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ABSTRACT 

 
Cathepsin, matrix metalloproteinase (MMP) enzyme and tissue inhibitor of MMP (TIMP) 

distribution in J774 mouse macrophages has not been comprehensively studied.  The 

distribution and vesicle regulation, trafficking and release of these is important, possibly 

suggesting drug targets for the therapeutic regulation of inflammatory disease and 

phagosomal killing of pathogenic organisms in J774 and other macrophages.  Percentage 

immunofluorescence and ultrastructural enzyme and inhibitor distribution, together with 

LysoTracker (acidity) and lysosome-associated membrane proteins (LAMPs) colocalisation 

(both indicating late endosome or “lysosomal” association), western blot estimates of 

percentage processed- and unprocessed intracellular and secreted enzyme and inhibitor, and 

vesicle size was used to assign enzyme and inhibitor to “classical” vesicle types.  Antibodies 

against TIMP-1 and TIMP-2 were raised and all antibodies characterised for this purpose. 

 

Together these were used to assign cathepsins H, S, D, B and L to possible secretory vesicles 

(±20 nm, non-acidic, LAMPs-negative, containing precursor enzymes) and identify at least 6 

other endosome-“lysosome-like” vesicles.  Cathepsin H appears to be present in classical 

early endosomes (±100 nm, non-acidic, LAMPs-negative) and cathepsin S in late endosomes 

(±50 nm, acidic, LAMPs-positive) and possibly “lysosomal” (“hybrid” or digestive 

organelles) (±150-200 nm, acidic, LAMPs-positive).  Both cathepsins H and S, however, 

seem only reliable markers if used together with additional markers.  Cathepsin D appears 

mainly associated with “lysosomal” (“hybrid” or digestive organelles) (±150-200 nm, acidic, 

LAMPs-positive), possibly consisting of further subpopulations which requires further 

investigation e.g. labelling for LAMP-1 and LAMP-2 and cathepsin D.  Cathepsins B and L 

may occur in late endosomes and/or hybrid organelles and “secretory lysosomes” containing 

cathepsins B, D and L may also exist (±30-50 nm, acidic, LAMPs-positive). 

 

The distribution of MMP-9, TIMP-1 and -2 in vesicles (non-acidic, LAMP-2-negative) that 

appear novel and distinct from late endosome-“lysosome” vesicles were also demonstrated.  

In LPS-stimulated cells, the identity of the large (±450 nm), possible recycling endosomes 

(Rab11-positive, LAMPs-negative), containing colocalised MMP-9 and TIMP-1, needs 

investigation i.e., requires further verification with triple labelling and EM.  Possible cell 

membrane and recycling endosome localisation of TIMP-2 needs confirmation with labelling 

of non-permeabilised cells and labelling for MT1-MMP and proMMP-2, respectively. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Macrophages 

The macrophage or activated blood monocyte is an extremely important cell, second to the 

site of infection after the neutrophils, orchestrating many of the body’s responses to 

infection, via cytokine release (Ross and Auger, 2002).  Monocytes/macrophages, however, 

seem less effective in killing rapidly growing microorganisms (most pathogens) but more 

effective in killing slow replicating organisms, such as Mycobacterium tuberculosis (Heale 

and Speert, 2002).  Certain pathogens, however, have evolved ways of evading killing by the 

macrophage under certain circumstances and the emerging view now suggests that the major 

killing event avoided is the fusion of protease-containing vesicles with the phagosome (Anes 

et al., 2006).  Which proteases are important in such fusion events, their distribution and 

regulation remains largely unknown. 

 

The distribution of proteases in macrophages, or protease colocalisation and hence patterns 

of fusion of proteases with the phagosome, characteristics of the protease-containing vesicle 

populations (i.e. whether acidic and lysosome-like or non-acidic and whether the proteases 

are stored active or inactive), is also largely unknown and form the focus of this dissertation.  

Before what is known about the protease distribution is described, some background about 

macrophages will be given as macrophage- or activated monocyte phenotypes are strongly 

influenced by their environment.  They also differ phenotypically depending upon their 

species (e.g. mouse macrophages vary slightly from human macrophages).  These facts 

complicate studies of these cells, potentially invalidating generalisations. 

 

The term ‘macrophage’ (Greek: big eater) was first used by Elie Metchnikoff more than 100 

years ago to describe large mononuclear phagocytic cells (Oppenheim and Leonard, 1989; 

Ross and Auger, 2002).  The most differentiated cells of the mononuclear phagocyte system 

(MPS) that is comprised of bone marrow monoblasts, promonocytes, blood monocytes, are 

the tissue and blood macrophages (Ross and Auger, 2002).  The monoblast is the least 

mature cell of this system.  Division of this cell results in two promonocytes or precursors of 

the monocyte.  These enter the blood stream, migrate to various organs, and differentiate into 
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tissue macrophages (Table 1.1) that are widely distributed and show great structural and 

functional heterogeneity (Roitt, 1997; Ross and Auger, 2002). 

 

Table 1.1 Distribution and names of monocytes/macrophages in the body. 

Location Name 

Bone marrow Monoblasts, promonocytes, monocytes, macrophages 
Peripheral blood Monocytes 
Lungs Alveolar macrophages 
Liver Kupffer cells 
Bones Osteoclasts 
Kidneys Glomerular mesangial cells 
Skin Langerhans cells 
Spleen Splenic macrophages/fixed tissue macrophages 
Central nervous system Microglial cells 
Connective tissue Histiocytes 
Lymph nodes Monocytes/macrophages 
Thymus Fixed tissue macrophages 
Endocrine organs Monocytes/macrophages 
Peritoneal cavity Peritoneal macrophages 
Lamina propria Fixed tissue macrophages 

(Roitt, 1997; Handel-Fernandez and Lopez, 2000; Ross and Auger, 2002).  

 

Circulating monocytes and tissue macrophages are phylogenetically primitive cells (Varesio 

et al., 2000; Ross and Auger, 2002).  During the course of evolution, they have retained 

certain amoeboid characteristics and functions, including their mobility and capacity for 

phagocytosis.  Their additional capacity for secretion of immunoregulatory cytokines and 

their receptors enable them to interact with and shape the reactivity of the cells of the 

immune system. 

 

Phagocytosis describes the engulfment of large particles (van Oss, 1986; May and 

Machesky, 2001) and constitutes an innate response of the immune system triggered by the 

engagement of various receptors (Section 1.2).  In addition to phagocytosis and cytokine 

release, that can alter the behaviour of phagocytes and many other cell types, macrophages 

secrete a variety of other important molecules including cytotoxic radicals of oxygen and 

nitrogen, enzymes that degrade the extracellular matrix (ECM) and lipid mediators of 

inflammation (Rabinovitch, 1995) (Section 1.3). 

 

1.2 Phagocytosis 

The professional phagocytes including, polymorphonuclear leukocytes (PMNs), monocytes 

and macrophages are responsible for phagocytosis in mammals.  In macrophages, 

phagocytosis is required for pathogen destruction, antigen presentation, tissue remodelling 
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and inflammation (Rabinovitch, 1995) and involves the engulfment of particles that are 

usually larger than 0.5 µm in diameter (Allen and Aderem, 1996; May and Machesky, 2001; 

Ross and Auger, 2002).  It has been shown, however, that particles as small as 0.13-0.26 µm 

and as large as 3.0 µm have been effectively phagocytosed (Desjardins and Griffiths, 2003). 

 

The core mechanisms of phagocytosis are exceedingly complex but can be broken down into 

several steps.  Firstly, the uptake of the foreign particle is initiated by the interaction of 

specific receptors on the surface of the macrophage with particular ligands on the surface of 

the particle (Aderem, 2003).  Secondly, signals are produced that stimulate actin-

polymerisation under the membrane at the site of contact (Aderem, 2003; Desjardins and 

Griffiths, 2003).  Thirdly, actin-rich pseudopods extend around the particle resulting in its 

internalisation (Allen and Aderem, 1996; Aderem, 2003).  After internalisation is complete, 

the phagosome matures via a series of fusion and fission events with components of the 

endocytic pathway (endosomes and lysosomes) as well as other vesicle types.  The 

phagosome thus acquires a variety of proteins including acid hydrolases and proton 

ATPases, allowing phagosomal acidification and the development of a microbicidal 

organelle (Mellman, 1992; Desjardins and Griffiths, 2003). 

 

1.2.1 Receptors involved in phagocytosis 

Macrophages express a variety of phagocytic receptors that can be divided into two main 

groups.  The first group are the opsonin-dependent receptors.  These need the foreign 

particles to be coated by an opsonin and include the complement receptor type 3, Fc 

receptors, C1q- and CD14 receptor that bind to particles coated by iC3b, antibodies, C1q and 

lipopolysaccharide (LPS)-binding proteins, respectively (Peiser et al., 2000).  The second 

group are pattern-recognition receptors (PRRs) including the mannose receptor (MR), the 

MR-like T cell-205 receptor (DEC-205), CD36 and scavenger receptor-A (SR-A), these 

recognise conserved motifs on pathogens that are not found on higher eukaryotes.  These 

motifs are essential to the biology of the pathogen and, therefore, are not subject to high 

mutation rates making them good targets for pathogen recognition, binding and uptake 

(Peiser et al., 2000; Aderem, 2003).   

 

1.2.1.1 Fc-receptor-mediated phagocytosis 

Fcγ Receptors (FcγRs) for the Fc region of the major opsonin, IgG, were the first 

macrophage receptors to be identified (Ross and Auger, 2002).  Studies have since defined at 
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least three distinct FcγRs, FcγRI, FcγRII and FcγRIII in macrophages (Shibata et al., 1991; 

Kusner et al., 1999).  In addition to IgG, IgA and IgE also have cognate receptors, Fcα and 

Fcε, respectively (May and Machesky, 2001).  Binding of IgG to the FcγRs activates a wide 

variety of antimicrobial responses, including secretion of various antimicrobial agents, 

cytokine synthesis and secretion, the production of pro-inflammatory lipids such as 

arachidonic acid and reactive oxygen intermediates (Aderem and Underhill, 1999; Kusner et 

al., 1999).  IgG-FcγR interaction may result in phosphorylation of specific receptor tyrosine 

residues in immunoreceptor tyrosine-based activation motifs (ITAMs) essential for 

phagocytosis (Greenberg et al., 1993).  Tyrosine kinase-dependent activation of 

phospholipase D results and appears to regulate the ingestion of IgG-opsonised particles 

(Kusner et al., 1999).  The monomeric GTPase, Rho is subsequently essential for the 

accumulation of phosphotyrosine and of F-actin around phagocytic cups as well as for Fcγ-

receptor-mediated Ca2+ signalling.  This results in differential vesicle fusion with the 

phagosome (Hackam et al., 1997). 

 

1.2.1.2 Complement-receptor-mediated phagocytosis 

Unlike Fc-receptor-mediated phagocytosis, complement receptor-mediated phagocytosis 

involves minimal membrane disturbance.  Complement-opsonised particles appear to “sink” 

into the phagocyte and internalisation does not normally result in an inflammatory response 

or respiratory burst (May and Machesky, 2001).  Following complement activation C3b 

containing a thioester group, can covalently bind to hydroxyl or amino groups on the 

microbial surface.  The deposited C3b acts as an opsonin and is recognised by complement 

receptor (CR)1 (CD35), CR4 (CD11c/CD18), and, after its conversion to iC3b, by CR3 

(CD11b/CD18) (May and Machesky, 2001; Ross and Auger, 2002).  Phagocytosis of iC3b 

particles occurs only if the macrophage has been activated, for example, by cytokines.  

Activation causes a conformational change in the receptor, resulting in the clustering of 

receptors (necessary for the binding), allowing transduction of the phagocytic signal and the 

subsequent uptake of the foreign particle (Allen and Aderem, 1996; May and Machesky, 

2001). 

 

1.2.2 The phagosome and phagosome maturation 

Despite the considerable membrane expanse that is internalised during phagocytosis, no net 

loss of surface membrane has been detected suggesting that exocytosis of membranes occurs 

in conjunction with phagocytosis (Hackam et al., 2001).  Fission of vesicles from the 
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phagosomal membrane is partially dependent on coat protein I (COPI) which is also 

involved in budding from endosomes and the Golgi (Botelho et al., 2000) and is indirectly 

required for phagocytosis as it helps to maintain a pool of vesicles which fuse with the 

plasma membrane and promote the extension of pseudopodia around the particle to be 

engulfed (Hackam et al., 2001).  Vesicles, possibly recycling endosomes, bud off the 

phagosome and appear to fuse with the plasma membrane near the developing phagosome, 

compensating for lost plasma membrane (Greenberg and Grinstein, 2002).   

 

Recently, Gagnon et al. (2002) provided new insight into phagocytosis by showing that 

when macrophages phagocytose particles, most of the phagosomal membrane is not derived 

from the plasma membrane but rather from the endoplasmic reticulum (ER).  The binding of 

a foreign particle to the macrophage cell surface initiates the formation of pseudopodia, 

attaching the particle to the plasma membrane.  The ER is subsequently recruited to the 

surface of the cell where it fuses with the plasma membrane and opens at the site of contact. 

The particle slides into the ER membrane and the membrane closes, resulting in a 

phagosome made primarily from ER membrane (Gagnon et al., 2002).  ER-mediated 

phagocytosis can be used to explain the presence of ER proteins in isolated latex bead 

containing phagosomes (LBPs) (Garin et al., 2001).  It also explains how antigens from 

phagosomal pathogens can be presented by MHC class I molecules, a process normally 

associated with the ER, instead of MHC class II molecules normally associated with 

phagocytosis and MHC class II presentation (Kleijmeer et al., 2001). 

 

Irrespective of how the phagosome forms, phagosome maturation occurs via a series of 

fusion and fission events involving organelles of the endocytic pathway, the early 

endosomes, late endosomes and finally lysosomes as well as other vesicle populations.  This 

results in the formation of the phagolysosome, a hybrid organelle with bactericidal properties 

(Desjardins et al., 1994a; Desjardins et al., 1997; Vieira et al., 2002; Griffiths, 2004; 

Niedergang and Chavrier, 2004).  There is also evidence to suggest that when phagosomes 

fuse with endosomes and lysosomes they do not necessarily form a single organelle 

(Desjardins, 1995; Duclos et al., 2000).  Phagosomes may experience a transient and partial 

fusion with endocytic organelles.  This is known as ‘the kiss’, allowing for the transfer of 

membrane and luminal contents, generating what is often called a “phagolysosome”.  

Subsequently, a fission event, known as ‘the run’ occurs, preventing the mixing of the two 

compartments and the two compartments separate (Desjardins, 1995).  Soluble N-



 6

ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and Rab5 have been 

shown to be involved in the transient fusion events between phagosomes and early 

endosomes, deactivation of Rab5 resulting in uncontrolled fusion events and the formation of 

giant phagosomes (Duclos et al., 2000; Niedergang and Chavrier, 2004). 

 

1.3 Microbicidal killing mechanisms 

Phagolysosomes possess a variety of degradative properties including a very low pH, 

hydrolytic enzymes for particle digestion, antimicrobial peptides and the ability to produce 

oxidative compounds (Table 1.2) (Tjelle et al., 2000; Heale and Speert, 2002; Vieira et al., 

2002).  It has been assumed that macrophages are capable of killing phagocytosed microbes 

by both oxidative and non-oxidative mechanisms as extrapolated from neutrophils (Ross and 

Auger, 2002). 

 

Table 1.2 Microbicidal agents produced by macrophages upon ingestion of microorganisms. 

Class of mechanism Specific Products 

Acidification pH ~ 3.5-4.0, bacteriostatic or bactericidal 
Toxic oxygen derived products O2

-, H2O2, 
1O2

•,OH•, OCl 

Toxic nitrogen oxides NO 
Antimicrobial peptides Defensins and cationic proteins 
Enzymes Lysozyme (dissolves cell walls of certain gram- 

positive bacteria), acid hydrolases (further digest 
bacteria) 

Abbreviations: O2
-, superoxide; H2O2, hydrogen peroxide; 1O2

•, singlet oxygen; OH•, hydroxyl radical;  OCl, 
hypochlorite;  NO, nitric oxide. (Janeway et al., 2001; Heale and Speert, 2002). 

 

Like neutrophils, macrophages produce, and intracellularly release, reactive oxygen 

intermediates (Ross and Auger, 2002).  The exposure to specific stimuli, results in a greatly 

enhanced oxygen uptake, especially in neutrophils, and gives rise to what is known as 

‘respiratory burst’ (Babior, 1984; Labro, 2000). During such events cells produce large 

amounts of superoxide (O2
-) and hydrogen peroxide (H2O2), intermediates that are not 

directly used in microbial killing but rather in the production of bacteriological oxidised 

halogens and other oxidising radicals (Babior, 1984).  As already mentioned, macrophage 

microbicidal power varies between different activation states and is generally inferior to that 

of circulating neutrophils as they posses a less potent respiratory burst in comparison to 

neutrophils (Labro, 2000; Heale and Speert, 2002).  Evidence also suggests that maturation 

of monocytes into macrophages is accompanied by a loss of microbicidal activity.  This 

appears to be due to a decreased capacity for O2
-, H2O2 and myeloperoxidase (MPO) 

production (Nakagawara et al., 1981; Ross and Auger, 2002). It has also been suggested that 
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macrophages are unable to produce significant amounts of reactive oxygen intermediates in 

the phagosome, as they appear to lack the large pool of NADPH-oxidase components found 

in neutrophils (Johansson et al., 1995).   

 

In addition to oxygen-dependent mechanisms, macrophages are also equipped with oxygen-

independent killing mechanisms.  Many vesicle-associated proteins have been shown to have 

antimicrobial activity. These include lysozyme, elastase, collagenases, lipases, sulfatases, 

phosphatases, defensins, polysaccharides, cathepsins and deoxyribonucleases (Heale and 

Speert, 2002; Selsted and Ouellette, 1995; Ross and Auger, 2002).  These substances are 

delivered to the phagosome as the various compartments of the endocytic pathway fuse 

sequentially with the phagosome during the process of phagosomal maturation (Vieira et al., 

2002; Henry et al., 2004). 

 

Some years ago cathepsins B and D, released into the phagosome, were shown to possess 

bactericidal properties, including the ability to effect lysis of lysozyme-resistant 

Staphylococcus aureus and rendering Acinetobacter 199A sensitive to lysozyme (Thorne et 

al., 1976).  Despite this, until recently (Anes et al., 2006; Del Cerro-Vadillo et al., 2006), a 

direct role for macrophage proteases in controlling bacterial infection had not been 

established and it was thought that the proteases mainly performed protein turnover functions 

in the phagosome (Heale and Speert, 2002; Rosenberger et al., 2004).  Murine macrophages 

have been shown to use a combination of proteases and cationic peptides to limit the growth 

of intracellular bacterial pathogens (Rosenberger et al., 2004).  Multiplication of Salmonella 

typhimurium inside infected murine splenic and liver macrophages has also been shown to be 

controlled using increased levels of reactive oxygen intermediates, increased expression of 

the murine cathelicidin-related antimicrobial peptide (CRAMP), activated by an intracellular 

macrophage elastase-like serine proteases (Rosenberger et al., 2004).  This study 

demonstrated the importance of antimicrobial peptides in the destruction of macrophage 

bacterial pathogens and, that independent killing mechanisms in macrophages, reactive 

oxygen species as well as intracellular proteases, cooperate and complement each other in 

impairing bacterial growth. 

 

A recent study has also identified cathepsin D as an important non-oxidative bactericidal 

agent effective against Listeria monocytogenes infection in both macrophages and fibroblasts 

(Del Cerro-Vadillo et al., 2006).  Acid sphingomyelinase was shown to produce ceramide, a 
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signaling molecule that activates cathepsin D, and the lack of ceramide, and hence cathepsin 

D activation in acid sphingomyelinase knockout mice appears to correlate with the survival 

of L. monocytogenes.  Phagosomes containing cathepsin D were also listericidal whereas 

those lacking cathepsin D were not (Heinrich et al., 1999; Prada-Delgado et al., 2001; 

Utermohlen et al., 2003). Del Cerro-Vadillo et al. (2006) also observed that fibroblasts and 

bone-marrow macrophages from cathepsin D-deficient mice showed enhanced susceptibility 

to L. monocytogenes infection in comparison with wild types. A further finding suggests that 

Rab5a is also required for the activation of cathepsin D, and cathepsin D targets the main 

virulence factor listeriolysin O of L. monocytogenes, limiting the capacity for survival in the 

phagosome.  The involvement of Rab5a suggests that some vesicles containing precursor 

(inactive) cathepsin D need to fuse with an early endosomal compartment (Rab5a-positive) 

in order to become active.  This is unexpected as the dogma states that activation of most 

cathepsins occurs in acidic, late endosomal compartments (Turk et al., 2001; Bühling et al., 

2004). 

 

For the killing of Mycobacterium smegmatis in J774 macrophages, Anes et al. (2006) 

showed that J774 cells used dynamic interactions of various compartments and conditions to 

fight the live bacterium in the phagosome.  Anes et al. (2006) proposed three different killing 

phases (Figure 1.1).   

Figure 1.1 Schematic diagram showing the killing mechanisms used by J774 macrophages to control 

Mycobacterium smegmatis infection. 
The killing of M. smegmatis is a dynamic process involving initial periods of killing, followed by bacterial 
growth and two subsequent killing phases.  NO synthesis was the first killing factor and functioned in the first 
killing phase only.  Phagosome actin assembly and fusion with late endocytic compartments occurred during 
both the first and last killing phases.  The recycling of phagosomal content as well as membrane occurred 
simultaneously with bacterial growth.  Phagosomal acidification was prominent in the second and third killing 
phases.  Map kinase p38 was an important regulator in most of the processes except for NO synthesis (Anes et 

al., 2006).  Abbreviations: p38, map kinase p38; NO, nitric oxide; iNOS, inducible NO synthase; LYAAT, 
lysosomal amino acid transporter; Lys, lysosome. 
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The first phase was characterised by NO synthesis which stopped before the beginning of the 

second killing phase (Figure 1.1).  During the first phase macrophages also utilised their 

second killing mechanism, the fusion of late endosomes and lysosomes with the phagosome.  

It was shown that lysosomal enzymes were responsible for some bacterial killing as 

macrophages preloaded with an inhibitor cocktail for lysosomal enzymes had reduced killing 

effects.  The initial killing stage was followed by a stage of bacterial growth, which 

interestingly coincided with the recycling of both lysosomal-associated membrane protein-1 

(LAMP-1) and the gold content marker (both markers for late endosomes and lysosomes) out 

of phagosomes containing live bacteria.  The second phase of killing occurred between 9 and 

12 h after infection, suggesting that fusion of compartments with the phagosome must have 

occurred prior to the beginning of this stage (Figure 1.1).  Interestingly, these compartments 

appeared to be distinct from the regular late endosomes and lysosomes as the bulk of the 

gold content and LAMP-1 markers had been recycled out of the phagosome by this time and 

were subsequently only re-acquired during the third killing stage.  The third killing stage was 

characterised by the fusion of late endosomes and lysosomes with the phagosome and the 

formation of an acidic phagosomal compartment (Figure 1.1).  This study demonstrated that 

J774 macrophages use several killing mechanisms which, appear to be more successful in 

combating bacterial infection if used during specific periods as opposed to being utilised 

continuously during the infection control process.  The precise identity of which protease 

was responsible for killing M. smegmatis is still, however, unknown and needs investigation. 

 

1.4 Content of the macrophage 

As previously mentioned, macrophages are capable of synthesising a vast number of 

different products. These include not only enzymes but many other biologically active 

compounds (Nathan et al., 1987; Ross and Auger, 2002).  Lysosomal proteases including 

cathepsins B, D, L, S, H and Z, LAMP-1 and -2, (Claus et al., 1998; Garin et al., 2001), 

matrix metalloproteinases (MMPs) -1, -2, -3 and -9, (Goetzl et al., 1996) and tissue inhibitor 

of metalloproteinases (TIMPs), -1 and -2 (Triebel et al., 1995) to name a select few, have all 

been identified in macrophages.  Many of these macrophage products can be secreted either 

into the extracellular environment or into the phagosome and are listed in Table 1.3.  It was 

also obvious at the outset of this study that the vesicle populations of the macrophage in no 

way resemble the large granule populations of the neutrophils and characterisation of vesicle 

populations would possibly not be a simple task. 
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Table 1.3 Products synthesised and secreted by macrophages. 

Enzymes Acrachidonic acid intermediates 

Lysozyme 
Lysosomal acid hydrolases:                               
lipases, proteases, (deoxy)ribonuclease,           
phosphatases, glycosidases, sulfatases 
Neutral proteases:                                        
collagenase, elastase, myelinase, angiotensin, 
convertase, plasminogen activator, cytolytic 
proteinase, lipases, lipoprotein lipase, phospholipase 
A2, arginase 

Cyclooxygenase products: 
PGE2, prostacyclin, thromboxane 
Lipooxygenase products: 
Hydroxyeicosotetranic acids, leukotrienes 
Platelet-activating factors 

Enzyme and cytokine inhibitors 

Protease inhibitors:  
α2-macroglobulin, α1-antitrypsin inhibitor, 
plasminogen activator inhibitor, collagenase inhibitor 
Phospholipase inhibitor 
IL-1 inhibitors 

Coagulation factors 

Tissue factor 
Prothrombin activator 
Coagulation factors II, VII, IX, X, XIII 
Plasminogen activator 

Complement components 

Classical pathway: 
C1, C4, C2, C3, C5 
Alternative pathway: 
factor B, factor D, properdin 
Active fragments: 
C3a, C3b, C5a, Bb 
Inhibitors: 
C3b inactivator, β-1H 
 

Cytokines 

IL-1, IL-6, IL-10, IL-12, IL-15, IL-18 
TNF-α 
Interferon-α and -γ 
Platelet-derived growth factors 
Fibroblast growth factor 
Transforming growth factor-β 
GM-CSF 
M-CSF 
Erythropoietin 
Factor inducing monocytopoieisis 
Angiogenesis factor 
CXC chemokines (IL-8, GRO, ENA-78, IP-10) 

Reactive oxygen and nitrogen intermediates 

O2
- 

H2O2 

OH• 
NO 
Peroxynitrite 

Others 

Thrombospondin 
Fibronectin 
Lipocortin 
Transcobalamin II 
Transferrin 
Ferritin 
Haptoglobin 
Glutathione 
Uric acid 
Apolipoprotein 
Neopterin 
 

Abbreviations: PGE2, prostaglandin E2; IL, interleukin; TNF-α, tumour necrosis factor-α; GM-CSF, 
granulocyte-macrophage colony stimulating factor; M-CSF, macrophage colony-stimulating factor; GRO, 
growth-related oncogene protein; ENA-78, epithelial neutrophil activating peptide; IP-10; IFN, interferon; IFN-

inducible protein-10; O2
-, superoxide; H2O2, hydrogen peroxide; OH•, hydroxyl radical, NO, nitric oxide 

(Nathan, 1987; Ross and Auger, 2002). 

 

Using proteomic analysis of LBPs, which are easily isolated by density-shift methods,   

Garin et al. (2001) identified more than 140 proteins in isolated J774 phagosomes (Table 

1.4) and Morrissette et al. (1999) generated approximately 150 monoclonal antibodies to 

phagosomal proteins.  It is assumed that as the phagosome is not a pre-existing organelle its 

protein content arises by fusion with a series of vesicular compartments, including the 



 11

various organelles of the endocytic pathway (Tapper, 1996; Jahraus et al., 1998).  Therefore, 

the proteins identified in the phagosome by Garin et al. (2001) and Morrissette et al. (1999) 

will be vesicle-derived.  How many proteins have eluded identification to date is unknown.  

It is interesting that no MMPs and their inhibitors are mentioned in the phagosome content 

(Morrissette et al., 1999; Garin et al., 2001).  It is, therefore, possible that these have an 

exclusively extracellular role as many are known to be involved in cytokine processing 

(Table 1.8 and Table 1.9) (Somerville et al., 2003; Folgueras et al., 2004). 

 

The following sections focus on the cathepsins, MMPs and TIMPs found in the macrophage 

and are, therefore, expected to be present in the vesicular compartments of the macrophage at 

some point.  One of the aims of the present study was also to establish which proteases and 

proteins are localised in the phagosome and hence could possibly be responsible for killing 

of microorganisms and phagosome fusion (Table 1.4). 

 

Table 1.4 Identified phagosomal proteins. 

Protein Remark Protein Remark 

14-3-3 Involved in exocytosis through 
actin interaction. 

Acid ceramidase Lysosomal. 

A-X actin Cytoskeletal protein. β-actin Cytoskeletal protein. 

γ-actin Cytoskeletal protein. Alix Programmed cell death 6-
interacting protein.  
Implicated in apoptosis, with 
ALG-2. 

Annexin 5 Amount bound to phagosome 
stays approximately the same as 
the phagosome matures. 

Apolipoprotein D Transports a variety of 
ligands in a number of 
different contexts. 

ARP3 Actin-like protein 3.  
Cytoskeletal protein. 

Arylsulfatase B Lysosomal. 

Ash - ATP synth. β Mitochondrial protein. 

CABP1 Calcium-binding protein 1.  
Probable PDI P5 precursor. 

Calnexin Retains incorrectly folded 
glycoproteins in the ER. 

Calreticulin ER chaperone.  Found T-cell 
lytic granules. 

CAP 1 Adenylyl cyclase-associated 
protein 1.  Located on cell 
membrane. 

CAPZ (α-actinin) F-actin capping protein β 
subunit isoform 2. 

Cathepsin A Lysosomal protective protein; 
carboxypeptidase C. 

Cathepsin B Lysosomal cysteine protease. Cathepsin D Lysosomal aspartic protease. 
Cathepsin L Lysosomal cysteine protease. Cathepsin S Lysosomal cysteine protease. 
Cathepsin Z Lysosomal cysteine protease. Coronin Shared homology with 

TACO. 
CyCAP Cyclophilin C-associated 

protein.   Lysosomal. 
Cytochrome 
P450 

ER-membrane bound protein 

EEA1 Rab5 effector.  Early 
endosome/phagosome. 

Elongation factor 
1-a 1 

EF-TU. 

Endoplasmin ER protein. α-enolase 2-phospho-D-glycerate hydro-
lyase.  Cytoplasmic. 

Epididymal secretory 
protein 

Unknown function. ERP29 Found in the lumen of the ER. 
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Protein Remark Protein Remark 

Ferritin heavy chain Stores iron in a soluble, non-
toxic, readily available form. 

Ferritin light 
chain 1 

Stores iron in a soluble, non-
toxic, readily available form. 

Flotillin 
 

Present in lipid rafts. Galectin-3 MAC-2, laminin-binding 
protein.  Galactose-specific 
lectin that binds IgE. Highest 
levels in activated 
macrophages. Involved in 
apoptosis. 

GAPDH Glycolysis. GILT IF-γ inducible lysosomal thiol 
reductase.  May be involved 
in MHC class II-restricted 
antigen processing. 

Glucosylceramidase β-glucocerebrosidase. 
Lysosomal.  Membrane bound. 

β-glucuronidase Lysosomal. 

GRB2 Associates with tyrosine-
phosphorylated proteins.  Also 
interacts with Ras in the 
signalling pathway leading to 
DNA synthesis. 

GRP 78 BIP.  An ER chaperone. 

β-hexosaminidase α N-acetyl-β-glucosaminidase, β-
N-acetylhexosaminidase.  
Lysosomal. 

β-
hexosaminidase 

β 

N-acetyl-β-glucosaminidase, 
β-N-acetylhexosaminidase.  
Lysosomal. 

HSC70T Heat-shock related protein. 
Usually an ER or mitochondrial 
protein.  

HSC71 Heat shock cognate protein. 

HSP-60 Mitochondrial matrix protein 
P1.  Chaperonin.  Interacts with 
P21RAS.  Usually an ER or 
mitochondrial protein. 

HSP-70 Cytoplasmic chaperone. 

HSP-70 precursor Cytoplasmic. HSP-70 protein2 - 

HSP-73 Heat shock cognate 71 kDa 
protein 

HSP-90b (HSP-
84) 

Molecular chaperone.  Has 
ATPase activity.  
Cytoplasmic. Interacts with 
the cytoskeleton as well. 

Lactadherin Milk fat globule-EGF factor 8 
(MFG-E8). Antiviral activity. 

Lamin B1 Component of the nuclear 
lamina. 

LAMP-1 Lysosome-associated 
membrane glycoprotein 1. Type 
I membrane protein. 

“LAMP-2, type 
B” 

Lysosome-associated 
membrane glycoprotein 2. 

Legumain Lysosomal cysteine 
endopeptidase. 

LIMP II Lysosome membrane protein  
II.  May act as a lysosomal 
receptor.  Type II membrane 
protein.  Belongs to the CD 
36 family. 

Lysosomal acid 
lipase/cholesteryl 
ester hydrolase 

Crucial for the intracellular 
hydrolysis of cholesterol esters 
and triglycerides. Lysosomal. 

Lysosomal 
membrane 
glycoprotein-
type B 

Very similar to LAMP2. 

Lysozyme C, type M 
(LYCAM) 

1, 4-β-N-acetylmuraminidase 
C.  Bacteriolytic.  Enhances the 
activity of immunoagents. 

Macrophage 
capping protein 

Actin capping protein 
GCAP39; myc basic motif 
homolog-1. 

MHC class Ib mature 

α chain 

Expected to be secreted in 
soluble form due to absence of 
exon 5, which encodes the 
transmembrane domain. 

MPS1 Macrophage-specific protein. 
Upregulated during monocyte 
to macrophage differentiation. 

Mysosin heavy chain-
A 

Non muscle form. Napsin Membrane-anchored aspartyl 
protease. 
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Protein Remark Protein Remark 

NDK B Nucleotide diphosphatase 
kinase B. 

NSF Vesicular-fusion protein. N-
ethylmaleimide-sensitive 
factor. 

ORP150 Oxygen regulated protein. Palmitoyl-protein 
thioesterase 

Removes thioester-like fatty 
acyl groups from modified 
cysteine residues in proteins 
or peptides during lysosomal 
degradation. 

PDI (ER-59) Protein disulfide isomerase. PDI-(ER-60) Involved in MHC class I 
assembly. 

PGAM-B Phosphoglycerate mutase, brain 
form. 

Prohibitin Present in lipid rafts. 

Rab2 Vesicular traffic.  Associated 
with an intermediate 
compartment between the ER 
and Golgi apparatus. 

Rab3c Protein transport and 
vesicular traffic. 

Rab5c Regulates early 
endocytic/phagocytic 
trafficking. 

Rab7 Regulates late endocytic 
/phagocytic trafficking. 

Rab10 Vesicular traffic and 
neurotransmitter release. 

Rab11b Involved in membrane 
recycling. 

Rab14 Vesicular traffic and 
neurotransmitter release. 

RAP1B Involved in initiation of 
oxidative burst in neutrophils. 

RHO GDI α RHO GDP-dissociation 
inhibitor 1. 

RSP4 40S ribosomal protein SA.  
Cytoplasmic. 

SNAP-α Soluble NSF attachment 
protein. 

SNAP-γ Required to prepare 
intracellular membranes for 
fusion. 

Stomatin Found in lipid rafts, exposed on 
the cytoplasmic surface of the 
membrane. 

Syntenin Localised in early endocytic 
compartments. 

TCP-1α T-complex protein 1. Molecular 
chaperone. Known to play a 
role, in vitro, in the folding of 
actin and tubulin. Cytoplasmic. 

TCBP-49 Taipoxin-associated calcium 
binding protein 49. 

Thioreductase 
peroxidase 2 

Cytoplasmic. TCP-1β T-complex protein 1. 
Molecular chaperone. Known 
to play a role, in vitro, in the 
folding of actin and tubulin. 
Cytoplasmic. 

TMP21 Transmembrane protein. 
Vesicular protein trafficking. 
Type I membrane protein. 
Present in Golgi cisternae. 

Ti-225 (ubiquitin 
C) 

Similar to human ubiquitin. 

Trimeric G α2 Guanine nucleotide-binding 
protein.  G(I)/G(S)/G(T).  
Adenylate cyclase-inhibiting 
Ga protein.  Regulatory G-
proteins of signalling cascades.  

TRAIL TNF-related apoptosis 
inducing ligand. 
 
 

Tropomyosin 5 Cystoskeletal type. Trimeric Gβ1 Guanine nucleotide-binding 
protein.  G(I)/G(S)/G(T).  
Adenylate cyclase-inhibiting 
Ga protein.  Regulatory G-
proteins of signalling 
cascades. 

UDPGT UDP-glucuronosyltransferase.  
ER protein 

Tubulin α-6 Microtubule protein. 
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Protein Remark Protein Remark 

v-ATPase α (catalytic 
subunit) 

Involved in phagosome 
acidification. 

VAP33 Vesicle-associated membrane 
protein, associated protein A.   
Associated with ER and 
microtubules. 

v-ATPase ∈ Involved in phagosome 
acidification. 

v-ATPase β Involved in phagosome 
acidification. 

Vimentin Class III intermediate filaments. VDAC1 Voltage-dependent anion-
selective channel protein 1.  
Mitochondrial.  Also found on 
the plasma membrane and 
endosomes. 

Abbreviations: see List of Abbreviations and Symbols, pp ix.  (Modified from Garin et al., 2001). 

 

1.4.1 Cathepsins 

Based on their catalytic mechanism, proteases are classified into four families.  These 

include the cysteine-, serine-, aspartic- and metalloproteases (Portnoy et al., 1986; Chapman 

et al., 1997; Bühling et al., 2004).  Proteases may also be classified as either exopeptidases, 

acting on the terminal ends of a polypeptide chain, or endopeptidases, cleaving internal 

peptide bonds.  The term “cathepsin” was first introduced by Willstätter and Bamann (1929) 

and means “lysosomal proteolytic enzyme” irrespective of the protease class.  This term, 

therefore, includes the cysteine proteases, cathepsins B, S, L, H, C, K, O, F, V, W and Z, the 

aspartic proteases, cathepsins D and E, and the serine proteases, cathepsins A and G 

(Chapman et al., 1997; Turk et al., 2001; Bühling et al., 2004).   

 

Cathepsins belonging to the papain superfamily of cysteine proteases share similar amino 

acid sequences and folding.  They are composed of heavy and light chains connected by 

disulfide bonds and have a two-domain structure with a V-shaped active site cleft along the 

domain interface (Turk et al., 2001).  The left domain is composed of three α-helices and the 

right, is based on a β-barrel motif with the catalytic Cys25 positioned at the N-terminus of 

the characteristic α-helix (McGrath, 1999; Turk et al., 2001).  Cys25 is able to form an ion 

pair with His159 which is located in the β-barrel domain on the opposite side of the active 

site (Chapman et al., 1997; Turk et al., 2001).  The cathepsins can be classified as either 

endopeptidases or exopeptidases and are expressed in many different tissues types 

throughout the body (Table 1.5). 

 

Cathepsins B, H, L, N, S, T and K have been identified in various compartments of the 

endosome-lysosome system.  Although this pathway will be discussed in detail in Chapter 4, 

it should be noted that the compartments become increasingly acidic along the pathway.  



 15

Table 1.6 indicates the fairly wide pH optimum, of most cathepsins.  This suggests that the 

cathepsins may occur in different vesicular compartments along the endocytic pathway, 

where the pH for maximal activity exists or may be regulated by pH fluctuation.  In order for 

cathepsins to play a role in the three killing phases in J774 macrophages (Figure 1.1) (Anes 

et al., 2006), and the accompanying changing pH of the maturing phagosome, suggest that 

cathepsins B, H, S and L may be located in different vesicle populations that may fuse with 

the phagosome during the first killing phase (mild pH) and subsequently recycle out of the 

phagosome, or, as they are active at lower pH, fuse with the phagosome prior to the second 

and third killing phases (low pH) (Figure 1.1). 

 

Table 1.5 Properties and distribution of cathepsins. 

Cathepsin Endopeptidase Exopeptidase Tissue 

expression 

  Carboxypeptidase Aminopeptidase  
B + +  Widespread 

L +   Widespread 

S +   APCs 

H +  + Widespread 

K +   Osteoclasts, 
Bronchial epithelium 

F +   Macrophages 
Widespread? 

V +   Thymic epithelium 

W Unknown Unknown Unknown CD8+ T cells 
Natural killer cells 

C   + Leukocytes 
Macrophages 

O Unknown Unknown Unknown Widespread 

Z  +  Widespread 

D +   Widespread 

E +   Restricted 

G +   Neutrophils 
Monocytes 

Abbreviation: APCs, antigen presenting cells.  (Modified from Riese and Chapman, 2000; Wolters and 
Chapman, 2000; Turk et al., 2001). 

 

Aspartic proteases are different from cysteine or serine proteases in that an activated water 

molecule, as opposed to an amino acid side chain is the nucleophile that attacks the substrate 

peptide bond.  Cathepsins D and E are aspartic endopeptidases (Table 1.5), and are bi-lobed 

molecules with the active site situated between the two lobes (James, 2004).  The aspartate 

residues making up the catalytic dyad bind to, and activate, the catalytic water molecule.  

Catalysis requires a third residue in addition to the two aspartate residues.  One of the lobes 

has an extra β hairpin loop known as the ‘flap’ that caps the active site.  This loop carries 

Tyr137 and Thr139 which are important residues for specificity.  The secreted peptidase 
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cathepsin D, has four disulfide bonds, whereas, the proform of cathepsin E is a disulfide 

linked dimer (James, 2004). Table 1.6 reflects the operating pH and pI of most of the 

cathepsins and cathepsins D and E appear to have a more limited, acidic operating pH range 

in comparison to that of the cathepsins belonging to the cysteine protease family.  This 

suggests that the active forms of these two proteases are likely to be located in the most 

acidic vesicular compartments, which probably fuse with the phagosome during the second 

killing phase mentioned in Section 1.3 (Figure 1.1). 

 

Table 1.6 Endoproteases found within compartments of the endocytic pathway. 

Name Catalytic group Operating pH* pI 

Cathepsin B Cys 5-6.5 5.4 
Cathepsin H Cys 5.0-6.5 7.1 
Cathepsin L Cys 4.5-6.0 5.8-6.1 
Cathepsin N Cys 3.5 6.2 
Cathepsin S Cys 5.0-7.5 6.3-6.9 
Cathepsin T Cys 6.9 ? 
Cathepsin K Cys 6.0-6.5 ? 
Cathepsin D Asp 2.8-5.0 5.5-6.5 
Cathepsin E Asp 3-3.5 4.1-4.44 
Cathepsin G Ser 7.5 10 

* ‘Operating pH’ is the pH at which the enzyme is stable, this need not be the optimal pH. (Modified from 
Pillay et al., 2002). 

 

The serine proteases consist of a two-domain structure, with one open-ended, β-barrel in 

each domain, and the active site situated between the domains.  Cathepsin G, the main 

protease in this class, has a catalytic triad consisting of His, Asp and Ser and is unusual as it 

lacks the highly conserved 191-220 disulfide region present in other serine proteases (Table 

1.5) (Salvesen, 2004).  Despite cathepsin G playing a significant role in neutrophil microbial 

killing, it only appears to be present in small quantities in monocytes and is virtually absent 

from macrophages (Kargi et al., 1990). 

 

Cathepsins are synthesised as inactive, preproenzymes.  The prepeptide is removed during 

passage to the ER resulting in the formation of the proform of the enzyme.  The propeptide 

assists in the proper folding, stability and correct targeting of the enzyme and blocks the 

active site cleft, thus keeping the protein inactive until activity is required (Chapman et al., 

1997).  Crystallography has shown that the propieces of cathepsins B, L and K occupy the 

active site cleft and are positioned in the opposite orientation to that of the natural substrates 

and are, therefore, not digested (Riese and Chapman, 2000).  Activation of the enzyme may 

occur by proteolytic cleavage of the N-terminal propeptide by either intermolecular 
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autocatalysis or by other proteases (Chapman et al., 1997; Turk et al., 1997; Turk et al., 

2001).  The activation process is dependent on low pH and the concentration of 

glycosaminoglycans present, suggesting that active cathepsins are likely to occur in acidic 

vesicles (Turk et al., 2001; Bühling et al., 2004).  Normally, the activity of proteases with 

limited proteolytic ability is controlled by simply balancing the amount of active enzyme 

with an equivalent amount of active inhibitor.  The regulation of lysosomal protease activity 

is, however, a more complicated process and is controlled in a number of different ways, 

which are summarised in Figure 1.2. 

 

Figure 1.2 Factors responsible for the regulation of cathepsin activity. 

Certain cathepsins have widespread expression throughout the body, whereas, the expression of others is 
limited to particular cell types.  Cytokines and microbial agents can stimulate macrophages, resulting in 
enhanced cathepsin expression.  Cathepins are synthesised as inactive precursors, which undergo proteolytic 
activation to produce the mature, active enzyme which can be inactivated or degraded by other cathepsins when 
neccessary.  Cathepsins function optimally at acidic pH and are generally unstable and weakly active at neutral 
pH.  The active site cysteine residue is easily oxidised; therefore, the enzymes are most active in reducing 
compartments.  They possess glycosylation sites and residues allowing for binding to MPRs and the subsequent 
transport to endosomes and lysosomes.  A number of endogenous cathepsin inhibitors are present in cells to 
control both intra-and extracellularly expressed cathepsins (Chapman et al., 1997; Turk et al. 2001; Bühling et 

al., 2004). 

 

Cathepsins, were originally considered to be ubiquitously expressed, “housekeeping” 

proteins responsible for the degradation of unnecessary, abnormal or endocytosed proteins. 

This view has changed, however, since the discovery of distinct expression patterns for 

cathepsins and the use of gene knockouts, showing that cathepsins have specific, individual 

functions which are vital for the normal functioning of many biological processes (Wolters 
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and Chapman, 2000; Turk et al., 2001; Bühling et al., 2004).  Cathepsins are involved in 

antigen processing (Shi et al., 1999), normal bone and ECM remodelling (Chapman et al., 

1997; Turk et al., 2000; Wolters and Chapman, 2000) and apoptosis (Leist and Jäättelä, 

2001; Salvesen, 2001; Roberg et al., 2002), for example.  Cathepsins are also associated with 

various pathological conditions such as rheumatoid arthritis (Schurigt et al., 2005), 

osteoarthritis, osteoporosis, neurological disorders (Goto et al., 1987), chronic obstructive 

pulmonary lung disease including asthma, emphysema, idiopathic pulmonary fibrosis 

(Takahashi et al., 1993; Chapman and Shi, 2000; Wolters and Chapman, 2000) and cancer 

(Turk et al., 2000) as well as with inherited genetic diseases such as pycnodysostosis, a 

disease characterised by osteosclerosis, short stature, acro-osteolyis of the distal phalanges, 

bone fragility, clavicular dysplasia and skull deformities with delayed suture closure (Gelb et 

al., 1996) and Papillon-Lefèvre syndrome, a disorder characterised by palmoplantar 

hyperkeratosis and severe early onset periodontitis, resulting in the loss of the primary and 

secondary dentitions (Hart et al., 1999; Toomes et al., 1999).  

 

1.4.1.1 Macrophage cathepsins 

As mentioned cathepsins A, B, D, H, L, S and Z have been identified in J774 macrophage 

phagosomes (Garin et al., 2001) and isolated vesicles (Claus et al., 1998).  Diment and Stahl 

(1985) first identified a cathepsin D-like protease in rabbit alveolar macrophages and later 

identified this as a (possibly early endosome-) membrane-associated form of cathepsin D, 

processed to an active form while still attached to the endosomal membrane (Diment et al. 

1988).  Both cathepsins B and D have been associated with inflammation and alveolar 

macrophages of smokers have larger vesicles containing more cathepsin D compared to 

those of non-smokers (Chang et al., 1989).  As cathepsin D is capable of degrading a number 

of proteins, it is possibly responsible for the structural damage of the lungs associated with 

cigarette smoking. Increased levels of active cathepsin D and B have also been identified in 

peritoneal macrophages stimulated in vivo with mineral oil and thioglycollate (Lesser et al., 

1985) and with inflammation of the peritoneal cavity, inflammation also correlating with an 

increase in the size and number of cytoplasmic vesicles containing cathepsin D and B. In 

vitro studies indicate that macrophages are capable of secreting cathepsin B between the 

macrophage and ECM, suggesting a role for cathepsin B in the degradation of the ECM 

(Mørland and Pedersen, 1979) and cathepsins B and D also play degradative roles within the 

phagosome (Mørland and Pedersen, 1979). 
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In vitro labelling of macrophages with [35S] methionine and immunoprecipitation with anti-

cathepsin L antibodies have indicated that macrophages also synthesise cathepsin L.  This is 

synthesised as a 43 kDa precursor and processed into a 25 kDa mature form through a 34 

kDa intermediate (Reilly et al., 1989).  Claus et al. (1998) suggested that both cathepsins B 

and L may be located in a specialised secretory lysosome or vesicle, as both were secreted 

upon addition of either chloroquine or bafilomycin A1.  Whereas, cathepsin H, α-

galactosidase and β-hexosaminidase were not.  This is possibly an important fact which 

should be borne in mind when interpreting vesicle colocalisations. 

 

Cathepsin L was initially considered to be the only elastinolytic cysteine protease present in 

human alveolar macrophages (Mason et al., 1986; Reilly et al., 1989; Shi et al., 1992).  

Macrophages of smokers, however, were shown to have greater intracellular, elastinolytic 

activity than non-smokers, but both had equivalent cathepsin L activities.  This suggested the 

contribution of at least one additional protease (Reilly et al., 1991).  One such protease was 

subsequently identified as cathepsin S (Shi et al., 1992; Reddy et al., 1995).  Both cathepsins 

S and L are now known to be differentially expressed in antigen presenting cells (APCs), 

however, and appear to be mainly involved in degradation of the invariant chain (Ii) and 

regulation MHC class II presentation (Shi et al., 1999; Hsieh et al., 2002; Beers et al., 2003).  

Cathepsin S has also been found to be mainly associated with the late endosome where such 

processing may take place (Claus et al., 1998). 

 

Cathepsin K, on the other hand, discovered in rabbit osteoclasts (Chapman et al., 1997), 

human monocyte-derived macrophages (MDMs) (Punturieri et al., 2000) and alveolar 

macrophages (Shi et al., 1995) has subsequently been shown to have the greatest 

elastinolytic potential of all mammalian elastases (Chapman et al., 1997; Punturieri et al., 

2000). It appears to be up-regulated in inflamed areas, with cigarette smokers having twice 

the amount of mRNA and more protein than non-smokers (Chapman et al., 1997).  By using 

MDMs, cultured under conditions in which the differentiated cells show a tissue-destructive 

phenotype similar to that seen in chronic inflammatory sites in vivo, Punturieri et al. (2000) 

showed that MDMs secrete both processed and inactive cathepsin K along with cathpsins L 

and S.  Up-regulated expression of vacuolar-type H+-ATPase components for pumping 

protons out of the cell, simultaneously allows the development of an acidic pericellular 
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milieu and provides optimal conditions for extracellular activity of cysteine proteases 

facilitating tissue destruction. 

 

In human neutrophils, cathepsin G is possibly the most important cathepsin and is located in 

peroxidase-positive azurophil granules (Campbell et al., 1989; Hanson et al., 1990; Kargi et 

al., 1990).  Certain monocyte subsets possess cathepsin G in peroxidase-positive vesicles as 

well.   The amount is approximately 6% of that found in neutrophils and the source of 

cathepsin G in these cells has been questioned, however, it is expressed at fairly high levels 

in promonocytic cell lines such as the U-937 cell line (Campbell et al., 1989; Kargi et al., 

1990).   In developing promyelocytes, however, cathepsin G mRNA has not been detected 

after the myelocyte stage of development (Kargi et al., 1990).  The lack of mRNA in 

peripheral blood monocytes has suggested that any cathepsin G present after this stage is 

synthesised and stored in vesicles, prior to the release of the mature cells from the bone 

marrow (Hanson et al., 1990).  Alveolar macrophages also possess a limited amount, if any 

cathepsin G, suggesting that as monocytes differentiate into macrophages they lose some of 

their serine proteinase activity (Campbell et al., 1989; Campbell et al., 1991) and, therefore, 

rely on other proteases such as cathepsins and MMPs to maintain their functionality. 

 

Cathepsin Z has a cathepsin B-like active site and although the actual function of cathepsin Z 

in macrophages is unknown, it is suspected to function in antigen processing (Riese and 

Chapman, 2000; Shi et al., 2000). 

 

Based on the literature, it appears that several cathepsins could be used as potential markers 

for vesicle populations within J774 cells.  Cathepsin H has been shown to be enriched in the 

early endosomes of J774 macrophages, while cathepsin S occurs predominantly in late 

endosomes (Claus et al., 1998; Jahraus et al., 1998) and could, therefore, be viewed as 

potential markers for these compartments.  It will also be borne in mind that cathepsins B an 

L may be colocalised or located in special ‘secretory lysosomes’, considering results 

obtained with chloroquine and bafilomycin (Claus et al., 1998).  Whereas the cathepsins are 

usually lysosomal proteases, the MMPs and their inhibitors the TIMPs are not.  Some 

background to these proteases and their inhibitors will be given before the MMPs and TIMPs 

found in the macrophage are described. 
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1.4.2. Matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases 

MMPs, also known as matrixins, are a group of zinc metalloendopeptidases (Nagase and 

Woessner, 1999; Parks and Shapiro, 2001). There are at least 24 different vertebrate MMPs, 

with at least 23 being found in humans (Visse and Nagase, 2003; Folgueras et al., 2004).  

Previously, MMPs were classified according to their substrate specificities.  With the 

knowledge of their structural design, a new structurally based classification system has been 

developed, however (Table 1.7) (Folgueras et al., 2004). 

 

Table 1.7 Matrix metalloproteinases. 

MMP designation* Alternative name 

MMP-1 Collagenase-1 
MMP-2 Gelatinase-A 
MMP-3 Stromelysin-1 
MMP-7 Matrilysin 
MMP-8 Collagenase-2, Neutrophil elastase 
MMP-9 Gelatinase-B, 92 kDa gelatinase, 92 kDa type IV collagenase 
MMP-10 Stromelysin-2, Transin-2 
MMP-11 Stromelysin-3 
MMP-12 Macrophage metalloelastase 
MMP-13 Collagenase-3 
MMP-14 MT1-MMP (membrane-type MMP) 
MMP-15 MT2-MMP 
MMP-16 MT3-MMP 
MMP-17 MT4-MMP 
MMP-18 Collagenase-4 
MMP-19 RASI-1 
MMP-20 Enamelysin 
MMP-23 CA-MMP 
MMP-24 MT5-MMP 
MMP-25 Leukolysin, MT6-MMP 
MMP-26 Endometase, Matrilysin-2 
MMP-28 Epilysin 

* Athough in humans there are 23 MMPs, 29 numbers have been used.  MMP-4, -5, -6 and -29 are redundant in 
humans and are not used.  After the discovery of MMP-7 (matrilysin), MMP-4, -5 and -6 were identified as 
being either MMP-2 or MMP-3.  MMP-18 corresponds to the collagenase isolated from Xenopus laevis for 
which a mammalian homolog is not known.  The human protein that was named MMP-18 is now called MMP-
19.  Two almost identical human genes located in a segment of chromosome 1 that is duplicated were called 
MMP-21 and MMP-22 and are now known as MMP-23A and MMP-23B.  Abbreviations: MT, membrane type; 
RASI, rheumatoid arthritis synovial inflammation (modified from Parks and Shapiro, 2001; Somerville et al., 
2003; Visse and Nagase, 2003). 

 

Most MMPs have two domains, namely a protease domain and an ancillary domain (Figure 

1.3).  These are joined together by a proline-rich, flexible hinge peptide.  The protease 

domain consists of the signal peptide, the pro-domain and the catalytic domain.  The signal 

peptide directs the secretion of the MMP from the cell.  The pro-domain containing the 

cysteine switch motif PRCGXPD, is responsible for keeping the enzyme in its zymogen or 

proMMP form, and the catalytic domain contains a conserved zinc-binding region (Parks and 
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Shapiro, 2001; Somerville et al., 2003; Visse and Nagase, 2003).  The ancillary domain 

consists of a hemopexin-vitronectin-like domain.  When present (Figure 1.3), this domain 

influences inhibitor binding and the binding of certain substrates, membrane activation and 

proteolytic activity (Sternlicht and Werb, 2001).  Both MMP-2 and MMP-9 possess three 

tandem fibronectin type II repeats within the amino terminal of the catalytic domain allowing 

for gelatin binding (Figure 1.3).  In addition, MMP-9 has a type-V collagen-like domain in 

its hinge region, the function of which is unknown (Somerville et al., 2003) (Figure 1.3). 

 

Figure 1.3 Domain composition and important structural features of the various subtypes of MMPs. 

 

 

 

 

 

(Somerville et al., 2003). 

 

The membrane-type matrix metalloproteinases (MT-MMPs) (MMP-14, -15, -16, -17, -24 

and -25) (Table 1.7) as well as MMP-11, -23 and -28 all possess furin cleavage sites (Figure 

1.3), which are cleaved by furin-like serine proteases resulting in the intracellular activation 

of the proforms of the enzymes (Somerville et al., 2003; Folgueras et al., 2004). MT-MMPs 
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are localised at the cell surface either through a carboxy-terminal transmembrane domain or 

a glycosylphosphatidylinositol (GPI) anchoring domain (Folgueras et al., 2004) (Figure 1.3). 

 

The regulation of MMPs is complex and occurs at multiple levels including transcription, 

zymogen activation and inhibition of enzyme activity (Kerrigan et al., 2000; Sternlicht and 

Werb, 2001; Somerville et al., 2003).  Synthesised as inactive zymogen forms, the activation 

of MMPs is brought about by thiol-modifying agents, mercurial compounds, reactive oxygen 

radicals, denaturing reagents as well as low pH and high temperatures in vitro.  Activation 

requires the disruption of the interaction between the sulfydryl group in the pro-domain and 

the zinc ion of the catalytic site (Nagase and Woessner, 1999) and in vivo activation requires 

the proteolytic removal of the pro-domain.  Generally the proteases involved form part of a 

proteolytic cascade which occurs extracellularly (Folgueras et al., 2004). 

 

After activation, MMPs may be inactivated via several mechanisms.  Four classes of MMP 

inhibitor with broad inhibitory activity exist extracellularly and in body fluids.  In the tissues 

the major inhibitors are the TIMPs, these bind the N-terminal domain and block the active 

site, whereas, a general protease inhibitor, α2-macroglobulin blocks MMP activity in plasma 

and in tissue fluids by a ‘bait and trap’ mechanism (Price et al., 2000).  A number of recently 

identified proteins have sequences similar to that of the N-terminal inhibitory domain of 

TIMPs and inhibit MMPs. These include the C-terminal fragment of procollagen C-terminal 

proteinase enhancer (CT-PCPE) an inhibitor of MMP-2 (Mott et al., 2000), the non-

collagenous (NC1) domain of type IV collagen appears to inhibit MMP-2 and -3 (Netzer et 

al., 1998), tissue factor pathway inhibitor-2 (TFPI-2), a serine proteinase inhibitor, can 

inhibit MMP-1, -2, -9 and -13 (Herman et al., 2001), and the membrane-anchored protein 

RECK (reversion-inducing cysteine-rich protein with kazal motifs) is capable of inhibiting 

MMP-2, -9 and -14 (Oh et al., 2001). 

 

In the past, it was thought that the ECM was a structure used simply for the attachment of 

cells and for mechanical support and the role of the MMPs was, therefore, to remodel the 

ECM for its homeostasis and to facilitate cell migration (Somerville et al., 2003).  Secretion 

of MMPs has also been associated with the invasive properties of tumour cells as ECM 

degradation facilitates penetration and infiltration of the cancer cells (Folgueras et al., 2004).  

Degradation of certain ECM components, however, alters cellular behaviour and phenotypes 

(Table 1.8) (Visse and Nagase, 2003).  The functions of MMPs have been shown to go far 
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beyond ECM degradation.  MMPs have a wide variety of target substrates including growth-

factor receptors, cell adhesion molecules, chemokines, cytokines, apoptotic ligands and 

angiogenic factors (Somerville et al., 2003; Folgueras et al., 2004) (Table 1.8). 

 

Table 1.8 Biological effects generated by MMPs. 

Responsible MMPs Substrate cleaved Biological effect 

MMP-1 Type 1 collagen Keratinocyte migration and re-
epithelialisation 

MMP-13 Type 1 collagen Osteoclast activation 
MMP-2 Chondroitin sulfate proteolglycan Neurite outgrowth 
MMP-7 Fibronectin  Adipocyte differentiation 
MMP-1, -2, -3 Fibronectin Cell migration  
MT1-MMP CD44 Cell migration 
MMP-3 Basement membrane Mammary epithelial cell apoptosis 
MMP-3 Basement membrane Mammary epithelial alveolar 

formation 
MMP-3 E-cadherin Epithelial-mesenchymal 

conversion (mammary epithelial 
cells) 

MMP-2 Not identified Mesenchymal cell differentiation 
with inflammatory phenotype 

MMP-1 Not identified Platelet aggregation 
MMP-3, -7, -9, -12 Generation of angiostatin-like 

fragment 
Plasminogen 

MMPs Type XVIII Generation of endostatin-like 
fragment 

MMP-2, -3, -7, -9, -13 (not MMP-
1) 

BM-40 (SPARC/osteonectin) Enhanced collagen affinity 

MT1-MMP Type 1 collagen Kidney tubulogenesis 
MMP-3, -13 Perlecan Release of bFGF 
MMP-1, -2, -3 IGFBP-3 Increased bioavailability of IGF1 

and cell proliferation 
MMPs IGFBP-5 Increased bioavailability of IGF1 

and cell proliferation 
MMP-11 IGFBP-1 Increased bioavailability of IGF1 

and cell proliferation 
MMPs CTGF Activation of VEGF 
MMP-2, MT1-MMP Laminin 5γ2 chain Epithelial cell migration 
Collagenase Type 1 collagen Apoptosis (amnion epithelial cells) 
MMP-1, -3, -9 Processing IL-1β from the 

precursor 
Pro-inflammatory 

MMP-9 ICAM-1 Tumour cell resistance 
MMP-1, -2, -9 IL-1β degradation Anti-inflammatory 
MMP-1, -2, -3, -13, -14 Monocyte chemoattractant protein-

3 
Anti-inflammatory 

MMP-2, -3, -7 Decorin Increased bioavailability of TGF-β 
MMP-3, -7 E-cadherin Disrupted cell aggregation and 

increased cell invasion 
MT1-MMP, MT2-MMP, MT3-
MMP 

Cell surface tissue 
transglutaminase 

Reduced cell adhesion and 
spreading 

MMP-7 Fas ligand Fas receptor-mediated apoptosis 
MMP-9 IL-2Rα Reduced IL-2 response 

Abbreviations: see list of abbreviations and symbols, pp iv. (Modified from Visse and Nagase, 2003). 
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Genetically altered mouse models as well as human diseases have lead to the identification 

of surprising biological functions of MMPs (Table 1.9), suggesting that MMPs may possess 

substrates that still need to be identified.  In addition to facilitating invasion and metastasis of 

cancer cells, MMPs are involved in other pathological conditions such as arthritis, oral 

pathology and periodontal disease, cardiovascular disease and pulmonary emphysema 

(Shapiro, 1998; Woessner and Nagase, 2002).  As they are inhibited in a 1:1 ratio by their 

inhibitors the TIMPs, the ratio of these inhibitors to their target MMPs is highly important 

(Brew et al., 2000; Baker et al., 2002).   

 

Table 1.9 Phenotypes of MMP knockout mice. 

Gene Phenotype 

MMP-2                   Reduction in angiogenesis and tumour growth; suppression of experimentally induced 
pancreatic carcinogenesis; delayed mammary gland differentiation; mild growth retardation. 
 

MMP-3      Impaired wound contraction; accelerated arthritis; resistance to contract dermatitis; accelerated 
mammary adipogenesis. 
 

MMP-7  Inability to repair mucosal epithelial wounds; reduced ability to kill pathogenic bacteria; 
reduced tumorigenesis; defective prostrate involution; impaired ex vivo herniated disc 
resorption. 
 

MMP-9  Normal neutrophils extravasation; lack of alveolar bronchiolization in fibrosis; resistant to 
induced blister formation; persistent contact hypersensitivity response; protection against aortic 
aneurysm formation; reduced ventricular enlargement and rupture postmyocardial infarction; 
delayed tumour progression and reduced metastases.  
 

MMP-11  Fewer chemically induced tumours and reduced tumour cell implantation; accelerated and 
enhanced neointimal formation after vessel injury; suppression of experimentally induced 
mammary carcinogenesis. 
 

MMP-12 Reduced elastolytic capacity of macrophages; protection against smoking-induced emphysema; 
reduced ability of macrophages to migrate through matrix. 
 

MMP-14 Severe abnormalities in bone and connective tissue; reduced collagen turnover; impaired 
endochondral ossification; defective angiogenesis; premature death. 
 

MMP-20 Amelogenesis imperfecta. 
 

(Modified from Parks and Shapiro, 2001; Somerville et al., 2003; Folgueras et al., 2004). 

 

Four human TIMPs, named TIMP-1, -2, -3 and -4 have been identified.  These are expressed 

by a range of cell types and are present in most tissues and body fluids (Brew et al., 2000; 

Lambert et al., 2004).  Although they share many general characteristics they do exhibit 

distinct structural/biochemical features and have varied expression patterns (Table 1.10) 

(Baker et al., 2002). 
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Table 1.10 Molecular characteristics of human TIMPs. 

 TIMP-1 TIMP-2 TIMP-3 TIMP-4 

Molecular weight 

(kDa) 

20.6 21.5 21.6 22.3 

Glycosylated 

molecular weight 

(kDa) 

28.5 - 27 - 

N-glycosylation 

sites 

2 0 1 0 

Protein 

localisation 

Soluble Soluble/cell surface ECM Soluble/cell surface 

ProMMP 

association 

ProMMP-9 ProMMP-2 ProMMP-2 
ProMMP-9 

ProMMP-2 

MMPs poorly 

inhibited 

MMP-14 
MMP-15 
MMP-16 
MMP-24 
MMP-19 

None None None 

ADAM inhibition ADAM 10 
(Kuzbanian) 

None ADAM 12 
(Meltrin-α) 
ADAM 17 (TACE) 
ADAM 19 
(Meltrin-β) 
(ADAM 10)  
ADAMTS-4 
(Aggrecanase-1) 
ADAMTS-5 
(Aggrecanase-2) 

None 

Expression Inducible Constitutive Inducible Inducible 

Abbreviations: ADAM, a disintegrin and metalloprotease domain; TACE, tumour necrosis factor-α converting 
enzyme; ADAMTS, a disintegrin and metalloprotease domain with thrombospondin type-1 domains. (Modified 
from Woessner and Nagase, 2002; Baker et al., 2002; Lambert et al., 2004). 

 

TIMPs are composed of an N-terminal domain and a C-terminal domain with each domain 

being stabilised by three disulfide bonds (Brew et al., 2000; Baker et al., 2002). Natural 

inhibitors of MMPs, the TIMPs form noncovalent 1:1 stoichiometric enzyme-inhibitor 

complexes with MMPs.  Some TIMPs are capable of binding to the proforms of their target 

enzymes (e.g. TIMP-1 to proMMP-9, TIMP-2 to proMMP-2, TIMP-3 to proMMP-2 and 

proMMP-9, and TIMP-4 to pro-MMP-2) and thus regulate the activation process.  As 

proMMP-2 and proMMP-9 are particularly bound by TIMPs this possibly indicates the 

importance of MMP-2 and MMP-9.  Looking at the phenotypic changes in knockout mice 

(Table 1.9), it would seem that these are particularly important in growth, carcinogenesis and 

invasion. 

 

TIMP expression is tightly regulated to maintain a suitable balance during ECM degradation 

and if the balance is not maintained, uncontrolled ECM degradation occurs resulting in 

diseases such as cancer, arthritis, cardiovascular disease, neurological disorders, tissue 
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ulceration and fibrosis (Brew et al., 2000).  In addition to MMP inhibition, TIMPs appear to 

have a variety of other cellular activities (Table 1.11) including promotion of cell growth, 

anti-apoptotic activity, steroidogenic activity, anti-angiogenic activity and embryonic activity 

(Lambert et al., 2004). 

 

Table 1.11 Biological activities of TIMPs. 

 TIMP-1 TIMP-2 TIMP-3 TIMP-4 

Cell growth 

promotion 

Erythroid 
precursors 
Keratinocytes 
Fibroblasts 
Epithelial cells 
Tumour cells 

Erythroid 
precursors 
Fibroblasts 
Tumour cells 

Growth-retarded, 
non-transformed 
cells  

Mammary tumour 
cells 

Cell growth 

inhibition 

 Endothelial cells 
Smooth muscle 
cells 
Tumour cells 

Colon cancer cells G401 Wilm’s 
tumour cells 

Apoptosis Burkitt’s lymphoma 
cells 

Colorectal cancer 
cells 
Human T 
lymphocytes 

Smooth muscle 
cells 
Tumour cells 
Epithelial cells 

Cardiac fibroblasts 

Survival B cells 
Hepatic stellate 
cells 
Hematopoietic cells 
Human breast 
epithelial cells 

Melanoma 
Folliculo-stellate 

 Tumour cells 

Steroidogenesis 

promotion 

Leydig cells 
Ovarian granulosa 
cells 
Ovary 
Testicular 
development 

   

Angiogenesis 

inhibition 

Chick embryo yolk-
sac membranes 
Pancreatic cancer 
cells 

Chick embryo yolk-
sac membranes 
 

Human 
fibrosarcoma 
HT1080 cells 

 

Embryogenic 

promotion 

Mouse embryo 
implantation 

 Mouse embryo 
implantation 

 

(Modified from Baker et al., 2002; Lambert et al., 2004). 

 

1.4.2.1 Macrophage MMPs and TIMPs 

The exact range of MMPs synthesised by the macrophage appears to differ from species to 

species, as well as from one environment to another, and is greatly affected by the state of 

activation and differentiation of the macrophages concerned (Gibbs et al., 1999a).  This 

complicates any attempt to characterise macrophage vesicles.  Human alveolar macrophages 

are known to produce MMP-1, -2, -3, -9 and a unique metalloelastase known as MMP-12, 

found only in macrophages (Welgus et al., 1990; Campbell et al., 1991; Woessner, 1994; 

Goetzl et al., 1996).  In addition, human blood monocytes and macrophages produce MMP-



 28

7, whereas, human alveolar macrophages do not (Busiek et al., 1992; Filippov et al., 2000).  

MMP-12 has a variety of substrates (Shipley et al., 1996) and elimination of the expression 

of the MMP-12 gene results in macrophage inability to penetrate membranes both in vivo 

and in vitro, indicating the importance of this particular MMP in degrading the ECM and in 

tissue invasion (Shipley et al., 1996).  MMP-12 knockout mice, however, appeared to be 

protected from emphysema, whereas, exposure to cigarette smoke lead to the recruitment of 

inflammatory cells and enlarged alveolar space similar to the lesions that form in humans in 

the control mice (Hautamaki et al., 1997). 

 

Rat alveolar macrophages produce a similar, but not identical MMP range to the human 

counterpart.  They do not appear to produce MMP-1, however, and have very little, if any 

MMP-3 and MMP-7 (Gibbs et al., 1999b). 

 

The cellular differentiation of human mononuclear phagocytes affects the synthesis of 

neutral proteinases including MMPs and TIMPs both in vitro and in vivo (Campbell et al., 

1991). Monocytes contain traces of matrix degradative, neutral, neutrophil serine proteases 

including human leukocyte elastase and cathepsin G.  In neutrophils, these proteases are 

synthesised by precursor cells and are stored in large peroxidase-positive granules.  In 

contrast, macrophages contain very little if any of these proteases, and rely on their ability to 

synthesise and secrete substantial quantities of MMPs and TIMPs for regulated ECM 

degradation.  During mononuclear phagocyte differentiation, the cells appear to develop the 

ability to secrete TIMP-1 prior to proMMP-9 and fully differentiated macrophages are able 

to secrete both (Welgus et al., 1986; Campbell et al., 1987).  Exposure to LPS and phorbol 

esters appear to increase the production of MMP-3, MMP-9 and TIMP-1 (Welgus et al., 

1985; Welgus et al., 1990).  The effects of LPS will be discussed in greater detail in Chapter 

5. 

 

Type-IV collagenases, MMP-2 and -9, are known as gelatinases as they readily digest gelatin 

(Nagase, 1996).  Large amounts of MMP-9 are produced in macrophages (Goetzl et al., 

1996) but MMP-9 is also present in neutrophils.  MMP-2, however, is synthesised in smaller 

amounts by macrophages and is not found in neutrophils (Hibbs, 1992; Russell et al., 2002a).  

As previously mentioned, MMP-9 is one of the major elastolytic MMPs.  MMP-2, however, 

is more involved in the processing of cell receptors (Levi et al., 1996; Russell et al., 2002a). 

In neutrophils, MMP-9 is found in the specific granules.  A distinct MMP-9-positive 
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compartment in macrophages has not yet been identified as the vesicular compartments and 

the MMP protease complement of vesicles remains virtually unknown.  TIMP-1 is able to 

complex and inhibit both proMMP-9 and MMP-9 itself (Triebel et al., 1995; Goetzl et al., 

1996; Price et al., 2000), and complex formation shields the carboxyl-terminus of MMP-9 

from MMP-3 thus preventing MMP-3 from activating MMP-9 (Goetzl et al., 1996).  Price et 

al. (2000) demonstrated that, in neutrophils, TIMP-1 is found in distinct vesicles, largely 

separate from the neutrophil MMPs proMMP-8 and proMMP-9.  Differential release of 

TIMP-1 and proMMPs may play a role in controlling the extent of extracellular MMP 

activity.  Differential secretion is extremely important as it may provide a drug target for 

controlling many pathological conditions, especially inflammatory disease.  This is currently 

under investigation in the neutrophil. 

 

Vesicle localisation and regulation is also unknown in macrophages as vesicle 

characterisation has not been performed to date but is potentially important and more so as 

Osiewicz et al. (1999), showed that mice deficient for TIMP-1 appear to be more resistant to 

Pseudomonas aeruginosa infections, indirectly suggesting that active MMPs are required for 

immunity.  Differential regulation of TIMP-1 and MMPs may, therefore, contribute to 

immunity by regulation of processing or degradation of cytokines, MMP activity being very 

important in cytokine processing (Folgueras et al., 2004) (Table 1.8).  Even though this 

seemed to be a neutrophil-dependent phenomenon, macrophages may also require active 

MMPs for fighting bacterial infection and it would thus be useful to know whether the 

various TIMPs, MMPs and cathepsins are located in a particular vesicle types and whether 

fusion with the phagosome and release of these vesicles is separately and differentially 

regulated under specific stimulation.  An initial step to establishing which combinations of 

proteins are present in the macrophage vesicles and whether there are indeed different 

vesicle populations is required and will assist in future studies of the various macrophage 

processes, such as antigen presentation and the killing of organisms in the phagosome which 

seem highly complex (Figure 1.1) (Anes et al., 2006). 

 

1.5 Objectives of the current study 

At the commencement of this study, the vesicular distribution of cathepsins B, D, H, S and L 

as well as MMP-9, TIMP-1 and TIMP-2 in J774 macrophages was virtually unknown as few 

studies have focused on establishing their vesicle distribution.  The major aim of this study 

was to establish the distribution of the above cathepsins, MMPs and TIMPs in the hope of 
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identifying marker enzymes for different vesicle populations.  Antibodies to cathepsins B, D, 

H, S and L and to MMP-9, TIMP-1 and TIMP-2 raised against antigens from other species 

were available in our laboratory.  For studies on TIMP-1 and TIMP-2, however, it was 

decided to raise additional antibodies against recombinant human forms of the proteins, as 

TIMP-1 and -2 are highly conserved blood proteins and hence most antibodies react weakly 

at best.  All antibodies needed to be characterised for species cross-reactivity with the mouse 

antigens and to be optimised (Chapter 3).  These antibodies were subsequently used in 

immuno-EM and fluorescent microscopy studies of J774 cells, the cells most characterised to 

date (Claus et al., 1998; Jahraus et al., 1998).   

 

As cathepsins H and S had previously been identified by activity assays as possible markers 

for early and late endosomes, respectively (Claus et al., 1998; Jahraus et al., 1998), 

colocalisation studies were performed to determine whether cathepsins B, D and L occurred 

in such vesicular compartments (Chapter 4).  As macrophages are known to have highly 

active and fairly complex endosome-lysosome systems (Rabinowitz et al., 1992; Astarie-

Dequeker et al., 2002), additional markers were used to verify the presence of the cathepsins 

in classically defined endosome-lysosome systems i.e. low pH compartments, labelling for 

lysosomal-associated membrane proteins (LAMPs).  Colocalisations between the cathepsins 

and LysoTracker (acidic compartment) (Via et al., 1998) and LAMPs and proposed vesicle 

subpopulations were compared with those identified by Anes et al. (2006) (Chapter 4) and 

markers such as cathepsins S, H and D evaluated as markers for the early endosome (non-

acidic, LAMPs-neagtive), late endosome (acidic, LAMPs-positive) and lysosome (most 

acidic, LAMPs-positive), respectively.  Emerging evidence seems to indicate that the final 

killing of specific pathogens is brought about by the fusion of specific digestive enzymes 

(proteases) with the phagosome.  Knowledge of the complement of proteases in specific 

vesicles and regulation of their release is potentially important as such information may 

allow therapeutic strategies to be developed.  Knowledge of the distribution of proteases in 

specific vesicle populations may also reveal new marker enzymes for specific types. 

 

The distribution of MMP-9 and MMP inhibitors (TIMPs) in J774 macrophages was 

considered next (Chapter 5).  It was suspected that, as MMPs and their inhibitors are usually 

secreted and seem largely to function extracellularly (Campbell et al., 1991), they would be 

located in vesicles belonging to the secretory pathway (non-acidic, LAMPs-negative) as 

opposed to the endosome-lysosome vesicle system (acidic, LAMPs-positive). Thus, it was 
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hoped that localisation studies performed on MMP-9, TIMP-1 and TIMP-2 would lead 

eventually to the identification of vesicle populations distinct from the late endosome-

lysosome system and the development of a marker system for this pathway.  In this final 

study, however, the colocalisation between MMP-9 and the MMP inhibitors TIMP-1 and 

TIMP-2, LAMP-2 and LysoTracker in inactivated macrophages establish whether enzyme 

and inhibitor are located in different vesicle populations as is the case in neutrophils (Price et 

al., 2000) and exist in organelles other than the early and late endosomes or lysosomes 

indicated by LAMPs and LysoTracker (Chapter 5).  Studies on the localisation of MMPs and 

the TIMPs are therapeutically important as MMPs are involved in many inflammatory 

diseases and if protease and inhibitor are separately localised and their release is subject to 

different regulatory stimuli, such information may allow therapeutic targets to be identified 

for inflammatory diseases. 

 

As resting macrophages usually synthesise fairly low levels of MMP-9, TIMP-1 and -2 and 

activation seemed to influence colocalisation of marker enzymes and phenotype, it was 

decided that the cells should be stimulated with LPS to induce a “classically activated-like” 

phenotype and up-regulate MMP-9 and TIMP-1 expression (Welgus et al., 1985; Campbell 

et al., 1991; Welgus et al., 1991). This also allowed stimulated and unstimulated cells to be 

compared to assess whether activation alters the intracellular localisation of either MMP-9 or 

TIMP-1 (Chapter 5).   Finally, colocalisation studies with LysoTracker and LAMPs were 

performed to establish whether MMP-9, TIMP-1 and TIMP-2 are present in the endosome-

lysosome-like vesicles.  Results and implications are discussed in their broader context in 

Chapter 6.  For ease of reading, all common reagents and methods are reported in Chapter 2. 
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CHAPTER 2 

 

GENERAL MATERIALS AND METHODS 

 

The common biochemical techniques that were employed in this study are described here. 

Specialised techniques will be described in the relevant chapters. 

 

2.1 Reagents 

Dulbecco’s modified Eagle’s medium (DMEM), Hanks’ balanced salts (HBSS), glutamine, 

trypsin-ethylenediaminetetra-acetic acid (EDTA), sodium bicarbonate, bisacrylamide (N,N’-

methylene-bisacrylamide), Coomassie blue R-250, goat anti-rabbit IgG (whole molecule) 

alkaline phosphatase conjugate, rabbit anti-chicken IgG (whole molecule) alkaline 

phosphatase conjugate, donkey anti-sheep IgG (whole molecule) alkaline phosphatase 

conjugate, goat anti-mouse IgG (whole molecule) alkaline phosphatase conjugate, rabbit 

anti-chicken IgG (whole molecule) fluorescein isothiocyanate (FITC) conjugate, donkey 

anti-sheep IgG (whole molecule) FITC conjugate, goat anti-rabbit IgG (whole molecule) 

FITC conjugate, goat anti-rat IgG (whole molecule) FITC conjugate, goat anti-rabbit IgG 

(whole molecule) tetramethyl rhodamine isothiocyanate (TRITC) conjugate, piperazine-

N,N’-bis(2-ethanesulfonic acid) (PIPES),  N-2-hydroxy-piperazine-N’-2 ethane sulfonic acid 

(HEPES), ethylene glycol-bis(β-aminoethyl ether) N,N,N,N’,N’-tetra acetic acid (EGTA), 

polyoxyethylene (23) lauryl alcohol (Brij 35 solution), diaminobenzidine/3,3’,4,4’-

tetraaminobiphenyl (DAB), Freund’s complete and Freund’s incomplete adjuvants (FCA and 

FIA), citric acid, bovine serum albumin (BSA), saponin, gelatin (porcine skin) and fish skin 

gelatin (FSG) were from Sigma (St. Louis, Missouri).  Acrylamide, ammonium persulfate, 

sodium chloride, sodium hydroxide, potassium chloride, Na2HPO4, Na2HPO4.H2O, sodium 

azide, glycine, paraformaldehyde (PFA), glutaraldehyde (25% solution), polyoxyethylene (9-

10) p-t-octyl phenol (Triton X-100) and EDTA disodium salt, hydrochloric acid, 

CaCl2.2H2O, 2,2’-azino-di(3-ethyl)-benzthiozoline sulfonic acid (ABTS) and H2O2 35% 

(v/v) were from BDH (Poole, England).  Sodium dodecyl sulfate (SDS) was from 

Boehringer Mannheim (Mannheim, Germany) and 2-amino-2-(hydroxymethyl)-1,3-

propandiol (Tris) was from MP Biomedicals (Eschwege, Germany).  Methanol, glacial acetic 

acid, KH2PO4 and MgCl2.6H2O were from Saarchem (Wadeville, South Africa).  Glycerol 

was from AR–Associated Chem. Enterprises (Glenvista, South Africa).  Mercaptoethanol 

and amido black were from Merck Schuchardt OHG (Munich, Germany).  Serva blue G was 
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from Serva (Heidelberg, Germany).  Ponceau S was from Searle (High Wycombe, Bucks, 

United Kingdom), Elite milk powder was from Clover SA (Pty) Ltd (Roodepoort, South 

Africa).  Donkey anti-chicken IgY cyanine3 (CY3) conjugate and rabbit anti-chicken IgY 

peroxidase conjugate were from Jackson ImmunoResearch Laboratories, Inc. (West Grove, 

Pennsylvania).  Monoclonal antibodies against lysosomal-associated membrane proteins 

(LAMPs)-1 and 2 were from the Developmental Studies Hybridoma Bank (University of 

Iowa, Iowa City, Iowa, USA).  SlowFade™ antifade reagent and LysoTracker Red DND-99 

were from Molecular Probes (Eugene, USA).  5-bromo-4-chloro-3-indolyl phosphate (BCIP) 

and nitroblue tetrazolium (NBT) were from Roche (Indianapolis, Indiana). Tris, Tween 20, 

N,N,N’,N’,-tetramethyl ethylenediamine (TEMED), imidazole, zinc sulfate and polyethylene 

glycol (PEG) 6 kDa were from Merck (Darmstadt, Germany).  Dimethylformamide (DMF) 

was from Fluka (Seelze, Germany). Foetal calf serum (FCS) was from Highveld Biologicals 

(Johannesburg, South Africa).  Hybond-C-extra nitrocelluose membrane was from 

Amersham Biosciences (Buckinghamshire, England). Whatman No. 1 and No. 4 filter paper 

were from Whatman International Ltd (Maidstone, England). LR White resin was from 

London Resin (London, United Kingdom).  Ciprobay IV intravenous infusion was from 

Bayer and Nunc Easy Flasks and Multidishes (24 well) Nuclon™ and Immuno Maxisorp 

F96 multiwell plates were from Nunc Intermed (Roskilde, Denmark). 

 

2.2 Cell culture 

The J774 mouse macrophage cell line was originally derived from a tumour in a female 

BALB/c mouse and has been shown to possess characteristics typical of macrophages 

including adherence, receptors for immunoglobulin, antibody-dependent lysis of target cells 

as well as morphology (Ralph et al., 1975a; Ralph et al., 1975b; Ralph et al., 1977a; Ralph et 

al., 1977b).  As previous attempts have been made to characterise the vesicles of the 

endosome-lysosome system these cells (Claus et al., 1998; Jahraus et al., 1998; Kuehnel et 

al., 2001), this cell line, was chosen for further characterisation to develope possible marker 

systems for the vesicles of the J774 macrophage. 

 

2.2.1 Reagents 

DMEM (with L-glutamine and 1000 mg/l glucose without sodium bicarbonate) and HBSS 

(without calcium chloride, magnesium sulfate, phenol red and sodium bicarbonate) were 

prepared according to the manufacturer’s instructions. 
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1 x Trypsin-EDTA solution.  10 x Trypsin-EDTA (1 ml) was diluted in HBSS (9 ml) and 

warmed to 37oC just before use. 

 

2.2.2 Procedure 

J774 cells were cultured in DMEM, with 10% FCS at 37oC with 5% CO2 in a Nuaire US 

Autoflow CO2 water-jacketed incubator.  Upon reaching approximately 70% confluency, 

cells were washed in HBSS and adherent cells were trypsinised using a minimal volume of   

1 x trypsin-EDTA solution.  Cells were generally split in a ratio of 1:3.  Since excessive 

granularity of these cells may indicate the presence of an infection, cells were treated with 

Ciprobay [80 µg/ml] if granularity was observed. 

 

2.3 SDS-PAGE 

During gel electrophoresis, an externally applied electric field causes the migration of 

charged particles through a polymeric gel matrix to either the anode or cathode (Garfin, 

1990; Switzer and Garrity, 1999). Polyacrylamide gel electrophoresis (PAGE) in the 

presence of SDS has become one of the most widely used techniques for the analysis of 

protein mixtures (Smith, 1984; Bischoff et al., 1998).  Polyacrylamide gels are formed by the 

copolymerisation of acrylamide (water soluble monomer) with N,N’-methylene 

bisacrylamide (cross-linking agent) (Ninfa and Ballou, 1998).  The gel formation mechanism 

is vinyl addition polymerisation and is catalysed by a free-radical generating system, where 

ammonium persulfate is the di-sulfate ester of H2O2 and readily forms unstable •SO4
- 

radicals.  TEMED, a tertiary amine reacts with these radicals forming TEMED radicals that 

subsequently react with the acrylamide, inducing polymerisation (Garfin, 1990; Ninfa and 

Ballou, 1998).  The free-radicals can also be generated by photolysis of a labile compound 

such as riboflavin, a light sensitive compound that generates free-radicals when irradiated 

with UV light (Ninfa and Ballou, 1998; Switzer and Garrity, 1999).  The average pore size of 

the gel can be controlled by varying the amount of monomer used or by varying the degree 

of cross-linking (Ninfa and Ballou, 1998).  By convention, gels are characterised by a pair of 

figures (%T, %C), where %T is the weight percentage of total monomer (acrylamide and 

cross-linker, in grams per 100 ml) and %C is the proportion of cross-linker (as a percentage 

of total monomer) in the gel.  The practical limits for %T are 3-30% and the gel pore size 

decreases as %T increases (Garfin, 1990). 
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The electrophoretic separation of proteins in polyacrylamide gels is affected by both the 

charge and size of the protein as well as by the frictional forces they experience during 

migration.  If the size and charge of the proteins compensate for each other it is possible for 

proteins of different charge and size to move at the same rate and this complicates Mr 

estimations.  SDS, an anionic detergent, overcomes this problem by imposing uniform 

hydrodynamic and charge characteristics on all proteins (Garfin, 1990; Ninfa and Ballou, 

1998).  Proteins will on average bind 1.4 ± 0.3 g SDS per gram of protein or about one SDS 

molecule for every two amino acid residues (Bischoff et al., 1998). To allow for complete 

saturation with SDS, the polypeptide chain should be unfolded or denatured; this is 

facilitated by heating the protein in the presence of SDS and a reducing agent such as β-

mercaptoethanol or DTT which assist in the breaking of the disulfide bonds holding the 

oligomeric complexes together and internal disulfide bonds that maintain the tertiary 

structure of polypeptide subunits (Bischoff et al., 1998).  Each SDS molecule contributes a 

negative charge and this, combined with high stoichiometric binding, ensures that the SDS-

polypeptide complexes carry a high net negative charge and will thus have anodal migration.  

Additionally, the charge-to-mass ratio will be essentially the same for different proteins, as 

the SDS coating dominates the charge.  Thus the relative electrophoretic mobility of a 

complex through the polyacrylamide gel is a function of size and thus an indication of the Mr 

of the protein.  In SDS-PAGE, a linear relationship exists between the relative migration of 

proteins and the log of their respective Mr’s.  This allows for Mr estimation of proteins but it 

should be noted that this does not take into account post-translational modifications that may 

alter the apparent Mr. 

 

2.3.1 Laemmli system 

The Laemmli SDS-PAGE system consists of two distinct gels, an upper stacking gel and a 

lower separating gel (Laemmli, 1970).  The gels are cast with different porosities, pH and 

ionic strength (Garfin, 1990). In this system, the different ionisation states of glycine are 

responsible for the stacking and separation of proteins in the respective gels.  The stacking 

gel usually (4% T) (large pore size), pH 6.8 at 4oC, does not retard the migration of most 

proteins. At pH 6.8 most of the glycine species exist as zwitterions that carry no charge with 

only a small fraction being in the anionic state (Ninfa and Ballou, 1998).  Laemmli gels are 

run at constant current and in order for this to be maintained the anionic protein species carry 

the charge instead of the zwitterions. This results in the stacking of the proteins in a thin 

band behind highly mobile chloride ions.  When the stacked proteins enter the separating gel 
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which has a higher pH and decreased pore size the glycine becomes anionic.  The glycinate 

ions now move faster than the proteins, with their mobility approaching that of the chloride 

ions, resulting in the proteins being left behind the chloride and glycinate ions to separate in 

a constant voltage gradient.  The proteins are separated by the sieving effect of the gel 

according to their Mr’s. 

 

2.3.1.1 Reagents 

Acrylamide/bisacrylamide monomer stock solution [30% (m/v) acrylamide, 2.7% (m/v) 

bisacrylamide].  Acrylamide monomer (58.4 g) and N, N’-methylenebisacrylamide (1.6 g) 

were dissolved and made up to 200 ml with dH2O.  The solution was filtered through 

Whatman No. 1 filter paper and stored in an amber bottle at 4oC. 

 

4 x Separating gel buffer [1.5 M Tris-HCl buffer, pH 8.8].  Tris (36.3 g) was dissolved in 

dH2O (~ 180 ml), adjusted to pH 8.8 with HCl and made up to 200 ml.  The buffer was 

filtered through Whatman No. 1 filter paper and stored at 4oC. 

 

4 x Stacking gel buffer [500 mM Tris-HCl, buffer pH 6.8].  Tris (12 g) was dissolved in 

dH2O (~ 180 ml), adjusted to pH 6.8 with HCl and made up to 200 ml.  The buffer was 

filtered through Whatman No. 1 filter paper and stored at 4oC. 

 

SDS stock solution [10% (m/v) in dH2O].  SDS (10 g) was dissolved in dH2O, with gentle 

heating and made up to 100 ml.  The solution was stored at room temperature (RT).  

 

Ammonium persulfate initiator solution [10% (w/v) in dH2O].  Ammonium persulfate (0.1 g) 

was dissolved in dH20 (1 ml) just before use.  The solution was kept at 4oC for up to 1 week. 

 

Tank buffer [25 mM Tris-HCl and 192 mM glycine-HCl buffer, 0.1% (m/v) SDS, pH 8.3].  

Tris (3 g) and glycine (14.4 g) were dissolved in dH2O and made up to 1 l.  Prior to use SDS 

stock solution (2.5 ml) was added to 250 ml. 
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Reducing treatment buffer [125 mM Tris-HCl buffer, 4% (m/v) SDS, 20% (v/v) glycerol, 

10% (v/v) 2-mercaptoethanol, pH 6.8].  4 x Stacking gel buffer (2.5 ml), SDS stock solution 

(4 ml), glycerol (2ml) and 2-mercaptoethanol (1 ml) were mixed together and made up to 10 

ml with dH2O. 

 

Non-reducing treatment buffer [125 mM Tris-HCl buffer, 4% (m/v) SDS, 20% (v/v) 

glycerol, pH 6.8].  4 x Stacking gel buffer (2.5 ml), SDS stock solution (4 ml), glycerol (2ml) 

were mixed and made up to 10 ml with dH2O. 

 

2.3.1.2 Procedure 

The SDS-PAGE electrophoresis unit (Hoefer Mighty Small) was assembled according to 

manufacturer’s instructions.  The glass and aluminium plates, plastic combs and spacers 

were rinsed in dH2O, 96% ethanol and rinsed in dH2O and dried.  The glass plates, spacers 

and aluminium plates were assembled in a gel caster according to manufacturer’s 

instructions.   

 

Table 2.1 Reagent composition and proportions for two Laemmli gels. 

Reagent Separating gel (%) Stacking gel (%) 

 15 12.5 10 7.5 5.0 4.0 3.0 

Monomer (ml) 7.5 6.25 4.99 3.75 2.5 0.94 0.71 

4 x Separating gel buffer (ml) 3.75 3.75 3.75 3.75 3.75 0 0 

4 x Stacking gel buffer (ml) 0 0 0 0 0 1.75 1.75 

SDS stock solution (µµµµl) 150 150 150 150 150 70 70 

Initiator (µl) 75 75 75 75 75 35 35 

dH2O (ml) 3.5 4.75 5.98 7.25 8.5 4.3 4.53 

TEMED (µl) 7.5 7.5 7.5 7.5 7.5 15 15 

 

The acrylamide/bisacrylamide monomer stock solution, gel buffer, SDS and dH2O were 

mixed with ammonium persulfate initiator solution and TEMED as indicated for the 

separating gel (Table 2.1) and the solution loaded into the gel caster, overlaid with dH2O to 

exclude oxygen and allowed to polymerise (11 h).  After polymerisation the dH2O was 

poured out, the stacking gel solution was made up as described in Table 2.1 and layered on 

top of the polymerised separating gel.  Plastic 10 or 15 well combs were inserted into the 

stacking gel and polymerisation was allowed to occur (30 min).  The combs were removed 

and the gels placed into the electrophoresis units.  During electrophoresis the gels were 

cooled using a circulating water bath (4oC) and the proteins separated (36 mA, unlimited 
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voltage).  Gels were subsequently processed further for either western blotting, zymography 

or stained for protein. 

 

2.4 Staining of protein in SDS-PAGE gels 

Various methods exist for the detection of proteins in polyacrylamide gels including 

fluorescent staining using terbium chloride (Copeland, 1994), SYPRO Ruby (Steinberg et 

al., 1996; Lopez et al., 2000), reversible staining using either imidazole (Fernandez-Patron et 

al., 1995a) or methyl trichloroacetate (Candiano et al., 1996) and permanent visible staining 

techniques such as Coomassie brilliant blue (CBB) staining and silver staining (Merril, 

1990).  Each of these has their own specific applications as well as advantages and 

disadvantages in protein visualisation. In this study, proteins in SDS-PAGE gels were 

detected using either CBB or imidazole-SDS-zinc reverse staining, depending on the 

objective of the experiment. 

 

2.4.1 Coomassie brilliant blue staining 

CBB is a popular staining method and is simple, economical and compatible with further 

downstream analysis, but, it lacks sensitivity (approximately 50 ng protein/band) and has a 

low affinity for acidic proteins (Merril, 1990; Fernandez-Patron et al., 1995a).  CBB R-250 

was the first triphenylmethane stain to be introduced.  The letter “R” stands for a reddish hue 

while the number “250” indicates the strength of the dye.  This was followed by Coomassie 

blue G-250, where “G” indicates a greenish hue and subsequently Coomassie violet R-150 

(Merril, 1990).  CBB has three charged forms that exist at an acidic pH.  The red, blue and 

green forms have absorbance maxima at 470, 590 and 650 nm, respectively with the blue 

form being responsible for the binding of proteins, resulting in a complex that absorbs light 

at 594 nm (Zor and Selinger, 1996).  An acidic medium is required for CBB staining which 

allows for an electrostatic attraction between the dye molecules and the protein.  Van der 

Waals’ forces, together with the ionic attraction, hold the protein-dye complex together. The 

dye appears to interact with the basic groups in the polypeptides, as the intensity of the stain 

increases with increasing numbers of basic amino acid residues (Merril, 1990).  During 

staining, the gel is placed in a dye solution containing acetic acid, methanol and dH2O.  As 

the acetic acid and methanol fix the proteins within the gel matrix, the dye binds to the 

proteins within the gel.  The gel is destained with a solution of acetic acid and methanol to 

remove excess dye (Switzer and Garrity, 1999), allowing for the visualisation of dark blue 
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protein bands.  The initial shrinkage of the gel in the first destain solution is overcome by the 

second destain solution which rehydrates the gel as it contains less methanol and more dH2O. 

 

2.4.1.1 Reagents 

Stain stock solution [1% (m/v) Coomassie blue R-250 in dH2O].  Coomassie blue R-250 (0.5 

g) was dissolved in dH2O (50 ml) by magnetic stirring for 1 h, RT.  The solution was filtered 

through Whatman No. 1 filter paper and stored at RT. 

 

Staining solution [0.125% (m/v) Coomassie blue R-250, 50% (v/v) methanol, 10% (v/v) 

acetic acid].  Stain stock solution (62.5 ml) was mixed with methanol (250 ml) and acetic 

acid (50 ml), made up to 500 ml with dH2O and stored at RT. 

 

Destaining solution I [50% (v/v) methanol, 10% (v/v) acetic acid].  Methanol (500 ml) was 

mixed with acetic acid (100 ml) and made up to 1 l with dH2O.  The solution was stored at 

RT. 

 

Destaining solution II [7% (v/v) acetic acid, 5% (v/v) methanol].  Acetic acid (70 ml) was 

mixed with methanol (50 ml) and made up to 1 l with dH2O.  The solution was stored at RT. 

 

2.4.1.2 Procedure 

After electrophoresis, the gel was placed in a clean plastic container and covered with the 

staining solution (4 h or overnight).  The stain was decanted back into the original container 

and destain solution I was poured over the gel.  This destain solution was changed several 

times until dark blue protein bands were visible and the gel background was relatively clear.  

The gel was placed in destaining solution II until fully hydrated, photographed using a 

VersaDoc 4000 Imager (BioRad, California, USA), analysed using Quantity One software 

and stored in a sealed plastic bag at 4oC. 

 

2.4.2 Imidazole-SDS-zinc reversible staining 

Imidazole-SDS-zinc reversible staining is reported to be more sensitive than CBB staining 

(Fernandez-Patron et al., 1995a) and can be used on both unstained or previously CBB 

stained gels. During pre-treatment the proteins are complexed with SDS and appear as 

transparent bands against a white gel background.  The background results from the 

formation of an insoluble, white imidazole-zinc complex (Fernandez-Patron et al., 1995b). 
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The intensity of background staining is important for the visualisation of the transparent 

protein bands.  When previously stained CBB gels are used the blue protein bands appear 

superimposed on transparent bands (Fernandez-Patron et al., 1995a).  Staining appears to be 

sensitive to both the concentration of the staining reagents as well as glycine and possibly 

Tris. This problem can be avoided by washing the gels in dH2O prior to staining and by 

using a pre-treatment incubation time of 15 min (Fernandez-Patron et al., 1995a). 

 

2.4.2.1 Reagents 

Imidazole-SDS pre-treatment solution [200 mM imidazole, 0.1% (m/v) SDS in dH2O].  

Imidazole (1.36 g) and SDS stock solution (1 ml) were dissolved in dH2O (100 ml) and 

stored at RT. 

 

Zinc sulfate developing solution [200 mM zinc sulfate].  Zinc sulfate (5.75 g) was dissolved 

in dH2O (100 ml) and stored at RT. 

 

2.4.2.2 Procedure 

After electrophoresis the gels were placed in clean, glass petri dishes and rinsed in dH2O.  

Gels were pre-treated in imidazole-SDS pre-treatment solution (15 min), rinsed briefly in 

dH2O (30 s) and developed in zinc sulfate developing solution, until the gel background 

turned intensely white, with transparent protein bands (15-60 s).  Development was 

monitored during manual agitation of the gels over a dark surface and stopped by removal of 

the developing solution, followed by rapid rinsing with dH2O (10-15 s).  As development 

continues for a few seconds after the developing solution has been removed, the reaction was 

best stopped just as the bands of interest were first visualised.  Gels were photographed using 

the epi-white light and dark background of a VersaDoc 4000 Imager (BioRad, California, 

USA), analysed using Quantity One software and stored in sealed plastic bags at 4oC. 

 

2.5 Zymography 

Zymography allows for the detection of enzyme activity after proteins have been 

electrophoresed (Bischoff et al., 1998).  The proteinase substrate such as gelatin, casein or 

fibrin, is copolymerised with the acrylamide of the separating gel (Kleiner and Stetler-

Stevenson, 1994). The concentration of the substrate incorporated into the gel is important 

for optimal band formation, resolution and detection of enzyme activity (Makowski and 

Ramsby, 1996).  Usually, a non-reducing SDS-PAGE gel is used to ensure the retention of 
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enzyme activity, but, some enzymes have been successfully renatured in the presence of a 

chaotropic agent such as urea even after the samples have been heated under reducing SDS-

PAGE conditions (Bischoff et al., 1998).  Following electrophoresis, the SDS bound to the 

proteinase substrate and protein samples is removed by washing the gels in an unbuffered 

solution of Triton X-100 (Kleiner and Stetler-Stevenson, 1994; Oliver et al., 1997).  SDS has 

a significantly higher critical micelle concentration (CMC) than Triton X-100 [CMCSDS = 

8.27 mM; CMCTRITON X-100 = 0.24 mM (Sigma Handbook, 1998)] and is, therefore, easily 

removed by dilution.  The gel is subsequently incubated at optimal temperature in an 

appropriate buffer, which should also contain the relevant inhibitors for other proteinases 

that degrade the substrate, as well as any additional cofactors that may be required for 

enzyme activity.  Gels may be stained with either CBB or Amido black and enzymatic 

activity is indicated by the absence of staining in areas where the substrate has been 

degraded (Kleiner and Stetler-Stevenson, 1994; Oliver et al., 1997). 

 

2.5.1 Reagents 

Stock gelatin solution [1% (m/v) in 4 x separating gel buffer].  Porcine skin gelatin (0.015 g) 

was added to 4 x separating gel buffer (1.5 ml).  The solution was heated until the gelatin 

dissolved.  The solution was made up fresh each time. 

 

Renaturation solution [2.5% (v/v) Triton X-100 in dH2O].  Triton X-100 (5 ml) was 

dissolved in dH2O to a final volume of 200 ml. 

 

Gelatinase digestion buffer [50 mM Tris-HCl buffer, 200 mM NaCl, 5 mM CaCl2.2H2O, pH 

7.6].  Tris (6.05 g), NaCl (11.70 g) and CaCl2.2H2O (0.735 g) were dissolved in dH2O (950 

ml), adjusted to pH 7.6 with HCl and made up to 1 l.  The solution was stored at 4oC. 

 

Amido black staining solution [0.1% (m/v) Amido black in 30% (v/v) methanol and 10% 

(v/v) acetic acid].  Amido black (0.1 g) was dissolved in methanol: acetic acid: dH2O in the 

proportions (30: 10: 60) (100ml) and filtered through Whatman No. 1 filter paper.  The 

filtrate was stored at RT. 

 

Destaining solution [30% (v/v) methanol and 10% (v/v) acetic acid].  Methanol (300 ml) and 

acetic acid (100 ml) were dissolved in dH2O (600 ml).  The solution was stored at RT. 
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2.5.2 Procedure 

The procedure for SDS-PAGE was modified from that described (Section 2.3.1.2) in that 

0.1% gelatin was incorporated into the separating gel to allow for the detection of 

proteinases (Heussen and Dowdle, 1980).  Stock gelatin solution (1.5 ml) was added to 4 x 

separating gel buffer (2.25 ml) and the rest of the solution for casting a 12.5% gel (Table 2.1) 

and by pouring the gel as quickly as possible. Gels were allowed to set for 1 h.  Samples 

were prepared in non-reducing treatment buffer (Section 2.3.1.1) and the electrophoresis 

carried out as described (Section 2.3.1.2). 

 

After electrophoresis the gel was briefly rinsed in dH2O and renatured in unbuffered 

renaturation solution (50 ml) (3 x 30 min, RT) with agitation.  The gel was subsequently 

placed in a clean plastic container with pre-warmed digestion buffer (250 ml) and the 

digestion allowed to proceed for 18 h at 37oC for MMPs.  After this time, the gel was washed 

with dH2O (3 x 1 min), stained for 1 h in Amido black staining solution, destained in several 

changes of destaining solution and stored at 4oC until photographed.  Gels were 

photographed using a VersaDoc 4000 Imager (BioRad, California, USA) and analysed using 

Quantity One software. 

 

2.6 Western blotting 

Many techniques have been utilisd for the detection of specific proteins following SDS-

PAGE, however, the most widely used is western blotting with antibodies directed against 

the proteins of interest (Bischoff et al., 1998). This technique provides information about 

antibody specificities and the target antigen such as its molecular weight, its activation state 

(i.e. proform of the enzyme versus the active form), oligomeric arrangement or post-

translational modification. 

 

The choice of immobilisng matrix used for protein transfer is dependent on the subsequent 

investigations that follow the transfer.  Generally, for immunoblotting, proteins are 

transferred onto a nitrocellulose membrane with a pore size of 0.45 µm (Van Dam, 1994).  

Nitrocellulose membranes are made by allowing nitric acid-esterified cellulose, solubilisd in 

an organic solvent mixture, to gel by the evaporation of the solvents.  The pore size of the 

membrane depends on how the temperature and the time of the drying process are regulated 

(Gershoni and Palade, 1983).  Nylon membranes appear to bind certain antigens more 

strongly than nitrocellulose. The major disadvantage of this membrane type is that blocking 
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is usually performed at high temperatures which may denature sensitive antigens (Van Dam, 

1994).  If the protein transfer is followed by protein sequencing, then polyvinyldifluoride 

(PVDF) membranes are used as they are able to withstand the harsh chemicals used in the 

sequencing process. 

 

The composition of the transfer buffer should be carefully considered especially if proteins 

are being transferred to nitrocellulose membranes.  Towbin et al. (1979) used a transfer 

buffer containing methanol, which counteracted the swelling of the gel.  The incorporation of 

methanol into transfer buffers has both advantages and disadvantages.  It increases the 

binding capacity of the nitrocellulose membrane for proteins, however, it also decreases the 

pore size of the gel, removes SDS from the proteins and may lead to fixation of the proteins 

in the gel, so concentrations greater than 20% should be avoided (Gershoni and Palade, 

1983; De Maio, 1994; Van Dam, 1994).  The addition of SDS to transfer buffers increases 

protein transfer, however, this appears to be dependent on the nature of the proteins being 

transferred (Van Dam, 1994).  Transfer buffers containing SDS but lacking methanol have 

been used successfully in protein transfer (Gershoni and Palade, 1982).  As the choice of 

specific buffers and detergents is determined by the nature of the proteins being transferred, 

the buffer proposed by Towbin et al. (1979) was used with the incorporation of 0.01% SDS 

for the current study. 

 

The unoccupied binding sites of the membrane are blocked before antibody probing. This is 

done by incubating the membrane in a solution of an ‘inert’ protein such as BSA, ovalbumin, 

haemoglobin or non-fat milk.  Non-fat milk is not suitable for blocking when lectins or 

antibodies recognisng carbohydrate moieties are to be used, as milk contains large amounts 

of sugar that may prevent binding.  Non-ionic detergents such as Tween-20 may also be used 

as they reduce the binding of proteins to the nitrocellulose, thus reducing the background but, 

they should not be used at concentrations greater than 0.5% as they may remove proteins 

from the membrane (De Maio, 1994). 

 

2.6.1 Chromogenic blots 

The substrate products used in chromogenic blots should be insoluble, light stable and easily 

visible.  The enzymes most frequently used for western blotting are HRP and alkaline 

phosphatase (Nadkarni and Linhardt, 1997).  Although the most common substrates for HRP 

are 4-chloro-1-napthol and DAB, tetramethybenzidine (TMB) can also be used (Van Dam, 



 

 44

1994).  H2O2 needs to be added to both 4-chloro-1-napthol and DAB before use, whereas, 

TMB requires dioctylsulfosuccinate.  DAB is considered to have intermediate sensitivity 

which can be enhanced by the use of imidazole and divalent metal ions such as cobalt.  HRP 

catalyses the transfer of electrons from DAB, causing the DAB to become oxidised, forming 

an insoluble brown polymer.  It is thought that the imidazole causes the formation of an 

additional electron transfer site in HRP, increasing its activity (Nadkarni and Linhardt, 

1997).  Additional metal ions improve DAB polymer formation and cause a colour change in 

the final product.  4-chloro-1-napthol is less sensitive than DAB but generally produces less 

background.  DAB and 4-chloro-1-napthol can be combined to produce a highly sensitive 

detection system (Van Dam, 1994).  Alkaline phosphatase hydrolyses BCIP forming an 

intermediate that can dimerise to produce an insoluble indigo precipitate.  The reduction of 

NBT yields an insoluble purple formazan.  The combination of BCIP and NBT with alkaline 

phosphatase yields a dark purple precipitate that is much more sensitive than either substrate 

alone.  During this reaction the NBT is reduced by the two reducing equivalents produced by 

the dimerisation of BCIP.  BCIP/NBT usually produces sharp band resolution with little 

background.  The reaction rate of alkaline phosphatase remains constant during the reaction 

allowing for the relative sensitivity to be controlled.  This is not possible with other enzymes. 

 

2.6.2 ‘Tank’ buffer system 

This type of apparatus is fairly simple.  An electrophoretic field is generated to transfer 

proteins from a matrix, such as an acrylamide gel, to an immobilising matrix such as a 

nitrocellulose membrane.  The transfer cassette containing the gel and nitrocellulose is 

placed in a ‘tank’ of buffer allowing for the electrophoretic protein transfer. Usually, an 

efficient cooling system is used in conjunction with this apparatus.  Transfers can be carried 

out overnight as the buffer does not become depleted during the transfer. 

 

2.6.2.1 Reagents 

Transfer buffer [25 mM Tris-HCl and 192 mM glycine-HCl buffer, 20% (v/v) methanol, 

0.01% (m/v) SDS, pH 8.3].  Tris (6.05 g), glycine (28.8 g) and SDS [2 ml of 10% (w/v) 

solution] were dissolved in 1.6 l of dH2O.  Methanol (400 ml) was added and the solution 

stored at –20oC without pH adjustment. 
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Ponceau S protein staining solution [0.1% (w/v) Ponceau S in 1% (v/v) acetic acid].  

Ponceau S (0.1 g) and acetic acid (1 ml) were added to a 100 ml volumetric flask and made 

up to volume with dH2O.  The solution was stored at RT. 

 

Tris-buffered saline I (TBS I) [20 mM Tris-HCl buffer, 200 mM NaCl, pH 7.4].  Tris (2.42 

g) and NaCl (11.7 g) were dissolved in dH2O (950 ml), adjusted to pH 7.4 with HCl and 

made up to 1 l.  The solution was stored in aliquots at –20oC. 

 

Tris-buffered saline II (TBS II) [50 mM Tris-HCl buffer, 2.5% (m/v) NaCl, 0.3% (m/v) Brij 

35, pH 7.4].  Tris (6.05 g) and NaCl (25 g) were dissolved in dH2O (950 ml) and adjusted to 

pH 7.4 with HCl. Brij 35 [10 ml of 30% (m/v) solution] was added and the volume made up 

to 1l with dH2O.  The solution was stored in aliquots at –20oC. 

 

Tris-buffered saline III (TBS III) [50 mM Tris-HCl buffer, 0.9% (m/v) NaCl, pH 8.2].  Tris 

(3.03 g) and NaCl (4.5 g) were dissolved in dH2O (450 ml) and adjusted to pH 8.2 with HCl.  

Brij 35 [10 ml of 30% (m/v) solution] was added and the volume made up to 500 ml with 

dH2O.  The solution was stored in aliquots at –20oC. 

 

Phosphate buffered saline (PBS).  NaCl (8.0 g), KCl (0.2 g), Na2HPO4 (1.44 g) and KH2PO4 

(0.24 g) were dissolved in dH2O (800 ml), adjusted to pH 7.4 and made up to 1 l. 

 

Blocking solution [5% (m/v) non-fat milk powder in TBS I].  Elite non-fat milk powder (5 g) 

was dissolved in TBS I (99 ml) with Brij 35 [1 ml of 30% (m/v) solution] immediately 

before use. 

 

Antibody diluent [0.5% (m/v) BSA in TBS I, 0.3% (m/v) Brij 35].  BSA (0.5 g) was 

dissolved in TBS I (99 ml) with Brij 35 [1 ml of 30% (v/v) solution] immediately before use. 

 

Alkaline phosphatase substrate buffer [50 mM Tris-HCl buffer, 5 mM MgCl2, pH 9.5].  Tris 

(6.05 g) and MgCl2.6H2O (1.0 g) were dissolved in dH2O (980 ml), adjusted to pH 9.5 with 

HCl and made up to 1 l. The solution was stored at 4oC. 

 

BCIP stock solution.  BCIP (150 mg) was dissolved in DMF (3 ml).  The solution was stored 

at –20oC in a foil-covered amber bottle. 
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NBT stock solution.  NBT (300 mg) was dissolved in DMF [70% (v/v)] (2.1 ml) and the 

solution made up to 3 ml with dH2O. The solution was stored at –20oC in a foil-covered 

amber bottle. 

 

Alkaline phosphatase substrate solution [0.015% (m/v) BCIP, 0.03% (m/v) NBT in substrate 

buffer].  BCIP stock solution (30 µl) and NBT stock solution (30 µl) were dissolved in 

alkaline phosphatase substrate buffer (10 ml) just before use. 

 

0.2 M Tris buffer, pH 7.6.  Tris base (24.2 g) was dissolved in dH2O (800 ml), adjusted to 

pH 7.6 with 1M HCl and made up to 1 l. 

 

DAB substrate solution.  DAB (2.5 mg) was dissolved and made up to 5 ml in 0.2 M Tris 

buffer, pH 7.6.  Immediately before use, 30% H2O2 (15 µl) was added.  As DAB is a 

potential carcinogen, gloves were worn and care was taken to avoid inhalation of DAB 

powder.  All contaminated glassware, spills or waste solutions were decontaminated in a 

solution of hypochlorite (“Jik”). 

 

2.6.2.2 Procedure 

Following SDS-PAGE (Section 2.3.1.2) the gel was removed from the electrophoresis unit 

and submerged in transfer buffer along with 6 sheets of Whatman filter paper and Hybond-

C Extra nitrocellulose hybridization transfer membrane (0.45 µm).  The transfer cassette 

(Bio-Rad Mini Trans-Blot Electrophoretic Transfer Cell) was assembled and positioned in 

the electrophoresis tank to ensure that the membrane was closest to the anode.  The chamber 

was filled with transfer buffer and stirred with a magnetic stirrer throughout the run.  The 

transfer was performed at 30 V, 90 mA for 16 h.  Subsequently, the gel and nitrocellulose 

were removed from the cassette and the gel outline marked on the nitrocellulose.  Ponceau S 

was used to stain the nitrocellulose, allowing for visualisation of the Mr markers and 

determination of the efficiency of the transfer.  Light pencil lines were used to mark the 

positions of the lanes and markers.  The stain was removed with dH2O and a few drops of 1 

M NaOH.  The nitrocellulose was air dried between sheets of filter paper before probing or 

alternatively stored between sheets of filter paper in a dessicator at 4oC until required. 

 

The blocking solution was added to the nitrocellulose (1 h, RT) to prevent non-specific 

adsorption of antibodies.  The nitrocellulose was washed in TBS II (3 x 5 min) and incubated 
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with primary antibody diluted in the antibody diluent solution (2 h, RT).  Following washing 

in TBS II (2 x 5 min), the membrane was incubated with the appropriate enzyme conjugated 

secondary antibody diluted in the antibody diluent solution (1 h, RT).  The membrane was 

subsequently washed in both TBS II (2 x 5 min) and TBS III (1 x 5 min), immersed in the 

appropriate substrate solution and developed in the dark until distinct bands were observed.  

The nitrocellulose was rinsed with dH2O, dried between filter paper and kept in the dark until 

photographed with a VersaDoc 4000 Imager (BioRad, California, USA) and analysed using 

Quantity One software, the percentage of each processing form being visually assessed.  

 

Towards the end of the study, PBS was used instead of the three separate TBS solutions. 

 

2.6.3 ‘Semi-dry blotting’ system 

With the ‘semi-dry blotting’ system a stack of wet filter papers surrounding the gel and 

nitrocellulose membranes act as the buffer reservoir instead of the tank as in the ‘tank’ buffer 

system.  The electrodes consist of conductive plates which produce a high-strength electrical 

field with higher current densities in comparison to the wire electrodes that are used in the 

‘tank’ systems.  The plate electrodes are in direct contact with the buffer soaked filter papers 

maximising the field strength across the gel, allowing for fast and efficient transfers.  This 

system is less expensive than the ‘tank’ system as a relatively small amount of buffer is 

required.  This small buffer volume limits the time for which the transfer can be carried out 

as the buffer becomes depleted.  It should be noted that small proteins may pass straight 

through the membrane with this system and, as the voltages are limited by the lack of a 

cooling system, the transfer of high molecular weight proteins may be difficult (Jacobson, 

1994).  

 

2.6.3.1 Reagents 

See Section 2.6.2.1. 

 

2.6.3.2 Procedure 

Following SDS-PAGE (Section 2.3.1.2) the gel was removed from the electrophoresis unit 

and submerged in transfer buffer. A mylar mask was prepared by cutting a rectangle 2 mm 

smaller than the gel on either side and placed on the anode in the base of the apparatus 

(Hoefer SemiPhor Semi-Dry Transfer Unit).  Nitrocellulose membrane and six pieces of 

filter paper were cut slightly smaller than the gel and saturated in transfer buffer. Three 
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pieces of filter paper were centered in the opening of the mylar mask, with their edges 

slightly overlapping the cutout on all sides.  The nitrocellulose was placed on the filter paper 

stack and the gel on top of the nitrocellulose.  Three pieces of filter paper were placed on top 

of the gel.  The transfer was performed at 26 mA for 2 h.  The remainder of the procedure 

was carried out as previously described (Section 2.6.2.2). 

 

2.7 Electron microscopy and immunogold labelling 

The main EM techniques used in this study were transmission electron microscopy (TEM) of 

ultrathin resin sections and immunogold labelling (De Mey, 1987). 

 

If fine structure immunocytochemistry is to be performed the choice of resin to be used 

should be carefully considered as it should possess certain characteristics.  Firstly, it should 

easily infiltrate cells/tissues and must harden uniformly without any shrinkage or swelling.  

Secondly, the resin blocks should be hard but have a degree of plasticity allowing for smooth 

sectioning.  The processes leading up to and including infiltration, polymerisation and 

sectioning should not prevent the demonstration of antigens by immunocytochemistry nor 

change the fine structure.  The resin should allow for drying of sections without loss of fine 

structure and sections should also be resistant to radiation by the electron beam (Griffiths, 

1993).   

 

Methacrylates or ‘acrylic resins’ have several advantages over other embedding media used 

for EM.  These include, the rapid penetration of cells/tissues (as a result of the low viscosity 

and the rapid diffusion of low molecular weight monomers of the resin), the resin is also 

relatively inexpensive and non-toxic.  Disadvantages include absolute hydrophobicity and 

the requirement for total dehydration of the specimens in organic solvents prior to 

infiltration.  This, together with a requirement for strong heat polymerisation (60oC for 4 

days), make methacrylate resins unsuitable for immunocytochemical studies, as such 

treatment of tissue destroys antigencity. 

  

The resin chosen for the current study was LR White, a hydrophilic resin that has become 

increasingly popular.  Its hydrophilicity makes ultrathin sections permeable to aqueous 

solutions (immunoreagents), eliminating the need for pre-etching of hydrophobic resin 

surfaces to introduce hydrophilic groups before labelling.  Membrane and cytosol structures 

can be observed without lipid-stabilising osmium treatment as LR White does not solubilise 
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lipids.  The only problem, however, is that membrane structures are quite difficult to stain 

reproducibly.  As the resin is miscible with a small amount of water, however, infiltration 

can be performed on partially dehydrated specimens (70% dehydrated) that have greater 

antigenicity than fully dehydrated samples.   

 

Besides difficulties with staining and contrast, disadvantages include instability in the 

electron beam, and the adverse effects of oxygen on polymerisation.  Final polymerisation of 

resin in a resin-filled gelatin capsule impermeable to oxygen, solves this problem.  Slowly 

increasing the intensity of the beam also allows resin stabilisation and prevents specimen 

damage (Griffiths, 1993; Philimonenko et al., 2002).  Another compromise between the 

preservation of antigenicity and organelle structure also needs to be made for successful 

immunocytochemistry.  This involves the choice of fixative and fixation protocol. 

 

Glutaraldehyde is the best choice for the preservation of tissue ultrastructure.  It is 

extensively cross-linking, however, and can alter epitopes resulting in loss of antigenicity or 

prevention of access to the antigen.  Formaldehyde, on the other hand, results in better 

preservation of antigenicity, due to lower cross-linking, but gives poorer ultrastructural 

preservation.  Macrophage ultrastructure also seems difficult to preserve and combination 

fixatives with approximately 4% PFA or less and low levels of glutaraldehyde (0.5% or less) 

have been shown to provide an adequate balance between the retention of ultrastructure and 

antigenicity, however (Griffiths, 1993).   

 

The buffers used during the fixation process are important as well.  Both carbonate and 

cacodylate buffers have been used in the past, but both have pKa’s too low for proper 

fixation.  Phosphate buffers are also popular, but they have limited solubility in the presence 

of divalent cations and generally extract protein during the fixation process.  The buffers 

introduced by Good et al. (1966) are considered to be good buffers for fixation and include 

PIPES, HEPES and MOPS.  PIPES buffers in particular result in much less extraction in 

comparison with phosphate buffers (Griffiths, 1993).  The buffer chosen for use in the 

current study is a combination of PIPES, HEPES, EGTA and MOPS and is described by 

Santama et al. (1998). 

 

Sectioning of specimens requires the use of an ultramicrotome.  Glass knives are produced 

by fracturing glass strips into squares and then right-angled triangles to produce edges that 
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can cut hard resin.  Knives for resin sectioning have a limited lifespan as edges become blunt 

over time due to the fluid nature of glass.  Older knives can be used for the initial trimming 

of the resin block, whereas ultrathin sectioning requires the use of new knives.  The sections 

are usually collected on formvar coated grids, the formvar acting as a support for the section. 

Immunolabelling requires that ultrathin sections be incubated with an antibody against the 

antigen to be located.  Subsequently, the section is incubated with another molecule that 

binds the antigen-antibody complex allowing for detection by the EM (Geuze et al., 1981; 

Slot and Geuze, 1985).  Protein A from Staphylococcus aureus binds the Fc region of 

antibodies in a 1:1 stoichiometric ratio.  This protein can, therefore be adsorbed to electron- 

dense, gold colloids and used to localise a particular antigen in a cell section.  Protein A has 

a particularly high affinity for rabbit IgG, so if the primary antibody used is not raised in 

rabbits, but another species with a lower protein A affinity, a linker antibody (e.g. rabbit anti-

chicken IgY) should be incorporated and the protein A gold probe used to detect this 

antibody.  The use of a linker antibody increases the labelling density as more than one 

rabbit IgG binds per IgY molecule (Griffiths, 1993; Slot and Geuze, 1985). 

 

Immunocytochemistry allows for the cellular location of antigens to be determined and if it 

is to be performed there are several important points that need to be considered.  A well 

characterized, high-affinity antibody against the antigen should be used.  The antibody and 

electron dense markers should have access to all parts of the cells/tissues. The antigen being 

localised should possess a large amount of antigenicity after fixation and at the same time the 

preservation of fine-structure should be adequate (Griffiths, 1993).  Control labelling 

experiments are essential for identifying any potential non-specific, high-affinity interactions 

with pre-immune sera.  Controls include: incubation of the section with pre-immune IgG/IgY 

and detection with protein A and incubation of the section with protein A gold only.  In all 

cases the pre-immune IgG/IgY and protein A gold probes are used at the same concentration 

as used in the labelling with the specific antibodies. 
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2.7.1 Fixation and embedding of J774 cells in LR White resin 

 

2.7.1.1 Reagents 

130 mM PIPES, 60 mM HEPES, 20 mM EGTA, 4 mM MgCl2, pH 7.3 (2 x PHEM).  PIPES 

(9 g), HEPES, (2.68 g), EGTA, (1.875 g) and MgCl2.6H2O (0.163 g) were dissolved in 180 

ml of dH2O, adjusted to pH 7.3 with NaOH and made up to 200 ml.  The solution was 

aliquotted and stored at -20oC. 

 

65 mM PIPES, 30 mM HEPES, 10 mM EGTA, 2 mM MgCl2, pH 7.3 (1 x PHEM). 2 x 

PHEM (50 ml) was diluted with dH2O (45 ml), adjusted to pH 7.3 if necessary and made up 

to 100 ml. 

 

PFA stock solution [16% (m/v) in dH2O].  PFA (16 g) was dissolved in dH2O (80 ml), 

heated to 60oC (in a fumehood) and the solution cleared with the dropwise addition of a 1M 

NaOH solution.  After cooling, the volume was made up to 100 ml and aliquots stored at      

–20oC.  

  

8% PFA in PHEM, pH 7.3. PFA stock solution (25 ml) was added to 2x PHEM (12.5 ml), 

adjusted to pH 7.3 with 1 M HCl and made up to 50 ml with dH2O. The solution was stored 

at –20oC until required. 

 

8% (m/v) PFA, 0.2% (v/v) glutaraldehyde in PHEM, pH 7.3.  PFA stock solution (50 ml) 

and glutaraldehyde [800 µl of 25% (v/v)] were added to 2 x PHEM (25 ml), made up to 90 

ml with dH2O, adjusted to pH 7.3 with 1 M HCl and made up to 100 ml.  The solution was 

stored at –20oC until required.  

 

20 mM Glycine in PHEM, pH 7.3. Glycine (15 mg) was dissolved in 1 x PHEM (10 ml). 

 

10 % (m/v) Gelatin in PHEM, pH 7.3.  Microbiological grade gelatin (10 g) was added to 1 x 

PHEM (100 ml) and dissolved by heating. The volume was made up to 100 ml (if necessary) 

with dH2O and the solution chilled rapidly on ice. 
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2.7.1.2 Procedure 

 

Table 2.2 Protocol for the fixation and embedding of J774 cells in LR White resin. 

Fixation Time and Temperature 

Fix in 8% (m/v) PFA, 0.2% (v/v) glutaraldehyde in PHEM, pH 7.3 with equal 
volume of medium. 

2 h, RT 

Replace with 8% PFA in PHEM, scrape of monolayers, transfer to tubes, 
centrifuge (700 x g, 10 min), store in 8% PFA. 

Overnight, 4oC 

Pellet the cells (223 x g, 2 min), remove excess fixative.  
Quench remaining free aldehyde groups with 20 mM glycine in PHEM. 2 x 15 min, RT 
Pellet the cells (223 x g, 2 min).  Remove excess glycine.  Infiltrate with 10 % 
(m/v) gelatin in PHEM, pH 7.3.   

2 h, 37oC 
 

Pellet the cells (223 x g, 2 min).  Remove excess glycine and chill pellet rapidly 
on ice. 

 

Place a thin layer of buffer over the gelatin-infiltrated pellet to prevent drying out 
and cut into small blocks (2 x 2 x 2 mm). 

 

Embedding  
Dehydration  25% ethanol 15 min, RT 
Dehydration  50% ethanol 15 min, RT 
Dehydration  70% ethanol 1 h, RT 
Dehydration  90% ethanol 30 min, RT 
Dehydration  100% ethanol 30 min, RT 
LR White resin : ethanol (1 : 1) 30 min, RT 
LR White resin : ethanol (2 : 1) 30 min, RT 
LR White resin 2 x 30 min, RT 
LR White resin 1 h, RT 
LR White resin Overnight, RT 
Fill gelatin capsules with fresh resin, place cubes in tip of a gelatin capsule.  
Quickly close the capsule and fill completely with syringe. Allow to polymerise. 48 h, 50oC  

 

2.7.2 Glass knife production and preparation of grids 

The glass strip was cleaned with detergent and water, dried and positioned on a LKB 7800 

glass knife maker modified as described by Moorewood et al. (1992) and fractured to 

produce glass knives.  The knife edges were examined and those with a barely visible 

counter-piece width were selected for ultrathin sectioning.  A section collection trough made 

from aluminium foil tape was attached to the knife and sealed with nail varnish to produce a 

watertight boat.  Ultrathin resin sections (90-110 nm) were cut using an ultramicrotome and 

sections were collected on formvar coated, copper grids. 

 

2.7.3 Immunolabelling protocol 

 

2.7.3.1 Reagents 

10 x PBS stock solution, pH 7.2.  NaCl (8 g), KCl (0.2 g), Na2HPO4 (0.115 g), KH2PO4 (0.2 

g) and NaN3 (0.2 g) were dissolved in dH2O (90 ml), titrated to pH 7.2 with NaOH and made 

up to 100 ml.  The solution was autoclaved and stored at 4oC. 
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1 x PBS working solution, pH 7.2.  PBS stock solution (1 ml) was diluted with dH2O (9 ml). 

 

Glutaraldehyde fixative [1% (v/v) in PBS].  Glutaraldehyde [1 ml of a 25% (v/v) stock 

solution] was diluted to 25 ml with PBS. 

 

BSA-PBS [1% (m/v) in PBS].  BSA (1 g) was dissolved in PBS and made up to 100 ml. 

 

20 mM Glycine-PBS.  Glycine (0.15 g) was dissolved in PBS and made up to 100 ml. 

 

FSG-BSA [1% (v/v) FSG, 0.8% (m/v) BSA in 20 mM glycine-PBS].  FSG [1.11 ml of a 

45% (v/v) solution] and BSA (0.4 g) were dissolved in glycine-PBS in a final volume of 50 

ml.  The solution was centrifuged (10 000 x g, 2 h, 4oC) to remove insoluble debris and the 

supernatant aliquotted and stored at -20oC. 

 

2.7.3.2 Procedure 

Immunogold labelling was performed by incubating the grids on droplets of reagent on 

Parafilm at RT.  The steps followed are shown in Table 2.3.  After the final staining the grids 

were air dried and viewed in a Philips CW120 Biotwin TEM at 80-100 kV. 

 

Table 2.3 Procedure for immunogold labelling of J774 cells. 

Step Solution Volume Incubation Time  

1. Blocking BSA in PBS  20 µl 10 min 

2. Blocking and aldehyde quenching FSG-BSA 20 µl 4 x 1 min 

3. Primary antibody Diluted in FSG-BSA 10 µl 1 h 

4. Wash FSG-BSA 20 µl 5 x 4 min 

5. Linker antibody (if required) Diluted in FSG-BSA 10 µl 1 h 

6. Wash FSG-BSA 20 µl 5 x 4 min 

7. Protein-A gold probe Diluted in FSG-BSA 10 µl 1 h 

8. Wash FSG-BSA 20 µl 5 x 4 min 

9. Fixation* Glutaraldehyde fixative 10 µl 5 min 

10. Wash  dH2O 100 µl 4 x 5 min 

11. Staining Uranyl acetate  
Lead citrate 

Droplet                  
Droplet 

6 min    
4 min                           

* If double immunogold labelling is to be performed, steps 1-9 are repeated at this point. 

 

Controls included the substitution of pre-immune antisera at the same concentration as the 

test. 
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2.8 Fluorescent microscopy and immunolabelling 

One of the most important applications of fluorescent microscopy has been 

immunofluorescence.  This application combines the sensitivity, specificity and spatial 

resolution of normal fluorescent microscopy with the binding of antibodies to specific 

antigens within cells or tissues (Taylor and Salmon, 1989). During indirect 

immunofluorescence the cells are incubated with an unlabelled antibody which complexes 

with a specific antigen.  The antigen-antibody complex is detected by a second antibody that 

is conjugated to a fluorochrome.  Indirect immunofluorescence results in a brighter image 

than direct immunofluorescence as more than one secondary-conjugated antibody can bind 

to the unlabelled primary antibody (Karp, 1999). 

 

The choice of fluorochrome is dependent on several factors.  Two fundamental properties of 

fluorescence that need to be considered are the extinction coefficient (ε) and the quantum 

yield (Φ).  The ε is an indication of the probability of absorption and optimal values for this 

parameter are 30 000-100 000 cm-1M-1 (Kerr and Loomes, 1994).  The Φ measures the total 

photon emission over the fluorescence spectral profile and optimal values for this parameter 

are 0.05-1.0 (Taylor and Salmon, 1989).  The fluorescence intensity per dye molecule is 

proportional to the product of  ε and Φ.  The choice of fluorochrome is also dependent on the 

light source and the detection system of the microscope (Tanke, 1998).  The most common 

light sources used in fluorescence microscopy are high-pressure vapour lamps filled with 

either mercury or xenon gas.  The mercury lamp is the most versatile as it has strong 

emission peaks in the near ultraviolet, violet, green and yellow parts of the spectrum and can 

thus excite a wide range of fluorochromes.  Lasers are used in confocal laser scanning 

microscopy. Fluorochromes selected for double immunolabelling studies should have 

minimal spectral overlap. 

 

The detection of intracellular antigens by indirect immunofluorescence requires the 

permeabilisation of cell membranes to allow the penetration of the antibodies.  Saponin, a 

detergent-like molecule, acts by solubilising cholesterol and can thus permeabilise 

membranes without totally destroying them (Jacob et al., 1991).  Permeabilisation with 

saponin has a number of advantages.  It is a fast and simple method, it does not alter the 

expression of membrane bound antigens and it permeabilises both cytoplasmic and nuclear 

membranes (Jacob et al., 1991). 
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Two problems associated with fluorescent microscopy are photobleaching and quenching 

(Tanke, 1998).  Photobleaching or fading refers to the loss of fluorescence during high-

intensity excitation and is caused by photodecomposition of the fluorochrome or by the 

production of heat as energy is absorbed.  This destruction of the excited fluorochrome 

becomes the factor limiting fluorescence detectability (Tanke, 1998).  Photobleaching can be 

reduced by increasing the detection sensitivity, allowing the excitation intensity to be 

reduced.    Detection sensitivity can be increased by using low-light detection devices such 

as CCD cameras or by using objectives with high numerical apertures.  Photobleaching can 

also be significantly reduced by using antifade reagents during mounting (Longin et al., 

1993; Ono et al., 2001).  These reagents usually contain compounds that scavenge the 

oxygen radicals that result from the process of fluorescence; these radicals if not removed 

may react with the fluorochrome producing a product with less fluorescence (Tanke, 1998).  

 

2.8.1 Immunolabelling protocol 

 

2.8.1.1 Reagents 

PBS, pH 7.4 [8 mM Na2HPO4, 1.5 mM KH2PO4, 137 mM NaCl, 2.7 mM KCl, 1 mM 

CaCl2.2H2O and 0.5 mM MgCl2.6H2O, pH 7.4].  Na2HPO4 (1.144 g) and KH2PO4 (0.2 g) 

were first dissolved in dH2O (200 ml).  NaCl (7.999 g), KCl (0.1998 g), CaCl2.2H2O (0.147 

g) and MgCl2.6H2O (0.1016 g) were added and the solution made up to 1 l with dH2O.  The 

solution was filtered through Whatman No. 1 filter paper and stored at 4oC. 

 

PFA stock solution [16% (m/v) in dH2O].  PFA (16 g) was dissolved in dH2O (80 ml), 

heated to 60oC (in a fumehood) and the solution cleared with the dropwise addition of a 1M 

NaOH solution.  After cooling, the volume was made up to 100 ml and aliquots stored at      

–20oC. 

 

3.7% (m/v) PFA in PBS, pH 7.4.  PFA stock solution (6.0 ml) was added to PBS, pH 7.4 (20 

ml).   The solution was made up just before use. 

 

Saponin-PBS [0.1% (m/v) in PBS, pH 7.4].  Saponin (0.17 g) was dissolved in PBS (170 

ml).  The solution was filtered through Whatman No. 1 filter paper and was made up just 

before use. 
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BSA-PBS [1% (m/v) in PBS, pH 7.4].  BSA (0.13 g) was dissolved in PBS, pH 7.4 (13 ml). 

The solution was made up just before use. 

 

BSA-Saponin-PBS [1% (m/v) in saponin-PBS, pH 7.4].  BSA (0.13 g) was dissolved in 

saponin-PBS, pH 7.4 (13 ml). The solution was made up just before use. 

 

2.8.1.2 Procedure 

A round, glass coverslip (12 mm diameter) was placed into each well of a 24 well plate,   

DMEM supplemented with 10% FCS (500 µl/well) added and the coverslips allowed to 

condition overnight.  J774 macrophages were cultured and trypsinized (Section 2.2.2) and 

resuspended in approximately 12 ml DMEM supplemented with 10% FCS.  The medium 

from each well was removed, J774 cell suspension (500 µl/well) added and the cells grown 

to approximately 70% confluency.  Cells were fixed with 3.7% PFA in PBS (400 µl/well, 10 

min, RT), washed with PBS (400 µl/well, 3 x, RT) and non-specific binding sites blocked by 

incubating the cells in BSA-PBS (400 µl/well, 45 min, RT).  Cells were incubated in primary 

antibody diluted in saponin-PBS (150 µl/well, 1 h, RT) and washed in saponin-PBS (400 

µl/well, 6 x, RT) and blocked again with BSA-saponin-PBS (400 µl/well, 1 h, RT).  This 

was followed by incubation in secondary antibody diluted in saponin-PBS (150 µl/well, 1 h, 

RT) and as fluorescent probes are light sensitive, the plate was wrapped in foil from this 

point onwards.  The cells were washed in saponin-PBS (400 µl/well, 6 x), post-fixed with 

3.7% PFA (400 µl/well, 10 min) and washed finally in saponin-PBS (400 µl/well, 3 x).  If 

double immunolabelling was to be performed the labelling procedure was repeated at this 

point.  Controls included the substitution of pre-immune sera at the same level as the test and 

performing each labelling individually and in the opposite order (labelling for second antigen 

first) in repeat experiments.  Coverslips was removed from the wells, dipped several times in 

dH2O and air dried (RT).  SlowFade(anti-fade reagent) (1 µl) or Mowiol (4 µl) were 

applied to microscope slides and the coverslips mounted and sealed with clear nail varnish.  

Labelling was viewed using either an Olympus epifluorescent microscope and F-View CCD 

camera or a Zeiss 510 Meta confocal microscope and images analysed using ImageJ 

software.  Images of colocalisation using colour (i.e. red and green images merged to form 

yellow) are highly influenced by display settings and intensity, and, therefore, colocalisation 

based on colour analysis alone is problematic and can lead to incorrect conclusions. Grey 

scale images (i.e. black and white) on the other hand, are not affected by display settings and 
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should be assessed when visually judging the following colocalisation images, as the yellow 

colour (indicating the degree of colocalisation in the composite image) varies depending on 

settings and printer type.  The percentage colocalisation was determined manually by 

counting the number of vesicles in an average of at least 3 representative cells and reporting 

average vesicle colocalisation as a percentage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 58

CHAPTER 3 

 

PRODUCTION AND CHARACTERISATION OF ANTIBODIES 

 

3.1 Introduction 

The primary aim of this study was to use immunofluorescence microscopy and gold labelling  

to establish firstly, the distribution of two classes of proteases, the cathepsins and MMPs as 

well as the tissue inhibitors of MMPs, TIMP-1 and -2 and secondly, a marker system for the 

vesicular compartments of J774 macrophages.  Isolation and enzymatic activity assays of the 

content of organelles of the endosome-lysosome system from J774 macrophages suggest that 

cathepsin H and cathepsin S may be used as markers for the early and late endosomes, 

respectively (Claus et al., 1998; Jahraus et al., 1998), but this remains unverified using 

microscopy techniques. 

 
Various antibodies have been raised against cathepsins (B, D, H, S and L) and MMP-9 (by 

past and present members of our research group).  These have been mainly generated against 

isolated whole protein- or recombinant- or peptide sequences of human proteins.  In chickens 

these include, anti-human liver cathepsin B (Elliott, 1993), -TIMP-1 (Clulow, M., 

unpublished data), -cathepsin S (raised against NVNHGVL peptide coupled to BSA using 

glutaraldehyde) (Morrison, L., unpublished data), -MMP-9 (Price et al., 2000).  In rabbits, 

anti-cathepsin H (Coetzer, 1992) and -cathepsin L (Pike, 1990).  A few have been raised 

against isolated animal proteins.  These include a chicken anti-porcine cathepsin D antibody 

(Fortgens et al., 1997; Elliott et al., 1995) which will be used and an antibody against TIMP-

2 was supplied by a collaborator, Dr Linda Troeberg (Imperial College, London).  None, 

however, have been generated against mouse proteins and the cross-reactivity with mouse 

proteins was unknown at the beginning of this study. 

 
Most commercially and other available antibodies against MMP-9 and the TIMPs seem to 

produce extremely variable or no results (Holten-Andersen et al., 2002).  Raising antibodies 

against MMPs and the TIMPs is a difficult task as MMPs for example, share several 

common domains (Section 1.4.2, Figure 1.3) and together with TIMP-1 and -2 occur in the 

blood and are highly conserved across species (Holten-Andersen et al., 2002).  Recombinant 

human TIMP-1 and TIMP-2 also available, as part of a collaboration with Dr Linda Troeberg 

(Imperial College, London) were, therefore, used to raise antibodies.  It was reasoned that 
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TIMP-containing vesicles would possibly be distinct from those containing MMPs (Price et 

al., 2000) and also from cathepsins.  If the antibodies raised in chickens against the 

collaboratively available recombinant TIMP-1 and -2 proved more reactive than the anti-

human TIMP-1 (whole protein) antibodies previously raised in chickens (Clulow, M.,  

unpublished data) and the sheep anti-human recombinant TIMP-2 (Dr L. Troeberg, Imperial 

College, London), these would be applied in this study. 

 

In order to check both the recognition of the mouse antigen and specificity of these 

antibodies, a crude homogenate of the J774 cell line was used for western blotting 

characterisation studies.  In such studies it was reasoned that both specific and non-specific 

cross-reactivity would be identified.  For the recombinant antigens SDS-PAGE should be 

used to check for the presence of the required antigens and their apparent purity.  The 

homology of proteins in laboratory animals chosen for production should be as low as 

possible and, therefore, the laboratory animals should be selected on this basis.  Various 

adjuvants, inoculation protocols and antibody purification procedures are available and 

options will, therefore, be covered before the protocols chosen for the current study are 

described.     

 

In this chapter, the production of antibodies in chickens against TIMP-1 and TIMP-2 

(Section 3.4) and secondly, the characterisation of antibodies against cathepsins B, D, H, S 

and L, MMP-9, TIMP-1 and TIMP-2 to be used in the localisation studies is reported 

(Sections 3.6 and 3.7).  Further information that can be gained from western blotting 

assuming that antibody recognition is equivalent for each form of an enzyme is the 

approximate ratio of mature to immature enzyme.  This may be useful as the available 

antisera recognise all forms of the target enzyme (i.e. both immature and mature forms). 

 

3.2 SDS-PAGE of recombinant TIMP-1 and TIMP-2 

TIMP-1 has two N-glycosylation sites and depending on the degree of glycosylation may 

have a molecular weight ranging from 28.5 to 34 kDa (Caterina et al., 1998; Lambert et al., 

2004).  The human recombinant TIMP-1 used to raise antibodies was expressed as a 28 kDa 

glycosylated form.  On the other hand, TIMP-2 lacks N-glycosylation sites and has a 

molecular weight of approximately 22 kDa.  The supplied human recombinant TIMP-2 

protein was reported to have a molecular weight of 22.8 kDa. 
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3.2.1 Reagents 

Mature human recombinant TIMP-1 (glycosylated, 28.5 kDa) and TIMP-2 (22.8 kDa, non-

glycosylated) proteins (sequences P01033 and P16035 available at http://us.expasy.org) 

expressed using pCEP4 vectors in HEK293, purified by ion exchange, affinity 

chromatography and gel filtration were supplied by Dr Linda Troeberg (Imperial College, 

London). 

 

Reagents for SDS-PAGE and CBB staining were prepared according to Sections 2.3.1.1 and 

2.4.1.1, respectively. 

 

3.2.2 Procedure 

Preparation of human recombinant TIMP-1 and TIMP-2 samples for SDS-PAGE analysis 

TIMP-1 [1mg/ml] (1 µl) was combined with reducing treatment buffer (30 µl) and boiled for 

90 s.  Approximately 0.67 µg of TIMP-1 was loaded on the gel. 

 
TIMP-2 [1.2 mg/ml] (1 µl) was combined with reducing treatment buffer (30 µl) and boiled 

for 90 s.  Approximately 0.8 µg of TIMP-2 was loaded on the gel. 

 
SDS-PAGE was performed to assess the purity of the human recombinant TIMP-1 and 

TIMP-2 proteins prior to immunisation (Section 2.3.1.2). 

 

3.2.3 Results 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.1 Reducing SDS-PAGE of human recombinant TIMP-1 and TIMP-2 to assess protein purity. 
Human recombinant TIMP-1 (lane 1, 0.67 µg), human recombinant TIMP-2 (lane 2, 0.8 µg) and molecular 
weight marker (lane 3, 5 µl).  Both samples were prepared in reducing treatment buffer (30µl), combined with 
bromophenol blue [5 µl, 0.1% (m/v) in dH2O], separated on a 12.5% Laemmli gel and stained with CBB. 
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Both recombinant TIMP samples gave a single band, indicating apparent purity.  A TIMP-1 

band of approximately 32 kDa (Figure 3.1, lane 1) which is slightly higher than the 28.5 kDa 

published value for the glycosylated form was observed (Woessner and Nagase, 2002).  A 

band of approximately 24 kDa was detected for the recombinant human TIMP-2 (Figure 3.1, 

lane 2), a non-glycosylated inhibitor for which a molecular weight of 22.8 kDa has been 

reported (Troeberg, personal communication).  A value of 24 kDa seen in this study is, 

therefore, reasonable. 

 

3.3 Choice of laboratory animal for antibody production 

For raising laboratory antibodies (in most countries) rabbits are the usual choice.  This is 

especially true for immunocytochemistry purposes where protein A-gold probes are to be 

used, as protein A from S. aureus binds CH1 and CH2 domains of the Fc region of rabbit IgG 

better than IgG from most species (Harlow and Lane, 1999).  Blood collection from rabbits, 

however, is difficult and exsanguination may often be required for a good final antibody 

yield. 

 

Laying hens, on the other hand, produce antibodies that are transferred to the egg yolks (IgY) 

to provide the embryo with protection until it has a fully developed immune system.  

Chickens, therefore, have a number of advantages for antibody production.  Collection of 

eggs, instead of invasive bleeding, is simpler and ethically preferable.  From an evolutionary 

perspective, chickens should have a greater phylogenetic difference for most species to be 

studied and hence target antigens should have less sequence homology (Narat, 2003).  

Lastly, the yields of IgY from egg yolks are generally, considerably higher than IgG from 

other experimental animals (Losch et al., 1986). Although protein A does not bind to IgY 

and not many anti-IgY detection systems are available, this can be overcome by using a 

rabbit anti-IgY linker antibody (Harlow and Lane, 1999; Griffiths, 1993).  The choice of 

animal in which to raise antibodies against a specific antigen, however, is best made after 

sequence alignments of the antigen in various species are performed, and the choice made on 

the basis of the greatest sequence variation to ensure the injected antigen has maximum 

antigencity.  For this reason, ‘BLAST 2 Sequences’ alignments were perfomed on human, 

chicken, mouse, rabbit and sheep proteins. 
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3.3.1 Procedure 

Sequence alignments of human TIMP-1 and TIMP-2 using ‘Blast 2 Sequences’ were 

performed in chickens, mice, rabbits and sheep to establish sequence homology, the potential 

antigenicity of human TIMPs in these species and hence the optimal choice of animal to be 

used in the current study. 

 
‘BLAST 2 Sequences’(http://www.ncbi.nlm.nih.gov/blast/bl2seq/wblast2.cgi) is a BLAST-

based tool, utilising the algorithm for pairwise protein-protein sequence comparisons 

allowing for the alignment of two protein sequences that are known to be homologous.  The 

sequences for TIMP-1 and -2 from humans, mice and rabbits were obtained from Entres 

protein database (http://www.ncbi.nlm.nih.gov) and included the following, human TIMP-1 

(P01033), human TIMP-2 (P16035), mouse TIMP-1 (P12032), mouse TIMP-2 (P25785), 

rabbit TIMP-1 (P20614) and rabbit TIMP-2 (Q9TRS7).  Chickens appear to lack TIMP-1 

and, therefore sequences for TIMP-2 (O42146) and TIMP-3 (P26652) were obtained for 

comparison and only the sheep TIMP-1 sequence was available (P50122). 

 

3.2.2 Results 

 

Table 3.1 TIMP sequence homology in human, chicken, mouse, rabbit and sheep species. 

 Chicken 

TIMP-2 

Chicken 

TIMP-3 

Mouse 

TIMP-1 

Mouse 

TIMP-2 

Rabbit 

TIMP-1 

Rabbit 

TIMP-2 

Sheep 

TIMP-1 

Human 

TIMP-1 

43% 40% 74% - 83% - 85% 

Human 

TIMP-2 

81% 44% - 98% - 94% - 

 

Human TIMP-1 showed the most sequence homology with sheep TIMP-1 (85%), followed 

by rabbit TIMP-1 (83%) and mouse TIMP-1 (74%), suggesting that antibodies against 

human TIMP-1 may cross-react with mouse antigens (Table 3.1).  Chicken TIMP-2 and -3 

(no chicken TIMP-1) appear to share only 43% and 40% sequence homology with human 

TIMP-1 and 81% and 44% with human TIMP-2 (Table 1.3).  Human TIMP-2 showed the 

most overall sequence homology overall with rabbit-, mouse- and chicken TIMP-2, with the 

homology being highest to mouse (98%) and rabbit TIMP-2 (94%) and lowest to chicken 

TIMP-2 (81%) and -3 (44%) (Table 3.1).  Sequence alignments, therefore, indicate that both 

human TIMP-1 and -2 would have the greatest antigenicity in chickens.  As human TIMP-1 

differs significantly from chicken TIMP-2 and -3, a greater immune response to human 

TIMP-1 in the chicken as opposed to TIMP-2 would be anticipated.  As human TIMP-1 and 
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-2 shared a fairly high sequence homology with their mouse counterparts, antibodies raised 

against human TIMP-1 and -2 would be anticipated to cross-react with their corresponding 

mouse antigens in the J774 cell line.   

 

3.4 Production of TIMP-1 and TIMP-2 antibodies in chickens 

Adjuvants are usually used to stimulate the immune response and allow for the gradual 

release of antigen from the inoculation site ensuring maximal antigen exposure to MHC class 

II APCs in the peripheral tissues (Warren et al., 1986; Roitt, 1997).  Efficient uptake of 

antigens by APCs is necessary for an optimal antibody response in the lymph nodes and is 

greatly influenced by the size and form of the antigen as well as the site of inoculation.  

Molecules of pathogenic origin are usually included in the adjuvant as they improve the non-

specific immune response by producing a ‘depot’ effect.  This is a slow leak of antigen into 

the tissue, resulting in continual stimulation of the immune system by encouragement of 

infiltration of inflammatory APCs (Warren et al., 1986).  Pathogen products also stimulate 

lymphokine production and B-cell proliferation.  Heat killed Mycobacterium tuberculosis, 

M. tuberculosis-derived muramyl peptide (Ellous et al., 1974) and the lipid A portion of LPS 

(Johnson et al., 1956) are well suited for inducing a good non-specific immune response.  

One of the most commonly used adjuvants for primary inoculations, Freund’s complete 

adjuvant (FCA) is comprised of killed or attenuated M. tuberculosis and mineral oil (Freund 

and McDermott, 1942; Freund, 1956).  This, followed by booster injections of antigen 

emulsified in FIA (FCA without M. tuberculosis) provide continual stimulation of the 

immune system and induce the IgM to IgG class switch.  Additional booster injections 

improve antibody titre and avidity (Harlow and Lane, 1999).  For this reason this adjuvant 

was chosen for the current study.  

 
A number of antibody isolation methods exist. These include affinity chromatography (Ey et 

al., 1978; Gurvich and Drislikh, 1964), ion exchange chromatography (Bokovsky and 

Kennett, 1987) and precipitation (Russ et al., 1983).  PEG 6 kDa precipitation has been 

extensively used for the rapid, inexpensive and high yield isolation of IgY from egg yolk 

(Polson et al., 1985).  Steric differential exclusion of proteins into the extrapolymer space is 

effected by removing the hydration shells from the proteins.  By adding increasing amounts 

of PEG various proteins exceed their solubility limit and precipitate out of solution, the PEG 

remaining in the supernatant associated with the aqueous phase (Dennison, 1999).  This 

isolation method has been used successfully in our laboratory for many years (Pike et al., 
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1992; Fortgens et al., 1997; Price et al., 2000) and for this reason, was chosen for the current 

study. 

 

3.4.1 Reagents 

Recombinant human TIMP-1 and TIMP-2 (Section 3.2), FCA and FIA. 

 

3.4.2 Procedure 

Antibodies to both human recombinant TIMP-1 and TIMP-2 were raised using one chicken 

for each antigen, as only limited amounts of the antigens were available.  Each antigen was 

triturated through a 26-gauge needle with adjuvant [1:1 (v/v)] until no dispersion occurred 

when a drop of the emulsion was added to water.  All immunisations were administered by 

intramuscular injection at a single site in each of the breast muscles (Table 3.2).  

Unfortunately, as only limited amounts of antigen were available, only a single boost could 

be administered at week 2. 

 

Table 3.2 Immunisation protocol for the production of antibodies against human recombinant TIMP-

1 and TIMP-2 proteins in chickens. 

Week Adjuvant Antigen amount 

  TIMP-1 TIMP-2 

0 FCA ∼ 30 µg ∼ 30 µg 
2 FIA ∼ 30 µg ∼ 30 µg 

 

3.5 ELISA assessment of immune response using diluted egg yolk extracts and 

IgY isolation 

Immunoassays are based on the specific interaction between an antibody and antigen and 

provide quantitative information about the concentration of either the antibody or antigen in 

unknown samples (Johnstone and Thorpe, 1987).  One of the most commonly used 

immunoassays is the enzyme-linked immunosorbent assay (ELISA).  An ELISA utilises an 

enzyme chemically conjugated to either the antibody or antigen to allow detection of specific 

recognition and immune complex formation on a solid surface.  One of the simplest and most 

frequently used ELISAs for the detection of antibodies is known as the three layer system.  

In this system, target antigen coated on to polystyrene microtitre plates is allowed to react 

with suitably diluted primary antibody to be assessed.  Excess antibody is washed away and 

the binding of primary antibody is assayed using an appropriate detection system.  This 

system usually consists of an enzyme conjugated secondary antibody capable of recognising 

the primary antibody bound to the immobilised antigen.  The enzyme is allowed to react with 
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a chromogenic substrate and the coloured product measured spectrophotometrically.  As 

ELISA yields quantitative results it complements western blotting (Section 2.6) which 

provides qualitative information about antibody specificity. 

 
The progress of the chickens’ immune response to the immunogens was followed by ELISA, 

using diluted egg yolk (crude, unpurified preparations containing antibodies), as diluted egg 

yolks give results comparable to those obtained using isolated IgY and offer a satisfactory 

method for determining which eggs should be selected for isolation of optimal levels of 

specific IgY (Coetzer, 1992). 

 

3.5.1 Reagents 

Phosphate buffer [100 mM sodium phosphate buffer, 0.02% (w/v) NaN3, pH 7.6].  

NaH2PO4.H2O (13.8 g) and NaN3 (0.2 g) were dissolved in dH2O (950 ml).  The pH was 

adjusted to 7.6 with NaOH and the solution was made up to 1 l with dH2O. 

 
PBS, pH 7.4.  NaCl (8.0 g), KCl (0.2 g), Na2HPO4 (1.15 g) and KH2PO4 (0.2 g) were 

dissolved in dH2O (800 ml), adjusted to pH 7.4 with HCl and made up to 1 l.  

 
BSA in PBS (BSA-PBS) [0.5% (m/v) in PBS].  BSA (0.5 g) was dissolved in PBS and made 

up to 100 ml. 

 
Tween 20 in PBS (Tween-PBS) [0.1% (v/v) in PBS].  Tween 20 (1 ml) was diluted to 1 l in 

PBS. 

 
Substrate buffer [150 mM citrate-phosphate buffer, pH 5.0].  Na2HPO4 (2.84 g) and citric 

acid (2.29 g) were each dissolved in dH2O and made up to 100 ml.  The citric acid solution 

was titrated against the Na2HPO4 (50 ml) solution to pH 5.0. 

 
Substrate solution [0.05% (m/v) ABTS and 0.0015% (v/v) H2O2 in citrate-phosphate buffer].  

ABTS (7.5 mg) and H2O2 (7.5 µl) were dissolved in citrate-phosphate buffer, pH 5.0 (15 ml), 

for one ELISA plate. 

 
0.1% (m/v) Sodium azide in 150 mM citrate-phosphate buffer, pH 5.0.  For each ELISA 

plate, NaN3 (15 mg) was dissolved in citrate-phosphate buffer (15 ml). 
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3.5.2 Procedure 

Wells of microtitre plates were coated with human recombinant antigen [150 µl/well, 1 

µg/ml in PBS, 16 h, RT], blocked with BSA-PBS (200 µl/well, 1 h, 37oC) and washed with 

Tween-PBS (3 x).  Egg yolk extracts were diluted with two volumes of phosphate buffer and 

used as the primary antibody [100 µl/well, 1:20 (v/v) in BSA-PBS and serially diluted 

twofold thereafter to 1: 10 240 (v/v), 1 h, 37oC].  Excess antibody was washed out with 

Tween-PBS (3 x) and a suitable dilution of rabbit anti-chicken IgY-HRP conjugate in BSA-

PBS was added (120 µl/well, 30 min, 37oC). Excess antibody was washed out with Tween-

PBS (3 x).  The substrate solution was added and incubated in the dark for optimal colour 

development (150 µl/well, 10-20 min, RT) and the enzyme reaction stopped by the addition 

of NaN3 [50 µl/well, 0.1% (m/v) in citrate-phosphate buffer].  Absorbances were read at 405 

nm in a Bio-Tek EL312 Microplate Bio-kinetics reader.  For the controls, either the blocking 

solution, primary antibody or secondary antibody was omitted to assess the efficiency of the 

blocking or the specificities of the primary/secondary antibodies.  Titration curves were 

constructed by plotting -log IgY dilution versus absorbance to assess the immune response 

and determine which eggs should be selected for IgY isolation. 

 
Selected egg yolks were separated from the egg whites, carefully washed in a stream of 

water, the yolk sacs punctured and the yolk volume measured.  Two volumes of phosphate 

buffer were added and mixed gently by inversion after sealing the measuring cylinder with 

Parafilm.  Crushed PEG 6 kDa was added [3.5% (m/v)] and dissolved by stirring.  The 

precipitated vitellin fraction (containing lipoproteins) was pelleted by centrifugation (4420 x 

g, 30 min, RT) and the contaminating lipids removed by filtering the supernatant fluid 

through cottonwool placed in the neck of a funnel.  PEG [8.5% (m/v)] was added to the clear 

filtrate to bring the final volume to 12% (m/v).  The solution was mixed, centrifuged (12 000 

x g, 10 min, RT) and the pellet dissolved in phosphate buffer, in a volume equal to that of the 

initial egg yolk volume.  PEG was added [12% (m/v)], mixed and the solution centrifuged 

(12 000 x g, 10 min, RT).  The supernatant fluid was discarded and the IgY pellet dissolved 

in phosphate buffer equal to 1/6th of the original egg yolk volume.  A 1:50 dilution of IgY in 

phosphate buffer was prepared and the IgY in the indiluted solution was calculated using the 

IgY extinction coefficient ( mg/ml1

nm280E = 1.25) and the equation [IgY] = [(A280/1.25) x 50] 

(mg/ml) (Goldring and Coetzer, 2003). 
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3.5.3 Results 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.2 ELISA of the progress of immunisation of a chicken with human recombinant TIMP-1. 

TIMP-1 coated [1 µg/ml in PBS], incubated with egg yolk extracts (weeks 2-11) [diluted in two volumes of 
phosphate buffer, subsequently diluted 1:20 (v/v) in BSA-PBS and serially diluted twofold thereafter to 1:10 
240 (v/v)], detected with rabbit anti-chicken IgY-HRP [1:5000] and developed in substrate solution [0.05% 

(m/v) ABTS, 0.0015% (v/v) H2O2 in citrate-phosphate buffer].  Diluted egg yolks, pre-immune (•), week 2 (•), 
week 4 (•), week 6 (•), week 8 (•), week 10 (•), week 11 (•).  No coat control (•), no primary antibody (•), no 

secondary antibody (•). 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
Figure 3.3 ELISA of the progress of immunisation of a chicken with human recombinant TIMP-2. 

TIMP-2 coated [1 µg/ml in PBS], incubated with egg yolks (weeks 2-11) [diluted in two volumes of phosphate 
buffer, subsequently diluted 1:20 (v/v) in BSA-PBS and serially diluted twofold thereafter to 1:10 240 (v/v)], 
detected with rabbit anti-chicken IgY-HRP [1:5000] and developed in substrate solution [0.05% (m/v) ABTS, 

0.0015% (v/v) H2O2 in citrate-phosphate buffer].  Diluted egg yolks, pre-immune (•), week 2 (•), week 4 (•), 
week 6 (•), week 7 (•), week 8 (•), week 9 (•), week 10 (•), week 11 (•).  No coat control (•), no primary 

antibody (•), no secondary antibody (•). 
 

The chicken immunised with human recombinant TIMP-1 demonstrated a slightly enhanced 

immune response for weeks 2 and 4 in comparison with the pre-immune control (Figure 3.2).  

Week 6-11 showed a much greater and sustained similar response (Figure 3.2) suggesting 

that the best eggs for chicken anti-TIMP-1 antibody isolation were those laid at this time, 
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especially during weeks 6-8.  Eggs from week 8 were, therefore, selected for isolation and 

yielded 32.42 mg/ml IgY.  In comparison, the immune response from the chicken immunised 

with human recombinant TIMP-2 was not generally as high overall, though a seemingly 

higher response was seen at week 4 (Figure 3.3). This response decreased thereafter, most 

markedly after week 6 (Figure 3.3), suggesting that the best eggs from which to isolate 

chicken anti-TIMP-2 antibodies were those laid in week 4. Eggs from this week were 

selected for isolation and 21.48 mg/ml IgY obtained. 

 

3.6 Western blot characterisation of chicken anti-TIMP-1 and anti-TIMP-2 

antibodies 

The TIMPs 1-4 differ slightly in molecular weight, with molecular weights of 28-34 kDa 

being published for glycosylated TIMP-1 which has two glycosylation sites (Table 1.10).  

Differences in molecular weight seen may, therefore, be due to differences in glycosylation 

(Caterina et al., 1998).  Non-glycosylated TIMP-1 has a molecular weight of approximately 

20 kDa, similar to TIMP-2 (21 kDa) which has no glycosylation sites and hence a less 

variable molecular weight (Woessner and Nagase, 2002).  TIMP-1 and TIMP-2 also share 

some sequence homology (Lambert et al., 2004) which may give rise to cross-reactivity.  

Possibly the best way of checking not only recognition of the antibodies for their target 

antigens, but also for any cross-reactivity with mouse TIMP-1 and TIMP-2 is western 

blotting using crude homogenates of J774 macrophages as the cell line contains both TIMP-1 

and TIMP-2 and any non-specfic cross-reactivity would be with other proteins of the J774 

macrophage. 

 

3.6.1 Reagents 

IgY preparations of anti-TIMP-1 (week 8) and anti-TIMP-2 (week 4) were isolated as 

described in Section 3.5.2. 

 
Pre-immune IgY preparations were isolated from the same hens as used to raise anti-TIMP-1 

and anti-TIMP-2 antibodies (Section 3.5.2). 

 
The rabbit anti-chicken IgG (whole molecule) alkaline phosphatase conjugate used for 

western blotting cross-reacts with IgY. 

 
Reagents for the culture of J774 cells, SDS-PAGE, staining of gels and western blotting were 

prepared according to Sections 2.2.1, 2.3.1.1, 2.4.2.1 and 2.6.2.1, respectively. 
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3.6.2 Procedure 

Insufficient target immunogen was available so such antigens could not blotted, therefore, 

crude J774 macrophage homogenates were used instead to check cross-reactivity with mouse 

proteins.  As part of a collaboration, however, Dr Linda Troeberg (Imperial College, 

London) tested the chicken anti-TIMP-1 and anti-TIMP-2 antibodies against recombinant 

human TIMP-1 and -2, and the results will be included. 

 
Preparation of serum-containing and serum-free, crude J774 macrophage homogenates and 

supernatants                                      

J774 macrophages were cultured in serum-containing medium until 70% confluent (Section 

2.2.2).  For serum-free macrophages, cells were additionally grown overnight in serum-free 

medium.  Cells were scraped off the culture flask into serum-containing or serum-free 

culture medium, respectively using a rubber policeman, poured into a 15 ml centrifuge tube, 

centrifuged (460 x g, 3 min), the supernatant removed and stored at -20oC before analysis.  

The cell pellets were either resuspended in serum-containing or serum-free medium 

(depending on which medium was used for culture) (500 µl) or resuspended directly in 

reducing treatment buffer (500 µl).  Both homogenate preparations were stored at -20oC 

before analysis.  Homogenate and supernatant samples were thawed, combined with an equal 

volume of reducing treatment buffer and boiled for 90 s when required for SDS-PAGE with 

15 µl of homogenate and 10 µl of supernatant samples being loaded on a 12.5% Laemmli 

gel. 

 
Control samples of serum-containing medium (DMEM and FCS) and serum-free medium 

(DMEM without FCS) were stored at -20oC, thawed, combined with an equal volume of 

reducing treatment buffer and boiled for 90 s when required for SDS-PAGE, with 10 µl of 

each sample being loaded on a 12.5% Laemmli gel. 

 

SDS-PAGE and imidazole-SDS-zinc reversible staining were carried out according to 

Sections 2.3.1.2 and 2.4.2.2. 

 
Serum-free J774 homogenate and supernatant samples were prepared as above for western 

blotting.  Serum-free J774 homogenate (10 µl) and supernatant (10 µl) were separated on a 

12.5% Laemmli gel, blotted and probed with chicken anti-TIMP-1 [20 µg/ml], chicken anti-

TIMP-2 [40 µg/ml] and rabbit anti-chicken IgY HRP [1:5000] according to Section 2.6.2.2. 
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3.6.3 Results 

Reducing SDS-PAGE showed that both serum-containing- (Figure 3.4, B, lane 3) and serum- 

free J774 supernatants (Figure 3.4, B, lane 4) had fewer bands than the serum-containing 

(Figure 3.4, B, lane 1) and serum-free J774 homogenates (Figure 3.4, B, lane 2).  

Comparison of the serum-containing J774 supernatant sample (Figure 3.4, B, lane 3) with 

serum- containing medium control (Figure 3.4, B, lane 5) indicate that some bands but not all 

are from the medium, suggesting that the remainder are possibly secreted proteins. 

 
Of the two methods of J774 homogenate preparation investigated (Figure 3.4, A and B),  

samples treated with reducing treatment buffer immediately after isolation and subsequently 

frozen and thawed (Figure 3.4, A), showed a more distinct banding pattern than those first 

frozen in medium before preparation for SDS-PAGE analysis (Figure 3.4, B, lanes 1 and 2), 

with greater smeering possibly being related to an increase in denaturation by freezing in 

media as opposed to in reducing treatment buffer.  Cells cultured in serum-containing 

medium (Figure 3.4, B, lane 1), showed a prominent band at 68 kDa (albumin) and appeared 

to have more bands in comparison with cells cultured overnight in serum-free medium 

(Figure 3.4, B, lane 2).  The serum-free medium control (DMEM without FCS) (Figure 3.4, 

B, lane 6) appeared to show a band of approximately 68 kDa which seems to correspond to 

the albumin present in the serum-containing medium control (Figure 3.4, B, lane 5), 

similarly a band of approximately 68 kDa appears to be present in the empty lane (Figure 

3.4, B, lane between lanes 4 and 5) suggesting that the DMEM and FCS sample loaded in 

lane 5 may have contaminated the serum-free control and the empty lane. To prevent this 

contamination in future, the delay between loading different samples should be kept to a 

minimum. 

 

Based on the above results, the immediate treatment of the cell pellet with reducing 

treatment buffer, followed by freezing and thawing appeared to be the optimal method for 

J774 homogenate preparation and was used for subsequent western blotting. 
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Figure 3.4 Reducing SDS-PAGE separation of J774 macrophage homogenates and supernatants. 

A, serum-free J774 homogenate prepared directly in reducing treatment buffer (15 µl) and B, serum-containing 

J774 homogenate frozen first in serum-containing medium (lane 1, 15 µl), serum-free J774 homogenate frozen 

first in serum-free medium (lane 2, 15 µl), serum-containing J774 supernatant (lane 3, 10 µl), serum-free J774 

supernatant (lane 4, 10 µl), DMEM and FCS (lane 5, 10 µl), DMEM without FCS (lane 6, 10 µl).  All samples 

were diluted [1:1] with reducing treatment buffer boiled for 90 s, combined with bromophenol blue [5 µl, 0.1% 
(m/v) in dH2O] and separated on a 12.5% (v/v) Laemmli gel.  A and B, stained with imidazole-SDS-zinc 
reverse staining. 
 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
Figure 3.5 Characterisation of chicken anti-TIMP-1 using J774 macrophage homogenates and 

supernatants. 

A and B, serum-free J774 supernatant (lane 1, 10 µl) and serum-free J774 homogenate (lane 2, 10 µl) were 

probed with chicken anti-TIMP-1 [20 µg/ml (A)], pre-immune IgY [20 µg/ml (B)], detected using rabbit anti-
chicken IgY-HRP [1: 5000 (A and B)] and developed using DAB substrate solution after separation on a 12.5% 
Laemmli gel and blotting on to nitrocellulose. 

 

Western blots of serum-free J774 homogenate and supernatant using the chicken anti-TIMP-

1 antibody detected a band of approximately 61 kDa in the J774 homogenate (Figure 3.5, A, 

lane 2) and a less distinct band of the same molecular weight was detected in the supernatant 

(Figure 3.5, A, lane 1).  No bands were detected in the pre-immune control (Figure 3.5, B).  

The molecular weight of 61 kDa is much higher than expected for the TIMP-1 monomer (28-
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30 kDa) (Murphy and Willenbrock, 1995; Gomez et al., 1997).  High molecular weight 

forms of TIMP-1 of approximately 66 kDa have been detected in neutrophil homogenates 

(Price et al., 2000), in mouse bone calvaria (Nagayama et al., 1984) and secreted by human 

umbilical vein endothelial cells treated with nafoxidine (De Lorenzo et al., 2000). A 62 kDa 

form of TIMP-1 was identified in parotid saliva (Drouin et al., 1988) and high molecular 

weight aggregates of 56 and 70 kDa have been observed in human plasma (Cawston et al., 

1986).  Polymeric forms of TIMP-1 (28-120 kDa), resistant to reduction have also been 

identified by western blotting of sputum samples (Sorsa et al., 1994).  These forms may exist 

in vivo or may be isolation artifacts generated during homogenisation by enzymes such as 

PDI present in macrophages (Table 1.4) or due to glycosylation and concentration effects 

(Murzin, 1993; Gomez et al., 1997; Hasegawa et al., 2003).  Recognition off different 

epitopes exposed at various times during blotting has also been demonstrated (Holten-

Andersen et al., 2002) but high molecular weight bands were not visible in the original 

sample (Figure 3.1). 

 
The chicken anti-TIMP-2 antibody detected bands of approximately 72 and 69 kDa in the 

J774 homogenate (Figure 3.6, A, lane 1).  The 69 kDa also appeared in the pre-immune 

control (prepared from the same hen in which antibodies were raised) and may, therefore, be 

the product of specific binding of background antibodies present in the hen prior to 

immunisation (Figure 3.6, B, lane 1). The chicken anti-TIMP-2 antibodies should, therefore, 

be affinity purified to remove contaminating background antibodies.  The band of 72 kDa is 

higher than the expected for TIMP-2 (21 kDa).  It has, however, been reported that TIMP-2 

appears to migrate in two positions in reducing SDS-PAGE gels, one form migrates in the 72 

kDa position and the other migrates at the expected molecular weight of 21 kDa.  It is 

suspected that the 72 kDa form of TIMP-2 is actually a relatively stable, reduction resistant 

complex with a processed form of MMP-2 (Zeng and Millis, 1994). This suggests most of 

the TIMP-2 is complexed with MMP-2 and very little, if any TIMP-2 occurs in its free form 

in the cell homogenate. 

 
Blots performed by Dr Linda Troeberg (Imperial College, London) against human 

recombinant TIMP-1 and TIMP-2 showed that both chicken anti-TIMP-1 (Figure 3.7, lanes 

1-6) and anti-TIMP-2 (Figure 3.7, lanes 7-13) recognised low molecular weight forms of 

human TIMP-1 and TIMP-2, respectively. 
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Figure 3.6 Characterisation of chicken anti-TIMP-2 using J774 macrophage homogenates and 

supernatants. 

A and B, serum-free J774 homogenate (lane 1, 10 µl), serum-free J774 supernatant (lane 2, 10 µl), DMEM 

without FCS (lane 3, 10 µl), were probed with chicken anti-TIMP-2 [40 µg/ml (A)], pre-immune IgY [40 µg/ml 
(B)], detected with rabbit anti-chicken IgY-HRP [1: 5000 (A and B)] and developed using DAB substrate 
solution after separation on a 12.5% (v/v) Laemmli gel and blotting on to nitrocellulose. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 3.7 Characterisation of chicken anti-TIMP-1 and anti-TIMP-2 using human recombinant 

TIMP-1 and TIMP-2. 

Human recombinant TIMP-1 100 ng (lane1), 50 ng (lane 2), 25 ng (lane 3), 12 ng (lane 4), 6 ng (lane 5), 3 ng 
(lane 6) and human recombinant TIMP-2 100 ng (lane7), 50 ng (lane 8), 25 ng (lane 9), 12 ng (lane 10), 6 ng 
(lane 11), 3 ng (lane 12), 1.5 ng (lane 13), were probed with chicken anti-TIMP-1 [65 µg/ml (lanes 1-6)], 
chicken anti-TIMP-2 [43 µg/ml (lanes 7-13)], detected and developed with a rabbit anti-chicken IgY-alkaline 
phosphatase system after separation on a 12.5% (v/v) Laemmli gel and blotting on to nitrocellulose. 

 

3.7 Characterisation of other antibodies used in the study 

Cathepsin B (Mørland and Pedersen, 1979; Muno et al., 1990; Lah et al., 1995; Reddy et al., 

1995), cathepsin D (Diment and Stahl, 1985; Diment et al., 1988), cathepsin H (Muno et al., 

1990; Portnoy et al., 1986; Claus et al., 1998), cathepsin S (Shi et al., 1992; Claus et al., 

1998; Jahraus et al., 1998) and cathepsin L (Reilly et al., 1989; Reddy et al., 1995) have 

been reported in various macrophage types. 
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Early studies suggested that only the proforms of certain cathepsins are secreted by 

monocytes/macrophages (Portnoy et al., 1986; Reilly et al., 1989).  Both thioglycolate-

elicited mouse peritoneal macrophages and J774 mouse macrophages secrete a 36 kDa form 

of procathepsin L (Portnoy et al., 1986), whereas, human alveolar macrophages secrete a 43 

kDa precursor form (Reilly et al., 1989).  Monocytes allowed to mature under specific 

culture conditions form MDMs with a highly proteolytic phenotype.  These cells secrete the 

proforms of cathepsin B (45 kDa), cathepsin L (43 kDa), cathepsin S (37 kDa) as well as the 

mature, single chain forms of cathepsin B (31 kDa), cathepsin L (34 kDa) and cathepsin S 

(25 kDa) (Reddy et al., 1995).  Both the pro- and mature forms of cathepsins K and L appear 

to be secreted within 5 and 3 culture days, respectively, whereas, the proforms of cathepsin B 

and S were detected after 3 culture days, with mature forms being detected after 5 days for 

cathepsins B and L and 12 days for cathepsin S (Punturieri et al., 2000).  The variation in 

secretion between the types of cathepsin as well as between the different forms suggests that 

these proteins are packaged and secreted from different intracellular compartments.  

Although both forms of cathepsin L were secreted, cathepsin L was preferentially secreted as 

mature enzyme (Punturieri et al., 2000).  Active cathepsin H has been identified in both 

mouse macrophages (Muno et al., 1990; Claus et al., 1998) and human monocytes (Greiner 

et al., 2003).  Fully differentiated peripheral blood monocytes show more cathepsin H 

activity than immature monocytes (Greiner et al., 2003).   MDMs are also capable of 

secreting both pro- and mature forms of cathepsin D, with the proform being secreted in the 

first 5 days of culture (Punturieri et al., 2000). 

 
Before immunolocalisation studies on these antigens in macrophages were carried out the 

cross-reactivity of chicken anti-human liver cathepsin B (Elliott, 1993), chicken anti-porcine 

cathepsin D (Fortgens et al., 1997; Elliott et al., 1995), chicken anti-cathepsin S (Morrison, 

L., unpublished), rabbit anti-cathepsin H (Coetzer, 1992), rabbit anti-cathepsin L (Pike, 

1990), chicken anti-human MMP-9 (Price et al., 2000) and chicken anti-human TIMP-1 

(Clulow, M., unpublished) with mouse antigens was checked.  Sheep anti-human TIMP-2 

serum supplied by Dr Linda Troeberg (Imperial College, London) was previously checked 

for cross-reactivity with mouse antigens and was, therefore, not repeated. 
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3.7.1 Reagents 

Antibodies were kind gifts from current or former members of our research group in the 

Department of Biochemistry, University of KwaZulu-Natal, Pietermaritzburg.  Chicken anti-

human liver cathepsin B was from Dr E. Elliott, chicken anti-porcine cathepsin D was from 

Dr P. Fortgens, chicken anti-cathepsin S was from Miss L. Morrison, rabbit anti-cathepsin H 

was from Prof T. H. T. Coetzer, rabbit anti-cathepsin L was from Dr R. Pike, chicken anti-

human MMP-9 was from Dr B. Price and chicken anti-human TIMP-1 was from Miss M. 

Clulow. 

 
Pre-immune sera were not from the same animals used to raise the antibodies but were from 

pooled samples. 

 

Reagents for the culture of J774 cells, SDS-PAGE, CBB staining and western blotting were 

prepared according to Sections 2.2.1, 2.3.1.1, 2.4.1.1 and 2.6.2.1, respectively. 

 
10 x PBS.  Na2HPO4 (2.6 g), NaH2PO4·H2O (0.36 g) and NaCl (16.4 g) were dissolved in a 

final volume of 200 ml dd.H2O without pH adjustment. The solution was autoclaved (121°C, 

15 min) and stored in aliquots at –20°C. 

 
Percoll [63% (v/v) in PBS].  63 parts 100% Percoll (density 1.13 g/ml) were diluted with 7 

parts 10 x PBS and 30 parts 1 x PBS just before use, and kept on ice. 

 
Percoll [72% (v/v) in  PBS].  72 parts 100% Percoll (density 1.13 g/ml) were diluted with 8 

parts 10 x PBS and 20 parts 1 x PBS just before use, and kept on ice. 

 

3.7.2 Procedure 

Preparation of crude monocyte homogenates 

Venous blood was drawn from a healthy, non–smoking volunteer into a centrifuge tube 

containing citrate–phosphate–dextrose anticoagulant (7 ml) to a final volume of 50 ml. 

Percoll [63% (v/v)] (15 ml) was added to a sterile 50 ml conical centrifuge tube and carefully 

underlaid with Percoll [72% (v/v)] (15 ml), taking care not to disturb the discontinuous 

gradient with air bubbles. Anticoagulated whole blood (15 ml) was slowly layered on top of 

the pre–cooled Percoll gradient and centrifuged (500 x g, 30 min, RT). The plasma and 

mononuclear cell layer (from which the monocytes were obtained) were removed, aspirated, 

the cells resuspended in physiological saline (~1–5 ml) and stored at -20oC (Boyum, 1976). 
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When required, blood monocytes were thawed and centrifuged (17 203 x g, 12 min, RT). 

The pellet was sonicated (30 min, RT) and for SDS-PAGE was combined with equal 

volumes of reducing treatment buffer and boiled for 90 s.  A sample of human plasma was 

similarly treated and used as the control. 

 
Crude serum-containing J774 macrophage homogenates were initially frozen in medium 

before preparation in reducing treatment buffer for SDS-PAGE analysis (Section 3.6.2).  

SDS-PAGE and CBB staining were performed according to Sections 2.3.1.2 and 2.4.1.2.  

Serum-containing J774 homogenates (12 µl) and supernatants (10 µl), human monocyte 

homogenate (5 µl) and plasma (10 µl) were separated on 12.5% Laemmli gels (Section 

2.3.1.2),  transferred to nitrocellulose and probed with chicken anti-human liver cathepsin B 

[20 µg/ml or 35 µg/ml], chicken anti-cathepsin D [20 µg/ml or 40 µg/ml], rabbit anti-

cathepsin H [10 µg/ml or 20 µg/ml], rabbit anti-cathepsin L [5 µg/ml or 10 µg/ml], chicken 

anti-cathepsin S [10 µg/ml or 20 µg/ml], chicken anti-MMP-9 [30 µg/ml], chicken anti-

human TIMP-1 [10 µg/ml], rabbit anti-chicken IgG-alkaline phosphatase [1:100 000], goat 

anti-rabbit IgG-alkaline phosphatase [1: 30 000] according to Section 2.6.2.2. 

 

3.7.3 Results 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.8 Reducing SDS-PAGE separation of human monocyte and J774 mouse macrophage 

homogenates. 

A, human plasma (lane 1, 2 µl), human monocyte homogenate (lane 2, 2 µl) and B, serum-free J774 
homogenate prepared immediately in reducing treatment buffer (15 µl), diluted [1:1] with reducing treatment 
buffer, combined with bromophenol blue [5 µl, 0.1% (m/v) in dH2O] and separated on a 12.5% (v/v) Laemmli 
gel.  A and B, stained with CBB. 

 

Reducing SDS-PAGE showed a number of bands present in the serum-free J774 homogenate 

(Figure 3.8, B) which are not found in the human plasma and monocyte homogenate (Figure 

3.8, A, lanes 1 and 2, respectively).  Certain bands in the human monocyte homogenate 
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(Figure 3.8, A, lane 2) may be due to the presence of plasma in the monocyte homogenate 

(Figure 3.8, A, lane 1). 

 
The antibodies to cathepsins B, D, H, L and S targeted only bands of the anticipated 

molecular weights in crude monocyte and J774 cell homogenates.  Bands of approximately 

39 kDa in the J774 mouse macrophage homogenate (Figure 3.9, A, lane 4) and 44 kDa in the 

human monocyte homogenate (Figure 3.9, B, lane 4) identified with the IgY anti-human 

liver cathepsin B antibody seem to correspond to the 40 kDa molecular weight of 

glycosylated human procathepsin B (Chan et al., 1986) with variations in targeted bands 

possibly representing differences in glycosylation patterns.  A 20 kDa band in the J774 

homgenate (Figure 3.9, A, lane 4) may correspond to the 22 kDa heavy chain of human 

cathepsin B (Kirschke et al., 1998) and a band of approximately 31 kDa in the homogenate 

of human monocytes (Figure 3.9, B, lane 4) may correspond to the single chain of human 

cathepsin B (25 kDa) (Kirschke et al., 1998).  No detectable secreted cathepsin B was 

observed in the J774 supernatant (Figure 3.9, A, lane 3), however, the 44 kDa proform of 

cathepsin B appeared to be detected in the human plasma (Figure 3.9, B, lane 3).  Assuming 

that the IgY anti-human liver cathepsin B antibody detects both pro- and mature forms to the 

same extent and from the intensity of the targeted bands it appears that antibody detected 

equivalent amounts of both pro- (approximately 50%) and mature (approximately 50%) 

cathepsin B in J774 macrophages (Figure 3.9, A, lane 4).  

 

The 56 and 16 kDa bands in the J774 homogenate (Figure 3.10, A, lane 4) and 58 and 15 

kDa bands in the human plasma (Figure 3.10, B, lane 3) revealed with the chicken anti-

cathepsin D antibody appear to correspond to the 53 kDa precursor and 15 kDa light chain of 

cathepsin D previously observed in rabbit alveolar macrophages (Diment et al., 1988).  In 

the J774 homogenate (Figure 3.10, A, lane 4), cathepsin D appears predominantly 

(approximately 80%) as a light chain as opposed to the precursor form in the monocyte 

homogenate (Figure 3.10, B, lane 4).  This could indicate that the light chain contains most 

of the antigenic epitopes or that the heavy chain (35 kDa) has been degraded (Takahashi and 

Tang, 1983; Campaine et al., 1995). 
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Figure 3.9 Detection of cathepsin B in J774 macrophage and human monocyte homogenates. 

A, serum-containing J774 homogenate (lanes 2 and 4, 12 µl) and supernatant (lanes 1 and 3, 10 µl) and  

B, human monocyte homogenate (lanes 2 and 4, 5 µl), human plasma (lanes 1 and 3, 10 µl) were probed with 

chicken pre-immune IgY [20 µg/ml (A, lanes 1 and 2) or 35 µg/ml (B, lanes 1 and 2)], chicken anti-human liver 

cathepsin B [20 µg/ml (A, lanes 3 and 4) or 35 µg/ml (B, lanes 3 and 4)], detected with rabbit anti-chicken IgG 
(whole molecule)-alkaline phosphatase [1:100 000 (A and B)] and developed in alkaline phosphatase substrate 
buffer after separation on a 12.5% (v/v) Laemmli gel and blotting on to nitrocellulose. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10  Detection of cathepsin D in J774 macrophage and human monocyte homogenates. 

A, serum-containing J774 homogenate (lanes 2 and 4, 12 µl) and supernatant (lanes 1 and 3, 10 µl) and 

B, human monocyte homogenate (lanes 2 and 4, 5 µl), human plasma (lanes 1 and 3, 10 µl) were probed with 

chicken pre-immune IgY [20 µg/ml (A, lanes 1 and 2) or 40 µg/ml (B, Lanes 1 and 2)], chicken anti-cathepsin 

D [20 µg/ml (A, lanes 3 and 4) or 40 µg/ml (B, lanes 3 and 4)], detected with rabbit anti-chicken IgG (whole 
molecule)-alkaline phosphatase [1:100 000 (A and B)] and developed using alkaline phosphatase substrate 
buffer after separation on a 12.5% (v/v) Laemmli gel and blotting on to nitrocellulose. 

 

When the J774 and human monocyte homogenates as well as human plasma were probed 

with rabbit anti-cathepsin H antibodies, bands of approximately 36 kDa (Figure 3.11, A, lane 

3) and 37 kDa (Figure 3.11, B, lanes 3 and 4), respectively, were seen.  These are 

approximately the molecular weight reported for human procathepsin H (41 kDa) (Kirschke 
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et al., 1998).  An 18 kDa (Figure 3.11, A, lane 3), close to the molecular weight (21 kDa) of 

the heavy chain reported for cathepsin H (Portnoy et al., 1986) was also observed in the J774 

homogenate.  Assuming that the rabbit anti-cathepsin H antibody detects both pro- and 

mature cathepsin H equally, there appears to be approximately 50% pro- and approximately 

50% mature cathepsin H in J774 macrophages.   The light chain band (5 kDa) (Kirschke et 

al., 1998) seems to have run off the lower edge of the blot (Figure 3.11, A, lane 3).   

 

 

 

 

 

 

 

 

 

 

Figure 3.11  Detection of cathepsin H in J774 macrophage and human monocyte homogenates. 

A, serum-containing J774 homogenate (lanes 1 and 3, 10 µl) and supernatant (lanes 2 and 4, 12 µl) and   

B, human monocyte homogenate (lanes 2 and 4, 5 µl), human plasma (lanes 1 and 3, 10 µl) were probed with 

rabbit pre-immune IgG [10 µg/ml (A, lanes 1 and 2) or 20 µg/ml (B, lanes 1 and 2)], rabbit anti-cathepsin H [10 

µg/ml (A, lanes 3 and 4) or 20 µg/ml (B, lanes 3 and 4)], detected with goat anti-rabbit IgG (whole molecule)-
alkaline phosphatase [1:30 000 (A and B)] and developed in alkaline phosphatase substrate buffer after 
separation on a 12.5% (v/v) Laemmli gel and blotting on to nitrocellulose. 

 

The various forms of cathepsin L have molecular weights similar to those of cathepsin H 

(Kirschke et al., 1998).  Bands of approximately 37 kDa in the J774 homogenate (Figure 

3.12, A, lane 3) and in the human plasma and monocyte homogenate (Figure 3.12, B, lanes 3 

and 4) correspond to the reported molecular weight of procathepsin L (Kirschke et al., 1998).  

The 66 kDa bands observed in the human plasma and monocyte homogenate (Figure 3.12, B, 

lanes 3 and 4) may represent a dimeric form of cathepsin L.  Detectable active cathepsin L 

(28 kDa) does not appear to be present in monocyte homogenate (Figure 3.12, B), however, 

a band of approximately 19 kDa in the J774 homogenate (Figure 3.12, A, lane 3) may 

correspond to the heavy chain of cathepsin L.  From the blot it appears that equivalent 

amounts of pro- (approximately 50%) and mature (approximately 50%) cathepsin L are 

present in the J774 homogenate (Figure 3.12, A, lane 3). 
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Figure 3.12 Detection of cathepsin L in J774 macrophage and human monocyte homogenates. 

A, serum-containing J774 homogenate (lanes 1 and 3, 10 µl) and supernatant (lanes 2 and 4, 12 µl) and           

B, human monocyte homogenate (lanes 2 and 4, 5 µl), human plasma (lanes 1 and 3, 10 µl) were probed with 

rabbit pre-immune IgG [5 µg/ml (A, lanes 1 and 2) or 10 µg/ml (B, lanes 1 and 2)], rabbit anti-cathepsin L [5 

µg/ml (A, lanes 3 and 4) or 10 µg/ml (B, lanes 3 and 4)], detected with goat anti-rabbit IgG (whole molecule)-
alkaline phosphatase [1:30 000 (A and B)] and developed in alkaline phosphatase substrate buffer after 
separation on a 12.5% (v/v) Laemmli gel and blotting on to nitrocellulose. 

 

Two bands of cathepsin S of approximately 39 kDa and 25 kDa corresponding possibly to 

pro- (37 kDa) and mature cathepsin S (24 kDa) were observed in the monocyte homogenate 

(Figure 3.13, B, lanes 3 and 4), whereas, a 34 kDa band (Figure 3.13, A, lane 3), possibly 

corresponding to procathepsin S was detected in the J774 homogenate (Kirschke et al., 1998) 

and no detectable mature cathepsin S was seen in the J774 homogenate, this is in agreement 

with Punturieri et al. (2000) only detected significant amounts of mature cathepsin S in 

MDM lysates after 12 days of culture.  It is, therefore, possible that only undetectable 

amounts of mature cathepsin S were present as cells were not cultured for 12 days. 

 

A summary of the percentage of precursor to mature cathepsin present in J774 homogenates 

is given in Table 3.3. 

 

Table 3.3  Summary of western blot data showing percentage occurrence of the precursor and mature 

forms of cathepsins H, S, D, B and L in J774 macrophages. 

 Precursor form (%) Mature form (%) 

Cat H 50 50 

Cat S 90 10 

Cat D 20 80 

Cat B 50 50 

Cat L 50 50 

Abbreviation: Cat, cathepsin. 
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Figure 3.13  Detection of cathepsin S in J774 macrophage and human monocyte homogenates. 

A, serum-containing J774 homogenate (lanes 1 and 3, 10 µl) and supernatant (lanes 2 and 4, 12 µl) and           

B, human monocyte homogenate (lanes 2 and 4, 5 µl), human plasma (lanes 1 and 3, 10 µl) were probed with 

chicken pre-immune IgY [10 µg/ml (A, lanes 1 and 2) or 20 µg/ml (B, lanes 1 and 2)], chicken anti-cathepsin S 

[10 µg/ml (A, lanes 3 and 4) or 20 µg/ml (B, lanes 3 and 4)], detected with rabbit anti-chicken IgG (whole 
molecule)-alkaline phosphatase [1:100 000 (A and B)] and developed alkaline phosphatase substrate buffer 
after separation on a 12.5% (v/v) Laemmli gel and blotting on to nitrocellulose. 

 

The antibodies against MMP-9 and TIMP-1 appeared to target antigens of the anticipated 

molecular weight.  The chicken anti-MMP-9 antibody detected bands of approximately 121, 

70 and 65 kDa (Figure 3.14, lanes 3 and 4) in the monocyte homogenate.  The high 

molecular weight form could be a heterodimer of MMP-9 (Goldman et al., 2003), however, a 

120 kDa complex of MMP-9 bound to neutrophil gelatinase-B associated lipocalin (NGAL) 

has been identified under reducing SDS-PAGE conditions in neutrophils (Owen et al., 2003).  

NGAL or an NGAL equivalent does not seem to be present in macrophages, at least not 

according to phagosomal analyses (Table 1.4) but PDI does (Garin et al., 2001).  

Macrophage PDI involved in disulfide crosslinking, may be responsible for the high Mr 

complexes seen in TIMPs, though glycosylation has been reported to be a major contributor 

(Hasegawa et al., 2003).  The 70 and 65 kDa bands are probably processed active forms of 

MMP-9 as bands of 74 and 65 kDa have been reported (Woessner and Nagase, 2002).  

Interestingly, the chicken anti-MMP-9 did not detect either pro- or mature MMP-9 in the 

J774 homogenate (results not shown).  It is known, however, that mouse macrophages 

appear to have less MMP-9 than human macrophages (Filippov et al., 2003), therefore, the 

levels of MMP-9 in the J774 cells may have been below the detection limit.  The chicken 

anti-human TIMP-1 antibody detected a band of approximately 22 kDa in the J774 

homogenate which may correspond to a 20.6 kDa unglycosylated form of TIMP-1 (Figure 

3.15) (Woessner and Nagase, 2002). 



 

 82

 
 

 

 

 

 

 

 

 

 

 
Figure 3.14 Detection of MMP-9 in human monocyte homogenate. 

Human monocyte homogenate (lanes 1 and 3, 5 µl), human plasma (lanes 2 and 4, 10 µl) were probed with 

chicken pre-immune IgY [30 µg/ml (lanes 1 and 2)], chicken anti-MMP-9 [30 µg/ml (lanes 3 and 4)], detected 
with rabbit anti-chicken IgG (whole molecule)-alkaline phosphatase [1:100 000] and developed in alkaline 
phosphatase substrate buffer after separation on a 12.5% (v/v) Laemmli gel and blotting on to nitrocellulose. 

 

The pooled pre-immune preparations, however, used at the same level showed non-specific 

bands at 44 and 40 kDa in the J774 homogenate using the rabbit pre-immune (Figure 3.11, 

A, lane 1 and Figure 3.12, A, lane 1) and 18 kDa using the chicken pre-immune (Figure 3.9, 

A, lane 2 and Figure 3.10, A, lane 2), respectively.  The 18 kDa band was not seen in the pre-

immune IgY preparation from chickens used to make anti-TIMP-1 and anti-TIMP-2 

antibodies (Figures 3.5, B and 3.6, B) used at similar levels on similar homogenates and 

may, therefore, just represent background antibodies present at low levels in this particular 

pre-immune IgY preparation. 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.15 Detection of TIMP-1 in J774 macrophage homogenate. 
Serum-containing J774 macrophage homogenate were separated on a 12.5% Laemmli gel, blotted on to 
nitrocellulose, probed with chicken anti-human TIMP-1 [10 µg/ml] detected with rabbit anti-chicken IgG 
(whole molecule)-alkaline phosphatase [1:100 000] and developed using BCIP, 0.015% (m/v), NBT, 0.03% 
(m/v) in alkaline phosphatase substrate buffer. 
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3.8 Discussion 

High molecular weight forms of TIMPs (56, 62, 66, 56, 70 and polymeric forms 28-120 

kDa) have been targeted in many studies and their presence has been ignored (Nagayama et 

al., 1984; Cawston et al., 1986; Drouin et al., 1988; Sorsa et al., 1994; De Lorenzo et al., 

2000; Price et al., 2000).  Various antibody preparations have also shown variable 

recognition for different antigenic regions in TIMP-1 (Holten-Andersen et al., 2002).  As the 

newly produced antibodies against TIMP-1 and -2 do not detect reported and recognised 

forms of TIMP-1 and -2, these antibodies will not be used in this study and rather a chicken 

anti-TIMP-1 antibody previously made against human TIMP-1 (Clulow, M., unpublished) 

and a sheep anti-recombinant human TIMP-2 (Dr Linda Troeberg, Imperial College, 

London) targeting the correct molecular weights will be used.  To verify that the high 

molecular weight bands are TIMP-1 and TIMP-2 western ligand blots (Price et al., 2000) and 

sequencing may be performed to verify the identification of such bands. 

 
The current western blotting of J774 mouse macrophages showed pro- (39 and 44 kDa) and a 

smaller processed form (20 kDa) of cathepsin B.  Greiner et al. (2003), however, reported 

only a 32 kDa form of cathepsin B in human monocytes and it is possible that only the 

precursor is present as the lower band may actually be the same molecular weight as the non-

specific band detected by the pre-immune IgY.  Western blotting also showed only the 

proform of cathepsin L in human monocyte homogenates, whereas, both pro- and mature 

forms were present in J774 macrophages.  Only the proform of cathepsin S was seen in J774 

homogenates, though both pro- and mature forms were present in human monocytes.  If 

cathepsin S occurs only in its precursor form and is considered a marker for the late 

endosome (Jahraus et al., 1998), the presence of an immature form would be most 

unanticipated, as cathepsins are usually processed in the acidic environment of the late 

endosome (Kirschke et al., 1998). 

 
Whereas both the pro- and mature forms of cathepsins B and H where detected in the J774 

and human monocyte homogenates, only mature cathepsin D was detected in J774 cells.  For 

immunolabelling studies this could have important consequences.  Polyclonal antibody 

preparations recognise all forms of cathepsins and if different vesicle populations contain 

either pro- or mature cathepsins, it would be impossible to distinguish these different 

populations using such antibodies.  As cathepsin D is mainly known as a marker for the 

acidic digestive body i.e. the lysosome and/or possibly the late endosome, where cathepsin D 

should be in its active form in both cases, and as J774 cells seem to contain almost 
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exclusively mature cathepsin D, the cathepsin D antibody could form one of the most 

reliable markers.  Cathepsin B and H antibodies, for example, would be labelling both 

precursor and mature forms of the enzyme, here demonstrated to be present in the J774 cell, 

and hence acidic (containing mature enzyme) and non-acidic secretory vesicles (containing 

immature enzyme) could not be distinguished.  This would complicate the use of these 

antigens as marker antigens for distinguishing various endocytic populations without the use 

of additional markers or probes for e.g. pH.  Where only a mature or immature form of the 

enzyme is present, as apparently the case with cathespsin D (mature form), polyclonal 

antibodies are more useful, as they could be used reliably without additional probes. 

 

From these blots, assuming equal recognition of all bands, it is interesting to note the 

differences in cathepsin content between human monocyte/macrophages and J774 cells.  It 

would seem, that J774 mouse macrophages and human blood monocytes contain equal 

amounts of pro- and mature cathepsin B, blood monocytes have more pro- than mature 

cathepsin D, whereas, J774 macrophages appear to be the reverse.  Similarly, cathepsins H 

and L appear to have equal mounts of both pro- and mature in J774 macrophages, while 

monocytes have only the proform.  The blood monocytes have equal amounts of pro- and 

mature cathepsin S, but J774 macrophages have only procathepsin S. 

 
The specificity and cross-reactivity of cathepsin, MMP-9 and TIMP-1 antibodies with mouse 

antigens seems to have been established and, therefore, were used in immunolabelling 

studies.  The most important findings, besides the establishment of the variable suitability of 

the available antibodies for immunolabelling studies, seems to be that there do appear to be 

differences between the molecular weight and ratio of forms of cathepsin (precursor and 

mature) in J774 macrophages and human blood monocytes, verifying previous statements 

about the phenotypic differences between monocyte/macrophages from different species.  
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CHAPTER 4 

 

J774 MOUSE MACROPHAGE VESICLE POPULATIONS 

 

4.1 Introduction 

Neutrophils (PMNs) and mononuclear phagocytes, or their activated counterparts, 

macrophages, are considered first and second line defence phagocytes of the innate immune 

system, respectively (van Oss, 1986; Garin et al., 2001; Ross and Auger, 2002).  Both 

differentiate from a single myeloblast precursor that expresses key enzymes, such as 

cathepsins B and D, MPO and elastase (Tapper, 1996). 

 

Upon promyeloblast differentiation and progression to the promyelocye, myelocyte and 

finally to the PMN, cathepsin G and MPO continue to be expressed but cathepsin B and D 

expression ceases.  Mature myelocytes or PMNs, therefore, contain cathepsin G and MPO 

but little cathepsin B or D.  Upon synthesis, PMN expressed proteins are packaged into large 

granules via a non-sorting process known as “targeting by timing”, particular proteins 

expressed at a specific time being packaged into granules of specific morphology (Tapper, 

1996; Gullberg et al., 1997; Borregaard and Cowland, 1997; Faurschou and Borregaard, 

2003).   

 

On the other hand, during differentiation of the promonoblast, to give rise to promonocytes, 

monocytes and finally macrophages, expression of cathepsins B and D persists but the 

expression of elastase and MPO is terminated (Tapper, 1996; Gullberg et al., 1997; 

Borregaard and Cowland, 1997; Faurschou and Borregaard, 2003).  Monocytes and their 

activated macrophage counterparts, therefore, contain cathepsin B and D but little elastase or 

MPO (Campbell et al., 1989; Ross and Auger, 2002).  As promonocytes differentiate to 

monocytes, distinctive granule populations seem to be lost and smaller vesicular- and 

endosome-lysosome type populations seem to predominate.  Many more cathepsins are also 

expressed (Schmid et al., 2002; Rivera-Marrero et al., 2004).  These enzymes have been 

described in various cell types as having a distinctive trafficking and processing pattern.  

This involves precursor trafficking from the Golgi to the late endosome via the MPR for 

activation and subsequent targeting to “lysosomal” storage organelles (Chapman et al., 

1997).  This is unlike the “targeting by timing” of proteases seen in the PMN which utilises 
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no sorting mechanism (Borregaard and Cowland, 1997; Faurschou and Borregaard, 2003).  

The markers associated with this trafficking and other markers and properties associated with 

the endosome-lysosome-like system of most cell types (Clague, 1998; Pillay et al., 2002) 

may, therefore, potentially be useful in describing the organelles present in the macrophage 

(Claus et al., 1998; Anes et al., 2006).  It is now beginning to become evident that many of 

the classical markers for organelles previously designated “lysosomal” due to the presence of 

LAMPs, acidity or mature lysosomal enzymes and the lack of the 215 kDa MPR, may 

require re-evaluation as subpopulations within these previous groupings have been identified 

(Anes et al., 2006).  For this reason, effort will be made to highlight these possibly 

oversimplified classifications by indicating such as “classical” assignations in the 

explanations given below.  

 

In classical descriptions of endosome-lysosome systems (Figure 4.1), small particles, solutes, 

transmembrane proteins and membrane-bound ligands are incorporated into vesicles derived 

from the plasma membrane (Vieira et al., 2002), or, in the case of the macrophage this is 

most often membrane from the ER (Gagnon et al., 2002). Vesicles and their cargo are 

classically targeted to the early or tubulovesicular, sorting endosomes which label with Rab5 

and EEA1 (Ghosh et al., 1994). Classically described as mildly acidic (pH of 6.3-6.5), and 

usually poor in proteases, these organelles have been reported to sort and recycle membrane 

and contain receptors such as the transferrin receptor to the plasma membrane, recycling 

endosomes or to the late endosome to be degraded (Pillay et al., 2002; Vieira et al., 2002).  

Generally closely associated with microtubules, recycling endosomes have been described as 

less acidic (pH 6.5) than lysosomes (pH <5.5) and Rab11-positive (Vieira et al., 2002).   

 

Sorting in sorting endosomes is also classically agreed to occur via either of two model 

systems.  In the shuttle vesicle model, vesicles carrying endocytosed material and specific 

membrane components shuttle between pre-existing, stable early endosomes, endosome 

carrier vesicles (ECVs) and multivesicular bodies (MVBs) or late endosomes (Griffiths, 

1996a; Clague, 1998; Pillay et al., 2002).  In the maturation model, on the other hand, sorting 

endosomes are transient organelles capable of maturing into ECVs, MVBs or late endosomes 

via fusion and fission events (Murphy et al., 1991; Vieira et al., 2002).  The phagosome, into 

which larger particles are captured, is the only organelle that can definitively be seen to 

“mature”.  In this case, only recently has it been revealed that there is a gradual pH change 

from near neutral to acidity.  This is accompanied by the acquisition of lysosomal enzymes 
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which is in turn associated with the transient association of markers for the early endosome 

(Rab5), late endosome (Rab7) and finally most of the markers of the late endosome and 

lysosome (Desjardins et al., 1994a; Desjardins et al., 1995; Desjardins et al., 1997; Pillay et 

al., 2002).  Since the phagosome is not a focus of the current study, however, further details 

of phagosome maturation will not be included here.  Most of the studies on the early and late 

endosomes, recycling endosomes, and lysosomes, as well as the phagosome, have been 

considerably facilitated by the ability to distinguish organelles in the endosome-lysosome 

system by filling the pathway and following endocytic traffic in pulse-chase studies.  This 

has allowed the separation, and hence identification and purification of marker receptors 

such as Rab5 or EEA1 and the late endosomal Rab7 marker (Meresse et al., 1995) as well as 

the major 215 kDa MPR involved in trafficking of cathepsin enzymes (Griffiths, 1996a; 

Pillay et al., 2002; Vieira et al., 2002). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.1 Model of the endocytic pathway. 

Organisation of the endocytic pathway showing most important organelles, the early endosome, late endosome 
and lysosome.  Solid arrows between compartments indicate vesicular trafficking or direct fusion.  The 
phagosome is an additional compartment of the endocytic pathway and broken arrows indicate the 
compartments that interact with the phagosome and deliver proteolytic content to the phagosome, aiding in the 
process of phagosomal maturation (modified from Pillay et al., 2002; Gruenberg and van der Goot, 2006). 

 

Identification of the classical acidic multivesicular or multilamellar late endosomes (pH 5.5) 

on the other hand was considerably facilitated using two approaches.  These involved 

following the endocytic traffic for sorting and degradation, and the distinctive trafficking and 

processing pattern of cathepsins.  The unique trafficking of cathepsins was revealed initially 

by studies on lysosomal enzyme storage and secretion diseases, such as I cell and Hurler’s 
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diseases (Kornfeld, 1986).  These diseases showed the importance of ER and Golgi 

processing, i.e. the addition of the high mannose-6-phosphate tag to lysosomal cathepsins, 

and the presence of 215 kDa MPR for the correct trafficking of the cathepsins between the 

Golgi and the late endosome for activation (Kornfeld, 1986; Turk et al., 2000; Wolters and 

Chapman, 2000; Barrett et al., 2004).  These studies also showed that deficiency in either 

results in secretion of procathepsins i.e. default secretion via a “secretory” pathway not to be 

confused with the “regulated secretory” pathway which contains late endosome-processed 

cathepsins (Brown et al., 1986).  Such a “regulated secretory” vesicle is also classically 

known as a “secretory lysosome” or a lysosome capable of regulated exocytosis (Griffiths, 

1996b).  Though later studies showed an additional 46 kDa receptor also responsible for 

lysosomal targeting of these proteins (Hoflack and Kornfeld, 1985; Riese and Chapman, 

2000; Wolters and Chapman, 2000), studies on the 215 kDa receptor revealed the late 

endosome as the major sorting and processing organelle for enzymes such as the cathepsins 

and receptors such as the MPR and the necessity for an acid pH to perform the sorting and 

recycling role (Brown et al., 1986). 

 

At the acidic pH of the classical late endosome (identified due to the presence of the 215 kDa 

MPR) the MPR releases the MPR-bound proenzyme and weakens the interaction between 

the propeptide and the catalytic region.  This allows activation of the cathepsins (Riese and 

Chapman, 2000; Turk et al., 2000; Barrett et al., 2004).  Activated lysosomal enzymes may 

be subsequently trafficked to a “lysosomal” population where they are stored (Griffiths, 

1996a).   On the other hand, the late endosome has been described as containing 20% of the 

total cellular hydrolytic enzymes, at any one time, and to be the main site for protein 

turnover (Griffiths, 1996a; Tjelle et al., 1996).  It is also described to be associated with 

Rab7, Rab9, lyosbisphosphatidic acid, MPRs and LAMPs markers (Griffiths, 1996a; Pillay 

et al., 2002; Vieira et al., 2002).  Whereas LAMP-1 and LAMP-2 are reportedly located on 

the limiting membranes of late endosomes and lysosomes, LAMP-3 appears predominantly 

associated with the internal multivesicular membranes of the late endosome and the outer 

membranes of specialised secretory organelles (Kobayashi et al., 2000).  Not all late 

endosomes may be LAMPs-positive, however.  This may be possible as lysosomal enzyme 

storage vesicles or “lysosomes” have been shown to fuse with the late endosomes forming a 

hybrid, acidic organelle only when proteolysis is required (Figure 4.2).  Such a fusion may 

bring with it both the content and markers of the lysosomes i.e. LAMPs markers as well as 

proteolytic enzymes (Bright et al., 1997; Luzio et al., 2000), the MPRs recycle back to the 
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Golgi (Brown et al., 1986) before the proteolytic enzymes and LAMPs fuse.  Therefore, 

hybrid organelles between late endosomes and lysosomes would appear to be “lysosomal” 

(MPR-negative, proteolytic enzymes-positive and LAMPs-positive after such an event).  On 

the other hand, fission and reformation of individual organelles may result in loss of the 

LAMPs marker and enzymes when proteolysis is no longer required (Bright et al., 1997; 

Luzio et al., 2000) potentially giving rise to a LAMP-negative-, acidic organelle at some 

point, such as the lysosomal population described by Bright et al. (1997) (Figure 4.2).  A 

summary of the markers most often used for identification of the late endosomes and 

lysosomes is given in Table 4.1. 

 

Table 4.1 Summary of major markers for late endosomes and “lysosomes”. 

 Rab7 MPR LAMPs pH Active enzymes Active cathepsin D 

Late 

endosome 

+ + +/- 6.5 + (site of activation) ? 

Lysosome - - + <5.5 + (site of storage of active)# + ## 
# Small electron-dense organelle containing activated enzymes.  Initially named a primary lysosome and 
described as acidic by de Duve, (1983), but subsequently as a lysosomal enzyme “storage organelle” by 
Griffiths, (1996a) but not necessarily acidic or cathepsin D-containing (Butor et al., 1995). 
## Larger electron-dense organelle containing active cathepsin D and fused endocytic cargo previously 
described by de Duve, (1983) as a secondary lysosome but now considered to be a “hybrid organelle” or 
digestive body formed by fusion of the late endosome and lysosome (Figure 4.2) (Modified from de Duve, 
1983; Brown et al., 1986; Berg et al., 1995; Griffiths, 1996a, Bright et al., 1997). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.2 Model of dense core lysosome-late endosome fusion and re-formation of lysosomes. 
ECVs derived from early endosomes, fuse with late endosomes and deliver their contents.  The late endosomes, 
positive for MPRs and LAMPs contain about 20% of the total hydrolase pool.  Dense core lysosomes, rich in 
hydrolytic enzymes fuse with late endosomes resulting in hybrid organelles rich in proteolytic enzymes.  
Lysosomes reform after the selective retrieval of membranes, post proteolytic events (modified from Bright et 

al., 1997). 
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“Lysosomes”, classically the most acidic (pH < 5.5), small, electron-dense (dense core), 

MPR-negative organelles have been described as containing the bulk of activated and stored, 

but not necessarily active, hydrolytic enzymes (Table 4.1).  The literature also often does not 

distinguish if the lysosome-like organelle to which reference is made is the small electron-

dense organelle, previously known as a primary lysosome [as it contained no fused endocytic 

cargo (de Duve, 1983)] this will be called a “storage lysosome” (but may be acidic or non-

acidic) (Griffiths, 1996a) from the late endosome and cathepsin D-labelling, LAMPs-

positive, acidic body judged to be a “hybrid organelle” formed by fusion of the small 

electron-dense organelle with the late endosome also known as a “secondary lysosome” or 

“digestive body” (de Duve, 1983) (Table 4.1 and Figure 4.2).  It is also not absolutely clear 

that the “hybrid organelle” is not different from the cathepsin D-labelled “digestive body” 

described by de Duve, (1983) (Table 4.1).  This complicates reporting and interpretation of 

the literature.  When a lack of certainty exists describing such populations, quotation marks 

(i.e. “lysosome”) will be used.  If it is the “hybrid organelle” to which reference is made, this 

term will be substituted.  Both the “hybrid organelles” and “digestive bodies” as well as 

“storage lysosomes” are usually located in the perinuclear area of the cell and label with 

LAMPs (Griffiths, 1996a; Pillay et al., 2002) (Figure 4.2) (Table 4.1), however.  Though 

usually perinuclear, these “lysosomes” may redistribute towards the cell edge, if the 

cytoplasmic pH becomes acidic (Heuser, 1989) and may be tubular, depending upon the state 

of polymerisation of microtubules (Swanson et al., 1987; Knapp and Swanson, 1990), or 

may be released in reponse to various agonists via regulated exocytosis (Andrews, 2000). 

  

Regulated exocytosis of lysosome-like populations (“secretory lysosomes”) may be induced 

by increased levels of free, intracellular Ca2+, especially in cells of a haemopoietic lineage 

(Griffiths, 1996b; Stinchcombe and Griffiths, 1999).  This seems a temperature and ATP-

dependent process regulated by synaptotagmin VII (Rodríguez et al., 1997; Andrews, 2000; 

Martinez et al., 2000).  Claus et al. (1998) identified only two functionally distinct, dense 

“lysosomal compartments” in J774 macrophages.  One was secreted in the presence of the 

acidotropic drugs, chloroquine and bafilomycin A1 (and hence possibly acidic) and 

contained primarily cathepsins B and L as well as furin.  The non-secreted compartment 

contained dipeptidyl peptidase II (DPPII), β-glucuronidase and β-hexosaminidase.  Addition 

of acidotropic drugs did not affect the secretion of the latter compartment.  This 

compartment could, therefore, be non-acidic.  The morphology of “secretory lysosomes” is 
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also reported to be a combination of the multilamellar structures of conventional late 

endosomes and the dense cores of secretory granules (Blott and Griffiths, 2002) and could in 

fact be late endosomes and classical lysosomes.  Rabinowitz et al. (1992) similarly described 

two compartments in mouse macrophages as tubular elements and small vesicles in which 

poorly degradable endocytic or phagocytic material accumulated.  These, in fact could even 

be “residual bodies” of the autophagic pathway (Eskelinen et al., 2002).  Without additional 

markers morphological descriptions seem to be of limited used in distinguishing numbers of 

vesicles. 

 

Early studies on human bone marrow promonocytes and blood monocytes also suggested the 

existence of at least two distinct vesicle populations (Nichols et al., 1971; Stachura, 1989).  

One type was shown to contain acid phosphatase, aryl sulfatase and peroxidase.  The content 

of the second type remained unknown (Ross and Auger, 2002).  Two ultrastructurally 

distinct vesicle populations were subsequently described in rabbit alveolar macrophages 

(Cohn and Wiener, 1963).  These were thought to be lysosomal or secretory but were shown, 

using enzyme marker assays (Peters et al., 1972; Peters, 1976), to consist of three vesicle 

populations (Lowrie et al., 1979) (Table 4.2). 

 

Table 4.2 Identification of three vesicle types in rabbit alveolar macrophages. 

 Vesicle Types 

Vesicle Contents Type A Type B Type C 

Lysozyme �         ?  
N-acetyl-β-glucosaminidase  �   
β-galactosidase  �   
β-glucuronidase  �   
Cathepsin D   �  
Acid phosphatase  �  �  

� present in vesicle population, ? may be present. (Lowrie et al., 1979). 

 

Lysozyme was shown to be a marker for one of these populations (type A-vesicles).  

Cathepsin D, the major protease present in lysosomes and frequently used as a marker for 

lysosomes (Conner, 2004), was shown to be a marker for another (type C-vesicles).  A third 

vesicle (type B-vesicles) was identified by the presence of N-acetyl-β-glucosaminidase, β-

galactosidase, β-glucuronidase or by the absence of cathepsin D (Lowrie et al., 1979).  These 

possibly, respectively, represented the acidic- and two non-acidic- or slightly acidic vesicles 

subsequently described by Anes et al. (2006).   
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In human macrophages, Astarie-Dequeker et al. (2002) also described two of the three 

“endosomal” compartments, later described by Anes et al. (2006), a lysosome-like 

compartment positive for LAMP-3 (CD63) and another Src-family protein tyrosine kinase, 

hematopoietic cell kinase (Hck)-positive “lysosomal” compartment mobilised in a receptor-

mediated, microtubule-independent way.  Studies on the J774 phagosome by Anes et al. 

(2006) increased the number of identifiable “lysosomal” vesicle populations to four, if the 

late endosome is included, all populations being capable of fusing with late stage 

Mycobacterium smegmatis phagosomes (Figure 4.3).  Three “lysosomal” populations may 

have been revealed if labelling for the 215 kDa MPR was included, i.e. to exclude the late 

endosome, each “lysosomal” population having at least one feature of a classical lysosome, 

i.e. the acidity of at least that of the late endosome, and either the positivity for LAMPs or 

content of active lysosomal enzymes and a lack of labelling for MPRs (Figure 4.3).  

Labelling for MPRs was not, however, carried out (Anes et al., 2006) 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.3 Schematic model of the four major vesicular compartments capable of fusing with the 

phagosome during M. smegmatis infection  
At least four distinct vesicle populations fuse with the macrophage phagosome. LAMP positive late endosomes 
and lysosomes fuse initially, followed by vesicles enriched in either V-ATPase structures or LYAAT. Although 
all four compartments are distinct they can be considered as late endocytic vesicles as they appear to be 
accessible to rhodamine gold (Anes et al., 2006). 

 

One population described by Anes et al. (2006) was enriched with V-ATPase and was the 

most acidic organelle identified and LAMP-1-negative.  Another was enriched with LYAAT, 

a recently discovered membrane lysosomal exporter protein exporting apolar amino acids 

from lysosomes (Sagne et al., 2001; Boll et al., 2002) (Figure 4.3).  This vesicle strongly 

colocalised with Hck, was LAMP-1-negative and weakly labelled with LysoTracker (i.e. 
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non-acidic) (Anes et al., 2006) (Figure 4.3).  Another poopulation was LAMP-positive and 

acidic (possibly a hybrid organelle).  The last was a LAMP-1-positive organelle which was 

largely non-acidic (only 2% colocalisation with LysoTracker) (Figure 4.3).  Anes et al. 

(2006) did not seem to consider the early endosomal vesicle population (LAMP-negative, 

slightly acidic) which would be difficult to distinguish from the Hck/LYAAT vesicle 

(LAMP-negative, moderately acidic).  The 5 possible populations identified could, therefore, 

either be largely acidic and LAMP-1-negative, largely weakly acidic and LAMP-1-negative 

(potential early endosomes and Hck/LYAAT vesicles), acidic and LAMP-1-positive or 

largely non-acidic and LAMP-1-positive (Figure 4.3).  The late endosomal population was, 

however, defined by pulse-chase uptake of gold particles and no labelling was performed for 

MPRs.  The possibility that one of the 5 populations described was also a late endosome, 

therefore, cannot be conclusively excluded.   

 

4.2 Localisation of cathepsins in J774 macrophages using both immunogold and 

fluorescent labelling 

It was hoped that, with the establishment of the cathepsin enzyme distribution [especially 

with respect to cathepsin H, as an early endosome marker, and cathepsin S, as a late 

endosome marker (Claus et al., 1998; Jahraus et al., 1998)] in relation to LysoTracker, it 

would be posssible to identify equivalents of the V-ATPase-compartment and other 

populations described by Anes et al. (2006).  LysoTracker labelling (i.e. acidity) of vesicles 

should also be an indicator that cathepsins should be in their activated or processed form.  

LAMP-1 (and possibly LAMP-2), it was hoped, would assist in identifying similar sub-

populations to those identified by Anes et al. (2006) which classically would be associated 

with active enzymes (Table 4.1).  The approximate percentage of pro- and mature enzyme, it 

was hoped, would be moderately accurately determined from western blotting (Chapter 3).  

It was anticipated that at least 5 populations would be revealed, either largely acidic and 

LAMP-1-negative, largely weakly acidic and LAMP-1-negative (early endosomes or 

Hck/LYAAT vesicles), acidic and LAMP-1-positive and largely non-acidic and LAMP-1-

positive.  An additional equivalent of the late endosomal population (acidic, LAMPs-

positive) could possibly be defined by the presence of cathepsin S or cathepsin D, 

differentiating this body from the “hybrid organelle” or “digestive body”.   

 

The cathepsins have a wide range of optimal operating pH’s (Section 1.4.1, Table 1.6) and 

are thus well suited to the endosome-lysosome system where the pH ranges from less than 
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5.5 to 6.5 (Berg et al., 1995).  The distribution of proteases and differences in pH, 

particularly in late endosomes, where activation and inactivation of specific proteins as well 

as antigen processing occurs, may also be used to control proteolysis e.g. for restricted 

cleavage of the invariant chain and limited antigen processing for MHC class II antigen 

presentation (Lennon-Duménil et al., 2002a). 

 

Diment et al. (1988) also described a 46 kDa, partially membrane-bound endosomal form of 

cathepsin D, and both cathepsins D and B have been implicated in the macrophage early 

endosomal degradation of the A chain of the plant toxin ricin in this compartment of almost 

neutral pH (Blum et al., 1991).  Although cathepsins D and B are known to have largely 

acidic pH optima it has been suggested that the local conditions in early endosomes may 

affect the activity of particular enzymes (Pillay et al., 2002).  In vitro studies have also 

shown different buffer systems to have marked affects on the activity and observed pH 

optimum of cathepsins B and L, both cathepsins being shown to have significant activity at 

physiological pH in certain buffers (Dehrmann et al., 1996).  The membrane-bound form of 

cathepsin D may also have a higher pH optimum than the soluble form present in lysosomes.  

Cathepsin B also has both exo- and endopeptidase activity, with the endopeptidase having a 

higher pH optimum (Blum et al., 1991; Linebaugh et al., 1999).  The presence of cathepsin 

B in a compartment with a higher pH than considered optimal for the exopeptidase activity, 

therefore, may favour the endopeptidase activity. 

 

In the macrophage phagosome, a process of maturation, during which sequential fusion with 

early endosomes, late endosomes and lysosomes, appears to be required for the acquisition 

of various proteolytic enzymes, and for the phagosome to perform degradative functions 

(Desjardins et al., 1997) (Figure 4.1).  The sequential delivery of proteases to the phagosome 

of J774 mouse macrophages emphasises their heterogenous distribution along the endocytic 

pathway (Garin et al., 2001; Lennon-Duménil et al., 2002a).  Cathepsins B and Z appear to 

be amongst the first to be delivered to the phagosome. The activity of cathepsin B in the 

phagosome increases with time, suggesting that whilst cathepsin Z may be located in early 

endosomes, cathepsin B may be distributed throughout the endocytic pathway.  Cathepsins L 

and D appear to be located in the late endosomes and lysosomal compartments.  Finally 

cathepsin S seems mainly associated with late endosomes (Claus et al., 1998; Lennon-

Duménil et al., 2002a), whereas, cathepsin H occurs primarily in the early endosome 

(Jahraus et al., 1998).  Apart from these studies very little work has focussed on the 
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distribution of cathepsins in macrophages.  Whether these proteases are restricted to the 

endocytic compartments or whether they may occur in “secretory lysosomes” or other 

vesicles is unknown.  

 

The strategy adopted in this study was first to establish the ultrastructural and 

immunofluorescent distribution of cathepsins in J774 mouse macrophages using single 

labelling, while optimising labelling and checking adequate preservation of ultrastructure 

and tissue immunogenicity.  This was followed subsequently by double labelling to establish 

cathepsin colocalisations, once again, considering cathepsin H as an early endosome marker 

(Jahraus et al., 1998) and cathepsin S as a late endosome marker (Claus et al., 1998; Lennon-

Duménil et al., 2002a).  Finally, LysoTracker was used to verify whether the cathepsins were 

associated with the (acidic) late endosomes, “lysosomes”,  and the equivalent of the most 

acidic (or V-ATPase-positive) compartment seen in the Anes et al. (2006) study and whether 

a less acidic LAMP-1-positive compartment and a non-acidic, LAMP-1-negative 

compartment (possibly a LYAAT-positive compartment) could be identified.  Further 

colocalisation studies were carried out with anti-LAMP-1 and anti-LAMP-2 to see whether 

any difference in cathepsin colocalisation in “lysosomal” subpopulations could be discerned.  

 

For fluorescent labelling of J774 macrophages where preservation of ultrastructure is less 

crucial, PFA was used and the presence and preservation of cathepsins B, D, H, S and L 

antigenicity was first verified.  Ultrastructural preservation is important for EM and a 

combination fixative (PFA and glutaraldehyde) was, therefore, used in preliminary 

immunogold labellings.  Double labelling colocalisation studies were subsequently 

performed.   

 

4.2.1 Reagents 

Reagents for culture, fixation and embedding, immunolabelling of ultrathin sections and for 

fluorescent immunolabelling of J774 cells for cathepsins B, D, H, S and L were prepared 

according to Sections 2.2.1, 2.7.1.1, 2.7.3.1 and 2.8.1.1, respectively. 

 

The anti-cathepsin antibodies used were as previously described (Section 3.7.1).  Goat anti-

rabbit IgG FITC, donkey anti-chicken IgG CY3 and rabbit anti-chicken IgG FITC secondary 

antibodies were employed. 
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4.2.2 Procedure 

J774 cells were cultured, fixed and embedded in LR White resin according to the procedure 

in Sections 2.2.2 and 2.7.1.2.  Protein A gold labelling on the ultrathin sections was 

performed with rabbit anti-cathepsin H [20 µg/ml], chicken anti-cathepsin S [20 µg/ml], 

chicken anti-cathepsin D [50 µg/ml], chicken anti-cathepsin B [10 µg/ml] and rabbit anti-

cathepsin L [20 µg/ml] according to Section 2.7.3.2.  Cathepsins in vesicle populations were 

judged to be membrane-bound if located around the vesicle periphery and lumenal or “free” 

if observed within the vesicle itself. 

 

Fluorescent immunolabelling was performed with rabbit anti-cathepsin H [100 µg/ml 

(epifluorescence) or 20 µg/ml (confocal)], chicken anti-cathepsin S [20 µg/ml], chicken anti-

cathepsin D [100 µg/ml (epifluorescence) or 50 µg/ml (confocal)], chicken anti-cathepsin B 

[20 µg/ml], rabbit anti-cathepsin L [20 µg/ml], goat anti-rabbit IgG FITC [5 µg/ml or 2 

µg/ml], donkey anti-chicken IgG CY3 [2 µg/ml] and rabbit anti-chicken IgG FITC [10 

µg/ml] according to Section 2.8.1.2.  Pre-immune controls were performed in all cases to 

check labelling specificity.  Double labelling controls were also performed omitting or 

substituting antibodies with pre-immunes and changing the order of the labelling to check 

non-specificity of all components of the labelling system.  As macrophages are fairly small 

and round and normal epifluorescence microscopy focal planes are fairly thick it may, 

therefore, be difficult to unequivocally determine colocalisation using conventional 

epifluorescence.  Confocal microscopy was, therefore, also used where possible, as it allows 

for the viewing of thin “optical slices” to exclude apparent colocalisation due to 

superimposition of two differently labelled vesicles within the viewed focal plane.  Labelling 

was, therefore, viewed using either an Olympus epifluorescent microscope and F-View CCD 

camera or a Zeiss 510 Meta confocal microscope and images analysed visually using ImageJ 

software.  Images of colocalisation using colour (i.e. red and green images merged to form 

yellow) are highly influenced by display settings and intensity, and, therefore, colocalisation 

based on colour analysis alone is problematic and can lead to incorrect conclusions. Grey 

scale images (i.e. black and white) on the other hand, are not affected by display settings and 

should be assessed when visually judging the following colocalisation images, as the yellow 

colour (indicating the degree of colocalisation in the composite image) varies depending on 

settings and printer type.  In confocal images, the number of colocalising vesicles in at least 

3 representative cells was assessed manually, reported as a percentage and checked with 

reference to the epifluorescent image. 
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4.2.3 Results 

No non-specific protein A gold- or fluorescent labelling was observed in controls and 

labelling was assumed to be specific (results not shown).  Ultrastructural preservation was 

extremely variable as is evident in micrographs labelled for cathepsin H (Figure 4.4, C) and 

cathepsin B (Figure 4.7, C), where labelled vesicles (±100 nm) are only slightly electron-

dense and are not easily discerned (Figure 4.4, C) or preservation is moderately acceptable 

(Figure 4.7, C). 

 

Early endosomes are usually fairly large (±100 nm), quite electron-translucent vesicles with 

an associated tubular network (Ghosh et al., 1994).  Neither tubular network nor any vesicle 

definition is evident in the cathepsin H-labelled sections (Figure 4.4, C).  The majority of 

labelled vesicles are possibly early endosomes, similar in size (±100 nm) but more electron-

dense or secretory vesicles i.e. small (±20 nm) and electron-translucent containing 

procathepsin H (Figure 4.4, C), in approximately equal proportions as indicated by blots 

(Figure 3.11, A, lane 4).  Labelling in the epifluorescent image (Figure 4.4, A) rather than the 

confocal image (Figure 4.4, B1 and B3) appears more distinct and with larger organelles 

[more like early endosomes (±100 nm) than small (±20 nm) secretory vesicles].  Labelling 

also appears membrane bound (Figure 4.4, C).  Cathepsin H labelling, however, seemed 

variable but mainly spread throughout the cell (Figure 4.4, A and B). 

 

Cathepsin S labelling was also performed with a peptide antibody (Figure 4.5, A, B and C) 

but appears to give denser, more definite labelling at the EM level, with labelling apparently 

located near or in tubulovesicular areas in the cell, possibly associated with the ER (Figure 

4.5, C).  The more electron-dense organelles are possibly late endosomes (±50 nm) but the 

vesicles associated with the ER (±20 nm) would be anticipated to contain newly synthesised 

precursor cathepsin S, which, according to western blots, should represent the content of the 

majority (approximately 90% pro-) of vesicles (Figure 3.13, A, lane 3). 
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Figure 4.4 Fluorescent and protein A gold labelling of cathepsin H in J774 macrophages. 

Rabbit anti-cathepsin H [100 µg/ml (A) or 20 µg/ml (B1)] and goat anti-rabbit IgG FITC [5 µg/ml (A) or 2 

µg/ml (B1)] applied to cells on coverslips, initially fixed with 3.7% PFA and permeabilised with saponin.  
Coverslips viewed with an Olympus epifluorescent microscope (A) or a Zeiss Meta 510 confocal microscope 

(B). FITC filter (A and B1), DIC image (B2), composite image (B3).  Bars = 2 µm (A) or 5 µm (B)  . 

Rabbit anti-cathepsin H [20 µg/ml (C)] and protein-A gold probe (10 nm) used on LR White sections viewed 
using a Philips CW120 Biotwin TEM (80-100 kV).  Cathepsin H labelling seen in slightly electron-dense 
vesicles (arrows), some possibly membrane-associated. Bar = 200 nm. 
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Ultrastructural preservation and staining seems fairly good, but many vesicles seem swollen 

and not all membraneous structures are equally well preserved (Figure 4.5, C).  Cathepsin S 

labelling seems either located within the vesicle (approximately 34%) and apparently 

soluble, or membrane-bound (approximately 66%) (Figure 4.5, C).  Immunofluorescence 

labelling for cathepsin S (Figure 4.5, A and B) does not appear to be distributed as 

peripherally as the cathepsin D labelling (Figure 4.6, A and B) but seems a little more 

extensively spread throughout the cell than cathepsin H (Figure 4.4, A and B).  Such a 

distribution of cathepsin S may concur with both a late endosomal distribution and the high 

perinuclear ER and Golgi-association indicated by the predominant levels of precursor 

enzyme (approximately 90%) reflected in blots (Figure 3.13, A, lane 3).  From the size of 

vesicles present in images of cathepsin S labelling seen in immunofluorescence micrographs, 

vesicles seem to be largely secretory (±20 nm), containing approximately 66% membrane-

bound cathepsin S (precursor), and very few active cathepsin S containing-late endosomes 

(±50 nm) (Figure 4.5, C and Table 4.3). 

 

Immunofluorescence labelling of cathepsin D, on the other hand, shows labelling in vesicles 

that are larger than most other organelles (±150-200 nm) except the early endosomes (±100 

nm) (Figure 4.6, A).  These are seen in the cytoplasm and towards the cell periphery, with 

some polarised cathepsin D distribution (Figure 4.6, A and B).  Cathepsin D is also seen in 

the pseudopodia of activated cells (Figure 4.6, B, cell on top left), suggesting possible 

secretion or involvement in invasion.  Though cathepsin D is traditionally regarded as a 

“lysosomal marker”, it is usually associated with a digestive body often called an endosome-

lysosome “hybrid organelle” (size ±150-200 nm) (Griffiths, 1996a) (Table 4.1) like those in 

Figure 4.6, A, B and C. 

 

Cathepsin D has also been suggested to occur in macrophage early endosomes in (Diment et 

al., 1988).  This may also account for a peripheral distribution of cathepsin D (Figure 4.6, A 

and B).  If this is the case, however, cathepsin D would be anticipated to colocalise with 

cathepsin H (Jahraus et al., 1998).  On the other hand, most of the labelled vesicles should 

contain mature cathepsin D (western blots indicate approximately 80% mature enzyme, 

Figure 3.10, A, lane 4).  This would mean that vesicles may also be late endosomal (±50 nm) 

or hybrid endosome-lysosomal organelles or digestive bodies (±150-200 nm) (Figure 4.6, A 

and B).  From their size, however, the majority of mature cathepsin D-labelled organelles 

would seem to be hybrid or digestive bodies (±150-200 nm).  Cathepsin D also seems, to a  
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Figure 4.5 Fluorescent and protein A gold labelling of cathepsin S in J774 macrophages. 

Chicken anti-cathepsin S [20 µg/ml (A and B1)] and donkey anti-chicken IgG CY3 [2 µg/ml (A and B1)] 
applied to cells on coverslips, initially fixed with 3.7% PFA and permeabilised with saponin.  Coverslips 
viewed with an Olympus epifluorescent microscope (A) or a Zeiss Meta 510 confocal microscope (B). CY3 

filter (A and B1), DIC image (B2), composite image (B3).  Bars = 5 µm. 

Chicken anti-cathepsin S [20 µg/ml (C)], a rabbit anti-chicken linker antibody [50 µg/ml (C)] and protein-A 
gold probe (10 nm) used on LR White sections viewed using a Philips CW120 Biotwin TEM (80-100 kV).  
Cathepsin S detected in tubulovesicular areas (arrows), the majority membrane-bound.  Bar = 100 nm. 
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small extent, membrane-associated (Figures 4.6, C and Figure 4.10, C, 66% free and 34% 

membrane-bound) (Table 4.3), suggesting a presence in early endosomes (Diment et al., 

1988). 

 

Cathepsin B on the other hand, appears to localise to electron-dense vesicles (±50 and 100 

nm, respectively) resembling late endosomes or “hybrid” organelles on the basis of size 

(usually containing processed cathepsins).  Small vesicles (±20 nm) close to membraneous 

systems resembling ER where precursor enzyme would occur were also observed (Figure 

4.7, C).  Such a distribution seems to fit with the 50:50 precursor:mature cathepsin B content 

of J774 cells evident in blots (Figure 3.9, A, lane 4).  In Figure 4.7, C, once again, a variable 

ultrastructural preservation is evident, this time in a single section, with organelles and 

structures towards the left-hand-side of the micrograph becoming less well preserved.  

Labelling also seems to indicate a 60% membrane-association (possibly precursor enzyme) 

as gold labels seems to be located around the periphery of labelled vesicles (Figure 4.7, C).  

In approximately 40% of vesicles cathepsin B appeared lumenally distributed and soluble or 

“free” (Figure 4.7, C and other micrographs not shown) (Table 4.3). 

 

Cathepsin L labelling with the anti-cathepsin L peptide antibody is sparse (Figure 4.8, A and 

B), with labelling being largely confined to small vesicles (±20 nm) and membraneous ER-

like structures positioned towards the perinuclear area of the cell and scattered sparsely 

through the cell (Figure 4.8, C).  This labelling pattern and distribution was anticipated, since 

western blots indicated that J774 cells contain approximately 50% precursor and 

approximately 50% mature cathepsin L (Figure 3.12, A, lane 3) consistent with ER/Golgi 

vesicles containing precursor enzyme and larger vesicles (±50 and 100 nm) possibly 

representing late endosomes and “hybrid” organelles, respectively, containing active enzyme 

(Figure 4.8, A, B and C).  The majority of cathepsin L (70%) appears membrane-bound 

(Figure 4.8, C) (Table 4.3).   

 

It should be noted that bacillus-like structures seen in many of the micrographs are artefacts 

introduced in the mounting of the labelled cells on coverslips (Figure 4.4, B2 and B3; 4.5, B2 

and B3; 4.8, A2 and A3; 4.9, B3 and B4; 4.10, B3;  
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Figure 4.6 Fluorescent and protein A gold labelling of cathepsin D in J774 macrophages. 

Chicken anti-cathepsin D [100 µg/ml (A1) or 200 µg/ml (A2 and B)] and donkey anti-chicken IgG CY3 [2 

µg/ml (A1 and A2)] or rabbit anti-chicken FITC IgG [10 µg/ml (B)] applied to cells on coverslips, initially 
fixed with 3.7% PFA and permeabilised with saponin.  Coverslips viewed with an Olympus epifluorescent 

microscope (A) or Zeiss Meta 510 confocal microscope (B).  Bars = 5 µm. 

Chicken anti-cathepsin D [10 µg/ml (C)], a rabbit anti-chicken linker antibody [50 µg/ml (C)] and protein-A 
gold probe (10 nm) were used on LR White sections which were viewed using a Philips CW120 Biotwin TEM 
(80-100 kV).Cathepsin D in electron-dense vesicles (arrows).   Bar = 100 nm. 
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Figure 4.7 Fluorescent and protein A gold labelling of cathepsin B in J774 macrophages. 

Chicken anti-human liver cathepsin B [20 µg/ml (A and B1)] and donkey anti-chicken IgG CY3 [2 µg/ml (A 
and B1)] applied to cells on coverslips, initially fixed with 3.7% PFA and permeabilised with saponin.  
Coverslips viewed with an Olympus epifluorescent microscope (A) or Zeiss Meta 510 confocal microscope (B).  

CY3 filter (A and B1), DIC image (B2), composite image (B3).  Bars = 5 µm. 

Chicken anti-human liver cathepsin B [10 µg/ml (C)], a rabbit anti-chicken linker antibody [50 µg/ml (C)] and 
protein-A gold probe (10 nm) used on LR White sections viewed using a Philips CW120 Biotwin TEM (80-100 
kV). Cathepsin B in electron-dense vesicles, possibly membrane-bound (arrows) and close to membraneous 
systems.  Bar = 100 nm.             
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Figure 4.8 Fluorescent and protein A gold labelling of cathepsin L in J774 macrophages. 

Rabbit anti-cathepsin L [20 µg/ml (A1 and B)] and goat anti-rabbit IgG FITC [5 µg/ml (A1 and B)] applied to 
cells on coverslips, initially fixed with 3.7% PFA and permeabilised with saponin.  Coverslips viewed with an 
Olympus epifluorescent microscope (B) or a Zeiss Meta 510 confocal microscope (A).  FITC filter (A1 and B), 

DIC image (A2), composite image (A3).  Bars = 5 µm. 

Rabbit anti-cathepsin L [20 µg/ml (C)] and protein-A gold probe (10 nm) used on LR White sections viewed 
using a Philips CW120 Biotwin TEM (80-100 kV). Cathepsin L detected in small vesicles, possibly membrane-
bound (arrows).  Bar = 100 nm. 
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Summary 

Table 4.3 Summary western blot data, apparent vesicle morphology and enzyme distribution. 

 Precursor form (%) Mature form (%) Vesicle type M 

(%) 

F 

(%) 

Cat H 50 50 S/LT 50 50 
Cat S 90 10 >S/LE/Lys 66 34 
Cat D 20 80 LE/Lys 34 66 
Cat B 50 50 S/>LE 66 34 
Cat L 50 50 >S/LE 66 34 

Abbreviations: Cat, cathepsin; LT, large (±100 nm) electron-translucent, early endosome-like; S, small (±20 
nm) secretory vesicle-like; LE, large (±50 nm), electron-dense, late endosome-like; Lys, lysosome-like, hybrid, 
digestive organelles (±150-200 nm); M, membrane-bound; F, free; >, mostly. 

 

Results (Table 4.3) seem to indicate the presence of at least 4 vesicle types, small (±20 nm) 

electron-translucent secretory-like (possibly containing membrane-bound, precursor 

cathepsins especially cathepsins H, S, B and L), early endosomal-type vesicles containing 

mature cathepsin H, large (±100 nm).  Cathepsins D, L, S and B appear to be present in late 

endosomes (±50 nm) and large “hybrid” organelles (±150-200 nm) contain cathepsins D, B 

and L. Vesicle types could not, at this stage, be accurately assigned, however, without at 

least probes indicating acidity (LysoTracker) or some ultrastructural detail. 

 

4.3 Colocalisation of cathepsins in J774 macrophages 

Cathepsin precursor forms should be found only in the ER, Golgi and any secretory vesicles 

either transporting precursor from the ER and Golgi to the late endosome for activation or 

being secreted from the cell (approximately 10% of traffic) (Pillay et al., 2002). 

 

The polyclonal cathepsin antisera used in the current study detect both the proforms 

(associated with ER, Golgi and non-acidic vesicular compartments) and the mature, active 

enzymes (late endosomes, lysosomes and other acidic vesicular compartments).  Therefore, 

the presence and percentage of precursor or mature forms of the cathepsins, it was hoped, 

could possibly be predicted from western blot data and by morphological identification of 

the containing compartment or vesicle.  This assignment, it was hoped, would subsequently 

be confirmed using labelling for LAMP-1 and -2 and the demonstration of a low pH, all 

usually associated with the classical late endosome and lysosome which should contain 

mature enzyme (Fukuda et al., 1991). 
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Both double immunogold and fluorescent labelling were also performed to check that 

cathepsins H and S do not colocalise and to assess whether other cathepsins i.e. cathepsins B 

and L, colocalise with the markers for early endosomes (±100, cathepsin H), late endosomes 

(±50 nm, cathepsin S) or “lysosomes”, hybrid organelles or digestive bodies (±150-200 nm, 

cathepsin D) or if additional vesicle populations were present. 

 

4.3.1 Reagents 

Reagents for culture, fixation and embedding, immunolabelling of ultrathin sections and 

fluorescent immunolabelling of J774 cells for cathepsins B, D, H, S and L were prepared 

according to Sections 2.2.1, 2.7.1.1, 2.7.3.1 and 2.8.1.1, respectively. 

 

The anti-cathepsin and secondary fluorescent antibodies used, were as previously described 

(Section 3.7.1 and 4.2.1). 

 

4.3.2 Procedure 

J774 cells were cultured, fixed and embedded in LR White resin according to the procedure 

in Sections 2.2.2 and 2.7.1.2.  Double protein A gold labelling on the ultrathin sections was 

performed with chicken anti-cathepsin S [15 µg/ml] and rabbit anti-cathepsin H [50 µg/ml], 

chicken anti-cathepsin D [10 µg/ml] and chicken anti-cathepsin S [10 µg/ml], chicken anti-

cathepsin B [10 µg/ml] and chicken anti-cathepsin D [15 µg/ml], chicken anti-cathepsin B 

[10 µg/ml] and rabbit anti-cathepsin L [20 µg/ml] according to Section 2.7.3.2.  Fluorescent 

immunolabelling was performed with chicken anti-cathepsin S [15 µg/ml or 50 µg/ml] and 

and rabbit anti-cathepsin H [100 µg/ml or 80 µg/ml], chicken anti-cathepsin D [200 µg/ml] 

and chicken anti-cathepsin S [20 µg/ml or 50 µg/ml], chicken anti-cathepsin D [100 µg/ml or 

200 µg/ml] and chicken anti-cathepsin B [10 µg/ml or 50 µg/ml], chicken anti-cathepsin D 

[200 µg/ml] and rabbit anti-cathepsin L [50 µg/ml], chicken anti-cathepsin B [15 µg/ml or 50 

µg/ml] and rabbit anti-cathepsin L [15 µg/ml or 50 µg/ml], chicken anti-cathepsin S [50 

µg/ml] and chicken anti-cathepsin B [50 µg/ml], chicken anti-cathepsin S [20 µg/ml or 50 

µg/ml] and  rabbit anti-cathepsin L [20 µg/ml or 50 µg/ml], donkey anti-chicken IgG CY3 [2 

µg/ml or 1 µg/ml], goat anti-rabbit IgG FITC [5 µg/ml or 3 µg/ml or 2 µg/ml], rabbit anti-

chicken IgG FITC [10 µg/ml or 6 µg/ml] according to Section 2.8.1.2.  Labelling was viewed 

using either an Olympus epifluorescent microscope and F-View CCD camera or a Zeiss 510 

Meta confocal microscope and images analysed using ImageJ software and manually as 

previously described (Sections 2.8.1.2 and 4.2.2). 
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As the polyclonal anti-mature cathepsin antisera used cannot distinguish between precursor 

and mature forms of the enzyme, cathepsins associated with membraneous, ER/Golgi-like 

structures were assumed to be precursor and inactive.  Those associated with vesicles may 

represent either mature active enzyme in acidic compartments or precursor in secretory 

vesicles in non-acidic vesicles.  Due to generally poor ultrastructural preservation achieved, 

the knowledge that most of the cathepsin S and cathepsin D, would label mainly precursor or 

mature cathepsin, respectively, labelling for cathepsins S and B and cathepsins S and L were 

performed using only fluorescence microscopy. 

 

When both antibodies used in the colocalisation experiment were from the same host, a 

fixation step between labelling fixation steps and the relevant controls were performed to 

eliminate any possible cross-reactivity between primary and secondary labelling systems 

(Section 2.7.1.2 and 2.8.1.2, respectively). 

 

4.3.3 Results 

Labelling showed no non-specificity (results not shown).  Cathepsin H and cathepsin S 

labelling does not appear to colocalise to any extent (less than 20%, Figure 4.9, A, B and C), 

except in perinuclear areas where the synthesis and processing may occur concurrently (e.g. 

in the ER and Golgi) or where cells come into close contact (Figure 4.9, A and B).  This 

seems to be most clearly demonstrated in epifluorescence labelling results (Figure 4.9, A).  

Confocal immunofluorescence labelling seems, however, to indicate that some peripheral 

polarised labelling colocalisation may also occur (Figure 4.9, B). 

 

Protein A gold labelling confirms both cathepsin S and cathepsin H were separately located 

(Figure 4.9, C).  Cathepsin S is associated with tubulovesicular areas (Figure 4.9, C) as was 

previously observed with the single labelling (Figure 4.5, C).  Labelling for the potential 

early endosome marker (cathepsin H) was anticipated to be more peripherally located than 

labelling for the potential late endosome marker (cathepsin S), but in some places in the cell 

this seems to be the opposite (Figure 4.9, A and B).  Western blots showed that 

approximately 50% cathepsin H and approximately 90% cathepsin S in the J774 cells are of 

the precursor form (Figure 3.11, A, lane 3 and Figure 3.13, A, lane 3, respectively).   

Labelling, however, indicates that neither enzyme colocalises to any extent, even if in their 

respective secretory (±20 nm, precursor enzyme-containing) vesicle populations (Figure 4.9, 
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A, B and C).  Though ultrastructural preservation is once again poor, larger slightly electron-

dense vesicles possibly represent late endosomes (±50 nm) and the balance of small electron-

translucent (±20 nm) or electron-dense (±30-50 nm) vesicles possibly representing secretory 

vesicles or “secretory lysosomal” populations, respectively (Figure 4.9, C).   

 

It is difficult to say whether confocal microscopy or conventional epifluorescence gives more 

labelling information, as different levels of antibody were used (Figure 4.9, A and B).  

Confocal labelling did reveal some peripheral colocalisation, however.  The thinner “optical 

slice” being examined prevents such information from being obscured in conventional 

fluorescence microscopy (Figure 4.9, A - epifluorescence compared to Figure 4.9, B - 

confocal).  From EM labelling results, however, it would seem that cathepsin H and 

cathepsin S labelling may only assist in assigning cathepsins to either the early or late 

endosomes or to secretory vesicles if fair ultrastructural detail is preserved (Figure 4.9, C).  

Once again vesicular structures seem more swollen than other membraneous organelles such 

as the ER (Figure 4.9, C). 

 

Immunofluorescent labelling for cathepsin S and D seemed to indicate that these cathepsins 

are largely non-colocalised (approximately 25% colocalised) except in a few large structures 

which possibly represent hybrid endosome-lysosome organelles (±150-200 nm) (Figure 4.10, 

A and B) and in perinuclear areas which may represent the areas of synthesis and processing, 

the ER and Golgi (Figure 4.10, A and B).  Western blotting data indicate that cathepsin D is 

mainly mature (Figure 3.10, A, lane 4) and cathepsin S immature (Figure 3.13, A, lane 3).  

Since cathepsin D is considered mainly a marker for the “lysosome” (Connor, 2004) or 

digestive body of the cell, the number (usually relatively few) and size of colocalising 

vesicles, possibly confirms that such vesicles are what are known as “late endosome-

lysosome hybrid organelles”.  These organelles are especially obvious in confocal 

micrographs where an optical slice of approximately 1-2 µm is recorded (Figure 4.10, B) and 

seem to be most concentrated in regions of cell-cell contact (Figure 4.10, A).  Protein A gold 

labelling seems to confirm a lysosome-like digestive body localisation as it reveals 

colocalisation of cathepsins S and D in large (±150-200 nm) electron-dense, non-

multivesicular vesicles (Figure 4.10, C, red arrows).  Cathepsin S (Figure 4.10, C, black 

arrows) and cathepsin D (Figure 4.10, C, white arrows) are also seen located separately in 

small vesicles (±20 nm) that are possibly secretory (containing precursor enzymes). 
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Figure 4.9 Fluorescent and protein A gold labelling of cathepsins S and H in J774 macrophages. 

Chicken anti-cathepsin S [15 µg/ml (A1)] or rabbit anti-cathepsin H [100 µg/ml (B1)] and donkey anti-chicken 

IgG CY3 [2 µg/ml (A1)] or goat anti-rabbit IgG FITC [2 µg/ml (B1)], post-fixed (3.7% PFA) and probed with 

rabbit anti-cathepsin H [80 µg/ml (A2)] or chicken anti-cathepsin S [50 µg/ml (B2)] and either goat anti-rabbit 

FITC [2 µg/ml (A2)] or donkey anti-chicken CY3 [2 µg/ml (B2)], applied to cells on coverslips, initially fixed 
with 3.7% PFA and permeabilised with saponin.  Coverslips viewed using an Olympus epifluorescent 
microscope (A) a Zeiss 510 Meta confocal microscope (B).  CY3 filter (A1 and B2), FITC filter (A2 and B1), 

DIC image (B3), composite image (A3 and B4).  Bars = 5 µm. 

Rabbit anti-cathepsin H [18 µg/ml (C)], chicken anti-cathepsin S [15 µg/ml (C)], a rabbit anti-chicken linker 

antibody [50 µg/ml (C)] and protein-A gold probe for cathepsin H (10 nm) and for cathepsin S (15 nm) used on 
LR White sections viewed using a Philips CW120 Biotwin TEM (80-100 kV).  Cathepsin H (white arrows), 
cathepsin S (black arrows) did not appear to colocalise. Bar = 200 nm. 
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Figure 4.10 Fluorescent and protein A gold labelling of cathepsins D and S in J774 macrophages. 

Chicken anti-cathepsin D [200 µg/ml (A1 and B1)] and rabbit anti-chicken FITC [10 µg/ml (A1 and B1)], post-

fixed (3.7% PFA) and probed with chicken anti-cathepsin S [20 µg/ml (A2) or 50 µg/ml (B2)] and donkey anti-

chicken IgG CY3 [2 µg/ml (A2 and B2)], applied to cells on coverslips, initially fixed with 3.7% PFA, and 
permeabilised with saponin.  Coverslips viewed using an Olympus epifluorescent microscope (A) or a Zeiss 
510 Meta confocal microscope.  FITC filter (A1 and B1), CY3 filter (A2 and B2), DIC image (B3), composite 

image (A3 and B4).  Bars = 5 µm. 

Chicken anti-cathepsin D [10 µg/ml (C)], chicken anti-cathepsin S [10 µg/ml (C)], a rabbit anti-chicken linker 

antibody [50 µg/ml (C)] and protein-A gold probe for cathepsin D (10 nm) and for cathepsin S (15 nm) used on 
sections viewed using a Philips CW120 Biotwin TEM (80-100 kV).  Cathepsin S and D colocalised in certain 
areas (red arrows).  However, cathepsin S (black arrows) and cathepsin D (white arrows) still appeared 
separately.  Bar = 100 nm. 
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Cathepsins B and D, like cathepsins S and D, also appear to colocalise (approximately 30%) 

in a few electron-dense, “lysosomal” vesicles possibly late endosomes (±50 nm) (Figure 

4.11, C, black arrows), though there are also vesicles in which either cathepsin B or 

cathepsin D are separately located (Fig 4.11, C, white arrows).  Vesicular labelling for 

cathepsin B appears to be slightly more peripherally located than labelling for cathepsin D 

(Figure 4.11, B).  Some of the peripheral vesicles not colocalised with cathepsin D may 

represent procathepsin B-labelled organelles, as indicated by blots (approximately 50% 

precursor and 50% mature, Figure 3.9, A, lane 4).  Certain regions showing colocalisation 

between cathepsins B and D appear in peripheral invadopodia-like protrusions, suggesting 

possible secretion of electron-dense vesicular compartments such as “secretory lysosomes” 

(±30-50 nm) to assist invasion (Figure 4.11, C, black arrows, upper left-hand-side). 

 

Fluorescent immunolabelling confirmed colocalisation between cathepsins B and D in a few 

vesicles towards the cell periphery (Figure 4.11, A and B).  There also appear to be vesicular 

compartments that label only for cathepsin D or cathepsin B, with fewer labelling for 

cathepsin D than B (Figure 4.11, A, B and C).  At least half of the non-colocalised cathepsin 

B-labelled organelles are small (±20 nm) and electron-translucent and may contain newly 

synthesised precursor cathepsin B, in which case it is possible to speculate that they are 

secretory vesicles (Figure 4.11, C).  The rest, according to western blots (Figure 3.9, A, lane 

4), should contain mature active cathepsin B.  As these do not colocalise with cathepsin D 

and their morphology is not definitive in electron micrographs (Figure 4.11, C), it is difficult 

to classify these vesicles without further markers or probes. 

 

Cathepsins D and L colocalise in approximately 40% of labelled vesicle populations (Figure 

4.12, A), cathepsin D appearing to be present in fairly large (±150-200 nm), vesicular 

compartments (Figure 4.12, A1) in non-activated macrophages (judged non-activated due to 

round morphology).  In activated macrophages (judged activated due to elongated 

morphology), however, there is an almost total lack of colocalisation, approximately  less 

than 20% indicating colocalising vesicles may have been secreted, and the remaining 

cathepsin L is possibly of the precursor form (Figure 4.12, B1), and remaining cathepsin D is 

active, occurring mainly in hybrid organelles.  The activated cells mentioned above were not 

activated on purpose.  During the culture process the addition of trypsin-EDTA appeared on 
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occasion to activate cells, resulting in the loss of the round morphology and formation of 

elongated cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11 Fluorescent and protein A gold labelling of cathepsins D and B in J774 macrophages. 

Chicken anti-cathepsin D [100 µg/ml (A2) or 200 µg/ml (B2)] and rabbit anti-chicken IgG FITC [10 µg/ml (A2 

and B2)], post-fixed (3.7% PFA) and probed with chicken anti-cathepsin B [15 µg/ml (A1) or 50 µg/ml (B1) 

and donkey anti-chicken IgG CY3 [2 µg/ml (A1 and B1), applied to cells on coverslips, initially fixed with 
3.7% PFA and permeabilised with saponin.  Coverslips viewed using an Olympus epifluorescent microscope 
(A) or a Zeiss 510 Meta confocal microscope (B).  CY3 filter (A1 and B1), FITC filter (A2 and B2), composite 

image (A3 and B3).  Bars = 5 µm (A) or 10 µm (B). 

Chicken anti-human liver cathepsin B [10 µg/ml (C)] and chicken anti-cathepsin D [15 µg/ml (C)] and a rabbit 

anti-chicken linker antibody [50 µg/ml (C)] and protein-A gold probe for cathepsin B (10 nm) and for cathepsin 
D (15 nm) used on LR White sections viewed using a Philips CW120 Biotwin TEM (80-100 kV).  Cathepsin B 
and D in vesicles (black arrows) or only cathepsin B (10 nm) or cathepsin D (15 nm) (white arrows).  Bar = 100 
nm. 
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Figure 4.12 Fluorescent labelling of cathepsins D and L in J774 macrophages. 

Chicken anti-cathepsin D [200 µg/ml (A1 and B1)] and donkey anti-chicken IgG CY3 [2 µg/ml (A1 and B1)], 

post-fixed (3.7% PFA), probed with rabbit anti-cathepsin L [50 µg/ml (A2 and B2)] and goat anti-rabbit IgG 

FITC [2 µg/ml (A2 and B2)], applied to cells on coverslips, initially fixed with 3.7% PFA and permeabilised 
with saponin.  Coverslips viewed using a Zeiss 510 Meta confocal microscope.  CY3 filter (A1 and B1), FITC 

filter (A2 and B2), DIC images (A3 and B3), composite images (A4 and B4).  Bars = 5 µm. 
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Few compartments show colocalisation between cathepsins B and L, according to 

fluorescence microscopy (approximately 25% colocalisation) (Figure 4.13, A and B).  

Regions showing colocalisation often occur between cells in contact (Figure 4.13, B) or 

towards one cell edge (Figure 4.13, A).  The latter observation seems confirmed by EM 

where cathepsin B and L colocalisation seemed to occur in relatively small vesicles (±30-50 

nm) possibly “secretory lysosomes” mainly towards the cell periphery (Figure 4.13, C, red 

arrows).  Cathepsin B (Figure 4.13, C, white arrows) and cathepsin L (Figure 4.13, C, black 

arrows) were also observed individually in small (±20 nm) vesicles, reminiscent of secretory 

vesicles which may contain newly synthesised proforms of the proteases in different vesicle 

populations.  Vesicular swelling and generally poor ultrastructure made EM confirmation of 

results less useful (Figure 4.13, C). 

 

Labelling colocalisation for cathepsins S and B was difficult to interpret without EM 

clarification of the labelling pattern, however.  It seems to indicate a large amount of 

colocalisation (approximately 70%) of which approximately 50% occurs in small vesicle 

(±20 nm) populations reminiscent of secretory-type vesicles which usually contain newly 

synthesised procathepsins and colocalisation in very few ±50 nm vesicles resembling late 

endosomes (Figure 4.14, A).  This would seem to support blot data which indicates the major 

form of cathepsin S in J774 cells is the precursor (Figure 3.13, A, lane 3) and that this is also, 

to some extent true for cathepsin B (approximately 50% immature) (Figure 3.9, A, lane 4).  

Colocalisation would also seem to indicate that the enzymes are co-expressed and co-

packaged (Figure 4.14, A3). 

 

In labelling for cathepsins S and L only minor numbers of small (±20 nm) vesicles show 

apparent colocalisation (approximately 25%) in non-activated cells (Figure 4.15, A).  

Cathepsin S appears to be distributed throughout the cells and especially peripherally, 

whereas, cathepsin L labelling is more centrally located (Figure 4.15, A2 and A3, 

respectively).  Here, too, the compartments labelled seem small (±20 nm) supporting blot 

predictions that most of the cathepsin S and approximately 50% of cathepsin L of J774 cells 

may be in the precursor form in secretory vesicles (Figure 3.13, A, lane 3 and Figure 3.12, A 

lane 3, respectively).  In activated cells (elongated), however, (Figure 4.15, B) a higher 

percentage of colocalisation seems apparent (approximately 70%), indicating how cell 

activation may affect results. 
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Figure 4.13 Fluorescent and protein A gold labelling of cathepsins B and L in J774 macrophages. 

Chicken anti-cathepsin B [15 µg/ml (A1) or 50 µg/ml (B1)] and donkey anti-chicken IgG CY3 [2 µg/ml (A1) 

or 1 µg/ml (B1)], post-fixed (3.7% PFA), probed with rabbit anti-cathepsin L [15 µg/ml (A2) or 50 µg/ml (B2)] 

and goat anti-rabbit IgG FITC [5 µg/ml (A2) or 2 µg/ml (B2)], applied to cells on coverslips, initially fixed 
with 3.7% PFA and permeabilised with saponin.  Coverslips viewed using an Olympus epifluorescent 
microscope (A) or a Zeiss 510 Meta confocal microscope (B). CY3 filter (A1 and B1), FITC filter (A2 and B2), 

composite images (A3 and B3).  Bars = 5 µm. 

Chicken anti-human liver cathepsin B [10 µg/ml (C)], rabbit anti-cathepsin L [20 µg/ml (C)], a rabbit anti-

chicken linker antibody [50 µg/ml (C)] and protein-A gold probe for cathepsin B (10 nm) and for cathepsin L 
(15 nm) used on LR White sections viewed using a Philips CW120 Biotwin TEM (80-100 kV).  Cathepsin B 
and L colocalised in certain vesicles (red arrows).  Cathepsin B (white arrows) and cathepsin L (black arrows) 
still appeared separately.  Bar = 100 nm. 

 

 
 

C 

100 nm 

5 µm 5 µm 5 µm 

5 µm 5 µm 5 µm 



 

 116

 

 

 

 

 

 

 

 
 
Figure 4.14 Fluorescent labelling of cathepsins S and B in J774 macrophages. 

Chicken anti-cathepsin S [50 µg/ml (A1)] and donkey anti-chicken IgG CY3 [1 µg/ml (A1)], post-fixed (3.7% 

PFA), probed with chicken anti-cathepsin B [50 µg/ml (A2)] and rabbit anti-chicken IgG FITC [10 µg/ml 
(A2)], applied to cells on coverslips, initially fixed with 3.7% PFA and permeabilised with saponin.  Coverslips 
viewed using a Zeiss 510 Meta confocal microscope.  FITC filter (A1), CY3 filter (A2), composite image (A3). 

Bars = 5 µm. 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.15 Fluorescent labelling of cathepsins S and L in J774 macrophages. 

Chicken anti-cathepsin S [20 µg/ml (A1)] or 50 µg/ml (B1)] and donkey anti-chicken IgG CY3 [2 µg/ml (A1) 

or 1 µg/ml (B1)], post-fixed (3.7% PFA), probed with rabbit anti-cathepsin L [20 µg/ml (A2) or 50 µg/ml (B2) 

and goat anti-rabbit IgG FITC [5 µg/ml (A2) or 2 µg/ml (B2)], applied to cells on coverslips, initially fixed 
with 3.7% PFA and permeabilised with saponin.  Coverslips viewed using an Olympus epifluorescent 
microscope (A) or a Zeiss 510 Meta confocal microscope (B).  CY3 filter (A1 and B1), FITC filter (A2 and 

B2), composite images (A3 and B3). Bars = 5 µm. 
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Summary 

In summary, the data represented in Table 4.4 seem to indicate the possible presence of at 

least 2 major vesicle populations labelled for cathepsin H (vesicle 1A and B).  One 

population appears secretory, containing either membrane-bound or free procathepsin H 

(±20 nm, vesicle 1B).  The other population is possibly an early endosomal population 

containing active cathepsin H (Claus et al., 1998) (±100 nm, vesicle 1A).  Without labelling 

for other cathepsins to check colocalisation with cathepsin H and further markers or probes, 

it is difficult to know whether cathepsin H would be a good marker for an early endosomal 

population (provisional early endosomal vesicle 1A and a secretory vesicle population 1B). 

 

Precursor cathepsins B and S could be mainly colocalised and membrane-bound (Table 4.4).  

The mature cathepsin S (approximately 10%) may be largely colocalised with mature 

cathepsin B in late endosomes (±50 nm) and there seem to be relatively few late endosomes.  

Colocalisation would best be checked at the EM level and with labelling for precursor and 

mature cathepsins and a marker, such as the 215 kDa MPR, for the late endosome 

(provisionally classified in this study as a late endosome, vesicle 2). 

 

There seems more active cathepsin B (approximately 40% more) than active cathepsin S [the 

total active cathepsin S appears to be approximately 10%, whereas, cathepsin B is 

approximately 50%, Table 4.4].  It is highly likely that the 30% of active cathepsin B and 

40% of mature cathepsin L colocalise with mature cathepsin D, generally found in classical 

“lysosomal” or “hybrid” organelles, [i.e. most acidic and cathepsin D labelling (de Duve, 

1983)] or in an acidic, digestive organelle other than the late endosome (if cathepsin S is a 

marker for the late endosome) (Table 4.4) (provisional hybrid, digestive vesicle 3, distinct 

from the late endosome).  

 

If secretory vesicles were included, 4 vesicle types (an early endosomal-, late endosomal-, a 

digestive and secretory vesicle type) are evident by this stage.  These vesicle populations 

could be assigned with more certainty to known vesicle population groups if antisera 

recognising precursor and mature cathepsins and hence the enzymes in late 

endosomes/lysosomes and precursor enzymes of secretory vesicles could be identified.  It 

also seemed necessary, at this stage, to include a second marker for the late endosome or 

lysosomal population. Without the availability of antisera against the precursor enzyme, or  



  
1
1
8

      T
ab

le
 4

.4
 
S
u
m
m
a
ry
 o
f 
co
lo
ca
li
sa
ti
o
n
, 
w
es
te
rn
 b
lo
t 
d
a
ta
 a
n
d
 a
p
p
a
re
n
t 
v
es
ic
u
la
r 
d
is
tr
ib
u
ti
o
n
 o
f 
ca
th
ep
si
n
s.
  
 

 
C
o
lo
ca
li
sa
ti
o
n
 (
%
) 
a
n
d
 p
o
te
n
ti
a
l 
v
es
ic
le
 t
y
p
e
 

 
P
r
ec
u
rs
o
r 

fo
rm
 (
%
) 

M
a
tu
re
 

fo
rm
 (
%
) 

V
es
ic
le
 t
y
p
e
 

M
 

(%
) 

F
 (
%
) 

 
C
a
t 
H
 

C
a
t 
S
 

C
a
t 
D
 

C
a
t 
B
 

C
a
t 
L
 

 
 

 
 

 

C
a
t 
H
 

N
D

 
<
2
0
 

N
D

 
N

D
 

N
D

 
5
0
 

5
0
 

L
T
/S

 
5
0
 

5
0
 

 
 

 
 

 
 

 
 

 
 

 

C
a
t 
S
 

<
2
0
 

N
D

 
2
5
 (
L
y
s)

 
7
0
 (
L
E
/S

) 
2
5
 (
S
) 

9
0
 

1
0
 

>
S
/L

E
/L

y
s 

6
6
 

3
4
 

 
 

 
 

 
 

 
 

 
 

 

C
a
t 
D
 

N
D

 
2
5
 (
L
y
s)

 
N

D
 

3
0
 

(L
E
/L

y
s/

S
L
) 

4
0
 (
L
y
s)

 
2
0
 

8
0
 

L
E
/L

y
s 

3
4
 

6
6
 

 
 

 
 

 
 

 
 

 
 

 

C
a
t 
B
 

N
D

 
7
0
 (
L
E
/S

) 
3
0
 

(L
E
/L

y
s/

S
L
) 

N
D

 
2
5
 (
S
L
) 

5
0
 

5
0
 

S
/>

L
E
/L

y
s 

6
6
 

3
4
 

 
 

 
 

 
 

 
 

 
 

 

C
a
t 
L
 

N
D

 
2
5
 (
S
) 

4
0
 (
L
y
s)

 
2
5
 (
S
L
) 

N
D

 
5
0
 

5
0
 

>
S
/L

E
/L

y
s 

6
6
 

3
4
 

A
b
b
re

v
ia

ti
o
n
s:
 C

at
, 
ca

th
ep

si
n
, 
N

D
, 
n
o
t 
d
et

er
m

in
ed

, 
L
T
, 
la

rg
e 

(±
1
0
0
 n

m
) 
el

ec
tr
o
n
-t
ra

n
sl

u
ce

n
t,
 e

ar
ly

 e
n
d
o
so

m
e-

li
k
e,

 S
, 
sm

al
l 
(±

2
0
 n

m
) 
se

cr
et

o
ry

 v
es

ic
le

-l
ik

e,
 L

E
, 
la

rg
e 

(±
5
0
 

n
m

),
 e

le
ct

ro
n
-d

en
se

, 
la

te
 e

n
d
o
so

m
e-

li
k
e;

 L
y
s,
 l
y
so

so
m

e-
li
k
e,

 h
y
b
ri
d
, 
d
ig

es
ti
v
e 

o
rg

an
el

le
s 
(±

1
5
0
-2

0
0
 n

m
);
 S

L
, 
“s

ec
re

to
ry

 l
y
so

so
m

e”
; 
M

, 
m

em
b
ra

n
e-

b
o
u
n
d
, 
F
, 
fr
ee

, 
>
, 
m

o
st

ly
. 



 

 119

LYAAT and V-ATPase antibodies (to differentiate early endosomes from the Hck/LYAAT 

vesicle), LysoTracker seemed the obvious choice as a marker for acidic compartments 

including late endosomes, classical lysosomes and possibly other vesicles such as the V-

ATPase-rich compartment described by Anes et al. (2006).  LAMP-1 and -2 also seemed 

appropriate for identifying both the classical late endosomes and lysosomes (Fukuda et al., 

1991). 

 

4.4 Localisation of cathepsins in LAMP-1 and LAMP-2 positive compartments 

Several highly N-glycosylated proteins are present in “lysosomal” membranes and are 

known as LAMP-1, LAMP-2 and LAMP-3 (Eskelinen et al., 2003).  LAMP-1 and LAMP-2 

are evolutionarily related and share great structural similarity (Fukuda et al., 1991), however, 

they appear to be differentially regulated.  LAMP-1 appears to be constitutively expressed 

(Amos et al., 1990), whereas, LAMP-2 expression varies with cell type and with the 

developmental stage of the cell (Hatem et al., 1995; Hua et al., 1998).   

 

At steady state, most LAMPs are localised to the limiting membranes of both classical late 

endosomes and lysosomes (Fukuda et al., 1991) and have, therefore, been used as markers 

for these compartments in many studies.  Small amounts have, however, been detected in 

classical early endosomal membranes, the plasma membrane as well as in the limiting 

membrane of autophagic vacuoles (Eskelinen et al., 2002; Eskelinen et al., 2003).  LAMP 

surface expression appears to occur in certain cell types including cytotoxic T lymphocytes 

and highly metastatic tumour cells as well as under certain conditions such as the activation 

of platelets and blood monocytes (Kannan et al., 1996; Eskelinen et al., 2003).  In contrast to 

LAMP-1 and -2, LAMP-3 appears to be predominantly located in multivesicular late 

endosomes and is associated with the internal membranes of these compartments which are 

rich in lyosbisphosphatidic acid (Kobayashi et al., 2000).  Interestingly, LAMP-3 appears to 

be shared by both endocytic compartments as well as specialised secretory organelles.  These 

include the Weibel-Palade bodies of endothelial cells (Kobayashi et al., 2000), azurophil 

granules of neutrophils (Dahlgren et al., 1995) and the α-granules of platelets (Eskelinen et 

al., 2003).  Unexpectedly, LAMP-1 and LAMP-2 are not located in the azurophil granules of 

neutrophils but appear to be present in peroxidase-negative specific granules and secretory 

vesicles (Dahlgren et al., 1995). 

 

20 µm 
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The functional significance of LAMPs has been unknown for many years. It was originally 

thought that they served only as structural elements for lysosomal membranes (Furuta et al., 

1999; Furuta et al., 2001).  LAMPs have high carbohydrate content and it was thought that 

these complex carbohydrates maintained the stability of the ‘lysosomal’ membrane by 

protecting them from various hydrolytic enzymes (Fukuda et al., 1991).  Recent studies, 

however, have demonstrated a number of specific functions for LAMPs.  Mice deficient in 

LAMP-1 appear to be viable and fertile, and the various properties of lysosomes such as the 

processing of enzymes, enzyme activity, pH as well as morphology and subcellular 

distribution remain normal.  An up-regulation of LAMP-2 was observed in certain tissues 

and it appears that increased levels of LAMP-2 are required to compensate for the lack of 

LAMP-1 (Andrejewski et al., 1999).  LAMP-2 deficient mice, however, show severe 

symptoms.  Approximately 50% of the mice die 20-40 days post partum and are smaller in 

size.  There is also significant accumulation of autophagic vacuoles in their liver, muscle and 

heart (Tanaka et al., 2000).  LAMP-2 deficiency is also the main defect in Danon disease, 

which is characterised by fatal cardiomyopathy, mental retardation and mild skeletal 

myopathy with an accumulation of autophagic vacuoles in both the skeletal and cardiac 

muscle.  It has been suggested that LAMP-2 deficiency results in impaired recycling of the 

46 kDa MPR and the subsequent mistargeting of specific lysosomal enzymes.  The 

accumulation of autophagic vacuoles is, therefore, due to impaired lysosomal degradation 

(Eskelinen et al., 2002).   

 

LAMP-3 is a tetraspanin and has been shown to act as a “molecular facilitator” by enhancing 

the formation and stability of signaling complexes.  It also appears to be involved in cell 

activation and mediator release (Mahmudi-Azer et al., 2002).  Recently, it has been 

demonstrated that LAMP-3 appears to act as a cell surface binding partner for TIMP-1.  In 

MCF10A human breast epithelial cells, TIMP-1 associates with integrin β1 in a LAMP-3-

dependent manner, regulating signaling pathways involved in cell survival and polarisation 

(Jung et al., 2006).  This is extremely interesting as TIMPs have long been known to be 

involved in signaling but the mechanism has always been unclear. 

 

LAMP-1, LAMP-2 and LysoTracker were used in the current study as markers for classical 

late endosomal and lysosomal compartments, as they have both been identified in classical 

late endosomes and lysosomes of various cell types including macrophages (Desjardins et 

al., 1994a; Jahraus et al., 1998 Eskelinen et al., 2002; Sun-Wada et al., 2003; Anes et al., 
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2006).  Double immunolabelling for cathepsins and LAMPs or cathepsins and LysoTracker 

were performed to verify the possible presence of cathepsins in classical late 

endosomal/lysosomal-like digestive compartments as indicated towards the end of Section 

4.1.  The definitions of “lysosomal” populations are no longer adequate and as mentioned at 

the end of Section 4.1, marker variations, identifying 5 organelles seem evident (Table 4.5). 

 

Table 4.5 Classification of J774 macrophage endosome-lysosome vesicle populations based on pH and 

the presence of LAMPs. 

Labelling patterns of 

anticipated 5 vesicle 

types 

LAMP-1 LAMP-2 Acidic (LysoTracker-

positive) 

Early endosome Negative Negative No 
Late endosome Positive Positive Yes 
Lysosome-like+ Positive# Positive$ Yes 
V-ATPase vesicle* Negative Negative Yes 
LYAAT vesicle* Negative Negative Moderately 

(+ hybrid organelle or digestive body; # Gough and Fambrough, 1997; Falcon-Perez et al., 2005; $ Eskelinen et 

al., 2002; *Anes et al., 2006) 

 

Late endosomes are classically acidic and may label for LAMPs upon fusion with LAMP-

positive lysosomal populations, when lysosomal enzymes are required for digestion of 

endocytosed products (Gough and Fambrough, 1997; Falcon-Perez et al., 2005; Eskelinen et 

al., 2002).  Other times, it is always possible that late endosomes may be LAMPs-negative 

and transiently non-acidic or less acidic than usual.  This may complicate vesicle 

classification.  Whether late endosomes are ever of neutral or less acidic pH has never also 

been established.  Here we, therefore, used LAMP-1 and -2, LysoTracker as the markers for 

a digestive body most like de Duve’s primary and secondary lysosomes (de Duve, 1983) and 

the Griffith’s “hybrid organelle” (Griffiths, 1996a), and labelling for various cathepsins, 

especially cathepsin H for the early endosome (Claus et al., 1998) and cathepsin S for the 

late endosome (Jahraus et al., 1998) to attempt to classify the J774 macrophage vesicle 

populations.  The anticipated vesicle populations with labelling patterns are indicated in 

Table 4.5.  Very weak colocalisation was considered negative. 

 

4.4.1 Reagents 

Reagents for the culture of J774 cells, reducing SDS-PAGE, western blotting and fluorescent 

immunolabelling were prepared according to Sections 2.2.1, 2.3.1.1, 2.6.2.1 and 2.8.1.1, 

respectively. 
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Rat anti-mouse LAMP-1 (1D4B) and rat anti-mouse LAMP-2 (ABL-93) were obtained from 

the Developmental Studies Hybridoma Bank (University of Iowa, Iowa City, Iowa, USA) 

and goat anti-rat IgG-alkaline phosphatase conjugate was from Sigma. 

 

The anti-cathepsin and secondary fluorescent antibodies used, were as previously described 

(Section 3.7.1 and 4.2.1).  Goat anti-rat IgG FITC and goat anti-rabbit IgG TRITC were also 

used. 

 

4.4.2 Procedure 

Serum-containing and serum-free J774 mouse macrophage homogenates and supernatants 

were prepared (Section 3.6.2), separated on a 12.5% (v/v) Laemmli gel (Section 2.3.1.2), 

transferred to nitrocellulose and probed with rat anti-LAMP-1 [1:800], rat anti-LAMP-2 

[1:1000] and goat anti-rat IgG-alkaline phosphatase [1:30 000] according to Section 2.6.2.2. 

 

J774 cells were cultured (Section 2.2.2) and fluorescent immunolabelling performed with rat 

anti-mouse LAMP-1 [1:300 or 1:800 or 1:900], rat anti-mouse LAMP-2 [1:900 or 1:1200], 

chicken anti-cathepsin D [100 µg/ml or 200 µg/ml], chicken anti-cathepsin B [50 µg/ml], 

rabbit anti-cathepsin H [100 µg/ml], chicken anti-cathepsin S [100 µg/ml] and rabbit anti-

cathepsin L [20 µg/ml].   Goat anti-rat IgG FITC [3 µg/ml or 2µg/ml or 1 µg/ml], donkey 

anti-chicken IgG CY3 [1.5 µg/ml or 2 µg/ml], goat anti-rabbit IgG TRITC [18 µg/ml or 11 

µg/ml] were used as detection antibodies according to Section 2.8.1.2.  In some instances, 

only the Olympus epifluorescent microscope was used for viewing immunolabellings as the 

Zeiss 510 Meta confocal was only on loan for 3 months and soon became unavailable.  

Images were analysed using ImageJ software.  The percentage colocalisation was determined 

as described in Section 4.2.2.  As the polyclonal anti-mature cathepsin antisera used cannot 

distinguish between precursor and mature forms of the enzyme, cathepsins associated with 

LAMPs-positive and/or acidic organelles will assumed to be mature and active. 

 

4.4.3 Results 

The commercial LAMP-1 and LAMP-2 antibodies characterised using crude J774 mouse 

macrophage homogenates revealed bands of approximately 109 kDa and 113 kDa 

corresponding to LAMP-1 and LAMP-2, respectively (Figure 4.16, lanes 2 and 4, Figure 

4.17, lanes 2 and 4), confirming the specificity and suitability of these antisera for 

immunolabelling studies on the J774 cell line. 
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Figure 4.16 Detection of LAMP-1 in J774 homogenates and supernatants. 

MWM (lane 1, 5µl), serum-containing J774 homogenate (lanes 2 and 6, 10 µl) and supernatant (lanes 3 and 7, 

10 µl), serum-free J774 homogenate (lanes 4 and 8, 10 µl) and supernatant (lanes 5 and 9, 10 µl) were probed 
with rat anti-LAMP-1 [1:800] (lanes 2-5), rat IgG [1:800] (lanes 6-9), detected with goat anti-rat IgG (whole 
molecule)-alkaline phosphatase [1: 30 000] and developed in alkaline phosphatase substrate solution after 
separation on a 12.5% (v/v) Laemmli gel and blotting on to nitrocellulose. 
MWM = phosphorylase b, 97.4 kDa, BSA, 68 kDa, ovalbumin, 45 kDa, carbonic anhydrase, 30 kDa, soybean 
trypsin inhibitor, 21.5 kDa and lysozyme, 14 kDa. 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.17 Detection of LAMP-2 in J774 homogenates and supernatants. 

MWM (lane 1, 5µl), serum-containing J774 homogenate (lanes 2 and 6, 10 µl) and supernatant (lanes 3 and 7, 

10 µl), serum-free J774 homogenate (lanes 4 and 8, 10 µl) and supernatant (lanes 5 and 9, 10 µl) were probed 
with rat anti-LAMP-2 [1:1000] (lanes 2-5), rat IgG [1:1000] (lanes 6-9), detected with goat anti-rat IgG (whole 
molecule)-alkaline phosphatase [1: 30 000] and developed in alkaline phosphatase substrate solution after 
separation on a 12.5% (v/v) Laemmli gel and blotting on to nitrocellulose.  
MWM = phosphorylase b, 97.4 kDa, BSA, 68 kDa, ovalbumin, 45 kDa, carbonic anhydrase, 30 kDa, soybean 
trypsin inhibitor, 21.5 kDa and lysozyme, 14 kDa). 

 

A large number of LAMP-1- (Figure 4.18, A1) and LAMP-2-positive (Figure 4.18, A2) 

compartments were observed in J774 mouse macrophages. 

 

As anticipated little colocalisation was evident between cathepsin H and LAMP-1 (Figure 

4.19, A) and LAMP-2 (Figure 4.19, B) (less than 25% colocalisation).  Cathepsin H-labelled 

vesicles (±100 nm, possibly early endosomes) were, therefore, classified as LAMP-1- and/or 

-2-negative (Table 4.6).  Vesicles showing no colocalisation between cathepsin H and either 

LAMP-1 or LAMP-2 may represent either newly synthesised precursor enzyme 
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[approximately 50% of all cathepsin H present, small (±20 nm) secretory vesicles] or 

possibly the presence of mature cathepsin H (in approximately 50% of all cathepsin H-

labelled organelles) in LAMP-negative early endosomes (±100 nm).  Claus et al. (1998) 

reported that approximately 70% of active cathepsin H in J774 macrophages was located in 

early endosomes, with only 10% and 20% occurring in late endosomes and “lysosomes”, 

respectively.  These values almost agree with our labelling results and similarly, our blot data 

(Figure 3.11, A, lane 3) almost concurs with these figures, as approximately 50% of both 

precursor and mature cathepsin H was observed in J774 homogenates.  Careful scrutiny of 

fluorescent images indicates limited colocalisation of cathepsin H and LAMPs as [less than 

25%, previously indicated by Claus et al. (1998)] seems associated with late endosomes (±50 

nm) and lysosome-like or digestive organelles (±100-200 nm).  This colocalisation may 

represent cathepsin H undergoing activation in LAMP-positive, “late endosome-lysosome 

hybrid organelles” (Figure 4.19, A and B, arrows).  Cathepsin H, therefore, mainly seems to 

occur in early endosomes and secretory vesicles as indicated in the Summary at the end of 

Section 4.3. 

 
Some colocalisation was observed between cathepsin S and LAMP-1 (Figure 4.20, A).  Only 

approximately 10% of the total cellular cathepsin S seems to be active according to western 

blots (Figure 3.13, A, lane 3), therefore, of the 45% colocalising with LAMP-1 only 

approximately 10% could colocalise with active enzyme.  (The percentage colocalisation 

with LAMP-2 is unknown).  LAMP-1 association with a vesicle containing precursor 

enzyme was unanticipated as LAMP-positive organelles are generally associated with 

enzyme processing or processed enzymes.  According to the dogma such organelles should 

be acidic and contain active cathepsins (Table 4.1).  Anes et al. (2006), however, identified 

an unanticipated “lysosomal” subpopulation (largely non-acidic and LAMP-1-positive).  

[Classically “lysosomal” populations labelling for LAMPs, are acidic (pH of ± <5.5), 

containing processed lysosomal cathepsins and lacking in the 215 kDa MPR (Table 4.1)].  It 

is always possible that LAMPs-positive, non-acidic, MPR-negative vesicles containing 

unprocessed enzymes (Table 4.1) may exist, however.  Enzymes may be required initially in 

precursor form and after slow acidification and processing of enzymes has occurred, such an 

organelle may secrete “mature” enzymes.  Punturieri et al. (2000) demonstrated such a 

scenario as mature cathepsin S, as well as cathepsins K and B, were only shown to be 

released from MDMs some days after induction of an inflammatory process.  Enzymes may, 

therefore, be stored as precursors for some time before activation and release, or may 
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initially be released as precursors and subsequently as active enzymes after a slow acidifying 

or maturation process.  Whether there are two enzyme processing sites, a late endosome and 

another acidic organelle (i.e. LAMPs-positive, acidic, MPR-negative and containing mature 

lysosomal enzymes) (Table 4.1) or whether the late endosome “matures” into such an 

organelle is unknown.  The latter scenario seems a possibility from the current cathepsin S-

labelling results.  Cathepsin S, however, seems located mainly in secretory and late 

endosomal vesicle populations. 

 

Mature cathepsin D, present in 80% of vesicles, on the other hand, colocalised in a 50:50 

ratio with LAMP-1 and LAMP-2 (Figure 4.21, A and C, respectively, i.e. within 50% of all 

mature cathepsin D-containing vesicles, possibly ±30-50 nm, “secretory lysosomes”, ±50 nm 

late endosomes and ±150-200 nm hybrid organelles).  LAMP-1 and -2 may colocalise with 

each other within the same 50% of active cathepsin D-labelled vesicles of all vesicle 

populations or may colocalise minimally at 20% (i.e. 2 x 30% of mature cathepsin D-labelled 

vesicles associated with one label and 20% associated with both labels, contributing to a total 

of 80% active enzyme) or some proportion between these two extremes i.e. 20-50% 

colocalisation between LAMP-1 and -2.  With good EM ultrastructure and triple labelling for 

cathepsin D (precursor and mature), LAMP-1 and -2 it may be possible to identify the 

different LAMP labelling populations. 

 

Activation (elongated cell morphology) seemed to increase the level of colocalisation of 

cathepsin D with LAMP-1 to almost 100% of the ±50 nm late endosome-like vesicles 

containing the mature cathepsin (Figure 4.21, B) (LAMP-2 colocalisation could not be 

assessed as a similarly activated cell could not be found and triple labelling was not 

performed).  The increase in association with LAMP-1 (up to approximately 100%) upon 

activation (Figure 4.21, B) illustrates how dynamic and variable localisations may be with 

activation. 

 

Colocalisation seems to occur mainly in specific areas of the cell and such organelles seem 

to be relatively large (±50 nm) and greater than 100 nm (±150-200 nm) (Figure 4.21, A and 

B).  These are possibly late endosomes and “hybrid” organelles or digestive bodies, 

therefore, agreeing with previous Summary observations (Summary end of Section 4.3 and 

Table 4.4). 
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Figure 4.18 Fluorescent labelling of LAMP-1 and LAMP-2 in J774 macrophages. 
Rat anti-mouse LAMP-1 [1:900 (A1)] or rat anti-mouse LAMP-1 [1:1200 (A2)] and goat anti-rat FITC [3 

µg/ml (A1 and A2)] applied to cells on coverslips, initially fixed with 3.7% PFA and permeabilised with 

saponin.  Coverslips viewed with an Olympus epifluorescent microscope.  Bars = 5 µm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.19 Fluorescent labelling of LAMP-1 or LAMP-2 and cathepsin H in J774 macrophages.  

Rabbit anti-cathepsin H [100 µg/ml (A1)] and goat anti-rabbit TRITC [18 µg/ml (A1 and B1)], post-fixed 
(3.7% PFA), probed with rat anti-mouse LAMP-1 [1:900 (A2)] or rat anti-mouse LAMP-2 [1:900 (B2)] and 

goat anti-rat FITC [2 µg/ml (A2)] or goat anti-rat FITC [1 µg/ml (B2)], applied to cells on coverslips, initially 
fixed with 3.7% PFA and permeabilised with saponin.  Coverslips viewed using a Zeiss 510 Meta confocal 
microscope (A) or an Olympus epifluorescent microscope (B).  TRITC filter (A1 and B1), FITC filter (A2 and 
B2), composite images (A3 and B3).  Less than approximately 25% between cathepsin H and LAMP-1 or -2 

(arrows).   Bars = 5 µm. 
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Figure 4.20 Fluorescent labelling of LAMP-1 and cathepsin S in J774 macrophages. 

Chicken anti-cathepsin S [50 µg/ml (A1)] and donkey anti-chicken CY3 [2 µg/ml (A1)], post-fixed (3.7% 

PFA), probed with rat anti-mouse LAMP-1 [1:900 (A2)] and goat anti-rat FITC [2 µg/ml (A2)] applied to cells 
on coverslips, initially fixed with 3.7% PFA and permeabilised with saponin.  Coverslips viewed using a Zeiss 

510 Meta confocal microscope.  CY3 filter (A1), FITC filter (A2), composite image (A3).  Bars = 5 µm. 
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The minimum percentage of cathepsin D possibly not associated with LAMPs may be 

approximately 20%, as 20% of the cathepsin D-labelled vesicles may contain immature 

cathepsin D according to western blots (Figure 3.10, A, lane 3).  These vesicles are possibly 

precursor-containing secretory vesicles (Table 4.4). 

 

Limited colocalisation was observed between cathepsin B and LAMP-1 and LAMP-2 (in 

approximately 15% and 30% of total cathepsin B-labelled vesicles, Figure 4.22, A and B, 

respectively), with colocalisation occurring in relatively small vesicles (±30-50 nm) and a 

few larger (±150-200 nm) possibly “hybrid” organelles.  This suggests that the antibody is 

largely either detecting procathepsin B or mature cathepsin B in vesicles other than late 

endosomes (±50 nm), possibly the digestive body or hybrid organelle and this seems to be 

borne out by Figure 4.22, A and B.  This also seems possible as blots reflect that about 50% 

of the cathepsin B present in J774 cells is in the precursor form (Figure 3.9, A, lane 4) and 

approximately 50% mature (Figure 3.9, A, lane 4).  It would seem that LAMP-2 may also 

colocalise more with cathepsin B (approximately 30%) than LAMP-1 (approximately 15%) 

(Figure 4.22, B compared to A).  A small proportion (approximately 15%) of mature 

cathepsin B- and LAMP-1-labelled vesicles and approximately 30% of mature cathepsin B- 

and LAMP-2-labelled vesicles may colocalise in any of the above-mentioned vesicles.  

Alternatively LAMP-1 and -2 may largely label separate mature enzyme-containing, acidic 

populations.  Overlapping colocalisation for LAMP-1 and -2 and mature cathepsin B may, 

therefore, occur in a maximum of 15% of mature cathepsin B-containing vesicles, with 15% 

non-colocalised.  If only mature cathepsin colocalises with LAMPs, cathepsin B-labelled 

vesicles may be classified mainly as LAMP-2-positive.  At least 5% of the mature enzyme 

may occur in a LAMP-1- and -2-negative organelle, however. 

 

Lastly, cathepsin L showed only slight colocalisation with LAMP-1 and LAMP-2 

(approximately 30% and 15%, Figure 4.23, A and B, in ±150-200 nm possibly hybrid 

organelles, ±50 nm late endosomes and ±30-50 nm secretory lysosomes, respectively).  The 

LAMPs distribution seems to be different and opposite to that of cathepsin B and LAMPs 

labelling.  Blots indicating that 50% of cathepsin L may occur in the mature form (Figure 

3.12, A, lane 3) and colocalisation between cathepsin L and LAMP-1 and -2 in ±150 nm and 

±100 nm vesicles, respectively may, therefore, represent cathepsin L in acidic compartments 

other than late endosomes i.e. hybrid or digestive organelles.  If LAMPs labels are associated 

only with mature enzyme, only 30% and 15% of the total 50% cathepsin L may, therefore, 
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be either LAMP-1- and/or LAMP-2-associated, respectively. Non-colocalised vesicles 

(approximately 55% of ±20 nm cathepsin L-labelled vesicles) could possibly contain newly 

synthesised procathepsin L.  This may mean that at least 15% of the mature enzyme may be 

separately located in a LAMP-1-positive, LAMP-2-negative organelle population and 

possibly at least 15% may be colocalised (Table 4.6). Colocalisation seems to occur mainly 

in relatively large (greater than ±100 nm) vesicles (Figure 4.23, B) which may possibly be 

hybrid organelles or digestive bodies.  Lastly, like for cathepsin B, at least 5% of active 

enzyme is also possibly found in a LAMP-1- and LAMP-2-negative compartment indicating 

the presence of LAMP-1/LAMP-2-labelled subpopulations.  LAMP-2 labelled cells seem to 

be slightly activated (elongated morphology) (Figure 4.23, B), however, and activation could 

have affected localisation patterns observed for LAMP-2. 
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Figure 4.21 Fluorescent labelling of LAMP-1 or LAMP-2 and cathepsin D in J774 macrophages. 

Chicken anti-cathepsin D [100 µg/ml (A1) or 200 µg/ml (B1 and C1)] and donkey anti-chicken CY3 [2 µg/ml 
(A1, B1 and C1)], post-fixed (3.7% PFA), probed with rat anti-mouse LAMP-1 [1:300 (A2) or 1:800 (B2)] or 

rat anti-mouse LAMP-2 [1:900 (C2)] and goat anti-rat FITC [3 µg/ml (A2 and B2) or 1 µg/ml (C2)] applied to 
cells on coverslips, initially fixed with 3.7% PFA and permeabilised with saponin.  Coverslips viewed using an 
Olympus epifluorescent microscope (A and C) or a Zeiss 510 Meta confocal microscope (B).  CY3 filter (A1, 
B1 and C1), FITC filter (A2, B2 and C2), composite images (A3 and C3), DIC image (B3), composite images 

(A3, B4 and C3).  Bars = 5 µm. 
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Figure 4.22 Fluorescent labelling of LAMP-1 or LAMP-2 and cathepsin B in J774 macrophages.  

Chicken anti-cathepsin B [50 µg/ml (A1 and B1)] and donkey anti-chicken CY3 [1 µg/ml (A1) or 2 µg/ml 
(B1)], post-fixed (3.7% PFA), probed with rat anti-mouse LAMP-1 [1:900 (A2)] or rat anti-mouse LAMP-2 

[1:900 (B2)] and goat anti-rat FITC [2 µg/ml (A2)] or 1 µg/ml (B2)] applied to cells on coverslips, initially 
fixed with 3.7% PFA and permeabilised with saponin.  Coverslips viewed using a Zeiss 510 Meta confocal 
microscope (A) or an Olympus epifluorescent microscope (B).  CY3 filter (A1 and B1), FITC filter (A2 and 

B2), composite images (A3 and B3).  Bars = 5 µm (A) or 10 µm (B). 

5 µm 5 µm 

5 µm 

10 µm 10 µm 

10 µm 



 

 132

 
 
 

 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.23 Fluorescent labelling of LAMP-1 or LAMP-2 and cathepsin L in J774 macrophages. 

Rabbit anti-cathepsin L [20 µg/ml (A1) or 40 µg/ml (B1)] and goat anti-rabbit TRITC [11 µg/ml (A1) or 18 

µg/ml (B1)], post-fixed (3.7% PFA), probed with rat anti-mouse LAMP-1 [1:300 (A2)] or rat anti-mouse 

LAMP-2 [1:9002 (B2)] and goat anti-rat FITC [3 µg/ml (A2) or 1 µg/ml (B2)] applied to cells on coverslips, 
initially fixed with 3.7% PFA and permeabilised with saponin. Coverslips viewed using an Olympus 
epifluorescent microscope. TRITC filter (A1 and B1), FITC filter (A2 and B2), composite images (A3 and B3).  

Bars = 5 µm. 
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Summary 

Taken together, these results suggest that there seems to be some heterogeneity in 

distribution between LAMP-1 and LAMP-2 compartments, with cathepsins D, S and L 

apparently exhibiting the highest association with LAMP-1 (50, 45 and 30%, respectively) 

and cathepsin B showing a greater association with LAMP-2 (30%) than LAMP-1 and 

cathepsin L the opposite (Table 4.6). 

 

Five vesicle labelling patterns for LAMPs were predicted from the results of Anes et al. 

(2006) as indicated in Table 4.5, i.e. three different LAMPs-negative populations [early 

endosomes (EE), V-ATPase and LYAAT) and  two LAMPs-positive populations [lysosome-

like (Lyso), late endosomes (LE)].   

 

In this study a potential early endosome (cathepsin H-labelling, ±100 nm organelle) was also 

detected.  The cathepsin H-labelling early endosome (±100 nm) appears to be LAMP-1- and 

LAMP-2-negative as anticipated (Table 4.5).  Thus cathepsin H-labelling populations may 

include an early endosome population (±100 nm, vesicle 1A) and a secretory population 

(±20 nm, vesicle 1B) which cannot be distinguished unless labelling with further markers for 

the early endosome (EEA1) or precursor enzyme is carried out (secretory vesicles also 

LAMP-1- and -2-negative but contain proenzyme and are negative for EEA1).  On the basis 

of size (±100 nm vs ±20 nm) it would appear that approximately 50% of the vesicles are 

early endosomes and the remaining 50% secretory vesicles as indicated by blots (Table 4.6).  

 

The late endosome (cathepsin S-labelling ±50 nm organelle), a second population (vesicle 

2A) would appear to label with LAMP-1 (LAMP-positive) as anticipated (Tables 4.1 and 

4.5).  A minor ±20 nm, LAMP-1-positive population labelling for precursor cathepsin S is 

possibly also present (vesicle 2B).  Colocalisation with LAMP-2 still needs to be checked 

and may identify a subgroup in this population. 

 

The classical lysosome-like or hybrid late endosome-lysosome-like vesicle (±100-200 nm) 

containing active cathepsin D may consist of at least two different populations, possibly 

labelling for LAMP-1 or LAMP-2 (vesicles 3A and B) or some vesicles may be both LAMP-

1- and -2-positive (vesicle 3C).  A minor LAMP-1- or -2-negative, mature cathepsin D-

positive population may also exist (vesicle 3D).  This would make a total of at least 7 

possible vesicle populations or 6 if secretory vesicles not included by Anes et al. (2006) are  



  
1
3
4

    T
ab

le
 4

.6
 
S
u
m
m
a
ry
 o
f 
co
lo
ca
li
sa
ti
o
n
 b
et
w
ee
n
 L
A
M
P
s 
a
n
d
 c
a
th
ep
si
n
s,
 w
es
te
rn
 b
lo
t 
d
a
ta
 a
n
d
 a
p
p
a
re
n
t 
v
es
ic
u
la
r 
d
is
tr
ib
u
ti
o
n
 o
f 
th
es
e 

p
ro
te
in
s.
  
 

 
C
o
lo
ca
li
sa
ti
o
n
 (
%
) 
a
n
d
 p
o
te
n
ti
a
l 
v
es
ic
le
 t
y
p
e
 

 

P
r
ec
u
rs
o
r 

fo
rm
 (
%
) 

M
a
tu
re
 

fo
rm
 (
%
) 

V
es
ic
le
 t
y
p
e
 
M
 

(%
) 

F
 

(%
) 

 
C
a
t 
H
 

C
a
t 
S
 

C
a
t 
D
 

C
a
t 
B
 

C
a
t 
L
 

 
 

 
 

 

L
A
M
P
-1
 

<
2
5
 

4
5
 (
L
E
/L

y
s)

 
5
0
 (
L
E
/L

y
s)

 
1
5
 (
L
E
/L

y
s)

 
3
0
 (
L
E
/L

y
s)

 
- 

- 
L
E
/L

y
s/

S
L
 

- 
- 

 
 

 
 

 
 

 
 

 
 

 

L
A
M
P
-2
 

<
2
5
 

N
D

 
5
0
 

3
0
 

1
5
 

- 
- 

L
E
/L

y
s/

S
L
 

- 
- 

 
 

 
 

 
 

 
 

 
 

 

C
a
t 
H
 

N
D

 
<
2
0
 

N
D

 
N

D
 

N
D

 
5
0
 

5
0
 

L
T
 

5
0
 

5
0
 

 
 

 
 

 
 

 
 

 
 

 

C
a
t 
S
 

<
2
0
 

N
D

 
2
5
 (
L
y
s)

 
7
0
 (
L
E
/S

) 
2
5
 (
S
) 

9
0
 

1
0
 

>
S
/L

E
/L

y
s 

6
6
 

3
4
 

 
 

 
 

 
 

 
 

 
 

 

C
a
t 
D
 

N
D

 
2
5
 (
L
y
s)

 
N

D
 

3
0
 

(L
E
/L

y
s/

S
L
) 

4
0
 (
L
y
s)

 
2
0
 

8
0
 

L
E
/L

y
s 

3
4
 

6
6
 

 
 

 
 

 
 

 
 

 
 

 

C
a
t 
B
 

N
D

 
7
0
 (
L
E
/S

) 
3
0
 

(L
E
/L

y
s/

S
L
) 

N
D

 
2
5
 (
S
L
) 

5
0
 

5
0
 

S
/>

L
E
/L

y
s 

6
6
 

3
4
 

 
 

 
 

 
 

 
 

 
 

 

C
a
t 
L
 

N
D

 
2
5
 (
S
) 

4
0
 (
L
y
s)

 
2
5
 (
S
L
) 

N
D

 
5
0
 

5
0
 

>
S
/L

E
/L

y
s 

6
6
 

3
4
 

A
b
b
re

v
ia

ti
o
n
s:
 C

at
, 
ca

th
ep

si
n
, 
N

D
, 
n
o
t 
d
et

er
m

in
ed

, 
L
T
, 
la

rg
e 

(±
1
0
0
 n

m
) 
el

ec
tr
o
n
-t
ra

n
sl

u
ce

n
t,
 e

ar
ly

 e
n
d
o
so

m
e-

li
k
e,

 S
, 
sm

al
l 
(±

2
0
 n

m
) 
se

cr
et

o
ry

 v
es

ic
le

-l
ik

e,
 L

E
, 
la

rg
e 

(±
5
0
 

n
m

),
 e

le
ct

ro
n
-d

en
se

, 
la

te
 e

n
d
o
so

m
e-

li
k
e;

 L
y
s,
 l
y
so

so
m

e-
li
k
e,

 h
y
b
ri
d
, 
d
ig

es
ti
v
e 

o
rg

an
el

le
s 
(±

1
5
0
-2

0
0
 n

m
);
 S

L
, 
“s

ec
re

to
ry

 l
y
so

so
m

e”
; 
M

, 
m

em
b
ra

n
e-

b
o
u
n
d
, 
F
, 
fr
ee

, 
>
, 
m

o
st

ly
. 



 

 135

not counted.  Additional “secretory lysosomes” may also exist containing cathepsins B, D 

and L. 

 

Anes et al. (2006) labelled only with LAMP-1.  The opposite distribution of cathepsins B 

and L in LAMP-1 and -2 labelling populations, and the possibility that both cathepsins show 

some LAMP-1-negative labelling like the early endosome may indicate that these 

populations are the three LAMP-1-negative organelles described by Anes et al. (2006).  The 

only way to establish whether these populations could be compared with the Anes et al. 

(2006) populations (Table 4.5) was now to check whether or not these are acidic by labelling 

with LysoTracker. 

 

4.5 Localisation of cathepsins in acidic compartments 

Cellular compartments with low internal pH selectively accumulate weakly basic amines.  

DAMP (3-(2, 4-dinitroanilino)-3’-amino-N-methyldipropylamine), one such weak base, has 

been used in conjunction with anti-DNP antibodies.  These cross-react with a component of 

DAMP and allow the measurement of the acidity of low pH compartments, with labelling 

increasing in proportion to the accumulating weak base.  Fluorescent probes such as neutral 

red and acridine orange have also been used in the identification of acidic compartments but 

appear to lack specificity.  Fluorescent LysoTracker probes, on the other hand, are 

acidotropic and can be used for labelling and tracing acidic cellular compartments in live 

cells and have a number of advantages.   

 
These can be used in both short- and long-term tracking experiments.  They are highly 

selective for acidic compartments and can be used effectively at nanomolar concentrations.  

LysoTracker Red DND-99 consists of a weak base conjugated to a red fluorophore.  The 

weak base is partially protonated at neutral pH and hence freely permeates cell membranes.  

Upon protonation in acidic compartments LysoTracker is trapped and can be fixed in these 

organelles using aldehyde fixation (Via et al., 1998).  With excitation and emission maxima 

at 577 and 592 nm, LysoTracker Red DND-99 can also be used in colocalisation studies with 

FITC, GFP or Oregan Green fluorescent probes.  It has previously been used in the 

identification of trypanosome lysosomal compartments (Magez et al., 1997), the 

identification of endosomes and lysosomes in neuronal cells (White and Kacsmarek, 1997), 

in studies of the mobility of MHC class-II carrying vesicles (Wubbolts et al., 1996) and in 

phagosome maturation studies (Via et al., 1998; Harrison et al., 2003).  LysoTracker has also 
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been shown to classically occupy both Rab7- and LAMP-1-positive compartments (potential 

late endosomes and lysosomes), in both bone marrow-derived macrophages and J774 mouse 

macrophages but does not appear to occupy Rab5-positive compartments in bone marrow-

derived macrophages (potential early endosomes) (Via et al., 1998).  These results suggest 

that LysoTracker may be used as a selective marker for the identification of classical acidic 

late endosome and lysosomal compartments of macrophages.  Thus, LysoTracker was used 

in the current study to determine whether cathepsins B, D, H, S and L are associated with 

acidic compartments. 

 

4.5.1 Reagents 

Reagents for culture and fluorescent immunolabelling of J774 cells for cathepsins and 

LysoTracker were prepared according to Sections 2.2.1 and 2.8.1.1 respectively.   

 

LysoTracker Red (Molecular Probes) was diluted in DMEM [1:20 000] with 10% FCS. 

 

The anti-cathepsin and secondary fluorescent antibodies were as previously described 

(Section 3.7.1 and 4.2.1). 

 

4.5.2 Procedure 

J774 cells were cultured according to Section 2.2.2.  Prior to fluorescent immunolabelling 

the cells were incubated in medium containing LysoTracker [1:20 000], (30 min, 37oC).  

Fluorescent immunolabelling was subsequently performed with chicken anti-cathepsin D 

[200 µg/ml], chicken anti-cathepsin B [20 µg/ml], rabbit anti-cathepsin H [100 µg/ml], 

chicken anti-cathepsin S [20 µg/ml], rabbit anti-cathepsin L [20 µg/ml], rabbit anti-chicken 

IgG FITC [10 µg/ml] and goat anti-rabbit IgG FITC [5 µg/ml] according to Section 2.8.1.2.  

Only the Olympus epifluorescent microscope was used for viewing as the Zeiss 510 Meta 

confocal was no longer available and images analysed using ImageJ software.  As per 

Section 4.2.2, the average percentage colocalisation was determined manually and 

percentage colocalisations below approximately 25% will be considered negative (i.e. no 

colocalisation) and above approximately 25%, positive. 
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4.5.3 Results 

As anticipated from previous results (Section 4.4.3), cathepsin H showed no significant 

colocalisation with LysoTracker (Figure 4.24, A1, A2 and A3), i.e. labelling occurs in a non-

acidic organelle.  Labelling also seems to concur with early endosomal (±100 nm) 

association i.e. a lack ofcolocalisation with LAMP-1 and -2 and (Figure 4.19 and Figure 

4.24).  If cathepsin H-labelling vesicles contain approximately 50% precursor enzymes and 

50% mature enzyme (as suggested by blots, Figure 3.11, A, lane 3), three populations i.e.  

LAMP-1 and/or -2-negative and LysoTracker-negative (i.e. non-acidic/low acidity) vesicles 

resembling the classical description of the early endosome (±100 nm, containing active 

enzymes) or secretory vesicles (±20 nm, containing precursor enzymes) (vesicles 1A and B, 

similar to Summary of results Section 4.4.3) may exist.  Approximately 50% of cathepsin H 

may, therefore, be contained in LAMPs-negative, non-acidic organelles previously described 

by Anes et al. (2006).  [LAMPs-negative, non-acidic, possibly two of the three non-acidic 

LAMPs-negative organelles described by Anes et al. (2006) (one containing precursor and 

one containing mature enzyme) (Table 4.7). 

 

The relatively high colocalisation between cathepsin S and LysoTracker (approximately 

40%) in ±50 nm vesicles and the presence of approximately 90% immature cathepsin S 

(Figure 4.25, A1, A2 and A3), suggests that more cathepsin S should be in the mature form 

than is indicated by blots (Figure 3.13, A, lane 3).  The partial colocalisation between 

cathepsin S and LAMP-1 (approximately 45%) also suggests that some of the vesicles 

(approximately 40%) are likely to represent late endosomes (LAMPs-positive, acidic and 

containing mature cathepsin S, if cathepsin S is a marker for the late endosome) (vesicle 2A).  

The rest of the cathepsin S-labelling vesicles would represent LAMP-1-positive, non-acidic 

vesicles possibly containing precursor enzyme (vesicle 2B) (Table 4.7) or LAMP-1-negative, 

non-acidic vesicles possibly contribute a third LAMPs-negative, non-acidic population 

(vesicle 3C) described by Anes et al. (2006).  The size of the cathepsin S-labelled organelles, 

however, seem to indicate that most are late endosomes (±50 nm), which may not yet be 

acidic (Figure 4.25) as previously speculated (Section 4.4.3). 
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Figure 4.24 LysoTracker and labelling of cathepsin H in J774 macrophages. 
Cells grown on coverslips were incubated in DMEM with LysoTracker [1:20 000 (A1)] (30 min, 37oC), 

initially fixed with 3.7% PFA, permeabilised with saponin and probed with rabbit anti-cathepsin H [100 µg/ml 

(A2)], goat anti-rabbit FITC [5 µg/ml (A2)].  Coverslips viewed using an Olympus epifluorescent microscope.  

FITC filter (A1), LysoTracker filter (A2), composite image (A3).  Bars = 5 µm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.25 LysoTracker and labelling of cathepsin S in J774 macrophages. 

Cells grown on coverslips were incubated in DMEM with LysoTracker [1:20 000 (A1)] (30 min, 37oC), 

initially fixed with 3.7% PFA, permeabilised with saponin and probed with chicken anti-cathepsin S [20 µg/ml 

(A2)], rabbit anti-chicken FITC [10 µg/ml (A2)].  Coverslips viewed using an Olympus epifluorescent 

microscope.  FITC filter (A1), LysoTracker filter (A2), composite image (A3).  Bars = 5 µm. 
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Of all the cathepsins, cathepsin D showed the most extensive colocalisation with 

LysoTracker (Figure 4.26, A1, A2 and A3, 90%).  The vesicular compartments showing 

colocalisation were generally large (±100 nm or greater), like classical hybrid late 

endosomes-lysosomes, or ±30-50 nm or ±50 nm, secretory lysosomes or late endosomes, 

respectively, located towards the centre of the cell, generally to one side.  Cathepsin D-

containing vesicles, therefore, appear to be LAMP-1 and/or -2-positive and LysoTracker-

positive (i.e. acidic) (Tables 4.5 and 4.7) and most like the classical secretory lysosome or 

late endosome-lysosome hybrid organelle.  These vesicle populations, LAMP-1 and/or -2-

positive, acidic, are possibly 3 vesicle populations i.e. vesicles 3A, B and C, and the LAMPs-

negative secretory vesicles (vesicle 3D) give rise to the 4th population as indicated in the 

Summary of results in Section 4.4.3 and Table 4.6. 

 

Partial colocalisation was observed also between cathepsin B and LysoTracker in 

(approximately 40% of all cathepsin B-labelled ±50 nm possibly late endosomes and ±150-

200 nm “hybrid organelles”). Within the remaining 60% of cathepsin B-labelled vesicles, 

approximately 10% active enzyme is found in ±100-150 nm vesicles and 50% inactive 

enzyme in ±20 nm vesicles in which cathepsin B was not associated with acidic 

compartments (Figure 4.27, A1, A2 and A3).  The 50% inactive enzyme, as suggested by 

blots (Figure 3.9, A, lane 4), is most likely to be in secretory vesicles (±20 nm) containing 

newly synthesised proforms.  If mature cathepsin B is only contained in acidic vesicles, these 

vesicles may, therefore, be partially LAMP-2-positive (Table 4.6) and partially LAMP-1-

positive (15% of total cathepsin B) and LysoTracker-positive (i.e. 40% of cathepsin B-

labelled organelles acidic).  As such these may be the first of the LAMP-positive acidic 

vesicles labelling more for LAMP-2 than LAMP-1, with some non-acidic vesicles (5-10%) 

appearing LAMP-positive (Table 4.7).  These vesicle populations may, therefore, represent 3 

possible subgroups (late endosomes, hybrid organelles and LAMP-positive, non-acidic 

vesicles). 

 

Cathepsin L also colocalises (approximately 40%) with LysoTracker in relatively large 

vesicles (±50 nm, possibly late endosomes) and larger vesicles (±100 nm or greater, possibly 

hybrid organelles) (Figure 4.28 and Table 4.6).  This cathepsin L is most likely to be 

associated with acidic hybrid organelles (one type of vesicle).  From blot data and Table 4.6, 

cathepsin L populations consist of approximately 50% mature and 50% immature enzyme [it 

is most likely that most of the 50% mature enzyme is associated with LysoTracker within the 
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40% colocalised with LysoTracker and 5-10% of the vesicles may contain mature enzyme 

and be LysoTracker-negative (a second type of vesicle). Cathepsin L-labelled vesicles may, 

therefore, be LAMP-1 and/or -2-positive (30 and 15%, respectively), suggesting that some of 

the first vesicle group (LAMP-1- and -2-positive) are likely to represent hybrid organelles or 

digestive bodies (±150-200 nm) (Table 4.7) but 2 other subgroups (i.e. either LAMP-1-

positive or LAMP-2-positive) and a secretory vesicle (±20 nm) population containing 

immature enzyme and may give rise to total of 6 cathepsin L-labelling vesicle populations 

including the secretory vesicles. 
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Figure 4.26 LysoTracker and labelling of cathepsin D in J774 macrophages. 
Cells grown on coverslips were incubated in DMEM with LysoTracker [1:20 000 (A2)] (30 min, 37oC), 
initially fixed with 3.7% PFA, permeabilised with saponin and probed with chicken anti-cathepsin D [200 

µg/ml (A1)], rabbit anti-chicken FITC [10 µg/ml (A1)].  Coverslips viewed using an Olympus epifluorescent 

microscope.  FITC filter (A1), LysoTracker filter (A2), composite image (A3).  Bars = 10 µm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.27 LysoTracker and labelling of cathepsin B in J774 macrophages. 
Cells grown on coverslips were incubated in DMEM with LysoTracker [1:20 000 (A2)] (30 min, 37oC), 

initially fixed with 3.7% PFA, permeabilised with saponin and probed with chicken anti-cathepsin B [20 µg/ml 

(A1)], rabbit anti-chicken FITC [10 µg/ml (A1)].  Coverslips viewed using an Olympus epifluorescent 

microscope.  FITC filter (A1), LysoTracker filter (A2), composite image (A3).  Bars = 5 µm. 
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Figure 4.28 LysoTracker and labelling of cathepsin L in J774 macrophages. 
Cells grown on coverslips were incubated in DMEM with LysoTracker [1:20 000 (A2)] (30 min, 37oC), 

initially fixed with 3.7% PFA, permeabilised with saponin and probed with rabbit anti-cathepsin L [20 µg/ml 

(A1)], goat anti-rabbit FITC [5 µg/ml (A1)].  Coverslips viewed using an Olympus epifluorescent microscope.  

FITC filter (A1), LysoTracker filter (A2), composite image (A3).  Bars = 5 µm. 
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Summary 

The cathepsin H-labelling organelles (±100 nm), seem to be LAMPs-negative and non-acidic 

in accordance with the classical definition of an early endosome, and largely cathepsin S-

negative, assuming mature cathepsin S is taken as a marker for the late endosome (±50 nm), 

non-colocalisation with this marker would be in accordance with an early endosome marker. 

Some membrane-association of the precursor in small (±20 nm), non-acidic, LAMPs-

negative secretory vesicles is also present.  [Vesicle 1A, ±100 nm, non-acidic, LAMPs-

negative, cathepsin H (mature) and vesicle 1B, ±20 nm, non-acidic, LAMPs-negative, 

cathepsin H (immature)].   Thus cathepsin H may possibly be a good marker for early 

endosomes if the currently indistinguishable population containing immature enzyme could 

be distinguished (vesicle 1B).  Colocalisation labellings for other cathepsins, however, need 

to be performed to futher verify cathepsin H as a suitable marker for the early endosome.  

From sizes of organelles, however, cathepsin H seems to be contained in either early 

endosomes or secretory type vesicles. 

 

Cathepsin S seems mainly contained in late endosomes or hybrid bodies and secretory 

vesicles (in some secretory vesicles it seems to colocalise with cathepsins B and L.  Blots 

seem to give an underestimate of the mature cathepsin S content of macrophages 

(approximately 10%). The approximate 40% colocalisation of LAMP-1 and LysoTracker 

with cathepsin S indicates that approximately 40% of cathepsin S should be mature enzyme 

(Table 4.7).  This may, however, be due to slow conversion of the enzyme to its mature form 

in the late endosome.  A lack of colocalisation with cathepsin H and colocalisation with 

LAMP-1 and LysoTracker (acidic nature) suggests that cathepsin S may be a good marker 

for the late endosome (vesicle 2A, ±50 nm) only if verified with a second marker for the late 

endosome e.g. MPR.  As a LAMP-1-positive, non-acidic, precursor enzyme-containing 

vesicle also seems to exist (vesicle 2B) (Table 4.6 and end of Section 4.3.3).   

 

The organelles labelling for mature cathepsin D are most like the classical hybrid organelle 

or a separate, distinct digestive body (±150-200 nm), secretory lysosome (±30-50 nm) and 

the late endosome (±50 nm) i.e. LAMPs-positive, acidic and usually containing active 

cathepsin D.  The hybrid organelle, however, may consist either of two acidic populations 

labelling for different LAMPs, the LAMP-2 organelle possibly being the most uniformly 

acidic and colocalising largely with cathepsin B (vesicle 3A), while the LAMP-1 labelling 

organelle may be less uniformly acidic and may contain some cathepsin L (vesicle 3B).  
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Further organelles such as secretory lysosomes (±30-50 nm) may show labelling for both 

LAMP-1 and -2 and either or both cathepsin B and cathepsin L (3 additional populations 

could, therefore, exist) (Table 4.6). 

 

At least 6 vesicle populations or “endosome-lysosome-like” organelles have been shown 

(much as predicted in Table 4.5 and as seen by Anes et al. (2006). However, subpopulations 

of vesicles 2 and 3 may exist, thereby defining 7 or more vesicle populations. This is 

assuming such populations do not overlap (i.e. possibly consisting of early endosomes, late 

endosomes, hybrid or digestive organelles, secretory lysosomes, secretory vesicles, LAMP-

negative, acidic and mature enzyme-containing vesicles and LAMP-positive, non-acidic and 

immature enzyme-containing vesicle). 
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4.6 Discussion 

Active enzymes are the most relevant in many processes such as invasion, microbial killing 

and inflammation.  Even immature enzymes may be secreted and become important after 

extracellular activation, however (Reddy et al., 1995; Punturieri et al., 2000).  This study 

seems to indicate that this may be the case especially with cathepsin S.  Inability to confirm 

and distinguish precursor from mature enzyme was, however, a drawback in this study.  The 

necessity to perform double labelling to distinguish the mature from the immature form of 

enzyme and hence indirectly confirm organelle identity and establish markers for vesicle 

populations requires the purchase of additional anti-precursor sequence peptide antibodies or 

monoclonal antibodies recognising only the precursor sequence.  The possible alternate use 

of ultrastructural detail of containing organelles to judge the form of the enzyme (Kirschke et 

al., 1998; Wolters and Chapman, 2000; Pillay et al., 2002) was, however, chosen in this 

study and proved marginally useful for this purpose except for giving some indication of 

membrane-bound-, possibly precursor form, or unbound (“free”), possibly mature forms, 

relative size of organelle and electron-density.  Size of organelles, it was realised, could also 

be roughly estimated from fluorescent micrographs, and this proved useful. 

 

Organelle ultrastructure was, unfortunately, variable and none of the finer structural details 

were obvious. Tubular structures resembling ER, usually containing immature enzyme, were 

preserved to some degree.  Lysosomes may also be tubular, however, and have been 

identified in human monocytes, bone marrow-derived macrophages, J774 and phorbol ester-

treated peritoneal macrophages (Swanson et al., 1987; Knapp and Swanson, 1990).  These 

were not obvious in the current study.  Though fixation did not preserve optimal 

ultrastructural detail, all antigens seemed to survive fixation almost equally, an important 

primary consideration when labelling multiple antigens.  Western blot data also proved a 

limited guide for the assignment of the proportion of the various protease forms present in 

both J774 macrophages and human monocytes. 

 

During this study certain assumptions and deductions were made.  These include the 

following assumptions: 

I. that the percentage of precursor and mature enzyme was as indicated in blots. 

 

II.   A.  if the vesicle is acidic, cathepsins present may not be in the precursor form. 

B. if the vesicle is acidic, cathepsins present are mature and active. 
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 C. if the vesicle is non-acidic, cathepsins may be mature but not active. 

 

III. LAMP-1 and -2 classically occur in late endosomes (±50 nm) and “lysosomes”, 

including hybrid organelles, and should, therefore, be associated with mature 

cathepsins. 

 

IV. that vesicle size was an indication of possible organelle identity. 

 

Deductions: 

IV. since cathepsin D was mainly found to be active (approximately 80%) and localised in 

acidic vesicles, all vesicles where cathepsins H, S, B and L colocalise with cathepsin D 

are acidic organelles and will be active, except in the case of approximately 20% of 

cathepsin D-labelled vesicles which contain precursor enzyme. 

 

V. cathepsin S seems to occur mostly in the precursor form (in possibly small secretory 

vesicles), with only approximately 10-20% being active and mature, i.e. present in an 

acidic, late endosome (±50 nm).  At least 10% will, therefore, occur in cathepsin D-

positive, hybrid or digestive type vesicles. 

 

VI. approximately 50% of cathepsin H occurs in early endosomes (±100 nm) and the 

remaining 50% in precursor form in secretory vesicles (±20 nm). 

 

VII (from III) cathepsin S has approximately 45% association with LAMP-1, suggesting 

either that the amount of mature cathepsin S originally indicated by blots 

(approximately 10%) is likely to be inaccurate (24 kDa mature cathepsin S 

band may have run off gel) or LAMP markers may label organelles 

containing precursor enzymes.  Cathepsin S colocalises (approximately 25%) 

with cathepsin D and could occur in a few late endosomal (±50 nm) 

compartments and hybrid organelles (±150-200 nm). 

 

VIII. if LAMP-1 (approximately 50%) and -2 (approximately 50%) are predominantly 

associated with the mature cathepsin D-containing compartments (approximately 

80%). 
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A. up to 50% of the mature cathepsin D-containing vesicles may be LAMP-1 and -

2-positive and the remaining mature vesicles (up to 80%) may be LAMP-2-

positive, with 30% non-colocalised and 20% non-colocalised with either 

LAMPs. 

B. approximately 50% of the vesicles may contain active cathepsins and be both 

LAMP-1- and -2-positive and the remaining mature cathepsin D-labelled vesicles 

LAMPs-negative. 

 

IX.   approximately 32 of cathepsins S, B and L appear to be membrane-bound and 31  

“free”, whereas, cathepsin D seems to be the opposite.  Therefore, it would seem 

precursor cathepsins appear to be membrane-bound. 

 

Just about all of these assumptions and deductions could be validated by performing 

labelling for the precursor and mature enzymes or a third relevant marker i.e. triple labelling.  

Though the lack of triple labelling and labelling for precursor requires some speculation to 

predict numbers of vesicle populations, as overlapping populations cannot be distinguished, 

at least 7 different vesicle types including the classical early endosomes (cathepsin H), 

classical late endosomes (cathepsin S), at least 3 lysosome-like populations (possibly late 

endosome-lysosome hybrid organelles or digestive bodies), “secretory lysosomes” and 

secretory populations may be inferred from the above assumptions and deductions. 

 

Cathepsin B shows a significant association with cathepsin S (approximately 70%), of the 

colocalising cathepsins some proportion may be precursor but some mature and active, and 

possibly present in late endosomes.  At least 10% of cathepsin S appears to colocalise with 

cathepsin D (acidic vesicle).  It is, therefore, possible that cathepsins B, S and D may occur 

in the same LAMP-1-positive vesicle population, which could be late endosomal or possibly 

a late endosome-lysosome hybrid organelle.  The percentages of precursor and mature 

cathepsins needs to be verified with time course studies over a few days.  It appears that 

cathepsin L may also be located in a secretory population, together with cathepsins S, B and 

possibly D and a secretory lysosome with cathepsin B.  Such colocalisations should be 

checked by triple labelling and labelling for precursor enzyme, particularly for cathepsin S 

where labelling for both forms is required to validate this cathepsin as a late endosomal 
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marker and also to establish whether LAMPs labels ever associate with non-acidic, 

cathepsin-containing organelles.  

 

Double labelling for the precursor and current antisera (detecting all forms), and either the 

use of endocytic tracer molecules, or double labelling with an early endosomal marker such 

as EEA1 (Ghosh et al., 1994) is also required, to verify cathepsin H as an early endosome 

marker.  

 

As indicated in Table 4.6, at least 3 subpopulations of cathepsin D-positive vesicles may 

exist (late endosomes, hybrid organelles and secretory lysosomes).  Triple labelling studies 

using localising cathepsin D, LAMP-1 and -2 simultaneously are needed to confirm this.  

However, cathepsin D labelling seems to be a fairly reliable marker for acidic vesicles 

containing active enzymes. 

 

If cathepsin S is predominantly associated with late endosomes in J774 macrophages as 

previously reported (Claus et al., 1998; Jahraus et al., 1998) and cathepsin D is 

predominantly lysosomal, vesicles showing colocalisation may represent hybrid organelles 

(Bright et al., 1997; Luzio et al., 2000).  Supporting cathepsin S as a marker for the late 

endosomal compartment and cathepsin H for the early endosome (Claus et al., 1998; Jahraus 

et al., 1998), double labelling showed an apparent lack of colocalisation between these two 

cathepsins.  Unfortunately, LAMP-2 labelling was not performed as an interesting 

relationship between cathespin B and S seems to be revealed by the colocalisations seen in 

Tables 4.5 and 4.6.  The two cathepsins colocalise to the largest extent of all the cathepsins 

(approximately 70%, Table 4.4).  This apparent colocalisation should be checked at the EM 

level, to check membrane- and vesicle association and organelle ultrastructure, if 

ultrastructural definition is improved. 

 
We have shown some cathepsin D and B colocalisation in late endosomes and secretory 

lysosomes, in agreement with Jahraus et al. (1998), who reported cathepsins D and B in 

fairly high concentration in both the late endosomes and “lysosomes” of J774 macrophages.  

Due to the lack of vesicle markers, however, Jahraus et al. (1998) could not distinguish the 

various “lysosomal” populations as indicated in this study.  Colocalisation may also occur in 

hybrid organelles, formed by fusion between late endosomes and lysosomes (Bright et al., 

1997; Luzio et al., 2000).  On the other hand, the colocalisation in organelles near to the cell 
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periphery suggests some organelles may be “secretory lysosomes” as indicated in this study.  

MDMs are known to secrete both the pro- and mature forms of both cathepsin B (Reddy et 

al., 1995) and cathepsin D (Punturieri et al., 2000).  As the antibodies used in this study 

detect both forms of these enzymes, however, it is not possible to distinguish which forms 

are localised in these organelles.  “Secretory lysosomes” are thought to be acidic and hence 

should contain mature cathepsin.  In the current study, western blot data suggested the 

presence of mainly mature cathepsin D and significant amounts of mature cathepsin B.  

Colocalising cathepsins are, therefore, highly likely to be in the mature form.  But should be 

checked using antibodies recognising precursor and mature enzyme at the EM level. 

 

Both EM and fluorescent microscopy showed that cathepsins B and L colocalise in 

compartments which at times were situated close to the periphery of the cells, suggesting 

possible secretion of these enzymes.  Claus et al. (1998) also suggest that cathepsins B and L 

may be localised to a special type of “secretory lysosome”, as in the presence of bafilomycin 

and chloroquine the bulk of cathepsins B and L appeared to be secreted as opposed to being 

delivered to newly synthesised phagosomes.  The form of enzyme present (i.e. mature or 

immature) would assist in making such an identification but this study seems to confirm the 

colocalisation of these enzymes in secretory lysosome-like organelles. 

 

Partial colocalisation was observed between cathepsin L and cathepsin S (possibly in 

secretory vesicles) as well as with cathepsin D in some late endosome-lysosome hybrid 

organelles as previously suggested in the literature (Lennon-Duménil et al., 2002a).  

Cathepsin L, like cathepsin D, has generally been considered to be a lysosomal enzyme 

(Kirschke, 2004).  Processing usually results in a single chain form found in both classical 

late endosomes, and a two-chain form found predominantly in lysosomes (Ishidoh et al., 

1998).  In the current study, however, cathepsins S (a proposed late endosome marker) and 

cathepsin L share limited colocalisation (approximately 25%), possibly in secretory vesicles. 

 

Cathepsins S and L appear to play important roles in the degradation of the MHC class II 

invariant chain and thus in peptide loading by macrophages (Shi et al., 1999; Wolters and 

Chapman, 2000).  The p41 isomer of the invariant chain is known to act as both an inhibitor 

of cathepsin L, by binding to the active site, and a chaperone for cathepsin L, helping to 

preserve a pool of undegraded mature enzyme in late endosomes (Lennon-Duménil et al. 

2001; Lennon-Duménil et al., 2002b).  It has also been suggested that the cathepsin L/p41 
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complex may be packaged in “secretory lysosomes” and discharged extracellularly (Lennon-

Duménil et al. 2001), as, unlike mature cathepsin L, this complex is stable at neutral pH 

(Ogrinc et al., 1993).  This may also preserve a similar pool of undegraded cathespin L 

extracellularly.  As the major portion of cathepsin S described here and by Punturieri et al. 

(2000) may only “mature” over time when required it is possible that all data may only 

reflect a highly dynamic situation and may be unreliable due to variability over time and that 

the cathepsin S and L colocalised enzymes judged to be in secretory vesicles may be or 

become secretory lysosomes or late endosomes upon acidification. 

 

It has been suggested that macrophages possess a number of lysosomal subpopulations that 

differ in pH and the presence of LAMPs (Astarie-Dequeker et al. 1999; Astarie-Dequeker et 

al., 2002; Anes et al., 2006).  The current localisation studies between cathepsins and 

LAMPs/LysoTracker seem to support this hypothesis (summary of results in Table 4.6).  

 

Based on the findings of this study it would seem it can provisionally be stated that only 

cathepsin D seems a reliable marker for acidic, lysosome-like subpopulations.  (The identity 

of this population should now be established with an independent marker such as gold 

uptake).  Cathepsin H may also possibly be considered as a marker for the early endosome in 

J774 mouse macrophages only if confirmed reliable by another early endosomal marker and 

only if mature or immature cathepsin H dominates in this vesicle.  The activation state of the 

macrophage (cathepsin D has a seemingly increased association with LAMP-positive 

vesicles in activated cells).  The evidence, however, suggests that in J774 macrophages 

cathepsin S is primarily associated with the late endosome and cathepsin D with a “digestive 

lysosome”, secretory lysosome and late endosome.  The study also suggests that some 

cathepsin B and L and possibly cathepsins B and D may be located in “secretory lysosomes”.  

As cathepsins are processed from inactive proforms to mature, active forms along the 

endocytic pathway, it will be necessary in future studies to use antibodies that specifically 

target either the pro- or mature form of the proteases, making it possible to differentiate 

between the precursor and mature, active enzymes, thus making colocalisation studies more 

definitive as one can differentiate between sites of synthesis and storage. Other EM fixation 

methods should also be investigated as improved ultrastructural preservation would aid in the 

identification of organelles thus verifying the probable forms of the cathepsins.   
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There also seems possible merit in performing LAMP-1 and LAMP-2 colocalisations, as 

well cathepsin labelling (i.e. triple labelling) as to there may be some difference in cathepsin 

distribution in such cells.  This almost seems evident from the fluorescent micrographs, 

where cathepsins D and B, and a lesser extent, S, seemed more associated with LAMP-2, and 

slightly larger vesicles, and cathepsin L, and a minor extent cathepsin H, with LAMP-1.  

These studies would also best be confirmed using EM and improved ultrastructural 

preservation.  This may lead to the identification of compartments that label for one or other 

specific LAMP and give an indication of why LAMP-2 is more important than LAMP-1 for 

survival of knockouts.  This was omitted in the current study as only one anti-rat fluorescent 

conjugate was available.  An additional secondary antibody should now be purchased. 

 

Astarie-Dequeker et al. (2002) and more recently Anes et al. (2006) suggest that both Hck 

and LYAAT may be used as markers for LAMP-negative, “secretory lysosomes” in both 

human macrophages and J774 cells.  Such studies now need to be performed. 

 

The focus on the lysosome-endosome pathway and cathepsin distribution was due to an 

interest in the microbicidal killing mechanisms involving the cathepsins, their separate 

regulation and ultimate fusion with the phagosome.  Although not directly involved in 

killing, but more involved in reaching the site of infection and in signalling, the MMPs and 

their inhibitors are also extremely important.  The ratio of inhibitor to active enzyme released 

may result in the activation or inhibition of cytokines, and hence regulate the entire innate 

and adaptive immune system.  The regulation of release and localisation of MMP to inhibitor 

is, therefore, extremely important and forms part of the current study. Though the primary 

question being asked is the distribution of MMP-9 in relation to TIMP-1 and TIMP-2, 

inhibitors, apparently in themselves involved in signalling (Somerville et al., 2003; 

Folgueras et al., 2004), the pattern of distribution in relation to the LAMP-positive and 

acidic compartments is also important as these antigens could potentially also be used to 

distinguish subpopulations of lysosomes in the J774.  One of the problems seen during the 

study of the cathepsins, however, has been the fact that the activation state seems to 

influence protease distribution.  Macrophage activation is also known to up-regulate certain 

MMPs. For this reason, it was decided in the next study, to perform localisations on both 

activated and non-activated J774 macrophages. 
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CHAPTER 5 

 

DISTRIBUTION OF MMP-9, TIMP-1 AND -2 IN UNSTIMULATED 

AND LPS-STIMULATED J774 MOUSE MACROPHAGES 

 

5.1 Introduction 

The effect of macrophage activation became evident during initial macrophage vesicle 

characterisation studies.  In the past, “activated” macrophages were defined as cells capable 

of secreting various inflammatory mediators and destroying intracellular pathogens. 

However, it is now becoming increasingly apparent that activated macrophages consist of 

subpopulations which have different physiologies and distinct functions (Gordon, 2003; 

Mosser, 2003).  Initially, it appeared that macrophages had two different activation states, 

and the cells were known as either “classically” or “alternatively” activated macrophages 

(Stein et al., 1992).  “Classically” activated macrophages are effector cells in T-helper cell 

type 1 (Th1) cellular immune responses and are involved in ECM degradation, the promotion 

of inflammation and apoptosis (Duffield, 2003; Mosser, 2003) (Table 5.1).  In comparison 

“alternatively” activated macrophages are involved in immunosuppression, ECM 

construction, cell proliferation and angiogenesis (Gordon, 2003) (Table 5.1).   

 

Table 5.1 Comparison of activated murine macrophage subpopulations. 

 Classical Alternative Type II 

Activating signals IFN-γ, TNF IL-4, glucocorticoids IgG complexes, TLR 
ligation 

Secretory products ↑ TNF, ↑ IL-12, IL-1, 
IL-6 

↑ IL-1RA, IL-10 ↑ IL-10, TNF, IL-6 

Biological markers ↑ MHC class II, ↑ 

CD86, ↓ MR 

↑ MR, ↑ Scavenger 

receptor, ↑ CD23, ↓ 
CD14, CD163, MS-1 

↑ MHC class II, ↑ 
CD86 (unique markers 
not yet available) 

Killer molecules NO, O2
- None *NO, O2

- 

Chemokine 

production 

IP-10, MIP-1α, MCP-1 AMAC-1 Unknown 

* Although these cells are able to make NO and O2
- in direct response to activating stimuli, the production of 

high levels of IL-10 by type II activated macrophages inhibits neighbouring cells from responding to IFN-γ 
activation and the production of reactive nitrogen intermediates.  Abbreviations: IFN-γ, interferon-γ; TNF, 
tumour necrosis factor;  MHC, Major histocompatibilty complex; MR, mannose receptor; MS-1, MS-1-high 
molecular-weight protein; IP-10, IFN-inducible protein 10; AMAC-1, alternative macrophage activation-
associated CC-chemokine-1; MIP-1α, macrophage inflammatory protein-1α; MCP-1, monocyte 
chemoattractant protein-1; IL-1RA, interleukin-1 receptor antagonist; TLR, toll-like receptor (modified from 
Mosser, 2003). 
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Recently, it has been established that macrophages exposed to classical activating signals 

and IgG immune complexes have an activation state that varies from the “classical” 

activation state (Mosser, 2003).  These macrophages produce large quantities of IL-10 and, 

therefore, inhibit the acute inflammatory response to bacterial endotoxin and have been 

named type II-activated macrophages as they are able to induce T helper cell type 2 (Th2) 

responses (Mosser, 2003) (Table 5.1).   

 

Activated macrophages have a wide range of functions (Figure 5.1).  Essentially, 

macrophages migrate to areas of inflammation where they are responsible for the destruction 

of pathogens.  Interestingly, activated macrophages do not have enhanced phagocytic 

capabilities and they express reduced levels of MR and Fc receptors in comparison to resting 

macrophages (Mosser, 2003).  Activated macrophages do, however, have improved 

microbial killing and degradative properties.  The improved killing results from an increased 

production of both reactive oxygen species and induction of iNOS (Mosser, 2003). Although 

all activated macrophages function in innate and adaptive immunity, the “classically” 

activated cells can cause tissue injury and chronic inflammation, whereas, “alternatively” 

activated cells appear to regulate inflammation and allow for wound healing (Duffield, 2003; 

Mosser, 2003).   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.1 Functions of activated macrophages. 

Monocytes can differentiate into either “classically” or “alternatively” activated macrophages. The respective 
functions of each of these distinct phenotypes are shown.  Overlapping functions are also included (modified 
from Duffield, 2003). 
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To become “classically” activated, macrophages require two activation signals.  The first 

requisite signal is IFN-γ, which is responsible only for the priming of the macrophage and 

does not activate the cell.  The second signal is either TNF itself or an inducer of TNF.  The 

second signal may result from TLR ligation, which induces the macrophage to produce TNF.  

Thus macrophages exposed to IFN-γ and either microbes or microbial products such as LPS 

become “classically” activated (Mosser, 2003).  The biological activities of LPS are due to 

the lipid A moiety and LPS activation in monocytes requires both the LPS-binding protein 

and CD14.  The LPS-binding protein binds to the lipid A region which subsequently delivers 

the LPS to CD14.  It has been proposed that unidentified transducer proteins probably 

initiate the intracellular signals (Sweet and Hume, 1996; Amura et al., 1998).  LPS activates 

several signal transduction pathways in macrophages.  The mechanisms of these pathways, 

however, remain largely unknown (Amura et al., 1998).  Classical activation results in the 

secretion of a variety of chemokines including IL-8, IFN-inducible protein-20 (IP-20), 

macrophage-inflammatory protein (MIP)-1α and -1β and RANTES (regulated upon 

activation, normal T-cells, expressed and secreted) which act as chemoattractants for 

neutrophils, immature dendritic cells, natural killer cells and T-lymphocytes (Luster et al., 

2002).  Pro-inflammatory cytokines are released including, IL-1β, IL-6 and TNF-α and the 

subsequent secretion of Fas ligand and the production of NO.  Additionally, “classically” 

activated macrophages secrete several proteases including MMP-1, -2, -7, -9 and -12 (Gibbs 

et al., 1999a; Gibbs et al., 1999b; Chizzolini et al., 2000). 

 
Human monocytes usually appear to have a limited capacity for the synthesis and secretion 

of MMPs and TIMPs.  As they mature into macrophages, however, their capacity for MMP 

secretion increases and continues to increase upon activation (Owen and Campbell, 1999; 

Owen, 2005).  Several substances are known to increase MMP biosynthesis, these include 

LPS (Shapiro et al., 1991), zymosan, (Pierce et al., 1996), diethyl maleate, GM-CSF and, 

more recently, surfactant protein D appears capable of selectively increasing the production 

of certain MMPs in vitro (Trask et al., 2001). 

 
Stimulants or activating molecules seem to have different effects on different macrophage 

subtypes.  Human macrophages are known to express a variety of MMPs (Chapter 1, Section 

1.4.2.1), whereas, mouse macrophages predominantly produce MMP-12 and lower levels of 

MMP-9 (Filippov et al., 2003).  Human alveolar macrophages, but not peripheral blood 

monocytes, show an increased production of MMP-9 after exposure to LPS (Welgus et al., 
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1990; Campbell et al., 1991) with some stimulation of secretion of TIMP-1 but to a lesser 

extent than MMP-9 (Welgus et al., 1985).  In contrast to TIMP-1, TIMP-2 secretion may be 

decreased by stimulants such as LPS (Shapiro et al., 1992; Lacraz et al., 1995).  The effects 

of only LPS on J774 macrophages do not seem to have been described, though it is known 

that mRNA specific for TNF-α, IFN-β and iNOS is increased and biologically active TNF-α, 

IFN-β and NO also become secreted (Fujihara et al., 1994).  As the major aim of this part of 

the study was to investigate the localisations of MMP-9, TIMP-1 and -2, and, as LPS has 

been shown to up-regulate the production of MMP-9 and TIMP-1, it was decided for the 

purposes of the current study, to LPS-activate J774 macrophages.  This, it was thought, 

would allow comparative studies on LPS-stimulated and unstimulated cells and 

determination of whether the activation state of the cells has any effect on the localisation of 

MMP-9, and TIMP-1 and -2. 

 

MMP-9 is responsible for connective tissue turnover during both physiological and 

pathological processes (Somerville et al., 2003; Folgueras et al., 2004). This protease has a 

wide range of substrates including ECM components such as denatured collagen, type IV, V 

and IX collagen, elastin as well as basement membrane constituents.  MMP-9 is also able to 

cleave non-matrix proteins such as IL-1β precursor and IL-8 resulting in their activation.  

Cleavage of serpins (both protease inhibitors and signaling molecules) and mature IL-1β 

(cytokine) by MMP-9, on the other hand results in inactivation (Owen et al., 2003; Visse and 

Nagase, 2003). MMP-9, therefore, plays significant roles in the remodeling and repair of the 

ECM and contributes to the regulation of the inflammatory response. Uncontrolled 

expression and synthesis of MMP-9 has, however, been associated with various pathological 

conditions including lung diseases such as COPD, asthma and idiopathic pulmonary fibrosis 

(Atkinson and Senior, 2003), as well as many other diseases associated with different organs, 

including tumour invasiveness and metastasis  (Owen et al., 2003).  Despite these important 

roles, the intracellular localisation of MMP-9 in macrophages remains unknown.   

 

MMP activity is controlled at four different levels. The first level of control is via the 

regulation of gene expression.  In rodent macrophages, MMP-9 secretion is up-regulated by 

protein kinase C.  MMP-9 secretion is, however, stimulated by LPS, and is down-regulated 

by inhibition of tyrosine kinases and not by inhibition of protein kinase A (Tremblay et al., 

1994; Xie et al., 1994; Friedland et al., 2002).  At a second level, MMPs are secreted as 

inactive, precursor forms.  MMP-9 can be activated in vitro by organo mercurials.  In vivo, 
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however, MMP-9 appears to be activated via a proteolytic cascade and regulation in such as 

case may be used to control activation.  The pro-domain can be cleaved by MMP-2 or -3 or 

may be removed in an acidic environment (e.g. low levels of HCl) (Atkinson and Senior, 

2003; Woessner and Nagase, 2002).  At the last level, the activity of MMPs is controlled by 

TIMPs and other inhibitors.  The predominant inhibitor in the bloodstream is α2-

macroglobulin, whereas, the TIMPs are considered to be the most important inhibitors in the 

tissues (Atkinson and Senior, 2003; Price et al., 2000).  Although all TIMPs have an affinity 

for MMP-9, the enzyme is usually secreted as a non-covalent complex with TIMP-1, 

[proMMP-9 released from active PMNs is, however, not complexed to TIMP-1, but is 

released in three different forms including a 92 kDa monomer, a 200 kDa homodimer and a 

120 kDa covalent complex with NGAL (Owen et al., 2003)].  TIMP-1 binds  

MMP-9 and other MMPs but has the specific ability to bind to both the carboxy-terminal of 

the proform and the catalytic domain of only MMP-9 active enzyme (Goldberg et al., 1992).  

The secretion of an MMP-9-TIMP-1 complex may suggest TIMP-1 and MMP-9 intracellular 

colocalisation.  Lastly, MMP secretion by monocytes appears to be regulated by the 

extracellular environment including matrix components (Galt et al., 2001), T-lymphocytes 

(Ferrari-Lacraz et al., 2001) and a variety of cytokines (Goetzl et al., 1996). 

 

In most cell types, MMPs are synthesised and subsequently secreted by the cells as opposed 

to being stored.  Neutrophils, however, appear to be an exception as both MMP-8 and MMP-

9 are stored in the secondary (specific) and tertiary granules, respectively (Dewald et al., 

1982; Murphy and Docherty, 1992; Plesner et al., 1994).  Pro-inflammatory mediators 

appear to be capable of inducing the expression of MMP-9 on the cell surface of neutrophils 

(Owen et al., 2003) and in contrast to soluble MMP-9, membrane-bound MMP-9 appears to 

be resistant to inhibition by both TIMP-1 and TIMP-2 (Owen et al., 2003).  A more recent 

study revealed that, in resting neutrophils, proMMP-9 is complexed with the αMβ2 integrin 

(Stefanidakis et al., 2004).  This complex appears to form in the gelatinase granules and 

cellular activation results in translocation of the complex to the cell membrane (Stefanidakis 

et al., 2004).  In neutrophils, TIMP-1 occurs mainly in distinct, oval vesicles which are larger 

than the azurophilic granules (Price et al., 2000).  These vesicles lack markers for the various 

known granule/vesicle populations.  Minor colocalisation was observed between TIMP-1 

and proMMP-9, however, the purpose of such a colocalisation still seems unclear. 
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In most types of biological tissues, on the other hand, TIMP-2 appears complexed to MMP-2 

(Goldberg et al., 1989; Wilhelm et al., 1989).  TIMP-2 has often been associated with the 

cell membranes of various cell types.  It appears that TIMP-2 is involved in the activation of 

proMMP-2.  The simultaneous binding of TIMP-2 to active MT1-MMP and to proMMP-2 

results in the formation of a ternary complex on the cell membrane that allows proMMP-2 

activation by a free, adjacent MT1-MMP molecule (Bernando and Fridman, 2003; Emonard 

et al., 2004).   

 

Although many studies have dealt with the expression and secretion of MMPs and TIMPs by 

both monocytes and macrophages, the intracellular localisations of these proteins in these 

cell types remains unknown.  It is unlikely that macrophage MMP-9 is located in storage 

granules equivalent to those previously described in neutrophils by our research group (Price 

et al., 2000).  It is more likely that MMP-9, TIMP-1 and -2 are located in a type of secretory 

vesicle as MMP/TIMP synthesis and secretion in macrophages appears to occur only when 

required.  MMP-2 and -9 seem to be very important in basement membrane invasion, 

inflammation, ECM degradation and the processing of cytokines and other proteins (Owen 

and Campbell, 1999; Price et al., 2000; Parks and Shapiro, 2001; Atkinson and Senior, 2003; 

Visse and Nagase, 2003; Folgueras et al., 2004) (Table 1.8 and Table 1.9).  MMP-2 has 

mostly been associated with TIMP-2 in activational complexes (Goldberg et al., 1989; 

Wilhelm et al., 1989).  A lack of access to MMP-2 antibodies, but to MMP-9-, TIMP-1- and 

-2 antibodies, however, lead to exploratory studies on the distribution of MMP-9, TIMP-1 

and -2.  It was also suspected that these do not colocalise, though some coloicalisation 

should be evident if MMP-9 and TIMP-1 are secreted as a complex, but this was not tested 

as yet.  The localisation of MMP-9, TIMP-1 and TIMP-2 in J774 macrophages using mainly 

fluorescent microscopy was, therefore, initially performed.  LPS was subsequently used to 

stimulate the cells and the effects of stimulation on the immunofluorescent labelling patterns 

monitored.  Subsequently, LysoTracker was used to investigate the acidity of MMP-9- or 

TIMP-1- or -2-labelled vesicles.  Due to a shortage of time, however, the apparent 

importance of LAMP-2 relative to LAMP-1, determined by knockout mice (Tanaka et al., 

2000) (Section 4.4) and the association of LAMP-2 with biogenesis of the “lysosome” and 

autophagy (Eskelinen et al., 2002) (Section 4.4), double labelling for LAMP-2 (and not 

LAMP-1), MMP-9 and TIMP-1 was performed to verify whether the MMP-9- or TIMP-1-

containing compartments were LAMP-2-positive. 
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5.2 Localisation of MMP-9, TIMP-1 and TIMP-2 in unstimulated and LPS-

stimulated J774 macrophages. 

As monocytes differentiate into macrophages, there is a substantial increase in the synthesis 

and secretion of both MMPs and TIMPs (Campbell et al., 1991).  Their intracellular 

localisations, however, remain unknown.  It is not known whether they are stored in vesicle 

populations or are rapidly secreted after synthesis.  Fluorescent labelling was, therefore, 

performed to establish the possible colocalisation of MMP-9, TIMP-1 and -2 in J774 

macrophages.  It was suspected that TIMP-2 may also be located on the macrophage cell 

membrane.  As cell membrane permeabilisation is used to fluorescently label internal 

vesicles, however, such a localisation may be missed.  Although “classical” activation is only 

fully induced by treatment with both LPS and IFN-γ, LPS alone induces macrophage 

production of reactive oxygen species and nitric oxide as well as the secretion of TNF-α and 

IL-1β (Trask et al., 2001).  As LPS is also known to up-regulate MMP-9/TIMP-1 synthesis 

and secretion in certain types of macrophages (Welgus et al., 1990; Campbell et al., 1991), 

J774 cells were stimulated with LPS to investigate the effect of activation on the localisation 

of MMP-9, TIMP-1 and -2.  Western blotting performed on human monocyte homogenates 

(Section 3.7.3) indicated the presence of both pro- and mature MMP-9, yet neither form was 

detected in unstimulated J774 macrophage homogenates, this may, however, be due to the 

low almost undetectable levels of MMP-9 in unstimulated mouse macrophages (Filippov et 

al., 2003).  Zymography was, therefore, performed to investigate the presence of MMP-9 in 

unstimulated and LPS-stimulated J774 homogenates as it is more sensitive than western 

blotting. 

 

5.2.1 Reagents 

LPS stock solution [2 mg/ml].  LPS (0.002 g) was dissolved in dH2O (1 ml), sterile filtered 

and stored at 4oC.  

 

Reagents for the culture of J774 cells, SDS-PAGE and zymography of both unstimulated and 

stimulated J774 cells were prepared according to Sections 2.2.1, 2.3.1.1 and 2.5.1, 

respectively.   
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Reagents for fixation and embedding, immunolabelling of ultrathin sections and for 

fluorescent immunolabelling of unstimulated and stimulated J774 cells for MMP-9, TIMP-1 

and TIMP-2 were prepared according to Sections 2.2.1, 2.7.1.1, 2.7.3.1 and 2.8.1.1, 

respectively. 

 

Antibodies were kind gifts from former members of our research group in the Department of 

Biochemistry, University of Natal, Pietermaritzburg.  Chicken anti-human MMP-9 was 

provided Dr B. Price and chicken anti-human TIMP-1 by Miss M. Clulow.  The sheep anti-

human recombinant TIMP-2 was supplied by Dr L. Troeberg a member of Dr Nagase’s 

group at Imperial College, London.  Secondary antibodies used were a donkey anti-chicken 

IgG CY3, a rabbit anti-chicken IgG FITC (both cross-react with chicken IgY) and a donkey 

anti-sheep IgG FITC. 

 

5.2.2 Procedure 

J774 cells were cultured according to the procedure in Section 2.2.2 and stimulated when 

required by incubation in culture medium to which LPS was added to a final concentration of 

10 µg/ml (overnight, 37oC) (Pierce et al., 1996).  Serum-containing J774 homogenate and 

supernatant samples were prepared for zymography in non-reducing treatment buffer 

according to Section 3.6.2 and zymography carried out according to Section 2.6.2.  For an 

inhibitor control EDTA-Na2 (0.05% m/v) was added to the digestion buffer (100 ml). 

 

Unstimulated and LPS-stimulated J774 cells were fixed and embedded in LR White resin 

according to Section 2.7.1.2.  Due to time constraints Protein A immunogold labelling on 

ultrathin sections was performed only for MMP-9 according to Section 2.7.3.2 and a chicken 

anti-human MMP-9 [10 or 15 µg/ml] and a rabbit anti-chicken IgY linker antibody [50 

µg/ml] were used. 

 

The major part of this study using fluorescent immunolabelling on unstimulated and LPS-

stimulated J774 cells was carried out according to Section 2.8.1.2 with chicken anti-human 

MMP-9 [50 or 100 µg/ml (single and double labelling)], chicken anti-human TIMP-1 [20 or 

50 µg/ml (single labelling) and 50 or 100 or 200 µg/ml (double labelling)], sheep anti-human 

recombinant TIMP-2 [1:25 (single labelling) and 1:50 (double labelling)], donkey anti-

chicken IgY-CY3 [1 or 2 µg/ml], rabbit anti-chicken IgY-FITC [6 or 9 µg/ml] and donkey 

anti-sheep IgY-FITC [3 or 17 or 25 µg/ml].  Labelling was viewed using an Olympus 
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epifluorescent microscope and F-View CCD camera and images analysed using ImageJ 

software as previously described (Chapter 4, Section 4.2.2). 

 

When both primary antibodies used in the colocalisation experiments were from the same 

host, the relevant controls were performed to eliminate any possible cross-reactivity, i.e. the 

second primary antibody was omitted to ensure that the secondary labelling system did not 

cross-react with the primary system (Section 4.3.2). 

 

5.2.3 Results 

Gelatin zymography used to investigate the effects of LPS stimulation on MMP-9 produced 

by J774 macrophages indicates that unstimulated J774 homogenates show gelatinolytic 

activity (Figure 5.2, lane 2).  This is, therefore, in agreement with the negative MMP-9 result 

in the western blot of unstimulated J774 homogenates (Section 3.7.3, results not shown).  

The supernatant of unstimulated cells, however, showed four bands of gelatinolytic activity 

(Figure 5.2, lane 3). Two of the bands were approximately 67 kDa and 62 kDa.  The 67 kDa 

band appears in all of the samples excluding the unstimulated homogenate and including the 

DMEM and FCS control, and is possibly present in sera used in the medium (Figure 5.2, lane 

2) it seems present at a higher concentration, in stimulated cells, however (Figure 5.2, lanes 

4-8).  The remaining two bands of approximately 91 kDa and 87 kDa seem to be secreted 

before stimulation but appear in both homogenate and supernatant after stimulation, and 

bands become more prominent as the concentration of LPS used increases (Figure 5.2, lanes 

4-7).  It is, therefore, likely that the 91 kDa band seen (Figure 5.2, lanes 4-7) corresponds to 

proMMP-9 (Woessner and Nagase, 2002) and the 87 kDa band (Figure 5.2, lanes 4-7) a 

slightly processed form of this protein (Sang et al., 1995).  The EDTA-Na2 control showed 

no gelatinolytic bands (results not shown) indicating that bands seen are infact due to metallo 

enzymes. 
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Figure 5.2 Detection of MMP-9 in unstimulated or LPS-stimulated J774 macrophages. 

MWM (lane 1, 5 µl), unstimulated, serum-containing J774 homogenate (lane 2, 12 µl) and supernatant (lane 3, 

10 µl), LPS activated [10 µg/ml] serum-containing J774 homogenate (lane 4, 12 µl) and supernatant (lane 5, 12 

µl), LPS activated [100 µg/ml] serum-containing J774 homogenate (lane 6, 12 µl) and supernatant (lane 7, 12 

µl), DMEM and FCS control (lane 8, 12 µl). All samples were diluted 1:1 with non-reducing treatment buffer, 

combined with bromophenol blue [5 µl, 0.1% (m/v) in dH2O], separated on a 12.5% Laemmli gel containing 
gelatin [1% (m/v) in separating gel buffer] and stained with Amido black staining solution. 
MWM = phosphorylase b, 97.4 kDa, BSA, 68 kDa, ovalbumin, 45 kDa, carbonic anhydrase, 30 kDa, lysozyme, 
14.4 kDa. 

 

No non-specific protein A gold- or fluorescent labelling was observed in controls and 

labelling was assumed to be specific (results not shown).  EM studies on both unstimulated 

and stimulated J774 cells showed that MMP-9 is located in slightly electron-dense 

compartments (±100 nm, possibly early endosomes) and greater in some instances (±100-

300 nm, possibly “hybrid” organelles) (Figure 5.3, B1, C1 and Figure 5.3, B2, C2).  MMP-9 

was oftem closely associated with membraneous, ER-like structures and is seems membrane-

bound (Figure 5.3, B1).  Although the fluorescent microscopy showed MMP-9-containing 

compartments throughout the cytoplasm (Figure 5.3, A1), a significant fraction of MMP-9 

labelled vesicles (ranging in size from ± 55-80 nm, resembling “secretory lysosomes”) were 

also observed towards the cell periphery of unstimulated cells (Figure 5.3, A1 and C1).  In 

stimulated cells, however, MMP-9 labelling seemed sparser (Figure 5.3, A2) but was still 

also observed at the cell edge suggesting possible secretion (Figure 5.3, B2).   

 

TIMP-1-containing vesicles (ranging in size from ±100-400 nm) in unstimulated cells 

(Figure 5.4, A1) seem fewer and appeared to be positioned more centrally than MMP-9-

containing vesicles (Figure 5.3, A1).  LPS-stimulated J774 cells showed more intense 
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labelling for TIMP-1 (Figure 5.4, A2) than unstimulated cells (Figure 5.4, A1), even though 

a lower primary antibody concentration 20 µg/ml was used for the stimulated cells as 

opposed to 50 µg/ml for the unstimulated cells.  TIMP-1-positive compartments of 

stimulated cells were more numerous and smaller (±100 nm) and prominent in the 

perinuclear region and were distributed throughout the cytoplasm, with some appearing to 

have a cell membrane-association (Figure 5.4, A2). 

 
In TIMP-2 labellings the opposite seems to occur.  In unstimulated cells, TIMP-2 appears to 

occur in vesicular compartments often closely associated with the cell membrane and 

appears polarised to a particular side of the macrophage or where cells are in contact (Figure 

5.4, B1).  Unlike with TIMP-1, no significant difference in TIMP-2 labelling was observed 

in the stimulated cells (Figure 5.4, B2) in comparison with unstimulated ones (Figure 5.4, 

B1). Although the majority of TIMP-2 labelling in stimulated cells was associated with the 

cell membrane (Figure 5.4, B2) and less TIMP-2 seemed to be present in the stimulated cells 

(Figure 5.4, B2) compared to unstimulated cells (Figure 5.4, B1). 

 

It would seem from vesicle sizes seen here that TIMP-1 and TIMP-2, and MMP-9 initially 

secreted, may be being taken up via early endocytic organelles (±100 nm) to hybrid 

organelles (±150-200 nm). 
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Figure 5.3 Localisation of MMP-9 in unstimulated and LPS-stimulated J774 macrophages. 

Chicken anti-MMP-9 [50 µg/ml (A1) or 100 µg/ml (A2)] and donkey anti-chicken IgG CY3 [2 µg/ml (A1) or 1 

µg/ml (A2)] applied to unstimulated (A1) or cells stimulated with LPS [10 µg/ml] (A2) on coverslips, initially 
fixed with 3.7% PFA and permeabilised with saponin. Coverslips viewed with an Olympus epifluorescent 

microscope.  Bars = 5 µm (A1 and A2).  

Chicken anti-MMP-9 [10 µg/ml (B1 and C1) or 15 µg/ml (B2 and C2)], a rabbit anti-chicken linker antibody 

[50 µg/ml (B1, B2, C1 and C2)] and protein-A gold probe (10 nm) used on LR White sections of unstimulated 
(B1 and C1) or cells stimulated with LPS [10 µg/ml] (B2 and C2).  Sections viewed using a Philips CW120 
Biotwin TEM (80-100 kV).  MMP-9 detected in slightly electron-dense vesicles within the cell and towards the 
cell periphery (arrows).  Bars = 250 nm (B1 and C1) or 125 nm (B2 and C2). 
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Figure 5.4 Localisation of TIMP-1 or TIMP-2 in unstimulated and LPS-stimulated J774 macrophages. 

Chicken anti-TIMP-1 [50 µg/ml (A1) or 20 µg/ml (A2)], rabbit anti-chicken IgG FITC [9 µg/ml (A1) or 6 

µg/ml (A2)] and sheep anti-TIMP-2 serum [1:25 (B1 and B2)], donkey anti-sheep IgG FITC [25 µg/ml (B1 and 
B2)] applied to unstimulated (A1 and B1) or cells stimulated with LPS [10 µg/ml] (A2 and B2) on coverslips, 
initially fixed with 3.7% PFA and permeabilised with saponin.  Coverslips viewed with an Olympus 

epifluorescent microscope.  Bars = 5 µm (A1, B1 and B2) or 2.5 µm (A2).  
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Though labelling was, at best, sub-optimal, colocalisation studies revealed that MMP-9 and 

TIMP-1 appear to be largely located in separate compartments except in areas (ER and 

Golgi) where their synthesis would possibly occur (Figure 5.5, A).  In stimulated cells MMP-

9-positive compartments also appear to be more peripherally distributed (Figure 5.5, A1) 

than TIMP-1-positive compartments (Figure 5.5, A2).  Double labelling of stimulated J774 

cells, however, showed partial (approximately 30%) colocalisation between MMP-9 and 

TIMP-1 in large (±450-1000 nm, possibly “hybrid” organelles) (Figure 5.5, B1, B2 and B3), 

contrasting with the lack of colocalisation observed in the unstimulated cells (Figure 5.5, A1, 

A2 and A3). The compartments showing colocalisation in stimulated cells seemed 

predominantly located in the perinuclear region and seem considerably larger (±500-1000 

nm) than the single vesicles containing the individual antigens (±100-200 nm) (Figure 5.5, 

B1, B2 and B3). 

 

TIMP-1 (Figure 5.6, A1) and TIMP-2 (Figure 5.6, A2) were predominantly located in 

separate vesicles in unstimulated cells, although some perinuclear colocalisation 

(approximately 25%) was observed, in large vesicles (±400 nm), however.  Similarly, double 

labelling of TIMP-1 (Figure 5.6, B1 and C1) and TIMP-2 (Figure 5.6, B2 and C2) in LPS-

stimulated cells showed almost no colocalisation.  TIMP-1 labelled vesicles seem to occur 

close to the nucleus in unstimulated cells (Figure 5.6, A1) and show more colocalisation with 

TIMP-2 than stimulated cells (Figure 5.6, B and C).  The greater the activation (i.e. more 

elongated morphology) of the cell the more spread out the TIMP-1 and -2 vesicles appear 

and less colocalisation is observed (compare Figure 5.6, B, more activated with Figure 5.6, 

C, less activated). 
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Figure 5.5 Colocalisation of MMP-9 and TIMP-1 in unstimulated and LPS-stimulated J774 

macrophages. 

Chicken anti-MMP-9 [100 µg/ml (A1) or 50 µg/ml (B1)] and donkey anti-chicken CY3 [2 µg/ml (A1 and B1)], 
post-fixed (3.7% PFA), probed with chicken anti-TIMP-1 [200 µg/ml (A2) or 100 µg/ml (B2)] and rabbit anti-

chicken IgG FITC [9 µg/ml (A2 and B2) applied to unstimulated (A) or cells stimulated with LPS [10 µg/ml]        
(B), on Coverslips, initially fixed with 3.7% PFA and permeabilised with saponin.  Coverslips viewed using an 
Olympus epifluorescent microscope.  CY3 filter (A1 and B1), FITC filter (A2 and B2), composite images (A3 

and B3).  Bars = 5 µm.   
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Figure 5.6 Colocalisation of TIMP-1 and TIMP-2 in unstimulated and LPS-stimulated J774 

macrophages. 

Chicken anti-TIMP-1 [50 µg/ml (A1 and B1) or 100 µg/ml (C1)] and donkey anti-chicken CY3 [2 µg/ml (A1, 
B1 and C1)], post-fixed (3.7% PFA), probed with sheep anti-TIMP-2 serum [1:50 (A2 and B2)] or 1:25 (C2)] 

and donkey anti-sheep IgG FITC [25 µg/ml (A2 and C2) or 17 µg/ml (B2)], applied to unstimulated (A) or cells 
stimulated with LPS [10 µg/ml] (B and C), on Coverslips, initially fixed with 3.7% PFA and permeabilised 
with saponin.  Coverslips viewed using an Olympus epifluorescent microscope.  CY3 filter (A1, B1 and C1), 

FITC filter (A2, B2 and C2), composite images (A3, B3 and C3).  Bars = 5 µm.   
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5.3 Localisation of MMP-9 and TIMP-1 in comparison to LAMP-2 and acidity 

of MMP-9-, TIMP-1- and -2-containing compartments in unstimulated J774 

macrophages 

In contrast to cathepsins, MMP-9, TIMP-1 and TIMP-2, generally active at approximately 

neutral pH, according to the literature, are usually secreted by macrophages and function 

predominantly extracellularly (Okada et al., 1995).   It, therefore, seemed unlikely that they 

would be located in acidic compartments and, as the late endocytic compartments (late 

endosomes and “lysosomes” or “hybrid” organelles) are generally acidic (Griffiths, 1996a) it 

also seemed unlikely that MMP-9, TIMP-1 and TIMP-2 would colocalise with LAMP-1 or -

2 [markers for late endosomes and “lysosomes” (Section 4.4)].  To verify this prediction 

studies using LysoTracker to identify acidic vesicles and labelling for MMP-9, TIMP-1 and -

2 were performed on J774 macrophages.  Due to time constraints all experiments were 

carried out on unstimulated cells only.  Due to the apparent greater importance of LAMP-2 

[determined from knockout mice studies (Tanaka et al., 2000) (Chapter 4, section 4.4)], only 

colocalisation between LAMP-2 and MMP-9 and TIMP-1 was investigated. 

 

5.3.1 Reagents 

LysoTracker Red (Molecular Probes) was diluted in DMEM [1: 20 000] with 10% FCS. 

 

Reagents for the culture and fluorescent immunolabelling of J774 cells for MMP-9, TIMP-1, 

TIMP-2 and LAMP-2 were prepared according to Sections 2.2.1 and 2.8.1.1. 

 

MMP-9, TIMP-1 and -2 and secondary fluorescent antibodies used were as previously 

described (Section 5.2.1) and a goat anti-rat IgG FITC antibody was also used.  Rat anti-

mouse LAMP-2 (ABL-93) was obtained from the Developmental studies Hybridoma Bank 

(University of Iowa, Iowa City, Iowa, USA) 

 

5.3.2 Procedure 

For LysoTracker studies, unstimulated J774 cells were cultured according to the procedure in 

Section 2.2.2.  Prior to fluorescent immunolabelling cells were incubated in medium 

containing LysoTracker [1:20 000], (30 min, 37oC).  Fluorescent immunolabelling was 

subsequently carried out according to Section 2.8.1.2 using chicken anti-human MMP-9 [50 

µg/ml], chicken anti-human TIMP-1 [50 µg/ml], sheep anti-human recombinant TIMP-2 

[1:25], rabbit anti-chicken IgG FITC [9 µg/ml] and donkey anti-sheep IgG FITC [17 µg/ml].  

20 µm 
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For LAMP-2 double labelling, unstimulated J774 cells were cultured and fluorescent 

immunolabelling carried out according to Sections 2.2.3 and 2.8.1.2 with rat anti-mouse 

LAMP-2 [1:900], chicken anti-human MMP-9 [50 µg/ml], chicken anti-human recombinant 

TIMP-1 [100 µg/ml], goat anti-rat IgG FITC [0.8 µg/ml] and donkey anti-chicken IgG CY3 

[2 µg/ml].  TIMP-2 labelling was not performed as no more sheep anti-TIMP-2 serum was 

available. 

 

All labelling was viewed using an Olympus epifluorescent microscope and F-View CCD 

camera and images analysed using ImageJ software as previously described (Chapter 4, 

section 4.2.2). 

 

5.2.3 Results 

In unstimulated J774 cells, with LysoTracker and MMP-9 labelling, no colocalisation was in 

labelled (±100-300 nm) vesicles (Figure 5.7, A1-A3).  Minor colocalisation (approximately 

10-20%) between MMP-9 and LAMP-2 (Figure 5.7, B1-B3) was, however, observed.  This 

suggests that MMP-9 is generally not associated with a “lysosome-like” compartment as 

anticipated (not LAMPs- and LysoTracker-positive).  A perinuclear colocalisation of MMP-

9 and LAMP-2, however, in the absence of acidity (LysoTracker labelling), suggests 

colocalisation in the ER and Golgi region and concurrent synthesis.  Results contradict 

earlier conclusions, which, on the basis of size, speculated that the large vesicles observed 

were hybrid/digestive bodies (acidic and LAMPs-positive).  Besides a possible early 

endosomal identity (LAMPs-negative, non-acidic), vesicles appear to be distinct and novel, 

different from those identified in the cathepsin immunolabelling studies (Chapter 4).  These 

cannot be identified without e.g. filling the endocytic/hybrid-/digestive body with gold.   

 

Though largely LysoTracker- and LAMP-2 negative, certain TIMP-1-labelled vesicles (±150 

nm), showed minor colocalisation (less than 10%) with LysoTracker (Figure 5.8, A1-A3) 

and LAMP-2 (Figure 5.8, B1-B3).  Unlike the vesicles labelled for MMP-9, these seem to be 

“lysosome-like”, hybrid organelles, on the basis of their size (±150 nm) and positivity for 

LAMPs and LysoTracker.  These vesicles possibly arise after initial secretion of TIMP-1 and 

subsequent endocytic uptake and fusion with a hybrid digestive organelle.  

 

TIMP-2 (Figure 5.9, A1-A3), unlike TIMP-1 (Figure 5.8, A1-A3), showed no association 

with LysoTracker, so is not found in an acidic body. 
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Figure 5.7 LysoTracker and labelling of LAMP-2 and MMP-9 in unstimulated J774 macrophages. 
Cells grown on coverslips were incubated in DMEM with LysoTracker [1:20 000 (A2)] (30 min, 37oC), 

initially fixed with 3.7% PFA, permeabilised with saponin and probed with chicken anti-MMP-9 [50 µg/ml 

(A1)], rabbit anti-chicken FITC [9 µg/ml (A1)].  Coverslips viewed using an Olympus epifluorescent 

microscope.  FITC filter (A1), LysoTracker filter (A2), composite image (A3).  Bars = 5 µm. 
Rat anti-mouse LAMP-2 [1:900 (B1)] and goat anti-rat IgG FITC [1:1200 (B1)], post-fixed (3.7% PFA), 
probed with chicken anti-MMP-9 [50 µg/ml (B2)] and donkey anti-chicken IgG CY3 [1:1000 (B2)], applied to 
cells on coverslips, initially fixed with 3.7% PFA and permeabilised with saponin.  Coverslips viewed using an 

Olympus epifluorescent microscope.  FITC filter (B1), CY3 filter (B2), composite image (B3).  Bars = 5 µm. 
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Figure 5.8 LysoTracker and labelling of LAMP-2 and TIMP-1 in unstimulated J774 macrophages. 
Cells grown on coverslips were incubated in DMEM with LysoTracker [1:20 000 (A2)] (30 min, 37oC), 

initially fixed with 3.7% PFA, permeabilised with saponin and probed with chicken anti-TIMP-1 [100 µg/ml 

(A1)], rabbit anti-chicken IgG FITC [9 µg/ml (A1)]. Coverslips viewed using an Olympus epifluorescent 

microscope.  FITC filter (A1), LysoTracker filter (A2), composite image (A3). Bars = 5 µm.  

Rat anti-mouse LAMP-2 [1:900 (B1)] and goat anti-rat IgG FITC [0.8 µg/ml (B1)], post-fixed (3.7% PFA), 

probed with chicken anti-TIMP-1 [100 µg/ml (B2)] and donkey anti-chicken IgG CY3 [2 µg/ml (B2)], applied 
to cells on coverslips, initially fixed with 3.7% PFA and permeabilised with saponin.  Coverslips viewed using 

an Olympus epifluorescent microscope.  FITC filter (B1), CY3 filter (B2), composite image (B3). Bars = 5 µm. 
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Figure 5.9 LysoTracker and labelling of TIMP-2 in J774 macrophages. 
Cells grown on coverslips were incubated in DMEM with LysoTracker [1:20 000 (A2)] (30 min, 37oC), 
initially fixed with 3.7% PFA, permeabilised with saponin and probed with sheep anti-TIMP-2 serum [1:25 

(A1)], donkey anti-sheep IgG FITC [17 µg/ml (A1)].  Coverslips viewed using an Olympus epifluorescent 

microscope.  FITC filter (A1), LysoTracker filter (A2), composite image (A3).  Bars = 5 µm. 
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5.4 Discussion 

MMPs are highly important in ECM degradation and the processing of cytokines (Folgueras 

et al., 2004).  Investigations into the separate localisation of MMPs and their inhibitors, the 

TIMPs, and their potential differential regulation of release is potentially important for the 

control of diseases or processes involving the MMPs, i.e. inflammatory disease, tumour 

invasion, cancer and in fighting infection.  It has been shown in neutrophils that, the bulk of 

MMP-9 is located in the electron-dense, peroxidase-negative gelatinase granules (Kjeldsen et 

al., 1993).  Here MMP-9 is stored in an inactive state and only activated after degranulation 

(Gullberg et al., 1997).  The current study revealed that, in J774 macrophages, MMP-9 and 

TIMP-1 appear to be located in separate, novel vesicles distributed throughout the cytoplasm 

and prominent towards the cell membrane. 

 

In addition to being regulated by cellular differentiation, it appears that, in macrophages, 

MMP and TIMP synthesis and secretion is regulated by external stimuli such as LPS 

(Welgus et al., 1990).  LPS was seen to induce secretion of MMP-9 in this study.  Another 

major effect seemed to be the induction of fusion of TIMP-1- and MMP-9-containing 

vesicles.  It has always been thought that the site of MMP activation is extracellular, post 

secretion, MMP-9 being activated by secreted MMP-2 (Fridman et al., 1995) and MMP-3 

(Goldberg et al., 1992).  The colocalisation of MMP-9 and TIMP-1 in certain large vesicles, 

post LPS-stimulation, prior to the appearance of mature MMP, however, may indicate that 

TIMP-1 has some role in either stabilising- or assisting in the intracellular activation of 

MMP-9 (Price et al., 2000). 

 
Price et al. (2000) identified a TIMP-1-containing vesicle that was distinct from the various 

known neutrophil granule/vesicle populations and also a minor subpopulation in which 

MMP-9 colocalised with TIMP-1.  It appears that in J774 macrophages, TIMP-1 and -2 are 

similarly largely separate, MMP-9 colocalising with TIMP-1 in minor vesicle populations 

only after LPS stimulation.  This may enable TIMP-1 to finely control extracellular 

proteolytic activity (Price et al., 2000) or, under LPS stimulation that causes macrophages to 

exhibit a more degradative phenotype, partial colocalisation may enhance the proteolytic 

activity of MMP-9, stabilising and protecting MMP-9 against degradation by elastase and 

MMP-2 (Price et al., 2000), making the surrounding tissue more vulnerable to degradation by 

MMP-9.  MMP-9-TIMP-1 complex formation may, thereby, produce an almost inactivatable 

complex (i.e. an enzyme/inhibitor complex which alternates between the active and inactive 
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state as the partially-bound inhibitor moves into and out of the active site, a complex to 

which no other inhibitors can bind, and a complex stabilised and protected by the bound 

inhibitor).  This would contribute to a damaging degradative phenotype such as is found in 

inflammatory diseases.  Membrane-association has, also been shown to make MMP-9 

uninhibitable by TIMP-1 (Owen et al., 2003) and it would appear that most of the MMP-9 

visualised by EM in this study seems to be membrane-associated.   

 

In most J774 macrophages, in this study, TIMP-2 also appears to be predominantly 

associated with- or near the cell membrane.  This needs verification with labelling of non-

permeablised cells and EM.  Surface-association may be due to a role in the activation of 

proMMP-2, a process requiring both MT1-MMP and TIMP-2 (Hernandez-Barrantes et al., 

2000; Toth et al., 2000).  TIMP-2 is capable of inhibiting both MT1-MMP and MMP-2 by 

binding via its inhibitory N-terminal domain to the active sites of MT1-MMP and MMP-2.  

TIMP-2 is, however, also able to bind to the hemopexin domain of MMP-2 via its C-terminal 

domain, thus forming a non-covalent complex (Bernardo and Fridman, 2003).  This results in 

the formation of a ternary complex in the cell membrane, allowing activation of proMMP-2 

by an adjacent MT1-MMP molecule.  The apparent surface location of TIMP-2 in J774 

macrophages may, therefore, be an indication of the possible site of formation of the ternary 

proMMP-2-MT1-MMP-TIMP-2 complex in the macrophage cell membrane, and could be 

confirmed by triple labelling.   

 

Unlike TIMP-1, LPS-stimulation produced no visible differences in the TIMP-2/MMP-9 

separate localisation.  This was anticipated as stimulants such as LPS have generally been 

shown not to affect the localization or production of TIMP-2 (Shapiro et al., 1992; Lacraz et 

al., 1995).  In contrast, TIMP-1 synthesis is usually increased after LPS-stimulation 

suggesting that different mechanisms of regulation of expression of TIMP-1 and TIMP-2 

must exist. 

 

As previously mentioned cathepsins are primarily located in the endosome-lysosome system.  

Labelling for LysoTracker and LAMP-2 used to establish whether the compartments in 

which MMP-9, TIMP-1 and -2 occurred were part of the endosome-lysosome system, 

indicate that most compartments positive for MMP-9 and TIMP-2 are of a relatively high pH 

(LysoTracker-negative) and seemed to lack labelling for LAMP-2.  Although the 

ultrastructural preservation of the EM sections was poor and possible 
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multilamellar/multivesicular morphology could not be seen, the results suggest that the 

MMP-9 vesicles are generally not late endosomal or “lysosomal” compartments.  TIMP-1 

did, however, appear to show some colocalisation with LysoTracker and LAMP-2, 

suggesting that at times, TIMP-1 may be found in late endocytic and/or “hybrid” digestive 

organelles.  It has been suggested that some MMPs and TIMP-1 are involved in fighting 

certain bacterial infections in neutrophils (Osiewicz et al., 1999) and possibly macrophage 

phagosomes, and may aid in immunity and fighting infection in some way.  Whether this 

unanticipated localisation of only TIMP-1, and not TIMP-2, in a digestive body has any 

significance in this regard remains unknown and possibly should be investigated. 

 

Taken together the above results suggest that MMP-9 and TIMP-1 are located in separate 

possibly novel vesicular compartments, almost certainly different from those occupied by the 

“lysosomal” enzymes the cathepsins.  It is likely that the MMP-9-containing vesicle is a 

secretory compartment that is used for the temporary storage and subsequent transportation 

of the newly synthesised protein to the site of secretion.  Hence, this compartment may not be 

equivalent to the gelatinase granule of the neutrophil.   

 

Both macrophages and neutrophils appear to have separately- and colocalised MMP-9- and 

TIMP-1-containing vesicles subpopulations.  Whether these compartments have equivalent 

roles i.e. in the activation or regulation of MMP-9 activity still needs to be verified.  

Although TIMP-1 and TIMP-2 are predominantly not associated with late endosomes and 

“lysosomes” it also appears that J774 macrophages may internalise initially secreted or 

possibly surface associated TIMPs via an endosome-lysosome-like pathway, possibly via the 

recycling endosomal pathway (Remacle et al., 2003; Remacle et al., 2005).  This pathway 

has been shown to be used to internalise activated MT-1-MMP and direct it towards the 

invasive front of an invading cell (Remacle et al., 2003).  The large, novel organelle 

containing MMP-9 and TIMP-1, identified in this study may be such a recycling endosome.  

This possibility should be investigated by labelling for Rab11, a marker for such an 

organelle. 
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CHAPTER 6 

 

DISCUSSION 

 

Macrophages participate in both innate and acquired immunity, defending the host against 

microbial pathogens (Ross and Auger, 2002).  They function in tissue remodelling 

(Rabinovitch, 1995) and the inflammatory response; produce a wide variety of cytokines and 

kill intracellular pathogens, functioning in the acquired immunity in processing and 

presenting microbial peptides to T-cells (Newman, 1999; Heale and Speert, 2002).  Certain 

pathogens have, however, developed ways of avoiding destruction within the macrophage 

phagosome by preventing the fusion of protease containing vesicles with the phagosome 

(Anes et al., 2006).  Although proteases, such as cathepsins B and D, are now known to play 

direct roles in controlling bacterial and fungal infections (Thorne et al., 1976; Rosenberger et 

al., 2004; Del Cerro-Vadillo et al., 2006), the proteases involved in phagosomal killing of 

various organisms, and the vesicular distribution of such proteases in macrophages, is 

essentially unknown. 

 

Fusion and fission events with organelles of the endosome-lysosome system and possibly 

with other vesicle populations, acquiring e.g. proteases and proton-ATPases (Desjardins et 

al., 1994a; Desjardins et al., 1997) results in the formation of a phagolysosome, an organelle 

with powerful microbicidal properties (Desjardins and Griffiths, 2003).  Although it appears 

that in macrophages, the phagosome fuses sequentially with early endosomes, late 

endosomes and finally “lysosomes”.  These compartments remain virtually uncharacterised 

in terms of their protease content and a reliable marker system does not exist for the 

endosome-lysosome system.  Cathepsins are predominantly located in the endosome-

lysosome system, whereas MMPs and their inhibitors are primarily in the secretory pathway 

and hence could possibly be used for the development of marker systems for both the 

endosome-lysosome system and the secretory pathway.  Thus, in the current study, an 

attempt was made to assess the distribution of cathepsins B, D, H, S and L as well as MMP-

9, TIMP-1 and -2 in the vesicles of J774 macrophages. 

 

Based on activity assays, Claus et al. (1998) and Jahraus et al. (1998) proposed that 

cathepsins H and S could be used as markers for the early and late endosomes, respectively, 
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in J774 macrophages and cathepsin D has been previously associated with lysosomes of 

many different cell types including macrophages (Conner, 2004).  The current study indicates 

that cathepsins H and S seem to be located in separate compartments, possibly the early and 

late endosomes of J774 macrophages (Chapter 4).  However, cathepsin H antisera, in 

detecting both pro- and mature forms of the protease, cannot be used reliably as a marker for 

the early endosome without the use of an additional marker, such as EEA1.  Significant 

amounts of procathepsin S in comparison to mature cathepsin S, (a suggested marker for the 

late endosome) (Jahraus et al., 1998) were observed in the current study.  The amount of 

mature enzyme present appears to be dependent on the duration of activation (Punturieri et 

al., 2000), as significant amounts of mature cathepsin S has been shown to appear in MDMs 

only after approximately 12 days of activation (Punturieri et al., 2000).  This suggests the use 

of cathepsin S as a reliable marker for the late endosome is questionable. 

 

In comparison to cathepsins H and S, mature cathepsin D appears to be predominantly 

associated with acidic compartments, some of which are likely to be LAMPs-positive, 

implying that these compartments are probably “classical” lysosomes or “hybrid”/digestive 

bodies.  As a result of the dynamic nature of the endosome-lysosome system it is difficult to 

assign cathepsins to specific vesicles within this system, particularly when immunolabelling 

studies are performed with antisera that detect both newly synthesised and mature cathepsins.  

The dynamic formation of hybrid organelles with mixed luminal content also makes the 

system more complex (Bright et al., 1997; Luzio et al., 2000).  In vitro studies of J774 

macrophages have shown transient fusion events even between early and late endosomes 

(Jahraus et al., 1998), a phenomenon that does not occur in other cells.  It is also becoming 

increasingly apparent that “lysosomes” (“hybrid/digestive organelles) appear to consist of a 

number of subpopulations with varied membrane and luminal content, thus making the 

vesicle characterisation of this system extremely complex.  It seems that perhaps at least two 

subpopulations of cathepsin D-labelled “hybrid” or “digestive” bodies may be revealed by 

performing triple labelling with LAMP-1, -2 and cathepsin D, together with LysoTracker.  

This possibility should now be explored.  Due to the importance of LAMP-2 shown in 

knock-out mice (Tanaka et al., 2000), the “digestive” organelle labelling for LAMP-2 may be 

one of the most important vesicle populations in the cell.  

 

Anes et al. (2006) demonstrated that most of the detectable V-ATPase in J774 macrophages 

seemed to be located in vesicles distinct from late endosomes and lysosomes and which 
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appear to fuse with the phagosome prior to the second killing stage.  Some of the acidic 

vesicles lacking cathepsins/LAMPs observed in the current study may be equivalent to the V-

ATPase-rich compartments.  The current study also suggested that some mature cathepsin D, 

for example, may be located in an acidic, LAMPs-negative “lysosomal” subpopulation which 

could be equivalent to the V-ATPase vesicle identified by Anes et al. (2006).  A Hck-

positive, lysosomal population, distinct from LAMP-3-positive lysosomes was recently 

identified in human macrophages (Astarie-Dequeker et al., 2002).  Despite the lack of 

LAMPs this compartment exhibited other lysosomal characteristics and appeared to be 

mobilised under a receptor-regulated, microtubule-independent process, suggesting that it 

may function as a “secretory lysosome”.  In addition to this lysosomal population, LYAAT-

rich vesicles, distinct from the V-ATPase-rich vesicles as well as from late endosomes and 

“lysosomes” have also been identified (Anes et al., 2006).  Interestingly, LYAAT was shown 

to strongly colocalise with Hck in J774 macrophages (Anes et al., 2006).  The results from 

the current study, suggest that cathepsins B and D, cathepsins B and L and possibly 

cathepsins D and L may be located in lysosome-like secretory vesicles.  As Hck and LYAAT 

appear to colocalise with each other (Anes et al., 2006), triple labelling studies could be used 

to establish whether the Hck/LYAAT-positive lysosomes contain either of the cathepsin pairs 

mentioned above. As LYAAT-positive and V-ATPase-rich compartments fuse with the 

phagosome prior to the second killing phase (Chapter 4) any colocalisation between 

Hck/LYAAT and cathepsins may implicate these cathepsins in the killing process taking 

place within the low pH phagosome. 

 

In addition to the cathepsins, V-ATPase, Hck and LYAAT, there are several other proteins 

that could be used as potential markers for the various vesicular compartments of the J774 

macrophage.  These include annexins, syntaxins and Rab-GTPases.  Annexins are involved 

in signal transduction, cell transformation, ion-channel formation, apoptosis and membrane-

membrane and membrane-cytoskeletal interactions (Diakonova et al., 1997).  In J774 

macrophages, annexins I, II and III appear to be located in the early endosome, whereas, 

annexin V is associated with both early and late endosomes (Diakonova et al. 1997). 

Annexins I, II, III, IV, V, VI, VII and XI have been observed in the phagosomes (Desjardins 

et al., 1994b; Diakonova et al., 1997; Pittis et al., 2003).  The amounts of annexin I, II, III 

and V found in phagosomes isolated at different stages of maturation remained constant, 

whereas, the amount of annexins IV and VI increased during phagosome maturation 

(Desjardins et al., 1994b; Diakonova et al., 1997), suggesting that annexins IV and VI are 
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located in vesicular compartments distinct from early and late endosomes and may, therefore, 

be used to identify additional vesicle populations.  As Hck/LYAAT appear to be located in 

vesicles distinct from late endosomes and lysosomes, it would be interesting to investigate 

whether annexins IV and VI occur in these vesicles or perhaps represent two additional 

vesicle populations. 

 

Syntaxin 13 has been localised to a recycling endosome (transferrin receptor-positive), 

whereas, syntaxin 7 is found in late endosomes and lysosomes (Collins et al., 2002).  

Hackam et al. (1996) have demonstrated the presence of syntaxins 2, 3 and 4 in both J774 

and human macrophages, with syntaxins 3 and 4 being present on both plasma membrane 

and intracellular vesicles of unknown origin.  These proteins, therefore, also have the 

potential to serve as markers for vesicle populations. 

 

Rab5, initially considered to be an early endosomal marker and Rab7 a marker for late 

endosomes (Griffiths, 1996a), are not useful for distinguishing between the early and late 

endosomes of J774 macrophages as Rab5 and Rab7 occur in both the early and late 

endosomes (Jahraus et al., 1998).  Rab11 identified in the post-Golgi membranes of secretory 

cells and a recycling compartment in mouse macrophages promotes phagocytosis (Cox et al., 

2000) and has a much more interesting role in focussing MT1-MMP and TIMP-2 to the 

invasive front where the enzymes are required for invasion (Remacle et al., 2003; Remacle et 

al., 2005).  The current study showed that MMP-9, TIMP-1 and TIMP-2 are generally not 

located in acidic, LAMP-2-positive compartments (non late endosome-lysosome system) but 

may be present in recycling endosomes (Rab11-positive, LAMP-negative).  This is possibly 

the novel body (±450 nm) identified in the current study (containing MMP-9 and TIMP-1) 

and may be the very body in which MT-1-MMP is internalised and recycled to the invasion 

front, as previously described by Remacle et al. (2003).  This should now be investigated 

using labelling for Rab11, MMP-9 and TIMP-1.  The novel body containing MMP-9 and 

TIMP-1 was not a phagosome as the J774 cultures were not contaminated and TIMP-1 and 

MMPs have not previously been identified in macrophage phagosomes (Garin et al., 2001).  

Their occurance in a phagosome is also unlikely as NADPH-oxidases are capable of 

inactivating MMPs (Kassim et al., 2005). 

 

Interestingly, an increase in colocalisation between MMP-9 and TIMP-1 was observed after 

stimulation with LPS, though the identity of such a body should be investigated and the role 



 

 181

of an MMP-9-TIMP-1 complex should be investigated.  It has previously been suggested that 

a proMMP-9-TIMP-1 heterodimeric complex may exist (Triebel et al., 1995). The binding of 

TIMP-1 to proMMP-9 at a site distinct from its inhibitory domain and the extracellular 

release of the complex, may result in a brief period of MMP-9 activity followed by 

inhibition, stabilising the enzyme and perhaps extending the duration of activity and giving 

the macrophage some control over the degree of extracellular proteolytic degradation. 

 

It has previously also been suggested that the activation of proMMP-2 occurs at the cell 

surface and requires both TIMP-2 and MT1-MMP (Hernandez-Barrantes et al., 2000; Toth et 

al., 2000).  A ternary complex is formed from the binding of TIMP-2 and MT1-MMP to 

proMMP-2, resulting in the activation of proMMP-2 by an adjacent MT1-MMP molecule 

(Bernado and Fridman, 2003).  The association of TIMP-2, MT1-MMP and proMMP-2 in a 

single complex with triple labelling may be an indication of this activation process and may 

also identify the recycling endosome (responsible for targeting the complex to the invasion 

front) (Remacle et al., 2003; Remacle et al., 2005) and could be verified by investigating the 

possible colocalisation between TIMP-2, MT1-MMP and proMMP-2. 

 

Macrophage proteases have generally been thought to be primarily involved in degradation.  

Recent studies have, however, established that proteases may play a direct role in bacterial 

killing (Rosenberger et al., 2004).  As previously mentioned, pathogens such as 

Mycobacterium tuberculosis are capable of surviving within the phagosome, by preventing 

the fusion of protease containing vesicles with the phagosome.  It is, therefore, essential that 

the different vesicle populations are identified and characterised based on their protease 

distribution, if we are to understand how the various proteases are capable of contributing to 

the killing of intracellular pathogens. Cathepsins appear to be primarily located in the 

endosome-lysosome system in macrophages in at least 7 different vesicle populations.  In 

contrast, MMPs and their inhibitors are generally secreted and function extracellularly 

(Finlay et al., 1997) and are, therefore, expected to be located in vesicles of the secretory 

pathway.  The presence of separate vesicles containing TIMP-1 and TIMP-2 is consistent 

with Shapiro et al. (1992) who demonstrated that the biosynthetic regulation of macrophage 

TIMP-2 appears to be opposite to that of TIMP-1.  The mechanisms governing the 

biosynthetic regulation of the macrophage MMPs, including MMP-9, -2, -3 and -12 remain 

unknown. 
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Minor colocalisation between TIMP-1 and LAMP-2 suggests that previously secreted or 

possibly cell membrane-associated TIMP-1 may be internalised via the endosome-lysosome 

pathway and be distributed in late endosomes and “hybrid” organelles possibly for 

degradation, though the importance of LAMP-2 and many functions of TIMP-1 (Baker et al., 

2002; Lambert et al., 2004) makes this explanation too simple and other possible 

explanations should be sought. 

 

The current study has produced some answers to the distribution of cathepsins B, D, H, S and 

L as well as MMP-9, TIMP-1 and TIMP-2 in J774 macrophages and has also provided 

antibodies necessary for the continuation of this work.  This study forms the basis for further 

characterisation of the J774 macrophage vesicle populations as well as for the development 

of potential marker systems for the vesicular compartments of both the endosome-lysosome 

system and the secretory pathway of J774 mouse macrophages.  

 

The work in this study demonstrated that in J774 mouse macrophages, cathepsins H, S, D, B 

and L occur in secretory vesicles (±20 nm, non-acidic, LAMPs-negative), containing 

precursor enzymes and at least 6 other endosome-“lysosome” vesicles.  Cathepsin H appears 

to be present in early endosomes (±100 nm, non-acidic, LAMPs-negative) and cathepsin S in 

late endosomes (±50 nm, acidic, LAMPs-positive) and possibly “lysosomal” (“hybrid” or 

digestive organelles) (±150-200 nm, acidic, LAMPs-positive).  Both cathepsins H and S, 

however, are only reliable markers for the early and late endosomes, repectively if used with 

additional markers.  Cathepsin D appears mainly associated with “lysosomal” (“hybrid” or 

digestive organelles) (±150-200 nm, acidic, LAMPs-positive), possibly consisting of further 

subpopulations which requires more investigation e.g. triple labelling for LAMP-1 and 

LAMP-2 and cathepsin D.  Cathepsins B and L may occur in late endosomes and/or hybrid 

organelles and “secretory lysosomes” containing cathepsins B, D and L may also exist (±30-

50 nm, acidic, LAMPs-positive). 

 

The distribution of MMP-9, TIMP-1 and -2 in vesicles (non-acidic, LAMP-2-negative) 

which generally appear novel and distinct from late endosome-“lysosome” vesicles was also 

demonstrated.  Colocalised MMP-9 and TIMP-1 in large (±450 nm) vesicles of LPS-

stimulated cells, in possible recycling endosomes (Rab11-positive, LAMPs-negative), 

requires further verification with triple labelling and EM.  Possible cell membrane and 



 

 183

recycling endosome localisation of TIMP-2 needs confirmation with labelling of non-

permeabilised cells and labelling for MT1-MMP and proMMP-2, respectively. 
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