
Durban

1991

BUILT-IN TESTS

FORA

REAL-TIME EMBEDDED SYSTEM

by

PETER ANDREW OLANDER

VOLUME I

Submitted in partial fulfilment of the

requirements for the degree of

Master of Science,

in the

Department of Computer Science,

University of Natal

1991

ABSTRACT

Beneath the facade of the applications code of a well-designed real-time embedded system lies

intrinsic firmware that facilitates a fast and effective means of detecting and diagnosing inevitable

hardware failures. These failures can encumber the availability of a system, and, consequently, an

identification of the source of the malfunction is needed. It is shown that the number of possible

origins of all manner of failures is immense. As a result, fault models are contrived to encompass

prevalent hardware faults. Furthermore, the complexity is reduced by determining syndromes for

particular circuitry and applying test vectors at a functional block level.

Testing phases and philosophies together with standardisation policies are defined to ensure the

compliance of system designers to the underlying principles of evaluating system integrity. The three

testing phases of power-on self tests at system start up, on-line health monitoring and off-line

diagnostics are designed to ensure that the inherent test firmware remains inconspicuous during

normal applications. The prominence of the code is, however, apparent on the detection or diagnosis

of a hardware failure.

The authenticity of the theoretical models, standardisation policies and built-in test philosophies are

illustrated by means of their application to an intricate real-time system. The architecture and the

software design implementing the idealogies are described extensively. Standardisation policies,

enhanced by the proposition of generic tests for common core components, are advocated at all

hierarchical levels.

The presentation of the integration of the hardware and software are aimed at portraying the

moderately complex nature of the task of generating a set of built-in tests for a real-time embedded

system. In spite of generic policies, the intricacies of the architecture are found to have a direct

influence on software design decisions. It is thus concluded that the diagnostic objectives of the user

requirements specification be lucidly expressed by both operational and maintenance personnel for

all testing phases. Disparity may exist between the system designer and the end user in the

understanding of the requirements specification defining the objectives of the diagnosis. It is thus

essential for complete collaboration between the two parties throughout the development life cycle,

but especially during the preliminary design phase. Thereafter, the designer would be able to decide

on the sophistication of the system testing capabilities.

ii

PREFACE

The practical work described in this thesis was carried out at UEC Projects (Pty) Ltd.,

Mt. Edgecombe, Natal from November 1988 to April 1990 under the management of Mr lan Harris and

the supervision of Mr Douglas Law-Brown.

These studies represent original work by the author and have not been submitted in any form to

another University. Where use was made of the work of others it has been duly acknowledged in the

text.

iii

ACKNOWLEDGEMENTS

The author is indebted to the management of UEC Projects (Pty) Ltd. for providing the opportunity

and privilege to submit the work contained herein. Special thanks must be extended to the staff of

the Displays and Personnel Departments, but in particular to the following people :

lan Harris whose support rendered this thesis possible.

Douglas Law-Brown whose expertise as an electronics engineer and competence as a project leader

proved extremely valuable and to whom a great deal of credit is due.

Michael Baudin who was responsible for the hardware design of the card cage and spent a significant

amount of time and effort in explaining the intricacies of this design.

Michael Stege who laid the foundation within the department with respect to the research into built-in

test policies and philosophies.

Alexander Polmans who assisted in the design and development of portions of the code.

Athol MCClean and his team who were responsible for the hardware design of the console. In

particular, thanks must be given to Nitin Mehta whose assistance in understanding the design and

whose aid in the development of the applicable software is greatly appreciated.

Grant Robertson and colleagues at the Personnel Department who arranged the financing through

the UEC Projects (Pty) Ltd. Study Assistance Scheme.

In addition, thanks must be bestowed upon Professor Alan Sartori-Angus of the Computer Science

Department, University of Natal, Durban who supervised the writing of this thesis.

iv

LIST OF CONTENTS

1 INTRODUCTION .

1.1 SCOPE .

1.2 PREVIOUS STUDIES IN THE FIELD OF BUILT-IN TESTS .

1.3 OBJECTIVES .

1

1

3

7

2 THEORY 8

2.1 INTRODUCTION .. 8

2.2 FAILURE MODES 8

2.3 PHYSICAL COMPONENT FAILURES 9

2.3.1 Malfunctioning manufactured components .. 9

2.3.2 Malfunctioning operational components .. 10

2.4 CIRCUIT FAILURES. .. 11

2.5 FAULT MODELLING 11

2.6 TESTING METHODOLOGIES. .. 13

2.6.1 Functional level testing 14

2.6.2 Random testing 20

2.7 SUMMARY 21

3 PHILOSOPHIES 23

3.1 INTRODUCTION. .. 23

3.2 BUILT-IN TEST PHILOSOPHY. .. 23

3.2.1 Power On Self Test (POST) .. 24

3.2.2 On-line diagnostics and health monitoring .. 26

3.2.3 Off-line diagnostics. .. 27

3.3 STANDARDISATION PHILOSOPHY 28

3.3.1 System level standardisation .. 29

3.3.2 Component level standardisation. .. 31

3.3.2.1 Test generation for microprocessors 32

3.3.2.2 Test generation for ROM 36

3.3.2.3 Test generation for RAM .. 38

3.4 SUMMARY 41

v

4 A REAL-TIME EMBEDDED SYSTEM 42

4.1 INTRODUCTION 42

4.2 THE CONSOLE .. 43

4.3 THE CARD CAGES 47

4.4 THE MAIN APPLICATIONS PROCESSOR CARD CAGE. 49

4.4.1 Main system bus and termination 49

4.4.2 Local bus extension 51

4.4.3 The CPU card 51

4.4.3.1 The microprocessor 51

4.4.3.2 Clock generation and reset circuitry 54

4.4.3.3 Numeric coprocessor .. 55

4.4.3.4 On-board memory .. 55

4.4.3.5 Serial 110 interface .. 55

4.4.3.6 Timers .. 56

4.4.3.7 Interrupt controllers 57

4.4.3.8 Diagnostic status latch. .. 58

4.4.3.9 Time-out circuitry .. 58

4.4.4 The EPROMIRAM card. .. 59

4.4.5 The System Data Bus Controller card 60

4.4.6 Bus terminator unit .. 61

4.4.7 Dynamic RAM card .. 62

4.4.8 Applications processor interface card 64

4.4.9 Serial communications to Multibus card .. 66

4.4.10 Graphics interface modules .. 67

4.4.11 Mass storage controller card .. 68

4.5 SUMMARY 70

vi

5 SOFTWARE DEVELOPMENT 71

5.1 INTRODUCTION. .. 71

5.2 SYSTEM LEVEL STANDARDISATION .. 72

5.3 SUBSYSTEM LEVEL STANDARDISATION. .. 74

5.3.1 Standardising the CPU cards 74

5.3.2 Standardising the EPROM/RAM cards. .. 75

5.3.3 Standardising the graphics interface modules 75

5.4 DESIGNING THE STANDARDISED CODE 77

5.4.1 Detection of a "warm start" 79

5.4.2 Testing of on-board peripheral chips .. 80

5.4.3 Testing the remaining standard computing segment 82

5.5 DESIGNING THE SUBSYSTEM-SPECIFIC CODE 85

5.6 APPLICATIONS CONSOLE FUNCTIONAL DEMONSTRATIONS. 92

5.7 SUMMARY 93

6 CONCLUSION 94

7 REFERENCES 97

APPENDICES

APPENDIX A : SYSTEM MAPS

APPENDIX B : STANDARDISED CODE LISTINGS

APPENDIX C : SUBSYSTEM-SPECIFIC CODE LISTINGS

APPENDIX D : CREATION OF THE EPROMS

APPENDIX E : OPERATIONAL DEMONSTRATION PROCEDURE

vii

A-1

B-1

C-1

0-1

E-1

Table I

Table 11

Table III

Table III

Table IV

Table V

Table VI

Table VII

Table VIII

Table IX

Table X

Table XI

Table XII

Table XIII

Table XIV

Table XV

viii

LIST OF TABLES

: Analysis of the output function of an OR gate with typical stuck-at faults. .. 13

: Fault table for a typical functional block. 18

: Combined fault table for a typical functional block 18

: Sample set of micro-orders for a typical microprocessor 33

: Test algorithm to detect faults in a typical microprocessor 35

: Core instruction set test procedure 36

: Generic ROM checksum algorithm 37

: Generic system RAM test algorithm .. 39

: Address generator algorithm for generic system RAM tests 40

: Generation of addresses to check the validity of the address lines. 40

: Firmware resident system description 72

: Standardised code interpretation of the system description 73

: Dynamic allocation of graphics interface modules 76

: Main initialisation routine of the standardised code 77

: Fault-pattern-test-pattern event space for the CPU card peripheral chips . .. 81

: Off-board access fault-pattern-test-pattern event space. 83

ix

LIST OF FIGURES

Figure 1 : Hierarchical approach illustrating the functional block concept. 15

Figure 2 : Typical functional block 17

Figure 3 : Data transfer graph representing the Intel 8086 microprocessor family 33

Figure 4 : Real-time system overall view .. 42

Figure 5 : Subsystem block diagram 43

Figure 6 : Pictorial view of the console .. 44

Figure 7 : Status and control panel .. 45

Figure 8 : Power routing and environmental monitoring and control 46

Figure 9 : Processor card cage layout 48

Figure 10 : Processor card cage interconnection diagram 50

Figure 11 : CPU board block diagram 52

Figure 12 : Flowchart for the main applications process .. 71

Figure 13 : Flowchart of the standardised code 78

Figure 14 : CPU on-board peripheral chips interaction diagram .. 80

Figure 15 : Standard computing segment functional block 82

Figure 16 : Flowchart of the subsystem-specific code " 86

Figure 17 : Dual processor task allocation flowchart .. 86

Figure 18 : Flowchart to create RAM based descriptor tables 90

AKBM

ALU

APCC

API

BCD

BIT

BITE

BTU

CCITT

CPU

CRC

CS

CSPM

DRAM

EMAC

EPROM

FAHD

FET

FTMP

GDU

GIM

GKS

HDLC

IP

LED

MIDS

MPSC

MSCC

MSU

PlC

PIT

POST

PSU

PVAM

RAM

LIST OF SYMBOLS

Alphanumeric Keyboard Module

Arithmetic Logic Unit

Applications Processor Card Cage

Applications Processor Interface

Binary Coded Decimal

Built-In Tests

Built-In Test Equipment

Bus Terminator Unit

International Consultative Committee for Telegraphs and Telephones

Central Processing Unit

Cyclic Redundancy Code

Code Segment

Control and Status Panel Module

Dynamic Random Access Memory

Environmental Monitoring and Control

Electrically Programmable Read Only Memory

Fan Housing Drawer

Field Effect Transistor

Fault Tolerant Microprocessor

Graphics Display Unit

Graphics Interface Module

Graphics Kernel System

High-Level Data Link Control

Instruction Pointer

Light Emitting Diode

Manual Input Devices

Multi-Protocol Serial Communications Chip

Mass Storage Controller Card

Mass Storage Unit

Programmable Interrupt Controller

Programmable Interval Timer

Power-On Self Test

Power Supply Unit

Protected Virtual Address Mode

Random Access Memory

x

RBM

ROM

SCMB

SCSI

SOB

SIFT

SKM

SS

SSR

Rollerball Module

Read Only Memory

Serial Communications to Multibus

Small Computer Systems Interface

System Data Bus

Software-Implemented Fault Tolerance

Softkey Module

Subsystem

Solid State Relays

xi

1 INTRODUCTION

1.1 SCOPE

A real-time system usually consists of two distinct parts, namely the controlled system and the

controlling system. The controlled system is the hardware which makes up the system and interfaces

with the environment. If the controlling system is designed to cause the controlled system to respond

to any changes in this environment, then it must be able to do so within a reasonable time. The

definition of "a reasonable time" depends entirely on the application of the system. For example, a

thermostat controlling the temperature of a room need not react as instantaneously as a missile that

is flying towards a mobile target.

In most microprocessor applications, the integrity of the controlling system is extremely important.

Real-time systems must ensure a high availability and it is essential that any fault should be reported

as soon as possible. Ideally, a real-time system will perform in a fault-free manner throughout its life

time. In reality, however, this is rarely the case because hardware systems fail when their components

degrade. During execution of the applications task of the real-time system, such failures could cause

unexpected situations to arise. It is important, therefore, that any real-time system should possess

total control over all possible eventualities and situations that may arise in its environment, whatever

the cause. Correctness and completeness are vitally important in the design of any real-time system

and suitable decisions should be made by the controller to cater for these unexpected situations. The

more catering that is done for such situations, the greater the system availability factor.

The availability requirements can vary considerably from application to application. Continuous

operation of computers aboard unmanned missiles or spacecraft is essential to a successful mission,

since defective units cannot be repaired. In many space or military applications, the personnel are

already burdened with more urgent tasks, and repairing a faulty computer system should be a quick

and easy process. Most commercial computers, however, are accessible to maintenance personnel.

Although it is inconvenient if a failure occurs, it is not catastrophic, and may be repaired with relatively

little cost involved.

Maintenance and availability have become increasingly important in the design of real-time systems,

due mainly to labour cost increases and the particular application of the systems designed. More

automatic methods have had to be provided to detect and diagnose faults in modules, thus enabling

less skilled technicians to repair defective units more quickly. Since hardware failures are a practical

reality, methods have been devised to improve system availability. In addition to catering for

2

unexpected situations during the execution of the applications task, system designers are aiming to

include techniques to detect execution errors. These errors may be caused by numerous factors and

system designers are faced with the problem of deciding whether or not to include any form of

testability in their system, and to what extent and level of sophistication.

In cases where software is an integral part of the real-time system, diagnostic routines have been

written that isolate faulty hardware. The problem, however, is that errors could be caused by hardware

and/or software and are often not discrete in nature. In addition, increasingly complex integrated

circuits impose severe limitations with regards to accessibility, thus making the problem of test

generation more and more difficult. A significant aspect of designing for testability, especially in the

early planning stages, is the specification of features to be incorporated in the hardware that are

designed to aid and enhance the diagnostic capabilities of the system.

The decisions made will depend ultimately on the design under consideration. The requirements

specification relating to the real-time system should ideally describe the action that the system is to

take for every possible situation that may arise. All requirements of the design should be carefully

analyzed and appropriate decisions implemented based on these specified requirements. The

generation of such a specification is probably the most difficult part of the design of any system, and

generally a well-written requirements specification results in a well-designed system.

The writing of a suite of built-in tests for a computer system requires a real understanding of a large

and complex set of interrelated subjects. These include such fields of study as reliability,

maintainability, availability and testability. A brief discussion of factors encroaching upon these areas

is necessary in order to present the applicable built-in test philosophies and concepts. A detailed

discussion of the above engineering fields is, however, beyond the scope of this study, and, where

necessary further references are cited.

Test philosophies presented are pertinent to the two phases of system operational testing and system

maintenance testing. The tests are aimed at facilitating rapid system repair during a mission or at a

repair centre. Although the theory pertinent to the generation of test patterns at the electronic level

are not considered in any detail in this text, they do form a foundational basis, particularly in the study

of design for testability. Some excellent references [CHANG et ID, 1970; BREUER and FRIEDMAN,

1976; KRAFT and TOY, 1981] prOVide insight into essentially four techniques that have been used

3

extensively, viz. the path sensitising technique, the so-called D-algorithm, the Boolean difference

method and Poage's technique. Some of these classical testing methodologies have been extended

to a higher level of integrated circuitry, but the detail and complexity involved in applying the theory

renders these approaches impractical, particularly during operational testing.

The theory presented works to pave the way for the implementation of practical techniques. In the

writing of the text, the author has attempted to model faults that are likely to occur in a typical

real-time embedded system, and to decide on a philosophy to detect such faults.

1.2 PREVIOUS STUDIES IN THE FIELD OF BUILT-IN TESTS

Since about 1965, test generation for logic circuits has been the subject of extensive research. It is

one of the oldest areas of the study of fault-tolerant computing, a broad discipline that encompasses

all aspects of sophisticated computer design. Diverse areas of fault-tolerant study range from failure

mechanisms in integrated circuits to the design of robust software. The main objective of most of

these studies has been to develop a systematic approach to the derivation of test procedures that

will expose all manner of faults in typical logic circuits. Generally, the philosophy has been to apply

a test sequence of input vectors to a particular logic circuit that causes the output(s) to differ from

the normal, fault-free condition.

High reliability and availability in computer design was first achieved through so-called fault avoidance

techniques, which involved computer design that used high-quality, thoroughly tested components.

Sometimes, simple redundancy techniques were used to achieve limited fault tolerance. Automated

recovery techniques were seldom used as there was little confidence in the hardware. The drastically

increased reliability requirements, together with the increased computer speed quickly made manual

recovery obsolete. For example the 1964 Saturn V launch computer had a reliability requirement of

only 0.99 for 250 hours compared to the late 1970s FTMP (fault tolerant microprocessor) and SIFT

(software-implemented fault tolerance) computers that had reliability requirements of 10-9 failures per

hour over the 10 hour mission time [PRADHAN, 1986, p. xiii; SIEWIOREK, 1986, p.460).

Circuit testability, however, has to continually undergo rapid revamping to keep pace with the nearly

revolutionary changes in circuit technology. While the number of components that can be supported

on a chip is increasing, the chip itself is becoming susceptible to a more diverse variety of failures,

ranging from internal open circuits and shorts to encapsulation and bonding failures. Research into

these problems have resulted in a sounder understanding, yielding newer fault models, such as

bridging faults, stuck-at faults and crosspoint faults.

4

Carefully formulated modelling techniques for treating fault diagnosis became firmly established in the

mid-1960s [BRULE et ID, 1960; JOHNSON, 1960; POAGE, 1963; CHANG, 1965; KAUTZ, 1968;

KIME, 1986]. Since hardware was composed of discrete and small-scale integrated circuits, diagnosis

of faults to the individual gate or line level was of particular interest. For this reason, many models

dealt with stuck-at-faults in combinational networks. As the number of gates per board increased,

larger line-replaceable units were created, and diagnosis to board level became an important element

in the overall diagnosis philosophy. Efforts were made to design system diagnosis procedures and

to analyze test data in a systematic manner [AGNEW et ID, 1965; FORBES et ID, 1965; HACKL and

SHIRK, 1965; CHANG and THOMIS, 1967; KIME, 1986]. Earty theoretical work [PREPARATA et m,
1967; RAMAMOORTHY, 1967; KIME, 1970; KIME, 1986;] and moves to employ redundancy at higher

levels were motivated by these efforts of systematic approaches. Evidence of this is portrayed in

dynamic redundant fault-tolerant systems that have switchable modules at board or component level,

rather than at on-chip registers.

In the late 1970s, IBM introduced the so-called level-sensitive scan design technique which permits

access to the internal nodes of a circuit without requiring a separate external connection for each

node accessed. Since this is made possible at the cost of additional logic circuitry used primarily for

testing, designing for testability has evolved to a stage of receiving far more attention as a design

criterion than was initially envisaged.

Over a period of ten to fifteen years, various fault diagnosis models were developed, often appearing

to be unrelated to each other. It has been shown [KIME, 1979], however, that if the concepts of "fault"

and ·'test" are treated from a hierarchical point of view, a new model can be derived that is broad

enough to encompass past diagnostic modelling efforts as well as many contemporary diagnosis

practices.

Over the last few decades, several factors have influenced the computer industry and these recent

trends have been the major driving forces behind the research of reliability, maintainability, availability

and testability. The major factors are:

a) Systems have been exposed to harsher and more polluted environments reSUlting in greater

fluctuations in temperatures, humidity and electromagnetic interference. Consequently, the need for

more robust hardware has arisen.

5

b) Due to the increasing computer market size, the majority of users have become less

knowledgeable regarding the actual operation of the system. This results in systems needing to be

more user-friendly and tolerant to abuse.

c) Escalations in labour costs and decreases in hardware costs have also had an enormous effect

on the industry. The greatest impact here is that it often becomes cheaper to replace faulty hardware,

rather than to troubleshoot it.

d) Systems have become larger, resulting in more components and thus the increased overall failure

rate. To hold these overall failure rates at an acceptable level, the failure rates of the individual

components have had to be decreased and more redundancy has had to be introduced.

e) More competitive computer markets have resulted in manufacturers needing to supply better and

more reliable products.

Most of the conducted research has arisen from the practical implementation of existing systems.

These systems may be identified in terms of four gradings of availability requirements. Firstly, at the

bottom of the scale are the general-purpose commercial systems, where availability is not of

paramount importance. This is followed by high availability systems, where the loss of a single user

is acceptable, but a system-wide crash is not. In these systems, research has shown

[SIEWIOREK, 1986] that limited diagnostic fault coverage should ideally be implemented. The

second-highest availability grading is that of long-life systems, such as those of the STAR and

Voyager spacecraft systems. In these systems, diagnostic coverage is extensive and redundancy is

high.

At the top of the scale is that of real-time control systems, where faults can jeopardise human life or

have an immense economic impact. In such cases, correctness and preciseness is extremely

important. The development of systems such as SIFT designed by SRI International and FTMP by

Draper Labs [SIEWIOREK, 1986], both of which were designed for real-time control of aircraft have

led to studies and implementation of software and hardware designs that achieve ultra-high reliability

and availability. The approach taken in FTMP was to design special hardware with concurrent error

detection capabilities so that incorrect data never leaves a faulty module, whereas SIFT had to

mathematically prove the correctness of the system. Besides this, the SIFT project had to solve a

number of challenging problems, including distributed clock synchronisation and reaching consensus

on system health in the presence of faults [WENSLEY et ID, 1978; SIEWIOREK, 1986, p.460-463].

6

In a somewhat similar manner to SIFT, the space shuttle software [COOPER and CHOW, 1976;

SKLAROFF, 1976; AWST, 1981; SIEWIOREK, 1986] consists of five voters, all responsible for

guidance, navigation, control, system management, payload management, pre-Iaunch and pre-flight

checks. During critical missions, four of the five computers execute redundant tasks, while the fifth

performs non-critical tasks and acts as a backup to the primary system. Each computer compares

its own output with the other three via software. If a disagreement is detected, the disagreeing output

is signalled out, and a vote is cast regarding the disagreement. If the disagreeing unit is voted out,

then the redundancy management unit removes its computer from service. A total of three failures

can be tolerated. To minimise the probability of a common software bug, two independent companies

were responsible for the writing of software packages that met the same requirements specification.

7

1.3 OBJECTIVES

A theoretical investigation into built-in test policies and philosophies and the illustration of the practical

implementation of these techniques provides useful experience for the design of built-in tests for future

systems. The objectives in presenting the material contained herein are:

(a) to provide a base for a general understanding of relevant built-in test policies

(b) to investigate the built-in test requirements for a real-time embedded system

(c) to illustrate that features designed to aid and enhance the diagnostic capabilities of a

system should be specified during the preliminary design phases of the development cycle

(d) to show that the development of a comprehensive built-in test philosophy enables the

coherent development of the built-in test capabilities

(e) to provide an example of the integration and practical implementation of the researched

principles during the development of a typical real-time embedded system

(f) to illustrate the complexity involved in the generation of a set of built-in tests for a typical

hardware system

(g) to demonstrate the feasibility of generating a practical set of tests that are both

comprehensive and unobtrusive during normal operation, whilst simultaneously allowing a

high degree of availability to be maintained

(h) to show the attaining of the built-in test requirements by means of fault simulation on the

real-time embedded system

The concepts presented in this material may be extended quite readily to the design of various types

of small computers that have different architectures, special-purpose digital controllers or large-scale

processors designed with high availability features. In particular, the text has been written as a design

guideline for the practising electronic engineer or computer scientist developing embedded tests for

a small computer system.

8

2 THEORY

2.1 INTRODUCTION

This chapter outlines some of the theoretical aspects pertaining to hardware failures and the

corresponding faults that these failures may cause. Specifically discussed are some of the reasons

why hardware failure is a practical reality. The text includes an overview of the basic theoretical issues

relating to the modelling of faults together with techniques applicable to software tests on hardware.

2.2 FAILURE MODES

Typically in the development of a large project, the system will experience considerable reliability

growth. During early development, the achieved reliability of a new design is much lower than its final

predicted reliability because of initial engineering deficiencies as well as manufacturing flaws

[ANDERSON et ID, 1982, p. 28:12]. The reliability growth of a hardware item is a test-fail-correct

process with the aim of designing the hardware to realise its full reliability potential. Engineers will

analyze hardware in a manner aimed at identifying basic faults at the part level and determining their

effects at higher levels of assembly. This iterative documented process, known as failure mode effects

and corrective actions, can be performed with actual failure modes from field data, hypothesised

failure modes derived from design analyses, reliability-prediction activities or experience of how parts

fail.

In addition to providing insight into failure cause-and-effect relationships, the failure mode and effects

analysis provides the disciplined method for proceeding part by part through the system to assess

failure consequences. Failure modes are analytically induced into each component and the severity

and frequency of occurrence are evaluated and noted. The entire process of introducing failure modes

into a system causes a snowball effect, since the resulting failure effect becomes, in essence, the

failure mode that affects the next higher level. If the process is iterated for all failure modes, the

ultimate effect may be established at system level. In this fault-tree analysis, failure at the root may

thus be caused by a failure mode at anyone of several leaf nodes.

9

The use of computational techniques to analyze basic faults, determine failure-mode probabilities and

establish criticalities allows for the formulation of corrective suggestions, which, when implemented

will eliminate or minimise critical faults. This corrective action is most effective during preliminary

system design and after final design before full-scale production is under way. In order to achieve a

high system reliability and availability, it is essential that the hardware design engineer, the diagnostic

software engineer and the reliability engineer work together to identify and eliminate all potential

failure modes.

2.3 PHYSICAL COMPONENT FAILURES

Part failures can be broadly divided into two classes, namely malfunctioning manufactured

components and malfunctioning operational components. Although most assembly lines do have

quality control checks on delivered items, some malfunctioning parts will inevitably escape initial

detection. The classes are therefore not exclusive, since faulty manufactured components may only

fail during the mission.

Manufacturers are very concerned, however, about reducing the incidence of fabrication-related

failures in order to increase the yield and thus lower the cost of integrated circuits. For example,

recently high-density memory chips are being manufactured with redundant elements that can be

switched into operation to replace faulty elements by the use of current pulses or a laser beam

[ABBOTT, 1981; SUO, 1981; ABRAHAM and AGARWAL, 1986, p. 6].

2.3.1 Malfunctioning manufactured components

Manufacturing defects can be caused by several factors, such as defects in oxide pinholes,

photoresist or etching defects, conductive debris, scratches, weak bonds or partially cracked chips

or ceramics. Some causes of manufacturing defects are cited below

[ABRAHAM and AGARWAL, 1986, p. 6-7]:

a) Defects in the crystalline structure of silicon cause devices in the region of the defect to be

faulty.

b) Improper doping profiles can result in devices with unwanted characteristics, which in turn

can result in intermittent or permanent faulty behaviour.

c) Poor encapsulation can result in the penetration of moisture into the package, resulting in

long-term corrosion-related failures.

d) Impurities in the packaging could result in low-level radiation which can lead to run-time

data on the chip being lost.

10

e) Aluminum metal can be subject to corrosion, resulting in long-term failures.

f) High current densities in thin wires can result in metal migration, eventually resulting in a

break in the wire.

g) Formation of spurious "whiskers" can lead to resistive shorts.

h) Migration of alkali ions can cause a shift in the thresholds of transistors, which will manifest

themselves as intermittent failures, eventually becoming permanent.

i) High field intensities can impart energy to electrons, causing these "hot" electrons to move

into and be trapped in the gate oxide in MOS transistors, also causing shifts in threshold

voltages.

j) The defects may also be caused by assembly operations or even an assembly line worker's

learning, motivation, fatigue or negligence.

Failures of integrated circuits due to electrostatic discharge during assembly operations have become

more significant as technological advances have produced devices with smaller geometries and

thinner dielectrics. Studies [ANDERSON et ID, 1982] have shown that CMOS and linear integrated

circuits are the most sensitive to improper handling which can result in input gate breakdown caused

by static electricity.

2.3.2 Malfunctioning operational components

Operational malfunctions occur as a result of system operation, where simply the old age of the part

causes the physical or chemical structure of electron devices or components to deteriorate. Systems

may also be called upon to operate beyond their design capabilities due to an unusual mission

requirement, which could be detrimental to the functioning of the system and cause part failure.

Degradation in inherent reliability can also occur as a result of excessive handling from frequent

preventative maintenance or poor corrective maintenance activities. The replacement of analog by

digital circuits, aims at reducing the requirement for frequent preventative maintenance, while the

substitution of faulty hardware in a real-time system at a board level tends to reduce poor corrective

maintenance activities.

11

2.4 CIRCUIT FAILURES

Circuit faults may be classified as logical or parametric. A logical fault is one that causes the logic

function of a circuit element or an input signal to be changed by some other logic function, whereas

a parametric fault alters the magnitude of a circuit parameter, causing a change in some factor such

as circuit speed, current or voltage [FUJIWARA, 1985, p. 8].

It has been established [ANDERSON et ID, 1982] that semiconductor circuit malfunctions generally

arise from two sources, namely transient circuit disturbances and component burnout. The transient

spike or 11hazard" is more common because it occurs at much lower energy levels.

Malfunctions associated with timing are due mainly to circuit delays. Although all inputs to

asynchronous circuitry should be constrained to change only when the memory elements are in

stable conditions, delay faults could affect the timing operation of the circuit. Since an asynchronous

circuit is assumed to have a finite, positive delay, bad circuit design can result in the generation of

both transient spikes or race conditions. If either is input to a flip-flop or Schmitt trigger, or interpreted

as a control signal, this may result in an incorrect state.

2.5 FAULT MODELLING

Problems arise when attempts are made to formalise and classify all manner of faults that are likely

to occur in a set of electronic devices. The discussion above has shown that several types of failures

can occur both during the manufacture and operational life-time of a component. The types of failures

that are seen also vary with technology. For example, bipolar circuits usually have a higher device

power dissipation, are more likely to exhibit hot spots and temperature-related problems, and are also

prone to metal migration problems because of high current densities.

As technology changes and existing problems are solved, new problems arise, thus making it

impossible to list all possible failures that can be used to derive tests for circuits. Another problem

with obtaining information pertaining to long-term failures is the fact that the upgrade rate for

integrated circuits is so high that many new devices have not been in use for very long.

It can be seen that a practical approach to testing should avoid working directly with physical failures,

due to their large number and complex nature. Generally speaking, people are not interested in the

detail to basic device level of the cause of a failure, and some level of abstraction is needed. A

physical failure that changes the function of a circuit can be detected by applying an appropriate

sequence of tests to the input and monitoring the output for errors. When tested with fault models

12

of this nature, many different physical failures may cause the same error. If, however, the fault model

accurately describes all the physical failures of interest, then it is only necessary to derive tests that

detect all the faults of the fault model. In this way, the number of primitive entities to be considered

in deriving a test is reduced considerably. Quite often, the details of the physical failures are unknown

or are too numerous to consider and a fault model can be hypothesised to cover most of the possible

failures. Another advantage of this approach is that the tests may become generic and totally

independent of the current technology.

When designing hardware or software with test capabilities in mind, it is necessary to consider what

is most likely to fail. To provide an answer to this question is, of course, not trivial. The types of faults

that are known to occur from past experiences need to be considered and applied to the various

functional blocks. For example, an n-p-n transistor implementing an inverter with an open base or

collector would cause the output on the collector to be permanently high or stuck-at-1. Conversely,

a short-circuit between the collector and the emitter would cause the output to be permanently low

or stuck-at-o.

Short-circuits (known as bridging faults) generally result in stuck-at-faults. These faults are usually the

most common, but it has been revealed [FUJIWARA, 1985, p. 8-12] (i) how a CMOS two-input NAND

gate with p-MOS and n-MOS FETs can cause combinational circuits to become sequential and

(ii) how extra or missing devices in programmable array logic circuits at a particular crosspoint in the

array can upset the logical output. These mayor may not be able to be modelled by the classical

stuck-at-fault.

In determining a set of input vectors for a nonredundant logic circuit with n inputs, it is possible to

adopt a brute force philosophy by applying all 2" possible input combinations to the circuit. As n

becomes large, however, this approach becomes extremely inefficient. Examination of the physical

behaviour of the circuit reveals a smaller set of tests which will be sufficient to detect all likely

occurring faults. As an example, consider a two-input OR gate with output function F = A + B. The

analysis of typical stuck-at faults for input A is depicted in Table I. As can be seen from this

illustration, faults on input A will only be detected when all inputs are zero and when A is high and

the other input is low.

13

Table I : Analysis of the output function of a two-input OR gate with typical stuck-at faults.

Inputs Input A Expected Actual Fault

AB stuck-at output output detected

00 0 0 0 No

00 1 0 1 Yes

01 0 1 1 No

01 1 1 1 No

10 0 1 0 Yes

10 1 1 1 No
11 0 1 1 No
11 1 1 1 No

Thus, for faults on a two-input OR gate, the input test vectors are:

(i) A = 0, B = 0 : tests all stuck-at-1 faults

(ii) A = 0, B = 1 : tests input B for stuck-at-o

(iii) A = 1, B = 0 : tests input A for stuck-at-o

By induction, for an n input OR gate the input vectors will be (i) all inputs low and (ii) a ''walkingll one

on each respective input line with the rest of the (n - 1) inputs low. Similarly, for an n input AND gate

the input vectors will be the complement of the test vectors used in checking the OR gate. The test

for a NOT gate is trivial, because this is simply the complement of the input.

2.6 TESTING METHODOLOGIES

There are basically three techniques that can be applied to the generation of a test set for circuitry,

namely structural level test generation, functional level test generation and random testing. Firstly, the

structural level test generation aims at testing the circuitry mainly during the fabrication process. Each

line of a module is tested for classical faults at a electronic level. This method is therefore not

applicable to the operational testing of an embedded system and is not considered any further here.

Functional level test generation and random testing methodologies are, on the other hand, applicable

to the design under consideration and are discussed below.

14

2.6.1 Functional level testing

Since all logic circuits may be decomposed into NOT, AND or OR functions, it is possible to test for

the classical stuck-at-faults. For complex systems where the majority of the circuitry is comprised of

integrated circuits, the process of decomposing all circuitry into these basic functions would be an

impossible task. In other complex systems where no integrated circuitry exists, the decomposition

may still be far too difficult to achieve. A higher level of testing needs to be established and agreed

upon. Ideally, the implementation of built-in tests only need to resolve circuit behaviour to functional

block level. Although many of the internal gates of functional blocks are not directly influenced by

variations in I/O signals, these would be tested indirectly by the varying I/O signals of juxtaposed

gates. Thus, if a functional block is tested with sufficient input signals to test all possible functional

operations of that block and the output corresponds to what is expected for each input, then the

functional block is operating in a fault-free manner. This approach greatly reduces the complexity of

the task of writing a suite of built-in tests for any system. The objective of testing complete system

integrity is still achieved, however, provided that the built-in tests check every possible functional

operation of each block.

The functional testing approach is often the only method by which some circuits are tested. It is very

difficult to grade the quality or fault coverage of these tests, however, and it has been observed

[ABRAHAM and AGARWAL, 1986, p. 50] that in many cases these tests do not detect existing failures.

This is because the faults could cause the system to apparently perform its function correctly, while

simUltaneously performing other spurious tasks. As an example, if a multiplexer contains a stuck-at

or bridging fault, an incorrect data line (in addition to a correct one) could be selected. The

performance of these spurious tasks are undesirable and it is important that the test procedure detect

such side effects.

Two rules have been laid down [ABRAHAM and AGARWAL, 1986, p. 50] that should be followed when

using a functional block testing approach which will detect the most likely physical failures, viz.

(a) A test must verify that no unintended function was performed together with the intended

function.

(b) Information about the structure and the faUlty behaviour of the system in addition to the

functional information should be available in order to generate tests of a reasonable length

for a complex system.

15

Unfortunately, for a complex system, the number of possible erroneous functions to be checked is

extremely large, and the test would be both prohibitive and complicated. If no information is available

regarding the structure or faulty behaviour, it becomes imperative to reduce the size and complexity

of the test, which places the amount of fault coverage in jeopardy.

For the reasons discussed, the term "functional-level test generation" is defined to mean an approach

whereby a higher level fault model is first derived for the system under test to include the most likely

circuit failures. Test sequences are then derived to detect faults in this fault model. Structural

information about the system is utilized to reduce the size of the test set when this theory is applied

to the system.

The functional-level test generation is illustrated in the hierarchy of Figure 1. Tests can be generated

in relation to any level of the hierarchy, provided that the test detects a significant portion of the faults

potentially present at the lowest level in the hierarchy. Test result details can help to more clearly

separate faulty components for a variety of lower-level faults that can occur. This detail can be lost,

however, in moving up a level in the hierarchy, so careful thought must be given by the diagnostic

designer in deciding on circuit subdivisions.

CARD CAGE lEVEL

i
~··_··_··_··_··_··_··_··-··l

CONSQE lEVEL

SYSTEM LEVEL

Sl.eSYTEM LEVEL

!,-_.._""_.._.,,_.._.,,_.._.._.._,,._ .._--_.._-----:
•.._.._.i_.._..~

! !
i i
"'··-r-··_··_·,.J
_.._1 L.._.._...
i i,.._.._........_.._.. .

! !
! !
i··i·_··_··_';'"_.i

i i
r·~ :._.._.._..-.

r-··_··...i··_··_··! :

! !
i i"--'_·_--"---0-··'

! !:-_1 L.__.._..-
1

;- •• _ ••_.l_ .• _ .• -: I

! !
i i
L·T·_··_·T·J

i ii'·· "·_··_··_··i,.._.._........_.._.. .
! !
! !
i..-;-._.._.._;._j

i i
r ..J L_••_••_.•,

r-··_··J.._··_··! :

! !
i i'._. •• •• t

CARD LEVEL

F\JIICTIONAL BLOCK LEVEL

1_.._.._.._.._.._.._.._.._._
!

BASIC DEVICE OR UNE LEVEL

Figure 1 : Hierarchical approach illustrating the functional block concept.

16

The fault model for the functional block consists of a fault set FS = {f1, f2 , ••• , fm}, for m possible

faults, where f
t
is present if the ith unit is faulty [KIME, 1986]. To simplify the model, an assumption

is made that only one fault is present at any given time, and that this fault is "solid" (i.e. determinate).

The fault pattern set is therefore F = {Fo, F1, ••. , Fm}, where Fo = °and F1 = {f1}, F2 = {f2}, etc.

Tests are modelled from the same hierarchical viewpoint as faults. The levels in the test hierarchy, to

some degree, coincide with those of the fault hierarchy. A test set for a fault set FS is denoted by

TS = {t
1

, ~, ••• , t
n
}, where t j is test i for a set of n tests. A test pattern TP = {To, T1, ••• , Tp}

(where p ~ n) is defined as a subset of TS consisting of the set of all tests that failed on application

of test set TS. The set of all test patterns that are expected to occur is T = {To, T1, ••• , Tn}·

A vector notation may be used to describe test patterns. In this notation, Tv = {t1, ~, ••• , tn}, where

tl = 1 if the ith test fails, and tl = °if the ith test passes. For example, in the test pattern

Teg = (0,1,0,1), test t1 and test t3 have passed, while tests ~ and t4 have failed.

Figure 2 shows an example of a functional block, consisting of duplicated computational blocks

whose outputs (OUT1 from the first logic block and OUT2 from the second logic block) are compared

by a self-checking equality comparator. Data from an external source is buffered and the control

circuitry provides control signals for the computational blocks. The equality comparator, which is used

for concurrent fault detection during normal operation, is used here to compare the outputs of the

computational blocks under the applied test. The tests to be considered are software tests applied

by hardware external to the functional block.

The fault and test patterns are related to each other via a fault-pattern-test-pattern event space. To

illustrate the relationship, suppose that in Figure 2 the fault pattern set F is restricted to consist of a

good functional block plus functional blocks containing exactly one of the faults of the fault set

FS = {f1 ,f2 , ••• , fe}, i.e. F = {Fo, F1, ••• , Fe}.

The test set is T8 = {t1, ~, ••• , te}, where each t l corresponds to testing for each fj• Determining the

associated test patterns is achieved by examining the behaviour of each test for each fault pattern.

The event space is then formulated as per Table 11 and Table Ill. As an example, assume that the

control circuitry is faulty. On OUT1, the results of tests t1 and t3 will be indeterminate. Similarly, the

results of tests ~ and t4 on OUT2 will also be indeterminate. Test t5 will register a failure on both

outputs, while the comparator test te will not be affected and will consequently pass.

--- fi. t1

-- f3, t3 f6, t6

f2. t2 --

-- f5. t5

f4. t4 -- LOGIC
BLOCK 2

17

1-- ---tCOMPARATOR~------___.l

Figure 2 : Typical functional block

Table III may be used to perform diagnosis by assembling the actual test results into a test pattern,

known as a syndrome. The syndrome is then compared with each of the tabulated test patterns. If

a match occurs, the fault pattern corresponding to the test pattern may be present. For example, if

the syndrome is 111110, then the corresponding fault pattern indicates that fault f5 is present, and the

syndrome has enabled the diagnosis of faulty control circuitry. However, if the syndrome is 101010,

then it is indeterminate whether fault fa (logic block 1 faulty) or fault f5 (control circuitry faulty) is

present.

Table 11 : Fault table for a typical functional block.

Faulty Fault Test pattern (OUT1)
circuitry pattern Tv1 = (t1tat5te)

None Fe 0000

Buffer 1 F1 lXOO

Buffer 2 F2 0000

Logic Block 1 Fa X1XO

Logic Block 2 F4 0000

Control logic F5 XXl0

Comparator Fa 0001

o = Test passed ; 1 = Test failed ;
X = "lndeterminate"

Table III : Combined fault table for a typical functional block

Faulty Fault Test pattern (OUTl and OUT2)
circuitry pattern Tv = (t1t2tat4t5t6)

None Fe 000000

Buffer 1 F1 10XOOO

Buffer 2 F2 010XOO

Logic Block 1 Fa X010XO

Logic Block 2 F4 OX01XO

Control logic F5 XXXXl0

Comparator Fa 000001

o = Test passed ; 1 = Test failed ;
X = "lndeterminate"

Test pattern (OUT2)
Tv2 = (~t4t5te)

0000

0000

lXOO

0000

X1XO

XXl0

0001

18

19

The syndrome for the functional block may be written as a Boolean expression from the fault table

of Table Ill. This yields the syndrome:

S = f1 (t1 ~' t4' t5' le')

+ f2 (t1' t2 t3' t5' le')

+ f3 (~' t3 t4' le')

+ f4 (t1' ~' t4 le')

+ f5 (t5 le')

+ fa (t1' ~' t3' t4' t5' le)

In order to see how this expression may be used in diagnosis, suppose that the test results are

t1 = 1, ~ = 1, t3 = 1, t4 = 1, t5 = 1 and le = o. The syndrome expression yields S = f5, indicating the

control circuitry faulty. Alternatively, for test results t1 = 1, t2 = 0, t3 = 1, t4 = 0, t5 = 1 and le = 0,

S = f2 + f5, showing that either of these faults may be present.

The theory presented above can effectively be applied to represent any fault-pattern-test-pattern event

space. However, some real diagnosis problems arise in the attempt to formulate this event space,

including test completeness, test invalidation, and test result information loss. A "complete" test is one

that fails for exactly one fault from the set present, while passing for all absent faults [KIME, 1986,

p. 587]. Therefore, a test must detect all underlying faults in the hierarchy that manifest themselves

in the fault under consideration. As an example, consider buffer 1 of Figure 2 . If the test t1 for this

buffer was designed to test for all data line stuck-at faults, and instead a bridging fault occurred

between two lines, then there is a strong possibility that this fault would go undetected. Thus, if

bridging faults are assumed to occur at a lower hierarchical level and the test was not designed to

detect them, then the test is incomplete. In general, test completeness, although assumed in the

theory presented, is difficult to achieve in practice.

Another problem is that of test invalidation. A complete test is defined to be ·valid" if it always fails

when one or more of the faults for which the test is complete exists, and always passes when all

faults for which the test is complete are absent. What this definition is saying is that, ideally, the result

of a test on one or more faults is not influenced by the presence or absence of other faults.

Unfortunately due to circuitry interaction, this is usually not the case in reality.

20

A third diagnostic problem is that of information loss. In performing any form of diagnostics, there is

a distinct trade-off between the complexity involved and the amount of information lost. As an

example, suppose that two tests t1 and ~ have the same results for fault pattern F1 (00 or 11) and

complementary results for fault pattern F2 (01 or 10). If this was the only method of distinguishing

between the two faults and this fact was overlooked by the modeller (i.e. the test results were

modelled as "don't cares" for both fault patterns), then important test result information would have

been lost in the diagnostic design process.

2.6.2 Random testing

The studies of functional-level test generation have exposed several problems associated with the

practical implementation of the theory. Another approach, which can be applied independently or

together with the functional approach, is that of random testing. This is probably the simplest

approach to the test generation problem. Instead of basing test vectors with specific fault models in

mind, the tests are chosen independently according to some fixed probability distribution and applied

to the circuit under test. The functional operation of the circuitry is considered, and a test is generated

based on this functional operation. The output is then compared with an expected error-free reference

vector.

Although simplifying the task of generating a suite of tests, this method immediately poses three

queries, namely:

(a) What is the number of test vectors to be randomly applied to a particular circuit ?

(b) What is the size of the fault coverage for a particular circuit ?

(c) What is the level of confidence that can be placed on the test results?

The determination of the length of the random sequence that is required to obtain a satisfactory fault

coverage can entail an analysis which can be more complicated than the deterministic test generation

procedure being replaced [SHEDLETSKY, 1977; ABRAHAM and AGARWAL, 1986, p. 72]. Although

an analytical method of estimating fault coverage would be preferable, it has been revealed

[SHEDLETSKY, 1977] that none of the techniques yet developed are capable of getting accurate fault

coverage estimates without a great deal of computation. During system development it may be

necessary, therefore to use fault simulation techniques to determine fault coverage.

21

2.7 SUMMARY

This chapter has provided an introductory discussion of failure modes and the physical failure of

components resulting from defects during manufacturing or failure during operation. In addition, a

discussion of parametric and logical circuit faults was also provided. The formalisation and

classification of all manner of faults for a complex real-time embedded system was shown, however,

to be impractical. It was established that a better approach to generating tests is to apply some level

of abstraction to the system under test. For this reason, the discussion dealt with a hierarchical

approach to fault modelling and test generation. An example was introduced in an attempt to convey

the complexities involved in designing a suitable test for typical circuitry. The example illustrated that

the number of input test vectors that detect a known classical fault for a particular circuit may be

reduced considerably if the physical behaviour of the circuit is examined.

Three testing methodologies were introduced, namely that of structural-level test generation,

functional-level test generation and random testing. The electronic level of the structural-level test

generation technique rendered this method inapplicable.

A fairly lengthy discussion was presented regarding the functional-level testing methodology. Applying

this technique, the designer decomposes the system under test until a functional block remains. All

classical faults in this functional block then form a fault set. Under the assumption that only one fault

is present at anyone particular instant, the test set is generated. Each test is designed to test for a

corresponding fault. Consideration is given to the logic output corresponding to the application of

each test and a fault-pattern-test-pattern event space is constructed. The syndrome that enables fault

diagnosis from the fault and test patterns applied to the functional block may either be determined

from the fault-pattern-test-pattern event space or from the resulting Boolean expression.

Random testing, on the other hand, considers the test generation problem from a more statistical

viewpoint. Tests are chosen independently according to some fixed probability distribution. A brief

discussion of the advantages and disadvantages of this approach was included in the text.

Several problems associated with the testing techniques that face the diagnostic designer were

described. These included test completeness, test invalidation and test result information loss. In

addition, queries concerning the determination of the number of test vectors, establishing the fault

coverage and determination of the level of confidence in the test results were posed.

22

The testing methodology applied will depend ultimately upon the system under consideration. A

logical approach is to combine the theories of functional level test generation and those of random

testing in order to devise non-deterministic test vectors for some cases. Although the functional test

generation technique should be the main approach, some of the classical faults should also be borne

in mind in designing the tests. This would enable a higher level of testing to be applied whilst

simultaneously maintaining a reasonable level of confidence in the system integrity.

23

3 PHILOSOPHIES

3.1 INTRODUCTION

Up to this point, not much has been said concerning the policies and philosophies that should be

adhered to throughout the development of a system with testable features. This chapter aims to

introduce and describe those idealogies. The built-in test features may be divided into three modes

of operation, viz. (i) Power On Self Tests at system start up, (ii) on-line diagnostics and health

monitoring and (iii) off-line diagnostics. Philosophies applicable to each mode are discussed in the

ensuing sections.

Standardisation policies are discussed at both system and component levels. The component level

standardisation discussion presents theoretical issues and generic routines pertinent to the generation

of tests for common hardware components.

3.2 BUILT-IN TEST PHILOSOPHY

A real-time system must be able to provide a service that can be closely defined in terms of

guaranteed minimum mean time between failures and mean time to repair. If faced with a hardware

failure, the system should, if possible, provide a useful degraded service that still enables quick and

easy fault diagnosis. Built-in test equipment (BITE) and built-in tests (BIT) are designed in such a

manner that systems may test themselves, providing both diagnostic capabilities and a confidence

check of the system. BITE is the hardware built into the circuitry that provides fault detection, whereas

BIT is the fault detection or diagnostic routine that utilizes BITE and/or test sequences to facilitate the

task of locating defective units.

The incorporation of BIT and BITE in system design is essential in detecting and diagnosing all

manner of failure modes in both the development and applications of a real-time system. In order to

maintain a higry system availability during a mission, the trend in system design is to incorporate

enough testability that checks the entire system integrity, whilst simultaneously not causing an excess

on system overhead.

Both BITE and BIT apply a sequence of input patterns that produce erroneous responses when faults

are present and then compare the responses with expected ones. In order to design a complete test

sequence for a specific circuit, the test conditions must be oriented toward checking the circuit at the

level of the components themselves, rather than at the level of the microinstruction set.

24

The existence of fault models at the various levels of a hierarchical design is useful for finding the

effects of faults and deriving tests in a hierarchical fashion, treating the testing problem in much the

same way as the original design problem. Principles normally associated with the design for testability

theory are applicable to the test generation process in such a case. Two guidelines should be used

throughout the implementation of the BIT for a real-time system. Firstly, it should be attempted to
•

adhere as far as possible to the enhancement of controllability and observability in the division of

circuits into subcircuits, since it has been established [FUJIWARA, 1985, p. 145-149] that the

testability of a circuit is closely related to these two factors. Secondly, the top-down approach of

"divide and conquer" should be incorporated. The system as a whole should be partitioned into

smaller and smaller constituents until a functional block remains. It has been shown [FUJIWARA,

1985, p. 145] that the computer run time to generate tests is approximately proportional to the

number of gates to the power of three. Thus, dividing a circuit in half, reduces the BIT task to one

eighth for each of the two subcircuits.

3.2.1 Power On Self Test (POSn

To ensure confidence that the system will perform reliably before entering a normal operational

environment, initial"sanity" tests should be performed by the resident firmware. This start-up testing

serves to validate the hardware and provide the operator with advisory notifications of critical

hardware failures that would prevent normal system operation. Tests should be run in a sequence that

examines as much circuitry as possible as quickly as possible.

At system start up, the embedded firmware should execute diagnostics on the integrity of the real­

time system in an "expanding kernel" manner, i.e. basic critical tests should be initially performed,

followed by further tests based on the former results. Certain functional units should be defined to be

critical, and, in the event of failure, the error should be reported, if possible, and the system halted.

If a non-critical unit fails a power-on self test, it should ideally report the failure to the operator, but

operation should be able to continue at the discretion of the operator.

Normally in a real-time embedded system, a single board computer is executing as master, and in

the "expanding kernel" fashion this card would initially test the processor ROM and RAM followed by

other on-board peripheral chips. The basic idea is to start evaluating a small section of the processor

card and to expand the diagnostic process to include more and more hardware with each succeeding

step until the entire card has been completely tested. If no critical faults have been detected, off-board

tests should be performed in a logical order. Ideally, these off-board tests should be to poll the

presence status of the various cards in the system, followed by integrity tests based upon the

presence results. Intelligent units should simultaneously perform their own POST and report their

25

results to global or dual ported RAM locations. These locations, together with units equipped with

BITE circuitry that can report aspects of their operational status may then be interrogated and their

status recorded. Usually some degree of checking can be applied to external devices and interfaces.

For example, it may be possible to loop outputs back to inputs, thus testing through the interface

packages to the peripheral side.

Ideally, no tests should be performed that rely on the functionality of untested units. The bootstrap

approach of testing the integrity of the core of the system first can be based on one of two

philosophies. Firstly, the designer may build the core using sufficiently reliable components that the

BIT may assume the core to be fault-free. With this approach, the BIT may neglect the testing of the

core and immediately proceed to examine the rest of the system. In general, this is an extremely poor

assumption, because all electronic components have a finite life-time. The alternative and more

realistic philosophy is to specify that the core must first be validated. Ideally, however, the philosophy

employed in the implementation of BIT for a system should be a combination of the above two

approaches. Therefore, the integrity of the processor, ROM and RAM should all be tested, and the

components used in the design of the core should comply with relatively high reliability requirements.

In a real-time embedded system it is not possible to test the functionality of the core without relying

on the functionality of untested units, and, hence some faith must be placed in the core of the system

being operational. Thus, in order for the system to test itself, quite a bit of the hardware must already

function correctly. In this sense, the POST does tend to be of rhetorical significance, but, if the system

passes all tests, it does provide the operator with confidence that the system is indeed operational.

Beyond this, however, it should be realised that system self tests do have severe limitations in some

cases.

The POST is required to test as many of the system functions and interfaces as possible, while

simultaneously minimising the time from system start-up to full operational status. If the POST is

suspicious with regards to the correct operation of certain hardware functions, these should be

reported, since this indicates a potential problem. The onus should then be on the operator to

perform more extensive off-line diagnostic testing.

26

3.2.2 On-line diagnostics and health monitoring

Whilst continuing to perform its main applications task, a real-time system should be performing some

form of health monitoring, especially in circumstances where availability is of paramount importance.

In these environments, for example, railway signalling, telephone switching or process control, space

or military applications, triple redundancy schemes have been designed. In such a configuration, three

complete systems operate in synchronism and periodically compare results. Democracy rules in such

an instance, because any unit which produces a result at variance with the results of the other two

is out-voted and ignored. In some sophisticated systems, limited corrective measures are taken by

the BIT, pending operator intervention, and the out-voted system either disconnects itself from the

network, or is disconnected by one of the other two. In nearly all redundancy configurations,

maintenance action can be undertaken even if the system continues operation by means of its back­

ups. Standby machines do not contribute any useful work except in emergencies. In order to gain

full advantage of the redundancy and to improve availability, any fault should be reported immediately

so that repairs can commence as soon as possible.

The disadvantage associated with on-line testing is the overhead involved in interrupting the main

applications task of the system. This overhead must be weighed against the possibility of a failure

occurring in the interval during which the test sequences are not being run. Such a failure will not be

detected by the BIT, and the system may produce erroneous results. To minimize the likelihood of

this happening, the frequency of the health monitoring tests may need to be increased. Some systems

[KRAFT and TOY, 1981, p.212-214] avoid the need to increase the frequency of testing by

implementing a "duplication and match" philosophy. In such instances, redundant systems act as

··shadow processors", matching critical outputs. When these outputs disagree, fault diagnosis routines

are called to establish which system is at fault.

In addition to the firmware, the hardware also performs on-line diagnostics by means of integrated

circuitry designed for the automated detection and indication of fault conditions (BITE). BITE can be

designed to provide immediate notification of hardware failures as they occur. The operator should

be aware of the techniques of fault indication employed by the system hardware, as these may be

by visual or audio alarms [STEGE, 1988].

It can be seen from the above discussion that two major classes of redundancy exist, namely active

redundancy and passive redundancy. The latter requires that external elements detect, make a

decision, and switch to another element or path as a substitute for a failed element or path, whereas

for active redundant circuits this is not the case. The decision to use redundancy must be based on

a careful analysis of the trade-ofts involved. Usually the introduction of redundancy increases safety

27

and mission reliability and availability, but reduces the mean time between failures. When methods

of part improvement are shown to be more expensive than duplications or when other ways of

improving system availability have been exhausted, redundant design techniques may be the only

answer. It may be advantageous to use a redundant design when preventative maintenance is desired

with no system down-time or when maintenance is impossible (e.g. an unmanned missile). In such

cases, the prolonged real-time response caused by the redundancy needs to be carefully considered.

Other disadvantages that also need consideration are increases in weight, space, cost, design time

and complexity, which, in turn, results in an increase of unscheduled maintenance actions.

3.2.3 Off-line diagnostic

The off-line diagnostics are usually executed via menu-driven dialogue at an operator I/O device. They

may be run individually, in sequences, cyclically, or interactively under the control of the operator. The

operator may initiate off-line diagnostics at any time to confirm or analyze more closely a suspected

failure detected by the POST or on-line health monitor. An advantage that off-line testing has over the

background health monitor is the facility of more rigorous and controlled test conditions, because

the module under test is isolated from operational mode conditions which mayor may not be

confusing the health monitor. Another advantage is that the off-line tests may also be used to

commission a newly replaced module before it enters operational service.

Once a faulty unit has been positively identified by either the BITE or BIT, no other diagnostic action

may be required, since the fault may be corrected by simply replacing the unit. The use of single

boards to house the associated electronics of large-scale integrated circuits that implement

processors and memories has aided the philosophy of isolating faults to line replaceable units. In

manned systems where the skilled maintenance personnel are not readily available, the operator will

have the responsibility of repairing a fault which may arise. If the standard repair procedure to be

observed by the operator when a fault occurs is the replacement of the circuit board containing the

fault, then the both the system maintenance and the fault resolution are considerably simplified. It may

still be necessary, however, for the fault resolution realised by the diagnostic routine to proceed one

level deeper and to test all functional units on the board. If a fault occurs and is diagnosed to a single

board, repair by replacement is a quick, simple and highly cost-effective approach to servicing a fault.

A faster repair time for the faulty unit, together with the cost saVings of not having to develop

additional fault diagnosis hardware and software, justify the cost of replacing an entire circuit board.

Alternatively, the faulty circuit board may be handed over to maintenance personnel at a later stage

who may then execute further diagnostics to a greater resolution.

28

This hierarchical view of faults can be very simply illustrated with regards to the goals of a diagnosis.

Suppose that the goal of diagnosis is to identify a faulty board in a subsystem. Once the board is

removed from the subsystem, the new diagnosis goal is to locate the faulty physical component on

the board. When the level of the faulty component is reached, it is unnecessary to perform further

diagnosis because no lower level of repair is possible. The lower levels in the hierarchy are still

important, however, because the accomplishment of the series of diagnostic goals depends on the

detection of a fault at the lowest level, such as a stuck-at fault on the output of a gate.

After substituting a new module for a faulty one, the integrity of the replacement unit must also be

verified, as there is no guarantee that it is compatible with the system. Ideally, the system would have

been shut down during unit changes, implying that on power-up, the POST will once again be

performed. However, it may be necessary for the complete system containing the new unit to be

exercised exhaustively to ensure that no further faults exist.

In all of the above three BIT and BITE categories, the BITE may operate together with the BIT or

independently of it. If operating independently, non-software addressable BITE circuitry within the

hardware could simultaneously monitor and give the operator notification of fault conditions. If,

however, the BIT and BITE are operating interactively (i.e. the BITE is software addressable), BIT can

poll the BITE status or the BITE can be designed to interrupt the system processor when a fault

occurs.

3.3 STANDARDISATION PHILOSOPHY

When designing a real-time embedded system that is relatively large and that requires a team effort

to achieve objectives, it is advantageous to strive for standardisation amongst common hardware and

software modules. If cards are standardised (and hence interchangeable), then more line replaceable

units will be available in the event of a card failure. For example, suppose that subsystem x is

executing a critical task where lives and/or property are at stake and an interchangeable unit fails.

If there are no more spare units available and subsystem y is idle or executing a non-critical task, then

the common hardware may be retracted from subsystem y and inserted into SUbsystem x.

Standardisation not only enables interchangeability of the common hardware modules, but also

simplifies and minimises effort during the development cycle.

It has been mentioned in previous discussion that the top-down modular decomposition design

approach should be used to define functional blocks to be tested in order to achieve overall system

testability. To a certain extent, this classical approach should also be used in the design of the system

software. The problem with top-down decomposition and the ensuing stepwise refinement, however,

29

is that single-purpose functional primitives usually result, that are generally only applicable to the

problem statement of the software requirements specification at hand. Although the design meets the

initial specification, it is not centred around any identifiable object, and is inevitably not reusable. It

is for this reason that the design of the BIT should be to follow current software trends in adopting

an object-oriented design methodology. This methodology imposes constraints such as abstraction,

information hiding and the formalised encapsulation encompassing the module concept with distinct

interfaces and implementations [BAlLlNGER and CONRADIE, 1990]. The modules then designed are

totally generic and exhibit reusability with a large range of applications. When comparing these

generic techniques to other ad hoc methods of software design, a trade-off exists. Ad hoc techniques

aim at makir:-'g a given design more testable by a relatively inexpensive method, whereas the generic

approach is much simpler, reusable and easily maintainable [FUJIWARA, 1985, p. 144; AllWORTH

and ZOBEl, 1987, p. 113-115].

The standardisation effort can be broadly viewed from two levels in the aforementioned hierarchy. At

the first level, common boards both at system and subsystem level should be identified and, if

possible, standardised. At the second level, common components on cards should also be identified

and an attempt should be made to write standardised "library" routines supporting these common

components.

The standardisation philosophy should be applied at all hierarchical levels during the development

phase. Provided that the standardised routines have been fully tested and are free of bugs, the overall

design effort is considerably reduced. The drawback, however, is that the need now arises for the

designer to'write a formal interface requirements specification. Fortunately, this drawback sometimes

tends to be beneficial to the designer, since it now becomes essential to study interfaces that were

possibly overlooked in the original software design. Furthermore, if the number of these common units

is fairly large, the reduction in software design effort more than justifies the additional effort of the

writing of the specification.

3.3.1 System level standardisation

The identification of an intersection set of modules that are common in an array of n SUbsystems is

referred to as the standard computing segment. In designing a standard computing segment for a

real-time system, the designer is faced with various options regarding the unique identification of each

subsystem. The advantages and disadvantages of each choice need to be carefully considered and

the appropriate decision implemented.

30

Firstly, the designer may regard the hardware and firmware of the standard computing segment to

be totally standardised and the applications code to be loaded into RAM from a mass storage unit.

This option is similar to that of the classical "personal compute.... where applications files are loaded

from hard or floppy disks. The advantage of this approach would be a totally standardised console

throughout all n subsystems. This would be particularly advantageous if the number of subsystems

was large and thus justified by bulk production. The disadvantage, however, is that each subsystem

has to cater for the hardware needs of all the other subsystems. If the applications are quite diverse,

this could have a substantial economic impact.

The second option in defining a standard computing segment is similar to that of the first option. The

designer still views the hardware and firmware of the standard computing segment as completely

standardised. However, instead of loading the applications code into RAM from a mass storage

device, all the various applications are an integral part of the standardised code and the configuration

of the subsystem is dynamically reconfigurable by operator intervention. Ideally, the standardised

code should interrogate the system to decide what hardware is available and, based upon this

decision, offer the operator the choice of the subsystems available. Once again the advantage of

adopting this approach would be a totally standardised console throughout all n subsystems. The

disadvantage of the first option no longer exists since the system knows what hardware is available

at power up. Instead of each subsystem having to cater for the hardware requirements of all the other

subsystems, the responsibility is now shifted to the firmware. Thus the drawback is a significant

increase in the BIT software complexity as this now has to allow for all the various hardware

permutations and eventualities that may occur.

Finally, the BIT firmware may require that one card in the standard computing segment allow for the

unique identification of each subsystem. Although this implies that the card itself is not standardised,

it has the advantage of being the simplest approach. As an example, suppose that a computing

segment consists of a main applications processor card, a memory card and a system data bus

controller card connected via a Multibus backplane and that all three cards have their own on-board

ROM. Furthermore, suppose that at system level, these cards are common to all n subsystems that

interface to the system data bus, i.e. they form the standard computing segment. In an effort to

achieve standardisation and interchangeability throughout these various SUbsystems, a generic set

of routines that are common to all SUbsystems (referred to as the standardised code) could be

written. The memory card could be identified as being common subsystem hardware containing

unique subsystem-specific applications code. The standardised code resident on each main

applications processor card of all n subsystems could then reserve an area of the ROM on the

memory card that provides the standardised code with a description of the system configuration.

31

3.3.2 Component level standardisation

Several devices are common to most intelligent boards and it is appropriate to discuss the application

of test philosophies to these common components. Although these components may vary in

technology, their purpose is respectively the same, implying that generic test philosophies may be

applied to each type of device. It is advantageous to standardise the application of such test

procedures, and, in particular those applicable to the testing of the core system of an intelligent

board.

Diagnosis of faults cannot be reliably performed if the core itself is not functioning correctly. Ideally,

the core system should be tested by an external source that is known to be fault-free. Such an

external source could be human or electronic. If the core system is required to be tested by a manual

check, however, this is extremely error-prone and certainly not a mature system design approach.

In addition, an embedded system interfaces mostly with users that are usually unskilled in electronics

as opposed to trained maintenance personnel. Alternatively, if the external source is electronic, the

question then arises as to what will test the external source itself. This dilemma causes the system

designer to view the design as an isolated and independent entity that has no external source

available to test the core. The BIT must therefore rely heavily on the BITE in order to detect any

arising fault in the core system.

Even if the BIT is not able to provide a reasonable diagnosis of a fault occurring in the core system,

it still performs an extremely useful function inasmuch as providing a reasonable amount of

confidence in the correct operation of the hardware. This far outweighs the disadvantage of extra cost

and effort in the writing of the software.

One of the objectives in system design is to minimise the amount of hardware in the core system,

but still providing a mechanism to facilitate the testing of it. The majority of the core system will

include the ALU, the registers, control circuitry and data transfer paths that perform the opcode fetch­

execute sequence, the system clock and a small portion of memory. Ideally, the diagnostics that test

the major portions of the overall system will be code resident in ROM, thus keeping the core system

to an absolute minimum and eliminating the necessity of bootstrapping the BIT from an I/O device.

32

In a previously developed system, each microprocessor, on-board ROM and on-board RAM was

defined to comprise the core system. The philosophy adopted was for all intelligent units resident in

the system to test their own core system concurrently at system power up. The core system thus

forms an important portion of the entire BIT effort and the theory applied to the testing of the core

system is now introduced. The algorithms used to implement the theory are also presented.

3.3.2.1 Test generation for microprocessors

The microprocessor is an extremely complex device and there is an added difficulty because the

description of the fault-free microprocessor is itself not elementary. The various fault models that have

been suggested [ROBACH and SAUCIER, 1975; ROBACH and SAUCIER, 1978; THATIE and

ABRAHAM, 1980; BRAHME and ABRAHAM, 1984; ABRAHAM and AGARWAL, 1986, p. 59-67] should

be compared and the appropriate decision taken based on the operational requirements of the user.

One proposal presented is to check each instruction in the instruction set. Another suggestion is

simply to run applications programs, and, if these execute successfully, to assume that the

microprocessor is operating in a fault-free manner. Although the former proposal would certainly be

an exhaustive test, this approach is extremely tedious. Adopting the latter approach would, on the

other hand, reduce the confidence of the user.

Techniques have also been presented to derive tests for general microprocessors to detect faults in

the fault model [PARTHASARATHY et ~l, 1982; BRAHME and ABRAHAM, 1984]. The approach

adopted in developing a generic routine for the microprocessors of a system could be based on these

techniques. The fault model of the microprocessor and its various functions together with a definition

of the faulty behaviour for the functions is developed at the instruction and register transfer level.

Adopting this approach, however, poses the problem of deriving tests for the faults, since in order

to check for an instruction or internal state of the microprocessor, other (possibly faulty) instructions

must be executed. The faults that are attempted to be detected may be masked by these faulty

instructions.

A microprocessor is modelled as a graph where each node represents a register or set of registers.

An edge represents data or information transfer. Instructions are modelled as consisting of sequences

of microinstructions, with each microinstruction consisting of a set of micro-orders. This conceptual

model also applies to non-programmed microprocessors.

33

The principles presented in the references cited were applied to the Intel iAPX 8086 microprocessor

family to produce the data transfer graph together with the associated sample set of micro-orders

given in Figure 3 and Table Ill, respectively.

IP: INSTRUcnON POINTER

PC : PROGRAM COUNTER

(

os. sa. DS. ES

AX. ax. ex. DX

.p..... SI. DI

Figure 3 : Data transfer graph representing the Intel 8086 microprocessor family

Table I~I : Sample set of micro-orders for a typical microprocessor

Type 0 : Clear, Negate, Shift, Rotate
Type 1 : Move, Test, AND, OR, Exclusive OR, Exchange
Type 2 : Add, Subtract, Multiply, Divide

34

The eight general registers (AX, BX, CX, OX, BP, SP, SI and 01) of the 8086 microprocessor family

form a set of equivalent registers, as do the four special purpose registers CS, SS, OS and ES. In

addition, the code segment register (CS) is used together with the instruction pointer IP to form the

program counter PC. All data I/O is performed through the external interface nodes IN and OUT,

respectively. The micro-orders are divided into three types depending on their function. A micro-order

is of type 0 if it operates on one register only, type 1 if it involves a transfer of data from one register

to another or if it is a logical operation, and of type 2 if it is an arithmetic operation.

The functional blocks for which models are proposed are registers and register decoding, data

transfer paths, the arithmetic and logic units and the instruction decoder and control function. For the

register decoding and registers, failures may occur in any manner that corresponds to failures in RAM.

This fault model is hence considered to be the same as that of the RAM and is discussed later.

Typically a data path consists of the internal data bus, address bus, and input and output busses

connected to the ALU. Any number of lines of a data path may be stuck-at-zero or stuck-at-one and

any pair of lines could be coupled. Two lines i and j are coupled if the value of j depends on the value

of i. Furthermore, any number of data paths in a microprocessor may be faulty in any manner

described.

The arithmetic and logic unit design varies between microprocessors (even within the Intel 8086

family), depending on the ALU capability as well as the speed of operation. Tests must be derived

for a particular design of ALU based on a fault model that is most appropriate for that design.

Generally the test consists of instructions to transfer the operands from memory to the source

registers, instructions to perform the operation under test, and instructions to read the results from

the destination register into memory.

Faults in the instruction decoding and control unit could be generated by one or more of the following

events:

(a) The failure in execution of one or more of the micro-orders causes an incorrect or

incomplete instruction execution.

(b) A set of incorrect micro-orders that are active in addition to the correct active micro­

orders causes spurious execution of microinstructions.

The testing of the instruction decoding and control function is the most difficult part of the test

generation procedure for microprocessors. A step-by-step procedure has been outlined

[PARTHASARATHY et ai, 1982] that can be generically applied if the testing is done from an external

35

source with the aid of diagnostic tools such as a logic analyzer and an oscilloscope. Due to the

"stand-alone" nature of an embedded system, this is not possible, and the test generation algorithm

must rely on untested hardware.

Following the principles outlined earlier and other theory that has been set out

[PARTHASARATHY et ID, 1982], the high-level test generation algorithm for the system-wide generic

tests of the Intel8086 microprocessor family is presented in Table IV. Test generation algorithms for

detecting faults in the instruction execution process are based on testing the reading of registers for

all registers by executing the reading instructions in a particular order. It should be noted that the

read instructions themselves could be faulty.

~able IV : Test algorithm to detect faults in a typical microprocessor

1) Test the core set of instructions, i.e. loading of registers, comparison of registers, absolute
jumps and conditional branches.
2) Test the ability to read registers without disturbing other registers.
3) Test the general purpose data movement.
4) Test the status register, i.e. the zero flag, the carry and overflow flags, the parity flag and the
sign flag.
5) Test the ability to perform shifts and rotations.
6) Test the ability of the arithmetic and logic unit to perform correctly.
7) To ensure proper procedural transfer of control, test that the stack manipulation is operating
in a fault-free manner.

A core set of instructions is first checked, and the remaining instructions are then tested. Table V

gives a more detailed presentation of the test for core instructions. Note that in presenting the

algorithm, certain assumptions are made, viz.

(a) the number of memory write operations does not increase when a fault exists

(b) when faulty, the maximum number of microinstructions in an instruction does not exceed

some finite value M and the maximum number of micro-orders in a microinstruction does not

exceed N.

In Table V the compare and branch instructions are tested for all conditions. The compare instruction

is executed N * M + 1 times to ensure that faults will not mask each other. It can be proved

[ABRAHAM and AGARWAL, 1986, p.64] that any existing fault will be detected in the worst case after

this number of iterations.

36
Table V .: Core instruction set test procedure

START:

A:

mov Reg1, #Data1

mov Reg2, #Data1

cmp Reg1, Reg2

je A
jmp ERROR

je TEST_LOAD
jmp ERROR

; Reg1 = #Data1

; Reg2 = #Data1

TEST LOAD: mov Reg1, #Data2

mov Reg2, #Data3

cmp Reg1, Reg2

je ERROR
mov Reg1, Data1

mov Reg2, Data1

je ERROR

; Data1 < > Dat~

; Dat~ < > Data3

; Repeat N * M + 1 times

; The rest of the microprocessor test is executed at this stage.

ERROR:
FINISH:

mov AL,l
jmp FINISH
mov AL, 2
ret

; AL = 1 for a successful test

; The accumulator is loaded with a two for a fault

3.3.2.2 Test generation for ROM

Most ROM tests perform a sum of the bytes stored in the ROM and compare this calculated sum with

a stored checksum. This text proposes the implementation of a ROM checksum test of a different

nature. The algorithm is based on the polynomial or cyclic redundancy code (CRC) error detecting

and correcting theory for data transmission [TANENBAUM, 1981, p. 128-133]. It is extremely important

for the ROM to be error-free and this method is proposed due to its relatively high probability of error

detection.

Polynomial codes are based upon treating bit strings as representations of polynomials with

coefficients of 0 and 1 only. A k-bit binary string is regarded as the coefficient list for a polynomial

with k terms, ranging from >1-1 to >t. The CRC-CCITT international standard of X18 + X12 + >t + 1

(10001000000100001 binary) is one such polynomial that could be used. Studies have shown

37

[TANENBAUM, 1981, p. 132] that this polynomial detects all single and double errors, all errors with

an odd number of bits, all burst errors of length 16 or less, 99.997% of 17-bit error bursts, and

99,998% of 18-bit and longer bursts.

The ROM bank (with the exception of the checksum itself) should be treated as a long binary number

and the CRC-CCITT polynomial then divided into the bank by a process of long division. The

remainder becomes the calculated checksum and this is compared to the stored checksum. The

application of this theory implies that for all on-board ROM tests, the code will effectively perform a

checksum test on itself.

An example of the Implementation of the process of long division of the polynomial into the ROM

bank is portrayed in the algorithm of Table VI. The bank is divided into its 64 Kbyte constituents and

a remainder is calculated firstly on a byte-by-byte basis (procedure CRC_RESULT) and then on a

block-by-block basis (procedure TEST ROM BLOCK). The result is compared to a stored checksum.- -

Table VI : Generic ROM checksum algorithm

CRC RESULT

begin
Determine the remainder when dividing the incoming byte by the polynomial.
Return the remainder.
end

TEST ROM BLOCK

begin
Iterate the CRC RESULT calculation for the size of each ROM block.
Accumulate this-remainder for the entire ROM bank.
Return the remainder.
end

38

3.3.2.3 Test generation for RAM

The purpose of random access memory is to store a range of bits in each cell. The microprocessor

must have the ability to read from or write to each cell without altering the value stored in any other

cell. It has been explained [THATTE and ABRAHAM, 1977; NAIR et ai, 1978; SUK and REDDV, 1981;

ABRAHAM and AGARWAL, 1986, p. 56) that the RAM test needs to be able to test for the faults as

set out below:

(a) Test for memory cells that are stuck-at-zero or stuck-at-one.

(b) Test the ability to perform zero-to-one and one-to-zero transitions.

(c) Test for coupled cells.

Several algorithms have been proposed to detect the classical faults which can occur in RAMs

[KNAIZUK and HARTMANN, 1977). These algorithms vary considerably and there is a distinct trade-off

betWeen their associated fault coverage and duration of execution. The most exhaustive test is one

designed to cause a zero-to-one and a one-to-zero transition for each memory cell with confirmations

between transitions that check that the data has been stored correctly. For memory with n cells, this

procedure would involve a write to a single cell plus reads from all n cells. The test would have to be

repeated n times to check the entire memory range. Empirical evidence has shown [HAVES, 1975;

ABRAHAM and AGARWAL, 1986, p. 54) that this exhaustive test is of the order of n2 in length, which

is far too comprehensive to be practically viable, because it would probably exceed the time

constraints provided in the requirements specification.

Another approach is to "march" a set of logic highs and lows down the address bus in some

sequence and then to repeat this performance with complementary data. Although this test takes a

time proportional to n [ABRAHAM and AGARWAL, 1986, p.54), it does not test the RAM very

thoroughly.

The derivation of an algorithm to test a subset of memory cells which provides enough confidence

in the integrity of the RAM without weighing too heavily on system overhead is now outlined. The

approach generically adopted for a system under test should conform to aforementioned

philosophies. Thus the integrity of the data and address busses should be established prior to the

testing of the RAM devices. The algorithm is presented in Table VII.

39
Table VII : Generic system RAM test algorithm

Read a predefined location and abort if a time-out occurs.

2 Write data pattern 55 hexadecimal to this location.
3 Read and verify the location.
4 Write data pattern AA hexadecimal to the same location.
5 Read and verify the location.
6 Write data pattern 55 hexadecimal to this location again.
7 Read and verify the location once again.

8 Write to the same location and read and verify the proper execution using hexadecimal
data patterns FF, FO, FB, F7, EF, OF, BF and 7F respectively.

9 Write unique patterns to unique addresses.
10 Read and verify the values at the addresses generated in the previous step.

11 Test the RAM itself by writing 55 hexadecimal to each location.
12 Alternately perform a "dummy" write to clear the data lines and read the RAM to verify

that all locations are 55 hexadecimal.
13 Write a data pattern of AA hexadecimal to the RAM locations.
14 Alternately perform a "dummy" write to clear the data lines and read the RAM to confirm

that each location is equal to AA hexadecimal.

Step (1) of Table VII checks to see whether the RAM that is about to be tested is available in the

system. If the RAM is not available (detected, for example, when a time-out occurs) the memory

should be marked as absent and the test aborted.

Successful completion of steps (2) to (7) implies that each of the eight data lines have undergone a

zero-to-one-to-zero transition, which proves that there are no stuck data lines. Step (8) examines the

possibility of shorted data lines by transmitting a "walking zero" down the data bus and, on successful

completion, proves that no two data lines are coupled. In the event of failure, the test enables quick

and easy identification of shorted lines by means of analyzing the results read.

Steps (9) and (10) validate the address bus by exercising each address line and writing a unique

pattern to a unique address. Once the entire address range has been written to, the values are verified

by reading the same address range. The generic algorithm is presented in Table VIII and the

addresses generated by this algorithm to exercise the first eight address lines are presented in

Table IX.

Finally, steps (11) to (14) of Table VII checks the ability of the RAM to store information and tests for

possible coupling of adjacent memory cells. It ensures that every bit in the RAM has undergone a

zero-to-one-to-zero transition and that the RAM is fully operational.

Table VIII : Address generator algorithm for generic system RAM tests

GENERATE RAM PATTERN- -

begin
For each 64K RAM block

begin
Determine next address
Increment data counter
If the action required is to write the data then

begin
Write the data
Check whether a time-out occurred
end

else
begin
Read the data
Check whether a time-out occurred
Verify the data
end

end
end

Table IX : Generation of addresses to check the validity of the address lines.

40

Data
(Hex)

00
01
02
03
04
05
06
07
08

Address
(Hex)

0000
0001
0002
0004
0008
0010
0020
0040
0080

Comment

Initialises address bus
Exercises Aa
Exercises A1

Exercises ~
Exercises ~
Exercises A4

Exercises As
Exercises Ae
Exercises A7

41

3.4 SUMMARY

Philosophies applicable to the generation of a set of tests for a real-time embedded system were

discussed in this chapter. In particular, the three modes of power-on, on-line and off-line testing were

considered.

Consideration was also given to standardisation policies that should be applied at all hierarchical

levels during the system development cycle. The standardisation efforts at system and component

levels were especially discussed. Theoretical issues and generic routines relating to the generation

of built-in tests for common core hardware components were presented. The generic routines

consisted of sample test algorithms for microprocessors and memory banks. An example was given

showing the construction of a data transfer graph and its associated micro-orders for a typical

microprocessor. All test algorithms were shown to provide enough user confidence in the core system

integrity whilst simultaneously not being too exhaustive or weighing too heavily on system overhead.

42

4 A REAL-TIME EMBEDDED SYSTEM

4.1 INTRODUCTION

It is advantageous to illustrate how the presented theories and philosophies were practically applied

to the development of a real-time embedded system. This not only serves to substantiate the

idealogies, but also provides a basis for improvement in future designs. This chapter draws on past

experiences in the presentation of such practical examples.

It has been noted that in order to generate tests of a practical nature, information about the structure

and the faulty behaviour as well as the functional information of a complex system should be

available. For this reason, the subsystem was decomposed in a hierarchical fashion to this basic

functional level.

The system under study was really one of several subsystems, each designed to perform a dedicated

task. The subsystem interfaced to the other subsystems via a system data bus. The overall view is

shown in Figure 4.

SYSTEM DATA BUS

-
,, .. , , ,. , f .. , ,, , f

ss ss ss ss ss ss ss
ft) (2) (S) (4) (5) (n-1) (n)

KEY:

SS:SUBSVSTI!M

Figure 4 : Real-time system overall view

With reference to the hierarchy described in the previous chapter, the subsystem described (55(n) of

Figure 4 above) was divided further into three consoles as shown in Figure 5. Dual redundancy was

implemented at console level, with another console (console 2 of Figure 5) performing an identical

function to the system described in this text (console 1 of Figure 5). A third console (console 3 of

Figure 5) formed a subset of the console under consideration, and was designed to drive certain

peripheral devices, including a printer, plotter, mass storage unit and video cassette recorder. The

communication between the three consoles was achieved by means of a local area network.

43

The discussion to follow focuses on the first console. Firstly, the operator and environmental

interfaces are described. This is followed by a look at the console card cages and a presentation of

the electronics resident in the main applications processor card cage.

Figure 5 : Subsystem block diagram

4.2 THE CONSOLE

Figure 6 shows a pictorial view of the console that housed the real-time system. The console was

designed in a modular fashion, thus enabling damaged parts to be easily replaced. The console

consisted of six drawers and was hermetically sealed when all the drawers were fully closed. Three

of the drawers each housed a graphics display unit and the other three each housed a card cage

[METHA, 1989a; LAW-BROWN, 1990a].

The manual input devices to the console consisted of console control switches, user defined switches,

softkey modules, a keyboard and a rollerball. Status and warning indicators, together with three

graphics display units catered for the output. The console control and user defined switches were all

located on the status and control panel, while each softkey module was positioned on the right hand

side of the associated graphics screen. The desk top housed the keyboard and rollerball modules.

The layout of the status and control panel of the console is depicted in Figure 7. A key switch located

at the top of the panel required that a key be inserted before the console could be operated. Every

other switch had integral backlighting, status and warning indication and could be tested for

brightness control via a lamp test switch.

44

KEY:

CSPM : CONTROL AND STATUS PANEL MODULE
GDU: ORAPHIC8 DISPLAY UNIT
SKM : SOFTKEY MODULE
RBM: ROlLERBAU. MODULE
AKB" : ALPHANUMERIC KEYBOARD MODULE
APCC : APPUCATIONS PROCESSOR CARD CAGE
PWR DIST: POWER D TRI UTION
EMAC: ENVIRONMENTAL MONITORING AND CONTROL
MSU : MASS STORAOE UNIT

Figure 6 : Pictorial view of the console

The console was powered by a single 220V 50Hz power lead. The presence of power at the input to

the console was indicated by a mains neon on the status panel. This power was passed into the

console via a contact breaker mounted on the gland and terminal housing unit at the rear of the

console. The power was then fed through an array of solid state relays to each respective module

in the console. The solid state relays were controlled by environmental monitoring and control

circuitry, which applied power to the system only under normal operating conditions. This circuitry

was powered up by an auxiliary connected directly to the power supplied by the contact breaker.

Figure 8 shows the power routing to the console and an overview of the console elements controlled

by the environmental monitoring and control hardware.

Power was applied to the console when the console switch was closed. In order to prevent accidental

operation, the switch was encompassed by a protective cover.

The console allowed for the disabling of all the environmental monitoring and control hardware

protection mechanisms by means of a system override function. Hence, closure of the system

override alternate action switch caused power to be enabled to all elements, irrespective of the

monitoring of fault conditions.

45

MAINS IY 12V MJX8 1Nl USER nlllP HUMID
KEY:

0 0 0 0 0 0 0 0
IHT : 1NTeAL.DCK
TEMP : TEWERAlUE t!j ft£N IMfl~ HEN1RED EEHUMID: HUMIDITY ON_R.T ON OA= 0lIl WNG ON
8va OYD : evlTEM

'IH~ WIlIl'E WIlIl'E

OVERRIDE
COHS0L2 SVS OVD IHT OVD LMP TST

IHT OVD : INn!!RLDCK

OVERRIDE
LMP TIT: LNltP TEaT

EE I~I a I~ I
n.T: IWJLT

WN6:WARMNG

MA : APPL.JCATION8

PROOUSOR

API : APPLICATIONS
PROCESSOR AP API MmS USER USER U$~R USER USI!R
INTERFACE 0 0 0 0 0 0 0 0YIDS: MANUAL

"PUT

EJ EE rE EaDEVICES
ON ON
'MflE 'MiIl~

USER USER USER

EJ EE EE EaUSER U8ER

Figure 7 : Status and control panel

All graphics display units and card cages in the console resided in retractable drawers, which, when

opened, disabled power to each respective unit. The interlock override function permitted the drawers

to be retracted without disabling the power distribution to the appropriate unit, thus catering for

maintenance requirements.

The environmental monitoring and control hardware controlled the solid state relays which enabled

the power distribution to each respective unit by realising the following Boolean equation:

If A = "Console switch on" and

B = "System override switch on" and

C = "Temperature < 323 degree Kelvin" and

D = "Interlock switch on" and

E = "lnterlock switch of respective unit"

then

POWER_TO_UNIT = A and (B or C) and (D or E)

46

POWER

r··· .

CONSOLE

: __ _ _ __ _-_ __ __ _ _ :

KEY:

SSR: SOLID STATE RELAYS i FAHD: FAN HOUSING DRAWER i PSU: POWEII SUPPLY UNIT i
GDU: GRAPHICS DISPLAY UNIT i APCC: APPLICATIONS PROCESSOR CARD CAGE i

EUAC: ENVIRONMENTAl. MONITORING AND CONTROL i CSPM: CONTROL AND STATUS PANEL i

Figure 8 : Power routing and environmental monitoring and control

1XRS422
1xRS232

A softkey module was adjacent to each graphics display unit. Each keypad, together with the

keyboard, had associated electronic modules which transmitted the input to an applications processor

interface card. This card then catered for the communication of the input to the main applications

processor. Each key featured tactile feedback and could be configured to enable automatic stuck key

detection or automatic key repetition. Individual keys or complete modules could be masked or

unmasked by the applications software. Each module catered for eight user-defined inputs, and, in

addition, the alphanumeric keyboard featured sixteen function keys.

The rollerball module communicated with the processor via the serial port on the first graphics

interface card. In addition to the rollerball itself, this module contained three user-defined buttons.

47

Output from the console to the operator consisted of three graphics display units and an array of

status and warning indicator lights. Each screen was driven by an associated graphics interface

module located in the main applications processor card cage. All of the status and warning lights

were controlled by the environmental monitoring and control card, with the exception of the processor

fault indicator. This light was driven directly by BITE circuitry resident on the bus terminator unit.

4.3 THE CARD CAGES

All three card cages were mounted on fan housing units. When the fans were operational, the forced

air cooling removed heat from the components on the boards and provided for adequate air flow that

was uniformly distributed over the surface of each board.

The first card cage housed the heart of the real-time system. It could be withdrawn from the console

on slides to allow the contents of the card cage to be viewed. All power and signal connections

passed through an input/output connector panel mounted on the rear of the card cage. These could

be unplugged, allowing the complete drawer to be removed from the console as a unit. A power

supply on this card cage converted the mains to the required values (i.e. +5V, +12V and -12V).

The hardware and software contents that resided in this card cage form the major portion of the

discussion to follow. The card cage layout is depicted in Figure 9.

The cards that resided in this card cage were:

a) Two CPU cards

b) Two EPROM/RAM cards

c) A System Data Bus Controller card

d) A Bus Terminator Unit

e) A Dynamic RAM card

f) An Applications Processor Interface card

g) A Serial Communications to Multibus card

h) Three Graphics Interface Modules

i) A Mass Storage Unit card

48

Figure 9 : Processor card cage layout

fI) w
~ ()

(If) C'I
CD if a:- 5

~ ~ ~ a:
~ a:::::) w 0

~
:;) :;)

~ ~ t: 0 :3~ ~ 8 c
~ a:..J 0 0 zz w Z 0

:I :I .-
~

:» ~ ~ w
~ i :;) ~ z I ~ - Ps 1\1 8 w~

w ~
fI)

0
m: 0 2 :2 ..J

~
W Z 0) 0 () ()

~
()

~
co w !C ~ ~ E f ~ w

~ if ~ ~ ~
Cl) 0) Q ~

ZD. a: a: ;:) z ;:)
2 Cl) 0

~::2 U ~
a:

0 2 m ~ ~ c :2 z 01W W W ()

~
0 0

fI)

! ~ ~ If ~
< ~ ~ ~ ~ gCl: w en

~ ~ z Cl: z if! a: Cl:z :» w
~ ~

D- o CL.I :g 0) .- ~ w w w~ ~ ~ ~ :2 z (0
(Joe:

~ 2 fI)
2 ::J()

~ i: :i: :i: :» !:!< ca wQ. D. D. () =oe:
~ ~

~
oe:...Ia: 'C ~CJ " " itw <fI)

CARD CAGE
9 10 11 12 13 14SLOT NUMBER 1 2 3 4 5 6 7 8

The environmental monitoring and control circuitry was on a single card located in the second card

cage. Besides providing the monitoring and control functions of the internal environment of the

console, this card also drove the backlighting, status and warning indication lights on the front panel.

The temperature and humidity were monitored and the speed of the cooling fans was modulated

accordingly. Limit violations resulted in the generation of warning signals and Ultimately the protective

shutting down of the console.

With the exception of the rollerball module, the environmental monitoring and control card also

implemented the status data generation of all the console manual input devices. Communication from

the environmental monitoring and control card to the main applications processor was achieved via

a serial link to the applications processor interface card resident in the first card cage.

A 360 Kbyte floppy disk drive was mounted in the third card cage of the console. This allowed for

data storage, retrieval and transportability. The disk drive was controlled by the mass storage unit

card resident in the first card cage of the console.

49

4.4 THE MAIN APPLICATIONS PROCESSOR CARD CAGE

The discussion to follow concentrates on the system hardware resident in the processor card cage

of the console. The system memory map, the system I/O map and the interrupt structure pertinent

to the processor card cage are provided in appendix A.

4.4.1 Main system bus and termination

The interconnection diagram for the processor card cage is presented in Figure 10. The processor

card cage incorporated Intel Corporation's Multibus I general purpose system bus structure that

enables system cards to interact with each other. This system bus can directly access up to

16 megabytes of memory. It is an asynchronous, multiprocessing system bus designed to perform

8-bit and 16-bit transfers between single board computers, memory and I/O expansion boards. Its

interface structure consists of address and inhibit lines, bi-directional data lines, control lines, interrupt

lines, and bus exchange lines [INTEl, 1983]. The Bus Terminator Unit terminated all the appropriate

system bus lines via pull-up resistors.

The Multibus I device interaction is built upon the master-slave concept and is capable of supporting

a multiple master environment via bus exchange logic. Any device which has the ability to control the

bus, is a potential bus master. Any module not capable of controlling the bus, but that responds to

commands from bus masters are defined to be bus slave devices.

The processor card cage contained intelligent slaves that were potential bus masters. The Multibus

structure catered for mutual exclusion by allowing up to eight bus requests to be made

simultaneously, but only one bus master to be granted the bus at anyone time. Once the bus had

been granted to a bus master, it had exclusive control until such time as it released the bus. A

slot-priority scheme to resolve bus master contention allowed the system to perform parallel bus

arbitration in the form of a priority resolution circuit. This parallel resolution was achieved via an eight

to three line priority encoder followed by a three to eight line demultiplexer. All inputs were pulled high

via a resistor array. The bus request defaulted to the lowest priority when there were no bus requests

[BAUDIN, 1990a].

PROCESSOR
CARDCAGE

G002 G003

50

MQn BUS 1

..
UNK

KEY:

DRAM : DYNAMIC RAM ; GIM : GRAPHICS INTERFACE MODULE ;
GDU : GRAPHICS DISPLAY UNIT; API : APPUCATIONS PROCESSOR INTERFACE ;

MIDS: MANUAL INPUT DEVICES; SCMB: SERIAL COMMUNICATIONS TO MULTIBUS ;
$DB : SYSTEM DATA BUS ;

Figure 10 : Processor card cage interconnection diagram

Multibus I data transfers are performed with the usual handshake technique:

(a) the address is placed on the address bus (together with the data in the case of a write)

(b) a read/write command is generated

(c) the slave responds by accepting the data (write) or placing the data on the data lines

(read)

(d) the slave generates a transfer acknowledge allowing the completion of the cycle

Interrupts are requested by activating one of eight interrupt request lines. The interrupt acknowledge

signal is generated by the bus master when an interrupt request has been received.

51

4.4.2 Local bus extension

The processor card cage also incorporated the Intellocal bus extension interface. This specialised.

high-speed interface allows memory expansion using off-board memory that appears to be on-board

by linking local bus memory boards directly to the processor board via a local bus cable and

connectors. Since the subsystem operated in a dual processor environment (there were two identical

CPU cards present in the subsystem). two independent local bus extensions were utilised. one for

each CPU card.

The local bus extension interface uses an asynchronous operation protocol for both a read or a write

to a memory location or I/O port. Specified signal level interactions must occur during an operation

for the operation to proceed.

4.4.3 The CPU card

A functional block diagram of the central processing unit board is provided in Figure 11. The main

functional features are described below [GREYLlNG. 1989a].

The card interfaced to the Multibus and local bus extension via P1 and P2 connectors respectively.

The power requirements for the card were catered for via the Multibus interface.

4.4.3.1 The microprocessor

The microprocessor on the CPU card was an Intel iAPX 286 (80286) device [INTEl. 1985a; INTEl,

1987a; INTEl. 1989. p. 3:1-3:55]. This chip may be operated in one of two modes. viz. real address

mode (hereafter referred to as real mode) or protected virtual address mode (also referred to as

protected mode). In real mode the 80286 can access up to one megabyte of physical memory. In this

mode the processor may be regarded as an enhanced 8086 or 80186 microprocessor.

Protected mode allows access of sixteen megabytes of physical memory and one gigabyte of virtual

memory per task. This mode also provides a four-level privilege system. memory management and

protection features. automatic task switching. and the extended instruction set that controls them.

52

I
11IIE-QJIMI
I8ETQIGlT ..

<BIIM.
PtmtIIi

r
lIlT

11,....
I--- au.... j"

IlTEIIflPf -=: I-
IIIlUl't I-

lIMHI:NE QIlQJ1ll't
~.......-

lNlIX

I[

DfaISl amnr IMInw
I--- Q.IXI(

I I 9 '-------l
_HIIIt la'aM

.,.
I'IIliIMU.E IMIIIMM£ AlOIMlIIol8.f ..II.NHC - -MftlII

IIlBIU'f IIBIU'f IITfML ~ ~ -.
lIIIRI1B <r:IITICIIS TIIJl

j j II' j II'
....--

••
I- · ~· ~f••.

I •
IU

AlllTIWnI
«lJI I..l*

IIlJR£
'-- JII«OCll'-----

EIMI.
.....UJQI

... 1
aMUDn:II UlBI

Il'l.tQIIVT

f t f _I- ~---- --- ---.

Figure 11 : CPU board block diagram

Memory and I/O is accessible as bytes or words. Words consist of any two consecutive bytes

addressed with the least significant byte stored in the lowest address. The I/O address space

contains 64K addresses in both modes. Byte wide peripheral devices may be attached to either the

upper (accessed with odd I/O addresses) or lower byte (accessed with even I/O addresses) of the

data bus.

On power-up or when reset, the 80286 automatically begins operation in real mode. In real mode, the

chip select generation programmable array logic also ignored the upper four address lines generated

by the 80286. This allowed the on-board EPROM to reside at an address range covering the desired

80286 reset address.

53

It was possible to switch to protected mode by issuing one software command to change the status

of the machine status word, together with a word write to an output port. This word write set the

protected mode latch that enabled the memory decoding programmable array logic to take into

account the upper four address lines. Full virtual address operation was then allowed, and the on­

board EPROMS could consequently be mapped into the upper code segment area of the sixteen

megabyte address space.

The 80286 contains a pre-fetch queue of two instruction~and six bytes that allows the CPU to "look

ahead" at the next instructions. The hardware within the 80286 automatically fills in the queue during

the time that the local bus is idle. This factor thus increased the performance of the board.

A pipelined timing technique is used within the 80286 to enhance processing speed by allowing higher

local bus bandwidth and thus condensing local bus cycles. Pipelined timing allows a new bus

operation to be initiated every two processor cycles, while allowing each individual bus operation to

last for three processor cycles. The valid address of the next bus cycle overlaps with the valid data

of the current bus cycle by a minimum of one system clock cycle, thereby making use of both the

local data bus and the processor address bus during the same processor dock phase.

The base architecture of the 80286 has fifteen registers, grouped into the following four categories:

a) Eight 16-bit general registers are used interchangeably to contain the operands of arithmetic and

logical operations. Four of these registers (AX, BX, CX and OX) may be used in their entirety or

individually as two a-bit registers each. The other four registers (BP, SP, SI and 01) are mainly used

for specific purposes. BP is used to point to the base of a structure, while SP is the stack pointer. SI

and 01 are often used as source and destination indices in data transfers.

b) Programs usually consist of different code modules and data segments. However, at any given

instant during run-time, only a small subset of these modules and segments are actually in use. The

subset normally consists of a single code and data segment and possibly the stack. The 80286

architecture takes advantage of this by providing mechanisms to support direct access to this working

subset of the execution environment. Four 16-bit special purpose registers determine the segments

that are immediately accessible to an executing 80286 at any given instant. These segment selectors

(CS, SS, OS and ES) are used to identify the code segment, the stack segment, the data segment

and any extra segment that may be required.

54

c) Three 16-bit special-purpose status and control registers are used to record and alter certain

aspects of the 80286 processor state. The first is the instruction pointer that contains the offset

address relative to the current code segment of the next sequential instruction to be executed. Hence,

a combination of the code selector and instruction pointer (CS:IP pair) form a 32-bit program counter.

The second special-purpose register is the flags register that records specific characteristics of the

result of logical and arithmetic instructions and that also controls the operation of the 80286 within

a given operating mode. Finally, the machine status word records when a task switch takes place and

controls the operating mode of the 80286. The setting of the least significant bit of this register places

the 80286 into protected mode. The other three control bits control the processor extension interface.

4.4.3.2 Clock generation and reset circuitry

The 80286 microprocessor was reset and controlled by an 82284 clock generator device. The

processor used a double frequency system clock to control bus timing. All signals on the local bus

were measured relative to the system clock input. A 12 MHz crystal oscillator module drove the 82284

clock generator device. The processor divided the system clock by two to produce the internal clock

speed of 6 MHz [INTEl, 1985a].

The 82284 contained a reset input, which could be generated from an on-board or an off-board

source. The on-board reset was achieved by means of an RC circuit feeding a Schmitt NAND gate

[GREYLlNG, 1989a]. This signal enabled a tri-state buffer which pulled the reset line active until the

RC circuit had fully charged. The buffer was then disabled.

The external reset was generated by the reset line supplied on the Multibus. This signal line was

capable of being driven by any open-collector / tri-state external device that was connected to it.

On receiving a reset signal, the 82284 transmitted the appropriate reset signal to the 80286. It was

possible for the reset signal to the microprocessor to be an asynchronous or synchronous ready

control.

55

4.4.3.3 Numeric coprocessor

To facilitate for the processing of high-speed floating point mathematics, an 80287 Numeric Processor

Extension chip that ran at a clock speed of 6 MHz resided on the CPU card [INTEl, 1985a; INTEL,

1987a; INTEL, 1989, p. 3:56-3:81, GREYLlNG, 1989a]. All real mathematics tasks are performed by

this coprocessor, which executes its task concurrently to the processing of the 80286.

Synchronisation is achieved by means of semaphores, i.e. the 80286 executes a wait instruction to

wait for completion of the 80287 operation.

The 80287 instruction set includes a variable length instruction format (including double operand

instructions), 8-bit and 16-bit signed and unsigned arithmetic operators for binary, BCD and unpacked

ASCII data together with iterative word and byte string manipulation functions.

4.4.3.4 On-board memory

The board had a capacity for 128k of EPROM and 64k of RAM. A registered output programmable

array logic chip was used to create the enable signal for all on-board memory. Although the 80286

reset address is FFFFFO hexadecimal, the programmable array logic device could be configured to

ignore the upper four address bits in real mode. This was accomplished by including the output from

the protected mode latch into the logic equation of the programmable array logic chip.

4.4.3.5 Serial 1/0 interface

The main applications processor of the console had a RS232 port connected to the front panel socket

mounted on the console [METHA, 1989a; LAW-BROWN, 1990a]. This allowed for diagnostics to be

executed without the need to open the card cage drawer housing the processor.

The serial I/O interface on the CPU card was an 8274 Multiple Protocol Serial Controller (MPSC)

device [GREYLlNG, 1989a; INTEL, 1982, p. 9:216-9:250, INTEL, 1985a; INTEL, 1988, p. 2:112-2:149

and p.2:345-2:382]. Channel A of the 8274 MPSC operated the serial interface for RS422

communications and channel B was used for RS232 communications. The RS232 diagnostic link on

the front panel of the console was driven directly by this device. Since the two channels operated

independently, simultaneous operation was permissable.

56

The 8274 MPSC interface to the 80286 microprocessor could basically be configured in two modes,

namely polled mode or interrupt driven mode. The polled operation repetitively read the status of the

MPSC and based its decision on that status, whereas the interrupt driven operation was accomplished

via an external interrupt controller. When the MPSC required service, it sent an interrupt request signal

to the microprocessor, which responded with an interrupt acknowledge signal. The MPSC then placed

the interrupt vector onto the local data bus.

4.4.3.6 Timers

The CPU card contained an 8254 Programmable Interval Timer (PIT) [GREYLlNG, 1989a; INTEL, 1982,

p. 9:318-9:332], containing three independent 16-bit programmable counters (counter 0, counter 1

and counter 2). The flexibility of the 8254 PIT allows the counters to operate in anyone of five modes,

namely:

(a) Mode 1: Hardware retriggerable one-shot

(b) Mode 2: Rate generator

(c) Mode 3: Square wave mode

(d) Mode 4: Software triggered strobe

(e) Mode 5: Hardware triggered strobe

The CPU card offered strapping options in the configuration of the counters, and the standardisation

of the card required that these options, together with the initialisation of the counters be defined. For

this reason, counters 0 and 1 were defined to act as rate generators to be strapPed to the interrupt

controllers, while counter 3 was configured in square wave mode and linked to the 8274 MPSC

device.

In the rate generator mode (counter 0 and counter 1), the counters act like divide-by-N counters,

typically used to generate real-time clock interrupts. The output is initially high and when the initial

count is decremented to 1, the output goes low for one clock pulse. The output then goes high again

and the counter reloads the initial count and the process is repeated.

The square wave mode (counter 3) is typically used for baud rate generation and behaves similarly

to the rate generator mode. The output is initially high and when half the initial count has expired, the

output goes low for the rest of the count. The process is periodic and repeated indefinitely.

57

4.4.3.7 Interrupt controllers

The Programmable Interrupt Controller (PlC) functions as an overall manager in an interrupt<lriven

system environment. It accepts requests from the peripheral equipment, determines which of the

incoming requests is of the highest priority, ascertains whether the incoming request has a higher

priority value than the level currently being serviced, and issues an interrupt to the CPU based on this

determination.

The 8259A Programmable Interrupt Controller is one such device SPeCifically designed for use in real­

time, interrupt<lriven microcomputer systems liNTEL, 1982, p. 7:120-7:137; INTEl, 1989,

p. 2:259-2:282]. A selection of priority modes is available to the programmer so that the manner In

which requests are processed by the 8259A can be configured to match the system requirements.

The priority modes can be changed or reconfigured dynamically at any time during the applications

program. This means that the complete interrupt structure can be defined as required, based on the

total system environment.

The interrupt sequencing occurs as follows for the 8259A:

(a) An interrupt request is raised and passed to the 8259A.

(b) If appropriate, the 8259A sends an interrupt request to the microprocessor.

(c) The microprocessor acknowledges the interrupt.

(d) The 8259A sets the in-service register of the appropriate interrupt.

(e) The microprocessor sends a second interrupt acknowledge, and the 8259A releases the

interrupt vector onto the data bus.

(f) The in-service register is either reset for an 8259A configured as "automatic end-of­

interrupt", or else the 8259A waits for an end-of-interrupt command to be issued.

The 8259A PlC manages eight requests and has bit-slice logic built-in features to enable the

cascading of other 8259A's. The CPU card had two 8259A's wired in a master/slave configuration.

The master controlled the slave through the three line cascade bus. The cascade bus acted like a

chip select signal to the slave during the interrupt acknowledge sequence. In this configuration, the

slave interrupt output was connected to the lowest priority master interrupt request input. When the

slave request line was activated and later acknOWledged, the master would enable the slave to release

the interrupt vector during the interrupt acknowledge sequence.

58

4.4.3.8 Diagnostic status latch

The CPU card contained an 8-bit latch (type SN74373) that could be used as both a general purpose

output as well as a diagnostic status output latch [GREYLlNG, 1989a]. The latch was wired to the

local bus P2 connector, and this, in turn, was used to drive two seven segment hexadecimal displays

on the bus terminator unit card. The input lines on the bus terminator unit were pulled high by a

resistor pack, implying that (a) it was possible to enable the required display via the card cage

backplane and (b) an enabled display with floating input defaulted to FF hexadecimal

[BAUDIN, 1990a].

The status latch was used extensively during the execution of built-in tests. Provided that the circuitry

used to drive the latch was operational, the operator could view the test currently executing. If a

critical test failed and the MPSC test had also failed (implying that diagnostic reporting to the RS232

was not possible), then the operator could view the code on the seven segment displays in order to

determine what had caused the failure.

A normal operational state without any test failures was indicated by 00 hexadecimal on the

diagnostic status latch. In addition to being wired to the displays, the 8-bit output from the latch was

also logically ORed and routed to a fault indicator LED on the status and control panel of the console.

Thus a non-zero value on the displays caused the fault indicator to flash.

4.4.3.9 Time-out circuitry

The Multibus I transfer acknowledge signal terminates bus operations on the Multibus by driving the

82288 bus controller. However, should an attempt be made to access a non-existing device or

memory on the Multibus, the transfer acknowledge may never be generated. This would cause the

processor to "hang up", tie up the Multibus and prevent its use by other potential bus masters. The

CPU card overcame this problem by implementing a bus grant time-out circuit, using one-shot

monostables [GREYLING, 1989a]. If the transfer acknowledge was not activated within a finite period,

a time-out occurred, generating a transfer acknowledge and thus releasing the bus. The time-out

signal was simUltaneously used to generate an interrupt informing the microprocessor that an invalid

operation had occurred.

59

4.4.4 The EPROM/RAM card

The EPROM/RAM card was an extension of memory local to each CPU card. It operated inside the

standard double Eurocard chassis, interfacing both to the local bus and to the Multibus

[GREYLlNG, 1989b). The memory was dual parted and a specific location on the local bus

corresponded to the same location on the Multibus. This sharing of resources implies that when the

CPU card tried to access memory resident on the EPROM/RAM card, it would initially be attempted

via the local bus, and, if a time-out occurred, another memory access would be attempted via the

Multibus.

Both the local bus and Multibus interface were capable of decoding one Megabyte of memory within

a sixteen Megabyte range. A 2K word or 4K byte boundary decoding was featured. Each had a

separate base address decoding programmable array logic chip to accommodate a wide variety of

applications. The Multibus and local bus support both a-bit and 16-bit data transfers. In the case of

a-bit transfers on Multibus, the lower eight data bits were used exclusively and the top eight data bits

were ignored. The local bus, however, transferred the low byte on the lower eight data bits and the

high byte on the upper eight data bits for byte transfers.

The bus operations were independent of each other, allowing memory cycles from the busses to

overlap. Each bus had the capability for exclusive utilisation of the memory. This was particularly

useful for a program which required that a certain block of shared memory should remain unmodified

during the time that it was being accessed. When interfacing to the 80286 CPU card, bus access time­

outs occurred after ten milliseconds. If a bus was attempting to access memory with the other bus

asserting the bus lock, the resulting time-out could have introduced errors at the system level. A

feature of the EPROM/RAM card was a dead-lock protection which prevented both the local bus and

the Multibus from locking the memory simultaneously. If this was attempted, then the local bus got

priority and the Multibus had to wait. Although this prevented a deadlock from occurring, the

disadvantage was that the Multibus could not be assured a bus lock. This disadvantage was, however,

outweighed by the increase in system reliability.

Memory selection was accomplished by the memory bank select programmable array logic device,

which was factory programmed during assembly for a specific addressing requirement and type of

memory device selected. The capacity of the module depended on the size of the memory used, and

varied from 32 Kbytes to 1 Mbyte, using 2K X 8 or 64K X 8 devices, respectively. The standardised

60

code offered jumper options for subsystem users to configure the card in one of three different ways.

For the applications under consideration, the addressing was 384 Kbytes of RAM and 256 Kbytes of

ROM (addresses 40000h to 9FFFFh and AOOOOh to DFFFFh, respectively).

4.4.5 The System Data Bus Controller card

The system data bus controller card catered for communication between the subsystem and the

system data bus. It was driven by an 80186 microprocessor and contained 16 Kbytes of on-board

ROM and 64 Kbytes of on-board RAM [GREYLlNG, 1989d]. Of this on-board RAM, 62 Kbytes were

accessible to both the controller and the host CPU card and were used to contain the data structures

that were shared between the controller and the host. Only word transfers to or from the controller

were allowed. The board was based at address 20000h (i.e. 20800h to 2FFFFh was visible to the

Multibus).

Control commands from the host CPU card to the controller card were sent via an I/O port. A write

to this location caused an interrupt on-board the controller card. Status reports were sent back to the

host via locations on the dual ported RAM. The controller card also interrupted the host under certain

conditions via one of the eight Multibus interrupt lines.

Approximately 8 Kbytes of the 64 Kbytes of the dual port RAM contained message buffers, self-test

results, the system configuration pointer, the system control block, the subaddress control blocks and

the monitor control block. The rest of the memory was used by the host. With the exception of the

self-test results, all of these data structures deal with the interface to the system data bus. They are

thus beyond the scope of this study and shall not be considered any further here. The self-test results

are, however, of particular significance, and are described below.

When the system data bus controller card was powered up, or the system was reset, the processor

on the controller card executed a self-test procedure which tested :

(a) the 80186 CPU

(b) the on-board EPROM

(c) the reserved 2 Kbytes of on-board RAM

(d) the three integral timers on the card

(e) the integral interrupt controller in the CPU

61

The results of these self tests were reported via dual port RAM. If the CPU, EPROM or stack test

failed, the board halted. The self tests took approximately fifty milliseconds to execute. It was possible

to execute several self tests on request by the host at any time after the board had completed its

POST, including :

(a) an EPROM checksum test

(b) the reserved RAM test

(c) the interrupt controller test

(d) an I/O recognition test

(e) a shared RAM test

During the execution of these tests, the controller kept track of the addresses of tests (a) and (b).

Test (a) was executed 256 times to cover the entire EPROM and test (b) was executed 64 times to

cover the reserved RAM area. When test (e) was executed, the host supplied the address range and

data in order to avoid possible data corruption.

4.4.6 Bus terminator unit

The bus terminator unit was designed to be located near the centre of a Multibus I card cage. In

addition to providing the correct termination for the Multibus, resolving bus priority, and displaying

the diagnostic status latches of the two CPU cards in hexadecimal format, the module also:

(a) allowed for both a manual and a software system reset

(b) provided BITE in the form of the Multibus clock failure detection circuitry and a monitoring

of overall system fault conditions

It was also possible to issue a software reset to the system from the host CPU card at any time by

means of a pre-defined reset code written to the status latch. Each of the status busses on the bus

terminator unit were monitored for this reset code by an 8-bit magnitude comparator

[BAUDIN, 1990a]. The three possible reset signals (Le. the manual reset or one of the software resets

from either CPU card) were logically ORed together and used as the input to the reset monostable.

The monostable was used to prevent the reset code from forcing the reset line permanently low.

On resetting the system, a pulse stretch monostable was activated in order to enable the Visibility of

the reset LED. The Multibus reset line was also monitored in order to detect a system fault on this

line. The reset detection signal was used as an input to the fault detection circuitry.

62

The Multibus I architecture requires two clocks to be present for successful operation. The BITE on­

board the bus terminator unit detected the absence of any of these clocks by buffering the incoming

signal and using this buffered clock signal as the input for a retriggerable monostable. The pericx:t of

the monostable was longer than that of the clock signal being monitored and, therefore, under normal

conditions, the monostable remained permanently triggered. The absence of the clock, however,

caused the monostable to time-out. The active low output (which then went high) was used as input

to the fault detection circuitry and to drive an open collector inverter. This high input to the inverter

was used to sink the current from the "clock failure" LED on the bus terminator card.

The fault detection circuitry monitored the system clocks, the reset detection and the status latches

of the two CPU cards. As soon as a fault condition was detected, the fault indicator LED on the bus

terminator unit and the fault indicator on the status and control panel mcx:tule started flashing.

4.4.7 Dynamic RAM card

The dynamic random access memory (DRAM) module interfaced to the system via both the local and

Multibus connectors, providing 1 Megabyte of dual ported memory [GREYLlNG, 1989c). Control on­

board the dynamic RAM card was achieved by means of an 8207 dynamic RAM controller chip. The

dual port interface allowed the two busses to independently access the memory. Each bus had a

separate base address decoding programmable array logic. The base address of the local bus was

at 100000h, while the equivalent Multibus location resided at 300000h. The lock function provided

each port with the ability to obtain uninterrupted access to a critical region of memory and thereby

guaranteed that the other port could not access the same memory prematurely.

The memory module also incorporated error checking and correcting circuitry on-board. The

intelligence controlling these fault-tolerant features was by virtue of an 8206 error detection and

correction unit. The dynamic RAM could either operate in "correcting" or "uncorrecting" mode. When

optimised for quick data access, the 8206 unit was configured in the "uncorrecting" mode, where the

delay associated with the error correction circuitry was transparent and a transfer acknowledge was

issued as soon as valid data was known to exist. If the error flag was activated, however, then the

transfer acknowledge was delayed until after the 8207 dynamic RAM controller chip had instructed

the 8206 to correct the data and the corrected data became available on the data bus.

63

"Uncorrectable" memory errors were indicated by the error correction circuitry to the dynamic RAM

controller via an error flag and were latched by an error strobe signal from the dynamic RAM

controller to one of the eight Multibus interrupt lines. The error flag could only be reset by the host

CPU card.

Error correction or "scrubbing" was performed during the dynamic RAM refresh cycles. Since the 8207

had to refresh the RAM, performing error scrubbing during the refresh allowed it to be accomplished

without performance penalties. Upon detection of a correctable error during refresh, the RAM refresh

cycle was lengthened slightly to permit the 8206 to correct the error and for the corrected word to

be written into memory. Uncorrectable errors detected during scrubbing were ignored. The refresh

was not affected by the memory lock function and could hence occur during a locked memory cycle.

The basic function of the on-board error correction circuitry was to detect any memory errors that

occurred during read operations. In the "correcting" mode, the board would then correct any single-bit

errors. In the "uncorrecting" mode, errors were still detected, but no action was taken to correct any

bits.

The 8206 unit used a Hamming single-error correcting code to generate check bits for each bit word

associated with it. It was possible to correct all single errors if, and only if, each single error pattern

had a different syndrome [BOSE and METZNER, 1986]. The single-error correction could readily be

accomplished by a combinational circuit having the syndrome as input and n outputs, such that each

of the n different single-error syndromes produced a one at just the output position that corresponded

to the single error position.

The modified Hamming code had the advantage that it required the fewest possible check digits for

its code lengths. However, the disadvantage was that no room was left for detection of any events

of greater than one error in a block. Any such event was interpreted incorrectly as a single-error

because each non-zero syndrome was matched with one of the single error events. The addition of

a single additional parity digit which was the modula 2 sum of all the other digits imprOVed this

situation somewhat by detecting all double errot' patterns in addition to correcting all single-error

patterns.

64

When a read operation was active, the error correction circuitry generated a new group of check bits

already stored in the memory of the error correction circuit. If the two check bits compared, no error

had occurred. However, if the board was in the "correcting" mode and a single-bit error occurred,

then the error correction circuitry would correct the data word to its original value. The error flag and

correctable error lines would be asserted to signal the dynamic RAM controller that a correctable error

occurred. Thus, the current read cycle would be extended, and a read-modify-write cycle would be

performed with the new corrected data written into memory.

4.4.8 Applications processor interface card

The applications processor interface card allowed data to be passed between the manual input

devices and the host CPU and between the environmental monitoring and control card and the

host CPU [METHA, 1989b]. The data was buffered by 2 Kbytes of dual ported RAM residing on the

applications processor interface card. The location of the dual port RAM was seen by the applications

processor interface card to be based at 1000h to 17FFh and from the host CPU as residing at 11 OOOh

to 117FFh. The dual port RAM featured two separate I/O ports which allowed independent byte or

word accesses for reads or writes to any locations in the dual port RAM.

The dual port RAM was functionally divided into two sections of memory. The host CPU was allowed

to read or write to one section, while the applications processor interface card was allowed a read

operation only. Alternatively, the applications processor interface card was allowed to read or write

to the other section, while the host was only allowed a read.

The applications processor interface was presented with serial data from the manual input device

modules and the environmental monitoring and control card. This data was routed to specific

locations in the dual port RAM dependent on the source of the data. Control to avoid overwriting valid

data before the receiving device had read the data. was included in the protocol.

The interface allowed for control information and test requests to be passed from the host CPU to

the manual input device modules or the environmental monitoring and control card via other locations

in the dual port RAM. Status information and test results could also be passed by the applications

processor interface to the host processor.

65

Two locations on the dual port RAM of the applications processor interface card were used as general

purpose locations. A write to one of these locations caused the host to interrupt the applications

processor interface card and, similarly, a write to the other location caused the applications processor

interface card to interrupt the host CPU card.

Data written from the host to the applications processor interface card included such commands as

reset codes, self test requests, alarm enabling, masking or unmasking of manual input devices,

enabling or disabling of stuck key detection facilities and environmental status requests. On the other

hand, a transfer initiated by the applications processor interface card included reset acknowledges,

key presses and statuses and abnormal operating environmental conditions.

The applications processor interface card POST wrote a specific bit pattern to all the locations in the

dual port RAM. The pattern was zero for the base address and incremented by one for each location

thereafter. It was written in byte format, and thus a zero followed a value of FF hexadecimal. The

values were then read, and a checksum was calculated based on these values. This checksum was

then written to the pre-defined general purpose location, causing an interrupt to the host via one of

the Multibus interrupt lines. The applications processor interface card then waited for an

acknowledgement from the host. If no acknowledgement was received within a certain time, the board

timed-out, otherwise the acknowledgement was accepted and the handshaking procedure completed.

Following a successful power up, the applications processor interface card was ready to perform its

applications task. The communication protocol was as follows:

(i) For a host-initiated operation:

(a) The host wrote to specific locations in the dual port RAM relating to the function

required by the manual input devices or environmental monitoring and control.

(b) The host wrote to the general purpose location on the applications processor

interface card, which resulted in an interrupt being generated to the card.

(c) The applications processor interface card read the location and performed the

required function based on this command.

(d) On completion of the read operation, an applications processor interface read

acknowledge was written to the other general purpose location, causing an interrupt

to the host.

66

(ii) For an applications processor interface card initiated operation:

(a) The applications processor interface wrote to specific locations in the dual port

RAM relating to the function performed by the manual input devices or status

information pertaining to the environmental monitoring and control.

(b) The applications processor interface wrote to the second general purpose register

in the dual port RAM, causing an interrupt to be generated to the host.

(c) The host serviced the interrupt and, if appropriate, sent an additional

acknowledgement to the applications processor interface card, depending on the

type of operation that was performed.

4.4.9 Serial communications to Multibus card

The serial communications to Multibus board was an intelligent communications controller designed

for autonomous execution of complex communication protocols [SIEMENS, 1988, p. 165-180]. The

board controlled the communications between the three consoles of the subsystem via the local area

network by using the high-level data link contro (HOLC) standard protocol [TANENBAUM, 1981,

p. 167-172].

Intelligence on-board the serial communications to Multibus board included an 80186 microprocessor,

128 Kbytes of EPROM, 128 Kbytes of dynamic RAM, an 8259A programmable interrupt controller and

an 82258 OMA controller. Four OMA channels were responsible for the serial interfaces to the other

two consoles.

Four I/O ports on the card controlled the communications from the host CPU to the serial

communications to Multibus card. Three of these I/O ports were defined as 'write only", i.e. the

general purpose register, the reset register and the interrupt reset register. The fourth port was the

status register, which was "read onl1.

Besides haVing the ability to communicate with the other two consoles, the firmware on-board the

serial communications to Multibus controller card had certain testing capabilities [BAUOIN, 1990b].

At power-up, self tests were performed and the board detected whether the host CPU had failed to

communicate over the Multibus.

67

All communications between the host CPU and the serial communications to Multibus card were

initiated by the host. The host wrote a command into the general purpose register which caused an

interrupt to be generated on-board the card. The card serviced this interrupt by reading the command

and then performed the required task. Self tests could also be requested and reported at any time

during normal applications.

On completion of a requested task, the data was written to global RAM and, if applicable, an interrupt

was generated to the host CPU, depending on the initial command received from the host. If the

primary CPU card was executing as the main applications processor, then the task results were

reported to global RAM locations on the EPROM/RAM card. However, if the secondary CPU card had

been switched in and had taken over as the main applications processor, then the test results were

reported to global RAM locations on the dynamic RAM card.

4.4.10 Graphics interface modules

The graphics interface modules were intelligent slave boards used to control the graphics display

units by graphics kernel system (GKS) firmware. The intelligence on-board the graphics interface

modules consisted of an 8088 microprocessor, an 8087 numeric coprocessor, 128 Kbytes of EPROM,

64 Kbytes of RAM, an 8259A Programmable Interrupt Controller and an 82720 graphics controller chip

[SIEMENS, 1988, p. 263-274].

The I/O interface was the same as that of the serial communications to Multibus card, i.e. four I/O

ports on the graphics interface modules controlled the communications from the host CPU, viz. the

general purpose register, the reset register, the interrupt reset register and the status register. One

of the Multibus interrupt lines was dedicated to handle interrupts from the graphics interface modules

to the host.

The communications protocol was also the same as the serial communications to Multibus card, i.e.

the host CPU wrote a command into the general purpose register which caused an interrupt to be

generated on-board the graphics interface module. The graphics interface module serviced this

interrupt by reading the command and then performed the required task. On completion of the

requested task, an interrupt to the host was generated, if appropriate, depending on the nature of the

request made by the host [BAUDIN, 1990c].

68

The firmware on-board the graphics interface modules was designed to perform on-board POST or

off-line diagnostics, accept rollerball positional information fed directly into the RS232 channel of one

of the modules, as well as to drive the graphics displays via calls to the graphics kernel system

routines. Driving the graphics displays included tasks such as error and system status reporting,

generating test patterns and various other graphics applications displays. All the data structures

necessary for proper communication to the graphics interface modules were passed through global

RAM either on the EPROM/RAM card or on the dynamic RAM card, depending on which CPU card

was executing as the main applications processor.

In order to enhance the fault detection capabilities of the system, the intelligent graphics interface

modules also had the ability to detect either a Multibus failure or the failure of the main applications

processor to communicate over the Multibus and to consequently report these findings to the

respective display. In addition, each graphics interface module was configured dynamically at run-time

for its specific application by the host firmware. Once the graphics interface module had completed

its on-board POST, it expected a command from the host that informed it which module it was to

become. Triple redundancy was thus introduced at this level and the system only considered a failure

of all three graphics interface modules to be critical.

4.4.11 Mass storage controller card

The mass storage controller card provided the interface and software required to support the control

of mass storage devices. The main functional features consisted of an 80186 microprocessor,

128 Kbytes of EPROM, 1 Mbyte of on-board RAM, a multi-protocol controller chip for controlling two

independent serial I/O channels, a Centronics interface and a NCR5380 small computer systems

interface (SCSI) bus device [SIEMENS, 1988 p. 211-228). The small computer systems bus interface

is a parallel, multimaster I/O bus that provides a standard interface between computers and peripheral

devices [ANSI, 1986; GLASS, 1990a; GLASS, 1990b). Three programmable interval timers and a

programmable interrupt controller are built into the 80186 microprocessor.

Commands were issued from the host CPU to the mass storage controller card via I/O ports similarly

to the method used for both the serial communications to Multibus card and graphics interface

modules. The intelligent slave occupied four addresses in the 64 Kbyte Multibus I/O address range

allowing for a general purpose register, a reset register, an interrupt reset register and a status

register. The mass storage controller card intelligent slave was unable to initiate operations on other

boards in the system.

69

Three 64 Kbytes of RAM allowed for the transferring of data and commands between the mass

storage controller card and the rest of the system. Two of these 64 Kbyte areas were provided by the

software on the card as dynamically relocatable windows to view the global RAM on the Multibus. The

other area was dual ported and thus occupied 64 Kbytes of the Multibus address space.

In addition to providing the interface to the usual disk operating system command types, drive and

disk configurations, status parameters and peripheral control parameters, the mass storage controller

card also had the ability to perform various on board tests and to pass the results to the Multibus

interface [POLMANS, 1990a].

The method of passing data and parameters was to set up the parameters of a command in a

parameter block in memory that was accessible to the mass storage controller card. This memory

area could either have been in the dual port RAM area of the card or on another card that the mass

storage controller card could access from the Multibus. The address of the parameter block was then

written to the parameter block address register (i.e. a pre-defined location) and the command to be

executed was written to the general purpose register. The mass storage controller card received the

command (which caused an interrupt), retrieved the pointer to the parameter block and executed the

command.

On completion of the task, the mass storage controller card set the address of the parameter block

in the response block address register (another pre-defined location), set the status byte in the

command block to "ready", and interrupted the host. In the event of an error, the status/error number

was set to indicate the error number and a pointer pointed to the appropriate error message. Several

mass storage tasks could execute concurrently, and, therefore, on receiving the interrupt, the host

read the response block address register to identify the source of the interrupt (the response block

address register contained the contents of the parameter block address register that initiated the

operation). The host then reset the slave interrupt and processed the contents of the parameter block

[POLMANS, 1990b].

70

4.5 SUMMARY

The system architecture of a real-time embedded system was presented In this chapter. A hierarchical

approach was taken to achieve this, by providing a general overview of the division of the system Into

subsystems and the separation of one of the sUbsystems into three independent consoles. The

interface between the subsystem and the system data bus and the interaction of the consoles with

each other was briefly discussed.

The man-machine interface input/output, power routing and environmental monitoring and control

of one of the consoles was then described. This was followed by an identification of the card cage

that contained the majority of the processing power driving the console. A detailed decomposition

of the functional blocks resident on the two CPU cards was given, together with a brief description

of the rest of boards resident In the card cage. This included the testing capabilities of the various

intelligent slaves and their respective interface protocols.

71

5 SOFTWARE DEVELOPMENT

5.1 INTRODUCTION

The introduction to the system architecture has been provided in order to present the process of

software and hardware integration. In the implementation of the software, an attempt was made to

adhere to the theories and philosophies presented earlier. All software source files used to implement

the built-in tests were written using the PL/M-86, PL/M-286, ASM-86 or ASM-286 traditional

programming languages liNTEL, 1985b; INTEL, 1985c; INTEL, 1986b; INTEL, 1987a]. The approach

adopted in the development of the software was to understand and apply the object-oriented design

techniques to these traditional programming languages.

This chapter relates to the designing of the standardised code at system level and the development

of subsystem-specific test software at subsystem level. The overall software flowchart is presented

in Figure 12. The standardisation efforts and a more detailed description of this flowchart are

presented in the ensuing sections.

1N1T1H.JSE
ON-6~RD

PERlPt£RAL
CHIPS

Figure 12 : Flowchart for the main applications process

72

5.2 SYSTEM LEVEL STANDARDISATION

As was alluded to eartier, a standard computing segment consisting of the CPU card, EPROM/RAM

card and system data bus controller card was defined within the system. The standardised code was

written and the strapping fields on all three boards was also standardised. The EPROM/RAM card was

identified as being common subsystem hardware containing unique subsystem-specific applications

code. The standardised code resident on each CPU card of all n subsystems placed a restriction on

an address range at the top of the EPROM/RAM card that was defined to be the system description.

This system description is provided in Table X and an interpretation of each value by the standardised

code is presented in Table XI.

Table X : Firmware resident system description

Address Value Description

DFFOOh 5Ah EPROM identification
DFF01h Subsystem dependent SUbsystem Number
DFF02h Subsystem dependent Subsystem Version
DFF03h Subsystem dependent EPROM/RAM option
DFF05h Subsystem dependent Number of processors
DFF06h Subsystem dependent Operating mooe
DFF07h Subsystem dependent Copy descriptor tables
DFF08/9h Subsystem dependent IP address of real mode code
DFFOA/Bh Subsystem dependent CS address of real mode code

DFFFAh 53h ASCII for "S"
DFFFBh 55h ASCII for "U"
DFFFCh 4Dh ASCII for "M"
DFFFDh Subsystem dependent Low checksum byte
DFFFEh SUbsystem dependent High checksum byte
DFFFFh Subsystem dependent Checksums present

73
Table XI : Standardised code interpretation of the system description

Indication to the standardised code

The presence of the card in the system.
Which applications code was resident on the
card.
Which version of software was resident on the
card.
The size of the RAM/ROM ratio.
The number of CPU cards present in the
subsystem.
Whether the system applications was to
execute in real mode or protected mode.
Whether the protected mode descriptor tables
were to be copied from ROM to RAM.
This double word contained the address of
the 80286 real mode system applications
code starting address (CS:IP pair).

Address Description

DFFOOh EPROM identification
DFFOlh Subsystem Number

DFF02h Subsystem Version

DFF03h EPROM/RAM option
DFF05h Number of processors

DFF06h Operating mode

DFF07h Copy descriptors

DFF08h Real mode address

The standardised code was defined to consist of the following:

(a) Standardised initialisation routines for the standard computing segment.

(b) Standardised POST for the standard computing segment.

(c) Standardised interrupt handlers.

(d) Standardised programmable interrupt controller routines.

(e) Standardised programmable interval timer routines.

(f) Standardised diagnostic status latch routines.

(g) Standardised off-line BIT for the standard computing segment.

(h) Standardised RS232 serial I/O routines.

(i) Standardised ASCII conversion routines.

74

5.3 SUBSYSTEM LEVEL STANDARDISATION

The two CPU cards, the two EPROM/RAM cards and three graphics interface modules were

respectively identified as common hardware within the subsystem and it was attempted to standardise

these modules as far as possible. The standardisation effort of each of these modules shall now be

discussed.

5.3.1 Standardising the CPU cards

The standardisation of the two CPU cards posed a challenging problem, namely that the standardised

code had to satisfy standardisation requirements at both system and subsystem level. This meant that

in addition to providing the aforementioned standardised routines, the standardised code had to cater

for a dual CPU environment at card cage level1
• At power up, both CPU cards would be executing

identical boot code. In order to avoid conflict during off-board tests, the secondary processor needed

to be delayed to allow the primary processor to be the first processor that performed any off-board

writes. Implementing a software solution alone implied that the two CPU cards would be

non-standard, and, therefore a combination of hardware and software was introduced to solve the

problem. Since the secondary processor was slot-dependent, it was possible to provide a backplane

solution in conjunction with the firmware. In this manner, any CPU card inserted into the appropriate

slot could identify itself as a secondary processor.

The solution implemented was that one of the Multibus interrupt lines was allocated as the definition

of a secondary processor. This interrupt line on the respective slot of the card cage was strapped

high to provide a permanent interrupt. The standardised code executed a procedure

(DELAY_SLAVE_PROCS) that set the 8259A programmable interrupt controller chip to allow level

triggered interrupts and unmasked the appropriate interrupt request. If an interrupt was generated on

this request line (i.e. the CPU was in a secondary slot), the interrupt service routine set a flag that

identified the processor as a secondary processor and caused the processor to delay sufficiently. This

ensured that, under normal circumstances, the primary processor would perform the remaining

power-on tasks before the secondary processor without the latter causing any interference or data

corruption.

1 Each subsystem was limited to a maximum of two CPU cards per card cage.

75

5.3.2 Standardising the EPROM/RAM cards

Striving for standardisation of the EPROMjRAM cards at subsystem level implied that it was essential

that both cards contain identical code, and, therefore were able to execute code to drive both the

primary and secondary processors.

In addition to the advantage of only needing a single standardised subsystem EPROMjRAM

replacement module, the advantage of standardising the cards was the ability for the secondary

processor to execute its relevant tasks without needing the associated local bus EPROMjRAM card.

When the EPROMjRAM card on the local bus of the secondary processor was absent, however, the

run-time execution of the secondary processor was slower due to the extended length of the opcode

fetch cycle.

The drawback to standardising the EPROMjRAM cards was, of course, the extra effort involved in

providing redundant applications code on each board. At system level, the incorporation of

inter-subsystem redundant code was too complex to coordinate due to the vastly differing

applications of the various subsystems. For this reason, the cards were only standardised at

subsystem level and not at system level.

5.3.3 Standardisina the graphics interface modules

Each graphics interface module was defined to report to a separate area of global RAM. Although the

port addresses were defined by link options on the graphics interface modules, the firmware on each

graphics card was standardised. Each graphics interface module was thus designed to be

dynamically reconfigurable in the sense that a command from the host CPU informed each graphics

interface module regarding its respective task. This task was determined at run-time by the host CPU

based upon the status of the system.

The firmware on-board the graphics card was so designed that if any command was issued by the

host CPU to perform a task that required prior knowledge regarding its run-time configuration, then

the graphics card informed the host that it was unable to perform the requested task and ignored the

command. Thus a prerequisite was placed upon the host to initially check that the graphics card was

present, and, if so, to delegate responsibilities to each graphics interface module. Self test results

were then inspected and the system was configured appropriately. The algorithm is shown in

Table XII.

76

Table XII : Dynamic allocation of graphics interface modules

TEST SLAVE

begin
Check for presence of slave
If the card is present then

begin
If the card is a graphics card then

configure the card
Issue a command to report POST results to global RAM
Allow enough time for results to be reported
Copy results to on-board RAM
end

end

The system had to also consider the possibility of the secondary processor performing the tasks of

the primary processor. Due to the architecture of the system, this event required that the global RAM

data structures passed between the host CPU card (i.e. the secondary processor in this case) and

the graphics interface modules reside on the dynamic RAM card. The EPROM/RAM card on the

Multibus could no longer be used since the secondary processor contained its own local

EPROM/RAM card located at the same base address. Thus various options arose depending on the

run-time status of the system, and, in this fashion, the code was designed to be fault-tolerant at

power up.

77

5.4 DESIGNING THE STANDARDISED CODE

The overall software flowchart was shown in Figure 12 (p. 71). It is appropriate to expand upon this

flowchart in order to illustrate the distinction between the standardised code and the

subsystem-specific code. The flowchart for the standardised code is presented in Figure 13 and the

algorithm for the main initialisation routine of the standardised code is presented in Table XIII.

Table XIII : Main initialisation routine of the standardised code

INITIALISE ALL

begin
Test the core system
Initialise the on-board peripheral chips
If a "cold start" is detected then

begin
Perform the standard computing segment POST
Analyze the results
If possible, output the results to the visual display unit
end

else
Perform the real mode subsystem-specific demonstration code

end

Firstly, core system tests of microprocessor, on-board ROM and on-board RAM were executed. If any

of these failed, the program immediately halted, otherwise it continued to:

a) initialise the programmable interval timer

b) initialise the programmable interrupt controller

c) initialise the multi protocol serial communications chip

d) initialise the numeric coprocessor

e) check for a 'warm start", and, if this was detected, control was transferred to the real mode

demonstration code.

f) perform the POST

g) record the results of the POST

h) output the POST results via the RS232 link, if possible

Throughout the duration of the POST, any test defined to be critical caused the processor to halt, and

a pre-defined error code was sent to the diagnostic latch. If possible, an error message was also sent

to the RS232 link. The main initialisation routine is now described in more detail.

TEST ROM
OIIIEPAOMIRMI

CARD

DElAY~Y

PROCESSOR

TEST RAM
ON IEPAOMIRMI

CARD

Figure 13 : Flowchart of the standardised code

y

78

79

5.4.1 Detection of a "warm start"

Former discussion of the 80286 microprocessor indicated that the transition from real to protected

mode is achieved by setting the protected mode bit in the machine status word. A hardware reset is

the only method of changing the operating mode back to real mode.

Due to the fact that the dynamic RAM card was mapped above the first Megabyte boundary, it was

essential that the system POST was able to address this range. This was only possible by means of

protected mode addressing and thus it was necessary for the POST to enter protected mode.

However, software constraints of the subsystem-specific applications code of the subsystem

described required that the entry to the subsystem-specific applications code be performed in real

mode.

The problem was solved in the following manner. Once the primary processor had performed the core

system tests of microprocessor, ROM and RAM and initialised the on-board peripheral chips, it

interrogated an on-board variable to determine whether the system was powered up from "cold"

(i.e. the variable was uninitialised) or whether a "warm" start had occurred (the variable was

initialised).2 If a "cold" start was detected, the system performed both the real mode and protected

mode POST. On successful completion of the POST (i.e. no critical failures occurred), the code

determined from the system description whether the applications code was to run in real or protected

mode. If the system description indicated the latter, then the protected mode applications code was

performed immediately. However, if the applications code was to be entered from real mode, the boot

code initialised the "warmll start variable and then issued a system reset by means of a port write to

the diagnostic status latch. After resetting and performing the core system tests and initialisation a

second time, the processor detected a IIwarmll start and began the execution of the applications code

in real mode.

2The on-board RAM test was designed in such a manner that this variable remained unchanged.

80

Although the standardised code was executed entirely in real mode, the overall standardisation effort

catered for similar constraints regarding the entry mode for all n subsystems. By specifying that the

system description indicate the applications mode of operation, it was possible to standardise

portions of the protected mode POST. By adopting the object-oriented design approach, generic

modules relating to the testing of common hardware in protected mode became packages and were

applied, if needed, to each subsystem. The hardware and software system reset solution described

above was one such package that could be incorporated into subsystem-specific POST in order to

return to real mode.

5.4.2 Testing of on-board peripheral chips

Once the core system had been tested, the on-board peripheral chips initialised and the run-time

evaluation had decided that a "cold start" had occurred, the system began to test the functionality of

the on-board peripheral chips. Due to the interaction of some of the on-board peripheral chips, the

fault modelling theory presented in chapter two was applied at this level. The appropriate interaction

diagram is presented in Figure 14.

OUT 0 IR1 INT

1rz
1olAl'>K

PIT IIIlAl5T~'" CPU T1t..4&a-oUT
PlC I"IT A~..c Ol"'CVI~V

OUT 1 ~

SLAVIO
PlC

t I;lU~R

r--
: OUTPUT FFlOM COUNTIOR 0

: OUTPUT FAOMCO~ 1

"''''UPT ",e.Ol..Jl!!ST UN~

KEY;
OUT 0

OUT 1

I"': INT!!

INT: INT~"''''UPTUN!!

IHT ACK : INTERAVPT ACKNOWLEDGE UNE
><ACK ; TRANSFER ""CKNOWLEDGE UNE

Figure 14 : CPU on-board peripheral chips interaction diagram

Following the theory presented in chapter two, the assumption was made that fault pattern F was

restricted to consist of a good functional block plus functional blocks containing exactly one of the

faults of the fault set FS = {f" f2, f3, f4}, i.e. F = {Fa, F" F2, F3, F4}. The test set was TS = {t" ~, t
3
}.

Test t, represented a combination of testing the master programmable interrupt controller and

time-out circuitry by performing a write to an invalid port. A time-out interrupt was expected to be

generated from this action. Test ~ tested the master programmable interrupt controller and counter 0

81

of the programmable interval timer by unmasking the interrupt from counter 0 and delaying long

enough to allow the programmable interval timer to generate an interrupt. Test t3was similar to test

~, with the exception that counter 1 was now expected to interrupt. In addition to testing counter 1

of the programmable interval timer and testing the master programmable interrupt controller again,

the testing loop now included the slave programmable interrupt controller since counter 1 was routed

through this device.

The fault-pattern-test-pattern event space is presented in Table XIV. Inspection of Table XIV yields the

syndrome

S = f1(t/~~')

+ f1(t1'~'t3)

+ f2(t1'~'t3)

+ f3(t1~t3)

+ f4(t1~'~')'

Therefore, if the test results were t1 = 1, ~ = 1 and t3 = 1, then S = f3, implying that the master

programmable interrupt controller was faulty. However, if t1 = 0, ~ = 0 and t3 = 1, then S = f1 + f2

and it was indeterminate whether (i) counter 1 of the programmable interval timer failed or (ii) the

slave programmable interrupt controller failed.

Table XIV : Fault-pattern-test-pattern event space for the CPU card interactive peripheral chips

Faulty circuitry

None
Programmable interval counter 0
Programmable interval counter 1
Slave programmable interrupt controller
Master programmable interrupt controller
Time-out circuitry

Fault pattern Test pattern (Tv = {t1~t3})

Fo 000
F1 010
F1 001
F2 001
F3 111
F4 100

The other software testable functional blocks on-board the CPU card were defined to be non-critical

and were tested as independent units. The testing of the multiple protocol serial controller serial I/O

interface was tested by means of the transmission of a sequence of instructions to clear the visual

display unit screen connected to the RS232 link. Each time data was transmitted, the mUltiple protocol

serial communications chip was expected to generate an interrupt. The success or failure of the

generation of such interrupts was recorded by the testing routine.

82

The 80287 numeric coprocessor was tested by performing a relatively complex real number

calculation and checking whether the actual run-time result was within an acceptable range when

compared to the expected result.

5.4.3 Testing the remaining standard computing segment

Once the standardised code had established the integrity of the CPU card it began testing the rest

of the standard computing segment. The presence of the EPROM/RAM card was defined to be critical

so the software had to first test its ability to perform off-board accesses. To achieve this, the standard

computing segment was considered at board level in order to apply the theory presented in chapter

two. The functional block for this segment is presented in Figure 15. Table XV shows the

fault-pattern-test-pattern event space at this level, yielding

S = f1(t1~')

+ f1f2(t1~)

+ f3f4(t1~)

+ f5(t1~)'

where test t1performed a read of the identification byte in the system description of the EPROM/RAM

card and test ~ read the test status of the system data bus controller card.

LOCAL BUS

f3 1, ,,
f2

SYSTEM
f1

DATA --- EPROM/RAM CPUBUS
CONTROLLER

fts

r. ~ ~ ~ ~

• , It ,,
- --

MULTIBUS

Figure 15 : Standard computing segment functional block

1 f4

The procedure applying the theory considered the cases of (i) either card absent or faulty, (ii) either

bus faulty, (iii) both cards absent or faulty or (iv) both busses faulty. It first read the EPROM/RAM

card and, if a time-out occurred, this implied that either (i) the card was absent or (ii) both busses

were faUlty or (iii) some off-board access mechanism on the CPU card was faUlty. Thus to determine

83
Table XV : Off-board access fault-pattern-test-pattern event space

Faulty circuitry

None
EPROM/RAM card
System data bus controller card
Local bus
Multibus
Both cards
Both busses
Off-board access ability

Fault pattern Test pattern (Tv = {t1~})

Fo OX
F1 10
F2 OX
F3 OX
F4 OX
F1 + F2 11
F3 + F4 11
Fs 11

the integrity of the Multibus under these circumstances, the code attempted to read the system data

bus controller card. If a time-out occurred once again, then t1 = 1 and ~ = 1 and therefore

S = f1f2 + f3f4 + fs' showing that either (i) both cards were absent/faulty or (ii) both busses were faulty

or else that (iii) the CPU accessing ability was faulty. In any event, the fault was considered to be

critical and thus an appropriate error message was sent to the diagnostic terminal and further

execution was suspended.

If fault pattern F1 was present (i.e. the EPROM/RAM card was absent/faulty), a time-out was

generated when test t1was applied and the test failed. However test ~ passed so that t1 = 1 and

t2 = o. In such an instance the standardised code immediately sent an error code to the hexadecimal

displays, transmitted an error message down the RS232 link and halted. If, however, no time-out

occurred when t1 was applied, but, instead, the value of the EPROM/RAM identification byte was

incorrect, then the system transmitted a "system description help screen" to the visual display unit.

This catered for the development environment where the subsystem designer had omitted or

erroneously entered the system description.

Once the standardised code had established its ability to perform off-board accesses,· the

EPROM/RAM card was tested. The generic ROM and RAM tests were applied to the card at the

appropriate addresses and a failure of either was deemed critical. The code dynamically assessed

the RAM/ROM boundary by consideration of the RAM/ROM option byte in the system description.

If the strapping of this boundary did not correspond to the option provided in the firmware, this

implied one of two cases, viz. either (i) all of the RAM or a portion thereof would be treated as ROM

or else (ii) all of the ROM or a portion thereof would be treated as RAM. In case (i), the long division

84

would now have included extra memory blocks, but the probability of the actual checksum

corresponding to the expected checksum was extremely small, and, consequently the ROM test

would have most likely failed. Given that all else was operating correctly, case (ii), on the other hand,

would have definitely failed, because any attempts to write to the ROM would have resulted in the

generation of a time-out.

Once again the standardised code catered for the development environment by determining whether

the checksums were present on the EPROM/RAM card prior to testing the ROM. If no checksums

were available, the test was still performed but the failure was ignored. This enabled the standardised

code to calculate and inform the designer regarding the expected checksum that needed to be

inserted into the system description.

Up to this point all CPU cards in all subsystems would have been concurrently executing standardised

code. However, because the code had now moved to testing modules at subsystem level and

off-board RAM was about to be tested, it was appropriate to delay the secondary processors. The

standardised code interrogated the system description to determine the number of processors, and,

on discovering a dual processor environment, delayed the secondary processor in the manner

described eartier. The RAM on the EPROM/RAM card was then tested using the generic method

previously discussed.

Following successful completion of the testing of the EPROM/RAM card, the standardised code

retrieved the self-test results from the system data bus controller card and performed a test on the

Multibus port of the dual ported RAM. An absent or faulty system data bus controller card was

considered as non-critical because it was still possible to operate the system without inter-subsystem

communication.

The standardised code concluded the power on procedure by analyzing the test results, and, if

possible, reporting these to the RS232 link. The system number and version of the subsystem-specific

code together with the calculated checksums of both the CPU and EPROM/RAM cards was also

transmitted. Control was then passed to the firmware resident on the EPROM/RAM card by means

of an absolute jump to the real mode address specified in the system description. This

subsystem-specific code then began execution of POST routines pertinent to the particular hardware

of the relevant subsystem.

85

5.5 DESIGNING THE SUBSYSTEM-SPECIFIC CODE

Complying to standardisation requirements at system level imposed restrictions on the

subsystem-specific code. Reducing these imposed restrictions increased the likelihood of system level

standardisation acceptance. The constraints inflicted by the standardised code were for the

subsystems to comply with the standardised-to-subsystem-specific code and data interfaces. The

code interface consisted of:

(a) reserving an area on the ROM of the EPROM/RAM card for the system description and

ensuring the correctness of such a description

(b) considering the state of the CPU on-board peripheral chips at the time of the transfer of

control and changing this state if necessary by the means of standardised library hardware

driver routines

(c) Linking to the standardised code in order to perform off-line diagnostics on the standard

computing segment.

The data interface, on the other hand, needed to reserve certain areas of RAM to enable the recording

of such items as test results, the detection of a ''warm" start and static and dynamic processor

identification variables.

With the exception of these interface requirements, however, subsystem-specific code needed to be

restrained no further by system level standardisation. The code had to still consider the subsystem

and component levels of standardisation, though. The flowchart for the subsystem-specific code is

illustrated in Figure 16 and described below.

The code resident on the EPROM/RAM card first determined whether a "cold" or "warm" start

occurred. If a ''warm" start was detected, the real mode demonstration was performed immediately.

However, if the system detected a "cold" start then the power-on procedure was continued based on

the subsystem hardware.

Since both the primary and secondary CPU cards executed standardised code, they both tested the

standard computing segment. However, once control was passed to the subsystem-specific

applications code (i.e. the executing code was resident on the EPROM/RAM card), the two

processors rendezvoused as depicted in the flow diagram of Figure 17.

KEY;

API :
APPUCATIONS
PROCESSOR
IHT~~"~

EMAC:
ENVlRONMENTAL

IVIONITORING
AND

CONTROL

Figure 16 : Flowchart of the subsystem-specific code

SECONDARY CPU

Figure 17 Dual processor task allocation flowchart

KEY:

P =PRIMARY CPU

S =SECONDARY CPU

86

87

Although the processors knew their respective identifications at this point, the code catered for the

run-time cases cited below:

Case 1 : The primary processor reaching the rendezvous point just before the secondary processor.

Under normal operating conditions, the primary processor reached the rendezvous point just

before the secondary processor. When this was the case, the primary processor initialised

the synchronisation flag and waited for the secondary processor. The secondary processor

reset the synchronisation flag and then waited for the handshake to be completed by the

primary processor. Following this, each processor performed their normal respective tasks.

Case 2 : The secondary processor reaching the rendezvous point just before the primary processor.

In spite of the delay that the secondary processor had already executed during the

standardised code, the secondary processor could still have reach the rendezvous point

before the primary processor due to the differing physical clock speeds on-board each CPU

card. This was catered for in a similar manner to the normal mode of operation, except that

the secondary processor was the first processor to initialise the synchronisation flag.

Case 3 : Either (i) the primary processor reaching the rendezvous point long before the secondary

processor or (ii) the primary processor reaching the rendezvous point and the secondary processor

never reaching the rendezvous point.

When this condition arose, the pre-defined count of the primary processor expired befor~ the

synchronisation flag was reset. The primary processor then assumed that the secondary

processor was faulty and operation continued in a degraded fashion. If the secondary

processor eventually arrived at the rendezvous point, it reported an error and halted.

88

Case 4 : Either (i) the secondary processor reaching the rendezvous point long before the primary

processor or (ii) the secondary processor reaching the rendezvous point and primary processor never

reaching the rendezvous point.

In this case the secondary processor initialised the synchronisation flag and waited for a

pre-determined period for the arrival of the primary processor. Eventually, the secondary

processor realised that the primary processor was going to miss the rendezvous. The duties

of the primary processor were therefore shifted to the secondary processor. If the primary

processor did eventually arrive, it would see that its functions had already been performed

by the secondary processor, report an error and halt.

Ideally, the first operation that should have been performed after determining a "cold" start was that

of the dual processor rendezvous. Since the EPROM/RAM cards were standardised at subsystem

level, both CPU cards would still have been executing identical code at this stage. Identification had

to therefore be performed dynamically in accordance with the flowchart of Figure 17, thus requiring

RAM accessible to both CPU cards. Up to this point, the only tested global RAM was that resident

on the system data bus controller card. However, this area could not be used for the handshaking

because the system data bus controller card was defined to be non-critical, and, thus the RAM might

not have been available at power-on. Instead, RAM that was both critical and accessible to the two

CPU cards was identified on the applications processor interface card. This card was justified as

critical because of its interface to the environmental monitoring and control circuitry and to the

operator. For this reason, both CPU cards performed tests on the applicable handshaking locations

on the applications processor interface card prior to performing their own task identification.

When the processors rendezvoused successfully, the secondary processor performed no further

activities other than to enter protected mode and become a system slave, waiting for a command

from the host. After the rendezvous, the primary processor initiated all further subsystem activities and

in this way the entire configuration changed from a "dual-master' to a "single-master' environment.

The procedure that followed was the same irrespective of which CPU card was executing as the

primary processor - the only difference being that those data structures passed via global subsystem

RAM to the secondary CPU card were on the dynamic RAM card as opposed to the primary

EPROM/RAM card.

89

After checking the self-test results of the applications processor interface and environmental

monitoring and control cards and testing the dual port RAM of the former, the primary processor

retrieved all status and environmental information (e.g. monitoring of the console for stuck-key

detection, temperature and humidity conditions) reported by the environmental monitoring and control

card. Critical conditions resulted in the system halting in the usual manner. Some conditions were

defined to be "abnormal", but not critical. In such cases the operator was notified, but the s stem

software did not suspend execution.

The next item to be tested was the dynamic RAM card. In order to access the dynamic RAM card,

the cooe had to enter protected mooe. The methoo used to enter protected mooe was similar for

both processors. Protected mooe requires descriptor tables in order to perform the correct

addressing [GLASS, 1989; INTEL, 1987a; INTEL, 1987c]. Each time a segment is accessed, an

"access" bit is set in the associated descriptor. This necessitated that the descriptor tables be RAM

based. It was therefore essential for the ROM based cooe to copy the descriptor tables to RAM, prior

to entering protected mooe. The protected mooe cooe was built in such a manner that it expected

the descriptors to be at the reserved RAM addresses. The source address of the descriptor table to

be copied depended on the run-time identification of each processor. This ensured that, in the dual

processor environment, each processor received the correct descriptor table copied from ROM on

the EPROM/RAM card to the respective on-board RAM locations. The software run-time decisions

that were taken at this stage are indicated in the flowchart of Figure 18.

90

N

Y

y

COPY SECONDARY TABLE

Figure 18 : Flowchart to create RAM based descriptor tables

COPY PRIMARY TABLE

During development, the descriptor tables were loaded into RAM by means of the in-circuit emulator

used for the code debugging [INTEl, 1984 p.5:49-5:65; INTEl, 1987b]. In this case, it was not

necessary to copy the tables. The code catered for this by first establishing whether it was executing

from EPROM (i.e. a pre-defined address had been programmed with a pre-determined value). If not,

the copy procedure was not executed.

91

The module to enter protected mode set the protected mode bit in the machine status word and

enabled the protected mode latch on the CPU card. The global descriptor table, interrupt descriptor

table, local descriptor table and task registers were then initialised [INTEl, 1987c] and a task switch

was performed to the protected mode POST.

The dynamic RAM card was then tested via the Multibus using the generic system RAM test algorithm.

An absent or failed dynamic RAM card on the Multibus was defined to be critical for two reasons,

namely:

(a) the dynamic RAM was used as global memory for the transfer of test results from the

secondary processor to the primary processor

(b) when the secondary processor was executing as the primary processor all the intelligent

slaves of the subsystem requiring buffer transfers to and from the host CPU used this area

as global RAM

Following the successful completion of the dynamic RAM test via the Multibus, the three graphics,

the serial communications to Multibus and the mass storage controller cards were tested as depicted

in the algorithm of Table XII (p. 76). The first correctly functioning graphics interface module detected

was designated the responsibility of reporting the system status. If all three graphics cards were faulty

then an error message was transmitted via the RS232 link and the system halted.

If execution continued from this point, all status reporting to the appropriate graphics interface module

was performed via the normal operational manner of buffer transfer as described in the interface

description of the previous chapter. This follows the "expanding kernel" principle outlined earlier of

only using hardware that has been previously tested. At this stage, the POST had proved that :

(a) at least one processor card had passed all on-board critical tests

(b) the EPROM/RAM card was fUlly operational

(c) the dynamic RAM card was fully operational over the Multibus

(d) there was at least one graphics interface module present in the system

When the primary CPU was executing the primary process it performed a dynamic RAM test over the

local bus. Due to the architecture of the system, however, this test and any applications code

references to dynamic RAM local bus addresses were invalid when the secondary processor was

executing the primary process. Under these circumstances, this fact was flagged and the operator

92

was informed regarding the degraded operation. The interface requirements specified the necessity

of providing fault tolerant applications code due to the possibility of such a degradation in operation

[OLANDER and BAUDIN, 1990].

Provided that the processors had successfully completed their rendezvous, the primary processor

interrogated the secondary processor at this stage. This interrogation resulted in the on-board test

results of the secondary processor being reported to global RAM. The secondary processor was then

allocated a graphics interface module for its particular applications output. It was possible to

reallocate graphics modules at any stage during the applications.

The system then reported any unreported errors or warnings detected at power up. The operator was

provided with the option of conducting more extensive off-line diagnostics or to ignore the

errors/warnings and to proceed to the applications. The demonstration of the ability of the real-time

embedded system to detect any fault or abnormal status of the system is highlighted In the

operational demonstration procedure of appendiX E.

5.6 APPLICATIONS CONSOLE FUNCTIONAL DEMONSTRATIONS

In normal applications, the fault-free system would have been reset and a 'Warm" start initiated. The

core tests would then have been performed a second time and control transferred to the real mode

applications code. However, to show the functionality of the console, applications demonstration code

was written. The assumption made in writing of this code was that a normal fault-free power up had

occurred. This, of course, excluded the demonstration of the ability of the off-line diagnostics to

diagnose an error.

93

On successful completion of the POST, the system displayed the main test menu on the first graphics

display unit and on the RS232 terminal connected to the diagnostic port of the console status panel

module. The menu consisted of :

(a) a demonstration of the rollerball ability

(b) graphics display test patterns

(c) a demonstration of multi-master bus contention capabilities

(d) a demonstration of off-line diagnostic capabilities

(e) a demonstration of the serial communications to the Multibus

(f) a demonstration of the software initiated processor reset which resulted in the return to

real mode and subsequent execution of environmental monitoring and control and mass

storage controller card demonstrations

The operational demonstration procedure given in appendix E shows the implementation of these

console functional demonstrations together with a simulation of faults that Illustrate the ability to

detect system failures.

5.7 SUMMARY

It was appropriate to show how the Introduced concepts were applied to a typical real-time

embedded system. This chapter showed how the software of the standard computing segment was

standardised thus enabling the CPU cards to be consistent through all n SUbsystems. At subsystem

level, the local memory cards and three graphics Interface modules were also standardised. The

power-on self tests of both the standardised code and the subsystem-specific code was then

described In detail.

Two examples were presented at two different hierarchical levels Illustrating the practical

Implementation of the theory. The first example Illustrated the derivation of a Boolean expression for

on-board peripheral circuitry enabling quick and easy diagnosis to functional block level. In a similar

manner, the second example revealed an expression enabling the diagnosis resolution to be realised

at board level.

The description of the program flow for the power on routines Illustrated how the Implemented code

substantiated the presented philosophies. ParticUlarly, this chapter has provided an example of the

Integration and practical implementation of the researched principles during the software development

phase of a typical real-time embedded system.

94

6 CONCLUSION

The text has provided an overview of hardware failures and some resulting classical faults. Typical

circuitry was modelled in a hierarchical fashion and ideas were presented in an effort to convey

certain philosophies to prospective system designers.

Some important issues were raised, one being the understanding of the requirements specification

that defines the goals of the diagnosis. The problem definition envisaged by both the operational and

maintenance personnel may be quite diverse. It is not only essential to analyze these differences in

user requirements, but also to retrieve valuable user experience on existing systems in order to

provide design improvements in future projects.

The diagnostic goals need to be clearty and unambiguously stated by both class of users. The system

time constraints and system overhead should be specified, highlighting diagnostic time limitations and

the amount of system availability required during testing. Included in this specification should be a

mention of the frequency of preventative maintenance activities, since this also affects the frequency

of the on-line health monitor testing routine (a balance must be maintained to ensure a relatively high

system availability). The system tactical requirements should also be specified. These requirements

will include such aspects as the possibility for "battle short" conditions at power-on that allows for a

POST bypass and features such as diagnostic override facilities during on-line or off-line diagnostics.

Finally, existing standing orders and standardisation policies should be highlighted to enable

compliance with or the possible upgrading of such philosophies. The standing orders would include

the user procedures followed during power-on and off-line diagnostics, particularty in the event of

hardware failure.

Inorder to construct a meaningful requirements specification, the requirements of both the operational

and maintenance personnel should be assessed for all three testing phases. Typical questions would

be:

1) What is the hierarchical depth of testing to be realised by the diagnostic routine?

2) How many faults should the diagnostic routine assume present at anyone particular

instant?

3) What is the format of the system status display?

4) How much information is needed by the user when the system status is displayed ?

5) Is there a necessity to provide diagnostic override facilities during testing?

6) At what level of user authority should these override facilities be aimed ?

7) What is the typical maximum time allowed for the diagnostics to execute?

95

8) How much of the system should be available for the execution of the main applications

task during testing ?

9) What is the frequency of preventative maintenance activities ?

10) What is the normal power-on procedure?

11) What is the procedure followed when a hardware failure is detected at power-on?

12) Are there any standing orders preventing the operator from bypassing the POST when

this is not necessary ?

13) What is the procedure followed when an error/warning is issued by the on-line health

monitor?

14) Under what conditions are the off-line diagnostic routines invoked ?

(a) Are the off-line diagnostic routines only invoked when the on-line health monitor

detects a potential problem ?

(b) Are the off-line diagnostic routines invoked at regular intervals, typically during

preventative maintenance activities ?

(c) Are the off-line diagnostic routines invoked more frequently than the execution of

preventative maintenance ?

15) What is the procedure followed when a hardware unit is diagnosed as faulty ?

16) What is the procedure followed when a faulty hardware unit is a standardised module and

no spare module is available?

Once these requirements have been noted, the designer must then decide on the sophistication of

the testing capabilities. A typical real-time embedded system would be hierarchically decomposed into

its constituent parts and the theory and policies presented applied to the system. The designer must

then evaluate whether the module under consideration requires BIT and/or BITE capabilities, given

externally imposed reliability, availability, maintainability and cost constraints. For example, if the

testability is required to assume a passive rather than an active role, then BIT is required rather than

BITE.

After deciding whether to implement BIT or BITE, the designer must then strive to provide qualitative

and quantitative answers to questions relating to the nature of the capability. For BITE, this would

include deciding on the location and sophistication of both the fault detection circuitry and the fault

96

indicators. Either of this hardware could be integrated into the module or remotely sited. Similarly, for

BIT, the designer must implement the appropriate solution based on certain criteria, including:

(a) the sophistication of control over module inputs

(b) the type of access to module inputs or outputs

(c) the sophistication of fault analysis and indication

In addition to these design criteria, other factors that would influence the implemented choice would

include an evaluation of the impact of the testable features on operational performance and the cost

of actually implementing the option. An assessment of these costs would include a trade-off analysis

between the cost of the BIT/BITE design and development together with the cost of user training.

Having appraised the test capabilities of their respective subsystems, system designers should also

strive for standardisation in test philosophies. This standardisation would include :

(a) system-wide agreements on testing methodologies applied to certain hardware functions

(b) fault detection mechanisms for common modules

(c) decisions to detect or diagnose certain classical faults

(d) depth of testing requirements

(e) status and warning display requirements

(f) tactical requirements (eg. override facilities)

(g) testing time constraints

(h) testing interference with system performance

It can be seen that the generation of built-in test features for a complex real-time embedded system

is a non-trivial task that requires cooperation between both system designers and system users. In

order to develop worthwhile test features and to ensure efficient system development, built-in test

design policies need to be agreed upon during the preliminary design phase. This text has aimed at

providing a base for a general understanding of these relevant policies and to show that implementing

the policies eases the task of generating a set of built-in tests for a real-time embedded system.

97

7 REFERENCES

[ABBOTI, 1981]

ABBOTI, R, Equipping a Line of Memories with Spare Cells

(Electronics, p. 127-130,28 July 1981).

[ABRAHAM and AGARWAL, 1986]

ABRAHAM, J.A. and AGARWAL, V.K., Test Generation for Digital Systems

(Fault-Tolerant Computing Theory and Techniques, Prentice-Hall, Englewood Cliffs, New Jersey, vol. I,

p. 1-97, 1986).

[AGNEW et ai, 1965]

AGNEW, P., RUTHERFORD, D., SUHOCKI, R, YEN, C. and MULLER, D.,

An architectural Study for a Self-Repairing Computer

(USAF Space Systems Div., Final Tech. Rep. SSD-TR-64-159, Nov. 1965).

[ALLWORTH and ZOBEL, 1987]

ALLWORTH, S.T. and ZOBEL, RN., Introduction to Real-Time Software Design

(Macmillan Education, London, p. 1-13 & 103-144, 1987).

[ANDERSON et ID, 1982]

ANDERSON, RT., KUS, S., RICKERS, H.C. and WILBUR, J.W., Reliability Design and Engineering

(Electronic Engineers' Handbook, McGraw-Hill, U.S.A., Second Edition, p. 28:1-28:58, 1982).

[ANSI, 1986]

American National Standard for Information Systems, Small Computer Systems Interface

(American National Standards Institute, Broadway, Ney York, x3.131-1986, 1986).

[AWST, 1981]

Aviation Week & Space Technology, Velocity, Altitude Regimes to Push Computer Limits

(McGraw-Hill , U.S.A., p. 49-51, 6 April 1981).

[BALLlNGER and CONRADIE, 1990]

BALLlNGER, J. and CONRADIE, C.,

Fundamental Differences Between the Traditional and Object-Oriented Approach to Software

Development

(Proc. Symp. Object-Oriented Software Design, Wits. Univ., p. 2:1-2:7, 30-31 January 1990).

98

[BAUDIN, 1990a]

BAUDIN, M.S.E, Technical Manual for the BTU card

(UEC Projects, Mt. Edgecombe, Natal, 1990).

[BAUDIN, 1990b]

BAUDIN, M.S.E., Software Product Specification for the Serial Communications to Multibus Card

(UEC Projects, Mt. Edgecombe, Natal, 1990).

[BAUDIN, 1990c]

BAUDIN, M.S.E, Software Product Specification for the Graphics Interface Modules

(UEC Projects, Mt. Edgecombe, Natal, 1990).

[BOSE and METZNER, 1986]

BOSE, B. and METZNER, J., Coding Theory for Fault-Tolerant Systems

(Fault-Tolerant Computing Theory and Techniques, Prentice-Hall, Englewood Cliffs, New Jersey, voll,

p. 280-281, 1986).

[BRAHME and ABRAHAM, 1984]

BRAHME, D. and ABRAHAM, J.A., Functional Testing of Microprocessors

(IEEE Trans. Comput., vol. C-33, July 1984).

[BREUER and FRIEDMAN, 1976]

BREUER, M.A. and FRIEDMAN, A.D., Diagnosis and Reliable Design of Digital Systems

(Woodland Hills, Calif.: Computer Science Press, 1976).

[BRULE et ai, 1960]

BRULE, J., JOHNSON, R. and KLETSKY, E, Diagnosis of Equipment Failures

(IRE Trans. Reliab. Quality Control, vol. RQC-9, no.4, p. 23-24, April 1960).

[CHANG, 1965]

CHANG, H., An Algorithm for Selecting an Optimum Set of Diagnostic Tests

(IEEE Trans. Electron. Comput., vol. EC-14, no. 10, p. 706-711, Oct. 1965).

[CHANG and THOMIS, 1967]

CHANG, H. and THOMIS, W.,

Methods of Interpreting Diagnostic Data for Locating Faults in Digital Machines

(Bell Syst. Tech. Journ., vol. 53, no. 8, p. 1505-1534, Oct. 1974).

[CHANG et ai, 1970]

CHANG, H.Y., MANNING, E.G. and METZE, G., Fault Diagnosis of Digital Systems

(New York: Wiley-Interscience, 1970).

[COOPER and CHOW, 1976]

COOPER, A.E. and CHOW, W.T., Development of on-board Space Computer Systems

(IBM Journ. ot Research and Development, vol. 20, no. 1, p. 5-19, Jan. 1976).

[FORBES et ID, 1965]

FORBES, R., RUTHERFORD, D., STIEGLlTZ, C. and TUNG, L., A Self-Diagnosable Computer

(1965 Fall Joint Comput. Cont., AFIPS Proc., vol. 27, p. 1073-1086, 1965).

[FUJIWARA, 1985]

FUJIWARA, H., Logic Testing and Design for Testability

(MIT Press Series in Computer Systems, Cambridge, Massachusetts, p. 1-23 & 144-149, 1985).

[GLASS, 1989]

GLASS, L.B., Protected Mode

(BYTE, Peterborough, NH, p. 377-384, December 1989).

[GLASS, 1990a]

GLASS, L.B., The SCSI Bus (Part 1)

(BYTE, Peterborough, NH, p. 267-274, February 1990).

[GLASS, 1990b]

GLASS, L.B., The SCSI Bus (Part 2)

(BYTE, Peterborough, NH, p. 291-298, March 1990).

99

[GREYLlNG, 1989a]

GREYLlNG, P.M., Processor Module Technical Manual

(Andromeda Electron. Syst., Jhb., 1989).

[GREYLlNG, 1989b]

GREYLlNG, P.M., EPROM/RAM Card Technical Manual

(Andromeda Electron. Syst., Jhb., 1989).

[GREYLlNG, 1989c]

GREYLlNG, P.M., DRAM Card Technical Manual

(Andromeda Electron. Syst., Jhb., 1989).

[GREYLlNG, 1989d]

GREYLlNG, P.M., User Manual for the System Data Bus Controller Card

(Andromeda Electron. Syst., Jhb., 1989).

[HACKl and SHIRK, 1965]

HACKl, F. and SHIRK, R., An Integrated Approach to Automated Computer Maintenance

(1965 IEEE Cont. Record Switching Theory logical Design, p. 289-302, 1965).

[HAYES, 1975]

HAYES, J.P., Detection of Pattern-Sensitive Faults in Random Access Memories

(IEEE Trans. Comput., vol. C-24, p. 150-157, Feb. 1975).

[INTEl, 1981]

literature Dept., Intel Corp., An Introduction to ASM86

(Inte! Corp., Calif., 1981).

[INTEl, 1982]

Literature Dept., Intel Corp., Component Data Catalog

(Intel Corp., Calif., 1982).

[INTEl, 1983]

literature Dept., Intel Corp., MULTIBUS System Bus

(OEM Systems Handbook, Intel Corp., Calif., p. 3:1-3:10, 1983).

100

[INTEl, 1984]

literature Dept., Intel Corp., Development Systems Handbook

(Intel Corp., Calif., 1984).

101

[INTEl, 1985a]

literature Dept., Intel Corp., iSBC 286/12 Single Board Computer Hardware Reference Manual

(Inte! Corp., Calif., 1985).

[INTEl, 1985b]

literature Dept., Intel Corp., ASM86 Assembly Language Reference Manual

(Intel Corp., Calif., 1985).

[INTEl, 1985c]

literature Dept., Intel Corp., PLM86 User's Guide

(Intel Corp., Calif., 1985).

[INTEl, 1985d]

literature Dept., Intel Corp., iAPX 286 System Builder User's Guide for DOS Systems

(Intel Corp., Calif., 1985).

[INTEl, 1986a]

literature Oept., Intel Corp., iAPX 86/88, 186/188 User's Manual Programmer's Reference

(Intel Corp., Calif., 1986).

[INTEl, 1986b]

literature Dept., Intel Corp., PLM-286 User's Guide

(Intel Corp., Calif., 1986).

[INTEl, 1987a]

literature Dept., Intel Corp., 80286 and 80287 Programmer's Reference Manual

(Intel Corp., Calif., 1987).

[INTEl, 1987b]

literature Dept., Intel Corp.,

Integrated Instrumentation and In-Circuit Emulation System Reference Manual

(Intel Corp., Calif., 1987).

102

[INTEl, 1987c]

literature Dept., Intel Corp., Operating System Writer's Guide

(Intel Corp., Calif., 1987).

[INTEl, 1988]

literature Dept., Intel Corp., Microcommunications Handbook

(Intel Corp., Calif., 1988).

[INTEl, 1989]

literature Dept., Intel Corp., Microprocessor and Peripheral Handbook

(Intel Corp., Calif., vo!. I, 1989).

[JOHNSON, 1960]

JOHNSON, R., An Information Theory Approach to Diagnosis

(Proc. 6th National Symp. Reliab. Quality Control, p. 102-107, 1960).

[KAUTZ, 1968]

KAUTZ, W., Fault Testing and Diagnosis in Combinational Digital Circuits

(IEEE Trans. Comput., vo!. C-17, no. 4, p. 352-366, April 1968).

[KIME, 1970]

KIME, C., An Analysis Model for Digital System Diagnosis

(IEEE Trans. Comput., vo!. C-19, no. 11, p. 1063-1073, Nov. 1970).

[KIME, 1979]

KIME, C., An Abstract Model for Digital System Fault Diagnosis

(IEEE Trans. Comput., vol. C-28, no. 10, p. 754-766, Oct. 1979).

[KIME, 1986]

KIME, C.R., System Diagnosis

(Fault-Tolerant ComputingTheoryand Techniques, Prentice-Hall, Englewood Cliffs, New Jersey, vo!. 11,

p. 577-632, 1986).

103

[KNAIZUK and HARTMANN, 1977]

KNAIZUK, J. and HARTMANN, C.R.P.,

An Optimal Algorithm for Testing Stuck-At faults in Random Access Memories

(IEEE Trans. Cornput. , vol. C-25, p. 1141-1144, Nov. 1977).

[KRAFT and TOY, 1981]

KRAFT, G.D. and TOY, W.N., Microprogrammed Control and Reliable Design of Small Computers

(Prentice-Hall, Englewood Cliffs, New Jersey, p. 163-367, 1981).

[LAW-BROWN, 1990a]

LAW-BROWN, D.C., Console Technical Description

(UEC Projects, Mt. Edgecornbe, Natal, 16 February 1990).

[LAW-BROWN, 1990b]

LAW-BROWN, D.C., Console Demonstration Test Procedure

(UEC Projects, Mt. Edgecornbe, Natal, 18 May 1990).

[METHA, 1989a]

METHA, N., Development Specification for the Subsystem Console Assembly

(UEC Projects, Mt. Edgecornbe, Natal, 2 March 1989).

[METHA, 1989b]

METHA, N., Interface Control Document of the API PCS

(UEC Projects, Mt. Edgecornbe, Natal, 31 October 1989).

[NAIR et m, 1978]

NAIR, R., THATIE, S.M. and ABRAHAM, J.A.,

Efficient Algorithms for Testing Semiconductor Random-Access Memories

(IEEE Trans. Cornput., vol. C-27, p. 572-576, June 1978).

[OLANDER and BAUDIN, 1990]

OLANDER, P.A. and BAUDIN M.S.E.,

Interface Control Document of the Hardware Development with the Main Applications Computer

Program Configuration Item

(UEC Projects, Mt. Edgecornbe, Natal, 17 August 1990).

104

[PARTHASARATHY et m, 1982]

PARTHASARATHY, R., REDDY, S.M. and KUHL, J.G.,

A Testable Design for General Purpose Microprocessors

(FTCS 12th Annu. 1nl. Symp. Fault-Tolerant Comput., p. 117-124,22-24 June, 1982).

[POAGE, 1963]

POAGE, J., Derivation of Optimal Tests to Detect Faults in Combinational Circuits

(Proc. Symp. Math. Theory Automata, p.483-528, 1963).

[POLMANS, 1990a]

POLMANS, A.J.P., Mass Storage Card Interface Requirements Specification for Multibus Access

(UEC Projects, Ml. Edgecombe, Natal, 1990).

[POLMANS, 1990b]

POLMANS, A.J.P., Interface Design Document for the Mass Storage Controller Card

(UEC Projects, Ml. Edgecombe, Natal, 1990).

[PRADHAN, 1986]

PRADHAN, D.K., Fault-Tolerant Computing Theory and Techniques

(Englewood Cliffs, New Jersey: Prentice-Hall, p. xiii-xvi, 1986).

[PREPARATA et m, 1967]

PREPARATA, F., METZE, G. and CHIEN, R.,

On the Connection Assignment Problem of Diagnosable Systems

(IEEE Trans. Comput., vol. EC-16, no. 6, p. 848-854, Dec. 1976).

[RAMAMOORTHY, 1967]

RAMAMOORTHY, C., A Structural Theory of Machine Diagnosis

(1967 Spring Joint Compul. Conf., AFIPS Proc., vol. 30, p. 743-756, 1967).

[ROBACH and SAUCIER, 1978]

ROBACH, C. and SAUCIER, G. Dynamic Testing of Control Units

(IEEE Trans. Comput., vol. C-27, p. 617-623, July 1978).

105

[ROBACH and SAUCIER, 1975]

ROBACH, C. and SAUCIER, G., Diversified Test Methods for Local Control Units

(IEEE Trans. Comput., vol. C-24, p. 562-567, May 1975).

[SHEDLETSKY, 1977]

SHEDLETSKY, J.J., Random Testing: Practicality vs. Verified Effectiveness

(Dig., 7th Annu. 1nl. Symp. Fault-Tolerant Comput., Los Angeles, p. 175-179,28-30 June, 1977).

[SIEMENS, 1988]

Siemens AG, AMS Microcomputer Board System Product Descriptions

(Siemens AG, Bereich Halbleiter, Microcomputer Systems, Ottobrunn, 1988).

[SIEWIOREK, 1986]

SIEWOREK, D., Architecture of Fault-Tolerant Computers

(Fault-TolerantComputingTheoryand Techniques, Prentice-Hall, Englewood Cliffs, New Jersey, vol. 11,

p. 417-463, 1986).

[SKLAROFF, 1976]

SKLAROFF, J.R., Redundancy Management Technique for Space Shuttle Computers

(IBM Journ. of Research and Development, vol. 20, no. 1, p. 20-28, Jan. 1976).

[STEGE, 1988]

STEGE, M.J.C., BIT/BITE Design Guidelines

(UEC Projects, Mt. Edgecombe, Natal, 27 January 1988).

[SUO, 1981]

SUO, R. and HARDEE, K.C., Designing Static RAMS for Yield as well as Speed

(Electronics, p. 121-126, 28 July 1981).

[SUK and REDDY, 1981]

SUK, D.S. and REDDY, S.M.,

A March Test for Functional Faults in Semiconductor Random Access Memories

(IEEE Trans. Comput., vol. C-30, p. 982-984, Dec. 1981).

[TANENBAUM, 1981]

TANENBAUM, A.S., Computer Networks

(Prentice-Hall, Englewood Cliffs, New Jersey, 1981).

[THATIE and ABRAHAM, 1977]

THATIE, S.M. and ABRAHAM, J.A., Testing of Semiconductor Random Access Memory

(Dig., 7th Annu. Int. Symp. Fault-Tolerant Comput., Los Angeles, p. 81-87, 28-30 June 1977).

[THATIE and ABRAHAM, 1980]

THATIE, S.M. and ABRAHAM, J.A., Test Generation for Microprocessors

(IEEE Trans. Comput., vol. C-29, p. 429-441, June 1980).

[WENSLEY et m, 1978]

WENSLEY, J.H., LAMPORT, L., GOLDBERG, J., GREEN, M.W., LEVITI, K.N.,

MELLlAR-SMITH, P.M., SHOSTAK, R.E. and WEINSTOCK, C.B.,

SIFT: Design and Analysis of a Fault-Tolerant Computer for Aircraft Control

(Proc. IEEE, vol. 66, no. 10, p. 1240-1255, Oct. 1978).

106

A-1

APPENDIX A : SUBSYSTEM MAPS

1 SUBSYSTEM MEMORY MAPS 5

2 SUBSYSTEM I/O MAP .. 7

3 SUBSYSTEM INTERRUPT STRUCTURE .. 8

A-2

LIST OF TABLES

Table I : Summary of CPU card interrupt structure. .. 8

f

A-3

LIST OF FIGURES

Figure 1 : Subsystem memory map .. 5

Figure 2 : Subsystem memory map of page 0 6

Figure 3 : Subsystem I/O map 7

Figure 4 : Interrupt configuration .. 8

API

DRAM

EMAC

GIM

INT#

INTA

IR

MPSC

MSC

NMI

NU

OUTO

OUT1

PlC

PIT

SCMB

SDBC

SERINT

LIST OF SYMBOLS

: Applications processor interface

: Dynamic RAM

: Environmental monitoring and control

: Graphics interface modules

: Multibus interrupt number

: Interrupt acknowledge

: Interrupt request

: Multi protocol serial communications chip

: Mass storage controller

: Non maskable interrupt

: Not used

: Counter zero output

: Counter one output

: Programmable Interrupt Controller

: Programmable interval timer

: Serial communications to Multibus

: System data bus controller

: Serial interrupt

A-4

A-5

1 SUBSYSTEM MEMORY MAPS

Figure 1 shows the memory map for the full sixteen megabyte address space of the subsystem. The

lowest page (Le. page 0) is presented in Figure 2.

MULTlBUS CPU 1 CPU 2 AA MSC SCMB 01..

.LL./.II ////1/

........ llWM ~ "~'>I'JI

........ •......... ~ ·········t ·········t·········

'/1. ,1'J/~

'/. ,///.'IJ

)(

'/.

W//lj
'I, 'HI//)

'/h

JtJt Jtxx

Cl' '/t;

xxx xx

'I/JII//I, ~

)()(

'l/.
1//

xx xxx X

/ / / / /

/ I / I /
iI / / / I (

/ / /....J.'(
)~~
IUSDUAV

~~
/ / I / I

I / / / I
I I I / I

Iv / / / /

V/,

·····f«)T·useD-······· .
/ "",.

11/////1
/1111111
/ / / / / / /

/ / / 1~ I I /
/ I I ~/ / I
/// I11
/IIPGRT/II

/ I -DMW / /
11/1/1111
I I I I I / / /
/1/////1
///////

..............................

NOT USED

'/.

if///~

~
f///////i

1/111111/,
h....'.

1FFFFF

FFFFFF

FEOOOO
3FFfFF

I SEE MEt.mY' MAP~ PK:E 0 ; P~ED WlNDONS TO Ml1.TIBUS

Figure 1 : SUbsystem memory map

A-6

832K
PAGED

WINDOW
TO

IllJlTIBUS

NOT
USED

CPU 2CPU 1

/
/ I I / / I I / / I
I I I / I I I I I I
/ I I / I I / / I

/ / / I I / / I /

MULnBUS

······-NGI-usED····· ·········mv~~WrvMl~

17FF

lOGO

111FF /21(AP.fDPlWl ...­
11000

NOT USED10000

30000 / / / / / / / .

.~~:~#'.
20800~---'----....~-4
1FFFF

FFFFF

FFCOO
EOOOO

DOOOO

COOOO

A-7

2 SUBSYSTEM I/O MAP

Figure 3 displays the I/O map as seen from the primary CPU card of the subsystem.

MULnBUS
FFFF..----------.

503
SCMB

500

400
GIM 1

300
GIM 2

200
GIM 3

100
SOB

CPU

NCP

KEY:

SCMB: SERIAL COMMUNICATIONS TO MULTIBUS

CONTROLLER CARD

61M: GRAPHICS INTERFACE MODULE

SDB : SYSTEM DATA BUS CONTROllER CARD

NCP : NUMERIC COPROCESSOR

MPSC: MULTIPLE PROTOCOL SERIAL

COMMUNICATIONS CHIP

PIT: PROGRA....ABLE INTERVAL TIMER

PMODE: PROTECTED MODE

FO t------I

DIAQNOSTIC

EO LATai

MPSC
08 t------I

PIT
DO +--------1

PMODE
ca +--_~_T_ai_-l

CO t------I

NOT
o .o-_U_S_ED_--L

Figure 3 : Subsystem I/O map

PlC.: PROGRAMMABLE INTERRUPT

CONTROLLERS

A-a

3 SUBSYSTEM INTERRUPT STRUCTURE

The source and destination of the interrupt structure for the CPU card is shown in Figure 4 and

summarised in Table I.

INTO

1NT1
INTZ
INT3

INT~

INT&
INTe
INT7

eMAO NMI 808•• IINTA
C""

~
I TM01"

I"

If" n ...-ouT
CIRCUITRY

D"AM 1..2
8D.0 1..3
GIM IR. MAaTER

I". PlC I"
I".

NU IR7

~
API 1"0 OUTO

SOM. I'"
MSC IR2
+SV IR3

...!!IT....- PIT
I.... aLAV~

NU IR& PlC INT

NU IRe
NU IR7 OUT1

"~C "

Figure 4 : Interrupt configuration

Table I : Summary of CPU card interrupt structure

Interrupt source

EMAC via Multibus INTO
Time-out
PIT counter zero
DRAM via Multibus INT1
SDBC via Multibus INT2
GIMs via Multibus INT3
Cascaded slave PlC
MPSC serial interface
API via Multibus INT4
SCMB via Multibus INTS
MSC via Multibus INT6
Secondary processor delay
PIT counter one

Route of interrupt request

NMI80286
Master PlC IRO
Master PlC IR1
Master PlC IR2
Master PlC IR3
Master PlC IR4
Master PlC IRS
Master PlC IR6
Slave PlC IRO
Slave PlC IR1
Slave PlC IR2
Slave PlC IR3
Slave PlC IR4

Note: IR? is intentionally not used, since this is a unique trap for interrupt requests that are
removed prior to servicing.

B-1

APPENDIX B : STANDARDISED CODE LISTINGS

1 INTRODUCTION .. 4

2 SOURCE CODE 5

2.1 COMPILER/ASSEMBLER 5

2.2 MEASURED RESOURCE UTILISATION. .. 6

2.3 DURATION OF EXECUTION 6

2.4 EXPLANATION OF SOURCE CODE .. 9

2.5 SOURCE CODE LISTINGS 11

2.5.1 PLM86 files 11

2.5.1.1 STDEXEC.PLM 11

2.5.1.2 STDINIT.PLM .. 13

2.5.1.3 STDBIT.PLM '~ ; 28

2.5.1.4 STDINTS.PLM -. 50

2.5.1.5 STDPIC.PLM 64

. 2.5.1.6 STDPIT.PLM 70

2.5.1.7 STDSTAT.PLM .. 73

2.5.1.8 STDDIAG.PLM .. 75

2.5.1.9 STDIO.PLM 95

2.5.1.10 STDCONVT.PLM 127

2.5.2 ASM86 files 132

2.5.2.1 STDCPU.ASM 132

2.5.2.2 STDRAM.ASM 137

2.5.2.3 STDERAM.ASM 140

2.5.2.4 STDSDB.ASM 146

2.5.3 Entities publicly declared files .. 148

2.5.3.1 STDINIT.EPD .. 148

2.5.3.2 STDBIT.EPD 148

2.5.3.3 STDINTS.EPD 154

2.5.3.4 STDPIC.EPD 157

2.5.3.5 STDPIT.EPD 159

2.5.3.6 STDSTAT.EPD .. 159

2.5.3.7 STDDIAG.EPD .. 160

2.5.3.8 STDIO.EPD 160

2.5.3.9 STDCONVT.EPD 170

B-2

2.5.3.10 STDCPU.EPD .. 171

2.5.3.11 STDRAM.EPD 171

2.5.3.12 STDERAM.EPD 172

2.5.3.13 STDSDB.EPD .. 173

2.5.4 Ineluded files 174

2.5.4.1 PLMPAR.INC .. 174

2.5.4.2 L1TS.INC .. 174

2.5.4.3 PICLlTS.INC 175

2.5.4.4 PITLlTS.lNC .. 178

2.5.4.5 IOLlTS.INC 179

2.5.4.6 STATLlTS.INC 180

B-3

LIST OF TABLES

Table I : Standardised code resource utilisation. .. 6

Table 11 : Duration of POST execution for the standardised code 7

Table III : Total standardised POST execution time. .. 8

8-4

1 INTRODUCTION

The real-time embedded system software was divided into seven components, viz. :

(a) the standardised code of the standard computing segment, resident on the CPU cards

(b) the subsystem-specific applications code, resident on the system EPROM/RAM cards

(c) the system data bus controller card firmware responsible for regulating communications

between the Multibus and the system data bus

(d) the applications processor interface firmware, handling most system I/O

(e) the serial communications to Multibus card, catering for the local area network

communications

(f) the graphics interface modules, driving the three graphics display units

(g) the mass storage controller card providing external data storage and retrieval

This appendix applies to the software component identified in (a) above, and presents the following

relevant information :

(a) the measured utilisation of RAM, EPROM and expected maximum stack requirements

(b) the measured expected minimum duration of execution

(c) a brief explanation of the source code files, together with the full source code listings.

The listings for software component (b) are presented in the subsequent appendix. Only the interfaces

to software components (c) to (g) were described in the main portion of the text. With the exception

of diagnostic firmware for some common on-board devices, these software components were not the

work of the author, and, as a result, the source code listings have been intentionally omitted from the

text.

8-5

2 SOURCE CODE

2.1 COMPILER/ASSEMBLER

The PL/M software source files were compiled using the Intel PL/M-86 Compiler Version 3.1. All

source files were compiled with the following compiler controls in effect:

debug

large

rom

The compiler was invoked by the following command:

PLM86 filename.ext

All Assembler source files were assembled using the Intel 8086/87/88/186 Macro Assembler

Version 2.1. The assembler was invoked by the following command:

ASM86 filename.ext

B-6

2.2 MEASURED RESOURCE UTILISATION

Table I shows the measured memory utilisation and the maximum stack allocation during the

execution of the standardised code.

Table I : Standardised code resource utilisation

Resource

RAM
EPROM
Stack

2.3 DURATION OF EXECUTION

Utilisation/allocation

3 kB
17 kB
16 kB

The duration of execution of each test during POST was measured by means of a logic analyzer

monitoring the diagnostic status latch on the CPU card. Each time that a new value was output to

the status latch, this indicated the beginning of a new test. The test was conducted for the three

various RAM/ROM configurations available by definition in the system description. Table 11 indicates

the values recorded for the various standardised code power-on self tests.

B-7

Table 11 : Duration of POST execution for the standardised code

Latch Test Duration
value (seconds)

1 CPU test 0,000 099
2 On-board ROM test 20,591 394
3 On-board RAM test 1,016278
4 Initialisation routines 0,056327
8 Master PlC and time-out test 0,064 641
9 PIT test 0,076279
A MPSC test 0,000 795
6 SPIC test 0,010540
B Numeric coprocessor test 0,000568
C Off-board access test 0,000 094

11 ROM test (option 1) 82,964 637
11 ROM test (option 2) 62,148 522
11 ROM test (option 3) 41,407962
12 Primary processor delay 0,000088
12 Secondary processor delay 0,010628
13 RAM test (option 1) 1,812 597
13 RAM test (option 2) 3,634442
13 RAM test (option 3) 5,448 683

20 SOB controller self-test 0,000 110
21 SOB RAM test 3,732663

30 Local bus test 0,028897

The total POST execution time for each card was determined from Table 11 as shown below:

B-8

Total duration of CPU card tests

Total duration of EPROM/RAM card tests:

- Primary processor (option 1)

- Primary processor (option 2)

- Primary processor (option 3)

- Secondary processor (option 1)

- Secondary processor (option 2)

- Secondary processor (option 3)

Total duration of SOB controller tests

Total duration of bus tests

= 21,817 015 s

= 84,777 322 s

= 65,783 052 s

= 46,856 733 s

= 84,787 862 s

= 65,793 592 s

= 46,867 273 s

3,732773 s

0,028897 s

The total execution time for the standardised POST is depicted in Table Ill.

Table III : Total standardised POST execution time

Processor
card

Primary processor
Primary processor
Primary processor
Secondary processor
Secondary processor
Secondary processor

EPROM/RAM
option

1
2
3
1
2
3

Approximate
duration (seconds)

110,356
91,362
72,435

110,367
91,377
72,446

B-9

2.4 EXPLANATION OF SOURCE CODE

A brief explanation of the function of each software module pertinent to the standardised code is

provided below. The modules are subdivided into the following classes:

(a) PL/M 86 files «filename>.PLM)

These are the high-level language source files.

(b) ASM 86 files «filename> .ASM)

These are the assembler code source files.

(c) Entities publicly declared files «filename> .EPD)

Any entity declared publicly in a source file is declared externally in the respective

EPD file.

(d) Included files «filename>.INC)

The included files contain general compiler commands and constants declarations.

(e) Library files «filename> .L1B)

The library files consist of four object module files designed to drive the 80287

numeric coprocessor. These executable files were bought directly from the supplier,

and, thus the source code is not listed in this appendix.

(a) PLM86 files

1) STDEXEC.PLM

2) STDINIT.PLM

3) STDBIT.PLM

4) STDINTS.PLM

5) STDPIC.PLM

6) STDPIT.PLM

7) STDSTAT.PLM

8) STDDIAG.PLM

9) STDIO.PLM

10) STDCONVT.PLM

Standardised code driving routine

CPU card standard initialisation

Standard computing segment BIT routines

Standard computing segment interrupt handlers

Standardised code for the 8259A PlC

Standardised code for the 8254 PIT

Diagnostic status latch standardised code

Standard computing segment off-line BIT

8274 MPSC chip routines

Conversion routines

(b) ASM86 files

1) STDCPU.ASM

2) STDRAM.ASM

3) STDERAM.ASM

4) STDSDB.ASM

CPU card microprocessor test

CPU card RAM test

EPROM/RAM card RAM test

Interface to SDB card

B-10

(d) Entities publicly declared files

1) STDINIT.EPD

2) STDBIT.EPD

3) STDINTS.EPD

4) STDPIC.EPD

5) STDPIT.EPD

6) STDSTAT.EPD

7) STDDIAG.EPD

8) STDIO.EPD

9) STDCONVT.EPD

10) STDCPU.EPD

11) STDRAM.EPD

12) STDERAM.EPD

13) STDSDB.EPD

(e) Included files

1) PLMPAR.INC

2) L1TS.INC

3) PICLlTS.lNC

4) PITLlTS.lNC

5) 10LlTS.lNC

6) STATLlTS.INC

Initialisation EPD file

BIT routines EPD file

Interrupt handlers EPD file

8259A PlC EPD file

8254 PIT EPD file

Status latch EPD file

Ott-line BIT EPD file

8274 MPSC EPD file

Conversion routines EPD file

CPU card microprocessor test EPD file

CPU card RAM test EPD file

EPROM/RAM card RAM test EPD file

SDB interface EPD file

Compiler Controls

Global literals

CPU card 8259A PlC literals

CPU card 8254 PIT literals

CPU card 8274 I/O literals

CPU card diagnostic latch literals

*

2.5 SOURCE CODE LISTINGS

2.5.1 PLM86 files

2.5.1.1 STDEXEC.PLM

S include (PLMPAR.INC)

/**

*

8-11

*
*

MOOULE NAME EXEC *
*

**

* *

* Source Filename STDEXEC.PLM *

* *

* Source COIll>iler PLM86 *

* *

* Operating System DOS 3.10 *

* *

* Description Executive driving routine for *

* the standardised code. *

* *

* Public procedures: None *

* *

* EPD files STDINIT .EPD *

* *

* Include files PLMPAR.INC *

* *

* *

**

$ eject

**

* *

* HISTORY Version 1.0 *
* *
* Designed by P.A. OLANDER Date May 1989 *
* Description Original *
* *
* *
***/

EXEC: do;

/**

8-12

*
*
*

Global variable database
*
*
*

**/

declare EXECUTIVE label public;

declare REAL_MODE_CODE label external;

/* REAL_MODE_CODE is a public label in STDERAM.ASM */

$ include (STDINIT.EPD)

declare FOREVER byte;

EXECUTIVE:

disable;

call INITIALISE_ALL;

goto REAL_MODE_CODE;

end EXEC;

/* Perform POST and initialisation */

/* Jump to address specified */

/* in system description */

2.5.1.2 STDINIT.PLM

$ include (PLMPAR.INC)

/**

8-13

*
*
*

MODULE NAME INIT
*
*
*

**

* *
* Source Filename STDINIT .PLM *
* *
* Source Coq>i ler PLM86 *
* *
* Operating System DOS 3.10 *
* *
* Description Initial isation routines for the *
* Andromeda HECS 1442 CPU card. *
* *
* Public procedures: INITIALISE_ALL *
* PRINT_RESULTS *
* *
* EPD files STDIO.EPD *
* STDSTAT.EPD *
* STDPIC.EPD *
* STDPIT .EPD *
* STDINTS.EPD *
* STDRAM.EPD *
* STDERAM.EPD *
* STDSDB.EPD *
* STDBIT.EPD *
* STDCONVT.EPD *
* *
* Include fi les PLMPAR.INC *
* LITS.INC *
* *
* *
**

$ eject

**
* *
* HISTORY Version 1.0 *
* *
* Designed by P.A. OLANDER Date May 1989 *
* Description Original *
* *
* *
***/

8-14

INIT: DO;

declare IO_BASE_ADDRESS literally 10dBh l ;

declare IO_INTERRUPT_NO l iterally 180 1;

declare IO_BAUD_RATE l iterally 19600 1;

$ eject

$ include (STDIO.EPD)

$ eject

$ include (UTS.INC)

$ eject

$ include (STDSTAT.EPD)
$ eject

$ include (STDPIC.EPD)
$ eject

$ include (STDPIT .EPD)
$ eject

$ include (STDINTS.EPD)
$ eject

$ include (STDRAM.EPD)
$ eject

$ include (STDERAM.EPD)
$ eject

$ include (STDSDB.EPD)
$ eject

$ include (STDBIT.EPD)
$ eject

$ include (STDCONVT.EPD)
$ eject

declare REAL_MODE_CODE label external;

/**

B-15

*
*
*

INITIALISE PORT DATA
*
*
*

* The values below initialise the 8274 MPSC as follows

*
*
*

* WR4

*
* WR1

*
*
* WR2A:

*
* WR2B:

* WR3

*
*

Divide by 16 clock 8-bit sync 2 stop bits odd parity

parity disabled

Disable wait; Wait on transmit; interrupt on all receive

parity does not affect vector ; status affects vector

no transmit interrupt; no external interrupt

Pin-10 is RTS ; vectored interrupt; 8086 mode receive priority

both channels interrupt mode

This register is the vector table base address

Receive 8 bits/char; no auto enables; no hunt mode

no receive CRC ; no address search; no sync inhibit

enable receiver

*
*
*
*
*
*
*
*
*
*
*

* WR5

*
*
*

DTR on ; transmit 8 bits/char ; no break

no SDLC CRC ; RTS on ; no transmit CRC

enable transmitter *
*
*
*

***/

INITIALISE_PORT_DATA: procedure;

call INITIALISE_IO_ADDRESSES (PORT_A,

IO_BASE_ADDRESS,

IO_INTERRUPT_NO);
call INITIALISE_PORTe PORT_A,

IO_BAUD_RATE,

EIGHT_DATA_BITS,

TWO_STOP_BITS,

NO_PARITY,

TERMINAL);
call INITIALISE_PORT(PORT_B,

IO_BAUD_RATE,

EIGHT_DATA_BITS,
TWO_STOP_BITS,

NO_PARITY,

TERMINAL);

end INITIALISE_PORT_DATA;

$ eject

*

SET_INTERRUPT_TABLE: procedure;

/***

*

8-16

* This procedure initially sets all the vectors to point to an illegal

* interrupt handler and then overwrites the appropraite location for each

* vector needed.

*

*
*
*
*

***/

declare I byte;

declare INTERRUPT_VECTOR(256) pointer at (0);

/* First fill the vector table with a default to the illegal interrupt

handler. */

do I =0 to 256;

INTERRUPT_VECTOR (I) = INTERRUPTSPTR (ILLEGAL_INT);

end;

/* Now overwrite the table with appropriate vectors */

call SETSINTERRUPT (0, DIVIDE_ERROR); /* Intel reserved */
call SETSINTERRUPT (1, SINGLE_STEP); /* Intel reserved */
call SETSINTERRUPT (2, NMI); /* Intel reserved */
call SETSINTERRUPT (3, BREAKPOINT); /* Intel reserved */
call SETSINTERRUPT (4, INTO_OVERFLOW); /* Intel reserved */
call SETSINTERRUPT (5, BOUND_RANGE); /* Intel reserved */
call SETSINTERRUPT (6, INVALID_OPCOOE) ; /* Intel reserved */
call SETSINTERRUPT (7, PROC_EXT_NOT_AVAILABlE); /* Intel reserved */
call SETSINTERRUPT (8, DOUBLE_EXCEPTION); /* Intel reserved */
call SETSINTERRUPT (9, PROC_EXT_SEGMENT_OVERRUN); /* Intel reserved */
call SETSINTERRUPT (10, INVALID_TASK); /* Intel reserved */
call SETSINTERRUPT (11, SEGMENT_NOT_PRESENT); /* Intel reserved */
call SETSINTERRUPT (12, STACK_OVERRUN); /* Intel reserved */
call SETSINTERRUPT (13, GENERAL_PROTECTION); 1* Intel reserved */
call SETSINTERRUPT (16, NCP_INTERRUPT); /* Intel reserved */
call SETSINTERRUPT (80, CHB_TX_EMPTY); /* Used by 8274 to transmit chars */

/* Define the Master PlC interrupt handlers */

8-17

call SETSINTERRUPT (96, TMOUT); /* To test off board accesses */

call SETSINTERRUPT (97, MASTER_CLOCK)i /* For Timer 1 &Master PlC tests */

call SETSINTERRUPT (98, MASTER_I NTERRUPT_2) i

call SETSINTERRUPT (99, MASTER_I NTERRUPT_3) i

call SETSINTERRUPT (100, MASTER_INTERRUPT_4);

/* Interrupt 5 on the Master PlC is linked to the 8274 and interrupt 6 is

linked to the Slave PlC. Both these devices supply their own vectors. */

call SETSINTERRUPT (103, MASTER_INTERRUPT_7)i

/* Define the Slave PlC interrupt handlers */

call SETSINTERRUPT (128, SLAVE_INTERRUPT_O);

call SETSINTERRUPT (129, SLAVE_INTERRUPT_1)i

call SETSINTERRUPT (130, SLAVE_INTERRUPT_2)i

call SETSINTERRUPT (131, TMAP_INTERRUPT)i /* Hardwired to identify TMAP */

call SETSINTERRUPT (132, SLAVE_CLOCK)i /* For Timer 2 &Slave PlC tests */

call SETSINTERRUPT (133, SLAVE_INTERRUPT_5);

call SETSINTERRUPT (134, SLAVE_I NTERRUPT_6) i

call SETSINTERRUPT (135, SLAVE_I NTERRUPT_7) i

$ eject

/**

8-18

* *
* This procedure applies only to a dual processor environment which has *
* two CPU cards running identical boot code. One needs to be delayed *
* before any off-board writes take place. *
*
* The secondary processor slot has Multibus interrupt 7 strapped to

* permanently interrupt in order for the firmware to identify which of

* the two identical processor cards is going to be defined as the

* secondary processor.

*

*
*
*
*
*
*

**/

disable;

call OUTPUT_TO_lATCH (DElAYING_SlAVE_PROCS);

output(PIC_SlAVE_8259A_ADR1) =SlAVE_ICW1_8259A or lEVEl_TRIGGERED_MODE

output(PIC~SlAVE_8259A_ADR2) SlAVE_ICW2_8259A

output(PIC_SlAVE_8259A_ADR2) =SlAVE_ICW3_8259A

output(PIC_SlAVE_8259A_ADR2) =SlAVE_ICW4_8259A

output(PIC_SlAVE_8259A_ADR2) =UNMASK_SlAVE_INT3

output(PIC_MASTER_8259A_ADR2) =UNMASK_SLAVE

enable;

call TIME (1); /* Delay for 100 microseconds to give pending

interrupt a chance to interrupt. The interrupt

handler will cause the secondary processor to delay

for a further 100 milliseconds. */

$ eject

1**

8-19

*
*
*

POWER ON SELF TESTS
*
*
*

* An indication is given below as to whether a test is regarded as critical *
* or non critical. A critical test failure will cause the processor to shut *
* down (if possible) and in some cases issue an error message via the RS232 *
* link. A non critical failure will report its failed status via the RS232 *
* link, but operation will continue. *
* *
***1

POST: procedure

declare SPIC_CAUSED_HALT (*) byte data

(ESC, '[2J', ESC, '[15;OH', BEL, BEL, BEL,

,**** CRITICAL ERROR DETECTED ****', CR, LF, LF,

'SYSTEM HALTED DUE TO SLAVE PlC OR TIMER FAILURE', EOM);

declare EROM_CAUSED_HALT (*) byte data

(ESC, '[2J', ESC, '[15;OH', BEL, BEL, BEL,

,**** CRITICAL ERROR DETECTED ****', CR, LF, LF,

'SYSTEM HALTED DUE TO INCORRECT CHECKSUM DETECTED ON EPROM/RAM CARD',
EOM);

declare EPROM_RAM_NOT_PRESENT (*) byte data

(ESC, '[2J', ESC, '[15;OH', BEL, BEL, BEL,

,**** CRITICAL ERROR DETECTED ****', CR, LF, LF,

'SYSTEM HALTED DUE TO ABSENT EPROM/RAM CARD',
EOM);

declare OFF_BOARD_ACCESS_CAUSED_HALT (*) byte data

(ESC, '[2J', ESC, '[12;OH', BEL, BEL, BEL,

,**** CRITICAL ERROR DETECTED ****', CR, LF, LF,

'SYSTEM HALTED DUE TO MAIN PROCESSOR CARD UNABLE TO ACCESS', CR, LF,

'EPROM/RAM CARD AND SOB CARD.', CR, LF, LF,

'EITHER BOTH THESE CARDS ARE ABSENT OR THE MAIN PROCESSOR CARD', CR, LF,
'HAS FAILED WHEN ATTEMPTING OFF BOARD ACCESSES',

EOM);

declare ERAM_CAUSED_HALT (*) byte data

(ESC, '[2J', ESC, '[15;OH', BEL, BEL, BEL,

,**** CRITICAL ERROR DETECTED ****', CR, LF, LF,

'SYSTEM HALTED DUE TO RAM FAILURE ON EPROM/RAM CARD',
EOM);

declare SDB_RAM_CAUSED_HALT (*) byte data

(ESC, '[2J', ESC, '[15;OH', BEL, BEL, BEL,

,**** CRITICAL ERROR DETECTED ****', CR, LF, LF,

'SYSTEM HALTED DUE TO GLOBAL RAM FAILURE ON SOB CARD',
EOM);

declare I byte;

S eject

B-20

TEST
BIT_RESULT.CPU_BOARD

BIT_RESULT.MASTER_PIC

BIT_RESULT.SLAVE_PIC

BIT_RESULT.TMOUT_CIRCUIT

BIT_RESULT .PIT

BIT_RESULT.COPROCESSOR

BIT_RESULT .MPSC

BIT_RESULT.ACCESS_TO_1611

BIT_RESULT .ERAM

BIT_RESULT .EROM

BIT_RESULT.SDB_BOARD

BIT_RESULT.SDB_SELFTEST

BIT_RESULT.SDB_RAM

BIT_RESULT.LOCAL_BUS

TMOUT_INTERRUPT

CLOCK_1_INTERRUPT

CLOCK_2_INTERRUPT

S eject

enable;

=TRUE

=UNTESTED ;

=UNTESTED ;

=UNTESTED

=UNTESTED ;

=UNTESTED ;

=UNTESTED ;

=UNTESTED ;

=UNTESTED ;

=UNTESTED

=UNTESTED ;

=UNTESTED ;

=UNTESTED

=UNTESTED

=UNTESTED

= FALSE

= FALSE

= FALSE

/* First perform all on-board tests */

call OUTPUT_TO_LATCH (TMOUT_TEST_NO);

call MPIC_AND_TMOUT_TEST ; /* Critical test */

if (BIT_RESULT.TMOUT_CIRCUIT = FAILED)

or (BIT_RESULT.MASTER_PIC) = FAILED then

halt /* Master PlC or Time-out failure */

call OUTPUT_TO_LATCH (PIT_TEST_NO);
call MPIC_AND_PIT_TEST ; /* Critical test

if BIT_RESULT.PIT = FAILED then

halt ; /* Timer failure

*/

*/

call OUTPUT_TO_LATCH (MPSC_TEST_NO);

BIT_RESULT.MPSC =MPSC_IO_TEST (VDU); /* Non critical test */

call WRITE_POLL (VDU, @CLEARSCREEN);

call OUTPUT_TO_LATCH (SLAVE_PIC_TEST_NO);

call SPIC_MPIC_AND_PIT_TEST ; /* Critical test */

if BIT_RESULT.MPSC =PASSED then /* Allow reporting to the RS232 */

output (PIC_MASTER_8259A_ADR2) =UNMASK_MPSC

if (BIT_RESUlT.PIT =FAILED)
or (BIT_RESUlT.SlAVE_PIC = FAILED) then

do
if BIT_RESUlT.MPSC =PASSED then

call WRITE_POll (VDU, QSPIC_CAUSED_HAlT);

halt ; /* Slave PlC failure

e~

call OUTPUT_TO_lATCH (COPROCESSOR_TEST_NO);

call COPROCESSOR_TEST ; /* Non critical test

$ eject

call OUTPUT_TO_lATCH (OFF_BOARD_ACCESS_TEST_NO);

call TEST_ACCESS_TO_1611 ; /* Critical test

if BIT_RESUlT.ACCESS_TO_1611 =FAILED then

do;

if BIT_RESUlT.MPSC =PASSED then

do;

if BIT_RESUlT.EROM =NOT_PRESENT then

call WRITE_POll (VDU, @EPROM_RAM_NOT_PRESENT);

else

call WRITE_POll (VDU, @OFF_BOARD_ACCESS_CAUSED_HAlT);

e~;

halt;

e~;

/* Now perform off-board tests

*/

*/

*/

*/

8-21

*/

call OUTPUT_TO_lATCH (EROM_TEST_NO);

call APPlICATIONS_ROM_TEST /* Critical test

if BIT_RESUlT.EROM = FAILED then

do

if BIT_RESUlT.MPSC =PASSED then

call WRITE_POLL (VDU, @EROM_CAUSED_HALT);

halt /* Off board EPROM failure */

$ eject

if NO_OF_PROCS > 1 then

do;

PROCESSOR_ID =MAP

call DELAY_SLAVE_PROCS

eoo

/* PROCESSOR_ID is a global flag */

/* that is reset to SLAVE in the */

/* SLAVE processor interrupt */

/* haooler. */

B-22

/* Any subsystem requiring more than one CPU card should strap a

permanent interrupt to the Slave PlC (IR3), in order to be able to

determine whether the processor must delay (i.e. it is a slave,

provided that the master is operational) or not delay (i.e. it is

the master). */

call OUTPUT_TO_LATCH (ERAM_TEST_NO);

BIT_RESULT.ERAM =ERAM_TEST /* Critical test */

if BIT_RESULT.ERAM = FAILED then

do /* Global RAM test is critical */

if BIT_RESULT.MPSC =PASSED then

call WRITE_POLL (VDU, ~ERAM_CAUSED_HALT);

halt

eoo;

call OUTPUT_TO_LATCH (SDB_SELFTEST_TEST_NO);

call SDB_SELFTEST /* Non critical test

if BIT_RESULT.SDB_BOARD <> ABSENT then

do;

call OUTPUT_TO_LATCH (SDB_RAM_TEST_NO);

call SDB_RAM~TEST

eoo;

call OUTPUT_TO_LATCH (LOCAL_BUS_TEST_NO);

call LOCAL_BUS_TEST /* Non critical test
call OUTPUT_TO_LATCH (RESET_LATCH);

*/

*/

TEST = FALSE

eoo POST;

$ eject

/* Reset variable to iooicate */

/* that POST is complete */

ANALYSE_BIT_RESULTS: procedure;

/**

B~

* *
* ANALYSE_BIT_RESULTS simply records the overall results of the POST for *
* each board in the standard computing segment. If any functional unit of a *
* board has failed, then the result is that the board itself has failed. *

* *

=PASSED)

=PASSED)

=PASSED)

PASSED)

=PASSED)

=PASSED)

=PASSED)

=PASSED) then

***/

if (BIT_RESULT.CPU =PASSED) and (BIT_RESULT.ROM

and (BIT_RESULT.MASTER_PIC

and (BIT_RESULT.SLAVE_PIC

and (BIT_RESULT.TMOUT_CIRCUIT

and (BIT_RESULT.PIT

and (BIT_RESULT.COPROCESSOR

and (BIT_RESULT.MPSC

and (BIT_RESULT.RAM

BIT_RESULT.CPU_BOARD =PASSED;

else

BIT_RESULT.CPU_BOARD = FAILED

if (BIT_RESULT.SDB_SELFTEST =PASSED) and (BIT_RESULT.SDB_RAM =PASSED) then
BIT_RESULT.SDB_BOARD =PASSED

else

BIT_RESULT.SDB_BOARD = FAILED

$ eject

PRINT_RESULTS: procedure public;

1**

8-24

*
* This procedures reports the results of the POST to the RS232 link. Based

* on the values supplied on the ROM of the EPROM/RAM card, it also

* determines what subsystem is resident on the EPROM/RAM card, as well as

* the version number of that sub system1s code, and reports this down the

* RS232.

*

*
*
*
*
*
*
*

***1

declare ERASE_SCREEN (*) byte data

1* Clears the screen and homes the cursor *1
(ESC, 1[2J I, ESC, 1[O;OH I, EOM) i

declare BIT_MSG (*) byte data

(BEL,

1***** BUILT IN TEST RESULTS FOR THE STANDARD COMPUTING SEGMENT *****1 ,
CR, LF, LF, LF, EOM)i

declare STD_SYSTEM_PASSED (*) byte data

('STANDARD COMPUTING SEGMENT ••••••••••••••..... PASSED',

CR, LF, LF, EOM)i

declare CPU_BOARD_PASSED (*) byte data

('HECS 1442 CPU board•••••••••••••••••••••••••. PASSED',

declare EROM_RAM_PASSED (*) byte data

('EPROM/RAM 1611 card•••••••••••••••••..••••••• PASSED',
declare SOB_PASSED (*) byte data

(ISystem Data Bus 6123 Controller card•••.••••• PASSED',

declare STD_SYSTEM_FAILED (*) byte data

('STANDARD COMPUTING SEGMENT •••••.•••••..•••••• FAILED

CR, LF, LF, EOM);

declare CPU_BOARD_FAILED (*) byte data

('HECS 1442 CPU board•••••••••••••••••••••••••• FAILED

CR, LF, EOM)i

declare EROM_RAM_FAILED (*) byte data

('EPROM/RAM 1611 card••••••••••.••.•••••••••••• FAILED
CR, LF, EOM);

declare SOB_FAILED (*) byte data

(16123 Controller card•••••••••••••••.••••••••• FAILED

CR, LF, EOM)i

CR, LF, EOM) i

CR, LF, EOM);

CR, LF, EOM);

******1 ,

******1 ,

******1

******1 ,

declare SYSTEM_PROMPT (*) byte data

(CR, LF, LF,

ISystem found on EPROM/RAM card

declare VERSION_NO_PROMPT (*) byte data

(CR, LF, LF,

IVersion no :

I, EOM)i

I, EOM)i

B~

I, EOM)i

I, EOM)i

declare EPROM_CHECKSUM_1442_PROMPT (*) byte data

(CR, LF, LF,

ICPU card EPROM CHECKSUM =

declare EPROM_CHECKSUM_1611_PROMPT (*) byte data

(CR, LF, LF,

IEPROM/RAM card EPROM CHECKSUM =

declare VERSION (4) bytei

declare SYSTEM (4) bytei

declare EPROM_CHECKSUM_1442 (6) bytei

declare EPROM_CHECKSUM_1611 (6) bytei

$ eject

output (PIC_MASTER_8259A_ADR2) =UNMASK_MPSC

call WRITE_POLL (VDU, @ERASE_SCREEN)

call WRITE_POLL (VDU, @BIT_MSG)i

if (BIT_RESULT.CPU_BOARD =PASSED) and (BIT_RESULT.ERAM =PASSED)

and (BIT_RESULT.EROM =PASSED)

and (BIT_RESULT.SDB_BOARD =PASSED) then

call WRITE_POLL (VDU, @STD_SYSTEM_PASSED)i

else

call WRITE_POLL (VDU, @STD_SYSTEM_FAILED)i

if BIT_RESULT.CPU_BOARD =PASSED then

call WRITE_POLL (VDU, acPU_BOARD_PASSED)i

else

call WRITE_POLL (VDU, @CPU_BOARD_FAILED)i

if (BIT_RESULT.ERAM) and (BIT_RESULT.EROM =PASSED) then

call WRITE_POLL (VDU, @EROM_RAM_PASSED)i

else

call WRITE_POLL (VDU, @EROM_RAM_FAILED)i

if BIT_RESULT.SDB_BOARD =PASSED then

call WRITE_POLL (VDU, @SDB_PASSED)i

else

call WRITE_POLL (VDU, @SDB_FAILED)i

if (SYSTEM_NUMBER < 1) or (SYSTEM_NUMBER> 9) then

call PRINT_ERROR; /* incorrect initialisation of system description */

else

do;

SYSTEM (3) =EOM;

call WRITE_POLL (VDU, ~SYSTEM_PROMPT);

call C040_BIN_BYTE_TO_ASCII_DEC (SYSTEM_NUMBER, @SYSTEM);

call WRITE_POLL (VDU, ~SYSTEM);

VERSION (3) =EOM;

call WRITE_POLL (VDU, ~VERSION_NO_PROMPT)i

call C040_BIN_BYTE_TO_ASCII_DEC (SYSTEM_VERSION, @VERSION)i

call WRITE_POLL (VDU, ~VERSION)i

EPROM_CHECKSUM_1442 (5) =EOMi

call WRITE_POLL (VDU, @EPROM_CHECKSUM_1442_PROMPT)i

call C070_CONVERT_WORD_TO_HEX (OB_EPROM_CHECK, @EPROM_CHECKSUM_1442)i

call WRITE_POLL (VDU, ifPROM_CHECKSUM_1442)i

EPROM_CHECKSUM_1611 (5) =EOMi

call WRITE_POLL (VDU, @EPROM_CHECKSUM_1611_PROMPT)i

call C070_CONVERT_WORD_TO_HEX (EPROM_CHECK, @EPROM_CHECKSUM_1611)i

call WRITE_POLL (VDU, @EPROM_CHECKSUM_1611)i

eoo;

eoo PRINT_RESULTS i

$ eject

B~

INITIALISE_ALL: procedure public;

/**

B~7

* *
* This is the main program of the initialisation code. It firsts performs *
* CPU, stack, ROM and on-board RAM tests. If any of these fail, the program *
* immediately halts, otherwise it continues to: *

* *

*
*

* a) Initialise the Programmable Interval Timer *
* b) Initialise the Programmable Interrupt Controller *
* c) Initialise the Multi Protocol Serial Communications Chip *
* d) Initialise the Numeric Coprocessor *
* e) Perform the Power On Self Tests (POST). Any test defined to be critical *
* will cause the processor to halt, and a predefined error will be sent *
* to the diagnostic latch and an error message will be sent to the RS232 *
* link (if possible).

* f) Record the results of the POST

* g) Output the POST results via the RS232 link, if possible.

* *
***/

/* CPU, stacK, ROM &RAM tests */

/* Standard computing segment BIT */
/* Summary of BIT results */

then

/* The status of each board is output */
/* to the RS232. */

call OUTPUT_TO_LATCH (INITIALISATION) ;

call INITIALISE_8254_PIT /* Initialises 8254 PIT */
call INITIALISE_8259A_PIC /* Initialises 8259A PlC */
call INITIALISE_PORT_DATA /* Initialises 8274 MPSC */
call SET_INTERRUPT_TABLE /* Initialises Interrupt Vector Table */
call INITSREALSMATHSUNIT /* Initialises 80287 */
call SETSREALSMOOE (CTRL_287) /* Numeric Coprocessor */

if NUMBER_Of_RUNS <> SECOND_RUN then

do;

call POST

call ANALYSE_BIT_RESULTS

if BIT_RESULT.MPSC = PASSED

call PRINT_RESULTS

end;

else

call DELAY_SLAVE_PROCS;

output (PIC_MASTER_8259A_ADR2) =UNMASK_MPSC and UNMASK_TMOUT

if NUMBER_Of_RUNS =SECOND_RUN then

goto REAL_MODE_COOE ; /* Warm start */

end INITIALISE_ALL

end INIT

2.5.1.3 STDBIT.PLM

$ include (PLMPAR.INC)

1**

B-28

*
*
*

MODULE NAME BIT
*
*
*

**
* *
* Source Filename STDBIT.PLM *
* *
* Source COfT1liler PLM86 *
* *
* Operating System DOS 3.10 *
* *
* Description Diagnostic routines for the *
* standard cOfT1lUting segment *
* *
* Public procedures: CRC_RESULT *
* TEST_RaM_BLOCK *
* PRINT_ERROR *
* OFF_BOARD_ACCESS *
* TEST_CORE *
* ON_BOARD_EPRaM_TEST *
* MPIC_AND_TMOUT_TEST *
* MPIC_AND_PIT_TEST *
* SPIC_MPIC_AND_PIT_TEST *
* COPROCESSOR_TEST *
* TEST_ACCESS_TO_1611 *
* APPLICATIONS_RaM_TEST *
* SDB_SELFTEST *
* SDB_RAM_TEST *
* LOCAL_BUS_TEST *
* *
* EPD files STDIO.EPD *
* STDSTAT.EPD *
* STDPIC.EPD *
* STDPIT .EPD *
* STDINTS.EPD *
* STDCPU.EPD *
* STDRAM.EPD *
* STDERAM.EPD *
* STDSDB.EPD *
* *
* Include files PLMPAR.INC *
* LITS.INC *
* *
**

**

* *

* HISTORY Version 1.0 *

* *

* Designed by P.A. OLANDER Date August 1989 *

* Description Original *

* *

* *

***/

$ eject

BIT: do;

$ include (STDIO.EPD)
$ eject
$ include (L1TS.INC)
$ eject
$ include (STDSTAT.EPD)
$ eject
$ include (STDPIC.EPD)
$ eject

$ include (STDPIT .EPD)
$ eject

$ include (STDINTS.EPD)
$ eject

$ include (STDCPU.EPD)
$ eject
$ include (STDRAM.EPD)
$ eject

$ include (STDERAM.EPD)
$ eject
$ include (STDSDB.EPD)
$ eject

8-29

/**

* *

8-30

*
*

Public variables *
*

***/

declare CARD_UNDER_TEST

declare ON_BOARD_VAR

declare OB_EPROM_CHECK

declare EPROM_CHECK

declare TEST

byte publi c;

word publ ic;

word public;

word public;

byte public;

/**

*. *
* This flag is set when tests are executed, so that the processor can

* expect self-generated time-outs. These time-outs are necessary in order

* to test the functionality of certain aspects of the hardware.

*

*
*
*
*

***/

/**

*
*
*

Global variables
*
*
*

***/

declare RETRIES

$ eject

byte;

8-31

/**

* *
* COMMON PROCEDURES *
* *
***/

CRC_RESULT: procedure (REM, INPUT_BYTE) word public;

declare REM

declare INPUT_BYTE

declare J

word;

byte;

byte;

scl(INPUT_BYTE, 1);

=scl(REM,1);

then

(REM xor CRC_POLYNOMIAL);

do J =1 to 8;

INPUT_BYTE

REM

if CARRY

REM =
end;

return REM;

end CRC_RESULT;

TEST_ROM_BLOCK: procedure (ROM_BLOCK_NO) word public;

declare ROM_BLOCK_NO byte;

declare REMAINDER word;

declare I word;

REMAINDER =0;

if (ROM_BLOCK_NO <> 8) and (ROM_BLOCK_NO <> 10) then

do I =0 to SEGMENT_MAX;

do case ROM_BLOCK_NO - 1;

REMAINDER =CRC_RESULT (REMAINDER, ROM_1(1»;

REMAINDER =CRC_RESULT (REMAINDER, ROM_2(1»;

REMAINDER =CRC_RESULT (REMAINDER, ROM_3(1»;

REMAINDER =CRC_RESULT (REMAINDER, ROM_4(1»;

REMAINDER =CRC_RESULT (REMAINDER, ROM_S(I»;

REMAINDER =CRC_RESULT (REMAINDER, ROM_6(1»;

REMAINDER =CRC_RESULT (REMAINDER, ROM_7(1»;

; /* ROM_BLOCK =8 is a special case */

REMAINDER =CRC_RESULT (REMAINDER, ROM_9(1»;

end; /* case */

end; /* do loop */

else

do I =0 to SEGMENT_MAX_LESS_2 ;

/* Both ROM_BLOCK =8 and ROM_BLOCK =10 are special cases

due to the checksum residing at the top of EPROM */

if ROM_BLOCK_NO =8 then

REMAINDER =CRC_RESULT (REMAINDER, ROM_8(1»;

else

REMAINDER =CRC_RESULT (REMAINDER, ROM_10(1»;

end;

return REMAINDER;

S eject

B~

PRINT_ERROR: procedure public;

/* This procedure will output the following message if the 1611 EPROM/RAM card

does not contain the required information in ROM and will then cause the

8-33

processor to halt. */

declare ERROR_MSG (*) byte data

(ESC, , [2J', ESC, , [O;OH' ,

'The system description has not been initialised correctly , CR, LF,,
'The following information should be provided on the EPROMS CR, LF,

'of the EPROM/RAM card by the system: , CR, LF,,
LF,

'ADDRESS DESCRIPTION OF VARIABLE POSSIBLE VALUES , CR, LF,,
,------- ----------------------- --------------- CR, LF,

'dffOOh EPROM ID 5ah , CR, LF,,
'dff01h System NlITber Defined as per system , CR, LF,,
'dff02h System Version Defined as per system CR, LF,

'dff03h EPROM/RAM option 1 =512K EPROM, 128K RAM CR, LF,

2 =384K EPROM, 256K RAM CR, LF,

3 =256K EPROM, 384K RAM , CR, LF,,
'dff04h Checksums Present 1 =EPROM checksums present l ,

'dff05h NlITber of 1442 CPU cards Defined as per system "

'dff06h Real or Protected mode 5 Real mode "

CR, LF,
, CR, LF,,
, CR, LF,,

LF,

Idff07h Descriptors tables to

be copied

'dff08h Real mode link address

'dffOah Real mode link address
Idfffeh EPROM checksum

Oah Protected mode

1 =Copy descriptors

dff07h <> 1 =Bypass copy

IP value

CS value

Code dependent

,,
,,
,,

CR, LF,

CR, LF,

CR, LF,

CR, LF,

CR, LF,

CR, LF,

'Please initialise the above values, reset the system, and restart

if BIT_RESULT.MPSC =PASSED then

call WRITE_POLL (VDU, @ERROR_MSG);

I... ,

EOM);

halt; /* halt the processor if the system initialisation is not correct */

end PRINT_ERROR;

$ eject

/***

B-34

*
* This procedure attempts off-board read/writes at a location passed as a

* parameter. If the CPU card times-out when attempting this access and

* the bus had not been granted to the card, then it attempts to access the

* location again. On time-outs with no BUS_GRANT, it will keep trying to

* access the location until the pre-defined maximum number of retries is

* exceeded. In the event of the bus request never being granted, the

* processor reports its inability to be granted the bus and halts.

*

*
*
*
*
*
*
*
*
*

***/

declare ACTION

declare VALUE_TO_WRITE

declare OFF_BOARD_VAR_PTR

declare OFF_BOARD_VAR based OFF_BOARD_VAR_PTR

word

word

pointer

word

declare UNABLE_TO_ACCESS_BUS (*) byte data

(ESC, 1[2JI, ESC,I[15;OHI, BEL, BEL, BEL,

'Critical error detected: I, CR, LF, LF,

ISystem halted due to the CPU card not being granted the bus. l ,

CR, LF, LF, EOM);

TMOUT_INTERRUPT = FALSE;
BUS_GRANT = BUS_NOT_GRANTED;

RETRIES = 0;

if ACTION = WRITE_IT then

OFF_BOARD_VAR = VALUE_TO_WRITE;

else

ON_BOARD_VAR = OFF_BOARD_VAR;

do while (TMOUT_INTERRUPT = TRUE)

and (BUS_GRANT = BUS_NOT_GRANTED)

and (RETRIES <= MAX_RETRIES)

B-35

TMOUT_INTERRUPT= FALSE;

/* Try another off-board access */

if ACTION = WRITE_IT then

OFF_BOARD_VAR = VALUE_TO_WRITE;

else

ON_BOARD_VAR = OFF_BOARD_VAR;

RETRIES = RETRIES + 1;

end;

/* Reset flag */

/* Assume success until proven otherwise */

/* Something is holding the bus */if RETRIES> MAX_RETRIES then

do;

call OUTPUT_TO_LATCH (MULTIBUS_TEST_NO);

call WRITE_POLL (VDU, @UNABLE_TO_ACCESS_BUS);

halt;

end;

else

if TMOUT_INTERRUPT = TRUE then

/* The bus had been granted eventually, but the

card under test is absent from the system. */

CARD_UNDER_TEST =ABSENT;

$ eject

TEST_CORE: procedure public;

/**

8-36

*
* Tests the basic operating kernel on the processor board in order

* to provide operator confidence in the system. If any of these tests fail,

* it is considered to be a critical failure. The tests for the basic kernel

* are a CPU and stack test, an on-board ROM test and an on_board RAM test.

*

*
*
*
*
*
*

* The phi losophy here is somewhat a "chicken and egg" situation, because if *
* the CPU or stack is faulty, or if this part of the ROM is corrupt, the *
* code is unlikely to have executed thus far anyway. In the execution of *
* self-tests, however, it is imperative to assume the functionality of some *
* fundamental core of the hardware under test. *

* *
***/

/* Diagnostic latch initialised */

/* Invoke CPU test function */

call OUTPUT_TO_lATCH (CPU_TEST_NO)

BIT_RESUlT.CPU =CPU_TEST

if BIT_RESUlT.CPU = FAILED then

halt

call oUTPUT_TO_lATCH (ROM_TEST_NO)

BIT_RESUlT.ROM =UNTESTED

call ON_BOARD_EPROM_TEST

if BIT_RESUlT.ROM = FAILED then

halt

call OUTPUT_TO_lATCH (RAM_TEST_NO)

BIT_RESUlT.RAM = MEM_TEST

if BIT_RESUlT.RAM FAILED then

halt;

/* CPU or stack failure

/* On board ROM failure

/* On board RAM failure

*/

*/

*/

/**

B-37

*
* This procedure calculates a ROM checksum according to the following

* method (ref. "COMPUTER NETWORKS", A. TANENBAUM, p. 128 - 132) :

*
* It considers the ROM based code to be one binary number

* and then by using the CRC_CCITT polynomial X**16 + X**12 + X**5 +

* (i.e. 1 0001 0000 0010 0001 binary) as a divisor, calculates the

* remainder. This remainder is then defined to be the checksum.

*
* So EPROM CODE / POLYNOMIAL =DIVIDEND remainder CHECKSUM

*

*
*
*
*
*
*
*
*
*
*
*

**/

o·,

do ROM_BLOCK_NO =9 to 10;

OB_EPROM_CHECK =OB_EPROM_CHECK + TEST_ROM_BlOCK (ROM_BLOCK_NO);

end;

if OB_CSUM_PRESENT =PRESENT then

do;

if OB_EPROM_CHECK =OB_EPROM_CHECKSUM then

BIT_RESUlT.ROM =PASSED;

else

BIT_RESUlT.ROM FAILED;

end;

$ eject

/**

B~

*
* Tests the Master PlC and time-out circuitry by performing a write to

* an invalid port. The result should be to cause a time-out interrupt

* to be generated.

*

*
*
*
*
*

**/

TMOUT_INTERRUPT = FALSE;

BUS_GRANT =BUS_NOT_GRANTED;

RETRIES =0;

call UNMASK_PlC (TMOUT_INTERRUPT_NO)

output (INVALID_PORT) =ZERO_ONES

do while (TMOUT_INTERRUPT =TRUE)

and (BUS_GRANT =BUS_NOT_GRANTED)

and (RETRIES <= MAX_RETRIES);

/* Keep trying while something else is holding the Multibus until the number

of retries exceeds the predefined maximum */

output (INVALID_PORT)

RETRIES =RETRIES + 1;

end; /* while */

if TMOUT_INTERRUPT =TRUE then

do;

BIT_RESULT.TMOUT_CIRCUIT =PASSED

BIT_RESULT.MASTER_PIC PASSED

TMOUT_INTERRUPT = FALSE /* Reset flag */

end;

else /* Master PlC or time-out circuitry has failed */

do;

BIT_RESULT.MASTER_PIC = FAILED
call MPIC_AND_PIT_TEST

/* This tests the Master PlC in another manner so therefore the code

can determine whether the Master PlC or the time-out failed */

if BIT_RESULT.MASTER_PIC =PASSED then
do;

BIT_RESULT.TMOUT_CIRCUIT =FAILED

call OUTPUT_TO_LATCH (TMOUT_TEST_NO);

end;

else

call OUTPUT_TO_LATCH (MASTER_PIC_TEST_NO);
end;

$ eject

/**

B~

* *
* Tests the Master PlC and timer 0 by enabling timer 0 and then delaying *
* long enough for timer 0 to cause an interrupt. *
* *
**/

call UNMASK_PlC (ClOCK_'_INTERRUPT_NO)';

call TIME ("0) ; /* Delay for " ms, waiting for PIT OUTO to interrupt */

call MASK_PlC (ClOCK_'_INTERRUPT_NO)

if ClOCK_'_INTERRUPT =TRUE then

do;
BIT_RESUlT.PIT =PASSED

BIT_RESUlT.MASTER_PIC =PASSED

end;

else

do;

BIT_RESUlT.PIT =FAILED;

call OUTPUT_TO_lATCH (PIT_TEST_NO);

end;

$ eject

/**

8-40

* *
* Tests the Slave PlC and timer 1 by enabling timer 1 and then delaying *
* long enough for timer 1 to cause an interrupt. *
* *

PASSED

PASSED

**/

call UNMASK_PlC (SLAVE_INTERRUPT_NO)

call UNMASK_PlC (CLOCK_2_INTERRUPT_NO)

call TIME (150) ; /* Delay for 15 ms, waiting for PIT OUT1 to interrupt */

/* Both the master and slave interrupts are masked immediately

on entry to the interrupt handler. The interrupt handler also

sends a specific end of interrupt to the Slave PlC. */

if CLOCK_2_INTERRUPT TRUE then

do;

BIT_RESULT.SLAVE_PIC =
BIT_RESULT.MASTER_PIC

end;

else

do;

BIT_RESULT.SLAVE_PIC FAILED

BIT_RESUlT.PIT FAILED

call OUTPUT_TO_lATCH (SLAVE_PIC_TEST_NO);

end;

$ eject

COPROCESSOR_TEST: procedure public;

1**

* *

8-41

* Tests the 80287 Numeric Coprocessor by performing a real number

* calculation with a known result and then checking whether the actual

* result is within an acceptable range when compared to the expected

* result.

*

*
*
*
*
*

**1

declare (A,B,C,D,E) real;

declare (ACTUAL_RESULT, EXPECTED_RESULT) real;

A =123.123

B =234.234

C =345.345

D =456.456

E =567.567

EXPECTED_RESULT

ACTUAL_RESULT
=2166.352116

=10.0*((((A+B)*C)-D)/E)

if (ACTUAL_RESULT - EXPECTED_RESULT < 0.0004) then

BIT_RESULT.COPROCESSOR =PASSED

else

do;

BIT_RESULT.COPROCESSOR = FAILED

call OUTPUT_TO_LATCH (COPROCESSOR_TEST_NO);

end;

end COPROCESSOR_TEST;

$ eject

1**

842

* *
* This procedure tests accesses to the EPROM/RAM card by reading a *
* location on this card. If a time-out is generated (this implies that *
* either the EPROM/RAM card is not present, or the CPU card is unable *
* to access an off-board location), the routine then attempts to read a *
* value from the SOB card (i.e. a Multibus read). If a time-out is *
* generated again, then the routine assumes that the CPU card is unable *
* to access an off-board location, rather than that both the SOB and the *
* EPROM/RAM card are absent. *
* *
**1

call OFF_BOARD_ACCESS (READ, @EPROM_CHECKSUM, READ);

if TMOUT_INTERRUPT TRUE then 1* Both a Local bus *1

do; 1* and Multibus read failed *1
BIT_RESULT.ACCESS_TO_1611 FAILED;

call OFF_BOARD_ACCESS (READ, @SDB_TEST_STATUS, READ); 1* Multibus read *1

if TMOUT_INTERRUPT =TRUE then 1* No off board accesses are possible *1
call OUTPUT_TO_LATCH (OFF_BOARD_ACCESS_TEST_NO) ;

else 1* EPROM/RAM card not present *1
do;

call OUTPUT_TO_LATCH (EPROM_RAM_ABSENT)

BIT_RESULT.EROM =NOT_PRESENT;

BIT_RESULT.ERAM =NOT_PRESENT;

end;

end;

else

BIT_RESULT.ACCESS_TO_1611 PASSED;

$ eject

APPL ICAT IONS_ROM_TEST: procedure public;

1**

* *

B-43

* This procedure calculates a ROM checksum of the applications code

* resident on the EPROM/RAM card in a similar manner to that of the

* on-board checksum calculation.

*
* It cons iders the ROM based code to be one bi nary m.'Tt>er

* and then by using the CRC_CCITT polynomial X**16 + X**12 + X**5 +

* (i.e. 1 0001 0000 0010 0001 binary) as a divisor, calculates the

* remainder. This remainder is then defined to be the checksum.

*
* Thus, EPROM CODE 1 POLYNOMIAL DIVIDEND remainder CHECKSUM

*

*
*
*
*
*
*
*
*
*
*
*

**1

declare ROM_BLOCK_NO byte;

declare STARTING_BLOCK byte;

EPROM_CHECK =0;

if (EPROM_ID =5ah)

and (EPROM_RAM_OPTION > 0) and (EPROM_RAM_OPTION < 4) then

do;

do case EPROM_RAM_OPTION - 1;

/* Determine how large the ROM is */

BM

STARTING_BLOCK =1

STARTING_BLOCK =3

STARTING_BLOCK =5

end;

/* Largest ROM option allowed

/* EPROM_RAM_OPTION =2

/* Smallest ROM option allowed

*/

*/

*/

do ROM_BLOCK_NO =STARTING_BLOCK to 8 ;

EPROM_CHECK =EPROM_CHECK + TEST_ROM_BLOCK (ROM_BLOCK_NO)

end;

if CSUMS_PRESENT =PRESENT then

do;

if EPROM_CHECK =EPROM_CHECKSUM then

BIT_RESULT.EROM =PASSED;

else

BIT_RESULT.EROM = FAILED;

end; /* if CSUMS_PRESENT =PRESENT */

end; /* if (EPROM_ID =5ah)

and (EPROM_RAM_OPTION > 0) and (EPROM_RAM_OPTION < 4) */

else /* If no EPROM_ID has been found or */

/* no EPROM_RAM_OPTION has been identified then */

/* system description is incomplete. */

call PRINT_ERROR;

if BIT_RESULT.EROM <> PASSED then

call OUTPUT_TO_LATCH (EROM_TEST_NO);

$ eject

SDB_SELFTEST: procedure public;

/**

845

* *
*
*

*

* During POST, this procedure checks the self test result reported by

* the SOB card. If called during off-line diagnostics mode, the

* procedure will issue a reset to the SOB card and then delay for 100 ms *
* before checking the result of the SOB self test.

* *
**/

declare ON_BOARD_VAR word;

if TMOUT_INTERRUPT =TRUE then

do;
BIT_RESULT.SOB_BOARO =ABSENT;

BIT_RESULT.SOB_SELFTEST =ABSENT;

BIT_RESULT.SOB_RAM =ABSENT;

eoo;

else

do;

if BIT_RESULT.SOB_SELFTEST =UNTESTED then

if SOB_TEST_STATUS =2 then

BIT_RESULT.SOB_SELFTEST =PASSED

else /* test has either taken too long,

failed or reported an invalid state */

do;
call OUTPUT_TO_LATCH (SOB_SELFTEST_TEST_NO)

BIT_RESULT.SOB_SELFTEST = FAILED;

eoo;

else /* this test has already been invoked, so issue a reset to SOB board */

do;

outword (SOB_PORT) =SOB_RESET;

/* SOB self-test should only take about 50 ms, so delay for 100 ms */

call TIME (1000);

if SOB_TEST_STATUS <> 2 or SOB_TEST_STATUS =BUSY then

/* the test has either failed, taken too long

or reported an invalid state */

do;

call OUTPUT_TO_LATCH (SOB_SELFTEST_TEST_NO);

BIT_RESULT.SOB_SELFTEST =FAILED

eoo;

else

BIT_RESULT.SOB_SELFTEST =PASSED

eoo;
eoo; /* else */

if BIT_RESULT.SOB_SELFTEST <> PASSED then

call OUTPUT_TO_LATCH (SOB_SELFTEST_TEST_NO);

eoo SOB_SELFTEST;

$ eject

846

SDB_RAM_TEST: procedure public;

/**

847

* *
* Tests the SOB Dual Port User RAM by performing an alternate write and *
* read of 0101 0101 0101 0101 and 1010 1010 1010 1010 binary. *

* *
* If a time-out interrupt occurs or what is read is not what was written *
* then the SOB RAM is reported as having failed. *

* *
**/

declare I word;

BIT_RESULT.SDB_RAM =PASSED; /* Be optimistic */

I =SDB_RAM_BUFFER_MIN;

do while (I < SDB_RAM_BUFFER_MAX) and (BIT_RESULT.SDB_RAM <> FAILED) ;

call OFF_BOARD_ACCESS (WRITE_IT, @SDB_RAM_BUFFER(I), WORD_OF_ZERO_ONES);

call OFF_BOARD_ACCESS (READ, @SDB_RAM_BUFFER(I), READ);

if (TMOUT_INTERRUPT =TRUE)

or (ON_BOARD_VAR <> WORD_OF_ZERO_ONES) then

do;

BIT_RESULT.SDB_RAM =FAILED;

TMOUT_INTERRUPT = FALSE;

end;

else

do;

SDB_RAM_BUFFER(I) =WORD_OF_ONE_ZEROS

call OFF_BOARD_ACCESS (WRITE_IT, @SDB_RAM_BUFFER(I), WORD_OF_ONE_ZEROS);

call OFF_BOARD_ACCESS (READ, @SDB_RAM_BUFFER(I), READ);

if (TMOUT_INTERRUPT =TRUE)

or (ON_BOARD_VAR <> WORD_OF_ONE_ZEROS) then

do;

BIT_RESULT.SDB_RAM = FAILED;

TMOUT_INTERRUPT = FALSE;

end;

= I + 1;

end;

end; /* while */

if BIT_RESULT.SDB_RAM <> PASSED then

call OUTPUT_TO_LATCH (SDB_RAM_TEST_NO);

$ eject

LOCAL_BUS_TEST: procedure public;

/**

B~

* *
* This tests the functionality of the local bus. The only way to *
* determine via which bus off-board accesses are being performed at run *
* time in the standard computing segment, is by performing a speed test *
* over both busses (Multibus runs much slower than the local bus). *

*
* The routine operates as follows:

*

*
*
*

* The timer is enabled and for 10 ms a single location is read from the *
* 1611 EPROM/RAM card (a local bus read). For each local bus read, a *
* counter is incremented. Following this, a single location is read for *
* 10 ms from the 1553 SOB card (a Multibus read). For each Multibus *
* read, a second counter is incremented. The two counter values are then *
* compared and the test passes if *

*
> SPEED_THRESHOLD

*
*

* *
* where SPEED_THRESHOLD is a predefined value, determined by the CPU *
* clock speed and the EPROM/RAM memory device access times. *

* *
**/

declare ON_BOARD_VAR word;

declare MULTIBUS_COUNTER dword;

declare LOCAL_BUS_COUNTER dword;

849

MULT IBUS_COUNTER =0;

LOCAL_BUS_COUNTER =0;

output (PIC_MASTER_8259A_ADR2) = UNMASK_MPSC
and UNMASK_TMOUT

and UNMASK_CLOCK_'; /* Enable the clock */

CLOCK_'_INTERRUPT = FALSE;

do while CLOCK_'_INTERRUPT =FALSE;

end;

/* Synchronise the clock */

/* The Master clock interrupt handler will set CLOCK_'_INTERRUPT to true */

/* The stopwatch has now started */

CLOCK_'_INTERRUPT = FALSE;

do while CLOCK_'_INTERRUPT =FALSE; /* Run the loop for '0 ms */

ON_BOARD_VAR =EPROM_CHECKSUM; /* Read a known Local bus location */

LOCAL_BUS_COUNTER =LOCAL_BUS_COUNTER + ';

end;

/* The loop is exited on the first clock interrupt. */

/* The stopwatch has now stopped for the first '0 ms, */

/* but is counting down for the second '0 ms. */

/* Run this loop for '0 ms also */

/* Read a known Multibus location */

CLOCK_'_INTERRUPT = FALSE;

do while CLOCK_'_INTERRUPT =FALSE;

ON_BOARD_VAR =SDB_TEST_STATUS;

MULTIBUS_COUNTER =MULTIBUS_COUNTER + ';

end;

/* Exits on second clock interrupt */

/* The stopwatch has now stopped */

output (PIC_MASTER_8259A_ADR2) UNMASK_MPSC

and UNMASK_TMOUT ; /* Mask off the clock */

CLOCK_'_INTERRUPT = FALSE; /* Reset the interrupt flag */

if LOCAL_BUS_COUNTER - MULTIBUS_COUNTER > SPEED_THRESHOLD then

/* An acceptable threshold for the difference between the busses */

BIT_RESULT.LOCAL_BUS = PASSED;

else

do;

call OUTPUT_TO_LATCH (LOCAL_BUS_TEST_NO);

BIT_RESULT.LOCAL_BUS = FAILED;

end;

end BIT;

2.5.1.4 STDINTS.PLM

$ include (PLMPAR.INC)

/**

B-50

*
*
*

MODULE NAME INTS
*
*
*

**

* *
* Source Filename STDINTS.PLM *
* *
* Source Coq>iler PLM86 *
* *
* Operating System DOS 3.10 *
* *
* Description A suite of interrupt handlers to handle the *
* Built In Tests on the standardised CPU card. *
* *
**

8-51

**

* *

* Public procedures: DIVIDE_ERROR *

* SINGLE_STEP *

* NMI *

* BREAKPOINT *

* INTO_OVERFLOW *

* BOUND_RANGE *

* INVALlD_OPCOOE *

* PROC_EXT_NOT_AVAILABLE *

* DOUBLE_EXCEPTION *
* PROC_EXT_SEGMENT_OVERRUN *
* INVALID_TASK *
* SEGMENT_NOT_PRESENT *
* STACK_OVERRUN *
* GENERAL_PROTECTION *
* NCP_INTERRUPT *
* ILLEGAL_INTERRUPT *
* TMOUT *
* MASTER_CLOCK *
* MASTER_INTERRUPT_2 *
* MASTER_INTERRUPT_3 *
* MASTER_INTERRUPT_4 *
* MASTER_INTERRUPT_7 *
* SLAVE_INTERRUPT_O *
* SLAVE_INTERRUPT_' *
* SLAVE_INTERRUPT_2 *
* TMAP_INTERRUPT *
* SLAVE_CLOCK *
* SLAVE_INTERRUPT_5 *
* SLAVE_INTERRUPT_6 *
* SLAVE_INTERRUPT_7 *
* *
* EPD fi les STDIO.EPD *
* STDSTAT.EPD *
* STDPIC.EPD *
* STDRAM.EPD *
* STDCONVT.EPD *
* *
* Include files PLMPAR.INC *
* LITS.INC *
* *
**

$ eject

**

* *

* HISTORY Version 1.0 *

* *
,* Designed by P.A. OLANDER Date July 1989 *

* Description Original *

* *
***/

$ eject

INTS: DO;

8-52

declare LOW

declare TMAP

declare BUS_GRANT_MASK

$ include (STDIO.EPD)
$ eject

$ include (STDSTAT.EPD)
$ eject

$ include (STDPIC.EPD)
$ eject

$ include (STDRAM.EPD)

$ eject

$ include (STDCONVT.EPD)
$ eject

$ include (LITS.INC)
$ eject

literally 10 1

literally 10ah l

literally 100000010b l

•

declare REC_ERR_MESS(*) byte data

(ESC, I [18;25HI, ICH.A REC.ERR [F,O,Pl: , EOM);

/**

*
*
*

Global variables
*
*
*

**/

declare TMOUT_INTERRUPT
declare TMOUT_STATUS

declare BUS_GRANT

declare RESERVED_INTERRUPT

declare ILLEGAL_INTERRUPT

declare CLOCK_1_INTERRUPT

declare CLOCK_2_INTERRUPT
declare TEST

declare VAR_MESSAGE (80)
$ eject

byte public;

byte public;

byte public;

byte public;

byte public;

byte publ ic;

byte public;

byte external;

byte

*

/***

*

B-53

*
*

Public interrupt handlers *
*

***/

DIVIDE_ERROR: procedure interrupt 0 public;

declare MSG (*) byte data

('Divide by zero detected', CR, LF, EOM);

RESERVED_INTERRUPT =0;

call WRITE_POLL (VDU, QCLEARSCREEN);

call WRITE_POLL (VDU, QMSG);

halt;

end DIVIDE_ERROR;

/***/

SINGLE_STEP: procedure interrupt 1 public;

declare MSG (*) byte data

('Single step interrupt has occurred', CR, LF, EOM);

RESERVED_INTERRUPT =1;

call WRITE_POLL (VDU, QCLEARSCREEN);

call WRITE_POLL (VDU, QMSG);

halt;

/***/

NMI: procedure interrupt 2 public;

declare MSG (*) byte data

('Non maskable interrupt has occurred', CR, LF, EOM);

RESERVED_INTERRUPT =2;

call WRITE_POLL (VDU, QCLEARSCREEN);

call WRITE_POLL (VDU, QMSG);

halt;

end NMI;

$ eject

/***/

BREAKPOINT: procedure interrupt 3 public;

declare MSG (*) byte data

('Breakpoint interrupt detected ' , CR, LF, EOM);

RESERVED_INTERRUPT =3;

call WRITE_POLL (VDU, @CLEARSCREEN);

call WRITE_POLL (VDU, @MSG);

halt;

end BREAKPOINT;

/***/

INTO_OVERFLOW: procedure interrupt 4 public;

declare MSG (*) byte data

('INTO detected overflow exception ' , CR, LF, EOM);

RESERVED_INTERRUPT =4;

call WRITE_POLL (VDU, @CLEARSCREEN);

call WRITE_POLL (VDU, @MSG);

halt;

end INTO_OVERFLOW;

/***/

BOUND_RANGE: procedure interrupt 5 public;

declare MSG (*) byte data

('Bound range exceeded exception has occurred l , CR, LF, EOM);

RESERVED_INTERRUPT =5;

call WRITE_POLL (VDU, @CLEARSCREEN);

call WRITE_POLL (VDU, @MSG);

halt;

end BOUND_RANGE;

$ eject

8-54

/***/

INVALID_OPCOOE: procedure interrupt 6 public;

declare MSG (*) byte data

('Invalid opcode exception has occurred', CR, LF, EOM);

RESERVED_INTERRUPT =6;

call WRITE_POLL (VDU, QCLEARSCREEN);

call WRITE_POLL (VDU, @MSG);

halt;

end INVALlD_OPCOOE;

/***/

PROC_EXT_NOT_AVAILABLE: procedure interrupt 7 public;

declare MSG (*) byte data

('Processor extension not available exception has occurred', CR, LF, EOM);

RESERVED_INTERRUPT =7;

call WRITE_POLL (VDU, @CLEARSCREEN);

call WRITE_POLL (VDU, @MSG);

halt;

/***/

DOUBLE_EXCEPTION: procedure interrupt 8 public;

declare MSG (*) byte data

('Double exception detected', CR, LF, EOM);

RESERVED_INTERRUPT =8;

call WRITE_POLL (VDU, @CLEARSCREEN);

call WRITE_POLL (VDU, @MSG);

halt;

end DOUBLE_EXCEPTION;

$ eject

8-55

/***/

PROC_EXT_SEGMENT_OVERRUN: procedure interrupt 9 public;

declare MSG (*) byte data

(IProcessor extension segment overrun interrupt has occurred l
, CR, LF, EOM);

RESERVED_INTERRUPT =9;

call WRITE_POLL (VDU, ~CLEARSCREEN);

call WRITE_POLL (VDU, @MSG);

halt;

/***/

INVALID_TASK: procedure interrupt 10 public;

declare MSG (*) byte data

('Invalid task state segment exception has occurred l , CR, LF, EOM);

RESERVED_INTERRUPT =10;

call WRITE_POLL (VDU, ~CLEARSCREEN);

call WRITE_POLL (VDU, @MSG);

halt;

end INVALID_TASK;

/***/

SEGMENT_NOT_PRESENT: procedure interrupt 11 public;

declare MSG (*) byte data

(ISegment not present exception has occurred l , CR, LF, EOM);

RESERVED_INTERRUPT =11;

call WRITE_POLL (VDU, .cLEARSCREEN);

call WRITE_POLL (VDU, @MSG);

halt;

$ eject

/***/

B~

STACK_OVERRUN: procedure interrupt 12 public;

declare MSG (*) byte data

('Stack segment overrun exception has occurred l
, CR, LF, EOM);

RESERVED_INTERRUPT =12;

call WRITE_POLL (VDU, QCLEARSCREEN);

call WRITE_POLL (VDU, @MSG);

halt;

end STACK_OVERRUN;

/***/

GENERAL_PROTECTION: procedure interrupt 13 public;

declare MSG (*) byte data

('General protection exception has occurred l , CR, LF, EOM);

RESERVED_INTERRUPT =13;

call WRITE_POLL (VDU, @CLEARSCREEN);

call WRITE_POLL (VDU, @MSG);

halt;

end GENERAL_PROTECTION;

$ eject

/***/

NCP_INTERRUPT: procedure interrupt 16 public;

declare MSG (*) byte data

('Numeric Coprocessor interrupt has occurred l , CR, LF, EOM);

RESERVED_INTERRUPT =16;

call WRITE_POLL (VDU, @CLEARSCREEN);
call WRITE_POLL (VDU, @MSG);

halt;

end NCP_INTERRUPT;

$ eject

B~

/***

B~

*
*
*

Default Illegal Interrupt
*
*
*

* ILLEGAL_INT is a default interrupt handler. The interrupt vector table

* is initialised in such a manner that all interrupts initially use this

* default as their vector. Any interrupts declared thereafter thus

* overwrite the illegal interrupt vector.

*

*
*
*
*
*

***/

ILLEGAL_INT: procedure interrupt 33 public;

declare MSG (*) byte data

(IAn illegal interrupt has occurred l , CR, LF, EOM);

ILLEGAL_INTERRUPT =TRUE;

call WRITE_POLL (VDU, @CLEARSCREEN);

call WRITE_POLL (VDU, @MSG);

halt;

end ILLEGAL_INT;

$ eject

/***

B-59

*
*
*

Interrupts on Master PlC
*
*
*

***/

TMOUT: procedure interrupt 96 public;

/* Master interrupt 0 */

declare HALT_WITH_BUS_GRANT (*) byte data

(ESC, I [2J I, ESC, I [O;OH I, BEL, BEL, BEL,

IProcessor has halted due to a MULTIBUS address not responding. ' ,

CR, LF, LF,

'The bus HAD been granted to the processor. I, EOM);

declare HALT_WITHOUT_BUS_GRANT (*) byte data

(ESC, I [2J', ESC, I [O;OH', BEL, BEL, BEL,

IProcessor has halted due to the MULTIBUS being held. ' ,

CR, LF, LF,

'The bus HAD NOT been granted to the processor. I, EOM);

TMOUT_STATUS = INPUT_FROM_LATCH;

BUS_GRANT TMOUT_STATUS and BUS_GRANT_MASK

if TEST <> TRUE then /* time-out occurred during normal applications */

do;

if BUS_GRANT =LOW then /* bus has been granted (active low) */

do;

output (STATUS_LATCH_ADR) =BUS_GRANTED

if BIT_RESULT.MPSC =PASSED then

call WRITE_POLL (VDU, @HALT_WITH_BUS_GRANT);

end;

else

do;

output (STATUS_LATCH_ADR) = BUS_NOT_GRANTED

if BIT_RESULT.MPSC =PASSED then

call WRITE_POLL (VDU, @HALT_WITHOUT_BUS_GRANT);

end;

halt;

end;

else

TMOUT_INTERRUPT TRUE;

end TMOUT;

$ eject

/***/

MASTER_CLOCK: procedure interrupt 97 public;

/* Master interrupt , */

/* This procedure is called every '0 ms when auTO of the PIT is unmasked */

CLOCK_'_INTERRUPT =TRUE

end MASTER_CLOCK;

/***/

MASTER_INTERRUPT_2: procedure interrupt 98 public;

declare MSG (*) byte data

('Master PlC interrupt 2 has occurred', CR, LF, EOM);

call WRITE_POLL (VDU, @CLEARSCREEN);

call WRITE_POLL (VDU, @MSG);

halt;

MASTER_INTERRUPT_3: procedure interrupt 99 public;

declare MSG (*) byte data

('Master PlC interrupt 3 has occurred', CR, LF, EOM);

call WRITE_POLL (VDU, @CLEARSCREEN);

call WRITE_POLL (VDU, @MSG);

halt;

MASTER_INTERRUPT_4: procedure interrupt 100 public;

declare MSG (*) byte data

('Master PlC interrupt 4 has occurred', CR, LF, EOM);

call WRITE_POLL (VDU, @CLEARSCREEN);

call WRITE_POLL (VDU, @MSG);
halt;

B~

/* In the standard computing segment, Master PlC interrupts 5 and 6 are */

/* linked to devices that supply their own vectors, i.e. */

/* IR5 : Serial interface; IR6 : Slave PlC interrupt */

MASTER_INTERRUPT_7: procedure interrupt 103 public;

declare MSG (*) byte data

('Master PlC interrupt 7 has occurred', CR, LF, EOM);

call WRITE_POLL (VDU, QCLEARSCREEN);

call WRITE_POLL (VDU, aMSG);

halt;

$ eject

/***

B~1

*
*
*

Interrupts on Slave PlC
*
*
*

***/

SLAVE_INTERRUPT_O: procedure interrupt 128 public;

declare MSG (*) byte data

('SLAVE PlC interrupt °has occurred', CR, LF, EOM);

call WRITE_POLL (VDU, @CLEARSCREEN);

call WRITE_POLL (VDU, aMSG);

call ISSUE_EOI (API_INTERRUPT_NO);

halt;

SlAVE_INTERRUPT_1: procedure interrupt 129 public;

declare MSG (*) byte data

('SLAVE PlC interrupt 1 has occurred', CR, LF, EOM);

call WRITE_POLL (VDU, @CLEARSCREEN);

call WRITE_POLL (VDU, @MSG);

call ISSUE_EOI (SCMB_INTERRUPT_NO);

halt;

SLAVE_INTERRUPT_2: procedure interrupt 130 public;

declare MSG (*) byte data
('SLAVE PlC interrupt 2 has occurred', CR, LF, EOM);

call WRITE_POLL (VDU, QCLEARSCREEN);

call WRITE_POLL (VDU, QMSG);

call ISSUE_EOI (INTERRUPT_NO_10);

halt;

TMAP_INTERRUPT: procedure interrupt 131 public;

/* This interupt handler is system specific. It caters for a dual

processor environment in which one of the standardised CPU cards

is located in a slot which has Multibus interrupt 7 tied low on

the backplane.

Since both CPU boards are executing the same code, the handler

delays for 2 seconds to allow the first processor to get ahead

and then re-initialises the Slave PlC to accept edge triggered

interrupts only.

PROCESSOR_ID =TMAP; /* Set ID to secondary processor

call TIME (20000);

output (PIC_MASTER_8259A_ADR2) =UNMASK_MPSC;

output (PIC_SLAVE_8259A_ADR1) =SLAVE_ICW1_8259A;

output (PIC_SLAVE_8259A_ADR2) =SLAVE_ICW2_8259A;

output (PIC_SLAVE_8259A_ADR2) =SLAVE_ICW3_8259A;

output (PIC_SLAVE_8259A_ADR2) =SLAVE_ICW4_8259A;

output (PIC_SLAVE_8259A_ADR2) =MASK_ALL_INTS;

end TMAP_INTERRUPT;

$ eject

SLAVE_CLOCK: procedure interrupt 132 public;

/* This procedure is called every 7 microsecs when
OUT1 of the PIT is unmasked

call MASK_PlC (SLAVE_INTERRUPT_NO);

call MASK_PlC (CLOCK_2_INTERRUPT_NO);

CLOCK_2_INTERRUPT =TRUE ;

call ISSUE_EOI (CLOCK_2_INTERRUPT_NO);

*/

*/

*/

B~2

SLAVE_INTERRUPT_5: procedure interrupt 133 public;

declare MSG (*) byte data

('SLAVE PlC interrupt 5 has occurred l , CR, LF, EOM);

call WRITE_POLL (VDU, ~CLEARSCREEN);

call WRITE_POLL (VDU, @MSG);

call ISSUE_EOI (DRAM_INTERRUPT_NO);

halt;

$ eject

SLAVE_INTERRUPT_6: procedure interrupt 134 public;

declare MSG (*) byte data

('SLAVE PlC interrupt 6 has occurred l , CR, LF, EOM);

call WRITE_POLL (VDU, ~CLEARSCREEN);

call WRITE_POLL (VDU, @MSG);

call ISSUE_EOI (INTERRUPT_NO_13);

halt;

SLAVE_INTERRUPT_7: procedure interrupt 135 public;

declare MSG (*) byte data

('SLAVE PlC interrupt 7 has occurred l , CR, LF, EOM);

call WRITE_POLL (VDU, ~LEARSCREEN);

call WRITE_POLL (VDU, @MSG);

call ISSUE_EOI (INTERRUPT_NO_14);

halt;

end INTS;

*

2.5.1.5 STDPIC.PLM

$ include (PLMPAR.INC)

/**

*

8-64

*
*

MODULE NAME PlC *
*

**

* *

* Source Filename STDPIC.PLM *

* *

* Source COfT1)iler PLM86 *

* *

* Operating System DOS 3.10 *

* *

* Description Standardised routines for the 8259A *

* progranmable interrupt controller. *

* *

* Public procedures: INITIALISE_8259A_PIC *

* MASK_PlC *

* UNMASK_PlC *

* ISSUE_EOI *

* *

* EPD files None *

* *

* Include files PLMPAR.INC *

* PICLITS.INC *

* *

**

$ eject

**

* *
* HISTORY Version 1.0 *

* *

* Designed by P.A. OLANDER Date June 1989 *

* Description Original *
* *
* *
***/

$ eject

PlC: do;

B~

$ include (PICLITS.INC)

declare MASTER_INTERRUPT_MASK byte;

declare SLAVE_INTERRUPT_MASK byte;

INITIALISE_8259A_PIC : procedure public;

/**

*
* Initialises the Programmable Interrupt Controller as follows:

*
* 1) Master PlC

*

*
*
*
*
*

to trigger on edge transitions *
with an interrupt base of 96 and interval of 8 *
input line IR6 is linked to the 8274 MPSC and input line IR5 is *
linked to the slave PlC and both these devices supply their own *

* i)

* i i)

* i i i)

*

*

* iv)

* v)

* vi)

*

vectors when providing interrupts

buffered and not special fully nested

to provide an automatic end of interrupt (EOI)

to operate in 8086 mode

*
*
*
*
*

* 2) Slave PlC

*
*
*

* i)

* iO
* i i 0

* iv)

* v)

* vi)

*

to trigger on edge transitions

with an interrupt base of 128 and interval of 8

cascaded to input line IR5 of the master PlC

buffered and not special fully nested

to expect a normal end of interrupt

to operate in 8086 mode

*
*
*
*
*
*
*

***/

/* Master Programmable Interrupt Controller ;n;t;al;sat;on.

outputCPIC_MASTER_8259A_ADR1) =MASTER_ICW1_8259A

outputCPIC_MASTER_8259A_ADR2) =MASTER_ICW2_8259A

outputCPIC_MASTER_8259A_ADR2) =MASTER_ICWJ_8259A

outputCPIC_MASTER_8259A_ADR2) =MASTER_ICW4_8259A

outputCPIC_MASTER_8259A_ADR2) =MASK_ALL_INTS

MASTER_INTERRUPT_MASK =MASK_ALL_INTS

/* In;t;ally mask all ;nterrupts */

/* Slave Programmable Interrupt Controller ;n;t;al;sat;on */

*/

B~

outputCPIC_SLAVE_8259A_ADR1)

outputCPIC_SLAVE_8259A_ADR2)

outputCPIC_SLAVE_8259A_ADR2)

outputCPIC_SLAVE_8259A_ADR2)

outputCPIC_SLAVE_8259A_ADR2)

SLAVE_INTERRUPT_MASK

=SLAVE_ICW1_8259A

=SLAVE_ICW2_8259A

=SLAVE_ICW3_8259A

=SLAVE_ICW4_8259A

=MASK_ALL_INTS

=MASK_ALL_INTS

/* In;t;ally mask all ;nterrupts */

$ eject

UNMASK_PlC: procedure (INTERRUPT_NO) public;

/**

B~7

* *
* This procedure takes the PIC's current mask status and unmasks additional *
* interrupts. *

* *
***/

declare INTERRUPT_NO

declare INT_TO_UNMASK

byte;

byte;

if (INTERRUPT_NO >= 0) and (INTERRUPT_NO <= 7) then

/* it is a master interrupt */

do;

INT_TO_UNMASK = rol (UNMASK_TMOUT, INTERRUPT_NO);

MASTER_INTERRUPT_MASK =MASTER_INTERRUPT_MASK and INT_TO_UNMASK;

output (PIC_MASTER_8259A_ADR2) =MASTER_INTERRUPT_MASK;

end;

else

do;

if (INTERRUPT_NO >= 8) and (INTERRUPT_NO <= 15) then

/* it is a slave interrupt */

do;

INTERRUPT_NO = INTERRUPT_NO - 8;

INT_TO_UNMASK = rol (UNMASK_TMOUT, INTERRUPT_NO);

SLAVE_INTERRUPT_MASK =SLAVE_INTERRUPT_MASK and INT_TO_UNMASK;

output (PIC_SLAVE_8259A_ADR2) =SLAVE_INTERRUPT_MASK;

end;

end;

$ eject

MASK_PlC: procedure (INTERRUPT_NO) public;

/**

B~

*
* This procedure takes the PIC's current mask status and masks additional

* interrupts.

*

*
*
*
*

***/

declare INTERRUPT_NO

declare INT_TO_MASK

byte;

byte;

if (INTERRUPT_NO >= 0) and (INTERRUPT_NO <= 7) then

/* it is a master interrupt */

do;

INT_TO_MASK = rol (MASK_TMOUT, INTERRUPT_NO);

MASTER_INTERRUPT_MASK =MASTER_INTERRUPT_MASK or INT_TO_MASK;

output (PIC_MASTER_8259A_ADR2) =MASTER_INTERRUPT_MASK;

end;

else

do;

if (INTERRUPT_NO >= 8) and (INTERRUPT_NO <= 15) then

/* it is a slave interrupt */

do;

INTERRUPT_NO = INTERRUPT_NO - 8;

INT_TO_MASK = rol (MASK_TMOUT, INTERRUPT_NO);

SLAVE_INTERRUPT_MASK =SLAVE_INTERRUPT_MASK or INT_TO_MASK;

output (PIC_SLAVE_8259A_ADR2) =SLAVE_INTERRUPT_MASK;

end;

end;

ISSUE_EOI: procedure (INTERRUPT_NO) public;

/**

B~9

*
* This procedure issues an end of interrupt signal to the PlC for the

* appropriate interrupt.

*

*
*
*
*

***/

declare INTERRUPT_NO byte;

declare EOI byte;

if (INTERRUPT_NO >= 0) and (INTERRUPT_NO <= 7) then

do;

if (MASTER_ICW4_8259A) and (AUTO_EOI_MASK» <> AUTO_EOI_MASK then

/* the Master PlC has not been configured in auto EOI mode */

do;

EOI =EOI_MASK or INTERRUPT_NO;

output (PIC_MASTER_8259A_ADR2) =EOI;

end;

end;

else

do;

if (INTERRUPT_NO >= 8) and (INTERRUPT_NO <= 15) then

do;

INTERRUPT_NO = INTERRUPT_NO - 8;

EOI =EOI_MASK or INTERRUPT_NO;

output (PIC_SLAVE_8259A_ADR1) =EOI;
end;

end;

end PlC;

*

2.5.1.6 STDPIT.PLM

$ include (PLMPAR.INC)

/**

*

8-70

*
*

MODULE NAME PIT *
*

**

* *

* Source Filename STDPIT.PLM *

* *

* Source COfIl>iler PLM86 *
* *
* Operating System DOS 3.10 *
* *
* Description Standardised routines for the 8254 *
* progranmable interval timer. *
* *
* Public procedures: INITIALISE_8254_PIT *
* *
* EPD files None *
* *
* Incl ude f i les PlMPAR.INC *
* PITLITS.INC *
* *
**

$ eject

**
* *
* HISTORY Version 1.0 *
* *
* Designed by P.A. OLANDER Date June 1989 *
* Description Original *
* *
* *
***/

$ eject

PIT: do;

8-71

$ include (PITLITS.INC)

INITIALISE_8254_PIT : procedure public;

/**

* *
* Initialises the Programmable Interval Timer to the following values:

*
* Control registers are initialised to read/write. They accept the

* least significant byte first and then the most significant byte,

* and are all set to act as 16-bit counters.

*
* Counter 0 and Counter 1 are initialised to behave as per mode 2,

* i.e. as Rate Generators. In this mode, the timers function like

* divide by N counters, typically used for Real Time Clock interrupts.

* On the Standard CPU card, these two timers are strapped to the

* Master PlC and the Slave PlC, respectively.

*
* The initial values loaded into counters 0 and 1 are 3000h or

* 12288 decimal. This will cause the timer to respond every 10 ms,

* since :

*
* Timer response = Initial counter value / Clock frequency

* =12288 / 1.2288 MHz

* 10 ms

*
* Counter 2, however, is initialised to behave as per mode 3, i.e. in

* Square Wave Mode. This counter is tied to the 8274 MPSC, which is

* used to drive the RS232 link.

*
* Counter 2 is initialised with a value of 8, since the baud rate

* factor on the MPSC is defined to be a Idivide-by-16" clock, thus

*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

* Counter value

*
*
*

Clock frequency / (Baud rate * Baud rate factor)

1.2288 Mhz / (9600 * 16)
8

*
*
*
*

***/

/* Load counter ° initial value */

output(CTR_CTRL_ADR) =CTRO_8254_CTRL

output(CTRO_8254_ADR) =CTRO_8254_VAL_LSB

output(CTRO_8254_ADR) =CTRO_8254_VAL_MSB

/* Load counter 1 initial value */

output(CTR_CTRL_ADR) =CTR1_8254_CTRL

output(CTR1_8254_ADR) =CTR1_8254_VAL_LSB ;

output(CTR1_8254_ADR) =CTR1_8254_VAL_MSB

/* Load counter 2 initial value */

output (CTR_CTRL_ADR) =CTR2_8254_CTRL

output(CTR2_8254_ADR) =CTR2_8254_VAL_LSB

output(CTR2_8254_ADR) =CTR2_8254_VAL_MSB

end PIT;

8-72

*

2.5.1.7 STDSTAT.PLM

$ include (PLMPAR.INC)

/**

*

B-73

*
*

MOOULE NAME *
*

**

* *

* Source filename STDSTAT.PLM *

* *

* Source C~iler PLM86 *

* *

* Operating System DOS 3.10 *

* *

* Description Standardised routines to drive the *

* diagnostic status latch. *

* *

* Public procedures: OUTPUT_TO_LATCH *

* INPUT_fROM_LATCH *

* *

* EPD files None *

* *

* Include files PLMPAR.INC *

* STATLITS.INC *

* *

**

$ eject

**

* *

* HISTORY Version 1.0 *

* *
* Designed by P.A. OLANDER Date June 1989 *
* Description Original *
* *
* *
***/

$ eject

STATUS_LATCH: do;

$ include (STATLITS.INC)

OUTPUT_TO_LATCH: procedure (TEST_NO) public;

/* Writes the current test number to the diagnostic latch */

declare TEST_NO byte;

$ eject

INPUT_fROM_LATCH: procedure byte public;

/* Reads the status latch in order to determine the time-out status */

declare TMOUT_STATUS byte;

TMOUT_STATUS = input (STATUS_LATCH_ADR);

return TMOUT_STATUS;

end STATUS_LATCH;

6-74

*

2.5.1.8 STDDIAG.PLM

$ include (PLMPAR.INC)

/**

*

8-75

*
*

MOOULE NAME DIAG *
*

**

*
*
*
*
*
*
*
*
*
*

Source Filename

Source CC>q)iler

Operating System

Description

STDDIAG.PLM

PLM86

DOS 3.10

Off-line diagnostic routines for

standard cC>q)Uting segment.

*
*
*
*
*
*
*
*
*
*

*
*

Public procedures: DIAGNOSTICS *
*

*
*
*
*
*
*
*
*
*
*

EPD files

Include files

STDIO.EPD

STDCPU.EPD

STDRAM.EPD

STDERAM.EPD

STDBIT .EPD

STDINIT.EPD

PLMPAR.INC

LITS.INC

*
*
*
*
*
*
*
*
*
*

**

$ eject

,*****************************

* *
* HISTORY Version 1.0 *
* *
* Designed by P.A. OLANDER Date July 1989 *
* Description Original *
* *
* *
***/

$ eject

1***

8-76

* *
* The standard;sed off-l;ne bu;lt ;n tests are div;ded ;nto procedures that *
* perform tests on each of the cards ;n the standard comput;ng segment. Each *
* card thus has an assoc;ated test;ng rout;ne together with the *
* correspond;ng d;splay dr;v;ng routine. *

*
* The procedures are

*

*
*
*

Transm;ts the results of the CPU card tests down the *
*

*

*
* OFF_LINE_1442_TESTS

* OFF_LINE_1611_TESTS

* OFF_LINE_6123_TESTS

*
* DIAGNOSTICS

*
*

RS232 ser;al port.

Transm;ts the results of the EPROM/RAM card tests

down the RS232 ser;al port.

Transm;ts the results of the ser;al data bus

controller card tests down the RS232 ser;al port.

Performs off-line BIT on the CPU card.

Performs off-l;ne BIT on the EPROM/RAM card.

Performs off-line BIT on the system data bus

controller card.

Dr;ves the off-line test;ng of the standard

comput;ng segment.

*
*
*
*
*
*
*
*
*
*
*
*

***1

DIAG: do;

$;nclude (STDIO.EPD)
$ eject

$;nclude (LITS.INC)
$ eject

$ include (STDBIT .EPD)
$ eject

$;nclude (STDCPU.EPD)
$ eject

$;nclude (STDRAM.EPD)
$ eject
$;nclude (STDERAM.EPD)
$ eject

$;nclude (STDINIT .EPD)
$ eject

declare ILLEGAL_INPUT (*) byte data

(ESC, '[24;OH', BEL, 'I LLEGAL INPUT', EOM);

declare TEST_NOT_IMPLEMENTED (*) byte data

(ESC, '[O;50H', BEL, 'TEST NOT IMPLEMENTED', EOM);
declare SPACES_TOP (*) byte data

(ESC, '[O;50H', ,

declare SPACES_BOTTOM (*) byte data
" EOM);

(ESC, I [24;OH', , " EOM);

declare CONTINUE (*) byte data

(ESC, '[24;OH', '<ESC> returns', EOM);

B-77

declare PASSED_1 (*) byte data

(ESC, '[1;50H', 'PASSED

declare PASSED_2 (*) byte data

(ESC, '[2;50H', 'PASSED

declare PASSED_3 (*) byte data

(ESC, '[3;50H', 'PASSED

declare PASSED_4 (*) byte data

(ESC, '[4;50H', 'PASSED

declare PASSED_5 (*) byte data

(ESC, '[5;50H', 'PASSED

declare PASSED_6 (*) byte data

(ESC, '[6;50H', 'PASSED

declare PASSED_7 (*) byte data

(ESC, '[7;50H', 'PASSED

declare PASSED_8 (*) byte data

(ESC, '[8;50H', 'PASSED

declare PASSED_9 (*) byte data

(ESC, '[9;50H', 'PASSED

declare PASSED_10 (*) byte data

(ESC, '[10;50H', 'PASSED

declare PASSED_11 (*) byte data

(ESC, '[11;50H', 'PASSED

declare PASSED_12 (*) byte data

(ESC, '[12;50H', 'PASSED

declare PASSED_13 (*) byte data

(ESC, '[13;50H', 'PASSED

declare PASSED_14 (*) byte data

(ESC, '[14;50H', 'PASSED

declare PASSED_15 (*) byte data

(ESC, '[15;50H', 'PASSED

declare PASSED_16 (*) byte data

(ESC, '[16;50H', 'PASSED

declare PASSED_17 (*) byte data

(ESC, '[17;50H', 'PASSED

declare PASSED_18 (*) byte data

(ESC, '[18;50H', 'PASSED

declare PASSED_19 (*) byte data

(ESC, '[19;50H', 'PASSED

declare PASSED_20 (*) byte data

(ESC, '[20;50H', 'PASSED

declare PASSED_21 (*) byte data

(ESC, '[21;50H', 'PASSED

declare PASSED_22 (*) byte data

(ESC, '[22;50H', 'PASSED

$ eject

, EOM);,

, EOM);,

, EOM);,

, EOM);,

EOM);

, EOM);,

, EOM);,

EOM);

EOM);

, EOM);,

, EOM);,

, EOM);,

EOM);

, EOM);

, EOM);,

, EOM);,

, EOM);,

, EOM);,

, EOM);,

, EOM);,

, EOM);,

, EOM);,

declare FAILED_1 (*) byte data
(ESC, '[1;5DHI, .**** FAILED

declare FAILED_2 (*) byte data

(ESC, 1[2;50HI, .**** FAILED

declare FAILED_3 (*) byte data

(ESC, • [3;50HI, 1**** FAILED

declare FAILED_4 (*) byte data

(ESC, 1[4;50HI, 1**** FAILED

declare FAILED_5 (*) byte data

(ESC, 1[5;5DHI, 1**** FAILED

declare FAILED_6 (*) byte data

(ESC, 1[6;50HI, 1**** FAILED

declare FAILED_7 (*) byte data

(ESC, 1[7;50HI, 1**** FAILED

declare FAILED_8 (*) byte data

(ESC, 1[8;50HI, 1**** FAILED

declare FAILED_9 (*) byte data

(ESC, 1[9;50HI, 1**** FAILED

declare FAILED_10 (*) byte data

(ESC, 1[10;50HI, 1**** FAILED

declare FAILED_11 (*) byte data

(ESC, 1[11;50HI, 1**** FAILED

declare FAILED_12 (*) byte data

(ESC, 1[12;50HI, 1**** FAILED

declare FAILED_13 (*) byte data

(ESC, 1[13;50HI, 1**** FAILED

declare FAILED_14 (*) byte data

(ESC, 1[14;50HI, 1**** FAILED

declare FAILED_15 (*) byte data

(ESC, 1[15;50HI, 1**** FAILED

declare FAILED_16 (*) byte data

(ESC, 1[16;50HI, 1**** FAILED

declare FAILED_17 (*) byte data

(ESC, 1[17;50HI, 1**** FAILED

declare FAILED_18 (*) byte data

(ESC, 1[18;50HI, 1**** FAILED

declare FAILED_19 (*) byte data

(ESC, 1[19;50HI, 1**** FAILED

declare FAILED_20 (*) byte data

(ESC, 1[20;50HI, 1**** FAILED

declare FAILED_21 (*) byte data

(ESC, 1[21;50HI, 1**** FAILED

declare FAILED_22 (*) byte data

(ESC, 1[22;50HI, 1**** FAILED

EOM);

1 EOM);,

EOM);

1 EOM);,

1 EOM);,

1 EOM);,

EOM);

EOM);

EOM);

, EOM);

EOM);

1 EOM);,

EOM);

1 EOM);,

1 EOM);,

EOM);

1 EOM);,

EOM);

EOM);

, EOM);

1 EOM);,

1 EOM);,

B-78

declare BUSY_3 (*) byte data

(ESC, '[3;SOH', 'BUSY TESTING', EOM);

declare BUSY_4 (*) byte data

(ESC, '[4;SOH', 'BUSY TESTING', EOM);

declare BUSY_S (*) byte data

(ESC, '[S;SOH', 'BUSY TESTING', EOM);

declare BUSY_6 (*) byte data

(ESC, '[6;SOH', 'BUSY TESTING', EOM);

declare BUSY_10 (*) byte data

(ESC, '[10;SOH', 'BUSY TESTING', EOM);

declare BUSY_11 (*) byte data

(ESC, '[11;SOH', 'BUSY TESTING', EOM);

declare BUSY_12 (*) byte data

(ESC, '[12;SOH', 'BUSY TESTING', EOM);

declare BUSY_13 (*) byte data

(ESC, '[13;SOH', 'BUSY TESTING', EOM);

declare BUSY_14 (*) byte data

(ESC, '[14;SOH', 'BUSY TESTING', EOM);

declare BUSY_16 (*) byte data

(ESC, '[16;SOH', 'BUSY TESTING', EOM);

declare LETTER byte;

$ eject

8-79

/***

8-80

*
*
*

Display driving procedures
*
*
*

CR, LF,

CR, LF,

CR, LF,

CR, IF,

CR, LF,

CR, LF,

CR, LF,

CR, LF,

CR, IF, LF,

***/

PRINT_1442_RESULTS: procedurei

declare DISPLAY (*) byte data

('RESULTS OF HECS 1442 CPU BOARD BIT ••••••••••••••• ', CR, IF, IF,

'CPU ••.••••• ' ,

'ROM •••••••••••••••••••••••••.•••••••••••••••••••• ' ,

'MASTER PlC ••••••••••••••••••••••••••••••••••••••• ',

'SLAVE_PlC ••••••••••••••••••••••••••.••••••......• ' ,

,TIME OUT •••.•••••••••••••••••••.••••••••.....••.• ',

'PIT •••••••••••••••••••••.•••••••••.•••••••••••..• ',

'MPSC •••••••.•••••••••••.••••••••.••••••...•.•..•• ' ,

'NUMERIC COPROCESSOR •••••.•••••••.••••••••.•..•••• ',

'RAM ••••••••••••..••••••.•••••.•••••••••••••.••••• I,

'<ESC> returns to the 1442 CPU BOARD MENU', EOM)i

call WRITE_POLL (VDU, @ClEARSCREEN)i

call WRITE_POll (VDU, @DISPlAY)i

if BIT_RESULT.CPU_BOARD =PASSED then

call WRITE_POLL (VDU, @PASSED_1)i

else

call WRITE_POLL (VDU, @FAILED_1)i

if BIT_RESUlT.CPU =PASSED then

call WRITE_POLL (VDU, @PASSED_3)i

else

call WRITE_POLL (VDU, @FAllED_3)i

if BIT_RESULT.ROM =PASSED then

call WRITE_POLL (VDU, @PASSED_4)i
else

call WRITE_POLL (VDU, @FAILED_4)i

if BIT_RESULT.MASTER_PIC =PASSED then

call WRITE_POLL (VDU, @PASSED_5)i
else

call WRITE_POLL (VDU, @FAILED_5)i

if BIT_RESUlT.SlAVE_PIC =PASSED then

call WRITE_POLL (VDU, QPASSED_6);

else
call WRITE_pall (VDU, iFAILED_6);

if BIT_RESULT.TMOUT_CIRCUIT =PASSED then

call WRITE_pall (VDU, QPASSED_7);

else

call WRITE_pall (VDU, iFAllED_7);

if BIT_RESUlT.PIT =PASSED then

call WRITE_pall (VDU, QPASSED_8);

else

call WRITE_pall (VDU, QFAllED_8);

if BIT_RESUlT.MPSC =PASSED then

call WRITE_pall (VDU, QPASSED_9);

else

call WRITE_pall (VDU, QFAllED_9);

if BIT_RESUlT.COPROCESSOR =PASSED then

call WRITE_POLL (VDU, QPASSED_10);

else

call WRITE_POLL (VDU, QFAllED_10);

if BIT_RESUlT.RAM =PASSED then

call WRITE_POLL (VDU, QPASSED_11);

else

call WRITE_POLL (VDU, QFAILED_11);

/***/

8-81

PRINT_1611_RESULTS: procedure;

declare DISPLAY (*) byte data

('RESULTS OF HECS 1611 EPROM/RAM BOARD BIT ••••••••• ', CR, LF, LF,

1 ROM •• I, CR, LF,

1 RAM ••••••••.•.•••••••••••••••••.••••••••...•••••• I, CR , LF, LF,

I<ESC> returns to the 1611 EPROM/RAM BOARD MENU', EOM);

call WRITE_POLL (VDU, @CLEARSCREEN);

call WRITE_POLL (VDU, QDISPLAY);

if (BIT_RESULT.EROM = PASSED) and (BIT_RESULT.ERAM =PASSED) then

call WRITE_POLL (VDU, @PASSED_1);

else

call WRITE_POLL (VDU, @FAILED_1);

if BIT_RESULT.EROM =PASSED then

call WRITE_POLL (VDU, @PASSED_3);

else

call WRITE_POLL (VDU, @FAILED_3);

if BIT_RESULT.ERAM =PASSED then

call WRITE_POLL (VDU, @PASSED_4);
else

call WRITE_POLL (VDU, @FAILED_4);

1***/

8-82

PRINT_6123_RESULTS: procedurei

declare DISPLAY (*) byte data

('RESULTS OF HECS 6123 1553 SOB BIT •••••••••••••••• ', CR, LF, LF,

'6123 Controller card self test ••••••••••••••••••• ', CR, LF,

, RAM •••••••••••••••••••••••••••••••••••••..••••••• " CR , LF, LF,

'<ESC> returns to the 6123 CONTROLLER CARD MENU', EOM)i

call WRITE_POLL (VDU, @CLEARSCREEN)i

call WRITE_POLL (VDU, @DISPLAY)i

if BIT_RESULT.SDB_BOARD =PASSED then

call WRITE_POLL (VDU, @PASSED_1)i

else

call WRITE_POLL (VDU, @FAILED_1)i

if BIT_RESULT.SDB_SELFTEST =PASSED then

call WRITE_POLL (VDU, @PASSED_3)i

else

call WRITE_POLL (VDU, @FAILED_3)i

if BIT_RESULT.SDB_RAM =PASSED then

call WRITE_POLL (VDU, @PASSED_4)i

else

call WRITE_POLL (VDU, @FAILED_4)i

/***/

8-83

/***

8-84

*
*
*

Standard computing segment off-line diagnostic test routines.
*
*
*

***/

declare CPU_BOARD_MENU (*) byte data

('HECS 1442 CPU BOARD BUILT IN TESTS', CR, LF, LF,

'A) Print HECS 1442 Built In Test results', CR, LF,

'B) Test entire CPU board', CR, LF,

'C) Test CPU', CR, LF,

'D) Test on board ROM', CR, LF,

'E) Test Master Programmable Interrupt Controller', CR, LF,

'F) Test Slave Programmable Interrupt Controller', CR, LF,

'G) Test Time out facility', CR, LF,

'H) Test Programmable Interval Timer', CR, LF,

'I) Test Numeric Coprocessor', CR, LF,

'J) Test Multi Protocol Serial Controller', CR, LF,

'K) Test on board RAM', CR, LF, LF,

'<ESC> returns to the main menu', EOM);

call WRITE_POLL (VDU, @CLEARSCREEN);

call WRITE_POLL (VDU, @CPU_BOARD_MENU);

LETTER = INPUT_CHARACTER (KB) ;

do while (LETTER <> ESC) and «LETTER < 'A') or (LETTER> 'K'»;

call WRITE_POLL (VDU, @ILLEGAL_INPUT);

call TIME (2000);

call WRITE_POLL (VDU, @SPACES_BOTTOM);

call TIME (2000);

call WRITE_POLL (VDU, @ILLEGAL_INPUT);

LETTER = INPUT_CHARACTER (KB);

end; /* while LETTER < 'A' or LETTER> 'K' */

do while LETTER <> ESC;

do case LETTER - IAI;

~.,

8-85

call PRINT_1442_RESULTS;

LETTER = INPUT_CHARACTER (KB);

~ while (LETTER <> ESC);

call WRITE_POLL (VDU, @ILLEGAL_INPUT);

call TIME (2000);

call WRITE_POLL (VDU, @SPACES_BOTTOM);

call TIME (2000);

call WRITE_POLL (VDU, @ILLEGAL_INPUT);

LETTER = INPUT_CHARACTER (KB);

e~;

e~;

do;

/* A */

/* B */call WRITE_POLL (VDU, @BUSY_4);

BIT_RESULT.CPU =CPU_TEST;

call ON_BOARD_EPROM_TEST;

call MPIC_AND_TMOUT_TEST;

call MPIC_AND_PIT_TEST;

call SPIC_MPIC_AND_PIT_TEST;

BIT_RESULT.MPSC =MPSC_IO_TEST (VDU);

call COPROCESSOR_TEST;

BIT_RESULT.RAM =MEM_TEST;

if (BIT_RESULT.CPU = PASSED) a~ (BIT_RESULT.ROM = PASSED)

a~ (BIT_RESULT.MASTER_PIC =PASSED)

a~ (BIT_RESULT.SLAVE_PIC =PASSED)

a~ (BIT_RESULT.TMOUT_CIRCUIT =PASSED)

a~ (BIT_RESULT.PIT =PASSED)

a~ (BIT_RESULT.COPROCESSOR =PASSED)

a~ (BIT_RESULT.MPSC =PASSED)

a~ (BIT_RESULT.RAM =PASSED) then

do;

BIT_RESULT.CPU_BOARD =PASSED;

call WRITE_POLL (VDU, @PASSED_4);

e~;

else

do;

BIT_RESULT.CPU_BOARD =FAILED;

call WRITE_POLL (VDU, @FAILED_4);

e~;

e~; /* B */

do;
BIT_RESULT.CPU =CPU_TEST;

if BIT_RESULT.CPU =PASSED then
call WRITE_POLL (VDU, @PASSED_5);

else
call WRITE_POLL (VDU, @FAILED_5);

eoo;

do;
call ON_BOARD_EPROM_TEST;

if BIT_RESULT.ROM =PASSED then

call WRITE_POLL (VDU, @PASSED_6);

else
call WRITE_POLL (VDU, @FAILED_6);

eoo;

do;
call MPIC_AND_TMOUT_TEST;

if BIT_RESULT.MASTER_PIC =FAILED then

call MPIC_AND_PIT_TEST;

if BIT_RESULT.MASTER_PIC =PASSED then

call WRITE_POLL (VDU, @PASSED_7);

else

call WRITE_POLL (VDU, @FAILED_7);

eoo;

do;

call SPIC_MPIC_AND_PIT_TEST;

if BIT_RESULT.SLAVE_PIC =PASSED then

call WRITE_POLL (VDU, @PASSED_8);

else

call WRITE_POLL (VDU, @FAILED_8);

eoo;

do;
call MPIC_AND_TMOUT_TEST;

if BIT_RESULT.TMOUT_CIRCUIT =PASSED then

call WRITE_POLL (VDU, @PASSED_9);

else

call WRITE_POLL (VDU, @FAILED_9);
eoo;

do;

call MPIC_AND_PIT_TEST;

if BIT_RESULT.PIT - PASSED then

call WRITE_POLL (VDU, @PASSED_'O);

else

call WRITE_POLL (VDU, @FAILED_'O);

eoo;

/* C */

/* °*/

/* E */

/* F */

/* G */

/* H */

8-86

do;
call COPROCESSOR_TEST;

if BIT_RESUlT.COPROCESSOR =PASSED then

call WRITE_POll (VDU, @PASSED_");

else
call WRITE_POll (VDU, @FAllED_");

eoo;

do;
BIT_RESUlT.MPSC =MPSC_IO_TEST (VDU);

if BIT_RESUlT.MPSC =PASSED then
call WRITE_POll (VDU, @PASSED_12);

else
call WRITE_POll (VDU, @FAllED_'2);

eoo;

do;
call WRITE_POll (VDU, @BUSY_'3);

BIT_RESUlT.RAM =MEM_TEST;

if BIT_RESUlT.RAM =PASSED then
call WRITE_POll (VDU, @PASSED_13);

else
call WRITE_POll (VDU, @FAllED_13);

eoo;

eoo; /* case */

if lETTER =ESC then /* print routine was chosen */

do;
call WRITE_POll (VDU, @ClEARSCREEN);

call WRITE_POll (VDU, @CPU_BOARD_MENU);

eoo;

lETTER = INPUT_CHARACTER (KB);

/* I */

/* J */

/* K */

B~

do while (lETTER <> ESC) aoo «LETTER < IAI) or (lETTER> IKI»;

call WRITE_POLL (VDU, @ILLEGAL_INPUT);

call TIME (2000);

call WRITE_POll (VDU, @SPACES_BOTTOM);

call TIME (2000);

call WRITE_POll (VDU, @lllEGAl_INPUT);

lETTER = INPUT_CHARACTER (KB);
eoo; /* while lETTER < IAI or lETTER> IKI */

eoo; /* while lETTER <> ESC */

/***/

declare EPROM_RAM_BOARD_MENU (*) byte data

('HECS 1611 EPROM/RAM CARD BUILT IN TESTS', CR, LF, LF,

'A) Print HECS 1611 EPROM/RAM card Built In Test results', CR, LF,

'B) Test entire EPROM/RAM card', CR, LF,

'C) Test ROM on EPROM/RAM card', CR, LF,

'D) Test RAM on EPROM/RAM card', CR, LF, LF,

'<ESC> returns to the main menu', EOM);

call WRITE_POLL (VDU, @CLEARSCREEN);

call WRITE_POLL (VDU, QEPROM_RAM_BOARD_MENU);

LETTER = INPUT_CHARACTER (KB);

do while (LETTER <> ESC) and «LETTER < 'AI) or (LETTER> 10 1 »;
call WRITE_POLL (VDU, @ILLEGAL_INPUT);

call TIME (2000);

call WRITE_POLL (VDU, @SPACES_BOTTOM);

call TIME (2000);

call WRITE_POLL (VDU, @ILLEGAL_INPUT);

LETTER = INPUT_CHARACTER (KB);

end; 1* while LETTER < IAI or LETTER> 10 1 *1

do while LETTER <> ESC;

do case LETTER - IAI;

do;

8-88

call PRINT_1611_RESULTS;

LETTER = INPUT_CHARACTER (KB);

do while (LETTER <> ESC);

call WRITE_POLL (VDU, @ILLEGAL_INPUT);

call TIME (2000);

call WRITE_POLL (VDU, @SPACES_BOTTOM);

call TIME (2000);

call WRITE_POLL (VDU, @ILLEGAL_INPUT);

LETTER = INPUT_CHARACTER (KB);

end;

end;

1* A */

do;

call WRITE_POLL (VDU, @BUSY_4); 1* B *1

BIT_RESULT.ERAM =ERAM_TEST;

call APPLICATIONS_ROM_TEST;

if (BIT_RESULT.ERAM =PASSED) and (BIT_RESULT.EROM =PASSED) then

call WRITE_POLL (VDU, @PASSED_4);

else

call WRITE_POLL (VDU, @FAILED_4);

end;

do;
call APPLICATIONS_ROM_TEST;

if BIT_RESULT.EROM =PASSED then
call WRITE_POLL (VDU, @PASSED_5);

else
call WRITE_POLL (VDU, @FAILED_5);

eoo;

00;

call WRITE_POLL (VDU, @BUSY_6);

BIT_RESULT.ERAM =ERAM_TEST;

if BIT_RESULT.ERAM =PASSED then

call WRITE_POLL (VDU, @PASSED_6);

else
call WRITE_POLL (VDU, @FAILED_6);

eoo;

eoo; /* case */

if LETTER =ESC then /* print routine was chosen */

do;
call WRITE_POLL (VDU, @CLEARSCREEN);
call WRITE_POLL (VDU, @EPROM_RAM_BOARD_MENU);

eoo;

LETTER = INPUT_CHARACTER (KB);

/* C */

/* 0 */

B~9

do while (LETTER <> ESC) aoo «LETTER < IAI) or (LETTER> 10
1 »;

call WRITE_POLL (VDU, @ILLEGAL_INPUT);

call TIME (2000);
call WRITE_POLL (VDU, @SPACES_BOTTOM);

call TIME (2000);

call WRITE_POLL (VDU, @ILLEGAL_INPUT);

LETTER = INPUT_CHARACTER (KB);

eoo; /* while LETTER < IAI or LETTER> 10 1 */

eoo; /* while */

/***/

declare SOB_BOARD_MENU (*) byte data

('HECS 6123 CONTROLLER CARD BUILT IN TESTS', CR, LF, LF,

'A) Print HECS 6123 controller card Built In Test results', CR, LF,

'B) Test entire 6123 controller card', CR, LF,

'C) Invoke 6123 controller card self test', CR, LF,

'D) Test RAM on 6123 controller card', CR, LF, LF,

'<ESC> returns to the main menu', EOM);

call WRITE_POLL (VDU, @ClEARSCREEN);

call WRITE_POLL (VDU, @SDB_BOARD_MENU);

LETTER = INPUT_CHARACTER (KB);

do while (LETTER <> ESC) and «LETTER < 'A') or (LETTER> '0'»;

call WRITE_POLL (VDU, @ILLEGAL_INPUT);

call TIME (2000);

call WRITE_POLL (VDU, @SPACES_BOTTOM);

call TIME (2000);

call WRITE_POLL (VDU, @IllEGAL_INPUT);

LETTER = INPUT_CHARACTER (KB);

end; /* while LETTER < 'A' or LETTER> '0' */

do while LETTER <> ESC;

do case LETTER - 'A';

8-90

00·,
call PRINT_6123_RESULTS;

LETTER = INPUT_CHARACTER (KB);

do while (LETTER <> ESC);

call WRITE_POLL (VDU, @ILLEGAL_INPUT);

call TIME (2000);

call WRITE_pall (VDU, @SPACES_BOTTOM);

call TIME (2000);

call WRITE_POLL (VDU, @ILLEGAL_INPUT);

LETTER INPUT_CHARACTER (KB);
end;

end;

/* A */

do;
call WRITE_POLL (VDU, @BUSY_4);

call SDB_SELFTEST;

call SDB_RAM_TEST;

if (BIT_RESULT.SDB_SELFTEST =PASSED)

and (BIT_RESULT.SDB_RAM =PASSED) then

do;

BIT_RESULT.SDB_BOARD =PASSED;

call WRITE_POLL (VDU, @PASSED_4);

end;

else

do·,
BIT_RESULT.SDB_BOARD = FAILED;

call WRITE_POLL (VDU, @FAILED_4);

end;

end;

do;

call SDB_SELFTEST;

if BIT_RESULT.SDB_SELFTEST =PASSED then

call WRITE_POLL (VDU, @PASSED_5);

else

call WRITE_POLL (VDU, @FAILED_5);

end;

do;

call WRITE_POLL (VDU, @BUSY_6);

call SDB_RAM_TEST;

if BIT_RESULT.SDB_RAM =PASSED then

call WRITE_POLL (VDU, @PASSED_6);

else

call WRITE_POLL (VDU, @FAILED_6);

end;

end; /* case */

/* B */

/* C */

/* D */

8-91

if LETTER =ESC then /* print routine was chosen */

do;
call WRITE_POLL (VDU, @CLEARSCREEN);
call WRITE_POLL (VDU, @SDB_BOARD_MENU);

eoo;

LETTER INPUT_CHARACTER (KB);

do while (LETTER <> ESC) aoo «LETTER < IAI) or (LETTER> 10 1 »;
call WRITE_POLL (VDU, @ILLEGAL_INPUT);

call ~IME (2000);
call WRITE_POLL (VDU, @SPACES_BOTTOM);

call TIME (2000);
call WRITE_POLL (VDU, @ILLEGAL_INPUT);

LETTER = INPUT_CHARACTER (KB);
eoo; /* while LETTER < IAI or LETTER> 10 1 */

eoo; /* while LETTER <> ESC */

/***/

8-92

DIAGNOSTICS: procedure public;

/***

8-93

*
*
*
*

Menu driving routine for the off-line diagnostics of the

standard computing segment.

*
*
*
*

***/

declare FOREVER byte;

declare DIAGNOSTIC_MENU (*) byte data

('OFF LINE DIAGNOSTIC BUILT IN TESTS FOR THE STANDARD COMPUTING SEGMENT',

CR, LF, LF,

'A) Display BIT results', CR, LF,

'B) Test HECS 1442 CPU board', CR, LF,

'C) Test HECS 1611 EPROM/RAM card', CR, LF,

ID) Test HECS 6123 1553 System Data Bus board', CR, LF, LF,

IChoose a letter ••• ', EOM);

TEST =TRUE;

enable;

call WRITE_POLL (VDU, QCLEARSCREEN);

call WRITE_POLL (VDU, QDIAGNOSTIC_MENU);

LETTER = INPUT_CHARACTER (KB);

do while (LETTER < lA') or (LETTER> ID');

call WRITE_POLL (VDU, QILLEGAL_INPUT);

call TIME (2000);

call WRITE_POLL (VDU, QSPACES_BOTTOM);

call TIME (2000);

call WRITE_POLL (VDU, QILLEGAL_INPUT);

LETTER = INPUT_CHARACTER (KB);

end; /* while LETTER < lA' or LETTER> 10 1 */

/* B */

/* C */

/* D */

do case LETTER - IAI;

do;

call PRINT_RESULTS; /* A */

call WRITE_POLL (VDU, @CONTINUE);

call TIME (5000);

call WRITE_POLL (VDU, @SPACES_BOTTOM); /* Causes ESC message */

call TIME (2000); /* to blink */

call WRITE_POLL (VDU, @CONTINUE);

LETTER = INPUT_CHARACTER (KB);

do while LETTER <> ESC;

call WRITE_POLL (VDU, @ILLEGAL_INPUT);

call TIME (2000);

call WRITE_POLL (VDU, @SPACES_BOTTOM);

call TIME (2000);

call WRITE_POLL (VDU, @ILLEGAL_INPUT);

LETTER = INPUT_CHARACTER (KB);

end; /* while LETTER <> ESC */

end;

call OFF_LINE_1442_TESTS;

call OFF_LINE_1611_TESTS;

call OFF_LINE_6123_TESTS;

end; /* case */

if LETTER <> ESC then

call TIME (5000); /* Delay for result to be displayed */

TEST = FALSE;

end DIAGNOSTICS;

end DIAG;

8-94

*

2.5.1.9 STDIO.PLM

$;nclude (PLMPAR.INC)

$ no;ntvector
/**

*

8-95

*
*

MOOULE NAME *
*

**

*
* Source F;lename

*
* Source Comp;ler

*

STDIO.PLM

PLM86

*
*
*
*
*

*
*

Operat;ng System DOS 3.10 *
*

*
*
*

Descd pt; on Standard I/O rout;nes for the 8274 MPSC ch;p,

compr;sing the following routines:
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

a) INITIALISE_IO_ADDRESSES - Sets up the raw state of the MPSC.

b) INITIALISE_PORT - Configures MPSC registers to user defined

values.

c) MPSC_IO_TEST - Tests the 8274 MPSC device.

d) ENABLE_PORT - Enables Tx and Rx of the serial port.

e) DISABLE_PORT - Disbales Tx and Rx of the serial port.

f) CLEAR_BUFFER - Clears an input buffer of unread characters.

g) TRANSMIT_CHARACTER - Called by a transmit buffer empty

interrupt the routine transfers a character from the

wr;te buffer to the port.

h) RECEIVE_CHARACTER - Called by a receive character interrupt

the routine transfers the character to the input buffer.

i) GET_MOOE - returns the mode of a serial link.

j) SET_MOOE - sets the mode of a serial link.

k) WRITE - Transfers the contents of a buffer to a write buffer
and links the buffer to the port data.

l) WRITE_POLL - Writes a buffer to a port using a polled mode

of operation.

m) INPUT_CHARACTER - Clears the input buffers and waits for a

character to be entered (poll mode).

n) GET_CHARACTER - Returns the next character in the input buffer.

0) LAST_CHARACTER_READ - Returns the value of the last character

rece;ved by the 8274 (ie. last character in the buffer).

p) GET_BYTE - Clears the input buffer, and waits for a <CR>, then

returns the numeric value of the next numeric string in the

input buffer.

q) GET_WORD - As GET_BYTE but returning a word value.

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

**
$ eject

**

8-96

*
*
*
*
*
*
*
*
*
*
*

r) BUFFER_READY - Returns a OOH if the buffer is empty.

Returns a 01H if data is available in a buffer.

Returns a 02H if a CR is in the buffer.
s) CHB_TX_EMPTY - Interrupt handler for channel B transmissions.

t) CHA_TX_EMPTY - Interrupt handler for channel A transmissions.

u) CHA_RX_AVAIL - Interrupt handler for characters available on A.

v) CHB_RX_AVAIL - Interrupt handler for characters available on B.

w) CHA_RX_ERROR - Interrupt handler for reception errors on A.

y) CHB_RX_ERROR - Interrupt handler for reception errors on B.

*
*
*
*
*
*
*
*
*
*
*

**

**

* *

* Public procedures: INITIALISE_IO_ADDRESSES *
* INITIALISE_PORT *

* MPSC_IO_TEST *
* ENABLE_PORT *
* DISABLE_PORT *
* CLEAR_BUFFER *
* TRANSMIT_CHARACTER *
* RECEIVE_CHARACTER *
* GET_MODE *
* SET_MODE *
* WRITE *
* WRITE_POLL *
* INPUT_CHARACTER *
* GET_CHARACTER *
* LAST_CHARACTER_READ *
* GET_BYTE *
* GET_WORD *
* BUFFER_READY *
* CHB_TX_EMPTY *
* CHA_TX_EMPTY *
* CHA_RX_AVAIL *
* CHB_RX_AVAIL *
* CHA_RX_ERROR *
* CHB_RX_ERROR *
* *
* EPD files STDPIC.EPD *
* STDCONVT.EPD *
* *
* Include files IOLlTS.INC *
* *
* *
***/

$ eject

/***

* *

* HISTORY Version 1.0 *

* *

* Designed by A.J. POLMANS Date February 1989 *

* P.A. OLANDER *

* Description Original *

* *

* *

***/

$ eject

$ include (IOLITS.INC)

$ eject

/***/

declare MPSC_TEST_IN_PROGRESS byte;

declare MPSC_TEST_RESULT byte;

declare VAR_MESSAGE (80) byte

/***/

/********************************/

/* */

/* Entities Publicly Declared */

/* */

/********************************/

$ include(STDPIC.EPD

$ eject

$ include (STDCONVT.EPD)

$ eject

8-97

/********************************/

8-98

/*

/* Local variables

/*

*/

*/

*/

/********************************/

/*--- Port Data ---*/

declare PORT_DATA(NO_Of_PORTS) structure
(CONTROL_PORT word, /* Address of 8274 control port */

DATA_PORT word, /* Address of 8274 data port */

byte,

byte,

BUffER_ADDRESS pointer, /* Address of buffer being output */

LAST_BUffER_ADDRESS pointer, /* Address of last buffer in queue */

NEXT_CHARACTER byte, /* Position of next character in */

/* buffer to be printed. */

MOOE byte, /* Sets up mode of port : */

/* o = terminal mode */

/* 1 = data mode */

INPUT_fLAG byte, /* Status of input buffer. */

/* o = no valid data in buffer */

/* 1 some valid data */

/* 2 <CR> received in buffer */

NO_Of_CHARACTERS byte, /* No. of characters received in */

/* the input buffer. */

READ_POINTER byte, /* Pointer to position of next */

/* character to be read out */

/* of the input buffer. */

LAST_CHARACTER_ECHOED byte, /* Last character in the input */

/* buffer that has been echoed */

INPUT_BUffER(80) byte)i /* Array of input characters. */

/*--- Buffer Areas ---*/

declare BUffER(NO_Of_BUffERS) structure

OUTPUT_STRING(80 byte,

NEXT_BUffER pointer)i

declare NEXT_fREE_BUffER pointeri

declare LAST_fREE_BUFfER pointer;

$eject

/**/

INITIALISE_IO_ADDRESSES procedure(PORT_NO,

BASE_ADDRESS,

INTERRUPT_NO

declare PORT_NO byte;

declare BASE_ADDRESS word;

declare INTERRUPT_NO byte;

public;

8-99

output(BASE_ADDRESS + 4) =018H; /* Channel reset */

output(BASE_ADDRESS + 6) =018H; /* Channel reset */

PORT_DATA(PORT_NO).DATA_PORT

PORT_DATA(PORT_NO).CONTROL_PORT

=BASE_ADDRESS;

=BASE_ADDRESS + 4;

PORT_DATA(PORT_NO +).DATA_PORT =BASE_ADDRESS + 2;

PORT_DATA(PORT_NO + 1).CONTROL_PORT =BASE_ADDRESS + 6;

PORT_DATA(PORT_NO

PORT_DATA(PORT_NO +

).INTERRUPT_NO INTERRUPT_NO;

).INTERRUPT_NO = INTERRUPT_NO;

if INTERRUPT_NO =0 then

do; /* Not using interrupts */

end; /* Not using interrupts */

else

do; /* Using interrupts */

disable;

/* Set up the interrupt vector for the chip on WR2 of */

/* channel B. */

output(BASE_ADDRESS + 6) =2;

output(BASE_ADDRESS + 6) = INTERRUPT_NO;

/* Set up the interrupt mode for the chip on WR2 of */

/* channel A. Pin 10 =RTS */

/*

/*

/*

/*

Vectored Interrupt

8086 mode

Priority RxA > RxB > TxA > TxB

Both channels interrupt driven

*/

*/

*/

*/

output(BASE_ADDRESS + 4) =2;

output(BASE_ADDRESS + 4) =00110100b;

enable;

end; /* Using interrupts */

end INITIALISE_IO_ADDRESSES;

$ eject

/***/

/* */

/* INITIALISE_PORT: Writes the control characters required to set */

/* up a 8274 MPSC from the table set up in the port data area */

/* BUFFER(I). */

/* */

/* INPUT : A pointer to the correct buffer area. */

/* */

/* OUTPUT none. */

/* */

/* Any output in progress at the time of initialisation is aborted */

/* and the buffers restored to the free buffer list. */

/* */

/***/

INITIALISE_PORT : procedure(PORT_NO,

BAUD_RATE,

NO_OF_DATA_BITS,

NO_OF_STOP_BITS,

PARITY_TYPE,

MODE) publ i c;

declare PORT_NO byte;

declare BAUD_RATE byte;

declare NO_OF_DATA_BITS byte;

declare NO_OF_STOP_BITS byte;

declare PARITY_TYPE byte;

declare MODE byte;

/*---------------------------------------*/

declare B_ADDRESS pointer;

declare BUFFER based B_ADDRESS structure
OUTPUT_STRING(80) byte,

NEXT_BUFFER pointer);

/*---------------------------------------*/

8-100

/* Set up * 16 clock rate */

/* parity and no of stop bits */

/* as per parameters. */

output(PORT_DATA(PORT_NO).CONTROl_PORT) =4;

output(PORT_DATA(PORT_NO).CONTROL_PORT =01000000b or

NO_OF_STOP_BITS or

PARITY_TYPE;

/* Set up Rx register as follows */

/* no of data bits as per parameters */

/* Rx enabled */

output(PORT_DATA(PORT_NO).CONTROL_PORT) =3;

output(PORT_DATA(PORT_NO).CONTROL_PORT) =NO_OF_DATA_BITS or

00000001b;

/* Set up Tx register as follows */

/* no of data bits as per parameters */

/* Rx enabled */

8-101

/* no control lines active */

output(PORT_DATA(PORT_NO).CONTROL_PORT) =5;

output(PORT_DATA(PORT_NO).CONTROL_PORT) =shr(NO_OF_DATA_BITS, 1) or

00001000b;

if PORT_DATA(PORT_NO).INTERRUPT_NO =0 then

do; /* Disable Interrupts */

/* Set up EXT INTERRUPT - Disabled */

/* TX INTERRUPT - Disabled */

/* RX INTERRUPT - Disabled */

output(PORT_DATA(PORT_NO).CONTROL_PORT) = 1;

output(PORT_DATA(PORT_NO).CONTROL_PORT) =OOOOOOOOb;

end;

else

do; /* Enable Interrupts */

/* Set up EXT INTERRUPT - Disabled */

/* TX INTERRUPT - Enabled */

/* VARIABLE INTERRUPT VECTOR */

/* INT on all Rx characters */

output(PORT_DATA(PORT_NO).CONTROl_PORT) =1;

output(PORT_DATA(PORT_NO).CONTROL_PORT) =00011110b;
end;

output(PORT_DATA(PORT_NO).CONTROL_PORT) =028H; /* Reset Tx interrupt pending */

output(PORT_DATA(PORT_NO).CONTROL_PORT) =030H; /* Reset Error conditions */

PORT_DATA(PORT_NO).NEXT_CHARACTER =0;

PORT_DATA(PORT_NO).INPUT_fLAG =0;

PORT_DATA(PORT_NO).INPUT_BUffER(O) =0;

PORT_DATA(PORT_NO).NO_Of_CHARACTERS =0;

PORT_DATA(PORT_NO).LAST_CHARACTER_ECHOED =0;

PORT_DATA(PORT_NO).READ_POINTER =0;

/**/

1* */

/* If a list of buffers was allocated to the port, */

/* then chain them on to the end of the free */

/* buffer list. */

/* */

/**/

if PORT_DATA(PORT_NO).BUffER_ADDRESS <> nil then

do;

B_ADDRESS =LAST_FREE_BUFFER;

BUFfER.NEXT_BUFFER =PORT_DATA(PORT_NO).BUFFER_ADDRESS;

LAST_fREE_BUFFER =PORT_DATA(PORT_NO).LAST_BUffER_ADDRESS;

PORT_DATA(PORT_NO).BUfFER_ADDRESS =nil;

PORT_DATA(PORT_NO).LAST_BUFFER_ADDRESS =nil;

end;

end INITIALISE_PORT;

$ eject

8-102

/***/

8-103

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

MPSC_IO_TEST Called to test the operation of the 8274

multiple protocol serial controller.

INPUT A pointer to the correct port data area.

OUTPUT A test result.

1 ==> Test passed

2 ==> Test failed

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

/***/

MPSC_IO_TEST : procedure (PORT_NO) byte public;

declare PORT_NO byte;

/* Unmask the Interrupt Controller for the chip, */

/* then send a bel to the keyboard, and wait */

/* for an interrupt to be returned. */

MPSC_TEST_IN_PROGRESS

MPSC_TEST_RESULT
TRUE;

FALSE;

call UNMASK_PIC(MPSC_INTERRUPT_NO);

output(PORT_DATA(PORT_NO).DATA_PORT) =BEL;

call TIME(10); /* 1 millisecond delay */

if MPSC_TEST_RESULT =TRUE then

return(1);

else

return(2);

$ eject

/***/

8-104

/*

/*

/*

/*

/*

/*

/*

ENABLE_PORT Called to enable the Tx and Rx of the port.

INPUT : A pointer to the correct port data area.

OUTPUT none.

*/

*/

*/

*/

*/

*/

*/

/***/

ENABLE_PORT: procedure (PORT_NO) public;

declare PORT_NO byte;

/* Set up Rx register as follows */

/* no of data bits as per parameters */

/* Rx enabled */

output(PORT_DATA(PORT_NO).CONTROL_PORT) =3;

output(PORT_DATA(PORT_NO).CONTROL_PORT) =PORT_DATA(PORT_NO).NO OF DATA_BITS

or 00000001b;

/* Set up Tx register as follows */
/* no of data bits as per parameters */
/* Rx enabled */
/* no control lines active */

output(PORT_DATA(PORT_NO).CONTROL_PORT

output(PORT_DATA(PORT_NO).CONTROL_PORT

$ eject

=5;

=shr(PORT_DATA(PORT_NO).NO_OF_DATA_BITS, 1)

or 00001000b;

/***/

8-105

/*

/*

/*

/*

/*

/*

/*

DISABLE_PORT Called to disable the Tx and Rx of the port.

INPUT : A pointer to the correct port data area.

OUTPUT none.

*/

*/

*/

*/

*/

*/

*/

/***/

DISABLE_PORT: procedure (PORT_NO) public;

declare PORT_NO byte;

/* Set up Rx register as follows */

/* no of data bits as per parameters */

/* Rx enabled */

output(PORT_DATA(PORT_NO).CONTROL_PORT) =3;

output(PORT_DATA(PORT_NO).CONTROL_PORT) =PORT_DATA(PORT_NO).NO OF DATA_BITS

and 11111110b;

/* Set up Tx register as follows */

/* no of data bits as per parameters */

/* Rx enabled */

/* no control lines active */

output(PORT_DATA(PORT_NO).CONTROL_PORT) =5;

output(PORT_DATA(PORT_NO).CONTROL_PORT =shr(PORT_DATA(PORT_NO).NO_OF_DATA_BITS, 1)

and 11110111b;

end DISABLE_PORT;

$ eject

/***/

/* */

/* CLEAR_BUffER: Called to clear an input buffer of unread */

/* characters. If the routine LAST_READ_CHARACTER is used, the */

/* buffer is never emptied and must be done so explicitly */

/* by the user. */

/* */

/* INPUT A pointer to the correct port data area. */

/* */

/* OUTPUT none. */

/* */

/***/

CLEAR_BUffER procedure (PORT_NO) public;

declare PORT_NO byte;

disable;

PORT_DATA(PORT_NO).NO_Of_CHARACTERS =O·,
PORT_DATA(PORT_NO).READ_POINTER =O·,
PORT_DATA(PORT_NO).LAST_CHARACTER_ECHOED =O·,
PORT_DATA(PORT_NO).INPUT_fLAG =O·,
enable;

end CLEAR_BUffER;

$ eject

8-106

8-107

reset.

OUTPUT : none.

INPUT : A pointer to the correct port data area.

TRANSMIT_CHARACTER: Called as a direct result of a Tx buffer */

empty interrupt, this routine send the next character to the */

8274, and if this emptys the transmit buffer, the next */

buffer is linked to the port data area. If no characters */

are waiting to be sent, the Tx pending flag in the 8274 is */

*/

*/

*/

*/

*/

*/

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/***/
*/

/***/

TRANSMIT_CHARACTER procedure(PORT_NO) public;

declare PORT_NO byte;

declare B_ADDRESS pointer;

declare BUFFER based B_ADDRESS structure

(OUTPUT_STRING(80) byte,

NEXT_BUFFER pointer);

declare TEMP_ADDRESS pointer;

/* Is there a character to be echoed 11 */

if PORT_DATA(PORT_NO).MODE =TERMINAL and

PORT_DATA(PORT_NO).LAST_CHARACTER_ECHOED < PORT_DATA(PORT_NO).NO_OF_CHARACTERS then

do;

PORT_DATA(PORT_NO).LAST_CHARACTER_ECHOED =PORT_DATA(PORT_NO).LAST_CHARACTER_ECHOED + 1;

if PORT_DATA(PORT_NO).INPUT_BUFFER(PORT_DATA(PORT_NO).LAST_CHARACTER_ECHOED) >= I I then

output(PORT_DATA(PORT_NO).DATA_PORT) =
PORT_DATA(PORT_NO).INPUT_BUFFER(PORT_DATA(PORT_NO).LAST_CHARACTER_ECHOED);

end;

else

if PORT_DATA(PORT_NO).BUFFER_ADDRESS =nil then

/* No characters to be transmitted so reset Tx pending */

output(PORT_DATA(PORT_NO).CONTROL_PORT) =028H; /* Reset Tx pending flag */

else

do; /* Send next character */

B_ADDRESS =PORT_DATA(PORT_NO).BUFFER_ADDRESS;

if BUFFER.OUTPUT_STRING(PORT_DATA(PORT_NO).NEXT_CHARACTER

do; /* Go on to next buffer */

PORT_DATA(PORT_NO).BUFFER_ADDRESS =BUFFER.NEXT_BUFFER;

EOM then

/* Restore the used buffer to the end of the free buffer list */

BUffER.NEXT_BUffER = nil;

if NEXT_fREE_BUffER =nil then

do;
NEXT_fREE_BUffER =B_ADDRESS;

LAST_fREE_BUffER =B_ADDRESS;

end;

else

do;

TEMP_ADDRESS =B_ADDRESS;

B_ADDRESS =LAST_fREE_BUffER;

BUffER.NEXT_BUffER =TEMP_ADDRESS;

LAST_fREE_BUffER =TEMP_ADDRESS;

end;

if PORT_DATA(PORT_NO).BUffER_ADDRESS =nil then

do; /* No next buffer */

/* Set end pointer to nil */

PORT_DATA(PORT_NO).LAST_BUffER_ADDRESS =nil;

/* Reset Tx interrupt pending flag */

output(PORT_DATA(PORT_NO).CONTROL_PORT) =028H;

end; /* No next buffer */

else

do; /* Send first character from next buffer */

B_ADDRESS =PORT_DATA(PORT_NO).BUffER_ADDRESS;

output(PORT_DATA(PORT_NO).DATA_PORT) =BUffER.OUTPUT_STRING(O);

PORT_DATA(PORT_NO).NEXT_CHARACTER =1;

end; /* Send first character from next buffer */

end; /* Go on to next buffer */

else

do; /* Send next character from same buffer */

output(PORT_DATA(PORT_NO).DATA_PORT) =
BUf~ER.OUTPUT_STRING(PORT_DATA(PORT_NO).NEXT_CHARACTER);

PORT_DATA(PORT_NO).NEXT_CHARACTER =PORT_DATA(PORT_NO).NEXT_CHARACTER + 1;

end; /* Send next character from same buffer */

end; /* Send next character */

/* Now reset the interrupts down the chain of PICs etc. */

output(PORT_DATA(PORT_NO).CONTROL_PORT and OfCh) =038H; /* WRO function 7 */

call ISSUE_EOI(MPSC_INTERRUPT_NO);

end TRANSMIT_CHARACTER;

$ eject

8-108

8-109

/***/

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

RECEIVE_CHARACTER: Called as a direct result of a Rx buffer

available interrupt, this routine transfers the received

character to the INPUT_BUffER in PORT_DATA(PORT_NO).

If the character is a <CR>, the INPUT_fLAG is set to 2.

else INPUT_fLAG is set to 1.

If the inPUt character is a or a <BACK_SPACE> then

a backspace, space, backspace is transmitted and the char

deleted from the buffer.

INPUT A pointer to the correct port data area.

OUTPUT none.

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

/***/

RECEIVE_CHARACTER procedure(PORT_NO) public;

declare IN_CHAR byte;

declare PORT_NO byte;

/***/

/*

/*

/*

Receive char from terminal

*/

*/

*/

/***/

if IN_CHAR = BACK_SPACE or IN_CHAR = DEL then

do; /* BACK_SPACE or DEL */

if PORT_DATA(PORT_NO).NO_Of_CHARACTERS > 0 then

do;

PORT_DATA(PORT_NO).NO_Of_CHARACTERS = PORT_DATA(PORT_NO).NO_Of_CHARACTERS - 1;

PORT_DATA(PORT_NO).LAST_CHARACTER_ECHOED=PORT_DATA(PORT_NO).LAST_CHARACTER_ECHOED-1;

if PORT_DATA(PORT_NO).INPUT_BUffER(PORT_DATA(PORT_NO).NO_Of_CHARACTERS) >= I I then

call WRITE(PORT_NO, @RUBOUT_MESSAGE);

if PORT_DATA(PORT_NO).NO_Of_CHARACTERS 0 then

PORT_DATA(PORT_NO).INPUT_fLAG = 0;

end;

end; /* BACK_SPACE or DEL */

8-110

else if IN_CHAR = CR then

do;
PORT_DATA(PORT_NO).INPUT_BUffER(PORT_DATA(PORT_NO).NO_Of_CHARACTERS) = CR;

PORT_DATA(PORT_NO).INPUT_flAG = 2;

end;

else if IN_CHAR = If then

do;
/* Ignore line feeds in terminal mode */

end;

else if PORT_DATA(PORT_NO).NO_Of_CHARACTERS < 79 then

do;
PORT_DATA(PORT_NO).INPUT BUffER(PORT_DATA(PORT_NO).NO_Of_CHARACTERS = IN_CHAR;

if PORT_DATA(PORT_NO).BUffER_ADDRESS = nil then

do; /* Initiate echo of character */

output(PORT_DATA(PORT_NO).DATA_PORT) = IN_CHAR;

PORT_DATA(PORT_NO).lAST_CHARACTER_ECHOED=PORT_DATA(PORT_NO).lAST_CHARACTER_ECHOED+1;

end; /* Initiate echo of character */

PORT_DATA(PORT_NO).NO_Of_CHARACTERS = PORT_DATA(PORT_NO).NO_Of_CHARACTERS + 1;

PORT_DATA(PORT_NO).INPUT_flAG = 1;

end;

/***/

/*

/*

/*

Receive char from data terminal
*/

*/

*/

/***/

RECEIVE_DATA_CHAR: procedure;

/* Increment write pointer (No of characters) */

if PORT_DATA(PORT_NO).NO_Of_CHARACTERS = 79 then

PORT_DATA(PORT_NO).NO_Of_CHARACTERS = 1;

else

/* Check for overflow of the buffer */

if PORT_DATA(PORT_NO).NO_Of_CHARACTERS = PORT_DATA(PORT_NO).READ_POINTER then

do; /* Reset write pointer to what is was */

if PORT_DATA(PORT_NO).NO_Of_CHARACTERS =1 then

PORT_DATA(PORT_NO).NO_Of_CHARACTERS =79;

else
PORT_DATA(PORT_NO).NO_Of_CHARACTERS =PORT_DATA(PORT_NO).NO_Of_CHARACTERS - 1;

return;

end; /* Reset write pointer */

/* Store the character */

PORT_DATA(PORT_NO).INPUT_BUffER(PORT_DATA(PORT_NO).NO_Of_CHARACTERS = IN_CHAR;

/* Set the flag */

PORT_DATA(PORT_NO).INPUT_fLAG =1;

/* If the read pointer is at zero, set it to the first element */

if PORT_DATA(PORT_NO).READ_POINTER =0 then

PORT_DATA(PORT_NO).READ_POINTER =1;

/***/

IN_CHAR = input(PORT_DATA(PORT_NO).DATA_PORT);

if PORT_DATA(PORT_NO).MODE =TERMINAL then

do;

if (PORT_DATA(PORT_NO).INPUT_fLAG <> 2) then

call RECEIVE_CHAR_fROM_TERMINAL;

end;

else

call RECEIVE_DATA_CHAR;

/* Now reset the interrupts down the chain of PICs etc. */

output(PORT_DATA(PORT_NO).CONTROL_PORT and OfCh) =038H; /* WRO function 7 */

call ISSUE_EOI(MPSC_INTERRUPT_NO);

end RECEIVE_CHARACTER;

$ eject

8-111

/***/

/* */

/* GET_MODE: Returns the mode of a serial port. */

/* 0 = TERMINAL MODE */

/* 1 = DATA MODE */

/* */

/* INPUT A pointer to the correct port data area. */

/* */

/* OUTPUT The function returns a byte. */

/* */

/***/

GET_MODE: procedure(PORT_NO) byte public;

declare PORT_NO byte;

return PORT_DATA(PORT_NO).MODE;

end;

$ eject

/***/

8-112

/*

/*

/*

/*

/*

/*

/*

/*

SET_MODE: Called to set the mode of a serial port.

INPUT A pointer to the correct port data area.

The byte value of the new mode.

OUTPUT none.

*/

*/

*/

*/

*/

*/

*/

*/

/***/

SET_MODE: procedure(PORT_NO, NEW_MODE) public;

declare PORT_NO byte;

declare NEW_MODE byte;

PORT_DATA(PORT_NO).MODE NEW_MODE;

end;

$ eject

/***/

8-113

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

WRITE : Transfers data from a user character string to a write

buffer, and queues the write buffer for output.

If a free buffer is not available the routine waits for a

buffer to become free before continuing.

INPUT A pointer to the port data area (PORT_NO) */

A pointer to the user data string (DATA_ADDRESS)

OUTPUT none.

*/
*/

*/

*/

*/

*/

*/

*/

*/

*/

/***/

WRITE: procedure PORT_NO, DATA_ADDRESS) public;

declare PORT_NO byte;

declare DATA_ADDRESS pointer;

declare (DATA_STRING based DATA_ADDRESS)(80) byte;

/*--*/

declare B_ADDRESS pointer;

declare BUffER based B_ADDRESS structure

(OUTPUT_STRING(80) byte,

NEXT_BUffER pointer);

declare I byte;

declare fINISHED byte;

declare BASE_INDEX word; /* Index to the character at which the

buffer is to started */

declare TEMP_ADDRESS pointer;

/*--*/

BASE_INDEX =0;

fINISHED =false;

do while not FINISHED;

do while NEXT_fREE_BUffER =nil;

/* Do nothing until a buffer becomes free */

end;

/* Get an empty buffer from the top of the free buffer list */

disable;

B_ADDRESS =NEXT_fREE_BUffER;

NEXT_fREE_BUFfER =BUffER.NEXT_BUFfER;

if NEXT_fREE_BUffER =nil then

LAST_fREE_BUffER =nil;

BUffER.NEXT_BUffER =nil;
enable;

/* Now transfer the data into the buffer */

I =0;
do while DATA_STRINGCBASE_INDEX+I) <> EOM and I < 79;

BUFFER.OUTPUT_STRINGCI) =DATA_STRINGCBASE_INDEX+I);

I = I + 1;

end;

BUffER.OUTPUT_STRINGCI) =EOM;

if DATA_STRINGCBASE_INDEX+I) <> EOM then

BASE_INDEX =BASE_INDEX + 79;

else

fINISHED =true;

/* Add the full buffer to the PORT_DATA buffer list */

disable;

if PORT_DATAC PORT_NO).BUFFER_ADDRESS =nil then

do; /* No buffers currently being printed */

PORT_DATA(PORT_NO).BUffER_ADDRESS =B_ADDRESS;

PORT_DATAC PORT_NO).LAST_BUffER_ADDRESS =B_ADDRESS;

/* Initiate transmission of first character */

output(PORT_DATA(PORT_NO).DATA_PORT) =BUffER.OUTPUT_STRING(O);

PORT_DATA(PORT_NO).NEXT_CHARACTER =1;

end; /* No buffers currently being printed */

else

do; /* Add to end of list */

TEMP_ADDRESS =B_ADDRESS;

B_ADDRESS =PORT_DATAC PORT_NO).LAST_BUffER_ADDRESS;

BUffER.NEXT_BUffER =TEMP_ADDRESS;

PORT_DATAC PORT_NO).LAST_BUffER_ADDRESS =TEMP_ADDRESS;

end; /* Add to end of list */

enable;

end; /* while LENGTH_Of_DATA > 0 */

end WRITE;

$ eject

8-114

8-115

/***/,
*/

*/

*/

*/

*/

A pointer to the port data area (PORT_NO).

A pointer to the user data string (DATA_ADDRESS)

OUTPUT none.

INPUT

WRITE_POLL : Writes a character string pointed to by DATA_ADDRESS */

to the port pointed to by PORT_NO. The routine */

waits for all characters to be transmitted before returning. */

Tx empty interrupts are disabled for the duration of the */

of the routine. */

The port is polled continually waiting for each character */

to be sent before the next on is output. */

*/

*/

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/***/

WRITE_POLL: procedure (PORT_NO, DATA_ADDRESS) public;

declare PORT_NO byte;

declare B_ADDRESS pointer;

declare BUffER based B_ADDRESS structure

(OUTPUT_STRING(80) byte,

NEXT_BUffER pointer);

/*--*/

declare I word;

declare DATA_ADDRESS pointer;

declare CHARACTER based DATA_ADDRESS(*) byte;

/*--*/

/* Disable 8274 channel interrupts for duration of test */

output(PORT_DATA(PORT_NO).CONTROL_PORT) =01H;

output(PORT_DATA(PORT_NO).CONTROL_PORT) =04H; /* WR1 */

/* If output buffers are allocated to the port, put them */

/* back on the free buffer list. */

if PORT_DATA(PORT_NO).BUffER_ADDRESS <> nil then

do;

B_ADDRESS =LAST_fREE_BUffER;

BUffER.NEXT_BUffER =PORT_DATA(PORT_NO).BUffER_ADDRESS;

LAST_fREE_BUffER =PORT_DATA(PORT_NO).LAST_BUffER_ADDRESS;

PORT_DATA(PORT_NO).BUffER_ADDRESS =nil;

PORT_DATA(PORT_NO).LAST_BUffER_ADDRESS =nil;
end;

I =0;

do wh;le CHARACTER(I) <> EOM;

do wh;le« ;nput(PORT_DATA(PORT_NO).CONTROL_PORT) and 04H) <> 04H);

end;
output(PORT_DATA(PORT_NO).DATA_PORT) =CHARACTER(I);

I = I + 1;

end;

/* Wa;t for all characters to be transm;tted */

output(PORT_DATA(PORT_NO).CONTROL_PORT) =01H;

do wh;le« ;nput(PORT_DATA(PORT_NO).CONTROL_PORT) and 01H) <> 01H);

output(PORT_DATA(PORT_NO).CONTROL_PORT) =01H;

end;

/* Re-enable Tx and Rx ;nterrupts */

;f PORT_DATA(PORT_NO).INTERRUPT_NO <> 0 then

do;

output(PORT_DATA(PORT_NO).CONTROL_PORT) =001H;

output(PORT_DATA(PORT_NO).CONTROL_PORT) =01EH; /* WR1 */

end;

$ eject

8-116

/***/

8-117

/*

/*

/*

/*

/*

/*

/*

/*

INPUT_CHARACTER: Clears the input buffer, then waits for a

character to be received. It is a function call.

INPUT A pointer to the port data area (PORT_NO).

OUTPUT the function call returns a character.

*/

*/

*/

*/

*/

*/

*/

*/

/***/

INPUT_CHARACTER: procedure PORT_NO) byte public;

declare PORT_NO byte;

/*--*/

/* Disable Rx interrupts (otherwise they steal the character!) */

output(PORT_DATA(PORT_NO).CONTROL_PORT) =01H;

output(PORT_DATA(PORT_NO).CONTROL_PORT) =06H; /* WR1 */

/* Clear the buffer in the 8274 */

do while(input(PORT_DATA(PORT_NO).CONTROL_PORT) and 01H) =01H;

PORT_DATA(PORT_NO).INPUT_BUFFER(O) = input(PORT_DATA(PORT_NO).DATA_PORT);

end;

call CLEAR_BUFFER(PORT_NO);

/* Wait for and then get the character */

do while(input(PORT_DATA(PORT_NO).CONTROL_PORT) and 01H) <> 01H;
end;

PORT_DATA(PORT_NO).INPUT_BUFFER(O) = input(PORT_DATA(PORT_NO).DATA_PORT);

/* Re-enable Rx interrupts */

output(PORT_DATA(PORT_NO).CONTROL_PORT) =01H;

output(PORT_DATA(PORT_NO).CONTROL_PORT) =1EH; /* WR1 */

return PORT_DATA(PORT_NO).INPUT_BUFFER(O);

end INPUT_CHARACTER;

$ eject

/***/

B-118

/* */

/* GET_CHARACTER : Returns the next character in the input buffer. */

/* If no characters are waiting then the buffer is cleared and */

/* the program waits for an input string terminated by a <CR>. */

/* */

/* INPUT A pointer to the port data area (PORT_NO). */

/* */

/* OUTPUT the function call returns a character. */

/* */

/***/

GET_CHARACTER: procedure (PORT_NO) byte public;

declare PORT_NO byte;

declare IN_CHAR byte;

/*--*/

if PORT_DATA(PORT_NO).MODE = TERMINAL then

do;

/* Wait for data to be stored in the buffer */

do while (PORT_DATA(PORT_NO).INPUT_FLAG = 0);

end;

IN_CHAR = PORT_DATA(PORT_NO).INPUT_BUFFER(PORT_DATA(PORT_NO).READ_POINTER);

PORT_DATA(PORT_NO).READ_POINTER = PORT_DATA(PORT_NO).READ_POINTER + 1;

/* If buffer is now empty, clear the Input Buffer */

if PORT_DATA(PORT_NO).NO_OF_CHARACTERS <= PORT_DATA(PORT_NO).READ_POINTER then
call CLEAR_BUFFER(PORT_NO);

return IN_CHAR;

end; /* PORT_MODE = TERMINAL */

else
do; /* PORT_MODE =DATA */
/* Check for underflow */

if PORT_DATA(PORT_NO).INPUT_FLAG =0 then

return 0;

/* Get element */

IN_CHAR =PORT_DATA(PORT_NO).INPUT_BUFFER(PORT_DATA(PORT_NO).READ_POINTER);

/* Check if queue is empty */

if PORT_DATA(PORT_NO).NO_OF_CHARACTERS =PORT_DATA(PORT_NO).READ_POINTER then

call CLEAR_BUFFER(PORT_NO);

else
if PORT_DATA(PORT_NO).READ_POINTER =79 then

PORT_DATA(PORT_NO).READ_POINTER =0;

else

PORT_DATA(PORT_NO).READ_POINTER =PORT_DATA(PORT_NO).READ_POINTER + 1;

return IN_CHAR;

end; /* PORT_MODE =DATA */

end GET_CHARACTER;

$ eject

/***/

8-119

/*

/*

/*

/*

/*

/*

/*

/*

LAST_CHARACTER_READ: Returns the content of the input buffer

of the specified port. It is a function call.

INPUT A pointer to the port data area (PORT_NO).

OUTPUT the function call returns a character.

*/

*/

*/

*/

*/

*/

*/

*/

/***/

LAST_CHARACTER_READ: procedure PORT_NO) byte public;

declare PORT_NO byte;

/*--*/

if PORT_DATA(PORT_NO).INPUT_FLAG =0 then
return 0;

else if PORT_DATA(PORT_NO).INPUT_FLAG =2 then
return CR;

else

$ eject

8-120

/***/

/*

/*

/*

/*

/*

/*

/*

/*

GET_BYTE: Clears the input buffer, waits for a <CR> and then

returns the value of the 1st numeric string in the buffer.

INPUT A pointer to the port data area.

OUTPUT: the function call returns a numeric byte value.

*/

*/

*/

*/

*/

*/

*/

*/

/***/

GET_BYTE: procedure(PORT_NO, MIN_VALUE, MAX_VALUE) byte public;

declare PORT_NO byte;

declare MIN_VALUE byte;

declare MAX_VALUE byte;

declare NUMBER byte;

declare byte;

declare INPUT_CORRECT byte;

declare NEXT_CHARACTER byte;

/*--*/

INPUT_CORRECT = FALSE;

MAIN_LOOP: do while INPUT_CORRECT = FALSE;

/* Clear the input buffer */

call CLEAR_BUFFER(PORT_NO);

/* and wait for a <CR> */

do while PORT_DATA(PORT_NO).INPUT_FLAG <> 2;

end;

/* Step over non-numeric characters */

do while (NEXT_CHARACTER < 10 1 or NEXT_CHARACTER> 19 1) and

PORT_DATA(PORT_NO).READ_POINTER < PORT_DATA(PORT_NO).NO_OF_CHARACTERS;

PORT_DATA(PORT_NO).READ_POINTER =PORT_DATA(PORT_NO).READ_POINTER + 1;

NEXT_CHARACTER =PORT_DATA(PORT_NO).INPUT_BUFFER(PORT_DATA(PORT_NO).READ_POINTER);
end;

8-121

NUMBER =0;
do while NEXT_CHARACTER >= '0' and NEXT_CHARACTER <= '9' and

PORT_DATA(PORT_NO).READ_POINTER < PORT_DATA(PORT_NO).NO_Of_CHARACTERS;

if NUMBER <= 25 then

00;
NUMBER =NUMBER * 10 + (NEXT_CHARACTER - '0');

INPUT_CORRECT =TRUE; /* If at least 1 numeric char received */

end;

else

do;

INPUT_CORRECT = fALSE;

end;
PORT_DATA(PORT_NO).READ_POINTER =PORT_DATA(PORT_NO).READ_POINTER + 1;

NEXT_CHARACTER =PORT_DATA(PORT_NO).INPUT_BUffER(PORT_DATA(PORT_NO).READ_POINTER);

end;

if INPUT_CORRECT =TRUE and
NUMBER >= MIN_VALUE and NUMBER <= MAX_VALUE then

return NUMBER;

else

do;

INPUT_CORRECT = fALSE;

do I =1 to PORT_DATA(PORT_NO).NO_Of_CHARACTERS;

if PORT_DATA(PORT_NO).INPUT_BUffER(PORT_DATA(PORT_NO).NO_Of_CHARACTERS - I) >= , ,

then call WRITE_POLL(PORT_NO, @RUBOUT_MESSAGE);

end;

call CLEAR_BUffER(PORT_NO);

end;

end MAIN_LOOP;

/* Allow other characters to come in */

call CLEAR_BUffER(PORT_NO);

$ eject

8-122

/***/

/*

/*

/*

/*

/*

/*

/*

/*

GET_WORD: Clears the input buffer, waits for a <CR> and then

returns the value of the 1st numeric string in the buffer.

INPUT A pointer to the port data area (PORT_NO).

OUTPUT the function call returns a numeric word value.

*/

*/

*/

*/

*/

*/

*/

*/

/***/

GET_WORD: procedure(PORT_NO, MIN_VALUE, MAX_VALUE) word public;

declare PORT_NO

declare MIN_VALUE

declare MAX_VALUE

declare NUMBER

byte;

word;

word;

word;

declare byte;

declare INPUT_CORRECT byte;

declare NEXT_CHARACTER byte;

/*--*/

INPUT_CORRECT = FALSE;

MAIN_LOOP: do while INPUT_CORRECT FALSE;

/* Clear the input buffer */

call ClEAR_BUFFER(PORT_NO);

/* and wait for a <CR> */

do while PORT_DATA(PORT_NO).INPUT_FLAG <> 2;

end;

NEXT_CHARACTER PORT_DATA(PORT_NO).INPUT_BUFFER(O);

/* Step over non-numeric characters */

do while (NEXT_CHARACTER < 10 1 or NEXT_CHARACTER> 19 1) and

PORT_DATA(PORT_NO).READ_POINTER < PORT_DATA(PORT_NO).NO_OF_CHARACTERS;

PORT_DATA(PORT_NO).READ_POINTER =PORT_DATA(PORT_NO).READ_POINTER + 1;

NEXT_CHARACTER =PORT_DATA(PORT_NO).INPUT_BUFFER(PORT_DATA(PORT_NO).READ_POINTER);
end;

8-123

NUMBER =0;
do while NEXT_CHARACTER >= 10 1 and NEXT_CHARACTER <= 191 and

PORT_DATA(PORT_NO).READ_POINTER < PORT_DATA(PORT_NO).NO_Of_CHARACTERS;

if NUMBER <= 25 then

do;
NUMBER =NUMBER * 10 + (NEXT_CHARACTER - 10 1);

INPUT_CORRECT =TRUE; /* If at least 1 numeric char received */

end;

else

do;

INPUT_CORRECT =fALSE;

end;

PORT_DATA(PORT_NO).READ_POINTER =PORT_DATA(PORT_NO).READ_POINTER + 1;

NEXT_CHARACTER =PORT_DATA(PORT_NO).INPUT_BUffER(PORT_DATA(PORT_NO).READ_POINTER);

end;

if INPUT_CORRECT =TRUE and

NUMBER >= MIN_VALUE and

NUMBER <= MAX_VALUE then

return NUMBER;

else

do;

INPUT_CORRECT = fALSE;

do I =1 to PORT_DATA(PORT_NO).NO_Of_CHARACTERS;

if PORT_DATA(PORT_NO).INPUT_BUffER(PORT_DATA(PORT_NO).NO_Of_CHARACTERS - I) >= I I

then call WRITE_POLL(PORT_NO, @RUBOUT_MESSAGE);

end;

call CLEAR_BUffER(PORT_NO);

end;

end MAIN_LOOP;

/* Allow other characters to come in */

call CLEAR_BUffER(PORT_NO);

end GET_WORD;

$ eject

/***/

/* */

/* BUFFER_READY: Returns OOH if the input buffer is empty. */

/* Returns 01H if data is available in the input buffer. */

/* Returns 02H if a <eR> has been received in the input buffer. */

/* */

/* INPUT A pointer to the port data area (PORT_NO). */

/* */

/* OUTPUT the function call returns a byte value. */

/* */

/***/

BUFFER_READY: procedure(PORT_NO) byte public;

8-124

declare PORT_NO byte;

/*--*/

end BUFFER_READY;

/**/

•

/***/

8-125

/*

/*

/*

MPSC interrupt handlers

*/

*/

*/

/***/

procedure interrupt publici

if MPSC_TEST_IN_PROGRESS =TRUE then /* MPSC BIT has been invoked */

dOi

MPSC TEST_RESULT TRUEi

output(PORT_DATA(PORT_B).CONTROL_PORT) =28hi

output(PORT_DATA(PORT_A).CONTROL_PORT) =EOI_8274i

call ISSUE_EOI(MPSC_INTERRUPT_NO)i

endi

else

call TRANSMIT_CHARACTER (PORT_B)

/***/

procedure interrupt publici

call TRANSMIT_CHARACTER(PORT_A)i

end CHA_TX_EMPTYi

/***/

procedure interrupt publici

call RECEIVE_CHARACTER(PORT_A)i

end CHA_RX_AVAILi

/***/

procedure interrupt publici

call RECEIVE_CHARACTER(PORT_B)i

end CHB_RX_AVAILi

$ eject

/***/

CHA_RX_ERROR: procedure interrupt public;

declare (DUMMY_READ, STATUS) byte;

status = input(PORT_DATA(PORT_A).CONTROL_PORT) and 70H;

call MaVB(QREC_ERR_MESS, ~VAR_MESSAGE, size(REC_ERR_MESS));

VAR_MESSAGE(11) = 'A';

call C050_BIN_BYTE_TO_ASCII_BIN (status, @VAR_MESSAGE(30));

call WRITE(PORT_A, @VAR_MESSAGE);

output(PORT_DATA(PORT_A).CONTROL_PORT) =EOI_8274;

call ISSUE_EOI(MPSC_INTERRUPT_NO);

/***/

CHB_RX_ERROR: procedure interrupt public;

declare (DUMMY_READ, STATUS) byte;

status = input(PORT_DATA(PORT_B).CONTROL_PORT) and 70H;

call MOVB(@REC_ERR_MESS, @VAR_MESSAGE, size(REC_ERR_MESS));

VAR_MESSAGE(11) = 'B';

call C050_BIN_BYTE_TO_ASCII_BIN (status, @VAR_MESSAGE(30));

call write(PORT_B, @VAR_MESSAGE);

output(PORT_DATA(PORT_A).CONTROL_PORT) =EOI_8274;

call ISSUE_EOI(MPSC_INTERRUPT_NO);

8-126

*

2.5.1.10 STDCONVT.PLM

$ include (PLMPAR.INC)

1**

*

8-127

*
*

MODULE NAME CONV *
*

**

* *

* Source Filename CONVERT.PLM *

* *

* Source Coq>iler PLM86 *

* *

* Operating System DOS 3.10 *

* *

* Description Subroutines to perform various conversions *

* *

* Public procedures: C010_BIN_WORD_TO_ASCII_OCTAL *

* C020_BIN_BYTE_TO_ASCII_OCTAL *

* C030_BIN_WORD_TO_ASCII_DEC *

* C040_BIN_BYTE_TO_ASCII_DEC *

* C050_BIN_BYTE_TO_ASCII_BIN *

* C060_BIN_WORD_TO_BCD_VAL *

* C070_CONVERT_WORD_TO_HEX *

* *

* EPD fi les None *

* *

* Include files None *

* *

* *

**

$ eject

**

* *

* HISTORY Version 1.0 *
* *
* Designed by P.A. OLANDER Date September 1988 *
* Description Original *
* *
* *

***1

CONV: do;

8-128

/***/

/* CONVERT A BINARY WORD TO ASCII OCTAL */

/***/

declare BINARY_NUMBER word;

declare ASCII_ARRAY_PTR pointer;

declare CHARACTER based ASCII_ARRAY_PTR(1) byte;

declare I byte;

declare DIGIT byte;

do I =0 to 5;

DIGIT =BINARY_NUMBER mod 8;

CHARACTER(5-I) =DIGIT + 030h;

BINARY_NUMBER =BINARY_NUMBER/8;

end ;

/* Replace leading zeroes with spaces */

I =0;

do while I < 5 and CHARACTER(I) = '0';

CHARACTER(I) = , ';
I = I + 1;

end;

/***/
/* CONVERT A BINARY BYTE TO ASCII OCTAL */
/***/

declare BINARY_NUMBER byte;

declare ASCII_ARRAY_PTR pointer;

declare CHARACTER based ASCII_ARRAY_PTR(1) byte;
declare I byte;

declare DIGIT byte;

do I =0 to 2;

DIGIT =BINARY_NUMBER mod 8;

CHARACTER(2-I) =DIGIT + 030h;

BINARY_NUMBER =BINARY_NUMBER/8;

end ;

/***/

8-129

/* CONVERT A BINARY WORD TO ASCII DECIMAL */

/***/

declare BINARY_NUMBER word;

declare ASCII_ARRAY_PTR pointer;

declare CHARACTER based ASCII_ARRAY_PTR(1) byte;

declare I byte;

declare DIGIT byte;

do I =0 to 5;

DIGIT =BINARY_NUMBER mod 10;

CHARACTER(5-1) =DIGIT + 030h;

BINARY_NUMBER =BINARY_NUMBER/10;

end ;

/* Replace leading zeroes with spaces */

I =0;

do while I < 5 and CHARACTER(I) 10 1;

CHARACTER(I) = I I;

I = I + 1;

end;

/***/

/* CONVERT A BINARY BYTE TO ASCII DECIMAL */

/***/

declare BINARY_NUMBER byte;

declare ASCII_ARRAY_PTR pointer;

declare CHARACTER based ASCII_ARRAY_PTR(1) byte;

declare I byte;

declare DIGIT byte;

do I =0 to 2;

DIGIT =BINARY_NUMBER mod 10;

CHARACTER(2-1) =DIGIT + 030h;

BINARY_NUMBER =BINARY_NUMBER/10;

end ;

/* Replace leading zeroes with spaces */

I =0;

do while I < 2 and CHARACTER(I) = '0';

CHARACTER(I) = , ';
I = I + 1;

end;

/***/

8-130

/* CONVERT A BINARY BYTE TO ASCII BINARY */
/***/

declare BINARY_NUMBER byte;

declare ASCII_ARRAY_PTR pointer;

declare CHARACTER based ASCII_ARRAY_PTR(1) byte;
declare I byte;

declare DIGIT byte;

do I =0 to 7;

DIGIT =BINARY_NUMBER mod 2;

CHARACTER(7-I) =DIGIT + 030h;

BINARY_NUMBER =BINARY_NUMBER/2;
end ;

/***/

B-131

/* CONVERT A WORD VALUE TO 4-DIGIT BCD VALUE *1

/***/

declare (BCD_VALUE,DIGIT) word;

declare (i,BINARY_NUMBER) byte;

do I =0 to 1;

DIGIT =BINARY_NUMBER mod 10;

BCD_VALUE =BCD_VALUE or rol(DIGIT,8*1);

BINARY_NUMBER =BINARY_NUMBER/10;

end ;

return BCD_VALUE;

1***/

/* CONVERT A WORD VALUE TO 4 ASCII CHARACTERS IN HEX FORM */

1***1

declare INPUT_WORD word;

declare ASCII_ADDRESS pointer;

declare (CHARACTER based ASCII_ADDRESS)(*) byte;

declare ASCII_VALUE(*) byte data (10123456789ABCDEFI);

declare I byte;

do I = 0 to 3;

CHARACTER(3-1) =ASCII_VALUE(INPUT_WORD mod 16);
INPUT_WORD = INPUT_WORD / 16;

end;

end CONV;

*

2.5.2 ASM86 files

2.5.2.1 STDCPU.ASM

$ mocI186

$ debug

$ xref

/**

*

8-132

*
*

MODULE NAME *
*

**

* *

* Source Filename STDCPU.ASM *

* *

* Source Coq>iler ASM86 *

* *

* Operating System DOS 3.10 *

* *

* Description Tests the 8086 microprocessor family for *

* *

* a) general purpose data movement *

* b) shifts and rotates *

* c) arithemetic ability and *

* d) stack manipulation *

* *

* Public procedures: CPU_TEST *

* *

* EPD files None *

* *

* Include files None *

* *

* *

**

$ eject

**

* *
* HISTORY Version 1.0 *
* *
* Designed by P.A. OLANDER Date May 1989 *
* Description Original *
* *
* *

**/

$ eject

NAME TEST_CPU

ZERO equ OOOOH

ONES equ OFFFFH

ZONE equ 0101010101010101B

ONEZ equ 1010101010101010B

ZONEL equ 01010101B

ZONEH equ 01010101B

ONEZL equ 10101010B

STACK segment stack ·STACK·

dw 100 dup (1)

STACK ends

; Test general purpose data movement

All zeros

All ones

Alternating zero and ones

Alternating ones and zeros

Byte of O·s and 1·s

Byte of O·s and 1·s

Byte of 1·s and O·s

8-133

CODE segment public ·CODE·

public CPU TEST

assume CS:CODE,SS:STACK

proc far

mov AX,STACK

mov SS,AX

mov AX,ZONE

mov BX,ONEZ

mov CX,AX

mov DX,BX

add AX,BX

or CX,DX

cq:> AX,CX

je STATUS

jq:> ERROR

Test status register

1) Test zero flag

STATUS: xor AX,AX

cq:> AX,1

jz FAULT

inc AX

cq:> AX,1

jnz FAULT

Set up stack segment

A =0101 0101 0101 0101

B =1010 1010 1010 1010

C =0101 0101 0101 0101

o =1010 1010 1010 1010

A =1111 1111 1111 1111

C =1111 1111 1111 1111

A =C 1

Continue testing

If A <> C then ERROR

A =0

A =1 1

If ZFL =TRUE then ERROR

A =1

A =1 1

If ZFL =FALSE then ERROR

2) Test carry and overflow flags

mav AX,ONES

mav DX,ONES

mav BX,ONES

rwl BX

jnc FAULT

jno FAULT

3) Test parity flag

; A = FFFF

D = FFFF

B = FFFF

CFL =TRUE and OFL =TRUE

If CFL =FALSE then ERROR

If OFL = FALSE then ERROR

8-134

xor

or

jp

AX,AX

AX,1

FAULT

A =0000 0000 0000 0000

A =0000 0000 0000 0001

; Odd parity means PFL = FALSE

4) Test sign flag

neg AX

jns FAULT

jfl1) NEXT

FAULT: jfl1) ERROR

; Test shift and rotates

NEXT: clc

maV AX,ZONE

mav BX,ONEZ

sal AX,1

cfl1) AX,BX

jne ERROR

rcl BX,1

jnc ERROR

rcl BX,1

mav DH,ZONEH

stc
rcr DL,6

or BX,DX

Cfl1) BX,CX
jne ERROR

A = FFFF and SFL = TRUE

If SFL = FALSE then ERROR

Continue testing

Report that CPU test failed

Clear carry bit

A =0101 0101 0101 0101

B =1010 1010 1010 1010

A =1010 1010 1010 1010

A =B ?

If A <> B then ERROR

B =0101 0101 0101 0100

Carry =1

B =1010 1010 1010 1001

o =0101 0101 1010 1010

Carry =1

D =0101 0101 0101 0110

B =1111 1111 1111 1111

B =C ?

If B <> C then ERROR

Test arithmetic ability

1) Multiplication

xor BX,BX Clear B register
IIlJl BX AX * BX =DXAX
cq> AX,ZERO ·Loworder result is in A
jne ERROR If A <> 0 then ERROR
cq> DX,ZERO High order result is in B
jne ERROR If D <> 0 then ERROR
mov AL,ZONEL A =01010101
mov BL,2 B =2
IIlJl BL Result is in AX
cq> AL,ONEZL AL =10101010 ?

jne ERROR

2) Division

mov BL,2 BL =02 Hex
xor AH,AH AH =00 Hex
mov AL,ONEZL AL =1010 1010
mov CL,ZONEL CL =0101 0101 - Half of AL
div BL Divide accumulator by two
cq> AL,CL AL divided by 2 =CL
jne ERROR

8-135

8-136

Test the stack

mov AX,ZONE A = 0101 0101 0101 0101

mov BX,ONEZ B = 1010 1010 1010 1010

mov CX,ZONE C = 0101 0101 0101 0101

mov DX,ONEZ o = 1010 1010 1010 1010

push AX

push BX

push CX

push OX Save register values

push BP Equivalent to 286 pusha instr
push SI

push 01

xor AX,AX A = 0

xor BX,BX B = 0

xor CX,CX C = 0
xor DX,DX 0=0
pop 01

pop SI

pop BP

pop OX Restore register values
pop CX Equivalent to 286 popa instr
pop BX

pop AX

cq> AX,ZONE A = 0101 0101 0101 0101
jne ERROR If not then ERROR
cq> BX,ONEZ B = 1010 1010 1010 1010
jne ERROR If not then ERROR
cq> CX,ZONE C = 0101 0101 0101 0101
jne ERROR If not then ERROR
cq> DX,ONEZ o = 1010 1010 1010 1010
jne ERROR If not then ERROR
mov AL,1 Return a one in accumulator
jq> FINISH Don't execute ERROR code

ERROR: mov AL,2 Return a two in accumulator
FINISH: ret
CPU_TEST endp
CODE ends

end

*

2.5.2.2 STDRAM.ASM

$ debug

$ xref

1**

*

8-137

*
*

MODULE NAME TEST_RAM *
*

**

* *

* Source Fi lename STDRAM.ASM *

* *

* Source Coq>i ler ASM86 *

* *

* Operating System DOS 3.10 *

* *

* Description Tests the CPU card on-board RAM. *

* *

* Public procedures: MEM_TEST *

* *

* EPD files None *

* *

* Include fi les None *

* *

* *
**

$ eject

**
* *
* HISTORY Version 1.0 *
* *
* Designed by P.A. OLANDER Date May 1989 *
* Description Original *
* *
* *
**1

NAME

ZONE

ONEZ

FAULT

BOTTOM

TOP

On-board RAM

TEST_RAM

equ 055h

equ OAAh

equ 2

equ Oh

equ Odfffh

01010101 binary

10101010 binary

A reg contains this if an error occurs

Bottom of memory block

Top of memory block

Stack resides from OEOOOh to FFFFh

8-138

RAM_BLOCK

MEM

RAM_BLOCK

segment public I RAM_BLOCK I

db Offffh dup (1)

ends

; BIT results (0 =Untested; 1 =Passed; 2 = Failed; 8 =Absent)

TEST_RESULTS struc

CPU_BOARD db 1

CPU db 1

ROM db 1

MASTER_PlC db 1

SLAVE_PlC db 1

TMOUT_CIRCUIT db 1

PIT db 1

COPROCESSOR db 1

MPSC db 1

RAM db 1

ERAM db 1

EROM db 1

SOB_BOARD db 1

SDB_SElFTEST db 1

SOB_RAM db 1

TEST_RESULTS ends

BIT_RESUlTS_SEG segment public 'BIT_RESUlTS_SEG'
BIT_RESULT TEST_RESULTS <>

public BIT_RESULT

BIT_RESULTS_SEG ends

The following segment is located absolutely in order
to interface with protected mode code

NO_OF_RUNS_SEG

PROCESSOR_ID

NUMBER_Of_RUNS

publ ic

publ ic

NO_OF_RUNS_SEG

segment

dw 1

dw 1

NUMBER_Of_RUNS

PROCESSOR_ID

ends

8-139

Beginning of RAM test code :

CODE

MEM_TEST

START:

segment public 'CODE'

assume CS:CODE,ES:RAM_BLOCK

public MEM_TEST

proc far

push ES

push OS

= 01010101

01010101

RAM

01010101 ?

not, then RAM is faulty

10101010

10101010

= RAM

= 10101010 ?

Clear B reg

Load bottom of memory into C reg

C reg contains index to both

source and destination

Save original contents

A

RAM

o
o
If

A

RAM

o
o
If not, then RAM is faulty

Restore original contents

Increment memory pointer

Pointer =Top of RAM ?

Test next location until C =0

Result is one in A reg if test passes

C reg =Top of RAM, so return

A reg =2 if test fails

Restore status

Set up RAM_BLOCK segmentAX,RAM_BLOCK

ES,AX

BX,BX

CX,BOTTOM

SI,CX

OI,CX

BL, MEM [SI]

AL,ZONE

MEM[OI], AL

OL, MEM [SI]

OL,ZONE

ERROR

AL,ONEZ

MEM [01], AL

OL, MEM [SI]

OL,ONEZ

ERROR

MEM[OI], BL

CX

CX,TOP

AGAIN

AL,1

RETURN

AL,FAULT

OS

ES

mov

mov

cq>

jne

mov

mov

cq>

jne

mov

inc

mov

mov

mov

mov

cq>

jne

mov

mov

mov

mov

mov

mov

xor

ERROR:

RETURN: pop

pop

ret

MEM_TEST endp

CODE ends

AGAIN:

end

2.5.2.3 STDERAM.ASM

$ debug

$ xref

/**

B-140

*
*
*

MODULE NAME
*
*
*

**

* *

* Source Filename STDERAM.ASM *

* *
* Source COfI1'>iler ASM86 *
* *
* Operating System DOS 3.10 *
* *
* Description Procedure ERAM_TEST *
* *
* Tests the EPROM/RAM card RAM in a range of *
* system specific addresses as specified by the *
* option programmed into the system description. *
* *
* Procedure REAL_MODE_CODE *
* *
* Provides the link (following the succesful *
* cOfl1'>letion of POST) between the standardised *
* code and the subsystem-specific applications *
* code. The address of the start of the *
* subsystem-specific applications code is provided *
* in the system description. *
* *
* Public procedures: ERAM_TEST *
* REAL_MODE_COOE *
* *
* EPD files None *
* *
* Include fi les None *
* *
* *
**

$ eject

**

* *

* HISTORY Version 1.0 *

* *

* Designed by P.A. OLANDER Date May 1989 *

* Description Original *

* *

* *

**/

NAME RAM_1611_TEST

ZONE equ 055h 01010101 binary

ONEZ equ OAAh 10101010 binary

PASSED equ 1 A reg contains this if test passes

FAILED equ 2 A reg contains this if an error occurs

BOTTOM equ Oh Bottom of segment

TOP equ Offffh Top of segment

RAM_BLOCK_1 equ 4000h Segment address of first block

SEGMENT_LENGTH equ 1000h Length of each block in selector terms

In addition to providing the standardised code with useful information

relating to the system resident on the EPROM/RAM card, the system

description also provides interfacing subsystems the facility to

reconfigure certain aspects of the standard computing segment.

8-141

SYSTEM_DESC segment publ ic
EPROM_ID db 1

SYSTEM_NUMBER db1

SYSTEM_VERSION db ?

EPROM_RAM_OPTION db 1

CSUMS_PRESENT db ?

NO_OF_PROCS db 1

MODE db 1

PMODE_VER db 1

RMOOE_COOE dd?

DESC_FILLER

EPROM_CHECKSUM

publ ic

publ ic

publ ic

publ ic

publ ic

publ ic

public

publ ic

publ ic

public

SYSTEM_DESC

'SYSTEM_DESC'

For POST to recognise EPROM presence

Defined as per subsystem

Subsystem applications iteration

Defined as per CPU card standard

1 Both ROM checksums present

1 Single processor; 2 =Dual processor

5 =Real Mode; Oah =Protected Mode

1 Final Version,
Absolute EPROM location of code to

run Real Mode Applications
db Of2h dup (1) Spare locations

dw 1 As calculated by CRC-CCITT formula
EPROM_ID

SYSTEM_NUMBER

SYSTEM_VERSION

EPROM_RAM_OPTION

CSUMS_PRESENT

NO_OF_PROCS

MODE

PMODE_VER

RMODE_CODE

EPROM_CHECKSUM

ends

; ROM blocks on the EPROM/RAM card :

8-142

EROM_BlOCK_'

ROM_'
public

EROM_BlOCK_'

EROM_BlOCK_2

ROM_2

publ ic

EROM_BlOCK_2

EROM_BlOCK_3

ROM_3

publ ic

EROM_BlOCK_3

EROM_BlOCK_4

ROM_4

public

EROM_BlOCK_4

EROM_BlOCK_5

ROM_5

publ ic

EROM_BlOCK_5

EROM_BlOCK_6

ROM_6

publ ic

EROM_BlOCK_6

EROM_BlOCK_7

ROM_7

publ ic

EROM_BlOCK_7

EROM_BlOCK_8

ROM_8

publ ic

EROM_BlOCK_8

segment publ ic I EROM_BlOCK_"

db Offffh dup (1)

ROM_'

ends

segment public I EROM_BlOCK_2 I

db Offffh dup (1)

ROM_2

ends

segment public I EROM_BlOCK_3 I

db Offffh dup (1)

ROM_3

ends

segment public 'EROM_BlOCK_4 1

db Offffh dup (1)

ROM_4

ends

segment public 'EROM_BlOCK_5 1

db Offffh dup (1)

ROM_5

ends

segment public 'EROM_BlOCK_6 1

db Offffh dup (1)

ROM_6

ends

segment public 'EROM_BlOCK_71

db Offffh dup (1)

ROM_7

ends

segment public I EROM_BlOCK_8 I

db Offffh dup (1)

ROM_8

ends

; ROM blocks on the CPU card :

8-143

EROM_BLOCK_9

ROM_9

public

EROM_BLOCK_9

segment public 'EROM_BLOCK_9 1

db Offffh dup (1)

ROM_9

ends

EROM_BLOCK_10 segment public I EROM_BLOCK_10 I

ROM_10 db Offfch dup (1)

OB_EPROM_CHECKSUM dw 1

OB_CSUM_PRESENT db?

public OB_EPROM_CHECKSUM

public OB CSUM PRESENT

public ROM_10

EROM_BLOCK_10 ends

; Local variables

DATA

TEST_SEGMENT

E_R_OPTION

BLOCK_NO

RESULT

DATA

segment public 'DATA'

dw ?

db ?

db ?

db ?

ends

CODE segment public 'CODE'

assume CS:CODE,OS:OATA

public ERAM_TEST

8-144

EPROM/RAM RAM test starts here

ERAM_TEST

START:

RETURN:

proc far

push ES

push OS

mov AX,OATA Set up data segment

mov OS,AX

mov AX,SYSTEM_DESC Set up ES to point

mov ES,AX to SYSTEM_DESCRIPTION

mov OS:RESULT,O Initially untested

mov AL,ES:EPROM_RAM_OPTION Multiply the EPROM/RAM

shl AL,' option by 2 and then store

mov OS:E_R_OPTlON,AL value in the data segment

xor BX,BX Clear B reg

xor OX,OX Clear 0 reg

mov BLOCK_NO, , Initialise block number

mov TEST_SEGMENT,RAM_BLOCK_' Point to first RAM block

mov AX,TEST_SEGMENT Set ES to point to

mov ES,AX RAM block under test

call TEST_BLOCK Test the block of RAM

cq:> RESULT,FAILEO If the test has failed

je RETURN then return with result

mov AL,BLOCK_NO A =Number of blocks tested
cq:> AL,E_R_OPTlON If test not yet finished then
jbe NEXT_BLOCK test the next 64K block

mov RESULT,PASSEO else test has passed

mov AL,RESULT

pop OS

pop ES
ret

endp

AGAIN:

proc near

mov CX, TOP

xor SI, SI

xor 01, 01

mov BL,ES: [SIl

mov AL,ZONE

mov ES: [OIl, AL

mov OL, ES: [SIl

cq> OL,ZONE

jne ERROR

mov AL,ONEZ

mov ES: [OIl, AL

mov OL, ES: [SIl

cq> OL,ONEZ

jne ERROR

mov ES: [OIl ,BL

inc SI

inc 01

loop AGAIN

Save original contents

A =01010101

ERAM =01010101

o = ERAM

o =01010101 7

If not, then ERAM is faulty

A =10101010

ERAM =10101010

o =ERAM

o =10101010 7

If not, then ERAM is faulty

Restore original contents

Increment memory pointer

Increment memory pointer

Test next location until C =0

8-145

inc BLOCK_NO ; Look at next 64K block

add TEST_SEGMENT,SEGMENT_LENGTH

jq> AROUND_ERROR This block has passed

ERROR: mov RESULT,FAILEO

AROUND_ERROR: ret

TEST_BLOCK endp

RESULT =2 if test fails

Pass control to the subsystem in real mode

public REAL_MODE_CODE

REAL_MODE_CODE: nop

mov AX,SYSTEM_OESC

mov OS,AX

REAL_MODE: jmp DS:dword ptr RMODE_CODE

Absolute jump to predefined address (CS =7777 and IP =7777)

CODE ends

end

2.5.2.4 STDSDB.ASM

S debug

S xref

1**

B-146

*
*
*

MODULE NAME SOB_INTERFACE
*
*
*

**

* *

* Source Filename STDSDB.ASM *

* *
* Source Coq>iler ASM86 *
* *
* Operating System DOS 3.10 *
* *
* Description Provides a segment to enable the SOB interface *
* to be absolutely located. *
* *
* Public procedures: None *
* *
* EPD files None *
* *
* Inclucle fi les None *
* *
* *
**

$ eject

**

* *

* HISTORY Version 1.0 *

* *

* Designed by P.A. OLANOER Date May 1989 *

* Description Original *

* *
* *
**/

8-147

NAME SOB_INTERFACE

SOB_BUFFER segment public 'SOB_BUFFER'

SOB_TEST_STATUS dw ?

SOB_TEST_NUMBER dw ?

SOB_TEST_PARAMETER_1 dw ?

SOB_TEST_PARAMETER_2 dw ?

SOB_TEST_PARAMETER_3 dw ?

SOB_FILLER dw Obfbh dup (?)

SOB_RAM_BUFFER dw 6fffh dup (?)

public SOB_TEST_STATUS

public SOB_TEST_NUMBER

public SOB_TEST_PARAMETER_1

public SOB_TEST_PARAMETER_2

public SOB_TEST_PARAMETER_3

public SOB_RAM_BUFFER

SOB_BUFFER ends

end

*

2.5.3 Entities publicly declared files

2.5.3.1 STDINIT.EPD

/**

*

B-148

* STDINIT.EPD contains the corresponding external declarations of

* all entities declared public in STDINIT.PLM.

*

*
*
*

***/

INITIALISE_ALL: procedure external;

end INITIALISE_ALL;

PRINT_RESULTS: procedure external;

end PRINT_RESULTS;

2.5.3.2 STDBIT.EPD

/**

*
* STDBIT.EPD contains the corresponding external declarations of

* all entities declared public in STDBIT.PLM.

*

*
*
*
*

***/

/**

*
*
*

Global variables
*
*
*

***/

declare CARD_UNDER_TEST byte external;
declare ON_BOARD_VAR word external;
declare OB_EPROM_CHECK word external;
declare EPROM_CHECK word external;

declare TEST byte external;

/**

* *
* The TEST flag is set when tests are executed, so that the processor can *
* expect self-generated time-outs. These time-outs are necessary in order *
* to test the functionality of certain aspects of the hardware. *

* *
***/

CRC_RESULT: procedure (REM, INPUT_BYTE) word external;

8-149

declare REM

declare INPUT_BYTE

end CRC_RESULT;

word;

byte;

/***

*
* This procedure attempts off-board read/writes at a location passed as a

* parameter. If the CPU card times-out when attempting this access and

* the bus had not been granted to the card, then it attempts to access the

* location again. On time-outs with no bus grant, it will keep trying to

* access the location until the pre-defined maximum number of retries is

* exceeded.

*

*
*
*
*
*
*
*
*

***/

decl are ACTI ON

declare VALUE_TO_WRITE

declare OFF_BOARD_VAR_PTR

declare OFF_BOARD_VAR based OFF_BOARD_VAR_PTR

PRINT_ERROR: procedure external;

word

word

pointer

word

/***

*
* This procedure will output the a message if the EPROM/RAM card does

* does not contain the required information in ROM and will then cause the
* processor to halt.

*

*
*
*
*
*

***/

end PRINT_ERROR;

*

TEST_CORE: procedure external;

/**

*

8-150

* Tests the basic operating kernel on the CPU board in order to provide the

* operator with confidence in the integrity of the system. If any of these

* tests fail, it is considered to be a critical failure. The tests for the

* basic kernel are a microprocessor and stack test, an on-board ROM test

* and an on-board RAM test.

*

*
*
*
*
*
*

***/

/**

*
* This procedure calculates a ROM checksum according to the following

* method (ref. "COMPUTER NETWORKS", A. TANENBAUM, p. 128 - 132) :

*
* It considers the ROM based code to be one binary number

* and then by using the CRC-CCITT polynomial X**16 + X**12 + X**5 +

* (i.e. 1 0001 0000 0010 0001 binary) as a divisor, calculates the

* remainder. This remainder is then defined to be the checksum.

*

*
*
*
*
*
*
*
*
*

* So EPROM CODE / POLYNOMIAL

*
DIVIDEND remainder CHECKSUM *

*
**/

/**

*
* Tests the Master PlC and time-out circuitry by performing a write to

* an invalid port. This should result in the generation of a time-out
* interrupt.

*

*
*
*
*
*

**/

/**

* *
* Tests the Master PlC and timer 0 by enabling timer 0 and then delaying *
* long enough for timer 0 to cause an interrupt. *

8-151

* *
**/

/**

*
* Tests the Slave PlC and timer 1 by enabling timer 1 and then delaying

* long enough for timer 1 to cause an interrupt.

*

*
*
*
*

**/

COPROCESSOR_TEST: procedure external;

/**

* *
* Tests the 80287 Numeric Coprocessor by performing a real number *
* calculation with a known result and then checking whether the actual *
* result is within an acceptable range when compared to the expected *
* result. *

* *
**/

end COPROCESSOR_TEST;

*

TEST_ACCESS_TO_1611: procedure external;

1**

*
* This procedure tests accesses to the EPROM/RAM card by reading a *

* location on this card. If a time-out is generated (this implies that *

* either the EPROM/RAM card is absent, or the CPU card is unable to *

* access an off-board location), the routine then attempts to read a *

* value from the SOB card (i.e. a Multibus read). If a time-out is *

* generated again, then the routine assumes that the CPU card is unable *

* to access an off-board location, rather than that both the SOB and the *

* EPROM/RAM cards are absent. *

8-152

* *
**1

APPLICATIONS_ROM_TEST: procedure external;

1**

*
* This procedure calculates a ROM checksum of the applications code

* resident on the HECS 1611 EPROM/RAM card in exactly the same manner

* as the on-board checksum is calculated.

*
* It considers the ROM based code to be one binary number

* and then by using the CRC_CCITT polynomial X**16 + X**12 + X**5 +

* (i.e. 1 0001 0000 0010 0001 binary) as a divisor, calculates the

* remainder. This remainder is then defined to be the checksum.

*
* So EPROM CODE 1 POLYNOMIAL =DIVIDEND remainder CHECKSUM

*

*
*
*
*
*
*
*
*
*
*
*
*

**1

SDB_SELFTEST: procedure external;

1**

* *
* During POST, this procedure checks the self test result reported by *

* the SOB card. If called during off-line diagnostics mode, the *

* procedure will issue a reset to the SOB card and then delay for 100 ms *

* before checking the result of the SOB self test. *

* *
**1

SDB_RAM_TEST: procedure external;

1**

* *
* Tests the SOB dual port user RAM by performing an alternate write and *
* read of 0101 0101 0101 0101 and 1010 1010 1010 1010 binary. *

8-153

* *
* If a time-out interrupt occurs or what is read is not what was written *
* then the SOB RAM is reported as having failed. *

* *
**1

LOCAL_BUS_TEST: procedure external;

1**

* *
* This tests the functionality of the local bus. The only way to *
* determine via which bus off-board accesses are being performed at run *
* time in the standard computing segment, is by performing a speed test *
* over both busses (Multibus runs much slower than Local bus). *
*
* The routine operates as follows:

*

*
*
*

* The timer is enabled and for 10 ms a single location is read from the *
* EPROM/RAM card (i.e. a Local bus read). For each Local bus read, a *
* counter is incremented. Following this, a single location is read for *
* 10 ms from the SOB card (a Multibus read). For each Multibus *
* read, a second counter is incremented. The two counter values are then *
* compared and the test passes if *

*
> SPEED_THRESHOLD

*
*

* *
* where SPEED_THRESHOLD is a predefined value, determined by the 1442 *
* clock speed and the 1611 memory device access times. *

* *
**1

2.5.3.3 STDINTS.EPD

/**

8-154

*
* STDINTS.EPD contains the corresponding external declarations of

* all entities declared public in STDINTS.PLM.

*

*
*
*
*

***/

/**

*
*
*

Global variables
*
*
*

***/

declare TMOUT_INTERRUPT byte external;

declare TMOUT_STATUS byte external;

declare BUS_GRANT byte external;

declare CLOCK_1_INTERRUPT byte external;

declare CLOCK_2_INTERRUPT byte external;

/**

*
*
*

External interrupt procedures
*
*
*

***/

/* Intel reserved interrupt handlers */

DIVIDE_ERROR:

end DIVIDE_ERROR;

SINGLE_STEP:

end SINGLE_STEP;

NMI:

end NMI;

BREAKPOINT:

end BREAKPOINT;

INTO_OVERFLOW:

end INTO_OVERFLOW;

BOUND_RANGE:

end BOUND_RANGE;

procedure interrupt 0 external;

procedure interrupt 1 external;

procedure interrupt 2 external;

procedure interrupt 3 external;

procedure interrupt 4 external;

procedure interrupt 5 external;

INVALlD_OPCODE:

end INVALlD_OPCODE;

procedure interrupt 6 external;

8-155

PROC_EXT_NOT_AVAILABLE: procedure interrupt 7 external;

end PROC_EXT_NOT_AVAILABLE;

DOUBLE_EXCEPTION: procedure interrupt 8 external;

end DOUBLE_EXCEPTION;

PROC_EXT_SEGMENT_OVERRUN: procedure interrupt 9 external;

end PROC_EXT_SEGMENT_OVERRUN;

INVALID_TASK: procedure interrupt 10 external;

end INVALID_TASK;

SEGMENT_NOT_PRESENT: procedure interrupt 11 external;

end SEGMENT_NOT_PRESENT;

STACK_OVERRUN: procedure interrupt 12 external;

end STACK_OVERRUN;

GENERAL_PROTECTION: procedure interrupt 13 external;

end GENERAL_PROTECTION;

NCP_INTERRUPT: procedure interrupt 16 external;

end NCP_INTERRUPT;

/* Default interrupt handler */

ILLEGAL_INT:

end ILLEGAL_INT;
procedure interrupt 33 external;

/* Master 8259A PlC interrupt handlers */

8-156

TMOUT:

end TMOUT;

procedure interrupt 96 external;

MASTER_CLOCK: procedure interrupt 97 external;

end MASTER_CLOCK;

MASTER_INTERRUPT_2: procedure interrupt 98 external;

end MASTER_INTERRUPT_2;

MASTER_INTERRUPT_3: procedure interrupt 99 external;

end MASTER_INTERRUPT_3;

MASTER_INTERRUPT_4: procedure interrupt 100 external;

end MASTER_INTERRUPT_4;

MASTER_INTERRUPT_7: procedure interrupt 101 external;

end MASTER_INTERRUPT_7;

/* Slave 8259A PlC interrupt handlers */

SLAVE_INTERRUPT_O: procedure interrupt 128 external;

end SLAVE_INTERRUPT_O;

SLAVE_INTERRUPT_1: procedure interrupt 129 external;

end SLAVE_INTERRUPT_1;

SLAVE_INTERRUPT_2: procedure interrupt 132 external;

end SLAVE_INTERRUPT_2;

TMAP_INTERRUPT: procedure interrupt 130 external;

end TMAP_INTERRUPT;

SLAVE_CLOCK: procedure interrupt 131 external;
end SLAVE_CLOCK;

SLAVE_INTERRUPT_5: procedure interrupt 133 external;

end SLAVE_INTERRUPT_5;

SLAVE_INTERRUPT_6: procedure interrupt 134 external;
end SLAVE_INTERRUPT_6;

SLAVE_INTERRUPT_7: procedure interrupt 135 external;
end SLAVE_INTERRUPT_7;

2.5.3.4 STDPIC.EPD

/**

8-157

*
* STDPIC.EPD contains the corresponding external declarations of

* all entities declared public in STDPIC.PLM.

*

*
*
*
*

***/

$ include (PICLITS.INC)

INITIALISE_8259A_PIC: procedure external;

/**

*
* Initialises the Programmable Interrupt Controller as follows:

*
* 1) Master PlC

*

*
*
*
*
*

* i) to trigger on edge transitions *
* ii) with an interrupt base of 96 and interval of 8 *
* i i i) input line IR6 is linked to the 8274 MPSC and input line IR7 is *
* linked to the Slave PlC and both these devices supply their own *
* vectors when providing interrupts *
* iv) buffered and not special fully nested *
* v) to provide an automatic End Of Interrupt *
* vi) to operate in 8086 mode *

*
* 2) Slave PlC

*
* i) to trigger on edge transitions

* ii) with an interrupt base of 128 and interval of
* i i i) cascaded to input line IR7 of the Master PlC
* iv) buffered and not special fully nested
* v) to expect a normal End Of Interrupt
* vi) to operate in 8086 mode
*

8

*
*
*
*
*
*
*
*
*
*

***/

*

UNMASK_PlC: procedure (INTERRUPT_NO) external;

/**

*

8-158

* This procedure takes the PlC's current mask status and unmasks additional

* interrupts.

*

*
*
*

***/

declare INTERRUPT_NO byte;

MASK_PlC: procedure (INTERRUPT_NO) external;

/**

* *
* This procedure takes the PlC's current mask status and masks additional

* interrupts.

*

*
*
*

***/

declare INTERRUPT_NO byte;

ISSUE_EOI: procedure (INTERRUPT_NO) external;

/**

*
* This procedure issues an end of interrupt signal to the PlC for the
* appropriate interrupt.

*

*
*
*
*

***/

declare INTERRUPT_NO byte;

2.5.3.5 STDPIT.EPD

/**

8-159

*
* STDPIT.EPD contains the corresponding external declarations of

* all entities declared public in STDPIT.PLM.

*

*
*
*
*

***/

S include (PITLITS.INC)

INITIALISE_8254_PIT: procedure external;

end INITIALISE_8254_PIT;

2.5.3.6 STDSTAT.EPD

/**

*
* STDSTAT.EPD contains the corresponding external declarations of

* all entities declared public in STDSTAT.PLM.

*

*
*
*
*

***/

S include (STATLITS.INC)

OUTPUT_TO_LATCH: procedure (TEST_NO) external;

/* Write to status latch */

declare TEST_NO byte;

INPUT_fROM_LATCH: procedure byte external;

/* Read status latch */

2.5.3.7 STDDIAG.EPD

/**

* *

8-160

* STDDIAG.EPD contains the corresponding external declarations of

* all entities declared public in STDDIAG.PLM.

*

*
*
*

***/

DIAGNOSTICS: procedure external;

end DIAGNOSTICS;

2.5.3.8 STDIO.EPD

/**

*
* STDIO.EPD contains the corresponding external declarations of

* all entities declared public in STDIO.PLM.

*

*
*
*
*

***/

$ include (STDIO.INC)

/***/

/* */

/* INITIALISE 10 ADDRESSES: sets up the port addresses of the 8274 */

/* for two ports at a time. The interrupt mode and addresses */

/* are set up at the same time. */

/* */

/***/

procedure(PORT_NO,

BASE_ADDRESS,

INTERRUPT_NO external;

declare

declare

declare

PORT_NO

BASE_ADDRESS

INTERRUPT_NO

byte;

word;

byte;

end INITIALISE_IO_ADDRESSES;

/***/

/* */

/* INITIALISE_PORT: Writes the control characters required to set */

/* up a 8274 MPSC from the table set up in the port data area */

/* BUFFER(1). */

/* */

/* INPUT A pointer to the correct buffer area. */

/* */

/* OUTPUT none. */

/* */

/* Any output in progress at the time of initialisation is aborted */

/* and the buffers restored to the free buffer list. */

/* */

/***/

INITIALISE_PORT procedure(PORT_NO,

BAUD_RATE,

NO_OF_DATA_BITS,

NO_OF_STOP_BITS,

PARITY_TYPE,

MOOE) external;

declare PORT_NO byte;

declare BAUD_RATE byte;

declare NO_OF_DATA_BITS byte;

declare NO_OF_STOP_BITS byte;

declare PARITY_TYPE byte;

declare MOOE byte;

end INITIALISE_PORT;

/***/

8-161

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

MPSC_IO_TEST Called to test the operation of the 8274

multiple protocol serial controller.

INPUT A pointer to the correct port data area.

OUTPUT A test result.

1 ==> Test passed

2 ==> Test failed

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

/***/

MPSC_IO_TEST : procedure (PORT_NO) byte external;

declare PORT_NO byte;

/***/

8-162

/*

/*

/*

/*

/*

/*

/*

INPUT

OUTPUT

Called to enable the Tx and Rx of the port.

A pointer to the correct port data area.

none.

*/

*/

*/

*/

*/

*/

*/

/***/

ENABLE_PORT procedure PORT_NO) external;

declare PORT_NO byte;

/***/

/*

/*

/*

/*

/*

/*

/*

Called to disable the Tx and Rx of the port.

INPUT A pointer to the correct port data area.

OUTPUT none.

*/

*/

*/

*/

*/

*/

*/

/***/

procedure (PORT_NO) external;

declare PORT_NO byte;

end DISABLE_PORT;

/***/
/*

/* CLEAR_BUFFER: Called to clear an input buffer of unread

/* characters. If the routine LAST_READ_CHARACTER is used,

/* buffer is never emptied and must be done so explicitly
/* by the user.

/*

/* INPUT A pointer to the correct port data area.

/*

/* OUTPUT none.

/*

*/

*/
the */

*/

*/

*/

*/

*/

*/

*/
/***/

procedure (PORT_NO) external;

declare PORT_NO byte;

end CLEAR_BUFFER;

/***/

/* */

/* TRANSMIT_CHARACTER: Called as a direct result of a Tx buffer */

/* empty interrupt, this routine send the next character to the */

/* 8274, and if this emptys the transmit buffer, the next */

/* buffer is linked to the port data area. If no characters */

/* are waiting to be sent, the Tx pending flag in the 8274 is */

/* reset. */

/* */

/* INPUT A pointer to the correct port data area. */

/* */

/* OUTPUT none. */

/* */

/***/

TRANSMIT_CHARACTER procedure(PORT_NO) external;

declare PORT_NO byte;

end TRANSMIT_CHARACTER;

/***/

8-163

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

RECEIVE_CHARACTER: Called as a direct result of a Rx buffer

available interrupt, this routine transfers the received

character to the INPUT_BUFFER in PORT_DATA(PORT_NO).

If the character is a <CR>, the INPUT_FLAG is set to 2.

else INPUT_FLAG is set to 1.

If the input character is a or a <BACK_SPACE> then

a backspace, space, backspace is transmitted and the char

deleted from the buffer.

INPUT A pointer to the correct port data area.

OUTPUT none.

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

/***/

RECEIVE_CHARACTER : procedure(PORT_NO) external;

declare PORT_NO byte;

end RECEIVE_CHARACTER;

/***/

8-164

/*

/*

/*

/*

/*

/*

/*

/*

/*

GET_MODE: Returns the mode of a serial port.

o =TERMINAL MODE

1 =DATA MODE

INPUT A pointer to the correct port data area.

OUTPUT The function returns a byte.

*/

*/

*/

*/

*/

*/

*/

*/

*/

/***/

GET_MODE: procedure(PORT_NO) byte external;

declare PORT_NO byte;

/***/

/*

/*

/*

/*

/*

/*

/*

/*

SET_MODE: Called to set the mode of a serial port.

INPUT A pointer to the correct port data area.

The byte value of the new mode.

OUTPUT none.

*/

*/

*/

*/

*/

*/

*/

*/

/***/

SET_MODE: procedure(PORT_NO, NEW_MODE) external;

declare PORT_NO byte;

declare NEW_MODE byte;

/***/

8-165

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

WRITE : Transfers data from a user character string to a write

buffer, and queues the write buffer for output.

If a free buffer is not available the routine waits for a

buffer to become free before continuing.

INPUT A pointer to the port data area (PORT_NO).

A pointer to the user data string (DATA_ADDRESS)

OUTPUT none.

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

/***/

WRITE procedure (PORT_NO, DATA_ADDRESS) external;

declare PORT_NO byte;

declare DATA_ADDRESS pointer;

end WRITE;

/***/

/* */

/* WRITE_POLL : Writes a character string pointed to by DATA_ADDRESS */

/* to the port pointed to by PORT_NO. The routine waits for all */

/* characters to be transmitted before returning. Tx empty */

/* interrupts are disabled for the duration of the routine. */

/* The port is polled continually waiting for each character */

/* to be sent before the next one is output. */

/* */

/* INPUT A pointer to the port data area (PORT_NO). */

/* A pointer to the user data string (DATA_ADDRESS) */

/* */

/* OUTPUT none. */

/* */

/***/

WRITE_POLL : procedure (PORT_NO, DATA_ADDRESS) external;

declare PORT_NO byte;

declare DATA_ADDRESS pointer;

/***/

8-166

/*

/*

/*

/*

/*

/*

/*

/*

INPUT_CHARACTER: Clears the input buffer, then waits for a

character to be received. It is a function call.

INPUT A pointer to the port data area (PORT_NO).

OUTPUT the function call returns a character.

*/

*/

*/

*/

*/

*/

*/

*/

/***/

INPUT_CHARACTER: procedure (PORT_NO) byte external;

declare PORT_NO byte;

end INPUT_CHARACTER;

/***/

/* */

/* GET_CHARACTER : Returns the next character in the input buffer. */

/* If no characters are waiting then the buffer is cleared and */

/* the program waits for an input string terminated by a <CR>. */

/* */

/* INPUT A pointer to the port data area (PORT_NO). */

/* */

/* OUTPUT the function call returns a character. */

/* */

/***/

GET_CHARACTER: procedure (PORT_NO) byte external;

declare PORT_NO byte;

end GET_CHARACTER;

/***/

8-167

/*

/*

/*

/*

/*

/*

/*

/*

LAST_CHARACTER_READ: Returns the content of the input buffer

of the specified port. It is a function call.

INPUT A pointer to the port data area (PORT_NO).

OUTPUT the function call returns a character.

*/

*/

*/

*/

*/

*/

*/

*/

/***/

LAST_CHARACTER_READ: procedure (PORT_NO) byte external:

declare PORT_NO byte;

/***/

/*

/*

/*

/*

/*

/*

/*

/*

GET_BYTE: Clears the input buffer, waits for a <CR> and then

returns the value of the 1st numeric string in the buffer.

INPUT A pointer to the port data area (PORT_NO).

OUTPUT the function call returns a numeric byte value.

*/

*1
*/

*/

*/

*/

*/

*/

/***/

GET_BYTE: procedure(PORT_NO, MIN_VALUE, MAX_VALUE) byte external;

declare MIN_VALUE

declare MAX_VALUE

byte;

byte:

byte;

/***/

8-168

/*

/*

/*

/*

/*

/*

/*

/*

GET_WORD: Clears the input buffer, waits for a <CR> and then

returns the value of the 1st numeric string in the buffer.

INPUT A pointer to the port data area (PORT_NO).

OUTPUT the function call returns a numeric word value.

*/

*/

*/

*/

*/

*/

*/

*/

/***/

GET_WORD: procedure(PORT_NO, MIN_VALUE, MAX_VALUE) word external;

declare PORT_NO

declare MIN_VALUE

declare MAX_VALUE

byte;

word;

word;

/***/

/* */

/* BUFFER_READY: Returns OOH if the input buffer is empty. */

/* Returns 01H if data is available in the input buffer. */

/* Returns 02H if a <CR> has been received in the input buffer. */

/* */

/* INPUT A pointer to the port data area (PORT_NO). */

/* */

/* OUTPUT the function call returns a byte value. */

/* */

/***/

BUFFER_READY: procedure(PORT_NO) byte external;

declare PORT_NO

end BUFFER_READY;

byte;

/***/

8-169

/*

/*

/*

MPSC interrupt handlers

*/

*/

*/

/***/

CHB_TX_EMPTY: procedure interrupt 80 external;

end CHB_TX_EMPTY;

/***/

CHA_TX_EMPTY: procedure interrupt 84 external;

end CHA_TX_EMPTY;

j***/

CHA_RX_AVAIL: procedure interrupt 86 external;

end CHA_RX_AVAIL;

CHB_RX_AVAIL: procedure interrupt 82 external;

end CHB_RX_AVAIL;

/***/

CHA_RX_ERROR: procedure interrupt 87 external;

end CHA_RX_ERROR;

/***/

CHB_RX_ERROR: procedure interrupt 83 external;

end CHB_RX_ERROR;

2.5.3.9 STDCONVT.EPD

/**

* *

8-170

* STDCONVT.EPD contains the corresponding external declarations of

* all entities declared public in STDCONVT.PLM.

*

*
*
*

***/

C010_BIN_WORD_TO_ASCII_OCTAL: Procedure (BINARY_NUMBER,ASCII_ARRAY_PTR) external;

declare BINARY_NUMBER word;

declare ASCII_ARRAY_PTR pointer;

end C010_BIN_WORD_TO_ASCII_OCTAL;

C020_BIN_BYTE_TO_ASCII_OCTAL: Procedure (BINARY_NUMBER,ASCII_ARRAY_PTR) external;

declare BINARY_NUMBER byte;

declare ASCII_ARRAY_PTR pointer;

end C020_BIN_BYTE_TO_ASCII_OCTAL;

C030_BIN_WORD_TO_ASCII_DEC: Procedure (BINARY_NUMBER,ASCII_ARRAY_PTR) external;

declare BINARY_NUMBER word;

declare ASCII_ARRAY_PTR pointer;

end C030_BIN_WORD_TO_ASCII_DEC;

C040_BIN_BYTE_TO_ASCII_DEC: Procedure (BINARY_NUMBER,ASCII_ARRAY_PTR) external;
declare BINARY_NUMBER byte;

declare ASCII_ARRAY_PTR pointer;

end C040_BIN_BYTE_TO_ASCII_DEC;

C050_BIN_BYTE_TO_ASCII_BIN: Procedure (BINARY_NUMBER,ASCII_ARRAY_PTR) external;
declare BINARY_NUMBER byte;

declare ASCII_ARRAY_PTR pointer;

end C050_BIN_BYTE_TO_ASCII_BIN;

C060_WORD_TO_BCD_VAL: Procedure (BINARY_NUMBER) word external;
declare (BINARY_NUMBER) byte;

end C060_WORD_TO_BCD_VAL;

C070_CONVERT_WORD_TO_HEX: Procedure (INPUT_WORD, ASCII_ADDRESS) external;
declare INPUT_WORD word;

declare ASCII_ADDRESS pointer;

end C070_CONVERT_WORD_TO_HEX;

2.5.3.10 STDCPU.EPD

/**

* *

8-171

* STDCPU.EPD contains the corresponding external declarations of

* all entities declared public in STDCPU.ASM.

*

*
*
*

***/

CPU_TEST: procedure byte external;

/* Test the functionality of the CPU */

2.5.3.11 STDRAM.EPD

/**

*
* STDRAM.EPD contains the corresponding external declarations of

* all entities declared public in STDRAM.ASM.

*

*
*
*
*

***/

/**

*
*
*

Global variables
*
*
*

***/

declare BIT_RESULT structure

(CPU_BOARD byte,

CPU byte,

ROM byte,

MASTER_PlC byte,

SLAVE_PlC byte,

TMOUT_CIRCUIT byte,

PIT byte,
COPROCESSOR byte,

MPSC byte,
RAM byte,

ACCESS_TO_1611 byte,

ERAM byte,

EROM byte,

SOB_BOARD byte,

SDB_SELFTEST byte,

SOB_RAM byte,

LOCAL_BUS byte) external;

declare PROCESSOR_ID

declare NUMBER_Of_RUNS

word external; /* for dual processor environment */

word external; /* for "cold" or "warm" start */

8-172

MEM_TEST: procedure byte external;

/* Test the functionality of the RAM */

2.5.3.12 STDERAM.EPD

/**

*
* STDERAM.EPD contains the corresponding external declarations of

* all entities declared public in STDERAM.ASM.

*

*
*
*
*

***/

/**

*
*
*

Global variables
*
*
*

***/

declare OB_EPROM_CHECKSUM word external;

declare OB_CSUM_PRESENT byte external;

declare EPROM_CHECKSUM word external;

declare EPROM_ID byte external;

declare SYSTEM_VERSION byte external;

declare SYSTEM_NUMBER byte external;

declare EPROM_RAM_OPTION byte external;

declare CSUMS_PRESENT byte external;

declare NO_Of_PROCS byte external;

declare ROM_1 (SEGMENT_MAX) byte external;
declare ROM_2 (SEGMENT_MAX) byte external;
declare ROM_3 (SEGMENT_MAX) byte external;
declare ROM_4 (SEGMENT_MAX) byte external;
declare ROM_S (SEGMENT_MAX) byte external;
declare ROM_6 (SEGMENT_MAX) byte external;
declare ROM_7 (SEGMENT_MAX) byte external;
declare ROM_8 (SEGMENT_MAX_LESS_2) byte external;

1* Two bytes at the top of the EPROM/RAM card are reserved for the checksum. */

declare ROM_9 (SEGMENT_MAX) byte external;

declare ROM_10 (SEGMENT_MAX_LESS_2) byte external;

1* Two bytes at the top of the CPU card are reseved for the checksum. */

ERAM_TEST: procedure byte external;

1* Test the functionality of the RAM on the EPROM/RAM 1611 card *1

2.5.3.13 STDSDB.EPD

1**

B-173

*
* STOSOB.EPO contains the corresponding external declarations of

* all entities declared public in STOSOB.ASM.

*

*
*
*
*

***1

$ include (SOBLITS.INC)

declare SOB_RAM_BUF FER (SOB_RAM_BUF FER_MAX) word external
declare SOB_TEST_STATUS word external
declare SOB_TEST_NUMBER word external
declare SOB_TEST_PARAMETER_1 word external
declare SOB_TEST_PARAMETER_2

declare SOB_TEST_PARAMETER_3
word external

word external

2.5.4 Include files

2.5.4.1 PLMPAR.INC

$ debug

$ large

$rom

2.5.4.2 L1TS.lNC

/**

8-174

*
*
*

General literals
*
*
*

***/

declare ZERO_ONES l iterally 155h l

declare ONE_ZEROS l iterally 10aah l

declare WORD_OF_ZERO_ONES literally 15555h l

declare WORD_OF_ONE_ZEROS l iterally 10aaaah l ;

declare DUMMY_VALUE l iterally 10ffffh l ;

declare READ l iterally 10 1

declare WRITE_IT l iterally 11 1

declare MAP l iterally 105h l

declare INVALID_PORT literally 10h l

declare RESET literally 10 1

declare UNTESTED l i terally 10 1

declare PASSED l i terally 11 1

declare FAILED l i terall y 12 1

declare NOT_PRESENT l iterally 13 1

declare PRESENT l i terally , l'

declare FALSE l iterally 10 1

declare TRUE literally 11 1

declare BUSY l i terally 11 1

declare ABSENT l iterally 181

declare SDB_RAM_BUFFER_MIN literally 10h l

declare SDB_RAM_BUFFER_MAX l i terally 106ffeh I;

declare CTRL_287 l iterally 1033eh l

declare NCP_MASK l iterally 102h l

declare CRC_POLYNOMIAL literally 11021h l /* 0001 0000 0010 0001 */
declare SEGMENT_MAX literally 10fffdh I;

declare SEGMENT_MAX_LESS_2 l iterally 10fffbh I;

declare ROM_BLOCK_MAX literally 171

declare SPEED_THRESHOLD literally 110 1

declare BUS_NOT_GRANTED l i terally 11 1 /* Bus grant is active low */

declare MAX_RETRIES literally 12 1

declare VDU literally 11 1

declare KB l i terally 11 1

declare SECOND_RUN literally 15a5ah l

/* Maximum retries allowed for the processor to be granted the bus */

declare CLEARSCREEN (*) byte data

/* Clear the VDU */

(ESC, I [1JI, ESC, I W;OHI, EOM);

2.5.4.3 PICLlTS.lNC

/**

8-175

*
*
*

8259A Programmable Interrupt Controller literals
*
*
*

***/

declare PIC_MASTER_8259A_ADR1 literally 10cOh l

declare PIC_MASTER_8259A_ADR2 literally IOc2h l

declare PIC_SLAVE_8259A_ADR1 l iterally IOc4h l

declare PIC_SLAVE_8259A_ADR2 literally IOc6h l

declare MASTER_ICW1_8259A literally 1011h l ;

/* Trigger on edge transitions for interrupts; Interval of 8;

Cascade mode; ICW4 required */

declare MASTER_ICW2_8259A

/* Interrupt base of 96

literally 1060h l ;

*/

declare MASTER_ICWJ_8259A literally 1060h l ;

/* IR6 linked to serial controller and IR5 cascaded to 8259A slave

/* both supply their own vectors when providing interrupts

declare MASTER_ICW4_8259A literally 100fh l ;

/* Not special fully nested mode; bufferred mode (master);
/* auto EOI; 8086 mode

S eject

*/

*/

*/

*/

declare SLAVE_ICW1_8259A literally 1011h l ;

/* Edge triggered for interrupts; Interval of 8;

Cascade mode; ICW4 required */

8-176

declare SLAVE_ICW2_8259A

/* Interrupt base of 128

literally 1080h l ;

*/

declare SLAVE_ICWJ_8259A literally 1005h l
;

/* Locates the slave PlC (as being for IR5) on the master PlC input lines */

declare SLAVE_ICW4_8259A literally 1009h l ;

/* Not special fully nested mode; bufferred mode (slave); */

/* norma l EOI; 8086 mode */

declare LEVEL_TRIGGERED_MODE literally 100001000b l ;

/* Mask to allow for level triggered interrupts */

declare AUTO_EOI_MASK literally 100000010b l ;

/* Mask to check for PlC initialised to AUTO EOI */

declare EOI_MASK literally 1060h l

$ eject

declare TMOUT_INTERRUPT NO l i terally 10 1

declare CLOCK_1_INTERRUPT_NO l i terally 11 1

declare DRAM_INTERRUPT_NO literally 12 1

declare SOB_INTERRUPT_NO literally 13 1

declare GRAPHICS_INTERRUPT_NO literally 14 1

declare SLAVE_INTERRUPT_NO l i terally 15 1

declare MPSC_INTERRUPT_NO l iterally 161

declare DEFAULT_INTERRUPT_NO l i terally 171

declare API_INTERRUPT_NO literally 181

declare SCMB_INTERRUPT_NO literally 191

declare INTERRUPT_NO_10 l iterally 110 1

declare TMAP_INTERRUPT_NO l iterally 111 1

declare CLOCK_2_INTERRUPT_NO literally '12 1

declare INTERRUPT_NO_13 l i terally 113 1

declare INTERRUPT_NO_14 l iterally '14 1

declare INTERRUPT_NO_15 literally 115 1

$ eject

8-177

declare MASK_ALL_INTS literally '11111111b ' ;

/* Master PlC */

declare UNMASK_TMOUT literall y I 1111111 Ob I ; /* Time-out on INT 0 */

declare UNMASK_CLOCK_1 literally '11111101b ' ; /* Clock 1 on INT */

declare UNMASK_DRAM literally '11111011b ' ; /* DRAM on INT 2 */

declare UNMASK_SOB literally '11110111b ' ; /* SOB on INT 3 */

declare UNMASK_GRAPHICS li terally '11101111b ' ; /* GIM on INT 4 */

declare UNMASK_SLAVE literally '11011111b ' ; /* Slave PlC on INT 5 */

declare UNMASK_MPSC literally '10111111b ' ; /* MPSC on INT 6 */

declare UNMASK_ALL_MASTER l i terally I 1OOOOOOOb I ;

/* Slave PlC */

declare UNMASK_API l iterally '11111110b ' ; /* API on INT 4 */

declare UNMASK_SCMB l iterally '11111101b ' ; /* SCMB on INT 5 */

declare UNMASK_SCSI l iterally '11111011b ' ; /* SCSI on INT 6 */

declare UNMASK_SLAVE_INT3 literally '11110111b ' ; /* Slave 1442 ID */

declare UNMASK_CLOCK_2 l iterally '11101111b ' ; /* Clock 2 on INT 4 */

declare UNMASK_ALL_SLAVE l iterally I 111 011 OOb I ;

declare MASK_TMOUT literally 'OOOOOOO1b ' ;
declare MASK_CLOCK_1 literally 'OOOOOO10b ' ;
declare MASK_DRAM l iterally 'OOOOO100b ' ;
declare MASK_SOB l iterally 'OOOO1000b ' ;
declare MASK_GRAPHICS l i terally 'OOO10000b ' ;
declare MASK_SLAVE literally 'OO100000b ' ;
declare MASK_MPSC l iterally '01000000b ' ;

declare MASK_API literally 'OOOOOOO1b ' ;
declare MASK_SCMB l iterally 'OOOOOO10b ' ;

declare MASK_CLOCK_2 l i terally 'OOO10000b ' ;

2.5.4.4 PITLlTS.INC

/**

8-178

*
*
*

8254 Programmable Interval Timer Initialisation literals
*
*
*

***/

declare CTR_CTRL_ADR literally 'Od6h '
declare CTRO_8254_ADR literally 'OdOh l

declare CTR1_8254_ADR l iterally 'Od2h '
declare CTR2_8254_ADR literally 'Od4h '

declare CTRO_8254_CTRL literally '034h ' ;

/* Select counter 0; R/W LSB then MSB; Mode 2: Rate generator : this mode */

/* functions like a divide by N counter, typically used to generate a */

/* Real Time clock interrupt; 16-bit counter */

declare CTR1_8254_CTRL literally '074h ' ;

/* Select counter 1; R/W LSB then MSB; Mode 2: Rate generator */

/* 16-bit counter */

declare CTR2_8254_CTRL literally 'Ob6h ' ;

/* Select counter 2; R/W LSB then MSB; Mode 3; 16-bit counter */

declare CTRO_8254_VAL_LSB literally 'OOOh ' ;

declare CTRO_8254_VAL_MSB literally '030h ' ; /* 3000h =12288 decimal */

/* Interrupt = 10 ms =Counter value / PIT clock freq = 12288 / 1.2288 MHz */

declare CTR1_8254_VAL_LSB literally 'OOOh ' ;

declare CTR1_8254_VAL_MSB literally '030h ' ;

/* Interrupt = 10 ms = Counter value / PIT clock freq = 12288 / 1.2288 MHz */

declare CTR2_8254_VAL_LSB literally '008h ' ;

declare CTR2_8254_VAL_MSB literally 'OOOh ' ;

/* Counter =8 =PIT clock freq / (Baud rate * 16) 1.2288 MHz/(9600 * 16) */

2.5.4.5 IOLlTS.INC

declare BEL

declare ESC

declare BACK_SPACE

declare DEL

declare CR

declare Lf

declare EOM

declare TERMINAL

declare DATA_MODE

declare EOI_8274

declare ERROR_RESET_CODE

literally I 07h 1;

literally I 1bh ' ;

literally I 08h ' ;

literally I 7fh ' ;

literally I DDh ' ;

literally I DAh ' ;

literally 'Offh ' ;

literally I DOh ' ;

literally I 01h ' ;

literally I 38h ' ;

literally '030h ' ;

8-179

/***/

declare REC_ERR_MESS(*) byte data

(ESC, '[18;25H', 'CH.A REC.ERR. [f,O,Pl: EOM);

declare RUBOUT_MESSAGE(*) byte data (BACK_SPACE, I I, BACK_SPACE, EOM);

declare NO_Of_PORTS literally 14 1;

declare NO_Of_BUffERS l iterally 110 1;

declare PORT_A literally 101;

declare PORT_B l iterally 11 1;

declare PORT_C li terally 12 1;

declare PORT_D literally 13 1;

declare NO_PARITY l iterally I OOOOOOOOb I ;

declare EVEN_PARITY l iterally '00000011b ' ;
declare ODD_PARITY l iterally '00000010b ' ;

declare ONE_STOP_BIT literally 'OOOOO100b ' ;
declare ONE_AND_A_HALf_STOP_BITS li terally 'OOO01000b ' ;
declare TWO_STOP_BITS literally 'OOOO1100b ' ;

declare fIVE_DATA_BITS l iterally 'OOOOOOOOb ' ;
declare SIX_DATA_BITS l iterally I 1OOOOOOOb I ;

declare SEVEN_DATA_BITS literally '01000000b ' ;
declare EIGHT_DATA_BITS literally I 11000000b' ;

2.5.4.6 STATLlTS.INC

/**

8-180

*
*
*

POST firmware predefined status latch literals
*
*
*

* The values listed below are those which are output to the 8-bit diagnostic *
* latch on the CPU card in the event of a failure occuring during the *
* Power-On Self Tests or off-line diagnostics of the standard computing *
* segment.

*
*
*

***/

declare STATUS_LATCH_ADR l i terally 'OeOh'

declare RESET_LATCH li terally 'OOh' /* CPU card failures */

declare CPU_TEST_NO literally '01h'
declare ROM_TEST_NO l iterally '02h'
declare RAM_TEST_NO literally '03h'
declare INITIALISATION literally '04h'
declare MASTER_PIC_TEST_NO literally '05h'
declare SLAVE_PIC_TEST_NO literally '06h'
declare TMOUT_TEST_NO literally '08h'
declare PIT_TEST_NO literally '09h'
declare MPSC_TEST_NO literally 'OAh'
declare COPROCESSOR_TEST_NO l i terally 'OBh'
declare OFF_BOARD_ACCESS_TEST_NO l i terally lOCh'

declare EPROM_RAM_ABSENT

declare EROM_TEST_NO

declare DELAYING_SLAVE_PROCS

declare ERAM_TEST_NO

declare SDB_SELFTEST_TEST_NO
declare SDB_RAM_TEST_NO

declare LOCAL_BUS_TEST_NO

declare MULTIBUS_TEST_NO

/* General status latch outputs */

declare BUS_GRANTED

declare NO_BUS_GRANTED

litera IIy '1 Oh'

litera IIy '11 h'

l iterally '12h'

litera IIy '13h'

literally '20h'
literally'21h'

literally'30h'

literally '31h'

literally 'OfOh ,

li tera IIy 'Of1h'

/* RAM card failures */

/* SOB card failures */

/* Local bus failure */

/* Multibus failure */

	Olander_P_A_1991_Vol1.front.p001
	Olander_P_A_1991_Vol1.front.p002
	Olander_P_A_1991_Vol1.front.p003
	Olander_P_A_1991_Vol1.front.p004
	Olander_P_A_1991_Vol1.front.p005
	Olander_P_A_1991_Vol1.front.p006
	Olander_P_A_1991_Vol1.front.p007
	Olander_P_A_1991_Vol1.front.p008
	Olander_P_A_1991_Vol1.front.p009
	Olander_P_A_1991_Vol1.front.p010
	Olander_P_A_1991_Vol1.front.p011
	Olander_P_A_1991_Vol1.front.p012
	Olander_P_A_1991_Vol1.p001
	Olander_P_A_1991_Vol1.p002
	Olander_P_A_1991_Vol1.p003
	Olander_P_A_1991_Vol1.p004
	Olander_P_A_1991_Vol1.p005
	Olander_P_A_1991_Vol1.p006
	Olander_P_A_1991_Vol1.p007
	Olander_P_A_1991_Vol1.p008
	Olander_P_A_1991_Vol1.p009
	Olander_P_A_1991_Vol1.p010
	Olander_P_A_1991_Vol1.p011
	Olander_P_A_1991_Vol1.p012
	Olander_P_A_1991_Vol1.p013
	Olander_P_A_1991_Vol1.p014
	Olander_P_A_1991_Vol1.p015
	Olander_P_A_1991_Vol1.p016
	Olander_P_A_1991_Vol1.p017
	Olander_P_A_1991_Vol1.p018
	Olander_P_A_1991_Vol1.p019
	Olander_P_A_1991_Vol1.p020
	Olander_P_A_1991_Vol1.p021
	Olander_P_A_1991_Vol1.p022
	Olander_P_A_1991_Vol1.p023
	Olander_P_A_1991_Vol1.p024
	Olander_P_A_1991_Vol1.p025
	Olander_P_A_1991_Vol1.p026
	Olander_P_A_1991_Vol1.p027
	Olander_P_A_1991_Vol1.p028
	Olander_P_A_1991_Vol1.p029
	Olander_P_A_1991_Vol1.p030
	Olander_P_A_1991_Vol1.p031
	Olander_P_A_1991_Vol1.p032
	Olander_P_A_1991_Vol1.p033
	Olander_P_A_1991_Vol1.p034
	Olander_P_A_1991_Vol1.p035
	Olander_P_A_1991_Vol1.p036
	Olander_P_A_1991_Vol1.p037
	Olander_P_A_1991_Vol1.p038
	Olander_P_A_1991_Vol1.p039
	Olander_P_A_1991_Vol1.p040
	Olander_P_A_1991_Vol1.p041
	Olander_P_A_1991_Vol1.p042
	Olander_P_A_1991_Vol1.p043
	Olander_P_A_1991_Vol1.p044
	Olander_P_A_1991_Vol1.p045
	Olander_P_A_1991_Vol1.p046
	Olander_P_A_1991_Vol1.p047
	Olander_P_A_1991_Vol1.p048
	Olander_P_A_1991_Vol1.p049
	Olander_P_A_1991_Vol1.p050
	Olander_P_A_1991_Vol1.p051
	Olander_P_A_1991_Vol1.p052
	Olander_P_A_1991_Vol1.p053
	Olander_P_A_1991_Vol1.p054
	Olander_P_A_1991_Vol1.p055
	Olander_P_A_1991_Vol1.p056
	Olander_P_A_1991_Vol1.p057
	Olander_P_A_1991_Vol1.p058
	Olander_P_A_1991_Vol1.p059
	Olander_P_A_1991_Vol1.p060
	Olander_P_A_1991_Vol1.p061
	Olander_P_A_1991_Vol1.p062
	Olander_P_A_1991_Vol1.p063
	Olander_P_A_1991_Vol1.p064
	Olander_P_A_1991_Vol1.p065
	Olander_P_A_1991_Vol1.p066
	Olander_P_A_1991_Vol1.p067
	Olander_P_A_1991_Vol1.p068
	Olander_P_A_1991_Vol1.p069
	Olander_P_A_1991_Vol1.p070
	Olander_P_A_1991_Vol1.p071
	Olander_P_A_1991_Vol1.p072
	Olander_P_A_1991_Vol1.p073
	Olander_P_A_1991_Vol1.p074
	Olander_P_A_1991_Vol1.p075
	Olander_P_A_1991_Vol1.p076
	Olander_P_A_1991_Vol1.p077
	Olander_P_A_1991_Vol1.p078
	Olander_P_A_1991_Vol1.p079
	Olander_P_A_1991_Vol1.p080
	Olander_P_A_1991_Vol1.p081
	Olander_P_A_1991_Vol1.p082
	Olander_P_A_1991_Vol1.p083
	Olander_P_A_1991_Vol1.p084
	Olander_P_A_1991_Vol1.p085
	Olander_P_A_1991_Vol1.p086
	Olander_P_A_1991_Vol1.p087
	Olander_P_A_1991_Vol1.p088
	Olander_P_A_1991_Vol1.p089
	Olander_P_A_1991_Vol1.p090
	Olander_P_A_1991_Vol1.p091
	Olander_P_A_1991_Vol1.p092
	Olander_P_A_1991_Vol1.p093
	Olander_P_A_1991_Vol1.p094
	Olander_P_A_1991_Vol1.p095
	Olander_P_A_1991_Vol1.p096
	Olander_P_A_1991_Vol1.p097
	Olander_P_A_1991_Vol1.p098
	Olander_P_A_1991_Vol1.p099
	Olander_P_A_1991_Vol1.p100
	Olander_P_A_1991_Vol1.p101
	Olander_P_A_1991_Vol1.p102
	Olander_P_A_1991_Vol1.p103
	Olander_P_A_1991_Vol1.p104
	Olander_P_A_1991_Vol1.p105
	Olander_P_A_1991_Vol1.p106
	Olander_P_A_1991_Vol1_A.p001_Appendice
	Olander_P_A_1991_Vol1_A.p002_Appendice
	Olander_P_A_1991_Vol1_A.p003_Appendice
	Olander_P_A_1991_Vol1_A.p004_Appendice
	Olander_P_A_1991_Vol1_A.p005_Appendice
	Olander_P_A_1991_Vol1_A.p006_Appendice
	Olander_P_A_1991_Vol1_A.p007_Appendice
	Olander_P_A_1991_Vol1_A.p008_Appendice
	Olander_P_A_1991_Vol1_B.p001_Appendice
	Olander_P_A_1991_Vol1_B.p002_Appendice
	Olander_P_A_1991_Vol1_B.p003_Appendice
	Olander_P_A_1991_Vol1_B.p004_Appendice
	Olander_P_A_1991_Vol1_B.p005_Appendice
	Olander_P_A_1991_Vol1_B.p006_Appendice
	Olander_P_A_1991_Vol1_B.p007_Appendice
	Olander_P_A_1991_Vol1_B.p008_Appendice
	Olander_P_A_1991_Vol1_B.p009_Appendice
	Olander_P_A_1991_Vol1_B.p010_Appendice
	Olander_P_A_1991_Vol1_B.p011_Appendice
	Olander_P_A_1991_Vol1_B.p012_Appendice
	Olander_P_A_1991_Vol1_B.p013_Appendice
	Olander_P_A_1991_Vol1_B.p014_Appendice
	Olander_P_A_1991_Vol1_B.p015_Appendice
	Olander_P_A_1991_Vol1_B.p016_Appendice
	Olander_P_A_1991_Vol1_B.p017_Appendice
	Olander_P_A_1991_Vol1_B.p018_Appendice
	Olander_P_A_1991_Vol1_B.p019_Appendice
	Olander_P_A_1991_Vol1_B.p020_Appendice
	Olander_P_A_1991_Vol1_B.p021_Appendice
	Olander_P_A_1991_Vol1_B.p022_Appendice
	Olander_P_A_1991_Vol1_B.p023_Appendice
	Olander_P_A_1991_Vol1_B.p024_Appendice
	Olander_P_A_1991_Vol1_B.p025_Appendice
	Olander_P_A_1991_Vol1_B.p026_Appendice
	Olander_P_A_1991_Vol1_B.p027_Appendice
	Olander_P_A_1991_Vol1_B.p028_Appendice
	Olander_P_A_1991_Vol1_B.p029_Appendice
	Olander_P_A_1991_Vol1_B.p030_Appendice
	Olander_P_A_1991_Vol1_B.p031_Appendice
	Olander_P_A_1991_Vol1_B.p032_Appendice
	Olander_P_A_1991_Vol1_B.p033_Appendice
	Olander_P_A_1991_Vol1_B.p034_Appendice
	Olander_P_A_1991_Vol1_B.p035_Appendice
	Olander_P_A_1991_Vol1_B.p036_Appendice
	Olander_P_A_1991_Vol1_B.p037_Appendice
	Olander_P_A_1991_Vol1_B.p038_Appendice
	Olander_P_A_1991_Vol1_B.p039_Appendice
	Olander_P_A_1991_Vol1_B.p040_Appendice
	Olander_P_A_1991_Vol1_B.p041_Appendice
	Olander_P_A_1991_Vol1_B.p042_Appendice
	Olander_P_A_1991_Vol1_B.p043_Appendice
	Olander_P_A_1991_Vol1_B.p044_Appendice
	Olander_P_A_1991_Vol1_B.p045_Appendice
	Olander_P_A_1991_Vol1_B.p046_Appendice
	Olander_P_A_1991_Vol1_B.p047_Appendice
	Olander_P_A_1991_Vol1_B.p048_Appendice
	Olander_P_A_1991_Vol1_B.p049_Appendice
	Olander_P_A_1991_Vol1_B.p050_Appendice
	Olander_P_A_1991_Vol1_B.p051_Appendice
	Olander_P_A_1991_Vol1_B.p052_Appendice
	Olander_P_A_1991_Vol1_B.p053_Appendice
	Olander_P_A_1991_Vol1_B.p054_Appendice
	Olander_P_A_1991_Vol1_B.p055_Appendice
	Olander_P_A_1991_Vol1_B.p056_Appendice
	Olander_P_A_1991_Vol1_B.p057_Appendice
	Olander_P_A_1991_Vol1_B.p058_Appendice
	Olander_P_A_1991_Vol1_B.p059_Appendice
	Olander_P_A_1991_Vol1_B.p060_Appendice
	Olander_P_A_1991_Vol1_B.p061_Appendice
	Olander_P_A_1991_Vol1_B.p062_Appendice
	Olander_P_A_1991_Vol1_B.p063_Appendice
	Olander_P_A_1991_Vol1_B.p064_Appendice
	Olander_P_A_1991_Vol1_B.p065_Appendice
	Olander_P_A_1991_Vol1_B.p066_Appendice
	Olander_P_A_1991_Vol1_B.p067_Appendice
	Olander_P_A_1991_Vol1_B.p068_Appendice
	Olander_P_A_1991_Vol1_B.p069_Appendice
	Olander_P_A_1991_Vol1_B.p070_Appendice
	Olander_P_A_1991_Vol1_B.p071_Appendice
	Olander_P_A_1991_Vol1_B.p072_Appendice
	Olander_P_A_1991_Vol1_B.p073_Appendice
	Olander_P_A_1991_Vol1_B.p074_Appendice
	Olander_P_A_1991_Vol1_B.p075_Appendice
	Olander_P_A_1991_Vol1_B.p076_Appendice
	Olander_P_A_1991_Vol1_B.p077_Appendice
	Olander_P_A_1991_Vol1_B.p078_Appendice
	Olander_P_A_1991_Vol1_B.p079_Appendice
	Olander_P_A_1991_Vol1_B.p080_Appendice
	Olander_P_A_1991_Vol1_B.p081_Appendice
	Olander_P_A_1991_Vol1_B.p082_Appendice
	Olander_P_A_1991_Vol1_B.p083_Appendice
	Olander_P_A_1991_Vol1_B.p084_Appendice
	Olander_P_A_1991_Vol1_B.p085_Appendice
	Olander_P_A_1991_Vol1_B.p086_Appendice
	Olander_P_A_1991_Vol1_B.p087_Appendice
	Olander_P_A_1991_Vol1_B.p088_Appendice
	Olander_P_A_1991_Vol1_B.p089_Appendice
	Olander_P_A_1991_Vol1_B.p090_Appendice
	Olander_P_A_1991_Vol1_B.p091_Appendice
	Olander_P_A_1991_Vol1_B.p092_Appendice
	Olander_P_A_1991_Vol1_B.p093_Appendice
	Olander_P_A_1991_Vol1_B.p094_Appendice
	Olander_P_A_1991_Vol1_B.p095_Appendice
	Olander_P_A_1991_Vol1_B.p096_Appendice
	Olander_P_A_1991_Vol1_B.p097_Appendice
	Olander_P_A_1991_Vol1_B.p098_Appendice
	Olander_P_A_1991_Vol1_B.p099_Appendice
	Olander_P_A_1991_Vol1_B.p100_Appendice
	Olander_P_A_1991_Vol1_B.p101_Appendice
	Olander_P_A_1991_Vol1_B.p102_Appendice
	Olander_P_A_1991_Vol1_B.p103_Appendice
	Olander_P_A_1991_Vol1_B.p104_Appendice
	Olander_P_A_1991_Vol1_B.p105_Appendice
	Olander_P_A_1991_Vol1_B.p106_Appendice
	Olander_P_A_1991_Vol1_B.p107_Appendice
	Olander_P_A_1991_Vol1_B.p108_Appendice
	Olander_P_A_1991_Vol1_B.p109_Appendice
	Olander_P_A_1991_Vol1_B.p110_Appendice
	Olander_P_A_1991_Vol1_B.p111_Appendice
	Olander_P_A_1991_Vol1_B.p112_Appendice
	Olander_P_A_1991_Vol1_B.p113_Appendice
	Olander_P_A_1991_Vol1_B.p114_Appendice
	Olander_P_A_1991_Vol1_B.p115_Appendice
	Olander_P_A_1991_Vol1_B.p116_Appendice
	Olander_P_A_1991_Vol1_B.p117_Appendice
	Olander_P_A_1991_Vol1_B.p118_Appendice
	Olander_P_A_1991_Vol1_B.p119_Appendice
	Olander_P_A_1991_Vol1_B.p120_Appendice
	Olander_P_A_1991_Vol1_B.p121_Appendice
	Olander_P_A_1991_Vol1_B.p122_Appendice
	Olander_P_A_1991_Vol1_B.p123_Appendice
	Olander_P_A_1991_Vol1_B.p124_Appendice
	Olander_P_A_1991_Vol1_B.p125_Appendice
	Olander_P_A_1991_Vol1_B.p126_Appendice
	Olander_P_A_1991_Vol1_B.p127_Appendice
	Olander_P_A_1991_Vol1_B.p128_Appendice
	Olander_P_A_1991_Vol1_B.p129_Appendice
	Olander_P_A_1991_Vol1_B.p130_Appendice
	Olander_P_A_1991_Vol1_B.p131_Appendice
	Olander_P_A_1991_Vol1_B.p132_Appendice
	Olander_P_A_1991_Vol1_B.p133_Appendice
	Olander_P_A_1991_Vol1_B.p134_Appendice
	Olander_P_A_1991_Vol1_B.p135_Appendice
	Olander_P_A_1991_Vol1_B.p136_Appendice
	Olander_P_A_1991_Vol1_B.p137_Appendice
	Olander_P_A_1991_Vol1_B.p138_Appendice
	Olander_P_A_1991_Vol1_B.p139_Appendice
	Olander_P_A_1991_Vol1_B.p140_Appendice
	Olander_P_A_1991_Vol1_B.p141_Appendice
	Olander_P_A_1991_Vol1_B.p142_Appendice
	Olander_P_A_1991_Vol1_B.p143_Appendice
	Olander_P_A_1991_Vol1_B.p144_Appendice
	Olander_P_A_1991_Vol1_B.p145_Appendice
	Olander_P_A_1991_Vol1_B.p146_Appendice
	Olander_P_A_1991_Vol1_B.p147_Appendice
	Olander_P_A_1991_Vol1_B.p148_Appendice
	Olander_P_A_1991_Vol1_B.p149_Appendice
	Olander_P_A_1991_Vol1_B.p150_Appendice
	Olander_P_A_1991_Vol1_B.p151_Appendice
	Olander_P_A_1991_Vol1_B.p152_Appendice
	Olander_P_A_1991_Vol1_B.p153_Appendice
	Olander_P_A_1991_Vol1_B.p154_Appendice
	Olander_P_A_1991_Vol1_B.p155_Appendice
	Olander_P_A_1991_Vol1_B.p156_Appendice
	Olander_P_A_1991_Vol1_B.p157_Appendice
	Olander_P_A_1991_Vol1_B.p158_Appendice
	Olander_P_A_1991_Vol1_B.p159_Appendice
	Olander_P_A_1991_Vol1_B.p160_Appendice
	Olander_P_A_1991_Vol1_B.p161_Appendice
	Olander_P_A_1991_Vol1_B.p162_Appendice
	Olander_P_A_1991_Vol1_B.p163_Appendice
	Olander_P_A_1991_Vol1_B.p164_Appendice
	Olander_P_A_1991_Vol1_B.p165_Appendice
	Olander_P_A_1991_Vol1_B.p166_Appendice
	Olander_P_A_1991_Vol1_B.p167_Appendice
	Olander_P_A_1991_Vol1_B.p168_Appendice
	Olander_P_A_1991_Vol1_B.p169_Appendice
	Olander_P_A_1991_Vol1_B.p170_Appendice
	Olander_P_A_1991_Vol1_B.p171_Appendice
	Olander_P_A_1991_Vol1_B.p172_Appendice
	Olander_P_A_1991_Vol1_B.p173_Appendice
	Olander_P_A_1991_Vol1_B.p174_Appendice
	Olander_P_A_1991_Vol1_B.p175_Appendice
	Olander_P_A_1991_Vol1_B.p176_Appendice
	Olander_P_A_1991_Vol1_B.p177_Appendice
	Olander_P_A_1991_Vol1_B.p178_Appendice
	Olander_P_A_1991_Vol1_B.p179_Appendice
	Olander_P_A_1991_Vol1_B.p180_Appendice

