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Abstract

The present research is based on the study of the phase strncture of lattice models
incerporating selfinteracting scalars and gauge background fields otherwise known as
induced gauge models. Emphasis is placed on the effect the choice of the integration
measure over the radial modes of the scalar fields have on the phase structure of these
models. Both numerical simulations and analytical results based on the mean field

appreximations are presented.

In Chapter 1 an introduction to quantum field theory is given leading to the for-

mulation of Euclidean quantum field theory.

In Chapter 2 global and ltocal gauge invariance together with the mechanism of

spontaneous symmetry breaking are discussed.

In Chapter 3 the formulation of quantum field theory on the lattice is introduced.
The lattice regularization entails discretizing space and time and presents an elegant
approach to studying certain phenomena of the continuuin theory which are beyond

the reach of standard perturbative analysis.

In Chapter 4 the Monte Carlo methods for evaluating the Euclidean Feynman path

integral as applied to lattice gauge theory are discussed.

In Chapter 5 numerical studies of some lattice gauge models are presented. Both

pure lattice gauge models and gauge-Higgs models are examined.

In Chapter 6 the Kazakov-Migdal model which presents an interesting approach to
inducing QCD is discussed.

In Chapter 7 the mixed fundamental-adjoint induced model is introduced. This
model succeeds in breaking the local Zn symmetry of the Kazakov-Migdal model by
adding to it scalar fields in the fundamental representation of the gauge greup. The

effect of the choice of the radial integration measure on the phase structure of a class
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of Abelian induced models is studied.
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Chapter 1

Quantum Field Theory

1.1 Lagrangian Classical Mechanics

According to the Lagrangian formulation of classical mechanics the dynamics of a

system with finite number of degrees of freedom is governed by the principle of least

action.

Consider a system of n particles. The positions of all n particles are specified
by a single point in an abstract 3n-dimensienal space known as the configuration
space: a particular configuration of the system corresponds to a point p(¢i,...,43,) in
configuration space where g; are called the (generalised) coordinates. To fully describe
the mechanical state of the system one needs to specify alongside the (generalised)
coordinates, the (generalised) velocities: v; = ¢ = ‘%. The 6n parameters, that
is, the 3n (generalised) coordinates and the 3n (generalised) velocities, specify the
mechanical state of the system. They can be considered as the coordinates of a point

il an abstract 6n-dimensional space known as the phase space of the system.

When the mechanical state of the system changes with time the point in the cor-

responding phase space, which describes the state of the system, will meve along a



continuous curve. Each two accessible points 4 and B in the phase space of a me-
chanical system can be connected by different continuous curves which correspond
to different paths or histories the system can follow in its evolution [rom state A to
state B. In classical mechanics it is postulated that, given all interactions affecting
a particular mechanical system, there is only one path it can follow between A and
B. This is called the classical trajectory and is found as the solution of the equations
of motion. The main problem of classical mechanics is to find this unique path in
phase space along which the state of the system evolves under given conditions. The
Lagrangian approach te solving this problem consists of defining a [unctional called
the action which is a map of all continuous curves in phase space onto the field of
(real)numbers. The central hypothesis of the Lagrangian formalism is the Hamilto-
nian or least action principle which states that the actual path in phase space which
describes the evolution of the state of the system is the one for which the mentioned
functional is a minimum. This reduces the main problem in classical mechanics to
a problem from variational calculus. From a first glance this may seem as an un-
bridgeable difference in the approach from the one followed hy Newton where the
same proklem was solved by means of differential equations. In fact this difference
is not as big as it seems because a variational problem usually leads to a system of

simultaneous differential equations known as the Luler-Lagrange equations.

The Lagrangian ot the system,
L= L{qi(t), ¢:(1)), (1.1)

depends on the coordinates ¢;(t) and velocities ¢;(t). The action functional S is
defined as the time integral over the Lagrangian:
i
S( [Qi(t)L tyty) = f L{gi, 4;) di. (12)
£
were [q,(t)] denotes a functional relation with S. This means that for a given path

parametcrized by q(¢) and for ¢, < ¢ < t; there corresponds a number § - the value



functional. When the action is so expressed it is convenient to write the Lagrangian

as the difference between the kinetic energy and potential energy of the system:

L(gi, ¢} =T - V. (1.3)

The minimum of the action corresponds to a stationary 'point’ for which the vari-

ation of the action is zero:
iz
§S =61 Liqft),q(t))dt=0. (1.4)
31
The minimum action or stationary path is obtained by using the calculus of variation.
Suppose the path is varied from §(¢) by é¢(t) where 8q(t) is arbitrary for ¢ # ¢; or ¢,.

The endpoints of §(¢) are assumed to be fixed:
6g(t1) = bq(t2) = 0. (1.5)
For () to be an extremum of S the condition is
6 = Sla(t) + 8g(t)) - Sla(t)] = 0 (1.6)
to first order in 8g(¢). Also, the variation in the Lagrangian is given as

6L = L(g+6q,4+6q)

§L 6L
b, +6q6 (1.7)

Therefore from the definition in Eq. (1.2),

§L
8§ = (q +5q6 ) dt
fg ta
= 6q dt+/ 6—Li6qdi‘
E déL
= 6—d£+5— - 5—~a’t
'/t: q& qé 5 Tat &q
d
— / oq b (—{S—L-)]dt (1.8)

ity 6q



were 6¢(t) vanishes at the cndpoints #; and t;. The function ¢(#) which extremises

the action is therefore a solution of the differential cquation,
= _ (2=, (1.9)

which is referred to as the Fuler-Lagrange equation.

If the generalised momentum p; of the system is written as
oL

= (1.10)

D:
then the Hamiltonian of the system can be given as
H(g¢i, ) = pidi — L{qi, ¢:)- (L.11)

This is obtained by the Legendré transformation and conventions for the Einstein
summation over repeated indices is understood. New by differentiating seperately

the two terms in the left hand side of Eq. (1.11) one obtains.

, . 8q; 6,
Apidi(p 9)) = didpi + 2 piddp + < pidas (1.12)
P q;
and
. 5L 8g; 6L 8q; 6L
dL(¢i 4i(ps9)) = t—dai + T———dpi + ——dq.. 1.13
(4 diles9) g b6p: 6q; 6qi 6q; (1.13)
Combining Eqs. (1.12) and (1.13) and collecting terms it can be shown that
. bq; 5L 8L  bq; L
dH = [¢; + =—2(p; — —)]dp; + [—— — 2L {— — p;)]dg; 1.14

Suhstituting p; from Eq. (1.10) in Eq. (1.14), the differential of the Hamiltonian has

the final form,

dH = ¢;dp; + p:dq;. (1.15)
Also,
6 H 6H
dH = —dp; + —dq, (1.18)
8p; 5125



by differentiating with respect to ¢; and p;. By combining Eqgs. {1.15) and (1.16) the
Hamilton’s form of the equations of motion is obtained:
oH 6H
3 and — = p;. 1.17
B ol 5 o (1.17)
' The above Hamilton’s equations can also, in fact more elegently, be derived via the

use of the principle of least action and variational calculus. This is done by first

rewritting Eq.(1.11) in the form.
Ligi.q;5) = pigilqi. pi) — Hgi, pi)- (1.18)
The action now becomes a functional of 2n independent functions. ¢(¢) and p(¢):

t2
5([gi: pi]s s t2) :/ (pidi — H(q:, p)) dt. (1.19)

131

Now considering the independent variations in ¢; and p, the change in the action

1s calculated as follows:

2

85 = 4 (pigi — H ‘Iupi)dt

t2 5
= f (@:pi + pig; 6q, / i op; + Jq,)df (1.20)
31
and by collecting terms it can be shown that
y 4, OL
55 = / (G - 5;; R (1.21)
t 5%‘
By demanding that the action be stationary, that is by setting 65 = 0, Eq. (1.17) is

obtained from Eq. (1.21). This shows the equivalence of Lagrange’s and Hamilton’s

equation.

1.2 Lagrangian Field Theory

Extending to field theory which describes a system with continuously distributed

degrees of freedom, the field at each point in space is regarded as an independent



generalised coordinate. The field, ¢; = ¢;i(z,t), for 2 = 1,2,...,N is a functien

defined for each point in space-time.

For a field theory the analogue of the configuration space is an infinitely dimensional
functional space. This is the fundamental difference between a discrete dimensional
system and a field theory. The Lagrangian, which for a system of n particles is a
{unction of time defined through the generalised coordinates and velocities, is replaced
in a field theorv by a Lagrangian density function. The Lagrangian density is a

function of the field ¢; and its spatial and temporal derivatives 0,¢; = g}; :

= C(éiaapéi)' (122)

In analogy with the Lagrangian formulation of classical mechanics in the previous
section, the action for a field is written as,
3
S(6dimom) = [ £(6n 008 d's, (1.23)
m
where d*z is the four dimensional measure in Euclidean space and, r; and 1, are the
boundaries of integration that covers the physically relevant 3-dimensional Euclidean

space. Now, for infinitesmal variation from ¢; to ¢; + d¢;, the variation in the action

is given by
oL
5N = _/ d"ﬂ:(aéltsqﬁz B3, &) 5(8,.9:))
oL oL L
3 i i d' ; 1.24
fr, (3@ a“a(apga,) Jédi "’/ 20u( (pq{,)ﬁé) (1.24)

by using the definition 6(8,¢;) = 8,6¢; and integrating by parts. The last term in

Eq. (1.24) can be converted to a surface integral

aL
}g dpy 0 1.25
4 Pp a(aqse) ( )
by using Gauss’s divergence theorem in four dimensions. Here p is the surface at the

boundary and dp; the surface element. Usually it is required that §¢; vanish on p.



So, by this requirement, the surface integral vanishes and the variation in the action

is given by
i aL oL
880 ] @ul et e P,
]; *oa %500

For ¢; to extremise the action the sufficient condition, as before, is §5 = 0. From this

(1.26)

the Euler-Lagrange equations of motion [or a field is obtained,

oL _, 9L

a6 "3(Bud) 5 (1.21)

The similarity with Newton’s technique of generating linear differential equations to
describe the motion of particles becomes evident in field theory when the Lagrangian
density is chosen to be of a quadratic form in the fields. This is so since a quadratic
Lagrangian gives rise to a quadratic action which in turn. under the Lagrangian
formalism. leads to a sct of linear partial differential equations. Lincar differential
equatiens are important in field theory since they have the valuable property of al-
lowing linear combinations of solutions to be solutions themselves(the superpositien
principle). This allows fer the solution of the equations of motion by means of the
Green function’s method. It is for this reason that the quadratic Lagrangian densities

are the most widely used cheice for field theory.

1.2.1 The Scalar Field

The simplist of all fields is the scalar field ¢(z) which describes particles with spin
zero. The 1nost general forui of a quadratic Lagrangian density that contains a single

real scalar field ¢(z) is given by
£ = 2{0,4(c)0"¢(2) — m?6* ()] (1.28)

where m i1s some constant with the dimensions of mass. Substituting this Lagrangian

density in Eq. (1.27). it can be shown that
oL . AL

e e T el == & t ’. N



This gives the Euler-Lagrange equation for a scalar field in the form
(0 -m?%)¢g=0 (1.30)

where O = —@,0* is the d’Alembert operator. Eq. (1.30) is the Klein-Gordon
equation. Solutions of this equation are given by a complete set of plane waves
¢(z) = ¢*(z) + ¢~ (2) where ¢*(z) = €?” and ¢~ (z) = e~**. The general solution
of the Klein-Gordon equation is therefore given by

N &p 1
" =] Gy

{a(p)e™™ + a'(p)e™} (1.31)

where the four-vector p satisfies p?> = m? and p, = vV p? + m2. a(p) and at(p) are
respectively the annihilation and creation operators of particles with momentum p

and rest-mass m.

For a complex scalar field the Lagrangian density is given by
1
£ = 510,8"()08(2) — m*"(2)4(z)] (1:32)

The solution of the Klein-Gordon equation for a complex scalar field is analogous to
Eq. (1.31) and contains operators a', a, 4" and 4. The a' and a create and annihilate

particles whereas the bt and b create and annihilate antiparticles.

1.3 From Minkowski to Euclidean Field Theory

1.3.1 Minkowski Field Theory

In the Minkowski description of quantum field theory a system of coordinates is
specified on a four-dimensional Minkowski manifold, M4. The Lorentz invariant

product of two vectors z* and y* is defined as

'y, =ToYo — T Y (1.33)



and the invariant interval as

ds® = dz*dz,,. (1.34)

Of specific interest in quantumn field theory is the state of lowest energy or the
ground state. This state is known as the vacuumn | > and it has a unique feature

in that it is ieft invariant under unitary transformation of the Poincaré group,
U |0 o= 2 > (1.35)
where the unitary representation of the Poincaré group is usually written as
0 =gl (1.36)

A consequence of this invariance is the formal translational property of the field
operator ¢(z):
Hlz) = ePE(0)e P (1.37)

The vacnuin state | ! > is essential in the fundamental concept of this theory since
it leads to the coustruction of the vacuum expectation values of the Minkowski fields
®,.(x,). The importance of the vacuum expectation valucs becomes evident when
taking into consideration the fact that they adinit analytic centinuation te irmaginary

tune , unlike the Minkowski ficlds themselves.

In the Garding-Wightman axiomization [73], vacunm expectation values are taken

of the products of field eperators at different space-time peints:
}'vn =< N J él("r’l)QZ(:ﬂ?) s Qﬂ.{mn) | Q> (138)

These vacuum expectation values defined in Minkewski space are known as the Wight-
man functions [75]. Thcir properties give a complete descriptien of the quantum field
theory under consideration. By far the most impertant property of W, is that it can
be used to reconstruct the state of the system as well as the field operators. This is

done by applving the Wightman reconstruction theorem. Since the vacuum state is



required to be translationally invariant by the uniqueness of the vacuum, W, can be

considered as just a function of the coordinate differences:
Wy = We(z1 — 22,29 — Z3,. .., Tne1 — Ty)- (1.39)
The idea behind Eq. (1.39) is given by the expression
W, =< 0] $(0)eP @220 (0). .. ePEn—n=1)g(0) | Q > (1.40)

which is obtained by substituting Eq. (1.37) in Eq. (1.38).

1.3.2 Euclidean Field Theory

Extending the Minkowski fields to incoorporate a complex four-vector:
T; — z; = Rezj +elmz; 7=1,2,...n—1, (1.41)
the coordinate differences are written as
Zj = Zipr = Tj — Tjgy — 1K;. (1.42)
The Wightman function can therefore be given by

Wn(Il-—icg,Ig'—Ia,...,In_l —':Eﬂ): lim UWn(Zl,.ZQ.,...,Zﬂ) (1.43)

Rt
where W, is the analytic continuation of W, to the complex space of points z*,
In the special case when z° — 2% = 22° and z; —» 2* = 2 for i = 1,2 and 3
the metric of the complex space is Euclidean. The points (23, 22,...,2,) belong to a
Euclidean space if each z; has purely imaginary temporal components and real spatial
components. They are parameterized such that z; = (1z4, z); with the real variables
(zj)u written as a four-dimensional Euclidean vector z;(z,z4);. Furthermore, they
possess an additional property whereby the coordinate difference z; — x; is non-zero
for all z # 7. As such, the points (z1,23,...,z,) are called non-coincident points and

are contained in a space-like region defined by

(z: — 2;)* <0, for all z and j (1.44)

10



called thc nen-coincident Fuclidean regien. [t can be shown that that W, is the
boundary value of the function W,, the latter being a function of only the differences

of the non-coincident peints z; — 22, ..., Zne1 — Zn-

The Wightman funclions in FEuclidean space-time can be written as
Bl Ty, ooy B ) S W2 T o) (1.45)

which is the restriction of the analytic function I, to a set of non-coincident Euclidean
peints. These are known as the Schwinger functions or the Fuclidean (ireen functions

and are given by the expectation value
Salz1. %9, . 2 Tr ) =< O | Orlzy ), Polaz)y. .. Bl ) 1 B > (1.46)

where ®;(2;) are the Fuclidian counterparts of the Minkowski fields. The Schwinger
functions and the Wightman functions are just different branches of the same ana-
lytical function. The properties of the S, are layed out in the Osterwalder-Schrader
axioms(73] and these properties are sufficient to reconstruct the Garding-Wightman
theory. Of particular importance is the property of analvticity which states that there
1s no discontinuity associated with the ordering of the complex variable z;. Associated

with this property is the total commutativity between the field operator:
[©:(z:), D;(z;)}x = 0, (1.47)

throughout the Euclidean space-time. Therefore 5, are the continuations of the time-

ordered vacuum expectation values
Salzr, 22, .0 20} =< | 'Ttpl(-?l.}q’icmi) o Pn(my,) ‘ 0> (1-48)

wherc the time-ordering operator 7 orders the ficld operators from left to right ac-

cording to descending time.

The physical significance of the above argument is that the Minkowski fields can be

analtytically continued to Fuclidean space-time and vise versa without affecting the

11



physics of the theory. This entails replacing the real Minkowski space with a complex
space and obtaining M, for real time and &4 for imaginary time. This technique 1s

called the Wick rotation.

The time-ordered vacuum expectation values given by Eq.(1.48) are however not
measurable quantities. In order to get any physical significance from them it is
pertinent to reorganize them in such a way that it is possible to extract relevant
information about the physical observables contained within them. This method of

reorganization of the Euclidean Green functions is called quantization.

1.4 Quantization: The Path Integral Approach

Quantization of field theories is based on the canonical quantization procedure and
the Feynman path integral(FPI) approach. In canonical quantizaiion the dynamical
variables which are the quantum fields ¢;(z) of the system are considered as operators
in Fock space. These operators satisfy certain commutation relations and together
with the Lagrangian density are used to construct the transition amplitude of the
quantum system as it evolves with time. This method is fairly successful in its
description of real processes. It does however have its limitations due to the fact that
canonical quantization is defined only in the context of perturbation theory. The
practical value of perturbation theoretical results is questionable when the expansion
parameter is not small. This leaves beyond the reach of the theory such important

aspects of quantum physics as for instance quark confinement in hadrons.

The Feynman path integral approach allows the transition amplitudes to be ex-
pressed as a weighted sum over all possible histories(paths) the system could follow
during its evolution between an initial and a final state. The ’sum’ involves an inte-
gration in the (infinitely dimensional)space of all field configurations [®]. It is still an

open question whether the measure of integration D[®] exists in this space. Feynman

12



has postulated that these weights are proportional to exp{—;S[®]} where S[®] is the

classical actien fer the field configuratien [®]:
7= / e w1 Do), (1.49)

For real values of the action S, the intergrand in the above integral is a rapidly
oscillating function since S can be much larger than h. As a result, for a very long
time, the Feynman path integral was cousidered just as a compact expression from
which one could derive the perturbation theory expansion. It was later realized that
it was possible to transform this integra! te one that is restricted to a Gaussian
type integral which is prevalent in statistical systems. This is dene by performing a
Wick rotation to Euclidean space-time which eliminates any complex characteristics
pessessed by the integral. Thus the Feynman path integral can be written as a

partition function:
_Sei?]

Z=| e 7% D9, (1.50)
which is an analytic continuation into Euclidean space-time and where Sg is the
FEuclidean action. The advantage of this approach is that it involves computations
of only ordinary functions rather than operators which makes analytic treatments
very much simplcr. This results in Z being interpreted as the partition function of a

classical statistical system in four-dimensions:
_ s
e, (1.51)
&

where the sum is over all configurations ¢ ef the ficlds. This allows the expectation
value of an observable O(®) to be written as a statistical average over all configura-

tions:

<@>=) @P)P(D), (1.52)

»

where P(®) is the prebability with which the configuration @ will eccur in the space

of all possible configurations.

13






where 6" /6J(xy)...6J(x,) are variational derivatives (or functionai derivatives).

It can be seen that when J(z) = 0, Eq.(1.59) reduces identically to Eq. (1.34). As
a result the Euclidean Green functions are given by the functional derivatives of the

generating functional Z[J] evaluated at J(z) = O:

b é

Q(xl, e .,.‘Z:n) I (5.](3:1) B 5,](13“) IJ:U Z[J] (16{])

It should he noted at this point that the path iutegrals defining the Green functions
are not well defined in tle continuum space-time. This is due to the fact that field
theory corresponds te an infinite number of degrees of freedom which does not allow
for a consistent definition of the integration measure over the ficld of configurations.
This problem is resolved by defining the path integral on a discretized space-time (a

lattice).

15



Chapter 2

Gauge Theory

The first gauge theory was formulated in 1864 by Maxwell. In this theory of (classical)
electrodynamics the subsequent freedom of choice of potentials to describe the same
electromagnetic field has layed the foundation for what is known as gauge invariance.
Gauge theories have since then evolved to play an important part in physics. In fact,
it is believed that all fundamental interactions are described by some form of gauge
theory. In quantum field theory, gauge transformations affect the phases of the fields

and as such, a gauge theory is defined as a quantum field theory which is invariant

under gauge transformations.

2.1 Global and Local Gauge Invariance

2.1.1 Abelian Gauge Theory

To illustrate the features of a gauge theory, consider the Lagrangian density of a single

complex scalar field ¢(z),

L{d(z), 0"¢(z)) = 8,¢"0"d + V(8. ¢"), (2.1)

16



where V(¢, ¢*) (the ‘potential’) is usually taken as

z
V(6,6") = m*(4¢7) + A(d¢") (2.2)

The parameters m and A are associated respectively with the mass and the seif-
interaction strength of the field. This Lagrangian is invariant under the transforma-
tion generated by the group U(1). Let g be an element of {/(1) : g = e** , where «
is an arbitrary real constant satisfying 0 < a < 2x. With each element of U(1) one

associates a phase transformation (gauge transformation):
¢ —_— él = elC\‘ I

i

¢: o ?6" - e—zcr (ﬂl*, (23)
This transformation leaves the Lagrangian unchanged:

Du(e™*" $°)0"(e'™ @) + m*(e™ ¢7)(e™ ¢) + A[(e™* ¢")(e ¢))
3,.9°0" + m*(¢¢") + A(8°6)". (2.4)

il

L(4',0%¢)

This gauge transformation is called globe! in the sense that the phase shift it producers
affects the field at all space-time points in the same way. This theory is said to exhibit

a global gauge invariance under the group U{1).

The question now arises whether it is possible to generalise these transformations
such that the gauge transformation at each point of space and time are different and
independent of each otber? This can be done, but at the price of adding a new field
to the theory. The gauge symmetry in this case is said to be local. that is, ¢ is a
function of space and time: « = a(z*). The local gauge transformations of the fields

under the group U(1) loek like

$(z*) —o(z#) =),

$°(z") — ¢ (2¥) = e gr (), (2.5)

17




The derivatives of the fields arc however not covariant under the local gauge trans-

formations and acquire an extra term:

04(z*) — [8,é(z*) =d.(e°") 4(z))
= et 9,4(2*) + [0, afz*)]e™) §(2#),
8" (z*) — B (z)] = dfe™) &7(z*))
= 76 §,67(a") = [10,0(z*)]e ) ¢ (). (2.6)

A consequence of the non-covariance of the operater 9, is the non-invariance of the
kinetic term d,¢"0"¢ and thus the Lagrangian. To make the theory locally gauge
invariant it is necessary to replace J*¢(z*) by a generalization that transforms in the
same manner as the fields. What is required is a gauge covariant derivative, D,,, that

replaces 9, and allows the derivatives of the fields to be invariant:
D g(z¥) — [Dné’(‘”#)]' =] D, (). (2.7)

This is achieved by introducing a new field A,(r*) into the Lagrangian which com-

pensates for the unwanted terms e***(# )19, a(c*)]¢(z*) and gives the form of the

covariant derivative as

D, =8, + Au(z"). (2.8)

To satisfy the above conditions, the new field A, (z*) must be a Lorentz-vector which

must also transform in a nen-trivial way under the gauge transfermation:
Au(z*) = AL (z*) = Au(z*) + SAu(z*). (2.9)

Now substituting Eq. (2.9) in Eq. (2.8), the gauge transtermation of the covariant
derivative of the field is
Dup— [D,8] = (8.4 Au+ 6A,)e%¢
= $.(e°¢) +e'%A8 +e(6A)0
= "%(dy¢) + e (10, a)d+ A e + €7(6AL) P
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= (O + Au) + 67 (20ua + 5A,)¢
= e“D,é+e1d,a+ §A,)0. (2.10)

So, fer D,é to be gauge invariant the requirement is that A, = —d,e(z*). Au(z*)
is called a gauge field and its complete transformation under the lecal gauge trauns-
formation is
Aulz*) = A (z*) = Au(2*) — 10,a(z"). (2.11)
To make this gauge field a dynamical variable it is necessary to add a terin to the
Lagrangian that involves the derivatives @,4, of the gauge fields. This term enters
the Lagrangian via Lhe tensor [}, which, in the case of [/(1) gauge symmetry, is
defined as
Fos = By — By (2.12)
F,. is the field strength tensor and is invariant under the local gauge transformations.
To include this into the Lagrangian. a scalar field must be preduced frem F},,. The
simplest such scalar in four space-time dimensions is F,, F** and it leads te a gauge

invariant Lagrangian density:
1
Lio(x*Y, A(z™)) = Dud™ Do+ Vg, ¢") — ZF“”F#U' (2.13)

This combined scalar-vector Lagrangian density defines the classical Maxwell’s theery

of scalar electrodynamics. The quantum analegue is scalar quantum electrodynamics.

2.1.2 Multicomponent Gauge Transformations

Gauge transformations are generalized by considering a set of n-component scalar
fields {¢1(z1), ¢2(z2), ..., Pn(zn)} together with a set of phase factors {e;, aay...,@n}
that are unique for different cemponents of the fields ¢;{z;). The Lagrangian density

for such a theory is

2
: . : ;g% AT’ *
Clg b obu) = L AQ06 + 00600+ Figiof). (214)
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It can be shown that this Lagrangian is invariant under the global gauge transforma-
tion

¢i(z) = ¢i(z) = () (2.15)

forz=1,2,...,n.

2.1.3 Non-Abelian Gauge Theory

A further generalization of the gauge transformation can be obtained by considering
groups of symmetry other than U/(1). The group U(1) belongs to the class of the
Abelian groups for which the group multiplication is commutative: for e** € U(1)

and e’ € U(1),

e Iﬁ

e = e

= et e (1)

Another, much larger and, as it turned out, physically even more important, is the
class of the non-Abelian groups for which the group multiplication is not commutative.

Let G be a non-Abelian Lie group. Consider now the complex scalar field as a column

{¢1\

=l g (2.16)

kol

in a n-dimensional complex vector space V. Let T be an operator in this space such

vector

that
(T4); = Z (T (2.17)

where (T);; are the matrix elements of T. Also, let the generalization of the phase
factor be a vector @ = (a1, q,...,a,) = ;. Further, let Ly for k = 1,2,...,n be

the generators of a representation of G in V. Then the group element governing the
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local gauge transformation is written as

N
ezp{1 D aely) = ezp{iL - a} (2.18)

k=1

and the transtormation of the fields specified by n parameters become
¢ — @ =exptL - a}¢. (2.19)

In the non-Abelian case the operators T, do not cornmute, that is, 737; # T;T%. The
generators L form an algebra, called the Lie algebra in which the multiplication of

two operaters is the commutator:
[Tks Tll'] == T'Cklmes (220)

where the constant Ch,, are real called structure constanis and characterize the al-
gebra. This algebra generates the factor ezp{z ¥ 1, axLi} which belengs to the

considered representation of the Lie group.

In order for the Lagrangian to be invariant under the gaugc transformation (Eq.(2.19))
it is required that all the masses my,mn,, ..., m, be cqual and all the self-interaction
strengths Ay, A2,..., A, be equal. This is so since the operation in Eq. (2.17) mixes
different components of @¢. The Lagrangian invariant under global transformations of

the form defined by Eq. (2.18} can therefore be written as
- Pa - O m2 * A = 2
L(¢ ¢") = 0up™ - O+ 58" ¢+ 2(¢79)" (2.21)
To extend this theory to a local gauge theory the phase parameters a needs te be

considered as dependent on space and time: a(z) = (a;(2),...,a(2)) = ax(z). By

denoting u(ax) = exp{2L - o(z)} the gauge transformation can be written as
¢ — ¢ = u(a)d. (2.22)

By analogy with Eq. (2.6) the derivatives d.¢ are not covariant and as a result a

covariant derivative, D, , has te he defined:

D¢ — (Do) = u(a)D, . (2.23)
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D, is defined as
D,=d,—L-A,

(2.24)

where the compensating fields Aﬁ = (AW, AD . AP are called the gauge fields

or the Yang-M:lls fields and transform as
& k k k
A, — A, = A, +6AL.
The derivatives of the ¢-fields transferm as,

Dyp — D,¢" = (04 —:L- AL)(u(a)d)
= wa)d,p + {du{a))¢ —wia)l - A,

and by Eq. (2.23) as

D,¢ — [Dup) = u(la)(@ —«L-A,)¢
= u(a)®,¢ —w(a)l - A9

Since Eq. (2.26) and Eq. (2.27) give the same transformation,
[Buula)p — 1L - Alu(a)p = —u(a)L- A,
which implies that
L ALu(a)d = u(a)l - A — [d,ula)).
Since this must he true for all ¢(x), it can be shown that

L-A =ula)L- A u(e)™! —ofd,u{a)|u{a) .

(2.25)

(2.26)

(2.27)

(2.28)

(2.30)

In order to define the infinitesmal transiormation 8 A, of the Young-Mills fields it is

necessary to see the effect of the an infinitesmal change a(z) <« 1,

exp{tL - a(z)} = 1 —:L - a(z).
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To first order in a(z) it can be shown that

LAY &= L-A#—zaJ-Aﬁ[LJ.Lk] —(L-8,a)
= L-A,+CiLliajA" —(L-8,a). (2.32)

Using the fact that the L, form a basis for the Lie algebra and they are linearly
independent, Eq. {2.32) gives the complete transformation of the Yang-Mills fields

under local gauge transformation:

AL = AL+ Cijres(z) AR — Buoi(). (2.33)

To make the ficlds A% dynamical in analogy with the Abelian case a new generalized
field tensor is defined which has a more complicated form the Eq. (2.12). This

generalized field strength tensor is given by
Foy = g AL —9,A +C',,AA“ w (2.34)
With this a complete locally gauge invariant Lagrangian can be defined which de-

scribes the interaction between the gauge fields A ﬁ and the scalar fields ¢:

Lig. A )= Do Do + ﬂrﬁ ¢+ (¢"¢') = EF;J"“" (2.35)

This is the Yang-Mills Lagrangian density for a scalar field theory. The Yang-Mills
fields play a major pact in the description of models of strong and weak interac-
tions(77]. Yang and Mills considered the simplest non-Abelian group SU(2) which

deals with isospin.

2.2 Spontaneous Symmetry Breaking

Gauge theories are based on the assumption that all interactions are mediated by

gauge bosons that have zero masses. In naturc however, only the photons and the
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gluons are massless but the W* and Z° bosons are certainly not. The addition of
an arbitrary mass term for the gauge lield might seem to elliviate the problem of
masslessncss, but this creates a more serious problem. It breaks the gauge invariance
of the theory. Under the local transformations of the gauge group U(1), the mass

term for the A-field transforms as follows.

A AP o [AAY) = ALA +{0,a)A% +:1A,(0" )
= AuA" + (0,0 ) A*
4 AAY

in the Abeliau case and the miass term is also not gauge invariant in the non-Abelian
case. The question now arises whether it is possible to accomodate for massive gauge
fields and vet preserve the gauge invariance of the theory? This can be done, and the
technique involves employing the mechanism of spontaneous symmelry breaking. The
symmetry ol a system is said to be spentaneously broken if the Lagrangian density
is invariant under a certain symmetry group but the ground state (the vacuum) of
the system is not. Examples of such phenomena are many in all branches of physics.
Take for instance tlie case of a ferromagnet. Although the Hamiltonian describing the
svstem is invariant under the rotation group, the ground state is not below the Currie
point. This is so since the magnetic dipoles tend to align themselves along a specific
direction giving a definite degenerate ground state. Another classical example is a
thin plastic rod under axial pressure. This strip can buckle in any transverse arbitrary
direction and as a result will break the symmetry of the direction it chooses to buckle.
In this section spontaneous symmetry breaking is discussed for cases of global gauge

invariance and local gauge invariance.
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2.2.1 Global Gauge Invariance: The Goldstone Model

Consider the Lagrangian density
L= 38,0°0"¢ — p*¢" ¢ — M¢"¢)%, (2.36)

where p? is the (bare) mass such that m? = —y?. It can be shown that £ is invariant

under the global gauge transformation,
6 — o =eo. (2.37)

Let ¢y be a constant such that & = &y be a solution to the equations of motion of the

system at ground state such that the potential

V(gd™) = p?¢*d + A(¢"¢)? (2.38)
1s a minimum. If A < 0 the Lagrangian has no lower bound and the theory will not
exist. For A > 0 a theory can be defined for two cases of x2, u? > 0 and g2 < 0.

In the case of x? > 0, the minimum of V correspends to a ground state ¢g = 0
which 1s invariant under Eq. (2.37). As a result there is no spontaneous symmetry

breakiug since the Lagrangian and the ground state possess the same symmetry.

For u? < 0 the potential V' has a local maximum at ¢¢ = 0 and minima at

: — i v )
== T — ({24 2.
da 2/\ € ﬁe ( 39)

where o is the phase angle which defines a direction in the complex plane of ¢. This
corresponds to a whole circle of minimum V for 0 < o < 2r with radius 7 Therefore
there are infinitly many degenerate vacua each of which can have preference of being
the ground state of the theory. As a result the symmetry is spontaneously broken.

Censider now a specific case when ¢ = (), that is, dg = 7 Let

1
8(z) = v +E(n) + () (2.40)



where £(z) and v{z) are real fields which measure the shift or deviation of ¢{(z) from
the ground state ¢o = 0. Substituting Eq.(2.40) in Eq.(2.36) the Lagrangian density
becomes
L= 3(0.6)" +3(8um)? - 3¢

—AE(E2 +0%) — TME +7?)%, (2.41)
where all unimportant constant terms have heen ignored. Since Eq. (2.36) and Eq.
(2.41) are the same Lagrangiaun density with different fields, they should lead to the
same quantum field theoryv. So since ¢ and 5 are quantum fields (Kilein-Gordon lelds
in this case) it can be expected as a postulate of Lagrangian field theory that the
field n(z) will possess no mass while the field £(z) will have a mass m = V2As?
corresponding to the mass term —1Av*£%, The masslessness of n(x) can be attributed
to the degeneracy of the vacuum. Therefore it can be seen that when the glebal
symmetry i1s spentaneously broken, massless bosons appear. This statement is known

as the Geldstone theorem and the massless bosons are called Goldstone bosons.

2.2.2 Local Gauge Invariance: The Higgs Model

Consider the Lagrangian density
j 1
L = (Dud) (D) ~ 136"6 ~ A(976)} = L F ™%, (2.42)
where

D,= 8,—wgA,
Fo.= aA.—8:4,. (2.43)

This Lagrangian density can be shown to be invariant under the local gauge trans-

formation:
d(z) > Fla)= a),
Ala) > Afe)= Aus) - -O,a() (2.44)
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Based on the same argument as for the Goldstene model il can be seen for X > 0
that the case p? < 0 results in spontaneous symmetry breaking while the case y* > 0

does not. Proceeding in the same manner as for the Gladstone model, let

v+ £(z) + ()], (2.45)

V2

In terms of the fields in Eq. (2.45), the Lagrangian density becornes,

8(z) =

£ = 5087 +50) + 50 A A

1 1
—5(2A)E! — guA*Bun — F P, (2.46)

where interaction terms have been omitted. From Eq. (2.48) it can be seen that 7 cor-
responds to the massless Goldstone hoson and ¢ to a massive hason with mass V2 w2,
The most interesting feature of Eq. (2.46) is the presence of the term 3gv?A, A* which
might be related to a massive gauge field. This interpretation cannot be justified di-
rectly due to the presence of the term —gvA,3“n which seems to mix the gauge fields
A, and the real scalar field . Also, the Lagrangian in Eq. (2.46) seems to have
gained an extra degree of freedom. This extra degrec of freedon is only apparent
since a change in variables in producing E¢q. (2.46) should not affect the number of
degrees of freedom. This problem is solved by choosing a special gauge such that the
scalar field n(z) is eluminated. This is done by requiring that the scalar field ¢(z)
transform as:

Sl e _;_5[,, e (2.47)
where () is a real scalar field. The special gauge which allows for this kind of trans-
formation is called a unitary gauge. Substituting this in Eq.(2.42), the transformed

Lagrangian becomes,

: 1 1
L = ,—(a“o)2 %(9,\:/ ot - 4)\0*

1 1 1

s A (2vo + %) — -J%/?A A* — ZFWF“", (2.48)

where the F},, and A, correspond to their transformed counterparts £}, and A;. This

complete Lagrangian gives the interaction between a massive gauge field A,(z) with



mass gv and a massive scalar field o(z) with mass v2Av?. The latter field is called
a Higgs field and the phenomenon whereby the gauge field becomes massive without
violating the invariance of the Lagrangian is called the Higgs mechanism. 1t should
be noted that the Higgs mechanism does not give risc to a Goldstone hoson as in the
Goldstone model. Since the scalar field 7(z) was eliminated in this mechanism it is

said to be a would-be-Goldstone boson.



Chapter 3

Lattice Gauge Theory

3.1 Introduction

The theory of elementary particles is dominated by the study of gauge field theory.
In fact, the Standard Model (or the Glashow-Salam-Weinberg model) relies heavily
on the concepts of local gauge invariance and spontaneous symmetry breaking. The
theory corresponding to this model has been renormalized to give well defined mathe-
matical interpretation. The theoretical predictions compare extremely well with that
of experimental results. This however, was done mainly in the context of pertur-
bation theory which exploits the presence of effectively weak coupling parameters.
Nevertheless, there exists non-perturbative categorics of phenomena which cannot be

treated perturbatively. One such phenomenon is the confinement of quarks.

To show that the confinement of quarks is a strong coupling phenomenon consider
the following qualitative argument. The qualitative ideas about the nature of quark
confinement tend to picture the quarks as being coupled to a conserved gluo-eleciric
flux. This idea is analogous to electromagnetism where the electric field lines be-
tween two opposite electric charges at a distance r, give rise to the inverse distance

law Coulomb potential, V(r) = 5’;2 [f the medium between the charges is such that
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the electric field lines are compressed in a narrow flux tube then the force between
two charges would be independent of the seperation r which corresponds to a linear
(confining)potential: V(r) = or. This now becomes a phenomenon analogous to
the ground state of a superconductor where paired electrons give rise to the Meis-
ner effect which prevents the penetration of magnetic fields into the superconductor.
However, if a hypothetical monopole and antimonopole is placed into the supercon-
ducter, the magnetic flux will be confined to a string-like configuration joining the
pair of monopoles. Similarly, the gluo-electric flux forms into a confined tube of con-
served flux. These flux tubes will only end on a quark or antiquark. Perturbative

theory cannot explain this phemonenon and a new technique needs to be sought.

One possible approach to the above problem could be a direct evaluation of the

Feynman path integral introduced in §1.4:

z = [ Digleapt -39y, 1)

where D{¢) is the integration measure in the space of all field configurations. However,
it is not clear if such a measure, D[@], exists. This throws the shadow of doubt on
the possibility of a direct evaluation of Eq. (3.1). The main difficulty arises from the
fact that a field is a system of infinitely many degrees of freedom. What is required
is a regularization of D[¢} and renormalization that will lead back to the original
theory after the regularization is lifted. This could be achieved by the introduction
of a space-time lattice. The problem with the ill defined measure is now alleviated by
replacing the existing infinite degrees of freedom of the field by a finite dimensional
space of lattice configuraiions. In this way the continuum theory is redefined on a
finite number of space-time lattice points and the bonds connecting neighbouring

points. The path integral can now be replaced by a well defined multiple integral:
[ ot~ [ ... [T s, (3.2

where ¢; corresponds to the values accessible to the field at the lattice point .
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3.1.1 Lattice Regularization

The lattice formulation of quantum field theory as proposed by Wilson[76] is based on
discretizing space and time in Euclidean space-time. Consider a hypercubical lattice
with spacing a. The vertices or sifes of the lattice are labelled by vectors z, = an,
where n, = (n1,n3,n3,n4). On every lattice site z there exists a field ¢(2) denoted
by ¢.. The bond joining two adjacent neighbouring sites called links are specified by
the unit vector 4. Fields on these links are denoted by U, ;. The derivatives of the

field d,¢(z) are replaced by finite differences of neighbouring lattice sites:
1
aﬂé(r) —3 E(ém+ﬂ = é::) (33)

The greatest advantage of the lattice is that it drastically reduces the set of all possible
field configurations. In the space-time continuum a change of the fields at any point
leads to a new field configuration, while in the lattice formulation the fields can change
only at the lattice points or links. This makes it possible to define the measure D[¢]

for the integrals over the field configurations as the product of measures d¢; at the

sites and/or the links:

D] — [T do. (3.4)

In the renormalisation scheme of perturbation theory, it is necessary to regularize the
Feynman integrals in momentum space in order to renormalize the Green functions.
A momentum cutoff is then introduced which remedies the problem of the ultra-
violet divergences. Such a cutoff is provided by the lattice regularization scheme in a
natural way. To show this , Fourier transform techniques are used on the lattice[24,72].
Consider a complex field ¢, on the lattice. Its Fourier transform is given by

* 'k
—oo (27)4

If wavelengths only less than twice the lattice spacing are considered, then the inte-

b(z) = e T (k). (3.5)

gration is restricted to one Brillouin zone of the reciprocal lattice, | k, |< Z. The
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transform 1s then written as

n

oloa) = | (ke (36)

Inverting Eq. (3.6) and representing it by a Fourier series, ¢(k) has the form
B(k) =a)_ d(na)e ™. (3.7)

Setting @(na) = (—2%)—., a Fourier series represention of the é-function in the Brillouin

zone can be obtained,

6(k) = (22)4 3 A, (3.8)

n

which is periodic in the four-dimensional lattice. The Dirac é-function, 8(z — y), in

momentum space, is then the Kronecker-é on the lattice:

ééu = f [ ~_ f f (Qd::;ﬁ"’(x'”“- (3.9)

Therefore it can be seen that the lattice provides a momentum cutoff of the order of

the inverse lattice spacing.

3.2 Scalar Fields on the Lattice

Consider the free scalar field ¢(z). In the continuum Euclidean field theory the action

has the form

1 m? .
sl=/ 21300 + 587} (3.10)
The quantization of this action using the Feynman path integral approach as discussed

earlier yvields a Green function:

Glaron,.z) = 27 [ Dolo(e1)g(@a) .. bzn)e™

Z = f Dge= 5l (3.11)
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Eq. (3.10) is transformed to an action on the lattice according to the lattice regular-

ization described above,

S (T (bons — b + (o
Sl#] = 2 {5 2 (bess — 82)° +a'(S-40))- (3.12)

=1
The partition function is now given by an ordinary integral over the fields on the
lattice sites,

Z= / I dé.e>. (3.13)

The structure of Eq. (3.12) is analogous to those ef the Gaussian type prevalent in

statistical physics. That is, the action has a form quadratic in the fields:

= %Z b Moo, (3.14)

where M, is an n X n matrix. The integral in Eq. (3.13) ts therefore a standard

Gaussian integral given by

Z = (2m)%(det M)"7 (3.15)

In order to obtain the corresponding Greens function, it is convenient to generalise

this action to incorporate an external source J,, coupled to the fields ¢ on the sites of

the tattice:

1
§ =52 dnMuntn— 22 Jndn. (3.16)
A generating functional for this action is written as

VAR ES / II déne. (3.17)

Since the integral in Eq. (3.17) is of the Gaussian type it can be shown that

W

Z[J] = ef ZInMandm(det M)~3(2r)3. (3.18)

Eq. (3.18) shews that the propagator is the inverse of the matrix M, . So the two

point correlation function is given by

< GmPn >= M}, (3.19)
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It can be shown (see Rothe[72] or Creutz{l2]), using the Fourier transform of ¢, in

momentum space as given previously that

dlk ezk~[m—n}u
-1 9
M= S (3.20)
2 AN 2

The action in Eq. (3.12) can therefore be written as,

‘1k . ak ,
sl=5/ oo iﬁf(;v+mﬂm—mﬂm. (3.21)

It should be noted that the term (m? + &?) which appears in the continuum theory

(see §1.2.1) is replaced 1n the lattice regularization by

m —|—Z —sm al (3.22)

It can be shown that in the continuum limit as a — 0, Eq. (3.22) approaches (m?2+k?),

which recovers the continuum theory.

Thus far enly the action for a free scalar field has been discussed. Eq. (3.10) is

now extended te incorporate a seli-interaction term: 1Ad%. The action on the lattice

then becames,
i 2 4 m! ‘2 A 5 | ”
S1¢] = Z {-Z (943 = 02)" + @ (G-62 + o1} (3.23)
2 el 2

The fields ¢ are usually rescaled by the self-interaction canstant A:

$r — &, = VA0, (3.24)
This gives the lattice action as
0 Lo
Slg] = 1514, (3.25)
where
Z { E ¢m+,u, &l e).r) + G (*_@” + 1 J;.'}} (326)
u=l
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The Green function in terms of the rescaled fields @' 1s given by

Glafory o5t = 7 | TLth . 1m0 (3.27)

where,
- / T [d¢']e= 3511, (3.28)
The analogy with statistical mechanics now becomes evident if + = 3 where 3 is

taken to be the inverse temperature in statistical mechanics.

3.3 Gauge Transformations on the Lattice

To construct physically relevent lattice models it is essential that the theory is in-
variant under certain gauge transformations generated by the gauge group G. Let G
be the Abelian group U/(1) with element ¢ = €**. To illustrate gauge invariance on a

lattice, consider the lattice action of a complex scalar fleld:
B, ' S o R
Sle:] = Z {TZ (Betn — P=)(dly; — 8L) + @’ —-01d; +a (#le))

a* , m? W, . X, s a _
= E { Z ¢I:¢'r+ﬁ) + (("4"72" ~H 4(12)0’1.4% i3 “?1(01992}2}- (3'29)

n=l
The scalar fields which are defined on the siles of the lattice transform under the

global U(1) gaugc transformation as

é:: = géxs
¢! — olgt. (3.30)

The combination ¢l¢, is gauge invariant:

ol — olglee.
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In fact, it can be shown that all powers of the combination (é1¢,) are invariant under
the global gauge transformation of U/(1). The combination ¢{é, s, known as the

bilocal interaction, transforms invariantly as

¢l¢m+ﬁ = ¢;grg¢r+ﬁ
= ¢I¢E+u' f332)

Therefore it can be concluded that the action given by Eq. (3.29) is invariant under

global gauge transformations of the group U(1).

To consider local gauge transformations, the gauge group element must be depen-
dent on the lattice sites. That is. g, = €'** where a, is labelled by the lattice sites. It
can be shown that all combinations of the scalar fields are invariant under the local

gauge transformation except the bilocal interaction whicli transforins as follows:

¢£¢’r+ﬁ — élgi-g:r:-l-fz ¢x+ﬁ

7 $lcra (3.33)

This non-invariance is a consequence of the finite difference (@, ;3 —o.) which replaces
the derivative J,¢ in the continuum theory. As in the continuum theory a gauge field

must be introduced which will compensate for the non-invariance in Eq. (3.33). This

is done by defning a covariant difference.
R:ﬂ.ﬁéf—'—ﬁ. —_— ¢'1:' (3.34]

To satisty the cenditions of non-invariance the new field R, ; must transfermn under

the local gauge transfermation as,
Rﬂ-‘.ﬂ — G Rm,xigla (3'35)
and must satisfy the hermiticity condition

Bleyes M5 o (3.36)
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So, with the above conditions the bilocal interaction must be replaced by
SR a0t (3.37)

in order to ensure the local gauge invariance of the action. It will be seen later that
the field R is just the link fields of the laitice /., ;. Theretore a lattice action can
be written which is invariant under the local gauge transformation of the Abelian

group U(1):

4 .
S(4,0) = X {32 3 (~41lasburs) + (0T + e}, + @2 (81627} + L Sall

T T (3.38)
where Sg[l7] is the lattice action that corresponds te the term F,, F'*“ in the contin-
uum theory. Sp possess great physical significance and will be discussed in detail in

§3.4.1.1.

The above argument is now extended te a theory that undergoes transformations
under a non-Abelian gauge group, (. For a non-Abelian theory it is necessary to

consider the complex scalar ficld en the lattice sites as a column vector:

&

$o=1 1 |. (3.39)
\ 4r /
In terms of these fields, the action in Eq. (3.20) becomes.
Slél =2 {7 5 (=6Ldors) + (""7 Fa)ple, + PGB0 (3.40)

Let g = ezp(zL - ) be an element of the the group SU7(N) where L belongs to the
Lie algebra of (. The ficld then transforms under the global gauge transformation

3
as,

¢, — G,
¢l — olg. (3.41)
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Figure 3.1: Gauge flields on the liuk showing orientation

It can be shown without difficulty that the action in Lq. (3.40) is indeed invariant

under the global gauge transformation of SU(N).

Consider now the case when the group element has the form, g, = ezp(L - a.).
Following in the sanie manner as with local gauge transformations for Abelian groups

it can be shawn that the transfermed actien is

SI6,U] = T A% T (00 idhaya) Ha' o+ 402)le, 40 3816, )+ L Sall)
- (3.42)

where the link fields are now vectors:U,, ;.

3.4 Gauge Fields on the Lattice

In lattice models of gauge invariant field theories the gauge fields are placed on the
links of the lattice. Let the gauge f{icld on the link (&, i) be U, ; which is an element
of the gauge group G. The gauge fields on the lattice satisfy the rclation (see IMig.

(3.1)):
L'{r,ft == L"_;:‘;’_"‘ (34:3)

which follows from the unitarity of the gauge group. A gauge ficld A? in the continuum

theory is related to U, ; by the formal expression

Ues = exp{egA,c}. (3.44)
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Figure 3.2: The plaquette defined in terms of the neighbouring sites and unit vectors.

A path « traversed on the the lattice through the sites z,,13,...,2, is given by
Uy = U, Ui oyl (3.45)

which corresponds to a path ordered phase factor known as the Schwinger line inte-

gral,
B = 'Pe:cp{zgf A dz*}, (3.46)

of the continuum theory. The ordered path integral along a closed path is a gauge
invariant. The simplest case of a closed path on the lattice is the path traversed
along the elementary squares of the lattice. This path, called the plaquette or the

elementary Wilson Ioop is denoted by "0 and is defined as

Ua = Uz gUsasUSL, U] (3.47)

A N

Under the gauge transformation defined by the group G, the gauge fields transform

according to

Up s — U;'ﬁ = g,,er‘;g;_;ﬁ, (3.48)

where g, and ¢,.; are the corresponding group elements of the sites z and z + j.

3.4.1 Pure Lattice Gauge Theory

A pure lattice gauge theory is a theory that is constructed from the gauge fields

(link fields) of the lattice alone without any matter (site) fields. In order to examine
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the dynamies of such a theory an action S[U] needs to be constructed. Wilsen(76]

propesed that this action should be the sum over all plaquette terms of the lattice:
S[U] =2 Su. (3.49)
a

This is the minimal lattice action which leads to the continnum theory when the naive
limit, a -+ oo, is taken('naive’ here means that no renormalization is considered).
On the other hand. therc are many different approximations of the differentiation
operator by mcans of the Anite differences and so for one and the same continuum
action many different lattice actions can be constructed. The question then arises,
which of these actions is the correct one? The answer to this question lies in the
concept of universality: if the thermodynamical limit is aclieved at a critical point

when the correlation length becemes infinite, the details of the lattice actions become

irrelevent.
3.4.1.1 Abelian Lattice Gauge Theory

The local gauge transformation of a gauge field A, under the Abelian group U(1) in

the continuum theory is given by Eq. (2.11). The lattice version ol this transformation
15

I
A,,,‘;,, —_ A;‘ﬁ = A_.,_.,‘; - g(aw; = C\",-], (350)

where the phase factor a, is associated with the ncarcst neighbour lattice sites. The
corresponding field strength tensor £, describing the derivatives @,4, of the gauge
fields on the lattice has the form

1
Fn,,m = _'(Aa:-l-f(,u i A'i'u - A.T+JZ-,;; + 14:!:41}1 (3'51)

which is defined around the plaquette on the lattice. Rescaling A,, by the lattice

spacing a and the electromagnetic charge ¢ a new fieid

s T (3.52)
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can be defined. With this a rescaled version of F; ,, can be defined in terms of O, ,:

fz’,uv = lrl:“gi’:'..":,,rux
= el‘:ﬂ- + el‘-}-ﬂ,# - (-)m-i-fl,ﬂ == er.u- (353)

The simplest action which preserves periodicity for such a system was proposed by
Wilson{76] as
SEE _E ReTrefsne, (3.54)
2g%

Y

where the rcal part and the trace is taken se that the action is independent of the
starting point and of the direction of the links that make up the plaquette. Due to
its dependence cn a?. f, ., will tend to zero in the continuum limit. So, for small
lattice spacing «, the expenential in Lq. (3.54) can he expanded such that the action

1s written as
L .)
S[e] = Z ReTr(1+ tfom — 520 --)- (3.55)
- e

Ty

Now, the linear term f,,, is zero since it is odd in the indices of i and v, and the
higher order terms excluding fZ,, vanishes for ¢ — 0. So just leaving the quadratic

term, the action can hec written as,

5[0] = Z ReTr(1 -5 ~a WL (3.56)

.f

RN 7T

This action needs to be analagous to the continuum actien in electrodynamics:
L dar, o 3.57
1 4 v . ( oL )
That is, in the naive continuum limit as ¢ — 0. the action must have the form,

5 = SIZ o (3.58)

X

This is achieved by letting the proposed action defined in Eq. (3.54) to be

S Z ReTr(1 — elrm), (3.59)

Tofil
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which 1s the sum over all the plaquettes on the lattice.

Defining the link fields as
U,z = e®or (3.69)

for 0 > Q,, < 2r, the action in Eq.(3.59) can be shown to be

1 )
Sl = 52 ReTr(l — Upiliwins U 3USS)
T, uv
1 _
= =2 ReTr(l - Ua). (3.61)
TRy

Since Q. acts as an angular variation for the link fields. the action is periodic in

©; .. So, taking the real part of the plaquette Ua, the action has the form

S[U] = J%Z T (1 — cos ©). (3.62)

Ryl 4

Eq. (3.62) gives the form of the action in a pure Abelian lattice gauge theory
3.4.1.2 Non-Abelian Lattice Gauge Theory

As with gauge theories in the continuum theory, the exiention from an Abelian
theory to a non-Abelian theory on a lattice is not diflicult. The action of a non-

Abelian theory on a lattice is required to have as its continuum [imit the Yang-Mills

action as discussed earlier.

In analogy with the Abelian case, a rescaled version ol 4., (in the non-Abelian

case this is given by a vector 4, , = Ai,u) needs to he defined:

1 A
@H';ﬂ‘ = iagL ; Am‘,m (363)
where L are the generators ol the gauge group. As with the Abelian case, letting

Uy = e, (3.64)



leads to an action,

]' r F— i b
S[U] = ;Z ReTr(1 — Uz allewasUsls iUns). (3.65)

T

To sce what happens in the continuum limit the plaquette

Un = UpillewasUZ), U

5 Tl B

& c!es,pe'ﬁex-ﬂk,pe_'er.b,uc_‘@-'h” (3.66)

is calculated explicitly. This is dene by Taylor expanding the O, , on the different

links of the plaquette with respect to the spacing. «:

Do gp = Oopt+adBeut..4; (3.67)
Brppy = Bppu+ad By, -0, (3.68)

The higher powers a®.a?,... have been ignored since one seeks the leading nontrivial

order in a. Substituting this in Eq. (3.66).
Up = exp{:©, ,}exp{a(O., + 03,0, . ) exp{1(O, . + €0,O; ) }eap(10,,}. (3.69)
Using the Baker-Hausdorff formula,

€u'f.‘,b o 6(n+b+é—[n.b]+...]-‘ (370)

Eq. (3.69) becomes,

|
LID = ewp‘{z(@r,“ + e;r‘,, -+ ﬂa;(eu:.u) ol S[OI-MJ G):l"t/]}

1
XeIp{—l(e,c'# + er,v + aaue:v,p == S[Om.;u (-).r,v]}
= exp{1(0,0:, — 0,04,) — [Ozu O]} (3.71)

Now since Eq. (3.52) and Eq. (3.63) give the same rescaled A,.,:

é(ﬁgL vl = agAz ., (3.72)
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which implics that

1 ~
Aﬂl,;l == §L * A.?,’,p- (3-(3)
Therefere,
Ug = e:r:p{ng(é?,,flx‘p — QA u + 19{ A . Az} }
= exp(1algF: ) (3.74)
where,
B 55 0 o — 080 Lot A s ] (3.75)

is the field strength tensor fer the Yang-Mills theery. New expanding the exponential

and taking the trace of Eq. (3.74):

. 1
TrUa = Tr(l+wdgF,,, — ;a‘lngf'w +...)
- I,
= Trl+a®qTr Fpp — ;}—a“gz Ty F st

1
= Tri= 3(;4!]2’1"1" OO S (3.76)

since I'r #, ., = 0. Using Eq. (3.75) and the fact that (1, 7;] = 2:Cij Ty,

i . : o -
Ty F;_W = 3((")“/‘1',.& — ('),A;_.’# — gCgJ',L-AJ;!“ A’;,,,)l (3.77)
Finally the non-Abclian action on the lattice can be written as,
~ 1 4 21 P ¢ : ¢ v iJ k 2 .
o= ﬁ a g 3((].&1"4:,:/ = aVAa:,u - QC"éjk“-l:ir,;tAaf.u} (378)
RO T8 L)

which in the continuum limit reproduces the Fuclidean action for the Yang-Mills

theory:

1 g o .
5 — Ef dx(FL ) (3.79)
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3.5 Order Parameters

In analogy with the continuum theory, the observables on the lattice are defined by

averages over the field configurations:
<0 >=2Z7"Y O z)exp{—S[Uz 4]} (3.80)

z.uv

It is evident in lattice gauge theory that the observable < O > exhibits different
characteristic behaviours depending on certain external parameters. (coupling con-
stants, masses, etc) These different behaviours are known as phases. As the external
parameters are varied, it is possible that the system will go from one phase to another.
This transition from one phase to another is called a phase transition and takes place
at some critical values of the parameters. Let < O > be a [unction of a parameter p.

If at some point py, < O > is discontinuous, that is, if

lim <O0># lim <O> (3.81)

p—P1—¢ p—prte
then the system is said to undergo a first order phase transition at p = p, (see Fig.
3.3(a)).
If at some other point p;, < O > is continuous but its first derivative is discontin-
uous, that is, if

d< 0> d< 0> B
d—p lP:P?—E'-Ié —dp— |p=p3+c (382}

then the system undergoes a second order phase transition at p = p; (see Fig. 3.3(b)).

Of particular interest are the average observables that can vary between zero and
some non-zero average values. One of the characteristic features of gauge theories
13 that only gauge invariant observables can have non-zero average values. This
statement is known as the Elitzur’s theorem(25]. The exact statement of this theorem
is: The average value of any non-zero invariant observable is identically zero for ail

values of the external observables. Therefore the only observables that need to be
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phase transitions.
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considered are the ones that are gauge invariant under the gauge group G:
Ux.p‘: =+ g::U:r..ﬁg1'+ﬁ- (3-83J

These observables are called order parameters and they are monitored to distinguish

hetween the different phases in a symmetry hreaking phase transition.

The simplest such order parameter in a pure lattice gauge theory is the average
action per plaquette. Consider the partition function
Z=7 A5l (3.84)
)
where f = g‘—, is the analogue of the inverse temperature. In analogy with statistical

mechanics, the free energy of the system is defined as

}
F=—IZ, (3.85)
N

where N is the number of sites on the lattice. If I" is differentiated with respect to
3, then a phase transition is expected as a singularty in the infinite voluine hmit of

F. Thus in d dimensions,

9 P
did—1)03
Sy

d(d —1)98
= <1 —ReTrln >, (3.86)

ey
I

where the factor ,T(f_ﬁ is the ratio of sites to the nummber of plaquettes in a d-
dimensional lattice. Eq. (3.86) gives the average action per plaquette or the internal
energy which can serve as an order parameter. It will be discontinuous in g at a first

order phase transition.

A generalization of the average action per plaquette is the trace of the product of

links around a closed loep. Wilson considered this order parameter in order to answer

47



the question of quark confineinent. This erder parameter is known as the Wilson loep

and is given by,

w(C)=<Tr][ Uy > (3.87)

T,i

Here C denotes a closed loop on the lattice and the product of the link fields are
ordered aleng C'. W(C) is related to the quark-antiquark potential V(R). The value
of W(C') will be unity if the link fields U, ; on the loop are equal to the identity of the
gauge group under investigation. It is expected that the value of W' (C') will decrease
rapidly as the correlation between the link fields of the loop decreases. So, if the size
of the loop becomes infinitely large, more link fields will be enclosed by the loop and
the less correlated they will be. This will then result in the value of W(C') to tend

to zero. If C is considered as a rectangular loop of dimensions 7' x R (see Fig. 3.4)
then fer large T,

W(C) ~ e~ VIAT, (3.88)
where V(R) is the ground state gauge field energy between the static quark and
antiquark seperated by a distance R. The potential V'(R) is said to be confining if
V(R) = oR and

WG] o g7 (3.89)

[t will be shown later that in the strong coupling limit the Wilson loep obeys an

area law such that for a large loop

Wi(C) ~ e 74, (3.99)

where o i1s a constant known as the string tension and A(C') is the area enclosed by
the path . The string tension is defined as,

o — LI(C) (3.91)

A(C)
for large C. For confinement, ¢ # 0 and for non-confinement, ¢ = 0. The string ten-
sion therefore 1s another iinportant order parameter since it has a major implication

in the criteria of quark confinement and allows the differentiation between confining



N

'

Figure 3.4: A rectangular Wilson loop with dimensions T x &,

and non-confining phases. If the energy V(&) does not go to infinity with the sepera-
tion then this will lead to a theory that does not confine the quarks. In such a theory,

W(C) becomes characteristic ol a perimeter behaviour given hy,

W(C) ~ e PO, (3.92)

where P(C') is the perimeter of the loop (" and g is the self energy of the gauge fields.

Another useful order parameter, developed independently by Kuti et al[53] and
McLerran et al[59], is the product of the link fields taken along a path in a specific
direction on the lattice from one end to the other. Due to the periodic boundary
condition imposed on the lattice. this path is closed and as such, the product is gauge
invariant. This order parameter is known as the Wilson line or the Polyakov loop and
is given by,

N,
L) =<[I .., >, (3.93)

z=1
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where the product is over N,, the number of sites along the path traversed in a
constant spatial direction. If the free energy of the static external quarklike source is

given by,

F= Lz (3.94)
Ny

where N, is the number of lattice sites in the temporal direction, then it can be shown

that fer infinitesmal variations in £,

L] e ¢ ROEN (3.95)

It is clear that il the quarks are confined then the free energy of the static external
source will be infinite and L({{/) will be zero. On the other hand. if deconfinement
exists then the free energy of the external source will be finite and L{I7) will be non-

zero. The Polyakov loop is a useful order parameter wheu field theories are considered

at finite temperatures.

3.6 Strong Coupling

One of the advantages of lattice gauge theory is that it is possible to carry out
strong coupling expansions analogous to high temperature expansions in statistical
and solid state physics[76]. In contrast to the standard perturbation treatment of
the continuum theory, strong ceupling expansions on the lattice is much simpler and

reveals structures of the theory that are undetected by perturbation methods.

To construct a general stroug coupling expansion on the lattice, the trace of the
plaquette. which lLias been considered thus far, is replaced by a more generalised
feature of group theory, the character Yy of some irreducible vepresentation of the
group. The choice ol v is such that the trace of the irreducible representation of the

group is real. With this the exponentiated action in the partition function is written
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exp{BS) = explf 3 x(Un)). (3.96)

a

Strong ceupling expansion on the lattice entails expanding the Boltzman factor in

the strong coupling approximation, 8 = 5 < 1, in powers of 3,
2

ezp{8S} = [1 1 + Bx(Ua) + fg-xg((/'u) . gl (3.97)
= 2

This series is then evalnated by integrating each term in the series over the corre-
sponding lattice variables. In this way each order in 4 is associated with plaquettes
randomly distributed on the lattice. This may result in a plaquette corresponding to
a particular power of 4 appearing more that once on the lattice. In order to elimi-
nate double counting, character expansions are performed which limits the number
of contribution to each power of 3[23]. The method described above leads to the
derivation of specific rules for calculating directly the expansion coefficients for many
physical quantities such as the string tension and correlation lengths. to only name a

few. In the following, one such quantity, the Wilson loop, is discussed in detail using

the strong coupling expansion on the lattice.
Consider the Wilson loop defined on a T x R rectangular lattice,

W(C) =2 / [T aUs i Triine™". (3.98)
e

where U/, ; € SU(N} and the action is given by
3 . :
Sa=-23, =—(Trlig + Trli}). (3.99)
5 2N
Expansion of the Boltzman factor per plaquette in Eq. (3.98) gives.
W)= Z7V[dU,,TrUa[l =32 o TrlUa+cc

+%,{32 ol IrlUaTrligr + ce+ .. . (3.100)
The integration over the link variables t/, ; is performed by means of the following
orthogonality properties:

Iodu, ;U 3)i; =0, (3.101)
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Figure 3.5: The tiling of the Wilsen loop with elementary plaquettes

1
J dUr.ﬁ(Ux,;l}z‘j(Ul,,;)kt = N‘Siléjk, (3.102)
J Ui (Ue)ii(Uzi)u = 0. (3.103)

It can be deduced form Eq. {3.101) that all Wilson loops will vanish as / goes to
zero. In order to counteract these vanishing loops it is postulated that each link in
Ua must merge with at least one coresponding link from the exponential expansion
in Eq. (3.100). Also each link defined in the action must be associated with another
link, either from the action itself or from an adjacent plaquette. The first non-trivial
contribution in the strong coupling series comes from the merging of at most two
plaquettes in one link. This corresponds to tiling the loop with plaquettes as shown
in Fig. 3.5. This contribution is evaluated from Eq. (3’.102)' Eq. (3.102) implies
that two links oriented in opposing directions will eliminate each other, but, two
links from adjacent plaquettes oriented in the same direction will merge to form a
larger rectangular loop. By this it can be scen that only two-dimensional surfaces
are permitted if the discussion is restricted to only the second term of the expansion.

Also, each link carries a weight 3; and each site on the surface a weight N. So for the
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lowest order non-trivial contribution W (C) has the form

W(C) ~ 5%35)T“, (3.104)

where T R gives the least number of plaquettes needed to cover the area enclosed by
the loop €. This resull only holds for ¥ > 2. For the S{/(2) case W(C) is given by
(’g)TR due to the non-orientation of the plaquettes[i2,23]. In any case it can be seen

that if the area of the loop is given by
M E) =='TR. (3.105)

then the strong coupling limit leads to an area law.

; a3 A LR 22
LV(C}N(QA,\F'Z) a2 - " (=)
= e, (3.106)
where the string tension A is given by
o B 2N2
Boglalea-t (3.107)

It is possible to continue the above arguinent and iucorporate lLigher orders of g
but this becomes mere tedious with increasing orders of 3. In fact, Munster[68] has
calculated the string tension up to the 12 order in 8 for SI/(N). It however suffices
to show that the first non-trivial contribution from the expansion does indeed lead to

an area law which exhibits the properties of confinement.

In order to see if confinement holds for all values of 3. it is necessary to consider the
other extreme; the weak coupling limit when 5 — oo. This limit is of great importance
since when the lattice spacing goes to zero, the weak coupling limit coincides with the
continuum perturbation theory. Weak coupling or low temperature expansions on the
lattice are performed in the same way as the standard perturbation expausions in the
continuum theory. Besides beiug applied to a fundamentally non-perturbative theory,

perturbation theory further complicates the analysis in that it results in the loss of
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Lorentz covariance when applied to the discrete space-time of the lattice. Detailed
studies of the weak coupling limit in relation to the centinuum theory have been
carried out by Hasenfratz and Hasenfratz[4l] and Dashen and Cress[21]. This type

of analysis is beyvond the scope of this work.
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Chapter 4

Monte Carlo Methods

4.1 Introduction

In the lattice form!ation of quantum field theory it was shown that the problem with
the ill defined Feynman path integral could be resolved by reducing the path integral

to ordinary multiple integrals. This resorts to calculating observables of the form
<0>=2""1 f dU O{U)e~5V1, (4.1)

where the integration is over the product of the link variables. Now suppese Eq. (4.1)
is to be evaluated on a modest hypercubical lattice with 10 sites in each of the four
space-time directions. This corresponds to a system with 10? space-time positions
and 4 x 10? link variables. In the particular case of the group SU{(3), each of the
link variables is parametrized by eight real parameters. Therefore Eq. (4.1) will be a
320000-fold integral. Such integrals are usually approximated by finite sums. In this
case one cannol use, say, Simpson’s rule since on a mesh of 10 points per integration,
it will lead to a sum of 103%°%% terms. If, say the rate of calculation is 10® terms
per second, then it would take 10*19992 scconds to evaluate the sum. This is certainly

- untmaginable when compared to the age of the universe which is only ~ 10!® seconds.



Deterministic numerical methods fer evaluation of such integrals are thus out of the

questiomn.

New techniques are therefore required which wiil lead to accurate estirnates of
< @ > with realistic computing time. @ne way of achieving this is by using some
stochastic sampling procedure which will generate a select sequence of lattice config-
urations with a certain probability distribution. The Aonte Carlo methods of im-
portant sampling provides various and generally very successful applications. Monte
Carlo techniques incorperate many statisical methods which need to be discussed. A
preface to this discussion is a statistical background to solving integrals of the type

defined in Eq. (4.1).

4.2 Statistical Background

To illustrate the underlying principle of the Monte Carlo method, consider the n-

dimensional integral {the expectation value of the functien f{x))

< f>= [ fzlPl=)ld 2, (4.2)

where P(z) is a praobability density:
[ Plz)d"z=1, (4.3)
P(z) > 0. (4.4)

To evaluate Eq. (4.2), the probability density P({x) is sampled over NV randem points

Ti,232,...,T, giving a quadrature formula for the average value of f(z):

f=%2 fa (4.)

Using the central limit theorem for large N [69] the square of the variance o? gives

the error in the estimate

o LAY ey (LS syt (4.6)
- NN~ E N > ; -

=1
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which shows that the uncertainty in the estimate decreases with ﬁ Therefore the

error can be made as small as possible if the probahility distribution is sampled over a
large number of points. Also, the viability of the above argument being a reasonable
estimate of Eq. (4.2) relies on f(z) being a smooth function. It is evident that if
| f(z) | varies over many orders of magnitude within a uniform sample of limited
range, then many sample points will correspond to f(z) ~ 0. Therefore a process
is needed which allows the selection of sample points «; which are distributed in a
preffered interval where f(2) is large. This process of selecting only important sample

points is Known as wmportant sampling.

4.2.1 Important Sampling

For the sake of convenience consider a one dimensional integral:

b
I:f f(z)dz. (4.7)
Now multiply and divide the integral by a positive function P(2) nermalised such
that
b
/ P(z)dz = 1. (4.8)
This gives,
b
flz)
== P o N b
I /a Plz) (z)dx
f(z) .
) 4.9
< Plw) S

From Eq. (4.6) the error in the estimate of Eq. {4.9) is,

ok popfldn. L )
m\/ﬁk(P(zJ} > <P(:c)>]' (4.10)

To show how this error can be reduced a change of variables from r to

y(r) :/IP(‘z)dz (4.11)



is made such that

dy - ,

o P(z) (4.12)
and

y(a) = 0,

y(h) = 1. (4.13)

By this change of variables the integral can then be written as

_ [ fz)
= . F(:!:(T))dy' {4.14)

The cerresponding quadrature formula is therefere given as

L L o f=)

where y; are unilorin random nwmbers in the interval (0,1). It can be seen that
if the probability distribution is chosen such that a random sampling of P(z) will
concerntrate points in those regions where | f(x) | is large, then -});—%%% can be made
into a smooth function. This will then resull in the error of the approximation of

the integral to be small, previded P(x) and z(y) can be calculated appropriatly. The

best choice of P(z) is a function which copies the behaviour of | f(z) |.

In most cases however, the best clioice of the probability distribution P(z) is quite
complicated and thus makes the importance sampling as difficult as the eriginal prob-
lem. What is thercfore needed is a process which allows some form of consistency
between the choice of random points. ®ne such process is the Markov precess which

is now discussed in detail.

4.2.2 Markov Processes

Let ¢1,¢3,...,¢, be a set of points (configurations) in the space of field configurations.

The Markov process is fully determined by the starting(the inilial configuration ¢;)

38



and the one-step probability P(c¢,c’). If the proccess has reached. after n steps, a
configuration ¢, then the next step ceuld be a particular configuration ¢,y with
prebability P(cp,cut1). A sequence of cenfigurations generated by this process is

called a Markov chain.

The probability density P(c, ¢') has the usual properties

/P(c,c')dc’ = 1
Ple,¢) > 0. (4.16)

for all ¢; in configuration space. For a finite number of configuratiens n,
P™(c ) = / P(e,c)P(c1,62) ... Plen_y.d')dendes ... den_y
= / PN (e, ea}Plcy, ¢) de- (4.17)

This means that for a finite number of Markov steps a randem walk in configuration
space can lead from ¢ to ¢'. [t can be shown [13,39] that P(")(c, c') has a definite limit

that is unique when the number of configurations becomes infinite:
lim PM"(¢, ) = P*(¢) (4.18)
n—o0

where according to Eq. (1.16), P*(c") satisfies

/P"(c')dc’ = 1
P*d) = 0. (4.19)

An important consequence of Eq. (4.18) is that the limit » — oo ef P(")(c, ¢') is
independent of the initial or starting cenfiguration. Also, from Eq. (4.19) it can be
seen that P*(c') is a probability distribution. If *(¢’) is taken to he the appropriate
or desired probability distribution then P(*}(c,¢’) can be used to sample P*(¢). It
can be shown [35] that a necessary conditien for tbis is that the probability P{c,c)

must be in equilibrium with the desired probability distribution,

Plc)= / P*(c)P(c,c) de. (4.20)



such that it is left unchanged even if it is changed hy a single step. This equilibrium

condition is given by a condition ef detailed balance or microreversibility:
P (c)P(c,d) = P*()P(c, c). (4.21)

This states that the probability of going from the cenfiguration ¢ to ¢ is the same as

going from ¢ to ¢. It follows from Eq. (4.21) that
/ P*(¢e)Plc. ) de = / PP c)de

P'(C’)/ P(d.c)de
= P,

Theretfore detailed balance can be considered as a sufficient condition to reproduce Eq.
(4.20). To specily the notion of equilibrium it is convenient to denote the probability
of finding the configuralion ¢ in equilibrium by F.,(c). Eq. (1.20) can therefore be

written as

Peg(c) = / Peg(c)Plc, ) de. (4.22)

It now stands to he seen whether the desired prohability distribution converges to
P.,(c). Let the probability distrihution at the n* step of the Markov process be P(c).

The measure of the deviation from P.,(c) is given by
An=[ 1Pl = Pate) | de (4.23)
The probability distribution at the next step, the (n + 1) step, is given by
P(c) = / P(c)P(c,c) dc (4.24)
and its deviation from Py(c') is
A = [1PE) =Pyl ] de

= [ 1] PloPle.c)de— Pate)] . (4.25)
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Now using the normalization property in Eq. (4.16),
Appr = / I/[P{c) — Peg(e)}Ple, ) de | de
< [Uf 1P) - Pate) | Plec) del e
= [ 1P = Pule) | de. (4.26)
So from Eq. (4.26) and Eq. (4.23),
Angr < Ap, (4.27)

which means that the deviation decreases with each Markov step. Since P{c,d) # 0,
the inequality in Eq. (4.27) is strict unless the system is in equilihrium, that is,

P(c) = Peylc) for all c. Therefere it can be concluded that the probability distribution

converges to the equilibrium solution P.,(c).

The condition of detailed balance does not however specify P(c, ') uniquely. There-

fore, what is required is a Monte Carle algerithm that will allow P(c. ') to be specified

fully. Such an algorithm is the Metropolis algorithm.

4.3 The Metropolis Algorithm

The Metropolis algorithm was originally developed by Metropolis el. el [61] in
1953. It defines a possible ene-step probability which satisfies the condition ef de-
tailed balance. Due te its calculational simplicity the Metropolis algorithm has been

successfully used in many branches of physics.

Consider a probability distribution P(C') which is used to generate a set of con-
figurations C® CW) . during a random walk through the space of configurations.
The lenger the walk, the closer the configurations will be to the desired distribution.
Now, suppose the walk reaches a configuration C%). To generate the next configu-

ration C**+L} a trial step to say C) is made. Here C(!!is a arbitrary configuration
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somewhere about the immediate vicinity of C*). The acceptance or rejection of C®)
as the next cenfiguration is based on the value of the ratio

e P—(C—(t)—) (4.28)

P(CH))’
If r > 1 then C® is accepted and C® = C+1), [f » < | then a random number p is
generated uniformly in the interval (1,0). I v > p then C™* is accepted. In the cases

where C® is rejected, C* is taken as C**+1) and the updating preceeds as above.

It is now shown that the desired distribution does indeed converge to the equilib-
rium solution £,,(C). The fellowing proof is based on the discussion by Jongeward
et.al. {46]. Consider a set of configurations generated by the Metropolis algorithm.
Let PUN)(C) be the probahility of encountering the configuration C' after N steps.

The probability of encountering the same configuration after N+ 1 steps is given by,

pori = [ pV(CP(C.C)dCT + PY(C) - [ Peipic.cnac

= PW™ 4 / [PONETRPIO 8~ PPEC, O 4T (4.29)
It can be clearly seen that if P(V) satisfies the detailed balance condition, then

PIN+Y) — p(N) Now if
P c be.o
PINI(CY) T P(C,CY)

then after a single application (iferation) of the Metrepolis algorithn, PV+Y <«

(4.30)

PW) This implies that each successive iteration of the algorithm brings the desired
distribution closer to being a solution of the detailed halance condition. Therefore it

can be concluded that P™")(C) cenverges to the equilibrium sofution P.,(C).

In other words, if P(C’,C) is a one-step prebability which satisfies the micrere-

versibility cendition

PLG, (™) = P(C', C), (4.31)
then the prebability in going from (' to C' is given by
( .
1 £ P(C’) > P(C
P(C,c’y={ T it P> FLG (4.32)
| & i P(C) < P(C)



[t now remains to he shown that this satisfies the condition of detailed balance. In

the case of P(C',C) > P(C,C"), P(C,C") =1 and P(C',C) = -PE(L(%-. Therefore

P(C,C) 1

PC.O) TG (4.33)
which gives the detailed balance condition in Eq. (4.21). In the other case when
P(C")> P(C) then P(C",C) =1 and P(C,C") = ZZ). Therefore

RCY., ) 1

which implies Eq. (4.21) again.

4.3.1 The Modified Metropolis Algorithm

The problem with implementing the Metropolis algorithm is that the configurations
generated by the random walk are not independent of each other. This is due to
the choice of a configuration being taken in the neighbourhood of the preceeding
configuration. As a result the configurations are not statistically independent of each

other which makes the evaluation of the integral in Eq. (4.1) biased.

A way out of this predicament is to consider a large number of random walks
simultaneously generating a sequence of configurations. Then after a series of steps
the initial configuratien will be forgotten and the sequence will converge to the desired
distribution, P{C). This results in a sequence of configurations which are independent
since they are generated by different independent random walks. This hewever will

lead to computational difficulties due to the cocxistence of many random walks.

A more feasible alternative is to consider just a single random walk which begins
at a particular configuration. It is expected that after a sufficient number of steps the
walk will thermalise, that is, converge te the desired distribution. The time taken fer

the process from start te thermalisation is called the relazation time. This relaxation
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time can be greatly reduced if the initial configuration is sufficiently close to a member
of the target sample. If the thermalisation takes place after say, Ninerm steps, then
the walk can be terminated and the configuration that it reaches at this point can
be used as the starting configuration of the next random walk. This procedure is
practical since there are no restrictions on the choice of the initial configurations and
the relaxation time is greatly reduced for the second walk. Repeating this procedure N
times leads to a set of N configurations C < . C™). This procedure although
eficient in reducing the computational timne does however aiso results in the individual

configurations being dependent or correlated with each other.

In order to reduce the correlation between successive sampled configurations it
is necessary to increase the length of the random walks that give rise to each of the
configurations €. This is done by increasing the steps from one to several steps, say
Nipip. After thermalisation of the first walk, a number of steps which are equivalent
to Ngip are skipped. Then only is the configuratien taken to be the next one. It is
evident that the larger N, is. the less correlated will he the confignrations. Large

Niip values are however not practical since they will increase the computational time

immensely.

4.4 Applications of the Metropolis Algorithm in

Lattice Gauge Theories

Using the techniques described above, the Monte Carle method is now used to simu-

late lattice gauge theories.

In the lattice model, tlie configurations € are field configurations {®} which contain
the valnes of all the lattice elements that constitute the model. That is, {®)} contains
both the link lields U;, and site fields ¢,, together with all the other parameters

(masses,interaction strengths, etc.). The basic idea is to set up a Makovian process to
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generate a set of configurations in equilibrium for a given value of ;. Tle probability of

encountering a configuration {Q®} at equlibrium must be proportional to the Boltzman

factor:

Py ox cxp{~AS[{#)]} (4.35)

So by Eq. (4.21), the condition of detailed balance has the form,
e PSHINP({0), {8)) = e UNP({0Y. {9}), (4.36)

where P({®},{®}’) is the probability distribution in going from the couliguration
{®} to {@}. P({d}.{D}) is specified by the Metropolis algorithm where Eq. (4.28)
can be properly defined as

e—PSH{e}

e-05({o}]
= P85 (4.37)

where AS is the change in the action in going from {®} — {®}'. So the configuration
{®} is accepted if AS < 0, that is, if the actien is lowered by the transition from
{®} — {®}". If AS > 0 then a random number p is selected in the interval (0,1).
If p < e85 then {®} is excepled otherwise it is rejected and {#} = {d}. To

summarise. the conditional probability of accepting {®}’ is often written as,

P({®}, {D}) = min{l, e~ 955}, (4.38)

Before any Monte Carlo siinulatiens can be performed. there are a few very impor-
tant preliminary considerations that have to be made regarding the underlying theory
that govern the simulations, Firstly, the lattice size needs to be defined approprietly
in accordance with the information needed to he extracted. It must be neither too
small se that it induces finite size effects [42] nor too large so that it requires exorbi-
tant computing time. Reasonably larger lattices are however preffered since it gives
greater statistical accuracies provided ellecient algorithms and fast computers are

available. Further, boundary conditions must be imposed to eliminate the difference
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between lattice points from the interior and from the boundary. Periodic boundary
conditions are normally imposed on the lattice. Secondly, all parameters of the lattice
gauge theory such as the mass and the self-interactions need to be defined. These

parameters have direct implications on the observables that have to be measured.

The final consideration to take into account is the choice of the initial configura-
tion. Since the aim of the Monte Carlo method is to generate configurations that are
obtained after thermalisation is reached, a particular choice of an initial configura-
tion is therefore irrelevant since it will ultimately give rise to statistical equilibrium.
However, the choice of a particular configuration does affect the time taken to reach
equilibrium. Different initial configurations are usually used as a measure of equi-
librium. That is, to see if different starts will lead to the same equilibrium state.
There are three types of starting configurations that are almost always used in the

simulation of lattice models. These are:

1. The cold or ordered start. Here all the initial field variables are set equal to
the identity of the gauge group under consideration. This corresponds to zero

temperature or infinite # whence the action is minimal.

2. The hot or disordered start. In this case, the initial field variables are taken
randomly from the the gauge group. This corresponds to a finite temperature

or zero #.

3. The muized start. This alternative consists of making part of the initial con-
figuration ordered and the remainder part disordered. This is usually done by
making the field variables with time coordinates less than say half the total time

dimension of the lattice ordered and the remainder fields disordered.
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<0 >

Figure 4.1: The dependence of < O > on J with a possible inconsistency at ..

4.4.1 Interpretation of Numerical Results

The investigation of the dependence of the order parameters on various external pa-
rameters is of particular importance since they allow the study of the phase structure
of the lattice model. These external parameters are usuaily the inverse temperature
3, the mass m and other coupling constants including the self-interaction of the mat-
ter fields. Consider a series of Monte Carlo simulations that result in a plot of the
order parameter < O > as a function of . Each sweep through the lattice evaluates
< O > fer a value of § with appropriate errors (see [Fig. 4.1). Assume that a phase
transition occurs at the critical point .. To say what kind of phase transition it is, 1s
as good as any gucss due to the errors in the estimate of < O >. 3, could signal a first
order phase transition (Fig. 4.2(a)), a secend order phase transition (Fig. 4.2(b)) or
even a rapid change in the value of 3. So, how is it possible to determine what really
happens to the model at the point 3 = 3.7 The techniques of differentiating between
these phases is now discussed below. It shiould be noted that at a phase transition twe
or more phases coexist in equilibrium. Tu lattice gange theory this correspends to the
ground state of the system being degenerate al a {irst order phase transition. That

is, for a minimum value of the action, two er more states may exist simultaneously.
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Figure 4.2: Two interpretations of Fig. 4.1. a first order (a) and a second order(h)

phase transition.

However. these states may coexisl with different values of < O >. Using this fact and
fixing the model at 3.(assnming that it is a first order critical poiut) simulations can
be carried out first using the cold start and then using the hot start. These different
starts, as shown in I'ig. 4.3, will produce different values of < O > at equilibrium.

After thermalisation. one of twao situations could arise (see Fig. 4.4):

1. The two simulations will ceincide and give the same value for the average value

of the order parameter, that is, < O >“%=< 0 >,..

2. The two simulations will produce different values for the average, that is,

< O >cot’d#< () >/ut-

The second situation where two distinct stable phases are produced will correspond
to a first order phase transition. This is true only if the condition < O >%£< O >4,
persists for a large number of iterations. In fact thie number of iterations needs te be
large enough so that the situation in {2) is not reproduced even if 3 is moved slightly

away from /3.

Another useful fact is that near a phase transition point, the relaxation time tends

to increase. This can be used as a signal for the existence of a phase transition point.
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Figure 4.3: Monte Carlo simulations for dilferent starts, (a) cold start and (b) hot
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Figure 4.4: The two possible situations that could arise after thermalization.
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Consider a first order phasc transition that occurs at 4 = .. To study the dependence
of the relaxation time both on the type of start and on A, different start simulations
are performed for a set of B-values near 8. 87 < 8; <85 < B < B. <Py <fBF <
A+ < Bf. These simulations for dilferent values of 3 should veryv likely correspond
to the sequence of graphs (< O > plotted against the itcration number) shown in
Fig. 4.5. It can be seen from these graphs that the relaxation time is different for
different type of starts and different vaules of 3. For the hot start and £ close to 3,
but less than 3. the relaxation time is very large and approaches infinity for 3 = ..
This corresponds Lo the existence of two dillerent states with the same value of the
action equal 1o the absolute mwinimum of the action (degenerate vacuumm). It is also
evident that for 7 > 7., the rcalaxation time for the cold start simulation is larger.
The fact that the relaxatien time increases near the vicinity of the phase transition,
allows one to perform thermal cycles in order to locate the position and possibly the
type of the phase transition. In order to perferm thermal cycles. all parameters of
the model must be fixed except one, say 3. Now suppose that a phase transition is
expected 1o the interval (Jy, 82). Using the value of 3, a sweep can he perforined until
thermalization. Next, 4 is incremented by a small step Ag (typically A8 = -6%5:0131-).
A new simulation 1s then performed for the new value 3; + AA. This simulation is
performed over small numbher of iterations. That is. aliow for a 'micro-thernialization’
of say N1 iterations, then perform a ‘micro-simulation’ of say N2 iterations and then
calculate < O > only on these N2 configurations. This value of < O > for the
corresponding value of 3 can therefore be plotted on a < O > verses 3 plot. Next
the previous value of 3 is incremented once again by AJ and the same procedure is
repeated. This process centinues until g = J> at the other end of the interval. At
this point hall a cycle of the thermal cycle is compieted. This wliole procedure is
repeated in the opposite direction by changing the sign of the step. When the cycle
is completed by reaching g, again. a graph of < O > verses S is obtained. Fig. 4.6

shows a typical thermal cycle with a characteristic hysteresis loop. If a hysteresis
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Figure 4.6: A typical thermal cycle

is present. then therc is an abnermal increase of the relaxation time near #, which
causes the system to 'lag behiud’, not being able to thermalizc quickly. This however
does not specify the type of phase transition present. In order to tell what type of
phase transition it is, two tests can be performed. The first test consists of seeing how
the hysteresis loop is affected by changing the parameters of the cvcle (Ag, N1, N2).
Il the hystersis loop tends to close with increasing N1 and decreasing Ag, then the
phase trausition is most likely to be of second order. I the hysteresis loop is still
present no matter how much N1 is increased and A/ is decreased, then the phase
transition will be one of first erder. The second test entails performing simulations
from different starts for vaules of 3 from the left and right of g; for a large number of
iterations. If there is a value of # for which the values of < O > do not coincide then

a first order phase transition exists else it is probably a second order phase transition.



Chapter 5

Numerical Studies of some Lattice

Gauge Models

5.1 Pure Lattice Gauge Theory

It was shewn previously that the action defining a pure gauge theory (link fields enty)

is given by

S[UI =83 ReTr(1 = Un), (5.1)
I, Ll

where the link fields are elements of the gauge group under consideration. The cor-

responding partition function for such a model is given by

Zz=]] / dU, e SW1, (5.2)
T4

where the integration is over the invariant measure (the Haar measure) of the gauge
group

Wilson [76] has pointed out that a lattice gange theory of this type will lead to
confinement in the strong coupling limit. In the Abelian case this theery gives the
lattice version of quantum electrodynamics. In order fer the theory to have any phys-

ical meaning it must alse be able to describe deconfinement. For QED (gauge group
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U(1)), the confinement phase must be scperated from the phase of unconfined pho-
tons while in the case of QCD (gauge group St/(3)) the confinement and unconfined
phases must coexist as required by asymptotic freedom and there should not be a
phase transition seperating them. Therefore it is of prime importance to investigate
the phase structure of a given lattice gauge medel. The original part of this thesis

will be dedicated mainly to this task.

5.1.1 Abelian Lattice Gauge Theory

For the Abelian case, both the discrete group Zx and the centinuous group /(1) are
considered. It will be shewn that both these groups give rich phase structures to the
theory and as the order of the group becomes large enough, the Zy theory begins te

closely resemble the U(1) theory.

The simplest of all Abelian groups are the discrete groups Zn. In Zy lattice gauge

theory, the link fields take on a set of NV values:
Zn = {eF% | gy N — 1) (5.3)

and the action is written as
9
S[Cf} = Z (1 i COS(}T’:'OI.;M/))’ (5.4)

zpv

where 0y, = 0p 4+ Orgpo — Ortos — Oz

Although the lattice Zx theory does not have a continuum analogue, it is used as
a 'toy’-model and as a bridge to the study of /(1) gauge thcories. In fact Balian
et. al. [5] have shown that the study of discrete groups allow the investigation and
understanding of tbe phase structure of lattice gauge theories. Its discreteness enables
much simpler analysis of the underlying theory as compared to the continuous group
U(1). Another important justification for the study of Zn lattice gauge theories is

that the group Zn is the Abelian centre of SU(N) which bas important connections



in the fundamental theories of particle physics. The role of the group center in the

phase transition of gauge theory was revealed by Mack and Petkova [58).

For N = 2, the latticc model corresponds te a generalised gauge invariant Ising
model. This was first shown by Wegner [74] who is also credited for the original idea
of putting gauge fields on the lattice. This generalisation introduced the concept of
duality into lattice gauge theory. Without going into detail, the concept of duality
allows the construction of a dwal model, with the same dimensionality but with a
dilferent action. from the original model. This allows for a natural correspondence
between the variables on the original lattice with the variables on its dual counterpart:
The links of the lattice are associated with the plaquettes and the sites are associated
with cubes. Therefore. a pure gauge theory where the plagucttes define the action
would have a spin theory, which is defined on the links, as its dual. With this, a
connection between the original model at the strong (or weak) coupling limit can be
established with the dual model at the weak (or strong ) coupling limit. Therefore,
if phase transitions are present in the dual model a related transition can be found
in the original one. This is desirable since in most cases the dual model is easier to
handle theoretically than the original model. In the specific case when the action of
the dual model is the same as the action of the original model. the model is said to be
self duel. At the point of self duality, phase transitions are present which corresponds
to a phase transition in the original model. It has heen shown using the duality
argumnent that in the two dimensienal case(d=2), no phase transitions are present
in the pure gauge Z, model [5]. However. for d > 3 phase transitions are present.
This idea has beeen extended to investigate various vaules of N using Monte Carlo

simulations {15,16,6]. A review of these results is now presented.

In the computer simulatious of these models, thermal cycles were performed in 3
for varing values of the internal energy, E. The results of these simulations for various
values of V are shown in Fig. 5.1. In all the simulations. hystersis loops are apparent

which siguifies phase transitions. For IV < 4 the phase transition is of first order
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phase and seperates the confined (strong coupling) phase and the unconfined (weak
coupling) phase. To see if this is really a first order phase transition, simulations
from different starts as discusscd before were performed. It can clearly be seen from
Fig. 5.2. that for N < 4, two distinct ground states exist and there is no tunnelling
between them. This agrees quite remarkably with the results obtained by Korthals-
Altes [49,50] using the self duality argument. Using the duality argument, it was
shown that the point of phase transition(8,) was 0.44 for N = 2, 0.67 for ¥ = 3
and 0.88 for N = 4. Employing the Mente Carlo technique for mixed starts the
values for 8. are reproduced very accurately. This is shown in Fig. 5.3 where the
simulatiens are done for values of § ahove and below 4.. I'or N = 5 the model begins
to develope another phase transition seperating a third phase between the confined
and unconfined phases. This becomes more distinct for N = 6 and higer values of
N. Different start simulations for N = 6, as shown in Fig. 5.4(a), shows that the hot
and cold starts converge to a unique value of E. This kind of hehaviour is indicative
of phase transitions of orders greater that one. Fig. 5.4(b) shows a simulation for Zs
of the mixed start which converges to different values of £ at thermalisation. This
suggests the case of a continuous transition. It has been shown that the first phase
transition point corresponds /3. & 1. The second point amongst a flurry of fluctuations
appears around g, ~ 1.6. For larger values of N, the first phase transition point
becomes independent of NV and remains at 3. =~ 1 but the sccond transition point
shifts to infinity with the order of the group. Fig. 5.5 shows a plot of 3. against the
order of the group as obtained from thermocycles for the corresponding groups. The
phase structure of these models as obtained by Monte Carlo techniques agree very
well with the theoretical results obtained by Guth [38] and Elitzur et. al. [26]. The
primary investigation of the Abelian group is geared towards the study of U(1) lattice
gauge theory which deseribes quantum electrodynamics on the lattice. For the U(1)

case, the link ficlds are elements of the group U/(1) parameterized by a phase angle
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for ~7 < 6., < m. The measure of integration fer the partition function is the

invariant /(1) group measure:

fd[e"’m} :Hf_: ‘”j;“. (5.6)

The partition function is a sum over all lattice configurations:

Z=7Y e "5 (5.7)
8
where the action has the form,
S[8) = (1 —cosb,.,), (5.8)
T,4Y

and 0z 0 =605 +0;: 55— 0:454— 0.5 Monte Carlo simulations of this model reveal

a single phase transition in four dimensions [16]. This is confirmed by by Fig. 5.6
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which shows a thermal cycle in 3. The critical value of 3 can be seeu to be around
1.0 which corresponds to the values obtained for the Zy model at N > 4. This phase
transition seperates the confined phase from the unconfined phase which contains a
massless photon. It has beeen shown using finite size scaling analysis {57} that this
phase transition is of second order in four dimensions. Unlike the Zy model, a second
phase transition is not observed in four dimensions. For d = 3. no phase transitions
are present, that is, the theory is present only in the confining phase lor all values of
the ceupling. The hehaviours of the d = 3 and d = 4 models are believed to be the
result of certain topolegical excitations in the theory [22]. It has beeen shown that
for d = 3, these topological excitations cerrespond to pointlike magnetic monpoles
whereas in d = 4 they ceresspond to strings of monopole current. For d = 5 evidence

is given to support a first order phase transition [6].

5.1.2 Non-Abelian Lattice Gauge Theory

The study of non-Abelian gauge groups on the lattice is of great interest since quan-
tum chromodynamics and the electroweak theory are based on such groups. In fact,
Wilson’s original motivation for developing the concept of lattice theories was to study

the thcory of strong interactions. Although the relevent gronp for strong interactions



is SU(3), a study of the group SU(2) is now presented. The reason for this is twofold.
Firstly, SU{2) has a much simpler structure than S{/(3) and secondly, if confinement

is ohserved in SU2) then it should also be ehserved in SU(3).

For U, 4 an element of ST7(2), the link fields are parameterised as
Uri =aol +1a- 0. (5.9)

where o;. ¢ = 1, 2,3, are the Pauli matrices and 7 is the 2 x 2 identity matrix. a, 1s

a real Euclidean four-vector of unit length:
a=a+a’=l. (5.10)
The invariant group measure (Haar measure) is given by[19]:
dU = —1—-(5(a2 - d'a (3.11)
T 2x ' &

The action for this model is a sum over all the plaquettes:

S=_ ReTr(l — %Ug) (5.12)

a
normalised such that the average plaquette gives a value in the inferval (0,1). It
has been shown [18,19.56] that d = 4 is the critical dimension for SU(2) lattice
gauge theory and the confinement phase exists for all values of the coupling (see
Fig. 5.7(a)). This means that no deconfining phase is present and at the centinuum
limit asymptotic freedom is observed. This ehservation has been confirmed analyti-
cally by Hasenfratz and Hasenfratz [41]. In Fig. 5.7(b) a clear hystersis effect for d = 5
is ohservered. This phase transition corresponds to a critical point of the coupling
at . ~ 1.642. Further analysis using thc different start simulations show that the
hot and cold starts thermalize at different values of the average energy per plaquette.

This is indicative of a first order phase transition.

83



1.0 R (d.) T T T
. 1.0
o " (b)
) \\ \l\
p
i § ‘\‘% 4 1?
e 3 \h
(0 ) m— i i . 1 1 "
0 i ? 0 i L 1 v, N
3 4 0 [ ?B 3 4

Figure 5.7: Thermocycle in SU/{2) for (a)four-dimensions and (b)five-dimensions. The
solid lines represent the values obtained by the strong and weak coupling expansions.

[19]

5.2 Lattice Gauge-Higgs Models

Thus far only lattice madcls with pure gauge fields have been considered. Realistic
models however must contain dynamical matter fields that interact with the gauge
fields. One such model is the interaction of the scalar fields with the gauge fields.
This model as discussed previously for the continuum theory, gives rise to the Higgs
mechanism where the interactions result in the gauge fields becoming massive. No
massless Goldstone particles are present in this case. The study of lattice gauge-Higgs
models allows for a better understanding of the mechanism of spontancous symmetry

breaking.
The action is eof a lattice gauge-Higgs system is given by,

S=8Y Sellz.) + 2 Sl®e e, (5.13)

Eaped Taps

where Sg is the usual pure gauge action and Sy the Higgs action. Sy is defined as

Sy=070, - O U, Doy, + V(D) (5.14)
where
1 mz * * 2 7
V{®,) = I[T(I’“’(I)z’ + z\[‘f)xq)x} 1. (5.19)



The Higgs fields on the lattice [70] are introduced as scalar fields @, parameterized by
aset of ’polar’ variables (A, @) such that &, = R.d,. R, are cailed the radial modes
or radial degrees of freedom which give the ’size’ or ‘length’ of the scalar field. They
take values in the interval (0,00). The ¢, are nsually taken from the fundamental
representation of the group which means that they are unitary matrices. With this

definition Sy takes on the form,

Su = 22 (R — ReReyuReTr($;Ur udrru) + V(R)], (5.16)
712
where
Lo o :
V(R) = {[5-R. + AR;) (5.17)

The partition function for a lattice gauge-Higgs model can therefore be written as

z = [ 11 du(R)de, I dti, eemSi0601 (5.18)

e
where the integration measures d¢, and dU; , are the corresponding group measures
for the scalar fields and the link fields respectively. The delinition of the measure
d,(R:) is not as restrictive or as well defined as the latter measures. In the early
work on lattice gauge-Higgs models. the Higgs fields were constrained such that the
modulus ' € | was taken to be constant. This corresponds to the radial mode of
the scalar field being frozen. The choice of freezing the length of the Higgs field
is justified by the belief that at the continuum limit which is obtained at a critical
point where the correlation length tends to infinity. the size of the scalar field should
become irrelevent. Although this argument is. in principle, sound, varing the radial
degrees of freedom does have a definite effect on the phase structure of this type of
models. In §5.2.1 the frozen radial mode model is first discussed for oth the Ahelian

and non-Abelian groups. In §5.2.2 the saine modcls are studied for active or varing

radial modes.



5.2.1 Frozen Radial Modes

Consider V(R) in Eq.(5.17). By completing the square it can be shown that

2 2 4
d , P g P Tiinrt - ‘
AR, + 5 RI—J\(R,+4A) o (5.19)
For large values of A, the Higgs fields are radially frozen at a value Ry = —’:—:- for

m? < 0 and at zero for m? > 0. The measure for the radial mode in the path integral

can therefore be written as
d,R ~ 6( R, — Ro)dR,. (5.20)

When the radial mode of the Higgs field is frozen the Higgs self-interaction V(R) is

constant and thus irrelevant for the action.
5.2.1.1 The Abelian Case

In the Abelian gauge-Higgs model with frozen radial modes the action has the general

form

S=p2. ReI'r(1 = Ua)+ B 2. ReTr(1 — ¢:U; ,bota)- (5.21)

T b T

where the Higgs coupling i = R? corresponds to the nearest neighbour Higgs field
interaction. If the gauge and Higgs fields belong to the group Zy then this action
corresponds to a spin-gauge [20] system. In such a theory the Higgs fields are elements
of Zps such that ¢, = exp{g"'T;ﬂ} for m = 1,..., M and the gauge fields are elements
of Zy such that Uy, = exp{352} for n =1,..., N. [ gives the power of the coupled
gauge field and is defined such that { = % 18 an integer in order to ensure that Zys is
a subgroup of Zy. The integer { is interpreted as the charge of the scalar field. The
order parameters which are of interest in this model are the average link energy and
the average plaguette energy defined respectively as,

1 & = -
= -41\’,%1]1 Z(8,By) (5.22)

8¢



and

1 a :
ASNsé)_ﬁln Z(ﬁ,ﬂy], {5.23)

where V, is the number of lattice sites. The action in Eq. (5.21) 1s invariant under the

local gauge transformation of the group Zy and if ¢, = g. where g, € Zy then the

Higgs fields are nnity. This corresponds to the unitary gauge as discussed in §2.2.2.

In the limiting regions of the couplings many interesting observations have been
made [28.20.46]). For gy — 0, the Iiggs fields randomizc and the model reduces
identically to the pure gauge Zn theory. In the other extreme, that is, for Sy — 0o
both L and E become zero if the Higgs fields are in the fundamental representation
(I =1) of the gange group Zn. For higher order representations ({ > 1) however the
theory reduces to a purc Z; gange theory. For the limit 3 — 0 the model trivializes
in the unitary gauge. Due to the absence ol the gauge interactions. the gauge fields

decouple and the corresponding order parameters become:

s

L(8 =0,04) = ”5%‘ In{ 3> ezp{—Au(l — ReTr(7))] (5.24)
i B
and
E(B=0.8y)=1—(1- L)*8p. (5.25)

For # — 20, all the plaquettes take on the identity of the group in order to maximize

the action. The model then reduces to a pure Z); gauge spin system with action

ﬂ” E ér.or+p-

These limiting regions of the coupling constants result in a fairly complicated phase
diagram for the model. For botl the limiting regious of 3y, lines of phase transitions
are expected to enter the phase diagram as a result of the pure gauge characteristics
of the model at these limits. These transitions correspond to confinement (area law
in the Wilson loop) at the strong coupling regime(s < f.) and non-confinement
(pertmeter law in the Wilson loop) at the weak coupling regime(J > 3.). The model

for 8y = 0 has been studied extensively in §3.1. Also for 3y — oo where the model
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reduces to a pure spin system phase transitions are expected as a result of the ordering
of the Higgs fields. For fy greater than some critical point, the slobal symmetry of
Zy is spontaneously broken and the Higgs fields develope nonzero expectation values.
For Oy less thau the critical point, the symmetry is restored and the expectation
values of the Higgs fields are zcre. These transition lines are called the Higgs line and

correspond to the Higgs phase of the model.

Fig. 5.8 shows a summary of the phase diagram in four-dimensions for both the
Higgs and gauge fields belonging to the gauge group Z, in the (3y,8) plane for
constant L and F as obtained by Creutz [20]. The gauge transition line enters into
the phase diagram as a first order phase transition line seperating the confined and
the unconfined phases. The Iliggs transition line appears at large  as a second erder
phase transition line bordering the unconfined phase and the Higgs phase. At a triple
point {0.16 + 0.02,0.43 £ 0.02) this behaviour vanishes and for 3 decreasing a first
order transition linc is evident. This transition line seperates the Higgs phase from the
confined phase and terminates at a critical peint estimated at (0.48+0.03,0.22£0.03).
In three dimensions Jongeward et. al. [46] showed that the Higgs phase and the

confined phase are continuously conuected, that is. connected by a region free of
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phase transitions. They also show that for d = 3, a second order phase transition line

is obtained between the cenfined and unconfined phases.

The Z, model has also been studied for negative values of the coupling censtants
[7]. Fig. 5.9 shows the phase diagram in four dimensions for a spin-gauge system
incorporating negative values of 4. For the limit § — —oo, g, the lattice is made
up of random spins and erdered gauge fields where the latter is ordered according to
certain gauge transformations. The phase corresponding to this region is represented
"by F1 in Fig. 5.9 This region is characterised by the constant values of the order
parameters L = 1 and F = 2. In the second case where 8 -+ —oc and [y is allowed
to increase in the positive direction, the theory tends to a critical point and the spins
take on values depending on the value of the link fields. In Fig. 5.9 this phase is given
by the region £2 and is characterised by £ = 2 and a lower bound for the average
link at L = 0.5. The regions denoted by F1 and F2 are termed frustrated phases.
In the last case where § — —oc and Sy — oo, both £ and L vamnish, suggesting
a transition line extending to these limits. It can be seen {rom Fig. 5.9 that the

frustrated phases F'1 and F2 are seperated by a line of first order transitions that
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begin at J = —oo and terminate at a triple point (0.56£0.01, —0.46 +0.01). Both £1
and F2 are also seperated from the confined phase by a first order phase transion line.
This line intersects the P = 1 line at 34 = oo and 3 = —00. In the case of d = 3, F1
and F'2 are seperated by a second order transition line. A second order line is also
evident in the seperatien of £1 and the decenfined phase. For the gauge and Higgs
fields belonging to the group Zs two distinct gauge transition lines of second erder
are observered centaining the electrodynamic phasc or Coulomb phase (see Fig. 5.10).
As a result two triple points exist: a low-g triple point at (0.42 £ 0.03.0.98 £ 0.03)
and a large-/3 triple point at (0.35 £ 0.02,1.60 £ 0.05). The critical point is given
at (0.67 £0.05,0.67 £0.05). The Higas transiion line of first order connects the two

triple points and borders the Higgs and electrodynamic phases.

Thus far models where considered with hoth the Higgs and gauge fields belonging
te the same group, that is, fer m = n or { = 1. Consider now the situation where
the gauge fields belong to the group Zs and the Higgs fields to the Zz. This model
which has a phase structure (see Fig. 5.11) similar to the Z; case. possesses a residual
Zy gauge theory at 3 — oo which is apparent from ! = 2. The Higgs transition line
which is of first order smeothly joins the Z, gauge transition line which is alse of first

order. This shows that the Higgs and the confined phases are always seperated, even
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at Oy and J going to infinity. This agrees with the theoretical results obtained by
Fradkin and Shenker [28]. For all fields on the lattice belonging to the group U(1),
the gauge and Higgs fields are parameterized by the {/(1) elements erp(20,,) and
ezp(za,) respectively. The standard action for such a model [28,9,8.71] is of the form

S=8>.(1—cosbyu)+Bu 2, (1 —cos(A, — q,.,)), (5.26)

Zow zu

where A o, = ap — agy, and Oppy = Aoy, — Aulflpyy for =7 < 0,04, S 7. qis
the charge of the Higgs field and in principle is an integer. It can be shown [8,9] that
by expanding the cosine and setting 3 = c%, Up o = explraed,} and /Brd, = a@,

Eq. (5.2G) gives the action for the scalar electrodynamics in the continuum limit:
, ; 1 .
'Scont = / d;lx[();t v 3 lquu]qb + EF;_?:/] (527)
Eq. {5.27) corresponds to the usual electrodynamic Lagrangian in §2.1.1.

For By = 0. the Higgs fields decouple and the model reduces to a pure U(1) gauge
theory. As discussed in §5.1, a second order phase transition seperates the confined
phase from the unconlined phase for the 4 = 4 case. In the limit 3 — oo the Higgs
part of the action iu Eq. (3.26) vanishes and the gauge fields become unity. In the

unitary gauge this corresponds to &, ,, = 2—;’2 for p =0,....¢. This results in the gauge
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fields becoming elements of the gauge group Z,. For 3 = 0. no phase transitions are
present and in the unitary gauge the model reduces to a theory described by the
action By 2 (1 — cos(¢fr.)]. In the limit 3 — oo, the model is said to 'freeze’ and
the gauge part of the action in Eq. (5.26) vanishes. Also, the plaquettes take on the
identity of the group and the action becomes 7y ¥ (1 — cos[a 4, — @, )]. This model

pocesses a phase transitien.

The phasc structure of the U(1) gauge-Higgs model is strongly influenced by the
value of the charge q. Fig. 5.12 shows the phase diagram for the cases ¢ = 1 and
q = 2. For the case of ¢ = 1, shewn in [ig. 5.12(a). the phase diagram is analogous
in structure to the Z, gauge-Higps model. Early studics [9.8.71] based en this model
did not give clear evidence of the order of the phase transitions observered. It was
however shown that the model pocesses a triple point(C') at (0.43 +£0.05,0.92 £ 0.05)
and a critical point(®) at (0.75 + 0.05,8.6 £ 0.1). Later work, dene a few years ago,
have shown that the point A represents a first orcer phase transition [27,3] and the
point B represents a second order phase transition [43.4]. It was also shown that
the Higgs transition line( BC) and the gauge transition line( A’} are second and first

order lines respectively. Alouso et. al. [1] have shown that the Higgs phase and



the confined phases are seperated by a transition line of first order and the critical

point(D) is a second order point.

The phase diagram for ¢ = 2 as shewn in Fig. 5.12(h) is similar in structure to the
Zg-gauge-Z3-Higgs model except that it pocesses a single triple poiut. The results
obtained by Callaway and Carson [9] show that the eletrodynamic phase is seperated
from the confined phase by a second order phase transition line that joins the Z; and

Higgs transition lines at a triple point, (0.60 £+ 0.05.0.92 £ 0.05).
5.2.1.2 Non-Abelian Lattice Gauge-Higgs Models

For the gauge and Higgs fields belonging to the non-Abelian gauge group. consider
the action in the form
S=3% ReTr(l — Un)+ 3% 2 ReTr(l — (¢ ) (Uep) X(Grtu))s (5.28)
® v T
where y is some irreducible representation of the non-Abelian group under consider-

ation.

For the lattice fields belonging to the group S(/(2). two interesting cases arise. The
first is where the Higgs ficlds transform under the fundamental or spin-1 representa-
tion of the group. This is similar to the ! = 1 case for the Ahelian gauge-Higgs model
discussed in the previous section. The second case is where the Higgs fields transform
under the adjoint or spin-1 representation of the SU(2). [n the Abelian case this is
similar to { = 2. In the following section a review of these cases are discussed as first

presented by Lang, Rehbi and Virasoro {34].

For the Higgs fields in the fundamental representation. the Iliggs fields are elements
of the three dimensional unit sphere S® in four dimensional Euclidean space. This

allows the Higgs fields ¢,. to he set in correspondence with a SU/(2) group element V;
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by the relation
1 g2~
wof o) 520
\oz g )
For computational speed-up the Higgs contribution to the action can be written as

Sl = gl Y ReTr(l - ViU, VL L), (5.30)

£

where V, and {7, , belongs to the icosohedral subgroup ¥ of SU(2) which is the largest
discrete non-Ahelian subgroup of SU(2).

In the adjoiut representation the Iliggs field belong to the quotient space SU(2)/U(1) =

52, Here the Higgs fields are represented by Hermitian 2 x 2 matrices:
Ve =cos8 +10 - ¢psind, (5.31)

where @ is a fixed angle that does not take on the values 0 or x. For the finite subgroup
model, V; are elements of the subgroup ¥/Zy, and the corresponding Iliggs action
can he written as

St = (2sin? )7 G0 3 ReTr(1 =~ Vol W, LL,). 15:93)

T

It suust be noted, though. that the replacement of the continuous groups SI/(2) and
SU(3) = SU(2)/Z; leads to numerical artifacts. Consider now the limiting values
of the couplings for the fundamental representation. In the limit 5™ — oo the
gauge lields hecome frozen and both £ and L go to zero. For {;‘"d = 0, the model
reduces to a pure gauge system with the gauge fields belonging to the group ¥. In the
limit § — oo the model reduces to a spin system invariant under the SU(2) global
gauge transformation. For § = 0, only the gange fields allect the action. Fig. 5.13(a)
shows the phase diagram in the ( l{;‘nd,ﬂ)-plane for this model. The transition line
which originates at the point (0.6.05) is an artifact of the discrete approximation

of the group ST (2). The second line approximates the continuons group and it has

been shown that this corresponds to a second order phase transition line. Unlike the
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adjoint representations {54).

Abelian case this line dees not create an electrodvnamic phase but terminates near the

point (1.5,1.2) and possibly appreaches 5};"”"’ = 1.5 asymptotically. This situation
can be interpreted as the Higgs and the confined phases heing analytically one and

the same phase. which is exactly what Fradkin and Shenker [28] have predicted.

In the adjoint model. the transition line begining at J = 6.05 is also a consequence
of the discretization of the gauge group. The most interesting case in this model
is the hmit »‘3;}1" — o0, In this limit the model reduces to a Z;e theory, which as
observered in the previous section for large orders of the group Zv, should give two
phase transitions of second order. I'ig. 5.13(b) shows thesc two phase transitions at
g = 408 and # = 1. The latter phase transition peint. which correspends to the
transition line which approximates the continnous group, shows that the model leads
to the U(1) theory. As with the fundamental case there is no Coulomb phase. There
i1s however a clearly sepcrated Higgs-confined phase which once again agrees quite

remarkably with the analytical predictions of Fradkin and Shenker [28].
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5.2.2 Active Gauge-Higgs Models with Radial Modes

Lifting the restriction on the Higgs fields (| & |= constant) allows for the variation
of the radial modes of freedom. Therefore the complete action including the scalar
self-interactions can be considered. This introduces two new parameters, namely, the
squared 'mass’ m? and the ’self-interaction” A. It should be neted that these are
‘hare’ (not yet renormalized) parameters and hence net directly related to observed
masses and interactien strengths. The behavieur of the model is studied in the space
of the parameters (3, m?, ). The model incorporates all models previously discussed
as special cases for the limiting values of the parameters. In the limit A -» oo, the
Higgs fields are radially frozen to the mean field value. This situation corresponds to
the model discussed in §5.2.1. In the Lmit m? — co. the radial modes vanish and the
model reduces to a pure gauge theory as discussed in §3.1. The model not discussed
thus far corresponds to the cases when # — oo and 8 — 0. Iu these two cases, Sg

vanishes and the model becomes a theory of self-interacting Higgs fields.

In addition to the usual order parameters, this model allows for the study of phase

transitions via the order parameter

<R'> = 2z f II d.(R.)do, [] db, ®2®.e~F

T
_3 d
Am?2

for fixed A. In the Monte Carlo simulations of this medel the lattice variables are

In Z(3, m*) (5.33)

updated in the usual way. For any given site ou the lattice updating is first performed
on R; and then on o,. The acceptance or rejection criteria for these variables are

based on the Metropolis algerithm. The link fields are updated in the usual way.

To complement the numerical simulations. < ff > can be studied analytically by
an effective potential method based on the Coleman-Weinberg procedure [11]. The
idea behind this technique is to redefine the partition function so that the measure

of mtegratien is restricted to the radial modes alone. This results in an action that



is a function of only the .. One rewrites the partition function in the form
z= [ 11 d(R)2|R2), (5.34)

where d,(R,) is some measure of integration over the radial modes. The significance
of the choice of this measure will he discussed later. A radial partition function Z is

introduced defined such that

Z[RI] — e,_g[ﬂ"ﬁ]
- / I do. I] dir, e WRebuliaul, (5.35)
" b

-

The new action .5 can be represented by a power series in 3:
SR 3= B0 + 881+ 28 + ... (5.36)

where the expansion coellicients arc independent of 3 and are given hy

S0 = —InZ [z, (5.37)
v . sads

5 = -2 dﬁzaﬁzo, (5.38)
) e e L T4 25y

8 = 5(.53-2 *WZJ |3=0 . (5.39)

The expression in Eq.(5.36) can be cousidered as a new action which depends only
on the radial modes B,. Einpleying a mean field technique an effective peteutial can
be dcrived from the new action. It should be pointed out at this stage that the term
'mean field’ has various interpretations in physics and sheuld not be confused with
the method used here. In latlice gauge theory, the basic idea behind the mean field
approximation is that the field at each point is affected by a mean field due to its
neighbours. The techniques used for this approximnation are fairly complicated and
are based on variational and saddle point appreximation [23]. In this case however a
"crude’ version of the mean field is used where the radial fluctuations of the model are

replaced by its average value R; that is, B, = R,., = R. The effective potential to
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lowest, erder as obtained in the same way as the Coleman-Weinberg cffective potential

can therefore be written as

1 7ol k) 7
Vers(R) = 3 SIRa) |rymp= 22 AUVNR), (5.40)
k=0
where
V)= SwlA) (5.41)

In most cases, for values & > 0, the effective potentials vanish at B — oo and Ve(jo}

becomes a good enough appreximation.
5.2.2.1 The Abelian Case

‘onsider first the group Zx. Here the Higgs ficlds arve parametlerized as ®, =
Consider first the group Zy. Here the Higgs ficld P Le { i

Ryezp{%¢,} for . = 0,1,.... N — 1 and the gange fields as Uz, = exp{ &0, .} for

e =0.1,..., N ~ 1. The model is described by an action
Mmoo A
5' = . . 2 d
B2l cos{N =)L+ TR
&4 T
2r ,
_RIRI+# COS['N((‘jx — Qagu — va.1'+1t)l} (5‘42)

with partition function

Z=/H<JR_ZH Z (5.43)

pe=0 =1 Tx, u—D

The N = 2 model has heen studied extensively by Munehisa and Munehisa [66,67).
This study was based on the (3, m?) plane with fixed values of A at 0.1 and 1.0.
The Monte Carlo simulations of this model are based on thermocycles which measure
the average plaquette energy and the average squared length of the Higgs fields. In
the former case /3 is varied for fixed m? and in the latter, m? is varied for fixed
A. A summary of these simulations are shown iu Fig. 5.13. In the case of A = 1.0

it has been shown thal for m? — oo, # = 0.44, which is the critical point of the
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Figure 5.14: Phase structure in the (3, m?)-plane for (a) A = 1.0 and (b) A = 0.1 [67].

pure Z; gauge theorv. In fact there is a linc of first order phase transition points
which seperates the confined and unconfined phases and terminates at the triple point
(0.43£0.06. —G.0 £ 0.4). The critical point that ends the seperation of the Higgs and
confining phases is at (0.25 £0.05, —8.0 = 0.5). [t can be seen from Fig. 5.14(a)
that the phase diagram for A = 1.0 closely resembles that of the Z; radially frozen
model as discussed in § 5.2.1.1. Fig. 5.14(b) shows the phase diagram of the A = 0.1
case incorporating negative valucs of J. Here two triple points are evident and the
cenfining phase is enclosed by first order phase transition lines. A new region, the
frustrated phase. which corresponds to the average plaquetie energy equal to two
is seperated from the Higgs phase by a first order phase transition line. Unlike the
frozen model. only a single frustrated phase emerges. Further observations made on
the dependence of A on the phase transition at J = 0, show that for A less that
Ac = 0.35 £ 0.05, the model undergoes a first order phase transition. A more general
study has been made by Gerdt, Ilchev and Mitrjushkin [29] where different orders of
the group Zy have been considered between N =2 and N = 300. They have shown
that for the extreme case of 4 at fixed A, the dependence of the plhase transition point
m? on the order of the group ceases to exist at values greater than N = 5 for J = 0

and N = 10 for 8 = co. Mean field approximations [29,67] to lowest order performed
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on thesc models compare fairly well with the Monte Carlo resuits.

For the gauge group U/(1), the Higgs fields are parameterized as ¢, = R ezp(ia;)
and the gauge [ields as U, , = czp(20,,) for 0 < ., 0., < 27. The general radially

active model for the Higgs fields in the fundamental representation is given by the

action,

S = B> (1—cosb,,,) +Z{1+—R2+ R*

2y pEL

= R.z: R;u+u. COS(AQ'a: = J:.::-H;)}: (544)

where the integration in the partition function is over the Haar measures of the greup
. , _ dley . . .
given by dé = = and dl/,, = . The radial measure for the Higgs fields is taken

to be dR, = R,.dR..

For m? — oo this model reduces to the pure {/(1) theory as discussed in §5.1.1
an undergoes a second erder phase transition at 3 = 1. For A — o¢ this model
corresponds to the radial modes being frozen which was discussed in §5.2.1.1. A
comprehensive study of this model both numerically and using the effective potential
method has been carried out by Gerdt et. al. [30.31]. A sumary of these observations
together with the results obtained by Munehisa [65] is shown in [ig. 5.15 which gives
the phase diagram in the (m?2, 3)-plane for different values of A. Fer relatively small
values of A a first order transition line exists seperating thc confining phase from
the Higgs phase for 3 < 1. Munehisa[8} has conjectured that this transition line
is a consequence of the rvadial degrees of freedom. Fig. 5.15(a}-(b) shows that this
transition line is also observered for negative values of 4. As A increases the phase
transition line terminates at a second order phase transition end paint which moves
to the lett and crosses the point 4 = 8. for increasing A. This end point signifies
the peint where the Higgs and the confining phases hecome analvticaily connected
[31]). Also, as 8 approaches [rom large values te a triple point the model possesses a
Coulomb phase bounded by a Higgs-Conlomb transition line and the gauge transition

linc at g =2 1. 1t has been shown [65] that the radial degrees of freedom bring first
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order Higgs-Coulomb tramsitions into the phase diagrams in addition to the higher
order transitions observed in the radially fixed model. It has been suggested that this

first order phase transition is a realization of the Coleman-Weinberg mechanism [11]

on the lattice.
5.2.2.2 The Non-Abelian Case

The Higgs felds #,. in the fundamental representation of SU{2) are parameterised

as,
[0 @]
e B | g g0 | {5:45)
< | & o J
with the action given by,
‘ 1 1, m s i
S = B ReTr(l—3Un)+ X {{(5-Rl+ARY)
T, 50 I -
1 s P
+R: - RIRI+“53}EET?'(¢5IUI,HQL+“ )). (5.46)

In the corresponding partition function, the integration is over the Haar measurcs of
the group and the radial measure is usually taken to be R2dR,. The action in Eq.
(5.46) has been studied is a different form by Kuhnelt e¢t. al. [52]. Here they have
considered the action tu the form,
1 ’ :
§ = 32 ReTr(l—Ua)+ 2. {5(N(p} — 1) +p})
4

a, st

—kprPrruReTT{6,U, o 01)}. (5.47)

Writing R, = /2rp, and defining 3 = 3, the relation hetween Lq. (5.46) and Eq.

(5.47) is made:
A s (1 =2) —38k)
m* = .

s 7 (5.48)

This model has been studied extensively in references [32.33,34.35] using the ac-

tion defined in Eq. (5.46). It was shown using the eflective potential method and
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Monte Carlo simulations that there is a strong dependence of the shape of the phase
transition on A, and for m? — oc and A — oo, the theory reduces to a pure SU(2)
gauge theorv with a crossover point at 3 = 2.2. Results also revealed that for finite
f and small encugh A, first order phase transitions were ohserved. It was shown
that for fixed A. lines of first order phase transitions exist in the (3. m?)-plane which
have end points correspouding to second order phase transitions. These results are
however different from those obtained by Kuhmnelt ei. &l who have observed only
second order phase transitions. It has heen stated that this discrepancy is only
seemning, caused by a different choice of the model parameters. Using the relation-
ships of the different paramecters defined in Eq. (5.43), it was shewn that the point
(M, B, k) = (0.5,2.25.0.27) corresponds to the point (A, 3, m?) = 91.715.2,25, —8).
The resaon for the second order phase tramsitions ohscrved by Kuhnelt ef of is justi-
fied in the model defined by Eq. (5.46) in that fer A < 1 hoth minima obtained by the
effective potential method were so close to each ether that they ave indistinguishahle

in the Monte Carlo analysis.

Gerdt et. al. [34.35] have suggested that the existence of an end point on the first
order phase transition line corresponds to the cemplementary principle proposed by
Fradkin and Shenkar [28], where the end point is a critical point analogous to a phase

diagram of the ’gas-liquid-ice’ type.
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Chapter 6

The Kazakov-Migdal Model

The Kazakov-Migdal (K-M) model [17] was proposcd a few years ago and still attracts
constderable interest. Kazakov and Migdal suggested a new lattice gauge model where
the Yang-Mills interaction could be induced by minimal coupling to a massive scalar
field which transforms in the adjoint representatien of the gauge group. The mass of
the scalar acts as an effective ultraviolet cutoff for the theory. The novelty in the K-M
medel is the absence of the plaquette term for the gauge fields. This meaus that the
gauge ficlds cannot propagate (has no kinetic term) and is just a background field.
In all the rest the I\-M action is the same as for the standard lattice gauge-Higgs
theory discussed in §3.2. Upon partially integrating over the scalar fields, the medel
was hoped to give a theory that in the continnnm limit would lead to QCD which is
the only renormalizable, asymptotically free and confining theory in four dimensiens.
This model has attracted much attention and, in fact, has inspired a series of papers

that have investigated beth analytical and numerical consequcnces of the underlying

theory.
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6.1 The K-M Model

The model is defined on a D-dimensional hypercubic lattice with partition function

Z= / I1 d&. [ v, e-S1®21, (6.1)

where the action is defined as

S{@,U] =2 NTr(V(#,)) - 3_ S.Us uPuiul] . (6.2)

T,u
Here @, are scalar fields which are traceless N x N matrices belonging to SU(N)/Z(N)
which is the adjoint representation of SU(N). They are coupled to the gauge ficlds
Uy, whicb are N x /N unitary matrices belonging to the group SU(N) satisfying the
condition Uy, = Uxfﬂ’_”. It should be noted that the lack of a kinetic term for the
gauge fields in Eq. (6.2) results in their dynamics being determined solely through
their interaction with the adjoint scalar fields. This is one of the main features of the
model that differentiates it from the standard lattice gauge-Higgs models and can, as
such,l be said to be equivalent to the infinitely strong coupling limit( — oo) of the

standard model.

By integrating over the scalar fields in the partitien function of the model an

effective action for the gauge fields can be obtained:

/ Il d&. ] dv; eS8 « f II av, e~ Snat] (6.3)
E T, u I pu
where,
e~ SinalUV} — / H d e~ SV (6.4)

&

As a result of the gauge invariance of the model the induced action is given as an
infinite sum over all possible Wilson loops on the lattice. These Wilson loops will
also be in the adjoint representation which is an attribute inherited from the scalar

fields. If the potential is considered to be in the quadratic form V(@) = imTrd?,
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then the @ integral is Gaussian and the induced action is given by the large mass

expansion which can be represented as a sum over lattice loops C ef a scalar field in

an external gauge field:
21 | Tr W(C) |?

[[C)md© (6.5)

Simall] = — 2

&
where !(C) is the length of the path C' and W[C] =1[I, Uz, is the standard Wilson
loop. In the weak smooth gauge field limit a critical point for the hare mass at
md = 2d. which seperates the streng coupling region, where d is the dimensionality
of the Euclidean space-time, is expected. On averaging over the fluctuations of the
gauge ficlds the critical point will shift to some different value m2. It is suggested
that near this value one could take the continuum limit for the smooth part of the
gauge ficld. Kazakov and Migdal have argued that in the continuum limit this action

gives rise to the Yang-Mills action,
S,'nd[U] ~ ﬂT?’FjU Fova (66)

where the coupling constant 3 depends on the renormalised scalar mass, m?* = m2 —

m?, and the lattice spacing:

N !
g 962 L mzaz)' (6.7)

In the continuum limit this model is supposed to induce QCD and by observing @,

as a heavy constituent field, their mass m must act as an effective ultraviolet cutoff.

In a similar way, but hy integrating over the gauge fields first an effective action
for the scalar fields can be induced. This is achieved by taking the Itzykson-Zuber
integral [40,44,60]:

sy — ; 2 + det,;,r GIP(AIQ,'QJ’H;]
It} = f U exp(NTroUpUY) o HEEETEE, (6.8)

where @, are the eigenvalues of the matrix ¢, and

Al$) = H_(éf — ¢;) (6.9)

17
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is the Vandermonde determinant. This allows the derivation from Eq.(6.2) of the
corresponding partitien functien in terms of only the eigenvalues @, of the scalar field

at each site. The partition functien is thereferc given as follows

2= [ 11 dgic-veiyas,) I St cenVs; m

oni AM$)A(Br4u) (6.10)

The resulting theory is expressed in terms of the eigenvalues of the matrix &,. Kaza-
kov and Migdal hoped that @,, could be the master ficld for large-¥ QCD. It should
be noted that the integration over the gauge fields is ebtained explicitly only because

the pure gauge term is not present in the action.

6.2 Gauge Symmetries in the K-M Model

An interesting attribute of the K-M model is that it pessesses some unique lattice
artifacts which make it different from the standard Wilson formulation ef lattice QCD

[48,62,63]. These artifacts are manifest in the rich gauge svmmetries that the model
exhibits.

The original action defined in Eq. (6.2) has two local gauge symmetries which play
an important part in its understanding. The first 1s related to the usnal SU(N) gauge

transformations:

U:r,u —F 1/1{/’;,#7?'};.{_“,
&, — V.o V! (6.11)

Tl

where V; € SU(N). These transformations leave the action invariant. Gross [37] was
the first to notice that the model is invariant under (D — 1) x (¥ — 1) extra local

U(1) gauge symmetries.
Further, the K-M model is also invariant under local Zn transformations:

U.z-,y, =¥ Zm',uL!:r.,u-. (612)



where Z., € Zy which is the center of the group SU(N). Kogut et. al. [48] have
emphasised that this symmetry exists because of the adjoint representation of the
fields and will also appear fer any induced QCP model where the scalar fields are
invariant under the center of the group. This local symmetry has a negative effect

on the model’s apparent reformulation of QCD. It has been shown in §3.6 that in

the strong coupling limit the Wilson loep gives rise to an area law. 1V(C) = e~*4(C)
which implies confinement of the quarks. Under a local transformation,
W(C) — W/(C) = e "W (C), (6.13)

vesults in W(C) = 0. The vanishing of the Wilson loop implies in the context of
the area law that the string tension, (%), is infinite. This mneans permenant local

confinement.

6.3 Numerical Study of the SU(2) K-M Model

The first numerical study of the K-M model was made by Gocksch and Shen [36] and
further extended upon by Aoki ef. al. [2]. They have studied the case of the SU(2)
K-M model which is the simplest nontrivial version of the K-M model. If this model
is to induce QCD then there should be a continuun limit with an appropriate critical
point corresponding to the usual SU(2) gauge theory. By first integrating over the
gauge fields, the resulting partition functien can easily be studied using Monte Carlo

simulations.

Consider the path intergral given in Eq. (6.1). In order to proceed and solve this
equation, the ST/ (2) parameterization for the ficlds and measures need to be defined.

The scalar fields are defined as $, = R.o3 where,

[1 0] (6.14)

HER paa g
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is one of the Pauli matrices. The gauge fields are parameterised as

g e 8)
N\ o)

where a and 2 are given by the Euler angles:

a = cos(g)e‘(ﬂzbﬁ]’
B = sin($)ert ).

The normalised group measure for the gauge fields is given by

f sin @

at’ =

1
1672
and the radial measure is chosen in the form

d,R = R%R.

Consider first the integral over the gauge fields:

/ H dUz‘#eNE; Z:,u T"(°:Uz.pd’:+yU,"”).

z,4

(6.15)

(6.16)

(6.17)

(6.18)

(6.19)

Using the above parameterizations the solution to Eq. (6.19) proceeds as follows:

A 03Uz uosll,)
I1 ——'/ e Loz Lz RaRetuTr(ealns 3U20) 4in 6 dfdypdif (6.20)

Fok 167r2

— P s H 4R_—,Rg‘“ cos Bz J'ﬂ'
iR R,,p 0

™ Slﬂh 4R$R1,-+ﬁ
o H Z E 4R;R,;+P-, ?

T T

(6.21)

(6.22)

where the cosine in Eq. (6.20) is obtained from Tr{csUasUT) =2(|a > — {8 }) =

2cos 8. The complete partition function can therefore be written as,

ol inh(4R, 1t )
g = 2/R.e 23" Tr¥(R:) s5in T
e e o

sinh(4R. R

- fHHdRe:zp{E[lnRz—2TrV +21{ i

r o
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Figure 6.1: (a) The mean field approximation at A = 0.01 (b) Thermal cycle feor

< R > where the solid line gives the mean field approximation and * gives the Monte

Carlo results [36].

Choosing the scalar potential as V(K,) = %iRi + %Rj‘c, thc phase diagramn can be
studicd in the (A, m?)-plane. Also a simple mean field approximation can be carried
out by setting R = e*. The results of the mean field approximation as shown in
Fig. 6.1(a). shows for A = 0.01 a degencratc state at m® = 7,65. Fig. 6.1(b) shows a
thermal cycle in the < & > for variug m* The phasc transition of first order obtained
here is cenclusive of the results obtained by the mean field approximation. Fig 6.2(a)
shows that at a critical poiat {2.57,4.515), obtained by the mcan field approximation
and confirmed hy Monte Carlo simulations, the confined and unconfined phases are
inseperahle. The centinuum limit A — @ however does not exist in this model. This
was also observered by Gross [37]. This model has also been extended to incorperate
the gauge fields in the Monte Carlo simulations rather than to integrate them eut
[2]. This enables the average adjoint plaquette to be measured. Aoki et. al. [2] have
shown that the value for the average plaquette at the weak coupling limit does not

agree with the value obtained from QCD. Fig. 6.2(h) shows the adjoint plaquette at
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Figure 6.2: (a) Phase diagram showing the end point of the phase transitions in the

(A, m?*)-plane [36], (L) Monte Carlo results for the average adjoint plaquette at the
critical value of A = 2.57 [2].
the critical value of A = 2, 57. It can be seen that the value of the plaquette is rather

small, even fer small values of m? it is only & 0.14 With these results Aeki et. al.

have ceme to the conclusion that this model does not look anything like the usual

SU(2) gauge theory.
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Chapter 7

The Mixed Fundamental-Adjoint
Model

In the previous chapter the Kazakev-Migdal model which presented an interesting ap-
proach [or inducing QCD was intreduced. There are ample fonndations for doubting
whether this theory does indeed lead to QCD in the continuum limit. These doubts
are at lcast partially attributed to the additional local Zy symmetry that the induced
model aquires. Several attempts at breaking this symmetry has heen made. Migdal
[64] was the first to consider adding new degrees of freedom for eliminating the lecal
Zn symmetry. He proposed considering a mixed model where besides the gauge fields
and the adjoint scalars, there are also fermions in the fundamental representation of
the group. Despite the usual difficulities associated with handling fermions on the lat-
tice, there is a serious drawback to this model. Cline and Pahen [10] have peinted out
that this model requires too many fermion flavours in order for it to remain solvable
at the large N limit. In this chapter, a new approach to induced QCD is proposed
[43]. It involves a modification of the eriginal K-M model by adding to it scalar fields
in the fundamental representation of the gauge group. These scalar fields are coupled

to the gauge fields by the usual Higgs link term which breaks the unwanted local Zy



symmetry.

7.1 The Mixed Fundamental-Adjoint Model of
Induced QCD

The action for the mixed fundamental-adjoint model is defmed in terms of the ad-

joint(A) scalars, @, and the fundamental(F) scalars. ¥

S(,W,0) =3 3 Sa(®e ) +2 2 Sp(W., U )+ 2 Sacr(®.,%,), (7.1)

M R X7 ) ®

where 54 is the K-M model action given by,
Sa = NTr{V(®,) - .U, D, UL} (1.2)
and the other terms (new terms) are given by

S}." = Alr TT‘{-{!(Wg‘} Ll 'PII'II.;LWHF+JI}! (73)
+N Tr(d, &, W W), (7.4)

I

SA-F

where 7 is the bare fundamental-adjoint inlerference constant. This model is invariant

undcr the local gauge transformations,

U:r,;r —% QIU.E,JLQI:+’J9 q‘r': = desr; ‘Jpr — Q.r!'pzni-: (7'5)

where QIQ; = .

An attractive feature of this model is that it can be treated in a similar fashion
as the K-M model. That is, one can employ the mechanism of inducing a theory
out of the gauge background fields bv partiaily integrating over the scalar degrees
of freedom. The incorporation of the fundamental scalars with their corresponding
link terms into the action explicitly breaks the Zy symmetrv of the K-M action. A

consequence of this is that the Wilson loop will ebtain nonzero expectatien values,
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thus producing finite values for the string tension. It is therefore expected that the
gauge bosons in the induced theory will not be permanently confined. An extensive
study of this model would be quite a formidable task in view of the large number of

parameters involved. Even for the simple choice of the quadratic scalar potentials,

1 ‘
V(d,) = NTr{;mi(@ir@x)+?‘1—}\A(¢,¢,)2} (7.6)
1 1
Vv, = NTr{;mf;(!FlW,,)—i-lAF(!P’i!P’I)Z}, (7.7)

there are five parameters compared with only two in the original K-M model. The

fifth parameter is the strength of the fundamental-adjoint interference term.

7.2 Study of the SU(2) Mixed Fundamental- Adjoint
Model

For computational simplicity, the study of this model is restricted to the lattice fields
belonging to the gauge group SU(2). This does not affect the main features of the

mechanism by which the effective gauge theory is induced.

The scalar flelds ¥, in the fundamental representation of SU(2) are given by the

‘polar’ cordinates ¥, = Rf ¥-. The 1, are elements of SU(2) and are parameterized

as,

d’:: = aol +:a - o, (78)

where o0 = (0p,0;) and o; are the three Pauli matrices. The a, satisfy ap +a® = I
for / the unitary matrix of the group. The adjoint scalars are given by ®, = R2¢,

where the ¢, are elements of SU(2)/Zxn and are parameterized as,

¢r=v-0, (7.9)

for v = 1.
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The simulations for this model were performed on a 4 x 8 hypercubic Euclidean
lattice with periodic boundary conditions. All updatings of the degrees of freedom
were done by employing the Metropolis algorithm. The observable of prime interest

in the Monte Carlo simulations was the average plaquette,
| -
Tl >=< §I‘TUU > . (7.10)

In a phase where this observable has a nonzero value the larger Wilson loops will also
be nonzero and the string tension can have a finite value. Other observables that
were measured were the average size of the adjoint scalars < R* > and the average
size of the fundamental scalars < BF >. Simulations were performed such that four
of the five parameters %, m¥, da, Ap and v were kept constant while thermal
cycles were perfermed on the remaining parameter. Thermal cycles in m% were
performed for several values of Ar while the bare adjoint mass and the self interaction
strength were kept fixed at m% and )4 ::1' .rcspectiVE]y. The bare fundamental-
adjeint interference was kept fixed at v = 1. The average plaquette as well as the
average size of the fundamental and the adjoint scalars were monitered and their
response to the thermal cycles for Ap = 1 is shown in Fig. 7.1{a)-(¢). Tt can be seen
that there is a clear signal for a phase transitiou in the behaviour of all the observables.
The average plaquette, which is also the elementary Wilson loop, changes from zero
to nonzero values. This can be interpreted as lecal cenfinement. [further simulations

from ordered and disordered starts at the critical value of m3. show that this phase

transition is of first order.

[t should be noted. though, that the symmetry breaking term —T7 (%0, ¥.,)
in Eq. (7.3) is of second order in Rg and thus will vanish for large values of the bare
fundamental mass when the fundamental scalars decouple fromn the model. When this
happens, the local Zy symmetry is restored and the average Wilson loop vanishes in

accordance with Elitzurs’s theorem. This is clearly seen in Figs. 7.1{a)-(c) and 7.2.

The mechanism of inducing QCD or anv similar theory requires the existence of
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at least one critical point of the underlying theory. To prove the existence of such a
point in this model, the line of first order phase transitions in the {hz%‘ Ap)-plane was
followed for the same fixed values of the other parameters. The résults of the thermal
cycles in m3 for several values of Ap are summarized in Fig. 7.2. The disappearance
of the hystersis for A > 3 points to an end point ef the line of first order phase
transitions and this end point is itself a second order phase transition point at which
the correlation length of the model becomes infinite. This critical point is not a unigue
point for this model and there are indeed infinitely many similar critical points which
form the boundary of the (hyper) surfaces of first order phase transitions in the space

of the parameters ot the model.

The results of these Monte Carlo simulations indicate that this proposed mixed
model of induced QCD possesses a rich phase structure. The hehaviour of the average
plaguette shows that together with the phase of local confinement of the gauge fields
there exists also a phase where the string tension has a finite value. These two phases
are seperated by a surface of first order (local) confinement-deconfinement phase
transitions. The existence of a boundary to the surface of phase transitions proves
that this model possesses infinitely many critical points. The fact that this boundary
1s not at infinity means that the local confinement and the local deconfinement phases

are connected in the sense of the complementary princple [28].

An unappealing feature of this proposed model is that it possesses a large number
of paraneters which makes an exhaustive stndy of its ground state tiine consuming.
It 1s possible however to modify this model in a way snch that its nain features
are preserved while reducing the number of parameters. One way to achieve this is
to consider the limits in which one of the scalar fields has its radial modes frozen

while the other is kept active. Such a study of this modified induced model is now

presented.
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7.3 The Role of the Choice of Integration Mea-
sure for the Radial Modes

In order to have self interaction the compact fundamental scalar ficlds must have a
radial degree of freedom (otherwise the potential term in the action will be a constant).
In induced models one needs to integrate over not only the gauge patrt but also over the
radial part of the scalar fields. Another appealing feature of the mixed fundamenta-
adjoint model is that it allows the treatment of Abelian groups while the original K-M
model trivializes in the Abelian case. In what will follow, we shall outline the results
of our study of a family of Abelian mixed fundamental-adjoint models. This study
is primarily concerned with the extent to which the different choices of the radial
measure of infegration affects the phase structure of these models. Both Monte Carlo
simulations and the mean field approximation method were used to study the discrete

groups Zy for various values of NV as well as the continuous group U(1).

In the Abelian theory, the adjoint scalars decouple from the gauge fields and the
mixed fundamental-adjoint model reduces te a purely fundamental lattice gauge the-

ory with action,

m? A , n
S(We,Uu) = Tr X A2 (W10 + (P10, = T (P10, 0000} (T11)
x5 Eypt
Eq. (7.11) is analagous to models studied in §5.2.2.1 except that it does not possess.

the extra bilocal interaction term 2¥!W,. So it can be seen that by adding the
fundamental link to the induced model, one is ahle to treat the Abelian theories
which is an important part of the Standard Model, namely, the QED. Now recalling

the 'polar’ parameterization, ¥, = R.., the partition function lor this model is

written as,

= / II du(Rx)(hﬁrH dU, ,e™* (7.12)

T.H

where di,, and dU. , arc the Haar measures for the Abelian group under consideration
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and d,(R;) the radial measure of integration. It is the choice of the latter measure

which is of prime importance in this study.

The requirement for gauge invariance of the theory imposes very stringent restric-
tions on the choice of the integration measure over the gauge fields as well as the
phases of the scalar fields. In fact, there is practically no freedom in the choice of
these measures of integration and they must be the corresponding invariant and nor-
mahized (Haar) measures for the gauge group in question. On the other hand, gauge
invariance does not restrict the choice of the integration measure over the radial modes
of the scalar fields present in the model because the gauge transformationa leave the
radial modes unaffected. In realistic mnodels like the S{7(2) and S{°(3) gauge-Higgs
systems, the choice of the radial integration measure, [[ 4, (H;), is usually deter-
mined from the requirement that the lattice action would lead to the corresponding
continuum action in the naive continuum limit (that is, in the leading order in the

lattice spacing a). This leads to the following integration imeasures over the radial

modes:

d.(R,) = R.dR; (7.13)

for the /(1) gauge-Higgs model and
d,(R:) = R2dR. (7.14)

for the SU(2) gauge-Higgs modcl. Now in the case of an induced gauge model, where
the role of the scalars are, technically, restricted to producing some eflective theory
from a gauge background field, there are no restrictions on the choice of radial measure
of integration for the scalars no matter what representation of the gauge group the
latter arc in. The scalars in an induced model can be interpreted as corresponding
to some internal structure of the gauge hosons. Since the dynamical features of such
a structure are unknown, there could. in principle. be ne other restrictions on the
choice of the radial measure ol integration. One may argue that this choice is not

very important since at approaching the continuum limit. the correlation length will

120



increase te infinity and, because of universality, models with different chioces of the
radial measure will lead to the same effective theory. On the other hand, everything
could be changed should it turn out thal the choice of the radial measure of integration
could lead to significant changes in the phase structure of the lattice model. In order
to investigate the role of the choice of the radial measure of integration, numerical

simulations were performed of the Abelian induced model.

Here are some possible choices of radial measures of integration:

1. d,(R;) ~ 6(HR, — R)dR,. This corresponds to the radial mode being frozen and
is the situation where the radial mode is restricted to an average value around
Rﬂf — E'!

2. d,(H;) ~ dR,. In this case the radial tluctuations are taken to be uniform,

3. du(R,) ~ cn‘.p{—ﬂggf——zﬁ}d}f,. Here tlie radial modes fluctuate with normal dis-

tribution and when o — 0 the integration measure reduces to the case described

in (1),

4. d,(R.) ~ RZdR, for « = 0,1,...,N. This measure bears resembiance to
the usual radial measure in polar corordinates: @ = d — 1 in a d-dimensional

Fuclidean space. For other values o this measure has no obvious analogue.
Y

7.3.1 The Zy Induced model.

Parameterizing the gauge and scalar flelds in the usual way for Zy.

U, = eFlw, W, = ReRis (7.15)
for 8;,, v, =0.1,...,N — 1 the action can be written as,
» m? Koo Ir ,-
3 =0 Z {TRi + ZRi = Z Rofler, COS[”A}‘("#:: ~ Weps —Fezaenll} (7.16)
T Tl
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with corresponding partition function

2= [ gar ST X e (7.07)

Yy TH Bz,

An exhanstive study of this model for various orders of the group (N =2,3,...,10
and N = 100) has heen done by employing different Montc Carlo techniques. Both

the average plaguette and the average size of the scalar field were monitored for signals

for phase transitions.

Thermal cycles were initially performed in order to locate the phase transitions of
these models. Fig, 7.3 shows an example of the thermal cycles obtained (with the
characteristic hysteresis loop), for the group Z; at A = 0.5, for both the average scalar
and the average plaquette. The phase transitions observed were of first order. This
is shown in Fig. 7.4 for the different start simulations (of both the average scalar and

average plaquette) for Z, at A = 0.5 and m? = I.

For a fixed value of A it was observered that the dependence of the phase transition
point m? on the order of the group ceases to exist. As shown in Fig. 7.5, fer A = 0.5,
the dependence ceases at about N = 7. This agrees favourably with the observations
made by Gerdt et af]. It was also observered that for o = 0 and [or increasing A,
the phase transition point moves te smalter values of m? and at a critical value of A,
i

the hysteresis loep seems to close. Fig. 7.6 and Iig. 7.7 shows this effect for the case

of the twe extreme groups studied. For Z, the transition line seperating the confined
and unconfined phases terminates at A = 10 and for Z;go this occurs at A = 5. By
increasing « (therefere changing the radial measure of integration) for a fixed value
of A, it was noticed that the phase transition point meves to larger values of m?. For
large values of o the phase transition terminates. Fig. 7.8 shows this effect for the

case of Ziag (which is practically equivalent to the induced /(1) model) and A = 1.
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7.3.1.1 Mean Field Approximation

Following the technique described in §5.2.2, mean field approximations can be used

to calculate the effective potential as a [unction of the mean radial mode for values

around the m?2.

Consider the partition function in Eq.(7.17). This can be rewritten as,

z= [ ar.Z(Ry), R
where
= g5
2 4 1 Lo F i
B LI TR S ) (1.19)
j:l:l

The new action which is a function of only the radial modes is therefore

g nlz 2 A 4 1 — R cos%' o
S:,S:{-:Z—Rﬁzﬁz—ln[ﬁz efeParacos §i) _1n Ry, (7.20)
F 97 : j:D
Following the Coleman-Weinberg procedure, the effective potential to first order is

given by,

_ e
VaslR) = 23(Re)nzn

Bodes < s 1 S 20 cos 25 ;
— %R‘}' Ay ZR“ - ln[ﬁ 2 e cos%]] —Ineafl. (7.21)
& =0 ’

For the case of V = 2 it can be shown that Eq. (7.21) becomes

m?

I _ .
Var i 71}:2 - ZR“ ~ Incosh(R?) - aln R. (7.22)

Frem the plot (see Fig. 7.9(b}) of V;;¢(fl) against the average scalar length, R, for
A = 0.1 and varing values of m?, it was [ound that the model has a double minima

at m? &~ 3.2. This is clearly in aggreement with the Monte Carlo simulations in

Fig.7.8(a) which shows that the point m? = 3.2 is well within the liysteresis loop.
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Unfortunately the mean field approximation method only seems to give good results
in agreement with the Monte Carlo simulations for the group Z,. For values greater
than N = 2 a marked exponential behaviour for V.;; was observered. In order to

curtail this behavieur it is obvious that higher order correction terms need to be

added to Eq.(7.21).

7.3.2 The U(1)-Symmetric Induced Model
For the U(1) case, the fields are parameterized in the usual way:
Uy = P20, 0<0., <2r, (7.23)
and the scalar fields which transform in the fundamental representation of U(1) is
&, = R.e, 0< ¢, < 2r. (7.24)

The corresponding partition function is

adqéz B s i
Z= / H =1l (7.25)
R )
where
m? .
§=NTr3 {5 R+ TR =2 ReRopycos($eiy = bo +0uzns)}.  (7.26)
L2 . z,u

As seen in the case of Zy above, for @ = 0 and for increasing A, the phasc transition
point moves to the left and finally disappears at a critical value of A. This is shown in
Fig.7.10 where A, & 5. The critical value of A for U/(1) is identically the critical value
for Zjpo-this once again confirms the fact that the Zy theory approaches the U(1)
theory for large N. Fig.7.11 shows the effect on the phase structure by increasing a.
It can be seen that for A = 0.5, the characteristic hysteresis loop vanishes for e > 100
and the confined and unconfined phases are no longer separated. It can therefore

be seen that both the Zx and the U(1) models are affected in the same way by the
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different choices of the radial mecasure. An interesting observation here is that by
appropriatly tuning a and A, any of these modeis can be made to exhibit analytical

continuation between the confined and unconfined phases.

7.3.2.1 Mean Field Approximation

In the case of U(1):

7 = %

m? A :
= leap{—(F-8; + T RNR To Ro Rey) (7.27)
where I is the modified Bessel function,

2
Iy = / exp{ ReRrypcos(Orp, — 0, — 0., } d. .. (7.28)

o]

The R. dependent action is thercfore given by,

m?2

o
P4

5 A
RZ -+ ZR:’ —Inlo(R. ot} — N RS, (7.29)

and by the Coleman-Weinberg procedure the effective potential to first order is

m? 52 A ad 2 P .
Vess(R) = -TR -+ IR — In Ip(R*) — In R™. (7.30)

Fig.7.12 shows the plot of V.;s against the mean scalar for values above and be-
low the critical mass tor A = 0.5. The thermal cvcle fer this value of A is shown
in Fig.7.13(a) with the mean field approximation in the vicinity of m? shown ia
Fig.7.13(m). It can be seen that the mean field results which shows the phase tran-
sition point at m? = 0.39 is in very good aggreement with the results obtained by

Monte Carlo simulations.

From these results one can draw the following conclusions:

1. The /(1) induced model and even the simple Zx induced model possesses a

rich phase structure.
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2. The phase transitions between local confinement (< 1 — O >= 1) and decon-

finement (< 1 — O >) are of first order and the phase traunsition lines in the

(A, m?) plane terminate at a critical point.

3. The phase transitions of the model are affected by the choice of radial integration
measure. The parameter « from the radial integration mecasure, d,(R,) =
R2dR., can be considered as yet another action-defining parameter of the model
alongside A and m?. Moving along the e-axis, in the now three dimensional

space, one encounters a critical (second order phase transition) point.

All these facts point to the significance of the choice of the radial integration measure

in induced theories.

7.4 Summary and Conclusion

The induced lattice gauge models were inspired by the idea of Kazakov and Migdal,
that sclfinteracting scalars in the adjoint representation of SU/{NV) could induce QCD
of N-colours through their interaction with a background gauge field. Ii was hoped
that this would lead to a soluble large-N limit of QCD lbut the subsequent research
showed that the original Kazakov-Migdal model does not have the desired continuum
limit. Nevertheless. the interest in the study of lattice systems of matter fields coupled
to a gauge backgronnd lLas not died out. This research presented some results obtained
by means of Monte Carlo simulations of Abelian induced models as well as some

analytical results derived within the mean field approximation.

The models considered here differed from the Kazakov-Migdal model in the choice of

the scalar fields which was taken iu the fundamental representation ot the gauge group.
This allowed for the formulation and the study of the Abelian induced models which

aTe inaccessible to the Kazakov-Migdal medel. The simplicity of the Zy symmetric
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models and their limiting case - the (1) symmetric induced model, made it possible
to also study the role of the choice of the integration measure over the radial modes
of the scalar fields. It was found that the Abelian induced models, have a rich phase
structure. They possess critical points at which the correlation length diverges and the
positions of these critical points in the space of the model-defining (hare) parameters

depend on the choice of integration measure over the radial modes of the scalars.
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