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Abstract

Self-reported health has been commonly used as a measure of individuals health in public

health studies. Health presents a complete physical, emotional, and social well-being. It

also plays an important role in the development of the country, economically and socially.

Poor health still remains a serious problem and it is linked to high burden of diseases in the

world. As part of the Healthy People 2020 and Sustainable Development Goals (SDGs)

in Sub-Saharan African (SSA), the goals of improving health has not been achieved.

Hence, further investigation of the influential factors on health is relevant to improving

health inequalities in SSA countries. Disease mapping provides a robust tool to assess

geographical variation of disease and has been used in epidemiology and public health

studies. The aim of this research is to use two distinct response outcome variables to in-

vestigate factors and geographical variations that are associated with self-reported health

in South Africa. To accomplish the former and the latter, this research uses data from the

National Income Dynamics Study (NIDS). The NIDS datasets are longitudinal data col-

lected every two years from 2008. In this research, several structured additive regression

(STAR) models were utilized within a Bayesian methodology, particularly the Bayesian

hierarchical models. Models reviewed included Bayesian spatial and spatio-temporal cu-

mulative logit models and logistic regression models, the primary interest was on the

conditional autoregressive (CAR) models. Furthermore, the nonlinear effects of individ-

uals age and body mass index (BMI) were part of the research interest. Two applications

are discussed; one for the cumulative logit models for the ordinal response, the other for

the logistic regression models of the binary response. In the case of the ordinal response,

inference was based on the empirical Bayes approach, while for the binary case, a fully

Bayesian procedure was used. Similar results were obtained between the two approaches.
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Findings reveal that age, gender, household income, education, exercising level, alcohol

consumption level, smoking, employment, nutrition status, TB, and depression were asso-

ciated with self-reported health. The BMI was found to have a nonlinear relationship with

self-reported health. Also, the findings show that age has a positive linear effect on self-

reported health. In addition, the findings reveal significant spatial variation, with higher

poor health prevalence in the Siyanda, John Taoli Gaetsewe, Ngaka Modiri Molema, Dr

Ruth Segomotsi Mompati, Dr Kenneth Kaunda, Frances Baard, Lejweleputswa, Xhariep,

Thabo Mofutsanyane, Fezile Dabi, Mangaung, Chris Hani, Umgungundlovu, Sisonke, Zu-

luland, Umkhanyakude and Gert Sibande districts. Nevertheless, low poor health preva-

lence was recorded in the West Coast, Cape Winelands, Overberg, Eden, Central Karoo,

Uthungulu, iLembe, and eThekwini districts. Interventions to improve individuals health

should include addressing of gender inequalities, education, and income inequalities but

altogether with employment status and healthy living lifestyle, in particular, targeting

districts identified to have highest poor health prevalence.

Keywords : Self-reported health, conditional autoregressive (CAR) models, spatial and

spatio-temporal models, structured additive regression (STAR) models and mapping.
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Chapter 1

Introduction

1.1 Background

Self-reported health is commonly used as a measure of health. Self-reported health also

known as self-perceived health refers to individuals rating their own health. The use

of self-reported health assessment may be biased due to direct contingency on social

experience (Sen, 2002). That is, disadvantaged population tend to report worse health

than advantaged population. Despite the biases, self-reported health has been used as

a global measure of health (Wu et al., 2013). Health is a very important measure for a

human well-being, especially at a young age. Worldwide health outcomes are pinpointed

because the infrastructure for health across the lifespan is greatly determined by early

exposures in life (Komro et al., 2014). Health and health outcomes are not influenced

only by health care and health services, but also by other complex factors (Ataguba et al.,

2015). Health is a crucial human right and would devote not only to a better quality

of life but also to global peace and security as well as economic and social development

(Moodley and Ross, 2015). Poor health is one of the major problems in the world, both in

developing and developed countries. Africa has the greatest disease burden and poorest

health services compared to any other continents (Grut et al., 2012). Thus, improvement

of health inequalities is of great relevance in developing and developed countries.

1



Sub-Saharan African (SSA) countries are rated as poor countries with low incomes, hence

they are likely to experience poor health. African development specialists and policy-

makers have attempted to improve the quality of life in several African countries but the

health of SSA still remained lowest in the world (Fayissa and Gutema, 2005). The life

expectancy of several African countries is around 50 years as compared to other coun-

tries, such as Japan, Sweden or Brazil. The main cause is that health heterogeneity

arises globally depending on where an individual resides. About 42.4% of the SSA pop-

ulation were satisfied with the availability of the high-quality health care in the areas

they reside in, which was rated lowest in the world recently (Angus and Robert, 2015).

There is a strong link between health and primary health care, and it is acknowledged

that individuals who visit health care more often are likely to have a better and healthy

life. Nonetheless, other important determinants of health status include social, political,

economic, and environmental factors (Fayissa and Gutema, 2005).

South Africa is one of the most established and developed countries in SSA with ap-

proximately two-thirds of its national population residing in urban areas (McGranahan

and Martine, 2012). South Africa is known to be rated as one of the lower middle-

income countries. Also, it is one of the countries that have the highest health inequalities

(Ataguba et al., 2015). Colonization and apartheid in South Africa resulted in social

and economic injustice which thereafter led to unemployment and increased urbanization

(Weimann et al., 2016). Hence, the most relevant improvement of health inequality is

social determinants. Unemployment in South Africa has been one of the attributes of

increased poverty and has not improved for any better. Reducing the unemployment

rate will not only reduce universal poverty but also play a huge role in improved and

high-quality education. Both employment and education enhance better health, provid-

ing a foundation for economic and social development. The rates of unemployment are

high for black African youths with lower levels of education and living in rural areas.

In addition, about 51.3% and 30.1% of individuals between the ages of 15-24 and 25-34

years respectively were officially unemployed in 2014 (Motala et al., 2015).
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The statistics show that males complete basic education at a slightly higher rate than

females in South Africa (Statistics South Africa, 2015). Low level of education has a

strong relationship with lower levels of socioeconomic factors. Lower well-being is highly

affected by lower incomes in household level. The linkage between alcohol consumption

and smoking plays a vast role in affecting individuals well-being, which further impacts

populations health. Overall alcohol consumption in South Africa reduced in 2014 due to

being expensive (WHO et al., 2014), but heavy drinking has not been successfully dealt

with. The reason behind heavy drinking is that individuals tend to think alcohol is the

answer to their problems, yet it increases the prevalence of poor health when consumed

heavily for a long period of time. Furthermore, smoking is known to cause chronic diseases

such as lung cancer among other diseases which negatively impact the health status of

an individual. In contrast to the determinants of health, physical activities and a good

diet are connected with better health.

Ill-health conditions have a strong link with self-reported health. Communicable and

non-communicable diseases are a major cause of poor health. The burden of non-

communicable diseases is two to three times higher in South Africa as compared to

developed countries (WHO, 2008). The individuals residing in rural communities are the

ones affected the most. Depression is considered among other non-communicable diseases

as the greatest burden of health in the world (Househam, 2010). In small rural areas of

South Africa, the depression rate was estimated to be around 27% and 25.2% in urban

regions. Females are known to suffer more from depression than males, especially females

who have children in regions which are not well established. Furthermore, other studies

have linked depression with common influential factors which impact individuals health,

and communicable diseases such as Tuberculosis (TB) is a major one. TB is one of the

major causes of poor health and death in South Africa for the past decade, with about

380,000 estimated adult’s cases of TB incidence in 2016 (WHO, 2015). Deficiency of safe

water and sanitation facilities have a huge impact on the increasing number of infectious

disease cases which also affects individuals health.
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There is a lack of geographical studies on self-reported health due to the availability

of geo-referenced health data. Most studies done on self-reported and self-rated health

have applied classical models under frequentist settings to investigate the determinants of

health. However, studies in epidemiology focus on analyzing the geographic variation for

the severity of the disease. Bayesian hierarchical models are widely used in the context

of disease mapping. This research aims at identifying influential factors on self-reported

health status in South Africa by developing spatial and spatio-temporal models used in

disease mapping.

1.2 Literature review

This section provides a review done by other authors in relation to health. The review

discusses different statistical approaches previously used in assessing the relationship

between self-reported health and influential factors. This section particularly helps in

highlighting the research gap that can be filled based on previous methods and findings.

Furthermore, it relates to and informs the current study to other previous studies based

on similarities or new findings.

Figure 1.1: Conceptual framework action model to achieve Health People 2020 over-
arching goals (Source: https://www.health.ny.gov/statistics/chac/improvement/hp2020
action model.htm).
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Figure 1.1 shows the conceptual framework diagram of the action model adopted by the

Healthy People 2020 to achieve its overarching goal by 2020. The figure shows assessment,

monitoring, evaluation and dissemination of the outcomes after interventions of several

determinants of health. In relation to this research, some of the determinants of health

will be investigated accounting for specific regions or locations in general. Similar to

other previous literature on the determinants of health some of this factors have been

investigated. Hence, this framework provides an insight into which are the influential

factors to pose attention on. Next, we review the literature on different methods used to

investigate the determinants of health.

Health is globally known as the driving force of development both in developing and

developed countries. An individual with good health is less susceptible to the burden

of diseases especially when aging. In many studies the concern about health status is

related to children, however, adults health is of equal importance as of children, especially

at reproductive ages. Health improvement has been one of the world’s objective from

decades ago, but it requires a lot of resources and practice altogether with more strategic

planning and development. This includes the Healthy People 2020 adopted in 2010 and

the global development that is linked to the sustainable development goals (SDGs) to

improve the lives of the poor by 2030. The health impact assessment (HIA) strategy

is also the key to improved health as it aligns the potential factors affecting health.

The important influential factors of health include social, environmental, lifestyle and

individual factors (Lock, 2000).

There was an increase in obesity in 2012 in the low and middle-income countries which

increased several types of cancers and other cardiovascular diseases (WHO, 2013). About

nine out of ten individuals rate their health as good in developed countries. However,

in Japan, Korea and Portugal about half of the population perceived their health as

good or very good (OECD, 2013). On the other hand, the progress of the health-related

millennium development goals (MDGs) in the world has been seen, dating back from
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1990 to 2012. For example, target on the source of drinking water was met in 2012 with

an 89% increase from 76% in 1990, while an improvement on basic sanitation had slow

progress (WHO, 2013). In South Africa, the rate of smoking daily in 2011 was below

15%, with males having a steeper decline. However, with all the current improvements the

SDGs are still ongoing processes to ensure health inequalities are reduced across countries

population. The entire world still suffers from health and socioeconomic inequalities

among individuals, more especially in Sub-Saharan Africa (WHO, 2016; Anita, 2013).

Many studies which have been done on adults self-reported health are based on fre-

quencies approach, with the comparison between dichotomous and categorical response

outcomes. Within the Bayesian spatial modeling under disease mapping, not much atten-

tion has been seen for modeling self-reported health data. In the study by Manor et al.

(2000), a comparison of dichotomous and alternative categorical ordered response was

conducted using the 1958 British cohort birth dataset. The study aim was to investigate

the relationship between age, social class, socioeconomic status, and education on good

rated health for both men and women at four age classes (birth, and ages 16, 23 and 33

years). The commonly used statistical models known as the logistic regression and cumu-

lative odds were adopted for binary and ordinal self-rated health responses respectively

in their study. Other alternate models for ordinal response were also investigated in their

study, including the polytomous regression, continuation ratio, and adjacent categories

model. The study noted that both the logistic regression and cumulative odds models

which were considered yielded similar results for both men and women. The men and

women social class age, socioeconomic status, and education were all significantly asso-

ciated with increased odds of good self-rated health except for men social class aged 16.

These reveal no gender differences in their study. The ordinal model assumption for all

the considered ordinal models of parallelism was tested and none were violated. Logistic

regression resulted in a more robust method than other models (Manor et al., 2000). This

illustrates that different models may have similar results, but a certain model may fit the

data better than other alternative models.
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A study by Subramanian et al. (2010) was conducted in 69 countries, including Sub-

Saharan Africa countries. The study examined the association between education and

self-reported poor health while adjusting for age and gender variables at the global level.

Self-reported health was assessed using a five-point Likert scale but was analyzed as a

collapsed dichotomous response. The assumption that was made in this study was that

education with missing values was replaced with no formal education. Data description

analysis was conducted followed by a logistic regression application. The study used a

simple random sampling and a multistage stratified sampling for 10 and 59 countries

respectively from the 2002 World Health Survey. Results showed that respondents who

had the highest percentage (48.9%) of reporting poor health were Swaziland. Swaziland

is the smallest country which forms a border with South Africa and a northern border

with Mozambique. The years of schooling were found to be higher in Belgium, France,

and Israel, but lowest in many African countries. The results for the logistic regression

model revealed that there was an inverse association between years of schooling and

self-rated poor health in all countries for men and women. This implies that years of

schooling did not result in similar findings from other studies. One would expect that the

higher the years of education the higher the chances of better health. Furthermore, those

individuals in the lowest quintile were twice as likely to rate poor health (Subramanian

et al., 2010). Other studies have shown a strong link between education and population

health (Johanson, 2001; Mirowsky and Ross, 2013; Brunello et al., 2016).

A similar study was done by Hosseinpoor et al. (2012), where they investigated social

determinants of self-reported health in men and women from 57 countries using the 2002-

2004 World Health Survey datasets. In their study, they examine how gender affects

health in African and European countries. However, in their study, self-reported health

was measured using the item response theory partial credit method ranging from 0 as

worse to 100 as the best health status. The Multivariate linear regression was used in

their analysis to assess the relationship between social determinants and health status

among men and women. In all considered countries, individuals living in urban areas had
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better health mean score than those residing in rural areas. In Europe, individuals level of

education and employment were seen to contribute less in explaining health inequalities

than in African regions. Females were found to have significantly lower health status than

males. Other factors like marital status and household income were seen to be significantly

associated with health in all considered countries. The SDGs in all countries, which deals

with gender inequality and women empowerment is likely to be achieved. These are

possible by improving social policies pertaining to females empowerment within regions,

women’s perceived social status, well-being and aging, and other biological risk factors

(Hosseinpoor et al., 2012).

A study by Phillips et al. (2005) was aimed at assessing the determinants of self-rated

health for adults in Texas with chronic illness using data from the 2003 Behavioral Risk

Factor Surveillance System survey. The data sample in their study was collected using

a random digit dialing method and a five-point scale to measure self-rated health. In

Texas, it was found that older individuals, women, low-income households, obese and

none exercising individuals rated their health as poor. The study noted that higher

education, non-Hispanic ethnicity, doing physical activities and a lower Body Mass Index

(BMI) were systematically associated with better health status. In addition, the study

indicated that potentially modifiable factors such as BMI and physical activities were

most powerful to predict self-rated health. The study noted a link between socio-culture

and self-rated health, such that individuals who were interviewed in Spanish were much

likely to rate their health as poor than those interviewed in English. Phillips et al. (2005)

used the multiple logistic regression for a dichotomous self-rated health to assess the

predictor variables. The conclusion in their study stated that health care services and

delivery based on cultural sensitivity must be considered.

Cau et al. (2016a) examined determinants associated with poor self-rated health among

adults in Maputo metropolitan area in Mozambique. The study used data from Health

Barometer: Individual and Community Health Promoting Practices in Maputo City.
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However, the sample size was not large enough (n = 677) in their study. Their response

variable was a six-point scale to rate individuals health. Multiple logistic regression

model was adopted in their study. The variables age, gender, and marital status were

found to be the key determinants of poor self-rated health. Being female and single

respectively had higher odds of reporting poor health. Also, being a widow and separated

or divorced had higher odds of reporting poor health. Other variables such as education,

type of occupation, drinking water treatment, and physical activities were found to be

significantly associated with self-rated health.

Many studies have not considered social capital as a determinant of health, however other

determinants have been reviewed concerning self-rated health. A study conducted in

South Africa was done by Cramm and Nieboer (2011) to identify the role of social capital

along with socioeconomic conditions on self-rated health for economically and health

deprived communities. In this study, it was revealed that social capital was significantly

associated with self-rated health. Social capital among other predictor variables like

employment was found to be aligned with increased odds of rating good health. The

study was based on a survey administered in Rhiri, in the Eastern Cape, South Africa.

The ordinal logistic regression model was used to assess the covariates. The importance

of social capital, education, and employment in low-income regions in South Africa is

shown in their study.

The Logistic regression model and the ordinal logistic regression model are the most pop-

ular employed models when the nature of the response variable is binary and categorical

respectively. Both these models can be extended to multilevel modeling, where the incor-

poration of random effects is considered. The random effects account for the unobserved

heterogeneity of the covariates under study. A recent study by Lau and Ataguba (2015)

examined the association between social capital and self-rated health. The study used

the data from the NIDS wave 1 and wave 2 in South Africa. The hierarchical linear

regression model was adopted to identify the covariates which correlate with self-rated
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health. The findings suggested that both individual and contextual-level social capital

were significantly associated with self-rated health (Lau and Ataguba, 2015).

1.2.1 Spatial and Spatio-temporal modeling

In recent literature, mapping of diseases has been a fundamental objective to identify

geographical variation of disease risk. The availability of geo-referenced and time framed

data has made disease mapping methodologies broader and important in recent studies.

Bayesian hierarchical modeling is commonly used in the context of disease mapping. The

use of spatial and spatio-temporal models provide a unified framework to handle complex

data with multilevel characteristics. The two models are statistical tools used to estimate

disease risk parameters. Application and development of disease mapping techniques date

way back from decades ago, these include literature on Clayton and Kaldor (1987), Besag

et al. (1991), Bernardinelli and Montomoli (1992) and Best et al. (2005) among others.

In disease mapping, the Bayesian methods are very popular. Clayton and Kaldor (1987)

used the empirical Bayes (EB) approach to estimate disease risk based on two simple

models, namely the log-Normal and Poisson-gamma models. Their study assumed a

conditional autoregressive (CAR) model for the spatial correlation. In contrast to the

random effects, they also allowed for a non-parametric form of random effects contrary to

the spatial correlation. However, the EB estimation approach provides estimates that are

contracted towards the local or global mean and have been criticized. Other studies have

considered the use of EB approach for disease risk estimation (Marshall, 1991; Devine

and Louis, 1994; Kneib and Fahrmeir, 2006).

The fully Bayesian (FB) approach in disease mapping was proposed by Besag et al.

(1991). Their model is generally referred to as the Besag, York and Mollié (BYM) model.

In their study, they proposed the incorporation of spatial random components that can

split into two spatial random effects. These two spatial components were assumed to be

independent and were assigned different Gaussian priors. A study by Best et al. (2005)
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also used a similar approach, adopting a FB approach. In both these studies, a CAR

model was used for the spatial correlation. A FB approach in the estimation of disease risk

for interaction between space and time under spatio-temporal modeling was introduced

by Bernardinelli et al. (1995). Their study proposed spatio-temporal modeling which

accounts for space and time components. In the mentioned studies, the estimation of

parameters was obtained using Markov chain Monte Carlo (MCMC) techniques. Other

studies have also considered the FB approach under spatio-temporal modeling in disease

mapping (Waller et al., 1997; Knorr-Held, 2000).

A comparison of EB and FB estimation approach was done by Bernardinelli and Mon-

tomoli (1992). In their study, they considered models that are used in the geographic

variation of diseases. To be more specific, they considered spatial Bayesian hierarchical

modeling with an assumption of a Poisson and multivariate distributed models. The

comparison of the two estimation procedure was based on the study of cancer mortality

at district levels of Sardinia. Bernardinelli and Montomoli (1992) considered two prior

models for the spatial random effects, evaluated separately in turn. The prior models

that they adopted in their study were the independent identical distributed and the CAR

model. In their study, they pinpointed that FB is more powerful and preferable estima-

tion approach than the EB approach. The FB estimation considers the uncertainty of

the model parameters while the EB procedure conditions estimation on point estimates

by approximation (Bernardinelli and Montomoli, 1992). However, the FB estimation ap-

proach is known to be computationally expensive in terms of time as compared to the

EB estimation procedures.

1.2.2 Research on self-reported health using spatial and spatio-

temporal models

According to our knowledge, few studies have been done on spatial and spatio-temporal

modeling of self-reported health, especially in Sub-Saharan African (SSA). However, few
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recent studies have examined the association between health and geographic factors. The

following are some of the studies that have considered the geographical variation of self-

rated health.

To examine the spatial distribution of perceived environmental hazards and self-rated

health while adjusting for other influential factors in the districts of Beijing, Ma et al.

(2017) used Bayesian spatial multilevel logistic regression models. Their model incor-

porated a CAR model developed by Leroux et al. (2000) for the spatial random effects.

Their study found that lower odds of rating poor health were in northern-western and

central regions of Beijing. Furthermore, they found that environmental hazards, such as

air, noise, and landfill pollution were significantly associated with higher odds of poor

self-rated health.

On the other hand, a study by Cabrera-Barona (2017) examined the influence of urban

multi-criteria deprivation and spatial accessibility to health on self-reported health in the

city of Quito, Ecuador. The study used a multilevel logistic regression model to assess the

relationship between the random effects on self-reported health. Mapping was done on

urban multi-criteria deprivation and spatial accessibility to investigate area level influence

on self-reported health. This study found lower levels of deprivation on self-reported

health in Quito. The study also found a spatial variation in health care accessibility,

with highest accessibility on the north, central and southern regions of Quito.

The study by Browning et al. (2003) investigated how health status varied across space

and time. Their study used data from the city of Chicago in the USA between the period

of 1990 to 1999. Health status in this study was first reported on a four-point scale and

was then collapsed into a binary response. The study adopted a three-level (individual,

temporal, and spatial components) hierarchical logit models to assess the variation and

factors influencing the individual’s health status. However, the assumption made on this

study was that space and time are of parametric form. They found that neighborhoods

in Chicago were not spatially dependent. They also found that health status improved
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across the time periods.

1.3 Significance of the Study

In order to improve and promote good health, more health-care systems should be es-

tablished. Despite the lack of healthcare institutes and resources, understanding the

determinants of health is important to further improving population health. Many ma-

jor problems in different regions are related to interaction and behavior. Some of these

problems are connected to the social, socioeconomic, living environment and lifestyle of

individuals as an entire population. The field of biostatistics and epidemiology deals with

issues of public health both in developing and developed countries. Poor health is one of

the major public health problems in many countries. This issue is one of the most crucial

topics, not only in developing countries but also in developed countries. Understanding

the key factors which are associated with poor health can lead to problem-solving im-

plementations and programme developments. There is this aspect of elucidating spatial

and spatio-temporal patterns or distribution or heterogeneity of poor health. This study

will provide concrete statistical approaches including modeling techniques for those key

factors linked to reporting poor health among adults. Hence, the contribution of this

study will be of interest to biostatisticians and epidemiologists, particularly in health-

care practitioners. Furthermore, this study will be beneficial to society, but mostly to

the government for intervention and policymakers. Nonetheless, the contributions of this

study are not expected to be restricted to health care context, and should not be ex-

clusive in any institution aiming to achieve model development for solving public health

problems.
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1.4 Problem Statement

Health status is a crucial measure of an individuals well-being both physical and emo-

tional. It plays a huge role in the social and economic development of a country. Poor

health has been identified as one of the causes of mortality and morbidity. In South

Africa improving health and well-being has been one of the Healthy People 2020 and

Sustainable Development Goals (SDGs) implementations, more especially for children.

However, these goals have not been achieved for all the provinces and population in

South Africa. Hence improving health increases the reduction of mortality and mor-

bidity. In this research, we address the issue of poor self-reported health using the

National Income Dynamics Study (NIDS) adults datasets, by developing suitable statis-

tical methods that can help us understand the underlying factors on self-reported health

in South Africa. Further, this research explores the geographic variations of poor self-

reported health and its changes over time.

1.5 Objectives

The aim of this research project is to investigate the determinants and geographic varia-

tion of self-reported health status using adults national income dynamic studies (NIDS)

datasets in South Africa.

1.6 Specific objectives

The specific objectives of this research are:

• To review statistical methods for discrete choice outcomes used in disease mapping.

• To identify appropriate spatial models for modeling poor health at the district level
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using wave 4 of the NIDS data in South Africa.

• To identify suitable spatio-temporal models for modeling and mapping poor health

in South Africa at the district level using waves 1 to 4 of the NIDS data in South

Africa.

• To develop and extend suitable models desirable for investigating influential factors

associated with self-reported health status in the district level of South Africa.

1.7 Structure of the Thesis

The second chapter of this research focuses on exploring the data and checking of relevant

assumptions. In the third chapter, we review Bayesian spatial models used in structured

additive regression (STAR) models. In the fourth chapter we review Bayesian spatial

models with extension to STAR models for ordinal outcomes, this includes application

to NIDS data and model comparison. In the fifth chapter we review Bayesian spatial

models with extension to STAR models for binary outcomes, this includes application

to NIDS data and model comparison. In the sixth chapter, we discuss spatio-temporal

models for ordinal and binary outcomes, this includes mapping self-reported poor health

in South Africa using the four available waves of NIDS data and models comparison of

several models. In the last chapter, we discuss the findings then give a conclusion and

future research recommendations.
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Chapter 2

Exploratory Data Analysis

2.1 Introduction

The most essential attribute to consider before making any inference from the data is to

examine all the variables in that data. This is known as the exploratory data analysis

(EDA). The primary aim of the EDA is to examine the following:

- to capture mistakes,

- to find violations of statistical assumptions,

- to generate hypotheses,

- to observe patterns in the data,

- to figure out relationships between the response and risk factors.

This chapter presents a detailed data description. We describe how the variables were

classified. The cross-tabulations for the variable of interest against the selected indepen-

dent variables were assessed using the Pearson chi-square test. Also, the proportional

odds assumptions were checked for the case of the ordinal response variable. Further-

more, we tested for multicollinearity among the independent variables. All the analysis

in this chapter were carried out in Stata version 14.1 (StataCorp, 2015) and R statistical

software version 3.4.2 (R Core Team, 2017).
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2.2 Data Source

The datasets used for this research project were extracted from the representa-

tion of the National Income Dynamics Study (NIDS), which is conducted by the

Southern Africa Labour and Development Research Unit (SALDRU) situated at the

University of Cape Town. The NIDS is the first longitudinal study done in South Africa

(SA) that aims at describing and explaining the changes in socioeconomic indexes, such as

education, income, expenditures, assets, access to services, health, and well-being (Leib-

brandt et al., 2009). The data is an individual level panel survey that has a sample of

over 28,000 individuals in 7,300 households across the country which is collected bian-

nually, with four waves available. The first wave of the NIDS was collected in 2008, the

second between 2010-2011, the third in 2012, and the fourth between 2014-2015. The

survey employed a stratified, two-stage cluster sampling design to collect a representative

sample from the private households in all nine provinces in SA and residents in worker’s

hostels, convents, and monasteries (Leibbrandt et al., 2009). In the first stage of sam-

pling, 400 primary sampling units (PSUs) were chosen from the master sample of 3000

PSUs classified by Stats SA in 2003. In the second stage, the sample was proportionally

allocated to the strata based on the master sample of 53 district councils and 400 PSUs

were randomly chosen within each stratum (Leibbrandt et al., 2009).

An important component of the longitudinal study is its capability to follow individuals

over a period of time. Also, it allows researchers and policy analysts to see how households

and individuals are impacted over time (Leibbrandt et al., 2009). However, there are

disadvantages to the occurrence of missing data. The NIDS uses trained enumerators to

collect the data using three sets of questionnaires at both the individual and household

levels. The individual’s questionnaire was designed to collect information on adults aged

15 years and older. The second one was designed to collect information for children

younger than 15 years. The third one, known as the household questionnaire was designed
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to collect information about the household head and the characteristics of the dwelling

place. Individuals are classified as either the Continuing Sample Members (CSMs) or

Temporary Sample Members (TSMs). CSMs are interviewed in every wave of NIDS

whereas TSMs are interviewed only in the wave(s) that they are co-resident with a CSMs.

In this research project, we use the NIDS adults datasets for individuals between the ages

of 15-49 years.

2.3 Study variables

2.3.1 Dependent variable: Self-reported health status

The main variable of interest in this research is the self-reported health status of adults

between 15 and 49 years of age. Self-reported health status in the NIDS survey was

assessed using a five-point Likert scale through the question: ”How would you describe

your health at present? Would you say it is poor, fair, good, very good, or excellent?”.

Self-reported health in this research was analyzed using two different techniques. First,

we considered self-reported health as an ordinal variable. Secondly, we dichotomized

self-reported health status as good health (excellent, very good or good) and poor health

(fair or poor) following previous studies by Manor et al. (2000), Kawachi et al. (1999) and

Lamarca et al. (2013). The ordinal response variable is classified as 1 = ”excellent”, 2 =

”very good”, 3 = ”good”, 4 = ”fair” and 5 = ”poor” and the binary response is classified

as 1 = ”poor” and 0 = ”good” in all the analysis to be performed in this research project.

2.3.2 Explanatory variables

Several explanatory variables were collected in all the NIDS wave surveys. However,

the variables that were considered in this research were based on some of the variables

used in the previous studies by Reichmann et al. (2009) and Hosseinpoor et al. (2012)
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on adults self-reported health. The explanatory variables which were considered are de-

scribed further. The data includes the demographic, socio-economic, and lifestyle char-

acteristics. The demographic characteristics included the individual’s age, gender, race,

marital status, and life satisfaction level. Socio-economic characteristics included the in-

dividual’s type of residence, education level, household income, and employment status.

The lifestyle characteristics included alcohol consumption level, exercising level, smok-

ing cigarette, and nutrition status. Moreover, we included comorbidity factors which

included depression and Tuberculosis (TB). Lastly, we included environmental factors

such as household water source and type of toilet facilities. We derived some of the

original variables to newly defined categorical variables. These newly defined variables

included education level (no schooling, primary, secondary, high, college and tertiary),

marital status (never married, widow/divorced/separated and married/living with part-

ner), household water source (adequate, inadequate and other) and life satisfaction level

(very dissatisfied, dissatisfied, neutral, satisfied and very satisfied). Also, the nutrition

status was derived from the body mass index (BMI) using the standard formula (weight

in kg)/(height in m)2.

2.4 Preliminary analysis

It is very important to understand the baseline characteristics of the individuals selected

in the study. This section presents the description of the NIDS wave 4 data. The sample

distribution along with the Pearson’s chi-square test p-values of the covariates will be

discussed. The data consisted of 22,752 individuals of age 15 years and above in total.

Out of 22,752, there were 21,400 individuals between the ages of 15 - 49 years which were

considered in this study. The health status of individuals was recorded, where missing

values were dropped so that the final sample size was 15,795, representing 73.8% of the

original sample.

19



The distribution of self-reported health is presented in Table 2.1. It can be observed

that most of the sample was from the respondents who reported excellent health 5,691

(36.03%), while the smallest sample was from respondents who reported poor health 199

(1.26%). The sample distribution for respondents who reported Very good, Good and

Fair health status were 5,169 (32.73%), 4,056 (25.68%) and 680 (4.31%) respectively.

Table 2.1: Frequency distribution of self-reported health status in the National Income
Dynamics Study (NIDS) wave 4.

Health status Response Frequency Percent
Poor 1 199 1.26
Fair 2 680 4.31
Good 3 4,056 25.68
Very good 4 5,169 32.73
Excellent 5 5,691 36.03
Total - 15,795 100.00

This research consists of covariates which are categorical variables, thus we further explore

the proportion for each variable. Since the purpose of this research is to investigate factors

associated with self-reported health, we discuss the distribution of the sample based on

health status for each covariate.

Table 2.2: Multiple univariate two-way contingency table analysis of ordinal outcome
health status by covariate categories classification.

Health status

Covariates
Excellent Very good Good Fair Poor Total

p-value
N (%) N (%) N (%) N (%) N (%) N

Age group <0.001

15-19 1424 (40.51) 1204 (34.25) 790 (22.48) 71 (2.02) 26 (0.74) 3515

20-24 1288 (40.36) 1070 (33.53) 747 (23.41) 68 (2.13) 18 (0.56) 3191

25-29 1022 (37.98) 895 (33.26) 682 (25.34) 77 (2.86) 15 (0.56) 2691

30-34 767 (37.20) 663 (32.15) 524 (25.41) 83 (4.03) 25 (1.21) 2062

35-39 524 (31.97) 525 (32.03) 449 (27.39) 114 (6.96) 27 (1.65) 1639

40-44 387 (27.60) 449 (32.03) 414 (29.53) 112 (7.99) 40 (2.85) 1402

45-49 279 (21.54) 363 (28.03) 450 (34.75) 155 (11.97) 48 (3.71) 1295

Gender <0.001

Female 2977 (33.55) 2949 (33.23) 2393 (26.97) 435 (4.90) 120 (1.35) 8874

Male 2714 (39.21) 2220 (32.08) 1663 (24.03) 245 (3.54) 79 (1.14) 6921

Race 0.040
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Table 2.2 Continues

Health status

Covariates
Excellent Very good Good Fair Poor Total

p-value
N (%) N (%) N (%) N (%) N (%) N

African 4827 (36.05) 4397 (32.84) 3406 (25.44) 587 (4.38) 171 (1.28) 13388

Asian/Indian 47 (35.61) 49 (37.12) 26 (19.70) 7 (5.30) 3 (2.27) 132

Coloured 745 (35.90) 661 (31.86) 574 (27.66) 74 (3.57) 21 (1.01) 2075

White 72 (36.00) 62 (31.00) 50 (25.00) 12 (6.00) 4 (2.00) 200

Type of residence <0.001

Urban Informal 490 (38.04) 401 (31.13) 320 (24.84) 57 (4.43) 20 (1.55) 1288

Rural Formal 536 (34.12) 527 (33.55) 425 (27.05) 60 (3.82) 23 (1.46) 1571

Urban Formal 2368 (35.66) 2044 (30.78) 1823 (27.45) 319 (4.80) 87 (1.31) 6641

Tribal Authority Areas 2297 (36.49) 2197 (34.90) 1488 (23.64) 244 (3.88) 69 (1.10) 6295

Education level <0.001

No schooling 55 (19.86) 74 (26.71) 91 (32.85) 40 (14.44) 17 (6.14) 277

Primary 82 (19.52) 106 (25.24) 160 (38.10) 50 (11.90) 22 (5.24) 420

Secondary 455 (27.74) 541 (32.99) 495 (30.18) 109 (6.65) 40 (2.44) 1640

High 4042 (37.48) 3619 (33.56) 2654 (24.61) 367 (3.40) 103 (0.96) 10785

College 251 (36.22) 232 (33.48) 171 (24.68) 32 (4.62) 7 (1.01) 693

Tertiary 806 (40.71) 597 (30.15) 485 (24.49) 82 (4.14) 10 (0.51) 1980

Household income <0.001

Much below average 1100 (40.00) 773 (28.11) 696 (25.31) 133 (4.84) 48 (1.75) 2750

Below average 1460 (34.93) 1411 (33.76) 1044 (24.98) 205 (4.90) 60 (1.44) 4180

Average 2453 (34.75) 2368 (33.54) 1872 (26.52) 286 (4.05) 81 (1.15) 7060

Above average 444 (38.18) 372 (31.99) 294 (25.28) 44 (3.78) 9 (0.77) 1163

Much above average 234 (36.45) 245 (38.16) 150 (23.36) 12 (1.87) 1 (0.16) 642

Marital status <0.001

Never married 4306 (37.74) 3829 (33.56) 2777 (24.34) 387 (3.39) 111 (0.97) 11410

Widow/Divorced/Seperated 136 (26.77) 121 (23.82) 189 (37.20) 41 (8.07) 21 (4.13) 508

Married/living with partner 1249 (32.22) 1219 (31.44) 1090 (28.11) 252 (6.50) 67 (1.73) 3877

Alcohol consumption level <0.001

Never drunk alcohol 3373 (36.14) 3216 (34.46) 2297 (24.61) 355 (3.80) 92 (0.99) 9333

No longer drink alcohol 568 (33.89) 512 (30.55) 451 (26.91) 104 (6.21) 41 (2.45) 1676

Drink very rarely 1019 (37.75) 779 (28.86) 750 (27.79) 118 (4.37) 33 (1.22) 2699

Less than once a week 193 (33.68) 196 (34.21) 161 (28.10) 21 (3.66) 2 (0.35) 573

1 or 2 days a week 431 (37.48) 351 (30.52) 289 (25.13) 57 (4.96) 22 (1.91) 1150

3 or 4 days a week 75 (29.88) 78 (31.08) 75 (29.88) 17 (6.77) 6 (2.39) 251

5 or 6 days a week 15 (24.59) 24 (39.34) 18 (29.51) 3 (4.92) 1 (1.64) 61

Every day 17 (32.69) 13 (25.00) 15 (28.85) 5 (9.62) 2 (3.85) 52

Employment status 0.020

Unemployed Strict 912 (38.11) 749 (31.30) 608 (25.41) 98 (4.10) 26 (1.09) 2393
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Table 2.2 Continues

Health status

Covariates
Excellent Very good Good Fair Poor Total

p-value
N (%) N (%) N (%) N (%) N (%) N

Unemployed Discouraged 89 (38.86) 91 (39.74) 43 (18.78) 4 (1.75) 2 (0.87) 229

Not Economically Active 2401 (35.99) 2216 (33.22) 1681 (25.20) 280 (4.20) 93 (1.39) 6671

Employed 2289 (35.20) 2113 (32.50) 1724 (26.51) 298 (4.58) 78 (1.20) 6502

Exercising level <0.001

Never 3477 (33.90) 3365 (32.81) 2749 (26.80) 509 (4.96) 156 (1.52) 10256

Less than once a week 511 (41.34) 409 (33.09) 272 (22.01) 34 (2.75) 10 (0.81) 1236

Once a week 326 (39.52) 245 (29.70) 211 (25.58) 30 (3.64) 13 (1.58) 825

Twice a week 385 (37.63) 322 (31.48) 272 (26.59) 36 (3.52) 8 (0.78) 1023

Three or more times a week 992 (40.41) 828 (33.73) 552 (22.48) 71 (2.89) 12 (0.49) 2455

Type of toilet facility <0.001

None 159 (30.46) 181 (34.67) 146 (27.97) 28 (5.36) 8 (1.53) 522

Flush toilet with offsite disposal 1359 (37.26) 1068 (29.28) 998 (27.36) 168 (4.61) 54 (1.48) 3647

Flush toilet with onsite disposa 1514 (34.84) 1392 (32.03) 1194 (27.47) 197 (4.53) 49 (1.13) 4346

Bucket toilet 178 (36.55) 186 (38.19) 97 (19.92) 21 (4.31) 5 (1.03) 487

Chemical toilet 109 (29.95) 100 (27.47) 130 (35.71) 17 (4.67) 8 (2.20) 364

Pit latrine with ventilation pipe 993 (39.06) 861 (33.87) 548 (21.56) 108 (4.25) 32 (1.26) 2542

Pit latrine without ventilation pipe 1376 (35.65) 1366 (35.39) 937 (24.27) 138 (3.58) 43 (1.11) 3860

Other 3 (11.11) 15 (55.56) 6 (22.22) 3 (11.11) 0 (0.00) 27

Smokes cigarette <0.001

No 4704 (36.47) 4263 (33.05) 3264 (25.31) 515 (3.99) 152 (1.18) 12898

Yes 987 (34.07) 906 (31.27) 792 (27.34) 165 (5.70) 47 (1.62) 2897

Felt depressed in past week? <0.001

Less than 1 day 3519 (39.11) 2946 (32.74) 2175 (24.17) 289 (3.21) 68 (0.76) 8997

Little of the time (1-2 days) 1540 (31.78) 1666 (34.38) 1327 (27.38) 237 (4.89) 76 (1.57) 4846

Occasionally (3-4 days) 530 (33.69) 464 (29.50) 424 (26.95) 118 (7.50) 37 (2.35) 1573

All of the time (5-7 days) 102 (26.91) 93 (24.54) 130 (34.30) 36 (9.50) 18 (4.75) 379

Diagnosed with tuberculosis (TB)? <0.001

No 5575 (36.61) 4994 (32.80) 3898 (25.60) 604 (3.97) 156 (1.02) 15227

Yes 116 (20.42) 175 (30.81) 158 (27.82) 76 (13.38) 43 (7.57) 568

Household water source 0.280

Adequate 4028 (36.01) 3621 (32.37) 2909 (26.01) 490 (4.38) 137 (1.22) 11185

Inadequate 1585 (35.79) 1493 (33.72) 1110 (25.07) 182 (4.11) 58 (1.31) 4428

Other 78 (42.86) 55 (30.22) 37 (20.33) 8 (4.40) 4 (2.20) 182

Life satisfaction level <0.001

Very dissatisfied 514 (35.16) 510 (34.88) 328 (22.44) 77 (5.27) 33 (2.26) 1462

Dissatisfied 1354 (34.41) 1378 (35.02) 993 (25.24) 162 (4.12) 48 (1.22) 3935

Neutral 1794 (35.14) 1647 (32.26) 1350 (26.44) 248 (4.86) 66 (1.29) 5105
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Table 2.2 Continues

Health status

Covariates
Excellent Very good Good Fair Poor Total

p-value
N (%) N (%) N (%) N (%) N (%) N

Satisfied 1294 (36.97) 1152 (32.91) 891 (25.46) 125 (3.57) 38 (1.09) 3500

Very satisfied 735 (40.99) 482 (26.88) 494 (27.55) 68 (3.79) 14 (0.78) 1793

Nutrition status <0.001

Normal 2870 (38.02) 2435 (32.26) 1865 (24.71) 283 (3.75) 96 (1.27) 7549

Underweight 332 (34.16) 315 (32.41) 263 (27.06) 47 (4.84) 15 (1.54) 972

Overweight/obese 2377 (34.24) 2311 (33.29) 1854 (26.70) 328 (4.72) 73 (1.05) 6943

Severe 112 (33.84) 108 (32.63) 74 (22.36) 22 (6.65) 15 (4.53) 331

Table 2.2 presents the results of the multiple univariate two-way classifications, along with

the chi-square (χ2) test of association of the selected covariates. The covariates are derived

from the respondents demographic, socioeconomic status, environmental and lifestyle

factors. The results reveal that among individuals aged 40-44 and 45-49 years 2.85%

and 3.71% of them respectively reported poor health. For gender, 1.35% of females and

1.14% of males reported poor health. Among individuals who are African, 1.28% of them

reported poor health and 36.05% of them reported excellent health. On the other hand,

2.27% of respondents who reported poor health and 35.61% who reported excellent health

were Asian/Indian. Among individuals residing in Urban informal areas, 38.04% of them

reported excellent health and 1.55% of them reported poor health. Those residing in Rural

formal areas 34.12% of them reported excellent health and 1.46% of them reported poor

health. It can be observed that there is an increasing trend of reporting excellent health

and a decreasing trend of reporting poor health as education level increases. Among

individuals with tertiary education, 40.71% of them reported excellent health and 0.51%

of them reported poor health. Individuals from the household with much below average

income 25.31% of them reported good health and 4.84% of them reported fair health.

Those from the household with average income 34.75% of them reported excellent health

and 1.15% of them reported poor health. Furthermore, among individuals from the

household with much above average income 36.45% of them reported excellent health
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and 0.16% of them reported poor health. Individuals who were never married reported

less poor health (0.97%) than those who we married or living with a partner (1.73%). On

the other hand, among those who were either widow/divorced/separated, 4.13% of them

reported poor health and 26.77% of them reported excellent health. We observed that

among individuals who drank every day, 3.85% of them reported poor health while those

who never drunk alcohol 36.14% of them reported excellent health. Those who drank less

than once a week 34.21% of them reported very good health and 3.66% of them reported

fair health. We also observed that respondents who were not economically active 1.39% of

them reported poor health. Those individuals who never exercise 1.52% of them reported

poor health, while those who exercise twice a week 0.78% of them reported poor health.

Respondents with flushing toilets that have offsite and onsite disposal had an almost

equal proportion of poorly reported health (1.48% and 1.13% respectively). Whereas

households with other type of toilet 11.11% of them reported excellent health and none

reported poor health. Among those respondents who smoke a cigarette, 34.07% of them

reported excellent health and 1.62% of them reported poor health. However, those who do

not smoke a cigarette, 1.18% of them reported poor health. This reveals that people who

smoke a cigarette are more likely to have poor health than those who do not smoke. It

can be observed that the highest proportion of reporting poor health is among those who

felt depressed all the time (4.75%) while those who felt depressed less than a day had the

highest proportion of reporting excellent health (39.11%). Among individuals who were

diagnosed with TB, 20.42% of them reported excellent health and 7.57% of them reported

poor health. Respondents living in households with adequate water, about 1.22% of them

reported poor health, while those living in households with inadequate water 1.31% of

them reported poor health. The results reveal that as life satisfaction level increases, the

proportion of individuals reporting excellent health also increases while reporting poor

decreases. Among individuals with overweight/obese nutrition status, 34.24% of them

had excellent health and 1.05% of them had poor health. Furthermore, those individuals

with severe malnutrition 4.53% of them had poor health and 33.84% of them had excellent
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health.

Table 2.3: Multiple univariate two-way contingency table analysis of binary outcome
health status by covariate categories classification.

Health status

Covariates
Good Poor Total

p-value
N (%) N (%) N

Age group (years) <0.001

15-19 3418 (97.24) 97 (2.76) 3515

20-24 3105 (97.30) 86 (2.70) 3191

25-29 2599 (96.58) 92 (3.42) 2691

30-34 1954 (94.76) 108 (5.24) 2062

35-39 1498 (91.40) 141 (8.60) 1639

40-44 1250 (89.16) 152 (10.84) 1402

45-49 1092 (84.32) 203 (15.68) 1295

Gender <0.001

Female 8319 (93.75) 555 (6.25) 8874

Male 6597 (95.32) 324 (4.68) 6921

Race 0.050

African 12630 (94.34) 758 (5.66) 13388

Asian/Indian 122 (92.42) 10 (7.58) 132

Coloured 1980 (95.42) 95 (4.58) 2075

White 184 (92.00) 16 (8.00) 200

Type of residence 0.030

Urban Informal 1211 (94.02) 77 (5.98) 1288

Rural Formal 1488 (94.72) 83 (5.28) 1571

Urban Formal 6235 (93.89) 406 (6.11) 6641

Tribal Authority Areas 5982 (95.03) 313 (4.97) 6295

Education level <0.001

No schooling 220 (79.42) 57 (20.58) 277

Primary 348 (82.86) 72 (17.14) 420

Secondary 1491 (90.91) 149 (9.09) 1640

High 10315 (95.64) 470 (4.36) 10785

College 654 (94.37) 39 (5.63) 693

Tertiary 1888 (95.35) 92 (4.65) 1980

Household income <0.001

Much below average 2569 (93.42) 181 (6.58) 2750

Below average 3915 (93.66) 265 (6.34) 4180

Average 6693 (94.80) 367 (5.20) 7060

Above average 1110 (95.44) 53 (4.56) 1163

Much above average 629 (97.98) 13 (2.02) 642
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Table 2.3 Continues

Health status

Covariates
Good Poor Total

p-value
N (%) N (%) N

Marital status <0.001

Never married 10912 (95.64) 498 (4.36) 11410

Widow/Divorced/Seperated 446 (87.80) 62 (12.20) 508

Married/living with partner 3558 (91.77) 319 (8.23) 3877

Alcohol consumption level <0.001

Never drunk alcohol 8886 (95.21) 447 (4.79) 9333

No longer drink alcohol 1531 (91.35) 145 (8.65) 1676

Drink very rarely 2548 (94.41) 151 (5.59) 2699

Less than once a week 550 (95.99) 23 (4.01) 573

1 or 2 days a week 1071 (93.13) 79 (6.87) 1150

3 or 4 days a week 228 (90.84) 23 (9.16) 251

5 or 6 days a week 57 (93.44) 4 (6.56) 61

Every day 45 (86.54) 7 (13.46) 52

Employment status 0.160

Unemployed Strict 2269 (94.82) 124 (5.18) 2393

Unemployed Discouraged 223 (97.38) 6 (2.62) 229

Not Economically Active 6298 (94.41) 373 (5.59) 6671

Employed 6126 (94.22) 376 (5.78) 6502

Exercising level <0.001

Never 9591 (93.52) 665 (6.48) 10256

Less than once a week 1192 (96.44) 44 (3.56) 1236

Once a week 782 (94.79) 43 (5.21) 825

Twice a week 979 (95.70) 44 (4.30) 1023

Three or more times a week 2372 (96.62) 83 (3.38) 2455

Type of toilet facilities 0.090

None 486 (93.10) 36 (6.90) 522

Flush toilet with offsite disposal 3425 (93.91) 222 (6.09) 3647

Flush toilet with onsite disposal 4100 (94.34) 246 (5.66) 4346

Bucket toilet 461 (94.66) 26 (5.34) 487

Chemical toilet 339 (93.13) 25 (6.87) 364

Pit latrine with ventilation pipe 2402 (94.49) 140 (5.51) 2542

Pit latrine without ventilation pipe 3679 (95.31) 181 (4.69) 3860

Other 24 (88.89) 3 (11.11) 27

Smokes cigarette <.0.001

No 12231 (94.83) 667 (5.17) 12898

Yes 2685 (92.68) 212 (7.32) 2897

Felt depressed in the past week? <.0.001

26



Table 2.3 Continues

Health status

Covariates
Good Poor Total

p-value
N (%) N (%) N

Less than 1 day 8640 (96.03) 357 (3.97) 8997

Little of the time (1-2 days) 4533 (93.54) 313 (6.46) 4846

Occasionally (3-4 days) 1418 (90.15) 155 (9.85) 1573

All of the time (5-7 days) 325 (85.75) 54 (14.25) 379

Was diagnosed with tuberculosis (TB)? <.0.001

No 14467 (95.01) 760 (4.99) 15227

Yes 449 (79.05) 119 (20.95) 568

Household water source 0.740

Adequate 10558 (94.39) 627 (5.61) 11185

Inadequate 4188 (94.58) 240 (5.42) 4428

Other 170 (93.41) 12 (6.59) 182

Life satisfaction level <.0.001

Very dissatisfied 1352 (92.48) 110 (7.52) 1462

Dissatisfied 3725 (94.66) 210 (5.34) 3935

Neutral 4791 (93.85) 314 (6.15) 5105

Satisfied 3337 (95.34) 163 (4.66) 3500

Very satisfied 1711 (95.43) 82 (4.57) 1793

Nutrition status <.0.001

Normal 7170 (94.98) 379 (5.02) 7549

Underweight 910 (93.62) 62 (6.38) 972

Overweight/obese 6542 (94.22) 401 (5.78) 6943

Severe 294 (88.82) 37 (11.18) 331

Table 2.3 presents the results of the collapsed self-reported health status, with good and

poor health status. The categorical covariates presented are still the same as in Table

2.2. However, it is the health status that has been collapsed into two categories. It is ob-

served that among individuals aged 15-19 years 2.76% of them reported poor health and

97.24% of them reported good health. Those aged 30-34 years, 94.76% of them reported

good health and 5.24% of them reported poor health. Moreover, those individuals aged

45-49 years, 15.68% of them reported poor health and 84.32% of them reported good

health. We can see an increasing trend of reporting poor health as age increases and a

decreasing trend of reporting good health as age increases. Among individuals who are

female, 6.25% of them reported poor health. On the other hand, those individuals who
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are male, 4.68% of them reported poor health and 95.32% of them reported good health.

Among individuals who are African, 94.34% of them reported good health and 5.66% of

them reported poor health. Those individuals who are coloured, 95.42% of them reported

good health and 4.58% of them reported poor health. Individuals residing in rural areas,

about 94.72% of them reported good health and 5.98% of them reported poor health.

Those residing in tribal authority areas, 95.03% of them reported good health and 4.97%

of them reported poor health. There is a decreasing trend of reporting poor health as

the education level increases. Among individuals with high education, 95.64% of them

reported good health. Moreover, those individuals with tertiary education, 95.35% of

them reported good health. An increasing trend of reporting good health as household

income level increase can be observed. We can also observe a decreasing trend of re-

porting poor health as household income level increases. Those individuals who were

either widow/divorced/separated, 12.20% of them reported poor health and 87.80% of

them reported good health. About 4.79% of respondents who never drunk alcohol re-

ported poor health while 13.46% of respondents who reported poor health were those who

drank everyday. About six percent of the respondents who reported poor health were not

economical active (5.59%) and employed (5.78%) respectively. Among individuals who

never exercised, 93.52% of them reported good health and 6.48% of them reported poor

health. Those who exercised twice a week, 95.70% of them reported good health and

4.30% of them reported poor health. Furthermore, those who exercised more than twice

a week, 3.38% of them reported poor health and 96.62% of them reported good health.

Those individuals with no toilets, 6.90% of them reported poor health and 93.10% of

them reported good health. Among respondents with flushing toilets with onsite dis-

posal, 94.34% of them reported good health while 5.66% of them reported poor health.

Conversely, those with other type of toilet, 11.11% of them reported poor health and

88.89% of them reported good health. Individuals who do not smoke a cigarette, 94.83%

of them reported good health and 5.17% of them reported poor health. On the other,

those who smoke a cigarette, 7.32% of them reported poor health and 92.68% of them
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reported good health. Among individuals who felt depressed less than a day, 96.03%

of them reported good health and 3.97% of them reported poor health. In addition,

those individuals who were depressed all the time, 14.25% of them reported poor health.

Among individuals who were diagnosed with TB, 20.95% of them reported poor health

while 79.05% of them reported good health. We can also observe that those who were not

diagnosed with TB had the highest proportion of reporting good health. About 5.61%

of respondents with adequate household water source reported poor health while about

6.59% with other source of water reported poor health. It can be observed that among

individuals with very dissatisfied life, 7.25% of them reported poor health. On the other

hand, those individuals with a very satisfied life, 4.57% of them reported poor health.

Among individuals with a normal nutrition status, 94.98% of them had good health and

5.02% of them had poor health. Those individuals who were underweight, 6.38% of them

had poor health. Moreover, those individuals with severe malnutrition, 11.8% of them

had poor health.

2.5 Chi-Square test of independence

The Pearson’s Chi-squared test of independence can be used to examine if there is a signif-

icant relationship between a categorical response variable and the categorical explanatory

variables. The results from Table 2.2 and Table 2.3 provides the p-values for the Pearson’s

chi-squared test of association between self-reported health and several covariates. All

the covariates with the p-value less than or equal to 5% were considered to be statistically

significantly associated with self-reported health. From Table 2.2 and Table 2.3, we can

deduce that there is a statistically significant association between respondent’s age, gen-

der, education level, household income, marital status, alcohol consumption, exercising

level, smoking status, depression, life satisfaction level, nutrition status and self-reported

health status (p < 0.001). The respondent’s race group, type of resident, employment

status, type of toilet facilities were also significantly associated with self-reported status.
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However, household water source of the respondents did not show statistically signifi-

cant association with self-reported health. Furthermore, multicollinearity was tested and

Table D.1 reveal that none was found between any of the considered variables.
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Chapter 3

Bayesian Hierarchical Models for Dis-

ease Mapping

3.1 Introduction

Bayesian disease mapping of incidence or prevalence is one of the robust and interesting

areas in biostatistics and epidemiology. It covers a series of topics where the spatial or

geographical variation of a disease is of significance. The variations can be mapped to

assist in the detection of areas where the disease is prevalent particularly. The disease

mapping techniques have received much attention in discrete data cases, with the aim of

describing the variation in health outcomes across geographic regions. Moreover, these are

very robust methods for the initial identification of potential health problems (Kistemann

et al., 2002).

This chapter introduces the fundamental idea behind Bayesian hierarchical modeling, as

a commonly effective tool for modeling complex spatial correlated data in various epi-

demiological and public health research. In the Bayesian framework, the estimation is

based on the posterior distribution of unknown parameters given the observations, imple-

mented by combining the likelihood function and the prior distribution of the parameters

considered as random variables. The prior distribution basically prescribes ones belief

about the unknown parameters of interest. While the information content of the data
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is exclusively carried by the likelihood function (Lawson, 2008). According to (Baner-

jee et al., 2014), the practical issue in applying Bayesian methods is the computational

challenges. However, the use of Markov chain Monte Carlo and other variety computing

methods have resolved the issues.

3.2 The Likelihood Model

Suppose that y = (y1, . . . , yn) are observed random variables with the probability density

p(y|θ), where θ = (θ1, . . . , θp) is a p length vector of unknown parameters. The likelihood

function for the observations yi, i = 1, . . . , n is defined as

p(y|θ) =
n∏
i=1

p(yi|θ). (3.1)

Here the underlying assumption is that the observations yi’s are conditionally independent

given all the θ parameters. The assumption made in the formulation of the likelihood is

that the individual’s contribution to the likelihood is independent and allows the deriva-

tion of the likelihood to be expressed as Equation (3.1). Hence the observations are

assumed to be conditionally independent and this assumption is fundamental to numer-

ous disease mapping applications (Lawson, 2013). Nevertheless, it is possible to have

correlated observations, thus different approaches may be considered.

3.3 Prior Distributions

The Bayesian approach provides a cohesive framework for mixing complex data and ex-

ternal knowledge (Sudipto et al., 2004). Within this framework, the models are assigned

appropriate mixing probability distribution. This probability is determined by the prior

distribution, assigned before the data are observed. When the data is too large, the like-

lihood of the observations dominates any prior expectation that is assigned. Contrarily,
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when the data is less informative, the prior expectation will be more dominant.

In the Bayesian paradigm, all parameters are considered random, hence are assigned prior

distributions. These prior distributions provide additional information and, they are used

to improve the identification of parameters. Consider a stochastic single parameter, θ,

the prior distribution is denoted by p(θ). However, consider a vector of parameters θ,

the joint prior distribution is donated by p(θ|ϑ), where ϑ is a vector of hyperparameters,

and if it is unknown, hyperpriors are assigned to it. Next, we discuss the properties of

different prior distributions.

3.3.1 Propriety

The condition where the integration of the prior distribution of a random variable θ over

its range (Ω) is infinity is known as the impropriety (Lawson, 2008). This is expressed as

∫
Ω

p(θ)dθ =∞, (3.2)

and if its normalizing constant (see Section 3.4) is infinite, then a prior distribution is

considered as proper (Lawson, 2008). Though impropriety is a restriction of any prior

distribution, hence it does not necessarily lead to improper posterior distribution (Lawson,

2008). This simply means that the posterior distribution can be much proper even with

an improper prior specification. However, according to Morris and Normand (1992) with

regards to improper prior, stated that it is important to avoid the informal use of standard

improper priors, since they may result in improper posterior distributions.

3.3.2 Conjugate Priors

A conjugate prior is a prior distribution that leads to the same posterior distribution for

θ. It is accessible in closed form and is a member of the same distributional family as
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the prior. The conjugate families are convenient and allow a variety of shapes that are

wide enough to capture analyst’s prior beliefs (Sudipto et al., 2004). For example, the

Poisson likelihood with the mean parameter θ that has a Gamma prior distribution for

θ leads to a posterior distribution of θ that is also Gamma. Similarly, for a Binomial

likelihood with Beta prior distribution, results in a beta posterior distribution, and for

a Normal data likelihood with Normal prior distribution, the posterior distribution is

normal (Lawson, 2013). The conjugacy can be identified by probing the kernel of the

prior-likelihood product. The kernel which is not normalized should have an identifiable

form related to the conjugate distribution (Lawson, 2008). In addition, Gutirrez-Pea

(1997) stated that these conjugate families often provide prior distributions which are

tractable in at least two other respects. The first is that the normalizing constant of

the conjugate density is readily found for many exponential family likelihoods. Secondly,

it is that for some important functions of the parameters it is often possible to express

the expectations in a convenient form. Moreover, Lawson (2008), stated that conjugacy

always assures a proper posterior distribution.

3.3.3 Noninformative priors

In the Bayesian framework, the prior is often specified such that, even for average sample

sizes, the information provided by the data dominates the prior because of the nature

of the prior knowledge about the parameter of interest. The noninformative prior is the

type of prior distributions that are assumed not to make strong preference over the data

(Lawson, 2013). These type of prior distributions are generally referred to as vague or

flat priors. The often used noninformative prior is the flat prior, which is denoted by the

probability density function

p(θ) ∝ 1, with θ ∈ [0, 1].
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Another widely used noninformative prior is the Jefferys’ prior, this prior is based on the

Fisher information, hence the probability density function is denoted by

p(θ) ∝
√
|I(θ)|,

where the Fisher information I(θ) is denoted by

I(θ) = −Eθ
[
∂2 ln p(y|θ)

∂θ2

]
,

and this prior is locally flat but can be improper. According to Lawson (2013), the

prior choice can be usually made based on some general understanding of the range and

behavior of the variable. In addition, the variance parameters must have distributions

on the positive real line. The gamma, inverse gamma, or uniform families are often the

noninformative distributions in this range.

3.4 Posterior Distribution

The conditional probability density of random unknown parameters given the data is

known as the posterior distribution. This distribution is proportional to the product of

the prior distributions and the likelihood function. The posterior distribution identifies

the behavior of the parameters after the data are observed and prior assumption are made

about the parameters. The posterior distribution is defined as

p(θ|y) =
p(y|θ)p(θ)∫
p(y|θ)p(θ)dθ

, (3.3)

where
∫
p(y|θ)p(θ)dθ is considered as a normalizing constant, and it is equal to the

marginal distribution p(y), which does not depend on θ and, thus can be considered as
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a constant. Alternatively, the posterior distribution in Equation (3.3) can be specified as

p(θ|y) ∝ p(y|θ)p(θ),

where the posterior distribution is proportional to the likelihood and the prior distribu-

tion.

3.5 Model Criterion

When dealing with the Bayesian hierarchical models, there are varying goodness of fit cri-

teria, depending on the nature of the model and properties of the criteria. Criteria such as

the deviance information criterion (DIC), Bayesian information criterion (BIC), Akaike

Information Criterion(AIC), Takeuchi information criterion (TIC) (Takeuchi, 1976) and

network information criterion (NIC) (Murata et al., 1994) are widely used in the Bayesian

application. In this research, we discuss only a few of these criteria, that will be used

later in the subsequent chapters.

3.5.1 Akaike Information Criterion (AIC)

A commonly used measure of goodness-of-fit external of the Bayesian framework is the

Akaike information criterion (AIC) proposed by Akaike (1974). The AIC avoids over-

fitting of the data by penalizing high model complexity. For an estimated vector of

parameters θ, the AIC is given as

AIC = −2[`(θ̂) + p], (3.4)

where `(θ̂) = log(f(y|θ)) is the model maximal log-likelihood value, and p is the number

of covariates in the model with the intercept included which penalizes excessively complex
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models. In the choice of model selection, the models with small AIC are favored. With

regards to the AIC, Gill (2014), stated that the AIC is preferred in comparison and

selecting of non-nested model specifications. However, the AIC has a robust bias towards

models that overfit with additional parameters, due to the penalty component, which

linearly increases with the number of covariates, and hence the log likelihood increases

more.

3.5.2 The Bayesian Information Criterion (BIC)

The Bayesian information criterion (BIC) is commonly used as a model choice criterion

within Bayesian and hierarchical models, also known as the Schwarz criterion proposed

by Schwarz (1978). It is closely related to the AIC discussed above, but it is strongly

linked to the Bayesian theory. The BIC introduces the penalty term for the number of

parameters in the models whenever overfitting occurs. This is when the likelihood is

increased by adding the parameters. The BIC is given by

BIC = −2`(θ̂) + p log(n), (3.5)

where `(θ̂) is the maximized value of the log-likelihood function, with p and n presenting

the number of parameters and sample size respectively. The BIC is more appropriate in

model comparison where sample size differs because it explicitly includes n. The penalty

term depends on the sample size, the larger the n the larger the penalty and the less

n the less penalty. The assumption under Equation (3.5) is that the model errors are

Normally independent and identically distributed. According to Gill (2000), regarding

the AIC and BIC, it is stated that though the two measures are similar, they indicate

different model specifications. The BIC favors models with few covariates and poorer fit

and the AIC favors models with more covariates and better fit.
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3.5.3 Generalized Cross Validation (GCV)

The generalized cross-validation (GCV) focuses on the model optimality instead of com-

plexity. This entails that the GCV is not a likelihood-based criterion like the AIC and

BIC. The GCV can adapt the use of the residual sum of squares based on the last step

of the scoring algorithm suitable for non-normal outcomes (Wood, 2006). Additionally,

it can possibly use the squared Pearson residuals (Fahrmeir and Tutz, 2001) or deviance

residuals (Hastie and Tibshirani, 1990). In this section, we only discuss the use of GCV

based on the deviance residuals.

In the generalized linear models (GLMs), the goodness of fit measures can be defined in

terms of the deviance residuals, denoted by

Di = D(yi, µi) = 2[`i(yi)− `i(µi)] (3.6)

where `i(yi) is the log-likelihood of observation i assessed for the observation itself, and

`i(µi) is the log-likelihood of observation i assessed for the predicted mean (µi) from the

actual model. Now take the sum of Equation (3.6), the expression results to

D =
n∑
i=1

Di = 2

[
n∑
i=1

`i(yi)−
n∑
i=1

`i(µi)

]
, (3.7)

which is known as the deviance (Fahrmeir and Tutz, 2001), and based on the deviance,

the GCV is defined as

GCV =
n

(n− (p+ 1))2
D(y, µ̂) (3.8)

where p+ 1 is the number of covariates associated with the actual model.
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3.5.4 The Deviance Information Criterion (DIC)

The deviance information criterion (DIC) proposed by Spiegelhalter et al. (2002) is a

commonly used tool for model comparison and assessment. It is basically a generalization

of the AIC. The DIC has become a popular model comparison criterion in a fully Bayesian

(FB) context. It comprises two components, the measure of fit and complexity of the

model. The model fit is measured through the posterior expectation of the deviance for

the data y and parameter vector θ. The deviance of the model is specified as

D(θ) = −2 log[p(y|θ)], (3.9)

and now taking the expectation of Equation (3.9) over θ, the posterior expected deviance

is given by

D(θ) = Eθ|y{D(θ)}.

The model complexity is measured by the effective number of parameters pD. The effec-

tive number of parameters defined by the posterior expected deviance (mean deviance)

minus the deviance of the posterior mean. The posterior mean of parameters are given

by θ̄, hence the deviance evaluated at the posterior mean of parameters is D(θ̄). Thus,

Spiegelhalter et al. (2002) defined the effective dimension of the model as

pD = D(θ)−D(θ̄), (3.10)

hence, with the information described above, the deviance information criterion (DIC)

can be defined as

DIC = D(θ̄) + 2pD or DIC = D(θ) + pD (3.11)

In the case of weak prior information, the DIC is relatively equivalent to the AIC. Analo-

gously to the AIC and BIC, smaller values of the DIC indicate better model fit supported

by the data.
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3.6 Spatial Bayesian Hierarchical Models

The mapping of health outcomes has long been part of the application in public health,

epidemiology and other studies of disease. This technique uses the Bayesian hierarchical

methods which allow overdispersion and spatial correlation. Spatial units tend to exhibit

an inherent correlation where units close to each other have similarities than those fur-

ther apart. These methods offer a mechanism to borrow strength or information across

neighboring areas, both locally and globally. To capture heterogeneity among the areas or

regions, including spatial random effects in the model is required. There are various struc-

tures that can be specified for random effects, but we focus on only the ones employed in

this research project. In the next section, we review in details the basic model structure

used typically in Bayesian disease mapping, in particular, the Besag, York and Mollie

(BYM) (Besag et al., 1991) model.

3.6.1 The Besag, York, and Mollie (BYM) Model

The most commonly used tool under spatial Bayesian hierarchical models for disease

mapping of a single disease is the Besag, York, and Mollie (BYM) model proposed by

Besag et al. (1991). The BYM has two random effects that can be split into two random

components, namely the spatially structured u and the spatially unstructured v compo-

nents, which are interpreted as surrogates for unknown or unobserved covariates. The

spatially structured component u is due to the fact that spatial units are correlated with

neighboring spatial units, thus observed would regulate the spatial structure, whereas the

spatially unstructured component v represent the uncorrelated extra variation. Further-

more, it is worth noting that the vectors u and v contain individual unit random effects

ui (i = 1, . . . , n) and vi (i = 1, . . . , n) respectively.
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3.6.1.1 Conditional Autoregressive Model

The conditional autoregressive (CAR) model has been widely used in the field of

epidemiology and other studies of diseases and was developed by Besag (1974),

and later introduced by Clayton and Kaldor (1987). The CAR models are also

known as the Markov random field (MRF) model and are in the class of the

Gaussian Markov random field (GMRF) models. In the spatial modeling for adminis-

trative districts areal data, such as disease mapping, the MRF models are commonly

employed. The MRF is based on the conditional specifications known as the CAR, with

both referring to the same model structure. The virtual common form of CAR incor-

porates the structure of spatial dependence, based on the idea that areas that share a

border or boundary are regarded as neighbours. The neighboring areas are bound to

have too many similarities than those far apart. Thus, smoothing of the health outcome

risk for an areal unit depends on its neighbour’s risk. In this research, we focus on the

CAR model also known as the MRF model for the incorporation of the spatially struc-

tured random term. The CAR models are generally used to model the spatial effects of

an areal unit. They are employed in the models as a specification in certain classes of

hierarchical spatial models, in particular, the second stage of such models. As proposed

in this dissertation, the CAR model can be defined as follows.

Consider u = (u1, . . . , un) to be the vector of univariate random variables associated with

the observed districts or spatial location under study and denote {∂(i): i = 1, . . . , n}

as the districts sharing a common boundary with district i. That is, for any i, j =

1, . . . , n, j ∈ ∂(i) only if i ∈ ∂(j) and i 6∈ ∂(i) must be satisfied.

Now assuming that the conditional density of ui, for i = 1, . . . , n, follows the conditional

normal variable denoted as

ui|uj, (i 6= j) ∼ N

µi +
∑
j∈∂(i)

cij(uj − µj), d2
i

 , i, j = 1, . . . , n, (3.12)
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where µj is the mean for district j, µi represent spatial trend at location i and d2
i = σ2

u/∂(i)

is the conditional variance of the ith district, which depends on the number of neighbors.

Thus, the more the number of district neighbors the smaller the variance for the current

district. The cij denote the spatial dependence parameters for i = 1, . . . , n, such that

cii = 0 for all i’s, and σ2
u is the variance parameter that controls the amount of variation

between spatial similarity. In particular, the quantity cij indicates the spatial dependency.

The matrix form of Equation (3.12) is given by (Cressie, 1993);

u ∼ N(µ,B−1M), (3.13)

which represent the joint distribution of u, where B = (I − C), with C = [cij]n×n,

µ = (µ1, . . . , µn) and M = diag(d2
1, . . . , d

2
n) is an n × n diagonal matrix. The Equation

(3.13) is proper ifB is invertible andB−1M is symmetric and the symmetry is guaranteed

by the conditional constraints cijd
2
j = cjid

2
i for all i 6= j, and must be positive definite.

The elements of invertible matrix B are defined as

b(ij) =


1 for i = j

−cij for j ∈ ∂(i),

0 otherwise,

(3.14)

since the covariance matrix in Equation (3.13) must not only be symmetric but also be

positive definite as stated above for it to be a valid joint distribution. Thus, a common

way to construct this is to define a symmetric weighted adjacency matrix W = (Wij),

and set cij = φWij where

Wij =

 1 if i and j share a common boundary

0 otherwise,
(3.15)

and the parameter φ controls the properness of the distribution. Now the covariance

matrix Σu = (I−φW )−1M must be positive definite such that d2
i > 0 and φ ∈ ( 1

λ(1)
, 1
λ(n)

),
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with λ(1) ≥ λ(2) . . . ≥ λ(n) are the ordered eigenvalues of the weight matrix W . The

proper joint density auto-regressive specification u is said to be a multivariate Gaussian

distribution defined as

u ∼ N(µ,Σu). (3.16)

Now let WD denote the diagonal adjacent matrix of standardization or normalization

given by

WD = diag(W1+,W2+, . . . ,Wn+), (3.17)

where

Wi+ =
∑
j∈∂(i)

Wij, i, j = 1, 2, . . . , n. (3.18)

We then assign the matrix of interaction C as a normalized adjacent matrix given by

C = WD
−1W and WD = σ2W−1

D ,

with cij = Wij/Wi+ and d2
i = σ2/Wi+ respectively. Hence, Equation (3.16) can be

expressed as

u ∼ N

(
µ,

[
1

σ2
(WD − φW )

]−1
)
, (3.19)

and the conditional distribution of ui|uj is now given by

ui|uj ∼ N

µi + φ
∑
j∈∂(i)

Wij(uj − µj), d2
i

 , (3.20)

and the correlation between areas i and j depends only on φ andW , whereWij = cij/∂(i).

When φ is fixed to one, the covariance matrix Σu is not positive definite, this leads to a

conditional distribution expressed as

ui|uj ∼ N

µi +
1

∂(i)

∑
j∈∂(i)

cij(uj − µj), d2
i

 . (3.21)
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This CAR specification is known as the intrinsic conditional autoregressive (iCAR) and

has no proper joint density due to the non-positive resolution. Now if we assume µi = 0

for each i the conditional distribution is similar to the form given by Besag et al. (1991)

ui|uj, i 6= j ∼ N

 1

∂(i)

∑
j∈∂(i)

cijuj,
σ2
u

∂(i)

 . (3.22)

We employ this specification under structured spatial random effects. The hyperparam-

eter σ2
u is assigned an improper inverse exponential hyperprior which was proposed by

Besag et al. (1991). Again the hyperparameter σ2
u is the variance that controls the degree

of smoothness. The τu = 1/σ2
u is the precision parameter, where a large τu means a high

precision.

3.6.1.2 Convolution Model

The BYM model is the extension of the CAR model, which was proposed by Clayton and

Kaldor (1987) and later was developed by Besag et al. (1991). It is also known as the

convolution model, consisting of the two random components, the spatially structured

and unstructured random components. In general, the spatial random components can

be decomposed into two components using a convoluted structure. Besag et al. (1991)

formulated this model by assuming that observations yi are Poisson distributed, denoted

as

yi ∼ Poisson(ei exp(ηi)),

where ηi = log(λi) is the log relative risk and is given by

ηi = ui + vi, thus, λi = exp(ui + vi), (3.23)
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and vi is assumed to be a Gaussian prior with zero mean, hence

vi ∼ N(0, σ2
v), (3.24)

where σ2
v is also assigned a gamma hyperprior. Again τv = 1/σ2

v is the precision parameter.

It is worth noting that either ui and vi will dominate the other such that for strong ui,

the estimated mean results to a spatial structure, and vice-versa. These models can be

extensions of the classical models to allow for a more flexible approach.

3.7 The Random Walk Models

In models where parametric modeling is not sufficient, a more flexible approach is adopted.

Ideally, this approach is used to handle covariates differently, such as allowing for non-

linear effects for continuous covariates which the data may contain. These continuous

covariates are modeled with semiparametric and generalized additive approach (Fahrmeir

and Lang, 2001). Such models are used to describe smooth curves in time or surface

in space (Fahrmeir and Lang, 2001). Similar to spatial area effects in Section 3.6.1,

metrical covariates are assigned specific priors to allow smoothing. Several alternatives

specifications are available for smoothness prior functions of metrical covariates, but we

will distinguish few main approaches under Bayesian modeling. The commonly used

priors for smooth functions are first or second order random walk models, but we focus

on the second-order random walk model.

Consider a case of a continuous covariate x with equidistant design points or observa-

tions xi, i = 1, . . . ,m, (m ≤ n). Then define an equidistant grid on the x-axis as

an ordered sequence of distinct covariate values x(1) < . . . < x(t) < . . . < x(m). Let

f = (f(1), . . . , f(t), . . . , f(m))′ denote the vector of function evaluations at these points

and define f(t) := f(x(t)), then a first-order (RW1) and second-order (RW2) random

45



walk models or functions are defined by

f(t) = f(t− 1) + u(t) and f(t) = 2f(t− 1)− f(t− 2) + u(t) (3.25)

respectively, where u(t) has the Gaussian error with mean zero and known variance τ 2

and diffuse priors for initial values are assigned, such that f(1) ∝ const, and f(1) and

f(2) ∝ const respectively. The variance τ 2 controls the smoothness of the function. In

addition, the RW2 penalizes large deviations from the 2f(t−1)−f(t−2) linear trend. Rue

and Held (2005) defined the joint density of the RW2 model with the forward difference

approach, assuming an independent second order increment as

∆2xi = xi − 2xi+1 + xi+2, ∆2xi ∼ N(0, τ−1), i = 1, . . . , n− 2, (3.26)

and the joint density is defined as

p(x) ∝ τ (n−2)/2 exp

(
−τ

2

n−2∑
i=1

(∆2xi)

)

= τ (n−2)/2 exp

(
−1

2
xTQx

)
,

(3.27)

where Q = τR is the precision matrix with rank n− 2 and R is the structure matrix.

Now consider the case where the covariates x is with non-equally spaced observations, the

modification must be done on the random walk priors to account for non-equal distances.

In such cases, the RW2 models are modified to weight each point differently such that

δt = x(t) − x(t−1) between observations. Let x(1) < . . . < x(t) < . . . < x(m) be strictly

ordered different observations of x, and define the vector of unknown function evaluations

as f = (f(1), . . . , f(t), . . . , f(m))′. Then the RW1 and the RW2 models respectively

generalize to

f(t) = f(t− 1) + u(t) and f(t) =

(
1 +

δt
δt−1

)
f(t− 1)−

(
δt
δt−1

)
f(t− 2) + u(t), (3.28)

46



u(t) ∼ N(0, ωtτ
2), where ωt is the appropriate weight. The case of ωt = δt denotes the

simplest appropriate weight. However, other more complex weight forms may be used.

3.8 Bayesian Penalized Splines

The penalized (P) splines are another commonly used smoothness priors and are em-

ployed in this research. The P-splines were introduced by Eilers and Marx (1996) in the

frequentist framework and extended by Fahrmeir and Tutz (2001) and Lang and Brezger

(2000) in the Bayesian setting.

For an unknown function f of a particular covariate x, it is assumed that it can be

approximated by the polynomial spline of degree l defined on a set of equally spaced

knots ζ0 = xmin < . . . < ζs−1 < ζs = xmax within the surface of x. Such Bayesian splines

can be written as a linear combination of d = s+ l B-spline basis functions Bt, which is

denoted as

f(x) =
d∑
t=1

ς tBt(x), (3.29)

where on a domain spanned by 2 + l the basis functions are defined locally in the sense

that they are non zero (Kandala et al., 2001). The properties of the B-spline basis

function is not discussed in this research as it is beyond the scope of this research. The

vector ς = (ς1, ς2, . . . , ςd)
′ correspond to the vector of unknown regression coefficients

to be estimated from the data under a frequentist point of view. An essential choice

is the number of knots in the simple regression setting in order to ensure flexibility in

capturing the variability of the data. According to Eilers and Marx (1996), the number

of knots d should be moderately large enough, between 20 and 40 to ensure flexibility,

while Ruppert (2002) suggested knots from 5 to 20. In the Bayesian framework, penalized

splines are equivalent in the estimation model parameters ς by assigning them a first or

second random walk prior for equidistant knots, given in Equation (3.25). It is also worth

noting that the random walk models form a special case of B-spline with degree zero.
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Moreover, a large number of non-linear effects can be estimated simultaneously based on

P-splines.

3.9 Empirical Bayes (EB) estimation based on

GLMM

In this section, we briefly discuss inference for structured additive regression (STAR)

models approach based on the generalized linear mixed model (GLMM) representation.

This method involves treatment of all functions and effects within a unified framework

by assigning different forms of appropriate priors and degrees of smoothness. In general,

we discuss the approach proposed by Fahrmeir et al. (2004) which is an extension from

Lin and Zhang (1999), derived to handle large datasets. In the Bayesian STAR models

the linear predictor ηi = x′iβ is replaced with a structured additive predictor under the

assumption that yi belong to the exponential family, with mean θi linked to the function

ηi by h(θi). Hence, the structured additive predictor can be expressed as

ηi = f1(νi1) + f2(νi2) + · · ·+ fl+1(νi(l+1)) + · · ·+ fp(νip) + x′iβ, (3.30)

where i is the generic observation index, the νj are different types and dimension of generic

covariates, and f1, . . . , fl+1, . . . , fp are functions of covariates which usually accounts for

different types of effects such as spatial effects, temporal effects, non-linear effects of con-

tinuous covariates, random effects or interaction effects. This approach can be viewed as

a special case of several models, including the semiparametric ordinal models introduced

by Tutz (2003). Since this research adopts a Bayesian setting, the unknown functions

f1, . . . , fp and covariates effects β are considered as random variables. Thus, they are

assigned different appropriate priors as mentioned earlier.

For the empirical Bayes (EB) approach the predictor model in Equation (3.30) needs
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to be changed into a particular form of the GLMM with appropriate reparametrization.

Now express fj = (fj(ν1j), . . . , fj(νnj))
′ the vector of function evaluations of unknown fj

as the matrix product defined by

fj = Ψjγj, j = 1, . . . , p (3.31)

where Ψj is the design matrix and γj is a vector of unknown parameters. Hence, Equation

(3.30) can be expressed in matrix notation as

η = Ψ1γ1 + · · ·+ Ψpγp +Xβ, (3.32)

where X is the common design matrix for fixed effects. The vector γj is assigned a

multivariate Gaussian prior of the form

p(γj|τ 2
j ) ∝ exp

(
− 1

2τ 2
j

γ′jKjγj

)
, j = 1, . . . , p

where τ 2
j is considered as a fixed variance which controls the trade off between smooth-

ness and flexibility, and Kj is a precision matrix that penalizes too abrupt jumps among

neighboring parameter or shrinks them towards zero (Fahrmeir et al., 2004). Further-

more, in the EB approach, the predictor in Equation (3.32) can be reconstructed as a

GLMM that provides the fundamentals of estimating functions fj and the variance pa-

rameters τ 2
j simultaneously. Assume that the vector parameter γj has dimension dj and

the corresponding penalty matrix Kj has rank rj < dj. Hence, the vector parameters γj

are partitioned into penalized and unpenalized part as

γj = Ψunp
j γunpj + Ψpen

j γpenj , (3.33)

for some dj × (dj − rj) well defined matrix Ψunp
j and a dj × rj matrix Ψpen

j . The vector of

parameters γpenj denotes the deviations of parameters γj from Kj while the vector γunpj
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denotes the unpenalized part γj by Kj. In Equation (3.33), the priors assumed for the

penalized part and for the unpenalized part are as follow;

p(γpenj ) ∼ N(0, τ 2
j Ihj) and p(γunpj ) ∝ const (3.34)

corresponding to the i.i.d Gaussian prior and a flat prior respectively. Hence, the penal-

ized part γpenj are i.i.d random effects and the γunpj are considered as a fixed effect. Now

decomposing the model in Equation (3.33) to form components of Equation (3.32) yields

a variance component model defined as

η = Uγunp + Zγpen (3.35)

where U = (X,Ψunp
1 , . . . ,Ψunp

p ), Z = (Ψpen
1 , . . . ,Ψpen

p ), γunp = (β′, γunp′1 , . . . , γunp′p )′ and

γunp = (γpen′1 , . . . , γpen′p )′, with

p(γpen) ∼ N(0, Q) and p(γunp) ∝ const, (3.36)

where Q = blockdiag(τ 2
1 I, . . . , τ

2
p I) is the covariance matrix of block diagonal of p-

dimension τ 2
j . Thus, this results in a GLMM with a stacked vector of random effects

γpen and stacked vector of fixed effects γunp. Finally, the function evaluations fj and the

variance parameters can be further estimated simultaneously. Next, we discuss inference

for parameters to be estimated given the previous mixed model setting.

3.9.1 Inference

Parameter estimation under Bayesian inference is based on the posterior distribution

of the model. The posterior distribution for the EB inference in terms of the GLMM
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representation is denoted as

p(γunp, γpen|y) ∝ L(y, γunp, γpen)

p∏
j=1

(
p(γpenj |τ 2

j )
)

(3.37)

where the variances τ 2
j are unknown constants and p(γpenj ) is defined in Equation (3.34).

Further taking the log of the posterior results to

lpen(γunp, γpen|y) = l(y, γunp, γpen)− 1

2
γpen′Q−1γpen (3.38)

the form of a penalized likelihood that needs to be maximized to obtain posterior

mode estimates. Estimation of regression coefficients and variance parameter can be

done via iteration and approximation. Among several alternatives estimation proce-

dures, here we make use of iteratively weighted least squares (IWLS) and approximate

restricted maximum likelihood (REML) constructed under GLMM. The former and the

latter estimation is achieved in two steps, the first step is to maximize Equation (3.38)

by adopting a Fisher scoring algorithm and rewrite it as an IWLS scheme that is given

by U ′WU U ′WZ

Z ′WU Z ′WZ +Q−1


γunp
γpen

 =

UWỹ

ZWỹ

 (3.39)

which yields a system of equations to be solved iteratively to obtain estimates (Kneib,

2006). The W = DS−1D is a block diagonal structure weight matrix built by the block-

diagonal matrices D = blockdiag(D1, . . . , Dn) and S = blockdiag(S1, . . . , Sn), while the

ỹ is a n × 1 vector of the working observations defined by ỹ = η̂ + (D−1)(y − π). The

q × q matrices Si and Di are denoted as

Si =



πi1(1− πi1) −πi1πi1 · · · −πi1πiq

−πi1πi2
. . .

...

...
. . . −πi(q−1)πiq

−πi1πiq · · · −πi(q−1)πiq πiq(1− πiq)


, Di =

∂h(ηi)

∂η


∂hi(ηi)
∂η1

· · · ∂hq(ηi)

∂η1

...
. . .

...

∂hi(ηi)
∂ηq

· · · ∂hq(ηi)

∂ηq
,


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where the derivatives of h depend on the density of f of the latent variable such that

∂h(η)

∂ηj
=


f(ηj) for j = r,

−f(ηj) for j = r − 1,

0 elsewhere.

Thus the system of equations in Equation (3.39) is solved to obtain updated estimates of

γ̂unp and γ̂pen given the current variance parameters using IWLS. Furthermore, it is worth

noting that the credible intervals are also constructed under the estimates of Equation

(3.39).

The second step is estimating the variance parameters by maximizing the marginal like-

lihood defined by

Lmarg(Q) =

∫
L(γunp, γpen, Q)dγunpdγpen, (3.40)

which is of the REML form. Kneib and Fahrmeir (2006) suggested Laplace approxi-

mation to Equation (3.40) since direct integration is generally not possible. Hence, the

approximation is applied to L(γunp, γpen, Q) which results in a restricted log-likelihood

defined as

lmarg(Q) ≈ −1

2
log(|Σ|)− 1

2
log(|U ′Σ−1U |)− 1

2
(ỹ − Uγ̂unp)′Σ−1(ỹ − Uγ̂unp), (3.41)

where an approximation to the marginal covariance of ỹ|γpen is given by Σ = W−1+Z ′QZ.

The maximization of Equation (3.41) can be done via Fisher’s scoring derived by Fahrmeir

et al. (2004) that allows computation of REML estimation for large datasets. Now based

on a conditional point of view of the GLMM by Lin and Zhang (1999), the elements of

the score vector and expected Fishers information can be defined as

s∗j(τ
2) = −1

2
tr(PZUjU

′
j) +

1

2
||U ′jW (ỹ − Uγ̂unp − Zγ̂pen)||2, j = 1, . . . , p (3.42)
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with

P = W −W (UZ)H−1(UZ)′W (3.43)

and

F ∗jk(τ
2) =

1

2
tr(PUjU

′
jPUkU

′
k), j, k = 1, . . . , p (3.44)

hence to obtain updated variances in Q, the restricted log-likelihood in Equation (3.41)

is maximized by

τ̂ 2 = τ̃ 2 + F ∗(τ̃ 2)−1s∗(τ̃ 2) (3.45)

where τ̃ 2 are the last iteration variance parameters. Therefore, the iterations of the two

steps are performed until convergence. For further details on the EB inference algebraic

part, the reader can refer to Fahrmeir et al. (2004); Lin and Zhang (1999) among others.

The implementation of the EB approach in this research is used for all the analyses of

the ordinal response.

3.10 Integrated Nested Laplace Approximation

(INLA)

The Markov chain Monte Carlo (MCMC) methods have been widely used in the past and

recent years. Part of this is due to Bayesian inference being very popular in spatial and

spatio-temporal statistics. However, MCMC uses a sampling technique which can be slow,

and reaching the required number of samples can take a long time for complex models

or large datasets. In this section, we introduce a more flexible widely used technique for

inference within the Bayesian framework. The integrated nested Laplace approximation

(INLA) is a recent alternative to MCMC, proposed by Rue et al. (2009). What makes

INLA a more beneficial method for Bayesian inference is because it returns similarly

accurate results to MCMC methods in significantly less time. However, a few relevant

models have been implemented in the INLA R software package.
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The main principle behind INLA lies in the approximating the posterior marginals of the

wide range of Bayesian hierarchical models. In general, the focus is on the approximation

of posterior marginals for latent Gaussian models. These class of models is a subset of all

the flexible and extensively used Bayesian additive regression models. Let y denote the

observed data points, x be the vector of all the latent Gaussian variables, and θ denotes

the vector of hyperparameters. Assuming conditional independence, the likelihood of the

n observations y is denoted by

p(y|x,θ) =
n∏
i=1

p(yi|xi,θ), i = 1, . . . , n, (3.46)

and assuming a multivariate Gaussian prior on x with 0 mean and precision matrixQ(θ),

the density function of the latent effects are given by

p(x|θ) =
1√
2π
|Q(θ)|0.5 exp

(
−1

2
x′Q(θ)x

)
(3.47)

where | · | is the matrix determinant (Blangiardo and Cameletti, 2015). The properties of

x are that they are conditionally independent such that Q(θ) is a sparse matrix which

allows inference with Gaussian Markov random fields (GMRFs). The joint posterior dis-

tribution for the latent Gaussian models due to Rue et al. (2009) focused on estimating

equation given by the product of Equations (3.46), (3.47) and of the hyperparameter

prior p(θ) as

p(x,θ|y) ∝ p(θ)p(x|θ)p(y|x,θ)

∝ p(θ)|Q(θ)|
1
2 exp

(
−1

2
x′Q(θ)x+

n∑
i=1

log(p(yi|xi,θ)

)
. (3.48)

In INLA, the main objectives are to approximate each element of the parameter vector

of the posterior marginals p(xi|y) and p(θj|y). Note that, the posterior marginals of the
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latent Gaussian components can be written as

p(xi|y) =

∫
p(xi|θ,y)p(θ|y)dθ (3.49)

and of the hyperparameter vector for each element of θ can be written as

p(θj|y) =

∫
p(θ|y)dθ−j, j = 1, . . . ,m, (3.50)

where subscript θ−j denotes all the parameter elements θ except current θj. The key

approach is to construct and compute nested approximations of

p̃(xi|y) =

∫
p̃(xi|θ,y)p̃(θ|y)dθ (3.51)

and

p̃(θj|y) =

∫
p̃(θ|y)dθ−j (3.52)

using the form of Equations (3.49) and (3.50). Therefore, the approximations to p(xi|y)

are based on a computational approximation of p(θ|y) and p(xi|θ,y) with the aid of

numerical integration methods to integrate out the hyperparameter θ. Based on the

Laplace approximation, INLA approach exploits the assumptions of the model to produce

the posteriors of interest using numerical approximation (Tierney and Kadane, 1986).

The approximation is divided into threefold. Firstly, is the computation of an approxi-

mation to the joint posterior p(θ|y) of the hyperparameters as

p(θ|y) ∝ p(x,θ,y)

p(x|θ,y)

∣∣∣∣
x=x∗(θ)

≈ p(x,θ,y)

p̃G(x|θ,y)

∣∣∣∣
x=x∗(θ)

=: p̃(θ|y), (3.53)

where p̃G(x|θ,y) is the Gaussian approximation to the full conditional of x based on the

Gaussian distribution, and x∗ denotes the mode of the full conditional of x, for a given

θ.
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Secondly, a good approximation to the conditional distribution p(xi,θ|y) is required.

The use of the Gaussian approximation can be adapted, but this approach led to many

issues of not resulting in a very good approximation. Hence, Rue et al. (2009) developed

a better approximation by rewriting θ = (θj,θ−j) and using the Laplace approximation

again to obtain

p̃LA(xi|θ,y) ∝ p(x,θ,y)

p̃GG(x−i|xi,θ,y)

∣∣∣∣
x−i=x∗

−i(xi,θ)

, (3.54)

where p̃GG(x−i|xi,θ,y) is the Gaussian approximation to the conditional distribution of

x−i|xi,θ,y and the entire expression is centered around the mode x∗−i(xi,θ), for the given

θ.

Lastly, once p̃(θ|y) and p̃LA(xi|θ, y) are obtained, the marginal posterior distributions

for Equation (3.51) can be computed via numerical integration

p̃(xi|y) ≈
n∑
k=1

p̃(xi|θky)p̃(θk|y)∆k, (3.55)

here the θk is a set of grid points corresponding to the set of weights ∆k. In addition, the

computation of p̃(θj|y) in Equation (3.52) can be achieved by integrating out θ−j from

the approximation p̃(θ|y).

The INLA approach has been implemented in several disease mapping analyses within a

fully Bayesian inference, as it makes it possible to compare and assess models (Gomez-

Rubio et al., 2014). However, it has limitations when it comes to implementation of

ordinal response outcomes due to the availability of the likelihood specifications. The

implementation of the INLA approach in this research is adopted for a dichotomous

self-reported health response.

This chapter introduced the fundamental idea behind Bayesian hierarchical modeling, as

a commonly effective tool for modeling complex spatial correlated data. The Bayesian

approach provides a robust alternative approach to a frequentist approach under disease

56



mapping. Different models for prior assumptions of generic covariates were discussed.

These models are a class of Gaussian Markov random fields. Model selection criterion

was also discussed, namely the DIC, AIC, BIC and the GCV. Furthermore, the competing

estimation procedure was also given.
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Chapter 4

Spatial Modeling of self-reported

health Ordinal response outcome

4.1 Introduction

This research project comprises two distinct types of response outcomes, namely the

ordinal and the collapsed (binary). In this chapter, we review models for the ordinal

response, and for the dichotomous response will be reviewed in the next chapter. In

particular, the cumulative logit models will be extended by accounting for the spatial

Bayesian hierarchy structure. Furthermore, a flexible approach will be used to allow for

continuous covariates. All the models will be fitted with applications to the wave 4 NIDS

dataset. Model comparison and selection will be done then the results will be interpreted

and displayed in form of maps and graphs.

4.2 Multivariate Generalized Linear Models

The multivariate generalized linear models (MGLMs) are a class of models extended from

univariate generalized linear models (GLMs), which are well-known distribution depen-

dent models belonging to the exponential family. The basic assumption is that the

observations yi, i = 1, . . . , n are independent and have a distribution that belongs to the
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exponential family, and their probability density can be written as

f(yi|µi, φ, ωi) = exp

(
y′iµi − b(µi)

φ
ωi + c(yi, φ, ωi)

)
, i = 1, . . . , n, (4.1)

where ωi is a weight, φ is a scale parameter common to all the yi’s, µi is the natural

parameter of the exponential family, and b(µi) is the normalizing function (Fahrmeir and

Tutz, 2001). The mean θi = E(yi|xi) for a given covariate xi, can be determined by a

linear predictor

ηi = x′iβ, i = 1, . . . , n

where x′i is the corresponding ith row of the design matrix X
(n×p)
i , hence the mean θi and

ηi are linked via a link function g(·) as

g(θi) = ηi = x′iβ, i = 1, . . . , n

where β is a p-dimensional vector of unknown regression coefficients, then it follows that

θi = ηi = g−1(x′iβ). Models used in this chapter are special cases of MGLMs such that

yi follows a multinomial distribution given by

yi ∼Multinomial(mi, πi) and πi = (πi1, . . . , πik).

Next, we discuss a special case of MGLMs, which are used to examine the impact of

different type of covariates on self-reported health.

4.3 Spatial Cumulative Logit Models

Multicategorical variables can be either nominal or ordinal. The models to accommodate

ordered response data have been widely used in both non-spatial and spatial settings. In

health and social surveys, econometric and psychometric applications, data with ordinal
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outcomes occur frequently (Congdon, 2005). Particularly a wide attention has been

brought to the use of these models under disease mapping. There are several models

for fitting ordinal data, such as the cumulative threshold logit, sequential, continuation

ratio, partial proportional odds, unconstrained and constrained partial proportional odds

and stereotype models. The most widely used model to analyze data with the ordered

categorical response is the cumulative threshold model (Fahrmeir and Tutz, 2001). Next,

we focus on the cumulative logit model with its extensions, where the ordering is taken

into consideration.

4.3.1 Cumulative Logit Models

Let yij be an ordinal response variable for individuals j = 1, . . . , n in districts i = 1, . . . , 52

taking values in the range 1, . . . , k with (k > 2). In this case, yij is the self-reported health

with five levels (poor, fair, good, very good and excellent). This model assumes that the

observable self-reported health response yij of individual j in district i is a categorized

version of the latent continuous variable Uij determined by the cutpoints. The assumed

linear form of the latent variable is given by

Uij = ηij + εij (4.2)

where ηij = x′ijβ is the linear predictor with β = (β1, . . . , βp) vector of coefficients and

εij are the random error terms with some continuous cumulative distribution function F .

Now for a giving vector xij = (xij1, . . . , xijp)
′ of predictor variables, Uij and the observable

yij are linked by

yij = r if and only if θr−1 < Uij ≤ θr, r = 1, 2, . . . , k

where r are categories of yij and θr are unknown cutpoints satisfying −∞ = θ0 < θ1 <

· · · < θk = ∞. From the assumption of the linear form for the latent variable Uij it
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follows that the observed yij is given by the model

P (yij ≤ r|ηij) = F (θr − ηij)

F−1 [P (yij ≤ r|ηij)] = θr − ηij, r = 1, . . . , k − 1 (4.3)

where F−1 is a link function and P (yij ≤ r) are cumulative probabilities. Specific choices

of distribution of the errors εij in Equation (4.2) lead to specific cumulative models based

on the link function, with the common choice being the logistic distribution. In this

research, we assumed that errors have a logistic distribution. Consequently, the link

function is the logit link and hence the model is the cumulative logit model also known

as the proportional odds model (McCullagh, 1980). The proportionality of the odds was

derived from the basic assumption that the regression coefficients β are the same across

the categories and this assumption needs to be verified. Furthermore, the linear predictor

ηij does not contain an intercept for identifiability, otherwise, one of the cutpoints must

be set to zero.

In general, for self-reported health of individual j in district i, we assume that

yij|ηij ∼ Categorical(πij), i = 1, . . . , 52, j = 1, . . . , n

with a latent continuous variable of k − 1 cutpoints and πij = (πij1, πij2, . . . , πijk) is the

vector of probabilities of the model. In this research, we classified the self-reported health

categories as

yij =



1 : excellent

2 : very good

3 : good

4 : fair

5 : poor (used as reference category),
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where yij is a five-category outcome. In the model formulation in Equation (4.3), the

linear predictor ηij only accounts for the parametric form. However, it can be extended

to account for a non-parametric part of the model. Since the data are associated with

the location, it is worthy to account for spatial heterogeneity and correlation. These may

be obtained by introducing random effects in the models. The models that incorporate

spatial random effects are known as the geoadditive models (Kammann and Wand, 2003).

We now consider such models in the order of complexity by extending ηij in Equation

(4.3). In general, we consider models with spatial random effects by adopting the models

discussed in Section 3.6. Considering the cumulative logit model, the predictor ηij can

be extended by adopting a geoadditive predictor form and introducing random effects,

then it follows that

ηij = x′ijβ + fstr(si) (4.4)

where ui = fstr(si) with spatial index si ∈ {1, . . . , 52} are structured spatial random

effects of districts modeled as Markov random fields (MRFs) (Equation (3.22)). Another

alternative model introducing area-specific random effects can be specified as

ηij = x′ijβ + funstr(si) (4.5)

where vi = funstr(si) are unstructured spatial random effects of districts modeled as an

i.i.d Gaussian distribution (Equation (3.24)). The last model accounts for both unstruc-

tured and structured random effects and is known as the convolution model specified in

Section (3.23). The model is then extended as following

ηij = x′ijβ + fspat(si) (4.6)

where fspat(si) = fstr(si)+funstr(si) following Besag et al. (1991). The two spatial random

effects are assumed to be independent and they are assigned independent priors. The

fstr(si) are assumed to follow the Markov random field (MRF) structure and the funstr(si)
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are assigned the i.i.d Gaussian distribution.

4.3.2 Cumulative Structured Additive Regression Models

The previous section discussed models where the linear predictor caters for linear and

area-specific effects respectively. However, it is of interest to investigate how other co-

variates, such as continuous covariates influence the dependent variable, which could

not be displayed if modeled linearly. This section discusses models for a more flexi-

ble approach, known as semiparametric models. The semiparametric models were pro-

posed by Kammann and Wand (2003) and Fahrmeir and Lang (2001) under the empir-

ical and fully Bayesian framework respectively. These models are commonly known as

structured additive regression (STAR) models. The linear predictor in Equation (4.3)

is extended by replacing it with a structured additive predictor to allow for additional

nonlinear covariates, this yields a semiparametric predictor

ηij = x′ijβ +

q∑
l=1

fl(zijl) + fspat(si), i = 1, . . . , 52, j = 1, . . . , n (4.7)

where xij is a vector of categorical covariates accounting for linear effects, fl are un-

known nonlinear functions of continuous covariates zijl and fspat are spatial functions

that captures area specific effects and can be splits into structured and unstructured spa-

tial components as mentioned previously. In general, the predictor in Equation (4.3) is

expanded to include all possible covariates such as fixed, nonlinear and spatial variables.

4.3.3 Parameter Estimation

The initial step in the estimation of unknown parameters under empirical Bayes (EB)

approach via generalized linear mixed model (GLMM) is to formulate the overall vector

of parameters for all components of the model. Let γ = (θ1, . . . , θk,β
′)′ define the overall
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vector of fixed regression coefficients, and let

U =


u′1
...

u′p

 =


1 −x′

. . .
...

1 −x′


define the corresponding design matrix constructed from covariates x′ij. Hence, we can

rewrite the predictor in Equation (4.7) in generic matrix notation as

ηj = Uγ + X1βj1 + X2βj2 + · · ·+ Xlβjl + Xunstrβj,unstr + Xstrβj,str (4.8)

where (U,X1,X2, . . . ,Xl,Xunstr,Xstr) are appropriate design matrices for each fixed,

continuous and spatial effect respectively, and (γ,βj1,βj2, . . . ,βj,unstr,βj,str) is a high

dimensional parameter vector, such that f j = Xjβjl. In addition, the predictor from the

previous equation can be defined in a more compact form as

η = Uγ + Xunstrβunstr + Xstrβstr + X1β1 + X2β2 + · · ·+ Xlβl. (4.9)

Therefore this yields a form of a variance component in Equation (3.35). Parameter es-

timation in all the models of this chapter was done via an empirical Bayesian approach

based on mixed models methodology. All the analyses were performed using BayesX (Be-

litz et al., 2009) with combination to a Bayesian inference R package known as R2BayesX

(R Core Team, 2017). All the R codes are presented in Appendix A. In the next consecu-

tive sections we consider two applications. The first application is on the spatial models

and the second application is on the spatial models with an extension of nonlinear effects.
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4.4 Application of the spatial models to NIDS wave

4 data

This section considers the application of various models. These models are used to

model the association between self-reported health and covariates, and further examines

geographic variation. The first model (Model 1) is the standard cumulative logit model

represented by Equation (4.3). Model 2 is represented by Equation (4.4) which is a

parametric cumulative logit regression model with spatially structured random effects

that account for unobserved covariates which vary spatially across the districts and it

was modeled with a Markov random field (MRF) model. Model 3 denoted by Equation

(4.6) is similar to Model 2 but caters for unstructured random effects which accounts for

unobserved influential covariates that are inherent among the districts and was assigned

an i.i.d Gaussian distribution. Model 4 assumes a linear effect of categorical covariates,

and it incorporates both spatially structured and unstructured random effects. Each of

these models was fitted to the NIDS wave 4 datasets. Model selection was done based

on the Akaike information criterion (AIC), Bayesian information criterion (BIC), and by

means of generalized cross-validation (GCV). The better fitting model is considered to

be that with the smallest AIC, BIC, and GCV (Kneib et al., 2008). However, the BIC

favors simple models because it gives a large penalty to overfitting than the AIC (Ngwira

and Kazembe, 2016). The GCV is known to select the best fitting model, without giving

any penalty to overfitting.

Table 4.1 provides the analyses results together with values of the AIC, BIC, and GCV

of the fitted models. The results suggest that the AIC and the GCV values favor Model

4, while the BIC values favor Model 1. Thus, interpretation of results will be based on

Model 4 which is suggested by the AIC and GCV based on majority vote. The cumulative

posterior odds ratios (PORs) estimates and their corresponding 95% credible intervals

(CIs) for the covariates of the fitted models are also provided in the table.
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Table 4.1: Parameter estimates of the multivariable Bayesian spatial cumulative logit
models.

Model 1 Model 2 Model 3 Model 4

Covariates POR (95% CI) POR (95% CI) POR (95% CI) POR (95% CI)

Age group (ref = 15-19)

20-24 1.11 (1.00, 1.22) 1.12 (1.02, 1.24) 1.12 (1.02, 1.24) 1.12 (1.02, 1.24)

25-29 1.28 (1.14, 1.43) 1.30 (1.16, 1.45) 1.30 (1.16, 1.45) 1.30 (1.16, 1.45)

30-34 1.34 (1.18, 1.51) 1.37 (1.21, 1.55) 1.37 (1.21, 1.55) 1.37 (1.21, 1.55)

35-39 1.70 (1.49, 1.95) 1.70 (1.49, 1.95) 1.71 (1.49, 1.95) 1.71 (1.49, 1.95)

40-44 1.94 (1.68, 2.24) 1.98 (1.72, 2.29) 1.99 (1.72, 2.29) 1.99 (1.72, 2.29)

45-49 2.71 (2.33, 3.15) 2.75 (2.37, 3.20) 2.75 (2.37, 3.20) 2.75 (2.37, 3.20)

Gender (ref = Female)

Male 0.79 (0.74, 0.85) 0.79 (0.73, 0.85) 0.79 (0.73, 0.85) 0.79 (0.73, 0.85)

Race (ref = African)

Asian/Indian 0.87 (0.63, 1.22) 0.86 (0.61, 1.21) 0.87 (0.62, 1.22) 0.86 (0.62, 1.21)

Coloured 0.83 (0.75, 0.92) 1.04 (0.90, 1.20) 1.01 (0.88, 1.15) 1.02 (0.89, 1.17)

White 0.96 (0.73, 1.26) 1.08 (0.82, 1.42) 1.06 (0.81, 1.40) 1.07 (0.81, 1.41)

Type of residence (ref = Urban informal)

Rural Formal 1.03 (0.89, 1.18) 0.99 (0.85, 1.15) 0.99 (0.85, 1.15) 0.99 (0.85, 1.15)

Urban Formal 1.14 (1.01, 1.28) 1.10 (0.97, 1.25) 1.11 (0.98, 1.25) 1.11 (0.98, 1.25)

Tribal Authority Areas 1.03 (0.91, 1.17) 0.96 (0.84, 1.11) 0.97 (0.85, 1.12) 0.97 (0.84, 1.12)

Education level (ref = No formal education)

Primary 1.14 (0.85, 1.51) 1.15 (0.86, 1.53) 1.14 (0.86, 1.52) 1.14 (0.86, 1.52)

Secondary 0.74 (0.58, 0.94) 0.74 (0.58, 0.95) 0.74 (0.58, 0.94) 0.74 (0.58, 0.94)

High 0.53 (0.42, 0.66) 0.53 (0.42, 0.67) 0.53 (0.42, 0.66) 0.53 (0.42, 0.66)

College 0.50 (0.38, 0.66) 0.52 (0.40, 0.68) 0.51 (0.39, 0.67) 0.52 (0.39, 0.68)

Tertiary 0.44 (0.34, 0.57) 0.44 (0.34, 0.56) 0.44 (0.34, 0.56) 0.44 (0.34, 0.56)

Household income (ref = Much below average)

Below average 1.18 (1.08, 1.30) 1.16 (1.05, 1.27) 1.16 (1.05, 1.27) 1.16 (1.05, 1.27)

Average 1.31 (1.20, 1.43) 1.29 (1.18, 1.41) 1.29 (1.18, 1.41) 1.29 (1.18, 1.41)

Above average 1.12 (0.98, 1.27) 1.14 (1.00, 1.31) 1.14 (1.00, 1.31) 1.14 (1.01, 1.31)

Much above average 1.05 (0.84, 1.18) 1.07 (0.90, 1.27) 1.07 (0.90, 1.27) 1.07 (0.90, 1.27)

Marital status (ref = Not married)

Widow/Divorced/Seperated 1.19 (1.00, 1.42) 1.17 (0.98, 1.40) 1.17 (0.98, 1.40) 1.17 (0.98, 1.40)

Married/living with partner 1.01 (0.93, 1.09) 1.01 (0.92, 1.08) 0.99 (0.92, 1.08) 0.97 (0.92, 1.08)

Life satisfaction level (ref = Very dissatisfied)

Dissatisfied 0.98 (0.87, 1.09) 0.94 (0.84, 1.06) 0.95 (0.84, 1.06) 0.95 (0.84, 1.06)

Normal 1.03 (0.92, 1.16) 1.02 (0.91, 1.15) 1.03 (0.91, 1.15) 1.03 (0.91, 1.15)

Satisfied 0.95 (0.85, 1.08) 0.97 (0.86, 1.10) 0.98 (0.86, 1.11) 0.98 (0.86, 1.11)

Very satisfied 0.92 (0.81, 1.06) 0.93 (0.81, 1.07) 0.93 (0.81, 1.07) 0.93 (0.81, 1.07)

Exercise (ref = Never)

Less than once a week 0.74 (0.66, 0.83) 0.78 (0.70, 0.88) 0.78 (0.70, 0.88) 0.78 (0.70, 0.88)

Once a week 0.93 (0.81, 1.06) 0.96 (0.84, 1.10) 0.96 (0.84, 1.10) 0.96 (0.84, 1.10)

Twice a week 1.01 (0.89, 1.14) 1.03 (0.91, 1.16) 1.03 (0.91, 1.16) 1.03 (0.91, 1.16)

Three or more times a week 0.86 (0.79, 0.94) 0.88 (0.80, 0.96) 0.88 (0.80, 0.96) 0.88 (0.80, 0.96)

Alcohol consumption level (ref = Never drunk

alcohol)
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Table 4.1 Continues

Model 1 Model 2 Model 3 Model 4

Covariates POR (95% CI) POR (95% CI) POR (95% CI) POR (95% CI)

No longer drink 1.19 (1.07, 1.32) 1.18 (1.07, 1.31) 1.18 (1.07, 1.31) 1.18 (1.07, 1.31)

Drink very rarely 1.10 (1.01, 1.20) 1.07 (0.98, 1.17) 1.07 (0.98, 1.17) 1.07 (0.98, 1.17)

Less than once a week 1.13 (0.96, 1.34) 1.14 (0.96, 1.34) 1.14 (0.96, 1.35) 1.14 (0.96, 1.35)

1 or 2 days a week 1.04 (0.91, 1.18) 1.05 (0.92, 1.19) 1.04 (0.92, 1.19) 1.04 (0.92, 1.19)

3 or 4 days a week 1.26 (0.98, 1.61) 1.30 (1.02, 1.66) 1.30 (1.02, 1.66) 1.30 (1.02, 1.66)

5 or 6 days a week 1.09 (0.67, 1.75) 1.08 (0.67, 1.74) 1.08 (0.67, 1.74) 1.08 (0.67, 1.74)

Every day 1.04 (0.62, 1.74) 1.05 (0.59, 1.67) 1.05 (0.59, 1.67) 1.06 (0.59, 1.67)

Smokes (ref = No)

Yes 1.10 (1.00, 1.21) 1.09 (1.01, 1.19) 1.08 (0.99, 1.19) 1.09 (1.00, 1.19)

Type of toilet (ref = None)

Flush toilet with offsite disposal 0.88 (0.74, 1.06) 0.88 (0.73, 1.06) 0.87 (0.73, 1.05) 0.88 (0.73, 1.05)

Flush toilet with onsite disposal 0.93 (0.77, 1.11) 0.98 (0.81, 1.18) 0.97 (0.81, 1.17) 0.97 (0.81, 1.17)

Bucket toilet 0.80 (0.64, 1.02) 0.79 (0.62, 1.00) 0.78 (0.62, 0.99) 0.78 (0.62, 0.99)

Chemical toilet 1.29 (1.00, 1.67) 1.33 (1.03, 1.72) 1.33 (1.02, 1.72) 1.33 (1.03, 1.72)

Pit latrine with ventilation pipe 0.78 (0.65, 0.94) 0.82 (0.68, 0.98) 0.82 (0.68, 0.98) 0.82 (0.68, 0.98)

Pit latrine without ventilation pipe 0.87 (0.73, 1.04) 0.91 (0.76, 1.08) 0.90 (0.76, 1.08) 0.90 (0.76, 1.08)

Other 1.55 (0.75, 3.19) 1.70 (0.82, 3.52) 1.71 (0.83, 3.52) 1.71 (0.83, 3.53)

Employment status (ref = Unemployed strict)

Unemployed Discouraged 0.81 (0.62, 1.05) 0.84 (0.65, 1.09) 0.84 (0.65, 1.09) 0.84 (0.65, 1.09)

Not Economically Active 1.23 (1.12, 1.35) 1.16 (1.06, 1.28) 1.17 (1.06, 1.29) 1.17 (1.06, 1.29)

Employed 0.99 (0.90, 1.09) 0.98 (0.90, 1.08) 0.98 (0.90, 1.08) 0.98 (0.90, 1.08)

Nutrition status (ref = Normal)

Underweight 1.24 (1.09, 1.40) 1.23 (1.08, 1.40) 1.23 (1.08, 1.40) 1.23 (1.08, 1.40)

Overweight/obese 0.94 (0.88, 1.01) 0.93 (0.87, 1.00) 0.93 (0.87, 1.00) 0.93 (0.87, 1.01)

Severe 1.32 (1.07, 1.63) 1.29 (1.05, 1.59) 1.29 (1.05, 1.59) 1.29 (1.05, 1.59)

Was diagnosed with TB? (ref = No)

Yes 2.08 (1.78, 2.45) 2.10 (1.79, 2.47) 2.10 (1.79, 2.46) 2.10 (1.79, 2.46)

Felt depressed in past week? (ref = Less than 1

day)

Little of the time (1-2 days) 1.32 (1.23, 1.41) 1.31 (1.22, 1.40) 1.31 (1.22, 1.40) 1.31 (1.22, 1.40)

Moderate amount of time (3-4 days) 1.31 (1.19, 1.46) 1.34 (1.21, 1.49) 1.34 (1.21, 1.49) 1.34 (1.21, 1.49)

All the time (5-7 days) 2.05 (1.68, 2.48) 2.05 (1.69, 2.49) 2.04 (1.68, 2.48) 2.05 (1.68, 2.49)

Est. (95 % CI) Est. (95 % CI) Est. (95 % CI) Est. (95 % CI)

θ1 -0.65 (-0.99, -0.32) -0.71 (-1.05, -0.37) -0.72 (-1.07, -0.36) -0.71 (-1.07, -0.36)

θ2 0.77 (0.44, 1.10) 0.76 (0.42, 1.10) 0.75 (0.40, 1.11) 0.76 (0.40, 1.11)

θ3 2.90 (2.57, 3.24) 2.94 (2.60, 3.28) 2.93 (2.57, 3.29) 2.94 (2.58, 3.29)

θ4 4.47 (4.11, 4.83) 4.51 (4.15, 4.87) 4.5 (4.12, 4.88) 4.51 (4.13, 4.88)

Additional model parameters

Spatially structured variation (σ2
str) - 0.6124 - 0.0252

Spatially unstructured variation (σ2
unstr) - - 0.1525 0.1404

Model fit

AIC 39167.9 38597.2 38596.5 38596.2

BIC 39635.6 39418.9 39420.1 39420.1

GCV 2.453 2.397 2.397 2.397
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The association was considered significant at 5% level of significance. Next, we only

discuss the results for the significant covariates. Based on Model 4 in Table 4.1, the

results show that all the considered covariates were significantly associated with self-

reported health except for race, type of residence, marital status, and life satisfaction

level. The results in Table E.1 revealed that the proportional odds assumption was

found to be insignificant at 5% level of significance (p-value = 0.1151), which means that

the proportional odds assumption was not violated. Thus, the results are based on the

proportional odds assumption. The odds of reporting poor health for individuals between

the age groups 20-24, 25-29, 30-34, 35-39, 40-44 and 45-49 years were respectively 1.12

(with 95% CI: 1.02 to 1.24), 1.30 (with 95% CI: 1.16 to 1.45), 1.37 (with 95% CI: 1.21 to

1.55), 1.71 (with 95% CI: 1.49 to 1.95), 1.99 (with 95% CI: 1.72 to 2.29) and 2.75 (with

95% CI: 2.37 to 3.20) times the odds of reporting poor health for individuals between

15-19 years of age. This demonstrates a linear odds increase trend of reporting poor

health as age increases. The odds of reporting poor health among individuals who are

male was 0.79 (with 95% CI: 0.73 to 0.85) times the odds of reporting poor health for

individuals who are female. This means the prevalence of poor health is significantly

high in females than males. The odds of reporting poor health among individuals with

secondary education were 0.74 times the odds of reporting poor health for individuals

with no formal education (POR: 0.74, 95% CI: 0.58 to 0.94). The odds of reporting poor

health for individuals with high education were 0.53 times the odds of reporting poor

health for individuals with no formal education (POR: 0.53, 95% CI: 0.42 to 0.66). The

odds of reporting poor health among individuals with college and tertiary education were

respectively 0.52 (with 95% CI: 0.39 to 0.68) and 0.44 (with 95% CI: 0.34 to 0.56) times the

odds of reporting poor health for individuals with no formal education. This means the

prevalence of poor health is less the higher the education level. The odds of reporting poor

health for individuals with below average household income were 1.16 times the odds of

reporting poor health for individuals with much below average household income, (POR:

1.16, 95% CI: 1.05 to 1.27). The odds of reporting poor health for individuals with average
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household income were 1.29 times the odds of reporting poor health for individuals with

much below average household income, (POR: 1.29: 95% CI: 1.18 to 1.41). The odds

of reporting poor health among individuals with above average household income were

1.14 times the odds of reporting poor health for individuals with much below average

household income, (POR: 1.14, 95% CI: 1.01 to 1.31). Moreover, the odds of reporting

poor health among individuals with much above average were 1.07 times the odds of

reporting poor health for individuals with much below average household income, but

this was insignificant (POR: 1.07, 95% CI: 0.90 to 1.27). The odds of reporting poor

health for individuals who exercise less than once a week were 0.78 (with 95% CI: 0.70

to 0.88) times the odds of reporting poor health for individuals who never exercise. The

odds of reporting poor health among individuals who exercise three or more times a

week were 0.88 (with 95% CI: 0.80 to 0.96) times the odds of reporting poor health for

individuals who never exercise. However, exercising once a week and twice a week were

found not to be insignificantly associated with self-reported health. The corresponding

odds ratios were (POR: 0.96, 95% CI: 0.84 to 1.10) and (POR: 1.03, 95% CI: 0.91 to

1.16) respectively. The odds of reporting poor health for individuals who no longer drink

alcohol were 1.18 times the odds of reporting poor health for individuals who never drunk

alcohol, (POR: 1.18, 95% CI: 1.07 to 1.31). The odds of reporting poor health among

individuals who drink on 3 or 4 days a week were 1.30 times the odds of reporting poor

health for individuals who have never drunk alcohol, (POR: 1.30, 95% CI: 1.02 to 1.66).

However, individuals who drink alcohol very rarely, less than once a week, 1 or 2 days

a week, 5 or 6 days a week and every day were found to be insignificantly associated

with self-reported health. The corresponding odds ratio given by (POR: 1.07, 95% CI:

0.98 to 1.17), (POR: 0.96, 95% CI: 0.96 to 1.35), (POR: 1.04, 95% CI: 0.92 to 1.19),

(POR: 1.08, 95% CI: 0.67 to 1.74) and (POR: 1.06, 95% CI: 0.59 to 1.67) respectively.

The odds of reporting poor health for individuals who smoke a cigarette was 1.09 times

the odds of reporting poor health for individuals who do not smoke a cigarette (POR:

1.09, 95%CI: 1.00 to 1.19). Individuals with the flush type of toilets with offsite and
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onsite disposal were found to be insignificantly associated with self-reported health. The

corresponding odds ratios were (POR: 0.88, 95% CI: 0.73 to 1.05) and (POR: 0.97, 95%

CI: 0.81 to 1.17) respectively. The odds of reporting poor health for individuals with a

bucket and chemical type of toilets were respectively 0.78 (with 95% CI: 0.62 to 0.99) and

1.33 (with 95% CI: 1.03 to 1.72) times the odds of reporting poor health for individuals

with no toilet. Employment status was found to be significantly associated with self-

reported health. The odds of reporting poor health among individuals who are not

economically active were 1.17 times the odds of reporting poor health for individuals who

are strictly unemployed (POR: 1.71, 95% CI: 1.06 to 1.29). Nutrition status was found to

be significantly associated with self-reported health. The odds of reporting poor health for

individuals with underweight nutrition status were 1.23 times the odds of reporting poor

health for individuals with normal nutrition status (POR: 1.23, 95% CI: 1.08 to 1.40).

The odds of reporting poor health among individuals with severe nutrition status were

1.29 times the odds of reporting poor health for individuals with normal nutrition status

(POR: 1.29, 95% CI: 1.05 to 1.59). The odds of reporting poor health among individuals

with overweight/obese nutrition status were 0.93 times the odds of reporting poor health

for individuals with normal nutrition status, but this was insignificant (POR: 0.93, 95%

CI: 0.87 to 1.01). Being diagnosed with TB was found to be significantly associated with

self-reported health. The odds of reporting poor health among individuals who were

diagnosed with TB was 2.10 times the odds of reporting poor health for individuals who

were not diagnosed with TB (POR: 2.10, 96% CI: 1.79 to 2.46). Depression was also

found to be significantly associated with self-reported health. The odds of reporting poor

health among individuals who felt depressed in past week for little of the time, a moderate

amount of the time and all the time were respectively 1.13 (with 95% CI: 1.22, 1.40),

1.34 (with 95% CI: 1.21 to 1.49) and 2.05 (with 95% CI: 1.68 to 2.49) times the odds of

reporting poor health for individuals who felt depressed in past week for less than one

day. This shows a linear odds increase trend of reporting poor health as depression level

increases. However, this is expected because depression is one of the factors that lead
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to poor health. The cutpoint estimates are also provided in the results. The cutpoint

between reporting excellent and very good health is given by θ1, the cutpoint between

reporting very good and good health is θ2, the cutpoint between reporting good and fair

health is θ3 and the cutpoint between reporting fair and poor health is θ4. The sign

of the cutpoint parameters signifies a shift towards a latent scale, with a positive sign

signifying a shift to a higher probability, and the negative signifying a shift towards lower

probability. The results reveal that θ1 is negative, which means reporting excellent health

corresponds to reduced odds of reporting poor health. The other three cutpoints (θ2, θ3

and θ4) are all positive, which suggests that reporting very good, good and fair health

categories is respectively associated with higher odds of reporting poor health.

(a) (b)

Figure 4.1: Map of South Africa showing total spatial district residual effects estimates
(a) and their corresponding 95% map of significance (b) of the spatial effects based on
Model 4.

The residual total spatial effects are presented based on Model 4. Figure 4.1 shows the

map of residuals spatial effects and their corresponding map of significance. All the dis-

trict names and their corresponding codes are presented in Figure C.1 and Table C.1

respectively. In Figure 4.1(a) black and dark grey coloured districts indicate a higher as-

sociation of reporting poor health and the grey and light grey coloured districts indicate

a lower association of reporting poor health. In addition, looking at the map on the right

the white colored districts indicate not significant, the black indicate significantly high
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odds of reporting poor health and grey indicate significantly low odds of reporting poor

health. There is clear evidence of spatial variations at the district level of self-reported

health in South Africa. Figure 4.1(a) reveal that there is a significantly higher concentra-

tion in the central regions. Figure 4.1(b) shows that the Lejweleputswa, Xhariep, Sisonke,

Amajuba, City of Johannesburg, Bojanala and Ehlanzeni districts were significantly as-

sociated with self-reported health. The Lejweleputswa, Xhariep and Sisonke districts had

high poor health prevalence. Moreover, the Amajuba, City of Johannesburg, Bojanala

and Ehlanzeni districts showed low prevalence poor health.

Figure 4.2 display the predicted structured (a) and unstructured (b) residual spatial ef-

fects and their corresponding 95% credible intervals (CIs) based on Model 4. The numbers

(a) Structured

(b) Unstructured

Figure 4.2: Predicted residuals of the spatially structured (a) and unstructured (b) effects
with their 95% credible intervals based on Model 4.

on top of each plot correspond to the district codes presented in Table C.1. Each credible

interval has a length inversely related to the number of the collected odds ratios of re-

porting poor health and it can be used to test whether the spatial effects are significantly
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different from one. It can be seen that all the spatially structured random effects in Fig-

ure 4.2(a) were found to be insignificantly associated with self-reported health. On the

other hand, the spatially unstructured random effects in Figure 4.2(b) were found to be

significantly associated with self-reported health, with Chris Hani, Joe Gqabi, Xhariep,

Lejweleputswa, Sisonke, Waterberg, Great Sekhukhune and Frances Baard districts sig-

nificantly having the effects of increasing the individuals odds of reporting poor health,

while City of Johannesburg, Amajuba, Ehlanzeni, Namakwa, Pixley ka Seme, Bojanala

and City of Cape Town districts significantly having the effects of decreasing the individ-

uals odds of reporting poor health.

4.5 Application of Structured Additive Regression

(STAR) models to NIDS wave 4 data

In this section, we propose various models that are extensions to the spatial models from

the previous section. These models provide a more flexible approach that accounts for

generic covariates. To be briefer we account for nonlinear effects of continuous covariates.

Hence in this section, we proposed the following models to further capture the effects of

categorical and continuous covariates on self-reported health, also we assess the spatial

variations. Furthermore, it is worth noting that all the models in this section are an

extension of Equation (4.3), the linear predictor is replaced with a structured linear

predictor defined in Equation (4.7).

The first model is the standard cumulative logit regression model which incorporates

fixed and nonlinear effects for age and body mass index (BMI), but it does not account

for spatial random effects. The model is given by

Model A1 : ηij = x′ijβ + f1(ageij1) + f2(bmiij2),
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in this model, age and BMI are continuous covariates of an individual. The second model

is similar to Model A1 with an additional of spatially structured random effects, given by

Model A2 : ηij = x′ijβ + f1(ageij1) + f2(bmiij2) + fstr(si)

to capture unobserved influential factors that may vary across districts or spatial location

in general. In the third model, we propose a similar model to Model A2 but instead

incorporates spatially unstructured random effects. The model is given by

Model A3 : ηij = x′ijβ + f1(ageij1) + f2(bmiij2) + funstr(si)

which captures unstructured heterogeneity. The final model examines the effect of fixed

and nonlinear effects and accounts for both spatially structured and unstructured random

effects. The model is given by

Model A4 : ηij = x′ijβ + f1(ageij1) + f2(bmiij2) + fstr(si) + funstr(si),

which captures spatial heterogeneity. In all the four models defined above the vector β

are regression coefficients which were assigned independent diffuse priors (β ∝ const),

the smooth functions (f1 and f2) of continuous covariates age and BMI were assumed

to have a nonlinear effect on self-reported health and were both assigned second-order

random walk priors discussed in Section 3.25. Furthermore, the spatially structured

effects were assigned Markov random fields (MRFs) prior and the spatially unstructured

were assigned the i.i.d Gaussian prior.

Table 4.2 presents the cumulative posterior odds ratios (PORs) and their corresponding

95% credible intervals (CIs) for all the fitted models. The table also shows the results of

the model fit statistics. The model fit values suggest that the AIC value favors Model

A4 while the GCV values are the same for Model A3 and Model A4.
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Table 4.2: Parameter estimates of the multivariable Bayesian spatial cumulative logit
models with nonlinear effects.

Model A1 Model A2 Model A3 Model A4

Covariates POR (95% CI) POR (95% CI) POR (95% CI) POR (95% CI)

Gender (ref = Female)

Male 0.79 (0.88, 0.85) 0.78 (0.73, 0.84) 0.78 (0.73, 0.84) 0.78 (0.73, 0.84)

Race (ref = African)

Asian/Indian 0.88 (0.84, 1.23) 0.87 (0.62, 1.22) 0.88 (0.62, 1.23) 0.87 (0.62, 1.22)

Coloured 0.84 (0.97, 0.92) 1.05 (0.91, 1.21) 1.02 (0.89, 1.16) 1.03 (0.90, 1.18)

White 0.97 (1.02, 1.28) 1.10 (0.83, 1.44) 1.08 (0.82, 1.42) 1.09 (0.83, 1.43)

Type of residence (ref = Urban informal)

Rural Formal 1.02 (1.13, 1.18) 0.98 (0.85, 1.15) 0.99 (0.85, 1.15) 0.99 (0.85, 1.15)

Urban Formal 1.13 (1.03, 1.28) 1.10 (0.97, 1.25) 1.10 (0.97, 1.25) 1.10 (0.97, 1.25)

Tribal Authority Areas 1.03 (1.14, 1.16) 0.96 (0.83, 1.11) 0.97 (0.84, 1.12) 0.97 (0.84, 1.11)

Education level (ref = No formal education)

Primary 1.14 (0.75, 1.52) 1.15 (0.87, 1.53) 1.15 (0.86, 1.53) 1.15 (0.86, 1.53)

Secondary 0.75 (0.53, 0.96) 0.75 (0.59, 0.96) 0.75 (0.59, 0.95) 0.75 (0.59, 0.95)

High 0.53 (0.51, 0.67) 0.54 (0.42, 0.68) 0.53 (0.42, 0.67) 0.53 (0.42, 0.67)

College 0.51 (0.45, 0.67) 0.53 (0.40, 0.69) 0.52 (0.40, 0.69) 0.52 (0.40, 0.69)

Tertiary 0.45 (1.18, 0.57) 0.44 (0.35, 0.57) 0.44 (0.34, 0.56) 0.44 (0.34, 0.56)

Household income (ref = Much below average)

Below average 1.18 (1.31, 1.30) 1.15 (1.05, 1.27) 1.15 (1.05, 1.27) 1.15 (1.05, 1.27)

Average 1.31 (1.11, 1.43) 1.28 (1.17, 1.40) 1.28 (1.17, 1.40) 1.28 (1.17, 1.40)

Above average 1.11 (1.00, 1.27) 1.14 (0.99, 1.30) 1.14 (1.00, 1.30) 1.14 (1.00, 1.30)

Much above average 1.07 (1.17, 1.18) 1.07 (0.90, 1.27) 1.06 (0.90, 1.26) 1.06 (0.89, 1.26)

Marital status (ref = Not married)

Widow/Divorced/Seperated 1.17 (0.99, 1.39) 1.14 (0.96, 1.37) 1.15 (0.96, 1.37) 1.15 (0.96, 1.37)

Married/living with partner 0.99 (0.98, 1.08) 0.98 (0.90, 1.07) 0.98 (0.90, 1.06) 0.98 (0.90, 1.06)

Life satisfaction level (ref = Very dissatisfied)

Dissatisfied 0.98 (1.03, 1.10) 0.95 (0.84, 1.06) 0.95 (0.84, 1.06) 0.95 (0.84, 1.06)

Neutral 1.03 (0.96, 1.16) 1.03 (0.91, 1.15) 1.03 (0.92, 1.15) 1.03 (0.92, 1.15)

Satisfied 0.96 (0.93, 1.08) 0.98 (0.86, 1.11) 0.98 (0.86, 1.11) 0.98 (0.87, 1.11)

Very Satisfied 0.93 (0.75, 1.06) 0.93 (0.81, 1.08) 0.94 (0.81, 1.08) 0.94 (0.81, 1.08)

Exercise (ref = Never)

Less than once a week 0.75 (0.93, 0.84) 0.78 (0.70, 0.88) 0.78 (0.70, 0.88) 0.78 (0.70, 0.88)

Once a week 0.93 (1.01, 1.06) 0.97 (0.84, 1.11) 0.96 (0.84, 1.10) 0.96 (0.84, 1.10)

Twice a week 1.01 (0.87, 1.14) 1.03 (0.91, 1.17) 1.03 (0.91, 1.17) 1.03 (0.91, 1.17)

Three or more times a week 0.87 (1.19, 0.95) 0.88 (0.81, 0.96) 0.88 (0.8, 0.96) 0.88 (0.80, 0.96)

Alcohol consumption level (ref = Never drunk

alcohol)

No longer drink alcohol 1.19 (1.10, 1.32) 1.18 (1.07, 1.31) 1.18 (1.07, 1.31) 1.18 (1.07, 1.31)

Drink very rarely 1.10 (1.14, 1.02) 1.07 (0.98, 1.17) 1.07 (0.98, 1.17) 1.08 (0.98, 1.18)

Less than once a week 1.14 (1.04, 1.35) 1.14 (0.97, 1.35) 1.14 (0.97, 1.35) 1.15 (0.97, 1.35)

1 or 2 days a week 1.04 (1.25, 1.18) 1.05 (0.93, 1.20) 1.05 (0.92, 1.19) 1.05 (0.92, 1.19)

3 or 4 days a week 1.25 (1.09, 1.60) 1.30 (1.02, 1.66) 1.30 (1.02, 1.66) 1.30 (1.02, 1.66)

5 or 6 days a week 1.09 (1.04, 1.76) 1.09 (0.68, 1.76) 1.09 (0.68, 1.76) 1.09 (0.68, 1.76)

Every day 1.04 (1.08, 1.74) 0.99 (0.59, 1.67) 1.04 (0.59, 1.67) 1.05 (0.59, 1.68)
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Table 4.2 Continues

Model A1 Model A2 Model A3 Model A4

Covariates POR (95% CI) POR (95% CI) POR (95% CI) POR (95% CI)

Smokes (ref = No)

Yes 1.08 (0.88, 1.19) 1.07 (0.98, 1.18) 1.07 (0.98, 1.18) 1.07 (1.01, 1.18)

Type of toilet (ref = None)

Flush toilet with offsite disposal 0.88 (0.92, 1.05) 0.87 (0.72, 1.05) 0.87 (0.72, 1.04) 0.87 (0.72, 1.05)

Flush toilet with onsite disposal 0.92 (0.80, 1.11) 0.97 (0.81, 1.17) 0.96 (0.80, 1.16) 0.97 (0.80, 1.16)

Bucket toilet 0.80 (1.29, 1.01) 0.78 (0.62, 0.99) 0.78 (0.61, 0.99) 0.78 (0.61, 0.99)

Chemical toilet 1.29 (0.78, 1.66) 1.32 (1.02, 1.71) 1.32 (1.02, 1.71) 1.33 (1.02, 1.71)

Pit latrine with ventilation pipe 0.78 (0.86, 0.93) 0.81 (0.68, 0.97) 0.81 (0.68, 0.97) 0.81 (0.68, 0.97)

Pit latrine without ventilation pipe 0.86 (1.51, 1.03) 0.90 (0.75, 1.07) 0.90 (0.75, 1.07) 0.90 (0.75, 1.07)

Other 1.51 (0.81, 3.11) 1.67 (0.81, 3.44) 1.67 (0.81, 3.44) 1.67 (0.81, 3.45)

Employment status (ref = Unemployed strict)

Unemployed Discouraged 0.81 (1.24, 1.05) 0.84 (0.65, 1.09) 0.84 (0.65, 1.09) 0.84 (0.64, 1.09)

Not Economically Active 1.24 (0.99, 1.37) 1.17 (1.06, 1.29) 1.17 (1.07, 1.29) 1.17 (1.07, 1.29)

Employed 0.99 (2.08, 1.09) 0.98 (0.90, 1.08) 0.98 (0.90, 1.08) 0.98 (0.90, 1.08)

Was diagnosed with TB? (ref = No)

Yes 2.08 (1.32, 2.44) 2.10 (1.79, 2.46) 2.09 (1.78, 2.46) 2.10 (1.79, 2.46)

Felt depressed in past week? (ref = Less than

1 day)

Little of the time (1-2 days) 1.32 (1.31, 1.41) 1.30 (1.22, 1.40) 1.31 (1.22, 1.40) 1.30 (1.22, 1.40)

Moderate amount of time (3-4 days) 1.31 (2.04, 1.45) 1.34 (1.21, 1.49) 1.34 (1.21, 1.49) 1.34 (1.21, 1.49)

All of the time (5-7 days) 2.04 (1.68, 2.47) 2.04 (1.68, 2.48) 2.03 (1.68, 2.47) 2.04 (1.68, 2.47)

Est. (95 % CI) Est. (95 % CI) Est. (95 % CI) Est. (95 % CI)

θ1 -1.18 (-1.50, -0.86) -1.25 (-1.60, -0.91) -1.26 (-1.62, -0.90) -1.26 (-1.61, -0.90)

θ2 0.26 (-0.06, 0.58) 0.23 (-0.12, 0.57) 0.22 (-0.14, 0.58) 0.22 (-0.13, 0.58)

θ3 2.39 (2.07, 2.72) 2.41 (2.06, 2.75) 2.40 (2.04, 2.76) 2.4 (2.04, 2.76)

θ4 3.96 (3.62, 4.31) 3.98 (3.61, 4.34) 3.97 (3.59, 4.35) 3.97 (3.59, 4.35)

Additional model parameters

Spatially structured variation (σ2
str) - 0.613 - 0.03

Spatially unstructured variation (σ2
unstr) - - 0.153 0.139

Age effect (σ2
age) 0.0001 0.0002 0.0002 0.0002

BMI effect (σ2
BMI) 0.0001 0.0001 0.0001 0.0001

Model fit

AIC 39127.9 38583.3 38582.8 38582.4

BIC 39582.4 39608.0 39609.7 39609.5

GCV 2.4512 2.3850 2.3848 2.3848

However, the BIC value favors Model A1. Therefore, the results are interpreted based

on Model A4 which incorporates both the spatially structured and unstructured random

effects. The categorical covariates were assumed to have a linear relationship with self-

reported health. Based on Model A4 in Table 4.2, the results show that all the considered
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categorical covariates were statistically significant except for race, place of residence,

marital status and, life satisfaction level. Gender was found to be significantly associated

with self-reported health. The odds of reporting poor health for male individuals were

0.78 times the odds of reporting poor health for female individuals. Education was

found to be significantly associated with self-reported health. The odds of reporting poor

health for individuals with secondary education were 0.75 (with 95% CI: 0.59 to 0.95)

times the odds of reporting poor health for individuals with no education. The odds

of reporting poor health for individuals with high education were 0.53 (with 95% CI:

0.42 to 0.67) times the odds of reporting poor health for individuals with no education.

The odds of reporting poor health for individuals with a college education were 0.52

(with 95% CI: 0.40 to 0.69) times the odds of reporting poor health for individuals

with no education. Furthermore, the odds of reporting poor health for individuals with

tertiary education were 0.44 (with 95% CI: 0.34 to 0.56) times the odds of reporting poor

health for individuals with no education. These means the prevalence of poor health still

remains less the higher the education. Household income was also found to be significantly

associated with self-reported health. The odds of reporting poor health for individuals

with below average household income were 1.15 (with 95% CI: 1.05 to 1.27) times the odds

of reporting poor health for individuals with much below average household income. The

odds of reporting poor health among individuals with average household income were

1.28 times the odds of reporting poor health for individuals with much below average

household income (POR: 1.28, 95% CI: 1.17 to 1.40). Moreover, the odds of reporting

poor health among individuals with above average household income were 1.14 times

the odds of reporting poor health for individuals with much below average household

income (POR: 1.14, 95% CI: 1.00 to 1.30). However, one would expect that the higher

the household income the less poor health prevalence. The odds of reporting poor health

among individuals exercising less than once a week were 0.78 times the odds of reporting

poor health for individuals who never exercise (POR: 0.78, 95% CI: 0.70 to 0.88). The

odds of reporting poor health among individuals who exercise three or more times a week
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were 0.88 times the odds of reporting poor health among individuals who never exercise

(POR: 0.88, 95% CI: 0.80 to 0.96). Alcohol was found to be significantly associated with

self-reported health. The odds of reporting poor health among individuals who no longer

drink alcohol were 1.18 times the odds of reporting poor health for individuals who never

drunk alcohol (POR: 1.18, 95% CI: 1.07 to 1.31). The odds of reporting poor health

among individuals who drink on 3 or 4 days a week were 1.30 times the odds of reporting

poor health for individuals who never drunk alcohol (POR: 1.30, 95% CI: 1.02 to 1.66).

Smoking was found to be positively associated with self-reported health, with the odds

ratio given by (POR: 1.07, 95% CI: 1.01 to 1.18). The odds of reporting poor health for

individuals who smoke a cigarette was 1.07 times the odds of reporting poor health among

individuals who do not smoke a cigarette. Type of toilet was found to be significantly

associated with self-reported health. The odds of reporting poor health among individuals

with bucket, chemical and pit latrine with ventilation pipe toilets were respectively 0.78

(with 95% CI: 0.61 to 0.99), 1.33 (with 95% CI: 1.02 to 1.71) and 0.81 (with 95% CI: 0.68

to 0.97) times the odds of reporting poor health for individuals who have no toilet. The

odds of reporting poor health among individuals who are not economically active were

1.17 times the odds of reporting poor health for individuals who are unemployed strictly

(POR: 1.17, 95% CI: 1.07 to 1.29). The odds of reporting poor health for individuals

who were diagnosed with TB was 2.10 times the odds of reporting poor health among

individuals who were not diagnosed with TB (POR: 2.10, 95% CI: 1.79 to 2.46). This

means the prevalence of poor health is high for individuals who were previously diagnosed

with TB. Depression was found to be positively associated with self-reported health. The

odds of reporting poor health among individuals who felt depressed in past week little of

the time were 1.30 (with 95% CI: 1.22 to 1.40) times the odds of reporting poor health for

individuals who felt depressed in past week for less than one day. The odds of reporting

poor health among individuals who felt depressed in past week a moderate amount of

time were 1.34 (with 95% CI: 1.21 to 1.49) times the odds of reporting poor health for

individuals who felt depressed in past week for less than one day. The odds of reporting
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poor health among individuals who felt depressed in past week all of the time were 2.04

(with 95% CI: 1.68 to 2.47) times the odds of reporting poor health for individuals who

felt depressed in past week for less than one day. A linear odds increase of reporting poor

health as individuals depression level increases is observed. These means the prevalence

of poor health is high the higher the depression level. Furthermore, the results show that

the cutpoint θ1 is negative, which means reporting excellent health status corresponds

to reduced odds of poor reported health. The other three cutpoints (θ2, θ3 and θ4)

are all positive, which means that reporting very good, good and fair health categories

respectively are associated with higher odds of poor reported health.

Figure 4.3 display the maps of the total residual spatial effects and the corresponding 95%

posterior probability map of significance. Similar results as in Figure 4.1 can be observed

for both maps. Figure 4.3(a) shows the spatial variation of self-reported health. Spatial

variation can be observed in the districts of South Africa. The districts within the north-

(a) (b)

Figure 4.3: Map of South Africa showing total spatial district residual effects estimates
(a) and the corresponding 95% map of significance (b) of spatial effect estimates of Model
A4.

ern, central and southern regions had higher poor health prevalence. The Lejweleputswa

and Sisonke remaining the significantly highest districts with poor health prevalence.

The map in Figure 4.3(b) shows that the Namakwa district was significantly associated

with self-reported health. Figure 4.3(a) show that districts in the western regions had
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lower poor health prevalence. Namakwa district recorded significantly lower poor health

prevalence.

Figure 4.4 shows the nonlinear association between age (left), and BMI (right) and self-

reported health. Shown is the posterior mean of the smooth functions together with

their 95% pointwise credible intervals. We assumed a nonlinear relationship between the

respondents’ age, BMI and self-reported health. However, Figure 4.4 reveals that age

had a linear relationship with self-reported health while the BMI had a clear nonlinear

relationship with self-reported health. An increasing age effect can be observed, which is

in line with the categorized age. It can also be observed that decreasing to a minimum

Figure 4.4: Estimated mean (red) of the non-linear effects of age (left) and body mass
index (BMI) (right) with 95% credible interval (dotted black lines) of Model A4.

of BMI between 20 - 25 then starts increasing again. This reveals the same effect as

the categorical nutrition status. The age plot reveals that individuals age at 15 to 34

years reduced the odds of reporting poor health, while 35 years and above increases the

odds of reporting poor health. These linear trend increase of respondents age (35 years

and above) confirms the observed Model 4 findings shown in Table 4.1. The BMI plot

reveals that the effect of BMI on individuals self-reported health is approximate to the U

shape form. This appears absolutely reasonable as the normal nutrition status is likely

to reduce the odds of reporting poor health. The individuals BMI at severity (BMI <

17) increased the odds of reporting poor health while between approximately 18 - 43 the

individuals BMI reduced the odds of reporting poor health. An individual with BMI

around (43 and higher) was associated with increased odds of reporting poor health.

80



The Cumulative regression model is often used when the response is categorical of ordered

nature. The assumption under this traditional model is that the predictor is strictly lin-

ear. However, the STAR model allows for generic covariates to be added in the predictor

in an additive manner. The spatial effects account for unobserved influential factors. The

convolution models showed better fitting models. There was a slight difference between

the strictly spatial model and the STAR models. The inclusion of continuous covariates

further improved the results. There is evidence of spatial variation of self-reported health

in South Africa.
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Chapter 5

Spatial Modeling of self-reported

health Binary response outcome

5.1 Introduction

In Chapter 4 we reviewed and discussed the models where the response variable yi is an

ordinal outcome. In this chapter, we will review models that are commonly used when the

outcome is binary (dichotomous) as part of the objective for this research. In particular,

a flexible approach is adopted for such models that allows capturing of different types

of covariates. One of interest is the incorporation of spatial random effects which allow

for correlated and uncorrelated heterogeneity. The generalized linear models (GLMs) are

the class of models used for binary response outcome.

5.2 Generalized Linear Models

Similar to the multivariate generalized linear models (MGLMs) discussed in Section 4.2,

the generalized linear models (GLMs) are classes of models which were introduced by Mc-

Cullagh and Nelder (1989). They are used for modeling non-Gaussian response variables.

In the GLMs it is assumed that for a given vector of covariates xi = (1, xi1, . . . , xip)
′

and unknown regression parameters β given by β = (β0, β1, . . . , βp). The responses
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yi = (y1, . . . , yn)′ are assumed to be independent observations and have a distribution

that belongs to the exponential family. Hence the probability density of the yi’s is similar

to the one in Equation (4.1). It is given by

f(yi|µi, φ, ωi) = exp

(
y′iµi − b(µi)

φ
ωi + c(yi, φ, ωi)

)
, i = 1, . . . , n, (5.1)

under the univariate response properties. Analogous to the MGLMs, where φ = 1 is

the dispersion parameter, the ωi represent a weight for the observations and µi is the

natural parameter of the exponential family. Furthermore, the b(µi) and c(yi, φ, ωi) are

exponential family specific dependent functions. Now it follows that given covariates x′i

the linear predictor is given by

ηi = x′iβ, i = 1, . . . , n,

and it is linked to the conditional mean θi = E(yi|xi,β) via a link function as

g(θi) = ηi = x′iβ, i = 1, . . . , n,

where g(·) is the natural link function. There are other possible choices for the link

function such that when yi ∈ {0, 1}, a Bernoulli distribution is assumed and the link

function can be chosen to be a logit link function. This lead to a logit model which

represents the systematic logistic distribution function. Hence, this fulfills the GLMs

components. The link between the structure and the distribution assumptions above are

determined by that the mean of yi is also assumed to be of the distributional assumption

given by

E(yi|xi,β) = θi = b′(µi) and V ar(yi|xi,β) = b′′(µi)/ωi.

For more comprehensive details on the theory of the GLMs, the reader may refer to

McCullagh and Nelder (1989), Agresti (2007) and Fahrmeir and Tutz (2001). We now

look at a special case of the univariate GLMs used to model binary response data.
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5.3 Spatial Logistic Regression Models

Logistic regression models are widely used under frequentist and Bayesian framework to

examine the association between covariates and the binary response outcome. Further, it

has received too much attention in disease mapping to model dichotomous response data

to explain geographic variation that arises in the data. In this research, we propose an

extension to a logistic regression model. Next, we shall discuss such models.

5.3.1 Logistic Regression Models

Let yij be a binary self-reported health for individual j located in district i: i = 1, . . . , 52,

whose response is either 0 or 1 such that

yij =

1 : poor health

0 : good health.

The response yij was assumed to be independent Bernoulli distributed with the likelihood

given by

yij ∼ Bernoulli(πij), i = 1, . . . , 52, j = 1, . . . , n

where πij = P (yij = 1) are unknown probabilities and E(yij) = πij relates to predictor

via a logit link function as

logit(πij) = log

(
P (yij = 1)

1− P (yij = 1)

)
= ηij = x′ijβ. (5.2)

The vector xij = (1, xij1, . . . , xijp)
′ are categorical covariates and β = (β0, β1, . . . , βp)

is a vector of regression coefficients. This model only allows for a parametric form of

categorical covariates. The main aim of this section is to extend the linear predictor ηij

of the logistic regression model in Equation (5.2) to account for a more flexible approach.
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Hence, to increase the model complexity by including different forms of covariates. We

first extend the logistic regression model to allow for area-specific random effects by

replacing the linear predictor in Equation (5.2) with a geoadditive predictor. These

random effects are incorporated in the model to capture extra variation. Thus to capture

unobserved influential factors that vary across the districts, the model accounts for the

structured random effects. This model is given by

ηij = x′ijβ + fstr(si). (5.3)

Another alternative model is the one which incorporates unstructured random effects

instead. The model is given by

ηij = x′ijβ + funstr(si), (5.4)

where funstr accounts for unobserved heterogeneity within each district. The last model

is the convolution model which accounts for both spatial random components as follows:

ηij = x′ijβ + fspat(si), (5.5)

where the spatial random effects are decomposed into two components, i.e. fspat(si) =

fstr(si) + funstr(si). In addition, the two components are assumed to have independent

prior distributions (Besag et al., 1991). In all the model’s formulation above the regres-

sion coefficients β were assumed to have diffuse prior (β ∝ const), the spatially unstruc-

tured random effects were assumed to follow an i.i.d Gaussian distribution and the spa-

tially structured random effects were modeled with an intrinsic conditional autoregressive

(iCAR) defined in Equation (3.21).
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5.3.2 Parameter Estimation

In this section, parameter estimation is obtained using a fully Bayesian (FB) proce-

dure. In a FB approach, all the unknown parameters are assumed to be random vari-

ables and are assigned priors and further hyperparameters are assigned hyperpriors.

The parameter estimation can be obtained by sampling from the posterior distribu-

tion, with Markov chain Monte Carlo (MCMC) simulation being a commonly used tech-

nique. However, the estimation of parameters for this research was carried out using

integrated nested Laplace approximation (INLA) discussed in Section 3.10. The latent

Gaussian variables for all the above formulated models under this section is given by

% = {{β}, {fstr(·)}, {funstr(·)}} and the hyperparameters are denoted by a set of preci-

sion parameters ψ = {τstr, τunstr}. Hence the posterior distribution is given by

p(%,ψ|y) ∝ L(y|%,ψ)p(%,ψ), (5.6)

here the hyperparameters τstr and τunstr are assigned conjugate gamma priors, with τstr ∼

Gamma(1, 0.00005) and τunstr ∼ Gamma(1, 0.00005). The variability of structured and

unstructured spatial random effects are determined by σ2
str = 1

τstr
and σ2

unstr = 1
τunstr

respectively. Furthermore, a sum to zero constraints was imposed on both the functions

of spatial random effects for identification.

5.3.3 Application of the spatial models to NIDS wave 4 data

Here we consider several models with applications to wave 4 NIDS data in South Africa.

In the analysis, Model 01 is similar to the classical model given in Equation (5.2), it ac-

counts for categorical covariates which are assumed to have linear effects on self-reported

health. Model 02 is given by Equations (5.4), this model is also similar to Model 01 and

accounts for spatially structured random effects which cater for unobserved influential
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factors that vary among districts. Model 03 is given by Equation (5.3) and caters for

spatially unstructured random effects which accounts for unobserved influential factors

that are inherent within the districts. Furthermore, Model 04 examines the effects of

linear effects of categorical covariates and incorporates both the spatially structured and

spatially unstructured random effects known as the convolution model. All models in

this chapter were implemented in the R-INLA package and the corresponding R codes

are presented in Appendix B.

For the fitted models in this section, the selection of the better fitting model was done

based on the deviance information criterion (DIC) suggested by (Spiegelhalter et al.,

2002). The model with the smallest DIC value is considered as the best fitting model.

Table 5.1 presents the results for all the fitted spatial logistic regression models. The

DIC, D and pD model fit statistics are also shown in the table. The results suggest that

Model 02 and Model 04 are generally the same except for a slight difference of 0.09.

Therefore, the results are further interpreted based on Model 04 which incorporate both

the spatially structured and unstructured effects.

Table 5.1: Parameter estimates of multivariable Bayesian spatial logistic regression
models.

Model 01 Model 02 Model 03 Model 04

Covariates POR (95% CI) POR (95% CI) POR (95% CI) POR (95% CI)

Age group (ref = 15-19)

20-24 1.05 (0.77, 1.44) 1.06 (0.78, 1.46) 1.07 (0.78, 1.46) 1.06 (0.78, 1.46)

25-29 1.39 (1.00, 1.93) 1.40 (1.01, 1.94) 1.41 (1.02, 1.96) 1.40 (1.01, 1.94)

30-34 2.09 (1.51, 2.89) 2.07 (1.49, 2.88) 2.11 (1.52, 2.93) 2.07 (1.49, 2.88)

35-39 3.55 (2.57, 4.90) 3.57 (2.59, 4.94) 3.62 (2.62, 5.00) 3.57 (2.59, 4.94)

40-44 3.99 (2.87, 5.55) 4.05 (2.91, 5.64) 4.08 (2.93, 5.68) 4.05 (2.91, 5.64)

45-49 5.72 (4.13, 7.95) 5.77 (4.16, 8.02) 5.84 (4.20, 8.12) 5.77 (4.16, 8.02)

Gender (ref = Female)

Male 0.67 (0.56, 0.80) 0.70 (0.58, 0.84) 0.69 (0.57, 0.83) 0.70 (0.58, 0.84)

Race (ref = African)

Asian/Indian 1.22 (0.58, 2.34) 1.90 (0.88, 3.77) 1.78 (0.83, 3.56) 1.90 (0.88, 3.77)

Coloured 0.52 (0.40, 0.67) 0.68 (0.49, 0.95) 0.61 (0.45, 0.83) 0.68 (0.49, 0.95)

White 1.27 (0.71, 2.16) 1.59 (0.87, 2.74) 1.51 (0.83, 2.61) 1.59 (0.87, 2.74)

Place of residence (ref = Urban informal)

Rural Formal 0.79 (0.56, 1.12) 0.75 (0.52, 1.07) 0.77 (0.54, 1.10) 0.75 (0.52, 1.07)

Urban Formal 1.11 (0.84, 1.47) 0.97 (0.73, 1.30) 0.97 (0.75, 1.34) 0.97 (0.73, 1.30)

Tribal Authority Areas 0.87 (0.65, 1.17) 0.84 (0.61, 1.16) 0.84 (0.61, 1.17) 0.84 (0.61, 1.16)
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Table 5.1 Continues

Model 01 Model 02 Model 03 Model 04

Covariates POR (95% CI) POR (95% CI) POR (95% CI) POR (95% CI)

Education level (ref = No formal education)

Primary 0.93 (0.61, 1.42) 0.94 (0.62, 1.44) 0.93 (0.61, 1.42) 0.94 (0.62, 1.44)

Secondary 0.67 (0.46, 0.97) 0.65 (0.45, 0.96) 0.66 (0.45, 0.96) 0.65 (0.45, 0.96)

High 0.45 (0.32, 0.65) 0.44 (0.31, 0.63) 0.44 (0.31, 0.63) 0.44 (0.31, 0.63)

College 0.46 (0.28, 0.74) 0.43 (0.26, 0.70) 0.44 (0.27, 0.71) 0.43 (0.26, 0.70)

Tertiary 0.44 (0.29, 0.67) 0.43 (0.28, 0.65) 0.43 (0.28, 0.65) 0.43 (0.28, 0.65)

Household income (ref = Much below average)

Below average 1.10 (0.89, 1.37) 1.09 (0.88, 1.36) 1.09 (0.88, 1.35) 1.09 (0.88, 1.36)

Average 1.11 (0.90, 1.37) 1.11 (0.90, 1.37) 1.11 (0.90, 1.37) 1.11 (0.90, 1.37)

Above average 0.91 (0.64, 1.27) 0.88 (0.62, 1.23) 0.89 (0.63, 1.25) 0.88 (0.62, 1.23)

Much above average 0.37 (0.19, 0.64) 0.36 (0.19, 0.63) 0.36 (0.19, 0.64) 0.36 (0.19, 0.63)

Marital status (ref = Not married)

Widow/Divorced/Seperated 1.04 (0.75, 1.43) 0.98 (0.70, 1.34) 0.99 (0.71, 1.36) 0.98 (0.70, 1.34)

Married/living with partner 1.10 (0.92, 1.31) 1.04 (0.86, 1.24) 1.04 (0.87, 1.25) 1.04 (0.86, 1.24)

Life satisfaction level (ref = Very dissatisfied)

Dissatisfied 0.73 (0.56, 0.94) 0.73 (0.56, 0.95) 0.73 (0.56, 0.95) 0.73 (0.56, 0.95)

Normal 0.93 (0.73, 1.20) 0.92 (0.72, 1.19) 0.92 (0.72, 1.19) 0.92 (0.72, 1.19)

Satisfied 0.76 (0.57, 1.00) 0.75 (0.57, 1.00) 0.76 (0.57, 1.00) 0.75 (0.57, 1.00)

Very satisfied 0.82 (0.59, 1.13) 0.80 (0.58, 1.12) 0.81 (0.58, 1.12) 0.80 (0.58, 1.12)

Exercise (ref = Never)

Less than once a week 0.65 (0.47, 0.90) 0.62 (0.44, 0.85) 0.63 (0.45, 0.87) 0.62 (0.44, 0.85)

Once a week 1.10 (0.78, 1.52) 1.05 (0.75, 1.46) 1.07 (0.76, 1.48) 1.05 (0.75, 1.46)

Twice a week 0.86 (0.61, 1.18) 0.83 (0.59, 1.15) 0.84 (0.60, 1.17) 0.83 (0.59, 1.15)

Three or more times a week 0.77 (0.59, 0.98) 0.74 (0.57, 0.95) 0.74 (0.57, 0.95) 0.74 (0.57, 0.95)

Alcohol consumption level (ref = Never drunk

alcohol)

No longer drink 1.71 (1.37, 2.12) 1.62 (1.30, 2.02) 1.63 (1.30, 2.03) 1.62 (1.30, 2.02)

Drink very rarely 1.28 (1.02, 1.58) 1.17 (0.94, 1.46) 1.19 (0.95, 1.48) 1.17 (0.94, 1.46)

Less than once a week 0.83 (0.51, 1.29) 0.75 (0.46, 1.17) 0.77 (0.47, 1.20) 0.75 (0.46, 1.17)

On 1 or 2 days a week 1.38 (1.02, 1.85) 1.31 (0.97, 1.76) 1.32 (0.98, 1.78) 1.31 (0.97, 1.76)

On 3 or 4 days a week 1.41 (0.84, 2.29) 1.30 (0.77, 2.13) 1.34 (0.79, 2.19) 1.30 (0.77, 2.13)

On 5 or 6 days a week 0.62 (0.19, 1.66) 0.57 (0.17, 1.54) 0.57 (0.17, 1.55) 0.57 (0.17, 1.54)

Every day 1.71 (0.67, 3.93) 1.51 (0.59, 3.49) 1.55 (0.60, 3.57) 1.51 (0.59, 3.49)

Smokes (ref = No)

Yes 1.23 (0.98, 1.53) 1.25 (1.00, 1.56) 1.24 (0.99, 1.55) 1.25 (1.00, 1.56)

Type of toilet (ref = None)

Flush toilet with offsite disposal 0.96 (0.64, 1.46) 0.88 (0.58, 1.35) 0.89 (0.59, 1.37) 0.88 (0.58, 1.35)

Flush toilet with onsite disposal 0.88 (0.58, 1.34) 0.82 (0.54, 1.26) 0.82 (0.54, 1.27) 0.82 (0.54, 1.26)

Bucket toilet 0.86 (0.49, 1.49) 0.78 (0.44, 1.37) 0.77 (0.43, 1.36) 0.78 (0.44, 1.37)

Chemical toilet 1.24 (0.70, 2.17) 1.22 (0.68, 2.16) 1.20 (0.67, 2.12) 1.22 (0.68, 2.16)

Pit latrine with ventilation pipe 0.99 (0.66, 1.50) 1.03 (0.69, 1.58) 1.02 (0.68, 1.55) 1.03 (0.69, 1.58)

Pit latrine without ventilation pipe 0.82 (0.56, 1.23) 0.79 (0.53, 1.19) 0.80 (0.54, 1.21) 0.79 (0.53, 1.19)

Other 2.03 (0.47, 6.95) 1.79 (0.41, 6.21) 1.90 (0.44, 6.54) 1.79 (0.41, 6.21)

Employment status (ref = Unemployed strict)

Unemployed Discouraged 0.51 (0.20, 1.13) 0.54 (0.21, 1.21) 0.55 (0.22, 1.23) 0.54 (0.21, 1.21)
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Table 5.1 Continues

Model 01 Model 02 Model 03 Model 04

Covariates POR (95% CI) POR (95% CI) POR (95% CI) POR (95% CI)

Not Economically Active 1.42 (1.13, 1.80) 1.46 (1.15, 1.84) 1.46 (1.16, 1.85) 1.46 (1.15, 1.84)

Employed 0.91 (0.72, 1.14) 0.93 (0.74, 1.17) 0.93 (0.74, 1.17) 0.93 (0.74, 1.17)

Nutrition status (ref = Normal)

Underweight 1.49 (1.10, 2.00) 1.41 (1.04, 1.90) 1.42 (1.04, 1.91) 1.41 (1.04, 1.90)

Overweight/obese 0.81 (0.68, 0.97) 0.84 (0.70, 1.00) 0.83 (0.70, 0.99) 0.84 (0.70, 1.00)

Severe 2.48 (1.64, 3.68) 2.25 (1.48, 3.35) 2.31 (1.52, 3.44) 2.25 (1.48, 3.35)

Was diagnosed with TB? (ref = No)

Yes 3.11 (2.44, 3.94) 3.24 (2.53, 4.13) 3.17 (2.47, 4.03) 3.24 (2.53, 4.13)

Felt depressed in past week? (ref = Less than

1 day)

Little of the time (1-2 days) 1.51 (1.28, 1.78) 1.49 (1.26, 1.76) 1.49 (1.26, 1.76) 1.49 (1.26, 1.76)

Moderate amount of time (3-4 days) 2.21 (1.78, 2.73) 2.20 (1.77, 2.72) 2.19 (1.76, 2.71) 2.20 (1.77, 2.72)

All the time (5-7 days) 3.07 (2.18, 4.27) 3.08 (2.18, 4.30) 3.07 (2.17, 4.29) 3.08 (2.18, 4.30)

Est. (95 % CI) Est. (95 % CI) Est. (95 % CI) Est. (95 % CI)

Additional model parameters

Spatially structured variation (σ2
str) - 0.18 (0.06, 0.50) - 1.83 (0.07, 0.52)

Spatially unstructured variation (σ2
unstr) - - 0.09 (0.04, 0.22) 0.05 (0.001, 0.077)

Model fit

DIC 6020.12 5974.29 5976.87 5974.20

D 5963.07 5895.21 5891.26 5895.08

pD 57.05 79.08 85.61 79.12

The posterior odds ratio (POR) estimates and their corresponding 95% credible intervals

(CI) are presented in Table 5.1. Covariates were considered statistically significant at

5% level of significance. Based on Model 04 it can be observed that all the considered

covariates were found to be significantly associated with self-reported health except for

marital status, place of residence and type of toilet facility. Age was found to be signif-

icantly associated with self-reported health. The odds of reporting poor health among

individuals between ages 25-29 years were 1.01 (with 95% CI: 0.78 to 1.46) times the

odds of reporting poor health for individuals between 15-19 years. The odds of report-

ing poor health for individuals between ages 30-34, 35-39, 40-44 and 45-49 years were

respectively 2.07 (with 95% CI: 1.49 to 2.88), 3.57 (with 95% CI: 2.59 to 4.94), 4.05 (with

95% CI: 2.91 to 5.64) and 5.77 (with 95% CI: 4.16 to 8.02) times the odds of reporting

poor health for individuals between 15-19 years. A linear odds increase trend of reporting

poor health can be observed as individuals age increases, similar to the results found in
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Section 4.4. The odds of reporting poor health for male individuals were 0.70 times the

odds of reporting poor health for individuals who are females (POR: 0.70, 95% CI: 0.58

to 0.84). This means the prevalence of poor health still remains high for females than

males. The odds of reporting poor health among individuals who are coloured were 0.68

times the odds of reporting poor health for individuals who are African (POR: 0.68, 95%

CI: 0.49 to 0.95). Education was found to be significantly associated with self-reported

health. The odds of reporting poor health among individuals with secondary and high

education were respectively 0.65 (with 95% CI: 0.45 to 0.96) and 0.44 (with 95% CI:

0.31 to 0.63) times the odds of reporting poor health for individuals with no education.

Furthermore, the odds of reporting poor health for individuals with college and tertiary

education were respectively 0.43 (with 95% CI: 0.26 to 0.70) and 0.43 (with 95% CI: 0.28

to 0.65) times the odds of reporting poor health for those individuals with no education.

This means poor health prevalence is low for individuals with higher education. The

odds of reporting poor health for individuals with much above average household income

were 0.36 times the odds of reporting poor health among individuals with much below

average household income (POR: 0.36, 95% CI: 0.19 to 0.63). Life satisfaction level was

also found to be significantly associated with self-reported health. The odds of reporting

poor health among individuals with dissatisfied life were 0.73 times the odds of reporting

poor health for individuals with very dissatisfied life (POR: 0.73, 95% CI: 0.56 to 0.95).

The odds of reporting poor health for individuals who exercise less than once a week

were 0.62 times the odds of reporting poor health among individuals who never exercise

(POR: 0.62, 95% CI: 0.44 to 0.85). The odds of reporting poor health for individuals

who exercise three or more times a week were 0.74 (with 95% CI: 0.57 to 0.95) times the

odds of reporting poor health for individuals who never exercise. The odds of reporting

poor health among individuals who no longer drink alcohol were 1.62 times the odds of

reporting poor health for individuals who never drunk alcohol (POR: 1.62, 9% CI: 1.30

to 2.02). The smoking of cigarette was also found to be significantly associated with

self-reported health. The odds of reporting poor health among individuals who smoke
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a cigarette was 1.25 times the odds of reporting poor health for individuals who do not

smoke (POR: 1.25, 95% CI: 1.00 to 1.56). This means smoking of cigarette is associated

with high poor health prevalence. The odds of reporting poor health among individuals

who are not economically active were 1.46 times the odds of reporting poor health for

individuals who are unemployed strictly (POR: 1.46, 95% CI: 1.15 to 1.84). The odds of

reporting poor health among individuals who are underweight were 1.41 times the odds

of reporting poor health for individuals with normal nutrition status (POR: 1.41, 95% CI:

1.04 to 1.90). Moreover, the odds of reporting poor health for individuals who are severe

were 2.25 times the odds of reporting poor health for individuals with normal nutrition

status (POR: 2.25, 95% CI: 1.48 to 3.35). The odds of reporting poor health among

individuals who were previously diagnosed with TB was 3.24 times the odds of reporting

poor health for individuals who were not diagnosed with TB (POR: 3.24, 95% CI: 2.53 to

4.13). Depression was also found to be significantly associated with self-reported health.

Similarly to Section 4.4, the results demonstrate that the odds of reporting poor health

increased with increasing depression level. The odds of reporting poor health among

individuals who were depressed little of the time were 1.49 times the odds of reporting

poor health for individuals who were depressed less than one day (POR: 1.49, 95% CI:

1.26 to 1.76). The odds of reporting poor health among individuals who were depressed

the moderate amount of the time were 2.20 times the odds of reporting poor health for

individuals who were depressed less than one day (POR: 2.20, 95% CI: 1.77 to 2.72). The

odds of reporting poor health among individuals who were depressed all the time were

3.08 times the odds of reporting poor health for individuals who were depressed less than

one day (POR: 3.08, 95% CI: 2.18 to 4.30).

The residual total spatial effect estimates were mapped based on the better fitting

model, Model 04. Figure 5.1 display the map of residual spatial district effects (a) and

their 95% posterior probability map of significance (b). All the district names and their

corresponding codes are presented in Figure C.1 and Table C.1 respectively. In Figure

5.1(a) black and dark grey color indicate districts with higher odds of reporting poor
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(a) (b)

Figure 5.1: Map of South Africa showing total spatial district residual effects estimates
(a) and the corresponding 95% map of significance (b) of spatial effect estimates based
on Model 04.

health and the grey and light grey color indicate districts with lower odds of reporting

poor health. In addition, the map on the right indicates the significance of the spatial

effects (white = not significant; black = significantly positive (high prevalence); and grey

= significantly negative (low prevalence). The maps yielded similar results as the maps

for Model 4 in Figure 4.1, except for a slight difference. There is clear evidence of spatial

variations at the district level of reporting poor health in South Africa. There is a high

prevalence of poor health in the districts situated on the northern and central side of the

country. However, in the western and southern regions, there is a low prevalence of poor

health. The Xhariep, Lejweleputswa, Thabo Mofutsanyane, Mangaung, Sedibeng, West

Rand, iLembe and eThekwini districts were found to be significantly associated with

self-reported health. The Xhariep, Lejweleputswa, Thabo Mofutsanyane, Mangaung,

Sedibeng and West Rand districts significantly recorded higher odds of reporting poor

health. The iLembe and eThekwini districts significantly reduced the odds of reporting

poor health. Furthermore, it can be observed that the districts within central and

northern regions increased the odds of reporting poor health, while the districts within

the Southern Western regions reduced the odds of reporting poor health.
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Figure 5.2 display the predicted structured (a) and unstructured (b) residual spatial

effects and their corresponding 95% credible intervals (CIs) based on Model 04. The

numbers on top of each plot correspond to the districts names in Table C.1. Each credible

interval has a length inversely related to the number of the odds ratios of reporting poor

health and it can be used to test whether the spatial effects are significantly different

from one. The plot yielded different results from the plots in Figure 4.2, the CIs are

(a) Structured

(b) Unstructured

Figure 5.2: Predicted posterior odds ratios of the residual spatially structured (a) and
unstructured (b) effects with 95% credible intervals based on Model 04

much wider for the unstructured spatial effects. Also, it can be seen that there were not

significantly associated with self-reported health (Figure 5.2(b)). However, the structured

spatial effects in Figure 5.2(a) were found to be significantly associated with self-reported

health. In the Xhariep, Lejweleputswa, Thabo Mofutsanyane, Fezile Dabi, Mangaung,

Sedibeng and West Rand districts there is a high prevalence of poor health, while in the

iLembe, Sisonke and eThekwini districts there is low poor health prevalence.
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5.4 Structured Additive Regression Models

The structured additive regression (STAR) models provide a unified framework for ex-

tending classical models to a more flexible approach. This approach allows for the inclu-

sion of the different type of covariates such as the spatial random effects and nonlinear

effects in the linear predictor. The linear predictor in Equation (5.2) only allows the

effects of the covariates to be modeled linearly. However, to overcome such constraints,

the linear predictor is replaced with an additive linear predictor. Due to Rue et al. (2009)

approach, in this section, we replace the formal predictor in Equation (5.2) with a more

flexible additive predictor to extend the previous models by accounting for smooth func-

tions of continuous covariates. Thus, these models lead to STAR models. The structured

additive predictor is defined as

ηij = x′ijβ +

q∑
l=1

fl(zijl) + fspat(si), i = 1, . . . , 52, (5.7)

where fl are nonlinear smooth functions of the continuous covariates zijl and fspat are

functions that caters for the spatial effects of each district or location.

5.4.1 Models specification

The following set of models were examined in order to investigate the linear, spatial

and nonlinear effects of generic covariates on self-reported health. The first model is a

standard logistic regression model which incorporates fixed effects of categorical covariates

and assumes nonlinear effects for age and BMI. This model is given by

Model A01 : ηij = x′ijβ + f1(ageij1) + f2(bmiij2).
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In this model, age and BMI are continuous covariates of an individual. The second model

is given by

Model A02 : ηij = x′ijβ + f1(ageij1) + f2(bmiij2) + fstr(si),

this model is similar to Model A01, it accounts for fixed effects of categorical covariates,

and assumes nonlinear effects of age and BMI, and caters for spatially structured random

effects that account for unobserved covariates across the districts or spatial location in

general. The third model is similar to Model A02 but instead, this model accounts for

spatial unstructured random effects. The model is given by

Model A03 : ηij = x′ijβ + f1(ageij1) + f2(bmiij2) + funstr(si),

the unstructured heterogeneity caters for unobserved influential covariates that are inher-

ent within the districts. The final model is a structured additive model which incorporates

both the spatially structured and spatially unstructured random effects which capture

spatial heterogeneity for unobserved influential factors and also accounts for nonlinear

effects of age and BMI and the effects of categorical covariates. This model is given by

Model A04 : ηij = x′ijβ + f1(ageij1) + f2(bmiij2) + fstr(si) + funstr(si).

In all the models’ formulation in this section, we assumed an independent diffuse prior

for the fixed effects β ∼ const, the spatially structured fstr(si) and spatially unstructured

funstr(si) were assumed to follow intrinsic conditional autoregressive (iCAR) (Equation

(3.21)) and i.i.d Gaussian (Equation (3.24)) distributions respectively. We also assumed

that f1 and f2 follow a second-order random walk discussed in Section 3.25.

95



5.4.2 Parameter Estimation

Similar to Section 5.3 the estimation of unknown parameters was carried out using a

fully Bayesian (FB) procedure. The latent Gaussian variables of the proposed models is

given by % = {{β}, {fstr(·)}, {funstr(·)}, {f1(·)}, {f2(·)}} with the corresponding hyper-

parameters ψ = {τstr, τunstr, τ1, τ2}. Hence, the posterior distribution is given by

p(%,ψ|y) ∝ L(y|%,ψ)p(%,ψ). (5.8)

The prior specifications were discussed in the previous section and the hyperparameters

were assigned conjugate gamma priors as previous, τ1 ∼ Gamma(1, 0.00005) and τ2 ∼

Gamma(1, 0.00005). The models were implemented in R using the R-INLA package and

all the R codes are also presented in Appendix B.

5.4.3 Application of the spatial models with non-linear effects

to NIDS wave 4 data

The posterior odds ratios (PORs) estimates and the corresponding 95% credible intervals

(CIs) for all considered models are provided in Table 5.2. The table also provides the

results of the model fit statistics. The best fitting model was selected upon the smallest

deviance information criterion (DIC). The results for the model fit reveals that the

DIC for Model A02 and Model A04 are the smallest and generally the same except

for a slight difference. Thus, the results are further interpreted based on Model 04

which incorporates both the spatially structured and unstructured random effects. The

results reveal that gender was significantly associated with self-reported health. The

odds of reporting poor health among individuals who are male was 0.69 times the odds

of reporting poor health for individuals who are female (POR: 0.69, 95% CI: 0.57 to 0.84).
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Table 5.2: Parameter estimates of multivariable Bayesian spatial logistic regression
models with nonlinear effects.

Model A01 Model A02 Model A03 Model A04

Covariates POR (95% CI) POR (95% CI) POR (95% CI) POR (95% CI)

Gender (ref = Female)

Male 0.66 (0.55, 0.80) 0.69 (0.57, 0.84) 0.69 (0.57, 0.83) 0.69 (0.57, 0.84)

Race (ref = African)

Asian/Indian 1.28 (0.61, 2.45) 2.02 (0.94, 4.01) 1.90 (0.88, 3.79) 2.02 (0.94, 4.01)

Coloured 0.53 (0.41, 0.69) 0.71 (0.51, 0.98) 0.63 (0.46, 0.85) 0.71 (0.51, 0.98)

White 1.31 (0.73, 2.24) 1.66 (0.91, 2.88) 1.57 (0.86, 2.72) 1.66 (0.91, 2.88)

Place of residence (ref = Urban informal)

Rural Formal 0.79 (0.56, 1.11) 0.74 (0.52, 1.06) 0.77 (0.53, 1.10) 0.74 (0.52, 1.06)

Urban Formal 1.10 (0.84, 1.46) 0.95 (0.72, 1.28) 0.99 (0.74, 1.33) 0.95 (0.72, 1.28)

Tribal Authority Areas 0.86 (0.64, 1.16) 0.83 (0.60, 1.15) 0.84 (0.60, 1.16) 0.83 (0.60, 1.15)

Education level (ref = No formal education)

Primary 0.94 (0.61, 1.43) 0.95 (0.62, 1.45) 0.93 (0.61, 1.43) 0.95 (0.62, 1.45)

Secondary 0.68 (0.47, 0.98) 0.67 (0.46, 0.97) 0.67 (0.46, 0.98) 0.67 (0.46, 0.97)

High 0.46 (0.33, 0.66) 0.45 (0.31, 0.64) 0.45 (0.32, 0.64) 0.45 (0.31, 0.64)

College 0.48 (0.30, 0.77) 0.45 (0.27, 0.72) 0.45 (0.28, 0.73) 0.45 (0.27, 0.72)

Tertiary 0.45 (0.30, 0.67) 0.43 (0.28, 0.65) 0.43 (0.29, 0.66) 0.43 (0.28, 0.65)

Household income (ref = Much below average)

Below average 1.10 (0.89, 1.36) 1.09 (0.88, 1.35) 1.08 (0.87, 1.35) 1.09 (0.88, 1.35)

Average 1.10 (0.89, 1.35) 1.10 (0.89, 1.36) 1.10 (0.89, 1.36) 1.10 (0.89, 1.36)

Above average 0.90 (0.63, 1.25) 0.87 (0.61, 1.22) 0.88 (0.62, 1.23) 0.87 (0.61, 1.22)

Much above average 0.37 (0.19, 0.64) 0.35 (0.19, 0.62) 0.36 (0.19, 0.64) 0.35 (0.19, 0.62)

Marital status (ref = Not married)

Widow/Divorced/Seperated 1.02 (0.74, 1.41) 0.96 (0.69, 1.32) 0.97 (0.69, 1.33) 0.96 (0.69, 1.32)

Married/living with partner 1.09 (0.91, 1.30) 1.02 (0.85, 1.23) 1.03 (0.86, 1.24) 1.02 (0.85, 1.23)

Life satisfaction level (ref = Very dissatisfied)

Dissatisfied 0.73 (0.57, 0.95) 0.74 (0.57, 0.96) 0.74 (0.57, 0.96) 0.74 (0.57, 0.96)

Normal 0.94 (0.73, 1.21) 0.93 (0.72, 1.20) 0.93 (0.72, 1.21) 0.93 (0.72, 1.20)

Satisfied 0.77 (0.58, 1.01) 0.76 (0.57, 1.01) 0.76 (0.57, 1.01) 0.76 (0.57, 1.01)

Very satisfied 0.84 (0.60, 1.16) 0.82 (0.59, 1.15) 0.83 (0.59, 1.15) 0.82 (0.59, 1.15)

Exercise (ref = Never)

Less than once a week 0.66 (0.47, 0.90) 0.62 (0.44, 0.85) 0.63 (0.45, 0.87) 0.62 (0.44, 0.85)

Once a week 1.11 (0.79, 1.54) 1.07 (0.76, 1.48) 1.08 (0.77, 1.50) 1.07 (0.76, 1.48)

Twice a week 0.86 (0.61, 1.19) 0.84 (0.59, 1.16) 0.85 (0.60, 1.18) 0.84 (0.59, 1.16)

Three or more times a week 0.77 (0.59, 0.98) 0.74 (0.57, 0.95) 0.74 (0.57, 0.95) 0.74 (0.57, 0.95)

Alcohol consumption level (ref = Never drunk

alcohol)

No longer drink 1.68 (1.35, 2.09) 1.60 (1.28, 1.99) 1.61 (1.29, 2.00) 1.60 (1.28, 2.00)

Drink very rarely 1.26 (1.01, 1.56) 1.15 (0.92, 1.43) 1.17 (0.93, 1.45) 1.15 (0.92, 1.43)

Less than once a week 0.82 (0.51, 1.28) 0.75 (0.46, 1.17) 0.77 (0.47, 1.20) 0.75 (0.46, 1.17)

On 1 or 2 days a week 1.37 (1.01, 1.84) 1.30 (0.96, 1.75) 1.31 (0.97, 1.76) 1.30 (0.96, 1.75)

On 3 or 4 days a week 1.36 (0.81, 2.22) 1.27 (0.75, 2.07) 1.30 (0.77, 2.13) 1.27 (0.75, 2.07)

On 5 or 6 days a week 0.65 (0.20, 1.73) 0.59 (0.18, 1.60) 0.59 (0.18, 1.61) 0.59 (0.18, 1.60)

Every day 1.69 (0.66, 3.87) 1.48 (0.58, 3.41) 1.52 (0.59, 3.50) 1.48 (0.58, 3.41)
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Table 5.2 Continues

Model A01 Model A02 Model A03 Model A04

Covariates POR (95% CI) POR (95% CI) POR (95% CI) POR (95% CI)

Smokes (ref = No)

Yes 1.16 (0.99, 1.45) 1.19 (1.00, 1.49) 1.18 (1.00, 1.48) 1.19 (1.01, 1.49)

Type of toilet (ref = None)

Flush toilet with offsite disposal 0.95 (0.63, 1.45) 0.87 (0.57, 1.33) 0.88 (0.58, 1.36) 0.87 (0.57, 1.33)

Flush toilet with onsite disposal 0.86 (0.58, 1.32) 0.81 (0.53, 1.25) 0.81 (0.54, 1.25) 0.81 (0.53, 1.25)

Bucket toilet 0.86 (0.49, 1.50) 0.78 (0.44, 1.38) 0.78 (0.44, 1.36) 0.78 (0.44, 1.38)

Chemical toilet 1.24 (0.70, 2.18) 1.22 (0.68, 2.17) 1.20 (0.67, 2.13) 1.22 (0.68, 2.17)

Pit latrine with ventilation pipe 0.99 (0.66, 1.50) 1.03 (0.69, 1.58) 1.01 (0.68, 1.55) 1.03 (0.69, 1.58)

Pit latrine without ventilation pipe 0.81 (0.55, 1.22) 0.78 (0.52, 1.18) 0.79 (0.53, 1.20) 0.78 (0.52, 1.18)

Other 2.05 (0.48, 6.98) 1.80 (0.41, 6.21) 1.91 (0.44, 6.54) 1.80 (0.41, 6.21)

Employment status (ref = Unemployed strict)

Unemployed Discouraged 0.51 (0.20, 1.13) 0.55 (0.21, 1.22) 0.56 (0.22, 1.24) 0.55 (0.21, 1.22)

Not Economically Active 1.46 (1.16, 1.84) 1.49 (1.19, 1.88) 1.50 (1.19, 1.89) 1.49 (1.19, 1.88)

Employed 0.92 (0.74, 1.16) 0.95 (0.75, 1.19) 0.95 (0.75, 1.19) 0.95 (0.75, 1.19)

Was diagnosed with TB? (ref = No)

Yes 3.06 (2.40, 3.88) 3.20 (2.50, 4.08) 3.12 (2.44, 3.98) 3.20 (2.50, 4.08)

Felt depressed in past week? (ref = Less than

1 day)

Little of the time (1-2 days) 1.50 (1.27, 1.77) 1.48 (1.25, 1.74) 1.48 (1.25, 1.75) 1.48 (1.25, 1.74)

Moderate amount of time (3-4 days) 2.20 (1.77, 2.71) 2.18 (1.76, 2.70) 2.18 (1.75, 2.69) 2.18 (1.76, 2.70)

All the time (5-7 days) 3.04 (2.15, 4.23) 3.06 (2.16, 4.27) 3.05 (2.15, 4.26) 3.06 (2.16, 4.27)

Est. (95 % CI) Est. (95 % CI) Est. (95 % CI) Est. (95 % CI)

Additional model parameters

Spatially structured variation (σ2
str) - 0.18 (0.07, 0.52) - 0.18 (0.07, 0.52)

Spatially unstructured variation (σ2
unstr) - - 0.09 (0.04, 0.22) 0.06 (0.02, 0.07)

Age effect (σ2
age) 0.04 (0.01, 0.40) 0.05 (0.02, 0.40) 0.05 (0.02, 0.38) 0.05 (0.02, 0.39)

BMI effect (σ2
BMI) 0.03 (0.01, 0.23) 0.03 (0.01, 0.19) 0.03 (0.01, 0.21) 0.03 (0.01, 0.19)

Model fit

DIC 5990.31 5943.94 5947.20 5943.92

D 5935.21 5866.65 5863.53 5866.64

pD 55.10 77.30 83.67 77.28

Race was significantly associated with self-reported health. The odds of reporting health

for individuals who are coloured were 0.71 times the odds of reporting poor health for

individuals who are African (POR: 0.71, 95% CI: 0.51 to 0.98). This justifies that the

prevalence of poor health is less for coloured as compared to other race groups. Education

was also found to be significantly associated with self-reported health. The odds of

reporting poor health among individuals with secondary education were 0.67 (with 95%

CI: 0.46 to 0.97) times the odds of reporting poor health for individuals with no formal
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education. The odds of reporting poor health among individuals with high education

were 0.45 times the odds of reporting poor health for individuals with no formal education

(POR: 0.45, 95% CI: 0.31 to 0.64). The odds of reporting poor health among individuals

with college and tertiary education were respectively 0.45 (with 95% CI: 0.27 to 0.72) and

0.43 (with 95% CI: 0.28 to 0.65) times the odds of reporting poor health for individuals

with no formal education. Household income was found to be significantly associated

with self-reported health. The odds of reporting poor health for individuals with much

above average household income were 0.35 times the odds of reporting poor health for

individuals with much below average household income (POR: 0.35, 95% CI: 0.19 to 0.62).

Life satisfaction was also found to be significantly associated with self-reported health.

The odds of reporting poor health among individuals with dissatisfied life were 0.74 times

the odds of reporting poor health for individuals with very dissatisfied life (POR: 0.74,

95% CI: 0.57 to 0.96). The odds of reporting poor health for individuals who exercise less

than once a week and three or more times a week were respectively 0.62 and 0.74 times

the odds of reporting poor health for individuals who never exercise, their corresponding

odds ratios were (POR: 0.62, 95% CI: 0.44 to 0.85) and (POR: 0.74, 95% CI: 0.57 to

0.95) respectively. Alcohol and smoking were found to be significantly associated with

self-reported health. The odds of reporting poor health for individuals who no longer

drinks alcohol were 1.60 times the odds of reporting poor health for individuals who

have never drunk alcohol (POR: 1.60, 95% CI: 1.28 to 2.00). The odds of reporting poor

health among individuals who smoke a cigarette was 1.19 times the odds of reporting poor

health for individuals who do not smoke a cigarette (POR: 1.19, 95% CI: 1.01 to 1.49).

Employment status was found to be significantly associated with self-reported health.

The odds of reporting poor health for individuals who are not economically active were

1.49 times the odds of reporting poor health for individuals who are unemployed strict

(POR: 1.49, 95% CI: 1.19 to 1.88). Being diagnosed with TB previously was found to

be significantly associated with self-reported health. The odds of reporting poor health

among individuals who were diagnosed with TB was 3.20 times the odds of reporting
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poor health for individuals who were not diagnosed with TB (POR: 3.20, 95% CI: 2.50 to

4.08). Depression was also found to be significantly associated with self-reported health.

The odds of reporting poor health among individuals who felt depressed for little of the

time, a moderate amount of the time and all the time were respectively 1.48 (with 95%

CI: 1.25 to 1.74), 2.18 (with 95% CI: 1.76 to 2.70) and 3.06 (with 95% CI: 2.16 to 4.27)

times the odds of reporting poor health for individuals who felt depressed in the past

week for less than one day. This means the prevalence of poor health is high the higher

the depression level.

Figure 5.3 display the total residual spatial effects based on the best fitting model (Model

A04). Also, shown is the 95% posterior probability map of significance. A similar de-

scription of district colors as in Figure 5.1 are used for the maps. There is clear evidence

(a) (b)

Figure 5.3: Map of South Africa showing residual total spatial district residual effects
estimates (a) and the 95% corresponding map of significance (b) of spatial effect estimates
of Model A04.

of poor health spatial variations at the district level of South Africa. Figure 5.3(a) re-

veals that the prevalence of poor health in the districts within central and northern

regions of South Africa still remained high. The prevalence of poor health in the dis-

tricts within western and southern regions also remained low. Figure 5.3(b) depict that

the Lejweleputswa, Xhariep, Thabo Mafutsanyane, Fezile Dabi Mangaung, Sedibeng and

West Rand districts were found to be significant. Lejweleputswa, Xhariep, Thabo Ma-
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futsanyane, Fezile Dabi Mangaung, Sedibeng and West Rand districts increased the odds

of reporting poor health, while the Sisonke, iLembe and eThekwini districts significantly

reduced the odds of reporting poor health. Furthermore, it can be observed that there is

a high prevalence of poor health in north-eastern regions while less prevalence is recorded

in eastern regions.

Figure 5.4 shows the posterior mean estimates and their corresponding 95% CI of self-

reported health against age (left) and body mass index (BMI) (right). We assumed a

nonlinear relationship between age, BMI and self-reported health. The plots yielded

Figure 5.4: Estimated mean (red) of the non-linear effects of individual’s age (left) and
body mass index (BMI) (right) with 95% credible interval (dotted black lines) of Model
A04.

similar shapes as in Figure 4.4, except that the BMI plot is of U shape form more exact.

There is a positive linear association between poor health prevalence and individuals age.

The odds of reporting poor health increases with age. This is in line with the categorical

age. The prevalence of poor health is decreasing to a minimum at BMI between 20-25

then starts increasing again. This is the similar effect as categorical nutrition status.

The logistic regression model is often used when the response is binary. The assumption

under this traditional model is that the predictor is strictly linear. However, the STAR

model allows for generic covariates to be added in the predictor in an additive manner.

The spatial effects account for unobserved influential factors. The convolution model also

showed better fitting models. There was a slight difference between the strictly spatial

models and the STAR models. The inclusion of continuous covariates further improved
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the results. There is evidence of spatial variation of self-reported health in South Africa.

102



Chapter 6

Spatio-Temporal Modeling of self-

reported health in South Africa

A great deal of spatially referenced health datasets is collected over time, leading to an

extension of the models from the previous chapters (Chapter 4 and 5) to spatio-temporal

modeling.

In this chapter, we introduce models that are an extension to spatial modeling in disease

mapping. These models are widely used for modeling disease risk in space and time.

We review spatio-temporal models which allow us to understand the change in spatial

variation over a time period. Hence, longitudinal data from observations repeatedly made

over spatial location and time make it possible to fit such models. In particular, we discuss

spatio-temporal modeling of self-reported health among individuals between 15-49 years

in South Africa. We fit these models to all the four waves of the NIDS datasets under the

Bayesian framework. The Bayesian cumulative logit and logistic regression models for

spatio-temporal modeling are discussed and implemented to understand the spatial and

temporal variations of poor health prevalence. Basically, we focus on spatial wave-specific

modeling under space-time methodology. Furthermore, we investigate several covariate

effects on self-reported health.
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6.1 Introduction

A frequently used approach to spatial modeling of disease mapping in small areas dates

way back to work by Besag et al. (1991) which was extended by Bernardinelli et al. (1995)

to include a linear term for space-time interaction, and Knorr-Held (2000) who included a

non-parametric spatio-temporal time trend. Waller et al. (1997) proposed nested models,

where the spatial main effect is time dependent. However, such models are not of interest

in this research. Spatio-temporal models are widely employed in many scientific fields,

including disease surveillance studies. The Bayesian hierarchical modeling framework

has made it possible to implement these models. These models provide a complex and

flexible framework in space and time models, with spatio-temporal interaction being the

most important feature. As applied in this research we first review methods based on the

Bernardinelli et al. (1995) and Knorr-Held (2000) spatio-temporal framework.

6.2 Review of methods in spatio-temporal modeling

The development of spatio-temporal modeling methods has received robust attention

in the field of epidemiology and biostatistics. The aim of these models was to extend

the spatial model to consider the temporal dimension. Here we briefly only review two

methods which form part of the models proposed in this research.

First, we briefly highlight the approach by Bernardinelli et al. (1995) who proposed a

parametric trend space-time model assuming a Poisson distribution. In their approach

they defined the log relative risk for area i; i = 1, . . . , I during time t; t = 1, . . . , T to be

log(θit) = ηit = µ+ ui + vi + (β + δi)× t, (6.1)

where µ is the overall rate intercept, φ = ui + vi are the spatial random effects following
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the Besag et al. (1991) specifications, β is the global time linear trend effect, and δi

is an interaction random effect between space and time. The time trend parameters

were assigned vague priors to allow the data to reveal the time trend. However, other

alternative priors may be used such as autoregressive priors of order 1 denoted as AR(1)

(Waller et al., 1997). The i.i.d Gaussian prior was assumed for the interaction random

effect δi, however other prior specification can be assigned. The specification of priors

for the structured and unstructured spatial effects was handled as in the strictly spatial

models.

A second approach was developed by Knorr-Held (2000) who modified the previous ap-

proach by overcoming the parametric limitation. In this approach, a Binomial distribution

was assumed for the number of cases in county i (i = 1, . . . , I) during time t (t = 1, . . . , T )

and the log odds was defined as

log

(
πit

1− πit

)
= ηit = µ+ ui + vi + γt + νt + δit (6.2)

where γt and νt are temporal random effects which cater for unspecified features of year

t, and δit are interaction effects which capture variation that is not accounted for by the

main effects. The ui and γt were assigned intrinsic conditional autoregressive (iCAR) and

first-order random walk structure, while vi and νt were respectively assigned independent

Gaussian priors. The interaction δit was assumed to have four types of prior implication

depending on the spatial effects and temporal effects interaction. For details on these

prior type interactions one can refer to Knorr-Held (2000); Blangiardo and Cameletti

(2015) among others.

For the two above approaches due to Bernardinelli et al. (1995) and Knorr-Held (2000),

parameter estimation was performed under the fully Bayesian (FB) approach with the use

of Markov chain Monte Carlo (MCMC) via Gibbs sampling techniques. In our approach,

we adopt a similar approach but estimation is carried out using FB and empirical Bayes

(EB) for binary and ordinal response outcome respectively. Next, we discuss the methods
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used in this research.

6.3 Spatio-temporal models in disease mapping

Let yijw be self-reported health status of individual j in district i: i = 1, . . . , 52 during

wave w: w = 1, 2, 3, 4. The response outcome variable in this chapter was defined in two

natures; the ordinal and the binary response. The ordinal response variable was defined

as follows

yijw1 =



1 : excellent

2 : very good

3 : good

4 : fair

5 : poor

and the binary response version as follows,

yijw2 =

1 : poor

0 : good

where yijw1 is an ordinal response outcome and yijw2 is a binary response outcome. As

mentioned in previous chapters that the commonly used models for ordinal and binary

outcomes are the cumulative logit and logistic regression models respectively. Hence we

assumed that yijw1 ∼ Multinomial(mijw, πijw) and yijw2 ∼ Bernoulli(πijw), where πijw

are unknown probabilities related to the event probabilities of the models. It is worth

noting that both the response outcomes belong to the exponential family of distributions

under multivariate and univariate GLMs respectively. The cumulative logit model in this

section is denoted by

logit [P (yijw ≤ r)] = θr − ηijw, r = 1, . . . , k − 1, (6.3)
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while the logistic regression model is given by

logit(πijw) = β0 + ηijw. (6.4)

The ηijw = x′ijwβ is the predictor with covariate vector x = (xijw1, . . . , xijwp)
′, β is the

vector of regression coefficient given by β = (β1, . . . , βp), θr are cutpoints, and β0 is the

model intercept under the logit model. To allow flexibility we adopt the unified framework

of the structured additive regression (STAR) models where the classical predictor can be

extended to a more flexible additive predictor. Hence the structured additive predictor

can be extended for spatio-temporal modeling as

ηijw = x′ijwβ + fspat(si) + fwave(w) + fiw(si, w) (6.5)

where the functions fspat, fwave, and fiw represent functions appropriate for space, wave

and space-wave interaction respectively. One should note that the spatial and tempo-

ral terms are independent. The spatial components fspat are decomposed into spatially

structured fstr and unstructured funstr effects. Moreover, fwave represent random wave

effects which can be modeled as a first-order random walk or AR(1), and fiw(si, w) is a

space-wave interaction (DiMaggio, 2012).

6.4 Spatio-temporal models

In this section, we propose a series of several models for Bayesian cumulative logit and

logistic regression models under spatio-temporal modeling that are considered in this

research. The set of models that were employed are:

Model 1 : ηijw = x′ijwβ + fstr(si) + funstr(si)

Model 2 : ηijw = x′ijwβ + fstr(si) + funstr(si) + βw

Model 3 : ηijw = x′ijwβ + fstr(si) + funstr(si) + fwave(w)
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Model 4 : ηijw = x′ijwβ + fstr(si) + funstr(si) + fiw(si, w)

Model 5 : ηijw = x′ijwβ + fstr(si) + funstr(si) + βw + fiw(si, w)

Model 6 : ηijw = x′ijwβ + fstr(si) + funstr(si) + fwave(w) + fiw(si, w)

Model 7 : ηijw = x′ijwβ + fstr(si) + funstr(si) + f1wave(w) + fiw(si, w),

where in all formulations:

• xijw denotes the vector of categorical covariates effects for individual j living in

district i during wave w.

• β represent a vector of regression coefficients.

• βw denote the wave-specific fixed effects.

• fstr(si) and funstr(si) represent the structured and unstructured random effects

respectively.

• fwave, f1wave are smooth functions of the temporal random effects.

• fiw(si, w) is the spatial-wave interaction effect.

Model 1 only accounts for the spatially structured random effects which account for unob-

served influential factors that vary spatially across the districts and spatially unstructured

random effects which capture unobserved covariates within districts, and further assume

categorical covariates to have a linear effect on self-reported health. This model does not

assume any temporal effect. Model 2 is similar to Model 1 but also assumes a linear wave

trend captured by βw. In contrast, Model 3 involves separable space and wave random

effects and accounts for the linear effect of categorical covariates. Model 4 is similar to

Model 1 but also accounts for space and wave interaction which captures variation that

cannot be revealed by the main effects. For Model 5, we assumed linear effects of cate-

gorical covariates, spatial random effects, linear wave trend and we assumed space-wave

interaction. Model 6 and Model 7 are basically the same but differs in the prior assump-

tions of the temporal random wave effects fwave(w) and f1wave(w). Furthermore, these

two models assume linear effects of categorical covariates, spatial random effects of the
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locations, and space and wave interaction. In effect, all models assume linear effects of

categorical covariates via the term x′ijwβ.

6.4.1 Prior specifications

In this chapter, two Bayesian approaches were used for the proposed models. The

empirical Bayes (EB) via generalized linear mixed model (GLMM) methodology was

used for the spatio-temporal cumulative logit models and fully Bayesian approach was

used for the spatio-temporal logistic regression models. The fixed effects and linear wave

trend were assigned diffuse priors, the spatially structured random effects were mod-

eled with Markov random fields (MRFs) or intrinsic conditional autoregressive (iCAR)

while the spatially unstructured random effects were assigned i.i.d Gaussian prior. The

temporal wave random effects f1wave were modeled by a first-order random walk defined

in Section 3.25. However, it is worth noting that different prior specifications for the

temporally varying wave random effects fwave were assigned in the models. In the spatio-

temporal cumulative logit model, we assumed a first-order autoregressive for fwave and we

assigned penalized splines defined in Section 3.8 for the spatio-temporal logistic regres-

sion model. Furthermore, the spatial wave-specific effects (interaction) were modeled by

independent penalized splines for the cumulative logit model and for the logistic model

independent first-order autoregressive model was assumed.

6.4.2 Estimation of Parameters

This research employs two different approaches, we first discuss the procedure of param-

eter estimation of the spatio-temporal cumulative models. The parameter estimation of

the spatio-temporal cumulative models was carried out using the EB approach via GLMM
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methodology, hence we denote the matrix notation of the parameters to be estimated as

η = Uγ + Xstrβj,str + Xunstrβj,unstr + Xwaveβj,wave + Xiwβj,iw (6.6)

where γ = (θ1, . . . , θk,β
′, βw)′ is the overall vector of regression coefficients, U is the corre-

sponding design matrix constructed from the covariates x′ijw, and Xstr,Xunstr,Xwave,Xiw

are appropriate matrices for each spatial, temporal and interaction effect respectively.

The elements Xstr,Xunstr,Xwave,Xiw and βj,str,βj,unstr,βj,wave are such that f j = Xjβj.

Hence, this equation is of the form of Equation (3.33) and the estimation was carried out

using BayesX with the combination to R-software under R2BayesX package. The R

codes are presented in Appendix A.

We now turn to the estimation procedure for the spatio-temporal logistic regression

model. The parameters estimation was done using a fully Bayesian approach. Hence

all the unknown parameters are considered to be random variables and are assigned ap-

propriate prior distributions. In the previous section, we discussed such priors and the

posterior distribution is given as

p(%,ψ|y) ∝ L(y|%,ψ)p(%,ψ), (6.7)

where L(y|%,ψ) is the likelihood and p(%,ψ) are prior distributions of the model.

The latent Gaussian field is denoted by % = {{β}, {βw}, {fstr(·)}, {funstr(·)}, {fwave(·)},

{f1wave(·)}, {fiw(·)}} and the corresponding hyperparameters are given by

ψ = {τstr, τunstr, τwave, τ1wave, τiw}. All the hyperparameters were assigned conju-

gate gamma priors Gamma(1, 0.00005). Estimation of parameters was done using

R-integrated nested Laplace approximation (INLA) package. The codes are all presented

in Appendix B.
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6.5 Application to the South Africa wave 1-4 NIDS

data.

All the models which were considered in Section 6.4 were then applied to the NIDS

wave 1 to 4 datasets. Data description for the NIDS data was described in Section 2.2.

The NIDS dataset is a longitudinal data which comprises of categorical and continuous

explanatory variables or factors. In addition, it is geo-referenced, thus making it possible

to use for understanding spatial variation over time. Moreover, it should be noted that

the sample size of the datasets varies across the waves, due to the number of continuing

and temporally varying sample members. The sample sizes of each of the NIDS waves

dataset is presented in Table F.1. Next, we discuss the results of the model comparison

as it is of interest to have the best fitting model for the data under Bayesian analysis.

Table 6.1: Summary of the model fit criterion for model comparison, the AIC, the BIC
and the GCV for all the fitted models.

Models
Fit criterion Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

AIC 106838 106508 106508 105541 105536 105536 105536
BIC 107770 107466 107466 107660 107608 107607 107607
GCV 2.48573 2.47756 2.47756 2.43338 2.43411 2.43412 2.43413

Table 6.1 present the model fit values for the considered spatio-temporal cumulative logit

models in Section 6.4. Shown in the table are the AIC, BIC and GCV values. The

model with smaller AIC, BIC and GCV values is considered as the best fitting model.

Comparing the results for each model, the AIC values for Model 5, Model 6 and Model

7 are the same (AIC = 105536). The BIC favors Model 2 and Model 3, with the same

values (BIC = 107466). The GCV value for Model 5, Model 6 and Model 7 are generally

the same but favors Model 6 with the smallest value. Therefore, Model 6 is the preferred

model based on the majority vote. Thus in what follows, results are presented and

interpreted based on Model 6.
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Table 6.2: Summary of the model fit criterion for model comparison, the DIC, the mean
of deviance and the number of effective parameters for all the fitted models.

Models
Fit criterion Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

pD 89.14 90.98 90.82 193.81 171.56 171.83 166.63
D̄ 18519.48 18318.84 18319.01 18124.01 18129.85 18129.71 18128.69
DIC 18608.62 18409.83 18409.84 18317.83 18301.41 18301.55 18295.32

Table 6.2 provide the model fit values for the spatio-temporal logistic regression models

considered in Section 6.4. The DIC was used to select the best fitting model, the smaller

the DIC value the better the fit. The results reveal that Model 7 is the preferred model,

with the DIC value given by (DIC = 18295.32). Thus, results based on Model 7 are

presented and interpreted.

Table 6.3 gives posterior odds ratios (PORs) estimates and their corresponding 95%

credible intervals (CIs) for the best fitting models mentioned above. The categorical

covariates were assumed to have a linear effect on self-reported health. Results of the

spatio-temporal cumulative logit model (Model 6) are shown in Table 6.3. Shown are the

cumulative POR with their 95% CIs. All the covariates were found to be significantly

associated with self-reported health except for race, marital status, and type of toilet

facility. We discuss the results for significant covariates only. The results revealed that

the odds of reporting poor health seem to increase with age. The odds of reporting poor

health is highest for the ages 45-49 years (POR: 2.81, 95% CI: 2.58 to 3.07). The odds of

reporting poor among individuals between the age 20-24 years were 1.09 times the odds of

reporting poor health for individuals aged between 15-19 years (POR: 1.09, 95% CI: 1.03

to 1.16). The odds of reporting poor among individuals between the age 25-29 years were

1.20 times the odds of reporting poor health for individuals aged between 15-19 years

(POR: 1.20, 95% CI: 1.12 to 1.28). The odds of reporting poor health among individuals

between the ages 30-34, 35-39 and 40-44 years were respectively 1.38 (with 95% CI: 1.29

to 1.49), 1.68 (with 95% CI: 1.56 to 1.82) and 2.04 (with 95% CI: 1.88 to 2.22) times the

odds of reporting poor health for individuals between 15-19 years.
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Table 6.3: Posterior odds ratio estimates with corresponding 95% (CI) for the best
fitting models.

Cumulative logit Logistic regression

model model

(Model 6) (Model 7)

Covariates POR (95% CI) POR (95% CI)

Age group (ref = 15-19)

20-24 1.09 (1.03, 1.16) 1.36 (1.13, 1.64)

25-29 1.20 (1.12, 1.28) 1.79 (1.48, 2.16)

30-34 1.38 (1.29, 1.49) 3.05 (2.54, 3.66)

35-39 1.68 (1.56, 1.82) 4.36 (3.63, 5.24)

40-44 2.04 (1.88, 2.22) 5.17 (4.29, 6.23)

45-49 2.81 (2.58, 3.07) 7.99 (6.64, 9.62)

Gender (ref = Female)

Male 0.77 (0.74, 0.81) 0.67 (0.60, 0.74)

Race (ref = African)

Asian/Indian 1.08 (0.89, 1.31) 1.49 (0.98, 2.22)

Coloured 0.96 (0.88, 1.05) 0.88 (0.74, 1.05)

White 0.98 (0.85, 1.13) 0.95 (0.68, 1.32)

Place of residence (ref = Urban informal)

Rural formal 0.89 (0.81, 0.98) 0.76 (0.62, 0.93)

Urban formal 0.98 (0.91, 1.07) 0.95 (0.80, 1.12)

Tribal authority Areas 1.02 (0.93, 1.11) 0.88 (0.73, 1.06)

Education level (ref = No education)

Primary 1.03 (0.90, 1.18) 1.06 (0.87, 1.30)

Secondary 0.80 (0.71, 0.89) 0.89 (0.75, 1.06)

High 0.57 (0.52, 0.64) 0.58 (0.49, 0.69)

College 0.52 (0.45, 0.60) 0.53 (0.40, 0.71)

Tertiary 0.46 (0.40, 0.51) 0.42 (0.34, 0.52)

Household income (ref = Much below average)

Below average 1.11 (1.05, 1.17) 1.10 (0.98, 1.23)

Average 1.22 (1.15, 1.28) 1.01 (0.90, 1.14)

Above average 1.03 (0.95, 1.12) 0.84 (0.69, 1.01)

Much above average 0.87 (0.78, 0.97) 0.50 (0.36, 0.67)

Marital status (ref = Not married)

Widow/divorced/seperated 1.05 (0.94, 1.16) 0.97 (0.81, 1.16)

Married/living with partner 0.98 (0.94, 1.03) 0.96 (0.87, 1.06)

Life satisfaction level (ref = Very dissatisfied)

Dissatisfied 0.86 (0.81, 0.91) 0.77 (0.69, 0.88)

Normal 0.77 (0.72, 0.81) 0.73 (0.64, 0.83)

Satisfied 0.68 (0.64, 0.73) 0.66 (0.56, 0.76)

Very satisfied 0.67 (0.62, 0.73) 0.78 (0.66, 0.93)

Exercise (ref = Never)

Less than once a week 0.98 (0.92, 1.06) 0.83 (0.70, 0.99)

Once a week 0.95 (0.88, 1.04) 1.08 (0.89, 1.30)

Twice a week 0.94 (0.93, 1.08) 0.98 (0.82, 1.20)

Three or more times a week 0.91 (0.86, 0.97) 0.95 (0.82, 1.10)
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Table 6.3 Continues

Cumulative logit Logistic regression

model model

(Model 6) (Model 7)

Covariates POR (95% CI) POR (95% CI)

Alcohol consumption level (ref = Never drunk alcohol)

No longer drink 1.28 (1.19, 1.36) 1.53 (1.34, 1.74)

Drink very rarely 1.06 (1.02, 1.12) 1.09 (0.96, 1.24)

Less than once a week 1.05 (0.95, 1.17) 1.01 (0.78, 1.26)

On 1 or 2 days a week 1.03 (0.95, 1.12) 0.97 (0.80, 1.16)

On 3 or 4 days a week 1.18 (1.01, 1.38) 1.18 (0.87, 1.58)

On 5 or 6 days a week 1.06 (0.82, 1.39) 0.92 (0.55, 1.50)

Every day 1.23 (0.92, 1.65) 1.01 (0.59, 1.67)

Smokes (ref = No)

Yes 1.12 (1.06, 1.19) 1.16 (1.03, 1.32)

Type of toilet (ref = None)

Flush toilet with offsite disposal 0.94 (0.85, 1.04) 1.08 (0.87, 1.33)

Flush toilet with onsite disposal 0.94 (0.85, 1.04) 0.94 (0.76, 1.16)

Bucket toilet 0.88 (0.77, 1.01) 0.92 (0.70, 1.22)

Chemical toilet 1.13 (0.99, 1.28) 0.93 (0.70, 1.22)

Pit latrine with ventilation pipe 0.91 (0.82, 1.01) 0.91 (0.74, 1.11)

Pit latrine without ventilation pipe 0.94 (0.86, 1.03) 1.06 (0.88, 1.28)

Other 1.15 (0.69, 1.92) 0.93 (0.30, 2.44)

Employment status (ref = Unemployed strict)

Unemployed discouraged 0.90 (0.80, 1.01) 1.01 (0.79, 1.28)

Not economically active 1.08 (1.01, 1.13) 1.29 (1.14, 1.46)

Employed 0.95 (0.90, 1.01) 0.95 (0.84, 1.08)

Nutrition status (ref = Normal)

Underweight 1.23 (1.13, 1.33) 1.49 (1.25, 1.76)

Overweight/obese 1.02 (0.98, 1.06) 0.90 (0.82, 1.01)

Severe 1.38 (1.22, 1.55) 1.95 (1.55, 2.43)

Was diagnosed with TB? (ref = No)

Yes 2.64 (2.41, 2.89) 3.46 (3.04, 3.94)

Felt depressed in past week? (ref = Less than 1 day)

Little of the time (1-2 days) 1.26 (1.21, 1.31) 1.45 (1.32, 1.59)

Moderate amount of time (3-4 days) 1.32 (1.24, 1.40) 1.99 (1.77, 2.24)

All the time (5-7 days) 1.90 (1.70, 2.11) 3.18 (2.68, 3.77)

The odds of reporting poor health for male individuals were 0.77 times the odds of

reporting poor health for individuals who are female (POR: 0.77, 95% CI: 0.74 to 0.81).

The odds of reporting poor health among individuals staying in rural formal areas were

0.89 times the odds of reporting poor health for individuals living in urban formal areas

(POR: 0.89, 95% CI: 0.81 to 0.98). This means the prevalence of poor health is less

in rural formal areas compared to urban formal areas. Education was also found to
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be significantly associated with self-reported health. The odds of reporting poor health

seem to decrease as education level increases. The odds of reporting poor health among

individuals with secondary education were 0.80 times the odds of reporting poor health for

individuals with no education (POR: 0.80, 95% CI: 0.71 to 0.89). The odds of reporting

poor health among individuals with high education were 0.57 times the odds of reporting

poor health for individuals with no education (POR: 0.57, 95% CI: 0.52 to 0.64). The

odds of reporting poor health among individuals with a college education were 0.52 times

the odds of reporting poor health for individuals with no education (POR: 0.52, 95%

CI: 0.45 to 0.60). Moreover, the odds of reporting poor health among individuals with

tertiary education were 0.46 times the odds of reporting poor health for individuals with

no education (POR: 0.46, 95% CI: 0.40 to 0.51). The odds of reporting poor health

for individuals with below average income were 1.11 times the odds of reporting poor

health for individuals with much below average income (POR: 1.11, 95% CI: 1.05 to

1.17). The odds of reporting poor health among individuals with average income were

1.22 times the odds of reporting poor health for individuals with much below average

income (POR: 1.22, 95% CI: 1.15 to 1.28). Furthermore, the odds of reporting poor

health among individuals with much above average income were 0.87 times the odds

of reporting poor health for individuals with much below average income (POR: 0.87,

95% CI: 0.78 to 0.97). Life satisfaction level was found to be significantly associated

with self-reported health. The odds of reporting poor health seem to decrease as life

satisfaction level increases. The odds of reporting poor health among individuals with

dissatisfied life were 0.86 times the odds of reporting poor health for individuals with very

dissatisfied life (POR: 0.86, 95% CI: 0.81 to 0.91). The odds of reporting poor health

for individuals with normal life were 0.77 times the odds of reporting poor health for

individuals with very dissatisfied life (POR: 0.77, 95% CI: 0.72 to 0.81). Furthermore,

the odds of reporting poor health for individuals with satisfied and very satisfied life were

respectively 0.68 (with 95% CI: 0.64 to 0.73) and 0.67 (with 95% CI: 0.62 to 0.73) times

the odds of reporting poor health for individuals with very dissatisfied life. The odds of
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reporting poor health among individuals who exercise three or more times a week were

0.91 times the odds of reporting poor health for individuals who never exercise (POR:

0.91, 95% CI: 0.82 to 0.97). Alcohol was also found to be significantly associated with

self-reported health. The odds of reporting poor health among individuals who no longer

drink alcohol were 1.28 times the odds of reporting poor health for individuals who never

drunk alcohol (POR: 1.28, 95% CI: 1.19 to 1.36). The odds of reporting poor health

for individuals who drink very rarely were 1.06 times the odds of reporting poor health

for individuals who never drunk alcohol (POR: 1.06, 95% CI: 1.02 to 1.12). Moreover,

The odds of reporting poor health for individuals who drink on 3 or 4 days a week were

1.18 times the odds of reporting poor health for individuals who never drunk alcohol

(POR: 1.18, 95% CI: 1.01 to 1.38). The odds of reporting poor health for individuals

who smoke a cigarette was 1.12 times the odds of reporting poor health for individuals

who do not smoke a cigarette (POR: 1.12, 95% CI: 1.06 to 1.19). The odds of reporting

poor health among individuals who are not economically active were 1.08 times the odds

of reporting poor health for individuals who are unemployed strict (POR: 1.08, 95% CI:

1.01 to 1.13). Among individuals with underweight and severe nutrition status the odds

of reporting poor health were respectively 1.23 and 1.38 times the odds of reporting poor

health for individuals with normal nutrition, (POR: 1.23, 95% CI: 1.13 to 1.33) and

(POR: 1.38, 95% CI: 1.22 to 1.55) respectively. The odds of reporting poor health for

individuals who were diagnosed with TB was 2.64 times the odds of reporting poor health

for an individual who was not diagnosed with TB (POR: 2.64, 95% CI: 2.41 to 2.89).

Depression was also found to be significantly associated with self-reported health. The

results reveal that the odds of reporting poor health increase with depression level. The

odds of reporting poor health among individuals who felt depressed in the past week for

a little of the time were 1.26 times the odds of reporting poor health for individuals for

individuals who felt depressed for less than one day (POR: 1.26, 95% CI: 1.21 to 1.31).

The odds of reporting poor health among individuals who felt depressed in the past week

for a moderate amount of the time were 1.32 times the odds of reporting poor health for
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individuals for individuals who felt depressed for less than one day (POR: 1.32, 95% CI:

1.24 to 1.40). Furthermore, the odds of reporting poor health among individuals who felt

depressed in the past week all the time were 1.90 times the odds of reporting poor health

for individuals for individuals who felt depressed for less than one day (POR: 1.90, 95%

CI: 1.70 to 2.11).

Figure 6.1 shows the total residual spatial effects over the four waves based on Model

6. From the figure, districts with dark and dark grey colour show a high association of

poor health while grey and light grey colour indicates a low association of poor health.

It can be observed that there is a spatial variation in poor health prevalence. Dis-

Figure 6.1: Map showing posterior odds estimated district-level residual total spatial
effects of self-reported health in South Africa based on a cumulative logit model (Model
6).

tricts within the north-western, central and southern regions had high poor health preva-

lence. The Siyanda, John Taoli Gaetsewe, Dr. Ruth Segomotsi Mompati, Frances Baard,

Lejweleputswa, Xhariep, Mangaung, Chris Hani, Umgungundlovu, Sisonke, Zululand,

Umkhanyakude and Uthungulu districts recorded higher poor health prevalence. The

districts in north-eastern, south-western and some central regions had low poor health

prevalence. The Namakwa, Vhembe, Mopani, Ehlanzeni, Thabo Mofutsanyane, Uthukela
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and Amajuba districts recorded lower poor health prevalence.

It is of great interest to study how risk factors and disease prevalence changes with time.

Here we provide an extensive discussion on the temporal evolution of the space-wave

interaction based on Model 6. Figure 6.2 shows the mapped estimated residual spatial

effects between wave 1 to 4 in South Africa (SA). The resulting maps are residual spatial

effects that represent unobserved spatial factors either not measured in the surveys or

abducting the effects of cultural patterns. In all the maps, district colours indicate similar

features as in Figure 6.1. The figure shows that the spatial pattern changes much across

Figure 6.2: Maps showing residual spatial effects of poor self-reported health in South
Africa between wave 1 to 4 derived from the spatio-temporal space-wave interaction
cumulative logit regression model (Model 6).

the study waves period. It is observed that higher concentrations across the wave periods

are scattered. High poor health prevalence can be observed in the districts within the

northern regions for all the wave periods. Districts in the western regions had high poor
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health prevalence at the beginning of wave 1 thereafter the poor health prevalence was

low between wave 2 to 4. The Namakwa, Siyanda and West Coast districts had reduced

odds of reporting poor health across the waves periods. Also, the figure shows that

districts within the southern regions start with low poor health prevalence thereafter the

poor health prevalence was high between wave 2 to 4. Cacadu, Chris Hani, Overberg,

Eden, Central Karoo, and Cape Winelands districts showed increased odds of reporting

poor health across the waves period. High poor health prevalence can be seen in the

central regions for all the waves except wave 2. The Xhariep, Lejweleputswa, Thabo

Mofutsanyane, Fezile Dabi and Mangaung districts recorded high poor health prevalence.

Furthermore, the districts within the eastern regions had high poor health prevalence

across the wave periods. In wave 1, highest poor health prevalence was recorded in Ugu

and Sisonke districts. Poor health prevalence was also high in Umkhanyakude district

across the study wave periods.

Figure 6.3 display the temporal wave effects. The figure gives the estimated posterior

mean of smooth function and their corresponding 95% CIs. From the figure, there is a

decline of the mean wave effect between wave 1 and 2, and then a gradual rise but possibly

not the same level by wave 4. This means wave 1 and 2 had low poor health prevalence.

Figure 6.3: Estimated posterior mean (red line) along with the 95% CI (dashed line) of
temporal wave random effect for the cumulative logit best fitting model.

Furthermore, wave 2 to 4 had high poor health prevalence. We further discuss the results
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of the binary response outcome based on Model 7, which was found to be the best fitting

model.

Results of the spatio-temporal logistic regression model (Model 7) yielded similar results

as Model 6 of the spatio-temporal cumulative logit model, also presented in Table 6.3.

All the considered covariates remained associated with self-reported health except for

race group, marital status, and type of toilet. The odds of reporting poor health seem to

increase with age. The odds of reporting poor health for individuals between 20-24 years

were 1.36 times the odds of reporting poor health for individuals between 15-19 years

(POR: 1.36, 95% CI: 1.13 to 1.64). The odds of reporting poor health among individuals

between 25-29 years were 1.79 times the odds of reporting poor health for individuals

between 15-19 years (POR: 1.79, 95% CI: 1.48 to 2.16). The odds of reporting poor

health for individuals between 30-34 years were 3.05 times the odds of reporting poor

health for individuals between 15-19 years, (POR: 3.05, 95% CI: 2.54 to 3.66). The odds

of reporting poor health for individuals between 35-39 years were 4.36 times the odds

of reporting poor health for individuals between 15-19 years (POR: 4.36, 95% CI: 3.63

to 5.24). Moreover, the odds of reporting poor health for individuals between 40-44 and

45-49 years were respectively 5.17 and 7.99 times the odds of reporting poor health for

individuals between 15-19 years, (POR: 5.17, 95% CI: 4.29 to 6.23) and (POR: 7.99,

95% CI: 6.64 to 9.62) respectively. The odds of reporting poor health for individuals

who are male was 0.67 times the odds of reporting poor health for individuals who

are female (POR: 0.67, 95% CI: 0.60 to 0.74). The odds of reporting poor health for

individuals living in rural formal areas were 0.76 times the odds of reporting poor health

for individuals residing in urban informal areas (POR: 0.76, 95% CI: 0.62 to 0.93). The

odds of reporting poor health among individuals with high, college, and tertiary education

were respectively 0.58 (with 95% CI: 0.49 to 0.69), 0.53 (with 95% CI: 0.40 to 0.71) and

0.42 (with 95% CI: 0.34 to 0.52) times the odds of reporting poor health for individuals

with no formal education. The odds of reporting poor health among individuals with

much above average household income were 0.50 times the odds of reporting poor health

120



for individuals with much below average household income (POR: 0.50, 95% CI: 0.36 to

0.67). The odds of reporting poor health for individuals with dissatisfied and normal life

were respectively 0.77 and 0.73 times the odds of reporting poor health for individuals

with very dissatisfied life, (POR: 0.77, 95% CI: 0.69 to 0.88) and (POR: 0.73, 95% CI: 0.64

to 0.83) respectively. Furthermore, the odds of reporting poor health among individuals

with satisfied and very satisfied life were respectively 0.66 (with 95% CI: 0.56 to 0.76) and

0.78 (with 95% CI: 0.66 to 0.93) times the odds of reporting poor health for individuals

with very dissatisfied life. The odds of reporting poor health for individuals who exercise

less than once a week were 0.83 times the odds of reporting poor health for individuals

who never exercise (POR: 0.83, 95% CI: 0.70 to 0.99). For individuals who no longer

drinks alcohol the odds of reporting poor health were 1.53 times the odds of reporting

poor health for individuals who never drunk alcohol (POR: 1.53, 95% CI: 1.34 to 1.74).

The odds of reporting poor health among individuals who smoke a cigarette was 1.16

times the odds of reporting poor health for individuals who do not smoke a cigarette

(POR: 1.16, 95% CI: 1.03 to 1.32). The odds of reporting poor health among individuals

who are not economically active were 1.29 times the odds of reporting poor health for

individuals who are unemployed strict, (POR: 1.29, 95% CI: 1.14 to 1.46). The odds of

reporting poor health among individuals with underweight and severe nutrition status

were respectively 1.49 and 1.95 times the odds of reporting poor health for individuals

with normal nutrition status, the corresponding odds ratios (POR: 1.49, 95% CI: 1.25 to

1.76) and (POR: 1.95, 95% CI: 1.55 to 2.43) respectively. The odds of reporting poor

health for individuals who were diagnosed with TB was 3.46 times the odds of reporting

poor health for an individual who was not diagnosed with TB (POR: 3.46, 95% CI: 3.04

to 3.94). The odds of reporting poor health among individuals who felt depressed the

past week for little of the time, a moderate amount of the time and all the time were

respectively 1.45, 1.99 and 3.18 times the odds of reporting poor health for individuals

who felt depressed for less than one day, (POR: 1.45, 95% CI: 1.32 to 1.59), (POR: 1.99,

95% CI: 1.77 to 2.24) and (POR: 3.18, 95% CI: 2.68 to 3.77) respectively.

121



Figure 6.4 display the total residual spatial effects over the NIDS four waves based on

Model 7. A similar spatial heterogeneity as in Figure 6.1 can be observed. The northwest

and central regions yielded higher estimated odds of reporting poor health. The dis-

Figure 6.4: Map showing residual total spatial effects on self-reported health in South
Africa based on a logistic regression model (Model 7).

tricts in northern and central regions had the highest poor health prevalence while those

within the western regions had the lowest poor health prevalence. In contrast to the map

in Figure 6.1, the Xhariep, Lejweleputswa, Mangaung, John Taolo Gaetsewe, Siyanda,

Frances Baard, and Dr Ruth Segomotsi Mompati districts recorded higher poor health

prevalence. The Namakwa, West Coast, Cape Winelands and Central Karoo districts

recorded low poor health prevalence.

Again we are interested in the evolution of the geographic variation of poor self-reported

health. The change of spatial effects over wave periods is discussed based on Model 7.

Figure 6.5 shows the mapped estimated posterior odds of residual spatial effects for wave

1 to 4 in South Africa (SA). The description of the colors for the districts is the same

as mentioned above. This figure yielded similar results to Figure 6.2 but only a slight

difference. There is clear evidence of spatial variation across the waves period. Figure
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Figure 6.5: Estimated residual spatial effects of self-reported health in South Africa
between wave 1 to 4 derived from the spatio-temporal interaction logistic regression model
(Model 7).

6.5 show that the high prevalence of poor health across the wave periods can be observed

in the districts within the central and southern regions. The Pixely ka Seme, Frances

Baard, Lejweleputswa districts had increased odds of reporting poor health across the

wave periods. The maps show that the districts within western regions, the prevalence

of poor health was low in wave 4 as compared to other waves. Furthermore, the districts

within the northern regions show that the pattern of spatial effects is scattered over the

wave periods.

Figure 6.6 display a temporal wave effects and their corresponding 95% CIs. The plot

provided slightly analogous results as in Figure 6.3, except that this figure shows a de-

creasing trend between wave 1 and 2, thereafter it becomes uniform. It can be seen that

the wave effects are beyond zero at the beginning of wave 1, then below zero thereafter.
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Figure 6.6: Estimated posterior mean (red line) along with the 95% CIs (dashed line) of
temporal wave random effect for the logistic regression best fitting model.

Between wave 1 and 2, there was a reduction in poor health prevalence and thereafter

remained low. In general, wave effects reduced poor health prevalence between wave 2 to

4.

Spatio-temporal models extend the previous spatial models by including the time effect.

The idea behind such models is to investigate how self-reported health changes over the

waves periods. The results showed quite interesting trends for both the responses. Health

in South Africa is more likely to be improved.

6.6 Categorical interactions

One of the most interesting factors we considered in this research project was to include

the interaction terms of the categorical covariates. The primary interest was on the

lifestyle categorical covariates, as they are known to greatly influence health. In all

the fitted spatial and spatio-temporal models analysis, the interaction between smoking

status and alcohol consumption were found not to be statistically significant at 5% level of

significance. Literally, none of the interactions that were tested in the analysis were found
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statistically significant. Therefore, no interaction between the categorical covariates was

included in the models.
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Chapter 7

Discussion and Conclusion

The aim of this research project is to investigate the determinants and geographic vari-

ation of self-reported health using the National Income Dynamics Study (NIDS) adult

datasets in South Africa. The objective of this research was to develop and apply suitable

statistical models that are used in assessing influential factors and geographical variation

of poor self-reported health. It is also to use a unified framework of flexible models within

a Bayesian hierarchical modeling in order to understand different types of factors asso-

ciated with two distinct discrete choice types of self-reported health among individuals

between the ages 15 - 49 years in South Africa. The models under consideration are

an extension to classical models; this included spatial and spatio-temporal models which

were used to identify geographical variation of area-specific effects. Structured addi-

tive multinomial cumulative logit and logistic regression models were developed to assess

influential factors and districts variation of ordinal and binary self-reported health re-

spectively. Two approaches within Bayesian inference were used in this research, namely

the empirical Bayes (EB) via mixed model methodology and fully Bayesian (FB). The

former was used in the inferential for the multinomial cumulative logit models while the

latter was used in the inferential for logistic regression models. Structured additive mod-

eling paradigm allows for different types of covariates to be added in classical models in

an additive manner by borrowing strength from both the parametric and non-parametric

models. In particular, we investigated linear, spatial, spatio-temporal and nonlinear ef-

fects on self-reported health with applications to the NIDS adult datasets in South Africa
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using integrated nested Laplace approximation (INLA) and R2BayesX R-packages.

In the exploratory data analysis, we investigated potential covariates that may be as-

sociated with self-reported health. The statistical significance of apparent associations

between potential covariates and self-reported health were first explored using the chi-

square test. Using the chi-square test of independence, the analysis results revealed that

age, gender, race, types of residence, education level, household income, marital status,

life satisfaction level, exercising level, alcohol consumption, smoking status, type of toi-

let facilities, employment, nutrition status, Tuberculosis (TB) and depression level were

associated with self-reported health. Some of these findings justified similar findings of

the study by Reichmann et al. (2009) and Hosseinpoor et al. (2012) with a range of other

studies. The proportional odds assumption was tested using the score test. The results

show that the proportional odds assumption was insignificant (Table E.1), thus was not

violated. Further, the significant covariates were all included to the models of interest.

In Chapter 4 and Chapter 5 we presented the EB and FB approaches respectively to es-

timate parameters of the spatial and structured additive regression (STAR) modeling of

self-reported health in South Africa using wave 4 of NIDS dataset. The models accounted

for either structured or unstructured or both spatial random effects. The spatial random

effects account for unobserved influential factors that may vary between or within the

districts. We assumed a conditional autoregressive (CAR) or independent and normal

distributed priors on districts of South Africa. The models’ assessment was based on the

AIC, BIC, and GCV for the cumulative models while the DIC was used for the logistic

regression models. The Bayesian multivariable cumulative logit and logistic regression

models which incorporated both the spatially structured and spatially unstructured ran-

dom effects were better fitting models. The incorporation of these spatial random effects

improved the results. These models for both distinct responses yielded similar results

except for a slight difference. In the models, it was found that age, gender, education,

household income, exercising, alcohol, smoking, employment, nutrition status, TB and
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depression were significantly associated with self-reported health. The odds of reporting

poor health for individuals between 45-49 years who were diagnosed with TB and felt

depressed all the time were extreme higher when compared to their counterparts. These

findings are accompanied by similar findings of the study by Cau et al. (2016b). However,

the results for the household income were contradicting between the two models. The

reason for this different result cannot be justified. We speculate that the reason may be

due to the two different approaches used in this research. The FB is known to be a better

technique than the EB approach (Leyland and Davies, 2005; Bernardinelli et al., 1995).

Education and household income are well-known determinants of health. The level of

education does not only empower knowledge of an individual but also makes them aware

of a healthy living diet. While income level serves as a driving force to better education.

The maps of the two above mentioned models showed a significant district level spatial

variation (Figure 4.1 and Figure 5.1). Spatial variation was evidence indicating that

health is not distributed evenly in South Africa. The variation under both the spatial

cumulative logit model and the logistic regression model were almost similar. The dom-

inant feature was that the districts within the central regions had a significantly higher

prevalence of poor health. The districts within the south-western regions had lower poor

health prevalence, however, the spatial effects of those districts were insignificant.

This research project has also presented flexible approaches used within the Bayesian

methods. To further explore influential factors on self-reported health we developed

Bayesian STAR models. The STAR models are good with their flexibility to allow the

inclusion of generic types of covariates, such as continuous covariates. In the STAR

models, the categorical covariates were assumed to have a linear effect on self-reported

health. The additional of the age and body mass index (BMI) nonlinear effects did not

affect the results of the linear effects. The STAR cumulative logit models and the logistic

regression models yielded similar results as of the spatial models which did not account for

nonlinear effects. Gender, education, household income, exercise, alcohol consumption,

smoking, type of toilet, employment, TB and depression were found to be significantly
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associated with self-reported health. The odds of reporting poor health were less for

individuals who are male. The findings also reveal that those with employment, high

education level and not married had lower odds of reporting poor health as compared to

their counterparts. The results correspond to similar findings from the study by Wilson

et al. (2007). For all the STAR models we assumed that nonlinear effects of age and

BMI follow a second order random walk (Rue and Held, 2005; Sørbye and Rue, 2011).

We assumed that individuals age and BMI had nonlinear effects on self-reported health

in all the STAR models. Both the cumulative logit and logistic regression within the

STAR models produced similar plots (Figure 4.4 and Figure 5.4) for age and BMI effects.

The age of an individual was found to be linearly associated with self-reported health.

The odds of reporting poor health increases as age increases. The explanation for this is

that as individuals grow older they are more likely to be exposed to ill health defining

conditions such as cardiovascular and chronic diseases. On the other hand, the BMI

was found to have a nonlinear relationship with self-reported health. The plot of BMI

displayed a U-shaped curve. Poor health prevalence among individuals decreases with

BMI up to about 25 kg/m2 thereafter increased with an increasing BMI. The findings

that BMI has a nonlinear effect on self-reported health was expected, given that BMI

includes a normal status around 18 to 25 kg/m2. Thus, poor health prevalence is bound

to be high and low for BMI effect increase. The spatial effects maps for these models did

not change much from those of spatial models with no nonlinear effects. There were still

spatial variations across districts of South Africa. Higher concentrations of poor health

prevalence were recorded in the districts within central regions and lower concentrations

were in the western regions of South Africa.

Spatio-temporal models are often used when investigating the spatial trends of health

outcomes. This research has presented spatio-temporal modeling on self-reported health

in South Africa among adults between the ages 15-49 years using wave 1 to 4 of NIDS

data collected between 2008 to 2015. Traditional models such as the cumulative logit and

logistic regression models account for linearity assumption. However, these models can
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be extended to spatio-temporal modeling using an additive predictor. The cumulative

logit and logistic regression spatio-temporal models yielded similar results. Age, gender,

place of residence, education, household income, life satisfaction level, exercise, alcohol,

smoking, employment, nutrition status, TB and depression were significantly associated

with self-reported health over the four-wave periods. The results demonstrate increasing

odds of reporting poor health as individuals age increases. Those who reside in rural

formal areas had lower odds of reporting poor health as compared to those living in ur-

ban formal areas. This is due to the fact that in urban areas there are many factories

which promote poor health such as air pollution which affects the health of an individ-

ual. Higher levels of education and much above average household income had lower

odds of poor health. This is because higher education and higher income are driving

factors of healthy living, thus promotes better health than individuals who are deprived

of such. The districts within the central and north-western regions had the highest poor

health prevalence. This may suggest lack of good education, toilet facilities, water source,

healthcare institutes or higher HIV prevalence. The spatio-temporal trends effects were

found to vary over the waves periods. Over the four waves, higher poor health preva-

lence was found in the districts within northern, central and southern regions. Lowest

poor health prevalence was recorded in the districts within the western regions. We also

estimated wave temporal effects on self-reported health. The plots showed a decreasing

trend from wave 1 to wave 2 thereafter it was stationary. This may suggest a reduction

of poor health prevalence over the four waves.

Every research has its own limitations. In this research, a major limitation was the

number of waves available for us to estimate the temporal trends of self-reported health.

This issue limited this research not to investigate the trend of self-reported health during

the early years, more especially during the course of the HIV epidemic. Another limitation

of this research was the administration area level which ends at the district level. It

limits us not to compare the area levels such as district and municipal levels, thus to

focus on those areas in a more reliable manner and also advice policymakers to focus
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their interventions on such relevant areas.

This research project used EB and FB approaches within the Bayesian hierarchical mod-

eling to model adults self-reported health in South Africa. Also, we used the Bayesian

structured additive approach to model the determinants of poor health. We showed

that the prevalence of poor health can be modeled and mapped using these different

approaches since the data was geo-referenced and collected repeatedly over time, hence

suitable for spatio-temporal modeling. The findings of this research suggest that the im-

provement of health in South Africa is likely to be established. Recommendations from

this research are that, the commission of social determinants of health, Healthy People

2020 and Sustainable Development Goals (SDGs) policy proponents must focus on im-

proving individuals education, income inequality, and gender inequality by empowering

women’s position in development programmes. The creation of more jobs by the Gov-

ernment for the unemployed individuals will have an impact on improving wealth and

decreasing depression. On the other hand, healthy living programs should be emphasized

on social media and TV programmes in order to increase health awareness. Improvement

could also be achieved by evaluation of health programmes to promote vaccine usage for

communicable diseases such as TB and other diseases. In particular, the findings of this

research imply that the main focus of these interventions should be in the districts within

the northern, central and southern regions of South Africa.

There is a large space for further research on this study. This research provided modeling

based on the conditional autoregressive (CAR) models. Future research may consider

other prior distributions for the spatial random effects, such as the two-dimensional P-

spline. A FB approach for modeling the different nature of self-reported health response

would be of interest for future research. We also hope to consider the relationship between

self-reported health and HIV status. Furthermore, Bayesian models for joint disease map-

ping should be considered. The main aim of joint disease mapping is to simultaneously

investigate the determinants of health with other diseases that may influence health, such
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as Mortality, TB, HIV, and Malnutrition. In addition, we also hope to consider spatially

varying coefficient for categorical covariates in order to understand how each covariate is

distributed spatially.
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Appendix A

R Codes of ordinal response

rm(list=ls())

# Packages required

library("MASS")

library("lattice")

library("ctv")

library("sp")

library(maptools)

library(rgdal)

library(spdep)

require(RColorBrewer)

require(ztable)

library(foreign)

library(R2BayesX)

#Loading map file

samap <- read.bnd("samap.bnd")

#Loading data file

dat <- read.csv("Adults.csv",sep = ",",header = T)

attach(dat)

dat <- na.omit(dat) #removing missing observations

dat[!complete.cases(dat),] #checking for completeness

dat$health <- ordered(dat$health) #ordering the response variable

############# Models ############################################
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ctr<-bayesx.control(model.name ="OrdRes",outfile="C:/OrdRes",family="cumlogit",

method="REML") #BayesX estimation properties

#Specifying models formula

m1<-health~age_grp+gender+race+res2001+edu+income+marital_stat+satisfied_cat+exercise+

alcohol+smokes+toilet+employment+maln+tb_diag+depressed

m2<-health~age_grp+gender+race+res2001+edu+income+marital_stat+satisfied_cat+exercise+

alcohol+smokes+toilet+employment+maln+tb_diag+depressed+sx(district11,bs="mrf",map=samap)

m3<-health~age_grp+gender+race+res2001+edu+income+marital_stat+satisfied_cat+exercise+

alcohol+smokes+toilet+employment+maln+tb_diag+depressed+sx(district11,bs="re")

m4<-health~age_grp+gender+race+res2001+edu+income+marital_stat+satisfied_cat+exercise+

alcohol+smokes+toilet+employment+maln+tb_diag+depressed+sx(district11,bs="mrf",map=samap)+

sx(district11,bs="re")

#Running the models estimation

sm1 <- bayesx(m1,data = dat,control = ctr)

sm2 <- bayesx(m2,data = dat,control = ctr)

sm3 <- bayesx(m3,data = dat,control = ctr)

sm4 <- bayesx(m4,data = dat,control = ctr)

########## Spatial effects ########################################

sa.graph <- readOGR("District_Municipalities_2016.shp")

mrf <- sm4$effects$‘sx(district11):mrf‘[,c(2,3,7)]

re <- sm4$effects$‘sx(district11):re‘[,c(2,3,7)]

tot <- mrf+re

sa.graph$tot <- exp(tot$Estimate)

summary(sa.graph$tot)

sa.graph$totcuts <- cut(sa.graph$tot,breaks=c(0.42,0.71,0.99,2.30,3.70),include.lowest=T)

############ Map ################################################

spplot(sa.graph,"totcuts",col.regions=gray(3.5:0.5/4))
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############ Non linear effects of age and BMI ##################

ctr<-bayesx.control(model.name ="OrdRes",outfile="C:/OrdRes",family="cumlogit",method=

"REML") #BayesX estimation properties

#Specifying models formula

m1<-health~gender+race+res2001+edu+income+marital_stat+satisfied_cat+exercise+alcohol+

smokes+toilet+employment+tb_diag+depressed+sx(age,bs="rw2")+sx(BMI,bs="rw2")

m2<-health~gender+race+res2001+edu+income+marital_stat+satisfied_cat+exercise+alcohol+

smokes+toilet+employment+tb_diag+depressed+sx(district11,bs="mrf",map=samap)+

sx(age,bs="rw2")+sx(BMI,bs="rw2")

m3<-health~gender+race+res2001+edu+income+marital_stat+satisfied_cat+exercise+alcohol+

smokes+toilet+employment+tb_diag+depressed+sx(district11,bs="re")+sx(age,bs="rw2")+

sx(BMI,bs="rw2")

m4<-health~gender+race+res2001+edu+income+marital_stat+satisfied_cat+exercise+alcohol+

smokes+toilet+employment+tb_diag+depressed+sx(district11,bs="mrf",map=samap)+

sx(district11,bs="re")+sx(age,bs="rw2")+sx(BMI,bs="rw2")

#Running the models estimation

sm1 <- bayesx(m1,data = dat,control = ctr)

sm2 <- bayesx(m2,data = dat,control = ctr)

sm3 <- bayesx(m3,data = dat,control = ctr)

sm4 <- bayesx(m4,data = dat,control = ctr)

########## Spatial effects ########################################

sa.graph <- readOGR("District_Municipalities_2016.shp")

mrf <- sm4$effects$‘sx(district11):mrf‘[,c(2,3,7)]

re <- sm4$effects$‘sx(district11):re‘[,c(2,3,7)]

tot <- mrf+re

sa.graph$tot <- exp(tot$Estimate)

sa.graph$totcuts <- cut(sa.graph$tot,breaks = c(0.43,0.72,0.99,2.30,3.65),

include.lowest = T)
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########## Map #####################################################

spplot(sa.graph,"totcuts",col.regions=gray(3.5:0.5/4))

########## Plots ###################################################

#BMI

plot(sm4$effects$‘sx(BMI)‘[,1],sm4$effects$‘sx(BMI)‘[,2],type="l",col="red",ylim=c(-1,2.30)

,lwd=5,lty=1,xlab="Body Mass Index",ylab="Effect of BMI",cex.lab=1.5, cex.axis=1.5)

par(new=TRUE)

plot(sm4$effects$‘sx(BMI)‘[,1],sm4$effects$‘sx(BMI)‘[,3],ann=FALSE,axes=FALSE,type="l",

lwd=3,ylim=c(-1,2.30),lty=21)

par(new=TRUE)

plot(sm4$effects$‘sx(BMI)‘[,1],sm4$effects$‘sx(BMI)‘[,7],ann=FALSE,axes=FALSE,type="l",

lwd=3,ylim=c(-1,2.30),lty=21)

par(mfrow=c(1,1))

#Age

plot(sm4$effects$‘sx(age)‘[,1],sm4$effects$‘sx(age)‘[,2],type="l",col="red",

ylim=c(-1.26,1.5),lwd=5,lty=1,xlab="Respodent age in years",ylab="Effect of age",

cex.lab=1.5,cex.axis=1.5)

par(new=TRUE)

plot(sm4$effects$‘sx(age)‘[,1],sm4$effects$‘sx(age)‘[,3],ann=FALSE,axes=FALSE,type="l",

lwd=3,ylim=c(-1.26,1.5),lty=21)

par(new=TRUE)

plot(sm4$effects$‘sx(age)‘[,1],sm4$effects$‘sx(age)‘[,7],ann=FALSE,axes=FALSE,type="l",

lwd=3,ylim=c(-1.26,1.5),lty=21)

par(mfrow=c(1,1))

########### Spatio temporal ######################################

rm(list=ls())

samap <- read.bnd("samap.bnd")

dat <- read.csv("Adults.csv",sep = ",",header = T)
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attach(dat)

dat$health_ord <- ordered(dat$health_ord)

dat$wave1 <- factor(dat$wave)

dat$distrct1 <- dat$distrct11

ctr<-bayesx.control(model.name="OrdResSpatio",outfile="C:/OrdResSpatio",family="cumlogit",

method="REML") #BayesX estimation properties

#Specifying models formula

m1<-health_ord~age_group+gender+race+geo2001+edu+income+marital_stat+satisf+exercise+

alcohol+smokes+toilet+empl_stat+maln+TB+depressed+sx(distrct11,bs="mrf",map=samap)+

sx(distrct11,bs="re") #Spatial model

m2<-health_ord~age_group+gender+race+geo2001+edu+income+marital_stat+satisf+exercise+

alcohol+smokes+toilet+empl_stat+maln+TB+depressed+sx(distrct11,bs="mrf",map=samap)+

sx(distrct11,bs="re")+as.factor(wave) #Linear trend model

m3<-health_ord~age_group+gender+race+geo2001+edu+income+marital_stat+satisf+exercise+

alcohol+smokes+toilet+empl_stat+maln+TB+depressed+sx(distrct11,bs="mrf",map=samap)+

sx(distrct11,bs="re")+sx(wave,bs="ps") #Simple trend model with one random time effect

m4<-health_ord~age_group+gender+race+geo2001+edu+income+marital_stat+satisf+exercise+

alcohol+smokes+toilet+empl_stat+maln+TB+depressed+sx(distrct11,bs="mrf",map=samap)+

sx(distrct11,bs="re")+r(distrct1,bs="re",map = samap,by = wave1) #Interaction only

#Interaction + linear trend

m5<-health_ord~age_group+gender+race+geo2001+edu+income+marital_stat+satisf+exercise+

alcohol+smokes+toilet+empl_stat+maln+TB+depressed+sx(distrct11,bs="mrf",map=samap)+

sx(distrct11,bs="re")+r(distrct1,bs="re",map = samap,by = wave1)+as.factor(wave)

#Interaction with one random time effect (p-spline)

m6<-health_ord~age_group+gender+race+geo2001+edu+income+marital_stat+satisf+exercise+

alcohol+smokes+toilet+empl_stat+maln+TB+depressed+sx(distrct11,bs="mrf",map=samap)+

sx(distrct11,bs="re")+sx(wave)+r(distrct1,bs="re",map = samap,by = wave1)

#Interaction with one random time effect (random walk of order one)

m7<- health_ord ~ age_group+gender+race+geo2001+edu+income+marital_stat+satisf+exercise+

alcohol+smokes+toilet+empl_stat+maln+TB+depressed+sx(distrct11,bs="mrf",map=samap)+

148



sx(distrct11,bs="re")+r(wave,bs="rw1")+r(distrct1,bs="re",map = samap,by = wave1)

#Running the models estimation

sm1 <- bayesx(m1,data = dat,control = ctr)

sm2 <- bayesx(m2,data = dat,control = ctr)

sm3 <- bayesx(m3,data = dat,control = ctr)

sm4 <- bayesx(m4,data = dat,control = ctr)

sm5 <- bayesx(m5,data = dat,control = ctr)

sm6 <- bayesx(m6,data = dat,control = ctr)

sm7 <- bayesx(m7,data = dat,control = ctr)

########## Spatial effects ########################################

wav1 <- exp(sm6$effects$‘sx(distrct1):wave11:re‘[,2])

wav2 <- exp(sm6$effects$‘sx(distrct1):wave12:re‘[,2])

wav3 <- exp(sm6$effects$‘sx(distrct1):wave13:re‘[,2])

wav4 <- exp(sm6$effects$‘sx(distrct1):wave14:re‘[,2])

cuts <- c(0.27,0.63,0.99,1.96,2.92)

sa.graph <- readOGR("District_Municipalities_2016.shp") #Loading map

sa.graph$wav1 <- wav1

sa.graph$wav2 <- wav2

sa.graph$wav3 <- wav3

sa.graph$wav4 <- wav4

sa.graph$wav1 <- cut(sa.graph$wav1,breaks = cuts,include.lowest = TRUE)

sa.graph$wav2 <- cut(sa.graph$wav2,breaks = cuts,include.lowest = TRUE)

sa.graph$wav3 <- cut(sa.graph$wav3,breaks = cuts,include.lowest = TRUE)

sa.graph$wav4 <- cut(sa.graph$wav4,breaks = cuts,include.lowest = TRUE)

########## Maps ############################################

spplot(sa.graph,c("wav3","wav4","wav1","wav2"),names.attr=c("Wave 3","Wave 4","Wave 1",

"Wave 2"),col.regions=gray(3.5:0.5/4),par.settings=list(fontsize=list(text=15)),xlab = "",
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ylab = "",scales=list(draw = FALSE))

########## Plot ##########################################################

####Time effect###

plot(sm6$effects$‘sx(wave)‘[,1],sm6$effects$‘sx(wave)‘[,2],type="l",col="red",ylim=c(-1.50,

1.50),lwd=5,lty=1,xlab="Wave",ylab="Effect of Wave",cex.lab=1.5, cex.axis=1.5,xaxt = ’n’)

axis(1,at = seq(1,4,1),lty = 1,cex.lab=1.5, cex.axis=1.5)

par(new=T)

plot(sm6$effects$‘sx(wave)‘[,1],sm6$effects$‘sx(wave)‘[,3],ann=F,axes=F,type="l",lwd=3,

ylim=c(-1.50,1.50),lty=21)

par(new=T)

plot(sm6$effects$‘sx(wave)‘[,1],sm6$effects$‘sx(wave)‘[,7],ann=F,axes=F,type="l",lwd=3,

ylim=c(-1.50,1.50),lty=21)

par(mfrow=c(1,1))
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Appendix B

R Codes for binary response models

rm(list=ls())

# Packages required

library("MASS")

library("lattice")

library("ctv")

library("sp")

library(maptools)

library(rgdal)

library(spdep)

require(INLA)

require(RColorBrewer)

library(ztable)

sa.graph <- readOGR("District_Municipalities_2016.shp")

adjsa <-poly2nb(sa.graph)#Creates adjacency for sa

nb2INLA("sa.graph",adjsa)

#Loading data

dat <- read.csv("Adults.csv",sep = ",",header = T)

attach(dat)

#head(dat,5)

#tail(dat,5)

dim(dat)

dat <- na.omit(dat) #removing missing observations
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dat[!complete.cases(dat),] #checking for completeness

####################################################################################

#districts duplicates

dat$district1 <- dat$district11

dat$district2 <- dat$district11

###### Models formulation and estimation ###########################################

formula011<-health_bin~age_grp+gender+race+res2001+edu+income+marital_stat+satisfied_cat+

exercise+alcohol+smokes+toilet+employment+maln+tb_diag+depressed

res011<-inla(formula011,family="binomial",data=dat,control.compute=list(dic=T,cpo=T))

formula012<-health_bin~age_grp+gender+race+res2001+edu+income+marital_stat+satisfied_cat+

exercise+alcohol+smokes+toilet+employment+maln+tb_diag+depressed+

f(district11,model="besag", graph="sa.graph")

res012<-inla(formula012,family="binomial",data=dat,control.compute = list(dic=T,cpo=T))

formula013<-health_bin~age_grp+gender+race+res2001+edu+income+marital_stat+satisfied_cat+

exercise+alcohol+smokes+toilet+employment+maln+tb_diag+depressed+

f(district11,model="iid")

res013<-inla(formula013,family="binomial",data=dat,control.compute=list(dic=T,cpo=T))

formula014<-health_bin~age_grp+gender+race+res2001+edu+income+marital_stat+satisfied_cat+

exercise+alcohol+smokes+toilet+employment+maln+tb_diag+depressed+

f(district1,model="besag", graph="sa.graph")+f(district2,model="iid")

res014<-inla(formula014,family="binomial",data=dat,control.compute=list(dic=T,cpo=T))

########## Spatial effects ################################

spatial014 <- res014$summary.random$district1

spatial014re <- res014$summary.random$district2

tot <- spatial014$"0.5quant"+spatial014re$"0.5quant"

sa.graph$r <- exp(spatial014$"0.5quant"+spatial014re$"0.5quant")

sa.graph$tot <- cut(sa.graph$r , breaks = c(0.60,0.79,0.99,1.30,1.61) ,include.lowest = T)

########## Map ############################################
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spplot(sa.graph,"tot",col.regions=gray(3.5:0.5/4))

############ Non linear effects of age and BMI ########################################

###### Models formulation and estimation ###############################

formula011<-health_bin~gender+race+res2001+edu+income+marital_stat+satisfied_cat+exercise+

alcohol+smokes+toilet+employment+tb_diag+depressed+f(age,model="rw2")+f(BMI,model="rw2")

res011<-inla(formula011,family="binomial",data=dat,control.compute=list(dic=TRUE,cpo=T))

formula012<-health_bin~gender+race+res2001+edu+income+marital_stat+satisfied_cat+exercise+

alcohol+smokes+toilet+employment+tb_diag+depressed+f(district11,model="besag",graph=

"sa.graph")+f(age,model="rw2")+f(BMI,model="rw2")

res012 <- inla(formula012,family= "binomial",data=dat,control.compute=list(dic=T,cpo=T))

formula013<-health_bin~gender+race+res2001+edu+income+marital_stat+satisfied_cat+exercise+

alcohol+smokes+toilet+employment+tb_diag+depressed+f(district11,model="iid")+f(age,model=

"rw2")+f(BMI,model="rw2")

res013 <- inla(formula013, family = "binomial",data=dat,control.compute= list(dic=T,cpo=T))

formula014<-health_bin~gender+race+res2001+edu+income+marital_stat+satisfied_cat+exercise+

alcohol+smokes+toilet+employment+tb_diag+depressed+f(district1,model="besag", graph=

"sa.graph")+f(district2,model="iid")+f(age,model="rw2")+f(BMI,model="rw2")

res014 <- inla(formula014, family = "binomial",data=dat,control.compute =list(dic=T,cpo=T))

########## Spatial effects ################################

r<-exp(res014$summary.random$district1$‘0.5quant‘+

res014$summary.random$district2$‘0.5quant‘)

sa.graph$r <- r

sa.graph$tot<-cut(sa.graph$r,breaks=c(0.59,0.79,0.99,1.32,1.65),include.lowest=TRUE)

########## Map #####################################################

spplot(sa.graph,"tot",col.regions=gray(3.5:0.5/4))
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########## Plots ###################################################

#BMI

plot(res014$summary.random$BMI$ID,res014$summary.random$BMI$mean,type="l",col="red",ylim=

c(-0.60,2.30),lwd=5,lty=1,xlab="Body Mass Index",ylab="Effect of BMI",cex.lab=1.5,

cex.axis=1.5)

par(new=T)

plot(res014$summary.random$BMI$ID,res014$summary.random$BMI$‘0.025quant‘,ann=F,axes=F,type=

"l",lwd=3,ylim=c(-0.60,2.30),lty=21)

par(new=T)

plot(res014$summary.random$BMI$ID,res014$summary.random$BMI$‘0.975quant‘,ann=F,axes=F,type=

"l",lwd=3,ylim=c(-0.60,2.30),lty=21)

par(mfrow=c(1,1))

#Age

plot(res014$summary.random$age$ID,res014$summary.random$age$mean,type="l",col="red",ylim=

c(-1.26,1.32),lwd=5,lty=1,xlab="Respodent age in years",ylab="Effect of age",cex.lab=1.5,

cex.axis=1.5)

par(new=T)

plot(res014$summary.random$age$ID,res014$summary.random$age$‘0.025quant‘,ann=F,axes=F,type=

"l",lwd=3,ylim=c(-1.26,1.32),lty=21)

par(new=T)

plot(res014$summary.random$age$ID,res014$summary.random$age$‘0.975quant‘,ann=F,axes=F,type=

"l",lwd=3,ylim=c(-1.26,1.32),lty=21)

par(mfrow=c(1,1))

########### Spatio temporal ######################################

rm(list=ls())

sa.graph <- readOGR("District_Municipalities_2016.shp")

adjsa <-poly2nb(sa.graph)#Creates adjacency for sa

nb2INLA("sa.graph",adjsa)

dat <- read.csv("Adults.csv",sep = ",",header = T)
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attach(dat)

###################################################################################

dat$distrct1 <- dat$distrct11

dat$distrct2 <- dat$distrct11

dat$wave1 <- dat$wave

dat$wave2 <- dat$wave

###### Models formulation and estimation ###########################################

formula1<-health_bin~age_group+gender+race+geo2001+edu+income+marital_stat+satisf+exercise+

alcohol+smokes+toilet+empl_stat+maln+TB+depressed+f(distrct1,model="besag",graph="

sa.graph")+f(distrct2,model="iid",graph="sa.graph") #Spatial model

mod1<-inla(formula1,family="binomial",data=dat,control.compute=list(dic=T,cpo=T),verbose=F)

formula2<-health_bin~age_group+gender+race+geo2001+edu+income+marital_stat+satisf+exercise+

alcohol+smokes+toilet+empl_stat+maln+TB+depressed+f(distrct1,model="besag",graph="

sa.graph")+f(distrct2,model="iid",graph="sa.graph")+as.factor(wave) #Linear trend model

mod2<-inla(formula2,family="binomial",data=dat,control.compute=list(dic=T,cpo=T),verbose=F)

#Simple trend model with one random time effect

formula3<-health_bin~age_group+gender+race+geo2001+edu+income+marital_stat+satisf+exercise+

alcohol+smokes+toilet+empl_stat+maln+TB+depressed+f(distrct1,model="besag",graph="

sa.graph")+f(distrct2,model="iid",graph="sa.graph")+f(wave,model = "ar1")

mod3<-inla(formula3,family="binomial",data=dat,control.compute=list(dic=T,cpo=T),verbose=F)

formula4<-health_bin~age_group+gender+race+geo2001+edu+income+marital_stat+satisf+exercise+

alcohol+smokes+toilet+empl_stat+maln+TB+depressed+f(distrct1,model="besag",graph=

"sa.graph")+f(distrct2,model="iid",graph="sa.graph")+f(distrct11,model="iid",group=wave,

control.group=list(model="ar1"),adjust.for.con.comp = FALSE) #Interaction only

mod4<-inla(formula4,family="binomial",data=dat,control.compute=list(dic=T,cpo=T),verbose=F)

#Interaction only + linear trend

formula5<-health_bin~age_group+gender+race+geo2001+edu+income+marital_stat+satisf+exercise+

alcohol+smokes+toilet+empl_stat+maln+TB+depressed+f(distrct1,model="besag",graph="
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sa.graph")+f(distrct2,model="iid",graph="sa.graph")+f(distrct11,model="iid",group=wave,

control.group=list(model="ar1"),adjust.for.con.comp = FALSE)+as.factor(wave)

mod5<-inla(formula5,family="binomial",data=dat,control.compute=list(dic=T,cpo=T),verbose=F)

#Interaction with one random time effect (ar1)

formula6<-health_bin~age_group+gender+race+geo2001+edu+income+marital_stat+satisf+exercise+

alcohol+smokes+toilet+empl_stat+maln+TB+depressed+f(distrct1,model="besag",graph="

sa.graph")+f(distrct2,model="iid",graph="sa.graph")+f(wave,model = "ar1")+f(distrct11,

model="iid",group=wave,control.group=list(model="ar1"),adjust.for.con.comp=FALSE)

mod6<-inla(formula6,family="binomial",data=dat,control.compute=list(dic=T,cpo=T),verbose=F)

#Interaction with one random time effect (random walk)

formula7<-health_bin~age_group+gender+race+geo2001+edu+income+marital_stat+satisf+exercise+

alcohol+smokes+toilet+empl_stat+maln+TB+depressed+f(distrct1,model="besag",graph="

sa.graph")+f(distrct2,model="iid",graph="sa.graph")+f(wave,model="rw1")+f(distrct11,model="

iid",group = wave,control.group=list(model="ar1"),adjust.for.con.comp = FALSE)

mod7<-inla(formula7,family="binomial",data=dat,control.compute=list(dic=T,cpo=T),verbose=F)

########## Spatial effects ################################

wav1 <- exp(mod6$summary.random$distrct11[1:52,5])

wav2 <- exp(mod6$summary.random$distrct11[53:104,5])

wav3 <- exp(mod6$summary.random$distrct11[105:156,5])

wav4 <- exp(mod6$summary.random$distrct11[157:208,5])

sa.graph$wav1 <- wav1

sa.graph$wav2 <- wav2

sa.graph$wav3 <- wav3

sa.graph$wav4 <- wav4

cuts <- c(0.58,0.79,0.99,1.50,2.20)

sa.graph$wav1 <- cut(sa.graph$wav1,breaks = cuts,include.lowest = TRUE)
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sa.graph$wav2 <- cut(sa.graph$wav2,breaks = cuts,include.lowest = TRUE)

sa.graph$wav3 <- cut(sa.graph$wav3,breaks = cuts,include.lowest = TRUE)

sa.graph$wav4 <- cut(sa.graph$wav4,breaks = cuts,include.lowest = TRUE)

########## Maps ############################################

spplot(sa.graph,c("wav3","wav4","wav1","wav2"),names.attr=c("Wave 3","Wave 4","Wave 1"

,"Wave 2"),col.regions=gray(3.5:0.5/4),par.settings=list(fontsize=list(text=15)),xlab="",

ylab="",scales=list(draw = FALSE))

########## Plots ###################################################

#### Time effect ###

plot(mod6$summary.random$wave$ID,mod6$summary.random$wave$‘0.5quant‘,type="l",col="red",

ylim=c(-1.0,2.30),lwd=5,lty=1,xlab="Wave",ylab="Effect of Wave",cex.lab=1.5,cex.axis=1.5,

xaxt = ’n’)

axis(1,at = seq(1,4,1),lty = 1,cex.lab=1.5, cex.axis=1.5)

par(new=TRUE)

plot(mod6$summary.random$wave$ID,mod6$summary.random$wave$‘0.025quant‘,ann=F,axes=F,

type="l",lwd=3,ylim=c(-1.0,2.30),lty=21)

par(new=T)

plot(mod6$summary.random$wave$ID,mod6$summary.random$wave$‘0.975quant‘,ann=F,axes=F,

type="l",lwd=3,ylim=c(-1.0,2.30),lty=21)

par(mfrow=c(1,1))
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Appendix C

Study area

Figure C.1: Map of South Africa showing district municipalities within provinces.

Table C.1 present the district municipality names along with corresponding codes dis-

played in the South African map in Figure C.1. The region which is not numbered is the

Lesotho country.
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Table C.1: Districts municipality of South Africa and their corresponding geographic
codes used in NIDS data.

District Code District Code District Code

Ekurhuleni 1 Ugu 19 Ehlanzeni 37
City of Johannesburg 2 Umgungundlovu 20 John Taolo Gaetsewe 38
Buffalo City 3 Uthukela 21 Namakwa 39
Cacadu 4 Umzinyathi 22 Pixley ka Seme 40
Amathole 5 Amajuba 23 Siyanda 41
Chris Hani 6 Zululand 24 Frances Baard 42
Joe Gqabi 7 Umkhanyakude 25 Bojanala 43
O.R.Tambo 8 Uthungulu 26 Ngaka Modiri Molema 44
Alfred Nzo 9 iLembe 27 Dr Ruth Segomotsi Mompati 45
Nelson Mandela Bay 10 Sisonke 28 Dr Kenneth Kaunda 46
Xhariep 11 eThekwini 29 City of Cape Town 47
Lejweleputswa 12 Mopani 30 West Coast 48
Thabo Mofutsanyane 13 Vhembe 31 Cape Winelands 49
Fezile Dabi 14 Capricorn 32 Overberg 50
Mangaung 15 Waterberg 33 Eden 51
Sedibeng 16 Great sekhukhune 34 Central Karoo 52
West Rand 17 Gert Sibande 35
City of Tshwane 18 Nkangala 36
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Appendix D

Multicollinearity results for the NIDS

wave 4 dataset.

Table D.1: Multicollinearity results of all the considered covariates for the Bayesian
multivariable spatial models.

Covariates VIF
√

VIF Tolerance R2 Standard Error
Age group 1.72 1.31 0.5819 0.4181 0.0100541
Gender 1.37 1.17 0.7295 0.2705 0.0345057
Race 1.18 1.09 0.8472 0.1528 0.0322828
Place of residence 1.21 1.10 0.8271 0.1729 0.0204496
Marital status 1.40 1.19 0.7118 0.2882 0.0199674
Household income 1.06 1.03 0.9474 0.0526 0.0150253
Life satisfaction level 1.08 1.04 0.9237 0.0763 0.0133721
Alcohol consumption level 1.41 1.19 0.7098 0.2902 0.0122051
Exercise 1.13 1.06 0.8827 0.1173 0.0101177
Smokes 1.45 1.20 0.6889 0.3111 0.0455896
Type of toilet 1.36 1.16 0.7368 0.2632 0.0092655
Employment status 1.34 1.16 0.7462 0.2538 0.0122931
Nutrition status 1.21 1.10 0.8297 0.1703 0.0158066
Previously diagnosed with TB 1.02 1.01 0.9810 0.0190 0.0814654
Felt depressed in the past week? 1.05 1.02 0.9537 0.0463 0.0196538

Multicollinearity is a state which occurs when a combination of two or more covariate are

highly correlated. When it occurs it becomes a problem, as the estimates will be imprecise

and results to wider standard errors. The common method to check for multicollinearity

is the variance inflation factor (VIF). In literature it is argued that maximum level of

the VIF that does not raise concern about multicollinearity should be 5 or 10. The

multicollinearity was tested using collin command (Ender, 2010) in STATA 14. The

results reveal that no VIF values were close to both the maximum levels for all the

covariates in Table D.1. Hence, all the covariates were included in the models.

160



Appendix E

Proportional odds assumption of the

cumulative logit model

One of the underlying assumption in the cumulative logit (proportional odds) model is

that the effects of any covariates included in the model are identical across the differ-

ent thresholds, thus this is termed the assumption of proportional odds or the parallel

regression assumption.

Table E.1: Testing for the proportional odds assumption.

Model AIC Log-likelihood
Difference in log-
likelihood (2(lM − lC))

df p-value

Cumulative logit 39169 -19533.00
14.00 9 0.1151

Multinomial logit 39172 -19526.00

In order to have a substantial interpretation of the results from the cumulative logit

model, the validity of the proportional odds assumption was tested. Table E.1 presents

the results of the proportional odds assumption test based on the likelihood ratio test.

The results reveal that the assumptions were not violated (p = 0.1151), since the p-value

is greater than 0.05. Furthermore, it can be seen that the cumulative logit model has the

smaller Akaike information criterion (AIC) (39169) as compared to the multinomial logit

model.
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Appendix F

NIDS data sample distribution of

the fours waves for all the spatio-

temporal analysis.

Table F.1: Sample sizes of respondents for the four NIDS waves in South Africa

Wave 1 2 3 4 Total

Sub-sample (n) 7462 6348 13161 15707 42678

Table F.1 presents the sample size of the NIDS waves in South Africa. As shown in the

table, wave 3 and 4 accounts for a large sample size compared to the other two waves.

This may be due to most respondents joining the study in recent years.
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