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Abstract

The purpose of this study is to investigate and understand data which are grouped into
categories. Various statistical methods was studied for categorical binary responses to
investigate the causes of death from diarrhoea in South Africa. Data collected included
death type, sex, marital status, province of birth, province of death, place of death, province
of residence, education status, smoking status and pregnancy status. The objective of this
thesis is to investigate which of the above explanatory variables was most affected by

diarrhoea in South Africa.

To achieve this objective, different sample survey data analysis techniques are investigated.
This includes sketching bar graphs and using several statistical methods namely, logistic
regression, surveylogistic, generalised linear model, generalised linear mixed model, and
generalised additive model. In the selection of the fixed effects, a bar graph is applied to the
response variable individual profile graphs. A logistic regression model is used to identify
which of the explanatory variables are more affected by diarrhoea. Statistical applications

are conducted in SAS (Statistical Analysis Software).

Hosmer and Lemeshow (2000) propose a statistic that they show, through simulation, is
distributed as chi-square when there is no replication in any of the subpopulations. Due to
the similarity of the Hosmer and Lemeshow test for logistic regression, Parzen and Lipsitz
(1999) suggest using 10 risk score groups. Nevertheless, based on simulation results, May
and Hosmer (2004) show that, for all samples or samples with a large percentage of
censored observations, the test rejects the null hypothesis too often. They suggest that the
number of groups be chosen such that G=integer of {maximum of 12 and minimum of 10}.
Lemeshow et al. (2004) state that the observations are firstly sorted in increasing order of

their estimated event probability.
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Chapter 1

1 Introduction

Diarrhoea is defined as the frequent excretion usually of liquid or unformed stools. Diarrhoea is
characterised by a change in bowel habit, either an increase in the number of stools per day or
an increase in the fluid content of the stool. It is termed acute if it lasts for less than two weeks
or chronic if it lasts for more than four weeks. Diarrhoea can occur in virtually any person
regardless of age and general state of health. Furthermore diarrhoea can range from mild
discomfort to a severe and life threatening illness due to the risk of dehydration. Generally it is
self-limiting and may not require any intervention. Intervention may be considered necessary
by patient because of their beliefs and attitude towards normal bowel function (Hogue, 2000).
The Ministry of Health's Standard Treatment Guidelines (2004) defines diarrhoea as passing
frequent, loose, watery stools three or more times in a day. An increase in stool water excretion
above 150ml to 200ml every 24-hours is an objective parameter for acute diarrhoea (Hogue,
2000). The term diarrhoea means different things to different people. Many patients and
doctors think of diarrhoea in terms of increased stools. Diarrhoea means having frequent stools
of more than four in a day sometimes accompanied with pain or cramps, fever and or vomiting
with nausea and chills. The most severe symptom in many patients is the urgency of
defaecation, and faecal inconsistence is a common event in acute and chronic diarrhoeal illness

(Haslett et al. 1999).
1.1 Causes of Diarrhoea

Diarrhoea can vary in severity. It presents itself as an abnormality in the digestive process,
producing an increase in the wateriness, volume, or frequency of bowel movements over a

given duration. Normally, when food passes through the colon, fluids are readily absorbed and



only semi-solid stools remain. Diarrhoea is the reverse of this process and may occur due to a

variety of causes. The most common causes of diarrhoea are:

Bacterial infections

Viral infections

Parasitical functional bowel disorders
Intestinal diseases

Food intolerances and sensitivities

vV V V VYV VY V

Reactions to medicines

Diarrhoea can be treated by replacing lost fluids and electrolytes to prevent dehydration.
Depending on the nature of the problem, medication may also be needed to stop the diarrhoea

or to treat an infection.
1.2 Signs and Symptoms

The symptoms of diarrhoea (generally) includes a frequent need to defecate, weight loss,
abdominal pain, cramping, bloating, vomiting, and a general feeling of being ill. Some infections
that cause diarrhoea can also cause fever, chills, or bloody stools. Diarrhoea can cause
dehydration and further loss of electrolytes through dehydration affects the amount of water in
the body, muscle activity, and other important functions. Dehydration is very dangerous in
children, older adults, and people with weakened immune systems and must be treated
promptly to avoid serious health problems such as organ damage, shock, or a-comatose sleep-
like state in which a person is not conscious. This means co-infection with a disease as HIV/AIDS
can accelerate the effects of diarrhoea due to enhanced immune weakening. Incorrect mixing
and dispensing of milk replacer by a malfunctioning automatic feeder has been reported as a
cause of child/infant diarrhoea (Lane, 1987). More than two and a half million children under
the age of five succumb to diarrhoea and dehydration each year (Kosek et al, 2003). Most cases
of diarrhoea are of short duration, although they may recur multiple times. Reviews of research

studies have determined that mothers tend to overstate the numbers of current or recent



episodes of diarrhoea slightly, whereas they dramatically understate the number of events that
occurred more than two or three days in the past (Boerma et al, 1991). Epidemiologic studies
ideally should inquire about diarrhoea events occurring no more than three days prior to the
study in order to be most accurate. Epidemiologists commonly divide diarrhoea into acute
cases consisting of three or more loose watery stools in less than 24 hours, and persistent cases
lasting for 14 days or more. Persistent diarrhoea causes more than half of all deaths from
diarrhoea in many developed counties such as the United States, France, Germany, the United

Kingdom, and South Korea (Victoria et al, 1993).

Bryce et al (2005) reported that of the estimated total 10.6 million deaths among children
younger than five years worldwide, 42 percent occur in the World Health Organization (WHO)
African region. However mortality rates among these children have declined globally from 146
per 1,000 in 1970 to 79 per 1,000 in 2003 (WHO 2005), and although this showed the most
marked downward trend in diarrhoea the African region also showed the smallest reduction in
mortality rates. During the 1990s, the decline of under-five mortality rates in 29 countries of
the world stagnated, and in 14 countries rates went down but then increased again. Most of
these countries are from the African region (WHO 2005). The global estimates of the number of
deaths due to diarrhoea have shown a steady decline, from 4.6 million in the 1980s (Snyder and

Merson, 1982) to 2.5 million in the year 2000 (Kosek, Bern, and Guerrant, 2003).

According to Child Health Research Specific project Report (1998), diarrhoea is one of the top
causes of childhood mortality in Sub Sahara African and has been estimated to be responsible
for 25 to 75% of all childhood illness in Africa. In addition, episodes of diarrhoea leads to about
14% of outpatient visits, 16% of hospital admissions and accounts for an average of 35 days of
iliness per year in children less than five years old. The report also stated that unlike the decline
in mortality rates, diarrhoea incidence does not appear to have changed substantially over the
last decade. A study “Review of Diarrhoeal Disease Cases Admitted to a Busy Referral Hospital
in Ghana” (Baffoe-Bonnie et al. 1998) indicated that children less than 5 years of age make up

84% of all child admissions and 56.5% of them being infants below one year.



1.3 Statement of the problem

There has been a drastic increase death rate in South Africa due to diarrhoea during the period
under study (1998-2005). For example, an increasing number of children, the elderly and even
adults, are dying from diarrhoea in South Africa, making it the third leading cause of death in
the country. A recent CSIR study has reported a steady increase in diarrhoeal death statistics in
South Africa over the last 12 years with a significant increase in diarrhoea-related deaths for

adults aged between 45 and 64.

Diarrhoea as underlying natural cause of death for all ages has increased from being the 10"
leading cause in 1998 to become the third-leading underlying natural cause of death for two
consecutive years in 2004 and 2005. While the highest death rates were recorded for the
vulnerable age groups (children under five and the elderly). Researches were surprised to note
an increase in adult deaths due to diarrhoea for each province. The trend was particularly
visible for the age groups 45 to 64. According to CSIR researchers, diarrhoea statistics are an

important indicator of the health of a community.

A report of WHO reveals that each child in at region has five episodes of diarrhoea per year and
that 800,000 children die each year from diarrhoea illness and dehydration (WHO, 1996). The
main causes of death among children under five year of age are acute respiratory infection
(17%) and diarrhoeal disease (16%), and children infected with human immunodeficiency virus
(HIV) have greater morbility and mortality related to these conditions (WHO, 2008). One of the
most dominant risk factors associated with childhood mortality and frequent cause of faltering
growth of children is the existence of diarrhoeal episode, killing nearly two million children
under age of five every year (Vesikari, 1997). WHO (1996) showed that the factors associated
with diarrhoea were age of children, quality of water, availability of sanitation facilities, housing
conditions, level of education, economic status of households, place of residence, feeding
practices and personal or domestic hygiene to name a few. South African Demographic and
Health Survey (SADHS, 1998) also showed that substantial racial disparities in the prevalence of

diarrhoea exist, with the black: white rate ratio amounting to 6:5 in 1998. This was further



confirmed in a study by Choi (2003), reporting that one of the reasons for this disparity is that
black and colored populations were forced, under apartheid period, to reside in poor townships
and distant rural areas with no any piped water and sanitation services. This it is probable that
racial disparity in access to such essential necessities contributed to higher level of the

prevalence of diarrhoea amoung them.

Gouws et al. (2005) identified gender disparities favoring males in diarrhoeal treatment
practices among the wealthier, non-slum city corporation households in Dhaka and Chittagong
where the prevalence of diarrhoeal illness was lowest and the occurrence of prolonged
diarrhoea was greatest within urban slum households affecting one-quarter of the children
identified. The provinces are the lowest level of geographic information available for analysis in
publicity released data, which precludes district level analysis. Population group information is
available for about 75% of the records. However, there are very high levels of under recording
of socio-demographic details, such as education level and occupation (Statistics South Africa,

2007).

Due to the information were have about diarrhoea and some of the factors that are related
with on it to cause death. This gives me some good grounds to choose my exploratory variables

in my study.
1.4 Objectives of the study

The study was conducted at several explanatory variables namely: sex, marital status, province
of birth, province of death, place of death, province of resident, education status, smoking
status and pregnancy status. The reason for including these explanatory variables in the thesis
was to check how diarrhoea was related with them as previous studies shows that other
explanatory variables such as age (as stated in the statement of problem above) were related
with diarrhoea, so in this thesis age was not taken into account because previous studies has
shown that diarrhoea was more affecting children under age of five year but this variable can

be included in future research studies.



The aim of this study is therefore to check on how diarrhoea was affecting people in South

Africa in 2007 by

Determining whether diarrhoea was related to factors such as gender, marital

status, smoking status and pregnancy status by fitting various statistical models.
e To identify and compare the mortality trends for the different provinces and places.
e Ascertain the advantages and disadvantages of the various statistical models that
are fitted to the data.
e To make recommendations to the health policies of South Africa based on the

results of the analysis.

1.5 Structure of the study

The study will be subdivided into six chapters. Following this introductory chapter, chapter two
presents’ technigues necessary to gain insight into data via exploratory data analysis,
particularly by analysing data sets with graphs. Chapter three reviews the theoretical aspect of
generalised linear model (GLM) and analysis of the data using PROC GENMOD in SAS. The
fourth chapter presents a special case of GLM i.e. the Logistic regression model. Chapter five
focuses on the theory of generalised linear mixed models (GLMM), analysis and interpretation
of results. The last chapter (chapter six) concludes the study by providing key findings and

suggestions for further research.



Chapter 2

Exploratory Data analysis

2.1 Description of data

South African people were surveyed by means of a series of interviewer-administered
guestionnaires conducted by fieldworkers of Stats SA in 2007. The survey was carried out in
South Africa and the population was stratified by type of province. The surveyed variables were
sex, marital status, province of birth, province of death, place of death, province of residence,
pregnancy status of the deceased, smoking status of the deceased and education status of the
deceased. The study population consisted of permanent South African residents only. The aim
of the survey was to identify the causes of death in South Africa. There were many response
variables (causes) like TB, diarrhoea, and cancer to name a few. This project focused on the
causes of death from diarrhoea in South Africa. The dependent variable was diarrhoea and the
explanatory variables were sex, marital status, province of birth, province of death, place of

death, province of residence, pregnancy status, smoking status and education status.

The socio-demographic variables categories were encoded as sex (male and female), marital
status (single, civil marriage, living as married, widowed , religious law marriage, divorced, and
customary marriage); province of birth, death, and residence(Western Cape, Eastern Cape,
Northern Cape, Free State, KwaZulu Natal, North West, Gauteng, Mpumalanga, and Limpopo);
place of death (hospital, emergency room, nursing home, and home), pregnancy status (yes and
no), smoking status (yes and no), and education status (none, Grade 1, Grade 2, Grade 3 up to
Grade 12, and university).The explanatory variables (levels and codes) were summarised in the

following table.



Table 2.1: The explanatory variables with numerical codes as used in the analysis.

Explanatory variable

Survey Code

Sex (2 levels)

1=male, 2=female

Marital status (7 levels)

1=single, 2=civil marriage, 3=living as married
4=widowed, 5=religious law marriage,
6=divorced, 7=customary marriage

Province of birth (9 levels)

1=Western cape, 2=Eastern cape, 3=Northern cape,
4=Free state, 5=KwaZulu Natal, 6=North West,
7=Gauteng, 8=Mpumalanga, 9=Limpopo

Province of death (9 levels)

1=Western Cape, 2=Eastern Cape, 3=Northern Cape,
4=Free State, 5=KwaZulu Natal, 6=North West,
7=Gauteng, 8=Mpumalanga, 9=Limpopo

Province of residence (9 levels)

1=Western Cape, 2=Eastern Cape, 3=Northern Cape,
4=Free State, 5=KwaZulu Natal, 6=North West,
7=Gauteng, 8=Mpumalanga, 9=Limpopo

Place of death (5 levels)

1=Hospital, 2=Emergency room, 3=dead on arrival,
4=Nursing home, 5=Home

Education (14 levels)

0=None, 1= Grade 1, 2= Grade 2, 3= Grade 3
4= Grade 4, 5= Grade 5, 6= Grade 6, 7= Grade 7
8= Grade 8, 9= Grade 9, 10= Grade 10,
11=Gradell, 12= Grade 12. 13=University

Smoking (2 levels)

1=Yes, 2=No

Pregnancy (2 levels)

1=Yes, 2=No

2.2 Exploratory data Analysis

Exploratory Data analysis or “EDA” is an approach to analysing data sets to summarise main

characteristics in easy to understand form, often with visual graphs without having formulated

a hypothesis. Any method of looking at data that does not include formal statistical modeling

and inference falls under the term exploratory data analysis. It was promoted by John Tukey

(1977) to encourage statisticians visually to examine their data sets, to formulate hypotheses

that could be tested on new data-sets. EDA is a critical first step in analysing the data from an

experiment (Tukey, 1977). Here are the main reasons we use EDA:




e Detection of mistakes
e Checking of assumptions, and

e Determining relationships among the explanatory variables.
2.2.1 Graphs

We consider pie charts and bar graphs as a form of graphical display of the data to check for
visual differences between groups of the same variable, for example, the differences in
provinces with respect to the dependent variable (diarrhoea) can give us insight and inference
about the differences of occurrence. The dependent variable is a binary random variable with
two levels, namely those “affected” are those who died of diarrhoea, and those “unaffected”
are those who died of diseases other than diarrhoea. The independent variables like sex,
marital status, province of birth, province of death, place of death, province of residence,
pregnancy of the deceased, smoking status of the deceased, and education of the deceased
were graphed on the x-axis. The death rate (proportion) was calculated as a percentage in all

the graphs. The results are as follows:



Figure 2.1: Graph of Sex vs Diarrhoea
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Figure 2.3: Graph of Province of Birth vs Diarrhoea
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Figure 2.4: Graph of Province of Death vs Diarrhoea
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Figure 2.5: Graph of Province of Residence vs Diarrhoea
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Figure 2.6: Graph of Place of Death vs Diarrhoea
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Figure 2.7: Graph of Education of the deceased vs Diarrhoea
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Figure 2.8: Graph of Smoking status of the deceased vs Diarrhoea
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Figure 2.9: Graph of Pregnancy status of the deceased vs Diarrhoea
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Figure 2.1: Shows that more females were affected by diarrhoea than males; more females

died of diarrhoea than males.

Figure 2.2: This graph indicates that diarrhoea was affecting more people who were single with
a death rate of about 71 percent. The proportion of death from diarrhoea from other marital
status groups was very low (less than 20 percent). This clearly shows that single people were at

a very high risk of dying from diarrhoea.

Figure 2.3: The graph shows that most of the people who had died because of diarrhoea were
born in KwaZulu-Natal compared to other provinces. The proportion of those who died in
KwaZulu-Natal province was large as compared to other provinces. People from other provinces
such as the Eastern Cape, the Free State, the North West, Gauteng, Mpumalanga, and Limpopo
were dying at a lower rate. The proportion of those dying of diarrhoea in other provinces

compared to KZN, particularly the Western and Northern Cape was relatively very low.
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Figure 2.4: This graph indicates that KwaZulu-Natal was the leading province for death from
diarrhoea followed by Gauteng. The proportion of death in KwaZulu-Natal was roughly 27
percent. In the Eastern Cape and Free State, people were also dying (because of diarrhoea) at a

proportion of about 11 percent.

Figure 2.5: This graph reveals that people who were living in KwaZulu-Natal were dying more
than people living in other provinces and that the proportion was around 26 percent. People
who were staying in Western and Northern Cape were dying at a lower proportion than the rest

of the provinces. But the death rate in most of the provinces was roughly 10 percent.

Figure 2.6: This graph depicts that people were dying mostly in hospitals and home. In other

places, the proportion was very low.

Figure 2.7: This graph shows that diarrhoea was affecting people who were not educated or

who were still not yet at school in 2007, and that the rate of dying was about 59 percent.

Figure 2.8: This graph shows two groups of smoking status: smokers and non-smokers. The
graph shows that people who were non-smokers were more affected by diarrhoea than

smokers.

Figure 2.9: The graph shows that non-pregnant women are the one’s who were most affected

by diarrhoea than those who were pregnant.

2.2.2 Cross tabulation of the data

Cross tabulation was considered as part of exploratory data analysis. The main reason for doing
this was to compare the death rate for each independent variable with diarrhoea. The output

from SPSS using cross tabulations yielded the following table:



Table 2.2: Descriptive results of Diarrhoea
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Variables Levels Diarrhoea

Re} ©

- E 3 %

2 S| ¢ | &

2 = £ ©

Y © c

© ) ° =1

g = c Q

s |g| ¢ |3
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s 8] % |

X e <
Sex Male 12266 2 | 301872 | 49.2
Female 14761 2.4 1285172 | 46.4
TOTAL 27027 4.4 | 587044 | 95.6
Marital status of deceased Single 19341 3.8 | 289725 | 56.6
Civil marriage 1392 0.3 | 72512 | 14.2

Living as married 667 0.1 ] 18238 | 3.6

Widowed 892 0.2 | 47984 | 9.4

Religious law married 285 0.1 13383 | 2.6

Divorced 156 0 8823 1.7

Customary married 1358 03] 36743 | 7.2
TOTAL 24091 4.7 | 487408 | 95.3

Province of birth of the deceased Western Cape 352 0.1 23822 | 5.2
Eastern Cape 2930 0.6 | 83730 | 18.4

Northern Cape 293 0.1] 11792 | 2.6

Free State 2510 0.6 | 42961 | 9.5

KwaZulu-Natal 5451 1.2 ] 101352 | 22.3

North West 1975 0.4 | 38508 | 8.5

Gauteng 2187 0.5 52850 | 11.6

Mpumalanga 2515 0.6 | 36776 | 8.1

Limpopo 3104 0.7 ]| 41363 | 9.1

TOTAL 21317 4.7 | 433154 | 95.3

Province of death Western Cape 509 0.1 ]| 47582 | 7.7
Eastern Cape 2920 0.5 | 85280 | 13.9
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Variables Levels Diarrhoea
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Free State 2801 | 0.5 | 49540 8.1
KwaZulu-Natal 7513 1.2 | 135348 22
North West 2035 0.3 44296 7.2
Gauteng 3646 0.6 | 114803 | 18.7
Mpumalanga 3488 0.6 45680 7.4
Limpopo 3714 | 0.6 | 50112 8.2
TOTAL 27070 | 4.4 | 587663 | 95.6
Place of death Hospital(in-patient) 11968 | 2.4 | 251994 | 50.8
Emergency room/out-patient 575 0.1 10097 2
Dead on arrival 534 0.1 14720 3
Nursing home 199 0.3 12431 2.5
Home 10539 | 2.1 | 183311 | 36.9
TOTAL 23815 | 4.8 | 472553 | 95.2
Province of residence Western Cape 351 0.1 37654 6.9
Eastern Cape 2506 0.5 70866 13
Northern Cape 379 0.1 13681 2.5
Free State 2791 | 0.5 | 48133 8.8
KwaZulu-Natal 6892 | 1.3 | 119111 | 21.9
North West 1849 | 0.3 [ 42919 7.9
Gauteng 3010 | 0.6 | 96452 17.7
Mpumalanga 3320 | 0.6 | 44905 8.2
Limpopo 3663 0.7 46556 8.5
TOTAL 24761 | 4.5 | 520277 | 95.5
Education of the deceased None 10972 | 3.4 | 112699 | 35.2
Grade 1 178 0.1 3528 11
Grade 2 281 0.1 5811 1.8
Grade 3 254 0.2 4356 8.3
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Variables Levels Diarrhoea
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Grade 4 585 0.2 13293 4.1

Grade 5 565 0.2 12849

Grade 6 664 0.2 | 15188 4.7
Grade 7 893 0.3 | 19739 6.2
Grade 8 809 0.3 | 22626 7.1
Grade 9 539 0.2 | 12012 3.7
Grade 10 774 0.2 | 20976 6.5

Grade 11 573 0.2 12735 4
Grade 12 1157 | 0.4 | 33537 | 10.5
University 158 0.3 8157 2.5
TOTAL 18505 | 5.8 | 302084 | 94.2
Smoking status of deceased Yes 1771 | 0.8 | 60357 | 28.5
No 6084 | 2.9 | 143264 | 67.7
TOTAL 7855 | 3.7 | 203621 | 96.3
Pregnancy status of deceased Yes 28 0.1 2253 4.2
No 2807 | 5.2 | 48619 | 90.5
TOTAL 2835 | 5.3 | 50872 | 94.7

The results show that females have a higher percentage of death than males with respect to

diarrhoea. Diarrhoea affected more single people than married or widowed people. The highest

death rate was for people who were born in KwaZulu-Natal compared to other provinces and

the death rate for those who were born in the Northern Cape was the lowest. In KwaZulu-Natal

more people were dying from diarrhoea than in other provinces and in the Northern Cape the
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death rate was the lowest. The results reveal that people were dying in hospitals and homes
with estimated numbers of 50.3% and 44.3% respectively. People living in KwaZulu-Natal were
more highly affected by diarrhoea than those living in other provinces. People who were not
educated or non-scholars, were more likely to die from diarrhea, compared to university
students. The results show that diarrhoea was affecting non-smoking more than smokers.
People who were not pregnant were more likely to die from diarrhoea the percentage was very

high (95.8%).
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Chapter 3

Generalised Linear Model

3.1 Introduction

The generalised linear models are a family of important models for categorical as well as
continuous responses in statistics. Thus we define the generalised linear model as a flexible
generalisation of ordinary least squares regression. Generalised linear models (GLMs)
attempt to accommodate variance heterogeneity and asymmetric, non-normal behaviour
by offering a range of distributional types that cover at least the more common mean-
variance relationships. GLMs are useful for non-normal data, such as binary data. Nelder
and Wedderburn (1972) formulated the linear models as a way of unifying various other
statistical models, including linear regression, logistic regression, and Poisson regression.
The first unifying treatment by Nelder and Wedderburn (1972) demonstrated that a range
of the results from applied statistical work can be greatly enhanced by this further
development of the general theory. The approaches that were taken emphasise the
theoretical foundations of the generalised linear model.

The GLMs generalise linear regression by allowing the linear model to be related to the
response variable via a link function and allowing the magnitude of the variance of each
measurement to be a function of its predicted value. Generalised linear models
accommodate responses that violate the linear model assumptions through two
mechanisms: a link function and a variance function, where the link function defines the
relationship between the systematic component of the data and the outcome variable in
such a way that asymptotic normality and constancy of variance are no longer required
(Nelder and Wedderburn 1972). Generalised linear models do not differ in any important
way from regular linear models in terms of the process of model specification except that a

link function is included to accommodate noncontinuous and possibly bounded outcome
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variables. Therefore, all of the admonitions about the dangers of the data mining, inverse
probability misinterpretation, and probabilistic theory confirmation, apply (Gill, 1999;
Greenwald, 1975; Leamer, 1978; Lindsay, 1995; Miller, 1990; Rozeboom, 1960). However, it
is still important to be able to assume uncorrelated observations. The variance function
expresses the variance as a function of the predicted response, thereby accommodating
responses with non-constant variances (such as binary responses). It is also important to be
aware that a single data set can lead to many perfectly plausible model specifications and

subsequent substantive conclusions (Raftery and Sylvia, 1995).

In linear models there is a set of restrictive assumptions one of which is that the target
(dependent variable y) is normally distributed conditioned on the value of predictors with a
constant variance regardless of the predicted response value. But the advantages of linear
models and their restrictions are computational simplicity, an interpretable model form,
and the ability to compute certain diagnostic information about the quality of the fit.
Generalised linear models relax these restrictions which are often violated in practice. The
binary (yes/no or 0/1) responses do not have the same variance across classes.
Furthermore, the sum of terms in a linear model can typically have large ranges
encompassing very negative and very positive values. For the binary response example, we

would like the response to be a probability in the range [0, 1].

3.2 Exponential Family of Distribution

The development of the generalized linear model theory is based upon the exponential
family of distribution (Gill et al. 1999). In the generalised linear model, the random
component consists of a response variable Y with independent observations (y;, ¥2,--,¥n)
from a distribution in the natural exponential family (Nelder and Wedderburn, 1972).
Barndorff-Nielsen (1978) shows that exponential family probability functions have all of

their moments. Fisher (1934) developed the idea that many commonly applied probability
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mass functions and probability density functions are really just a special case of a more
general classification he called the exponential family. We will assume that the observations

come from a distribution in the exponential family with probability density function

yi0i—b(6;)

f(y) = exp [Tm +c(yi <p)]- (3.1)

Where a, b and c are arbitrary functions and ¢ is a scale parameter. The functions a and c

are such that a(p) = % andc =c (yi,%), where w; is a known weight for each

observation, usually one.

Here ¢; and ¢ are natural parameters and a;(¢), b(8;) and c(y;, ¢) are known functions.
The parameters 6; and ¢ are essentially location and scale parameters. The scale parameter
@ in (3.1) is typically estimated by an appropriate moment estimator involving the Pearson
x? Statistic (McCullagh and Nelder, 1989). It can be shown that if ¥; has a distribution in the

exponential family then it has mean and variance.

E(Y;) =w =b’(6) (3.2)

Var(Y;) = 6;°> = b (8)a;(¢) (3.3)

where b’(6;) and b”’(6;) with respect to 8;. b”’(6;) is known as the variance function. When
you substitute a;(¢) = % into Eq. (3.3) the variance has the simper form:

b (6
var(Y;) = giz = QD_(J

2
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The standard reference for generalised linear models is McCullagh and Nelder (1989). They
stated that GLMs are one such family of models and generally suitable for discrete repeated
measurements in the context of correlated data, while a clear exposition is also given by
Firth and Harris (1991). The generalised linear model can be seen as an extension of linear
multiple regression for a single dependent variable, and understanding the multiple
regression is fundamental to understanding the general linear model (Diggle et al., 2002).
The exponential family just defined includes as special cases the normal, binomial, Poisson,

exponential, gamma, and inverse Gaussian distributions.

3.3 Normal Distribution

This type of distribution is also called a Gaussian distribution and is considered the most
prominent probability distribution in statistics as the outcome of the Central Limit Theorem,
which states that under mild conditions the sum of a large number of random variables is
distributed approximately normally. For this reason, the normal distribution is commonly
encountered in practice, and is used throughout statistics as a simple model for complex
phenomena.

The density of the normal distribution is given by

_ 1 “1i—m)?] . _
f(yl) _Wexp I:? 0__2 ],l = 1, 2,...,1’1 (34)
where parameter p is the mean (location of the peak) and o2 is the variance (the measure
of the width of the distribution). The distribution with u = 0 and o = 1 is called the
standard normal.

Expanding the term (y; — ;)% = y;2 + w;2 — 2y;1; the density in (3.4) can be expressed as
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fOo =exp|— 53|52

1
Yiti — 7 1 <yi2
2

+ log(2n02)>

So that 8;=y; , @ = g2 and a;(¢) = @, b(H,) = %91-2 (wheref; = ;)

.2
and c(y;, @) = —%(3;—‘2 + log(27wz)).

3.4 The Binomial Distribution for GLM

We consider the response variable y; is binary (taking on only two values that for
convenience we code as one or zero). First we verify that the binomial distribution B(n;, 7t;)
belongs to the exponential family of Nelder and Wedderburn (1972). The binomial

probability distribution function is given by

£ = (1) m2i(1 = mym (3.5)

Where 1; is the probability of successes (or p(y; = m;))

Taking logs we find that

logf;(y;) = y;log(m;) + (n; — y;) log(1 — m;) + log (Zl)

= y;log (1f_;n) + n;log(1 —m;) + log (;i) (3.6)

This expression has the general exponential form

.0, — b(0;
logfi(yi) = yT@() + c(yi, )
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Where the canonical parameter 6; is the logit of ;, i.e

0; = log (L) (3.7)

1-m;
Solving for m; we therefore get

9.
efi 1
T, = -and 1 —1m; = -
L1 L 1+efi

Rewriting the second term in expression (3.6) as a function of 6;

log(1 — m;) = —log(1 — e%),
we can identify the cumulant function b(6;) as
b(6;) = n;log(1 + e%).

The remaining term is a function of y; but not m;, leading to
n;
c(yip) = log( )
Yi

We may now set a;(¢) = ¢ and ¢ = 1. Finally, we verify the mean and variance. By taking

the first and second derivatives of b(6;) with respect to 8; we find that
i

W = b"(0:) = n 5 = mm

and
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0;

2 _ i _
0" = a;(@)b”(6;) = nim

= (1 —m;)
in agreement with what we knew. McCullagh and Nelder (1989) work with the proportion

w; = %, which takes values 0 and 1. Note that the mean and variance depend on the
L

underlying probability ;. This shows that any factor that affects the probability will alter
not just the mean but also the variance of the observation. This suggests that a linear model
which allows the predictors to affect the mean but assumes that the variance is constant

will not be adequate for the analysis of binary data.

3.5 The Poisson Distribution

This type of distribution is a discrete distribution which takes on the values Y=0,1,2,... and is
used as a model for the number of events (such as the number of deaths in South Africa) in
a specific time period. This distribution was first introduced by Simon Denis Poisson (1781-

1840). The Poisson distribution is determined by one parameter, lambda. The Poisson

distribution is given by

e‘liliyi
yi!

filyi) =

(3.8)

where

e is the base of the natural logarithm

y is the number of occurrences of an event
y;!is the factorial of y;

A; is the positive real number.

We now verify that this distribution belongs to the exponential family as defined by Nelder

and Wedderburn (1972). Taking logs we find
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logfi(y;) = y;log(4;) — 4; — log(y;!) (3.9)

The coefficient of x; shows us immediately that the canonical parameter is

6; = log(4)

and therefore that the canonical link is the log-link.

Solving for A; we obtain the inverse link

/11' = eei

and we can write the second term in expression (3.9) as

b(8,) = e’

The remaining term is a function of y; only, so we identify

c(yi, ) = —log(y:")

Finally, note that we can take a;(¢) = ¢ and ¢ = 1, just as we did in the binomial case.

Lastly, we verify the mean and variance. By taking the first and second derivative of b(6;)

with respect to 6; we have

A =b'(6;) = e% = A

and
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a; ()b (6;) = e% = 2;.

As is the case, the mean and variance are equal. This means that the parameter 4; is equal
to the expected number of occurrences during the given interval, i.e (1; = E(y;)). But 4; is

not only the mean of occurrences, but also its variance

oy2 =E@) —EQ)? = E() = A

3.6 The Gamma Distribution

This type of distribution is defined as a two- parameter family of continuous probability
distributions, namely a scale parameter 8 and a shape parameter y. The gamma distribution
also represents the sum of n exponentially distributed random variables where the scale
parameter is the mean of the exponential distribution and the shape parameter represents the
number of variables. This is apparent when the profile of an exponential distribution with mean
set to one is compared to a gamma distribution with a shape parameter of one and a mean of

one.

The gamma distribution has a probability density function that can be expressed in terms of the
gamma function parameterised in terms of a shape parameter y and scale parameter 8, where
both y and B are positive values. The equation defining the probability density function of a

gamma distributed random variable x is

(5" ern(52)

Br(a)

fly) = Y oa,f>0 (3.10)

where
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a is the shape parameter

1 is the location parameter

B is the scale parameter and

I" is the gamma function which has the formula
[0e]

r'a) =f e le~tdt
0

In the special case where u = 0 and B=1, the distribution is called the standard gamma

distribution and the equation for the standard gamma distribution reduces to

yy_ley

r'(a)’

f) = y=20;,a>0

3.7 Link Function for Generalised Linear Model

Using the link function in generalised linear models, we can transform any predicted curve to
conform to different assumptions about the form of the relationship and the error distribution
(Nelder and Wedderburn, 1972). The link function provides the relationship between the linear
predictor and the mean of the distribution function. One of the difficult things to grasp about
GLMs is the relationship between the values of the response variable (as measured in the data
and predicted by the model in fitted values) and the linear predictor. The thing to remember is
that the link function relates the mean value of y to its linear predictor (Crawley, 2007). In

symbols, this means that
=94 =X"B

This function must be monotonic and differentiable.



Table 3.1 Some Common Link Functions and their Inverses

-1
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Link n: = g (1) =9 "y
Identity W n;

Log loge 1; e’

Inverse w;~t n; "t
Inverse-square ;2 n 2
Square-root N n;?

Logit log, :Li ﬁ

Probit D~ (uy) @ (;)

Log-log —loge[—loge (k)] exp[—exp(=n;)]

Complementary log-log

log.[—log.(1 — )]

1 — exp[—exp(n;)]

1; is the expected value of the response; ; is the linear predictor; ®(.) is the cumulative

distribution function of the standard-normal distribution.

Because the link function is invertible, we can also write

n=g"'tm =9X"B)

and, thus, the GLM may be thought of as a linear model for a transformation of the expected

response or as a nonlinear regression model for the response. The inverse link g=*(.) is also

called the mean function.
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The canonical link function is the function which transforms the mean to a canonical location

parameter of the exponential dispersion family member (Lindsey, 1974).

Example:

Normal: g(p) = p

Inverse Gaussian: g(u) = u2

Gamma: g(p) = p?!
Poisson: g(u) = log(w)
; Sl — -
Binomial: g(u) = log (1—u)
The canonical link and the variance function are related by V(p) = ﬁ. Note that while
canonical links are often used, this is not always the case. The only requirements of the link

function are that it should be monotonic and differentiable and should range the whole real

line (-0, 00).

3.8 Similarities and Differences of GLMs

A GLM consists of three components. First is the random component, which is the response
variable and its probability distribution. The probability distribution must be from exponential
family of distributions, which includes normal, binomial, Poisson, gamma and negative
binomial. If the response variable is a continuous variable, its probability distribution might be
normal; If the response variable is binary (e.g. alive or dead), the probability distribution might
be binomial; If the response variable represents counts, then the probability distribution might
be Poisson. Probability distributions from the exponential family can be defined by the natural
parameter, a function of the mean, and the dispersion parameter, a function of the variance

that is required to produce standard errors for estimates of the mean (Hilbe, 1994).
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3.9 Likelihood and Log-likelihood Equations

The maximum likelihood estimation represents the backbone of statistical estimation. This
means that the parameters can be estimated using maximum likelihood (Fisher, 1921). In order
to fit a generalised linear model, we need to estimate the parameters B in the linear predictor.
The probability density function for a random variable, y, conditioned on a set of parameters, 0,
is defined as f(y]@). The likelihood function/joint density for the n independent observations

Vi) Vo eer eu , Y is the product of the individual densities:

LY e, Y0 l0) = TI(f (¥;10)) = L(B]y). (3.11)

This likelihood function is defined as a function of the unknown parameter vector, 6, where y is
used to indicate the collection of sample data. It is usually simpler to work with the log of the

likelihood function, so the log-likelihood is given by

n

L(8,y) =log(8,y) = Z {

=1

yiei - b(el)

a@ T "’)}

To emphasise our interest in the parameters, given the observed data, we denote this function

L(@|data) = L(0|y).

It is well known that if the likelihood function has the exponential family form, maximum
likelihood estimates of the regression parameter can often be found using the method of
weighted least square (Nelder and Wedderburn, 1972; Bradley, 1973; Wedderburn, 1974; and
Jennrich and Moore, 1975). Modified and conditional likelihood sometimes have the required
exponential form. Thus the method of weighted least squares can be used to find the maximum
likelihood estimates even in cases where the likelihood function does not have the exponential

family form (Jorgensen, 1983).

The quasi-likelihood estimation is a one way of allowing for overdispersion. It is often used with

models for count data or grouped binary data. The quasi-likelihood models can be fitted using a
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straightforward extension of the algorithms used to fit generalised linear models (Wedderburn,

1974).

Given the vector of random variables Y with mean p and covariance matrix a2V () the log
quasi-likelihood considered as a function of W, is given by the system of partial differential

equations
oD =V (W - W)
which extends Wedderburn's (1974) definition.
Solving for [(; ¥) we have
[ y) = y"(8) —b(8) — c(y,0)
where c(y, o) is entirely arbitrary.

The variance of Y is Var(y) = “(17_“) for the binomial distribution and Var(y) = u for the

Poisson distribution. Overdispersion occurs when the variance of Y exceeds the Var(y) above.
Thatis 02V (), where o > 1. With overdispersion, methods based on quasi-likelihood can be

used to estimate the parameters 8 and a. A quasi-likelihood function

u
N y
Q(I‘!Y) _J; O'ZV(I,l) dt

is specified by its associated variance function.

3.10 Maximum Likelihood Estimation in the GLM
Recall expression (3.11) that the likelihood function is given by

i0i—b(0;
1B, 9) = Ty P20 + i) (3.12)
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where
0; = 0(x;"B) = 6(ny),
and 0 is a known, monotone function and subsumes all of the 6;.

The ML estimation method selects as estimates the value of the parameters B that maximize

the likelihood, i.e expression (3.12).

In any GLM, the likelihood function depends on B only through 7;, so

ol, ~- al, a6,
. X
0,3, = la<ﬂi an; Y

aﬁ]l(ﬂ ) =

We define A;= P — which is sometimes called link adjustment. If the canonical link is used, then

A;= 1, since in this case 6; = ;.
We now have

Ol _yi—b'(6) _yi—m
00 ¢ ¢

The likelihood equations may thus be written as
55 L(B.9) = TIa0i — 1)hixiy = 0, J1.2,....p. (3.13)
These equations can be written in matrix form as

XTA(y —p) =0

where Xis n X p with element x;; in the ith row and jth column, A is an n X n diagonal matrix

with diagonal elements Ay, Ay, ..., Ap, ¥ = V1, Yoy e, V)T and e = (Uq, gy ey )7
If we letS = (y — u), the equations are

XTAS =0 (3.14)
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In general, the equations in (3.13) are nonlinear in B.

To obtain the MLE of B, called [Ai, we can use Newton-Raphson. The Newton-Raphson

procedure may be expressed as follows:

A(XTAS)] "

ﬁt+1 — Bt — l
according to Harville (1977), this leads to

0
—XTAS = X7

A+
aB;

ap;  dB;S

S

Using the definition of S,i.e S =y — b’(08;) as u; = b’(6;)

as . , . , T T
T —(b7(6)80 )x1j, o, b (000 M) Xnj) = —VA(xyj, v, X))
jj
where V is the n X n diagonal matrix with diagonal elements b”°(6;), i = 1,2, ....,n.

It follows that

as
XTA— = —XTAVAX

B

and also,
an . )
B diagonal matrix.
Therefore

dA . T

— S =AH(X{j, e e s, Xpi)

aﬁj (xl} xn])
where A and H are diagonals. Then
I XTAS = —XT(AVA — AH)X. (3.15)

op
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So the Newton-Raphson iterations may be written as
. -1
Bt = B+ [XT(AVA — AH)X] ™ X (XTAS)|ppt.
When using a canonical link, A= I and A= 0, in which case
1 _ T -1yT
Bt+ — Bt + (X VX) X S|B=Bt.
The Hessian in Fisher scoring is
—XT(AVA — A)X
which has expectation —XT AVAX since E (H) =0
The Fisher Information matrix for B is

—(=XTAVAX)  XTAVAX
® ¢

I(B) =

Now the Fisher scoring algorithm is
t+1 _ pt T -1yT
B =B+ (X'AVAX) X AS|ﬂ=ﬂt

Note that the Fisher scoring algorithm and the Newton-Raphson are identical when the
canonical link is used. In the canonical link case, the Newton-Raphson scheme is an iteratively

reweighted least squares (IRLS) algorithm.

Define
Z'=XB + VS| ppt
Since
gt = XTvxX)“1(XTvx)pt
and

XTvx)~1xTs = (xXTvx)"1xT(vv-1s)
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we have
B+l = (XTVX)—I(XTV)lﬁzﬂtZt = (XTVtX)~1(xTvt)Zt
where
Vt=V|p_pt

Therefore B*1 corresponds to a weighted least squares regression of Z¢ on X with weight

matrix V¢.

n

Z v (y; — x>

i=1

the solution is
B=X"vX)"1xTvy,

where V is the diagonal matrix with diagonal entries vy, vy, ..., vy,.

3.11 Application of GLM to the dataset

The fitted model has as its explanatory variables sex, marital status of deceased, province of
birth of deceased, province of death of deceased, place of death of deceased , province of
residence of deceased, pregnancy of deceased, smoking status of deceased, and education
status of deceased. In this application the model was fitted using SAS PRO GENMOD which is an
in built procedure is SAS version 9.1 or version 9.2 capable of fitting both generalised linear

models and logistic regression models.

By default, PROC GENMOD uses a base line parameterisation for categorical variables where
the last category of each variable is used as the reference category. The output from SAS using

PROC GENMOD result in the following table:



Table 3.2: Analysis of parameter estimates using PROC GENMOD
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Analysis of Parameter Estimates

S .
5 % 8 g
i 3
Parameter DF | estimate ?, T2 S
yel T A
: £ 8 &
by
Intercept ~12.03 | 0.0107 | -0.0506 | -0.008 | 0.0054*
Sex Male 1 -0.0314 | 0.0019 | 0.0151 | -0.0078 | 0.3242
Female (reference) (2| - - - - - -
Marital Single 1| 1 | 0.0327 | 0.0037 | 0.0256 | 0.0399 | <.0001*
Status
Civil marriage 1 | -0.0079 | 0.0042 | -0.0162 | 0.0004 | 0.0622
Living as married 1 | -0.0011 | 0.0059 | -0.0128 | 0.0105 | 0.8518
Widowed 1 | 0.0132 | 0.0046 | -0.0222 | -0.0041 | 0.0044*
Religious law 5| 1 | -0.0091 | 0.0065 |-0.0218 | 0.0036 | 0.162
marriage
Divorced 6| 1 | -0.0054 | 0.0079 |-0.0209 | 0.0101 | 0.4942
Customary marriage
71 - - - - - -
(reference)
Pr°;’;::he of Western Cape 1| 1 | -0.0031 | 0.0072 | -0.0109 | 0.0171 | 0.6648
Eastern Cape 2| 1 | -0.0069 | 0.0063 | -0.0192 | 0.0055 | 0.2757
Northern Cape |3 | 1 | 0.0014 | 0.0099 | -0.018 | 0.0207 | 0.8881
Free State 4] 1| 0007 | 0.007 |-0.0067 0.0207 | 0.3187
Kwazulu-Natal |5]| 1 | -0.0061 | 0.0057 | -0.0173 | 0.005 | 0.0287*
North West 6| 1 | 0.0104 | 0.0066 | -0.0025 | 0.0232 | 0.114
Gauteng 71 1 | -0.0084 | 0.0056 | -0.0025 | 0.0193 | 0.1295
Mpumalanga 8| 1 | 0.0132 | 0.0059 |-0.0247 | -0.0017 | 0.0245*
Limpopo (reference) [ 9| - - - - - -
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(@]
5 ol g
Parameter DF | estimate ?, 2 ;‘QE_J LE)
2 S5 &
I O
(V]
Pr:";::ﬁ of Western Cape 1 | 1| -00325 | 00088 |-0.0497 | -0.0152 | 0.9734
Eastern Cape 2 1 0.013 0.0081 | -0.0289 | 0.003 0.1104
Northern Cape 3 1 -0.0338 | 0.0123 | -0.0579 | -0.0097 | 0.0059*
Free State 4 1 -0.0055 0.0105 | -0.0261 | 0.0151 | 0.6008
KwaZulu-Natal 5 1 0.0003 0.0076 | -0.0151 | 0.0146 | 0.0002*
North West 6 1 -0.0105 0.0082 | -0.0266 | 0.0056 | 0.1998
Gauteng 7 1 -0.023 0.007 | -0.0368 | -0.0093 | 0.001*
Mpumalanga 8 1 | -0.0088 | 0.0073 | -0.0055 | 0.0231 | 0.2262
Limpopo (reference) | 9 - - - - - -
Pr:’S‘;:::c:f WesternCape | 1 | 1 | -0.0258 | 0.009 |-0.0434 | -0.0082 | 0.3525
Eastern Cape 2 1 0.0131 0.0079 | -0.0287 | 0.0024 | 0.0979
Northern Cape 3 1 -0.0132 0.0126 | -0.0379 | 0.0116 | 0.2965
Free State 4 1 -0.0061 0.0104 | -0.0265 | 0.0143 0.558
KwaZulu-Natal 5 1 0.007 0.0075 | -0.0218 | 0.0078 | 0.0041*
North West 6 1 -0.0305 0.008 | -0.0462 | -0.0148 | 0.0001*
Gauteng 7 1 -0.0174 | 0.0072 | -0.0316 | -0.0032 | 0.0165*
Mpumalanga 8 1| -0.0027 | 0.0075 | -0.012 | 0.0174 | 0.7168
Limpopo (reference) | 9 - - - - - -
Place of death Hospital 1 1 | -0.0032 0.002 | -0.0071 | 0.0007 | 0.0181*
Emergency room 2 1 | -0.0113 | 0.0066 | -0.0016 | 0.0242 | 0.0855
Dead on arrival 3 1 0.0039 0.0058 | -0.0152 | 0.0074 | 0.5015
Nursing home 4 1 -0.0121 0.0062 | -0.0243 0 0.0507
Home (reference) 5 - - - - - -
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o
5 ol g
Parameter DF | estimate g g 59_) 'S
2 g5 &
It O
(Vp]
Education None 0 1 | -0.0239 [ 0.0074 | 0.0094 | 0.0384 | 0.0013*
Grade 1 1 1 | -0.0201 | 0.0127 | -0.0048 | 0.0449 | 0.1131
Grade 2 2 1 0.0222 | 0.0113 | 0.0001 | 0.0443 | 0.0488*
Grade 3 3 1 | -0.0117 | 0.0099 | -0.0077 | 0.0312 | 0.2378
Grade 4 4 1 | -0.0242 [ 0.0091 | 0.0062 | 0.0421 | 0.0082*
Grade 5 5 1 -0.0099 | 0.0092 | -0.0082 | 0.0279 | 0.2833
Grade 6 6 1 -0.0082 | 0.0089 | -0.0093 | 0.0256 | 0.3587
Grade 7 7 1 0.0144 | 0.0085 | -0.0023 | 0.0312 | 0.0916
Grade 8 8 1 -0.0036 | 0.0084 | -0.0129 | 0.0201 | 0.6683
Grade 9 9 1 0.0053 | 0.0093 | -0.0129 | 0.0235 | 0.5665
Grade 10 10 1 -0.0082 | 0.0085 | -0.0085 | 0.0248 | 0.3361
Grade 11 11| 1 | -0.0011 [0.0091| -0.019 | 0.0167 | 0.9017
Grade 12 12| 1 0.0029 | 0.0081 | -0.0129 | 0.0187 | 0.7193
o s
Smoking Yes 1 1 0.0058 | 0.0033 | -0.0121 | 0.0006 | 0.0779
No (reference) 2 - - - - - -
Pregnancy Yes 1 1 -0.0423 | 0.0136 | -0.069 | -0.0156 | 0.0695
No (reference) 2 - - - - - -

We find that single people are significant than customary married people at 5% level of

significant, therefore single people were more likely to die from diarrhoea than customary

married people. The result also reveals that people who are widowed versus customary married

people are significant at 5% level. This means that single and widowed people are more likely to

die from diarrhoea than customary marriage people. We find that KwaZulu-Natal province

versus Limpopo province was significant at 5% level of significance, which clearly shows that
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people who are born in KwaZulu-Natal province are more likely to die from diarrhoea than

those who are born in Limpopo province.

For province of death, we find that KwaZulu-Natal Province versus Limpopo province was
significant at 5% level of significance; this shows that people are more likely to die from
diarrhoea in the KwaZulu-Natal than in Limpopo province. The result also reveals that the
Northern Cape province was more significant than Limpopo province at 5%, which tells us that
people in the Northern Cape province are more likely to die from diarrhoea than people in
Limpopo province. We also find that Gauteng province versus Limpopo province was significant
at 5% level, which shows that people are more likely to die from diarrhoea in Gauteng than in
Limpopo province. The results show us KwaZulu-Natal residents are significant compared to
Limpopo residents, which means that KwaZulu-Natal residents are more likely to die from
diarrhoea than Limpopo residents. The result also reveals that North West residents versus
Limpopo residents are significant at 5% level. This clearly shows that North West residents are
more likely to die from diarrhoea than Limpopo residents. We also find that Gauteng residents
versus Limpopo residents are significant at 5% level, which shows that Gauteng residents are

more likely to die from diarrhoea than Limpopo residents.

We find that hospital versus home are significant at 5% level of significance, which means that
people were more dying in hospitals as compared to those who were home. The results show
that uneducated people are significant at 5% level as compared to university students. We also
find that Grade 2 students versus university students are significant at 5% level. The results
further reveal that Grade 4 students versus university students are significant at 5% level. This
clearly tells us that uneducated people, Grade 2 and Grade 4 students, are more likely to die

from diarrhoea than university students.
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Chapter 4

Logistic Regression

4.1 Introduction

This chapter explains the motivation for the use of Logistic regression for the analysis of binary
response data. When there are several explanatory variables, multiple regression is used.
However, in our case the response is not of the continuous type. Instead, the response is simply
a binary response e.g. alive or dead. In this chapter we look at binary response data and its
analysis via logistic regression on how does one model relate between explanatory variables

and a binary response variable.

Logistic regression (also called logistic modeling or the logit model) is a statistical technique that
allows group membership to be predicted from predictor or independent variables, regardless
of whether the predictor variables are continuous, discrete, or a combination of both. The
logistic regression model was introduced by Cox (1970) to describe the dependency of a binary
variable on a set of continuous variables. Logistic regression is a type of predictive model that
can be used when the target variable is a categorical variable with two categories. It falls within
a broader class of models called generalised linear models (GLMs), developed and addressed

quite exhaustively by McCullagh and Nelder (1986).

These types of methods (regression) have become an integral component of any data analysis
concerned with describing the relationship between a response variable and one or more
explanatory variables, and it is often the case that the outcome variable is discrete, taking on
two or more possible values (Hosmer, and Lemeshow, 2005). According to Larsen (2008),
dichotomous response variables (that is, response variables that have only two possible
outcomes) cannot be assumed to be normally distributed, thus the most common method to
use for analysing data with dichotomous response variables is arguably logistic regression.

Berkson (1944, 1953) in connection with the analysis of so-called bio assays introduced the
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statistical model underlying logistic regression and described logistic regression as a form of

statistical modeling that is often appropriate for categorical outcome variables.

As previously stated the response variable is usually dichotomous, but it may be polytomous,
that is, have more than two response levels in which case multinomial logistic regression is
appropriate. In logistic regression, it is assumed that the explanatory variables are independent.
If the explanatory variables are not independent one has to take the dependencies into
account. Suggestions for such models are due to Conolly and Liang (1988). Logistic regression
has been given a very comprehensive history and methodology by Imrey et al. (1981). It is
applicable to multilevel responses and the responses may be ordinal or nominal. For ordinal
response outcomes, one can model functions called cumulative logits by performing ordered
logistic regression using the proportional odds model, and for nominal response outcome one

forms generalised logits and performs a logistic analysis (McCullagh 1980).
4.2 Binary response logistic regression

The linear logistic model assumes a dichotomous dependent variable Y with probability 7 of a
positive outcome or success. When there are only a few or no repeated observations at the
various levels X; of the independent variable, as is often the case in observational studies, we
estimate the logistic response function from the individual Y; observations and the dependent
variable which is binary, taking on the values 1 and 0 with probabilities m and 1-m, respectively.

In other words, Y is a Bernoulli random variable with parameter E(Y) = 7 (Neter et al. 1989).

Given a single predictor variable X, the simple logistic regression model is given by

_ — _ _exp(Bot+B1Xy) .
EY)=m= rexp(fot BiX)) (i=12,...,n) (4.1)

an equivalent form of (3.1) is given by:

E(Y)) =m; = [1+ exp(—Bo — B X)]™*
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where Y; are independent Bernoulli random variables with expected values E(Y;) = m;, 8, and
[, are regression parameters which need to be estimated. The X observations are assumed to
be known constants. Alternatively, if the X is random, E(Y;) is viewed as a conditional mean,

given the value of X;.

A major problem with the linear probability model is that probabilities are bounded by 0 and 1,
but linear functions are inherently unbounded (Allison, 1999). The solution is to transform the
probability so that it is no longer bounded. Transforming the probability to odds removes the
upper bound. If we then take the logarithm of the odds, we also remove the lower bound.
When we finally set the result equal to a linear function of the explanatory variables, we get the
logit model. As discussed, a major problem with the linear probability model is that
probabilities are bounded by 0 and 1, but linear functions are inherently unbounded. The
solution is to transform the probability so that it is no longer bounded. Note that model is very

precisely the logit model because with simple algebra it can be shown that:

log || = Bo + BuX;

a transformation of mr; that is central to our study of logistic regression is the logit

transformation. This transformation is defined, in terms of m; as:

m; =In [g—;l (4.2)
we obtain from (3.1):
T = Bo + P1X; (4.3)

i

The ratio 1 in the logit transformation is called the odds. The transformed response function

—x,
(4.2) is referred to as the logit response function, and m; is called the logit or log-odds. The
importance of this transformation is that 7r; has many of the desirable properties of a linear

regression model.
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In the logistic regression we assume that an observation of the outcome variable may be

expressed as
y=m+¢&
where € is called the error term and may assume one of two possible values.

Here if y = 1 then € = 1 —  with probability , and if y = 0 then € = —m with probability

1 — m. Thus, € has a distribution with mean zero and variance equal to w[1 — m].
4.3 Likelihood function

We shall use the method of maximum likelihood to estimate the parameters of the logistic
regression function since this method is well suited to deal with the problems associated with
the observations Y; being binary (Neter et al. 1989). Before doing that, we first need to develop
the joint probability function of the sample proportion. Since each Y; observation is an ordinary

Bernoulli random variable, where:
PY;,=1)=m;andP(Y;=0)=1—m;

we can represent its probability distribution as follows:
i) =m¥il—m)tYi,,=0,1; i=12,..,n

Note that f;(1) = m; and f;(0) = 1 — m;. Hence, f;(Y;) is simply the probability that Y; = 1 or
0. Suppose Y;, i = 1, ...,n are independent observations. Then the joint probability distribution

is:
(m,y) = [lis, fi(Y) = [liey "t (1 — )™ ™" (4.4)
Where T = T4, ..., Tpand y = y4, ...,V

The logarithm of the likelihood function is given by:
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[(m,y) =logL(m,y) =log, [Tie; m" (1 —m)' ™ = XL, [Yi loge (1f_;rl)] +
i=1log.(1 —m;) (4.5)

In the method of the maximum likelihood, we can maximize either the likelihood function or
the logarithm of the likelihood function because both they lead to the same answer for the

parameters. We will use the logarithm of the likelihood function as it is the easiest.

Using (4.3), it follows that

7'[.
log, (7=-) = o + BuX,

Similarly, for the multiple logistic regression we have
B;y) = ) BXyi— ) log(1 +exp(BX))
i i
Where

B = (BoBr - Bo) +¥ = oy, e v

And

_ 1 Xl]_ X]_Z . . T . le -
1 X21 X22 ) ) o . sz

11 X1 Xz . . . - - Xyl
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4.4 Maximum-Likelihood Estimation of the Logistic Regression

Model

The existence of maximum likelihood estimates for the logistic regression model depends on
the configuration of the data points in the data set (Albert and Anderson, 1984; Santner and
Duffy, 1986; So, 1995). There are three mutually exclusive and exhaustive categories for the
configuration of data points in a data set:

¢ Complete Separation

¢ Quasi-Complete Separation

¢ Overlap

A binary response logistic regression model is considered. Unconditional maximum likelihood
estimation (asymptotic inference) is used when matched data are not considered, provided that
the total number of variables in the model is not too large relative to the number of
observations (Kleinbaum, 1994). This method of inference is based on maximizing the likelihood
function for parameter estimation using the unconditional formula (Kleinbaum, 1994). This is
the usual large-sample asymptotic method used by most of the current statistical software
packages such as SAS and Genstat (Kleinbaum, 1994; Mehta and Patel, 1995). As previously
stated, the existence and uniqueness of maximum likelihood parameter estimates for the
logistic regression model depends on the pattern of the data points in the observation space
(Albert and Anderson, 1984; Santer and Duffy, 1986; So, 1993). Fox (2005) used the Newton-
Raphson method as a common iterative approach to estimating a logistic-regression model. Fox
(2005) firstly chose initial estimates of the regression coefficients, such as b, = 0. At each

iteration t, update the coefficients:

, -1_.,
b, =b,_ 1+ (X Vt—1X) Xy —Dpt-1) (4.6)
where

X is the model matrix, with xi' as ith row;

y is the response vector (containing 0's and 1's); and
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P:—1 is the vector of fitted response probabilities from the previous iteration, the ith entry of
which is

1
1+ exp(—x; b_q)

Dig-1 =

V,_4 is a diagonal matrix, with diagonal entries Pi,t-1(1 — pi’t_l).

We repeat (4.6) until b, is close enough to b;_;. The estimated asymptotic covariance matrix of

the coefficients is given by (X'VX)_I.

4.5 Goodness of Fit

The validity for all regression models needs to be examined before it is accepted for use and
this is usually done using the residuals of the model. We now examine the aptness of the
logistic regression model and hence examine whether the estimated response function for the
data is monotonic and sigmoidal in shape. Residuals are very important in assessing the
adequacy of the fitted model in linear regression analysis. When the dependent variable is
binary, each residual can take on only two values, 1 — 7t; or 0—1%; as for the one for the logistic
regression models since they are not nearly informative. Therefore, the residuals cannot be
expected to provide much direct information about the adequacy of a fitted logistic model. By
grouping the data, it is possible to examine the goodness of fit of the logistic response function

(Neter et al, 1989).

4.5.1 The Hosmer-Lemeshow Goodness of Fit Test

Hosmer and Lemeshow (2000) propose a statistic that they show, through simulation, is
distributed as chi-square when there is no replication in any of the subpopulations. They also

state that this test is available only for binary response models. Due to the similarity of the
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Hosmer and Lemeshow test for logistic regression, Parzen and Lipsitz (1999) suggest using 10
risk score groups. Nevertheless, based on simulation results, May and Hosmer (2004) show
that, for all samples or samples with a large percentage of censored observations, the test
rejects the null hypothesis too often. May and Hosmer suggest that the number of groups be
chosen such that G=integer of {maximum of 12 and minimum of 10}. The event is the response
level specified in the response variable, or the response level that is not specified, or, if neither
of these options are specified, then the event is the response level identified in the “Response
Profiles”. The observations are then divided into approximately 10 groups according to the total

following scheme (Parzen and Lipsitz, 1999).

Let N be the total number of subjects. Let M be the target number of subjects for each group

given by

M= [0.1XN+0.5].

The Hosmer—Lemeshow test statistic is given by:

Here Oy, E4, Ng, and 11y denote the observed events, expected events, observations, predicted
risk for the gth risk decile group, and n is the number of groups. The test statistic asymptotically
follows a X? distribution with n-2 degrees of freedom. The number of risk groups may be
adjusted depending on how many fitted risks are determined by the model. This helps to avoid

singular decile groups (Agresti, 2002).

4.6 Odds and Odds Ratios

The concept of odds first arose in gambling. The odds ratio is a measure of effect size,
describing the strength of association or non-independence between two binary data values. It

is used as a descriptive statistic and plays an important role in logistic regression (Scott, 2010).
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Unlike other measures of association for paired binary data such as relative risk, the odds ratio
treats the two variables being compared symmetrically, and can be estimated using some type
of non-random samples. Scott (2010) also states that logistic regression is one way to

generalise the odds ratio beyond two binary variables.

For an event with a given probability value, p, the corresponding odds is a numerical value

given by

odds (event) = 1L
The odds ratio is a comparative measure of two odds relative to different events. For two
probabilities, p4 = Pr(event A occurs) and pg = Pr(event B occurs) the corresponding odds
of A occurring relative to B occurring is

odds ratio (Avs B) = Zzzz Eg — gz;ﬁ:z;;

4.7 Application to the data set

The most popular SAS procedure for doing ML estimation of the logistic regression model is
PROC LOGISTIC. SAS has several other procedures such as Genmod, Catmod (to name a few)
that will also do this but we focus on PROC LOGISTIC in this chapter. Logistic regression was
applied to the data. In this application the model (logit) was fitted using SAS proc LOGISTIC
which is an in built procedure in SAS version 9.1 or version 9.2 capable of fitting both
generalised linear models and logistic regression models. The main explanatory variables that
were considered are sex, type of death, marital status of deceased, province of birth of
deceased, province of death of deceased, place of death of deceased, province of residence of
deceased, education status of deceased, smoking status of deceased, and pregnancy status of

deceased.



Table 4.1: Type 3 Effects for explanatory variables.

Type 3 Analysis of effects

Effect pr | WaldChi- o hisq
Square

Sex 2 35.9348 <.0001*
Marital status 7 453.9235 <.0001*
Province of birth 9 29.7085 0.0005*
Province of death 9 55.9411 <.0001*
Place of death 5 61.769 <.0001*
Prré’s‘i’('j”::czf 9 31.8392 | 0.0002*
Education status 13 73.5731 <.0001*
Smoking status 2 32.3212 <.0001*
Pregnancy status 2 6.985 0.0304*

The type 3 statistics show that all the explanatory variables (sex, marital status, province of
birth, province of death, place of death, province of residence, education status, smoking

status, and pregnancy status) were significant at the 5% level.
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5 g
©
S8 | g | 3
Parameter DF | estimate E Lé) ECX Z
sz | < 3
» =
Intercept 1 -11.7204 | 59.4466 | 0.0389 | 0.0032*
Sex Male 1] 1 -0.0322 0.155 0.0431 0.8356 1.269
Female (reference) | 2| - - - - - -
Marital Status Single 1] 1 0.7745 0.0472 | 269.041 | <.0001* | 1.528
Civil marriage 21 1 -0.2371 0.0777 9.3028 0.0023* 1.452
Living as married 3 1 -0.0877 0.1125 0.6078 0.4356 1.05
Widowed 41 1 0.3415 0.0924 | 13.6555 | 0.0002* | 1.612
Rer:galsrli‘lasglsw 51 1 -0.2472 0.1509 2.6819 0.1015 1.467
Divorced 6] 1 -0.178 0.1968 0.8175 0.3659 1.369
Customary marriage 21 ) ) ) ) )
(reference)
Province of birth Western Cape 1] 1 -0.2038 0.1718 1.4063 0.2357 0.784
Eastern Cape 21 1 -0.2044 0.0984 4.3169 0.0877 1.179
Northern Cape 31 1 0.0106 0.228 0.0022 0.9629 0.951
Free State 41 1 -0.0891 0.1107 0.6476 0.421 0.879
KwaZulu-Natal 51 1 -0.1643 0.074 49325 | 0.0264* | 1.733
North West 6] 1 0.263 0.1087 5.8553 0.6681 0.739
Gauteng 71 1 -0.1938 0.0815 5.651 0.0174* | 1.492
Mpumalanga 81 1 0.2731 0.0895 9.3079 | 0.0023* | 1.263
Limpopo (reference) | 9| - - - - - -
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| 55|S6¢| ¢

Parameter DF | estimate| 2 £ | — S O 4 8
5o 8| 2 |8¢
Province of Death Western Cape 1| 1| -0.7264 |0.2244|10.4775| 0.982 | 0.991
Eastern Cape 2 1 0.1468 0.1584 | 0.8585 | 0.3541 1.302
Northern Cape 3 1 -0.5499 | 0.2934 | 3.5129 | 0.0609 | 2.614
Free State 4 1 -0.3004 | 0.2021 | 2.2098 | 0.1371 1.117
KwaZulu-Natal 5 1 0.4197 0.1418 | 8.7639 | 0.0031* | 3.119
North West 6 1 -0.1809 | 0.1582 | 1.3075 | 0.2529 1.259
Gauteng 7 1 -0.1363 [ 0.1383 | 0.971 | 0.0003* | 1.729
Mpumalanga 8 1 -0.5469 | 0.1527 | 12.8341 | 0.3244 | 0.873

Limpopo 9| - i i i ) i

(Reference)

Pr:)S‘il:jnec:c:f Western Cape 1 1 -0.5573 | 0.2106 7.001 0.1102 1.122
Eastern Cape 2 1 0.0636 0.1163 | 0.2989 | 0.5846 1.226
Northern Cape 3 1 -0.1078 | 0.2713 | 0.1579 0.6911 1.173
Free State 4 1 -0.1862 0.172 | 1.1718 0.279 1.085
KwaZulu-Natal | 5| 1 0.1524 | 0.0954 | 2.551 | 0.0081* | 2.281
North West 6 1 -0.3668 | 0.1209 | 9.2086 | 0.0024* | 1.886
Gauteng 7 1 -0.0795 | 0.1016 | 0.6115 | 0.0056* | 0.955
Mpumalanga 8 1 -0.3136 | 0.1132 | 7.6813 | 0.4342 1.415

Limpopo 9| - i i i ) i

(reference)

Place of death Hospital 111 -0.08 0.05 | 2.5614 | 0.0015* | 1.051
Emf;g;ncy 2| 1| 03519 |o0.1108 | 10.0898 | 0.1095 | 0.801
Dead on arrival 1 0.0973 0.1136 | 0.7349 | 0.3913 1.033
Nursing home 4 1 -0.3297 | 0.1618 | 4.1535 | 0.0415* | 1.584

Home s | - i i i ) i

(reference)
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Table 4.2 (Continue)

Analysis of Parameter Estimates

2. |l5e| 8
Parameter DF | estimate | 2 £ | - S S o 0
25|85 & |85
Education None 0 1 -0.3003 0.0477 | 39.6752 | <.0001* 0.841
Grade 1 1 1 -0.2236 0.1965 | 1.2946 0.2552 0.506
Grade 2 2 1 0.2834 0.161 3.0995 | 0.0264* 0.0783
Grade 3 3 1 -0.0592 0.1443 | 0.1683 0.6816 0.596
Grade 4 4 1 -0.3083 0.1093 | 7.9596 | 0.0048* 0.665
Grade 5 5 1 -0.0148 0.124 0.0142 0.9052 0.624
Grade 6 6 1 -0.0446 0.1183 | 0.1421 0.7062 0.662
Grade 7 7 1 0.1067 0.0968 | 1.2151 0.2703 0.569
Grade 8 8 1 -0.2022 0.11 3.3794 0.066 0.775
Grade 9 9 1 0.0928 0.1287 | 0.5197 0.471 0.694
Grade 10 10 1 -0.0608 0.1038 | 0.3437 0.5577 0.673
Grade 11 11 1 -0.2394 0.1275 3.527 0.0604 0.804
Grade 12 12 1 0.1991 0.0897 | 4.9265 0.0783 0.477
University (reference) | 13 - - - - -
Smoking Yes 1 1 0.1921 0.0502 | 14.6482 | 0.1382 0.205
No (reference) 2 - - - - - -
Pregnancy Yes 1 1 -0.7917 0.3028 | 6.8338 0.1742 0.324
No (reference) 2 - - - - - -

The common practice of interpreting logistic regression estimates is through odds ratios. PROC
LOGISTIC also calculates the odds ratio which by default uses the corner point parameterisation
for categorical variables where the last category of each variable is used as the reference
category. The odds ratios results from SAS using PROC LOGISTIC are presented in the last

column of Table 4.2.

The odds ratio of 1.528 implies that single people are 1.528 times more likely than those in a
customary marriage to die of diarrhoea. Those in civil marriages are 1.452 times more likely to

die from diarrhoea as compared to those that are in customary marriages. We also find that
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widowed people are 1.612 times more likely to die from diarrhoea compared to those that are
in customary marriages. The results show that people who were born in KwaZulu-Natal,
Gauteng, and Mpumalanga are 1.733, 1.492 and 1.263 times, respectively, more likely to die
from diarrhoea as those who were born in Limpopo. Respondents were 3.119 times more likely
to die in KwaZulu-Natal Province than the Limpopo province and are 1.729 times more likely to

die in Gauteng province as compared with Limpopo province.

People who are resident in KwaZulu-Natal province are 2.281 times more likely to die from
diarrhoea than those who are Limpopo residents. The results also reveal that North West
residents are 1.886 times more likely to die from diarrhoea than Limpopo residents. We also
find that people who live in Gauteng province are 1.415 times more likely to die from diarrhoea
than people who live in Limpopo province. People who are in hospital are 1.051 times more
likely to die from diarrhoea than those who are at home. Furthermore the results reveal that
people who are in nursing homes are 1.584 times more likely to die from diarrhoea than people
who are at home. Uneducated people are 0.841 times more likely to die from diarrhoea than
those who have university levels of education. Students who are in grade 2 are 0.772 more
likely to die from diarrhoea when compared to those who are at university institutions.
Students who are also in grade 4 are 0.465 times more likely to die from diarrhoea compared to

those who are at university institutions.

According to a Medical Research Council (MRC) published data that indicates, in South Africa,
the under-five mortality rate was 57 per 1000 live births in 2010, translating to around 58 000
children dying in that one year. A Medical Research Council (MRC) review of vital registration
data from various sources reveals that in 2007, the majority of registered child deaths in South
Africa were infants (76%), with 22% of these deaths occurring in the first month of life. Of the
61335 under-five deaths registered in 2007, diarrhoea accounted for 21% of deaths and lower

respiratory infections for 16%.
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4.8 SURVEYLOGISTIC

The SURVEYLOGISTIC procedure is similar to the logistic procedure and the other regression
procedures such as generalised linear model (Nelder and Wedderburn, 1972) in the SAS system.
PROC SURVEYLOGISTIC is developed based on PROC LOGISTIC for logistic regression with survey
data. Logistic regression analysis investigates the relationship between discrete responses and
sets of explanatory variables. PROC SURVEYLOGISTIC is designed to handle sample data and
thus incorporates the sample designs, including designs with stratifications, clustering, and
unequal weighting into the analysis, and fits linear logistic regression models for discrete

response survey data by the method of maximum likelihood.

The maximum likelihood estimation of the regression coefficients is carried out with either the
Fisher-scoring algorithm or the Newton-Raphson algorithm. Variances of the regression
parameters and odds ratios are computed using a Taylor expansion approximation (Binder,
1983 and Morel, 1989). The SURVEYLOGISTIC procedure enables one to specify class variables
as explanatory variables in the model by using the same syntax for main effects and

interactions as in the GLM and logistic procedures.

We now consider PROC SURVEYLOGISTIC, which is designed to handle complex sample surveys
with stratifications, clustering, and unequal weighting. On the cluster statement, we simply
name the variable that contains the ID numbers for the persons (which are the clusters in this
case). If the cluster statements were omitted, we would get the same results that we just saw in

Tables 3 and 4. Results with the cluster statement are shown in Table 5 and 6 respectively.



Table 4.3: Type 3 Effects for explanatory variables.

Type 3 Analysis of effects
Effect pr| WaldChi- 1 o hisq
Square
Sex 2 35.0809 <.0001*
Marital status 7 1115.5596 <.0001*
Province of birth 9 75863.7503 <.0001*
Province of death 9 42588.145 <.0001*
Place of death 5 176.9916 <.0001*
Province of residence | 9 263.3377 <.0001*
Education status 9 302.8382 <.0001*
Smoking status 2 39.2016 <.0001*
Pregnancy status 2 9.7373 0.0077*

When using the PROC SURVEYLOGISTIC method type 3 statistics shows that all the explanatory
variables (sex, marital status, province of birth, province of death, place of death, province of
residence, education status, smoking status, and pregnancy status) were significant at the 5%

level. Thus all the explanatory variables do influence diarrhea by death.

Table 4.4: Analysis of parameter estimates using PROC SURVEYLOGISTIC.

Analysis of Parameter Estimates

. 55| 5¢e| ¢
Parameter DF [ estimate| 2 £ - 5 o 5 2
© w T g A T
bl = a O x
Intercept 1 -17.8551 | 0.6799 689.708 | <0.001*

Sex Male 1 1 -0.0423 0.0463 26.3808 0.7852 1.269

Female (reference) 2 - - - - - -
Marital Status Single 1 1 0.6383 0.1002 40.5458 | <.0001* | 1.528
Civil marriage 2 1 -0.3733 0.1607 5.3972 0.0202* | 1.452
Living as married 3 1 -0.0485 0.1474 0.1083 0.7421 1.05
Widowed 4 1 0.4777 0.163 8.5902 0.0034* | 1.612
Religious law marriage | 5 1 -0.3834 | 0.2101 3.3286 | 0.0681 | 1.467
Divorced 6 1 -0.3142 0.2875 1.1944 0.2744 1.369
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Analysis of Parameter Estimates

_ -g N S t a

Parameter DF | estimate | 8 £ - 3 S 89
MELAR L

Customary marriage - ) ) ] ) )

(reference)

Province of birth Western Cape 1 1 -0.2434 0.135 3.2487 0.0715 | 0.784
Eastern Cape 211 -0.1648 | 0.1285 | 1.6465 | 0.1994 | 1.179
Northern Cape 3 1 0.0502 0.3971 0.016 0.8994 | 0.951
Free State 4 1 -0.1286 0.2206 | 0.3401 0.5598 | 0.879
KwaZulu-Natal 5 1 -0.1247 0.0352 | 12.5832 | 0.0004* | 1.733
North West 6 1 0.3025 0.1156 | 6.8491 0.2537 | 0.739
Gauteng 7 1 -0.2333 0.0754 | 9.5792 0.002* | 1.492
Mpumalanga 8 1 0.2335 0.0657 | 12.6399 | 0.0004* | 1.263

Limpopo (reference) | 9 | - - - - - -
Province of death Western Cape 111 -1.1374 | 0.1993 | 32.5692 | 0.982 | 0.991
Eastern Cape 2 1 0.1312 0.1146 | 5.3102 0.3541 | 1.302
Northern Cape 3 1 -0.9609 0.3021 | 10.1187 | 0.0609 | 2.614
Free State 4 1 -0.3102 0.2348 | 0.2219 0.1376 | 1.117
KwaZulu-Natal 5 1 0.0087 0.0639 | 0.0185 | 0.0031* | 3.119
North West 6 1 -0.2301 0.1744 | 1.7414 0.287 | 1.259
Gauteng 7 1 -0.5473 0.0995 | 30.2852 | 0.0003* | 1.729
Mpumalanga 8 1 -0.1359 0.2309 | 0.3464 0.5561 | 0.873

Limpopo (reference) | 9 - - - - -
Pr?s‘il:;;c:c:f Western Cape 1 1 -0.8247 0.117 | 49.6787 | 0.1102 | 1.122
Eastern Cape 2 1 0.0238 0.141 2.0901 0.1483 | 1.226
Northern Cape 3 1 -0.1596 0.2527 | 0.3991 0.5276 | 1.173
Free State 4 1 -0.0812 0.2593 | 0.0981 0.7541 | 1.085
KwaZulu-Natal 5 1 0.115 0.0665 | 2.9873 | 0.0081* | 2.281
North West 6 1 -0.6343 0.1121 | 31.9994 | <.0001* | 1.886
Gauteng 7 1 -0.3469 0.0378 | 84.2136 | 0.8633 | 0.955
Mpumalanga 8 1 -0.0462 0.2684 | 0.0297 | <.0001* | 1.415

Limpopo (reference) | 9 - - - - -
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Analysis of Parameter Estimates

S
5|5 3 2
Parameter DF | estimate 2 - 3 S &
T g&| & 2
& S
Place of death Hospital 1 1 -0.0499 0.0893 | 0.3132 0.0015* 1.051
Emergency room 2 1 -0.222 0.1439 | 2.3803 0.1229 0.801
Dead on arrival 3 1 0.0326 0.0994 | 0.1075 0.743 1.033
Nursing home 4 1 -0.4596 0.2326 | 3.9065 0.0481* 1.584
Home (reference) | 5 - - - - - -
Education None 0 1 -0.7578 0.3159 | 5.7531 0.0165* 0.841
Grade 1 1 1 -0.681 0.49 1.9317 0.1646 0.506
Grade 2 2 1 0.7409 0.3809 | 3.7828 0.0264* 0.477
Grade 3 3 1 -0.5167 0.3716 | 1.9333 0.1644 0.596
Grade 4 4 1 -0.7658 0.2919 6.881 0.0087* 0.665
Grade 5 5 1 -0.4723 0.2342 4.066 0.9052 0.624
Grade 6 6 1 -0.4129 0.3017 | 1.8734 0.1711 0.662
Grade 7 7 1 0.5642 0.3142 | 3.2248 0.0725 0.569
Grade 8 8 1 -0.2553 0.2234 | 1.3067 0.253 0.775
Grade 9 9 1 0.3647 0.3151 1.3393 0.2471 0.694
Grade 10 10 1 -0.3966 0.3213 | 1.5238 0.217 0.673
Grade 11 11 1 -0.2181 0.3842 | 0.3222 0.5703 0.804
Grade 12 12 1 0.2584 0.2603 | 0.9854 0.3209 0.772
retmene | B 1| ’ ‘ ’ ’
Smoking Yes 1 1 0.1865 0.101 3.4076 0.0649 0.205
No (reference) 2 - - - - - -
Pregnancy Yes 1 1 -1.2011 0.3849 | 9.7372 0.1743 0.324
No (reference) 2 - - - - - -

The intercept of the model fitted was significant at 5% level and the estimate of the model was

17.8551. We find that males are 1.269 times more likely to die of diarrhoea than females. This

is reflected by the results that show males were more significant than females at 5% level of
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significance. Single, civil marriage and widowed people were respectively 1.528, 1.452 and
1.612 times more likely than customary marriage people to die because of diarrhoea. Those
people who were born in KwaZulu-Natal, Gauteng and Mpumalanga provinces were
respectively 1.733, 1.492 and 1.263 times more likely to die from diarrhoea than those who

were born in Limpopo province.

More people were dying of diarrhoea the most in KwaZulu-Natal and in Gauteng province than
in Limpopo province. KwaZulu-Natal and Gauteng residents were respectively 3.119 and 1.729
times more likely to die from diarrhoea than Limpopo residents. This is reflected by the results
which show that KwaZulu-Natal and Gauteng residents were significant at 5% level than those

people who were Limpopo residents.

We find that people who were at hospital and nursing home were 1.051 and 1.584 times more
likely than home people to die from diarrhoea. The results reveal that uneducated people were
more affected by diarrhoea than university students. Grade 2 and grade 4 students were
significant as compared to university students at 5% level of significance. Therefore uneducated
people, grade 2 and grade 4 students were respectively 0.841, 0.477 and 0.465 times more

likely than university students to die from diarrhoea.
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Chapter 5

Generalised Linear Mixed Models

5.1 Introduction

In the context of statistical modeling, a generalised linear mixed model (GLMM) is an extension
of the linear mixed model in which the linear predictor contains random effects in addition to
the usual fixed effects (hence mixed models). These random effects are usually assumed to
have a normal distribution (Breslow and Clayton, 1993). This allows the modeling of correlated,
possibly non-normally distributed data with flexible accommodation of covariates. Thus the

GLMM allows the response or dependent variable to be non-normal in nature.

As discussed in Chapter 3, generalised linear models were formulated by Nelder and
Wedderburn (1972) as a way of unifying various other statistical models, including linear
regression, logistic regression, and Poisson regression. The generalised linear model allows the
model to be related to the response variable via a link function by allowing the magnitude of
the variance of each measurement to be a function of its predicted value. The generalised
linear mixed model focuses more on the inverse link function rather than the link function to
model the relationship between the linear predictor and the conditional mean and also includes

nonlinear mixed models (Nelder and Wedderburn, 1972).

In the 1950s, Charles Roy Henderson provided best linear unbiased estimates (BLUE) of fixed
effects and best linear unbiased predictions (BLUP) of random effects. It must be stressed again
that generalised linear mixed model extends generalised linear models (GLMs) by the inclusion
of random effects, and is commonly used for analysis of correlated non-normal over dispersed
data. Their broad application to various disciplines, such as longitudinal studies and small area
estimation, has been described extensively by Breslow and Clayton (1993). Unfortunately, a full
likelihood analysis in GLMMs is often hampered by the need for numerical integration. Several

approximate inference procedures have hence been proposed. These include Laplace
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approximations of the integrated likelihood (Liu and Pierce 1993; Solomon and Cox 1992) and
penalised quasi-likelihood procedures (PQL) (Breslow and Clayton 1993; Schall 1991).
Compared to the more complicated Laplace approximations, a key feature of the PQL approach
is that it is easily implemented by iteratively fitting a linear mixed model to a modified
dependent variable. The recently developed SAS macro GLIMMIX using the MIXED procedure
(Wolfinger 1993) provides easy access to this PQL method. Good examples of the applications
of GLMMs include their use in studying age-specific reproductive success in barn owls (Atlwegg
et al. 2007), snow petrels (Angelier et al. 2007), brown bears (Zedrosser et al. 2007), and
mountain goats (Coté, Festa-Bianchet 2001), just to name a few of the many applications of the

GLMMs.

5.2 The Formal Definition of the Generalised Linear Mixed

Model

The GLMM can be defined by
y=ute (5.1)

As in the GLM, y is the response/dependent variable, e is the error/residual term and p is the
vector of expected means of the observations and is linked to the model parameters by a link

function, g:
guw) = Xa+ Zb. (5.2)

X and Z are the fixed and random effects design matrices, and a and b are the vectors of fixed
and random effects parameters. The random effects, b, can again be assumed to follow a

normal distribution:
b~N(0,G)

and G is the variance-covariance matrix. The variance matrix for the response vector y can be

written
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var(y) =V =var(e) + R,
where R is the residual variance matrix, var(e).

However, V is not as easily specified as it was for normal data where V. = ZGZ’ + R. This is

because  is now not a linear function of the fixed effects a.

5.3 The Three Specifications in Generalised Linear Mixed

Model

We define, firstly,
Linear Predictor, n

As with the linear mixed model, the fixed and random effects are combined to form a linear

predictor
n=Xp+Zu

where X and Z are n X p, n X q design matrix for fixed effects parameters (B) and random

parameters (u) respectively.

With the linear mixed model the model for the vector of observations y is obtained by adding a

vector of residuals, e~N(0, R) as follows:
y=n+e=Xp+Zu+e
Equivalently, the residual variability can be modeled as
y|lu~N(n, R)

Unless y has a normal distribution, the formulation using € is clumsy. Therefore, a generalised
linear mixed model uses a second approach to model the residual variability. The relationship
between the linear predictor and the vector of observations in the generalised linear mixed

model is modeled as



64

y|lu~N(h(n),R)

where the notation, y|lu~N(h(n), R), specifies that the conditional distribution of y given u

has mean h(n), and variance, R.

The conditional distribution of y given u will be referred to as the error distribution. The choice
of which fixed and random effects to include in the model will follow the same considerations
as for a linear mixed model. It is important to note that the effect of the linear predictor is
expressed through an inverse link function. Except for the identity link function, h(n) = n, the
effect of a one unit change in n; will not correspond to a one unit change in the conditional
mean; that is, predicted progeny difference will depend on the progeny’s environment through

h(n) (Breslow and Clayton. 1993).
Link function

The second specification of a generalised linear mixed model is the selection of a link function

g () which converts the expected value u of the outcome variable Y to the linear predictor n.

g =n

Here, the expected value of the outcome is conditional on the random effects [i.e, u =

E(Y|w).

The natural link is so-called the logistic or logit link:

n = log(p/(1— )

where
p=e/(1+e")

But others are in common usage such as the probit link

n==o (), pn==o1n)
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where @ is the standard normal distribution function. The variance function has the form
v(u) = u(1 — p) and the scale parameter is known, ¢ = 1.
Inverse Link Function

The inverse link function is used to map the value of the linear predictor for observation i, n;, to
the conditional mean for observation i, y;. For many traits the inverse link function is one to
one, that is both p; and n; are scalars. For threshold models, p; is a t X 1 vector, where t is the
number of ordinal levels. For growth curve models, p; isann; X 1 vectorand n;isap X 1

vector.

For the linear mixed model, the inverse link function is the identity function h(n) = n;. For

zero/one traits a logit link function n; = In(;/[1 — p;]) is often used, the corresponding
inverse link function is u; = % The logit link function, unlike the identity link function, will

always yield estimated means in the range of zero to one. However, the effect of a one unit
change in the linear predictor is not constant. For most univariate link functions, link and
inverse link functions are increasing monotonic functions. In other words, an increase in the
linear predictor results in an increase in the conditional mean, but not at a constant rate.
Selection of inverse link functions is typically based on the error distribution. Table 5.1 lists a

number of common distributions along with their link functions.
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Table 5.1: Common link functions and variance functions for various distributions

Distribution Link Inverse Link v(p)
Normal Identity n 1
Binomial/n Logit el/(1+eh u@d—=pw/n
Probit ®(n)
Poisson Log el u
Gamma Inverse 1/n u?
Log el

5.4 The Likelihood and Quasi-likelihood Functions

The method of fitting the GLMMs is based on maximising the likelihood function for the model
parameters. However, a difficulty with this is that true likelihood functions can only be defined
for random effects and random coefficient models. Obtaining consistent and efficient
estimators for the regression and the overdispersion parameters in GLMMs has proven to be
difficult. For GLMMs with multidimensional random effects, Schall (1991) and Breslow and
Clayton (1993), among others, use an approach analogous to the best linear unbiased
prediction (BLUP), where random effects are treated as fixed effects (Henderson, 1963). In the
following section we will specify the likelihood function for random effects and random
coefficients models, define a quasi-likelihood function for covariance pattern model, and then
give a general form of the quasi-likelihood function that is appropriate for all types of mixed

model.
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5.5 The Likelihood Function for Random Effects and Random

Coefficients Models

For these models we can obtain a true likelihood function from the product of the likelihoods
based on y|b and b. A true likelihood function is possible because the distributions of y|b and
b are known (binomial, Poisson, etc), hence likelihood functions can be formed from them. The
likelihood for the fixed effects, a, and the variance parameters in the G matrix, y¢, can be

written

L(a,v¢;y) = L(a; y|b)L(y¢; b). (5.3)

Now b is assumed to have a multivariate normal distribution, b~N (0, G), so substituting the

multivariate normal density for L( y4; b) we have
L(a, v y) « Lle;y|b)|G|~*/% exp(—1/2 B'G™ D).

The y|b are independent because we have assumed uncorrelated residuals (R is diagonal) and
therefor L(a; y|b) is simply defined using the assumed distribution of y|b. This can be

expressed using the same form obtained in Chapter 3 for the GLMs:

L(a;}’|b) = exp [y'A—lg _ b(g)l/z’A_lb(e)l/Z + K]

x exp [y'A‘le — b(O)I/Z'A‘lb(B)l/Z],

where
0=Xa+1Zp,
A = diag{a;}, where a; are constant terms

b(0) = (b(8,),b(6,), ....,b(6,) ), where b is the function used in the general distribution

form and
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K=constant.

The overall likelihood for a and y; can then be expressed as
L(a,ygy) « exp [y'A‘lﬂ - b(9)1/2'A‘1b(0)1/2] |G|/2 exp(—1/2 B'G D),
and the log likelihood as
log{L(a,v¢;y)} =y A 10 — ()2 A 1b(0)Y/2 — 1/210g|G| —1/2 B'G b+ K. (5.4)

5.6 Likelihood and Maximum Likelihood

For a generalised linear mixed model the distribution of the response vector y depends on a

vector quantity n which is related to vector regression variables through the equation
n=Xa+2Zb

as in the previous section. Let f(y; a | b) be the probability (density) function of y conditional
on fixed b. The log-likelihood of the observation vector y = (¥;, Y5, ..., ¥;;) conditional on fixed
b is
lLi=Inf(y;alb).
The likelihood of the random component vector b is
1 k
I, = constant — EZ{v]- In(2mo;?) + 0;72b; A; ' b;}

j=1

And the joint log-likelihood of y and b is l = l{ + Il,. The derivatives of l are
al/  _ 0L
/aa - /aa’

al,

al _ 24 -1 .
/abj— ab]_—O'j A]- bj, ]—1,2,...,k.
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The second-order derivatives of I which involve at least one a are the same as the second-

order derivatives of I; while

2
621/ _0°L o aj_ZAj_l,
db;b; db;b;

azz/ =07, ,
db;b; ab;b;

Simulated Maximum Likelihood for GLMM

Geyer and Thompson (1992) and Gelfand and Carlin (1993) suggest simulation to estimate the

GLMM likelihood which can then be numerically maximised.
£(@Dly) = | fOla b (BID)db

_ fOlab)f(bID)
= [LAeDICR) g(b)ab

1M fOlab®)rm®|D)

eI )

where b®) is drawn from the importance sampling distribution g(b). To maximise the

likelihood, we need to evaluate it at different values of (a, D).
5.7 Marginal and Penalized Quasi-Likelihood (MQL and PQL)

We consider two of the several versions based on the approximation of the data (Molenberghs

and Verbeke, 2005). We first consider the decomposition of Y;; as

YU = ‘Lll] +El]: h(xu,ﬁ + Zl]’bl) +EU (55)
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where h = g_l(xij'ﬂ + Zij'bi) is the inverse link function. Assume the error terms follow a
distribution with variance equal to Var(Yij|bl-) = ¢v(u;;) where v(.) is the variance function

in the exponential family.

Then under the natural or canonical link function it follows that

v(pi;) = h'(xi;B + z;;by) (5.6)
where the derivative is with respect to ;.

For illustration consider binary outcomes with the logit canonical link function.

We then have

uij = P(Yy = 1|b;) =m; = exp(xij f+2ij b)

1+exp(xij'ﬁ+zij'bi)

= h(xij’ﬁ + Zij,bi) (57)

Note that from (5.5) €;;=Y;; — p;;. Since y;; = m;; and Y;; = 1 or 0. This implies that
€;j= 1 — m;; with probability 7;; and €;;= —m;; with probability 1 — 7;; hence E(Eij) =0and
Var(Eij) = m;;(1 — m;; ). Note that 7;; is the conditional mean of Y;; given b;. Estimation then

proceeds by using Taylor's linear approximation to h(x;; B + z;; b;) about = (3, b,)".
Penalized Quasi-Likelihood (PQL)

We first discuss a linear Taylor expansion of (5.5) around current estimates ﬁ of the fixed effect

and b, of the random effect assuming canonical or natural link. This gives
Y, ~ h(x; B +z;b,)
+h (xij B + 2 'b)xi; (B — B)
+h (xij B + zi; b,)zi; (bi — b,) +€;;
=iij = v(fy;)xi; (B = B) + v(fj)zi; (b — b,) +€

where [1;; equals its current predictor h(xij'ﬁ + Zij'E) of the conditional mean E (Y;;|b;).
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In vector form this becomes
Y~ f; +ViX;(B—B)+ViZ(b;— b,) +€; (5.8)

for appropriate design matrixes X; and Z; and with V; equal to the diagonal matrix with

diagonal entries equal to v(f;;).

Re-ordering terms in the above equation yields

* = —1 ~ D 7 *
Yi=V, (Y;—m)+XiB+Zb ~X;f+Zb,+¢; (5.9)
for €= 7, €, which still have a mean of zero.

The modified response Y;" allows us to approximate the problem as a linear mixed model. The
approximate linear mixed model in (5.8) is used to obtain update estimates for B,D, ¢ using
readily available procedures fitting linear mixed models. The resulting estimates are called
penalised quasi-likelihood estimates (PQL) because they are obtained by optimising a quasi-
likelihood function which only involves first and second order conditional moments, augmented
with a penalty term on the random effects. We refer to Breslow and Clayton (1993) and

Wolfinger and O’Connell (1993) for its implementation and programming in SAS.
Marginal Quasi-Likelihood (MQL)

This is an alternative approximation method very similar to the PQL method but it is also based
on a linear Taylor expansion of the mean y;; of (5.5) around the current estimates f? for the
fixed effects but around b; = 0 for random predictor. This gives a similar expression as that
derived under PQL method with b; = 0. The current predictor fi;; is now of the form h(xij'[?)

instead of h(xij',[? + zij'l’)\l) as was the case under the PQL method. Re-ordering the terms gives

Y, = I7i_1(Yi — fI;) + X;B which also satisfies the approximate linear mixed model

% —~ ~ —1 ~ *
Yi=Xip+V;, (Yi—@) = X;B+Z;b; +€;

similar to (5.9).
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The resulting estimates are called marginal quasi-likelihood (MQL). They are obtained by
optimising a quasi-likelihood function which only involve first and second order moments but
now evaluated at the marginal linear predictor xl-'ﬁ rather than the conditional linear predictor

x; B+ z; b;.
5.8 Comparison of (PQL) and (MQL) Methods

The quasi-likelihood (Wedderburn, 1974; McCullagh, 1983) is useful especially in modeling
overdispersed count data or overdispersed binomial data (that is, greater variability in the data
than would be expected from the statistical model used), in which case the likelihood approach
can be complicated. The commonly known penalised quasi-likelihood (PQL) procedure, as
synthesised and popularised by Breslow and Clayton (1993), offers a means for approximate
inference in generalised linear mixed models (GLMMs). The PQL method of estimation and
inference, which is known to be relatively straight forward to implement, has been explored for
its potential use in small area disease risk predictions and inference in the context of Bayesian
disease mapping (Breslow and Clayton, (1993), Leroux et al., (1999), Macnab et al., (2004),
Dean et al., (2004), Ainsworth and Dean, (2006) and Ugarte et al., (2008). The difference
between PQL and MQL is that MQL does not incorporate the random effects in the linearisation
process but both methods have the same key idea and will ideally have similar properties. The
MQL estimation performs well if the random effects variance is very small. Rodriguez and
Goldman (1995) show that both PQL and MQL may be seriously biased when applied to binary
response data. Their simulations reveal that the fixed effects and variance components suffer
from substantial, if not severe, attenuated measurements per cluster while with an increasing
number of measurements per subject, MQL remains biased and PQL becomes consistent.
Breslow and Lin (1995) suggest the inclusion of bias correction terms while Kuk (1995) suggest
the use of iterative bootstrap. Goldstein and Rasbash (1996) show that one of the ways to
improve the accuracy of the approximations is to include a second order term in the Taylor
series expansion. They call these methods PQL2 and MQL2. Goldstein and Rasbash (1996) state
that MQL2 performs slightly better than MQL but PQL2 is substantially better than PQL. Within
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the PQL and MQL methods, the linear mixed model approximation can be based on maximum
likelihood estimation (ML) or restricted maximum likelihood estimation (REML) resulting in

slightly different results.
5.9 SAS Software for Fitting Generalised Linear Mixed Model

The models can be fitted via a number of available statistical software programmes such as SAS,
Genstat, and many more. In the current work we focus on SAS applications since this software
will be used to analyse our data. SAS PROC GLIMMIX is capable for fitting statistical models to
data with both random and fixed effects and where the response is not necessarily normally
distributed. The GLIMMIX procedure generalises the MIXED and GENMOD procedures in two
important ways. First, the response can have a non-normal distribution. The MIXED procedure
assumes that the response is normally (Gaussian) distributed. Second, the GLIMMIX procedure
incorporates random effects in the model and so allows for subject-specific (conditional) and
population-average (marginal) inference. The GENMOD procedure allows only for marginal
inference. PROC GLIMMIX performs both estimations and statistical inference for generalised
linear mixed models. The GLIMMIX procedure can also fit models for non-normal data with
hierarchical random effects, provided that the random effects have a normal distribution. The
default estimation method in PROC GLIMMIX for models containing random effects is a
technique known as restricted Pseudo-likelihood (RPL) estimation (Wolfinger and O Connell,

1993).

To fit GLMMs via Gaussian and adaptive Gaussian quadrature methods in SAS, PROC NLMIXED
is used. The NLMIXED procedure fits nonlinear mixed models where the conditional mean
function is a general nonlinear function. The class of generalised linear mixed models is a
special case of nonlinear mixed models; hence some of the models we can fit with PROC
NLMIXED can also be fitted with the GLIMMIX procedure. The NLMIXED procedure relies by
default on approximating the marginal log likelihood through adaptive Gaussian quadrature. In
the GLIMMIX procedure, maximum likelihood estimation by adaptive Gaussian quadrature is

available with the METHOD=QUAD option in the GLIMMIX statement. The default estimate
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methods thus differ between the NLMIXED and GLIMMIX procedures, because adaptive
guadrature is possible for only a subset of the models available with the GLIMMIX procedure. If
one chooses METHOD=QUAD in the PROC GLIMMIC statement for the generalised linear mixed
model, the GLIMMIX procedure performs maximum likelihood estimation based on Laplace
approximation of the marginal log likelihood. PROC NLMIXED computes derivatives of the
adaptive Gaussian quadrature approximation and the default method used is dual quasi-
Newton optimisation. The main advantage of NLMIXED is that the user is given a high degree of
flexibility in the way the model is specified and parameterised. In the current application both

PROC GLIMMIX and PROC NLMIXED are used.

The following results were obtained using PROC GLIMMIX where the household number was
chosen as a random variable. The reason for using the random intercept in the model is
because random intercept allow the overall level of the linear predictor to vary between

clusters and above the variability explained by the covariates.

Table 5.2: Type 3 effects for explanatory variables.

Type 3 Analysis of Fixed Effects
Num Den F
Effect DF DF Value Pr>F
65472 | 17.97 | <.0001*
Marital status 65472 | 64.85 | <.0001*
Province of birth 65472 | 3.35 | <.0001*

2
7
9
Province of death 9 65472 | 6.21 | <.0001*
5
9

Sex

Place of death 65472 | 12.35 | <.0001*
Province of residence 65472 | 3.54 | 0.0002*

Education status 13 65472 | 5.66 | <.0001*
Smoking status 2 65472 | 16.16 | <.0001*
Pregnancy status 2 65472 | 3.49 | 0.0304*

Table 5.2 reflects Type 3 analysis for fixed effects. The fixed effects parameter estimates and
the type 3 analysis for the fixed effects result indicate that all the explanatory variables were

significant at 5% significance level.



Table 5.3: Analysis of parameter estimates using PROC GLIMMIX
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Analysis of Parameter Estimates

o o
= e = 5
Parameter DF Estimate E § é Z
< * S
(Yp]
Intercept 65472 | -15.878 | 44.191 | -0.36 | <.0001*
Sex Male 1 | 65472 | -0.0238 | 0.0403 [ -5.91 | 0.0635 | 0.788
Female (reference) 2 - - - - - -
Marital status Single 1 |65472 | 0.6386 | 0.0825 | 7.74 0.0635 | 1.893
Civil marriage 2 [ 65472 | -0.3728 | 0.1093 | -3.41 | 0.0006* | 0.688
Living as married 3 [ 65472 | -0.0485 | 0.1434 | -0.34 | 0.7352 0.62
Widowed 4 165472 | 0.4774 0.123 | -3.88 | 0.0001* | 0.953
Religious law married | 5 | 65472 | -0.383 0.185 | -2.07 | 0.0783 | 0.682
Divorced 6 | 65472 | -0.3137 | 0.2358 | -1.33 | 0.1833 | 0.73
Customary marriage 7 i i i i i i
(reference)
Province of birth Western Cape 1 (65472 ( -0.2431 | 0.2078 | 1.17 | 0.2399 | 1.274
Eastern Cape 2 | 65472 | -0.1654 | 0.1361 | -1.22 | 0.2255 | 0.848
Northern Cape 3 [ 65472 | 0.0490 | 0.2685 | 0.18 0.8517 | 1.052
Free State 4 165472 | -0.1284 | 0.1463 | 0.88 0.3786 | 1.137
KwaZulu-Natal 5 | 65472 | -0.1251 | 0.1128 | -1.11 | 0.0355* | 1.353
North West 6 | 65472 | 0.3018 | 0.1439 2.1 0.269 0.883
Gauteng 7 | 65472 ] -0.2329 | 0.1159 | 2.01 | 0.0442* | 1.263
Mpumalanga 8 [ 65472 | 0.2335 | 0.1128 | -2.07 [ 0.0387* | 1.392
Limpopo (reference) | 9 - - - - - -
Province of death Western Cape 1 |65472 | -1.1373 [ 0.2519 | -4.51 | 0.9544 | 1.009
Eastern Cape 2 | 65472 | 0.2642 [ 0.1781 | -1.48 | 0.1379 | 0.768
Northern Cape 3 | 65472 | -0.9607 | 0.3309 | -2.9 |0.0037*| 2.614
Free State 4 | 65472 | -0.1104 | 0.2272 | -0.49 | 0.6262 | 0.895
KwaZulu-Natal 5 | 65472 | 0.0898 | 0.1571| 0.06 | 0.0289* | 3.119
North West 6 | 65472 | -0.2299 [ 0.1796 | -1.28 | 0.2004 | 0.794
Gauteng 7 | 65472 | -0.5471 | 0.1528 | -3.58 | 0.0003* | 1.729
Mpumalanga 8 [ 65472 | -0.1357 | 0.1398 | 0.97 0.3317 | 1.146
Limpopo (reference) | 9 - - - - - -
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Analysis of Parameter Estimates

o
[~ o
Parameter DF | Estimate = © 7 P
o > a 3
c + ©
© (@]
&
Province of Western Cape | 1| 65472 | -0.8247 | 0.2627 | -3.14 | 0.459 | 1.122
residence
Eastern Cape |2 | 65472 0.2032 0.1741 | -1.17 0.2416 1.226
Northern Cape | 3 | 65472 | -0.1587 0.3263 -0.49 0.6244 1.173
Free State 4| 65472 | -0.0812 0.2232 -0.36 0.7157 1.085
KwaZulu-Natal [ 5| 65472 0.1149 0.1554 | -0.74 0.0017* 2.281
North West 6| 65472 | -0.6338 0.177 -3.58 | 0.0003* 1.886
Gauteng 7 | 65472 | -0.3468 0.1583 | -2.19 0.0284* 1.415
Mpumalanga | 8 | 65472 | -0.0459 | 0.1442 | 0.32 0.7485 0.955
Limpopo
9 - - - - - -
(reference)
Place of death Hospital 165472 | -0.0499 0.0411 | -1.21 0.0173* 1.584
Emergency | 5 | esa72 | 02223 | 01281 | 1.73 | 0.0832 | 0801
room
Dead on arrival | 3 | 65472 0.0327 0.1316 | -0.25 0.804 1.033
Nursing home 65472 | -0.4598 0.193 -2.38 0.2241 1.051
Home 5 i i i i i
(reference)
Education None 0| 65472 | -0.7595 | 0.2256 3.37 0.0008* | 0.854
Grade 1 165472 | -0.6822 0.3055 2.23 0.0713 0.506
Grade 2 2| 65472 0.742 0.2802 2.65 0.0082* 0.621
Grade 3 3| 65472 | -0.5188 0.2693 1.93 0.055 0.596
Grade 4 4| 65472 | -0.7679 0.2493 3.08 0.0021* 0.745
Grade 5 5165472 | -0.4741 0.2572 1.84 0.0662 0.224
Grade 6 6| 65472 | -0.4147 0.254 1.63 0.104 0.362
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Table 5.3 (Continue)

Analysis of Parameter Estimates
S
= o
Parameter DF | Estimate | = © 7 -
o = o 3
c +— ©
© o
A
Education Grade 7 7 | 65472 | 0.5657 | 0.2431| 2.33 0.414 | 0.469
Grade 8 8 | 65472 | -0.2571 | 0.2494 | 1.03 0.306 | 0.575
Grade 9 9 [ 65472 | 0.3665 | 0.2596 | 1.41 | 0.1601 | 0.194
Grade 10 10 | 65472 | -0.3982 | 0.2462 | 1.62 | 0.1071 | 0.373
Grade 11 11 | 65472 | -0.2198 | 0.2588 | 0.85 | 0.3996 | 0.204
Grade 12 12 | 65472 | 0.2599 | 0.2394( 1.09 | 0.2805 | 0.372
University 13 i i i i i i
(reference)
Smoking Yes 1 |65472 | 0.1866 |0.0812 | -2.3 0.0911 | 0.205
No (reference) 2 - - - - - -
Pregnancy Yes 1 165472 | -1.2015 | 0.4561 | -2.63 | 0.0855 | 0.324
No (reference) 2 - - - - - -

Table 5.3 reveals to us that the intercept for the model fitted was significant at the 5%
significance level since the p-value was smaller than 0.05. Single, civil marriage and widowed
people were significant at 5% level as compared to customary married people. Therefore single,
civil married and widowed people were more likely to die from diarrhoea than customary
married people. The result also tells us that single, civil married and widowed people were
respectively 1.893, 0.688 and 0.953 times more likely to die from diarrhoea than customary
married people. People who were born in KwaZulu-Natal, Gauteng and Mpumalanga province
were more likely to die from diarrhoea then people born in Limpopo province. This is reflected
by the results which show that people in KwaZulu-Natal, Gauteng and Mpumalanga province
were respectively 1.353, 1.263 and 1.392 times more likely to die from diarrhoea than people in
Limpopo province. We find that people were more likely to die from diarrhoea in the following

provinces: KwaZulu-Natal, Northern Cape and Gauteng province, as compared to Limpopo
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province. This is also reflected by the results since KwaZulu-Natal, Northern Cape and Gauteng
provinces were significant at 5% levels of significance as compared to Limpopo province. We
also find that the odds ratio for KwaZulu-Natal, Northern Cape and Gauteng provinces were

3.119, 2.614 and 1.729 respectively.

The result reveals that (for province of residence) KwaZulu-Natal, North West and Gauteng
provinces were significant at 5% levels when compared to Limpopo province, which means that
KwaZulu-Natal, North West and Gauteng residents were respectively 2.281, 1.886 and 1.415
times more likely than Limpopo residents to die from diarrhoea. There is a significant difference
at the 5% level between hospital and home deaths with respect to diarrhoea. People in
hospitals are 1.584 times more likely to die from diarrhoea at 5% level of significance than
people in homes. We find that uneducated people, Grade 2 and Grade 4 students were
significant at 5% levels when compared to university students. This tell us that uneducated
people, Grade 2 and Grade 4 students were respectively 0.854, 0.621 and 0.745 times more

likely to die from diarrhoea compared to university students.

5.9.1 Direct Estimation via PROC NLIMIXED

The result for fitting the model using proc NLMIXED assuming a random intercept model (allows
the overall level of the linear predictor to vary between clusters and above the variability

explained by the covariates) are given in the Tables 5.4 and 5.5 respectively.



Table 5.4: Type 3 effects for explanatory variables

Type 3 Analysis of Fixed Effects
Num Den F
Effect DF DF Value Pr>F

Sex 2 65472 | 17.97 | <.0001*
Marital status 7 65472 | 64.84 | <.0001*
Province of birth 9 65472 ( 3.3 | <.0001*
Province of death 9 65472 | 6.22 | <.0001*
Place of death 5 65472 | 12.35 | <.0001*
Pr':S‘i’('j”ecfczf 9 |65472 | 3.54 |0.0002*
Education status 13 65472 | 5.66 | <.0001*
Smoking status 65472 | 16.16 | <.0001*
Pregnancy status 65472 | 3.48 | 0.0304*

Table 5.5: Analysis of parameter estimates using PROC NLMIXED
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Analysis of Parameter Estimates

S
L ) —
. gel = =
Parameter DF | estimate 5 © L
o => a
c -+
©
&H
Intercept 65472 | -15.878 | 44.191 | -0.36 | <.0001*
Sex Male 1 |65472 | -0.0238 | 0.0403 | -5.91 | 0.4281
Female (reference) 2 - - - - -
Marital status Single 1| 65472 | 0.6386 | 0.0825| 7.74 | <.0001*
Civil marriage 2 | 65472 | -0.3728 | 0.1093 | -3.41 | 0.0006*
Living as married 3 [ 65472 | -0.0485 | 0.1434 | -0.34 | 0.7352
Widowed 4 | 65472 | 0.4774 | 0.123 | -3.88 | 0.0001*
Religious law married 5165472 | -0.383 0.185 | -2.07 | 0.0783
Divorced 6 | 65472 | -0.3137 [ 0.2358 | -1.33 | 0.1833
Customary marriage 7 - - - - -
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Analysis of Parameter Estimates

S
. s E =
Parameter DF estimate s g 2
'g - a
8
[Vp]
Province of birth Western Cape 1| 65472 | -0.2431 | 0.2078 | 1.17 0.2399
Eastern Cape 2 | 65472 | -0.1654 | 0.1361 | -1.22 0.2255
Northern Cape 3 | 65472 | 0.04901 | 0.2685| 0.18 0.8517
Free State 4 | 65472 | -0.1284 | 0.1463 | 0.88 0.3786
KwaZulu-Natal 5| 65472 | -0.1251 | 0.1128 2.1 0.0355*
North West 6 | 65472 0.3018 [ 0.1439( -1.11 0.269
Gauteng 7 | 65472 | -0.2329 | 0.1159| 2.01 0.0442*
Mpumalanga 8 | 65472 0.2335 | 0.1128 | -2.07 | 0.0387*
Limpopo (reference) | 9 - - - - -
Province of death Western Cape 1| 65472 | -1.1373 [ 0.2519 | 0.06 0.9544
Eastern Cape 2 | 65472 0.2642 (0.1781 | -1.48 0.1379
Northern Cape 3 | 65472 | -0.9607 | 0.3309 | -2.9 | 0.0037*
Free State 4 | 65472 | -0.1104 | 0.2272 | -0.49 0.6262
KwaZulu-Natal 5 | 65472 | 0.00898 | 0.1571 | -4.51 | <.0001*
North West 6 | 65472 | -0.2299 | 0.1796 | -1.28 0.2004
Gauteng 7 | 65472 | -0.5471 | 0.1528 | -3.58 | 0.0003*
Mpumalanga 8 | 65472 | -0.1357 | 0.1398 | 0.97 0.3317
Limpopo (reference) | 9 - - - - -
Prr:s‘i';"ec:c:f Western Cape 1| 65472 | -0.8247 | 0.2627 | 074 | 0.459
Eastern Cape 2 | 65472 0.2032 (0.1741 | -1.17 0.2416
Northern Cape 3 | 65472 | -0.1587 | 0.3263 | -0.49 0.6244
Free State 4 | 65472 | -0.0812 | 0.2232 | -0.36 | 0.7157
KwaZulu-Natal 5[ 65472 0.1149 | 0.1554 | -3.14 | 0.0017*
North West 6 | 65472 | -0.6338 | 0.177 | -3.58 | 0.0003*
Gauteng 7 | 65472 | -0.3468 | 0.1583 | -2.19 | 0.0284*
Mpumalanga 8 | 65472 | -0.0465 | 0.1442 | 0.32 0.7485
Limpopo (reference) | 9 - - - - -




Table 5.5 (Continue)

Analysis of Parameter Estimates

S
] ) —
. he] = =
Parameter DF estimate 5 © 2
o = a
c -
©
&
Place of Hospital 1| 65472 | -0.0499 | 0.0411 | -2.38 | 0.0173*
death
Emergency | 5 | 65472 | -0.2223 | 01281 | 1.73 | 0.0832
room
Dead on arrival 3 65472 0.0327 0.1316 | -0.25 0.804
Nursing home 4 65472 -0.4598 0.193 -1.21 0.2241
Home 5 i i i i i
(reference)
Education None 0 65472 -0.7595 | 0.2256 | 3.37 | 0.0008*
Grade 1 1 65472 -0.6822 | 0.3055 2.23 0.0625
Grade 2 2 65472 0.742 0.2802 2.65 0.0082*
Grade 3 3 65472 -0.5188 0.2693 1.93 0.055
Grade 4 4 65472 -0.7679 0.2493 3.08 0.0021*
Grade 5 5 65472 -0.4741 0.2572 1.84 0.0662
Grade 6 6 65472 -0.4147 0.254 1.63 0.104
Grade 7 7 65472 0.5657 0.2431 2.33 0.0202
Grade 8 8 65472 -0.2571 | 0.2494 1.03 0.306
Grade 9 9 65472 0.3665 0.2596 1.41 0.1601
Grade 10 10| 65472 -0.3982 | 0.2462 1.62 0.1071
Grade 11 11| 65472 -0.2198 | 0.2588 0.85 0.3996
Grade 12 12| 65472 0.2599 0.2394 1.09 0.2805
University 13 i i i i i
(reference)
Smoking Yes 1 65472 0.1866 0.0812 -2.3 0.0912
No (reference) | 2 0 0 0 0 0
Pregnancy Yes 1 65472 -1.2015 0.4561 | -2.63 0.0855
No (reference) | 2 - - - - -
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In this particular case the result indicates not much difference in the parameter estimates. The
fixed effects parameter estimates and the Type 3 analysis for the fixed effects result show not
much difference from the ones obtained using proc GLIMMIX in table 5.2. The standard errors
are approximately the same as those obtained using the Proc GLIMMIX procedure in the

random intercept model in Table 5.3.
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Chapter 6

Discussion and Conclusion

This dissertation has presented the chosen topics on aspects of categorical data analysis in an
organised manner and the areas of graphs and contingency tables have been adequately
addressed. Statistical methods aimed in modeling categorical data have been concerned with
statistical methods for categorical binary data which is frequently encountered in applied
statistics. In this thesis, we attempted to give more insight into the different categorical
approaches when one has a binary outcome. These methodologies have been demonstrated

with analyses of a practical data set with a binary outcome.

Although many approaches to the analysis of categorical data have been studied, most are
restricted to the setting in which the response variable is binary. Bar graphs were plotted to
analyse the data set and drawing of cross-tabulation was also done to analyse the data set. We
used generalised linear models (GLMs), logistic regression, surveylogistic, and generalised linear
mixed models (GLMMs) to analyse the data set. We find that the results using PROC LOGISTIC
were quite similar to those found using PROC SURVEYLOGISTIC when the cluster statement was
not included in the PROC SURVEYLOGISTIC procedure. It must also be said that SAS allows good
flexibility in using PROC GLIMMIX and PROC NLMIXED to fit these models. The PROC NLMIXED
procedure took a much longer time to converge and gave us quite similar parameter estimates
as the ones found using PROC GLIMIX. The reason for PROC NLMIXED taking longer was

because the method is computationally more intensive.

The graphs showed us that diarrhoea was frequently affecting females, single people, and
pregnant people since their proportion of diarrheal deaths was very high. In the logistic

regression results, we found that the explanatory variables such as sex, smoking status of
deceased and pregnancy status of deceased were not affected by diarrhoea and the other

explanatory variables (marital status, province of birth, province of death, place of death,
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province of residence and education of deceased) were affected. PROC GENMOD results

showed us the same interpretation as the one we had in logistic regression.

The results show that single and widowed people were more likely than customary married
people to die from diarrhoea since their odds ratios were high. We also found that people who
were born in KwaZulu-Natal, Gauteng and Mpumalanga province were more likely to die from
diarrhoea than those who born in Limpopo province. KwaZulu-Natal province was found to
have a high proportion of deaths compared to other provinces. This is because the odds ratio
for KwaZulu-Natal (as a province of death of deceased) was large. People who were KwaZulu-
Natal and Gauteng residents were found to be more likely to die from diarrhoea than Limpopo
residents. Furthermore, the results reveal that hospital people are more likely to die from
diarrhoea than home people. We found that uneducated people were at higher risk of dying

from diarrhoea than university students.

In general, the explanatory variables (marital status, province of birth, province of death, place
of death, province of residence and education of deceased) were found to have a significant

effect on diarrhoea.

The recommendation | will make to public health planners, policy makers and practitioners is to
go and educate all single people, uneducated people and also those people who are staying
especially in KwaZulu-Natal about the danger of diarrhoea so that they will know about it and
be able to prevent things that can cause diarrhoea. And also tell them ways to cure it once
someone is affected. To educate people, several methods can be used like having workshops in
townships and rural areas so that all public people would know about diarrhoea and also giving

them pamphlets may help to those who are educated.

Future research could look at other statistical methods such as structural equation modeling
which is a form of path analysis concerned with inter-dependence between variables. Another

area of research is joint modeling of diarrhoea and other dependent variables such as TB.
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