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Abstract

Let G = (V, E) be a graph. For any real valued function j : V -+ Rand S ~ V, let

j(S) = LUEs j(u). The weight of j is defined as j(V). A signed k-subdominating

function (signed kSF) of G is defined as a function j : V -+ {-I, I} such that

j(N[v]) ~ 1 for at least k vertices of G, where N[v] denotes the closed neighborhood

of v. The signed k-subdomination number of a graph G, denoted by I;sll(G), is

equal to min{j(V) I j is a signed kSF of G}. If instead of the range {-I, I}, we

require the range {-I, 0, I}, then we obtain the concept of a minus k-subdominating

function. Its associated parameter, called the minus k-subdomination number of G,

is denoted by I;/Ol(G).

A total signed dominating function (signed TkSF) of G is defined as a function

j : V -+ {-I, I} such that j(N(v)) ~ 1 for at least k vertices of G, where N(v)

denotes the open neighborhood of v. The total signed k-subdomination number of

a graph G, denoted by ,;;;~l(G), is equal to min{j(V) I j is a signed TkSF of G}.

If instead of the range {-I, I}, we require the range {-I, 0, I}, then we obtain the

concept of a total minus k-subdominating function. Its associated parameter, called

the total minus k-subdomination number of G, is denoted by ,;;;~Ol(G).

In Chapter 2, we survey recent results on signed and minus k-subdomination in

graphs.

In Chapter 3, we compute the signed and mmus k-subdomination numbers for

certain complete multipartite graphs and their complements, generalizing results

due to Holm [30].

In Chapter 4, we give a lower bound on the total signed k-subdomination number

in terms of the minimum degree, maximum degree and the order of the graph. A

lower bound in terms of the degree sequence is also given. We then compute the
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total signed k-subdomination number of a cycle, and present a characterization of

graphs G with equal total signed k-subdomination and total signed £-subdomination

numbers. Finally, we establish a sharp upper bound on the total signed k­

subdomination number of a tree in terms of its order nand k where 1 ::; k < n, and

characterize trees attaining these bounds for certain values of k. For this purpose,

we first establish the total signed k-subdomination number of simple structures,

including paths and spiders.

In Chapter 5, we show that the decision problem corresponding to the computation

of the total minus domination number of a graph is NP-complete, even when

restricted to bipartite graphs or chordal graphs. For a fixed k, we show that

the decision problem corresponding to determining whether a graph has a total

minus domination function of weight at most k may be NP-complete, even when

restricted to bipartite or chordal graphs. Also in Chapter 5, linear time algorithms

for computing 1~;l(T) and 1~;Ol(T) for an arbitrary tree T are presented, where

n = n(T).

In Chapter 6, we present cubic time algorithms to compute 1;k;l(T) and 1;k;Ol(T)

for a tree T. We show that the decision problem corresponding to the computation

of l;k;l (G) is NP-complete, and that the decision problem corresponding to the

computation of 1;k;Ol (T) is NP-complete, even for bipartite graphs. In addition, we

present cubic time algorithms to compute Iksll (T) and Iks101(T) for a tree T, solving

problems appearing in [25].
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Chapter 1

INTRODUCTION

In the first section of this chapter, we define the necessary concepts that will be

used throughout the thesis. Then, in Section 1.2, we give a brief overview of the

history of domination theory and define the necessary domination concepts that will

be used.

1.1 Preliminary definitions

A graph G is a finite nonempty set of objects called vertices (the singular is vertex)

together with a (possibly empty) set of unordered pairs of distinct vertices of G

called edges. The vertex set of G is denoted by V (G) (or V if no confusion is likely),

while the edge set of G is denoted by E(G) (or E). The number of vertices in V(G)

is denoted by n(G) which is also known as the order of the graph G, while the

number of edges in E(G) is denoted by m(G). A graph G is trivial if n(G) = 1

and non-trivial if n(G) 2: 2. For a graph G, if n(G) = nand m(G) = m, then G is

called a (n, m)-graph. Unless otherwise specified, the symbols n and m (or n(G) and

m(G)) will be reserved exclusively for the order and number of edges, respectively,

1



CHAPTER 1. INTRODUCTION 2

of a graph G. By G = (V, E) we will imply the graph G with vertex set V and edge

set E.

The edge e = uv is said to join the vertices u and v. If e = uv is an edge of G, then u

and v are adjacent vertices, while u and e are incident as are v and e. Furthermore,

if el and e2 are distinct edges of G incident with a common vertex, then el and e2

are adjacent edges.

The complement G of a graph G is the graph with vertex set V(G) and such that

two vertices are adjacent in G if and only if these vertices are not adjacent in G.

The degree of a vertex v in a graph G is the number of edges of G incident with

v and is denoted by deg(v). If the graph G with respect to which the degree is

considered is not clear from the context, we shall write degc(v) to denote such a

degree. The minimum degree of a vertex in G is denoted by 8(G) and the maximum

degree by .6.(G). If there is a vertex v E V(G) such that deg(v) = 0, then v is called

an isolated vertex, and if deg(v) = 1, then v is called an end-vertex of G. A vertex

is called odd or even depending on whether its degree is odd or even.

The vertex adjacent to an end-vertex is called a remote vertex of G. A graph is

regular of degree r if for each vertex v of G, deg(v) = r; such graphs are also called

r-regular. A graph is complete if every two of its vertices are adjacent. A complete

(n, m)-graph is therefore a regular graph of degree n - 1 having m = n(n
2
-1) edges;

we denote this graph by K n . The complement K n of K n has n vertices and no edges

and is referred to as the empty graph of order n.

A graph H is a subgraph of a graph G if V(H) ~ V(G) and E(H) ~ E(G). If H

is a subgraph of G, then we write H ~ G. If U is a nonempty subset of the vertex

set V(G) of a graph G, then the subgraph G[U] of G induced by U is the graph with

vertex set U and whose edge set consists of all those edges of G incident with two

elements of U.
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Let u and v be (not necessarily distinct) vertices of a graph G. A u-v walk of G

is a finite, alternating sequence u = VD, el, VI, e2, ... ,Vn-I, en, Vn = V of vertices and

edges, beginning with vertex u and ending with vertex v, such that ei = Vi-IVi for

i = 1,2, ... , n. The number n (the number of occurrences of edges) is called the

length of the walk. A trivial walk contains no edges. Often only the vertices of a

walk are indicated since the edges present are then evident. A u-v walk is closed

or open depending on whether u = V or u =1= v. A u-v trail is a u-v walk in which

no edge is repeated, while a u-v path is a u-v walk in which no vertex is repeated.

A nontrivial closed trail of a graph G is referred to as a circuit of G, and a circuit

VI, V2,···, Vn, VI (n 2': 3) whose n vertices are distinct is called a cycle. A graph of

order n that is a path (or a cycle) is denoted by Pn (or Cn ), respectively. Therefore,

Pn : VI, V2, ... , Vn indicates a path of length n - 1 on the vertices VI, V2, ... , Vn , while

Cn indicates a cycle of length n on the same vertices.

A graph G is connected if for every pair of distinct vertices u, V E V (G) there exists

a path between u and V in G, and disconnected if it is not connected. The relation

'is connected to' is an equivalence relation on the vertex set of every graph G. Each

subgraph induced by the vertices in a resulting equivalence class is called a connected

component or simply a component of G.

A tree is a connected graph which has no cycles. A directed tree is an asymmetric

digraph whose underlying graph is a tree [7]. A directed tree T is called a rooted

tree if there exists a vertex r of T, called the root, such that for every vertex V of

T, there is an r-v path in T. If T is a rooted tree, then it is customary to draw T

with root r at the top, say level 0, the vertices adjacent to r are placed one level

below, at level 1, and any vertex adjacent to a vertex at level 1 is at level 2, etc.

More formally, a vertex x in a rooted tree with root r is at level i if and only if the

r-x path in T has length i. Let T be a rooted tree. If a vertex v of T is adjacent to

u and u lies in the level below v, then u is called a child of v, and V is the parent of
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u. An end-vertex of a tree, or a vertex with no children, is also called a leaf of the

tree. The set of all of the leaves of a tree T is denoted by L(T). A vertex that is

adjacent to a leaf is called a support vertex.

A spider is a tree with at most one vertex of degree greater than two. If a spider

T is a path, we call one of the end-vertices of T the head of the spider; otherwise,

we call the vertex of maximum degree the head of the spider. The paths emanating

from the head of the spider we call the legs of the spider. An even spider is a spider

with all legs of even length. In particular, a path of even length (and therefore odd

order) is an even spider.

If U ~ V(G) then G - U indicates the subgraph of G induced by the vertices of

V(G) - U. If F ~ E(G) then G - F indicates the subgraph of G with vertex set

equal to that of G and edge set consisting of all edges in E(G) - F. Suppose G I

and G2 are two graphs with disjoint vertex sets. Then the union G = GI U G2 has

vertex set V(G) = V(Gd U V(G2 ) and edge set E(G) = E(Gd U E(G2 ). A graph

G is isomorphic to a graph H, denoted G rv H, if there exists a one-to-one mapping

qy, called an isomorphism, from V(G) onto V(H) such that qy preserves adjacency,

that is uv E E(G) if and only if qy(u)qy(v) E E(H).

A graph G is r-partite, r ?: 1, if it is possible to partition V into r subsets

VI, V2 , ..• , v;. (called partite sets) such that every element of E joins a vertex of

Vi to a vertex of Vj, i =1= j. If G is a I-partite graph of order n, then G ~ K n .

For r = 2, such graphs are called bipartite graphs, and where the specification of r

is of no significance, an r-partite graph is also referred to as a multipartite graph.

A complete r-partite graph G is an r-partite graph with partite sets ~, V2 , ... , v;.
having the added property that if u E Vi and v E Vj, i =1= j, then uv E E(G).

If IVi I = ni, then this graph is denoted by K (nI, n2, ... , n r ). (The order of the

numbers nI, n2,···, n r is not important.) A complete bipartite graph with partite

sets VI and 112, where IVII = m and IV2 ! = n, is denoted by K(m, n) or Km,n. The
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graph K1,n-l is called a star and its order is n; in this case, the vertex in the partite

set containing only one vertex is referred to as the center of the star. The split graph,

denoted by Sm,n, is defined as the complete multipartite graph with one partite set

of cardinality m and n partite sets of cardinality one.

The following definitions and explanations concerning the theory of NP­

completeness may be found in [12J. The theory of NP-completeness provides many

straightforward techniques for proving that a given problem is "just as hard" as some

other problems that are known to be NP-hard and have been confounding experts

for years. The knowledge that a certain problem is NP-complete provides valuable

information on approaching the problem. In short, the primary application of the

theory of NP-completeness is to assist algorithm designers on deciding whether

a particular problem is difficult or not. A problem is intractable if there is no

polynomial time algorithm that can solve it. The principal technique used for

demonstrating that two problems are related is that of transforming one to the other.

Such a transformation provides the means for converting any algorithm that solves

the second problem into a corresponding algorithm for solving the first problem. The

class NP of decision problems (problems whose solutions are either "yes" or "no")

is a class of problems that can be solved in polynomial time by a nondeterministic

computer. The equivalence class consisting of the "hardest" problems in NP is

known as the class of NP-complete problems. However, problems outside of NP may

also be hard. A problem which is at least as hard as the NP-complete problems, is

called NP -hard.

The honor of being the "first" NP-complete problem goes to a decision problem

from Boolean logic known as the SATISFIABILITY problem (SAT, for short).

Let U = {Ul' U2, . .. ,urn} be a set of Boolean variables. A truth assignment for U

is a function t : U -t {T, F}. If t(u) = T we say that u is "true" under t, and if

t(u) = F we say that u is "false". If u is a variable in U, then u and u are literals
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over u. The literal u is true if and only if the variable u is false.

A clause over U is a set of literals over U, such as {Ul, U3, us}. A collection C of

clauses over U is satisfiable if and only if there exists some truth assignment for U

that simultaneously satisfies all the clauses in C.

For any further information on the subject of NP-completeness the reader is referred

to [12].

1.2 Domination in graphs

The earliest ideas of dominating sets seem to date back to the origin of the game of

chess in India over 400 years ago, in which one studies sets of chess pieces which cover

or dominate various opposing pieces or various squares of the chessboard. There are

many other examples of dominating sets.

One such example is the situation of a prison in which prisoners must be monitored

by guards at all times. The assumption here is that the cells are set up in such a way

that a guard in one cell could monitor the prisoners in the adjacent cells. The issues

of budget and personnel dictate to have as few guards as possible. The question

then becomes: what is the minimum number of guards necessary to monitor or

"dominate" all the cells? The graph that represents this situation is one in which

the vertices represent the cells and the edges indicate which cells are adjacent to

each other. The question stated above can be answered by finding the domination

number of the associated graph.

The concept of total domination can be illustrated by assuming that there is a

suspicion of misconduct among the guards. Thus, not only does each prisoner need

to be monitored by a guard, but each guard must be in the view of another guard.

To find the minimum number of guards necessary in this situation, we need to find

the total domination number of the associated graph.
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Finally, the topic of domination was given formal mathematical definition with the

publications of books by Berge [2) in 1958 and Ore [32} in 1962. Ore first referred to

the domination number of a graph, while Berge used the term coefficient oj extremal

stability. Until 1977 relatively little work was done on this topic until Cockayne and

Hedetniemi published a survey paper [5} of the results that had been obtained up to

that time. Since that time, many papers on domination and variations of domination

have been published. The vast literature on this subject has been surveyed and

detailed in two books by Haynes et al. [24, 25}.

One common definition of domination is given in terms of sets of vertices. Let G be

a graph and D a set of vertices such that every vertex in G is in D or adjacent to

at least one vertex in D. Then D is called a dominating set of G, and the smallest

cardinality of such a dominating set of G is defined as the domination number of G,

denoted by ,(G).

A functional definition of domination is also possible and allows for several

interesting variations. Let G = (V, E) be a graph and let v be a vertex in V.

The open neighborhood of v is defined as the set of vertices adjacent to v, Le.,

N(v) = {u/uv E E}. The closed neighborhood of v is N[v} = N(v) U {v}. For a

set S of vertices, we define the open neighborhood, N(S), of S as UvEsN(v), and

the closed neighborhood, N[S], of S as N(S) U S. The sets Nc(v) (or Nc[v}) will

respectively denote the open (or closed) neighborhood of v with respect to the graph

G. For any real valued function j : V -t Rand S ~ V, let j(S) = LuES j(u). The

weight of f is defined as f(V). We say that f : V -t {O, I} is a dominating function

of G if f(N[v)) ~ 1 for all v E V. Since the characteristic function of a dominating

set is also a dominating function, ,(G) can equivalently be defined as min{f(V) I f

is a dominating function of G}.

Changing the range of f, defined above, to {-I, I} or {-I, 0, I} subject to the same

restrictions on f as above, lead to signed domination [ll} and minus domination [10]
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in graphs.

More specifically, a mmus dominating function is defined in [10] as a function

f : V -+ {-I,D, I} such that f(N[v]) 2: 1 for every v E V. The minus domination

number of a graph G is "Y-(G) = min{f(V) I f is a minus dominating function of

G}.

A signed dominating function is defined in [11] as a function f : V -+ {-I, I} such

that f(N[v]) 2: 1 for every v E V. The signed domination number of a graph G is

"Ys(G) = min{f(V) I f is a signed dominating function of G}.

A majority dominating function of G is defined in [4] as a function f : V -+ {-1, 1}

such that f(N[v]) 2: 1 for at least half the vertices v in V. The majority domination

number of a graph G is "Ymaj(G) = min{f(V) I f is a majority dominating function

of G}.

Let k E Z+ such that 1 ~ k ~ IVI. More generally, a signed k-subdominating

function for G, or signed kSF, is defined in [8] as a function f : V -+ {-I, I} such

that f(N[v)) 2: 1 for at least k vertices of G. The signed k-subdomination number

of a graph G, denoted by "Yksll (G), is equal to min{f(V) I f is a signed kSF of G}.

In the special cases where k = IVI and k = r~l, "Yksll (G) is respectively the signed

domination number and the majority domination number.

A minus k-subdominating function for G, or minus kSF, is defined in [3} as a

function f : V -+ {-l,D,l} such that f(N[v]) 2: 1 for at least k vertices of G.

The minus k-subdomination number of a graph G, denoted by "Yks101(G), is equal to

min{f(V) I f is a minus kSF of G}. In the special case where k = IV!, 'k/01(G) is

the minus domination number.

If every vertex of a graph is adjacent to some vertex of a set S, then S is called

a total dominating set of G. For b(G) 2: 1, the total domination number, denoted

by "Yt (G), is defined as the minimum cardinality of a total dominating set of G.
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Alternatively, j : V -t {O, 1} is a total dominating junction of G if j (N (v)) 2:: 1 for

all v E V. Since the characteristic function of a total dominating set is also a total

dominating function, It(G) can equivalently be defined as min{j(V) I j is a total

dominating function of G}.

An analogous theory for total k-subdominating functions arise when instead of using

the "closed" neighborhood in the definition of a k-subdominating function, we use

the ((open" neighborhood. A total signed k-subdominating junction for G, or signed

TkSF, is defined as a function j : V -t {-I, 1} such that j(N(v)) 2:: 1 for at least

k vertices of G. The total signed k-subdomination number of a graph G, denoted

by 1;k;l(G), is equal to min{j(V) I j is a signed TkSF of G}. In the special case

where k = IVI, 1;k;l(G) is the total signed domination number studied in [27, 37].

Similarly, a total minus k-subdominating junction for G, or minus TkSF, is defined

as a function j : V -t {-1, O,l} such that j(N(v)) 2:: 1 for at least k vertices of

G. The total minus k-subdomination number of a graph G, denoted by 1;k;01(G), is

equal to min{j(V) I j is a minus TkSF of G}.

The motivation for studying the signed (minus, respectively) total k-subdomination

number is rich and varied from a modeling perspective. For example, by assigning

the values -1 or +1 (as well as 0, in the case for minus) to the vertices of a graph

we can model networks of people or organizations in which global decisions must

be made. We assume that each individual has one vote and that each individual

has an initial opinion. We assign +1 to vertices (individuals) which have a positive

opinion and -1 to vertices which have a negative opinion (as well as 0, in the case

of minus, to vertices which have a neutral opinion). We also assume, however,

that an individual's vote is affected by the opinions of neighboring individuals.

In particular, each individual gives equal weight to the opinions of neighboring

individuals (thus individuals of high degree have greater ((influence"). A voter votes

(aye' if there are more vertices in its (open) neighborhood with positive opinion
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than with negative opinion, otherwise the vote is 'nay'. We seek an assignment of

opinions that guarantee at least k vertices voting aye. We call such an assignment

of opinions a k-positive assignment. Among all k-positive assignments of opinions,

we are interested primarily in the minimum number of vertices (individuals) who

have a positive opinion. The signed (minus, respectively) total k-subdomination

number is the minimum possible sum of all opinions, -1 for a negative opinion and

+1 for a positive opinion, in a k-positive assignment of opinions. The signed (minus,

respectively) total k-subdomination number represents, therefore, the minimum

number of individuals which can have positive opinions and in doing so force at

least k individuals to vote aye.

Suppose we are given real valued functions f, 9 : V -t R. Then 9 < f if and only if

g(v) ~ f(v) for every v E V and g(w) < f(w) for at least one w E V.

If f is a kSF (total kSF, respectively) of G, then the set of covered vertices of f is

denoted by C, and defined by C, = {v E Vlf(N[v)) ~ I} (C, = {v E Vlf(N(v» ~

I}, respectively). If v E C" we say v is covered by f; otherwise it is uncovered by f.

In Chapter 2, we survey recent results on signed and minus k-subdomination in

graphs.

In Chapter 3, we compute the signed and minus k-subdomination numbers for

certain complete multipartite graphs and their complements, generalizing results

due to Holm [30].

In Chapter 4, we give a lower bound on the total signed k-subdomination number

in terms of the minimum degree, maximum degree and the order of the graph. A

lower bound in terms of the degree sequence is also given. We then compute the

total signed k-subdomination number of a cycle, and present a characterization of

graphs G with equal total signed k-subdomination and total signed f-subdomination

numbers. Finally, we establish a sharp upper bound on the total signed k­

subdomination number of a tree in terms of its order nand k where 1 < k < nand- ,
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characterize trees attaining these bounds for certain values of k. For this purpose,

we first establish the total signed k-subdomination number of simple structures,

including paths and spiders.

In Chapter 5, we show that the decision problem corresponding to the computation

of the total minus domination number of a graph is NP-complete, even when

restricted to bipartite graphs or chordal graphs. For a fixed k, we show that

the decision problem corresponding to determining whether a graph has a total

minus domination function of weight at most k may be NP-complete, even when

restricted to bipartite or chordal graphs. Also in Chapter 5, linear time algorithms

for computing l~~l(T) and l~~Ol(T) for an arbitrary tree T are presented, where

n = n(T).

In Chapter 6, we present cubic time algorithms to compute lik~l(T) and lik~Ol(T)

for a tree T. We show that the decision problem corresponding to the computation

of lik~l(G) is NP-complete, and that the decision problem corresponding to the

computation of ltk~Ol (G) is NP-complete, even for bipartite graphs. In addition,

we present cubic time algorithms to compute i ks
ll (T) and li:s101(T) for a tree T,

solving problems appearing in [25].



Chapter 2

A LITERATURE SURVEY

In this chapter, we survey the literature on majority domination, signed k­

subdomination, and minus k-subdomination in graphs.

2.1 Majority Domination in Classes of Graphs

The majority domination numbers of the following classes of graphs have been

determined.

Theorem 2.1 [4] For n 2: 1,

'Ymaj(Kn) = {

Theorem 2.2 [4] For n 2: 2,

1 if n is odd

2 if n is even

1 if n is odd

2 if n is even

12
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Theorem 2.3 [4] For t ~ s ~ 2,

{

2 - t if s is even
'Ymaj(Ks,t) =

3 - t if s is odd

Theorem 2.4 [4] For t ~ s ~ 1,

13

'Ym'j(K, U Kt) = {
1 - s if t is odd

2 - s if t is even

The majority domination number has also been determined for paths and cycles.

This will be addressed in Section 2.2, where we look at the first generalization of

majority domination in graphs.

Holm [30] determines the majority domination number of the following complete

multipartite graphs.

Theorem 2.5 [3D} For integers m > n ~ 1,

( )
{

I if n + m is odd
'Ymaj K 1 1, n = .
~ 2 ifn+m is even

m

Theorem 2.6 [30] For integers m ~ 2 and n ~ 3,

{

2 - n if m and n are even

'Ymaj(Kn , ... ,n) = 3 - n if m is even and n is odd
~

m 4 - n if m is odd

Theorem 2.7 [30] 'Ymaj(K2, ... , 2) = o.
"'--v--'

m

The following result involves the disjoint union of a complete graph and a graph G.
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Theorem 2.8 [30] Suppose that n > m 2: 1. If G is a graph of order m and

H = K n U G, then

{

I-m
rmaj(H) =

2-m

Theorem 2.9 [30] For integers m > n 2: 1,

if n is odd

if n is even

{

I - n if m and n are odd

rmaj(Krn U Kn ) = 2 - n if m is even

3 - n if n is even and m is odd

Holm also determines the majority domination number of the union of m complete

graphs of order n.

Theorem 2.10 [3D} For integers m > 2 and n 2: 2,

U
rn _ { rm/21 - nlm/2J

rmaj( K n ) -

i=l 2rm/21 - nlm/2J
if n is odd

if n is even

2.2 Signed k-subdomination in Graphs

In this section, we survey some recent results concerning signed k-subdomination in

graphs.

Let f be a signed kSF of G = (V, E). Let Pt = {v E V lJ(v) = I} and

Bt = {v E V I f(N[v]) E {I, 2}}. For A, B ~ V, we say A dominates B, denoted by

A >- B, if for each bE B, N[b] n A i= 0.

Theorem 2.11 [8] A signed kSF f is minimal if and only if for each k-subset K

ofCt,KnBt >- Pto
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Let l(n, k) be the minimum value of Iksll (T) taken over all trees T of order n

(n 2: k) and S(n, k) be the set of such trees T with Tksll (T) = T(n, k). Further,

let cr(T) be the degree sum of all vertices of T with degree at least three and define

T(n, k) = {T E S(n, k) Icr(T) is minimum}.

Theorem 2.12 [8] For any n, S(n, k) = {Pn }.

Theorem 2.13 [8] For n 2: 2 and 1 :S k :S n,

Note that if k = rIl, then we obtain the following result.

Theorem 2.14 [8] For n 2: 3,

{
-2ln-4J

Imaj(Pn)= 6
ln

-3J1-2 ­
6

for n even

for n odd

Using Theorems 2.12 and 2.13, Cockayne and Mynhardt established the following

result.

Theorem 2.15 [8} If T is a tree of order n 2: 2 and k is an integer such that

1 :S k :S n, then

with equality for T = Pn .

This result sheds new light on the following result.

Theorem 2.16 [11] Let T be a tree of order n 2: 2. Then Ts(T) 2: nj4 with equality

if and only if T is a path on 3j + 2 vertices, for j 2: o.
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Let n ~ 2 be an integer and let k be an integer such that 1 :::; k :::; n. Trees T

of order n for which Tks11 (T) = 2l(2k + 4)/3J - n were recently characterized by

Hattingh and Ungerer. The statement of this result is rather intricate and the reader

is therefore referred to [22] for the details.

The comet Cs,t, where sand t are positive integers, denotes the tree obtained by

identifying the center of the star K 1 ,s with an end-vertex of Pt, the path of order

t. So Cs,l rv K 1,s and C1,P-1 ~ Pp. Beineke and Henning [1] computed Tks11 (Cs,t)

for k = s + t and for k = rstl + 1. Hattingh and Ungerer extended their result as

follows.

Theorem 2.17 [23} Let n, sand t be positive integers such that n = s + t and let

G = Cs,t. If S, t ~ 2, then

2l(2k+4)/3J-n ifk:::;t-l

2(k - r~l + 2) - n if t :::; k and (k:::; t + l~J - 2, t == 0 (mod 3) or

Tks
11

(G) = k :::; t + l~J, t == 1 (mod 3) or

k :::; t + l~J - 1, t == 2 (mod 3))

2(k - r~1+ 1) - n otherwise.

The value of Tks11 (Cn) is calculated in [19].

Theorem 2.18 [19] If n ~ 3 and 1 ~ k :::; n - 1, then

if k = n - 1 and k =1 (mod 3)

otherwise.

This result generalizes the following.

Theorem 2.19 [4} If n ~ 3, then
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Theorem 2.20 [19] If n 2:: 3 and 1 ~ k ~ n, then for every r-regular (r 2:: 2) graph

G of order n,

"I',U(G) :::1
and these bounds are best possible.

kr +3 - n r odd
r+l

k r +2
- n for r even

r+l '

The following result combines results due to Dunbar, Renning, Redetniemi and

Slater (r even) [11] and Renning and Slater (r odd) [29}.

Theorem 2.21 For every r-regular (r 2:: 2) graph G of order n,

{

.1!!... r odd
r+l

IS(G) 2::

r~l r even.

Theorem 2.22 [36} For every cubic graph G of order n, Imaj(G) 2:: -~.

Since Imaj(2K4 ) = -2 = -~, this bound is best possible.

Theorem 2.23 [26] For every r-regular (r 2:: 2) graph G = (V, E) of order n,

( l-r ) r odd2{r+l) n

Imaj (G) 2::

(2{;~1)) n r even,

and these bounds are best possible.

Note that, if k = n in the statement of Theorem 2.20, then we obtain the result of

Theorem 2.21, and, if k = r~1, then we obtain the result of Theorem 2.23.
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Theorem 2.24 [4] For any connected graph G of order n,

{

I if n is odd
Imaj (G) ::; .

2 if n is even

18

1 and

Obviously, if f is a majority dominating function of G = (V, E), then f is a signed

kSF for each k ::; rlVI/2l Hence we have the following corollary.

Corollary 1 [8] For any connected graph G of order n and integer k ::; r~1,

11 { 1 if n is odd
Iks (G)::; .

2 if n is even

That this bound is sharp can be seen by noting that Iks11 (K2t+1 )

Iks11 (K2t ) = 2 for each k ::; t + 1.

In [8], this bound is improved for trees and extended to an upper bound for Iks11 (T)

for all k E {I, ... , n}.

Theorem 2.25 [8} For any tree T of order n and integer k E {I, ... ,n}, Iks11 (T) ::;

2(k + 1) - n.

That this bound is exact for trees of order n when k ::; ~n follows easily since

Iks11 (K1,n-l) = 2(k + 1) - n if k ::; ~n. The following result, initially formulated as

a conjecture by Cockayne and Mynhardt [8], was recently settled independently by

Chang et al. and Kang et al.

Theorem 2.26 [6, 31] For any tree T of order n and any k with ~n < k <
n, li:s11 (T) ::; 2k - n.

The following conjecture of Cockayne and Mynhardt is shown to be false in [28} for

the special case when k = rn~ll.
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Conjecture 2.27 [8] For any connected graph G of order n and any k with

~n < k ~ n, /ksll (G) ~ 2k - n.

The remainder of Cockayne and Mynhardt's paper [8J is devoted to determining

conditions on k such that /ksll (T) ~ 2k - n for certain classes of trees of order n.

Theorem 2.28 [31] For any connected graph G of order n and any k with ~ < k ::;

n, /ks
ll (G) ~ 2rn_~+ll(n - k + 1) - n.

In [6], Chang et al. give a lower bound for the signed k-subdomination number of a

graph in terms of its order and degree sequence.

Theorem 2.29 [6] If G is a graph of order n with degree sequence d1 ::; d2 ::; ••• ::;

dn, then /ks
ll (G) 2: -n + dn~l 2:~=1 rdj;2l

Lastly, consider the decision problem

PARTIAL SIGNED DOMINATING FUNCTION (PSDF)

INSTANCE: A graph G, positive rational number r ~ 1 (in its simplest form) and

an integer f..

QUESTION: Is there a function f : V(G) -t {-I, I} of weight f. or less for G such

that IC/I 2: rIV(G)I?

Hattingh, Henning and Ungerer [19] showed that PSDF is NP-complete by

describing a polynomial transformation from the following problem [12]:

PLANAR 4-REGULAR DOMINATING SET

INSTANCE: A planar 4-regular graph G = (V, E) and a positive integer k ::; ~.

QUESTION: Is there a dominating set of cardinality k or less for G?

If r = 1, then PSDF is the NP-complete problem SIGNED DOMINATION

[18]. Hence, we also assume that 0 < r < 1.



CHAPTER 2. A LITERATURE SURVEY

Theorem 2.30 [19] The decision problem PSDF is NP-complete.

This result generalizes the corresponding result of [4].

2.3 Minus k-subdomination in Graphs

20

In this section, we survey some recent results concerning minus k-subdomination in

graphs.

Let f be a minus kSF for the graph G = (V, E). We use three sets for such an f:

{v E VIf[v] = I},

{v E Vlf(v) ~ O}

{v E Vlf[v] ~ I}.

As before, a vertex v E Cf is covered by f; all other vertices are uncovered by f.

Note that Bf ~ Cf.

Theorem 2.31 [3] A minus kSF f is minimal if and only iffor each k-subset K of

Cf we have Bf n K >- Pf'

Theorem 2.32 [3] If n ~ 2 and 1 ::; k ::; n - 1, then 'ks101(Pn) = r~l + k - n + 1.

The following result is proved in [10].

Hattingh and Ungerer [21] established the following result.
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Theorem 2.34 [21] If T is a tree of order n 2: 2 and k is an integer such that

1 ~ k ~ n - 1, then

Moreover, this bound is best possible.

However, trees which achieve the lower bound were not characterized in [21]. The

following result solves this problem.

Theorem 2.35 [20} Let n 2: 2 and let 1 ~ k ~ n - 1 be an integer. Then, for a

tree T of order n, '''(ks101 (T) = k - n + 2 if and only if one of the following holds.

1. T has a vertex v adjacent to at least k end-vertices.

2. T has a vertex v with deg(v) = k and at least k - 1 neighbors of v are end­

vertices.

3. T has two adjacent vertices u and v with deg(u) + deg(v) = k + 2 such that u

and v together are adjacent to at least k - 2 end-vertices.

4. T has a vertex w of degree three and two of the neighbors of w together are

adjacent to exactly k - 3 other vertices, all of which are end-vertices.

This result supplements the following result of [10J.

Theorem 2.36 [10J If T is a tree, then ';;slOl(T) 2: 1. Furthermore, equality holds

if and only if T is a star.

The value of 'ks101 (G), where G is a comet, is calculated in [23J.
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Theorem 2.37 [23] Let n, sand t be positive integers such that n = s + t, let k be

an integer such that 1 ::; k ::; n - 1 and let C = Cs,t. If t ~ 2 and s ~ 2, then

{

k - n + 2 if 1 < k < S-101 C - - -
'Yks ()- rk-~+11+k-n+1 ifs+1::;k::;n.

Note that 'Y-(Cs,t) = rt~11, where sand t are positive integers.

The value of 'Yks101 (Cn ) is calculated in [21].

Theorem 2.38 [21} If n ~ 3 and 1 ::; k ::; n - 1, then

-101 { rn~21 if k = n - 1 and (k =0 or k =1 (mod 3) )
'Yks (en) =

2l 2ki 4J - n otherwise.

This result supplements the following result.

Lastly, consider the decision problem

PARTIAL MINUS DOMINATING FUNCTION (PMDF)

INSTANCE: A graph C, positive rational number r ::; 1 (in its simplest form) and

an integer f.

QUESTION: Is there a function f : V(C) --+ {-1, 0, 1} of weight f or less for C

such that ICfl ~ rIV(C)1 ?

Hattingh, McRae and Ungerer [20] showed that PMDF is NP-complete by

describing a polynomial transformation from the following NP-complete problem

[12]:

EXACT COVER BY 3-SETS (X3C)
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INSTANCE: A set X = {Xl, ... , X3q} and a set C = {Cl,"" Cd where Cj ~ X

and ICjl = 3 for j = 1, ... ,t.

QUESTION: Does C have a pairwise disjoint q-subset of C whose union is X (i.e.

an exact cover)?

If r = 1, then PMDF is the NP-complete problem MINUS DOMINATING

FUNCTION [9]. Hence, we also assume that r < 1.

Theorem 2.40 [20] PMDF is NP-complete, even for bipartite graphs.



Chapter 3

COMPLETE MULTIPARTITE

GRAPHS

3.1 Introduction

We devote this chapter to the signed and minus k-subdomination numbers of certain

complete multipartite graphs and their complements. In Section 3.2, we compute

the values of /ksl1 (Kn) and /ks101(Kn). In Section 3.3, we determine the values

of /ksl1 (Km,n) and /k}Ol(Km,n), where Km,n is the complete bipartite graph with

partite sets Vm and Vn, where IVml = m and IVnl = n. In Section 3.4, we compute

the values of Y;;sl1(Km U K n) and /k/01(Km U Kn). Note that Km U Kn = Km,n' In

Section 3.5, we determine /ksl1 (Sm,n) and /ks101(Sm,n)' The results of this chapter

have been published in [17].

The notation that we will need in this chapter is as follows. Suppose f is a signed or

a minus kSF of a graph G. The set of positive vertices (zero vertices, negative

vertices, respectively) is defined as Pt = {vlf(v) = I} (Zt = {vlf(v) = O},

Nt ~ {vlf(v) = -I}, respectively). Note that f is a signed kSF, then Zt = 0.

24
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For v E V(G), we will abbreviate f(N[v]) as f[v].

3.2 Complete graphs

25

In this section we compute the values of Iksll (G) and Iks101(G) for a complete

graph G.

Proposition 3.1 If 1 :S k :S n, then

{

I if n is odd
Iks

ll
(Kn) = 2

if n is even

Proof. Since k 2: 1, there is a vertex v E V(Kn ) n Cf. If n is odd, 1 :S f[v) =

f(V(Kn )). If n is even then 1 :S f[v] = f(V(Kn )) implies that IPfl 2: ~ + 1. Thus,

f(V(Kn )) 2: (~ + 1) + (-1)(~ - 1) = 2.

Let U~ V(Kn ) such that /U/ = l~J + 1. The function f defined by

{

I if v E U
f(v) =

-1 otherwise

is a kSF with

( ( ))
_ { 1 if n is oddf V K n - . ' (;

2 if n is even

Proposition 3.2 If 1 :S k :S n, then Iks101(Kn) = 1.

Proof. Since k 2: 1, there is a vertex v E V(Kn ) n Cf. Thus, 1 :S J[v] = f(V(Kn )).

The function f that assigns 1 to exactly one vertex of K n and 0 to all other vertices

of K n is a kSF of K n such that f(V(Kn )) = 1. (;
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3.3 Complete bipartite graphs

26

In this section we compute the value of Iks11 (G) and Iks101(G) for complete bipartite

graphs G. The partite sets of Km,n will be denoted by Vm and Vn, respectively.

Proposition 3.3 Suppose n ~ m ~ 2. If 1 :::; k :::; n, then

-11 ( ) _ { 3 - n if m is odd
Iks Km,n -

2 - n if m is even

Proof. Before proceeding further, we prove the following claim:

{

3 n if m is odd
Claim. If v E Vn n Ct , then f(V) ~ -

2 - n if m is even

Proof. On the one hand, if f(v) = -1, then

f(V) f(Vm ) + f(Vn )

> nr;l - l~J+ 2) + (-1)n

{

3 - n if m is odd

2 - n if m is even.

On the other hand, if f(v) = 1, then

f(V) f(Vm ) + f(Vn )

> n~1-lr;J)+(-1)(n-1)+1

{

3 - n if m is odd

2 - n if m is even. <>

Since k ~ 1, there is a covered vertex, say v. If v E Vn , then

f(V) ~ { 3 - n if m is odd .

2 - n if m is even
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Note that
min{3 - m, 3 - n} if n is odd and m is odd

min{2 - m, 3 - n} if n is even and m is odd

min{3 - m, 2 - n} if n is odd and m is even

min{2 - m, 2 - n} if n is even and m is even

3 - n if n is odd and m is odd

3 - n if n is even and m is odd

2 - n if n is odd and m is even

2 - n if n is even and m is even

If v E Vm , then, by the above,

27

f(V) 2:
{

3-m

2-m

if n is odd

if n is even

2: {3-n
2-n

if m is odd

if m is even

Let U~ Vm such that IUI = r';l + 1. The function 9 defined by

g(v) = { 1
-1

is a kSF with

{3-ng(V) =
2-n

The result now follows. <>

if v E U

otherwise

if m is odd

if m is even

Lemma 3.4 Ifv E vmnCf and f(v) = -1, then f(Vn ) 2: r~l-l~J +2. Moreover,

if f(Vn ) = r~l - l~J + 2, then IVn n Pfl = r~l + 1.
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Proof. Since f(v) = -1 and f[v] 2:: 1, then JVn n Pfl

f(Vn ) 2:: (fIl + 1) - (lIJ - 1) = rIl - lIJ +2. 0

28

rIl + 1. Thus,

Lemma 3.5 If v E Vm n Cf and f(v) = 1, then f(Vn) 2:: rIl - LIJ· Moreover, if

f(Vn) = rIl - lIJ, then JVn n Pfl = rIl

Proof. Since f(v) = 1 and f[v] 2:: 1, then IvnnPfl = rIl Thus, f(Vn) 2:: rIl- LIJ·
o
We henceforth assume k > n, Vm n Cf =/; 0 and Vn n Cf =/; 0. Let u E Vm n Cf and

let v E Vn n Cf.

Proposition 3.6 Suppose n 2:: m 2:: 2. Ifn < k::; rIl + r';l, then

I
0 if m and n are even

"ksll (Km,n) = 1 if m and n have different parities

2 if m and n are odd

Proof. By Lemmas 3.4 and 3.5,

f(V) f(Vm ) + f(Vn)

> rIl-LIJ+r';l-L';J

{

0 if m and n are even

1 if m and n have different parities

2 if m and n are odd

Let U1 ~ Vm such that IUI! = r';l and let U2 ~ Vn such that IU2 1 = rIl The

function f defined by

f (v) = { 1 if v E U1 U U2

-1 otherwise
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is a kSF with

29

f(V) = {

The result now follows. 0

o if m and n are even

1 if m and n have different parities

2 if m and n are odd

Lemma 3.7 If f(u) = f(v) = 1, then

{

a if m and n are even

f (V) 2: 1 if m and n have different parities

2 if m and n are odd

Moreover, if equality holds, then k ::; r;1+ r~1-

Proof. By Lemma 3.5,

f(V) 2: f%l-l%J+f;l-l;J

{

a if m and n are even

1 if m and n have different parities

2 if m and n are odd

If f(V) equals this lower bound, then IVn n Pjl = r~l and IVm n Pjl = r;l Then

N f n Cf = 0, so k ~ ICfl ~ r;l + r~1- 0

Lemma 3.8 If f(u) = 1 and f(v) = -1, then

if m and n are even

if m and n have different parities

if m and n are odd

Moreover, if equality holds, then k ::; n + r;l + 1.
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Proof. By Lemmas 3.4 and 3.5,

f(V) 2 r~1-l~J+r;1-l;J+2

1
2 if m and n are even

3 if m and n have different parities

4 if m and n are odd

30

If f(V) equals this lower bound, then IVn n Pfl = r~l and IVm n Pfl = r;l + 1.

Then (Nf n Vm ) n C f = 0, so k S ICfl s r;l + 1 + n. 0

Similarly one may prove

Lemma 3.9 If f(u) = -1 and f(v) = 1, then

{

2 if m and n are even

f(V) 2 3 if m and n have different parities

4 if m and n are odd

Moreover, if equality holds, then k S m + r~1+ 1.

Lemma 3.10 If f(u) = -1 and f(v) = -1, then

{

4 if m and n are even

f (V) 2 5 if m and n have different parities

6 if m and n are odd

Proof. By Lemma 3.4, f(V) 2 r~l - l~J +2+r;l - l;J+2=

if m and n are even

if m and n have different parities .0
if m and n are odd
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Proposition 3.11 Suppose n 2: m 2: 2. If max{f~l + rr;l + 1, n + I} < k <

n + rT1+ 1, then

'k,"(Km,n) = {
2 if m and n are even

3 if m and n have different parities

4 if m and n are odd

Proof. Since k 2: rr;l + r~l +1, Lemmas 3.5 and 3.7 imply that if f(u) = f(v) = 1,

then

{

2 if m and n are even

f(V} 2: 43 if m and n have different parities

if m and n are odd

If f(u) = 1 and f(v) = -1, f(u} = -1 and f(v) = 1 or f(u) = f(v) = -1, the

result follows from Lemmas 3.8, 3.9 and 3.10.

Let U1 ~ Vm such that IUd = rTl + 1 and let U2 ~ Vn such that IU2 1 = r~l The

{

I if v E U1 U U2
function f defined by f(v) = is a kSF with

-1 otherwise

Similarly,

f(V) =Uif m and n are even

if m and n have different parities . <>
if m and n are odd

Proposition 3.12 Suppose n 2: m 2: 2. If max{f~l + rTl + I,m + I} ~ k ~

m + r~1+ 1, then

if m and n are even

if m and n have different parities

if m and n are odd
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Proposition 3.13 Suppose n ~ m ~ 2. If max{n + rTl + 1, m + r~l + 1} + 1 ::;

k ::; m + n, then

if m and n are even

if m and n have different parities

if m and n are odd

Proof. Since k ~ max{n + rTl + 1, m + r~l + 1} + 1, Lemmas 3.4 and 3.5 imply

that if f(u) = 1 and f(v) = -1 or if f(u) = -1 and f(v) = 1, then

f(V) ~I:
·6

if m and n are even

if m and n have different parities

if m and n are odd

If f(u) = f(v) = -1, the result follows from Lemma 3.10. If f(u) = f(v) = 1,

then we may assume that Cl n NI = 0, or else we have a previous case. This

fact and Lemma 3.5 imply IVn n PII = r~l and IVm n PII = r;l Thus,

f(V) = r~l-l~J + r;l-lTJ. Lemma 3.7 implies that k ::; r;l + r~l, which is a

contradiction.

Let Ul ~ Vm such that lUll = r;l + 1 and let U2 ~ Vn such that IU21= r~l + 1.

The function f defined by

f (v) = {1 if v EUl UU2

-1 otherwise

is a kSF with

f(V) = {:

The result now follows. 0

if m and n are even

if m and n have different parities

if m and n are odd
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Proposition 3.14 Let n 2: 1 be an integer. Then

-11 {2k-n+1 ifk::; r~l
'"Yks (KI,n) = 2k _ n - 1 if k 2: r~l + 1

33

Proof. Let V(KI,n)

VI = {VI,." ,vn }.

{V, VI, ... ,Vn} with V being the central vertex. Let

Case 1. k = 1. If Vi E Cf , then f(v) = f(Vi) = 1, and f(V) 2: 2 + (n - 1)(-1) =

3 - n. If VI n Cf = 0, then v E Cf , and

{

2 if n is odd
f(V)2:1+r~21-l~2J= 1

otherwise

Thus, f(V) 2: 3 - n = 2 . 1 - n + 1 = 2k - n + 1. The function f defined by

f(v) = f(VI) = 1 and f(v) = -1 otherwise is a kSF with f(V) = 2k - n + 1.

Case 2. 2 ::; k.

Since k 2: 2, f(v) = 1.

Case 2.1 k ::; r~l - 1.

Ifv fi Cf , then f(V) 2: l+k+(n-k)(-l) = 2k-n+1. Suppose, therefore, V E Cf.

Then IPf n VII 2: r~1- Assume {VI, ... , V r~ l} ~ Pf · Then the function f* defined

by f*(v) = 1 for all V E Pf - {vr~l} and f*(v) = -1 otherwise is a kSF of KI,n

such that f*(V) < f(V), which is a contradiction. Thus, f(V) 2: 2k - n + 1. The

function f defined by j(v) = 1, f(Vi) = 1 for i = 1, ... , k and f(v) = -1 otherwise

is a kSF of KI,n such that f(V) = 2k - n + 1.

Case 2.2 k = r~1-

If V fi Cf , then f(V) 2: 2k - n + 1. Suppose, therefore, that V E Cf. Then
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f(V) > 1 + r~l - l~J

{

2 if n is odd

1 otherwise

2r~1-n+1

2k - n + 1.
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The function f defined by f(v) = 1, f(Vi) = 1 for i = 1, ... , k and f(v) = -1

otherwise is a kSF of K1,n such that f(V) = 2k - n + 1.

Case 2.3 k 2: r~l + 1.

If v tf. Cf , then f(V) 2: 2k - n + 1. Suppose, therefore, that v E Cf. Then

r
nl lnJ {2 if n is oddf (V) 2: 1 + - - - =
2 2 1 otherwise

Also, f(V) 2: k + (n - k + 1)(-1) = 2k - n - 1. Thus,

{

max{2, 2k - n - I} if n is odd
f(V) >

max{l, 2k - n - I} otherwise

2k - n - 1.

Thus, f(V) 2: 2k - n - 1. The function f defined by f(v) = 1, f(Vi) = 1 for

i = 1, ... , k-1 and f(v) = -1 otherwise is a kSF of K1,n such that f(V) = 2k-n-1.

The result follows. 0

The value of Iksll(Km,n) is completely determined by Propositions 3.3, 3.6, 3.11,

3.12, 3.13 and 3.14. This result generalizes a result of [4].

We now turn our attention to the computation of Iks101(Km,n).

Lemma 3.15 If v E Vm n Cf , then

f(Vn ) 2: 1 - f(v).
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Proof. Since 1 ::; j[v] = f(v) + f(Vn ), it follows that f(Vn ) ~ 1 - f(v). 0

Proposition 3.16 Suppose n ~ m ~ 2. If 1 ::; k ::; n) then

Proof. Before proceeding further, we prove

Claim 1 If v E Vn n Cf ) then f(V) ~ 2 - n.
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Proof. If f(v) = -1, then, by Lemma 3.15, f(Vm) ~ 2. Thus, f(V) =

f(Vm) + f(Vn ) ~ 2 + (-1)n = 2 - n. If f(v) = 0, then, by Lemma 3.15, f(Vm) ~ 1.

Thus, f(V) = f(Vm) + f(Vn ) ~ 1 + 0 + (-1)(n - 1) = 2 - n. If f(v) = 1, then, by

Lemma 3.15, f(Vm) ~ O. Thus, f(V) = f(Vm)+f(Vn ) ~ 0+1+(-1)(n-1) = 2-n.

<)

Since k ~ 1, there is a covered vertex, say v. On the one hand, if v E Vn , then

f(V) ~ 2 - n. On the other hand, if v E Vm, then f(V) ~ 2 - m ~ 2 - n.

Let u E Vm and let U ~ Vm - {u} such that IUI = fIfl If m is odd, the function f
defined by

f(v) = { ~
-1

if v E U

if v = u

otherwise

is a kSF with f(V) = 2 - n. If m is even, then the function f defined by

f (v) = { 1 if v E U U {u}
-1 otherwise
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is a kSF with f(V) = 2 - n. The result follows. <)

We henceforth assume k > n, Vm n C, =1= 0 and Vn n C, =1= 0. Let u E Vm n C, and

let v E Vn n C,.

Proposition 3.17 Suppose n 2: m 2: 2. If n < k ::; n + fT1, then

",-lOl(K ) = 1.
Iks m,n

Proof. If f(u) ::; 0, then, by Lemma 3.15, f(V) = f(Vm ) + f(Vn ) 2: 0 + 1 = 1.

Similarly, if f(v) ::; 0, then f(V) = f(Vm )+ f(Vn ) 2: 1+0 = 1. We assume therefore

that f(u) = f(v) = 1. Let V~ = Vn - {v}. Let V~ = Vm - {u}.

Before proceeding further, we prove

Claim 2 f(V~) 2: 0 or f(V~) 2: o.

Proof. Suppose, to the contrary, that f(V~) < 0 and f(V~) < O. Since

1 ::; flu] = f(u) + f(v) + f(V~) = 1 + 1 + f(V~), we have f(V~) 2: -1, whence

f(V~) = -1 and f(Vn ) = O. Similarly, f(Vm ) = o. Let f = IVn n P,I. Then

o= f(Vn ) 2: f + (n - f)( -1) = 2f - n, so that f ::; ~. Thus, IVn n P,I ::; ~' and,

similarly, IVm n P,I ::; ;. Hence, IP,I ::; ~ + ; ::; ~ + ~ = n.

If x E C" then, without loss of generality, we may assume that x E Vm , so that

1 ::; f[x] = f(x) + f(Vn ) = f(x) ::; 1, which implies that x E Pf . Thus, C, ~ P,.

We conclude that n + 1 ::; k ::; ICfl ::; IPfl ::; n, which is a contradiction, and the

claim follows. 0

So either f(V~) 2: 0 or f(V~) 2: O. If f(V~) 2: 0, then f(V) = f(v) + f(u) + f(V~) +
f(V~) 2: 1 + 1 + 0 -1 = 1. Similarly, if f(V~) 2: 0, then f(V) 2: 1. Thus, f(V) 2: 1.
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Let u E Vm and let U~ Vm - {u} such that IUI = r;l Ifm is odd, the function f
defined by

f(v) = I ~
-1

if v E U

if v E Vn

otherwise

is a kSF with f(V) = 1. If m is even, then the function f defined by

f(v) = { ~
-1

if v E U

if v E Vn U {u}

otherwise

is a kSF with f(V) = 1. The result follows. 0

Proposition 3.18 Suppose n 2: m 2: 2. If n + r;l + 1 ::; k ::; n + m, then

Proof. Let f be a kSF of Km,n with f(V) = Ik/01 (Km,n) such that IZII is

maximized. By Lemma 3.15, f(Vm ) 2: 0 and f(Vn ) 2: O.

Suppose f(Vn ) = O. If /Vm n CII ::; r;l, then k ::; ICII ::; n + r;l, which is

a contradiction. Thus, /Vm n CII 2: r;l + 1. Let x E Vm n Cl' Then, since

1 ::; fix] = f(x) + f(Vn ) = f(x) ::; 1, we have f(x) = 1. Thus, Vm n Cl ~ Vm n PI,

so that IVm n PII 2: /Vm n CII 2: r';l + 1. Hence, f(V) = f(Vm ) + f(Vn ) 2:

(rTl + 1) - (LTJ- 1) + 0 = r;l - L;J+ 22: 2, as desired.

Assume, therefore, that f(Vn) 2: 1. If f(Vn) 2: 2, then f(V) = f(Vm) + f(Vn) 2:

0+2 2: 2, as required. Thus, assume f(Vn ) = 1. We are done if f(Vm ) 2: 1, and so

we assume that f(Vm ) = o.

We show that Vm ~ ZI' For suppose to the contrary that x E Vm n PI and

yE VmnNI · Define f* : V --t {-I, 0, I} by f*(z) = 0 if z E {x, y} and f*(z) = f(z)
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if z rf. {x,y}. Then f* is a kSF of Km,n with f*(V) = f(V) and IZJ*I > IZtl, which

contradicts the choice of f.

We conclude that Vm ~ Ct )so that Ivnnctl ~ k-m ~ n+r';1+1- m =n-l';J+1.

Let y E vnnCt . Then, since 1 ~ fly] = f(y)+ f(Vm ) = f(y) ~ 1, we have f(y) = 1.
Thus, Vn n Ct ~ Vn n Pt, so that IVn n Ptl ~ IVn n Ctl ~ n - l';J+ 1. Hence,

f(Vn ) ~ (n - lTJ + 1) - (n - (n - l';J + 1)) = (n - lTJ + 1) - (lTJ- 1) =
n - 2lTJ+ 2 ~ m - 2l ';J+ 2 ~ 2, a contradiction.

Let u E Vm and let v E Vn . The function f defined by

{

I if x E {u, v}
f(x) =

o otherwise

is a kSF of Km,n such that f(V) = 2. The result now follows. <>

Hattingh and Ungerer [21] obtained the following lower bound on Iks101(T) for a tree

T.

Proposition 3.19 If T is a tree of order n ~ 2 and 1 ~ k ~ n - I, then

Ik/01(T) ~ k - n + 2.

As a consequence we obtain

Proposition 3.20 If n ~ 1 is an integer and k ~ n, then

Proof. By Proposition 3.19, Iks101(K1,n) ~ k-(n+1)+2 = k-n+1. The function

f that assigns 1 to the central vertex, 0 to k leaves and -1 to the remaining leaves

of K1,n is a kSF with f(V) = k - n + 1. The result follows. <>
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Proposition 3.21 If n 2 1 is an integer, then
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Proof. If v is the central vertex of K 1,n, then f(V) = f[v] 2 1. The function f

that assigns 1 to v and 0 to the remaining vertices of K 1 ,n is a kSF of K 1,n with

f(V) = 1. The result follows. 0

The value of 'Yks101 (Km,n) is completely determined by Propositions 3.16, 3.17, 3.18,

3.20, 3.21.

3.4 The disjoint union of two complete graphs

In this section we compute the values of 'Yks11 (G) and Ik/01(G) where G is the disjoint

union of two complete graphs. Let Vm = V(Km ) and Vn = V(Kn ).

Proposition 3.22 If 1 :::; k :::; m ::; n, then

-11 { 1- n
Iks (Km U Kn ) =

2-n

if m is odd

if m is even

Proof. Since k 2 1, there is a covered vertex, say v E Vm U Vn . If v E Vm , then

by Proposition 3.1, f(Vm ) 2 1 if m is odd and f(Vm ) 2 2 if m is even. Thus, if

m is odd, f(Vm U Vn ) = f(Vm ) + f(Vn ) 2 1 + (-l)n = 1 - n. On the other hand,

if m is even, f(Vm U Vn ) = f(Vm ) + f(Vn ) 2 2 + (-l)n = 2 - n. Similarly it can

be shown that if v E Vn , then f(Vm U Vn ) 2 (-l)m + 1 = 1 - m if n is odd and

f(Vm U Vn ) 2 (-l)m + 2 = 2 - m if n is even.
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Note that

rnin{l - m, 1- n} if n is odd and m is odd

rnin{2 - m, 1- n} if n is even and m is odd

rnin{l- m, 2 - n} if n is odd and m is even

rnin{2 - m, 2 - n} if n is even and m is even

1 - n if n is odd and m is odd

1 - n if n is even and m is odd

2 - n if n is odd and m is even

2 - n if n is even and m is even

{

I - n if m is odd
Thus, f(Vm U Vn ) 2:: .

2 - n if m is even

Let U ~ Vm such that IUI = l~J+ 1. The function f defined by

f(v) = { 1
-1 otherwise
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is a kSF with

( )
{

I - n if m is odd
f Vm UVn = .0

2 - n if m is even

Proposition 3.23 Suppose n 2:: m 2:: 1. If m < k ::; n then

-11 ( ) _ { 1 - m if n is odd
Iks KmUKn -

2 - m if n is even

Proof. Since k > m, there is a covered vertex, v E Vn . By Proposition 3.1,

f(Vn ) 2:: 1 if n is odd and f(Vn ) 2:: 2 if n is even. Thus, if n is odd,
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f(Vm U Vn ) = f(Vm) + f(Vn ) ~ (-l)m + 1 = 1 - m. On the other hand, if n

is even, f(Vm U Vn ) = f(Vm) + f(Vn ) ~ (-l)m + 2 = 2 - m.

Let U ~ Vn such that IUI = l~J + 1. The function f defined by

is a kSF such that

f(v) = { 1
-1

if v E U

otherwise

{

I - m if n is odd
f(VmUVn ) = . <)

2 - m if n is even

Proposition 3.24 Suppose n ~ m ~ 1. If n < k ::; n + m then

if m and n are odd

if m and n have different parities

if m and n are even

Proof. Since k ~ n, there is a covered vertex, v E Vm and a covered vertex, u E Vn .

By Proposition 3.1,

{

I if m is odd
f(Vm ) ~ 2

if m is even

and

( )
{

I if n is odd
f Vn ~

2 if n is even

Thus,

if m and n are odd

if m and n have different parities

if m and n are even
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Let Ul ~ Vm such that lUll = lr;J+ 1. Let U2 ~ Vn such that !U2 1 = l~J + 1. The

function f defined by

is a kSF such that

f(v) = {
1 if v E Ul U U2

-1 otherwise

if m and n are odd

if m and n have different parities . 0
if m and n are even

These results generalize a result of [4].

We now turn our attention to computing 'YkslOl(Km U Kn).

Proposition 3.25 If 1 ~ k ~ m ~ n, then

Proof. Since k ~ 1, Cf =1= 0, say v E Cf· If v E Vm , then by Proposition 3.2,

f(Vm ) ~ 1. Thus, f(Vm U Vn ) = f(Vm ) + f(Vn ) ~ 1 + (-l)n = 1 - n. Similarly, if

v E Vn , then f(Vm U Vn ) ~ 1 - m ~ 1 - n. Let u E Vm . The function f defined by

f(v) = { ~
-1

is a kSF with f(Vm U Vn ) = 1 - n. 0

if v = u

if v E Vm - {u}

otherwise

Proposition 3.26 If 1 ~ m < k ~ n, then
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Proof. Since k > m, there is a vertex v, say, such that v E Vn n Cf. As before,

f(Vn ) 2 1 and f(Vm U Vn ) 2 1 - m. Let u E Vn · The function f defined by

f(v) = I ~
-1

is a kSF with f(Vm U Vn ) = 1- m. 0

if v = u

if v E Vn - {u}

otherwise

Proposition 3.27 Suppose n 2 m 2 1. If n < k ::S n + m then

Proof. Since k > n, there is a covered vertex, v E Vm and a covered vertex, u E Vn .

By Proposition 3.2, f(Vm ) 2 1 and f(Vn ) 2 1, so that f(Vm UVn ) 2 2. Let U1 E Vm

and U2 E Vn · The function f defined by

f{v) = {

is a kSF with f(Vm U Vn ) = 2. 0

3.5 Split graphs

1 ifvE{U1,U2}

o otherwise

In this section we compute l'ksll (G) and ,;/01 (G) of a split graph G. The set Vn will

denote the vertices in the clique and the set Vm will denote the set of independent

vertices. Since Sl,n is the complete graph of order n+1, we may assume that m 2 2.

Lemma 3.28 If Vn n Cf =J 0, then

f{V{Sm,n)) ~ {
2 if m + n is even

1 if m + n is odd
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Proof. If v E Vn n Cf , then 1 ~ f[v] = f(V(Sm,n)), which implies that

IPf n(VmuVn)l2: lmtnJ+1. Therefore, if:n+n is even, then f(V(Sm,n)) 2: (m;n +
1) - (m;" -1) = 2. If m+n is odd, then f(V(Sm,n)) 2: (lm;nJ+1)- (fm;nl-1) = 1.

o

Proposition 3.29 Suppose n 2: 1 and m 2: 1. If 1 ~ k ~ m, then

-11 { 2 - m if n is even
'Yks (Sm,n) = .

3 - m if n is odd

Proof. Since k 2: I, there is a covered vertex, v (say). On the one hand, if v E Vn ,

then, by Lemma 3.28,

{

2 if m + n is even
f(V(Sm,n)) 2: 1

if m + n is odd

On the other hand, suppose v E Vm. If f(v) = -I, then f[v] = -1 + f(Vn) 2: I, and

so f(Vn) 2: 2, which implies that f(V(Sm,n)) = f(Vm)+ f(Vn) 2: 2- m. Moreover, if

n is odd, then IPf n Vnl 2: r~l + 1 and f(Vn) 2: (f~l + 1) - (l~J -1) = 3. Therefore

f(V(Sm,n)) = f(Vm)+ f(Vn) 2: 3-m. If f(v) = I, then f[v] = 1+ f(Vn) 2: 1, and so

f(Vn) 2: 0, which implies that f(V(Sm,n)) = f(Vm)+ f(Vn) 2: 1-(m-1)+0 = 2-m.

Moreover, if n is odd, IPf n Vnl 2: r~l and f(Vn) 2: r~l - l~J = 1. Thus,

f(V(Sm,n)) = f(Vm) + f(Vn) 2: 1 - (m - 1) + 1 = 3 - m.

We conclude that if v E Vm ,

> {3 - m if n is odd

2 - m if n is even
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Notice if m 2: 2, then 2 - m < 3 - m < 1 < 2. Therefore

{

2 - m if n is even
j(V(Smn)) 2:

, 3 - m if n is odd

Let U ~ Vn such that IUI = r~l + 1. The function j defined by
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j(v) = { 1
-1

if v E U

otherwise

is a kSF with

{

3 - m if n is odd
j(V(Sm n)) = . 0

, 2 - m if n is even

Proposition 3.30 Suppose n 2: 1 and m 2: 1. If m < k ~ n + m then

-11 ( ) _ {2 if m + n is even
/ks Srn n - .

. 1 if m + n is odd

Proof. Since k > m, there is a covered vertex v E Vn . By Lemma 3.28,

j(V(Sm,n)) 2: { 2 if m + n is even .
1 if m + n is odd

Let Ul ~ Vn be such that lUll = r~l + 1 and let U2 ~ Vm such that

IU2 / = { r~l
r~l - 1

Then the function f defined by

f(v) = {

if m and n are both even

otherwise

1 if v E Ul U U2

-1 otherwise
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is a kSF with

{

2 if m + n is even
f(V(Smn)) = .0

, 1 if m + n is odd

We now turn our attention to computing 'Y"k/ 01 (G) of a split graph G.

Proposition 3.31 Suppose n 2: 1 and m 2: 2. If 1 ::; k ::; m then
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Proof. Since k 2: 1, there is a covered vertex, v E Vm U Vn. If v E Vn, then

1 ::; f(v] = f(V(Sm,n))' Now suppose v E Vm. If f(v) = -1, then f(Vn) 2: 2

and f(V(Sm,n)) = f(Vm) + f(Vn) 2: 2 - m. If f(v) = 0, then f(Vn) 2: 1 and

f(V(Sm,n)) = f(Vm)+f(Vn) 2: 0-(m-1)+1 = 2-m. If f(v) = 1, then f(Vn) 2: 0

and f(V(Sm,n)) = f(Vm)+ f(Vn) 2: 0+1-(m-1) = 2-m. Since m 2: 2, 2-m::; L

Hence, f(V(Sm,n)) 2: 2 - m.

The function f that assigns 1 to exactly two vertices of Vn , 0 to the remaining

vertices of Vn and -1 to all vertices of Vm is a kSF with f(V(Sm,n)) = 2 - m. 0

Proposition 3.32 Suppose n 2: 1 and m 2: 2. If m < k ::; n + m then

Proof. Since k > m, there is a covered vertex v E Vn. Thus, 1 ::; f[v] = f(V(Sm,n))'

The function that assigns 1 to exactly one vertex of Vn and 0 to all remaining vertices

of Sm,n is a kSF with f(V(Sm,n)) = 1. 0



Chapter 4

TOTAL SIGNED

k-SUBDOMINATION NUMBERS

4.1 Introduction

In this chapter, we focus on total signed k-subdomination, or, as it will not cause any

confusion, total k-subdomination. In Section 4.2, we give a lower bound on the total

k-subdomination number in terms of the minimum degree, maximum degree and the

order of the graph. A lower bound in terms of the degree sequence is also given. In

Section 4.3, we compute the total k-subdomination number of a cycle. In Section 4.4,

we present a characterization of graphs G with equal total k-subdomination and total

f-subdomination numbers. In the final section, we establish a sharp upper bound

on the total k-subdomination number of a tree in terms of its order nand k where

1 ::; k < n. Moreover, we characterize trees attaining these bounds for certain values

of k. For this purpose, we first establish the total k-subdomination number of simple

structures, including paths and spiders.

47
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4.2 Lower bounds

48

Our aim in this section is to give lower bounds on the total k-subdomination number

of a graph. We first establish such a lower bound in terms of its minimum degree,

maximum degree and its order. The second lower bound is in terms of the degree

sequence of the graph. We begin with the following observation. (For a vertex

v E V, we denote f(N(v)) by f[v].)

Observation 4.1 Let f be a TkSF of G and let v E Cf. If degv is even, then

f[v] ~ 2, while if degv is odd, then f[v] ~ 1.

Theorem 4.2 Let G = (V, E) be a graph of order n with minimum degree 0 and

maximum degree~. For 1 :S k :S n, let f be a /;k~l(G)-function, and let £ denote

the number of vertices with even degree in Cf. Then,

-ll(G) > 2k(1 + ~) + on - 3n~ + 2£
/tks -. ~ + 0 .

Proof. We consider the sum N = I: I: f(u), where the outer sum is over all v E V

and the inner sum is over all u E N(v). This sum counts the value f(u) exactly

deg u times for each u E V, so N = I:(deg u) . f (u), over

all u E V. Let ~ven denote the set of all vertices with even degree in Cf. Then, by

Observation 4.1, N = I: f[v] over all v E V satisfies
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N L f[v] + L f[v] + L f[v]
vEVeven vECf-Veven v~Cf

> 2£ + IC/I- £ + (n - IC/I)(-~)

£ + IC/I(l +~) - n~

> £ + k(l + ~) - n~. (4.1)

Let P and M be the sets of those vertices in G which are assigned under f the values

+1 and -1, respectively. Then, 'Y~;l(G) = f(V) = IPI- IMI = n - 2/MI. We now

write V as the disjoint union of six sets. Let P = Pb,. u PfJ UP>.. where Pb,. and PfJ are

sets of all vertices of P with degree equal to ~ and 0, respectively, and P>.. contains

all other vertices in P, if any. Let M = Mb,. U M fJ U M>.. where Mb,., MfJ , and M>.. are

defined similarly. Further, for i E {~,o,,x}, let Vi be defined by Vi = PiUMi. Thus,

n = IVb,. I+ 1\161 + IV>..I·

If u E V>.., then 0 + 1 ::; deg u ::; ~ - 1. Therefore, writing the sum in (4.1) as the

sum of six summations and replacing f(u) with the corresponding value of 1 or -1

yields

L ~+ L O+ L(~-l)- L ~- L 0- L(O+l)~£+k(l+~)-n~.
UEPA xEP6 xEP). xEMA xEM6 xEM).

Replacing I~I with IViI- IMil for i E {~, 8, ,x}, yields

> £+ k(l + ~) - n~. (4.2)
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We now simplify the left hand side of (4.2) as follows. Replacing 1V81 with IPc5 l+IMc5 l,
and IMc5 l+ IMAI with IMI-IMAI, we have

Further, replacing IVAI with n - Wc5l- WAI, we have

Using (4.3) and (4.4), the left hand side of (4.2) can be written as

Thus (4.2) becomes

2n~ - k(l + ~) - f > IVAI + (~ - o)IPc5 !+ (~ +o)IMI + (~ - o)IMAI

> (~+o)IMI·

Hence, since T;k~l(G) = n - 21MI, it follows from (4.5) that

-ll(G) > n _ 2 (2n~ - k(l + ~) - f) = 2k(1 +~) + On - 3n~ + 2f
Ttks - ~ + 0 ~ + 0 '

as desired. <>

(4.4)

(4.5)

The next result gives a lower bound on the total k-subdomination number of a graph

in terms of its degree sequence.
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Theorem 4.3 Let G = (V, E) be a graph of order n where the degrees di of vertices

Vi satisfy d1 ::; d2 ::; ... ::; dn, let f be a 'tk~1 (G) -function, and let e denote the

number of vertices of even degree in Cf. Then,

Proof. Let f be a 'tk~1 (G)-function. Let ~ven denote the set of all vertices with

even degree in Cf. Let g: V -+ {D, I} be the function defined by g(v) = (f(v)+1)/2

for all vertices v E V. We consider the sum N = 2: 2: g(u), where the outer sum is

over all v E Cf and the inner sum is over all u E N(v). Then,

N
1 1 1L L 2(f(u) + 1) = L 2(f[v] + degv) = 2(2::: j[v] + L degv)

vECj uEN(v) VECj vECj VECj

On the other hand,

N::; L L g(u) = L(degv). g(v) ::; dng(V),
vEV uEN(v) vEV

and so

(V) > (e + k + 2:7-1 di )

9 - 2d
n

The desired result now follows since 'tk~1 (G) = f (V) = 2g(V) - n. 0
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As an immediate consequence of Theorem 4.2 or Theorem 4.3, we have the following

result.

Corollary 4.4 For r ~ 1, if G is an r-regular graph of order n, then

k(r+r l)_n if r is odd

'V-
l1 (G) >Itks -

k (r ~ 2) _n if r is even

Corollary 4.5 If G is a graph of order n, size m and maximum degree f:::,., then

-11( k + 2m
Itks G) ~ k - 2n + f:::,. .

Proof. Let the degrees di of the vertices of G satisfy d1 ::; d2 ::; •.. ::; dn = f:::,.. It

follows from Theorem 4.3 that

- ~ (k + 2m - t di ) - n
i=k+l

1
> f:::,.(k+2m-(n-k)f:::,.)-n

k 2
k + 2m

- n+--­
f:::,.



if k E {n/2, n}
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4.3 Cycles

Our aim in this section is to determine the total k-subdomination number of a cycle.

As a special case of Corollary 4.4, we have that '"Yu:~l(Cn) 2': 2k - n. If k E {n/2, n},

we show this lower bound is sharp. We shall prove:

Proposition 4.6 For n 2': 3 and 1 ~ k ~ n,

1
2k - n

'"Yu:~l(Cn) =

2k + 2 - n otherwise.

Proof. We show first that '"Yu:~l(Cn) 2': 2k + 2 - n except when k = n/2 or

k = n, in which case '"Yu:~l(Cn) = 2k - n. Let f be a '"Ytk~l(Cn)-function. Let

M = {v E V(Cn ) I f(v) = -I} and P = {v E V(Cn ) I f(v) = +1}. Note that, since

k 2': 1, P =1= 0. Let Mc = CfnM, Pc = Cfnp, Muc = M -Mc and Pu~ = P-Pc. Let

H = G[McUP], i.e., H is the subgraph of G induced by McUP where G = Cn. The

two vertices adjacent to a vertex in Mc are in Puc , while the two vertices adjacent

to a vertex in Pc are in P. It follows that

2m(G[P)) = L degc[Pj v 2': L degc[Pj v = 21Pcl.
vEP vEPc

whence m(G[P]) 2': IPcl· Thus m(H) = 21Mcl+ m(G[P]) 2': 21Mcl + IPcl. Further if

m(G[P)) = IPcl, then degc[Pj(v) = 0 for all v E Puc and, since Cn is connected and

none of the vertices in Pc are adjacent to any of the vertices of MuPuc , either V = Pc

or Pc = 0. So, if m(G[P)) = IPc!, either V = Pc or P = Puc and m(G[P)) = O.

Case 1. M uc = 0. Then H rv Cn, so IMcl + IPI = m(H) 2': 21Mcl + IPcI. Thus,

IP/2': IMcl + IPcl = ICfl 2': k and so '"Yu:~l(Cn) 2': 2k - n. If we have strict
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inequality in any of the above inequalities or if ICfl 2:: k + 1, then IPI 2:: k + 1,

and ,;k;l(Cn ) = 21PI - n 2:: 2(k + 1) - n = 2k + 2 - n. Hence, suppose we have

equality throughout in the above inequalities and IMcl + IPcl = k. Then, by our

remarks above, either V = Pc, in which case IPcl = k = n, or Pc = 0, in which case

IMcl = k and n = m(H) = 2fMcl = 2k and so k = n/2.

Case 2. M uc =J. 0. In this case H consists of a disjoint union of f 2:: 1 paths. Then,

IMcl+IPI-f = m(H) 2:: 2IMcl+lPcl· Thus, IPI2:: IMcl+IPcl+f 2:: ICf l+l 2:: k+l,

and so ,;k;l(Cn ) 2:: 2(k + 1) - n = 2k + 2 - n.

'rVe have shown that ,;k;l(Cn ) 2:: 2(k + 1) - n = 2k + 2 - n except when k = n/2 or

k = n, in which case ,;k;l(Cn ) 2:: 2k - n. We now show that ,;k;l(Cn ) ::; 2k - n if

k = n/2 or k = n and that ,;k;l (Cn ) ::; 2k + 2 - n otherwise. For this purpose, we

denote the vertex set of the cycle Cn by {D, 1, ... ,n - I}. We now define a function

f(V(Cn)) -+ {-I, I} as follows:

For 1 ::; k < n/2, let f(Vi) = 1 if i E {D, 2, ... , 2k} and f(Vi) = -1 otherwise. Then,

f(V) = 2(k + 1) - n, and {VI, V3,·· . ,V2k-d ~ Cf, so that ICfl 2:: k.

For k = n/2, let f(Vi) = 1 if i is even and f(Vi) = -1 otherwise. Then, f(V) = D

and {VI,V3"",Vn-l} ~ Cf, so that ICf l2:: k.

For (n + 2)/2 ::; k ::; n - 1 and n even, let f(Vi) = 1 if i is even or i E

{I, 3, ... , 2k-n+1} and f(Vi) = -1 otherwise. Then, f(V) = 21PI-n = 2k-n+2,

and {VI, V3,' .. ,vn-d U {V2, V4," . ,V2k-n} ~ Cf so that ICfl 2:: n/2 + (k - n/2) = k.

For (n+1)/2::; k::; n-l and n odd, let f(Vi) = 1 ifi is even or i E {I, 3, ... , 2k-n}

and f(Vi) = -1 otherwise. Then, f(V) = 21PI - n = 2k - n + 2, and

{VI, V3,' .. ,Vn-2} U {vo, V2, ... ,V2k-n-l} ~ Cf so that ICfl 2:: (n - 1)/2 + (2k ­

n + 1)/2 = k.
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For k = n, the function that assigns 1 to every vertex of the cycle is the desired

function.

In all the above cases, f is a TkSF of Cn . Thus, r;k;l(Cn ) ::; f(V) = 2k - n if

k = n/2 or k = n, while r;k;l(Cn ) ::; f(V) = 2k + 2 - n otherwise. 0

4.4 Graphs with equal total k- and

.e-subdomination numbers

Our aim in this section is to give a characterization of graphs G with equal total

k-subdomination and total f-subdomination numbers where 1 ::; k < f ::; IV(G) I.
Our proof is along similar lines to that presented in [34].

Theorem 4.7 Let G = (V, E) be a graph of order n and let 1 ::; k < f ::; n be

integers. Then r;k;l(G) = r;t;l(G) if and only if there exists a partition (P, M) of

V for which

1. IN(x) n PI- IN(x) n MI ~ 1 for at least f of the vertices of G, and

2. for any P' ~ P and any M' ~ M satisfying IP'I > IM'I, we have

I{x E V I 2(IN(x) n P'I-IN(x) n M'I) ~ IN(x) n PI- IN(x) n MI}I > n ­

k.

Proof. Suppose r;k;l(G) = r;t;l(G). Let f be a TlSF of G such that f(V) =

r;k;l(G) = r;e;l(G). Let P = {x E V I f(x) = 1} and M = {x E V I f(x) = -1}.

Then (P, M) constitutes a partition of V. For each x E Cf , we have f[x]

IN(x) n PI- IN(x) n MI ~ 1. Since ICtl ~ f, Condition (1) holds.

To verify that Condition (2) holds, consider any P' ~ P and M' ~ M such that

IP'I> IM'I· Let X = (P \ Pi) U M' and Y = (M \ M') UP'. Define a function
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9 : V -t {-I, I} as follows: g(x) = 1 for every x E X and g(x) = -1 for every

x E Y. Then g(V) = IXI - IYI = (IPI - IP'I + IM'I) - (IM\ - IM'I + IP'I) =
IPI- IMI - 2(IP'1 - IM'I) < IPI- IMI = f(V) = 1'ik~l(G). Thus, 9 is not a TkSF

of G, and so ICgl < k. Consequently,

I{x E V Ig[x] ::; O}I = IV - Cgl = n -ICgl > n - k.

Note that

(4.6)

g[x] - IN(x) n XI- IN(x) n YI

- IN(x) n ((P \ PI) U M')I-IN(x) n ((M \ M') U P')I

- IN(x) n (P \ P')I + IN(x) n M'I-IN(x) n (M \ M')I

-IN(x) n P'I

- IN(x) n PI- IN(x) n pll + IN(x) n M'I- IN(x) n MI

+IN(x) n M'I-IN(x) n P'I

- IN(x) n PI-IN(x) n MI- 2(IN(x) n PII-IN(x) n M'I). (4.7)

Combining (4.6) and (4.7), we obtain Condition 2.

For the sufficiency, suppose there is a partition (P, M) of V such that Conditions

(1) and (2) hold. Define a function f: V -t {-I, I} as follows: f(x) = 1 for every

x E P and f(x) = -1 for every x E M. Then f[x} = IN(x) n PI-IN(x) n MI 2: 1

for at least f vertices of G (by Condition (1». Thus, f is a TfSF of G, so that

1'u;l(G) ::; IPI- IMI·

We now show that 1'ik~l(G) 2: IPI - IMI: Suppose, to the contrary, 1'ik~l(G) <

IPI ~ IMI· Let 9 be a TkSF of G such that 1'ik;l(G) = g(V). Let X = {x E V I
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TOTAL SIGNED

k-SUBDOMINATION NUMBERS

4.1 Introduction

In this chapter, we focus on total signed k-subdomination, or, as it will not cause any

confusion, total k-subdomination. In Section 4.2, we give a lower bound on the total

k-subdomination number in terms of the minimum degree, maximum degree and the

order of the graph. A lower bound in terms of the degree sequence is also given. In

Section 4.3, we compute the total k-subdomination number of a cycle. In Section 4.4,

we present a characterization of graphs G with equal total k-subdomination and total

f-subdomination numbers. In the final section, we establish a sharp upper bound

on the total k-subdomination number of a tree in terms of its order nand k where

1 ::; k < n. Moreover, we characterize trees attaining these bounds for certain values

of k. For this purpose, we first establish the total k-subdomination number of simple

structures, including paths and spiders.

47
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4.2 Lower bounds

48

Our aim in this section is to give lower bounds on the total k-subdomination number

of a graph. We first establish such a lower bound in terms of its minimum degree,

maximum degree and its order. The second lower bound is in terms of the degree

sequence of the graph. We begin with the following observation. (For a vertex

v E V, we denote f(N(v)) by J[v).)

Observation 4.1 Let f be a TkSF of G and let v E Cf. If degv is even, then

f[v) 2: 2, while if degv is odd, then f[v) 2: 1.

Theorem 4.2 Let G = (V, E) be. a graph of order n with minimum degree 8 and

maximum degree D.. For 1 ~ k ~ n, let f be a 'Yv.~1 (G)-function, and let f denote

the number of vertices with even degree in Cf. Then,

-l1(G) > 2k(1 + D.) + 8n - 3nD. + 2£.
'Ytks - D. + 8

Proof. We consider the sum N = L.: L.: f(u), where the outer sum is over all v E V

and the inner sum is over all u E N(v). This sum counts the value f(u) exactly

degu times for each u E V, so N = L.:(degu)· f(u), over

all u E V. Let ~ven denote the set of all vertices with even degree in Cf. Then, by

Observation 4.1, N = L f[v) over all v E V satisfies
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N L f[v] + L f[v] + L f[v]
vEYeven vECJ-Veven v!/.cJ

> 2£ + IC/I - £ + (n - IC/I)(-~)

£ + ICl I(1 + ~) - n~

> £ + k(l +~) - n~. (4.1)

Let P and M be the sets of those vertices in G which are assigned under f the values

+1 and -I, respectively. Then, /;k;l(G) = f(V) = IPI- IMI = n - 21MI. We now

write V as the disjoint union of six sets. Let P = Pe:. U Po UPA where Pe:. and Po are

sets of all vertices of P with degree equal to ~ and 8, respectively, and PA contains

all other vertices in P, if any. Let M = Me:. U Mo U MA where Me:., Mo, and MA are

defined similarly. Further, for i E {~, 8, A}, let Vi be defined by Vi = Pi U Mi. Thus,

n = 1Ve:.1 + 1V61 + IVAI·

If u E VA, then 8 + 1 :S deg u :S ~ - 1. Therefore, writing the sum in (4.1) as the

sum of six summations and replacing f (u) with the corresponding value of 1 or -1

yields

L ~ + L 8+ L (~ - 1) - L ~ - L 8 - L (8 + 1) ~ £+ k(l + ~) - n~.
uEPti. xE P6 xEP). XEMti. xEM6 xEM). .

Replacing IPil with IViI- IMil for i E {~) 8, A}, yields

> £+ k(l + ~) - n~. (4.2)
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We now simplify the left hand side of (4.2) as follows. Replacing 11161 with IPol+IMol,

and IMol + IMAI with IMI- IMt.I, we have

Further, replacing Wt.1 with n - 11161- IVA /, we have

Using (4.3) and (4.4), the left hand side of (4.2) can be written as

Thus (4.2) becomes

2n~ - k(l +~) - £ > IVAI + (~ - c5)IPol + (~ + c5)IMI + (~ - c5)fMt.1

(4.4)

> (~+ c5)IMI·

Hence, since ,;k~l(G) = n - 21MI, it follows from (4.5) that

-U(G) > n _ 2 (2n~ - k(l +~) - £) = 2k(1 +~) + c5n - 3n~ + 2£
'tks - ~ + c5 ~ + c5 '

as desired. 0

(4.5)

The next result gives a lower bound on the total k-subdomination number of a graph

in terms of its degree sequence.
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Theorem 4.3 Let G = (V, E) be a graph of order n where the degrees di of vertices

Vi satisfy dl ::; d2 ::; •.. ::; dn , let j be a lti.~l(G)-function, and let f denote the

number of vertices of even degree in Cf. Then,

Proof. Let j be a lti.;l (G)-function. Let ~ven denote the set of all vertices with

even degree in Cf. Let g: V --t {D, I} be the function defined by g(v) = (J(v)+1)/2

for all vertices V E V. We consider the sum N = 2:: 2:: g(u), where the outer sum is

over all v E Cf and the inner sum is over all u E N(v). Then,

N
111

L L 2(J(u) + 1) = L 2(J[v] + degv) = 2(L j[v] + L degv)
vECj uEN(v) vECj vECj VECj

On the other hand,

N::; 2: 2: g(u) = 2:(degv). g(v) ::; dng(V),
vEV uEN(v) vEV

and so

(V) > (f + k + 2::7=1 di )
9 - 2d

n

The desired result now follows since lti.;l(G) = j(V) = 2g(V) - n. <>
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As an immediate consequence of Theorem 4.2 or Theorem 4.3, we have the following

result.

Corollary 4.4 For r ~ I, if G is an r-regular graph of order n, then

k (
r+r l)_n if r is odd

",-ll(G) >ftks -

(
r+ 2)k -r- - n ifr is even

Corollary 4.5 If G is a graph of order n, size m and maximum degree D., then

-ll( ) k + 2m
Itks G ~ k - 2n + D. .

Proof. Let the degrees di of the vertices of G satisfy dl :s; d2 :s; ... :s; dn = D.. It

follows from Theorem 4.3 that

~ (k + 2m - t di) - n
i==k+l

1
> D. (k + 2m - (n - k) D.) - n

k 2 k + 2m- n+-D.--.



if k E {n/2, n}
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4.3 Cycles

Our aim in this section is to determine the total k-subdomination number of a cycle.

As a special case of Corollary 4.4, we have that ,~~l(Cn) ~ 2k - n. If k E {n/2, n},

we show this lower bound is sharp. We shall prove:

Proposition 4.6 For n ~ 3 and 1 ~ k ~ n,

1
2k - n

,;k~l(Cn) =
2k + 2 - n otherwise.

Proof. We show first that ,;k~l(Cn) ~ 2k + 2 - n except when k = n/2 or

k = n, in which case ,;k~l(Cn) = 2k - n. Let f be a ,;k~l(Cn)-function. Let

M = {v E V(Cn ) I f(v) = -I} and P = {v E V(Cn ) I f(v) = +1}. Note that, since

k ~ 1, P =1= 0. Let Mc = ClnM, Pc = clnp, Mue = M -Mc and Pue = P-Pe. Let

H = G[MeU P], i.e., H is the subgraph of G induced by Mc U P where G = Cn. The

two vertices adjacent to a vertex in Mc are in Pue , while the two vertices adjacent

to a vertex in Pc are in P. It follows that

2m(G[P]) = L degc[Pj v ~ L degc[Pj v = 2/pel,
vEP vEPc

whence m(G[P)) ~ IPel. Thus m(H) = 21Mel + m(G[P)) ~ 21Mel+ lPel. Further if

m(G[P]) = IPe!, then degc[PJ(v) = 0 for all v E Pue and, since Cn is connected and

none ofthe vertices in Pc are adjacent to any of the vertices of MUPue , either V = Pc

or Pc = 0. So, if m(G[P]) = IPe!, either V = Pc or P = Pue and m(G[P]) = O.

Case 1. Mue = 0. Then H rv Cn, so IMel + IPI = m(H) ~ 21Mel + IPel. Thus,

IPI .~ IMel + /PcI = ICII ~ k and so ,;k~l(Cn) ~ 2k - n. If we have strict
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inequality in any of the above inequalities or if ICfl 2: k + 1, then IPI 2: k + 1,

and r;k;I(Cn) = 21P\ - n 2: 2(k + 1) - n = 2k + 2 - n. Hence, suppose we have

equality throughout in the above inequalities and IMcl + !PcI = k. Then, by our

remarks above, either V = Pc, in which case \Pcl = k = n, or Pc = 0, in which case

IMcl = k and n = m(H) = 2fMc l = 2k and so k = n/2.

Case 2. M uc =1= 0. In this case H consists of a disjoint union of £ 2: 1 paths. Then,

IMcl + IP[- £= m(H) 2: 2/Mcl + IPcl· Thus, IPI 2: IMcl + !PcI+£ 2: ICfl +1 2: k + 1,

and so r;k;I(Cn) 2: 2(k + 1) - n = 2k + 2 - n.

We have shown that r~;I(Cn) 2: 2(k + 1) - n = 2k + 2 - n except when k = n/2 or

k = n, in which case rt"k;l(Cn) 2: 2k - n. We now show that r;k;I(Cn) :::; 2k - n if

k = n/2 or k = n and that r;k;l (Cn) :::; 2k + 2 - n otherwise. For this purpose, we

denote the vertex set of the cycle Cn by {O, 1, ... , n - I}. We now define a function

f(V(Cn)) -+ {-I, I} as follows:

For 1 :::; k < n/2, let f(Vi) = 1 if i E {O, 2, ... ,2k} and f(Vi) = -1 otherwise. Then,

f(V) = 2(k + 1) - n, and {'VI, V3,"" V2k-d ~ Cf , so that ICfl 2: k.

For k = n/2, let f(Vi) = 1 if i is even and f(Vi) = -1 otherwise. Then, f(V) = 0

and {VI, V3, ... ,vn-d ~ Cf , so that ICfl 2: k.

For (n + 2)/2 :::; k ::; n - 1 and n even, let f(Vi) = 1 if i is even or i E

{I, 3, ... , 2k-n+ I} and f(Vi) = -1 otherwise. Then, f(V) = 21PI-n = 2k-n+2,

and {VI, V3,· .. ,Vn-I} U {V2' V4, ... ,V2k-n} ~ Cf so that ICfl 2: n/2 + (k - n/2) = k.

For (n+1)/2:::; k:::; n-l and n odd, let j(Vi) = 1 ifi is even or i E {I, 3, ... , 2k-n}

and f(Vi) = -1 otherwise. Then, f(V) = 21P/ - n = 2k - n + 2, and

{VI, V3, ... ,Vn-2} U {vo, V2, ... ,V2k-n-I} ~ Cf so that ICfl 2: (n - 1)/2 + (2k ­

n + 1)/2 = k.



CHAPTER 4. TOTAL SIGNED K -SUBDOMINATION NUMBERS 55

For k = n, the function that assigns 1 to every vertex of the cycle is the desired

function.

In all the above cases, f is a TkSF of Cn· Thus, /~~l(Cn) :s f(V) = 2k - n if

k = n/2 or k = n, while /~~l(Cn) :s f(V) = 2k + 2 - n otherwise. 0

4.4 Graphs with equal total k- and

£-subdomination numbers

Our aim in this section is to give a characterization of graphs G with equal total

k-subdomination and total £-subdomination numbers where 1 :s k < £ :s IV(G)I.

Our proof is along similar lines to that presented in [34].

Theorem 4.7 Let G = (V, E) be a graph of order n and let 1 :s k < £ :s n be

integers. Then /~~l(G) = /U;l(G) if and only if there exists a partition (P, M) of

V for which

1. IN(x) n PI- IN(x) n MI ;::: 1 for at least £ of the vertices of G, and

2. for any p' ~ P and any M' ~ M satisfying IP'I > IM'I, we have

I{x E V I 2(IN(x) n P'I-IN(x) n M'I) ;::: IN(x) n PI-IN(x) n MI}/ > n ­

k.

Proof. Suppose /~~l(G) = /U;l(G). Let f be a TlSF of G such that f(V) =
,~~l(G) = /U;l(G). Let P = {x E V I f(x) = I} and M = {x E V I, f(x) = -I}.

Then (P, M) constitutes a partition of V. For each x E Cl, we have f[x]

IN(x) n PI- /N(x) n MI ;::: 1. Since IC/I ;::: £, Condition (1) holds.

To verify that Condition (2) holds, consider any P' ~ P and M' ~ M such that

IP'I"> IM'I· Let X = (P \ P') U M' and Y = (M \ M') UP'. Define a function
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9 : V -t {-I, I} as follows: g(x) = 1 for every x E X and g(x) = -1 for every

x E Y. Then g(V) = IXI - IYI = (IPI - IP'I + IM'I) - (IMI - IM'I + IP'I) =
IPI- IMI- 2(IP'1 - IM'I) < IPI- IMI = f(V) = l';k~l(G). Thus, 9 is not a TkSF

of G, and so ICgl < k. Consequently,

I{x E V Ig[x] ::; O}I = IV - Cgl = n - ICgl > n - k.

Note that

(4.6)

g[x] - IN(x) n XI-IN(x) n YI

- IN(x) n ((P \ P') U M')I- IN(x) n ((M \ M') u PI)I

- IN(x) n (P \ P')I + IN(x) n M'I - IN(x) n (M \ M')I

-IN(x) n pll

- IN(x) n PI- IN(x) n P'I + IN(x) n M/I-IN(x) n MI

+IN(x) n M'I-IN(x) n P'I

- IN(x) n PI- IN(x) n MI- 2(IN(x) n P'I- tN(x) n M'I). (4.7)

Combining (4.6) and (4.7), we obtain Condition 2.

For the sufficiency, suppose there is a partition (P, M) of V such that Conditions

(1) and (2) hold. Define a function f: V -t {-I, I} as follows: f(x) = 1 for every

x E P and f(x) = -1 for every x E M. Then f[x] = IN(x) n PI-IN(x) n MI 2: 1

for at least f vertices of G (by Condition (1)). Thus, f is a TfSF of G, so that

l';t;l(G) ::; IPI-IMI.

We now show that l';k~l(G) 2: IPI - IMI: Suppose, to the contrary, l'tk~l(G) <

IPI-.:... IMI· Let 9 be a TkSF of G such that l'~~l(G) = g(V). Let X = {x E V I
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g(x) = I} and Y = {x E V I g(x) = -I}. Let P' = P \ X and M' = M \ Y.

Then P' ~ P, M' ~ M, X = (P \ P') U M' and Y = (M \ M') UP'. Moreover,

IPI-IMI+2(IM'I-IP'1) = IPI-IP'I+IM'I-IMI+IM'I-IP'I = IXI-IYI = 'Yik~l(G) <

IPI-IMI, so that IP'I > IM't. By Condition (2), IV - Cgl = I{x E V Ig[xJ:S; O}I =
I{x E V 12(IN(x)np'I-IN(x)nM'1) ~ IN(x)nPI-IN(x)nMI}1 > n-k. Thus,

ICgl < k, contradicting the fact that 9 is TkSF of G. Hence, 'Yik~l(G) ~ IPI-IMI·

We conclude that IPI- IMI :s; 1'ik~l(G)':S; 'Y;l;l(G) :s; IPI- IMI, so that 'Yik~l(G) =

'Y;i;l(G). 0

Theorem 4.8 Let G = (V, E) be a graph of order n and let 1 :s; k :s; n be integers.

Then 'Y;k~1 (G) = a if and only if there exists a partition (P, M) of V for which

1. IN(x) n PI- IN(x) n MI ~ 1 for at least k of the vertices of G,

2. IPI-IMI = a,·and

3. for any P' ~ P and any M' ~ M satisfying IP'I > IM'I, we have

I{x E V I 2(1N(x) n P'I-IN(x) n M'I) ~ IN(x) n PI-IN(x} nMI}I > n ­

k.

Proof. Suppose 'Yik~l(G) = a. Let f be a TkSF of G such that f(V) = 'Yik~l(G) = a.

Let P = {x E V I f(x) = I} and M = {x E V I f(x) = -I}. Conditions (1) and (3)

follows as in the proof of Theorem 4.7. Moreover, f(V) = IPI - IMI. so Condition

(2) holds.

For the sufficiency, suppose there is a partition (P, M) of V such that Conditions (1),

(2) and (3) hold. Define a function f: V -1- {-1,1} as follows: f(x) = 1 for every

x E P and f(x) = -1 for every x E M. Then f[x] = IN(x) n PI-IN(x) n MI ~ 1

for at least k vertices of G (by Condition (1». Thus, f is a TkSF of G, so that

'Yik~l(G) :s; IPI - IMI = a (by Condition (2». As in the proof of Theorem 4.7,
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I'ks(G) ~ IPI - IMI· Hence, IPI - IMI < I'ks(G) < IPI - IMI a, so that

I'ks(G) = a. 0

4.5 Trees

An opinion function on G is a function f: V --+ { -1, +1}; f (v) is the opinion of the

vertex v. For an opinion function f, we say that a vertex v votes aye if f[v} ~ 1 and

nay otherwise. Thus, I'~;l(G) = min{f(V) If is an opinion function of G in which

at least k vertices vote aye }.

By giving a positive opinion to the center of a star of order n ~ 3 and negative

opinions to all the leaves we obtain a TkSF of the star. Thus

Proposition 4.9 For n ~ 3 and 1 ~ k < n, I'~;l(Kl.n_l)= 2 - n.

Hence the total k-subdomination number of a tree can be arbitrarily large negative

if k is less than the order of the tree.

When k = n, the total k-subdomination number is the total signed domination

number. In [27], lower and upper bounds on the total signed domination number

of a tree in terms of its order are given and the trees attaining these bounds are

characterized.

Theorem 4.10 [27] If T is a tree of order n ~ 2, then

Furthermore, I'~~l(T) = 2 if and only if every vertex v E V(T) - L(T) has odd

degree and is adjacent to at least (deg v-I) /2 leaves, while I'~~l (T) = n if and only

if every vertex of T is a support vertex or is adjacent to a vertex of degree 2.
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Our. aIm in. this section is to establish a sharp upper bound on the total k­

subdomination number of a tree in terms of its order nand k when 1 ::; k < n,

and to characterize trees attaining these bounds for certain values of k. For this

purpose, we first establish the total k-subdomination number of simple structures,

including paths and spiders.

4.5.1 Paths

In this subsection, we establish the total k-subdomination number of a path. We

begin with the following lemma.

Lemma 4.11 For n 2: 3 and 1 ::; k < n, there exists a 'tk~I(Pn)-lunction that

assigns to one 01 its leaves a negative opinion and to its neighbor a positive opinion.

Proof. Let T be the path VI, V2,' .. ,Vn and let 1 be a ,tk~I(T)-function. Let i be

the smallest subscript such that I(Vi) = -1. If i 2: 2, then the function obtained

from 1 by interchanging the values of VI and Vi is an opinion function having the

same weight as 1 and with at least as many vertices voting aye as under I. Hence,

we can choose 1 so that I(VI) = -1. Now let j be the smallest subscript such that

I(vj) = 1. If j 2: 3, then the function obtained from 1 by interchanging the values

of V2 and Vj is an opinion function having the same weight as 1 and with at least as

many vertices voting aye as under I. Hence, we can choose 1 so that I(V2) = 1. <>

Proposition 4.12 For n > 2 and 1 < k < n- __ J

il k = t(n + 1)
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Proof. We proceed by induction on the order n ~ 2 of a path Pn . If n = 2,

then 1';k~1(P2) = 2k - n for k = 1 or k = 2. Suppose n = 3. If k = 3, then

1';k~1(P3) = 3 = 2k - n, while for 1 ~ k ~ 2, 1';k~1(P3) = -1 by Proposition 4.9 and

the desired result follows. This proves the base cases when n = 2 or n = 3.

Suppose that n ~ 4 and that for every nontrivial path Pn , of order n' < n, and any

integerk'with 1 ~ k' ~ n',1';k;l(Pn ,) ~ -1 ifk' = (n'+1)/2and1';k;1(Pn ,) ~ 2k'-n'

otherwise. Let T be a path Pn of order n. Let u be a leaf of T and let v be the

vertex adjacent to u.

If k = 1, then giving a positive opinion to v and negative opinions to all other

vertices of T we obtain a TkSF of T of weight 2 - n. Since 1';k;l(G} ~ 2 - n for all

graphs G with no isolated vertex, 1';k;1 (Pn ) = 2 - n = 2k - n. Hence we may assume

k ~ 2. Furthermore, if k = n, then the result follows from Theorem 4.10. Hence we

may assume that k < n. Let T' = T - u - v. Then, T' is a path of order n' = n - 2.

Let k' = k - 1. Since 2 ~ k ~ n - 1, it follows that 1 ~ k' ~ n'.

Let f' be a 1';k;;(T')-function. Let f: V(T) -+ {-1, 1} be the function defined

by f(w) = f'(w) if w E V(T'), f(v) = 1 and f(u) = -1. Every vertex

that votes aye in T' also votes aye in T, while u votes aye in T. Hence at

least k' + 1 = k vertices of T vote aye, and so f is a TkSF of T. Thus,

1';k;l(T) ~ f(V(T)) = f'(V(T')) = 1';k;;(T'). On the other hand, by Lemma 4.11

there exists a 1';k~l(T)-function 9 that assigns to u a negative opinion and to

v a positive opinion. Let g' be the restriction of 9 to V(T'). Then, g' is a

Tk'sF of T'. Thus, 1';k;;(T') ~ g'(V(T')) = g(V(T)) = 1';k;l(T). Consequently,

-11 (T) -11 (T')1'tks = 1'tk's .

Suppose k' = (n' + 1)/2. Then, k = (n + 1)/2 and by the inductive hypothesis,

f'(V(T')) = -1, and so 1';k;l(T) = f'(V(T')) = -1. Suppose k' =1= (n' + 1)/2. Then,

k =1= (n + 1)/2 and by the inductive hypothesis, f'(V(T')) = 2k' - n' = 2k - n, and

so 1';k;l(T) = f'(V(T')) = 2k - n. 0
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4.5.2 Spiders

61

In this subsection, we establish the total k-subdomination number of an even spider.

We begin with the following lemma.

Lemma 4.13 Let T be an even spider of (odd) order n 2: 3. For (n+ 1)/2 ~ k < n,

there exists a 'Ytk;l(T)-function that assigns to a leaf at maximum distance from the

head of T a negative opinion and to its neighbor a positive opinion.

Proof. If T is a path, then the result follows from Lemma 4.11. Hence we may

assume that tl(T) 2: 3. Let v be the head of the spider and let f be a 'Y~;l(T)­

function. Let x be a leaf at maximum distance from v. For two distinct vertices

a and b of T, we denote by fa,b the function obtained from f by interchanging the

values of a and b and leaving the values of all other vertices unchanged.

Suppose f(x) = 1. We construct a new opinion function 9 having the same weight

as f and with at least as many vertices voting aye as under f but with g(x) = -1.

If some vertex on the v-x path has a negative opinion, then let w be such a vertex

at maximum distance from v (possibly, v = w) and take 9 = fw,x. On the other

hand, suppose every vertex on the v-x path has a positive opinion. Since k < n,

at least one vertex of T has a negative opinion. Hence there exists a leaf z of T

such that the v-z path contains at least one vertex with a negative opinion. Let

v, VI, V2,"" V2r = z denote the v-z path. If f(Vi) = -1 for some i with i odd, then

take 9 = !Vj,X where j is the largest odd integer such that f(vj) = -1. On the other

hand, if f(Vi) = 1 for all odd i, then take 9 = fVi'X where i is the smallest (even)

integer such that f(Vi) = -1. Hence we can choose f so that f(x) = -1.

Let w be the vertex adjacent to x. Suppose f(w) = -1. We construct a new opinion

function h having the same weight as f and with at least as many vertices voting aye

as under h but with h(w) = 1 and h(x) = -1. If every vertex different from v that

is at even distance from v has a negative opinion, then every vertex at odd distance
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if k = Hn + 1)

from v votes nay. Further, since x votes nay, this would imply that k ~ (n - 1)/2,

a contradiction. Hence f(d) = 1 for at least one vertex d =1= v at even distance from

v. We can now take h = fd,w where d is a vertex at maximum even distance from

v with f(d) = 1. Hence we can choose f so that f(w) = 1 and f(x) = -1, as

desired. 0

Proposition 4.14 Let T be an even spider of (odd) order n ~ 3. For (n + 1)/2 ~

k ~ n,

,~~l(T) = \-1
2k - n otherwise,

Proof. We proceed by induction on the order n of the even spider T. If T is

a path, then the desired result follows from Proposition 4.12. In particular, this

proves the base cases when n = 3 and n = 5. Suppose that n ~ 7 (and so, k ~ 4)

and that for every even spider T ' of (odd) order n l < n, and any integer k' with

(nl + 1)/2 ~ k' ~ ni, ,~~l(TJ) = -1 if k' = (n' + 1)/2 and ,~~l(r) = 2k' - n'

otherwise. Let T be an even spider of order n. We may assume D.-(T) ~ 3, for

otherwise the result follows from Proposition 4.12. Let v be the head of T. Let x be

a leaf at maximum distance from v in T and let w be the support vertex adjacent

to x.

If k = n, then the result follows from Theorem 4.10. Hence we may assume that

k ~ n - 1. Let T ' = T - w - x. Then, T ' is an even spider of order n l = n - 2. Let

k' = k - 1, and so (n' + 1)/2 ~ k' ~ n l
•

Any Tk'sF of T' can be extended to a TkSF of T by assigning a positive

opinion to the vertex wand a negative opinion to the vertex x. It follows that

,~~l(T) ~ ,~~;(T'). On the other hand, by Lemma 4.13 there exists a ,~~l(T)_

function 9 that assigns to x a negative opinion and to w a positive opinion. Let g'
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be the restriction of 9 to V(T'). If d(v,x) ~ 4, then g' is a Tk'sF of T'. Suppose

d(v, x) = 2. Then, T is an even spider with every leg oflength 2. Since k ~ (n+1)/2,

we can choose 9 so that every neighbor of v has a positive opinion and still g(x) = -1

(if some neighbor a of v has a negative opinion, then there must be a leaf b with

a positive opinion, and we can simply take g* = ga,b)' Hence, once again g' is a

Tk'sF of T'. Thus, ,;;J;(T') :S g'(V(T')) = g(V(T)) = I~~l(T). Consequently,

-11 (T) -11 (T')Itks = Itk's .

Suppose k' = (n' + 1)/2. Then, k = (n + 1)/2 and by the inductive hypothesis,

I~~;(T') = -1, and so I~~l(T) = -1. Suppose k' ~ (n' + 3)/2. Then,

k ~ (n + 3)/2 and by the inductive hypothesis, l;k~;(T') = 2k' - n' = 2k - n,

and so I~~l(T) = 2k - n. </

4.5.3 Upper Bounds

We now present an upper bound on the total k-subdomination number of a tree in

terms of its order and k.

Theorem 4.15 For any tree T of order n ~ 2, and any integer k with 1 :S k :S n,

{

-I

-l1(T) < .
Itks -

2k - n otherwise.

and these bounds are sharp.

Proof. We proceed by induction on the order n ~ 2 of a tree T. If nE {2, 3}, then

T = Pn and the result follows from Proposition 4.12. This proves the base cases

when n = 2 or n = 3.
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Suppose that n 2 4 and that for every nontrivial tree T' of order n' < n, and

any integer k' with 1 ::; k' ::; n' - 1, ,;k~l(T') ::; -1 if k' = (n' + 1)/2 and

,;k~l(T') ::; 2k' - n' otherwise. Let T be a tree of order n.

If T is a star, then, by Proposition 4.9, ,;k~l(T) = 2 - n < -1. Thus, ,;k~l(T) =

2k - n if k = 1, while ,;k~l(T) < 2k - n if 2 ::; k ::; n. Hence the desired result

follows if T is a star. Thus we may assume that diam (T) 2 3.

If k = n, then, by Theorem 4.10, ,;k~l(T) ::; n = 2k - n. Hence we may assume

k < n.

Let T be rooted at a leaf r of a longest path. Let v be a vertex at distance diam (T)-l

from r on a longest path starting at r, and let w be the parent of v. Let

IN(v) - {w}1 = m. Then, m 2 1. If k::; m, then giving a positive opinion to v and

negative opinions to all the other vertices we obtain a TkSF of T of weight 2 - n,

and the desired result follows. Hence we may assume k > m.

Let T' = T - (N[v] - {w}). Then, T' has order n' = n - m - 1. Since diam (T) 2 3,

n' 2 2. Let k' = k - m. Since m + 1 ::; k ::; n - 1, we have 1 ::; k' ::; n'.

Let j' be a ,;k~; (T')-function. Let f: VeT) -t {-I, I} be the function defined by

few) = j'(w) if w E VeT'), f(v) = 1 and feu) = -1 for every child of v. Every

vertex that votes aye in T' also votes aye in T, while each child of v votes aye in T.

Hence at least k' + m = k vertices of T vote aye, and so f is a TkSF of T. Thus,

,;k~l(T) ::; f(V(T)) = j'(V(T')) + 1 - m.

Suppose k' = (n' + 1)/2. Then, k = (n + m)/2. By the inductive hypothesis,

,;k~;(T') :::; -1, and so ,;k~l(T) :::; -m. Thus if m = 1, then k = (n + 1)/2 and

,;k~l(T) ::; -1, while if m 2 2, then k 2 (n + 2)/2 and ,;k~l(T) ::; -2 < 2 :::; 2k - n.

In any event, the result follows.

On the other hand, suppose k' #- (n' + 1)/2. By the inductive hypothesis,

,;k~;(T') ::; 2k' - n' = 2k - n + 1 - m, and so ,;k~l(T) ::; 2k - n + 2(1 - m).



CHAPTER 4. TOTAL SIGNED K -SUBDOMINATION NUMBERS 65

Suppose k = (n + 1)/2. Then, k' = (n' - m + 2)/2. Since k' # (n' + 1)/2, it follows

that m 2: 2, and so 'Y;k~l(T) :::; 2k - n + 2(1 - m) :::; -:1. Suppose k # (n + 1)/2.

Then, since m 2: I, 'Y;k~l (T) :::; 2k - n. Once again, the desired result follows.

That the bounds are sharp, follows from Proposition 4.12. <:;

As an immediate consequence of Theorem 4.8, we have the following result.

Corollary 4.16 Let T = (V, E) be a tree of order n and let 1 :::; k :::; n be an integer.

Then, 'Y;k~l (T) = 2k - n if and only if there exists a partition (P, M) of V for which

1. IN(x) n PI-IN(x) n MI 2: 1 for at least k of the vertices ofT,

2. IPI - IMI = 2k - n, and

3. for any P' ~ P and any M' ~ M satisfying IP'I > IM'I, we have

I{x E V I 2(IN(x) n P'I-IN(x) n M'I) 2: IN(x) n PI-IN(x) n MI}I > n ­

k.

4.5.4 Extremal Trees

The trees of order n with maximum total k-subdomination number when k = n

are characterized in Theorem 4.10. Our aim in this subsection is to characterize

those trees of order n achieving the maximum possible total k-subdomination

number when (i) n is even and n/2 :::; k :::; n/2 + 3 and when (ii) n is odd and

(n + 3)/2 :::; k :::; (n + 5)/2, i.e., we characterize those trees achieving equality in the

upper bounds in Theorem 4.15 for k = n/2 and n/2 + 1 :::; k :::; n/2 + 3. We first

consider the case when n is even.

Theorem 4.17 For any tree T of even order n 2: 2, and any integer k with

n/2:::; k :::; n/2 + 3, 'Y;k~l (T) = 2k - n if and only if T is a path.
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Proof. The sufficiency follows from Proposition 4.12. To prove the necessity, we

proceed by induction on the order n of a tree T, where n 2: 2 is even, n/2 ~ k ~ n,

k = n/2 + i where 0 ~ i ~ 3, and 1';k;l(T) = 2k - n. If n = 2, then T = P2. If

n = 4, then k E {2, 3, 4}. If T = K 1,3, then it follows from Theorem 4.10 (if k = 4}

or Proposition 4.9 (if k E {2, 3}) that 1';k;l(T) < 2k - n, a contradiction. Hence,

T = P4 . Thus if n E {2, 4}, then T is a path. This proves the base cases when n = 2

and n = 4.

Suppose that n 2: 4 is even and that for every nontrivial tree T' of even order n' < n,

and any integer k' with n'/2 ~ k' ~ n' and k' = n'/2 + i where 0 ~ i ~ 3, that if

1';k~;(T') = 2k' - n', then T' is a path. Let T be a tree of order n.

If k = n, then since k ~ (n + 6)/2, n = k = 6, and so it follows from Theorem 4.10

that 1';k;l(T) ~ n < 2k - n unless T = P6. Hence the desired result follows if k = n.

Thus we may assume k < n. In particular, if k = n/2 + 3, then n 2: 8.

Following the notation used in paragraph 5 and 6 of the proof of Theorem 4.15,

1';k;l(T) ~ f(V(T» = j'(V(T'» + 1 - m. If k' = (n' + 1)/2, then k = (n + m)/2.

By Theorem 4.15, 1';k~;(T') ~ -1, and so 1';k;l(T) ~ -m, a contradiction. Hence,

k' i- (n' + 1)/2. By Theorem 4.15, 1';k~;(T') ~ 2k' - n' = 2k - n + 1 - m, and so

1';k;l(T) ~ 2k-n+2(1-m). Ifm 2: 2, then 1';k;l(T) ~ 2k-n+2(1-m) ~ 2(k-1)-n,

a contradiction. Hence, m = 1, and so k' = k - m = k - 1, n' = n - 2 and

1';k;l(T) ~ j'(V(T'» = 1';k~;(T'). Furthermore, n' is even and n'/2 ~ k' ~ n' and

k' = n'/2 + i where 0 ~ i ~ 3.

By Theorem 4.15, 1';k~;(T') ~ 2k' - n'. If 1';k~;(T') ~ 2(k' - 1) - n', then

1';k~l(T) ~ 2(k - 1) - n, a contradiction. Hence, 1';k~;(T') = 2k' - n'. Applying

the inductive hypothesis to T', T' is a path. Let u denote the child of v.

Suppose w is neither a leaf nor a support vertex of T'. Let v' be the child of w

different from v, and let u' be the child of v'. Assign a positive opinion to wand

its two children and to all vertices of degree 2 at even distance from w. Assign a
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negative opinion to all remaining vertices. For k = n/2 + 1 this is a TkSF. If

k = n/2, reassign to w a negative opinion. If k = n/2 + 2, reassign to u a positive

opinion, while if k = n/2 + 3, reassign to each of u and u' a positive opinion. In all

cases, this produces a TkSF of weight 2(k - 1) - n, and so ,;k~l(T) :::; 2(k - 1) - n,

a contradiction. Hence, w is either a leaf or a support vertex of T'.

Suppose that w is a support vertex of T'. Let v' be the child of w different from v.

Assign a positive opinion to wand to all vertices different from v' whose distance

from w in T is odd. Assign a negative opinion to all remaining vertices. For

k = n/2 + 1 this is a TkSF. If k = n/2, reassign to w a negative opinion. If

k = n/2 + 2, reassign to u a positive opinion, while if k = n/2 + 3, reassign to each

of the two vertices at distance 2 from w positive opinion. In all cases, this produces

a TkSF of weight 2(k - 1) - n, and so 'tk~l(T) :::; 2(k - 1) - n, a contradiction.

Thus, w is a leaf in T', whence T is a path of even order. <>

Theorem 4.17 is not true for n/2 + 4 :::; k :::; n - 1. For example, let £ 2: 2 be an

integer and let T be a spider of order n = 2(£ + 3) with three legs, two of length 2

and one of length 2e + 1. Then for n/2 + 4 :::; k :::; n - 1, ,;k~l(T) = 2k - n. Thus if

,;k~l(T) = 2k - nand n/2 + 4:::; k :::; n - I, then T is not necessarily a path.

Next we characterize those trees of order n achieving the maximum possible total

k-subdomination number when n is odd and (n + 3)/2 :::; k :::; (n + 5)/2.

Theorem 4.18 For any tree T of odd order n 2: 3, and for any integer k with

(n + 3)/2:::; k :::; (n + 5)/2, ,;k~l(T) = 2k - n if and only ifT is an even spider.

Proof. The sufficiency follows from Proposition 4.14. To prove the necessity, we

proceed by induction on the order n of a tree T, where n 2: 3 is odd, k = (n+ 1)/2+i
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where 1 ::; i ::; 2 and 1';k~l(T) = 2k - n. If n = 3, then T = P3 · If n = 5, then

k E {4, 5}. If T is not a path, then it is easy to check that 1';k~l(T) < 2k - n, a

contradiction. Hence, T = Ps. Thus if n E {3,5}, then T is an even spider. This

proves the base cases when n = 3 and n = 5.

Suppose that n 2: 7 is odd and that for every tree T' of odd order n', where

3 ::; n' < n, and for k' = (n' + 1)/2 + i where 1 ::; i ::; 2, that if 1';k~;(T') = 2k' - n',

then T' is an even spider. Let T be a tree of order n with 1';k~l(T) = 2k - n, where

k = (n + 1)/2 + i and 1 ::; i :s; 2. Since n 2: 7, k < n. If T is a star, then by

Proposition 4.9, 1';k~l(T) = 2 - n < -1, a contradiction. Hence, diam (T) 2: 3.

Following the notation used in the proof of Theorem 4.15, let T be rooted at a leaf

r of a longest path, let v be a vertex at distance diam(T) - 1 from r on a longest

path starting at r and let w be the parent of v. Let IN(v) - {w}1 = m. If m 2: 2,

then proceeding as in the proof of Theorem 4.17, 1';k~l(T) < 2k - n, a contradiction.

Hence, m = 1. Let u be the child of v. Then, T' has odd order n' = n - 2. Let

k' = k - 1, and so k' = (n' + 1)/2 + i. By Theorem 4.15, 1';k~;(T') ::; 2k' - n'.

If 1';k~; (T') < 2k' - n', then any 1';k~; (T')-function can be extended to a TKSF

of T by assigning a positive opinion to v and a negative opinion to u, whence

1';k;l(T) < 2k - n, a contradiction. Hence, 1';k~;(T') = 2k' - n'. Applying the

inductive hypothesis to T', T' is an even spider.

Let 9 be the opinion function that assigns to the head of T' and all vertices at even

distance from the head in T' a negative opinion and to all other vertices a positive

opinion. Then the head of T' and all vertices at even distance from the head in T'

vote aye under g, while all other vertices vote nay. Hence, (n' + 1)/2 = (n - 1)/2

vertices of T' vote aye under g. Further, g(V(T')) = -1, and all leaves of T' have

a negative opinion under 9 while all support vertices of T' have a positive opinion

under g.
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Suppose w is a support vertex ofT'. Let v' be the child of win T'. If k = (n+3)/2,

then the function 9 can be extended to a TkSF of T by assigning to both u and

v a positive opinion. If k = (n + 5)/2, then the function 9 can be extended to a

TkSF of T by assigning to both u and v a positive opinion and by reassigning to

v' a positive opinion. In both cases, we produce a TkSF of weight 2(k - 1) - n, a

contradiction. Hence w is a leaf of T' or at distance 2 from a leaf in T'. It follows

that if w is a leaf of T' or if w is the head of T', then T is an even spider. Hence we

may assume that w is at distance 2 from a leaf in T' but that w is neither a leaf of

r nor the head of T'.

Let x be the head ofT'. By assumption, x =f. w. Suppose that T' is not a path. Then,

x has degree at least 3. Since T' is an even spider, d(x, w) is even. Let P denote

the x-w path and let h be the opinion function of T defined as follows: let h(v) = 1

and h(u) = -1, let h(y) = -g(y) for all vertices y E V(P), and let h(y) = g(y) for

all remaining vertices y E V(T') - V(P). Then, h(V(T» = g(V(T» + 2 = 1. If

y E V(T') and y ~ V(P) - {w, x} and y votes aye in T' under g, then y also votes

aye in T under h. If y E V(P) - {w, x} and y is at odd distance from x, then y votes

nay in T' under 9 but aye in T under h. On the other hand, if y E V(P) - {w, x} and

y is at even distance from x, then y votes aye in T' under 9 but nay in T under h.

Since IV(P)I is odd, it follows that the number of vertices in V(T') that vote aye in

T is one more than the number of vertices in V (T') that vote aye in T', i.e., there

are (n' +3)/2 = (n+ 1)/2 vertices in V(T') that vote aye in T under h. Since u votes

aye in T, there are therefore (n + 3)/2 vertices in V(T) that vote aye in T. Hence if

k = (n + 3)/2, then h is a TkSF of T, whence 1;k~l(T) ~ h(V(T» = 1 < 2k - n, a

contradiction. If k = (n + 5)/2, then reassigning a positive opinion to the leaf in T'

at distance 2 from w produces a TkSF of T of weight 2(k -1) - n, a contradiction.

Hence, T' is a path, and so T is an even spider (with w as its head). <>
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Theorem 4.18 is not true for (n + 7)/2 ::; k ::; n - 1. For example, let f ~ 3 be

an integer and let T be a tree of order n = 2f + 3 obtained from an even spider

with f legs each of length 2 by adding a path of length 2 to one of the support

vertices of the spider. Then, for (n + 7)/2 ::; k ::; n - 1, ftk;l(T) = 2k - n. Thus,

if ftk;l(T) = 2k - nand (n + 7)/2 ::; k ::; n - 1, then T is not necessarily an even

spider.



Chapter 5

COMPLEXITY OF TOTAL

MINUS AND SIGNED

DOMINATION

5.1 Introduction

This chapter is devoted to complexity issues of total mmus and total signed

domination. In Section 5.2, we discuss the complexity of the decision problems

corresponding to the computation of f;101(G) and f;l1(G) of a graph, where

,,;101(G) = ,,;;,~Ol(G), ,,;l1(G) = ,,;;,~l(G) and n = n(G). In Sections 5.3 and

5.4, we present linear algorithms for finding ,,;101 (T) and ,,;11 (T) of a nontrivial

tree T. A total minus dominating function will be abbreviated by T M DF, while a

total signed dominating function will be abbreviated by TSDF.

71
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5.2 Complexity issues

In this section we discuss complexity issues regarding the computation of 1;101 (G)

and I;l1(G) for a graph G.

The following decision problem corresponding to the computation of the total

domination number is known to be NP-complete, even when restricted to bipartite

graphs or chordal graphs [33].

TOTAL DOMINATION (TD)

Instance: A graph G = (V, E) and a positive integer k :S IVI.

Question: Does G have a total dominating set of cardinality k or less?

We will demonstrate a polynomial time reduction from this problem to the following

decision problem:

TOTAL MINUS DOMINATION (TMD)

Instance: A graph H = (V, E) and a positive integer f:S IVI.

Question: Does H have aTM DF of weight f or less?

Theorem 5.1 TMD is NP-complete, even when restricted to bipartite or chordal

graphs.

Proof. It is obvious that TMD is a member of NP since we can, in polynomial

time, guess a function f : V -t {-I, 0, I} and verify that f has weight at most f

and is a TMDF. We next show how a polynomial time algorithm for TMD could

be used to solve TD. Given a graph G = (V, E) and a positive integer k, construct

the graph H by adding to each vertex Vi of G a path of length four, consisting of

the consecutive vertices Vi, Wi, Xi, Yi and Zi. It is easy to see that the graph H can be

constructed in polynomial time, and that if G is a bipartite or chordal graph, then

so too is H.
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Lemma 5.2 Tt101(H) = Tt(H) = Tt(G) + 21V(G)I·

Proof. Let Vi E V(G) and let! be a Tt101(H)-function. Since N(Zi) = {Yi}

and !(N(Zi» 2:: 1, we have !(Yi) = 1. Also, 1 ~ !(N(Yi» = !(Zi) + !(Xi), so

that !(Zi) 2:: 0 and !(Xi) 2:: O. Similarly, using the facts that 1 ~ !(N(Xi» and

1 ~ !(N(Wi»' we have !(Wi) 2:: 0 and !(Vi) 2:: O.

Thus, ImU) ~ {O, I}, and so! is a TDF of H. Consequently, Tt(H) ~ !(V(H» =

Tt101(H). On the other hand, if S is a Tt(H)-set, then the characteristic function

h of S is a TMDF of H, so Tt 101 (H) ~ h(V(H» = Tt(H). Consequently,

Tt101(H) = Tt(H).

Let n = IV(G)I and let S be a 'Yt(G)-set. Then SUU7=1 {Xi, Yi} is a total dominating

set of H. Thus, Tt(H) ~ Tt(G) + 2n.

To see that the reverse inequality holds, let S be a 'Yt(H)-set for which IS n

(U7=1 {Wi, Xi, Yi, Zi})/ is minimized.

We may assume, without loss of generality, Zi rt S and {Xi, Yi} ~ S. For suppose

Zi E S. It follows Yi E S. If Xi E S, then S - {Zi} is a total dominating set,

contradicting the minimality of S. Thus, Xi rt S, and S' = (S - {Zi}) U {Xi} is a

Tt (H)-set such that Zi (j. .S' and {Xi, Yi} ~ S'.

We next show that Wi rt S for all 1 ~ i ~ n. For suppose, to the contrary,

Wi E S for some 1 ~ i ~ n. Since S - {Wi} is not a total dominating set,

Vi is uniquely (open) dominated by Wi. Let Vj be any vertex adjacent to Vi.

Then Vj (j. S. If Vi E S, then S' = (S - {Wi}) U {Vj} is a Tt(H)-set with

IS' n (U7=1{Wi,Xi,Yi,Zi})1 < IS n (U~l{Wi,Xi,Yi,Zi})I, which is a contradiction.

We may, therefore, assume Vi (j. S. If Vj is dominated by some vertex Vl E S, then

(S - {wd ) U {Vj} is a Tt (H)-set, contradicting our choice of S, as before. Thus, Vj

must be uniquely dominated by Wj' But then (S - {Wi, Wj} ) U{Vi, Vj} is a Tt (H)-set,

again contradicting our choice of S.
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Since Wi ri 8 for all 1 S; i S; n, 8 - Uj=l {Xi, Yi} is a total dominating set of G, so

It(G) S; 181- 2n = It(H) - 2n. It now follows that It(H) = It(G) + 2IV(G)I· 0

Lemma 5.2 implies that if we let f. = k + 2IV(G)1, then It(G) S; k if and only if

1;101 (H) S; f., and our proof is complete. 0

Problem TD is polynomial for fixed k. To see this, let G = (V, E) be a graph with

IVI = n. If k 2:: n, then V is a total dominating set of G of cardinality at most k. On

the other hand, if k < n, then consider all the r-subsets of V, where r = 1, ... ,k.

There are 2::;=1 (;) of these subsets, which is bounded above by the polynomial

2::;=1 nr
. It takes a polynomial amount of time to verify that a set is or is not a

total dominating set. These remarks show that it takes a polynomial amount of

time to verify whether G has a total dominating set of cardinality at most k when

k is fixed. Hence for fixed k, TD E P.

In contrast, we now show that for a fixed k, TMD may be NP-complete. To see

this, we will demonstrate a polynomial time reduction of TMD to the following

decision problem.

ZERO TOTAL MINUS DOMINATION (ZTMD)

Instance: A graph G = (V, E).

Question: Does G have a TMDF of weight at most O?

Theorem 5.3 ZTMD is NP-complete, even when restricted to bipartite or chordal

graphs.

Proof. It is obvious that ZTMD is a member of NP since we can, in polynomial

time, guess at a function f : V(G) ---* {-I, 0,1} and verify that f has weight at

most 0 and is a TMDF.
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Figure 5.1:

We next show how a polynomial time algorithm for ZTMD could be used to solve

TMD in polynomial time. Before proceeding further, we use the above figure to

prove the following helpful result.

Proof. Suppose f is a I;lOl(Gi)-function h;l1(Gi)-function, respectively). Every

vertex adjacent to an end-vertex must receive 1 under f, since otherwise that end­

vertex would not have an open neighborhood sum of at least 1 under f. If any

end-vertex has a value other than -1 assigned to it by f, we may reassign -1 to it

and the resulting function will still be a TMDF (TSDF, respectively) of Gi , which

is a contradiction. Thus, each end-vertex of Gi is assigned -1 by f. It now follows

that /;101 (Gi ) = 1;11 (Gi ) = -1. 0

Note that Gl is bipartite, while G2 is chordal.

Given a graph H = (V, E) and a positive integer R, let J l = H U U~=l Hl,j, where

Hl,j rv Gl for j = 1, ... , R (J2 = H U U~=l H2,j, where H2,j ~ G2 for j = 1, ... , R,

respectively). It is clear that J l (J2 , respectively) can be constructed in polynomial



CHAPTER 5. COMPLEXITY OF TOTAL MINUS AND SIGNED DOMINATI0N76

time. Note that if H is bipartite (chordal, respectively), then so too is J1 (J2 ,

respectively) .

We now show that 1;101 (H) :s; f if and only if 1;101 (Ji) :s; 0 for i = 1,2. Let 1 :s; i :s;
2. Suppose first I;101(H) :s; f and j is a I;101(H)-function. Let h be any TMDF

of weight -1 for Hi,i for j = 1, ... , f. Define 9 : V(G) -+ {-I, 0, I} where G = Ji

by g(x) = ji(x) if x E V (Hi,j) , (j = 1, ... , f), while g(x) = j(x) for x E V(H).

Then 9 is a TMDF of G of weight I;101(H) + £(-1) :s; £ - £ = O. Conversely,

suppose 1;101 (Ji) :s; 0 and 9 is a 1;101 (Ji)-function. Let j be the restriction of

9 on V(H) and let h be the restriction of 9 on V(Hi,j) for j = 1, ... , f. Then

I;101(H) + £( -1) = I;101(H) + L~=l 1;101 (Hi,j) :s; j(V(H)) + L~=l h(V(Hi,j)) =

g(V(Ji)) = I;101(Ji) :s; 0, so that I;101(H) :s; £. 0

Henning [27] showed that the following decision problem is NP-complete.

TOTAL SIGNED DOMINATION (TSD)

Instance: A graph H = (V, E) and a positive integer f :s; IVI.

Question: Does H have a TSDF of weight £ or less?

Theorem 5.5 TSD is NP-complete, even when restricted to bipartite or chordal

graphs.

As before, by using Lemma 5.4, one may show that the following decision problem

is NP-complete, even for bipartite and chordal graphs.

ZERO TOTAL SIGNED DOMINATION (ZTSD)

Instance: A graph G = (V, E).

Question: Does G have a TSDF of weight at most O?
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5.3 A linear algorithm for ,;101(T)

Next we present a linear algorithm for finding a lt101(T)-function in a nontrivial

tree T. The variable OpenSum denotes the sum of the values assigned to the open

neighborhood of v.

Algorithm: TOTAL MINUS DOMINATION(TMD). Given a nontrivial tree

T on n vertices, root the tree T and label the vertices of T from

1 to n so that label(w) > label(y) if the level of vertex w is less than the

level of vertex y. Note the root of T will be labeled n.

for i +- 1 to n do

f(i) +- -1

for i +- 1 to n do

begin

1. if vertex i is a leaf and i < n

then begin

OpenSum +-1

f (parent(i» +- 1

end

else OpenSum +- f(N(i»

2. if i < n

then while (OpenSum < 1) and (J(parent(i» < 1) do

begin

parent(i) +- f (parent( i» + 1

OpenSum +- OpenSum + 1

end

3. while OpenSum < 1 do

begin

Choose a child of 2, say v, for which f(v) < 1
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while (OpenSum < 1) and (f(v) < 1) do

begin

f(v) +- f(v) + 1

OpenSum +- OpenSum + 1

end

end

Theorem 5.6 Algorithm TMD produces a 'Yt:101(T)-function in a nontrivial tree

T.

Proof. Let T = (V, E) be a nontrivial tree of order n and let f be the function

produced by the Algorithm TMD. Then f : V -T {-I,D, I}. For convenience,

the variable OpenSum which was used by Algorithm TMD when it considered the

vertex v, will be denoted by OpenSum(v).

Lemma 5.7 The function f produced by Algorithm TMD is a TMDF.

Proof. First consider the case when v is a leaf. The algorithm assigns, in Step 1,

the value 1 to the parent of v, and since values are never decreased by the algorithm,

the open neighborhood sum of v is at least one.

Next consider the case when v is not a leaf. If OpenSum(v) 2: 1, we are done. If

not, then Steps 2 and 3 of the algorithm increase the value of vertices in the open

neighborhood of v such that OpenSum(v) 2: 1, as required. 0

To show that the function f obtained by Algorithm TMD is a 'Yt:101(T)-function,

let 9 be any 'Yt:101(T)-function for the rooted tree T. If f =1= g, then we will show

that 9 can be transformed into a new 'Yt:101 (T)-function g' that will differ from f
in fewer values than 9 did. This process will continue until f = g'. Suppose, then,

that f =1= g. Let v be the lowest labeled vertex for which f(v) =1= g(v). Then all

descendants of v are assigned the same value under 9 as under f.
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Lemma 5.8 If g(v) < j(v), then the initial value assigned to the vertex v was

increased in Step 3 of Algorithm TMD.

Proof. Suppose the value of v was increased in Step 1. Then v is the parent of some

leaf, say u. Since g(v) < j(v), we have g(v) ~ O. But then g(N(u» = g(v) ~ 0,

contradicting the fact that 9 is aTM DF of T.

Suppose the value of v was increased in Step 2. This occurred when the algorithm

was processing a vertex, say u, whose parent is v. Then f(N(u» ~ 1 and g(N(u» =
g(N(u)-{v})+g(v) = j(N(u)-{v})+g(v) = f(N(u»-f(v)+g(v) < j(N(u» ~ 1,

which contradicts the fact that 9 is aTM DF for T. 0

Lemma 5.9 If g(v) < j(v), then the function g' defined by g'(u) = j(u) if

u E N(parent(v» and g'(u) = g(u) if u et N(parent(v» is a It101(T)-function

that differs from j in fewer values than does g.

Proof. By Lemma 5.8, the initial value of v is increased in Step 3 of

Algorithm TMD, which occurs when the parent of v was being processed. Let

w be the parent of v. So g' is defined by g'(u) = j(u) if u E N(w) and g'(u) = g(u)

for all remaining vertices in V.

The algorithm ensures that f(N(w» = 1. Also, since 9 is a TMDF of T,

j(N(w» = 1 ~ g(N(w». Furthermore, g'(V) = g'(V - N(w» + g'(N(w» =

g(V - N(w» + j(N(w» ~ g(V - N(w» + g(N(w» = g(V). Thus, g'(V) ~ g(V).

Since all the descendants of w, other than its children, have the same values under

9 as under j, g'(N(u» = j(N(u» if u = w or if u is a descendant of w, other than

a child of w. Moreover, since the value of v was increased in Step 3, then, if w had

a parent, its value was either already 1 or otherwise it was increased to 1 in Step 2.

Thus, g'(N(u» 2: g(N(u» for all vertices u different from w or a descendant of w,

other than a child of w. Thus, since f and 9 are T M D Fs of T, so too is g'. Since
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g'(V) :::; g(V), g' is a 1';101 (T)-function of T that differs from f in fewer values than

does g. (;

We now consider the case where f(v) < g(v). We will need the following result.

Lemma 5.10 A T MDF on a graph G = (V, E) is minimal if and only if for every

vertex v E V with f(v) E {O, I}, there exists a vertex u E N(v) with f(N(u)) = 1.

Proof. Let f be a minimal T M DF of G. Suppose there is a vertex v E V with

f(v) E {O, I} and f(N(u)) ~ 2 for every vertex u E N(v). Define a function

9 : V --+ {-I, 0, I} by g(v) = f(v) - 1 and g(w) = f(w) for all w =I- v. Thus

g(N(w)) = f(N(w)) ~ 1 for all w ~ N(v) and g(N(w)) = f(N(w)) - 1 ~ 1 for all

wE N(v). So 9 is a TMDF with 9 < f, contradicting the minimality of f.

Conversely, let f be a T M D F such that for every vertex v E V with f (v) E {O, I},

there exists a vertex u E N(v) with f(N(u)) = 1. Suppose f is not minimal.

Then there exists a TMDF 9 with 9 < f. Thus, g(w) :::; f(w) for all w E V

and there exists a vertex v E V such that g(v) < f(v). Therefore f(v) E {O, I}

and by the assumption there is a vertex u E N(v) with f(N(u)) = 1. So

g(N(u)):::; f(N(u)) -1 = 0, which contradicts the fact that 9 is a TMDF. <>

If the vertex v is the root then f(V) < g(V) = 1';101 (T) which is a contradiction.

Thus, we may assume that v is not the root of T.

Since the labeling at each level is arbitrary, if any vertex x at the same level as v

has g'(x) < f(x), we can proceed as before to find a TMDF g' that agrees with f

in more values than 9 does. Thus we may assume that every vertex x at the same

level as v has f(x) :::; g(x).

Since f(v) < g(v), we know that g(x) E {O, I}. By Lemma 5.10, there must be

a vertex x E N(v) such that g(N(x)) = 1. Let w be the parent of v and u

be the parent of w. If f(u) :::; g(u), then f(N(x)) = f(N(x) - {v}) + f(v) :::;
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g(N(x) - {v}) + g(v) -1 = g(N(x)) -1 = 0, which contradicts the fact that f is a

TMDF.

Thus f(u) > g(u). Suppose f(u) = g(u) +r and f(v) = g(v) - s where r, sE {1,2}.

Define g' : V -+ {-I, 0,1} as follows: g'(y) = g(y) for all vertices y E V - {u, v},

g' (u) = { f (u) - 1 if r = 2 and s = 1

f (u ) otherwise

and

Then

g' (v) = { f (v) + 1
f(v)

if r = 1 and s = 2

otherwise

g'(u)
{

f (u) - 1 if r = 2 and s = 1

f (u) otherwise

{
g(u) + r - 1 if r = 2 and s = 1

g(u) + r otherwise

~ g(u)+1.

It follows that the only vertex with possibly a smaller value under g' than under

9 is v. For each child x of v, we have g'(N(x)) = g'(N(x) - {v}) + g'(v) ~

f(N(x) - {v}) + f(v) = f(N(x)) ~ 1.

Furthermore,

g' (u) + g' (v)
{

f(u) + f(v) + 1 if r = 1 and s = 2

f (u) - 1 + f (v) if r = 2 and s = 1

f(u) + f(v) otherwise
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(

(g(u) + 1) + (g(v) - 2) + 1 if r = 1 and s = 2

(g(u) + 2) - 1 + (g(v) - 1) if r = 2 and s = 1

g(u) + g(v) otherwise

= g(u) + g(v).

Thus, g'(N(w)) = g'(N(w)-{u,v})+g'(u)+g'(v) = g(N(w)-{u,v})+g(u)+g(v) =

g(N(w)) 2:: 1 and g'(V) = g'(V -{u, v} )+g'(u)+g'(v) = g(V -{u, v} )+g(u)+g(v) =

g(V). This shows that g' is a /t101(T)-function which differs from f in fewer values

than does g. 0

5.4 A linear algorithm for tt- ll (T)

In our final section, we present a linear algorithm for finding a minimum total

signed dominating function in a nontrivial tree T. The algorithm roots the tree

T and associates various variables with the vertices of T as it proceeds. For any

vertex v, the variable MinSum denotes the miminum possible sum of values that

may be assigned to the open neighborhood of v. So MinSum = 1 or 2 depending

on whether v has odd or even degree, respectively. The variable OpenSum denotes

the sum of the values assigned to the open neighborhood of v.

Algorithm: TOTAL SIGNED DOMINATION (TSD). Given a nontrivial

tree T on n vertices, root the tree T and relabel the vertices of T from

1 to n so that label(w) > label(y) if the level of vertex w is less than the

level of vertex y. Note the root of T will be labeled n.

for i +- 1 to n do

f(i) +- -1

fori +- 1 to n do
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begin

1. deg i +- degree of the vertex i in T

2. if deg i is odd

then M inSum +- 1

else MinSum +- 2

3. if vertex i is a leaf and i < n

then begin

OpenSum +- 1

3.1. f(parent{i)) +- 1

end

else OpenSum +- f{N{i))

4 . if OpenSum < M inSum

then begin

if i < nand f(parent{i)) = -1

then begin

4 . 1. f (parent{i) = 1

OpenSum +- OpenSum + 2 i

end

while OpenSum < MinSum do

begin

end

4.2.

end

increase the value of one of the children of Zi

OpenSum +- OpenSum + 2

end

We now verify the validity of Algorithm TSD.

Theorem 5.11 Algorithm TSD produces a 'Yt"l1(T)-junction in a nontrivial tree T.
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Proof. Let T = (V, E) be a nontrivial tree of order n, and let f be the function

produced by Algorithm TSD. Then f : V -7 {-I, I}. For convenience, the variables

MinSum and OpenSum, which were used by Algorithm TSD when it considered

the vertex v, will be denoted by MinSum(v) and OpenSum(v), respectively.

Lemma 5.12 The function f produced by Algorithm TSD is a TSDF for T.

Proof. First consider the case when v is a leaf. The algorithm assigns, in Step 3,

the value 1 to the parent of v, and since values are never decreased by the algorithm,

the open neighborhood sum of v is at least one.

Next consider the case when v is not a leaf. If OpenSum(v) 2: MinSum(v) 2: 1, we

are done. If not, then Step 4 of the algorithm increases the value of vertices in the

open neighborhood ofv such that OpenSum(v) 2: MinSum(v) 2: 1, as required. <>

To show that the TSDF f obtained by Algorithm TSD is minimum, let 9 be any

1';l1(T)-function for the rooted tree T. If f =1= g, then we will show that 9 can be

transformed into a new ,;11 (T)-function g' that will differ from f in fewer values

than 9 did. This process will continue until f = g'. Suppose, then, that f =1= g. Let

v be the lowest labeled vertex for which f(v) =1= g(v). Then all descendants of v are

assigned the same value under 9 as under f.

Lemma 5.13 If 9 (v) < f (v ), then the initial value assigned to the vertex v was

increased in Step 4.2 of Algorithm TSD.

Proof. Suppose the value of v was increased in Step 3.1. Then v is the parent of

some leaf, say u. But then g(N(u)) = g(v) = -1, contradicting the fact that 9 is a

TSDF ofT.

Suppose the value of v was increased in Step 4.1. This occurred when the algorithm

was processing a vertex, say u, whose parent is v. Then f(N(u)) = MinSum(u) :::; 2
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and g(N(u» = g(N(u) - {v}) + g(v) = f(N(u) - {v}) -1 = f(N(u» - f(v) -1 =
f (N(u» - 2 ::; 0, which is a contradiction.

Thus, the value of v was increased in Step 4.2. of Algorithm TSD. 0

Lemma 5.14 If g(v) < f(v), then the function g' defined by g'(u) = f(u) if

u E N(parent(v» and g'(u) = g(u) if u ~ N(parent(v)) is a ,;l1(T)-function

of T that differs from f in fewer values than does g.

Proof. By Lemma 5.13, the initial value assigned to the vertex v was increased

in Step 4.2 of Algorithm TSD and this occurs when the parent of v was being

processed. Let w be the parent of v. Thus g' is defined by g'(u) = f(u) if u E N(w)

and g'(u) = g(u) for all remaining vertices u in V.

Then f(N(w» = MinSum(w). If degw is even, then MinSum(w) = 2, so

g(N(w» ~ 2 = MinSum(w) = f(N(w». If degw is odd, then g(N(w» ~ 1 =
MinSum(w) = f(N(w». Hence, f(N(w» ::; g(N(w». Furthermore, g'(V) =

g'(V - N(w» + g'(N(w» = g(V - N(w» + f(N(w» ::; g(V - N(w» + g(N(w» =

g(V). Since all the descendants of w, other than its children, have the same values

under 9 as under f, g'(N(u» = f(N(u» if u = w or if u is a descendant of w, other

than a child of w. Moreover, since the value of v was increased in Step 4.2, then,

if w had a parent, its value was either already 1 or otherwise it was increased to 1

in Step 4.1. Thus, f(parent(w» = 1, so that g'(N(u» ~ g(N(u» for all vertices u

different from w or a descendant of w, other than a child of w. Thus, since f and

9 are TSDFs of T, so too is g'. Since g'(V) ::; g(V), g' is a ,;l1(T)-function of T

that differs from f in fewer values than does g. 0

It remains for us to consider the case where f (v) < g(v). We will need the following

result from [27].

Lemma 5.15 A TSDF f on a graph G = (V, E) is minimal if and only if for every

vertex v E V with f(v) = I, there exists a vertex u E N(v) with f(N(u» E {I, 2}.
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Here the vertex v is not the root of T, for otherwise f(V) < g(V) = 1;11 (T), which

is impossible. Since the labeling of the vertices was arbitrary at each level, if any

vertex x at the same level as v has g(x) < f (x), we can proceed as before to find

a TSDF g' that agrees with f in more values than under g. So we may assume in

what follows that every vertex x at the same level as v has f (x) ::; g(x).

Since f(v) < g(v), it follows that f(v) = -1 and g(v) = 1. By the minimality of

9 (cf. Lemma 5.15), there exists a vertex x E N(v) such that g(N(x)) E {1,2}.

Let w be the parent of v and let u be the parent of w. If f (u) ::; g(u), then

f(N(x)) = f(N(x) - {v}) + f(v) ::; g(N(x) - {v}) + g(v) - 2 = g(N(x)) - 2 ::; 0,

which is a contradiction.

Hence f(u) > g(u), i.e., f(u) = 1 and g(u) = -1. Define a function g' : V ---+ {-I, I}

by g'(y) = g(y) if y E V - {v,u}, g'(v) = -1 and g'(u) = 1. Note that f(v) =

g' (v) = -1 and f (u) = g'(u) = 1. The only vertices whose neighborhood sums are

decremented under g' are the children of v. However, these open neighborhood sums

under g' are at least as large as under f. Thus, since 9 and fare TSDFs, so too is

g'. Furthermore, g'(V) = g(V), so that g' is a I;l1(T)-function which differs from

f in fewer values than does g. <>



Chapter 6

COMPLEXITY OF TOTAL

k-SUBDOMINATION

6.1 Introduction

In this chapter, we focus on the algorithmic complexity of k-subdomination. In

Section 6.2, we show that the decision problem corresponding to the computation of

the total signed k-subdomination number is NP-complete. In Section 6.3, we present

a cubic time algorithm to compute the total signed k-subdomination number of a

tree. In Section 6.4, we discuss an algorithm that appears in [35]. The algorithm

is omitted and the complexity analysis seems to be incorrect. We correct this by

providing a detailed cubic time algorithm to compute Iksl1 (T) of a tree T. In

Section 6.5, we show that the decision problem corresponding to the computation

of the total minus k-subdomination number is NP-complete, even for bipartite

graphs. In Section 6.6, we present a cubic time algorithm to compute the total

minus k-subdomination number of a tree. Finally, in Section 6.7, we provide a cubic

time algorithm to compute Ik/01 (T) of a tree T.

87
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6.2 Complexity of total signed domination

In this section, we show that the decision problem

88

TOTAL SIGNED SUBDOMINATING FUNCTION (TSSF)

INSTANCE: A graph G = (V, E), positive integers c, d such that gcd(c, d) = 1

and 0 < 2::; 1 and an integer t.

QUESTION: Is there a total signed subdominating function f such that f(V) ::; t

and IC/I2: r~1?
is NP-complete by describing a polynomial transformation from the following

problem:

TOTAL DOMINATING SET, RESTRICTED TO 4-REGULAR

GRAPHS (TDS)

INSTANCE: A 4-regular graph G = (V, E) and a positive integer k ::; ~.

QUESTION: Is there a total dominating set of cardinality k or less for G?

We first show that TDS is NP-complete by describing a polynomial transformation

from the decision problem DOMINATING SET.

DOMINATING SET, RESTRICTED TO PLANAR CUBIC GRAPHS

(DS)

INSTANCE: A planar cubic graph G = (V, E) and a positive integer k ::; ~.

QUESTION: Is there a total dominating set of cardinality k or less for G?

Starting with the graph G, take two copies of the vertex set of G (which will be

independent sets), and join a vertex to all vertices in the other copy that are in its

closed neighborhood in G. The resulting graph has total domination number equal

to twice the domination number of G. This construction transforms a cubic graph,

into a 4-regular graph. Since DS is NP-complete [12], TDS is NP-complete.

If 2 = 1, then TSSF is the NP-complete problem TOTAL SIGNED
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DOMINATION (see [13], [27], and Theorem 5.5). Hence, we also assume that

o < ~ < 1. For convenience, we set q = ~' and denote min{j(V(G)) I j is a total

signed subdominating function with ICfl ~ rqlV(G)l} by /q(G).

We will need the following lemma.

Lemma 6.1 If c, d,p are positive integers such that 0 < q = ~ < 1) then there

exist positive integers e and r such that 8 ::; e ::; d2(f~1 + 4)) r < d2( r~l + 4) and

- --E±.!:-q - 2p+r+l·

Proof. Since c < d, we have c ~ 1, d ~ 2 and d - c ~ 1. Let t = r~l + 4. Then

dt(d - c) ~ 2t and cdt ~ 2t. However, 2t ~ p + 8, whence dt(d - c) ~ p + 8 and

cdt > p. Let t be the smallest positive integer such that dt(d - c) ~ p + 8 and

cdt > p. It follows that t ::; r~l +4. Let r = cdt - p and e= ddt - cdt - p. Note that

rand eare both positive integers such that r, e< ddt ::; d2( r~l + 4). Furthermore,

e~ 8 and q = 2P'++:+l" 0

Theorem 1 The decision problem TSSF is NP-complete.

Proof. Obviously, TSSF is in NP.

Let G be a 4-regular graph, p = n(G) and k be an integer such that k ::; p/2. By

Lemma 6.1, there exists positive integers r, f such that e~ 8 and q = 2P'++:+l. Let

H be the graph constructed from G as follows: Take a complete graph F on p + f

vertices, a fixed subset U~ V(F) with IU! = 3 and an empty graph L on r vertices,

and let H be obtained from the disjoint union of F, G, and L by joining each vertex

of U to every vertex in V(G) UV(L). Since n(H) = 2p+r+f < 2(p+d2(r~1 +4)),

the graph H can be constructed from G in polynomial time.

We will use the abbreviations TDS for a total dominating set and TSSF for a

total signed dominating function. We start by showing that if S is a TDS of G of
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cardinality at most k, then there is a TSSF f of H of weight at most 2k-2p-r-f+6.

Define f : V(H) -7 {-I, I} by f(v) = 1 if v E 8 U U, while f(v) = -1 otherwise.

Let v E V(G). Since 8 is a TDS of G, v is adjacent to some vertex u E 8 for

which f(u) = 1. Since G is 4-regular and f(U) = 3, we have f[v] ~ 1. It

is clear that f[w] = 3 for each vertex w E V(L), so that f[v] ~ 1 for at least

p + r = q(2p + r + £) = qn(H) vertices. This shows that f is a TSSF of H of weight

2181- 2p - r - f + 6 ::; 2k - 2p - r - f + 6.

For the converse, assume that 'Yq(H) ::; 2k - 2p - r - f + 6. Among all the minimum

TSSF's of H, let f be one that assigns the value +1 to as many vertices of U as

possible. Let P and M be the sets of vertices in H that are assigned the values +1

and -1, respectively, under f. Then IPI + IMI = 2p+r+£, and IPI- rMI = 'q(H).

Before proceeding further we prove three claims.

Claim 1 IPI ::; k + 3.

Proof. Suppose IPI ~ k + 4. Then IMI ::; 2p + r + £ - k - 4, so that

,q(H) = IPI - IMI ~ 2k - 2p - r - f + 8, which contradicts the fact that

,q(H) ::; 2k - 2p - r - £+ 6. 0

Claim 2 f[v] ::; 0 for all v E V(F).

Proof. Suppose there exists a v E V(F) such that f[v} ~ 1. If v E U, then, since

v dominates H, it follows that 0 = 1 - 1 ::; f[v] + f(v) = f(V(H» = ,q(H) ::;

2k - 2p- r - £+6, whence p+ ~ < k, which is a contradiction. Hence v E V(F) - U.

Since N(v) = V(F) - {v} and j[v] 2 1, it follows that more than half of the vertices

of the set V(F) - {v} have the value 1 assigned to them under f. This implies that

IPI ~ ~ = ~ + ~ 2 ~ + 4. By Claim 1 and the fact that k ::; ~, it follows that

IPI ::; ~ + 3, which is a contradiction. 0

By Claim 2, it follows that j[v] 2:: 1 for all v E V(G) U V(L).

Claim 3 f(U) = 3.
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Proof. Suppose that f(u) = -1 for some u E U. If f(v) = -1 for all v E V(G),

then f[v] ::; -3 for all v E V(G), which is a contradiction. It follows that there exists

a v E V(G) such that f(v) = 1. Define 9 : V(H) -+ {-1, 1} by g(w) = f(w) if

wE V(H)-{u,v}, g(v) = -1andg(u) = 1, and consider a vertex x E V(G)UV(L).

Note that if x ~ N(v) or x = v, then g[x] = f[x] + 2, while if x E N(v), then

g[x] = f[x]. It follows that g[v} 2 1 for at least q of the vertices of H while the

weights of 9 and f are equal. Hence 9 is a TSSF of H of weight 'Yq(H) that assigns

the value +1 to more vertices of U than does f, contradicting our choice of f· <>

Let 5 = P n V(G). Since f[v] 2 1 for all v E V(G), it follows that every v E V(G)

is adjacent to some vertex in 5, which shows that 5 is a TDS of G. Since f(U) = 3,

Claim 1 implies that 151 ::; k, which completes the proof. <>

6.3 Computing ,;k;1(T) for a tree T

In this section, we will present a cubic time algorithm to compute the total signed

k-subdomination number of a tree.

The tree T will be rooted and represented by the resulting parent array parent[1 ...

n]. We make use of the well-known fact that the tree T can be constructed recursively

from the single vertex K 1 using only one rule of composition, which combines two

trees (G,x) and (H,y), by adding an edge between x and y and calling x the root

of the larger tree F. We express this as follows: (F, x) = (G I x) 0 (H, y). With each

such subtree (F, x), we associate the following data structure:

1. table[x].numvertices: the number of vertices in the subtree (F,x).

2. table[x].degree: degF(x).

3. table[x].sum[J(x), t, k]: the minimum weight of a function f : V(F) -+

{-1, 1} such that x is assigned f(x), ItI ::; degT(x) - degF(x) (representing all
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possible sums of assignments of -1 and +1 to the vertices of NT(x) - NF(x)

and I{v I j(NF(v» + t ~ 1 when v = x and j(NF(v» ~ 1 when v =I x}1 ~ k,

where 1 ~ k ~ table[x].numvertices.)

Our input consist of the order of the tree T, say n, and the parent array of the

tree, rooted at a certain vertex. The root of the tree T is labeled with 1, the

vertices on the next level are labeled with 2 through 2 plus the number of vertices

on level 2, and so on. Using the parent array, we compute degT(x) for each

vertex x, x = 1, , n. We then initialize the variable table[x] for each vertex

x, where x = 1, ,no Let x be an arbitrary vertex ofT. Initially, (F,x) = (K1,x),

whence table[x].numvertices=l and table[x].degree=O. Suppose t is an integer

such that ItI ~ degT(x) - degF(x) = degT(x), representing all possible sums of

assignments of -1 and +1 to the vertices of NT(x) - NF(x) = NT(x). Then

t E {- degT(x), - degT(x)+2, ... , degT(x)}. The only way for j(NF(x))+t = t ~ 1,

is for t ~ 1 if degT(x) is odd and for t ~ 2 if degT(x) is even. Thus, we have the

following initializations:

Case 1: degT(x) is odd and t E {1, 3, ... , degT(x)}.

Then table[x].sum[j(x), t, 1] = table[xJ.sum[j(x), t, 0]

{-1,1}.

j(x) where j(x) E

Case 2: degT(x) is odd and t E {- degT(x), - degT(x) + 2, ... , -1}.

Then table[x].sum[j(x), t, 1] is undefined, and table[x].sum[j(x), t, O]=j(x)where

j(x) E {-1, 1}.

Case 3: degT(x) is even and t E {2, 4, ... , degT(x)}.

Then table[x].sum[j(x), t, 1] = table[x].sum[j(x), t, O}

{-1,1}.

j(x) where j(x) E

Case 4: degT(x) is even and t E {- degT(x), - degT(x) + 2, ... , O}.

Then table[x].sum[j(x), t, 1] is undefined, and table[x].sum[j(x), t, O}=j(x)
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where f(x) E {-I, I}.

The following code implements the aforementioned discussion.

Algorithm: To compute ,ik~l(T) for a tree T.

for vertex +- 1 to n do

degree[vertex] +- 0

for vertex +- 2 to n do

begin

degree[vertex] +- degree[vertex]+l

degree[parent[vertex]] +- degree[parent[vertex]]+l

end

for vertex +- 1 to n do

begin

table[vertex].numvertices +- 1

table [vertex] .degree +- 0

if degree [vertex) is odd

then startvalue +- 1

else startvalue +- 0

for excessvalue +- startvalue to degree[vertex] step 2 do

begin

table[vertex].sum[l,excessvalue,l] +- 1

table[vertex].sum[-l,excessvalue,l] +- -1

table[vertex].sum[l,excessvalue,O] +- 1

table[vertex].sum[-l,excessvalue,O] +- -1

end

for excessvalue +- -degree[vertex] to startvalue-2 step 2 do

begin

93
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table[vertex].sum[l,excessvalue,l] f- 10000

table[vertex].sum[-l,excessvalue,l] f- 10000

table[vertex].sum[l,excessvalue,O] f- 1

table[vertex].sum[-l,excessvalue,O] f- -1

end

end

94

Inputting the parent array takes O(n) steps, while computing the degree array

from the parent array also takes O(n) steps. Initializing the array table takes

n

O( L degT(vertex)) = O(2m(T)) = O(2(n - 1)) = O(n)
verteX=l

steps. Thus, the overall complexity here is O(n2 ).

Our next result shows that our algorithm is correct.

Theorem 6.2 Suppose (G, x) and (H, y) are two disjoint rooted subtrees, and

let (F,x) = (G,x) 0 (H,y). Let s E {-I,I}, t be an integer such that ltl :S

degT(x) - degF(x) with t - degT(x) - degF(x)(mod 2), and k be an integer with

0:S k :S IV(F)I. Then

table[x].sum[s, t, k]= min{table[x].sum[s, t + s',j]+table[y].sum[s', s, k - j1
Is' E {-I, I}, 0 :S j :S k} = min{table[x].sum[s, t+s',j}+table[y].sum[s', s, k-j]

Is' E {-I, I} ,max{O, k -IV(H)I} :S j :S min{k, IV(G)I}}.

Moreover, ItI :S degT(x) - degF(x) if and only if -(degT(x) - degc(x) - 1) :S t :S

degT(x) - degc(x) - 1.
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Proof. Suppose j: V(F) -7 {-1,1} such that

j(V(F)) = table[x).sum[s, t, k).

Let 9 (respectively, h) be the restriction of j on V(G) (respectively, V(H))

and s· = h(y) = j(y). Note that j(NF(x)) + t = g(Nc(x)) + t + s· and

j(NF(v)) = g(Nc(v)) for all v E V(G) - {x}, while j(NF(y)) = h(NH(y)) + s

and j(NF(v)) = g(NH(v)) for all v E V(H) - {y}. Thus, k ::; I{v I j(NF(v)) +t ~ 1

when v = x and j(NF(v)) ~ 1 when v =I- x}1 = I{v Ig(Nc(v)) + t + s· ~ 1 when

v = x and g(Nc(v)) ~ 1 when v =I- x}1 + I{v Ih(NH(v)) + S ~ 1 when v = yand

h(NH(v)) ~ 1 when v =I- y}l. If j = l{vlg(Nc(v)) +t+s· ~ 1 when v = x and

g(Nc(v)) ~ 1 when v =I- x}I, then k - j ::; I{v Ih(NH(v)) + S ~ 1 when v = y

and h(NH(v)) ~ 1 when v =I- y}l. It now follows that table[x].sum[s,t + s·,j) +

table[y).sum[s·, s, k - j] ::; g(V(G)) + h(V(H)) = table[x).sum[s, t, k). Hence,

rnin{table[x].sum[s, t + s',j)+table[y).sum[s', s, k - j] Is' E {-I, I}, 0 ::; j ::;

k} ::;table[x).sum[s, t, k].

On the other hand, suppose g: V(G) -t {-I, I} such that

g(V(G)) = table[x).sum[s, t + s',j]

and h : V(H) -7 {-I, I} such that

h(V(H)) = table[y).sum[s', s, k - j].

Define j : V(F) -+ {-1,1} by j(v) = g(v) if v E V(G) and j(v) = h(v) for all

v E V(H). As before, j(NF(x)) + t = g(Nc(x)) + t + s' and j(NF(v)) = g(Nc(v))

for all v E V(G) - {x}, while j(NF(y)) = h(NH(y)) + sand j(NF(v)) = g(NH(v))

for all v E V(H) - {y}. Thus, I{v I j(NF(v)) + t ~ 1 when v = x and

j(NF(v)) ~ 1 when v =I- x}1 = I{v Ig(Nc(v)) + t + s' ~ 1 when v = x and

g(Nc(v)) ~ 1 when v =I- x}1 + I{v Ih(NH(v)) + S ~ 1 when v = y and h(NH(v)) ~ 1

when v =I- y}1 ~ j + (k - j) = k. Hence, table[x].sum[s, t, k]::; j(V(F)) =
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g(V(G)) + h(V(H)) =table[x].sum[s, t + s', j] + table[y].sum[s', s, k - j]. Thus,

table[x].sum[s, t, k] :::; min{table[x].sum[s, t + s', j]+table[y].sum[s', s, k - j]

Is' E {-I, I} , 0 :::; j :::; k}.

Since 0 :::; j :::; IV(G)I and j :::; k, we have 0 :::; k - j :::; IV(H)I, so that 0 ~ j - k ~

-IV(H)I, whence j ~ k - IV(H)I· We conclude that max{O, k - IV(H)I} :::; j :::;

min{k,IV(G)I}·

Lastly, ItI :::; degT(x) - degp(x) if and only if - degT(x) + degdx) + 1 < t <
degT(x) - degdx) - I, since degp(x) = degG(x) + 1. 0

At the conclusion of our algorithm, T = F, and so t = O. Clearly, ,;k~l(T) =

min{ table[l].sum[l, 0, k],table[l].sum[-l, 0, k] }.

We are now in a position to present the remainder of the algorithm.

Algorithm: To compute ltk~l(T) for a tree T (continued).

for oldroot f- n downto 2 do

begin

resulttable.numvertices f- table [oldroot] .numvertices +

table [parent [oldroot]] .numvertices

resulttable.degree f- table [parent [oldroot]] . degree + 1

range f- degree[parent[oldroot]] - resulttable.degree

for newrootvalue f- -1 to 1 step 2 do

for newrootexcess f- -range to range step 2 do

for k f- 0 to resulttable.numvertices do

begin

minimum f- 1000

startvalue f- maxCO, k - table[oldroot].numvertices)

stopvalue f- minCk, table [parent [oldroot]] .numvertices)

for j f- startvalue to stopvalue do

begin
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for oldrootvalue +- -1 to 1 step 2 do

begin

number +- degree[parent[oldroot]] - table [parent [oldroot]] .degree - 1

if -number < newrootexcess < number then

begin

summand1 +- table [parent [oldroot]] .

sum [newrootvalue, newrootexcess + oldrootvalue, j]

summand2 +- table [oldroot] .

sum [oldrootvalue, newrootvalue, k-j]

temp +- summand1 + summand2

end

if (temp < minimum)

then minimum +- temp

end

end

resulttable.sum[newrootvalue, newrootexcess, k] +- minimum

end

table[parent[oldroot]] +- resulttable

end

for k +- ° to n do

output (k, r.nin(table[1] .sum[l, 0, k] ,table[l] .sum[-l, 0, k]))

The complexity of the above part of the algorithm, excluding the output phase, is

O(L~-~~~root=o 2 x degT [parent[oldrootJ] x n x n x 2)

O(4n2 LVEV(T) degT(v))

O(4n22m(T)) = (4n2 x 2 x (n - 1))

O(n3
),

while the complexity of the output phase is O(n). Thus, the overall complexity of
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the algorithm is O(n3
).
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6.4 A cubic algorithm to compute /ksll (T) of a

tree T

A "quadratic" time algorithm to compute the total signed k-subdomination number

of a tree appears in [35]. Unfortunately, the initialization phase of the algorithm is

omitted and other aspects of the algorithm are not clear either. Also, the complexity

analysis of the algorithm seems to be incorrect. In this section, we present a cubic

algorithm to compute "'t'ksll (T) of a tree T. The approach here is similar to what

we described in the previous section. Here we have the following data structure,

associated with the subtree (F, x).

1. table[x).numvertices: the number of vertices in the subtree (F, x).

2. table[x).degree: degp(x).

3. table[x).sum[j(x), t, k): the minimum weight of a function f : V(F) -t

{-I, I} such that x is assigned j(x), It I :::; degT(x) - degp(x) (representing all

possible sums of assignments of -1 and +1 to the vertices of NT(x) - Np(x)

and I{v I j(Np[v)) + t ~ 1 when v = x and j(Np[v)) ~ 1 when v i x}1 ~ k,

where 1 :s k :s table[x].numvertices.

The initialization phase here proceeds as follows.

Let x be an arbitrary vertex of T. Initially, (F,x) = (K1,x), whence

table[x).numvertices=l and table[x).degree=O. Suppose t is an integer such

that ItI :::; degT(x) - degp(x) = degT(x), representing all possible sums of

assignments of -1 and +1 to the vertices of NT(x) - Np(x) = NT(x). Then



CHAPTER 6. COMPLEXITY OF TOTAL K -SUBDOMINATION 99

t E {- degT(x) , - degT(x)+2, ... ,degT(x)}. The only way for f(NF(x))+ f(x)+t =

f(x) + t 2: 1, is for t 2: 2 - f(x) if degT(x) is odd and for t 2: 1- f(x) if degT(x) is

even. Thus, we have the following initializations:

Case 1: degT(x) is odd and t E {2 - j(x), 4 - j(x), ... ,degT(x)}.

Then table[x].sum[J(x), t, 1] = table[x].sum[J(x), t, 0] = j(x) where j(x) E

{-I,I}.

Case 2: degT(x) is odd and t E {- degT(x), - degT(x) + 2, ... , - f(x)}.

Then table[x].sum[J(x), t, 1] is undefined, and table[x].sum[J(x), t, O]=f(x)where

f(x) E {-I, I}.

Case 3: degT(x) is even and t E {I - j(x), 3 - j(x), ... ,degT(x)}.

Then table[x].sum[J(x), t, 1] = table[x].sum[J(x), t, 0] = f(x) where j(x) E

{-I,I}.

Case 4: degT(x) is even and t E {- degT(x), - degT(x) + 2, ... , -1 - j(x)}.

Then table[x].sum[J(x), t, 1] is undefined, and table[x].sum[J(x), t, O]=f(x)

where f(x) E {-I, I}.

A result analogous to Theorem 6.2 appears in [35].

We are now in a position to state the algorithm. Note that the initialization phase

of the algorithm has complexity

0(2:: v E V(T) x 2 x degT(v)) = O(2m(T)) = 0(2(n - 1)) = O(n).

Thus, the overall complexity of the algorithm is also O(n3 ).

Algorithm: To compute Iksl1 (T) for a tree T.

for vertex f- 1 to n do

degree[vertex] f- 0

for vertex f- 2 to n do

begin
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degree[vertex] f- degree[vertex]+l

degree [parent [vertex]] f- degree[parent[vertex]]+l

end

for vertex f- 1 to n do

if degree [vertex] is odd then

begin

for rootvalue f- -1 to 1 step 2 do

begin

for excessvalue f- 2 - rootvalue to degree[vertex] step 2 do

begin

table [vertex] . sum [rootvalue ,excessvalue , 1] f- rootvalue

table [vertex] . sum[rootvalue,excessvalue ,0] f- rootvalue

end

for excessvalue f- -degree[vertex] to -rootvalue step 2 do

begin

table [vertex] .sum[rootvalue,excessvalue,l] f- 10000

table [vertex] . sum [rootvalue ,excessvalue ,0] f- rootvalue

end

end

end

else

begin

for rootvalue f- -1 to 1 step 2 do

begin

for excessvalue f- 1 - rootvalue to degree[vertex] step 2 do

begin

table [vertex] . sum [rootvalue ,excessvalue , 1] f- rootvalue

table [vertex] . sum [rootvalue ,excessvalue ,0] f- rootvalue

end

for excessvalue f- -degree[vertex] to -l-rootvalue step 2 do

100
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begin

table [vertex] .sum[rootvalue,excessvalue,1] +- 10000

table[vertex].sum[rootvalue,excessvalue,O] +- rootvalue

end

end

end

end
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for oldroot +- n downto 2 do

begin

resulttable.numvertices +- table[oldroot].numvertices +

table [parent [oldroot]] .numvertices

resulttable.degree +- table[parent[oldroot]].degree + 1

range +- degree[parent[oldroot]] - resulttable.degree

for newrootvalue +- -1 to 1 step 2 do

for newrootexcess +- -range to range step 2 do

for k +- 0 to resulttable.numvertices do

begin

minimum +- 1000

startvalue +- rnax(O, k - table[oldroot].numvertices)

stopvalue +- rnin(k, table [parent [oldroot]] .numvertices)

for j +- startvalue to stopvalue do

begin

for oldrootvalue +- -1 to 1 step 2 do

begin

number +- degree[parent[oldroot]] - table [parent [oldroot]] .degree - 1

if -number < newrootexcess < number then

begin

summandl +- table[parent[oldroot]].

sum[newrootvalue, newrootexcess + oldrootvalue, j]
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summand2 f- table [oldroot] .

sum[oldrootvalue, nevrootvalue, k-j]

temp f- summand1 + summand2

end

if (temp < minimum)

then minimum f- temp

end

end

resulttable.sum[nevrootvalue, newrootexcess, k] f- minimum

end

table[parent[oldroot]] f- resulttable

end

for k f- 0 to n do

output (k, nnin(table[1] .sum[-1, 0, k] ,table [1] .sum[1, 0, k]))
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6.5 Complexity result for total minus domination

In this section we will show that the decision problem corresponding to the

computation of the total minus k-subdomination number is NP-complete by

describing a polynomial transformation from the NP-complete problem EXACT

COVER BY 3-SETS.

Let r = %~ 1 be a fixed positive rational number (in lowest terms). Consider the

decision problem

TOTAL MINUS SUBDOMINATING FUNCTION (TMSF)

INSTANCE: A graph G and an integer t.
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QUESTION: Is there a function f : V(G) -t {-I, 0, I} of weight '- or less for G

such that ICfl 2:: rlV(G)1 ?

In this section we show that TMSF is NP-complete by describing a polynomial

transformation from the following NP-complete problem (see [12]):

EXACT COVER BY 3-SETS (X3C)

INSTANCE: A set X = {Xl,"" X3q} and a set C = {Cl, ... , Cm} where Cj ~ X

and ICjl = 3 for j = 1, ... ,m.

QUESTION: Does C have a pairwise disjoint q-subset of C whose union is X (i.e.

an exact cover)?

If r = 1, then TMSF is the NP-complete problem TOTAL MINUS

DOMINATING FUNCTION (see Theorem 5.1). Hence, we also assume that

r < 1. For two real numbers a and b, we say that a divides b if there is an integer k

such that b = ka.

Theorem 6.3 TMSF is NP -complete, even for bipartite graphs.

Proof. It is obvious that TMSF is in NP. To show that TMSF is an NP-complete

problem, we will establish a polynomial transformation from the NP-complete

problem X3C. Let X = {Xl,"" X3q} and C = {Cl"'" Cm} be an arbitrary instance

of X3C where Cj ~ X and ICjl = 3 for 1 ~ j ~ m. We will construct a bipartite

graph G and an integer f such that this instance of X3C will have an exact cover if

and only if

there is a function f V(G) -t {-I, 0, I} of weight at most '- such that ICfl >
rIV(G)j.

Corresponding to each Xi EX, associate the graph constructed from the path

Ps, with vertices labeled Xi, Yi, Zi, Vi, Wi, and the path P2, with vertices labeled Ui

and t i , by joining the vertices Ui and Vi. Corresponding to each Cj , associate the
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graph constructed from the path P4, with vertices labeled Cj, dj, ej, /i, and the path

P2, with vertices labeled 9j, hj, by joining the vertices gj and ~j' Add the edges

{XiCj IXi E Cj } and call the resulting graph H. Note that n(H) = 6m + 21q. Let

{

0
J1-

a - (6m + 21q) mod a

if r divides 6m + 21q

otherwise

Then J1 is the smallest nonnegative integer that may be added to 6m + 21q so that

r divides 6m + 21q + J1 evenly. Construct the (bipartite) graph G = (V, E) as

follows. Take the disjoint union of two copies of H, say HI and H2, add a set S of

ex := 2(6m+;lq+1J - (6m+21q)) vertices, and, with S = {SI, S2,"" Sa}, add the edges

SkSk+I, where k = 1,3, ... , ex - 1. The graph G has order 2(6m+;IQ+IJ ), and, since

o:::; J1 :::; a-I, G can be constructed from the input in polynomial time. Lastly, let

f = 2(8m + 28q + 2J1- (6m+~IQ+IJ)). We will denote a vertex Vi or Vj of H in Hf3 by

Vi,f3 or Vj,f3, for (3 = 1, 2.

Suppose Cl ~ C is an exact cover for X. Let P = U~~1 { Ui,l, Ui,2, Vi,!, Vi,2, Zi,l, Zi,2} U

U~1 {gj,I, gj,2, ej,l, ej,2, dj,I, dj,2} U U~~1 {sd U {Cj,l, Cj,2/ Cj E Cl} and M =

U~~1 {Wi,l, Wi,2} U Uj=1 {hI, h,2} U U~=2~+l {sd·

Define f : V -+ {-I, 0, I} by

f(x) = {

Notice that

1 if x E P

-1 if V E M

o otherwise.

f(V) t 6 +~6+~1+2q- (t2+ ~2+ ,fl1)
14q + 4m + 4J1 - ex

2(8m + 28q + 2J1- 6m+~IQ+IJ).
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Note that x E C/ for all x E V(Hd U V(H2) U UZ~I{sd. Thus, IC/I >
2(6m + 21q) + 2J-L = 2(6m + 21q + J-L) = r2 6m+;IQ+Y = rlVI·

We now prove the converse. Let L be the set of all leaves of G. Among all functions

! : V -t {-I, 0, I} for which !(V) ::; £ and IC/I ~ rIV(G)I, choose one, say!, for

which !(L) is as small as possible. This implies that !(x) E {-I, I} for all x E S.

Note that IC/I ~ r2 6m+;IQ+Y = 12m + 42q + 2J-L.

The function gTl,Pl,T2,P2 is the function obtained from! by assigning some vertex TI

in V(Hr) U V(H2) the value PI, some vertex T2 in S the value P2, while all other

vertices are assigned the same value as under!, where PI,P2 E {-1,0,1}. In all

cases, a neighbor of rl will become covered, while the neighbor of T2 will no longer

be covered, so ICgl ~ IC/I. Moreover, g(V) ::; !(V) ::; t

Let i E {I, ... , 3q} , j E {I, ... , m} and ,B E {I, 2}.

Fact 1. !(gj,/3) = 1 (and, similarly, !(ej,/3) = !(Ui,/3) = !(Vi,/3) = I}.

Proof. For suppose, to the contrary, !(gj,/3) ::; 0. Then hj,/3 rf. Cl, and since

IC/I ~ 12m + 42q, there is Sk E S n Cl' This implies !(Sk-I) = 1 or !(Sk+r) = 1

- assume the latter. Then 9 = ggj,/3,I,SkH,!(9j,P) has g(L) < !(L), which is a

contradiction. <>

Fact 2. !(hj,/3) =°(and, similarly, !(ti,/3) = 0).

Proof. For suppose, to the contrary, !(hj,/3) = -1. Then gj,/3 r;. Cl' Since

ICfl 2:: 12m + 42q, there is Sk E S n Cf· This implies !(Sk-I) = 1 or !(Sk+1) = 1 ­

assume the latter. Then 9 = ghj,p,O,sk+l,-1 has g(L) < !(L), which is a contradiction.

Furthermore, since !(L) is a minimum, !(hj,/3) = !(ti,/3) = 0. <>

Fact 3. ej,/3 E C/ (and, similarly, Vi,/3 E C/).

Proof. For suppose, to the contrary, that ej,/3 r;. Cl' Then !(dj,/3) + !(!i./3) ::; -1.

This implies that !(dj,/3) ::; 0. Since IC/I ~ 12m + 42q, there is Sk E S n Cf. This

implies !(Sk-I) = 1 or !(Sk+1) = 1 - assume the latter. Then 9 = gd· I f(d.)l,P, ,Sk+l, l,P
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has g(L) < !(L), which is a contradiction. <.>

Fact 4. !Uj,/3) = -1 and !(dj,/3) = 1 (and, similarly, !(Zi,/3) = 1 and !(Wi,f3) = -1).

Proof. Since ej,f3 E Cf , !(dj ,f3) + !(gj,f3) + !(!i.f3) = !(dj ,f3) + 1 + !(!i.f3) ~ 1, which

implies !(dj ,/3) + !(!i,/3) ~ 0.

If !(dj ,f3) + !(!i.f3) ~ 1, then !(!i.f3) ~ 0. Then 9 : V -+ {-1, 0, 1} defined by

9(x) = { ! (x) - 1 if x = !i.fJ
! (x) otherwise

is a function such that ICgl = ICfl ~ rlV/' g(V) :s; f and g(L) < !(L), which is a

contradiction.

Hence, !(dj ,/3) + !Uj,f3) = 0. If !(!i.f3) ~ 0, then the function 9 : V -+ {-1, 0,1}

defined by

I
!(x) ifx~{dj,f3,!j,f3}

g(x) = !(x) + 1 if x = dj ,f3

! (x) - 1 otherwise

is a function such that fCgl = ICfl ~ rlVl, g(V) :s; f and g(L) < !(L), which is a

contradiction. 0

Fact 5. dj,fJ E Cf and !(Cj,fJ) ~ °(and, similarly, Zi,fJ E Cf and !(Yi,fJ) ~ 0).

Proof. If dj,fJ ~ Cf , then, since !(ej.f3) = 1, !(Cj./3) = -1. Since ICff ~ 12m + 42q,

there is Sk E S n Cf. This implies !(Sk-l) = 1 or !(Sk+l) = 1 - assume the latter.

Then 9 = gCj,I3.1 ,Sk+1>-1 has g(L) < !(L), which is a contradiction. 0

In a similar way, one can show that

Fact 6. Yi,/3 E Cf and !(Ci,/3) ~ 0. 0

Fact 7. Cj.f3 E Cf and Xi,fJ E Cf.

Proof. Since Cj,fJ is adjacent to dj,fJ' which is assigned +1 under !, and three
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vertices in {XI,,B, ... , X3q,,B}, all of which are assigned at least 0 under f, we have

that Cj,,B E Cl'

Suppose, to the contrary, that Xi,,B fJ. Cl' Then all vertices adjacent to Xi,,B are

assigned the value 0 under f - particularly f(Yi,,B) = O. Since ICII 2: 12m + 42q,

there is Sk E S n Cf. This implies f(Sk-l) = 1 or f(Sk+1) = 1 - assume the latter.

Then 9 = gYi.(3,I,sk+l.-1 has g(L) < f(L), which is a contradiction. <>

Combining the facts above, we have V(HI) U V(H2) ~ Cf· Since n(Hd + n(H2) =

12m + 42q and ICII 2: 12m + 42q + 2/L, IS n Cfl 2: 2/L.

Let X,B = {XI,,B, ... , X3q,,B} , Y,B = {YI,,B, ... , Y3Q.,B} , C,B {YI,,B,"" Ym.,B} , cX,B

IX,B n Pf !, cY,B = IY,B n Pfl and cc,B = IC,B n Pfl·

Since f(V(HI U H2) - Xl - X 2 - YI - Y2 - Cl - C2) = 2(2(3q) + 2m) = 12q + 4m,

f(V) 2: 12q+4m+cxI +CX2+CYI +CY2+CCI +CC2+2/L+( _1)(2 6m+;IQ+/J 2(6m+21q)­

2/L) = 54q + 16m + 4/L + CXI + CX2 + CYI + CY2 + CCI + CC2 - 2(6m+;IQ+/J). But f(V) :s
56q + 16m + 4/L - 2(6m+;IQ+/J), and so CXI + CX2 + CYI + CY2 + CCI + CC2 :s 2q. Hence

CCI +CC2 :s 2q-(CXI +CX2+CYI+CY2), and so at most 3(CI+C2) :s 6q-3(XI +X2+YI+Y2)

vertices of Xl U X 2 are adjacent to vertices of (Cl U C2 ) n PI, CXI vertices in Xl are

assigned a +1 under f, CX2 vertices in X 2 are assigned a +1 under f, CYI vertices in

YI are assigned a +1 under f, and CY2 vertices in Y2 are assigned a +1 under f. Thus,

at most 6q-3(cXI +CX2+CYI +CY2)+CXI +CX2+CYI +CY2 = 6q-2(cXI +CX2+CYI +CY2)

of Xl U X 2 are either adjacent to a vertex of (YI U Y2 U Cl U C2 ) n Pf or assigned

a +1 under f. If CXI + CX2 + CYI + CY2 > 0, then there is a vertex in Xl U X 2, say

x, such that x (j. Cl, which is a contradiction. Thus, CXI + CX2 + CYI + CY2 = 0, and

Cl + C2 :s 2q. Since Xi,,B E Cf for i = 1, .. . 3q and 13 = 1,2, Cl = q and C2 = q. It

now follows that C' = {Cj If (Cj,l) = I} is an exact three cover for X. <>
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6.6 A cubic algorithm to compute 1;k;Ol(T) of a

tree T

In this section, we will present a cubic time algorithm to compute the total minus

k-subdomination number of a tree. The tree T will be rooted and represented by

the resulting parent array parent[l ... n]. We make use of the well-known fact that

the tree T can be constructed recursively from the single vertex K 1 using only one

rule of composition, which combines two trees (G, x) and (H, y), by adding an edge

between x and y and calling x the root of the larger tree F. We express this as

follows: (F, x) = (G, x) 0 (H, y). With each such subtree (F, x), we associate the

following data structure:

1. table[x].numvertices: the number of vertices in the subtree (F, x).

2. table[x].degree: degF(x).

3. table[x].sum[f(x), t, k]: the minimum weight of a function j : V(F) -t

{-I, 0, I} such that x is assigned j(x), ItI~ degT(x)-degF(x) (representing all

possible sums of assignments of -1, °and +1 to the vertices of NT(x) -NF(x)

and I{v I j(NF(v)) + t ~ 1 when v = x and j(NF(v)) ~ 1 when v =1= x}1 ~ k,

where 1 ~ k ~ table[x].numvertices.

Our input consist of the order of the tree T, say n, and the parent array of the

tree, rooted at a certain vertex. The root of the tree T is labeled with 1, the

vertices on the next level are labeled with 2 through 2 plus the number of vertices

on level 2, and so on. Using the parent array, we compute degT(x) for each

vertex x, x = 1, , n. We then initialize the variable table[x] for each vertex

x, where x = 1, , n. Let x be an arbitrary vertex of T. Initially, (F, x) = (K1 , x),

whence table[x].numvertices=l and table[x].degree=O. Suppose t is an integer
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such that ItI ~ degT(x) - degF(x) = degT(x), representing all possible sums of

assignments of -1, °and +1 to the vertices of NT(x) - NF(x) = NT(x). Then

t E {- degT(x), ... ,degT(x)}. The only way for j(NF(x» + t = t ?: 1, is for t ?: 1.

Thus, we have the following initializations:

j(x) where j(x) Etable[x].sum[j(x), t, 0]

Case 1: t E {I, ... , degT(x)}.

Then table[x].sum[j(x), t, 1]

{-I,O,I}.

Case 2: t E {- degT(x), ... ,a}.

Then table[x].sum[j(x), t, 1] IS undefined, and table[x].sum[j(x), t, O]=j(x)

where j(x) E {-I, 0, I}.

The following code implements the aforementioned discussion.

Algorithm: To compute T'tk~ol(T) for a tree T

for vertex +-- 1 to n do

degree[vertex] +-- 0

for vertex +-- 2 to n do

begin

degree[vertex] +-- degree[vertex]+1

degree [parent [vertex]] +-- degree[parent[vertex]]+1

end

for vertex +-- 1 to n do

begin

table[vertex].numvertices +-- 1

table[vertex].degree +-- 0

for excessvalue +-- 1 to degree[vertex] do

forrootvalue +-- -1 to 1 do

begin

table [vertex] . sum[rootvalue,excessvalue, 1] +-- rootvalue

table [vertex] .sum[rootvalue,excessvalue,O] +-- rootvalue
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end

for excessvalue f- -degree[vertex] to 0 do

forrootvalue f- -1 to 1 do

begin

table [vertex] .sum[rootvalue,excessvalue,l] +- 10000

table [vertex] .sum[rootvalue,excessvalue,O] +- rootvalue

end

end

Inputting the parent array takes O(n) steps, while computing the degree array

from the parent array also takes O(n) steps. Initializing the array table takes

o (L~ertex=l x (2 degT(vertex) + 1) x 3)

0(6 x 2m(T)) + 0(3n)

0(I2(n - 1)) + O(n)

O(n)

steps. Thus, the overall complexity here is 0(n2).

Theorem 6.4 Suppose (G, x) and (H, y) are two disjoint rooted subtrees, and let

(F,x) = (G,x) 0 (H,y). Let s E {-I,O,I}, t be an integer such that It I <

degT (x) - degF (x) and k be an integer with °::; k ::; IV(F) I. Then

table[x].sum[s, t, k]=

min{table[x].sum[s, t + s',j]+table[y].sum[s', s, k - j] Is' E {-I,D, I}, °::; j ::;

k} = min{table[x].sum[s,t + s',j]+table[y].sum[s',s,k - j] Is' E {-I,O,I},

max{O, k - IV(H)I} ::; j ::; min {k, IV(G)I}}.
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Moreover, ItI :::; degT(x) - degF(x) if and only if -(degT(x) - degdx) - 1) :::; t :::;

degT(x) - degdx) - 1.

Proof. Suppose f :V(F) -t {-1, 0, 1} such that

f(V(F)) = table[x].sum[s, t, k].

Let 9 (respectively, h) be the restriction of f on V(G) (respectively, V(H))

and s* = h(y) = f(y). Note that f(NF(x)) + t = g(NG(x)) + t + s* and

f(NF(v)) = g(NG(v)) for all v E V(G) - {x}, while f(NF(y)) = h(NH(y)) + s

and f(NF(v)) = g(NH(v)) for all v E V(H) - {y}. Thus, k :::; I{v If(NF(v)) +t 2: 1

when v = x and f(NF(v)) 2: 1 when v =I x}1 = l{vlg(NG(v))+t+s* 2: 1 when

v = x and g(NG(v)) 2: 1 when v =I x}1 + I{v Ih(NH(v)) + s 2: 1 when v = y and

h(NH(v)) 2: 1 when v =I y}l· If j = I{v Ig(NG(v)) + t + s* 2: 1 when v = x and

g(NG(v)) 2: 1 when v =I x}I, then k - j :::; I{v Ih(NH(v)) + s 2: 1 when v = y

and h(NH(v)) 2: 1 when v =I y}l. It now follows that table[x].sum[s,t + s*,j] +

table[y].sum[s*, s, k - j] :::; g(V(G)) + h(V(H)) = table[x].sum[s, t,k]. Hence,

rnin{table[x).sum[s, t + s',j)+table[y).sum[s', s, k - j] Is' E {-1, 1}, 0 :::; j :::;

k} :::;table[x).sum[s, t, k).

On the other hand, suppose g: V(G) -7 { -1,0,1} such that

g(V(G)) = table[x].sum[s, t + s',j]

and h: V(H) -t {-1, 0, 1} such that

h(V(H)) = table[y].sum[s', s, k - j].

Define f : V(F) -7 {-1, 0, 1} by f(v) = g(v) if v E V(G) and f(v) = h(v) for all

v E V(H). As before, f(NF(x)) + t = g(NG(x)) + t + s' and f(NF(v)) = g(NG(v))

for all v E V(G) - {x}, while f(NF(y)) = h(NH(y)) + sand f(NF(v)) = g(NH(v))

for all v E V(H) - {y}. Thus, I{v If(NF(v)) + t 2: 1 when v = x and
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j(NF(v)) 2:: 1 when v =I- x}1 = I{v Ig(Na(v)) + t + s' 2:: 1 when v = x and

g(Na(v)) 2:: 1 when v =I- x}1 + I{v Ih(NH(v)) + s 2:: 1 when v = y and h(NH(v» 2:: 1

when v =I- y}1 2:: j + (k - j) = k. Hence, table[x).sum[s, t, k)~ j(V(F)) =

g(V(G)) + h(V(H)) =table[x).sum[s, t + s',j) + table[y].sum[s', s, k - j]. Thus,

table[x).sum[s, t, k] ~ min{table[x].sum[s, t + s', j]+table[y).sum[s', s, k - j]

Is' E {-I, I} , 0 ~ j ~ k}.

Since 0 ~ j ~ IV(G)I and j ~ k, we have 0 ~ k - j ~ IV(H)I, so that 0 2:: j - k 2::

-IV(H)I, whence j 2:: k - IV(H)I· We conclude that max{O, k - IV(H)I} ~ j ~

min{k,IV(G)I}·

Lastly, ItI ~ degT(x) - degF(x) if and only if - degT(x) + dega(x) + 1 < t <
degT(x) - degdx) - 1, since degF(x) = degdx) + 1. (;

At the conclusion of our algorithm, T = F, and so t = O. Clearly, 'Yu:;Ol(T) =

min{ table[l].sum[-l, 0, k], table[l].sum[O, 0, k) table[l).sum[l, 0, k) }.

We are now in a position to present the remainder of the algorithm.

Algorithm: To compute Tu:;Ol(T) for a tree T (continued).

for oldroot ~ n downto 2 do

begin

resulttable.numvertices ~ table [oldroot] .numvertices +

table [parent [oldroot]] .numvertices

resulttable.degree ~ table[parent[oldroot]].degree + 1

range ~ degree[parent[oldroot]] - resulttable.degree

for newrootvalue ~ -1 to 1 do

for newrootexcess ~ -range to range do

for k ~ 0 to resulttable.numvertices do

begin

minimum ~ 1000

startvalue ~ max(O, k - table [oldroot] .numvertices)
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stopvalue +- nnin(k, table [parent [oldroot]] .numvertices)

for j +- startvalue to stopvalue do

begin

for oldrootvalue +- -1 to 1 do

begin

number +- degree[parent[oldroot]] - table [parent [oldroot]] .degree - 1

if -number < newrootexcess < number then

begin

summand1 +- table [parent [oldroot]] .

sum[newrootvalue, newrootexcess + oldrootvalue, j]

summand2 +- table [oldroot] .

sum[oldrootvalue, newrootvalue, k-j]

temp +- summand1 + summand2

end

if (temp < minimum)

then minimum +- temp

end

end

resulttable.sum[newrootvalue, newrootexcess, k] +- minimum

end

table[parent[oldroot]] +- resulttable

end

for k +- 0 to n do

output (k, nnin(table[l] .sum[l, 0, k], table [1] .sum[O, 0, k], table [1] .sum[-i, 0, k]))
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The complexity of the above part of the algorithm, excluding the output phase, is

o0::(n-2
1
)d t x3 x (2 x degT [parent[oldroot]] + 1) x n x n x 3)

n-o roo =0

O(18n2 L:vEV(T) degT(v» + O(n x 9n2
)

O(18n22m(T» + O(n3
)

(18n2 x 2 x (n - 1» + O(n3
)

O(n3 ),

while the complexity of the output phase is O(n). Thus, the overall complexity of

the algorithm is O(n3
).

6.7 A cubic algorithm to compute I;/ol(T) of a

tree T

In this section, we present a cubic algorithm to compute Iks101 (T) of a tree T. The

approach here is similar to what we described in the previous section. Here we have

the following data structure, associated with the subtree (F, x).

1. table[xJ.numvertices: the number of vertices in the subtree (F, x).

2. table[x].degree: degp(x).

3. table[x].sum[J(x), t, k): the minimum weight of a function f : V(F} ---+

{-I, 0, I} such that x is assigned f(x), It I ~ degT(x)-degp(x) (representing all

possible sums of assignments of -1, °and +1 to the vertices of NT (x) - Np (x)

and /{v I f(Np[v]) + t 2: 1 when v = x and f(Np[v]) 2: 1 when v =1= x}1 2: k,

where 1 ~ k ~ table[x].numvertices.

The. initialization phase here proceeds as follows.



f(x) where f(x) E

CHAPTER 6. COMPLEXITY OF TOTAL K -SUBDOMINATION 115

Let x be an arbitrary vertex of T. Initially, (F, x) = (Kl, x), whence

table[x].numvertices=l and table[x].degree=O. Suppose t is an integer such

that ItI :S degT(x) - degF(x) = degT(x), representing all possible sums of

assignments of -1, 0 and +1 to the vertices of NT(x) - NF(x) = NT(x). Then

t E {- degT(x), ... , degT(x)}. The only way for f(NF(x)} + f(x) +t = f(x) +t ~ 1,

is for t ~ 1 - f (x). Thus, we have the following initializations:

Case 1: t E {I - f(x), ... ,degT(x)}.

Then table[x].sum[J(x), t, 1] = table[x].sum[J(x), t, 0]

{-I, 0, I}.

Case 2: t E {- degT(x), ... , - f(x)}.

Then table[x].sum[J(x), t, 1] is undefined, and table[x].sum[J(x), t, O]=f(x)

where f(x) E {-I, 0, I}.

One may prove a result analogous to Theorem 6.2

We are now in a position to state the algorithm. Note that the initialization phase

of the algorithm has complexity

O(L:VEV(T) 3 x (2degT(v) + 1))

0(6 x 2m(T)) + 0(3n)

0(12(n - 1)) + O(n)

D(n).

Thus, the overall complexity of the algorithm is also 0(n3 ).

Algorithm: To compute Iks101(T) for a tree T.

for vertex +- 1 to n do

degree[vertex] f- 0

for vertex +- 2 to n do

begin

degree[vertex] f- degree[vertex]+l
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degree[parent[vertex]] t- degree[parent[vertex]]+1

end

for vertex t- 1 to n do

for rootvalue t- -1 to 1 do

begin

for excessvalue t- 1 - rootvalue to degree[vertex] do

begin

table[vertex].sum[rootvalue,excessvalue,1] t- rootvalue

table [vertex] .sum[rootvalue,excessvalue,O] t- rootvalue

end

for excessvalue t- -degree[vertex] to -rootvalue do

begin

table [vertex] . sum[rootvalue,excessvalue, 1] t- 10000

table [vertex] .sum[rootvalue,excessvalue,O] t- rootvalue

end

end

for oldroot t- n downto 2 do

begin

resulttable.numvertices t- table [oldroot] .numvertices +

table[parent[oldroot]].numvertices

resulttable.degree t- table[parent[oldroot]].degree + 1

range t- degree[parent[oldroot]] - resulttable.degree

for newrootvalue t- -1 to 1 do

for newrootexcess t- -range to range do

for k t- 0 to resulttable.numvertices do

begin

minimum t- 1000

startvalue t- naaxCO, k - table [oldroot] .numvertices)

stopvalue t- nainCk, table [parent [oldroot]] .numvertices)

for j t- startvalue to stopvalue do

116
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begin

for oldrootvalue ~ -1 to 1 do

begin

number ~ degree[parent[oldroot]] - table [parent [oldroot]] .degree - 1

if -number < newrootexcess < number then

begin

summand1 ~ table[parent[oldroot]].

sum[newrootvalue, newrootexcess + oldrootvalue, j]

summand2 ~ table [oldroot] .

sum[oldrootvalue, newrootvalue, k-j]

temp f- summand1 + summand2

end

if (temp < minimum)

then minimum ~ temp

end

end

resulttable.sum[newrootvalue, newrootexcess, k] ~ minimum

end

table[parent[oldroot]] ~ resulttable

end

for k f- 0 to n do

output (k, rnin(table[1].sum[1, 0, k], table [1] .sum[O, 0, k], table [1] .sum[-1, 0, k]))

All the above algorithms are implemented in C++
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