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Abstract

In graph theory, there are several techniques known in literature for constructing

spanning trees. Some of these techniques yield spanning trees with many leaves. We

will use these constructed spanning trees to bound several distance parameters.

The cardinality of the vertex set of graph G is called the order , n(G) or n. The

cardinality of the edge set of graph G is called the size, m(G) or m. The minimum

degree of G, δ(G) or δ, is the minimum degree among the degrees of the vertices of

G. A spanning tree T of a graph G is a subgraph that is a tree which includes all

the vertices of G. The distance d(u, v) between two vertices u and v is the length

of a shortest u − v path of G. The eccentricity , ec (v), of a vertex v ∈ V (G) is the

maximum distance from it to any other vertex in G. The diameter , diam(G) or d,

is the maximum eccentricity amongst all vertices of G. The radius , rad(G), is the

minimum eccentricity among all vertices of G. The average distance of a graph G,

µ (G), is the expected distance between a randomly chosen pair of distinct vertices.

We investigate how each constructed spanning tree can be used to bound diam-

eter, radius or average distance in terms of order, size and minimum degree. The

techniques to be considered include the radius-preserving spanning trees by Erdős et

al, the Ding et al technique, and the Dankelmann and Entringer technique. Finally,

we use the Kleitman and West dead leaves technique to construct spanning trees

with many leaves for various values of the minimum degree δ ≥ k (for k = 3, 4 and

k > 4) and order n. We then use the leaf number to bound diameter.
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Chapter 1

Introduction and Preliminaries

The purpose of this chapter is to define the most important terms that will be used

in this dissertation and to present motivation for our study. Terms not defined in

this chapter will be defined in subsequent chapters.

1.1 General Graph Theory terminology and defi-

nitions

A graph G is a finite non-empty set of objects, V (G), called vertices (the singular

is vertex), together with a set of unordered pairs of distinct vertices called edges ,

E(G). The cardinality of the vertex set of graph G is called the order , n(G) or n.

The cardinality of the edge set of graph G is called the size, m(G) or m. The edge

e = uv is said to join the vertices u and v. If e = uv is an edge of G, then u and v

are adjacent vertices , while u and e are incident , as are v and e. A complete graph,

Kn, of order n, is a graph in which every two distinct vertices are adjacent. The

complement of a graph G, G, is the graph with the same vertex set as G, and where

distinct vertices u and v are adjacent in G if and only if they are not adjacent in G.

The degree of v, d(v), is the number of edges of G incident with v. The Handshaking

Lemma states that in any graph, the sum of all the vertex degrees is equal to twice

the number of edges. A degree sequence is a list of the degrees of vertices of a graph

in non increasing order. The irregularity index of G, η(G) or η, is the number of

distinct terms in the degree sequence of G. A graph G is called k-regular if the

degree of every vertex of G is k. The minimum degree of G, δ(G) or δ, is the

minimum degree among the degrees of the vertices of G. The maximum degree of

G, ∆(G) or ∆ is the maximum degree among the degrees of the vertices of G. An
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end vertex is a vertex of a graph that has exactly one edge incident to it. A u− v
walk in a graph G is a finite, alternating sequence of vertices and edges that begins

with the vertex u and ends with the vertex v and in which each edge of the sequence

joins the vertex that precedes it in the sequence to the vertex that follows it in the

sequence. A walk in which all the edges are distinct is a trail . A u−v walk is closed

if u = v and open otherwise. If all the vertices and edges of a walk are distinct then

that trail is a path, P . A cycle, Cn, is a closed path. A subgraph H of a graph

G, H ≤ G, is a graph whose vertices belong to V (G) and the set of edges belong

to E(G). If W is a non-empty subset of vertices of graph G, then the subgraph

G(W ) of G induced by W is the graph having vertex set W and whose edge set

consists of all those edges of G incident with two vertices in W . A subgraph H of G

is called an induced subgraph of G if H = G(W ) for some subset W of V (G). Two

graphs G and H are isomorphic, G ' H if H can be obtained from G by relabeling

the vertices that is, there exists a one-to-one (f : V (G) → V (H)) correspondence

between vertices of G and those of H such that an edge joins any pair of vertices in

G if and only if an edge joins the corresponding pair of vertices in H. Such a function

f is called an isomorphism from G to H. A triangle-free graph is a graph in which

no three vertices form a triangle of edges. A graph is called C4-free if it contains no

cycle of length four as an induced subgraph. A graph is called connected if given

any two vertices vi, vj, there is a path from vi to vj. A component of a graph G is

a maximal connected subgraph of G. An edge cut of G is an edge whose deletion

increases the number of components. A tree T is a connected graph which contains

no cycles. A forest is a graph that has no cycles (each component of a forest is a

tree). A well known property of a tree is that a tree T of order n has size m(T )=

n − 1. A spanning tree T of a graph G is a subgraph that is a tree which includes

all the vertices of G. A leaf of a tree is an end vertex of T. The leaf number , L(G)

or L, is the maximum number of end vertices contained in a spanning tree of G.

The distance d(u, v) between two vertices u and v is the minimum length of the

u− v paths of G. This distance function d(u, v) is a metric, that is, it satisfies the

following fundamental properties, for all u, v, w ∈ V (G):

(i) d(u, v) ≥ 0 and d(u, v) = 0 if and only if u = v;

(ii) d(u, v)= d(v, u) (symmetry property);

(iii) d(u, v) ≤ d(u,w) + d(w, v) (triangle inequality).

We denote this distance by d(u, v), and in situations where clarity of context is

important, we may write dG(u, v). The open neighbourhood , NG(v), of a vertex v of

G is the set {x ∈ V : d(x, v) = 1}. The closed neighbourhood , NG[v], of a vertex v of
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G is the set NG[v] = NG(v) ∪ {v}. The eccentricity , ec (v), of a vertex v ∈ V (G) is

the maximum distance from it to any other vertex in G. The diameter , diam(G) or

d, is the maximum eccentricity amongst all vertices of G. The radius , rad(G), is the

minimum eccentricity among all vertices of G. The average eccentricity , avec (G),

is the mean of the eccentricities of vertices in G. A vertex v is a central vertex of

G if ec (v) = rad(G). The average distance of a graph G, µ (G), is the expected

distance between a randomly chosen pair of distinct vertices. A weighted graph is a

graph G in which each edge e is assigned a positive real number, called the weight

of e, denoted by w(e).

1.2 Overall approach and Motivation

In this dissertation, we will study several techniques for constructing a spanning

tree, with the aim of seeing how these spanning trees can be used to bound various

distance parameters. In particular, the techniques to be considered are the radius-

preserving spanning tree by Erdős et al [10], the spanning tree constructed by Ding

et al [8], the spanning tree constructed by Dankelmann and Entringer [7], and the

dead leaves spanning tree construction by Kleitman and West [13]. Thereafter, for

each of these techniques, we will derive various distance-related bounds on these

spanning trees. The distance-based upper or lower bounds to be considered will

be radius, diameter and average distance. These bounds will be functions of graph

invariants such as order, size and minimum degree.

Graph theory plays an important role in solving biological networks, network com-

munication and computer problems (for example, metabolic and gene regulation

networks in each cell, a city road system, computer processes or a telephonic ex-

change) [19, 21]. Using the properties of spanning trees, problems such as data

congestion, cost of devices (i.e., software and hardware) and performance of the

network can be solved [17]. A spanning tree can be used in an optical fibre network

system to bring us internet, cable TV and telephone services [18].

We study the distance parameters because of their importance in solving network or

communication problems. For example, diameter plays a significant role in analyz-

ing communication networks. In such networks, the time delay or signal degradation

for sending a message from one point to another is often proportional to the dis-

tance between the two points. The diameter can be used to indicate the worst-case
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performance in this scenario [5].

The radius also plays an important role in road systems. For example, a munic-

ipality might want to place an emergency facility like a hospital in the city. Here

the primary interest would be the distance to the emergency facility and a location

furthest away. The municipality would want to place the emergency facility where

the response time or distance is minimum. Then the radius of a graph would be

the minimum response time or distance from the emergency facility to a location

furthest away.

The average distance has been studied by a number of authors, [4, 6, 7, 14, 16].

For example the average distance of a graph can be used as the average travel time

between any two randomly chosen locations in the city, and in architecture as a

tool for evaluation of floor plans. Here each room corresponds to a vertex, and two

vertices are adjacent if it is possible to move directly between the corresponding

rooms [16].
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Chapter 2

Bounds on distances in terms of

Order, Size and Minimum degree

In this chapter, we consider a distance-preserving spanning tree, and find bounds on

distance parameters in terms of order and size, as well as bounds in terms of order

and minimum degree. In each case, we investigate how the constructed spanning

tree can be used to bound radius, diameter or average distance.

2.1 Distance-preserving spanning tree

A spanning tree T of a connected graph G is said to be distance-preserving from a

vertex v in G if dT (u, v) = dG(u, v) for every vertex u ∈ V (G). To find a distance-

preserving spanning tree, we use the Breadth First Search (BFS). This is an algo-

rithm for traversing or searching tree or graph data structures. It starts at the tree

root (an arbitrary vertex v) and explores the neighbour vertices first, before moving

to the next level neighbours. This algorithm guarantees that we will get a spanning

tree which is distance-preserving from the root vertex v.

We present two well known properties of graphs.

Theorem 2.1. Let G be a connected graph. Then rad(G) ≤ diam(G) ≤ 2 rad(G).

Proof. The inequality rad(G) ≤ diam(G) follows directly from the definitions of

radius and diameter.

To prove the second inequality, let u, v ∈ V (G) be a diametral pair of vertices, that

is, d(u, v) = diam(G). Furthermore, let w ∈ V (G) be a central vertex. Therefore

ec (w) = rad(G). Observe that since ec (w) is the maximum distance from w to all
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other vertices, then ec (w) ≥ d(u,w) for every vertex u ∈ V (G).

By the triangle inequality and the symmetry property,

LHS = diam(G)

= d(u, v)

≤ d(u,w) + d(w, v)

= d(u,w) + d(v, w)

≤ ec (w) + ec (w)

= 2 ec (w)

= 2 rad(G)

= RHS.

Thus, we have shown that diam(G) ≤ 2 rad(G), and the proof is complete.

Theorem 2.2. For every vertex v of a connected graph G, there exists a spanning

tree T of G that is distance-preserving from v.

Proof. Let κ be the eccentricity of vertex v in G. For 1 ≤ i ≤ κ, consider the

distance layers

Ni(v)={u ∈ V (G) | d(u, v) = i}

We want to construct a spanning tree T that is distance-preserving from v. To do

this we are going to use the BFS algorithm. Since G is connected it follows that

every vertex u 6= v belongs to Ni for some 0 ≤ i ≤ κ. Let vertex v be a root

vertex. By connectivity every vertex u ∈ Ni is adjacent to at least one vertex in

the set Ni−1(v) and possibly to vertices in sets Ni(v) and Ni+1(v). We begin the

construction of tree T by joining v to all neighbour vertices in set N1(v). To further

construct T we do it step by step for 1 ≤ i ≤ κ.

Step 1: Level Ni(v)

For each u ∈ Ni(v), delete all edges except for one edge that joins u to vertex of

Ni−1(v) or Ni+1(v). Also remove every other edge that joins vertices in this set Ni(v)

(or Ni+1(v)) such that no two vertices in the same set are joined.

Step 2: Level Ni+1(v)

To proceed to the next level neighbour Ni+1(v), we choose any vertex u in the pre-

vious level Ni(v) and we join it to all neighbour vertices in set Ni+1(v). We then

use step 1 to make sure that no vertices in set Ni+1(v) are joined. We repeat this
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process for each vertex in set Ni(v) until we get T . See for example Figure 2.1. The

BFS creates a u − v path for each u 6= v in G to produce T and V (G) = V (T ).

Hence, T spans G. Therefore, T is connected, and is distance-preserving from v.

We show that T is a tree. We only need to prove that T is acyclic. By contradiction,

assume T has a cycle C. Let w be a vertex of C whose distance from v is maximum.

Furthermore, let w1 and w2 be the vertices adjacent to w on C. Assume that w ∈ Nk.

Since w1 and w2 are on C, wi (i = 1, 2) may belong to set Nk or Nk−1. If w1 ∈ Nk

(or w2 ∈ Nk), this means that w and w1 (or w2) are joined. This contradicts our

construction of T , which requires that no two verticies in set Ni are joined. Now

we look at the case where wi (i = 1, 2) belong to the set Nk−1. We earlier assumed

that both w1 and w2 are adjacent to w on C. This means that w1 and w2 in set

Nk−1 are joined to the same vertex w in set Nk. This contradicts our construction

of T which requires that only one edge in T joins a vertex in Ni(v) to a vertex in

Ni−1(v). Therefore, T is acyclic and hence is a tree.

v

vv

v v

v
v

v v

vv

v v

v
v

v

G T

Figure 2.1: A connected graph G and a spanning tree T that is distance-preserving

from v.

The following corollary shows that for every connected graph, it is possible to form

a radius-preserving spanning tree.

Corollary 2.3. Every connected graph G has a spanning tree T with rad(G) = rad(T).

Proof. Let v ∈ V (G). We use the method of Breadth First Search to construct a

distance-preserving spanning tree T of G from a root vertex v. Since dG(v, u) ≤
dT (v, u) for all u in V (G), we conclude that ∀x ∈ V (G), ecG(x) ≤ ecT (x). But

since we are constructing a distance-preserving spanning tree from v, we have
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dG(v, u) = dT (v, u) for all u in V (G), and hence, ecT (v) = ecG(v). Let v be a

central vertex of G. Then v must also be a central vertex of T. We therefore have

rad (T ) ≥ rad (G) = ecG(v) = ecT (v) ≥ rad (T ).

Equality holds, and hence

rad (G) = rad (T ).

In the following we are going to use the properties of a distance-preserving spanning

tree from Theorem 2.2 (dG(v, u) = dT (v, u)) and Corollary 2.3 (rad(G) = rad(T ))

to prove Theorem 2.4.

Theorem 2.4. (Erdős et al [10]) Let G be a connected graph of order n and mini-

mum degree δ ≥ 2. Then

rad(G) ≤ 3(n− 3)

2(δ + 1)
+ 5.

Proof. Let v be a root vertex ofG such that the eccentricity of v, ec(v) = rad(G) = r.

Let Ni(v) = {u ∈ V (G) | dG(v, u) = i} for 0 ≤ i ≤ r. Now we generate a distance-

preserving spanning tree.

For each vertex u ∈ Ni, join it to a vertex ú ∈ Ni−1 by means of an edge such

that uú ∈ E(G) (1 ≤ i ≤ r). We do this for each u ∈ Ni until we reach the root ver-

tex v. Note that we have generated a spanning tree T which is distance-preserving

from v. Therefore, by Theorem 2.2 we have dG(v, u) = dT (v, u), ∀y ∈ V (G) = V (T ).

For an arbitrary vertex z, let Pz = T (v, z) be the v − z path in T. Define N ≤j =⋃
0≤i≤j

Ni, and N ≥j =
⋃
j≤i≤r

Ni. Fix a vertex z ∈ Nr. See Figure 2.2. We say that a

vertex w ∈ V (G) is related to z if there exists a vertex ź ∈ Pz ∩N≥5 and a vertex

ẃ ∈ Pw ∩N≥5 such that dG(ź, ẃ) ≤ 2.

We show that there exists a vertex far from v that is not related to z.

Lemma 2.5. There exists a vertex w ∈ N≥r−5 which is not related to z.

Suppose to the contrary that every vertex w ∈ N≥r−5 is related to z. Let a be the

only vertex in Pw which belongs to N5. So dT (v, a) = 5. Then, for any y ∈ N≤r−6,
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dT (v, y) ≤ r − 6.

dT (a, y) ≤ dT (a, v) + dT (v, y)

≤ 5 + r − 6

= r − 1

This tell us that the distance between a and any vertex y ∈ N≤r−6 is at most r− 1.

Note: dT (v, ź) = dT (v, a) + dT (a, ź), dT (v, w) = dT (v, ẃ) + dT (ẃ, w) and dT (v, w) ≤ r.

Let w ∈ N≥r−5 be an arbitrary vertex. Since w and a are related, there exists a

vertex ẃ ∈ Pw ∩N≥5 and vertex á ∈ Pa ∩N≥5 such that dT (ẃ, á) ≤ 2.

dT (a, w) ≤ dT (a, ź) + dT (ź, ẃ) + dT (ẃ, w)

≤ (dT (v, ź)− dT (v, a)) + 2 + (dT (v, w)− dT (v, ẃ))

≤ (dT (v, ź)− 5) + 2 + (r − dT (v, ẃ))

= r − 3 + dT (v, ź)− dT (v, ẃ).

By the triangle inequality dT (v, ź) ≤ dT (ź, ẃ) + dT (v, ẃ) we get,

dT (a, w) ≤ r − 3 + dT (ź, ẃ)

≤ r − 1.

We have shown that dT (a, y) ≤ r − 1 for all y ∈ V (G) = V (T ) in the set N≤r−6.

We have furthermore shown that dT (a, w) ≤ r − 1 for all w ∈ V (G) = V (T ) in the

set N≥r−5. This means that ∀y ∈ V (G) = V (T ), ec(a) ≤ r − 1 which contradicts

the assumption that the ec(v) = r. Therefore it cannot be true that every vertex

w ∈ N≥r−5 is related to z. Hence the lemma is shown.

If w ∈ N≥r−5 is not related to z, then we cannot find two vertices ź ∈ Pz ∩ N≥5
and ẃ ∈ Pw ∩ N≥5 such that dG(ź, ẃ) ≤ 2. For any i, let Ńi and

´́
Ni denote a set

of all vertices in Ni whose distance is at most 1 from any vertex q in Pw ∩ N≥5
and Pz ∩ N≥5 respectively. Therefore Ńi = {q ∈ V (G) : dT (q, Pz ∩ N≥5) ≤ 1} and
´́
Ni = {q ∈ V (G) : dT (q, Pw ∩N≥5) ≤ 1}. Since z and w are not related,(

∪ri=4 Ńi

)
∩
(
∪ri=4

´́
Ni

)
= Ø.

By the definition of minimum degree,

|Ńi−1|+ |Ńi|+ |Ńi+1| ≥ δ + 1 for all 5 ≤ i ≤ r,

| ´́Ni−1|+ | ´́Ni|+ | ´́Ni+1| ≥ δ + 1 for all 5 ≤ i ≤ s,
(2.1)

10



where

N = dT (v, w) ≥ r − 5. (2.2)

We show that
r∑
i=5

(|Ńi−1|+ |Ńi|+ |Ńi+1|) ≥
r∑
i=4

|Ńi|,

LHS =
r∑
i=5

(|Ńi−1|+ |Ńi|+ |Ńi+1|)

= (|Ń4|+ |Ń5|+ |Ń6|+ . . .+ |Ńr−1|) + (|Ń5|+ |Ń6|+ |Ń7|+ . . .+ |Ńr−1|+ |Ńr|)
+ (|Ń6|+ |Ń7|+ |Ń8|+ . . .+ |Ńr−1|+ |Ńr|+ |Ńr+1|)

= |Ń4|+ 2 |Ń5|+ 3 (|Ń6|+ |Ń7|+ |Ń8|+ . . .+ |Ńr−1|) + 2 |Ńr|+ |Ńr+1|.

Note:

(i) |Ń4|+ 2 |Ń5|+ 2 |Ńr| ≥ |Ń4|+ |Ń5|+ |Ńr|
(ii) 3 (|Ń6|+ |Ń7|+ |Ń8|+ . . .+ |Ńr−1|) ≥ |Ń6|+ |Ń7|+ |Ń8|+ . . .+ |Ńr−1|
(iii) |Ńr+1| = 0, since the maxy∈V (G) dG(v, y) = rad(G) = r.

Therefore,

LHS = |Ń4|+ 2 |Ń5|+ 3 (|Ń6|+ |Ń7|+ |Ń8|+ . . .+ |Ńr−1|) + 2 |Ńr| (2.3)

≥ |Ń4|+ |Ń5|+ |Ń6|+ |Ń7|+ |Ń8|+ . . .+ |Ńr−1|+ |Ńr|. (2.4)

We have,

RHS =
r∑
i=4

|Ńi| = |Ń4|+ |Ń5|+ |Ń6|+ |Ń7|+ |Ń8|+ . . .+ |Ńr−1|+ |Ńr|. (2.5)

Therefore, by inequality (2.4) and equation (2.5), LHS ≥ RHS.

Similarly, it can be shown that
s∑
i=5

(| ´́Ni−1|+ | ´́Ni|+ | ´́Ni+1|) ≥
s+1∑
i=4

| ´́Ni|.

We know that n = nT = nG, then we have

n ≥ |N≤3|+
r∑
i=4

|Ńi|+
s+1∑
i=4

| ´́Ni|. (2.6)

Consider |N≤3|, then we have |N≤3| = |N3| + |N2| + |N1| + |N0|. By inequalities

(2.1), |N3|+ |N2|+ |N1| ≥ δ + 1 and |N0| = 1. Therefore,

|N≤3| ≥ δ + 2. (2.7)

We want to show:

11



r∑
i=4

|Ńi| ≥
{ r∑

i=5

1

3
(|Ńi−1| + |Ńi| + |Ńi+1|) + 1

}
or equivalently we need to show

that
r∑
i=4

|Ńi|−
r∑
i=5

1

3
(|Ńi−1|+ |Ńi|+ |Ńi+1|) ≥ 1. Let LHS =

r∑
i=4

|Ńi|. Using equation

(2.5) the LHS =
r∑
i=4

|Ńi| = |Ń4| + |Ń5| + |Ń6| + |Ń7| + |Ń8| + . . . + |Ńr−1| + |Ńr|.

Consider the second term

( r∑
i=5

1

3
(|Ńi−1| + |Ńi| + |Ńi+1|

)
on the right hand side.

Then by equation (2.3),

r∑
i=5

1

3
(|Ńi−1|+ |Ńi|+ |Ńi+1|) =

1

3
(|Ń4|+ 2 |Ń5|+ 3 (|Ń6|+ |Ń7|+ |Ń8|+ . . .+ |Ńr−1|) + 2 |Ńr|)

=
1

3
|Ń4|+

2

3
|Ń5|+

2

3
|Ńr|+ |Ń6|+ |Ń7|+ |Ń8|+ . . .+ |Ńr−1|.

So now we are going to show that LHS−RHS≥ 1.

We have LHS−RHS = 2
3
|Ń4|+ 1

3
|Ń5|+ 1

3
|Ńr|. Since |Ń4| ≥ 1, |Ń5| ≥ 1 and |Ńr| ≥ 1,

we get that 2
3
|Ń4|+ 1

3
|Ń5|+ 1

3
|Ńr| ≥ 2

3
+ 1

3
+ 1

3
≥ 1. Therefore,

LHS− RHS ≥ 1

LHS ≥ RHS + 1

≥
{ r∑

i=5

1

3
(|Ńi−1|+ |Ńi|+ |Ńi+1|) + 1

}
.

(2.8)

Also, we want to show that,

s+1∑
i=4

| ´́Ni| −
s∑
i=5

1

3
(| ´́Ni−1|+ | ´́Ni|+ | ´́Ni+1|) ≥ 1.

Let LHS =
s+1∑
i=4

| ´́Ni| and RHS=
s∑
i=5

1

3
(| ´́Ni−1|+ | ´́Ni|+ | ´́Ni+1|).

So, the LHS =
s+1∑
i=4

| ´́Ni| = | ´́N4|+ | ´́N5|+ | ´́N6|+ | ´́N7|+ | ´́N8|+ . . .+ | ´́Ns−1|+ | ´́Ns|+ | ´́Ns+1|.

Note

s∑
i=5

1

3
(| ´́Ni−1|+| ´́Ni|+| ´́Ni+1|) =

1

3
| ´́N4|+

2

3
| ´́N5|+| ´́N6|+| ´́N7|+| ´́N8|+. . .+| ´́Ns−1|+

2

3
| ´́Ns|+

1

3
| ´́Ns+1|). (2.9)
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We show that LHS−RHS≥ 1.

We have LHS−RHS = 2
3
| ´́N4| + 1

3
| ´́N5| + 1

3
| ´́Ns| + 2

3
| ´́Ns+1|. Since | ´́N4| ≥ 1, | ´́N5| ≥ 1

| ´́Ns| ≥ 1 and | ´́Ns+1| ≥ 1, we get that 2
3
| ´́N4|+ 1

3
| ´́N5|+ 1

3
| ´́Ns|+ 2

3
| ´́Ns+1| ≥ 2

3
+ 1

3
+ 1

3
+ 2

3
≥

1. Therefore,

LHS− RHS ≥ 1

LHS ≥ RHS + 1

≥
{ s∑

i=5

1

3
(| ´́Ni−1|+ | ´́Ni|+ | ´́Ni+1|) + 1

}
.

(2.10)

Substitute inequalities (2.1), (2.7), (2.8) and (2.10) into (2.6) and using the obser-

vation that
r∑
i=a

(1) = r − a+ 1 we get,

n ≥ |N≤3|+
r∑
i=4

|Ńi|+
s+1∑
i=4

| ´́Ni|

≥ δ + 2 +

{ r∑
i=5

1

3
(|Ńi−1|+ |Ńi|+ |Ńi+1|) + 1

}
+

{ s∑
i=5

1

3
(| ´́Ni−1|+ | ´́Ni|+ | ´́Ni+1|) + 1

}
≥ δ + 4 +

1

3
(r − 4)(δ + 1) +

1

3
(s− 4)(δ + 1).

From inequality (2.2) we have s ≥ r − 5,

1

3
(s− 4) ≥ 1

3
(r − 9)

1

3
(s− 4)(δ + 1) ≥ 1

3
(r − 9)(δ + 1).

Therefore,

δ + 4 +
1

3
(r − 4)(δ + 1) +

1

3
(s− 4)(δ + 1) ≥ (δ + 1) + 3 +

1

3
(r − 4)(δ + 1) +

1

3
(r − 9)(δ + 1)

≥ 1

3
(δ + 1)(r − 4 + r − 9 + 3) + 3

≥ 1

3
(2r − 10)(δ + 1) + 3.

Rearranging we get,

rad(G) = rad(T ) ≤ 3(n− 3)

2(δ + 1)
+ 5, by Corollary 2.3.

We have shown that there exists a vertex far from v that is not related to z. Then

the proof of Theorem 2.4 is complete.
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Figure 2.2: Spanning tree T illustrating path Pz and path Pw.

In the next section, we consider bounds in terms of order and size.

2.2 Bounds in terms of Order and Size

In this section we will use the Ding et al [8] spanning tree construction method to

find an upper bound on diameter in terms of order and size. The Ali et al [1] paper

uses the Ding et al method to derive this bound on diameter.

2.2.1 Upper bound on Diameter

We are going to prove Theorem 2.6 to illustrate how Ding et al constructed a span-

ning tree. We are not going to prove Theorem 2.7, but we will use it later to help

derive a bound on diameter on a constructed spanning tree.

For the next theorem we will need the following definition. For any integer n > t ≥ 2,

define

f(n, t) =


n+ 1

2
(t2 − 4) if n = t+ 2 and t is even

n+ 1
2
(t2 − 5) if n = t+ 2 and t is odd

n+ 1
2
(t2 − t− 2) if n = t+ 1 or n ≥ t+ 3.

14



Theorem 2.6. (Ding et al [8]) For all integers n > t ≥ 2 there is a connected

graph with n vertices and f(n, t) edges in which every spanning tree has ≤ t leaves.

Theorem 2.7. (Ding et al [8]) For all integers n > t ≥ 2 every connected graph

with n vertices and > f(n, t) edges has a spanning tree with > t leaves.

The following observation will help prove part of Theorem 2.6.

Observation 1. A graph and its complement cannot both be disconnected.

Proof. Let G be a disconnected graph and G be its complement. Consider two

vertices u and v in both G and G. If u and v are not adjacent in G, then they must

be adjacent in G. Hence there exists a u − v path in G. If u and v are adjacent

in G, then u and v must belong to the same component of G. Now let w be some

vertex in another component of G. Since w is in a different component in G this

implies that the edges uw and vw do not exist in G but exist in G. Therefore in G

there exists a u − w − v path. Hence there exists a path between any two vertices

of G, then G is connected.

The following is a proof of Theorem 2.6.

Proof. We are going to prove this theorem using two cases.

Case 1:

If n = t+ 2, let H be a graph with n vertices and d1
2
ne edges, in which every vertex

has degree ≥ 1. Note that H is disconnected. Let Pn be a path of order n, so

H ' n
2
P2 if n is even, and H ' n−3

2
P2 ∪ P3 if n is odd. Let G be its complement,

then by Observation 1, G is connected.

Now we show that |E(G)|= f(n, t), for t even and for t odd.

For t even:

LHS = |E(G)|

=

(
n

2

)
−
⌈
n

2

⌉
=
n(n− 1)

2
− n

2
substituting n = t+ 2

=
(t+ 2)(t+ 2− 1)

2
− n

2

15



= −n
2

+
1

2
(t2 + 3t+ 2)

= −n
2

+
1

2
(t2 + 3(n− 2) + 2) for t = n− 2

= −n
2

+
1

2
(t2 + 3n− 4)

= n+
1

2
(t2 − 4).

For t odd:

LHS = |E(G)|

=

(
n

2

)
−
⌈
n

2

⌉
=
n(n− 1)

2
− n+ 1

2
substituting n = t+ 2

=
(t+ 2)(t+ 2− 1)

2
− n+ 1

2

= −n+ 1

2
+

1

2
(t2 + 3t+ 2)

= −n+ 1

2
+

1

2
(t2 + 3(n− 2) + 2) for t = n− 2

= −n+ 1

2
+

1

2
(t2 + 3n− 4)

= n+
1

2
(t2 − 5).

Now we show that every spanning tree T of G has at most t leaves. Since t = n− 2,

we will show that T has maximum n − 2 leaves. In both even and odd cases each

vertex of G has degree (n − 2) except for the central vertex in P3 in the odd case.

The degree of the central vertex in P3 is (n−3). We first look at the even case. Since

every vertex of the even case has degree (n− 2), let w be a vertex in G. The vertex

w is adjacent to (n − 2) vertices, so every possible spanning tree T is constructed

such that w is adjacent to all (n− 2) vertices. There is a vertex u which is adjacent

to w in G but not adjacent to w in H. Since G is connected, u must be connected to

some vertex x which is adjacent to w. The vertex w is adjacent to (n − 2) vertices

which gives (n − 2) leaves. But the addition of the ux edge decreases the number

of leaves by one. We note that u in T is adjacent to x only. Therefore, u is a leaf,

hence the number of leaves of T is,

(n− 2) + 1− 1 = n− 2 = t.

Now we look at the odd case. Graph G has vertices of degree (n−2) and a vertex of

degree (n− 3). If we choose any vertex say w of degree (n− 2), this follows exactly

16



the even case in which we showed that every spanning tree T has at most t leaves.

Suppose w is the vertex of degree (n− 3). By applying the same logic applied to w

in the even case we get that the maximum number of leaves is

(n− 3) + 1− 1 = n− 3 = t− 1.

Thus, if w has a degree of (n− 3) we get (t− 1) leaves which are less than t leaves.

Therefore, we can conclude that every spanning tree T of G has at most t leaves.

Case 2:

Consider n = t + 1 or n ≥ t + 3. Let G be obtained from graph Kt+1 by replacing

some edge e = xy by a path P with n− t edges between vertices x and y, the ends

of e. By definition a complete graph is connected. So, replacing e by the path P to

form graph G does not effect the connectivity.

We show that |E(G)|= f(n, t). By the construction of G, we have:

LHS = |E(G)|

=

(
t+ 1

2

)
− 1 + (n− t)

=
(t+ 1)(t+ 1− 1)

2
− 1 + (n− t)

=
t2 + t

2
− 1 + (n− t)

= n+
1

2
(t2 − t− 2)

= RHS.

We know that every vertex of a complete graph Kn has degree n− 1. For our case

we have a complete graph Kt+1 with every vertex having degree (t + 1) − 1. Note

that a tree of a complete graph Kn has at most n − 1 leaves. Hence n − 1 is the

maximum number of leaves of a spanning tree of Kn. The order of G is equal to

(t+ 1)− 1 + n− t = n, which satisfies the hypothesis of the theorem.

Now we show that every spanning tree T of G has at most t leaves. We will show

that t is the maximum number of leaves every spanning tree T can possibly have. In

G we have, Ḱt+1, a complete graph with one edge, e, missing and P. To construct T

of G with maximum t leaves, we first look at Ḱt+1 and we see that every spanning

tree T will have a maximum number of leaves equal to (t+ 1)− 1 = t. Then we add

the path P reducing by one the number of leaves of T. But since we are constructing
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a spanning tree we remove one edge from P which allows at most one extra leaf in

T. Then the maximum number of leaves of T is,

t− 1 + 1 = t.

Therefore, every spanning tree has at most t leaves. Our proof is complete.

We will present Theorem 2.9, an upper bound on diameter in terms of order and

size. We will show that this bound is close to sharp on the diameter except for a

small difference of 2 when compared to the diameter of a path-complete graph.

To help prove Theorem 2.9 we are going to use Theorem 2.8 (stated without proof)

which uses the Ding et al approach to construct a spanning tree.

Theorem 2.8. (Ali et al [1]) Let G be a connected graph of order n and size m. If

m ≥ n+
1

2
t(t− 1), then G has a spanning tree with more than t leaves.

A path-complete graph, PKn,m, is a graph obtained by taking one copy of a path,

P, and one copy of a complete graph Ka, and joining one end vertex of P to one or

more vertices of Ka. See example Figure 2.3.

The path-complete graph, for n− 1 ≤ m ≤
(
n

2

)
, has diameter

diam(PKn,m) = n+

⌊
1

2
−
(√

2m− 2n+
17

4

)⌋
.

This equality is attained if an end vertex of the path is joined to all vertices of

the complete graph except for one vertex.

It can be seen in Figure 2.3 that the diameter of PK9,22 is 4. Applying the values

(n = 9,m = 22) into the formula we find:

diam(PK9,22) = 9 +

⌊
1

2
−
(√

2(22)− 2(9) +
17

4

)⌋
= 9 + b−5c
= 9− 5

= 4.
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Figure 2.3: A path-complete graph PK9,22 with diameter = 4.

For the following proof, note that since x− 1 < bxc ≤ x, we have that

x− 1 < bxc ≤ x

x− 1 < bxc,

and hence −x+ 1 > −bxc. (2.11)

Theorem 2.9. (Ali et al [1]) Let G be a connected graph of order n and size m,

m ≥ n. Then G has a spanning tree T of diameter at most

n+
1

2
−
√

2m− 2n+
1

4
.

Proof. Let t be the largest integer such that m ≥ n +
1

2
t(t − 1). We prove our

theorem in two cases.

Case 1: n 6= t+ 2.

By Theorem 2.8, G has a spanning tree T with at least t + 1 leaves. Let d be the

diameter of T . The number of leaves of T , L(T ), is at most the difference between

the order and the number of internal vertices on a diametral path of T . We know

that there are (d − 1) internal vertices on the diametral path of T . Therefore, we

have L(T ) ≤ n− (d− 1). By Theorem 2.8, L(T ) ≥ t + 1. This yield

t+ 1 ≤ L(T ) ≤ n− d+ 1.

d ≤ n− L(T ) + 1 ≤ n− t. (2.12)
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Since t is the largest integer such that m ≥ n+
1

2
t(t− 1):

t2 − t+ 2m− 2n ≤ 0.

Using the quadratic formula, t1,2 =
−(−1)±

√
(−1)2 − 4(1)(2m− 2n)

2

=
1

2
±
√

2m− 2n+
1

4

For t is the largest integer, t ≥
⌊

1

2
+

√
2m− 2n+

1

4

⌋
.

We take this inequality and substitute it back into inequality (2.12).

d ≤ n− t ≤ n−
⌊

1

2
+

√
2m− 2n+

1

4

⌋
d ≤ n−

⌊
1

2
+

√
2m− 2n+

1

4

⌋
.

By observation (2.11), and substituting x =
1

2
+

√
2m− 2n+

1

4
, we conclude that

d ≤ n+
1

2
−
√

2m− 2n+
1

4
,

as desired.

Case 2: n = t+ 2.

Therefore t = n− 2, then m ≥ n+
1

2
t(t− 1) =

1

2
n (n − 3) + 3.

Claim 1. G has a vertex of degree at least (n− 2).

We prove this claim by contradiction. Assume that G does not have a vertex of

degree at least (n− 2). So, the largest degree of every vertex in G is (n− 3).

By the Handshaking Lemma

m =
1

2

∑
v∈V (G)

d(v)

≤ 1

2
n (n− 3)

<
1

2
n (n − 3) + 3.

This is a contradiction to our choice of t (m ≥ 1

2
n (n − 3) + 3), and the claim is

shown.
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Claim 2. G has a spanning tree of diameter at most 3.

We show that G has a spanning tree T ′ of diameter at most 3. We have shown in

Claim 1 that G has some vertex, say w, of degree at least (n− 2), so the vertex w is

adjacent to at least (n−2) vertices. Since any vertex in graph G of order n can have

a maximum of (n − 1) degree, we are only going to consider the vertex w to have

degree (n− 2) or (n− 1). If w has degree (n− 2), there must exist some vertex u in

G not adjacent to vertex w, but adjacent to some vertex x which is adjacent to w.

Applying the BFS on G we are able to construct a spanning tree T ′ with diameter

3. On the other hand, if w has degree (n − 1), applying the BFS on G we get a

spanning tree T ′ of diameter 2. We have shown that in G we can get a spanning

tree T ′ with diameter 2 or 3. Therefore

dT ′ ≤ 3.

Our claim is shown.

Claim 3. n+
1

2
−
√

2m− 2n+
1

4
= 3.

We show that 3 ≥ n+
1

2
−
√

2m− 2n+
1

4
, given m ≥ 1

2
n (n− 3) + 3.

So, 2m ≥ n(n− 3) + 6

2m ≥ n2 − 3n+ 6

2m− 2n+
1

4
≥ n2 − 5n+ 6 +

1

4
. (2.13)

We would like to introduce a square root on both sides of (2.13.)

Since m ≥ n, we have

2m− 2n ≥ 0

2m− 2n+
1

4
≥1

4
.

The hypothesis of Theorem 2.9 (m ≥ n) implies that n ≥ 3. Thus, n− 5
2
≥ 0. But

n2− 5n+ 6 + 1
4

= (n− 5
2
)2. Hence, we can introduce the square roots on both sides

of inequality (2.13.).
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√
2m− 2n+

1

4
≥
√
n2 − 5n+

25

4√
2m− 2n+

1

4
≥

√(
n− 5

2

)2

−
√

2m− 2n+
1

4
≤ −

√(
n− 5

2

)2

−
√

2m− 2n+
1

4
≤ −

∣∣∣∣n− 5

2

∣∣∣∣
1

2
−
√

2m− 2n+
1

4
≤ − n+

5

2
+

1

2

n+
1

2
−
√

2m− 2n+
1

4
≤ 3,

as required.

However, if 3 > n +
1

2
−
√

2m− 2n+
1

4
, we get 2 ≥ n+

1

2
−
√

2m− 2n+
1

4
which

implies

2 ≥n+
1

2
−
√

2m− 2n+
1

4

2m− 2n+
1

4
≥
(
n− 3

2

)2

2m ≥n2 − n+ 2

m ≥ n
2 − n

2
+ 1

m ≥
(
n

2

)
+ 1.

This is a contradiction since m ≤
(
n

2

)
the number of edges in a complete graph Kn.

Therefore 3 ≯ n+
1

2
−
√

2m− 2n+
1

4
. Hence 3 = n+

1

2
−
√

2m− 2n+
1

4
.

Our claim is shown.

By Claims 2 and 3,

dT ′ ≤ 3 = n+
1

2
−
√

2m− 2n+
1

4

dT ′ ≤ n+
1

2
−
√

2m− 2n+
1

4
.
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Case 2 is shown, with T = T ′ and the proof of Theorem 2.9 is complete.

Theorem 2.9 has shown that there is a spanning tree T for which

dT ≤ n +
1

2
−
√

2m− 2n+
1

4
. This bound is sharp up to a small additive con-

stant. Note that the diameter of the path-complete graph, PKn,m and the bound

of Theorem 2.9, differ by at most 2.

The Ali et al paper [1] uses the result of Theorem 2.9 to derive an almost sharp

upper bound on the average eccentricity of graphs of given order and size. This is

stated here without proof.

Theorem 2.10. (Ali et al [1]) Let G be a connected graph of order n and size m,

m ≥ n. Then

avec (G) ≤ 3

4
n− m

2n
− 1

2

√
2m− 2n+

1

4
+

1

4p

√
2m− 2n+

1

4
+

1

8p
+

3

4
.

In the next section, we investigate upper bounds on average distance and diameter

in terms of order and minimum degree.

2.3 Bounds in terms of Order and Minimum de-

gree

We consider how a constructed spanning tree by the methods of Dankelmann and

Entringer [7] and Mukwembi [15] can be used to bound average distance and diam-

eter respectively.

2.3.1 Upper bound on Average Distance

We now present an upper bound on the average distance for graphs in terms of order

and minimum degree.

Definition 1. The kth power of G, denoted by Gk, is a graph with the same vertex

set as G, in which two vertices u 6= v ∈ V (G) are adjacent if dG(u, v) ≤ k.

Definition 2. A k packing A of G is a subset of V (G) such that for all u, v ∈ A,

d(u, v) > k. A k packing set A is maximal if A is a set with the largest cardinality.
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Definition 3. Let A ⊂ V (G), then dG(x,A), the distance between a vertex x and

A, is defined as minv∈A dG(x, v).

The next definition is motivated as follows. Let G be a graph with vertices that

act as a host of facilities. And let µ(G) be the expected distance between any pair

of randomly chosen vertices or facilities. Note that every vertex hosts exactly one

facility.

Now assume that some vertices host more than one facility. Furthermore, let the

distance between the two facilities located on the same host be zero.

Let c(x) be the number of facilities located in vertex x. Hence N =
∑

x∈V (G)

c(x) is

the total number of facilities. Then the expected distance between two randomly

selected distinct facilities equals

(
N

2

)−1 ∑
x,y∈V (G)

c(x)c(y)d(x, y).

Definition 4. For a weighted graph G with weight function c : V (G) → Z define

the distance of G with respect to c by

σc(G) =
∑

x,y∈V (G) c(x)c(y)d(x, y),

and the average distance of G with respect to c by

µc(G) =

(
N

2

)−1
σc(G),

where N =
∑

v∈V (G)

c(x) is the total weight of the vertices in G.

We are going to use Lemma 2.11 (stated without proof) to help prove Theorem 2.12.

Lemma 2.11. Let G be a weighted graph with weight function c, and let k,N be

positive integers, N a multiple of k such that c(v) ≥ k for every vertex v of G and∑
v∈V (G)

c(v) ≤ N . Then

µc(G) ≤ N − k
N − 1

N + k

3k
.

Equality holds if and only if G is a path and c(v) = k for every v ∈ V (G).

Theorem 2.12. (Dankelmann and Entringer [7]) Let G be a connected graph with

n vertices and minimum degree δ. Then G has a spanning tree T with

µ(T ) ≤ n

δ + 1
+ 5.
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Apart from the additive constant, this inequality is best possible.

Proof. We first construct a set A ⊂ V (G) using the following procedure. Choose an

arbitrary vertex v of G and let A = {v}. If there is a vertex x such that d(x,A) = 3,

add x to A. Add all such vertices x such that d(x,A) = 3 until every vertex not in

A is within distance 2 of A. The resulting A is a maximal 2 packing.

Then we note that G(A), the subgraph induced by A is not connected, it is a collec-

tion of vertices of degree zero. But by definition of the kth power, for k = 3, G3(A)

is connected.

We construct a forest T1 ≤ G. T1 consists of all the vertices in A and their neigh-

bours. To construct T2 from T1, we form a larger subgraph of G such that we join

two neighbours of two different elements of A. Observe that we must join |A| − 1

edges of G to get a tree T2.

We now construct a spanning tree T of G.

Case 1: V (T2) = V (G).

Then T2 = T is a spanning tree of G, and case 1 is complete.

Case 2: V (T2) ⊂ V (G).

We choose any vertex u of V (G) that is not in T2. Since G is connected, u is adja-

cent to some vertex w in T2 by the edge uw such that the distance from u to some

element in A is at most 2. To form T we take T2 and add the edge uw such that

E(T ) = E(T2)∪{uw}. Repeat this procedure until all vertices of G are in T . Hence

T is a spanning tree of G.

We now prove that

µ(T ) ≤ n

δ + 1
+ 5.

We consider the vertex set of T . For every vertex x in T find the unique vertex u in A

which is closest to it and assign xA = u. We define a weight function c : V (T )→ Z

by c(u) = |{x ∈ V (T )|xA = u}|. Note

c(u) = 0 ifu /∈ A, since all xA ∈ A. (2.14)

Furthermore c(u) ≥ δ + 1 for all u ∈ A, since d(u) ≥ δ and if u ∈ A then uA = u.

Since A is a maximal 2 packing, the number of facilities c(u) (let us say the number

of facilities hosted by a vertex is equivalent to the weight of each vertex) will not

move with a distance exceeding 2 if we moved them closer to A. Consider two

vertices not in A. If they are moved closer to A their distance will change up to 4.
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Hence the average of the distances between all facilities can change by up to four,

since each distance between two facilities can change by up to four. Hence

µ(T ) ≤ µc(T ) + 4. (2.15)

We now turn our focus to T 3(A). Recall that by (2.14), only the vertices in A have

non zero weight. T 3 (A) is connected. We note that the distance between any two

vertices of A in T is exactly 3l (l ≥ 1), and this distance has been reduced to l in

T 3 (A). This implies,

µc(T ) ≤ 3µc(T
3(A)). (2.16)

We apply Lemma 2.11, taking k = δ + 1. Recall c(u) ≥ δ + 1 for each u ∈ A. We

follow the same idea as in Lemma 2.11. We choose an integer N to be the least

multiple of k for which N ≥ n, then

N ≤ n+ δ. (2.17)

µc(T
3(A)) ≤ N − (δ + 1)

N − 1
· N + (δ + 1)

3(δ + 1)

=
N − δ − 1

N − 1
· N + δ + 1

3(δ + 1)

=
N2 − 1− 2δ − δ2

3(N − 1)(δ + 1)

=
(N − 1)(N + 1)

3(N − 1)(δ + 1)
− δ2 + 2δ

3(N − 1)(δ + 1)

=
N + 1

3(δ + 1)
− δ2 + 2δ

3(N − 1)(δ + 1)
(2.18)

≤ N + 1

3(δ + 1)
. (2.19)

Inequality (2.18) is less than or equal to inequality (2.19) since at δ = 0 inequality

(2.18) is equal to inequality (2.19). But for δ > 0 inequality (2.18) decreases to be

less than inequality (2.19).
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Now we consider inequalities (2.15), (2.16), (2.19) and also (2.17). Then

µ(T ) ≤ µc(T ) + 4

≤ 3µc(T
3(A)) + 4

≤ 3
N + 1

3(δ + 1)
+ 4

≤ (n+ δ) + 1

(δ + 1)
+ 4

=
n

(δ + 1)
+

δ + 1

(δ + 1)
+ 4

=
n

(δ + 1)
+ 5,

as desired.

Finally, we show that the bound of Theorem 2.12 is best possible except for a

small additive constant. For given integers n, δ, k with n = k (δ + 1), let Gn,δ be a

graph obtained from the union of disjoint copies (G1, G2, G3 . . . , Gk) of the complete

graph Kδ+1, removing an edge from each copy except the end copies, then connecting

copies by means of the ends of the removed edges. For example, see Figure 2.4 for

k = 4. As shown in [14], Gn,δ has order n, minimum degree δ and

µ(Gn,δ) >
n

δ + 1
.

Hence, every spanning tree T of Gn,δ has an average distance greater than
n

δ + 1
and so the bound is best possible apart from the value of an additive constant.

u
u
u

u u

u
u
u

u u

u
u
u

u u

u
u
u

u u
Figure 2.4: Graph G20,4.

.
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We will illustrate the process of the above proof with an example.

Example 1. Consider the graph G given in Figure 2.5, with n = 23. The 6 vertices

(u, d , i , o,m, t) form the set A, which is a maximal 2 packing of G.

We construct a forest T1 ≤ G. Recall that T1 consists of all the vertices in A and

their neighbours.

t
t t t t t t
t t t t

t t t t
t t t t t t t t

u

d

i m

o t

t
t t t t t
t t t t

t t t t
t t t t t t t t

u

d

i m

o t

Figure 2.5: Graph G with n = 23 and Forest T1.

To construct T2 from T1, we form a larger subgraph of G such that we join two

neighbours of two different elements of A. Observe that we must join |A| − 1 =

6 − 1 = 5 edges of G to get a tree T2. We then construct a spanning tree T from

T2 by adding the missing vertices {b, q, r, v, w} and joining each of them to a vertex

in T2 using an edge already in G. The resulting graph is a spanning tree T. Both

graphs are given in Figure 2.6.
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u

d

i m

o t

Figure 2.6: Tree T2 and Spanning tree T.

Hence from a connected graph G, we have obtained a spanning tree T. Using the

spanning tree T , we add the weights using the weight function c : V (T ) → Z by

c(u) = |{x ∈ V (T )|xA = u}| to get the weighted graph T . See Figure 2.7.

Note that only the vertices in A have non zero weight and the rest of the vertices

have zero weight. Now using only the vertices in A we form graph T 3[A].

t
t t t t t t
t t t t

t t t t
t t t t t t t t

u

3

d

4

i

5

m

5

o3 t3

t
t

t t

t t

u
3

d

4

i

5

m
5

3o 3t

Figure 2.7: Weighted graph T and graph T 3[A].

The example has illustrated how to form a spanning tree T from G.

The Dankelmann and Entringer paper [7] uses the same proof technique of The-

orem 2.12 to prove Theorem 2.13 for a triangle-free graph. Similarly, Theorem 2.14
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for a C4-free graph uses the Dankelmann and Entringer [7] technique of constructing

a spanning tree to find an upper bound on the average distance of the constructed

spanning tree in terms of order and minimum degree. Both theorems are stated here

without proof.

Theorem 2.13. Let G be a connected triangle-free graph with n vertices and mini-

mum degree δ. Then G has a spanning tree T with

µ(T ) ≤ 2

3

n

δ
+

25

3
.

Apart from the additive constant, this inequality is best possible.

Theorem 2.14. (i) Let G be a connected C4-free graph with n vertices and minimum

degree δ. Then G has a spanning tree T with

µ(T ) ≤ 5

3

n

δ2 − 2bδ/2c+ 1
+

29

3
.

(ii) There exists an infinite number of C4-free graphs with n vertices and minimum

degree δ such that, for every spanning tree T of G,

µ(T ) ≤ 5

3

n

δ2 − 2bδ/2c+ 2
+

29

3
+O(1).

Furthermore, the paper gives us a corollary for each of the theorems in terms of

an upper bound of the average distance of G. Observe that µ(G) ≤ µ(T ) if T is a

spanning tree of G. The corollaries of the theorems are as follows respectively,

Corollary 2.15. Let G be a connected triangle-free graph with n vertices and min-

imum degree δ. Then

µ(G) ≤ 2

3

n

δ
+

25

3
.

Apart from the additive constant, this inequality is best possible.

Corollary 2.16. Let G be a connected C4-free graph with n vertices and minimum

degree δ. Then

µ(G) ≤ 5

3

n

δ2 − 2bδ/2c+ 1
+

29

3
.

We note that Kouider and Winkler [14] proved that every connected graph with n

vertices and minimum degree δ has, µ(G) ≤ n

δ + 1
+ 2.
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2.3.2 Upper bound on Diameter

We now present a bound by Mukwembi [15] (Theorem 2.18) on the diameter of a

graph in terms of order, minimum degree and the irregularity index. We are going

to use the Dankelmann and Entringer [7] technique of constructing a spanning tree

to find an upper bound on the diameter of the constructed spanning tree in terms

of order, minimum degree and the irregularity index of a graph.

We begin by proving a proposition on a bound of the diameter of a graph with a

prescribed irregularity index.

Proposition 2.1. Let G be a connected graph of order n. The diameter of G satisfies

the inequality

diam(G) ≤ n− η + 1,

where η is the irregularity index of G. Moreover, this inequality is sharp.

Proof. We first show that ∆ ≤ n−diam(G)+1. Consider a vertex v with maximum

degree, d(v) = ∆ and the fact that every vertex can be adjacent to at most three

consecutive vertices on a diametral path P . Then,

Case 1: v /∈ P.
v is adjacent to at most 3 consecutive vertices of P .

n ≥ (diam(G) + 1) + ∆ + 1− 3

≥ diam(G)− 1 + ∆

∆ ≤ n− diam(G) + 1.

Case 2: v ∈ P.

n ≥ (diam(G) + 1) + ∆− 2

≥ diam(G)− 1 + ∆

∆ ≤ n− diam(G) + 1.

Hence we have shown that ∆ ≤ n− diam(G) + 1.

Now by the definitions of ∆, η and the degree sequence we get that η ≤ ∆, therefore

η ≤ n− diam(G) + 1. Hence

diam(G) ≤ n− η + 1,

as desired.

The following example graph illustrates that the inequality diam(G) ≤ n− η + 1 is

sharp.
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v
v
v

v v
Figure 2.8: Graph G5,3.

It can be seen in Figure 2.8 that the diameter of the graph is 3.

Applying the values (n = 5, η = 3) into the inequality we get

3 = diam(G) ≤ n− η + 1

≤ 5− 3 + 1

≤ 3.

In 1989 Erdős et al [10] introduced the following bounds in terms of order and

minimum degree.

Theorem 2.17. (Erdős et al [10]) Let G be a connected graph of order n and

minimum degree δ ≥ 2. Then

(i) diam (G) ≤
⌊

3n

δ + 1

⌋
− 1. (2.20)

(ii) rad (G) ≤ 3(n− 3)

2(δ + 1)
+ 5.

Furthermore, (i) and (ii) are tight apart from the exact value of the additive constant,

and for every δ > 5 equality can hold in (i) for infinitely many values of n.

We have already proven in Section 2.1 the bound on radius. Similarly, the same

approach used to prove the bound on radius can be used to prove the bound on

diameter.

The next theorem by Mukwembi [15] has a stronger bound on diameter compared to

bound (2.20) on diameter given by Erdős et al. This is true if the irregularity index

is prescribed on the Mukwembi bound. Observe that when the irregularity index,
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η = 1, the right hand side of the Mukwembi bound

(
d ≤ 3(n− η)

δ + 1
− 1 +

3

δ + 1

)
is

equal to the right hand side of (2.20). Furthermore, for η > 1 the value of the right

hand side of

(
d ≤ 3(n− η)

δ + 1
− 1 +

3

δ + 1

)
is smaller compared to that of (2.20).

Therefore, the bound given by Mukwembi is stronger than the bound given by Erdős

et al except for η = 1.

Theorem 2.18. (Mukwembi [15]) Let G be a connected graph of order n, minimum

degree δ and diameter d, d 6= 3, 4. Then the inequality

d ≤ 3(n− η)

δ + 1
− 1 +

3

δ + 1
, (2.21)

where η is the irregularity index of G, holds. Moreover, this inequality is essentially

tight.

Proof. Let β = {d (v1), d (v2), . . . , d (vη)} be a set of the distinct degrees of vertices

from the degree sequence of G, such that d (v1) < d (v2) < d (v3) < . . . < d (vη).

Observe that |β| = η. We note that d(v1) = δ and d(vη) = ∆. Since d(vη) = ∆ we

have

|N [vη]| = ∆ + 1. (2.22)

If vη is adjacent to all vertices in G then d(vη) plus one is equal to n, thus

n = ∆ + 1.

But if vη is adjacent to some but not all vertices in G then n > ∆ + 1. Therefore

n ≥ ∆ + 1 and combining this with inequality (2.22) we get

n ≥ |N [vη]| = ∆ + 1. (2.23)

We now show that |N [vη]| ≥ δ + η. We are going to find an upper bound on the

number of terms in β. We note that the biggest value η can take is if β contains all

the numbers between δ and ∆. But this may not always be the case: depending on

the degree sequence of the graph we may get a smaller value for η. So, to get our

bound on η we sum over δ to ∆ (inclusive on both ends) and we get the following:

η ≤ ∆− δ + 1

η ≤ ∆ + 1− δ
= |N [vη]| − δ by (2.22)

η + δ ≤ |N [vη]|. (2.24)
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Combining inequalities (2.23) and (2.24) we get

n ≥ |N [vη]| ≥ δ + η, (2.25)

as required.

We are going to show that the inequality (2.21) is satisfied for d ≤ 2 and d ≥ 5.

Now for d ≤ 2, we are going to use inequality (2.25) to show that the inequality

(2.21) is satisfied.

RHS of (2.21) =
3(n− η)

δ + 1
− 1 +

3

δ + 1
.

From (2.25), n− η ≥ δ. So

3(n− η)

δ + 1
≥ 3δ

δ + 1
.

Hence,

3(n− η)

δ + 1
− 1 +

3

δ + 1
≥ 3δ

δ + 1
− 1 +

3

δ + 1

=
3(δ + 1)

δ + 1
− 1

= 3− 1 = 2.

i.e., RHS of (2.21) =
3(n− η)

δ + 1
− 1 +

3

δ + 1
≥ 2 ≥ d= LHS of (2.21), and the in-

equality (2.21) is satisfied for d ≤ 2.

Now we look at the case d ≥ 5. Let u and v be vertices in G such that

dG(u, v) = d ≥ 5. Since d ≥ 5, of the two vertices u and v label u to be the vertex

which is further away from vη. Therefore dG(vη, u) ≥ 3. Because dG(vη, u) ≥ 3, u

and vη can be put into a 2 packing. We now construct a maximal 2 packing set A

of G using the Dankelmann and Entringer technique starting with A = {vη, u}.

Claim 4. |A| ≤ n− η + 1

δ + 1
.

We are going to use the closed neighbourhood of A, NG[A], and inequality (2.25) to

prove our Claim 4. Because A is a maximal 2 packing, we observe that for any two
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vertices x and y in A, N [x] ∩N [y] = ∅.

n ≥ | ∪x∈A N [x]|

= |N [vη]|+
∑

x∈A−{vη}

|N [x]|

≥ δ + η +
∑

x∈A−{vη}

(δ + 1)

= δ + η + (|A| − 1)(δ + 1)

= η − 1 + |A|(δ + 1).

Rearranging, we have |A| ≤ n− η + 1

δ + 1
.

Our claim is shown.

Continuing with the Dankelmann and Entringer technique we construct T1, T2 and

a spanning tree T. Then we note that T (A), the subgraph induced by A is not

connected; it is a collection of vertices of degree zero. But by definition of the kth

power, for k = 3, T 3(A) is connected and diam(T 3(A)) ≤ |A| − 1. Observe that the

distance between any two vertices of A in T is exactly 3l (l ≥ 1), and that has been

reduced to l in T 3(A). Hence

diam(T (A)) ≤ 3 diam(T 3(A))

≤ 3 (|A| − 1).

This implies that diam(T (A)) ≤ 3(|A| − 1).

Recall that when we formed T from T2 we joined v to some vertex w in T2 by the

edge vw such that the distance from v to some element in A is at most 2. Therefore

the distance from v to some vertex v́ in A is at most 2, dT (v, v́) ≤ 2. Now note that

u and v́ are in A, thus dT (u, v́) ≤ diam(T (A)), since diam(T (A)) is the greatest

distance in A. Hence, by the triangle inequality

dT (u, v) ≤ dT (u, v́) + dT (v́, v)

≤ diam(T (A)) + 2

≤ 3(|A| − 1) + 2

= 3|A| − 1.

dT (u, v) ≤ 3|A| − 1. (2.26)

Combining Claim 4 and inequality (2.26) we get

dT (u, v) ≤ 3

(
n− η + 1

δ + 1

)
− 1 =

3(n− η)

δ + 1
− 1 +

3

δ + 1
.
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Because T is a spanning tree of G, we have

d = dG(u, v) ≤ dT (u, v) ≤ 3(n− η)

δ + 1
− 1 +

3

δ + 1
.

Inequality (2.21) is satisfied for d ≥ 5.

The bound (2.21) does not hold for graphs of diameter 3 or 4. Two counterexamples

of the bound (2.21) are given in Figure 2.9.

We show that apart from the value of the additive constant, this bound is sharp.

The Erdős et al paper gives the following example graph (see Figure 2.10) which

illustrates that the bound (2.20) is sharp.

Let k > 1, δ > 5, and V (G) = V0 ∪ V1 . . . ∪ V3k−1, where

|Vi| =


1 if i ≡ 0 or 2 (mod 3),

δ if i = 1 or 3k − 2,

δ − 1 otherwise.

Let v ∈ Vi, v́ ∈ Vj be joined by an edge of G if and only if |j − i| ≤ 1.

Observe that Figure 2.10 has diameter = 8. Mukwembi states that a modification of

the extremal graph given in the Erdős et al paper (for example Figure 2.10) shows

that the bound is sharp, apart from the value of an additive constant. To modify

Figure 2.10 we removed the edge fg which joins V1 and V2 and the edge hi which

joins Vk−1 and V3k−2 respectively. Also we removed pairs of edges in Vi (for i = 1

and 3k − 2) such that no vertex loses more than one edge and the minimum degree

δ remains the same. Doing this reduces the irregularity index η from 2 in Figure

2.10 to 1. See Figure 2.11, a modification of Figure 2.10. Note that Figure 2.11 has

diameter = 8. The edges removed from Figure 2.10 to modify it to Figure 2.11 are,

ab, cd, eo, fg, hi, jp, kn and lm.

u
u
u
u

u
u
u

u
u
u
u u

u
u
u

u
u
u

u
u
u

Figure 2.9: Graphs with diameter 4 and 3 illustrating two counterexamples of the

bound (2.21) from Theorem 2.18.
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The following theorem (stated without proof) gives a bound that hold for graphs

with diameter 3 or 4.

Theorem 2.19. (Mukwembi [15]) Let G be a connected graph of order n, minimum

degree δ and diameter d, d = 3, 4. Then the inequality

d ≤ 3(n− η)

δ + 1
+ 1 +

3

δ + 1
,

where η is the irregularity index of G, holds. Moreover, this inequality is essentially

tight.
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Figure 2.10: Extremal graph G with n = 26, δ = 7, η = 2, k = 3 and diameter = 8.
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Figure 2.11: Extremal graph G with n = 26, δ = 7, η = 1, k = 3 and diameter = 8.

Erdős et al in their paper proved two more theorems which give upper bounds on

diameter and radius for a triangle-free graph and a C4-free graph. The theorems are

as follows.

Theorem 2.20. Let G be a connected triangle-free graph with n vertices, and with

minimum degree δ ≥ 2. Then

(i) diamG ≤
⌈
n− δ − 1

2δ

⌉
.

(ii) radG ≤ n− 2

δ
+ 12.

Furthermore, (i) and (ii) are tight apart from the exact value of the additive constant,

and for every δ ≥ 2 equality can hold in (i) for infinitely many values of n.

Theorem 2.21. Let δ ≥ 2 be a fixed integer, and let G be a connected, C4-free graph

with n vertices and with minimum degree δ. Then
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(i) diamG ≤ 5n

δ2 − 2[δ/2] + 1
.

(ii) radG ≤ 5n

2(δ2 − 2[δ/2] + 1)
.

Furthermore, if δ is large, then these bounds are almost tight. More precisely, if

δ + 1 is a prime power, then there exists a graph G with the above properties and

(iii) diamG ≥ 5n

δ2 + 3δ + 2
− 1.

In summary, in this chapter we have used several methods to generate spanning

tress. We used the BFS algorithm to generate a distance-preserving spanning tree

from a root vertex v (see Theorem 2.2). Using the BFS algorithm we proved Corol-

lary 2.3, which stated that every connected graph G has a spanning tree T with

rad(G) = rad(T ). We used the Erdős et al method to construct a radius-preserving

spanning tree with the bound, rad(G) = rad(T ) ≤ 3(n− 3)

2(δ + 1)
+ 5. In section 2.2 a

result by Ali et al (Theorem 2.9), gives an upper bound on diameter on the con-

structed spanning tree

(
d ≤ n+

1

2
−
√

2m− 2n+
1

4

)
in terms of order and size.

The Dankelmann and Entringer (Section 2.3, Theorem 2.12) approach for construct-

ing a spanning tree gave an upper bound on average distance

(
µ(T ) ≤ n

δ + 1
+ 5

)
in terms of order and minimum degree. In 1989 Erdős et al introduced a bound

on diameter (diam(G) ≤
⌊

3n

δ + 1

⌋
− 1) in terms of order and minimum degree.

Then Mukwembi (Theorem 2.18) in 2012 gave a stronger bound

(
dG ≤ dT ≤

3(n− η)

δ + 1
− 1 +

3

δ + 1

)
compared to that of Erdős et al in the case when the ir-

regularity index η is prescribed.

In the next chapter, we will consider a method which was introduced by Kleit-

man and West. They called it the dead leaves method. We will use this method to

construct various spanning trees and use them to bound diameter.
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Chapter 3

Bounds on leaf number in terms of

Order and Minimum degree

In this chapter we are going to study the dead leaves method by Kleitman and West

[13] for constructing a spanning tree. This method starts by finding a small tree T

in G with many leaves and then growing the tree by adding several vertices to T

using an iterative algorithm in such a way that the number of leaves always grows

until we get the tree T to be spanning. Finding a spanning tree with the maximum

number of leaves in a graph is an NP-complete problem [9].

If G is a cycle, we are only guaranteed to get a spanning tree with a maximum of

two leaves. But we want a spanning tree with many leaves. To do this, we consider

Gn,k, the collection of connected n-vertex graphs with minimum degree at least

k. Griggs and Wu [12] were one of many researchers investigating the question of

finding a spanning tree with the maximum number of leaves. They also used the

dead leaves method by Kleitman and West to construct a spanning tree T of G. See

Section 3.3 for more details.

We will investigate bounds when k = 3, 4 and 5. We start with k = 3.

3.1 A lower bound for minimum degree δ ≥ k = 3

In the next theorem we look at the case δ ≥ k = 3. In 1981, Storer [20] conjectured

that for δ = 3, any 3-regular graph G with n vertices has L(T ) ≥ n/4 + 2. Kleitman

and West [13] proved using the dead leaves approach that this bound is also true

for any G ∈ Gn,3. We will present this proof below.
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We are going to use the following iterative algorithm to grow tree T to a desired

spanning tree. For each iteration, we let Ti (for i = 0, 1, 2 . . .) be the current tree

with n′ vertices and t leaves.

If x is a leaf of the current tree Ti, then the out-degree of x, d′(x), is the number of

neighbours it has in G − Ti. Note that if this vertex x has no neighbour(s) in the

G − Ti graph, then that vertex is a leaf of Ti. This particular leaf is called a dead

leaf, because we cannot expand beyond it. Hence it must be a leaf in the final tree.

Initial procedure: Choose a vertex x, then we add all vertices in G adjacent to vertex

x. Thus, we have our small tree T1.

Expansion procedure: We are going to expand our tree Ti by vertex expansion se-

quences. We arbitrarily choose a leaf x of the current tree which is not dead i.e.,

d′(x) > 0. From x we add to Ti all d′(x) vertices not in Ti and form the next tree

Ti+1.

We say an operation is admissible if an expansion on a tree satisfies the augmen-

tation inequality. And we define the augmentation inequality to be an inequality

which determines the change in the number of leaves ∆t, the number of dead leaves

∆m and the number of vertices ∆n′ from the current tree. Note that every time

we choose a vertex and add d′(x) vertices, we get a new and bigger tree Ti+1. We

repeat this expansion using admissible operations until we get a desired spanning

tree T .

Theorem 3.1. (Kleitman and West [13]). Every G ∈ Gn,3 has a spanning tree

with at least n/4 + 2 leaves.

Proof. We are going to construct a spanning tree T of G using the dead leaves

method.

We initialize with a small tree and expand it to a spanning tree of G using the

iterative algorithm, where for each step we add some number of vertices ∆n′, such

that the augmentation inequality 3∆t+ ∆m ≥ ∆n′ is satisfied.

We consider two cases.

Case 1: G is 3-regular.

There are two sub cases to be considered.

1a: If every edge of G belongs to a triangle, then G = K4. By applying the initial

procedure of the iterative algorithm on G we get a spanning tree T with three leaves.

So, L(K4) = 3, and case 1a is proved.

1b: G is 3-regular but has an edge or edges which do not belong to a triangle. We

are going to choose one of these edges and initialize tree T0 from that edge. Since
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G is 3-regular, the edge is incident to two vertices, each vertex having two other

edges incident to it. We have now formed tree T0. Then we expand tree Ti using

the expansion procedure until we get Ti to be a spanning tree.

Case 2: G is not 3-regular.

We initialize tree T0 from a vertex of maximum degree ∆ ≥ 4. The tree T0 will be

inclusive of all edges incident to the vertex of maximum degree ∆ ≥ 4. Then we

expand Ti until we get a desired spanning tree.

At the end of the algorithm all the leaves of T are dead, therefore our desired span-

ning tree has t = m = L and n′ = n, the total number of vertices in the spanning

tree T .

Now we look at the two cases and see how a tree is grown from a small tree T0

into a spanning tree T using admissible operations. We do this until we get Ti to

be a spanning tree T . We note all the leaves of the spanning tree are now dead

leaves and that summing the augmentation inequalities from T0, T1, . . . , T we get

3(L − 4) + L ≥ n − 6 for case 1b and 3(L − ∆) + L ≥ n − (∆ + 1) for case 2.

Justification of this statement is given below.

For case 1b, we started with 4 leaves and 6 vertices and ended up with L leaves

together with n vertices. So the summation of the augmentation inequality becomes

3(L−4)+L ≥ n−6. Simplifying this we get 4L ≥ n+6. For case 2, we started with

maximum degree ∆ leaves and ∆+1 vertices and the final number of leaves and ver-

tices is L and n respectively. Hence the summation of the augmentation inequality

for case 2 is 3(L−∆)+L ≥ n−(∆+1), which simplifies to 4L ≥ n+2∆−1 ≥ n+7.

The following is a collection of admissible operations.

See Figure 3.1 for an illustration of the three operations.

01: If d′(x) ≥ 2 for some current leaf x, then expanding at x yields ∆ t = ∆n′ − 1

and ∆m ≥ 0.

Since leaf x has at least two neighbours in G−Ti, the increase in number of vertices

in Ti+1 must be at least two. We show that the augmentation inequality is satisfied.

For ∆t = ∆n′ − 1 we have

3 (∆n′ − 1) + ∆m ≥ ∆n′

3 ∆n′ +m− 3 ≥ ∆n′
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2 ∆n′ +m− 3 ≥ 0. (3.1)

We show that given m ≥ 0 and ∆n′ ≥ 2 the inequality (3.1) is satisfied.

From m ≥ 0 we get the following

m ≥ 0

m+ 1 ≥ 1.

And from ∆n′ ≥ 2 we get the following

∆n′ ≥ 2

2 ∆n′ ≥ 4

2 ∆n′ − 3 ≥ 4− 3

2 ∆n′ − 3 ≥ 1

2 ∆n′ − 3 +m ≥ m+ 1

≥ 0 + 1

= 1

≥ 0.

Therefore,
2 ∆n′ − 3 +m ≥ m+ 1 ≥ 1

2 ∆n′ − 3 +m ≥ 1 ≥ 0,

as required.

Hence the augmentation inequality, 3 ∆t+ ∆m ≥ ∆n′, is satisfied.

02: If d′(x) ≤ 1 for every current leaf x and some vertex outside Ti has at least two

neighbours in T , then expanding at one of them yields ∆ t = 0, ∆m ≥ 1 = ∆n′.

We show that the augmentation inequality is satisfied..

LHS = 3 ∆t+ ∆m

= 3(0) + ∆m

= ∆m ≥ 1 = ∆n′

∴ 3 ∆t+ ∆m ≥∆n′= RHS.

Hence the augmentation inequality is satisfied.

03: If y is the only neighbour of x outside Ti and y has at least two neighbours
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not in Ti, then expanding at x and then y yields ∆ t = ∆n′ − 2 ≥ 3 − 2 ≥ 1 and

∆m ≥ 0. When expanding at x and then y we add at least three new vertices to

Ti+1. So ∆n′ ≥ 3. We show that the augmentation inequality is satisfied.

∆n′ ≥ 3

2 ∆n′ ≥ 6

3 ∆n′ ≥ 6 + ∆n′

3 (∆n′ − 2) ≥ ∆n′

3 ∆ t ≥ ∆n′.

From ∆m ≥ 0 we get the following

∆m ≥ 0

3 ∆ t+ ∆m ≥ 3 ∆ t ≥ ∆n′.

Therefore,

3 ∆t+ ∆m ≥ ∆n′.

Hence the augmentation inequality is satisfied.

Because k = 3, this implies that any vertex in G − Ti has at least two neighbours

in G− Ti or at least two neighbours in Ti. Since operations 01− 03 require at least

one neighbour in G − Ti, we are guaranteed that one of the operations will always

be available until we get our desired spanning tree.

Recall that the lower bounds on the number of leaves for cases 1b and 2 are 4L ≥ n+6

and 4L ≥ n + 7 respectively. We are going to improve these bounds to L ≥ n

4
+ 2

using the final iteration to get an excess of at least two dead leaves. We are going

to focus on the final iteration, using the expansion procedure and one of the three

operations.

Let vertex v be some vertex in tree Ti−1, the tree before the final iteration. The

vertex v must have one neighbour (vertex w) in G− Ti−1. Because any of the three

operations 01− 03 adds at least one vertex to Ti−1, we add vertex w to v and form

Ti = T . Since this is the last iteration, vertex w must have at least two neighbours

in Ti−1. Let u and z be the neighbours of w. Note that u and z are leaves in Ti−1

which are not dead. Upon adding w to Ti−1 these two vertices die. Because this is

the final iteration leaf w is also dead. The final iteration has killed two leaves u and

z to give us two excess dead leaves. Hence to L ≥ n

4
+ 2, and our proof is complete.
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Figure 3.1: Operations used when k = 3.

We will illustrate the iteration algorithm and three operations of the proof with an

example.

Example 2. Consider graph G1 for Case 1b and G2 for Case 2.

Case 1b:

We begin with a 3-regular graph G1 which falls under case 1b. We construct our

initial tree T0 for G1 by choosing an edge, cf , which does not lie in any triangle.

See Figure 3.2. Our initial tree T0 has n′ = 6, t = 4, m = 0.
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(a) Tree G1

Figure 3.2: Graph G1 and Tree T0.
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(b) Tree T0

We expand T0 to T1 by choosing vertex h for which d′(h) = 2. Since d′(h) = 2

we expand using operation 01. See Figure 3.3. We now check if the augmentation

inequality is satisfied for T1 with n′ = 8, t = 5 and m = 3.

LHS = 3∆t+ ∆m = 3 (5− 4) + (3− 0) = 6 ≥ 2 = 8− 6 = ∆n′ = RHS

∴ 3∆t+ ∆m ≥ ∆n′.

The augmentation inequality is satisfied.
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Figure 3.3: Tree T0 and Tree T1.

We expand tree T1 by vertex expansion to get T2 which is our desired spanning

tree T . We choose vertex a from T1 with 2 neighbours in G1− T1 and expand using

operation 01 to get our spanning tree T . See Figure 3.4. Since this was the final

iteration, vertex e which was not dead in T1 is now dead. So, vertices b, d, e are now

dead leaves. Our spanning tree T has n′ = n = 10 and L = t = m = 6. So, the

augmentation inequality given below is satisfied.

LHS = 3∆t+ ∆m = 3(6− 5) + (6− 3) = 6 ≥ 2 = 10− 8 = ∆n′ = RHS

∴ 3∆t+ ∆m ≥ ∆n′.
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(a) Tree T1 (b) Spanning tree T

Figure 3.4: Tree T1 and Spanning tree T .

For this example, operation 01 has been applied twice. In the last iteration 2 dead

leaves are added which gives us L(T ) = 6. And so

LHS = 6 = L(T ) ≥ n

4
+ 2

=
10

4
+ 2

= 4.5

6 ≥ 4.5 = RHS.
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Since LHS = L(T ) = 6 and the RHS = n/4 + 2 = 4.5.

We started with a graph of minimum degree k = 3 and generated a spanning tree

T with L(T ) = 6 ≥ n/4 + 2 = 4.5. This illustrates how we generate a spanning tree

T with at least n/4 + 2 leaves.

Next, we use graph G2 to illustrate case 2. G2 is not 3-regular.

Case 2:

We initialize our tree T0 from G2 with a vertex of maximum degree ∆ = 5. See

Figure 3.5. Our initial tree T0 has six vertices, five leaves and zero dead leaves.

We use operation 02 to expand tree T0 to T1 from vertex k which has one neighbour

in the graph G2 − T0. See Figure 3.6 (a). The tree T1 has t = 5, m = 3 and n′ = 7.

We now check if the augmentation inequality is satisfied:
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(a) Graph G2 (b) Tree T0

Figure 3.5: Graph G2 and Tree T0.

LHS = 3∆t+ ∆m = 3 (5− 5) + (3− 0) = 3 ≥ 1 = 7− 6 = ∆n′ = RHS

∴ 3∆t+ ∆m ≥ ∆n′.

The augmentation inequality is satisfied.
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Figure 3.6: Tree T1 and Tree T2.
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Using vertex expansion on T1 we form tree T2 via operation 02 on vertex f . See

Figure 3.6 (b). The expansion of the tree is as follows: ∆t = 0, ∆m = ∆n′ = 1. As

done for T1 we show that the augmentation inequality is satisfied.

LHS = 3∆t+ ∆m = 3 (0) + (1) = 1 ≥ 1 = ∆n′ = RHS

∴ 3∆t+ ∆m ≥ ∆n′,

as desired.

We now expand T2 to T3. Since vertex d is the only neighbour of e in T2 we expand

using operation 03. Furthermore, d has 3 neighbours. Since this is the final iteration

leaves a, b, c die. By adding all the neighbours of vertex d we get a spanning tree T .

See Figure 3.7.

LHS = 3∆t+ ∆m = 3 (7− 5) + (7− 4) = 9 ≥ 4 = 12− 8 = ∆n′ = RHS

∴ 3∆t+ ∆m ≥ ∆n′.

Hence the augmentation inequality is satisfied.

LHS = 3∆t+ ∆m = 3 (5− 5) + (3− 0) = 3 ≥ 1 = 7− 6 = ∆n′ = RHS

∴ 3∆t+ ∆m ≥ ∆n′.

The augmentation inequality is satisfied.

u
u

u

u
u
u
u ue

g

f

h

i

j

k l

u
u
u

u
u
u
u u

u
u
u

u
g

f

e h

i

j

k ld

b

c

a

(a) Graph T2 (b) Spanning tree T

Figure 3.7: Tree T2 and Tree T3 = the Spanning tree T .

In the last iteration 3 dead leaves are added which gives us L(T ) = 7. And so

LHS = 7 = L(T ) ≥ n

4
+ 2

=
12

4
+ 2

= 5

7 ≥ 5 = RHS.
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We started with a graph of minimum degree k = 3 and generated a spanning tree

T with L(T ) = 7 ≥ n/4 + 2 = 5. This illustrates how we generate a spanning tree

T with at least n/4 + 2 leaves.

The example has illustrated how a spanning tree can be constructed using the dead

leaves approach.

Before we look at the case k = 4 we make note of a proof by Griggs et al [11].

Using the dead leaves method, they were able to prove the following theorem.

Theorem 3.2. (Griggs et al [11]) If G is a connected cubic graph with n vertices

and contains no subgraph isomorphic to K4 − e, then L ≥ 1
3
(n+ 4).

This bound is sharper compared to the general case k = 3.

Building on our case k = 3, we provide an overview of how the case k = 4 is

proved.

3.2 A lower bound for minimum degree δ ≥ k = 4

We will use the same technique, definitions, notation and iterative algorithm as in

the proof of Theorem 3.1, except now the augmentation inequality will be

4 ∆t + ∆m ≥ 2 ∆n′ and our initial tree T0 will start with a star at a vertex with

degree k = 4 including all its neighbours or a double star where both vertices are

joined by an edge.

In this case we will require extra definitions:

Definition 5. A principle expansion sequence is an expansion of a single leaf x = y0

of Ti and then other leaves that did not belong to Ti before the initial expansion.

Definition 6. A principle expansion sequence is live if each expansion after y0

introduces two new vertices to the tree.

Definition 7. A linear expansion sequence is a live sequence Y = (y0, . . . , yr) such

that, for each i ≥ 1, yi+1 is one of the two leaves introduced by expanding yi.

The following proof is for k = 4.

Theorem 3.3. (Kleitman and West [13]). Every G ∈ Gn,4 has a spanning tree

with at least (2n+8)/5 leaves.
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We will now give an overview of the proof.

As for the case k = 3, the proof starts with a small tree T0 and expands using admis-

sible operations until a desired spanning tree T is constructed. We now introduce

new parameters. Let c1 be the number of leaves in the initial tree, c2 the number of

leaves not counted as dead in the initial tree T0 and c3 the number of vertices in the

initial tree. Summing the augmentation inequalities we get 4 (L− c1) + (L− c2) ≥
2 (n − c3) which simplifies to L ≥ 2n/5 + (c2 + 4 c1 − 2 c3)/5 = 2n/5 + c, where

c = (c2 + 4 c1− 2 c3)/5. The value of the additive constant will be shown later to be

c = 8/5.

This theorem has seven admissible operations of which operations 01 − 03 are the

same as those for case k = 3. If operations 01−03 are not available, we then proceed

to use one of the operations 04 − 07. To expand our tree using any of operations

04− 07, we are going to use the principle expansion sequence. When expanding we

let Y be the set of vertices expanded in Ti+1. Operations 04− 07 all have a vertex

y1 which is adjacent to y0 and involve expanding from y1 in various different ways.

See Figure 3.8 for an illustration of operations 04− 07.

Using the linear expansion sequence Kleitman and West were able to prove that

operations 01− 07 will always be available until we get our desired spanning tree T .

Recall:

c1 is the number of leaves in the initial tree. Since δ ≥ k = 4 then c1 ≥ 4.

c2 is the number of leaves not counted as dead in the initial tree. So c2 ≥ 2.

c3 is the number of vertices in the initial tree. Since k = 4 then c3 = 5.

Therefore c = (c2 + 4 c1 − 2 c3)/5 ≥ (2 + 16− 10)/5 = 8/5. Hence L ≥ 2n/5 + 8/5.

Our overview is complete.

Figure 3.8: Complex operations used when k = 4.

Kleitman and West conjectured an improved lower bound on Theorem 3.3. The
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conjecture is as follows.

Conjecture 3.4. Every G ∈ Gn,4 has a spanning tree with at least 2n/5 + 2 leaves,

except for a 4-regular graph with every edge in a triangle.

There are only two known examples of graphs which do not have a spanning tree T

of a graph G ∈ Gn,4 with at least 2n/5 + 2 leaves. Both graphs have every edge

belonging to a triangle. The example graphs are a 4-regular graph with 6 vertices

and a 4-regular graph with eight vertices. See Figure 3.9 for the two example graphs

F1 and F2. The conjectured bound requires F1 and F2 to have 5 and 6 leaves respec-

tively. For this to be possible the spanning tree of F1 must have a vertex of degree

5, which is impossible.

We are going to show that F2 cannot contain a spanning tree with 6 leaves. Observe

that the spanning tree must have two vertices whose neighbours cover all vertices

of F2 in one of the following ways. Either the two vertices are connected, or they

are not. If they are connected, we either get four or five leaves and we note that

not all vertices are covered. Therefore, the tree is not spanning. If the vertices are

not connected, then this will not be a tree since a tree must be connected. Hence

by the manner in which F1 and F2 are constructed it makes it impossible for either

graph to have spanning trees attaining the bound.
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(a) F1 (b) F2

Figure 3.9: Example graph F1 and F2.

Next, we illustrate that the conjectured improved bound can be attained. For our

illustration we are going to use two graphs F3 ∈ Gn,4 and F4 ∈ Gn,4.

We first consider graph F3 ∈ Gn,4 to be a graph with a vertex of degree 5. We start

our tree T0 (in a similar vein to case 2 of Theorem 3.1) from that vertex of degree 5

inclusive of all the edges incident to it. We then expand our tree until we get a span-

ning tree T . And hence we get the following, c1 = 5, c2 ≥ 2 and c3 = 6. Substituting
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the values of c1, c2 and c3 into c we get c = (c2 +4 c1−2 c3)/5 ≥ (2+ 20−12)/5 = 2.

Secondly, we consider F2 ∈ Gn,4 to be 4-regular but having an edge or edges

which do not belong to a triangle (this is similar to case 1b of Theorem 3.1). We

are going to choose one of these edges and start tree T0 from that edge and con-

struct our spanning tree T . Since F2 ∈ Gn,4 is 4-regular, our edge is incident

to two vertices, each vertex having three other edges incident to it. This yields

c1 = 6, c2 ≥ 2 and c3 = 8. Substituting the values of c1, c2 and c3 into c we get

c = (c2 + 4 c1− 2 c3)/5 ≥ (2 + 24− 16)/5 = 2. In both cases we have illustrated that

we can attain the improved bound 2n/5 + 2.

We have looked at the cases for k = 3, k = 4 and we were able to construct a

spanning tree with at least n/4 + 2 and (2n+ 8)/5 leaves respectively. Now we look

at larger values of k.

3.3 A lower bound for minimum degree δ ≥ k > 4

We will start with the case k = 5. Kleitman and West conjectured that for k = 5

we can construct a spanning tree with at least n/2 + 2 leaves. In 1992 Griggs

and Wu [12] proved the Kleitman and West conjecture. That is, they proved the

following theorem.

Theorem 3.5. (Griggs and Wu [12]) If G is a connected graph with n vertices and

minimum degree at least 5, then L ≥ n/2 + 2.

To prove this theorem Griggs and Wu used the dead leaves approach for constructing

a spanning tree and used a different augmentation inequality for admissibility.

Alon et al [3] in their paper made note of a very interesting conjecture by Linial

in the area of finding a spanning tree with maximum leaves. This conjecture was

also mentioned earlier (1992) by Griggs and Wu in their paper. The conjecture is

as follows.

Conjecture 3.6. (Alon et al [3]) If G has n vertices and minimum degree k, then

L ≥ (k − 2)

(k + 1)
n+ ck, where ck depends on the value of k.

The conjecture has been shown to hold in the the cases k = 3, 4 and 5 (see Theorems

3.1, 3.3 and 3.5 respectively) with c3 = 2, c4 = 8/5 and c5 = 2. Griggs and Wu

observed that the proofs of these theorems provide a polynomial-time algorithm to
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find a spanning tree which attains the lower bound on L. We can also attain this

bound for a family of k-regular graphs. Figure 3.10 (a) illustrates an example of a

k = 3-regular necklace made up of a number of beads where each bead is Kk+1 − e.
A corresponding spanning T with L = n/4 + 2 is also illustrated in Figure 3.10 (b).
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(b) Spanning tree T

Figure 3.10: Illustration of a K4−e necklace and spanning tree T with L = n/4+2.

The Alon et al paper states that in 1990 Alon [2] observed that Linial’s conjecture

was false for all large values of k.

Kleitman and West proved the following theorem for all graphs with sufficiently

large minimum degree.

Theorem 3.7. If k is sufficiently large, then there is an algorithm that constructs

a spanning tree with at least [1- bln k/k]n leaves in any graph with minimum degree

k, where b is any constant exceeding 2.5.

Note that the term b ln k/k tends to zero as k approaches infinity and the coefficient

[1− b ln k/k] approaches 1. The results in Alon’s paper [2] imply an upper bound on

the number of leaves of a spanning tree. Indeed, there are graphs with n vertices and

minimum degree k that have a spanning tree T with at most (1− (1 + o(1)) ln(k+1)
k+1

)n

leaves. The term o(1) tends to zero as k tends to infinity.
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We present an upper bound on the leaf number of a constructed spanning tree

in terms of order and minimum degree.

3.4 Upper bound on leaf number

In this section, we are going to show using two cases that the number of leaves on

the spanning tree will always be at most n− 3bn/(k + 1)c+ 2.

Theorem 3.8. (Kleitman and West [13]) L ≤ n− 3bn/(k + 1)c+ 2.

Proof. We construct a graph Gn,k ∈ Gn,k such that no matter how hard we try,

every spanning tree T that we can possibly generate from Gn,k ∈ Gn,k cannot have

more than n− 3bn/(k+ 1)c+ 2 leaves. Let m = bn/(k+ 1)c and r = n−m(k+ 1).

Partition the vertex set V (G) into sets R0, . . . , Rm−1, where |Ri| = k + 1 for i 6= 0

and |R0| = k + 1 + r. We choose an arbitrary pair of vertices xi, yi ∈ Ri. In each

Ri we join every pair of distinct vertices by an edge except xiyi. This becomes Bi

(0 ≤ i ≤ m) blocks or components of almost complete graphs with each block having

one edge xiyi missing. To restore the minimum degree k we add the following edges

Z = {xiy(i+1)mod m : 0 ≤ i < m}. These edges join the blocks of almost complete

graphs to form one graph Gn,k ∈ Gn,k.

We now construct a spanning tree T and show that any spanning tree T of Gn,k has

at most n− 3m+ 2 leaves.

For each i (0 ≤ i ≤ m−1) we arbitrarily choose a vertex u ∈ Ri which has maximum

degree. Then join every vertex which is adjacent to u and delete every other edge

except for those edges joining vertices to u. If the vertex u is xi or yi (∀i), then the

graph is a forest. However, if u is some other vertex, then the graph has all edges

of Z missing and is not connected nor spanning. For the graph to be connected and

spanning we must add all the edges of Z. We have now formed a graph which is not

a tree. To generate a tree, we use the edges of Z.

Every pair of edges of Z forms an edge cut. So, the spanning tree must have at most

one edge of Z missing.

Let W = {xi} ∪ {yi}.
We prove that T has at most n− 3m+ 2 leaves by using two cases.

Case 1: Suppose one edge xjy(j+1) of Z is missing, for an arbitrary fixed j for

0 ≤ j ≤ m− 1.

Removing edge xjyj+1 allows us to generate a spanning tree containing a path xiyi
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in Bi for each i. The removal of the edge xjyj+1 forces each Bi to have three ver-

tices which are not leaves (nonleaves) except for the two blocks Bj and Bj+1 which

were joined by the edge xjyj+1. Each of these two blocks have two nonleaf vertices.

Each vertex of W is not a leaf except xj, yj+1. There are m − 2 blocks with each

having 3 nonleaf vertices. Also, there are 4 nonleaves which come from the two

blocks which were joined by the the edge xjyj+1. Therefore, the spanning tree T

has 3(m− 2) + 4 = 3m− 2 nonleaf vertices.

Let H be the number of nonleaf vertices in T . Then H ≥ 3m − 2. Since T is a

spanning tree of Gn,k, then n = nT . Note that n = H + L, so L = n − 3m − 2.

Therefore, T has

−H ≤ −(3m− 2)

n−H ≤ n− (3m− 2)

L = n−H ≤ n− (3m− 2)

L ≤ n− 3m+ 2.

We have proven for case 1 that T has at most n− 3m+ 2 leaves.

Case 2: No edge of Z is missing.

Since we cannot remove any of the edges of Z, to generate T we remove an edge

xkyk in Bk for one fixed arbitrary value of k. Now all Bi blocks have a path xiyi in T

except for the one block which had an edge xkyk removed. With all edges of Z in T ,

the vertices xk and yk+1 are now nonleaf vertices. Hence the blocks which contain the

vertices xj and yj+1 have each gained a nonleaf vertex. The block Bi which had the

edge xkyk removed has lost one nonleaf vertex while block Bi−1 has gained one extra

leaf due to the removal of edge xkyk. There are at least (3(m− 1) + 2)− 1 = 3m− 2

nonleaf vertices in T .

Let H be the number of nonleaf vertices. Then H ≥ 3m − 2. Using the same

argument as in case 1, it follows that the number of leaves in T is L ≤ n− 3m+ 2.

We have proven for case 2 that T has at most n− 3m+ 2 leaves.

We have shown using cases 1 and 2 that we can get a spanning tree with at most

n− 3bn/(k + 1)c+ 2 leaves. Hence the proof is complete.

We will illustrate the process of the above proof with an example.

Example 3. We consider graph Q ∈ G27,4 for cases 1 and 2. See Figure 3.11.

Case 1: Suppose one edge x2y3 of Z is missing (j = 2).
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Figure 3.11: Graph Q ∈ G27,4.

We construct our spanning tree T by choosing vertex wi for i 6= 0 and u0 in B0.

Join wi and u0 to all neighbour vertices and add all edges of Z except for x2y3. See

Figure 3.12. Observe that B0, B1 and B4 have 3 nonleaf vertices and 4, 2, 2 leaves

respectively. Also, B2 and B3 have 2 nonleaves and 3 leaves each. By observation of

Figure 3.12 we have generated a spanning tree T with exactly 14 leaves. We are going

to show the theoretical value of L. We know that m = bn/(k + 1)c = b27/(5)c = 5

and r = n−m(k + 1) = 27− 5(5) = 2. The theoretical value of L is as follows:

L ≤ n− 3m+ 2

= 27− 3(5) + 2

≤ 14.
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Figure 3.12: Spanning tree T

.
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We have shown that we can generate a spanning tree with at most n−3m+2 leaves.

Actually, we have shown that we can attain the exact value of L = n− 3m+ 2.

Case 2: No edge of Z is missing.

We construct our spanning tree in a similar manner to case 1. However now instead

of removing one edge of Z we remove the edge w1y1 (k = 1) of component B1. See

Figure 3.13. Observe that B0, B2, B3 and B4 have 3 nonleaf vertices and 5, 2, 2, 2

leaves respectively. Also, B1 has 2 nonleaves and 2 leaves. By observation of Figure

3.13 we have generated a spanning tree T with exactly 13 leaves. The theoretical

value of L is as follows:

L ≤ n− 3m+ 2

= 27− 3(5) + 2

≤ 14.

We have shown theoretically that the number of leaves in Figure 3.13 must be at

most 14, and observed that Figure 3.13 can have a maximum of 13 leaves which

is less than 14 leaves. Hence, considering both cases 1 and 2 we have shown that

the number of leaves on the spanning tree T of Gn,k ∈ Gn,k will always be at most

n− 3m+ 2 leaves.
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Figure 3.13: Spanning tree T .

This example shows how we can generate a spanning T of G27,4 with at most

n− 3m+ 2 leaves.
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We conclude this chapter with a link between the leaf number and the diameter

of a graph. In the proof of case 1 in Theorem 2.9 we noted an upper bound on the

leaf number in terms of diameter. The bound is L ≤ n − (d − 1). Hence, we get

an upper bound on the diameter for a spanning tree T as d ≤ n − L + 1. To get

our diameter in terms of order and minimum degree we use the bound of Linial’s

Conjecture 3.6, L ≥ (k − 2)

(k + 1)
n+ 2.

L ≥ (k − 2)

(k + 1)
n+ 2

−L ≤ −(k − 2)

(k + 1)
n− 2

d ≤ n− L+ 1 ≤ n− (k − 2)

(k + 1)
n− 2 + 1

=
(k + 1− k + 2)

(k + 1)
n− 1

=
3

(k + 1)
n− 1

d ≤ 3

(k + 1)
n− 1.

Recall that we earlier stated that Erdős et al [10] introduced an upper bound on

diameter of a graph in terms of order and minimum degree (2.20),

diam(G) ≤
⌊

3n

δ + 1

⌋
− 1.

We have now derived the related bound on diameter using leaf number.
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Chapter 4

Conclusion

In this dissertation, we have investigated in detail four approaches for constructing

a spanning tree, namely the radius preserving-spanning tree by Erdős et al, Ding et

al’s method, the Dankelmann and Entringer’s method, and the dead leaves spanning

tree construction method by Kleitman and West.

We used the BFS algorithm to construct a distance-preserving spanning tree from

root vertex v such that dG(v, u) = dT (v, u) for all u ∈ V (G). From this result

we were able to prove Corollary 1, which states that every connected graph G

has a spanning tree T with rad(G) = rad(T ). We then used the results of The-

orem 2.1 ((dG(v, u) = dT (v, u)) and Corollary 1 to generate a radius-preserving

spanning tree. Using the constructed spanning tree, we then bounded radius,

rad(G) = rad(T ) ≤ 3(n− 3)

2(δ + 1)
+ 5 (Erdős et al, Theorem 2.4).

In section 2.2, Theorem 2.6 we studied the spanning tree construction approach

by Ding et al. We then used the spanning tree constructed by Ding et al in Theo-

rem 2.7 which is similar to Theorem 2.8 by Ali et al, to derive an upper bound on

diameter

(
Theorem 2.9, d ≤ n+

1

2
−
√

2m− 2n+
1

4

)
in terms of order and size.

We concluded the chapter by studying the method for constructing spanning tree

by Dankelmann and Entringer. After studying the construction method, The-

orem 2.12 then bounded average distance in terms of order and minimum de-

gree

(
µ(T ) ≤ n

δ + 1
+ 5

)
. Using the same method, Mukwembi (Theorem 2.18)

gave an upper bound on diameter of the constructed spanning tree in terms of

order, minimum degree and irregularity index η. This bound on diameter was

d ≤ 3(n− η)

δ + 1
− 1 +

3

δ + 1
.
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In Chapter 3, we considered Gn,k, the collection of connected n-vertex graphs with

minimum degree at least k. These graphs were looked at with the aim of finding

lower and upper bounds on the number of leaves of a constructed spanning tree T

of Gn,k ∈ Gn,k. The Kleitman and West approach (dead leaves approach) was used

to construct spanning trees in terms of order and minimum degree δ ≥ k. Kleit-

man and West proved that every Gn,k ∈ Gn,k has a spanning tree with at least

n/4 + 2, (2n + 8)/5 leaves for k = 3, 4 respectively. Griggs and Wu used the same

method to construct a spanning tree with at least n/2+2 leaves for k = 5. In Section

3.4, we presented an upper bound on the leaf number (L ≤ n− 3bn/(k+ 1)c+ 2) of

a constructed spanning tree in terms of order and minimum degree.

We used Conjecture 3.6 and a bound in Theorem 2.9 to derive an upper bound on

the diameter of a constructed spanning tree for k = 3, 4 and 5. The bound is given

as d ≤ 3

(k + 1)
n− 1.

Throughout this dissertation, we have used examples to illustrate how a spanning

tree can be constructed using a particular approach.
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