in a

monotonic decrease in peak growth rate at small anisotropies (Ah = 0.1), with a reverse

in this trend observed as the anisotropy is increased. The same trend is seen for a variation

in the spectral index of the cool electrons. However, the critical value of the anisotropy

at which the aforementioned trend is reversed is dependent on the value of β‖h. For small

β‖h (β‖h � 1) we see a reverse in trend at larger anisotropies (A ≥ 1.0) than that for

β‖h ≈ 1.

While our parameter survey has taken into account the variation of the spectral indices
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and anisotropies of the two electron components, we have only looked at a variation in the

temperature of the hot electron component. This variation in hot electron temperature re-

sulted in a variation in the plasma parallel beta value of the hot electrons. As a suggestion

for further work, an investigation into the effects of varying the plasma parallel beta value

of the cool electrons is recommended. Additionally, as mentioned previously, the plasma

parallel beta value of both species is also dependent on the number density and magnetic

field strength. Investigating the effects of varying these parameters in future works is

warranted and would account for the spatial variability of a dynamic magnetosphere such

as Saturn.

In Chapter 3, we presented the results from a study of the behaviour of EMIC wave growth

rate for a variety of relative abundances of the ion species. Following Mace et al. (2011),

it was assumed that the hot ring current ions, cool ions of plasmaspheric origin, as well as

the electrons, have particle velocity distributions modelled by the bi-kappa distribution.

However, we addressed more completely the effects of varying the relative ion abundances

and how this influences wave growth and damping.

Electromagnetic ion cyclotron (EMIC) waves in multi-ion species plasmas propagate in

branches. Each branch is bound by a cutoff frequency at small wave numbers and a

resonant frequency at large wave numbers. This is true for all branches except for the

branch corresponding to the heaviest ion species. This branch has only a resonance at its

gyrofrequency and is bound below by ω = 0.

The gyrofrequency of an ion species, Ωj , determines the resonant frequency below which

the wave branch of species j is confined at large wave numbers, which remains relatively

constant for a given region of the magnetosphere. The cutoff frequency, defining the lower

boundary of the wave branch, depends strongly on the number densities of the ion species

(Kozyra et al., 1984; Mace et al., 2011) and can vary with prevailing conditions.

The condition for wave growth is determined by the thermal anisotropies of each ion

species, j, which sets an upper bound, ω∗j , on the wave frequency below which that ion

species contributes positively to the growth rate (Mace et al., 2011). The relative positions

of the cutoffs with respect to the critical frequencies ω∗j play a crucial role in determining
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whether a particular wave branch will be unstable, as was pointed out by Mace et al.

(2011).

We initially investigated how the cutoff frequencies of the proton and helium branches

varied with the relative ion abundances of the proton, helium and oxygen ions, using cold

plasma theory as a guide. This allowed us to find ion abundances that produced wave

growth by lowering the cutoffs below the relevant ω∗j frequencies.

The plasmaspheric ion populations play a relatively minor role in governing the disper-

sive characteristics and growth rates of the branches of the EMIC instability. We found

that the most significant effects in the dispersion curves and growth rates of each branch

resulted from a variation in hot ring current ion abundances. When the ring current is

composed predominantly of H+ ions, all branches of the EMIC wave are destabilised and

the maximum growth rate corresponds to the proton branch. When the O+ ion abundance

in the ring current is increased, a decrease in the growth rate of the proton branch and

cyclotron damping of the helium branch are observed. The oxygen branch experiences an

increase in the maximum growth rate with an increase in the O+ ion abundance. When

the ring current is composed predominantly of He+ ions, only the helium and oxygen

branches of the EMIC wave are destabilised and the maximum growth rate corresponds

to the helium branch.

The results of Chapter 3 show how EMIC instabilities are sensitive to the relative abun-

dance of each ion species. This is especially true for the proton and helium branches. The

contribution to the growth rate of each branch of the EMIC wave is dependent on the

temperature anisotropy of each anisotropic ion species as well as the relative abundance

of each ion species. However, the EMIC instability exists in a diverse range of plasma

conditions. Owing to this, further investigations into the effects of varying other plasma

parameters such as the spectral indices of each ion species is warranted.
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Appendix A

Dispersion relation for parallel

propagating L and R mode waves

in a plasma with an arbitrary

velocity distribution
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This appendix presents an outline of the derivation of the dispersion relation for parallel

propagating L and R mode waves in a plasma with an arbitrary velocity distribution. This

appendix follows closely the method employed by Gurnett and Bhattacharjee (2005, pp.

372-373).

Electromagnetic waves have both an electric and magnetic field and, therefore, we begin

by seeking solutions to Maxwell’s equations (ignoring external sources). A homogeneous

system of equations can be obtained by taking the Fourier-Laplace transform of Faraday

and Ampere’s laws (Gurnett and Bhattacharjee, 2005, Eq. 4.2.7)

ik× Ẽ = −(−iω)B̃, (A.1)

and

ik× B̃ =
−iω
c2

K · Ẽ, (A.2)

and eliminating the Fourier-Laplace transform of the magnetic field, B̃. In Equations (A.1)

and (A.2), Ẽ is the Fourier-Laplace transform of the electric field, c is the speed of light

and k is the wave vector. The equivalent dielectric tensor, K, is given by K = 1−σ/(iωε0),

where ε0 is the permittivity of free space, 1 is the unit tensor and σ is the conductivity

tensor which is defined through the Fourier-Laplace transform of the current density, J̃,

such that (Gurnett and Bhattacharjee, 2005, Eq. 4.2.3)

J̃ = σ · Ẽ. (A.3)

The wave frequency, ω, is complex with real part, ωr, where ωr > 0 is always assumed,

and an imaginary part, γ. We impose the condition Im(ω) > 0 to guarantee convergence

of the Fourier-Laplace transforms. Solving Equation (A.1) for B̃ and substituting it into

Equation (A.2), we arrive at a homogeneous equation for the electric field, (Gurnett and

Bhattacharjee, 2005, Eq. 4.2.8),

k×
(
k× Ẽ

)
+
ω2

c2
K · Ẽ = 0. (A.4)

To analyse electromagnetic wave propagation in a dielectric medium, we seek non-trivial

solutions to the homogeneous equation given by Equation (A.4). We can express Equation
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(A.4) in terms of tensor elements such that (Gurnett and Bhattacharjee, 2005, Eq. 9.3.28)
Kxx − c2k2

ω2 cos2 θ Kxy Kxz + c2k2

ω2 sin θ cos θ

Kyx Kyy − c2k2

ω2 Kyz

Kzx + c2k2

ω2 sin θ cos θ Kzy Kzz − c2k2

ω2 sin2 θ




Ẽx

Ẽy

Ẽz

 = 0, (A.5)

where θ is the wave normal angle and k is the wave number. The derivation of each

dielectric tensor element, Kij , is presented in great detail in Chapter 9.3.1 of Gurnett and

Bhattacharjee (2005, pp. 367 - 371). Each element is defined as follows (Gurnett and

Bhattacharjee, 2005, Eqs. 9.3.19 - 9.3.27):

Kxx = 1−
∑
j

ω2
pj

ω

∞∑
n=−∞

∫ ∞
−∞

∫ ∞
0

n2J2
n (zj)

z2j
(
k‖v‖ − ω + nΩj

)Uj2πv2⊥dv⊥dv‖ (A.6)

Kxy = −i
∑
j

ω2
pj

ω

∞∑
n=−∞

∫ ∞
−∞

∫ ∞
0

nJn (zj) J
′
n (zj)

zj
(
k‖v‖ − ω + nΩj

)Uj2πv2⊥dv⊥dv‖ (A.7)

Kxz = −
∑
j

ω2
pj

ω

∞∑
n=−∞

∫ ∞
−∞

∫ ∞
0

nJ2
n (zj)

zj
(
k‖v‖ − ω + nΩj

)Tj2πv2⊥dv⊥dv‖ (A.8)

Kyx = i
∑
j

ω2
pj

ω

∞∑
n=−∞

∫ ∞
−∞

∫ ∞
0

nJn (zj) J
′
n (zj)

zj
(
k‖v‖ − ω + nΩj

)Uj2πv2⊥dv⊥dv‖ (A.9)

Kyy = 1−
∑
j

ω2
pj

ω

∞∑
n=−∞

∫ ∞
−∞

∫ ∞
0

J ′n (zj) J
′
n (zj)(

k‖v‖ − ω + nΩj

)Uj2πv2⊥dv⊥dv‖ (A.10)

Kyz = i
∑
j

ω2
pj

ω

∞∑
n=−∞

∫ ∞
−∞

∫ ∞
0

Jn (zj) J
′
n (zj)(

k‖v‖ − ω + nΩj

)Tj2πv2⊥dv⊥dv‖ (A.11)

Kzx = −
∑
j

ω2
pj

ω

∞∑
n=−∞

∫ ∞
−∞

∫ ∞
0

nJ2
n (zj)

zj
(
k‖v‖ − ω + nΩj

)Uj2πv⊥v‖dv⊥dv‖ (A.12)

Kzy = −i
∑
j

ω2
pj

ω

∞∑
n=−∞

∫ ∞
−∞

∫ ∞
0

Jn (zj) J
′
n (zj)(

k‖v‖ − ω + nΩj

)Uj2πv⊥v‖dv⊥dv‖ (A.13)
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Kzz = 1−
∑
j

ω2
pj

ω

∞∑
n=−∞

∫ ∞
−∞

∫ ∞
0

J2
n (zj)(

k‖v‖ − ω + nΩj

)Tj2πv⊥v‖dv⊥dv‖. (A.14)

In the above Equations (A.6) - (A.14), the signed gyrofrequency for the jth species is given

by Ωj = qjB0/mj and is characterised by mass mj and charge qj . The plasma frequency,

ωpj , for the jth species is given by ωpj = (n0jq
2
j /ε0mj)

1/2 where n0j is the number density.

The parameters v⊥ and v‖ are the perpendicular and parallel components of the velocity,

respectively. The components k‖ and k⊥, are the parallel and perpendicular components,

respectively, of the wave vector k, with respect to the magnetic field. The parameter zj

is given by zj = k⊥v⊥/Ωj . The function Jn(zj) is the Bessel function of the first kind

of order n and J ′n(zj) denotes d
dzj
Jn(zj). We have defined Uj such that (Gurnett and

Bhattacharjee, 2005, Eq. 9.3.10)

Uj =
∂fj0
∂v⊥

+
k‖

ω

(
v⊥
∂fj0
∂v‖

− v‖
∂fj0
∂v⊥

)
=

(
1−

k‖v‖

ω

)
∂fj0
∂v⊥

+
k‖v⊥

ω

∂fj0
∂v‖

, (A.15)

and Tj such that (Gurnett and Bhattacharjee, 2005, Eq. 9.3.14)

Tj =
∂fj0
∂v‖

− nΩj

ωv⊥

(
v⊥
∂fj0
∂v‖

− v‖
∂fj0
∂v⊥

)
, (A.16)

where the function fj0 is the zeroth-order velocity distribution function.

We confine our study to the case of parallel propagation and, therefore, k⊥ = 0 and

k = k‖. Making this restriction implies that the wave vector is parallel to the magnetic

field, i.e, θ = 0 and, therefore, sin θ = 0 and cos θ = 1. The homogeneous equation, given

by Equation (A.5), simplifies further since zj = k⊥v⊥/Ωj = 0 for parallel propagation.

Owing to this, the Bessel function term nJ2
n (zj) /zj → 0 as zj → 0 for all n and, therefore,

Kxz = 0 and Kzx = 0. A further simplification can be made since Jn (zj) J
′
n (zj) → 0 as

zj → 0 for all n so that, Kyz = 0 and Kzy = 0. Implementing the above simplifications,

the homogeneous equation, Equation (A.5), becomes (Gurnett and Bhattacharjee, 2005,
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Eq. 9.3.29) 
Kxx −

c2k2‖
ω2 Kxy 0

Kyx Kyy −
c2k2‖
ω2 0

0 0 Kzz




Ẽx

Ẽy

Ẽz

 = 0, (A.17)

for parallel propagation. Equation (A.17) is of the form M · Ẽ = 0. The condition for

non-trivial solutions to Equation (A.17) is that the the matrix, M, be singular, i.e., be

non-invertible. For this to be so we require that the determinant of M be zero, which

furnishes the dispersion relation. Evaluating the determinant of the matrix in Equation

(A.17) and setting it to zero, we obtain (Gurnett and Bhattacharjee, 2005, Eq. 9.3.30),

D(k‖, w) =

[(
Kxx −

c2k2‖

ω2

)(
Kyy −

c2k2‖

ω2

)
−KxyKyx

]
Kzz = 0. (A.18)

By the definition of Kxy, Equation (A.7), and Kyx, Equation (A.9), it is clear that Kxy =

−Kyx. Therefore, Equation (A.18) becomes

D(k‖, w) =

[(
Kxx −

c2k2‖

ω2

)(
Kyy −

c2k2‖

ω2

)
+K2

xy

]
Kzz = 0. (A.19)

Making use of the identity (Harris, 1970, Eq. 3.44)

Jn+1(zj) + Jn−1(zj) =
2n

zj
Jn(zj) (A.20)

it can be shown that

4
n2J2

n(zj)

z2j
= (Jn+1(zj) + Jn−1(zj))

2

= J2
n+1(zj) + J2

n−1(zj) + 2Jn+1(zj)Jn−1(zj). (A.21)

Taking the limit as zj → 0 of Equation (A.21) and noting that δ2m,n = δm,n yields,

lim
zj→0

n2J2
n(zj)

z2j
=

1

4
lim
zj→0

(
J2
n+1(zj) + J2

n−1(zj) + 2Jn+1(zj)Jn−1(zj)
)

=
1

4
(δn+1,0 + δn−1,0 + 2δn+1,0δn−1,0) . (A.22)
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We note that δn+1,0δn−1,0 = 0 for all n, δn+1,0 = 1 for n = −1 and δn−1,0 = 1 for n = 1.

Therefore, the Bessel function term n2J2
n (zj) /z

2
j in Kxx, Equation (A.6), reduces to 1/4

for n = ±1 and zero for all other values of n. It is also known that (Abramowitz and

Stegun, 1964, Eq. 9.1.27)

Jn−1(zj)− Jn+1(zj) = 2J ′n(zj). (A.23)

Using Equations (A.23), it can be shown that

lim
zj→0

J ′n(zj)J
′
n(zj) =

1

4
lim
zj→0

(
J2
n−1(zj) + J2

n+1(zj)− 2Jn+1(zj)Jn−1(zj)
)

=
1

4
(δn+1,0 + δn−1,0 − 2δn+1,0δn−1,0) , (A.24)

and so the Bessel function term J ′n (zj) J
′
n (zj) in Kyy, Equation (A.10), also reduces to

1/4 for n = ±1 and zero for all other values of n. Since both Kxx and Kyy both reduce to

1/4 for n = ±1 and zero for all other values of n, we can write Kxx = Kyy and Equation

(A.19) becomes to

D(k‖, w) =

(Kxx −
k2‖c

2

ω2

)2

+K2
xy

Kzz = 0. (A.25)

Taking into account all of the above simplifications, the electromagnetic part of the disper-

sion relation comes from demanding that the term in square brackets of Equation (A.25)

be zero such that (Gurnett and Bhattacharjee, 2005, Eq. 9.3.31)

k2‖c
2

ω2
= Kxx ± iKxy, (A.26)

whereas the solutions of Kzz = 0 yields the usual electrostatic waves.

As previously shown (Equation (A.22)), in the limit zj → 0, the Bessel function term

n2J2
n (zj) /z

2
j reduces to 1/4 for n = ±1. Therefore, Kxx, Equation (A.6), can be written
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as

Kxx = 1−
∑
j

ω2
pj

ω

[∫ ∞
−∞

∫ ∞
0

1/4(
k‖v‖ − ω − Ωj

)Uj2πv2⊥dv⊥dv‖
+

∫ ∞
−∞

∫ ∞
0

1/4(
k‖v‖ − ω + Ωj

)Uj2πv2⊥dv⊥dv‖
]

= 1−
∑
j

ω2
pj

ω

1

4

∫ ∞
−∞

∫ ∞
0

[
1(

k‖v‖ − ω − Ωj

) +
1(

k‖v‖ − ω + Ωj

)]Uj2πv2⊥dv⊥dv‖
= 1−

∑
j

ω2
pj

ω

1

4

∫ ∞
−∞

∫ ∞
0

[
2(k‖v‖ − ω)(

k‖v‖ − ω − Ωj

) (
k‖v‖ − ω + Ωj

)]Uj2πv2⊥dv⊥dv‖
= 1− π

∑
j

ω2
pj

ω

∫ ∞
−∞

∫ ∞
0

(k‖v‖ − ω)Ujv
2
⊥(

k‖v‖ − ω − Ωj

) (
k‖v‖ − ω + Ωj

)dv⊥dv‖. (A.27)

It can also be shown using Equations (A.20) and (A.23) that nJn (zj) J
′
n (zj) /zj reduces

to 1/4 for n = 1 and −1/4 for n = −1 (and zero for all other values of n) as zj → 0 so

Kxy, Equation (A.7), can be written such that

Kxy = −i
∑
j

ω2
pj

ω

∫ ∞
−∞

∫ ∞
0

[
1/4(

k‖v‖ − ω + Ωj

) +
−1/4(

k‖v‖ − ω − Ωj

)]Uj2πv2⊥dv⊥dv‖
= −iπ

∑
j

ω2
pj

ω

∫ ∞
−∞

∫ ∞
0

[
1(

k‖v‖ − ω + Ωj

) +
−1(

k‖v‖ − ω − Ωj

)]Uj 1

2
v2⊥dv⊥dv‖

= iπ
∑
j

ω2
pj

ω

∫ ∞
−∞

∫ ∞
0

ΩjUjv
2
⊥(

k‖v‖ − ω + Ωj

) (
k‖v‖ − ω − Ωj

)dv⊥dv‖ (A.28)

Substituting Equations (A.27) and (A.28) into Equation (A.26) yields

k2‖c
2

ω2
=

1− π
∑
j

ω2
pj

ω

∫ ∞
−∞

∫ ∞
0

(k‖v‖ − ω)Ujv
2
⊥(

k‖v‖ − ω − Ωj

) (
k‖v‖ − ω + Ωj

)dv⊥dv‖


± i

iπ∑
j

ω2
pj

ω

∫ ∞
−∞

∫ ∞
0

ΩjUjv
2
⊥(

k‖v‖ − ω + Ωj

) (
k‖v‖ − ω − Ωj

)dv⊥dv‖


= 1− π
∑
j

ω2
pj

ω

∫ ∞
−∞

dv‖

∫ ∞
0

dv⊥v
2
⊥

[
k‖v‖ − ω ± Ωj(

k‖v‖ − ω − Ωj

) (
k‖v‖ − ω + Ωj

)]Uj (A.29)

If we choose “−Ωj” in Equation (A.29), we arrive at the dispersion relation for parallel

propagating L mode waves in a plasma with an arbitrary velocity distribution (Mace et al.,
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2011),

k2‖c
2

ω2
= 1− π

∑
j

ω2
pj

ω2

∫ ∞
−∞

dv‖

∫ ∞
0

dv⊥v
2
⊥

1

k‖v‖ − ω + Ωj

·
[(
ω − k‖v‖

) ∂fj0
∂v⊥

+ k‖v⊥
∂fj0
∂v‖

]
Im(ω) > 0. (A.30)

This leaves the dispersion relation for parallel propagating R mode waves in a plasma with

an arbitrary velocity distribution to be given by,

k2‖c
2

ω2
= 1− π

∑
j

ω2
pj

ω2

∫ ∞
−∞

dv‖

∫ ∞
0

dv⊥v
2
⊥

1

k‖v‖ − ω − Ωj

·
[(
ω − k‖v‖

) ∂fj0
∂v⊥

+ k‖v⊥
∂fj0
∂v‖

]
Im(ω) > 0. (A.31)
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Appendix B

Dispersion relation for parallel

propagating L mode waves with

an arbitrary number of kappa

distributed plasma particle species
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In this appendix the method used to derive the dispersion relation for parallel propagating

L mode waves with an arbitrary number of kappa-distributed plasma particle species is

outlined. We note that the same method can be used to derive the dispersion relation for

parallel propagating R mode waves with an arbitrary number of kappa-distributed plasma

particle species. The dispersion relation for parallel propagating L mode waves in a plasma

with arbitrary distribution as derived in Appendix A, Equation (A.30), is

k2‖c
2

ω2
= 1− π

∑
j

ωpj
2

ω2

∫ ∞
−∞

dv‖

∫ ∞
0

dv⊥v
2
⊥

1

k‖v‖ − ω + Ωj

[(
ω − k‖v‖

) ∂fj0
∂v⊥

+ k‖v⊥
∂fj0
∂v‖

]
Im(ω) > 0. (B.1)

The notation in Equation (B.1) is the same as that described in Appendix A for Equation

(A.30).

We assume that all particle species have unperturbed velocity distributions given by the

bi-kappa distribution (Summers and Thorne, 1991),

f(v⊥, v‖) = π−3/2
1

θ2⊥θ‖

Γ(κ+ 1)

κ3/2Γ(κ− 1
2)

(
1 +

v2⊥
κθ2⊥

+
v2‖

κθ2‖

)−(κ+1)

, (B.2)

where Γ denotes the gamma function. The parameters θ⊥ and θ‖ are related to the kinetic

temperatures, T⊥, T‖, respectively perpendicular and parallel to B0, via (Summers and

Thorne, 1991)

θ⊥ =

[
2

(
κ− 3

2

κ

)]1/2(
T⊥
m

)1/2

,

θ‖ =

[
2

(
κ− 3

2

κ

)]1/2(
T‖

m

)1/2

. (B.3)

The parameters θ⊥ and θ‖ are commonly called generalised thermal speeds. In the isotropic

case, however, they reduce to the most probable speed for a kappa distribution. We note

going forward that we shall use κ = κj , θ‖ = θ‖j and θ⊥ = θ⊥j with the subscript j being

omitted for convenience.
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From the bi-kappa distribution, Equation (B.2), we find the derivatives with respect to v‖

and v⊥ are

∂fj0
∂v‖

= −π−3/2 2

θ2⊥θ
3
‖

Γ(κ+ 2)

κ5/2Γ(κ− 1
2)
v‖

(
1 +

v2⊥
κθ2⊥

+
v2‖

κθ2‖

)−(κ+2)

(B.4)

and

∂fj0
∂v⊥

= −π−3/2 2

θ4⊥θ‖

Γ(κ+ 2)

κ5/2Γ(κ− 1
2)
v⊥

(
1 +

v2⊥
κθ2⊥

+
v2‖

κθ2‖

)−(κ+2)

, (B.5)

respectively.

Substituting the above Equations (B.4) and (B.5) into Equation (B.1) yields,

k2‖c
2

ω2
= 1 +

∑
j

π−1/2
2

θ2⊥θ‖

Γ(κ+ 2)

κ5/2Γ(κ− 1
2)

ωpj
2

ω2

∫ ∞
−∞

dv‖

k‖v‖ − ω + Ωj[
ω

θ2⊥
+

(
1

θ2‖
− 1

θ2⊥

)
k‖v‖

]∫ ∞
0

dv⊥v
3
⊥

(
1 +

v2⊥
κθ2⊥

+
v2‖

κθ2‖

)−(κ+2)

. (B.6)

We seek to evaluate the integral over v⊥, I⊥,

I⊥ =

∫ ∞
0

dv⊥v
3
⊥

(
1 +

v2‖

κθ2‖
+

v2⊥
κθ2⊥

)−(κ+2)

=

∫ ∞
0

v3⊥
(
A+Bv2⊥

)−C
dv⊥

where A = 1 + v2‖/κθ
2
‖, B = 1/κθ2⊥ and C = κ + 2. The above integral, I⊥, is evaluated

with the aid of the standard integral (Gradshteyn and Ryzhik , 2000, p. 322, ch.3.251, Eq.

11) ∫ ∞
0

xµ−1 (1 + βxp)−ν dx =
1

p
β
−µ
pB

(
µ

p
, ν − µ

p

)
(B.7)

|arg β| < π, p > 0, 0 < Re µ < p Re ν.

The Beta function, B(x, y), has the identity (Gradshteyn and Ryzhik , 2000, p. 899, ch.

8.384, Eq. 1)

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
,

so that

B

(
µ

p
, ν − µ

p

)
=

Γ
(
µ
p

)
Γ
(
ν − µ

p

)
Γ(ν)

.
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Using the identity given in Equation (B.7) to evaluate the integral I⊥ and noting that

Γ(2) = 1, we find

I⊥ =
1

2
A−C

(
B

A

)−2 Γ (C − 2)

Γ(C)

and, therefore,

I⊥ =
1

2

(κθ2⊥)2

(1 + v2‖/κθ
2
‖)
κ

Γ (κ)

Γ(κ+ 2)
. (B.8)

Substituting Equation (B.8) into Equation (B.6), the dispersion relation then becomes

k2‖c
2

ω2
= 1 +

∑
j

ωpj
2

ω2

π−1/2κ−1/2

θ‖

Γ(κ)

Γ(κ− 1
2)

∫ ∞
−∞

(
ω +Ajk‖v‖

) (1 + v2‖/κθ
2
‖)
−κ

k‖v‖ − ω + Ωj
dv‖ (B.9)

where,

Aj =
θ2⊥
θ2‖
− 1

is the temperature anisotropy of species j.

We seek to evaluate the integral over v‖. Let I‖ be the integral over v‖ such that

I‖ =
π−1/2κ−1/2

θ‖

Γ(κ)

Γ(κ− 1
2)

∫ ∞
−∞

(
ω +Ajk‖v‖

)
(1 + v2‖/κθ

2
‖)
−κ

k‖v‖ − ω + Ωj
dv‖.

Let µ = ω/(Ajk‖), β = 1/κθ2‖ and α = (ω − Ωj)/k‖ so the above equation becomes

I‖ = Aj
π−1/2κ−1/2

θ‖

Γ(κ)

Γ(κ− 1
2)

∫ ∞
−∞

(
µ+ v‖

)
(1 + βv2‖)

−κ

v‖ − α
dv‖

= Ajµ
π−1/2κ−1/2

θ‖

Γ(κ)

Γ(κ− 1
2)

∫ ∞
−∞

(1 + βv2‖)
−κ

(v‖ − α)
dv‖

+Aj
π−1/2κ−1/2

θ‖

Γ(κ)

Γ(κ− 1
2)

∫ ∞
−∞

v‖(1 + βv2‖)
−κ

(v‖ − α)
dv‖

= I‖1 + I‖2.

We look to evaluate the first integral over v‖, I‖1, which is given by

I‖1 = Ajµ
π−1/2κ−1/2

θ‖

Γ(κ)

Γ(κ− 1
2)

∫ ∞
−∞

(1 + βv2‖)
−κ

(v‖ − α)
dv‖

=
ω

k‖θ‖

(
π−1/2κ−1/2

Γ(κ)

Γ(κ− 1
2)

∫ ∞
−∞

1

(v‖ − α)(1 + βv2‖)
κ
dv‖

)
. (B.10)

140



Letting s = v‖/θ‖ and ζ = α/θ‖ = (ω − Ωj)/(k‖θ‖) in Equation (B.10) it can be shown

that

I‖1 =
ω

k‖θ‖

(
π−1/2κκ−1/2

Γ(κ)

Γ(κ− 1
2)

∫ ∞
−∞

ds

(s− ζ)(κ+ s2)κ

)
. (B.11)

Equation (B.11) can be compared directly to the function defined by Mace and Hellberg

(2009, Equation 16)

Uκ(ζ) = π−1/2κκ−1/2
Γ(κ)

Γ(κ− 1
2)

∫ ∞
−∞

ds

(s− ζ)(κ+ s2)κ
Im(ζ) > 0. (B.12)

Equation (B.11) requires Im(ω) > 0 (see Equation (B.1)). However, we also have the

constraint Im(ζ) > 0 in Equation (B.12). By our definition of ζ, Im(ζ) > 0 only when

k‖ > 0. This is not always the case and k‖ < 0 must also be considered. To accommodate

this we will have to proceed with our evaluation of Equation (B.11) for the two cases: (i)

k‖ > 0 and (ii) k‖ < 0 separately.

For k‖ > 0, we set k‖ = |k‖| and Equation (B.11) becomes

I‖1 =
ω

|k‖|θ‖

(
π−1/2κκ−1/2

Γ(κ)

Γ(κ− 1
2)

∫ ∞
−∞

ds

(s− ζ)(κ+ s2)κ

)
=

ω

|k‖|θ‖
Uκ(ζ) (k‖ > 0), (B.13)

where we have redefined ζ such that ζ = (ω − Ωj)/(|k‖|θ‖).

For k‖ < 0, we set k‖ = −|k‖| and substitute it into Equation (B.11) so that,

I‖1 =
ω

−|k‖|θ‖

(
π−1/2κκ−1/2

Γ(κ)

Γ(κ− 1
2)

∫ ∞
−∞

1

(s′ + ζ)(κ+ s′2)κ
ds′

)
. (B.14)

We proceed by making the change of variable s = −s′, therefore,

I‖1 =
ω

−|k‖|θ‖

(
π−1/2κκ−1/2

Γ(κ)

Γ(κ− 1
2)

∫ −∞
∞

−1

(−s+ ζ)(κ+ s2)κ
ds

)

=
ω

−|k‖|θ‖

(
π−1/2κκ−1/2

Γ(κ)

Γ(κ− 1
2)

∫ −∞
∞

1

(s− ζ)(κ+ s2)κ
ds

)

=
ω

|k‖|θ‖

(
π−1/2κκ−1/2

Γ(κ)

Γ(κ− 1
2)

∫ ∞
−∞

1

(s− ζ)(κ+ s2)κ
ds

)
=

ω

|k‖|θ‖
Uκ(ζ) (k‖ < 0). (B.15)
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The second integral over v‖, I‖2, where

I‖2 = Aj
π−1/2κ−1/2

θ‖

Γ(κ)

Γ(κ− 1
2)

∫ ∞
−∞

v‖

(v‖ − α)(1 + βv2‖)
κ
dv‖ (B.16)

needs to be evaluated in the same way as, I‖1. For k‖ > 0, we set k‖ = |k‖|. Making the

change of variables s = v‖/θ‖ and ζ = α/θ‖ = (ω−Ωj)/(|k‖|θ‖), Equation (B.16) becomes,

I‖2 = Ajπ
−1/2κ−1/2

Γ(κ)

Γ(κ− 1
2)

∫ ∞
−∞

s

(s− ζ)(1 + s2/κ)κ
ds (k‖ > 0). (B.17)

Using the definition of the function Uκ(ζ) in Equation (B.12) it can be shown that,

I‖2 = Ajπ
−1/2κ−1/2

Γ(κ)

Γ(κ− 1
2)

∫ ∞
−∞

s

(s− ζ)(1 + s2/κ)κ
ds.

= Ajπ
−1/2κ−1/2

Γ(κ)

Γ(κ− 1
2)

[∫ ∞
−∞

1

(1 + s2/κ)κ
ds+ κκ

∫ ∞
−∞

ζ

(s− ζ)(κ+ s2)κ
ds

]
= Ajπ

−1/2κ−1/2
Γ(κ)

Γ(κ− 1
2)

[∫ ∞
−∞

1

(1 + s2/κ)κ
ds

]
+AjζUκ(ζ) (k‖ > 0). (B.18)

Using the standard integral given by Equation (B.7), the remaining integral in Equation

(B.18) can be evaluated such that∫ ∞
−∞

1

(1 + s2/κ)κ
du =

√
π
√
κΓ
(
κ− 1

2

)
Γ(κ)

and, therefore,

I‖2 = Aj +AjζUκ(ζ) (k‖ > 0). (B.19)

For k‖ < 0, we set k‖ = −|k‖| and make the change of variables s′ = v‖/θ‖ and ζ = α/θ‖ =

(ω − Ωj)/(|k‖|θ‖). Substituting these into Equation (B.16) yields,

I‖2 = Ajπ
−1/2κ−1/2

Γ(κ)

Γ(κ− 1
2)

∫ ∞
−∞

s′

(s′ + ζ)(1 + s′2/κ)κ
ds′ (k‖ < 0). (B.20)

Making the change of variable s = −s′, Equation (B.20) becomes

I‖2 = Ajπ
−1/2κ−1/2

Γ(κ)

Γ(κ− 1
2)

∫ −∞
∞

−s
(−s+ ζ)(1 + s2/κ)κ

(−ds)

= Ajπ
−1/2κ−1/2

Γ(κ)

Γ(κ− 1
2)

∫ −∞
∞

s

(−s+ ζ)(1 + s2/κ)κ
ds

= Ajπ
−1/2κ−1/2

Γ(κ)

Γ(κ− 1
2)

∫ ∞
−∞

s

(s− ζ)(1 + s2/κ)κ
ds (k‖ < 0). (B.21)
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Equation (B.21) is in the exact same form as Equation (B.17) and is solved in the same

way such that

I‖2 = Aj +AjζUκ(ζ) (k‖ < 0). (B.22)

We have now shown that

I‖1 =
ω

|k‖|θ‖
Uκ

(
ω − Ωj

|k‖|θ‖

)
(B.23)

and

I‖2 = Aj +Aj

(
ω − Ωj

|k‖|θ‖

)
Uκ

(
ω − Ωj

|k‖|θ‖

)
(B.24)

for both k‖ > 0 and k‖ < 0. Substituting Equations (B.23) and (B.24) into Equation (B.9),

we arrive at the dispersion relation for parallel propagating electromagnetic L mode waves

in a plasma with bi-kappa distribution [cf. Mace et al. (2011)]

k2c2

ω2
= 1 +

∑
j

ω2
pj

ω2

{
Aj +

[
Aj

(
ω − Ωj

kθ‖j

)
+

ω

kθ‖j

]
Uκj

(
ω − Ωj

kθ‖j

)}
(B.25)

where k = |k‖|, Uκ is the dispersion plasma function (Mace and Hellberg , 2009) defined in

terms of the Gauss hypergeometric function 2F1 by

Uκ(ζ) = i
(κ− 1

2)

κ3/2
2F1

[
1, 2κ;κ+ 1;

1

2

(
1− ζ

iκ1/2

)]
. (B.26)

The dispersion relation for parallel propagating electromagnetic R mode waves in a plasma

with bi-kappa distribution is derived using the same method as that used to derive the L

mode and is given by,

k2c2

ω2
= 1 +

∑
j

ω2
pj

ω2

{
Aj +

[
Aj

(
ω + Ωj

kθ‖j

)
+

ω

kθ‖j

]
Uκj

(
ω + Ωj

kθ‖j

)}
. (B.27)
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