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Abstract

In this thesis we investigate how the modification of a graph affects various

distance measures. The questions considered arise in the study of how the

efficiency of communications networks is affected by the loss of links or nodes.

In a graph C, the distance between two vertices is the length of a shortest

path between them. The eccentricity of a vertex v is the maximum distance

from v to any vertex in C. The radius of C is the minimum eccentricity of a

vertex, and the diameter of C is the maximum eccentricity of a vertex. The

distance of C is defined as the sum of the distances between all unordered

pairs of vertices.

We investigate, for each of the parameters radius, diameter and distance

of a graph C, the effects on the parameter when a vertex or edge is removed or

an edge is added, or C is replaced by a spanning tree in which the parameter is

as low as possible. We find the maximum possible change in the parameter

due to such modifications. In addition, we consider the cases where the

removed vertex or edge is one for which the parameter is minimised after

deletion.

We also investigate graphs which are critical with respect to the radius or

diameter, in any of the following senses: the parameter increases when any

edge is deleted, decreases when any edge is added, increases when any vertex

is removed, or decreases when any vertex is removed.
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Chapter 1

Introduction

The distance between vertices is one of the most thoroughly studied concepts

in graph theory. In fact, Buckley and Rarary [BR90] devoted an entire

book to the subject. In this thesis we deal with the three related graphical

parameters radius, diameter and distance (or equivalently, average distance)

of a graph. Our underlying motivation is the application of these parameters

to communications networks.

1.1 Radius, Diameter and Distance

The distance between two vertices is the length of a shortest path between

them. The eccentricity of a vertex v in a graph G is the maximum distance

from v to any vertex in G. The radius of G is the minimum eccentricity of

a vertex in C, and the centre is the set of vertices whose eccentricity attains

this minimum. The diameter of G is the maximum distance between any two

vertices in G.

The distance of G is defined as the sum of the distances between all un­

ordered pairs of vertices. The average or mean distance of G is the average

distance between two vertices in G, where the average is taken over all un-
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ordered pairs of distinct vertices. The distance of a vertex v in G is the sum

of the distances from v to all the other vertices in G.

The radius and diameter are probably too well-known to require any

further explanation. The distance of a graph, however, is a far more recent

concept, and we give a few remarks on its history.

The concept of the distance of a graph was introduced by the chemist

Wiener in 1947 (see [Wie47]), and so is often called the Wiener index. Since

then there have been numerous papers in chemistry and chemical graph the­

ory dealing with applications of the average distance (see, e.g., [Ran79]).

Here the vertices of a graph might represent carbon atoms in a molecule,

and the edges represent the chemical bonds between them. The distance of

a graph has been correlated with such properties of the associated chemical

compound as boiling and melting points, refractive index, surface tension

and viscosity.

The analogous concept for digraphs was first investigated by Harary

[Har59] in a sociometric framework. Here the vertices of a graph represent

people in an organisation, and an arc from u to v exists if v takes orders

from u. Hence the out-distance of a vertex is a measure of the corresponding

person's status in the organisation.

The concept of mean distance was introduced into graph theory in 1977

by Doyle and Graver [DG77] as a measure of the "compactness" of a graph,

but it had been used in other disciplines before then. In architecture, for

example, March and Steadman used mean distance as a tool for evaluating

floor plans (see [MS71], Chapter 14). Here each room corresponds to a vertex,

and two vertices are adjacent if it is possible to move directly between the

corresponding rooms. Mean distance has also been used in modelling com­

puter and communications networks. Since this application is of particular

interest to us, we will deal with it in more detail below.

Subsequently, numerous papers on distance and average distance have

appeared in graph theory journals. Ore [Ore62] suggested the ratio of the
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distance of a vertex to the order of the graph containing it as a measure of

the "centrality" of the vertex. He suggested that this concept be studied

in the case of trees, and this was subsequently done by Zelinka in [Ze168,

Ze170]. The concept of the distance of a vertex was also studied in some

detail by Sabidussi [Sab66]. In 1976 Entringer, Jackson and Snyder [EJS76]

summarised and extended several previous results on distance and proved

some new results. A survey of the literature before 1984 is given by Plesnfk

[Ple84].

1.2 Communications Networks

The applications of radius, diameter and distance of most interest to us are

those connected with communications networks. Such a network (for exam­

ple, a city's road system, a computer network, or a telephone exchange) can

be conveniently modelled by a graph, in which the vertices of the graph rep­

resent the nodes of the network, and the edges represent the links between

them. For example, each vertex might represent a computer, two vertices

being adjacent if there is a direct communication link between the corre­

sponding computers. Or each vertex might represent a street intersection,

and the edges the sections of the streets between intersections. There is

a good survey by Caccetta [CacS9] on the use of graph theory in network

design, although it does not include the applications of distance and radius.

Weights on the edges might represent the cost of using a particular link,

or else the time delay encountered along that link, or even the signal degra­

dation expected along it. Hence when a message is sent between two nodes

of a network, the distance between the corresponding two vertices in the as­

sociated graph is proportional to the time delay, signal degradation or cost,

depending on how the graph is weighted.

In cases where messages between all pairs of vertices are equally frequent,

the average distance thus corresponds to the mean time delay of a message,
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or the average cost of a phone call. Mean distance is therefore a good measure

of the performance or operating cost of a communications network which is

heavily used.

In some cases, however, it might be more important to know the max­

imum possible time delay, signal degradation or cost of sending a message

in the network; in other words, the performance of the network in the worst

case. In this case the diameter might be a more suitable measure of network

efficiency.

The radius can also be an important measure of network efficiency. For

instance, one might have an emergency facility to locate, and be interested

in minimising the maximum response time in an emergency. Or one might

want to know the minimum power necessary for a transmitter which must

reach all parts of the system. In both cases, one would choose a location

corresponding to a central vertex.

On the other hand, one might want to place a transmitter where the

average signal degradation or cost is minimised. Equivalently, one might have

a depot from which deliveries are made to all other points in the system,

or a computer storing data that is accessed by all other computers in the

network. In this case, one would choose a location corresponding to a vertex

of minimum distance in the associated graph.

There are other graph-theoretical parameters which anse naturally in

the study of communications networks. For example, technical constraints

like the number of line connections available at a node can be expressed as

bounds on the maximum degree, while the vertex- and edge-connectivity of a

graph (corresponding to the minimum number of nodes or links whose failure

could disconnect the associated network) are measures of network reliability.

Furthermore, the cost of constructing a network between a given set of nodes

is often roughly proportional to the number of links, and hence to the number

of edges in the corresponding graph.

Whether one chooses to use the radius, the diameter or the distance of
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a graph as a measure of the efficiency of the corresponding network depends

on the circumstances. In any case, it is desirable for the chosen parameter

to be low.

1.3 Network Vulnerability

When a node or link fails in a communications network, the network's effi­

ciency may be affected. In this thesis we investigate the maximum possible

damage resulting from such a failure. In other words, we consider the maxi­

mum possible increase in the radius, diameter or distance of a graph when a

vertex or edge is removed. In the case of vertex removal, the efficiency of the

remaining network might actually be increased; we therefore also investigate

the maximum possible decrease in radius, diameter or distance when a vertex

is removed.

We also consider the maximum possible damage when a most expendable

node or link is removed; in other words, the maximum increase in the radius,

diameter or distance of a graph caused by removing a "best" vertex or edge

(one which minimises this increase). This might arise, for example, in a

planned communications network which has too many links or nodes. In

such cases a link or node may have to be removed, and we are interested

in knowing to what extent the resulting damage can be limited if the best

vertex or edge is chosen.

We emphasise graphs in which the radius or diameter is changed by the

removal of any vertex, or by the removal of any edge, or by the addition of

any edge. Graphs whose radius or diameter increases if any edge is removed

model networks whose efficiency is decreased by the loss of any link.

A related problem is the maximum possible decrease in the radius, diam­

eter or distance when an edge is added to a graph. This might be of interest,

for example, when considering adding facilities to a network to upgrade its
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performance or reduce its operating costs. We consider in particular those

graphs whose radius or diameter is increased by the addition of any edge.

If the cost of constructing a communications network connecting a given

set of nodes is regarded as proportional to the number of links, then the

cheapest system to construct between them is, of course, one modelled by

a tree. Such a tree is unlikely to be the cheapest or most efficient network

to operate, but it might be efficient enough to justify replacing a proposed

network with it. Given a network modelled by a graph G, we investigate

how the radius, diameter, and distance of G differ from those of a "best"

spanning tree of G (i.e., one in which the parameter is minimised), and find

ways of finding such a tree.

We consider unweighted graphs only. These model networks in which the

time delay or signal degradation encountered by messages sent along a path

is roughly proportional to the number of links in the path, or the cost of

using each link for message purposes is the same.

1.4 Definitions and Notation

We list below our basic definitions and notation. All graphs considered are

undirected, finite, without loops or multiple edges, and are lillweighted lillless

otherwise specified. In what follows, let G be a graph, and let u and v be

vertices of G.

• We denote the vertex set of G by V(G), and the edge set by E(G). The

order of G is n = IV(G)I, and the size is m = IE(G)I. If E(G) = 0,
then G is said to be empty.

• The degree degc(v) of v is the number of edges incident with it. The

minimum degree of G is 8(G) := minvEv(c) degc(1J) , and the maximum

degree is ~(G) := maXvEV(C) degc(v). The neighbourhood Nc(v) of v is
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the set of vertices adjacent to v in G. A vertex of degree 1 is called an

endvertex. G is said to be regular if all vertices have the same degree

in G.

• 5 ~ V(G) means that 5 is a subset of V(G), and 5 c V(G) means

that 5 is a proper subset of V(G). 151 denotes the cardinality of 5, and

(5)c denotes the subgraph induced in G by 5. For two subsets 5 and

T of V(G), [5, T]c denotes the set of all edges which join a vertex in 5

to a vertex in T. If 5 = {v}, then we write simply [5, T]c = [v, T]c.

• For a subset F of E(G), G-F is the graph obtained from G by deleting

the edges in F; if F = {e}, then we write simply G - F = G - e. For

a subset 5 of V (G), G - S is the graph obtained from G by deleting

every vertex in S and all edges incident with it; if S = {v}, then we

write G - 5 = G - v.

• A graph is connected if, for any two vertices u and v, there is a u - v

path in G. A component of G is a maximal connected subgraph of G.
A set S of vertices is called a cutset if its deletion increases the number

of components. A vertex v is called a cut-vertex if {v} is a cutset, and

a non-cut vertex or ncv otherwise. An edge is called a bridge if its

deletion increases the number of components.

Let S be a cutset of a connected graph G, and let G1 be any component

of G - S. Then (V (G1) U S) c is called an S-component of G, or a v­

component of G if S = {1)}.

• A block B of a graph G is a maximal connected subgraph of G which

has no cut-vertices. Hence, for any cut-vertex v of G, B - v lies entirely

in one component of G - v.

A vertex x is said to be separated from a vertex y by a vertex v if v

lies on every x - y path (i.e., if x and y are in different components of

G - v).
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A graph is said to be r;,-connected if the deletion of any r;, - 1 vertices

yields a nontrivial connected graph. (So the complete graph K 2 is not

2-connected, although it is a block.)

• The length of a walk W is the number of edges in W, and is denoted

by t'(W). The distance dG(u, v) between u and v is the length of a

shortest u - v path in G. If u and v are in different components of G,

then dG(u,v) = 00. The eccentricity of v is eG(v) := max{dG(v,u) I
u E V(G)}.

If u is a vertex such that dG (U, 1J) = eG(v), then u is called an eccentric

vertex of v in G. If there is only one such vertex u, then u is called the

unique eccentric point or uep of v.

• The radius and diameter of G are defined by rad(G) := min{eG (v) I
v E V(G)} and diam(G) := max{eG(1J) I v E V(G)}.

A vertex v of G is called central if eG(v) = rad(G), and peripheral if

eG(v) = diam(G). The centre C(G) is the set of all central vertices

in G, and the periphery P(G) is the set of all peripheral vertices. A

pair of vertices at distance diam(G) from each other in G is called a

diametral pair. G is said to be self-centred if all vertices have the same

eccentricity in G.

• The distance of v in G is defined as

O"G(v):= L dG(v, u),
uEV(G)

and the distance of G as

O"(G)'- L dG(v, u)
{u,v}C;;;V(G)

1- L O"G(1J).
2 vEV(G)
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1 a(G)
f.1( G) := (n) L da(u, v) = -(n).

2 {u,v}~v(a) 2

If G is not connected, then aa(v) = 00 and a(G) = 00.

The average or mean distance f.1( G) of a graph G of order 17, > 2 is

defined as

Hence f.1( G) = 00 if G is disconnected. It is convenient to define

f.1(K1 ) := 1.

• The i-neighbourhood or i th distance layer Ni (v) of v is the set of vertices

at distance i from v. (So N 1(v) = N(v).)

• The distance degree sequence of v is the sequence of cardinalities of the

distance layers of v; i.e., {I, IN1(1J)\' IN2(v)\, ... , INe(v)I}. A graph G is

called distance degree regular if every vertex of G has the same distance

degree sequence.

• An edge is said to be cyclic if there is a cycle in G containing it. The

girth 9 (e) of a cyclic edge e is defined as the length of a shortest cycle

containing e; we set g(e) = 00 if e is a bridge. The girth g(G) of G is

the length of a shortest cycle in G; we set g(G) = 00 if G is a forest.

• Si (G) is the number of unordered pairs of vertices distance i apart in a

graph G. Wi (G) is the set of all unordered pairs of non-adjacent vertices

of G which are at most distance i apart; i.e., Wi (G) = {{u, v} ~ V (G) I
2 :S da(u, v) :S i}.

Hence, if G has order 17, and diameter d, SI(G) = IE(G)\, IW1(G)1 = 0,

and IWd(G)1 = (~) -IE(G)I. Furthermore, for i E {2, ...d}, IWi(G)1 =
IWi - 1 (G)1 + Si·

• We denote the complete k-partite graph with partite sets of cardinality

nI, ... , nk by K n1 ,n2, ... ,nk. We refer to the particular case K 1,n-l as a
star.
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• G rv H means that the graphs G and H are isomorphic to each other.

• The complement of G is denoted by G.

• The complete graph, path and cycle of order n are denoted by Kn ,

Pn, and Cn, respectively. C3 is sometimes called a triangle. Note that

rad(Kl ) = diam(Kl ) = ry(Kl ) = O.

• Let T be a tree, and v a vertex in T. Then a maximal subtree of

T containing v as an endvertex (i.e., a v-component of T) is called a

branch of Tat v. (So the number of branches at v is degT(v).)

• A subgraph H of G is said to be distance-preserving from v in G if

dH(v, u) = dG(v, u) for all u E V(H). If a spanning tree of G is

distance-preserving from a vertex v in G, then we will usually denote

it by Tv. A vertex w in Tv is said to be descended from a vertex u in

Tv if u lies on the v - w path in Tv. (So w is descended from itself.)

• Two vertices v and u of a cycle C are said to be opposite each other on

C if they are eccentric vertices of each other in C. A vertex v and an

edge e = ab of a cycle C are said to be opposite each other on C if v

maximises dc(v, a) + dc(v, b) over all vertices in C.

Hence in an even cycle, every vertex is opposite exactly one vertex and

the two edges incident with it, while every edge is opposite exactly two

vertices. In an odd cycle, every vertex is opposite two adjacent vertices

and the edge between them, while every edge is opposite exactly one

vertex.

• The union Gl UG2 of two graphs Gl and G2 is the graph with vertex set

V(G1 UG2 ) = V(G l )UV(G2 ), and edge set E(G1 UG2 ) = E(G l )UE(G2 ).

• Their join G1 + G2 is the graph obtained from Gl U G2 by joining

every vertex in V(G l ) to every vertex in V(G2 ). If G l cv K 1 , with

V(Gd = {v}, then we write Gl + G2 simply as v + G2 .
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For three or more disjoint graphs G l , G2 , ... , Gk , the sequential join

Gl + G2 + ... + Gk is the graph

in other words, Gl + G2 + ... + Gk is obtained from Gl U G2 U ... U Gk

by adding all edges uv such that U E V(Gi ) and v E V(Gi+l), for

i = 1, ... , k - 1.

• The cartesian product Gl x G2 of Gl and G2 is the graph with vertex

set V(Gl ) x V(G2 ), in which two vertices U = (Ul' U2) and v = (VI, V2)

are adjacent whenever either Ul = VI and U2V2 E E(G2 ), or else U2 = V2

and UlVl E E(Gl ).

For r E N, the r-cube Qr is obtained by taking the cartesian product

of r copies of K 2 . (We regard the set of natural numbers N to be

{I, 2, 3, ...}.)

• For kEN, the kth power Gk of a graph G is the graph with vertex set

V(G) in which two vertices U and v are adjacent whenever U and V are

at most distance k apart in G.

• For any connected graph G, the graph with n components, each iso­

morphic to G, is denoted by nG.

• A graph is called path-complete if it can be obtained by joining one

endvertex of a (possibly trivial) path to at least one vertex of a complete

graph (see, for example, figure 1.1). We prove later that, for any nE N

and m E {n - 1, ... , (?)}, there exists a unique path-complete graph of

order n and size m, which we denote by P Kn,m.

Hence the path-complete graphs P Kn,m have paths and complete graphs

as the extreme cases m = n-1 and m = (?). For convenience we define

PKl,o rv K l . Note that a path-complete graph can also be expressed

as the sequential join of complete graphs.
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Figure 1.1: The path-complete graph PK7,lO

If the graph G in question is clear, we may omit the subscript G. Other

definitions will be given as needed throughout the chapters. All concepts not

defined here will be used in the sense of [CL86].

1.5 Fundamental Results

In this section we provide results which we shall need in subsequent chapters.

Most of these can be found in [BH90] or [CL86]. We include proofs of only

those results which are neither well-known nor trivial.

The following table summarises the radius, diameter, distance and aver­

age distance of some frequently occurring graphs.
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radius diameter distance mean distance

complete graph Kn , n 2:: 2 1 1 (~) 1

path Pn l~nJ n-1 in(n - l)(n + 1) ~(n + 1)

cycle Cn , n odd ~(n - 1) ~(n - 1) ~n(n - l)(n + 1) i(n+ 1)

cycle Cn , n even 1 1 I n 3 n 2

'2n '2n 8 ' 4(n-l)

It is easy to prove that, for a connected graph G,

rad(G) ::;: diam(G) ::;: 2rad(G).

Ostrand showed in [Ost73] that in fact this is the only restriction on the

diameter in terms of the radius; in other words, for every two natural numbers

rand d with r ::;: d ::;: 2r, there exists a graph with radius r and diameter d.

Furthermore, Plesnik showed in [Ple84] that, apart from the obvious re­

striction

1 ::;: JL(G) ::;: diam(G),

the average distance of a graph G is essentially independent of its radius and

diameter (if the order of G is permitted to be arbitrarily large). Specifically,

he showed that, for any integers rand d and real number t with 1 ::;: r ::;:

d ::;: 2r and 1 ::;: t ::;: d, and any positive real number E, there exists a graph

G with rad(G) = r, diam(G) = d and IJL(G) - tl < E.

Proposition 1.5.1. Every connected non-trivial graph contains at least two

non-cut vertices, and the only graphs containing exactly two non-cut vertices

are paths.

Proposition 1.5.2 For any connected graph G, the centre C(G) is contained

in one block of G.
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The following classic result is due to Whitney, although it is also com­

monly referred to as Menger's Theorem.

Theorem 1.5.3 For K, E N, a nontrivial graph G is K,-connected ifJ every

pair of vertices in G is connected by at least K, internally-disjoint paths.

The next three results deal with trees.

Proposition 1.5.4 Let T be a tree of radius r. Then either diam(T) = 2r

and C(T) contains exactly one vertex, or diam(T) = 2r-1 and C(T) consists

of two adjacent vertices.

Proposition 1.5.5 In a tree, no vertex can be equidistant from two adjacent

vertices.

Proposition 1.5.6 Let G be any connected graph, and v any vertex in G.

Then G contains a spanning tree which is distance-preserving from v.

Such a tree can be found using the breadth-first-search algorithm with v as

root (see, for example, [BH90]). We will usually denote it by Tv.

The next group of results deals with the connection between cycles and

distance.

Proposition 1.5.7 An edge is a bridge ifJ it is not cyclic.

Proposition 1.5.8 [EJS76] Let e be a cyclic edge of a graph G, and let

C be a shortest cycle containing e. Then for any vertices u and v on C,

dc(u, v) = dc(u, v).

Proposition 1.5.9 Let e be a cyclic edge of a connected graph G, and let

C be a shortest cycle containing e in G. Let 1) be a vertex opposite e on C.

Then removing e from G does not afJect the distance from v to any vertex in

V(G).
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Proposition 1.5.10 For any cyclic edge e of a graph G)

g(e) :S 2diam(G) + 1.

Proof:

Let C be a shortest cycle containing e. By Proposition 1.5.8, any two vertices

opposite each other on C are distance L~g(e)J apart in G. It follows that

diam(G) ~ L~g(e)J, and hence that g(e) :S 2diam(G) + 1. D

In particular, for any cyclic graph G with girth g(G), we have g(G) :S

2diam(G) + 1.

Proposition 1.5.11 Let G be a connected graph for which

g(G) = 2diam(G) + 1.

Then G is 2-edge connected.

Proof:

Assume, to the contrary, that G has a bridge e = ab, and let G1 and G2 be

the components of G - e containing a and b respectively. Let diam(G) = d.

Let T be a spanning tree of G which is distance-preserving from a, and note

that T is also distance-preserving from b.

Since G is cyclic, E(G) - E(T) is non-empty; let uv be any edge in

E(G) - E(T). Assume without loss of generality that uv E E(G1). Since u

and v are within distance d from b, they must both be within distance d - 1

from a. Hence the a - u and v - a paths in T, together with the edge uv,

form a closed walk of length at most 2(d -1) + 1 in G. But then G contains

a cycle of length at most 2d - 1 < g(G), which is impossible. It follows that

G is 2-edge-connected. D

Our next proposition shows that the path-complete graph P Kn,m is unique.

Proposition 1.5.12 For n E N and m E {n - 1, ... , (;)}) there is exactly

one graph P Kn,m up to isomorphism.
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Proof:

Note that PKn,m can be obtained from the path P : 1)1, ... ,1)n by adding

m- (n-1) edges in the following way: express the edges in E(PKn,m)-E(P)

in the form (Vi, Vj) with i < j, and order them in such a way that (Vi, Vj)

precedes (vs, 1lt) if either j < t, or j = t and i < s. Then add the first

m - (n - 1) edges in this ordering to P. It follows that P Kn,m is unique. 0

Note that for any n E N and m E {n - 1, ... , (~) - 1}, PKn,m+l can be

obtained from P Kn,m by adding an edge.

Recall that the ith distance layer of a vertex V in a graph G is Ni(v) :=

{u E V(G) I dG(v,u) = i}. We conclude this section by noting some basic

properties of distance layers which we shall use frequently.

Let G be a connected graph of diameter d, and let Vo be any peripheral

vertex of G. Then V(G) = ut=o Ni(vo) is a partition of the vertex set into

d + 1 non-empty sets No(vo), N1(vo), ... , Nd(vo), where No(vo) = {vo}. Every

vertex in Ni(vo) is adjacent to at least one vertex in Ni- 1(VO)' Furthermore,

no vertex in Ni(vo) is adjacent to any vertex in Nj(vo) for Ij - il 2: 2.

It follows easily that for any connected graph G of order n, diameter d

and maximum degree .6.,

.6.::;n-d+1.

1.6 Content

In Chapter 2 we consider the radius, in Chapter 3 the diameter, and in

Chapter 4 the distance of a graph. In each case we investigate the maximum

possible increase or decrease in the parameter when certain changes are made

to a graph. In particular, we study the removal of a (best or worst) vertex

or edge, the addition of a best edge, and the replacement of the graph by

a best spanning tree. In the cases of radius and diameter we also consider

graphs for which the parameter is changed by the removal of any vertex, the
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removal of any edge, or the addition of any edge.

Although we are motivated by the application of radius, diameter and

distance to communications networks, we shall usually give our results in

graph theoretic terms, without reference to communications networks. We

shall, however, continue to use the terms "best" and "worst" to describe the

cases where the parameter under discussion is as low (respectively, high) as

possible.
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Chapter 2

Radius

The radius of a graph G is the minimum eccentricity of a vertex in G. In

this chapter we consider how the radius is affected by the removal of an edge

or a vertex, the addition of an edge, or the taking of a spanning tree.

18



2.1 Spanning Trees

In this section we show that every connected graph has. a spanning tree of

the same radius.

Definition: A spanning tree T of a graph G is said to be radius-preserving

if rad(T) = rad(G).

Proposition 2.1.1 If T is a radius-preserving spanning tree of a graph G

then C(T) ~ C(G).

Proof:

Let c be any central vertex of T. Since removing edges cannot decrease the

eccentricity of any vertex, ec(c) ::; eT(c) = rad(T) = rad(G). It follows that

ec(c) = rad(G); i.e., that c E C(G). D

Note that if a spanning tree T of a graph G is not radius-preserving, then

C(T) is not necessarily contained in C(G).

Proposition 2.1.2 Let c be any central vertex of a connected graph G, and

let Te be a spanning tree of G which is distance-preserving from c. Then

c E C(Tc), and rad(Tc ) = rad(G).

Proof:

Since Te is distance-preserving from c, rad(Te ) ::; eTJc) = ec(c) = rad(G).

Since removing edges cannot decrease the eccentricity of any vertex, it follows

that rad(Tc ) = rad(G) and that C E C(Tc )' D

Not all radius-preserving spanning trees, however, are distance-preserving

from some vertex, as shown by the graph in figure 2.1.

Proposition 2.1.2 has another useful consequence:

Proposition 2.1.3 For any connected graph G of order n and radius r,
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T;

v

Figure 2.1: T is a radius-preserving spanning tree of G which is not distance­

preserving from any vertex.

Proof:

Let c be any central vertex of G, and let Tc be a spanning tree of G which

is distance-preserving from c. By Proposition 2.1.2, rad(TJ = r, and hence

diam(Tc ) = 2r or 2r - 1. Now let P be any diametral path of Tc ' and note

that P has diam(Tc ) + 1 ~ 2r vertices. It follows that n ~ 2r, and hence

that r :S l~nJ. 0

It is tedious but not difficult to show that equality holds ifI

(1) G is a path or cycle, or

(2) n is odd and G consists of a path or cycle of order 2r, a vertex w, and

one, two or three edges joining w to vertices which are at most distance 2

apart in G - w.
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2.2 Vertex Removal

Removing a vertex from a graph can increase, maintain or decrease the radius.

Our first proposition, however, shows that it cannot decrease the radius by

more than 1, and also characterises the vertices in a graph whose removal

decreases the radius. Recall that ncv stands for non-cut vertex, and uep for

unique eccentric point.

;Il> Proposition 2.2.1 [Gli75c, Faj88] Let G be a graph containing a vertex v.

Then rad(G - v) < rad(G) iff v is the uep of some central vertex) and in this

case rad(G - v) = rad(G) -1.

Proof:

Let rad(G - v) < rad(G), and let c be any central vertex of G - v. So

ea-v (c) = rad(G - v) ::; rad(G) - 1 ::; ea (c) - 1. Since removing v cannot

decrease the distance between any of the remaining vertices, it follows that

v is the uep of c in G. Furthermore, since c is still at distance ea(ct-1 ~rom
-,.•.. ~...-.---'_.

the neighbours of v, rad(G - v) = ea-v(c) ~ ea(c) - 1 ~ rad(G) - 1. It

follows that c E C (G) and that rad(C/ - v) = rad(G) - 1.

Conversely, let v be the uep of some central vertex c in G. Then removing

v cannot increase the distance between c and any other vertex w (since v

cannot lie on a shortest c - w path). It follows that ea-v(c) < ea(c), and

hence that rad(G - v) < rad(G). 0

Remark: If rad(G - v) = rad(G) - 1 for a vertex v in a graph G, then

C (G - 1J) = {c E C (G) I 11 is the uep of c in G} c C (G).

(To prove that C(G - v) i= C(G): let c be any central vertex of G - v, and

let c' be the neighbour of c on any shortest c - v path in G. Since every

vertex in V (G) - {v} is within a distance of rad(G) - 1 from c in G, c' is

central in G. But v is not an eccentric vertex of c' in G, and hence c' is not

central in G - v.)
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Go,

v

F· 2? rad(G-v)Igure ._: rad(G) ~ 00 as n ~ 00

In Section 2.3 we will prove that rad(G - e) ::; 2rad(G) for every cyclic

edge e in a connected graph G. The following example, however, shows that

one cannot find a similar bound for the removal of ncv's. For given natural

numbers rand n ~ 2r + 1, let G be the graph obtained from two paths

p rv P2r and P' ~ Pn- 2r by joining some internal vertex v of P to every

vertex on pI, and joining the neighbours of v on P to the endpoints of pI

( fi 2 2) Th rad(G-v) l~(n-l)J
see gure .. en rad(G) = r ~ 00 as n ~ 00.

In fact, since paths have the maximum possible radius for connected

graphs of given order, it follows that the above G and v maximise r~~S~;»)

over all connected graphs of order n and radius r and all ncv's in these graphs.

Definitions: A conjugate vertex v* of a vertex v is a central vertex with v as

its uep. (So a vertex might have more than one conjugate vertex, or none.)

A conjugate pair is a pair of central vertices,. each of which is the uep of the

other.

vVe have the following result:

Proposition 2.2.2 [Faj88] Let {v, v*} be any conjugate pair in a graph G ~

K 2 · Then removing v and v* from G cannot decrease the radius.

22



Proof:

Let c be a central vertex of G - {v, v*}, and let w be an eccentric vertex

of c in G. Then dG(c, w) 2: rad(G). Since v and v* are within distance

rad(G) -1 from all vertices in G except each other, w cannot be v or v*. Since

removing v and v* cannot decrease the distance between c and w, it follows

that eG-{v,v*}(c) 2: dG(c,w), and hence that rad(G - {v,v*}) 2: rad(G). 0

2.2.1 Vertex-radius-decreasing graphs

Definition: We define a non-trivial graph G to be vertex-radius-decreasing

or vrd if rad(G - v) < rad(G) for every ncv v of G.

For example, even paths and cycles are vrd, but odd paths and cycles are

not. The only disconnected vrd graph is K 2 .

The odd cycles are examples of graphs for which the removal of any vertex

leaves the radius unchanged. The following proposition shows that there is

no purpose in defining a vertex-radius-increasing graph.

Proposition 2.2.3 [G1i75c] There is no graph G such that rad(G - v) >
rad(G) for every vertex v in G.

Proof:

Let G be any graph, c any central vertex of G and v any eccentric vertex of

c. Then v cannot lie on a shortest path between c and another vertex, and

hence eG-v(c) ::; ec(c). It follows that rad(G -1)) ::; rad(G). 0

The following property of vrd graphs will be useful. It is based on ideas

developed by Fajtlowicz in [Faj88].

Lemma 2.2.4 Let G be a vertex-radius-decreasing graph, and v a ncv of G.

If v is not central, then all its conjugate vertices are cut-vertices. If v is

central, then it has exactly one conjugate vertex v*, and v* is a ncv (so v and

v* form a conjugate pair).
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Proof:

By Proposition 2.2.1, v has a conjugate vertex v*. If v* is also a ncv of G,
then, since G is vertex-radius-decreasing, v* must be the uep of some central

vertex v**. Hence dc (v*, v**) = rad(G) - but the only vertex at distance

rad(G) from v* is v. It follows that v must be central, and v** must be v.

This proves firstly that, if v is not central, then all its conjugate vertices

are cut-vertices, and secondly that no vertex v can have two conjugate ver­

tices which are ncv's. (Otherwise both would need to have vasa conjugate

vertex; i.e., both would need to be the unique eccentric point of v.)

If v*. is a cut-vertex, let w be any vertex separated from v by v*. Then

ec(v) 2:: dc(v, w) = dc(v, v*) + dc(v*, w) 2:: rad(G) + 1; i.e., 11 is non-central.

It follows that if v is central, then it has a unique conjugate vertex v*, and

v* is a ncv. 0

(In fact, it follows from one of our later results, Theorem 2.2.10, that

every ncv v in a vrd graph G has a unique conjugate vertex v*, and hence

that IG(G - v)1 = 1.)

As a direct consequence of Proposition 2.2.1 and Lemma 2.2.4, we have

the following characterisation of 2-connected vertex-radius-decreasing graphs:

Proposition 2.2.5 [Gli75c, Faj88] A graph G of order n is a vertex-radius­

decreasing block if! G is self- centred, n is even, and V (G) can be paTtitioned

into conjugate pairs.

Graphs in which every vertex has exactly one eccentric vertex are called

unique eccentric point graphs, and were studied by Parthasarathy and Nan­

dakumar in [PN83]. It follows from Proposition 2.2.5 that the vrd blocks are

precisely the self-centred unique eccentric point graphs. Mulder also refers

to them as diametrical graphs in [Mul80]. We have the following existence

theorem for such graphs:
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Proposition 2.2.6 [Gli75c] If G and Hare vertex-radius-decreasing blocks,

then the cartesian product G x H is a vertex-radius-decreasing block of radius

rad(G) + rad(H).

Proof:

For any two vertices (u, x) and (v, y) in G x H,

dexH((u, x), (v, y)) = de(u, v) + dH(x, y).

Hence, for any vertex (u, x) in G x H, eexH((U, x)) = ee(u) + eH(x). It

follows that rad(G x H) = rad(G) + rad(H), and that (u,x)* (u*,x*).

Hence, by Proposition 2.2.5, G x H is also a vrd block. 0

For example, since K 2 is a vrd block, Proposition 2.2.6 shows that, for

any r E N, the r-cube (which is isomorphic to the cartesian product of r

copies of K2) must be a vrd block of radius r.

In addition, Gliviak gave a construction in [Gli75c] to prove that, for

every graph G and r 2: 3, there exists a vrd block of radius r which contains

G as an induced subgraph. This shows that the class of vrd blocks is very

large.

We mention two more properties of vrd graphs:

Proposition 2.2.7 [Gli75c] If u and v are any two vertices in a vertex­

radius-decreasing block G of radius at least 3, then u must have at least one

neighbour that is not v or adjacent to v.

Proof:

If u = v*, then de (u, v) = l' 2: 3, and u and v can have no neighbours in
common.

Otherwise, let w be the neighbour of u on a shortest u - v* path in G. So

de(w,v*) = de(u,v*) -1 s:; rad(G) - 2. Since de(v,v*) = rad(G), it follows

that w cannot be v or adjacent to v. 0
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Proposition 2.2.8 If G is a vertex-radius-decreasing block of order nand

radius r 2: 3, then .6..(G) :::; ~(n - r + 1).

Proof:

Let v be a vertex of maximum degree in G, and let u be any neighbour of v.

Since dc(u, w) :::; r - 1 for any w E {No(v), ... , Nr- 2 (v)} and Nr(v) = {v*} =I­

{u*}, it follows that u* E Nr-I(v). Hence \Nr- I (v)\2: INI(v)l·

Now let P be a shortest v--v* path, and note that P contains r+ 1 vertices,

exactly two of which are in NI (v) U Nr-I(v). Therefore

n > (r + 1) + INI(v)1 + INr-I(v)l- 2

> 2.6..(G)+r-l,

and the result follows. o

For kEN, the graph GZk+2 is a vrd block of radius 3 in which every

vertex has degree 2k = ~ ((4k + 2) - 3+ 1). This shows that the above bound

cannot be improved for r = 3. It is easy to prove, however, that the bound

is not sharp if r 2: 4.

Remark: In [Gli75c], Gliviak states that if u and v are any two adjacent

vertices in a vrd block G, then u* and v* are also adjacent in G, and uses this

to prove several results. In fact, the statement is untrue, as shown by the

vrd block G in figure 2.3. We note that u and v are adjacent in G, whereas

u* and v* are not. In fact, v and v* do not even have the same degree.

We now consider the structure of vrd graphs with cut-vertices. The fol­

lowing proposition was essentially proved by Fajtlowicz in [Faj88], although

he did not use the concept of vrd graphs.

Lemma 2.2.9 [Faj88] In any vertex-radius-decreasing graph containing at

least one cut-vertex, every ncv has degree 1.
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Figure 2.3: A cOlmter-example to a statement of Gliviak

Proof:

Let G be a vrd graph containing a ncv v of degree at least 2, and let x and

y be any neighbours of v. We will prove that then G has no cnt-vertices.

By Proposition 2.2.1, v has a conjugate vertex v* such that dc(v*,v) =
rad(G) and dc(v*,u) ::; rad(G) - 1 for every u E V(G) - {v}. Hence

dc(v*,x) = rad(G)-l.

It follows that, if u is any vertex in V (G) - {v, x}, then no shortest v* - u

path can contain x. In particular, G - x contains a v* - y path and hence a

v* - v path. So every two vertices in G - x are connected to v*, and hence

to each other.

It follows that no neighbour of v is a cut-vertex. Since we also know that

every neighbour of v has degree at least 2 (otherwise v would have been a

cut-vertex), it follows in the same way that no vertex in N 2(v) is a cut-vertex,

and so on. Hence G contains no cut-vertices. 0

Definition: We define the i-corona Se(G) of a graph G as the graph obtained

from G by att.aching to each vertex v of G a path of length £ with v as

endpoint.

(See, for example, figure 2.4.)

27



&:

Figure 2.4: A graph and its 2-corona

Our next theorem reduces the study of vrd graphs to that of vrd blocks.

It is in fact a conseqlience of a theorem of Gliviak [Gli76a], but we present

our own proof.

Theorem 2.2.10 G is a vertex-radius-decreasing graph containing a cut­

vertex iff G = Se(B) for some e E N and some vrd block B. lVIoreover,

(C(G))c = B.

Proof:

Let G be a vertex-radius-decreasing graph containing a cut-vertex v.

(1) C(G) is contained in one block of G and hence in one v-component,

G l . Let G2 = G - V(G l - v). G2 must contain at least two ncv's; let

u be any ncv of G2 different from v.

Since u is also a ncv of G, by Proposition 2.2.1 it must be the uep

of some c E C (G). Since c E V (G1), this means that u must be the

unique eccentric point of v in G 2 . It follows that G2 must have exactly

two ncv's, v and u, and must therefore be a path.

(2) Now let B be the block of G containing C(G), and suppose B contains

an endvertex u of G. Then B cannot be a cyclic block, and must be a
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K 2 . Since U is not central in G, IC(G)I ~ IV(B)I-1 = 1. But G must

have at least two ncv's, each of which (by Proposition 2.2.1) must be

the uep of some central vertex of G; hence IC(G) I ~ 2, and we have a

contradiction. So every vertex of B has degree at least 2 in G, and is

therefore, by Lemma 2.2.9, a cut-vertex of G. It follows by (1) that G

can be obtained from B by attaching to each vertex of B a path with

v as endpoint.

(3) We now show that each of these paths attached to vertices in B has

the same length, which we shall call £. Assume to the contrary that

there exist two paths g and P2 , attached to neighbouring vertices VI

and V2 in B, such that P2 is longer than PI. Let the other endpoints

of g and P2 be Ul and U2 respectively.

Every end-vertex of G is a ncv and hence, by Proposition 2.2.1, the

uep of some central vertex; say Ul is the uep of the central vertex c. It

follows that d(c, U2) ~ d(c, Ul) - 1, and hence that d(c, V2) + f!(P2) ~

d(C,Vl)+f!(P1)-1 ~ d(C,Vl)+f!(P2)-2. Butthend(c,v2) ~ d(C,Vl)-2,

which is impossible since VI and V2 are adjacent. It follows that each

path has the same length f!, and hence that G = Se(B).

(4) Since G contains jV(B)1 end-vertices, each of which is a ncv and must

therefore be the uep of some central vertex, IV(B)I ~ IC(G)I. Since

C(G) is contained in B, it follows that C(G) = V(B).

(5) Finally, we prove that B is vertex-radius-decreasing. Let V be any

vertex in B, and let U be the other endpoint of the path attached to

v. Note that ec(x) = eB(x) + f! for every x E V(B), and hence that

C(B) = C(G).

It follows that U is the uep of some c E C(G) = C(B) iff v is the uep of

c in B. Hence by Proposition 2.2.1 the fact that G is vrd implies that

B is also vrd. This completes the first part of the proof.
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For the converse, let B be any vrd block, f any natural number, and

G = Se(B).

By Proposition 2.2.5, B is self-centred and V(B) is partitioned into con­

jugate pairs. Since all paths attached to vertices in B have the same length,

for every conjugate pair {u, u*} in B the end-vertex u' of the path at­

tached to u* is the uep of u in G. Hence for every u E V(B), ec(u) =
dc (u, u*) + dc (u*, u') = rad(B) + f.

Now let w be any vertex in V( G) - V(B); say w is in the path attached to

u E V(B). Then ec(w) 2: dc (w, u') = dc (w,u) + dc(u, u') 2: 1 + rad(B) + f.

It follows that V(B) = C(G).

Finally, let x be any ncv of G. Then x is an endpoint of the path attached

to some vertex yE V(B). Let y* be the conjugate vertex of y in B, and note

that x is the uep of y* in G. Since y* E C(G), it follows by Proposition 2.2.1

that rad(G - v) < rad(G), and hence that G is vertex-radius-decreasing. 0

It follows from the above theorem that all vrd graphs are unique eccentric

point graphs.

The only vrd graph of radius 1 is K 2. We can now characterise all vrd

graphs of radius 2:

Proposition 2.2.11 [Gli75c] Let G be a vertex-radius-decreasing graph of

order n and radius 2. Then n is even and G is either P4 or a complete

(~n)-partite graph K 2,2, ... ,2'

Proof:

If G is 2-connected, then every vertex v in G has a conjugate vertex v* at

distance 2 from it, and is adjacent to every other vertex in G. It follows that

G is a complete (~n)-partite graph, each partite set consisting of a conjugate
pair.

If G has a cut-vertex, then by Theorem 2.2.10 G can be obtained from a

vrd block B of radius 1 by attaching a path of length 1 to every vertex in B.
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Since B must be K 2 , it follows that G must be P4 · o

Remark: Gliviak [Gli75c] defined a graph G to be v-critical if rad(G - v) #
rad(G) for every vertex v in G. The class of 1J-critical graphs might appear

to be larger than that of vrd graphs, but in fact Gliviak proved in [Gli76a]

that they are the same. In other words, he proved that in a v-critical graph

any vertex whose removal increases the radius must be a cut-vertex.

2.2.2 Radius-critical graphs

We now consider a special class of vertex-radius-decreasing graphs, defined

and characterised by Fajtlowicz in [Faj88].

Definition: A nontrivial graph G is r-radius-critical (or, briefly, radius­

critical) if rad(G - S) < rad(G) = r for every non-empty proper subset

S of V (G) such that G - S is connected.

For example, any even cycle C2r is r-radius-critical, since every proper

induced connected subgraph of C2r is a path Pk with k ::; 2r - 1. Odd cycles,

on the other hand, are not radius-critical, since C2r+1 contains P2r as an

induced subgraph.

Every graph that is radius-critical is also vertex-radius-decreasing, but

the converse is not true. For example, if G is any vrd graph containing a

conjugate pair {v, v*} such that G-{v, 1!*} is connected, then (by Proposition

2.2.2) rad(G - {v,v*}) 2: rad(G), and G is not radius-critical. The r-cubes

for r ~ 3 are examples of such graphs.

Definition: For r E Nand q E {I, ... , r} we call Sr-q(C2q ) an r-ciliate

(where we are using the convention C2 = K 2 ).

(See, for example, figure 2.5.) Note that rad(Sr_q(C2q )) = q+(r-q) = r,

and that r-ciliates include even paths and even cycles as the extreme cases
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q = 1 and q = r. So an r-ciliate is any graph of radius r that can be obtained

from an even cycle or K 2 by attaching to each of its vertices a path of the same

length. For r EN, there are r different r-ciliates (up to isomorphism), each

of which can be obtained from a cycle of length 2q for some q E {I, ... , r},
by attaching to each of its vertices a path of length r - q.

It is easily seen that all r-ciliates are r-radius-critical. Fajtlowicz [Faj88]

proved that in fact all r-radius-critical graphs are r-ciliates. He first proved

the following result:

Lemma 2.2.12 [Faj88] If G is a radius-critical graph with no cut-vertices,

then G is an even cycle or K 2 .

Proof:

If rad(G) = 1, then, since G is radius-critical, G rv K 2 and we are done. So

assume rad(C) = r 2: 2. Since G is a vertex-radius-decreasing graph with

no cut-vertices, by Proposition 2.2.5 V( G) can be partitioned into conjugate

pairs. Let {v, v*} be any such pair. Since G is radius-critical, if C - {v, v*}
is connected it must have radius less than r. Hence, by Proposition 2.2.2,

G - {v, v*} is disconnected.

Let G l and G2 be any two {v, v*}-components of G. Since G has no

cut-vertices, Cl and C 2 are connected. Let Pi be a shortest v - v* path in
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G l and P2 in G2 .

Then C = (V(Pl ) U V(P2))c is an induced cycle in G with length at least

2dc (v, v*) = 21', and hence with radius at least r. Hence C cannot be properly

contained in G without contradicting the fact that G is radius-critical. It

follows that G = C, and that (since odd cycles are not radius-critical) C is

an even cycle. 0

Using Lemmas 2.2.9 and 2.2.12, Fajtlowicz proved his main result by

induction on the radius. We present an alternative proof, which is a conse­

quence of Theorem 2.2.10 and Lemma 2.2.12.

Theorem 2.2.13 [Faj88] A graph is r-radius-critical iff it is an r-ciliate.

Proof:

It is easily seen that all r-ciliates are r-radius-critical. For the converse, let

G be an r-radius-critical graph. Since G is also vertex-radius-decreasing, by

Theorem 2.2.10 G consists of a block B = (C(G))c, to every vertex of which

is attached a path of length e. We want to prove that B is an even cycle or

K 2 -

We first prove that B is radius-critical. Assume, to the contrary, that B

has a proper induced connected subgraph B' with rad(B' ) 2: rad(B). (So

IV(B')I 2: 2.) Let GI be the proper connected subgraph of G induced by the

vertices in B ' and the paths of length 1! attached to them.

We note that C(G/) ~ V(B' ) (since IV(B')I 2: 2, and hence for any vertex

W =1= U in the path attached to u E V(B' ), eC1(w) > eCI(u)). Also, for every

vertex v E V(B' ), eCI(v) = eB'(v) +1!. It follows that rad(G/) = rad(B') +1!.

Similarly, since (C(G))c = Band ec(v) = eB(v) +.e for every vertex

v E V(B), it follows that rad(G) = rad(B) + 1!. Hence rad(G/) 2: rad(G) ,
which is impossible. So B must be radius-critical.

Since B is a block, it now follows by Lemma 2.2.12 that B is an even

cycle or K 2 , and hence that G is an r-ciliate. 0
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Erdos, Saks and Sos proved in [ESS86] that every connected non-trivial

graph of radius r contains an induced P2r-l (and this is best possible, as

demonstrated by even cycles). Fajtlowicz proved a more general result, re­

quiring the following lemma:

Lemma 2.2.14 Any connected non-trivial graph of radius r contains an in­

duced subgraph with radius r - 1.

Proof:

Let C be a connected graph of radius r, and let c be any central vertex of C.

Recall that, by Proposition 2.2.1, removing one vertex from a graph cannot

lower the radius by more than 1, and note that removing all the eccentric

vertices of c would certainly lower the radius.

We can therefore construct an induced subgraph of C with radius r - 1

by removing eccentric vertices of c, one by one, until the radius decreases. 0

Theorem 2.2.15 [Faj88] Every connected non-trivial graph of radius r con­

tains an r-ciliate as an induced subgraph.

Proof:

Let C be a connected non-trivial graph with radius r. If C is r-critical, then

by Theorem 2.2.13 C is itself an r-ciliate, and we are done. Otherwise, C

contains a proper induced connected subgraph with radius at least r. Of all

such subgraphs, let C' be one of lowest order.

By our choice of C', every proper induced connected subgraph of C' must

have radius less than r; hence, by Lemma 2.2.14, rad(C' ) = r. It follows

that C' is r-radius-critical, and hence by Theorem 2.2.13 an r-ciliate. 0

Since every r-ciliate contains an induced P2r- 1 , the result of Erdos et al

follows from Theorem 2.2.15.
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2.3 Edge Removal

In this section we discuss how the removal of edges affects the radius of a

graph.

2.3.1 Removing the best edge

Removing an edge from a graph cannot decrease the radius. Proposition

2.1.2, however, shows that every connected cyclic graph G has a radius­

preserving spanning tree, and hence certainly contains at least one edge that

can be removed without increasing the radius. In other words, the only

edge-radius-increasing graphs are trees.

2.3.2 Removing the worst edge

Our next proposition shows that removing a cyclic edge from a connected

graph can increase the radius by at most a factor of 2.

Proposition 2.3.1 Let G be any connected graph of radius r containing a

cyclic edge e. Then

rad(G - e) :::; 2r.

Proof:

Let C be a shortest cycle containing e in G, and let z be a vertex opposite e on

C. Since (by Proposition 1.5.9) dc-e(z, w) = dc(z, w) for every w E V(G),
we have eC-e(z) = ec(z), and hence

rad(G - e) < ec-e(z)

- ec(z)

< diam(G)

< 2r.
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This completes the proof. o

Our next proposition gives some necessary conditions for a graph G and

edge e E E(G) to satisfy rad(G - e) = 2rad(G).

Proposition 2.3.2 Let G be a graph containing an edge e such that rad(G) =

rand rad(G - e) = 2r. Then

(1) diam(G) = 2r, g(e) = 2r + 1, and e is incident with every central vertex

C ofG, and

(2) G contains as an induced subgraph either the graph consisting of two cy­

cles of length 2r + 1 with only e in common, or the graph obtained from this

by deleting one edge opposite e on either cycle.

Proof:

Let e = ab, let c be any central vertex of G, and let Tc be a spanning tree of

G which is distance-preserving from c. By Proposition 2.1.2, rad(Tc ) = r.

Clearly Tc must contain e; we assume without loss of generality that

dTc ( c, a) < dTc ( C, b). Let B be the set consisting of the descendants of b in

Tc, and let A = V(Tc) - B. Let T' = (Bhc' and note that eT' (b) :s; r - 1.

Since G - e is connected, some vertex v E B must be adjacent in G - e

to some vertex U E A. Let x be any eccentric vertex of u in G - e; so

dc-e(u, x) 2: rad(G - e) = 2r.

Note that, if x E B, then dc-e(u, x) :s; dc-e(u, v) + dT,(v, b) + dT,(b, x) :s;
1+2(r -1) < 2r, which is impossible. It follows that x is in A, and hence that

removing e does not affect the distance between u and x in Tc . Therefore

It follows that dC - e (u, x) = 2r, and that u and x are both eccentric vertices

of c in Tc and hence in G.

Next we let u' be the neighbour of u on the u - c path in Tc . So, in

G - e, u' is within distance 2r - 1 of every vertex in A. Since eC-e (u') 2:
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rad(G - e) = 2r, it follows that there must be some vertex y in B whose

distance from u' in G - e is at least 2r. We therefore have

2r < dG-e(u', y)

< dTce(u', u) + dG-e(u, v) + dTce(v, b) + dTce(b, y)

< 1 + 1 + (r - 1) + (r - 1)

2r.

Hence dG-e(v, y) = 2(r - 1). Furthermore, dTc(b, v) = dTJb, y) = r - 1;

hence a = c (i.e., e is incident with every central vertex of G) and v and y

are eccentric vertices of c in Tc and hence in G.

Recall that dG(c,x) = dG(c,u) = r, and that dG-e(u,x) = 2r. Hence if a

shortest u - x path in G contains the edge e (and therefore the vertex a = c),

then its length is at least 2r. It follows that diam(G) = dG(u, x) = 2r.

Since dTc(c,u) = dTJc,1J) = r, if any vertex in B is adjacent in G - e to

a vertex in A they must both be eccentric vertices of c in Tc . It follows that

any smallest cycle containing e has length 2r + 1.

Finally, let H be the subgraph of G consisting of the c - y, c - v, c - u

and c - x paths in Tc , together with the edge vu and the edge yx if y and

x are adjacent in G. Recall that dG-e(u, x) = 2r and dG-e(y, v) = 2(r - 1)

(i.e., that the u - x and y - v paths in Tc are also shortest paths in G - e),

and that no vertex in A can be adjacent to a vertex in B unless they are

both at distance r from c in G. It follows that H is an induced subgraph of

G. 0

Some graphs G for which rad(G - e) = 2rad(G) are shown in figure 2.6.

Note that our necessary conditions are not sufficient, as shown by the graph

in figure 2.7. In fact there does not appear to be an elegant characterisation

of these extremal graphs.

The above problem was generalised by Segawa [Seg94] to the case where

more than one edge is removed. He proved that if G is a connected graph
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Figure 2.6: Some graphs G for which rad(G - e) = 2rad(G)

Figure 2.7: G satisfies the conditions of Proposition 2.3.1, but rad(G - e) <
2rad(G).
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and F is a set of edges in G such that G - F is connected, then rad(G - F) :::;

(IFI + l)rad(G) - l~IFIJ·
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2.4 Edge Addition

In this section we consider graphs for which the addition of any edge decreases

the radius.

Definition: A graph G is called edge-radius-decreasing or erd if rad(G+e) <
rad(G) for every e E E(G).

For example, any even cycle is erd, while no path is (since its endpoints

can be joined to form a cycle of the same radius). Erd graphs have been stud­

ied by Nishanov [Nis73, Nis75], Harary and Thomassen [HT76] and Gliviak,

Knor and Soltes [GKS94], but no simple characterisation is known. Instead

we study a special class of edge-radius-increasing graphs, considered by Viz­

ing in [Viz67] - viz., those graphs of given order and radius with the max­

imum possible number of edges. In the remainder of this section we will

establish Vizing's upper bound on the size of a graph of given order and ra­

dius. There is a serious gap in the proof of [Viz67], which we have corrected.

We need some preliminary results:

Proposition 2.4.1 [Viz67] For any connected graph G of order n)

.6.(G) :s; n - 2rad(G) + 2.

Proof:

Let v be a vertex of maximum degree in G, and let Tv be a distance-preserving

spanning tree of G with v as root - so degTJ1J) = degc(v) = 6.(G).

Let P be a diametral path of Tv; then P has length diam(Tv) 2: 2rad(Tv)­

1 2: 2rad(G) - 1 . So P contains at least 2rad(G) vertices, at most two of

which can be neighbours of v (since if P contained three neighbours of v, we

would have a cycle in T). Hence there must be at least 6. (G) - 2 neighbours

of v which are not on P. It follows that n 2: 2rad(G) + .6.(G) - 2. 0
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Proposition 2.4.2 [Viz67] If x and y are vertices of a connected graph G

of order n for which dc(x, y) 2: 3, then

deg(x) + deg(y) ::; n - 2rad(G) + 4.

Proof:

Let U be the set of edges incident with x or y. Since dc(x, y) 2: 3, x and y

have no neighbours in common, and hence no cycle in G consists entirely of

edges in U. It is therefore possible to find a spanning tree T of G containing

all the edges in U - i.e., in which x and y have the same degrees as in G.

If deg(x)+deg(y) ::; 4, then it follows from Proposition 2.1.3 that deg(x)+

deg(y) ::; n - 2rad(G) + 4, and we are done. Otherwise, let P be a diametral

path of T. Then P contains diam(T) + 1 2: 2rad(T) 2: 2rad(G) vertices.

Since P can contain at most two neighbours of x, and two of y, it follows

that there are at least deg(x) + deg(y) - 4 neighbours of x and y which are

not on P. Hence n 2: 2rad(G) + deg(x) + deg(y) - 4. 0

Definitions: Let nand r be any natural numbers such that n 2: 2r 2: 2.

Define f(n, r) to be the maximum possible number of edges in a graph of

order n and radius r, and C(n, r) to be the set of all graphs with order n,

radius rand f(n, r) edges.

Lemma 2.4.3 [Viz67] For nE Nand rE {I, ... , l~nJ},

(1) f(n + 1, r) > f(n, r), and

(2) f(n, r + 1) < f(n, r);

that is, the function f increases as n increases, decreases as r increases.

Proof:

(1) Let G be a graph with order n, radius r and the maximum possible

number of edges - i.e., IE(G)! = f(n, r). Let c be any central vertex
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of G, and let GI be the graph obtained from G by adding a vertex x

adjacent only to c.

Since x has degree 1, its addition cannot make any new shortest paths

between vertices available, and therefore cannot decrease the eccen­

tricity of any other vertex. Furthermore, ec/(x) = ec(c) + 1 and

ec/(c) = ec(c). Hence GI also has radius r.

Since GI has n + 1 vertices, it follows that f(n + 1, r) > IE(G')I

IE(G)I + 1 = f(n, r) + 1.

(2) Let G be a graph with order n, radius r + 1 ::::: 2, and f(n, r + 1) edges.

Let u and v be any two vertices in G such that dc (u, v) = 2, and let

GI be the graph obtained from G by adding the edge e = uv.

Note that the addition of e cannot increase the distance between any

two vertices, and cannot decrease it by more than 1. Hence r :S
rad(GI

) :S r + 1. But GI cannot have radius r + 1 without contra­

dicting the fact that G has the maximum possible number of edges for

a graph of order n and radius r + 1. It follows that rad(G/) = r.

Hence f(n,r)::::: IE(G/)I = IE(G)I + 1 = f(n,r + 1) + 1. o

Theorem 2.4.4 [Viz67J For any natural numbers nand r such that n :::::

2r::::: 2)

(1) f(n, 1) = ~n(n - 1)

(2) f(n, 2) = ~n(n - 1) - r~nl = l~n(n - 2)J
(3) f(n, r) = g(n, r) := Hn2

- 4rn + 5n + 4r2 - 6r) for n ::::: 2r ::::: 6.

Proof:

(1) The graph with radius 1 and the maximum possible number of edges

is the complete graph, which has ~n(n - 1) edges.
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H:

c.2-..

Figure 2.8: A graph with order n,' radius r and maximum size

(2) In a graph with radius 2, every vertex must be nonadjacent to at least

one other vertex. If n is even, therefore, C(n, 2) consists of all graphs of

order n in which each vertex is nonadjacent to exactly one other vertex.

If n is odd, this is not possible - some vertex has to be nonadjacent to

two other vertices. In either case, C(n, 2) consists of all graphs obtained

from K n by removing r~nl edges covering V(Kn ).

(3) To prove that the inequality f(n, r) ~ g(n, r) holds for n ~ 2r ~ 6,

we just need to construct a graph H with order n, radius rand g(n, r)

edges.

Let H consist of a complete graph K n - 2r and a cycle C2r , where every

vertex of the Kn - 2r is joined to three consecutive vertices x, y, z of the

C2r (see figure 2.8). Since IE(H)I = 2r + 3(n - 2r) + ~(n - 2r)(n ­

2r - 1) = g(n, r), it follows that f(n, r) ~ IE(H)I = g(n, r).

(Note that, for given nand r, H is not necessarily the only graph of

order n and radius r with f(n, r) edges.)

To prove the remaining inequality f(n, r) ~ g(n, r) for n ~ 2r ~ 6, we

use double induction on nand r.

(4) We first show that f( n, 3) ~ g(n, 3) for all n ~ 6.
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Let G be any graph in C(n,3). Recall that (by Proposition 2.4.2), if

x and y are a pair of vertices such that dG(x, y) 2: 3, then deg(x) +
deg(y) :::; n - 2r + 4. Furthermore (by Proposition 2.4.1), for any

u E V (G), deg (u) :::; n - 2r + 2. Therefore all we need to prove is that

G contains three disjoint pairs of vertices at distance at least 3, since

then

f(n,3) IE(G)I
1- L deg(u)
2 uEV(G)

1
< '2(3(n - 6 + 4) + (n - 6)(n - 6 + 2))

g(n,3). (1)

We consider two cases:

Case (1): diam(G) 2: 4.

In this case G contains an induced path P : Xl, . .. ,X5. Let y be any

eccentric vertex of X3 - then d(X3' y) 2: r = 3, and y is not on P.

Hence {Xl, X4}, {X2' X5} and {X3' y} are three disj oint pairs of vertices

at distance at least 3, and so inequality (1) holds.

Case (2): diam(G) = r = 3.

Let P : a, b, c, d be a diametral path in G (clearly P is an induced

path), and let b' and c' be any eccentric vertices of band c respectively

- note that neither b' nor c' lies on P. If b' =I- c', then {a,d}, {b,b' }

and {c, c'} are three disjoint pairs of vertices at distance at least 3, and

so inequality (1) holds.

Otherwise, let b' = c' = x. Since d(x, a) :::; 3, and d(x, d) :::; 3, there

must be some neighbours p of a and q of d at distance at most 2

from x. Note that p =I- q and p,q tt {x,a,b,c,d}, since d(a,d) =
d(b, x) = d(c, x) = 3. Let pi and q' be any eccentric vertices of p and q

respectively. Clearly pi tt {p, a, b, x} and q' tt {q, d, c, x}.
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Now if p' -=f d, then {a, d}, {b, x} and {p, p'} are three disjoint pairs of

vertices at distance at least 3, and so inequality (1) holds. Similarly,

if q' -=f a, then {a,d}, {b,x} and {q,q'} will do. Finally, if p' = d and

q' = a, then we can use {p, d}, {q, a} and {b, x}.

(5) Next we show that f(2r, r) :S g(2r, r) for all r 2 3.

Let G be any graph in C(n, r), where n = 2r. By Proposition 2.4.1,

,6.(G) :S 2r - 2r +2 = 2. It follows that f (2r, r) = IE(C) I :S ~n,6.( G) =
2r = g(2r, r).

(6) Now let nand r be any natural numbers such that r 2 4 and n 2 2r+ 1,

and assume inductively that f(n', r') :S g(n', 'r') for all n', r' E N such

that either 3 :S r' :S r - I, or else r' = rand 2r :S n' :S n - 1. We want

to prove that then f(n, r) :S g(n, r).

Let G be any vertex in C(n, r). We consider two cases:

Case (1): G contains a ncv v such that rad(G - v) 2 r.

In this case,

IE(G - v)1 < f(n - 1, rad(G - v))

< f(n - I, r) (by Lemma 2.4.3)

< g(n - 1, r) (by the induction hypothesis).

Since deg(v) :S ,6.(G) :S n - 2r + 2 by Proposition 2.4.1, it follows that

f(n, k) IE(G)I

IE(C - v)1 + deg(v)

< 9(n - 1, r) + n - 2r + 2

g(n, r),

which is the desired result.

Case (2): For every ncv u in C, rad(C - u) < r - i.e., C is a vertex­

radius-decreasing graph.
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We consider two subcases:

Subcase (2.1): G contains at least one cut-vertex.

By Lemma 2.2.9 any ncv of G must have degree 1. Hence G contains

two endvertices, Xl and X2. Let G/ = G - {Xl, xd, and note that if

rad(G/) :=; r - 2, then any central vertex c of G/ is within distance

r - 2 from every vertex in V(G) - {XI,X2}, including the neighbours

of Xl and X2. But then c is within distance r - 1 from Xl and X2,

contradicting the fact that rad(G) = r. Hence rad(G/) 2': r - 1.

So

f(n,r) - IE(G)I

2 + IE(G')I

< 2 + fen - 2, rad(G/))

< 2 + fen - 2, r - 1)

< 2 + g(n - 2, r - 1)

g(n, r),

and we are done.

(by Lemma 2.4.3)

(by induction hypothesis)

Subcase (2.2): G has no cut-vertices.

By Proposition 2.2.5, n is even and V(G) can be partitioned into !n
conjugate pairs {v, v*}. Note that for any v E V(G), d(v, v*) = r 2': 3,

and so (by Proposition 2.4.2) deg(v) + deg(v*) :=; n - 2r + 4. Hence

1 1 1
IE(G)I=-2 L deg(u):=;-(-n)(n-2k+4).

uEV(G) 2 2

Note that i"n(n - 2k + 4) :=; g(n, k) = ~(n2 - 4nk + 5n + 4k2 - 6k)
iff 0 :=; (n - 2r)(n - 4r + 6)

iff n 2': 4r - 6 (since n > 2r).
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So, if n ~ 4r - 6, then f(n, r) ::; g(n, r), and we are done. We therefore

need to consider only the case 2r + 1 ::; n ::; 4r - 7; i.e. (since n is

even) we may assume

2r + 2 ::; n ::; 4r - 8.

(7) Since G has no cut-vertices, by Menger's Theorem each pair of vertices

of G is contained in a cycle. In particular, any pair of conjugate vertices

{x, x*} is contained in a cycle of length at least 2d(x, x*) = 2r. Let M

be a shortest cycle of length at least 2r in G, and let its length be £.

(8) We want to find the maximum possible number of edges in G. To

this end, we first show that M is an induced cycle of G. Assume, to

the contrary, that M has a chord ab, and let MI and M2 be the two

a - b sections of M, where say £(MI ) ~ £(M2 ). Then the two cycles

Cl = MI +ab and C2 = M2 +ab are shorter than M, and must therefore

have length at most 2r - 1.

Let x be a central vertex of M I , and let H : x, Xl,." ,Xr-l and P2 :

X, YI, ... ,Yr-l be the two paths of length r - 1 emanating along M from

x. Then a and b must lie on PI and P2 , or else Cl would have length

at least 2(r - 1) + 2 = 2r. Say a = Xi and b = Yj, where li - jl ::; 1.

Assume without loss of generality that j ~ i.

Now let S = {x, Xl, ... , Xr-2, YI, ... ,Yr-l}; so ISI = 2r - 2. Note

that every pair of vertices in S lies on one of the cycles Cl, C2 (each

of which has length at most 2r - 1), or on one of the paths PI, P2 ,

P3 : XI,X2, ,Xi(= a),Yj(= b),YHI,···,Yr-1 and P4 : Yl,Y2, ... ,Yj(=

b), Xi (= a), , Xr-2 (each of which has length at most or - 1). It follows

that no pair of vertices in S can be distance r apart, and hence that

S contains at most one vertex of every conjugate pair. Therefore n 2
21S/ = 4r-4, which contradicts our assumption that n ::; 4r-8. Hence

M must be an induced cycle.
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(9) Next we prove that no vertex in V(G) - V(M) can have more than

three neighbours on M.

Assume, to the contrary, that there exists some vertex x E V (G) ­
V(M) which has at least four neighbours on M. Then x must have two

neighbours u and v on M such that dM (u, v) ;:::: 3. Let the two u - v

sections of M be M l and M 2 respectively, where f(Ml ) ;:::: f(M2 ), and

let Cl (C2) be the cycle bounded by the path u,x,v and Ml (M2 ). It

follows that Cl and C2 are shorter than M, and hence that £(C2 ) <
f(Cl) ::; 2r - 1.

Again we find a set of more than 2r - 4 vertices all within a distance

of r - 1 from each other. Let c be a central vertex of M l , and let

H : c, al,···, ar-l and P2 : c, bl ,.· ., br- l be the two paths of length

r - 1 emanating along M from c, where without loss of generality

u = bj , v = ai and 0 ::; j - i ::; 1 (since i + j + 2 = £(Cl) ::; 2r - 1, and

hence j ::; r - 1 and i ::; r - 2).

Let S = {x,c,al,'" ,ar-3,bl ,· .. ,br-d; so ISI = 2r - 3. If j ::; r - 2

and i ::; r - 3, then any two vertices of S are on one of the cycles

Cl, C2 (each of which has length at most 2r - 1), or on one of the paths

Pl ,P2 ,P3 : al, ... ,ai,x,bj , ... ,br- 2 and P4 : bl , ... ,bj,x,ai, ... ,ar_3

(each of which has length at most r - 1). Otherwise, if j = r - 1 or

i = r - 2, then P3 and P4 are not defined, but in this case all vertices

in S are on Cl'

It follows that no two vertices in S can be distance r apart, and hence

that for every vertex y in S, y* is in V(G) - S. So IV(G) - SI :::::

ISI = 2r - 3, and hence n ;:::: 21S1 = 4r - 6. Since this contradicts our

assumption that n ::; 4r - 8, it follows that no vertex in V(G - M) can

have more than three neighbours on M.
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(10) All that now remains is to count the maximum number of edges in G,

in the case n ::; 4r - 8. Since G E C(n, r),

f(n, r) IE(G)I = IE(G - M)I + IE(M)j + I[V(G - M), V(M)]I

(
n -P)< ' 2 + P+ (n - PH3)

1
2(n2

- 2nP + 5n + p2
- 3P)

< g(n, r),

where we have used n 2:: P 2:: 2r.

The result now follows by induction.
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Chapter 3

Diameter

The diameter of a graph G is the maximum distance between two vertices in

G. In this chapter we consider how the diameter is affected by the removal

of an edge or a vertex, the addition of an edge, or the taking of a spanning

tree.
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3.1 Preliminaries

Recall that Si (G) is the number of unordered pairs of vertices distance i apart

in a graph G, and that Wi (G) is the set of all unordered pairs of non-adjacent

vertices of G which are at most distance i apart. Our first result is a lower

bound on IWk(G)I. The bound is due to Soltes [80191], who also showed that

it is attained by path-complete graphs. Using an idea of Goddard [God96],

we have extended the result by finding all graphs attaining the bound. In
this chapter we will use only Soltes's original result, but our new result will

allow us to improve some results on distance in Chapter 4.

Theorem 3.1.1 Let G be a connected graph of order n and diameter d 2: 3.

Then for any k E {2, ... , d - I},

k

IWk(G)1 2: L(n - i).
i=2

Moreover, equality occurs for all k E {2, ... , d - I} if!

(a) G is a path-complete graph, or

(b) G rv K no + K 1 + ... + K 1 + K nd , where no + nd = n - d + I, or

(c) d = 3 and G rv K 1 + K n1 + K n2 + K 1, where nl + n2 = n - 2.

Proof:

(1)

(1) Let Gd : VD, VI, ... , Vd be a diametral path of G. Number the vertices

not lying in Gd as Vd+l, ... , V"-I, in such a way that the graphs Gj :=

({VD, ... ,Vj})C are connected for all j E {d + 1, ... ,n -I}.

If G = Gd , then G is a path, equality holds in (1) and G is path­

complete. Otherwise, for any j E {d + 1, ... , n - I}, Wk (Gj) contains

W k ( Gj - 1 ), and we now show that there are at least k-1 pairs of vertices

in the set Wk(Gj ) - Wk (Gj - 1 ) - in other words, that there are at least

k - 1 vertices u in Gj such that 2 ::;: dCj (Vj, u) ::;: k.
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If eGj (Vj) 2:: k, then let w be an eccentric vertex of Vj in G j, and

let P : Vj = Un, ""uecj(Vj) = W be a shortest Vj - W path. Then

2 :S dGj (Vj, Ui) :S k for each of the k - 1 vertices U2, ... , Uk·

Otherwise, if ecj(vj) < k, note that since Gd is a shortest path, Vj can

be adjacent to at most three vertices of Gd . Hence there are at least

d - 2 2:: k - 1 vertices of Gd that are non-adjacent to Vj but within

distance eGj(vj) < k of it.

In either case, IWk(Gj ) - Wk(Gj - 1 )! 2:: k-1.

(2) Now

IWk(G)1 (IWk(Gn-l)I-IWk(Gn-2)1) + (IWk(Gn- 2)!- IWk(Gn- 3 )1)

+,.. + (IWk(Gd+l)!-IWk(Gd)l) + !Wk(Gd)1
k

> (k - 1)(71, - d- 1) + I)d + 1 - i)
i=2

k

I)71, - i),
i=2

which is inequality (1).

(3) We now assume that equality holds in inequality (1) for every k E

{2, ... , d-1}. Hence there must be exactly k -1 vertices in G j which are

between distance 2 and distance k from Vj, for every j E {d+ 1, ... ,71,-1}
and every k E {2, ... , d - I}.

This must hold no matter in what order the vertices Vd+l, ... , V n are

labelled, as long as the graph Gj remains connected each time the

vertex Vj is added.

(4) In particular, observation (3) must hold for k = 2; in other words, for

every vertex Vj added, there must be exactly one vertex at distance 2

from Vj in G j . Call this vertex the double of Vj'
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Consider any vertex v which is adjacent to at least one vertex on Cd

in C. It is a candidate for Vd+!. Since d > 2, v cannot be adjacent to

all the vertices on Cd; hence v has a double on Cd. In order for this

double to be unique, v must be adjacent to all vertices in an initial or

final segment of Cd' Note further that, since Cd is a shortest Vo - Vd

path, Vj cannot be adjacent to more than three vertices on Cd'

Next we prove that no vertex in C can have exactly one neighbour on

Cd. Assume, to the contrary, that there exists a vertex v in C which

is adjacent to only Vo (say) on Cd. Let P be a shortest Vd - V path in

C, and note that VI is not on P (since otherwise dC(Vd'V) = d + 1).

Now let t be the number of vertices in V (P) that are not in V (Cd), and

label these vertices as Vd+! , ... , Vd+t = V; in other words, let the first t

vertices added after Vd be the vertices of V(P) - V(Cd ), ending with

v. But then when V is added it has two doubles - VI and one on P­

which is impossible.

It follows that if a vertex V is adjacent to at least one vertex on Cd,

then its neighbour set on Cd is one of {VO,Vl}, {vo,vl,vd, {Vd-l,Vd}

or {Vd-2, Vd-I, Vd}.

(5) We now show that every vertex in C is adjacent to at least one vertex

on Cd. Otherwise, there exists some vertex w in C which is at distance

2 from Cd via a vertex 1). Let Vd+l = v and Vd+2 = w; then w has

at least two doubles on Cd (viz., the neighbours of V on Cd), which is

impossible.

Furthermore, any two vertices u and V in V (G) - V (Gd) which have a

common neighbour on Cd must be adjacent to each other. Otherwise,

if we let Vd+l = u and Vd+2 = v, then v would have two doubles - u

and one on Cd.

Hence by observation (4),
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where no + nl + nd-I + nd = n - d + 3.

(6) Now, observation (3) must also hold for k = d - 1; in other words,

there must be exactly d - 2 vertices in G j which are between distance

2 and distance d - 1 from each vertex Vj added. Hence if nl 2:: 2,

then either d = 3 and nd = 1, or nd-I = nd = 1; in other words,

G rv K I + K n1 + K n2 + K I or G is path-complete. A similar conclusion

holds if nd-I 2:: 2. The only other possibility is nl = nd-I = 1, in which

case G rv K no + K I + ... + K I + K nd .

It remains to show that the above graphs do indeed achieve equality in

inequality (1) for all k E 2, ... , d - 1. We give the calculation only for path­

complete graphs; the other two cases are easy.

Note that a path-complete graph of order n and diameter d can be

obtained from a path P : Vo, ... , Vd-2 by joining Vd-2 to t vertices of a

Kn-d+l. Label the vertices of the K n- d- I which are adjacent to Vd-2 by

Vd-I, ... ,Vd-Ht, and label the remaining vertices as Vd-Ht, ... ,Vn. Note that

only the n- d+ 1-t vertices in {Vd-Ht, ... ,Vn-I} have a vertex of lower index

at distance d from them (viz., vo), so Sd = n - d +1- t. For i E {2, ... , d -1},

however, every vertex except those in {1Jo, ... ,Vi-I} has exactly one vertex

of lower index at distance i from it, and so Si = n - i. It follows that

IWk(PKn,m) I = 2::7=2 Si = 2::7=2(n - i).

This completes the proof. o

Our next result is an upper bound on the diameter of a graph, given the

numbers of vertices and edges. The bound is due to Harary [Har62], but

we present our own proof based on Theorem 3.1.1. The related question of

the maximum number of edges in a graph of given order and diameter is

discussed in Section 3.4.

Theorem 3.1.2 [Har62] Let G be a connected graph with n vertices and m

edges. Then diam(G) ::::; diam(PKn,m).
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Proof:

Let diam(G) = d, and diam(PKn,m) = D. Note that sD(PKn,m) is equal

to the number of vertices at distance D from a vertex of lowest degree in

PKn,m, and is therefore at most n - D. Now suppose d > D.

If D = 1, then m = (;), and so d = 1 = D, contradicting our assumption.

It follows that D ~ 2, and so d ~ 3. Hence

IWd(G)1 > !WD(G)I
D

> I)n-i)
i=2

(by Theorem 3.1.1)

D-l

L(n-i)+(n-D)
i=2

D-l

> L (n - i) + sD(PKn,m)
i=2

IWD-l(PKn,m)! + sD(PKn,m)

IWD(PKn,m)l·

(by Theorem 3.1.1)

But since G and PKn,m both have n vertices and m edges, IWd(G)1 =
IWD(PKn,m) I = (;) - m. We therefore have a contradiction, and it follows

that d ::; D. 0

Note that PKn,m is not necessarily the only graph of order n and size m

with maximum diameter. For example, the graph G in figure 3.1 has order

8, size 10, and the same diameter as PKs 10.,
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Go:

).----{ )---')---.1f---( )-----{J---Q

Figure 3.1: Another graph of maximum diameter (here n = 8, m = 10)
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3.2 Spanning Trees

We saw earlier that, for any connected graph C, it is always possible to find

a spanning tree of C which has the same radius. This is not always true

for diameter. In this section we characterise graphs which have diameter­

preserving spanning trees, and in fact find the minimum diameter of a span­

ning tree of any given graph.

We first examine the more restricted problem of determining when a

graph has an eccentricity-preserving spanning tree.

3.2.1 Eccentricity-preserving spanning trees

Definition: A spanning tree T of a graph C is said to be eccentricity­

preserving if eT (v) = ea (v) for every vertex v E V (C).

Nandakumar [Nan86] characterised the graphs that have eccentricity­

preserving spanning trees. We present our own proof of his result. This

requires some preliminary notation and results.

Recall that, by Propositions 2.1.1 and 2.1.2, if c is any central vertex of a

connected graph C and Tc is a spanning tree of C which is distance-preserving

from c, then rad(Tc ) = rad(C) and C(Tc ) ~ C(C). We now consider a more

specific type of such tree.

Definition: For any adjacent vertices v and u in a graph, we let Tv u denote a,

spanning tree which is distance-preserving from v, in which as many vertices

as possible are descended from u.

For example, the tree found using the breadth-first-search algorithm with v

as root and u as the first neighbour of v is such a tree.
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Proposition 3.2.1 Let G be a connected graph containing two adjacent cen­

tral vertices Cl and C2 with no eccentric vertices in common. Then C(TC1 ,C2) =
{Cl, C2}'

Proof:

The only vertices in V(G) whose distances from Cl and C2 are not the same in

TC1 ,C2 as in G are those that are equidistant from Cl and C2 in G. These vertices

are the same distance from Cl in TC1 ,C2 as in G, but distance 1 further from

C2. Since Cl and C2 have no eccentric vertices in common, all these vertices

are within distance rad(G) -1 from C2 in G. Hence eT
C1

,C2 (C2) = rad(G) , and

so C2 E C(TC1 ,C2)' Since Cl is certainly also in C(TCl ,C2)' the result follows. 0

Lemma 3.2.2 If every non-central vertex v of a graph G has a neighbour

w with ec (w) = ec (v) - 1, then no vertex u E V (G) can be further than

ec(u) - rad(G) from its closest central vertex in G.

Proof:

Let u be any non-central vertex. Then u has a neighbour Ul of smaller

eccentricity. Similarly, Ul (if it is not central) has a neighbour U2 of smaller

eccentricity, and so on. It follows that we can reach the centre from U in

ec(u) - rad(G) steps. 0

As a direct consequence we have the following result.

Lemma 3.2.3 IfC(G) = {Cl,C2}, diam(G) S 2rad(G) -1, and every non­

central vertex v in G has a neighbour u with ec(u) = ec(v) - 1, then Cl and

C2 have no common eccentric vertex.

Proof:

Let z be any eccentric vertex of Cl; so dc(z, Cl) = rad(G). By Lemma 3.2.2,

z must be within a distance of ec(z) - rad(G) S diam(G) - rad(G) S
rad(G) - 1 from some central vertex of G, which cannot be Cl and must

therefore be C2. Hence z cannot be an eccentric vertex of C2. 0
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We are now ready to present the characterization of eccentricity-preserving

spanning trees.

Theorem 3.2.4 [Nan86] A connected graph C has an eccentricity-preserving

spanning tree iff

(1) either (C(C))G ~ K l and diam(C) = 2rad(C), or (C(C))G rv K 2 and

diam(C) = 2rad(C) - 1, and

(2) every non-central vertex v in C has a neighbour u with eG(u) = eG(v)-1.

Proof:

Let C be a connected graph with an eccentricity-preserving spanning tree T.

By Proposition 1.5.4, condition (1) holds for T, and it is not hard to show

that condition (2) does too. It follows that the two conditions hold for G.

For the converse, let C be a connected graph satisfying (1) and (2). If

C(C) = {Cl}, let T be the tree TC1 • Then by Propositions 2.1.1 and 2.1.2,

rad(T) = rad(G) and C(T) = C(G). Otherwise, if C(C) = {Cl, cd, let T be

the tree TCl ,C2. Again, by Proposition 2.1.2, rad(T) = rad(G). Furthermore,

since by Lemma 3.2.3 Cl and C2 have no common eccentric vertex, it follows

by Proposition 3.2.1 that C(T) = C(G).

Now let v be any vertex in C. If C(C) = {Cl, C2} and v is closer to

C2 than to Cl in C, let c = C2· Otherwise let C = Cl. Then c E C(G) =

C(T), dT(v,c) = dG(v,c), and by Lemma 3.2.2, dG(v, c) :::; eG(v) - rad(C).
Therefore

eT(v) < dT(v, c) + eT (c)

dG(v, C) + rad(T)

dG(v, c) + rad(G)

< eG(v).

It follows that eT(v) = eG(v) for every v E V(G). In other words, T is

eccentricity-preserving. 0
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3.2.2 Minimum-diameter spanning trees

Buckley and Lewinter [BL88] characterised all graphs that have a diameter­

preserving spanning tree. We generalise their result by determining the min­

imum diameter of a spanning tree of any given graph.

Proposition 3.2.5 1fT is a minimum-diameter spanning tree of a graph G,

then rad(T) = rad(G).

Proof:

Suppose, to the contrary, that rad(T) 2: rad(G) + 1. Let c be any central

vertex of G, and let Te be a spanning tree of G which is distance-preserving

from c. Then

diam(Te ) < 2rad(Te )

2rad(G)

< 2(rad(T) - 1)

< diam(T) - 1,

which is impossible. o

Theorem 3.2.6 Let T be a minimum-diameter spanning tree of a graph G.

If G contains a pair of adjacent central vertices with no eccentric vertices in

common, then diam(T) = 2rad(G) - 1. Otherwise, diam(T) = 2rad(G).

Proof:

By Proposition 3.2.5, rad(T) = rad(G). Since T is a tree, either diam(T) =
2rad(G) or diam(T) = 2rad(G) - 1.

If diam(T) = 2rad(G) - 1, then let C (T) = {Cl, cd. Since T is radius­

preserving, C(T) ~ C(G), and any eccentric vertex of Cl or C2 in G is also

an eccentric vertex in T. Since Cl and C2 are adjacent, no vertex in T can be
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equidistant from them in T. It follows that Cl and C2 can have no eccentric

vertices in common in T, and hence in G.

For the converse, let G be a graph containing two adjacent central vertices

Cl and C2 which have no eccentric vertices in common, and consider TCl ,C2'

By Proposition 3.2.1, IC(TCl ,C2)! = 2, and hence diam(Tc1 ,c2) = 2rad(G)-1.

It follows that diam(T) = 2rad(G) - 1. 0

Since any diameter-preserving spanning tree is clearly also a minimum­

diameter spanning tree, Buckley and Lewinter's characterisation follows as a

corollary:

Corollary 3.2.7 [BL88] A graph G has a diameter-preserving spanning tree

iff either

(1) diam(G) = 2rad(G), or

(2) diam(G) = 2rad(G) -1 and G contains a pair of adjacent central vertices

with no eccentric vertex in common.

Some remarks:

(1) Note that any connected graph G contains a spanning tree whose di­

ameter is at most double that of G (for example, any radius-preserving

spanning tree of G is such a tree). The odd cycles (among others) show

that this bound cannot be improved. This has relevance, for example,

when one is considering replacing a proposed communications network

by one with the minimum possible building costs, and one needs to

know whether this will still yield an acceptable maximum transmission

time.

(2) Theorem 3.2.6 provides an easy way to find one minimum-diameter

spanning tree of a connected graph G. If G contains two adjacent central

vertices Cl and C2 with no eccentric vertices in common, then TC1 ,C2

IS a minimum-diameter spanning tree (with diameter 2rad(G) - 1).

61



c.,

1---0--0

Figure 3.2: A graph illustrating remarks (3) and (4)

Otherwise, for any c E C(G), Tc is a minimum-diameter spanning tree

(with diameter 2rad(G)).

(3) It is not true that every spanning tree which is distance-preserving from

a central vertex of a graph G must have minimum diameter, only that

at least one of them must. For example, in the graph G in figure 3.2,

diam(Tc2 ) = diam(Tc3 ) = 7, but diam(Tq ) = 8.

(4) Nor is it true that every minimum-diameter spanning tree of a graph

G must be distance-preserving from some c E C (G). For example, the

minimum-diameter spanning tree obtained by omitting the edges el, e2

and e3 from G in figure 3.2 is not distance-preserving from any central

vertex.

(5) Clearly, any eccentricity-preserving spanning tree also preserves the

diameter. One would therefore expect the conditions of Theorem 3.2.4

to imply those of the corollary to Theorem 3.2.6: Lemma 3.2.3 shows

that they do.

(6) A graph can, however, have a diameter-preserving spanning tree with­

out having an eccentricity-preserving spanning tree, as shown by the

graph G ~ K 1 + K n1 + K n2 + K 1 for any nl 2 2 and n2 2 2. This
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example also shows that, unlike in the case of eccentricity-preserving

spanning trees, IC(G)I need not be small in order for G to have a

diameter-preserving spanning tree. Here IC(G)! = IV(G)I - 2, and so

IC(G)I/IV(G)I--+ 1 as IV(G)I--+ 00.

(7) The minimum-diameter spanning tree problem for "graphs" whose edges

form a continuum of points was studied by Hassin and Tamir [HT95].

(8) Buckley and Lewinter [BL88] also noted that the following are sufficient

conditions for a graph to have a diameter-preserving spanning tree:

(a) C(G) = {c} and c is a cut-vertex not on a cycle of G, or

(b) G contains two adjacent central vertices Cl and C2 such that the

edge e = Cl c2 is a bridge.

We omit the straight-forward proofs.
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3.3 Edge Removal

In this section we discuss how the removal of edges affects the diameter of a

graph.

3.3.1 Removing the worst edge

When an edge is removed from a graph, the diameter cannot decrease. Our

first theorem shows that, if the edge is cyclic, then the diameter also cannot

increase by more than a factor of 2.

Theorem 3.3.1 [Ple75b, CG84] Let G be any connected graph and e any

cyclic edge of G. Then

diam( G - e) ::; 2diam(G).

Moreover, this bound cannot be improved.

Proof:

Let e = ab, let C be a shortest cycle of G containing e, and let W be a vertex

opposite e on C. Then by Proposition 1.5.9 removing e does not affect the

distance from w to any other vertex.

Now let x and y be any diametral pair of G - e. Then

diam(G - e) dc-e(x,y)

< dc-e(x, w) + dc-e(w, y)

dc (x, w) + dc (w, y)

< 2diam(G).

The odd cycle C2d+l shows that the bound is sharp. o

Chung and Garey [CG84] also considered a generalisation of this problem

in which t 2: 2 edges are removed from a connected graph G of diameter d.
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They proved that if the resulting graph C' is still connected, then diam(C') :S
(t + l)d + t. Schoone, Bodlaender and van Leeuwen [SBV87] improved this

bound to diam(C' ) :S (t + l)d, and obtained tight bounds for the cases

where t = 2 or 3, or d = 2. Kerjouan [Ker86] further improved the bound

to diam(C' ) :S (t + l)d - t + 3. Peyrat [Pey84] obtained tight upper and

lower bounds on diam(C') in the case where d = 2 or 3 and C is (t + 1)­

edge-connected, but for general d the maximum possible diameter of C' has

not yet been determined exactly.

We have obtained the following upper bound on the increase in diameter

when an edge is removed, in terms of the order of the original graph:

Proposition 3.3.2 Let C be a connected graph of order n, containing a

cyclic edge e. Then

diam(C - e) - diam(C) :S l~(n - 1)J '

and this bound is sharp.

Proof:

If diam(C) > ~(n - 1), then

l' 1
diam(C - e) - diam(C) < (n - 1) - -(n - 1) = -(n - 1).

2 2

If diam(C) :S Hn - 1), then by Theorem 3.3.1

diam(C - e) - diam(C) < 2diam(C) - diam(C)
1

< 2(n - 1).

The bound is attained, for example, by the cycle en' o

In contrast, there are many graphs whose diameter is unchanged by the

removal of any edge. For example, the hypercubes Qi for i 2: 3 are such
graphs.
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3.3.2 Removing a particular edge

We now consider the maximum change in diameter when a particular edge e

of girth 9 (e) is removed. Since the ends of e have their distance increased to

g(e) - 1, it follows that:

Proposition 3.3.3 [Ple75b] For any cyclic edge e of a connected graph G,

diam(G - e) 2: g(e) - 1.

This bound is attained for example in the cycles. It is in fact sharp for any

possible values of diam(G) and g(e) for which g(e) 2: diam(G) + 1, as shown

by the following construction: for any given dEN and .e E {d +1, ... , 2d+ I},

let G be the graph obtained from a cycle C ~ Cf by attaching a path of

length d - L~.eJ to a vertex v of C, and let e be an edge opposite v on C.

Then diam(G) = d, g(e) =.e and diam(G - e) =.e - 1.

Theorem 3.3.4 [Ple75b] For any cyclic edge e of a connected graph G,

diam(G - e) - diam(G) ::s g(e) - 2,

and if diam(G) is even and diam(G - e) = 2diam(G), then diam(G - e) ­
diam(G) ::s g(e) - 3. Moreover, these bounds are sharp for all possible values

of diam(G) and diam(G - e).

Proof:

Let diam(G) = d. Let e = ab, and let C be a shortest cycle containing e.

Let x and y be a diametral pair of G - e, and let P be a shortest x-y path

in G.

If P does not contain e, then diam( G - e) = d, and we are dQne. Oth­

erwise, we may assume without loss of generality that P is of the form
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x, ... , a, b, ... , y. Let W be the x-y walk obtained from P by replacing e

with C - e. Then

diam(C - e) dc-e(x,y)

< f(W) = dc(x, y) + g(e) - 2

< d+g(e)-2,

and the result follows.

Now let d be even and diam(C - e) = 2d, and assume that equality holds

in the above inequality. Hence g(e) = d + 2, W is a shortest x-y path in

C - e, and dc(x, y) = d.

Since d is even and dc(x, y) = d, we can assume without loss of generality

that dc(x, a) ~ ~d. Now let w be a vertex opposite a on C; hence (by

Proposition 1.5.8) dc(w,a) = dc(w,a) = ~d+ 1. Since the x-w section of

W is a shortest x-w path in C - e and hence (by Proposition 1.5.9) in C, it

follows that

d d
dc(x, w) = dc(x, a) + dc(a, w) ~ 2+ (2 + 1) = d + 1,

which is impossible. This shows that if d is even and diam(C - e) = 2d, then

the above inequality is strict.

Finally, we give an example to show the bounds cannot be improved. Let

dEN and D E {d, . .. ,2d} be given. Let C be the graph obtained from a

cycle C by attaching two disjoint paths g and P2 to two adjacent vertices a

and b on C as follows. If d is even and D = 2d, let C have length d + 3 and

let Pl and P2 have length ~d - 1. Then diam(C) = d, diam(C - e) = D, and

9(e) = D - d + 3. Otherwise, let C have length D - d + 2, let Pl have length

ld;l J, and let P2 have length fd;ll. Then diam(C) = d, diam(C - e) = D,

andg(e)=D-d+2. 0

The following theorem is based on ideas developed by Plesnik in [Ple75a].
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Theorem 3.3.5 Let G be a connected graph of diameter d, containing no

endvertices, and let e be a cyclic edge of G. Then diam(G - e) = 2d if!

g(e) = 2d + 1.

Proof:
Let e = ab, and diam(G - e) = 2d. We establish that g(G) = 2d+ 1 in three

steps.

(1) Let C be a shortest cycle containing e in G. Let x and y be any

diametral pair of G-e, and let P be any shortest x-y path in G. Clearly

P contains e; we may therefore assume without loss of generality that

P consists of an x-a path PI of length '£1, the edge e = ab, and a b-y

path P2 of length '£2, where .£1 ;;:: '£2·

By replacing e by C - e in P, we obtain an x - y walk in G - e of

length dc(x, y) + g(e) - 2. It follows that

dc(x, y) + g(e) - 2 ;;:: dc-e(x, y) = 2d,

and hence that

g(e) ;;:: 2d - dc(x, y) + 2. (1)

(2) Since y is not an endvertex it has a neighbour y' not on P. Since y is

an eccentric vertex of x in G - e, a shortest x-y' path Q in G - e does

not contain y. Let w be the vertex at distance d - dc (x, y) from y' on

Q, and let W be the b-w walk consisting of P2 , the edge yy', and the

y'-w section of Q (see figure 3.3.)

We now prove that dC - e (x, w) ::; d. Suppose, to the contrary, that

dc-e(x, w) > d. Then any shortest x-w path in G must contain e. It

follows that there is a w-b path R in G of length at most d - .£1 - 1.

Note that, since .£(W) = d - .£1 > .£(R), V(R) i- V(W), and hence the

closed walk consisting of Rand W contains a cycle C'. But.£(C') ::;

2d - 2.£1 - 1 ::; 2d - dc(x, y), which is less than g(e) by inequality (1).

Since this is clearly impossible, we conclude that dc-e(x, w) ::; d.
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~

Figure 3.3: Illustration used in the proof of Theorem 3.3.5

(3) It follows t.hat

2d - dG-e(x, y)

< dG-e(x, w) + dG-e(w, V') + dG-e(y', y)

< d + (d - dG (x, y)) + 1,

and hence that dG(x, y) = 1.

Therefore, by inequality (1),

g(e) 2: 2d - dG(x, y) + 2 = 2d + 1.

Since g(e) :S 2d+ 1 by Proposition 1.5.10,·t.he result. follows.

For the converse, let. g(e) = 2d + 1. Then

diam(G - e) 2: dc-e(a, b) = g(e) - 1 = 2d.

Since diam(G - e) :S 2d by Theorem 3.3.1, t.he result follows. o

We will use t.his result in our discussion of edge-diameter-doubling graphs.

Note t.hat t.he condit.ion t.hat. G have no endvert.ices is necessary, as shown

by t.he graph const.rncted in Theorem 3.3.4.
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3.3.3 Edge-diameter-increasing graphs

In this subsection we consider graphs for which the removal of any edge in­

creases the diameter. Such graphs model networks whose maximum message

delay time increases if any link fails.

Definition: A connected graph G is called edge-diameter-increasing or edi

if diam( G - e) > diam(G) for every edge e of G.

For example, all trees, complete graphs and cycles are edge-diameter­

increasing. Such graphs are also called diameter-minimal graphs, and were

studied especially by Gliviak and Pleslll'k (see [Gli68, Gli75a, Gli75b, GKP69a,

GKP69b, GP69, GP70, GP71, Ple75a, Ple75b]).

Edi graphs have not been fully characterised, but several results are

known. For example, both Gliviak and Plesnfk [GP70] and Greenwell and

Johnson [GJ79] proved that for any graph G and any natural number d 2:: 2

there exists an edge--diameter-increasing graph of diameter d containing G

as an induced subgraph. Also, Plesnfk gave a construction in [Ple75a] which

shows that for any d 2:: 1 and K 2:: 2 there exists a K-regular edi graph with di­

ameter d and connectivity K. These results show that the class of edi graphs

is very large.

By removing edges one at a time until, if any further edge were removed,

the diameter would increase, we obtain the following:

Proposition 3.3.6 Every connected graph has a spanning subgraph of the

same diameter which is edge-diameter-increasing.

We have the following sufficient condition for a graph to be edge-diameter­

increasing:

Proposition 3.3.7 [Ple75b] If G is any graph with g(G) 2:: diam(G) + 2,

then G is edge-diameter-increasing.
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Proof:

By Proposition 3.3.3, for any cyclic edge e of G,

diam(G - e) 2:: g(e) - 1 2:: diam(G) + 1.

It follows that G is edi. o

The edi graph G obtained by attaching a path of length £ 2:: 1 to each

vertex of a triangle shows that the above condition is not neccesary, since

here g(G) = 3 < 2£ + 3 = diam(G) + 2.

In the next few propositions we establish some properties of edi graphs.

Proposition 3.3.8 [Ple75a] In any edge-diameter-increasing graph, there is

at most one cyclic block.

Proof:

Let G be a connected graph of diameter d containing at least two cyclic

blocks. Then for some cut-vertex v of G, there are two v-components G l

and G2 , each of which contains a cycle. Since eCl (v) + eC2 (v) :::; d, we may

assume without loss of generality that eCl (v) :::; ~d.

Let T be a spanning tree of G which is distance-preserving from v, and

let e be any edge in E(Gl ) - E(T). Note that removing e from G does not

change the distance from v to any other vertex.

Now let x and y be any diametral pair of G - e. If x and y are not both in

G l , then removing e does not affect the distance between them. Otherwise,

if both x and y are in G l , then

dc-e(x, y) :::; dc-e(x, v) + dc-e(v, y) :::; 2ec(v) :::; d.

In either case, it follows that diam(G - e) :::; d, and hence that G is not

edi. 0

Any graph of order n and diameter 1 (i.e., any complete graph) is edi and

has minimum degree n - 1, but for edi graphs of diameter greater than 1 the
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situation is different. Plesm'k [Ple75b] proved that an edi graph of order n

and diameter at least 2 has minimum degree at most L%J. For any n ~ 3,

the complete bipartite graph KL~nJ,r~nl shows that this bound is sharp for

graphs of diameter 2. Our next proposition improves Plesnik's bound for

graphs of diameter greater than 2.

Proposition 3.3.9 If G is an edge-diameter-increasing graph of order nand

diameter d ~ 2, then

Proof:

Let e be any cyclic edge in G, and let x and Y be any diametral pair of G - e.

Let P be a shortest x - Y path in G - e.

Since G is edi and d ~ 2, da-e(x, y) ~ d + 1 ~ 3. Hence Na-e(x) n
Na-e(y) = 0. Note that INa-e(x)1 ~ dega(x) - 1, INa-e(y)! ~ dega(Y) - 1,

and that P has exactly one vertex in common with each of Na-e(x) and

Na-e(y). Hence

n > IV(P)I + INa-e(x)1 + INa-e(y)l- 2

> (d + 2) + (dega(x) - 1) + (dega(Y) - 1) - 2.

It follows that 28(G) ::; dega(x) + degG(Y) ::; n - d + 2, and hence that

8(G)::;~(n-d+2). 0

The above bound is attained for d = 2 by C4 , and for d = 3 by C6 .

However, for larger values of d, it seems to be poor. Bermond and Bollobas

observed in [BB81] that very little is known about the maximum possible

value of 8(G) for an edi graph G.

Note that, since for any n ~ 3 and d E {2, ... ,n - 1} the graph obtained

from the star K1,n-d+l by replacing one edge by a path of length d - 1 is edi,

the only upper bound on the maximum degree of an edi graph G of order n

and diameter d is the obvious one of ~(G) ::; n - d + 1.
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Plesnik [Ple75a] and, independently, Simon and Murty (see [CH79]) made

the following conjecture about edi graphs:

Conjecture 3.3.10 Let G be an edge-diameter-increasing graph of diameter

2 with n vertices and m edges. Then

1 2
m::; l:rn J,

with equality holding if! G cv KL~nJ,l~nl.

In [Ple75a] Plesnik proved that m ::; ~ (;). (In fact he proved it for edi

graphs of order n and any diameter greater than 1.)

Caccetta and Haggkvist [CH79] established the stronger bound of m ::;

O.27n2 . Fan [Fan87] proved the conjecture for n ::; 24 and n = 26, and

improved the bound to O.2532n2 for n 2': 25. Finally, Fiiredi [Fur92] proved

that the conjecture is true asymptotically.

Caccetta and Haggkvist [CH79] proposed a generalisation of the con­

jecture to edi graphs of higher diameter. Their conjecture was, however,

disproved by Krishnamoorthy and Nandakumar [KN81].

Clearly, since all trees are edi, there is no lower bound on the number of

edges in an edi graph of order n other than the obvious one of n - 1.

3.3.4 Edge-diameter-doubling graphs

We showed above that diam( G - e) ::; 2diam(G) for any cyclic edge e of a

connected graph G. We investigate here a special class of edi graphs-viz.,

those graphs whose diameter doubles when any edge is removed.

Definition: A connected graph G is called edge-diameter-doubling if diam(G­

e) = 2diam(G) for every edge e of G.

Plesnik proved in [Ple75b] that any such graph is a block. We prove the

following stronger result:
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Theorem 3.3.11 Every edge-diameter-doubling graph is self-centred.

Proof:

Let G be any graph which is not self-centred. Then G contains a vertex v

with eccentricity at most diam(G) - 1. Let Tv be a spanning tree of G which

is distance-preserving from v, and let e be any edge in E(G) - E(Tv ). Then

dc-e(v, w) = dC (1J, w) for every w E V(G), and so rad(G - e) ::s ec-e(v) =

ec(v) ::s diam(G) - 1. Hence

diam(G - e) ::s 2rad(G - e) ::s 2(diam(G) - 1) < 2diam(G),

and G is not edge-diameter-doubling. o

Since the centre of any connected graph must be contained in one block,

no self-centred graph can contain a cut-vertex. Hence Plesnik's result follows

from ours.

The following characterisation of edge-diameter-doubling graphs is due

to Plesnik, and is a direct consequence of Theorem 3.3.5.

Theorem 3.3.12 [Ple75b] A connected graph G is edge-diameter-doubling

'iff g(G) = 2diam(G) + 1.

Proof:

Let G be an edge-diameter-doubling graph, and note that every edge of G is

cyclic. It therefore follows from Theorem 3.3.5 that g(G) 2': 2diam(G) + 1.

For the converse, let G be a connected graph with g(G) = 2diam(G) + 1.

Then by Proposition 1.5.11, G is 2-edge-connected. It follows from Theorem

3.3.5 that G is edge-diameter-doubling. 0

So the study of graphs whose diameter is doubled by the removal of any

edge reduces to the study of graphs with maximum possible girth for given

diameter.

We conclude this section with some remarks on Moore graphs.
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It is easy to prove (see, for example, [HS60]) that if a connected graph

has order n, diameter d and maximum degree ~, then

d-l

n~l+~L(~-lr.
i=O

Those graphs for which equality holds in the above equation are called

Moore graphs. We present next our proofs of the results that connect Moore

graphs and girth.

Recall that the distance degree sequence of a vertex v is given by

Our first proposition shows that Moore graphs are distance degree regular,

a result stated without proof in [BH90].

Proposition 3.3.13 Let G be a Moore graph of diameter d and maximum

degree~. Then every vertex in G has the same distance degree sequence

Proof:

Let G have radius r, and let c be any central vertex in G. Note that there

are deg(c) ~ ~ vertices in N1(c). Furthermore, for i E {2, ... ,r}, INi(c)1 ~

(~ - 1) IN i - 1 ( c) I, with equality holding iff every vertex in N i - 1 ( c) has degree

~ and no two vertices in N i - 1 (c) are adjacent or have a common neighbour

in Ni (c). It follows that

r

n < 1 + L ~(,6. - lr-1

i=l

d

< 1 +L ,6.(,6. - l)i-l
i=l

(since r ~ d)

n (since G is a Moore graph).
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Hence r = d (i.e., C is self-centred), and the distance degree sequence of

c is {1, b.., b..(b.. - 1), b..(b.. - 1)2, ... ,b..(b.. - 1)d-I}.

Now note that, since C is self-centred, any vertex in C could have been

chosen as c. Hence every vertex in C has the same distance degree sequence,

and the result follows. 0

It follows that if C is a Moore graph of diameter d, then C is self-centred

and regular, and for any vertex v E V (C) the graph induced by {v} UNI (v) U

N2 (v) U... UNd- I (v) in C is a tree. Hence (since C is b..-regular) every vertex

in Nd(v) must be adjacent to b.. - 1 other vertices in Nd('v).

Our next two results, obtained by Bosak in [Bos70] and stated without

proof in [Ple75b], characterise the Moore graphs as those cyclic graphs with

the maximum possible girth for given diameter.

Proposition 3.3.14 [Bos70] If C is a Moore graph with at least three ver­

tices and diameter d} then g(C) = 2d + 1.

Proof:

Since by Proposition 3.3.13 C is regular, and C '!- K 2 , C is not a tree. Let

C be a shortest cycle in C, and let v be any vertex on C. Since by the above

discussion ({v} U NI (v) U N2(v) U ... U Nd- I (1J))C is a tree, C must contain

some edge uw such that both u and ware in Nd(v).

Hence g(C) = P(C) ;::: d + 1 + d. Since g(C) ::; 2d + 1 by Proposition

1.5.10, the result follows. 0

Theorem 3.3.15 [Bos70] If G is a connected graph with diameter d and

girth g(G) = 2d + 1, then G is a Moore graph.

Proof:

The proof is in five steps.
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(1) Let v be any vertex in G, and let T be a spanning tree of G which is

distance-preserving from v. Since by Theorems 3.3.12 and 3.3.11 G is

self-centred, v has eccentricity d. Let F be the set of edges in (Nd(v))c·

If T i- G - F, then there exists an edge uw in G that is neither in

(Nd(v))c nor in T. Hence at least one of the vertices u and w is within

a distance of d-1 from v. Combining the 1!-U and v-w paths in T with

the edge UW, we obtain a closed walk in G, containing a cycle of length

not exceeding dT ( v, u) + 1 + dT (w, v) :S (d - 1) + 1 + d = 2d < 9 (G) ,
which is impossible. Hence it must hold that T = G - F.

(2) Since g(G) = 2d + 1, G has no bridges and hence no end-vertices. For

any neighbour x of v, let Sx be the set of vertices in Nd(v) which are

descended from x in T, or Sx = {x} if d = 1. Note that for any two

neighbours x and y of v, Sx and Sy are disjoint. Note further that, since

G has no vertices of degree 1, all endvertices of T must be in Nd(v);

hence every neighbour of v has at least one descendent in Nd(v); i.e.,

ISxl 2:: 1 for every x E N(1!).

(3) Now let z be any eccentric vertex of v; then z E Sx for some neighbour

x of v. Note that, for each y E N(v) - {x}, z must be adjacent to at

least one vertex in Sy, since otherwise dc(z, y) > d. It follows that z is

adjacent to at least deg(v) - 1 other vertices in Nd(v). Hence, since z

is also adjacent to at least one vertex in Nd-1(V), deg(z) 2:: deg(v).

(4) Since v was any vertex of G (so we could have chosen z instead of v and

considered v E Nd(z)), it follows that any two eccentric vertices have

the same degree. Now let wand u be any two neighbours of v, and note

that w is at distance d from every vertex in Suo Hence wand v have

at least one eccentric vertex in common, and so degc(w) = degc(v). It

follows that any two neighbours in G have the same degree, and hence

(since G is connected) that G is regular. Let the degree of the vertices

in G be 6.
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(5) Since G is .6.-regular and G - F is a tree, G has order

d-l

n = 1 +.6. L (.6. - l)i.
i=O

This means that G is a Moore graph.

We therefore have the following characterisation of Moore graphs:

o

Theorem 3.3.16 [Ple75b] The following three statements are equivalent for

any connected graph G with at least 3 vertices:

(1) diam( G - e) = 2diam(G) for every edge e in G.

(2) g(G) = 2diam(G) + l.

(3) G is a Moore graph.

Moore graphs have been studied by many authors, of whom we name

a few. Hoffman and Singleton showed in [HS60] that any Moore graph of

diameter 2 must be an odd cycle (.6. = 2), the Petersen graph (.6. = 3), the

Hoffman-Singleton graph (.6. = 7), or possibly an (as yet unknown) Moore

graph of diameter 2 and degree 57. Bannai and Ito [BI73] and, independently,

Damerell [Dam73] proved that there is no Moore graph with diameter d ~ 3

and degree .6. ~ 3. It follows that any Moore graph must be a complete

graph (d = 1,.6. = n - 1), an odd cycle (d = ~(n - 1),.6. = 2), or one of the

graphs named above.
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3.4 Edge Addition

3.4.1 Edge-diameter-decreasing graphs

In this subsection we consider graphs whose diameter is decreased by the

addition of any edge.

Definition: A graph G is edge-diameter-decreasing or edd if diam(G + e) <
diam(G) for every e E E(G).

For example, any path or complete graph is edd. A disconnected graph is

edd iff it is the disjoint union of two complete components. Edge-diameter­

decreasing graphs are also called diameter-maximal graphs, and were com­

pletely characterised by Ore in [Ore68]:

Theorem 3.4.1 [Ore68] A connected graph G of diameter d ~ 2 is edge­

diameter-decreasing iff

(1) G has e~fLctly two peripheral vertices, Vo and Vd,

(2) (Ni(vo))c is complete for each i E {O, ... , d}, and

(3) every vertex in Ni(vo) is adjacent to every vertex in Ni+l(vo) for i E

{O, ... ,d-I}.

Proof:

It is easy to see that graphs which obey the three conditions are edge­

diameter-decreasing. So suppose that G is edd, and let Vo and Vd be a

diametral pair of G.

Adding an edge in G between two vertices u E Ni (vo) and v E N j ( vo),

where Ij - il s 1, cannot decrease the distance between Vo and Vd, and

therefore cannot decrease the diameter. Hence conditions (2) and (3) hold.

If Nd(vo) contains a vertex v~ different from Vd, then v~ can be joined to

every vertex in Nd- 2(VO) without decreasing the distance between Vo and Vd

- a contradiction. So Nd(vo) contains only Vd, and condition (1) follows. 0
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Note that the structure of a connected edd graph G of diameter d 2:: 2

can also be described in terms of a sequential join: for some d - 1 natural

numbers ni, G has the form

It is clear that G is K;-connected iff ni 2:: K; for every i E {I, ... , d ­

I}. Furthermore, Caccetta and Smyth proved in [CS87b] that G is A-edge

connected iff

(1) nini+l 2:: A for every i E {I, ... ,d - I}, and

(2) every consecutive triple K ni_ 1 , K ni , K ni+1 contains at least A+ 1 vertices.

Ore [Ore68] also characterised the edd graphs of order '(/" diameter d,

and connectivity K; with the maximum possible number of edges, as follows.

When d = 2, nl = n - 2, and the number of edges is (~) - 1. When d = 3,

'(/,1 + n2 = '(/, - 2; hence every vertex in NI (vo) U N2(vo) has degree n - 2, and

the number of edges is ~ ('(/, - 1) (n - 2). The remainder of the characterisation .

is given by the next theorem.

Theorem 3.4.2 [Ore68] An edge-diameter-decreasing graph G of order n,

diameter d 2:: 4, connectivity K; and the maximum possible number of edges

has the form

where ni = K; for every i, except possibly one or two consecutive values of i

for which ni > K;.

This leads to the following upper bound on the number of edges in a

graph of order n and diameter d 2:: 2 (which is reminiscent of Vizing's bound

on the size of graphs of given order and radius (see Theorem 2.4.4)):

Theorem 3.4.3 [Ore68] A graph of order n and diameter d has at most

1
d + 2(n - d - l)(n - d + 4)
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edges) and this bound is sharp.

Obviously graphs attaining this maximum are edge-diameter-decreasing.

In a series of papers Caccetta and Smyth [CS87a, CS87b, CS87c, CS88a,

CS88b] studied edge-diameter-decreasing graphs of given connectivity and

edge-connectivity. In [CS87a], using results they developed in [CS87c], they

showed that edd graphs of given order, diameter and edge-connectivity with

the maximum possible number of edges have a structure similar to that of

Ore's graphs, but somewhat more complicated:

Theorem 3.4.4 [CS87a] An edge-diameter-decreasing graph C of order 17,)

diameter d ~ 6) edge-connectivity A ~ 8 and the maximum possible number

of edges has the form

where

(1) ni'n'i+l ~ A for every i E {1, ... ,d - 1}, and

(2) ni-l + ni + ni+l = A+ 1 fOT all i E {3, ... ,d - 3}, except possibly one)

which must be i = 3 or i = d - 3.

Note that the above theorem does not specify precise values of ni. These

in fact depend heavily on the values of 17" d and A and are given in [CS88b].

The cases d ::; 5 and A ::; 7 are considered in [CS87c].

Edge-diameter-decreasing graphs were also studied by Chomenko and Os­

troverchij [C070], among others.

3.4.2 Adding the best edge

It follows from Theorem 3.3.1 that adding an edge to a graph cannot decrease

the diameter by more than half. Chung and Garey [CG84] showed that

when t edges are added to a graph C of diameter d, the resulting graph C'

81



always has diameter at least :~~. Schoone, Bodlaender and van Leeuwen

[SBV87] improved this bound to diam(G') 2:: t~l' and Kerjouan [Ker86] to

diam(G') 2:: di~~3, but a sharp bound has not yet been determined.

It is easily seen that, if only the diameter d and not the order n of G is

specified, then the minimum possible value of diam(G') is attained when G

is a path.
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3.5 Vertex Removal

Unlike in the edge case, removing a vertex from a graph might increase or

decrease the diameter, or leave it unchanged.

Our first proposition describes those vertices whose removal decreases the

diameter, and also shows that their removal cannot decrease the diameter by

more than 1. Recall that ncv stands for non-cut vertex and uep stands for

lmique eccentric point.

Proposition 3.5.1 [Gli76b] Let v be a vertex of a connected graph G for

which diam(G - v) < diam(G). Then v is the uep of every other peripheral

vertex in G} and diam(G - v) = diam(G) - 1.

Proof:

Since removing v cannot decrease the distance between any of the remaining

vertices, dc(u, w) ::; diam(G) - 1 for every u, w E V(G) - {v}. It follows

that v is peripheral and is the uep of every other peripheral vertex u in G.

Since u is still at distance diam(G) - 1 from the neighbours of v in G - v,

diam(G - v) = diam(G) - 1. 0

We note that the above necessary condition (that v is the uep of every

other peripheral vertex) is not sufficient: for example, let u be any vertex of

a cycle C of length 2d, where d ~ 3, and let G be the graph obtained from

C by joining the two neighbours of u. Let v be the vertex opposite u on C.

Then v is the uep of u, and u and v are the only peripheral vertices of G,

but diam(G - v) = 2d - 3 ~ d = diam(G).

As a direct consequence of Proposition 3.5.1 we have the following result:

Proposition 3.5.2 [Gli76b] No graph contains more than two vertices whose

removal decreases the diameter.

Proof:

By Proposition 3.5.1, any vertex whose removal decreases the diameter must
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be an endpoint of every diametral path in G. The result then follows from

the fact that a diametral path has only two endpoints. 0

The sequential join of d + 1 copies of K 2 is an example of a graph whose

diameter is unchanged by the removal of any vertex. We now consider graphs

for which the removal of any vertex decreases the diameter.

Definition: A nontrivial connected graph G is called vertex-diameter-decreasing

or vdd if diam(G - v) < diam(G) for every ncv v of G.

Proposition 3.5.3 A nontrivial connected graph is vertex-diameter-decreasing

i./J it is a path.

Proof:

Clearly, any nontrivial path is vertex-diameter-decreasing. Now let G be a

vdd graph. Since the removal of any ncv of G decreases its diameter, by

Proposition 3.5.2 G has at most two ncv's. It follows, by Proposition 1.5.1,

that G is a path. 0

In Section 3.3 we proved that removing a cyclic edge from a graph cannot

increase its diameter by more than a factor of 2. The graphs K 1 +Pn - 1 show

that there is no similar bound for the removal of a ncv.

Bounds involving the removal of more than one vertex from a graph of

given connectivity were investigated by Chung and Garey in [CG84].

3.5.1 Vertex-diameter-increasing graphs

In this subsection we consider graphs whose diameter increases if any vertex

is removed. Such graphs model communication networks which decrease in

efficiency if any node fails. They were studied by Boals, Sherwani and Ali

[BSA90], Plesnfk [Ple75a], Gliviak [Gli76b], and Gliviak and Plesill1<: [GP70].

Definition: A nontrivial connected graph G is called vertex-diameter-increasing

or vdi if diam( G - v) > diam(G) for every vertex v in G.
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Figure 3.4: A graph which is vdi but not edi

For example, any cycle of length at least 5 is vdi, but no tree or complete

graph is.

Remark: The concepts of vertex-diameter-increasing and edge-diameter­

increasing graphs are independent, as shown by the following examples.

Any cycle Cn, where n ~ 5, is both vdi and edi. Any tree is edi but

not vdi. Finally, the graph G obtained from an even cycle C4k , where

k ~ 3, by joining every pair of vertices opposite each other on the cycle

is vdi but not edi (see figure 3.4). Here diam(G - e) = k = diam(G), but

diam(G - v) = dc-v(x, y) = k + 1.

Gliviak and Pleslll'k [GP70, Gli76b] and, independently, Boals, Sherwani

and Ali [BSA90] proved that for any graph G and natural number d ~ 2,

there exists a vertex-diameter-increasing graph of diameter d containing G as

an induced snbgraph. This shows that the class of vdi graphs is very large.

'Ne have the following sufficient condition for a graph to be vdi:

Proposition 3.5.4 [Gli76b] If G is a cyclic connected graph with 8(G) ~ 2

and g(G) 2: diam( G) + 3, then G is vertex-diameter-increasing.

Proof:

Let 11 be any ncv of G. Since v is not an end-vertex it must lie on a cycle.
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Let C be a shortest cycle containing v, and let x and y be the neighbours of

v on C. Then C - v is a shortest x-y path in G - v, and so dc-v(x, y) =

£(C) - 22:: g(G) - 2. Hence diam(G - v) 2:: diam(G) + 1, and G is vdi. 0

It follows, for example, that any cycle Cn with n 2:: 5 is vdi.

We note that C4 has o(C4 ) = 2, but g(C4 ) = diam(C4 ) +2, and is not vdi.

Since clearly no graph containing an endvertex can be vdi, it follows that the

conditions of Proposition 3.5.4 cannot be improved. They are not, however,

necessary conditions for a graph to be vertex-diameter-increasing: the vdi

graph G in figure 3.4, for example, has girth g(G) = 4 < diam(G) + 3.

In the remainder of this subsection we establish some properties of vdi

graphs.

Proposition 3.5.5 [BSA90, Ple75a] Every vertex-diameter-increasing graph

is a block.

Proof:

Let G be a graph of diameter d containing a cut-vertex v. Let G l be a

v-component of G in which v has the smallest eccentricity, and let u be an

eccentric vertex of v in G l . Finally, let the subgraph induced by all the other

v-components in G be G2 .

Note that eCl (v) + eC2 (v) ::; d, and hence that eCl (v) ::; ~d. Note further

that removing u does not change the distance from v to any other vertex in

Gl .

Now let x and y be any diametral pair of G - u. If x and y are not both in

G l , then removing u does not affect the distance between them. Otherwise,

if both x and y are in G l , then

dc-u(x, y) < dc-u(x, v) + dc-u(v, y)

dc(x, v) + dc(v, y)

< 2ecl (v)

< d.
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In either case, it follows that diam(G - u) :S diam(G), and hence that G

cannot be vdi. 0

Since any cycle en with n > 5 has a 2-cutset and is vdi, the theorem

cannot be improved.

Proposition 3.5.6 [BSA90] If u and v are two distinct vertices of a vertex­

diameter-increasing graph, then u must have at least one neighbour that is

not v or adjacent to v.

Proof:

Let G be a graph containing two vertices u and v such that Nc(u) ~ NC(1J)U

{v}.

Let x and y be any vertices in V (G) - {u}, and let P be a shortest x-y

path in G. If P contains u, then it clearly does not contain v; so let P' be the

path obtained from P by replacing u by v. Otherwise, if P does not contain

u, let pI = P. So pI is also a shortest x-y path in G, and does not contain

u. It follows that dc-u(x,y) = dc(x,y) for all x,y E V(G) - {u}, and hence

that diam(G - u) = diam(G). Hence G is not vdi. 0

Boals, Sherwani and Ali [BSA90] used Proposition 3.5.6 to show that if

G is a vdi graph of order n, then 6(G) :S n - 3. Our next proposition is a

small improvement on this result.

Proposition 3.5.7 If G is a vertex-diameter-increasing graph of order 'n,

diameter d and maximum degree 6, then

6:Sn-d-1.

Proof:

Let v be a vertex of maximum degree in G, and let u be an eccentric vertex

of v. Clearly u is a ncv; let P be a diametral path of G - u.
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Since G is vdi, v cannot have eccentricity 1 without violating Proposition

3.5.6; hence u is not adjacent to v in G, and INc-u(v)j = 1::1. Note that

IV(P)I = diam(G -u) +1 2: d+2. Since P is a shortest path, it can contain

at most three vertices of NC-u (v) U {v}. Hence

IV(G - u)1 2: IV(P)I + IN(v) u {v}I- 3;

i.e.,

n - 1 2: (d + 2) + (1::1 + 1) - 3,

from which it follows that

l::1:::;n-d-l. o

(Since for vdi graphs d 2: 2, this implies Boals, Sherwani and Ali's result

1::1 :::; n - 3.)

Boals, Sherwani and Ali believe that in fact for vdi graphs of diameter 2

a much stronger statement is true:

Conjecture 3.5.8 [BSA90] If G is a vertex-diameter-increasing graph of

order n and diameter 2) then 1::1 (G) :::; ~.

If the conjecture is true, then, for a vdi graph G of order n and diameter 2,

IE(G) I :::; i n2 . This is similar to Simon and Murty's conjecture for edi graphs

(see Conjecture 3.3.10). According to Plesnik [Ple75a], all known examples

of vdi graphs of order n and any diameter have at most lin2J edges.

The following bound on the minimum degree of a vdi graph is due to

Gliviak, and is an improvement on a bound found by Plesnik in [Ple75a].

Proposition 3.5.9 [Gli76b] If G is a vertex-diameter-increasing graph of

order n and diameter d, then
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Proof:

Let v be any vertex in G, and let x and y be any diametral pair of G - v.

By Proposition 3.5.5, G - v is connected. Let P be a shortest x-y path in

G-v.

Since G is vdi, d 2: 2, and dc-v(x,y) 2: d + 1 2: 3. Hence Nc-v(x) n
Nc-v(y) = 0. We also note that \V(P) n Nc-v(x) \ = IV(P) n Nc-v(Y)! = 1,

and that INc-v(x)1 2: degc(x) - 1 and INc-v(Y)! 2: degc(Y) - 1. Hence

n > jV(P)1 + INc-v(x)1 + INc-v(y)j- 2 + I{v}j

> (d + 2) + (degc(x) - 1) + (degc(Y) - 1) - 2 + 1

> d + 26(G) - 1.

It follows that 6(G) :::; ~(n - d + 1). o

Note that Cs is a vdi graph with diameter 2 and minimum degree ~(5 ­

2 + 1) = 2, and C6 is a vdi graph with diameter 3 and minimum degree

~(6 - 3 + 1) = 2. It follows that the bound cannot be improved for vdi

graphs of diameter 2 or 3, although it seems to be poor for vdi graphs of

higher diameter.

Our next few results concern vdi graphs of small diameter.

Proposition 3.5.10 [BSA90] Every vertex-diameter-increasing graph of di­

ameter 2 is self-centred.

Proof:

If some vertex v of a graph G has eccentricity 1, then any vertex other than v

can be removed without increasing the diameter, and hence G is not vdi. It

follows that no vdi graph can have radius 1, and hence that every vdi graph

of diameter 2 is self-centred. 0

Figure 3.5, however, shows that vdi graphs of higher diameter are not

necessarily self-centred.
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Figure 3.5: A vdi graph which is not self-centred

Theorem 3.5.11 [BSA90] Removing a vertex from a vertex-diameter-increasing

graph of diameter 2 increases the diameter by exactly 1.

Proof:

Let G be a vdi graph of diameter 2, and let v be any vertex in G. Let x and

y be any diametral pair of G - v.

Since dc(x, y) ::; 2 and dc-v(x, y) = diam(G - v) 2: 3, x and y must both

be adjacent to v. Hence by Proposition 3.5.6, x must have a neighbour u

that is not v or adjacent to v. Since dc(u, y) ::; 2, it follows that u and y

have a neighbour w i= v in common. Since x, u, w, y is an x-y path of length

3 in G - v, it follows that diam(G - v) = 3. 0

Theorem 3.5.12 [BSA90] Removing a vertex from a vertex-diameter-increasing

graph of diameter 3 can increase the diameter by at most 2.

Proof:

Let G be a vdi graph of diameter 3, and let v be any vertex in G. Let x and

y be any diametral pair in G - v.

Since dc(x, y) ::; 3 and dc-v(x, y) 2: 4, v must lie on every x-y path of

length at most 3 in G. Since dc(x, y) ::; 3, either x or y (or both) must be

adjacent to v. Without loss of generality we may assume y is adjacent to v.
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Case (1): dc(x, y) = 2.

In this case both x and y are adjacent to v. Hence, by Proposition 3.5.6, x

has a neighbour u and y has a neighbour w, neither of which is adjacent to

v. Since dc-v(x, y) ~ 4, u i= w.

Let P be a shortest u-w path in C, and note that, since dc(u, w) :s 3 and

neither u nor W is adjacent to v, v does not lie on P. Furthermore, neither x

nor y lies on P, since otherwise there would be an x - y path of length not

exceeding 3 that does not contain v. Hence x, P, y is an x-y walk of length

at most 5 which does not contain v. It follows that diam(C - v) :s 5.

Case (2): dc(x, y) = 3.

In this case x is not adjacent to v. By Proposition 3.5.6, y has a neighbour

u which is not adjacent to v. Let P be a shortest x - u path in C. Since

dc(x, u) :S 3 and neither x nor u is adjacent to v, v does not lie on P. Hence

P, y is an x - y walk of length not exceeding 4 that does not contain v. It

follows that diam(C - v) = 4. 0

C6 and C7 are examples of vdi graphs of diameter 3 whose diameters

increase by 1 and 2 respectively when any vertex is removed.

After considering many examples, Boals et a1 made the following conjec­

ture:

Conjecture 3.5.13 [BSA90] Removing a vertex from a vertex-diameter­

increasing graph of diameter d can increase the diameter by at most d - 1.

If this bound is correct, then it is the best possible, as shown by the odd
cycles.

Remark: In [Gli76b] Gliviak extended the concept of vdi graphs as follows.

A graph C is said to be v-critical if diam(C - v) i= diam(C) for every

v E V(C). An example is the graph obtained from C2d- 1 (where d ~ 4) by

attaching one endvertex. He showed that for d :S 3 the only graph of diameter
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d which is v-critical but not vdi is the path Pd+!- For d 2': 4, however, there

are many v-critical graphs of diameter d that are not vdi graphs.
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Chapter 4

Distance

Recall that the distance of a graph G is the sum of the distances between all

unordered pairs of vertices in G. The average or mean distance is the average

distance between two vertices, where the average is taken over all pairs of

distinct vertices. The distance of a vertex v in G is the sum of the distances

from v to all the other vertices in G.

In this chapter we consider how the distance of a graph is affected by the

removal of an edge or a vertex, the addition of an edge, or the taking of a

spanning tree.
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4.1 Preliminaries

In this section we establish a number of bounds on distances in graphs, which

will be used in later sections. We first find bounds on the distance of a vertex

in a graph.

Proposition 4.1.1 [EJS76] For any vertex v in a connected graph G,

with equality holding in the lower bound iff ec (v) = 1, and in the upper bound

iff G is a path with v as endpoint.

Proof:

The proof follows from the fact that

n-l

O"c(v) = L INi(v)li,
i=l

where L:?~lINi(V)1 = n-l, INi(v)1 ~ 1 for i E {I, ... , ec(v)} and INi(v)1 = 0

for i > ec(v). 0

Proposition 4.1.2 [EJS76] For any vertex 11 in a nontrivial connected graph

G,

O"(G) ::; O"c(v) + O"(G - v),

with equality holding iff v is an endvertex or every two neighbours of v are
within distance 2 from each other in G - v.

Proof:

Note that

O"(G) ~ dc(u,w)
{u,w}~V(c)
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L dG(u,w)+ L dG(v,u)
{u,w}<;;;V(G-v) uEV(G)

< L dG-v(u, w) + L dG(v, u)
{u,w}<;;;V(G-v) UEV(G)

a(G - v) + aG(v).

Equality holds in the above equation iff dG- v (u, w) = dG (u, w) for every

{u, w} ~ V (G - v) - i.e., iff v is an endvertex, or every two neighbours of

v are adjacent or have a neighbour other than v in common. 0

Next we find a lower bound on the distance of a graph of given order and

sIze.

Proposition 4.1.3 [EJ876] If G is any graph of order n and size m, then

a(G) 2:: n(n - 1) - m, with equality holding iff diam( G) ~ 2.

Proof:

There are m pairs of vertices at distance 1 from each other in G, and (~) - m

at distance at least 2. It follows that a(G) 2:: m + 2((~) - m), with equality

holding iff there are no pairs at distance 3 or more. 0

Soltes [80191] used Harary's bound on diameter (Theorem 3.1.2) to es­

tablish an upper bound on the distance of a connected graph of order n

and size m. He showed that it is attained by P Kn,m for every n E Nand

m E {n - 1, ... , (~)}. We use our Theorem 3.1.1 to characterise all graphs

with maximum distance for given order and size.

Before we give the proof, we need to recall a few concepts from Chapter

1.

Recall that the path-complete graph P Kn,m is the unique graph of order

n and size m which can be obtained by joining one endvertex of a (possibly

trivial) path to at least one vertex of a complete graph (see figure 1.1).

Recall further that, for a graph G and natural number i, Si(G) is the

number of pairs of vertices at distance i from each other in G, and Wi (G) is
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the set of all pairs of vertices which are non-adjacent, but within distance i

from each other in G. (So IW1(G)1 = 0, IWd(G)! = (~) - m, and IWi(G)I­

IWi - 1 (G)1 = Si for every i E {2, ... , d}.)

Theorem 4.1.4 Let G be a connected graph with n vertices and m edges.

Then O"(G) ::; O"(PKn,m). Moreover, equality holds iff either

(1) G rv P Kn,m, or

(2) m = (~) - (n - 1) and G rv K1 + Kn1 + Kn2 + K1 , or

(3) m ~ (~) - (n - 2).

Proof:

Let D and d be the diameters of the graphs PKn,m and G respectively.

If m ~ (;) - (n - 2), then by Theorem 3.1.2 diam(G) ::; diam(PKn,m) ::;

2. Hence by Proposition 4.1.3 0"(G) = 2(~) - m = O"(PKn,m)' Now assume

that m ::; (;) - (n - 1); i.e., that D ~ 3.

If d::; 2, then by Proposition 4.1.3 O"(G) < O"(PKn,m)' If d ~ 3, then

d

0"(G) = I: iSi
i=1

d

SI +I: i(IVVi(G)I-IWi- 1(G)I)
i=2

d-l

m + (dIWd(G)I-IW1(G)1) - I: IWj(G)1
j=1

d-l

m + IWd(G)1 + I:(IWd(G)I-IWj(G)I)
j=1

(1)

By Theorem 3.1.2, d ::; D, and by Theorem 3.1.1, since d ~ 3 it holds that

IWj(G)1 ~ IWj(PKn,m) I for j E {I, ... ,d -I}.
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It follows that

,,(C) < (;) +~ ( (;) - m - IW;(PKn,mJI)

CJ(PKn,m) , (2)

by equation (1).

For equality to hold in (2) we need firstly D = d, and secondly IWj(G)1 =
IWj(PKn,m) I for every j E {1, ... ,d - 1}.

By Theorem 3.1.1 the second requirement is met iff G rv PKn,m, G rv

K1 + Kn1 + Kn2 + K1 , or G rv K no + K1 + ... + K1 + K nd .

If G rv K no + K 1 + ... + K 1 + Knd , where no > 1 and nd > 1, then let

P : vo, ... , Vd be a diametral path of G. Now let G' be the graph obtained

from G by removing the edge Vo1JI and adding the edge Vd-2Vd, and note that

diam(G' ) > d. Since by Theorem 3.1.2 diam(G' ) :::; D, it follows that d < D.

Hence G does not meet the first requirement d = D, and equality does not

hold in (2).

Finally, we note that if G rv K 1 + K n1 + K n2 + K 1 , then d = 3 and

m = (;) - (n - 1). Since P Kn,(;)-(n-l) also has diameter 3, it follows that

in this case d = D, and so equality holds in (2).

The result follows. 0

As a direct consequence we have the following result of Entringer, Jackson

and Snyder:

Proposition 4.1.5 [EJS76] If G is any connected graph of order n and size

m, then

CJ(G) :::; CJ(Pn) - m + n - 1,

with equality holding iff G rv Pn or 0 3 .

Proof:

The result follows from the fact that PKn,m can be obtained from a path Pn
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by adding m - n + 1 edges, each of which decreases the distance by at least

1.

For equality to hold, every edge added must decrease the distance by

exactly 1, which is possible iff G ~ Pn or Cs. 0

This leads to the following bounds on the distance of a connected graph:

Proposition 4.1.6 [EJ876, DG77] For any connected graph G)

(~) ~ o-(G) ~ ~n(n - 1)(n + 1),

with equality holding in the lower bound if{ G is a complete graph) and in the

upper bound if{ G is a path.

Our final result in this section is based on ideas developed by Soltes in

[80191].

Proposition 4.1.7 Given n 2: 2) let the connected graph G of order nand

the vertex v E V(G) be chosen to maximise :(~}. Then G must be a path­

complete graph PKn,m for some m E {n - 1, ... , (;) - (n - 2)}) and v must

be an endvertex.

Proof:

Let ec(v) = sand IE(G)I = m. We first note that (Ni(v) U Ni+l(v))c is

complete for every i E {O, ... , s - 1}, since otherwise we could add an edge

to G that would decrease 0-(G) without affecting (J'G (v), thus contradicting

our choice of G and v.

Next we show that v is an endvertex. Assume, to the contrary, that

degc(v) 2: 2. Let w be any neighbour of v, and let G' = G - vw. Note

that removing the edge vw from G increases the distance between v and w

by 1, and does not affect any other distance; hence o-(G') = o-(G) + 1, and
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ac'('v) = ac(v) + 1. It follows, since :(gj < 1, that

ac'(v) ac(v) + 1 aC(1J)
---;-~ = >--
a(G') a(G) + 1 a(G) ,

which contradicts our choice of G and v. Hence degc (v) = 1, and so m ::;

(;)-(71,-2).
Finally, we show that if i is the lowest index for which Ni (v) has more

than one element, then i = s -1 or s. Assume to the contrary that i ::; s - 2,

and let Vi and Vs be any vertices in Ni(v) and Ns(v), respectively. Now "move

Vi into Ni+l(v) and Vs into Ns- 1(v)" - i.e., remove the edge joining Vi to

the vertex in Ni- 1(V), join Vi to every vertex in Ni+2 (V) and join Vs to every

vertex in Ns- 2(v). If s - i = 2 or 3, then join Vi and Vs to each other. Note

that this leaves ac(v) unchanged, but decreases a(G), which contradicts our

choice of G and v.

It follows that G is a path-complete graph with V as endvertex. 0
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4.2 Spanning Trees

Unlike in the cases of radius and diameter, a cyclic graph cannot have a

spanning tree of the same distance (since every edge removed from a graph

must increase its distance by at least 1). However, Entringer, Kleitman and

Szekely proved in [EKS95] that every connected graph G contains a spanning

tree whose distance is less than twice that of G, and showed how to find such

a tree.

Theorem 4.2.1 [EKS95] Let T be a minimum-distance spanning tree of a

connected graph G. Then

1
rJ(T) :S 2(1 - - )rJ(G),

n

with equality holding iff G rv K n , in which case T rv K 1 n-l.,

Proof:

For every vertex v in G, choose a spanning tree Tv of G which is distance­

preserving from v. Then for each Tv and each pair of vertices {u, w} ~ V (G)

we have

dTv(u,w) < dTJu, v) +dTJ1J,W)

dG(u, v) + dG(v, w).

Summing over all pairs {u, w} ~ V (G), we obtain

Hence

(n -1) L rJG(v)
vEV(G)

2(n - l)rJ(G).
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Now let z be a vertex in G for which a(Tz) is minimum. Then

1 1
a(T) :S a(Tz ) :S - L a(Tv):S 2(1 - - )a(G).

n vEV(G) n
(2)

Equality holds in (1) if! dTJu,w) = dTv(u,v) + dTJv,w) for every v E

V(G) and {u,w} ~ V(G). That is, if! Tv rv K1,n-l for every v E V(G);
i.e., if! G rv K n. Since K1,n-l is a minimum-distance spanning tree of K n, it

follows that equality holds in (2) if! G rv Kn . 0

A practical consequence of this theorem is that, while a communications

network might be many times cheaper to build if modelled by a best spanning

tree of a graph G instead of by G itself - in fact, as much as IV~G)I times

cheaper, if the building cost is taken as proportional to lE(G) I - it will

cost less than twice as much to operate (if operating costs are regarded as

proportional to the distance).

The above proof leads to an algorithm for finding a spanning tree of a

graph G whose distance is less than twice that of G: for every vertex v of

G, use the breadth-first-search algorithm to construct a spanning tree Tv of

G which is distance-preserving from v, and find a(Tv ). Select the tree that

gives the smallest value.

In fact, Entringer et al. give a second proof of Theorem 4.2.1 in which

they show that if v is a vertex of minimum distance in a connected graph G,

and Tv is a spanning tree of G which is distance-preserving from v, then

1
a(Tv ) ::; 2(1 - - )a(G).

n

This stronger result leads to a faster algorithm for finding a spanning tree of

a connected graph G whose distance is less than twice that of G: simply find

the distance of every vertex in G, choose a vertex v of minimum distance,

and use the breadth-first-search algorithm to find a spanning tree of G which

is distance-preserving from v. The second algorithm might, however, find
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Figure 4.1: Dankelmann's graph Gk

a tree whose distance is greater than that of the trees found using the first

algorithm.

The above results led Entringer et al. to pose the following two questions:

(1) Does every connected graph have a minimum-distance spanning tree

which is distance-preserving from some vertex?

(2) If so, does every connected graph have a minimum-distance spanning

tree which is distance-preserving from a vertex of minimum distance?

Both questions were recently answered in the negative by Dankelmann

[Dan96], who gave the example Gk shown in figure 4.1. Here let T be the

spanning tree of Gk obtained by removing the edges hand h. Let v be any

vertex in Gk , and note that Tv contains at most one of the edges el and e2.

It is easily seen that if k is large enough, then T has smaller distance than

Tv. Hence no minimum-distance spanning tree of Gk is distance-preserving

from a vertex in Gk.
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4.3 Edge Removal

Unlike in the radius and diameter cases, removing an edge from a connected

graph always increases the distance (in other words, all connected graphs

are distance-minimal). One can easily characterise the connected graphs G

and edges e E E(G) for which removing e from G increases the distance by

exactly 1:

Proposition 4.3.1 If e = ab is an edge of a connected graph G, then <J(G­
e) = <J(G) + 1 if! a and b have at least one neighbour in common, and every

neighbour of a (respectively, b) is adjacent in G - e to b (a) or to some

neighbour of b (a).

Any graph of order n and minimum degree at least ~n is an example of a

graph for which the deletion of any edge increases the distance by exactly 1.

4.3.1 Removing the best edge - the four-thirds con­

jecture

Winkler made the following conjecture in [Win89, Win86]:

Conjecture 4.3.2 Every 2-connected graph G contains an edge e such that

p,(G-e)<~
p,(G) - 3'

This bound is attained by the odd cycles.

In [BG88], Bienstock and Gyori proved the stronger statement that every

connected graph containing no endvertices contains an edge whose removal

increases the average distance by at most a factor of ~. Their proof is rather

ingenious, but contains some errors in the details. In the remainder of this

section we give a corrected version of the proof.
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Bienstock and Gyori's approach is to consider the cases m :S n + 1 and

m 2: n + 2 separately. The former is straightforward if tedious. For the

latter they introduce a weighted graph H(G, e) such that the weight of the

edge U v in H (G , e) represents the increase in distance between the vertices

U and v when e is removed from G. They then establish certain properties

of H(G, e), and hence a bound on its total weight. It is here that the details

are often wrong.

We need some preliminary results.

Our first four propositions concern the increase in distance between two

vertices u and v, when an edge e is removed. We denote this increase by

De(U, v). More formally,

Definition: For any edge e and vertices u, v of a graph G, we define

De(U, v) := dc-e(u, v) - dc(u, v).

Proposition 4.3.3 If G is any connected graph, and e = ab any cyclic edge

of G, then

max De(U, v) = oe(a, b) = g(e) - 2.
{u,v}~V(C)

That is, when e is removed from G, the maximum increase in distance between

two vertices occurs for the endpoints of e.

Proof:

Let U and v be any two vertices of G.

If there exists a shortest u - v path not containing e, then oe(u, v) = 0 :S
De (a, b), and we are done.

Otherwise, let P be any shortest u-v path in G; say P can be partitioned

into a U - a section PI, the edge e and a b- v section P2 . Let C be a shortest

cycle containing e in G. So C - e is a shortest a - b path in G - e, and hence

De(a, b) = g(e) - 2.
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Note that H, C - e and P2 together form a U - v walk in C - e, and

therefore

dc-e(u, v) < £(PI) +£(P2 ) +£(C - e)

dc(u, v) - 1 + dc-e(a, b).

It follows that, for any {u,v} ~ V(C), Oe(U,v) :s:; Oe(a, b).

Proposition 4.3.4 If e = ab is any cyclic edge of a graph C, and

C: a = UO,UI, ... ,Ug(e)-I = b,a

is a shortest cycle containing e in C, then for 0 :s:; i < j :s:; g(e) - 1,

( ) {
0 if j - i :s:; ~g(e)o u· u· =

e t, J 2j-2i-g(e) if j-i'2~g(e).

o

Proof:

Let H be the Ui - Uj section of C containing e, and P2 the Ui - Uj section of

C not containing e. Recall that by Proposition 1.5.8, either PI or P2 must

be a shortest Ui - Uj path in C. It follows that if j - i :s:; ~g(e), then P2 is a

shortest Ui - Uj path in C. Since P2 is also a path in C - e, this means that

Oe(Ui, Uj) = O. Otherwise, if j - i '2 ~g(e), then PI is a shortest Ui - Uj path

in C. Now note that since C - e is a shortest a - b path in C - e, P2 is a

shortest Ui - Uj path in C - e. It follows that

Oe(Ui,Uj) - dC-e(Ui,Uj)-dc(Ui,Uj)

£(P2 ) - £(PI )

2j - 2i - g(e).

This completes the proof. 0

105



Proposition 4.3.5 Let e = ab be any cyclic edge of a graph C. Then for

any vertex v in C, either

De(V, a) = max De(V, u) and De(V, b) = 0,
uEV(C)

or

De(v,b) = max De(V,u) and de(v,a) = o.
uEV(C)

Proof:

If v is equidistant from a and b, then e = ab cannot lie on a shortest path

from v to any other vertex, and so De (v, u) = 0 for all vertices u E V (C),

including a and b, and we are done.

Otherwise, assume without loss of generality that v is closer to a than to

b, and let u be any vertex such that e = ab lies on a shortest v - u path P

(we know that u exists because b is such a vertex). Now let pI be a shortest

v - b path in C - e. Since pI followed by the b - u section pI! of P is a v - u

walk in C - e,

dc-e(v, u) < e(pl) + e(p")

dc-e(v, b) + dc(b, u).

But dc(v, u) = dc(v, b) + dc(b, u), since b lies on P, and hence

De(V, u) = dc-e(v, u) - dc(v, u) :S dc-e(v, b) - dc(v, b) = De(V, b).

Since u was any vertex for which e lies on a shortest v - u path, this means

that

max De(V, u) = De(V, b).
uEV(C)

Finally, we note that the v - a section of P is a shortest v - a path in both

C and C - e, and so De(v,a) = O. 0

Proposition 4.3.6 Let e = ab be any cyclic edge and v any vertex of a graph

C. Then for any adjacent vertices x and y in C - e (so {x, y} # {a, b}),

IDe(V,x) - De(v,Y)I:s 2.
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Proof:
Since x and y are adjacent in both G and G - e, IdG(v, x) - dG(v, y)\ :S 1,

and !dG-e(v,x) - dG-e(v,y)\ :S 1. It follows that

IDe(v, x) - De(v, y)1 !(dG-e(v, x) - dG-e(v, y)) + (dG(v, y) - dG(v, x))1

< 2.

This completes the proof.

We now define some concepts which will be useful later on.

o

Definitions: Let G be a weighted graph in which each edge has positive

integer weight. Then we define the generalised weight function w : E(G) U

E (G) --t N U {O} by letting w (e) be the weight of the edge e for every

e E E(G), and w(e) = 0 iff e E E(G). Further, we define

m(v) - max w(vu) for every vertex v in G,
uEV(G)

k .- max w(uv), and
{u,v}~V(G)

S(G) - L w(e).
eEE(G)

Definition: For any connected unweighted graph G and cyclic edge e in G

we define an associated weighted graph H(G, e) as follows:

(1) The vertex set of H (G, e) is the vertex set of G.

(2) If De(u, v) > 0 for u, v E V(G) (i.e., if removing e from G increases

the distance between u and v), then the vertices u and v are joined in

H(G, e) by an edge of weight w(uv) = De(u, v).

(3) Otherwise, if De(u, v) = 0, then u and v are non-adjacent in H(G, e),
and so w(uv) = O.
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The usefulness of H(G, e) lies in the fact that the weight sum of H(G, e)
is equal to the increase in the distance of G when e is removed:

S(H(G, e)) = L (dG-e(u, v) - dG(u, v)) = o-(G - e) - o-(G) ,
{u,v}~V(G)

Definition: A weighted graph G of order n and maximum edge weight k is

called a Bn,k-graph if its vertices can be 3-coloured in such a way that the

following properties hold:

(1) 1 'S k 'S n - 2.

(2) V (G) is partitioned into a set R of red vertices, a set B of blue vertices

and a set Y of yellow vertices, in such a way that no two vertices of the

same colour are adjacent, and a vertex is yellow iff it is isolated. (In

other words, G is bipartite.)

(3) Rand B each contains a subset of lk!l J distinguished vertices, respec­

tively

Y contains a subset

Yu = {Ul!:.,U!H.} if k is even, or Yu = {Ul!:.±1.} if k is odd.
2 2 2

(4) The weights on the edges in [Ru, BuJ are given by:

For 0 'S i < j 'S k + 1,

{
2j - 2i - k - 2 if j - i > k!2

W(Ui, Uj) = 0 l'f j _ i ::; k!2.

(It is easy to check that this does not violate the condition that no two

vertices of the same colour be adjacent.)
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(5) Denote Bo := B - Bu, Ro := R - Ru and YQ := y - Yu.

The weights on the edges in [Ru , Bo] U [Ro,Bu ] satisfy the following

condition:

For any v E Ro U Bo and any integer j E {2, 3, ... , m(v) + 1} there is

some vertex U E Ru U Bu such that w(uv) = j or j - 1.

Remark: It might be helpful at this point to discuss in more detail the

structure of (Ru U Bu U Yu)c, where G is a Bn,k-graph.

For odd k, (Ru U Bu U Yu)c is shown in figure 4.2a. Each vertex Ui in

Bu (0 S i S k;l) is joined to the k!l - i vertices ui+k+3, . .. ,Uk+l in Ru, by
2

edges of weights 1,3, ... ,k - 2i respectively. The vertex Ulttl is isolated.
2

For even k, (Ru U Bu U Yu)c is shown in figure 4.2b. Each vertex Ui in

Bu (0 S i S ~ - 1) is joined to the ~ - i vertices U~+2+i' ... ,Uk+l in Ru , by
2

edges of weights 2,4, ... ,k - 2i respectively. The vertices U~ and U~+l are
2 2

isolated.

From the above, it follows that the number of edges in (Ru U Bu)c is

1+2+ ... + lk;lj =~ lk;lj lk;3j.
Moreover, the weight sum of the edges in [Ru,BuJ is easily calculated:

If k is odd,

k-l
-2-

L W(UiUj) - L (1 + 3 + ... + (k - 2i))
O~i<j~k+l i=O

1
24 (k + l)(k + 2)(k + 3).

If k is even,

O~i<j~k+l

1
24 k(k + 2)(k + 4).

~-1

L (2 + 4 + ... + (k - 2i))
i=O
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Figure 4.2: (Rv. U Bu U Yu ) in a Bn,k graph
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Proposition 4.3.7 Let G be any connected graph of order n containing a

cyclic edge e. Let g (e) be the length of a shortest cycle containing e in G.

Then the associated weighted graph H(G, e) is a Bn,k-graph with k = g(e) -2.

Proof:

We will establish a partition of V (H (G, e)) into three colour classes, and then

prove that it has the defining properties of a Bn,k-graph.

(1) Let e = ab. Note that, by Proposition 4.3.5, any vertex v in G for

which m(v) = maXuEV(G){Oe(v,u)} > 0 must satisfy either oe(v,a) > 0

or oe(v, b) > 0, but not both inequalities. It follows that any non­

isolated vertex in H(G, e) must be adjacent to either a or bin H(G, e),
but cannot be adjacent to both.

We can therefore assign a unique colour to every vertex in H (G, e) by

colouring every neighbour of a in H (G, e) red, every neighbour of b

blue, and every isolated vertex yellow.

(2) We now prove that no two adjacent vertices in H(G, e) have the same

colour.

Let u and v be any adjacent vertices in H(G, e). Then oe(u, v) > 0;

i.e., removing e from G increases the distance between u and v, and so

e = ab must lie on a shortest u - v path P in G.

Assume without loss of generality that a precedes b on P. Then the

u - a section of P is a shortest u - a path in G and does not contain

e. Hence w(ua) = be(u, a) = 0, and u is blue. Similarly, the b - v

section of P is a shortest b - v path in G and does not contain e, and

so w(vb) = oe(v, b) = 0, and v is red. Hence u and v have different

colours.

(3) Note that by Proposition 4.3.3, k := max{u,v}<;;V(H(G,e)){w(uv)}
w(ab) = g(e) - 2, and so 1 :; k :; n - 2. Let

C : a = Uo, Ul, ... ,Uk+l = b, a
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be a shortest cycle containing e in G.

Then it follows from Proposition 4.3.4 that, for 0 :::; i < j :::; k + 1,

{
2j - 2i - k - 2 if j - i > k!2

W(UiUj) = 6e (Ui' Uj) = 0 'f . . < k+2
1 J - '/, - -2-'

Substituting first i = 0 and then j = k + 1 in this expression shows

that the vertices in {u l~J' ... ,UkH} are adjacent to a in H (G, e) and

hence red, while the vertices in {uo, . .. ,U lk;l J} are adjacent to b in

H(G,e) and hence blue. The vertices in {Uk.,Uk+2} (if k is even) or
2 2

{U.ill} (if k is odd) are adjacent to neither a nor b in H (G, e) and are
2

therefore yellow. Call these three sets respectively Ru, Bu and Yu , and

let Ba := B - B u , Ra := R - R u and YO := Y - Yu '

(4) Finally, let v be any vertex in RoUBo; suppose without loss of generality

that v is red. Hence, by Proposition 4.3.5, w(va) = m(v) and w(vb) =

O.

Note that for any i E {O, ... , k}, Ui and Ui+l are adjacent in G - eo,

and hence, by Proposition 4.3.6, Iw(VUi) - w(VUiH) I :::; 2.

It follows that the weights w(VUi) for i = 0, ... , k + 1 must run from

o to m(v), never missing out more than one consecutive integer - in

other words, for any j E {2, ... , m(v) + I}, v has some neighbour U in

Ru U Bu such that w(vu) = j or j - 1.

This completes the proof.

We now consider a particular example of a Bn,k-graph.

D

Definition: For any n E N, k E {I, ... , n - 2} and m E {I, ... , (~)}, we

define An(k, m) to be the (unique) Bn,k-graph with m edges that satisfies the

following conditions (if such a graph exists for this value of m):

(1) 0 :::; IBol - IRol :::; 1 (i.e., IBol and IRol differ by as little as possible,

and IBol 2: IRol)·
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(2) Bo either is empty or contains a distinguished vertex Vo·

(3) Every vertex v in Ro is adjacent to all the blue vertices except possibly

Vo. The weights of the edges in [v, Bu] are given by w(vuo) = k and

W(VUi) = 2l k~l J - 2i for i = 1, ... , l k;l J, while the edges in [v, Bo ­

{vo}1all have weight k.

(4) Similarly, every vertex U in Bo- {vo} is adjacent to all the red vertices.

The weights of the edges in [u, Ru] are given by w(UUi) = 2i - 2l k~4J

for i = l k~2 J , ... , k, and W(UUk+l) = k, while the edges in [u, Ro] all

have weight k.

(5) The degree of Vo, on the other hand, can be any integer from 1 to

IRul + IRol· If deg(vo) < IRuI = l k~l J, then Vo is joined to the

vertices Uk+2-deg(vo)' Uk+l-deg(vo), ... , uk+l in Ru, by edges of weights

2,4, ... ,2 deg(vo) respectively. Otherwise, if deg(vo) 2:: lk~l J, then Vo

is adjacent to all l k~l J of the vertices in Ru, and to deg(vo) -lk~l J ver­

tices in Ro. In this case, the weights of the edges in [vo, Ru] are given

by W(VOUi) = 2i - 2l k~2J for i = l k!4J , ... , k, and W(VOUk+l) = k,

while the edges in [vo, Ro] all have weight k.

From the definition of An(k, m) it is clear that the values of n, k and m

determine both N(vo) and IYI; hence An(k, m) is unique.

Proposition 4.3.8 If G is any Bn,k-graph with m edges, then An(k, m) ex­

ists and

S(G) :s S(An(k, m)).

Proof:

Of all Bn,k-graphs with m edges, let H be one for which S(H) is as large as

possible.
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(1)

(1) We first note that if v is any vertex in Ba U Ra and v is joined to p

vertices in B u U Ru by edges with weights Wl ::; W2 ::; ... ::; wp , then,

fori=l, ... ,p,

W. = {2i if i< lk!lJ
t k'f' = k+lJI'/,2 .

[Otherwise, let i o be the minimum value of i for which equation (1)
does not hold. By property (5) of Bn,k-graphs it follows that Wio must

be less than the value predicted by (1). But then Wio can be increased

by 1 without violating property (5), which contradicts our choice of H.

(Note that by property (5) wp = m(v), so if Wio = wp this procedure

involves increasing m(v) - this is permissible, since m(v) is not being

increased beyond k.)]

(2) We next note that if a vertex in Ra (respectively, Ba) is adjacent to

a vertex in Ba (Ra), then it is already adjacent to every vertex in Bu

(Ru).

[Otherwise, let v be a vertex in Ra (say) which is adjacent to some

vertex z in Ba and non-adjacent to some vertex u in Bu . Then by

observation (1) the edges in [v, Bu ] have weights 2,4, ... , m(v) -2, m(v)
(where m(v) ::; k - 1), and of course w(vz) ::; m(v). So deleting the

edge vz and adding an edge of weight m(v) + 1 ::; k between v and u
produces another Bn,k-graph on m edges whose weight sum is greater

than that of H, which is impossible.]

It follows from observations (1) and (2) that for any vertex v in Ra U Ba,

the edges in [v, (Ru U B u )] have weights 2,4, ... ,2lk;lJ,k if m(v) = k, or

2,4, ... , 2deg(v) if m(v) < k.

(3) It now follows that every edge in [Ra, Ba] has weight k.

[Otherwise, let uv be an edge in [Ra, Ba] such that w(uv) < k. Then

by observations (1) and (2), m(u) = m(11) = k, and so w(uv) can be
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increased to k without violating any of the properties of Bn,k-graphs.]

(4) If RoU Bo is not empty, let Vo be a vertex in RoU Bo such that m(vo) is

as small as possible; assume without loss of generality that Vo is blue.

Then m(v) = k for every vertex v in (RoU Bo) - {vG}.

[Suppose, to the contrary, that m(u) < k for some vertex u in (Ro U

Bo) - {vG}. (So of course m(vo) :S m(u) < k.) Hence all neighbours of

u or Vo are in Flu U Bu , and there is some vertex w in Flu U Bu which is

a different colour from u, but is not adjacent to u. But then deleting

the edge of weight m(vo) incident to Vo and adding an edge of weight

m(u) + 1 between u and w produces a Bn,k-graph with m edges whose

weight sum is greater than that of H, which is impossible.]

(5) IBol might be less than IRol in H, or greater than IRol by more than

1 - but we now show that we can construct from H a Bn,k-graph H'

with the same weight sum and number of edges, which has in addition

IBol = IRaI or IRol + 1.

If IBol < IRol, we move some vertex v from Ro to Bo, replace the

IBul edges in [v, Bu] with IRul = IBul edges of the same weights in

[v, RuJ, and replace the edges in [v, Bo] (of which there are at most

IBol < IRol) with the same number of edges of the same weights in

[v,Ro]. If IBol > IRol + 1, then we move some vertex v from Bo- {vG}
to Ro, replace the IRul edges in [v, Ru] with IBul = IRul edges of the

same weights in [v,BuJ, and replace the edges in [v,Ro] (of which there

are at most IRoI < IBo1- 1) with the same number of edges of the same
weights in [v, Bo].

Repeating this procedure, we eventually obtain a Bn,k-graph H' such

that IE(H')I = m, S(H') = S(H) and IBol = IRol or IRol + 1 in H'.

(6) We now show that, although H' might contain two vertices of different

colour in (RoUBo)- {vo} which are not adjacent, we can construct from
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H' a Bn,k-graph H", with the same weight sum and number of edges,

in which (Ra U Ba) - {vo} does induce a complete bipartite graph.

Let q be the number of pairs {u, v} with u E Ra, v E Ba - {vo} such

that u and v are not adjacent (q might be 0). Note that at least q of

the edges incident to Vo must have weight k.

[Otherwise we could delete all the edges of weight k incident to Vo (if

there are any, i.e., if m(vo) = k) and one with next-highest weight

(which will be 2lk21J if m(vo) = k, or m(v) if m(v) < k), and add the

same number of edges to (( Ra U Ba) - {1)0})H, giving them all weight

k and thus increasing the weight sum.]

We can therefore delete q edges of weight k incident to Vo, and add q

edges of weight k to ((Ra U Ba) - {vo} )H to make it complete bipartite.

The graph H" we obtain is a Bn,k-graph with m edges and the same

weight sum as H.

(7) Finally, note that An(k, m) can be obtained from H" by rearranging

the weights of the edges in [(Ra U Ba), (Ru U Bu )]. It follows that

S(H") = S(An(k, m)), and hence that An(k, m) is a Bn,k-graph with

maximum weight sum for given m. 0

We need one more preliminary result.

P "to 4 3 9 C" N d < n(n-l)(n+l) l C b Broposl IOn "" wen n E an m _ 8(n+2) ,et e a n,kc-

graph of size m, for some kG E {I, 2, ... ,n - 2}. Then

S(C) < m(n + 2)
- 3 '

with equality holding iff n is even and kG = n - 2, in which case m

~n(n-2).

Proof:

Let k be chosen to maximise S(An(k, m)) for given nand m. Then by
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Proposition 4.3.8 no Bn,kl-graph of size m, for any k' E {I, 2, ... ,n - 2}, can

have a greater weight sum than An(k, m).

(1) We first note that if IRoUBol ~ 2, then either An(k, m) contains exactly

two isolated vertices and deg(vo) = 1, or else An(k, m) contains at least

three isolated vertices.

[The proof involves a simple but tedious calculation, using the restric­

tion m ::S n(n8(~~;t); we give only a sketch. We assume, to the contrary,

that either IYI = 2 and deg(vo) ~ 2, or !YI = 1. From

lk+ 1]
n = 2 -2- + IRol + IBol + IYI

we obtain an expression for k in terms of n, IRoI, IBol and IYI, which

we substitute into

1 lk + 1] lk + 3] lk + 1]m ="2 -2- -2- + -2- (IRol+IBol-1)+IRoI(IBol-1)+ deg(vo).

We then set m ::S n(n8(~~;tl), and obtain an inequality involving n,

IRoj, IBol, IYI and deg(vo).

We now consider four cases, depending on whether IBol = IRol or

IRol + 1, and on whether IYI = 1 and deg(vo) ~ 1, or IYI = 2 and

deg(vo) ~ 2. This, together with the fact that since k ~ 1, n ~

IRol + IBol + IYI + 3, allows us in each case to write our inequality in

terms of IRol and deg(vo).

Finally we use the facts that IRol ~ 1 and that deg(vo) > 1 or 2,

depending on the case, to obtain a contradiction.]

(2) Secondly, we note that if k is odd, then IYI = 1.

[Let k be odd, and suppose 1'0 is non-empty. Then we can construct

An(k + 1, m) from An(k, m) in the following way:
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Add 1 to the weight of every edge in [Ru,BuJ U [Ro, Bo], and to every

edge of weight k in [(Ro U Bo), (Ru U Bu )]. Then relabel the vertices

of Ru, adding 1 to each index so that Ru = {Uk+1, ... ,Uk+2}. Finally,
2

choose any vertex in Yo and relabel it Uk+l+l (i.e., move it into Yu ).
2

It is easy to check that now

so that the graph we have constructed is indeed An(k + 1, m). Hence

S(An(k + 1, m)) > S(An(k, m)), which contradicts our choice of k.]

(3) Furthermore, IRoU BoI ::; 1.

[Assume, to the contrary, that IRo U Bol 2:: 2. Then by observation (1)

IYI 2:: 2, and so by observation (2) k is even. We will show that this

allows us to construct a graph C' from An(k, m) which will turn out

to be a Bn,k+2-graph of size m with a greater weight sum than that of

An(k, m), thus producing a contradiction.

Add a new vertex x in Ru, and join x to all the vertices in Bu by edges

with weights 4,6, ... , k + 2. Add a new vertex y in B u , and join y only

to x, by an edge of weight 2. Label x as U(k+2)+l and y as Uk+2_ 1 , and
2

relabel Uk and Uk+l in YO as Uk+2 and U.';:H.+l·
2 2 2 2

Now join x to every vertex in Bo - {vo}, and y to every vertex in

Ro, by an edge of weight k + 2. Increase the weight of every edge in

[Ro,Bo - {vo}] from k to k + 2.

At this stage we have increased the number of vertices by 2, the number

of edges by ~ + 1 + IRol + IBo - {1Jo}!, and the weight sum by Cl: =
(2+4+ .. .+(k+2)) +(k+2)(IRol + IBo- {vo}!) +21Ro11Bo- {vo}l. We

now proceed in one of two ways, depending on the number of vertices

in RoU Bo.
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Case (1): IRo U Bol ~ 3.

Let u be any vertex in Ro, non-adjacent to Vo if possible, and let w

be any vertex in Bo- Delete u and wand all their incident edges,

thus restoring the number of vertices to n. Then the number of edges

decreases by

IBu U {y}1 + IRu U {x}1 + IBo - {vo}1 + jRol- 1- q,

where q = 1 if u is adjacent to Vo (i.e., if deg(vo) = IRouRuI) and q = 0

otherwise, and the weight sum decreases by

{3 = 2(2 + 4 + ... + (k + 2)) + (k + 2)(IRol + IBo - {vo}1 - 1 + q).

Nate that at this stage we have decreased the number of edges by

k k
(k + 1+ q + IRol + IBo - {vo}l) - (2 + 1+ IRol + IBo - {vo}l) = 2 + q.

We want the graph we are constructing to have m edges, so we add

~ + q edges in one of the following ways:

If deg(vo) = 1, then q = 0 and we add ~ edges of weights 4,6, ... ,k + 2

between Vo and Ru .

Otherwise, if deg(vo) ~ 2, then IYI ~ 3 and hence Yo is not empty. Let

11I be any vertex in Yo, and move it to Ro, joining it to ~ + q vertices

in Bu by edges with weights 2,4, _.. ,2(~ + q).

Either way, the weight sum increases by at least

"I = 2 + 4 + ... + 2 (~ + q) = l(k + 2q) (k + 2q + 2).

It is easy to check that the graph C we have constructed is a Bn ,k+2­

graph of size m (although not necessarily An(k + 2, m)). But

S(C) > S(An(k, m)) + et - {3 + "I,

S(An(k, m)) +2IRoIIBo - {vo}1

> S(An(k, m)) + 2,
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since we are assuming IRol ;::: 1 and IBo - {vo}1 ;::: 1.

This contradicts our choice of k, and hence proves that the case IRo U

BoI ;::: 3 cannot occur.

Case (2): IRo U Bol = 2.
Let Bo = {vo}, Ro = {VI}' Then VI is joined to all k!2 vertices in

Bu U{y} by edges with weights 2,4, ... , (k + 2), and possibly joined to

Vo by an edge of weight k + 2.

Recall that so far we have increased the number of vertices by 2, the

number of edges by ~+l+IRol+IBo-{vo}1= ~+2, and the weight sum

by (2+4+ +(k+2))+(k+2)(IRol+IBo-{vo}I)+2IRoIIBo-{vo}1 =
(2 + 4 + + (k + 2)) + (k + 2).

If deg(vo) = 1, then delete Vo and VI, together with all incident edges.

Then the number of edges decreases by k!2 + 1, and the weight sum

by (2 + 4 + ... + (k + 2)) + 2.

Otherwise, if deg(vo) ;::: 2, then recall that IYI ;::: 3; i.e., that }Q is not

empty. Delete VI and some vertex in }Q. Note that the edges incident

with VI might or might not include an edge VOVI of weight k - if not,

then also delete the edge incident to Vo which has weight m(vo) ~ k.

This decreases the number of edges by k!2 + 1, and the weight sum by

at most (2 + 4 + ... + (k + 2)) + k.

The graph G we have constructed is a Bn,k+2-graph of size m, but has

weight sum

S(G) ;::: S(An(k,m))+((2+4+ +(k+2))+(k+2))

-((2 + 4 + + (k + 2)) + k)

S(An(k, m)) + 2,

which is impossible.

So the case IRa U Bol = 2 can also not occur, and we must have IRo U

Bol ~ 1.]
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(4) We now show that S(An(k, m)) ::; km(n + 2), with equality being

attained iff n is even and k = n - 2.

[Recall that, by (3), IRo U Bol = 1 or O.

Case (1): IRo U Bol = 1, n 2: k + 4.

In this case Yo is non-empty, and so by observation (2) k must be even.

S(An(k, m))
1

24 k(k + 2)(k + 4) + (2 + 4 + ... + 2 deg(vo))

1 k
< 24 k(k + 2)(n) + deg(vo)(2" + 1),

where we have used n 2: k+4 and deg(vo) ::; ~. Now we cunningly add

two zero terms and rearrange to obtain

(n+2) 1k(k ) d ( ) (k (n+2))
3 S + 2 + eg vo 2" + 1 - 3

1 (n + 2)
-12 k(k+2)+ 3 deg(vo)

< (n + 2) m + deg(vo) (~k - 1) - ~k(k + 2),
3 6 12

where we have used m = ~k(k + 2) + deg(vo) and n 2: k + 4. Hence

(n+2) 1 (1 )S(An(k, m)) < 3 m -"6k 2(k + 2) - deg(vo) - deg(vo)

n+2
< -3-m ,

since 1::; deg(vo)::;~.

Case (2): IRo U BoI = 1, n = k + 3.

In this case Yo is empty, and so k can be even or odd.

If k is even, then

deg(vo)
1

m - Sk(k + 2)

< (k + 3)(k + 2)(k + 4) 1 ( )
8(k + 5) - Sk k + 2 ,
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deg(vo)

by our condition on m and the fact that n = k + 3. Simplifying, we

find

< (k+2)(k+6)
4(k+ 5)

k+2
< -3-

Again we add a zero term to our expression for S(An(k, m)) and rear-

range:

1
24 k(k + 2)(k + 4) + deg(vo)(deg(vo) + 1)

_ (~k(k + 2) (k + 5) - .!-k(k + 2))
8 3 24

+deg(vo) ( deg(vo) + 1 _ (k; 5)) + (k; 5) deg(vol

(k+5) (1 ) 1
- 3 gk(k + 2) + deg(vo) - 24 k(k + 2)

-deg(vo) Ck; 2) - deg(vo»)
(k + 5)

< 3 m

(n + 2)
3 m.

The proof for odd k is similar.

Case (3): IRo U Bol = 0, k is odd.

Then m = i(k + l)(k + 3), and

1
S(An(k, m)) = 24 (k + l)(k + 2)(k + 3).

So

S(An(k, m)) _ (k; 2) m

1
< "3m(n + 2).
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Case (4): IRoU Bol = 0, k is even.

Then m = lk(k + 2), and

1
S(An(k, m)) = -k(k + 2)(k + 4).

24

So

S(An(k, m))
(k + 4)

3 m

< (n;2)m,
with equality holding iff k = n - 2 (i.e., iff Ro U BoU Yo is empty, in

which case m = ~n(n - 2)). ]

(5) It now follows from Proposition 4.3.8 that

with equality holding iff n is even and kG = n - 2, in which case

m = I[Ru,Bull = ~n(n - 2). This completes the proof. 0

We are finally in a position to prove the edge case of Winkler's four-thirds

conjecture.

Theorem 4.3.10 [BG88l If G is a connected graph containing no endveT­

tices, then G contains an edge e such that

MOTeoveT, the inequality is strict iff G is not an odd cycle.

Proof:

Let IV(G)I = nand IE(G)I = m. Since G is connected but contains no
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endvertices we must have m 2': n. We consider three cases, each of which has

a completely different proof.

Case (1): m = n.

Since G has no vertices of degree 1,

2m = L deg(v) 2': 2n = 2m.
vEV(G)

It follows that G is 2-regular, and hence a cycle. Let e be any edge in G.

If n is even, then

If n is odd, then

a(G - e) a(Pn ) in(n - l)(n + 1) 4
=--= 1 =-.

a(G) a(Cn ) sn(n-1)(n+1) 3

So equality is attained by the odd cycles.

Case (2): m = n + 1.

From the fact that G has no endvertices and can be reduced to a tree by the

removal of two edges, it follows that either

(1) G consists of two cycles joined by a path (which could be a Pt), or

(2) G consists of two vertices joined by three internally disjoint paths.

We consider the two cases separately:

Subcase (2.1): G consists of two cycles Cl and C2 , which either intersect in

a unique vertex v, or else are vertex disjoint and are joined by a non-trivial

v - u path P, with v E V(C1 ) and u E V(C2 ).

Let e be an edge opposite v on Cl. Note that removing e does not affect

the distance from v to any other vertex, and therefore does not affect the

124



distance between any two vertices x and y for which v lies on a shortest x - y

path in G. In particular,

dc-e(x, y) = dc(x, y) for all x E V(Cl) and y E V(P) U V(C2).

Since of course

dc-e(x, y) = dG(x, y) for all {x, y} c V(P) U V(C2),

this means that the only distances affected by the removal of e are those

between vertices in Cl' Thus

L dC1(x,y)
{x,y}cV(Cd

er(G - e) - er(G) L (dG-e(x, y) - dc(x, y»
{x,Y}CV(Cl)

L dC1-e(x, y)
{x,y}CV(Cl)

er(CI - e) - er(CI ),

and hence (since er(CI ) < er(G»,

er(G-e)
er(G)

er(G - e) - er(G)
er(G) + 1

< er(CI - e) - er(CI ) + 1 = er(CI - e)
er(Cl) er(Cl)

4
< "3 (by Case (1».

Subcase (2.2): G consists of two vertices, v and u, connected by three

internally disjoint paths, PI, P2 and Ps, with £(PI) ::; £(P2 ) ::; £(Ps).

Let Si = V(Pi ) - {v,u} and £(Pi ) = £i (i = 1,2,3). Further, let Cl =
H U P2 , C2 = PI U Ps and Cs = P2 U Ps· Choose e = ab E E(Ps), where a
and b are the central vertices of Ps if £s is odd, and a is the central vertex of

Ps if £s is even.

Now let x and y be any vertices in V(G) such that oe(x, y) > O. Note

that, as distances between vertices of Cl are unaffected by the removal of e,
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at least one of the vertices x and y must be in 53; assume without loss of

generality that y is in 53, with dp3 (v,y) ::; dP3 (u,y).

If x E 51 U 53 U {u, v}, then clearly dG(x, y) = dC2 (x, y) and dG-e(x, y) =
dC2 - e (x, y). Now consider x E 52·

Since oe(x, y) > 0, e must lie on all shortest x - y paths in G. It follows

that

and hence that dCl (u, x) < dCl (v, x). So v does not lie on a shortest u - x

path in Cl, and hence dCl(u,x) = dP2 (u,x). It follows that

Finally, we note that if x E 52 then of course

We now have

(T(G - e) - o-(G)

L
yES3

XE S1US3U{U,V}

(dG-e(x, y) - dG(x, y)) + L (dG-e(x, y) - dG(x, y))
yES3
xES2

< L (dC2 - e(x,y) - dC2 (x,y)) + L (dC3 - e(x,y) - dC3 (x,y))
yES3 yES3

XEV(C2) xES2

(T(C2 - e) - 0-(C2) + L (dC3 - e(x, y) - dC3 (x, y))
yE S3
xES2

1
< 3(T(C2 )+ L (dC3-e(X,y)-dc3(X,y)),

yES3
XES2

where we have used Case (1) and the fact that dC2 -e(x, y) - dC2 (x, y) = 0 if

x and y are both in V(C2 ) - 53'
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One may now consider four cases, depending on whether £2 and £3 are

even or odd. We provide the details for only the case where £2 is even and

£3 is odd.

Say £2 = 2k2 and £3 = 2k3 + 1 (so k2 :::; k3)· Let C3 be

Then

l: (dC3 -e (x, y) - dC3 (x, y) )
yES2
XES3

k3+k2-1 ( 2k2+2k3 k3-1 )
2 l: l: (dC3_JUi,Uj) - dC3 (Ui,Uj)) + l: (dC3_JUi,Uj) - dC3 (Ui,Uj))

i=k3+1 j=k3+2k2+1 j=O
k3+k2-1 2k2+2ks

2 l: l: (2j - 2i - 2k2 - 2k3 - 1) (by Proposition 4.3.4)
i=k3+1 j=i+(k2+k3+1)

2 1
3k2(k2 - 1) (k2 - 2)'

Now certainly

k3-1 k3+k2
l: dc(x, y) > 2 l: l: dC(Ui, Uj)

yES3 i=O j=k3+1
XES2

k3-1 k3+k2
2l: l: (j - i)

i=O j=ks+l

2k2k3 (~k2 + ~k3 + 1)
> 2k~(k2 + 1) (since k3 2: k2).

It follows that

I: yES3 [dC3 - e (x, y) - dC3 (x, y)]
XES2 < ~k2(k2 - 1)(k2 - ~) 1

I: yES3 dc(x, y) 2k~(k2 + 1) < 3'
xES2
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Hence finally

a(G-e)-a(G) <
a(G)

la(C2) + l: yES3 (dC2 - e (x,y) - dC3 (x,y))
XES2

(a(C1 ) - a(P1 )) + a(C2) + l: yES3 dG(x, y)
XES2

< (a(C1 ) - a(P1 )) + (a(C2) + l: yES3 dG(X,y))
xES2

< ~ (since a(C1 ) > a(g)).
3

Thus
a(G-e) 4

a(G) < 3·
The proof in the other three subcases differs very little.

Case (3): m ~ 11,+2.

(1) Firstnotethatifa(G) > in(n-1)(n+1), then (sincea(G-e):::; a(Pn )

by Proposition 1.5.8)

a(G - e)
a(G)

< a(Pn )

a(G)
in(n - l)(n + 1)

<
in(n - l)(n + 1)
4

3'

and we are done. In what follows we will therefore assume that a(G) :::;

in(n - l)(n + 1).

(2) For every pair {u, v} of vertices in G, choose a shortest u - v path

P(u, v). For any edge e in G, let p(e) denote the number of pairs {u, v}
for which e lies on P(u, 11).
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(Note: For a pair {u, v} to contribute to p(e), e does not have to lie

on all shortest u - v paths, just on the one chosen as P(u, v) - so the

removal of e need not increase the distance between u and v.)

Let eo = ab be an edge of G for which p(e) attains a minimum value.

(3) We now show that eo must be a cyclic edge of G. Assume, to the

contrary, that eo = ab is a bridge, and let Gl and G2 be the components

of G - eo, with a E V(Gd and b E V(G2 ). Let IV(Gl)1 = r, IV(G2)1 =

71, - r, and suppose without loss of generality that r :s; l~J.
Then eo is contained in all paths P(u, v) where u and v are in differ­

ent components of G - eo, and none where u and v are in the same

component. So

p(eo) I{{u,v} IUEV(Gl)andvEV(G2)}1

IV(Gl )IIV(G2)!
r(71, - r).

Since G contains no endvertices , a must have at least one neighbour in

Gl . If a is adjacent to exactly one vertex x in Gl , then the edge ax is

a bridge of G, and is contained in (r -1)(71, - r + 1) paths P(u, v). But

then (since 2r < 71, + 1)

p(ax) r(71,-r)+2r-71,-1

< r(71,-r)

p(eo),

which contradicts our choice of eo. So a must have at least 2 neighbours
in G l .

Let el and e2 be two edges in Gl incident with a. Note that none of

the r(71, - r) paths P(u, v) for which u E V(G l ) and v E V(G2 ) can

contain both el and e2. It follows that either el or e2 - say without
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loss of generality el - is contained in at most ~r(71, - r) paths P(u, v)

of this type.

Since of course el is not contained in any path P(u, v) for which u and

v are both in G2 , and there are (;) pairs {u, v} for which both u and

v are in G l , we have (since 71, - r 2': 1)

p(el) < r(71,; r) + (;)

r (71,; 1)
< r(71, - r)

p(eo),

which again contradicts our choice of eo. It follows that eo must be a

cyclic edge of G.

(4) Next, we note that

0"(G) = 2:= dc (u, v)
{u,v}~V(c)

2:= (number of edges in P(u, v))
{u,v}~V(c)

2:= p(e)
eEE(C)

> m p(eo)

> (71, + 2)p(eo).

This gives us a restriction on the number of edges in H(G, eo), thus

allowing us to use Proposition 4.3.9:

IE(H(G, eo)) I is the number of pairs {u, v} of vertices in G such that

dc-e(u, v) > dc(u, v) - i.e., such that eo lies on all shortest u - v

paths. Therefore lE(H (G, eo) )I is at most the number of pairs {u, v} of

vertices in G such that eo lies on the specific u - v path we have called
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P(u, v) - in other words, IE(H(C, eo))1 ::; p(eo). It follows that

jE(H(C, eo)) j ::; 0"(C
2
) .

n+

Soby Proposition 4.3.7, H(C, eo) is a Bn,k-graph with k = g(eo) - 2, in

which IE(H(C,eo))I::; :~J::; n(n~~~;t)· Hence by Proposition 4.3.9,

S(H(C, eo)) < lIE(H(C, eo))I(n + 2)

< O"(C)
3 '

(1)

with equality holding iff n is even, n = k + 2 = g(eo), and O"(C) =

IE(H(C, eo))I(n + 2) = ~n(n - 2)(n + 2).

But note that if n is even and n = g(eo) then C must be an even cycle,

which implies that 0"(C) = ~n3 > ~n(n - 2) (n + 2). Hence equality

cannot hold in (1).

(5) It now follows that

0"(C)
dC - eo) - O"(C) = S(H(C, eo)) < -3-'

and hence that
0"(C - eo) 4

O"(C) < 3'

Note that equality can occur only in Case (1); specifically, iff C is an odd

cycle. This completes the proof. 0

Remark: Gy6ri [Gyo88] extended the four-thirds conjecture as follows:

Conjecture 4.3.11 Every connected graph which is not a tree contains an

edge whose removal increases the average distance by at most a factor of ~.
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In [Gyo88] he gave an example of a connected graph G with 8(G) = 1

in which, if eo is defined as in the proof of Theorem 4.3.10, J.L(~G)o) > ~

(although this G still contained an edge whose removal increased the average

distance by less than a factor of ~). In other words, if one is to attempt

to prove this stronger conjecture, one has to proceed in an entirely different

way.

4.3.2 Removing the worst edge

In [Ple84], Plesnfk posed the following problem: Given n E N, find the

maximum possible value of <7(G - e) - <7(G), where G is a 2-edge connected

graph of order nand e is an edge of G. This is related to the maximum

damage caused in a communications network by the failure of one link.

Favaron, Kouider and Maheo answered this question in [FKM89], and

found an infinite class of graphs attaining the bound. We give an altered

version of their proof, which uses some of the results of the previous subsec­

tion.

Definition: Given n E Nand k E {1, ... , n - 2}, we define Fn,k to be a

Bn,k-graph with the following additional properties:

(1) YO is empty, IRol = In-;-2J, and IBol = rn-;-2l

(2) Every vertex U E Ro is joined to every vertex v E Bo by an edge of

weight w(uv) = k.

(3) For every vertex v E Ro U Bo,

{
k - 2i if 0:::; i :::; lk;l J

W(VUi) =
2i - k - 2 if l k!4J :::; i :::; k + 1.

We will find it useful to know the value(s) of k for which Fn,k has its

maximum possible weight sum.
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Definition: Given n E N, we define kn to be any value of k in {I, ... , n - 2}

that maximises S(Fn,k). (For certain values of n, kn may have more than one

possible value.)

Proposition 4.3.12 FOT any n E N,

kn = (2 - J2)n + 0(1), and

S(Fn,kJ = ~(J2 - 1)n3 + O(n?).

Proof:

We seek to maximise S(Fn,k) over all k E {I, .", n - 2}.

For any k E {I, ... , n - 2}, the weight sum of the edges in Fn,k follows from

the definitions of a Bn,k-graph and of Fn,k' The weight sum of the edges in

[Ru, Bu ] is 2
1
4 k(k +2)(k + 4) if k is even, or 2~ (k + l)(k + 2)(k + 3) if k is odd.

The weight sum ofthe edges in [(RoUBo), (RuUBu )] is (n-k-2)(2+4+".+k)
if k is even, or (n - k - 2)((2 + 4 + ... (k - 1)) + k) if k is odd. Finally, the

weight sum of the edges in [Ra, Ba] is ln-;-2Jrn-;-21 (k).

We therefore need to consider four cases, depending on whether nand k

are even or odd. For example, if nand k are both odd, then

1 1
S(Fn,kJ = 24 (k+1)(k+2)(k+3)+(n-k-2)((2+4+".+(k-1))+k)+'4(n-k-2)2k.

This is a cubic function in k, which is easily maximised to find kn and

S(~~,kn)' The proof in the other cases is similar. 0

We now define a class of graphs which we will later show to attain Favaron,

Kouider ,and Maheo's bound.

Definition: Given n EN, we define §;;, to be the set of ordered pairs (G, e),
where G is a connected graph of order nand e = ab a cyclic edge in G, such

that G has the following form:

V (G) consists of three disjoint sets A, B, and C such that
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Figure 4.3: (G, e) E.~

(1) IIAI - IBII s 1,

(2) (C)a is a cycle of length kn + 2 containing e,

(3) (A U {a})o and (B U {b})o are connected (bllt possibly trivial), and

(4) no vertex in A is adjacent to any vertex in B U(C - {a} ), and no vertex

in B is adjacent to any vertex in Au (C - {b}).

(See, for example, figure 4.3.) If there is more than one possible value for

kn , the definition of .7;,. allows all of them.

The connection between P'1,k and .7;,. is shown in the next proposition.

Proposition 4.3.13 Let G be a connected graph of orde'r n, containing a

cyclic edge e. Then (G,e) E'/;1 iff H(G,e) = Fn,kn '

Proof:

It, is easily seen t.hat. if (G, e) E/;!, t.hen H (G . e) ~ Fn,kn ' We now prove the

converse. Let H (G, e) :::: Fn,kn ' and let e = a.b.

By Proposition 4.3.7, H(G, e) is a Bn,kn-graph in which the kn + 2 = g(e)

vert.ices in R II• U En U Y;, are the vertices inducing a shortest cycle containing
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e in G. Furthermore, B (respectively, R) consists of vertices whose distance

from b (respectively, a) increases when e is removed from G.

Let C = Ru U Bu U Yu , A = Bo and B = Ro. Since H(G, e) rv Fn,k"" Yo is

empty and IBol - IRol ~ 1. Hence A U B U C = V(G), and IIAI - IBII ~ 1.

Furthermore, for every u E A and v E B, w(uv) = kn . In other words,

removing e from G increases the distance between u and v by kn = g(e) - 2.

Hence e must lie on a shortest u - v path P in G, and the walk obtained

from P by replacing e by (C)G - e must be a shortest u - v path in G - e.

It follows that u (respectively, v) cannot be adjacent to any vertex in C,

except possibly a (respectively, b), and that u and v cannot be adjacent to

each other.

Finally, we note that (A U {a})G and (B U {b})G are connected, since G

is connected. It now follows that (G, e) E .~. 0

We are now in a position to prove Favaron, Kouider and Maheo's upper

bound on u(G - e) - u(G). We strengthen their result slightly by proving

that equality is attained only by the pairs (G, e) in~.

Theorem 4.3.14 [FKM89] Given nE N) u(G-e)-u(G) is maximised over

all connected graphs G of order n and cyclic edges e E E(G) iff (G, e) E~.
The value of the maximum difference is tCV2 - 1)n3 + O(n2).

Proof:

Let G be any connected cyclic graph of order n, and let e = ab be any cyclic

edge in G.

By Proposition 4.3.5, for every vertex v in G, m8.XuEV(G) w(vu) is either

w(va) or w(vb). It follows, by Proposition 4.3.7, that H(G, e) is a Bn,k-graph

for k = g(e) - 2, with the additional property that for every v E V(H(G, e)),

m(v) = w(va) if v is red, or w(vb) if v is blue.

Recall that a = Uo and b = Uk+l' Hence, by property (4) of Bn,k-graphs,
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for i E {1, ... , k + 1},

{
( ) ( ) 2 k 2 k 2 · l'f 0 < ,j < lk-1J_ W UUk+ 1 = 2 k + 1 - i - ~ - = - '/, - • - 2

m(Ui)- w(uuo)=2i-O-k-2=2i-k-2 iflk!4J~i~k+1.

It follows that, for any vertex v in Ro U Bo,

k+l

L W(VUi)
i=O

k+l

< L m(ui)
i=O

{
1 + 3 + + k if k is odd

2 + 4 + + k if k is even.

Recall that in a Bn,k-graph, IRol ~ ln-;-2 J, IBol ~ rn -;-2l, and

"" ( ..) _ { 2
1
4(k + l)(k + 2)(k + 3) if k is odd

L W utUJ - 1
O~i~j~k+l 24 k (k + 2)(k + 4) if k is even.

Hence, if k is odd,

O"(G - e) - O"(G) S(H(G, eo))
n-k-2 n-k-2

< l' 2 H' 2 lk + (n - k - 2)(1 + 3 + ... + k)

1
+ 24 (k + 1) (k + 2) (k + 3)

S(Fn,k)

< S(Fn,kJ (1)

with equality holding iff H(G, e) Co,! Fn,kn (for one of possibly more values of

kn ).

Similarly, if k is even,

(2)

with equality holding iff H(G, e) rv Fn,kn '
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It now follows from Proposition 4.3.13 that the maximum value of 0-(G ­

e) - o-(G) is attained iff (G, e) E .9';. By Proposition 4.3.12, the value of this

maximum is

This completes the proof.

Some remarks:

o

(1) Plesnfk posed his question for 2-edge-connected graphs, but Favaron et

al only demanded that G be cyclic. Note, however, that for (G, e) E~

o-(G - e) - o-(G) is unaffected by the structure of (A)c and (B)c, as

long as they are both connected. It follows that requiring G to be

2-edge-connected would not give a better bound.

(2) Since all graphs attaining the upper bound have cut-vertices, demand­

inghigher vertex-connectivity does decrease the upper bound. In [FKM89],

however, an example is given which shows that it does not reduce the

order 0(71,3) of the upper bound.

(3) In [CM80] Cockayne and Miller determined the edge e which, when

added to the path Pn , minimises 0-(Pn + e). Their results agree with

Theorem 4.3.14 in this particular case - i.e., the edge e will be added

to the path in such a way as to make the resultant cycle have length

kn , and the trailing "ends" have roughly the same length.

(4) Note that Theorem 4.3.14 improves the trivial bound

1 1
o-(G - e) - o-(G) :::; 671,(71, - 1)(71, - 2) = 671,3 + 0(71,2),

obtained from the inequalities

(;) :::; o-(G) :::; ~n(n - 1)(n + 1).

(See Proposition 4.1.6.)
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(5) Favaron et al also found in [FKM89] an upper bound (in terms of n)
for the ratio CTS~;;)e), where G is a connected graph of given order nand

e is a cyclic edge of G:

C7(G - e) Vii O()
C7(G) :s; 2y'3 + 1.

The coefficient 2~ does not seem to be the best possible, but an ex­

ample is given to show that the order O(Vii) is exact.

(6) Favaron et al also found a connected graph G of order n containing a

cyclic edge e for which CTS~;;)e) ----+ 00 as n ----+ 00. In other words, the fail­

ure of a particular link can cause an arbitrarily large amount of damage

to a network for which the average distance is an important measure of

performance - unlike in the cases of radius and diameter, where the

failure of one link can at most double the parameter concerned.
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4.4 Vertex Removal

Unlike in the case of edge removal, when a vertex is removed from a graph

the distance can increase, stay the same, or decrease. For example, removing

any vertex from an odd cycle en decreases the distance if n < 11, leaves the

distance unchanged if n = 11, and increases the distance if n > 11.

4.4.1 Removing the worst vertex

In this subsection we consider the maximum possible increase in the distance

of a graph caused by the removal of a ncv (non-cut vertex). This problem

was explored by Soltes in [80191]. We consider both the absolute and the

relative change in distance, and find that they lead to the same extremal

graphs.

The following upper bounds were given by Soltes [80191], who also showed

that the bound is attained by G = v + PKn-1,m-n+l. We have improved his

result by characterising all graphs attaining the bound.

Theorem 4.4.1 [80191] Let the connected graph G of order n ~ 2 and size

m ~ 2n - 3 and the ncv v in G be chosen to maximise 0"(G - v) - 0"(G) or
u(G-v)

u(G) .

If m ::; (n;l) , then G = v + PKn-1,m-n+l' If m = (n;l) + 1, then

G = v+PKn-1,m-n+1, orG = V+(Kl+Knl+Kn2+Kl), wherenl+n2 = n-3.

If m ~ (n;l) + 2, then G can be any graph of order n and size m in which

v has eccentricity 1. (In this case, diam(G - ~)) ::; 2.)

Proof:

By Proposition 4.1.3, since the graph w+PKn-1,m-n+l has diameter at most
2,

O"(G) ~ n(n - 1) - m = O"(W + PKn-1,m-n+l) ,
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and

with equality holding iff diam(G) :::; 2.

The graph G-v has n-1 vertices and m-degc(v) edges, where degc(v) :::;

n - 1. Hence, from Theorem 4.1.4 and the fact that PKn-1,m-n+l can be

obtained from PKn-1,m-degc(v) by removing edges (if necessary), it follows

that

(J(G - v) < (J(PKn-1,m-degc(v))

< 0"(PKn-1,m-n+l) ,

with equality holding iff degc(v) = n - 1 and either G = v + PKn-1,m-n+l,

or G = v + (K1+ K n1 + Knz + K 1), or m ~ (n;l) + 2.

Combining these results, we obtain

(J(G - v) < (J(PKn-1,m-n+l)
0"(G) - 0"(W + P Kn-1,m-n+l) ,

where equality holds iff G is one of the graphs listed in the statement of

the theorem. Note finally that if m ~ (n;l) + 2, then by Theorem 3.1.2

diam(G - v) :::; diam(PKn,m) :::; 2. This completes the proof. 0

Corollary 4.4.2 The expressions 0"(G - v) - 0"(G) and <TS~G») are maximised

over all connected graphs G and ncv's v E G iff G = v + Pn- 1.

The proof is lengthy, though not difficult, and we omit it.

4.4.2 Removing the best vertex, in the best case

Removing a node from a network might actually increase the efficiency of

the remaining network. Here we investigate the maximum possible decrease

in operating costs - i.e. in distance - caused by the removal of one vertex.
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Again we consider both the absolute and the relative change in distance;

these lead to different extremal graphs.

We first find a lower bound on O"(G - v) - O"(G).

Proposition 4.4.3 The expression 0"(G - v) - 0"(G) is minimised over all

connected graphs G of order n 2: 2 and ncv's v E V(G) iff G f'.I Pn and v is

an endvertex.

Proof:

Let the connected graph G of order n and the ncv v E V(G) be chosen to

minimise O"(G - v) - O"(G).

We first show that v is an endvertex. Assume, to the contrary, that

degG(v) 2: 2, and let e be any edge incident with v. Since v is a ncv in G,

G - e is a connected graph of order n which also contains v as a ncv. Since

0"(G - e) > 0"(G), while 0"( (G - e) - v) = 0"(G - v), this contradicts our choice

of G. It follows that degG(v) = 1.

Hence O"(G) = O"(G - v) + O"G(v), and O"(G - v) - O"(G) is minimised iff

O"G(v) is maximised. It now follows from Proposition 4.1.1 that G is a path

with v as endpoint. 0

The following lower b01md for (J"~~;») was given by Soltes [So191], who

also showed that there exists a path-complete graph attaining the bound.

We have improved the result slightly by proving that, in fact, only this path­

complete graph attains the bound.

Theorem 4.4.4 Given n 2: 2, let the connected graph G of order n and the

ncv v E V(G) be chosen to minimise (J"~~;»). Then G is a path-complete graph

and v is an end-vertex (i.e., G f'.I P Kn,m for some m E {n - 1, ... , (~) -

(n-2)}).

Proof:

We first note that v must be an endvertex, since otherwise removing any
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edge incident with v does not change Cl(G - v), but increases Cl(G). Hence

Cl(G) = Cl(G - v) + ClG(V), and so

dG - v) = 1- ClG(V)
Cl(G) Cl(G) .

Therefore C7S~~)) is minimised over all connected graphs G of order nand

ncv's v E V(G) iff :(g} is maximised over all connected graphs G of order 71,

and endvertices v E V (G).

Hence by Proposition 4.1.7, G must be a path-complete graph with v

as endvertex. So, since there are n - 2 vertices not adjacent to v in G,

G rv PKn,m for some m E {71, - 1, ... , (;) - (71, - 2)}. 0

Remark: We have now proved that, if G is a connected graph of order 71, 2: 2

and v is a ncv of G, then

It is of course possible to find an expression for Cl(PKn,m) and then minimise

over m in the given range to find the bound in terms of 71, only. If 71, 2: 5,

then the extremal graph is not a path; hence considering the absolute and

the relative change in distance leads to different extremal graphs.

4.4.3 Removing the best vertex, in the worst case ­

the four-thirds conjecture

In the worst case, removing even the best node from a network increases the

average cost of sending a message. Here we investigate the maximum possible

extent of the damage.

Winkler [Win89, Win86] stated a vertex case of the four-thirds conjecture:
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Conjecture 4.4.5 Every connected graph G contains a vertex v such that

p,(G - v) 4

p,(G) <3'

If the conjecture is true, then the cycle en shows that the bound cannot

b . d' J.L(Pn-l) 4LtnJ 4e Improve ,smce J.L(Cn ) = 3r 2" n l -t "3 as n -t 00.

Bienstock and Gyori proved in [BG88] that the conjecture is true asymp­

totically; in fact they proved that every connected graph G of order n has a

vertex whose removal increases the average distance by at most a factor of

~ + O(n-~). The proof has much in common with their proof of the edge

case (described in section 4.3.1), and we do not include it.

Althofer [Alt90] proved the vertex case of the four-thirds conjecture com­

pletely for 4-connected graphs, and in fact strengthened it for more higWy

connected graphs:

Theorem 4.4.6 [Alt90] For f 2: 2, every f-connected graph has a vertex

whose removal increases the average distance by less than a factor of e-=-I .

Proof:

The proof is based on Menger's Theorem, and works by counting.

Let G be an f-connected graph of order n (where n 2: 3, since f 2: 2),

and letu and w be any two vertices in V(G). By Menger's Theorem, there

exist g internally-disjoint paths PI, . .. ,Pe between u and w, each of which

has length at least dc(u, w).

Now let P be any shortest u - w path, and let 11 be any vertex in

V (G) - {u, w}. If v does not lie on P, then removing v does not affect the

distance between u and w. Otherwise note that, since the paths PI, ... ,Pe

are internally disjoint, removing 11 can destroy at most one of them - we

may therefore assume, without loss of generality, that P2 , . .. ,Pe are not de­

stroyed. Hence

dc-v(u, w) <
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(number of internal vertices in P2 , ... ,Pe)
< £-1 +1

71. - (number of vertices in PI)
< £-1 +1

71.-dc (u,w)-l
< £-1 +1.

It follows that

L dc_v(u,w)
vEV(C)-{u,w}

L dc-v(u, w) + L dc-v(u, w)
v not on P v internal on P

< (71. - dc(u, w) - l)dc (u, w) + (dc(u, w) _ 1) (71. - dc(u, w) - 1 + 1)
£-1

(71. - 2)dc (u, w) (1 + _1_) -
£-1

(dc(u, w) _ 1)2 _ (71. - 2) _ (dc(u, w) - 1)Z
£-1 £-1

< (71. - 2)-£-dc (u, w) _ (71. - 2)
£-1 £-1

£
< (71. - 2) £ _ 1dc (u, w) , (1 )

since 71. 2: 3. So finally,

1
min J-l(G-v) ::; - L J-l(G-v)

vEV(C) 71. vEV(C)

~ L (n~l) ( L dc-v(u, w))
, vEV(C) 2 {u,w}~V(C)-{v}

(n ~ 2) (:) L ( L dc-v(u, W))
, 2 {u,w}~V(C) vEV(C)-{u,w}
11£

< (71. _ 2) (n) L (71. - 2) £ -1 dc(u,w) (by (1))
2 {u,w}~V(C)

£
£_lJ-l(G).
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This completes the proof.

4.4.4 Vertex-distance-stable graphs

o

An interesting open question is posed by Soltes in [80191]: Determine all

graphs for which the removal of any vertex leaves the distance unchanged.

The only such graph of which Soltes was aware is Cll -
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Chapter 5

Conclusion

In this thesis we have explored in depth three measures of distance in a graph.

Several open questions remain. Of these, the characterisation of edge-radius­

decreasing graphs and Conjecture 3.5.13 on vertex-diameter-increasing graphs

seem particularly interesting. Also, it would be nice to have a complete and

simple proof of the four-thirds conjecture.

Finally, if these results are to be useful in the study of communication

networks, one needs to consider designing graphs where the removal of even

the worst edge is not unduly disruptive.
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