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ABSTRACT 

Optimizing a model’s performance should keep the functionality within the confines of safety and 

economy; deviation from these calls for a reliability investigation of such models. In a bit to optimize 

shear models for simplicity, safety functionality and economic performance have been an issue of a trade-

off as the overestimation or underestimation of the model's intended purpose may occur. Overestimating 

the shear resistance of flexural members raises safety concerns since it might lead to unsafe design 

practices that ultimately cause the entire structure to collapse. In the same manner, underestimating the 

shear resistance may give rise to uneconomical designs. In this research, the predictions of various code-

based & authorial shear resistance models in terms of their structural performance were assessed through 

the model uncertainties. According to Gino et al. (2017), identifying and quantifying the uncertainty 

related to a specific model is of high relevance to structural safety verification in the course of reliability 

assessment. Uncertainties related to models adequately capture the inconsistency of models’ performance 

across varied structural conditions. Hence, the extent of conservatism demonstrated by shear models of 

beams without stirrups is investigated towards structural reliability assessment and calibration.  

A database of 784 experimental beams without shear reinforcements compiled by Reineck et al. (2013), 

consisting of beams with varying geometrical properties was investigated in this study. Analyses 

conducted in this study include a mean values analysis (best-estimate prediction without any form of bias) 

and a deterministic design value analysis (inclusion of partial safety factor or reduction factor and 

characteristic material properties). Shear values derived from mean value analysis are used as the input 

parameter to determine the uncertainty of each model for the same structural condition. Supervised 

machine learning models based on the architecture of the Artificial Neural Networks, Support Vector 

Machine, Decision Tree Regressor and Random Forest were also used for shear resistance predictions. 

Model uncertainty was also derived for machine learning predictive shear models. 

A comparative analysis between the experimental shear resistance and all considered predictive model 

was done. Statistical characterization of each model factor in terms of the bias, standard deviation, 

coefficient of variation and skewness was carried out to evaluate the model’s performance in order to 

adopt a general probabilistic model for subsequent reliability evaluation. Sensitivity analysis of model 

uncertainty to parametric variation of input parameters was also carried out with the measured value of 

correlation. 

The provision of a carefully calibrated partial factor for model uncertainties that will take into account the 

uncertainty associated with shear methods is the most efficient management of the reliability performance 

for any resistance method. To this end, the calibration of a partial factor of safety according to EN 1992-4 



 

vii 

was done for models with poor performance in terms of uncertainty performance indexes such as 

sensitivity to model parameters, a large degree of variability in shear prediction and significant bias in 

prediction.  
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CHAPTER 1 

 INTRODUCTION 

Beams are structural components that are susceptible to transverse loads and are crucial to the load 

transfer process in any kind of structure, whether it be a reinforced concrete building, a composite 

structure, or a steel-framed building. The structural significance of this component cannot be overstated. 

As a result, the role of the structural engineer is to ensure a safe design by critically taking into 

consideration the failure mode (shear failure) of this element and providing a suitable design that meets 

the demands of serviceability, safety and economy. A structural model (code-based or literature-based) 

that predicts the resistance strength is required to appropriately account for the complexity of the shear 

transfer mechanism and capacity estimate in beams without stirrups since the resistance strength of beams 

without stirrups does not depend on the availability of stirrups in a practical situation. According to Gino 

et al. (2017), a model typifies reality in a simplified expression and may provide predictions that differ 

from the actual response due to uncertainties relating to the formulation of the simplified assumption or 

the neglection of important parameters that contributes to shear resistance. Hence, Controversy arises 

when the shear model proposed by design codes and authorial models gives different estimates largely 

because of the variation in theories and shear phenomenon as interpreted by each body of knowledge. 

Consequently, a conflict of adoption for general use becomes eminent as the inconsistencies associated 

with the various shear resistance models raise an issue for debate.  

1.1 Background of study 

The reinforced concrete beam is primarily subjected to bending moment as it is a majorly flexural 

member. In addition to the predominant flexural force in a concrete beam are forces such as shear force 

(responsible for shear failure in beams), axial force, and torsion. Shear failure also termed diagonal 

tension failure, a combination of flexural stress and shear stress, is a brittle failure that naturally occurs 

abruptly and does not give significant prior signs of distress and warnings before total failure. A 

combination of non-homogeneity, cracks, reinforcements, and nonlinearity in reinforced concrete 

contributes to the complex behaviour of reinforced concrete under shear, as described by Hunegnaw and 

Aure (2021). This makes the inadequacy associated with shear design more dangerous and of much 

concern than that associated with flexural designs. Collins et al. (2015) further said that because shear 

failures can happen suddenly and without the ability to redistribute internal stresses, they are 

fundamentally more harmful than flexural design flaws in concrete structures. For the sake of public 

safety, it is imperative to accurately assess a reinforced concrete structure’s shear capability, yet the 

present approaches are questionable. The “plane sections theory,” a simple, precise approach that is 

generally and universally accepted, can be used by engineers to model the bending resistance of concrete 
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beams. However, for determining shear strength, engineers frequently rely on limited empirical formulae 

whose application and accuracy can be somewhat disputed.  

Shear models are typically laborious and excessively time-consuming because all relevant variables must 

be taken into account to produce an accurate predictive model. Because shear failure is brittle and should 

not be the initial mode of failure, design codes are always unnecessarily simplistic and integrate more 

caution in their assessment of shear resistance than their provisions for bending by adding large factors of 

safety to the expression for shear. 

According to Holicky et al. (2015), typically, a hypothetical model for resistance or load effect is 

incomplete and erroneous because of a lack of information or because the model has been purposefully 

modified for usability. Hence reliability analysis is employed in assessing the extent to which design 

codes and authorial model gives a significant margin away from unreliability and inconsistency. 

Fundamentally, structural reliability analysis concerns itself with the accurate characterization of model 

uncertainties and the improvement of models by introducing partial factors to enhance the performance of 

analyzed models. 

The following definition of model uncertainty has been put forward by various bodies of knowledge, and 

each definition accurately captures the entirety of the theme. Model uncertainty is explained by Mandic et 

al. (2020) as a quantitative marker that relates a predefined threshold to the anticipated performance of 

a structural framework. ISO 2394 (2015) specifies model uncertainty as a basic variable related to the 

reliability of physical or empirical models. Following the Joint Committee on Structural Safety’s 

Probabilistic Model Code, model uncertainty is often an independent factor expressing the influences 

excluded in a model’s formulation and approximation. 

A model is a way of expressing reality in simple terms, structural engineering is surrounded by a whole 

lot of uncertainties, both in the materials for construction(aleatory) and in the design models(epistemic) 

for simulating practical conditions (Mensah, 2015). Therefore, before models such as those employed to 

forecast the shear resistance of beams without shear reinforcement can be completely accepted on a broad 

scale and represent reliability, their underlying epistemic uncertainties need to be thoroughly assessed. To 

develop a generic probabilistic model that properly accounts for the complexities of shear resistance 

models and accurately reflects an experimental setup under a variety of real-world conditions, the 

assessment and characterization of the uncertainties of shear resistance must be carried out. 

Machine learning, a subset of artificial intelligence, is being used as a tool to solve a variety of technical 

challenges, including design improvement, stochastic simulation, reliability analysis, and performance 

assessment of structural systems of great complexities (Olalusi and Spyridis, 2020). This is possibly 
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attributed to the enormous volume of experimental data acquired over time, as machine learning is more 

associated with the science of data. Innovation in the computation power of hardware and software 

systems has made soft computation a generally acceptable solution to engineering problems. This tool is 

largely used in research work related to the evaluation of shear resistance due to the availability of shear 

experimental datasets, the precision in the output of machine learning models since the algorithm 

computerizes the inherent knowledge in a type of dataset and builds an accurate input and output 

relationship as suggested by Jung and Kim (2008), and its ability to express model uncertainty as a tool 

for structural reliability analysis. 

 

1.2 Motivation and problem statement 

According to Tran and Carl-Alexander (2018), due to the difficulty, cost, and length of time involved in 

conducting experiments to discover how various factors or parameters such as the type of concrete, its 

strength, and composition impact the concrete shear properties, the concrete parameters’ uncertainty 

estimation constitutes the majority of a shear capacity prediction model’s uncertainty. As a result, 

uncertainties occur when these factors are estimated as a function of other concrete parameters (majorly 

concrete compressive strength). In addition, ignoring the influence of essential properties of concrete 

toward the simplification of a model may also lead to uncertainty. The objective of the flexural members 

shear model is to provide shear capacity estimates with an adequate degree of safety that is economical 

for usage. 

This consequently implies that for an accurate prediction of shear, due account should be taken of all 

basic variables in an appropriate calculation model which results in a difficult and time-consuming design 

procedure which is seen when manually applying the Modified Compression Field Theory (MCFT). Most 

codes of practice have elected to base their shear design methods on simplified design approaches that 

have typically been calibrated in one way or another to provide acceptable safety and economy, though 

this is not always achieved transparently. (Mensah et al., 2013). 

The Canadian code (CSA A23.3) considers shear strength to be a function of concrete compressive 

strength and effective depth, whereas EC2 (2003) incorporates reinforcement ratio, effective depth, and 

concrete compressive strength in its formulation for the shear strength of beams without stirrups. The Fib 

Model code 2010 addresses beam shear strength as a function of longitudinal strain in the web. In 

determining the concrete contribution to shear, ACI 318, CSA A23.3, and NBR 6118 (Brazilian standard) 

regulations depend only on concrete strength, ignoring aggregate interlock and the dowel action supplied 

by longitudinal reinforcement. 
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Shear approaches as stated in design codes have restrictions on a number of design variables, for example, 

the compressive strength for CSA A23.3 and ACI 318 has a maximum boundary value of 60MPa and 70 

MPa accordingly, but EC2 and NBR 6118 permit values up to 90MPa. These constraints are some kinds 

of bias that have been incorporated into the design model that affects the reliability performance. A 

measure of divergence in shear strength prediction is created between the models provided by these codes 

of design. It should be noted that the variation in the codes is majorly due to the assumptions the codes 

were based on. Due to this reason, a reliability-based assessment of these codified models and other 

analytical models should be conducted. 

Retief (2007) reported, “reliability studies conducted at Stellenbosch University showed the model 

uncertainty reduced considerably when the shear span to effective depth (a/d) and effective depth (d) 

increased, but it is not sensitive to trends in the other shear parameters when examining shear resistance 

models for RC beams without stirrups following EN 1992-1-1 shear model”. Cladera and Mari (2004) 

noted that as the effective depth and longitudinal reinforcement (%) increased, the model uncertainty for 

the same shear model decreased. It is important to look at the differences in the results reported by Retief 

(2007) and Cladera and Mari (2004). It is crucial to stress that members without shear reinforcement 

break suddenly due to their brittleness, hence, sufficient dependability must be guaranteed. 

Empirical models are by all means only applicable to the set of data from which they were produced, and 

they are occasionally oversimplified by omitting some fundamental factors to produce even more basic 

models (Mensah et al., 2013). Specifications for the construction of reinforced concrete structures often 

use empirical modelling techniques for beams without stirrups and can only be as valid as the extent 

of data available during the derivation. To alleviate the uncertainties associated with such models and 

assist their effective deployment, reliability evaluation of such models is therefore necessary following 

the acquisition of an extended dataset. 

The evaluation of uncertainty in available shear prediction models for beams without stirrup in this study 

is predicated on shortcomings surrounding the formulation and application of shear models, such as those 

stated earlier. This paper concentrates on investigating the underlying uncertainties in available shear 

methods with appropriate quantification through the use of an extended dataset of 784 experimental 

observations of beams with no stirrups. Additionally, this study provides a partial factor that takes into 

consideration the shear model uncertainties that may be identified after a comprehensive evaluation. 
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1.3 Research Aim and Objectives 

The primary purpose of this research is to characterize and measure model uncertainty in shear modelling 

techniques provided for estimating the shear resistance of beams without stirrups. The shear models to be 

investigated include code-based models (such as EN 2003, ACI 318, AS 3600, Fib Model Code 2010 and 

SANS10100), relevant authorial models (such as CCC, MASM, NLT and the modified SNiP shear 

model) and machine learning based shear models (ANN, SVM, RF and DT) to arrive at a probabilistic 

model, which would be recommended for future reliability analysis. Specific objectives include; 

1. To review recent works of literature on; the mechanics of shear failure and transfer in RC beams 

without stirrups taking into account the influence of shear parameters that contribute to shear 

resistance, the assessment of model uncertainty related to shear resistance, as well as other 

aspects of engineering interest, and, finally, to study research work on the use of machine 

learning to get a complete understanding of its usage as a tool in engineering. 

2. To develop machine learning-based shear models with the use of python (a high-level object-

oriented programming language). 

3. To compare predictions from various shear models (code-based models, authorial models and 

machine learning-based models) to experimental results. 

4. Model factor estimation and characterization for the aforementioned shear resistance models, as 

well as the inclusion of a parametric assessment to further explore how sensitive the identified 

model uncertainty is to input parameters (shear design parameters). 

5. To identify the probabilistic model that would be proposed for future reliability analysis. 

6. To derive a partial factor that would account for model uncertainties in shear models. 
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1.4 Summary of Chapters 

This dissertation is divided into six (6) chapters, which are organized as follows; 

Chapter 2 examines the broad subject of shear as a delicate mode of failure in RC beams, the behaviour 

of beams in shear which doubles as the mode of shear failure is also reviewed.  The shear transfer actions 

of reinforced concrete beams with and without stirrups are presented in chapter 2 of this study. An in-

depth discussion is carried out on the shear contributions of aggregate interlock, dowel action, residual 

stress, arch action and the uncracked compression zone. The chapter highlights the key characteristics and 

the underlying phenomenon of the shear models (code-based and literature-based models) proposed for 

forecasting the shear capacity of beams without shear reinforcements as specified in this study. A3600-18, 

ACI 318-19 building code, fib Model Code 2010 Level of Approximation II, Eurocode 2, and the South 

African National Standard SANS 10100-1 are the international standards considered, while authorial 

models include the compression chord capacity model (CCCM), the multi-action shear model (MASM), 

mechanical shear model based on structural mechanics and the modified Russian SNiP model. 

Additionally, a summary of structural reliability and its evaluation is provided in this chapter, with a 

focus on model uncertainty and reliability index. The chapter ends with a review of machine learning and 

the mathematical theory behind the machine learning (ML) models that were selected for this study, such 

as the artificial neural network (ANN), support vector machine (SVM), decision tree (DT), and random 

forest (RF). 

Chapter 3 analyzes and discusses the characteristics of the dataset that was used in this investigation 

provided by Reinick et al. (2013). This chapter presents the techniques used in model factor uncertainty 

studies and reliability assessments for various shear approaches. The approaches covered in this chapter 

are sequential; they include a mean value-based deterministic analysis and a design value analysis. 

Additionally, a flowchart illustrating the sequence of machine learning prediction and performance 

evaluation is provided. Also included are the model factors that were derived for various shear design 

techniques. A thorough examination of the parametric (Mean, standard deviation, coefficient of variation, 

correlation, and regression, and Pearson coefficient of skewness) and non-parametric (goodness of fit test, 

probability distribution function) analytical techniques for the assessment of model factor is also 

presented in this chapter.  

Chapter 4 centres on statistically characterizing and quantifying model factors for the reviewed shear 

resistance models. The EC2 mean shear value, the ACI 318-19 best-estimate predictions, the fib Model 

Code 2010 (II) best-estimate model, the AS 3600-18 mean shear value, the SANS true shear estimate, the 

CCC true shear value, the MASM best estimate, mean predictions from the mechanical model by Tran 

(2020) and the modified Russian SNiP shear model were all taken into consideration. To characterize the 
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relevant model uncertainties and bias, statistical methods were applied to a database of assembled 

experimental observations in this chapter. Using a sensitivity analysis, model factors were examined with 

crucial shear factors as it is a requisite for statistical investigation. As a result, an appropriate GPM for 

shear resistance was proposed. Different visualizations to buttress the investigation is also presented in 

chapter 4 of this study. 

Chapter 5 presents an introduction to the model uncertainty partial factor calibration following EN 1990. 

After the investigation concerning model uncertainty in chapter 4 of this study, the deterministic approach 

in EN 1990 for calibrating model uncertainty partial factor is applied to the EC2 and fib model code LOA 

II shear provision to take into account the uncertainty related to the shear methods and reported 

Chapter 6 presents the objectives achieved in the course of this dissertation. A summary of the thesis and 

an outline of the dissertation's key findings about the uncertainties associated with the EC2, ACI, AS, 

MC-10 (II), SANS, CCC, MASM, modified SNiP and Tran (2019) shear design formulations are 

documented as well as research recommendations.  
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CHAPTER 2 

Literature Review 

This chapter gives an extensive review of the mechanism of shear transfer in beams without shear 

reinforcement, it gives an account of the factors (shear parameters) that contributes to the shear capacity 

of RC beams. Also, it provides details that relate to the shear failure mode in beams without shear 

reinforcement. It highlights the codes of design and authorial models for estimating the shear resistance of 

beams without stirrups and gives a comprehensive examination of the premise surrounding the 

formulation of each model mentioned. This chapter also reviews existing literature that has quantified 

uncertainties due to resistance models, load effects or other engineering interests. Works of literature 

related to the machine learning models considered in this research would also be discussed to gain an in-

depth understanding of the underlying principles. 

2.1 Review of Shear in Beams Without Stirrups 

Tao et al. (2016) gave a chronological presentation of various methodologies proposed by different 

researchers from the year 1966 – 2013. In their study, Tao et al. (2016) reported 24 shear models 

proposed by different research within 47 years, however, the subject of shear and its estimation is yet to 

receive a conclusive solution. This is due to the intricacies that surround the shearing mechanism, the 

shear resistance of reinforced concrete has been difficult to predict, and even with various proposed 

models for prediction, it is still a continued area of interest in reinforced concrete design for safety 

evaluation and material science. 

According to Cladera et al. (2016), Diagonal cracks occur when a reinforced/prestressed concrete 

structural element undergoes both shear and flexure. This results in the development of a multi-axial 

stress state that occurs in regions along a flexural beam that displays a particularly intricate response, 

hence, the actions of shear-resisting agents. The mechanics of these shear-resisting actions are 

considerably different from each other and displays a complicated relationship among themselves. 

Subsequently, the development of a generally acknowledged formulation to represent shear forces has not 

been accomplished at this point and it is important to take significant presumptions to determine compact 

expressions.  

Changes in the load application plane result in changes in the structure’s performance, due to this, special 

attention should be given to assessing the critical state of structural elements, in the case of reinforced 

concrete beams, determining the shear strength and shear strengthening method is an evolving problem 

with all sense of urgency (Vegera et al., 2016). 

Shear modelling of beams with stirrups has achieved a degree of stability with the underlying theory of 

equilibrium such as strut & tie models and stress field models (ASCE-ACI Committee 445). This is not 
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true for the shear estimation of beams without stirrups as there is no consensus in the research community 

concerning the parameters and peculiarities overseeing shear strength in beams without shear 

reinforcement (Ruiz et al., 2015). Amani and Moeini (2012) and Filatov (2017) also agreed with Ruiz et 

al. (2015) as they said distinctively that “a generally accepted design philosophy for shear is non-

existence unlike the case of design provisions for bending”. 

The consequence of this becomes obvious in the design models used to estimate the shear strength of 

beams with no stirrups as there is preferential consideration of mechanism that governs the shear transfer 

while neglecting the influence of others and this ultimately affects the shear strength evaluation from each 

model (ACI Committee 318). 

Bentz et al. (2006) and yang (2014) recognize the contribution of aggregate interlock as the dominant 

governing mechanism in shear transfer in beams without stirrups. Contrarily, Zararis (2003) identified the 

shear carried by the compression chord as the most important parameter that contributes to the shear 

transfer mechanism.  

Considering the estimation of shear in beams without stirrups, design models from different country 

codes have also been analyzed under their presumptions about the governing parameters that are 

responsible for the quantification of shear resistance. The Ukrainian and European design code does not 

account for the influence of the load type and location and the shear span-effective depth ratio. The 

American code of design provides a very simplified and basic expression for the estimation of shear 

strength which neglects the impact of the longitudinal reinforcement, the shear span- effective depth ratio 

and the loading type but gives a quick assessment of shear, the Australian code of design takes into 

consideration much of the design parameters, but according to Vegera et al. (2016), the design model still 

shows notable variation with true experimental shear prediction. 

The international regulations for concrete designs and their parameter considerations for evaluating shear 

are shown in the table below. 

 

Table 2.1 International regulations for concrete designs and their parameter considerations 

Codes of design Considered Parameter 

Canadian code (CSA-

A23.3, 2004) 

longitudinal strain (휀𝑥), shear force (𝑉𝑓), effective depth (d), and bending 

moment (𝑀𝑓) 

JSCE (1986) member depth (d), compressive strength (𝑓𝑐𝑘), bending moment (𝑀𝑜), 

longitudinal reinforcement ratio (ρ), and bending strength (𝑀𝑢𝑑)  
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GB50010-2010 effective depth (d), slenderness factor (β), and concrete tensile strength (𝑓𝑡) 

 

Various authorial empirical models have also been proposed, some of which include the Compression 

Chord Capacity Model (𝐶𝐶𝐶𝑀) by Cladera et al. (2016) which is a simplification of the model put 

forward by Mari et al. (2015) called the Multi-Action Shear Model (𝑀𝐴𝑆𝑀). The Multi-Action shear 

model which is based on the principle of mechanics considers the contribution of the sum of all the shear-

resisting actions, but in a case where the contribution of the transverse reinforcement doesn’t exist, the 

expression can be modified by neglecting its effect as in the case of beams without stirrups. Unlike the 

𝑀𝐴𝑆𝑀, the compression chord capacity model (𝐶𝐶𝐶𝑀) generalizes on the premise that the shear 

transferred by the uncracked compression chord is the main transfer mechanism in the considered failure 

state. The theories, assumptions and conditions for the use of these models would be further reviewed in 

this research work. 

Yerzhanov et al. (2019) reviewed and modified the shear design model for RC members without shear 

reinforcement specified in the SNiP code (This code is used by structural engineers in CIS nations to 

design RC structures). The inadequacy of the original SNiP code was primarily due to the insufficient 

quantity of experimental data used to develop the model which then led to a poor generalization of the 

model concerning inferencing. Yerzhanov et al. (2019) used the ACI 445-DafStb shear database which is 

more comprehensive with more datasets to propose a modification factor chosen as a function of the 

effective depth (𝑑) and consideration given to tensile strength rather than compressive strength to improve 

the analytical accuracy and safety level of the original SNiP model.  

In contrast to every other empirical and semi-empirical model mentioned above, a mechanical model 

which is purely based on the theory of structural mechanics was developed and presented by Tran (2020). 

The author of this model made use of technological advancements by using the digital image correlation 

approach to gather comprehensive knowledge on a concrete member's behaviour under shear, especially 

the formation of cracks with an emphasis on crack width and crack spacing. The parameters from the 

crack inspection together with the fracture energy (𝐺𝐹), the tensile strength of concrete (𝑓𝐶𝑡), the modulus 

of elasticity (𝐸𝐶) and Poisson’s ratio (𝜐) were considered the most important mechanical characteristics of 

concrete relating to shear capacity and were used in the mathematical formulation of the mechanical 

model. 

All that these models aim to do is to capture the true estimation of the shear strength by applying their 

underlying theory and assumptions and translating it into an empirical equation as is common with shear 

strength modelling.  
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2.2 Shear behaviour of RC beams without stirrups 

According to Tran (2020), there are three response stages to the behaviour of a concrete structural 

member in shear which is explained below and further represented graphically. See Fig 2.1  

 In the first stage, when the concrete is in its uncracked state, the entire concrete cross-section 

experiences a distribution of shear stress that is parabolic and the shear transfer mechanism is 

restricted as there are no resisting actions from the aggregate interlock, the residual tensile stress 

and the dowel effect. 

 The section attains a cracked state in the second stage, with shear cracks limited to the tension 

zone and not passing through the neutral axis. Parabolic distribution of shear stress occurs at the 

uncracked region of the flexural member. At this point, some resisting mechanism begins to take 

effect; interface shear transfer, an inconsequential dowel action and residual tensile stresses. 

 Stage 3 shows the major shear crack's total extension deep inside the compression zone. In 

uncracked concrete, it is quite feasible that the shear stress will be redistributed parabolically. At 

this stage, full resisting actions begin to interact with each other. Shear failure occurs when the 

concrete section loose hold of the unstable region C under the influence of incremental loadings. 

 

Fig 2.1. Shear failure response for an RC beam under incremental loading (Tran, 2020). 

 

As stated by Olalusi (2018), the absence of stirrups limits and affects the individual influence of the 

various shear-resisting actions, particularly the aggregate interlock and dowel action. The Multi-Action 

Shear Model by Cladera and Mari (2015) initially put this into consideration in their formulation of the 

𝑀𝐴𝑆𝑀 expression for shear; 
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𝑖𝑓  𝑣𝑠 > 0 → 𝑣𝑙 =
0 ⋅ 23

𝛼𝑒⋅𝜌𝑙

1−𝑥
𝑑

⁄                                                                                                      (2.1) 

𝑖𝑓  𝑣𝑠  =  0 → 𝑣𝑙 = 0                                                                                                                       (2.2) 

The first expression provides a way to estimate the contribution of shear resistance of the dowel action 

(𝒗𝒍) if the contribution from the stirrup is not equal to zero as in the case of the RC beam with stirrups. In 

the second expression, the contribution of the stirrup ( 𝒗𝒔) is zero and this significantly limits the impact 

of the dowel action. 

When studying the behaviour of reinforced concrete beams without shear reinforcement, all other factors 

are kept constant and the shear span-effective depth ratio is varied. This categorizes the beams into four 

classes. The behaviour of RC beams without stirrup is such that different responses are derived from 

different classes according to the size orientation along with the crack formation, stress distribution and 

mode of shear failure. These classifications with further explanations are based on the categorization by 

the Joint ACI-ASCE 426 committee (1973). 

 

Fig 2.2. Variation in shear capacity with shear span- effective depth ratio (Parsi et al., 2022) 

2.2.1 Deep Beams  

As seen from Fig 2.2, deep beams also known as very short beams have the ratio of their shear span to 

effective depth (a/d) < 1. The deep beams develop inclined cracks that join the point of loading with the 

supports. These cracks disrupt the horizontal shear transfer from the longitudinal reinforcement to the 

compression zone and this behaviour changes the beam action to arch action. When arch action occurs, 

the longitudinal tensile reinforcement has the same amount of tension force throughout its span. The 
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anchoring failure at the extremity of the tension tie, also known as shear tension failure, is a typical failure 

associated with deep beams. 

 

Fig 2.3. Tied-arch structural system (Kuchma et al., 2004) 

2.2.2 Short Beams 

Short beams have the expression for the ratio of their shear span to effective depth (a/d) as 1<a/d<2.5 i.e., 

the allowable depth for short beams lies between 1-2.5m. short beams also develop inclined cracks as in 

the case of deep beams, but after the development of inclined cracks, redistribution of internal forces 

allows the beam still carry additional loads. As the value of the additional load increases, a final failure 

occurs whereby the crack crosses over to the top of the compression zone. This mode of failure is known 

as shear compression failure. 

 

Fig 2.4. Shear compression failure (Kuchma et al., 2004) 

 

Fig 2.5. Typical crack pattern for short beams without shear reinforcement ACI-ASCE 426 

(1973) 
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In Fig 2.5, the inclined crack propagates in a backward direction and causes a bond failure between the 

longitudinal steel and the concrete resulting in a splitting action, and the beam then fails by a splitting 

failure. Short beams may fail due to splitting/bond failure or shear compression failure depending on the 

direction of crack propagation. 

2.2.3 Slender beams 

The shear span to effective depth ratio of a slender beam is given as 2.5<a/d<6. Slender beams fail in the 

plane of the diagonal tension failure, and inclined cracks in slender beams cause sufficient instability to 

cause the beam to break under the load of the inclined cracking. 

 

Fig 2.6. Diagonal tension failure (Nawy, 2009). 

 

2.2.4 Very slender beams 

Very slender beams often have a shear span to effective depth ratio higher than 6. (𝑎/𝑑 > 6m). Fig 2.2 

shows that only the very slender beam attains a full flexural capacity, as it fails in flexural moment 

capacity before failing in the shear before the formation of inclined cracks as there is no formation of 

inclined cracks. 

When an inclined crack appears in an uncracked region of a beam without initially forming vertical 

flexural cracks, such cracks are said to be web-shear cracks. These types of cracks are dominant in thin 

webbed beams subjected to high shear and low moments i.e., near the supports where shear force is 

maximum. Contrarily, for flexural-shear cracks, there is an initial formation of vertical flexural cracks at 

regions where the moment is maximum, the vertical flexural cracks continue to propagate up to the 

compression zone in an inclined manner. 

2.3 Shear transfer mechanism 

The shear transfer in beam types differs from each other considerably due to the use of different 

constituent materials and governing shear transfer mechanism that contributes to the shear capacity of 

each beam type and the theories that govern the existence of such beams (Jung and Kim, 2008). For 

example, following the findings by the joint ASCE-ACI Committee 426 and joint ASCE-ACI Committee 
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445 for conventional reinforced concrete, the shear is transferred by the stirrups, the longitudinal 

reinforcement, the aggregate interlock, the uncracked compression zone, dowel effect and residual tensile 

stresses across the crack (Jung and Kim, 2008). 

 

Fig 2.7. Dimensionless shear-resisting actions and forces that contribute to the shear resistance of an RC 

beam with stirrups (Olalusi, 2018; Kuchma et al., 2004). 

 
 

Fig 2.8. Shear-resisting actions for beams without web reinforcement (Song et al., 2010). 
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The shear transfer mechanisms dominant in beams without shear reinforcement are shear resistance in the 

uncracked concrete, the dowel action, the aggregate interlock and the residual tensile stress in concrete. 

According to Campana et al. (2013), the activation of these shear transfer actions largely depends on the 

pattern or shape of the critical shear crack and its failure dynamics. The above-mentioned shear transfer 

mechanisms are purely beam-shear transfer actions. According to Nakamura et al. (2018), there are two 

classes of shear transfer mechanisms based on the shear-span to effective depth ratio (slenderness) namely 

arch action and beam-shear transfer action. Jayasinghe et al. (2022) cited Sherwood et al. (2008) saying 

the beam action is initially responsible for carrying the total shear in a reinforced concrete beam without 

stirrups. After the failure of the beam action, a redistribution of shear stresses occurs, allowing the 

activation of the arch action. When this arch action reaches its capacity, the shear failure of beams 

without stirrups becomes inevitable.  

Fig. 2.9 gives a graphical representation of the slenderness ratio (𝛾) relevance, a function of the shear 

span to effective depth ratio (𝑎
𝑑⁄ ), in determining the governing shear transfer mechanism in reinforced 

concrete beams based on a series of experimental observations by Kani (1967).  

 

 

Fig 2.9. Kani’s valley: dominancy of shear actions as a function of slenderness 

 (Ruiz et al., 2015). 

The Arching action is associated with plot points in Fig. 2.9 where the slenderness ratio is within the 

boundary condition (𝛾 < 𝛾1), this typifies a low shear-span to effective depth ratio as in the case of deep 

beams and the shear which causes failure (𝑣𝑅) at this condition compares well with the plastic strength 

(𝑣𝑝𝑙)  of the reinforced concrete beam without stirrups. According to Muttoni and Ruiz (2008), this may 

be the case for deep beams since flexural cracks do not extend inside the compression zone. The plastic 

strength (𝑣𝑝𝑙) is responsible for the crushing of concrete and the yielding of the longitudinal 
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reinforcement. In Kani’s Valley (1964), regions where 𝛾1 < 𝛾 < 𝛾2, a plastic strength larger than the 

shear failure is developed in the beam section which gives rise to an overestimation of the plastic strength 

(Kani, 1964) as a result, cracks may partially propagate into the compression zone. When 𝛾 > 𝛾2, the 

ratio between the shear responsible for the failure of a section when exceeded and the plastic strength 

gradually increases and the beam-shear transfer mechanism gains dominance in combination with the 

arching action (Ruiz et al., 2015). 

 

2.3.1 Shear in uncracked compression zone (𝒗𝑪𝑪) 

The shear capacity contributed by the uncracked compression zone to the total shear strength of a 

reinforced flexural member is about 20 – 40% (Taylor & Brewer, 1963). The contribution of this shear 

transfer mechanism is dependent on the depth of the uncracked compression zone (Frosch &Wolf, 2003) 

and the compressive strength of the member (Jayasinghe et al, 2022). Thus, the participation of this 

mechanism in the shear transfer in very slender flexural members is limited and negligible but provides a 

significant contribution to the total shear strength in members with little slenderness ratio as in the case of 

deep beams. According to Tureyen et al & Ribas et al (2003, 2014 as cited in Cladera et al., 2015), the 

shear transferred by the uncracked concrete chord has a linear dependency with the neutral axis depth. 

Cladera et al. (2015) further added that since the neutral axis depth depends on the longitudinal 

reinforcement ratio and the modular ratio, a high ratio of longitudinal reinforcement would affect the 

neutral axis depth. This enhances the capacity of the uncracked compression chord in resisting shear. 

As the critical shear crack propagates in a quasi-horizontal trend, Ruiz et al. (2015) reported that the 

compression chord's shear capacity contribution is still viable despite the cantilever action in slender 

members, which transfers force by the inclination of the compression chord, has been disabled. According 

to the crack kinematics evaluation, it was seen that the compression chord remains functional provided 

that an inclined compression strut develops. Additionally, the height and placement of the critical shear 

crack as well as the angle of the compression strut determine how much shear force may be transmitted. 

 

2.3.2 Dowel action (𝒗𝒅) 

The flexural reinforcements in a reinforced concrete member contribute to the shear transference by 

acting as a dowel between the lips of cracks (Krefeld & Thurston, 1966). Shear displacement which 

occurs along the cracks in a concrete section may cause slippage, the longitudinal bars provide resistance 

by averting such slippage (Olalusi, 2018). According to Campana et al. (2015), When the critical shear 

crack propagates through the compression reinforcement and prevents spalling cracks from developing 

close to the loading plate, the dowel action's influence is significant. Additionally, the use of transverse 

reinforcement in RC members or the inability of concrete to form spalling fractures, as in the case of 
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short-span beams, makes this mechanism effective. However, in agreement with Jelic et al. (1999), 

Muttoni et al. (2008) said that as 𝑎/𝑑 decreases in the case of slender beams without transverse 

reinforcement, the influence of the dowelling action becomes significantly negligible. As also stated by 

Kuchma et al. (2004), the spacing of cracks caused by bending, lateral reinforcement arrangement and the 

concrete cover, all determine how the dowelling action influences shear strength. 

 

2.3.3 Aggregate interlock (𝒗𝒄𝒂) 

Aggregate interlocking stresses (normal and tangential contact stresses surrounding a crack formation in 

concrete) happen whenever the cement paste on one side of the crack comes into contact with the 

aggregate on the other side. According to the study of crack kinematics in the work of Ruiz et al. (2015), 

the shear strength provided by this transfer mechanism is limited by the crack opening (w) and the 

relative crack slip (𝛿). The compression field theory generalizes on the premise that the shear contribution 

from the aggregate interlock is the most significant of all the shear transfer mechanisms (Collins et al., 

2006). It should be noted that the failure of this shear transfer mechanism is associated with the 

development of a delamination crack at the level of flexural reinforcement (Ruiz et al., 2015). A 

delamination crack is explained as a horizontal splitting, cracking or separation near the upper surface of 

a rectangle cross-section specimen, it is known as a mode of failure where a material fractures into layers 

as in the case of the failure mode of 3D printed cementitious concrete. 

 

 

Fig 2.10. Aggregate interlock: (a) kinematics of a shear crack with relative components of opening (w) 

and slip (𝛿); and (b) contact stresses (Ruiz et al., 2015). 
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2.3.4 Residual tensile stress in concrete (𝒗𝑪𝒓) 

The capacity of concrete to transfer tensile stresses remains significant even after cracking has occurred 

provided that the crack width is within the permissible range. Stresses develop near the tip of the crack 

(the fracture process zone) and soften upon incremental opening of crack width (Hillerborg, 1983). Ruiz 

et al. (2015) established that the capacity of the shear transfer accounted for by this mechanism depends 

on the aggregate size of the concrete.  

Tensile stresses can continue to be transmitted in fractured concrete up until crack widths of 0.05-0.15 

mm (ACI-ASCE Committee 445, 2009), while Hordjick (1992) made it clear that a flexural member with 

a crack opening wider than 0.2 mm cannot continue to transfer tensile loads. 

 

2.3.5 Shear reinforcement contribution (𝒗𝒔) 

The shear reinforcement can be placed either perpendicular to the flexural bars, in an inclined manner or 

laterally as demonstrated in experiments carried out by Hunegnaw and Aure (2021) and Sayyad et al. 

(2013). The presence of stirrups does not significantly alter or modify the shear transfer mechanism in RC 

beams, rather, it contributes to the strength of the shear transfer actions collectively and individually by 

carrying part of the shear, improving the capacity of the dowel action by effectively supporting the 

flexural bars that are being crossed by flexural cracks, limiting the opening or width of diagonal cracks 

within the elastic range, as the shear reinforcement cannot stop the formation of cracks. Hence, the 

inclusion of web reinforcement proves to be important to the behaviour of the shear action by the 

interface shear transfer (aggregate interlock). Stirrups provide confinement to the concrete when closely 

spaced. As a result, the compressive strength of concrete is increased and this helps in regions affected by 

the arching action. The web reinforcements also prevent bond failure when splitting cracks develop in the 

anchorage zones due to the dowel and anchorage forces.  

The overall objective of the stirrup is to guarantee that complete flexural capacity may be reached since 

inclined cracking decreases the shear strength of beams below flexural capacity. Fig 2.11 is a graph of the 

positive linear relationship between the internal resisting shear and the applied shear, it shows that 

whatever the applied shear is, there should be a corresponding or equal magnitude of internal resisting 

shear through the section of a beam with web reinforcement. The different points on the 𝑥-axis of the 

graph represent the progressive response of a reinforced concrete section to applied shear force which 

determines the distribution of the dominating shear transfer action. Before the formation of the inclined 

cracks, the contribution of shear capacity by the stirrups is zero i.e., there is no action by stirrups. All of 

the applied shear at this point is resisted by the contribution from the concrete only.  The flexural crack 

occurs before the formation of the inclined crack, the concrete also dominates the resistance mechanism at 

this point. Between the flexural cracks and the inclined crack, the shear resistance provided by the 
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concrete can be resolved into three (3), the shear resisted by the uncracked compression zone (𝑣𝐶), shear 

resisted by the dowelling action (𝑣𝑑), and the contribution from the interface shear transfer/aggregate 

interlock (𝑣𝑎𝑧). As the applied shear gradually increases beyond the inclined crack, the stirrups would 

provide shear resistance.  

A further increase of the applied shear would cause the stirrups to yield and as a result, the resistance 

capacity of the stirrups remains constant for higher values of applied shear. To resist the increasing 

applied shear forces at this point, the value of 𝑣𝐶 and 𝑣𝑑 increases rapidly, while 𝑣𝑎𝑧 decreases due to the 

presence of wider cracks caused by the yielding of the stirrups. As 𝑣𝐶 and 𝑣𝑑 increases along with the 

applied shear, failure occurs due to dowel splitting, loss of interface shear transfer or the failure of the 

compression zone due to the combined action of shear and compression. At this point, it is safe to say the 

ultimate failure has been attained. 

 

 

Fig 2.11 Distribution of internal shear in beam with web reinforcement (Subramanian, 2014). 

 

2.3.6 Arch action 

Deep beams with short spans exhibit behaviour synonymous with that of an arch. In conventional beams, 

applied loads are carried through flexural bending and shear, and deep beam responds to loadings as 

trusses would via arch action. In such beams, the applied load is close to the support and a larger portion 
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of the load is directly transferred to the support in compression. This mechanism facilitates the formation 

of a compression strut between the applied load and the support. By keeping a constant lever arm (z) 

between the compression and tension chords, beam-transfer actions permit the carrying of shear in a 

member. As a result, the tension reinforcement's force varies depending on how significant the beam's 

bending moments become. However, arching action gives room for shear to be carried by assuming a 

constant force in the longitudinal reinforcement. Anchorage failure may be the controlling failure 

mechanism in deep beams, instead of shear failure. Arch action is not a shear transfer mechanism, but for 

beams where arch action gains dominancy over beam actions, such beams usually have a higher shear 

resistance than similar beams which are slenderer. Kim and Park (1996) state that induced loads is 

transmitted directly to the supports in relatively short beams by the arch action. The span-to-height ratio 

of the corresponding arch and the strength of the compression strut are the major variables affecting this 

shear action. The shear span-to-depth ratio and the span-to-height ratio of the corresponding arch are 

almost equivalent, while the compressive strength of concrete and the area of tension reinforcement 

strongly impact the strength of the compression strut. 

 

 

2.4    Parameters contributing to shear strength 

2.4.1 Longitudinal reinforcement ratio 

By using a low ratio of flexural reinforcement, as opposed to when using a significant percentage of 

longitudinal reinforcement, flexural cracks rapidly propagate over the neutral axis into the surrounding 

region of the compression zone. Insufficient steel ratio in steel-reinforced concrete causes an increase in 

crack width. Consequently, this results in a decrease in the capacity of shear transferred by the dowel 

effect and the aggregate interlock as in the case of slightly reinforced beams. According to Collins and 

Kuchma (1999), quoted by Olalusi (2018), beams with longitudinal reinforcement spread along the depth 

of the beam exhibit closely spaced, thinner cracks with high shear strengths. 

According to Angelakos et al. (1999; 2001 as cited in Jayasinghe et al., 2022), changing the percentage 

composition of the longitudinal reinforcement ratio from 0.5% to 2.09% caused a 62% rise in the 

observed shear strength of large concrete beams. This shows that the greater the steel ratio, the greater the 

strength of contributing shear actions. The absence of transverse reinforcement causes a vertical 

movement of the flexural longitudinal bars. Hence, the longitudinal bars are rendered incapable of 

transferring shear due to the lack of constraint from stirrups (Cladera et al., 2015). 

Slowik (2018) conducted experimental studies that demonstrated how the quantity of longitudinal 

reinforcement affects its effectiveness. Additionally, the longitudinal reinforcement ratio can affect the 

failure mode in flexural beams without stirrups. 
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2.4.2 Concrete strength 

The strength of concrete is generally known to be its ability to resist forces. In more precise knowledge 

relating to structural engineering, concrete strength is defined as the unit force required to cause a rupture 

in a concrete member. Concrete strength can either be compressive or tensile. According to Angelakos et 

al. (2001), the effect of the tensile strength of concrete on the shear strength is more critical than that of 

the compressive strength. This may be because concrete as a brittle material is weak in tension and strong 

in compression, so more concern should be given to the tensile capacity of concrete. Shetty (2005) 

confirmed this as well saying that the tensile strength of concrete for a grade M25 concrete and above is 

about 8-11% of the corresponding compressive strength. With increased concrete strength, the shear 

capacity of the uncracked compression chord and dowel action increases as well (Olalusi, 2018). Due to 

the fracture of aggregates, increasing the compressive strength of concrete in beams void of 

shear reinforcement does not significantly enhance the resistance of such beams against shear (Cladera et 

al., 2004). 

Since the flexural cracking that initiates the inclined cracking disturbs the elastic-stress field to the point 

at which inclined cracking occurs at a principal tensile stress of approximately half of the tensile strength 

of the uncracked section, the inclined cracking load in a flexural member tends to depend on the tensile 

strength of the concrete. 

2.4.3 Size effect 

According to Muttoni & Ruiz (2008) and Lee et al. (2017), the shear strengths of reinforced concrete 

members without transverse reinforcement tend to decrease as the effective member depth (d) increases 

depicting an inverse relationship between both entities, this phenomenon is known as the size effect. 

Fernandez Ruiz et al. (2015) further explained the size effect as the decrease in the unitary (normalized) 

shear strength for beam samples with the same geometrical and mechanical properties but with increasing 

member sizes (d). As reported by Tran (2020), the size effect expresses the material strength concerning 

the structural size and is therefore associated with material failure. 

The negative linear relationship as shown in Fig. 2.12 at increasing values of Log d demonstrates the size-

effect law stated by Bazant et al. (1984), the rule specifies that a size-effect law should regulate the 

decline in concrete shear strength, making the transition from a yield criteria for small member sizes 

(without a size effect) to the behaviour anticipated by linear elastic fracture mechanics (LEFM) for large 

sizes (strength reduction controlled by d^(-0⋅5)). 
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Fig 2.12 Using a double-logarithmic scale to demonstrate size effect (Fernandez Ruiz et al., 2015) 

The conflict on how best to model the size effect remains. Although, there is a generalized knowledge 

that the main reason for this is the phenomenon of concrete cracking and structural energy release 

(Hunegnaw and Aure, 2021). The product of the strain in the reinforcement passing through the crack and 

the crack spacing determines the width of an inclined crack. The crack widths and spacings tend to widen 

as the depth of the beam increases. This in turn largely affects the capacity of shear contributed by the 

residual tensile strength of concrete and the interface shear transfer as they vary proportionally to the 

width of the crack. Therefore, for a deep beam with a large crack width, the aggregate interlock and 

residual tensile stress become limited. Slowik (2014) reported that the size effect should not only be 

associated with the member depth but should be considered for all the geometrical properties namely the 

effective length, depth and width. 

2.4.4 Shear span – effective depth ratio 

The shear span-to-depth ratio (a/d) can be explained as the ratio between the shear force and flexural 

moment in the critical section (Yerzhanov et al., 2019). This is true when bending moment (𝑀) and shear 

force (𝑣𝑓) occurs simultaneously in the same cross-section given as 𝑀 / (𝑣𝑓). But for a three -four-point 

bend test, the shear span to depth ratio is taken as (a/d) where the shear span (a) is the distance from the 

point of force applied to the support, and (d) is the member size as in depth. In a bit to show that the 

effective length-to-depth ratio (𝑙𝑒𝑓𝑓/𝑑) of flexural concrete members without web reinforcement affects 

the shear strength, an experimental study by Slowik (2014) was conducted and it was concluded that the 

shear span-depth ratio (a/d) is the fundamental parameter that substantially affects the shear strength in 

concrete members reinforced longitudinally and without shear reinforcement, it was also seen that the 

failure process in the investigated members was influenced by shear span-to-depth ratio along with the 

effective length-to-depth ratio. 
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Sneed and Ramirez (2010) discovered that in addition to size effects, changes in the behaviour of RC 

beams and the method of shear transfer at failure also determine the reduction in shear with increasing 

effective depth in beams (beam action versus arch action). 

 

2.4.5 Axial force 

Olalusi (2018) cited Kuchma et al. (2004) saying when a reinforced concrete beam is subjected to axial 

tension, it experiences a decrease in its shear strength. Contrarily, axial compression increases shear 

strength. He continued by saying that the start of a critical failure in the section is accelerated by the axial 

tensile forces which also tend to increase the inclination of the crack angle.  

Other factors which affect the shear strength of concrete include the grade of concrete and the size of the 

coarse aggregate used in the mix. 
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2.5 Review of current national codes of design 

2.5.1 European code (EC2) 

Clause 6.2.2 of the European standard, Eurocode 2: Design of concrete structures – Part 1-1: General 

rules and rules for buildings (EN 1992-1-1 (2004)), gives the expression for estimating the design shear 

resistance of beam without shear reinforcement. The expression is as written in Equation (2.3); 

  𝑉𝑅𝑑,𝑐 = [𝐶𝑅𝑑,𝑐𝑘(100𝜌𝑙𝑓𝑐𝑘)1 3⁄ + 𝑘1𝜎𝑐𝑝]𝑏w𝑑 ≥ 𝑉𝑅𝑑,𝑐,𝑚𝑖𝑛                                                                    (2.3) 

The code also makes provisions for the minimum amount of shear contributed by the concrete which can 

be termed as 𝑽𝑹𝒅,𝒄,𝒎𝒊𝒏 and determined by; 

  𝑉𝑅𝑑,𝑐,𝑚𝑖𝑛 = (𝑉𝑚𝑖𝑛 + 𝑘1𝜎𝑐𝑝)𝑏w𝑑                                                                                                            (2.4) 

  Where 𝑉𝑚𝑖𝑛 = 0.0353 2⁄ 𝑓𝑐𝑘
1 2⁄

                                                                                                                 (2.5) 

Hence,  

  𝑉𝑅𝑑,𝑐,𝑚𝑖𝑛 = (0.0353 2⁄ 𝑓𝑐𝑘
1 2⁄

+ 𝑘1𝜎𝑐𝑝)𝑏w𝑑                                                                                             (2.6) 

Where: 

 𝑏w= beam width 

 𝜌𝑙 = longitudinal reinforcement ratio = 
𝐴𝑠𝑙

𝑏w𝑑
< 0.02 𝑜𝑟 2% 

 𝐴𝑠𝑙 = Area of tensile reinforcement 

  d = effective beam depth 

 𝑓𝑐𝑘= Concrete characteristic compressive cylinder strength at 28 days (Mpa) 

 𝐶𝑅𝑑,𝑐=  
0.18

𝛾𝑐
 

 𝜎𝑐𝑝= Axial load or prestressing-induced compression stress in the concrete 

                   =  
𝑁𝐸𝑑

𝐴𝑐
< 0.2𝑓𝑐𝑑(𝑀𝑃𝑎)                                                                                                          (2.7) 

 𝑁𝐸𝑑 = Axial force from loading or prestressing in the cross-section [in N] 

 𝐴𝑐  = Area of the concrete section 

 K= size effect factor = 1 + √
200

𝑑
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Clause 6.2.1 of the EN 1992-1-1 (2004) clearly states that the total shear resistance of a reinforced 

concrete member is the sum of the contribution from the shear reinforcement (𝑉𝑅𝑑,𝑠), concrete (𝑉𝑅𝑑,𝑐) and 

the shear component of the force in the compression area, if there is an inclined compression chord (𝑉𝑐𝑐𝑑) 

and it is represented by the expression below; 

  𝑉𝑅𝑑 = 𝑉𝑅𝑑,𝑠 + 𝑉𝑅𝑑,𝑐 + 𝑉𝑐𝑐𝑑                                                                                                                    (2.8) 

2.5.1.1 Shear Resistance by Shear Reinforcement (𝑽𝑹𝒅,𝒔) 

The shear design for the web reinforcement is based on a truss model and a lower-bound plasticity theory. 

The model permits the concrete compressive strut angle (휃) to be kept within the range of 21.8° ≤ 휃 ≤

45°. This concept is introduced to control the propagation of cracks since an incremental shear force on 

the beam widens the strut angle (휃) which eventually reduces the shear strength of the member. Olalusi 

(2018) asserts that the EC2 variable strut inclination method shear design's limited strut angle is a kind of 

bias applied to the concrete compressive strut angle to increase conservatism in the model. The maximum 

boundary of 45˚ serves to prevent excessively conservative estimations, while the lower limit of 21.8˚ is 

imposed to produce a more conservative approximation of shear predictions. The diagram below gives a 

pictorial representation of the reinforced concrete beam in shear using the truss model mechanism.  

  

Fig 2.13 Truss model (Mosley et al., 2007) 

The equation for the design value of the shear force that the resisting reinforcement can withstand (𝑉𝑅𝑑,𝑠) 

is as follows; 

    𝑉𝑅𝑑,𝑠 =
𝐴𝑠w

𝑆
𝑍𝑓𝑦wd𝑐𝑜𝑡휃                                                                                                                        (2.9) 

Where 𝐴𝑠w = cross-sectional area of the shear reinforcement 

𝑆     = spacing of the stirrups 

𝑓𝑦wd = design yield strength of the shear reinforcement 
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𝑍    = the inner lever arm. The approximate value z = 0.9d may often be adopted in the shear calculation 

of reinforced concrete in the absence of axial force. 

휃     = angle between the concrete compression strut and the beam axis perpendicular to the shear force. 

An upper limit of shear resistance is provided by the code of design to avoid premature web-crushing 

failure. According to EN 1992-1-1 (2004), 𝑉𝑅𝑑,𝑚𝑎𝑥 is calculated as  

  𝑉𝑅𝑑,𝑚𝑎𝑥 =
𝛼𝑐w𝑏w𝑍𝑣1𝑓𝑐𝑑

𝑐𝑜𝑡𝜃+𝑡𝑎𝑛휃
                                                                                                                     (2.10) 

Where; 

𝛼𝑐w is the coefficient accounting for stress in the compression chord, value = 1 for non-prestressed 

structures. 

𝑓𝑐𝑑 is the design value of concrete compressive strength 

𝑣1 is the strength reduction factor with a value 

   𝑣1 = 0.6 [1 −
𝑓𝑐𝑘

250
]                                                                                                                             (2.11) 

휃, the concrete strut angle is given by; 

 휃=𝑠𝑖𝑛−1√
𝐴𝑠w(

𝑓𝑦wk

𝛾𝑠
)

𝛼𝑐w𝑏w𝑠𝑣1(
𝑓𝑐𝑘
𝛾𝑐

)
                                                                                                                                      (2.12) 

𝑓𝑐𝑘 = concrete characteristic strength 

𝛾𝑐 = proposed value of 1.5 for the concrete partial material factor 

𝑓𝑦wk is the characteristic strength of the web reinforcement 

𝛾𝑠 is the partial material factor for steel with a recommended value of 1.15 

 

2.5.2 Australian code (AS 3600 – 2018) 

The Australian standard for concrete structures was first published in March 1988 as AS 3600-1988. 

Since then, it has been subjected to four revisions; AS 3600-1994, AS 3600-2001, AS 3600-2009 and the 

recent revision, AS 3600-2018. According to Chowdury and Loo (2018), there have been substantial 

updates/changes to the most current edition (2018), which now incorporates an improved approach to 

capacity estimation. According to Chowdury and Loo (2018), the modifications which were introduced in 

the recent publication resulted in a more arduous procedure and additional computational efforts would be 
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required for practitioners. Jayasinghe et al (2022) stated that the AS 3600-2018 together with some other 

concrete design codes such as the Canadian Concrete Code, Fib Model Code and the AASTHO-LFRD 

based their provisions for designing RC beams without shear reinforcement on the simplified modified 

compression field theory. 

In the estimation of the concrete contribution to the shear strength, the 𝑘𝑣 factor and the concrete 

compressive strength are the dependent factors. The factor 𝑘𝑣 is a parameter that has been adopted from 

the SMCFT. Due to the difficulties of determining this variable, it has been concluded that AS 3600-

2018's computational efforts and intricacy requirements are often difficult for the designing of reinforced 

and prestressed concrete for shear. (Chowdury and Loo, 2018). 

Clause 8.2.3.1 of the AS 3600-2018 states that the design shear resistance of a reinforced concrete section 

can be considered as the sum of the 3 explicit contributions as shown in Equation (2.13); 

  𝑉𝑢 = 𝑉𝑢𝑐 + 𝑉𝑢𝑠 + 𝑃𝑣                                                                                                                             (2.13) 

Where 𝑉𝑢𝑐 is the design shear resistance from the concrete 

 𝑉𝑢𝑠 is the design shear resistance from the shear reinforcement 

 𝑃𝑣 is the vertical component of prestress crossing the section under consideration. 

For the design of beams with no shear reinforcement, the other two terms (𝑉𝑢𝑠 , 𝑃𝑣) can be neglected since 

there is no shear contribution from either of the terms. Clause 8.2.4.1 gives the expression for determining 

the concrete contribution to the shear strength, and it can be calculated by 

  𝑉𝑢𝑐 = 𝑘𝑣𝑏𝑣𝑑𝑣√𝑓𝑐
,
                                                                                                                                 (2.14) 

Where:  

𝑓𝑐
,
 = Characteristic compressive (cylinder) strength of concrete at 28 days (𝑓𝑐

,
<8Mpa (1160 psi)). 𝑏𝑣 = 

Width of the section  

𝑑𝑣 = Effective shear depth of the member  

According to AS 3600-2018, the value of 𝑘𝑣 shall be determined as follows 

a. For 𝐴𝑠𝑣/𝑠 < 𝐴𝑠𝑣,𝑚𝑖𝑛/𝑠; 

     𝑘𝑣 = (
0.4

1+1500𝜀𝑥
)(

1300

1000+𝑘𝑑𝑔𝑑𝑣
)                                                                                                        (2.15) 

Where: 
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1. If 𝑓𝑐
,
 ≤ 65Mpa (9427Psi) and not lightweight concrete 

𝑘𝑑𝑔 = [
32

(16+𝑑𝑔)
] ≮ 0.8                                                                                                 (2.16)                                       

𝑑𝑔 is the maximum nominal aggregate size 

𝑘𝑑𝑔 can be taken as 1.0 provided that the 𝑑𝑔is not less than 16mm 

2. If 𝑓𝑐
,
 > 65Mpa or lightweight concrete  

𝑘𝑑𝑔= 2.0 

b. For 𝐴𝑠𝑣/𝑠 ≥ 𝐴𝑠𝑣,𝑚𝑖𝑛/𝑠; 

                    𝑘𝑣 = [
0.4

1+1500𝜀𝑥
]                                                                                                                  (2.17)    

Determination of the longitudinal strain in concrete 

휀𝑥 =
|
𝑀∗

𝑑𝑣
|+|𝑉∗|−𝑃𝑣+0.5𝑁∗−𝐴𝑝𝑡𝑓𝑝𝑜

2(𝐸𝑠𝐴𝑠𝑡+𝐸𝑝𝐴𝑝𝑡)
≤ 3.0 ∗ 10−3                                                                                         (2.18) 

The web shearing capacity 𝑉𝑢,𝑚𝑎𝑥 is given by 

𝑉𝑢,𝑚𝑎𝑥 = 0.55 [𝑓𝑐
,𝑏w𝑑𝑣 (

𝑐𝑜𝑡𝜃𝑣

1+𝑐𝑜𝑡2𝜃𝑣
)]                                                                                                       (2.19) 

휃𝑣, the angle of inclination of the concrete compression strut to the longitudinal axis of the member shall 

be calculated as follows; 

   휃𝑣 = (29 + 7000휀𝑥)                                                                                                                          (2.20)                                       

 

2.5.3 American code (ACI 318-19) 

The one-way shear design equations for non-prestressed concrete were changed in the ACI 318-19 Code. 

According to the American Building Code Requirements for Structural Concrete (ACI 318-19), this was 

done to include the size effect factor (𝜆𝑠) developed by professor Bazant and the ACI committee 446. The 

influence of the longitudinal reinforcement ratio and axial load, if there be any axial force acting 

alongside the shearing force and the resulting moment on a member, were also included. The previous 

shear equations had some safety concerns for members with a minimum amount of longitudinal 

reinforcement and large depth. For non-prestressed concrete (reinforced concrete), 𝑉𝑐 shall be calculated 

following the table below.  
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Table 2.2 Selection of shear expression based on shear reinforcement requirement (ACI 318-19) 

Criteria 𝑽𝒄  

𝑨𝒗 ≥ 𝑨𝒗,𝒎𝒊𝒏  

Either of: 
[2𝜆√𝑓𝑐

, +
𝑁𝑢

6𝐴𝑔
] 𝑏w𝑑 

(a) 

 

 

(b) 

 

[8𝜆(𝜌)1 3⁄ √𝑓𝑐
, +

𝑁𝑢

6𝐴𝑔
] 𝑏w𝑑 

𝑨𝒗 < 𝑨𝒗,𝒎𝒊𝒏 

 
[8𝜆𝑠𝜆(𝜌)1 3⁄ √𝑓𝑐

, +
𝑁𝑢

6𝐴𝑔
] 𝑏w𝑑 

(c) 

 

Where 𝜆𝑠 is the size effect modification factor, it can be determined by; 

𝜆𝑠 = √
2

1+
𝑑

10

≤ 1                                                                                                                                      

(2.21)                                                   

 

𝜆, 1.0 is used as the modification factor for normal-weight concrete for lightweight concrete. 

𝑓𝑐, is the concrete compressive cylinder strength 

𝜌𝑙 is the flexural reinforcement ratio 

𝐴𝑔is the gross area of the concrete section 

𝑏𝑤 is the beam width 

𝑑 is the effective depth of the beam 

𝑁𝑢 is the axial load acting at the critical zone of the concrete section 

Note that when calculating 𝑽𝒄, according to ACI 318-19, an axial tension force can cause 𝑽𝒄 to have a 

negative value. In those cases, 𝑽𝒄 should be taken as zero. 

 

 

Limit Values 

   𝑉𝑐 ≯ 5𝜆𝑏w𝑑                                                                                                                                         (2.22)                                                                

   
𝑁𝑢

6𝐴𝑔
≯ 0.05𝑓𝑐

′                                                                                                                                        

(2.23)                                       

If shear reinforcement is required, 𝐴𝑣,𝑚𝑖𝑛 (minimum amount of shear reinforcement) shall be taken as the 

greater of; 

(a) 0.75√𝑓𝑐
, 𝑏w𝑠

𝑓𝑦𝑡
                                                                                                                                (2.24)                                       
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(b) 50
𝑏w𝑠

𝑓𝑦𝑡
                                                                                                                                         

(2.25)                                       

The above expression can be neglected for beams that are unreinforced in their web. 

 

Table 2.2 Cases where 𝐴𝑉,𝑚𝑖𝑛 is not required if 𝑉𝑢 ≤ Φ𝑉𝑐 

Beam Type Condition ≤ ≥ 

Shallow beam h ≤ 10 in. 

 

Integral with slab h ≤ greater of 2.5𝑡𝑓 or 0.5𝑏w and 

h ≤ 24 in 

Constructed with steel fibre-reinforced normal-

weight concrete conforming to specific requirements 

and with 𝒇𝒄
′  ≤ 6000 psi 

 

h ≤ 24 in. and 𝑉𝑢 ≤ ∅2√𝑓𝑐
,𝑏w𝑑 

 

One-way joint system 

 

Conforming to specific requirements 

 

 

 

2.5.4 The South African national standard (SANS 10100-1. (2000)) 

The South African concrete specification (SANS 10100-1(2000)) incorporates the previous British 

standard for the design of reinforced concrete buildings (BS8110). The design code employs the 45° truss 

model methodology as the design philosophy for shear reinforcement and also takes into account the 

impact of the concrete in resisting shear by including a concrete contribution term calculated empirically. 

As a result, the nominal shear strength (𝑉𝑛) is calculated by adding the concrete contribution (𝑉𝑐) and the 

shear reinforcement (𝑉𝑠), as follows: 

     𝑉𝑛 = 𝑉𝑠 + 𝑉𝑐                                                                                                                                     (2.26)                                                                                                            

The shear reinforcement contribution is given as  

   𝑉𝑠 =
𝐴𝑣𝑓𝑣𝑑

𝛾𝑚,𝑠𝑏w𝑠
                                                                                                                                        (2.27)                                                

Where 𝑓𝑣 is the yield strength of shear reinforcement 

𝐴𝑣 is the area of shear reinforcement 

 𝛾𝑚,𝑠 is the partial material safety factor for steel = 1.15 

The concrete contribution is given as  
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   𝑉𝑐 =
0.75

𝛾𝑚,𝑐
(

𝑓𝑐𝑢

25
)

1

3(
100𝐴𝑠

𝑏w𝑑
)

1

3(
400

𝑑
)

1

4                                                                                                              (2.28)                                          

Where 
100𝐴𝑠

𝑏w𝑑
 = reinforcement ratio 

 𝑓𝑐𝑢 is the characteristic concrete cube strength 

 𝛾𝑚,𝑐 is the partial material safety factor for concrete = 1.4 

Hence the nominal shear capacity according to SANS10100(200) is given by; 

    𝑉𝑛 = 
𝐴𝑣𝑓𝑣𝑑

𝛾𝑚,𝑠𝑏w𝑠
+

0.75

𝛾𝑚,𝑐
(

𝑓𝑐𝑢

25
)

1

3(
100𝐴𝑠

𝑏w𝑑
)

1

3(
400

𝑑
)

1

4                                                                                             (2.29)                                       

The contribution of the shear reinforcement can be neglected in cases where stirrups are not required, as 

in the case of beams without shear reinforcement considered in this study. 

 

2.5.5 Fib Model Code 2010 (LOA II) 

The fib Model Code 2010 procedures were developed from physical-mechanical models that are based on 

behavioural observation of test subjects at a mesoscale level, they represent a significant advancement 

over previous standardized empirical methods (Sigrist et al., 2013). The shear resistance expression 

provided by the fib model code 2010 is categorized into four approximation levels (LoA I-IV) which 

determine the complexity, computation time and effort, level of detail needed (i.e., preliminary design, 

detailed design or assessment of existing structures), the importance of structural element and level of 

accuracy associated each procedure. LoA II would be considered in this study as LoA III is associated 

with the shear estimation of beams with shear reinforcement, while LoA IV looks more into numerical 

modelling and finite element analysis. The code offers practitioners the freedom to alter the design 

procedures for members with and without shear reinforcement as it explicitly states that the components 

of the design shear resistance include the resistance attributed to the concrete and the shear strength 

provided by the shear reinforcement.  

According to Sigrist et al. (2013), the fib Model Code 2010 shear provisions for members without shear 

reinforcement are based on Simplified Modified Compression Field Theory (SMCFT). While for 

members with shear reinforcement, the design principle is based on a general stress field approach 

combined with SMCFT. The shear resistance provided by the fib model code is as given below; 

      𝑉𝑅𝑑 = 𝑉𝑅𝑑,𝑠 + 𝑉𝑅𝑑,𝑐 ≥ 𝑉𝐸𝑑                                                                                                                (2.30)                                       

where 𝑉𝑅𝑑,𝑐 is the resistance attributed to the concrete given as; 
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      𝑉𝑅𝑑,𝑐 = 0.9𝑘𝑣√
𝑓𝑐𝑘

𝛾𝑐
𝑏w𝑑                                                                                                                    (2.31)                                       

𝑉𝑅𝑑,𝑠 is the resistance attributed to the shear reinforcement given as; 

      𝑉𝑅𝑑,𝑠 = 0.9
𝐴𝑠w

𝑠w

𝑓𝑦wk
𝛾𝑠

⁄ 𝑑(𝑐𝑜𝑡휃 + 𝑐𝑜𝑡𝛼)𝑠𝑖𝑛𝛼                                                                                 (2.32)                                       

Hence, 

     𝑉𝑅𝑑 = 0.9
𝐴𝑠w

𝑠w

𝑓𝑦wk
𝛾𝑠

⁄ 𝑑(𝑐𝑜𝑡휃 + 𝑐𝑜𝑡𝛼)𝑠𝑖𝑛𝛼 + 0.9𝑘𝑣√
𝑓𝑐𝑘

𝛾𝑐
𝑏w𝑑 ≥ 𝑉𝐸𝑑                                           (2.33)                                       

  𝑉𝐸𝑑 is the design shear force at the control section  

where 𝑓𝑐𝑘 is the characteristic value of concrete compressive strength 

To determine the shear resistance attributed to concrete, 𝑘𝑣, a factor dependent on the longitudinal strain 

of concrete is calculated as shown below 

      𝑘𝑣 =
0.4

(1+1500𝜀𝑥)
(1 −

𝑉𝐸𝑑
𝑉𝑅𝑑,𝑚𝑎𝑥(휃𝑚𝑖𝑛)⁄ ≥ 0                                                                                (2.34)                                       

 

휀𝑥  = the longitudinal strain of concrete = 
𝑀𝐸𝑑

𝑧⁄ +𝑉𝐸𝑑

2𝐸𝑠𝐴𝑠
< 3 ∗ 10−3                                                          (2.35)                                       

where 𝐴𝑠 comprises the main longitudinal reinforcing bars in the tension chord. 

        휃 = 20° + 7000휀𝑥                                                                                                                                            (2.36)   

        휃𝑚𝑖𝑛 = 20° + 10000휀𝑥                                                                                                                                (2.36b)                                                                           

       휃𝑚𝑖𝑛 ≤ 휃 ≤ 45°                                                                                                                              (2.37)                                       

 

Fib Model Code 2010 (LoA III) Web crushing strength capacity (𝑽𝑹𝒅,𝒎𝒂𝒙) 

The shear strength is limited by the crushing of the concrete 𝑉𝑅𝑑,𝑚𝑎𝑥 calculated as shown below                

𝑉𝑅𝑑,𝑚𝑎𝑥 = 0.9𝑘𝑐
𝑓𝑐𝑘

𝛾𝑐
⁄ 𝑏w𝑑

𝑐𝑜𝑡𝜃+𝑐𝑜𝑡𝛼

1+𝑐𝑜𝑡2𝜃
                                                                                                  (2.38)                                       

Where 𝑘𝑐 Evaluates the effects of cracked concrete in the calculation of the decline in concrete strength = 

𝐾𝜀휂𝑓𝑐 

    𝐾𝜀 = factor for the strain effect given as; 

    𝐾𝜀 =
1

1.2+55𝜀1
≤ 0.65                                                                                                                         (2.39)                                     

휀1 =the principal strain defined by Mohr’s circle of strain given as; 

   휀1 = 휀𝑥 + (휀𝑥 + 0.002)𝑐𝑜𝑡2휃                                                                                                            (2.40)                                       

𝛼 is the angle of the stirrups 

휂𝑓𝑐= the brittleness factor concrete given as; 
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     휂𝑓𝑐 = (
30

𝑓𝑐𝑘
)

1

3 ≤ 1                                                                                                                                (2.41)        

                               

2.6     Literature–based shear models 

2.6.1 Multi-action shear model (MASM) 

The Multi-Action Shear Model (𝑀𝐴𝑆𝑀) proposed by Cladera et al. (2015) is an extension of a flexural 

shear model based on the principle of mechanics originally developed to evaluate the resisting capacity of 

concrete flexural members reinforced with fibre polymers longitudinally and/or transversally. According 

to Cladera et al. (2015), the model can be applied to both prestressed and reinforced concrete with or 

without shear reinforcement. Also, the cross-section of the beams could either be T-shaped or rectangular.  

Cladera et al. (2019) stated that the main assumption of the multi-action shear model is that as the second 

branch of the critical shear begins to form, the load does not considerably increase as the flexural 

compression zone's concrete softening occurs. This was also seen in the works of Zararis and Papadakis 

(2001), Carmona et al. (2007) and Yu et al. (2016). 

By subjecting slender beams to shear and bending, a critical shear crack which can be divided into two 

parts occurs; first, the flexural cracks occur at the tension zone and propagates in a quasi-vertical manner 

through the web to the neighbourhood of the flexural neutral axis. Under incremental loading, a second 

branch of the critical shear crack, the inclined crack, develops inside the compression chord in a quasi-

horizontal manner, which eventually connects the flexural crack and the point of load application, 

producing failure (Zararis and Papadakis, 2001; Muttoni et al. 2008 as cited in Cladera et al. 2015). 

Cladera et al. (2015) further added that the critical shear crack experiences more damage as the load 

increases. 

 

Fig 2.14 Critical crack evolution under incremental shear loading (Mari et al, 2016) 

As the name implies, the shear model considers the shear strength as the sum of the various shear transfer 

actions namely shear contribution from the uncracked compression chord, residual tensile stress, shear 

contribution by the stirrups and, the shear by the dowelling actions of the longitudinal reinforcements. 

The dimensionless expression according to Cladera et al. (2015) is given below; 
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  𝑉 = (𝑣𝑐 + 𝜈𝑤 + 𝑣𝑙) 𝑓𝑐𝑡𝑚 . 𝑏. 𝑑 + 𝑣𝑠   ≤   𝑉𝑚𝑎𝑥                                                                                     (2.42)                                       

where 𝑣𝑐, 𝜈𝑤 𝑣𝑙 and 𝑣𝑠 are the non-dimensional representation of the concrete shearing transfer actions of 

the uncracked compression chord, shear transferred along web cracks, dowelling action of the 

longitudinal reinforcement and the web reinforcement while 𝑉𝑚𝑎𝑥 is the shear force that causes 

failure(crushing) in concrete struts. The explicit Dimensionless equations of these actions are given 

below; 

Uncracked compression chord 

   𝑣𝑐 = 휁 [(0.88 + (0.20 + 0.50
𝑏

𝑏w
) 𝑣𝑠)

𝑥

𝑑
+ 0.02]

𝑏𝑣,𝑒𝑓𝑓

𝑏
𝐾𝑝                                                                 (2.43)                                       

Shear transferred along web cracks 

   𝜈𝑤 = 167
𝑓𝑐𝑡𝑚

𝐸𝑐𝑚

𝑏w

𝑏
(1 +

2𝐺𝐹𝐸𝑐𝑚

𝑓𝑐𝑡𝑚
2 𝑑0

)                                                                                                           (2.44)                                       

Longitudinal reinforcement 

   𝑣𝑙 =
0 ⋅ 23

𝛼𝑒⋅𝜌𝑙

1−𝑥
𝑑

⁄ , 𝑖𝑓  𝑣𝑠 > 0                                                                                                           (2.45)                                       

   𝑣𝑙 = 0,                                   𝑖𝑓  𝑣𝑠  =  0 

Shear reinforcement 

   𝑣𝑠 = (𝑑𝑠 − 𝑥)𝑐𝑜𝑡휃
𝐴𝑠w.𝑓𝑦w

𝑠.𝑓𝑐𝑡𝑚.𝑏.𝑑
≈

0.85𝑑𝑠𝐴𝑠w .𝑓𝑦w

𝑠.𝑓𝑐𝑡𝑚.𝑏.𝑑
                                                                                  (2.46)                                       

Maximum strut strength equation 

   𝑉𝑢,𝑚𝑎𝑥 = ∝𝑐w 𝑏w𝑧𝑣1𝑓𝑐𝑚
𝑐𝑜𝑡 𝜃

1+𝑐𝑜𝑡2𝜃
                                                                                                    (2.47)                                       

The neutral axis x is considered to be equivalent to the height of the uncracked compression zone and it is 

given as;  

    
𝑥0

𝑑
= 𝛼𝑒𝜌𝑙 (−1 + √1 +

2

𝛼𝑒𝜌𝑙
) ≈ 0.75((𝛼𝑒𝜌𝑙)

1
3⁄                                                                                (2.48)                                       

𝑥0

𝑑
 is a parameter used to control the depth or the different zone of the critical crack. The above expression 

is valid for reinforced concrete members where 𝛼𝑒 =  
𝐸𝑠

𝐸𝑐
  is the modulus of elasticity ratio between steel 

and concrete. 

For RC members 𝑥 = 𝑥𝑜, while for a prestressed member, 𝑥 would be computed from 𝑥𝑜 with the 

expression below 

   𝑥 =  𝑥0 + (
ℎ

𝑑
− 𝑥0)(

𝑑

ℎ
)

𝜎𝑐𝑝

𝜎𝑐𝑝+𝑓𝑐𝑡𝑚
                                                                                                           (2.49)                                       
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Where, 𝜎𝑐𝑝, the mean normal stress of concrete caused by prestressing or axial loads =P/Ac (P is the 

prestressing force and Ac is the concrete cross-sectional area). 

The inclination of the first part of the flexural shear critical crack is given as; 

   𝑐𝑜𝑡 휃 =
0⋅85 𝑑𝑠

𝑑𝑠−𝑥
≤ 2 ⋅ 50                                                                                                                       (2.50)                                       

𝐺𝑓 is the concrete fracture energy, given as 𝐺𝑓 = 0.0028𝑓𝑐𝑚
0.18𝑑𝑔

0.32 

𝑑0 = effective depth, d ≥100 mm. 

휁  = size effect coefficient at critical shear crack failure, 휁 =1.2 – 0.2a ≥ 0.65, with a in m. 

𝑏𝑣.𝑒𝑓𝑓 = effective beam width for compression flange. Note that for a rectangular beam, 𝑏𝑣.𝑒𝑓𝑓 =  𝑏𝑣 = 𝑏 

    When 𝑥 ≤ ℎ𝑓,  𝑏𝑣.𝑒𝑓𝑓 =  𝑏𝑣 =  𝑏w + 2ℎ𝑓 ≤ 𝑏                                                                                  (2.51)                                       

   When 𝑥 > ℎ𝑓, 𝑏𝑣.𝑒𝑓𝑓 =  𝑏w + (𝑏𝑣 − 𝑏w)(
ℎ𝑓

𝑥
)

3
2⁄                                                                                 (2.52)                                       

For T or I-shaped beams with compression flange, 𝐾𝑇 , a coefficient to take into account the mechanical 

difference of flange effect is given as; 

   𝐾𝑇 =  
𝑀𝑐𝑟,𝑇

𝑀𝑐𝑟,𝑅

𝑏w

𝑏
 ≈ 0.1 + 0.9

𝑏w

𝑏
+ 2.5

ℎ𝑓,𝑡𝑒𝑛𝑠

ℎ
(

𝑏𝑡𝑒𝑛𝑠−𝑏w

𝑏
)                                                                (2.53)                                       

Where ℎ𝑓,𝑡𝑒𝑛𝑠  and 𝑏𝑡𝑒𝑛𝑠 are the depth and the width of the tension flange of an I-shaped beam 

For rectangular sections, 𝐾𝑇 is taken as 1 

𝐾𝑃  is a coefficient for considering the effect of the prestressing force in the cracking moment given as; 

   𝐾𝑃 = 1 + 0.24
𝑃 𝑦𝑡+𝑀𝑣

𝑓𝑐𝑡𝑚
𝑏𝑑2                                                                                                                      (2.54)                                       

When applying this model to evaluate shear strength, the individual actions are explicitly calculated and 

summed up to give the total shear strength of the flexural member. 

 

2.6.2 Compression chord capacity model (CCCM) 

Cladera et al. (2016) simplified the 𝑀𝐴𝑆𝑀 (2015) model and developed a more compact expression by 

incorporating the explicit expression of  𝜈𝑤 , 𝑣𝑙 into 𝑣𝑐 with constant average values and named the model 

Compression Chord Capacity Model (𝐶𝐶𝐶𝑀). Cladera et al. (2016) claim that the model is based on the 

idea that the compression chord's shear transfer function is the primary transfer action that resists or 

predominates in the failure condition under consideration. 
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Following Cladera et al. (2016) compression chord model, the nominal shear resistance can be taken as 

the summation of the concrete (𝑣𝑐𝑢) and stirrup contributions (𝑣𝑠𝑢) contributions. 

Unlike the 𝑀𝐴𝑆𝑀 which explicitly states the contribution of the individual transfer mechanism, the 

𝐶𝐶𝐶𝑀 only provides expressions for concrete contribution as well as steel, with boundary values. The 

expressions are given below; 

    𝑉𝑐𝑢 = 0.3휁
𝑥

𝑑
𝑓𝑐𝑑

2 3⁄
𝑏𝑣,𝑒𝑓𝑓𝑑  ≰ 𝑣𝑐𝑢,𝑚𝑖𝑛 = 0.25(휁

𝑥

𝑑
+

20

𝑑0
)𝑓𝑐𝑑

2 3⁄
𝑏w𝑑                                            (2.55)                                       

𝑣𝑐𝑢,𝑚𝑖𝑛, the permitted minimum shear strength provided by concrete, is given because, for members with 

small depths and light reinforcement, the shear transmitted by the residual tensile stress is significantly 

equivalent to the shear transferred by the uncracked compression zone. This theory serves as the 

foundation of the CCCM. Hence, the contribution of the uncracked compression chord is limited (Cladera 

et al., 2019). 

    𝑉𝑠𝑢 = 1.4
𝐴𝑠w

𝑠
𝑓𝑦wd(𝑑𝑠 − 𝑥)𝑐𝑜𝑡휃                                                                                                   (2.56)                                                                    

The total shear strength is given as; 

   𝑉𝑅𝑑 = 𝑉𝑐𝑢 + 𝑉𝑠𝑢 ≤ 𝑉𝑅𝑑,𝑚𝑎𝑥                                                                                                                  (2.57)                                       

Where 𝑉𝑅𝑑,𝑚𝑎𝑥  is the web crushing capacity given as; 

  𝑉𝑅𝑑,𝑚𝑎𝑥 =  𝛼𝑐w𝑏w𝑧𝑣1𝑓𝑐𝑑
2 3⁄ 𝑐𝑜𝑡𝜃+𝑐𝑜𝑡𝛼

1+𝑐𝑜𝑡2𝜃
                                                                                              (2.58)                                       

Hence,  

 𝑉𝑅𝑑 =  0.3휁
𝑥

𝑑
𝑓𝑐𝑑

2 3⁄
𝑏𝑣,𝑒𝑓𝑓𝑑  +  1.4

𝐴𝑠w

𝑠
𝑓𝑦wd(𝑑𝑠 − 𝑥)𝑐𝑜𝑡휃 ≤  𝑉𝑅𝑑,𝑚𝑎𝑥                                      (2.59)                                                    

For the determination of 𝑓𝑐𝑑 & 𝑓𝑦wd, 𝑓𝑐𝑘 shall not be taken greater than 60 Mpa 

𝑓𝑐𝑑 =
𝑓𝑐𝑘

𝛾
 , 𝑓𝑦wd =  

𝑓𝑦wk

𝛾
                                              

When compared to the mean inclination of the shear crack, the compression strut's inclination is deemed 

to be identical and it is given by; 

   𝑐𝑜𝑡 휃 =
0⋅85 𝑑𝑠

𝑑𝑠−𝑥
≤ 2 ⋅ 5 

where 𝑥 is the neutral axis depth of the cracked section and can be computed from the equation below; 
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𝑥0

𝑑
= 𝛼𝑒𝜌𝑙 (−1 + √1 +

2

𝛼𝑒𝜌𝑙
) ≈ 0.75((𝛼𝑒𝜌𝑙)

1
3⁄  

When determining the value of 𝑉𝑐𝑢, the size and slenderness effect (휁) can be calculated from the 

expression below; 

    휁 =
2

√1+
𝑑0

200

(
𝑑

𝑎
)0.2  ≮ 0.45                                                                                                                   (2.60)                                       

𝑏𝑣.𝑒𝑓𝑓 = effective beam width for compression flange. Note that for a rectangular beam, 𝑏𝑣.𝑒𝑓𝑓 =  𝑏𝑣 = 𝑏 

When 𝑥 ≤ ℎ𝑓,  𝑏𝑣.𝑒𝑓𝑓 =  𝑏𝑣 =  𝑏w + 2ℎ𝑓 ≤ 𝑏 

When 𝑥 > ℎ𝑓, 𝑏𝑣.𝑒𝑓𝑓 =  𝑏w + (𝑏𝑣 − 𝑏w)(
ℎ𝑓

𝑥
)

3
2⁄  

In a situation whereby there is no provision for shear reinforcement as in the case of beams without 

stirrups, the contribution of the stirrups can be omitted and then the expression below is considered in 

estimating total shear strength. 

     𝑉𝑅𝑑 = 𝑉𝑐𝑢 

2.6.3 Modification of the SNiP model 

The modified SNiP shear design model by Yerzhanov et al. (2019) is an improvement of the already 

existing shear model for beams without stirrups from the Russian SNiP code of design. The original SNiP 

model design was based on the Plane Minimum Resistance (PMR) approach/model. The following 

describes the PMR idea, as described by Borishansky (1961) and Palaskas & Darwin (1980); 

     𝑣𝑐 = 𝑘𝑏𝑤𝑑𝑅𝑏𝑡𝑎𝑛𝜙 = 𝑘
𝑅𝑏𝑏𝑤 𝑑2

𝑎
                                                                                                        (2.61)                                       

According to Borishansky (1961), In the shear strength model, the principal compressive stress direction 

may be taken into account using  𝑐𝑜𝑡 𝜙 = 𝑑
𝑎⁄ . The stress direction is given due consideration so as to 

include the effect of the inclination angle of the principal compressive stress (𝜙) and to make the effects 

of the interaction between shear resistance and the major compressive stress' inclination angle, as given in 

the equation above more comprehensible.  
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Fig 2.15. Effect of Principal compressive stress on shear resistance (Yerzhanov et al, 2019) 

To determine the value of the factor 𝑘 (𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ 𝑚𝑜𝑑𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟), Borishansky (1961) utilized 

the test result from 75 shear experiments, as he reported that the value of the factor 𝑘 would be difficult to 

determine theoretically. The PMR model was modified as follows;  

      𝑄𝑏 =
0.15𝐹𝑐𝑢𝑏𝜔 𝑑2

𝑎
                                                                                                                            (2.62)                                       

The expression above becomes unrealistic to use due to the high possibility of poor inference 

generalization with practical design conditions. The basis for determining the modification factor was 

limited to a few experimental setups. Unlike the PMR model which forms the basis for the SNiP shear 

design model, more emphasis is placed on the tensile strength of concrete. Therefore, the shear resistance 

of concrete as described in the SNiP code (SNIP2.03.01-84, 2012) becomes; 

    𝑣𝑐 = 𝑘𝑆𝑛𝑖𝑃𝑏𝑤𝑑𝑓𝑡 𝑡𝑎𝑛 𝜑 =
𝑘𝑆𝑛𝑖𝑃𝑓𝑡𝑏𝑤 𝑑2

𝑎
                                                                                               (2.63)                                       

Where 𝑘𝑆𝑛𝑖𝑃  is the experimental adjustment factor to be taken as 1.5, 𝜑 is the inclination angle of the 

diagonal shear crack and 𝑓𝑡  is the concrete tensile strength. The expression above can then be written as; 

    𝑣𝑐 =
1.5𝑓𝑡𝑏𝑤 𝑑2

𝑎
                                                                                                                                     (2.64)                                       
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The following are the maximum and minimum shear strengths where concrete's shear contribution is 

permitted:  𝑣𝑐min ≤ 𝑣𝑐 ≤ 𝑣𝑐max. The values for 𝑣𝑐min and 𝑣𝑐max has been experimentally established 

for the shear estimation of structures with a large shear span – effective depth ratio and smaller values of 

the shear span – effective depth ratio. 

    𝑣𝑐min = 0.5𝑓𝑡𝑏𝑤𝑑 ,   𝑣𝑐max =  2.5𝑓𝑡𝑏𝑤𝑑                                                                                          (2.65)                                       

Therefore, 

    0.5𝑓𝑡𝑏𝑤𝑑  ≤  
1.5𝑓𝑡𝑏𝑤 𝑑2

𝑎
 ≤ 2.5𝑓𝑡𝑏𝑤𝑑                                                                                                     (2.66)                                       

The SNiP code also has a provision for the shear contributed by the transverse reinforcement given as;  

    𝑣𝑠𝑤 = 1 ⋅ 5
𝐴𝑠𝑤𝐹𝑦

𝑠
𝑑                                                                                                                             (2.67)                                       

This allows for the estimation of the total shear in a reinforced concrete beam with shear reinforcement ( 

𝑣𝑛 = 𝑣𝑐 + 𝑣𝑠𝑤), but in the case of beams without stirrups,  𝑣𝑠𝑤 can be omitted. 

According to Yerzhanov et al. (2019), the shear model in the SNiP code provides unconservative 

estimations of shear strength for flexural members without stirrups and a minimal number of test results 

was used to determine the factor K that is stated in the SNiP code as said earlier which makes for a poor 

generalization of the model. To overcome such impediment and provide a more rational adjustment for 

the value K, the ACI-DafStb shear database collected and compiled by Reineck et al. (2013) was utilized 

to develop a new modification factor (K) to improve the analytical accuracy and safety level of the SNiP 

model proposed by Yerzhanov et al (2019) given as: 

     𝐾𝑚 = 𝑘 𝑐𝑜𝑡 𝛼 =
𝑣𝑐

𝐹𝑡𝑏𝑤𝑑
                                                                                                                      (2.68)                                       

Yerzhanov et al. (2019) expressed the new modification factor as a function of the effective depth (d). the 

modification factor is reduced as follows; 

   𝑘𝑚 =
𝑣𝑐

𝑓𝑡𝑏𝑤𝑑
= 6 √

1

𝑑
                                                                                                                             (2.69)                                       

The modified SNiP model for shear design can then be finally simplified as; 

   𝑣𝑐 = 6√
1

𝑑
𝑓𝑡𝑏𝑤𝑑                                                                                                                                  (2.70)    
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2.6.4 Mechanical model based on structural mechanics  

The new approach developed by Tran (2020) to evaluate the shear capacity of slender beams without 

stirrups is based on the fundamentals of structural mechanics with the assumption that the shear strength 

correlates to a failure that happens at the neutral axis given that the major tensile stress is comparable to 

the concrete tensile strength and resulting in a rapid crack connecting to the critical shear crack tip. The 

distribution of stresses that leads to failure along the neutral axis is shown diagrammatically in the figure 

below, along with the formation of shear cracks. 

 

Fig 2.16. Failure along the neutral axis owning to stress distribution and crack formation (Tran, 2020) 

The shear capacity expression proposed by Tran (2020) is considered to be the sum of the shear transfer 

mechanism in the tension zone (𝑣𝑐𝑡) and the compression zone (𝑣𝑐𝑐) accordingly, i.e., there are two 

explicit expressions summed up as one. One caters for the strength at the bottom area of the concrete 

section just before the neutral axis (the tension zone), and the other provides an estimation for the shear 

capacity of the uncracked compression zone where the critical area is located as shown in the fig above. 

      𝑉𝑐 = 𝑉𝑐𝑡 + 𝑉𝑐𝑐                                                                                                                                   (2.71)                                                                                

Tran (2020) considered concrete properties such as tensile strength (𝑓𝑐𝑡), effective tensile strength (𝑓𝑐𝑡,𝑒𝑓), 

fracture energy (𝐺𝐹), elastic modulus (𝐸𝑐), crack width (w𝑐𝑟), crack slip (𝑠) and crack spacing (𝑠𝑐𝑟) in the 

formulation of the model. 

Shear capacity in the compression zone (Vcc) 

According to Tran (2020), the shear capacity in the compression zone can be estimated based on the 

assumption that in the uncracked zone of the cracked concrete, the concrete stress (𝜎𝑥) increases linearly 

with an applied load. This leads to a parabolic distribution of the shear stresses in the compression zone 

with a maximum value of shear stress (𝜏𝑚𝑎𝑥) at the neutral axis and shows a solidity factor (𝜓) = 2/3. The 

shear capacity in the compression zone can be determined as follows; 
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    𝑉𝑐𝑐 =  
2

3
𝜏𝑚𝑎𝑥 . 𝑏𝑑𝑘𝑥                                                                                                                             (2.72)                                       

Where 𝑘𝑥  = 𝑥 𝑑⁄  is the relative depth of the compression zone  

 𝜓 is the solidity factor     

Shear capacity in the tension zone (Vct)    

According to Tran (2020), the aggregates are in control of transmitting shear stresses across cracks in the 

tension zone, and this shear behaviour generates consistency in the response of the structural concrete and 

its load-bearing performance in cracks. Tran (2020) further added that the shear distortion and shear 

modulus of the uncracked compression zone has a significant impact on the shear deformation of the 

cracked concrete in the tension zone.   

Assuming that the maximum crack width (w𝑐)  is greater than the crack width at the bottom end of the 

shear crack (w𝑎) and substituting 휂 , 𝑉𝑐𝑡 can be rewritten as; 

   𝑉𝑐𝑡 = 𝑏𝑑
(1−𝑘𝑥)

w𝑐𝑟
∫ 𝜎𝑐𝑡(w)

w𝑎

0
𝑑w =  𝑏𝑑

𝐺𝐹

w𝑐𝑟
(1 − 𝑘𝑥)                                                                            (2.73)                                       

By combining the shear resistance in the tension zone and the compression zone, the total shear capacity 

of a reinforced concrete beam without shear reinforcement can be written as; 

   𝑉𝑐 =  𝑏𝑑
𝐺𝐹

w𝑐𝑟
(1 − 𝑘𝑥) + 

2

3
𝜏𝑚𝑎𝑥 . 𝑏𝑑𝑘𝑥                                                                                                 (2.74)                                       

   𝑉𝑐 =  
2

3
𝑓𝑐𝑡,𝑒𝑓 . 𝑏𝑑 [𝑘𝑥 +

1.5𝐺𝐹

𝑓𝑐𝑡,𝑒𝑓w𝑐𝑟
(1 − 𝑘𝑥)]                                                                                          (2.75)                                       

Where 𝑮𝑭 the fracture energy is given as  0.03𝑓𝑐
0.18𝑎𝑔

0.32 and 𝑎𝑔= maximum aggregate size. 

𝒇𝒄𝒕,𝒆𝒇 the effective tensile strength = 𝑓𝑐𝑡 .
1

1+𝑣
≈ 0.83𝑓𝑐𝑡   

the crack width 𝐰𝒄𝒓 is taken as  

     w𝑐𝑟 =  휀𝑠𝑚 − 휀𝑐𝑚                                                                                                                              (2.75)     
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2.7.0 Structural reliability assessment 

As stated by Holicky (2009), the concept of structural reliability is primarily focused on the demand that 

the structural resistance has to be in comparison greater than the action effect, the failure to meet this 

demand leads to a failed state of the structural mechanism. This is depicted below; 

   𝑅 > 𝐸                                                                                                                                                    (3.1)               

The trilemma of resistance reliability assessment in structures involves the examination and validation of 

resistance models that are functionally adequate in their safety performance, economically wise and less 

sophisticated for use i.e., simplicity. 

When representing actions and their combinations, structural reliability modelling makes a deliberate 

attempt to develop adequate probability models, particularly for variable actions, and to account for these 

flaws in the design methods by including partial elements as necessary. Research on structural reliability 

and resistance focuses primarily on enhancing prediction models by calibrating loading and resistance 

functions in design codes to ensure that a particular degree of reliability is maintained in all possible 

design scenarios. Other concerns include the economic implication in terms of cost and ease of use when 

applying the design models in practice (Huber, 2005). Measurement of a structure's failure likelihood 

while taking into account resistance and load uncertainty is the goal of structural reliability evaluation 

(Olalusi, 2018). It has been proven that by properly modelling material characteristics, geometric 

parameters, and uncertainty factors related to a model under consideration, structural resistances may be 

anticipated. The difference between the predicted values of the structural resistance and those of the 

applied loads may be used to determine the reliability performance of a particular failure mechanism, 

such as that taken into account in this study. The performance function is as seen in Equation (3.1b); 

        𝑔(𝑿) = 𝑃(𝑋) − Q(X)                                                                                                                     (3.1b)                                  

𝑔(𝑿) is representative of the performance function and is defined based on the values of Q and P, Q is the 

action effect and P is the structural resistance value. 

The performance function explicitly characterizes the outcome of its evaluation into three 3 possible 

design condition  

(1) 𝑔(𝑿) = 0 depicts the limit state 

(2) 𝑔(𝑿) > 0 depicts the safe design condition 

(3) 𝑔(𝑿) < 0 depicts an unsafe design condition (the failure region) 

Hence, the probability of a failure event may conveniently be described in terms of the functional 

relationship in Equation (3.2) 

     𝑃𝑓 = 𝑃(𝑔(𝑋) < 0) = ∫ 𝑓𝑥(𝑋) 𝑑𝑥
𝑔(𝑋)≤0

                                                                                              (3.2)                                       

    𝑃𝑓 = Φ(−𝛽)                                                                                                                                         (3.3)                                         
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The probability of failure can be easily evaluated by integrating the joint probability distribution function 

of the random variables (𝑋) or the equivalence of the domain where the limit state function is less or 

equal to zero. 

When the disparity between the anticipated value of structural resistance 𝑃(𝑋) and the anticipated value 

of the applied loads Q(X)  is greater, the safety level is increased. 

 

Fig 2.18 Representation of the limit state function (Olalusi, 2018) 

 

The conclusion of reliability-based investigations might be to introduce the use of different partial safety 

factors for various modes of resistance across respective construction materials, the application of 

different values of constants and coefficients in various design models, or place constraints to restrict or 

limit the use of particular methods or applications (Mensah et al., 2013). It is important to note that this 

also depends on the scope of the investigation. During the reliability investigation of a shear resistance 

model, the scope of investigation must be stated to understand the extent to which the investigation has to 

be carried out (Full or partial/preliminary calibration). This is also because most times, shear models 

involve binary design functions and calibration must be specific to design functions.  

EN 1990 (2002) specify a required target reliability level value of 𝛽𝑇=3.8 while the SANS 10160-1 

(2011) stipulates a value of 𝛽𝑇=3.0 for Class of RC2 structures. The preliminary reliability-based 

investigation comes to an end when the target reliability index of the investigated model meets the 

demands specified earlier. The expression below captures well; 

       𝛽𝑅 ≈ 𝛽𝑇                                                                                                                                             (3.4)                                       

Here, the reliability index (𝛽𝑅) can easily be computed by an assessment of the limit state function 

through FORM analysis as seen in Equation (3.5); 
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      𝑔(𝑋) = 𝑅(𝑋) − 𝑅𝑑(𝑋𝑘,𝛾) = 0                                                                                                           (3.5)                                       

Where 𝑅(𝑋) is the probabilistic distribution representing real shear resistance 

𝑅𝑑(𝑋𝑘,𝛾) denotes a deterministic value of shear resistance for which the reliability index is investigated. 

In a situation where the expression above is not satisfied i.e., if 𝛽𝑅 < 𝛽𝑇 further actions seem cogent 

towards an appropriate calibration of the model to demonstrate an adequate level of safety in practice. 

Conversely, if 𝛽𝑅 > 𝛽𝑇, the model should be calibrated to achieve cost-effective design functions. 

Holicky et al. (2010) stated that to adequately take care of the shortcomings in the reliability performance 

of a specific model observed in the course of reliability investigation as regards attaining specified 

reliability levels, applying partial factors to the variables that most affect or dominate reliability 

performance (mostly model uncertainty; concluded from existing works of literature) could prove 

effective in attaining such required reliability levels. 

Following the instructions in EN 1990, the partial factor may be derived analytically; however, it should 

be noted that the probability distribution of the model uncertainty data must follow a lognormal 

distribution for the formula below to be valid. 

     𝛾𝑅𝑑 = 1 [𝜇𝜃 . 𝑒𝑥𝑝. (−𝛼𝑅 . 𝛽. 𝑉𝜃)]⁄                                                                                                         (3.6)                                       

Here, 𝛾𝑅𝑑  = derived partial factor of model uncertainty 

          𝜇𝜃 = mean of the model uncertainty random variable 

          𝑉𝜃 = coefficient of variation of model uncertainty random variable      

          𝛽 = reliability index provided in design codes 

          𝛼𝑅= direction cosine (FORM sensitivity factor) 

 

The influence of the calculated resistance model partial factor may be integrated into the design 

expression using the expression provided by EN 1990, as shown below.; 

          𝑅𝑑 = 𝑅 [휂
𝑋𝑘

𝛾𝑚
; 𝑎𝑑 . . ] 𝛾𝑅𝑑⁄                                                                                                                (3.7)                                       

𝑅𝑑  represents the calibrated design resistance, 𝑋𝑘 is the characteristic values of the material property, 휂 

conversion factor applicable to the material property and 𝑎𝑑 is the design geometric parameter. 

Besides the First Order Reliability Method (FORM), other reliability investigative methods which include 

Numerical integration, Computer-based Monte Carlo Simulation and Cost Optimization (Sykora and 

Holicky, 2012) can be used to evaluate the reliability index of a system. 

 

2.7.1 Model uncertainty 

Uncertainty study is generally composed of two types of uncertainties; aleatoric (Data uncertainty) or 

epistemic (Knowledge uncertainty). Aleatoric uncertainty arises from uncertainness in the actual data as a 
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result of natural variability while epistemic uncertainty is a result of poor knowledge or oversimplification 

during the formulation of a model and the parameters of the model. The uncertainty considered in this 

research work is the epistemic uncertainty hereafter referred to as model uncertainty. 

Uncertainties in resistance models play an important aspect in the reliability assessment of structure and 

calibration of partial factors for semi-probabilistic design in codes of practice, these uncertainties should 

always be treated for a definite model, a peculiar mode of failure and scope of application (Holicky et al., 

2015). According to Gino et al. (2017), identifying and quantifying the uncertainty factor related to a 

specific model is of high relevance to structural safety verification in the course of reliability assessment. 

 

Fig 2.19 General concept of model uncertainty (Holicky et al., 2015). 

Epistemic uncertainty can be due to the limitation of knowledge or constraint in the application of a 

model (Riberio et al., 2016). Riberio et al. (2016) further cited Melchers (1999) saying that epistemic 

uncertainties refer to those uncertainties which can be mitigated with additional data or information, 

better modelling and accurate estimation of the model parameter. 

According to Sykora et al. (2012), model uncertainties can be associated with strength 

characteristics models such as shear models, bending resistance models, and load effects models (load 

effects assessment and their combination). They also mentioned that while considering resistance models, 

the following conditions should be covered; 

 overcomplicating existing physical principles should be avoided in a model's framework 

 assumptions in analytical models 
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 The impact of conflicting inference of advanced software packages and human mistakes. 

JCSS (2006) provided two expressions for estimating the uncertainties in resistance models based on the 

nature of the relationship (multiplicative or additive) between the actual resistance (experimental 

observations) and the deterministic resistance.  

By a means of the multiplicative relationship as seen in Equation (3.8); 

   𝑅(𝑋, 𝑌) = 휃. 𝑅𝑚𝑜𝑑(𝑋)                                                                                                                          (3.8)                                       

by a means of an additive relationship as seen in Equation (3.9) 

   𝑅(𝑋, 𝑌) = 휃 + 𝑅𝑚𝑜𝑑(𝑋)                                                                                                                       (3.9)                                       

Where 𝑅(𝑋, 𝑌) is the resistance from an observed experimental setup which consists of a series of tests 

over a practical range of design parameters. 

𝑅𝑚𝑜𝑑(𝑋) is the resistance estimated deterministically from specific resistance models. 

X is a vector of basic input parameters (variables) included in the resistance models, and Y is the vector 

of variables that have been disregarded or omitted in the deterministic models but influence the resistance 

evaluation.  

To determine the use case of either of the uncertainty model expression becomes difficult as the choice is 

dependent on the task-specific condition. Though, in existing studies, the multiplicative representation of 

model uncertainty is commonly applied to resistance models while the additive relationship is used to 

account for errors in systematic measurements. 

Due to the nature of the statistical distribution of the model uncertainty factor, Sykora et al. (2012) 

suggested that the multiplicative relationship is more appropriate when considering a resistance model 

since the real resistance (𝑅) and resistance from numerical modelling  (𝑅𝑚𝑜𝑑) is described by the same 

lognormal distribution as the model uncertainty, then the additive relationship becomes preferable when a 

normal distribution is significant. 

Hence, the model uncertainty can be calculated by; 

      휃𝑛 =
𝑅𝑛(𝑋,𝑌)

𝑅𝑚𝑜𝑑,𝑛(𝑋)
                                                                                                                                   (3.10)                                       

 Here, 휃𝑛 represents the n-th event of the estimated model uncertainty comparing the values of the 

experimental tests with results from deterministic simulation.  
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𝑅𝑛(𝑋, 𝑌) and 𝑅𝑚𝑜𝑑,𝑛(𝑋) represents values obtained from the n-th iteration of the experimental test and 

deterministic model. 

The deliberate simplifications and disregard of some design input parameters are majorly responsible for 

modelling uncertainty related to shear performance; simplification is done to achieve an easy-to-use 

functional design model. It is quite important to note that the modelling uncertainty is affected by a vast 

number of causes like human error and quality control, as well as issues of model adjustment (Mensah et 

al., 2013).  

Holicky et al. (2015) stated that the primary aim of model uncertainty assessment is to reflect its 

contribution to the reliability performance of the model as characterized by the dispersion of the 

distribution function. 

In conclusion, investigating uncertainties in specific models with appropriate value allocation is an 

effective and fundamental principle in the reliability calibration of such models. 

2.7.2 Uncertainty modelling in existing literature 

2.7.2.1 Mensah et al. (2013) 

Concerns stem from the predictions of the EC 2’s Variable Struct Inclination method for diagonal tension 

failure as it gives very conservative capacity predictions for RC beams with a low percentage of shear 

reinforcement, while for members with relatively large amounts of shear, very unconservative prediction 

is provided. As a result, Mensah et al. (2013) performed a proper calibration of the model to achieve both 

economic and safe performance in practice. The first step towards reliability calibration was to 

characterize the modelling uncertainty associated with the EC2 shear prediction model for diagonal 

tension failure and assess its effect on shear reliability performance. To further substantiate the need to 

calibrate the design function of the EC 2’s VSIM, Mensah et al. (2013) carried out a preliminary 

reliability evaluation to determine the test case reliability index following a FORM limit state function 

analysis. The EC 2’s VSIM fell below the required target reliability index recommended by EN 1990 but 

satisfied the requirement of the SANS 10160-1. Hence, Mensah et al. (2013) concluded that logical 

actions should be taken for proper calibration. The model uncertainty earlier characterized in their work 

was used to derive partial factors for model uncertainty during full reliability calibration and incorporated 

into the design function. 

2.7.2.2 Sykora et al. (2014) 

Sykora et al. (2014) investigated the uncertainties associated with resistance models of sound structural 

members (members not affected by the corrosion of reinforcement) and corrosion-damaged structural 



 

49 

members as well. Failure modes particular to the two structural conditions as provided by the EN 1992-1-

1 were looked into. Statistical characteristics of the model uncertainties were adopted from existing works 

of literature that have quantified the uncertainty factor in the respective models, these model uncertainty 

factors were used in the calibration of a partial factor for the model uncertainty. Sykora et al. (2014) 

concluded based on the performance evaluation of the model uncertainties in terms of sample space that 

the uncertainty related to corrosion-damaged RC models is more severe than that of the models in the 

sound RC models. Hence, Further efforts are required to develop appropriate models for calculating the 

resistance of corrosion-damaged structures. In the course of the investigation, Sykora et al. (2014) 

conducted a deterministic reliability verification according to EN 1990 to calibrate a partial factor which 

describes the uncertainty associated with the resistance models. 

2.7.2.3 Sykora et al. (2017) 

Sykora et al. (2017) used a dataset of 459 experimental observations of beams with stirrups and another 

database of 184 shear tests of beams without shear reinforcement to assess the uncertainty in the shear 

provision of the fib model code. They adopted the same investigative measures in determining the 

uncertainty inherent in all levels of approximation (I-III) of the shear models. The study focused on 

identifying the biases and scatters in the shear model provision at each level of approximation. By 

appropriately analyzing the sample moments of the uncertainty factor in all the shear provisions for 

beams with stirrups, Sykora et al. (2017) identified the MC2010 LoA III shear model as the most 

appropriate model with a model uncertainty factor close to unity, typifying a low bias, and the smallest 

coefficient of variation. While for beams without stirrups, the MC2010 LoA II seems to have a favourable 

evaluation performance over the MC2010 LoAI in terms of model uncertainty. Sykora et al. (2017) 

concluded that the accuracy of the MC2010 LoA III over the others may be due to the additional input 

data as it contributes shear strength by summing the contributions of concrete and stirrups. 

2.7.2.4 Nadolski and Sykora (2014) 

Considering the engineering formulas provided by the EN 1993-1-1 for the prediction of the resistance of 

steel members, Nadolski and Sykora (2014) interpreted the model uncertainty and quantification in 

resistance models of steel members including uniform bending moment, gradient bending moment, 

yielding resistance for bending, bending resistance with the loss of stability (rolled or equivalent welded 

profiles), bending resistance with the loss of stability (general case) and Axial compression with the loss 

of stability. The model uncertainty of each failure mode and its corresponding descriptive statistical 

distribution was obtained from probabilistic models proposed in the literature of other researchers, though 

the results were recognized by the EN 1993-1-1. Nadolski and Sykora (2014) utilized the sample 
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moments of the probabilistic models proposed to compute and recommend model uncertainty partial 

factor to facilitate practical application. 

2.7.2.5 Gino et al. (2017) 

Gino et al. (2017) quantified the model uncertainties in non-linear finite element analysis of reinforced 

concrete shear walls subjected to incremental cyclic loading. The context of their research involves the 

comparative assessment of the level of uncertainties associated with two commercial NLFEM software to 

be adopted for structural safety verification. Results of the simulation of the structural behaviour of two 

families of shear walls were obtained from the scientific literature by different authors. The scope of the 

investigation was limited to the quantification of the uncertainties related to the maximum load and 

maximum displacement. As a result, Gino et al. (2017) concluded that further investigation has to be done 

to consider the influence of more finite element model parameters on 2D NLFEM model uncertainties 

and the prediction of the structural response of R.C structures subjected to cyclic loading. 

Other pieces of literature that have quantified model uncertainties as a measure of reliability assessment 

include Holicky et al. (2015), Lukas & Vladmir (2016), McLeod et al. (2016), Ribeiro et al. (2016), 

McLeod et al. (2017), Olalusi & Viljoen (2017), Engen et al. (2018), Olalusi & Spyridis (2020b), Olalusi 

& Awoyera (2021), Olalusi (2020), Olalusi & Viljoen (2021b), Olalusi & Viljoen (2021a). 

2.7.3 Reliability index & target reliability index 

The minimum level of reliability is expressed as the reliability index 𝛽 , defined as the number of 

standard deviations (𝜎𝑅−𝐸) that the difference between the expected value of the structural resistance and 

the expected value of the loads (𝜇𝑅−𝐸) i.e., the safety margin is situated from the failure point (Huber, 

2005).  

According to EN 1990 (2002), the overall reliability index, 𝛽, can be separated into two parts; the 

resistance reliability index expressed as 𝛽𝑅 = 𝛼𝑅𝛽 and the load effects index expressed as 𝛽𝐸 = −𝛼𝐸𝛽. 

𝛼𝑅 and 𝛼𝐸 denote FORM sensitivity factors (direction cosines) and are recommended in EN 1990 and 

SANS 10160-1 as 𝛼𝑅=0.8 and 𝛼𝐸=−0.7. To meet the demands of structural reliability investigations, it is 

only ideal to require that the resistance index 𝛽𝑅 should be almost equal, equal or greater than the target 

reliability index. In any case, it must not be significantly less than the target reliability index.  

SANS 10160-1 provides a value of 𝛽𝑅𝑇,𝑆𝐴𝑁𝑆 = 0.8×3.0 = 2.4 for its target reliability while the EN 1990 

gave a value of  𝛽𝑅𝑇,𝐸𝐶2 = 0.8×3.8= 3.04 as the required target reliability index for the same class of RC2 

structures. Concerns arise when the condition for safety is not met. Hence, further investigative measures 

may be needed to identify the parameter that largely affects the structural performance of the model by 

conducting a comparative analysis of the direction cosines of the basic variables and providing a partial 
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factor as appropriate. The direction cosine of the 𝑖𝑡ℎ basic variable as given by Ang & Tang (1984) is as 

seen below; 

    𝛼𝑋𝑖
= (𝜕𝑔(𝑋)/𝜕𝑋𝑖)/[∑ (𝜕𝑔(𝑋)/𝜕𝑋𝑖)2

𝑖 ]1 2⁄                    and [∑ (𝛼𝑋𝑖

2 )𝑖 ]
1 2⁄

= 1                                (3.11)                                       

2.7.4 General Probabilistic Model 

According to Olalusi & Viljoen (2017), in the reliability assessment of a shear model, a general 

probabilistic model that accurately represents shear failure behaviour concerning the material and 

geometric parameters over the range of practical applications is required. 

A general probabilistic model for shear capacity can be obtained as a product of any unbiased prediction 

model and its corresponding uncertainty, it should be noted that not all GPMs are suitable for reliability 

assessment as their accuracy may differ respectively (Olalusi & Viljoen, 2017).  

     𝑉𝐺𝑃𝑀=𝑀𝐹. 𝑉𝑚                                                                                                                                    (3.12)                                       

The Limit State Function is given as; 

    𝑔(𝑋) = 𝑉𝐺𝑃𝑀 − 𝑉𝑅𝑑,𝑆                                                                                                             (3.13)                                       

The general probabilistic model for shear corresponds to the real shear resistance subject to uncertainties 

in parameters that affect the shear resistance. Consequently, the general probabilistic model for shear 

includes a model factor as one of the basic variables to quantify the uncertainty in the model to predict the 

true shear resistance as seen above (Huber,2005). The general probabilistic model is derived from design 

procedures with the least uncertainty factor among other selected models during reliability assessment.  
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2.8.0 Overview of artificial intelligence & machine learning  

Artificial intelligence has three (3) key characteristics namely; intention, intelligence, and adaptability. 

The intentionality of Artificial intelligence (AI) is in its ability to make judgments based on information 

rather than automatically responding to questions with prepared replies. This can only be accomplished 

when an AI system has access to extensive datasets. According to Skansi (2018), machine learning was 

created as a result of artificial intelligence and cognitive science. Hence, AI gains its intelligence through 

interactions with machine learning and data analytics. 

The intelligent answer to inquiries is determined by the interplay between computer systems, data 

analytics, and machine learning. The ability of AI systems to adapt to new data entry and make 

conclusions based on the most recent data quality makes them unique, and this is referred to as the 

adaptation of artificially intelligent algorithms. 

Machine learning, a subset of artificial intelligence, is the act of programming a computer system to learn 

from available data without being explicitly programmed i.e., it is not hard coded. In machine learning, 

computer system learns to take decisions by themselves based on a certain policy. Image data or tabular 

data is given to a computer system, and the computer establishes an intrinsic relationship between the data 

for future prediction either classification or regression. 

The application of machine learning is dependent on the problem scope. A problem which can be solved 

by traditional algorithms, e.g., linear programming, does not require the use of machine learning. The 

complex use of machine learning includes non-linear multivariate problems, spam filtering or speech 

recognition, these problems cannot be solved via a traditional algorithm, hence the need for machine 

learning. The ability of machine learning to adapt to new data makes it a preferable choice as a tool to 

solve robust engineering problems. 

There may be a lot of fine-tuning needed when using a conventional approach such as structural equation 

modelling to estimate shear resistance. Instead, this arduousness may be readily prevented by using a 

machine learning method. Aldakheel, Satari, & Wriggers, (2021) agreed that data-driven models like 

machine learning, deep learning, and artificial neural networks are utilized to simplify a conventional 

model's complexity. 

2.8.1 Applications of machine learning 

 Image classification e.g., production line of an industry (CNN; Convolution neural network) 

 Semantic segmentation to detect a tumour in a brain scan by classifying pixels of the image scan 

to determine the exact location and shape of the tumour. (CNN) 

 Text classification using Natural Language Processing (NLP) (RNN, CNN) 
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 Chatbot or Virtual Personal Assistant using Natural Language Processing, Natural Language 

Understanding and Natural Language Generation Concepts e.g., Cortana 

 Forecast companies’ revenue based on performance metrics (Linear or polynomial regression, 

SVM, RF, ANN, RNN, LSTN) 

 Predicting the compressive strength or shear resistance of a beam (Linear or polynomial 

regression, SVM, RF, ANN, RNN, LSTN, GEP) 

 Anomaly detection or recognizing outliers in a dataset 

 Dimensionality reduction for high dimensional dataset i.e., multiple features. (Auto encoders, 

principal component analysis) 

 Product recommendation system  

 Building a reinforcement learning robotic agent for game development or robotic application 

without being supervised e.g., in the assembly line of an automotive industry. 

The ability to employ a machine learning model is determined by its application, hence domain expertise 

is more crucial in machine learning than building the model itself. 

2.8.2 Classification of machine learning algorithm 

 Classification based on human supervision; machine learning algorithms can be classified as 

supervised, unsupervised, semi-supervised or reinforcement learning algorithms. These 

classifications are based on the provision of human supervision in terms of labelling data to guide 

computer systems in their learning process. Unsupervised learning and reinforcement learning are 

prerequisites for achieving AGI or Strong A.I (Artificial General Intelligence). AGI is a level of 

intelligence a machine system possesses where its intelligence level is like that of humans. The 

application of machine learning in this thesis would be restricted to the confines of Weak A.I 

(Artificial Narrow Intelligence), where a machine learning system can only perform a single 

function, unlike humans or AGI. 

 Classification based on Training Methodology; Training may be online or offline (batch) 

learning.  

 Classification based on Generalization; Instance-based learning or Model-based learning. 

Supervised learning can be classified into two kinds of problems; classification and regression. 

Classification-supervised learning is used to predict discrete values e.g., spam filtering systems. 

While regression models are used to predict a continuous numerical value. Some of the supervised 

machine learning models include; 
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 Linear regression 

 Logistic regression 

 Support vector machine 

 Random forest 

 Decision tree 

 Neural networks (Artificial, Convolutional, Recurrent) 

 Naïve Bayes 

 Polynomial regression 

 K-Nearest Neighbors 

 Gene Expression Programming 

Unsupervised learning models are examples of models that do not require human supervision. Or 

providing a label to data. These models can be majorly used for clustering purposes and 

Novelty/Anomaly detection. Examples include; 

 K-means clustering 

 DB Scan 

 Hierarchical clustering analysis  

 Dimensionality reduction and visualization-based algorithms e.g., PCA (principal component 

analysis), GNN (Graph neural network).  
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2.9.0   Theory and Mathematical Intuition of Machine Learning models 

In this section, the history of the considered machine learning models, the concept and underlying theory 

together with the mathematical intuition and expressions are presented. 

2.9.1 Support Vector Machine 

Vladimir N. Vapnik, a Russian researcher was responsible for the development of the support vector 

machine. His research on the support vectors algorithm started in 1963 (Vapnik and Lerner, 1963; Vapnik 

and Chervonenkis, 1964) and was successful by 1997 (Vapnik et al., 1997). In 1963, Vapnik published a 

research paper in which the SVM concept was first introduced based on the generalized portrait 

algorithm. Hence, the support vector algorithm was then termed a non-linear generalization of the general 

portrait algorithm (Smola and Scholkopf, 2003). The SV algorithm has evolved significantly over the past 

60 years, and the sub-variants will be examined in more detail below. It should be known that the support 

vector algorithm was initially developed to provide solutions to classification problems. A variant, 

support vector regressor, was later developed to address regression problems. 

The validity of SVM as a tool for solving complicated, non-linear engineering problems has been 

confirmed in both recent and previous literature, making it an established and credible approach in 

engineering analysis. The use of SVM can be found in the following research papers;  

Wakjira et al. (2022) employed the support vector machine together with alternative machine learning 

models to predict the load and flexural capacities of reinforced concrete beams strengthened with fabric-

reinforced cementitious matrix (FRCM) composites in flexure. Results from the prediction were 

compared to existing analytical methods. In structural health monitoring, Deng et al. (2020) used SVM to 

simulate the relationship between fatigue damage and traffic load for the Nanxi suspension bridge 

hangers. Also, Chou et al. (2014) adopted the support vector algorithm and other ML models to simulate 

the mechanical strength of concrete using data from several countries.  

According to Noble (2006), to understand the entirety of a support vector machine, an individual only 

needs to have an in-depth knowledge of the following four fundamental concepts. 

 Hyperplane 

 The maximum margin classifier/hyperplane 

 The soft margin (support vector classifier) 

 The kernel function (support vector machine) 
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Hyperplane 

A hyperplane is a higher dimensional generalization of a given plane that is often used to separate mixed 

variable classes in an n-dimensional Euclidean space. For a classification or regression problem, the 

dimension of the hyperplane adopted by the support vector algorithm is dependent on the number of input 

features in a dataset. 

Consider a situation where there are two input variables, N = 2 for 𝑥 and 𝑦,  the hyperplane would then 

have N-1 dimensions to perfectly separate both variable classes. Suppose you have 3 input variables, a 2-

dimensional plane is considered as the appropriate hyperplane. An N-dimensional plane greater than 3 

cannot be visualized, hence the name, Hyperplane. 

Selecting the hyperplane with the largest margin is an effective method of determining which of the 

infinite number of separating hyperplanes to employ (Bentsen, 2019). The maximal margin hyperplane 

maximizes the distance to the nearest point from each class and divides the two classes. This provides an 

efficient way of optimizing the separating hyperplane. 

The maximum margin classifier/hyperplane 

The definition of the maximum margin classifier takes the form of a hyperplane, which is a planar linear 

subspace of dimension p-1 in a p-dimensional space (Bentsen, 2019). Only perfectly separable classes 

may be classified with the maximum margin classifier. This indicates that the maximum margin classifier 

has a restriction and cannot perform an appropriate classification when the classes are not perfectly 

separable, as would be in a real-world scenario.  

Our aim in the maximum margin classifier is to derive the equation of hyperplane based on the best ɵ-

coefficient, as in linear regression, that will maximize the margin with subjection to some constraints. 

Constraint 1; given (휃0, 휃1 , 휃2, … … . 휃𝑝) then ∑ 휃𝑗
2𝑝

𝑗=1 = 1                                                                   (3.14) 

Constrain 2; the sum of the orthogonal or perpendicular distance must not be less than M. 

                      𝑦𝑖(휃0 + 휃1𝑥𝑖1 + 휃2𝑥𝑖2 + ⋯ … … … … . . 휃𝑝𝑥𝑖𝑝) ≥ 𝑀                                                       (3.15) 

Where 휃′𝑠 are model coefficients and 𝑥′𝑠 are model features. 

𝑀 = Maximum margin. 
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Fig 2.20. A maximum margin hyperplane that separates two perfectly separable classes with just five 

support vectors for the optimal solution of the optimization problem (Swamynathan, 2017). 

The soft margin (support vector classifier) 

In a situation whereby the classes are not perfectly separable as seen in Fig. 2.21 below, the maximum 

margin classifier cannot be applied because applying a maximum margin classifier to imperfectly 

separable class results in the misclassification of both classes.  

 

Fig 2.21. An imperfectly separable data set and the support vector classifiers. The labelled points are 

wrongly classified (Bentsen, 2019) 
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The support vector classifier uses the soft margin approach for this sort of problem. The soft margin 

allows a misclassification inside a margin for a test point. The support vector algorithm attempts to 

conduct a bias-variance trade-off by lowering the variance and raising the bias. Without this 

misclassification, by permitting a misclassification inside the margin, the support vector classifier model 

fails to generalize properly, and it would generate unsatisfactory predictions. 

Hence, with the inclusion of a slack variable 𝜉 to allow misclassification, the constraint as seen in the 

maximum margin classifier is modified to maximize M. 

Constraint 1; given (휃0, 휃1 , 휃2, … … . 휃𝑝) then ∑ 휃𝑗
2𝑝

𝑗=1 = 1 

Constraint 2; given (𝜉1 , 𝜉2 , 𝜉3, … … . 𝜉𝑛), 𝜉𝑖 > 0 ; then ∑ 𝜉𝑖
𝑛
𝑖=1 ≤ 𝐶                                                       (3.16) 

Where 𝐶 is a regularization parameter that controls the allowable degree of misclassification in the soft 

margin. The strength of regularization is inversely proportional to 𝐶 i.e. if the value of 𝐶 is high, the 

strength of regularization is less and vice-versa. 

Constrain 3; the sum of the orthogonal or perpendicular distance must not be less than M (1-𝜉𝑖). 

                      𝑦𝑖(휃0 + 휃1𝑥𝑖1 + 휃2𝑥𝑖2 + ⋯ … … … … . . 휃𝑝𝑥𝑖𝑝) ≥ 𝑀(1-𝜉𝑖)                                              (3.17) 

 

The kernel function (support vector machine) 

The main principle of support vector machines is that the training set can always be projected from the 

original input space, which has dimension p, to a higher-dimensional feature space where the training set 

is more linearly separable. The constraint is also modified into; 

Constraint 1 applies as well. 

Constraint 2; 𝑦𝑖(휃0 + ∑ 휃𝑗𝑖 𝑥𝑖𝑗 +𝑝
𝑗=1

∑ 휃𝑗2𝑥𝑖𝑗
𝑘𝑝

𝑗=1 ) ≥ 𝑀(1-𝜉𝑖)                                                               (3.18) 

The power 𝑘  denotes that the original input space has been projected into a higher dimensional space. 

The support vector algorithm becomes more complex when projecting into a higher-dimension space, 

which might result in an overfitting issue. The kernel function and trick are used to address this problem. 
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a. Two classes not linearly separable                         b. Projection into a higher dimension 

Fig 2.22 (a) Two-class classification dataset in which classes are not linearly separable (b) A linear SVM on the 

larger three-dimensional dataset determined the decision boundary (Muller and Guido, 2016). 

The kernel function and trick concept 

By applying the kernel trick, we try to calculate the dot product of the training observations in a linear 

support vector classifier. 

        𝐹(𝑥) = 휃0 + ∑ 𝛼𝑖〈𝑥, 𝑥𝑖〉𝑛
𝑖=1                                                                                                            (3.19) 

∑ 𝛼𝑖〈𝑥, 𝑥𝑖〉𝑛
𝑖=1 = Dot product of all training observations or data points. 

                      = 𝛼1𝑥1 + 𝛼2𝑥2 + 𝛼3𝑥3 + ⋯ … … … … + 𝛼𝑛𝑥𝑛                                                                 (3.20) 

𝛼 controls or selects the non-zero support vectors, the idea of the kernel trick is to only select the non-

zero support vectors and not the entire data points to save the computation time and reduce the 

complexity of the algorithm. 

To complete the kernel trick transformation, the kernel function is introduced into the Dot product 

equation above to completely decrease the algorithm complexity in a higher dimensional feature space. 

The speciality of the kernel function is that it tries to quantify the similarity between the original feature 

space and the enlarged feature space by showing the equivalence of the data in each feature space 

regardless of the dimension in which the data was defined. 

The support vector machine equation then becomes; 

        𝐹(𝑥) = 휃0 + ∑ 𝛼𝑖𝐾〈𝑥, 𝑥𝑖
′〉𝑛

𝑖=1                                                                                                          (3.21) 



 

60 

The term ‘𝐾〈𝑥, 𝑥𝑖
′〉’ performs the kernel transformation and also controls the complexity of the algorithm 

with the Dot-product concept. 

For a polynomial kernel function, 𝐾〈𝑥, 𝑥𝑖
′〉 is given as  

𝐾〈𝑥, 𝑥𝑖
′〉 = (1 + ∑ 𝑥𝑖𝑗, 𝑥𝑖𝑗

′𝑝
𝑖=1 )𝑑                                                                                                               (3.22) 

The equation of the support vector machine with a polynomial kernel function becomes; 

         𝐹(𝑥) = 휃0 + ∑ 𝛼𝑖 (1 + ∑ 𝑥𝑖𝑗, 𝑥𝑖𝑗
′𝑝

𝑖=1 )𝑑                                                                                         (3.23) 

For a Radial basis kernel function, 𝐾〈𝑥, 𝑥𝑖
′〉 is given as  

𝐾〈𝑥, 𝑥𝑖
′〉 = exp(−𝛾 ∑ (𝑥𝑖𝑗 − 𝑥𝑖𝑗

′ )2𝑝
𝑖=1 )                                                                                                   (3.24) 

The equation of the support vector machine with a Radial based kernel function becomes; 

𝐹(𝑥) = 휃0 + ∑ 𝛼𝑖 exp(−𝛾 ∑ (𝑥𝑖𝑗 − 𝑥𝑖𝑗
′ )2𝑝

𝑖=1 )                                                                                       (3.25) 

Support Vector Regressor 

When one is conversant with the support vector algorithm, understanding regression in a support vector 

machine is simple. The fundamental idea behind support vector regression is that the maximum margin is 

populated with data points, and the optimal data points inside the margin are used to establish a line of 

best fit, much like in linear regression. A corresponding y-value (prediction) is derived from the x-values 

(optimal data points) that generated the line of best fit in the maximum margin.  

 

2.9.2 Artificial Neural Network 

McCulloch and Pitts (1943) established the idea of the perceptron, an artificial neuron that serves as the 

fundamental component of an artificial neural network as seen in Fig. 2.23. The term ‘Neural Network’ 

was not only given as a biological name but because the activity was fashioned like that of the neurons in 

the human brain (Swamynathan, 2017). 

An artificial neural network (ANN) is simply a mathematical depiction of the human brain whose 

underlying phenomenon was modelled after the characteristics and function of the human brain. While 

neuronal cells (roughly 1011) make up the brain, the neural network or brain is composed of about 10,000 

connections between these cells, or neurons. The artificial neural network (ANN) imitates the natural 

neural network as seen in the brain by similarly connecting its artificial neurons (Kukreja et al., 2016).  
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Fig 2.23 Similarities between the natural neural network and the artificial neural network (Swamynathan, 

2017).    

It is significant to note that by altering the basic components of the neural network architecture, we 

modify how the neural network computes results, how it connects to other networks, and how it uses 

input values. Consequently, this alters how the network learns and affects how accurate the predictions 

are (Michelucci, 2018).  

Assume you have a real number input where w𝑖 ∈ 𝑅 with 𝑖 = 1,2, … . , 𝑛𝑥 . Here, the number of input 

variables is 𝑛𝑥  and  𝑖 ∈ 𝑁 (set of integers). The neural network aims to apply a function to a linear 

combination of all inputs. Mathematical equations for the neural network algorithm are seen below. 

𝑧 =  w1𝑥1 + w2𝑥2 + ⋯ … + w𝑚𝑥
𝑥𝑚𝑥

+ 𝑏                                                                                            (3.26) 

An output 𝑦 will then be produced by applying a function 𝑓 to 𝑧. 

𝑦(𝑘) = 𝑓(𝑧) = 𝑓(∑ w𝑖(𝑘). 𝑥𝑖(𝑘) + 𝑏𝑚
𝑖=0 )                                                                                             (3.27) 

Where 𝑏 is a modifiable value called bias 

𝑥𝑖(𝑘) represents input value in discrete time 𝑘 where 𝑖 goes from 0 to 𝑚 

w𝑖(𝑘) represents weight value in discrete time 𝑘 where 𝑖 goes from 0 to 𝑚 

𝑓 is an activation function. 

𝑦(𝑘) is the predicted value in discrete time 𝑘 
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Fig 2.24. The computational diagram for the neural network is described above (Michelucci, 2018). 

Components of the artificial neural network 

1. Input Layer; Just like the human biological neuron possesses dendrites that receive signals 

externally for processing, the artificial neural network also has multiple input layers that are 

responsible for accepting training samples as a row vector (𝑥1, 𝑥2, 𝑥3. . 𝑥𝑚) or a column vector 

(𝑥1, 𝑥2, 𝑥3. . 𝑥𝑚) 𝑇. When computing a neural network, it is important to note that having too 

many input parameters will considerably slow down the learning process, but the training 

accuracy will significantly increase. The input layer has a collection of synapses, or connecting 

links, each of which is distinguished by a weight as seen in Fig. 2.23. 

2. Hidden layer; The hidden layer is the second point of contact in the neural network architecture. 

It serves as an intermediary between the input layer and the output layer with the sole 

responsibility of applying weights to inputs and directing the product through an activation 

function. The hidden layer also utilizes information stored in the input layers. According to 

Jayasinghe et al. (2022), too many hidden neurons will cause over-fitting, and minimal hidden 

layers will not be able to capture the function's underlying behaviour. Hence, the optimal 

numbers of hidden layers and neurons present in a neural network may be largely decided by a 

trial-and-error process or by cross-validation.  

According to Haykin (2009), the activation function, also known as a squashing function, limits 

the acceptable amplitude range of the output signal to a certain finite value, hence restricting the 

amplitude of a neuron's output. Haykin (2009) also added that the output of a neural network is 

largely dependent on the nature of the activation function (𝜑(𝜐)) in the neural network, in terms 
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of the induced local field 𝜐. Hence, the common activation functions adopted in building a neural 

network architecture are found below. 

 

 Sigmoid function; The most typical type of activation function utilized in the creation of 

neural networks is the sigmoid function, whose graph is "S"-shaped. It is regarded as a 

strictly increasing function with a fine balance between linear and nonlinear behaviour. 

The expression is given by; 

      𝜑(𝜐) =  
1

𝑒(−𝑎𝜐)+1
                                                                                                        (3.28) 

 

Fig 2.25. Sigmoid function for varying slope parameter 𝑎 (Haykin, 2009) 

 Purelin activation function; is a linear activation function whose range of function has an 

unlimited number of points, and it has no impact on how sophisticated the data set could 

be (Aldakheel et al., 2021). The expression is given by; 

                              𝑓(𝑥) = 𝑥                                                                                                                   (3.29)    

 

Fig 2.26. The Graph of Purlin Activation Function (Aldakheel et al., 2021). 
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 The threshold function; also known as a heavy side function, is given as; 

𝜑(𝜐) =  {
1 𝑖𝑓 𝜐 ≥ 0
0 𝑖𝑓 𝜐 < 0

                                                                                                    (3.30) 

 

Fig 2.27. Threshold function (Haykin, 2009) 

Some other activation functions include hyperbolic tangent activation function, Rectified linear activation 

(ReLu) and leaky ReLu. 

 

3. Output layer; The results of the neural network computation are given by the output layer.  

 

 

Fig 2.27. Typical architecture of the ANN (Aldakheel, Satari, & Wriggers, 2021). 

One of the advantages the neural network has over alternative machine learning algorithms is its ability to 

overcome the limitation of a single perceptron as it is composed of many perceptrons that are connected 

in various ways and acting on various activation functions to provide improved learning mechanisms. The 

training sample propagates forward through the network and the output error is back-propagated. The 
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computation error is minimized by applying the gradient descent approach, which will calculate a loss 

function for all the weights in the network and re-compute in epochs (Swamynathan, 2017).    

  

Fig 2.28. Multilayer perceptron representation with error backpropagation (Swamynathan, 2017).    

2.9.3 Decision Tree 

The decision tree is an algorithm based on the information theory concept developed by Shannon (1948). 

The entirety of the tree-based model is concerned with measuring the purity of information only. In 

machine learning, a statistical decision tree is used for modelling choices and outcomes based on some 

conditions. The Breiman et al. (1984) CART algorithm serves as the foundation for the Decision Tree 

Regressor. However, the decision trees now in use make use of a modified version of Quinlan's (1993) 

C4.5 algorithm. 

A leaf node and an internal/decision node, which includes a root node, make up a decision tree. A root 

node is first initialized, after which it is divided into sub-trees. According to the splitting criteria, such as 

information gain, Gini impurity, and entropy for classification tasks, or Mean Squared Error (MSE), and 

Poisson for regression tasks, the optimal split is established. Based on the terminating requirements, the 

splits are categorized as either terminal/leaf nodes or decision/internal nodes. Each internal node is then 

processed independently till there are no internal nodes to separate, and this procedure continues. 

Terminologies in Decision trees 

1. Node splitting; means the data stored at a node is split based on some threshold condition. The 

threshold condition is determined by the quality of measured information with the help of the 

information measurement indexes such as Gini impurity, Mean squared error and Poisson. 

2. Terminal/leaf node; there is no splitting beyond the terminal node. At this node, a decision is 

taken. The terminal node has the same function as the output layer in neural networks. 
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3. Pruning; is the act of reducing the depth of the decision tree by cutting off some nodes that do not 

meet the threshold condition. To reduce the complexity and avoid overfitting, pruning is applied. 

Information theory metrics & equations 

1. Gini impurity; Gini impurity is a mathematical measurement index whose concept is based on 

probability. It is a mathematical measurement that shows how pure the information in a dataset is. 

Concerning classification, G.I measure some mathematical information and based on that, we can 

deduce how pure a dataset is or the degree of class uniformity in the dataset. 

 

For a set of classes (C), for a given dataset (Q) 

𝐺(Q) = ∑ 𝑃𝑐(1 − 𝑃𝑐)𝑐𝜖𝐶                                                                                                             (3.31) 

              𝑃𝑐 =
1

𝑁Q
∑ (𝑦𝑐𝑙𝑎𝑠𝑠=𝑐)𝑥𝜖Q                                                                                                              (3.32) 

 

2. Entropy; entropy is a measure of disorderliness or randomness. In terms of impurity, entropy is 

used to increase purity by decreasing the randomness of impurity. Given by 

𝐸(𝑠) =  −𝑝𝐴. log2 𝑃𝐴 −𝑝𝐵. log2 𝑃𝐵                                                                                           (3.33) 

 

3. Information Gain; the concept of information gain is that it measures the reduction in uncertainty 

and it is a deciding factor for what particular node would be the root node. Information gain value 

increases as the uncertainty reduces. Information gain is defined in form of entropy and given by; 

𝐼 = 𝐸(𝑌) − 𝐸(𝑌/𝑋)                                                                                                                  (3.35) 

𝐸(𝑌) = Entropy of the full dataset 

𝐸(𝑌/𝑋) = Entropy of the dataset based on some feature X 

4. Mean Squared error; for regression problems, the CART algorithm uses the mean squared error to 

determine the prediction accuracy with respect to a feature as the root node. The mean squared 

error should be minimal at the terminal node.   

𝑀𝑆𝐸 =  
1

𝑛
∑ (𝑌𝑖 − 𝑌�̂�)

2𝑛
𝑖=1                                                                                                           (3.35) 

The Scikit learn machine learning library included some other splitting criteria for regression tasks such 

as Friedman MSE, Absolute Error and Poisson. 

The main goal of the decision tree or random forest in classification is to maximize information gain and 

minimize both Gini impurity and entropy. In regression, the goal is to minimize all the error metrics.  
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2.9.4 Random Forest 

Breiman (2001a), who was motivated by the previous work of Amit and Geman (1997), developed the 

random forests algorithm. Random Forests were created as an alternative to boosting and are an extension 

of Breiman's bagging concept (Breiman, 2001b). The random forest is an extension of the decision tree 

model, researchers developed the random forest algorithm to improve the performance of the decision 

tree model. The shortcoming of the decision tree that led to the development of the random forest model 

was that the decision tree algorithm does not learn based on all of the features in a dataset and it is also 

prone to overfitting, but the random forest takes all of the features into consideration for learning and it is 

not sensitive to overfitting.   

The random forest is an ensemble learner. Ensemble means the combination of multiple algorithms to be 

compounded as one. Concerning random forest, it would mean the combination of multiple decision trees 

built on different features selected at random. It is important to note that the same hyperparameters and 

principles that apply in the decision tree model also apply in the random forest model, but the 

improvement required that some new concept be introduced in the model.   

The idea behind the random forest was to create multiple trees from randomly selected subsets of a 

dataset. By doing this, we explore and include the entire feature space and this results in an ensemble of 

various decision trees. 

Main Concepts of Random Forest 

1. Bootstrapping; suppose we have individual features 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5 belonging to a dataset 𝐶, the 

decision tree algorithm tries to select a single feature and with the help of the information 

measurement metrics, we can determine the root node and split based on just that single feature, 

but in Random Forest, all of the features are considered in building a tree. The bootstrapping 

concept simply means a random sampling with a replacement that is separate from the 

conventional stratified sampling. Bootstrapping helps to reduce the correlation and multi-

collinearity in the generated trees since we require diverse configurations of decision trees. 

Random forest models with bootstrapping generalize in a better way since strong learners are 

generated. 

2. Bagging; bagging involves two concepts, bootstrapping and aggregating. Results at the leaf node 

of every tree generated through bootstrapping are averaged, and then a single outcome is derived. 

3. Other features such as N-estimators (Number of decision trees required to build a forest), max 

features (Number of features in a randomly selected subset of a dataset) and OOB-score (out-of-

bag error) are also introduced in the random forest model.  
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In Fig. 2.9, a schematic representation is presented that outlines the sequential procedures involved in the 

application of the random forest algorithm to a dataset, with the primary objective of predicting a 

continuous variable. The algorithm involves constructing multiple decision trees, each using a randomly 

selected subset of input variables and observations, and then averaging the outputs to reduce the variance 

of the model. The model is then trained on a subset of the data, and the remaining data are used to 

evaluate the model's accuracy. This iterative process is repeated until a satisfactory level of prediction 

accuracy is achieved. 

 

Fig 2.29. Schematic of random forest generation and prediction (Han et al., 2019) 
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CHAPTER 3 

RESEARCH METHODOLOGY 

3.1 Data Collection & Analysis of Database  

The ACI-DafStb shear database collected and compiled by Reineck et al. (2013) was utilized in this study 

to deterministically analyze the shear strength equations presented by the various national codes of design 

for structural concrete, Authorial models and machine learning-based models considered in this research. 

The shear database is characterized by shear strength resulting from experimental observation of simply 

supported reinforced concrete beams without stirrups. Geometric consideration of the beam specimen 

used in the experimental derivation of the shear strength values includes; Rectangular beams, T-section 

Flanged beams and I-section Flanged beams. To include data points that demonstrate only a practical 

parametric range of features in the dataset, some test results with an impracticable range of beam 

properties were filtered out. Hence, the test results did not have any form of bias. 

Table 3.1 shows the criteria on which the collected shear test data was carefully filtered  

Table 3.1 Criteria for excluding an experimental test in ACI-DafStb shear database 

Beam Properties Criteria 

Compressive strength (𝒇𝒄) < 10Mpa 

Beam Width (𝒃𝐰) <50mm 

Shear Span – Effective Depth Ratio (a/d)  <2.4 

Longitudinal Reinforcement percentage (𝝆𝒍) <0.139% 

Effective Depth (d) <57.2mm 

 

The shear span to effective depth ratio (a/d) was not allowed to be less than 2.4 to avoid the effect of arch-

action in the case of deep beams. Each beam specimen was characterized by the same mode of failure, 

diagonal tension shear failure. For longitudinal reinforcement, the selection process was automatically 

controlled by the ratio of allowable reinforcement ratio since shear failure cannot occur in over-reinforced 

concrete due to the premature crushing of concrete at the web region. A total of 224 data points were 

eliminated from the 1008 experimental shear test set. After the selection process was concluded, the 

database was finally built with 784 test results. 
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Table 3.2. Descriptive Statistics of Dataset 

 𝒃𝐰(𝒎𝒎) 
 

𝒂/𝒅 𝒅(𝒎𝒎) 𝝆𝒍% 𝒇𝒄𝒌(𝑴𝒑𝒂) 𝑽(𝑲𝑵) 

Counts 784.00 784.0 784.00 784.0 784.00 784.00 

Mean 218.54 3.50 345.50 2.2 35.32 98.10 

Std, Dev 207.10 1.00 303.30 1.1 21.09 124.00 

COV 0.95 0.29 0.88 0.5 0.60 1.26 

Minimum 50.00 2.40 57.20 0.1 8.90 7.20 

25% 150.00 2.90 204.60 1.2 22.23 41.22 

50% 153.00 3.20 268.20 1.9 28.00 61.05 

75% 203.00 4.00 336.00 2.7 39.42 106.15 

Maximum 3005.00 8.10 3,000.0 6.6 135.00 1,308.40 

 

Across all parameters, the dataset provided by Reineck et al. (2013) displays a high value of standard 

deviation which implies that the dataset has a wide scatter of parametric properties. Hence, the 

distribution of this dataset is suitable for the practical investigation of the shear models across a variety of 

parametric properties. 

𝜎 = √
∑(𝑥𝑖 − 𝜇)2

𝑁
 

σ = Dataset standard deviation 

𝑁 = Size of the dataset 

𝑥𝑖 = Singular data-point 

𝜇 = Mean of the dataset 

From the table above, it can be seen that 588 test-data has effective beam depth (d) less than 336mm 

which is representative of the 75th percentile of the dataset, while 25% of the distribution has a percentage 

longitudinal ratio greater than 2.7%. The distribution of the shear span to effective depth ratio shows that 

the dataset is largely characterized by slender beams as 25% of the distribution has a slenderness ratio of 

less than 2.9 with a minimum value of 2.4. 
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3.2 Regression and correlation  

Regression is a statistical method of determining the character and strength of the relationship between 

two numerical variables. Regression analysis can be easily carried out with a scattered plot. A scattered 

plot is a graph that shows the relationship between two quantitative variables either dependent and 

independent or non-dependent variables measured from a data population. The scattered plots below give 

a graphical representation of the relationship between the parameters that affect shear strength and the 

normalized experimental shear strength. 

Normalization was done as a form of data pre-processing to scale down the existing range of data to a 

new range, thereby effectively managing the large variation in the dataset and bringing them closer. Fig. 

3.1 shows the distribution of the experimental shear strength, and it can be seen that the data do not 

follow a perfect gaussian distribution, hence there is a need to scale the data before it can be used. 

 

Fig 3.1 Distribution of normalized experimental shear strength (MPa) 

Fig.3.2 infers that concrete strength mildly affects the shear strength. The gentle positive slope depicts 

that for every 20MPa increase in concrete compressive strength, there is a mild increase in the shear 

strength.  

V/bd (MPa) 
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Fig 3.2 Scatter plot of normalized experimental shear strength against concrete strength 𝑀𝑃𝑎  

In the compression chord capacity model developed by Cladera et al. (2016), the concrete strength was 

limited to 60MPa due to an observed large variability in the shear strength of members with high concrete 

compressive strength (Cladera et al., 2019).  Also from the plot, it was noticed that the shear strength is 

clustered when the concrete strength is within the range (8.90MPa- 40MPa), a large variability is noticed 

when concrete strength exceeds 60MPa. 

The effective depth (d) plot against the normalized shear strength in Fig. 3.3 shows that the two 

parameters are inversely correlated. For every increase in the depth of beams provided in the database, 

there is a visible decrease in the experimental shear strength. The observable relationship between the 

aforementioned parameters in the database coincides with the experiment conducted by Slowick & 

Nowicki (2012), and the explanation of the size effect put forward by Collins & Kuchma (1999) and 

Reineck (1999). 
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Fig 3.3 Scatter plot of normalized experimental shear strength against effective depth 𝑑  

The scattered plot of the normalized experimental shear strength against the percentage of longitudinal 

reinforcement shows variability in the distribution of the experimental shear strength as the longitudinal 

reinforcement increases. From Fig. 3.4, it is seen that the response variable has a small scatter when the 

reinforcement ratio is between 0.139% - 2%, and a large variability is seen when the reinforcement ratio 

exceeds 2%. The EC2 adopts this practice in the modelling of empirical shear strength formula for beams 

without stirrups as they limit the percentage of longitudinal reinforcement ratio to 2%. Generally, the 

concrete strength increases as the reinforcement ratio increases, the 2% limitation may be as a form of 

control to avert web crushing due to over-reinforcing. 

    

Fig 3.4 Scatter plot of normalized experimental shear strength against 𝜌𝑙(%)  
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Fig. 3.5 indicates there is an inverse relationship between the normalized experimental shear strength and 

the shear span-to-depth ratio. A decrease in the shear span to effective depth causes an increase in the 

shear strength. This indicates that 𝑎/𝑑 significantly affects shear strength. 5% of the experimental 

database is dominated by arch action, this is because their shear span – effective depth ratio is less than 

2.5. Hence, for those 40 test points, an increased shear resistance can be seen from the plot below.  

 

Fig 3.5 Scatter plot of normalized experimental shear strength against shear span/depth 𝑎/𝑑 

The plot below shows the relationship between the width of a beam and the normalized strength and a 

negative trend can be observed from the plot of both parameters. 

       

Fig 3.5 Scatter plot of normalized experimental shear strength against shear span/depth 𝑎/𝑑  
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3.3 Coefficient of correlation 

Correlation is a term used to explain the linear relationship that exists between two quantitative variables 

in terms of magnitude (strength) and direction. Correlation can be identified by carefully observing the 

slope of a scattered plot, a steep slope depicts a strong correlation with a high coefficient value, while a 

gentle slope indicates that there is no significant observable linear relationship between variables, hence a 

weak coefficient value. The value of the correlation coefficient can be deterministically measured with 

the correlation equation below; 

𝑟 =
1

(𝑛 − 1)𝑠𝑥𝑠𝑦
∑(𝑥𝑖 − 𝜇𝑥)(𝑦𝑖 − 𝜇𝑦) 

Where, n = Sample size 

 𝜇𝑥  = Mean of variable X  

 𝜇𝑦 = Mean of variable Y 

 𝑠𝑥  = Standard deviation of variable X 

 𝑠𝑦 = Standard deviation of variable Y 

 𝑥𝑖 = datapoint of variable X 

 𝑦𝑖 = datapoint of variable Y 

The heatmap diagram in Fig. 3.6 displays and annotates the correlation between the factors that affect the 

shear strength of beams without transverse reinforcement. The heatmap is representative of the database 

provided by Reineck et al. (2013). From the diagram, it can be seen that the factors that affect shear 

strength are poorly correlated with each other. A typical example is the correlation between the effective 

depth of the beam and the concrete strength, which has a negative coefficient of correlation of less than 

1% and no visible significant trend in the slope. Generally, the concrete compressive strength shows a 

poor correlation with other shear parameters. The inability to understand and establish a relationship 

between shear parameters as seen in the heatmap diagram is largely a contributing factor to the 

formulation of shear models and the variation in shear strength estimation. 
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Fig 3.6 Heatmap showing poorly correlated shear parameters 

Table 3.3 below shows how the shear parameters are correlated with the experimental shear strength in 

terms of strength and direction. The Table clearly shows that the shear strength of beams without shear 

reinforcement is mostly sensitive to the longitudinal reinforcement ratio, effective beam depth and the 

shear span- effective depth ratio. A positive 66% coefficient of correlation between the experimental 

shear strength and the longitudinal reinforcement ratio in the database indicates that for most of the test 

points, an increase in the longitudinal reinforcement leads to a corresponding increase in experimental 

shear strength. This trend can be classified as a fairly strong trend due to the correlation value. 

From the literature, it has been established that as the depth of reinforced concrete beams increases, the 

shear strength decreases, this also holds for the dataset collected by Reineck et al. (2013). A negative 45% 

Coefficient of correlation between the experimental shear strength and the effective depth suggests that as 

the effective depth increases, the response of the experimental shear strength is such that it moderately 

decreases. The same can be said for the concrete compressive strength, but with a positive correlation. 

Information deduced from the database provided by Reineck et al. (2013) shows that the experimental 

shear strength is weakly correlated with the shear span-effective depth ratio (a/d) and the beam width. It 
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should be noted that increasing the longitudinal percentage is not necessarily a good practice as some 

code of design limits its value to 3% to avoid premature web crushing. 

Table 3.3. Correlation Of Shear Parameters with Shear Strength 

Parameter Coefficient of Correlation (%) Direction 

Shear span-depth ratio (a/d) 11 Negative 

Effective depth (d) 45 Negative 

Longitudinal reinforcement ratio (𝝆𝒍%) 66 Positive 

Compressive strength (𝒇𝒄𝒌) 42 Positive 

Beam width (b) 25 Negative 
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3.5 Deterministic analysis of shear resistance  

A mean and design value deterministic analysis is a requisite for reliability investigation.  

3.5.1 Mean value analysis 

Mean value analysis provides us with the best estimate prediction of the shear strength from the models 

considered. All forms of bias are removed when conducting a mean value analysis thereby leaving us 

with a true prediction of shear from the models considered. To obtain mean value predictions, the 

characteristic values of concrete properties 𝑓𝑐𝑘, 𝑓𝑐
′ are expressed at their mean value 𝑓𝑐𝑚 and partial factor 

of safety is taken as 1 or completely ignored. 

EC2 and Fib Model Code 2010 suggest the relationship seen below for determining the mean value 

characteristic strength of concrete (𝑓𝑐𝑘). 

𝑓𝑐𝑚 =  𝑓𝑐𝑘 + 8𝑀𝑃𝑎 

𝑓𝑐𝑚 = Mean value of concrete compressive strength (MPa) 

𝑓𝑐𝑘 = Characteristic cylinder strength of concrete compressive strength. 

Some National codes of design such as ACI 318 and AS3600 do not include the characteristic value (𝑓𝑐𝑘) 

of concrete cylinder strength in their shear formulation, instead a special characteristic strength of 

concrete at 28 days (𝑓𝑐
′) was used. To analytically relate the relationship between 𝑓𝑐

′ and 𝑓𝑐𝑚, the database 

provided by Reineck et al. (2013) was thoroughly investigated and it was observed that the expression 

below holds in identifying the relationship between the two parameters. 

𝑓𝑐
′ =  𝑓𝑐𝑘 + 1.6𝑀𝑃𝑎 

From  𝑓𝑐𝑚 =  𝑓𝑐𝑘 + 8𝑀𝑃𝑎, it can be deduced that,  𝑓𝑐𝑘 =  𝑓𝑐𝑚 − 8𝑀𝑃𝑎 

By substituting 𝑓𝑐𝑘 into 𝑓𝑐
′ equation, we arrive at; 

𝑓𝑐𝑚 = 𝑓𝑐
′ + 6.4𝑀𝑃𝑎 

Special consideration was taken for the SANS 10100-1. (2000). The cube characteristic strength of 

concrete was used in the formulation of the shear model. Hence, a relationship between 𝑓𝑐𝑢 and 𝑓𝑐𝑚 has to 

be established. The strength and deformation characteristics for concrete in Table 3.4 given by EC2 show 

an analytical relation with values to derive concrete cylinder strength from concrete mean strength. 
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Table 3.4.  Strength Classes for Concrete (MPa) 

𝒇𝒄𝒌 12 16 20 25 30 35 40 45 50 55 60 70 80 90 

𝒇𝒄𝒖 15 20 25 30 37 45 50 55 60 67 75 85 95 105 

𝒇𝒄𝒎 20 24 28 33 38 43 48 53 58 63 68 78 88 98 

𝒇𝒄𝒕𝒎 1.6 1.9 2.2 2.6 2.9 3.2 3.5 3.8 4.1 4.2 4.4 4.6 4.8 5.0 

 

For concrete class less than C50/60, the analytical expression for the mean concrete tensile strength is 

given as;  𝑓𝑐𝑡𝑚 = 0.30(𝑓
𝑐𝑘

2
3⁄

) 

For concrete class greater than C50/60, the analytical expression for the mean concrete tensile strength is 

given as;  

𝑓𝑐𝑡𝑚 = 2.12(ln (1 + (𝑓𝑐𝑚/10)). 

The process for the mean value deterministic analysis of all code-based models and authorial models is 

illustrated in the figure below.  
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(Step1); Unbiased shear strength estimation for diagonal tension 

failure (𝑽𝒖) 

 To determine the mean capacity of shear resistance for all 

models considered using the database that comprises 

experimental setup across all parametric ranges with failure 

due to diagonal tension failure. 

 

 

Shear model evaluation 

 EC2 mean shear value prediction (𝑽𝑬𝑪) – obtained using equation 2.3 

 ACI 318-19 (𝑽𝑨𝑪𝑰)- obtained using equation (C) in table 2.1 

 AS 3600-2018 (𝑽𝑨𝑺) - obtained using equation 2.14 

 SANS10100-1(2000) (𝑽𝑺𝑨𝑵𝑺) - obtained using equation 2.28 

 MC 2010 (LOA II) (𝑽𝑴𝑪−𝟏𝟎(𝑰𝑰)) - obtained using equation 2.31 

 CCC Model (𝑽𝑪𝑪𝑪) - obtained using equation 2.55 

 MASM (𝑽𝑴𝑨𝑺𝑴 )- obtained using equation 2.43 – 2.45 

 Modified SNiP code (𝑽𝑺𝑵𝒊𝑷) - obtained using equation 2.70 

 Ngoc Tran’s Mechanical Model (𝑽𝑵𝑳𝑻) - obtained using equation 2.93  

Input Parameters 

1. Geometric properties and mean value of 

concrete properties (where applicable) 

𝑓𝑐𝑚 =  𝑓𝑐𝑘 + 8𝑀𝑝𝑎,  𝑓𝑐𝑚 = 𝑓𝑐
′ + 6.4𝑀𝑝𝑎 

𝑓𝑐𝑡𝑚 = 2.12(𝑙𝑛 (1 + (𝑓𝑐𝑚/10)) , 𝑓𝑐𝑡𝑚 = 0.30(𝑓
𝑐𝑘

2
3⁄

) 

2   Equating partial factor of safety (γ𝑐) =1 

 

 

 

 

 

 

 

 

(Step 2); Model Inference Comparison 

 Comparative analysis between the mean shear value of 

investigated models and experimental shear strength. 

 Assessment of mean value predictions for specific test sections 

across a varied range of beam depth, concrete strength, shear 

span-effective depth ratio and longitudinal reinforcement. 

(Step 3); Contemplate the possible result 

Visualize plots, discussions and observations. 

Fig 3.7 Mean value deterministic analysis procedure 
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3.5.2 Design value analysis 

For all shear models considered in this study, only the EC2, SANS10100, MC10 and CCC express shear 

strength in both mean value and design value. When the shear strength is expressed in its design value, 

this means all form of design bias has been included in the shear model calculation thereby providing a 

more conservative estimation. It should be noted that the design value analysis does not give the true 

calibration of shear model performance. 

Design values of material properties are derived deterministically by treating characteristic values of 

concrete as random variables and using them together with a partial factor of safety as input parameters. 

𝑓𝑐𝑑 =
𝑓𝑐𝑘

𝛾
 , 𝑓𝑦wd =  

𝑓𝑦wk

𝛾
 

The design value of any resistance model takes the format; 

𝑉𝑅𝑑 = 𝑅 [
𝑋𝑘

𝛾𝑚
; 𝑎𝑑] 

𝑉𝑅𝑑 represents the design resistance, 𝑋𝑘 is the characteristic values of the material property, 휂 conversion 

factor appropriates to the material property and 𝑎𝑑 is the design geometric parameter. 

Fundamental variables such as the geometries, steel percentage ratio and area of steel generally have their 

safety factored to be 1.0.  

 

The procedure for the design value deterministic analysis of all code-based model and authorial model 

that uses design value is illustrated in the figure below.     
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Step 1; Design shear strength estimation for diagonal tension 

failure (𝑽𝑹𝒅) 

 To evaluate the design shear value from design shear methods 

considered in this study across varied range of geometrical and 

material properties. 

Input Parameter 

1. Design geometric properties and characteristic value of material properties (𝑓𝑐𝑘 , 𝑓𝑐
′) if applicable 

2. Partial safety factors (where applicable) γ𝑐 = 1.5 (SANS; γ𝑐=1.4) 

 

 
MC-10(II) Design shear 

evaluation 

𝑽𝑴𝑪−𝟏𝟎(𝑰𝑰)(𝑿𝒌, 𝜸) – 

Obtained using equation 2.31 

CCCM Design shear 

evaluation 

𝑽𝑪𝑪𝑪(𝑿𝒌, 𝜸) – Obtained 

using equation 2.55 

 

SANS 10100 Design 

shear evaluation 

𝑽𝑺𝑨𝑵𝑺(𝑿𝒌, 𝜸) – 

Obtained using equation 

2.28 

 

EC2 Design shear 

evaluation 

𝑽𝑬𝑪𝟐(𝑿𝒌, 𝜸) – Obtained 

using equation 2.3 

 

(Step 2) – Model inference comparison 

 Overall comparison of EC2 design shear resistance 
with other design shear methods. 

 Assessment of design shear methods across a varied 

range of test properties. 

 

Step 3 – contemplate the possible result 

Visualize plots, discussions and observations 

 

Fig 3.8 Design value deterministic analysis procedure 
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3.6 Machine learning model building and evaluation 

In the study by Reinick et al. (2013), a total of 784 experimental setups were conducted. Of these, 588 

experimental setups (75% of the total data) were randomly selected as the training data using a random 

state of 101 in the Scikit-learn framework. The selected training data was then used to train machine 

learning (ML) models across a 5-fold cross-validation with varying hyperparameters. The remaining 196 

experimental setups (25% of the total data) were also randomly selected at a random state of 101 to serve 

as the testing data, which was then used to evaluate the predictive performance of the trained ML models. 

Table 3.5.  Descriptive statistics of the testing dataset for ML models 

 𝒃𝐰(𝒎𝒎) 
 

𝒂/𝒅 𝒅(𝒎𝒎) 𝝆𝒍% 𝒇𝒄𝒌(𝑴𝒑𝒂) 

Counts 196.00 196.0 196.00 196.0 196.00 

Mean 222.57 3.49 343.55 2.2 33.81 

Std, Dev 203.60 0.94 314.28 1.2 20.35 

COV 0.92 0.27 0.92 0.55 0.60 

Minimum 60.00 2.41 84.00 0.254 10.28 

25% 150.00 2.90 191.30 1.3 22.15 

50% 152.00 3.05 258.60 1.9 27.58 

75% 283.00 4.00 355.60 2.82 36.58 

Maximum 2016.00 8.10 2,000.0 5.27 106.9 

 

Following the machine learning procedure, the obtained shear result has to be evaluated to determine the 

model which learned the relationship between variables in the dataset accurately and predicted the target 

value (shear resistance) with minimal error. The evaluation was based on statistical metrics namely the 

coefficient of determination (R2), mean absolute error (MAE), root mean squared error (RMSE) and mean 

absolute percentage error (MAPE). 

 

 Root mean squared error (RMSE) 

RMSE = √
1

𝑛
∑ (𝑦 − 𝑥)2𝑛

𝑖=1  

 Mean absolute percentage error (MAPE) 
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MAPE = 
100

𝑛
∑ |

𝑦−𝑥

𝑦
|𝑛

𝑖=1  

 Coefficient of determination (R2) 

R2 = [
∑ (𝑥−𝑥′) (𝑦−𝑦′)𝑛

𝑖=1

√∑ (𝑥−𝑥′)2 (𝑦−𝑦′ ∑ (𝑥−𝑥′)2 (𝑦−𝑦′)𝑛
𝑖=1 )𝑛

𝑖=1

]

2

 

 Mean absolute error (MAE) 

MAE = 
1

𝑛
∑ |𝑦 − 𝑥|𝑛

𝑖=1  

where n is the number of observations, 𝑦 is the experimental shear strength,  𝑥 is the predicted shear 

strength from machine learning models,  𝑦′and 𝑥′ are the mean values of 𝑦 and 𝑥. 

The procedure adopted for building the machine learning algorithm and predicting shear strength is 

illustrated in Fig. 3.9.   
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. 
Step 1 – Selection of dependent and independent variable from 

extended database. 

Factors that affect shear strength adopted by codes of design and 

authorial models were selected from extended database and considered 

as the independent variables in building the computational shear 

models (𝑓𝑐𝑘 , 𝑎
𝑑⁄  , 𝜌𝑙 , 𝑑 , 𝑏𝑤), while the experimental shear strength 

(𝑉𝑒𝑥𝑝) is considered as the dependent variable. 

Step 2 – Data preprocessing 

 Exploratory data analysis; check for outliers, handling missing values 

 Splitting data for model training and model testing 

 Feature scaling; Z-score Standardization. 

 Conversion of categorical variable to numerical variable via one hot ending (if 

applicable) 

Step 3 – Model building 

 Hyperparameter tunning via grid search cross validation 

 Model training (fit and predict) 

 

Support Vector Machine predictive 

shear model   (𝑽𝑺𝑽𝑴) obtained from 

Sci-Kit learn framework for machine 

learning algorithms. 

 

Random Forest predictive 

shear model   (𝑽𝑹𝑭) obtained 

from Sci-Kit learn framework 

for machine learning 

algorithms. 

 

Artificial Neural Network 

predictive shear model   (𝑽𝑨𝑵𝑵) 

obtained from Tensor Flow 

framework for Neural Networks 

algorithms. 

 

Decision Tree Regressor 

predictive shear model   (𝑽𝑫𝑻) 

obtained from Sci-Kit learn 

framework for machine learning 

algorithms. 

 

Step 4 – Model Performance Evaluation and Comparison 

Root mean squared error, mean absolute error, coefficient of 

determination, mean absolute percentage error. 

 

Step 5 – contemplate the possible results 

Visualize plot, discussion and observation. 

Fig 3.9 Procedure for developing machine learning models 
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3.7.0 Uncertainty modelling of Authorial, code-based and machine learning models 

Model uncertainty is a measure that best describes the extent to which analytical and empirical models 

fail to express reality in its entirety. Statistical uncertainty modelling involves the derivation of model 

factors that gives a clearer understanding of the performance of the investigated models. The model factor 

is treated as a random variable which can be characterized by mean values, probability distribution 

functions and variances. The following criteria are considered for the performance evaluation of the 

model factor;  

1. Model factor derivation and statistical analysis for considered models 

2. Model factor sensitivity investigation with shear parameters 

3. The suitable probability distribution function of model factor. 

3.7.1 Model factor derivation  

The model factor is calculated by comparing the experimental shear resistance observed from an 

individual test point to the respective shear strength derived from predictive shear models considered in 

this study. The vector properties (𝑋) representative of the experimental shear strength is used as input 

parameters in the predictive models with further analysis resulting in a shear value. The methodology 

employed in determining the stochastic parameters of model uncertainty related to a single experimental 

observation, 𝑥 , is adapted from the work of Holicky et al. (2013) as expressed below; 

𝑀𝐹𝑥 =
𝑉𝑒𝑥𝑝,𝑥

𝑉𝑚𝑜𝑑𝑒𝑙,𝑥(𝑋)
 

𝑀𝐹𝑥  = model factor related to a single experimental observation 𝑥 

𝑉𝑒𝑥𝑝,𝑥 = diagonal tension failure for individual experimental observation 𝑥 

𝑉𝑚𝑜𝑑𝑒𝑙,𝑥 = mean shear resistance prediction obtained for the same experimental test point offered by the 

studied shear models. 

𝑋 = vector of input variables including (beam depth (𝑑), concrete strength (𝑓𝑐𝑚), percentage 

longitudinal reinforcement (𝜌𝑙), shear-span to depth ratio (𝑎/𝑑), width, (𝑏𝑤). 

An 𝑀𝐹 value greater than 1 denotes conservatism and underestimation in the prediction of an investigated 

model while a value less than 1 denotes an overestimation and unconservative shear estimates. 
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3.7.1.1 Model factor based on EC2 (𝐕𝐄𝐂𝟐) 

To determine the model uncertainty associated with the unbiased 𝐸𝐶2 shear model for beams without 

stirrups characterized by diagonal tension failure, the expressions below are applied. The estimated model 

factor is represented as 𝑀𝐹𝐸𝐶2. 

  𝑉𝐸𝐶2 = [0.18𝑘(100𝜌𝑙𝑓𝑐𝑚)1 3⁄ ]𝑏w𝑑 ≥   (0.0353 2⁄ 𝑓𝑐𝑚
1 2⁄

)𝑏w𝑑 = 𝑉𝑚𝑖𝑛 

  𝑀𝐹𝐸𝐶2,𝑥 =
𝑉𝑒𝑥𝑝,𝑥

𝑉𝐸𝐶2,𝑥
 

3.7.1.2 Model factor based on Fib Model Code 10 (II) (𝐕𝐌𝐂−𝟏𝟎(𝐈𝐈)) 

The unbiased Fib Model Code 10 (Level of approximation II) shear resistance model for beams without 

shear reinforcement is expressed as the equation below. The derived model factor is denoted as 

𝑀𝐹𝑀𝐶−10(𝐼𝐼).  

𝑉𝑀𝐶−10(𝐼𝐼) = 0.9𝑘𝑣√𝑓𝑐𝑚𝑏w𝑑 

   𝑀𝐹𝑀𝐶−10(𝐼𝐼),𝑥 =
𝑉𝑒𝑥𝑝,𝑥

𝑉𝑀𝐶−10(𝐼𝐼),𝑥
 

The parameter “𝑘𝑣” has three separate expressions which distinguish the three levels of approximation 

and result in different outputs for the same beam properties. Here, the “𝑘𝑣” adopted is that for the LoA II, 

as it modifies the MC-10 shear model to be specifically suited for beams without shear reinforcement. 

3.7.1.3 Model factor based on ACI 318-19 (𝐕𝐀𝐂𝐈) 

Only the concrete contribution from the nominal ACI 318-19 shear model is considered for the estimation 

of the shear resistance for beams without stirrups. The mean shear strength for the ACI shear model can 

be derived from the equation below. 

𝑉𝐴𝐶𝐼 =  [8𝜆𝑠𝜆(𝜌)1 3⁄ √𝑓𝑐𝑚]𝑏w𝑑 

𝑀𝐹𝐴𝐶𝐼,𝑥 =
𝑉𝑒𝑥𝑝,𝑥

𝑉𝐴𝐶𝐼,𝑥
 

3.7.1.4 Model factor based on AS3600 – 2018 (𝐕𝐀𝐒) 

The unbiased predicted shear resistance 𝑉𝐴𝑆 is obtained based on the concrete contribution in the shear 

model provided by the Australian standard for concrete structures in 2018. The resistance model 𝑉𝐴𝑆 is 

expressed in the equation below. The derived model factor is denoted as 𝑀𝐹𝐴𝑆. 

𝑉𝐴𝑆 = 𝑘𝑣𝑏𝑣𝑑𝑣√𝑓𝑐𝑚 
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          𝑀𝐹𝐴𝑆 =
𝑉𝑒𝑥𝑝,𝑥

𝑉𝐴𝑆
 

3.7.1.5 Model factor based on SANS-101000 (𝐕𝐒𝐀𝐍𝐒) 

The South African standard for concrete design suggests an empirical derivation for estimating the shear 

strength contribution of concrete. The unbiased shear strength according to the SANS10100 can be 

calculated by expressing the empirical model for shear at its mean values and without the inclusion of a 

safety factor as seen below.  

𝑉𝑆𝐴𝑁𝑆 = 0.75(
𝑓𝑐𝑚

25
)

1
3(

100𝐴𝑠

𝑏w𝑑
)

1
3(

400

𝑑
)

1
4 

The derived model factor is denoted as 𝑀𝐹𝑆𝐴𝑁𝑆 

𝑀𝐹𝑆𝐴𝑁𝑆 =
𝑉𝑒𝑥𝑝,𝑥

𝑉𝑆𝐴𝑁𝑆
 

3.7.1.6 Model factor based on the compression chord capacity model (𝐕𝐂𝐂𝐂) 

The compression chord capacity model is the only authorial model considered in this study that does 

readily express the shear strength in its mean value. The unbiased shear resistance prediction provided by 

the shear model by Cladera et al, (2016) can be calculated according to the expression below. The derived 

model factor is denoted as 𝑀𝐹𝐶𝐶𝐶 . 

𝑉𝐶𝐶𝐶 = 0.3휁
𝑥

𝑑
𝑓𝑐𝑚

2 3⁄
𝑏𝑣,𝑒𝑓𝑓𝑑  ≰ 𝑣𝑐𝑢,𝑚𝑖𝑛 = 0.25(휁

𝑥

𝑑
+

20

𝑑0
)𝑓𝑐𝑚

2 3⁄
𝑏w𝑑 

              𝑀𝐹𝐶𝐶𝐶 =
𝑉𝑒𝑥𝑝,𝑥

𝑉𝐶𝐶𝐶
 

3.7.1.7 Model factor based on the multi-action shear model (𝐕𝐌𝐀𝐒𝐌) 

As the name implies, the multi-action shear model considers the shear resistance of a beam to be the 

summation of the shear contribution from the major shear transfer mechanism. This phenomenon is 

supported by assigning explicit expressions for each shear mechanism respectively. Only the contribution 

of the compression chord and the interface shear transfer is considered for beams without web 

reinforcement. The model expresses its parameters in their mean value without the inclusion of any form 

of bias. Hence, resulting in a true estimate of shear value. The derived model factor is denoted as 

𝑀𝐹𝑀𝐴𝑆𝑀 . 

𝑉𝑀𝐴𝑆𝑀 = 휁 [(0.88 +)
𝑥

𝑑
+ 0.02]

𝑏𝑣,𝑒𝑓𝑓

𝑏
𝐾𝑝 + 167

𝑓𝑐𝑡𝑚

𝐸𝑐𝑚

𝑏w

𝑏
(1 +

2𝐺𝐹𝐸𝑐𝑚

𝑓𝑐𝑡𝑚
2 𝑑0

) 
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              𝑀𝐹𝑀𝐴𝑆𝑀 =
𝑉𝑒𝑥𝑝,𝑥

𝑉𝑀𝐴𝑆𝑀
 

3.7.1.8 Model factor based on the modified SNiP model (𝐕𝐒𝐍𝐢𝐏) 

Unbiased shear resistance prediction according to the modified SNiP model derived by Yerzhanov et al. 

(2019) can be estimated with the expression below with property values expressed in their mean values. 

𝑉𝑆𝑁𝑖𝑃 = 6√
1

𝑑
𝑓𝑡𝑏𝑤𝑑 

          𝑀𝐹𝑆𝑁𝑖𝑃 =
𝑉𝑒𝑥𝑝,𝑥

𝑉𝑆𝑁𝑖𝑃
 

3.7.1.9 Model factor based on the mechanical model by Ngoc Linh Tran (𝐕𝐍𝐋𝐓) 

The best estimate for the shear strength by the mechanical model proposed by Tran (2020) can be derived 

through the expression below. The model factor is denoted as 𝑀𝐹𝑁𝐿𝑇 . 

𝑉𝑁𝐿𝑇 =  
2

3
𝑓𝑐𝑡,𝑒𝑓 . 𝑏𝑑 [𝑘𝑥 +

1.5𝐺𝐹

𝑓𝑐𝑡,𝑒𝑓w𝑐𝑟
(1 − 𝑘𝑥)] 

𝑀𝐹𝑁𝐿𝑇 =
𝑉𝑒𝑥𝑝,𝑥

𝑉𝑁𝐿𝑇
 

3.7.2 Model factor based on machine learning models (𝐕𝐌𝐋) 

The dependent variable derived from each predictive supervised learning regression model considered in 

this study is compared to the respective shear strength from experimental observation to evaluate the 

model factor. The model factor would be evaluated with 25% of the database characterized by a 

randomized selection. The expression below follows 

𝑀𝐹𝑀𝐿 =
𝑉𝑒𝑥𝑝,𝑥

𝑉𝑀𝐿
=  [𝑀𝐹𝐴𝑁𝑁 =

𝑉𝑒𝑥𝑝,𝑥

𝑉𝐴𝑁𝑁
;  𝑀𝐹𝑆𝑉𝑀 =

𝑉𝑒𝑥𝑝,𝑥

𝑉𝑆𝑉𝑀
; 𝑀𝐹𝑅𝐹 =

𝑉𝑒𝑥𝑝,𝑥

𝑉𝑅𝐹
; 𝑀𝐹𝐷𝑇 =

𝑉𝑒𝑥𝑝,𝑥

𝑉𝐷𝑇
]  

𝑀𝐹𝑀𝐿 = Model factor based on machine learning predictive models 

𝑉𝑀𝐿= prediction of shear strength as a dependent variable from machine learning models 

𝑀𝐹𝐴𝑁𝑁 = Model factor based on artificial neural network predictive model 

𝑉𝐴𝑁𝑁= prediction of shear strength based on artificial neural network algorithm. 

𝑀𝐹𝑆𝑉𝑀 = Model factor based on the architecture of support vector machine  
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𝑉𝑆𝑉𝑀= prediction of shear strength based on support vector machine algorithm 

𝑀𝐹𝑅𝐹 = Model factor of artificial intelligent models built on the random forest architecture 

𝑉𝑅𝐹= prediction of shear strength as a dependent variable from random forest architecture. 

𝑀𝐹𝐷𝑇 = Model factor based on the decision tree  

𝑉𝐷𝑇= prediction of shear strength as a dependent variable from the decision tree model. 

 

3.7.3 Statistical moment analysis of model factor 

The model factor is regarded as a random variable with a distribution that may be statistically measured. 

Pearson coefficient of variation, mean, skewness and standard deviation are the pertinent statistical 

variables required for assessing the efficacy of a model factor. 

A sample mean is a single value that best represents an entire group of scores (Neil, 2017). The sample 

mean is the commonly used measure of central tendency that most accurately reflects the population 

mean given by the expression below. 

𝜇 =
1

𝑛
∑ 𝑋𝑗

𝑛

𝑗=1

 ;  𝜇𝑀𝐹 =
1

𝑛
∑ 𝑀𝐹𝑗

𝑛

𝑗=1

 

When the mean of a model factor equals one over a range of deterministic analyses, this signifies that the 

model generalizes well over practical varied beam sections. A mean < 1 means the investigated model 

overestimates the shear resistance, conversely a mean > 1 means that the investigated model 

underestimates the shear resistance. 

The standard deviation (𝜎) has been discussed earlier in section 3.1. Concerning the model factor, the 

standard deviation tells us how the model factors derived from individual test point distributed across a 

database scatters around the expected mean of 1. When the standard deviation is equal or close to zero, 

this implies that the majority of the model factor derived from a particular analytical model is clustered 

around the expected mean of 1. A high standard deviation signifies a poor model, uneven distribution of 

model factors and a high frequency of irregularity. 

The degree to which the distribution of statistical data deviates from the normal distribution is shown by 

its skewness. Concerning the model factor, the frequency distribution has to be skewed towards a mean of 

1. 
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휂 =
∑ (𝑥𝑖 − 𝜇)3𝑛

𝑖=1

[(𝑛 − 1) ∗ (𝑛 − 1) ∗ 𝜎3]
 

The coefficient of variation (Ω) is commonly applied to measure variability in a dataset and this statistical 

measure must be restricted to the variables that are measured on scales with absolute zero (Marcin and 

Jan, 2013). 

Here, Ω𝑀𝐹(%) =
𝜎𝑀𝐹

𝜇𝑀𝐹
 * 100 

3.7.4 Demerit point analysis 

Collins (2001) used the demerit point analysis to assess the effectiveness of the examined shear resistance 

models in comparison to an experimental shear strength. It is important to keep in mind that demerit point 

analysis may only be used to evaluate design shear models, and not mean shear models when using it as a 

performance metric for shear models. The severity of each computed model factor is indicated by the 

associated demerit point. The sum of the percentages of the obtained model factors for each respective 

test point may be used to calculate the Total Demerit Point score, which represents how well the shear 

strength model performed overall. The Total Demerit Point's value affects the model's reliability.  

 

Table 3.6 classification of the demerit points Collins (2001) 

S/N 𝑽𝒆𝒙𝒑,𝒙/𝑽(𝑿𝒌,𝜸),𝒙 Classification Demerit Point 

1 < 0.5 Highly hazardous 10 

2 0.5 – 0.65 Dangerous 5 

3 0.65 – 0.85 Marginal safety 2 

4 0.85 – 1.30 Adequate safety 0 

5 1.30 – 2.00 Conservative 1 

6 > 2.0 Highly conservative 2 

                        

The compression chord capacity model and other shear methods from the South African Standard for 

concrete designs, Fib Model code 2010 and the Eurocode would be analyzed based on the demerit point 

analysis owing to their capability of expressing shear strength in its design value (inclusion of bias). 

 

3.7.5 Sensitivity analysis 

Sensitivity analysis investigates the effect of input parameters on an objective function with an end to 

determine the relative importance of each input parameter on the objective function (Baghi and Barros, 

2017). According to Olalusi (2020), the observable sensitivity a model prediction portrays with respect to 



92 

92 

the model input parameters is a cause for concern in its reliability assessment provided there is no 

sufficient recalibration in the reliability analysis. For this research, the objective function would be the 

shear capacity of beams without shear reinforcement. Sensitivity analysis can be divided into 2 types; 

local sensitivity analysis and global sensitivity analysis. 

In the global sensitivity analysis, the response function is evaluated by varying all the dependent 

parameters simultaneously, this in turn takes into account the influence of the interaction between 

parameters on the response function (Baghi and Barros, 2017). Hence, a global sensitivity analysis is 

carried out in this research. To determine the sensitivity of investigated shear models to basic input 

parameters, correlation and regression analysis as is carried out on the derived model factors.  

Table 3.7. Pearson's correlation index (Franzblau, 1958).  

Pearson Correlation Factor r 

0 - ± 0.2 Very weak or no correlation 

0.2 - ± 0.4 Weak correlation 

0.4 - ± 0.6 Moderate correlation 

0.6 - ± 0.8 Strong correlation 

0.8 - ± 1 Very strong correlation 

 

3.7.6 Probabilistic modelling for model uncertainty 

In structural reliability theory, a suitable characterization of the model uncertainty distribution function is 

paramount towards selecting a general probabilistic model. According to the JSCC (2001), the normal and 

lognormal distributions generally dominate the type of distributions used to describe actions, material 

properties and geometrical data. Hence, the lognormal distribution and the normal distribution would be 

considered possible distributions for the model factors. 

 

3.7.6.1 Log-normal distribution 

According to Modarres et al, (1999), the lognormal distribution is widely applied in reliability 

engineering and the model is appropriate for modelling failure processes resulting from the many small 

multiplicative errors. The mathematical expression of a log-normal probability distribution function is 

given below;  

𝑓(𝑥) =  
1

√2𝜋 𝜎𝑥
exp (−

(ln(𝑥) − μ)2

2𝜎2
) , 𝑥 > 0 
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3.7.6.2 Normal distribution 

The normal distribution is a basic statistical distribution. In a normal distribution, most of the values in 

the dataset are clustered in the middle of the range or around the mean while other data taper off 

symmetrically toward either extreme. The shape of a normal distribution takes on a bell curve, depicting 

that the data are evenly distributed. The probability density function of a normal distribution is given as;  

𝑓(𝑥) =  
1

√2𝜋 𝜎
𝑒

−
1
2

(
𝑥−𝜇

𝜎
)

2

 

For a normal distribution, any value that lies beyond μ -3σ and μ +3σ is considered an outlier. 

3.7.6.3 The goodness of fit test 

To determine whether the model uncertainty distribution belongs to a proposed hypothesized theoretical 

distribution, a validity test has to be done. Hence, the goodness of fit test.  

The goodness of fit test would be done using two measures; 

1. The Chi-Squared test 

2.  Anderson darling goodness of fit test 

Additionally, visualization plots which include probability plots and histogram plots with probability 

distribution function curves would be plotted and analyzed. Results from the goodness of fit test are 

corroborated with visualization plots to confirm the estimated probability distribution. 
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3.7.7 Reliability assessment and partial calibration approach 

1. Preliminary reliability assessment using the FORM procedure to accentuate the safety 

performance regimes with respect to the parametric selection of test cases from the database. The 

procedure for the reliability assessment is seen in Fig 3.10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.10 Procedure for reliability investigation. 

 

 

 

 

Step 1;  

Selection of test cases for specific design situation for which reliability 

assessment would be carried out. 

 Step 2; 

Calculating the design shear resistance of concerned model, choosing a 

suitable GPM to establish a limit state function for FORM analysis. 

 

Step 3; 

Evaluating the resistance reliability index (𝛽𝑅) of selected test cases 

using the FORM procedure.  

 

Step 4; 

Safety validity check of the estimated resistance reliability index 

performance against the target reliability threshold according to the EN 
1990 and SANS. Results from comparative analysis should be a logical 

need for reliability calibration of inconsistent models. 
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2. Derivation of preliminary model uncertainty partial factor for shear models using deterministic 

reliability calibration.   

According to Mensah et al (2012), the most effective management of the reliability performance can be 

attained by deriving model uncertainty partial factors. Hence, the procedure for estimating the partial 

factors for model uncertainty is seen in Fig. 3.11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Fig. 3.11 Procedure for estimating the partial factor for model uncertainty according to EN 1990. 

  

Step 1; Identifying input parameter for partial factor of safety calibration for model 

uncertainty 

 Statistical moments of model factor necessary as input parameters in 

reliability investigation includes mean (𝜇𝑀𝐹) and coefficient of variation 

(Ω𝑀𝐹) derived from statistical analysis of model factor. 

 Direction cosine (𝛼𝑅) and target reliability (𝛽) 

 Determination of Direction cosine (𝛼𝑅);𝛼𝑅 is taken as 0.8 if the COV of 

model uncertainty is higher than COV of geometrical and material properties 

i.e., model uncertainty dominates the model’s safety performance, else, 𝛼𝑅 is 

taken as 0.4×0.8 = 0.32. 

 Target reliability (𝛽) of level of reliability class 2 (RC2) structure according 

to the EN 1990 is adopted. 

 

  
Step 2; computation of model uncertainty partial factor (𝜸𝑹𝒅)  - derived input 

parameters are inserted into the equation;  𝛾𝑅𝑑 = 1 [𝜇𝑀𝐹 . exp (−𝛼𝑅 . 𝛽. Ω𝑀𝐹)]⁄  

Step 3; Incorporating derived model uncertainty partial factor into resistance model 

design expression. 

𝑉𝑅𝑑
′ =  𝑉(𝑋𝑘) (𝛾𝑀 . 𝛾𝑅𝑑)⁄  

Step 4; anticipate the outcome 

Observation, discussion and performance comparison 
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CHAPTER 4 

RESULTS & DISCUSSION 

4.1    Global comparison of shear mean value prediction to experimental shear strength 

4.1.1 Global comparison using the perfect line analysis 

The plot of the experimental shear strength (VEXP) against predicted shear strength (VMODEL) of 784 beams 

without shear reinforcement and parametric variations of test properties as compiled by Reinick et al. 

(2013) is presented in Fig. 4.0 and 4.1. Considering the perfect line of equality, the graphical 

visualizations in Fig. 4.0 show a trend comparison between the experimental shear strength observation 

and the best estimates of investigated models. The comparative study is achieved by examining the 

coefficient of determination (R2), similarity and closeness between the trendline of predicted shear 

strength and the perfect line of equality. 

Fig. 4.0. Perfect line comparison plot of predicted shear value against experimental shear value. 
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4.1.1.1   Perfect line analysis 

Fig.4.0 portrays the divergence of the trend line of the predicted shear strength with respect to the perfect 

line of equality where R2 =1 

. 

1. The trendline of the predicted shear capacity VNLT, VSANS, VMASM and VCCC closely captures the 

perfect line of equality. The plot of the VMASM in Fig.4.1e shows that the predicted values of 

VMASM are more scattered compared to the VNLT, VSANS and VCCC shear predictions, hence the 

choice of linear best fit of the VMASM in Excel was based on few consistent predictions with 

experimental values. The closeness of the VMASM trendline to the perfect line is negated based on 

its R2 value = 0.8965 as compared to VNLT, VSANS & VCCC which have R2 values of 0.9375, 0.9151 

and 0.9109 respectively. 

2. The trendline of VEC, VMC10, VAS3600 & VSNiP fails to capture the perfect line of equality. The plot 

of the VSNiP in Fig.4.0 shows that the trendline diverges substantially below the line of equality 

with notable scatters around its trendline as seen in Fig.4.1g, this implies that the prediction of the 

modified Snip shear model performs poorly in comparison to the experimental value as it gives 

lower and overly conservative values of shear. Also, the R2 value of VSNiP = 0.8395 is indicative 

of its poor performance when compared to other shear models. 

3. From fig.4.0, the trendline of VEC, VMC10 & VAS3600 fails to reproduce the trendline of equality as it 

bears no comparison with the perfect line of equality. A deviation in trend above the perfect line 

of equality is observed while considering the plot of VEC, VMC10 & VAS3600 as seen in fig.4.0 with 

much scatter around its trendline as seen in Figs.4.1a, 4.1f & 4.1c. Lower values of R2 also 

indicate that the predictions of VEC = 0.8956, VMC10 = 0.8849 & VAS3600 = 0.8849 are not as 

consistent with experimental values. 

4. VACI shows similar predictions with experimental values at lower shear values, a deviation below 

the perfect line of equality is observed as the experimental shear value increases as seen in Fig. 

4.0. The performance of the ACI shear model with respect to the experimental shear value at 

lower shear values is validated with an R2 value of 0.929. 

Generally, in descending order, the predictions that closely capture the perfect line of equality in terms of 

closeness of trend, a high value of R2 and low scatter are VNLT, VACI, VSANS & VCCC.
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          VMODELS against VEXP 

 

             (a) VEC                                                                                 (b) VACI 

     

           (c) VAS3600                                                                                  (d) VCCC 

    

           (e) VMASM                                                                              (f) VMC1
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            (g) VSNiP                                                                                    (h) VNLT 

 

           (i) VSANS 

Fig 4.1. Comparison of experimental shear strength (VEXP) to predicted shear strength (VMODEL) a) VEC2, 

b) VACI, c) VAS3600, d) VCCC, e) VMASM, f) VMC10, g) VSNiP, h) VNLT, i) VSANS 

               

  4.1.1.2 Global comparison using the annotated heatmap 

Fig.4.2 presents the heatmap of the unbiased shear values from investigated models and experimental 

shear values. The heatmap uses the Pearson correlation coefficient to determine the relationship between 

variables. The colour bar on the right side assigns a correlation intensity and annotation based on the 

extent to which shear values are correlated. The heatmap shows that VNLT compares well with the 

experimental shear value with a correlation value of 0.97, while VSANS and VACI rank second in this regard 

with a value of 0.96. The heatmap shows that of all the shear predictions, VSNiP underperforms with a 

correlation value of 0.92. Second, to VSNiP are the shear predictions of VMC10 and VAS3600 with a correlation 

value of 0.94. the shear Predictions from VCCC and VMASM give intermediate predictions with a correlation 

value of 0.95. 
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Fig.4.2 Heatmap with annotation showing the coefficient of correlation between experimental shear values and predicted shear values. 
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4.1.2. Global comparison of shear mean value prediction to experimental shear strength 

with respect to percentage longitudinal reinforcement 

The plot of the normalized experimental shear strength (
𝑉𝑒𝑥𝑝

𝑏w𝑑
) of reinforced concrete beams without shear 

reinforcement and parametric variations of test properties compiled by Reinick et al. (2014) against an 

incremental percentage of longitudinal reinforcement is presented in Fig. 4.3. The graphical visualization 

below gives a detailed comparison of the experimental observation of shear strength to the mean 

predicted shear value from investigated model’s best estimates. The comparative study is achieved as 

shown in Fig. 4.3 by examining the similarity and closeness between the trendline of normalized 

experimental shear strength and the trendlines of normalized mean shear value according to  (1) EN 1992-

1-1 (
𝑉𝐸𝐶2(𝑋𝑚)

𝑏w𝑑
), (2) Fib Model Code 10 (

𝑉𝑀𝐶−10(𝐼𝐼)(𝑋𝑚)

𝑏w𝑑
), (3) ACI 318-19 (

𝑉𝐴𝐶𝐼(𝑋𝑚)

𝑏w𝑑
), (4) AS 3600-18 

(
𝑉𝐴𝑆(𝑋𝑚)

𝑏w𝑑
), (5) SANS10100 (

𝑉𝑆𝐴𝑁𝑆(𝑋𝑚)

𝑏w𝑑
), (6)CCCM (

𝑉𝐶𝐶𝐶(𝑋𝑚)

𝑏w𝑑
), (7) MASM (

𝑉𝑀𝐴𝑆𝑀(𝑋𝑚)

𝑏w𝑑
), (8) Modified 

Snip (
𝑉𝑆𝑁𝑖𝑃(𝑋𝑚)

𝑏w𝑑
), (9) Mechanical Model (

𝑉𝑁𝐿𝑇(𝑋𝑚)

𝑏w𝑑
). Given that the data being analyzed (shear 

parameters) has a nonlinear relationship, a poly fit was employed in Fig. 4.3–4.5 rather than a linear fit. A 

poly fit provides for a more flexible fit to the data as it can capture more complex nonlinear relationships 

between the variables than a linear fit. 

 

The following remarks were established from Figs. 4.3 and 4.4 

1. An increasing trend of normalized experimental observations as the percentage longitudinal 

reinforcement increases (𝑝𝑙%) was observed. 

2. The trendline of VNLT perfectly captures the trendline of the experimental shear strength with 

respect to its behaviour across the range of longitudinal reinforcement ratio. The trendline of 

VSANS bears the closest comparison with VNLT but a slight deviation above the experimental 

trendline is seen as the ratio of longitudinal reinforcement increases beyond 3% providing slightly 

higher shear capacity predictions. 

3. Across the range of longitudinal reinforcement ratio, VSNiP provides overly conservative shear 

predictions with very low shear values as the longitudinal reinforcement ratio increases. The 

trendline of the VACI ranks second to the VSNIP as it also fails to capture the experimental shear 

trend by providing conservative shear predictions across the range of longitudinal reinforcement 

ratios considered. 

4. VCCC and VMASM bear comparison with the experimental shear values between 0% – 4% of 

longitudinal reinforcement ratio with slightly lower shear values, higher shear prediction is 
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observed as the reinforcement ratio increases beyond 4% for the range of longitudinal 

reinforcement ratio considered. 

5. The trend of VMC10 and VAS3600 is similar to the experimental shear trend only at 0-3% range of 

reinforcement ratio with slightly higher values of shear at 0 -2% of longitudinal reinforcement 

ratio. At 𝑝𝑙% > 3%, VMC10 and VAS3600 provide consistent unconservative shear predictions for the 

parametric range considered. 

6. The trend of the VEC2 shows a different behaviour from every other predictive model in its 

response to increasing longitudinal reinforcement ratio. The following observations were deduced 

from the VEC2 plot;  

 At 0 – 2% longitudinal reinforcement ratio, the trendline of VEC2 bears close comparison 

with the experimental shear trendline with a correlation value of up to 98% providing 

almost the same shear predictions as the experimental shear values. 

 At 𝑝𝑙% >2, the trendline of the VEC2 starts to deviate below the experimental shear 

strength line i.e., VEC2 starts to provide conservative shear predictions when 𝑝𝑙% > 2 

with marginal increment until 𝑝𝑙% = 3. 

 when pl% is between 3 – 4%, the EC2 shear model shows no observable trend in its 

prediction of shear capacity. 

 At a higher longitudinal reinforcement ratio > 4%, a marginally continued decrease in 

the shear prediction is observed up until the failure point. While for the same parametric 

range, the experimental shear strength gives a continued increased prediction. 

 At extreme values of longitudinal reinforcement ratio, the VEC2 tends to be more 

conservative than the VSNiP in its shear prediction. 

 At 𝑝𝑙% > 4, the VEC2 tends to be more conservative than VACI with a significant 

difference in prediction at extreme values of longitudinal reinforcement ratio for the 

range considered. 
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Fig.4.3 Comparison of normalized mean shear capacity to experimental observation with respect to 𝜌𝑙
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            (a)                                                                                                  (b)                                                                                  

               (c)                                                                                                 (d)                                                                     

                                                         
.        (e)                                                                                                     (f)    
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         (g)                                                                                                        (h) 
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                     Fig 4.4. Comparison of normalized experimental shear strength (
𝑉𝑒𝑥𝑝

𝑏w𝑑
) to normalized predicted 

                     shear strength a) VEC2, b) VACI, c) VAS3600, d) VCCC, e) VMASM, f) VMC10, g) VSNiP, h) VNLT, i) VSANS 
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4.1.3. Global comparison of shear mean value prediction to experimental shear strength 

with respect to percentage longitudinal reinforcement 

The following observations were drawn from Fig. 4.5 

1. The trendline of VNLT perfectly captures the experimental shear trend for the range of concrete 

strength considered. VEC2 provides a closer comparison to the accurate predictions of VNLT with a 

marginal rate of increase in shear capacity as the concrete strength increases. 

2. The trend of VMC10, VAS3600, VCCC & VMASM compares well with the experimental shear trendline 

providing an approximate prediction when the concrete strength is < 80MPa.  VMC10, VAS3600, 

VCCC & VMASM starts to give conservative predictions with a continual decrease in shear 

predictions as the concrete strength increases beyond 80MPa for the parametric range considered.   

3. VSANS did not succeed in capturing the trend of experimental shear strength as no significant trend 

is recognized for the plot of VSANS against 𝑓𝑐𝑢(Mpa). The behaviour of the predicted shear value 

from the SANS shear model for beams without stirrups is majorly caused by the limit placed on 

the allowable concrete strength (𝑓𝑐𝑢≤ 40MPa). 

4. VSNIP fails to capture the trendline of the experimental shear strength by providing overly 

conservative shear predictions as the concrete strength increases. VACI also fails to capture the 

experimental shear strength trend, but with predicted values less conservative than the VSNIP. 

5. Aside from the VNLT and VEC2, every other considered shear model fails to completely or 

approximately capture the trend of experimental shear strength for the considered range of 

concrete strength. 

6. At extreme values of concrete strength, shear failure tends to occur as shear predictions of VMC10, 

VAS3600, VCCC, VMASM & VSNiP continually decrease towards zero upon incremental concrete 

strength. 
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(a)    VEC2                                                                                          (b) VACI 

             (c)  VAS3600                                                                                         (d)  VCCC                                                                   

 
.           (e)VMASM                                                                                                      (f) VMC10                                                                                     
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         (g) VSNiP                                                                                    (h)  VNLT 

 

           (i) VSANS 

                       Fig 4.5. Comparison of normalized experimental shear strength (
𝑉𝑒𝑥𝑝

𝑏w𝑑
) to normalized predicted 

                     shear strength with respect to concrete strength. A) VEC2, b) VACI, c) VAS3600, d) VCCC, e) VMASM, f)  

                    VMC10, g) VSNiP, h) VNLT, i) VSANS 
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4.2    Comparison of experimental shear strength to the EC2 and other shear design value 

Estimates from design approaches (design value predictions) presented in section (3.5.2) are compared to 

experimental shear observations. Trends of normalized design values (
𝑉𝑅𝑑(𝑋𝑘,𝛾)

𝑏w𝑑
) which includes 

(
𝑉𝐸𝐶2(𝑋𝑘,𝛾)

𝑏w𝑑
), (

𝑉𝑀𝐶−10(𝐼𝐼)(𝑋𝑘,𝛾)

𝑏w𝑑
) , (

𝑉𝑆𝐴𝑁𝑆(𝑋𝑘,𝛾)

𝑏w𝑑
) and (

𝑉𝐶𝐶𝐶(𝑋𝑘,𝛾)

𝑏w𝑑
)  are plotted against the experimental 

observations. Design shear values from 𝐸𝐶2, 𝑀𝐶 − 10(𝐼𝐼), 𝑆𝐴𝑁𝑆 − 101000 𝑎𝑛𝑑 𝐶𝐶𝐶𝑀 are derived 

from the same beam geometrical properties, concrete strength and longitudinal reinforcement ratio that 

corresponds with experimental observations. Shear models from ACI 318-19, AS 3600-18, MASM, 

Modified Snip and the mechanical model by Tran (2020) are not considered in this section because they 

only provide best-estimate predictions. In design value analysis, the range of values is widened due to the 

use of conservative estimates of shear obtained from the analysis. Therefore, a logarithmic scale is 

employed to fit the design value data, as it is a useful tool for analyzing data that covers a wide range of 

values. Additionally, logarithmic scales help reduce the impact of outliers in nonlinear data. 

 

 

Fig.4.6 Comparison of normalized design shear capacity to experimental observation with respect to 

𝜌𝑙 (%) 

R² = 0.4165

R² = 0.4486

R² = 0.4242

R² = 0.3873

R² = 0.3515

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

V
/b

w
d
 [

M
P

a
]

pl [%]

Vexp

Log. (Vexp)

Log. (MC10)

Log. (EC2)

Log. (CCC)

Log. (SANS)



110 

110 

 

 

The following observations were deduced from Fig.4.6 above 

1. All considered design approaches provide conservative shear predictions with varying extents of 

conservatism.  

2. At a longitudinal reinforcement ratio > 2%, VCCC and VSANS provide lesser conservative estimates 

of shear capacity compared to the VEC2 and VMC10 for the parametric range.  

3. When contrasted with other shear design procedures, the EC2 design capacity provides the most 

conservative trend line. 

4. Of the various design techniques taken into account in this study, at high levels of reinforcing 

bars percentage, the CCC design approach's trend line is the least conservative. 

4.3 Statistical analysis of model factor observations 

This section analyses the derived model factor for the investigated shear models by considering the 

statistical moments, distribution of model factors, identification of outliers, sensitivity analysis and 

appropriate probability distribution function. 

 

4.3.1 Statistical moment 

Table 4.1 Statistics of the model factors across the whole dataset 

 𝑴𝑭𝑬𝑪𝟐 𝑴𝑭𝑴𝑪𝟏𝟎 𝑴𝑭𝑨𝑪𝑰 𝑴𝑭𝑨𝑺𝟑𝟔𝟎𝟎 𝑴𝑭𝑪𝑪𝑪 𝑴𝑭𝑴𝑨𝑺𝑴 𝑴𝑭𝑺𝑵𝒊𝑷 𝑴𝑭𝑵𝑳𝑻 𝑴𝑭𝑺𝑨𝑵𝑺 

Counts 784 784 784 784 784 784 784 784 784 

Mean 1.10 1.0 1.31 1.0 1.14 1.11 1.65 1.02 1.05 

Std 0.30 0.34 0.31 0.34 0.28 0.28 0.52 0.16 0.28 

COV (%) 27 34 24 34 25 25 32 16 27 

Skewness 2.33 2.52 1.70 2.50 0.041 0.007 1.19 0.51 1.53 

Min 0.41 0.26 0.63 0.26 0.28 0.31 0.60 0.57 0.28 

Max 3.18 3.43 3.26 3.41 2.23 2.28 4.15 1.98 2.95 

25% 0.93 0.82 1.12 0.82 1.02 0.98 1.32 0.94 0.87 

50% 1.04 0.92 1.27 0.92 1.16 1.13 1.57 1.06 0.99 

75% 1.18 1.09 1.44 1.09 1.28 1.25 1.88 1.17 1.12 

Max/Min 7.76 13.19 5.17 13.12 8.00 7.35 7.00 3.47 10.54 

Kurtosis 9.13 10.35 5.72 10.28 1.99 1.63 2.54 1.27 6.96 
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From Table 4.1, the investigation shows that MFNLT has the smallest bias of 1.02 and a very low 

dispersion around the mean. The marginal scatter around the mean value is traceable to its standard 

deviation value (σMF) of 0.16, that is, the derived model uncertainty for each of the 784 tests is much 

closer to the distribution mean value showing consistency in its prediction. A coefficient of variation ΩMF 

= 16% suggests that the model factor distribution for VNLT has a low variability but is slightly higher than 

the recommended measure of variation for model uncertainty as stated by JCSS (2009) by 6%. These 

findings confirm that shear predictions of the mechanical model by Ngoc Linh Tran compare well with 

experimental shear values as it does not overpredict or underpredict shear values.  

Both MFCCC and MFMASM have similar COV values of about 25%. As both shear models were derived by 

the same authors applying the same shear mechanism philosophy, this was anticipated. Though, it should 

be noted that the CCC shear model is a simplification of MASM with the major assumption that the 

uncracked compression chord is the main resisting or predominant transfer action in the considered failure 

state, hence eliminating other shear transfer mechanisms. This simplification resulted in the CCC model 

giving a more conservative shear prediction with just a 3% margin as compared to the MASM model, 

though in both cases, the models tend to underestimate the shear predictions by 14% (μMF(CCC)=1.14) and 

11% (μMF(MASM)=1.11). Moreover, their COV values are higher than the threshold of 10% for model 

uncertainty in structural reliability models as recommended by JCSS (2001) and Holicky et al (2009). 

This is indicative of the random nature of shear mechanisms and the generally known arduousness in 

modelling their behaviour. 

From Table 4.1, MFMC10 and MFAS3600 has the same mean (μMF = 1.0), the same standard deviation 

(σMF = 0.34) & the same coefficient of variation (34%), although there are differences in other statistical 

parameters as seen in Table 4.2. A mean of 1.0 indicates that shear models from (MC10 & AS3600) have 

no form of bias in shear resistance prediction, but the standard deviation = 0.34 suggests that the 

distribution of MFMC10 and MFAS3600 has a large scatter around the respective mean value. Also, a COV% 

value of 34% denotes that there is a low consistency in the shear prediction as there is a large variation 

between the mean value and predicted values. Hence, the standard deviation (σMF) and the Coefficient of 

variation (ΩMF) negates the accuracy in the prediction of VMC10 & VAS3600. The similarity in the statistical 

moments of both models is because the Fib Model Code adopted the term “𝑘𝑣” from the Australian shear 

provision for beams without stirrups and incorporated into their level II approximation shear model which 

is only for beams without shear reinforcements as utilized in this research. Hence, a similar performance 

is expected.  

The unbiased shear resistance function VEC2 persistently underpredicts shear capacity by offering 

estimations 10% more conservative than actual shear values, as evidenced by the result that MFEC2 has a 

mean value of 1.10. Irregularity in predictions for shear model uncertainty is indicated by the scatter of 
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0.30, which suggests a significant dispersion of MFEC2 around the mean. A variability index of 27% also 

indicates this. 

Quantification of the model uncertainty associated with ACI showed that MFACI underestimates the shear 

resistance. A mean of (𝜇𝑀𝐹 = 1.31) suggests that the ACI shear model gives estimates that are 31% more 

conservative as compared to experimental shear values. The standard deviation and coefficient of 

variation also suggest a large scatter around the mean and inconsistency in shear prediction with values of 

0.31 & 24%. 

The investigation also shows that MFSANS has a small bias of 1.05 but a high dispersion around the mean. 

The large scatter around the mean value can be ascribed to its standard deviation value (σMF) of 0.28, that 

is, the distribution of MFSANS is such that they are far below or above the mean value. 

Statistical moments of MFSniP seem to be the least favourable among all the investigated shear models. 

VSniP shear strength predictions showed a poor correlation to the experimental results with its model 

factors (MFSniP) having a mean value of 𝜇𝑀𝐹 = 1.65 and standard deviation 𝜎𝑀𝐹= 0.56. 

The statistical moments show that the SniP shear model is overly conservative as it provides very low 

shear resistance estimates. A high deviation value indicates that the distribution is highly scattered around 

its mean. The measure of variation in MFSniP also questions the integrity of this model in its consistency in 

shear capacity prediction (Ω𝑀𝐹 = 32%). 

Table 4.2 Statistics of mean value model factors for flanged beams 

 𝑴𝑭𝑬𝑪𝟐 𝑴𝑭𝑴𝑪𝟏𝟎 𝑴𝑭𝑨𝑪𝑰 𝑴𝑭𝑨𝑺𝟑𝟔𝟎𝟎 𝑴𝑭𝑪𝑪𝑪 𝑴𝑭𝑴𝑨𝑺𝑴 𝑴𝑭𝑺𝑵𝒊𝑷 𝑴𝑭𝑵𝑳𝑻 𝑴𝑭𝑺𝑨𝑵𝑺 

Counts 64 64 64 64 64 64 64 64 64 

Mean 1.45 1.28 1.56 1.28 0.57 0.64 1.96 1.00 0.71 

Std 0.57 0.61 0.58 0.61 0.26 0.30 0.69 0.20 0.33 

COV (%) 39 48 37 48 46 47 35 20 46 

Skewness 1.34 1.36 1.16 1.36 1.11 1.15 1.30 0.42 1.17 

Min 0.88 0.66 0.92 0.66 0.28 0.31 1.16 0.64 0.28 

Max 3.18 3.18 3.26 3.18 1.22 1.42 4.15 1.47 1.60 

25% 1.04 0.88 1.17 0.88 0.41 0.44 1.48 0.85 0.49 

50% 1.17 1.02 1.33 1.02 0.48 0.53 1.64 0.98 0.58 

75% 1.67 1.48 1.76 1.48 0.72 0.77 2.36 1.11 0.95 

Max/Min 3.61 4.82 3.54 4.82 4.36 4.58 3.58 2.30 5.71 

Kurtosis 0.68 0.78 0.31 0.78 0.02 0.07 1.19 0.40 0.33 
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Information from Table 4.2 shows that EC2, MC10, ACI, AS3600 and Modified SNiP shear resistance 

models for beams without shear reinforcement underestimate the shear resistance for flanged beams. The 

test was conducted on 64 flanged beam specimens with varied material properties. 

It was found that VSNIP, VACI and VEC2 are extremely conservative when predicting the shear capacity of a 

reinforced concrete flanged beam without shear reinforcement with a mean value of model factor (𝜇𝑀𝐹) = 

1.96, 1.56 and 1.45. A corresponding high deviation from their respective mean value and large variation 

in prediction was also discovered. Shear predictions from VMC10 and VAS3600 tend to be less conservative 

as compared to VSNIP, VACI and VEC2. The mean of the model factors was found to be 1.28, denoting a 28% 

conservatism. It was also found that MFMC10 and MFAS3600 are widely scattered around their mean value 

(σ𝑀𝐹 = 0.61) with a large extent of variation (Ω𝑀𝐹 = 48%). 

MFCCC, MFMASM & MFSANS were found to have a mean of (𝜇𝑀𝐹) = 0.57, 0.64 &0.71. this implies that 

these models generally overpredict the shear capacity for flanged beams without shear reinforcement. A 

high COV and high scatter were also identified. See Table4.2. 

Statistical moments of MFNLT for flanged beams seem to be consistent with that of the full database. A 

2% drop in the mean value and a 25% increase in the measure of variability were recorded, this brings the 

statistical properties to (𝜇𝑀𝐹 = 1, Ω𝑀𝐹  = 20%). 

Table 4.3 Statistics of mean value model factors for rectangular beams 

  𝑴𝑭𝑬𝑪𝟐 𝑴𝑭𝑴𝑪𝟏𝟎 𝑴𝑭𝑨𝑪𝑰 𝑴𝑭𝑨𝑺𝟑𝟔𝟎𝟎 𝑴𝑭𝑪𝑪𝑪 𝑴𝑭𝑴𝑨𝑺𝑴 𝑴𝑭𝑺𝑵𝒊𝑷 𝑴𝑭𝑵𝑳𝑻 𝑴𝑭𝑺𝑨𝑵𝑺 

Counts  720 720 720 720 720 720 720 720 720 

Mean  1.07 0.98 1.29 0.98 1.19 1.15 1.62 1.05 1.07 

Std  0.25 0.30 0.26 0.29 0.22 0.24 0.50 0.17 0.27 

COV (%)  23 31 20 30 18 21 31 17 26 

Skewnes

s 

 1.53 2.33 0.96 2.30 0.77 0.79 1.04 0.56 2.48 

Min  0.41 0.26 0.63 0.26 0.60 0.54 0.60 0.57 0.28 

Max  2.65 3.43 2.63 3.41 2.23 2.28 3.97 1.98 2.95 

25%  0.92 0.81 1.12 0.81 1.05 1.02 1.31 0.95 0.90 

50%  1.03 0.92 1.27 0.92 1.18 1.15 1.55 1.07 1.00 

75%  1.16 1.08 1.42 1.08 1.30 1.26 1.85 1.17 1.13 

Max/Min  6.46 13.19 4.17 13.12 3.72 4.22 6.62 3.47 10.54 

Kurtosis  5.55 11.96 2.40 11.75 2.45 2.33 2.12 1.52 12.09 
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From Table 4.3, MFMC10 and MFAS3600 both has a mean (𝜇𝑀𝐹) = 0.98 (close to 1 as seen in table 4.1). This 

is indicative of a slight overprediction of the VMFC10 and VAS3600 by 2%. A large scatter around the mean 

shows how uncertain the predictions of these models can be. 

MFSniP has a mean value of 1.62 and a standard deviation of 0.50. predictions from the SNiP shear models 

continue to give overly conservative values across all databases (full database, flanged sections and 

rectangular sections). A high bias as seen in the case of MFSniP suggests that VSniP has a very poor 

performance in estimating shear capacity compared to other shear models. Its high coefficient of variation 

and the standard deviation is also indicative of its uncertainty measure in predicting shear resistance. 

The mean (𝜇𝑀𝐹) of MFNLT increased by 3% as compared with the full database mean value. A mean value 

of 1.05 is just 5% conservative. Predictions from the VNLT model are also characterized by a low scatter of 

model factors around the mean value and low variability in the model factors distribution. The statistical 

moments of MFNLT indicate that the mechanical model best predicts the shear capacity and represents 

reality (experimental observations of shear) well as it is characterized by a low bias, low scatter and low 

variation in the distribution of model factor. 

Table 4.4 Statistical design value model factors for the whole database 

 𝑴𝑭𝑬𝑪𝟐 𝑴𝑭𝑴𝑪𝟏𝟎 𝑴𝑭𝑪𝑪𝑪 𝑴𝑭𝑺𝑨𝑵𝑺 

Counts 784 784 784 784 

Mean 1.72 1.60 1.63 1.48 

Std 0.48 0.54 0.42 0.33 

COV (%) 28 34 26 22 

Skewness 2.34 2.38 -0.26 0.55 

Min 0.65 0.43 0.41 0.45 

Max 4.99 5.15 3.18 3.47 

25% 1.46 1.31 1.42 1.32 

50% 1.63 1.49 1.65 1.48 

75% 1.86 1.75 1.86 1.65 

Max/Min 7.68 11.98 7.76 7.71 

Kurtosis 9.14 9.43 1.28 3.19 

 

From table 4.4, it can be seen that all shear expression for the considered design resistance models 

generally underpredicts the shear strength. This is due to the inclusion of safety factors and the use of 

characteristic values of material properties rather than mean values. 

Of all considered models, the statistics of 𝑀𝐹𝐸𝐶2 shows that its degree of conservatism exceeds every 

other model with a mean value 𝜇𝑀𝐹  = 1.72. The standard deviation 𝜎𝑀𝐹 = 0.48 is also worthy of attention 
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as it signifies a large scatter around the mean of 1.72. Lastly, the uncertainty associated with shear 

predictions following the 𝑉𝐸𝐶2 is validated by a high measure of variation Ω𝑀𝐹 = 0.28. 

Though 48% conservative, the statistics of 𝑀𝐹𝑆𝐴𝑁𝑆 seems to be more favourable among the considered 

shear methods. The mean value of model factor realizations associated with the 𝑉𝑆𝐴𝑁𝑆 the shear method 

was seen to be the smallest of the derived 𝜇𝑀𝐹. In terms of model factor distribution, 𝑀𝐹𝑆𝐴𝑁𝑆 realization 

seems to be more clustered around the mean as compared to the realizations from the alternative shear 

methods and also less uncertain as seen in table 4.4 owning to a value of 𝜎𝑀𝐹  = 0.33 and Ω𝑀𝐹 = 0.22 

which is the smallest across the database. 

The uncertainty surrounding the shear prediction following the 𝑉𝑀𝐶10 is significant as it has the highest 

scatter around the mean, 𝜎𝑀𝐹 = 0.54, which signifies inconsistency in shear prediction. Despite having a 

mean value of 1.60, implying a conservatism less than 𝑀𝐹𝐸𝐶2 and 𝑀𝐹𝐶𝐶𝐶 , the large scatter and notable 

coefficient of variation Ω𝑀𝐹 = 0.34 suggest an uncertainty concern. 

4.3.2 Histogram of model factors 

The histogram reveals the following characteristics, which may not be explicitly visible initially: 

 An indication of the skewness or symmetricity of the model factor distribution.   

 How spread out the observed 𝑀𝐹 realization are 

 The extent to which the observed data is scattered about the measure of central tendency  

 Modality of 𝑀𝐹 realizations. 

 Erroneous data that does not belong with other data of interest (outliers) 

 Point of increasing conservative bias. 

After a close examination of the histogram’s plots (representing nine datasets of model factor 

observations), the following observations were made from Fig.4.7. 

 Near the mean MF, most of the data points are consolidated. 

 Excluding 𝑀𝐹𝐶𝐶𝐶  & 𝑀𝐹𝑀𝐴𝑆𝑀 , the majority of the observations are not symmetric about the peak 

frequency, suggesting that the sampling distribution is not normal for certain points. As skewness 

is often associated with a log-normal distribution, this suggests that a low-reliability prediction of 

shear strength is expected as a consequence of the distribution of the model factor realization. 

 The histogram's spans show how much variance there is.
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         (a) 𝑴𝑭𝑬𝑪𝟐                                                                                  (b)  𝑴𝑭𝑨𝑪𝑰                                                      

    

            (c) 𝑴𝑭𝑨𝑺𝟑𝟔𝟎𝟎                                                                          (d) 𝑴𝑭𝑪𝑪𝑪                                                                                               
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            (e)  𝑴𝑭𝑴𝑪−𝟏𝟎                                                                              (f) 𝑴𝑭𝑴𝑨𝑺𝑴   

 

            (g) 𝑴𝑭𝑺𝑵𝒊𝑷                                                                                  (h) 𝑴𝑭𝑵𝑳𝑻 
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           (𝒊) 𝑴𝑭𝑺𝑨𝑵𝑺                                                                                  

Fig. 4.7 Histograms of the model factors 

          

4.3.3     Identification of outliers 

Outliers also reveal the extent of variation and abnormality in a distribution. Fig 4.8 presents the boxplot, 

a statistical tool, that shows the summary of the distribution of 𝑀𝐹 realizations in terms of the minimum, 

maximum, 25th percentile, median or 50th percentile, 75th percentile and the outliers present in a data 

distribution. 

From Fig 4.8, the plot shows that 𝑀𝐹𝑁𝐿𝑇  has the least outliers in comparison to other model factor 

realizations. For all 784 data points, only 6 points were considered outliers with 5 points positioned above 

𝜇 + 3𝜎 and just one point below 𝜇 − 3𝜎. 0.77% of 𝑀𝐹𝑁𝐿𝑇  is considered an outlier which is quite 

insignificant. Hence, the unsubstantial quantity of outliers discovered infers there is no form of variation 

or an inconsequential variability in 𝑀𝐹𝑁𝐿𝑇 .  

From Fig 4.8, the plot shows that 𝑀𝐹𝐶𝐶𝐶 , 𝑀𝐹𝑀𝐴𝑆𝑀 , 𝑀𝐹𝑆𝐴𝑁𝑆, 𝑀𝐹𝐴𝐶𝐼, 𝑀𝐹𝑆𝑁𝑖𝑃 has more outliers in 

comparison to the 𝑀𝐹𝑁𝐿𝑇  realization with some outliers ranging between 1.5% - 2% of the entire data 

points. This signifies an increased variability in model factors distribution as compared to 𝑀𝐹𝑁𝐿𝑇 . 

From Fig 4.8, the plot infers 𝑀𝐹𝐴𝑆3600, 𝑀𝐹𝑀𝐶10, 𝑀𝐹𝐸𝐶2 has the most extent of variability as more 

numbers of outliers were found in comparison to the 𝑀𝐹 realizations of other shear models with some 

outliers ranging between 2.5% - 3% of the entire data points.   
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Fig 4.8 Box-plot of the model factors 
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4.3.4 Sensitivity analysis of model factors 

In this section, separate parametric scatter plots for 𝑀𝐹𝐸𝐶2, 𝑀𝐹𝐴𝐶𝐼, 𝑀𝐹𝐴𝑆3600, 𝑀𝐹𝐶𝐶𝐶 , 𝑀𝐹𝑀𝐶10−𝐼𝐼, 

𝑀𝐹𝑀𝐴𝑆𝑀 , 𝑀𝐹𝑆𝑁𝑖𝑃, 𝑀𝐹𝑁𝐿𝑇  and 𝑀𝐹𝑆𝐴𝑁𝑆 against the major influencing shear strength parameters are 

presented in Figs. 4.9 – 4.17. The lines that better describe the trend of different 𝑀𝐹 realizations with 

shear parameters are shown on the plots. Corresponding trend equations and coefficient of determination 

(R2) values are also indicated to give a robust examination. A stronger coefficient of determination R2 

signifies a strong trend between model factor realization and shear parameters which is exactly what to 

look out for. Lesser values of R2 Pose no threat as there is no cause for concern. A significant trend 

implies a strong R2 value which also implies an inadequate consideration of the shear parameter in shear 

model formulation. 

Table 4.5 Pearson correlation coefficient between model factors and shear parameters 

Pearson Correlation coefficient r 

 𝒃w(𝒎𝒎) 𝒂/𝒅 𝒅(𝒎𝒎) 𝝆𝒍(%) 𝒇𝒄𝒌[𝑴𝑷𝒂] 

MFEC2 -0.22 -0.22 -0.34 0.5 0.018 

MFACI -0.13 -0.33 -0.12 0.12 -0.25 

MFMC-10 -0.18 -0.28 -0.26 0.35 0.068 

MFAS3600 -0.18 -0.28 -0.26 0.35 0.061 

MFCCC 0.039 -0.24 0.14 -0.22 -0.13 

MFMASM -0.032 -0.17 0.033 -0.061 -0.21 

𝑴𝑭𝑺𝑵𝒊𝑷 -0.13 -0.12 0.077 0.42 -0.32 

MFNLT 0.086 0.083 0.12 -0.18 -0.0038 

MFSANS 0.027 -0.40 -0.018 0.075 0.48 

 

4.3.5    Sensitivity analysis discussion of model factors 

4.3.5.1   𝐌𝐅𝐄𝐂𝟐 trend analysis 

Correlation with d 

From Fig. 4.9(a), 𝑀𝐹𝐸𝐶2 shows a weak negative trend with the beam effective depth (d) with a Pearson 

correlation coefficient of -0.34 as seen in Table 4.4. The plot shows that the mean shear function of EC2 

provides conservative estimates of shear capacity at d < 500mm. a decreasing conservative bias for the 

range of beam depth considered is seen as beam depth increases beyond 500mm. 𝑉𝐸𝐶2 generally 

overpredicts the shear capacity of beams (d > 500mm) without stirrups. Variation in the performance of  

𝑉𝐸𝐶2 across the range of depth is due to the improper calibration of this concrete term.  
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Correlation with bw, a/d & fck 

𝑀𝐹𝐸𝐶2 displays a weak negative trend with 𝑎/𝑑 and 𝑏w with a correlation value of -0.22 according to the 

Pearson correlation matrix as seen in Table 4.4. shear predictions of the EC2 shear model tend to become 

unconservative as the beam width and shear span – effective depth ratio increases beyond 500mm and 5 

respectively. While the concrete strength (𝑓𝑐𝑘), no significant trend is identified for the relationship with 

𝑀𝐹𝐸𝐶2 as a correlation value of 0.018 was recorded. This is indicative of the meticulousness in calibrating 

the concrete strength term during the formulation of EC2 shear model expression. 

Correlation with pl 

Figure 4.9 e displays a suggestive trend between 𝑀𝐹𝐸𝐶2 and 𝑝𝑙, with a positive correlation value of 0.50. 

as seen in Table 4.6. The graph demonstrates that as 𝑝𝑙 increases, VEC2 dramatically underestimates 

capacity at high 𝑝𝑙 ratios. Marginally unconservative estimates of  𝑉𝐸𝐶2 is achieved at a minimal amount 

of longitudinal reinforcement ratio ( 𝑝𝑙  < 2 %). The conservatism of the EC2 shear model at low 𝑝𝑙 (𝑝𝑙 <

2%) is caused by the limitation placed on the allowable percentage of longitudinal reinforcement. This 

suggests that 𝑝𝑙 is VEC2's most important parameter. 

4.3.5.2   𝐌𝐅𝐀𝐂𝐈 trend analysis 

Correlation with bw, d & pl 

The plot of 𝑀𝐹𝐴𝐶𝐼 shows an insignificant trend with 𝑏w, 𝑑 & 𝑝𝑙 with a correlation coefficient of –0.13, -

0.12 & 0.12 respectively. The absence of any observable trend suggests that these shear parameters were 

perfectly calibrated in the ACI shear provision for beams without stirrups. Moreover, it is worth 

mentioning that  𝑉𝐴𝐶𝐼 consistently underestimates the shear capacity across the range of considered 

parameters with a very weak trend observation which is quite negligible. The introduction of a properly 

calibrated size effect modification term (𝜆𝑠) in the ACI 318-19 shear provision is the reason the model 

factor is insensitive to beam depth (d) as compared to the shear provision in ACI 318 -14. 

Correlation with a/d & fck 

𝑀𝐹𝐴𝐶𝐼 displays a fairly significant negative correlation with  𝑎/𝑑 & 𝑓𝑐𝑘 with a weaker correlation seen in 

the plot of  𝑀𝐹𝐴𝐶𝐼 against 𝑎/𝑑. A decreasing conservative bias is observed for the plot of  𝑀𝐹𝐴𝐶𝐼 against 

𝑎/𝑑 with a correlation value of -0.33. The sensitivity of 𝑀𝐹𝐴𝐶𝐼 to the 𝑎/𝑑 ratio is a result of its neglection 

in the ACI shear provision.  Similarly, a weak negative correlation is seen between 𝑀𝐹𝐴𝐶𝐼 and 𝑓𝑐𝑘. A 

decreasing conservative bias is seen as the concrete strength increases (fig 4.10e) with a correlation value 

of -0.25. 
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4.3.5.3    𝐌𝐅𝐀𝐒𝟑𝟔𝟎𝟎  & 𝐌𝐅𝐌𝐂𝟏𝟎 trend analysis 

The model factor distribution of 𝑉𝐴𝑆3600 and 𝑉𝑀𝐶10 displays the same correlation coefficient and response 

to increasing shear parameters. 

Correlation with bw& fck 

From Figures 4.11, 4.13 and Table 4.4, the trends in 𝑀𝐹𝐴𝑆3600 & 𝑀𝐹𝑀𝐶10 with the concrete strength 

(𝑓𝑐k) and the beam width (𝑏w) shows no significant correlation. Both model factors have a correlation 

coefficient of -0.18 with the beam width, while a value of 0.061 and 0.068 was seen as the correlation 

coefficient of 𝑀𝐹𝐴𝑆3600 & 𝑀𝐹𝑀𝐶10 against 𝑓𝑐𝑘. 

Correlation with a/d, d & pl 

𝑀𝐹𝐴𝑆3600 & 𝑀𝐹𝑀𝐶10 displays a fairly significant negative trend with a/d, 𝑑 & 𝑝𝑙 with a correlation 

coefficient of -0.28, -0.26 and -0.35 respectively. From Figures 4.11c & 4.13c, it can be observed that the 

model factors were initially unconservative at 𝜌𝑙<2% and started to become conservative at 𝜌𝑙 > 2%. In 

like manner, 𝑉𝐴𝑆3600 & 𝑉𝑀𝐶10 begins to overestimate the shear capacity at 𝑑 > 500mm and 𝑎/𝑑 >3. 

4.3.5.4   𝐌𝐅𝐂𝐂𝐂 trend analysis 

𝑀𝐹𝐶𝐶𝐶  only showed weak correlations with a/d (−0.24) & 𝑝𝑙 (−0.22), while a very weak or nonexistent 

relationship was seen as indicated by the Pearson correlation matrix in the plot of 𝑀𝐹𝐶𝐶𝐶  against 

𝑏w, 𝑑 & 𝑓𝑐𝑘 with correlation coefficient values of 0.039, 0.14 and -0.13 respectively. 

A decreasing conservative bias is seen as the shear span to effective depth ratio and longitudinal 

reinforcement ratio increase. At 𝜌𝑙 < 4 – 4.5%, the model factor distribution is characterized by 

conservative estimates. While at 𝜌𝑙 > 4 – 4.5%, 𝑀𝐹𝐶𝐶𝐶  becomes less conservative in cases when there are 

fewer data points. 

4.3.5.5   𝐌𝐅𝐌𝐀𝐒𝐌 trend analysis 

Correlation with d, bw, pl, a/d, fck  

𝑀𝐹𝑀𝐴𝑆𝑀  realizations only displayed a weak relationship with the concrete strength 𝑓𝑐𝑘 owing to a 

correlation coefficient of -0.21. a minimal decrease in conservative bias is seen as the concrete strength 

increases with 𝑀𝐹𝑀𝐴𝑆𝑀  being unconservative at 𝑓𝑐𝑘> 80Mpa. 

𝑀𝐹𝑀𝐴𝑆𝑀  showed no observable trend with other parameters influencing shear capacity. Insignificant 

correlation coefficient values as seen in table 3.8 were assigned to these parameters (𝑑 = 0.033, 𝑏w, =

 −0.032, 𝑝𝑙 =  −0.061, 𝑎/𝑑 =  −0.17  ). 
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4.3.5.6   𝐌𝐅𝐒𝐍𝐢𝐏 trend analysis 

Correlation with d, bw, a/d   

Fig 4.15 (a), (b) and (d) showed that 𝑀𝐹𝑆𝑁𝑖𝑃 did not display any major trend with the effective depth 𝑑, 

beam width 𝑏w and the shear span to effective depth ratio 𝑎/𝑑 with insignificant correlation coefficient 

values of 0.077, -0.13 and -0.12 respectively as seen in table 3.8. The insensitivity of the 𝑀𝐹𝑆𝑁𝑖𝑃 to the 

effective depth was not unexpected as the term (𝑑) was adequately recalibrated with the same extended 

database of 784 beams without shear reinforcement compiled by Reinick et al (2014). 

Correlation with pl, fck 

The plot of 𝑀𝐹𝑆𝑁𝑖𝑃 displayed a significant positive trend (r = 0.42) with the longitudinal reinforcement 

ratio and a negative trend (r = -0.32) with the concrete strength. In Fig 4.15 c, an increasing conservative 

bias is seen as the longitudinal reinforcement ratio increases with a majority (More than 85%) of the data 

point being conservative, this implies that the SNiP method does not adequately account for the 

longitudinal reinforcement ratio in shear resistance. Fig 4.15e suggests a decreasing trend between 

𝑀𝐹𝑆𝑁𝑖𝑃 and increasing concrete strength 𝑓𝑐𝑘 with a correlation coefficient of -0.32. 

4.3.5.7   𝐌𝐅𝐍𝐋𝐓 trend analysis 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 with 𝑑, 𝑏w, 𝑝𝑙, 𝑎/𝑑 , 𝑓𝑐𝑘 

The plots of 𝑀𝐹𝑁𝐿𝑇  against all the shear parameters showed no trend that is worthy of attention as no 

serious relationship can be identified between 𝑀𝐹𝑁𝐿𝑇  realizations and the considered influencing shear 

factors. From table 4.4, the correlation coefficients were found to be negligible. 

(𝑏w = 0.086, d = 0.12, 𝑝𝑙 = −0.18 ,
𝑎

𝑑
= 0.083, 𝑓𝑐𝑘 =  −0.0038). 

4.3.5.8   𝐌𝐅𝐒𝐀𝐍𝐒 trend analysis 

𝑀𝐹𝑆𝐴𝑁𝑆 displayed no form of interrelationship with the beam width, effective depth and longitudinal 

reinforcement ratio with an inconsequential correlation coefficient of 0.027, -0.018 and 0.075 

respectively. 𝑀𝐹𝑆𝐴𝑁𝑆 shows a strong trend with 𝑎/𝑑 (𝑟 =  −0.40) & 𝑓𝑐𝑘 (𝑟 = 0.48), an increasing 

conservative bias is seen in the plot of 𝑀𝐹𝑆𝐴𝑁𝑆 against incremental values of 𝑓𝑐𝑘. At 𝑓𝑐𝑘 < 40Mpa, a 

greater part of the 𝑀𝐹𝑆𝐴𝑁𝑆 realizations tend to be unconservative. This does not hold as the concrete 

strength crosses beyond 40Mpa, because the majority of the data point becomes conservative as seen in 

fig 4.17c. similarly, in the plot of  𝑀𝐹𝑆𝐴𝑁𝑆 realization against the shear span – effective depth ratio, a 

decreasing conservative bias is observed as a majority of datapoint starts to provide unconservative 

estimates at 𝑎/𝑑 > 4. The sensitivity of 𝑀𝐹𝑆𝐴𝑁𝑆 to the concrete strength is due to the limitation placed on 

the permissible concrete strength (𝑓𝑐𝑘 ≤ 40𝑀𝑃𝑎), while inadequate calibration or neglection of the 
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“𝑎/𝑑” term in the SANS10100 shear provision may be the cause of 𝑀𝐹𝑆𝐴𝑁𝑆’s sensitivity to the shear 

span to effective depth ratio. 

 

           (i) 𝑴𝑭𝑬𝑪𝟐 𝒗𝒆𝒓𝒔𝒖𝒔 𝒅(𝒎𝒎)                                                      (ii)𝑴𝑭𝑬𝑪𝟐 𝒗𝒆𝒓𝒔𝒖𝒔 𝒃𝐰(𝒎𝒎)                                                                                                                                      

 

      (iii) 𝑴𝑭𝑬𝑪𝟐 𝒗𝒆𝒓𝒔𝒖𝒔 𝝆𝒍(%)                                                               (iv) 𝑴𝑭𝑬𝑪𝟐 𝒗𝒆𝒓𝒔𝒖𝒔 𝒂/𝒅                                                                                                               

  

              (𝑽) 𝑴𝑭𝑬𝑪𝟐 𝒗𝒆𝒓𝒔𝒖𝒔 𝒇𝒄𝒌(𝑴𝑷𝒂)         

Fig 4.9. Sensitivity plot of 𝑴𝑭𝑬𝑪𝟐 against (i) 𝑑 (ii) 𝑏𝑤 (iii) 𝜌𝑙 (iv) a/d (v) 𝑓𝑐k 
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(i) 𝑴𝑭𝑨𝑪𝑰 𝒗𝒆𝒓𝒔𝒖𝒔 𝒅(𝒎𝒎)                                                     (ii) 𝑴𝑭𝑨𝑪𝑰 𝒗𝒆𝒓𝒔𝒖𝒔 𝒃w(𝒎𝒎)                                                                                                    

 

             (iii) 𝑴𝑭𝑨𝑪𝑰 𝒗𝒆𝒓𝒔𝒖𝒔 𝝆𝒍(%)                                                              (iv) 𝑴𝑭𝑨𝑪𝑰 𝒗𝒆𝒓𝒔𝒖𝒔 𝒂/𝒅                                            

 

(v) 𝑴𝑭𝑨𝑪𝑰 𝒗𝒆𝒓𝒔𝒖𝒔 𝒇𝒄𝒌 (𝑴𝑷𝒂)     

Fig. 4.10. Sensitivity plot of 𝑴𝑭𝑨𝑪𝑰 against (i) 𝑑 (ii) 𝑏𝑤 (iii) 𝜌𝑙 (iv) a/d (v) 𝑓𝑐k  
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(i) 𝑴𝑭𝑨𝑺𝟑𝟔𝟎𝟎 𝒗𝒆𝒓𝒔𝒖𝒔 𝒅(𝒎𝒎)                                                   (ii) 𝑴𝑭𝑨𝑺𝟑𝟔𝟎𝟎 𝒗𝒆𝒓𝒔𝒖𝒔 𝒃w(𝒎𝒎)                                                                            

 

              (iii) 𝑴𝑭𝑨𝑺𝟑𝟔𝟎𝟎 𝒗𝒆𝒓𝒔𝒖𝒔 𝝆𝒍(%)                                                   (iv) 𝑴𝑭𝑨𝑺𝟑𝟔𝟎𝟎 𝒗𝒆𝒓𝒔𝒖𝒔 𝒂/𝒅                                                                                                                           

 

        (v) 𝑴𝑭𝑨𝑺𝟑𝟔𝟎𝟎 𝒗𝒆𝒓𝒔𝒖𝒔 𝒇𝒄𝒌(𝑴𝑷𝒂)      

Fig. 4.11. Sensitivity plot of 𝑴𝑭𝑨𝑺𝟑𝟔𝟎𝟎 against (i) 𝑑 (ii) 𝑏𝑤 (iii) 𝜌𝑙 (iv) a/d (v) 𝑓𝑐k  
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            (i) 𝑴𝑭𝑪𝑪𝑪 𝒗𝒆𝒓𝒔𝒖𝒔 𝒅(𝒎𝒎)                                                       (ii) 𝑴𝑭𝑪𝑪𝑪 𝒗𝒆𝒓𝒔𝒖𝒔 𝒃w(𝒎𝒎)                                                                                 

              

           (iii) 𝑴𝑭𝑪𝑪𝑪 𝒗𝒆𝒓𝒔𝒖𝒔 𝝆𝒍(%)                                                             (iv) 𝑴𝑭𝑪𝑪𝑪 𝒗𝒆𝒓𝒔𝒖𝒔 𝒂/𝒅                                                                                   

 

      (v) 𝑴𝑭𝑪𝑪𝑪 𝒗𝒆𝒓𝒔𝒖𝒔 𝒇𝒄𝒌(𝑴𝑷𝒂)      

Fig. 4.12. Sensitivity plot of 𝑴𝑭𝑪𝑪𝑪 against (i) 𝑑 (ii) 𝑏𝑤 (iii) 𝜌𝑙 (iv) a/d (v) 𝑓𝑐k 
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            (i)  𝑴𝑭𝑴𝑪𝟏𝟎 𝒗𝒆𝒓𝒔𝒖𝒔 𝒅(𝒎𝒎)                                                         (ii)  𝑴𝑭𝑴𝑪𝟏𝟎 𝒗𝒆𝒓𝒔𝒖𝒔 𝒃w(𝒎𝒎)                                                                            

 

            (iii) 𝑴𝑭𝑴𝑪𝟏𝟎 𝒗𝒆𝒓𝒔𝒖𝒔 𝝆𝒍(%)                                                            (iv) 𝑴𝑭𝑴𝑪𝟏𝟎  𝒗𝒆𝒓𝒔𝒖𝒔 𝒂/𝒅                                                                                  

      

            (v) 𝑴𝑭𝑴𝑪𝟏𝟎  𝒗𝒆𝒓𝒔𝒖𝒔 𝒇𝒄𝒌(𝑴𝑷𝒂)                                                                                                                                                                  

  Fig. 4.13. Sensitivity plot of 𝑴𝑭𝑴𝑪𝟏𝟎 against (i) 𝑑 (ii) 𝑏𝑤 (iii) 𝜌𝑙 (iv) a/d (v) 𝑓𝑐k  
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            (i) 𝑴𝑭𝑴𝑨𝑺𝑴 𝒗𝒆𝒓𝒔𝒖𝒔 𝒅(𝒎𝒎)                                                    (ii)  𝑴𝑭𝑴𝑨𝑺𝑴 𝒗𝒆𝒓𝒔𝒖𝒔 𝒃w(𝒎𝒎)                                                                                     

 

             (iii) 𝑴𝑭𝑴𝑨𝑺𝑴 𝒗𝒆𝒓𝒔𝒖𝒔 𝝆𝒍(%)                                                         (iv) 𝑴𝑭𝑴𝑨𝑺𝑴 𝒗𝒆𝒓𝒔𝒖𝒔 𝒂/𝒅                                                                                   

   

     (v)  𝑴𝑭𝑴𝑨𝑺𝑴 𝒗𝒆𝒓𝒔𝒖𝒔 𝒇𝒄𝒌(𝑴𝑷𝒂) 

Fig. 4.14. Sensitivity plot of 𝑴𝑭𝑴𝑨𝑺𝑴 against (i) 𝑑 (ii) 𝑏𝑤 (iii) 𝜌𝑙 (iv) a/d (v) 𝑓𝑐k  
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              (i) 𝑴𝑭𝑺𝑵𝒊𝑷  𝒗𝒆𝒓𝒔𝒖𝒔 𝒅(𝒎𝒎)                                                 (ii) 𝑴𝑭𝑺𝑵𝒊𝑷  𝒗𝒆𝒓𝒔𝒖𝒔 𝒃w(𝒎𝒎)                                                                                             

 

            (iii) 𝑴𝑭𝑺𝑵𝒊𝑷  𝒗𝒆𝒓𝒔𝒖𝒔 𝝆𝒍(%)                                                        (iv) 𝑴𝑭𝑺𝑵𝒊𝑷  𝒗𝒆𝒓𝒔𝒖𝒔 𝒂/𝒅                                                                                        

 

 

            (v) 𝑴𝑭𝑺𝑵𝒊𝑷  𝒗𝒆𝒓𝒔𝒖𝒔 𝒇𝒄𝒌(𝑴𝑷𝒂) 

Fig. 4.15. Sensitivity plot of 𝑴𝑭𝑺𝑵𝒊𝑷 against (i) 𝑑 (ii) 𝑏𝑤 (iii) 𝜌𝑙 (iv) 𝑎/𝑑 (v) 𝑓𝑐k  
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                (i) 𝑴𝑭𝑵𝑳𝑻 𝒗𝒆𝒓𝒔𝒖𝒔 𝒅(𝒎𝒎)                                              (ii) 𝑴𝑭𝑵𝑳𝑻 𝒗𝒆𝒓𝒔𝒖𝒔 𝒃w(𝒎𝒎)                                                                                          

  

            (iii)  𝑴𝑭𝑵𝑳𝑻 𝒗𝒆𝒓𝒔𝒖𝒔 𝝆𝒍(%)                                                     (iv)  𝑴𝑭𝑵𝑳𝑻 𝒗𝒆𝒓𝒔𝒖𝒔 𝒂/𝒅                                                                                         

 

       (v) 𝑴𝑭𝑵𝑳𝑻 𝒗𝒆𝒓𝒔𝒖𝒔 𝒇𝒄𝒌(𝑴𝑷𝒂) 

Fig. 4.16. Sensitivity plot of 𝑴𝑭𝑵𝑳𝑻 against (i) 𝑑 (ii) 𝑏𝑤 (iii) 𝜌𝑙 (iv) a/d (v) 𝑓𝑐k 
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           (i) 𝑴𝑭𝑺𝑨𝑵𝑺 𝒗𝒆𝒓𝒔𝒖𝒔 𝒅(𝒎𝒎)                                                     (ii) 𝑴𝑭𝑺𝑨𝑵𝑺  𝒗𝒆𝒓𝒔𝒖𝒔 𝒃w(𝒎𝒎)                                                                             

  

            (iii)  𝑴𝑭𝑺𝑨𝑵𝑺 𝒗𝒆𝒓𝒔𝒖𝒔 𝝆𝒍(%)                                                     (iv)   𝑴𝑭𝑺𝑨𝑵𝑺 𝒗𝒆𝒓𝒔𝒖𝒔 𝒂/𝒅 

 

   (v) 𝑴𝑭𝑺𝑨𝑵𝑺 𝒗𝒆𝒓𝒔𝒖𝒔 𝒇𝒄𝒌(𝑴𝑷𝒂) 

Fig. 4.17 Sensitivity plot of 𝑴𝑭𝑺𝑨𝑵𝑺 against (i) 𝑑 (ii) 𝑏𝑤 (iii) 𝜌𝑙 (iv) a/d (v) 𝑓𝑐k 
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4.3.6   Choice of probabilistic model 

The distribution fitter application in the MATLAB R2021 suite was used to fit the model factor 

distribution derived from the considered shear model with respective plots as shown in Fig. 4.18. This 

was done to identify the distribution function for each model as is required for classifying the quality of 

reliability estimates (Mcleod, 2019). A non-parametric analysis that corroborates the findings from the 

plots was also done. Lastly, parametric statistical measures such as the Pearson coefficient of skewness 

and kurtosis value as seen in Table 4.1 was used to conclude the distribution of model factor realizations. 

The model factor realization tends to be highly negatively or positively skewed if the following condition 

is satisfied; -1 ≤ 휂𝑀𝐹 ≥1. While a distribution is said to be fairly or moderately skewed if -0.5 ≤ 

휂𝑀𝐹 ≥0.5. In both cases, each scenario depicts abnormality in the normal distribution but normality in the 

log-normal distribution. It’s worth knowing that the closer the coefficient of skewness is to zero, the more 

normal the data is, as a perfectly normal distribution is said to have a skewness coefficient of zero. 

Plots from the distribution fitter (fig 4.18) show that the model factor realizations 𝑀𝐹𝐶𝐶𝐶  and 𝑀𝐹𝑀𝐴𝑆𝑀  are 

normally distributed as the log-normal distribution curve failed to capture the data points (Fig. 4.18 h & 

i). Also, the formation of a bell curve that perfectly fits the distribution as is typical of a normal 

distribution (Fig. 4.18) was seen to outperform the curve of the Log-Normal and Weibull distribution 

indicating that the underlying distribution is normal. The skewness coefficient of  𝑀𝐹𝐶𝐶𝐶  and 𝑀𝐹𝑀𝐴𝑆𝑀  

which has a value of 0.041 and 0.007 respectively suggests that the distribution is not skewed in any way 

as both values are very close to zero. Lastly, to authenticate the findings, the Anderson darling and chi-

square goodness of fit test gave a P value of 5.67 which is considerably greater than the 5% significant 

value (0.05). Hence, the non-parametric test confirmed that the null hypothesis that the underlying 

distribution is normal was accepted. 

Having established the distribution of  𝑀𝐹𝐶𝐶𝐶  and 𝑀𝐹𝑀𝐴𝑆𝑀  it is only logical to expect optimal reliability 

in shear resistance prediction, since a 2- parameter lognormal distribution results in a lower prediction of 

reliability as compared to the normal distribution, but the variability (Ω𝑀𝐹 = 25% > 10%) makes the 

reliability uncertain. 

 

Results from the non-parametric test conducted for 𝑀𝐹𝑁𝐿𝑇  revealed that the null hypothesis that the 

underlying distribution is normal was barely rejected with a significance P-value of 0.055 which is 

negligibly higher than 0.05. A Pearson coefficient of skewness of 0.52 suggests that the distribution is 

mildly skewed, while the plots (fig 4.18 o & p) show that the Log-Normal distribution curve was slightly 

more favourable than the Normal and Weibull distribution curve in fitting 𝑀𝐹𝑁𝐿𝑇 . This investigation 

shows that 𝑀𝐹𝑁𝐿𝑇  has a very low degree of abnormality and the distribution is almost normal. Hence, it is 

safe to expect a reliable prediction and a moderate assessment of reliability not necessarily conservative. 
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Probability distribution assessment shows that the other model factor realizations 𝑀𝐹𝐸𝐶2, 

𝑀𝐹𝐴𝑆3600 , 𝑀𝐹𝑀𝐶10, 𝑀𝐹𝐴𝐶𝐼, 𝑀𝐹𝑆𝑁𝑖𝑃 and 𝑀𝐹𝑆𝐴𝑁𝑆 are largely characterized by lower prediction of shear 

reliability as every attempt to determine the underlying distribution showed favouritism for the Log-

Normal distribution. Firstly, a positive skewness was identified in the histogram of each respective plot. 

Secondly, the tail end extending to the right side indicated that the extent of variation is out of bounds for 

a gaussian distribution. Thirdly, the significance P-value for the Anderson darling and chi-square 

goodness of fit test was significantly lower than 0.05 signifying that the null hypothesis was rejected. 

Another indication is the Pearson coefficient of skewness which was considerably higher than 1. 

In conclusion, investigation shows that  𝑀𝐹𝑁𝐿𝑇  is the most suitable choice of probabilistic model as it 

provides a more consistent and moderate reliability prediction as compared to other models.  
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            (a) Probability distribution function of 𝑀𝐹𝐸𝐶2                                 (b) Probability plot of 𝑀𝐹𝐸𝐶2 

  

            (c) Probability distribution function of 𝑀𝐹𝐴𝐶𝐼                                  (d) Probability plot of 𝑀𝐹𝐴𝐶𝐼 
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            (e) Probability distribution function of 𝑀𝐹𝐴𝑆3600                            (f) Probability plot of 𝑀𝐹𝐴𝑆3600 

 

  

             (g) Probability distribution function of 𝑀𝐹𝐶𝐶𝐶                                (h) Probability plot of 𝑀𝐹𝐶𝐶𝐶  
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            (i) Probability distribution function of 𝑀𝐹𝑀𝐶10                             (j) Probability plot of 𝑀𝐹𝑀𝐶10 

 

  

           (k) Probability distribution function of 𝑀𝐹𝑀𝐴𝑆𝑀                            (l) Probability plot of 𝑀𝐹𝑀𝐴𝑆𝑀  
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            (m) Probability distribution function of 𝑀𝐹𝑆𝑁𝑖𝑃                           (n) Probability plot of 𝑀𝐹𝑆𝑁𝑖𝑃 

 

  

           (o) Probability distribution function of 𝑀𝐹𝑁𝐿𝑇                                   (p) Probability plot of 𝑀𝐹𝑁𝐿𝑇  
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        (q) Probability distribution function of 𝑀𝐹𝑆𝐴𝑁𝑆                                  (r) Probability plot of 𝑀𝐹𝑆𝐴𝑁𝑆 

 

Fig 4.18 Model uncertainty probability fitting & distribution plots for conventional shear models. 

4.3.7 Demerit point analysis for design shear value 

The shear strength method’s total performance is represented by the TDP (Total Demerit Point) score. 

The shear technique is more accurate in predicting the shear strength of reinforced concrete beams when 

TDP is less. The analysis system is used to assess how well the researched shear models perform in 

foretelling the shear strength of experimental beams from the database. In Table 3.5, the DP score for 

each categorization has been summarized. Table 4.6 presents the determined TDP score for the shear 

models, which is seen in Figure 4.19. As mentioned earlier in section 3.7.4, the demerit point analysis 

only applies to shear methods that can be expressed in terms of their respective design values such as 

those considered in this section. 

Table 4.6 Total demerit point Analysis 

Range Classification DP 𝑴𝑭𝑬𝑪𝟐 (%) 𝑴𝑭𝑴𝑪𝟏𝟎 
(%) 

𝑴𝑭𝑪𝑪𝑪  
(%) 

𝑴𝑭𝑺𝑨𝑵𝑺  
(%) 

<0.5 Extremely 
dangerous 

10 0 0 0 0 

0.5 – 0.65 Dangerous 5 0 1 3 1 

0.65 – 0.85 Low safety 2 1 2 2 3 

0.85 – 1.30 Appropriate 

safety 
0 9 21 11 20 

1.30 – 2.00 Conservative 1 74 62 69 71 
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> 2.0 Extremely 
Conservative 

2 16 14 14 5 

Total demerit point (TDP)  108 99 116 92 

 

The following were deduced from the table above 

 Based on the investigation, SANS had the lowest score with a TDP of 92, hence it has a better 

performance than the other 3 shear models. 𝑉𝑀𝐶10 is the closest to 𝑉𝑆𝐴𝑁𝑆 out of all the models 

investigated with a TDP score of 99. 

 The TDP scores for the 𝑉𝐸𝐶2 and 𝑉𝐶𝐶𝐶  models are 108 and 116, respectively. 

 The EC2 shear model and the CCC shear model were the poorest of the examined processes. The 

EC2 shear techniques received a high TDP because they provided the majority of overly 

conservative predictions.  

 

 

Fig 4.19. Bar Plot of Demerit Point Analysis  
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4.4 Comparison of experimental shear strength to machine learning shear predictions 

(Subset of Database) 

4.4.1 comparison of predictions from machine learning models to experimental shear 

strength  

Fig 4.19 and 4.20 presents the plot of experimental shear strength (VEXP) against predicted shear capacity 

from machine learning models (VML) using 196 testing set of beams (rectangular and flanged) without 

shear reinforcement and parametric variations of properties randomly selected from the database 

compiled by Reinick et al. (2013). Considering the perfect line of equality, the graphical visualizations 

below show a trend comparison between the experimental shear strength observation and the outputs from 

the considered machine learning algorithms. The comparative study is achieved by examining the 

coefficient of determination (R2), the scatter of predicted data points, and the similarity and closeness 

between the trendline of A.I based models and the perfect line of equality.  

 

 

Fig 4.20. Perfect line comparison plot of machine learning shear capacity prediction against experimental 

shear value. 
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The following observations were established from the close examination of Fig. 4.19 & 4.20 

 The trendline of shear prediction from the support vector machine model failed to accurately 

capture the perfect line as it significantly deviates below the perfect line of equality as the 

experimental shear strength increases. This implies that predictions from the support vector 

machine model have an increasing conservative bias as the experimental shear strength increases. 

Lower predictions of shear values may be due to the choice of hyperparameters selected by the 

grid search cross–validation function from the sci-kit learn model selection tool. Also, from Fig 

4.20, it can be seen that the scatter of the datapoint around the trendline seems to be much as 

compared to the plots of other A.I based models, implying that the predictions are not as 

consistent. Predictions from the SVM also displayed the lowest value of R2 = 0.907. 

 The trendline of shear predictions from the decision tree algorithm displays a perfect comparison 

with the perfect line of equality. But a close examination reveals the shortcoming in the 

predictions of VDT thereby negating the visual accuracy. Firstly, because it appeared to follow the 

VSVM's trend, a significant scatter of data points around the trendline was observed. Secondly, a 

coefficient of determination (R2) value of 0.9283 finally suggests that the predictions from the 

decision tree don’t come close in comparison to the perfect line of equality as compared to 

predictions from VANN & VRF. 

 VANN & VRF   provides a similar estimation of shear capacity. Howbeit, predictions from the 

Artificial Neural Network seem slightly more accurate than the Random Forest shear predictions. 

Plots from Fig.4.19 shows that the trendline of VANN & VRF bears close comparison with the perfect 

line of equality with fewer scattered points observed around VANN’s trend. VRF provides a better 

estimate of shear strength in terms of closeness of trendline to the line of equality, parametric 

coefficient of determination (R2) = 0.9645 and less scatter of datapoint as compared to VSVM and 

VDT. 

 The highest value of R2 = 0.9711, lowest observed scatter around the trendline and close 

capturing of the perfect line of equity infer VANN is most favourable in shear capacity prediction as 

compared to other A.I based shear models.   
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𝒗𝑴𝑳 against 𝒗𝒆𝒙𝒑 

  

  

Fig 4.21. Comparison of experimental shear strength (VEXP) to machine learning predicted shear strength (VML) 

 a) VANN, b) VSVM, c) VDT, d) VRF
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4.4.2   Comparison using the annotated heatmap  

Fig.4.21 presents the heatmap of the A.I based shear predictions for machine learning models and 

experimental shear values. The heatmap uses the Pearson correlation coefficient to determine the 

relationship between variables. The colour bar at the right side indicates the intensity of correlation and 

assigns a coefficient based on the extent to which shear values are related. The heatmap shows that VANN 

compares well with the experimental shear value with a correlation value of 0.99, while VRF comes second 

to VANN with a correlation value of 0.98. The heatmap shows that of all the machine learning shear 

predictions, VSVM seems to be the least favourable with a correlation value of 0.95. Second to VSVM   is the 

shear prediction of VDT with a correlation value of 0.96.  

It is worth mentioning that the shear predictions from the Random Forest supervised learning model have 

a very close similarity with the prediction from the Deep Neural Network model with a correlation 

coefficient of 0.98. 

 

fig.4.22 Heatmap with annotation showing the coefficient of correlation between experimental shear 

values and predicted shear values from machine learning models.
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4.4.3.  Comparison of machine learning prediction to experimental shear strength with 

respect to percentage longitudinal reinforcement 

A subset of the database provided by Reinick et al (2014) consisting of 196 beams randomly selected as 

test data following the machine learning sequence is compared with the experimental shear strength. The 

predictions from the machine learning algorithm are normalized to converge as (1) (
𝑉𝐴𝑁𝑁

𝑏w𝑑
), (2) (

𝑉𝑅𝐹

𝑏w𝑑
), (3) 

(
𝑉𝐷𝑇

𝑏w𝑑
), (4) (

𝑉𝑆𝑉𝑀

𝑏w𝑑
). Trendlines of normalized machine learning shear predictions are compared to 

experimental observations (𝑉𝑒𝑥𝑝).  

 

Fig 4.23. Comparison of normalized A.I based shear predictions to experimental observation with respect 

to 𝑝𝑙% 
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reinforcement ratio increases beyond 4%. This insinuates VDT   tends to provide conservative shear 

predictions at 𝜌𝑙 > 4%. 

 Initially, VSVM   provides unconservative estimates of shear capacity as the trendline starts above 

the experimental trendline at 𝜌𝑙 < 1%. An increase in the longitudinal reinforcement ratio 𝜌𝑙 > 

1% causes the shear prediction from the support vector model to become fairly conservative up 

until when 𝜌𝑙 > 4% and overestimation once again dominates the shear prediction of VSVM. 

 Fig 4.23 shows that the trendline of normalized VANN captures the experimental trendline perfectly 

well with a slight deviation above the experimental trend at 𝜌𝑙 > 4%. This denotes that at a higher 

longitudinal reinforcement ratio, VANN provides a marginally unconservative shear estimate. 

 The trends of VRF bear the closest comparison to the trend of VANN, this means the shear 

predictions from the Random Forest supervised learning model also compare well with the 

experimental shear strength but slightly underestimate the shear capacity. 

 

4.4.3.1   Error trend observation 

Fig 4.24 shows that the errors associated with VANN &VSVM displayed an insignificant trend with the 

parametric range of longitudinal reinforcement, contrarily VDT &VRF showed a positive trend to increasing 

longitudinal reinforcement ratio suggesting that prediction error increases as 𝜌𝑙 increases. Also, at 𝜌𝑙 < 

4% VDT is characterized by unconservative shear predictions as a negative error indicates a higher shear 

prediction value and a positive error indicates a conservative shear prediction. The sensitivity of VRF 

prediction to 𝜌𝑙 is quite inconsequential.   

 

      Fig 4.24 Plots of normalized error against 𝜌𝑙
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4.5   Statistical analysis of machine learning model factor observations 

This section adopts descriptive statistics to analyze the derived model factor distribution for the machine 

learning models by considering the statistical moments, histogram of model factors, identification of 

outliers with a box plot, sensitivity analysis and appropriate probability distribution plots. 

 

Table 4.7 Statistical parameters of model factors from A.I based shear models.   

 MFANN MFSVM MFRF MFDT 

Counts 196 196 196 196 

Mean 1.00 1.07 1.00 1.04 

Std 0.18 0.32 0.19 0.38 

COV% 18% 30% 19% 37% 

Skewness 0.60 1.99 0.20 1.78 

Max 1.79 2.58 1.77 3.32 

75% 1.11 1.16 1.10 1.12 

50% 1.00 1.02 1.00 0.95 

25% 0.90 090 0.88 0.77 

Min 0.56 0.42 0.37 0.29 

Max/Min 3.20 6.14 4.78 11.45 

Kurtosis 1.64 6.12 1.62 7.32 

 

From Table 4.7, MFANN and MFRF both have a mean of 1, this indicates that there is no form of bias in the 

shear prediction from these A.I-based models. Moreover, the measure of dispersion which is close to zero 

suggests that the realizations of both MFANN and MFRF are minimally scattered around the mean with 

MFANN having a standard deviation value of 0.18 while 𝜎𝑀𝐹 for MFRF = 0.19. The coefficient of variation 

also infers a nominal variability in the realizations of both MFANN and MFRF with values of  Ω𝑀𝐹(𝐴𝑁𝑁)= 

18%, Ω𝑀𝐹(𝑅𝐹)= 19%. The low degree of variability in the model factor realizations buttresses the 

certainty in the shear predictions of VANN and VRF, though the COV% is slightly higher than the 10% 

recommended value given by JCSS (2001). 

MFSVM has a mean value of 1.07 which is indicative of a small bias and 7% conservatism while MFDT is 

just 4% conservative with a mean value of 1.04. Although the small bias indicates that the shear models 

built on the architecture of support vector machine and decision trees are somewhat accurate in shear 

prediction, the wide dispersion of the realized model factors around the mean brings to light the 

uncertainty in the performance of DT and SVM models in shear prediction with σ𝑀𝐹(𝑆𝑉𝑀)=0.32, 
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σ𝑀𝐹(𝐷𝑇)= 0.38. Also, the coefficient of variation as seen in table 4.5 suggests a significant degree of 

variation in their model factor realization considerably greater than the recommended extent of variation 

for shear models by the JCSS (2001). 

            4.5.1 Histogram of model factor realizations for A.I based shear models. 

 

  

Fig 4.25 Histogram of machine learning model factors 
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4.5.2 Histogram of the prediction error of A.I based shear models 

 

 

   

Fig 4.26 Error plot of machine learning model predictions 
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4.5.3 Identification of outliers 

Realizations from Fig. 4.27 are as follows; 

 With consideration to all 196 data points randomly selected for the A.I based shear prediction, 

only 4 points were regarded as outliers in the ANN shear model factor realization. From the 

MFANN realizations, only one point lies below 𝜇 − 3𝜎 and three points above 𝜇 + 3𝜎. The 

compactness of the model factor distribution MFANN suggests that at extreme values of MF, 

MFANN does not excessively overestimate or underestimate shear capacity. 

 The box plot of MFRF looks similar to that of MFANN but with 2 more outliers laying outside 𝜇 −

3𝜎, making it 6 identified outliers, 3 above the maximum and 3 below the minimum. 

 The boxplot of MFDT shows that the majority of the data points below the 75th percentile are 

unconservative as the 75th percentile of the model factor distribution is slightly higher than 1. All 

of the outliers in MFDT   lie above the maximum. 

 MFSVM has 8 outliers in its distribution as seen in fig 4.26 which is 4% of the entire dataset. As a 

result, some variability is seen in the distribution of MFSVM. 

 

Fig 4.27 Box plots of A.I based model factors   
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4.5.4 Trend analysis of model factors derived from machine learning models 

Scatter plots for 𝑀𝐹𝐴𝑁𝑁, 𝑀𝐹𝑆𝑉𝑀, 𝑀𝐹𝑅𝐹 and 𝑀𝐹𝐷𝑇 against the main parameters that affect shear strength 

are presented in Figs 4.28 – 4.31. The sensitivity of model factors to shear parameters is investigated by 

closely examining the plots in Figs 4.28 – 4.31 for trends and corroborating the findings with information 

deduced from Table 4.8.  The lines that give the best description of the observed trend are shown on the 

plots. Corresponding trend equations and coefficient of determination (R2) values are also included in the 

plot to support the examination.  

Table 4.8. Pearson correlation matrix of machine learning model factors to shear parameters 

Pearson Correlation coefficient r 

 𝒃w(𝒎𝒎) 𝒂/𝒅 𝒅(𝒎𝒎) 𝝆𝒍(%) 𝒇𝒄𝒌[𝑴𝑷𝒂] 

MFANN 0.023 -0.18 -0.14 0.036 0.24 

MFSVM 0.018 -0.071 -0.11 0.0033 -0.021 

MFRF 0.025 -0.29 0.0012 0.2 0.21 

MFDT 0.2 -0.18 0.052 0.27 0.25 

 

4.5.4.1   𝐌𝐅𝐀𝐍𝐍 trend analysis 

Close examination of Fig. 4.28 revealed that 𝑀𝐹𝐴𝑁𝑁 only showed a weak positive correlation with the 

concrete strength with a correlation coefficient r = 0.24. The weak positive correlation is indicative of a 

marginal increasing conservative bias as the concrete strength increase. The plot also revealed that 

𝑀𝐹𝐴𝑁𝑁 showed no significant trend with the remaining shear strength parameters. 

4.5.4.2   𝐌𝐅𝐒𝐕𝐌 trend analysis 

The assessment of Fig. 4.29 showed that 𝑀𝐹𝑆𝑉𝑀 has no form of correlation with all of the factors 

affecting shear strength. This was validated by an insignificant correlation coefficient as seen in table 4.6.  

4.5.4.3   𝐌𝐅𝐑𝐅 trend analysis 

From fig 4.30, 𝑀𝐹𝑅𝐹 displayed a weak sensitivity to the shear span – effective depth ratio (a/d), 

longitudinal reinforcement ratio (ρl) and concrete strength with a coefficient correlation of -0.29, 0.2 and 

0.21 respectively. While no trend was seen for the beam width (bw) and depth (d). 

4.5.4.4   𝐌𝐅𝐃𝐓 trend analysis 

The parametric coefficient analysis in Table 4.8 shows that 𝑀𝐹𝐷𝑇 realizations have a weak correlation 

with the beam width, longitudinal reinforcement ratio and concrete strength with designated coefficients 
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of 0.2, 0.27 and 0.25. While an insignificant trend was observed for the relationship between 𝑀𝐹𝐷𝑇 and 

the shear span – effective depth ratio and the effective depth as well. 

Though the Pearson correlation coefficient suggests a weak positive relationship between 𝑀𝐹𝐷𝑇 and the 

beam width, but a close examination of Fig. 4.31(b) shows that the fairly steep slope of the trendline 

suggests a fairly significant relationship between the two variables.  

Generally, all machine learning models displayed a very poor sensitivity to the shear parameters as 

compared to how conventional shear models respond to shear parameters.   
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            (i) 𝑴𝑭𝑨𝑵𝑵 𝒗𝒆𝒓𝒔𝒖𝒔 𝒅(𝒎𝒎)                                                         (ii) 𝑴𝑭𝑨𝑵𝑵 𝒗𝒆𝒓𝒔𝒖𝒔 𝒃w(𝒎𝒎) 

 

             (iii) 𝑴𝑭𝑨𝑵𝑵 𝒗𝒆𝒓𝒔𝒖𝒔 𝝆𝒍                                                                 (iv) 𝑴𝑭𝑨𝑵𝑵 𝒗𝒆𝒓𝒔𝒖𝒔 𝒂/𝒅 

 

      (v) 𝑴𝑭𝑨𝑵𝑵 𝒗𝒆𝒓𝒔𝒖𝒔 𝒇𝒄𝒌                                                                  

Figure 4.28. Sensitivity plot of 𝑴𝑭𝑨𝑵𝑵 against (i) 𝑑 (ii) 𝑏𝑤 (iii) 𝜌𝑙 (iv) a/d (v) 𝑓𝑐k 
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               (i) 𝑴𝑭𝑺𝑽𝑴 𝒗𝒆𝒓𝒔𝒖𝒔 𝒅(𝒎𝒎)                                                         (ii) 𝑴𝑭𝑺𝑽𝑴 𝒗𝒆𝒓𝒔𝒖𝒔 𝒃w(𝒎𝒎) 

 

           (iii) 𝑴𝑭𝑺𝑽𝑴 𝒗𝒆𝒓𝒔𝒖𝒔 𝝆𝒍                                                                 (iv) 𝑴𝑭𝑺𝑽𝑴 𝒗𝒆𝒓𝒔𝒖𝒔 𝒂/𝒅 

 

     (v) 𝑴𝑭𝑺𝑽𝑴 𝒗𝒆𝒓𝒔𝒖𝒔 𝒇𝒄𝒌 

Figure 4.29. Sensitivity plot of 𝑴𝑭𝑺𝑽𝑴 against (i) 𝑑 (ii) 𝑏𝑤 (iii) 𝜌𝑙 (iv) a/d (v) 𝑓𝑐k 
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           (i) 𝑴𝑭𝑹𝑭 𝒗𝒆𝒓𝒔𝒖𝒔 𝒅(𝒎𝒎)                                                         (ii) 𝑴𝑭𝑹𝑭 𝒗𝒆𝒓𝒔𝒖𝒔 𝒃w(𝒎𝒎) 

 

            (iii) 𝑴𝑭𝑹𝑭 𝒗𝒆𝒓𝒔𝒖𝒔 𝝆𝒍                                                                 (iv) 𝑴𝑭𝑹𝑭 𝒗𝒆𝒓𝒔𝒖𝒔 𝒂/𝒅 

 

           (v) 𝑴𝑭𝑹𝑭 𝒗𝒆𝒓𝒔𝒖𝒔 𝒇𝒄𝒌 

Figure 4.30. Sensitivity plot of 𝑴𝑭𝑹𝑭 against (i) 𝑑 (ii) 𝑏𝑤 (iii) 𝜌𝑙 (iv) a/d (v) 𝑓𝑐k 
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             (i) 𝑴𝑭𝑫𝑻 𝒗𝒆𝒓𝒔𝒖𝒔 𝒅(𝒎𝒎)                                                         (ii) 𝑴𝑭𝑫𝑻 𝒗𝒆𝒓𝒔𝒖𝒔 𝒃w(𝒎𝒎)      

 

            (iii) 𝑴𝑭𝑫𝑻 𝒗𝒆𝒓𝒔𝒖𝒔 𝝆𝒍                                                                (iv) 𝑴𝑭𝑫𝑻 𝒗𝒆𝒓𝒔𝒖𝒔 𝒂/𝒅 

 

           (v) 𝑴𝑭𝑫𝑻 𝒗𝒆𝒓𝒔𝒖𝒔 𝒇𝒄𝒌 

Figure 4.31. Sensitivity plot of 𝑴𝑭𝑫𝑻 against (i) 𝑑 (ii) 𝑏𝑤 (iii) 𝜌𝑙 (iv) a/d (v) 𝑓𝑐k 
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4.5.5   Probability distribution function of realized A.I based the model factor 

The null hypothesis for the choice of the probability distribution function in  𝑀𝐹𝐷𝑇 & 𝑀𝐹𝑆𝑉𝑀 was 

rejected as the non-parametric analysis gave a significance P-value considerably lower than 0.05, which 

indicates that the underlying distribution is a Log-Normal distribution. The corresponding Pearson 

coefficient of skewness (1.78 & 1.99) which is greater than 1 shows that the realizations of 𝑀𝐹𝐷𝑇 & 

𝑀𝐹𝑆𝑉𝑀  are highly positively skewed.  This also indicates that  𝑀𝐹𝐷𝑇 & 𝑀𝐹𝑆𝑉𝑀 is not normally 

distributed. Another clue to defining the distribution is the careful observation of plots in fig 4.28 (c, d, g, 

h) which shows that   the Log-Normal curve fits both distributions  

Both of the non-parametric tests (Anderson Darling & Chi-Square) conducted for 𝑀𝐹𝐴𝑁𝑁 almost did not 

reject the null hypothesis that the underlying distribution is normal as the significance P-value of 0.06 and 

0.072 was higher than the recommended P-value of 0.05 with just a minimal margin. A Pearson skewness 

coefficient of 0.60 suggests that the distribution is fairly skewed, while the plots (fig 4.28 a & b) show 

that the Log-Normal distribution curve was slightly a better fit than the Normal distribution. This 

investigation shows that 𝑀𝐹𝐴𝑁𝑁 has a minimal degree of abnormality and the distribution is almost 

normal. Hence, it is safe to expect a reliable prediction and a moderate assessment of reliability not 

necessarily conservative. 

The goodness of fit test for 𝑀𝐹𝑅𝐹  shows that the null hypothesis was not rejected. Failure to reject the 

hypothesis was due to the P-value from the non-parametric analysis which was found to be 0.041 and 

0.033, implying that the underlying distribution is normal. The Pearson skewness coefficient = 0.2 also 

corroborated the findings from the non-parametric analysis due to its closeness to zero. In addition, fig 

4.28 (a & b) supported the findings showing that the distribution curve has no excessive tail extension as 

it is for a normal distribution and the log-normal distribution curve tends to be a better fit than the normal 

distribution curve.  
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     (a) Probability Distribution Function of 𝑀𝐹𝐴𝑁𝑁                            (b) Probability Plot of 𝑀𝐹𝐴𝑁𝑁 

                                                                                                                                   

      

      (c) Probability Distribution Function of 𝑀𝐹𝐷𝑇                            (d) Probability Plot of 𝑀𝐹𝐷𝑇 
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       (e) Probability Distribution Function of 𝑀𝐹𝑅𝐹                          (f) Probability Plot of 𝑀𝐹𝑅𝐹 

 

  

     (g) Probability Distribution Function of 𝑀𝐹𝑆𝑉𝑀                          (h) Probability Plot of 𝑀𝐹𝑆𝑉𝑀 

 

Fig 4.31 Model uncertainty probability fitting & distribution plots for conventional shear models.
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4.5.6 Performance evaluation of ML shear results 

A comparison of the ANN, SVM, RF and DT shear model in terms of MAE, MAPE, RMSE and R2 

values is presented in Table 4.9 and plotted in Fig 4.32. 

Table 4.9. Evaluation score for machine learning shear prediction  

Evaluation Metrics ANN SVM RF DT 

Mean Absolute Error 

(MAE) 

12.00 18.00 13.29 20.50 

Mean Absolute 

Percentage Error 

(MAPE) 

0.14 0.22 0.15 0.26 

Root Mean Squared 

Error (RMSE) 

21.47 42.95 23.10 33.15 

Coefficient of 

Determination (R
2
) 

0.97 0.91 0.96 0.93 

 

Table 4.9. above, the following were established 

 Data from Table 4.9 showed that the ANN shear prediction model's performance assessment 

metrics were better than those of the alternative machine learning models taken into consideration 

in this study. According to the values of MAE = 12, MAPE =0.14, and RMSE = 21.47, the ANN 

model comes near to accurately predicting the real shear resistance over the range of parameters 

taken into consideration with a coefficient of determination R2 = 0.97. 

 The evaluation metrics of the RF model prediction are the closest to ANN’s prediction with just a 

minimal performance margin. 

 The DT shear model's performance data appear to be superior to the SVM shear model. When 

compared to the SVM shear model, the DT shear model performed better on the most crucial 

evaluation criteria, RMSE and R2. 
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Fig 4.32 Bar chart displaying the metrics score of ML models shear result. 

 

4.5.7 Optimal hyperparameter of ML models selected via cross-validation. 

The grid-search cross-validation in the model–selection sub-library of the sci-kit learn ML library 

package was used to perform a 5 – fold cross-validation with a specified parameter grid that contains the 

most important combination of hyperparameters required for an optimal model tunning. After the 

hyperparameter tunning, the grid search CV selected the best parameters upon which the architecture of 

the ML models was built. See table 4.10 below.  

Table 4.10. Optimal hyperparameters of models 

Model Hyperparameter Grid Optimal Hyperparameters 

SVM C:   0.001, 0.01, 0.1, 0.5, 1, 2  

Kernel: Linear, Rbf, Poly, Sigmoid  

Scale: Auto, Gamma 

Degree: 2, 3 

Epsilon: 0, 0.01, 0.1, 0.5, 1, 2 
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RF  N estimators: 64, 80 

 Criterion: squared error, absolute error, Poisson  

 Max depth: 40, 50,37,35 

 Min samples split: 3, 5, 2 

 Min impurity decrease: 0.00001, 0.005, 0.000008 

 Min samples leaf: 1,2 

 Max features: auto, sqrt, log2 

 Max leaf nodes: 30,40,45,50 

 Bootstrap: True, False 

 Random state: 101, 73, 80 

64 

squared error 

37 

2 

0.000008 

1 

Auto 

45 

True 

73 

DT  Criterion: squared error, absolute error, Poisson, 

Friedman MSE 

 Splitter: Best, Random. 

 Max depth: 40, 50,60,70,80,90,100 

 Min samples split: 3, 5, 10,20, 25 

 Min impurity decrease: 0.00001, 0.005, 0.000008 

 Min samples leaf: 1,2,3,4,5 

 Max features: auto, sqrt, log2 

 Max leaf nodes: 3, 5, 10, 15, 30, 40 

Squared error 

 

Random 

40 

3 

0.000008 

1 

Auto 

40 

ANN Number of hidden layers                                             2 

Learning rate                                                               0.01 

The activation function in both layers                               ReLU 

Optimizer                                                                     Adam Optimizer 

Loss function                                                               MSE 

Mini-batch size                                                            16 

Epochs                                                                         500 
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Fig 4.32 performance of ANN with respect to MAE.  
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CHAPTER 5 

MODEL UNCERTAINTY PARTIAL FACTOR RELIABILITY 

CALIBRATION; A SIMPLIFIED RELIABILITY ANALYSIS 

5.1   Overview 

According to Taerwe (1993), it is imperative to calibrate uncertainties in models if the measure of 

dispersion has a coefficient greater than 0.2. This was corroborated by the argument made by Sykora et al. 

(2012) saying that for safe models with a coefficient of variation less than 0.2, it is unnecessary to require 

an additional calibration of modelling uncertainty. 

Direction cosines yielded during prior reliability assessment of shear methods has revealed that the safety 

performance of models is largely influenced by model factor. Hence, Mensah et al (2013) agreed that the 

most effective management of reliable performance for any resistance method is to provide a specially 

calibrated partial factor for model uncertainties that will account for the uncertainty associated with shear 

methods. 

The partial factor for model uncertainty 𝛾𝑅𝑑  for any shear method can easily be derived according to the 

procedures established in EN 1990 as seen below. 

𝛾𝑅𝑑 = 1 [𝜇𝑀𝐹 . exp (−𝛼𝑅 . 𝛽. Ω𝑀𝐹)]⁄  

Here, 

𝜇𝑀𝐹 and Ω𝑀𝐹 = statistical moments of model factor realizations in terms of mean value and coefficient of 

variation respectively. 

𝛼𝑅 = FORM Sensitivity Factor (Direction Cosine) 

𝛽 = Target Reliability Index 

According to EN 1990, the derived model uncertainty partial factor can be incorporated into the design 

shear methods to mitigate the effect of identified uncertainties in shear reliability predictions. See 

equation below 

𝑉𝑅𝑑
′ =  𝑉(𝑋𝑘) (𝛾𝑀 . 𝛾𝑅𝑑)⁄  

𝑉(𝑋𝑘) = Shear resistance due to characteristic properties of input parameters 

𝛾𝑀  = Partial resistance factor to account for material and geometric uncertainties, which can also be set as 

the partial safety factor of concrete (𝛾𝑐=1.5) as a safe assumption should a proper probabilistic calibration 

of 𝛾𝑀  be neglected. 

𝑉𝑅𝑑
′  = Calibrated design resistance 
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All of the expressions above only apply to design shear methods. The works of Konig et al (1985), 

Taerwe (1993) and Sykora et al (2012) have shown how the mean shear methods can be calibrated to 

correctly include the effect of the partial safety factor of model uncertainty. 

5.1.1   FORM sensitivity factor 

The model uncertainty partial factor is significantly affected by the choice of the FORM sensitivity factor 

which overall influences the degree of calibration of design shear expressions since the model uncertainty 

partial factor is a function of the FORM sensitivity factor. 

The table below describes the criterion for selecting a sensitivity factor. 

Table 5.1. Selection of FORM sensitivity factor  

 Criterion [Dominancy of Model Uncertainty] 𝜶𝑹  

1 If COV% of model uncertainties > COV% of the geometrical 

and material properties, model uncertainty is dominant. 

0.8 

2 If COV% of model uncertainties < COV% of the geometrical 

and material properties, model uncertainty is non-dominant. 

0.4 * 0.8 = 0.32 

  

5.1.2   Selection of target reliability Index 𝛃 

According to Sykora and Holicky (2012), a more practical assessment of the actual performance of 

existing structures can be arrived at by employing probabilistic methods to describe uncertainties of basic 

variables as a probabilistic model would. Hence, Specifying the target reliability index is a requisite for 

the probabilistic assessment of existing structures. 

The target reliability values as specified in (EN 1990, 2002) relate the reliability class to a respective 

consequence of failure. Additionally, the indexes were fundamentally intended for new structures. (EN 

1990, 2002) recommends the target reliability index for two reference periods (1 and 50 years). The target 

reliability index values for each reliability class correspond approximately to the same reliability level. 

For instance, the reliability index 𝛽 for an RC2 structure = 3.8, meaning this index can only be used if 

probabilistic models of basic variables are related to the reference period of 50 years.  

Table 5.2 presents the recommended target reliability according to EN 1990. 
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Table 5.2 Target Reliability index for different reference periods according to (EN 1990, 2002)  

 EN 1990 target values for reliability index 

 

 

Reliability class Failure consequence  Reliability Index 
(1-year reference 

period) 

Reliability Index (50-
year reference 

period) 

Examples 

RC1 Low for loss of human 

life, and economic, social 

or environmental small or 

negligible 

4.2 3.3 Agricultural 

buildings 

RC2 Medium for loss of 

human life, economic, 

social or environmental 

considerable 

4.7 3.8 Residences, 

offices 

RC3 High for loss of human 

life, or economic, social 

or environmental very 

great 

5.2 4.3 Bridges, public 

buildings. 

 

5.2   Model uncertainty partial factor related to EC2 shear resistance model for beams 

without stirrups using deterministic reliability verification 

The partial factor can be used to account for the uncertainty associated with the EC2 shear design 

methods. Since the underlying distribution for 𝑀𝐹𝐸𝐶2 has been identified as a log-normal distribution, the 

approach earlier stated can be applied for a deterministic reliability verification. It is mandatory to 

identify the distribution of 𝑀𝐹𝐸𝐶2 since a lower prediction of reliability is associated with a lognormal 

distribution, hence the need for model uncertainty partial factor of safety calibration. 

𝛾𝑅𝑑 = 1 [𝜇𝑀𝐹 . exp (−𝛼𝑅 . 𝛽. Ω𝑀𝐹)]⁄  

Input parameters 

𝛽 = 3.8 

𝛼𝑅 = 0.32 (since model uncertainty is non-dominant) (Olalusi and Spyridis, 2020) 

𝜇𝑀𝐹 = 1.10, Ω𝑀𝐹 = 27% = 0.27 

𝛾𝑅𝑑 = 1 [1.10 ∗ exp (−0.32 ∗ 3.8 ∗ 0.27)]⁄  

𝛾𝑅𝑑  = 1.26 



167 

167 

Table 5.3   Variation of EC2 model uncertainty partial factor 𝜸𝑹𝒅 with target reliability index 𝜷 

 

Target reliability 

index (𝜷) 

3 3.2 3.4 3.6 3.8 4 4.2 4.4 

Model Uncertainty 

factor (𝜸𝑹𝒅) 

1.18 1.20 1.22 1.24 1.26 1.29 1.31 1.33 

 

 
Fig 5.1 Variation of derived EC2 partial factor 𝜸𝑹𝒅 with 𝛽 for = 0.4x0.8 = 0.32. 

5.3   Model Uncertainty Partial Factor related to SANS shear resistance model for beams 

without stirrups using deterministic reliability verification 

Input parameters 

𝛽 = 3.8 

𝛼𝑅 = 0.32 (since model uncertainty is non-dominant) (Olalusi and Spyridis, 2020) 

𝜇𝑀𝐹 = 1.05, Ω𝑀𝐹 = 27% = 0.27 

𝛾𝑅𝑑 = 1 [1.05 ∗ exp (−0.32 ∗ 3.8 ∗ 0.27)]⁄  

𝛾𝑅𝑑  = 1.32 
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Table 5.4 Variation of SANS model uncertainty partial factor 𝜸𝑹𝒅 with target reliability index 𝜷 

 

Target reliability 

index (𝜷) 

3 3.2 3.4 3.6 3.8 4 4.2 4.4 

Model Uncertainty 

factor (𝜸𝑹𝒅) 

1.24 1.26 1.28 1.30 1.32 1.35 1.37 1.39 

 

 

Fig 5.2 Variation of derived SANS partial factor 𝜸𝑹𝒅 with 𝛽 for = 0.4x0.8 = 0.32. 

Although, the analysis done in this study showed that all of the shear models taken into consideration, 

with the exception of Tran (2020)'s model, had a COV>0.2, indicating that model uncertainty calibration 

is required for all of these models. The EC2 and SANS shear models were the only ones to which the 

calibration processes were used. The justification for this is provided in the next paragraphs. 

As of September 2021, the EC2 has been adopted by all European Union member states and by some 

other countries outside of the EU, such as Norway, Switzerland, and Turkey. Therefore, at least 31 

countries have adopted the EC2 as their standard for the design of concrete structures. The EC2 shear 

model was chosen for calibration over other shear models because it applies to a larger variety of nations. 

Further studies to calibrate shear models not taken into account in this section are advised by this 

research. 

As the study was conducted in South Africa, the decision to include the SANS shear model in this part is 

primarily based on how the research can influence and contribute to the South African design standard. 
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CHAPTER 6 

CONCLUSION AND RECOMMENDATION 

6.1     Overview 

The inability of investigated shear models to adequately replicate trends as seen in experimental 

observations indicates significant underlying uncertainties inherent in the shear strength models for beams 

without shear reinforcement. The identified uncertainties may be a result of model oversimplification or 

the neglection of important shear parameters leading to an overestimation or underestimation of shear 

strength and an inconsistent prediction across the parametric range. The shear reliability prediction of an 

investigated model is based on its insensitivity to the considered range of shear parameters, marginal or 

no form of bias in the mean value of model factors realization, minimal coefficient of variation, a low 

scatter of model factor realizations around the mean and also the ratio of maximum model factor to the 

minimum (𝑀𝐹𝑚𝑎𝑥 𝑀𝐹𝑚𝑖𝑛⁄ ) should be minimal. Additionally, the choice of probability distribution 

function affects the reliability predictions of investigated shear models and it is a good indication of the 

performance of a model. 

Further investigations revealed that there was no clause from national codes or authorial publications that 

the investigated models have been calibrated to account for deliberately structured trends associated with 

increasing shear strength parameters. Uncertainties discovered after a thorough assessment of the 

considered models gave rise to safety and economic concerns as would be discussed in the following 

sections. The performance of a shear model mustn't result in over-conservatism or significant 

unconservative estimates, as overly conservative estimation leads to an uneconomic performance of shear 

models while significant unconservative prediction raises concerns for the safety performance of shear 

models.  

 

6.2 Accomplishments of research objectives 

To assess and quantify the uncertainties in shear models which includes shear expressions from code-

based models (such as EN 2003, ACI 318, AS 3600, Fib Model Code 2010 and SANS10100), authorial 

models (such as CCC, MASM, NLT and the modified SNiP shear model) and machine learning based 

shear models (ANN, SVM, RF and DT) to arrive at a probabilistic model which would be recommended 

for future reliability analysis, the following objectives were actualized. 

1. A robust understanding of the mechanism of shear failure and contributing shear transfer actions 

in reinforced concrete beams with and without shear reinforcement with proper consideration of 
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the influence of shear parameters on the response of beams without stirrups to shear as outlined in 

section  

2. An in-depth knowledge of the underlying principles or phenomenon employed in the formulation 

of the considered shear capacity models together with the included limitations is a form of bias.    

3. Mathematical intuition behind the development of supervised machine learning models and deep 

neural networks with implementation in python (An object-oriented programming language) and 

the use of python library packages such as Pandas, NumPy, Sci-Py, machine learning library (Sci-

Kit learn) and Neural Network library packages such as TensorFlow and Keras API. 

4. Proper application of structural reliability assessment methods which includes concepts such as 

deterministic assessments, probabilities and statistics. 

5. In Chapter 4, model factors of the investigated 9 shear techniques were measured and statistically 

analyzed. The obtained model factors were parametrically related to significant shear design 

parameters for observable trends and were found to be sensitive to some shear parameters, though 

the mechanical models seemed to be less sensitive to the shear parameters. Correlation and 

regression analysis revealed negligible, mild and significant sensitivity of model factors to 

important parameters that influence shear strength. The model factor statistics derived were used 

as an indicator of the uncertainty in the reliability prediction of shear models. After the reliability 

investigation, a partial factor that would account for model uncertainties in shear models was 

derived for the EC2 and SANS shear models alongside the justification in the latter part of section 

5.3. 

6. Finally, a general probabilistic model that is suitable for a futuristic full reliability assessment of 

shear models without shear reinforcement was identified for both non-AI-based models and A.I 

based models and would be recommended in the subsequent section. 

6.3 Limitation of research 

The database provided by Reinick et al (2013) which was utilized in this research comprises extreme 

values of shear parameters which would normally be identified as outliers following a Z-score or box-plot 

identification of outliers. If these data points were considered outliers, this would defeat the aim of shear 

reliability investigation across a wide parametric range. Additionally, limiting the range of data would be 

an indirect inclusion of bias. Hence, proper data standardization was done instead of removing those 

points that were identified as outliers. 

In addition, removing those data points would reduce the available data for training and evaluating the 

machine learning models resulting in a poorly generalized model. 
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6.4 Assessment of model uncertainty for shear reliability  

The statistical analysis's conclusion is as follows: 

 The model factor 𝑀𝐹𝐸𝐶2 following the 𝑉𝐸𝐶2 shear method has a mean value of 1.10 and a 

standard deviation of 0.30, confirming that the unbiased shear resistance function of EC2 

generally underpredicts shear capacity. Hence the EC2 unbiased shear resistance is said to have 

an uneconomic performance. The scatter around the mean = 0.30 and the variability in shear 

prediction = 27% revealed the degree of uncertainty of the 𝑉𝐸𝐶2 shear method. 

 The parametric assessment revealed that 𝑀𝐹𝐸𝐶2 is significantly sensitive to the effective depth 

and amount of longitudinal tensile reinforcement with a correlation coefficient of -0.34 and 0.50 

respectively. This signifies that EC2 does not adequately account for the longitudinal 

reinforcement ratio and the size effect. At a high amount of longitudinal shear reinforcement EC2 

shear method for beams without stirrups exhibits an uneconomical performance as it overly 

underpredicts shear capacity at high values of 𝜌𝑙. safety concern arises as the effective depth 

increases beyond 500mm indicating that at 𝑑 > 500mm, reliable safe predictions following the 

𝑉𝐸𝐶2  shear approach is uncertain. 

 Sensitivity of 𝑉𝐸𝐶2 to the beam width and shear-span-to-depth ratio also suggest an inadequate 

calibration of these shear parameters. 

 𝑀𝐹𝐴𝐶𝐼 has a mean value of 𝜇𝑀𝐹 = 1.31 and a standard deviation of 𝜎𝑀𝐹 = 0.31 implying that 

shear predictions associated with the ACI shear methods are generally characterized by a 

significant degree of over-conservatism (underprediction). 𝑉𝐴𝐶𝐼 was seen to have a significant 

negative correlation with the shear-span to effective depth ratio 𝑎/𝑑 and a milder sensitivity to the 

concrete strength. This implies that it is unsafe to apply the ACI shear approach to very slender 

beams without stirrups. Generally, the sensitivity to shear parameters poses a question of 

adequate calibration of the size effect in the ACI shear method. 

 Close examination of the shear approach presented by the fib model code level II approximation 

and the Australian concrete design standard revealed a systematic negative trend with a/d, 𝑑 & 𝑝𝑙 

with a correlation coefficient of -0.28, -0.26 and -0.35 respectively. Both shear models displayed 

unsafe performances at 𝜌𝑙 < 2% and are seen to be uneconomical at a high amount of longitudinal 

reinforcement. In like manner, shear predictions following the 𝑉𝐴𝑆3600 & 𝑉𝑀𝐶10 shear methods 

tend to be unsafe for use at 𝑑 > 500mm and 𝑎/𝑑 >3. These identified trends are symbolic of the 

inadequate consideration of the respective shear parameters in model formulation. 

 Safety concerns associated with the performance of the mechanical compression chord capacity 

model (CCC) at a high slenderness ratio (very slender beams) and high amount of longitudinal 
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reinforcement are not so alarming, this is because there is a paucity of overly unconservative 

estimates at an extreme parametric range of  a/d & 𝑝𝑙. Though conservative, the statistics of the 

model factor realization of 𝑉𝐶𝐶𝐶  is somewhat satisfactory with a mean value of 1.14, a standard 

deviation of 0.28 and a coefficient of variation of 0.25. 

 The model factor 𝑀𝐹𝑀𝐴𝑆𝑀  associated with the 𝑉𝑀𝐴𝑆𝑀 shear method has a mean value of 1.11 and 

a standard deviation of 0.28, affirming that the mean shear function MASM generally 

underpredicts shear capacity. No alarming safety or economic concern was associated with this 

model as the investigation failed to identify any deliberately structured bias. 

 Investigation showed that the performance of the Modified SNiP shear method raises alarming 

economical concerns. Decreasing conservative bias still kept a majority of the model factors 

significantly above a value of 1. This over-conservatism is a result of the neglect of important 

shear parameters as the Modified SNiP shear method comprises only very basic shear parameters. 

Significant sensitivity to 𝑝𝑙 is indicative of the neglection of this term, while sensitivity to 

concrete compressive strength is a result of incomplete information when deciding to substitute 

compressive strength for tensile strength following the assumption that “In shear model 

formulation, cognizance should be given to the concrete tensile strength rather than concrete 

compressive strength”. 

Generally, the modified SNiP shear approach greatly underpredicts shear capacity with a mean 

value of 1.65, a standard deviation of 0.52 and a variation coefficient of 0.31. 

 Uncertainty assessment revealed that the unbiased shear provision for RC beams without stirrups 

in the South African standard for concrete design was not adequately calibrated for concrete 

strength and shear-span to effective depth ratio. The assessment showed that applying the SANS 

shear method at a high shear span to an effective depth ratio (very slender beams) is an unsafe 

practice as all of the predictions at this high slenderness ratio provided increasing unconservative 

estimates, hence exaggerating shear capacity. This systematic trend calls for a deliberate effort to 

account for the slenderness ratio. Shear predictions at concrete strength > 40MPa follow an 

increasing conservative bias (uneconomic performance).    

 Of all the shear models considered in this study, code-based models (such as EN 2003, ACI 318, 

AS 3600, Fib Model Code 2010 and SANS10100), authorial models (such as CCC, MASM, NLT 

and the modified SNiP shear model) and machine learning based shear models (ANN, SVM, RF 

and DT), 𝑉𝑁𝐿𝑇 is the best predictor of shear capacity. All indicators employed in the reliability 

assessment showed 𝑉𝑁𝐿𝑇 to be the most suitable candidate that gives predictions synonymous 

with experimental shear observations. 𝑀𝐹𝑁𝐿𝑇  was the most favourable candidate in terms of 

statistical moments with a mean of 1.02, a standard deviation of 0.16 and a coefficient of 
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variation of 16%. The degree of scatter around the mean value is significantly small compared to 

other investigated shear models as seen in table 4.1. The marginal measure of dispersion indicates 

there is no form or negligible degree of uncertainty associated with the  𝑉𝑁𝐿𝑇 . The insensitivity 

of the 𝑉𝑁𝐿𝑇 shear model to main shear parameters is indicative of its consistency and reliability in 

prediction across considered parametric range.    

 Investigations from the machine learning shear predictions showed all A.I based shear methods to 

be a good predictor of shear capacity in terms of the mean value, dispersion of data points, the 

presence of outliers and sensitivity to shear parameters. The highest bias seen in the machine 

learning shear result was in the case of 𝑀𝐹𝑆𝑉𝑀 which was just 7% conservative, this is relatively 

small compared to the conservatism seen in 𝑀𝐹𝐴𝐶𝐼 = 31% conservative, 𝑀𝐹𝐶𝐶𝐶  = 14% 

conservative, 𝑀𝐹𝑆𝑁𝑖𝑃 = 65% conservative. Though the only shortcoming of 𝑀𝐹𝑆𝑉𝑀 and 𝑀𝐹𝐷𝑇 

was their descriptive statistics that showed the variability of 𝑀𝐹𝑆𝑉𝑀 and 𝑀𝐹𝐷𝑇 to be relatively 

large with a variation coefficient of 0.30 and 0.37 respectively. The degree of dispersion calls for 

certainty concerns in reliable shear predictions. Unlike 𝑀𝐹𝑆𝑉𝑀 and 𝑀𝐹𝐷𝑇, shear predictions from 

𝑀𝐹𝐴𝑁𝑁 and 𝑀𝐹𝑅𝐹 proved to be more reliable as they both had a lower variation index of 0.18 and 

0.19 respectively with a mean of 1.00. Both 𝑀𝐹𝐴𝑁𝑁 and 𝑀𝐹𝑅𝐹 are undisputedly reliable in shear 

prediction, but 𝑀𝐹𝐴𝑁𝑁 is the better predictor due to its less sensitivity to shear parameters. 

In conclusion, a good predictive shear resistance model is one with a mean close to 1 (low bias), low 

standard deviation (minimal dispersion), low variability index (consistency in shear prediction) and a 

weak sensitivity to parameters influencing shear capacity (adequate consideration of shear parameters). 

Furthermore, such a model can be adopted as a probabilistic model in future reliability assessments of 

alternative shear design methods. Out of all the shear models considered in this study, the shear method 

based on structural mechanics proposed by Ngoc Linh Tran (𝑉𝑁𝐿𝑇) meets the requirements for a good 

model as stated above and is considered the best predictor of shear capacity. While considering soft 

computation, 𝑉𝐴𝑁𝑁 and 𝑉𝑅𝐹 meets the demand for a suitable model and can also be adopted as a 

probabilistic model for reliability analysis. 

 

6.5    Recommendations 

6.5.1   Main recommendations from the dissertation 

1. To account for the uncertainty associated with the EC2 and SANS10100 shear methods, a model 

uncertainty partial factor (𝜸𝑹𝒅(𝑬𝑪𝟐)= 1.26 & 𝜸𝑹𝒅(𝑺𝑨𝑵𝑺) = 1.32) for the target reliability level of 

reliability class 2 (RC2) recommended for residential buildings and offices for a reference period 

of 50yrs according to EN 1990 is recommended. 
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2. The mechanical model by Ngoc Linh Tran is suggested as a probabilistic model for future 

reliability assessments of alternative shear techniques since the investigation showed it to be the 

best predictor of shear strength as it properly reflects shear failure and has the lowest uncertainty 

level in its model factor statistics. 

3. Generally, mechanical model based on the theory of structural mechanics, fracture mechanics and 

crack theory should be assessed for reliable shear predictions and adopted by National codes in 

place of the conventional empirical models which has a lot of assumptions and neglection of 

important shear parameters resulting in uncertainties. 

4. The investigation conducted in this study showed that the EC2 shear method overpredicts shear at 

larger beam depths, leading to unsafe designs. Hence, for safe design practices, it is 

recommended that the present state of the EC2 shear method should not be used in estimating the 

shear capacity of beams depth > 500mm until the size effect concern has been addressed 

following an adequate calibration.  

6.5.2   Recommendations for future research 

1. The mechanical model proposed by Tran (2020) should be used as a general probabilistic model 

for the full reliability assessment of any alternative shear design provision for beams without 

shear reinforcement. 

2. The underestimation of shear capacity following the ACI shear methods for beams without shear 

reinforcement calls for a proper reliability calibration. 

3. The procedures highlighted in the work of Konig et al. (1985), Taerwe (1993) and Sykora et al. 

(2012) should be adopted to correctly include the effect of the partial safety factor of model 

uncertainty for the Modified SNiP shear method. 
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