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ABSTRACT 

Contaminants introduced in solution to coastal waters eventually accumulate in sediment. Pollution 

by these contaminants is only evident when biological effects occur. Geochemical procedures lack 

the ability to identify biological effects of pollution. Biological methods (i.e. community structure 

analyses and/or bioassays) are currently the best available techniques for pollution assessment. 

Standardised and locally relevant protocols for pollution assessment are lacking in many developing 

countries, including South Africa. This study aims to develop a sediment toxicity testing protocol 

using an amphipod species endemic to South Africa, Grandidierella lignorum. Initial research 

focussed on establishing ranges of physico-chemical parameters (i.e. salinity, temperature, sediment 

grain size and organic matter content) within which sediment toxicity tests should be performed. 

The sensitivity of the amphipod was then determined by exposing the amphipod to cadmium, 

copper and zinc at various salinities. Lastly, the amphipod was exposed to effluents (to test the 

amphipod’s sensitivity in water only tests) and whole sediment (to tests the amphipod’s sensitivity 

to solid phase material). G. lignorum tolerates salinities between 0 and 56, but prefers salinities 

between 7 and 42. Preferred salinity range is modified by temperature, with salinity of 42 becoming 

less tolerable. Salinities between 7 and 35 are most preferred at 10-25°C. G. lignorum prefers fine- 

(27.48±12.13%), medium- (25.11±12.99%) and coarse-grained sand (21.45±8.02%). Sediment with 

low (≤2%) organic matter content is most preferable, regardless of sediment grain size or type of 

organic matter (protein-rich vs. carbohydrate-rich). 

Cadmium toxicity decreased with increasing salinity (LC50: 0.34 ± 0.17 mg l-1 (salinity of 7), 0.73 ± 0.05 

mg l-1 (salinity of 21) and 1.08 ± 0.49 mg l-1 (salinity of 35)). Zinc toxicity increased with decreasing 

salinity (1.56 ± 0.33 mg l-1 at a salinity of 21 to 0.99 ± 0.13 mg l-1 at a salinity of 7) and with increasing 

salinity (from salinity of 21 to 0.82 ± 0.19 mg l-1 at a salinity of 35). Copper toxicity did not differ 

significantly with salinity and ranged between 0.72 ± 0.18 mg l-1 (salinity of 35) and 0.89 ± 0.24 mg l-1 

(salinity of 21). Toxicity testing using Grandidierella lignorum should be performed in coarse- to fine-

grained sediment at salinities of 7 - 35, at 10 – 25°C. Amphipods do not need to be fed during 

toxicity testing. A control chart using cadmium as a reference toxicant was established to determine 

the acceptability of toxicity results. Toxicity test results should be accepted when cadmium toxicity 

falls between 0.49 and 4.02 mg l-1. The amphipod responded consistently to effluents and was able 

to discriminate polluted and unpolluted sediment in Durban Bay. Recommendations for refining the 

effluent and sediment toxicity test are suggested. 
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“Ecotoxicology is not a luxury research area, undertaken only in rich countries. It is relevant and 

important to all countries and all habitats, and it is vital if we are to protect our living heritage from 

the cocktail of chemicals present in all environments.” 

1(Hermens et al. 2004). 

 

 

 

 

 

 

 

 

1  

                                                           
1 Hermens JL, Ankley GT, Sumpter JP (2004) Ecotoxicology - a multidisciplinary, problem-driven science. Environmental 

Science and Technology 38: 446A-447A. 
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Background 

Standardised methods for sediment toxicity testing were developed in the 1990s (Burton et al. 

1992). This coincides with the period when the output on marine pollution studies had declined 

fivefold in South Africa (O'Donoghue and Marshall 2003). This was despite increasing concern 

regarding the status of local estuaries due to anthropogenic impacts. More than 80% of the 

estuarine surface area in South Africa is in a poor state, and sediment contamination is recognised as 

one of the emerging pressures (Van Niekerk et al. 2013). Biological tools for assessing sediment 

contamination in the estuarine and marine environment in South Africa are currently under-

developed. Sediment bioassays are commonly used tools for assessing sediment toxicity and the use 

of endemic species as test organisms should be promoted (Costa et al. 1998). There are no certified 

tests used on a routine basis to test the toxicity of water and sediment in marine or estuarine 

environments in South Africa (Slabbert et al. 1998; Wepener and Chapman 2012). There is, however, 

an urgent need to develop biological sediment assessment tools for South Africa, since some 

ecosystems (e.g. harbours) are showing ever increasing signs of contamination. For example, iron 

concentrations in sediment in Richards Bay harbour have almost doubled between the 1970s to 

1990s (see Wepener and Vermeulen 2005). The development of a sediment toxicity test must 

include inter alia assessment of the test organism’s sensitivity to non-contaminant factors (e.g. 

temperature, salinity and sediment parameters), sensitivity to common contaminants of sediment, 

and sensitivity to field-contaminated sediments. The collation of this information can then inform 

the protocol for assessing sediment toxicity (e.g. Costa et al. 1998). 

 

Ecotoxicological studies in South Africa 

Excellent reviews on marine pollution in South Africa have been published (e.g. O' Donoghue and 

Marshall 2003; Wepener and Degger 2012) and it is not the intention of this study to repeat this 

work, but it is recognised that a lot more work in toxicology studies across all science disciplines in 

South Africa is still required (Gulumian et al. 2005). In the marine sector, ecotoxicological research 

has been undertaken since the 1960s (O' Donoghue and Marshall 2003; Wepener and Chapman 

2012). The analysis of 65 ecotoxicology papers referenced by O’Donoghue and Marshall (2003) 

showed that more than 50 species have been used as test organisms over the last six decades and 

these range from small-sized organisms, such as bacteria, to high trophic level organisms, such as 

fish (Table 1.1). 
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Table 1.1. Species that have been used in toxicological and/or ecotoxicological research in South 

Africa. 

 

  

Taxa Reference
Bacteria

1 Aeromonas hydrophila Thompson & Watling 1987
2 Bacillus sp. Thompson & Watling 1987
3 Enterobacter cloacae Thompson & Watling 1987
4 Escherichia coli Thompson & Watling 1983, 1984, 1987
5 Klebsiella oxycota Thompson & Watling 1987
6 Pseudomonas sp Thompson & Watling 1987

Phytoplankton
7 Chaetoceros calcitrans Hilmer & Bate 1983
8 Pavlova lutheri (Diacronema lutheri ) Hilmer & Bate 1983
9 Phaeodactylum tricornutum Hilmer & Bate 1983
10 Tetraselmis suecica Hilmer & Bate 1983
11 Pseudoisochrysis paradoxa Hilmer & Bate 1983

Algae
12 Cladophora sp. Hemens & Warwick 1972

Grasses and Kelp
13 Zostera capensis (roots) Hemens & Warwick 1972
14 Laminaria pallida Cook 1978

Nemertea
15 Cerebratulus fuscus Brown 1974

Isopoda
16 Eurydice longicornis Brown 1974
17 Exosphaeroma truncatitelson Brown 1974
18 Pontogeloides latipes (Excirolana latipes ) Brown 1974

Amphipoda
19 Grandidierella lignorum Connell & Airey 1979, 1982
20 Grandidierella lutosa Connell & Airey 1979, 1982

Mysida
21 Gastrosaccus psammodytes Brown 1974

Prawns and shrimps
22 Callianassa kraussi (Callichirus kraussi) Jackson 1982, Jackson 1985,

O' Donoghue & Marshall 2006,
Thwala et al 2011

23 Penaeus monodon Hemens & Warwick 1972
24 Palaemon pacificus Hemens & Warwick 1972, Moldan & Chapman 1982, 

Moldan & Chapman 1983, Achituv & Cook 1984, Hennig 
1986

25 Penaeus indicus (Fenneropenaeus indicus ) Hemens & Warwick 1972, Hemens et al 1975, 
McClurg 1984

26 Upogebia africana Hill 1977
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Table 1.1. continued 

 

Taxa Reference
Lobster

27 Jasus lalandii Cook 1978, Lipschitz 1982, Hennig 1986

Brachyura (crabs)
28 Chiromantes eulimene Thwala et al. 2011
29 Diogenes brevirostris Hennig 1986
30 Sesarma catenata (Parasesarma catenatum ) Malan 1986, Malan 1988
31 Tylodiplax blephariskios Hemens & Warwick 1972, Hemens et al. 1975

Mollusca (Limpets, oysters, abalone)
32 Crassostrea cucullata (Saccostrea cucullata) Watling 1981b, Watling 1982
33 Crassostrea gigas Watling 1978, Watling 1981a, Watling 1981b, Watling 

1982, Watling 1983a, Watling 1983b
34 Crassostrea margaritacea (Striostrea margaritacea) Watling 1981a, Watling 1981b, Watling 1982,

 Watling 1983a 
35 Haliotis midae Shackleton et al. 2002, Stofberg et al. 2011
36 Patella granularis (Scutellastra granularis ) Hennig 1986
37 Siphonaria capensis Marshall et al. 2004

Bivalves
38 Aulacomya ater (Aulacomya atra) Cook 1978
39 Choromytilus meridionalis Currie et al. 1974, Cook 1978,Watling 1981a, Watling 

1983a, Hennig 1986
40 Donax serra Watling & Watling 1983, Stenton-Dozey & Brown 1994
41 Mactra lilacea Beckley 1981
42 Mytilus galloprovincialis Mason 1988a, b
43 Perna perna Hemens & Warwick 1972, Watling 1981a, Watling & 

Watling 1982, Watling 1983a, Hodgson & Hoebeke 1984, 
Gregory et al. 1999, Anandraj et al. 2002, Gregory et al. 
2002, Vosloo et al. 2012

Gastropoda
44 Bullia digitalis  Brown 1964, Brown & Currie 1973, Brown et al. 1974, 

Cuthbert et al. 1976, Golombick & Brown 1980, Brown et 
al. 1982, Hennig 1986

45 Bullia rhodostoma Watling & Watling 1983
46 Bullia laevissima Brown 1964
47 Nassarius kraussianus Marshall & Rajkumar 2003

Echinodermata
48 Echinometra mathaei Connell et al. 1991
49 Parechinus angulosus Greenwood & Brown 1974, Greenwood 1983, McGibbon 

& Moldan 1986, Wynberg et al. 1989
Tunicates and Fish

50 Ambassis safgha Hemens & Warwick 1972
51 Liza dumerili Mzimela et al. 2002
52 Mugil cephalus Hemens & Warwick 1972, Hemens et al. 1975
53 Pyura stolonifera Liebrich et al 1995
54 Rhabdosargus holubi De Kock & Lord 1988
55 Terapon jarbua Hemens & Warwick 1972

Mixed taxa
56 Meiofauna community Gyedu-Ababio & Baird 2006
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The majority of toxicity studies focused on the individual or cellular level of biological organisation, 

with only one study focusing on community level organisation (i.e. Gyedu-Ababio and Baird 2006). 

Toxicity tests can be performed at various levels of biological organisation (Chapman 1995; Van 

Straalen 2003) (e.g. from sub-cellular to species level). However, it should be noted that no single 

species is universally more sensitive to all types of contaminants, hence the need to use multiple 

species in sediment toxicity tests (Cheung et al. 1997; Macken et al. 2008; Kennedy et al. 2009). 

 

Contaminants that have been studied for their toxicity since the 1960s in South Africa include oils 

(e.g. water soluble fraction, polycyclic aromatic hydrocarbons (PAHs)), metals and organic 

contaminants (Wepener and Degger 2012). Metals were the most studied class of contaminants 

(Figure 1.1); and cadmium, copper, zinc and lead were the most frequently used contaminants in 

laboratory experiments (Figure 1.2). 

 

 

Figure 1.1. Contaminants of interest in toxicity and/or ecotoxicity studies in South Africa over the 

last six decades. Data represents the number of times test organisms were exposed to each 

contaminant class. Remedies refer to substances used to ameliorate contamination, such as oil 

dispersants and chelating agents (i.e. ethylenediaminetetraacetic acid (EDTA)). 
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Figure 1.2. Frequency at which metals were used as contaminants of interest in historical ecotoxicity 

and/or toxicity studies in South Africa. 

 

Characteristics of a good toxicity testing species 

A good toxicity testing species should at least meet the following criteria, or possess the following 

features (Burton et al. 1992; EPA 1994; Chapman 1995; Costa et al. 1998; Chapman and Wang 2001; 

Chapman 2002; Peters et al. 2002; Bat 2005): 

1. Must be endemic. 

2. Should represent different taxa, different trophic levels and different exposure pathways 

(e.g. porewater, overlying water and sediment). 

3. Must have an intimate relationship with the sediment (e.g. burrower, deposit feeder).  

4. Should be sensitive to most contaminants of sediment. 

5. Must be widely distributed in the natural environment. 

6. Must be ecologically or economically relevant. 

7. Must be available all year-round and easily collected. 

8. Must be amenable to laboratory culture. 

9. Must tolerate wide variations of natural parameters such as salinity, temperature and 

sediment particle size. 

10. Availability of a toxicity database for the test species. 

11. Should be abundant in the field. 

12. Should be easy to identify. 
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Grandidierella lignorum: a potential toxicity test organism for South African coastal ecosystems 

Amphipods with a greater degree of contact with sediment through a burrowing and deposit feeding 

behaviour (i.e. infaunal amphipods) are ideal for sediment toxicity tests as these amphipods are 

exposed to whole sediment, interstitial water and overlying water to some degree (Burton et al. 

1992). Tube burrowers are generally more exposed to overlying water than interstitial waters. 

Infaunal amphipods (i.e. free burrowers) in South Africa predominantly belong to the families 

Phoxocephalidae and Urothoidae (Griffiths 1976), but these are generally not numerically abundant 

in estuaries. 

 

Grandidierella lignorum Barnard 1935, a gammaridean amphipod belonging to the family Aoridae 

(www.marinespecies.org), meets most of the requirements for a toxicity testing species. It is 

endemic to estuaries in South Africa (Griffiths 1976) and is distributed in all biogeographic regions. It 

has been collected in the cool temperate Great Berg River Estuary (Wooldridge and Deyzel 2009) 

and in warm temperate estuaries, including the Gamtoos, Swartkops, Sundays, Kariega, Keiskamma 

and East Kleinemonde River estuaries (Schlacher and Wooldridge 1996a; Teske and Wooldridge 

2001; Wooldridge and Bezuidenhout 2008). It has also been collected in numerous estuaries in the 

subtropical region (Stow 2011). G. lignorum lives in tubes it constructs using detritus and sediment 

particles (Boltt 1969; Barnard et al. 1988). When constructing and/or maintaining burrows (including 

burrow extension), it feeds on microbes adhered to faecal pellets by browsing (Boltt 1969). It is, 

however, not limited to deposit feeding but is also a filter feeder (Schlacher and Wooldridge 1996b; 

Wooldridge and Bezuidenhout 2008). While G. lignorum feeds at the lower trophic level in the food 

web (i.e. a primary consumer; Wooldridge and Bezuidenhout 2008), it forms an important food 

source for juvenile fish such as Rhabdosargus holubi and Lithognathus lithognathus (Schlacher and 

Wooldridge 1996c), and is thus ecologically important. Its distribution within the estuary is not 

influenced by parameters such as sediment grain size and salinity (Teske and Wooldridge 2003). The 

amphipod does not seem to prefer any particular sediment grain size (Boltt 1969) and can tolerate a 

wide range of salinities (Boltt 1969; Thwala 2006) and temperature (Thwala 2006). It is sensitive to 

contaminants of sediment (Vivier 2010) and is amenable to laboratory culture (Connell and Airey 

1979). Available toxicity data for G. lignorum (i.e. toxicity database) includes exposures to fluoride, 

cadmium and zinc (Connell and Airey 1979, 1982, Thwala 2006, Vivier 2010).The rich baseline 

information of this amphipod allows for its potential use as a toxicity testing organism for the South 

African coastal environment. 

 

http://www.marinespecies.org/
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Aim 

The primary aim of this study was to develop a sediment toxicity test for the estuarine and coastal 

environment of South Africa using the estuarine amphipod, Grandidierella lignorum. Specific aims 

are stated in chapters of this thesis that deal with different aspects of developing the toxicity test. 

The sediment toxicity test developed in this study is referred to as a second generation toxicity test 

by Chapman and Wang (2001). These tests are generally performed using euryhaline and/or 

stenohaline species for toxicity testing of estuarine sediments, but it is advised that the test salinity 

should match that measured in porewater. Sediment toxicity in estuarine ecosystems has been 

tested using marine or freshwater organisms, with test salinities being modified to suit the 

preferences of the test organism and consequently failing to recognise the influence this has on the 

bioavailability of sediment contaminants (Chapman and Wang 2001). 

 

Thesis layout 

This thesis is written up in a scientific publication format and the repetition of some information was 

thus unavoidable. The following two chapters aim to define test conditions of salinity, temperature, 

sediment grain size and organic matter content for Grandidierella lignorum. Results of this chapter 

would form the basis for the development of a chronic toxicity test for future investigations. The 

third chapter determines the sensitivity of the amphipod to common contaminants of sediment and 

establishes a quality control tool in a form of a control chart. Control charts aid in accepting or 

rejecting toxicity test results. The fourth chapter exposes the amphipod to liquid waste and 

contaminated sediment with the aim of determining the ability of the amphipod to discriminate 

toxicity in different exposure phases (i.e. water only and whole sediment toxicity). The last chapter 

synthesises the findings of this study and makes recommendations. An additional chapter in the 

appendix section investigates the influence of salinity and temperatures on the amphipod’s growth, 

reproduction and fecundity. 
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Abstract 

The endemic amphipod Grandidierella lignorum is an organism potentially suited to the toxicity 

testing of coastal water and sediment in South Africa. The primary aim of this study was to define 

the range of salinity and temperature at which Grandidierella lignorum can be used for toxicity 

testing, to avoid potential confounding effects induced by these non-contaminant factors on test 

data interpretation. The data are also discussed in the context of the known ecology of this 

amphipod. Amphipods were exposed in the laboratory to salinities of 0 to 56 (increments of 7) for 96 

hrs. Salinities were prepared using natural seawater and synthetic sea salts. Grandidierella lignorum 

tolerated all salinities, but showed highest survival at salinities of 7 to 42. Salinity tolerance was 

modified by temperature, with highest survival between 10 and 25oC. These represent the range of 

conditions at which toxicity testing can be performed. Salinity tolerance did not differ significantly 

between natural and synthetic seawater. Synthetic sea salt can thus be used to manipulate the 

salinity of media for toxicity testing without acting as a confounding variable. Tests performed also 

highlight the importance of resting laboratory cultured G. lignorum between harvesting events. 

 

Introduction 

Salinity and temperature are important environmental factors that influence estuarine inhabitants 

(Kinne 1963, 1964). The survival of individuals and success of estuarine populations is partly 

dependent on the ability to tolerate the variable salinities that characterise this environment. 

Salinity tolerance defines the potential for penetrating the estuarine environment while 

temperature influences the range of salinity tolerated (Kinne 1963). Stenohaline species are 

restricted to the lower or upper reaches of estuaries depending on their origin (i.e. freshwater or 

marine) while euryhaline species can potentially be found along the length of an estuary. However, 

other environmental (e.g. sediment grain size) and biological (e.g. competition) factors may 

influence estuarine distribution (e.g. Barnes 1967, McLachlan and Grindley 1974, Teske and 

Wooldridge 2004, Rhodes-Ondi and Turner 2010). Consequently, many decapod crustaceans inhabit 

restricted regions of the estuarine environment, where salinity variation is within the range 

tolerated in the laboratory. 

 

Amphipods are widely used for water and sediment toxicity testing (e.g. Woodworth et al. 1999, Bat 

2005, Ré 2007). The estuarine amphipod Grandidierella lignorum, which is endemic to South Africa 

(Griffiths 1976), has been identified as an organism that can potentially be used for toxicity testing of 
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coastal water and sediment in South Africa. It meets most of the requirements for an organism to be 

considered suitable for this purpose (see Burton et al. 1992, EPA 1994, Bat 2005), including its wide 

geographical distribution (from Great Berg estuary in the west to Nhlabane estuary in the east; 

Vivier and Cyrus 1999, Wooldridge and Deyzel 2009), ease of collection, handling and maintenance 

in the laboratory (Connell and Airey 1979, Thwala 2006) and burrowing lifestyle (Boltt 1969a, 

Barnard et al. 1988). Although G. lignorum is widely tolerant of salinities <35 (Boltt 1969a), tolerance 

to salinities >35 has been poorly investigated. Thwala (2006) exposed G. lignorum to a salinity of 45, 

but the experiment was not replicated. 

 

The primary aim of this study was to define the range of salinity and temperature at which 

Grandidierella lignorum can be used to test the toxicity of water and sediment to avoid the potential 

confounding effects induced by these non-contaminant factors on toxicity test data interpretation. 

The findings are discussed in this context and in the context of the known ecology of G. lignorum. 

Natural seawater is the preferred medium for preparing laboratory culture water and for 

manipulating the salinity of water, testing for toxicity and for preparing overlying water for sediment 

toxicity testing. Seawater prepared using synthetic sea salts is commonly used for this purpose if 

natural seawater is not available (EPA 2001). However, synthetic seawater is known to affect the 

survival, growth and reproduction of some amphipods (e.g. Emery et al. 1997). An additional aim of 

this study was thus to determine whether Grandidierella lignorum shows differences in tolerance to 

salinities prepared using natural and synthetic seawater.  

 

Materials and Methods 

Maintenance of amphipods in the laboratory 

Amphipods were collected from Intshambili River estuary on the subtropical northeast coast of 

South Africa (30°38’ S, 30°32’ E). In the laboratory the amphipods were maintained in four culture 

tanks (L x B x H: 53 x 33 x 15 cm) containing about 2 cm of medium- to fine-grained sediment and 

about 10 cm of UV sterilised, filtered (10 μm) natural seawater (salinity = 35). The culture water was 

aerated continuously. The amphipods were fed ad libitum three times a week on ground fish flakes 

(Tetramin®) and about 80% of the culture water was replaced weekly. The cultures were maintained 

at 22°C under a 12 hr light: 12 hr dark photoperiod in a temperature controlled environmental 

chamber. Under these conditions Grandidierella lignorum reproduced successfully, allowing the 

regular harvesting of individuals for experimental purposes. 



 

33 
 

 

Salinity tolerance  

Amphipods were exposed to salinities between 0 and 56, at increments of 7. Salinities were 

prepared in two ways. First, salinities <35 were prepared by diluting UV-sterilised and filtered (10 

μm) natural seawater (salinity = 35) with distilled water and salinities >35 by adding Instant Ocean® 

synthetic sea salt to natural seawater treated in the same manner described above. Distilled water 

was used for the 0 salinity treatment. Salinities prepared in this manner are referred to as natural 

seawater, despite the use of synthetic sea salt to prepare salinities >35. Second, salinities were 

prepared by adding Instant Ocean® synthetic sea salt to distilled water. Salinity was checked using an 

Atago (PAL-065) digital refractometer. 

 

Amphipods were fed at least 6 hrs prior to experiments, but not during experiments. Amphipods 

were harvested by manually disturbing the sediment in culture tanks, which forced amphipods from 

the sediment. Juvenile amphipods (average length ± 1 SD: 2.59 ± 0.47 mm, n = 720; based on 

measurements made after tests) were isolated by passing the culture water through sequential 

nylon sieves with a mesh size of 1000 and 500 μm. Amphipods were then stepwise acclimated from 

salinity 35 to test salinities at a rate of ≤3 every 2 hrs. Apparently healthy (i.e. actively swimming) 

amphipods were then individually transferred to glass vials filled with 30 ml of water using a wide 

bore glass pipette. 

 

Survival was monitored at 24 hr intervals for 96 hrs. The media was not renewed or aerated. 

Amphipods were considered dead when no activity was evident, including pleopodal beats or 

twitches after gentle mechanical stimulation with a glass rod. Experiments were repeated three 

times using amphipods from each laboratory culture, providing a total of 12 experiments with 

natural seawater and 12 experiments with synthetic seawater. 

 

The tolerance of Grandidierella lignorum to instantaneous changes in salinity was also investigated, 

by directly exposing amphipods from salinity 35 to salinities between 0 and 56 (increments of 7). The 

experiment was repeated four times using amphipods from two cultures. Salinities were prepared in 

the same manner described above, using natural seawater. 
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Influence of temperature on salinity tolerance  

The influence of temperature on salinity tolerance was investigated by exposing amphipods to 

salinities between 7 and 42 (increments of 7) at 10, 15, 20, 25 and 30°C. These temperatures 

encompass the range to which Grandidierella lignorum is likely to be exposed in the natural 

environment in the long-term. Salinities were prepared in the same manner described above, using 

natural seawater. A total of 24 amphipods were individually acclimated to experimental salinities at 

a rate of ≤3 per hr and then to experimental temperatures at a rate of ≤3°C per 2 hrs. Temperatures 

were maintained constant in an environmentally controlled chamber. Survival was monitored at 24 

hr intervals for 96 hrs. The media was not renewed or aerated. Experiments were repeated three 

times for each salinity-temperature combination, using amphipods from all four cultures. 

 

Statistical analysis 

Statistical analyses were performed using SPSS software (version 21). A Model 1 three factor analysis 

of variance (ANOVA) was used to compare survival as a function of salinity, media type (i.e. synthetic 

vs. natural seawater) and laboratory culture. Survival for the instantaneous salinity exposure 

experiment was compared using one factor ANOVA. The combined influence of salinity and 

temperature on survival was evaluated using a Model 1 two factor ANOVA. A Tukey HSD post hoc 

test was used to identify treatments that differed significantly at P = 0.05. 

 

Results 

Salinity tolerance 

Although Grandidierella lignorum survived for 96 hrs at all salinities prepared using natural and 

synthetic seawater, survival differed significantly between certain salinities (Figure 2.1 and Table 

2.1). The highest survival (generally >80%) for each culture was at salinities between 7 and 42 (Figure 

2.1). 
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Figure 2.1. Mean survival (± standard deviation) of Grandidierella lignorum at various salinities 

prepared using natural (a) and synthetic seawater (b). 

 

 

Table 2.1. Results of three factor ANOVA evaluating survival of the amphipod Grandidierella 

lignorum as a function of test salinities prepared using natural and synthetic seawater (i.e. media 

type) for amphipods taken from different laboratory cultures. 
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Culture 1 Culture 2 Culture 3 Culture 4

A B

Source df F P

Main Effects

Test salinity 8 90.625 <0.0005

Media type 1 0.112 0.738

Amphipod culture 3 4.863 0.003

Interactions

Salinity x media type 8 0.357 0.941

Salinity x amphipod culture 24 1.846 0.015

Media type x amphipod culture 3 0.386 0.763

Amphipod culture x media type x salinity 24 0.533 0.963
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Survival at each salinity did not differ significantly between natural and synthetic seawater (F = 

0,112, P = 0.738). Survival data for both types of media were thus pooled to compare salinity 

tolerance between cultures. Salinity tolerance differed significantly between cultures (F(salinity x amphipod 

culture) = 1.846, P(salinity x amphipod culture) = 0.015), due mainly to the significantly lower survival of 

amphipods from culture 2 at salinities between 35 and 49 compared to one or more other cultures 

(Table 2.2). 

 

When amphipods were directly exposed to test salinities without acclimation the best survival (80%) 

was measured at salinities between 7 and 42 (Figure 2.2), which is the similar to the ‘preferred’ 

salinity range for amphipods that were stepwise acclimated. 

 

 

Table 2.2. Survival of Grandidierella lignorum taken from four laboratory cultures at various 

salinities. Letters in superscript within a row represent the results of Tukey HSD post hoc tests. 

Survival was not significantly different in rows with no letters. 

 

 

 

Culture 1 Culture 2 Culture 3 Culture 4

Mean±SD Mean±SD Mean±SD Mean±SD

0 20.83±24.78 29.17±32.62 1.67±2.58 3.33±5.16 2.862 0.063

7 96.62±2.62 94.17±9.70 74.17±17.15 82.50±24.24 2.676 0.075

14 91.67±7.53 96.67±2.58 90.83±12.81 94.17±7.36 0.582 0.634

21 93.33±6.83 90.00±8.94 93.33±9.31 94.17±12.01 0.563 0.646

28 96.67±6.06 91.67±8.16 91.67±10.33 95.83±3.76 0.547 0.656

35 98.33±2.58
ab 87.50±13.69

a 99.17±2.04
b 100.00±0.00

b 4.467 0.015

42 95.83±3.76
a 80.00±9.49

b 89.17±8.61
ab 91.67±8.16

ab 3.533 0.033

49 84.17±12.01
a 48.33±22.29

b 70.83±19.08
ab 80.83±7.36

a 5.408 0.007

56 35.83±22.89 7.50±6.89 25.83±25.58 24.17±22.00 1.965 0.152

Salinity F P
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Figure 2.2. Mean survival (± standard deviation) of Grandidierella lignorum at various salinities 

following direct exposure from a salinity of 35. Similar letters in bars indicate that survival was not 

statistically significantly different while different letter indicate a statistically significant difference.  

 

 

Influence of temperature on salinity tolerance 

Temperature significantly influenced salinity tolerance (F(salinity x temperature) = 3.553, P(salinity x temperature) < 

0.0005) (Figure 2.3a). These experiments were performed about two weeks after the salinity 

tolerance experiments. However, it was suspected that the amphipods may not have been 

sufficiently rested between experiments. Thus, the experiments were repeated after a further rest 

period of four to six weeks. The influence of temperature on salinity was again significant for 

amphipods rested for four to six weeks (F(salinity x temperature) = 9.181, P(salinity x temperature) < 0.0005) (Figure 

2.3b). However, the influence of temperature on salinity tolerance of amphipods rested for a short 

period (i.e. two weeks) differed to that for amphipods rested for a long period (i.e. four to six weeks) 

(Figure 2.3a,b). For example, amphipods rested for two weeks tolerated (≥90% survival) a salinity 

range of 14 to 35 at 15°C, but a narrower range of 28 to 35 at 25°C (Figure 2.3a). Amphipods rested 

for four to six weeks, in contrast, tolerated (≥90% survival) a salinity range of 7 to 35 at 10 to 25°C. 

The influence of high temperature (i.e. 30°C) on survival became apparent at low (7) and high 

salinities (≥35) (Figure 2.3b). 
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Figure 2.3. Interactive effect of salinity and temperature on survival of Grandidierella lignorum 

rested for two weeks (a) and four to six weeks (b) between experiments. 

 

To determine the influence of resting period on survival a Student’s t-test was used to compare 

survival between amphipods rested for two weeks and four to six weeks between experiments. 

Survival of amphipods rested for two weeks was generally significantly lower than for amphipods 

rested for four to six weeks (Figure 2.4). However, at certain combinations of salinity and 

temperature no significant difference was evident. This included salinities of 14 to 35 at 15°C, 28 to 

42 at 25°C, and 35 to 42 at 30°C. 
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Figure 2.4. Mean survival (± standard deviation) of Grandidierella lignorum between resting periods 

when exposed to the combination of salinity and temperature. Sal. = salinity. 

 

 

Discussion 

Grandidierella lignorum is euryhaline, capable of tolerating salinities between 0 and 56 for 96 hrs in 

the laboratory. However, survival at salinities of 0 and 56 was, on average, low (<40%). The 

‘preferred’ salinities are between 7 and 42, where survival usually exceeded 80%. The wide salinity 

tolerance of G. lignorum in the laboratory agrees with and to some extent explains its wide axial 

distribution in estuaries. For example, Schlacher and Wooldridge (1996) recorded G. lignorum at 
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salinities between 0.1 and 34 in the Gamtoos River estuary. Grandidierella lignorum is also able to 

tolerate wide, abrupt changes in salinity. Euryhalinity and tolerance of wide, abrupt decreases in 

salinity are important adaptations for organisms resident in South African estuaries. The majority of 

estuaries along this coastline are small, narrow and shallow. Along most of the coastline a significant 

proportion of the mean annual rainfall may fall over a period of a few days, resulting in a strong 

inflow of freshwater. This results in a wide, rapid decrease in salinity throughout the estuary, which 

may remain low for periods from a few days to a few weeks (e.g. McLachlan and Grindley 1974, Day 

1981, Robertson 1984, Hanekom 1989, Henninger et al. 2008). Many estuaries also naturally close 

off from the sea and the salinity may decrease due to freshwater inflow. Grandidierella lignorum 

may thus need to withstand long periods of low salinity under flooding conditions or in closed 

estuaries. The water column in open and closed estuaries along the west, south and southeast 

coasts of South Africa may also become hypersaline when evaporative losses exceed freshwater 

inflow, although the salinity rarely exceeds 42 (e.g. Hill 1981, Hodgson 1987, Whitfield and Bruton 

1989, Teske and Wooldridge 2001, Harrison 2004). This is well within the salinity range tolerated by 

G. lignorum in the laboratory. 

 

The salinity tolerance of Grandidierella lignorum is comparable to that for other gammarid 

amphipods, including Corophium volutator, Leptocheirus plumulosus and Corophium multisetosum 

(McLusky 1967, Emery et al. 1997, Ré et al. 2009). Some of these amphipods (e.g. Corophium 

multisetosum) can even reproduce successfully in freshwater (Cunha et al. 2000). Grandidierella 

lignorum does not appear to live permanently in freshwater apart from certain relict estuarine lakes 

in northern KwaZulu-Natal. However, this is a special case since the ionic composition of water in 

these lakes (e.g. elevated sodium ion concentrations) appears to facilitate survival of G. lignorum 

and a number of other organisms typically only found in South African estuaries (Allanson and van 

Wyk 1969, Boltt 1969a, 1969b, Reavell and Cyrus 1989). 

 

The modifying influence of temperature on the salinity tolerance of estuarine organisms is well 

known and was apparent also for Grandidierella lignorum. Temperatures between 25 and 30 °C 

reduced survival at salinities of 7 and >35 for amphipods rested for four to six weeks between 

experiments. Thwala (2006) investigated the influence of temperature on the salinity tolerance of 

Grandidierella bonnieroides by exposing the amphipod to a salinity range of 0 to 55 and 

temperatures ranging from 10 to 30°C. The amphipods tolerated salinities of 0 to 45 and 
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temperatures of 10 to 26°C. Highest survival (≥80 %) was reported at a salinity range of 5 to 35, at 16 

to 22°C. Grandidierella lignorum tolerates a similar range of salinity, but at a wider temperature 

range (10 to 25°C).  

 

The implication of euryhalinity in Grandidierella lignorum in the context of toxicity testing is that this 

amphipod can be used to test the toxicity of water samples or sediment with porewater at salinities 

between 7 and 42 without salinity acting as a confounding factor in data interpretation. In cases 

where the salinity of samples requiring toxicity testing falls outside this range the salinity must be 

manipulated to at least 7 or 42, by dilution using natural seawater or addition of synthetic sea salts. 

Survival of G. lignorum was not adversely affected by exposure to experimental media prepared 

using synthetic sea salts, which will thus not act as a confounding factor during toxicity testing.  

This study provides evidence that the frequent harvesting of Grandidierella lignorum from cultures 

in the laboratory may act as a confounding factor in toxicity tests. Amphipods rested for only two 

weeks between experiments showed a higher mortality when exposed to various salinity-

temperature combinations than amphipods rested for four to six weeks. The reason is unknown but 

may reflect the energetic demands of burrow construction. Laboratory cultures of G. lignorum 

should thus be rested for at least four weeks but preferably six weeks between harvesting events. 
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Chapter 3 

Influence of grain size and organic content on 

sediment selection and survival in the laboratory by 

the amphipod Grandidierella lignorum (Amphipoda: 

Aoridae) 
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Abstract 

Sediment grain size and organic content are important factors that influence the composition of 

benthic invertebrate communities. These factors also influence contaminant bioavailability, and thus 

have the potential to act as confounding factors during toxicity testing. Determining an amphipod’s 

preference for sediment grain size and organic content is thus crucial for defining the conditions 

under which a sediment toxicity test should be performed. Grandidierella lignorum was offered a 

choice of six sediment grain size classes and varying organic content (0 - 8% dry weight) to 

determine their preference. Amphipods showed no significant preference for sediment grain size in 

two of three experiments, but consistently tended to avoid very coarse-grained and muddy 

sediment. Amphipods preferred sediment with low organic matter (<2%) and this was not influenced 

by the type of organic matter present (protein-rich vs. carbohydrate-rich organic matter) or 

sediment grain size. Survival of the amphipod in sediment devoid of organic matter over a 10 day 

period was significantly higher in the fine-grained (survival of 92%) and very fine-grained sediment 

(74%) but low in the mud fraction (30%). Thus, for toxicity tests on G. lignorum, sediment with a 

wide range of grain sizes but with low organic matter can be tested. 

 

Introduction 

Sediment is the major sink for particle reactive contaminants (including particulate and dissolved 

forms) anthropogenically introduced to aquatic ecosystems. With continued input and limited 

sediment redistribution (e.g. no scouring and/or flushing), contaminants can accumulate in sediment 

to such high concentrations that they adversely affect bottom-dwelling organisms through direct 

and indirect toxicity (Long and Chapman 1985; Chapman et al. 1987). Although chemical analyses 

can identify whether sediment is contaminated, the presence of contaminants in sediment does not 

mean they are adversely affecting bottom-dwelling organisms. For contaminants to cause an 

adverse ecological effect they must be in a bioavailable form, that is, in a form that can cross 

biological membranes. To identify whether contaminants in sediment are in a bioavailable form 

requires some form of biological assessment, either through the analysis of benthic invertebrate 

community structure and composition or through toxicity testing (Long and Chapman 1985; Long 

2000; EPA 2001; Long et al. 2001; McPherson et al. 2008). A common form of sediment toxicity 

testing involves the exposure of test organisms to whole sediment under controlled conditions in the 

laboratory. 
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The grain size composition and organic content of sediment are important factors that influence the 

structure and composition of benthic invertebrate communities (Gray 1974, Snelgrove and Butman 

1994, Van Tomme et al. 2013). It is generally accepted that muddy sediment supports deposit 

feeders while filter feeders usually flourish in sandy sediment (Biernbaum 1979; Snelgrove and 

Butman 1994). Since bottom-dwelling organisms select for, survive or grow best in certain types of 

sediment, the development of a sediment toxicity test must identify how these non-contaminant 

factors influence test organisms. If these factors are not considered they may induce responses in 

test organisms that are not a result of exposure to contaminants, confounding the interpretation of 

toxicity test results (Lacey et al. 1999; Postma et al. 2002). 

 

Factors influencing an amphipod’s selection for a particular substrate include inter alia sediment 

grain size, sediment thickness or depth, food availability, food quality, food condition (i.e. fresh vs. 

aged) and biotic interactions (Meadows 1964a,b, Boltt 1969, DeWitt 1987, DeWitt et al. 1988). 

Amphipods are known to select for a specific sediment composition. For example Corophium 

volutator selects for fine sand whereas C. arenarium selects for coarser sand (Meadows 1964b). 

Food availability (including biofilms coating sediment particles) plays an important role in sediment 

selection (Meadows 1964a). Doig and Liber (2010) also demonstrated that >75% of the amphipod 

Hyalella azteca remains burrowed in its preferable fine sand in the presence of organic matter, but 

burrowing is reduced by as much as 62% in the absence of sediment organic matter. The correlation 

between sediment grain size and organic matter content however makes it difficult to differentiate 

which variable is more important to benthic fauna (DeWitt 1988, Snelgrove and Butman 1994). Both 

variables are thus frequently investigated in toxicity studies, particularly because of their potential to 

confound toxicity test results. 

 

Very little research has investigated the influence of sediment parameters to estuarine benthic 

fauna of South Africa (e.g. Boltt 1969) and these include field survey observations (e.g. Teske and 

Wooldridge 2003). This is despite the fact that sediment is more important than salinity in 

influencing the distribution of benthic fauna in South African estuaries, which is in contrast with the 

situation in the northern hemisphere (Teske and Wooldridge 2003). Field observations suggest that 

the distribution of amphipods such as Grandidierella lignorum, G. lutosa and Corophium triaenonyx 

is not influenced by salinity or sediment within South African estuaries (Teske and Wooldridge 2003). 

Laboratory experiments however, showed that G. lignorum prefers muddy sediment (Boltt 1969). 
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Grandidierella lignorum has a potential to be used as a sediment toxicity testing organism as it 

meets the requirements for toxicity test organisms. It is widely distributed and has been collected 

from cool temperate (e.g. Wooldridge and Deyzel 2009), warm temperate (e.g. Schlacher and 

Wooldridge 1996; Teske and Wooldridge 2001) and subtropical estuaries (Vivier and Cyrus 1999; 

Stow 2011). It is easy to culture and handle in the laboratory (Connell and Airey 1979, Thwala 2006) 

and it appears to be broadly tolerant to physico-chemical parameters of relevance in toxicity testing, 

such as salinity, temperature and sediment particle size (e. g. Boltt 1969; Thwala 2006). In a 

sediment selection test, Boltt (1969) did not remove organic matter content from sediment samples. 

It is therefore, unknown whether G. lignorum shows a preference for sediment of a specific grain 

size or can survive in all types of sediment. Similarly, whether organic content influences sediment 

selection is unknown. The primary aim of this study was thus to determine whether G. lignorum 

shows a preference for sediment of a specific grain size or organic content, for the purpose of 

defining the conditions under which toxicity testing of whole sediment should be performed and as 

an aid to determining potential toxic effects when these amphipods are exposed to sediment not 

conforming to that preferred. The implications of the findings are also discussed in the context of 

the known ecology of G. lignorum. 

 

Materials and Methods 

Maintenance of amphipods in the laboratory 

Amphipods were collected from the Intshambili River estuary on the subtropical northeast coast of 

South Africa (30°38’S, 30°32’E). In the laboratory the amphipods were maintained in four culture 

tanks (L x B x H: 53 x 33 x 15 cm) containing about 2 cm of medium- to fine-grained sediment and 

about 10 cm of UV sterilised and filtered (10 μm) natural seawater (salinity = 35). The culture water 

was aerated continuously. The amphipods were fed ad libitum three times a week on crushed fish 

flakes (Tetramin®), and 80% of the culture water was replaced weekly. The cultures were maintained 

at 22°C under a 12 hr light: 12 hr dark photoperiod in a temperature controlled environmental 

chamber. Under these conditions G. lignorum reproduced successfully, allowing for the regular 

harvesting of individuals for experimental purposes. 
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Sediment grain size and organic content preference 

Sediment was collected from the Mlalazi River estuary (28°56’S, 31°48’E) using a Van Veen grab. In 

the laboratory the sediment was dried in an oven at 56°C, where after organic matter in the 

sediment was destroyed by muffling at 600°C for 6 hrs. The sediment was then passed through a 

sieve stack to isolate six grain size classes according to the Udden-Wentworth scale (Wentworth 

1926; Blair and McPherson 1999); namely very coarse-grained sand (VC, 1 - 2 mm), coarse-grained 

sand (Co, 0.5 - 1 mm), medium-grained sand (Me, 0.25 - 0.5 mm), fine-grained sand (Fn, 0.125 - 0.25 

mm), very fine-grained sand (VF, 0.63 - 0.125 mm) and mud (Mu, <0.63 mm). 

 

Sediment grain size preference experiments were based broadly on the procedures described by 

Meadows (1964a). Choice chambers and tanks for housing the chambers were constructed from 

perspex (Figure 3.1). 

 

 

Figure 3.1. Experimental design for sediment grain size and organic content preference experiments. 

Represented are specifications for the experiment tank (a), specifications for choice chambers (b), 

example of randomised placement of choice chambers in an experimental tank (c), and the whole 

set up of the experiment (d). 
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Sediment of each grain size was offered in duplicates in each experimental tank (i.e. two choice 

chambers for every sediment grain size). Choice chambers (n = 12) with sediment of different grain 

sizes were randomly placed in the tanks (n = 3) (see Figure 3.1c). Sediment in choice chambers was 

filled to the brim so that amphipods can easily move between choice chambers. Filtered (10 μm) 

seawater was slowly introduced to the tanks by passing it through an air stone, to avoid sediment re-

suspension. Juvenile amphipods (n = 50) were then introduced to the tanks. Amphipods were 

introduced just below the water surface and after introduction, amphipods were observed for a 

minute. Water in the tanks was gently aerated using air stones suspended some distance above the 

bottom, to avoid sediment re-suspension. The tanks were left for 24 hrs, where after the overlying 

water was siphoned off without disturbing the sediment and the number of amphipods in each 

choice chamber was counted. The experiment was repeated three times. 

 

To determine whether Grandidierella lignorum selects for sediment based on the amount and type 

of organic matter present, amphipods were offered sediment devoid of or fortified with organic 

matter. Tetramin® fish flakes (rich in protein) and lucerne pellets (rich in carbohydrates) were 

ground using a coffee bean grinder, sieved through a 0.25 mm mesh screen, and an appropriate 

mass added to muffled medium-grained or fine-grained sand at 0, 0.5, 1.0, 2.0, 4.0 and 8.0% of dry 

weight. Concentrations of up to 4% organic content have been measured in estuaries (see Stow 

2011) while concentrations >8% have been measured in harbours (Wepener and Vermeulen 2005, 

CSIR 2011). Medium- and fine-grained sand was chosen because they were identified as the 

preferred grain sizes from the above experiment. Sediment-organic matter mixtures were added to 

choice chambers that were then randomly placed in three experimental tanks, following the 

procedures described above. The experiment was repeated three times. 

 

To determine whether Grandidierella lignorum is able to survive in various grain size classes of 

sediment devoid of organic matter for 10 days, which is the standard duration of an acute whole 

sediment toxicity test (e.g. EPA 1994), amphipods were exposed to muffled sediment in 1 L glass 

containers (bottom surface area: ~20 cm2). The depth of sediment in the containers was about 2 cm. 

The containers were filled with ~700 ml of UV sterilised and filtered (10 μm) seawater. Each 

sediment grain size class offered for the grain size preference experiments was offered in three 

replicate containers. Test containers were covered with plastic petri dishes to limit excessive 
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evaporative loss and the water was continuously aerated by passing air through glass pipettes 

suspended some distance above the bottom, to avoid sediment re-suspension. Dissolved oxygen 

was measured prior the introduction of amphipods using an oxygen meter probe that was calibrated 

following manufacture specifications. After 24 hrs, 20 juvenile amphipods were introduced. The 

amphipods had been fed 12 hrs before transferred to the experimental containers. Amphipods were 

not fed during the experiment. Dissolved oxygen (mg l-1) was maintained above 4 mg l-1and salinity 

at 35 ± 1. Dissolved oxygen and salinity were monitored every two days and adjusted when 

necessary. Oxygen supply to test container was increased if dissolved oxygen fell below 4 mg l-1 and 

distilled water was added to test containers if salinity increased above 35. 

 

Statistical analyses 

Statistical analyses were performed using SPSS software (version 21). The proportion of amphipods 

retrieved from each sediment grain size was compared using a one factor analysis of variance 

(ANOVA) on ranked data, since assumptions of normality and equal variance were violated. This 

analysis was performed separately for the three replicate experiments to determine the 

reproducibility of results, and then repeated for pooled data. To determine if G. lignorum showed a 

preference for sediment containing different types and quantities of organic matter, a two factor 

ANOVA was performed on arcsine transformed data. This analysis was performed separately for the 

three replicate experiments to determine reproducibility of results, and repeated for pooled data for 

both medium-grained and fine-grained sediment. A three factor ANOVA was performed to 

determine if sediment grain size (medium- and fine-grained sand) influenced amphipods’ selection 

for organic matter type and quantity. The survival of amphipods exposed to sediment devoid of 

organic matter during a 10 day period was determined by comparing mean survival using a one 

factor ANOVA. Significant differences (at P = 0.05) between treatments were identified by 

performing a Tukey HSD post hoc comparison test in all experiments. 

 

Results 

Although amphipods showed no significant selection for any grain size class in Experiment A and B, a 

higher proportion of amphipods were recovered from coarse-, medium- and fine-grained sediment 

(Figure 3.2a,b).In Experiment C, there was a significant selection for coarse-, medium-, fine and very-

fine grained sediment (Figure 3.2c). Very coarse-grained sand and mud were thus the least selected 

grain size classes in all experiments. Analysis of pooled data (Figure 3.2d) showed that a significantly 
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higher proportion of amphipods were retrieved from fine- (27.48 ± 12.13 %), medium- (25.11 ± 

12.99 %) and coarse-grained sand (21.45 ± 8.02 %) compared to other grain size classes. The 

proportion of amphipods retrieved from the remaining grain size classes was not significantly 

different, although the proportion retrieved from very fine-grained sand (15.03 ± 8.82%) was on 

average somewhat higher compared to coarse-grained sand (5.93 ± 5.94%) and mud (4.99 ± 4.87%) 

(Figure 3.2d). 

 

 

Figure 3.2. Proportion of Grandidierella lignorum (n = 3) retrieved from different sediment grain size 

classes. Graphs a - c present results of individual experiments while d presents pooled data. Similar 

letters represent no significant differences between compared sediment size classes while no letters 

represent no significant differences between all sediment size classes. 

 

The proportion of amphipods recovered from sediment fortified with different amounts of organic 

matter was consistent between experiments. The data were thus pooled for each type of organic 

matter and sediment grain size class (Figure 3.3a,b). Amphipods preferentially selected for sediment 
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with no organic matter, with the proportion recovered generally decreasing with increasing organic 

matter content (see post hoc results within Figure 3.3a,b). The preference for sediment fortified with 

organic matter was not based on the type of organic matter (Fine-grained sand: Finteraction = 0.623; 

Pinteraction = 0.683, Medium-grained sand: Finteraction = 0.422; Pinteraction = 0.832), but based on organic 

matter concentration (Figure 3.3a,b). A three factor ANOVA confirmed the preference for sediment 

with no organic matter and that this was not influenced by the type of organic matter (F (concentration x 

organic matter) = 0.572; P (concentration x organic matter) = 0.722) or sediment grain size (F (concentration x sediment grain size) 

= 0.463; P (concentration x sediment grain size) = 0.803) (Figure 3.3c). 

 

 

Figure 3.3. Proportion of Grandidierella lignorum (n = 3) retrieved from fine-grained (a) and medium-

grained sand (b) fortified with two types of organic matter. The influence of sediment grain size on 

sediment selection based on the amount of organic content and type of organic matter type is 

shown in (c). Similar letters represents no significant difference in selection of sediment based on 

amount of organic content. Conc: organic matter content, TOM: type of organic matter, Sediment: 

medium- and fine-grained sediment. 

 

 

Survival of Grandidierella lignorum exposed to sediment of various grain sizes devoid of organic 

matter for 10 days differed significantly (F = 8.871; P = 0.001) (Figure 3.4). The highest survival was 

recorded in fine-grained sand (91.67 ± 14.43 %) and the lowest in mud (29.59 ± 1.91 %). 
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Figure 3.4. Mean survival ± SD (n = 3) of Grandidierella lignorum after 10 days exposure to different 

sediment grain size classes devoid of organic matter. Similar letters represent no significant 

difference in survival between sediment grain size classes. 

 

Discussion 

Grandidierella lignorum was retrieved from all sediment grain sizes offered, but showed a 

preference for coarse-, medium- and fine-grained sand. Based on these findings G. lignorum should 

theoretically be most abundant in the natural environment in sediment dominated by these grain 

sizes. However, the preference for sediment of a specific grain size class in the laboratory may not 

correspond to occurrence in the natural environment, where amphipods are highly unlikely to be 

exposed to sediment comprised of only one size class. Furthermore, other factors may influence 

where amphipods are found in the natural environment, including salinity tolerance and 

competition. Nevertheless, the experimental findings agree with the trend in abundance of G. 

lignorum in the field (L Vivier (University of Zululand) and F Mackay (Oceanographic Research 

Institute), personal communication). 

 

An amphipod’s preference for sediment of a particular grain size is probably partly related to the 

energetic costs associated with construction and maintenance of burrows or tubes (Meadows 

1964a), and may explain the selection for some sediment grain size classes over others by G. 

lignorum. Constructing burrows in unfavourable sediment takes longer and requires more 
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maintenance, increasing the energetic cost (Doig and Liber 2010). If the energetic costs of burrow 

construction and maintenance are high then this may act as a confounding factor in whole sediment 

toxicity tests. If the preference for some sediment grain size classes over others by G. lignorum is 

related to the high energetic costs associated with burrow construction and maintenance, then this 

amphipod should not be used to test the toxicity of sediment dominated by very coarse-grained 

sand or mud. The general avoidance of mud may also be due to the clogging of gills. 

 

Mud and/or some organic matter is required by Grandidierella species for the construction of 

burrows (Boltt 1969; Barnard et al. 1991). This is also true for Corophium volutator, which burrows 

even in unfavourable sediment if there is a small amount of mud available (Meadows 1964a). 

However, this does not tally with the findings of this study, which showed that amphipods not only 

burrowed in sediment devoid of mud but also devoid of organic matter. G. lignorum generally 

avoided mud in the experiments, yet it has been collected from mud dominated sediment in several 

South African estuaries (see Stow 2011). A possible explanation may be that the mud in 

experimental chambers was of a fluid nature and thus less viscous compared to the natural 

environment where it is mixed with variable amounts of other grain sizes and organic matter. 

Constructing and maintaining burrows in fluid mud may be energetically more expensive compared 

to other types of sediment. Mud devoid of organic matter (or with low organic content) is unstable 

and subject to resuspension and transportation or erosion (and is probably less viscous) (Uncles et 

al. 2006). This sediment would be unfavourable for burrow construction. Sediment organic matter 

encompasses microphytobenthic diatoms, whose production of the sticky mucopolysaccharides bind 

sediment particles together and in turn reduces sediment erosion (Sutherland et al. 1998; Uncles et 

al. 2003). This then increases the stability of muddy sediment, reducing the potential for erosion and 

thus supporting burrow construction. It was also observed during the experiments that mud 

particles clung to the setae of pereiopods of G. lignorum in the experiment when the amphipod 

landed on the muddy sediment. This would not only clog the gills but would also impair the ability of 

the amphipod to construct burrows, since amphipod silk used to glue sediment particles together is 

obtained from the pereiopods (Boltt 1969; Barnard et al. 1991). G. lignorum avoided muddy 

sediment in the selection experiment by swimming until it encountered favourable sediment grain 

sizes (pers. obs.). Survival of the amphipod in natural muddy sediment is thus expected to be higher 

than that recorded in the laboratory due to the presence of organic matter. 
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Grandidierella lignorum repeatedly preferentially selected for sediment with no organic matter in 

the laboratory. Preference decreased with increasing organic matter content, but was not affected 

by the type of organic matter. Amphipods select patches of sediment in the natural environment, 

using mechanical (i.e. grain size) or chemical cues (e.g. from food) (Meadows 1964a; Meadows 

1964b; De Lange et al. 2005). The preferential selection of sediment devoid of organic matter by G. 

lignorum is interesting in that this amphipod has been collected from estuaries where the sediment 

organic matter content is as high as 4% (Stow 2011). Perhaps the condition of organic matter is 

particularly relevant for G. lignorum. Some amphipods prefer fresh organic matter (e.g. Monoporeia 

affinis) while others prefer aged organic matter (e.g. Pontoporeia femorata) (Byrén et al. 2006). Boltt 

(1969) observed G. lignorum re-ingesting faecal pellets during its burrow extension and 

maintenance. 

 

In conclusion Grandidierella lignorum significantly selected for coarse-, medium- and fine-grained 

sediment over mud and very coarse-grained sediment. When exposed to the same sediment grain 

sizes, but over a 10 day period, which is a standard period for acute whole sediment toxicity test 

(EPA 1994), amphipod survival was still highest in favoured (e.g. fine-grained) sediment. When 

offered varying amounts of organic matter mixed in favourable sediment grain sizes, the amphipods 

consistently selected for sediment devoid of organic matter. This suggests that G. lignorum does not 

need to be fed during acute sediment toxicity tests. It is therefore suggested that sediment overly 

dominated by very coarse-grained sediment should not be tested by G. lignorum. The amount of 

mud in sediment composition that can be tested for toxicity requires further investigation. Mud is 

necessary for burrow construction in Grandidierella species (Boltt 1969, Barnard et al. 1991) but 

100% mud is not favourable to G. lignorum. 
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Chapter 4 

Sensitivity of the amphipod Grandidierella lignorum 

(Amphipoda: Aoridae) to cadmium, copper and zinc in 

the laboratory 
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Abstract 

One of the requirements for a toxicity test organism is that it should be sensitive to common 

contaminants of sediment. Metals were used in this study to determine the sensitivity of the 

amphipod Grandidierella lignorum under different test conditions (i.e. salinity). A quality control tool 

for assessing the sensitivity of the amphipod in toxicity tests (i.e. control chart) was also generated 

to aid in determining the acceptability of toxicity test results. Amphipods were exposed for 96 hrs to 

increasing concentrations of cadmium, copper and zinc at salinities of 7, 21 and 35. The toxicity of 

the metals (using LC50 as an indicator of toxicity) was compared between salinities. Cadmium toxicity 

decreased linearly with increasing salinity, from 0.34 ± 0.17 mg l-1 at a salinity of 7 to 1.08 ± 0.49 mg 

l-1 at a salinity of 35. Zinc toxicity increased with increasing and decreasing salinity, from 1.56 ± 0.33 

mg l-1 at a salinity of 21 to 0.82 ± 0.19 mg l-1 at a salinity of 35 and 0.99 ± 0.13 mg l-1 at a salinity of 7. 

Copper toxicity, on the other hand, was not influenced by salinity. These responses were 

comparable to published data. A control chart was generated from a total of 20 LC50’s, with upper 

and lower control limits measured as 0.49 mg Cd l-1 and 4.02 mg Cd l-1, respectively.  

 

Introduction 

A reference toxicant is a standard chemical substance that is used to determine the sensitivity of the 

toxicity test population for a given toxicity assessment (Environment Canada 2005). Reference 

toxicity tests should be performed concurrently with toxicity tests (e.g. whole sediment, porewater, 

elutriate and effluent toxicity) to determine the status and/or sensitivity of the test population (EPA 

1994; Environment Canada 2005). A result of a reference toxicity test, the LC50 (median 

concentration that causes death to 50% of the test population) is compared to a recent set of LC50’s 

plotted as a control chart. An LC50 of a test population that is in poor health will often fall outside the 

control chart limits (Environment Canada 1990, Environment Canada 2005). Control charts can also 

be used to determine the precision of a laboratory that routinely performs toxicity tests and/or to 

compare precision between laboratories (i.e. inter-laboratory comparison) (Environment Canada 

1990, 2005; Bay et al. 2003). A reference toxicant should inter alia be able to determine the 

sensitivity or health status of the test organism, be soluble and stable in solution, be readily available 

in pure form, be easily analysed in the laboratory, and have an established toxicity (Environment 

Canada 1990). Some of these characteristics are, however, difficult to satisfy.  
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Cadmium, copper and zinc are commonly used inorganic reference toxicants (Environment Canada 

1990), and are widely used as the reference toxicant for toxicity tests where amphipods are used as 

the test organism (e.g. Hyne and Everett 1998; McGee et al. 1999; McNulty et al. 1999; Lee 2003; 

Prato and Biandolino 2005). The potential of these metals for use as reference toxicants was 

evaluated by experts in the United States of America (USA) and Canada (Environment Canada 1990). 

These metals represent essential and non-essential metals. Copper and zinc fulfill important roles in 

metabolic processes. For example, copper is a component of haemocyanin and plays a role in 

respiration of molluscs and crustaceans, while zinc is an integral part of many enzymes, including 

carbonic anhydrase (Bat 2005, Rainbow 2007, Rainbow and Luoma 2011). Cadmium has no known 

physiological role in crustaceans and is thus considered a non-essential metal (Rainbow 2007). Both 

essential and non-essential metals can be toxic (e.g. Grosell et al. 2007, Rainbow 2007). 

 

The primary aim of this study was to determine the sensitivity of the amphipod Grandidierella 

lignorum to cadmium, copper and zinc. One of the characteristics of a good toxicity test organism is 

its sensitivity to common contaminants of sediment (see Burton et al. 1992; Peters et al. 2002; Bat 

2005). The reference toxicants used in this study provide a means for determining the sensitivity for 

G. lignorum. Since salinity is known to influence the toxicity of metals to many aquatic organisms 

(McLusky et al. 1986), the influence of salinity on metal toxicity was also investigated. This is 

significant since the findings of Chapter 2 showed that G. lignorum can be used to test the toxicity of 

both estuarine and marine waters. For this purpose, reference toxicity tests were performed at 

salinities of 7, 21 and 35. This study contributes to the limited information on the interactive effects 

of salinity and metal toxicity to estuarine fauna of South Africa.  

 

The use of a control chart has been highlighted above, yet this tool for quality assurance and quality 

control purposes is rarely used in South Africa, or it is simply not reported. Vivier (2010) compared 

reference toxicity test results with those for the amphipod Leptocheirus plumulosus provided by 

DeWitt et al. (1996). Such a comparison only highlighted the comparative sensitivity of G. lignorum 

to L. plumulosus. It did not determine if the sensitivity of G. lignorum was within an acceptable range 

to decide on the acceptbility of toxicity test results. This highlights the importance of a quality 

assurance and quality control tool for toxicity tests using G. lignorum. Therefore, a further aim of this 

study was to establish a quality control tool for G. lignorum in the form of a control chart for future 

use. 



 

63 
 

Materials and Methods 

Concentrations of metals were prepared from stock solutions of 100 mg Zn l-1 (ZnCl2, CP (Chemically 

Pure) Grade), 100 mg Cu l-1 (CuCl2·2H2O, CP Grade) and 1000 mg Cd l-1 (CdCl2·H2O, AR (Analytical 

Reagent) Grade) in distilled water to prevent precipitation. Stock solutions were stored in clean, 

acid-washed Schott® bottles. Filtered (10 μm) and UV sterilised seawater was used to dilute 

appropriate volumes of stock solutions to prepare test media (salinity-metal concentration 

combinations). The range of metal concentrations used in experiments was determined from range 

finder tests (i.e. pilot studies). Based on the results, amphipods were exposed to nominal 

concentrations of 0 - 6.4 mg Cd l-1, 0 - 4.8 mg Cu l-1 and 0 - 3.2 mg Zn l-1. Actual exposure 

concentrations were not confirmed by chemical analysis of test media. 

 

Reference toxicity tests were performed with juvenile amphipods (2 - 4 mm) that passed through 1 

mm mesh but were retained by 0.5 mm mesh. The amphipods were fed on crushed fish flakes 

(Tetramin®) approximately 12 hrs prior to experiments. Test concentrations were prepared in 1 L 

glass containers 24 hrs prior to experiments. Toxicity tests were performed following standard 

procedures (i.e. Environment Canada 1990, Environment Canada 2005; EPA 1994). Briefly, 

amphipods were sieved from their cultures by disturbing culture sediment and 20 amphipods 

randomly selected and added to test solutions using a wide-bore glass pipette. Amphipods were 

acclimated to test salinities before they were exposed to metal concentrations. Test concentrations 

were offered in triplicate and glass containers were loosely covered to limit evaporative loss during 

the experiment. Survival was monitored at 24 hr intervals over a 96 hr period. Each toxicity test was 

repeated three times to determine the reproducibility of results. Toxicity tests were performed at 

salinities of 7, 21 and 35, to determine the influence of salinity on metal toxicity. Low salinities were 

prepared by diluting filtered (10 μm) and UV-sterilized seawater with deionised water. Experiments 

were performed at 22°C and at 12 hr light: 12 hr dark cycle, without aeration. This is comparable to 

methods used in previous studies (i.e. Thwala 2006; Vivier 2010), and test conditions (i.e. 

temperature and salinity) are within the tolerable range for G. lignorum (see Chapter 2). Results of 

toxicity tests were deemed acceptable when survival in the control media (0 mg l-1) was ≥80%. 

 

A control chart was created using one of the reference toxicants. Toxicity tests for generating the 

control chart were performed at a salinity of 35 and at 22°C. These conditions are the same as those 

at which amphipods were cultured in the laboratory. More importantly, environmental health 



 

64 
 

monitoring for South African coastal ecosystems is strongly focused on higher salinity systems, such 

as ports (e.g. Vermeulen and Wepener 1999; CSIR. 2011; Greenfield et al. 2011). Salinity of the 

nearshore environment of South Africa ranges between 34.7 and 35.4 (DWAF 1995). The control 

chart was generated from a total of 20 LC50’s. Reference toxicity tests for generating the control 

chart were performed in triplicate except for the last two results. This means that three reference 

toxicity tests were performed simultaneously using amphipods from the same culture. The last two 

LC50’s were obtained from monthly assessment of amphipod sensitivity. 

 

To illustrate the usability of the control chart, three LC50’s obtained by the use of ‘stressed’ 

amphipods in toxicity tests were plotted on a control chart. ‘Stressed’ amphipods in this study refer 

to cultured amphipods that had just been exposed to new sediment after a routine maintenance 

that required sediment change. These amphipods had been exposed for less than two weeks to the 

new sediment. Sediment change during culture maintenance involves vigorous sediment 

disturbance, sieving of amphipods, and then exposure to new sediment. This procedure is probably 

associated with a suite of stresses. The toxicity test using the stressed amphipods was repeated 

three weeks later to determine if the health status of the new population had improved. McNulty et 

al. (1999) also used sieving as a stress factor in their reference toxicity test study. 

 

The toxicity of metals was summarised as LC50’s calculated using US EPA Probit Analysis software. 

Where test conditions for the probit method were violated (e.g. data did not fit probit model), LC50’s 

were estimated using the Trimmed Spearman Karber (TSK) method. The probit method is a 

parametric statistical test for estimating LC50 while TSK is a non-parametric test for estimating LC50 

where data does not fit the probit model (EPA 1994). Toxicity of metals (LC50’s) between different 

salinities was compared using one way ANOVA (SPSS version 21). LC50’s used to generate a control 

chart were calculated using the probit method and followed Environment Canada (2005) guidelines. 

The variability of LC50’s used to generate the control chart was determined by calculating the 

coefficient of variation (CV) (Environment Canada 1990, Environment Canada 2005) and CV > 30% 

indicated low consistency between toxicity tests (i.e. low reproducibility). It is generally 

recommended that the CV does not exceed 30%, however, this value is not based on empirical 

evidence (Environment Canada 1990). Toxicity of metals to Grandidierella lignorum was also 

compared to other amphipods (potential toxicity test species and standard toxicity test species) 

based on published literature. 
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Results 

A total of four out of 27 LC50’s violated conditions of the probit method and were consequently 

determined using the TSK method. Three of these LC50’s were calculated at a salinity of 7 (one LC50 

for each reference toxicant), and the other at a salinity of 35 (Figure 4.1). The LC50 for cadmium at a 

salinity of 7 ranged between 0.15 - 0.44 mg l-1 (Figure 4.1a). The LC50 for copper at a salinity of 7 

ranged between 0.52 - 1.00 mg l-1 (Figure 4.1d), while that for zinc ranged between 0.85 - 1.11 mg l-1 

(Figure 4.1g). At a salinity of 21, the LC50 ranged between 0.68 - 0.78 mg l-1 for cadmium (Figure 

5.1b), 0.62 - 1.03 mg l-1 for copper (Figure 4.1e), and 1.18 - 1.80 mg l-1 for zinc (Figure 5.1h). At a 

salinity of 35 the LC50 ranged between 0.62 - 1.62 mg l-1 for cadmium (Figure 4.1c), 0.52 - 0.84 mg l-1 

for copper (Figure 4.1f) and 0.61 - 0.97 mg l-1 for zinc (Figure 4.1i). 

 

Figure 4.1. Survival of Grandidierella lignorum following exposure to dissolved cadmium, copper and 

zinc at various concentrations after 96 hrs of exposure at different salinities. Represented in each 

graph is the mean survival (n = 3) for all toxicity tests (represented by 1, 2, 3). Measurements 

represent mean LC50’s and associated 95% confidence intervals. LC50’s calculated using the Trimmed 
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Spearman Karber method are denoted by * - all other LC50’s were calculated using the probit 

method. 

 

 

Metal toxicities between replicate experiments sometimes varied considerably. For example, the 

toxicity of cadmium at a salinity of 7 did not differ significantly between experiments 1 and 3, but 

both differed significantly to experiment 2 (based on the comparison of confidence intervals) (Figure 

4.1a). Copper toxicity between experiment 3 differed significantly to experiment 1, but not to 

experiment 2 (Figure 4.1d), while at salinity of 21 copper toxicity in experiment 3 differed 

significantly to that in experiments 1 and 2 (Figure 4.1e). The toxicity of cadmium at a salinity of 35 

differed significantly between all three experiments (Figure 4.1c). 

The influence of salinity on metal toxicity is shown in Figure 4.2. Cadmium toxicity decreased linearly 

(r2 = 0.772, P = 0.007) with increasing salinity. Toxicity decreased from 0.34 ± 0.17 mg l-1 at a salinity 

of 7 to 1.08 ± 0.49 mg l-1 at a salinity of 35. The LC50 calculated for a salinity of 21 was 0.73 ± 0.05 mg 

l-1 (Figure 4.2a). Although cadmium toxicity decreased with increasing salinity, the difference 

between salinities was not statistically significant (Figure 4.2a). The LC50 for copper ranged between 

0.72 ± 0.18 mg l-1 at a salinity of 35 and 0.89 ± 0.24 mg l-1 at a salinity of 21. The LC50 for copper at a 

salinity of 7 was 0.72 ± 0.25 mg l-1. Copper toxicity did not differ significantly between salinities 

(Figure 4.2b). Zinc toxicity showed a different response to that of cadmium and copper. Toxicity 

increased either side of the salinity of 21, from 1.56 ± 0.33 mg l-1 at a salinity of 21 to 0.99 ± 0.13 mg 

l-1 at a salinity of 7 and 0.82 ± 0.19 mg l-1 at a salinity of 35 (Figure 4.2c). Zinc toxicity at a salinity of 7 

was statistically similar to that at a salinity of 35, but toxicity at salinities of 21 and 35 was 

significantly different (Figure 4.2c). The order of toxicity at different salinities, based on absolute 

LC50’s, was Cd>Cu>Zn at salinities ≤21, but Cu>Zn>Cd at a salinity of 35. 

 

 

 

 



 

67 
 

 

Figure 4.2. Influence of salinity on toxicity of cadmium (a), copper (b) and zinc (c) toxicity to the 

amphipod Grandidierella lignorum. Similar letters between data points represent no significant 

differences. Graphs are presented on a similar scale to facilitate comparison of toxicity  

 

 

A control chart using cadmium as the reference toxicant at salinity of 35 and temperature of 22°C is 

shown in Figure 4.3. The mean LC50 was calculated as 1.40 ± 0.002 mg l-1. The upper control limit was 

4.02 mg l-1 and the lower limit was 0.49 mg l-1. Data used for generating a control chart were 

normally distributed (Z = 1.071, P = 0.201) and the variability between LC50’s used to generate the 

chart (i.e. coefficient of variation) was 35.76%. A total of four LC50’s fell outside the control limits, 

namely Test 4 and Tests 13 - 15. The latter tests represent LC50’s calculated using stressed 

amphipods (Figure 4.3). 
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Figure 4.3. A cadmium reference toxicant control chart for Grandidierella lignorum. Open symbols 

(Test numbers 13 - 15) indicate LC50’s for a ‘stressed’ population and the subsequent three LC50’s 

(Test Numbers 16 - 18) for the stressed population after three weeks of rest. 

 

 

Discussion 

The LC50’s calculated for G. lignorum in this study are at least two orders of magnitude higher 

(except for Papenkuils river estuary) than concentrations measured in overlying water of South 

African estuaries (e.g. Watling and Emmerson 1981, Watling and Watling 1982, Watling et al. 1985, 

Orr 2007, Vivier 2010). These LC50’s are however, comparable to that of other amphipods under 

laboratory conditions (see Table 5.1). Sensitivity to cadmium at salinities above 30 compared 

favourably to that for Grandidierella japonica, Gammarus aequicauda, Melita koreana, 

Mandibulophoxus mai and Corophium acheriscum. At salinities below 8, it was comparable to that 

for Leptocheirus plumulosus, which is a standard toxicity testing organism in the United States of 

America. The toxicity of copper to G. lignorum at salinity of 35 was similar to that of G. aequicauda, 

while zinc toxicity was comparable to that of Melita awa, M. matilda, M. plumulosa and 

Chaetocorophium cf lucasi. G. lignorum is sensitive to dissolved metals under different test 
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conditions (i.e. varying salinity). Its sensitivity under these varying conditions is comparable to that 

for other amphipods used or proposed for use as toxicity testing organisms. Sensitivity to 

contaminants is one of the requirements for a toxicity test organism.  

 

Table 4.1. Sensitivity of Grandidierella lignorum to reference toxicants compared to other amphipod 

species proposed or used as toxicity testing organisms. Ranges reported in parentheses represent 

95% confidence limits. 

 

 

 

The use of juvenile Grandidierella lignorum in this study and use of adults by Thwala (2006) permits 

a comparison of cadmium toxicity between these life stages. As expected, juveniles were more 

sensitive (at least 1.65 times) than adults. Test conditions between the current study and that of 

Thwala (2006) were similar except that amphipods were exposed in a group of 20 individuals in the 

current study while Thwala (2006) exposed amphipods individually in glass pill vials. Nevertheless, 

both studies highlight the importance of salinity on cadmium toxicity to G. lignorum. The influence 

Species Salinity
Temperature

(°C)
96hr Cd LC50 

(mg l-l)
96hr Cu LC50 

(mg l-l)
96hr Zn LC50 

(mg l-l)
Reference

Corophium sp 5 - 0.009 (0.0049-0.0165) - Hyne & Everett 1998
Grandidierella lignorum 5 22 0.87 - - Thwala 2006
Grandidierella lignorum 7 22±1 0.34±0.17 0.72±0.25 0.99±0.13 This study
*Leptocheirus plumulosus 8 25 0.25 - - McGee et al. 1999
Corophium sp 10 - 0.0285 (0.0083-0.098) - Hyne & Everett 1998

Corophium triaenonyx 20 25 1.6 - - Vivier 2010
*Eohaustorius aesturius 20 15 - 33.3 - Anderson et al. 2008
Grandidierella lignorum 20 25 1.1 - - Vivier 2010
Grandidierella lignorum 21 22±1 0.73±0.05 0.89±0.24 1.56±0.33 This study
Grandidierella lignorum 25 22 1.94 - - Thwala 2006

Chaetocorophium cf lucasi 30 21±1 - - 1.13 (0.87-1.39) King et al. 2006
Haustorioides indivisus 30 20 1.50 - - Lee et al. 2005
Haustorioides koreanus 30 20 2.77±2.44 - - Lee et al. 2005
Hyale crassicornis 30 21±1 - >1 - King et al. 2006
Hyale longicornis 30 21±1 - >1 >0.5 King et al. 2006
Mandibulophoxus mai 30 20 1.12±0.36 - - Lee et al. 2005
Melita awa 30 21±1 - 0.12 (0.098-0.120) 0.71 (0.47-0.96) King et al. 2006
Melita matilda 30 21±1 - 0.18 (0.15-0.21) 0.65 (0.09-1.45) King et al. 2006
Melita plumulosa 30 21±1 - 0.12±0.019 0.64 (0.39-0.91) King et al. 2006
Monocorophium acherusicum 30 20 1.37±0.38 - - Lee et al. 2005
*Grandidierella japonica 35 19.5 1.17 - - Hong & Reish 1987
Grandidierella lignorum 35 22 1.78 - - Thwala 2006
Grandidierella lignorum 35 22±1 1.08±0.49 0.72±0.18 0.82±0.19 This study
Melita koreana 35 20 1.2-1.3 - - Lee 2003
Gammarus aequicauda 36 16±2 0.71 (0.44-1.14) 0.82 (0.53-1.28) - Prato & Biandolino 2005

*Standard toxicity test species
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of salinity on metal toxicity to malacostracans is well known, particularly for larger crustaceans such 

as crabs and mysids (e.g. Nugegoda and Rainbow 1989; Wright 1995; Wildgust and Jones 1998; 

Leornard et al. 2011; Thwala et al. 2011). The general trend is for increasing metal toxicity with 

decreasing salinity (see McLusky et al. 1986).  

 

Grandidierella lignorum showed three distinct responses to metal toxicity. In the first instance 

toxicity increased with decreasing salinity. For example, cadmium toxicity increased linearly with 

decreasing salinity. The toxicity of cadmium to juvenile G. lignorum follows the general rule of 

increasing metal toxicity with decreasing salinity (McLusky et al. 1986), but is in contrast to that for 

the adult G. lignorum. Cadmium toxicity to adult male G. lignorum increased with decreasing salinity 

(from 1.94 mg l-1 at a salinity of 25 to 0.87 mg l-1 at a salinity of 5) and with increasing salinity (1.78 

mg l-1 at salinity of 35) (Thwala 2006). The second response is that of increasing metal toxicity with 

decreasing and increasing salinity. For example, zinc toxicity increased from salinity of 21 (1.56 ± 

0.33 mg l-1) to salinity of 7 (0.99 ± 0.13.mg l-1), and increased from salinity of 21 to salinity of 35 (0.82 

± 0.19 mg l-1). A similar response has been recorded for the shrimp Farfantepenaeus paulensis 

(Barbieri and Doi 2011) and mysid Neomysis integer (Wildgust and Jones 1998). In the last response, 

metal toxicity was not influenced by salinity. In this instance, copper toxicity did not differ 

significantly between test salinities. 

 

The toxicity of metals to aquatic organisms can be explained in terms of the interaction between 

physico-chemical properties of the test medium (i.e. water chemistry) and physiological processes 

(Rainbow 1995; Worms et al. 2006). Physiological processes include osmotic and ionic regulation. In 

a dilute medium, including less saline water where concentrations of metal ions (e.g. Cd2+) are high 

(Rainbow 1995), the amphipod faces an osmotic influx of water. Since a constant cellular volume has 

to be maintained in order not to compromise the integrity of the cell, excess water gained through 

osmotic diffusion must be expelled to the extracellular environment (i.e. osmoregulation) and some 

of the dissolved essential salts (e.g. Na2+, Ca2+) may be lost during this process. These losses are not 

only caused by water chemistry, as essential salts such as calcium are also lost during moulting 

(Ahearn et al. 2004). To compensate for the losses the amphipod has to actively transport ions 

against a concentration gradient (i.e. from the dilute media into the body where concentrations are 

higher). This is energetically expensive and generally takes place across transporter proteins 
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embedded in the lipid bilayer of cells (Péqueux 1995; Henry 2001; Lucu and Towle 2003; Freire et al. 

2008; Palmgren and Nissen 2011). 

 

Transporter proteins are generally referred to as P-type ATPases (Palmgren and Nissen 2011). The 

activity of ATPases increases in low salinity, thus facilitating the active transport of ions against 

concentration gradients (Brooks and Mills 2006). Essential ions would be transported across P2A/P2B-

ATPases and P2C-ATPases while metals would be transported across P1B-ATPases (Palmgren and 

Nissen 2011). It is, however, suggested that transport sites (channels or proteins) are not highly 

selective (i.e. cannot discriminate between essential and non-essential metals), but transport ions of 

similar ionic radius and/or coordination geometry (Rainbow 1995; Worms et al. 2006). For example, 

Cd2+ and Ca2+ have similar ionic radii (109 pm and 114 pm, respectively) and thus compete for 

binding sites at the Ca2+channel (Rainbow 1995). Therefore, trace metals can utilise several uptake 

routes into the cells (i.e. P2A/P2B-ATPases, P2C-ATPases and P1B-ATPases). When physiological 

processes like the production of metallothionein and glutathione (chelating agents) fail to cope with 

the influx of ions (essential and non-essential), particularly in a dilute medium, water chemistry 

becomes an important predictor of toxicity (Rainbow 1995). Chelating agents such as 

metallothionein bind the free metal ions in the cell, thus reducing their roles in metabolism, and also 

regulate the concentration of essential metals within the cell (Amiard et al. 2006). 

 

The linear increase in cadmium toxicity with decreasing salinity suggests that water chemistry was 

more important in explaining toxicity to Grandidierella lignorum in this study. Metal toxicity occurs 

when metal uptake surpasses detoxification and excretion (Rainbow 2007. Crustaceans, including 

amphipods, cannot regulate cadmium in their bodies (Rainbow 2007). Furthermore, increased 

cadmium uptake at dilute media is known to damage amphipod gills, thus affecting their 

osmoregulatory capacity (see Issartel et al. 2010). Zinc toxicity at both low and high salinities 

suggests a strong interaction between physiology and water chemistry. Increased zinc toxicity at 

high salinity would be a result of active transportation from the dilute media, since the high 

concentration of chloride ions at high salinity would decrease zinc bioavailability (see Rainbow 

1995). Increased zinc toxicity at low salinity would be best explained in terms of water chemistry. 

Essential metals such as zinc can be transported into cells regardless of concentrations in the dilute 

media and their uptake is largely regulated (Worms et al. 2006). Copper toxicity did not differ 
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significantly between salinities suggesting some form of regulation by G. lignorum. Accumulation 

and toxicity of copper to the crab Hemigrapsus crenulatus is also known to be independent of 

salinity (Lee et al. 2010), whilst salinity had a significant influence on copper toxicity to the killifish, 

Fundulus heteroclitus (Grosell et al. 2007). Copper toxicity in F. heteroclitus increased above and 

below salinity 10 (i.e. tolerance to copper was highest at salinity 10). The chemistry of the test media 

(or salinity), however, could not explain the toxicity of copper to F. heteroclitus since the most toxic 

forms of copper (i.e. Cu2+ and CuOH+) were also abundant at the tolerable salinity (Grosell et al. 

2007). It was concluded that copper toxicity is best explained by physiology, since it disrupts 

osmoregulation and acid-base balance in fish and invertebrates (Grosell et al. 2007). Other studies 

have also demonstrated that amphipods find it difficult to regulate cadmium compared to copper 

and zinc. For example, the amphipod Orchestia gammarellus detoxifies copper and zinc faster than it 

detoxifies cadmium, and these metals are temporarily stored in the ventral caeca pending excretion 

(Nassiri et al. 2000). Zinc and copper toxicities to Grandidierella lignorum may be overestimated in 

this study, since precipitation of these metals at higher salinities and higher concentrations was 

observed. This may influence the estimation of the LC50’s and the hierarchical toxicity mentioned in 

the Results section. Copper is known to precipitate above 3 mg l-1 in estuarine and/or marine waters 

(McPherson and Chapman 2000). 

 

Since zinc and copper precipitated at higher salinities and higher concentrations, cadmium was 

chosen as the reference toxicant for Grandidierella lignorum. Cadmium is a commonly used 

reference toxicant and has been adopted as such in South African toxicity studies (e.g. Vivier 2010). 

Very few published studies, however, report on control charts (e.g. Abessa and Sousa 2003). This 

limits comparison with the current study. Nevertheless, the control chart generated here for G. 

lignorum was useful in identifying stressed populations. Cadmium toxicity to stressed amphipods 

was very high and fell below the lower control limits. This suggests that cadmium toxicity interacted 

(additively or synergistically) with some stressor/s to increase cadmium toxicity. After resting the 

stressed amphipods for a further three weeks, cadmium toxicity was within the acceptable range 

and amphipods could then be used in a toxicity test. Variability between LC50’s used to determine 

control limits in this study (CV: 35.76%) was slightly above recommendations of 30% (Environment 

Canada 1990, Environment Canadan2005), but this is not uncommon. The coefficient of variation 

between 18 LC50’s used for the amphipod Tiburonella viscana was 33.6% (Abessa and Sousa 2003). 

Furthermore, 5% of the LC50’s in a control chart will fall outside the control limits just by chance 

(Environment Canada 1990, 2005). Therefore, the LC50 measured in Test Number 4 is not a major 
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concern. Generally, when an LC50 falls outside the control limits, an investigation should ensue. 

Factors such as the preparation of stock solutions and environmental parameters in laboratory 

cultures are amongst the factors that should be investigated (Environment Canada 1990, 2005). 

 

In conclusion, the sensitivity of Grandidierella lignorum to metals has been demonstrated and is 

comparable to that of other amphipods used or considered for use as toxicity test organisms. The 

role of salinity in metal toxicity was also evident for G. lignorum, and was metal-specific. Toxicity of 

the non-essential metal (i.e. cadmium) increased linearly with decreasing salinity while the 

amphipod showed the ability to regulate the toxicity of essential metals (zinc and copper). The 

influence of salinity on metal toxicity is variable between life stages, as was indicated for juvenile 

and adult G. lignorum in this study. G. lignorum can be used to test the toxicity of water from 

estuarine and marine ecosystems. This study has also generated the first control chart for G. 

lignorum and has demonstrated its usefulness in identifying stressed populations. Use of quality 

control tools, such as a control chart, should be a common practice and South African toxicity testing 

laboratories are encouraged to report on these results as they determine the acceptability of toxicity 

test results. 
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Abstract 

The usefulness of the amphipod Grandidierella lignorum as a toxicity testing organism was 

demonstrated through the toxicity testing of liquid waste (effluent) and sediment. Sea urchin 

fertilisation tests were used to complement data generated. Effluents collected in July and August 

from two wastewater treatment plants (Durban Central Works and Durban Southern Works) were 

assessed for toxicity. Effluent toxicity was generally higher for effluents collected in August than for 

effluents collected in July. The opposite was true for the sea urchin gametes. Additionally, sea urchin 

gametes were more sensitive than the amphipod, but the difference was variable. The sensitivity of 

G. lignorum to effluent toxicity was satisfactory and provides evidence of its suitability for effluent 

toxicity testing. The toxicity of 15 sediment samples collected in Durban Bay was assessed using a 10 

day whole sediment toxicity test. Three sediment samples were toxic to G. lignorum while elutriates 

of four samples were identified as such using sea urchin gametes. Two of the samples toxic to sea 

urchin gametes were also toxic to G. lignorum. The most toxic sediment was situated off the inflows 

of rivers and in an area where vessel maintenance is undertaken. Recommendations for refining the 

sediment toxicity test are provided. 

 

Introduction 

Investigations on marine pollution in South Africa have declined drastically since the 1980s (O' 

Donoghue and Marshall 2003; Wepener and Degger 2012), yet the coastal environment is 

increasingly threatened and shows signs of degradation (Van Niekerk et al. 2013). The health status 

of estuaries has been assessed at a regional and country-wide scale using multiple lines of evidence 

(e.g. Cooper et al. 1994; Forbes and Demetriades 2009; Van Niekerk et al. 2013) and one of the 

emerging concerns is sediment contamination (see Van Niekerk et al. 2013). Sediment health should 

be assessed using multiple lines of evidence, such as in the Sediment Quality Triad (SQT) developed 

by Long and Chapman (1985). In this approach, data on sediment chemistry, macrofaunal 

community assemblage and sediment toxicity are integrated to summarise sediment quality. Tools 

for differentiating possible anthropogenic enrichment of metals from background concentrations 

have been developed and applied to selected coastal environments of South Africa (e.g. Newman 

and Watling 2007; Orr et al. 2008; Vivier 2010; CSIR. 2011), but chemical approaches do not infer 

toxicity as they only provide an estimate of possible biological effects of contaminants when 

compared to sediment quality guidelines (O'Connor and Paul 2000; Chapman 2007; Simpson and 

Batley 2007). Additionally, the chemical analyses of sediment may be costly and it is not possible to 

measure all potential chemicals in sediment that may be causing toxicity (Bay et al. 2005; Bay et al. 
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2011). Even if this were possible, many of the chemicals have no associated toxicity information, and 

unknown additive, synergistic and antagonistic effects. Bioassays (i.e. sediment toxicity tests) are 

increasingly being used to determine the toxicity of sediments and to identify areas of concern from 

a contamination perspective (e.g. Bay et al. 2005; Anderson et al. 2007; Bay et al. 2011; Greenstein 

et al. 2013). Unfortunately, standard (or certified) protocols for the toxicity testing of sediment in 

estuarine and marine ecosystems in South Africa have not been developed (Slabbert et al. 1998; 

Wepener and Chapman 2012). Organisms that have been used for sediment toxicity testing in South 

Africa include gastropods (e.g. Bullia rhodostoma, B. digitalis) and bivalves (e.g. Donax serra) 

(Watling and Watling 1983; Stenton-Dozey and Brown 1994), but these organisms are not 

recommended due to their biology and behaviour. They reproduce seasonally and are difficult to 

maintain and/or rear in the laboratory. These organisms can also isolate themselves from the 

contaminated environment by closing their valves or the operculum over an extended period of time 

(Brown 1982; Watling and Watling 1983; Stenton-Dozey and Brown 1994). Sea urchin gametes have 

also been used to screen toxicity for the marine environment (see Greenwood and Brown 1974; 

Brown and Greenwood 1978; Greenwood 1983; McGibbon and Moldan 1986; Wynberg et al. 1989; 

Connell et al. 1991), but these toxicity tests can only be used for dissolved contaminants in 

stenohaline marine conditions. 

 

The lack of standardised sediment toxicity testing procedures in South Africa makes it difficult to 

determine, with some degree of certainty, sediment quality in coastal environments. A sediment 

toxicity testing protocol is thus urgently required. A regional survey of 58 estuaries of KwaZulu-Natal 

(a subtropical bioregion in the east coast of South Africa) in the mid 1990’s revealed that the 

majority of estuaries were in a healthy state, with only 10% of the estuaries scoring <15.1 on a scale 

of 0 (poor) to 30 (good) (Cooper et al. 1994). This was based on the results of the Environmental 

Health Index that was developed by integrating three indices; the Biological Health Index, the Water 

Quality Index and the Aesthetic Health Index (see Cooper et al. 1994 for the components of each 

index). A subsequent small scale survey showed that more than 50% of the 16 estuaries in the 

eThekwini area of KwaZulu-Natal, including Durban Bay, are highly degraded (Forbes and 

Demetriades 2009). A country-wide assessment of nearly 300 estuaries has also revealed that <10% 

of the estuaries are in a poor state, but when the assessment is based on estuarine area rather than 

the number of estuaries, >80% of estuarine area or habitat is in a poor state (Van Niekerk et al. 

2013). Lines of evidence used in these surveys, however, did not include sediment chemistry and 

toxicity bioassays, but sediment contamination has been identified as an emerging issue of concern 
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(see Van Niekerk et al. 2013). Since Grandidierella lignorum meets the requirements of a toxicity test 

organism (see Chapter 1) and has been shown to be sensitive to sediment contaminants (i.e. spiked 

sediment toxicity testing by Vivier (2010)), this amphipod can be used for screening field 

contaminated sediment and thus delineate polluted areas of an aquatic ecosystem. Amphipods are 

commonly used as sediment toxicity test organisms (Bat 2005). The influence of non-contaminant 

factors such as salinity, sediment grain size and sediment organic content to Grandidierella lignorum 

are addressed in previous chapters (Chapter 2 and Chapter 3). The aim of this study was to 

determine if G. lignorum can be used to screen polluted sediment. The use of this amphipod for a 

water only type toxicity test is also demonstrated, using effluent from wastewater treatment plants. 

 

Materials and Methods 

Whole effluent toxicity testing 

Liquid waste (i.e. effluent) was collected from two wastewater treatment plants in Durban (Durban 

Central Works and Durban Southern Works). The Central Works plant handles domestic wastewater 

while the Southern Works plant handles a combination of industrial and domestic wastewater. Both 

plants discharge effluent offshore through deepwater outfalls. The experimental procedure outlined 

in EPA (2002) was used in a slightly modified form. Thus, since the aim of the study was to 

investigate the absolute effect of effluents on amphipod survival, environmental parameters such as 

dissolved oxygen, salinity and pH were not manipulated. Whole effluent toxicity (WET) tests were 

performed using effluent collected in July and August 2013. The collection of effluent and testing 

procedure was identical on both occasions except for the measurement of ammonia (see below). 

Effluent samples were collected in 10 L plastic containers that had been thoroughly washed in 10% 

hydrochloric acid. During collection it was ensured that there was no headspace in the sample 

containers. Effluent samples were transported to the laboratory (transport time: <2 hrs), where they 

were immediately prepared for toxicity testing. 

 

The effluent was serially diluted with filtered (10 μm), UV sterilised natural seawater (salinity of 35). 

Effluent was diluted at a factor of 0.5 to produce test concentrations of 100, 50, 25, 12.5 and 6.25% 

effluent. Dilution water was used in control treatments and was diluted to a salinity similar to that of 

the lowest effluent dilution (i.e. 6.25% effluent). Effluent concentrations were prepared in clean 1 L 

glass containers and two replicates per effluent dilution were prepared for toxicity testing. Salinity, 

pH, dissolved oxygen (mg l-1) and ammonia (mg l-1) were measured in all test containers at the start 



 

82 
 

and end of the experiment. For the second test (August), however, ammonia was only measured in a 

single replicate container per effluent concentration. Twenty immature amphipods obtained from 

laboratory cultures were randomly selected and introduced to the effluent media. The experiment 

ran for 96 hrs and amphipods were not fed. Test media were also not renewed. Reference toxicity 

tests were performed in conjunction with the WET test to determine the sensitivity of the test 

population. Cadmium was used as the reference toxicant (see Chapter 4). WET and reference toxicity 

tests were performed at 22°C and 12hr light: 12 hr dark photoperiod. Test results were deemed 

acceptable when survival in the control treatment was ≥80 %. WET testing was also performed using 

the sea urchin (Tripneustes gratilla) gamete fertilisation test for comparative purposes. Urchins were 

induced to spawn by injecting approximately 1 - 2 ml of 0.5M KCL into the perivisceral coelom 

through the peristomial membrane and eggs were collected into glass beakers filled with seawater 

(salinity of 35). Sperm was collected and stored ‘dry’ using a glass pipette. Eggs were then 

introduced to four replicate samples of the effluents followed by the introduction of male gametes 

(sperm). Fertilisation was allowed to take place for 10 mins, after which the test was terminated by 

adding formaldehyde. Natural seawater was used as the control media (i.e. negative control). 

Fertilisation success was determined under a binocular microscope by counting the number of 

fertilised eggs (expressed as percent fertilised eggs). Successful fertilisation was identified by the 

presence of the fertilisation membrane (see McGibbon and Moldan 1986). 

 

Whole sediment toxicity testing 

Study site 

The sediment samples tested for toxicity were collected in Durban Bay (29° 52’ 9.50”S, 31° 3’ 

31.76”E, Figure 5.1). The Bay plays an important ecological role by providing habitat for aquatic 

fauna (Forbes et al. 1996). The intertidal mudflats and sandflats in the Bay provide habitat for 

macrozoobenthic fauna (Pillay 2002) and the pelagic environment provides a nursery function for 

juvenile fish (Forbes et al. 1996; Pillay et al. 2008). Intertidal sediment grain size has increased in 

coarseness over the years, resulting in an altered benthic community structure that currently 

supports high densities of sand prawns (Pillay et al. 2008). The Bay receives inflows from three 

rivers. The Amanzimnyama River discharges into the head of the Silt Canal, while the Umhlathuzana 

River joins the Umbilo River before entering the middle reach of the Silt Canal. The lower reaches of 

these rivers are canalised. The Bay also receives surface runoff via numerous stormwater drains. 

Sampling sites were positioned across the Bay to cover the majority of subtidal sediment habitats. 

Sites 1-3 were located within the Silt Canal, with Site 1 located at the inflow of the Amanzimnyama 
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River and site 2 off the inflow of the Umhlathuzana/Umbilo Rivers. Site 5 was located in Congella 

Basin. Sites 4, 6, 7 and 8 were located within the Maydon Wharf channel. Sites 10 and 11 were 

located in the Pier 2 Basin, while Sites 12 and 13 were located in Point Basin. Site 14 was located in 

the Entrance Channel. Site 15 was located in Island View Basin (Figure 5.1). 

 

 

Figure 5.1. Site description (top) and sample site location (bottom) within Durban Bay. Control 

sediment was collected outside the Bay, from the sandy shoreline at Vetch’s Point. 
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Sediment collection, transportation and storage 

Composite sediment samples were collected for toxicity testing. These samples comprised three 

replicate sediment samples collected with a Petite Ponar grab at each site. The sediment samples 

were transferred to a glass bowl and homogenised using a high density polyethylene (HDPE) scoop, 

then transferred into plastic bags that were sealed in such a manner to limit air space. The sediment 

samples were temporarily stored in a cool dark place (storage time: <8 hrs from the collection of the 

first sediment sample) pending transport to the laboratory. In the laboratory the sediment was 

prepared immediately for toxicity testing. Sediment for grain size, organic matter and chemistry 

analyses was also collected by the Council for Scientific and Industrial Research (CSIR) from the same 

sites, at the same time that sediment samples for toxicity testing were collected. The chemical 

analyses procedures are not described in detail here since this did not form a component of this 

study. However, in summary the sediment samples were homogenised and 1 g subsamples digested 

(with the aid of a microwave) with concentrated nitric acid, perchloric acid and hydrogen peroxide in 

high-pressure vessels. The digested material was then diluted with deionised water and metal 

concentrations were quantified using Inductively Coupled Plasma Optical Emission Spectroscopy. 

Organic solvents (i.e. hexane and dichloromethane) were used to extract organic chemicals from 

sediment and interfering substances were removed from the extracts. Concentrations of organic 

chemicals were then analysed using Gas Chromatography Mass Spectrometry and/or high 

performance liquid chromatography (CSIR 2011, 2013). 

 

Laboratory procedures 

Sediment for toxicity testing was press sieved through a 2 mm mesh screen to remove larger fauna 

and debris (e.g. shells and litter) that may influence amphipod behaviour and/or survival during 

toxicity testing. Press sieved sediment was collected in a clean (acid washed) glass bowl and re-

homogenised. Composite sediment from each site was then transferred to three replicate 1 L glass 

containers to a depth of 2 cm. The glass containers provide a bottom surface area of approximately 

20 cm2. Sandy beach sediment, also used in amphipod cultures, was used as control sediment in the 

absence of previously identified reference sediment. Filtered (10 μm mesh), UV sterilized seawater 

(salinity of 35) was gently introduced over test sediment to a total volume of approximately 900 ml. 

Containers were randomly placed in a controlled temperature room and continuously aerated 

(trickle flow aeration) through 1 ml glass pipettes for 24 hrs prior to the introduction of amphipods. 

Temperature in the controlled temperature room was maintained at 22°C and a 12hr light: 12hr dark 

photoperiod. This is similar to the conditions under which the amphipods were reared and also to 
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conditions used by other workers (Thwala 2006; Vivier 2010). On the day of amphipod exposure, 

selected physico-chemical parameters were measured before amphipods were introduced. Salinity 

was measured with a digital refractometer while dissolved oxygen and pH were measured with hand 

held probes. Ammonia was measured from two replicate containers using the cuvette system that 

utilises refraction and colorimetry. This method is, according to the manufacturer (HANNA 

Instruments), adapted from the ASTM D1426-92 and Nessler method. 

 

Juvenile (2 – 4 mm) amphipods were isolated from cultures by sieving. Individuals retained by 0.5 

mm mesh sieve were acclimated for 2 hrs in seawater before introduction to the sediment toxicity 

testing containers. Twenty actively swimming amphipods were randomly selected with the aid of a 

glass pipette and introduced to three replicate containers (i.e. 60 amphipods per sediment sample 

collected from each site). The sediment toxicity test was performed for a standard duration of 10 

days without water change or feeding (EPA 1994). At the end of the test, salinity, pH, dissolved 

oxygen and ammonia was measured. Amphipods were then retrieved from sediment by sieving 

through 0.5 mm mesh sieve and the number of live amphipods counted. A reference toxicity test 

(also known as the positive control), using cadmium as a reference toxicant, was performed 

concurrently with the sediment toxicity test. The reference toxicity test was performed in a static 

water only set-up for 96 hrs in the same controlled temperature room, using amphipods from the 

same culture. 

 

An elutriate toxicity test was also performed for the same sediment samples using gametes of the 

sea urchin Tripneustes gratilla. The elutriate was prepared by adding three parts sea water to one 

part sediment and vigorously shaken in a rotary shaker at 800 rev/min for 1 hr. The slurry was then 

centrifuged at 2000 rpm for 15 mins and the elutriate transferred to four replicate glass vials in 

which the fertilisation test was performed. The test followed the procedure described previously for 

WET testing. 

 

Analyses 

Sediment samples were analysed for inter alia 15 metals, polychlorinated biphenyls, tributyltin and 

polycyclic aromatic hydrocarbons by the CSIR. To determine if metals exceed background 

concentrations in the Bay, concentrations were superimposed on baseline models developed for the 

Bay. Examples of the models are provided by (Newman and Watling 2007). The baseline models 
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were also used to calculate enrichment factors for metals, which identify how many times a metal 

concentration exceeds or falls below the highest concentration predicted for uncontaminated 

sediment in the Bay. Enrichment Factor (EF) was calculated as, EF = [M/N]sample/[M/N]baseline, where 

[M/N]sample represents the ratio of the metal concentration to that of the normaliser (i.e. aluminium) 

in a sediment sample and [M/N]baseline represents the ratio of metal and normaliser of 

uncontaminated sediment (Newman and Watling 2007). 

 

The Trimmed Spearman Karber method was used to estimate LC50’s in WET tests. Toxicity of whole 

sediment and elutriates was assessed by comparing survival in test treatments to that in control 

treatments using a Student’s t-test. Where survival was significantly lower than that of the control 

treatment at P < 0.05, the sediment or elutriate was regarded as toxic. The relationship between 

amphipod survival and the concentration of chemicals measured in the sediment was also assessed 

using the Spearman Correlation test. 

 

Results 

WET tests 

Physico-chemical measurements for effluent toxicity tests using Grandidierella lignorum is presented 

in Figure 5.2 (Central Works effluent) and Figure 5.3 (Southern Works effluent). The pH was between 

6.5 and 8 (a range of 6 – 9 is recommended for Leptocheirus plumulosus) for all toxicity tests. The 

trend for salinity, dissolved oxygen and ammonia was similar for all effluent toxicity tests. High 

salinity (range: 30 – 33) was measured in low dilutions (6.25% effluent) and decreased with 

increasing effluent concentration. Dissolved oxygen in the control treatments ranged between 4.2 

and 6.2 mg l-1, and decreased with increasing effluent concentration. Hypoxic or anoxic conditions 

were generally measured above 12.5 – 25% effluent. Ammonia concentrations in the control 

treatments ranged between 3.21 – 5.85 mg l-1 and concentrations increased with increasing effluent 

concentration. Ammonia concentration for undiluted effluent was higher than 50 mg l-1, which is 

above the measurement capability of the ammonia colorimeter used in this study. 
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Figure 5.2. Measurements of physico-chemical parameters for WET tests of effluent collected from 

the Central Works wastewater treatment plant in July (left) and August (right). Data represents 

measurements made at the start and end of the toxicity tests. 
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Figure 5.3. Measurements of physico-chemical parameters for WET tests of effluent collected from 

the Southern Works wastewater treatment plant in July (left) and August (right). Data represents 

measurements made at the start and end of the toxicity tests. 
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fertilisation in the sea urchin Tripneustes gratilla was more pronounced for effluent collected in July 

than in August. 

 

 

Figure 5.4. Toxicity of the Central Works effluent measured with amphipod Grandidierella lignorum 

(top) and sea urchin Tripneustes gratilla (bottom) in July (left) and August (right). 
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Figure 5.5. Toxicity of Southern Works effluent measured with Grandidierella lignorum (top) and 

Tripneustes gratilla (bottom) in July (left) and August (right). 
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Figure 5.6. Grain size composition and total organic content of sediment collected in Durban Bay. 
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Figure 5.7. Number of metals in sediment that exceeded baseline concentrations (i.e. metal 

contamination) (a) in Durban Bay and their cumulative enrichment factor (b). 
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Figure 5.8. Organic chemical compound concentrations in sediment collected in Durban Bay. 
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Sediment toxicity test conditions 

Physico-chemical conditions (e.g. pH, dissolved oxygen and salinity) for the sediment toxicity test 

were within acceptable limits (Figure 5.9). The pH was within the range of 6 – 9 while dissolved 

oxygen was >4 mg l-1. Salinity in test containers was within the tolerable range for Grandidierella 

lignorum, generally around a salinity of 36. High ammonia concentration (25.15 ± 0.78 mg l-1) were 

measured in sediment collected from site 1 (Silt Canal), otherwise, ammonia concentrations were 

below 5.5 mg l-1. The tolerable ammonia concentration for G. lignorum is unknown. 

 

 

Figure 5.9. Physico-chemical conditions measured during the whole sediment toxicity test. Data 
represent measurements made at the start and end of the toxicity tests. 
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Canal, site 4 in Maydon Wharf Channel, site 5 in Congella Basin, and site 9 (Figure 5.10b). Sediment 

at site 5 was the most toxic, followed by sediment from site 9. 

 

 

Figure 5.10. Mena (± standard deviation) survival of the amphipod Grandidierella lignorum following 

exposure to sediment collected from Durban Bay (A) and fertilisation success of Tripneustes gratilla 

gametes (B) following exposure to sediment elutriates collected at the same sites. Data denoted 

with an * represent survival significantly different to control treatment (i.e. toxicity). 
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Figure 5. 11. Spearman correlation between mean survival (± SD) of G. lignorum and chemical 

concentrationmeasured in the sediment collected from Durban harbour. 
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Discussion 

The aim of this study was to determine if the amphipod Grandidierella lignorum can be used to 

assess the toxicity of liquid waste (i.e. effluent) and sediment. The amphipod responded to all 

effluents tested, but when compared to the sea urchin was less sensitive. This was expected since 

early life history stages of aquatic organisms are known to be more sensitive than later life history 

stages (e.g. Gopalakrishnan et al. 2008). Similar findings have been shown by Cesar et al. (2004) and 

Ré et al. (2007). The differences in sensitivity between G. lignorum and Tripneustes gratilla were, 

however, variable. For example, effluent toxicity (July effluent from Central Works) to the sea urchin 

was approximately 12 times higher than that measured for the G. lignorum, but was only twice as 

toxic in August. More data is needed to correlate sea urchin and G. lignorum sensitivity. 

Interestingly, the sensitivity of G. lignorum to effluents seems to be comparable to the sensitivity of 

other amphipods exposed to effluents (e.g. Allorchestes compressa (Woodworth et al. 1999), 

Gammarus chevreuxi and Corophium multisetosum (Ré et al. 2007)). Grandidierella lignorum may 

thus prove to be useful for effluent toxicity testing, especially for receiving waters of estuaries where 

sea urchins cannot be used. Fertilisation of sea urchin gametes is sensitive to salinity (Carballeira et 

al. 2011). Effluent toxicity testing of receiving estuarine waters is urgently needed since effluent 

discharge is recognised as one of the emerging threats to estuaries of South Africa (Van Niekerk et 

al. 2013) and already has a significant impact in their ecological functioning. For example, effluent 

discharged into the Mhlanga River estuary dominates baseline flow during dry periods and increases 

breaching events (Lawrie et al. 2010). 

 

Contaminants introduced to the overlying water (including contaminants from effluents) eventually 

sink to the bottom where they can negatively impact on resident fauna. Currently, whole sediment 

toxicity tests are currently not incorporated into coastal monitoring programmes in South Africa (e.g. 

Clark et al. 2010; CSIR 2012). This is due to the lack of standardised and/or certified protocols 

(Slabbert et al. 1998; Wepener and Chapman 2012). Previous investigations have resorted to 

correlating sediment metal concentration and metal body burden of test organisms to identify toxic 

sediments, but these procedures have been unsuccessful (Vermeulen and Wepener 1999) even 

though bioavailable fractions of metals were considered present in the sediment (Wepener and 

Vermeulen 2005). Metal toxicity does not always depend on the amount accumulated by the 

organism but depends on the metabolic bioavailability of the accumulated metals (Rainbow and 

Luoma 2011). A recommendation that bioassays be used to identify toxic sediments (Vermeulen and 

Wepener 1999) is described for Grandidierella lignorum in this study. Toxicity testing using this 
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amphipod revealed that sediment collected in some parts of Durban Bay is toxic. These sediments 

were also identified through chemical analysis as the most (and often highly) contaminated by 

metals, TBT, PCB’s and PAH’s. These high concentrations had a significant and negative correlation 

with amphipod survival. This suggests that G. lignorum is sufficiently sensitive to the presence of 

contaminants to be used for screening toxic sediment. Further support is provided by studies (CSIR, 

2011) on the macrozoobenthic community at these same sites. Macrofaunal assemblages in Durban 

Bay basically separated into three assemblages. The first assemblage was less diverse and 

dominated by polychaetes and comprised of macrofauna collected from sites 1 – 6. This is the most 

contaminated part of the Bay. The least impacted macrozoobenthic community was at sites 7 – 10, 

where the taxonomic diversity was highest. Sediment at these sites was not toxic to G. lignorum. 

 

Even though Grandidierella lignorum responded to toxic sediments in the Bay, the acceptability 

criterion of ≥80% survival in the control treatment was violated (survival: 78 ± 7.6%). A possible 

reason is that the grain size composition and organic content of the reference sediment was not 

suitable, although this sediment is successfully used for culturing amphipods in the laboratory. This 

sediment is, however, supplemented with a small amount of mud in laboratory cultures, but no mud 

was added to the control sediment. Whether this influenced survival is uncertain, but possible. It is 

thus recommended that suitable reference sediment should be identified for use in further studies. 

Grain size composition for sediment collected in the Bay was not expected to have acted as a 

confounding factor, even though G. lignorum prefers certain types of sediment (see Chapter 3). This 

conclusion is supported by high survival in sediment of different grain size composition of the 

sediment tested for toxicity (see Figures 5.6. and 5.10 a). 

 

Sediment toxicity is not limited to a single mode of exposure since adsorbed contaminants can 

remobilise into the surrounding water during activities such as dredging and bioturbation (Durán et 

al. 2012). Therefore, tests that focus on other modes of toxicity (i.e. porewater, elutriate, sediment-

water interface) using species from different trophic levels is recommended for a holistic 

toxicological assessment of sediment (Cheung et al. 1997; Liß and Ahlf 1997; Nendza 2002; Macken 

et al. 2008). The elutriate toxicity test was used to compliment results of whole sediment toxicity 

test. Elutriate toxicity tests are used to determine whether chemicals are released from sediment 

through resuspension, such as may occur during dredging or dredged material disposal (Macken et 

al. 2008), and may be used as a surrogate test where whole sediment toxicity testing is not possible 
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provided both tests have a comparative sensitivity (Haring et al. 2010). Toxicity of elutriates was 

assessed using the sea urchin fertilisation test. This test revealed that elutriates of sediment from 

four sites in Durban Bay were toxic. The sediment at two of the sites (sites 1 and 5) was also toxic to 

Grandidierella lignorum. However, the magnitude of toxicity was usually lower compared to the 

sediment toxicity test and the elutriate test also revealed toxicity at sites where no toxicity was 

identified using the amphipod. It must be noted that elutriate toxicity test may underestimate or 

over estimate sediment toxicity as elutriate preparation may reduce the concentrations of certain 

contaminants (e.g. ammonia) but increase concentrations of other contaminants that may not have 

been in a bioavailable form in the sediment because of their binding to sediment or organic matter 

(Ré et al. 2007). 

 

This study has shown that Grandidierella lignorum is suitable for use in determining the toxicity of 

effluent and sediment. However, there are still several issues that require attention in this regard. 

These include an understanding of the sensitivity of this amphipod to ammonia, and the 

identification of a suitable reference sediment. Together with ammonia, hydrogen sulphide is a 

naturally occurring sediment contaminant and its influence on the amphipod needs to be quantified 

(e.g. Phillips et al. 1997). Sulphide influences adsorption and/or desorption of sediment 

contaminants such as metals (Durán et al. 2012). 

While the dose-response relationship of G. lignorum and sediment metals has been demonstrated 

(Vivier 2010), the relationship to organic compounds is unknown. A toxicity test of sediment spiked 

with organic compounds is thus recommended. Future sediment toxicity tests will also benefit from 

toxicity identification evaluation (TIE) procedures that identify chemical substances responsible for 

toxicity. 
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Chapter 6 

Synthesis and recommendations for future studies 
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Synthesis 

The estuarine amphipod Grandidierella lignorum has been recommended as a toxicity test organism 

for South African coastal environments (Vivier 2010). This species meets most of the requirements 

for a good toxicity test organism (see Chapter 1). The primary aim of this study was to develop a 

sediment toxicity test for estuarine and coastal environment test using this amphipod. To develop a 

sediment toxicity test using Grandidierella lignorum, it was necessary to define toxicity test 

conditions for some of the natural parameters such as salinity, temperature, sediment grain size and 

sediment organic matter. These are known to sometimes act as confounding factors for laboratory 

based toxicity tests (Postma et al. 2002), since macrofaunal community structure in the natural 

environment is also influenced by these parameters (Gray 1974; Snelgrove and Butman 1994; Lacey 

et al. 1999). Failure to understand the influence of these natural parameters and failure to account 

for their potential influence on toxicity test organisms may lead to erroneous interpretation of 

toxicity data, with implications where mitigation activities (which are generally costly) have to be 

taken. 

 

Anecdotal evidence (e.g. Boltt 1969; Thwala 2006) suggests that Grandidierella lignorum is 

euryhaline, tolerating salinities between 0 – 45. This study has shown that salinity tolerance for G. 

lignorum is in fact wider than previously reported. G. lignorum tolerates salinities between 0 – 56, 

but prefers salinities between 7 – 42, which is further modified by temperature. G. lignorum prefers 

(survival >80%) salinities between 7 – 35 at 10 – 25°C. The constitution (or make) of seawater (i.e. 

natural or synthetic) does not influence salinity tolerance. This is particularly relevant for situations 

where natural seawater is not readily available. Some toxicity testing laboratories in South Africa are 

located inland, where natural seawater is obviously not readily accessible (Slabbert et al. 1998). 

Grandidierella lignorum can thus be used to test for samples with salinities of 7 – 35. 

 

Sediment is one of the other parameters known to confound toxicity test data when it is not 

accounted for. In the natural environment sediment parameters such as grain size and organic 

matter are principal factors affecting macrofauna distribution (Gray 1974; Snelgrove and Butman 

1994). The influence of sediment grain size and organic matter should thus be accounted for in a 

sediment toxicity test before toxicity is wrongfully attributed to contaminants when in fact the 

organism is responding to unfavourable conditions. For example, constructing burrows in 

unfavourable sediment is time consuming and energetically costly. These sublethal effects may 
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accelerate responses of interest (e.g. mortality or emergence from burrows) when amphipods are 

exposed to contaminated sediment that is of an unfavourable grain size. Boltt (1969) showed that G. 

lignorum prefers muddy sediment with high organic content. However, this study did not separately 

address the influence of sediment grain size from that of organic matter. The current study 

addressed this information gap, in the context of defining sediment toxicity test conditions. It is 

acknowledged that in the natural environment it is nearly impractical to dissociate the importance of 

sediment organic matter from sediment grain size in structuring benthic communities (Snelgrove 

and Butman 1994). Experiments on sediment grain size selection by G. lignorum showed that the 

amphipod does not show a statistically significant preference for a particular sediment grain size. 

This was based on low reproducibility of results (i.e. two test out of three showed no significant 

preference), but the analysis on pooled data of three experiments showed that the amphipod 

prefers fine-, medium- and coarse-grained sediment in that particular order. The preference of fine- 

and medium-grained sediment corresponds with areas of high abundance in estuaries. The sediment 

preference of G. lignorum was further evaluated over an extended period, similar to that of a 

standard acute sediment toxicity test (i.e. 10 days) and highest survival was recorded in fine- and 

very fine-grained sediment.  

 

To determine the importance of organic matter, a source of protein-rich organic matter (fish flakes) 

and a source of carbohydrate-rich matter (lucerne) were fortified in fine-grained and medium-

grained sediment at various concentrations. These types of organic matter were simultaneously 

offered to the amphipod, which consistently selected sediment without organic matter in both 

sediment grain sizes. Preference was not influenced by the type of organic matter or sediment grain 

size. Sediment with varying sediment grain sizes over a 10 day period can thus be tested without 

feeding the amphipods. 

 

Natural parameters (e.g. salinity, temperature, sediment grain size) are not the only important 

factors for potential toxicity test organisms, but the sensitivity of these organisms must be 

determined. The sensitivity of Grandidierella lignorum was evaluated by exposing the amphipod to 

three metals that are commonly used as reference toxicants (i.e. cadmium, copper and zinc). These 

toxicants were dissolved in salinities of 7, 21 and 35. Grandidierella lignorum showed three 

responses to reference toxicants. Cadmium toxicity decreased linearly with increasing toxicity (1). 

Zinc toxicity increased with increasing and decreasing salinity (2). Copper toxicity was constant 
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between salinities (3). The sensitivity of G. lignorum was comparable to that of other amphipods 

used as standard toxicity test organisms. A control chart using cadmium as a reference toxicant was 

established and the initial lower and upper control limits were 0.49 mg l-1 and 4.02 mg l-1, 

respectively. The importance of the control chart was demonstrated using stressed amphipods. 

 

Lastly, the amphipod was used to test the toxicity of effluent and sediment. The amphipod was used 

in conjunction with the sea urchin fertilisation test. Results showed that the amphipod was sensitive 

to effluent toxicity and contaminated sediment. As far as sediment toxicity is concerned, three 

sediment samples were toxic to the amphipod whilst four sediment samples were toxic to the sea 

urchin. Two sediment samples that were toxic to the sea urchin were also toxic to the amphipod. 

The most toxic sediments were collected from the Silt Canal and Congella Basin where most of the 

sediment contamination by metals and organic compounds were also recorded. G. lignorum is 

sensitive to contaminated sediment and should be used in monitoring studies. 

 

Conclusion and Recommendations 

Conclusion 

This study successfully developed a sediment toxicity test by defining test conditions for salinity, 

temperature, sediment grain size and organic matter content. Results from these experiments were 

used to generate provisional toxicity testing conditions for Grandidierella lignorum (Table 6. 1) and 

should be extended with the availability of data in the future. Additionally, the sensitivity of the 

amphipod was evaluated by exposing the amphipods to metal contaminants that were prepared in 

varying salinity. The amphipod responded satisfactorily to metal toxicants, taking into account the 

test conditions (i.e. salinity). The amphipod was then exposed to samples collected from the field 

and it was successful in screening sediment toxicity in Durban Bay. 
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Table 6. 1. Provisional test conditions for sediment toxicity assessment using Grandidierella 

lignorum. 

 

 

Recommendations 

Physico-chemical variables 

Grandidierella lignorum does not select for a particular sediment grain size but high survival (92%) 

over a 10 d period was recorded in fine-grained sediment. Sediment is naturally present as a matrix 

of grain sizes and therefore, future investigations need to determine the maximum proportion of 

mud and sand in a sediment matrix that is not expected to negatively influence sediment toxicity 

test results. For example, the amphipod Leptocheirus plumulosus can be used to test the toxicity of 

sediment comprising up to 90% mud (>5% silt, and <85% clay (EPA 2001). With regard to natural 

chemical contaminants of sediment, the influence of ammonia and hydrogen sulphide to G. 

lignorum was not evaluated. These compounds occur naturally in sediment and can significantly 

confound toxicity test results (Moore et al. 1997; Phillips et al. 1997; Ferretti et al. 2000; McDonald 

2005). Moore et al. (1997) have shown that the probability of statistical approaches to define 

dredged sediment as toxic increases by as much as 18% due to the influence of ammonia. The 

concentration of both compounds changes progressively over the duration of a toxicity test between 

the sediment and the overlying water (i.e. decrease or increase) (Phillips et al. 1997) and younger 

toxicity test amphipods (e.g. Leptocheirus plumulosus) are generally more sensitive than adults. The 

implications are that chronic toxicity tests initiated with younger organisms are likely to yield results 

of high sediment toxicity compared to tests initiated with adults (Moore et al. 1997). Therefore, 

Parameter Test condition

1 Test type Whole sediment, static, non renewal 

2 Test sediment grain size 100% fine-grained sediment, 88% mud

3 Test salinity 7 - 35 ± 5, low variation should however be maintained

4 Test ammonia Not established

5 Sulfide Not established

6 Temperature 10 - 25 °C

7 Photoperiod 12hr L: 12hr D

8 Test container 1 L glass container

9 Sediment volume 2 cm depth

10 Sediment preparation Press sieve through 2mm where necessary

11 Overlying water >600 ml

12 Test end point Survival

13 Monitored physicochemical parameters Salinity, pH, dissolved oxygen and ammonia

14 Test duration 10 d

15 Acceptability criteria 80% survival in the control treatment
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determining the toxicity of chemicals such as ammonia for G. lignorum will assist in determining the 

concentration at which sediment samples should be purged. The procedures for removing ammonia 

have been published by inter alia EPA (1994) and Ferretti et al. (2000). 

 

Toxicity tests 

It is recommended that for WET tests, effluent dilutions be modified to include more dilutions and 

greater than 50% effluent should be excluded in future studies. Complete mortality has been 

measured at ≥25% effluent. This will increase data points and consequently, the precision of 

statistical methods for estimating LC50’s. The use of Grandidierella lignorum in assessing effluent 

toxicity of receiving waters is also encouraged, especially for estuarine conditions. 

 

Lastly, whole sediment toxicity tests should be complimented with sediment chemistry and benthic 

community assemblage data in a weight of evidence approach to assess sediment health. But, whole 

sediment toxicity testing should not be limited to the solid phase test. Elutriates, porewater and 

sediment-water interface must also be tested to provide a holistic discrimination of the sediment 

health status. Sea urchins (Tripneustes gratilla and Echinometra mathaei) are already used routinely 

by the Council for Scientific and Industrial Research and can be developed to test toxicity at the 

sediment-water interface. The development of a chronic toxicity test using G. lignorum is 

recommended for future investigations. This however, requires the refinement of methods for 

evaluating growth and reproduction of the amphipod in the laboratory. 
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Appendix  
The research presented below is included as an appendix to this thesis based on the fact that 

the major focus of the research was on the development of acute toxicity tests. However, a start was 

made on investigating whether Grandidierella lignorum is also suitable for use in chronic sediment 

toxicity tests, wherein growth and reproduction are appropriate test endpoints.  

 

Influence of salinity on growth, reproduction and 

fecundity of the amphipod Grandidierella lignorum 

(Amphipoda: Aoridae) in the laboratory  

 

  



 

112 
 

Abstract 

Salinity and temperature do not only influence the distribution of fauna in estuaries but also their 

growth and reproduction. Growth and reproduction are critical endpoints for chronic toxicity tests. 

Their response to environmental factors (e.g. as salinity and temperature) should be investigated or 

understood in candidate toxicity test species. This assists in differentiating between growth that is 

influenced by environmental parameters and growth influenced by contaminants. Growth and 

reproduction of Grandidierella lignorum in three salinities (7, 21 and 35) was investigated at two 

temperatures (10°C and 22°C). Amphipods grew at a rate of 0.07 – 0.13 mm d-1 at 22°C and reached 

maturity after 21 to 28 days (size range of 2.30 ± 0.44 - 4.55 ± 1.51 mm). The brood size of the young 

females producing for the first time comprised 5 ± 2 eggs. This increased to 9 ± 3 eggs in the second 

brood, which was produced by Day 42. The number of eggs produced by females (i.e. brood size 

(BS)) increased in an allometric pattern with the increasing size of the females (FS; Log10BS = 

3.191Log10FS – 0.074). Amphipods reared at 10°C grew so slowly (0.01 - 0.05 mm d-1) that no 

amphipods had reached maturity after 42 days of exposure. 

 

Introduction 

Grandidierella lignorum is one of the most dominant macrozoobenthic amphipods in South African 

estuaries and provides a link between primary producers and secondary consumers. It burrows in 

surface sediment and filters suspended organic matter. It also browses for microbes adhered to 

deposited particles (Boltt 1969, Schlacher and Wooldridge 1996a; Wooldridge and Bezuidenhout 

2008). While G. lignorum feeds at the lower trophic level in the food web (i.e. a primary consumer; 

Wooldridge and Bezuidenhout 2008), it forms an important food source for juvenile fish such as 

Rhabdosargus holubi and Lithognathus lithognathus (Schlacher and Wooldridge 1996b), and is thus 

ecologically important. It is widely distributed along the South African coast and has been collected 

in estuaries from all three biogeographic regions (e.g. Schlacher and Wooldridge 1996c; Teske and 

Wooldridge 2001; Wooldridge and Bezuidenhout 2008; Wooldridge and Deyzel 2009; Stow 2011). G. 

lignorum has a wide salinity tolerance (see Chapter 2) and may be distributed along the length of 

estuaries (see Schlacher and Wooldridge 1996c). The preferred salinity zone for G. lignorum in 

estuaries has not been identified but Teske and Wooldridge (2003) have shown that its distribution 

is not influenced by salinity and/or sediment grain size. 
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The interactive effects of environmental parameters on the biology of G. lignorum have however, 

been poorly studied. Thwala (2006) studied the influence of salinity on cadmium toxicity. The limited 

information on the biology of this amphipod thus hinders the development of a sediment toxicity 

test. Information on natural parameters, such as salinity and temperature tolerance, were addressed 

in Chapter 2, to define test conditions for an acute (typically 10 day long) sediment toxicity test. 

Information about reproduction and growth forms the basis for developing a chronic (typically ≥28 

day long) sediment toxicity test. What is currently known for G. lignorum is that it completes its 

lifecycle within 30 days in the laboratory (Connell and Airey 1979), but its growth rate has not been 

quantified or reported. Several studies have shown that fecundity, reproduction and growth in 

crustaceans is influenced by salinity and temperature; and the importance of both factors is species-

specific (Kumlu et al. 2001; Maranhão and Marques 2003; Ruscoe et al. 2004; Tsoi et al. 2005). The 

aim of this study was, therefore, to describe growth and reproduction of G. lignorum at different 

salinities and at two temperatures in the laboratory. Understanding the influence of environmental 

parameters on growth, embryonic development and fecundity is important in the development of a 

toxicity test since these investigations provide the ability to distinguish between natural variability 

and variability induced by chemical contaminants (Fockedey et al. 2005). Results of this study will 

contribute to the development of a chronic toxicity test. 

 

Materials and Methods 

Experiments 

Grandidierella lignorum can tolerate salinities ranging from 0 and 56 but prefers salinities between 7 

and 35 at 10 to 25°C (Chapter 2). Experiments on growth, reproduction and fecundity were thus 

performed at three salinities (7, 21 and 35) representing the preferred range and at two 

temperatures (10 and 22°C). A temperature of 10°C was the lowest that did not negatively influence 

salinity tolerance whilst 22°C was selected in favour of 25°C since amphipods were cultured at this 

temperature. Results for 22°C can thus be extrapolated to culture conditions. Amphipods used in 

experiments were reared in the laboratory at a salinity of 35 and at 12hr light: 12hr dark 

photoperiod. Gravid females (n = 200) were removed from cultures and acclimated to test salinities 

at a salinity change of ≤3 per 2 hrs (Tsoi et al. 2005). Once target salinities were reached, 50 gravid 

females were transferred to three smaller culture tanks (L x B x H: 23 cm x 17.5 cm x 15 cm) 

containing 2 cm of medium- to fine-grained sediment and 10 cm of overlying water of the target 

salinity. Salinity of 7 and 21 were prepared by diluting filtered (10 μm), UV sterilised seawater 

(salinity = 35) with distilled water. The cultures were then acclimated to test temperatures at ≤3°C 
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change every 12 hrs. Once the appropriate experimental temperature was reached, gravid females 

were acclimated in these conditions for a further three days after which neonates (≤7 day old) 

released were isolated from the respective cultures, by sieving. A total of 20 neonates were then 

selected under a dissecting microscope and introduced into 1 L glass containers containing water of 

a corresponding test salinity (n = 18 per salinity). Each container comprised 2 cm of medium- to fine-

grained sediment and ~700 ml overlying water. Water in the containers was continuously aerated 

(trickle flow) with the aid of 1 ml glass pipettes and amphipods were fed 2 mg of ground TetraMin® 

fish flakes every two days. This is similar to the feeding scheme for Leptocheirus plumulosus (EPA 

2001; McGee et al. 2004). Dissolved oxygen was monitored periodically (1 to 2 days) during the 

experiment and maintained above 4 mg l-1, which is recommended for toxicity testing using the 

amphipod Leptocheirus plumulosus (EPA 2001). Salinities were maintained within ±1 of the target 

salinities. The dissolved oxygen meter was calibrated (according to manufacture specifications) 

before use while the digital refractometer was calibrated using distilled water. 

 

Experiments were performed in controlled temperature chambers. Amphipods were harvested 

every seven days from three containers per test salinity by sieving through 0.25 mm mesh screen 

and stored in glass pill vials at 7°C for ~12 hrs, to relax the animals before they were stored in 

formalin. When amphipods are immediately fixed in formalin they tend to curl up and 

measurements of young individuals become difficult (pers. obs.). Amphipod size was measured 

under a microscope equipped with a camera and imaging software. Body length was measured from 

the rostrum to the tip of the first uropod, since the base of the telson was difficult to identify with 

accuracy. The cephalon length was measured from the rostrum to the posterior end of the cephalon. 

All measurements were made along the dorsal side of individuals. Growth rate was estimated from 

body measurements taken on the first day of measurement (e.g. Day 7) and the last day (e.g. Day 

35). 

 

Statistical analysis 

Estimates of body size per replicate container per salinity were based on ≥5 amphipods. There were 

instances where the number of amphipods retrieved was below five individuals and in some 

containers amphipods were not recovered at all. Comparison of age between replicate containers at 

the same salinity could not be performed due to small sample sizes for some replicates. This analysis 

would have assisted in determining the homogeneity of the size/age classes before comparison with 
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other salinities is performed. Data were thus pooled for all replicates and growth was only compared 

between salinities. 

 

The relationship between body length and cephalon length was explored using a simple linear 

regression on log transformed data. Sizes of amphipods between salinities were compared by the 

independent sample t-test (the choice for t-test instead of the analysis of variance is discussed 

below). Fecundity was estimated from the number of eggs produced per female (i.e. brood size) and 

is an indication of successful reproduction. Only females with brood pouches that had not breached 

were used for this exercise. Due to the small number of gravid females recovered, this data was 

supplemented by analysing brood sizes of females removed from laboratory cultures. The 

relationship between brood size and female size was investigated using a regression analysis based 

on log transformed data. 

 

Results and Discussion 

Dissolved oxygen 

Dissolved oxygen was generally above 4 mg l-1 in all experiments except on three occasions for 

amphipods reared in salinity 7 and on one occasion for amphipods reared in salinity 35 (Figure 1). 

This situation was short-lived, did not persist for more than 12 hrs and was not lethal since dead 

amphipods were not recovered. These low oxygen levels resulted from the failure of oxygen supply 

due to technical difficulties. While the disrupted oxygen supply did not result in the death of the 

amphipods (i.e. lethal effects), sublethal effects may have occurred and their effect on growth could 

not be quantified and/or was not evident in subsequent observations. 
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Figure 1. Dissolved oxygen (mean ± SD, n = 3 to 18) over the duration of the study. The dashed line 

represents the lower limit of dissolved oxygen considered acceptable in the experiments (EPA 2001). 

 

Body and cephalon growth relationship 

Cephalon length can be used to estimate the body length in situations where body length 

measurements prove to be difficult (i.e. measuring live organisms) (Delgado et al. 2011). Body size in 

Grandidierella lignorum is positively related to cephalon size (r2 = 0.901, P < 0.0005, n = 270) (Figure 

2) and growth of the body regions is allometric (slope: 1.128, t = 49.337, P < 0.0005), defined by the 

equation: 

Log10BL = 1.128∙Log10CL – 0.0141 

where BL is the body length (mm) and CL the cephalon length (mm).  
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Figure 2. Relationship between body length and cephalon length (n = 270) in Grandidierella 

lignorum. 

 

 

Growth 

Growth of amphipods at 22°C was measurable in all salinities, but stunted growth was observed at a 

salinity of 21 (mean growth ± SD: 0.03 ± 0.02 mm d-1, n = 81). Growth was high at salinities of 7 (0.11 

± 0.03 mm.d-1; n = 251) and 35 (0.13 ± 0.13 mm.d-1; n = 140), Figure 3a). Similarly, Gammarus 

aequicauda grows at an estimated rate of 0.12 mm d-1 when reared at a salinity of 9 and 0.14 mm.d-1 

when reared at a salinity of 34 (Delgado et al. 2011). G. aequicauda is also a potential toxicity test 

organism in Europe (Prato and Biandolino 2005; Prato et al. 2009). G. lignorum seems to grow faster 

than the amphipod Hyale crassicornis, which grows at an estimated rate of 0.06 mm d-1 at salinity 10  

(20°C) to 0.08 mm d-1 at salinity 30 (20°C) (Tsoi et al. 2005). Growth of Grandidierella lignorum at 

10°C was reduced considerably, ranging between 0.01 ± 0.03 mm d-1 at a salinity of 7 and 0.05 ± 0.07 

mm d-1 at a salinity of 35 (Figure 3b). At a salinity of 21, amphipods grew at 0.03 ± 0.02 mm d-1, 

which is similar to that measured in the same salinity at 22°C. More importantly, the amphipods did 

not survive the duration of the experiment at 10°C (except for amphipods reared at salinity of 21) 

and no amphipods reached maturity. Further reference to growth and reproduction is thus 

restricted to data for 22°C. 
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Figure 3. Mean body length (± SD) of the amphipod Grandidierella lignorum at salinities 7, 21 and 35 

at 22°C (A), n = 81 to 244 (data for filled symbols) and n = 2 (data for open symbols) and at  10°C (B), 

(n = 30 to 70 (data for filled symbols), n = 1-5 (data for open symbols)). The grey area represents the 

estimated time at which neonates were produced. Open symbols in graphs represent data obtained 

from <5 amphipods. 

 

 

Juvenile Grandidierella lignorum, defined by the lack of distinguishable primary sexual characteristics 

(i.e. oostegites), were generally ≤14 d old and ranged between 1.99 ± 0.27 to 2.57 ± 0.32 mm. This is 

larger than for G. japonica collected from the wild, which ranges between ~0.8 - 1.1 mm (Greenstein 

and Tiefenthaler 1995). Sex was generally distinguishable at Day 21, when immature (i.e. non-gravid 

females) adults were observed. Immature adults ranged between 2.30 ± 0.44 and 3.51 ± 0.63 mm. 

Distinction between the sexes was based on secondary and/or primary sexual characteristics, such 

as gnathopods for males (secondary sexual characteristic) and oostegites for females (primary sexual 

characteristic). Genital papillae in males (a primary sexual characteristic) could not be used as a 

diagnostic feature as they were difficult to identify due to their small size. Oostegites on the other 

hand were easily identifiable and lacked setae in immature females (pers. obs.). G. lignorum 

possesses a ‘primitive’ type of oostegites that are characteristically broad (pers. obs.). Broad 

oostegites are common in the family Aoridae, whereas families such as Corophiidae and 

Pontoporeidae possess both narrow and broad oostegites (Steele 1991). The sole purpose of 

distinguishing sexes was to determine if males and females attain sexual maturity at the same time. 
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Males and females attained sexual maturity within the same time period (21 to 28 days). Amphipods 

grew to a size of 4.77 ± 0.89 mm (n = 47) after 35 days of exposure to salinity of 7 and 4.91 ± 1.02 

mm (n = 13) in salinity of 35. Amphipod size did not differ significantly between amphipods reared in 

salinity of 7 and 35 (t = 0.483, P = 0.631). Mean size of amphipods reared in salinity of 21 was not 

included in the analysis due to the slow (stunted) growth rate. These amphipods were approximately 

four times smaller than amphipods measured at a salinity of 7 and 35. Reasons for this slow growth 

are unknown but salinity and food availability are ruled out as factors. Dissolved oxygen was also 

maintained above 4 mg l-1 and is not suspected to have negatively influenced the experiment. In 

fact, dissolved oxygen at salinity of 21 was high (6.43 ± 0.62 mg l-1) and did not differ significantly to 

that measured at salinity of 7 (6.34 ± 1.55 mg l-1) (P = 0.573) during the study. Dissolved oxygen at 

salinity 35 (5.76 ± 1.13 mg l-1) was significantly lower than that measured in salinity of 7 (P < 0.0005) 

and 21 (P = 0.004). 

 

Fecundity 

Mean body size for adults was measured at 4.38 ± 0.83 mm in Day 28. Brood pouches of some 

amphipods were already breached and neonates were observed, particularly at salinity of 35. This 

suggests that sexual maturity is reached between 21 and 28 days, corresponding to a size range of 

2.30 ± 0.44 mm to 4.55 ± 1.51 mm (Figure 3). The initial brood size of females reared at a salinity of 7 

was 5 ± 2 eggs per female (range: 3 - 7, n = 4). The second brood was produced at Day 42, when 

females produced 9 ± 3 eggs per individual (range: 5 – 13 eggs, n = 11). Brood pouches of amphipods 

reared at salinity of 35 were breached. As discussed previously, fecundity data were supplemented 

by data obtained from the laboratory cultures to determine the relationship between brood size and 

female size. The lowest number of eggs (n = 3) was produced by a female of 3.52 mm and the largest 

number of eggs (n = 35) by a female of 6.55 mm (Figure 4.4). Brood size was positively correlated 

with female size (r2 = 0.796, P < 0.0005, n = 20) and defined by the allometric relationship: 

Log10BS = 3.191Log10FS – 0.074 (t = 8.369, P < 0.0005) 

where BS represent brood size (number of eggs per female) and FS represents female body size 

(mm). 
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Figure 4. Relationship between brood size and female size (n = 20) in Grandidierella lignorum at 

22°C. 

 

 

The findings are supported by the observations of Connell and Airey (1979). According to Connell 

and Airey (1979), Grandidierella lignorum in their cultures reached sexual maturity at 3.4 mm and 

young females produced 1 - 2 eggs from their first brood. This number of eggs increased to 5 - 8 and 

14 - 16 eggs per female in the second and third brood, respectively. Older females produced as many 

as 45 eggs per brood, which is similar to the brood size of the amphipod Onisimus litoralis that 

produces 42 ± 15 neonates per brood (Nygård et al. 2010). The brood size of 45 eggs in G. lignorum 

is generally smaller compared to that for Corophium volutator and Echinogammarus marinus. C. 

volutator produces an average of 96 neonates (Peters and Ahlf 2005) and E. marinus can produce as 

much as 67 neonates per brood (Maranhão and Marques 2003). 

 

Microcosm study 

Stunted growth of amphipods at a salinity of 21 at 22°C could not be explained, but could be the 

result of numerous factors including ammonia build up from feeding. The feeding regime and 

quantity of food offered to Grandidierella lignorum was adopted from that recommended for 

Leptocheirus plumulosus (EPA 2001; McGee et al. 2004). This may be inappropriate for G. lignorum. 

Ammonia was, however, not monitored in the previous study for logistical reasons. The study was 

then repeated with some modifications, so that ammonia could be monitored and is reported in this 
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section. In this experiment, neonates were not reared in discrete containers but were left to grow in 

the presence of adult females (i.e. parental care) in bigger culture containers (L x B x H: 23 cm x 17.5 

cm x 15 cm). Adult amphipods were only removed when the first juveniles were removed for size 

measurements. Survival of some juvenile amphipods may be improved in the presence of parent 

amphipods (see Thiel 1998). This microcosm study was only performed at 22°C, but over 60 days and 

≥5 amphipods were removed for body measurement at 10-day intervals. Dissolved oxygen and 

ammonia were monitored over 30 days. The amphipod population at the salinity of 21 incidentally 

crashed by Day 21 and this coincided with an increase in ammonia concentration (as NH4
+) from 4.4 

mg l-1 (Day 18, dissolved O2= 6.45 mg l-1) to 7 mg l-1 (Day 20, dissolved O2= 6.03 mg l-1). This is 

equivalent to 6.61 mg NH3 l
-1 (i.e. 7 mg NH4

+ l-1 multiplied by 0.944, as per manufacturer (HANNA 

Instruments) instructions). This concentration is almost twice the LC50 of unionised ammonia (3.35 

mg l-1) in Grandidierella japonica (Kohn et al. 1994). Dissolved oxygen never decreased below 4 mg l-1 

in this experiment (Figure 4.5b). A new culture at salinity of 21 was re-established for the 

experiment. 

 

 

Figure 5. Growth (N = 33 to 58) of Grandidierella lignorum at three salinities and 22°C in a microcosm 

set-up. 
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Amphipods reared at salinity of 7 grew at an average of 0.04 ± 0.06 mm d-1 and the population did 

not survive for more than 50 days (Figure 5a). This slow growth cannot be explained since ammonia 

concentration measured over a 30 day period was low (2.51 mg NH4
+ l-1) and salinity was maintained 

at 7 ± 1. Synergistic effects between parameters cannot be excluded. Dataset for salinity 7 was 

excluded from further analysis (i.e. comparison of amphipod sizes between salinities). Amphipods 

reared in salinities of 21 and 35 grew at the same rate (salinity of 21: 0.07 ± 0.12 mm.d-1, salinity of 

35: 0.07 ± 0.06 mm.d-1) and amphipods grew as large as 5.93 ± 1.14 mm (salinity of 21, Day 50). This 

similar to the mean amphipod length (6.28 ± 0.84 mm, data not presented) measured for adult 

amphipods in the culture tanks. The size of 60 day old amphipods at a salinity of 21 (5.39 ± 0.91 mm) 

did not differ significantly to that for amphipods reared at a salinity of 35 (5.13 ± 0.51 mm, t = 0.583, 

P = 0.569). Growth of amphipods beyond Day 50 had stabilised (Figure 5), but amphipods may 

continue to reproduce. 

 

Conclusion 

Growth and reproduction in Grandidierella lignorum differed significantly between 10°C and 22°C 

but did not differ significantly between salinities(35 vs. 7, t = 0.483, P = 0.631, discrete containers; 35 

vs. 21, t = 0.583, P = 0.569, microcosm). Higher temperature supported a higher growth rate, while 

amphipods did not reach maturity at low temperature. Normal growth rate for neonates ranged 

between 0.07 - 0.13 mm.d-1 and maturity was reached within 21 – 28 days at 22°C. Males and 

females matured within the same time period. The life cycle (from egg to mature adults) is thus 

completed within 30 days (also observed by Connell and Airey 1979) but the life span of the 

amphipod is >60 days in the laboratory.  

 

Several challenges were experienced during this study. The pilot study failed when neonates were 

reared in either medium- or fine-grained sediment. When reared in a mixture of medium- and fine-

grained sediment, neonates showed variable responses. They showed stunted growth at a salinity of 

21, while growth did not appear to be impacted at a salinity of 7 and 35. Dissolved oxygen, food 

availability and salinity were excluded as important factors affecting neonate growth in medium- to 

fine-grained sediment. The possible effect of ammonia was further investigated in a microcosm 

study, where neonates were allowed to coexist with adult females for the first 10 days of their lives. 
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Some amphipod species require parental care in their early stages of development (see Thiel 1998). 

The microcosm study revealed that ammonia may have a significant role in amphipod growth. The 

population of amphipods reared at a salinity of 21 crashed when ammonia increased to 6.61 mg NH3 

l-1(LC50 for G. lignorum is 3.35 mg NH3 l
-1, Kohn et al. 1994). Ammonia toxicity at different salinities 

(see example in Chapter 4) should thus be investigated further. Stunted growth was also observed in 

the microcosm experiment, but at the different salinity (salinity 7). Amphipods reared at a salinity of 

7 grew slower than those reared at 21 and 35, yet the ammonia concentration was low (2.51 ± mg 

NH4
+ l-1; range: 2.1 to 3.4 mg NH4

+ l-1). Further investigations on factors influencing the growth of G. 

lignorum should include sediment grain size composition, food quality, food quantity, feeding 

regime and ammonia. Besides challenges that befell this study, some conclusions can be made. For 

example, chronic toxicity tests using G. lignorum where growth and reproduction are endpoints 

should be 28 days long, since the amphipod completes its life cycle within 28 days. Further 

investigations are, however, necessary to determine whether chronic sediment toxicity tests should 

be initiated with neonates or immature individuals. Other estimations of growth such as weight 

should also be evaluated as a possible endpoint in chronic toxicity tests. 
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