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ABSTRACT 

Rice (Oryza sativa L.) is a staple food crop in many African countries including Tanzania. 

However, both regional and national rice production have failed to meet demand due to 

several constraints, among which is the bacterial leaf blight (BLB) disease caused by 

Xanthomonas oryzae pv. oryzae. Moreover, attempts to increase rice production through the 

introduction of modern cultivars has motivated farmers to leave local landraces for high 

yielding, but often susceptible varieties. The overall goal of this study was to increase and 

strengthen rice production in Tanzania through development of high yielding and BLB resistant 

varieties. The specific objectives were: to i) analyse genotype x environment interaction (GEI) 

effects for reaction to bacterial leaf blight under natural infection and rice grain yield 

performance across different environments in Tanzania ;ii) assess the heritability, variability 

and efficiency of indirect selection using secondary traits for grain yield improvement among 

rice genotypes; and iii) assess relationship among traits using correlation, path coefficients 

and genotype-by-trait associations in rice. The study was conducted at three sites namely 

Katrin, Igurusi and Kyela, all in Tanzania. Thirty rice genotypes, which include two checks, 

Txd 306 (susceptible check) and IR- 24 (resistant check), were evaluated. The experimental 

design was a 6 x 5 alpha lattice design with three replications. Data was collected on early 

vigour, days to early flowering, plant height (cm), panicle length(cm), number of tillers per hill, 

dead heart, bacterial leaf blight scoring, lodging percent, days to maturity, dry straw weight 

(kg), spikelets per panicle, grain length (mm), grain width (mm), 1000-grain weight (g), harvest 

index (%) and yield per plot (kg). Data were analysed using SAS version 9.4 and GenStat 17th 

edition. ANOVA was used to detect the significance of GEI. The Additive Main Effect and 

Multiplicative Interaction (AMMI) and the Genotype plus Genotype by Environment Interaction 

(GGE) biplot models were used for further analysis of GEI and stability. From the results, 

genotypes NERICA 4 followed by IR-24were the most resistant to BLB while Supa India was 

the most susceptible. Dakawa 83 was the most resistant at Katrin while NERICA 4 was the 

most resistant at Igurusi and Kyela. Genotypes NERICA 2 and LOWLAND NERICA 6 were 

the most stable across environments for BLB resistance, while IR54 and Txd 306 were the 

most unstable. Based on the GGE biplot analysis, the three environments fell into two mega 

environments where as at Kyela, NERICA 4 and IR-24were identified as the most resistant 

genotypes while at Katrin  Dakawa 83 and NERICA 1 were identified as the most resistant 

genotypes. Genotype by Environment Interaction effect for grain yield was not significant and 

as a result, genotype comparison for the same trait was based solely on mean performance 

across all the environments. The best three genotypes for grain yield were Txd 306, Txd 88 

and WITA 10, but in contrast, NERICA 4, Supa India and Mwanza were the worst performers 

for the same trait. As for broad sense heritability estimates, days to early flowering had the 
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highest estimate of 99.67%, indicating less influence of the environment, while lodging% had 

0.00% heritability indicating high influence of the environment. For variability, the phenotypic 

coefficient of variation (PCV %) values were higher than the genotypic coefficient of variation 

(GCV %) for all the traits. The highest PCV(%) was for lodging percent (5325.463) followed 

by number of spikelets per panicles (1005.352)and the lowest was for grain width (1.197) 

followed by grain length(2.406).The GCV (%) was highest for number of spikelets per panicle 

(419.902) followed by plant height (97.843) and the lowest was for lodging percent (0.000) 

followed by grain yield (0.314), genetic advance (GA) was highest for spikelets per  panicles 

(66.79) and lowest for lodging percent (0.000), while for genetic advance as a percentage of 

mean (GAM %) the highest was for yield per plot (104.13) followed by dry straw weight  (92.11) 

and the lowest was for lodging percent (0.00) followed by panicle length (8.89).Not all the traits 

under consideration could be used for indirect selection for yield per plot since none of them 

had a relative selection efficiency equal to or greater than unity. Regarding diversity 

assessment, cluster analysis based on Euclidian distance indices revealed that Txd 88 and 

SATO IX were the most similar pair, followed by IR-56 and IR54, which were also similar to 

each other, and the most divergent genotypes were Txd 306 and Wahiwahi followed by 

Wahiwahi and Txd 85. Diverse genotypes can be targeted for hybridization since progenies of 

diverse parents are often more heterotic than those of related parents. 

The assessment of relationship among traits using correlation and path analysis the traits 

which were positive and highly significantly correlated to grain yield were harvest index 

(0.77***) followed by dry straw weight (0.46***), while negative significant correlations were 

observed for early vigour (-0.22*). Direct effects on grain yield were positive for harvest index 

(0.80) and dry straw weight (0.51), while indirect effects were highest for days to maturity 

through harvest index (0.25) followed by number of tillers per hill through harvest index (0.23). 

For genotype-by-trait associations, genotypes NERICA 1, NERICA 2, NERICA 4, WAB 450-

12-12-BL1- and IR-24 were associated with BLB resistance; on the other hand Txd 306, WITA 

10, Txd 88, Txd 85, and SATO I were associated with high yield, although Txd 306 was also 

associated with susceptibility to BLB, whereby WITA 10 was high yield and resistance to 

bacterial leaf blight. 

Moreover this study provided information on the presence of genotype by environment 

interaction in Tanzanian rice growing environment, valuable blight resistance and high yielding 

genotypes such as WITA 10 and moderate BLB resistance with high yield for genotypes such 

as Kalalu, Txd (88) and Txd (85), which could be used in rice breeding improvement and 

conservation efforts of rice. 
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INTRODUCTION 

1 Background 

Rice (Oryza spp.),is grown in many countries across the globe covering a total area of about 

163 million ha with a global production of about 740 million tonnes and an average yield of 

about 4,539 kg/ha (FAOSTAT, 2012). The Asian continent ranks first with over 90.1% of the 

world production, followed by the American continent (5.1%), African continent (4.2%), Europe 

(0.5%) and Oceania (0.1%). The major producing countries are China (206.5 million tonnes), 

India (157.2 million tonnes), Indonesia (70.8 million tonnes), Bangladesh (52.2 million tonnes) 

and Vietnam with 44.9 million tonnes (FAOSTAT, 2012). 

Worldwide, rice was ranked second in cultivated acreage in 2012 after wheat (AfricaRice, 

2013). Other crops included in the top ten were maize, soybean, barley, sorghum, millet, 

cotton (seed), rapeseed and dry beans. In Africa, rice is grown and consumed in more than 

40 countries. Its production has increased from 3.3 million tonnes in 2000 to 11.6 million 

tonnes in 2015.More than 20 million farmers in Africa are engaged in rice production and about 

100 million people are dependent on it directly for their livelihood (Nwanze et al.,2006). In 

addition, the rice agricultural sector in Africa is an important contributor to economic 

development and reduction of life-threatening poverty and ensures food security to many 

families (AfricaRice, 2012). In East Africa, Tanzania is the second largest producer of rice after 

Madagascar with 720,000 ha under rice production and small-scale farmers owning 0.5–3.0 

ha of land produce 90% of it. 

2 Importance of rice and its improvement in Tanzania 

Rice (Oryza sativa L.) is one of the most important food crops in the world. It is a staple food 

crop for more than half of the world’s human population. Rice grain contains 75 to 80% starch, 

12% water and 7% protein (Oko et al., 2012). Minerals like calcium, magnesium and 

phosphorus are present along with some traces of iron, copper, zinc and manganese. In 

addition, rice is a good source of niacin, thiamine and riboflavin (Oko et al., 2012) 

In Tanzania rice is the second most important staple and commercial crop after maize and 

thus it is a good source of employment, food security and income for farming households 

(RLDC, 2009). About 18% of Tanzanian farming households grow rice contributing to 2.66% 

of the total GDP. The leading rice producing regions of Tanzania are Morogoro, Shinyanga, 

Tabora, Mwanza, Mbeya, Rukwa, and Arusha. The production regions fall under three main 

ecologies: lowland cultivation (72% of rice hectares), upland (about 21%) and irrigation (less 

than 10%) (FAO, 2011).  
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Production of rice has increased immensely in Tanzania from 330,000 tonnes in 1997 to 

662,000 tonnes milled rice in 2010.  In the last 20 years, there has been a small yield increase 

from 1.32 t/ha in 1995, 1.66 t/ha in 2005 and 2.21 t/ha in 2014 (CRP, 2016) with an average 

of 0.045t/ha annual increase. The productivity of 2.21 t/ha is about half the global average of 

4.40 tonnes/ha (Li et al., 2014). The national production has had an overall positive growth for 

about a decade from 1998 to 2007 although characterized by large variabilities from year to 

year with an average gain of 0.017t/ha per year (RLDC, 2009). 

Regardless of the importance of rice in Tanzania, production is faced with many challenges 

including insect/bird pests, diseases, poor field management, use of old genetics methods 

such as crossing the varieties which are not improved, and lack of rice varieties that can 

tolerate unfavourable biotic and abiotic conditions (EUCORD, 2012).In strategies to feed the 

projected population of 9.4 billion people (Koksharova, 2010) by 2050, a focus on improving 

important agronomic traits of important crops including rice is needed. Thus, to meet present 

and projected demand and attain rice self-sufficiency, plant breeders have to develop high 

yielding cultivars with resistant traits and desirable agronomic traits for different environments.  

The development of new genotypes requires knowledge on the variability present in the 

germplasm to build an effective breeding programme. The knowledge about genetic variability 

can provide information on whether the variations are heritable or non-heritable. The degree 

of variation due to heritable components is very important as it guides the breeder in selection 

of parents for crop improvement (Dudley et al., 1969). Therefore, in order to effect selection 

for high yield, this study focused on obtaining information on genetic variability, correlations, 

path coefficients, genotype by environment interactions and genotype by trait associations. 

3 Taxonomy and diversity of the genus Oryza 

Rice (Oryza spp.), a member of the family  Gramineae  is widely grown in tropical, subtropical 

and temperate regions (Ezuka and Kaku, 2000).The genus Oryza contains approximately 22 

species, 20 of which are wild and two are cultivated, Oryza sativa (Asian rice) and Oryza 

glaberrima (African rice) (Vaughan, 1994). About fourteen wild species are diploid, having 24 

chromosomes (2n = 24), whereas eight wild species are tetraploids with 48 chromosomes (2n 

= 48).  Oryza sativa is the most widely grown of the two cultivated species. It is grown 

worldwide, including Asia, North and South America, European Union, Middle East and Africa. 

Oryza glaberrima,O. sativa and glaberrima-sativa hybrids are replacing O. glaberrima in many 

parts of Africa due to higher yields (Linares, 2002). Recently, the West African Rice 

Development Association (WARDA) developed inter-specific varieties known as New Rice for 
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Africa (NERICA), from crosses between O. sativa and O. glaberrima. These varieties have 

been widely released in Africa (Africa Rice Center-WARDA., 2008). 

4 Rice diseases and production constrains in Tanzania 

Rice production is constrained by bacterial, fungal, and viral diseases. Amongst these, 

bacterial leaf blight (BLB) caused by Xanthomonas oryzae pv. oryzae (Xoo) can be 

devastating (Swings et al., 1990). Bacterial leaf blight is widespread in several rice growing 

areas covering both tropical and temperate countries (Mew, 1987; Mew et al., 1993; 

Gnanamanickam et al., 1999; Séré et al., 2005). The BLB disease has been reported to occur 

all over the world including different areas of Asia, USA, Africa, and northern Australia 

(Adhikari et al., 1995; Onasanya et al., 2009).The presence of X. oryzae pv. oryzae has also 

been confirmed in Tanzania (Ashura et al., 1999).  The disease normally affects filling of the 

grains and emergence of panicles, causing yield losses between 20 to 50%, with a range from 

50 to 90% loss reported in some other areas (Onasanya et al., 2013). A latest assessment of 

rice diseases in Tanzania reported the occurrence of bacterial leaf blight in some parts of rice 

growing areas in Mara, Mbeya, Iringa and Morogoro (Habarurema et al., 2012).However, little 

is known about the variability of local Xanthomonas oryzae pv.oryzae pathogen populations 

(Africa Rice Center-WARDA., 2008). 

 

Factors that contribute to low yields in Tanzania include use of low yielding varieties, drought, 

low soil fertility, incidence of pests and diseases, little supply of fertilizer and weed invasion 

(Mghase, et al., 2010) (URT, 2009). Among the weeds that affect rice fields, Oryza 

longistaminata and O. punctate are important production constraints in southern and eastern 

parts of Tanzania. A study that centred on farmers’ opinion and preferences showed that in 

Morogoro region, the major rice production constraints were lack of improved varieties, 

disease susceptibility, inadequate seed supply for planting, drought and high production costs 

(Bucheyeki et al., 2011). Apart from the above constraints, salinity was also reported as one 

of the challenging factor for irrigated lowland rice in the north-coast of Tanzania (Kashenge-

Killenga et al.,2012). Moreover, many lowland rice ecologies face severe shortage of water, 

parasitic weeds and to some extent, diseases such as rice yellow mottle virus, rice blast and 

bacterial leaf blight (URT, 2009).  

5 Problem statement 

Despite the economic importance of rice, production has remained low due to a number of 

biotic, abiotic and socio-economic constraints (Feldmann & Alford, 2009). Biotic stresses such 

as insect pests, diseases and abiotic stresses such as high temperature, salinity, drought, 
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acidity, and iron toxicity are prevalent across the production regions. Bacterial leaf blight 

disease is one of the constraints, which causes both yield and grain quality losses (Savary et 

al., 2000). Farmers in Tanzania have confirmed BLB as the second most important disease of 

upland, lowland and irrigated rice after rice blast (Wilfred, 2006). In 2011, the disease was 

ranked as the third most important disease after rice yellow mottle virus (RYMV) disease and 

leaf blast (Hashim et al., 2018). Moreover, severely infested grains due to BLB are not suitable 

for human consumption (Barnwal et al., 2013). The pathogen normally blights the leaves and 

damages the photosynthetic activities, ultimately killing the leaf. The reduction in yield can be 

as high as 90% under severe infection and 20% under moderate infection  (T. B. Adhikari et 

al., 1995; Vasudevan & Kavitha, 2014).The BLB disease infection in rice cultivated under 

aerobic surroundings results in 30% lower yields than in rice cultivated under flooded 

environments (Yaqoob et al., 2012). Seedling infection can result in 20-50% seedling death 

(Yaqoob et al., 2012). 

Small-scale farmers in Tanzania fail to recognize bacterial disease because they are not 

aware of it and the symptoms can be mistakenly attributed to other diseases, nutrient 

deficiencies and climatic effects, particularly drought. Only about 2.5% of the rice growers in 

Tanzania are familiar with bacterial leaf blight as a production constraint, while most farmers 

associate the low yields with other diseases (Ashura et al., 1999). Consequently, the 

misdiagnosis has led to the use of unsuitable chemicals, resulting in the increase of the 

pathogen (Atiqur et al., 2017).  

 

In Tanzania, the use of bactericides, biological control, cultural practices and pest resistant 

varieties to reduce crop losses in management of BLB have been used on a small-scale and 

often now and then due to low level of awareness (IRRI, 2002). According to (Suh et al., 2013), 

only 20% of rice producers are using bactericides when growing rice. Bactericides are 

expensive and not readily available to small-scale farmers. Nevertheless, pre-plant soil 

fumigants such as methyl bromide (bromomethane) that have a broad spectrum of activity 

have been used widely to protect high-value crops from pathogens (Atiqur et al., 2017), but 

due to their hazardous effects on the environment and human beings, they have been 

discontinued. Bactericides that have been used to control bacteria with outstanding results but 

have been found to be toxic include paushamycin and Bion chemical (Brenner et al., 

2006).These bactericides result in environmental hazards and reduced economic benefits. 

Therefore, management practices that will ensure no danger to the natural ecosystem and 

target crop are needed. These can be used in integrated pest management programmes 
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(IPM). The management practice should also be cheaper and readily available to the farmers, 

making use of disease resistant rice varieties the preferred control measure.  

The use of resistant varieties is suitable for resource poor farmers because it does not require 

additional costs and is environment-friendly (Khoury & Makkouk, 2015). Globally, BLB-

resistant rice cultivars have been developed (Nino-Liu et al., 2006). However, pathogenic 

races of the bacterium are highly variable and differ amongst regions, sites and even fields 

within a site (Jagjeet et al., 2010). More than 31 races of the pathogen X. oryzae pv.oryzae 

have been reported in several countries (Adhikari et al., 1999; Noda et al., 2001) (Nino-Liu et 

al., 2006).Correspondingly, as many as thirty-one resistant (R) genes against the bacterial 

blight pathogen have been identified in rice (Sudarsanam & Sabbu, 2016) and selected in a 

series from Xa1 to Xa31 (Banik & Jambhulkar, 2007). Thus, it is important inbreeding for 

resistance to BLB to screen germplasm in different locations. 

6 Research objectives 

The overall goal of this study was to increase and strengthen rice production in Tanzania 

through development of high yielding and BLB resistant varieties. The specific objectives 

were to: 

1) Analyse genotype x environment interaction effects for reaction to bacterial leaf blight 

under natural infestation and grain yield performance in rice (Oryza sativa L) across 

multi-environments in Tanzania; 

2) Assess the heritability, variability and efficiency of indirect selection using secondary 

traits for grain yield improvement among rice genotypes; and 

3) Assess relationship among traits using correlation, path coefficients and genotype-by-

trait analysis in rice (Oryza sativa .L). 

7 Dissertation outline 

This dissertation consists of five separate chapters reflecting the number of activities related 

to the above-mentioned objectives. The referencing system used in the chapters of this 

dissertation is based on the Crop Science journal. This is one of the recommended formats 

by the University of KwaZulu-Natal. The structure of the dissertation is given below. 
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CHAPTER TITLE 

- Thesis introduction 

1 Literature Review 

2 Genotype x environment interaction analysis for reaction to bacterial leaf blight 

under natural infestation and grain yield performance in rice (Oryza sativa 

L)across multi-environments in Tanzania 

3 Heritability, variability and efficiency of indirect selection using secondary 

traits for grain yield improvement among rice genotypes 

4 Correlations, path coefficients and genotype-by-trait associations in rice 

(Oryza sativa L.) 

 
5 General overview and conclusions of the dissertation 
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CHAPTER: 1 

LITERATURE REVIEW 

1.1 Introduction 

This chapter presents topics relevant to the research focus to provide the theoretical base for 

the research. The review covers aspects on evaluation of rice genotypes for resistance to 

bacterial leaf blight (Xanthomonas oryzae pv. oryzae) disease and yield components. The 

topics reviewed also include the ecology and taxonomy of bacterial leaf blight, its occurrence 

and distribution. The economic importance of the disease and yield losses, symptoms and 

characteristics of the pathogen are also highlighted. Aspects on disease cycle and 

epidemiology and pathogen survival are discussed. The host-pathogen relationship is given, 

highlighting the susceptible host stages and disease management to create an important 

frame of reference for the research study. 

1.2 Ecology and taxonomy of bacterial leaf blight 

Bacterial leaf blight disease was believed to be mainly due to soil acidity (Ezuka and Kaku, 

2000). This is because the diseased leaves were first reported from fields applied with 

ammonium sulphate, where they exuded dew drops with an acidic reaction, while the drops 

from healthy leaves in the same field were not acidic(Nishida, 1909).Ashura et al.(1999) also 

stated that acidic soils were one of the factors favouring the occurrence of the disease. 

Takaishi (1909), while studying the effect of acidic soils in disease development observed that 

diseased leaves formed yellow bacterial masses when dried. Inoculation of healthy leaves 

with these bacterial masses resulted in the infection of the leaves. Bokura (1911) isolated and 

reported that the bacterium (Bacillus oryzae) came from the leaves and not from the acidic 

soil. According to reports by Tangani and Mizukani (1962) from Japan, the bacterial leaf blight 

of rice was believed to be a physiological reaction resulting from soil acidity. 

Based on the study of its morphology and physiology, the bacterium was first named Bacillus 

oryzae Hori and Bokura (Rao et al., 2007). However, a study by Ishiyama (1933) identified the 

bacterium as Pseudomonas oryzae Uyeda and Ishima. Later, it was renamed Bacterium 

oryzae. The name Xanthomonas oryzae was later reviewed to Xanthomonas campestris pv. 

oryzae (Ishiyama, 1933) in the list of pathovars presented by the committee on Taxonomy of 

Phytopathogenics in Bacteria of the International Society for Plant Pathology. Swings et al. 

(1990) recently considered the bacterium to be a distinct species from Xanthomonas 

campestris on the basis of phenotypic, genotypic and chemotaxonomic data which shows that 

colonies of Xanthomonas oryzae.pv. oryzae (Xoo) are circular, convex, whitish yellow, with 



12 
 

smooth surface, entire margin and opaque against transmitted light, and thus proposed the 

name Xanthomonas oryzae.pv. oryzae. Researchers of bacterial blight of rice are now using 

this name widely. 

Swing et al. (1990) reported that the overwintering of the bacterium occurs in two forms. The 

first being the dry form where it is found in the vascular vessels and xylem parenchyma of 

dried plants. If they are moistened by rainwater in winter, these dry form bacteria gradually 

die. The second is the growth form bacterial cells found on stubble and in root system of 

perennial wild plants, especially Leersia spp. The pathogen survives in an inactive stage. The 

dry form can be activated and turn into the growth form after receiving moisture under 

favourable conditions. The pathogen can survive on rice stubbles, straw and weed hosts. The 

BLB is vascular and spreads through xylem vessels. Lesions usually begin at the margin a 

few centimetres from the tip, as water stripes. It can occur at all stages of growth and 

development of the rice plant. 

1.3 Occurrence and distribution of BLB 

The bacterial blight is one of the most serious and oldest recorded rice diseases. The disease 

has been known in various localities of southern Japan since 1881 as white crushing disease 

(Nishida, 1909). Tangami and Mizukani (1962) reported that bacterial leaf blight was first seen 

by farmers in the Fukuoka area of Kyushu Island in Japan in 1884-1985 and was distributed 

from central to south western parts of Japan from 1908 to 1910. It has been commonly 

observed in the southwest of Japan since 1926 and has also been recorded in the northeast.  

The disease increased after 1950 and by 1960 it was known to occur in all parts of Japan, 

except the northern island of Hokkaido. Its bacterial nature was established and the causal 

bacterium described by Ishiyama (1922). Occurrence of BLB has now been reported from 

Japan (Nishida, 1909),Korea (Takeuchi, 1930),U.S.S.R (Vzoroff, 1938), Indonesia (Reitsuma 

and Schure, 1950), Taiwan (Hashioka, 1951), China (Siang, 1952), Mexico (Dickson, 1956), 

Thailand (Jalavich arana 1958), India (Maharashtra), (Srinivasan et al., 1959), Sri Lanka 

(Pieris, 1962), Vietnam (Anon., 1963), the Philippines (Goto 1964), Bangladesh (Alim, 1967), 

Australia (Buddenhagen et al., 1969), Malaysia Purushothaman, (1974), Cambodia (Anon., 

1970), Latin America (Ou, 1977) and the United States of America (Jones et al., 1989). In 

Africa, it was first reported in 1979 in Mali (Buddenhagen et al., 1979) and has since been 

reported in many other African countries. These countries include Senegal (Trung, 2011), 

Cameroon (Notteghem and Baudin, 1981), Niger (Reckhaus, 1983), Madagascar and Nigeria 

(Buddenhagen, 1985), Burkina Faso (Séré and Nacro, 1992), Tanzania (Ashura et al., 1999), 
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Benin, Guinea, the Gambia, Mozambique, Rwanda and Uganda (Onasanya et al., 2009; El-

Namaky, 2011). 

1.4 Economic importance of the disease 

The bacterium causes economic yield losses as high as 80%. Table 1.1 shows yield losses 

due to BLB as reported from various countries.  

Table 1. 1 Report of yield losses due to rice bacterial leaf blight disease 

No Country/state/region Yield losses Author 

1 Japan 20-30% Mizukani and Wakimoto (1969) 

2 Korea 50% Lee (1975) 

3 Phillipines 8-25.87% Lapis and Liansuthsakon (1975) 

4 Phillipines 50% Mew et al. (1993) 

India  

5 A.P 6-60% Srivastava et al.(1967) 

6 Pantnagar Nainital 6-74% Ahmed and Singh (1975) 

7 Gujarat 70-80% Joshi (1977) 

8 India 38-40% Mohiuddin et al.(1977) 

9 India 10-56% Rao and Kauffman (1977) 

10 Faizabad,U.P 14.7-81.3% Singh et al. (1977) 

11 Hyderabad 25-72.7% Reddy et al. (1978) 

12 Punjab 60-70% Raina et al. (1981) 

13 Haryana 6.3-36.8% Srivastava and Kapoor (1982) 

14 Haryana 1.9-33.6% Sunder et al. (2004) 

Africa 

15 West Africa 2.7-41% Lapis and Liansuthsakon (1975) 

16 East Africa 20-50% Chaudhary et al. 2012 

1.5 Symptoms of BLB 

According to Tangani and Mizukani (1962), as the disease advances on seedlings, small water 

soaked spots are observable on lower leaf margins. The lesions develop from leaf tips as 

water soaked lesions (Mizukami, 196l). The lesions gradually enlarge in size (both in length 

and in width), turn yellow or orange and a narrow water soaked area appears between healthy 

and diseased area of leaf blade, which is usually demarcated by wavy margins. The lesions 

are formed at one or both edges of the leaf blades with or without wavy margins. On 

susceptible varieties, the lesions extend from leaf blades to leaf sheath. The symptoms in the 

field appear at maximum tillering stage. 
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At the tillering and reproductive stages, the symptoms are known as leaf blight, a systemic 

infection that produces tannish grey to white lesions along the veins. If the plant produces 

panicles, the sterility percentage and number of immature grains will increase. Grain from 

diseased plants are easily broken during milling. In severely diseased fields, infected grain 

appears on the glumes as discoloured spots surrounded by water-soaked areas (Rao et al., 

2002).  

Bacterial blight is avascular bundle disease, and it has three common kinds of symptoms. 

Firstly, leaf blight type lesions are formed on either side of the leaf blade, which are slightly 

wavy in margin, the lesions extend from the tip to leaf towards the leaf base along the margin. 

The infection also progresses towards the mid rib forming ‘v’ shape blight. A severely infected 

field gives light brown appearance from a distance. The second type of symptom is wilting 

(Kresek) which occurs immediately after transplanting and the third type is withering which 

results in death of the entire plant (Yoshimura et al., 1959).  Kresek is a more severe form of 

the disease that develops if roots or leaves are damaged and infected during transplanting at 

the seedling stage. Infection at this stage usually results in seedling death, 1-6 weeks after 

transplanting. The symptoms on the leaves are sometimes difficult to distinguish from those 

of various other leaf diseases, both physiological and parasitic, and the kresek symptoms are 

not easily separated from rice stem borer damage. A few simple methods to identify the 

disease have been described by Srivastava and Rao (1966), Srivastava (1972), Joshi (1977) 

and Ou (1985). 

1.6 Characteristics of the pathogen 

Morphologically, according to Ishiyama (1933), Xanthomonas oryzae are rod-shaped, gram-

negative bacteria with a round ends and tare. There are variations in length of individual cells 

from approximately 0.7m to 2.0 m and width ranges from 0.4 m to 0.7 m. The bacterial 

cells move using a single polar flagellum 6-8µm. The bacterium does not form spores, is 

aerobic and colonies on solid media that contain glucose appear as round, convex, mucoid 

and yellow in colour due to production of the pigment xanthomonadin characteristic of the 

genus (Bradbury, 1984). Xanthomonas oryzae pv. oryzae cells produce copious capsular 

extra cellular polysaccharides, which are important in the formation of droplets or strands of 

bacterial exudates from infected leaves providing protection from desiccation and aiding in 

wind and rain-borne dispersal (Swings et al., 1990).  

To isolate the bacterium, sections of leaf tissues are surface-sterilized and macerated in 

distilled water, and the resulting suspension is streaked on 1% dextrose nutrient agar or 

Wakimoto agar and incubated at 25-28°C. (Reddy and Ou, 1974). Colonies of X. oryzae pv. 
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oryzae are slow-growing, mucoid and straw to yellow in colour. The isolated bacteria stain 

pink-red and show thin viscid mucoid strand indicating positive for KOH solubility test and 

gram-negative nature of the bacteria. A clear zone of hydrolysis is formed around the bacterial 

colonies when the plates are flooded with Lugol’s iodine. Hence, the bacterium indicates 

positive for starch hydrolysis. Inoculated Tween 80 agar plates show the presence of white 

precipitate around the colonies of the bacteria, indicating a positive reaction for lipase activity. 

In addition, the Xoo isolates show liquefaction of gelatin and acid production from glucose 

Kaur and Thind (2002) states that necrosis is observed in tobacco plants indicating positive 

for hypersensitive reaction and positive for pathogenicity tests (Bradbury, 1984). 

1.7 Disease cycle and epidemiology 

The development of bacterial leaf blight depends on many factors, which include presence of 

rice stubbles and ratoons of infected plants, presence of bacteria in the rice and irrigation 

channels, warm temperature, high humidity, rain and deep water, over fertilization and 

handling of seedlings at transplantation (Singh and Paroda, 1994).Infected seed and plant 

debris perpetuate the disease from one season to another season.  Other potential sources 

of inoculum are volunteer rice plants, infected chaff and weed host (Eswamurthy, 1993).  

The bacteria are usually found in the glumes. X. oryzae pv. oryzae enters the rice leaf through 

hydathodes at the leaf tip and leaf margin (Ou, 1985). X. oryzae pv. oryzae also penetrates 

the leaf through stomata and multiplies in the sub-stomatal cavity where it colonizes the 

intercellular spaces of parenchyma. Within a few days, the bacterial cells and 

exopolysaccharides fill the xylem and oozes out from the hydathodes forming beads or strands 

of exudates on the leaf surface, a characteristic sign of the disease and a source of secondary 

inoculum. X. oryzae pv. oryzae may also gain access to the xylem through wounds or 

openings caused by emerging roots at the base of leaf sheath within the xylem. The bacterium 

presumably interacts with xylem parenchyma but may also penetrate into the endosperm 

(Eswamurthy, 1993; Shen et al., 2002).  

Murthy and Devdath (1981) reported transmission of X. c. pv. oryzae by leaf hopper and 

grasshopper contamination of the mouth parts/body at the time of feeding on diseased plants. 

Pandey and Basu (1989) indicated that the grasshoppers may help indirectly by providing 

wounds on the plant tissue through their feeding, thus additional avenues for the pathogen to 

enter the host. The transmission of the pathogen is favoured by intense wind driven rainfall 

that facilitates bacterial entry into plant tissue through wounded leaf edges. Bacteria may also 

be disseminated in irrigation water as well as by humans, insects and birds (Liu et al., 2006). 

Cells on the leaf surface may become suspended in guttation fluid as it exudes at night and 
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enters the plant by swimming movement or passively as fluid is withdrawn into the leaf in the 

morning.  

The bacterium multiplies in the intercellular spaces of the underlying epithem cells then enters 

and spreads into the plant through xylem (Noda and Kaku, 1999; Liu et al., 2006). X.oryzae 

pv. oryzae can survive in rhizosphere of weeds of genera Leersia and Zizania as well as in 

the base of the stem and the roots of rice stubble. X. oryzae pv. oryzae can also survive in the 

soil for 1-3 months depending on the soil moisture and acidity. In the tropics high temperature 

of 25-34°C, humidity of over 70%  and abundance of host plants typically allow X. oryzae pv. 

oryzae to persist throughout the year (Liu et al., 2006). Severe epidemics often occur through 

the wind-blown rain that disperse bacteria. Bacterial leaf blight is more severe in highly 

managed systems such as irrigated paddy fields or with high nitrogen fertilizer application 

where the disease is aggravated by warm humid and wet conditions (Vzoroff, 1938). Once 

inside the vascular system, the bacterium multiplies and moves in both directions. Spread 

takes place in wind and rain, but primarily in flood and irrigation water (Sido and Basso 2005). 

1.8 Studies on survival of pathogen in water from different sources 

Singh (1971) reported that bacteria can survive only for 15 and 38 days in raw field water and 

raw pond water, respectively and for more than 12 months in sterilized tap water and sterilized 

distilled water. Thus, these sources can be used as inexpensive, reliable and practical medium 

for the preservation of the pathogen without any loss of viability and virulence. On the other 

hand, Chauhan (1973) reported that bacteria can survive only for 12 and 20 days in paddy 

field water and tap water, respectively and for more than 12 months in sterilized tap water and 

distilled sterilized water. Reddy and Reddy (1992) stated that X. campestris pv. oryzae did not 

survive long in field water and declined rapidly within ten days at all the three pH (6.0, 7.0 and 

8.0) levels. In the absence of competitive microflora (in sterilized distilled and field water), the 

bacterium could survive for 75 days at 26°C and 210days at 2-4°C, whereas, at 26°C the 

bacterium was noticed up to seven days only in unsterilized field water.    

1.9 Susceptible host stage to infection by Xoo 

The susceptibility of rice to vascular infection by X. c. pv. Oryzae is known to decrease with  

plant age (IRRI, 1963). Mahmood and Singh (1970) observed that the bacterial blight infection 

increased significantly with increasing age of seedlings, where 60 days old seedlings gave 

significantly higher infection than younger seedlings (30, 20 and 15 days). Chauhan (1973) 

reported that the rice plant was susceptible to infection at all stages of its growth, but severity 

of disease decreased with the increasing age. Maximum numbers of plants were infected in 

the 40-60 days age group. However, Srinivasan (1982) observed that younger seedlings of 
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12-40 days old were more vulnerable to infection by Xanthomonas campestris pv oryzae than 

45 and 50 day old seedlings, leading to development of the wilt phase. 

Qi and Mew (1985) reported that the disease severity on some cultivars gradually decreased 

from seedling to flag leaf, whereas in others, it showed a distinct change to a resistant reaction 

on a certain leaf. The adult plant resistance of rice BLB appears to be race specific. Goel and 

Gupta (1990) reported the effect of host age on the expression of resistance to seven isolates 

of X. c. pv. oryzae in nine rice cultivars/lines. The growth stage of the plant when adult plant 

resistance became operative ranged from maximum tillering (50 DAS) to the booting stage 

(70 DAS) in different cultivars/isolate combinations. The disease severity in some 

cultivar/isolate combinations gradually decreased from seedling stage to boot stage, whereas 

in others an unexpected decline in disease severity was noticed at/or after maximum tillering 

(Goel and Gupta, 1990). 

Koch and Mew (1991) observed that the fastest increase of disease occurred between 30 and 

50 days after sowing, while Mazzola etal. (1993) showed that cultivarsIR-BB10, IR-BB21 and 

IR24 were susceptible at the seedling stage but on adult plants IR-BB21 had significantly 

shorter lesion length than those observed on susceptible IR24. Younger plants (less than 21-

days-old) are most susceptible (Mew et al., 1993). 

1.10 Disease Management 

1.10.1 Reaction of rice genotypes to BLB  

The long-term disease management strategies include use of disease resistant varieties. This 

is considered as the best alternative to reduce crop losses, being most effective, cheap and 

eco-friendly. Several rice genotypes and breeding lines from different countries have been 

identified, which may prove effective in combating the disease and for breeding resistance 

cultivar (Rao et al., 2007). 

Breeding and the development of resistant cultivars carrying major resistance (R) genes have 

been the most effective and economical strategy to controlling BLB disease (Huang et al., 

1997; Jena and Mackill.2008; Singh et al., 2001). Qualitative resistance, which confers major 

gene-specific resistance against some pathogen races, is the easiest to incorporate into 

breeding programmes and is usually considered a gene-for-gene type of resistance. For many 

pathogens and insects, this type of qualitative resistance is not often durable because of rapid 

changes in the virulence of the pathogen or biotype of the population (Leach et al., 2007). As 

a result, increasing attention has focused on the accumulation of major disease resistance 

genes in crop plants. Pyramided lines carrying two, three or four bacterial blight resistance 
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genes showed broad-spectrum and higher resistance than the lines with a single resistance 

gene (Suh et al., 2009). However, conventional breeding methods to improve rice cultivars for 

BLB resistance have not been that successful (Shin et al., 2011). 

To date, at least 38 BLB resistance genes conferring host resistance against various strains 

of Xoo have been identified (Bhasin et al., 2012; Natrajkumar et al., 2012).  All these 

resistance genes follow Mendelian pattern of major gene inheritance and express resistance 

to a diverse group of Xoo pathogens (Sun et al., 2004). Several of these genes have already 

been incorporated into rice cultivars, which are now widely cultivated in many countries 

(Sundaram et al.2008). Of these 38 R genes, six have been physically mapped (Xa2, Xa4, 

Xa7, Xa30, Xa33 and Xa38) and six have been cloned (Xa1, xa5, xa13, 

Xa21, Xa26 = Xa3 and Xa27) (Liu et al., 2006; Natrajkumar et al., 2012). BLB resistance 

gene Xa4 is one of the most widely exploited resistance genes in many rice breeding 

programmes and it confers durable resistance in many commercial rice cultivars (Mew et al., 

1992; Sun et al., 2003).The Xa21 gene was identified in the wild species Oryza 

longistaminata and is highly effective against BLB races of South and Southeast Asia (Khush 

et al., 1990). The xa5 gene, which is naturally found only within the Aus subpopulation of rice 

(Garris et al., 2003), provides recessive resistance to several Xoo races of the Philippines. 

Molecular markers can be used to identify and pyramid favourable and multiple alleles for 

biotic and abiotic stress resistance in a collection of diverse genotypes (Singh et al., 2001; 

Suh et al., 2009). Marker-assisted selection (MAS) for pyramiding important genes along with 

rapid background recovery of the recurrent parent, while maintaining the exquisite quality 

characteristics of rice, could be an effective approach for rice improvement (Sundaram et al., 

2008;Xu and Crouch, 2008;Ye, 2010). Gene pyramiding is difficult using conventional 

breeding methods due to the dominance and epistasis effects of genes governing disease 

resistance. Moreover, genes with similar reactions to two or more races are difficult to identify 

and transfer through conventional approaches (Joseph et al., 2004; Rajpurohit et al., 2011; 

Sundaram et al., 2009). However, the availability of molecular markers closely linked to each 

of the resistance genes makes the identification of plants with two and three genes possible 

(Shanti et al., 2010; Sundaram et al., 2008). Three BLB resistance genes (xa5, 

xa13 and Xa21) were pyramided in cultivar PR106 using MAS. Testing with 17 Xanthomonas 

oryzae pv. oryzae (Xoo) isolates under artificial inoculation and field conditions showed that 

the combination of genes provided a wider spectrum of resistance to the pathogen populations 

prevalent in the region (Singh et al., 2001). In a previous study, the IR24 NILs (IRBB lines) 

containing Xa4, xa5, Xa7 and Xa21 genes and their combinations conferred different degrees 

of resistance to K1, K2, K3 and K3a races in a field inoculation experiment in Korea (Jeung et 

al., 2006; Suh et al., 2009). The resistance gene pyramid of Xa4 + xa5 + Xa21would be the 
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most effective strategy for improving Korean japonica cultivars for BLB resistance (Jeung et 

al., 2006; Kim et al., 2009). The identification of closely linked markers has also enabled 

pyramiding of Xa4, xa5 and Xa21 using MAB. 

1.10.2 Screening and rating of BLB disease 

Screening for resistance to BLB in rice has been done in either the field or greenhouse through 

visual assessment and use of molecular markers. In the field, screening for resistance has 

been conducted in hot spot areas where the disease is widespread (AfricaRice, 

2010).Susceptible spreader-row plants have been planted between experimental plots to 

increase disease pressure in the field to ensure no disease escape (Kumar et al., 1992). 

Another way of increasing disease pressure is by direct inoculation through different methods 

such as clipping method, spraying method, needle-pricking and dipping method that are 

normally done at booting stage in the field or green-house (Kauffman, et al 1973).  

Scoring system for evaluation of BLB disease severity in the greenhouse is based on lesion 

length measurement using a scale of0-9 or estimation of percent diseased leaf area.  On other 

hand, in the field, disease severity is usually measured in percent diseased leaf area by 

scoring 1-50%>.  

 

Resistance Genes Tagged with Molecular Markers in the application of molecular markers in 

breeding for BLB resistance resulted in mapping and tagging of some dominant and recessive 

genes, that is, Xa4, xa5, Xa7, xa13, and cloning of Xa21. These genes are being used as 

sources of disease resistance and in developing lines with single genes and pyramids with 

two, three, four and five bacterial blight resistance genes. Many genes for BLB have been 

identified in the breeding programme, and are currently available in monogenic and pyramid 

lines in IR24 background for use in developing or improving commercial varieties.  The 

availability of molecular markers for these genes has made improving resistance to BLB more 

efficient. 

1.10. 2 Eradication of pathogen from rice seed by hot water treatment 

Pre-soaking of infected seed for 12 hours at room temperature in water solution of agrimycin 

(0.025%) + wet table ceresan (0.05) and later heat treatment in water at 52-54°C for 30 

minutes was reported to eradicate the infection to the extent of 95 to 100%(Srivastava and 

Rao, 1964;Sinha and Nene,1967). The pre-soaking of seed can also be done in cold water, 

streptomycin sulphate (27 ppm) or ceresan (1000 ppm) for 8 hours, followed by hot water (54-

55°C) for 20-30 minutes (Rajagopalan et al., 1968). 
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1.10.3 Chemical management 

Chemical treatment of rice seeds has also been reported to be effective in eradicating the 

bacterium. Solanky (1988) treated infected rice seeds and seedlings with stable bleaching 

powder resulting in reduced disease incidence and plants that showed improved height and 

weight and increased grain and straw yields. Soil drenching with stable bleaching powder also 

reduced the disease index. It was concluded that stable bleaching powder control bacterial 

leaf blight. Natarajan (1988) tested different chemicals for the control of Xanthomonas oryzae 

pv.oryzaeand bleaching powder was the most effective in reducing bacterial leaf blight 

followed by plantomycin, paushamycin + copper oxychloride, and paushamycin. 

1.10.4 Organic management 

Brar (1994) studied the effect of organic and inorganic sources of nutrients on the incidence 

of disease in rice. Nutrient source significantly influenced the occurrence of diseases in rice. 

NPK application through chemical fertilizer either in single or balance form without organic 

manure increased the severity of BLB of rice. Das et al. (1998) evaluated some natural 

products like fresh cowdung and antibiotics (plantomycin) against bacterial leaf blight of rice. 

The results showed that foliar spraying of fresh cow dung suspension at 50kg cow dung / ha 

reduced the incidence of BLB of rice significantly resulting in the lowest percentage of leaf 

area infected (18.53%) compared with 38.03% in the unsprayed control. Zaragoza,1959 

reported that the control of rice bacterial leaf blight (Xanthomonas oryzae) using a new 

agricultural antibiotic, zongshengmycin (organic ) was investigated when infected rice seeds 

were soaked in a 100mg/kg solution (at 580C cooling to room temperature) of the antibiotic for 

48 hours, bacteria on the surface and inside the seeds were completely killed. This removed 

the source of infection. When rice seeds were soaked in a 50mg/kg solution of 

zhongshengmycin in water (at 55-600c, cooling down to air temperature) for 48hours before 

sowing in the field, disease severity was significantly reduced. However, when disease was 

severe, it was necessary to apply a spray of 15 mg/kg solution of the antibiotic 

(zongshengmycin). 

1.10.5 Cultural and physical management 

Cultural methods have also been reported to be effective in managing diseases such as BLB 

(Zhao et al., 2010). The important cultural methods include; timely sowing, that is sowing and 

transplanting should be done when the seedlings have attained 4 – 5 leaf stage, optimum 

plant densities by putting 2 – 3 seedlings per hill, proper management of water by avoiding 

flooding the field, application of moderate nitrogenous fertilizers not more than 80kg /ha and 

following instructions given by seed companies on amount of application in each variety. The 
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control of rice bacterial leaf blight can also be done by removing the weeds around the field to 

avoid spreading of the disease (Ahammed, 1992).  

1.10.6 Biological control 

Biological control of BLB has also been investigated. Sidhan et al.(1997) tested phylloplane 

organisms isolated from rice leaves and reported that Pseudomonas acidovorus was most 

effective for reducing lesion length when applied seven days before inoculation of BLB 

pathogen, followed by Aspergillus ochraceus, Fusarium chlamydosporum, and Fusarium 

pallidoroseum. The effectiveness of the antagonists was reduced when applied after 

inoculation with the pathogen. Lore (2004) tested the efficacy of control of bacterial blight in 

China with an avirulent mutant of the pathogen DU 728 strain in the greenhouse and field 

plots. The rate of control with one application of DU 728 spray (106 cfu/ml) was 48.5%. Higher 

dosages did not significantly increase control. When DU 728 was mixed with salicyclic acid 

(10µ/ml), control was increased to 60%.Babu et al. (2003) analysed rice (cv. IR50) leaves clip-

inoculated with Xanthomonas oryzae for the accumulation of pathogenesis related proteins 

and observed a marked increase in activities of chitinase and beta-1-3 gluconase. Western 

blot analysis showed that a protein with a molecular mass of 35 Kda cross – that reacted with 

barley chitinase antibody was induced in rice in response to inoculation with Xanthomonas 

oryzae. The appearance of this chitinase was correlated with the increase in activity of this 

enzyme during the test period.  

1.11 Genotype x environment interaction 

Genotype x environment interaction (GEI) is the response of genotypes to environmental 

changes. It is expressed when the genotypic and environmental effects differ in accordance 

with the genotype and specific environment. Differential performance of genotypes is caused 

either by differential responses of the same set of genes to changes in the environment or by 

expression of different sets of genes in different environments (Cooper and Delacy, 1994; 

Crossa et al., 1995). The GEI reaction is manifested either as rank order change of the 

genotypes between environments (crossover GEI), or as alterations in the absolute 

differences between the genotypes without affecting the rank order (Crossa et al., 1995; Haji 

and hunt, 1999). The crossover interaction results in serious consequences on breeding 

progress (Cooper and Delacy, 1994; Crossa et al., 1995). For example, the same set of genes 

responsible for high yield under stress environment may be responsible for low yield potential. 

In this case, breeding progress is delayed due to changes in the composition of the selected 

and the rejected genotypes in each environment. This reduces heritability hence the breeding 

progress. In such cases, genotypes must be bred for specific adaptation to certain 
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environments. Under such circumstances, plant breeders desire to find stable genotypes that 

show little interaction with environments (Yan et al., 2007). 

 An appropriate stable cultivar is capable of using resources that are available in high yielding 

environments, while maintaining above average performance in all other environments (Finlay 

and Wilkinson, 1963). Methods for analyses and interpretation of GEI patterns include 

regression (Finlay and Wilkinson, 1963; Eberhart and Russell, 1966), principal component 

analysis (PCA) (Hill and Goodchild, 1981), additive main effects and multiplicative interaction 

(AMMI) (Gauch and Zobel, 1988) and genotype plus genotype by environment (GGE) analysis 

(Yan, 2001). Of these, AMMI and GGE biplot are widely used. The AMMI model integrates 

analysis of variance (ANOVA) and principal component analysis (PCA) into a combined 

approach that can be used to analyse multi-location trials (Crossa et al., 1995; Gauch and 

Zobel 1988; Zobel et al., 1988). In AMMI1 a biplot of main effects with interaction PCA1 

(IPCA1) facilitates visualisation of correlation among environments and the response patterns 

of the genotypes and their interactions with the environments by using sign and magnitude of 

IPCA1 values (Yan and Hunt, 2001). In AMMI2 a biplot of IPCA1 and IPCA2 is constructed 

which visualises magnitude of interaction for each genotype and environment. The GGE biplot 

analysis on the other hand puts together genotypic main effects (G) and GEI to facilitate 

graphical visualisation of cultivar evaluation and mega environment identification (Yan et al., 

2000, Yan, 2002).  

Yan et al. (2007) compared GGE Biplot and AMMI analyses. They concluded that; (i) both 

GGE biplot analysis and AMMI analysis combine rather than separate G and GEI in mega-

environment analysis and genotype evaluation, (ii) the GGE biplot is superior to the AMMI1 

graph in mega-environment analysis and genotype evaluation because it explains more 

G+GEI and has the inner-product property of the biplot and helps identify cultivars that were 

adapted across locations and stability, and (iii) the discriminating power vs. 

representativeness view of the GGE biplot is effective in evaluating test environments, which 

is not possible in AMMI analysis. On the other hand, the “which-won-where” patterns are not 

always easy to visualize in the AMMI1 graph, particularly when many genotypes and test 

environments are involved (Ebdon and Gauch, 2002). This is because, in the AMMI1 graph, 

the environments can be labelled only along the abscissa rather than across the graph, and 

the genotypes are represented by straight lines rather than by dots.  Therefore, the AMMI 

graph is better viewed as a tool for presenting conclusions rather than as a tool for discovering 

which-won-where patterns (Ebdon and Gauch, 2002); Gauch, 2006). Also  Gauch et al. (2007) 

reviewed AMMI and GGE analyses, and concluded that the AMMI mega-environment graph 

incorporated more of the genotype main effect and captured more of GEI than did the GGE 
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biplot, and thereby displayed the "which-won-where" pattern more accurately for complex 

datasets. When the G x E interaction is captured well by one principal component, the AMMI 

graph of genotype nominal yields described winning genotypes and adaptive responses more 

simply and clearly than the GGE biplot. For genotype evaluation within a single mega-

environment, a simple scatterplot of mean and stability was more straightforward than the 

mean x stability view of a GGE biplot. 

Moreover, on the genotype by environment effects on reaction to disease, Baker (1988) states 

that many of the observed crossover genotype –environment interactions are manifestations 

of differences in disease resistance or some other highly heritable character. This suggests 

that when no such explanation can be offered, crossover interactions are to be regarded as 

random variables whose impact can be minimized by adequate sampling of the environments. 

However, there is limited information available on disease resistance and stability GGE biplot 

as indicated by Ouk et al. (2007).  

1.12 Heritability, variability for grain yield and yield components 

Heritability is the proportion of observed phenotypic variation in a progeny that is attributable 

to the effects of genes (Rahman and Hossain, 2014). It is a property of the trait, the population 

and the environment. Altering one of these factors results in different estimates of heritability 

(Acquaah, 2007). There are two different estimates of heritability; broad and narrow sense 

heritability, the latter, which is the degree of resemblance between relatives, is more useful to 

plant breeders as it determines response to selection. High narrow sense heritability estimates 

correspond to additive gene action while low heritability estimates show non-additive gene 

action. Moreover, a trait with a high heritability estimate indicates that the transmission of that 

trait from the parents to progeny is very high and that simple selection procedures may be 

employed to select for superior genotypes (Jayasudha and Deepak, 2010). 

In rice, estimation of heritability for grain yield and other yield components have mostly been 

based on broad sense heritability. Several studies in India and Philippines have reported 

moderate to high broad sense heritability estimates for grain yield in very susceptible varieties 

(Karthikeyan et al., 2010; Ogunbayo et al., 2011). Mohan, 2011) reported that grain yield is a 

complex trait, quantitative in nature and a combined function of a number of constituent traits. 

Consequently, selection for yield may not be effective without taking into consideration yield 

component traits. Thus, positive correlations between yield and yield components are required 

for effective indirect selection for grain yield in rice (Ogunbayo et al., 2011). Therefore, it is 

important for plant breeders to understand the degree of correlation between yield and its 

components.  
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1.13 Multi-trait relationships 

Grain yield is regarded as the primary character with the main breeding objective in all crops 

focusing on high yield. However, direct selection for yield is not sufficiently effective due to its 

low heritability. The use of morphological and physiological traits commonly known as 

secondary traits, for indirect selection for higher yields has often been suggested Badu-

Apraku, al. (2007). Although correlation coefficients are very important in determining the 

relative contribution of each secondary trait to grain yield, they are insufficient in determining 

whether the trait affects grain yield directly or indirectly (Nandan et al., 2010). Through path 

analysis, the correlation coefficient may be partitioned into components due to direct effect of 

a predictor variable upon its response variable and due to indirect effects of a predictor 

variable on the response variable through another predictor variable (Dewey and Lu, 1959). 

Plant breeders use path analysis to identify traits that are useful as selection criteria to improve 

crop yield (Surek and Beser, 2003). In this study, correlation and path analysis were used to 

identify traits that had direct effects on grain yield in order to devise a multiple trait selection 

criteria for improvement of yield in rice. 

1.14 Diversity among genotypes 

Jayaman et al. (2007) studied seventy-five genotypes of rice, which grouped into ten clusters. 

Clustering pattern revealed that geographic diversity is not a reasonable index of diversity. 

The average inter cluster distance was maximum between cluster IX and X (66.58) followed 

by cluster VI and IX (62.59) and cluster IV and X (56.52) suggesting that these groups of 

genotypes were highly divergent from each other. The genotypes in clusters revealed 

substantial differences in the means for important yield contributing characters suggesting that 

the genotypes belong to these clusters, which form ideal pairs for initiating hybridization. 

Chakravarthi, et al. (2010) observed divergence was an efficient tool for the selection of 

parents used in hybridization programme. In a study to identify diversity, fifty-three rice 

genotypes consisting of high yielding rice varieties/ cultures and IRRI germplasm lines were 

raised at Rice Research Station, Tirur during Sornavari, 2009. They were evaluated for eight 

yield and yield attributing characters using D2 analysis. Based on the analysis, the genotypes 

were grouped into 11 clusters. The maximum number of 16 and 15 genotypes were grouped 

under cluster XI and I respectively, while clusters II, IV, V, VI, VIII, IX and X had only two 

genotypes each and clusters III and VII consisted of 3 and 5 genotypes, respectively. 

Maximum inter cluster D2 value was observed between cluster I and X (32.96) followed by 

cluster I and IV (32.90). The distance between two clusters indicates the genetic diversity 

between genotypes. Therefore, the combined characters may be given importance during 

hybridization programme. 
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Gracia, et al. (2010) studied diversity among 39 local rice genotypes using Mahalanobis 

statistic. Based on genetic distance, these genotypes were grouped into eight clusters. Cluster 

VI was the largest, consisting of 21 genotypes, while clusters I, II, III, IV, and V contained two 

genotypes each and cluster VI and VIII contained four genotypes each. Grouping of genotypes 

in different clusters indicated the existence of significant amount of variability among the 

genotypes for the traits studied. High degree of divergence was recorded between cluster IV 

and VIII. Based on high mean performance of the traits studied, two clusters (IV & II) had local 

rice genotypes Biliya and Doddabatta. 

Summary 

From the literature review it was observed that BLB disease of rice is a major constraint to rice 

production under rainfed upland and lowland ecologies in East Africa, causing significant yield 

losses about 20%-50%. The disease is more severe under smallholder rice faming systems 

where low input agriculture is practiced. Cultural and chemical controls methods have been 

proposed to control BLB disease but may not be appropriate due to negative effects on the 

environment and lack of capital to purchase bactericides by smallholder farmers. Therefore, 

breeding for disease resistance varieties has been suggested as the most practical option to 

effectively address the problem of BLB. 

 

The review also noted that under disease conditions, genotype x environment interactions 

(GEI) are common. Multi-locational trials, therefore, are needed to determine the magnitude 

of GEI and to assist in identification and recommendation of high resistance genotypes and 

stable genotypes that show little interaction with the environment or genotypes specifically 

adapted to certain environments.  

 

Moreover, phenotypic traits can be used to discriminate varieties into clusters though they do 

not always reflect the genetic constitution in rice because of environmental influences but they 

can never be excluded in crop improvement. Few papers have reported on the use of 

phenotypic traits in discriminating varieties into clusters, hence there is need to evaluate these 

methods and see their effectiveness. Therefore, studying of phenotypic traits in this current 

study will help to improve hybridization of germplasm. Currently there is no literature regarding 

the levels of diversity in Tanzania, which has implications on the rice breeding. Therefore, 

there is need to study the diversity of widely grown varieties in Tanzania. 
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The literature review has shown that BLB resistance is the major challenge that needs to be 

addressed to achieve predicted high production levels of rice yields productions. The 

challenge is to identify sources of resistance to BLB with different genetic background and 

breed resistant cultivars adapted to the local conditions and with farmer preferred traits to 

improve adoption. 
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CHAPTER 2 

Genotype × environment interaction analysis for bacterial leaf 

blight disease infection and grain yield performance of rice (Oryza 

sativa L.) across multi-environments 
 

Abstract 

Bacterial leaf blight (BLB) of rice (Oryzae sativa L.), caused by Xanthomonas oryzae pv. 

oryzae,(Xoo) is a major constraint and  is broadly spread in all irrigated and  lowland rainfed 

rice producing areas of Tanzania. The pathogen is highly adaptable and its control is difficult. 

Development and deployment of host resistance is the most effective means of BLB 

management. The objective of this investigation was to evaluate genotype by environment 

interaction (GEI) and stability for reaction to bacterial leaf blight and grain yield among rice 

genotypes across environments in eastern and southern parts of Tanzania. Therefore, this 

study was conducted which comprised 30 rice genotypes inclusive of a resistant check (IR-

24) and a susceptible check (Txd-306).The genotypes were evaluated in a 6 x 5 alpha lattice 

design with three replications at three locations; ARI-KATRIN, Igurusi and Kyela. Moreover 

disease score data were collected on the 30 rice genotypes 80 days after planting for the early 

maturing varieties by recording length of leaf showing symptoms of BLB and grain yield data 

was collected by weighing the total grains per plot. The additive main effects and multiplicative 

interaction (AMMI) analysis and genotype plus genotype x environment interaction (GGE) 

biplot analysis were used to assess the magnitude of GEI and stability of performance for each 

genotype. The genotype and environment main effects and their interactions were highly 

significant. Ranking of the genotypes changed across environments revealing a crossover 

type of GEI. The AMMI and GGE biplot analysis identified NERICA4, as the most resistant 

and stable genotype across environments. Other genotypes that were resistant and stable 

include NERICA 1, NERICA 2, LOW-LAND NERICA 6, Tule na bwana and the check IR-24. 

Regarding grain yield, genotype and environment main effects were whereas GEI effect was 

not significant. Genotypes Txd- 306, Txd-88, WITA-10 and Kalalu were the top yielders. High 

yielding genotypes that were resistant to BLB were also identified. The identified resistant and 

high yielding materials could be used in hybridization programmes to develop cultivars that 

are more desirable. 

 

Keywords:  Bacterial leaf blight, rice, GGE, AMMI, grain yield. 
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2.1 Introduction 

Genotype x environment interaction (GEI) is the differential genotypic responses to 

environmental changes (Baker, 1988) ;Crossa, 1990; Romagosa and Fox, 1993). The 

genotypic main effects provide sufficient information about the performance of the genotypes 

across environments in the absence of GEI. However, with significant GEI, differences 

between genotypes vary widely among environments (Annicchiarico, 2002). Multi-

environment trials are designed to measure the response of genotypes across environments 

and hence determine the extent of GEI and whether they can be used or misused in plant 

breeding programmes. The significances of phenotypic variation depend mostly on the 

environment. The variation is mostly because not all genotypes perform in a similar way to 

changes in the environment and no two environments are the same.  

Moreover, GEI results in genotype rank changes from one environment to another, a 

difference in measure among environments, or a combination of these two conditions. If the 

performance of genotypes grown in different environments is different, then GEI becomes a 

major challenging factor to plant breeding. It is important for plant breeders to identify specific 

genotypes adapted to or stable in environment(s), thereby achieving quick genetic gain 

through screening of genotypes for high adaptation and stability under varying environmental 

conditions prior to release as a variety (Fox, 1997). However, most genotypes exhibit unstable 

resistance when grown in different locations or agro-ecological zones. This complicates 

demonstrating the superiority of a particular variety. To address this challenge, multi-

environment yield trials and high adaption of the genotype are essential to identify adaptable 

high resistance and yield cultivars and discover sites that best represent the target 

environment (Yan et al., 2000).  

Due to the differential responses of the genotypes, diseases have been identified as one of 

the contributory factor to GEI in rice (Fox et al., 1997). In addition, Gravois et al. (1990) state 

that many of the observed crossover GEI are expression of differences in disease resistance 

or some other highly heritable character suggesting that when no such explanation can be 

offered crossover interactions should be regarded as a random variable whose impact can be 

minimized by adequate sampling of the environment.  Adaptability is the result of genotype, 

environment and GEI and generally falls into two classes: (1) the ability to perform at an 

acceptable level in a range of environments, referred to as general adaptability, and (2) the 

ability to perform well only in desirable environments, known as specific adaptability (Arshadfar 

& Utka, 2006). Combined analysis of variance can quantify GEI and describe the main effects 

but does not explain the interaction effect (Kaya, Palta, & Taner, 2002) ; Hill et al., 1981). 
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The fundamental reason Additive Main effects and Multiplicative Interactions (AMMI) is 

appropriate for agricultural research is that the ANOVA part of AMMI can separate the G and 

E main effects and the GEI effects (Gauch et al., 2008). Besides, its greatest advantage is its 

ability to extract interaction Principal Component Axis (PCA) along which there is a maximum 

variation, thereby indicating the number of components necessary to explain the pattern in the 

interaction residual (Flores, 1998). Additive Main Effect and Multiplicative Interaction model 

and genotype and GEI (GGE) biplot analysis are the most commonly used analytical and 

statistical tools to determine the pattern of genotypic responses across environments (Kaya 

et al., 2002; W Yan et al., 2000; Zobel, 1996). AMMI and GGE biplot for graphical display of 

data (Kaya et al., 2002; W Yan et al., 2000; Zobel, 1996) and (Eberhart & Russell, 1966) model 

are the most commonly used analytical and statistical tools to identify stable, high yielding and 

adaptable genotype(s) for wider and/or specific environments. Therefore, the objective of the 

present study was to evaluate GEI and stability of performance in respect of reaction to BLB 

and grain yield performance of rice genotypes including farmer varieties and the improved 

varieties from government institutions and international organisations.  

2.2 Materials and Methods 

2.2.1 Germplasm 

Thirty rice genotypes (Table 2.1) comprising of 21 cultivars from ARI-KATRIN in Tanzania, 

three cultivars from International Rice Research Institute (IRRI) and six cultivars from 

AfricaRice were used in this study. Cultivars IR-24 from IRRI and Txd 306 (SARO 5) from ARI-

KATRIN were used as resistant and susceptible checks, respectively. 
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Table 2. 1 Rice genotypes used in the study 

 
Genotype 
code 

 
Cultivar name 

 
Ecology 

 
Sub-species 

 
Source 

G1 NERICA 1 Upland  Interspecific AfricaRice 
G2 NERICA 2 Upland  Interspecific AfricaRice 
G3 NERICA 4 Upland Interspecific AfricaRice 
G4 LOW LAND NERICA 6 Lowland rainfed Interspecific ARI-KATRIN 
G5 WAB 450-12-12-BL1-

DV 4 
Upland variety Interspecific Africarice 

G6 IR-56 Upland variety Sativa IRRI 
G7 WITA 10 Upland variety Sativa Africarice 
G8 WAB 450-12-4-BL1-

DV1 
Upland variety Sativa Africarice 

G9 IR54 Upland  Sativa IRRI 
G10 Kalalu Lowland Sativa ARI-KATRIN 
G11 Katrin Lowland Sativa ARI-KATRIN 
G12 Dakawa 83 Lowland Sativa ARI-KATRIN 
G13 Txd 85 (Improved) Irrigated Sativa ARI-KATRIN 
G14 Txd 88 (Improved) Irrigated Sativa ARI-KATRIN 
G15 Mwangaza Irrigated Sativa ARI-KATRIN 
G16 Tai Lowland Sativa ARI-KATRIN 
G17 SATO I Lowland Sativa ARI-KATRIN 
G18 Txd 307 Lowland Sativa ARI-KATRIN 
G19 SATO IX Lowland Sativa ARI-KATRIN 
G20 Komboka Lowland Sativa ARI-KATRIN 
G21 Kalamata Lowland Sativa ARI-KATRIN 
G22 Supa India Lowland rainfed Sativa ARI-KATRIN 
G23 Mwanza Lowland rainfed Sativa ARI-KATRIN 
G24 Tule na bwana Lowland  Sativa ARI-KATRIN 
G25 Sindano Lowland  Sativa ARI-KATRIN 
G26 Zambia Lowland Sativa ARI-KATRIN 
G27 Kalundi Lowland Sativa ARI-KATRIN 
G28 Wahiwahi Lowland Sativa ARI-KATRIN 
G29 IR-24 Upland Sativa IRRI 
G30 Txd 306 (Improved) Lowland Sativa ARI-KATRIN 

2.2.2 Trial locations 

The experiment was carried out at three locations in different agro-ecological regions in 

Tanzania. Detailed information about the trial locations is presented in Table 2.2. 
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Table 2. 2 Features of the three environments used in the study 

Location Latitude Longitude Altitude 
 (m) 

Annual 
rainfall 
 (mm) 

Average 
temperature  
(o C) 

Soil type 

ARI-
KATRIN 

36o41’0E 8o6’0”S 2500 1418 27.9 Sandy loam 
and clay 

Igurusi 33o51’0”E 8o51’0”S 1211 1235 21.3 Sand and 
clay 

Kyela 33o55’0”E 9o34o60”S 495 2158 24.9 Sandy loam 

2.2.3 Experimental design and management of trials 

The 30 genotypes were laid out in a 6 x 5 alpha lattice design with three replications at each 

location. Each genotype occupied two 5m long rows. The space between the rows was 0.2m 

and space between plants in a row was 0.2m. Two seeds were placed per hill; however, 

thinning was done to one plant per hill at two weeks after planting. At planting, double 

ammonium phosphate fertilizer (ratio 18:46) was applied at a rate of 50kg N and 50 kg P2O5 

per hectare. After thinning, the trials were top dressed with urea (46% N) at a rate of 20kg N 

per hectare. 

2.2.4 Data collection 

Disease reaction on the rice genotypes was recorded based on length of the leaf showing 

symptoms of BLB at crop maturity stage. The length of the BLB lesion was then classified in 

accordance with (IRRI, 1996) and Cottyn and Mew(2004).Data were collected on the 30 

genotypes by recording disease score 80 days after planting for the early maturity varieties, 

using the IRRI standard scoring scale (IRRI, 1996). Table 2.3 and Figure 2.1 show the affected 

leaves with BLB. Grain yield data was collected by weighing the total grains per plot. 

 

Table 2. 3 Standard Evaluation System (SES) for rice scale for BLB scoring (0-9) in the 

field 

Scale Percentage of  

Diseased leaf area 

Description 

1 1 -5 Resistant (R) 

3 5 – 12 Medium resistant (MR) 

5 13 – 25 Medium susceptible (MS) 

7 26 – 50 Susceptible (S) 

9 >50 Highly susceptible (HS) 

Source: (IRRI, 1996) SES for Rice, Fourth Edition, Philippines 
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Figure 2. 1 BLB assessment field photographs. A and B represent BLB affected leaves 

                BLB affected leaves 

A  

 

B 

 



  

43 
 

2.3 Statistical analysis 

2.3.1 ANOVA at individual location and across locations 

Analysis of variance (ANOVA) for each location was done separately, followed by combined 

ANOVA across locations for BLB resistance scores and grain yield. The ANOVA was 

performed using the PROC GLM of SAS version 9.4 (SAS Institute, 2014) and the TUKEY 

option was used for mean separation. The linear model used for the single location ANOVA 

was: 

 

Where: 


)(

,,
iliR ,G j

and  ijl
represent the mean, replication effect, the incomplete block within 

replication effect, the genotype effect and random error, respectively.  

 

For across location ANOVA, PROC GLM was performed and the TUKEY option was used for 

mean separation. The linear model used was as follows: 


ijkljkiklkikijkl

GEGREY j  
)()(

 

Where; 

Yijkl =is the response of the jth genotype kth environment and ith replication within environment 

and lth block within replication:  is the grand mean of the experiment, Ek
 is the 

environment effect,G j
 is the genotype effect,

)(ikl
is the block within replication effect,

GE jk
 is the genotype x environment interaction effect and  ijkl  is the random error.  

2.3.2 AMMI analysis 

Genotype stability for resistance to BLB disease was determined using the additive main effect 

and multiplicative interaction (AMMI) analysis in GENSTAT 17thEdition statistical software. 

Considering a yield trial with a two-way factorial design of g genotypes and e environments, 

with r replications, the AMMI model combines ANOVA with additive parameters and PCA with 

multiplicative parameters into a single analysis (Gauch and Zobel, 1997). 

The AMMI model used is: 

 


ijljililij GRY 

)()(
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
gergeengnneggerY   

 

Where, Y ge
is the response of the genotype )(g in the environment )(e , is the grand 

mean,  g
genotype deviation, 

e
environment deviation 

n
is the singular value for 

component n, 
gn

is the eigenvector value for g ,  en
= is the eigenvector value for e and 

residual term is 
ger

,  ger
the random error. 

2.3.3 GGE biplot analysis 

 

For GGE analysis, (Yan 2002) model was used in Genstat 17th   edition and is presented as 

follows. 

1  jYij  ijjiji


22211
 

Where: Y ij
 response of genotype i in environment j ; 

 is the grand mean  


j

main effect of the environment 

1
;j and 2

are singular values (SV) for the first and second principal components (PC1 

and PC2), respectively. 


1i

and 
2i

are eigen vectors of genotype i for PC1 and PC2, respectively 

ij is the residual associated with genotype i in environment j .  

Biplots were constructed to visualize the performance of genotypes in individual environments, 

to compare genotypes concerning performance and stability, and to show relationships among 

environments. 

2.4 Results 

2.4.1 Analysis of variance for BLB scores 

At individual locations, genotype had significant effect on reaction to BLB at two locations viz. 

ARI-KATRIN and Kyela, and there were no differences among genotypes at Igurusi; whereas. 

Across the locations, reaction to BLB was highly significant for environment, genotype main 

effects and GEI (Tables 2.4, 2.5 and 2.6). 
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Table 2. 4 Analysis of variance for BLB scores and grain yield per plot across three 

locations 

Source of variation Degrees of 
freedom 

Bacterial Leaf 
Blight (scores) 

Yield /Plot (kg) 

Environment (E) 2 14.50*** 0.18* 

Replication (R) within E 6 2.60*** 0.11* 

Block (E*R) 45 0.96** 0.06 

Genotype (G) 29 2.83*** 0.89*** 

GxE 58 1.48*** 0.02 

Error 129 0.47 0.04 

  *, **, and *** = Significant at P<0.05, P<0.01 and P<0.001  

2.4.2 Mean Bacterial leaf blight scores of genotypes 

At ARI-KATRIN, genotypes had a significant (P<0.001) effect on reaction to BLB and the 

highest score was for IR-56 and IR-54 which recorded (4.98), followed by Kalalu, Txd 85,Txd 

88 and Supa India which recorded (3.17), Mwanza ( 3.08) and Zambia,Kalundi and Wahiwahi 

which recorded (3.00). The mean BLB score was 1.98 which showed the disease was not 

extremely high at ARI-KATRIN.  The maximum score for a disease was forIR-56 and IR-54 

(4.98) while the least score was for Dakawa 83 (0.87).  

At Igurusi the highest BLB score was for Komboka (3.66) followed by Mwanza (3.57), Supa 

India (3.46), Sindano (3.44) and Txd 306 (3.34) while the least score was for NERICA 4 (0.93). 

The mean disease score was 2.36 which showed moderate disease severity compared to 

ARI-KATRIN. The maximum score at Igurusi was 3.66 for Komboka and the minimum score 

was 0.93 for NERICA 4.At this location, genotype effect was not significant. 

For Kyela, the highest disease rating score was for Txd 306 (5.68) followed by Supa India 

(5.59), Txd 307 (4.48), IR-56 (3.71) and Mwangaza (3.59) in that order. The least score was 

for NERICA 4 (0.84), followed by IR-24 (1.51). The mean score was 3.13 suggesting moderate 

disease severity, but a higher disease pressure compared to ARI-KATRIN and Igurusi. The 

minimum score was for NERICA 4 (0.84). In addition, there were significant differences among 

genotypes for reaction to BLB. 

Results of the rice genotypes evaluated across three locations, revealed differences in 

genotypic reaction to BLB. Genotypes NERICA 1, NERICA 2, NERICA 4, LOWLAND NERICA 

6, Kalamata, Tule na bwana and IR-24 showed resistance to the disease in all three locations 

while genotypes IR-56, IR-54 and Txd 88 showed moderate resistance to the disease in all 
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three locations. Moreover, the most resistance genotype was NERICA 4 which scored 0.93 

while Supa India (4.07) was the most susceptible, while the mean BLB score was 2.46. 

2.4.3 AMMI analysis 

AMMI analysis of variance for reaction to BLB showed highly significant (P<0.001) treatments, 

genotype, environments and GEI effects. Genotypes, environments and GEI accounted for 

28.09%, 14.83%, and 26.71% of the total sum of squares. The PCA axis (IPCA1) of the 

interaction were highly significant (P<0.001) and contributed 81.35% of the GEI sum of 

squares. The IPCA1 scores for each genotype are shown in Table 2.6 and those for 

environments are shown in Table 2.7.Genotypes NERICA 2, LOW LAND NERICA 6, and IR-

24 had very low IPCA1 scores whereas Txd -306 and IR-54 had high IPCA1 scores. 

 

Table 2. 5 Analysis of variance for AMMI model for bacterial leaf blight across the three 
locations 

Source 
Degrees 
of freedom 

Sum of 
squares 

Mean 
squares 

Proportion of 
total variance 
explained (%) 

G x E 
explained 
(%) 

Total 269 421.501 1.567   

Treatments 89 293.531 3.297*** 69.632  

Genotypes 29 118.412 4.081*** 28.090  

Environments 2 62.543 31.244** 14.828  

Block 5 27.445 4.563*** 6.501  
Genotype x 
environment 58 112.623 1.942*** 26.720  

 IPCA 1  30 91.609 3.054***  81.350 

Residuals 28 21.000 0.751  18.650 

Error 129 100.6 0.578 23.867  

**, and *** = Significant at P<0.01 and P<0.001  
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Table 2. 6 Mean BLB scores of the tested genotypes at individual locations and across 

locations, and IPCA1 scores for the genotypes 

G ARI-KATRIN IGURUSI KYELA ACROSS IPCA
1 1 0.92 R 2.12 R 2.50 R      1.85          

1,85c-e                                              

1.85c-e 

R 0.36 
2 1.66 R 2.12 R 2.88 R 2.23 R 0.07 
3 1.01 R 0.93 R 0.84 R 0.93 R -0.32 
4 1.68 R 2.12 R 2.88 R 2.23 R 0.07 
5 2.83 R 2.26 R 3.07 MR 2.72 R -0.38 
6 4.98 MR 3.28 MR 3.71 MR 3.99 MR -0.76 
7 1.01 R 1.74 R 3.22 MR 1.99 R 0.23 
8 3.09 MR 1.66 R 3.22 MR 2.66 R -0.44 
9 4.98 MR 1.80 R 3.36 MR 3.38 MR -1.05 
10 3.17 MR 2.67 R 3.44 MR 3.09 MR -0.38 
11 0.94 R 2.81 R 3.53 MR 2.43 R 0.36 
12 0.87 R 1.59 R 3.53 MR 2.00 R 0.23 
13 3.17 MR 2.75 R 3.53 MR 3.15 MR -0.38 
14 3.17 MR 3.28 MR 3.54 MR 3.33 MR -0.32 
15 1.03 R 3.00 MR 3.59 MR 2.54 R 0.29 
16 1.03 R 3.28 MR 3.46 MR 2.59 R 0.36 
17 1.03 R 2.08 R 3.46 MR 2.19 R 0.23 
18 1.05 R 3.19 MR 4.48 MR 2.91 R 0.62 
19 1.05 R 2.52 R 3.46 MR 2.34 R 0.23 
20 1.02 R 3.66 MR 2.81 R 2.50 R 0.36 
21 1.02 R 2.90 R 2.81 R 2.24 R 0.23 
22 3.17 MR 3.46 MR 5.59 MS 4.07 MR 0.33 
23 3.08 MR 3.57 MR 2.62 R 3.09 MR -0.38 
24 1.02 R 2.77 R 2.62 R 2.14 R 0.23 
25 1.01 R 3.44 MR 2.62 R 2.36 R 0.29 
26 3.00 MR 2.89 R 2.66 R 2.85 R -0.32 
27 3.00 MR 2.52 R 2.66 R 2.73 R -0.32 
28 3.00 MR 2.16 R 2.67 R 2.61 R -0.38 
29 1.00 R 2.00 R 1.51 R 1.50 R -0.09 
30 1.00 R 3.34 MR 5.68 MS 3.34a MR 1.01 

Mean 1.98  2.36  3.13  2.49   
Min 0.87  0.93  0.84  0.93   
Max 4.98  3.66  5.68  4.07   
SE 0.05  0.20  0.07  0.12   
P.value <.000

1 
 0.69  <.0001  <.0001   

C.V% 14.30  46.18  12.21  27.51   
  R, = resistant, MR= moderately resistant, MS= moderate susceptible. 

G1= NERICA 1,G2= NERICA 2, G3=NERICA 4, G4=LOW LAND NERICA 6, G5=WAB 450-

12-BL1-DV4, G6=IR-56, G7=WITA 10, G8=WAB 450-12-4-BL1-DV1, G9=IR-54, G10=Kalalu, 

G11=Katrin, G12= Dakawa 83, G13=Txd 85, G14= Txd 88, G15=Mwangaza, G16= Tai, G17= 

SATO 1, G18=Txd 307, G20=Komboka, G21= Kalamata, G22= Supa India, G23= Mwanza, 

G24= Tule na bwana, G25= Sindano, G26= Zambia, G27= Kalundi, G28= Wahiwahi, G29=IR-

24, G30= Txd 306. 

The IPCA 1 scores for the environments are presented in Table 2.7.  ARI- KATRIN had the 

highest magnitude IPCA1 score (-1.858), followed by Kyela (1.346) and lastly Igurusi (0.513).  
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Table 2. 7 Mean BLB scores and IPCA1 scores for individual locations 

Environment Number Mean IPCA1 
ARI-KATRIN 1 1.978 -1.858 
IGURUSI 2 2.356 0.513 
KYELA 3 3.133 1.346 

 

2.4.4 GGE biplot analysis 

2.4.4.1 Relationship among test environments  

The goodness of fit of the GGE biplot was 89.50%; PC1 contributed 51.62% while PC2 

accounted for 37.88% of the total variation (Figure 2.2). At Kyela and Igurusi, G30 and G22 

had the highest BLB scores. Considering the angles between vectors of environments, Kyela 

and Igurusi had a very small angle (acute) between them and both these environment vectors 

and that of ARI-KATRIN had wider angles between them. Based on this observation, Kyela 

was not correlated to Igurusi ecologies, hence Kyela was useful for selecting specifically 

adapted genotypes like G30 and G22.Thus, these environments may be good sites for 

selecting genotypes with general resistance to bacterial leaf blight disease. Moreover, Igurusi, 

which had the shortest vector, is less useful for selecting genotypes compared to the other 

two environments. ARI-KATRIN and Kyela had longer vectors from the origin, whereas Igurusi 

had the shortest vector compared to these two. ARI-KATRIN and Kyela had the same distance 

vector. On the other hand, ARI-KATRIN that had low severity of bacterial leaf blight occurrence 

is an average site for selecting specifically adapted genotypes. 
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Figure 2. 2 Relationship among test environments 

 

2.4.4.2 The Which-Won-Where polygon view  

The polygon view of the GGE biplot (Figure 2.3) displays the “which won where” pattern of 

genotype by environment dataset. The radial lines originating from the centre of the biplot 

divided the polygon into seven sectors. The three environments fell into two sectors and there 

were two environments. The first environment consisted of Kyela and Igurusi with high disease 

pressure and the genotype with the highest disease rating score was Txd 306. The second 

environment was represented by ARI-KATRIN and the genotype, which had the highest 

disease rating score in this environment, was IR-54.  
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Figure 2. 3 Polygon view of the GGE biplot based on symmetric scaling 

2.4.4.3 Comparing genotype resistance 

Figure 2.4 shows comparison of genotype susceptibility. NERICA 4 had the lowest disease 

rating score and fell into the concentric ring of the biplot. Other genotypes with low disease 

rating scores and located in concentric rings of the biplot were IR-24, NERICA 2, NERICA 1, 

Tule na bwana, Komboka, Kalamata and WITA 10 which had moderate disease resistance, 

and performed below average in respect of disease rating scores. Moreover Genotypes 

NERICA 2, LOW LAND NERICA 6 and IR-24 had short perpendicular projections to the AEC 

axis. Whereby, genotypes with long perpendicular projections to the AEC axis were IR-54, 

Txd 306, IR-56 and Txd 307. 
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Figure 2. 4 Comparing genotypes with respect to reaction to BLB and consistency of 
performance 

 

2.4.4.4The grain yield performance of 30 rice genotypes across three locations  

The grain yield results of the 30 genotypes in each location and across all the three locations 

were as follows; At ARI-KATRIN the mean value was 4.02t ha-1and the highest yield was from 

Txd 306 (8.29 t ha-1) while the lowest was from NERICA 4 (0.84 t ha-1).  However, at Igurusi 

the mean value was 3.63 t ha-1and the highest yield was for Txd 306 (7.07t ha-1) and the lowest 

was from NERICA 4(0.87t ha-1).At Kyela the mean value was 3.24tha-1and the highest yield 

was from Txd 306(6.89tha-1) and the lowest was from NERICA 4 (0.42tha-1). Moreover, across 

the three locations the mean value was 3.64tha-1 and highest yield was for Txd 306 (7.42tha-



  

52 
 

1) and the lowest for NERICA 4 (0.74tha-1). The genotype effect was highly significant (P= 

<0.0001) at all the three locations and across the locations.  

Table 2. 8 Performance of the 30 rice genotypes in respect of grain yield (t ha-1) at 

individual and across locations 

Genotype ARI-KATRIN Igurusi Kyela Across Locations 

NERICA 1 2.56 1.87 0.50 1.64 

NERICA 2 1.83 2.27 1.29 1.79 

NERICA 4 0.84 0.87 0.51 0.74 

LOW LAND NERICA 6 5.99 5.42 4.27 5.23 

WAB 450-12--12BL1-DV4 2.91 2.78 2.41 2.70 

IR-56 1.00 3.20 2.80 2.33 

WITA 10 6.41 6.16 6.20 6.26 

WAB-450-12-4-BL1-DV1 1.72 3.11 2.72 2.52 

IR-54 4.02 4.85 3.60 4.16 

Kalalu 6.89 6.29 4.79 6.00 

Katrin 3.53 3.63 1.56 2.91 

Dakawa 83 4.91 5.09 3.36 4.45 

Txd 85 6.09 5.13 3.92 5.05 

Txd 88 7.21 6.62 5.62 6.48 

Mwangaza 1.65 1.85 2.01 1.84 

Tai 5.95 5.44 5.28 5.56 

SATO 1 6.09 5.56 5.84 5.83 

Txd 307 5.86 4.74 4.72 5.10 

SATO IX 5.32 4.62 4.78 4.90 

Komboka 3.78 3.55 3.25 3.52 

Kalamata 4.51 4.63 4.48 4.54 

Supa India 1.51 1.13 0.45 1.03 

Mwanza 1.26 1.06 0.86 1.06 

Tule na bwana 2.56 2.92 2.33 2.60 

Sindano 0.91 1.68 1.34 1.31 

Zambia 2.11 1.43 1.44 1.66 

Kalundi 2.43 1.61 1.89 1.98 

Wahiwahi 1.38 2.08 2.76 2.07 

IR-24 3.13 3.18 2.53 2.95 

Txd 306 (Improved) 8.29 7.07 6.90 7.42 

Mean 4.021111 3.63 3.24 3.63 

Minimum 0.84 0.87 0.45 0.74 

Maximum 8.29 7.07 6.89 7.42 

SE 0.19 0.2 0.88 0.18 

P.value <0.0001 <0.0001 <0.0001 <0.0001 
C.V% 26.03027 29.68485 27.17 27.76 
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2.5 Discussion 

2.5.1 ANOVA and AMMI analysis 

The combined analysis of variance and AMMI analysis showed significant effects of genotype 

(P<0.001), environment (P<0.01) and GEI (P<0.001).The significance of genotype effect 

implies that there was adequate variation amongst the genotypes, which would permit 

selection for desirable genotypes. The significance of environments suggests that the 

environments were diverse, with large differences among environmental means causing 

variation in the disease reaction of genotypes across the environments. The highly significant 

GEI effect suggests that there was differential reaction of genotypes to BLB disease from one 

environment to another. In AMMI, genotype, environment and GEI contributed 69.63% of the 

total variation, while GEI alone captured 26.72% of the total sum of squares. The AMMI model 

demonstrated the presence of GEI, and this GEI variance was partitioned into the first 

interaction principal components axes (IPCA1) and residuals. The IPCA1 accounted for 91.6% 

of the GEI sum of squares (Badu Apraku et al (2011). 

Genotypes NERICA 2 and LOW LAND NERICA 6, with IPCA1 score of 0.07 were the most 

stable across the three locations compared to other genotypes, followed by IR-24, which had 

IPCA1 score of -0.09. Genotype IR-54 was the most interactive therefore unstable (-1.05) 

followed by Txd 306 (1.01) which were unstable across the three environments. GenotypeIR-

56, was moderately resistant but unstable with IPCA1 of -0.76, while genotype Txd 307, was 

resistant but unstable with IPCA1 score of 0.62. For the improvement of BLB resistance, the 

use of genotypes NERICA 2, LOW LAND NERICA 6 and IR-24, which combine high levels of 

resistance with stability of resistance, would be recommended (Sanni et al., 2009; Nassir, 

2013). 

2.5.2 Mean percentage of BLB lesions on the tested genotypes 

For mean performance in respect of BLB scores, several genotypes were highly interactive 

implying that selection for stability across locations is useful. In this study, the identified 

genotypes with stable resistance for bacterial leaf blight were NERICA 2, LOW LAND NERICA 

6 and IR-24. The resistance for bacterial leaf blight within these genotypes should be explored 

in other environments. However, with regard to mean performance, the mean at ARI-KATRIN 

was 1.98, Igurusi 2.36 and Kyela 3.13, while across the three locations it was 2.49. This implies 

that Kyela is the best location for evaluating BLB resistance compared to ARI-KATRIN and 

Igurusi. Results suggest that genotype Dakawa 83 is more resistant at ARI- KATRIN and can 

be useful in that location, however NERICA 4 is more resistant at Igurusi and Kyela so it could 

be useful in these two locations.  
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2.5.3 The GGE biplot analysis 

Concerning relationship among the test environments, ARI-KATRIN and Kyela had longer and 

same vector length compared to Igurusi, which had a very short vector from the origin. This 

means that Kyela and ARI-KATRIN were more discriminative than Igurusi. Kyela, which is also 

known for high natural BLB incidence levels (hot spot) could be recommended for BLB 

screening, and this agrees with (Ashura et al., 1999).However, the angle between vectors for 

environments ARI-KATRIN and Kyela was wider than that between vectors of environments 

Kyela and Igurusi. The angle between ARI-KATRIN and Kyela (90°) suggests that the 

environments are uncorrelated. However, the positive association between Kyela and Igurusi 

was mostly due to favourable conditions for BLB thus suggesting they are correlated.    

The GGE biplot classification of genotypes and environments revealed two environments; the 

first environment was for Kyela and Igurusi with positive PC2 scores, and the second, ARI-

KATRIN with negative PC2 score. Genotypes NERICA 4, IR-24, NERICA 1, NERICA 2, LOW 

LAND NERICA 6, followed by Kalamata and LOW LAND NERICA 6 had below average BLB 

scores and had stable performance across environments.  The most unstable but resistant 

genotype demonstrating a strong GEI was Txd 307, and the moderately resistant and 

unstable genotypes were IR-56 and IR-54. Genotype Dakawa 83 was specifically suitable for 

ARI-KATRIN, while NERICA 4 was suitable for Igurusi and Kyela hot spot locations. 

Although the environment main effect may contribute up to 80% or more of the total variation, 

it is usually the genotype main effect and the genotype x environment interaction (GEI) that 

are relevant to cultivar evaluation (Yan, 2002). The use of GGE biplots has been appreciated 

by many researchers in rice and other crops (Hagos & Abay, 2013; Kivuva et al., 2014; Lakew 

et al., 2014)  Muthoni et al., 2015) as it graphically displays general patterns of genotype 

responses across environments in multi-environmental trials data not usually covered in the 

general ANOVA. In this study, the GGE biplot results revealed that there was positive 

correlation between the two environments for the disease at Kyela and Igurusi. This was 

expected because the two environments were established in the same agro-ecology, the 

weather conditions in these two sites mainly favour high disease pressure, especially high 

humidity and high rainfall compared to ARI-KATRIN which has low humidity and rainfall. This 

also implies that there is a need for separate breeding programmes for the different locations 

to evaluate under different weather conditions. 

The polygon view of GGE biplot is very useful for visualising the best genotypes in each 

environment and grouping environments for visualisation of possible crossover GEI and mega 

environments (Yan & Tinker, 2006). Different environments can fall into different sectors, 

which imply that there are different high resistant cultivars for those sectors and it shows 
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crossover GEI suggesting that the test environments could be divided into mega-environments 

(Yan et al., 2017). In this investigation, the environments fell into two sectors revealing the 

possibility of two mega environments and presence of crossover type of GEI. Kyela   and 

Igurusi fell into the sector, which was directly opposite to the sector in which NERICA 4 was 

the vertex genotype, therefore in terms of resistance (low BLB scores) NERICA 4 was the 

winner for these environments. Likewise, ARI-KATRIN fell into the second sector, which was 

opposite to the sector in which Dakawa 83 was the winner there NERICA 4 won at ARI-

KATRIN. Other researchers in Africa have also appreciated the use of the polygon view of 

GGE biplot in identification of the best genotypes in terms of yields in different environments 

and revealing of possible mega environments (Kivuva et al., 2014; Lakew et al., 2014) ; 

Muthoni et al., 2015. 

2.6 Conclusion 

The GGE biplot showed that the ranking of the genotypes changed across environments 

revealing a crossover type of genotype x environment interaction. Igurusi and Kyela had high 

disease pressure and ARI-KATRIN low disease pressure suggesting the need for separate 

breeding programmes for the high and low disease in Tanzania. Genotypes identified as 

resistant and susceptible differed in GGE biplot representations. The GGE biplot showed that 

G3 was specifically adapted to Kyela and Igurusi and G12 to ARI-KATRIN low disease 

pressure environment, while G30 followed by G14 and G10 were the highest yielding 

genotypes across the three environments. By comparing genotype resistance, the GGE biplot 

showed that G3, G4, G29, G1, G2, G21 and G24 performed below the average in respect of 

disease rating score, and were specifically adapted across the three test environments. Since 

the results of this study are based on one season data, more temporal and spatial 

environments will be needed to give meaningful recommendations. Moreover these results 

emphasize that the environment contributes to differential genotype reactions to BLB, and 

hence, to obtain true resistant genotypes there is a need for evaluating in multi-locations with 

several seasons of testing. There is a need to evaluate different isolates from each test 

environment to separate the effects of the physical environment from differences caused by 

differing pathotypes. This information could be applied in breeding programmes to develop 

rice cultivars with durable resistance to the BLB pathogen Xoo. Due to diverse agro-climatic 

rice growing zones as the case in the three sites, and the presence of a number of genetically 

distinct virulent Xoo strains in Tanzania, pyramiding of two or more effective genes in 

agronomically superior genotypes and search for new disease resistance genes in context of 

African origin from wild Oryza spp seems to be the most effective disease management 

strategy. In addition, the GGE biplots showed that most of the NERICA varieties were resistant 

and stable across three locations, e.g., NERICA 2 and LOW LAND NERICA 6.Therefore, 
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these NERICAs could be used as resistance donors in development of new BLB resistant 

varieties. 
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CHAPTER 3 

Genetic analysis and evaluation of secondary traits for use in 

indirect selection of grain yield improvement among rice genotypes 
 

Abstract 

Genetic based knowledge of different yield traits plays a major role in varietal improvement of 

rice. Genetic variation gives room for possibility of recombination, which is essential for the 

development of new varieties in any crop. The objective of this study was to estimate 

heritability, variability and diversity among genotypes and to evaluate efficiency of secondary 

traits for indirect selection of grain yield. Observations were recorded for 16 quantitative traits 

on 30 rice genotypes. The genotypes differed significantly for some of the characters and the 

genotypic and phenotypic coefficient of variation indicated the presence of favourable amount 

of variability. Regarding heritability estimates, the highest heritability was observed for days to 

early flowering (99.67%) followed by days to maturity (99.35%), grain length (98.21%), yield 

per plot (97.13%), and 1000 grain weight (89.48%). Spikelets per panicles (66.79) had highest 

genetic advance and grain yield per plot exhibited the highest genetic advance as percent of 

mean (%) of 104.13, followed by dry straw weight (92.11%) and harvest index (66.36). Harvest 

index had the highest efficiency for indirect selection for grain yield; though the efficiency was 

less than unity, this trait should be given top priority in selection process. Grain yield per plot 

showed highly significant and positive genotypic correlation with harvest index, grain length, 

and dry straw weight per plot. Cluster analysis showed that the genotypes could be classified 

into eight distinct groups. Overall, results revealed adequate variability and diversity, which 

can be exploited in rice breeding. 

Keywords: heritability, correlated responses, genetic variability. 
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3.1 Introduction 

In development of a crop improvement programme, the degree of genetic variability for a 

specific trait in the population is very important (Ganapathy et al., 2011).However, variability 

alone will not indicate the degree of improvement through selection (Priyadharshini et al., 

2011). Robinsion et al. (1949) emphasized that heritability of the character is a main concern 

to the breeder, since it indicates the possibility and extent to which improvement is possible 

through selection. It has been suggested that heritability together with genetic advance will 

bring out the genetic gain expected from selection (Johnson et al., 1955). Estimates of broad-

sense heritability )( 2H , phenotypic coefficient of variance (PCV), genotypic coefficient of 

variance (GCV), genetic advance (GA) and genetic advance as percent of the mean (GAM), 

provide genetic information that indicate the possible progress that will be made through 

selection. The outstanding function of heritability is in expressing the reliability of the 

phenotypic value for a trait as a guide to the breeding value for that trait in a population 

(Falconer, 1960). In its broadest sense it specifies the proportion of the total phenotypic 

variability that is due to genetic causes (Allard, 1960). Traits with high percent heritability are 

less affected by the environment in their expression and quantitative traits usually have low 

heritability estimates due to their sensitivity to the environment (Allard, 1960). For effective 

selection, (Falconer, 1960) proposes using a combination of genetic parameters, genetic and 

phenotypic coefficients of variation, heritability and genetic advance.  

In genetic diversity analysis, most breeders utilize morphological characteristics because they 

are inexpensive, rapid, and simple to score. The study of these characteristics does not require 

sophisticated equipment. In addition, this evaluation could be useful in developing reliable 

selection indices for important agronomic traits in rice by using genetic distances and cluster 

analysis to identify the groups of genotypes. An investigation into the nature and the degree 

of divergence is useful for an understanding of the course of evolution and for classifying 

population into groups based on diversity, particularly, when they are overlapping for one or 

more characters. This information may be important for the improvement of rice genotypes. 

However, the knowledge about the source of diversity for the different traits is of considerable 

importance, since the major aim of the plant breeder is to improve the yield and the quality by 

developing superior varieties. 

Moreover, for designing an effective breeding programme, sufficient knowledge about the 

degree and direction of association between yield and its components traits, is of utmost 

significance to the breeders when they have to exercise selection for immediate improvement 

of more than one character. Genotypic correlation is a good measure of the degree of 
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association between traits. Yield being a complex trait may be improved by selecting an easier 

to measure secondary trait if the secondary trait is highly correlated with yield, and has a high 

heritability (Falconer, 1960). This would make indirect selection for yield via a secondary trait 

more efficient (giving better response in yield) relative to direct selection for yield per se. 

Therefore, the objective of the present study was to  

(1) Estimate genetic variability and heritability of the traits; 

(2) Assess efficiency of indirect selection of secondary traits.  

3.2 Material and methods 

3.2.1Germplasm 

Thirty genotypes (Table 2.1) which were sourced from different organizations within 

Tanzania and from international organisations were used. 

3.2.2 Environments, trial design and agronomic procedures 

The 30 genotypes were evaluated in three environments of which two environments 

represented BLB hot spots and the other had moderate BLB incidence. At all three sites, the 

germplasms were planted in a 6x5 alpha lattice design with three replications. The germplasm 

were planted in two row plots, 5 m in length at inter-row and intra- row spacing of 20 cm. Three 

seeds were placed per hill by hand at a depth of 3cm. Plants were thinned two weeks after 

emergence to one plant per hill. At planting, double ammonium phosphate fertilizer (ratio 

18:46) was applied at a rate of 50kg N and 50 kg P2O5 per hectare. After thinning, the trials 

were top dressed with urea (46% N) at a rate of 20kg N per hectare. 

3.2.3 Data collection 

Data were collected on 16 quantitative traits based on the descriptors for rice (IRRI, 1992) as 

presented in Table 3.1. Data were recorded from five randomly selected plants in each plot 

and the mean of the five plants were used for statistical analysis except for dry straw weight, 

grain yield per plot and BLB score, which were done on per plot basis.  

 

 

 



  

62 
 

Table 3. 1 Descriptions and measurements of the traits 

Trait Acronym Description 

Early vigour EV Scoring 1-very high, 3-high 5-intermediate, 7-low, 9-very low. 

Days to early flowering 

50% 

DTEF The number of days from cultivation to early flowering day 

Plant height (cm) PH The average of height from the base to the tip of last leaf (Flag leaf). 

Panicle length PL From the base (first node) to the tip of last spikelet of panicle. 

No. of tillers per hill  TH Counting of the tillers per hill. 

Dead heart DH Scoring 1- very low 3- 3-low, 5- intermediate 7- high 9- very high. 

Bacteria leaf blight scoring BLB 1-9 scale: 1 = no infection; 3 = 6-12%; 5 = 13 - 25%; 7 = 26-50%; 9 = 50>% leaf area covered with lesions at 
heading stage. 

Lodging % LO 10%-very low 30%-low 50%-intermediate,70%-high 90%-veryhigh100%-extremely high 

Days to maturity DM The number of days from cultivation to maturing day at 80% 

Dry straw weight DSTRW The total weight of straw after threshing per plot was measured in kg. 

Spikelet per panicle  SPP At maturity counting of the total spikelets per panicle. 

Grain length GL Measured as the distance from the base of the lowest glume to the tip. 

Grain width GW Measured as the distance across the fertile lemma and palea at the widest point.  

1000 grain weight TGW One thousand seeds were counted and weighed (g) 

Harvest index HI For total biological yield the entire plant above the ground level was harvested, sun dried and weight at 
maturity. The value of harvest index was calculated from the following formula given below. 
Harvest index (%) =Economical yield /Biological yield× 100 
 

Grain yield/plot YP Weighing the total grains per plot (two rows that had 5M). 

Source: (UPOV, 2004) 
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3.3 Data analysis 

Analyses included ANOVA across locations; variance components, heritability, and genetic 

advance estimation; genotypic correlations and relative selection efficiency estimation, and 

diversity analysis. 

3.3.1 Analysis of variance across locations 

For across location ANOVA, the PROC GLM of SAS version 9.4 (SAS Institute, 2014) was 

used and statistical analysis, for combined ANOVA and genotype was considered to be 

random factors, thus REML analysis was used. The linear model used was as follows: 

 


ijkljkiklkikijkl

GEGREY j  
)()(

 

Where; 

Yijkl is the response of thejth genotype, kth environment and ith replication within environment 

and lth block within replication:  is the grand mean of the experiment, Ek
 is the 

environment effect,G j
 is the genotype effect, 

)(ikl
is the block within replication effect,

GE jk
 is the genotype x environment interaction effect and  ijkl  is the random error.  

 

3.3.2 Variance components 

The restricted maximum likelihood (REML) method of the MIXED procedure in SAS Version 

9.4 (SAS Institute, 2014) was used to estimate variance components, where locations were 

fixed effects and genotypes where random effects. 

The variance components including genotypic variance (
2

g
), genotype by location variance 

(
2

gl
) and error variance (

2

e
) were estimated and obtained directly from the MIXED 

procedure output. 

Phenotypic variance (
2

p
) was calculated as follows: 

rll

egl

gp




22

22
  

Where l = number of locations, r = number of replications within location 
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3.3.3 Phenotypic coefficient of variation 

Phenotypic coefficient of variation (PCV) was estimated by the formula suggested by Bruton 

(1952). 

100

2




x

p
PCV


 

Where  


2

p
phenotypic variance   




x phenotypic trait population mean 

3.3.4Genotypic coefficient of variation 

Genotypic coefficient of variation (GCV) was estimated by formula suggested by Burton 

(1952). 

 

100

2




x

g
GCV


 

Where by 
2

g
genotypic variance and 



x phenotypic trait population mean. 

 
PCV and GCV were classified as follows (Robinson et al., 1949) 

Low = 0 to 10% 

Moderate = 10-20% 

High = > 20% 

3.3.5 Heritability 

Broad sense heritability ( H
2
) values were calculated based on entry mean basis as follows:   

rll

egl

g

g

H





22

2

2

2



  

Where:  

 
2

g
=Genotypic variance 

           
2

gl
 Variance due to genotype x location interaction  
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       
2

e
= error variance 

land r are the numbers of environments and replications per environment, respectively. 

Heritability values were classified into low: 0-30%, medium: 31-60%, and -high:>61% 

(Robinson et al., 1966). 

3.3.6 Genetic advance 

The extent of genetic advance expected through selection for each character was calculated 

as per formula suggested by Johnson et al., (1955). 

 pHKGA 
2

 

Where, 

GA expected genetic advance, 

H
2

heritability for the trait,  

 p
phenotypic standard deviation of the trait,  

K  Selection differential that is 2.06 at 5% selection intensity (Lush, 1949).  

3.3.7Genetic advance as percent of mean 

Genetic advance as percent of mean was calculated as follows 

100


x

GA
GAM  

Where  

GAM Genetic advance as percent of mean  




x phenotypic trait population mean. 

The GAM values were classified as follows (Johnson et al., 1955): 

Low = 0 to 10 % 

Moderate = 10-20 % 

High = > 20 % 

3.3.8 Genotypic correlation 

A multivariate model in PROC MIXED of SAS version 9.4 (SAS Institute, 2014) was used to 

compute genotypic correlations between grain yield and each of the other traits. The standard 

error of the genotypic correlation was determined using the DELTA method (Lynch and Walsh, 

1998). 
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


gygx

gxy

gr


  

Where, 

r g
genotypic correlation, 

 gxy
genotypic covariance of characters’ x and y, 

 gx
square root of genotypic variance of character x, 

 gy
square root of genotypic variance of character y. 

The genotypic correlations were considered significantly different from zero if their absolute 

value were greater than 1.96 times their standard error (Holland, 2004) ; Bhatt, 1970). 

3.3.9 Efficiency of indirect selection for yield per plot via a secondary trait 

The relative selection efficiency (RSE) of indirectly improving grain yield using a secondary 

trait was estimated according to (Falconer and Mackay, 1996) as follows: 

h
h

r
y

x

g
RSE   

Where, 

r g
absolute value of genotypic correlation 

hx
square root of heritability of a secondary trait. 

hy
square root of heritability of yield per plot 

3.3.10 Diversity analysis 

SAS version 9.4 (SAS Institute, 2014) was used for cluster analysis. The EUCLIDIAN method 

of PROC DISTANCE was used to calculate distance indices between each pair of genotypes. 

PROC TREE was implemented to construct a dendrogram using the Euclidian distance 

indices. 

3.4 Results 
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3.4.1 Parameters of genetic variability 

Range of variability, estimates of genotypic and phenotypic coefficients of variation, broad 

sense heritability (%) and genetic advance expressed as percentage of mean are presented 

in the Table 3.3. 

3.4.2 Coefficients of variation 

It was observed that the estimates for genotypic coefficients of variation (GCV) were lower 

than the phenotypic coefficients of variation (PCV) for all the characters. Lodging% exhibited 

the lowest GCV (0.000) but for the PCV it was the highest of 5325.463%. Whereas, the number 

of spikelets per panicle had the highest GCV (419.902%) and the PCV for the same was 

1005.352%. It was followed by plant height (GCV= 97.843% and PCV=294.959%), days to 

early flowering (GCV=64.307% and PCV=66.251%), days to maturity (GCV=48.124% and 

PCV=50.562%), 1000 grain weight (GCV=38.146% and PCV=78.496%), yield per plot 

(GCV=19.198% and PCV=24.312%), number of tillers per hill (GCV=17.542% and 

PCV=73.346%), dry straw weight (GCV=14.087% and PCV=70.178%), early vigour 

(GCV=8.842% and PCV=36.944%), bacterial leaf blight  (GCV=8.080% and PCV=46.406%) 

and harvest index (GCV=2.800% and PCV=4.577%). The PCV estimates were higher than 

GCV estimates for all the traits. The highest difference between GCV and PCV value was 

observed for lodging (5325%) followed by number of spikelet per panicle (585.45%), followed 

by plant height (197.116%). Grain length had the lowest difference between GCV and PCV 

estimate (0.339%).  

3.4.3 Genetic advance and genetic advance as percent of means 

For the 16 quantitative traits estimates of GA and GAM across locations were determined 

(Table 3.3). The GA estimates were relatively from highest to lowest for spikelets per panicles 

(66.79), plant height (22.34 cm), days to maturity (15.66) and days to early flowering (15.40). 

Other traits showed the lowest values of genetic gains. The lowest genetic advance was 

observed for lodging% (0.000) followed by dead heart (0.13) and harvest index (0.19). The 

genetic advance for grain yield per plot was low (3.78). However, when expressed as a 

percentage of mean value, the GAM for yield per plot was 104.13%. Other characters like 

harvest index (66.36), showed high genetic advance as percentage of mean and for the lowest 

was for lodging % (0.00) followed by panicle length (8.89). 
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Table 3. 2 Variance components, heritability estimates, coefficients of correlation, genetic advance and genetic advance mean of 30 rice 

genotypes evaluated across three locations 

TRAIT 
2

g
 

2

gl
 

2

e
 

2

p
 

l

gl
2

 
rl

e
2

 (%)2H  

Trait 
mean 

(%)PCV  (%)GCV  GA  (%)GAM  

EV 0.279 0.356 0.531 1.166 0.119 0.059 61.095 3.16 36.944 8.842 1.36 43.01 

DTEF 54.632 0.000 1.651 56.284 0.000 0.183 99.665 84.96 66.251 64.307 15.40 18.12 

PH 83.566 90.112 78.240 251.918 30.037 8.693 68.331 85.41 294.959 97.843 22.34 26.15 

PL 0.449 0.208 0.937 1.594 0.069 0.104 72.120 21.10 7.553 2.126 1.88 8.89 

TH 3.145 0.000 10.005 13.151 0.000 1.112 73.885 17.93 73.346 17.542 5.51 30.73 

DH 0.005 0.038 0.042 0.085 0.013 0.005 22.567 1.32 6.446 0.381 0.13 10.21 

BLB 0.201 0.474 0.480 1.155 0.158 0.053 48.763 2.49 46.406 8.080 1.08 43.57 

LOD 0.000 520.480 85.045 605.525 173.493 9.449 0.000 11.37 5325.463 0.000 0.00 0.00 

DM 55.667 0.220 2.599 58.487 0.073 0.289 99.353 115.67 50.562 48.124 15.66 13.54 

DSTR 0.239 0.000 0.950 1.189 0.000 0.106 69.329 1.69 70.178 14.087 1.56 92.11 

SPP 645.420 166.980 732.900 1545.300 55.660 81.433 82.480 153.71 1005.352 419.902 66.79 43.45 

GL 0.142 0.000 0.023 0.165 0.000 0.003 98.211 6.86 2.406 2.067 0.83 12.09 

GW 0.005 0.000 0.014 0.019 0.000 0.002 76.170 1.55 1.197 0.314 0.22 14.17 

TGW 9.240 0.000 9.774 19.014 0.000 1.086 89.483 24.22 78.496 38.146 8.04 33.18 

YP 3.486 0.000 0.928 3.589 0.000 0.103 97.126 3.63 24.312 19.198 3.78 104.13 

HI 0.008 0.000 0.005 0.013 0.000 0.001 93.414 0.29 4.577 2.800 0.19 66.36 

 
EV= Early vigour, DTEF= Days to early flowering, PH= Plant height, PL= Panicle length, TH= Number of tillers per hill, DH= Dead heart, BLB= 
Bacterial leaf blight, LOD= Lodging %, DM= Days to maturity, DSTR= Dry straw weight, SPP= Number of spikelets per panicle, GL= Grain length, 
GW= Grain width, TGW= Thousand grain weight, YP= Yield per plot, HI= Harvest index
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3.4.5 Heritability 

According to Robinson’s (1966) classification, broad sense heritability (%) can be described 

as high, moderate or low based on the percentage as follows: >60% (high), 30-60% 

(moderate), and 0-30% (low). In this study, moderate to high heritability estimates were 

observed for different traits. The lowest heritability was observed for lodging % (0.00%) 

followed by dead heart (22.567%), bacterial leaf blight which was moderate (48.763%), early 

vigour (61.095%), plant height (68.331%), dry straw weight (69.329%) and panicle length 

(72.120%). While days to early flowering showed the highest broad sense heritability 

(99.665%) followed by days to maturity (99.353%), grain length (98.221%), yield per plot 

(97.126%) and harvest index (93.414%). 

 

 

3.4.6 Efficiency of indirect selection for Yield per plot via a secondary trait 

Significant genotypic correlationsr g
 were observed for days to early flowering, panicle length, 

days to maturity, dry straw weight and harvest index (Table 3.4). The relative selection 

efficiency estimates for indirect selection for YP via a secondary trait (RSE) were as follows: 

for harvest index which was 0.83 was near to 1, days to maturity had a value of 0.59, days to 

early flowering(0.53), and 0.50 for dry straw weight, and for panicle length, the RSE was 0.34. 

For other traits such as early vigour, plant height, number of tillers per hill, dead heart, bacterial 

leaf blight, lodging %, spikelets per panicle, grain length, grain width and 1000 grain yield per 

plot, RSE was not calculated since the genotypic correlation coefficients were non- significant 

(Table 3.4). 
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Table 3. 3 Efficiency of indirect selection for Yield /Plot via secondary traits 

TRAIT r g
±SE  H x

 H y
 RSE  

Early vigour -0.23 ± 1.04  7.82 9.86 - 

Days to early flowering 0.53 ± 0.06 9.98 9.86 0.53 

Plant height(cm) -0.44±0.37 8.27 9.86 - 

Panicle length(cm) 0.39±0.03 8.49 9.86 0.34 

Tillers per hill 1.00±0.77 8.60 9.86 - 

Dead heart 0.23±1.07 4.75 9.86 - 

Bacterial leaf blight 0.11±0.21 6.98 9.86 - 

Lodging % -0.99±1.12 0.00 9.86 - 

Days of maturity 0.58±0.08 9.97 9.86 0.59 

Dry straw weight(kg) 0.60±0.15 8.33 9.86 0.50 

Spikelets per panicle -0.62±1.16 9.08 9.86 - 

Grain length(mm) -0.12±0.26 9.91 9.86 - 

Grain width(mm) -0.24±0.27 8.73 9.86 - 

1000 grain weight(g) -0.01±0.25 9.46 9.86 - 

Harvest index 0.85±0.83 9.67 9.86 0.83 

- The RSE could not be determined because the r g
was not significantly different from 

zero. 

3.4.7 Diversity among genotypes 

Variations were observed among the 30 rice genotypes with respect to the 16 traits that were 

evaluated. The genetic distances that were determined for each pair of genotypes using 

morpho-physiological traits including early vigour, days to early maturity, plant height, panicle 

length, tillers per hill, dead heart, bacterial leaf blight, lodging%, days to maturity, dry straw 

weight, spikelets per panicle, grain length, grain width, 1000 grain weight, harvest index and 

yield per plot are presented in Table 3.5. Figure 3.1 shows the dendrogram that was 

constructed using genetic distances. 
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Figure 3. 1 Dendrogram for 30 rice genotypes derived from an UPGMA cluster analysis 
based on morpho-physiological traits 

 

A dendrogram was constructed of the 30 rice genotypes. All 30 rice genotypes could be easily 

distinguished. The Pair Group Method with Arithmetic Means (UPGMA) cluster tree analysis 

led to the grouping of the 30 rice varieties into three major clusters, 11 rice genotypes formed 

cluster-1, cluster-2 respectively the largest cluster comprised of 15 rice genotypes and cluster-

3 comprised of four rice genotypes. The maximum genetic distance was between Txd 306 and 

Wahiwahi (Figure 3.1), followed by Wahiwahi and Txd 85, Wahiwahi and Kalamata, IR-24 and 

Kalamata, and Txd 306 and IR-24. However, the lowest genetic distances were between 

SATO IX and Txd 88, followed by IR 54 and IR 56, Supa India and WITA 10, and between 

Sindano and IR 56. In this study, the dendrogram showed that the genotypes of genetically 

similar backgrounds clustered together thus giving a clear picture on which genotypes are 

similar to each other and which ones are not. 
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3.5. Discussion 

3.5.1 Variability, Heritability and Genetic Advance 

In this study, the extent of variability in the available germplasm was studied using variability 

parameters such as genotypic coefficient of variation (GCV), phenotypic coefficient of variation 

(PCV), heritability (H2), genetic advance (GA) and genetic advance of means (GAM). The 

estimation of these parameters helps breeders in achieving the required crop improvement by 

selection. The results on variability parameters obtained in the study are discussed below. 

Number of spikelets per panicle, plant height, 1000 grain weight, and dry straw weight and 

days to early flowering showed higher estimates of GCV and PCV, indicating the presence of 

large variation among the genotypes for these characters. Therefore, simple selection can be 

practiced for further improvement of these characters. This was in conformity with the findings 

of Jayasudha and Deepak (2010) for plant height, Karthikeyan et al. (2010) for dry straw 

weight per plot, (Fiyaz & Chandrashekar, 2011) for spikelets per panicle, (Fukrei, Kumar, 

Tyagi, Rai, & Pattanayak, 2011) for days to early flowering and straw yield per plant, Lal and 

Chauhan (2011) for spikelets per panicle and plant height, (Devi & Kamireddy, 2015) for 

spikelets per panicle and Parikh et al. (2012) for 1000 grain yield. 

Dead heart, grain width, grain length, panicle length and harvest index recorded low estimates 

of GCV and PCV, indicating low range of variation for these characters in the present genetic 

materials, thus offering narrow scope for further improvement of the characters. Sinha et al. 

(2004) reported similar findings for grain length and grain width, (Fukrei et al., 2011) for panicle 

length and Devi and Kamireddy, (2015) for dead heart and panicle length.  

 

All traits registered higher estimates of PCV than GCV, indicating the variation is not only due 

to genotypes but also due to environmental effects and selection for these characters may be 

practised with caution. 

Heritability and genetic advance are regarded as important selection parameters. Burton 

(1952) suggested that genetic variation along with heritability estimates would give a better 

idea about the efficiency of selection. Heritability is a good index of the transmission of 

hereditary values from parent to their offspring. The estimates of heritability help the plant 

breeder in selection of elite characters from diverse genetic populations. In this chapter, in 

general, high heritability values were recorded for all the characters. Days to 50% early 

flowering, days to maturity, plant height, productive tillers per plant, number of panicles per 

running meter, panicle length, spikelets per panicle, 1000 grain weight, grain yield per plot, 
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straw yield per plot, harvest index, dry straw weight, panicle length and plant height showed 

high heritability estimates indicating the least influence of environment on these characters. 

These findings were in agreement with the reports made earlier in rice by (Okelola, Adebisi, 

Kehinde, & Oluwole, 2016) for days to 50% early  flowering, plant height, grain yield per plot, 

Atanu and Sabesan (2010) for days to 50 percent early flowering, days to maturity, plant 

height, grain yield per plot, Jayasudha and Deepak (2010) for days to 50 percent early 

flowering, spikelets per panicles, grain yield per plot, and harvest index, Karthikeyan et 

al.(2010) for days to maturity, plant height, panicle length, 1000 grain weight, grain yield per 

plot, dry straw yield per plot and harvest index, Naresh et al. (2012) for days to 50 percent 

early flowering, days to maturity, plant height, 1000 grain weight and grain yield per plot and 

Devi and Kamireddy, (2015) for days to 50 percent early flowering, days to maturity, plant 

height, panicle length, spikelets per panicle, 1000 grain weight and harvest index. Heritability 

estimates are generally influenced by; the type of genetic material, sample size, method of 

sampling, the way the experiment is conducted, method of calculation and effect of linkage 

etc., therefore, their scope was restricted (Lal and Chauhan, 2011). 

Heritability values coupled with genetic advance would be more reliable and useful in 

predicting the gain under selection than heritability estimates alone. The characters such as 

yield per plot, harvest index, days to maturity and days to early flowering exhibited high 

heritability coupled with high genetic advance, indicating that most likely heritability was due 

to additive gene effects and selection may be effective for these characters. Rita et al. (2009) 

and Jayasudha and Sharma, (2010) observed similar results for days to maturity, and Devi 

and Kamireddy, (2015)for harvest index and yield per plot. High heritability coupled with 

moderate genetic advance are normally classified as indicating that additive gene action were 

present. In this study all the characters which showed high heritability coupled with high 

genetic advance such as days to maturity, spikelets per panicles and days to early flowering 

indicated high genetic control. Since in self-pollinated crop homozygous lines are developed, 

the dominance component will not contribute to the phenotype of homozygous lines derived 

from a population. Consequently, in such cases additive and genetic variance are important 

for variation.  

Earlier reports also indicated high genetic advance for days to maturity (Jayasudha & Sharma, 

2010) and Karthikeyan et al., 2010), 1000 grain weight (Subudhi and Dikshit, 2009; 

Karthikeyan et al., 2010 and (Devi and Kamireddy, 2015) and grain yield per plot (Karthikeyan 

et al., 2010 and (Vanniarajan et al., 2012). High heritability coupled with high genetic advance 

as percent of mean was recorded for grain length, grain width, dry straw weight, and yield per 

plot and harvest index indicating that most likely the heritability is due to additive gene effects, 
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which might cause variations among varieties / genotypes, and selection may be effective for 

these characters. Similar kind of observations were reported by Sinha et al. (2004) for yield 

per plot, Karthikeyan et al. (2010) dry straw weight and harvest index, (Prajapati et al., 2011) 

for grain length and grain width, Venkata et al. (2011) for harvest index, and Parikh et al. 

(2012) for yield per plot and  dry straw weight.  

The characters early vigour and bacterial leaf blight exhibited moderate heritability and 

moderate genetic advance as percent of mean suggesting that both additive and non-additive 

gene effects were involved for variations of these characters, so selection and heterosis 

breeding both may be effective for improvement of these traits. These results were in 

agreement with the earlier findings of Sinha et al. (2004) for early vigour, Karthikeyan et al. 

(2010) for early vigour. 

3.5.2 Efficiency of indirect selection for grain yield 

According to Falconer, (1960) RSE of greater than unity (1) would permit use of a secondary 

trait for indirect selection for a primary trait such as grain yield. In this study, no trait had an 

RSE greater than 1. However, harvest index had an RSE of 0.83, which is close to unity. This 

trait (harvest index) seems promising and should be given top priority during selection for grain 

yield improvement. Other traits influencing grain yield but with moderate RSE should not be 

ignored during selection for grain yield improvement; these traits include days to maturity 

(0.59), days to early flowering (0.53) and dry straw weight (0.50). 

3.5.3 Diversity and grouping 

The amount of diversity available in the crop decides the success of any crop improvement 

programme. Assemblage and assessment of diversity in the germplasm is thus essential to 

know. In the present investigation, 30 genotypes of rice were studied for their diversity with 

respect to 16 important quantitative characters. 

The eight clusters that were observed in this study indicate the existence of high level of 

diversity among the genotypes. Cluster I consisted of six accessions, cluster II consisted of 

two genotypes, cluster III consisted of two genotypes, cluster IV had one genotype, cluster V 

consisted of 10 genotypes, cluster VI –five genotypes, cluster VII- three genotypes and cluster 

VIII- one genotype.The genetic distances and the dendrogram showed that G14 and G19were 

the most similar pair, followed by G6 and G9 which were also highly similar to each other; 

while the dissimilar genotypes were G30 and G28 followed by G28 and G13. The dissimilar 

genotypes can be used for hybridization to bring heterosis among the genotypes. Similar 

genotypes such as G14 and G16 could be sharing common parents in their pedigrees. A 
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breeding programme may be initiated in which individuals in different clusters are crossed and 

significant heterosis would be expected. 

3.6. Conclusion 

There was wide genetic variability for all the 16 characters studied. In general, the level of 

variability as determined by PCV and GCV was high among the genotypes. Grain yield had 

significant positive genotypic association with days to maturity, panicle length, number of tillers 

per hill, dry straw weight, spikelets per panicle, and days to maturity and harvest index 

indicating a significant contribution on grain yield per plot. Based on diversity, the 30 rice 

genotypes were grouped into 8 clusters. No trait had an RSE for indirect selection for grain 

yield of greater than or equal to unity; however, harvest index had an RSE of 0.83 which is 

close to 1 and this trait should be given top priority during selection for grain yield improvement. 

Traits with moderate RSE values such as days to maturity, days to early flowering and dry 

straw weight should also be considered for selection for grain yield improvement. Diversity 

analysis revealed considerable divergence among the 30 genotypes. Eight clusters were 

observed based on Euclidian distances, and a crossing programme could be designed 

involving individuals from different clusters with the anticipation of significant heterosis for 

grain yield and other traits. 
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CHAPTER 4 

Correlations, path coefficient analysis and genotype-by-trait 

associations in rice (Oryza sativa L.) 

Abstract 

The present investigation was undertaken to assess the relationship among traits of rice using 

correlation, path coefficient and genotype-by-trait associations among 30 rice (Oryza sativa L) 

genotypes that were received from the agriculture research station ARI-KATRIN and rice 

institution AfricaRice and the International Rice Research Institute. The 30 genotypes were 

evaluated during the wet season of 2017 in a 6x5 alpha lattice design with three replications. 

Correlation analysis showed that traits which were positively and highly significantly correlated 

to yield per plot were harvest index (0.77***), dry straw weight (0.46***) and days to early 

flowering (0.40***) which means they contributed substantially to grain yield. On the other 

hand, path coefficient analysis revealed that harvest index (0.080) had a positive direct effects 

on grain yield. Due consideration should be given on it while selecting for grain yield 

improvement in rice. However, there were other positive direct contributors such as dry straw 

weight (0.51), days to maturity (0.11) and grain width (0.11). It will be necessary to select 

simultaneously for these traits together with those with strong positive indirect effects on grain 

yield in order to improve grain yield in rice.  The genotype-by-trait biplot analysis revealed that 

the genotypes NERICA 4, IRRI-24,NERICA 2, Mwangaza, Tule na bwana and Wahiwahi had 

superior performance for BLB resistance, while Txd 306  was superior for yield contributing 

traits, whereas, the genotype Wahiwahi showed superior performance for days to maturity and 

days to early flowering. Hence, crosses involving these three categories of genotypes may 

result in BLB resistant genotypes coupled with high grain yield contributing traits and early 

maturity. The genotypes NERICA 4 and IRRI-24 were identified as best cultivars as they 

combined BLB resistance and several other good traits and thus could serve as good parents 

for use in breeding for better cultivars that combine grain yield and bacterial leaf blight 

resistance.  

Key words: correlations, path coefficients, genotype-by-trait association 
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4.1 Introduction 

Multi-trait relationships and the associations between yield and other component traits are key 

consideration for all crop breeders. Observed and true associations between traits may be 

quantified in terms of simple phenotypic and genotypic correlation coefficients, respectively 

(Dewey and Lu, 1959). However, yield is a complex trait and is influenced directly as well as 

indirectly by its various components. Correlation coefficients alone do not explain the 

complexity of the associations between traits or how change in a trait affects an associated 

trait (Dabholker, 1992; Dewey and Lu, 1959).To address this deficiency, path coefficient 

analysis developed by (Ellett & Ericson, 1986) disaggregates the correlation coefficient into 

the direct and indirect effects of various variables (traits) on a dependent variable (Sivathanu 

et al., 2015) ;Sabaghnia et al., 2015). Direct effect is when a variable affects another without 

being influenced by other variables whereas indirect effects occur when the relationship 

between two variables is mediated by one or more variables (Patil & Sushir, 2011) 

Knowledge of the associations between yield and its component traits and among the 

component traits themselves would allow for more effective selection for yield. In rice, grain 

yield has been reported to be highly directly associated with: panicle per hill and straw weight 

per plant (Akabari & Niranjana, 2015) productive tillers and 1000 weight (Sao et al., 2016; 

Tongoona et al., 2016) yield per plot, grain length and grain width (Chander et al., 2017; 

Ponnaiah et al., 2018) and plant height, panicle length, days to maturity and harvest index 

(Reddy et al., 2001). Studies that have generated such information on rice in Tanzania are 

limited.  

The genotype-by-trait (GT) biplot analysis proposed by Bernal et al., (2013) is another 

powerful statistical tool for studying relationships among traits, evaluating cultivars based on 

multiple traits and for identifying those that are superior in certain traits. These could be 

candidates for use as parents in a breeding programme or directly released for commercial 

production. The main and important feature of genotype-by-trait (GT) analysis is that it 

facilitates the graphic visualization of the genetic correlations among traits (Yan & Rajcan, 

2002); Lee et., 2003) and relatively easy in identification and selection of genotypes based on 

multiple traits (Bernal et al., 2013; Yan & Rajcan, 2002). It also provides information that helps 

to detect less important (redundant) traits and identify those that are appropriate for indirect 

selection for a target trait. Genotype-by-trait analysis of rice cultivars based on multiple traits 

including yield components and disease resistance traits to obtain the aforementioned 

essential knowledge for use in breeding is rare in literature. Therefore, the objective of this 

investigation was to assess relationship among traits of rice using correlation and path 
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coefficients among traits and to study genotype-by-trait associations among local and 

introduced rice genotypes in Tanzania. 

4.2 Materials and Methods 

The present investigation was carried out during the wet season of2017 in the eastern and 

southern parts in Tanzania. ARI-KATRIN is in the east and two sites Igurusi and Kyela are 

located in the southern agro-climatic zone of Tanzania. Detailed information about climate and 

soil at each of the locations is presented in Table 2.2 

4.2.1. Plant materials 

The experimental material comprised of 30 diverse genotypes of rice. The materials were 

obtained from ARI- KATRIN (Kilombero Agricultural training and Research Institute), 

International Rice Research Institute (IRRI) and AfricaRice. The relevant features of these 

genotypes are presented in Table 2.1. 

4.2.2 Trial design and crop management 

The field was ploughed and harrowed twice until a fine layer of soil was obtained. The 

experiment was laid-out in an alpha lattice design with three replications. The crop was sown 

on 3rd March 2017 at Katrin, 6th March at Igurusi and 7th March in Kyela, and each genotype 

was sown in two rows of 5m length with a spacing of 20 cm between rows and 20 cm between 

plants within rows. Border rows were sown to avoid border effect and intrude damage. 

Thinning was done at seedling stage to leave single seedlings per hill. The crop was fertilized 

as presented in Section 3.2.2. Other crop management practices such as irrigation, weeding 

and plant protection measures were carried out as and when needed during the crop growth 

period.  

4.3 Data collection  

Bacterial leaf blight severity was rated at maturity stage: for early maturity varieties from 80 

days and for late maturity from 100 days after planting using the 1-9 scale (IRRI, 1996) to 

describe the symptoms. The rating was; 1 = 1-5% leaf area affected, 3=5-12% leaf area 

affected, 5=13-25% leaf area affected, 7=26-50 leaf area affected and 9=50> leaf area 

affected and thirty plants were randomly selected and identified for data collection. On each 

plant, data were collected on early vigour (scoring 1-9), days to early flowering (by counting 

number of days from cultivation to early flowering day), plant height (by measuring average of 

height from base to the tip of last leaf), panicle length (by measuring from the base (first node) 

to the tip of last spikelet of panicle), number of tillers per hill (by counting of tillers per hill). 
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Dead heart (scoring 1-9), lodging% (by recording % from 10%-100%) and days to maturity 

(the number of days from cultivation to maturity day at 80%) were also recorded. Data on dry 

straw weight (the total weight of straw after threshing per plot was measured in kg), number 

of spikelets per panicle, grain length (by measuring distance from the base of the lowest glume 

to the tip), grain width (measured as the distance across the fertile lemma and weighed in g), 

1000-grain weight (one thousand seeds were counted and weighed (g)), harvest index (for 

total biological yield the entire plant above the ground lever was harvested, sun dried and 

weight at maturity, then harvest index was calculated by harvest index (%) = economical yield 

/ biological yield x 100 and yield per plot (by weighing the total grains per plot) were also 

collected.     

4.3.1 Data analysis  

4.3.2 Phenotypic correlation analysis 

Simple Pearson correlation coefficients were calculated using mean values for all traits from 

all locations using PROC CORR of SAS version 9.4 (SAS, 2014). 

The phenotypic correlation was determined as follows, according to Know and Torrie (1964). 




pypx

pxy

pr


  

Where, r p
phenotypic correlation,  pxy

phenotypic covariance of x and y characters, 

 px
square root of phenotypic variance of x character,  py

square root of phenotypic 

variance of y character. 

4.3.3 Path coefficient analysis 

Correlation does not provide an exact picture of the relative importance of influence of each 

of the component characters, because it does not analyse the direct and indirect influence of 

characters on yield. The path coefficient analysis, a cause and effect relationship provides 

knowledge of relative importance of each of the component characters. Path coefficient 

analysis was done according to the procedure suggested by Dewey and Lu (1959). 

If grain yield is the effect y and x1
is the cause, the path coefficient for the path from cause

x1
to the effect y is





y

x1  

Direct and indirect effects were worked out using phenotypic correlations as follows. 
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Direct effect of x1
on y  = yp x1

 

Where, px
1
is the path coefficient of x1

 on y  

Similarly, direct effects of other attributes on grain yield were worked out. 

Indirect effect of x1
 via x2

 on y xxx ryp
212

.  

Where, yP x2
 is the path coefficient of the component character x2

 on y  

xxr
21
 is the phenotypic correlation between x1

 and x2
. 

The path coefficient scales suggested by Kiani, (2012), where 0.00-0.09 is negligible, 0.10-

0.19 low, 0.2 0-0.29 moderate, 0.30-0.99 high and >1.0 very high were used. 

4.3.4 Genotype by trait model 

From a genotype-by-environment-by-trait three-way table, genotype-by-trait tables across all 

environments or across a subset of the environments can be generated and visually studied 

using biplots. Biplot analysis of genotype by trait tables is a typical example of biplot analysis 

of multivariate data. The model for biplot analysis of genotype by trait data is SVD of trait-

standardized two-way table, i.e., equation with sj being the standard deviation for trait j. A 

genotype by trait biplot can help understand the relationships among traits (breeding 

objectives) and help identify traits that are positively or negatively associated, traits that are 

redundantly measured, and traits that can be used in indirect selection for another trait.  It also 

helps to visualize the trait profiles (strength and weakness) of genotypes, which is important 

for parent as well as variety selection (Bernal et al., 2013). 

Adjusted mean values of the traits were used for the analysis of genotype by trait and trait 

associations.  To display the genotype by trait two-way data in a biplot, the formula suggested 

by Yan & Rajcan, (2002) was used as follows: 

 

ij
sj jiji

jij TT
 

222111

_
 

where, T ij
is the average value of genotype i for trait j , T j

is the average value of trait j

over all genotypes, sj is the standard deviation of trait j among the genotype averages;
1i

and 
2i
are the first principal component (PC1) and the second principal component (PC2) 
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scores, respectively, for genotype i 1j
and 2j

are the PC1 and PC2 scores, respectively, for 

trait j , and ij is the residual of the model associated with the genotype i and trait j .  

Equation is a principal component analysis of standardized data with two principal 

components. Because different traits use different units, the standardization is necessary to 

remove the units. PC1 and PC2 must be scaled so that the one value is symmetrically 

distributed between the genotype scores and the trait scores. A Genotype by trait biplot is 

constructed by plotting the PC1 scores against the PC2 scores for each genotype and each 

trait. 

4.4 Results 

4.4.1 Correlation 

The phenotypic correlation coefficients between yield and its related components in all 

possible comparisons were presented in Table 4.1. Association with grain yield per plot was 

positive and significantly highest for harvest index (0.77***) only while the other traits were not 

reliable with grain yield per plot.    
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Table 4. 1 Phenotypic correlation coefficients between 16 quantitative traits evaluated across three locations 

Trait EV DTEF PH PL TH DHTRI BLB LODI DM DSTR SPP GL GW TGW HI YP 

EV 1.00 0.19** -0.52*** -0.50*** 0.02ns 0.42*** 0.14* -0.41*** 0.19** 0.31*** 0.39*** -0.52*** -0.59*** -0.28*** -0.03ns -0.22* 

DTEF  1.00 -0.35*** -0.17* 0.08ns -0.26*** 0.19** -0.24*** 0.90*** 0.20** 0.12ns -0.28*** -0.25*** -0.13* 0.31*** 0.40*** 

PH(cm)   1.00 0.80*** -0.34*** -0.28*** -0.19** 0.72*** -0.44*** 0.17* 0.17ns 0.41*** 0.65*** 0.31*** -0.11ns 0.00ns 

PL(cm)    1.00 -0.21*** -0.42*** -0.32*** 0.52*** -0.25*** 0.24*** 0.38*** 0.45*** 0.74*** 0.29*** 0.09ns 0.23** 

TH     1.00 -0.13* -0.01ns -0.21* 0.09ns 0.08ns 0.15* -0.03ns -0.08ns -0.10ns 0.29*** 0.33*** 

DHTRI      1.00 0.25*** -0.27*** 0.26*** -0.23** 0.49*** -0.58*** -0.62*** -0.22* 0.06ns -0.08ns 

BLB       1.00 -0.14* 0.20** 0.01ns 0.28*** -0.28*** -0.33*** -0.19** -0.05ns -0.05ns 

LOD        1.00 -0.30*** 0.20*** 0.22*** 0.39*** 0.48*** 0.28*** -0.17* -0.03ns 

DM         1.00 0.23ns 0.13* -0.27*** -0.33*** -0.17ns 0.25*** 0.38*** 

DSTR(kg)          1.00 0.35*** 0.21*** 0.26*** 0.10ns -0.12* 0.46*** 

SPP           1.00 0.43*** 0.48*** 0.16** 0.04ns 0.29*** 

GL(mm)            1.00 0.63*** 0.44*** -0.06ns 0.11ns 

GW(mm)             1.00 0.40*** -0.04ns 0.16ns 

TGW(g)              1.00 -0.12* -0.03ns 

HI               1.00 0.77*** 

YP(kg)                1.00 

***- Significant at P<0.001, **- Significant at P<0.01, *-Significant at P<0.05, ns-Non significant 
EV= Early vigour, DTEF= Days to early flowering, PH= Plant height, PL= Panicle length, TH= Tillers per hill, DH= Dead heart, BLB= Bacterial leaf blight, LODI= 
Lodging percent, DM= Days to maturity, DSTR= Dry straw weight, SPP= Spikelet per panicle, GL= Grain length, GW= Grain width, TGW= Thousand grain 
weight, HI= Harvest index YP= Yield per plot. 
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4.4.3 Path coefficient analysis 

For the 16 quantitative traits, determination of direct and indirect path coefficients were 

estimated (Table 4.2). It was evident from the results that grain yield per plot was the result of 

days to early flowering, days to maturity,  tillers per hill, dry straw weight per plot and harvest 

index as they had significant effects on it. The highest and positive direct effect (0.80) was 

from harvest Index and others were dry straw weight (0.510), days to maturity (0.11), grain 

width (0.11). These traits should be given top priority during selection of grain yield 

improvements. Traits, which indirectly affect grain yield via other traits, should also be 

considered during selection. In this study significant indirect effects were observed for days to 

early flowering through harvest index (0.2487), panicle length via dry straw weight (0.12), tillers 

per hill through harvest index (0.23), dead heart via dry straw weight (-0.12), days to maturity 

through dry straw weight (0.12), number of spikelets per panicles through dry straw weight 

(0.18), grain length through dry straw weight (0.11), and grain width through dry straw weight 

(0.13).  
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Table 4. 2 Direct and Indirect effects of secondary traits on grain yield 

TRAIT EV DTEF PH PL TH DH BLB LODI DM DSTR SPP GL GW TGW HI 

EV 0.0197 -0.0107 0.0152 -0.0151 0.0015 0.0370 0.0028 0.0033 0.0204 -0.1580 -0.0173 -0.0232 -0.0663 -0.0001 -0.0267 

DTEF 0.0038 -0.0554 0.0102 -0.0053 0.0051 0.0226 0.0038 0.0019 0.0973 0.0997 0.0051 -0.0125 -0.0280 -0.0001 0.2487 

PH (cm) -0.0102 0.0192 -0.0294 0.0242 -0.0215 -0.0250 -0.0039 -0.0059 -0.0475 0.0890 0.0075 0.0183 0.0732 0.0002 -0.0851 

PL(cm) -0.0097 0.0096 -0.0234 0.0304 -0.0133 -0.0369 -0.0065 -0.0042 -0.0275 0.1214 0.0168 0.0198 0.0836 0.0001 0.0700 

TH 0.0005 -0.0044 0.0100 -0.0064 0.0633 -0.0110 -0.0003 0.0017 0.0100 0.0424 0.0064 -0.0014 -0.0094 0.0000 0.2309 

DH 0.0083 -0.0142 0.0083 -0.0127 -0.0079 0.0882 0.0050 0.0022 0.0286 -0.1173 -0.0215 -0.0256 -0.0702 -0.0001 0.0495 

BLB 0.0027 -0.0106 0.0057 -0.0098 -0.0008 0.0222 0.0200 0.0011 0.0215 0.0040 -0.0121 -0.0123 -0.0369 -0.0001 -0.0402 

LODI -0.0080 0.0133 -0.0213 0.0157 -0.0135 -0.0234 -0.0027 -0.0081 -0.0321 0.1030 0.0098 0.0173 0.0544 0.0001 -0.1385 

DM 0.0037 -0.0497 0.0129 -0.0077 0.0058 0.0233 0.0040 0.0024 0.1085 0.1170 0.0056 -0.0121 -0.0376 -0.0001 0.1992 

DSTR(kg) -0.0061 -0.0108 -0.0051 0.0072 0.0053 -0.0203 0.0002 -0.0016 0.0249 0.5103 0.0155 0.0093 0.0293 0.0000 -0.0962 

SPP -0.0077 -0.0064 -0.0050 0.0116 0.0092 -0.0430 -0.0055 -0.0018 0.0137 0.1796 0.0441 0.0190 0.0541 0.0001 0.0304 

GL(mm) -0.0103 0.0156 -0.0121 0.0136 -0.0020 -0.0508 -0.0055 -0.0031 -0.0297 0.1070 0.0189 0.0444 0.0712 0.0002 -0.0458 

GW(mm)  -0.0116 0.0138 -0.0190 0.0225 -0.0053 -0.0548 -0.0065 -0.0039 -0.0361 0.1324 0.0211 0.0280 0.1129 0.0002 -0.0288 

TGW(g) -0.0055 0.0071 -0.0092 0.0090 -0.0062 -0.0197 -0.0038 -0.0023 -0.0181 0.0492 0.0072 0.0195 0.0446 0.0005 -0.0998 

HI -0.0007 -0.0172 0.0031 0.0027 0.0183 0.0055 -0.0010 0.0014 0.0270 -0.0614 0.0017 -0.0025 -0.0041 -0.0001 0.8003 

EV= Early vigor, DTEF= days to early flowering, PH= Plant height, PL= plant length, PL= Panicle length, TH = Tillers per hill, DH = Dead heart, 
BLB = Bacterial leaf blight, LODI = lodging percent, DM = Days to maturity, DSTR = Dry straw weight, SPP = Spikelet per panicle, GL = Grain 
length, GW = Grain width, TGW = Thousands grain weight, HI = Harvest index. 
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4.4.4 Genotype by trait associations 

4.4.4.1Genotype by traits biplot analysis of the performance of 30 rice genotypes 

based on multiple traits 

A genotype-by-trait (GT) biplot analysis was carried out with nine important traits and 30 

genotypes using data collected from across three environments. The biplot accounted for 

87.78% of the total variation, of which PC1 explained 81.73% and PC2 explained 6.05%. 

Considering the furthest genotypes from the biplot origin, a line was first drawn to join these 

genotypes so that all other genotypes are within the biplot (Figure 4.1). Then perpendicular 

lines to each side of the biplot were drawn, starting from the biplot origin. The perpendicular 

lines are equality lines between adjacent genotypes on the polygon, which facilitate visual 

comparison (Yan and Tinker 2006). The equality lines divided the biplot into sectors, and the 

winning genotype for each sector is the one located on the respective vertex. The genotype 

which occupied vertex position in the biplot is known as vertex genotype. The vertex 

genotypes in each sector were regarded as the genotype with the highest value of the traits 

within the sector. These vertex genotypes could be exploited in hybridization programme as 

potential parents in the development of varieties, hybrids and populations that are outstanding 

in those traits. 

From Figure 4.1 genotypes G3, G1, G2 and G28 were regarded as top genotypes, which 

exhibited superior performance for the bacterial leaf blight resistance traits allocated within the 

sector. For plant height, genotype G24 had the highest plant height, while G28 exhibited better 

performance for days to maturity and days to early flowering, and genotype G1 and G2 

exhibited superior performance for early vigour. For the character dry straw weight, the 

genotypes G9, G7 and G30 showed better performance, whereas for the trait harvest index, 

the genotype G10 exhibited superior performance and for the trait yield per plot, the best 

performing genotype was G30 although it was a susceptible check for bacterial leaf blight. 

Even though the genotypes G3, G1, G2, and G28 showed better performance for high 

resistance to bacterial leaf blight, they were not the best for grain yield per plot. So these 

genotypes may be used for crosses with the intention to combine grain yield and bacterial leaf 

blight resistant traits in a single genotype. The suggested genotypes for crosses are NERICA4 

with Txd 306. NERICA 4 was resistant to BLB but low yielding, while Txd 306 was susceptible 

to bacterial leaf blight but high yielding. This cross could result in a genotype that is resistant 

to BLB, but also high yielding. Genotype G22 exhibited poor performance for the lodging%, 

indicating that it could be improved by crossing with genotypes which had low lodging% in 

order to improve it. Figure 4.1 is the biplot showing the interactions between genotype and 

traits.  
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Figure 4.1 Biplot showing association between genotypes and traits 

EV= Early vigour, DH= Dead heart, TH= Number of tillers per hill, HI= Harvest index, PL= 

Panicle length, YP= Yield per plot, DTEF= Days to early flowering, DM= Days to maturity, 

BLB= Bacterial leaf blight, SPP= Number spikelets per panicle, DSTR= Dry straw weight, 

TGWT= Thousand grain weight, PH= Plant height, GW= Grain width, GL= Grain length and 

LOD= Lodging %.  
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4.5 Discussion 

4.5.1Correlation 

Correlation studies provide better understanding of yield components that helps the plant 

breeder during selection (Alan et al., 2013; Haider & Kaku, 2012). The phenotype of a plant is 

the result of interaction of a large number of factors so the final yield is the sum total of the 

effects of several component characters. Yield is the final phenotypic performance of the plant, 

which is influenced by various factors such as genetic, environment and their interactions. 

This complex quantitative character is under the control of polygenes. Polygenes are highly 

sensitive to the environment. Hence, the selection of superior genotype based on yield alone 

may not be effective. For the rational approach towards the improvement of yield, selection 

has to be operated through associated characters. Traits like harvest index (0.77***), that 

showed highly positive correlation with grain yield per plot must be taken into consideration 

during selection and improving rice varieties, while negative correlation between like early 

vigour (-0.22*) and grain yield implies entries which exhibited poor vigour (high vigour scores) 

also had a poor yields.  

Days to early flowering displayed significant positive association with days to maturity. This 

result was in agreement with the earlier findings of Agahi et al., (2007); Bhujel et al., (2018); 

Wattoo et al., (2010). Days to maturity was significantly correlated with dry straw weight. Bhujel 

et al., (2018) reported a similar type of positive association of days to maturity with dry straw 

weight. Plant height exhibited significantly positive correlation with panicle length, 1000 grain 

weight and dry straw weight per plant. Similar results were observed by Basavaraja et al., 

(2011); Bhujel et al., (2018); Hajiaqatabar & Kiani, (2016); Kumar et al., (2015); Madhubabu 

et al., (2011), Jayasudha and Deepak (2010) for panicle length and Madhubabu et al., (2011) 

for 1000 grain weight. Similarly, tillers per hill had significantly positive correlation with harvest 

index. These results were similar to the findings of Agahi et al., (2007); Madhubabu et al., 

(2011); Sivasankar et al., (2018) for harvest index. The character panicles per hill had positive 

correlation with straw yield per plot. Panicle length had significant positive association with 

spikelets per panicle. (Basavaraja et al., 2011; Kumar et al., 2015; Madhubabu et al., 2011; 

Rahman & Syed, 2012) observed similar associations. The character spikelets per panicle 

had positive correlation with dry straw weight per plot. 

4.5.2 Path coefficients 

The highest direct positive effects on grain yield were contributed by harvest index, dry straw 

weight, grain width and days to maturity. When compared to the path coefficient scales 

suggested by Lenka and Mishra (1973) where 0.00-0.09 is negligible, 0.10-0.19 low, 0.2 0-
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0.29 moderate, 0.30-0.99 high and >1.0 very high, harvest index (0.80), dry straw weight 

(0.510), had high direct effects, whereas grain width (0.113), days to maturity (0.108) had low 

direct effects. This means that genotypes with high harvest index and dry straw weight give 

more grain yield per plot and the high yields can be achieved. 

The characters, days to maturity, dry straw yield per plot, and harvest index exerted positive 

direct effect on grain yield per plot and correlation of these characters with grain yield was 

positively significant. Thus, direct selection for these traits could be rewarding for yield 

improvement. These findings are in agreement with reports of Agahi et al., (2007); Kumar et 

al., (2015); Mahmud et al., (2007); Rashid et al., (2017); Sivasankar et al., (2018) for harvest 

index, Basavaraja et al., (2011); Hajiaqatabar & Kiani, (2016); Kishore et al., (2015); Kumar et 

al., (2015); Lingaiah et al., (2014); Rahman & Syed, (2012) for days to maturity, and 

Jayasudha and Deepak (2010); Kamireddy et al., (2016); Madhubabu et al., (2011) for harvest 

index.  

4.5.4 Genotype by trait biplot 

Yield improvement is the ultimate goal for most of the breeding programmes. Yield could be 

described as the sum total of all physiological and developmental processes that occur from 

sowing to maturity as conditioned by environmental factors prevalent during the growing 

season (Rubio et al., 2004). Yield being a complex trait controlled by polygenes, improvement 

in yield is difficult through direct selection and may be a lot easier through selection for 

component traits involved in the pathway (i.e. indirect selection). As a result, it has become a 

routine in breeding trials in which yield improvement is of prime importance, to gather data on 

multiple traits associated with grain yield. Furthermore, a cultivar gains wide acceptability 

based on a package of desirable traits and not just its yield potential. 

In GGE biplot for yield data, the grain yield per plot and harvest index were closely and 

associated to each other. This suggests that high yielding genotypes in three locations depend 

much on their highest harvest index and therefore this trait may be referred to as the yield – 

related trait. However, plant height and lodging were positively associated but negatively 

associated with yield per plot. Therefore, these two traits are not closely related with yield per 

plot. BLB was closely related and positively associated with dry straw weight, suggesting that 

BLB occurrence can weaken the leaves and therefore affect the dry straw weight. Also yield 

per plot was negatively correlated with BLB indicating the crucial importance of resistance to 

BLB in these three locations. 
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Moreover, the genotypes which were resistant to BLB can be used in crosses with other 

genotypes which performed well in respect of yield especially Txd-306. This is because a 

genotype is more or less a complex biological system rather than a simple collection of 

independent traits, and an effective breeding programme requires the essential components 

of the system and the interrelationship among them (Bernal et al., 2013). In addition, in an 

inclusive multi-trait selection process proposed by (Yan & Frégeau-reid, 2018), selection 

strategies are grouped into three categories: independent selection, independent culling, and 

index selection; so that all the aspects in a variety or parent line selection are taken into 

consideration. The GGE biplot helps to provide the information that assists in detecting less 

important traits and identifying those that are appropriate for indirect selection for a target trait. 

4.6 Conclusion 

In this study, path coefficient analysis indicated that grain yield was positively and significantly 

correlated with harvest index, dry straw weight, days to early flowering, days to maturity, tillers 

per hill and panicle length. Path coefficient analysis indicated that, among yield components, 

harvest index, dry straw weight and grain width had a positive direct effect on grain yield and 

therefore, may be considered as selection criteria for the improvement of grain yield. In 

addition, the genotype by trait (GT) biplot analysis was used to identify the best traits that are 

important in classifying resistant and high yielding genotypes and to know the relationships 

between traits and genotypes. The genotypes NERICA 4, IR-24,NERICA 2, NERICA 1, 

LOWLAND NERICA 6, WAB 450-12-12-BL1-DV4, Mwangaza, Tule na bwana and Wahiwahi 

showed superior performance for BLB resistant, whereas the genotypes Txd -306 showed 

superior performance for high yield. Hence, crosses involving these two categories of 

genotypes may result in the production of resistant genotypes coupled with high grain yield. 

Based on genotype-by-trait biplot analysis, it can be concluded that the traits plant height, 

days to maturity, lodging%, bacterial leaf blight scores, days to early flowering, early vigour, 

dry straw weight harvest index and yield per plot are important traits for yield as well as 

resistance and hence they could be considered as key components during the selection 

programme aimed at improvement for grain yield and BLB resistance. The genotypes NERICA 

4, SATO 1 and IR-24 were identified as the best cultivars and therefore most desirable as they 

combined several good traits in their genetic composition and thus could serve as good 

genetic raw materials when crossed with the other high yielding and BLB resistant genotypes. 
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Chapter 5 

General overview of the research findings 

5.1 Introduction 

The aim of this study was to contribute to the increase and strengthening of rice production in 

Tanzania through development of high yielding and BLB resistant varieties. Selections were 

done to identify BLB resistant varieties and BLB susceptible genotypes endowed with other 

desirable traits, which can be used for improvement.   

The objectives of this study were: 

1. To analyse genotype x environment interaction effects for reaction to bacterial leaf blight 

under natural infestation and grain yield performance across environments in rice (Oryza 

sativa L) 

2. To assess the heritability, variability and efficiency of indirect selection of secondary 

traits for grain yield improvement among rice genotypes. 

3. To study correlation, path coefficients and genotype-by- trait associations in rice (Oryza 

sativa .L) 

5.2 Research summary 

5.2.1 Genotype × environment interaction analysis for reaction to bacterial leaf 

blight under natural infestation and grain yield performance across 

environments in rice (Oryza sativa L.) 

The study showed a highly significant (p<0.001) genotype x environment interaction (GEI) 

effects for BLB. The ranking of the genotypes across environments revealed a crossover type 

of GEI whereby in three locations, the GGE biplot analysis identified NERICA 2 and 

LOWLAND NERICA 6 as resistant and the most stable genotypes across environments. For 

the ‘which won where’ in plot, the genotype which won in ARI-KATRIN was Dakawa 83,while 

in Igurusi and Kyela the genotype which won was NERICA 4. 

5.2.3 Genetic analysis and evaluation of secondary traits for use in indirect 

selection of grain yield improvement among rice genotypes 

High broad sense heritability estimates were observed for days to early flowering (99.665%), 

days to maturity (99.353%), grain length (98.211%) and for grain yield per plot (97.126). Broad 

sense heritability estimations were low for lodging % (0.00%) and the other such as dead heart 

(22.567%).The traits spikelets per panicles, 1000- grain weight, number of tillers per hill, 

panicle length and early vigour were important direct contributors to yield improvement. 

Regarding variability parameters, lodging % had the highest PCV% (5325.463%) followed by 
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spikelets per panicles (1005.352%) and plant height (294.959%); number of spikelets per 

panicle had the highest GCV% (419.902%) followed by plant height 97.843% and days to 

early flowering (64.307%). As for GA, the highest was for spikelets per panicles (66.79), 

followed by plant height (22.34) and days to maturity (15.66). Grain yield had the highest GAM 

of 104.13% followed by dry straw weight (92.11%) and harvest index (66%). In respect of 

efficiency of secondary traits for indirect selection for grain yield, harvest index (0.83) was the 

best, followed by days to maturity(0.59) and days to early flowering (0.53) these traits should 

be given top priority in selection for improvement of grain yield in rice. 

5.2.4 Correlations, path coefficients and genotype-by-trait associations in rice 

(Oryza sativa L.) 

The traits which were positively correlated with yield were harvest index (0.77***), dry straw 

weight (0.46***), days to early flowering (0.40***), days to maturity (0.38***), number of tillers 

per hill (0.33***) and spikelets per panicles (0.29***). Traits which had direct effect on grain 

yield are harvest index (0.800), dry straw weight (0.510) and grain width (0.113) and those 

that contributed indirectly were days to early flowering through harvest index (0.249), and 

panicle length through dry straw weight (0.121), number of tillers per hill through harvest 

index(0.231), dead heart through dry straw weight (-0.117), lodging percent through dry straw 

weight (0.103), lodging percent through harvest index (-0.1385), days to maturity through dry 

straw weight (0.117), days to maturity through harvest index (0.200), spikelets per panicles 

through dry straw weight (0.180),grain length through dry straw weight (0.107) and grain width 

through dry straw weight (0.132),so these are the traits which should be considered when a 

breeder needs to improve rice genotypes for grain yield. For genotype-by-trait associations, 

the superior genotype for early vigour was Kalamata, days to early flowering was Wahiwahi, 

plant height was Kalamata, and for BLB resistance, NERICA 4; days to maturity, Wahiwahi; 

dry straw weight, Txd 306; harvest index, SATO IX, and grain yield per plot Txd 306.Therefore, 

these superior genotypes for the different traits can be used if a breeder needs to improve 

specific traits or to combine traits in a single rice variety.  

5.3 Recommendations and future directions 

Resistant genotypes are most preferable by the farmers and the breeders rather than using 

bactericides, which sometimes cause environmental pollution and health problems. The 

existence of significant genotypic variation for reaction to BLB disease and other desirable 

traits including grain yield suggests that it is possible to develop high yielding and BLB tolerant 

or resistant rice cultivars for production in Tanzania. However, for acceptance of the new rice 

cultivars, it would be important to combine yield and disease resistance with grain quality traits. 
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However, there were three local varieties, Mwangaza, Kalamata and Kalundi that were 

resistant to BLB, and other improved varieties, especially the NERICAs were the best for 

disease resistance.  These genotypes are therefore recommended to be used in breeding 

programmes aimed at developing resistant varieties for the all the three ecologies in Tanzania. 

Traits that were conditioned by high heritability were days to early flowering, days to maturity, 

grain length and grain yield per plot. Thus, they can quickly be improved under a condition 

with no disease pressure through recurrent selection procedures aimed at accumulating the 

desirable additive genes. On the other hand, the traits lodging and dead heart were highly 

influenced by the environment resulting in low broad sense heritability estimates. Therefore, 

selection based on these traits would wait until later generations. Hybridization can be a choice 

for developing cultivars with high yield, disease resistance and other desirable yield 

components. In genotype x environment interactions, high resistant and stable genotypes 

were identified across the test environments using the GGE biplot models. The GGE biplot 

showed that NERICA 2 and LOWLAND NERICA 6were the most stable and resistant 

genotypes. However, since the results of this study were based on a single year data, more 

temporal and spatial environments will be needed to give meaningful recommendations. 

 


