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Abstract

South Africa has one of the highest HIV infection rates in the world with more than 5.6 million infected

people and consequently has the largest antiretroviral treatment program with more than 1.5 million people

on treatment. The development of drug resistance is a major factor impeding the efficacy of antiretroviral

treatment. While genotype resistance testing (GRT) is the standard method to determine resistance, access

to these tests is limited in resource-limited settings. This research investigates the efficacy of multi-label

machine learning techniques at predicting HIV drug resistance from routine treatment and laboratory data.

Six techniques, namely, binary relevance, HOMER, MLkNN, predictive clustering trees (PCT), RAkEL and

ensemble of classifier chains (ECC) have been tested and evaluated on data from medical records of patients

enrolled in an HIV treatment failure clinic in rural KwaZulu-Natal in South Africa. The performance is

measured using five scalar evaluation measures and receiver operating characteristic (ROC) curves. The

techniques were found to provide useful predictive information in most cases. The PCT and ECC techniques

perform best and have true positive prediction rates of 97% and 98% respectively for specific drugs. The

ECC method also achieved an AUC value of 0.83, which is comparable to the current state of the art. All

models have been validated using 10 fold cross validation and show increased performance when additional

data is added. In order to make use of these techniques in the field, a tool is presented that may, with small

modifications, be integrated into public HIV treatment programs in South Africa and could assist clinicians

to identify patients with a high probability of drug resistance.
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Chapter 1

Introduction

Since the identification of the human immunodeficiency virus (HIV) over 20 years ago, HIV/AIDS has

become a global epidemic. There are an estimated 36 million people currently living with HIV and 20

million people have died because of it. The region of the world most affected by the epidemic is sub-

Saharan Africa, with an estimated 25.3 million infections, representing 69% of the global HIV burden [1].

In 2011, 92% of pregnant women living with HIV resided in sub-Saharan Africa1 and an estimated 270 000

people died of acquired immune deficiency syndrome (AIDS), which is caused by HIV2. South Africa has

one of the highest HIV infection rates in the world with more than 5.6 million infected people. Consequently,

South Africa has the largest antiretroviral treatment program in the world with more than 1.5 million people

on treatment [2].

HIV attacks important cells in the human immune system and if left untreated, infected patients become

more susceptible to opportunistic infections. The recommended treatment for HIV/AIDS is a combination

of three antiretroviral (ARV) drugs from two or more different drug groups and is known as highly active

antiretroviral therapy (HAART). The different drug groups inhibit the virus in different ways and multiple

1http://www.unaids.org/en/media/unaids/contentassets/documents/epidemiology/2012/gr2012/2012_FS_regional_ssa_en.pdf
2http://www.unaids.org/en/regionscountries/countries/southafrica/

1

http://www.unaids.org/en/media/unaids/contentassets/documents/epidemiology/2012/gr2012/2012_FS_regional_ssa_en.pdf
http://www.unaids.org/en/regionscountries/countries/southafrica/
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drugs are used to ensure that the viral load (number of copies of the virus circulating in the patient) is

adequately suppressed.

HIV treatment failure is deemed to be occurring when the antiretroviral drugs are no longer keeping the

viral load under control [3]. The use of HAART has proven to be effective in controlling the progression of

HIV and prolonging the patient’s survival, but the efficacy of treatment is compromised by the development

of resistance to the antiretroviral drugs. The virus has an extremely high replication rate and the process of

replication is error prone. This means that as the virus replicates, small mutations occur. If these mutations

emerge in the viral proteins that are targeted by the antiretroviral drugs, the drugs may no longer inhibit viral

replication [4], resulting in increased viral loads. This process, known as selective pressure, is how drug

resistance evolves. The most common method currently used to identify drug resistance (and to which drugs

a patient is resistant) is the genotype resistance test (GRT) [5]. Once a patient’s resistance profile has been

determined, a drug resistance algorithm (such as Rega [6] or Stanford [5]) is used to interpret the results so

that a new treatment regimen, consisting of drugs to which the patient is susceptible3, can be designed.

In resource-limited settings like South Africa, GRT for all patients is not possible due to resource lim-

itations such as lack of testing laboratories, skilled staff who are able to perform genotype resistance tests

and funding for reagents needed for testing. While some studies conclude that including GRT in treatment

guidelines may be cost neutral [7], the current South African HIV treatment guidelines do not include GRT

for every patient. It is therefore necessary to seek alternative low cost methods to determine drug resistance.

In order to optimise the use of GRT, the test should only be performed on patients that have a high risk of

resistance. A mechanism is therefore needed to identify and triage patients based on available information

so that the best use can be made of this scarce resource.

Machine learning techniques, such as classification, have the potential to be used to predict HIV drug

resistance without the need for expensive equipment or specialist care providers. Classification is the task

of using statistical models to identify which category a new observation belongs to. These models are

3If a patient is susceptible to a drug it means that the drug will successfully aid in reducing the viral load.
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trained using data for which the category is known, and the elements that make up each unit of training

data are referred to as features. Traditional classification categorises an unseen feature vector into a single

category, while multi-label classification techniques are able to associate multiple category labels with new

observations.

Classification techniques have been widely used to investigate problems related to HIV. In most cases the

predictive models have been used to predict therapy outcome and the training datasets have included GRT

data. In the South African context GRT information will not be available, so predictive models must be de-

signed that use only the available clinical data. Models trained on this type of data have shown encouraging

results in recent studies [8].

Since HIV in South Africa is treated using a limited number of drugs, and each patient may develop

resistance to one of more of these drugs, using multi-label classification to predict drug resistance is ap-

propriate. The set of drugs corresponds with the categories and the medical records of patients that have

received GRT are used as the training data. Multi-label classification models trained in this way could be

used to predict which sets of drugs a previously unseen patient is resistant to, without the need for GRT.

Studies have shown that HIV decision support systems can be effective and useful to clinicians [9,

10]. The predictive models examined in this study could therefore be used to help care providers decide

whether or not to refer a patient for GRT, or select an optimal therapy if the regimen is to be changed.

Additionally, without significant modification, it should be possible to integrate the models produced into

the HIV management system to act as a decisions support and passive alerting service. This would help

identify high risk patients without the need for them to actively seek care.

1.1 Aims and Objectives

The aim of this study is to investigate the efficacy of using multi-label classification techniques trained using

routine clinical data to predict the probability of HIV drug resistance.
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The objectives of this research are:

• Analysis and construction of a feature vector containing all relevant data elements.

• Selection and application of appropriate multi-label classification techniques and testing the models
on a representative real-world clinical dataset.

• Evaluation of the performance of the models using suitable evaluation measures.

• Design and implementation of a robust experimental environment.

1.2 Tools and Approach

The FIRST4 study, together with the Southern African Treatment and Research Network (SATuRN5), have

established a successful HIV Treatment Failure Clinic (HIV-TFC) at the Africa Centre for Health and Pop-

ulation Studies6. The HIV-TFC consists of dedicated HIV specialists with the ability to perform GRT and a

data management system for clinical, laboratory, pharmacy and specialist diagnostic information. Patients

failing treatment are referred to the HIV-TFC, where their patient record is collated and presented to the

specialists to assist them with decision making regarding future treatment, with the possibility of requesting

a genotype resistance test.

The HIV-TFC patient data is used as the example real-world data in this study. This data, used for the

clinical management of patients, is stored in a clinical information system called RegaDB [11]. The RegaDB

system will be examined, domain experts from the HIV-TFC will be consulted, and the literature will be

reviewed in order to determine the most complete and relevant set of features for training the predictive

models.

The literature on multi-label classification will be used to identify the most appropriate and representa-

tive set of techniques to use. Existing implementations of the multi-label training and testing algorithms will

4Free State Initiative on Resistance, Surveillance and Treatment
5http://www.bioafrica.net/saturn/
6http://www.africacentre.ac.za/

http://www.bioafrica.net/saturn/
http://www.africacentre.ac.za/
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be used where possible, such as those contained in the MEKA7 and Mulan [12] extensions to the Weka [13]

machine learning toolkit. The models will be validated using widely accepting techniques such as cross

validation.

Performance of the models will be evaluated using evaluation measures that have been shown to be

good indicators of classification success. Accepted confusion matrix-based scalar evaluation measures will

be used in addition to graphical evaluation measures such as receiver operating characteristic (ROC) curves.

Suitable statistical analysis tools such as R [14] will be used to generate and analyse the evaluation measures.

An experimental environment will be established that will allow for the systematic testing and evalua-

tion of the multi-label classification techniques. This environment will enable all experiments to be easily

reproducible in order to reduce the risk of human error. All custom development of scripts and stand-alone

applications will be done in a way to reduce the barrier to implementation in the field.

1.3 Contributions

The primary contribution of this work is the application and evaluation of seven multi-label classification

techniques trained without GRT data. Each technique has been trained, tested and validated using 10 fold

cross validation on two distinct real-world datasets. The predictive performance of the models has been

evaluated using five different scalar evaluation measures, as well as receiver operating characteristic (ROC)

curve analysis.

In addition, a harmonised feature vector used for training and testing the predictive models has been

developed. This was done through extensive examination of the literature and consultation with numerous

domain experts. The complete feature vector consists of 62 data elements and is constructed using a custom

tool that integrates with the clinical management tool used for HIV treatment in South Africa.

7http://meka.sourceforge.net/

http://meka.sourceforge.net/
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An experimental framework has been developed using design decisions taken specifically in order to

reduce the barrier to implementation in the field. The potential impact of the experimental results have been

discussed, recommendations have been made, and further avenues of investigation have been suggested.

1.4 Structure of Dissertation

A review of related work is presented in chapter 2. The multi-label techniques, evaluation and validation

measures are discussed in chapter 3. Chapter 4 describes the design and implementation of the experimental

environment. Results are presented in chapter 5 and discussed in depth in chapter 6. The dissertation

concludes with chapter 7, which summarises the key findings and discusses avenues for future work.



Chapter 2

Literature Review

The field of machine learning is concerned with the question of how to construct computer programs that

automatically improve with experience [15]. This experience is usually in the form of data collected through

observation. When models are built using annotated data, a process known as training, it is referred to as

supervised learning. These models are used to annotate, label, classify or categorise new, previously unseen

data. This task is known as classification.

The data used to train classification models are known as training examples. Each training example is

made up of a set of data elements, called features, and the label. The features are the data that describe the

example, while the label is the name of category that the example is in. When examples have more than just

a single label associated with them, the classification task is known as multi-label classification, which is

the focus of this research.

2.1 Multi-Label Classification

A large amount of research has been done in the area of single label classification [16–18], where algorithms

associate training examples with a single label λi from a set of disjoint labels L = {λ1,λ2, . . . ,λn} [19]. If

7
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there are only two labels (n = 2), the problem is referred to as binary classification and if there are more

than two labels (n > 2), it is referred to as multiclass classification [20, 21].

In multi-label (sometimes referred to as multi-topic or multidimensional) classification problems, train-

ing examples are associated with a set of labels Y such that Y ⊆ L. In multi-label classification, labels are

not assumed to be mutually exclusive and multiple labels may be associated with a single training example.

Simply put, each training example can be a member of more than one class [21].

Historically, multi-label classification has primarily been applied to text categorisation and medical di-

agnosis [20,22]. For example, a news article about the South African movie District 9 could be categorized

into the movies, news and south africa categories. Similarly, a patient may be suffering from both arthritis

and dementia at the same time. More recently, the use of multi-label classification has become increasingly

popular for a variety of problem types [19], such as image and video annotation [23, 24], genomics [25, 26]

and music categorisation [27, 28].

Various methods exist for multi-label classification. Early categorisation of multi-label classification

methods contained only two categories, namely problem transformation methods and algorithm adaptation

methods [19, 20]. More recently, a third category was introduced, namely multi-label ensemble methods

[21], as show in figure 2.1. The multi-label classification methods within each of these categories are

reviewed in the sections that follow.

2.1.1 Problem Transformation Methods

Problem transformation methods are those methods that transform a multi-label classification problem into

one or more single label classification problems. Any one of the many existing single label classification

techniques can then be applied to the problem [19–21].

The most rudimentary problem transformation method is the ignore method [19], which simply removes

all multi-label examples from a dataset. Another simple problem transformation is the copy transformation
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Multi-label learning

Algorithm adaptation methods Problem transformation methods Ensemble methods

ML-C4.5 
PCT 

ML-kNN

Binary relevance Pairwise Label power set RAkEL 
ECC 

RF-MLC4.5 
RF-PCT

BR 
CC

CLR 
QWML HOMER

Figure 2.1. Multi-label classification methods [21].

[19]. This transformation replaces each multi-label example (xxxi,Yi) with |Yi| examples of the form (xxxi,λ j),

for every λ j ∈Yi, where xxxi denotes the feature vector and Yi is the set of labels associated with xxxi. A variation

of the copy transformation, the copy-weight transformation, gives each generated example a weight of 1
|Yi| .

This weight is then taken into consideration by training algorithms that support weighted labels.

Another group of problem transformation methods, known as the select group of methods, transform

the multi-label dataset by replacing each set of labels, Yi, with just one of its members λ j ∈ Yi, resulting

in a single label dataset. The select-max method chooses λ j to be the most common label in the dataset.

The select-min method chooses the least common label in the dataset as λ j. The final select method, select-

random, chooses λ j at random [19].

Another relatively simple problem transformation method is the label power set method [20]. An ex-

ample label power set transformation is shown in figure 2.2. This method combines distinct label sets into

single labels. The new set of possible labels is then LPS = P(L), where P(L) is the power set of L. Some

modifications have been proposed in order for transformation to combat the problem of large label sets. For

example, the pruned problem transformation method (PPT) [29] only adds label power set elements to the

transformed dataset if the corresponding distinct label set actually occurs in the dataset.
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Features Labels

x1 {λ1,λ3,λ4}
x2 {λ2,λ3}
x3 {λ5}
x4 {λ1,λ3,λ4}
x5 {λ2,λ3,λ5}

(a) Example multi-label dataset.

Features Labels

x1 L1
x2 L2
x3 L3
x4 L1
x5 L4

(b) Resulting singe-label dataset.

Figure 2.2. Example transformation by the label power set problem transformation method.
Figure (a) shows an example multi-label dataset. Figure (b) shows the resulting single label dataset
when the label power set problem transformation is applied. It can be seen that each distinct label
set is mapped to exactly one label in the single label dataset.

Features Labels

x1 {λ1,λ3}
x2 {λ2,λ3}
x3 {λ2}
x4 {λ1,λ2,λ3}
x5 {λ3}

(a) Example multi-label dataset.

Features Labels

x1 true
x2 f alse
x3 f alse
x4 true
x5 f alse

(b) Binary relevance dataset for λ1 (Dλ1).

Features Labels

x1 f alse
x2 true
x3 true
x4 true
x5 f alse

(c) Binary relevance dataset for λ2 (Dλ2).

Features Labels

x1 true
x2 true
x3 f alse
x4 true
x5 true

(d) Binary relevance dataset for λ3 (Dλ3).

Figure 2.3. Example transformation by the binary relevance problem transformation method.
Figure (a) shows an example multi-label dataset. Figures (b) - (d) show the resulting single label
datasets generated when the binary relevance problem transformation is applied. It can be seen
that each feature vector in the single label datasets is labelled according to the presence or absence
of the corresponding label in the multi-label dataset.
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The Hierarchy Of Multi-label classifiERs (HOMER) method builds on the idea of the label power set

problem transformation method [30]. In an attempt to reduce the computation time required for datasets

with a large number of labels, HOMER introduces the idea of meta-labels, which are small subsets of the

label set. Instead of training all base classifiers using the entire dataset, a hierarchy is built using the meta-

labels and base classifiers are trained only on labels that form part of the meta-labels in the hierarchy. This

method is explained further in section 3.1.1 and illustrated in figure 3.2.

The binary relevance problem transformation method learns n binary classifiers, where n is the number

of labels in L [20]. The original dataset is transformed into n datasets Dλi for i = 1,2, . . . ,n. Each dataset

contains all the original examples labelled positively if the label set of the original example contained λi and

negatively otherwise [21]. An example of the binary relevance problem transformation method is shown in

figure 2.3. The final predicted label set (Zi) for an unseen example (yyyi) is constructed by consulting each of

the n classifiers to check if the label λi is predicted to be associated with the example, and if so, adding it to

the label set Zi. See section 3.1.1 for further details.

The final group of problem transformation methods are the pairwise methods. The pairwise methods

transform the dataset into Q·(Q−1)
2 binary label datasets, one for every pair of labels (λi,λ j),1 ≤ i < j ≤ Q.

Each dataset contains the examples that are associated with exactly one of the two corresponding labels.

The label set prediction for an unseen example is constructed by invoking a binary classifier trained on each

dataset and a majority voting system is used to determine which labels form part of the final set, Zi. The

multi-label pairwise perceptron (MLPP) algorithm [31] uses perceptrons for the binary classification task.

An improved voting strategy called quick weighted voting [32] has been proposed to increase performance.

By far the most popular problem transformation method of multi-label classification is the binary rel-

evance method [19, 21, 28, 33, 34]. It is very often used as baseline for comparison when evaluating other

methods [27, 28, 30, 31, 34–36]. The label power set method is the next most common problem transforma-

tion method, and has been used as a basis for the development of new methods such as HOMER [30,34,35].

An empirical study comparing the performance of the binary relevance and label power set methods has
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shown that the label power set method performs better in the vast majority of cases [20]. HOMER has been

shown to perform particularly well on datasets with a large number of labels [30].

2.1.2 Algorithm Adaptation Methods

The algorithm adaptation methods modify or extend existing single label classification algorithms to deal

with multi-label data. Although it has been noted that in some cases the adapted algorithms are changed in

a way that makes use of one of the problem transformation methods described above [20]. Reviewed below

are the algorithms modified for use with multi-label data.

ML-kNN is a modification of the well-known k nearest neighbours algorithm (kNN) [37]. There are

many other extensions of the kNN algorithm for multi-label datasets [28, 33, 38] that differ only in how the

multiple label sets are aggregated. ML-kNN uses the maximum a posteriori principle to predict the label set

of an unseen example, which is based on prior and posterior probabilities for the frequency of each label.

In general, this method has been shown to perform poorly, despite its popularity [21].

Predictive clustering trees (PCTs) [39] are able to handle several types of structured outputs. PCTs are

decision trees that can be considered as a hierarchy of clusters and are constructed using a standard top-down

induction algorithm. For multi-label classification the prototype function returns a vector of probabilities

that an unseen example is labelled with a given label [21].

Decision tree classifiers are flowchart-like graph structures that break down complex decision making

processes into a set of simpler decisions [40]. The C4.5 decision tree algorithm splits the dataset at each

internal node of the tree using the feature that results in the most information gain, which is calculated as

the difference in entropy [41,42]. The C4.5 decision tree algorithm has been extended to handle multi-label

data for an application in genomics (ML-C4.5) [25]. This was done by allowing multiple labels at the leaves

of the tree. The entropy function was also modified to incorporate the relative frequency of label λi, p(λi).
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Adaptive boosting, or AdaBoost, is method that can be used to increase the performance of many differ-

ent classification algorithms [43]. The AdaBoost algorithm has been adapted in two different ways to support

multi-label data. The AdaBoost.MH and AdaBoost.MR algorithms [44] are designed to minimise Hamming

Loss (see section 2.2.1 for details) and place the correct labels at the top of the ranking respectively. The

AdaBoost.MH algorithm has also been combined with an algorithm for creating decision trees [45], with

the purpose of generating human-readable models.

A labelled multi-label dataset indicates which labels are associated with each training example, but

no information is given about which features are responsible for the presence of each label. Generative

classification models attempt to infer exactly this information. A probabilistic generative model has been

proposed for multi-label text classification [22], in which labels generate different words using a Bayesian

approach. This is accomplished using the EM (expectation maximisation) algorithm and the maximum a

posteriori principle. Similar multi-label models, called parametric mixture models (PMMs) have also be

proposed [46].

A number of neural networks algorithms have been adapted to support multi-label data. The back-

propagation multi-label learner (BP-MLL) is a modification of the back-propagation algorithm that takes

multiple labels into account in the error function [47]. The multi-class multi-label perceptron (MMP) is a

group of online algorithms that rank labels based on the perceptron algorithm [48]. The multi-label FAM

(ML-FAM) algorithm is a multi-label extension of the fuzzy ARTMAP method, which is able to incrementally

train a neural network using multidimensional inputs [49, 50].

Support vector machines (SVMs) have been adapted to support multiple labels by using a ranking loss

minimisation function [51]. Some modifications to SVMs have also been proposed that allow for improved

performance when they are used as the base classifier in the binary relevance problem transformation method

[52]. One of the improvements adds Q new features to each training example that represent the results of

a first round of classification. An unseen example is classified twice, first to calculate values for the Q

new fields, then again to generate a final prediction. The other two modifications remove negative training

examples based on different criteria.
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The most widely used algorithm adaptation methods are predictive clustering trees and ML-kNN [21,28,

33, 38, 39]. This is most likely due to the fact that these methods are generic enough to be applied to wide

range of problems. In contrast, the C4.5 decision tree method and the generative models described above

have been developed for use on a limited set of problems. Predictive clustering trees have been shown to

perform well based on a wide range of performance evaluation measures [21].

2.1.3 Ensemble Methods

In contrast to other types of classification techniques that construct only one classifier to solve a problem,

ensemble methods construct a set of classifiers to solve the same problem. This is also sometimes referred

to as committee-based learning [53]. Sometimes ensemble members are trained to predict all labels and in

other cases members are trained to predict only a subset of labels. In all cases, the final prediction is formed

by combining the output of ensemble members in some way.

The RAndom k-labELsets (RAkEL) method [35] constructs an ensemble by considering small random

subsets of labels called k-labelsets. The algorithm then learns m label power set classifiers, where m is a

user parameter that specifies the number of members in the ensemble. Each ensemble member is trained

to classify just one k-labelset. For classification of an unseen example, each of the m ensemble members

provides a binary prediction for each label λi in the k-labelset that it was trained to predict. RAkEL then

calculates the average prediction for each label and the label is predicted as positive if the average is above

a user configured threshold τ . This method is described in more detail in section 3.1.3.

Ensemble of Classifier Chains (ECC) [34] is an ensemble method that uses classifier chains (CC) as a

base classifier. Classifier chains work similarly to the binary relevance method in the sense that a classifier is

constructed for each label. The difference is that with CC, each successive classifier in the chain appends a

new feature to the feature vector of the example currently under consideration, representing the prediction of

the respective classifier. This augmented feature vector is then used as the input for the following classifier.

An example of this process is illustrated in figure 3.3. The ensemble is established by constructing m
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classifier chains, each predicting the labels in a random order, where m is a user parameter. This is to ensure

that a particular label ordering does not influence the performance of the method. To classify an unseen

example, the same voting scheme is used as for RAkEL above.

Random forest [54] ensembles construct multiple decision trees and use a majority or probability dis-

tribution voting method to predict the labels associated with an unseen example. The random forests of

predictive clustering trees (RF-PCT) [55, 56] method uses PCTs as the trees in the forest while random

forests of ML-C4.5 (RFML-C.45) [21] uses ML-C4.5 trees. Variation of the trees in the forest is created by

using bagging (a type of model averaging) [57], as well as using different feature sets at different nodes in

the trees.

The most popular multi-label ensemble technique is ECC, which has been shown to perform well across

a wide range of performance measures [21,34]. RAkEL has been shown to consistently perform better than

the popular problem transformation methods [35]. Random forests are popular for traditional single label

classification problems, but for multi-label classification they have been shown to perform well only on a

limited number of datasets [21].

Related Tasks

Multi-label ranking (MLR) is a task similar to multi-classification that outputs an ordering of labels for an

unseen example. The order is indicative of the relevance of each label to the particular example [19]. In some

multi-label datasets, labels are related in a hierarchical structure. There exist multi-label classification and

ranking algorithms that take label hierarchies into account [26]. Label ranking and hierarchies are beyond

the scope of this study.

2.1.4 Summary

The multi-label methods in each of the three multi-label classification problem solution groups (problem

transformation methods, algorithm adaptation methods and ensemble methods) have been reviewed. The
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popular problem transformation methods were identified and their performance compared. Predictive clus-

tering trees and MLkNN were identified as the most popular algorithm adaptation methods. Both methods

are applicable across a broad range on problems. Finally, ECC and RAkEL were identified as two popular

and well-performing multi-label ensemble methods.

2.2 Evaluation Measures

There are many different evaluation measures that can be used to gauge the performance of a classification

algorithm [19, 21, 58–60]. Not all evaluation measures are useful in all cases, since some of them can

be influenced by the nature of the underlying data. An evaluation measure is said to be invariant to a

specific dataset characteristic if information provided by the evaluation measure does not change if the

dataset characteristic changes [60]. Measures that are not invariant to specific characteristics cannot be

reliably used if the dataset does not exhibit those characteristics.

One study identified 24 classification evaluation measures and investigated their invariance to certain

characteristics of the underlying dataset [60]. It was demonstrated that if labels are distributed evenly in

a dataset, simple accuracy can be used with a reasonable amount of confidence, where simple accuracy is

defined in equation 2.1.

Simple accuracy =
Number o f correct predictions
Total number o f predictions

(2.1)

However, if 90% of the dataset is labelled as true (and the rest false), a classifier that always predicts

positive would have a simple accuracy measure of 90%, which clearly is not indicative of the strength of

the algorithm. It is therefore evident that using simple accuracy to measure classification performance on a

dataset in which classes are not evenly distributed will not provide meaningful information.

Due to the fact that the class distribution in the dataset used in this study is highly imbalanced (i.e. the

proportion of patients with drug resistance is very high), only the evaluation measures that are invariant to
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Figure 2.4. Single label confusion matrix.

class imbalance are of interest. Three types of evaluation measures are reviewed below. In section 2.2.1

classification performance evaluation measures are reviewed, which are statistics calculated based on the

output of a classification technique and are used to to determine the predictive power of the technique.

Methods used for validation of classification techniques are then reviewed. These methods are used in order

to ensure that the performance evaluation measures can be relied upon. Lastly, measures that are used to

describe datasets are reviewed in section 2.2.3.

2.2.1 Performance Evaluation Measures

When selecting a model for a classification task, it is desirable to choose the model with the best perfor-

mance. Defining what is meant by good performance and measuring this is a non-trivial task. The most com-

mon evaluation measures used in the literature to assess the performance of classification tasks are discussed

below. For the purposes of this discussion, the training dataset is defined as D = {(xi,Yi) f or i = 1, . . . ,m},

where xi is a feature vector and Yi is the true set of labels associated with xi. The testing dataset and predic-

tions produced by a classification technique are denoted by DT = {(yi,Zi) f or i = 1, . . . ,s}, where Zi is the

set of labels predicted for each previously unseen test example yi.
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Confusion Matrix-Based Measures

The confusion matrix (sometimes referred to as a contingency table) is a tabulation of the performance of a

classification technique with respect to a specific label. Figure 2.4 shows an example confusion matrix, in

which tp, fn, fp and tn are place holders for the numeric values (total numbers of each type of result) that

would be generated during a testing or cross validation run.

Table 2.1 defines the most common confusion matrix-based evaluation measures used in the literature

[59–61]. The definitions are given for the case of single label (binary) classification. These measures can

be used without modification for multiclass and multi-label classification by considering the performance of

the classifier on only a single label.

All the measures in table 2.1 have been generalised for the case of multiclass classification. This is

done by calculating the mean over each of the labels λi. The mean can be calculated by macro-averaging

(denoted by M) or by micro-averaging (denoted by µ). Macro-averaging takes the simple mean of the

measure calculated for each label, as shown in equation 2.2.

TPRM =
∑

Q
i=1

t p
t p+ f n

Q
(2.2)

In contrast to equation 2.2, micro-averaging takes the sum of each component of the measure before

calculating the performance measure itself. The corresponding micro-averaged T PR performance measure

is shown in equation 2.3.

TPRµ =
∑

Q
i=1 t pi

∑
Q
i=1 t pi + f ni

(2.3)

An important difference between the two measures is that the macro-averaged measure effectively as-

signs all classes an equal weight, while micro-averaged measures are influenced more by the bigger classes.

Both measures can be used as an indication of the performance of a classification technique across all labels.
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Table 2.1. Single label confusion matrix-based evaluation measures [58–60].

Measure Equation Description

Accuracy
t p+ tn

t p+ f n+ f p+ tn
The percentage of labels that a classifier correctly
predicts. Equivalent to equation 2.1.

True Positive Rate
(T PR), recall or
sensitivity

t p
t p+ f n

A measure of how good a classifier is at identifying
positive examples.

True Negative Rate
(T NR) or speci f icity

tn
tn+ f p

A measure of how good a classifier is at identifying
negative examples.

Precision
t p

t p+ f p
Indication of how many of the positive predictions
were made correctly.

F-Score
(β 2 +1)t p

(β 2 +1)t p+β 2 f n+ f p
Relationship between actual positive labels and pre-
dicted positive labels. F-score is evenly balanced
when β = 1, favours precision when β > 1 and T PR
otherwise [59].

The macro-averaged measure is only useful if the classes are distributed evenly, while the micro-averaged

measure can be used even in the presence of class imbalance.

Table 2.2 summarises the common multi-label confusion matrix-based evaluation measures defined in

the literature [19, 60]. The exact match ratio is the strictest performance feature, since only predictions in

which all labels are predicted correctly are considered an exact match. Hamming Loss, related to Hamming

distance [62], is an average measure of how well the predicted label sets match with the true labels.

Receiver Operating Characteristic

Many classification algorithms, such as SVMs and naive Bayes, output a probability of class membership

rather than a simple binary positive or negative value. Thus, to determine whether a prediction should be

interpreted as indicative of class membership or not, a threshold (τ) is usually applied. Threshold selection

strategies have been studied [63], but are beyond the scope of this review.
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Table 2.2. Multi-label example-based evaluation measures [58–60].

Measure Equation Description

Exact Match Ratio
1
m

m

∑
i=1

I(Zi = Yi) The percentage of label sets that were predicted 100%
correctly (i.e. each predicted label was correct and ev-
ery relevant label was predicted).

Hamming Loss
1

QM

M

∑
i=1

Q

∑
j=1

I(Z j[i] = Yj[i]) The average symmetric difference between the pre-
dicted label set Zi and the actual label set Yi.

F1 Score
1
m

m

∑
i=1

2|Yi∩Zi|
|Yi|+ |Zi|

Average F Score, with β = 1, over all labels.

Accuracy
1
m

m

∑
i=1

|Yi∪Zi|
|Yi +Zi|

Average simple accuracy over all labels.

I is the indicator function defined as I(true) = 1 and I( f alse) = 0

Receiver operating characteristic (ROC) graphs are a way to visualize the performance of a classification

technique. ROC graphs are generated by varying τ and plotting true positive rate (T PR) versus false positive

rate (FPR, where FPR= 1−T NR) in two dimensions [61]. By varying τ from 0 to 1 in regular intervals and

for each interval calculating T PR and FPR, and plotting the (FPR, T PR) tuple, a ROC curve is constructed

iteratively. If, for each value of τ , multiple tests are performed, as in the case of cross validation, then an

average of the performance measure must be calculated. Although various averaging strategies exist [61],

the most common is vertical averaging, which in the case of an (FPR, T PR) ROC curve means calculating

the average true positive rate.

The area under the ROC curve (AUC) is a scalar measure that summarises a ROC curve. AUC will

always be a value between 0 and 1, since it is a portion of the unit square. This is because each axis of

the ROC curve represents a rate. AUC is widely used [8, 26, 27, 36, 64–67]. An important property of ROC

curves (and hence AUC) as an evaluation measure is that they are invariant to changes in class distribution,

therefore provide a robust method for evaluating classifier performance.
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Multi-Label Evaluation Measures

In single label classification problems, each prediction made by a predictive model is either 100% correct or

100% incorrect. This is because only one label is being considered and the label is either associated with the

example or it is not – there are no partially correct classifications. In multi-label classification the situation

is different. For example, let the set of labels predicted to be associated with an unseen test example yyyi

be Zi. Some members of the predicted label set Zi may indeed be associated with yyyi, while others may

not. This concept of partially correct predictions makes the evaluation of multi-label predictive models less

straightforward than single label ones.

Since the task of label ranking is not considered in this study, there are two groups of classification

evaluation measures that apply to multi-label classification. These are the example-based and label-based

methods. Example-based measures examine the relationship between the full set of predicted labels (Zi)

and the true data labels (Yi) for each unseen test example (yi). All labels in Zi are used in the calculation

of example-based measures, which implies that each prediction made is considered as a whole. In contrast,

label-based evaluation measures are calculated using the individual members of the Zi set. Consequently,

these measures consider the predictive power of a classification technique at the individual label level.

The example-based evaluation measures only apply to multi-label classification problems and are out-

lined in table 2.2 [19, 60]. These measures assess the performance of a classifier over all labels in the pre-

dicted label set and the averages are taken over all test examples. The example-based evaluation measures

can all be averaged on a macro (M) or micro (µ) level as described above.

Both label-based and example-based methods have their uses. If it is sufficient to know how a classifier

performs across all labels on a dataset, then the example-based measures can be used. If it is important

to know exactly how well a classification technique performs for an individual label, then the label-based

measures should be used.
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Higher Order Measures

Some composite higher order classification evaluation measures exist that provide further performance as-

sessments. Many of these measures combine confusion matrix-based or ROC measures with statistical the-

ory [58]. Researchers have defined quadratic ‘distance’, which is associated with a negative log-likelihood

approach for a Gaussian model. LP distance has also been defined as in equation 2.4.

LP(Zi,Yi) =

[
Q

∑
j=1
|Zi[ j]−Yi[ j]|p

] 1
p

(2.4)

Note that if p = 1 the definition is the same as Hamming Loss as defined in table 2.2.

The notion of correlation is used widely in statistics to determine the relationship between two or more

variables. A form of the Pearson correlation coefficient [68] has been used in the context of machine learning

and is referred to as the Matthews correlation coefficient [58, 69, 70]. The Matthews correlation coefficient

(MCC) is defined in equation 2.5 in terms of the quantities in the confusion matrix. The measure is always

a value between -1 and 1 and provides a comparison with respect to a random baseline. When MCC =

0, performance is considered to be no better than a random performance. A value of +1 indicates good

performance (good correlation between the predicted labels and the actual labels) and a value of -1 indicates

poor performance. One problem with the MCC measure is that it is not always defined, for example, if

t p+ f p = 0 (no positive predictions are made).

MCC =
t p · f n− f p · f n√

(t p+ f p) · (t p+ f n) · (tn+ f p) · (tn+ f n)
(2.5)

Another statistical measure that has been used to gauge classifier performance is discriminant power

(DP) [59, 71]. This measure attempts to avoid the tradeoffs between sensitivity and specificity by applying

a logistic odds transformation. DP is defined in terms of the confusion matrix quantities and the standard

deviation of the logistic normal distribution curve (
√

3
π

) in equation 2.6.
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DP =

√
3

π
ln
(

t p
f p
· tn

f n

)
(2.6)

A classifier is a poor discriminant if DP < 1, limited if DP < 2, fair if DP < 3 and good otherwise.

2.2.2 Predictive Model Validation

Model validation is the task of assessing whether or not a model will perform well on independent test

data [17]. This is important because it gives the assurance that the model will perform well in general and

is not just over-fitting to a specific dataset. The most simple and widely used method of model validation is

cross-validation [8, 27, 28, 36, 47, 64–67, 72–75].

There are two main types of cross validation, leave one out cross validation and k-fold cross validation

[76]. Leave one out cross validation builds a model using all of the training data except one example and

uses the omitted example to test. This is done for each example in the training set. For large training sets

this can become infeasible due to long training times, so k-fold cross validation is normally used. In k-fold

cross validation, the dataset is divided into k equally sized subsets. The model is then trained using k−1 of

the subsets and testing is done using the omitted subset and this is repeated k times, each time leaving out a

different subset. Performance measures are then averaged over the k cross validation cycles.

The value of k in k-fold is chosen in order to reduce both bias and variance. Bias can be introduced into

a predictive model if it is trained using a subset of the dataset that is not representative of the dataset as a

whole. This is because the selected training dataset could lack training examples of a specific type – such

as example associated with a particular combination of labels, say Yi. The resultant predictive model would

then never be able to make a prediction of Yi for an unseen training example (even though the label set Yi

exists in the complete dataset). It can be said that this model is biased against Yi [76]. It has been shown that

in most cases a value of k = 10 is optimal for model validation [16, 17, 76].
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An issue that often arises in real-world problems is class imbalance in the data [77,78]. Class imbalance

in a dataset exists when the proportion of examples labelled with a particular label λi is much bigger (or

smaller) than the number of examples not labelled with λi [77]. This can lead to certain performance

measures (such as simple accuracy as defined in equation 2.1) providing unreliable information. Class

imbalance can also affect model validation if training and test sets are not representative of independent

external data. To compensate for this, stratification is often used to construct cross validation data subsets

(referred to as folds) that are representative in terms of label distribution. Stratification has been shown to

improve cross validation in terms of both bias and variance [76].

Standard stratification techniques do not apply to multi-label datasets, since examples are associated

with more than one label, which makes label distribution more difficult to represent and calculate. Two

algorithms have been proposed for the stratification of multi-label data. The Labelsets-based stratification

algorithm [79] attempts to strictly maintain the distribution of all labels across each of the k cross validation

subsets. Iterative stratification [79] proposes a relaxed version of the labelsets-based algorithm in which

only infrequently occurring labels are strictly distributed across the k subsets.

2.2.3 Dataset Description Measures

Two dataset description measures are defined for describing multi-label datasets [19, 21], namely, label

density and label cardinality. The label cardinality of a dataset is the average number of labels associated

with each example and is defined in equation 2.7 [19].

Label Cardinality =
1
m

m

∑
i=1
|Yi| (2.7)

The label density of a dataset (defined in equation 2.8) is the average number of labels associated with each

example divided by the number of unique labels [19].

Label Density =
1
m

m

∑
i=1

|Yi|
n

(2.8)
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Label cardinality is independent of the number of unique labels (n) and is used to characterise the number

of labels associated with the average example, while label density takes the number of labels in the domain

into consideration.

Another important dataset description measure is the label distribution [77,78,80,81]. This is calculated

by considering the simple occurrence counts (frequencies) of each label in the dataset and is important

because if label distributions are not balanced, then certain evaluation measures may not provide meaningful

information.

The final dataset evaluation measure to consider is feature completeness [18]. It could be the case that

not every training or test example has a value associated with each of its features. Some algorithms do not

support empty feature values, so it may be necessary to either remove incomplete features or add placeholder

values, depending on the classification algorithm being used.

2.3 Applications

Statistical learning methods have been applied to a wide range of problems, from predicting the stock market

to identifying handwritten lettering from a digitised image [17]. However, in this review the discussion is

limited to the application of classification techniques to the problem of predicting HIV drug resistance and

therapy outcome. These studies are relevant because they train statistical models using the same type of data

used in this study, although often with the addition of viral genotype data. Both single label and multi-label

classification studies are considered, since multi-label techniques have not yet been widely applied to the

relevant problems.

The review of the relevant applications is organised into three sections. The first subsection discusses

the applications based on the objective of the classification task, while the second subsection reviews the

applications based on the data used for training the predictive models. The measures used to validate and

evaluate the performance of the applied techniques are discussed in the final subsection.
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2.3.1 Classification Objective

Predictive models trained on HIV-related clinical data are built to predict either therapy outcome (also re-

ferred to as response to therapy) or they are trained to predict HIV drug resistance. Therapy outcome is

measured in practice by observing a patient’s viral load. The viral load is a measure of how many copies

of the HI virus are present in the cells of a patient. A low post-therapy viral load measurement implies a

good response to therapy, while a high viral load is considered a bad therapy outcome. Since viral load

is a continuous variable as opposed to a categorical one, the task of predicting therapy outcome is one of

regression rather than of classification. Regression is the exercise of estimating the value of a continuous

variable.

HIV drug resistance is detected by examining the genome sequence of the virus. Therefore, methods

that try to predict HIV drug resistance use classification labels that correspond to mutations in the genome

of the HI virus that are known to cause resistance to antiretroviral drugs. It follows that predicting drug

resistance in this way is a classification task and not regression.

Antiretroviral Treatment Decision Support

Machine learning models for HIV treatment have often been applied to the problem of predicting therapy

outcome and the related task of therapy selection [8,64–67,73,75,82]. Therapy selection (sometimes called

therapy optimisation) is the task of choosing the drug regimen for a patient in order to improve the therapy

outcome.

Models that predict response to therapy by producing a viral load prediction can be used to support the

selection of a new therapy by using the model to predict the outcome of each possible therapy. Thus, models

constructed to predict response to therapy can be used for therapy optimisation without modification.
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HIV Drug Resistance Prediction

Only three studies apply classification techniques in order to directly predict resistance to antiretroviral

drugs [36, 72, 74]. Antiretroviral drugs (ARVs) are the medication used to treat HIV infection. Resistance

to a drug implies that the drug will not be effective if taken by the patient. All of these studies (each briefly

discussed below) use viral genotype data as input and produce genotype mutation predictions as output.

Artificial neural networks have been used to predict drug resistance using only genomic sequence data

[72]. Cross validation was used and the accuracy was defined as the ratio of correct classifications to the

total number of classification (see equation 2.1). The best model had an accuracy of 68%.

A meta-classifier called a super learner was used on viral genotype data consisting of 740 training

examples to select an optimal classifier from a set of candidate classifiers [74]. Susceptibility to one class

of antiretroviral drugs (protease inhibitors) was predicted. The super learner was validated using 10 fold

cross validation and evaluated using the concept of risk. This study defined risk as the difference between

the expected value of the estimated parameter and the actual value.

The binary relevance and ensemble of classifier chains multi-label classification techniques (described

in section 2.1 above) were applied to a dataset consisting of 600 genomic sequences. The classifiers were

trained to predict resistance to six drugs from one drug group (nucleoside analogues). ECC performed best

and achieved a mean AUC that ranged between 0.792 and 0.897 across the different drugs. 10 fold cross

validation was used to validate the models.

2.3.2 Training Dataset

The discussion below is organised into two sections based on the type of data used for training the predictive

models. First the applications that include viral genome sequences as part of the training data are considered,

then the applications that omit viral genome data are reviewed.
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In practice, the two most important clinical measures used to evaluate the condition of a patient infected

with HIV are viral load (defined in section 2.3.1) and CD4 count. CD4 count is a measure of the number of

T-helper cells in the blood and is an indicator of immune system health. These measures are therefore the

most commonly used training features along with viral genome sequences. Viral genome sequences contain

information about virus mutations that result in drug resistance.

Genomic Data Included

Most studies include genomic data, since this type of data are seen to provide the most amount of information

about HIV drug resistance [36,64,65,67,72–75,82]. Some studies train their classifiers using data elements

known as treatment change episodes (TCEs) [8, 64–66, 73, 75, 82]. A TCE describes the cluster of data

around the point at which a patient stops one antiretrovial regimen and starts a new one, i.e. a treatment

change [82, 83]. The TCE concept was introduced in 2003 by the RDI research group1 in an attempt to

standardise the format of clinical data used for training classification models, and has been adopted by some

authors outside of RDI. A TCE data element includes therapy (drug regimen), viral load and CD4 count

measurements at specific times before and after the treatment change, as well as viral genotype information.

Three regression techniques (generative discriminative engine, mixed effects engine and evolutionary

engine) were applied to a dataset consisting of about 3000 TCEs for the purpose of predicting therapy

outcome [64]. These techniques were applied both individually as well as in various combinations. The best

accuracy obtained on a test set was 75.1% and the highest AUC was 0.804.

Artificial neural networks (ANNs) have been used to predict response to antiretroviral therapy [82]

using a dataset consisting of 1154 TCEs. Three-layer neural networks were constructed and the output

of the models (prediction) was follow-up viral load and the evaluation measure was correlation (r2). Three

‘committees’ of 10 ANNs were tested, with the best model achieving a correlation of 0.69. The r2 correlation

is always in the range [0;1], so a value of 0.69 represents above average performance.

1http://www.hivrdi.org/

http://www.hivrdi.org/
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Three regression techniques were applied to the problem of optimizing therapy selection [67]. Models

that were trained using viral genotype and clinical, as well as therapy data obtained an AUC of 0.77. When

only viral genotype data was used, the AUC achieved dropped to 0.75. It was also shown that a combination

of models performed better than any single model.

A study that used 3143 TCEs combined with patient demographic, treatment history and viral genotype

data found that purely data-driven models are comparable to state of the art rule-based systems [65]. Logistic

regression, decision trees, random forests and rule bases were used to predict response to antiretroviral

therapy. Simple accuracy as well as AUC were used as evaluation measures, along with 10 fold cross

validation. The highest accuracy value obtained was 75.63% and the best AUC achieved was 0.761.

The performance of three models (ANN, SVM and random forest) at predicting response to antiretroviral

therapy was compared [75]. Data from 1204 treatment change episodes were used that included genotype,

clinical and treatment data. The predicted variable was follow-up viral load. Correlation as well as absolute

difference between the predicted and actual viral load were the performance measures used. The highest

correlations attained were 0.546 for ANN, 0.751 for random forest and 0.720 for SVM. The study concluded

that a combination of models results in the best performance.

Genomic Data Excluded

In developing countries patients do no always have access to viral genotype data. This could be due to

financial constraints or lack of resources such as laboratories and the highly skilled staff required to perform

the tests. In these scenarios only clinical data such a CD4 counts and viral load measurements are available

for managing patients infected with HIV. Two recent studies [8,66] begin to address the problem of making

predictions related to HIV treatment without using genomic data.

Random forests were used to predict therapy outcome for the purposes of new therapy selection [66].

Two datasets were used, one with 2831 TCEs (dataset 1) and one with 2579 TCEs (dataset 2). Additional
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clinical, demographic, treatment history and GRT data were included in the dataset. Two models were

constructed for each dataset, one that included the GRT data and one that omitted it. The model with GRT

achieved an AUC 0.77 in dataset 1 and 0.834 on dataset 2. Models constructed without GRT data achieve

comparable results, with an AUC of 0.757 and 0.821 achieved on dataset 1 and 2 respectively, which is

indicative of good performance.

Response to antiretroviral therapy was modelled in a study that used 14891 TCEs that did not include

viral genotype data [8]. Models were evaluated using cross validation as well as independent test TCEs from

external datasets. AUC was used as the main evaluation measure, along with simple accuracy, sensitivity and

specificity. The mean AUC achieved using cross validation was 0.77. The mean values for accuracy, sensi-

tivity and specificity were 72%, 72% and 71% respectively, which indicates significant predictive power.

While most applications of classification algorithms to the problem of predicting HIV drug resistance

and therapy outcome use genomic data for training, more recent studies are beginning to investigate training

models using only clinical data. This is to address the reality of the situation in developing countries, where

genomic data is not always available. It has been shown that using clinical data only, predictive models can

achieve accuracy comparable to models trained using genomic data.

2.3.3 Evaluation Measures

By far the most common performance evaluation measure used in the above applications is the area under the

receiver operating characteristic curve (AUC) [8,26,27,36,64–67]. This is most likely due to the robustness

of the measure across different datasets. The most common validation technique used was k fold cross

validation, with k = 10 the most common value for k [8, 27, 28, 36, 47, 64–67, 72–75].

2.4 Summary

Multi-label classification techniques and applications applied to the problem of predicting HIV drug re-

sistance and therapy outcome prediction have been reviewed. The most important classification techniques
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from each of the three primary solution groups (problem transformation, algorithm adaptation and ensemble

methods) have been described.

It has been shown that the task of assessing model performance is not trivial and that there are many

available evaluation measures to do so. Many of the performance measures are in some way derived from

the confusion matrix, which enumerates the correct and incorrect predictions produced by a classification

technique.

It has been illustrated that many investigations have been done into the task of applying supervised

machine learning techniques to the problem of HIV drug resistance and treatment decision support. The

techniques make use of a variety of classification techniques, but are mainly trained on the same type of

data. The evaluation and validation methods used are also largely aligned.

Very few studies have investigated the application of classification techniques trained only using clinical

data to the problem of predicting HIV drug resistance. In the remainder of this study, the best practices

extracted from the reviewed literature will be used to apply multi-label classification techniques to exactly

this problem.



Chapter 3

Methods

This chapter describes the multi-label classification methods used in this study, as well as the measures

employed to evaluate their performance. Also described are the validation mechanisms used to ensure

the reliability of these evaluations. The selected methods and mechanisms have been largely informed by

previous work as described in chapter 2.

3.1 Multi-Label Classification Techniques

Six multi-label classification techniques were used to train seven different predictive models using the train-

ing data (described in section 4.1.2). The goal of this process was to develop classification models capable

of predicting which drugs a patient is resistant to without the presence of a genotype resistance test result.

The six techniques were selected after a review of the literature (presented in chapter 2) and are a represen-

tative sample of the multi-label classification solution space (see figure 2.1). Some theoretical background

for each technique is given below.

32
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3.1.1 Problem Transformation Methods

Binary Relevance (BR)

The first multi-label classification technique tested was binary relevance.

The binary relevance (BR) multi-label classification technique transforms the nature of the problem from

multi-label to single label (binary) [20]. That is, for each label in the multi-label dataset a binary classifier

is trained. To classify an unseen example, each of the binary classifiers is consulted for a prediction for the

label it was trained to identify. To compose the final multi-label prediction, the predictions from each of the

binary classifiers are simply concatenated. This mechanism is illustrated in figure 3.1.

Due to the fact that this technique is independent of any specific binary classification algorithm, it is

possible to use any such algorithm to train the binary classification models. The two different algorithms

that were selected as the so-called base classifiers are discussed in the next two sections.

Support Vector Machine (BR-SVM) Support vector machines (SVMs) are classification models that are

commonly used in pattern recognition problems [84, 85]. SVMs map the feature space into a much higher

dimensional space using a technique referred to as the kernel trick, which enables this mapping to be done

implicitly (without have to actually calculate the mapping).

If the (now single label, since the binary relevance transformation has been applied) dataset has n examples,

each with p features, it can be represented as shown below:

D = {(x1,λ1),(x2,λ2), . . . ,(xn,λn)} where xi ∈ Rp

where the λi are the binary label values for each example (xi).
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Figure 3.1. Binary relevance classifier. The solid arrows indicate input data flow while the
dashed arrows indicate output data flow. The yi represent the features and the Z represents the set
of labels to be predicted.
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SVMs construct a maximum margin hyperplane in the higher dimensional space by solving the following

optimisation problem:

min
w,b,ξ

1
2

wT w+C
n

∑
i=1

ξi

subject to λi(wT
Φ(xi)+b)≥ 1−ξi with ξi ≥ 0 (3.1)

where w is the normal vector to the hyperplane, C > 0 is the cost parameter of the error term and b is the

hyperplane offset.

Given the optimisation problem described in 3.1, the kernel function K is defined as

K(xi,x j)≡Φ(xi)
T

Φ(x j)

A number of kernel functions have been proposed, but it has been suggested [86] that the radial basis

function (RBF) kernel is a reasonable choice. The RBF kernel function is defined in equation 3.2.

K(xi,x j) = exp(−γ ‖ xi−x j ‖2) with γ > 0 (3.2)

Naive Bayes (BR-NB) A naive Bayes classifier models the probability of the class variable using the

simplifying assumption that each feature in the feature vector is independent [87]. The probabilistic model

developed for generating the predictions is derived from Bayes’ theorem, which is defined in equation 3.3.

P(A|B) = P(B|A)P(A)
P(B)

(3.3)

The term P(A|B) is the posterior probability and can be interpreted as the probability of proposition A given

that proposition B is true. The term P(A) is the prior probability of A, or the probability of proposition A

without having any information about B. In terms of binary classification the theorem can be rewritten as

follows.

P(C = λ j|xi = y) =
P(xi = y|C = λ j)P(C = λ j)

P(xi = y)
(3.4)
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Equation 3.4 can be interpreted as the probability that the class (C) will have the value λ j given that the

feature vector (x) has the values y. Expanding this to explicitly include each individual feature gives the

following (omitting the variable assignments):

P(λ j|y1,y2, . . . ,yp) =
P(y1,y2, . . . ,yp|λ j)P(λ j)

P(y1,y2, . . . ,yp)

The yi are given, which makes P(yi,y2, . . . ,yp) a constant (labelled F). Further, observing that the numerator

is equivalent to the joint probability P(λ j,yi,y2, . . . ,yp) and applying the chain rule it can be seen that

[87–89]:

P(λ j|yi,y2, . . . ,yp) =
1
F

P(λ j,yi,y2, . . . ,yp)

=
1
F

P(λ j)P(y1,y2, . . . ,yp|λ j)

=
1
F

P(λ j)P(y1|λ j)P(y2, . . . ,yp|λ j,y1)

=
1
F

P(λ j)P(y1|λ j)P(y2|λ j,y1)P(y3, . . . ,yp|λ j,y1,y2)

=
1
F

P(λ j)P(y1|λ j)P(y2|λ j,y1)P(y3|λ j,y1,y2)P(y4, . . . ,yp|λ j,y1,y2,y3) (3.5)

At this point the “naive” independence assumption is made. In the naive Bayes classification model, it is

assumed that P(yi|λ j,yk) = P(yi|λ j), or more generally P(yi|λ j,yk, . . . ,yk+l) = P(yi|λ j). Taking this into

account, equation 3.5 simplifies to:

P(λ j|yi,y2, . . . ,yP) =
1
F

P(λ j,yi,y2, . . . ,yp)

=
1
F

P(λ j)P(yi|λ j)P(y2|λ j) · · ·P(yp|λ j)

=
1
F

P(λ j)
p

∏
i=1

P(yi|λ j) (3.6)

The naive Bayes classifier is built using equation 3.6 along with a decision rule. Intuitively, the classifier

tries to find the label (λi) that has the highest probability given the feature vector (y). This is know as the
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maximum a posteriori probability (MAP) hypothesis [87] and can be expressed formally as:

NBclass(y) = argmax
j

1
F

P(λ j)
p

∏
i=1

P(yi|λ j) (3.7)

One of the efficiency problems present in the binary relevance method is that all base classifiers must be

trained with every single training example. This issue is addressed by the following technique.

HOMER

The second multi-label classification technique considered in this research is referred to as the Hierarchy Of

Multi-label classifiERs (HOMER) method [30]. HOMER constructs a hierarchy of multi-label classifiers as

depicted in figure 3.2. Each node in the hierarchy (Hi) only considers a subset of the label set (LHi ⊆ L).

The primary goal of architecting the technique in this way is to increase training and testing efficiency. The

mechanism of this optimisation is explained below.

HOMER attempts to overcome the inefficiency of the binary relevance method by defining the concept

of a meta-label (µHi) as follows:

µHi ≡
∨

λ j, λ j ∈ LHi (3.8)

That is, a training example can be considered as being labelled with µHi if it possesses at least one of the

labels in LHi . As an example, consider figure 3.2 and the training example shown below.

xi = ({x1,x2, . . . ,xp} ,{λ1,λ2,λ3}) (3.9)

The HOMER technique would label the training example in equation 3.9 with the meta-label µH1 in figure

3.2 since is it labelled with λ1 and λ2. During training, only the examples that are labelled with µHi are

passed down the hierarchy to Hi to be given as training input to the base classifiers at the leaf nodes below

Hi. In this study, naive Bayes classifiers (described in some detail in section 3.1.1 above) are used as the

base classifiers.
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Figure 3.2. A simple hierarchy constructed by HOMER for a hypothetical problem with 8 labels.
The Hi are the nodes in the hierarchy and the meta-labels (µHi) are shown in parentheses for each
node. The yi represent the features and the Z represents the set of labels to be predicted. The BC λi

are the base classifiers for each label.
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To generate a label set prediction for an unseen example, the example is first passed to the root node of

the hierarchy (HOMER in figure 3.2). Then, the example is recursively passed to each child node (Hi) using

a depth-first traversal. The concatenation of the binary predictions produced by each base classifier is then

taken to be the final predicted label set.

One problem that needs to be solved when constructing a classifier using the HOMER technique is how

to create the disjoint label sets LHi . HOMER solves this problem by trying to distribute the labels as evenly

as possible into k subsets such that labels belonging to the same subset are as similar as possible. HOMER

achieves this by extending the balanced clustering algorithm [90] and introducing a novel clustering algo-

rithm called balanced k means [30], which clusters the labels with an explicit constraint on the size of each

cluster. These clusters are then used as the meta-labels.

3.1.2 Algorithm Adaptation Methods

MLkNN

The first of the algorithm adaptation methods explored in this work was the Multi-Label k Nearest Neigh-

bours (MLkNN) technique [37]. Briefly, MLkNN is based on the traditional k nearest neighbours method

and works by first identifying the nearest k neighbours of an unseen example and makes a prediction based

on the labels associated with these neighbours.

The initial step of the MLkNN algorithm is to calculate the prior and posterior probabilities for each

label. The prior probabilities are calculated as follows:

P(λ j) =
s ·∑n

i=1 Iλ j(xi)

2s+n

∨
λ j ∈ L (3.10)

where Iλ j(xi) is the indicator function that returns 1 if xi is labelled with λ j and 0 otherwise and s is the

smoothing factor. Intuitively, the posterior probabilities are calculated for each label (λ j) by considering,
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for each training example (xi), how many of its k nearest neighbours are labelled with λ j (or not) if xi is

labelled with λ j (or not). The nearest neighbours are found using a predefined distance function.

To predict the label set of an unseen example, the MLkNN algorithm first finds the k nearest neighbours

of an unseen example y, which is defined as Nk(y). MLkNN uses the predefined distance function to

calculate the distance between the unseen example (y) and the examples in the training set (xi).

The predicted label set is determined using the maximum a posteriori probability principle (as defined

in equation 3.7). Specifically, the predicted label set Zi for an unseen example yi is generated by applying

the following for each label λ j:

λ j ∈ Zi = argmax
k∈0,1

P(λ j = k)P(yi|λ j = k)
P(yi)

(3.11)

where λk = 1 indicates that the label is present and λk = 0 indicates that the label is not present.

Predictive Clustering Trees (PCT)

The fifth technique examined in this work is the predictive clustering tree (PCT) algorithm [39]. PCTs make

use of first order logical decision trees [39] to cluster all training examples at nodes in the tree. The trees

constructed by the PCT algorithm also have a decision point at each non-leaf node. This decision point can

be thought of as describing the examples clustered at all nodes below that point in the tree.

The PCT method builds the clustering tree using a technique known as top-down induction [91]. The

goal of this clustering is to establish clusters that minimise the intra-cluster distance and maximise inter-

cluster distance. The resulting tree can also be referred to as a classification tree, since it can be used for

generating predictions for unseen examples (as is the case in this study).

The final classification tree produced has a vector of probabilities at each leaf node. This vector contains

a value for each possible label, indicating the chance that examples clustered at that specific leaf node are
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associated with the respective label. Along with the classification model, the PCT technique produces a

human readable decision tree that can be examined to follow the exact decision process used to make the

classification decisions.

To classify an unseen example, the decision tree is followed from the root node down. At each node

the learnt decision rule is consulted and the traversal is continued down a branch based on the result. This

process continues until a leaf node is reached. The probability vector at this leaf node is then used to predict

the label set.

3.1.3 Ensemble Methods

RAkEL

The first ensemble method tested was RAndom k-labELsets (RAkEL) [35]. This method constructs each

member of an ensemble using a small random subset of the labels. Then, the label power set (LP) problem

transformation method (see section 2.1.1) is used to train a single label classifier for each member of the

power set of each of the subsets in the ensemble. One of the goals of this design approach is to take label

correlations into account, but at the same time avoid the main problem of the LP method, which is that when

label sets are large, the LP method becomes computationally intractable [35].

The RAkEL method defines the concept of a k-labelset as the set Lk ⊆ L where |Lk| = k and L =

{λ1,λ2, . . . ,λQ} is the set of all labels. The set of all distinct k-labelsets on L is denoted by Lk. The

RAkEL algorithm constructs an ensemble of m classifiers by randomly selecting a k-labelset, Lki from Lk

and learning an LP classifier on the power set of labels in Lki. This process is executed m times to produce

m classifiers. These classifiers are denoted by hi where i = 1 . . .m.

For the classification of an unseen sample, y, each classifier (hi) provides a binary decision for each

label, λ j, in its k-labelset. RAkEL then calculates the average decision for each label and returns true (the

unseen example should possess the label) if the average is greater than some threshold, t, or false otherwise.
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Ensemble of Classifier Chains (ECC)

The Ensemble of Classifier Chains (ECC) technique [34] was the second ensemble method and final method

investigated. The ECC technique builds on the binary relevance idea by using an ensemble of classifier

chains (CC) to extend the feature space. This is achieved by adding a binary feature to represent the pre-

dictions of all previous classifiers, thereby forming a chain of classifiers. The goal of this modification is to

model label correlations while keeping the computational complexity of the problem tractable [34].

As in the binary relevance method, classifier chains are constructed by training a classifier for each label,

but the classifiers are trained in a specific order and the output of each classifier is used as an additional

feature for training the next classifier (forming a chain). The top half of figure 3.3 illustrates this mechanism

for a hypothetical example with six features and five labels. In the figure it can be seen that the first classifier

is trained with only the example features, while the next classifier includes the first label as one of the

training features. This continues for each subsequent classifier in the chain. The naive Bayes classifier is

used as the base classier in this study.

To classify an unseen example using a classifier chain, the classifiers in the chain are consulted in the

same order in which they were trained. The first classifier produces a prediction for the first label and this

prediction is then used as a supplementary feature for the next classifier. This process is illustrated in the

bottom half of figure 3.3.

The ECC technique builds an ensemble by training m classifier chains C1,C2, . . . ,Cm. Each Ci is trained

using a random label ordering and well as using a random subset of D (the example space). To classify an

unseen example using ECC, each Ci is consulted for a prediction for each label. The ECC algorithm then

sums the predictions made for each label and if the sum for a particular label is above a certain threshold t,

then the label is taken to be associated with the unseen example [21].
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Figure 3.3. Mechanism of operation of a classifier chain (CC) [36].



3.2 Evaluation 44

3.2 Evaluation

In order to evaluate the results of the experimental methods described in section 3.1 above, it was necessary

to select relevant evaluation measures from the many possible options described in section 2.2. Since the

dataset used in this study is highly imbalanced, it was necessary to choose evaluation metrics that take into

account label imbalance. Further, as discussed in section 4.1.1, it is important to know exactly which drugs

a patient is resistant to, so it makes sense to evaluate the techniques on how well they perform at predict-

ing resistance to specific drugs. Therefore, exclusive use was made of label-based evaluation measures as

defined in section 2.2.1.

The measures described below have been selected as a representative sample of those used in the lit-

erature. The group of measures should be examined collectively in order to get the full picture of the

performance of a particular technique.

3.2.1 Confusion Matrix

Most metrics are calculated from the confusion matrix generated by a classification or cross validation run

(illustrated in figure 2.4). It has already been demonstrated that many measures (such as simple accuracy as

defined in equation 2.1) are not invariant to an imbalanced class distribution. This means that class balance

can have an effect on the value of the evaluation measure. It is therefore import to avoid using such measures

in this study.

The two confusion matrix-based metrics that have been selected as evaluation measures in this study,

namely true positive rate (T PR) and true negative rate (T NR) have been shown to be invariant to an im-

balanced class distribution [60, 77]. These two evaluation measures are defined in equations 3.12 and 3.13

below:

TPR =
t p

t p+ f n
(3.12)
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TNR =
tn

tn+ f p
(3.13)

where t p is the number of true positives predicted, tn the number of true negatives, f p the false positives

and f n the false negatives.

3.2.2 Receiver Operating Characteristic

Receiver operating characteristic (ROC) curves are used as an additional evaluation measure, since it is

common practice to do so and they have been shown to work well in the presence of class imbalance [61,77].

ROC curves depict relative tradeoffs between benefits (true positives) and costs (false negatives). The curves

are generated by varying a threshold parameter (τ) and plotting the number of true positives versus the

number of false positives for each threshold value.

Area Under Curve (AUC)

Area under the receiver operating characteristic curve (AUC) is a single scalar value that represents expected

ROC performance [61]. Note that ROC curves can only be plotted for classifiers that produce a probability

estimate to which thresholding can be applied and hence no such graphs are plotted for the BR-SVM and

PCT methods.

3.2.3 Higher Order Measures

Matthews correlation coefficient (MCC) has been selected as a supplementary evaluation measure. The

MCC is a measure of the correlation between the observed and predicted labels. Its value is in the range

[−1;1] with 1 indicating perfect prediction, 0 indicating no better than random prediction and -1 indicating

total disagreement between prediction and observation [58]. It is defined in equation 2.5.
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The final evaluation measure used in this study was discriminant power (DP), which is a measure that

summarises sensitivity and specificity and is an indication of how well a classifier distinguishes between

positive and negative examples [59]. It is defined in equation 2.6. A classifier is a poor discriminant if

DP < 1, limited if DP < 2, fair if DP < 3 and good otherwise.

3.3 Validation Techniques

It is not sufficient to draw conclusions regarding the performance of a technique by simply training and

testing a model once and calculating values for the selected set of evaluation measures. This is due to fact that

overfitting1 could have occurred, or a one-off ordering for a model with a randomisation component could

have resulted in uncharacteristically high (or low) performance. It is therefore necessary to put additional

control mechanisms in place to ensure that the measures of performance are reliable. These validation

techniques are discussed in the following subsections.

3.3.1 Cross Validation

Cross validation is a popular technique used to validate the observed performance of a classifier. The tech-

nique works by splitting the training dataset into a number of folds. Each fold contains roughly the same

amount of training examples. The model is then trained using the data from all but one of the folds. Testing

is then done using the data that was left out of training. This process is repeated as many times are there

are folds, each time training by leaving out a different fold and then testing with the left out fold. The

performance is then taken as the average of the performance of these training/testing cycles.

1The result of overfitting is that a technique shows good performance on a particular dataset, but does not perform well in

general.
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3.3.2 Stratification

In order for the performance of each cross validation cycle to be representative of the performance if the full

dataset was used for training, it is necessary to construct each fold so that the label distribution in the fold

is the same as for the complete dataset [76, 79]. In the case of binary classification, the task of stratifying

the dataset is simple, since there is only one target label whose distribution must be maintained. However,

in multi-label datasets there are multiple distributions that must be maintained.

In this study the iterative stratification algorithm [79] is used to generate the stratified folds, since it is

less strict than labelsets-based stratification and the datasets are too small for strict stratification rules to

apply. That is, there are not enough examples labelled with specific label combinations for training and test

folds to be strictly representative of the full dataset. The iterative stratification algorithm allows the best

effort approach to constructing cross validation folds to be used.

3.3.3 Dataset Validation

The final and arguably most significant way that model validation has been performed in this study is by

examining performance of the models under dataset evolution. A snapshot of the same dataset has been

taken at two different points in time, once in 2011 and once in 2013. The decision was taken to run the same

experiments on both datasets and compare the results.

The rationale behind this approach was to simulate model performance in the field over time. To truly

examine how the models would perform in the field, it is necessary not only to test on a single, static dataset,

but to test how the model performance is affected by the accumulation of data as clinical management of

patients continues.
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3.4 Summary

Theoretical background information and descriptions of algorithms for the selected six multi-label classi-

fication techniques have been given. The six evaluation measures used to measure the performance of the

classification techniques used were also described. Finally, the details of the three control mechanisms put

in place to ensure the validity of any evaluations have been given.



Chapter 4

Experimental Design and Implementation

This section describes the experimental design decisions made during the course of this study. Also dis-

cussed are the implementation details, including the experimental pipeline and the architectures and tech-

nologies of the software tools used.

4.1 Data

4.1.1 Clinical Dataset

The datasets used in this study form part of the Southern African Treatment and Resistance Network (SAT-

uRN1) data repository. The data are the clinical records of 500 patients who have attended the Africa Centre2

treatment failure clinic (TFC). On enrolment at the TFC, patients’ medical files are collated and curated by

the SATuRN research team members. Further, patients attending the TFC clinic each consult with a social

worker who collects additional data that would not normally be collected. The result is a very detailed,

1http://www.bioafrica.net/saturn/index.php
2http://www.africacentre.ac.za/
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relatively clean and comprehensive medical record for each patient that includes additional socio-economic

information.

Table 4.1 summarises the dataset attributes. Patients in the datasets also have a viral isolate (used to

perform GRT) associated with their clinical record, which is used to determine their resistance profile3. This

resistance profile is then used to construct the label sets associated with each training example. The features

in the demographic, clinical, adherence and other rows in table 4.1 exist in the clinical information system,

while the features in the derived row are calculated during the training dataset development phase by the

CuRE tool (described in sections 4.1.2 and 4.3.2 respectively).

The training data is anonymised and ethics approval has been obtained to analyse the data (as indicated

in the acknowledgements section in the preamble). Some filter has been performed based on clinical criteria.

To be included in the dataset, patients must be at least 16 years old, as pediatric HIV cases are treated quite

differently from adult cases. Furthermore, patients must have had at least one genotype resistance test result

on file, in order to generate the label set from their resistance profile (if any).

In order to evaluate how the performance of the selected classification techniques changes as the under-

lying dataset changes, two datasets have been used. The first dataset (labelled dataset 1) represents all the

data collected for patients who attended the TFC up to June 2011. The second dataset (dataset 2) contains

the data collected up to May 2013. The two datasets are snapshots of the same clinical information system

at two different points in time and thus represent a real-world data evolution scenario.

Patients are resistant to between zero and 11 drugs (see tables 5.3 and 5.6). If it is known that a patient is

resistant to a particular drug, then the clinical care provider will switch the patient to another drug to which

the patient is susceptible4. This process is known as therapy optimisation and is an important step in the

management of patients living with HIV.

3In this case, the resistance profile is essentially just a description of which drugs the patient is resistant and susceptible to.
4Susceptibility to a drug is the opposite of resistance and implies that the drug will be effective for that patient.
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Table 4.1. Summary of features used to construct the predictive models.

Category Features Types Count

Demographic Age, Weight, Geographic Location, Ethnicity, Gender, Province,

Country of Origin

Numeric,

Categorical

7

Clinical Drug Exposure (Tenofovir, Lopinavir/r, Atazanavir, Zidovudine,

Ritonavir, Efavirens, Abacavir, Nevirapine, Raltegravir, Stavudine,

Didanosine, Lamivudine), Recent Blood HB, Recent Blood ALT,

Recent Blood Creatinine Clearance, Other Drug Exposure (three

features), Tuberculosis Therapy (Prior, During, Post), HTLV-1 Sta-

tus, HBV Status

Numeric,

Categorical

23

Adherence Treatment Break, Patient Estimated Adherence, Missed, Buddy,

Remember, Counselling, Side Effects, Worst Stop, Disclosure,

Names, Stop

Categorical 11

Other Transmission Group, Other Co-morbidities, Partner On Treatment,

Exposure to Single Dose NVP, Identified Virological Failure Rea-

son, Traditional Medicine, Alcohol Consumption, TB Treatment

Starting Soon, Diarrhoea or Vomiting

Categorical 9

Derived Baseline Viral Load, Time on Failing Regimen, Drug Exposure

Count, Pre-Resistance Testing Viral Load, Median Viral Load, Re-

cent CD4 Count Gradient, Post-Treatment CD4 Count, Baseline

CD4 Gradient, Pre-Resistance Testing CD4 Count, Mean Viral

Load, Pre-Resistance Testing Immunological Failure, Virus Ever

Suppressed

Numeric,

Categorical

12

Total 62
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4.1.2 Training Dataset Development

In order to transform the data used for clinical management of patients into a form that is useful for testing

the multi-label classification techniques, a two step process is followed. First, it is necessary to determine

which features should be constructed from the available dataset attributes. Following this, it is necessary to

determine exactly how the feature vector (also referred to as an example) should be built from the data.

Feature Selection

The choice of features is influenced by two factors. First, the features commonly used in previous studies are

used (as discussed in section 2.3). These features include baseline viral load, CD4 count, treatment regimen

and others (see table 4.1). The second, and arguably more valuable process, is consultation with domain

experts from the Africa Centre treatment failure clinic. The domain experts were consulted during numerous

visits to the Africa Centre, during which meetings were held with researchers, infectious disease specialists

as well as social workers. Over a period of a number of months, using an iterative feedback process, the

final list of features was developed to represent the harmonised feature set considered to be important by the

consulted experts.

While the elements of the feature vector represent the clinical and social data captured in the medical

record for a patient, the labels represent the resistance profile of that patient. There are a total of 11 possible

labels that can potentially be associated with each feature vector. Resistance to a drug is determined using

the HIVDB 6.0.5 algorithm [5] and a patient is considered to be resistant to a drug if the algorithm returns a

susceptibility value of ≤ 0.5.

Due to the importance of knowing exactly which set of drugs a patient is resistant to, formulation of

the problem as a multi-label classification problem is natural, since a multi-label predictive model is able to

associate an unseen test example with a set of labels (see section 2.1). The training dataset thus consists of

feature vectors built using the medical records and the associated label sets comprise the drugs to which at

least one patient has shown resistance.
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Feature Vector Development

Before the clinical data can be used to train the predictive models, the data must first be transformed into a

format that can be used by the relevant software. The data in the clinical information system is stored in a

relational database and must be converted into a flat file in ARFF format. This ARFF file can then be used

as input by the classification techniques.

In order to do this data manipulation in a way that reduces the possibility of human error, a custom tool

has been developed (described in section 4.3.2) that can generate the training dataset in the required format.

This tool enables the user to select any or all of the desired dataset features and will generate a file in one

of two formats. One can be used by the classification techniques for experimentation and one is in human

readable format that can be used for manual inspection and analysis of the data.

4.1.3 Technique Selection

There are three solution groups for solving the problem of multi-label classification (as described in section

2.1). Problem transformation (PT) methods divide the problem into a set of multiple single label classi-

fication problems and combine the result to form the multi-label prediction. Algorithm adaptation (AA)

methods construct specialised algorithms, often by modifying existing single label prediction algorithms,

to produce a multi-label prediction. Ensemble methods (EM) are developed on top of common problem

transformation or algorithm adaptation methods [21].

In order to test the hypothesis put forward in section 1.1 and investigate the performance of multi-

label classification techniques in general, two popular methods from each of the main solution groups were

selected as indicated in figure 4.1.
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Multi-label learning

Algorithm adaptation methods Problem transformation methods Ensemble methods

PCT 
ML-kNN

Binary relevance Label power set RAkEL 
ECC

BR HOMER

Figure 4.1. Multi-label classification methods used in this study (leaf nodes).

4.1.4 Simplifying Assumptions

To reduce complexity and make the classification problem more tractable, some simplifying assumptions

have been made. The first important simplifying assumption is the assumption of independence between the

set of features as well as the set of labels (drugs). It may be the case that some features are bound to one

or more others by some kind of dependence relationship, but this is not explicitly modelled in the current

formulation of the problem.

Further, it is known from the clinical literature that resistance to one drug often implies resistance to

another, known as cross-resistance [4]. This is due to the fact that the drugs are members of just a few

distinct classes that have similar mechanisms of action. These complicating realities have been abstracted

away by the simplifying assumption that resistance to each drug is independent of any other.

An additional simplifying assumption is made regarding the determination of the drug resistance pro-

file for each patient. The resistance profiles used in this study are determined using only one algorithm

(described in section 4.1.2). In reality, the Africa Centre treatment failure clinic uses the cumulative score

of three different algorithms and considers 5 degrees of resistance per drug (as opposed to just resistant or

susceptible).
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The final simplifying assumption made is that the result of the genotype resistance test is considered to

be the absolute truth. However, this is not the case and there are in fact many limitations to GRT, such as

the fact that it can only detect majority quasispecies within a virus population and can also not detect virus

“reservoirs”, which are mutations archived in the cells [3]. Some studies report that GRT is only 60%–65%

predictive of response to ART [8].

4.1.5 Summary

A preliminary examination of the clinical database was performed and experts in the field of HIV patient

care were consulted in order to determine which data features should be used to train the predictive models

considered in this study. The approach to constructing the training dataset and selection of the classification

techniques to be tested has been discussed and problem design considerations and simplifying assumptions

were illuminated.

4.2 Processing Pipeline

In order to establish an experimental environment that was both robust and repeatable, the decision was

taken to develop an experiment pipeline that is (mostly) automated. This was achieved using a combination

of Python5 and Bash6 “glue” code in conjunction with the machine learning libraries and evaluation tools

used for experimentation.

4.2.1 Dataset Construction

The dataset construction phase of the processing pipeline (discussed in section 4.3.2 and illustrated in figure

4.2) is executed only once per clinical dataset. It has therefore been executed exactly twice during this study

– once for dataset 1 and once for dataset 2.
5http://www.python.org/
6http://www.gnu.org/software/bash/

http://www.python.org/
http://www.gnu.org/software/bash/
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Figure 4.2. Dataset construction phase of the processing pipeline.

The RegaDB application [11] (including source code) has been downloaded from the RegaDB website

and the application installed into the test environment. The Africa Centre database was then restored in

order to establish an exact clone of the production system.

RegaDB Setup

RegaDB is a Java web application that runs inside the Tomcat Servlet container using the Postgres database

management system for storage. The Spring MVC web framework7 is used to serve content and JWT8

is the user interface library. Hibernate9 is used as the persistence framework. The RegaDB application is

represented by the cylinder labelled Clinical Data in figure 4.2.

Data Extraction

The initial step of the dataset construction phase of the processing pipeline is to invoke the custom developed

tool called CuRE (shown as the square box in figure 4.2). The tool was developed in order to extract data
7http://spring.io/guides/gs/serving-web-content/, MVC - Model/View/Controller
8http://www.webtoolkit.eu/jwt
9http://www.hibernate.org/

http://spring.io/guides/gs/serving-web-content/
http://www.webtoolkit.eu/jwt
http://www.hibernate.org/
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from the RegaDB database in the appropriate format and in a configurable and repeatable way. The design

and implementation of the tool is discussed in detail in section 4.3.2. The tool is invoked via the web

interface provided and results in an ARFF file or spreadsheet containing the data in tabular format being

downloaded onto the filesystem of the user.

Dataset Preparation

As illustrated in figure 4.2, there are three final steps that follow data extraction by the CuRE application.

These three processes comprise the dataset preparation phase and have been shown to be an important part

of the classification procedure [86]. Each individual process is discussed below.

Normalisation Before the multi-label classification algorithms are used to train the models, the dataset

is normalised. This involves converting categorical features to numeric values. This is necessary because

some classification methods (such as support vector machines) only support feature vectors that consist only

of numeric values.

As an example, if there is a categorical feature that could have any one of the values {red,green,blue},

this would be mapped to three numeric features. The value of the three numeric features would be {1,0,0}

if the original feature value was red, {0,1,0} for green and {0,0,1} for blue.

The Weka Explorer graphical tool was used to generate the normalised dataset. The Explorer tool

is bundled with the Weka application and allows the user to import an ARFF file and apply filters. Filters

are used to apply various modifications to dataset files, and in this case, the NominalToBinary filter was

used to transform categorical features into multiple features with values in {0,1} (i.e. binary features) as

described in the above example.

The clinical data used in this study only contained numeric and categorical values, but if other data types,

such as image, video or audio data existed, then the normalisation step would also include mapping these

data to numeric values. The conversion of the categorical features resulted in the feature count increasing

from 62 to 125.
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Scaling The second data preprocessing step involved in constructing the training dataset is scaling. Scal-

ing entails mapping all numeric values to the same range (in this case [−1;1]). There are two primary

reasons for doing this. First, having all features in the same range eliminates the possibility of features

with greater numeric values dominating in the training process and thus having a larger influence during the

classification step. Secondly, using a range of [−1;1] helps prevent possible calculation errors associated

with computation, such as integer overflow in the case of calculating the product of two very large numbers.

Like normalisation, scaling was done using the Weka Explorer graphical tool. The dataset filter that

was applied in this case was the Normalisation filter. The Normalisation filter takes two parameters, the

scaling factor and the translation value, both of which are numeric. The scaling factor specifies the numeric

range to which the features should be mapped and the translation value specifies the starting point of the

numeric range as an offset from zero. For example, if a scaling factor of 1.0 and a translation value of −1.0

were specified, then all features would be mapped to the range [−1;0] by the Weka Normalisation filter.

In this study a scaling factor of 2.0 and translation value of −1.0 was used, resulting in all numeric features

being mapped to the range [−1;1].

Stratification The last data preparation step that must be performed before the dataset can be used for

the evaluation of the multi-label classification techniques is stratification. Stratification in this context is the

process of generating the dataset folds used for cross validation while maintaining the label distributions of

the complete dataset. This is done for the purposes of mitigating the problem of sampling bias and reducing

the variance of the evaluation results obtained.

Since the dataset used in this study is small (by machine learning standards), the Mulan implementation

of the iterative stratification algorithm [79] was used to generate the 10 folds to be used for cross validation.

A small Java utility, discussed in section 4.3.3 was developed to execute this task.
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4.2.2 Experiment Loop

After the data has been extracted and the dataset prepared, the experiments can be conducted. The ex-

periment loop phase of the processing pipeline comprises of three steps, namely, cross validation, results

processing and evaluation measure calculation. A single execution of the experiment loop is used to generate

the performance analysis results for each of the seven multi-label classification experiments conducted.

In order to reduce the possibility of human error, the experiment loop phase of the processing pipeline

is almost entirely automated. As a result, the experiments are easily repeatable, which helps increase confi-

dence in the results. Due to the ease of conducting the experiments, each experiment is performed numerous

times and the results compared each time to ensure that no errors have occurred.

Cross Validation

Figure 4.3. Cross validation phase of the experiment loop.
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The cross validation process loop, illustrated in figure 4.3, is nested inside the experiment loop, since

cross validation is performed as part of each experiment. This study makes use of 10 fold cross validation,

which means that the cross validation loop is executed exactly 10 times per experiment. In other words,

training and testing are performed 10 times for each classification technique, each time using the different

training and test datasets constructed during the stratification phase described in section 4.2.1. The scripts

developed to automate this process are discussed in section 4.3.4.

Results Processing

Figure 4.4. Results processing phase of the experiment loop.

The results processing step of the experiment loop is illustrated in figure 4.4. The result of the cross

validation loop is always a set of raw results from each experiment. These results are in the form of plain

text files that contain the output of the classifications of the test examples. Every method except PCT

produces the list of label set predictions (Zi) that were made for each test example (yi). An example of

this output is shown in listing 4.1. Note that the predictions produced are probabilities that the given label
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[1,1,1,1,1,1,1,1,1,1,0]:[0.00,0.63,0.72,0.02,0.84,0.00,0.99,0.00,0.91,0.72,1.07]
[1,1,1,1,1,1,1,1,1,1,1]:[1.00,0.98,1.00,1.00,0.65,1.00,0.59,1.00,0.97,1.00,0.85]
[1,1,1,1,1,1,1,1,1,1,1]:[0.29,0.35,0.96,0.48,0.12,0.29,0.09,0.29,0.10,0.96,0.08]
[1,1,1,1,1,1,1,1,1,1,1]:[0.01,0.75,0.75,0.08,0.26,0.01,0.67,0.07,0.27,0.75,0.07]
[1,1,1,1,1,1,0,1,1,1,1]:[1.00,0.93,0.99,0.79,0.82,1.00,0.66,0.99,0.77,0.99,0.67]
[1,1,1,1,1,1,0,1,1,1,1]:[0.52,0.94,0.99,0.79,0.91,0.52,0.78,0.76,0.86,0.99,0.86]
[1,1,1,1,0,1,0,1,1,1,0]:[0.23,0.29,0.99,0.42,0.41,0.23,0.10,0.33,0.14,0.99,0.26]
[1,1,1,1,1,1,0,1,1,1,1]:[1.00,0.02,0.99,1.00,0.99,1.00,0.00,0.99,0.63,0.99,0.99]
[1,1,1,1,1,1,0,1,1,1,1]:[0.20,0.44,0.97,0.40,0.11,0.20,0.07,0.16,0.08,0.97,0.05]
[1,1,1,1,1,1,0,1,1,1,1]:[0.80,0.88,0.99,0.64,0.44,0.80,0.37,0.91,0.58,0.99,0.27]

Listing 4.1. Example output from the MEKA and Mulan libraries. The values left of the colon
represent the actual labels (1 implies that the label is associated with the example) and the values
to the right are the predicted probabilities that the labels are associated with the example. The
order of the labels is taken to be the same as the input file.

feature: stavudine
REAL\PRED | 1 | 0 |
-----------------------

1 | 4 | 12 | 16
0 | 3 | 31 | 34

-----------------------
| 7 | 43 | 50

Accuracy: 0.7

Listing 4.2. Example confusion matrix from Clus output. This confusion matrix enumerates the
prediction results for a single label (stavudine) for a single training and test cycle. The accuracy
shown is simple accuracy as defined in equation 2.1.

is associated with the example. Further, the label ordering is the same as the ordering given in the input

(training and test) dataset files.

Instead of a list of label set predictions, the PCT method outputs the learnt tree and decision rules along

with the confusion matrices for each of the labels. An example of a confusion matrix that is output by the

Clus tool [39] (used for experimenting with the PCT method) is shown in listing 4.2. This confusion matrix

is for the stavudine label and has been generated using the real and predicted values from just one training

and test cycle, in this case from dataset 2, which is why there have been a total of 50 predictions made (a

single fold in 10 fold cross validation of a dataset with 500 examples consists of 50 examples).
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Results Processing Scripts In order to generate the evaluation measures from the raw results in a reliable

and repeatable manner, a set of results processing scripts were developed in Python10. Specifically, three

scripts were written – two for processing the output from the MEKA and Mulan libraries (shown in listing

4.1) and one for processing the results from Clus (shown in listing 4.2). The purpose of these scripts is to

transform the raw results obtained from the seven experiments into a format that can be used as input by

the tools that have been used to calculate the evaluation measures. Details of the scripts are given in section

4.3.4.

Evaluation Measure Calculation

The final step in the experiment loop is the calculation of the evaluation measures. This step was fully

automated and executed at least once per multi-label classification experiment. The process involves using

the output of the results processing scripts as input to the evaluation measure calculation tools. The two tools

that were used to calculate the final evaluation measure values were Microsoft® Excel and the R engine. R

Studio11 was used as the IDE for working with the R engine.

Microsoft® Excel The Excel spreadsheet application developed by Microsoft® is a popular data manipu-

lation tool. In this study, the tool is used to calculate the values for the confusion matrix-based and higher

order evaluation measures. A simple template spreadsheet has been created and preprogrammed with the

formulae required to calculate the four scalar evaluation measures. To calculate the values for an individual

experiment, all that is necessary is to import the cumulative confusion matrices generated by the results

processing scripts into the template spreadsheet. The values for T PR, T NR, MCC and DP are instantly

automatically calculated for each label.

10Script source provided on disc accompanying dissertation.
11http://www.rstudio.com/

http://www.rstudio.com/


4.3 Software Tools 63

R Engine The popular statistical analysis tool R was used to perform ROC analysis. This analysis resulted

in two outputs – the ROC curves and the AUC value associated with each curve. The results processing

scripts have been used to transform the outputs generated by the multi-label classification experiments into

R commands. In other words, R scripts are automatically generated from the results processing scripts and

all that is required to generate the ROC curves and AUC values is to execute these scripts using the R engine.

The scripts execute commands provided by the ROCR package [92]. Vertical averaging is used to calculate

the average true positive rate of the cross validation cycles [61].

4.2.3 Summary

The complete experimental pipeline has been described. The three phases of the pipeline, namely dataset

construction, cross validation and results processing have been discussed in detail. The pipeline has been

shown to be almost completely automated, which reduces the risk of human error and therefore increases

the reliability of the results. Figure 4.5 illustrates the complete processing pipeline, showing each step of

the process at a high level.

4.3 Software Tools

A number of applications were used during the course of the investigation conducted in this study. Many

existing tools and libraries were used, but a significant amount of custom development was done, specifically

for the purposes of data extraction and experimental pipeline automation.

4.3.1 Existing Applications

The patient data that is used for clinical management is stored in RegaDB, an open source patient-centric

clinical data management system that stores data related to HIV treatment [11]. The data is stored lon-

gitudinally in a relational database (in this case using the Postgres12 database management system). This
12http://www.postgresql.org/

http://www.postgresql.org/
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application is the core tool used to manage the data associated with patients that attend the Africa Centre

treatment failure clinic and thus any tool used to enable this research needs to be able to integrate with

RegaDB.

Many libraries and tools exist to facilitate machine learning research, but not many of those include

implementations of the multi-label classification techniques being investigated in this study. Furthermore,

in order to design a system that could potentially be retrofitted into the existing treatment failure management

processes (and therefore have an impact in the field), the selected tools should use technologies compatible

with RegaDB. The Java machine learning toolkit Weka [13] was selected for use along with its multi-label

learning extensions – MEKA and Mulan, since it uses the same technology stack and can therefore easily

run alongside and interoperate with RegaDB. The Clus tool was made use of for the investigation of the

PCT technique, as it is also developed in Java.

The tools selected to calculate the evaluation measures used to assess the performance of the classi-

fication techniques are Microsoft® Excel and the R engine [14]. Excel is a commonly used spreadsheet

application with an intuitive user interface as well as the ability to perform the required statistical analysis

in order to generate the values for T PR, T NR DP and MCC. In order to perform the ROC analysis, a more

sophisticated tool was required. The R engine, with the addition of the ROCR module, allows the user to

generate the ROC curves for visual performance analysis and can also generate the scalar AUC values.

4.3.2 CuRE

A custom tool called CuRE (Custom RegaDB Exporter) was developed13 to extract data from the RegaDB

relational database and build each of the features in the feature vector and produce a flat file in a format

compatible with the machine learning libraries and tools used. The design of the tool is illustrated in figure

4.6. The paragraphs below discuss each component.

13Source code available online at https://github.com/psbrandt/cure

https://github.com/psbrandt/cure
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Figure 4.6. Architecture of the custom developed CuRE tool.

Architecture

CuRE has been designed in a way that allows retrofitting into an existing clinical management technical

environment that uses RegaDB. The reason for this design is to increase the potential usability (and thus

impact) of the tool. If the tool required infrastructure and expertise not already in place, this would increase

the barrier to implementation.

The tool is built using the same software technologies and frameworks as RegaDB (Java, Spring and

Hibernate), which means that it can be installed into the same Servlet container (Tomcat). This implies that

there are no additional skills or dependencies required (over and above those required for RegaDB itself)

in order to use the tool. User interaction with the custom tool is very similar to using RegaDB. The user

interface is also browser-based and the tool URL is almost identical to the RegaDB URL – only the suffix is

different.
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Presentation Layer

The user interface of the custom tool is written in HTML, CSS and JavaScript, using the popular Bootstrap14

frontend framework. The user is presented with a list of 62 check boxes, one for each possible feature

available for use in the feature vector. The user may select any or all of the checkboxes, thereby configuring

which features are going to be included in the dataset, and then choose to generate a dataset export in either

ARFF or Excel format.

Application Logic

This layer contains most of the business logic of the application. It handles the processing of web requests,

constructing the list of features to be generated (as configured using the user interface) as well as the gener-

ation of the dataset in a flat format from the relational database.

In order to build the dataset, the dataset builder uses Weka’s internal Instances data structure. For

each training example a Weka Instance object is constructed and added to the set of Instances. Each

Instance has a set of features (called Attributes in the Weka nomenclature), each of which are con-

structed by the rule engine (see below).

The export functionality of the dataset builder consists of two Java Servlets, one for each output format.

The Servlet that generates the (human readable) Excel export makes use of the Apache POI15 library to

generate the Microsoft® Excel document. The ARFF file generation Servlet uses Weka’s internal ARFF file

construction mechanism.
14http://getbootstrap.com/
15http://poi.apache.org/

http://getbootstrap.com/
http://poi.apache.org/
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Rule Engine

The rule engine provides a framework at the API level to build the rules that specify how to construct each

individual feature of the training examples. The rule engine has been built using the factory method design

pattern. The rule factory and rules are used to construct the features of the training examples in preparation

for the dataset builder to generate the export file.

Rule Factory The rule factory defines an abstract rule class (as shown in listing 4.3) that rules need to

extend in order for the rule engine to generate the associated features. Each rule has a setAttributeValue

method that is used to set the value of a specific feature for a specific patient. This is done by extracting

the required data via the data access layer (described below) and, if necessary, performing any additional

calculations before setting the value of the feature.

Rules There are four types of rules that extend the abstract class provided by the rule factory. Each feature

in the training examples is built using exactly one implementation of one of the four types of rules.

Simple Numeric A simple numeric rule sets the feature by simply reading a numeric value from the

RegaDB database and setting the feature to that value. For example, patient age would be a simple numeric

rule.

Simple Categorical Simple categorical rules are used for copying categorical values from the RegaDB

database into the training example features. An example of such a feature would be the yes/no feature

partner on treatment.
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/**
* Abstract rule
*/

@Component
public abstract class Rule implements ApplicationContextAware {

protected Logger logger = LoggerFactory.getLogger(this.getClass());
protected ApplicationContext context;

protected RuleService ruleService = null;

public Rule(RuleService rs) {
ruleService = rs;

}

// Method that must be implemented for a rule to be instantiated
public abstract void setAttributeValue(Attribute attribute, Instance instance,

Patient patient);

public void setApplicationContext(ApplicationContext context) throws
BeansException {
this.context = context;

}
}

Listing 4.3. The rule abstract class that much be extended for each non-trivial patient feature.

Custom All derived features are built using custom rules. This is due to the fact that there is always

custom processing that needs to be done when constructing a derived feature. For example, the rule that

constructs the recent CD4 gradient feature finds all the CD4 counts for a patient in the last 12 months, then

fits a line through these measurements (using time as the x-axis and the CD4 value as the y-axis) and sets

the value of the feature the gradient of this line.

It is possible to implement any logic that can be expressed in Java in a custom rule implementation. Any

amount of patient data can be extracted using the RegaDB API and any operations can be applied to these

data as long as the result is either a categorical or numeric feature value.

Label The label features are also built using rules. The label rules extract the resistance profile from

the database (as determined by the HIVDB 6.0.5 algorithm [5]) and set the feature values accordingly.
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Data Access Layer

Accessing the data in the RegaDB database is achieved using the RegaDB data API. More specifically, the

data access component within RegaDB was extracted and used in the CuRE tool in order to retrieve data

from the relational database in the exact same manner as RegaDB does internally. It is important to note

that data is only read and never written. This is done to maintain data integrity of the clinical data. The role

of the data access layer is to convert the data objects used internally by RegaDB into objects that can be

manipulated by CuRE.

RegaDB API On examination of the RegaDB source code, it became evident that the application is built

using a modular architecture and thus consists of several components. One of these components is the per-

sistence module, which contains the Hibernate mapping classes used to work with the data in the application

layer. This module was reused in the custom tool to access the RegaDB data.

An additional utility module from RegaDB was also reused, which enables data access at a higher level.

For example, the utility modules enable accessing all clinical measurements from a patient without having

to access data from all the individual tables. This is analogous to using the RegaDB service layer.

4.3.3 Stratifier

In addition to CuRE, a small Java utility, IterativelyStratifyMultiLabelDataSet16, was written in

order to accomplish the task of generating the stratified folds used for cross validation. The utility makes

use of the Mulan library in order to generate the 10 folds, but takes the algorithm one step further in order

to construct actual training and test dataset files using the folds.

The code to perform the stratified dataset file construction is shown in listing 4.4. This code generates 10

pairs of files (named as specified in the caption of listing 4.4), corresponding to the training and test datasets

for each cross validation fold.
16Source code provided on disc accompanying dissertation.
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/**
* Create files to use for cross validation based on the folds
*/

public void createCrossValidationFiles(MultiLabelInstances[] folds) {

// Create numbered folds
for(int i = 0; i < folds.length; i++) {

System.out.println("Generating files for fold " + i);

// The testing instances for this fold
Instances test = new Instances(folds[i].getDataSet());

// The training instances for this fold
Instances train = null;

for(int j = 0; j < folds.length; j++) {

// Ignore test examples when creating the training dataset
if(j != i) {

if(train == null) {
// Initialize the training dataset
train = new Instances(folds[j].getDataSet());

} else {
// Add all other non-test instances to dataset
Instances foldDatset = folds[j].getDataSet();

for(int k = 0; k < foldDatset.size(); k++) {
train.add(foldDatset.get(k));

}
}

}
}

// Create the ARFF files
writeFile(test, i, true);
writeFile(train, i, false);

}
}

Listing 4.4. The method in the IterativelyStratifyMultiLabelDataSet utility that
constructs the training and test datasets to be used in cross validation. The writeFile
method creates the dataset files on the filesystem with meaningful names. For example
dataset1_fold_X_test.arff and dataset1_fold_X_train.arff where X is the fold number
and is in the range [1;10].
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4.3.4 Custom Scripts

The following paragraphs describe the numerous scripts developed in order to fully automate the experi-

mental pipeline.

Cross Validation

A script was written in Python17 (shown in listing 4.5) that automates the execution of cross validation for

each experiment. Listing 4.6 shows an example of how the cross validation process can be invoked from the

command line. Note the XX placeholders, which are replaced with the fold numbers during execution. Also

note that any of the multi-label classification techniques can be executed by the script, since the execution

command is passed to the script as a command line parameter. The output of executing the cross validation

script in this way will be ten files with names of the form BR_NB_fold_XX.out.txt (using naive Bayes as

an example), but in each case the XX placeholders will be replaced by a folder number. These are the files

containing the raw results of the experiment.

Something to note is that it is not necessary to train and test the model in separate steps. This is due to

the fact that the machine learning libraries and tools used for experimentation in this study are designed to

train and test models in the same thread of execution (although, importantly, they also support saving models

for later use). This can be seen from the example cross validation execution shown in listing 4.6. Another

example of this is shown in listing 4.7, which shows the configuration required for the Clus application to

train and test a predictive clustering tree.

Results Processing

Scripts were written in Python for processing the raw results19. Separate scripts were written for produc-

ing the scalar evaluation measures for Clus and for MEKA/Mulan. An additional script was written for

producing the R commands necessary to generate the ROC curves and AUC values.
17Source code provided on disc accompanying dissertation.
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#!/usr/bin/python
import os
import sys

# Display help if not enough parameters are supplied
if len(sys.argv) != 2:

print "Usage: ./cross_validate.py command_line_with_XX_as_place_holder"
exit(1)

# Initialise the command
command = sys.argv[1]

# Generate and execute the command for each fold
for i in range(10):

# Replace XX with fold number
fold_command = command.replace("XX", str(i))

# Run command
os.system(fold_command)

Listing 4.5. Cross validator script. This script will run the given command once for each cross
validation fold, each time modifying the training and test set filenames using the correct fold
number.

Confusion Matrix-Based and Higher Order Measures The Clus results processing script is used to

the generate the two confusion matrix-based and two higher order evaluation measures for the PCT method.

Since the PCT technique does not produce probabilistic predictions, it is not possible to generate ROC curves

(and hence AUC) for this method. The output required in order to generate the four evaluation measures for

each label is the cumulative confusion matrix (the sum total of the confusion matrices for each of the ten

cross validation folds) for each label. The script generates this matrix for each label by parsing the output

file generated by each each training and test cycle and building an in-memory confusion matrix for each

./cross_validate.py "java -cp lib/*:lib/*.jar weka.classifiers.multilabel.BR \
-t dataset1_fold_XX_train.arff -T dataset1_fold_XX_test.arff \
-f BR_NB_fold_XX.out.txt -W weka.classifiers.bayes.NaiveBayes"

Listing 4.6. Example execution of cross validation for an experiment.
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[Data]
File = dataset1_fold_1_train.arff
TestSet = dataset1_fold_1_test.arff

[features]
Target = 126-136
Clustering = 126-136
Descriptive = 1-125

[Tree]
FTest = 0.1
Heuristic = VarianceReduction
ConvertToRules = Leaves
PruningMethod = None

[Ensemble]
EnsembleMethod = RForest

Listing 4.7. Clus configuration file for a single fold (in this case fold 1).

label for every fold. Finally, simple matrix addition is performed and the output is echoed to the command

line (which could be redirected to a file at the user’s discretion).

The confusion matrix-based and higher order measures are calculated in much the same way for the

MEKA and Mulan library outputs as they are for the Clus outputs. Only one additional step needs to be

performed, which is the calculation of the confusion matrix for each label for each fold. This is necessary

because the MEKA and Mulan outputs do not contain the confusion matrices, but rather the actual pre-

dictions made. The confusion matrix is calculated by using an in-memory matrix, parsing each prediction

made and simply incrementing the value of the appropriate cell in the matrix depending on the outcome of

the prediction.

ROC Analysis In order to generate the ROC curves and AUC values, the results from the methods that

support the calculation of these evaluation measures (BR-NB, HOMER, MLkNN, RAkEL and ECC) must

be transformed into a format that can be used as input by the ROC analysis tool. Note that SVMs do not

produce probabilistic predictions and thus ROC analysis cannot be performed for the BR-SVM technique.
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The R engine (using the ROCR package) has been used to generate the ROC curves and calculate the AUC

values. Therefore, the scripts that have been developed transform the raw results into commands that can

be understood by the R engine. This involves adding the predictions to the data structure that is required by

the ROCR package and generating the R commands to do the analysis, plot the curves and produce the AUC

values.

4.4 Model Parameterisation and Implementation

Before the machine learning techniques can be used to train and test the associated predictive models, it

is first necessary to set the values for any parameters that may be required. The process is referred to as

model parameterisation and is discussed below for each of the techniques investigated. Also discussed are

the implementations of each technique used.

4.4.1 Binary Relevance (BR)

The binary relevance method itself does not require any parameterisation, but the base classifiers used in

this study (SVM and naive Bayes) do require parameter values.

Support Vector Machine (BR-SVM)

The radial basis function (RBF) SVM kernel was selected because it is able to model non-linear relation-

ships. Before the RBF kernel can be used, it is first necessary to select optimal values for the parameters

C and γ in equation 3.2 on page 35. The recommended method to select optimal parameters is to first per-

form a coarse-grained search across the entire parameter space to identify an area of interest and then do a

fine-grained search of the identified area [21, 86], which is precisely the process that was followed.
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A broad grid search was performed over the values 2−15,2−13, . . . ,23 for γ and 2−5,2−3, . . . ,215 for C as

recommended. A smaller area that gave good results was scrutinized more closely, performing 10 fold cross

validation for each (C, γ) tuple (using simple accuracy as defined in equation 2.1) and it was determined that

the best RBF kernel parameters are (C = 4.5, γ = 0.0).

The Weka wrapper implementation of LibSVM [93,94] was used along with the binary relevance imple-

mentation provided by MEKA. The BR-SVM classification technique was invoked by the custom developed

cross validation script in a manner very similar to the invocation shown in listing 4.5.

Naive Bayes (BR-NB)

The only parameterisation step required before the naive Bayes classifier can be used to generate predictions

is to specify how the probability distribution of the continuous features are modeled. In this study the normal

(Gaussian) distribution as shown in equation 4.1 is used.

P(x) =
1

σ
√

2π
e
−(x−µ)2

2σ2 (4.1)

The Weka implementation of the naive Bayes classifier has been used and the BR-NB technique was

invoked in the same way as BR-SVM – using the cross validation Python script shown in listing 4.5.

4.4.2 HOMER

In order to use the HOMER technique, a base classifier, a value for k and a clustering method must be

selected. The naive Bayes classifier was selected as the base classifier and the balanced k means clustering

algorithm has been used with a value of k = 3 . The Mulan implementation of the HOMER algorithm has

been used and the cross validation Python script was again used to invoke the technique from the command

line.
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4.4.3 MLkNN

The two parameters that need to be selected when using the MLkNN technique are the number of nearest

neighbours to consider (k) as well as the smoothing parameter (s). In this study, k = 10 was selected as the

number of neighbours, since this has previously been shown to be a reasonable choice [37]. A value of 1

was selected for s, which results in so-called Laplace smoothing.

Further, the Euclidian distance function has been selected for calculating the nearest neighbours. Given

the unseen example y = (y1,y2, . . . ,yp), the Euclidian distance function is defined as

ED =
√

(xi1− y1)2 +(xi2− y2)2 + · · ·+(xiP− yp)2 (4.2)

where xi = (xi1,xi2, . . . ,xip) is potentially one of the k nearest neighbours.

The Mulan implementation of the MLkNN algorithm has been used and cross validation is performed

using the Python script show in listing 4.5 on page 73.

4.4.4 Predictive Clustering Trees (PCT)

Two important factors to consider when constructing the trees are the cluster splitting and stopping criteria.

The split method used in this investigation is the variance reduction heuristic. The PCT technique makes

use of the f-test as the stopping criterion.

The Clus18 implementation of PCT is used and cross validation is initiated using a simple shell script19

that executes the ten configuration files (one for each of the cross validation folds) sequentially.

18http://dtai.cs.kuleuven.be/clus/
19Source code provided on disc accompanying dissertation.

http://dtai.cs.kuleuven.be/clus/
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4.4.5 RAkEL

The number of ensemble members (m), the size of the label sets (k) as well as the threshold (t) are required

user parameters for using the RAkEL technique. The values used in this study are m = 10 and k = |L|
2 .

Since there are 11 labels in the dataset (i.e. |L| = 11), and k must be a natural number, k = 5 is used. As

recommended, the threshold value used is t = 0.5 [35].

Since the RAkEL technique is independent of the underlying base classifier, any existing classifier may

be used. In this study, the Weka implementation of the naive Bayes classifier is used. The RAkEL imple-

mentation in Java provided by the Mulan library is used and cross validation is invoked using the developed

Python script.

4.4.6 Ensemble of Classifier Chains (ECC)

The parameters necessary to apply the ECC method are the number of models (m), the threshold (t) as well

as the base classifier to use. In this study a naive Bayes base classifier is used and the number of models in

the ensemble is chosen to be m = 10. The default threshold of t = 0.5 is used to determine how many votes

are required for a label to be predicted as present. A value of 0.5 means that at least half of the ensemble

members have to vote for a label for it to be considered as being associated with the unseen example.

The Mulan implementation of ECC is used, but a small modification had to be made to the MEKA

source code enabling the ECC algorithm to be invoked from the command line. Cross validation is invoked

using the Python script as with the methods discussed above.

4.5 Summary

The approach taken to formulate the problem in a way that could be systematically investigated has been

discussed in detail. The preliminary data analysis results were used to inform the decisions regarding the
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techniques to be investigated as well as the selection of evaluation measures that would produce reliable

performance analysis results. A review of the literature and numerous consultations with domain experts

resulted in the development of a set of features that can be considered the relevant information used for the

management of patients failing HIV therapy. This relevant information has been used as input data to train

the classification models.

The tools used for experimentation have been discussed and the details given for all custom developed

components. The parameterisation of the multi-label classification techniques was also described and the

mechanisms used to invoke the specific software tools have been mentioned. The design and implementation

of a robust experimental pipeline was detailed and the importance of being able to achieve repeatable results

free from human error and dataset bias was emphasised.



Chapter 5

Results

The results of the experiments conducted using the methods described previously are given below. The

results are presented in three main subsections. First, the dataset analysis is presented, followed by the

scalar evaluation measures. The scalar measures include T PR, T NR, MCC, DP and AUC. The ROC analysis

results are presented in the final subsection. In each of the three subsections, results are first presented for

dataset 1 and then for dataset 2. A comparison and summary of the results from the two datasets is then

given.

5.1 Dataset Analysis

The following subsections describe the two datasets used in this study. These two datasets represent the

contents of the same system at two different points in time, roughly two years apart. The first dataset

(referred to as dataset 1) is a snapshot of the clinical information system (RegaDB) used at the Africa Centre

for managing patients failing antiretroviral therapy taken in mid 2011. The second dataset (dataset 2) is a

snapshot of the clinical information system system taken in mid 2013.

80
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5.1.1 Dataset 1

The first dataset comprised of patients that were seen by clinical care providers at the Africa Centre treatment

failure clinic. Data was used from all patients that were captured in the system since the clinic’s inception

in early 2009 until June 2011. The number of patients in dataset 1 is 252 and these patients have a mean age

of 37.49 years. There are 190 female patients in the dataset, comprising 75.4% of the total.

The final training dataset consists of 62 features per patient (as summarised in table 4.1 on page 51).

Feature completeness is defined as:

Feature Completeness =
Number o f patients with a value f or the f eature

Total number o f patients
(5.1)

where having a value for a feature means one of two things. For a so-called simple feature (one that is

used directly from the clinical information system, such as age or gender), it means that a value exists in

the clinical information system for that patient. For a derived feature such as recent CD4 count gradient or

baseline viral load, it means that values exist in the clinical information system for all features that are used

in the calculation of the derived feature.

The average feature completeness is 76.84% and 24 features (38.71%) were 100% complete. Twelve

features (19.35%) were between 90% and 100% complete, and eight features (12.90%) were over 78% (but

less than 90%) complete. 14 features (22.58%) were between 22% and 78% complete, and four features

(6.45%) were less than 10% complete. The feature completeness for dataset 1 is summarised in table 5.1.

Table 5.2 shows, for each drug, how many patients are resistant and how many are susceptible. It

can therefore be inferred from the table that resistance in dataset 1 is more common than susceptibility.

Tenofovir, zidovudine and stavudine are the only drugs where susceptibility dominates over resistance,

while didanosine and abacavir are relatively well-balanced. Patients are overwhelmingly more resistant

than susceptible to the other six drugs (efavirens, emtricitabine, delavirdine, nevirapine).
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Table 5.1. A summary of feature completeness for dataset 1.

Number of Features Percentage Complete

24 (38.71%) 100%

12 (19.35%) 90%−99.99%

8 (12.90%) 78%−89.99%

14 (22.53%) 22%−77.99%

4 (6.45%) 0%−9.99%

Average feature completeness is 76.84%

Table 5.2. Resistance and susceptibility counts for each drug for dataset 1.

efavirens didanosine emtricitabine delavirdine

Resistant 229 (90.87%) 103 (40.87%) 217 (86.11%) 226 (89.68%)

Susceptible 23 (9.13%) 149 (59.13%) 35 (13.89%) 26 (10.32%)

stavudine nevirapine tenofovir etravirine

Resistant 93 (36.90%) 229 (90.87%) 61 (24.21%) 196 (77.78%)

Susceptible 159 (63.10%) 23 (9.13%) 191 (75.79%) 56 (22.22%)

abacavir lamivudine zidovudine

Resistant 123 (48.81%) 217 (86.11%) 77 (30.56%)

Susceptible 129 (51.19%) 35 (13.89%) 175 (69.44%)
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Table 5.3. Number of patients resistant to multiple drugs for dataset 1.

Number of Drugs 0 1 2 3 4 5 6 7 8 9 10 11

Number of Patients 19 0 3 11 5 18 72 5 11 38 45 25

Percent (%) 7.54 0.00 1.19 4.37 1.98 7.14 28.57 1.98 4.37 15.08 17.86 9.92

There are 19 patients (7.54%) that show resistance to no drugs, which means that 92.46% of patients

show resistance to at least one drug. Most commonly (in 28.57% of cases) patients are resistant to 6 drugs.

There are 45 patients (17.86%) that are resistant to 10 drugs and 38 patients (15.08%) resistant to 9 drugs.

A summary of how many drugs patients are resistant to is given in table 5.3.

The label cardinality (defined in equation 2.7) is 7.03, which can be interpreted to mean that the aver-

age patient is resistant to about 7 drugs. The label density (defined in equation 2.8) is 0.64, which is the

proportion of the total number of drugs that the average patient is resistant to.

5.1.2 Dataset 2

The second dataset has a total of 500 patients. The additional 248 patients were added to the clinical

information system between June 2011 and May 2013. Of the 500 patients, 362 (72.4%) are female and the

mean age is 37.17 years.

The average feature completeness (as defined in equation 5.1) for dataset 2 is 78.29%. There are 22

features (35.48%) that are 100% complete and 20 (32.26%) that are between 81% and 99% complete. The

majority (67.74%) of features in dataset 2 are greater than 81% complete. 10 features are between 45% and

79% complete and 10 features are less than 10% complete. Table 5.4 summarises the feature completeness

for dataset 2.

The resistance and susceptibility counts for each drugs are given table 5.5. As in dataset 1, tenofovir,

zidovudine and stavudine are the only drugs to which patients are overwhelmingly more susceptible than re-
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Table 5.4. A summary of feature completeness for dataset 2.

Number of Features Percentage Complete

22 (35.48%) 100%

20 (32.26%) 81%−99.99%

10 (16.13%) 45%−79.99%

6 (9.68%) 13%−29.99%

4 (6.45%) 0%−9.99%

The average feature completeness is 78.29%

sistant, while didanosine and abacavir are about evenly distributed. Patients are considerably more resistant

than susceptible to efavirens, emtricitabine, delavirdine, nevirapine, etravirine and lamivudine.

The number of patients in dataset 2 that show no resistance to any drugs is 52 (10%). There are 143

patients (28.60%) resistant to 6 drugs and 77 (15.40%) and 78 (15.60%) patients resistant to 9 and 10 drugs

respectively. This information is summarised in table 5.6. The label cardinality for dataset 2 is 6.83 and the

label density is 0.62. Thus the average patient is resistant to 62% of the drugs, or 6.83 drugs.

5.1.3 Dataset Analysis Summary

The datasets used in this study to evaluate the multi-label classification techniques have been described.

There are roughly twice as many patients in the second dataset, but the average age of the patients in dataset

1 and dataset 2 are almost identical (37.49 and 37.17 years respectively). About three quarters of the patients

in each dataset are female.

In both datasets, 42 out of the 62 features (67.74%) are more than 80% complete. Dataset 1 has 24

features that are 100% complete compared to 22 in dataset 2. The average feature completeness of dataset 2
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Table 5.5. Resistance and susceptibility counts for each drug for dataset 2.

efavirens didanosine emtricitabine delavirdine

Resistant 440 (88.00%) 203 (40.60%) 420 (84.00%) 435 (87.00%)

Susceptible 60 (12.00%) 297 (59.40%) 80 (16.00%) 65 (13.00%)

stavudine nevirapine tenofovir etravirine

Resistant 175 (35.00%) 440 (88.00%) 122 (24.40%) 382 (76.40%)

Susceptible 325 (65.00%) 60 (12.00%) 378 (75.60%) 118 (23.60%)

abacavir lamivudine zidovudine

Resistant 241 (48.20%) 420 (84.00%) 137 (27.40%)

Susceptible 259 (51.80%) 80 (16.00%) 363 (72.60%)

Table 5.6. Number of patients resistant to multiple drugs for dataset 2.

Number of Drugs 0 1 2 3 4 5 6 7 8 9 10 11

Number of Patients 52 0 5 15 11 32 143 9 32 77 78 46

Percent (%) 10.40 0.00 1.00 3.00 2.20 6.40 28.60 1.80 6.40 15.40 15.60 9.20
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was 78.29%, which is slightly higher than dataset 1 at 76.84%. Both datasets only have 4 features less than

10% complete.

The resistance and susceptibility counts for dataset 1 and dataset 2 are very similar. In both datasets

the same three drugs (tenofovir, zidovudine and stavudine) are the only drugs to which more patients are

susceptible than resistant. The proportion of patients resistant to each number of drugs in both datasets is

about the same. The biggest difference is that the number of patients not resistant to any drugs is 3% higher

in dataset 2 than in dataset 1.

5.2 Scalar Evaluation Measures

Two sets of experiments were conducted, one for each dataset. The results are presented separately for each

multi-label classification solution group. The results of the problem transformation methods are presented

first, followed by the algorithm adaptation methods and then the ensemble methods. A comparison of the

results obtained from the two datasets is then given, followed by a summary.

The scalar evaluation measures consist of T PR, T NR, MCC, DP and AUC, since these are the numeric

values calculated from the raw output of the application of each multi-label classification technique. The

five measures were calculated for each label, technique and dataset. The evaluation measures are presented

below, first for dataset 1 and then for dataset 2.

5.2.1 Dataset 1

The scalar evaluation measures are given in the tables below for dataset 1. The values for each evaluation

measure were generated as part of the processing pipeline (see section 4.2). More specifically, the generation

of the numeric values from the raw experimental results was automated using the results processing scripts

described in section 4.2.2, as well as the Excel template (see section 4.2.2).
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Table 5.7. Scalar evaluation measures for the problem transformation methods for dataset 1. The
highest value for each evaluation measure is shown in bold.

BR-SVM BR-NB HOMER

TPR TNR MCC DP TPR TNR MCC DP AUC TPR TNR MCC DP AUC

efavirens 1.00 0.00 - - 0.86 0.26 0.10 0.43 0.54 0.89 0.13 0.02 0.09 0.51

didanosine 0.27 0.80 0.08 0.22 0.54 0.62 0.16 0.36 0.62 0.56 0.59 0.15 0.34 0.62

emtricitabine 1.00 0.00 - - 0.93 0.20 0.15 0.63 0.61 0.94 0.17 0.16 0.70 0.57

delavirdine 1.00 0.00 - - 0.83 0.23 0.05 0.22 0.56 0.84 0.19 0.02 0.11 0.51

stavudine 0.22 0.85 0.08 0.24 0.38 0.70 0.08 0.18 0.58 0.38 0.81 0.20 0.50 0.60

nevirapine 1.00 0.00 - - 0.86 0.26 0.10 0.43 0.54 0.89 0.13 0.02 0.09 0.51

tenofovir 0.26 0.94 0.27 0.92 0.43 0.86 0.31 0.85 0.65 0.44 0.84 0.29 0.80 0.66

etravirine 0.99 0.02 0.03 0.31 0.88 0.16 0.05 0.17 0.60 0.52 0.52 0.03 0.08 0.50

abacavir 0.50 0.61 0.12 0.26 0.54 0.64 0.18 0.41 0.63 0.63 0.57 0.19 0.43 0.66

lamivudine 1.00 0.00 - - 0.93 0.20 0.15 0.63 0.61 0.94 0.17 0.16 0.70 0.57

zidovudine 0.05 0.96 0.03 0.15 0.38 0.79 0.17 0.45 0.63 0.38 0.82 0.22 0.57 0.62

mean 0.66 0.38 0.10 0.35 0.69 0.45 0.14 0.43 0.60 0.67 0.45 0.13 0.40 0.57

std dev 0.40 0.44 0.09 0.28 0.23 0.27 0.07 0.21 0.04 0.23 0.30 0.10 0.28 0.06

BR-SVM - Binary relevance with support vector machine base classifier, BR-NB - Binary relevance with naive Bayes base clas-

sifier, HOMER - Hierarchy of multi-label classifiers, TPR - True positive rate, TNR - True negative rate, MCC - Matthews

correlation coefficient, DP - Discriminative power, AUC - Area under the receiver operating characteristic curve
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Problem Transformation Methods

The scalar evaluation measures are given for the problem transformation methods for dataset 1 in table 5.7.

When T PR= 1.0 and T NR= 0.0 it is referred to as a blanket positive prediction. When a classification tech-

nique produces blanket positive predictions, it does not provide us with any useful predictive information.

In table 5.7 the label with the best value for each evaluation measure is shown in bold (excluding blanket

positive predictions).

It can be seen that the BR-SVM method produces blanket positive predictions for five labels (efavirens,

emtricitabine, delavirdine, nevirapine and lamivudine). These five labels correspond to the five most imbal-

anced labels in dataset 1 (> 86% of patients are resistant to the corresponding drug). For all labels except

tenofovir the method does not discriminate well, as seen by the low DP values in table 5.7. Overall, the

BR-SVM method performs poorly, with only the performance of predicting tenofovir moderately above the

performance of a random classifier based on the MCC value.

In table 5.7 it can be seen that switching the base classifier to naive Bayes drastically improves perfor-

mance. There are no blanket positive predictions and the mean DP value increased by over 20%. The mean

T PR and T NR values also increase. BR-NB had an MCC value of just over 0.3 for tenofovir, meaning that

it is significantly better than a random classifier at predicting, in this case, absence of resistance to this drug.

The mean AUC of all the drugs for the BR-NB method are 10% above that of a random classifier (0.5) at

0.6.

HOMER performed slightly worse than the BR-NB method on dataset 1, with the mean of each measure

less than BR-NB. The exception was the mean T NR value, which did not change. HOMER outperforms

BR-NB at predicting cases of lamivudine resistance, with a T PR of 0.94. The MCC value for the zidovudine

indicates that HOMER performs better than a random classifier for this label. The mean AUC over all the

labels for HOMER is 0.57, which is only 7% better than a random classifier.
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Table 5.8. Scalar evaluation measures for the algorithm adaptation methods for dataset 1. The
highest value for each evaluation measure is shown in bold.

MLkNN PCT

TPR TNR MCC DP AUC TPR TNR MCC DP

efavirens 1.00 0.00 - - 0.44 0.97 0.35 0.39 1.56

didanosine 0.08 0.83 -0.14 -0.51 0.45 0.47 0.78 0.26 0.62

emtricitabine 1.00 0.00 - - 0.50 0.94 0.31 0.30 1.09

delavirdine 1.00 0.00 -0.02 - 0.52 0.97 0.31 0.36 1.45

stavudine 0.04 0.97 0.03 0.18 0.48 0.31 0.77 0.09 0.22

nevirapine 1.00 0.00 - - 0.44 0.97 0.35 0.39 1.56

tenofovir 0.00 0.98 -0.06 - 0.52 0.28 0.87 0.18 0.55

etravirine 1.00 0.00 - - 0.47 0.91 0.23 0.18 0.60

abacavir 0.39 0.63 0.02 0.04 0.54 0.56 0.70 0.26 0.60

lamivudine 1.00 0.00 - - 0.50 0.94 0.31 0.30 1.09

zidovudine 0.01 0.99 0.04 0.46 0.53 0.19 0.83 0.04 0.11

mean 0.59 0.40 -0.02 0.04 0.49 0.68 0.53 0.25 0.86

std dev 0.48 0.47 0.07 0.41 0.04 0.32 0.26 0.12 0.52

MLkNN - Multi-label k-nearest neighbours, PCT - Predictive clustering trees, TPR - True positive rate, TNR - True negative rate,

MCC - Matthews correlation coefficient, DP - Discriminative power, AUC - Area under the receiver operating characteristic curve
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Algorithm Adaptation Methods

The scalar evaluation measures for the algorithm adaptation methods for dataset 1 are given in table 5.8.

The best value for each evaluation measure is shown in bold (not including blanket positive predictions).

MLkNN appears to be the worst performing of all the methods on dataset 1. It has the lowest mean value for

each evaluation measure and blanket positive predictions for six labels (efavirens, emtricitabine, delavirdine,

nevirapine, etravirine and lamivudine). Further, the mean AUC is 0.49, which indicates worse than random

performance. This is confirmed by multiple MCC and DP values less than zero.

The PCT method does not suffer from blanket positive predictions and has the highest mean DP, MCC

and T NR values for dataset 1. It has three MCC values above 0.35 and numerous DP values above 1. These

values indicate that PCT is substantially better than a random classifier at predicting resistance to efavirens,

delavirdine and nevirapine. PCT performs especially well relative to the other methods for efavirens and

nevirapine with a T PR of 0.97 and DP value of 1.56 in both cases. Unlike the other methods, it does not

appear to be a good predictor for tenofovir.

Ensemble Methods

Table 5.9 gives the scalar evaluation measures for the ensemble methods for dataset 1. The highest values

for each measure are shown in bold. The RAkEL method suffers from no blanket positive predictions, but

does have MCC and DP values below zero for two drugs, indicating very poor performance in these cases.

RAkEL appears at first glance to perform relatively well for lamivudine, with a DP value of 1.06. However,

the T NR for this drug is only 0.11, indicating that the method is not good at detecting negative examples.

The RAkEL method has an average AUC of 0.58, which puts it between BR-NB and HOMER in terms of

this measure for dataset 1.

The ECC method performs worse than a random classifier (based on the MCC values) for efavirens,

nevirapine and etravirine, but has relatively high DP values (greater than 1) for emtricitabine, tenofovir and
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Table 5.9. Scalar evaluation measures for the ensemble methods for dataset 1. The highest value
for each evaluation measure is shown in bold.

RAkEL ECC

TPR TNR MCC DP AUC TPR TNR MCC DP AUC

efavirens 0.92 0.22 0.13 0.62 0.59 1.00 0.00 -0.02 - 0.68

didanosine 0.52 0.58 0.10 0.23 0.58 0.41 0.73 0.15 0.35 0.64

emtricitabine 0.93 0.20 0.16 0.67 0.60 1.00 0.03 0.09 1.02 0.62

delavirdine 0.96 0.04 0.01 0.05 0.60 1.00 0.04 0.19 - 0.69

stavudine 0.49 0.62 0.11 0.26 0.54 0.25 0.82 0.09 0.24 0.54

nevirapine 0.91 0.22 0.12 0.56 0.60 1.00 0.00 -0.02 - 0.61

tenofovir 0.38 0.88 0.28 0.82 0.66 0.39 0.93 0.38 1.16 0.72

etravirine 0.85 0.11 -0.05 -0.20 0.50 0.97 0.02 -0.02 -0.20 0.56

abacavir 0.42 0.74 0.18 0.42 0.60 0.59 0.70 0.28 0.65 0.68

lamivudine 0.98 0.11 0.19 1.06 0.60 1.00 0.03 0.09 1.02 0.60

zidovudine 0.26 0.82 0.09 0.27 0.55 0.26 0.89 0.19 0.58 0.63

mean 0.69 0.41 0.12 0.43 0.58 0.71 0.38 0.13 0.60 0.63

std dev 0.28 0.32 0.09 0.36 0.04 0.33 0.42 0.13 0.46 0.06

RAkEL - Random k-labelsets, ECC - Ensemble of classifier chains, TPR - True positive rate, TNR - True negative rate, MCC -

Matthews correlation coefficient, DP - Discriminative power, AUC - Area under the receiver operating characteristic curve
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lamivudine. Of the latter three, only tenofovir also shows an MCC value significantly greater than zero

(0.38). The average AUC for the ECC method is 0.63 with an AUC value of 0.72 for tenofovir, making it

the best performer for this drug and in terms of the AUC evaluation measure for dataset 1.

5.2.2 Dataset 2

The scalar evaluation measures are given for dataset 2 in tables 5.10 – 5.12 below. These measures were

automatically generated by the results processing scripts and Excel spreadsheet template as part of the

processing pipeline (see section 4.2). The values were generated in exactly the same way as for dataset 1,

the only difference being the underlying clinical dataset used for training and cross validation.

Problem Transformation Methods

The problem transformation scalar evaluation measures automatically generated for dataset 2 by the pro-

cessing pipelines are given in table 5.10. The highest value for each evaluation measure is shown in bold.

A value of T PR = 1.0 is not considered a high value if it represents a blanket positive prediction (i.e.

T NR = 0.0 for the same label).

The BR-SVM technique produces blanket positive predictions for the same five labels as it does for

dataset 1 (efavirens, emtricitabine, delavirdine, nevirapine and lamivudine). These five labels are the five

most imbalanced in the dataset. For each label, more than 84% of patients are resistant to the corresponding

drug (as shown in table 5.5). The only label for which BR-SVM seems to show reasonable performance is

tenofovir. The DP value of 1.34 indicates that BR-SVM is fairly predictive for this label, which is confirmed

by the T NR value of 0.94.

As in dataset 1, it can be seen that using a naive Bayes base classifier for the binary relevance problem

transformation technique significantly increases performance (shown in 5.10). There are no longer any
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Table 5.10. Scalar evaluation measures for the problem transformation methods for dataset 2.
The highest value for each evaluation measure is shown in bold.

BR-SVM BR-NB HOMER

TPR TNR MCC DP TPR TNR MCC DP AUC TPR TNR MCC DP AUC

efavirens 1.00 0.00 - - 0.47 0.85 0.21 0.88 0.75 0.61 0.73 0.22 0.80 0.67

didanosine 0.43 0.84 0.30 0.77 0.70 0.52 0.22 0.53 0.65 0.42 0.75 0.18 0.44 0.58

emtricitabine 1.00 0.00 - - 0.92 0.28 0.22 0.79 0.72 0.71 0.68 0.29 0.89 0.73

delavirdine 1.00 0.00 - - 0.43 0.80 0.16 0.61 0.72 0.51 0.71 0.14 0.50 0.57

stavudine 0.14 0.91 0.08 0.29 0.31 0.77 0.08 0.22 0.59 0.38 0.71 0.10 0.24 0.55

nevirapine 1.00 0.00 - - 0.47 0.85 0.21 0.88 0.75 0.61 0.73 0.22 0.80 0.67

tenofovir 0.43 0.94 0.44 1.34 0.62 0.76 0.35 0.93 0.73 0.42 0.83 0.25 0.68 0.60

etravirine 1.00 0.02 0.08 1.04 0.64 0.63 0.23 0.61 0.69 0.43 0.79 0.19 0.57 0.57

abacavir 0.59 0.71 0.30 0.69 0.52 0.68 0.20 0.47 0.64 0.50 0.68 0.18 0.41 0.60

lamivudine 1.00 0.00 - - 0.92 0.28 0.22 0.79 0.72 0.71 0.68 0.29 0.89 0.73

zidovudine 0.03 0.98 0.02 0.16 0.31 0.83 0.16 0.44 0.65 0.39 0.77 0.16 0.43 0.61

mean 0.69 0.40 0.20 0.72 0.57 0.66 0.21 0.65 0.69 0.52 0.73 0.20 0.60 0.63

std dev 0.38 0.46 0.17 0.45 0.21 0.21 0.07 0.22 0.05 0.12 0.05 0.06 0.22 0.06

BR-SVM - Binary relevance with support vector machine base classifier, BR-NB - Binary relevance with naive Bayes base clas-

sifier, HOMER - Hierarchy of multi-label classifiers, TPR - True positive rate, TNR - True negative rate, MCC - Matthews

correlation coefficient, DP - Discriminative power, AUC - Area under the receiver operating characteristic curve
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blanket positive predictions and the T PR values are as high as 0.92 (for emtricitabine and lamivudine). BR-

NB has AUC values of 0.75 for both efavirens and nevirapine, which indicates markedly better predictive

power than a random classifier (0.5).

HOMER performs best among the problem transformation methods at predicting negative values (which

corresponds with showing susceptibility to a drug). This is indicated by the high mean T NR value (0.73)

produced by the HOMER technique. The technique also produces a very low standard deviation for T NR

(only 0.05). HOMER perform best for lamivudine and emtricitabine, since for these labels it produces the

highest T PR, MCC, DP and AUC values.

Algorithm Adaptation Methods

Table 5.11 shows the scalar evaluation measures for the MLkNN and PCT problem transformation tech-

niques. The MLkNN method performs poorly, with the MCC (0.03) and AUC (0.55) values indicating that

this technique performs only a fraction better than a random classifier. MLkNN produces blanket positive

predictions for emtricitabine and lamivudine, which implies that the technique has no predictive power for

these labels. It may seem that with a DP value of 1.11 for efavirens that MLkNN could be useful in this

case, but it can be seen from the low T NR value (0.02) that this is not true.

As for dataset 1, the PCT multi-label classification technique produces no blanket positive predictions.

PCT has very high T PR values (0.93) for efavirens, delavirdine and nevirapine, indicating that the technique

is very good at predicting cases of resistance to these drugs. Further, PCT can correctly predict susceptibility

to tenofovir in 90% of cases (according to the T NR value). The reasonably high MCC and DP values for

tenofovir confirms that PCT performs best for this drug. PCT also has the highest mean T PR value (0.72) out

of the problem transformation and algorithm adaptation methods, meaning that, on average, it can correctly

predict resistance to a drug in 72% of cases.
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Table 5.11. Scalar evaluation measures for the algorithm adaptation methods for dataset 2. The
highest value for each evaluation measure is shown in bold.

MLkNN PCT

TPR TNR MCC DP AUC TPR TNR MCC DP

efavirens 1.00 0.02 0.07 1.11 0.58 0.93 0.28 0.24 0.95

didanosine 0.06 0.93 -0.01 -0.03 0.49 0.55 0.74 0.30 0.69

emtricitabine 1.00 0.00 - - 0.63 0.92 0.30 0.25 0.87

delavirdine 1.00 0.02 0.07 1.06 0.58 0.93 0.26 0.22 0.86

stavudine 0.01 0.99 0.03 0.34 0.46 0.38 0.78 0.17 0.43

nevirapine 1.00 0.02 0.07 1.11 0.58 0.93 0.28 0.24 0.95

tenofovir 0.01 1.00 0.04 0.63 0.53 0.45 0.90 0.38 1.08

etravirine 0.99 0.02 0.01 0.14 0.58 0.91 0.25 0.19 0.63

abacavir 0.27 0.67 -0.06 -0.14 0.52 0.62 0.71 0.33 0.77

lamivudine 1.00 0.00 - - 0.63 0.92 0.30 0.25 0.87

zidovudine 0.01 0.99 0.00 -0.07 0.46 0.34 0.82 0.16 0.45

mean 0.58 0.42 0.03 0.46 0.55 0.72 0.51 0.25 0.78

std dev 0.49 0.48 0.04 0.53 0.06 0.25 0.27 0.07 0.21

MLkNN - Multi-label k-nearest neighbours, PCT - Predictive clustering trees, TPR - True positive rate, TNR - True negative rate,

MCC - Matthews correlation coefficient, DP - Discriminative power, AUC - Area under the receiver operating characteristic curve
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Table 5.12. Scalar evaluation measures for the ensemble methods for dataset 2. The highest
value for each evaluation measure is shown in bold.

RAkEL ECC

TPR TNR MCC DP AUC TPR TNR MCC DP AUC

efavirens 0.68 0.67 0.23 0.80 0.72 0.97 0.28 0.34 1.37 0.83

didanosine 0.41 0.84 0.28 0.72 0.65 0.52 0.78 0.31 0.75 0.71

emtricitabine 0.80 0.46 0.23 0.70 0.65 0.98 0.24 0.34 1.40 0.77

delavirdine 0.74 0.63 0.27 0.87 0.70 0.96 0.32 0.37 1.39 0.80

stavudine 0.61 0.60 0.20 0.47 0.62 0.34 0.83 0.19 0.50 0.65

nevirapine 0.67 0.68 0.24 0.81 0.72 0.97 0.27 0.31 1.29 0.82

tenofovir 0.42 0.92 0.39 1.15 0.70 0.50 0.91 0.44 1.26 0.81

etravirine 0.65 0.49 0.13 0.33 0.59 0.95 0.25 0.27 0.95 0.71

abacavir 0.33 0.85 0.20 0.54 0.60 0.59 0.74 0.33 0.78 0.71

lamivudine 0.90 0.30 0.22 0.76 0.66 0.97 0.28 0.34 1.32 0.76

zidovudine 0.25 0.83 0.09 0.26 0.57 0.28 0.88 0.19 0.57 0.68

mean 0.59 0.66 0.23 0.67 0.65 0.73 0.52 0.31 1.05 0.75

std dev 0.21 0.19 0.08 0.26 0.05 0.28 0.29 0.07 0.35 0.06

RAkEL - Random k-labelsets, ECC - Ensemble of classifier chains, TPR - True positive rate, TNR - True negative rate, MCC -

Matthews correlation coefficient, DP - Discriminative power, AUC - Area under the receiver operating characteristic curve
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Ensemble Methods

The scalar evaluation measures are given for the RAkEL and ECC ensemble methods for dataset 2 in table

5.12. The highest value for each measure is shown in bold. As for dataset 1, the RAkEL method produces

no blanket positive predictions, which means that it can provide predictive information for every label. The

highest values for T NR, MCC and DP produced by the RAkEL technique are all for tenofovir. This means

that RAkEL performs best at predicting this label, which is confirmed by the fact that the AUC value is also

high (0.70).

The ECC technique trained and validated using dataset 2 shows the best results out of all the experiments

performed. It has the highest mean values for the T PR, MCC, DP and AUC evaluation measures across all

experiments on both datasets. ECC has a particular high value (and low standard deviation) for the AUC

measure for the efavirens label (0.83) and has a T PR value of 0.97 for the same label. This means that

ECC correctly detects resistance to efavirens in 97% of cases for dataset 2. The ECC technique also has a

T PR value above 0.95 for six different labels (efavirens, emtricitabine, delavirdine, nevirapine, etravirine

and lamivudine). For the same 6 labels, ECC has an AUC of over 0.71 in each case.

5.2.3 Comparison

Presented below is a comparison between the scalar evaluation measures generated from the outputs of the

experiments on each dataset. The tables are presented in a similar format as in sections 5.2.1 and 5.2.2

above. The difference is that the numeric values presented in tables 5.13 – 5.15 represent the difference

between the evaluation measures produced in dataset 1 and 2.

The numeric values seen in the evaluation measure difference tables are calculated by subtracting the

evaluation measures produced for dataset 1 from the measures produced for dataset 2. For example, the

value for the efavirens label in the T NR column under the BR-NB method in table 5.13 below is 0.59, which

is calculated by taking the T NR value for efavirens for BR-NB for dataset 2 (0.85 as shown in table 5.10)
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Table 5.13. Problem transformation methods evaluation measure differences. The values are
generated by subtracting the values generated for dataset 1 from the corresponding values for
dataset 2. The absolute values are shown and bold values indicate improved performance on
dataset 2, while grey values imply that performance was better on dataset 1.

BR-SVM BR-NB HOMER

TPR TNR MCC DP TPR TNR MCC DP AUC TPR TNR MCC DP AUC

efavirens 0.00 0.00 - - 0.39 0.59 0.11 0.45 0.21 0.28 0.60 0.21 0.72 0.16

didanosine 0.16 0.04 0.22 0.56 0.16 0.10 0.07 0.17 0.03 0.14 0.16 0.03 0.10 0.04

emtricitabine 0.00 0.00 - - 0.01 0.08 0.07 0.16 0.11 0.24 0.50 0.14 0.19 0.16

delavirdine 0.00 0.00 - - 0.40 0.57 0.11 0.39 0.16 0.33 0.52 0.12 0.39 0.06

stavudine 0.08 0.06 0.00 0.05 0.07 0.07 0.01 0.04 0.01 0.01 0.09 0.10 0.26 0.04

nevirapine 0.00 0.00 - - 0.39 0.59 0.11 0.45 0.21 0.28 0.60 0.21 0.72 0.16

tenofovir 0.16 0.00 0.17 0.43 0.20 0.10 0.05 0.07 0.08 0.02 0.01 0.04 0.12 0.06

etravirine 0.01 0.00 0.05 0.72 0.24 0.47 0.18 0.43 0.10 0.09 0.27 0.16 0.49 0.07

abacavir 0.08 0.10 0.18 0.43 0.03 0.05 0.02 0.06 0.01 0.13 0.11 0.01 0.02 0.06

lamivudine 0.00 0.00 - - 0.01 0.08 0.07 0.16 0.11 0.24 0.50 0.14 0.19 0.16

zidovudine 0.02 0.02 0.01 0.01 0.06 0.04 0.02 0.01 0.02 0.01 0.05 0.05 0.14 0.01

mean 0.03 0.02 0.10 0.37 0.12 0.21 0.07 0.22 0.09 0.15 0.28 0.07 0.20 0.06

std dev 0.02 0.02 0.08 0.17 0.02 0.06 0.00 0.01 0.01 0.11 0.25 0.04 0.06 0.00

BR-SVM - Binary relevance with support vector machine base classifier, BR-NB - Binary relevance with naive Bayes base clas-

sifier, HOMER - Hierarchy of multi-label classifiers, TPR - True positive rate, TNR - True negative rate, MCC - Matthews

correlation coefficient, DP - Discriminative power, AUC - Area under the receiver operating characteristic curve
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and subtracting the corresponding value produced for dataset 1 (0.26 shown in table 5.7). Only the absolute

values of the differences are shown in the tables and a positive difference (i.e. the technique performs

better on dataset 2) is shown in bold, while negative differences (the technique performs better on dataset

1) are shown in grey. Note that a reduced standard deviation is considered an improvement, so the standard

deviation values shown in bold indicate that the technique had a lower standard deviation on dataset 2.

Problem Transformation Methods

Table 5.13 shows the evaluation measure differences for the problem transformation techniques. There is no

difference for the six labels that BR-SVM produces blanket positive predictions for. Most of the differences

indicate that BR-SVM performs better on dataset 2. This is confirmed by the fact that the mean value for

every evaluation measure has improved for dataset 2. The most notable increase for the BR-SVM technique

is the DP value for etravirine, which increased from 0.31 to 1.04 – an increase of over 300%. The value for

all evaluation measures increased for both didanosine and abacavir, which implies on dataset 2 BR-SVM

performs better in all cases for these drugs.

The evaluation measure difference for the BR-NB method shown in table 5.13 indicates improved per-

formance overall on dataset 2. This is evident from the fact that the mean values for T NR, MCC, DP and

AUC have all increased. The only mean value that did not increase was T PR, which decreased by 0.12.

This implies that the BR-NB method is on average 12% worse at detecting cases of resistance. The standard

deviations for each evaluation measure improved or stayed the same for T PR, T NR and MCC. Standard

deviation decreased by 0.01 for both DP and AUC, meaning that the range of values obtained for these

measures was distributed more widely for dataset 2 than for dataset 1.

As is the case with BR-NB, T PR for the HOMER technique has decreased for dataset 2. The mean

value for the T PR evaluation measure has decreased by 0.15. The only two instances where the T PR value

increased were for stavudine and zidovudine (both drugs in dataset 2 to which patients are overwhelm-

ingly more susceptible than resistant). The evaluation measure that has increased most significantly for the
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HOMER method is T NR. The T NR value has increase by 0.60 for efavirens and nevirapine and by 0.50 or

more for emtricitabine, delavirdine and lamivudine. In the case of efavirens, this means that HOMER is 5

times better at predicting susceptibility to efavirens for dataset 2 than for dataset 1, which is a considerable

improvement. The improvement is similar for nevirapine, emtricitabine, delavirdine and lamivudine.

Algorithm Adaptation Methods

The scalar evaluation measure differences for the algorithm adaptation techniques are shown in table 5.14.

It can be seen that the T NR values for MLkNN have all either increased or stayed the same, meaning that

MLkNN is better at detecting susceptibility to drugs on dataset 2 than on dataset 1. While the mean value

increased for four out of the five measures, the standard deviation decreased for four out of the five. This

implies that overall predictive power increased, but the range of values for the evaluation measures was

spread more widely. Although not shown in table 5.14, it is important to notice that the MLkNN method

only has two blanket positive predictions on dataset 2 (emtricitabine and lamivudine) compared to six on

dataset 1 (efavirens, emtricitabine, delavirdine, nevirapine, etravirine and lamivudine), which is a large

improvement and implies that MLkNN can provide meaningful predictive information for four more labels

on dataset 2 than on dataset 1.

The values for all four evaluation measures decreased for the PCT technique for efavirens, emtricitabine,

delavirdine, nevirapine and lamivudine. These are all drugs to which many more patients are resistant than

susceptible to (in both datasets). For all the other labels, the evaluation measure values have increased, with

the exception of the T NR value for didanosine, which has decreased by a small amount (0.03). The most sig-

nificant evaluation measure improvement for dataset 2 for the PCT technique is the DP value for tenofovir,

which has increased by 0.54. This represents a more than 100% improvement for that measure. Overall,

considering the sum of all the improvements (2.49) and comparing this to the sum of all the decreases in

performance (3.16), it appears that the PCT method performs slightly better on dataset 1 than on dataset 2.
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Table 5.14. Algorithm adaptation methods evaluation measure differences. The values are
generated by subtracting the values generated for dataset 1 from the corresponding values for
dataset 2. The absolute values are shown and bold values indicate improved performance on
dataset 2, while grey values imply that performance was better on dataset 1.

MLkNN PCT

TPR TNR MCC DP AUC TPR TNR MCC DP

efavirens 0.00 0.02 - - 0.14 0.04 0.06 0.14 0.61

didanosine 0.01 0.11 0.13 0.48 0.04 0.08 0.03 0.04 0.07

emtricitabine 0.00 0.00 - - 0.13 0.02 0.01 0.05 0.22

delavirdine 0.00 0.02 0.09 - 0.06 0.04 0.05 0.13 0.59

stavudine 0.03 0.03 0.00 0.16 0.02 0.07 0.01 0.08 0.21

nevirapine 0.00 0.02 - - 0.14 0.04 0.06 0.14 0.61

tenofovir 0.01 0.01 0.10 - 0.02 0.17 0.02 0.20 0.54

etravirine 0.01 0.02 - - 0.11 0.00 0.01 0.01 0.03

abacavir 0.12 0.04 0.08 0.19 0.02 0.06 0.02 0.07 0.17

lamivudine 0.00 0.00 - - 0.13 0.02 0.01 0.05 0.22

zidovudine 0.01 0.00 0.04 0.53 0.07 0.14 0.02 0.13 0.34

mean 0.01 0.02 0.05 0.42 0.06 0.04 0.02 0.00 0.08

std dev 0.01 0.01 0.03 0.12 0.02 0.07 0.01 0.05 0.31

MLkNN - Multi-label k-nearest neighbours, PCT - Predictive clustering trees, TPR - True positive rate, TNR - True negative rate,

MCC - Matthews correlation coefficient, DP - Discriminative power, AUC - Area under the receiver operating characteristic curve
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Table 5.15. Ensemble methods evaluation measure differences. The values are generated by
subtracting the values generated for dataset 1 from the corresponding values for dataset 2. The
absolute values are shown and bold values indicate improved performance on dataset 2, while grey
values imply that performance was better on dataset 1.

RAkEL ECC

TPR TNR MCC DP AUC TPR TNR MCC DP AUC

efavirens 0.24 0.45 0.10 0.18 0.13 0.03 0.28 0.36 - 0.15

didanosine 0.12 0.26 0.18 0.49 0.07 0.11 0.05 0.17 0.40 0.07

emtricitabine 0.13 0.26 0.07 0.03 0.05 0.02 0.21 0.24 0.38 0.15

delavirdine 0.22 0.59 0.27 0.83 0.10 0.04 0.28 0.18 - 0.11

stavudine 0.12 0.03 0.08 0.20 0.08 0.09 0.01 0.11 0.27 0.12

nevirapine 0.24 0.47 0.12 0.25 0.12 0.03 0.27 0.33 - 0.21

tenofovir 0.04 0.04 0.11 0.33 0.04 0.11 0.02 0.06 0.10 0.09

etravirine 0.20 0.38 0.18 0.54 0.09 0.03 0.23 0.29 1.15 0.15

abacavir 0.09 0.10 0.03 0.12 0.00 0.00 0.04 0.05 0.13 0.03

lamivudine 0.08 0.19 0.03 0.30 0.06 0.03 0.25 0.25 0.30 0.16

zidovudine 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.00 0.01 0.05

mean 0.10 0.25 0.11 0.24 0.07 0.02 0.14 0.18 0.45 0.12

std dev 0.07 0.13 0.01 0.10 0.01 0.05 0.13 0.06 0.11 0.00

RAkEL - Random k-labelsets, ECC - Ensemble of classifier chains, TPR - True positive rate, TNR - True negative rate, MCC -

Matthews correlation coefficient, DP - Discriminative power, AUC - Area under the receiver operating characteristic curve
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Ensemble Methods

The evaluation measure differences for the ensemble methods are given in table 5.15. As with BR-NB and

HOMER, most of the T PR values have decreased in dataset 2 for RAkEL. The only labels for which the T PR

values have increased are stavudine and tenofovir. Both of these labels correspond to drugs to which many

more patients are susceptible than resistant. The only other drug for which this is the case is zidovudine and

the T PR value for zidovudine has only decreased by a very small amount (0.01). This means that overall, for

the T PR measure, RAkEL has improved for the drugs to which patients are more susceptible than resistant,

and worsened for drugs to which patients are more resistant than susceptible. The values for T NR, MCC,

DP and AUC have all increased on average.

The AUC value has increased for all labels for dataset 2 for the ECC technique, with the value for nevi-

rapine increasing by the largest amount (0.21). The MCC values have also all either increased or remained

the same and all but one of the DP values (zidovudine, which has only decreased by 0.01) have increased.

The mean value for every evaluation measure has increased and the standard deviations have all improved

(i.e. decreased) or remained the same. This means that the ECC has improved by all measures on dataset

two, with an average of a 14% increase for the T NR measure and a 12% increase for AUC. Overall, the ECC

technique has showed the most improvement on dataset 2, with 42 out of the total of 55 evaluation measures

increasing and only 9 measures decreasing.

5.2.4 Scalar Evaluation Measure Summary

The scalar evaluation measures generated by the results processing component of the processing pipeline

have been given in tables 5.7 – 5.12 above. These tables show the 363 evaluation measures generated per

dataset for all of the seven multi-label experiments conducted, plus the 66 mean values and standard devi-

ations. Thus a total of 429 measures have been presented per dataset, resulting in a total of 858 evaluation

measures for all experiments conducted. An additional 429 values have been given in tables 5.13 – 5.15.
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These values represent the differences between the evaluation measures generated for dataset 1 and those

generated for dataset 2.

The scalar evaluation measures for dataset 1 have been presented in tables 5.7 – 5.9. These measures in-

clude the T PR, T NR, MCC, DP and AUC values (where possible) for each label for each of the seven multi-

label classification models trained and evaluated using dataset 1 (BR-SVM, BR-NB, HOMER, MLkNN,

PCT, RAkEL and ECC). In general the BR-SVM and MLkNN techniques did not perform particularly well

on dataset 1. They both had numerous cases of blanket positive predictions and the mean T PR and T NR

values were all below 0.66 for both of these methods. MLkNN had a mean T NR of 0.40, which means that

on average it could only correctly predict susceptibility to a drug in 40% of cases.

The BR-NB, HOMER and PCT techniques performed slightly better than BR-SVM and MLkNN on

dataset 1. These techniques produced no blanket positive predictions and have mean T PR values of 0.69,

0.67 and 0.68 respectively. This means that in more than two thirds of cases, these three methods are able to

correctly predict resistance to a drug. For BR-NB and HOMER, this is confirmed by the AUC values (0.60

and 0.57 respectively), which indicate that these methods are moderately more effective than a random

classifier. The same can be said about the PCT method due to the fact that it has a DP value of 0.86 – the

highest of all methods for dataset 1. PCT has a mean T NR of 0.53, which makes it the best at predicting

susceptibility to drugs on dataset 1.

The RAkEL method performs about as well as PCT on dataset 1 in terms of the T PR measure. The mean

T PR values for these methods are 0.69 and 0.68 respectively, meaning that on average they can correctly

predict resistance to a drug in 69% and 68% of cases. Both methods perform particularly well for efavirens,

emtricitabine, delavirdine, nevirapine and lamivudine (the drugs to which patients are more resistant than

susceptible), with T PR values as high as 0.97 in some cases. ECC performs best on dataset 1 at predicting

resistance, with a mean T PR of 0.71, although this may be slightly inflated due to the fact that the ECC

technique produces blanket positive predictions for two labels (efavirens and nevirapine).

For dataset 1 some techniques produce mean T PR values as high as 0.71 (in the case of ECC), but T NR

values are generally low. This means that while all of the methods seem to be sensitive enough to detect
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resistance better than a random classifier, most are not specific enough to also be able to detect susceptibility.

Only PCT has a T NR value above 0.5 (0.53), meaning that this method is the only one that is able to predict

susceptibility to a drug better than a random classifier. This, along with the fact that PCT has the highest

values for the MCC (0.25) and DP (0.86), makes this technique the best performing on dataset 1 based on

the scalar evaluation measures.

The BR-SVM and MLkNN methods again do not perform well on dataset 2. Both still produce blanket

positive predictions, although MLkNN produces blanket positive predictions for only two labels on dataset

2, compared to 5 on dataset 1. The T PR and T NR values for these two techniques are much the same for

dataset 2 as for dataset 1, with at most a 0.03 improvement (in the case of T PR for BR-SVM). BR-SVM

and MLkNN are both still only moderately better than a random classifier at predicting resistance and worse

than a random classifier at predicting susceptibility on dataset 2.

The performance of the BR-NB, HOMER and PCT techniques has increased on average on dataset

2. Most significantly, the mean T NR values for all of these three methods is above 0.5 for dataset 2. This

means that BR-NB, HOMER and PCT are all able to predict resistance and susceptibility to drugs better than

a random classifier on dataset 2. On dataset 1, only the PCT technique was able to do this. The HOMER

method has a mean T NR of 0.73 on dataset 2, making it the best method at predicting susceptibility to drugs

across all the experiments conducted on both datasets.

The RAkEL and ECC methods both perform better than a random classifier based on all five evaluation

metrics on dataset 2. RAkEL has a mean T NR value of 0.66 making it the second best method (tied with

BR-NB) at predicting susceptibility to drugs across all experiments on both datasets. The mean T PR value

for the the ECC method has increased to 0.73, meaning that on dataset 2 this method is able to correctly

predict resistance to drugs in 73% of cases on average. ECC also has the only mean DP value above 1.0 and

the highest mean AUC (0.75).

Most methods perform better than a random classifier at predicting both resistance and susceptibility

when trained and evaluated using dataset 2, with only BR-SVM and MLkNN still performing worse than a
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random classifier based on the mean T NR measure. This is confirmed by the fact that the mean AUC values

are all above 0.5 and the mean MCC values are all above 0.0. The ECC is the best performing technique

on dataset 2, with relatively high mean values for every measure and particularly high mean AUC and DP

values.

While the scalar evaluation measure values obtained by training and evaluating the multi-label classifica-

tion methods using dataset 1 are encouraging, the results obtained from dataset 2 confirm that the techniques

tested are able to provide meaningful predictive information regarding resistance and susceptibility to the

antiretroviral drugs. The general trend of improved mean values for all the scalar evaluation measures cou-

pled with reduced standard deviations implies that the models improve when more data is used for training.

This is desirable when the underlying dataset used for training is continually growing.

5.3 ROC Analysis

The receiver operating characteristic (ROC) curves generated from the raw results produced as part of the

experimental pipeline described in chapter 4 are shown in figures 5.1 – 5.6. These curves were automatically

generated using the developed results processing scripts and the R engine (described in sections 4.2.2 and

4.2.2). Note that ROC curves can only be generated for classification techniques that produce a probability

of class membership as output (as opposed to an explicit class label) and therefore no ROC curves could be

generated for the BR-SVM and PCT methods.

Each point on a ROC curve is generated by varying the threshold parameter (τ) and then calculating the

false positive rate and true positive rate over all the results. Since 10 fold cross validation is used in this

study, the average true positive rate is taken over all 10 cross validation cycles. This is known as vertical

averaging [61].

The ROC curves generated based on the results of the experiments on dataset 1 are shown first. A

separate ROC curve is shown for each of the 11 labels, and all five techniques for which it is possible to
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generate ROC curves are shown in a single image. The error bars are shown for each value of τ that has

been used and the AUC and standard error values for each technique are shown in the legend. The ROC

curves generated from the output of the experiments on dataset 2 are then shown, followed by ROC curves

that illustrate the differences between the two datasets.

5.3.1 Dataset 1

The ROC curves generated for dataset 1 are shown in figures 5.1 – 5.3. Ideally, a ROC curve should be as

close to the top left of the unit square as possible. Stated differently, the greater the area under the ROC

curve (AUC), the better the performance of the classification technique. A random classifier would have a

ROC curve with a gradient of one (i.e. a straight line), resulting in an AUC of 0.5. Having an AUC < 0.5

implies that the technique performs worse than a random classifier.

Most of the ROC curves shown in figures 5.1 – 5.3 are indicative of performance only marginally better

than that of a random classifier. Notable exceptions are the curves for the MLkNN. Five of these curves

(efavirens, didanosine, stavudine, nevirapine and etravirine) show performance worse than random classifier.

The drug for which the ROC curves are closer to the upper left of the graph is tenofovir (see figure 5.2(c)).

It can be seen that for this drug all of the AUC values are above 0.5, with ECC having the particularly high

value of 0.72.

The average AUC for the ROC curves generated for dataset 1 is 0.58 and the average standard error

is 0.048. This implies that on average (over all techniques and labels), the performance of the predictive

models is only slightly better than a random classifier for dataset 1. That said, there is at least one technique

that obtains an AUC of more than 0.6 for every drug, which is significantly better than the performance of

a random classifier. This means that while on average the performance of the techniques may not be great,

there are instances in which the predictive models do provide useful predictive information (for a subset of

labels). This corresponds with what has been illustrated by the scalar evaluation metric values shown in

section 5.2 above.
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Efavirens ROC Curve (Dataset 1)
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Didanosine ROC Curve (Dataset 1)
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Emtricitabine ROC Curve (Dataset 1)
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Delavirdine ROC Curve (Dataset 1)
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Figure 5.1. ROC curves for dataset 1 for efavirens, didanosine, emtricitabine and delavirdine.
AUC and standard error are given in parentheses for each method.

ROC - Receiver operating characteristic, AUC - Area under ROC curve, BR - Binary relevance (with naive Bayes base classifier), HOMER -

Hierarchy of multi-label classifiers, MLkNN - Multi-label k nearest neighbours, RAkEL - Random k-labelsets, ECC - Ensemble of classifier

chains
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Stavudine ROC Curve (Dataset 1)
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Nevirapine ROC Curve (Dataset 1)
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Tenofovir ROC Curve (Dataset 1)
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Etravirine ROC Curve (Dataset 1)
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Figure 5.2. ROC curves for dataset 1 for stavudine, nevirapine, tenofovir and etravirine. AUC
and standard error are given in parentheses for each method.

ROC - Receiver operating characteristic, AUC - Area under ROC curve, BR - Binary relevance (with naive Bayes base classifier), HOMER -

Hierarchy of multi-label classifiers, MLkNN - Multi-label k nearest neighbours, RAkEL - Random k-labelsets, ECC - Ensemble of classifier

chains
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Abacavir ROC Curve (Dataset 1)
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Lamivudine ROC Curve (Dataset 1)
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Zidovudine ROC Curve (Dataset 1)
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Figure 5.3. ROC curves for dataset 1 for abacavir, lamivudine and zidovudine. AUC and standard
error are given in parentheses for each method.

ROC - Receiver operating characteristic, AUC - Area under ROC curve, BR - Binary relevance (with naive Bayes base classifier), HOMER -

Hierarchy of multi-label classifiers, MLkNN - Multi-label k nearest neighbours, RAkEL - Random k-labelsets, ECC - Ensemble of classifier

chains
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5.3.2 Dataset 2

The ROC curves generated for each label for dataset 2 are shown in figures 5.4 – 5.6. The average area under

the curve (AUC) for the 11 labels represented in the figures is 0.65 and the average standard error is 0.03.

There are only three cases (didanosine, stavudine and zidovudine) where the AUC values is below that of a

random classifier (0.5) and all three of these are produced by the MLkNN classification technique.

The ROC curves produced by the ECC method are the best in all cases for dataset 2. There are four labels

(efavirens, delavirdine, nevirapine and tenofovir) for which the AUC produced by the ECC is greater than

0.8, which indicates very good performance by this method. The HOMER and MLkNN are the two worst

performing methods in terms of the ROC curves for dataset 2, with one of these two methods having the

lowest AUC value on each figure. Interestingly, the HOMER method is good at predicting susceptibility on

dataset 2 (according to the T NR measure), but shows poor performance on the ROC curves. This is because

the ROC curves show performance at predicting resistance (presence of a label) and not susceptibility.

Particularly good ROC curves are produced for the lamivudine (figure 5.3(b)) and emtricitabine (figure

5.1(c)) labels. For both of these labels, the lowest AUC value is 0.63 and the average is 0.7, which implies

performance much greater than a random classifier for all classification techniques. Nevirapine and efavirens

are the labels with the highest mean AUC, which is 0.71. This is despite the fact that the MLkNN method

produces an AUC of just 0.58 for both of these labels. Removing this low value from the calculation, the BR-

NB, HOMER, RAkEL and ECC methods produce an average AUC 0.74 for both nevirapine and efavirens,

which indicates very good performance.

The average standard errors produced for each method range from 0.027 (for ECC and RAkEL) to 0.032

for MLkNN on dataset 2. This implies that MLkNN produces the widest range of average true positive

values, while ECC and RAkEL produce a much narrower range. This can be interpreted to mean that the

ECC and RAkEL methods produce consistently good results.
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Efavirens ROC Curve (Dataset 2)
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Didanosine ROC Curve (Dataset 2)
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Emtricitabine ROC Curve (Dataset 2)
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Delavirdine ROC Curve (Dataset 2)
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Figure 5.4. ROC curves for dataset 2 for efavirens, didanosine, emtricitabine and delavirdine.
AUC and standard error are given in parentheses for each method.

ROC - Receiver operating characteristic, AUC - Area under ROC curve, BR - Binary relevance (with naive Bayes base classifier), HOMER -

Hierarchy of multi-label classifiers, MLkNN - Multi-label k nearest neighbours, RAkEL - Random k-labelsets, ECC - Ensemble of classifier

chains
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Stavudine ROC Curve (Dataset 2)
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Nevirapine ROC Curve (Dataset 2)
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Tenofovir ROC Curve (Dataset 2)
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Etravirine ROC Curve (Dataset 2)
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Figure 5.5. ROC curves for dataset 2 for stavudine, nevirapine, tenofovir and etravirine. AUC
and standard error are given in parentheses for each method.

ROC - Receiver operating characteristic, AUC - Area under ROC curve, BR - Binary relevance (with naive Bayes base classifier), HOMER -

Hierarchy of multi-label classifiers, MLkNN - Multi-label k nearest neighbours, RAkEL - Random k-labelsets, ECC - Ensemble of classifier

chains
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Abacavir ROC Curve (Dataset 2)
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Lamivudine ROC Curve (Dataset 2)
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Zidovudine ROC Curve (Dataset 2)
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Figure 5.6. ROC curves for dataset 2 for abacavir, lamivudine and zidovudine. AUC and standard
error are given in parentheses for each method.

ROC - Receiver operating characteristic, AUC - Area under ROC curve, BR - Binary relevance (with naive Bayes base classifier), HOMER -

Hierarchy of multi-label classifiers, MLkNN - Multi-label k nearest neighbours, RAkEL - Random k-labelsets, ECC - Ensemble of classifier

chains
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5.3.3 Comparison

The ROC curves presented in figures 5.7 – 5.9 show the differences between the ROC curves generated for

dataset 1 and the ROC curves generated for dataset 2. The curves were generated using a script that was

developed to process the R command scripts generated by the processing pipeline. The curves generated for

dataset 1 are drawn in grey and the curves generated for dataset 2 are drawn in black. The error bars have

not been drawn in the interest of simplicity. The first number given in parentheses in the legend is the AUC

for the dataset 1 curve and the second number is the AUC for the dataset 2 curve.

The first thing that becomes evident on examination of the ROC difference curves is that in almost

every case the AUC values for the dataset 2 curves are greater than those for the dataset 1 curves. This

implies that most methods performed better for every label on dataset 2 than on dataset 1 (in terms of the

ROC curve evaluation measure). The only exceptions are the MLkNN method (which performed worse

for stavudine, abacavir and zidovudine) and the HOMER method (which performed worse for didanosine,

stavudine, tenofovir, abacavir and zidovudine).

All of the five techniques performed better on average for all labels except abacavir. The average AUC

value over all techniques for this label decreased by 0.01. The biggest average AUC increase for a label was

0.17, which occurred for nevirapine. In addition, the average AUC over all methods increased by 0.16 for

tenofovir. The biggest ROC curve improvement was an increase of the AUC by 0.21. This occurred for the

BR-NB method for the efavirens label (shown in figure 5.7(a)) and for the ECC method for the nevirapine

label (show in figure 5.8(b)). The average AUC increase over all labels and techniques was 0.13.
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Efavirens ROC Curve (Dataset 1 & 2)
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Didanosine ROC Curve (Dataset 1 & 2)
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Emtricitabine ROC Curve (Dataset 1 & 2)
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Delavirdine ROC Curve (Dataset 1 & 2)
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Figure 5.7. ROC curves for both datasets for efavirens, didanosine, emtricitabine and delavirdine.
The curves for dataset 1 are shown in grey and the curves for dataset 2 are shown in black. AUC
is given in parentheses for dataset 1 and 2 respectively.

ROC - Receiver operating characteristic, AUC - Area under ROC curve, BR - Binary relevance (with naive Bayes base classifier), HOMER -

Hierarchy of multi-label classifiers, MLkNN - Multi-label k nearest neighbours, RAkEL - Random k-labelsets, ECC - Ensemble of classifier

chains
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Stavidine ROC Curve (Dataset 1 & 2)
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Nevirapine ROC Curve (Dataset 1 & 2)
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Tenofovir ROC Curve (Dataset 1 & 2)
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Etravirine ROC Curve (Dataset 1 & 2)
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Figure 5.8. ROC curves for both datasets for stavudine, nevirapine, tenofovir and etravirine. The
curves for dataset 1 are shown in grey and the curves for dataset 2 are shown in black. AUC is
given in parentheses for dataset 1 and 2 respectively.

ROC - Receiver operating characteristic, AUC - Area under ROC curve, BR - Binary relevance (with naive Bayes base classifier), HOMER -

Hierarchy of multi-label classifiers, MLkNN - Multi-label k nearest neighbours, RAkEL - Random k-labelsets, ECC - Ensemble of classifier

chains
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Abacavir ROC Curve (Dataset 1 & 2)
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Lamivudine ROC Curve (Dataset 1 & 2)
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Zidovudine ROC Curve (Dataset 1 & 2)
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Figure 5.9. ROC curves for both datasets for abacavir, lamivudine and zidovudine. The curves
for dataset 1 are shown in grey and the curves for dataset 2 are shown in black. AUC is given in
parentheses for dataset 1 and 2 respectively.

ROC - Receiver operating characteristic, AUC - Area under ROC curve, BR - Binary relevance (with naive Bayes base classifier), HOMER -

Hierarchy of multi-label classifiers, MLkNN - Multi-label k nearest neighbours, RAkEL - Random k-labelsets, ECC - Ensemble of classifier

chains
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5.3.4 ROC Analysis Summary

The dataset 1 ROC curves indicate that many methods do not perform much better than a random classifier.

This is due to the fact that the average AUC for dataset 1 is just 0.64, which is only 14% better than random

classifier. However, there are some exceptions. For example, techniques that tend to perform well on the

tenofovir label have an average AUC value of 0.72 for this label. The MLkNN technique performed the

worst with a mean AUC of 0.49 (less than a random classifier).

The dataset 2 ROC curves shown an improvement in almost all cases. Every technique had an average

AUC above 0.5, which means that each technique could provide meaningful predictive information based

on the ROC evaluation measure. The ECC method produced particularly good ROC curves on dataset 2

with four AUC values above 0.08, the highest being 0.83 for the efavirens label. These high AUC values are

indicative of very good performance by ECC.

The ROC analysis mostly agrees with the scalar evaluation measures. The advantage of the ROC analysis

is that it gives insight into each technique regardless of the value of τ that is selected as the threshold

parameter (which is 0.5 in all cases). Varying this parameter gives a sense of the robustness of a technique

and considering the AUC value plus the the standard error together is indicative of the consistency of the

technique. This is confirmed by considering the MLkNN technique on the first dataset. By all of the scalar

evaluation measure, MLkNN does not perform well and precisely this is echoed by the ROC curves. MLkNN

achieves a low average AUC (0.49 on dataset 1 and 0.55 on dataset 2) and high standard deviations (0.05 on

dataset 1 and 0.03 dataset 2).

The ECC technique has shown the most improvement on dataset 2 over dataset 1 in terms of the ROC

analysis. This corresponds with what the scalar evaluation measures indicate and provides us with further

confidence in the technique. It can also be inferred that the ECC method is consistent across different values

of τ , since it has the lowest overall standard error (0.027).
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5.4 Results Summary

The dataset description, scalar evaluation measures and ROC curves have been presented for all experiments.

These results represent the performance evaluations of the seven multi-label classification techniques on both

dataset 1 and dataset 2. The tables and figures given in sections 5.1 – 5.3 correspond to the results of the 14

experiments conducted (seven techniques tested on two datasets).

Examination of the datasets revealed that the two, while very different in size, were very similar in

terms of label distribution and feature completeness. Dataset 2 was roughly double the size of dataset 1,

with dataset 1 having 252 patients and dataset 2 having 500. The feature completeness was over 80% in

both cases, which is good for a clinical dataset. This is most likely due to the fact that these datasets were

both research datasets and there is a dedicated team ensuring the data is of good quality. Further, the label

distribution and the proportion of patients resistant to each number of drugs were very similar for both

datasets.

The scalar evaluation measures for each dataset were first presented and discussed. A comparison of the

measures was then presented. It is evident from these evaluation measures that the BR-SVM and MLkNN

techniques are the worst performing on both datasets. The BR-NB, HOMER and PCT perform better,

but not as well as RAkEL and ECC. On dataset 1, while some techniques were relatively good at predicting

resistance, not many were able to predict susceptibility. In fact, the only method that was able to out-perform

a random classifier at predicting susceptibility was PCT, with a mean T NR of 0.53.

On dataset 2, most of the techniques performed significantly better. The only techniques with mean

T NR values below that of a random classifier were BR-SVM and and MLkNN. The average increase over

all the scalar evaluation measures was 0.10. The mean T PR value decreased by 0.04 and the mean T NR

value increased by 0.13. The reason for the decrease in T PR is most likely due to the T NR value being

artificially inflated for dataset 1 and the lower T PR on dataset two probably implies better predictive power.

This scenario is referred to as the accuracy paradox [95] and is discussed in section 6.2.
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The ROC analysis presented in section 5.3 largely confirms the performance shown by the scalar eval-

uation measures. The ROC curves confirm that the MLkNN method is the worst performing and that ECC

shows the biggest improvement on dataset 2. In addition, the ROC analysis provides insight into the consis-

tency of the techniques over different threshold values (τ).

In general, the results obtained from the multi-label classification experiments are encouraging. The

methods performed well on dataset 1 at predicting resistance, but were not able to provide much useful

information with regards to susceptibility (with the exception of the PCT method). This changed when the

techniques were trained and evaluated using dataset 2. In this case, all of the techniques were able to provide

predictive information for both resistance and susceptibility.



Chapter 6

Discussion

This section discusses the implications of the results presented in terms of the research question. The dataset

is discussed first, followed by the experimental results. The limitations of the predictive models are then

described and the chapter concludes with a discussion about the potential impact of the implementation of

the classification techniques in a real-world clinical environment.

6.1 Dataset

Descriptions of both datasets used have been give in section 5.1.3. The salient points are recalled below

and an analysis of the specific characteristics of the datasets that may have impacted the performance of the

classification techniques is given.

Overview

The two datasets were snapshots of the same clinical information system (the implementation of RegaDB

used by the Africa Centre) at two different points in time, roughly two years apart. Dataset 2 (downloaded

122
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in 2013) is about twice the size of dataset 1 (downloaded in 2011) and consisted of the medical records of

500 patients. Dataset 1 contained the clinical data from 252 patients. Other than the size difference, the

datasets were very similar. The mean patient age (just over 37 years) and the proportion of females (about

three quarters) in each dataset were the same. The datasets are also similar in terms of average feature

completeness, with dataset 1 having a value of 76.84% and dataset 2 having a value of 78.29%. More

than a third of the features in each dataset were 100% complete. The proportions of patients resistant and

susceptible to each drug as well as the proportions of patients resistance to each number of drugs, were

almost identical, with the biggest difference being only 3% across both of these measures.

The reason that a large proportion of patients are resistant to some drugs but susceptible to others is

that the genetic barrier of the drugs are different. The genetic barrier of a drug is the number of mutations

necessary in the viral genome before resistance is developed [3]. For example, lamivudine is known to

have a genetic barrier of 1, which means that just one specific mutation is required in the viral genome for

the patient to develop resistance to lamivudine. Drugs like zidovudine and stavudine have a genetic barrier

greater than 1, so multiple specific mutations are required to develop resistance to these drugs. Tables 5.2

and 5.5 show that more patients are resistant to lamivudine than zidovudine or stavudine. A recent study has

found that modelling the genetic barrier of the virus can be used as a predictor for treatment outcome [96].

The small number of training examples by machine learning standards (252 in dataset 1 and 500 in

dataset 2) could be partly responsible for the low performance for some of the labels. Given the similarity

of the datasets, the fact that the predictive models perform better on dataset 2 must be due to the fact that

dataset 2 contains more training examples than dataset 1, which is exactly the behaviour we hope to see

from models used for classification. In fact, this is implied in the definition of machine learning given at

the beginning of chapter 2: “machine learning is concerned with the question of how to construct computer

programs that automatically improve with experience.” The important implication of this result is that as

more patient data is collected over time, the predictions generated by the models will continue to improve.
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Feature Vector

Since its introduction in 2007, many studies have made use of the treatment change episode (TCE) as the unit

of data (i.e. feature vector) used to train and test classification models [5, 64, 65, 67, 75, 82, 96–98]. A TCE

is centred around the time when a patient switches from one drug regimen to another. The data comprises

of genotype information, treatment information from before and after the switch, as well as multiple viral

load measurements taken at specific times before and after the switch. Although studies using this type of

data have reported good results, there are a number of problems with using TCEs as training examples. The

first issue that arises when dealing with data from an African context (such as the data used in this study) is

that the treatment guidelines used in African contexts do not match those used in the European or American

contexts. Therefore, it is often the case that the viral load measurements required for a specific TCE have

not been taken within the limited time frame mandated by the TCE definition. Furthermore, TCEs require

a genotype resistance test to have been done for each patient, which will not always be the case in South

Africa and other developing countries.

TCEs are primarily used for predicting treatment outcome rather than resistance to specific drugs, which

is the objective of this study. TCEs represent isolated moments in time rather than the full patient history.

Patients may change treatments many times over the course of their lives and it is therefore possible to

extract many TCEs from a single patient records. These TCEs are then used independently as training

examples by the classification technique. There is a significant problem with this approach. Each time a

patient is exposed to a drug, the virus population in that patient reacts to the drug, thereby influencing that

patient’s response to the current and all future treatment regimens [3, 4]. This means that a patient who has

experienced many TCEs could have a very different therapy outcome to a patient who is experiencing their

first TCE, even if the treatment that each is switching to and from are the same. This makes using TCEs

problematic and therefore the decision has been taken to use the full patient record over TCEs. This means

that there are fewer training examples, but that each training example encodes the full history of the patient.
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Feature Completeness

The effects of feature completeness and possible incorrect feature values have not been examined in this

study, but it is worth noting that the datasets do contain features whose values can not reliably be validated

as correct. These are the features that have been self-reported by the patients and mainly relate to adherence

to therapy. There are no objective or proxy measures for the adherence features, such as pharmacy refill

data or medication possession ratios and since adherence is widely considered an important factor involved

in the development of drug resistance [99–101], the reliability of these self-reported features may have a

significant impact on the performance of the classification models. Furthermore, missing values for features

have been interpreted to mean that the value for that specific feature is not available. It is possible to extract

more information from missing features, for example, if a patient is missing a value for baseline viral load

(which is a derived feature), it could be for a number of reasons. The patient could have never had a viral

load measurement done, or the measurement could have not been done in the specific time frame required

for it to be considered a baseline measurement. Thus, missing features could provide further information

that could be valuable, but this information has not been exploited in this study.

Data Quality

Another factor that could influence the performance is the presence of features in the dataset that contain

incomplete data. Unfortunately, missing and inaccurate data are common aspects of public health ART

treatment program data in South Africa and other resource-limited countries. Patients miss clinic visits for

a number of health and socio-economic reasons and it is often the case that laboratory test results are not

available when needed by the clinician. Further investigation should be done on the use of feature selection

techniques to ensure that the optimal subset of features is being used for training and prediction, since

irrelevant and redundant features can reduce classification accuracy [102].

The clinical datasets used in this study were used for both clinical management of patients as well as

for research. There is a small team of dedicated data management staff who are responsible for making sure
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the datasets are as clean and complete as possible. The datasets are therefore much cleaner than the average

clinical dataset. This could result in better performances from the classifiers, since they have been trained

using more complete and accurate underlying data than might be case for the typical dataset used for the

clinical management of patients.

Despite the fact that the datasets may be of higher quality than most datasets used for the clinical man-

agement of HIV patients, they nevertheless represent an example of a real-world dataset that might be used

in the field. This gives us confidence that the performance of the predictive models are representative of the

performance what we might expect if the models were implemented in a clinical environment.

6.2 Experimental Results

The multi-label classifiers were evaluated based on their ability to predict known resistance to a set of

antiretroviral drugs based only on prior patient biographical and treatment history data. Comprehensive

summaries of the experimental results have been presented in sections 5.2.4, 5.3.4 and 5.4, so the paragraphs

below will illuminate only the most important results and then focus on discussing how the various dataset

characteristics, design decisions and other factors may have had an effect on these results.

Overview

While most of the classification models were able to provide some predictive information (i.e. they per-

formed better than a random classifier), there were some experiments where this was not the case. The most

notable examples of poor performance are the blanket positive predictions produced by the BR-SVM and

MLkNN methods. For dataset 1, MLkNN produces blanket positives for 6 of the 11 labels and BR-SVM

produces blanket positive for 5 labels. In all cases, these labels correspond to the most imbalanced labels

(many more patients are resistant than susceptible to the corresponding drugs). This indicates that the pre-

dictive models produced using the MLkNN and BR-SVM techniques were not able to detect cases where
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patients were susceptible to drugs when very few such examples exist in the training datasets. The perfor-

mance of the BR-SVM and MLkNN techniques on dataset 2 are similarly poor, although slightly better than

on dataset 1. It follows that BR-SVM and MLkNN are not useful in a real world clinical environment if the

proportions of patients resistant and susceptible to the various drugs are not well balanced.

Dataset Effects

The poor performance of BR-SVM is surprising, since SVMs are a popular technique and have been applied

to many problems. However, the results obtained are consistent with previous investigations on the appli-

cation of SVMs using imbalanced data, which found that SVMs performed poorly in this case [103, 104].

Furthermore, it has been shown that SVMs will favour the majority class [80], which is exactly what can be

seen in tables 5.7 and 5.10. These tables illustrate the blanket positive predictions generated by the SVMs.

The results obtained for MLkNN also correspond with previous studies that show that the nearest neighbours

technique does not perform well on imbalanced datasets [105].

Techniques that perform well on the highly imbalanced labels (such as efavirens and emtricitabine)

perform less well on the relatively balanced labels (such as didanosine and abacavir). The techniques that

exhibit this behaviour are BR-NB, HOMER, RAKEL and PCT on dataset 1 and all of the techniques except

BR-SVM and MLkNN on dataset 2. In general, this effect is less prominent on dataset 2 since the models

produce more consistent predictions (as shown by the reduced standard deviations). The fact that the pre-

dictive models seem not to be able to simultaneously produce accurate predictions for highly imbalanced as

well as relatively balanced labels supports the idea that no single model should be used to assess resistance

to all drugs. The results of multiple models should be combined into an ensemble to produce the best re-

sults. Using ensembles or committees in this context has been studied before and was shown to increase the

performance of classification models trained for predicting response to HIV therapy [75].

It is also important to note that models that perform well on imbalanced labels do so regardless of

whether patients are more resistant to the corresponding drug or whether they are more susceptible. An
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example of this can be seen in figure 5.10 on page 93, where it can be seen that the ECC technique performs

well at predicting resistance to nevirapine, to which patients are overwhelmingly more resistant than sus-

ceptible. The same method also performs well at predicting susceptibility to tenofovir, to which patients are

much more susceptible than resistant.

Classification Technique Effects

The remarkably different results obtained by the BR-SVM and BR-NB techniques demonstrate the effect

that the choice of base classifier can have (see tables 5.9 and 5.12). Therefore, the comparison of the perfor-

mance of different multi-label classification techniques that make use of base classifiers is only meaningful

when each uses the same base classifier. In this study the same base classifier is used for all of the BR-NB,

HOMER, RAkEL and ECC techniques. PCT does not require a base classifier.

The BR-NB and HOMER techniques show very similar performance, with the main difference being

that the HOMER method has a much lower mean standard deviation on dataset 2. This is consistent with

the literature [30]. The RAkEL and ECC techniques both also produce lower mean standard deviations on

dataset 2. It can thus be suggested that the HOMER, RAkEL and ECC methods produce more consistent

predictions as the training dataset grows, while the consistency of the predictions produced by BR-NB

remains unchanged. Although the performance of the PCT method on dataset 2 is not improved, the mean

standard deviation is still less than on dataset 1. The mean standard deviations of the BR-SVM and MLkNN

methods are higher on dataset 2 than on dataset 1.

The performance of the RAkEL technique corresponds with what has been reported by previous studies

[27]. In this study it can be seen that RAkEL performs better than both the binary relevance method (BR-

SVM and BR-NB) and MLkNN. Furthermore, it has also been demonstrated that RAkEL does not perform

as well as ECC [106], which is supported by our results.

The mean AUC values for the ECC method (the best performing method in terms of the AUC measure)

are 0.63 on dataset 1 and 0.75 on dataset 2. These results are comparable to the results obtained by two
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recent studies [8,36], both of which investigate the application of classification techniques to the problem of

HIV treatment failure. One study [8] made use of random forest classifiers trained using 14891 TCEs and

did not include genotype resistance test information. The TCEs were extracted from a research database

containing patient records from North America, Europe, Australia and Japan. The random forest models

obtained AUC values in the range 0.74−0.77. The other study [36] used the ECC method and was trained

on a dataset that consisted of 600 training examples that included GRT data. The training examples were

extracted from a North American research database and the ECC models achieved AUC values in the range

0.77− 0.91. The models examined in this study were trained using less data, different machine learning

techniques and data from a rural South African context that does not included GRT information. The fact

that the results achieved are still comparable to those found in the literature is a promising outcome.

The Accuracy Paradox

Many of the techniques (BR-NB, HOMER, MLkNN, RAkEL) show a reduced mean T PR on dataset 2,

which could be interpreted to mean that the techniques performed worse in general on dataset 2 than on

dataset 1. However, this is not the case and the reduced T PR values are observed due to the accuracy

paradox [95]. The accuracy paradox occurs when a predictive model demonstrates inflated performance

on imbalanced datasets. An example of the accuracy paradox is given in section 2.2 using equation 2.1

(simple accuracy). Other examples of the accuracy paradox are the blanket positive predictions produced by

BR-SVM and MLkNN in some cases. These blanket positives result in a T PR value of 1.0, which implies

that the techniques identify positive examples in 100% of cases. However, it is known that these techniques

do not provide any useful predictive information at all because the T NR value is 0.0.

In order to avoid misinterpreting the accuracy paradox as good performance (or interpreting reduced

values for a single metric as overall worsened performance), it is important to consider multiple evaluation

measures. This is the fundamental reason why ROC analysis is used (including AUC) in addition to four

different scalar evaluation measures in this study. If T PR and T NR are considered together, it can be seen
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that all techniques performed better on dataset 2 than on dataset 1. If all evaluation measures are considered,

it can be seen that all but the PCT method have performed better on dataset 2 than on dataset 1 (although

PCT did show improved standard deviation values on dataset 2).

Sensitivity And Specificity

The scalar evaluation measure values obtained indicate that many of the techniques (BR-NB, HOMER, PCT,

RAkEL and ECC) are able to detect resistance to one or more drugs in over 95% of cases (as measured by

T PR). The PCT technique is able to do so for three different drugs (efavirens, delavirdine and nevirapine)

on dataset 1, while the ECC method achieves a T PR of 95% or higher for six drugs on dataset 2 (efavirens,

emtricitabine, delavirdine, nevirapine, etravirine, lamivudine). However, although the T PR values are high,

they are often accompanied by a low T NR value, indicating that the rate of false positives is high. This

means that if the predictive models were used to prioritise patients for genotype resistance testing, a high

number of patients could be tested unnecessarily. Fortunately this effect is reduced when the models are

trained using dataset 2 and it is expected to further diminish as the size of the training dataset grows.

Despite this potential for suboptimal GRT prioritisation, there are still use cases where the models (still

trained on relatively small datasets) could be used effectively in resource-limited settings. For example, if

GRT is not available and/or if the care provider decides that a regimen change is necessary, the false positives

can be interpreted as the models making conservative predictions. Clinically, it is important to try to retain

patients as long as possible on first line treatment regimens since second line therapy costs as much as 2.4

times more than first line therapy and compromises treatment outcomes [7], but if the decision is made to

switch regimen, conservative prediction results could be used to help design a treatment regimen to which

the virus is susceptible by avoiding drugs for which the models produce T PR values close to 1.0.

Techniques like PCT, BR-NB and ECC have high values for all measures for those drugs on which they

perform well. This should give us confidence that the decision support information provided is reliable and

not influenced by a single outlier evaluation measure value. Conversely, we should have less confidence in
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the performance of a technique for a drug if only one of the measures show good performance, for example,

the MLkNN technique has a high T NR value (0.97) for stavudine, but all other metrics indicate very poor

performance. This includes techniques that produce blanket positive predictions and therefore have a T PR

value of 1.0. Despite this apparently high T PR value, these techniques provide no information that can be

used to support decisions.

Data Dependencies

It has been shown that feature dependencies can sometimes have an effect on the performance of classifica-

tion techniques [107, 108]. The simplifying assumption has been made (discussed in section 4.1.4) that all

features are independent of each other. However, in reality, this is not the case since viral load has an effect

on CD4 count because the virus has an impact on the human immune system (measured using CD4 count).

This dependency (and possibly others) could have a negative impact on the performance of the classifica-

tion techniques that make use of the naive Bayes classifier, which makes explicit use of the independence

assumption. It has been shown that taking feature dependencies into account has the most positive effect

on domains where decision tree learners (such as the PCT technique) perform significantly better than naive

Bayes [107]. This is not the situation in the experiments that have been conducted, so there is not likely

going to be large gain in performance by explicitly representing feature dependencies.

In this study the simplifying assumption has been made that all labels are independent of each other. We

know from the literature that this is not true and this effect can even be observed in our own results [4]. For

example, it can be seen in figure 5.7 on page 87 that both the BR-NB and HOMER method perform well

for the emtricitabine and tenofovir labels. The drugs corresponding to these labels are both members of the

same drug group (nucleotide analogue reverse transcriptase inhibitors or NRTIs). This effect can also be

seen in figure 5.8 on page 89, where it can be seen that the PCT method performs best for the efavirens

and nevirapine labels. The drugs corresponding to these two labels are both members of the non-nucleoside

reverse transcriptase inhibitor (NNRTI) drug group. The fact that performance across related labels is

consistent could mean that the classifiers do somehow implicitly encode label dependencies.
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It is possible that the label independence assumption could have a negative impact on the performance

of the classification techniques. Some studies have investigated the effect of explicitly modelling label

dependencies and have obtained promising results [109, 110]. A very recent study conducted with the

objective of predicting HIV drug resistance found that the ECC multi-label classification technique modelled

label dependencies implicitly [36]. This implicit label dependency modelling can be seen in figure 3.3 on

page 43, where it can be seen that each classifier in the classifier chain is trained using the labels from the

previous classifiers as input. Although label dependencies have not been explicitly modelled in this study,

we are still able to provide some evidence that such dependency modelling would improve performance,

since the one technique used that implicitly models label dependencies is also the technique that performs

best over all.

Temporal Nature of the Data

The patient data used to construct the training datasets consist of longitudinal records. This means that the

information stored in the clinical information system for each patient has been captured over a period of

time and each piece of information associated with a patient is also associated with a point in time. This

temporal nature of the data has not been explicitly modelled in the features used for training, but some

features do have an implicit temporal aspect. For example, the baseline viral load feature represents a viral

load test performed on a patient within a certain time frame around the date on which the patient first started

on antiretroviral therapy. Another example is recent CD4 gradient, which calculates the rate of change of

the CD4 count measurements taken for a patient in the last year.

There exists another temporal aspect to the dataset, which is the fact that each patient captured in the

system has been added to the database at a specific point in time. In other words, patients who were infected

a long time ago were added to the system before recently infected patients. This temporal element has the

potential to have an impact on our predictive models because of the way that HIV evolves. Recently infected

patients may be infected with a strain of the virus that has already evolved resistance to some drugs (referred
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to as transmitted resistance). There is no way to detect this from the clinical record and it is possible that

such cases could have an impact on model performance. A solution to this problem is beyond the scope of

this study, but some initial ideas on how to begin to address this issue are discussed in section 7.1.

Virtual Field Test

In addition to using the numerous scalar evaluation measures and ROC analysis along with 10 fold cross

validation to evaluate and validate the models, two datasets have also been used. Using two datasets sim-

ulates the evolution of the dataset over time and has the effect of performing a virtual field test. That is,

the models have been tested not only using real clinical data from the field, but the response of models to

a change in the underlying dataset has also been tested. This has been achieved by using a snapshot of the

clinical information system used at the Africa Centre at two different points in time.

The results of this virtual field test have been overwhelmingly positive, with all but one predictive model

performing better on the dataset 2 than on than on dataset 1. The models also showed a reduced standard

deviation on dataset 2, which implies that the predictions they produce become more consistent as the dataset

grows. This improved performance gives us confidence not only that the models are robust under a change

in the underlying data, but that they in fact improve as the dataset grows – a result that is very desirable.

6.3 Limitations

Although the results obtained in chapter 5 are promising, they must be interpreted with caution. The datasets

used are very small in machine learning terms and there is a possibility that our results may not be general-

isable to all patient datasets. This is further exacerbated by the fact that research datasets have been used,

which are likely to be cleaner and more complete than the average dataset.

A further limiting factor is the imbalanced nature of the datasets used in this study. The data used comes

from the Africa Centre treatment failure clinic and not from a general HIV treatment clinic, which would
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also include patients not failing treatment. As a result, the datasets used for training the predictive models

contain more patients with resistance than would typically be seen in the general population of HIV infected

individuals. This could reduce the viability of applying these techniques in a general clinical setting.

While many methods have shown very good results (up to 97% true positive rate in some cases), there

are many cases where the techniques are not very specific for some labels. This means that even though the

techniques are able to correctly identify cases of resistance well (i.e. they are very sensitive), they are not

able to detect susceptibility as well. The most extreme case of this is demonstrated by the blanket positive

predictions generated by a few of the techniques. It has been demonstrated that this lack of sensitivity

improves as the dataset grows, but the predictions produced by models trained on small datasets should be

used with caution. One way to address this limitation is to evaluate performance using numerous evaluation

measures.

The fact that feature and label dependencies have not been explicitly modelled may be an additional

limitation of this research. As discussed in section 6.2 above, some features do have an impact on each

other (CD4 count and viral load) and studies have shown that modelling label dependencies can have a

positive effect. It is therefore possible that the predictive models could be further optimised by explicit data

dependency modelling.

The final limiting factor has been touched on in section 6.2 above and has to do with the temporal nature

of the underlying clinical datasets. The phase during which stratification is applied and the cross validation

folds are generated does not take into account the time that each patient record was added to the dataset. It

is therefore possible that examples representing very old patient records could fall into a test set, while the

corresponding training set is comprised only of examples representing new patient records. This scenario is

not representative of how models would be used in a real clinical setting, since the models would be trained

using existing (older) data and a prediction would then be generated for the new (unseen) patient.

Despite these limitations, the models that have been trained and evaluated are still able to provide useful

predictive information. In section 7.1 strategies are discussed to address each of these limitations with the
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goal of improving the performance of the classification techniques and thereby increasing their potential

impact in the field.

6.4 Potential Application

Resource-limited public health treatment programs are usually characterised by limited availability of GRT,

second line therapy and highly skilled clinicians. In these settings, the predictive power demonstrated by

the classifiers may be sufficient to facilitate and improve clinical decision making. If the primary goal is to

optimise the use of GRT, then the techniques with the highest mean T NR values should be selected. This

is PCT on dataset 1 (see table 5.8), while HOMER has the highest T NR on dataset 2 (see table 5.10). If

the primary goal is new therapy selection, then BR-NB or ECC should be used, since these techniques have

the highest mean T PR values on dataset 1 and 2 respectively (see tables 5.7 and 5.11). If it is of particular

importance to know about the presence of resistance to a specific drug, then the method with the highest

T NR for that drug should be selected, since this minimises false positives.

The rationale for this research was to address the issue of detecting HIV drug resistance in resource-

limited settings such as South Africa. It is therefore necessary to discuss how the results of this research

can be integrated into the current clinical management process being used to treat patients HIV patients.

The Africa Centre works closely with the South African department of health on matters of HIV treatment

and particularly HIV treatment failure. Many of the clinicians consulted during the course of this study

have helped establish the drug resistance testing guidelines for South Africa [111]. Therefore, the treatment

failure clinical model used by the Africa Centre as well as the use of RegaDB as the clinical information

system is likely to scale up in the South African context. Since the processing pipeline has been designed

using these tools, it would be easy to integrate the models examined in this study (or any models for which

there is an implementation in Java) into the RegaDB system. This means that with a minimal amount of

effort, it would be possible to provide the information produced by the predictive models to clinical care

providers in real time.
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At least one study has investigated the potential utility of using computational models as part of the HIV

treatment process in Canada and Italy [9]. Twenty-three clinical care providers participated in the study,

which made a web interface available that allowed the care providers to make use of a set of predictive

models. The clinical care providers changed their treatment suggestions in 33% of cases based on the

output of the predictive models and 99% of care providers indicated that they would use the system if it was

available in practice. This study on utility, along with the results achieved by the models investigated using

data from an African context supports the idea that the output of this research could have real world impact.

One further point that increases the possible impact of this research is the fact that the predictive models

built in this study, except PCT, are all updateable. This means that as more data becomes available, the

models can be adjusted to incorporate the newly available information without having to be rebuilt from

scratch. This is advantageous in a production environment at scale, since for large datasets, rebuilding

the predictive models from scratch may not be viable when predictions are needed within limited time

frames. The fact that performance of the models improve with more data, and that new data can be added

incrementally increases the viability of deployment in the field.



Chapter 7

Conclusion and Future Work

This work investigates and evaluates multi-label classification techniques for predicting HIV drug resis-

tance. It was found that all models are able to provide useful predictive information for some drugs. The

performance of the ECC technique is comparable to what has been found in the recent literature and can

thus be considered on par with the state of the art.

Although the results of this research are promising, the claim is not made that predictive models trained

using only clinical, adherence and demographic data can completely replace the need for genotype resistance

testing at this stage. However, these techniques may be useful in resource-limited public health settings

where decisions such as whether to remain on the same therapy, and if not, which new drugs to select, need

to be made in the absence of a GRT result or a specialised clinician.

While none of the techniques stand out as a significantly good predictor for resistance to all drugs,

some methods perform well on a subset of the drugs. For example, the ECC technique is good at detecting

resistance to efavirens and nevirapine, achieving true positive prediction rates of 97% and AUC values of

0.83 and 0.82 respectively. This means that no single model should be relied on to predict resistance to all

of the drugs. Instead, an ensemble of models should be constructed to take advantage of the strengths of all

the models in order to produce a more accurate final prediction.

137
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Possibly the most important result that has been obtained is evidence that the models produce more

accurate and more consistent predictions as the underlying dataset grows. The advent of limited resistance

testing in the public antiretroviral therapy program in South Africa and the development of national surveil-

lance datasets will allow for the construction of much larger datasets and this could potentially drastically

increase the accuracy of the predictive models [111].

In conclusion, significant evidence has been provided supporting the original hypothesis that multi-label

classification techniques trained using only the demographic, routine treatment, laboratory and adherence

data, can successfully predict the presence of HIV drug resistance in a patient, without the need for a

genotype resistance test.

7.1 Future Work

During the course of this study, many future possible avenues of investigation have been identified. It has not

been possible to investigate all of these given the scope of the project, but many of the ideas are discussed

in the paragraphs that follow.

Large Datasets As larger datasets become available, it would be interesting to observe the impact on

performance of the classification models. Current evidence suggests that the predictive accuracy and con-

sistency will increase.

Feature Extraction It may be interesting to apply one or more feature extraction techniques such as

principle component analysis [112]. These techniques have been shown to increase the performance of

classification techniques. If this can be shown to be the case for these datasets, this process could be incor-

porated into the processing pipeline. Clustering techniques may also be used to identify which features are

most influential in the predictions.
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Real Field Test To test whether or not the models would be useful in a real clinical environment it is

necessary to deploy and evaluate them in such an environment. There are a few tasks that would need to

be completed before this could be done. First, the developed application would need to be integrated into

RegaDB so that clinical care providers could see the predictive information within the RegaDB application.

This would involve the small task of automating one or two processing pipeline steps that are not currently

fully automated (i.e. the manual running of scripts). A mechanism would also have to be developed to detect

when new data is added to the dataset and update the models accordingly. During the field test it would be

interesting to evaluate the effect of an early warning system that makes use of the models. For example, an

alert could be shown on the dashboard of a patient if the models predict that the patient is resistant to their

current treatment.

Simulated Field Test If it is not possible to perform an actual field test, there is also the possibility of

simulating a field test by taking the temporal nature of the underlying datasets into account. The dataset

would need to be examined more closely and patient data should be incrementally added to the models

in the same order in which they were added to the clinical information system. This would provide a fine-

grained view of the performance of the models over multiple points in time. Currently there is only evidence

of the performance increase of the models at two points in time.

Feature Augmentation There are different ways in which the training features can be constructed. For

example, various techniques for modelling feature and label dependencies can be tested. Training and

testing could be conducted with different subsets of the features and features could also be constructed that

explicitly encode the temporal nature of the underlying data. To model label dependencies, drug groups

could be used as the labels instead of using the individual drugs and the performance of the models could be

evaluated using these new labels. Finally, an attempt could be made to extract more information from empty

feature values and this information could be used during model training.
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Ensembles In order to develop a model that performs better for a wider range of drugs, various ensembles

of techniques can be investigated. Different combinations of multi-label classification techniques can be

combined with the goal of producing more accurate results for more drugs.

Test More Base Classifiers There are very many single label classifiers available and it might be interest-

ing to see how the performance of the multi-label classification techniques would change if different base

classifiers were used, especially those that have been modified for use on imbalanced datasets [103, 104].

More Data Sources All of the data used for training has been extracted from the RegaDB clinical infor-

mation system. It may be useful to extend the current framework to allow for data integration from multiple

databases and potentially other types of data sources.

Decision Tree Validation The decision trees used by the PCT method are able to produce human readable

decision trees. It would be very interesting to try to determine how well these decisions match up with the

decision making process used by clinical care providers when they are deciding what course of action to

take for patients who are failing HIV therapy.

Standard Deviation Per Measure Per Label It would be interesting to look at the individual standard

deviations per measure for each label, since this would help to separate the effects of sample variation from

those of algorithm differences.

Stratification by Length of Time Present in the Dataset In order to determine if it is better to have

fewer patients with longer histories or more patients with shorter histories in the dataset, it would be useful

to stratify by the length of the longitudinal records of patients. The following experiments could then be

conducted:
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• Train a classifier on dataset 2, but evaluate it on dataset 1.

• Reverse the above and train a classifier on dataset 1, but evaluate on dataset 2.
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