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Abstract

This thesis analyses videos in two distinct ways so as to improve both human un-

derstanding and the computer description of events that unfold in video sequences.

Qualitative analysis can be used to understand a scene in which many details are not

needed. However, for there to be an accurate interpretation of a scene, a computer

system has to �rst evaluate � discretely� the events in a scene. Such a method must

involve structural features and the shapes of the objects in the scene.

In this thesis we perform qualitative analysis on a road scene and generate terms

that can be understood by humans and that describe the status of the tra�c and its

congestion. Areas in the video that contain vehicles are identi�ed regardless of scale.

The movement of the vehicles is further identi�ed and a rule-based technique is used

to accurately determine the status of the tra�c and its congestion.

Occlusion is a common problem in scene analysis tracking. A novel technique is de-

veloped to vertically separate groups of people in video sequences. A histogram is

generated based on the shape of a group of people and its valleys are identi�ed. A

vertical seam for each valley is then detected using the intensity of the edges. This is

then used as the separation boundary between the di�erent individuals. This could

de�nitely improve the tracking of people in a crowd.

Both techniques achieve good results, with the qualitative analysis accurately de-

scribing the status and congestion of a tra�c scene, while the structural analysis can

separate a group of people into distinctly separate persons.
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Chapter 1

Introduction

1.1 Context and Motivation

In today's technologically advanced society the impact of computers is so great that

their use has become mandatory in almost every area of life. The incorporation of

computers into our daily lives has happened at such a rapid rate that we have been

brought to the point where their use can become overwhelming, and even ine�cient,

if one does not have a proper understanding as to what their use is and what they

are supposed to accomplish.

Visual surveillance has become a virtual requirement for industrialised cities and even

businesses. Many cities have closed-circuit television (CCTV) cameras located in nu-

merous places throughout their quarters in order to prevent crime. The manner in

which CCTV cameras help prevent crime is that they �rst of all serve as a deterrence

(as they gather evidence that can aid the authorities in preventing further crimes

and then they also aid in actively preventing crimes because the crimes are observed

in real time (i.e. as they are happening) and can then be responded to by the au-

thorities. Furthermore, it is not only the municipalities of cities that are introducing

CCTV cameras into their work environment, but also various businesses, from banks

to small grocery stores.

Crime prevention is not, however, the only reason for surveillance systems. Tra�c
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cameras, which were �rst introduced to detect tra�c violators, are increasingly being

used to identify and monitor the status of tra�c in real time. Video surveillance has

become a widely used tool and it generates a considerable amount of data. With

the popularity of cameras increasing, surveillance operators have more cameras to

monitor at the same time, and the operators tend to have long shifts. Of importance

to this study is the fact that the operators of these systems are being overwhelmed

by their task. A single person working an eight-hour monitoring shift, which involves

monitoring ten cameras simultaneously, has in essence eighty hours of footage to view.

Moreover, almost all of these eighty hours of footage will be mundane and uneventful.

The probability, therefore, that the person monitoring a set of security cameras will

actually witness a crime decreases with time.

The e�ectiveness of surveillance systems therefore needs to be enhanced. We not only

need computers to control these systems, but there is a large amount of data that

needs to be processed as well. Computer systems thus need to incorporate automated

and intelligent systems in order to interpret the phenomena contained within the data.

1.2 Problem Statement

This thesis discusses methods of performing scene analysis on video sequences. Scene

analysis is a technique that involves extracting information from any given scene in

a video sequence. Its function ranges from counting important objects to extracting

and separating speci�c objects to even describing the entire scene as a whole. The

domain of video sequences varies from simple CGI simulated videos to homemade

videos and surveillance systems We will be focusing on a more functional domain,

namely that of video surveillance. Video surveillance is commonly used to help bet-

ter people's lives by working to monitor and prevent crime, and performing scene

analysis on surveillance systems will therefore potentially help many people.

The di�erent types of scene analysis that can be applied to surveillance systems can
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vary vastly from one another, each one performing their own speci�c task. In this

thesis we will study qualitative and structural analysis of a scene.

Qualitative analysis is the process of extracting information from a given scene and

processing it into a description that is easy for a person to comprehend. Instead of ex-

tracting a multitude of statistics that only an expert in the domain can understand,

qualitative analysis supplies the casual observer with an understanding of a scene.

Although qualitative analyses can be applied to any type of surveillance system, a

casual observer does not need to know what is happening in many of the scenes as

they are usually meant solely for safety operators. However, there is one particular

domain where a casual observer could gather useful information from this type of

analysis, and that is in the domain of tra�c surveillance.

In tra�c surveillance a camera is positioned in such a way as to monitor a stretch of

road. The information gathered by this camera can be used to send vital informa-

tion to �rst responders in case of an accident. The same camera can also provide the

drivers on that particular stretch of road with helpful information. Modern highways,

as well as some smaller roads, are increasingly being monitored by cameras, and many

roads are also equipped with electronic notice boards. These electronic notice boards

are used to inform drivers about the condition of that road. The condition of the

road could refer to its tra�c status (e.g. heavy and congested) or information about

a particular event (e.g. an accident has occurred there). An automated computer

system is needed, however, in order to decrease the delay between an incident occur-

ring and it being reported on the electronic notice board. This system would need

to collect relevant data from a tra�c scene and process it in such a way that the

necessary information can then be communicated to the drivers on that route (which

would in turn enable drivers to make informed decisions about their trips). The mes-

sages relayed on the notice boards need to be simple, but at the same time express

the status of the tra�c in its entirety. Tra�c needs to be identi�ed as congested

or otherwise. Furthermore, the data collected from a qualitative analysis could also
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be used to highlight certain areas of interest for those safety operators monitoring

the same system. All this needs to be performed automatically, without any input

from an operator, as that operator could well be monitoring multiple systems at once.

This thesis focuses on structural analysis of a scene. Structural analysis looks at the

shape and texture of objects in the scene in order to extract detailed information

about each object's structure. The result of the structural analysis that is done in

our work will mainly be used in another system to help explain the observed scene.

Structural analysis can be used in many systems, ranging from analysing the shape of

a vehicle to comparing it to a database for identi�cation purposes to understanding

the shape of a person in order to segment them from other objects in the scene. In

this thesis the structural analysis will be applied in the domain of indoor scenes that

contain small groups of people in order to segment and separate each distinct person

from those around them.

The indoor surveillance of people is used in many public and private venues, like shop-

ping malls and government facilities. Such surveillance can be used to prevent crime

or to observe areas so as to detect any safety violations. However, since people are

dynamic and unpredictable, it is hard for a system to track a single person amongst

a group of people. A person may move in an unpredictable manner or be occluded

amongst other people and objects. The latter problem is a major concern and it is

this problem that the present investigation tries to solve. Previous research has also

tried to solve this problem. The most common method for solving this problem is to

extract the features of each person and use them to identify that person when he/she

has become occluded. The problem occurs when a person enters a scene while being

occluded. This generally arises when a person is walking in the midst of a group

of people and his/her unique features cannot be extracted in order to separate the

individuals of the group. This is where a structural analysis can take place. By under-

standing the structure of a person and their texture we are able to �nd a method that

can separate the people within a group. This structural analysis is integral because
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it does not require previous knowledge of each person, just an understanding of the

average person's structure. With this understanding in place, further algorithms can

use it and apply their feature extraction program in order extract unique features

about each person, since they are already segmented.

The third problem this study attempts to address is the choice of background sub-

traction techniques. Before any type of analysis can take place of scenes that contain

many objects (most of which are not relevant to the system), one must �nd a way of

separating the useful objects from the rest of those in the scene. The most common

method for accomplishing this is background subtraction. Background subtraction is

a method by which the background of a scene is removed, thereby leaving only the rel-

evant foreground objects. As this is integral in almost all video applications, various

methods have been proposed. Each of the methods has advantages and disadvantages.

The background subtraction algorithm needs to be accurate whilst also not taking a

long time to process, especially when it is being used in real-time applications.

1.3 Contribution

The contribution of this thesis and its research is as follows:

� Algorithm design and modeling.

� An extensive study was undertaken for the testing and evaluation of several

background subtraction algorithms and techniques. The study yielded

information as to which background subtraction algorithm was best suited

for the two-scene analysis. All but one of the background subtraction

algorithms were implemented in C++ using the OpenCV library. The

excluded algorithm was instead implemented in Mathematica.

� An adaptation of a qualitative analysis algorithm was designed and de-

veloped in order to facilitate a qualitative analysis of local tra�c scenes.

The qualitative analysis algorithm was fully implemented in C++ using
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the OpenCV library. The qualitative analysis algorithm was then tested

on and evaluated with regard to the footage of tra�c scenes located on the

N1(a national highway).

� The design and development of a novel structural analysis algorithm was

done in order to help solve the problem of occlusion in indoor surveillance.

The structural analysis algorithm was fully implemented in C++ and made

use of the OpenCV library. The algorithm was designed to be easily used

in conjunction with other algorithms. The testing and evaluation of this

algorithm was done on footage from the common data set CAVIAR.

� Publications. The work done towards this thesis has led to the following publi-

cation:

� A. M. Brits and J. R. Tapamo.�A Shape and Energy Based Approach to

Vertical People Separation in Video Surveillance,� in Proc. of the 5th Int.

Symposium on Advances in Visual Computing: Part II (Las Vegas, USA,

November 30 � December 2, 2009). [2]

1.4 Thesis Outline

.

This thesis will be structured as follows:

� Chapter 1: introduces the thesis and the problem to be addressed.

� Chapter 2 provides a literature review. This chapter is segmented into three

distinct categories, which help to isolate the di�erent areas of research that were

undertaken. Them being: Background Subtraction, Occlusion Detection and

Video Analysis.

� Chapter 3 addresses the problem of background subtraction. This chapter is

separated into seven di�erent sections, �ve of which provide a description and
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explanation of di�erent types of background subtraction, while one deals with

their common problems and the last provides a comparison of the problems.

� Chapter 4 describes the types of scene analysis that was done. This chapter is

separated into two distinct areas, namely qualitative and structural analyses.

Their respective problems and solutions are described in detail.

� Chapter 5 o�ers the researchers' �nal conclusions with regard to the thesis, and

then suggests future work that could complement this research.

� Appendix A provides further examples of the techniques discussed throughout

the thesis.
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Chapter 2

Literature Review

Computer vision is currently one of the fastest growing �elds of research in computer

science. The analysis of videos in particular has only recently become more common

with the increase in processing power and the decrease in the price of cameras. This

state of a�airs has led to the design of many di�erent techniques and methods for

analysing and understanding scenes. Background subtraction is one of the key steps

in video analysis, and this is introduced in the next section.

2.1 Background Subtraction

The identi�cation and extraction of foreground regions in a video sequence is a key

component in most computer vision applications. Detecting objects relevant to the

phenomenon to be identi�ed is fundamental in scene analysis. This problem has

generated a considerable amount of research, and it is background modelling that has

received most of the attention. What follows is a discussion of some of the techniques

that have thus far been proposed in the literature.

2.1.1 Gaussian Modelling

One approach to background modelling is the use of statistical models to represent

the behaviour of the grey level of a pixel. Wren et al. [29] model each pixel over

time with a single Gaussian, as it has been hypothesised that, in any given scene,

a single pixel will belong to the background much more often than it will belong to
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the foreground. The model for each pixel is updated at each frame. If the current

pixel intensity value does not match that of its model which needs to be within two

to three standard deviations), then that pixel can be classi�ed as a foreground pixel.

This model was found to be suitable for indoor scenes, but it has to have a decent

initialisation period in order to produce accurate results. The model is continuously

being updated so as to cater for slight and gradual lighting changes and subtle camera

noise. However, this model performs poorly in more dynamic outdoor scenes or in

general scenes that can have fast or sudden lighting changes as well as moving back-

ground objects (like trees blowing in the wind). This model can also underperform

in scenes where the initial frames contain foreground objects, as the model will iden-

tify them as background. The clear disadvantage to using a single Gaussian model

for each pixel is that the standard deviation can be large when one is comparing a

pixel where no foreground object is detected with a pixel where some foreground is

detected. Such a situation can cause multiple erroneous background classi�cations.

The background of a tra�c scene uses three Gaussians in the Friedman and Russell

model [7]. Friedman and Russell hypothesise that the majority of pixels in a tra�c

scene belong to one of the following three categories: a road, a shadow or an actual

vehicle. Each Gaussian then represents one of those three categories. The mixture

model is updated using the EM algorithm [3] and, once the model is su�ciently con-

structed, every following pixel can be classi�ed according to the class that corresponds

to the Gaussian that �ts the pixel. This system is much more reliable than one using

a single Gaussian for outdoor tra�c scenes, but since it has been designed to only

function in a tra�c scene, it does not perform well in almost all other types of scenes,

and the e�ectiveness of this system is thus reduced.

Stau�er and Grimson [28] have developed an adaptive method to model the back-

ground. This was done so as to ensure that errors in the background model do not

accumulate over time. Like Friedman and Russell, Stau�er and Grimson have mod-

elled each pixel with a mixture of Gaussians. Their model determines whether or not
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each pixel's intensity �ts one of the Gaussians designated to be the background; if

it does not, then that pixel is marked as foreground and a new Gaussian is created.

Instead of specifying which Gaussians do or do not belong to the background, Stau�er

and Grimson use a heuristic method for determining which Gaussians in the mixture

do in fact belong to the background. The mixture of Gaussians approach is much

more robust and can cater for more types of scenes than can the single Gaussian. For

example, areas of an outdoor scene with moving trees can be accurately marked as

background. In addition, lighting changes, such as those that are formed by moving

clouds in an outdoor scene, can also be modelled accurately.

KaewTraKulPong and Bowden [11] have furthered the work done by Stau�er and

Grimson by enhancing the online update algorithm as well as by adding a shadow

suppression module to perform the background subtraction. KaewTraKulPong and

Bowden's model ensures that the problems encountered by Stau�er and Grimson are

reduced. The �rst problem that is corrected by their model is that of foreground

objects that appear at the start of a scene. This problem has the e�ect of creating

one Gaussian that incorrectly represents the background, and this error can only be

corrected after a signi�cant amount of time. This situation is worsened in crowded

scenes. This di�culty can be overcome by using the online updating algorithm so as

to use an estimate of the mixture of Gaussians before a length of time in the scene.

The estimate reduces many of the errors that might occur at the beginning, while it

is also able to reduce compound errors that occur after the initial phase. The second

problem can be corrected by removing the shadows. Shadows in background sub-

traction can often be detected as foreground objects, thereby greatly increasing the

area of the foreground objects. The existence of shadows can increase the number of

Gaussians in the mixture. This can have the e�ect of wasting an entire Gaussian in

the instances where a �xed number of Gaussians are reused in the mixture. There-

fore, the removal of shadows can improve the foreground detection in outdoor scenes

where shadows are more prominent and distinct.
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There are many adaptations and improvements that can be applied to the mixture of

Gaussians method of background subtraction. Traditionally, the maximum number

of components in the mixture of Gaussians per pixel is usually given as a static value;

however, in some cases, several pixels might require more Gaussians for an accurate

representation, while other pixels require less. Zivkovic [31] presents an adaptive

method for calculating the number of components in the mixture of Gaussians per

pixel. In this method each pixel is represented more accurately. The results show

improvement not only in accuracy, but in running time as well. The improvement in

processing time comes from the reasoning that the optimum number of components in

the mixture of Gaussians for most pixels in any given scene is relatively low, thereby

reducing the total number of Gaussians that need to be calculated.

Further improvements to the EM algorithm used in the mixture of Gaussians can

be seen in [16]. Lee applies an incremental EM algorithm that has the advantage

of having a fast convergence whilst still managing to maintain the stability of the

statistical model. Traditional incremental variants of the EM algorithm [22] could not

be e�ciently used for background subtraction in this case. Lee solves this problem

by applying an adaptive learning rate for each Gaussian per pixel for every frame.

His results show an increase in the convergence rate while maintaining an accurate

classi�cation between the background and foreground. A fast convergence of the EM

algorithm not only reduces errors while the system is not yet initialised, but it also

reduces the errors when new foreground objects are introduced into the scene.

2.1.2 Non-Parametric Background Subtractions

One disadvantage to the mixture of Gaussians method with regard to background

subtraction is that it always requires a trade-o� between a low learning rate, which

can cause the changes in the background to be incorrectly detected as foreground,

and a high learning rate, which can learn slow-moving foreground objects into the

background.
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If memory capacity and processing power are not primary concerns, then this prob-

lem of the trade-o� can be overcome by way of several di�erent techniques. One

such technique [20, 21] uses statistical prediction models in order to predict what

each frame is going to be before it appears. The di�erence between the currently

observed frame and the predicted frame is considered to be the foreground. By using

the auto-regressive model for prediction, one can accurately predict the next frame

within reasonable error bounds. However, the amount of data that is contained in a

single frame is too much for the prediction model to handle and it also exceeds the

physical memory constraints. Therefore, in order to reduce the dimensionality of the

data, principle component analysis is �rst applied on each frame in order to extract

only the more relevant information. The results of the principle component analysis

seem to be promising, especially as no trade-o� is required between learning rates, as

they are bound to the actual prediction model. However, even with the reduction in

the dimensionality of the input data that comes with principle component analysis,

the entire system still uses a great deal of computational power and memory to ex-

tract a feasible background model.

Another method that makes use of principle component analysis (PCA) in back-

ground subtraction is presented in [12]. This method uses PCA to detect novel

events in a sequence of images, and these events are usually described as being a

foreground region. However, the di�erence is that certain foreground regions, such

as ocean waves, are sometimes unwanted. The use of PCA is to extract a small set

of principle vectors that can describe the history of that particular image sequence.

Similar to other examples that use PCA, the methods presented in [12] reduce the

entire image sequence to a series of windows and apply PCA to each separate window.

One method that is derived from the mixture of Gaussians method and that eliminates

the parameterised trade-o� between learning rates is the kernel density estimate [5],

which was developed by Elgammal et al. The kernel density estimate method adapts



13

both the background modelling and the subtraction of the background by using a

generalisation of the mixture of Gaussians method. The method creates a single

distribution that can represent the history of the pixel over the entire scene instead

of having to create a separate Gaussian for the di�erent intensities of a single pixel.

One core aspect of their model is that it can model very recent events; this is done so

as to ensure that quick changes in the background model are quickly updated without

there being any corruption of the previous instances of the background. The results

achieved show that the model has a higher sensitivity towards foreground detection

than does the mixture of Gaussians model.

2.1.3 Selective Updating

Selective updating is used in many background subtraction techniques. Selective

updating only updates the background model with predicted background pixels.

Shoushtarian and Bez [26] make use of this technique in relation to three di�er-

ent background models. The �rst technique models the background with a simple

mean of the previous set of frames and whenever a pixel's intensity deviates from the

mean by a set threshold, it is marked as foreground and the mean for that pixel is not

updated with this value. Similarly, Shoushtarian and Bez's second technique models

the background with the median of the previous set of frames instead of its mean and

if any pixel's intensity deviates from this median, it is marked as foreground and is

not taken into account in the calculation of the median. In the third technique, the

background model per pixel is basically the previous intensity in the scene that was

marked as a background. All three of these techniques provide an acceptable result

for background subtraction; however, use of these techniques alone does not produce

the accuracy that can be obtained through the use of several other background sub-

traction techniques. One of the main problems is ghosting, which is where an area of

background is misclassi�ed as a foreground object that was previously present. Many

attempts have been made to use this technique in conjunction with other techniques

in order to solve this problem; these techniques include tracking and Kalman �ltering.
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These techniques are so as to have additional information with regard to the fore-

ground objects so that they can be identi�ed as marked if such ghosting does occur.

There are also several methods that make use of the selective updating principle.

For example, one component of the kernel density estimate by Elgammal et al. [5]

uses the selective update to suppress the foreground in its update of the background

model. This is important as this method only uses a recent history of the background

to create the model; a foreground object can therefore pollute the entire background

model and thereby reduce the accuracy of the model. However, the problems associ-

ated with selective updating � ghosting being the major one � are also taken care of by

modelling two versions of the background, one with selective updating and the other

without. The �nal background model is the intersection of the two, with slightly less

priority being given to the selective updating background model when neighbouring

pixels are taken into account.

Another technique that uses a similar design to selective updating is presented in [24].

In this work, Ridder et al. perform a background subtraction with the use of a Kalman

�lter. A Kalman �lter [13] is a time series process that develops a prediction model

from a set of observed points. As each point is observed, the entire prediction model

is updated according to the newly observed point. Ridder et al. use this process as a

prediction mechanism for each pixel. Therefore, if a new pixel is encountered and it

deviates from the predicted model, it is then considered as foreground, otherwise it is

considered to be background. However, the Kalman �lter is supposed to be updated

with each newly observed point, but in the case of foreground objects, the entire �lter

could be corrupted by the new value. In order to account for this problem, Ridder

et al. apply an approach similar to selective updating, in which the Kalman �lter

is not fully updated with the emergence of a foreground object, while it is normally

updated when a background pixel is located.
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2.2 Video Analysis

Finding methods and techniques to interpret and analyse a video scene has received

considerable attention in recent years. In [19], crowd analysis is performed by esti-

mating the number of people in a scene containing large crowds. This is done by

combining several existing image processing and machine learning techniques. With

the use of a support vector machine the system is trained to recognise the shape and

contours of a person's head. The features used are extracted by applying statistical

methods on the Haar wavelet transform of the original image. This process is only

accurate, however, when the people in a crowd are on the same horizontal plane. This

problem is then solved by applying a perspective transform to the images before any

feature is calculated. By calculating the vanishing point in the scene, people's heads

are then extracted on any horizontal plane in any given image. Once the heads in the

scene have been identi�ed, they are grouped. By splitting each group into intervals

and making the assumption that the spacing between heads is constant, an estimate

of the size of the crowd is calculated. The authors were then able to establish that

by combining the shape and contour of a human head, an accurate estimate of the

crowd density can be obtained, even without prior knowledge of the scene.

Some of the methods used for crowd analysis involve identifying the contour of a per-

son in order to determine their actions and intentions. One such method is presented

by Yokoyama and Poggio [30]. In their method, Yokoyama and Poggio �rst apply an

adapted form of optical �ow with an edge detector. Then, by thresholding edges with

little motion and by removing the edges that were present in the background model,

a set of edges for each foreground object are obtained. Using the nearest neighbour

technique, these sets are grouped into distinct objects and then snakes [14] are used

to �nd the contour of each separate object. The above process does not cater for

occluded objects, which are only taken care of when the tracking starts. As each

object is tracked, several states are detected in order to identify whether an object is

occluded, reappeared, merged or separated.
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Lara and Hirata [15] discuss a method for contour extraction in an image sequence.

They apply the external morphological gradient in order to �rst calculate the edges

of an entire frame. Then a rough contour of the target object is obtained by mod-

elling the background from these edges using the median of a set of previous frames,

and then calculating the di�erence between the edges of the background and the

current frame. The contour is re�ned by applying several other morphological steps,

which include noise �ltering. As Lara and Hirata primarily make use of mathemati-

cal morphological operators, the computational time complexity of this technique is

reasonable considering the results that are achieved. Further minor improvements to

this technique would allow for its use in real-time applications. This method does not

cater for occlusion and further improvements are needed to correct occluded objects.

Most of the methods that analyse video scenes require analysis of the objects repre-

sented in the scene. Several key problems need to be addressed when attempting to

identify and calculate feature descriptors for each object. Motion detection is required

to locate areas of interest in a given video scene; this is often solved by applying a

background subtraction technique. The blobs detected by the background subtraction

technique need to be separated and identi�ed. A connected component algorithm, as

used in [29], is commonly applied to extract, separate and identify these blobs.

The tracking of objects in a scene can provide valuable information with regard to

video analysis. Many methods for tracking that make use of shapes have been pro-

posed in the literature. Haritaoglu, Harwood and Davis [9] have developed a system

that uses the shape of an object's silhouette to identify the number of people present

in that object. This is done by locating areas within the silhouette that resemble

the head, arms and legs of a person. Then, applying the assumption that the head

is always above the torso, each person's head is located and counted. The area of

the silhouette to which each person belongs is then extrapolated by evaluating the

normalised distance from the head to the torso, and so on. Once this is �nalised the
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tracking of each person proceeds based on their detected heads and matching them is

based on the appearance model that is stored for each person. The position of each

object is also predicted. This is to ensure that a completely occluded object is still

tracked. Haritaoglu, Harwood and Davis's results seem promising; however, most of

the segmentation boundaries that separate people are straight lines.

2.3 Occlusion Detection

In crowd analysis, most of the methods emphasise locating the object for which

feature descriptors are required. To ensure that feature extraction techniques are

applied to single objects, instead of being applied to the combination of two or more

objects which are in close proximity, one of the classic occlusion detection techniques,

discussed in [8], may be applied. One common approach to solving this problem of

occlusion is described by Elgammal and Davis [4]. In Elgammal and Davis's technique,

a person is split into three distinct areas (i.e. head, torso and legs), and the colour

and spatial features of each of these areas are then calculated. Using a technique to

maximise the likelihood that a pixel belongs to one object, the object can then be

accurately tracked over a video sequence. Occlusion is modelled using two methods.

The �rst is to reason whether one object is in front of or behind another object.

By using elliptical regions to label each object, the relative depth of each object can

then be evaluated. Labelling a pixel as one object or another and determining which

instance maintains the least error calculation will allow one to determine which object

is being occluded. The second occlusion modelling method uses the relative depth of

an object; in other words it evaluates the probability that a ray from a given pixel

would pass through one object before another. Once it is determined that an object

is occluded by another object, the occluded object is then correctly re-detected by

comparing its current features to the features that were extracted earlier on in the

process. The results obtained by using this method are shown to be reasonably good

at solving the occlusion problem while tracking people. The main problem with this

technique is that it requires the objects to be separated before occlusion takes place.
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Chapter 3

Background Subtraction

The detection of moving objects is paramount to the understanding of video se-

quences. One method of detecting moving objects is background subtraction, which

is the separation of the background from what is considered to be the foreground.

This separation is required so that future analysis on the videos can be performed on

only the foreground objects.

3.1 Frame Di�erencing

The most common aspect of background subtraction can be associated with motion

detection. In any given scene, the objects that do not represent the background are

most likely moving. Therefore, one method of detecting foreground objects is to use

frame di�erencing. This method is based on the principle that each pixel (x, y) in

the foreground binary mask F (t) at frame t is considered foreground if the di�erence

between the grey levels of the pixel at frame t and frame t−1 is greater than a preset

threshold T . Otherwise the pixel is considered background. The foreground mask

will be calculated as follows:

F (t)x,y =

1 if | I(t)x,y − I(t− 1)x,y |≥ T

0 if | I(t)x,y − I(t− 1)x,y |< T

(3.1)

where F (t)x,y is the value of the foreground mask at the position (x, y), I(t)x,y the

grey value at the frame t and pixel x, y.
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This implies that the background model is the frame just before the current frame.

Fast-moving objects or video sequences with a low rate of frames per second actually

perform well considering the simplicity of the algorithm.

3.2 Selective Updating

Background modelling is the process of calculating what the background should be

according to a previous set of observed frames. Most methods that calculate the

background model do not just calculate it once o�, but instead they continuously

update it. This is to ensure that any changes to the background are applied to the

background model as well. For example, if there is a global lighting change over an

entire scene, then the background model must incorporate it in order to accurately

model the background.

Problems occur when a foreground object is detected and the pixel information of that

object is used in the updating of the background model. This pollutes the background

model as it starts to contain the information of several foreground objects within it.

This can cause errors in background subtraction, especially when it is a slow-moving

foreground object. The object then becomes learned into the background model over

time and eventually the system starts believing that the object is part of the back-

ground.

This problem can be countered by the process of selective updating. Selective updat-

ing is when the information contained in a foreground object is, once it is detected,

ignored in the calculation of the background model. Several methods of selective

updating are studied in [26]. The di�erence between those methods is the actual

modelling of the background, for example, modelling the background on the tempo-

ral mean or on the temporal median.
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Figure 3.1: Unimodal Distribution

3.2.1 Automatic Threshold Calculation

In many segmentation techniques, all the calculations are done in order to make one

simple decision: is the current pixel part of the segmented object or not? Some meth-

ods �nd a statistical model for each pixel and then decide how far away from this

model a pixel must be in order for it not to belong to that object. Unfortunately,

the notion of `far away' can vary depending on what type of data is being used. For

example, in one case the di�erence between a background pixel, whose statistical

model is calculated over time, and a foreground pixel might be slight, while another

time it might be great. Therefore an automated way of evaluating the threshold is

highly desirable. In selective updating one is dealing with the distance from the mean,

therefore most of the data will lie in or around the mean (Chebyshev's inequality).

This will most often result in a unimodal distribution of di�erence in pixel intensities

from the mean (see �gure 3.1).

According to Rosin [25], the threshold in a unimodal distribution can be found by

extending a line from the highest peak of the histogram to the end of it. Calculating

the largest perpendicular distance from this line to the histogram will indicate the

point from where the threshold should be chosen (see �gure 3.2).
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Figure 3.2: Threshold Calculation [25]

As stated before, an optimum distance threshold varies according to the actual data

used. Therefore, to manually select the appropriate threshold, several tests need to be

performed on each set of data. In addition, three distance thresholds would need to

be calculated for colour image sequences (i.e. one for each colour band). To manually

select these values would thus take some time, especially when it comes to �nding the

correct combination for the three-colour bands. In the results that were obtained, it

was found that the values, from using the technique in [25], were close (i.e. within 10

intensity values) to the optimum results that were obtained manually.

In conclusion, this technique not only reduces the number of tests that need to be

performed to obtain good results, but it also allows the system to automatically

choose these threshold values, regardless of what data is being used, thereby making

the choice of distance thresholding more generic.

3.2.2 Selective Updating Methods

The actual method of selective updating is made easier with the use of an automatic

thresholding method, as is described in [25]. The two selective updating methods that
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are tested in this thesis are: selective update using temporal averaging and selective

update using temporal median. These methods are similar in that they both model

the background and never incorporate the foreground objects into their model. The

only di�erence lies in how the background is modelled. In the former method a simple

mean of the previous background observations is used as the background model. Any

pixel that deviates away from that background model by a threshold, calculated auto-

matically, is then considered foreground. This foreground pixel's information is then

excluded from the updating of the background model. This leaves the background

model unpolluted from the foreground objects. The threshold is adjusted with the

automatic method after each frame and if any previous foreground pixel falls back

within the threshold then it is once again �agged as the background and incorporated

into the background model.

3.3 Single Gaussian

Using a statistical distribution to calculate the probability of a pixel belonging to

the background is the basis behind this type of background subtraction. Assuming a

Gaussian distribution of background pixels versus foreground, this method predicts

whether or not a pixel with certain intensities belongs to the background. Each pixel

in the video sequence generates its own Gaussian distribution and, as the system

starts, it extracts each pixel's intensity and inputs it into its Gaussian distribution.

Over a short period of time a decent model of the background is generated per pixel.

Therefore if any further pixel that is tested against this model falls outside the mean

by a number of standard deviations, that pixel is considered a foreground pixel.

Formally given a random variable X of a Gaussian distribution such that:

X ∼ N(µ, σ2) (3.2)

then the probability of pixel x belonging to the background is:



23

P (x) =
1

σ
√

2π
exp[
−(x− µ)2

2σ2
] (3.3)

Therefore the foreground mask F (t) at time t at position x, y is calculated as follows:

F (t)x,y =

1 if µ− kσ < I(t)x,y < µ+ kσ

0 if I(t)x,y < µ− kσ or I(t)x,y > µ+ kσ

(3.4)

Where k is the number of standard deviations away from the mean and I(t)x,y is the

grey value at time t and position x, y. Usually k = 2.5. A larger k generates less

noise, while a smaller k has a greater chance of extracting a foreground object that

is similar to the background model. More information on this method can be found

in [29].

3.4 Mixture of Gaussians

3.4.1 Concept

A mixture of Gaussians [7] uses the same strength as does the single Gaussian in

modelling the background, namely that of using a statistical distribution to do so.

However, using a single Gaussian to represent all background and foreground obser-

vations leads to problems when the scene becomes more complex. Simple changes

to the lighting conditions and the motion of the background require a more complex

approach. Therefore by taking the strengths of a single Gaussian, a mixture of Gaus-

sians uses multiple Gaussians per pixel instead of one. This makes it easier to model

the complex conditions observed in the scene.

The concept behind using a mixture of Gaussians can be broken down into three

steps. As there are multiple Gaussians for each pixel in the scene, the �rst step is

to calculate which Gaussian the pixel belongs to in each frame. In a single Gaus-

sian method all pixels � whether they are background or foreground � join the same

Gaussian. This can cause the Gaussian to over-extend itself. That single Gaussian
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can contain multiple background scenarios. Like a leaf that is moving in front of a

blue sky, both the sky and the leaf are considered background. The single Gaussian

might also contain foreground information if a foreground object moves in the area of

that pixel. This is the main reason why the single Gaussian is inferior to a mixture

of Gaussians. In a mixture of Gaussians, there can be a whole Gaussian for each of

those backgrounds as well as one for the foreground.

Having more than one Gaussian does, however, make the job of updating the back-

ground model that much harder. The mean and standard deviation of each Gaussian

needs to be updated. This is done so as to ensure that if it was originally chosen

to belong to the incorrect Gaussian, it will at least not cause a large problem. This

update depends on the probability that it belongs to each Gaussian. If the probability

is low, then its mean and standard deviation updates are not great. Similarly, if it

is high or is identi�ed as most likely belonging to a Gaussian, then that Gaussian's

mean and standard deviation updates are much greater.

As the method is using the theory of probability, the total probability of the pixel

belonging to the scene should be equal to one. Therefore a weight is used in the

method in order to reduce each output of the Gaussians so that their sum equals one.

The weight of each Gaussian is increased if the current pixel is found to most likely

belong to that Gaussian, but the weight is decreased if otherwise.

Once everything is updated, the �nal problem that one faces is to determine which

Gaussians belong to the background and which belong to the foreground. This is

calculated by looking at the weights of each Gaussian. If the weights are high, it

means that there were many observations belonging to that Gaussian and it must

therefore represent a background. A very low weight will represent a foreground

object.
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3.4.2 Method

The method for calculating the mixture of Gaussians tested in this thesis is based

on the work presented by Stau�er and Grimson [28]. In this work there are several

parameters that need to be input to use the mixture of Gaussians. The three main

parameters are:

� The number of Gaussians per pixel required K: Several researchers have devel-

oped adaptive methods to calculate this number [31]. The common consensus

is to have a number greater than three, but not too high a number at the same

time. The upper bound is determined by the type of background expected. A

busier background (e.g. many trees, clouds or birds) needs more than does a

less busy background.

� The learning rate α: This is used to calculate how fast an object is learnt into

the background. The faster rate is more adaptive to changing background con-

ditions (such as variable lighting conditions), however, it will also make it easier

for the system to incorrectly learn a foreground object into the background.

� The estimated threshold of background T : This threshold is used for estimating

how much of the scene should consist of background. A higher number indicates

that the scene is expected to be empty, while a lower number indicates that the

scene is expected to be quite busy.

Therefore, for every pixel location in the scene, if the set of pixels X is the group of

the observations at that pixel location over time,

{X1, ..., Xt} = {I(x0, y0, i) : 1 ≤ i ≤ t} (3.5)

then the probability of observing Xt is

P (Xt) =
K∑
i=1

ωi,tη(Xt, µi,t,Σi,t) (3.6)
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where K is the number of Gaussians we want to use. ωi,t is the weight of the ith

Gaussian at time t. η is the Gaussian probability density function with the mean

(µ)and co-variance matrix (Σ) of the ith Gaussian at time t.

η(Xt, µ,Σ) =
1

(2π)
n
2 |Σ|

1
2

e−
1
2

(Xt−µt)T Σ−1(Xt−µt) (3.7)

It is assumed that the red, green and blue channels are independent of each other.

Therefore the co-variance matrix is de�ned as:

Σk,t = σ2
kI (3.8)

Once it has calculated which Gaussian Xt is the closest to, the system updates its

three values over all the Gaussians. The weight ωk,t of the k
thGaussian at time t is

updated as:

ωk,t = (1− α)ωk,t−1 + α(Mk,t) (3.9)

where α is the learning rate parameter and

Mk,t =

1 if Xtis closest to this Gaussian k

0 otherwise

(3.10)

Then the mean (µ) and variance (σ2) is updated as follows:

µt = (1− ρ)µt−1 + ρXt (3.11)

σ2 = (1− ρ)σ2
t−1 + ρ(Xt − µt)T (Xt − µt) (3.12)

where ρ is the learning rate based on α which is calculated as:

ρ = αη(Xt | µk, σk) (3.13)

Each Gaussian is then classi�ed as background depending on parameter T as:
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B = arg min
b

(
b∑

k=1

ωk > T ) (3.14)

3.5 Dynamic Background

Dynamic textures [20, 21] are a complex type of texture found in multiple video

sequences. It is a texture that does not remain static over time, but instead consists

of a periodic repetition of a type of pattern. Video sequences consisting of smoke,

�re and moving bodies of water are considered to be dynamic textures as the process

that governs their movement is a distinguishable, repeating pattern. However, these

patterns are considered to be too complex to model by way of the previous techniques

discussed. This is because those techniques try to model only the history of the pixel's

intensity. These patterns could consist of many variations and a single pixel might not

be able to accurately experience every instance of the pattern, therefore it would not

be modelled. This will, in many cases, mark that pixel as foreground. The solution

to this is to model the actual pattern and not just the pixel. Once a model of the

dynamic texture is established, it can be used for predicting what the background

of a video sequence is and can therefore be used as another background subtraction

technique. The model behind the derivation of dynamic textures described in the

following sections is based on work presented by Mittal et al. [20] and Monnet et

al.[21].

3.5.1 Formal Mathematics behind the Model

Let {I(t)}t=1...T be an image sequence. The prediction of the next image in the se-

quence, based on the last observed k images, can then be represented as follows:

Ipred(t) = f(I(t− 1), I(t− 2), ..., I(t− k)) (3.15)

where f is the prediction function that is to be determined.

However, as each image is described by a set of pixel intensities, these intensities do
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not describe the image as a whole. Therefore, a more accurate way of describing the

image is to analyse the features obtained by way of a feature extraction method.

Let {φi}ni=1 be a �lter bank of operators φ calculated by any feature extraction method

(e.g. Wavelet, Gabor, PCA).

Then for each operator in the �lter bank we can calculate si(t) = φi(I(t)) (the con-

volution of operator φi on image I(t)). This gives us a vector that can represent the

current state of the system at time t:

~sT (t) = [s1(t), ..., sn(t)] (3.16)

So by applying equation 3.16 to equation 3.15 we arrive at:

~spred(t) = f(~s(t− 1), ~s(t− 2), ..., ~s(t− k)) (3.17)

Once the prediction function f is calculated (see section 3.5.2), we will need a way

to revert back to the image I from the state vector ~s(t). This can be done by a

manipulation of the operator φ.

Suppose the φ operator is calculated and known, we can say: {φi = bi}ni=1 where bi

are the set of basis vectors of φi. Therefore the state vector can be evaluated as follows:

~s(t) = [s1(t), ..., sn(t)]T

= [φ1(I(t)), ..., φn(I(t))]T

= [bT1 � I(t), ..., bTn � I(t)]T

= BT � I(t) (3.18)

We can then say:
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~spred(t) = BT � Ipred(t) (3.19)

Therefore, using the pseudo-inverse of BTwe arrive at:

Ipred(t) = pseudoinv(BT ) � spred(t) (3.20)

where

pseudoinv(X) = (XT �X)−1 �XT (3.21)

if X is orthonormal then XT � X = I and since BT is the set of basis vectors then

B �BT = I. We obtain:

pseudoinv(BT ) = B (3.22)

we can then conclude from equation 3.20 that:

Ipred(t) = B � spred(t) (3.23)

This gives us a method for converting between the current state of the system and

the image as long as we are able to calculate the basis vectors of the operator φ. This

calculation is shown in section 3.5.3.

3.5.2 Auto Regressive Models

The prediction function f used in equation 3.17 can include a wide variety of the

known prediction functions used in statistics. These functions can range from being

linear functions to much more complex non-linear functions. However, a linear pre-

diction model is used to ease the overall computational time. The one chosen in [20]

and [21] is the auto-regressive model.

Auto-regressive models are used in time series for a prediction system that is con-

sidered to be stationary. Stationary systems are systems whose data has a constant
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Figure 3.3: Graph showing a set of random data that has a constant probability
distribution

probability distribution, regardless of the change in time and space. See �gure 3.3.

There are many methods for taking unseen and unknown data sets and making them

have a much higher chance of adhering to a stationary system. One such method that

is used in calculating the state space is to calculate it on the mean subtracted image:

I(t)− Ī.

So the auto-regressive model of the system is:

spred(t) = f(~s(t− 1), ~s(t− 2), ..., ~s(t− k))

=
k∑
i=1

Ai~s(t− i) (3.24)

Equation 3.24 is a kth order auto-regressive model and Ai is the set of n×n prediction

matrices that is needed for each k. n is the number of features in each feature vector

~s(t).

In equation 3.24 k can be seen as the maximum �lag� in the model. As i→ k, ~spred(t)

is compared to a vector further away from it (hence �lag�).
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The previous histories of the state vectors are required in order to solve auto-regressive

models. So for example, if we take k = 3, we want to solve A1, A2 and A3. There-

fore we will need to compare the set of state vector histories for three di�erent �lag�

values, by concatenating the set of state vectors into matrices SA and SB where the

di�erence between them is the �lag� value. That is:

SA = {~s(a)} where a = 1 + i, ..., t (3.25)

and

SB = {~s(b)} where b = 1, ..., t− i (3.26)

Therefore for i = 1 we will need to compare and evaluate :

SA = [~s(2), ~s(3), ..., ~s(t)]

SB = [~s(1), ~s(2), ..., ~s(t− 1)] (3.27)

Similarly for i = 2:

SA = [~s(3), ~s(4), ..., ~s(t)]

SB = [~s(1), ~s(2), ..., ~s(t− 2)] (3.28)

and for i = 3

SA = [~s(4), ~s(5), ..., ~s(t)]

SB = [~s(1), ~s(2), ..., ~s(t− 3)] (3.29)

Therefore for each i we have to solve for the unknown A in:
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SA = A � SB (3.30)

If we take a closer look at equation 3.30, by expanding it out and taking for example

i = 1, n = 2 and say t = 4, we arrive at the following:

 ~s(2)1 ~s(3)1 ~s(4)1

~s(2)2 ~s(3)2 ~s(4)2

 =

 x1,1 x1,2

x2,1 x2,2

 ~s(1)1 ~s(2)1 ~s(3)1

~s(1)2 ~s(2)2 ~s(3)2

 (3.31)

=

 x1,1~s(1)1 + x1,2~s(1)2 x1,1~s(2)1 + x1,2~s(2)2 x1,1~s(3)1 + x1,2~s(3)2

x2,1~s(1)1 + x2,2~s(1)2 x2,1~s(2)1 + x2,2~s(2)2 x2,1~s(3)1 + x2,2~s(3)2

 (3.32)

where xa,b for a = 1..n and b = 1..n are the unknowns.

This therefore creates an over-constrained set of linear equations. An over-constrained

set of linear equations is a set of simultaneous equations where there are more equa-

tions than there are variables. In equations 3.31 and 3.32 there are four variables and

six equations.

When this is expanded to the general case we get:


~s(1 + i)

...

~s(t)


T

=


x1,1 · · · x1,n

...
. . .

...

xn,1 · · · xn,n




~s(1)
...

~s(t− i)


T

(3.33)

It can be seen in equation 3.33 that the size of the matrices decreases as i→ k. For

example the size of the matrices as i increases is as follows:

For i = 1 : − (n× n) � (n× (t− 1))

For i = 2 : − (n× n) � (n× (t− 2))

For i = 3 : − (n× n) � (n× (t− 3))

Therefore, the number of columns decreases for every iteration of i. So in order for the
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system to stay as an over-constrained set of linear equations we need t−k > n where

n is the number of feature vectors in each feature vector ~s(t). In addition a �lag�

k cannot exceed the total time passed therefore the creation of the auto-regressive

model cannot begin until:

0 < n < t− k (3.34)

There are several methods for solving an over-constrained set of linear equations, one

of which is the method of least squares.

In equation 3.30 we can say that the best solution for A is:

arg min
A
‖SA − A � SB‖ (3.35)

which can be rewritten as:

A = SA � STB � (SB � STB)−1 (3.36)

Now that Ai is solved for all i, the prediction model is complete.

3.5.3 Evaluating the Basis Vectors

In order to calculate the orthogonal basis vectors that are needed in equation 3.23 as

is shown in section 3.5.1, we �rst have to consider the set of images that will be used

in prediction

{I(t− k)}k=0..m−1 (3.37)

where m is the previous number of frames to be included in the prediction.

PCA is used on this set of images to extract orthogonal basis vectors. In order to

use these sets of basis vectors in the auto-regressive model (section 3.5.2), the sys-

tem must be considered to be stationary. One method that will further increase the

chances that the system conforms to stationarity is to use the set of zero mean images
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instead of just the images in the PCA. A zero mean image is just the original image

subtracted by the mean value of the image.

Therefore,

Ĩ(t) = I(t)− Ī(t) (3.38)

where

Ī(t) =
1

n

t∑
i=t−m+1

I(t) (3.39)

the mean of {I(t− k)}k=0..m−1.

Each image I(t) is of resolution r × c, where r is the number of rows and c is the

number of columns in the image. If we then concatenate the set of images into a

column vector, where each element is in itself a row vector consisting of all the pixels

in the image we can create a matrix ĨM with dimensionality (r × c)×m, such that

ĨM =


Ĩ(t)0,0 · · · Ĩ(t)0,c Ĩ(t)1,0 · · · Ĩ(t)r,c

Ĩ(t− 1)0,0 · · · Ĩ(t− 1)0,c Ĩ(t− 1)1,0 · · · Ĩ(t− 1)r,c
...

. . .
...

...
. . .

...

Ĩ(t−m+ 1)0,0 · · · Ĩ(t−m+ 1)0,c Ĩ(t−m+ 1)1,0 · · · Ĩ(t−m+ 1)r,c


(3.40)

In PCA the covariance of matrix ĨM is calculated in order extract the orthogonal

basis vectors by extracting the eigenvectors from the covariance matrix.

For a given matrix X, the covariance (Σ) with itself is calculated by the expected

value of that matrix multiplied by that matrix transposed

ΣX = E[(X − µX)(X − µX)T ] (3.41)

As ĨM is already the zero mean vector (see equation 3.38), then the covariance of ˜IM

can be calculated as follows:
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ΣĨM
= E[(ĨM)(ĨTM)] (3.42)

According to Jolli�e [10] the orthogonal basis vectors can therefore be calculated by

the eigenvectors of ΣĨM
.

According to Mittal et al [20] and Monnet et al [21], the calculation of the eigen-

vectors on the covariance matrix can be shortened by using an approximation of the

covariance matrix.

ΣĨM
≈ (ĨM)(ĨTM) (3.43)

Then by using the singular value decomposition on ĨM :

ĨM = UDV T (3.44)

the set of eigenvectors, which will be used as the orthogonal set of basis vectors, will

be stored in the matrix U .

Tests done in Mathematica show that using the approximation and extracting the

eigenvectors by the singular value decomposition do not yield much di�erence. The

di�erence is further negated by the discrete nature of the images that are used.

3.5.4 Results and Future Work in Dynamic Background Mod-

elling

This technique for background subtraction was coded and tested using Mathematica.

Although the tests show a positive outcome when modelling the background of a video

sequence, the computational time required for the entire technique is extremely high.

The tests could not be performed on video sequences larger than the test cases, which

had a resolution of 32 by 32. Several methods are thus needed in order to be able to

use real video sequences. Two techniques, both of which are mentioned by Mittal et

al. [20] and Monnet et al. [21], are mentioned in order to improve the performance of
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the entire process. The �rst technique is to use an incremental version of the PCA,

which both sets of researchers discuss in detail. The second technique is to window

each frame and perform the incremental method on each window instead of on the

entire image. Therefore, for each window, a prediction of what that window should

be, is created It is used when it comes to determining if that entire window belongs

to the background, including the dynamic texture, or the foreground. Even with this

implemented, one can discern many future improvements that could greatly improve

the overall use of the technique. As already mentioned, �nding and implementing

algorithms and techniques to improve the running time of this technique would be

a great improvement in itself. Such improvements could include the use of high-

performance computing techniques, such as the parallelising of the technique over

multiple processes. It could also include �nding alternative ways of calculating and

solving several areas of the technique. Other improvements or variations could also be

researched, such as using di�erent feature extractions and comparing their outcomes.

For example, one could probably �nd a way of using a di�erent �lter bank � such as

Gabor �lters or wavelets � instead of having to use PCA.

3.6 Common Problems Associated with Background

Subtraction

A common problem in background subtraction is that foreground objects are some-

times classi�ed as background. One way that this can happen is when the object

falls inside the acceptable di�erence bounds of the background model. This could be

because the acceptable bounds are too inclusive and therefore class vastly di�erent

objects as background. Alternatively, this could occur simply because the object in

the foreground appears similar to the actual background.

Another common problem associated with many background subtraction problems is

ghosting. Ghosting is when a foreground object is detected, when in fact no object



37

is present in the actual footage. Ghosting usually occurs in the aftermath of when

the system classi�es a foreground object as background. In the initial stages of a

background subtraction algorithm, a foreground object may be detected as the back-

ground. When the object that the system missed has moved o�, the system then

registers that area where the object was originally as being vastly di�erent to the

perceived background. It thus �ags that area as foreground and in so doing creates a

ghost. Usual background subtraction algorithms, such as the mixture of Gaussians,

automatically correct this anomaly with time. This is done because the system learns

what the intended background is and adjusts itself accordingly. But before these

systems are able to correct themselves, the results of the background subtraction are

usually unusable, depending on the size of the ghost.

A more frequent problem in background subtraction is the appearance of holes in

the foreground object (that is to say, a foreground object that has been identi�ed

as foreground but is not perceived as a solid entity by the background subtraction

algorithm). Fast-learning algorithms usually have this problem. The data of a slow-

moving object in a scene, which incorporates a fast-learning background subtraction

algorithm, might learn the object into the background. The front of the object might

therefore get picked up as foreground while the rest of the object might not. The

rear of the object is actually picked up in these cases because, as the object moves

o� the actual background is now present. The system then brie�y notices the change

and creates a small ghost at the rear of the object. Because the ghost is close to the

actual moving object, it appears to actually belong to the object. This then gives the

impression that the moving object has large holes in its structure.

3.7 Comparison of Techniques

The results and comparisons of background subtraction techniques are crucial when

it comes to deciding which technique one should choose for future use.
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3.7.1 Results of Frame Di�erencing and Single Gaussian Back-

ground Subtraction

Frame di�erencing is a rather simple method, which means it is the fastest algorithm

to implement and run. Its simplicity is, however, o�set by the results it obtains. Since

frame di�erencing only measures a change in motion from one frame to another, video

sequences with a high frame rate su�er in accuracy, as the total di�erence between

one frame and the next is small. This method can capture fast, complex objects in

a scene. It can capture fast objects because the di�erence between two consecutive

frames would be high. It can also capture complex objects because the di�erences

between one part of the object and the next are great.

The single Gaussian method is also quite simple when compared with the other types

of algorithms for background subtraction. It does however use a statistical distribu-

tion, which makes up for its simplicity. By using a Gaussian distribution for each

pixel, the system is able to di�erentiate between a foreground object and a background

object more easily than are other methods that do not use a statistical distribution.

However, this method fails whenever there is more than one change in the background.

For example, a tree moving in the wind would normally be considered background,

but because of its motion the moving tree is considered foreground. Although the

method will, with time, learn the tree into the background, it causes another prob-

lem. This problem refers to the Gaussian distribution: if more diverse data is added

to the distribution, the wider the Gaussian becomes. Conversely, if the background

point does not change at all, the Gaussian distribution becomes really narrow. There-

fore, in the case of a wide distribution, an actual foreground object has more chance

of falling within the standard deviation of the distribution and consequently is not

classi�ed as a foreground object. In the case of a narrow distribution, slight camera

noise or slight camera motion will result in a foreground object being detected, as

the standard deviation of the distribution only covers a narrow selection of possible

background values.
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3.7.2 Results of Selective Updating

It was found that the methods that incorporate the selective updating strategy man-

age to keep the full shape of the foreground objects (i.e. show little to no holes) better

than do the other methods. This was to be expected, as the foreground objects were

not learned into the background model and therefore the full object stays visible.

However, because the system does not take foreground objects into account, the prob-

lem of ghosting becomes a major concern. In other background subtraction scenarios,

ghosts are slowly faded away as the system learns that that area is supposed to be

background. In selective updating methods, however, these areas are always marked

as foreground and are therefore never incorporated into the background model. But

as these are ghosts, which means that these areas should be considered background,

the real background is never learned into the model and therefore the ghosts persist

throughout the scene.

It was found that between the two main selective updating methods described in [26]

(i.e. selective update using temporal averaging and selective update using tempo-

ral median),it was selective update using temporal median that performed the best,

but it did, however, have a much higher computational time. In many examples the

increase in accuracy that selective update using temporal median has over the accu-

racy of selective update using temporal averaging was not o�set by the increase in

computational complexity.

Additional examples for the results of selective updating can be viewed in the ap-

pendix (see �gure A.1). Notice the number of ghosts in the result. The ghosts will

be harder to spot as they are not highlighted, but it shows how hard it is to use this

type of technique.
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Figure 3.4: Example of the ghosting problem encountered when using selective updat-
ing. Left: original frame. Right: foreground mask with highlighted areas indicating
ghosts

3.7.3 Results of Mixture of Gaussians

Using mixtures of Gaussians we were able to achieve good results. Single Gaussian

failed when there were additional background variations, like a tree moving in the

wind or slow lighting changes. But in the case of the mixture of Gaussians this

was not the case, as a single Gaussian was created for each of these concerns and the

one that belonged statistically to the foreground Gaussian was the only one displayed.

This removed a great deal of noise in the extracted foreground region where the single

Gaussian failed. In addition, because of imperfect equipment and video compression,

a video sequence usually consisted of additional noise, which a single Gaussian would

struggle to handle. Instead, in a mixture of Gaussians, the noise was considerably

reduced. In fact, after applying simple morphological operators, the noise was, in

many cases, reduced substantially. Figure 3.5 shows the results of applying a mixture

of Gaussians on a video sequence. Morphological operators were also applied to reduce

the remaining noise.

3.7.4 Cross Comparison

A comparison of techniques studied was performed. Several randomly selected frames

were chosen from a set of videos and their relative backgrounds and foregrounds were

extracted. Of the background subtraction techniques studied, frame di�erencing was
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Figure 3.5: Results of the application of the mixture of Gaussains for background
subtraction. The left image is the original image and the right one is extracted
foreground regions.

used as it has the best computational time. As a mixture of Gaussians is an upgraded

form of single Gaussian, only the former method was chosen. Dynamic background

was eliminated because of its extreme computational cost. Selective updating using

the mean was chosen amongst the selective updating methods as its computational

time is not as complex as using the median.

Each frame was then analysed and its accuracy over each background subtraction

method was calculated. Table 3.1 shows the overall accuracy for each of the three

methods. Mixture of Gaussians had the best performance overall, while frame di�er-

encing performed the worst. Analysing each frame separately also shows why mixture

of Gaussians performed better than the other two. The ground truth is obtained by

performing a hand segmentation on the frame being analysed. Each one of the back-

ground subtraction techniques is then performed over the entire video. At the correct

frame rate its relative foreground mask is extracted. This is then overlayed onto the

hand segmented ground truth and areas are highlighted which show the di�erence

between the two. Three examples of this process are shown.

The �rst example that will be analysed is in �gure 3.6. Here there is a tra�c scene

in bad weather conditions. Due to the fast moving cars in the scene the frame di�er-

encing algorithm picks out the cars quite well, including the ones far in the distance.
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Table 3.1: Average Sensitivity and Speci�city of the results of Background Subtrac-
tion.

Frame Di�erencing Mixture of Gaussians Selective Updating

Sensitivity 33.06 % 73.44 % 66.85 %
Speci�city 98.39 % 97.77 % 96.44 %

Frame Di�erencing Mixture of Gaussians Selective Updating

Figure 3.6: Results of Background Subtraction performed on a video of tra�c. Above:
Original frame with its hand segmented ground truth. Below: the results of each
background subtraction overlayed onto the ground truth. White, indicates a True
Positive response. Black, a True Negative response. Red, a False Positive response.
Blue, a False Negative response.
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However this method causes an increase in the number of false positives, especially

for the foreground objects close to the camera. This is because the di�erence between

two consecutive frames also includes where the object was previously. So although

the speed of the cars helps in their detection with this technique, it also creates a

slight ghosting e�ect behind them.

In the mixture of Gaussians most of the foreground objects gets detected, apart from

those in the distance. This is because in the scene at that area there is a large amount

of tra�c. With a constant �ow of tra�c over a certain area the algorithm will not

be able to learn what the correct background in that area should be. The objects in

the foreground, close to the camera also contain some false positive responses. This

is mainly a combination of the object's shadow and re�ection, although it is worth

noting that the volume of false positives is less than when using frame di�erencing.

The third background subtraction is Selective Updating. Here we can see it performs

poorly. As with the mixture of Gaussians, the objects far in the distance are learned

into the background as there is not enough information of what the background in

that area actually should be. Additionally there is a lot of noise in this example.

This noise is actually ghosting, this method learned several foreground objects into

the background and because this method only updates the background model when

it believes that area contains background, the actual background gets classi�ed as

foreground.

For this video sequence taking into account these results either frame di�erencing

or mixture of Gaussians should be used. The choice comes down to what is actually

more important, detecting the cars far o� into the distance or getting a more accurate

outline of the cars closer to the camera.

The next example is shown in �gure 3.7. Here it shows that frame di�erencing, in con-

trast to the previous example, misses a lot of the foreground objects. This is because
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Frame Di�erencing Mixture of Gaussians Selective Updating

Figure 3.7: Results of Background Subtraction performed on a video of people.
Above: Original frame with its hand segmented ground truth. Below: the results
of each background subtraction overlayed onto the ground truth. White, indicates
a True Positive response. Black, a True Negative response. Red, a False Positive
response. Blue, a False Negative response. Here it can be clearly shown that Frame
Di�erencing performed poorly, while Mixture of Gaussians and Selective Updating
performing somewhat on par.
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this scene is a lot slower than the previous tra�c one. The change in between each

consecutive frame is much less, therefore the di�erence between them is low. Only the

edges di�er which makes the foreground objects appear only as outlines. Although

with the slower pace of this scene compared to the tra�c scene, the percentage of

false positives is much lower as ghosting is minimized. However this does not make

up for the large loss in the interior of the foreground objects.

Mixture of Gaussians performs better. This shows that the algorithm learned the

background of the scene quite well. There are several holes indicating that the al-

gorithm, in some instances, does not see much of a di�erence between certain parts

of the foreground object with the background. Similarly with the tra�c scene the

objects far in the distance are not correctly classi�ed.

Selective updating has a similar result to the mixture of Gaussians, but with slightly

extra noise. As this scene is much less crowded than the tra�c scene there is a much

smaller chance of ghosting. Additionally the initial starting conditions in this is a best

case scenarios for a selective updating method. That is, in the initial learning phase

the overall tra�c was virtually non-existent, giving this method an unobstructed

background to use.

The �nal example that will be discussed in detail is shown in �gure 3.8. Here once

again the slow moving people cause frame di�erencing to miss a large proportion of

the foreground objects. The greatest di�erence between this example and the previ-

ous can be seen in the mixture of Gaussians and the selective updating method. In

both, the re�ections of the foreground objects o� the �oor are detected. So although

frame di�erencing had a high false negative count, the other two have a high false

positive count. In most cases however the actual full shape of the foreground object

is more desirable than one that might include shadows or re�ections.
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Frame Di�erencing Mixture of Gaussians Selective Updating

Figure 3.8: Results of Background Subtraction performed on a video of people. This
scene shows three distinct persons in the foreground. Above: Original frame with
its hand segmented ground truth. Below: the results of each background subtraction
overlayed onto the ground truth. White, indicates a True Positive response. Black,
a True Negative response. Red, a False Positive response. Blue, a False Negative
response.
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A proper comparison between the mixture of Gaussians and selective updating in

this type of video sequence can be made. Previously there was not much di�erence,

but here it can be clearly seen that selective updating has a lot more false positive

responses. This shows that this method is sensitive to noise and camera artifacts.

In mixture of Gaussians these camera artifacts and noise can get learned into the

background model at their appropriate areas. However in selective updating once it

detects noise it marks it as foreground and does not learn it into the background.

Therefore over time the amount of noise will increase. We can conclude that for short

periods selective updating performs well.

It can be clearly seen that mixture of Gaussians is better suited to these types of

scenes. Frame di�erencing performs slightly better in fast scenes, like in tra�c, but

that is only because it can detect the vehicles in the far distance. If the requirement

is that these vehicles are too small to extract any valuable data from, then there

might be no point in using it. However if the requirement is that of a need to use a

more accurate shape, then mixture of Gaussians is better. In slower moving scenes,

it is clearly obvious that frame di�erencing should not be used. Selective updating

is somewhat on par with mixture of Guassians if the initial starting conditions are

suited for a best case scenario - that it is virtually empty at the start. Also over

time the amount of noise increases when using a selective update method of back-

ground subtraction. Combining this analysis with the overall accuracy in table 3.1 a

conclusion can be made in which background subtraction is best suited to our context.

3.8 Conclusions

Frame di�erencing, although fast and simple to implement, did not yield any type of

results that could be used e�ciently. The use of dynamic background methods would

be too computationally intensive to be useful in real-time situations. The single

Gaussian performed relatively well, considering its low computational cost. However,
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with just a slight increase in the computational cost, one could use the mixture of

Gaussians, which has been shown to yield a higher accuracy. It was therefore decided

that the use of the mixture of Gaussians was the best choice for the rest of this thesis.
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Chapter 4

Scene Analysis

Scene analysis is the extraction of information from a particular scene for use by a

person or for input into another program. In this chapter, two methods of scene

analysis are studied. The �rst is qualitative analysis, which will extract information

from a scene. The information extracted will be used by a human operator; that

person can glance at the result and obtain an understanding of the entire scene. The

second is a structural analysis, which will extract information from indoor surveillance

footage. The primary purpose of the information extracted here is that it be used as

a feed to a computer system for scene understanding.

4.1 Qualitative Analysis

4.1.1 Introduction

Automated road tra�c analysis is the cornerstone for any modern transport system.

It allows us to monitor the activities of di�erent roads. Describing a scene in words

that the average person will be able to understand is more complex than just assess-

ing the values of a few parameters. A computer system, for example, could identify

that there are a hundred cars on a road at any given time. This information may

not, however, be su�cient, as more information will often be needed to assess what is

happening on the road. However, giving a qualitative description, such as: �There is

Heavy Tra�c�, could be enough information for a person to identify this phenomenon.
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Many researchers are concentrating on applying a qualitative analysis of video scenes

in order to give a more meaningful description. In a tra�c scene, for example, a

qualitative system would give an analysis, much like a tra�c expert would give when

viewing that scene.

There are several di�erent approaches to qualitative analysis. The most common,

and one of the easiest, is to map quantitative values to qualitative descriptions. For

example, when the number of cars on a road is less than one hundred, one interprets

that as `low tra�c'. Anything higher than that is interpreted as `high tra�c'. This

system can work in many cases, but a problem becomes apparent when values on the

borderline are reached. In connection to the above example, why would one consider

ninety-nine cars as low tra�c but not one hundred cars? Another approach called

rule-based methods, tries to mitigate this problem. Lists of IF-THEN statements or

�nite state machines are used in order to incorporate several di�erent values so as to

obtain a broader understanding of a single scene. Again using the above example,

one hundred cars on any given road could be considered to be low tra�c if their

movement is free �owing, while it could also be considered as heavy tra�c if there

is signi�cant congestion. Stochastic methods are also used in qualitative analysis; by

assigning and evaluating probabilities, it is possible to give a reasonable prediction

of the current outcome as based on these probabilities. This method is best used

when large volumes of data can be obtained and evaluated, as this helps to build

up the statistical variations. After examining the advantages and disadvantages of

each approach, a rule-based approach was used to determine the tra�c status of a

particular scene.

4.1.2 Rule-Based Analysis of a Tra�c Scene

Fathy and Siyal [6, 27] both show that the identi�cation of those areas in the tra�c

scene that contain vehicles is essential to the analysis of tra�c. The motion of the

vehicles is then evaluated; in other words, one veri�es whether or not the vehicles



51

Figure 4.1: Same vehicle highlighted 23 frames apart

are �owing freely or are remaining relatively stationary. This assessment can change

the status of the tra�c, no matter how many cars there are in the scene. The

latter process compares the vehicles detected in the present frame to those that were

detected earlier. Then rules are applied to the information gathered so as to determine

the status of the tra�c.

4.1.2.1 Detecting Vehicles

To understand a tra�c scene, the existence of vehicles needs to be determined in the

areas that require analysis. However, certain problems must be overcome in order to

accurately detect vehicles. Two of the problems encountered in video scene analysis

are the scale invariant features of the vehicles and the variance in lighting conditions.

Scale Invariant Features: The problem with extracting features from moving

objects is that the further away the object moves, the more distorted its features

become. Tra�c footage from the N1 highway in South Africa is taken at a low angle

and away to the side of the highway. Therefore, as the objects move further away

from the camera, their perspective changes and their features cannot be accurately

mapped. For example, the same truck is highlighted 23 frames apart in �gure 4.1.

To facilitate the use of features, such as the size and volume of the objects, objects
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Figure 4.2: The scene windowed and split into areas of interest, highlighted in blue
and green. Notice how the windows decrease in size in both the vertical and horizontal
direction as they represent objects further away from the camera's position.

closer to the camera must have a smaller weight relative to the entire scene than do

those further away from the camera. One common method is to window the scene

in such a way that all the windows have the same weight, but the size of a window

decreases the further away the camera is from the scene.

The tra�c scene is �rst windowed, with the windows' sizes decreasing linearly, both

vertically and horizontally. This is because of the camera's position is to the side

of the road rather than right above it. Finally, the scene is split into two areas of

interest so as to represent the two carriageways (see �gure 4.2).

Mitigation of the Dependency on Lighting Conditions: Due to the varying

conditions of the weather and the position of the sun, the inconsistent lighting of the

scene needs to be taken into account. In �gure 4.3, the same scene is displayed at

three di�erent times during the same day. The di�erences can be quite substantial,

from the low-contrast rainy conditions, to the sunny scene where the shadow of each

vehicle becomes quite dominant.
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Figure 4.3: Di�erences in lighting conditions in a tra�c scene (rainy, overcast, sunny).

As we are using the size and volume of objects to determine the existence of vehicles

and are also faced with the added constraint of varying lighting conditions, Fathy and

Siyal [6, 27] suggest the use of edge detection.

The information gathered from edge detection is dependent upon the edge detection

algorithm that is used. If the direction of the edges is not taken into account, one can

obtain all the relevant information needed when using the object's size and volume,

while minimising the problems caused by lighting conditions. In the case of a low-

contrast scene, the object's edges will still be detected if the edge detection algorithm

is robust enough. In the case of extreme shadows caused by bright sunny days, the

edges of the shadows are small as they contain relatively simple designs, while those

of the vehicles remain a collage of di�erent edges. The many edges of each vehicle

stand out against the few edges of the shadow.

The edge detection algorithm that is used in this instant is the external morphological

gradient, as it is independent of direction. The external morphological gradient is

calculated with the use of the mathematical morphological operators. The edges are

calculated as the di�erence between dilatation and the erosion of the image (see �gure

4.4). In other words, given an image I, and a structuring element B, the edges of I

based on B: EB(I) are calculated as follows:

EB(I) = (I ⊕B)− (I 	B) (4.1)
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(a) (b)

Figure 4.4: (a): Original image. (b): Edge detection by the external morphological
gradient.

Background modelling: In the resultant image that contains the edges, there are

still edges that should have little to no value in terms of determining the existence

of vehicles, that is to say, the edges of the background. In order to remove these

unwanted edges, the background of the scene is calculated and the edges are sub-

tracted from the original edge map. This leaves only the edges of the foreground

objects, which consist mainly of the actual vehicles in the scene. The calculation of

the background is done by a mixture of Gaussians (section 3.4). Figure 4.5 shows

what appears to be an empty scene, but is in fact the background model of the scene.

4.1.2.2 Detecting Movement

After detecting the existence of the vehicles, their actual motion is easily calculated.

This is achieved by applying the same process of detecting vehicles as was previously

ascribed to frames that have already passed. Finding the di�erence between the

detected vehicles of the current frame and the detected vehicles of a previous frame

will show areas with motion. This simple approach is useful not only because of its

low computational cost but also because it does not require one to know whether or

not any given vehicle is in motion, just whether or not the area itself contains motion.
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Figure 4.5: The background of the tra�c scene is calculated using a mixture of
Gaussians. The edges calculated on this image are then removed from the original
edge map, leaving only the vehicles.

4.1.2.3 Describing the Scene

Once both the existence of vehicles and their motion are determined, an actual de-

scription of the scene can take place. To determine the status of the tra�c scene

as a whole, each separate window must �rst be evaluated. The histograms of both

the edge (from the calculation of the existence of vehicles) and the di�erence (from

the calculation of motion) maps of each window are evaluated. Accumulating the

pixels that are above a certain threshold brightness in both the edge and di�erence

histogram, and accumulating it over the entire window's area, will give a percentage

that shows whether or not the window contains a vehicle and whether or not there is

motion in that window. A set of rules is then created whereby these results are taken

into account in order to determine the status of the tra�c. The total percentage of

windows that contain vehicles is calculated in order to determine if the tra�c scene

contains many cars. The motion in each window is used to determine if there is con-

gestion in that particular part of the tra�c scene. Combining the two will yield the

tra�c status.
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4.1.3 Results, Discussions and Future Work

The results of this qualitative system are shown in �gure 4.6. The tra�c is measured

in three contextual and six graphical descriptions, which are calculated automatically

by the system. Areas that contain congestion are also highlighted in the tra�c scene.

The three contextual de�nitions are as follows:

� Low: when few vehicles are detected. This is the case when a certain percent-

age of those windows that contain a high-edge response fall below a certain

threshold.

� Normal: when many vehicles are detected. This is the case when a certain

percentage of windows that contain a high-edge response fall above a certain

threshold.

� Heavy: when many vehicles are detected and they are mostly congested. This

occurs when a certain percentage of the windows that contain a high-edge re-

sponse reach above a certain threshold and a large percentage of those windows

also have a low-motion count.

Formally the tra�c status at time t, St, is calculated as:

St =


Low if

∑
(E(wi)) < T

Normal if
∑

(E(wi)) > T

Heavy if
∑

(E(wi)) > T and
∑

(M(wi)) > Q

(4.2)

where E(wi) =

1 if window wicontains a high number of edges

0 otherwise

(4.3)

and whereM(wi) =

1 if window wihas a low motion count

0 otherwise

(4.4)

and T and Q are the thresholds chosen as parameters.

This method that was used does not depend upon calculating the physical number
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Figure 4.6: Two frames displaying the qualitative results for two scenes. The con-
textual description of the tra�c status as well as a visual representation is shown
in the image. Areas of congestion are highlighted on the actual frames. The scene
on the left maintains a low tra�c status on both carriageways. It also contains no
areas of congestion. The scene on the right maintains a heavy tra�c status on the
far carriageway and a normal tra�c status on the closer carriageway. Several areas of
congestion are highlighted, especially in the far carriageway. (See Figure A.2 in the
Appendix for additional results.)

of vehicles in the scene, but rather it relies on a calculation of the total number of

windows that contain a vehicle over those that do not. This process somewhat mimics

a human understanding of a tra�c scene. Our eyes are able to glance at a particular

scene and, without having to count the vehicles, are able to determine whether or not

there are many vehicles.

This method also does not require knowledge of the trajectory of each and every

vehicle in a scene. If many windows contain low motion in conjunction with detected

vehicles, then the tra�c scene will be considered as heavily congested. Once again,

this mimics a human's comprehension of a tra�c scene. We do not need to know

where each and every vehicle is moving to, as a general glimpse of the scene is suf-

�cient for us to notice whether or not the tra�c is free �owing and this gives us an

understanding of the scene.



58

Table 4.1: Qualitative Analysis Confusion Matrix

Low Positive Negative

True 31 25
False 3 1

Normal Positive Negative

True 8 44
False 2 6

Heavy Positive Negative

True 13 43
False 3 1

Table 4.2: Qualitative Analysis Sensitivity and Speci�city

Low Normal Heavy

Sensitivity 97% 57% 93%
Speci�city 89% 96% 93%

Table 4.1 displays the results of the qualitative analysis. Di�erent videos showing

di�erent weather and lighting conditions were taken into account. Of those videos

sixty random timestamps were chosen, half on the far carriageway and half on the

close. By viewing several frames before and after a ground truth of those timestamps

was created. The ground truth was done by a human describing and writing down

what he believed the tra�c density was in each of those scenarios. These results

were then compared to the results obtained by the qualitative analysis program. A

binary classi�cation was given for each of the three possible stages of tra�c densities

(low, normal and heavy). From this the true positive and negative (where the human

and the computer agreed) and the false positive and negative (where the human and

computer disagreed) were counted.

Table 4.2 displays the calculated sensitivity and speci�city of the results displayed

in table 4.1 for each classi�cation. The results show a high classi�cation for low and
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heavy tra�c, being able to both identify which sets of tra�c is low or high and which

sets of tra�c weren't. However it showed a relative low sensitivity in classifying nor-

mal tra�c, but remained high with its speci�city. This shows that the human ground

truth and the computer results disagreed which sets of tra�c contained a normal

�ow of tra�c, but was able to mostly agree on which sets of tra�c weren't normal

�ow. This shows one of the drawbacks of a qualitative system. Identifying what is a

normal �ow of tra�c is very subjective between di�erent people, so this can be ex-

pected as well between a human marked ground truth and a computer calculated one.

Figure 4.7 shows a few selected examples of the results obtained by the qualitative

analysis program and their respective ground truth.

In Figure 4.7(a) the ground truth and qualitative results are the same showing a true

positive response for normal tra�c and low tra�c on the far and close carriageways

respectively.

Figure 4.7(b) shows a true positive response for low tra�c on the close carriageway.

However it shows the algorithm obtaining a false negative response for normal tra�c

on the far carriageway. This is where the human observer described the tra�c status

as normal, while the program described it as heavy. In the minimal cases where there

is very heavy tra�c in a scene, which is still �owing quite well, a human observer

might, correctly, regard that as normal tra�c. However the vast number of complex

objects with their many edges might cause the program to detect more congestion

than there actually is. This can be because the program might confuse the edges in

one area from two di�erent objects as the same object, thereby incorrectly classifying

those areas as congestion thereby downgrading the tra�c status from normal to heavy.

Figure 4.7(c) shows the algorithm working in bad weather and lighting conditions.

The program mitigates the problem of bad visuals from bad weather by it's edge

detection algorithm. The external morphological gradient is quite robust for edge de-
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(a) Ground Truth Far: Normal (b) Ground Truth Far: Normal
Ground Truth Close: Low Ground Truth Close: Low

(c) Ground Truth Far: Low (d) Ground Truth Far: Heavy
Ground Truth Close: Low Ground Truth Close: Low

(e) Ground Truth Far: Heavy (f) Ground Truth Far: Low
Ground Truth Close: Normal Ground Truth Close: Normal

Figure 4.7: Selected Results: These are selected results showing the comparison be-
tween the computer output (shown in the �gure), and human analysed ground truth
for each frame (underneath the �gure) for each carriageway.
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tection. It is sometimes too sensitive for detecting edges, however combining it with

a background subtraction technique helps in that regard. This gives this program the

robustness it needs to overcome bad visuals without it detecting too many edges.

Figure 4.7(d) once again shows that the program and the ground truth agreeing on

the tra�c status. A true positive response for heavy tra�c was detected in the far

carriageway and a true positive response for low tra�c in the close carriageway.

Figure 4.7(e) shows the algorithm working even when large shadows appear in the

scene. The algorithm is robust when it comes to shadows as it uses volume of the

edges of foreground regions instead of the volume of the entire object. A shadow

is not a complex object so the amount of edges it produces from an edge detection

algorithm is minimal compared to the number of edges in a complex object like a car.

Figure 4.7(f) shows a true positive response for low tra�c on the far carriageway.

However it shows the algorithm obtaining a false positive response for low tra�c

on the close carriageway. This could be due the human understanding of weather

conditions and not the program. The program is designed to mitigate the e�ects of

weather graphically. However the understanding of weather e�ects on tra�c is not

present. A human might see the same number of cars traveling at the same speed

on two di�erent scenes, one being bad weather the other good and give a di�erent

description of the tra�c status of both.

There is room for this qualitative analysis to be improved upon in the future. For

instance, one small improvement would be to make it work in a more generic system,

such as automatically determining optimal window size and location, without needing

to manually calibrate each camera, and automatically identify di�erent regions of

interest. A greater automatic understanding of the scene would be an even bigger

improvement; for example, �guring out a way to make the analysis identify the causes

of the congestion that was detected and highlight it in the tra�c scenes. This would
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Figure 4.8: Example of two people that need to be separated vertically. The ideal
separation boundary is highlighted.

allow for a better emergency response or a better performance in tra�c simulations.

4.2 Segmentation of People for Video Surveillance

Occlusion is a major problem in object tracking. This is because very frequently the

objects that are needed to be tracked are not isolated. In the case of people tracking,

this could be because a group of people are walking together and the system is unable

to distinguish them individually. What is needed to accurately track each person is

a way of segmenting them. Many di�erent techniques have been developed, such as

the one by Elgammal [4], however Elgammal's work requires that the people enter

the scene separately before they form a group. This is because his method calculates

information prior to the occlusion in order to determine each person's characteristics.

As this cannot always be the case, a method that does not have to rely on prior

information would be a great advantage to occlusion handling.

A novel method for segmenting people in a crowd scene is proposed in this section.

This method reduces the number of errors in tracking (see �gure 4.8). It does not

require any prior information about the objects, such as their features, and it thus

decreases the number of possible errors that exist in those techniques that require

initialisations, such as that in Elgammal's work.
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4.2.1 Component Isolation

In order to analyse and detect how many people need to be separated and where to

separate them, each connected region's shape is considered. All the connected regions

are extracted by �rst running a background subtraction on the video, then performing

connected component detection on the foreground mask.

With the use of the mixture of Gaussians (see section 3.4) and the application of

dilations and erosions, the foreground region is extracted with several holes removed.

(Experiments showed that a `double closing' removed most of the holes whilst still

maintaining the relative shape of each object). In order to isolate each component,

a connected component algorithm is applied and all the components that are smaller

than a pre-set threshold are removed. This is done by taking the foreground region

that was extracted by the background subtraction and then �nding separate groups

of these regions. Each group is called a component and usually represents a single

object in an image.

However, since more than one person can be moving in the same area, these com-

ponents often represent one or more objects. One needs to locate those components

that represent multiple objects and separate them into single objects.

4.2.2 Shape Analysis

To perform a vertical separation, the horizontal shape of each component needs to be

considered. This is done by projecting the maximum height of each vertical column

onto a histogram (see 4.9).

In other words, we must �rst �nd the bounding box [xb, yb]× [xe, ye] (see �gure 4.10),

around the connected component B to be split. Then let F be the binary foreground

mask obtained from the background subtraction. We will then have:
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Figure 4.9: Example of converting an image to a horizontal height projection his-
togram. Left: original image. Middle: detection of signi�cant blob. Right: horizontal
height projection histogram.

B = {(x, y) ∈ [xb, yb]× [xe, ye], F (x, y) = 1} (4.5)

The horizontal height projection histogram h(y) (see �gure 4.10) is thus de�ned as

follows:

h(y) = xe − xmin(y) + 1 for y ∈ [yb, ye] (4.6)

where

xmin(y) = min
x∈[xb,xe]

{x, F (x, y) = 1} (4.7)

As we are separating people, the distinct shape of a person can be easily described as

a unimodal horizontal height projection histogram around each mode. This is true

for the usual case of when a person's head appears above their shoulders. Therefore,

when analysing the horizontal height projection histogram of any component, it can

be concluded that the number of people within this component is at least the number

of modes detected in the histogram. It is clearly shown in �gure 4.9 that there are

two modes in the histogram, and therefore two people.

In order to minimise the errors that could occur in the horizontal height projection

histogram h(y), a smoothing is performed on h(y)by adaptively calculating the stan-

dard deviation of the Gaussian and applying the Gaussian convolution on h(y) as
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Figure 4.10: Graph describing the formulation of the horizontal height projection
histogram [2].

described in [18].

H(y) =

∫ ∞
−∞

h(µ)
1

σ
√

2π
exp[
−(y − µ)2

2σ2
]dµ (4.8)

Then the �rst derivative of the Gaussian convolution with respect to h(y):

H ′(y) =

∫ ∞
−∞

h(µ)
−(y − µ)

σ3
√

2π
exp[
−(y − µ)2

2σ2
]dµ (4.9)

The standard deviation σ can be calculated using the following algorithm:

1. Initialize σ0 = 1.

2. Count the number of zero crossings of H ′(y) at σ = σi where i = {0, 1, ...}.

3. IF it is larger than the number of zero crossings of σi−1 where i = {1, 2, ...}, or

it is less than or equal to 1, THEN calculate H(y) with σ = σi.

4. ELSE calculate σi+1 =
√
di+1 where d = arg max (distance of all pairs of

neighbouring peaks).

Although the Gaussian smoothing does reduce errors when calculating the horizon-

tal height projection histogram, a median �lter is applied to the Gaussian smoothed
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Figure 4.11: Separation by the simple method on two selected frames.

histogram to minimise them further. This removes any small changes in the gradient

that might otherwise indicate a trough in the histogram.

Thereafter we count the number of times the gradient of the histogram crosses the

zero mark. This number indicates the number of modes within the histogram and

therefore the number of people into which the component should be split.

4.2.3 Mode Separation

Once the number of modes in the horizontal height projection histogram is calculated,

the separation between the modes must be found in order to separate the people that

the histogram represents. Two methods are described below.

4.2.3.1 Simple Method:

One method of separating the histogram into unimodal segments is to separate it

whenever the gradient of the histogram crosses the zero mark. In �gure 4.11 below

this method has been used to split the component into separate unimodal segments

for two di�erent frames.

4.2.3.2 Otsu's Method:

A common method for separating a multi-modal histogram into separate unimodal

parts is Otsu's method [23]. Otsu's method calculates the optimal thresholds {t1, t2, ..., tM},
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where M is the number of modes minus one, by calculating the maximum between-

class variance σ2
BCV .

{t∗1, t∗2, ..., t∗M} = arg max
(t1,t2,...,tM )

{σ2
BCV (t1, t2, ..., tM)} (4.10)

where

σ2
BCV (t1, t2, ..., tM) =

M∑
i−1

wi(µi − µT ) (4.11)

and

wi =

ti∑
k=ti−1

f(k)

N
(4.12)

and

µ =

ti∑
k=ti−1

k(f(k)
N

)

wi
(4.13)

where f(x) is the histogram and

N =
L∑
i=1

f(1) (4.14)

and L is the length of the histogram.

The original version of this method can become computationally expensive for a large

M , however a faster version of Otsu's was developed by Liao et al. [17].

In �gure 4.12 Otsu's method has been used to split the component into unimodal

segments for two di�erent frames. Note how the simple method and Otsu's method

give the same result in the �rst frame, as shown in �gures 4.11 and 4.12, but that the

results are quite di�erent in the second selected frame.
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Figure 4.12: Separation by using Otsu's method on two selected frames.

4.2.4 Energy Based Segmentation

The separation based on the horizontal height projection histogram of a component

into di�erent objects only depends upon the �rst pixel. This is hardly accurate, es-

pecially as you get further away from the initial pixel. A method is therefore needed

for analysing each pixel below the initial pixel in order to separate the component

more accurately.

The method developed by Avidan and Shamir [1] reduces the horizontal size of an

image by removing a vertical seam, which corresponds to the least energy, thereby

not greatly reducing the overall quality of the image. Avidan and Shamir de�ne a

vertical seam as a set of 8-connected pixels from the top of the image to the bottom,

with only one pixel in each row. (See �gure 4.13).

What we want in the present study is to �nd a vertical seam that corresponds to the

highest energy, which is to say we want to identify the pixels of an image that exhibit

large changes in their neighbourhood (this is the converse of Avidan and Shamir's

method). One method for computing the maximum deviation between two pixels is

to calculate the edges of the image and use those edges in the energy calculation.

There are many edge detection algorithms, but we will be comparing edges calcu-

lated from both the Sobel edge detection (only vertical separation) and the external

morphological gradient. The latter is calculated as the di�erence between the dilation

and the erosion of the image. The energy E(i, j) at pixel (i, j) is the pixel intensity
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Figure 4.13: A simple example of what a vertical seam looks like on a 9x9 sized image.
Note that there is one and only one highlighted pixel in each row. Also note that
each highlighted pixel touches the highlighted one both above and below itself.

of the edge detection of image I at (i, j).

The calculation of the vertical seam needs to iterate through each pixel from the

initial point to the end (the initial point is evaluated by separating the modes as seen

in section 4.2.3) which is done by looking at each pixel below it and �nding the one

that corresponds to the maximum energy. (See �gure 4.14.) This can be done using

either a greedy or a dynamic programming algorithm.

4.2.4.1 Greedy Algorithm:

The vertical seam from the initial point derived from the separation of the horizontal

height projection histogram to the bottom of the component can be calculated as

follows:

1. Initialise the current pixel to the �rst pixel found by way of the splitting method.

2. Find all pixels in the next row that are 8-connected to the current pixel and

calculate their energy.

3. Choose the pixel with the maximum energy and set it as the current pixel. Go
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Figure 4.14: Calculating the vertical seam is done by starting at the initial pixel
(highlighted red) and iterating through its bottom three neighbours to �nd the pixel
that corresponds to the maximum energy.

Figure 4.15: Results when using the greedy algorithm. Left: vertical seam calculated.
Right: overlaid over original frame.

to step 2 and repeat until the entire seam is calculated.

Figure 4.15 shows the result of applying the greedy algorithm on a selected frame.

The greedy algorithm is a simple and computationally e�cient way of calculating

the vertical seam, however it will not detect the seam with the maximum energy, as

choosing the local maximum at each iteration will not necessarily choose the global

maximum.
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4.2.4.2 Dynamic Programming Algorithm:

An alternative method for calculating the global maximum is one that uses dynamic

programming. However, in some cases the global maximum seam jumps from one

extreme to another between frames. This occurs when there are two seams with

similar energy. This causes the segmentation method to become less focused on the

initial starting point, which often results in it choosing regions on the outside of the

object, and this causes the segmentation line to move erratically over the entire object

between frames. To remove this e�ect a limiter is placed on horizontal movement.

This limiter is applied by multiplying the energy by the Gaussian at that point. The

energy used in the vertical seam is therefore calculated by:

E∗(i, j) = E(i, j)
1

σ
√

2π
exp[
−x2

2σ2
] (4.15)

where x is the horizontal distance from the initial point and σ the standard deviation

calculated as a fraction of the maximum height of the vertical seam (height from

initial point to the bottom of the object).

Thereafter to calculate the vertical seam M that has the global maximum energy

using dynamic programming, a method similar to the one used in [1] is applied using

the following formula:

M(i, j) = E∗(i, j) + max(M(i− 1, j − 1),M(i− 1, j),M(i− 1, j + 1)) (4.16)

where M(i, j) is the vertical seam starting from point (i, j) and moving down the

image.

Figure 4.16 shows the results of applying the dynamic programming algorithm on a

selected frame.
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Figure 4.16: Results when using the dynamic programming algorithm. Left: vertical
seam calculated. Right: overlaid over original frame.

4.2.5 Experimental Results and Discussions

Several experiments were conducted that included combinations that use methods for

histogram separation. These experiments uses either the Sobel edge detection or the

external morphological gradient for the energy calculation. They also used either the

greedy or the dynamic programming algorithm to evaluate the vertical seam. This

then gives eight di�erent combinations to compare against, they include:

1. Simple Separation + Morphological Edge + Greedy Algorithm

2. Simple Separation + Morphological Edge + Dynamic Algorithm

3. Simple Separation + Sobel Edge Detector + Greedy Algorithm

4. Simple Separation + Sobel Edge Detector + Dynamic Algorithm

5. Otsu Separation + Morphological Edge + Greedy Algorithm

6. Otsu Separation + Morphological Edge + Dynamic Algorithm

7. Otsu Separation + Sobel Edge Detector + Greedy Algorithm

8. Otsu Separation + Sobel Edge Detector + Dynamic Algorithm

The results can be found in table 4.3. Accuracy was tested on selected key frames,

and the percentage of pixels correctly segmented over the total number of pixels was

recorded. In order to interpret the accuracy of the segmentation, each result was
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Table 4.3: Table showing the results of the eight di�erent methods for splitting people
Exp. No: Mean Accuracy (%) (%) excl. Incorrect Modes Run Time (fps)

1 91.06 97.68 6.97
2 90.65 97.66 3.79
3 89.23 93.95 7.71
4 90.22 95.52 4.12
5 91.91 98.40 7.43
6 93.38 97.86 3.12
7 88.10 95.22 8.36
8 92.55 96.92 3.29

manually checked and any pixels belonging to another object were counted as incor-

rectly classi�ed pixels. Because mode counting is not always accurate when it comes

to evaluating the number of people in a group (usually because of background sub-

traction problems or because people are situated directly behind other people), there

are several cases in our experiments where the number of separation boundaries did

not equate to the number of people. Figure4.17b is an example of where the back-

ground subtraction creates large holes in the foreground objects, thereby distorting

the shape of the object. Figure 4.17c is an example of where a person is walking

directly behind another, thereby hiding her mode. This result will impact negatively

on the accuracy of the results, and another set of results is therefore shown that

only includes the accuracy when the number of modes was correctly calculated. The

following equations explain the accuracy calculations formally:

Accuracy =
Number of Pixels Corrctly Classi�ed

Total Number of Pixels
(4.17)

Mean Accuracy =
1

N

N∑
i=1

Accuracyi (4.18)

where Accuracyi is the accuracy of the ith frame, and N is the number of frames that

were tested.
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Table 4.3 shows that experiment 6 gave the highest accuracy all the frames, while

experiment 5 gave the highest accuracy when the modes were calculated correctly.

This shows that allowing a greater area for the vertical seam to exist when using the

dynamic programming can reduce the errors that are obtained when the number of

modes does not equate to the number of people. With experiment 6, 1,289 frames were

further analysed and categorised into the following four sections: the �rst, containing

658 frames, was considered to have been perfectly segmented (see �gure 4.17a); the

second, with 430 frames, was considered to have been correctly segmented, but not

having 100% accuracy (see �gure 4.17 f); the third, which contained 200 frames, was

incorrectly segmented(such as can be seen in �gure 4.17b) because two people were

segmented into three; and the fourth, which contained just one frame, had a false

segmentation, where a single person was incorrectly segmented as multiple people.

Figures 4.17 and 4.18 show the di�erence between the results of the best and worst

experiments (i.e. experiments 6 and7). Notice that experiment 7 used the greedy

algorithm to calculate the vertical seam so that when the number of modes is cal-

culated incorrectly the error is compounded (see �gure 4.18b for an example). This

is noticed when viewing the results that excluded the frames where the modes were

incorrectly calculated; note that the di�erence between the experiments that use the

greedy algorithm and the experiments that use dynamic programming do not vary as

much as when those frames with incorrectly calculated modes are included.

4.2.6 Conclusions and Future Work

A method for separating groups of people walking together has been presented. This

method could be used to facilitate the tracking of single people instead of entire

groups. In cases where a person's head is not well separated, the number of modes

was incorrectly detected, which reduced the accuracy of the overall result.
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(a) (b) (c)

(d) (e) (f)

Figure 4.17: Overall best experiment: selected frames showing results (segmentation
line highlighted in yellow) overlaid with original data using experiment no. 6 (best
results).

It can be seen that this method can vertically separate people in a video sequence.

There are many ways to further extend this method: for instance, alternate techniques

for mode detection and separations in the horizontal height projection histogram could

be found. It may also be possible to devise di�erent energy functions instead of using

the intensity of the edges calculated with Sobel edge detection or the external mor-

phological gradient. However, a more direct improvement to segmentation accuracy

would be achieved by detecting more accurately the number of people in a single

component.

A simple example of the type of future work that is possible can be seen in the

appendix (see �gure A.3).
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(a) (b) (c)

(d) (e) (f)

Figure 4.18: Overall worst experiment: selected frames showing results (segmentation
line highlighted in orange) overlaid with original data using experiment no. 7 (worst
results).
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Chapter 5

Conclusions

5.1 Conclusions

This thesis has provided a detailed description of the process of scene analysis in

relation to video surveillance. It �rst incorporated a test of several background sub-

traction techniques and compared their advantages and disadvantages with respect

to the di�erent types of scene analysis. It was found that the mixture of Gaussians

method of background subtraction was best suited to both qualitative and structural

analysis. This method re�ected the research that has gone into the mixture of Gaus-

sians in that it is usually pretty good in quite a few di�erent types of scene.

The thesis has also given a detailed description of how a qualitative analysis is per-

formed on a tra�c surveillance sequence. Many details are extracted from the scene

and, accounting for variance in scale and lighting conditions, the qualitative scene

analysis system compresses this information, by using several rules, into a description

of the tra�c scene automatically. The qualitative can tell any user the status of a

tra�c scene, whether it be low, medium or heavy. This is extremely useful as it can

�rst of all compress all the statistical data extracted by the system into a single mean-

ingful description and then secondly include a more detailed analysis for the sake of

the operator of the system, which it does by highlighting the areas that contain the

congestion. The description, easily understood by any driver, could be posted onto

the electronic notice boards that are constructed across many roads.
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This thesis has also shown how a structural scene analysis can be used to help solve

the problem of occlusion detection. In the domain of indoor surveillance of people,

the system can, without any unique knowledge of each person, separate a group of

people into single persons. This is done by taking the general understanding of a

shape of a person, combining it with the knowledge that at the exact point where

two people meet the energy at each pixel is high, and then creating a vertical seam

based on that information. This vertical seam is used as the boundary line between

the two di�erent people, thereby segmenting them. This segmentation can be used

in two ways. The �rst is by using it solely to solve the occlusion problem. In many

cases this will segment a group of people into their unique persons. The second way

this segmentation can be used is in conjunction with those existing methods that

solve the occlusion problem by extracting unique features and using them to compute

which object is which. As was mentioned, existing methods can fail when the objects

enter the scene already occluded, but the failure rate under such circumstances can

be lowered with the use of the technique described in this thesis.

5.2 Limitations

There are several limitations that must be considered when these techniques are used.

One major concern is the processing time. If these techniques are to be used in real

time and in conjunction with other techniques, then we require an understanding

that as a prototype these techniques might not adhere to this factor. Even with fast

and accurate background subtraction techniques, such as the mixture of Gaussians

method, combining them with other methods in both qualitative and structural anal-

ysis will increase the processing time. Without some time dedicated into optimising

and a physical hardware review these methods will often exceed the time limits for

real time analysis. As both the qualitative and structural analyses are prototypes, the

code was written in un-optimised and non-parallelised code. Therefore with further

research it may be possible to decrease the processing time of these algorithms.
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Actual camera setup is also a limitation in these systems. In the qualitative analysis

system the program is only designed for a camera that is placed at a low angle and

to the side of the road. For another camera setup on another stretch of road it will

require input into the actual program and an understanding of how the algorithm

works. In the structural analysis the position of the camera must be at a downward

angle and it must also face onto the section of road where you require surveillance.

5.3 Future Work

There are many more background subtraction techniques that were not tested as well

as some new ones that are currently being developed. The use of the mixture of

Gaussians method might not be the optimal method for these systems in the future.

Methods that can increase the overall performance or reduce errors in the system, such

as the elimination of holes for use in the structural analysis, would greatly improve

results. With the elimination or reduction in the number holes in the foreground

objects, an increase in accuracy for the structural analysis is almost guaranteed.

In terms of qualitative analysis, future work could be directed towards an automatic

setup in order to facilitate the introduction of new cameras on di�erent stretches of

road. This automatic setup would remove the need for a person who is familiar with

the integral algorithms used in the system whenever a new camera is installed. This

automatic feature could include identifying each carriageway on a road, or even cal-

culating the vanishing point from the camera's perspective in order to automatically

size the windows accordingly.

Another area that could use further development is the understanding of the scene.

Areas that are already highlighted as being congested can be further analysed and

an understanding could be generated. This would help the average driver, as he/she

would be able to read on electronic notice boards the reason for the road's congestion.



80

This development would also help the safety o�cer monitoring the system to locate

actual hazards or accidents and dispatch emergency services accordingly.

Further work in structural analysis could take place in terms of either improving

the system itself or incorporating it into other systems. Direct improvement to this

system could be achieved by counting the number of modes more accurately and by

recognising when the number is in fact incorrect. At present, the system can only

calculate the lower bound of how many people could be in the group. The number

usually does not exceed the lower bound by much, unless there is a heavily dense

crowd. But by looking at table 4.3 and by comparing the accuracy between when the

whole sample is used and the sample when the incorrect modes are excluded one can

see that by solving this problem the accuracy is increased.
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Appendix A

Additional Analysis

A.1 Background Subtraction

Figure A.1 shows additional examples of the background subtraction techniques de-

scribed in Chapter 3.

A.2 Qualitative Scene Analysis

Figure A.2 provides some additional examples from the results of the qualitative

analysis that were shown in Chapter 4 Section 4.1

A.3 Structural Scene Analysis

In �gure A.3 is an example of a simple way to use the technique discussed in Chapter

4, section 4.2 as an extension for use in tracking applications. As is discussed in

section 4.2.6, the technique can be used to further existing methods.
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Figure A.1: Additional selective updating examples, as described in section 3.2 with
the discussion of results in section 3.7.2. Left: Original Frames. Right: Foreground
Mask
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Figure A.2: Additional qualitative analysis examples. Results of the qualitative anal-
ysis are displayed in each image in the bottom left-hand corner. The results shown are
a textual as well as graphical description of the volume of tra�c generated automat-
ically by the system. In addition, certain areas may be highlighted, which indicates
the presence of congestion in that area.
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Figure A.3: Here is an example of the technique discussed in Chapter 4, section
4.2. On the left: a simple tracking algorithm is in place. And on each image's
corresponding right-hand side one can see the results of same tracking algorithm with
just the structural analysis technique in place. Notice how the objects are uniquely
tracked on the right-hand side when compared with the left-hand side.
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