International Journal of Infectious Diseases 32 (2015) 32-38

Contents lists available at ScienceDirect

International Journal of Infectious Diseases

INTERNATIONAL SOCIETY
[FoR INFECTIOUS DISEASES|

journal homepage: www.elsevier.com/locate/ijid

Cellular therapy in Tuberculosis @CrossMark

Shreemanta K. Parida?, Rajhmun Madansein 9, Nalini Singh “¢, Nesri Padayatchi ¢,
Igbal Master ¢, Kantharuben Naidu “¢, Alimuddin Zumla‘, Markus Maeurer #&*

2 Therapeutic Immunology Division, Dept of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden

b Department of Cardiothoracic Surgery, Inkosi Albert Luthuli Hospital, Dept of Health, KwaZulu-Natal province, Durban, South Africa

€ DR-TB Department, King Dinuzulu Hospital, Dept of Health, KwaZulu-Natal Province, Durban, South Africa

d Centre for AIDS Prevention Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa

€ MSC_Durban Team

fDivision of Infection and Immunity, University College London, and NIHR Biomedical research centre at UCLHospitl, London, United Kingdom
& Center for allogeneic stem cell transplantation (CAST), Karolinska Hospital, Stockholm, Sweden

ARTICLE INFO SUMMARY

Article history: Cellular therapy now offer promise of potential adjunct therapeutic options for treatment of drug-
Received 1 December 2014 resistant tuberculosis (TB). We review here the role of Mesenchymal stromal cells, (MSCs), as well as
Received in revised form 16 January 2015 other immune effector cells in the therapy of infectious diseases with a focus on TB. MSCs represent a
Accepted 16 January 2015 population of tissue-resident non-hematopoietic adult progenitor cells which home into injured tissues
Corresponding Editor: Eskild Petersen, increase the proliferative potential of broncho-alveolar stem cells and restore lung epithelium. MSCs

Aarhus, Denmark have been shown to be immune-modulatory and anti-inflammatory mediated via cell-cell contacts as

well as soluble factors. We discuss the functional profile of MSCs and their potential use for adjunct

Keywords: cellular therapy of multi-drug resistant TB, with the aim of limiting tissue damage, and to convert
Tuberculosis unproductive inflammatory responses into effective anti-pathogen directed immune responses. Adjunct
MDR-TB

cellular therapy could potentially offer salvage therapy options for patients with drug-resistant TB,
increase clinically relevant anti-M.tuberculosis directed immune responses and possibly shorten the
duration of anti-TB therapy.

© 2015 The Authors. Published by Elsevier Ltd on behalf of International Society for Infectious Diseases.

host directed therapy
M.tuberculosis
inflammation
Mesenchymal stromal cells

T-cells This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
cancer nc-nd/4.0/).
HDT

marrow is to facilitate haematopoiesis for expansion of hemato-
poietic and embryonic stem cells,*> thus may play a role in
stimulating cell growth and organization in adult organ tissues.’
MSCs have been shown to increase the proliferative potential of the
so-called bronchoalveolar stem cells® and to restore lung
epithelium via the transfer of mitochondria to other cells.”® MSCs
are defined by CD105, CD90 and CD73 expression and negative for
CD45, CD34 and CD14.%'° More recent studies show that isolation
of MSC from patients with underlying diseases may lead to
different phenotypes, mantaining CD105, CD90 and CD73 expres-
sion. Bone-marrow derived MSCs may thus represent a mixture of
different MSC populations'! as has also been shown to be true for
MSC from lung tissue. Sabatini showed in 2005> that a plastic
adherent cell population exists in human lungs isolated via BAL'?

1. Mesenchymal Stromal Cells

Mesenchymal stromal cells (MSCs) represent a population of
tissue-resident non-hematopoietic adult progenitor cells, origi-
nally identified in the bone marrow,! and subsequently in a
number of other organs.?> MSCs were identified in the 1970s from
cellular suspensions from spleen and bone marrow by their
capacity to adhere to plastic — which is still the standard form for
culturing MSCs. MSCs are able to form colonies from single cells
(explanted ex vivo), have fibroblast-like appearance and capacity to
differentiate into fat, cartilage and bone. Their function in bone
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may also exist in adult life - and that enrichment of MSCs into
damaged lung tissue may aid to re-organize tissue and facilitate
healing of chronic, unproductive inflammation associated with
Mcyobacterium tuberculosis (Mtb) infection.

MSCs are believed to be facilitators of organ homeostasis and
tissue repair following infection, neoplasms, damage and ‘trauma’ in
general. MSCs are key cells in connective tissue hierarchy of organs,
including the lungs. The roles of MSCs in the lung have recently been
extensively reviewed by Sinclair and coworkers.!* MSCs have been
shown to be immune-modulatory, anti-inflammatory and immune-
suppressive and most studies have looked at these effects in the
allogeneic setting. In vitro, MSCs may decrease immune effector
functions and aid to expand regulatory T-cells. Both cell-cell
contacts as well as soluble factors could be mediating these
effects'>' particularly on precursor and memory T-cell subpopula-
tions.'®~'8 Cell-cell contact appears to be important for expansion of
Treg cells, defined by the CD4+CD25high, Foxp+ phenotype.'®?° The
functions of MSCs may be diverse and dictated by the immune-
environment; thus making it difficult to predict how MSC will work
in patients with lung tissue filled with live Mtb bacilli. For instance,
co-culture of MSCs with PBMCs leads to prostaglandin E, (PGE;)
production in MSCs,?! PGE, and COX2 are increased in the presence
oftypelinterferons and/or TNFa suggesting that the effect of MSCsis
influenced by the local cytokine milieu.!>%?

The production of PGE,*?> from MSCs may be particularly
important in balancing unproductive inflammation in TB: High
type I interferon levels affect TB disease outcome, increases tissue
damage and subsequently increased Mtb proliferation. PGE,
balances the inflammatory cytokines IL-1 and type-I interferons
in individuals with latent TB; modulation of this host immune
response axis has proven to be effective in preventing death in
Mtb-infected mice. Studies in mice and analysis of ex vivo material
from patients with TB demonstrated that IL-1 induces PGE; and
suppresses type I interferons linked with clinical TB outcome.?*

Environmental factors (metabolic programming), e.g. oxygen
levels, have also been shown to influence the differentiation of MSCs
intoarticular cartilage or epiphyseal cartilage.?> Of note, more recent
studies suggest that MSC may not only differentiate into fat, cartilage
or bone, but also into bronchial epithelium, renal epithelium,
neuronal tissue as well as cardiomyocytes. This is reflected in a
number of studies using MSCs for non-mesenchymal tissues
including brain, heart, and kidney diseases.”® Several studies have
now shown that clinical efficacy is not directly related to successful
expansion and the level of MSC engraftment, yet to other factors
(paracrine), driven by MSCs, which are yet to be identified. One of the
aspects of MSCs is the polarization into pro- or anti-inflammatory
cells, which appears to be triggered, at least in part, via TLRs. MSCs
express TLR3 and TLR4. TLR3-agonists appear to polarize MSC to
immune-suppression, whereas TLR4 stimulation leads to immune-
stimulation of MSCs.?” Several components of Mtb signal via TLRs
and the local effect of MSC - in combination with the cytokine milieu
and the TLRs - will contribute to the Mtb edited phenotype. One of
the factors in Mtb infection is lung destruction via fibrosis and
collagen synthesis, which is - in part - a TGF3 driven process. We
showed that non-human primates that survive longer after Mtb
challenge have a typical immune phenotype in their lungs, defined
by less fibrosis, decreased TGF[3 production and increased IL-7 and
IL-17 production.”® Of interest, TGF3 production has been shown to
be repressed in TLR3-edited, yet not in TLR4-stimulated MSCs;?’
TLR3-primed MSCs showed up to the 80% reduced TGFf3 production,
which is mediated via TLR3-induced modulation of TGF( -
downstream effectors SMAD3 and SMAD7; TLR3 versus TLR4
stimulated MSCs also show differential IDO and PGE, production,
which also underlines the local immune-editing milieu of Mtb
infected tissues. PGE, converts macrophages into an IL-10 -
producing phenotype. Immunomodulatory properties include the

production of IL-1 receptor antagonists and the TSG-6 protein (anti-
inflammatory protein TNFa stimulated gene protein 6).%°

A number of clinical trials using MSCs as immune-modulatory
agents or as stimulators for tissue generation have been reported.
MSCs are being used for corticosteroid-resistant Graft versus Host
Disease (GVHD) (i.e. inflammatory reactions after hematopoietic
stem cell transplantation), and for treatment of other autoimmune
diseases (Multiple Sclerosis, Crohn’s disease etc.).>%>! Sinclair and
colleagues' in their phase I clinical study of MSC infusions in an
allogeneic setting established safety of the allogeneic MSC infusion,
with 2 x 108 cells / kg i.v. twice weekly for two weeks. The aim was to
offer MSC for treatment of complications after lung transplantation
as well as for the treatment of idiopathic lung fibrosis (www.
clinicaltrial.gov). Another study evaluated the intra-tracheal ad-
ministration of umbilical cord derived MSCs in children with
bronchopulmonary dysplasia (www.clinicaltrials.gov/ct2/show/
NCT01297205).

2. MSCs and infection

MSCs are susceptible to infection by several intracelullar
pathogens such as Mtb, Influenza virus®® and Herpesvirus-6
infection.®” Conversely, MSCs have been shown to improve
survival®® in bacterial infections of mice which supports the concept
as stated above that organ-damaging cascades in infections can be
curbed with MSC treatment:*>* MSCs reduce inflammation-associ-
ated lung damage.>>>° The safety of MSC therapy has recently been
extensively reviewed by Lalu and coworkers.>” Other beneficial
effects may be the production of exosomes and microvesicles from
MSCs which has been studied in the interaction of MSC and cancer
cells,®® but not in the context of MSC and pathogens. This is also a
potential new area of investigation: if the signalling proteins and
miRNA in the exosomes and microvesicles can be identified,
potentially the cell therapy infusions can be obviated to the far
simpler protein/miRNA infusions - if exosomal delivery of signals
and proteins turns out to be biologically and clinically relevant in
infections. Nauta and Fibbe reviewed the immunomodulatory
properties of MSCs and showed the impact of MSCs on T-cell
functions, including cytotoxicity; on dendritic cell functions
(impaired CD83 and HLA-DR expression); B-cell function and NK-
cells, defined by proliferation and cytotoxicity.>® The type and
severity of adverse effects may differ based on patient populations
and the underlying disease, as well as the MSC characteristics used
for expansion and subsequent therapy. A meta-analysis of the
randomised clinical trials examining autologous and allogeneic MSC
therapy in patients, searching MEDLINE, EMBASE, and the Cochrane
Central Register of Controlled Trials (till June 2011) did not detect
associations between infusion toxicity, organ systemic complica-
tions, infections, death or malignancies. Whilst an association was
identified with MSCs and transient fever, the application of MSC was
found to be safe in 36 clinical studies. In addition, we have shown
that MSC application in patients with MDR and XDR TB is safe.*°

A recent publication has addressed the increasing use of MSC in
the treatment of acute and chronic graft versus host disease (GVHD)
in transplant patients with immunomodulatory effects and have
suggested more prospective randomized controlled trials for
optimisation of the MSC therapy.®' Another recent report from
the NIH clinical centre using third-party early passage (up to passage
3) MSCs infused at 2 x 10° MSCs/kg body weight IV weekly for
3 doses in a phase I clinical trial for patients with steroid-refractory
GVHD following post-transplant complications established safety as
well as significant rapid clinical responses and biomarker normal-
isation among the majority of the study participants. The study
observed positive outcomes in patients with a relatively intact
immune system with higher absolute lymphocyte counts and
favourable cytokine and T cell phenotype patterns.*!
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A recent review has highlighted the promise of MSC for Acute
Respiratory Distress syndrome and sepsis while elucidating the
challenges and bottlenecks in the field and the clinical develop-
ment.*? The review cited the successful small randomised trial of
adipose tissue derived MSC in 12 ARDS patients in China and also of
the two ongoing allogeneic bone-marrow derived MSC trials in US as
well as an upcoming trial in Canada for patients with Septic Shock.

3. Principle of adjunct MSC treatment for TB

MSCs dampen inflammation through an array of interactions
with innate and adaptive immune cells thereby modulating
immune responses. MSCs, which constitute ~0.001% of bone
marrow mononuclear cells (proportion declines over age), can be
easily expanded ex vivo in culture and when re-infused in patients
they home to sites of injury and inflammation promoting tissue
repair. The culture conditions, degree of expansion and the final
MSCs preparations, may vary influencing clinical outcome.

Enhanced Mtb-antigen specific responses were observed
following MSC infusion in a Phase I study conducted in Belarus
patients with MDR-TB.*°

An ongoing study of adjuvant autologous MSC therapy in South
African patients with MDR/XDR-TB is establishing the safety in
patients with MDR/XDR TB in Durban, King Dinuzulu Hospital
Complex and is investigating immunological mechanisms of anti-
TB responses and markers of a response to therapy. Specific efforts
have been made to study responses to MSC treatment defined by
HR-CT imaging as well as to assess the best incremental value of
this adjuvant therapy in the subset of patients who would benefit
from this mode of cellular therapy, compared to other possible
immune-interventions targeting the host immune response.*?

4. MSC clinical trials registered at www.Clinicaltrials.gov/
On searching the www.clinicaltrials.gov web site, accessed on

November 15, 2014 using the term “mesenchymal stem cell”,
437 studies were identified. Figure 1 depicts the clinical trials/studies

by geographic location with a majority of studies ongoing in
China, Europe and USA. Using the search term “mesenchymal
stromal cell”, 60 studies were found across the globe (Figure 1)
with 32 open ongoing studies and the highest number (8) in the
category of vascular diseases with a focus on Ischemic Stroke;
6 studies on Central Nervous System Diseases ranging from Ischemic
Stroke, Amyotrophic Lateral Sclerosis, Parkinson’s Disease, Spinal
cord injury, 6 studies in Musculoskeletal diseases — mostly in
osteoarthritis; 6 studies in Digestive system diseases in Crohn’s
disease; 4 studies in Graft vs Host Disease (GvHD, 2 at Karolinska
Institutet) and 3 studies in autoimmune diseases, i.e in Multiple
Sclerosis. Note that the safety evaluation of these trials did not show
any adverse effects nor an increased risk to viral or bacterial
infections. There are no ongoing studies with MSC therapy in Africa
and the ongoing Phase Ib/Ila clinical trial of the use of autologous
bone-marrow-derived MSCs as adjunct treatment for MDR/XDR-TB
is the first to be conducted in Durban, South Africa.

5. Perspectives

Cellular therapy is today attracting attention and provides hope
of an alternative adjunct treatment for unmet clinical needs for a
range of chronic disorders. The concept from the large-scale
pharma-driven industrial production of a drug or biopharmaceu-
tical, may shift for certain clinical indications to a more
“personalized”, precision medicine concept. This will require
coordination and harmonisation of efforts various stakeholders to
meet international GMP and GCP standards and to show the added
value of MSCs as adjunct- or salvage therapy for a range of chronic
infectious diseases, including Tuberculosis.

6. The evolution of cellular therapy and the lessons from cancer
treatment

Adoptive Cell Therapy (ACT) has been used in the field of
metastatic cancer, and it involves isolation of antigen-specific
immune cells, their expansion and activation ex vivo followed by

Figure 1. Clinical studies with MSC across different geographical locations.
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subsequent re-infusion to the autologous host. The ‘lessons
learned’ in the context of anti-cancer directed therapies may be
of benefit to the use of ‘cellular’ therapies for the adjunct treatment
of TB. An overview of cellular treatments in the fields of cancer and
infectious diseases is provided in Table 1.

Cellular therapy in cancer settings started with lymphokine
activated killer (LAK) cells given intravenously in combination
with recombinant interleukin-2 (rIL-2), generated from autologous
lymphocytes harvested from patients by leukapheresis, followed
by activating the cells with rIL-2.** Objective tumor reduction
could be achieved in patients with metastatic renal cell carcinoma,
melanoma and colorectal carcinoma. Toxicities of high-dose IL-2,
e.g. fluid retention and pulmonary edema limited this therapy. This
approach was further optimised with the addition of other
biological response modifiers (such as interferons), and chemo-
therapeutic agents (especially cyclophosphamide, acting via
removal of regulatory T-cells, Tregs) aiming to induce long-term
memory T-cell responses directed against MHC class I- or MHC
class II-presented epitopes to target-specific T-cells.*”

Tumor infiltrating lymphocytes (TILs) were isolated from
freshly resected melanomas and expanded ex vivo before infusing
autologous TILs back to the patient along with rIL-2 based on the
idea that TIL are enriched for antigen-experienced T-cells that
would benefit from ex vivo expansion and removal of adverse
factors, such as TGF@ or IL-10, elaborated in the tumor
microenvironment. ‘Conditioning’, i.e. treatment - induced lym-
phophenia, that provides ‘space’ for expansion of the adoptively
transferred antigen-specific T-cells, reduces the competition for
growth factors leads to the removal of Tregs associated with
increased objective clinical responses.*®

Lymphocytes were modified by retroviral gene transduction
with a neomycin marker?” in order to track the infused immune
cells in the patients. These data provided evidence that objective
clinical responses are generated by (infused) T-cells infiltrating
into tumor lesions, it also provided clinically relevant information
on how retrovirus-mediated gene transfer in humans can be
administered safely and effectively.

To strengthen the T cell reactivity to nominal target antigen(s),
and to overcome T-cell tolerance, T cells are engineered through
regulated introduction of genes that encode high affinity tumor-
targeting T cell receptor (TCRs) or synthetic Chimeric Antigen
Receptors (CARs). CARs use an engineered antibody fragment to
recognise the target cell and link this artificially to a number of
signalling domain proteins within the T cell designed to “switch
the T cell on” once the antibody recognition fragment (for example,
the CD19 B cell protein) has bound to a target cell. However,

although not HLA-restricted, CARs are limited by the low number
of antibody targets available to re-direct the T cell.*®*° Anti-
pathogen directed CARs may also represent a viable option for the
treatment of infectious pathogens, although caution must be
exercised concerning dangerous ‘off-target toxicity’ that may cause
serious medical complications, some of them associated with the
‘cytokine storm’ induced by high antigen load.

Transformed or virally infected cells typically present processed
peptides (epitopes) from viral proteins, this is also true for tumor-
associated (mutant or non-mutant) target epitopes on their surface
in association with major-histocompatibility antigens (MHC) class
[ or - class II. T cells are educated early in the development process
in thymus to prevent recognition of self-antigen(s) reflected in the
very low affinity of binding to self-antigen(s). Several groups have
now established novel technology to enhance the natural TCR
affinity to either viral or cancer protein epitopes overcoming these
obstacles to develop TCRs that could be used to target (cancer or
infectious pathogen) specific proteins displayed by MHC class I or -
class Il molecules; however, the TCR would have to be transferred
into recipient effector T-cells, using either lentiviral vectors, non-
viral plasmid-based vector systems, or alternatively, RNA-based
transfer of TCRs conferring immune-reactivity, i.e. reactivity to
molecularly defined targets displayed by transformed or infected
cells. Further refinement in the T-cell engineering was achieved
through combinatorial antigen recognition with balanced signal-
ling by transducing T cells with both a CAR providing suboptimal
activation upon binding of one antigen and a chimeric costimu-
latory receptor (CCR) that recognises a second antigen, thereby
promoting selective target eradication.”®

7. TIL & DC combination

Induction of therapeutically useful antitumor immunity in
cancer patients requires the development of powerful vaccination
protocols due to the preexisting antigenic load and immunosup-
pressive environment within a tumor. Autologous Dendritic cells
(DC) loaded ex vivo with tumor antigens by transfecting whole RNA
of the resected tumor have been tried successfully in metastatic
melanoma patients,”'>? an approach that could also be discussed
in chronic viral or bacterial infections.

TIL infusion has therefore been combined with dendritic cell
(DC) vaccination®? (for patients with stage IV melanoma) to induce
strong and long-lived T-cell memory responses. Analysis of the
T cell receptor repertoire revealed the presence of highly dominant
clones in most infusion products, and many of these could be
detected in the circulation for weeks after T cell transfer. It is

Table 1
Summary of cellular treatments used for cancer and infectious diseases.
Cell type Adjuvant/ Clinical conditions used in Ref
Biological Response
Modifier used
LAK cells rIL-2 Metastatic renal cell carcinoma, a4
Melanoma & Colorectal carcinoma
TIL IL-2 & focus with Private Ag Melanoma 46
Epithelial Cancer 61
Anti-CTLA4 Metastatic Melanoma 62
Anti-CTLA4, Anti-PD-L1, Anti-4-1-BB, Anti-CD40 Advanced cancer 63
DC Transfected by t-RNA from Resected tumor Metastatic Melanoma 8
DC + TIL Stage IV Melanoma 9

CMV-specific CD8 T cell clones
CD19 CART Cells
CAR-modified T cells
Anti-viral reactive T cells

NK Cells

IL-2 + repeated Ag

Post-transplant CMV inf 1011
ALL, CLL, NHL 17

HIV 64-66
Post-Transplant patients against CMV/ENV/HP6/Adeno 12,67

Advanced non-small cell lung cancer 68
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speculated that the administration of lymphodepleting chemo-
therapy and IL-2 will most likely increase treatment efficacy with
this approach.

In an infectious disease context, initial cell therapy was tried in
life-threatening infections such as cytomegalovirus (CMV) infec-
tions in post-transplant settings with allogeneic bone marrow
transplant as a consequence of severe and prolonged immunode-
ficiency. CMV specific CD8+ T cell clones were generated from
peripheral blood mononuclear cells of the respective bone marrow
donors using repeated antigen stimulation along with IL-2 and
were adoptively transferred to the post-transplant patients. These
CMV-specific CD8+ T cells persisted for at least 12 weeks and were
effectively in vivo augmented by transfer of CMV specific CD4+
T cells.”*>*

T cells targeting a range of viral antigens derived from EBV,
CMV, and AdV were reproducibly generated in a single culture over
a 2-3-week period, using methods that exclude all viral
components and employ a much-simplified culture technology.
When administered to recipients of post-transplant patients with
active CMV (n =3), AdV (n=1), EBV (n=2), EBV+AdV (n=2) or
CMV+AdV (n = 2) infections, the cells produced complete virologi-
cal responses in 80%, including all patients with dual infections
correlating with an increase in the frequency of T cells directed
against the infecting pathogens without immediate or delayed
toxicities.””

“Off the shelf,” or banked, partially human leukocyte antigen
(HLA)-matched multi-virus-specific T cells (mVSTs) were gener-
ated using single T cell lines from stem cell donors upon
restimulations with overlapping peptide libraries for up to five
viruses (AdV, EBV, CMV, BKV, and HHV6) representing the most
frequent causes of viral morbidity and mortality after HSCT. This
was tried in 11 recipients of allogeneic transplants, 8 of whom had
up to four active infections with the targeted viruses and was
proven safe in all subjects and produced an overall 94% virological
and clinical response rate that was sustained long-term.’® TB
along with Epstein-Barr virus-associated lymphoproliferative
disorders and cytomegalovirus infection has been reported
in an allogeneic stem cell transplant recipient for refractory
acute myeloid leukemia, uncommon in a TB non-endemic
region.”’

8. IMMUNOLOGICAL CHECKPOINT INHIBITORS: Blocking
CTLA-4 and PD-1

Many attempts are ongoing to integrate further controls in CAR
based ACT (Adoptive Cell Therapy) by regulating gene expression
and the immune cell kinetics in vivo in combination with novel
checkpoint inhibitors and cytokines. Our understanding concern-
ing the role of cell-surface inhibitory molecules has increased;
blocking these inhibitory receptors, termed ‘checkpoint modu-
lators’, such as anti-CTLA- 4 (cytotoxic T-lymphocyte-associated
protein 4; also known as CD152 which act as a major negative
regulator of T-cell responses) in patients with metastatic
melanoma leads to increased overall survival®® in a subset of
patients.

The Programmed death 1 receptor (PD-1) and its ligands (PD-
Ls) molecules inhibit T cell effector functions during active
infection. Furthermore, the simultaneous blockage of the inhibi-
tory receptor PD-1 together with the activation of the costimu-
latory protein signaling lymphocytic activation molecule resulted
in promotion of protective IFN-y responses to Mtb, even in
patients with weak cell-mediated immunity against the patho-
gen. PD-1 has been demonstrated to interfere with T cell effector
functions against Mtb, suggesting its key regulatory role during
the immune response of the host to the pathogen.>® Anti-PD-1
responses will most likely help to overcome T-cell anergy in

patients with TB, although caution has to be exercised: i) treating
patients with reagents targeting PD-1 may lead to autoimmune
responses, ii) PD-1 expression on immune cells may not only
indicate immune ‘exhaustion’, but also identify T-cells that are
antigen-experienced (and therefore interfere with pathogen-
directed T cells).

Upon infection, antigen-specific CD4 and CD8 T cells undergo
activation and perform effector functions. In chronic infections
such as TB, prolonged persistence of the Mtb leads to alteration of
function of pathogen-specific T cells, ultimately resulting in
immune exhaustion. CD4 T cells have been shown to be exhausted
and functionally unresponsive following persistent CMV infections
and this has also been seen in CD8+ T cells in metastasis from
melanoma patients. TLRs (Toll like receptors) operate synergisti-
cally to induce optimal immune responses against intracellular
pathogens. In an TB animal model, prolonged TCR stimulation of
naive CD4 T cells under Th1-polarizing conditions resulted in an
exhausted phenotype which could be limited through TLR-2 by
downregulating the expression of PD-1 and Lag-3 and increasing
the expression of IFNvy, Bcl-2, and IL-2 through Tbet dependent
signalling.® PD-1- and Lag-3-blocking therapy may therefore
hold promise in treating chronic infections.

In summary, antibodies targeting negative regulatory mole-
cules such as programmed death 1 (PD-1) and cytotoxic T-cell
lymphocyte-associated antigen 4 (CTLA-4) can be infused to
release the brakes on natural T cells response to transformed cells,
thereby augmenting the response. Chemotherapy can reduce
immune suppressive cells such as Tregs and myeloid-derived
suppressor cells (MDSC) in addition to its direct effect on the tumor
cells. Adoptive T-cell transfer strategies using clonally expanded
cytotoxic T cells or T cells engineered to express TCRs or CARs are
being tested in various cancers including haematological malig-
nancies;®® TCRs or CARS directed against M. tuberculosis may have
the potential in the adjunct treatment of tuberculosis.

9. Outlook

Tran and colleagues have merged T cell therapy with tumor
exome sequencing and provided a proof of concept that T cells
recognize tumor-specific mutations; culturing and expanding
these T cells followed by subsequent transfer of these T-cells back
to the patient has been proven to be sufficient to mediate tumor
regression. Resected lung metastases from a patient with
metastatic cholangiocarcinoma were used as a source of tumor
and T cells. After identification of 26 nonsynonymous mutations, a
CD4+ T cell population that specifically recognized a mutant
epitope from erbb2-interacting protein (ERBB2IP) was identified,
expanded, and cloned; the T cell receptor was sequenced; and its
specificity confirmed.®’ The patient received two infusions of
cultured and expanded tumor-infiltrating lymphocytes; condi-
tioning chemotherapy and cytokine support were administered to
improve engraftment of the cells. The patient experienced a
marked tumor regression after each infusion: This is a prime
example that the patient’s immune system targets mutations and
that T-cells directed against mutant epitopes are able to confer
tumor regression. A similar situation may be feasible for T-cells
recognizing wild-type and/or mutant epitopes in Mtb.
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