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ABSTRACT 

Parthenium hysterophorus L. (parthenium) is an alien invasive species that has had severe 

environmental and human impacts in three continents. Sustainable management and control of 

the invasive species requires an understanding of its distribution and rate of spread. Our first 

study focuses on the use of spectral information of commercial sensor RapidEye and freely 

available Sentinel-2 imagery to detect parthenium and other land cover classes. Sentinel-2 

outperformed RapidEye to classify most land cover classes, with an overall classification 

accuracy of 82% and 71%, respectively. This was likely due to the superior spectral resolution 

of Sentinel-2. However, RapidEye performed better when classifying parthenium, potentially 

due to the fact that there were some patches that were smaller than the Sentinel-2 spatial 

resolution. Nonetheless, Sentinel-2 represents a good opportunity to map larger parthenium 

stands and other land cover types. The second study focused on mapping parthenium using 

texture analysis and SPOT-6 imagery. It compared the mapping ability between the 

panchromatic and multispectral bands using the PLS-DA algorithm. The panchromatic band 

achieved a higher overall classification accuracy than the multispectral bands (77% and 73%, 

respectively). Furthermore, the panchromatic band achieved superior performance compared 

to multispectral bands for parthenium. This may be attributed to the higher spatial resolution 

of the panchromatic band as it has been shown that finer spatial resolution is beneficial in 

texture analysis. Overall texture analysis using SPOT 6 imagery was the most successful 

combination which allowed us to accurately map parthenium distribution.  

Key words: Parthenium hysterophorus L.; alien invasive species; spectral; texture; Sentinel-

2; SPOT; RapidEye; SGB; PLS-DA  
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CHAPTER 1 

1. INTRODUCTION 

1.1. Background 

Biological invasion poses a severe threat to biodiversity, second only to that of habitat 

destruction (Richardson & van Wilgen, 2004). The rapid increase in alien invasive species 

causes major species extinctions, resulting in homogenisation of fauna and flora throughout 

the world (Joshi et al., 2004). According to Singh (2005), an alien species is a non-native 

organism that occurs outside of their natural habitat and beyond their dispersal potential. Some 

species can become invasive when they establish quickly and out-compete native species 

(Singh, 2005). Some of the ways that invasive species impact their surrounding environment 

is by changing the functioning of ecosystems and their hydrology. They influence soil structure, 

soil profile, nutrient content, moisture and decomposition due to their distinct resource 

requirements, mode of resource acquisition and consumption that is different compared to 

native species. Invasive species therefore seriously hinder conservation and sustainability, 

while negatively impacting ecosystem goods and services (Singh, 2005). Human communities 

are also greatly impacted by invasive species, as they erode natural capital and threaten 

economic productivity (Richardson & van Wilgen, 2004). Thus, biological invasions are a 

global problem and will increase in severity due to global trade, travel and tourism (Singh, 

2005). These vast ecological, economic and human consequences spark the need to hinder the 

spread of alien invasive species.  

Parthenium hysterophorus L. is an herbaceous annual or biennial plant (Belz et al., 2009) that 

establishes and grows rapidly in new environments (Joshi et al., 2004; Singh et al., 2005). Each 

plant can produce an extensive seed bank (between 10 000-15000 viable seeds), capable of 

dispersing over great distances (Patel, 2011). Furthermore, it thrives in various environmental 

conditions, allowing it to colonize different habitats, including road sides, barren land, crop, 

and grazing lands (Dhileepan & Strathie, 2009; Nigatu et al., 2010; Kaur et al., 2014). It 

aggressively colonizes disturbed and degraded areas with exposed soils and low ground cover 

(Singh et al., 2005; Belz et al., 2009), which create open spaces for parthenium to invade. For 

instance, grazing lands are especially susceptible to invasion by parthenium, due to increased 

levels of disturbance caused by high livestock densities (Strathie et al., 2011). Parthenium can 
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also cause an entire habitat change by replacing native vegetation, especially in grasslands, 

woodlands and flood plains (Dhileepan et al., 1996; Nigatu et al., 2010). Allelopathic 

properties of parthenium play a large role in inhibiting the growth and seed germination of 

surrounding vegetation, by releasing chemicals into the soil (Strathie et al., 2011). It can reduce 

agriculture and pasture productivity drastically, causing lower crop yields and grass biomass 

(Dhileepan et al., 1996; Patel, 2011); therefore causing huge economic losses. 

Parthenium is regarded as the most dangerous terrestrial weed, attributed to its harmful impact 

on biodiversity and humans (Kaur et al., 2014). It contains a toxic substance named parthenin 

that has a significant health threat to animals and humans (Patel, 2011). The prolonged 

exposure of parthenium to humans can cause dermatitis, blisters, hay fever and bronchitis, 

amongst other symptoms (Dhileepan et al., 1996; Singh et al., 2005; Kelaniyangoda & 

Ekanayake, 2010; Patel, 2011; Strathie et al., 2011). Parthenium can form large stands, which 

animals may feed on. This can cause haemorrhaging and tissue damage of their internal organs 

(Kelaniyangoda & Ekanayake, 2010; Nigatu et al., 2010). A substantial amount of parthenium 

in the diet of cattle can result in death (Kaur et al., 2014). 

Parthenium originated in Central and Southern America and has spread to Asia, Australia and 

Africa (Strathie et al., 2011). According to Nigatu et al. (2010), climate change and higher 

carbon dioxide in the atmosphere will further increase the invasion potential of parthenium, 

resulting in further expansion. Many countries in Africa have already been invaded by 

parthenium, including Mozambique, Swaziland, Zimbabwe and South Africa (Nigatu et al., 

2010; Strathie et al., 2011). Parthenium was documented for the first time in 1880 in South 

Africa and became prevalent in the 1980s. It now widely populates Mpumalanga, North West 

and KwaZulu-Natal, subtropical north-eastern provinces of the country (Strathie et al., 2011). 

Studies conducted in South Africa have shown that there are extensive seed banks of up to 

95 800 seeds/m² in some study sites, while other studies have indicated that seeds are capable 

of germinating within 24 hours under tunnel conditions (Strathie et al., 2011). These ecological 

properties of parthenium may have facilitated their extensive spread. It has even infiltrated 

protected areas and national parks such as the Kruger National Park and Hluhluwe-iMfolozi 

(Belz et al., 2009; Adkins & Shabbir, 2014), creating a threat to endangered plant and animal 

species. Furthermore, the economic impacts on South Africans have been substantial as many 

people make their living by livestock and agricultural farming (Mcconnachie et al., 2011). 
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Controlling parthenium via chemical or mechanical methods is expensive, especially for a 

developing country; hence manual labour of predominantly women and children is used, which 

is labour intensive, time-consuming and detrimental to health (Mcconnachie et al., 2011). The 

vast economic losses and environmental and health concerns in South Africa caused by 

parthenium has prompted the need to study parthenium invasion. First, however, we must focus 

on accurately mapping their distribution to determine the extent of the invasion, so that we 

make informed decisions on where and how to use limited resources.  

Remote sensing has been successfully applied for the collection of data and mapping alien 

invasion and their impact (Joshi et al., 2004). Its synoptic view, multi-temporal coverage and 

cost-effectiveness are greatly beneficial in monitoring changes caused by alien invasive species 

(Joshi et al., 2004). Traditional methods of acquiring field data are expensive, labour-intensive, 

time consuming and in some cases, not practical (Bruzzone & Prieto, 2001; Turner et al., 2003; 

Ruiz- Gallardo et al., 2004). Remote sensing provides a convenient method to studying 

complex geographic terrain and ecosystems that are inaccessible (Joshi et al., 2004). Consistent 

and frequent imagery allows the detection and quantification of land cover changes (Joshi et 

al., 2004), which would be extremely useful for invasion mapping. Moreover, it is invaluable 

for monitoring an alien invasive species, such as parthenium, that has been spreading rapidly 

throughout continents.  

Once we have identified our need for remote sensing, we need to determine the sensors that 

are most suited to our specific needs. There are a variety of remote sensing scanners that offer 

different spatial and spectral resolutions and are suited to different purposes. For example, 

multispectral scanners capture a few broad spectral bands of approximately one hundred nm 

wide (Joshi et al., 2004). They are useful for discriminating between broad land cover classes, 

for example forests, water and soil (Joshi et al., 2004). Conversely, hyperspectral scanners have 

narrower band widths (from a few nm to tens of nm) and many spectral bands (tens to several 

hundred) (Joshi et al., 2004) that aid in discriminating between more subtle differences, such 

as different species of vegetation (Adam et al., 2012). Even though hyperspectral imagery 

would seem like an ideal choice in most analyses, including invasion mapping, it suffers from 

a few severe limitations that hinder its extensive use, such as large data volumes, redundancy, 

multicollinearity and high expense (Dye et al., 2011). We therefore need to look at alternatives. 
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While there are many studies that have documented the ecology of parthenium and its 

numerous effects, there are very limited studies focusing on the spatial distribution and 

monitoring of alien invasive plants, including parthenium. However, these studies have been 

successful in mapping parthenium, which is an encouraging step towards consistent 

monitoring. For example, a study by Kganyago et al. (2018) mapped parthenium using OLI 

and SPOT 6 and FRAGSTATS with high accuracy, and showcased that SPOT 6 was more 

suited to delineating gaps and more accurately estimated patch sizes compared to OLI. Another 

recent study by Arogoundade et al. (2019) successfully mapped parthenium using Sentinel-2 

in the MaxEnt environment, by combining environmental variables with remotely sensed data 

and also achieved high accuracy. These encouraging results show that monitoring parthenium 

is indeed possible, prompting us to further investigate the ability of affordable sensors to 

accurately map parthenium. We can further explore the strengths and weaknesses of each 

sensor to determine which provides better results; thereafter we may beneficially use these 

sensors for mass alien invasive monitoring across the globe. More specifically, in this study we 

would like to explore the mapping ability of new generation sensors. These sensors were 

developed in the recent years that attempt to merge the advantages of multispectral and 

hyperspectral imagery. This includes sensors such as WorldView-2, RapidEye and Sentinel 

(Omer et al., 2015). It has specifically focused on including strategically positioned bands, 

mainly within the red-edge region (Adelabu et al., 2014). 

Sentinel-2 has attracted a lot of attention within the remote sensing community, due to its open 

access and free imagery. One of its pioneering features is three spectral bands situated in the 

red-edge and two in the short-wave infrared region, proven to be particularly useful in 

vegetation analysis (Immitzer et al., 2016). Furthermore, it has a minimum revisit time of 

approximately 5 days (van der Werff & van der Meer, 2016), which could offer unprecedented 

opportunities to track short-term changes (Kussul et al., 2017). The draw-back of Sentinel-2 

imagery is that the spatial resolution ranges from 10 to 60 metres (Lefebvre et al., 2016), which 

is quite coarse for detecting land cover that is heterogeneous. However, it is more beneficial to 

work with free imagery due to limited resources, especially in developing countries; hence it 

is necessary to compare the capabilities between free and commercial sensors of similar 

spectral and spatial characteristics. RapidEye is a commercial sensor that is comparable to 

Sentinel-2 in terms of spectral and spatial resolution. RapidEye has a spatial resolution of 5 m 

and four spectral bands, including a red-edge band. Research has shown that the red-edge band, 
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specifically, picks up subtle differences between vegetation, therefore has been useful in 

grassland mapping and detecting change in land cover (Gärtner et al, 2016). These two sensors 

offer a great opportunity to detect alien invasive species, such as parthenium, especially due to 

its distinct physiological characteristics as compared to other species. Stochastic gradient 

boosting (SGB) was the classification method used to make land cover classes from RapidEye 

and Sentinel-2 imagery in our first study. It was chosen due to the substantially higher 

accuracies it produced, compared to common parametric and other boosting methods. As this 

method is popular with radar or very high resolution sensors, but is limited for medium and 

high resolution sensors (Dube et al., 2015), it is necessary to understand its performance using 

coarser spatial resolution. This will enable us to exploit free imagery to our maximum benefit 

if results are satisfactory. Furthermore, SGB has not been used often in ecological applications 

(Chirici et al., 2013; Filippi et al., 2014) and to our knowledge has not been used for the 

detection of parthenium, hence prompting its investigation. 

Image texture is an alternative to using spectral information. Texture is determined by the 

spatial arrangement of grey tones within an image (Franklin et al., 2000) and can be described 

based on how smooth or coarse the features are within the image (Chica-Olmo & Abarca-

Hernandez, 2000). However the terms “smooth” and “coarse” tends to be very subjective, 

therefore quantitative approaches were invented for objective texture description (Chica-Olmo 

& Abarca-Hernandez, 2000). It can also be analysed computationally using remote sensing 

imagery. The combination of texture and spectral information has been shown to provide more 

accurate classification results than spectral information alone (Wulder et al., 1998; Mariz et 

al., 2009). However, texture is dependent on the spatial resolution of imagery, with coarser 

spatial resolution negatively affecting classification results. Consequently, it is important to 

use very high spatial resolution imagery. SPOT 6 is an operationally free sensor that offers 

very high resolution in the panchromatic band (1.5 m) and high resolution in four multispectral 

bands (6 m) (Oumar, 2016), each of which is sensitive to different land covers characteristics. 

The in-expense and superior spatial resolution of SPOT 6 images is extremely beneficial for 

research and other purposes, especially in financially-constrained countries like South Africa. 

For this reason, SPOT 6 imagery was chosen for the second study to conduct texture analysis, 

which may be useful in detecting alien invasive herbaceous species, such as parthenium. The 

method used to create land cover classes (including parthenium) was the Partial Least Squares-

Discriminant Analysis (PLS-DA). The PLS-DA is a partial least squares regression (Pérez-
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Enciso & Tenenhaus, 2003) that decomposes explanatory variables into a few latent 

components, while retaining the most important information (Peerbhay et al., 2014; Lenhardt 

et al., 2015). It is extremely useful for analyses that have many explanatory variables, such as 

spectral bands or texture parameters, hence it was chosen for this study.  

1.2. Research problem 

The extensive damage of parthenium to biological systems and humans on a global scale 

triggers the crucial need to map this species so that we may understand its extent and thereafter 

propose mitigation measures in line with this understanding. The rapid spread across different 

countries and continents calls for a need for up-to-date information on the distribution of 

parthenium. To date, methods of mapping alien invasive species have been very limited, with 

manual data collection methods being labour-intensive, expensive and impractical for large and 

inaccessible areas. Accurate mapping of alien invasive species, such as parthenium, requires 

enough spatial and spectral detail to differentiate it from other land cover, while also being 

affordable and accessible to resource-constrained countries. 

The following research problems were identified:  

I. The availability of accessible and affordable sensors with adequate spatial resolution to 

detect and map erratic parthenium patches in resource limited countries. 

II. The affordability of sensors with adequate spectral resolution or strategically positioned 

bands that is able to differentiate between spectrally similar land cover classes. 

III. Mapping of parthenium is difficult using multispectral sensors due to the limited 

information that broad bands provide, hence it is important to investigate alternate 

imagery analysis. 

1.3. Scope of the study  

Remote sensing provides an inexpensive, innovative and efficient method to map alien invasive 

species, which consumes far less time. Different types of remote sensors are available, with 

commercial sensors providing better mapping capabilities, such as higher spatial and/or 

spectral resolution. Detecting smaller patches of land cover becomes challenging using freely 

available imagery, such as LANDSAT, that has coarser spatial resolution. However, the new 

generation of sensors that have recently been released may provide a solution to this. Sentinel-
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2 is new generation sensor that has high spectral resolution (13 spectral bands) that would 

greatly aid subtle class discrimination. This is particularly useful when differentiating between 

parthenium and the surrounding natural vegetation. The one drawback is its coarse spatial 

resolution (10-60 m). On the other hand, RapidEye is a commercial sensor with high spatial 

resolution of 5 m, but a low spectral resolution of 5 bands. These two sensors provide an 

interesting ground for comparison to map parthenium due to patch sizes being similar in size 

to RapidEye and Sentinel-2 pixel size. Investigating their strengths and weaknesses will be an 

outstanding way to decide if investing limited resources in commercial sensors is necessary 

and worthwhile for a particular project.  

Due to spectral confusion with co-existing vegetation or an imprecise overlay of the GPS points 

with the pixels on the image, sensors with even finer spatial resolution may be necessary to 

map parthenium. Furthermore, another limitation to mapping parthenium is its small patch 

sizes and erratic growth patterns, which makes accurate mapping more difficult. Consequently 

SPOT 6, which is an operationally free sensor that provides very high spatial resolution 

imagery in the panchromatic band, was chosen for the second study. Furthermore, spectral 

analyses may be of limited value for discriminating between different vegetation types, due to 

their similar spectral qualities and the inadequate spectral resolution of multispectral sensors. 

Thus, alternate imagery analyses should be considered to determine which is more successful 

for parthenium detection. For these reasons, texture analysis was used in the second study, 

which makes use of grey tonal variations and patterns in an image, and has shown good results 

in vegetation mapping. It was used in conjunction with the PLS-DA algorithm to create land 

cover classes of parthenium and the surrounding land cover. Limitations whilst carrying out 

the study included lack of many large parthenium stands to sample and time constraints in 

taking out wide-spread sample points of each land cover class.  

1.4. Aims and objectives 

With this background understanding, this dissertation has the following aim and objectives. 

The aim of this study was to investigate the ability of spectral and textural information of 

multispectral remote sensing imagery to map Parthenium hysterophorus L. (parthenium) and 

the surrounding land cover. The specific objectives were as follows:  
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I. To compare the ability of new generation multispectral sensors: Sentinel-2 and 

RapidEye to detect parthenium and the surrounding land cover using spectral 

information and SGB algorithm 

II. Evaluate the ability of texture analysis to map parthenium and the surrounding land 

cover using the PLS-DA algorithm and SPOT 6 imagery 

1.5. Research questions 

This dissertation addresses the following research questions: 

I. Which multispectral sensor detects parthenium and the surrounding land cover with the 

highest classification accuracy between Sentinel-2 and RapidEye? 

II. Are multispectral or panchromatic bands of SPOT 6 more efficient at detecting and map 

parthenium and the surrounding land cover using texture analysis? 

1.6. Outline of dissertation  

This dissertation consists of four distinct chapters. It is structured around two main chapters, 

namely chapter two and three, which constitute publishable papers. These will be submitted to 

peer-reviewed journals for publication. Both chapters have detailed information on the 

literature review, study area and methodology, therefore this introductory chapter does not 

include this information.  

Chapter Two compares the ability of new generation multispectral sensors, Sentinel-2 and 

RapidEye, to detect Parthenium hysterophorus L. and other land cover classes using the 

stochastic gradient boosting algorithm. Vegetation indices were computed and used as 

predictor variables along with the spectral bands. The most significant predictor variables were 

determined and ranked for importance towards classification. 

Chapter Three focuses on using texture analysis to map Parthenium hysterophorus L. and other 

land cover classes. The texture analysis was run using grey-level occurrence and grey-level co-

occurrence measures. Thereafter, the PLS-DA ensemble was used to classify the image into 

land cover classes. The texture variables with the most influence during the classification 

process were chosen using the variable importance (VIP) method.  
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Chapter Four is a synthesis chapter, providing a summary of the entire study. The overall aims 

and objectives are revisited, highlighting the important findings and conclusions. This chapter 

further looks into the limitations of the study, furthermore presenting future recommendations.  

 

 

  



 

 10  

 

CHAPTER 2 

2. COMPARING THE ABILITY OF SENTINEL-2 AND RAPIDEYE 

TO DETECT ALIEN INVASIVE SPECIES PARTHENIUM 

HYSTEROPHORUS L. USING SPECTRAL INFORMATION 

2.1.  Abstract 

Parthenium (Parthenium hysterophorus L.) is an alien invasive plant species that has had 

devastating impacts throughout the world, including biological homogenisation, animal and 

human health effects and substantial economic loss. Invasion has occurred in three continents, 

including Africa, where it has placed pressure on livelihoods, resulting in the need to monitor 

parthenium distribution. Recent technological advances in GIS and remote sensing have proven 

beneficial for tracking alien invasion, creating extensive opportunities for inexpensive 

monitoring. Due to financial constraints in South Africa, it is more beneficial to use free 

imagery, rather than commercial imagery, hence it is necessary to compare the capabilities 

between them and assess the benefits of using each. For this reason, this study compared 

commercial sensor RapidEye with freely available Sentinel-2 using their spectral bands and 

vegetation indices to discriminate between parthenium and the surrounding land cover. 

Sentinel-2 achieved a higher overall classification accuracy than RapidEye (82% and 71%, 

respectively). Sentinel-2 outperformed RapidEye in classifying most land cover types, despite 

its lower spatial resolution, which may be attributed to the superior spectral resolution of 

Sentinel-2. However, RapidEye outperformed Sentinel-2 for the classification of parthenium. 

Considering that some patches of parthenium were smaller than the spatial resolution of 

Sentinel-2, it can be deduced that the finer spatial resolution of RapidEye resulted in a higher 

accuracy for parthenium. Overall, the results suggest an opportunity to utilize freely available 

Sentinel-2 imagery to detect and map plant invasive species, which is a major advantage for 

resource-constrained countries in Africa. 

Key words: Parthenium hysterophorus L.; alien invasive species; Sentinel-2; RapidEye; high 

resolution; multispectral; SGB 
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2.2. Introduction 

Parthenium hysterophorus L. (hereafter referred to as parthenium) is one of the world’s most 

devastating and hazardous alien invasive plant species (Singh, 2005). It has the ability to 

rapidly establish itself in a new environment, out-compete native species (Joshi et al., 2004; 

Singh, 2005), and effectively disperse over vast distances (Patel, 2011). Furthermore, it can 

thrive in a variety of environmental conditions, therefore colonizing a wide range of habitats, 

such as crop and grazing lands, road sides, barren land and riparian habitats (Dhileepan & 

Strathie, 2009; Nigatu et al., 2010; Kaur et al., 2014). Parthenium is regarded as the most 

hazardous terrestrial weed attributed to its harmful impact on the health of biodiversity and 

humans (Kaur et al., 2014). Parthenium contains a toxic substance named parthenin that has a 

significant health threat to animals and humans (Patel, 2011). When present in large stands, 

animals such as cattle sometimes feed on it, causing haemorrhaging and tissue damage of their 

internal organs (Kelaniyangoda & Ekanayake, 2010; McConnachie et al., 2011; Kaur et al., 

2014). Prolonged exposure to this plant can cause several health issues among humans, for 

example contact dermatitis, blisters, hay fever and bronchitis, amongst other symptoms 

(Dhileepan et al., 1996; Singh, 2005; Kelaniyangoda & Ekanayake, 2010; Patel, 2011; Strathie 

et al., 2011). Additionally, parthenium can result in huge economic losses by reducing 

agriculture and pasture productivity, thereby causing lower crop yields and grass biomass 

(Dhileepan et al., 1996; Patel, 2011). 

The invasive plant originated in Central and Southern America (Singh, 2005; Kelaniyangoda 

& Ekanayake, 2010; Nigatu et al., 2010; Strathie et al., 2011) and has since spread around three 

other continents, namely Africa, Asia and Australia (Tefera, 2002; Nigatu et al., 2010; Patel, 

2011). Its tropical origin allows it to be more invasive in warmer climates (Patel, 2011); 

consequently, studies have shown that a large part of sub-Saharan Africa has the potential for 

being highly affected by parthenium invasion in upcoming years due to climate change 

(Strathie et al., 2011; Kaur et al., 2014). Many countries in Africa have already been invaded, 

including Ethiopia, Mozambique, Swaziland, Zimbabwe and South Africa (Nigatu et al., 2010; 

Strathie et al., 2011). Parthenium was first documented in KwaZulu-Natal, South Africa in 

1880 (Belz et al., 2009; Retief et al., 2013). It has infiltrated protected areas and national parks 

such as the Kruger National Park and Hluhluwe-iMfolozi (Belz et al., 2009; Adkins & Shabbir, 

2014), where it could threaten endangered plant and animal species. The economic impacts on 
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South Africans have been substantial as many earn their living from livestock and agricultural 

farming (Mcconnachie et al., 2011). Furthermore, milk and meat products from affected 

animals are not suitable for human consumption (Kelaniyangoda & Ekanayake, 2010; Patel, 

2011), further increasing economic losses. The vast economic losses and environmental and 

health concerns in South Africa caused by parthenium has prompted the need to study 

parthenium invasion.  

Traditionally, alien invasion data was collected using ground-based surveys, very high spatial 

resolution aerial photography or manual processing of photography (Müllerová et al., 2013). 

The utility of these traditional methods, such as field surveys have shown remarkable capability 

in mapping and managing alien invasive species. Although this approach has been proven 

accurate, it is associated with serious challenges such as cost, time, limited coverage of remote 

and inaccessible areas and is labour intensive (Bruzzone & Prieto, 2001; Turner et al., 2003; 

Ruiz- Gallardo et al., 2004). However, the emergence of remote sensing and GIS has proven 

an efficient and powerful method to track alien invasion (Heilman, 2002; Ruiz- Gallardo et al., 

2004; Otukei & Blaschke, 2010), whilst being inexpensive, less time consuming and more 

accurate (Rawat & Kumar, 2015). It is particularly useful for coverage of large geographical 

areas, with repetitive coverage providing the ability for tracking changes (Dube et al., 2017). 

Remote sensing has been used successfully for alien invasion monitoring in a number of 

studies, for example Ustin et al., (2002), Fuller (2005), Hamada et al. (2007) and Asner et al., 

(2008). Most case studies explore shrub and tree species, however monitoring of herbaceous 

species (for example, parthenium) is only possible when enough spatial and/or spectral detail 

of imagery is provided (Müllerová et al., 2013). Furthermore, the species needs to be 

sufficiently distinct from surrounding vegetation or land cover, form dense stands or be large 

enough for detection (Müllerová et al., 2005; Jones et al., 2011). Generally, hyperspectral 

information was used as it is difficult to detect herb species, with uncommon use of 

panchromatic and multispectral data (Müllerová et al., 2013). However, hyperspectral data has 

its own set of drawbacks, including expense, data redundancy, large correlation between bands 

and difficulty in analysing large datasets (Mutanga et al., 2012). Furthermore, hyperspectral 

imagery has limited availability and cannot be utilized often in resource-strained areas like 

South Africa (Dube et al., 2017). Other remote sensing datasets that are affordable, readily 

available and have strategically positioned bands such as multispectral imagery (Dube et al., 

2017) should therefore be considered for monitoring of parthenium. 
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Recently, a new generation of satellites were introduced with high spatial and temporal 

resolution, for example WorldView-2, WorldView-3, RapidEye and Sentinel-2 (Omer et al., 

2015). Improvement in these sensors has focused on including strategically positioned broad 

bands, mostly within the red-edge region (Adelabu et al., 2014). The red edge band provides 

crucial and sensitive measurements of plant characteristics, including chlorophyll and leaf area 

index, that are unavailable in pre-existing multispectral sensors, for example Landsat and 

SPOT (Dube et al., 2017). Sentinel-2 is an innovative sensor that offers freely available 

imagery with high spatial resolution (between 60 and 10 metres) and 13 multispectral broad 

bands, which ranges from the visible to short-wave infrared region (Lefebvre et al., 2016; 

Navarro et al., 2017). The most pioneering feature of this sensor is the three spectral bands 

situated in the red-edge and two in the short-wave infrared region, proven to be particularly 

useful in vegetation analysis (Immitzer et al., 2016). It has a wide swath and a revisit time of 

minimum five days owing to twin satellites (Van Der Werff & Van Der Meer, 2016). The 

frequent coverage of Sentinel-2 and free data access offers unprecedented opportunities to 

capture landscape changes in the short-term (Kussul et al., 2017), providing the ability to track 

and monitor phenomena such an alien plant invasion. A limitation to Sentinel-2 imagery is that 

the spatial resolution is too coarse for detection of small patches of a certain land cover type, 

hence finer spatial resolution would be preferred. As free imagery reduces financial constraints, 

it is important to compare Sentinel-2 to a commercial sensor of finer spatial resolution to 

understand the benefits of using each sensor and make informed decisions.  

RapidEye is the first multispectral commercial sensor with a red-edge band and a high temporal 

and spatial resolution (Kross et al., 2015). It has a spatial resolution of 5 metres and 5 

multispectral broad bands. The RapidEye constellation consists of five satellites that have a 

temporal resolution of up to one day and a relatively wide swath of 77 km (Kross et al., 2015). 

It has commonly been utilized for grassland mapping and detection of land cover change 

(Gärtner et al, 2016). RapidEye and Sentinel-2 are comparable based on their spectral and 

spatial resolution, with the most significant difference being that Sentinel-2 is freely available, 

whereas RapidEye is a commercial sensor. To our knowledge, there are limited studies that 

have investigated parthenium detection using multispectral imagery, despite its large threat to 

the environment and society; hence it is imperative to find suitable sensors for accurate and 

affordable detection and mapping. Consequently, this study aims to compare the capability of 

Sentinel-2 and RapidEye imagery in land cover classification, specifically focusing on 
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parthenium. The specific objectives are to: 1) determine the most important spectral bands and 

vegetation indices used to detect parthenium and other land cover using RapidEye and Sentinel-

2 imagery; 2) determine the sensor with the highest classification accuracy, particularly 

focusing on parthenium.  

2.3. Materials and Methods 

2.3.1. Study site and data collection 

The study site is situated in the north-eastern municipality of Mtubatuba, alongside the 

coastline of KwaZulu-Natal, South Africa (Figure 2.1). Mtubatuba is in close proximity to 

Hluhluwe and Umfolozi Game Reserves and Lake St Lucia. The climate is warm and temperate 

with an average temperature of 21.7 ᵒ C and an annual average rainfall of 967 mm. The 

vegetation consists of savanna, natural forests, agriculture and plantations. Other land uses 

consist of ecotourism, low and high residential areas. Shapefiles used to map the location were 

provided by the University of KwaZulu-Natal, Pietermaritzburg, Geography department. The 

imagery of the study site was captured by RapidEye at 5 m spatial resolution. 
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Figure 2.1: Location of the study site in Mtubatuba, KwaZulu-Natal, South Africa. 

Data collection occurred in the field in late February 2018, in summer. GPS locations of land 

cover classes were captured using a differentially corrected Trimble GeoXT handheld GPS 

receiver. Nine land use covers were selected, namely parthenium, grass, natural 

forest/vegetation, commercial forest, agriculture, bare soil, buildings, roads and water. GPS 

points for parthenium were taken in patches greater than 10 m² so that they would be detectable 

by Sentinel and RapidEye sensors (with a spatial resolution of 10 m² and 5 m², respectively). 

However, due to a limited amount of large parthenium patches, some GPS points were taken 

in patches that were less than 10 m². Fifty GPS points of parthenium were taken in the field. 

Ten pre-determined points using purposive sampling from Google Earth 7.3.2.5776 for each 

of the eight remaining classes were located in the field and verified. The other points for each 

class (approximately 50) were taken from Google Earth 7.3.2.5776 that provides very high 

resolution satellite imagery using purposive sampling based on our knowledge of the area. This 

was compared with the Sentinel-2 and RapidEye images for any discrepancies due to 
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differences in field date to acquisition date. Class distribution of all collected GPS points are 

shown in Table 2.1. 

Table 2.1: Class distribution of GPS points 

Class 

Number of GPS 

points 

Agriculture 60 

Bare soil/pathways 60 

Buildings 60 

Commercial forest 60 

Grass 60 

Natural forest 56 

Parthenium 50 

Roads 60 

Water 60 

2.3.2. Satellite imagery 

2.3.2.1. RapidEye 

Two RapidEye scenes dating 21st of March 2018 were downloaded from PlanetTM, which is 

sponsored by the German Federal Ministry of Economy and Energy (Dube et al., 2017). 

RapidEye imagery contains 5 spectral bands, each with 5 m spatial resolution. The bands 

include blue (440-510 nm), green (520-590 nm), red (630-685 nm), red edge (690-730 nm) and 

near-infrared (760-850 nm) (Dube et al., 2017). Orthoproduct images were chosen, where 

sensor and geometric corrections were already applied. The images were pre-processed for 

radiometric calibration in ENVI 4.3, using FLAASH (Fast Line-of-sight Atmospheric Analysis 

of Hypercubes). The images were projected using WGS 1984 UTM. The two scenes were 

mosaicked in ArcMap 10.4 to create one image for the analysis. A shapefile was created using 

the GPS points collected and used to extract reflectance values for each land cover class from 

the RapidEye image.  

2.3.2.2.  Sentinel-2 

Sentinel-2 comprises of 13 spectral bands, which span the visible to shortwave infrared regions 

of the electromagnetic spectrum (Lefebvre et al., 2016; van der Werrf & van der Meer, 2016). 

Four 10 metre bands ensure continuity with other sensors of similar spatial resolution, such as 

Landsat-8 and SPOT 5. Six, 20 metre bands enhance land cover classification and three 60 
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metre bands are used for atmospheric correction. Due to their coarse spatial resolution and their 

main use in atmospheric corrections, these 60 metre bands (bands 1, 9 and 10) were not used 

for the analysis. One Sentinel-2B scene covering the study area was downloaded for the 23rd 

of February 2018 from the European Space Agency’s (ESA) Sentinel Scientific Data Hub, 

which provides free access to Sentinel-2 imagery. It was pre-processed using the semi-

classification plugin in QGIS. The spatial resolution ranged from 10 to 20 metres, therefore it 

was homogenized to 10 m using nearest neighbour resampling. Like the RapidEye image, 

reflectance values for each land cover class were extracted from the image to create a model of 

the investigated land cover types. 

2.3.3. Data Analysis 

A variety of vegetation indices were computed using RapidEye and Sentinel-2 bands. 

Stochastic gradient boosting (SGB) was used for the classification analysis. The data used for 

analysis included GPS points and their respective land cover. The data was split into 70% for 

training the classifier and 30% for testing the accuracy of the classification. According to 

Adelabu et al. (2015), the 70-30% split produced the lowest mean standard error and 

consequently produced the highest accuracy. Spectral bands and their respective vegetation 

indices for each sensor were ranked for their importance in the classification process. The 

highest accuracy for each sensor was chosen based on the lowest number of predictor variables 

(consisting of both raw spectral bands and derived vegetation indices). Thereafter, the model 

was optimized using the random search method to improve the classification accuracies. 

Random search tunes algorithm parameters using a sample from a random distribution and a 

fixed number of iterations; thereafter a model is created and evaluated based on the 

combination of chosen parameters. The final accuracies were taken after model optimization. 

All analysis was run in a python environment.  

2.3.3.1.  Vegetation Indices 

Earth’s features reflect, absorb and transmit electromagnetic energy in various amounts 

depending on the type of material and condition (Prabhakar et al., 2012). These amounts 

change with different wavelengths, which enables different features to be distinguished. 

Remote sensing systems measure spectral reflectance, which is the portion of incident energy 

that is reflected. Vegetation indices are a radiation-based measurement which is calculated 
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from spectral reflectance captured by remote sensors (Prabhakar et al., 2012). Vegetation 

indices help to minimize external factors that cause reflectance variability and hence 

inaccuracies. They enhance spectral signals of green vegetation and reduce spectral noise 

caused by soil background, atmospheric influences and sensor viewing and sun angle (Dube et 

al., 2017). Vegetation indices are created by applying a mathematical operation using two or 

more spectral bands from a sensor. A variety of vegetation indices were computed for 

RapidEye and Sentinel-2 (38 and 88, respectively) to improve classification accuracy by 

enhancing the signals given off by individual classes, thereby increasing the separability 

between classes.  

2.3.3.2.  Stochastic Gradient Boosting  

Stochastic gradient boosting (SGB) is a supervised classification method that involves a hybrid 

between bagging and boosting procedures (Lawrence et al., 2004; Moisen et al., 2006; Chirici 

et al., 2013). Many regression or classification trees are built from pseudo residuals, using a 

random subset of the dataset, which produces an improvement in the model (Moisen et al., 

2006). Using a small fraction of the training dataset increases the prediction accuracy and 

computational speed, and avoids over-fitting. The combined effect of the model reduces its 

sensitivity to inaccurate training data and places emphasis on incorrectly classified training 

data that is closest to the correct classification, instead of the worst classified data (Lawrence 

et al., 2004). Therefore, SGB produces substantially higher accuracies than other boosting 

methods. Good performance has been achieved using SGB for remote sensing applications in 

comparison to common parametric methods for land use/cover classification (Chirici et al., 

2013). Tree-based ensemble approaches were popular in studies using radar or very high-

spatial resolution sensors, but have been limited for medium and high-spatial resolution sensors 

(Dube et al., 2015). Very high-spatial resolution data is expensive; therefore the accuracy of 

SGB for land use/cover classification using readily available data from medium-high spatial 

resolution sensors should be tested. Only a few ecological and forestry applications using the 

SGB method have been investigated based on remote sensing data (Chirici et al., 2013; Filippi 

et al., 2014). To our knowledge, SGB has previously not been used for the detection and 

classification of parthenium. 
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2.3.3.3.  Accuracy Assessment 

An accuracy assessment is used to test the accuracy of the classification results produced by 

the algorithm, compared to the verified ground truth data (Lewis & Brown, 2001). The training 

dataset is used to train the algorithm used for the classification, whereas the test dataset is used 

to produce classification accuracies. The accuracy of each land cover class produced by the 

algorithm can be evaluated using the user and producer accuracy (Belgiu & Csillik, 2018). The 

user accuracy is the probability that a pixel belongs to a specific class assigned by the classifier 

and the producer accuracy represents the probability of a certain class being classified correctly 

(Royimani et al., 2019). The overall accuracy is determined by the percentage of correctly 

classified samples to the total number of test data samples. The remaining percentage is referred 

to as overall disagreement, which can be divided into quantity and allocation disagreement, 

which is argued to be more informative than the kappa statistic (Warrens, 2015). Quantity 

disagreement is the difference between the comparison and reference map which is caused by 

the imperfect proportion of categories (Warrens, 2015). Allocation disagreement is the 

difference between comparison and reference map, caused by the imperfect spatial allocation 

of categories. These accuracies provide a measure of error to determine how useful the 

classification results are. 

2.3.4. Results 

In theory, each class being detected should have a unique spectral reflectance signature that 

changes throughout the electromagnetic spectrum. The change in spectral reflectance for each 

class throughout sensor bands can be represented in spectral curves. Spectral curves are 

important to determine how similar or dissimilar classes are, to know if they are separable using 

that specific sensor. According to the spectral curve for RapidEye (Figure 2.2), showcasing all 

investigated land cover classes; there is spectral similarity in blue (B), green (G) and red-edge 

(RE) between classes, with some overlap in reflectance. However, there is a widening between 

individual spectral curves of most classes within red (R) and near-infrared (NE), increasing 

separability between classes. This indicates that the red and near-infrared regions are important 

for land cover classification. However, there is a lot of spectral overlap between grass and 

parthenium throughout their spectral curves, signifying that it is difficult to distinguish between 

the two classes, hence reducing classification accuracy. 
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Figure 2.2: Spectral reflectance of land cover classes for RapidEye. 

Figure 2.3 illustrates the spectral curve of land cover classes for Sentinel-2. A fair amount of 

overlap between classes is evident for spectral bands blue (B), green (G), red (R), and red-edge 

1 (RE1), mostly representing the visible region of the electromagnetic spectrum. Shortwave 

infrared 1 (SW1) and shortwave infrared 2 (SW2) also show some spectral similarity between 

classes, but less than bands 2-5. Conversely, there is more spectral separability between land 

cover classes in red-edge 3 (RE3), near-infrared (NE) and near-infrared narrow (NIN), 

indicating that the region between the visible and shortwave infrared is more valuable for class 

differentiation. One important finding is that parthenium seems to be more easily 

distinguishable from other classes in the Sentinel-2 spectral curve, rather than RapidEye, 

suggesting that Senintel-2 should in theory attain higher classification accuracy. 
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Figure 2.3: Spectral reflectance of land cover classes for Sentinel-2. 

The eight most important bands and indices (variables) for the classification of the RapidEye 

image were chosen, which attained an overall accuracy of 68.99%. The 8 most important 

variables were blue, red, Green leaf index (GLI), Normalized green red difference index 

(NGRDI), Norm R (also referred to as Norm R), Normalized difference 550/450 plant pigment 

ratio (PPR), Normalized difference 550/650 photosynthetic vigour ratio (PVR) and Green 

atmospherically resistant vegetation index (GARI). After the model was optimized, the overall 

classification accuracy increased to 71%, with an allocation disagreement of 23% and a 

quantity disagreement of 6%.  According to Table 2.2, water and commercial forest achieved 

the highest producer accuracy (93% and 89%, respectively), while commercial forest, water 

and agriculture achieved the highest user accuracy (89%, 78% and 78%, respectively). The 

lowest producer accuracy was bare soil/pathways and grass (52% and 60%, respectively); the 

lowest user accuracy was parthenium, roads and buildings (60%, 61% and 61%, respectively). 

Despite the low user accuracy for parthenium, it achieved a high producer accuracy of 82%.  

 

Table 2.2: User and producer accuracy for various land cover classes for RapidEye. 
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 Producer Accuracy (%) User Accuracy (%)  

   

  

  

Agriculture 78 78  

Bare soil/pathways 52 72  

Buildings 65 61  

Commercial forest  89 89  

Grass 60 67  

Natural forest  71 71  

Parthenium 82 60  

Roads 65 61  

Water 93 78  

Allocation disagreement: 23%; Quantity disagreement: 6%; Overall accuracy: 71% 

    

Sentinel-2 had an overall accuracy of 82% and an allocation and quantity disagreement of 12% 

and 6%, respectively. Fourteen spectral bands and vegetation indices provided the most 

importance towards the model. The allocation and quantity disagreement was 12% and 6%, 

respectively. The 14 most important variables were band blue, green, red, near-infrared, 

shortwave infrared 1, shortwave infrared 2, Simple ratio 520/670 (SR520/670), Simple ratio 

MIR/Red eisenhydroxid-index (SRMIR/Red) and Red-edge position linear interpolation 

(REP), Tasselled cap wetness (WET), Tasselled cap yellow vegetation index MSS (YVIMSS), 

Anthocyanin reflectance index (ARI), Alt and Norm NIR. The user and producer accuracy 

ranged between 56-100% and 67-100%, respectively (Table 2.3). Commercial forest and water 

achieved the highest producer accuracy (both 100%), while water and bare soil/pathways 

achieved the highest user accuracy (both 100%). Grass and parthenium achieved both the 

lowest user and producer accuracy (67% and 67%; 56% and 53%, respectively). Furthermore, 

the sensitivity analysis for RapidEye showed that the red edge, near-infrared and green band 

ranked 25th, 36th and 19th, respectively out of 43 raw bands and vegetation indices. Red-edge 2 

and red-edge 3 of Sentinel-2 ranked 10th and 29th out of 98 raw bands and vegetation indices.  

 

 

 

Table 2.3: User and producer accuracy for various land cover classes for Sentinel-2. 
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Producer Accuracy (%) 

 

User Accuracy (%) 

 

Agriculture 76 89 

Bare soil/pathways 86 100 

Buildings 78 78 

Commercial forest 100 89 

Grass 67 56 

Natural forest  81 76 

Parthenium 67 53 

Roads 81 94 

Water 100 100 

Allocation disagreement: 12%; Quantity disagreement: 6%; Overall accuracy: 82% 

A comparison of the producer accuracy between Sentinel-2 and RapidEye shows that Sentinel-

2 outperformed RapidEye for most classes, except agriculture and parthenium (Figure 2.4). 

Figure 2.5, illustrating the user accuracy of Sentinel-2 and RapidEye, shows a similar trend, 

where Sentinel-2 out-performed RapidEye for all land cover classes, except for grass and 

parthenium. Sentinel-2 increased the average classification accuracy by approximately 10% 

for most land cover classes. However, RapidEye had a higher user and producer accuracy for 

parthenium, specifically.  

 

 

Figure 2.4: Producer accuracy for Sentinel-2 and RapidEye. 
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Figure 2.5: User accuracy for Sentinel-2 and RapidEye.  

2.4. Discussion 

This investigation focused on comparing the capability of Sentinel-2 and RapidEye in detecting 

Parthenium hysterophorus L. and the surrounding land cover using spectral bands and 

vegetation indices. The stochastic gradient boosting algorithm was used for the classification. 

RapidEye is the first multispectral commercial sensor developed with a red-edge band (Kross 

et al., 2015) intended to capture important spectral information not available in the visible 

region of the electromagnetic region. This is particularly true for capturing differences in 

vegetation. Horler et al. (1983), have stated that changes in chlorophyll is evident within the 

red-edge region, due to the inflection point where there is a rapid transition between reflectance 

in the red and near-infrared region. Chlorophyll causes major absorption broadening, shifting 

the red-edge towards longer wavelengths, at approximately 680 nm in the electromagnetic 

spectrum; whereas low chlorophyll concentration would result in a shift toward shorter 

wavelengths. For this reason, the sensitive red-edge region would be considered as potentially 

important for the discrimination between vegetation types, including grass, forests and alien 

invasive species. However, in our study we found that the red-edge band was only present in 1 

out of 6 of the most important RapidEye vegetation indices used for the classification analysis. 
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Sensitivity analysis also indicates that the red-edge band ranked 25th out of 43 bands and 

indices, confirming its poor performance in class discrimination. Furthermore, the spectral 

curve for RapidEye indicates a high overlap between classes in the red-edge region; therefore 

it may not have been able to effectively capture marked differences between land cover types. 

This is supported by the fact that the red-edge band of RapidEye was ranked 25th out of a 

combination of 43 raw bands and vegetation indices that were analysed on their importance in 

the classification.  

Sentinel-2 displayed a similar trend as RapidEye, with the visible region and first red edge 

band showing some spectral overlap between classes. However, red-edge band 2/ 3, near-

infrared and near-infrared narrow showed a greater ability to distinguish between classes. It 

should be noted that the band range for the red-edge band/s for RapidEye and Sentinel differ, 

i.e. RapidEye is 690-730 nm, while the three red-edge bands for Sentinel-2 range from 694-

714 nm (red-edge), 731-749 nm (red-edge 2) and 768-796 nm (red-edge 3). This is important 

to highlight to understand the wavelengths and bands that are important for class 

discrimination. RapidEye red-edge band has a similar spectral range to Sentinel-2 red-edge and 

both bands show a higher level of spectral overlap for various classes, which may result in 

difficulty in distinguishing between land cover classes. However, red-edge 2 and red-edge 3 

for Sentinel-2 began showing more separability between classes and were ranked 10th and 29th 

out of 98 bands and indices in the sensitivity analysis. Furthermore, the near-infrared band of 

RapidEye (760-850 nm) also shows more separability between classes and it is interesting to 

note that the spectral range of red-edge 3 of Sentinel-2 is captured within the broader near-

infrared RapidEye band and show similar results. A study by Kganyago et al. (2018) found 

that Operational Land Imager’s (OLI) shortwave infrared bands were important for parthenium 

and land cover discrimination. Furthermore, Curran (1989) stated that the organic compounds 

found in leaves, such as cellulose, lignin and starch, cause minor and broad absorption features 

between 0.4-2.4 µm of the electromagnetic spectrum, which includes the shortwave infrared 

region and may provide some insight into its importance for class discrimination (Curran, 

1989). In our study, the shortwave infrared bands show some significance for land cover 

discrimination, however less than the red-edge and near-infrared region. This implies that a 

specific spectral range is more important to differentiate between vegetation and land cover 

classes, i.e. in this study 704 to 881 nm (red-edge to near-infrared narrow of Sentinel-2) of the 

electromagnetic spectrum.  
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Sentinel-2 achieved an overall classification accuracy of 82%, an allocation disagreement of 

12% and a quantity disagreement of 6%, while RapidEye achieved an overall classification 

accuracy of 71%, an allocation disagreement of 23% and a quantity disagreement of 6%. 

Sentinel-2 outperformed RapidEye during the classification analysis for most land cover 

classes. Even though Sentinel-2 has a coarser spatial resolution (between 10 to 20 m² used in 

this study) compared to RapidEye (5 m²), Sentinel-2 has a higher spectral resolution (13 bands) 

compared to RapidEye (5 bands). Spectral curves have shown that Sentinel-2 captures more 

spectral discrepancies between classes than RapidEye, which likely improved its ability to 

distinguish between land cover classes. The use of vegetation indices created from spectral 

bands may have also enhanced the signals given off by land cover classes, further improving 

separability. Moreover, Hsieh et al. (2001) states that high spatial resolution imagery may be 

able to provide more information for detailed observation of vegetation than coarse resolution 

imagery, however higher spatial resolution may not necessarily increase classification 

accuracy.  This is because smaller pixel sizes may fail to capture the spectral characteristics of 

a specific class, which increases the variability within a class and reduces the statistical 

separability between different classes (Yu et al., 2006). This results in a reduction of 

classification accuracy for pixel-based classification methods (Yu et al., 2006).  

Parthenium achieved the lowest classification accuracy for RapidEye and Sentinel-2, which 

could be attributed to the mixed pixel problem, which is an innate problem in raster imagery. 

Parthenium tends to grow in stands; however some stands where GPS points were taken were 

smaller than 10 m², due to a low number of areas with larger parthenium stands. This could 

have caused the reflectance signal for parthenium to be distorted by surrounding land cover, 

hence reducing classification accuracy. A similar finding was reported by Kganyago et al. 

(2018) who mapped parthenium and broad land cover classes using SPOT 6 and Landsat OLI 

using a similar methodology. They found that SPOT 6 outperformed OLI slightly, which was 

likely due to the coarser spatial resolution of OLI that was unable to capture smaller patches of 

parthenium and resulted in the spectral signature being overwhelmed by soil background 

reflectance, co-existing vegetation and other broad land cover classes. Grass also achieved a 

low accuracy for both sensors and the spectral curves shows that it is spectrally similar to 

parthenium. Furthermore, parthenium tends to grow amongst grass at the study site, thereby 

causing more spectral confusion during acquisition. Huang & Asner (2009) support this 

statement by stating that alien invasive species tend to be hidden between natural vegetation, 
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making it difficult to discern. This problem could potentially be overcome by capturing images 

in different seasons, where spectral differences may be evident between grass and parthenium. 

According to Müllerová et al. (2013), it is difficult to detect herbaceous species using 

multispectral data, which may explain low accuracies for grass and parthenium. Species also 

need to be sufficiently distinct from surrounding vegetation/land cover for easy detection 

(Jones et al., 2011). Multispectral sensors have limited ability in distinguishing land covers that 

are spectrally similar, due to their generally low spatial and spectral resolution that may be 

incapable of capturing subtle, yet significant, spectral differences (Dube et al., 2017).  

The superior performance of Sentinel-2 over RapidEye for land cover classification is 

extremely beneficial to the remote sensing community, by providing free imagery that could 

potentially attain good results for a variety of applications, including alien plant species 

detection. Even though Sentinel-2 achieved less than satisfactory results for parthenium and 

grass, it can still be considered a viable means for detecting alien invasion. Particularly, 

parthenium was more easily separated from other classes in the spectral curves using Sentinel-

2 rather than RapidEye, indicating that other factors may have reduced classification accuracy. 

Possibly the sizes of the parthenium patches were not large enough to be detected by the coarser 

resolution Sentinel-2, but were able to be detected by the finer resolution RapidEye. Results 

can be improved by focusing on larger stands of parthenium (if available) and increasing the 

number of GPS points for each class. With a larger pixel size, such as with Sentinel-2, it also 

has to be understood that there will sources of error in each pixel, as it is not often that each 

pixel contains only one land cover class. Hence, sensors sometimes cannot detect smaller 

patches of parthenium, which will create a discrepancy between invasion in real life and that 

which can be detected by a sensor. There is a level of inaccuracy which has to be accepted 

when dealing with classification based on pixels due to the generalization in each pixel. 

However, remote sensing remains a practical method for alien invasion mapping that is steadily 

improving with innovative technology, even for herbaceous species like parthenium. It 

provides an efficient and fast method to monitor alien invasive species, especially to track the 

areas that are heavily invaded and areas that can potentially be rehabilitated before extensive 

damage. Sentinel-2 can therefore be considered a suitable alternative to RapidEye for land 

cover and parthenium detection.  
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2.5. Conclusion 

This study compared the ability of commercial sensor RapidEye and freely available Sentinel-

2 in detecting the alien invasive species Parthenium hysterophorus L. and surrounding land 

cover using spectral bands and vegetation indices. We found that: 

 Sentinel-2 attained a higher overall accuracy of 82% and RapidEye achieved 71%. The 

allocation disagreement was 12% and 23% and the quantity disagreement was both 6% 

for Sentinel-2 and RapidEye, respectively.  

 Sentinel-2 outperformed RapidEye for most land cover classes. However, RapidEye 

achieved a higher accuracy than Sentinel-2 for parthenium. Since spectral curves show 

that Sentinel-2 provided a greater separability between classes, including parthenium, 

we have deduced that spatial resolution played a role in reducing the classification 

accuracy.  

 Sentinel-2 achieved reasonable results that can be improved by focusing on greater 

patches of parthenium during data collection.  

 Sentinel-2 can therefore be considered a suitable alternative to RapidEye. The 

feasibility of using free and efficient Sentinel-2 imagery for alien invasive mapping 

creates a plethora of opportunities for invasion monitoring to help us deal with 

contemporary environmental problems.  

2.6. Link to next chapter 

The chapter above has shown the ability of Sentinel-2 imagery in detecting Parthenium 

hysterophorus L. using spectral bands and vegetation indices. However, studies have also 

recommended the use of image texture in detecting and mapping invasive alien species. 

Therefore, the next chapter focuses on the ability of image texture in detecting and mapping 

Parthenium hysterophorus. 

 

 

CHAPTER 3 
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3. COMPARING THE ABILITY OF PANCHROMATIC AND 

MULTISPECTRAL SPOT-6 BANDS TO DETECT AND MAP 

PARTHENIUM HYSTEROPHORUS L. USING IMAGE TEXTURE 

ANALYSIS 

3.1. Abstract 

Parthenium hysterophorus L. (parthenium) is a devastating weed that is spreading rapidly 

throughout five continents, including Africa. Its climatic niche ranges between temperate and 

subtropical regions and it is suited to warmer climates, hence its invasion in most continents. 

Reasons for its rapid spread include rapid growth, allelopathy and extensive seed banks of 

parthenium. Moreover, globalization of markets, travel and tourism has enhanced the spread. 

Parthenium can drastically reduce agriculture and pasture productivity by outgrowing these 

species, which in turn impacts livestock production. This poses severe ecological and economic 

challenges in poverty stricken countries. Traditionally, information on plant distribution was 

collected using impractical, time-consuming and expensive methods. Remote sensing has 

revolutionized the collection of landscape feature data in recent years, making plant distribution 

studies more efficient. This study investigates the use of operationally free SPOT-6 imagery to 

map parthenium and associated land cover. Specifically, it utilized texture analysis to compare 

the mapping capability of 1.5 metre panchromatic and 6 metre multispectral SPOT-6 imagery. 

The Partial Least Squares-Discriminant Analysis (PLS-DA), a combination of a partial least 

squares regression and a classification technique, was used to classify the images and the VIP 

score was used to determine the significant predictor variables. The panchromatic band 

achieved higher user accuracy than multispectral bands for parthenium (64% and 56%, 

respectively) and a higher overall classification accuracy (77% and 73%, respectively). The 

results have indicated that the panchromatic band is more useful in mapping land cover 

distribution, including parthenium. Spatial resolution has been shown to be a crucial factor in 

texture analysis, with higher spatial resolution providing a better representation of features on 

the ground and producing textures for land covers that are distinguishable from one another. 

The panchromatic band was especially useful in being able to detect and map small patches of 

parthenium, which are more common than large stands; therefore improving the representation 

of remote sensing images to features on the ground.  
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Key words: Parthenium hysterophorus L.; SPOT-6; alien invasive species; texture; pan-

chromatic; multi-spectral; high-spatial resolution; PLS-DA 

 

3.2. Introduction 

Parthenium hysterophorus L. (hereafter referred to as parthenium) is a toxic alien invasive 

weed that is spreading rapidly throughout Asia, Africa and America (Singh, 2005; Kaur et al., 

2014). Its prolific seed production, allelopathic effects, strong competitiveness against natural 

vegetation and crops, and fast-spreading ability (Joshi et al., 2004; Singh, 2005) are among the 

top characteristics that make parthenium a worldwide threat to biodiversity, the economy and 

society. The toxicity of parthenium negatively affects human and animal health (Patel, 2011), 

for example causing respiratory problems and dermatitis in humans (Dhileepan et al., 1996; 

Singh, 2005; Kelaniyangoda & Ekanayake, 2010; Patel, 2011; Strathie et al., 2011) and internal 

bleeding and potentially death in animals (Nigatu et al., 2010; McConnachie et al., 2011; Kaur 

et al., 2014). Its presence has been notable in South Africa since the 1980s, specifically in 

KwaZulu-Natal, Mpumalanga and the North West (Belz et al., 2009; Strathie et al., 2011), 

where it is observed growing in large, impenetrable stands. Parthenium tends to invade 

disturbed areas, for example roadsides and areas where vegetation has been removed (Singh, 

2005; Belz et al., 2009), thereby easily out-competing surrounding natural vegetation and 

crops. For this reason, South Africans have suffered huge financial losses as a result of the 

reductions in crop yields and grass biomass that sustain livestock (Dhileepan et al., 1996; Patel, 

2011). Further financial loss results from tainted meat and milk, animal health problems and 

livestock death caused by parthenium (Kelaniyangoda & Ekanayake, 2010; Patel, 2011; 

Strathie et al., 2011; Kaur et al., 2014). The devastating effects of parthenium have sparked an 

urgency to eradicate the weed; however, first and foremost it is essential to map and monitor 

its distribution so that decision makers are able to make informed decisions regarding 

eradication.  

Remote sensing is an innovative technology that has been successful in many applications, 

such as forest inventory (Holmström & Fransson, 2003), land cover classification (Yuan et al., 

2005), change detection (El-Kawy et al., 2011), biomass estimation (Li et al., 2019) and 

chlorophyll content estimation (Zarco-Tejada et al., 2019). It has also been particularly useful 



 

 31  

 

in tracking and mapping biological invasion and has consequently received considerable 

interest (Gairola et al., 2013). Its synoptic view, multi-temporal coverage and cost-

effectiveness are greatly beneficial in monitoring changes caused by invasive species (Joshi et 

al., 2004). The popularity of remote sensing has been motivated by the limitations of traditional 

methods of collecting data, for example aerial photography (McRoberts & Tomppo, 2007) and 

field survey (Oumar, 2016). Collection of data in-field is expensive, labour-intensive, time 

consuming and in some cases, not practical, especially on a larger geographic scale (Bruzzone 

& Prieto, 2001; Turner et al., 2003; Ruiz- Gallardo et al., 2004). Remote sensing offers a useful 

approach to studying remote and complex environments (Joshi et al., 2004; Rawat & Kumar, 

2015), for example mountainous areas. Consistent and frequent imagery allows the detection 

of vegetation and land cover changes and the ability to quantify these rates of change (Joshi et 

al., 2004). A significant advantage of using remote sensing imagery is that it can provide more 

information than can be attained by conventional methods (Franklin et al., 2000), for example 

its ability to capture information in the near-infrared and short-wave infrared region of the 

electromagnetic spectrum. This is extremely beneficial because the spectral reflectance of 

vegetation experiences marked and interesting changes within these regions, which helps us 

decipher between different types of vegetation and even species. One drawback of using remote 

sensing lies in the expectation of similar or even superior accuracy of data as compared to 

analogue methods (Franklin et al., 2000). Spectral information is frequently utilized for 

mapping alien invasive species and has achieved reasonable to good classification results 

(Peerbhay et al., 2015; Tarantino et al., 2019). However, according to literature, texture 

analysis could improve the results achieved by spectral analysis, offering an intriguing avenue 

to pursue alien invasion studies.  

Texture is a rich source of information that can be exploited due to the arrival of increasingly 

higher spatial resolution imagery from airborne and satellite platforms (Franklin et al., 2001). 

Texture is a complex visual pattern made up of sub-patterns that have, among others, a specific 

colour, brightness and slope, which can be put into similar groupings (Materka & Strzelecki, 

1998). It reveals information on the structural arrangement of features and their spatial 

relationship with objects within the surrounding environment (Chica-Olmo & Abarca-

Hernandez, 2000). Texture analysis thereby aids in photointerpretation by allowing us to 

differentiate between different land cover types using the variation between patterns found for 

each type (Chica-Olmo & Abarca-Hernandez, 2000). According to Clausi & Yue (2004), 
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texture is a significant characteristic that would aid in the interpretation of automated or semi-

automated digital images. Texture analysis has been effectively used in many remote sensing 

studies for a variety of land cover analysis, such as Hay et al. (1996), Coburn & Roberts (2004) 

and Dobrowski et al. (2008). 

Classification results of texture analysis are dependent on spatial resolution (Hay et al., 1996; 

Wulder, 1998); therefore it is necessary to select a sensor with very high spatial resolution. 

Hyperspectral sensors provide very high spatial resolution, however they are expensive and 

have many spectral bands which offer redundant information. For this reason, we need to 

investigate multispectral sensors that are affordable and can provide us with the necessary 

features needed. SPOT 6 is an operationally free sensor with a very high spatial resolution 

panchromatic band (1.5 m) and high resolution multispectral bands (6 m). It has a low spectral 

resolution, which prevents large data volumes from being produced with the texture analysis; 

hence it was an ideal choice for this study.  

For the analysis, a classification algorithm is required to create categorical classes for land 

cover discrimination. Popular algorithms include Maximum Likelihood Classifier and Random 

Forest. However, in this study we chose Partial Least Squares-Discriminant Analysis (PLS-

DA) due to the high number of predictor variables investigated and its ability to reduce data 

dimensionality and maximize prediction accuracy (Pérez-Enciso & Tenenhaus, 2003; 

Cavender-Bares et al., 2016). A study by Peerbhay et al., (2013) successfully discriminated 

between six spectrally similar commercial species and effectively dealt with a complex 

hyperspectral and computational challenging dataset; therefore rendering it a robust and 

efficient algorithm.  

With this contextual understanding, our study aims to evaluate the capability of texture analysis 

to effectively classify and map Parthenium hysterophorus L. and the surrounding land cover. 

The specific objectives were to: 1) perform texture analysis on a 1.5 m panchromatic and 6 m 

multispectral SPOT 6 image, 2) compare and determine the better performance between 

panchromatic and multispectral SPOT 6 imagery and create land cover classes using the PLS-

DA algorithm, and 3) determine the variables with the most significant influence on the 

classification analysis. 
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3.3. Methods 

3.3.1. Study Site 

The study site is situated in Mtubatuba, a small town to the north of Richards Bay (Figure 3.1). 

It is 28 km away from St Lucia and in close proximity to iSimangaliso Wetland Park and 

Hluhluwe Imfolozi Game Reserve. The area receives an average rainfall of approximately 967 

mm per annum; with a warm and temperate climate averaging at 21.7ᵒ C. Land uses of the 

study area consists of mainly plantations (sugar cane and commercial farming), agriculture, 

cattle farming, eco-tourism and residential areas. 

 

Figure 3.1: Location of study site in Mtubatuba, KwaZulu-Natal, South Africa. 
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3.3.2. Data Collection 

Field data was collected in the summer of 2018, in late February. Nine land cover classes were 

predetermined to classify the area, namely: grass, commercial forest, natural forest, agriculture, 

parthenium, bare soil/pathways, buildings, roads and water. GPS locations were taken using a 

differentially corrected Trimble GeoXT handheld GPS receiver according to each land cover 

type. GPS points of parthenium were taken in patches greater than 10 m2 to capture information 

within the 6 m2 pixels of SPOT 6 multispectral bands, therefore enhancing detection ability. 

However, patches of parthenium greater than 10 m2 were limited; therefore some GPS points 

were taken in patches less than 10 m2. Fifty GPS points were taken of parthenium in the field. 

Ten GPS points each of the remaining 8 classes were predetermined using purposive sampling 

in Google Earth 7.3.2.5495 and were located using the GPS and verified in-field. 

Approximately 50 other GPS points were taken from Google Earth 7.3.2.5495 using purposive 

sampling points for the 8 remaining classes, excluding parthenium, and compared to the SPOT 

6 image for any possible changes. Class distribution of all collected GPS points are shown in 

Table 3.1. 

Table 3.1: Class distribution of GPS points 

Class 

Number of 

GPS points  

Agriculture 60 

Bare soil/pathways 60 

Buildings 60  

Commercial forest 60 

Grass 60 

Natural forest  56 

Parthenium 50 

Roads 60 

Water 60 

 

3.3.3. Image Acquisition 

A SPOT-6 image, including the panchromatic band, was acquired from South African Space 

Agency (SANSA) who provides free images on an operational basis for November 2017, as 

this was the only available image closest to the field date. This sensor was chosen due to the 

very high spatial resolution of the panchromatic band (1.5 m). SPOT-6 consists of four 6-metre 
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spectral bands, namely, blue (450-520 nm), green (530-590 nm), red (625-695 nm) and near-

infrared (760-890 nm) (Oumar, 2016). The images were already ortho-rectified by SANSA and 

were atmospherically corrected in ENVI 4.3. using the Fast Line-of-Sight Atmospheric 

Hypercubes (FLAASH) algorithm to obtain top of canopy reflectance. Thereafter, the 

multispectral and panchromatic images were mosaicked in ArcMap 10.4 separately to form 

one image covering the study site. 

3.3.4. Statistical Analysis 

3.3.4.1. Image Texture Extraction 

Texture is the complex visual patterns of grey tones in an image, which is characterized by 

among others: colour, shape and brightness (Pathak & Barooah, 2013). Texture analysis is 

achieved using mathematical procedures that extract information of the spatial patterns of grey 

tones within an image (Pathak & Barooah, 2013). The texture analysis was done on the SPOT 

6 panchromatic and multispectral bands using ENVI 4.3. software. Texture images were 

computed using only the 3 x 3 moving window to capture the small patches of parthenium. 

This study used occurrence and co-occurrence texture parameters, also referred to as first- and 

second-order texture parameters, respectively and defined as follows. Grey-level occurrence 

measures (GLOM) use pixel intensities within a processing window and do not take into 

consideration spatial dependency between pixels (St-Louis et al., 2006; Hlatshwayo et al., 

2019). Five filters are used for GLOM, namely: data range, mean, entropy, skewness and 

variance, defined in Table 3.2. Grey-level co-occurrence measures (GLCM) include spatial 

dependency to characterize texture with eight filters, namely: contrast, correlation, entropy, 

mean, dissimilarity, homogeneity, second moment and variance (Hlatshwayo et al., 2019). 

Definitions and formulas can be found in Table 3.3. Thereafter land cover GPS points were 

extracted from the texture images using zonal statistics in ArcMap 10.4. 
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Table 3.2: Formulas and equations characterizing grey-level occurrence measures (GLOM) 

Parameter Formula Description 

Mean 
𝑀𝑒𝑎𝑛 =

∑ 𝑋𝑘𝑘

𝑘
 

The average spectral reflectance 

values within each window 

(Lottering & Mutanga, 2012).   

Data range 𝑚𝑎𝑥{𝑋} − 𝑚𝑖𝑛{𝑋} Difference between highest and 

lowest pixel values 

(St-Louis et al., 2006) 

Entropy 

∑ 𝑝(𝑖)𝑙𝑜𝑔2[𝑝(𝑖)]

𝑀−1

𝑖=0

 

Measures the randomness of the 

image texture (Alvarenga et al., 

2007) 

Skewness 

𝜇3=𝜎−3 ∑(𝑖 − 𝜇)3𝑝(𝑖)

𝑀−1

𝑖=0

 

A measure of how skew the 

histrogram is about the mean 

(Materka & Strzelecki, 1998). 

Variance ∑(𝑥𝑖𝑗 − 𝑀)2

𝑚 − 1
 

A measure of the deviation of 

intensity values from the mean 

(Materka & Strzelecki, 1998) 
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Table 3.3: Formulas and equations characterizing grey-level co-occurrence measures 

(GLCM) 

Parameter Formula Description 

Contrast ∑ 𝑃𝑖,𝑗(𝑖 − 𝑗)2

𝑀−1

𝑖,𝑗=0

 

A measure of the local variability  

within a texture image (Alvarenga et 

al., 2007) 

Correlation ∑ 𝑃𝑖,𝑗 [
(𝑖 − 𝜇𝑖)(𝑖 − 𝜇𝑗

(𝜎𝑖
2)(𝜎𝑗

2)
]

𝑀−1

𝑖,𝑗=0

 

Local grey-level dependency on  a 

texture image (Alvarenga et al., 

2007) 

Dissimilarity ∑ 𝑃𝑖,𝑗|𝑖 − 𝑗|

𝑀−1

𝑖,𝑗=0

 

 

Measures the variation of grey-level 

pairs within an image (Gebejes & 

Huertas, 2013) 

 

Homogeneity ∑
𝑃𝑖,𝑗

1 + (𝑖 − 𝑗)2

𝑀−1

𝑖,𝑗=0

 

 

Measures the uniformity of the non-

zero values within the GLCM 

(Gebejes & Huertas, 2013) 

Mean 

𝜇𝑖 = ∑ 𝑖(𝑃𝑖,𝑗)

𝑀−1

𝑖,𝑗=0

 

𝜇𝑗 = ∑ 𝑗(𝑃𝑖,𝑗)

𝑀−1

𝑖,𝑗=0

 

 

Average intensity level of the texture 

examined (Materka & Strzelecki, 

1998) 

Second Moment ∑ 𝑃𝑖,𝑗2

𝑀−1

𝑖,𝑗=0

 
Measures local homogeneity (Yuan et 

al., 1991) 

Variance 

𝜎𝑖
2 = ∑ 𝑃𝑖,𝑗(𝑖 − 𝜇)2

𝑀−1

𝑖,𝑗=0

 

𝜎𝑗
2 = ∑ 𝑃𝑖,𝑗(𝑖 − 𝜇𝑗)2

𝑀−1

𝑖,𝑗=0

 

A measure of the deviation of 

intensity values from the mean 

(Materka & Strzelecki, 1998) 
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Entropy ∑ 𝑃𝑖,𝑗(− ln 𝑃𝑖,𝑗)

𝑀−1

𝑖,𝑗=0

 

 

Measures the randomness of the 

image texture (Alvarenga et al., 

2007) 

 

 

3.3.4.2. PLS-DA 

PLS-DA is a classification method that combines a partial least squares regression with the 

discriminatory ability of a classification technique (Ballabio & Consonni, 2013). It specifically 

aims to reduce data dimensionality, effectively deal with multicollinearity and maximize 

prediction accuracy (Pérez-Enciso & Tenenhaus, 2003; Cavender-Bares et al., 2016). 

Furthermore, it reduces model over-fitting, suppresses background effects (Peerbhay et al., 

2013) and is useful for analysis that includes missing data (Pérez-Enciso & Tenenhaus, 2003). 

The PLS-DA includes a set of binary variables that describes the categorical variable (Y) on a 

set of predictor variables (X) (Pérez-Enciso & Tenenhaus, 2003). The algorithm decomposes 

explanatory variables (texture parameters in this study) into a few intermediate latent 

components, which retain majority of the necessary information and are used to predict the 

dependent class variable of new samples (Lenhardt et al., 2015; Peerbhay et al., 2014). The 

aim of the PLS algorithm is dimension reduction so that a set of response variables can be 

related to a set of predictor variables (Pérez-Enciso & Tenenhaus, 2003). It is particularly 

useful as it helps us understand data patterns and allows graphical visualization (Ballabio & 

Consonni, 2013). The number of PLS components used in the model is determined using the 

tenfold cross-validation (CV) method (Lenhardt et al., 2015). The optimal number of 

components is chosen by systematically adding them to the PLS-DA model and calculating the 

corresponding CV error. The lowest CV error, and consequently optimum number of 

components, is achieved once the addition of components increases the CV error and no longer 

improves the model. The “plsda” function (Pérez-Enciso and Tenenhaus, 2003) in R statistical 

package version 3.1.3 (R Development Core Team 2015) was used to run the PLS-DA 

algorithm in this study. 
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The PLS-DA does not provide a method to determine the most useful parameters to be used 

for the final classification (Menze et al., 2009). However, a preliminary variable selection is 

essential for PLS-DA to obtain meaningful results (Pérez-Enciso & Tenenhaus, 2003). The 

VIP method has been used effectively to determine the most important parameters for the 

classification analysis (Cécillon et al., 2008; Peerbhay et al., 2014). The VIP score is used to 

rank explanatory variables according to their significance and selects them prior to the 

classification to achieve optimum results (Peerbhay et al., 2014). The VIP scores were 

calculated as follows: 

 VIP𝑘 = √𝐾 ∑ [(𝑞𝑎
2𝐴

𝑎=1 𝑡𝑎
𝑇𝑡𝑎 )(𝑤𝑎𝑘/‖𝑤𝑘‖2)]/ ∑ (𝑞𝑎

2𝑡𝑎
𝑇𝑡𝑎)𝐴

𝑎=1   

where VIPk is the importance of the k’th parameter in the PLS-DA model with a defining the 

number of components, K is the total number of parameters, wak is the corresponding loading 

weight of the k’th waveband in the a’th PLS-DA component, ta, wa, and qa are the a’th column 

vectors.  

Variables with a VIP score of >1 were identified as important, because the average of squared 

VIP scores is equal to 1. The PLS-DA model was run using the most important VIP parameters, 

which was thereafter used for the classification. The “vip” function in R statistical package 

version 3.1.3 (R Development Core Team 2015) was used to run the VIP in this study. 

3.3.4.3. Classification Accuracy Assessment 

The dataset was randomly split using 70% for training and 30% for validation of the model. 

This process was repeated a 100 times using different compositions of training and validation 

samples to account for variation in the data. The results from the classification were represented 

in a confusion matrix, which is based on the validation dataset. There are various accuracy 

measures that can be used to summarize a confusion matrix. Map-level accuracy is generally 

determined by the correctly classified proportion of units. The opposite of this is the overall 

disagreement (Warrens, 2015). Quantity and allocation disagreement is a more recent measure 

of accuracy that decomposes the overall disagreement into two types of disagreement; it is 

argued to be more informative than the kappa statistic, which merely states the correctly 

classified proportion of units (Warrens, 2015). Quantity disagreement calculates the difference 

between the reference and comparison map caused by the slight discrepancy in the proportions 
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of categories (Pontius & Millones, 2011). Allocation disagreement is the difference between 

the reference and comparison map caused by the slight discrepancy in the spatial allocation of 

categories, given the proportions of categories in both the reference and comparison maps. 

These two types of disagreement help us to explain the reasons behind the disagreement found 

in the confusion matrix, which can be used to understand the sources of error (Pontius & 

Millones, 2011).   

Finally the best texture results were chosen between the 1.5 metre panchromatic and 6 

multispectral images. These were used to map parthenium and the surrounding land cover 

classes using the PLS-DA algorithm. The basic procedure followed in the methodology section 

is illustrated in Figure 3.2. 
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Figure 3.2: Summary of procedure followed in methodology. 

3.4. Results 

3.4.1. PLS-DA  

The PLS-DA model for the multispectral bands was optimized using the number of components 

with the lowest error. According to Figure 3.3, the CV error significantly decreased from 

74.14% to 35.8% from the 1st to the 20th component. The lowest CV error achieved was 27.56% 
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using 10 latent components, which were used to develop the model and thereafter VIP scores 

for the texture parameters were calculated. VIP selected 17 out of 52 texture parameters that 

were the most significant and were further used for model development. 

 

Figure 3.3: Testing the ability of each PLS-DA component to discriminate features using 

image texture parameters computed from multispectral data. Lowest error based on the 

training (n = 368) dataset was established using the tenfold cross validation. The arrow 

indicates that the 10th component had the lowest error. 

The CV error for the panchromatic band ranged from 60.14% to 34.8% from the 1st to the 20th 

component (Figure 3.4). The lowest CV error was achieved with 8 components at 23.31%. 

These 8 components were used to develop the model. VIP selected 8 texture parameters out of 

a total of 13 for the panchromatic image that where the most significant for model development.  
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Figure 3.4: Testing the ability of each PLS-DA component to discriminate features using 

image texture parameters computed from the panchromatic data. Lowest error based on the 

training (n = 368) dataset was established using the tenfold cross validation. The arrow 

indicates that the 8th component had the lowest error. 

3.4.2. Parameter Frequencies 

Figure 3.5 illustrates the frequency of selected texture parameters for the panchromatic and 

multispectral bands used in the PLS-DA model. Figure 3.5a shows that band 4 (near-infrared) 

was selected more frequently and most effective toward the classification, and band 1 (blue) 

the least frequent. Co-occurrence played a more significant role towards the analysis than 

occurrence for both panchromatic and multispectral bands; therefore was selected more often 

for model development (Figure 3.5b). Seven texture parameters are shown in Figure 3.5c, of 

which the most frequently selected, were mean, correlation and homogeneity for both 

panchromatic and multispectral bands, containing the majority of information.  
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Figure 3.5 Frequency of selected parameters for texture analysis of panchromatic and other 

SPOT 6 spectral bands. 

3.4.3.  Classification Accuracy Assessment 

For multispectral bands, the model produced an overall accuracy of 73% and a total 

disagreement of 27% using the first ten model components. The allocation and quantity 

disagreement was 20% and 7%, respectively. Parthenium achieved a user and producer 

accuracy of 56% and 77%, respectively (Table 3.4). The user accuracy ranged from 68-90% 

and the producer accuracy ranged from 58-90% for all classes. The highest (90%) and lowest 

(56%) user accuracy was commercial forest and parthenium, respectively. The highest and 

lowest producer accuracy was water (90%) and grass (58%), respectively. 
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Table 3.4: Confusion matrix of texture analysis using multispectral bands and the PLS-DA 

algorithm. 

  A BS/P BU CF G NF P R W Sum 

User 

Accuracy 

(%) 

A 982 57 44 204 218 106 47 2 39 1699 58 

 BS/P 17 1303 120 2 107 80 34 130 29 1822 72 

B 4 120 1347 57 11 56 31 123 16 1765 76 

 CF 5 6 0 1588 54 108 0 1 2 1764 90 

 G 97 31 18 46 1495 58 48 75 2 1870 80 

 (NF) 69 7 11 105 22 1498 62 40 0 1814 83 

 (P) 84 23 18 113 176 183 902 86 17 1602 56 

 (R) 12 189 208 1 23 21 45 1304 32 1835 71 

(W) 64 94 49 2 90 68 4 83 1175 1629 72 

Sum 1334 1830 1815 2118 2196 2178 1173 1844 1312 15800  

Producer 

accuracy (%) 
74 71 74 75 68 69 77 71 90     

Agriculture = A, Bare soil/pathways = BS/P, Buildings = B, Commercial forest = CF, Grass = G, Natural forests 

= NF, Parthenium = P, Roads = R, Water = W 

Allocation disagreement = 20%, Quantity disagreement = 7%, Overall accuracy = 73% 

The highlighted values indicate correctly classified features. 

For the optimum number of components using the panchromatic band, the model produced an 

overall accuracy of 77% and a disagreement of 23%. The allocation and quantity disagreement 

was 18% and 5%, respectively. The user and producer accuracy of parthenium is 64% and 

77%, respectively (Table 3.5). The user accuracy ranged from 61-93% and the producer 

accuracy ranged from 63-97% for all classes. The highest and lowest user accuracy was water 

(93%) and agriculture (61%), respectively. The highest and lowest producer accuracy was 

water (97%) and bare soil (63%), respectively. 
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Table 3.5: Confusion matrix of texture analysis using the panchromatic band and the PLS-DA 

algorithm. 

  A BS/P B CF G NF P R W Sum 

User 

Accuracy 

(%) 

A 1108 167 0 132 183 171 38 0 16 1815 61 

BS/P 13 1192 172 2 0 67 26 108 12 1592 75 

B 0 180 1457 9 19 13 26 158 0 1862 78 

CF 1 1 0 1546 64 100 0 0 1 1713 90 

G 112 111 8 44 1258 58 191 27 2 1811 69 

NF 93 7 6 205 27 1386 30 22 0 1776 78 

P 95 105 51 12 251 102 1140 0 18 1774 64 

R 0 131 141 1 22 29 25 1472 0 1821 81 

W 20 11 0 2 39 31 10 0 1523 1636 93 

Sum 1442 1905 1835 1953 1863 1957 1486 1787 1572 15800  

Producer 

Accuracy 

(%) 

77 63 79 79 68 71 77 82 97     

Allocation disagreement = 18%, Quantity disagreement = 5%, Overall accuracy = 77% 

 

 

Figure 3.6: Change in overall classification accuracy produced by PLS-DA when running the 

model at 100 iterations for dividing the train and validation datasets. 
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Figure 3.6 illustrates the overall change in classification accuracy produced by PLS-DA when 

running the model at 100 iterations for dividing the entire data into train and validation datasets. 

The mean overall classification accuracy was over 73% with a standard deviation of 2.49%. 

According to the results from the accuracy assessment, the panchromatic band performed better 

than the multispectral bands; therefore the panchromatic band was chosen to create the land 

cover map in Figure 3.6 using R statistical software package version 3.1.3 (R Development 

Core Team 2015). 
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Figure 3.7: Land cover map produced using texture analysis of the panchromatic SPOT 6 

band and classification using the PLS-DA algorithm. 

3.5. Discussion 

This study explored the capability of texture analysis to map Parthenium hysterophorus L. and 

the surrounding land cover. The ability of image texture computed from the 1.5 m 

panchromatic and 6 m multispectral SPOT 6 imagery to detect Parthenium hysterophorus L. 

and the surrounding land cover was compared. Generally, the panchromatic band achieved 

higher classification accuracies than the multispectral bands; therefore it was chosen to produce 

the land cover map. The land cover map produced by the SPOT 6 panchromatic band provided 
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a good reflection of the land cover classes found within the study site. Notably, the parthenium 

was showcased in small and erratic patches, similar to what was observed in the study site 

(Figure 3.6). Furthermore, parthenium was found coinciding often with bare soil, which is a 

disturbed area. This finding supports current literature that states that parthenium is more likely 

to grow in areas where vegetation has been disturbed or removed (Singh, 2005; Belz et al., 

2009), providing a niche that enables parthenium to grow profusely without competition from 

naturally occurring vegetation.  

The analysis was based on the PLS-DA classifier, which was chosen due its ability to reduce 

model-overfitting, data dimensionality and maximize prediction accuracy (Pérez-Enciso & 

Tenenhaus, 2003; Peerbhay et al., 2013; Cavender-Bares et al., 2016). The PLS-DA model was 

optimized using the ideal number of latent components with the lowest CV error. This was 

eight and ten latent components, and a CV error of 23.31% and 27.56% for panchromatic and 

multispectral bands, respectively. Subsequently, the VIP score was used and enabled the most 

important parameters to be chosen for the classification analysis (Peerbhay et al., 2014). A 

study by Peerbhay et al. (2013) showed that using the VIP score produces the best PLS 

classification accuracy and effectively determines parameter (predictor) importance. They 

achieved an overall accuracy of 88.78% and a user and producer’s accuracy between 70% and 

100% using spectral information. Using texture analysis in our study achieved a good overall 

classification accuracy of 73% and 77% for multispectral and panchromatic bands, 

respectively. The allocation and quantity disagreement was 20% and 7%, respectively for 

multispectral and 18% and 5%, respectively for panchromatic bands. Franklin et al. (2000) 

stated that incorporating texture analysis into land cover mapping usually improves the 

classification accuracy by 10-15%.  However, this includes both spectral and texture 

information, whereas our study focused purely on texture information.  

Four out of nine designated land cover classes were vegetation classes, namely: commercial 

forest, natural forest, grass and parthenium. According to Li et al. (2019) spectral bands differ 

in their ability to capture differences between vegetation and their changes through time. The 

texture results from the multispectral bands showed that band 4 (near-infrared) contained 

majority of the information used for the classification analysis, while band 1 (blue) was the 

least important. Knipling (1970) states that reflectance of vegetation increases to a high in the 

infrared region, making it particularly useful to capture changes in reflectance for different 
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vegetation types or species, thereby enabling discrimination. The red region was also 

frequently selected in this study and has been stated by Peerbhay et al. (2013) to be sensitive 

to pigmentation in leaf tissue, also helping with vegetation discrimination. Additionally, our 

study found that co-occurrence parameters, such as homogeneity and correlation, were a 

significant contributor to model development as compared to occurrence parameters. 

Homogeneity and second moment was also found by Salas et al. (2016) to play an important 

role in mapping vegetation in Tajikistan. These results were supported by various studies, such 

as Yuan et al. (1991) and Franklin et al. (2000). More recent studies by Lottering and Mutanga 

(2012) and Hlatshwayo et al. (2019) have also shown that co-occurrence measures contain 

majority of the vegetation information; thereby promoting accurate vegetation analysis. A 

recent study by Lottering et al. (2020) further iterated the importance of co-occurrence 

parameters, namely correlation, second moment and homogeneity to model development 

whilst detecting bugweed in a commercial forest with the use of the PLS-DA and SPLS-DA 

(Sparse Partial-Least-Squares Discriminant Analysis) algorithm.   

Parthenium, which is the focus of our investigation, achieved a low user accuracy (58% for 

multispectral and 64% for panchromatic bands), which may have partially resulted from the 

way in which the field data was collected. Plots greater than 6 m2 were chosen to ensure they 

were large enough to be captured by the SPOT 6 sensor. However, some patches were less than 

the SPOT 6 multispectral resolution (6 m2), due to a lack of large parthenium stands. This may 

have caused textural confusion with surrounding vegetation, such as grass and natural forest, 

therefore reducing accuracy. The increase in user accuracy for the panchromatic band, with a 

higher spatial resolution than multispectral bands, may support this notion. However, 

parthenium achieved a good producer accuracy of 77% for both multispectral and 

panchromatic bands. According to Hay et al. (1996) and Wulder (1998), the relation of image 

texture to scene texture is highly dependent on scale, which influences accuracy; therefore it 

requires the use of optimally selected sensors that have a specific spatial resolution. SPOT-6 

provides a very high spatial resolution panchromatic band that is extremely valuable for 

capturing the texture of small patches of parthenium in the field, which are more common than 

larger stands. Similar findings were made by Gebreslasie (2008) when comparing image 

texture from panchromatic and multispectral IKONOS-2. The panchromatic band achieved 

superior results compared to the multispectral bands. This is further supported by Lottering and 

Mutanga (2012) who compared the use of SPOT 5 2.5 metre panchromatic and 10 metre 
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multispectral images to estimate road edge effects using texture analysis. Additionally, 

Dobrowski et al. (2008) state that image resolution which is finer than individual trees and 

vegetation patches is advantageous, because herein texture variables become increasingly 

correlated to vegetation physiognomy. Low-resolution imagery may result in textures that are 

unrelated to what is on the ground, while high-resolution imagery allows a strong geographical 

correlation between land features and image texture (Hay et al., 1996). Woodcock and Strahler 

(1987) also note that texture analysis should be performed on high resolution images, because 

numerous measurements are needed to characterize class texture.  

Franklin et al. (2000) have also stated that, realistically, one should assume there are errors in 

both field and remote sensing data collection. There may be spatial error when comparing the 

GPS locations of the collected points to the corresponding location on the digital image. This 

may be further exacerbated when considering the spatial extent of an individual pixel, which 

may not correspond precisely with your plot on the ground and may cause overlap with a 

neighbouring pixel. Other sources of error that can influence accuracy are shadows created by 

the surrounding landscape, background soil and distortion in spectral signals received by the 

sensor (Lu, 2006). Franklin et al. (2000) further state that there are sources of error when 

applying texture analysis of digital images to forest inventory classification, which we may 

generalize for land cover classification. These sources of error could include the choice of 

window size, texture measure, class selection, type of sensor, accuracy of plot size in relation 

to sensor spatial resolution and the method in which field data is related to sensor data (for 

example regression or classification accuracy) (Franklin et al., 2000). These are potential 

sources of error that may have reduced the overall and individual class accuracy, especially of 

parthenium.  

Vegetation produces variation in grey tones caused by, among others: different species, age, 

and crown closure (Franklin et al., 2001), which aid in texture analysis due to the specific 

growth patterns and physical characteristics of different types of vegetation. Ruiz-Gallardo et 

al. (2004) found that textural and spectral classifications were appropriate for different land 

cover types. Spectral classification is better suited to landscape covers that have a specific 

spectral response that can be easily differentiated from other land covers, for example fallow 

and pasture land (Ruiz-Gallardo et al., 2004). This is attributed to the homogeneity of the grey 

levels within those classes, which makes it difficult for texture analysis to discriminate between 
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classes. Conversely, texture analysis is very efficient in classifying land cover that exhibit high 

spectral heterogeneity, for example scattered trees and dense shrub, which is challenging to 

classify using purely spectral information (Ruiz-Gallardo et al., 2004). Regarding the low 

accuracy of parthenium, this may provide some insight into the confusion with other classes, 

such as grass, agriculture and natural forest. The texture of these classes may be homogenous 

and quite similar to one another, making them difficult to discriminate. Ruiz-Gallardo et al. 

(2004), in agreement with Franklin et al. (2000) notes that combining spectral and texture 

information can improve classification accuracy; this could be a potential option to explore in 

future. 

According to Xie et al. (2008), the separation of plant species is exceptionally difficult using 

multispectral images, therefore more studies rely on hyperspectral imagery, which provide 

contiguous spectral bands that capture the slight discrepancies in reflectance or absorption 

signatures given off by vegetation (Gairola et al., 2013). However, hyperspectral images are 

expensive and come with their own set of challenges; therefore it is important to investigate 

various methods that provide good results using multispectral imagery.  The most significant 

finding of our study is that SPOT-6 imagery is capable of providing reasonably accurate results 

for detecting Parthenium hysterophorus L. and associated land cover using texture analysis. 

Furthermore, the panchromatic band attained better classification results than the multispectral 

bands, insinuating that texture analysis performs better with higher spatial resolution imagery. 

The very high spatial resolution provided by SPOT-6 imagery, notably the panchromatic band, 

is exceedingly beneficial as an increased availability of free imagery with adequate spatial 

resolution will allow us to gain insight into more accurate methodologies to detect and map 

alien invasion.  

3.6. Conclusion  

This study focused on comparing the ability of 1.5 m panchromatic and 6 m multispectral 

SPOT-6 imagery in mapping Parthenium hysterophorus L. and the surrounding land cover 

using texture analysis and the PLS-DA algorithm. We found that: 

 The panchromatic band produced a higher overall classification accuracy than the 

multispectral bands (77% and 73%, respectively) and higher user accuracy for 

parthenium (64% and 56%, respectively). 
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 The higher spatial resolution of the panchromatic band most likely played a large role 

in producing superior texture results, due to its ability to capture small stands of 

parthenium and texture analysis being dependent on spatial resolution. 

 Grey-level-co-occurrence measures (GLCM) were a more significant contributor to 

model development than grey-level-occurrence measures (GLOM), as studies have 

shown that GLCM contain more vegetation information than GLOM, improving 

classification accuracy. 

 Due to SPOT 6 imagery containing very high spatial resolution in the panchromatic 

band, it is highly beneficial for mapping and tracking of Parthenium hysterophorus L. 

using texture analysis. 

 Future research could combine spectral and textural information that have contrasting 

strengths and weaknesses, thereby overcoming their weaknesses and enhancing their 

strengths, resulting in improved classification accuracy.  
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4. CONCLUSION 

4.1. Introduction 

Parthenium hysterophorus L. (parthenium) is alien invasive plant species that has severe 

environmental, biological and human impacts. Remote sensing and GIS provide a very useful 

form of tracking alien plant distribution, due its cost effectiveness, the ability to capture large 

geographic areas and its multi-temporal coverage. Different remote sensors offer a range of 

spectral and spatial resolution. There are two spectral types, namely: multispectral and 

hyperspectral sensors, with varying spatial resolutions. Hyperspectral resolution provides in-

depth detail of changes throughout the electromagnetic spectrum of designated investigated 

classes, attaining high classification accuracy. However, there are several shortcomings to the 

usage of hyperspectral imagery, for example its high expense, high data-dimensionality and 

difficulty to analyse. Hence it is practical to find suitable multispectral alternatives that can 

achieve good results. There are several new generation sensors that may be valuable to 

parthenium detection, i.e. Sentinel-2, RapidEye and SPOT 6, which were investigated in this 

study. Sentinel-2 is an innovative sensor that provides freely available imagery, with a spatial 

resolution of 10, 20 and 60 m and a spectral resolution of 13 bands. RapidEye is a commercial 

sensor with a higher spatial resolution of 5 m, but a lower spectral resolution of 5 bands. These 

contrasting strengths and weaknesses in spectral and spatial resolution make these two sensors 

somewhat comparable and requiring further investigation into parthenium detection 

performance. SPOT-6 features high spatial resolution in its multispectral bands (6 m) and very 

high spatial resolution in its panchromatic band (1.5 m). The panchromatic band can be used 

to investigate other imagery analysis, beyond spectral analysis, such as texture analysis. 

Texture analysis makes use of patterns and colour in grey tones and takes into consideration 

spatial arrangement of land cover features, thereby allowing their detection. It has also proven 

to be quite useful for detecting different species of vegetation, therefore offers an interesting 

prospect for invasion monitoring.  

With this understanding, this dissertation has the following objectives:   

I. Comparing the ability of new generation multispectral sensors Sentinel-2 and RapidEye 

to detect parthenium and the surrounding land cover using spectral information and 

SGB algorithm 
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II. Evaluate the ability of texture analysis to map parthenium and the surrounding land 

cover using the PLS-DA algorithm  

4.2. Comparing the ability of new generation multispectral sensors Sentinel-2 and 

RapidEye to detect Parthenium Hysterophorus L. and the surrounding land cover using 

spectral information and the SGB algorithm 

This study compared two multispectral sensors, namely Sentinel-2 and RapidEye, in their 

ability to detect Parthenium hysterophorus L. and the surrounding land cover using spectral 

bands and vegetation indices. According to literature, the red-edge band plays a significant role 

in classification analysis, due to its sensitivity to vegetation characteristics. However, our study 

did not place emphasis on the red-edge band as it ranked 23rd out of 43 vegetation indices and 

raw bands for RapidEye. Furthermore, according to spectral curves there seems to be high 

visual overlap of land cover classes in the red-edge region, indicating that there is difficulty in 

differentiating between different classes. Sentinel-2 showed a similar trend of spectral overlap 

within the first red edge band. However, the other red edge and near-infrared bands showed an 

increased separability on the spectral curve, meaning that they were more useful in the 

classification analysis. RapidEye near-infrared band also showed an increased separability of 

land cover classes. The wavelength between 704 and 881 specifically from Sentinel-2 (band 5-

8A) was important for class discrimination.  

Sentinel-2 achieved a higher overall classification accuracy of 82% compared to 71% for 

RapidEye. For most land cover classes, Sentinel-2 outperformed RapidEye, despite the coarser 

spatial resolution of Sentinel-2 (10 and 20 m2 used in this study) to RapidEye (5 m2). However, 

Sentinel-2 has a superior spectral resolution of 13 bands compared to RapidEye 5 bands. This 

proved very beneficial for the analysis, because it captured areas of the electromagnetic 

spectrum that were very important for class discrimination that were not available in the 

RapidEye bands. The bands available in Sentinel-2 are more sensitive to detecting spectral 

discrepancies between different land cover classes. Additionally, the use of vegetation indices 

may have assisted class discrimination by enhancing electromagnetic signals given off by land 

cover, while reducing spectral noise.  

Hsieh et al. (2001) states that even though high spatial resolution imagery generally provides 

an increased level of detail it may not always improve classification accuracy. Small pixel sizes 
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may actually increase in-class spectral variability, reducing separability of classes and thus 

reducing classification accuracy. Parthenium attained the lowest classification accuracy 

compared to other land cover classes, for both RapidEye and Sentinel-2. This may be a result 

of how the data was collected, i.e. small parthenium stands which may not have been captured 

efficiently with coarse spatial resolution. It may also be a result of the mixed pixel problem, 

whereby different land cover classes are captured in one pixel, which distorts the reflectance, 

resulting in misclassification. Parthenium also tends to grow in disturbed areas and amongst 

other vegetation, thereby contributing to the mixed pixel effect. This may be supported by the 

low accuracy of grass for both sensors, which parthenium frequently grew amongst at the site 

and where the GPS points were taken.  

It has to be further highlighted that mapping with pixels removes information and creates 

generalization within each pixel, hence it must be understood that there will always be some 

level of inaccuracy, especially with coarser resolution imagery. Despite this, Sentinel-2 

achieved very promising results, considering its poor spatial resolution in comparison to 

RapidEye. The high spectral resolution of Sentinel-2 makes it quite capable of distinguishing 

classes and will be useful for alien invasive plant mapping, including parthenium, provided 

that the stands focused on were large enough for detection.  

4.3. Comparing the ability of panchromatic and multispectral spot-6 bands to detect 

and map Parthenium Hysterophorus L. using image texture analysis 

This study focused on the detection and mapping of parthenium and the surrounding land cover 

with the use of SPOT 6 imagery. This imagery was chosen due its very high spatial resolution 

of its panchromatic band (1.5 m), which is very beneficial to the chosen analysis, i.e. texture 

analysis. This is a spatial analysis that involves pattern detection of grey tones to discriminate 

and classify different land cover types. Our aim was to determine whether the panchromatic or 

multispectral bands performed better in detecting and classifying parthenium and other land 

cover classes with the use of texture analysis and the PLS-DA algorithm. The panchromatic 

band was found to achieve superior classification results (77% compared to 73% for 

multispectral). This may be primarily attributed to the higher spatial resolution of the 

panchromatic band, which is imperative for texture analysis. Hay et al. (1996) and Wulder 

(1998) state that image texture is highly dependent on scale; therefore influencing accuracy. 
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This can also be supported by Gebreslasie (2008) and Lottering and Mutanga (2012) who 

achieved similar results when comparing panchromatic and multispectral bands.  

Specifically, the panchromatic band enables the capturing of small patches of parthenium, 

which the coarser multispectral bands may sometimes not accurately detect. This may be the 

reason why parthenium achieved low user accuracy (58%) for multispectral bands and an 

improved user accuracy using the panchromatic band (64%). This may be caused by a potential 

spatial discrepancy between the GPS points taken during field data collection and the precise 

overlay of the image in reference to that point. It may also be due to the fact that some of the 

parthenium patches were smaller than the pixel size of the multispectral band, due to 

unavailability of many large patches of parthenium in the field. This may have resulted in 

confusion with other land cover classes, especially since parthenium grows in conjunction with 

other vegetation types, such as grass. Dobrowski et al. (2008) further state that a very high 

spatial resolution with pixels smaller than the size of individual trees or patches of vegetation 

is valuable, because texture variables become more related to the physiognomy of vegetation. 

Furthermore high resolution imagery allows a stronger geographical correlation between 

texture images and on-the-ground features, contrary to low spatial resolution imagery. 

The map produced using texture analysis showcased that parthenium grows in erratic patches, 

generally coinciding with disturbed areas, such as bare soil. Literature states that parthenium 

is more likely to grow where disturbance of vegetation has occurred, allowing parthenium a 

niche to establish and grow rapidly due to its ecology and allelopathic effects.  

4.4. Recommendations 

Several recommendations for future research are highlighted below: 

 Multispectral sensors possess a limited ability to distinguish land cover types with 

subtle spectral differences due to their low spectral and spatial resolution. Hence it may 

be difficult to detect herbaceous species, such as parthenium, especially since it may 

grow in between spectrally similar vegetation. Alien invasive species also tend to grow 

in small, erratic patches in their early stages of invasion, which cannot be detected using 

sensors with coarser spatial resolution, such as Sentinel-2. Consequently, future studies 
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should either focus only on large stands of parthenium, or sensors with high spatial 

resolution, such as RapidEye or SPOT 6, to capture these smaller parthenium stands.  

 Alien invasive species need to be sufficiently distinct from to co-existing vegetation to 

allow detection using imagery. Spectral curves in Chapter 2 have insinuated that there 

are certain regions of the electromagnetic spectrum that are more important for class 

discrimination, namely the two red-edge and near-infrared bands of Sentinel-2 which 

span 704-881 nm and the near-infrared band of RapidEye (760-850 nm). This indicates 

that sensors that have strategically placed bands are important for classification analysis 

as these bands are more sensitive to subtle changes in reflectance of land cover than 

conventional multispectral bands. Future research should explore new generation 

multispectral sensors to test their class discrimination ability, especially those classes 

that are spectrally similar, such as parthenium and grass in this study.  

 Due to the tendency of alien plant species, such as parthenium, to grow in between 

natural vegetation, a method has to be developed that aids in differentiating between 

the species that it grows amongst. A potential solution would be to capture images 

throughout the seasons, as different species may exhibit varying spectral characteristics 

that can be captured easily.  

 Despite less than satisfactory classification results for parthenium using Sentinel-2, the 

superior classification results for most of the other land cover types indicate that 

Sentinel-2 is a good alternative to commercial imagery. This is further supported by 

spectral curves which insinuate that Sentinel-2 is more efficient in class discrimination 

than RapidEye. This free imagery could prove extremely beneficial for plant alien 

invasion monitoring and many other applications, especially in resource-constrained 

countries.  

 Texture analysis proved to be quite a successful form of spatial analysis, for both the 

multispectral and panchromatic bands. However the panchromatic band achieved 

superior results due to the fact that texture is influenced greatly by scale, thereby 

influencing accuracy. Consequently, texture analysis should be performed on imagery 

that is of finer spatial resolution. With increasingly finer spatial resolution of remote 

sensors, texture analysis is a viable option that is capable of providing very good results 

for plant invasion monitoring.  
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 Texture analysis has proven to achieve superior results in comparison to spectral 

analysis; thereby indicating that texture analysis should be explored in future. It helped 

us achieve our objective of mapping parthenium distribution, which was otherwise 

difficult using spectral information, due to the low parthenium accuracy and lower 

spatial resolution. SPOT 6 is a visionary sensor that boasts very high spatial resolution, 

implying a need for more research that focuses on investigating its capabilities.  

 It must be noted that texture and spectral analysis tend to be suited to different types of 

land cover. Spectral analysis is more suited to classes that have a more homogenous 

reflectance per class, such as grass and bare soil. On the other hand, texture analysis is 

more valuable for classes that exhibit high spectral heterogeneity, such as dense shrub, 

which is more challenging to classify using spectral information. For this reason, 

texture and spectral information should be combined to achieve superior results, by 

offsetting their limitations and enhancing their strengths. 

 Remote sensing, while still flawed, remains a viable method to map alien invasion, 

especially considering numerous technological advancements and innovations, such as 

improved sensors and better performing classification algorithms. It is a fast and 

efficient method that allows us to track areas that are becoming invaded and areas that 

are heavily invaded to make informed decisions as to where to allocate limited 

resources for rehabilitation.  

 Potential future studies can examine the utility of spectral unmixing techniques to 

recover signatures of pure materials from the scene, hence improving accuracy. 

 A final recommendation would be for decision/policy makers to give deep 

consideration to the meaningful research that has been done at universities and to work 

closely and collaborate with universities, research institutes and others. 
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