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Abstract 

There has been significant interest in the research community on detectors for DS-CDMA 

systems. The conventional detector, which detects users ' data bits, by using a filter matched to the 

users' spreading codes, has two major drawbacks. These drawbacks are (1) its capacity is limited 

by multiple access interference (MAl) and (2) it suffers from the near-far problem. The remedy to 

these problems is to use a multiuser detector, which exploits knowledge of users ' transmission 

and channel parameters to mitigate MAl. Such detectors are called multi user detectors (MUD). A 

number of these detectors have been proposed in the literature. The first such detector is the 

optimal detector proposed by Verdu. Following Verdu 's work a number of sUboptimal detector 

were proposed. These detectors offer better computational complexity at the expense of the bit 

error rate performance. Examples of these detectors are the decorrelating detector, the minimum 

mean squared error detector (MMSE), the successive interference cancellation and parallel 

interference cancellation. In this thesis, we consider the adaptive DS-CDMA MMSE detector, 

where lattice-based filter algorithms are employed to suppress MAl. Most of the work in the 

literature has considered the implementation of this detector using the Least Mean Square (LMS) 

algorithm. The disadvantage of using the LMS algorithm to implement the MMSE detector is that 

the LMS algorithm converges very slowly. 

The main aims of this thesis are as follows. A review of the literature on MUD is presented. A 

lattice based MUD is then proposed and its performance evaluated using both simulation and 

analytical methods. The results obtained are compared with those of the LMSMMSE detector. 

From the results obtained the adaptive Lattice-MMSE detector is shown to offer good 

performance tradeoffbetween convergence results and BER results. 
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1.1 Background 

Chapter 1 
Introduction 

The market of wireless communication is one of the fast growing markets today. Important 

examples of wireless communication systems are cellular mobile communication systems, 

cordless telephone systems and mobile data networks. Such systems offer voice and/or data 

services to mobile users. The reason behind the rapid growth in wireless communications was the 

introduction of digital technology, which made it possible for the following attractive features to 

be realized. 

• A high percentage of the service area to be covered. 

• Accommodation of a large number of communicating users. 

• Lower power consumption, weight and size of the mobile terminal. 

The earliest cellular communication systems such as the Total Access Communication System 

(T ACS) in United Kingdom, Spain and Italy, Nordic Mobile Telephone (NMT) in Scandinavia 

and the Advanced Mobile Phone Service (AMPS) in the United state (US) employed analog 

technology and were termed first generation systems. Since these systems employed analog 

technology their mobile terminal were big in size, and weight and were characterized by high 

power consumption. In addition to this, they covered a small percentage of service area, resulting 

in small system capacity. Second generation systems are resed on digital technology and have 

been introduced in major markets of the world. Standards for the second cellular generation 

system are 

• Global System for Mobile Communication (GSM)- developed in Europe 

• The IS-54 and IS-95 - developed in the United States 

• Personal Digital Cellular (PDC) system- developed in Japan 

The major shortcoming of the second generation systems are its incapability to offer a wide range 

of services on a single system, e.g. most of the second generation cellular telephone only offered 

voice services and short message service (SMS). 
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Future mobile communication systems, termed third-generation (3G) mobile communication 

system will have to meet the following requirements 

• High flexibility 

• High system capacity 

• Low cost and ease of implementation 

Flexibility is demanded with respect to offering a wide range of voice and data services with 

different and variable data rates of up to 2Mbitls, frequency & radio resource management, 

system deployment and international roaming. 

In a bid to find standards and recommendations, which will ensure that these requirements are 

met, the International Telecommunication Union (ITU) and other bodies launched a number of 

research efforts in the 1990s. The air interfaces adopted by the various bodies for the 3G mobile 

communication systems are summarized below. 

At the beginning of 1997, Japan ' s Association for Radio Industry and Business (ARIB), adopted 

Wideband Code Division Multiple Access as the air interface for the 3G mobile communication 

system and began to develop detailed standardization of this interface. Soon, Europe and the US, 

followed suit, by rolling out their standardization. During 1997, a joint agreement between Japan 

and Europe was reached as far as the parameters to be used for W -CDMA were concerned. This 

led the European Telecommunications Standards Institute (ETSI), to select W -CDMA as the 

Universal Mobile Telecommunication System (UMTS) terrestrial air interface scheme for 

frequency-division duplex (FDD) frequency bands. In no time, they were backed by the Asian 

and American GSM operators, who also adopted W-CDMA as their interface. For time-division 

duplex (TDD), the ETSI proposed what is referred to as Time Division CDMA (TD-CDMA). In 

December 1997, the Telecommunication Industry Association (TIA) TR45.5 committee in the 

United States adopted a framework for W -CDMA, which is compatible with the IS-95 standards 

they adopted for second-generation mobile communications systems. While TR45.3, which was 

responsible for laying down the IS-136 standards, adopted TDMA as the air interface, based on 

recommendations from the Universal Wireless Communications Consortium (UWCC) in 1998. 

As can be seen from the standards adopted by the various standardization bodies world wide, 

spread spectrum code-division multiple access (CDMA) scheme is going to play a vital role in 3G 
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mobile communications systems. This scheme is the subject of thi s thesis, where the focus is on 

multiuser detection, in particular adaptive minimum mean squared error (MMSE) detectors. 

In this Chapter a brief description will be given of direct sequence code division multiple access 

(DS-CDMA) scheme. In addition to this, the aim, outline and contribution to this project will be 

presented. 

1.2 DS-CDMA System 

Spread spectrum is a means of transmission in which a transmitted signal occupies a bandwidth 

much greater than the minimum bandwidth required to send it. The bandwidth increase, while not 

necessary for communication overcome the effect of intentional interference Uamming) and also 

hide the signal from being intercepted by a ~py. Spreading of the spectrum is accomplished by 

using either time hopping (TH), frequency hopping (FH), direct sequence (DS) and hybrid 

modulation. All these method uses a pseudo-random code sequence (sometimes referred to as 

signature sequence) but they create the spread spectrum signal differently as explained below 

• Frequency hopping. The signal is rapidly switched between different frequencies within 

the hopping bandwidth pseudo-randomly, and the receiver knows before hand where to 

find the signal at any given time. 

• Time hopping. The signal is transmitted in short bursts pseudo-randomly, and the 

receiver knows beforehand when to expect the burst. 

• Direct sequence. The digital data is directly coded at a much higher frequency . The code 

is generated pseudo-randomly, the receiver knows how to generate the same code, and 

correlates the received signal with that code to extract the data. 

• Hybrid modulation. This method utilizes two or more of the above-mentioned methods so 

as to produce a more robust transmission scheme. 

CDMA is a multiple access scheme, where a number of users transmit their information using the 

entire allocated bandwidth simultaneously but their signals are modulated by a unique code 

sequences using one of the modulation technique mentioned above . The spread spectrum 
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modulation technique mostly preferred for CDMA is direct sequence spread spectrum. This is due 

to its low cost and ease of implementation and as such is the area of focus in this thesis. 

Spread Spectrum CDMA scheme has a number of attractive features when compared to other 

multiple access schemes. Below is a list of just a few of them 

• Frequency reuse factor of one: Since all the users in CDMA use the same frequency , the 

frequency reuse factor of this scheme is one. 

• Low probability of interception: This property stem from the fact that the spread signal 

has a very low power level and thus cannot be detected by a casual listener. 

• Immunity to multipath fading: One advantage of CDMA receiver is that they are able to 

exploit the multipath fading through the use of Rake combining. 

• Soft handofJ: A handoff occurs in any cellular system when a mobile terminal switches a 

call from one base station to another as you travel. In CDMA however, every mobile 

terminal and every base station are on the same frequency . In order to begin listening to a 

new base station, the mobile terminal only needs to change the pseudo-random sequence 

it uses to decode the desired data from the jumble of bits sent for everyone else. While a 

call is in progress, the network chooses two or more alternate base stations that it feels 

are handoff candidates. It simultaneously broadcasts a copy of a call to each of these base 

stations. The mobile terminal can then pick and choose between the different sources, and 

it move between them whenever it feels like it. It can even combine the data received 

from two different base stations to ease the transition from one to the other. 

The two main drawbacks of DS-CDMA are the near-far problem and the multiple access 

interference (MAl). The near-far problem is the phenomena where a signal from a user with a 

weak transmission power is overpowered by the strong interfering user(s), while MAl stems from 

the fact that the cross-correlation of the users' spreading sequence is non-zero. The conventional 

way to minimize the near-far problem, in CDMA systems is make use of a power control scheme, 

which attempts to make the power received at the base station from each mobile unit equal. 

Under this scheme, the base station samples the power levels being received from all users and 

then transmits a power adjustment command to all users. On the other hand, the conventional way 

to mitigate MAl is through the design of spreading code with very small cross-correlation 

property between two different codes. 
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The gentleman known as Verdu proposed an alternative method that can be used to mitigate the 

near-far problem and MAI. In his paper published in 1986, he showed that the near-far problem 

and MAl could be eliminated through the use of a multiuser detector. This had a significant 

impact in the field of spread spectrum since immediately following his work many multiuser 

detectors for CDMA system were proposed. 

1.3 Aims and Contributions 

The focus of this thesis is on the adaptive implementation of the MMSE detector using a lattice 

structure. In addition to this a comparison of the performance of this detector with that of the 

LMS-MMSE detector is given. The original contributions made in this proje:;t are as follows 

• The derivation of a lattice-MMSE detector structure for CDMA systems (Chapter 5). 

• Analytical performance model of the lattice-MMSE detector (Chapter 5) . 

The following publications have resulted from this work 

• B.C.D Thakadu & F Takawira, "Lattice Structure Implementation of the Adaptive DS­

CDMA detector", Proceeding of the 2nd Annual South African Telecommunications 

Networks Applications Conference, September 1999. 

• B.C.D Thakadu & F Takawira, "Lattice Structure based MMSE detector and its 

Performance Comparison with the LMS-MMSE detector in a multipath Fading Channel", 

to be submitted to IEEE Transactions on Vehicular Technology. 

1.4 Thesis outline 

This Chapter has given an introduction to CDMA and the aim of the thesis. In Chapter 2, the 

system model used throughout this thesis is presented. In addition to this a review of DS-CDMA 

detectors is presented. These detectors are: (l) the conventional detector, (2) the optimal detector 

proposed by Verdu, (3) the minimum mean squared error (MM SE) detector, (4) the decorrelating 

detector, (5) successive interference cancellation and (6) the parallel interference cancellation. 
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Chapter 3 looks at the details of the LMS-MMSE detectors. The optimal weighting coefficients of 

the MMSE detectors are derived and then the adaptive implementations of these detectors are 

presented. Also covered in this chapter is the convergence and BER analysis models of the LMS­

MMSE filter coefficients. 

In Chapter 4 a literature review of the lattice equalizer is presented, while Chapter 5 focus on the 

implementation of the MMSE detectors using a lattice structure and contain original 

contributions. Chapter 6 presents a review of blind adaptive MMSE detectors and finally in 

Chapter 7, conclusions are made. 
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Chapter 2 
Multiuser Detection in A WGN and 

Fading channels 

2.1 Introduction 

In this Chapter a review of detectors, which mitigate Multiple Access Interference (MAl) is 

presented. These detectors, which have been shown to outperform the conventional detector, 

require information of all the users ' parameters in order to detect users' transmission. Hence they 

are called multiuser detectors (MUDs). 

This Chapter is organized as follows . Section 2.2 presents the received signal model, which will 

be used throughout this Chapter. Following this, Section 2.3 looks at the conventional detector in 

both non-fading and multipath fading channels. Sections 2.4 and 2.5 look at MUD detectors in an 

additive white Gaussian noise (A WGN) and fading channels, respectively. Finally Section 2.6 

presents conclusions. 

2.2 DS-CDMA Signal Model 

The DS-CDMA system under consideration is modelled as an asynchronous K-user system 

operating in a channel with L resolvable paths. The modulation scheme used is BPSK with bit 

duration T and chip duration Tc=TIN, where N is an integer and is called the processing gain. 

Shown in Figure 2.1 is the typical block diagram of a DS-CDMA transmitter. As can be seen 

from this diagram, at the transmitter side, the data stream form the sources are first sJTead by 

multiplying them with a known spreading sequence. Assuming that the kIll user ' s spreading 

waveform is given by S k (t) an9 that the bits are denoted by bk (t) = {+ I ,-1} , then the spread data 

stream can be mathematically written as: 
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AI-I 

Xk(t)= Ibk(m) Sk (/-mT) (2. 1) 
111 =0 

where we assumed that each user transmit a total of M bits. The base band spread data streams are 

then converted to a higher frequency by mUltiplying them with a carrier of frequency i before 

being transmitted. Thus the transmitted signal for the k ill user is given by 

Ai 

zk (t) = I Akhdm)s k (t - mT) cos(2Jifct + rh) (2.2) 
m=O 

• 
• 
• 

cos( 2;rrjJ + e K ) 

Figure 2.1: Typical Block diagram of Direct Sequence COMA transmitters . 

where Ak is the amplitude of the klh user and e k is the phase shift of the kill user' s carrier 

frequency. Due to the time-variation of the communication medium, the transmitted signal IS 

scattered into a number of multi path components and superimposed on this components IS 

2-2 



additive white Gaussian noise and other user ' s transmission. Assuming we have L resolvable 

paths then the received signal at the receiver is given by the following equation [48,63,83,86]: 

I.' L M 

r (t) = L L L AJ3k.l (m)bk (m)s k (t - mT - 'k - (l-l)Tc) cos(2Jifct + (hi (m) + ()k) + n' (t) 
k : ] I : ] m : ] 

(2.3) 

where J3k.l (m) and CPu (m) are the attenuation factor and phase shift associated with ther" path 

of the kIll user's multipath component. r k is the delay of the kIll user. It should be noted that in the 

above Equation we made the assumption that the propagation delay associated with theth path is 

given by (l-l)Tc ' In addition to this we assumed that the channel fading coefficients are 

constant over at least one bit interval. At the receiver the received high frequency signal is 

converted to baseband by modulating it with a carrier of the same frequency as the one used at the 

transmitter side. This baseband-received signal is given by the following expression 

K L M 

r(t) = L L L Adh,l (m)bk (m)sk (t - mT - fk,l - (l-l)Tc)coS(rpk,l (m) + Bd + n(t) 
k=l/=lm=l 

(2.4) 

The resulting baseband signal is then sampled at a rate, which is greater or equal to the chip rate. 

Let rpk,l(m)=Bk +rpk,l(m) and ck,l(m)=!3k,l(m)cos(rpk,l(m)). Then the baseband-received 

signal can be written in matrix form as follows [48,63 ,83,86]. 

r =SCAb+n 

where the matrices and vector used above are defined as follows: 

• MNP r = [r(O), ... ,r(M -1)] E C 

r(n) = [r(nT), ... , renT + (NP-l)Ts )] E eN? 

• S = diag[S(O), ... , S(M -1)] 

S(n) = diag[SI (n), ... ,S K (n)] 

Sk (n) = [Sk .1 (n),,, ,, sk.L (n)] 

sk./ = [OmNP+r1.l ,Sk ,O(M-m-I)NP+rk./] 

Sk =[sk(O),,,,,sk(NP-l)] 

• C = diag[C(O) , .. . , C(M -1)] 
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CCn) = diag[c,(n) , ... ,cK(n)] 

ck (n) = [Ck,' (n) ,,,,,ck,L (n)] 

• A = diag[A(O) , .. . , A(M - 1)] 

A(n) = diag[A, , .. . , AK ] 

• b = [b(O), b(1), ... , b(M - 1)] 

ben) = [bl (n) , .. . ,bK (n)] 

• n = [n(O), ... , n(M - 1)] 

nU) = [n(O) , .. . , n(NP -1)] 

Please note that r is the vector of all the samples of the received signal over the entire M-symbol 

duration. As a special case, in a non-fading channel (i .e. C=I) the above Equation for the 

received baseband signal simplifies to : 

r =SAb+n 

and the channel has only one propagation path (i.e. L= l). 

2.3 Conventional Detector 

(2.6) 

This Section briefly looks at the conventional way of detecting users ' transmission in both non­

fading and multipath-fading channel. It starts by first looking at the non-fading conventional 

detector. Finally it looks at the multipath-fading (Rake) conventional receiver. 

In a non-fading channel the conventional detector (see Figure 2.2) correlates the received 

baseband signal with the spreading sequence of the user of interest and uses the output of the 

correlator (matched filter) as the decision statistics. Using the baseband received signal (Equation 

(2.6» and the spreading sequence matrix, then the decision statistics is given by: 

Y =ST r 

= STSAb+S T n 
(2.7) 
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r 

and finally the estimate ofthe transmitted information is given by b = sign(y) . 

A multipath-fading channel presents us with some form of time-diversity. The conventional rake 

receiver uses this inherent time-diversity to improve the performance of the conventional detector 

in a multipath-fading channel. Thus instead of using a single matched filter (MF) to demodulate 

one user' s data, we employ a bank of matched filters, where each matched filter branch is 

matched to one of the multi path components of the desired user (see Figure 2.3) . The outputs of 

these matched filters are then fed into a gain combiner (preferably maximal ratio combiner), 

whose output is used as a decision variable. For the case where the gain combining technique 

used is the maximal ratio, the decision variable for all users' detector is given by 

y=CHSTr 

= CH STSCAb + CH ST n 
(2.8) 

One of the disadvantages of the conventional detector is that it treats MAl as additive white 

Gaussian noise. As illustrated in Figure 2.4, this assumption severely degrade the performance of 

the conventional detector because truly speaking MAl is not a white Gaussian process. Another 

disadvantage of the conventional detector is that it suffers from the near-far problem . 

S 1 

delay,! 
n 

delaY'j I "-

b n J 

• 
• s· } 

~ 1 =fr delayrK I 
·1 

" 
n bK 

SK 
Figure 2.2: Conventional asynchronous OS-COMA receiver bank. 
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2.4 Multiuser detection in A WGN Channel 

Before Verdu proposed the optimal detectors [114-117] in the early eighties, most of the 

specialists in the field of spread spectrum were of the opinion that MAl can be modelled as a 

white Gaussian process. This 'opinion ' proved costly, as it hindered any progress being made in 

developing detectors, which can mitigate MAl. Although the complexity of Verdu ' s detector 

makes it practically not viable, it played such a significant role in the development of multi user 

detectors, since a number of sub-optimal detectors were proposed immediately after its 

development. Example of these detectors are: Decorrelating , the Minimum Mean Squared Error 

(MMSE) , Polynomial Expansion , Successive Interference Cancellation , Parallel Interference 

Cancellation and Neural Network detector. 

In this Section a review of these detectors in a non-fading channel is presented, starting with 

Verdu 's optimal detector, while the next Section will look at these detectors in a fading channel. 

2.4.1 Optimal Detector 

The implementation of the optimal detector requires knowledge of all the users' spreading 

sequences, signal energies and time delay. Throughout this Section we will assume that the 

receiver has knowledge of all these quantities. The optimal detector estimates the transmitted 

information sequence, by selecting the information sequence that optimizes a certain criterion. 

The optimization criterion used here is the joint a posteriori criterion, which is mathematically 

stated as [79,115,118]: 

b = arg max P(b I r) 

= arg max P(b I r(t),t E [O,MTD 
(2.9) 

It should be noted that this is not the only optimization criterion, which can be used to estimate 

the transmitted sequences. As an example we can also use the minimum probability error as the 

optimization criterion [79]. Going back to Equation (2.9), if one assumes that the data streams are 

equiprobable then one has [79,115,118] 

, P(b I r(t),t E [O,MTD = P(r(t),t E [O,MT] I b) (2.10) 
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Thus we can use the maximum likelihood detector to estimate the transmitted sequences. The 

probability density function of the event r(t) , t E [O,MT] I b is normal and is given by [118] : 

1 MT 2 

fr(t),I E[O .MT)lb (r(t),t E [O ,MT] I b) = D exp( --2 2 f(r(t) - J1(t)) dt) 
(J' 0 

(2.11) 

where D = ~ 12 L ' (]'2 is the variance of additive white Gaussian noise and the mean 
(21l' ) er 

JL(t) is given by: 

M K 
fl(t) = I I Akbk (m)sk (t - mT - Tk) 

II1=Ok =! 

(2.12) 

From (2.10) and (2.11), it can be deduced that maximization of (2.9) is equivalent to maximizing 

[ 115] 

MT 

n(b) = - f(r(t) - JL(t) Y dt 
o 

M M M 

= 2IbT (m)A(m)r(m) - IIbT (m)A(m)R(m - j)A(j)b(j) 
m= ! m= 1 j =1 

where R(i) is a KxK crosscorrelation matrix with coefficients given by [115] 

00 

[R(i)]kj = fSk(t-rk)Sj(t - iT - rj)dt V i E [O,M] Vk,j E [I , ... , K] 
- 00 

The second term in Equation (2.13) is given by 

MM M 
I I b T (i)A(i)R(i - j)A(j)b(j) = I b T (i)A(i)[R(O)A(i)b(i)+ 2R(I)A(i -1)b(i -I)] 
i=!j=! 

Thus Equation (2.13) simplifies to 

M 

(2.13) 

(2.14) 

Q(b) = IbT (m)A(m)[2r(m)-R(O)A(m)b(m)-2R(1)b(m-1)] (2.15) 
m=! 
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The sequence of bits that maximizes Equation (2.9) can be found by finding the longest path in a 

2 K -1 layered graph. This task is accomplished by using the Viterbi algorithm with states given 

by S={-I,+I} and branch matrix given by Equation (2.15). In practice the maximum-likelihood 

detector for OS-COMA systems can be implemented by following the matched filter bank (whose 

output is given by Equation (2.7) for the non-fading channel) with a Viterbi algorithm. 

The major disadvantage of the maximum-likelihood sequence detector is that it has a computation 

complexity that is exponential with the number of users, despite offering the best performance 

when compared to the conventional and/or suboptimal detectors. This makes the practical 

implementation of the optimal detector impossible, since a typical OS-COMA system will be 

required to support many users. In addition to this it requires Irnowledge of some information the 

detector might not have prior Irnowledge of, for example the amplitude of aII the users. 

2.4.2 Suboptimal Detectors 

Inspired by Verdu's major breakthrough in multiuser OS-COMA detection, a number of 

suboptimal multiuser detectors, which offers good performance/complexity tradeoffs, were 

derived. This Section looks at some of these detectors in an A WGN channel. 

2.4.2.1 Decorrelating Detector 

The decorrelating detector, which was proposed by Kohno et al [54] and Schneider [103], is a 

linear detector (see Figure 2.5). It processes the output of the matched filter bank (Equation (2.7) 

for the non-fading channel) by mUltiplying it with the inverse crosscorrelation of the spreading 

sequence of all the users. This crosscorrelation matrix is given by 

(2.16) 

Multiplying the output of the correlator with the inverse of Equation (2.16) yield the following 

results 

(2.17) 

2-9 



r 

Note that the linear mapping matrix (L ) in Figure 2.5 is given by L = R -1 

• Looking at the 

expression in Equation (2.17), it should be clear that the output of the decorrelating detector is 

MAl free. 

The decorrelating detector offers a number of attractive features. These include 

1. It performs much better than the conventional detector. This was proved by Lupas and 

Verdu in [66,67] , where they analyzed the performance of the decorrelating detector. 

2. No knowledge of the received amplitudes is required (see Equation 2. 16 and 2.17). 

3. Its computational complexity is better than that ofthe optimal detector. 

The major drawback of the decorrelating detector is that it enhances the noise. In addition to this 

it requires the inversion of a matrix, which increases the computational complexity of the 

detector. Despite the noise-enhancing problem, the decorrelating detector has been shown to 

outperform the conventional detector. 

Matched 
Filter 

• 
• 
• 

Matched 
Filter 

Figure 2.5: DS-CDMA linear detector. 

T 

• 
• 

L • 
T 

b
K 

The decorrelating detector has received considerable attention in the literature. As stated above, 

the performance of this detector was compared with that of the conventional detector in [66,67] 
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by Lupas and Verdu. They went on to show that the decorrelating detector is the solution to the 

minimax problem in [66]. 

In a bid to alleviate the problem of having to compute the inverse of a very large matrix, 

Wijasuriya et al [126,127], Bravo [8] , Zheng and Barton [136] , and Juntti and Aazhang [46] 

proposed truncated-window decorrelators, where a sliding observation window that spans several " 

symbol intervals is used. In addition to this Juntti [47], proposed a number of algorithms, which 

can be used to implement the decorrelating detector without the need" to compute the matrix 

inversion. In [11 ,75-77,120] , the authors have proposed adaptive decorrelating detectors, which 

avoid the need to compute the inverse of the correlation matrix. 

Later in this Chapter we look at the decorrelating detector in a mUltipath fading channel. 

2.4.2.2 Minimum Mean Squared Error Detector 

A more detailed study of the MMSE detector will be presented in the next Chapter but for now it 

suffice to say that the Minimum Mean Squared Error (MMSE) detector, like the decorrelating 

detector, is a linear detector, which processes the output of the matched filter bank by applying 

linear mapping. This linear mapping is selected such that the mean squared error between the 

actual data and the output of the detector is minimized and is given by: 

L = [R + (7"2 A -2r ' (2. 18) 

where R is the matrix of the crosscorrelation and was defined in Equation (2 .16) and A is the 

matrix of the users' amplitude and was defined in Equation (2 .5). 

The MMSE detector was first proposed by Xie et al [131] . Following this Poor and Verdu [91] , 

Oppermann et. al [85] and Honing and Veerakachen [40] performed the BER analysis of this 

detector. 

In a bid to reduce the computational requirement of the MMSE detector Madhow and Honing 

[68] , Miller [72] and Rapajic and Vucetic [94] independently proposed training based adaptive 

MMSE detectors. Miller in [72] then analyzed the dynamics of these detectors. Techniques for 
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the acceleration of the convergence of the adaptive MMSE detector, were presented by Rapajic 

and Vucetic [95] , Honing [34] , Oppermann and Latva-aho [84] and Wang and Poor [123-124] 

Honing et. al [38-40] , proposed a blind MMSE detector, which requires no training sequence. The 

convergence of this detector was then examined by Roy in [100]. In [56] , Krishnamurty proposed 

an adaptive step size blind adaptive MMSE detector and analyzed its convergence. 

2.4.2.3 Successive Interference Cancellation Detector 

The successive interference cancellation (SIC) detector estimates the users ' bits by processing the 

received signal using a number of stages. At each stage one user ' s bit is estimated and 

interference due to it is eliminated from the received signal, thus reducing MAl. The simplest 

successive interference cancellation scheme uses the output of the matched filter to estimate bits 

of the users as illustrated in Figure 2.6. The order in which users ' bits are estimated depends on 

their relative power. In practice, at each stage the user with the strong energy is the one whose bit 

is estimated, since it 's easier to achieve acquisition and demodulation of such user 's transmission. 

Another reason for demodulating the users in descending order is that, the removal of a strong 

interferer will benefit the remaining weak users. Assuming bk ,j is the bit estimate obtained for 

user k at stage}, then the decision statistics for user i at stage (j+m) is given by [43]: 

(2.19) 

A brief description of the successive interference cancellation scheme, which uses the outputs of 

the matched filters as the decision variables, is as follows: 

1. Using the outputs of the bank of matched filters, determine which user has the strongest 

energy. 

2. Using the output of the matched filter of the user detected above as the decision variable, 

make an estimate of the transmitted bit of the corresponding user. 
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r(t) 

3. Regenerate an estimate of the transmitted signal for the user detected in (2), using this 

user' s amplitude, spreading sequence and timing information. 

4. Subtract the signal generated in (3) from the received signal. 

5. Using the results of (4) start at (I), until all the users ' transmissions have been detected. 

The problem with the SIC detector occurs if the initial data estimates of the detector are wrong. 

Such an errors have a negative impact on the performance of the system. Thus, it is crucial that 

the data estimates of at least the strong users that are cancelled first be reI iable. 

Like other multi user detectors the SIC detector has received considerable attention 111 the 

literature. In [10,17-19,45,88,96,97,98] , the linear SIC was presented and it ' s performance 

studied using analytical and/or simulation approaches. An improved single stage SIC scheme 

using signal orthogonalization was studied in [6], while its performance was analyzed in 

[8,61 ,80,81 , I 03, I 07, 119] assuming tentative decision. Linear and non-linear SIC schemes were 

compared in [42, I 08]. In [12,19,20] , the SIC detector was proposed and investigated, which 

cancels the interference in the spectral domain. Finally, coded systems with SIC were considered 

in [7,55 ,119]. 

Matched 
Fi lter 

User k 

Delay T 

Decision 

r(t - T) 

Figure 2.6: Successive Interference Cancellation- first stage 
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2.4.2.4 Parallel Interference Cancellation Detector 

As the name suggests, the Parallel Interference Cancellation (PlC) detector estimates and cancels 

interference concurrently. This detector is shown in Figure 2.7. The operation of the PlC detector 

is summarized below (assuming the use of the conventional detector) 

• The outputs of the bank of matched filters are scaled by the amplitudes. 

• At the second stage, the scaled outputs of the matched filter are then spread again. 

• The MAl experienced by, say the klh user is formed by adding the outputs of the 

spreaders of the interfering user. The resulting signal is then subtracted from the bit 

delayed received signal. This operation is done for all the users. 

• Finally, the vector of signals obtained from (3) is passed through a bank of matched 

filter, whose outputs are used as the decision statistics. 

Assuming the detector has knowledge of the amplitude and delay timing of all the users, the 

decision statistics of the fi" user is given by 

K 

Yk = Akskr- I AJs~sJbJ 
)=1 
J*k 

(2.20) 

The PlC detector was first proposed in [54]. In [111] Varanasi and Aazhang looked at another 

PlC structure, which uses hard decision. Some of the contributions of multi stage PlC with soft 

tentative decisions are found in [2,23,53,61,111,112,131]. 

A number of authors have proposed adaptive implementation of the PlC detector. In [132] Xue et 

al proposed an adaptive PlC detector, which does not require explicit amplitude estimation. 

Ghazi-Moghadam and Mostafa looked at the blind PlC detector in [28]. In [12,14,15,31,99] 

partial interference cancellation schemes using the PlC detector were studied. 
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Figure 2.7 PlC detector 

2.5 Multiuser detection in Fading Channels 

DS-CDMA MUDs in fading channel are designed to take advantage of the inherent time-diversity 

presented by the channel. In these detectors, diversity combining is either performed prior or after 

MAl has been suppressed as illustrated in Figure 2.8. 

This Section looks at MU detection in a fading channel. For simplicity, throughout this Section 

the fading complex channel coefficients will be assumed to be Rayleigh distributed. 

2.5.1 Optimal detector 

The optimal detector presented here is implemented uSll1g Maximum Likelihood Sequence 

Detection (MLSD). As was the case in a non-fading channel, the MLSD makes its decision as 

follows 

b = arg max . Per I b) 
be{-I,+I}.l/" 
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where P( r i b) is the pdf of the received signal vector (r) conditioned on the data vector (b) . This 

pdf has a normal distribution and is given by 

per I b) = D exp(-r H I~I~ r) 

where the scalar D is given by [47] 

D =--------
(21l )MKLI 2 det(" ) 

L..rlb 

The covariance of the received signal (L ) is given by [47] 
r ib 

" T 2 ,,-1 
L..rlb =S S + 0" L..hlb 

where the covariance of the data-amplitude product (IFCAb) conditioned on b is given by 

"" H H L..hlb =B E[C C]B 

B = diag{A,b? )I L' A2 b~O)1 L , ... , AK b~M- ' ) I L } 

(2.22) 

From Equations (2 .21) and (2.22) it should be apparent that if constant envelope modulation is 

applied, the MLSD rule could be expressed as 

(2.23) 

In the above expression the term 

, T 2,,-1 
h = (S S + 0" L..hlb )r (2.24) 

is the MMSE estimate of the data-amplitude product vector. Since this estimation must be 

performed for all the possible data sequences, the MLSD receiver is prohibitively complex for 

practical implementation. 

2.5.2 Suboptimal detector 

This subsection looks at the detectors presented in Section (2.4.2) in a fading multipath channel. 
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Figure 2.8. Multiuser structures for fading channels. 
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2.5.2.1 Decorrelating Detector 

The decision statistics of the decorrelating detector in a multipath fading channel are formed by 

multiplying the matched filter outputs by the inverse crosscorrelation of the spreading sequence 

of the transmitting users for all the paths, followed by diversity combining. Thus the decision 

statistics of the decorrelating detector is given by 

(2.25) 

where R is the crosscorrelation matrix and was defined in Equation (2.16). Liu and Li [65] 

analyzed the performance of the decorrelating detector in a fading channel. A blind adaptive 

implementation of the decorrelating detector in a fading channel was considered by Ulukus and 

Yates in [120]. 

2.5.2.2 MMSE Detector 

With the MMSE detector, diversity combining can be performed either prior or after MAl 

suppression and the resulting MMSE detectors are termed Pre-combining and Post-combining 

MMSE detectors, respectively. The details of the two MMSE detectors will be presented in the 

next Chapter, but for now it will suffice to just give the linear mapping applied by these detectors 

and the resulting decision variable. In the case where diversity combining is performed prior to 

MAl suppression (Precombining MMSE detector) then the linear mapping is given by (see 

Chapter 3) 

G = AC H S(AC H STSCA+a2I)-1 (2.26) 

and the resulting decision statistic variable is given by (see Chapter 3) 

y = (AC H STSCA+a2I)-1 SCAr (2.27) 

The linear mapping of a Post-combining MMSE detector is given by (see Chapter 3) 

w = S(STS+a 2 E[CAACr l )-1 (2.28) 

and the resulting decision statistics is given by (see Chapter 3) 

y = (STS + (72 E[CAAC]-I )-1 Sr 
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The major advantage offered by the MMSE detectors is that they lend themselves to adapti ve 

implementation. The implementation of the MMSE detector using an FIR filter whose weighting 

coefficients are updated using the LMS algorithm (LMS-MMSE detector) was considered in 

[60,63 ,83 ,84], where simulation results were presented. The performance of the LMS-MMSE 

detector was then analyzed in [4,130]. 

2.5.2.3 Successive Interference Cancellation Detector 

The simplest implementation of the SIC detector in fading channels, uses the output of the 

conventional rake detectors as the bit soft estimates and users strength estimation. This detector 

needs information of the channel coefficients and multipath delays of all users in addition to 

information stated in Section 2.4.2.3 . Assuming that the detector has knowledge of this 

information then its algorithm is as follows 

1. Using the outputs of the conventional detector estimate the strongest user and use the 

output of that detector to estimate the user ' s bit. 

2. Regenerate the received signal due to the user detected above, usmg the channel 

information (fading coefficients and timing information), user 's amplitude and spreading 

code. 

3. Subtract the regenerated signal in (2) from the delayed version of the received signal. 

Repeat (l) until all the users' bits have been detected. 

The SIC detector in fading channels were presented in [49,101 ,102]. The analysis of the SIC 

detector in fading channels have been reported in [51 ,87,88,101,102,106]. 

2.5.2.4 Parallel Interference Cancellation Detector 

As was the case with the SIC, the simplest implementation of the PlC detector in a fading channel 

uses the output of the conventional-rake receiver, as the initial bit estimates. For the MAl to be 

cancelled the detector needs to know the fading channel coefficients and propagation delays of all 
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the multipath components of all the users, in addition to the requirements specified in Section 

2.4.2.4. Assuming the detector has this information and that specified in Section 2.4.2.4 then the 

PlC detection algorithm can be summarized as follows 

1. Using the channel coefficients and the propagation delay of the paths of the interfering 

user, interfering users timing and amplitude and the outputs of the conventional-rake 

detector of the interfering users, regenerate the MAl suffered by the user of interest. 

2. Subtract the MAl generated above from the received signal. 

3. The resulting signal of (2) is then fed into the second conventional-rake receiver, whose 

output is used as the decision statistics . 

The above algorithm is performed concurrently for all the users. The PlC for fading channels was 

presented in [125]. In [22,102], the performance of the PlC detector in a fading channel was 

analyzed. Finally, in [133] the adaptive implementation of the PlC detector in a fading charnel 

was presented. 

2.6 Conclusion 

The capacity of the conventional detector is severely affected by MAL In addition to this, the 

conventional detector suffers from the near-far problem. Verdu made the major break-through in 

MU detection, when he proposed the optimal detector. The major problem with Verdu's detector 

is that its computational complexity makes it not practically viable. 

Following Verdu's work a number of suboptimal detectors were proposed. These detectors offer a 

good performance-complexity tradeoff. Examples of these detectors are: (1) the decorrelating 

detector, (2) MMSE detector, (3) Successive Interference Cancellation and (4) Parallel 

Interference Cancellation. 

In this Chapter a review ofthe optimal and suboptimal detectors was undertaken . 
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Chapter 3 
LMS-MMSE Multiuser Detector 

3.1 Introduction 

This Chapter considers the MMSE detector and it's implementation usmg an LMS-based 

algorithm and its outline is as follows: Section 3.2 presents the system model to be used 

throughout this Chapter. Section 3.3 derive the optimal MMSE solution, while Section 3.4 looks 

at the adaptive implementation of the MMSE detector using the LMS algorithm. Section 3.5 

looks at the convergence behavior of the LMS-MMSE detectors while Section 3.6 presents the bit 

error rate (BER) expression for (1) the conventional detector, (2) Ideal MMSE detector, (3) LMS­

based MM SE detector. Finally in Section 3.7 conclusions are presented. 

3.2 System Model 

The system model used in this Chapter is identical to the one presented in Section 2.2 and will be 

summarized below for convenience. 

The DS-CDMA system under consideration consists of K users asynchronously transmitting data 

in a fading channel with L resolvable paths. As described in Section 2.2, the received signal is 

given by 

r=SCAb+n (3.1) 

where, r, band n are the vector of the received signal, data bits and noise samples, respectively 

while S, C and A are the matrices of the users' spreading code, channel fading coefficients and 

amplitude, respectively. For a complete definition of these quantities see Section 2.2. One thing, 
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which should be borne in mind, is that the received baseband signal is sampled at a rate higher or 

equal to the chip rate. In addition to this, it should be noted that if chip-matched filtering is 

assumed, then the samples in Equation (3.1) are taken at the output of the chiJrmatched filter. 

Throughout this Chapter, additive noise and users ' bits are assumed to have the following 

properties: 

1. The source bits of one user are uncorrelated with past and future bits of itself and all bits 

of the other users. Using this property and the fact that the user ' s binary data bits are 

equiprobable, then the first and the second moment of the vector b can be written as 

follows 

E[b] = 0 

E[bb H
] =1 

(3.2) 

2. Additive noise is a zero mean process and is uncorrelated with the bits of the users . This 

property gives us the following equations 

E[bo H ]=0 

E[o] = 0 
(3.3) 

In addition to these properties when no chip-matched filtering is employed or when the output of 

the chip matched filter is sampled at the chip-rate then additive noise is modelled as white 

Gaussian noise, thus yielding the following property 

(3.4) 

where (]' 2 is the variance of the noise. 

3.3 Optimal MMSE detector 

MAl suppression using the MMSE DS-CDMA detector can either be performed prior or after 

multipath combining as depicted in Figure 2.8. The MMSE detector, which performs multipath 

combining prior to MAl suppression, is referred to as the precombining MMSE detector, while 

the one, which first suppresses MAl, is called the postcombining MMSE detector. These two 

detection strategy are the subject of the this section and we first start with the precombining 

MMSE detector. 
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3.3.1 Precombining MMSE detector 

The optimal weighting coefficients of the precombining DS-CDMA MMSE detector are selected 

such that the following cost function is minimized [48,63 ,83 ,86] 

(3.5) 

where b is the vector of the estimate of the transmitted bits for all the users and is defined as 

follows 

(3.6) 

where G is the matrix of the weighting coefficients for all the users. Expanding Equation (3 .5) 

and using properties (3 .2) and Equation (3 .3) and finally substituting Equation (3.6) one obtains 

the following results 

J=E[(b - b)(b H _b H )] 

= E[bb H ]-E[bb H ]-E[bb]+ £[bb] 

= I-ACHSTG - GHSCA+G H £[rrH]G 

Differentiating the above Equation with respect to G and setting the result to zero yields the 

following results 

(3.7) 

(3.8) 

From the above Equation it follows that the soft output of the precombining MMSE detector is 

given by 

(3.9) 

The term ACH ST r is the output of the conventional Rake receiver. As can be seen from 

Equation (3 .8), the optimal weighting coefficients depend on the instantaneous channel 

coefficients. This might pose a problem if the channel coefficients are varying rapidly, since the 

detector might have problems tracking the channel variations. The remedy for such a problem is 

to use the post-combining MMSE detector, which will be presented in the next Section. 

The advantage of the precombining detector is that it only requires one transversal filter per user, 

irrespective of the number of multipaths present, thus reducing the computational complexity of 
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the detector to some extent. In a non-fading channel (L=1 and C=I), Equation (3.8) simplifies to 

the foIl owing results 

(3.10) 

3.3.2 Postcombining MMSE detector 

The postcombining MMSE detector, unlike the precombining MMSE detector selects its 

weighting coefficients such that the mean of the square of the absolute value of the difference 

between the data amplitude product and its estimate is minimized [59,83]. The data amplitude 

product vector is defined as foIlows 

h=CAb (3.11) 

and its estimate denoted as h is given by the following expression 

(3.12) 

The cost function minimized by the postcombining detector is thus given by the foIl owing 

expressIon 

(3.13) 

Expanding the above Equation yields the following results 

J = E[(h - h)(h H - hH)] 

= E[hh H) _ E[hh H ] _ E[hh H ] + E[hh H ] 
(3.14) 

Substituting for band h in the above Equation results in the foIl owing expression for the cost 

function 

J = E[CAAC H ]-E[CAACH]W - W H E[CAACH] + W H [rrH]W (3.15) 

Differentiating the above Equation with respect to the weighting coefficient matrix and setting the 

resulting equation to zero and simplifying the results, one obtains the foIl owing expression for the 

optimal weighting coefficients 

(3.16) 

From the above Equation for the optimal weighting coefficients of the post-combining MMSE 

detector, it can be seen that the weighting coefficients depend on the average of the fading 
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channel coefficients. This property makes the post-combining MMSE detector, a good choice in 

relatively fast fading channel. The only drawback with the post-combining MM~ detector is its 

computational requirements, since for every multipath component a transversal filter is required. 

3.4 LMS based DS-CDMA MMSE detectors 

The transversal structure of the MMSE detector makes it easily amenable to implementation 

using a filter whose coefficients are iteratively computed using an adaptive algorithm. Such 

implementation greatly reduces the computational requirements of the MMSE detector, since the 

matrix inversion inherent in the computation of the optimal weighting coefficient can be avoided. 

This Section looks at the implementation of both the precombining and postcombining DS­

CD MA MMSE detectors using the Least Mean Squared (LMS) algorithm. Since each user might 

transmit infinitely many bits, the adaptive MMSE detector presented here process the received 

signal in blocks, where each block spans a number of bits. This also reduces the computational 

complexity of the MMSE detector quite considerably. 

3.4.1 LMS precombining MMSE detector 

Assume that the detector is to process the following vector of the received signal, which spans P 

bits 

rp(m) = [r(m) , ... ,r(m - (P -1))] (3.17) 

and that the user of interest is the f(h user. The vector of this user's weighting coefficients at time 

m, which is the f(h row of G, will be denoted as gk Cm), which initially is set to a null vector. 

Following the definition of Equation (2.5), the dimension of this vector is PNS - by -1 where we 

assumed that within one symbol interval S samples of the received signal are taken. 

The ideal method of obtaining the weighting coefficients will be to use the method of steepest 

decent, where the optimal coefficients of the user's weighting coefficients are obtained iteratively 

using the following update equation [32,93] 
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gk (m + 1) = gk (m) + ~ ,u[- V'J k (m)] 
2 

(3.18) 

where 'VJ k (m) is the f( h row of the gradient of the vector J(m) defined in Equation (3.7) and 

,u is the step size parameter, which should be small enough to ensure convergence of the 

coefficients . Differentiation of Equation (3 .7) yields the following equation [32 ,93] 

H * 'VJ k (m) = (2E[rp (m)r ,. (m)]gk (m) - 2E[rp(m)bk (m)]) (3.19) 

Since the correlation matrix E[rp(m)r/f (m)] and the vector E[rp(m)b;] are not readily 

available, instantaneous values are usually used to approximate them. Thus the gradient vector 

approximation is given by the following expression 

A (H * ) 'VJ(m) = 2 rp(m)rp (m)g(m)-bk (m)rp(m) (3.20) 

Substitution of Equation (3.20) into Equation (3.18) yield the following update equation for the 

weighting coefficients vector 

gk (m + 1) = gk (m) + Ji[r p (m)r: gem) -bk (m)r p (m)] (3.21) 

There is only one thing we need to specify how it is determined. This is the data bit b k (m) . This 

information depends on the mode the transmitter and receiver are in. These modes are training­

based mode and decision-directed mode. During training mode, the transmitter sends data bits, 

which the receiver has knowledge of. The receiver uses these bits to adapt its weighting 

coefficients . After the weighting coefficients have converged to their optimal value the receiver 

switches to decision directed mode, where the previous decisions made by the detector are used to 

update the weighting coefficients. These decisions are made according to the hard-decision rule 

bk (m) = sgn(r;: (m)g(m)) (3.22) 

where the hat symbolize that the bit made by the detector is an estimate of the actual transmitted 

bit and sgn return the sign of the argument to it. In [29,32,93] , the condition, which must be met 

by the step-size parameter to ensure that the weighting coefficients converge to their optimal 

solution, was determined. This condition is given by 

(3.23) 

where Amax is the maximum eigenvalue of the matrix Fp = E[rp(m)rf! (m)] . 
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3.4.2 LMS postcombining MMSE detector 

In this subsection we turn our attention to the adaptive implementation of the postcombining 

detector using the LMS algorithm. For this MMSE detector the number of FIR filter employed to 

suppress MAl equals the number of resolvable multipath component the channel has. Let 

W k (m) be the matrix of the weighting coefficients for the kIll user with elements 

W k (m) = [w k,1 (m), .. . , w k,L (m)] (3.24) 

where the vector W k,l (m) is a vector of the weighting coefficient of the I!" user's t" multipath 

component and is computed using the following update equation 

H 
W k,l (m + 1) = W k,l (m) + ,u[rp (m)rp (m)w k,l (m) -bk (m)rp (m)] (3.25) 

Assuming the detector has knowledge of the channel fading coefficients or their estimate, for the 

user of interest (i.e. ck (m) = [ck ,1 (m)" " ,Ck ,L (m)] is known to the detector) , then the data 

estimate for the I!" user' s transmission are given by [47,48] 

bk (m) = Sgn(± ck,l (m)w k,l (m)rp(m)] 
1=1 

(3.26) 

3.5 Convergence Analysis of the LMS-MMSE detector 

This Section looks at the convergence analysis of the LMS-MMSE detector. We only consider 

the convergence analysis of the precombining MMSE detector and we start by first looking at the 

case where either the output of the chip-matched filter is sampled at the chip-rate or no chip­

matched filter is used. Following this, subsection 3.5.2 looks at the case where the chip-matched 

filter output is sampled at a rate much higher than the chip rate. 
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3.5.1 CASE 1 

Throughout this Section we will assume that the kl
" user is the user of interest. The update 

equation for this user 's weighting coefficients was presented in Equation (3.21) and is given 

again here for convenience 

gk (m + 1) = gk (m) + J.1[rp(m)rf! (m)g(m) -bk (m)rp(m)] (3.27) 

Let us denote the difference between the weighting coefficients computed using the above 

Equation and the optimal weighting coefficients computed using Equation (3.8) for thek''' user at 

time m as ~gk (m) . It can be easily shown that the update Equation for ~gk (m) is given by [32] 

~gk (m + 1) = (I - J.1f p(m)r; (m»~gk (m) (3.28) 

Taking the expectation of the above Equation and bearing in mind that ~gk (m) is independent of 

r p (m) we obtain the following expression 

E[~gk (m + 1)] = E[I - f.JFp ]E[~gk (m)J (3.29) 

Using an iterative approach and noting that ~gk (0) is deterministic , it can be shown that the 

above Equation can be written as 

The matrix Fp , which is Hermitian, can be written as 

H Fp = rAr 

(3.30) 

(3.31) 

where r is a normalized unitary matrix of the eigenvectors of Fp, while A is a matrix of the 

eigenvalues of Fp. Using Equation (3 .31), we can rewrite Equation (3.30) as follows 

E[i1gk (m + 1)] = (I - ;.irAr H )m+l i1gk (0) 

= reI - f.JA)11l+1 rH i1g k (0) 
(3.32) 

The matrix of the eigenvectors r can be written as a sum of two orthogonal matrices, which are 

the signal subspace matrix (denoted as E s) and the noise subspace matrix (denoted as En)' 

respectively. If the optimal weighting coefficients and the initial estimate of the optimal 

coefficients are in the signal subspace, then the above Equation simplifies to 

(3.33) 

3-8 



where A s IS a diagonal matrix of the non-zero eigenvalues of the matrix 

S p (m)Cp(m)Ap(m)Ap(m)C~ (m)S~(m) . Equation (3.33) tells us that when the initial 

weighting coefficients vector is inside the signal subspace, then the convergence of E[gk (m)] to 

the optimal weighting coefficients only depends on those eigenvalues of Fp that are inside the 

signal space. 

Most of the work in the literature treats the eigenvalue spread as the measure of convergence 

performance [29,32,93]. Using the same performance measure and assuming that the weighting 

coefficients are initialized inside the signal subspace, one obtains the following performance 

index 

2 
As max + 0" 

Ps,eig = ' 2 
As,min + 0" 

(3.34) 

where As,max and As,min are the maximum and minimum eigenvalues of the matrix A s . In 

contrast to this, if the weighting coefficients are initially inside the noise subspace vector then the 

eigenvalue spread is given by the following expression 

2 
As max + 0" 

Pn,eig = ' 0" 2 (3.35) 

From Equations (3 .34) and (3 .35), it can be seen that initialization of the weighting to within the 

signal subspace results in reduced eigenvalue spread, leading to faster convergence rate. The 

problem with the above performance measure is that it only gives us an idea about the 

convergence rate of the LMS algorithm; it doesn't say anything about the misadjustrnent noise, 

which happens to play a vital role on the performance of adaptive algorithms. In [64] , the authors 

proposed another measure, which penalize both misadjustment and the rate of convergence 

experienced by the LMS algorithm. This measure is given by the following expression 

P = S'max (3.36) 

where 'f max = (,uAmin ) -1 is the largest convergence time constant and S = tr(F p) is the 

misadjustment noise. Using Equation (3 .36), the performance measure of the LMS algorithm 

when the weighting coefficients are initialized to within the signal subspace is given by [64] 
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;= 1 (3.37) 

where M is the number of column in A s and NI is the number of filter coefficients . On the 

other hand when the weighting coefficients are initialized to within the noise subspace then 

Equation 3.36 yields the following performance index 

M 

L As,i + Nla
2 

p = .:....i=....:,I __ ,----__ 

n 2 
a 

(3.38) 

From Equations (3.37) and (3 .38) it should be apparent that initialization of the weighting 

coefficients to within the signal subspace yields a smaller performance index value when 

compared to noise subspace initialization. Since the performance index is directly proportional to 

misadjustment noise and inversely proportional to the convergence rate, it follows that signal 

subspace initialization yield better performance when compared to noise subspace initialization. 

3.5.1 CASE 2 

The focus of this Section is on the convergence analysis of the LMS-MMSE tap-weight vector 

when the output of the chip-matched filter is sampled at a rate much higher than the chip rate. 

Throughout this analysis we will assume that the tap weights are spaced one sample apart. As 

stated in Section 3.2, additive noise cannot be modelled as white when the chip-matched filter 

output is sampled at a rate much higher than the chip-rate. This complicates matters, since the 

over-sampled signal cannot be easily split into the noise and signal subspaces. 

The only way around this problem is to assume that the chip-matched filter has a magnitude 

response that is non-zero inside the range - (1/ 2Tc ) < f < (1 / 2Tc ) and zero otherwise [64] . If this 

assumption holds then over-sampling the output of the chip-matched filter is equivalent to 

sampling the chip-matched filter at the chip-rate, followed by interpolation. Figure 3.1 shows how 

over-sampling the output of the chip-matched filter can be modelled under the assumption that 

the chip-matched filter is perfectly band limited. 
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In Appendix A, the signal model used in this Section for the analysis of the convergence behavior 

of the over-sampled output of the chip-matched filter is developed. From the results obtained 

there, the autocorrelation of the over-sampled finite input vector r p (m) is given by 

Chip 
Matched 

Filter 

Figure 3.1 Modelling an oversampled signal. 

---J Interpolation 

T:\. 1'-____ ---' 

F = s-1 /2y r X S [ [
SA °l[S-1 /2rH yH 1 

S S 0 0 X H 
(3.39) 

where S is the number of samples per chip and F S is the autocorrelation of the oversampled chip-

matched filter output. Y s is the interpolating matrix, r and A are the eigenvectors and 

eigenvalues matrices of the chip-rate sampled output of the chip-matched filter and were defined 

in Equation (3.31). Finally the matrix X is any matrix with properties: (1) it is orthogonal to 

Ysr and (2) it satisfies X H X = I. 

As was done in the last Section, it can be shown that the mean of the difference between the 

weights computed using the LMS update equation and their optimal value is given by 

E[~gk Cm + 1)] = (! - f.1FS )m+1 ~gk (0) 

Substituting Equation (3.39) into Equation (3.40) and simplifying yields 

(3.40) 

(3.41) 

As we did in the previous Section we can split the matrix r into the signal subspace E s and the 

noise subspace En' If we as~ume that the vector ~gk was initially in the signal subspace then 

Equation (3.41) can be written as 
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(3.42) 

where the vector A s was defined in the previous Section. From Equation (3 AI) and (3042) the 

following deductions can be made: 

1. As long as 11 - j.1A j 1< 1 for all j, then the limit as m approaches infinity of Equation (3041) 

approaches 

hm E[L\gk (m + 1)] = XX H L\gk (0) (3.43) 
m-too 

The A) used here is the /' eigenvalue of the matrix F s and should not be confused with 

that of the matrix As, which is represented as As,)' 

2. For the MSE of the adaptive filter to be at it's minimum, L\gk (m) should be in the 

subspace spanned by X 

3. The eigenvalues of F S are S times the eigenvalues of Fp . 

4. If the vector L\gk (0) was initially in the signal subspace then the largest convergence 

time constant is given by '(' max = (Sj.1(As,min + (72 »-1 . Similarly if the vector L\gk (0) 

was initially in the noise subspace then the largest convergence time constant is given by 

From deduction 3, it can be seen that the misadjustrnent of the adaptive filter when the output of 

the chip-matched filter is over-sampled is given by 

C; s = tr(F s) 

= S tr(Fp) 

M 
= SI As,i + SN1 (72 

1=1 

(3.44) 

where M is the number of column in AS and NI is the number of filter coefficients. Using 

deduction 4 and Equation (3043) one can write the performance indices for the both the signal 

subspace and noise subspace initialization as follows 
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M 

L )·s ,i + NI (J2 

P = .:....i=....:.I ____ _ 

s 2 
As.min + (J 

(3.45) 

M 

LAs,i + NI(J2 

P = .:...,i=....:.I ____ _ 

11 (J2 
(3.46) 

Thus one can conclude once again that signal subspace initialization yield better performance 

than noise subspace initialization. 

3.6 BER Analysis of the MMSE detectors 

This Section is dedicated to the bit error rate (BER) analysis of the MMSE detector and its LMS 

implementation. First we will look at the bit error rate of the precombining detector. Following 

this we will look at the bit error rate analysis of the postcombining detector. Throughout this 

Section we will assume that if a chip-matched filter is used then the sampling rate is the chip-rate 

so that all assumptions made in Section 3.2 hold. 

3.6.1 BER Analysis for the precombining detector 

A. Ideal MMSE 

Lets start by assuming that the channel fading coefficients are non-varying. Later in this Section 

we will amend the expression to include fading channel effects . In a non-fading channel the bit 

error rate is given by the following expression [47-48,91] 

(3.47) 
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where Q is the complementary error function and 910 returns the real part of its input. A 

simpler approximation for the bit error rate expression can be derived if one assumes that the 

distribution of the k'll user's decision variable has a Gaussian distribution. To derive this BER 

expression we first start by defining the following correlation function for the user of interest 

Uk = E[rp(m)bd (3.48) 

For simplicity we will assume that P=l and the index P will be dropped out were unnecessary. 

Using the above definition, the optimal coefficients of the !I" user can be written as follows [4] 

(3.49) 

and the minimum MSE that can be achieved by the!lh user's adaptive filter can be shown to be as 

follows [73] 

(3.50) 

Let's denoted the decision variable of the k'h user' s detector as Y k (m), then this variable can be 

written as follows 

Yk (m) = gZ rem) (3.51) 

The mean of the decision variable conditioned on bk (m) = 1 IS given by the following 

expressIOn 

Yk = E[Ydm) I bk = 1] 
H = g (lk 
k 

= 1-Jmin,k 

(3.52) 

where J min k is defined above. The variance of the decision variable is given by the following , 

expressIOn 

J' /.: 

(3.53) 

= J min k (1 - J min k ) , , 
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Thus the signal-to-interference ratio is given by the following expression 

- 2 
Y 

SIRk =-t-
a 

Yk 

I-J min,k = ------'--
Jmin ,k 

Finally the expression for the bit error rate is given by the following expression 

Pe,k ~ Q(SIR) 

= Q( 1 - J min,k J 
Jmin ,k 

(3.54) 

(3.55) 

In a fading channel expressions (3.47) and (3.55) are the conditional BER expressions, the 

condition being that the channel coefficients are non-time varying. The BER expression is then 

obtained from these expressions by averaging them over the probability density function of the 

fading channel coefficients of all the users ' paths. For simplicity we will denote this average 

using the following notation (using Equation (3.55» 

Pe,k = E(Q( I - J min,k J] 
J mm,k 

(3.56) 

As an illustrating example the BER expression for an ideal MMSE detector in a case where we 

have two users transmitting data in a two path fading channel is: 

(3.57) 

B. LMS-MMSE detector 

For the LMS MMSE detector, the MSE at the output of the kIll user ' s detector at time m is given 

by the following expression [131] (see also Equation (3 .7» 

(3.58) 
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When the excess MSE is small compared to the minimum MSE then we can use the following 

approximation (lkgk ;:::: g7Fgk' so that the above expression can be Wlitten as follows 

H 
Jk=l-gkFgk 

Likewise Equation (3 .52) and (3.53) can be written as follows 

and 

(3.59) 

(3.60) 

(3.61) 

Thus the BER expression for the LMS-MMSE detector in a non-fading channel is given by the 

following expression 

(3.62) 

When infinite training symbols are used, J k can be computed as follows [32,93] : 

J k = Jmin ,k + Jexc,k 

= J min,k [I + I _fLA....:....i -] 
i=l 2 - fLAi 

(3.63) 

where Ai are the eigenvalues of the matrix E[ r p (m)r: (m)] . In a fading channel the BER 

expression can be written as follows 

(3.64) 

3.6.2 BER Analysis for the postcombining detector 

In this subsection we derive the BER expression of the MMSE detector, which performs post 

muItipath combining. We assume that the combining vector ck (m) = [ck,l (m), ... , ck,L (m)] for the 

klh user is complex Gaussian vector with zero mean. The output of the rh path interference­

suppressing filter for the IIh user is given by 
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H Zk,l(m) = wk,l(m)rp(m) 

Lets define the vector Z k (m) as 

Zk (m) = [Zk,1 (m) , ... , Zk,L (m)] 

Then the decision statistic for the !Ill users signal can be written as foIIows 

H Yk (m) = Ck (m)zk (m) 

Let 

and 

(3.65) 

(3.66) 

(3.67) 

(3.68) 

where 0 L and I L are the L - by - L zero and identical matrices, respectively. Then the decision 

variable Yk (m) can be written in terms of(3.67) and (3.68) as foIIows [47,48 ,59] 

(3.69) 

The vector zdm) conditioned on the data bits bp (m) is a complex Gaussian random vector. 

Since the combing vector C k (m) also has a Gaussian distribution the probability of error for the 

kIll user conditioned on the data bits bp (m) is given by the foIIowing expression [47,48 ,59] 

2L 2L A­
P( error I bp) = I IT 1 

i=1 j=1 Ai - Aj 
Ai <0 j*i 

where Ai i = 1,2, ... ,2L are the eigenvalues ofthe matrix E[ vv H I b]Q and 

H [E[Ck (m)cf (m)] E[ck (m)zf (m) I b p(m)] J 
E[vv I b] = H H 

E[cdm)zk (m) I b p(m)] E[zk (m)z ( (m) I b p(m)] 

Finally the BER expression for the !Ill user is given by 

1 
Pk = L P(error I b p(m)) 

2PK
-

1 
b pE{ _ I ,I }MK -' 
b( =l 
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The above expression applies to any linear detector. Since the conventional detector is a linear 

detector it follows that its BER expression can be computed using the above expression, where 

instead of computing the weighting coefficients adaptively we set them to the spreading sequence 

vector. 

3.7 Conclusion 

This Chapter considered the MMSE detector and its adaptive implementations using an LMS 

algorithm. It started by first looking at the signal model to be used throughout this Chapter. 

Following this, the optimal coefficients of both the precombining and postcombining MMSE 

detectors were presented. 

Section 3.4 then presented the adaptive implementations ofthe precombining and postcombining 

MMSE detector using the LMS algorithm. This was then followed by the analysis of the 

convergence behavior of the MMSE detector. Finally, the BER analysis of the MMSE detector 

and its adaptive implementations were presented. Simulation and analytical results of the LMS­

MMSE MUDs are presented in Chapter 5, together with those of the conventional and lattice­

based MUDs. 
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4.1 Introduction 

Chapter 4 

Lattice Filters 

Filtering is a signal processing operation whose objective is to process a signal in order to 

manipulate the information contained in the signal. In other words, a filter is a device that maps 

its input signal to an output signal facilitating the extraction of the desired information from the 

input signal. There are two types of filters. The first one is a time-invariant filter, where the filter 

parameters are non-varying. The second filter type is the time-varying (adaptive) filter. The 

coefficients of the adaptive filter are time varying. 

The operation of an adaptive filtering algorithm involves two basic processes: (1) a filtering 

process designed to produce an output in response to the input data, and (2) an adaptive process, 

the purpose of which is to provide an algorithm for adjusting the filter coefficients. The operation 

of the adaptive filtering algorithm is affected by the choice of the structure. Examples of adaptive 

filter structure are: Transversal filter, lattice structure and Systolic array. In this Chapter a detailed 

study of the lattice structure is presented. 

This Chapter is organized as follows . In Section 4.2 we looks at linear prediction using the FIR 

filter. In Section 4.3, the lattice structure is introduced and the order update equation of the lattice 

filter structure presented. Joint process estimation is then covered in Section 4.4, while in Section 

4.5 conclusions are presented. 

This Chapter is based on the worked published in [32,35,36,70,93]. 
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4.2 Linear Prediction 

Consider the following set of a stationary discrete-time stochastic process: 

u(m-1)={u(m-1),u(m-1), ... ,u(m-N)} EC N (4.1) 

There are some application where one might be interested in predicting the future sample u(m) 

given u(m -1). This process can be accomplished by using an FIR filter (see Figure 4.l(a» , 

whose coefficients are optimized in the mean squared error sense in accordance with Weiner filter 

theory. From Figure 4.1 (a) , it should be apparent that the predicted value is given by 

N 

u(m) = LW j,ku(m - k) 
k=! 

(4.2) 

The error between the actual data and the predicted value is called the forward prediction error 

and is given by 

IN (m) = u(m) -u(m) 

N 

=u(m)- LWj,ku(m-k) 
k=! 

(4.3) 

where the variable N symbolizes the filter order. Let a N,k; k = 0,1, ... , N denote the weighting 

coefficients ofa new FIR filter, which are related to the coefficients of Equation (4.3) as follows 

Then Equation (4.3) can be written as follows 

N 

IN (m) = LaN,ku(m -k) 
k=O 

k=O 
k =1,2, ... ,N 

(4.4) 

(4.5) 

and the reSUlting filter is said to be the prediction-error filter and is shown in Figure 4 .1 (b). The 

optimal Weiner-Hopfequation of the coefficients given by Equation (4.2) is [32]: 

(4.6) 
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u(m) 
-/ 

Z 

Wj ,l 

u(m) - / 
Z 

u(m -1 ) 

-/ 
Z 

u(m - 1) 

- / 
Z 

-/ 
Z 

Wj,3 

(a) 

u(m- 2) 

- / 
Z 

a N,3 

(b) 

- / 
Z 

Wj ,M 

Figure 4.1 (a) One-step forward predictor filter; (b) forward prediction-error filter 

- / 
Z 

u(m) 

u(m -N) 

where W j = [w j,l , ... , W j ,N ] , and R N and r are the input crosscorrelation and 

autocorrelation with the desired signal u(m), which are given by : 
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RN = E[u(m - I)u H (m - I)] 

reO) r(1) ... r(N -1) 

r(-I) r(O) · ·· r(N-2) (4.7) 
= 

r(N -I) r(N - 2) ... reO) 

* r = E[u(m -I)u (m)] 

* r (1) 

* r (2) 
= 

(4.8) 

* r (N) 

Note that r should not be confused with the r of Chapter 2 and 3 which refers to the received 

signal. Using Equation (4.3) , the expression of the forward prediction-error power is given by 

(4.9) 

Equation (4.6) and (4.9) can be combined to form one expression, which is 

(4.10) 

where ON is the N-by-I null matrix and from Equations (4 .8) and (4.9) the R N+I matrix is given 

by 

R _ [reo) rH j 
N+I -

r RN 
(4.11) 

Using Equation (4.4), with aN = {a N,O , ... , a N,N }, Equation 4.10 can be written as follows: 

(4.12) 

In another form of prediction, one might be interested in predicting the sample u(m - N) gIven 

the following samples 

u(m) = [u(m), u(m -1), ... , u(m - N + 1)] (4.13) 
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This second form of prediction is referred to as the backward linear prediction and is illustrated in 

Figure 4.2(a). From this diagram it follows that the estimate of the backward linear predictor is 

given by 

N 

u(m-N) = L wb,ku(m-k +1) 
k=l 

(4.14) 

where W d = [w d 1, W d 2,·", W d M] are the weighting coefficients of the backward linear 
" , 

predictor filter . The difference between the actual data value and the estimated value given by 

Equation (4.14), is called the backward prediction-error and is given by 

N 

d N = u(m - N)- L wd,ku(m -k + 1) 
k=l 

(4.15) 

Due to the symmetry of the input autocorrelation function of both the backward and forward 

prediction-error filters, the optimal backward prediction weighting coefficients are the mirror 

image of the optimal forward predictor weighting coefficient, i.e. 

* wd,k = wf,N-k+l (4.16) 

Using Equation (4.4) and (4.16), the backward prediction-error filter can be expressed as follows 

(see Figure 4.2(b»: 

N 

dM(m)= LaN,N-ku(m - k) 
k=O 

(4.17) 

The optimal Weiner-Hopf equation of the backward predictor coefficients in Equation (4.14) is 

given by [32]: 

(4.18) 

where the vector r B is obtained by rearranging the element of vector r defined in Equation 

(4.8), in reverse order, i.e. 

* r (N) 

* rB = r (N -1) (4.19) 

* r (1) 
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Figure 4.2 (a) One-step backward predictor fi lter; (b) backward prediction-error filter 
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By using Equation (4.15), the expression of the backward prediction-error power is given by 

PN =E[lbN 12] 

= reO) - rBT W d 
(4.20) 

Combining Equation (4.18) and (4.20) into a single equation yields the following results 

(4.21) 

where 

[
R rB*] R N1 = 

+ rBT reO) 
(4.22) 

Similarly, one can write Equation (4.21) in terms of the backward prediction-error filter 

weighting coefficients as follows: 

RN+la~ =[~: 1 (4.23) 

Equation (4.10) and (4.12) are referred to as the augmented Weiner-Hopf equations to a forward 

prediction-error filter, while (4.21) and (4.23) are referred to as the augmented Weiner-Hopf 

equations of the backward prediction-error filter. 

We now look at the recursive equations to calculate the prediction-error filter coefficients and the 

prediction-error power. These equations are obtained by using the augmented Weiner-Hopf 

equations and the resulting recursive equations are termed the Levinson-Durbin algorithm. 

The basic operation of the Levinson-Durbin algorithm is as follows: Given the solution of the 

augmented Weiner-Hopf equation for a prediction-error filter of order (i-I) we can compute the 

corresponding solutions for the augmented Weiner-Hopf equation of order i, where i=1,2,3, ... ,N 

and N is the final order of the filter. 

Let the weighting coefficients vector of the forward prediction-error filter of order i be given by 

(4.24) 
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Then the corresponding weighting coefficients for the backward error filter ar is obtained by 

reverse arrangement of the element of the vector ai and taking the complex conjugate of the 

resulting vector. Lets assume that we have the (i-l)-by-l vectors ai-I and a B* , denoting the 
1-1 

weighting coefficients of the forward and backward prediction-error filter, respectively. Then the 

Levinson-Durbin recursive equation for the weighting coefficients is given by: 

(4.25) 

where ki IS a constant. Likewise, the Levinson-Durbin recursion equation can be stated as 

follows 

B*=[O 1 k*[a i
-

I
] a l B* + 1 

a . I ° 1-

(4.26) 

Now that we have the recursive update equation for both the forward and backward prediction­

error filter, lets turn our attention to the problem of finding the recursive algorithm for the i'''stage 

prediction-error power, p;. Premultiplying both side of Equation (4.25) by Ri+l ' the (i+ 1)-by­

(i + 1) autocorrelation of the input, yields 

(4.27) 

Using Equation (4.12) yield the following results 

(4.28) 

Substituting Equation (4.22) into the first term on the right hand side of Equation (4.28) and 

simplifying yield the following results 
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(4.29) 

Likewise, substituting Equation (4.11) into the second term of Equation (4.28) and simplifying 

the resulting equations, yield the following results: 

Let's define the scalar 

BT 
Xi-l = ri ai- l 

i-I 

= L r(l - i)ai-l,1 
1=1 

(4.30) 

(4.31) 

then it can be shown that riH a f-~ = X ;-1 [32]. Substitution of Equations (4.29) and (4.30) into 

Equation (4.28) and using the definition in Equation (4.31) yield: 

(4.32) 

From the above Equation the following deductions can be made: 

(4.33) 

(4.34) 

Substitution of Equation (4.34) into Equation (4 .33) yield the following order update equation for 

the prediction-error power 
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* p =p 1(I-kk) / /- / / 

2 =P;-I(1-lki l) 
(4.35) 

The parameter ki is termed the reflection coefficients and later in the Chapter we are going to 

develop its update equation. 

4.3 Lattice Filter and Linear Prediction 

In the previous Section both the forward and the backward prediction filter were implemented 

using two different transversal filters. In practice these processes can be implemented using one 

filter, whose structure is of a lattice form. This filter structure, which is efficient, combines 

several forwards and backwards prediction-error coefficients into a single structure, giving rise to 

a lattice structure. Hence this filter is called the lattice predictor. Let 's develop the order update 

equation of this filter. 

Let Ai(z) and Gi(z) be the transfer function of the forward and backward prediction-error 

filter of order i , then the transfer function of the forward predictor filter can be specified in terms 

of the prediction error coefficients as follows 

i 

I * -I 
=a · o+ a'lz I , I, 

1=1 

i 
" * -I =1+ L."ai,lz 
1=1 

(4.36) 

Likewise, from Equation (4.17) the equation of the transfer function of the backward prediction­

error filter is given by 

i 

Gi(z)= Iai,i-IZ-I 
1=1 

i -i" 1 =Z L."ai,lz 
1=0 
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From [32] , the scalar version of the Levinson-Durbin algorithm for the prediction-error weighting 

coefficients is given by 

a . , =a . ,,+k.a" 
t , 1- • I 1-1.1 -1 

(4.38) 

where ai,! , ai-I,! are the t" weighting coefficients of the forward prediction-error filter of order i 

and i-I, respectively and <-1 i-I is the /," weighting coefficients of the backward prediction-, 

error filter of order i-l. Starting with Equation (4.36) and (4.38), lets determine the order update 

equation of the forward prediction-error filter. Substitution of (4.38) into (4.36) yields the 

following results 

i ( ~ * * -I Ai(z)=l+ I a '_I! +k .ai_Ii_1 1 , /, , 
1=1 

i-I ( ~ * * -/ *-i = 1 + I a '-11 + k . ai-I i- I + k i z 1. , I , 
1=1 (4.39) 

=1+ Ia;_I,Iz-1 +ki*Z-;(I+ IU;-I,!/] 
1=1 1=1 

= Ai- I (z) + k;Z - i Ai- I (z-I) 

From Equation (4.37) it should be clear that the last term on the right hand side of (4.39) is 

equivalent to k * z -lGi _1 (z). Substitution of this term, results in the following equation 
I 

* -I Ai(z) = A;_I (z) + ki Z Gi - I (z ) (4.40) 

Let U(z), Fi (z) and Bi (z) be the z-transform of the input sequence u(m) and the forward and 

backward prediction-error output (fi (m) and d i (m»), respectively. Then the output of the 

forward prediction-error is given by 

(4.41) 

Since Fi (z) = Ai (z)U(z) and Bi (z) = G; (z)U(z) , then the above Equation simplifies to 

Fi (z) = Fi_1 (z) + kt z-I B i- I (z) (4.42) 

The time-domain transform of the above Equation yields the following results 

(4.43) 
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The above Equation is the order update equation of the forward prediction-error filter. To obtain 

the corresponding order update for the backward prediction filter, we start at 

Gi(z) = Z- i Ai (z- l). Substitution of Equation (4.39) into this equation and simplifying yields 

Gi (z) = z-i (Ai-I (z - I) + ki zi Ai-I (z») 

= z-i Ai-I (z-I) + kiAi- 1 (z) 

= z-IGi_1 (z) + kiAi- 1 (z) 

Multiplying both side of the above Equation by U (z) yields the following results 

Bi (z) = z-I Bi_1 (z) + kiFi-I (z) 

The time-domain transform of the above Equation yield the following results 

(4.44) 

(4.45) 

(4.46) 

The above Equation is the order update equation of the backward prediction-error filter, which 

completes the order update of the lattice predictor. Figure 4.3 illustrates the lattice filter described 

by the recursive relationship in Equation (4.43) and (4.46) . Now let ' s turn our attention to the 

problem of developing the optimal equation of the reflection coefficients. The optimality criterion 

adopted for the computation of the optimal reflection coefficients is the minimum MSE, where 

the average of the sum of the powers at the output of the i stage is minimized. Thus the cost 

function is given by [32,93] 

(4.47) 

Substitution of Equation (4.43) and (4.46) into the above Equation yield the following results 

* ~ * * 2ki E[fi-l (n)d i_1 (m -1)] + 2ki E[di_1 (m -1)fi-l (m)] 
(4.48) 

Differentiating the above Equation with respect to the reflection coefficient km one obtains 

\1Ji = 2kiE[1 fi-I (m) 12] + E[I di _1 (m -1) I] + 4E[f7_1 (m)di _1 (m -1)] 

(4.49) 

Equating the above expression to zero, the following expression for the optimal reflection 

coefficient is obtained 
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Figure 4.3 Lattice filter 
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Stage 
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Stage 
N 

(4.50) 

The above Equation for the optimal reflection coefficients involves the use of ensemble averages. 

In practice this information is not readily available. In such cases an adaptive algorithm is used to 

approximate the reflection coefficients. A number of adaptive algorithms for approximating the 

reflection coefficients were presented in [29,32,35-37,93]. The one adopted in this research is the 

one presented by Proakis in [29,93] and is given by 

* * f_l(m-I)d. (m-I)+d . (m-2)f(m-l) 
k i (m) = k j(m - I) - I I I- I I 

vi(m-I) 
(4.51) 
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where vi (m) is the step-size parameter. There exist two version of the above Equation. These are 

the normalized and the un-normalized step-size equation. In the un-normalized case the step-size 

parameter is kept constant while in the normalized case the step-size is updated using the 

following equation 

2 2 vi (m) = WVi (m -1)+ I fi-I Cm) I + I di- I (m -1) I (4.52) 

where W is the forgetting factor. The lattice predictor has a number of useful properties . We are 

going to wrap up this Section by summarizing them 

Properties of Lattice Predictor 

• E[di (m)d j (m)] = Pioij 

• E[fi (m + i)fj (m + j)] = ~oij 

• {
k.P. i ~ j 

E[fi(m)dj(m)]= 0" otherwise 

4.4 Stochastic Lattice Filter 

In Section (4.2) and (4.3) we looked at linear transversal and lattice prediction filters, 

respectively. Adaptive versions of these filters are usually employed in applications involving 

Linear Predictive Coding (LPC) and Adaptive Differential PCM (ADP CM) Coding. Of the two 

prediction filters, the lattice filter is the one often used because of the speed at which its 

coefficients converge. 

In this Section we look at another lattice based filter, called the Gradient Lattice (GL) filter. A list 

of application where this filter is usually employed include echo and intersymbol interference 

cancellation. In the next Chapter, we are going to employ this filter to mitigate MAl in CDMA 

systems. 

The GL filter is obtained by adding additional coefficients and a summation to the lattice 

predictor of the previous Section, as illustrated in Figure 4.4. Since in the previous Section, the 
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update equations of the lattice predictor were presented , this Section focuses only on the ladder 

Section. From Figure 4.4, the output of the GL filter is given by 

N 

b(m)= 'Lh;d/(m) 
/=0 

(4.53) 

where hi; i = 0,1, ... , N are the weighting coefficients of the ladder Section. This equation can be 

written is matrix form as 

where hand d are the (N+ 1) vectors defined by 

T d = [do Cm), d l (m), ... ,d N (m)] 

(4.54) 

(4.55) 

The optimal weighting coefficients of the ladder Section are obtained by minimizing the mean of 

the difference between the desired signal (b(n)) and it's estimate, which is given by Equation 

(4.54). Thus the cost function to be minimized is given by 

J(m) = E[I b(m)-b(m) 12] 
* ,,*,.. .... 

= E[b(m)b (m)] - 2E[b(m)b (m)] + E[b(m)b(m)] 

= E[b(m)b * (m)] - 2E[b(m)d H (m)]h + h H E[d(m)d H (m)]h 

(4.56) 

Differentiating the above Equation with respect to weighting coefficients h yields the following 

results 

V'J(m) = -2E[b(m)d H (m)] + 2h H E[d(m)d H (m)] (4.57) 

Equating the above Equation to zero and simplifying yields the following expression for the 

optimal weighting coefficients 

h = {E[d(m)d H (m)]}-I E[d(m)b * (m)] (4.58) 

Using the orthogonality properties of the lattice filter, the above Equation can be written in scalar 

form as follows 
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hi (m) 

u(m) 

h, = {E[b(m)b' (m)]} - I E[d, (m)b' (m)] (4.59) 

In practice the weighting coefficients are not computed using the above Equation since the 

ensemble averages required are not readily available. Instead these coefficients are computed 

using adaptive algorithms. In [35-37,93], adaptive algorithms for computing these coefficients 

were presented. In this project, the adaptive algorithm adopted is [93] 

* 
hz(m + 1) = hz(m) + 2ei(m)bz (m) 

vi(m) 
(4.60) 

r-------~~r_----------~~------------~~~~b(m) 

h2 (m) h2(m) 
hN(m) 

dN(m) 

doe ) dl(m) diem) 
.. _ .. 

Stage Stage Stage 
1 2 N 

.. _ .. IN (m) 

10 (m) 
II (m) li(m) 

d i- I (m) Z·I 

diem) 

k I 

* k· I 
Ii-I (m) li(m) 

Figure 4.4 Gradient Lattice filter 
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where v m (n) is the inverse step-size parameter and was defined in the previous Section, eM (n) 

is the error between the desired signal and the filter output and is given by 

(4.61) 

where eo (m) = b(m) 

4.5 Conclusions 

In this Chapter we looked at the linear prediction problem using an FIR filter, where we showed 

how backward prediction and forward prediction is achieved. In short the forward prediction 

problem involve the estimation of the future value of a stationary discrete-time stochastic process, 

given a set of past samples of the process. In contrast to this, backward prediction involve the 

estimation of a previous sample given the current samples of the stationary discrete-time 

stochastic process. The optimal coefficients of both these prediction filters were obtained by 

minimizing the MSE optimality criterion. 

In Section 4.3, we then showed how the prediction problem can be solved using the lattice 

structure, where the issue of interest is determining the reflection coefficients. The lattice 

predictor offers a number of desirable properties 

1. Order Recursive structure, the input output relationship of the various stages of the lattice 

predictor are computed using an order recursive algorithm. 

2. Statistical decoupling of the individual stages. This property is the one which makes the 

convergence of the lattice equalizer much faster than the LMS algorithm. 

3. Efficient computation of the forward and the backward prediction error. 

In Section 4.4 we then presented the gradient lattice joint process estimator, where given the 

vector of the received signal we have to adaptively determine the desired signal. 
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Chapter 5 
Lattice MMSE Multiuser Detector 

5.1 Introduction 

In Chapter 3 the MMSE detector and its adaptive implementation using a transversal filter whose 

coefficients are adjusted using the LMS algorithm (LMS-MMSE detector), were presented. The 

LMS-MMSE detector was shown to reduce the computational requirements of the MMSE 

detector while not degrading BER performance. The only drawback with the LMSMMSE 

detector is its inherent slow convergence rate. 

This Chapter presents the lattice structure based implementations of the MMSE detector. As it 

will be shown, the lattice implementations of the MMSE detector offer good tradeoff between 

BER and convergence performance. In this Chapter the focus will primarily be on the gradient 

lattice algorithm (GLA), but a brief study of the LS-lattice MMSE detector will be presented 

together with its simulation results. This Chapter presents original unpublished work. 

In the next Section a brief overview of the system model and the notation adopted in the rest of 

this Chapter will be presented. Following this, Section 5.3 derives the optimal coefficients of the 

lattice-MMSE detector. In Section 5.4, adaptive implementations of the lattice MMSE detector 

will be presented, while Section 5.5 present the derivation of the excess MSE. Section 5.6 

discusses the convergence analysis of the gradient lattice MMSE detector. BER expressions are 

presented in Section 5.7 and finally Section 5.8 concludes the Chapter. 

5-1 



5.2 Signal Model and Notation Used 

The received system model to be used throughout this Section was defined in Chapter 2. From 

that Chapter we have the following result 

r=SCAb+n 

The nth element of the vector r in the bit interval 111 is given by 

K L 

r(mB+n)= IIAkbdm)Ck,l(m)Sk(nTs +mBTs -Tk ,d+n(mB+n) 
k=ll=l 

for 0 ~ 11 ~ B 

(5.1) 

(5.2) 

where Ts is the sampling rate and B = PN is the number of samples taken per bit period. The 

lattice MMSE detectors process the backward prediction error coefficients to estimate users' 

transmissions. Shown in Figure 5.1 is a diagram of the centralized lattice equalizer, used to 

suppress MAL This diagram is identical to the lattice structure presented in the previous Chapter 

with the exception of one minor adjustment. The modification made to this structure is that all the 

users ' ladder coefficients are fed from one lattice section, making the computational complexity 

of the LMS and the lattice MMSE detectors almost the same. It should be noted that this structure 

is used for both the precombining detector, which requires one set of ladder coefficients to be 

used for every user and a postcombining detector, which uses L sets of the ladder coefficients 

vectors for every user, to suppress MAl. It should also be noted that with a decentralized lattice 

MMSE detector there wouldn't be any reduction in computational complexity, since for every 

user a single lattice section will be required. 

In this Chapter, we will use the same notation used in the previous Chapter, where we denoted the 

forward prediction error coefficients by the symbol J, while the backward prediction error 

coefficients will be denoted by the symbol d. These symbols will be sub scripted with the relevant 

parameters. For example the it}, backward prediction error coefficient will be denoted as d i . 

Likewise the vector of the backward prediction error coefficients will be denoted as d. 
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Using the above notation and the order update equation of the gradient lattice algorithm one has 

the following order update equation for the lattice coefficients of both the precombining and 

postcombining gradient lattice-MMSE detector 's 

fi (n) = I-I (n) + kidi_1 (n -1) 

d i (n) = d i_1 (n -1) + kifi-l (n) 
(5.3) 

where fi (n) and k i are the if" stage forward prediction error and reflection coefficient of the 

lattice filter. The first stage prediction coefficients are updated using 

fo (n) = do (n) = r(n) (5.4) 

The order update equations for the LS-lattice filter are identical to those mentioned above with 

only one minor adjustment. The backwards and forward prediction coefficients are updated using 

different reflection coefficients (for a detailed study of the LS-lattice filter refer to Appendix B). 

Following the notation adopted in Appendix B, where the backward and forward reflection 

coefficients ofthe ifh stage of the lattice filter are denoted as kl and k( , respectively for the LS­

MMSE detector one ends up with the following order update equations 

fi(n)=fi-l(n)+k( d i_l (n-1) 

di(n)=di_l(n-1)+kid fi-l(n) 
(5.5) 

In the previous Chapter and Appendix B, we showed how the vector of the backward error 

coefficients d could be written in terms of the input signal. From the results obtained there, we 

have the following equation: 

d=Lr (5.6) 

where L is the matrix of the backward prediction error coefficients of the lattice structure. To 

conclude this Section let's look at how the decision statistics are performed. The decision 

statistics of the precombining lattice-MMSE detector are made according to the following rule 

(5.7) 

where hk = [hk.J.- .. ,hk.N ], k = 1, ... ,K is the vector of the ladder coefficients of the 11" user. 

Similarly the decision statistics of the postcombining lattice-MMSE detector are 

L 

Yk = l>k,/(m)tk,ld 
1=1 
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where t k./ is the vector of the rh ladder coefficients of the klh user' s ladder section of the lattice 

filter. 

Stage 1 Stage M 

.1: 

Figure 5.1 : Typical diagram of the lattice equalizer used to suppress MAl in a centralized detector 

5.3 Optimal Solutions 

Now that the backward prediction coefficients have been expressed in terms of the sampled 

baseband received signal, in this Section the optimal solution of both the precombining and 

postcombining lattice-MMSE detectors are developed. 

Since the ladder coefficients of all the users ' detectors are fed from a single lattice section we first 

start by presenting the optimal solution of the lattice section while subsequent subsections 

presents the optimal solutions ofthe ladder coefficients. The optimal reflection coefficients of the 

gradient lattice MMSE detector are computed as follows [32,93] 

5-4 



* k = - 2E[fi-\ (mB + B)di_1 «m -1)B + B)] 

I E[!i=1 (mB + B)] + E[di~1 «m -1)B + B)] 
(5.9) 

where B = NP is the number of samples taken per bit period. Note that in Equation (5.9), the 

reflection coefficients are updated once per bit duration. An alternate way of specifying the lattice 

filter will be to use the tap-weight matrix L. The elements of this matrix are arranged as follows 

1 0 o 0 

w [. 1.1 1 0 o 0 

L= wf2 .2 W j .2 .1 1 0 o 0 

W W ···W 1 [.N.N j.N.N- 1 [.N. I 

The element wl,I of the matrix L is computed as follows [32,93] 

F(1) 
wl,I = F(O) 

while the remaining unknown elements are computed in vector form using the following equation 

[32 ,93] 

F(O) F(1) .. . F(i) -I F(1) 

F(1) F(O) ... F(i -1) F(2) 
(5.10) 

F(i) F(i -1) .. . F(O) F(i + 1) 

where F(n), n = 0, ... , i are element of the matrix F = E[rrH] and W f,i = [w f,i,1 , ... , W f,i,i] 

for i = 2, ... , N refers to the vector of the unknown elements of the ifh row of the matrix L. For the 

LS-lattice filter, the expressions for computing the optimal backward and forward reflection 

coefficients were derived in Appendix B. From the results presented there, we have the following 

expressIOns 
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D 

I w D
-
i fi~l (jB + B)di_1 ((j -l)B + B) 

. ( j=l 
k; = - "-----D-------------

I wD
-
i 

1 di- 1 ((j -l)B + B) 12 

j=l 

(5.11) 

D 

I w D
- jdi*-l ((j -l)B + B)fi-l (jB + B) 

d j=l k i = -"------D------------

I w D
-

j 
1 fi-l (jB + B) 12 

j=l 

where 0 < w :S; 1 is the forgetting factor and D is the processing window size. Now that we have 

presented the optimal way of computing the lattice coefficients of both the gradient and LS-lattice 

filter, we now focus our attention on the derivation of the optimal ladder coefficients of the 

precombining and the postcombining MMSE detectors, in the next subsections. 

5.3.1 Precombining MMSE detector 

In this subsection the optimal ladder coefficients of both the gradient and LS precombining lattice 

MMSE detectors are derived, starting with the gradient lattice MMSE detector. 

5.3.1.1. Gradient Lattice MM SE detector 

The optimal ladder coefficients of the gradient lattice MMSE detector are selected such that the 

following cost function is minimized [32,93] 

(5.12) 

where the data estimates are made according to the following equation 

(5.13) 

T where H = [h 1" ' " h K ] is the matrix of the ladder coefficients for all the users. Expanding 

Equation (5 .12) and substituting Equation (5 .13) yields the following results 
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J = E[(b - b)(b H 
- b H

)] 

= E[bb H ] - E[bb H ] - E[bb H
] + E[bb H

] 

= I - 2E[bd H ]H + H H E[ dd H ]H 

(5.14) 

Differentiating the above Equation with respect to H and equating the results to zero yield the 

following expression 

(5.15) 

Substitution of Equation (5.6) and (5.1) into the above Equation and simplifying the results yield 

the following equation 

(5.16) 

which is the expression of the optimal ladder coefficients of the gradient lattice MMSE detector. 

We round-off this Section by deriving an expression for the minimum MSE of the gradient lattice 

equalizer. Substitution of Equation (5.16) into Equation (5.14) and simplifying the results yields 

the following expression for the minimum MSE. 

(5.17) 

This minimum error vector is identical to that ofthe transversal filter obtained in Chapter 3. Thus 

it follows that the LMS and GAL algorithm have the same minimum MSE. 

5.3.1.2 Least Square Lattice MMSE Detector 

The LS-Iattice MMSE detector unlike the gradient lattice MMSE detector, selects its optimal 

ladder coefficients by minimizing the least square cost function [32,93] 

D 

J = I w D
-

i 1 b(i) - b(n 12 
i= l 

(5.18) 
D 

= I WD-
i [b(i)b H (i) - 2b(i)d H (i)H + HH d(i)d I-I (i)H] 

i=l 

where b(i) and d(i) are the i'" elements of the vectors band d, respectively, while b(i) is the 

estimate of the data vector and finally D is the processing window size. Differentiating the above 

Equation with respect to the ladder coefficients H and equating the results to zero yield the 

following results 

5-7 



D I wD - id(i)bf-l (i) 

H = ..:...i=--'I _____ _ 
D I wD - id(i)df-l (i) 

i=1 (5.19) 

f w D- i (S(i)C(i)A(i)b(i)b f-I (i) + b(i)n f-I (i)) 
i = 1 

D I wD-ir(i)rf-l (i)Lf-I (i) 

i = 1 

For large value of D the above Equation simplifies to the following results, which is the 

expression for the optimal ladder coefficients of the LS-lattice precombining MMSE detector. 

D 
I wD

-
i S(i)C(i)A(i) 

H= i=1 
D 

I W
D

-
i (SU)CU)A(i)A(i)C H (OS T (i) + n(i)n H (i) ~ H (i) 

i=1 

5.3.2 Post-combining MMSE detector 

The previous subsection derived the expressions for the optimal ladder coefficients of the 

precombining lattice MMSE detectors. In this subsection the derivation of the optimal ladder 

coefficients of the postcombining lattice-MMSE detectors starting first with the gradient lattice­

MM SE detector, is presented. 

5.3.2.1 Gradient Lattice-MMSE detector 

The postcombining gradient lattice MMSE detector chooses the optimal ladder coefficients such 

that the mean of the square of the error between the data-amplitude product vector and its 

estimate is minimized. This can be written in vector form as follows 

(5.20) 

where p = CAb and p = TH d are the data amplitude product vector and its estimate, respectively. 

Expanding the above Equation and substituting for both p and p, one obtains 
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J = £[ppH] _ 2£[ppH]+ £[ppH] 

= £[CAAC H ]-2£[CAd H ]T+TH £[dd]T 
(5.21) 

Differentiating the above Equation with respect to the ladder coefficients and simplifying the 

results one obtains the following results 

T = E[dAC H ]~[dd H ]}-I 
substituting for d yields the following results 

(5.22) 

(5.23) 

which is the required optimal coefficients of the postcombining gradient lattice MMSE detector. 

5.3.2.2. LS-Lattice Detector 

The optimization criterion for the LS-Iattice postcombining detector is as follow 

D 
J = L w D

-
i 

1 p(i) - p(i) 12 (5.24) 
i=O 

where the vector p and p were defined previously. By expanding the above Equation, 

differentiating the resulting equation with respect to T, and equating the derivative to zero and 

finally simplifying the results one obtains the following expression for the optimal ladder 

coefficients 

D L wD-;L(i)(S(i)C(i)A(i)b(i)b H (i)A(i)C H (i) + S(i)C(i)b(i)n(i)) 
T = ..:...;=....:c0 ______________________ _ 

D L w D
- ; L(i)(r(i)r H (i))L H (i) 

(5.25) 

;=0 

For large values of D the above Equation simplifies to 

D 
I wD - ;L(i)(S(i)C(i)A(i)AC H (i») 

T = ; =0 
D 
I wD - ;L(i)(S(i)C(i)AAC H (i)S T (i) + n(i)n H (i) ~H (i) 
;=0 

(5.26) 

D I w D-;L(i)(S(i» 
;=0 
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5.4 Adaptive Lattice-MMSE detectors 

In this Section the focus is on adaptive implementation of the DS-CDMA MMSE detector using 

the lattice structure. Unlike the LMS algorithm, which only adaptively computes the weighting 

coefficients, the lattice equalization algorithms have two sets of coefficients to compute 

adaptively . These are the reflection and the ladder coefficients. Since for both the precombining 

and the postcombining detector a single lattice filter is used, it makes sense to specify the 

adaptive equations of the reflection coefficients here and not in subsequent subsections. We first 

start with the adaptive equation of the gradient lattice structure . Since the chanrel is assumed to 

be constant over one bit interval it suffices to adaptively compute the reflection coefficients at the 

bit rate thus giving us the following adaptive algorithm for the gradient lattice MMSE detector' s 

reflection coefficients 

. , (Ji «m -1)B + B)d i* «m -1)B + B) + d i* «m - 2)B + B)I «m -l)B + B)) k
i 
(m) = k

i 
(m -1) + --"---'-____ -----= _____ -----='----____ .c....:...... ____ ...L 

v i (m-l) 

(5.27) 

where i = 1, .. . ,PSN is the stage number. The variable Vi (m) is the inverse step-size parameter. 

There exist two versions of the above expression [29] . The first version keeps the inverse step­

size parameter constant (Vi (m) = vi) and is subsequently called the non-normalized step-size 

algorithm. The second one, called the normalized step-size version computes the inverse step-size 

using the following equation 

Vi (m) = wVi(m-I)+ 1 fi(mB+ B) 12 + 1 di- 1 ((m-I)B + B) 12 (5.28) 

It should be noted that if the channel is varying at a rate much higher than the symbol rate then 

updating the reflection coefficients at the bit rate could lead to the reflection coefficients not 

converging to their optimal solution. As a remedy, the reflection coefficients would have to be 

adaptively computed at a higher rate. For the LS-lattice filter, the reflection coefficients are 

updated as follows: 
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* d If/ , (m) 
k i (mP + n) = - f 

ri-l (m) 

where If/ i ,r/ and r/ are computed as follows 

* If/i+1 (m) = wlf/i+l (m) + a i (m)fi (mB + B)d; «(m -l)B + B) 
2 

f ( )= l ( ) -' If/;+l(m) 1 
ri+1 m r, m b 

r; (m) 

b ( )_ b ( ) 1lf/;+I(m)1
2 

r;+1 m - r; m - r 
r;" (m) 

a?(m) 1 d;(mB+i) 1 

a;+1 (m) = a; (m)----*----
rj (m) 

where the variables in equation (5.30) are initialized as follows 

ao(m)=l 

r[ (m) = rg (m) = wr[ (m)+ 1 fa (mB + B) 12 

r/ (-1) = r/ (0) = 11 J1 

a;(-l)=l 

If/;(-1) =0 

(5.29) 

(5.30) 

(5.31) 

There are few points worth mentioning at this point in connection with what was observed when 

the lattice-MMSE detector simulation software developed as part of the project, was ran using 

different parameters. 

It was observed that when the time-varying step sizes are initialized according to the same criteria 

used when the lattice algorithms are used to mitigate intersymbol interference (i.e . when v; (-1) 

for the GAL, and r/ (-1) and r/ (0) for the LS, are set to a value greater than zero but less than 

one) the coefficients of the detector do not converge. As a remedy to this situation one had to 

initialize these coefficients to a higher value, preferably greater than 1000. 

Now that the update equations of the reflection coefficient, the rate at which they are updated and 

the initialization of parameters used to compute them have. been specified, we now turn our 
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attention to the adaptive equations of the ladder coefficients of both the precombining and post­

combining lattice-MMSE detector. 

5.4.1 Adaptive Precombining Lattice MMSE detector 

In this Section the adaptive equation of the ladder coefficients of the precombining lattice MMSE 

detector are specified, starting with the gradient lattice algorithm. These coefficients are updated 

at the bit rate. For simplicity we will assume that the pre-windowed vector of the backward error 

coefficients to be processed is denoted by d(m) . 

5.4.1.1 Gradient Lattice MMSE detector 

The ladder coefficients of the gradient lattice MMSE detector are adaptively computed using the 

following expression 

~ ~II ~ ~* 

h~ ~ 2(bdm) - h (m)d(m»d i (mB + B) 
ki(m+l)=hki (m)+------------
" vi(m) 

(5.32) 

where the hat over the above variables indicate that they are estimates of the optimal values. The 

data symbol b k (m) , is known to the detector during training mode and is the previous estimate of 

the symbol made by the detector during decision directed mode. From Equation (5.7), the data 

estimates are made according to the following rule 

5.5.1.2 LS Lattice MMSE detector 

For the LS-lattice MMSE detector, the update equation for the ladder coefficients is 

* ~ ~ H ~ 

~ ~ ai(m)di (mB+B)(bdm)-h (m)d(m» 
h k,i (m + 1) = h k,i (m) + ---'-----'-----b---"-------'----

ri (m) 

(5.33) 

(5.34) 

where the variable bk (m), r/ and ai (m) are obtained as specified before. Finally the data 

estimate is made according to Equation (5.33). 
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Shown in Figure 5.2 and 5.3 are the BER simulation results for the adaptive lattice-MMSE 

detectors considered in this Section, the precombining LMS-MMSE detector and the 

conventional detector, where for adaptive MUDs each detector was given 20000 iteration to 

converge. In both diagrams the number of users and processing gain used were 8 and 31 , 

respectively. The results shown in Figure 5.2 are for a non-fading channel , while those shown in 

Figure 5.3 are for a 3 paths correlated fading channel. The correlated fading channel coefficients 

were generated using the method presented in [134] , where the Doppler frequency was set at 

0.000l. 

As can be seen from this diagrams in a non-fading channel, the LS lattice-MMSE, GAL-MM SE 

and the LMS-MMSE detectors have the same BER performance, while in a fading channel the 

lattice-MMSE detectors perform slightly worse than the LMSMMSE detector, as the signal to 

noise ratio increases above approximately 15dB. 

5.4.2 Adaptive Post-combining Lattice MMSE detector 

As was the case with the LMS-MMSE detector, the lattice postcombining MMSE detector uses L 

sets of the ladder coefficients vector to suppress MAl, where L is the number of multipath 

components. The update equations for both the gradient and the LS-Iattice MMSE detectors ' 

ladder coefficients of the r" component of the ti" user, respectively are 

(5.35) 

(5.36) 

where the data estimates are made according to 

(5.37) 
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Figure 5.2 BER results for the conventional, LMS-MMSE, GLF-MMSE and RLS-MMSE Detectors in a non-fading 

channel. 
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Figure 5.3 BER results for the conventional , LMS-MMSE, GLF-MMSE and RLS-MMSE Detectors in a 3 path 
fading channel. The MMSE detectors in this case were implemented using a precombining detector structure. 

Shown in Figure 5.4 are the simulation BER results of all the postcombining MMSE detectors 

presented in this dissertation together with the results of the conventional detector, in a three 
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paths fading channel. As can be seen again around the regions of high signal to noise ratio. the 

BER results of the lattice-MMSE detectors are slightly worse. This is further confirmed by Figure 

(5.5) , which compares the output SNR of the three detectors considered in Figure (5.4). The 

explanation of why this happens will be presented in the next Section. 
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1.E+OO ------------------------------------
! .... _ ...... --

~ .. 
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. . . . . . . . . . 

1.E-03 .-----------------------"~ 

1.E-04 -------------- --------.-.=--------

1.E-05 ------------ ------------------- -
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snr 

Figure 5.4 BER results for the conventional , LMS-MMSE, GLF-MMSE and RLS-MMSE Detectors in a 3 path 
fading channel. The MMSE detectors in this case where implemented using a postcombining detector structure. 
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Figure 5.5 Signal to Noise ratio at the output of one the filters used in both of the LMS-MMSE detector and the 
gradient lattice-MMSE detector in a single paths fading channels. 
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5.5 Determination of the Excess MSE 

In this Section the excess MSE exhibited by the gradient lattice MMSE detector is quantified. We 

will only focus on the non-normalized step-size update algorithm, avoiding the complexity 

presented by normalized step-size algorithm. 

From Equation (5 .32) it can be deduced that the error at the output of the GAL filter is given by 

the following expression (all subscripts are dropped for ease of notation) 

"H " eN (m) = hem) - h (m)d(m) (5. 38) 

where h (m) and d( m) are noisy estimates of the ladder and backward prediction coefficients 

vectors, respectively. The two vectors in the above expression can be written as : 

h(m)=h+EIJ(m) 

d(m) = d(m) + Ed (m) 
(5.39) 

where hand Eh (n) are the optimal ladder coefficients and weight-error vectors, respectively, 

d(n) is a vector of the backward prediction coefficients obtained if the optimal reflection 

coefficients are used and lastly E d (n) is the error in the backward prediction coefficients vector 

due to noisy reflection coefficients. Substitution of Equation (5 .39) into Equation (5.38) and 

expanding, gives: 

eN (m) = hem) -h H d(m) -h H Ed (m) -Eh (m)b(m) -E: (m)Ed (m) 

= e Nlopr (m) - h H Ed (m) - Eh (m)d(m) - E: (m)Ed (m) 

= eNlopr (m) - z(m) 

(5.40) 

where e N Jop/ (m) is the optimal error at the output of the lattice equalizer at timem and z( m) IS 

given by 

(5.41) 

* Evaluation of E[eN(m)eN(m)] yields: 
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* * * E[e N (m)e N (m)] = E[e NJopt (m)e NJopt (m)] + E[z(m)z (m)] 

* = J min + E[z(m)z (m)] 
(5.42) 

The quantity J
rnin 

in Equation (5.42) is the minimum MSE and is given by the kIll element of 

* Equation (5 .17), while the tenn E[z(m) z (m)] is the excess MSE and the derivation of its 

expression follows. 

Equation (5.41) can be simplified to the following equation 

H H A 

z(m) = h Ed (m) + Eh (m)d(m) (5.43) 

where we have used Equation (5.39) to simplify the right hand side of Equation (5.41) to two 

* tenns. Evaluating J ex (m) = E[z(m)z (m)] gives: 

(5.44) 

On assuming that E[ Eh (m)] -+ 0 as m -+ Cl) then the middle tenn in the above Equation goes to 

zero as m approaches infinity, thereby simplifying the equation to : 

J ex (m) = tr{h h H E[ Ed (m)E7 (m)]) + tr {E[EhEt ](E[d(m)d H (m)] + E[ Ed (m)E7 (m)]) 

(5.45) 

It should be noted that the first tenn in the above Equation is the excess MSE, which arises due to 

the ladder coefficients not being optimal, while the second one arises due to the error in the 

reflection coefficients. Expression (5.45) explains why the BER perfonnance of the lattice­

MMSE detectors is slightly worse when compared to the LMS-MMSE algorithm. As can be seen 

from this expression, the excess MSE at the output of the lattice algorithms exceed that of the 

LMS algorithm. Thus it is expected that the BER and output signal to noise ratio of the lattice­

MMSE detectors will be slightly worse than those of the LMS-MMSE detector. To complete the 

derivation of the excess MSE we need to find the expressions of the four quantities on the right 

hand side of Equation (5.45) . In Section 5.3 the expression used to compute the variable h was 

obtained and according to [70], the tenn E[ d(m)d H (m)] is computed as follows 

E[d(m)d H (m)] = [LE[r H r]LH
] 
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It should be noted that the above matrix is a diagonal matrix . Now we need to determine the 

expressions for E[EhE~] and E[EdE7] , starting first with the expression for E[EhE~]. To 

determine this expression we use the method used by Proakis in [93]. First we rewrite the 

expression of the ladder update equation of the gradient lattice algorithm given by Equation 

(5.32) in vector form, as follows 

,. ,., '" * 
hem + 1) = hem) + Vd(m)eN (m) 

= hem) + V(b; (m)d(m) - d(m)d H (m)h(m») 

= (I - Vd(m)d H (m) fo(m) + Vb; (m)d(m) 

(5.46) 

where V = diag[2 1 Vo , ... ,2 1 v M] is the matrix of the step size parameters. Assuming the 

availability of the correlation, E[d(m)d H (m)] and E[b;(m)d(m)], then the above Equation can 

be written as follows 

hem + 1) = (I - VE[d(m)d H (m)])h(m) + V E[b * (m)d(m)] + eh (m) 

(5.47) 

where 10 h (m) is the error between the optimal ladder coefficient vector and its adaptive version 

and is assumed to have a mean of zero. If we assume that hem) has converged to its optimal 

value then according to Equation (5.46) and (5.47) , the error term eh (m) is equivalent to 

" * Vd(m)eN (m). From this, it follows that the covariance ofEh is given by: 

(5.48) 

To simplify the above Equation we note that if the mean of hem) has converged to its optimal 

value, then eN (m) should have converged to its minimum value and is uncorrelated with both 

d(m) and Ed' In addition to this we assume that E[ed(m)]~O as m~ oo. Using these 

assumptions one ends up with the following simplified equation for the covariance given in 

Equation (5.48) 

(5.49) 
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The components of Eh (m) are uncorrelated with each other since £[d(m)d // (m)] and 

£[ E d (m)E ~ (m)] are diagonal matrices. This further implies that the components of hem + 1) 

are decoupled and may be considered separately. Each of these decoupled components is a first 

order difference equation of a filter with impulse response [93]: 

ai(m) = (l-2£[d i (mP+i)d7 (mP + i)]) 111 (5.50) 
vi 

As 111 tends to infinity the above Equation can be written as : 

ai (m) = -------------
2 * 2 1- (1- - £[di (mP+ i)di (mP + i)]) 

(5.51) 

vi 

Assuming that this filter is excited by a zero mean white Gaussian noise process with variance 

gi ven by the ifh component of the covariance of the vector Eh (m) , which according to Equation 

(5.49) is given by 

(5.52) 

Then the variance of the noise at the output of the filter is given by: 

(5.53) 

Now lets derive the expression for £[EdE7]. We start by first writing the adaptive lattice 

coefficients as follows (for simplicity of notation we will assume that n = mB + B) 

/:. (n) = 1. (n ) + C r ( n ) I J I . ,I 

d (n) = d (n ) + cd (n ) I I ,1 
(5.54) 

where c/ ,i ' cd ,i and ck,i are the error terms in the forward prediction error, backward 

prediction error and the reflection coefficients, respectively, which are assumed to have the mean 

of zero. Using the definition above the order update equation for the forward prediction error 

coefficients can be written as follows: 
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l i en) = fen) + c/.i(n) 

= 1,.- 1 (n) + C /.i- I (n) - kidi_1 (1'1 -1) - CkJ (n )di_1 (n - 1) - kicII .i_1 (n -1) - ckJ (n )cII .i_1 (11) 

(5. 55) 

Squaring both side of the above Equation and taking the mean one obtains the followin g 

expressIOn 

E[!;2 (n)] + E[c? (n)] = E[!;:I (n)] + E[c],i_1 (n)] - 2k;E[!i-1 (n)d;_1 (n -1)] 

? 2 2 2 
- 2k;E[c /,i- I (n)Cd ,i-1 (n -1)] + (k,~ + E[Ck ,; (n)])(E[d;_1 (n)] + E[Cd, i-1 (n)]) 

In the above Equation we assumed that the lattice coefficients are real. The resulting Equation can 

be amended to cater for the case where these coefficients are complex. From the above Equation 

the following deductions can be made: 

E[!? (n)] = E[!;:I (n)] - 2k;E[!i-1 (n)d;_1 (n -1)] + k? E[d':1 (n)] 

E[c ],; (n)] = E[c ],; _1 (n)] - 2k;E[c /,i-I (n)Cd,i- 1 (n -1)] + E[cL ]E[d;:1 (n -1)] 

+ (k? + E[c1,; ])E[c3,;_1 (n)] 
(5.56) 

The tenn E[!;_I (n)d;_1 (n -1)] in the first observation in Equation (5 .56) is equivalent to 

[32,93 ] 

? 
E[!i-1 (n)d;_1 (n -1)] = k;E[/;~1 (n)] (5.57) 

Using the above relationship and the fact that E[!/ (n)] = E[dl (n)], one ends up with the 

following expression 

2 2 k2) E[d; (n)] = E[d;_1 (n)](1- ; (5. 58) 

If we assume that C f,i and cd,i are uncorrelated with one another and that 

E[c ],; (n)] = E[d,; (n)] then the second observation in Equation (5.56) simplifies to the 

following expression 

2 2 2 2 2 2 2 ] E[cd i (n)] = E[cd ;-1 (n)] + E[ck; (n)]E[di-l (n)] + (k; + E[ck ; ])E[cd ;-1 (n) 
) " , , (5.59) 

From these results it follows that the diagonal elements of the matrixE[ t d t 1] are computed 

using Equation (5.59). The other elements of this matrix are all zero if we assume that the errors 

at two different stages are uncorrelated with one another. The quantity E[cf,i(m)] in Equation 

(5.59) is computed as follows [36]: 
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(5. 60) 

2 
where Pi = - . To conclude this Section lets summarize how the excess MSE of the gradient 

vi 

lattice algorithm is obtained. 

Summary of the excess MSE of the Gradient Lattice algorithm 

The major result of the derivation presented in this thesis is that the equation for the excess MSE 

is given by 

where 

E[d(m)d(m)] = [LE[r H r]L H) 

h = [SCA~CAACH STL H +E[nnH ]LH }-Il 

l=] 

o otherwise 

tdtd i ,j = ' " , p , E[ 
H] {E[tdt7]H i- I + E[Ck i C; i ]E[ dd H L-I i- I + (kl + E[CiCi*] \r[ td t 7 L-I i- I 

o otherwise 

Our results in Section 5.7 show that this derivation is accurate. 
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5.6 Convergence Analysis of the Gradient Lattice 
MMSE detector 

The condition, which must be met by the step size parameter to ensure the convergence of the 

adapted reflection coefficients to their optimal value, was obtained in [29]. From the results 

presented there one has the following condition 

1 2 
0 < - < ----------------

Vi E[[ fi - l (mB + B) [2] + E[[ di-J (mB + B) [2] 
(5.61) 

Let's now look at the condition, which has to be met for the ladder coefficients of the user of 

interest to converge. The scalar representation of Equation (5.47) is given by 

(5.62) 

For the ladder coefficients to converge to their optimal value the step size must satisfy the 

following equation 

2 
[l--E[d(m)d H (m)ti [::;1 

v · ' I 

2 1 
0 <-<----- H 

Vi E[dd ] . . 
1,1 

(5.63) 

Figure 5.6 shows the convergence results of the lattice-MM SE detectors and the LMS-MMSE 

detector obtained using a custom built simulator where the step size for the LMS algorithm was 

initialized to 7* 10-4. As can be seen from these results, the lattice MMSE detectors converge far 

quicker than the LMS MMSE detector. From these results and the BER results obtained in 

Section 5.4 it can be said that the lattice-MMSE detector offers superior convergence-BER 

performance trade-off when compared to the LMS-MMSE detector. 
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Figure 5.6. Convergence results of the gradient adaptive lattice and LMS-MMSE detector with 

the step sizes set at J1. = 7 * 10- 4 . 

5.7 BER Analysis of the Lattice Structure 

In this Section the BER expression of the gradient lattice MMSE detectors are summarized since 

they are similar to the ones presented in Chapter 3, starting with the precombining detector. 

5.7.1 Precombining Detector 

The MSE at the output of the kIll user's precombining gradient lattice MMSE detector assuming 

infinite training sequence is given by the following expression 

(5.64) 

where J k min is the minimum mean squared error and is given by the kIll element of Equation , 

(5 .l7) and J k exc (ex) is the excess MSE which is computed according to Equation (5.45). If we , 

assume that the channel is non-fading then the BER expression is given by 

(5.65) 
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As was mentioned in Chapter 3, in a fading channel the above expression is the conditional 

probability and the BER expression is obtained by averaging it over the pdf of all the users' 

fading channel coefficients and using the notation adopted in Chapter 3, this is given by 

(5.66) 

Shown in Figure 5.7 are the simulation and analytical BER results of the adaptive LMS-MMSE 

detector and gradient lattice MMSE detector in a non-fading channel. Figure 5.8,5.9 and 5.10 

shows (1) the simulation results of the conventional, and MMSE detectors discussed in this 

dissertation, (2) analytical and simulation results of the LMSMMSE detector and (3) analytical 

and simulation results of the GAL-MMSE detector in a single path fading channel, respectively. 
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Figure 5.7. BER results of the LMS and gradient lattice MMSE detectors in a non-fading 
channel obtained using both simulation and analytical method. 
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Figure 5.8. BER simulation results of the MMSE detectors considered in this Chapter together 
with those of the conventional detector in a single path fading uncorrelated channel. 
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Figure 5.9. BER results of the LMS-MMSE detectors. White solid line is for the analytical 
expression while the solid line is for the simulation. 
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Figure 5.10. BER results of the lattice-MMSE detectors , Dots are for analytical results while the 
solid line is for the simulation. 

Clearly from Figure 5,7 and 5.10, the analytical results, which are obtained using our derivation 

closely, matches the simulation results. 

5.7.2 Post-combining Detector 

The output of the I'h filter branch of the k'h user' s postcombining Detector IS gIven by the 

following expression 

Zk,/ (m) = tk,/ (m)d(m) (5.67) 

The vector Z k (m) can be defined as 

(5.68) 

Then the decision statistics of the /Ch user is given by the following expression 

H 
Yk (m) = ck (lIl)zk (5.69) 

where the channel coefficient vector for the kill user is assumed to be known , Using the same 

notation adopted in Chapter 3, the decision statistics can be written as follows 

YkCm) = v H Qv (5.70) 

where the matrix Q is as given by Equation (3,65) and the vector v is given by 
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T T v = [Ck (m) ,zk (m)] (5.71) 

The vector Z k conditioned on the data bits bp is a complex Gaussian random vector. Since the 

combing vector C k also has a Gaussian distribution the probability of error for the f(h user 

conditioned on the data bits bp is given 

2L 2L A­
P( error I bp) = L IT I 

i= l j=l Ai - Aj 
Ai <0 j "'- i 

where Ai i = 1,2, .. . ,2L are the eigenvalues of the matrix E[ vv H I b]Q and 

H [ E[Ck (m)cr (m)] 
E[vv Ib] = H 

E[ckzk I bp] 

Finally the BER expression for thc klh user is given by 

1 
Pk = - - " P(errorlb p ) 

2PK- 1 L. 
bpe{_ I,l} MK-I 
bk=l 

5.8 Conclusion 

(5.72) 

(5.73) 

(5.74) 

This Chapter looked at the lattice-MMSE detector, where the focus was mainly on the gradient 

lattice MM SE detector, even though a brief study of the LS-lattice MMSE detector was 

presented. It first started by looking at the received signal model and notation adopted in Section 

5.2. Following this, Section 5.3 presented the optimal coefficients of the lattice-MMSEdetectors. 

Section 5.4 then presented the adaptive implementation of the lattice-MMSE detectors and 

simulation BER results . Section 5.5 derived the excess MSE suffered by the gradient lattice 

algorithm, while Section 5.6 presented the convergence performan::e of the gradient lattice­

MMSE detector. Finally Section 5.7 presented the analytical BER expressions for the gradient 

lattice MMSE detector. 
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From the results presented in this Chapter it was observed that the lattice-MM SE detectors ' BER 

performance are slightly worse in the region of high input SNR when compared to the LMS­

MMSE detector. In contrast to this it was observed that the convergence of the lattice-MMSE 

detectors far outperforms the convergence of the LMS-MMSE detector. Thus it can be concluded 

that the lattice-MMSE detector offers a better BER-Convergence tradeoff when compared to the 

LMS-MMSE detector. A comparison between simulation and analytical results shows that our 

analytical derivation is accurate. 
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Chapter 6 
Blind MMSE Multiuser Detector 

6.1 Introduction 

The adaptive detectors presented in Chapters 3 and 5 require the adaptive filters to be adapted 

using training data information before the required data is sent through. The major drawback of 

these detectors is that when the system parameters changes, a training sequence will have to be 

re-sent to allow the weighting coefficients of the adaptive filters to converge otherwise the 

detector will ill-perform. These changes might be due to the number of users in the system 

changing and/or due to the changes in the channel. 

In this Chapter we present another MMSE detection scheme, which does not require the need for 

training sequence. This detector is called the blind MMSE detector and requires only information 

of the users ' spreading sequences and timing information. The outline of this Chapter is as 

follows: 

Section 6.2 presents the blind MMSE detector. Following this the adaptive version of the simple 

blind MMSE detector is presented in Section 6.3. Section 6.4, then presents the adaptive step- size 

adaptive MMSE detectors, while Section 6.5 will look at the convergence of these detectors. 

Finally conclusions are presented in Section 6.6. 
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6.2 Blind MMSE Detector 

The system considered in this Chapter, comprises of K users asynchronously transmitting data in 

a white Gaussian channel. From Chapter 2, the received signal model can be written as 

r = SAb+n (6.1) 

The weighting coefficients of the blind MMSE detector are chosen such that the mean output 

energy of the detector is minimized. Assuming user k is the user of interest and that gk denote 

the vector of hislher weighting coefficients. Then the optimality criterion used to obtain the blind 

MMSE weighting coefficients is given by [38-39,68] 

subjected to the constraint gf S k = 1 (6.2) 

In [38-39,68], the authors showed that the above optimality criterion, called the Minimum Output 

Energy (MOE), is equivalent to MSE optimality criterion. The constraint in (6.2) ensures that the 

signal of the desired user is not nulled out. To ensure that this constraint holds the weighting 

coefficients are decomposed into two orthogonal components. These are (I) the vector S k ' which 

is the spreading sequence of the user of interest and (2) a vector x k that is orthogonal to the 

user 's spreading sequence. This kind of detector representation is termed canonical representation 

and mathematically is written as follows 

(6.3) 

From [92], the optimal weighting coefficients of the blind MMSE detector for the desired user are 

given by 

(6.4) 

6.3 Adaptive Blind MMSE Detector 

Like the MSE criterion, the MOE function lends itself to adaptive implementation using the 

simple LMS algorithm. Since the vector of the spreading sequence is fixed, the only component 
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to be computed adaptively is xk . The vector of the received signal in the interval 

[mT, (m + 1)T), is given by r(m). The unconstrained estimate of the gradient of the cost 

function in (6.2) is given by 2r(m/ gk(m)r(m) . Using this vector, the vector xk can be 

computed adaptively as 

Xk (m + 1) = xk (m) - IffT (m)gk (m)r(m) (6.5) 

To ensure that the vectors S k and x k are orthogonal, the received signal vector in the above 

Equation is replaced by a component orthogonal to S k ' which is given by 

Substituting the above Equation into (6.5), results in the following update Equation forxk 

The decision statistics of the blind MMSE detector is then given by the following expression 

Yk=gT(m)r(m) 
k 

6.4 Adaptive Step-size Adaptive MMSE Detector 

(6.6) 

(6.7) 

(6.8) 

The step size parameter of the adaptive MMSE detector presented in Equation (6.5) is kept 

constant. The problem with such a step size parameter is that either convergence speed is traded 

for excess MSE or vice versa. In this Section we present an adaptive step size algorithm that can 

be used in the adaptive MMSE detector. The algorithm for obtaining such a step size uses 

infonnation about the weighting coefficients to ensure that both convergence speed and excess 

MSE are taken into consideration. Below, a description of the adaptive step size algorithm for 

both the traditional adaptive and blind MMSE detector is given, starting first with the traditional 

MMSE detector. It should be noted that the MMSE detector presented in this Section requires two 

adaptive filters. One filter is used to suppress MAl and the other to adaptively compute the step 

size parameter. 
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6.4.1 Decision Directed Adaptive Step size Algorithm 

The weighting coefficients of a decision directed MMSE detector are chosen such that the cost 

function 

J = E~bk (m) - g~ r(m))2 } 

=1-2r T(m)gk +gfr(m)rT(m)gk(m) 
(6.9) 

is minimized. From Chapter 3, we know that the adaptive algorithm for computing such 

weighting coefficients is given by 

T gdm) = gk (m -1) - ,u(bk (m) -g k (m -1)r(m -1))r(m) (6.10) 

The adaptive step size algorithm is obtained by minimizing (6.9) with respect to the step size 

parameter j.l . Such a minimization yields the following expression for the update of the step size 

parameter [56] 

,u(m) = ~(m -1) - a[bk(m) - rT (m)gk (m)}T (m)Y(m) t: (6.11) 

where u - and u + are the bounds and if the step size happens to be outside this bound it is 

truncated. The parameter a> 0 is called the learning rate and the vector Y(m) is the estimate of 

the derivative of the weighting coefficients with respect to the step size parameter (i.e. 

dgk(m) l d,u\J.l=J.l(m)). Differentiating (6.10) with respect to the step size yields the following 

expression for Y(m) 

Y(m) = Y(m -1) - ,u(m -1)r(m -l)rT (m -l)Y(m -1) + rem -I)[bk (m -1) - gf rem -I)] 
(6.12) 

6.4.2 Blind Adaptive Step Size MMSE detector 

The optimality criterion and the adaptive algorithm for the blind MMSE detector were given in 

(6.2) and (6.7). Minimization of (6.2) with respect to the step size parameter yields the following 

update Equation for the step size 

[
TT lu+ 

,u(m) = ,u(m -1) - ar (m -1)gk (m -1)r (m -1)Y(m -1) JJ.l- (6.13) 
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The update of Y(m) is obtained by differentiating (6.7) with respect to the step size parameter 

and is given by the following expression 

Y(m) = [I - .u(m - l)rr T ~(m -1) + .u(m -l)r(m - l)Y(m -l)r T (m -1)5 kS k 

- r T (m -l)gk (m -l)(r(m -1) - r T (m -l)s k S k ) 
(6.14) 

6.5 Convergence Analysis of Adaptive Step Size 
Algorithm 

In this Section we look at the convergence analysis of the step size algorithm for both the 

decision directed and blind MMSE detectors. We first start by first reformulating the optimization 

problem of (6.2) into an unconstrained problem. 

A. Reformulation of the Constraint Optimization 

Let the n'" component of gk be g k,n, n = 1, ... , M . The constrained optimization of (6.2) can be 

eliminated by computing the elements of gk independently. These components can be solved via 

(6.15) 

Let the vector r nand g k,n be the vector of the received signal orthogonal to S k,n and weighting 

coefficients without the n,l! component. The j'h component of r n is given by 

r(j) - r(n)sk,j / sk ,n' where r(j), j '" n, is the fh component of r. Using these vectors the 

unconstrained optimization criterion is given by 

{( ]2} r(n) T 
I n =E --+g rn 

sk,n k,n 
(6.16) 

Defining Yn = -r(n)/ sk,Il' then the optimization in (6.16) can be written as follows 
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(6.17) 

From the above Equation it can be seen that the new unconstrained optimization criterion is the 

MSE criterion, thus the analysis presented below holds for both the blind and decision directed 

MMSE detector. The LMS algorithm for the computation of the weighting coefficients of the 

above Equation assuming an adaptive step size is summarized below 

Xk (m) = xk (m -1) + Ji(m - l)r n (m - l)(y k,n (m -1) - r; (m - l)gk,1l (m - 1)) 

Ji(m) = ~(m -1) + a~k,n (m -1) - r; (m -l)gk,1l (m -l)}:Y(m -1)] 
Y(m) = [I - Ji(m -l)rnr: ~(m -1) + rl/ ~k , 1/ (m -1) - r; (m -l)gk ,1I (m -1)] 

B. Convergence Analysis 

The adaptive step size update Equation in (6.18) can be rewritten as follows 

Ji(m+1) = Ji(m)+ae(m)r: (m)Y(m)+aZ(m) 

(6.18) 

(6.19) 

where e(m) = Yn (m) - r: (m)gk ,n and Z(m) is a scalar having the shortest distance required to 

bring Ji(m) + ae(m)r: (m)Y(m) inside the region [Ji- , Ji+]. The convergence analysis presented 

here uses the ODE approach and a weak convergence method presented in [57] and is 

accomplished by proving that the continuous-time interpolation of Ji(m) and Z(m) converges. The 

continuous-time interpolation of Jl(m) and Z(m) are given by [56] 

a {Ji(O) t::; ° Ji (t) = 
Ji(n) 0 < t E [na,(n + l)a) 

{

o t < ° 
Za (t) = 1/ a-I 

a IZ(n) t~O 
n=O 

(6.20) 

The weak convergence is the generalization of the convergence in distribution and is stated as 

follows: We say the vector x(m) converges weakly to the vector x if and only if for any 

bounded and continuous function f (.), E[f (x( m))] -+ E[f (x)]. x( m) is said to be tight if and 

only if for each 77 ~ 0, there is a compact set K 77 such that p(x( m) E K 77 ) ~ 1 - 77 for all m . 
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Theorem 6.1: Assume that {r/l' Y /I } is bounded with probability one and that there is a symmetric 

positive definite matrix H such that 

f 1 [E(m)r/~ (j)r n (j) - H]I = 0(1) m mean (6.21) 
j=m 

and that there is a continuous function g(.) such that as j ~ co for each ,u E [,u -, ,u+] and 

111 ~ ° we have 

1 i+m -:- L E(m)e(m)rn (j)Y(j) ~ g(,u) in probability 
I j=m 

= Ee(m)rn (m)Y(m) 

1 oEe 2 (m) 

2 o,u 

(6.22) 

then, ~a (.) , Za (.)} is tight in D2 (-00,00) and any weakly convergent subsequence has the limit 

{,u(.), Z(.) }, which is a solution of 

dj.J = g(u(t)) + z(t) 
dt 

Note that with the Gaussian noise in the DS-CDMA system signal model of Equation (6.2), the 

boundedness assumption of Equation (6.21) is not satisfied. However if the noise is truncated to 

some finite value, then the above theorem applies. Theorem 6.1 states that the adaptive step size 

will spend most of its time in an arbitrarily small neighborhood of the local minimum of Equation 

(6.17). The above theorem dealt with a large but still bounded time interval. Another case of 

interest is what happens when a ~ 0, i ~ co and ia ~ co. The following theorem tells us what 

happens. 

Theorem 6.2. Assume that the conditions in theorem 6.1 are met. Let {qa} denote a sequence of 

integers such that q a ~ 00 as a ~ 00 and aq a ~ 00 . Suppose that there is a unique local 

minimum ,u of (6.17) such that ,u E [,u-,,u+] . Then, (,ua (aq a +.) converges weakly to ,u. 

The reader is referred to [56] for proof of these two theorems. 
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6.6. Conclusion 

In this Chapter we presented a survey of the blind MMSE detector. The advantage of this detector 

over the decision directed MM SE detector is that the blind algorithm requires no training 

sequence for the weighting coefficients of the detector's adaptive filter to converge. The 

information required by the blind MMSE detector are the spreading sequence and the timing of 

the desired user. 

Also presented in this Chapter is an adaptive step SIze adaptive MMSE detector and its 

convergence analysis. Such MMSE detector requires two adaptive filters. One adaptive filter 

computes the weig~ting coefficients of the detector while the second one computes the adaptive 

step size. The adaptive step size algorithm was motivated by the fact that as the weighting 

coefficients get closer to their optimal value one would want the step size parameter to approach 

zero, thus reducing excess MSE. In contrast, when the weighting coefficients of the user of 

interest are not close to their optimal coefficients we want the step size parameter to grow to 

some upper bound so that the weighting coefficients can converge quickly. 
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7.1 Summary 

Chapter 7 
Conclusions 

In this thesis we considered multiuser detectors for DS-CDMA systems, with special focus on the 

adaptive MMSE detector. We presented an implementation of the DS-CDMA MMSE detector 

based on the lattice algorithms. The performance of these detectors then had to be compared with 

that of the LMS-MMSE detector. Chapter 1, which is an introduction briefly, described DS­

CDMA systems. It then summarized the thesis layout and contributions made in this project. 

Chapter 2 presented a review of DS-CDMA multiuser detectors. Firstly the system model used 

for DS-CDMA systems was presented. Following this we looked at the conventional detector in 

both non-fading and fading channels and the disadvantages of this detector where highlighted. 

We then went on and looked at multiuser detectors, starting with Verdu ' s optimal detector in non­

fading and fading channels. The suboptimal detectors presented were the decorrelating, MMSE, 

Successive Interference Cancellation and Parallel Interference detectors. 

Chapter 3 focused on the MMSE detector. The topics covered in this Chapter are : (1) Optimal 

solutions for the LMS-MMSE detector, (2) Adaptive implementation of the MMSE detector 

using the LMS algorithm, (3) Convergence analysis of the LMS-MMSE detector filter 

coefficients and (4) Analytical BER expression for the MM SE detectors. 

Chapter 4 then presented a literature review of lattice filters where the focus was on the gradient 

lattice algorithm. The LS-lattice algorithm is treated in Appendix B. This Chapter first looked at 

linear prediction using an FIR filter. Following this, the lattice structure was introduced and it 

was shown how it could be used to perform linear prediction. Finally we looked at the Stochastic 

lattice Equalizer. 
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Chapter 5 presented the lattice-Based MMSE detectors, where firstly optimal coefficients of both 

the stochastic and the LS-Iattice MMSE detectors were presented. Following this the adaptive 

lattice-MMSE detectors were presented. BER and convergence simulation results were presented. 

From these results, the lattice-MMSE detectors where seen to offer a good trade-off between 

convergence and BER results when compared to the LMS-MMSE detectors. The expression of 

the excess mean squared error was then derived. Using this expression the analytical BER results 

for the gradient lattice-MMSE Precombining detector was then obtained and shown to be 

accurate. 

In Chapter 6 blind MMSE detectors were reviewed. Firstly the optimal solution for the blind 

MMSE detector was presented. Following this, the adaptive implementation of the blind MMSE 

detector was presented. We then went on and looked at the adaptive step size adaptive MMSE 

detectors and analyzed their convergence. 

7.2 Conclusions and Future Work 

In this thesis, lattice-based MUDs were proposed. The performance of these detectors were then 

compared to that of the LMS-MMSE MUDs, where the following metric were used as the 

measures of performance: 

• Bit Error Rate (BER). 

• Convergence Rate. 

• Output signal to noise ratio. 

From the results presented, it was observed that the convergence rate of the lattice-based CDMA 

MUDs proposed in this thesis is far superior to that of the LMS-based MMSE MUDs. In contrast 

to this, the LMS-based MMSE MUDs where seen to offer slightly better BER results. From these 

results it can be concluded that the lattice-based MUDs offer superior convergence-BER trad(}off 

when compared to the LMS-based MMSE detectors. This superiority in performance trade-off of 

the lattice-based MUDs is beneficial in fast fading channels. In such channels, the optimal 

solution of the coefficients of the adaptive MUDs varies rapidly and the LMSMMSE MUDs 

might have problem tracking the optimal solution due to its inherent slow convergence rate and 

this will lead to vast performance deterioration of the detector. On the other hand, the rapid rate 
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of convergence exhibited by the adaptive lattice-based MUDs means that these detectors would. 

to some degree be able to track the time-varying optimal solution of their coefficients leading 

only to a slight deterioration in performance. 

Research in lattice-based MUDs can continue in the following direction 

• Analysis of the performance of the lattice-based MUDs when quantization error is taken 

into account. 

• Incorporating coding techniques for improved BER performance of the detector. 

• Joint adaptive channel estimation and symbol estimation to improve the accuracy of the 

conventional channel estimation algorithm [63]. 
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Appendix 

Appendix A : Signal Model for Fractionally Spaced 

Chip Matched Filter Output. 

In this Appendix the signal model used in Section (3.4.2) is developed. As was mentioned in that 

Section, when an ideal chip-matched filter is assumed then sampling the output of the chip­

matched filter at a rate much higher than the chip rate can be modeled by sampling at the chip 

rate followed by interpolation. 

Chip 
Matched 

Filter 

- -. 

Interpolation 

.. ... 
Zero ~ 

Ideal LPF 
... 

Padding 

Figure A.I Block diagram of a how the Fractionally Spaced (FS) signal model can be achieved. 

Figure A.I shows how interpolation can be modeled. As can be seen from this diagram, the 

output of the ideal chip-matched filter is fed into an expander. The function of the expander is to 

insert zeros between consecutive pair of samples. The number of zeros padded between the 

samples is S -1 , where S is the number of samples to be taken per chip . The output of the 

expander can be written as follows [63] 

(A.I) 

where r exp is a length-Nexp vector of the expander output and r is the input vector of length 

N exp / S . As an example when S=2 the Matrix D s is defined as follows [63] 

A-I 



1 0 0 

0 o 0 

DS = ···0 1 0 (A.2) 

0 0 0 

0 0 

For now lets assume that the matrix D S is infinite in both directions, later we will look at the 

finite dimension. The output vector of the expander is then passed through a lowpass filter, which 

is also assumed to be ideal. This filter is assumed to rove the following magnitude response [81] 

1 Y(e JW) 1= {s, -; < w < ; 

0, otherwise 

(A.3) 

and the resulting output of the lowpass filter, which is the over-sampled signal, is written as 

follows 

rs = YSrexp 

= YSDSrexp 

= B Srexp 

(A.4) 

where B s = Y s D s r S is a symmetric Toeplitz matrix. From the above Equation it should be 

clear that the interpolation operation is given by the matrix B s . The correlation of r S is 

therefore given by 

Fs = E[fSfS] 

= BSFpBS 

= BSrArBS 

(A.S) 

where Fp was defined in chapter 3. To complete the derivation the following two lemmas will 

be needed. 

Lemma 1: If two vectors hI and h 2 are orthogonal (i.e. h 7 h 2 = 0) , then their interpolated 

versions will also be orthogonal (i.e. CB sh 1) H B sh 2 = 0) . 

A-2 



Proof Let the n't, element of hI andh 2 be hI(n)andh2(n) , respectively. By Parseval 's 

theorem and the orthogonality of hI and h 2 

11 

(A.6) 

=0 

where HI (e JW ) and H 2 (e JW ) are the Fourier transform of hi (n) and h2 (n). Now, the Fourier 

transform of B s h 1 is Y (eJW)H I (e LJw ) and similarly for B s h 2. Therefore again by Parseval ' s 

theorem we have the following 

tr 

(BshltBsh2 =_1 fIY(eJW)12 HI (eJSW)H2(eJSw)dw 
2J[ 

-tr 

2 tr l S 
= ~ f HI (eJSW)H 2 (eJSW)dw (A.7) 

2J[ -tr l S 

=0 

Lemma 2: If the ideal LPF Y(e JW ) has the magnitude response given In (A.3), then 

Proof By Parseval's relation, we have 

(A.8) 

The columns of rare orthogonal and have unit norm since they are normalized eigenvectors of a 

Hermitian matrix. Thus by Lemma 1, the columns of B S r are also orthogonal, whereas Lemma 

A-3 



2 reveals that the squared nonn of each column of B s r is S. If we choose X to be orthogonal to 

B s r and satisfy X H X = I , then the unitary similarity transfonn of R s is given by 

(A.9) 

In deriving the above expression we assumed that the whole received signal is processed at the 

same time at the receiver. In a practical windowed implementation, where we use a sub vector 

r p (m) of r, we have the following relationship 

rps ~BSrp(m) , 

where B s is a symmetric Toeplitz matrix with finite dimension. 
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Appendix B : Least Square (LS) Lattice Algorithm 

In Chapter 4 we considered the gradient lattice filter. One property of this lattice equalizer is that 

it uses only one set of reflection coefficients to compute both the backward and forward error 

prediction coefficients . In this Appendix, we consider another lattice equalizer, which uses two 

different sets of reflection coefficients to compute both the forward and backward error prediction 

coefficients. This lattice equalizer is called the least square (LS) lattice filter. 

Lets assume that the input vector is given by uCm). Then according to [30,33 ,94] , the LS 

forward and backward prediction errors are given by (using the same notation adopted in Chapter 

4 to denote the forward and prediction error coefficients) 

/;(m) = a ~.i (m)u(m) 

di em) = a~ .i(m)u(m) 
(B.I) 

where a f ,i (m) and ad ,i (m) are the LS forward and backward predictors for the (', stage at time 

m. Using a method which is similar to the one used in Section (6.3), the order updates Equations 

for the backward and forward prediction error filter can be shown to be [94] 

fi (m) = fi-I (m) + k/ d i (m - I) 

d i em) = d i- I (m - I) + kid fi(m) 
(B.2) 

where k/ and kl are the forward and backward reflection coefficients for the /' stage, 

respectively. The optimal forward reflection coefficients is obtained by minimizing the following 

cost function [30,94] 

m 

J = I w lll
-) 1 f/ (j) 1 

)=1 

Minimization of the above Equation yields the following results [30,94] 

m 

I w"- ) fi~1 (j)d i- I (j -I) 

f ) = 1 
k =-"-----------

i m 
I w ll

- j 1 d i - I (j - I) 12 
)=1 
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(B.3) 

(B.4) 



Likewise, the optimal solution of the backward reflection coefficient of the ith stage is obtained 

III 

by minimizing J = I w lll
-) 1 d i (j) 12 and the corresponding optimal solution is given by 

)=1 

III 

I w"-) d 7-1 (i - l)fi-l (i) 
d )=1 k · = - -'----------
I 11 

I w ll
-) 1 fi-l (i) 12 

)=1 

(B.5) 

In practice, the reflection coefficients are computed adaptively, where the numerator and 

denominator of Equation (BA) and (B.S) are computed recursively [30,94]. Lets denote the 

numerator of Equation (BA) and (B .S) as Ifi and denominators of Equation (BA) and (B.S), 

respectively as r/ and r/ . Then the reflection coefficients are computed using the following 

Equations 

* d lfI . (m) k (m) = ___ 1 __ 

1 rf (m -1) 
I-I 

(B.6) 

where parameters used to compute these coefficients are computed using the following 

expression [30,94] 

* lfIi+1 (m) = Wlfli+1 (m -I) + ai (m - l)fi (m)d i (m -I) 

2 
ri{1 (m) = r/ (m) _llfI~+ 1 (m) 1 

ri (m -1) 

d ( )_ d( ) 1 lfIi+1 (m)1
2 

ri+1 m - ri m-
r/ (m) 

(B.7) 

. ( )_ .( )_ a?(m)ldi (m)1
2 

al+1 m -al m * 
ri (m) 

The above Equations are initialized as follows 

B-2 



ao(m) = 1 

r{ (m) = rt(m) = wr{ (m -1)+ 1 /0(0) 12 

rh-I) = r/ (0) = 11 f.1 

ai(-I)=I 

lfIi(-I) =0 

(B.8) 

So far we have look at the lattice section, without mentioning anything about the ladder section. 

To wrap-up this appendix we give the adaptive algorithm for computing the ladder coefficients 

[94] 

* 
hi(m) = hi(m -1) _ ai(m)di}m)ei+1 (m) 

ri (m) (B.9) 

ei+1 (m) = ei (m) + d i (m)hi (m) 

where ei (m) and hi (m) are the error at the output of the filter and ladder coefficients, 

respectively. 
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