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Abstract

A theoretical study of boundary layer flow, heat and mass transport in non-Newtonian
nanofluids is presented. Because of the diversity in the physical structure and properties of
non-Newtonian fluids, it is not possible to describe their behaviour using a single constitutive
model. In the literature, several constitutive models have been proposed to predict the be-
haviour and rheological properties of non-Newtonian fluids. The question of interest is how
the fluid physical parameters affect the boundary layer flow, and heat and mass transfer in
various nanofluids.

In this thesis, nanofluid models in various geometries and subject to different boundary
conditions are constructed and analyzed. A range of fluid models from simple to complex
are studied, leading to highly nonlinear and coupled differential equations, which require
advanced numerical methods for their solution.

This thesis is a conjoin between mathematical modeling of non-Newtonian nanofluid flows
and numerical methods for solving differential equations. Some recent spectral techniques
for finding numerical solutions of nonlinear systems of differential equations that model fluid
flow problems are used. The numerical methods of primary interest are spectral quasilin-
earization, local linearization and bivariate local linearization methods. Consequently, one of
the objectives of this thesis is to test the accuracy, robustness and general validity of these
methods.

The dependency of heat and mass transfer, and skin friction coefficients on the physical
parameters is quantified and discussed. Results show that nanofluids and physical parameters
have an important and significant impact on boundary layer flows, and on heat and mass
transfer processes.
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Chapter 1

Introduction

Non-Newtonian fluid flow has generated a considerable amount of research in the last few
decades because of its extensive applications in the biomedical, petroleum and chemical
industries (Mushtaq et al. [1]). The flow properties of non-Newtonian fluids differ in many
ways from those of Newtonian fluids. In particular, in contrast to Newtonian fluids, a constant
coefficient of viscosity cannot always be defined. This is because the relationship between
the strain rate and the shear stress is nonlinear, and may be time-dependent (Sochi [2]). The
fluid viscosity depends on the applied shear force and, for some fluids, also on the rate at
which the resultant shear occurs. It is important to understand the non-Newtonian viscous
properties, how to characterize such physical fluid properties and how to use these properties
to predict flow behaviour.

Due to the complexity and the broad diversity in the physical structure of fluids, it is
not possible to suggest a single constitutive equation to describe the flow and properties
of fluids. For example, Cioranescu et al. [3] indicate that the Navier–Stokes equations
cannot adequately describe the flow of some non-Newtonian fluids. For this reason, non-
Newtonian fluid models involve a number of different constitutive relations to predict their
behaviour and rheological characteristics. The equations representing such constituent
relations tend to be highly nonlinear and intricate in comparison with those of a Newtonian
fluid. Furthermore, the viscosity of non-Newtonian fluids is usually greater than that of
Newtonian fluids. Consequently, in the process of flow and heat transfer, the pressure drop is
high and the heat transfer coefficient is particularly low (Chhabra and Richardson [4]).

To enrich heat transfer in fluids, a recent innovation has been to suspend nanosized solid
particles in the fluids, in such a way that no sedimentation takes place. Such a fluid is called
a nanofluid (Choi and Eastman [5]). Suspending very small solid particles in the energy
transmission fluids can improve their thermal conductivity and so provide an effective way
to significantly enhance their heat transfer characteristics (Das et al. [6]). The high thermal
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conductivity of the suspended nanoparticles results in improved thermophysical properties or
thermal performance of the nanofluid over conventional fluids (Bhanvase et al. [7]). When
the nanoparticles are added to fluids they form non-Newtonian nanofluids.

Non-Newtonian nanofluids are considered to be the future of heat transfer in fluids, with
a key role in many industrial, biomedical and transportation applications. Consequently,
there has been a growing interest and need to study their flow characteristics and behaviour
(Goyal and Bhargava [8]). However, being non-Newtonian means the motion of nanofluids
is complicated and difficult to model because of the nonlinear relationship between the stress
and the rate of strain, which as with most phenomena in the real world, is described by
nonlinear equations. Solving such transport equations, means using the newly developed
accurate and fast converging spectral methods.

In this study, we investigate theoretically the flow, heat and mass transfer in five non-
Newtonian nanofluids. To illustrate the complete properties of all these fluids, any single
fluid model is inadequate because it may address only some properties and fail to predict
others. The non-Newtonian fluids of interest in this thesis are Maxwell fluids, second grade
fluids, couple stress fluids, non-Darcy power-law fluids and micropolar fluids. We chose
these five models for the following various reasons. A Maxwell fluid can be seen to possess
both viscous and elastic characteristics. It is a subclass of rate type fluids and can predict the
stress relaxation (Sadeghy et al. [9]). However, according to Choi et al. [10], the Maxwell
model does not properly describe the typical relation between shear rate and shear stress in
a simple shear flow. The second grade fluid model is the simplest class of differential type
fluid, which can show normal stress (Wu et al. [11]). The couple stress fluid model have a
nonlinear constitutive correlation between strain and stress. It is not suitable for fluids having
viscosities that depend on the shear rate. On the other hand, the viscosity of a power-law
model is shear dependent. The model predicts thinning and thickening behaviour due to the
shear. However, the couple stress model is limited because at low and high shear rates it
fails to produce sensible results in the shear regions. It does not predict the zero and infinite
shear viscosities (Barnes et al. [12]). We also investigate a subclass of microfluids called
micropolar fluids, which exhibit micro-rotational effects and micro-inertia.

In the remainder of this chapter we give a brief discussion and literature review of the
various types of fluids that will be investigated in this study. We start with an outline of
the relevant fluid models. This is followed by the discussion on nanofluids, heat and mass
transfer, convective boundary condition, thermal radiation, entropy generation, and numerical
methods. The chapter ends with the research aims and objectives together with an outline of
the remainder of the thesis.
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1.1 Non-Newtonian fluid models

The study of Newtonian and non-Newtonian fluid flows has been an active area of research
interest for several decades, specifically in relation to heat and mass transfer processes
found in commercial and industrial processes. Non-Newtonian fluids have a diverse range
of applications in nature and engineering; for example, blood rheology, food processing,
petroleum engineering, polymer blending and pharmaceutical products.

1.1.1 Maxwell fluids

A Maxwell fluid is an example of a viscoelastic fluid, (Özkaya et al. [13]). Viscoelasticity is
a property of materials that exhibit both viscous and elastic characteristics when undergoing
deformation (Papanicolaou and Zaoutsos [14]). Polymeric fluids show strong viscoelastic
effects. For these materials, stress at the present time depends upon the rate of strain at past
times, but with diminishing memory (Gargallo and Radic, [15]). Viscoelastic behaviours
may be linear or nonlinear. Linear viscoelastic materials are such that under very small
deformation or strain, the flow regime can be approximated by a linear relationship between
stress and the rate of strain (Tanner and Walters [16]). The limitation of the linear viscoelastic
model is that it cannot describe the strain rate dependence of viscocity on normal stress
phenomena as these are nonlinear effects.

The upper convected Maxwell (UCM) model is an example of a nonlinear viscoelastic
model. Unlike the Newtonian model, the UCM model incorporates relaxation time. The
UCM model is a generalization of the Maxwell material for the case of large deformations
using the upper convected time derivative (Souvaliotis and Beris [17]). Limitations of the
UCM model noted by Joseph [18] include the lack of multiple relaxation time scales as well
as unbounded stress growth for extensional flow. A model of an upper convected Maxwell
fluid flow is discussed in Chapter 2.

The UCM model has been studied by many researchers. For example Choi et al. [10] gave
an analysis of incompressible steady two-dimensional UCM fluid flow in a porous channel,
where they included inertia and fluid elasticity. Hayat and Sajid [19] used the homotopy
analysis method to find the analytical solutions of a magnetohydrodynamic (MHD) boundary
layer flow in a UCM fluid model. Yang and Zhu [20] studied the unidirectional startup flow
of a viscoelastic fluid in a pipe using the fractional Maxwell model. This flow, in an infinite
straight pipe, starting from rest was driven by a constant pressure gradient. Mukhopadhyay
and Gorla [21] analysed the unsteady two-dimensional flow of a Maxwell fluid over a
stretching surface with a first order constructive or destructive chemical reaction. They found
that flow fields and mass transfer were significantly influenced by the governing parameters.
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Specifically, fluid velocity initially decreased with increasing unsteadiness parameter and
concentration decreased significantly due to unsteadiness. The homotopy analysis method
was used by Rashidi et al. [22] to find solutions to the conservation equations for heat and
mass transfer in a two dimensional steady magnetohydrodynamic (MHD) fluid flow in a
porous medium. The Falkner–Skan flow of a magnetohydrodynamic Maxwell fluid was also
studied by Abbasbandy et al. [23]. Awais et al. [24] used the UCM fluid model to investigate
heat absorption and generation in steady flow over a surface stretched linearly in its own
plane.

Ramzan et al. [25] discussed the effects of Soret and Dufour parameters on mixed convec-
tion flow of a Maxwell nanofluid with variable conditions for temperature and concentration.
They further investigated the impact of changes in parameter values on the local Nusselt and
Sherwood numbers. Their study showed that the concentration field decreases with increased
Brownian motion and increases with increased thermophoretic parameters.

Bilal et al. [26] presented an investigation of three-dimensional UCM nanofluid flow
over a stretching surface to determine the effects of nanoparticles on MHD heat and mass
transfer. A nonlinear radiative heat flux was incorporated in the formulation of the energy
equation. Liu et al. [27] presented an analysis of the unsteady Maxwell nanofluid flow and
mass transfer in a finite thin film induced by an unsteady stretching sheet. They further
investigated the effects of heat generation, thermophoresis and Brownian motion on the flow
behaviour.

Many fluid flow studies with the UCM model are limited in the number of parameters
they included. For instance, Nandy [28] focused on the unsteady boundary layer flow of
a Maxwell nanofluid over a permeable shrinking sheet with a Navier slip condition at the
surface. The conventional no-slip condition at the surface and the Navier’s slip condition
were applied at the surface. However there was no evaluation of the impact and significance
of thermophoresis and Brownian motion when the nanofluid particle volume fraction at the
boundary is not actively controlled. This limitation will be addressed in this thesis. They
explored the simultaneous impact of a magnetic field, thermal radiation, and unsteadiness on
the heat transfer and flow properties of the fluid. Nandy et al. [29] studied forced convection
in an unsteady nanofluid flow past a permeable shrinking sheet subject to heat loss due
to thermal radiation. They explored the simultaneous impact of a magnetic field, thermal
radiation, and unsteadiness on the heat transfer and flow properties of the fluid. The study
did not, however, consider nonlinear thermal radiation. The study in this thesis will consider
the nonlinear thermal radiation for some of the models. Such extensions should make the
UCM model more realistic.
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1.1.2 Second grade fluids

A second grade fluid is a subclass of viscoelastic fluids that was first proposed by Rivlin and
Ericksen [30]. Second grade fluid flows with constant viscosity are the subject of considerable
attention in many boundary layer studies. This model is able to the normal stress effects, as
well as shear thinning and thickening effects, in steady flows (Man and Sun [31]).

Second grade nanofluids are non-Newtonian fluids with both viscoelastic and magnetic
properties, which have biomedical applications, such as in treatment of wounds or tumors, as
well as in heat removal processes. (Ramzan and Bilal [32]). As a result second grade fluids
have generated research interest. Hayat et al. [33] investigated the stagnation point flow of a
second grade fluid with variable free stream properties. Das et al. [34] studied a second grade
fluid flow passing along semi-infinite stretching sheet with convective surface heat flux. They
provided the exact solutions of the equations for this flow using the Fourier sine transform
method. Helical flows of a second grade fluid between two coaxial cylinders, where the flow
was due to the inner cylinder motion, were investigated by Jamil et al. [35]. Nadeem et al.
[36] examined the boundary layer flow and heat transfer in a second grade fluid flow through
a horizontal cylinder. Akinbobola and Okoya [37] studied a steady two-dimensional non-
Newtonian second grade fluid flow under the influence of temperature dependent viscosity
and thermal conductivity. They found that viscosity varies inversely as a linear function of
temperature while the thermal conductivity varies directly as a linear function of temperature.

Turkyilmazoglu [38] presented dual and triple solutions of an MHD second grade non-
Newtonian fluid with a slip condition. Erdogan and Imrak [39] gave an exact solution for
equations describing incompressible second grade fluid flow between two coaxial cylinders
with porous walls. The study assumed that the inner cylinder was rotating with a constant
angular velocity and the outer cylinder was at rest. Hayat et al. [40] studied the magnetohy-
drodynamic (MHD) flow of a second grade nanofluid over a nonlinear stretching sheet. The
nanofluid was assumed to be electrically conducting and subjected to a non-uniform applied
magnetic field. Ramzan et al. [41] studied a three dimensional second grade nanofluid flow
over an exponentially stretched surface, with thermal radiation and convective boundary
conditions. The study of steady two-dimensional flow of a magnetohydrodynamic second
grade nanofluid was presented by Zuhra et al. [42]. Their primary focus was the mixed
convection in gravity driven MHD second grade nanofluid flow containing both nanoparticles
and gyrotactic microorganisms along a convectively heated vertical solid surface. Entropy
generation is one of the key factors responsible for energy losses in thermal and engineering
systems. None of the studies reviewed in this thesis incorporated the entropy generation
in the second grade nanofluid models. In Chapter 5, entropy generation in a second grade
nanofluid flow is investigated.
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1.1.3 Couple stress fluids

The main feature of couple stresses in fluids is that they introduce a size-dependent effect.
The theory of couple stress fluids, first introduced by Stokes [43], has been widely studied by
researchers such as Islam and coworkers [44, 45].

According to Stokes [43], couple stresses appear in fluids with very large molecules,
such as polymeric suspensions, animal and human blood and lubrication fluids. These fluids
are therefore of scientific interest and have numerous industrial applications, such as in the
extrusion of polymers and solidification of liquid crystals. Walicki and Walicka [46] modeled
synovial fluids (which contain long chain hylauronic acid molecules) in human joints as
couple stress fluids.

Other examples of studies of the flow of couple stress fluids include that of Hiremath
and Patil [47], who investigated the oscillatory flow of a couple stress fluid through a porous
medium, and the investigation by Hayat et al. [48] of melting heat transfer in the boundary
layer flow of a couple stress fluid over a stretching surface. Bakhti and Azrar [49] studied
steady flow of a couple stress fluid in a constricted tapered artery under the effects of a
transverse magnetic field, moving catheter, and slip velocity. Takhar et al. [50] examined the
unsteady MHD flow of an ambient fluid with heat transfer over a rotating disk. Khan et al.
[51] extended this study to incorporate the couple stress effects when a magnetic field and
heat transfer analysis are taken into account. The analytical solution for a fully developed
laminar flow between vertical parallel plates filled with two immiscible viscous and couple
stress fluids in a composite porous medium was presented by Umavathi et al. [52]. The study
by Sarojini et al. [53] considered the steady hydro magnetic flow of a couple stress fluid in a
channel through a porous medium under the influence of a uniform inclined magnetic field.
The equations for the couple stress fluid flow incorporated the Brinkman model for a porous
medium.

The boundary layer nanofluid flow subject to couple stress effects has been studied by
various researchers. Some studies have assumed that the nanoparticle volume fraction at the
boundary surface may be actively controlled. However, a more realistic boundary condition
is that there is no active control of the nanoparticle volume fraction at the boundary, as
was suggested by Awad et al. [54], who investigated the couple stress effects on unsteady
nanofluid flow over stretching surfaces with a vanishing nanoparticle flux at the wall. Their
results showed that the effect of Brownian motion on the mass volume fraction within the
boundary is much more significant rather than on the temperature.

Applications of nanoparticles in medical science has opened a new dimension for re-
searchers. Nanoparticles may be used in treating different diseases by means of the peristaltic
movement of blood or magnetic drug targeting of tumours. Ellahi et al. [55] used a single
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model to investigate the simultaneous effects of a chemical reaction and activation energy on
the peristaltic flow of couple stress nanofluids. The non-Newtonian power-law fluid relations
were extended to the couple stress theory by Hajesfaniari and Dargush [56]. In Chapter 4 a
study of a couple stress nanofluid flow is presented.

1.1.4 Power-law fluids

A power-law fluid model is a generalized non-Newtonian fluid model that gives a basic
relationship between the fluid viscosity and the strain rate. It is sometimes known as the
Ostwald-de Waele model. A power-law fluid is represented by the rheological equation of
state given by

τxy =−κ

(
∂u
∂y

)n

(1.1)

where τxy is the stress tensor, κ is the fluid consistency, and n is the power-law exponent.
The power-law fluid model can be subdivided into three different type of fluids based

on values of the flow behaviour index. That is for n < 1, we have pseudoplastic or shear-
thinning fluids, when n = 1 we have a Newtonian fluid and for n > 1 the fluid is dilatant. The
power-law is the simplest model that approximates the behaviour of a non-Newtonian fluid.
However, its limitations are that it cannot predict the effects of elasticity and it is valid over
only a limited range of shear rates. The model fails to provide sensible results at low and
high shear regimes. Nevertheless, the power-law model is the most widely used model in
process engineering applications. The power-law model can be used to describe accurately
the rheology of lubricants. Schowalter [57] and Acrivos et al. [58] were among the first
to consider the boundary layer flow of non-Newtonian power-law fluids. Schowalter [57]
derived the equations for self-similar flow of a pseudoplastic fluid, while Acrivos et al. [58]
provided numerical solutions to the equations for self-similar flow in both shear-thinning
and shear-thickening fluids. More recently, Ishak and Bachok [59] investigated the steady
boundary-layer flow of a non- Newtonian power-law fluid over a flat plate in a moving fluid.
Then Reddy et al. [60] studied the magnetic effects on a steady, two-dimensional laminar
flow of a power-law fluid along a moving flat plate. The numerical solutions to the resulting
equations were solved using the implicit finite difference scheme.

The problem of turbulence modeling of non-Newtonian power-law fluids inside ducts
was investigated by Cruz et al. [61]. This important problem appears in many applications in
chemical and mechanical engineering, including food processing. Non-Newtonian power-
law fluids have particular applications in cavity flows. The magnetohydrodynamic mixed
convection flow of a non-Newtonian power-law fluid through a round cavity was analyzed
numerically by Bose et al. [62]. For their study the cavity was kept at a uniformly high
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temperature, with the bottom wall being insulated and the top wall of the channel being
maintained at a temperature lower than the cavity temperature. Sojoudi et al. [63] carried
out a numerical investigation of free convection and heat transfer in a differentially heated
trapezoidal cavity filled with a non-Newtonian power-law fluid. More recently, a numerical
simulation of a non-Newtonian laminar fluid flow in a lid-driven skewed cavity was studied
by Thohura et al. [64] using the power-law viscosity model.

A porous medium is a solid material comprising a solid matrix with interconnected
voids [65, 66]. Flows through porous media have been extensively studied because of their
important applications. For instance catalysts are frequently supported by, or made as,
a porous medium through which the chemicals flow. Flows through porous media have
two characteristics; namely their porosity and their permeability, both of which control the
movement and storage of fluids. According to Lehr and Lehr [67], porosity is defined as
the ratio of the void space to the total volume of the porous medium. According to [68],
permeability is defined as a measure of the ability of porous materials to conduct flow and is
dictated by the geometry of the pore network.

Darcy’s law, proposed by Darcy [69] in 1856 assumes that viscous forces dominate the
inertial forces in porous media, The law is valid where the flow rate is low in porous media
or through fractures. In such cases the flow rate and the pressure gradient have a linear
relationship. Deviations from this linear relation are termed non-Darcy flow. The non-Darcy
law is important for describing fluid flow in porous media in situations where high velocity
occurs.

Zeng and Grigg [70] reviewed the two non-Darcy criteria for fluid flow in porous media
namely, the Reynolds number and the Forchheimer number. They recommended a revised
Forchheimer number, which has the advantage of having wide applicability. Prasad et
al. [71] analyzed the effect of melting and thermal dispersion-radiation on steady mixed
convective heat transfer from a vertical plate embedded in a non-Newtonian power-law fluid
that saturated a non-Darcy porous medium, with aiding and opposing external flows. The
effect of the power-law index parameter of the non-Newtonian fluid on free convection
heat and mass transfer from a vertical wall was studied by Kairi et al. [72]. Their study
considered double dispersion in a non-Darcy porous medium with constant wall temperature
and concentration. They used the Ostwald–de Waele power-law model to characterize the
non-Newtonian fluid behaviour. Kumari and Jayanthi [73] used the implicit finite-difference
method developed by Keller to find the steady state solutions for non-Darcy free convection
flow through the walls of a horizontal cylinder, that are a saturated porous medium. Hadim
[74] presented a numerical study of non-Darcy natural convection in a porous enclosure
saturated with a power-law fluid. The flow in the porous medium was modeled using
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the modified Brinkman–Forchheimer extended Darcy model for power-law fluids, which
accounts for both inertia and boundary effects. The results indicated that when the power-law
index is reduced, the circulation within the enclosure increases, thereby leading to a higher
Nusselt number. These effects were enhanced as the Darcy number was increased.

Chamka et al. [75] studied the impact of a uniform lateral mass flux on non-Darcy
natural convection of a non-Newtonian nanofluid along a vertical cone embedded in a
porous. Kameswaran et al. [76] studied the effects of thermal dispersion on non-Newtonian
power-law nanofluid flow over an impermeable vertical plate. Their mathematical model
for the nanofluid incorporated the effects of Brownian motion of the nanoparticles and
thermophoresis. The non- Newtonian nature of the fluid was modeled by the power-law
index n, and cases of both shear thinning and thickening were investigated.

1.1.5 Micropolar fluids

The idea of a micropolar fluid was first introduced by Eringen [77] in an attempt to explain
the behaviour of some naturally occurring fluids and certain fluids containing polymeric
additives.

Micropolar fluids are non-Newtonian fluids that consist of solid particles suspended in
a viscous medium. Ferro-fluids, bubbly liquids, cerebrospinal fluid and blood are some
examples of micropolar fluids. Uddin et al. [78] mention their application in industrial or
engineering of colloidal or polymeric suspensions, such as are found in engine lubricants,
radial diffusion, paint rheology, and thrust bearing technologies. In the theory of micropolar
fluids, the local effects arising from the microstructure and the intrinsic motion of fluid
elements are taken into account. Peddieson and McNitt [79] extended the pioneering work
of Eringen [77] in boundary layer theory by studying the stagnation flow of a micropolar
fluid. They considered both planar and axisymmetric flows, and imposed the condition that
the spin should vanish on the solid boundary. Eringen [80] later developed the theory of
thermomicropolar fluids by taking into account the effect of microelements of fluids on
both the kinematics and conduction of heat. Kümmerer [81] used a shooting method for a
numerical investigation of a steady boundary layer flow of a micropolar fluid. The results
showed that the macroscopic properties of steady boundary layer flows are little affected
by coupling, microdiffusivity and microinertia parameters, while the microrotation is very
sensitive to all three parameters. Sankara and Watson [82] investigated the boundary layer
flow of a micropolar fluid over a stretching surface. Heruska et al. [83] investigated the
boundary layer flow of a micropolar fluid with suction or injection through a porous sheet.
In both the studies [82, 83] the flow equations were solved numerically using a globally
convergent method in conjunction with a quasi-Newtonian algorithm.
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The heat transfer from a micropolar fluid flow over a non-isothermal stretching sheet
with suction and blowing was examined by Hassanien and Gorla [84] while, the heat transfer
in a two-dimensional steady hydromagnetic natural convective flow of a micropolar fluid
over an inclined permeable plate subjected to a constant heat flux condition was studied by
Rahman et al. [85]. Results in both studies showed that the thermal conductivity parameter
promotes higher velocities and higher temperatures in the respective boundary layers. Das
[86] investigated the effect of thermophoresis and chemical reaction on heat and mass transfer
in a hydromagnetic micropolar fluid flow over an inclined permeable plate with constant
heat flux and non-uniform heat source/sink in the presence of variable fluid properties such
as thermal radiation. Das [86] did not consider the homogeneous-heterogeneous chemical
reaction. Bhattacharyya et al. [87] investigated the effects of thermal radiation on both the
flow of a micropolar fluid and the heat transfer past a porous shrinking sheet. Mishra et
al. [88] studied free convection in a micropolar fluid along a stretching sheet embedded in
a porous medium with a volumetric non-uniform heat source. Their study considered the
effects of thermal diffusion and a first order chemical reaction on the flow characteristics.

Atif et al. [89] studied the heat and mass transfer in a magnetohydrodynamic micropolar
Carreau nanofluid flowing over a stretching sheet. Their study included important parameters
such as induced magnetic field, internal heating, thermal radiation, and Ohmic and viscous
dissipation effects. Alizader et al. [90] studied the steady laminar flow and heat transfer
in an MHD micropolar nanofluid in a two-dimensional channel with penetrable walls and
thermal radiation. The outcomes showed that by increasing the micropolar parameter, the
temperature profile slightly increased. Abbas et al. [91] investigated the stagnation point
flow of an MHD micropolar nanomaterial fluid over a circular cylinder having sinusoidal
radius variation, while taking into account a velocity slip phenomenon. They mathematically
modeled the flow of the micropolar fluid for both weak and strong concentrations. Shah et al.
[92] studied the flow of a micropolar Casson fluid between two parallel plates in a rotating
frame, with thermal radiation and taking into account the influence of Hall current. It was
found that the combined Hall impact decreases the operative conductivity, which tends to
increase the velocity field.

Mixed convection due to homogeneous–heterogeneous chemical reactions arises in
many science and engineering applications, such as in the production of plastics including
polythene, polymer extrusion, and cooling of elastic sheets. Many chemical systems involve
both homogeneous and heterogeneous reactions, with examples arising in combustion,
catalysis and biochemical systems. The interaction between the homogeneous reactants in
the bulk fluid and heterogeneous reactions on catalytic surfaces is generally very complex.
A simple mathematical model for homogeneous-heterogeneous reactions in stagnation-
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point boundary-layer flow was given by Chaudhary and Merkin [93]. They modeled the
homogeneous reaction using isothermal cubic kinetics and the heterogeneous reaction using
first-order kinetics. Chaudhary and Merkin [94] extended their earlier work to include the
effect of loss of the autocatalyst. Two studies, by Kameswaran et al. [95] and Ravikiran
and Radhakrishnamacharya [96], considered the effects of combined homogeneous and
heterogeneous chemical reactions on the peristaltic motion of a micropolar fluid through a
porous medium with wall effects and a slip boundary condition. Shaw et al. [97] investigated
the effects of a homogeneous-heterogeneous reaction on steady micropolar fluid flow along a
permeable stretching or shrinking sheet in a porous medium. This study extended the model
developed by Chaudhary and Merkin [93] for a homogeneous-heterogeneous reaction in
boundary layer flow with equal diffusivities of a reactant and autocatalysis. In Chapter 6 of
the current thesis, an unsteady MHD micropolar model with homogeneous–heterogeneous
chemical reactions over a stretching surface is studied.

1.2 Nanofluids

All fluid flows studied in this thesis incorporate nanofluids. The low thermal conductivity
of common fluids often limits their effectiveness in applications such as heat exchangers.
A wide variety of techniques are often used to enhance thermal conductivity of fluids and
subsequently improve heat transfer. One such innovative method is suspending nanometre-
sized solid particles in the fluids. Different types of powders such as metallic, non-metallic
and polymeric particles are added to common fluids to form slurries. Even at low particle
volume concentration, the thermal conductivity, thermal diffusivity, viscosity and heat transfer
performance of such fluids with suspended particles have been shown to be higher than those
of common base fluids such as water and oil [98, 99]. A nanofluid is defined by Choi [5]
as a fluid with suspended solid nanometer-sized particles (termed nanoparticles) such as,
nanofibers, nanotubes, nanowires, nanorods, or droplets that are less than 100 nm in size, and
solid volume fraction less than 4%. The study by Xuan and Li [99] presented a procedure
for preparing a nanofluid through a suspension of nanophase powders in a base liquid. They
presented a theoretical study of the thermal conductivity of nanofluids and the heat transfer
performance of a nanofluid flowing in a tube. The study revealed that nanofluids has great
potential for enhancing the heat transfer process. The reason is that the suspended ultrafine
particles generally increase the thermal conductivity of the nanofluid. The volume fraction,
shape, dimensions and properties of the nanoparticles have been shown to affect the thermal
conductivity of nanofluids.
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Many researchers have presented experimental or theoretical studies of the thermo-
physical properties of, and the convective heat transfer in, nanofluids. Nanofluids have great
potential for applications in many fields, including the intensification of heat transfer and the
cooling of electronic equipments. For instance, a novel cooler designed by Jang and Choi
[100] combined the use of a microchannel heat sink with nanofluids. These nanofluids had
better cooling performance than pure water when used as the cooling medium. Nanofluids
reduced both the thermal resistance and the temperature difference between the heated
microchannel wall and the coolant. Nanofluids have further been used in applications in such
fields as energy extraction, mechanical engineering, biomedical systems and transportation.
Tzeng et al. [101] studied the use of nanofluids in cooling of automatic transmissions.
Nanofluids have been used in building heating and cooling systems. Kulkarni et al. [102]
evaluated how nanofluids perform when heating buildings in cold regions. Otanicar et al.
[103] reported experimental results of solar collectors that used nanofluids made from a
variety of nanoparticles (graphite, and silver). The efficiency improvement was shown to
improve by a factor of up to 5% in solar thermal collectors when utilizing nanofluids as the
absorption media.

Various experimental and theoretical studies have been carried out on the characteristics
of nanofluids in convective heat transfer and thermal conductivity. Arifin et al. [104]
studied both free and mixed convection in a nanofluid flow past a horizontal surface in
order to investigate the effect of the solid volume fraction or nanoparticle volume fraction
of the nanofluid on the flow and heat transfer characteristics. It was found that the solid
volume fraction affects the fluid flow and heat transfer characteristics. Chamkha et al. [105]
investigated non-Darcy natural convection flow in non-Newtonian nanofluids over a cone
in a porous medium with uniform heat and volume fraction fluxes. Their nanofluid model
incorporated the effects of Brownian motion and thermophoresis. It was assumed that the
cone surface was permeable for possible nanofluid wall suction/injection. They concluded
that increasing the Brownian motion parameter led to enhancing the local Sherwood number
and to reducing the local Nusselt number. Mondal et al. [106] presented a model for
the unsteady boundary-layer flow and heat transfer of a Maxwell nanofluid fluid over a
permeable shrinking sheet with convective boundary conditions and a variable magnetic field
applied normal to the sheet. More recent work by Bilal et al. [107] has identified the novel
characteristics of nanofluid flow induced by a vertically rotating cone with a consideration of
both the heat and mass transport. All fluid flows studied in this thesis incorporate nanofluids.
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1.3 Heat and mass transfer

In modern engineering designs it is essential to account for heat transfer. Sobhan and Peterson
[108] highlight the need to account for efficiencies in heat exchanges when designing and
operating devices such as air-conditioners and refrigeration systems. A successful design
makes provision for maintaining reasonable temperatures by means of adequate transfer
of heat. The study of heat transfer entails understanding the physical processes whereby
thermal energy is transferred as a result of a temperature gradient. There are three different
processes by which energy is transported; namely, conduction, convection and radiation.
Conduction is the mechanism of heat transfer that takes place between particles immediately
adjacent to one another or through molecular action, supplemented by free flow of electrons
from a high temperature region to a low temperature region, as explained by Bergman et
al. [109]. Çengel and Ghajar [110] explain that in convection, the thermal energy transport
is influenced by the relative motions within the fluid, so the resultant heat transfer occurs
between the layers of a fluid. These two authors also note that heat transfer can occur by
thermal radiation when solid bodies, as well as liquids and gases, emit thermal energy in the
form of electromagnetic waves and absorb similar energy from neighboring bodies. Thermal
radiation is considered further in Section 1.5.

Many fluid flows involve mass transfer. Yunus and Afshin [111] note that the transport
of one constituent chemical species from a region of higher concentration to that of a lower
concentration constitutes mass transfer. Mass transfer occurs in two ways, as outlined by
Bergman et al. [109]; firstly through the bulk fluid motion or mass convection and secondly
through diffusion. Cengel and Ghajar [110] state that the rate of mass diffusion of species is
proportionally related to the concentration gradient in the specific direction. Heat and mass
transfer in various fluid flows is investigated in this thesis.

1.4 Convective boundary conditions

The convective boundary condition is also commonly known as a Newton boundary condition.
This boundary condition describes the existence of heating or cooling at the surface and
comes from the surface energy balance. Kays et al. [112] explain that surface energy balance
infers that the heat conduction at the surface of the material is equal to the heat convection
at the surface in the same direction. The net heat entering the surface from the convective
side must equal the net heat leaving the surface from the conduction side. The convective
boundary condition is derived from the Fourier law of heat conduction applied to a solid
boundary. Sisko et al. [113] highlight the importance of heat transfer analysis associated



1.5 Thermal radiation 14

with convective boundary conditions in designing thermal energy storage, studying cooling
problems, reducing the drag, and in controling boundary layer separation. Makinde and
Aziz [114] investigated the importance of a convective boundary condition on boundary
layer flow and heat transfer. This study was later extended by Uddin et al. [115] who
investigated MHD free convection of a nanofluid over a vertical flat plate, taking into account
a Newtonian heating boundary condition. Models in this thesis consider the convective
boundary condition.

1.5 Thermal radiation

Thermal radiation plays a significant role in controlling heat transfer processes in polymer
processing industries. Additionally, the effect of thermal radiation on flow and heat transfer
processes is of major importance in the design of many advanced systems that operate at
high temperatures. Thermal radiation in these systems is usually the result of emission
from hot walls and from the working fluid. Thermal radiation becomes important when
the difference between the ambient temperature and that at the surface and is large. Thus
an understanding of radiation heat transfer in a system may assist in achieving products
with desired characteristics. The influence of thermal radiation on hydromagnetic Darcy-
Forchheimer mixed convection in a flow past a stretching sheet embedded in a porous medium
was studied by, among others, Pal and Mondal [116].

Thermal radiation is often approximated using the Rosseland approximation, with the
heat flux qr given by Pal [117] as

qr =−∂T 4

∂y

(4σ∗

3k∗

)
, (1.2)

where k∗ and σ∗ are the Rosseland mean spectral absorption coefficient and the Ste-
fan–Boltzmann constant, respectively. If the temperature differences are small, T 4 may
be expanded using the Taylor series about T∞, to obtain

T 4 ≈−3T 4
∞ +4T 3

∞ . (1.3)

The relative heat flux can then be written as

qr =−∂T
∂y

(16σ∗T 3
∞

3k∗

)
. (1.4)
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Both linear and the nonlinear thermal radiation is incorporated in the models in this
thesis.

1.6 Entropy generation

Entropy generation plays a major role in controlling the rate of heat transfer in the proximity of
a surface. Entropy production depletes the available energy in the engineering and industrial
processes. For this reason, it is important to determine the rate of entropy generation in
a system. Irreversibility which is expressed as entropy generation, is due to heat transfer,
mass transfer, vis- cous dissipation, chemical reactions, or magnetic field, etc. Aiboud and
Saouli [118] studied entropy generation in viscoelastic MHD flow over a stretching surface.
Butt et al. [119] studied the effects of velocity slip on entropy generation in the boundary
layer flow over a vertical sheet with a convective boundary condition. Magherbi et al. [120]
studied entropy generation in convective heat and mass transfer within a square cavity in
the case of assisting buoyancy forces. For the case of a binary perfect gas mixture, Hidouri
et al. [121] studied the influence of the Soret effect on entropy generation during double
diffusive convection for both aiding and opposing buoyancy forces in a square cavity. López
et al. [122] investigated entropy generation in MHD nanofluid flow in a porous vertical
microchannel with nonlinear thermal radiation. Entropy generation in second grade nanofluid
flow is investigated in this thesis. In Chapter 5, the focus is on entropy generation analysis in
order to improve the system’s performance.

1.7 Numerical methods

In recent years, various numerical methods have been used to solve systems of coupled,
nonlinear equations. These include methods such as that of Runge-Kutta, which is applicable
only for first order initial value ODE’s. Khan et al. [123] solved a system of equations with
the aid of shooting algorithm supported by a fifth order Runge-Kutta integration scheme.
The developed element free Galerkin method, is another new computational method, which
has been used effectively to solve problems with discontinuities, moving boundaries and
large deformations. Using this method Sharma et al. [124] presented a numerical solution
for unsteady MHD convection heat and mass transfer past a semi-infinite vertical porous
moving plate. The famous discretized method, the finite element method (FEM), has been
widely used in many simulations of engineering problem; however, it has limitations such as
interpolation failing when elements become too distorted. Another major difficulty in FEM
analysis is the preparation of an effective mesh leading to a good response solution. In order
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to remove many of the meshing difficulties, Bathe and Zhang [125] suggested a new finite
element solution scheme including meshing in which the elements can overlap.

The numerical methods for solving differential equations by approximating them with
difference equations, in which finite differences approximate the derivatives, are called the
finite difference methods (FDMs). The FDMs are unique; as Vajravelu and Prasad [126]
indicate they differ from other numerical techniques in a sense that they allow for an effective
control on the rate of convergence via an initial approximation. Saithambi [127] studied
and demonstrated the effectiveness of a second order FDM by applying it successfully to
variations of the Falkner–Skan equation, and by demonstrating its second order accuracy.
The Keller box method is an implicit finite difference scheme. It has been successfully
applied to parabolic partial differential equations. A shooting method accompanied by the
Runge-Kutta-Fehlberg scheme has been recently used by Bin-Moshin [128] to explore the
magnetohydrodynamic nanofluid flow over a vertical expanding surface. The disadvantage of
this method, as highlighted by Anderson et al. [129], lies in the computational effort per time
step being expensive due to its step having to replace the higher derivative by first derivatives.

The methods mentioned above have been used to find approximate solutions of highly
nonlinear coupled systems. These methods have some disadvantages, such as requiring many
grid points for accurate approximations of the solutions, being computationally expensive
and possibly not being very effective, as pointed out by Motsa et al. [130], where there are
discontinuities, singularities or problems with multiple solutions. Instead, spectral methods
are often the preferred tools for solving ordinary and partial differential equations, because of
their elegance and high accuracy in resolving problems with smooth functions. In comparing
spectral methods to finite difference methods, Solecki [131] indicate that, particularly for
problems with smooth solutions, spectral methods are computationally less expensive, they
converge faster and are more accurate.

In this study, the spectral quasilinearization methods and the local linearization method
are used to find solutions for unsteady boundary layer flow problems. These methods give
better accuracy than do the finite element and finite differences methods. Motsa and Shateyi
[132] used the successive linearization method to solve the equations describing an unsteady
boundary layer flow.

In this study, the spectral quasilinearization methods and the local linearization method
are used to find solutions for unsteady boundary layer flow problems. These methods give
better accuracy compared to those from finite element and finite differences methods. Motsa
and Shateyi [132] used the successive linearization method to solve the equations describing
an unsteady boundary layer flow.
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1.7.1 The spectral quasilinearization methods

The spectral quasilinearization method (SQLM) assumes a small difference between the
approximation at the current iteration level and the approximation at the previous iteration.
The SQLM was used by Motsa [130] to solve nonlinear partial differential equations (PDEs)
describing unsteady boundary layer flow due to an impulsively stretching surface. The
resulting sequence of equations was integrated using a Chebyshev spectral collocation
method. In the SQLM the nonlinear terms are linearized using the quasilinearization method
(QLM), developed by Bellman and Kalaba [133]. The SQLM has been described as being
efficient with faster convergence than for numerical methods such as the Runge–Kutta
methods. It gives accurate results with rapid convergence, according to Motsa et al. [134].
However, if a poor initial guess is chosen, the quasilinearization method performs poorly. In
this thesis, the SQLM is used in Chapters 3 and 4.

The spectral quasilinearization method (SQLM) assumes a small difference between the
approximation at the current iteration level and the approximation at the previous iteration.
The SQLM was used by Motsa et al. [130] to solve nonlinear partial differential equations
(PDEs) describing unsteady boundary layer flow due to an impulsively stretching surface.
The resulting sequence of equations was integrated using a Chebyshev spectral collocation
method. In the SQLM the nonlinear terms are linearised using the quasilinearisation method
(QLM), developed by Bellman and Kalaba [133]. The SQLM has been described as being
efficient with faster convergence compared to numerical methods such as the Runge–Kutta
methods. It gives accurate results with rapid convergence, according to Motsa et al. [134].
However, if a poor initial guess is chosen, the quasilinearisation method performs poorly. In
this thesis, the SQLM is used in Chapters 3 and 4.

1.7.2 The spectral local linearization method

The spectral local linearization method (SLLM) was developed by Motsa [130]. In principle
the aim of the SLLM algorithm is to linearize and decouple the system of equations using the
combination of a univariate linearization technique and spectral collocation discretization.
It breaks down a large coupled system of equations into a sequence of smaller systems
which can be solved iteratively in a computationally efficient manner using a Chebyshev
pseudospectral method. Shateyi and Marewo [135] used the SLLM to solve equations that
model an unsteady MHD flow and heat transfer in a boundary layer. Motsa et al. [136] used
the spectral local linearization method to solve the equations that model natural convection
in glass-fibre production processes. In this thesis, the SLLM is used to solve the nonlinear
transport equations in Chapters 2 and 5.
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1.7.3 The bivariate spectral local linearization methods

While the spectral local linearization method (SLLM) described in Section 1.7.2 is an efficient
method for solving coupled systems of nonlinear ordinary differential equations that model
boundary layer equations, the method has limitations. The SLLM is used to solve the system
of ODEs, that is in space only. It may not be used to solve a system of PDEs in both space
and time. This method was extended to a PDE system by Motsa [137], where he used
the Chebyshev spectral collocation method to discretize the equations in one independent
variable and still used finite differences for discretization in the second independent variable.
However, as already noted, finite differences require very fine grids to give accurate solution.
To eliminate the need for finite differences and so improve the convergence rate of the SLLM,
Motsa [138] presented a new approach wherein spectral collocation is used independently in
all independent variables of the PDE. The applied collocation method uses bivariate Lagrange
interpolation polynomials as basis functions and so the method is termed the bivariate spectral
local linearization method (BSLLM). The BSLLM converges fast and gives very accurate
results, which are obtained in a computationally efficient manner. In this thesis, the BSLLM
is used to solve PDEs in Chapter 6.

1.8 Aims and Objectives

The aim of this thesis is to study different mathematical models of non-Newtonian nanofluid
flows under various boundary conditions and in different geometries. The question of interest
concerns how the fluid physical parameters affect the boundary layer flow, heat and mass
transfer in various non-Newtonian nanofluids.

In this study we are further interested in the solution methods for solving the underlying
differential equations. The flow equations are solved numerically using the spectral local
linearization, spectral quasilinearization and the bivariate spectral local linearization methods.
Consequently, one of the objectives of this thesis is to test the accuracy, robustness and general
validity of these methods. To show the accuracy of the numerical schemes, analysis of the
residual errors is given for different physical parameter values. Detailed characterization and
interpretation of the physical results is given. Further validation of the results comes from
comparing them with existing results from literature.

The effect of several physical parameters on the fluid properties are given. We seek to
study the impact of key physical parameters including Brownian motion, thermal radiation,
and thermophoresis parameters on the flow velocity, temperature and concentration profiles
and entropy generation.
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1.9 Thesis structure

This thesis is organized as follows, in Chapter 2 the SLLM is used to solve the equations that
model an unsteady MHD Maxwell nanofluid flow with convective and boundary conditions
over a shrinking sheet. In Chapter 3, the SQLM is used to solve a system of nonlinear
differential equations for power-law nanofluid flow over a horizontal surface embedded
in a non-Darcy porous medium, with convective boundary condition. In Chapter 4, the
SQLM is applied to a couple stress nanofluid flow in magneto-porous medium with thermal
radiation and chemical reaction. In Chapter 5, the SLLM is used in the model that investigates
the entropy generation in a second grade MHD nanofluid flow over a convectively heated
stretching sheet with nonlinear thermal radiation and viscous dissipation. In Chapter 6,
the BSLLM is applied to the unsteady MHD micropolar nanofluids with homogeneous-
heterogeneous chemical reactions over a stretching surface. Finally, in Chapter 7 we present
the overall thesis conclusions.



Chapter 2

An unsteady MHD Maxwell nanofluid
flow with convective boundary conditions
using spectral local linearization method

The focus of this chapter is on unsteady Maxwell flow of a nanofluid over a shrinking surface
with both convective and slip boundary conditions. The model is nonlinear; it incorporates
relaxation time and captures the salient features of visco-elastic behaviour. An evaluation
is given of the impact and significance of Brownian motion and thermophoresis when the
nanofluid particle volume fraction flux at the boundary is zero. The transformed equations
are solved numerically using the spectral local linearization method (SLLM). An analysis of
the residual errors is presented to show the accuracy and convergence of the SLLM.
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1 Introduction
There have been only a few studies on Maxwell nanofluid
flow for a shrinking sheet in the recent past. However, in
general, research on non-Newtonian fluid flow has gained
sizeable attentionbecauseof themultiplicity of its applica-
tions in the biomedical and chemical industries [1]. A non-
Newtonian fluid is a fluid whose viscosity varies with the
applied stress. The relation between the strain rate and the
shear stress is nonlinear, and can be time-dependent [2].
The constitutive equations tend to be highly nonlinear and
intricate in comparison with those of a Newtonian fluid. A
Maxwell fluid is a viscoelastic material having the prop-
erties of elasticity and viscosity [3]. Unlike the Newtonian
model, the upper convected Maxwell (UCM) model incor-
porates relaxation time.

The UCM model has been studied by many re-
searchers, for example, Choi et al. [4] gave an analysis
of incompressible steady two-dimensional UCM fluid flow
in a porous channel. Their study included a considera-
tion of inertia and fluid elasticity. Nandy [5] focused on
the unsteady boundary layer flow of a Maxwell nanofluid
over a permeable shrinking sheet with a Navier slip con-
dition at the surface. The flow equations were solved us-
ing the shooting method. The homotopy analysis method
was used by Rashidi et al. [6] to find solutions to the con-
servation equations for heat and mass transfer in a two-
dimensional steady magnetohydrodynamic fluid flow in
a porous medium [6]. Awais [7] investigated heat absorp-
tion and generation in steady flow over a surface stretched
linearly in its own plane using the UCM fluid model.
A nanofluid is defined as a fluid with suspended solid
nanoparticles that are less than 100nm in size, and solid
volume fraction less than 4%, [8]. Even at low nanoparti-
cle volume concentration, nanofluids have been shown to
have improved conductivity and thermal the performance
compared to base fluids such as water and oil, [9].

The unsteadyMaxwell fluid flow over a stretching sur-
face subject to constructive/destructive chemical reaction
was studied by Mukhopadhyay and Bhattacharyya [10].
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They showed that for a constructive chemical reaction the
concentration field increased but decreased for a destruc-
tive chemical reaction [10]. Also, in line with physical ex-
pectations, the concentration boundary-layer decreased
for a destructive chemical reaction. Nandy et al. [11] stud-
ied forced convection in an unsteady nanofluid flow past a
permeable shrinking sheet subject to heat loss due to ther-
mal radiation. They explored the simultaneous impact of a
magnetic field, thermal radiation, andunsteadiness on the
heat transfer and flow properties of the fluid. Das et al. [12]
presented simulated results for heat and mass transfer in
an electrically conducting incompressible nanofluid flow
near a heated stretching sheet with a convective bound-
ary condition. The impact of an inclined magnetic field in
the flow of a fluid with variable thermal conductivity was
studied by Hayat et al. [13, 14]. An analysis of the signifi-
cance of a heat source/ sink and temperature dependent
thermal conductivity was given. Qasim and Hayat [15] in-
vestigated the impact of heat loss through thermal radia-
tion in unsteadymagnetohydrodynamic flowof amicropo-
lar fluid. The influence of Joule heating and thermophore-
sis in a Maxwell fluid was studied in [16].

Som et al. [17] studied Ohmic dissipation and thermal
radiation in flow over a stretching sheet embedded in a
porous media. The results indicated that fluid injection
causes a reduction in heat transfer whereas fluid suction
raises the heat transfer coefficient. Hsiao [18] studied con-
jugate heat transfer with Ohmic dissipation in an incom-
pressible Maxwell fluid close to a stagnation point. Maha-
patra et al. [19] gave an analysis of stagnation point fluid
flow over a stretching surface.

The purpose of this study is to investigate unsteady
two-dimensional boundary-layer flow, heat and mass
transfer in a Maxwell nanofluid flow over shrinking sheet
with both slip and convective boundary conditions. The
objective is to extend the study by Nandy [5] to include an
evaluation of the impact and significance of thermophore-
sis and Brownian motion when the nanofluid particle vol-
ume fraction at the boundary is not actively controlled.
The conservation equations are solved numerically using
the spectral local linearization method, see Motsa [20, 21].
To show the accuracy of the numerical scheme, analysis of
the residual errors is given for different physical parame-
ter values. The effect of several physical parameters on the
fluid properties are shown in tabular and graphical form.
Comparison with published work for special cases shows
an excellent agreement.

2 Problem formulations
An unsteady laminar boundary layer flow of an incom-
pressible viscous Maxwell nanofluid over a shrinking sur-
face in two dimensions is considered here. The shrinking
sheet velocity is uw(x, t) while themass transfer velocity is
vw(x, t), t denotes time and x is measured along the sheet.
Using the nanofluid model proposed by Buongiorno [22],
the conservation equations for mass, momentum, thermal
energy and nanoparticles for a Maxwell fluid are:

∂u
∂x + ∂v∂y = 0, (1)

∂u
∂t + u

∂u
∂x + v ∂u∂y = ν ∂

2u
∂y2 − k0

(︂
u2 ∂

2u
∂x2 (2)

+2uv ∂
2u

∂x∂y + v
2 ∂2u
∂y2

)︂

− σB
2

ρf

(︂
u − kv ∂u∂y

)︂
,

∂T
∂t + v

∂T
∂y + u ∂T∂x = α ∂

2T
∂y2 (3)

+ 1
ρf cp

∂
∂y

[︂
κ(T)∂T∂y

]︂

+ µ
ρf cp

(︂
∂u
∂y

)︂2
+ σ
ρf cp

(uB0 − E0)2 +
Q0
ρf cp

(T − T∞)

+
[︃
τDB

∂C
∂y

∂T
∂y + τDTT∞

(︂
∂T
∂y

)︂2
]︃
+ Dmk0cscp

∂2C
∂y2

− 1
ρf cp

∂qr
∂y ,

∂C
∂t + v

∂C
∂y + u ∂C∂x = DB

∂2C
∂y2 + DTT∞

∂2T
∂y2 (4)

+ Dmk0Tm
∂2T
∂y2 − k1(C − C∞),

where u is the velocity component in the x- direction and
v is the velocity component in the y-direction. The kine-
matic viscosity is ν, the relaxation time of the UCM fluid
is k0, the thermal diffusivity is α, the variable thermal con-
ductivity is κ(T) and the chemical reaction parameter is k1.
The Brownian diffusion coefficient is DB, while the ther-
mophoresis diffusion coefficients is DT . Here, τ is the ef-
fective heat capacity of the nanoparticle material divided
by the heat capacity of the ordinary fluid, T is the fluid
temperature and C is the nanoparticle volume fraction.
The temperature and thenanoparticle concentrationat the
wall are Tw and Cw, respectively, and T∞ and C∞ denote
the ambient temperature and concentration respectively.
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The velocity slip is proportional to the local shear stress.
These equations are subject to the boundary conditions:

u = uw(x, t) + uslip(x, t), v = vw(x, t), (5)

− k0
√
1 − λt ∂T∂y = hf (Tw − T),

DB
∂C
∂y + DBT∞

∂T
∂y = 0 at y = 0,

u → 0, T → T∞,
∂u
∂y → 0, C → C∞asy →∞,

where k0 = k(1 − λt), uw(x, t) = −ax(1 − λt)−1, uslip(x, t) =
νN1∂u/∂y, N1 = N

√
1 − λt is the slip velocity , λ is the un-

steadiness parameter and k0(> 0), a(> 0) are positive con-
stants. This assumption is to allow for the possibility of a
similarity solution. We introduce the similarity variables:

η = y
√︂

a
ν(1 − λt) , ψ =

√︂
aν

1 − λt xf (η), (6)

T(x, t) = T∞ + θ(η)(Tw − T∞),
C(x, t) = C∞ + ϕ(η)(Cw − C∞),

where ψ is the stream function, defined by v = −∂ψ/∂x
and u = ∂ψ/∂y. Equations (1) - (4) are transformed to

f ′′′ − f ′2 + � ′′ − A
(︁η
2 f

′′ + f ′
)︁

(7)

− β
(︁
f 2f ′′′ − 2� ′f ′′

)︁
−M2f ′ −M2β� ′′ = 0,

1
Pre�

θ′′ + 1
Pr

[︁
θ′′ (1 + εθ) + εθ′2

]︁
+ Ec f ′′2 (8)

+ EcM2 (︀f ′ − E1
)︀2 +

(︁
f − A η2

)︁
θ′

+ Dfϕ′′ + Heθ + Ntθ′2 + Nbθ′ϕ′ = 0,

ϕ′′ + Sc
(︁
f − A η2

)︁
ϕ′ + Nt

Nb θ
′′ − 𝛾Scϕ + Nt

Nb θ
′′ (9)

+ ScSrθ′′ = 0,

where the prime denotes derivatives with respect to η. The
boundary conditions are

f ′(0) = −1 + δf ′′(0), f (0) = s, f ′′(∞) = 0, f ′(∞) = 0, (10)
θ′(0) = −Bi(−θ(0) + 1), θ(∞) = 0,
Nbϕ′(0) + Ntθ′(0) = 0, ϕ(∞) = 0,

where the parameter δ = N
√
aν is the non-dimensional

velocity slip and vw(0, t) is the wall mass transfer velocity
given by

vw(0, y) =
v0√
1 − λt

,

where v0 is the constant mass flux velocity. Thus

s = − v0aν = f (0),

where wall mass suction occurs when s > 0 while wall
mass injection occurs when s < 0. The non-dimensional
parameters in the above equations are the Maxwell pa-
rameter β (= k0a), the unsteadiness parameter A

(︀
= λ/a

)︀
,

the magnetic field parameter M
(︁
=
√︁
σB20/ρf a

)︁
,

He
(︀
= Q0/ρf cp

)︀
the heat generation parameter and Q(=

Q0(1 − λt)), Nb
(︀
= τDB(Cw − C∞)/ν

)︀
is the Brownian mo-

tion parameter and Nt
(︀
= τDT(Tw − T∞)/νT∞

)︀
is the ther-

mophoresis parameter. The Prandtl number is Pr
(︀
= ν/α

)︀
,

the Schmidt number is Sc
(︀
= ν/DB

)︀
, Pre�

(︀
= Pr/(1 + 4

3R)
)︀

is the effective Prandtl number, Bi
(︀
= hf /k0

√︀ ν
a
)︀
is the

Biot number, 𝛾 = k1(Cw − C∞) is the reaction parameter
where 𝛾 < 0 denotes a destructive reaction, 𝛾 = 0 indicates
that there is no reaction and 𝛾 > 0 denotes a generative
reaction.

Other important physical parameters are the variable
thermal conductivity κ(T), the Eckert number Ec, the local
electromagnetic parameter E1, the Soret number Sr, the
Dufour number Df and the radiation parameter R. These
are defined as

κ(T) = K∞
(︂
1 + ε T − T∞∆T

)︂
, Ec =

(︂
x2a2

cp∆T(1 − λt)

)︂
, (11)

E1 =
(︂
E0(1 − λt)
aBox

)︂
,

Sr =
(︂
Dmk0∆T
Tmν∆C

)︂
, Df =

(︂
Dmk0∆C
cscp∆T

)︂
, (12)

R = 4σ1T3∞
K1ρf cpαm

,

where ε is a small parameter, ∆T = Tw − T∞ and the ther-
mal conductivity parameter is K∞. The important flow at-
tributes, the Nusselt number Nux and skin friction coeffi-
cient Cf are described by

Cf =
τw

ρu2w(x)
, Nux =

xqw
k(Tf − T∞)

. (13)

Here qw and τw are the plate heat flux and the skin friction
respectively, defined as

qw = −k
(︂
∂T
∂y

)︂

y=0
, τw = µ

(︂
∂u
∂y

)︂

y=0
, (14)

where µ is the coefficient of viscosity. Equations (13) may
be written as

Re
1
2
x Cf = f ′′(0), (15)

Re−
1
2

x Nux = −θ′(0), (16)

where Rex = uw(x)x
ν is the local Reynolds number. Here, the

Sherwood number is zero, due to the assumption of zero
mass flux at the surface.

Unauthenticated
Download Date | 12/5/18 9:57 AM

23



640 | H.M. Sithole et al.

3 Method of solution
The transport equations have been solved using the itera-
tive spectral local linearization method (SLLM), see Motsa
[20]. In principle of the SLLM algorithm is to linearize and
decouple the systemof equations.Motsa et al. [21] used the
spectral local linearization method to solve the equations
that model natural convection in glass-fibre production
processes. Shateyi andMarewo [23] used the SLLM to solve
equations that models an unsteady MHD flow and heat
transfer. Nonetheless, thismethod has only been used in a
limited number of studies, hence its general validation in
complex systems remains to be made. For the interested
reader, the SLLM algorithm is described in [20].

The differential equations arising from the lineariza-
tion procedure are solved using a Chebyshev pseudo spec-
tral method. The domain of the problem is transformed to
the interval [−1, 1] using the transformation (b − a)(τ +
1)/2. The differentiation matrix D is used to approximate
the derivatives Zi(η) of the unknown variables to the ma-
trix vector product,

dZi
dη =

N̄∑︁

k=0
DlkZi(τk) = DZi , l = 0, 1, . . . , N̄, (17)

where the vector function at the collocation points is given
by Z = [z(τ0), z(τ1), . . . , z(τN)]T ,D = 2D/(b−a) with N̄+1
collocation points, [20] and

Zj(p) = DpZ j . (18)

where the superscript in D denotes higher order deriva-
tives.

SLLM Algorithm

The differential equations (7) - (9) may collectively be
stated as,

ωk[F, T, H] = 0, for k = 1, 2, 3 (19)

where ω1, ω2 and ω3 are non-linear operators and F,H, T
are given by

F =
{︂
f , ∂f∂η ,

∂2f
∂η2 ,

∂3f
∂η3

}︂
, (20)

T =
{︂
θ, ∂θ∂η ,

∂2θ
∂η2

}︂
, (21)

H =
{︂
ϕ, ∂ϕ∂η ,

∂2ϕ
∂η2

}︂
. (22)

The system of equations (19) can be simplified and decou-
pled by linearizing the nonlinear terms. The Chebychev

pseudo-spectral collocationmethod is utilized to integrate
the decoupled system. The simple algorithm is as follows:

1. From the first equation, find F while treating H and
T as known functions from initial guesses. This gives
Fr+1

2. Solve for T in the second equation while treating F
and H as known functions, T is known from 1 above
and H is known from the initial guess. This gives
Tr+1

3. Finally, solve for H in the last equation while treat-
ing F and T as known functions, T and H are known
from 1 and 2 above. We obtain Tr+1.

4. Repeat steps 1-3 to find the next iterative solutions.

Using these ideas the nonlinear system of equations (7) -
(9) are written as:

a1,r f ′′′r+1 + a2,r f ′′r+1 + a3,r f ′r+1 (23)
+ a4,r fr+1 = a5,r ,
b1,rθ′′r+1 + b2,rθ′r+1 + b3,rθr+1 = b4,r ,
c1,rϕ′′

r+1 + c2,rϕ′
r+1 + c3,rϕr+1 = c4,r ,

subject to boundary conditions:

fr+1(0) = s, f ′r+1(0) (24)
= −1 + δf ′′r+1(0), f ′′r+1(∞) = 0,

f ′r+1(∞) = 0,
θ′r+1(0) = −Bi(1 − θr+1(0)), θr+1(∞) = 0,

Nbϕ′
r+1(0) + Ntθ′r+1(0) = 0, ϕr+1(∞) = 0.

where

a1,r = 1 − βf 2r , a2,r (25)

= fr + 2βfr f ′r − A
η
2 −M

2βfr ,

a3,r = 2βfr f ′′r − 2f ′r − A −M2,
a4,r = f ′′r − 2βfr f ′′′r + 2βf ′r f ′′r −M2βf ′′r ,
a5,r = fr f ′′r − f ′2r − 2βf 2r f ′′′r + 4βfr f ′r f ′′r

−M2βfr f ′′r ,

b1,r =
ϵ
Pr θr +

1
Pre�

+ 1
Pr , (26)

b2,r =
2ϵ
Pr θ

′
r + fr + Nbϕ′

r + 2Ntθ′r − A
η
2 ,

b3,r =
ϵ
Pr θ

′′
r , b4,r = He, b5,r =

ϵ
Pr θ

′′
r θr +

ϵ
Pr θ

′2
r

− Ec f ′′r − EcM2 (︀f ′r − E1
)︀2 − Dfϕ′

r − Ntθ
′2
r ,

c1,r = Sc fr − ScA
η
2 , c2,r = −𝛾Sc ,

c3,r = −ScSrθ′′r −
Nt
Nb θ

′′
r .
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Table 1: Comparison of the skin friction coeflcient and Nusselt number between the results of present study and reported by Hayat et al.
[24] when β = 0.2, α = 0.3, Pr = 1, s = 0.5 and the other parameters are set to zero

Iterations [24] Current study [24] Current study
−f ′′(0) −f ′′(0) −θ′(0) −θ′(0)

1 0.2829900 0.28139017 0.4300000 0.40401296
2 - 0.28149501 - 0.40465707
3 - 0.28149504 - 0.40465726
4 - 0.28149505 - 0.40465726
5 0.2814982 0.28149505 0.4064811 0.40465726
6 - 0.28149505 - 0.40465726
7 - 0.28149505 - 0.40465726
8 - 0.28149505 - 0.40465726
9 - 0.28149505 - 0.40465726
10 0.2814950 0.28149505 0.4047923 0.40465726
20 0.2814950 0.28149505 0.4046587 0.40465726
35 0.2814950 0.28149505 0.4046572 0.40465726
40 0.2814950 0.28149505 0.4046572 0.40465726

The following decoupledmatrix system of equations is ob-
tained:

A1Fr+1 = B1 (27)
A2Tr+1 = B2
A3Hr+1 = B3

with corresponding boundary conditions

fr+1(τN) = s, f ′r+1(τN) = −1 + δf ′′r+1(τN), (28)
f ′′r+1(τ0) = 0, f ′r+1(τ0) = 0,
θ′r+1(τN) = −Bi(1 − θr+1(τN)), θr+1(τ0) = 0,
Nbϕ′

r+1(τN) + Ntθ′r+1(τN) = 0, ϕr+1(τ0) = 0.

where

A1 = diag [a1,r]D3 + diag [a2,r]D2 (29)
+ diag [a3,r]D + diag [a4,r] ,A1 = a5,r
A2 = diag [b1,r]D2 + diag [b2,r]D + diag [b3,r]
+ b4,rI,A2 = c5,r
A3 = D2 + diag [c1,r]D + c2,rI, A3 = c3,r .

I is an identity matrix with (N̄ +1) rows and columns, F,H
and T are approximate values of f , ϕ and θ calculated at
the collocation points. Initial approximations are required
to start the iteration process, and these can be selected
so as to satisfy the boundary conditions and known flow
configuration. For our system, the following guesses were
used as suitable initial approximations,

f0(η) =
α

1 + δ (−e
−η + 1) + s, g0(η) (30)

Figure 1: Flow geometry of the problem

= Bi
1 + Bi

e−η ,

θ0(η) =
NtBi

Nb(1 + Bi)
e−η .

The boundary conditions are inserted in the matrices in
(27) and the approximate solutions at each iteration level
are obtained by solving (27).
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Figure 2: Residual errors for θ and ϕ when A = −2.5, −2.0, −1.5

Table 2: Computed values of the Nusselt number for different values
of Nb, M and Nt

Nb M Nt | − θ′(0)|
0.2 0.06758610
0.4 0.3 0.1 0.06758600
0.8 0.06758579

0.1 0.09046540
0.2 0.3 0.1 0.08959087

0.5 0.08728149
0.05 0.08031901

0.2 0.3 0.07 0.08434208
0.10 0.09125982

4 Results and discussion
The solutions of the differential equations are given Tables
1 - 2 and Figures 2 - 16. In Table 1 we establish the reliability
of the numerical scheme by a comparative analysis of the
skin friction coefficient Cf and Nusselt number Nux with
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Figure 3: Residual errors for θ and ϕ when s = 2, 2.2, 2.3

results reported by Hayat et al. [24] when β = 0.2, α = 0.3,
Pr = 1 and s = 0.5. The other parameters have been set
to zero. A good agreement is observed with the previously
publishedwork. To gain further insights as to the accuracy
and convergence of themethod used in this study, we have
calculated residual errors as shown in Figures 2 to 4. These
are calculated for different values of A, s and β. In general,
the solutions have converged with an absolute residual er-
ror ||Res|| ≈ 10−11 after five iterations. These results suf-
ficiently demonstrate to the accuracy and convergence of
the SLLM.

The numerical computations have been done when
A = −1.0, s = 2, δ = 0.25, Nb = Nt = 0.1, Sc = 0.8,
Pr = 1.0, M = 0.3, ε = 0.1, Ec = 0.1, E1 = 1.0, Df = 0.1,
He = 0.5, Sr = 0.1, Pre� = 1.0, 𝛾 = 0.1, and Bi = 0.1.
For numerical simulations, the parameter values are cho-
sen from the previous literature on nanofluid flow such as
[5, 10, 12, 16, 24] etc. Table 2 shows the Nusselt number
for different Nb,M and Nt, the other parameters as stated
above. The results show that Nux decreases with increas-
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Figure 4: Residual errors for θ and ϕ when β = 0.1, 0.15, 0.2
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Figure 5: Effect of magnetic field parameter M on the velocity profile
f ′(η)

ingNb andMwhereas the opposite is observed for increas-
ing values of Nt.
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Figure 6: Effect of A on the velocity profile f ′(η)
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Figure 7: Effect of β on the velocity profile f ′(η)

Figure 5 shows that the velocity reduces with increas-
ing magnetic field strength. This is an indication of an in-
crease in the Lorentz force that creates a resistance to the
fluid flow near the boundary slowing down the fluid mo-
tion. Figure 6 shows that the boundary layer thickness in-
creases as the unsteadiness parameter increases. The ve-
locity profiles decrease with increasing value of A.

Figure 7 shows that as β increases, the boundary layer
thickness increases with a cross-over of profiles near the
surface. The physical interpretation of this behavior is that
an increase in β reduces the fluid in the flow leading to the
boundary layer thickness increasing near the surface but
a contrary trend is recognized away from the surface.

Figure 8 shows a reduction in the velocity with an in-
crease in the mass suction parameter s. Figure 9 demon-
strates the effect of A on the temperature profile. An in-
crease in unsteadiness causes an increase in the solute
concentration. Figure 10 shows how the temperature pro-
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Figure 8: Effect of s on the velocity profile f ′(η)

0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

η

θ
(η
)

 

 

A = −2.5
A =   −2
A = −1.5

Figure 9: Effect of A on the temperature profile θ(η)
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Figure 10: Effect of β on the temperature profile θ(η)

files change with respect to variations in the Maxwell pa-
rameter β. The temperature profiles increase with increas-

0 2 4 6 8 10
0

0.5

1

1.5

2

η

θ
(η
)

 

 

Nt = 0.05
Nt = 0.07
Nt = 0.09

Figure 11: Effect of Nt on the temperature profile θ(η)
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Figure 12: Effect of M on the temperature profile θ(η)

ing β values. This is to be expected since higher Maxwell
parameters generally suggest a more solid material able to
conduct and retain heat better.

Figure 11 shows the change in temperature profiles
with respect to variations in the thermophoresis parame-
ter values. As thermophoresis increases, the temperature
profiles decrease near the surface. Figure 12 shows the ef-
fect of the magnetic field parameter on θ(η) the tempera-
ture profiles. We observe that the temperature profiles in-
crease with increasing values of themagnetic field param-
eter. The existence of a magnetic field in an electrically
conducting fluid produces a body force that decelerates
the fluid flowwhich in turn has the effect of retainingmore
heat within the boundary layer.

The impact of the unsteadiness parameter, Maxwell
parameter, Brownian motion parameter, thermophoresis
parameter and the Schmidt number on the concentration
profiles is depicted in Figures 13 - 16. In Figures 13 and 14
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Figure 13: Effect of unsteadiness parameter A on the concentration
profile ϕ(η)
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Figure 14: Effect of β on the concentration profile ϕ(η)

0 2 4 6 8 10 12
0

0.005

0.01

0.015

0.02

η

φ
(η
)

 

 

Nb = 0.2
Nb = 0.4
Nb = 0.8

Figure 15: Effect of Nb on the concentration profile ϕ(η)
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Figure 16: Effect of Nt on the concentration profile ϕ(η)

an increase in the unsteadiness parameter and Maxwell
parameter causes an increase in the concentration profiles
near the surface but the oppositemovement is observed far
from the surface. Figure 15 shows the impact that theBrow-
nian motion parameter has on the concentration profiles.
An increase in the Brownian motion parameter causes a
decrease in the concentration profiles. The Brownian mo-
tion tends to intensify particle displacement away from the
fluid flow regime onto the surface; this phenomenon ac-
counts for a decrease in the concentration of the nanopar-
ticles far from the surface, thus resulting in a decrease in
the nanoparticle concentration boundary layer thickness.

Figure 16 depicts the effect of the thermophoresis pa-
rameter on the concentration profiles. Thermophoresis is
associated with the movement of nanoparticles from a hot
to a coldwall, and since it is generated by temperature gra-
dients, this creates a fast flow away from the moving sur-
face. Consequentlymore fluid is heated away from the sur-
face leading to an increase in the temperature within the
thermal boundary layer.

5 Conclusion
In this study, we have investigated unsteady Maxwell
nanofluid flow over a shrinking sheet with convective
and slip boundary conditions. The conservation equations
were solved using an iterative spectral local linearization
method. We have given an error analysis to establish the
accuracy and convergence of the method. The impact and
significance of various physical parameters on the fluid
properties has been demonstrated both qualitatively and
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quantitatively. The findings can be briefly outlined as fol-
lows;

1. The concentration and velocity profiles decrease
whereas the temperature profile increases with in-
creasing unsteadiness parameter.

2. Increasing particle Brownian motion leads to a re-
duction in the concentration profiles but concentra-
tion profiles increase with increasing thermophore-
sis.

3. In terms of heat transfer coefficients, increasing
value of particle Brownian motion and magnetic
field strength reduces the heat transfer coefficient
but the opposite is observed in the case of increased
thermophoresis parameter.
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Chapter 3

Non-Darcian nanofluid flow over a
horizontal surface embedded in a porous
medium

1

In Chapter 2, we studied the upper convected Maxwell (UCM) non-Newtonian model
that incorporates relaxation time. The limitation of the UCM model is that it do not allow for
strain dependency and second normal stress difference. To address these limitations, in this
chapter the focus is on a complex power-law non-Newtonian nanofluid flow. The complexity
of the equations is due to the power terms that arise in the power law model. For this
model, the boundary layer nanofluid flow over a horizontal plate embedded in a non-Darcy
porous medium is investigated. The nanofluid model incorporates the effects of Brownian
motion and thermophoresis, and a mixed convective boundary condition is employed at the
surface. The spectral quasilinearization method is used to solve the conservation equations.
The impact of specific parameters on the flow behaviour and heat transfer characteristics is
discussed.

1 The work in this chapter has been submitted to International Journal of Ambient Energy
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Abstract

The boundary layer nanofluid flow over a horizontal plate embedded in a non-Darcy porous

medium is investigated in this study. A non-Newtonian power-law fluid is considered as

the base fluid. The nanofluid model incorporates the effects of Brownian motion and ther-

mophoresis. A mixed convective boundary condition, which is more useful in practice, is

employed at the surface instead of Dirichlet or Neumann boundary conditions. The flow and

convective heat transfer have engineering and industrial applications, such as the thermal de-

sign of industrial equipment dealing with molten plastics and polymeric liquids, or in nuclear

power plants and thermal energy storage processes. The main aim of this study is to use

the spectral quasilinearization method to study the effects of non-Newtonian nanofluid flow

over a horizontal surface. The objective is to explore both the accuracy and the convergence

of the method through the evaluation of residual errors and error norms and to investigate

the impact of specific parameters on the flow behavior and heat transfer characteristics.
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Introduction

A recent innovative technique to enrich heat transfer in fluids has been to suspend

nanosized solid particles in a base fluid in such a way that no sedimentation takes place.

Such a fluid is called a nanofluid (Choi and Eastman [1]). Several theoretical studies on

the characteristics of nanofluids for convective heat transfer, modelling of the equations for

convective heat transfer and thermal conductivity exist (Kuznetsov and Nield [2]; Buongiorno

[3]; Kameswaran et al. [4]). The boundary layer flow of a nanofluid over a vertical wedge has

been discussed by Gorla et al. [5]. Arifin et al. [6] studied both free and mixed convection

in a nanofluid flowing past a horizontal flat plate. Chamka et al. [7] investigated non-Darcy

natural convection flow in non-Newtonian nanofluid over a cone in a porous medium with

uniform heat and volume fraction fluxes. Sudhagar et al. [8] studied nanofluid flow past an

isothermal vertical cone.

Many researchers study non-Newtonian nanofluids in an attempt to improve heat and

mass transfer for industrial applications ((Nield [9]; Moraveji et al. [10]). Hady et al. [11]

have shown the influence of heat generation/absorption and non-Newtonian rheology on

natural convection in boundary layer flow adjacent to a vertical cone embedded in a porous

medium. Thermal properties of non-Newtonian nanofluids have been discussed by Hojjat

et al. [12]. They have performed several experimental studies in this direction. They later

extended their work by studying laminar convection subject to a constant wall temperature

(Hojjat et al. [13]).

The study of combined free and forced convection in boundary layer flow on a vertical

surface embedded in porous media has received a lot of interest, mainly because these pro-

cesses occur in many industrial applications such as in geothermal energy technology, crude

oil extraction, filtration, and underground disposal of chemical and nuclear waste (Cheng

[14]; Nield and Bejan [15]; Vafai [16]; Vadasz [17]). Gorla et al. [18] analyzed mixed con-

vection from vertical plate in non-Newtonian fluid saturated porous media. They analyzed

the problem of mixed convection in power-law type non-Newtonian fluids with surface mass

transfer.

2
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In engineering and industrial processes such as cooling or drying, the convective bound-

ary condition is more general and appropriate than assuming constant wall temperature

conditions. Shaw et al. [19] studied the influence of the convective boundary condition and

nonlinear convection in a Casson fluid flow over a horizontal plate. The convective surface

boundary condition for the flow of a nanofluid has been used by many researchers, such as

Makinde and Aziz [22] and Yao et al. [23]. Abdel-Wahed and Emam [24] studied boundary

layer over a moving surface in a nanofluid with convective boundary conditions. One of their

findings was that convective conditions reduce surface heat and mass flux.

The first objective of this study is to investigate MHD mixed convection in nanofluid

flow from a horizontal plate. The base fluid is a non-Newtonian power-law fluid. The hori-

zontal surface is embedded in a non-Darcy porous medium. The temperature condition at

the boundary is the convective boundary condition. The model equations are solved numer-

ically using a recently developed spectral quasilinearization method. The second objective is

to explore the accuracy and convergence of the method through the evaluation of both the

residual errors and error norms. To the best of our knowledge, such a study and model has

not been reported in the literature.

Mathematical formulation

Consider the steady two-dimensional laminar boundary layer flow over a flat plate

embedded in a non-Darcy porous medium that is saturated with a non-Newtonian nanofluid.

It is assumed that the free stream moves with constant velocity U∞. A uniform magnetic field

of strength B is imposed normal to the plate. Homogeneity and local thermal equilibrium

are assumed. Using the Oberbeck-Boussinesq and the boundary layer flow approximations,

3
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the momentum, temperature and concentration equations are written as

∂u

∂x
+
∂v

∂y
= 0, (1)

∣∣∣∣
∂u

∂y

∣∣∣∣
n−1

∂u

∂y
+
∂u|u|
∂y

+
σB2

ρf

∂u

∂y
=

(1− C∞)ρfgKβ

µ

∂T

∂y
− (ρp − ρf )gK

µ

∂C

∂y
, (2)

u
∂T

∂x
+ v

∂T

∂y
= αm

∂2T

∂y2
+ τDB

∂T

∂y

∂C

∂y
+ τ

DT

T∞

(
∂T

∂y

)2

, (3)

u
∂C

∂x
+ v

∂C

∂y
= εDB

∂2C

∂y2
+ ε

(
DT

T∞

)
∂2T

∂y2
, (4)

where the velocity components u and v are along the x and y directions, respectively, and

n is the power-law index. The fluid is called a pseudoplastic if n < 1 and a dilatant if

n > 1. The fluid is Newtonian for n = 1. The gravitational acceleration is denoted by g,

σ is the electric conductivity. In addition ρf , µ, β and ρp represent the base fluid density ,

the dynamic viscosity, the volumetric volume expansion coefficient of the fluid and density

of the nanoparticles, respectively. The permeability of the porous medium is denoted by

K. The ratio of the effective heat capacity of the nanoparticle material to the heat capacity

of the ordinary fluid is denoted by τ =
ε(ρc)p
(ρc)f

. The effective thermal diffusivity of the

porous medium is denoted by αm =
km

(ρc)p
. The parameters ε and km are the effective

heat capacity and effective thermal conductivity of the porous medium, respectively. The

Brownian diffusion coefficient is denoted by DB while the thermophoretic diffusion coefficient

is denoted by DT . At the surface, the temperature and the nanoparticle concentration are

Tw and Cw, respectively, while the ambient temperature and concentration have constant

values T∞ and C∞, respectively.

The boundary conditions for the flow field are

v = 0, C = Cw at y = 0,

u→ u∞, C → C∞ as y →∞. (5)

The bottom surface of the plate is heated by convection from a hot fluid of temperature Tf

with heat transfer coefficient hf . The thermal field is written as

−k∂T
∂y

∣∣∣∣
y=0

= hf (Tf − Tw), T |y→∞ = T∞, (6)

4

35



with thermal conductivity k, such that Tf > Tw > T∞.

We introduce the following similarity variables:

ψ = (αmU∞x)1/2f(η), η =
y

x

(
U∞x

αm

)1/2

, θ =
T − T∞
Tf − T∞

, φ =
C − C∞
Cw − C∞

, (7)

with the stream function ψ and velocities defined by u =
∂ψ

∂y
and v = −∂ψ

∂x
. Here, in dimen-

sionless terms, the stream function is f , temperature is θ and nanoparticle concentration is

φ. Using the similarity variables, equations (1) to (4) are transformed to

f ′′
(
nf ′

n−1
+ 2Gf ′ +M

)
= λn (θ′ −Nrφ′) , (8)

θ′′ +Nb θ′φ′ +Nt θ′
2

+
1

2
fθ′ = 0, (9)

φ′′ +
Le

2
fφ′ +

Nt

Nb
θ′′ = 0. (10)

The transformed boundary conditions are written as

f(0) = 0, θ′(0) = −Bi[1− θ(0)], φ(0) = 1, f ′(∞) = 1, θ(∞) = 0, φ(∞) = 0. (11)

The non-dimensional parameters in the above equations are

λ =
Rax
Pex

the mixed convection parameter,

Rax =
x

αm

(
(1− φ∞)gρβK(Tw − T∞)

µ

) 1
n

the Rayleigh number,

Pe =
u∞x

αm
the Peclet number,

G =
ρbK

µ

(α
x

)2−n
Pe2−n the Darcy number where G = 0 corresponds to Darcian flow,

M =
σB2

ρ

(α
x

)
Pe1−n the magnetic parameter,

Nr =
(ρp − ρf )(Cw − C∞)

(1− C∞)ρfβ(Tf − T∞)
the buoyancy ratio,
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Nb =
τDB(Cw − C∞)

αm
the Brownian parameter,

Nt =
τDT (Tf − T∞)

αmT∞
the thermophoresis parameter, and

Le =
αm
εDB

the Lewis number.

Following the work by Aziz [20] and Ishak [21], to obtain the similarity solution, we consid-

ered the convective heat transfer associated with the hot fluid on the lower surface of the

plate to be proportional to x−1/2. We define hf = cx−1/2 with constant c and the Biot num-

ber is Bi =
c

k

√
U∞/αm. The local Nusselt number Nu, which represents the dimensionless

temperature gradient at the surface, and the local Sherwood number Sh, which represents

the dimensionless concentration gradient at the sheet surface, are written as

Nux/Re
1/2
x = −θ′(0), (12)

and Shx/Re
1/2
x = −φ′(0), (13)

where Nux =
qwx

k(Tw − T∞)
, Shx =

qmx

DB(Cw − C∞)
, and Rex =

U∞x

ν
. Here qw is the surface

heat flux and qm is the surface mass flux.

Method of solution

The quasilinearization method (QLM), which was originally introduced by Bellman and

Kalaba [25], is a generalization of the Newton-Raphson method. The advantage of quasi-

linearization is that the algorithm is easy to understand and it converges quickly. Tuffuor

and Labadie [33] indicate that a disadvantage lies in the instability of the method whenever

a poor initial guess is chosen. The nonlinear components of the equations are linearized

using the Taylor series, assuming that there is a negligible difference between the values of

the unknown function at the current iteration, r + 1, and the previous iteration, r. In the

spectral quasilinearization method (SQLM), the nonlinear equations are linearized using the

QLM and integrated using the Chebyshev spectral collocation method. For further details

on the SQLM see Motsa et al. [26].
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Applying the quasilinearization scheme to Equations (9)-(10) with the boundary con-

ditions in Equation (11), yields the following iterative schemes:

a0,rf
′′
r+1 + a1,rf

′
r+1 + a2,rθ

′
r+1 + a3,rφ

′
r+1 = Rf , (14)

b0,rθ
′′
r+1 + b1,rθ

′
r+1 + b2,rfr+1 + b3,rφ

′
r+1 = Rθ, (15)

c0,rφ
′′
r+1 + c1,rφ

′
r+1 + c2,rfr+1 + c3,rθ

′′
r+1 = Rφ, (16)

subject to

fr+1(0) = 0, f ′r+1(∞)→ 1

θ′r+1(0) = −Bi [1− θr+1(0)] , θr+1(∞)→ 0

φ(0) = 1, φr+1(∞)→ 0, (17)

where the coefficients in Equations (14)-(16) are obtained as

a0,r = nf ′r
n−1

+M + 2Gf ′r,

a1,r = n(n− 1)f ′′r f
′
r
n−2

+ 2Gf ′′r ,

a2,r = −λn, a3,r = λnNr, (18)

b0,r = 1, b1,r = Nbφ′r + 2Ntθ′r +
1

2
fr,

b2,r =
1

2
θ′r, b3,r = Nbθ′r, (19)

c0,r = 1, c1,r =
1

2
Lefr,

c2,r =
1

2
φ′r, b3,r =

Nt

Nb
. (20)

A Chebyshev pseudospectral method is used to solve Equations (14) to (16). A differ-

entiation matrix D is used to approximate the derivatives of the unknown variables q(η) at

the collocation points by the matrix vector product

dQ
(1)
r

dη
(ηj) =

N∑

k=0

Djkq (ηk) = DQm, j = 0, 1, 2, . . . , N, (21)

where D = 2D
L

and Q = [q(η0), q(η1), q(η2), . . . , q(ηN)]T represent the vector function at the

collocation points. The higher order derivatives are given as powers of D, such as

Q(s)
r = DsQr, (22)
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where s is the order of the derivative.

We choose the Gauss-Lobatto collocation points to discretize the domain [−1, 1] as

xi =

(
πi

N

)
, i = 0, 1, . . . , N ; − 1 ≤ xi ≤ 1. (23)

Spectral collocation is applied at r using the differentiation matrix D in order to ap-

proximate derivatives of unknown function, to get

A11Fr+1 + A12Θr+1 + A13Φr+1 = Rf ,

A21Fr+1 + A22Θr+1 + A23Φr+1 = Rθ,

A31Fr+1 + A32Θr+1 + A33Φr+1 = Rφ, (24)

where,

A11 = diag(a0,r)D
2 + diag(a1,r)D, A12 = diag(a2,r)D, A13 = diag(a3,r)D,

A21 = diag(b2,r)I, A22 = diag(b0,r)D
2 + diag(b1,r)D, A23 = diag(b3,r)D,

A31 = diag(c2,r)I, A32 = diag(c3,r)D
2, A33 = diag(c0,r)D

2 + diag(c1,r)D (25)

where diag() represents diagonal matrices of order (N+1)×(N+1), I is an (N+1)×(N+1)

identity matrix, and F , Θ and Φ are the approximate values of f , θ and φ, respectively.

Initial approximations are required to start the iteration process, and these can be selected

as functions that satisfy the boundary conditions, and from known physical considerations

of the flow properties. The QLM generally converges swiftly if the initial guess is close to

the true solution. For our system, the following initial guesses that satisfy the boundary

conditions were used as suitable initial approximations,

f0(η) = η + e−η − 1,

θ0(η) =

(
Bi

1 +Bi

)
e−η,

φ0(η) = e−η. (26)
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The above equations can be expressed in matrix form as follows



A11 A12 A13

A21 A22 A23

A31 A32 A33







Fr+1

Θr+1

Φr+1


 =




Rf

Rθ

Rφ


 . (27)

The boundary conditions are implemented in the matrix and the approximate solutions at

each iteration level are obtained by solving equations (27).

Results and Discussion

The system of coupled ordinary differential Equations (8-10) with the boundary con-

ditions (11) are solved using the SQLM. Table 1 gives a comparison between the Nusselt

number, | − θ′(0)| we obtained and the results reported by Chen and Chen [27], Moham-

madien and El-Amin [32], Kameswaran and Sibanda [28] and Kairi and RamReddy [31] for

various values of the power-law index n.

n Chen & Chen

[27]

Mohammadien &

El-Amin [32]

Kameswaran &

Sibanda [28]

Kairi &

RamReddy

[31]

Current

study

0.5 - - 0.37675 0.37768 0.3776634930

1.0 0.4440 0.44390 0.44375 0.4437 0.4439043652

1.5 - - 0.47635 0.4752 0.4753730016

Table 1: Comparison of results for the Nusselt number |−θ′(0)| for G = M = Nb = Nt = Nr = Bi = Le = 0,

λ = 1 from the current study and results reported by Chen & Chen [27], Mohammadien & El-Amin [32],

and Kameswaran & Sibanda [28] and Kairi & RamReddy [31] for various values of the power-law index n.

Table 2 shows the comparison of the Nusselt number | − θ′(0)| obtained in our study with

results reported by Plumb and Huenefeld [29], and Srivinivasacharya and Kumar [30] for

various values of the non-Darcy parameter G. From data in both these tables, it is evident

that a good agreement with earlier results is achieved with the SQLM method.
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G Srivinivasacharya

& Kumar [30]

Plumb &

Huenefeld [29]

Current study

0.00 0.443717 0.4439 0.4439043652

0.01 0.442126 0.44232 0.4423159030

0.1 0.429475 0.42969 0.4296890571

1 0.365732 0.36617 0.3661664958

10 0.250634 0.25126 0.2529532882

Table 2: Comparison of results for the Nusselt number | − θ′(0)| for M = Nb = Nt = Nr = Bi = Le = 0,

n = λ = 1 from the current study and reported by Plumb & Huenefeld [29], and Srivinivasacharya & Kumar

[30] for various values of the non-Darcy parameter G.

The residual error measures the extent to which a numerical solution approximates the

true solution. To gain further insight into the accuracy of the spectral quasilinearization

method, we have calculated residual errors as shown in Figures 1(a), 2(a), 3(a) and 4(a).

These are calculated for variable values of the power-law index n; mixed convection parameter

λ; the non-Darcy parameter G and the Biot number Bi. In most instances, all the solutions

have converged with an absolute residual error ||Res|| ≈ 10−10 after the third iteration.

Accurate solutions were achieved with the least number of iterations for the specific values

n = 1, λ = 2, G = 0.5 and Bi = 0.1. For a Darcian flow G = 0, the residual error

||Res|| ≈ 10−10 was obtained after the fifth iteration.

The convergence and stability of the iteration scheme was further evaluated by consid-

ering the error norms defined as the difference between the approximate values at successive

iterations, i.e,

Ef = max ||Fr+1 − Fr||∞, (28)

Eθ = max ||Θr+1 −Θr||∞, (29)

Eφ = max ||Φr+1 −Φr||∞. (30)

Figures 1(b), 2(b), 3(b) and 4(b), show the variation of the solution error norms, Ef and Eθ
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Figure 1: (a) Residual error ||Res(f(η))||∞ against the number of iterations, for different values of the

power-law index n. (b) Solution error norm Ef against the number of iterations, for different values of the

power-law index n.
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Figure 2: (a) Residual error ||Res(f(η))||∞ against the number of iterations, for different values of the mixed

convection parameter λ. (b) Solution error norm Ef against the number of iterations, for different values of

the mixed convection parameter λ.
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with the number of iterations for different values of the power-law index n; mixed convection

parameter λ; the non-Darcy parameter G and the Biot number Bi. As can be seen in the

figures, the error norms decrease to ||E|| ≈ 10−11 and convergence is reached at the fourth

iteration. Convergence solutions were achieved with the least number of iterations for the

specific values n = 1, λ = 1, G = 1 and Bi = 4. It is worth noting, however, that the specific

parameter values giving the best accuracy and those giving rise to the best convergence rate

were not necessarily the same values.
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Figure 3: (a) Residual error ||Res(f(η))||∞ against the number of iterations, for different values of the non-

Darcy parameter G. (b) Solution error norm Ef against the number of iterations, for different values of the

non-Darcy parameter G.

Figure 5(a) shows the residual errors against the number of iterations. Figure 5(b)

shows the solution error norms Ef , Eθ and Eφ against the number of iterations. All the

errors are small, showing that the SQLM converges and is accurate. Therefore the results

may be trusted.

The fluid velocity for different parameters, specifically the power-law index, non-Darcy

number, magnetic parameter, mixed convection, buoyancy ratio and Lewis number, is shown

in Figures 6, 7, and 8. From Figure 6(a), it is observed that the velocity of the fluid increases

as the fluid nature change from dilatant to pseudoplastic. The maximum streamwise velocity
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Figure 4: (a) Residual error ||Res(f(η))||∞ against the number of iterations, for different values of the Biot

number Bi. (b) Solution error norm Eθ against the number of iterations, for different values of the Biot

number Bi.

0 5 10 15 20
10

−15

10
−10

10
−5

10
0

10
5

Iterations

||
R
e
s
id
u
a
l|
| ∞

 

 

||Res(f(η))||∞
||Res(θ(η))||∞
||Res(φ(η))||∞

(a)

0 5 10 15 20
10

−15

10
−10

10
−5

10
0

10
5

Iterations

E
f
,
E

θ
,
E

φ

 

 

E
f

Eθ
Eφ

(b)

Figure 5: (a) Residual errors ||Res(f(η))||∞, ||Res(θ(η))||∞ and ||Res(φ(η))||∞ against the number of iter-

ations. (b) Solution error norms Ef , Eθ and Eφ against the number of iterations.
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is enhanced by the increase in the power index. An increase in the non-Darcy parameter

indicates that the porous medium provides increasing resistance to the fluid flow, thereby

reducing the flow rate below that which could be achieved without a porous medium. This is

observed in Figure 6(b) where, the increase in the non-Darcy parameter leads to a decrease

in the fluid velocity profile peaks.
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Figure 6: (a) Effect of the power-law index n on the velocity profile f ′(η) with G = 0.5, M = 1, λ =

2, Nr = 0.2, Nb = 0.2, Nt = 0.2, Bi = 1, Le = 10, and (b) Effect of the non-Darcy parameter G on the

velocity profile f ′(η) with n = 1.5, M = 1, λ = 2, Nr = 0.2, Nb = 0.2, Nt = 0.2, Bi = 1, Le = 10.

The magnetic parameter is directly embedded in the momentum equation and it signifi-

cantly influences the velocity profiles (see Figure 7(a)). The velocity of the fluid reduces with

an increase of the magnetic parameter, and hence the momentum boundary layer thickness

is reduced. The reason is that introducing a transverse magnetic field creates a Lorentz drag

force which helps to resist the flow and hence reduces the velocity. For λ = 0, the momentum

equation reduces to f ′′ = 0 and this gives a constant velocity, Figure 7(b). The location of

the peak velocity shifts away from the plate as λ increases.

Due to opposing buoyancy, the velocity of the fluid increases up to a certain point

along the non-dimensional axis and then decreases. Overall, the momentum boundary layer

thickness decreases with an increase in the buoyancy ratio (see Figure 8(a)). This is because
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buoyancy ratio has a tendency to decelerate the fluid flow along the surface. An interesting

phenomenon is observed for different Lewis number as shown in Figure 8(b). For Lewis

number Le > 1, the fluid velocity drops to less than 1 and this fall point decreases with a

decrease in the Lewis number. The velocity decreases with increase in the Lewis number,

although the influence of the Lewis number on the fluid velocity is fairly marginal.

The Biot number represents the ratio of the internal thermal resistance of a solid to

the boundary layer thermal resistance. For Bi = 0 the bottom of the plate with hot fluid

is totally insulated and the internal thermal resistance of the plate is extremely high which

means that no convective heat transfer to the cold fluid on the upper part of the plate takes

place. Figure 9 present the velocity and temperature profiles for different values of the Biot

number. The velocity of the fluid increases with an increase in the Biot number. This is

because the Biot number reduces the plate thermal resistance which enhances the peak fluid

velocity.

In Figure 10, the concentration of the nanoparticle is highly influenced by the Brownian

parameter and Lewis number. Due to Brownian motion of the nanoparticles, the concentra-
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Figure 7: (a) Effect of the magnetic parameter M on the velocity profile f ′(η) with n = 1.5, G = 0.5, λ =

2, Nr = 0.2, Nb = 0.2, Nt = 0.2, Bi = 1, Le = 10, and (b) Effect of the mixed convection parameter λ on

the velocity profile f ′(η) with n = 1.5, G = 0.5, M = 1, Nr = 0.2, Nb = 0.2, Nt = 0.2, Bi = 1, Le = 10.
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Figure 8: (a) Effect of the buoyancy ratio Nr on the velocity profile f ′(η) with n = 1.5, G = 0.5, M =

1, λ = 2, Nb = 0.2, Nt = 0.2, Bi = 1, Le = 10, and (b) Effect of the Lewis number Le on the velocity

profile f ′(η) with n = 1.5, G = 0.5, M = 1, λ = 2, Nb = 0.2, Nr = 0.2, Nt = 0.2, Bi = 1.
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Figure 9: (a) Effect of the Biot number Bi on the velocity profile f ′(η) with n = 1.5, G = 0.5, M = 1, λ =

2, Nb = 0.2, Nr = 0.2, Nt = 0.2, Le = 10, and (b) Effect of the Biot number Bi on the temperature profile

θ(η) with n = 1.5, G = 0.5, M = 1, λ = 2, Nb = 0.2, Nr = 0.2, Nt = 0.2, Bi = 1, Le = 10.

16

47



tion in the fluid is not significantly influenced near the surface. In Figure 10(a) it can be

observed that the concentration boundary layer thickness decreases with an increase in the

Brownian parameter. Figure 10(b) shows that the concentration boundary layer thickness

decreases significantly as the Lewis number increases.
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Figure 10: (a) Effect of the Brownian parameter Nb on the concentration profile φ(η) with n = 1.5, G =

0.5, M = 1, λ = 2, Nr = 0.2, Nt = 0.2, Bi = 1, Le = 10, and (b) Effect of the Lewis number Le on the

concentration profile φ(η) with n = 1.5, G = 0.5, M = 1, λ = 2, Nb = 0.2, Nr = 0.2, Nt = 0.2, Bi = 1.

The Nusselt number is the ratio of convective heat transfer to conductive heat transfer.

The Sherwood number is the ratio of convective mass transport to diffusive mass transport.

The changes in the Nusselt and Sherwood numbers with various parameters is shown in

Figures 11 and 12. Increasing the power-law index tends to increase the velocity and reduce

both the thermal and concentration boundary layer thickness. This leads to a reduction in

the local Nusselt number and Sherwood numbers. The Nusselt and Sherwood numbers are

larger for a dilatant fluid (n > 1) compared to pseudoplastic fluid (n < 1). The heat transfer

rate at the wall reduces with an increase in the non-Darcy parameter G. This observation

may be explained by the direct effect of G on the velocity near the wall, which significantly

influences the strength of the convection mechanism in transporting heat from the wall as

compared to the dispersion mechanism. However, the non-Darcy parameter reduces the
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mass transfer rate at the wall. This may indicate a reduction in the velocity near the wall

and hence the mass transfer rates by convection.
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Figure 11: (a) Heat transfer rate Nusselt number −θ′(0) with M = 1, Nb = 0.2, Nr = 0.1, Nt = 0.2, Bi =

1, Le = 10, and (b) Mass transfer rate Sherwood number φ′(0) as a function of n for different values of λ

and G.

The heat and mass transfer rates as functions of Nr for different values of Nt, Nb

and Le,are shown in Figure 12. The local Nusselt number and the local Sherwood number

are decreasing functions of the buoyancy ratio. As Nb and Nt increase, the value of the

local Sherwood number increases, but the increment is not significant. In Figure 12 the heat

transfer rate increases with an increase in the Lewis number Le. In Figure 12(b) increasing

Le appears to reduce the rate of mass transfer to the wall for the opposing buoyancy. For

opposing buoyancy, as Le increases, heat dispersion outweighs mass dispersion and as a result

the concentration gradient near the wall becomes smaller, which then reduces the Sherwood

number. The opposite is however observed for higher values of Nr, where the mass transfer

rate is enhanced. This suggests that, with an increase in Le, mass dispersion decreases,

thereby conserving the higher concentration gradients near the surface and enhancing mass

transfer by convection.

The heat transfer rate at the wall increases with an increase in the Biot number, as can
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Figure 12: (a) Heat transfer rate Nusselt number −θ′(0) with M = 1, Bi = 1, Nr = 0.1, λ = 2, G =

0.5, n = 1.5, and (b) Mass transfer rate Sherwood number φ′(0) as a function of Nr for different values of

Nt, Nb and Le.
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Figure 13: (a) Heat transfer rate Nusselt number −θ′(0) with Nr = 0.1, λ = 2, G = 0.5, n = 1.5, and (b)

Mass transfer rate Sherwood number φ′(0) as a function of Bi for different values of M and Nt.
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be seen in Figure 13(a). For Bi = 0, no convective heat transfer takes place and the rate of

heat transfer at the wall is zero, as expected. The heat transfer and the mass transfer rates

decrease with an increase in the magnetic parameter. The mass transfer rate as a function

of Bi for different values of M and Nt can be seen in Figure 13(b).

Conclusion

In this study, the boundary layer flow past over a horizontal plate embedded in a porous

medium filled with a non-Newtonian nanofluid has been studied. The convective boundary

condition was used. The spectral quasilinearization method was used to solve the equations.

The accuracy and convergence of the method was established. The following major findings

were obtained:

• The accuracy and the convergence of the SQLM is dependent on the choice of parameter

values.

• The parameter values giving rise to the best accuracy may not give the best convergence

rates.

• Both the heat transfer rate and the mass transfer rate increase with the mixed convec-

tion parameter for a dilatant fluid.

• Increasing the Biot number enhances both the velocity and temperature at the surface.

• The heat transfer rate increases with increased values of the Biot number. The mass

transfer rate increases with the Biot number for smaller values of the thermophoresis

parameter but decreases for bigger values of the thermophoresis parameter.
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Chapter 4

Numerical simulation of couple stress
nanofluid flow in magneto-porous
medium with thermal radiation and a
chemical reaction

In Chapter 3, we studied the power law model, which has a shear dependent viscosity but
without elasticity. In this chapter, we present a study of heat and mass transfer in a couple
stress nanofluid flow in a magneto-porous medium with thermal radiation and internal heat
generation. The couple stress fluid is the simplest polar fluid theory that displays all the
important features and properties of couple stresses in fluids. In the current study, the flow is
generated by a stretching surface, and the temperature and concentration distributions are
studied subject to nanoparticle Brownian motion and thermophoresis effects. The nonlinear
model equations are solved using a spectral quasilinearization method.
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a b s t r a c t 

We present a study of heat and mass transfer for a couple stress nanofluid flow in a 

magneto-porous medium with thermal radiation and heat generation. The flow is gener- 

ated by a stretching surface and the temperature and concentration distributions are stud- 

ied subject to nanoparticle Brownian motion and thermophoresis effects. The nonlinear 

model equations have been solved using a spectral quasi-linearization method. The solu- 

tion method has been used in a limited number of studies in the resent past. Its general 

reliability for a wider range of problems remains to be determined. Thus in order to deter- 

mine the accuracy of the solutions, and the convergence of the method, a qualitative pre- 

sentation of residual errors for different parameters is given. Additionally, for some special 

flow cases, the current results have been compared with previously published work and 

found to be in good agreement. A limited parametric study showing the influence of the 

flow parameters on the fluid properties is given. The numerical analysis of the residual 

error of PDEs and convergence properties of the method are also discussed. The method 

is computationally fast and gives very accurate results after only a few iterations using 

very few grid points in the numerical discretization process. The aim of this manuscript is 

to pay more attention of residual error analysis with heat and fluid flow on couple stress 

nanofluids to improve the system performance. Also the fluid temperature in the bound- 

ary layer region rise significantly for increasing the values of thermophoresis and Brownian 

motion parameter. The results show that wall shear stress increases by increasing couple 

stress parameter. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

Heat and mass transfer processes have been focused of extensive investigation for many decades due to the importance 

of these processes of physiological flows such as urine transport from kidneys to the bladder and the circulation of blood in 

small blood vessels. The theory of couple stress fluids, first introduced by Stokes [1] has been widely studied by researchers 

[2,3] . Couple stresses appear in fluids with very large molecules such as in synovial fluids, for example, Walicki and Walicka 
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[4] modelled synovial fluids in human joints as couple stress fluids. Examples of studies of the flow of couple stress fluids 

include Hiremath and Patil [5] who investigated the oscillatory flow of a couple stress fluid through a porous medium while 

the melting heat transfer in the boundary layer flow of a couple stress fluid over a stretching surface was investigated by 

Hayat et al. [6] . 

Nanofluids are recent fluids that offer the promise of significantly enhanced thermophysical properties. Typical base 

liquids include water, oil or ethylene glycol. The addition of nanoparticles to the base liquids greatly enhances the thermal 

characteristics of the base liquid. Nanofluids are used in various industrial and technological processes such as in the cooling 

of electronic devices, transformer cooling, heat exchangers, biomedicine and many other uses. Couple stress nanofluids are 

useful in MHD power generators, for the removal of blockages in arteries, hyperthermia, cancer tumor treatment, magnetic 

resonance imaging, etc. Couple stress nanofluid flow occurs in industrial and technological processes such as in hot rolling, 

wire drawing, glass fiber and paper production, extrusion of polymer fluids and the solidification of liquid crystals. Further 

recent investigations on nanofluid flows can be quoted through the studies [7,8] . 

Introducing a magnetic field to the flow of a conducting fluid generally alters the flow field. In general, the magnetic field 

has a stabilizing effect on the instability, but there are few exceptions. The use of magnetic field to influence heat genera- 

tion processes in electrically conducting fluids has important engineering applications. For example, in many metallurgical 

processes such as the drawing of continuous filaments through quiescent fluids, and the annealing and tinning of copper 

wires, the properties of the end product depends on the rate of cooling. Pal and Mondal [9] studied the effect of MHD and 

variable viscosity on non-Darcy mixed convective heat transfer over a stretching sheet embedded in a porous medium with 

non-uniform heat source/sink. Ali et al. [10] analyzed the MHD flow and heat transfer of a couple stress fluid over an oscilla- 

tory stretching sheet with heat source/sink in porous medium. Ramesh and Dekavar [11] studied the magnetohydrodynamic 

peristaltic flow of a couple stress fluid through a homogenous porous media in an asymmetric channel with heat transfer. 

The flow of a couple stress fluid with variable thermal conductivity was studied by Asad et al. [12] . The MHD flow of an 

incompressible fluid over a moving surface with a convective boundary condition was studied by Makinde [13] . Sreenadh 

et al. [14] investigated the flow of a couple stress fluid in a vertical porous layer by applying perturbation method. 

Thermal radiation effect plays a significant role in controlling heat transfer processes in polymer processing industries. 

Additionally, the effect of thermal radiation on flow and heat transfer processes is of major importance in the design of many 

advanced energy convection systems which operate at high temperatures. Thermal radiation in these systems is usually the 

result of emission from hot walls and the working fluid. Thermal radiation becomes important when the difference between 

the surface and the ambient temperature is large. Thus an understanding of radiation heat transfer in a system may assist 

in achieving productswith desired characteristics. The influence of thermal radiation on hydromagnetic Darcy-Forchheimer 

mixed convection flow past a stretching sheet embedded in a porous medium was examined by, among others, Pal and 

Mondal [15] . 

There is a large number of practical situations in which convection is driven by internal heat sources. This occurs for 

instance in nuclear heat cores, nuclear disposals, oil extraction and crystal growth. Double diffusive convection in a couple 

stress fluid with internal heat source was studied by Gaikwad and Kouser [16] . Chamka [17] found solutions for hydro- 

magnetic heat and mass transfer from an inclined plate with internal heat generation or absorption. Hill [18] analyzed 

double diffusive convection in a porous medium with a concentration based internal heat source. The onset of convection 

in a porous medium with internal heat generation was investigated by Gasser and Kazimi [19] . Capone et al. [20] analyzed 

double diffusive penetrative convection with internal heating in an anisotropic porous layer with through flow. 

Nagaraju et al. [21] analyzed the effects of thermal radiation, a chemical reaction and heat generation in a nanofluid. 

Rehman et al. [22] investigated porosity and nano-concentration effects on the stagnation flow of a couple stress fluid over 

an exponentially stretching surface. Das [23] studied the effects of thermal radiation and chemical reaction on unsteady 

MHD free convection heat and mass transfer flow of a micropolar fluid past a vertical porous plate in a rotating frame of 

reference, assuming that the plate is embedded in a uniform porous medium and oscillates in time with a constant fre- 

quency in the presence of a transverse magnetic field. Srinivasacharya and Mendu [24] analyzed the flow and heat and 

mass transfer characteristics of the free convection on a vertical plate with uniform wall temperature and concentration in a 

micropolar fluid in the presence of a first-order chemical reaction and radiation. Jain et al. [25] studied the effects of radia- 

tion and couple stress parameters on unsteady magnetopolar free convection flow with mass transfer and thermal radiation 

in slip flow regime. The effect of rotation on the onset of double diffusive convection in a Darcy porous medium saturated 

with a couple stress fluid was studied by Malashetty et al. [26] . The effect of rotation on the onset of double diffusive con- 

vection in a horizontal anisotropic porous layer was studied by Malashetty and Heera [27] . Convective instability in either a 

couple stress fluid layer or couple stress fluid-saturated porous layer heated from below has been investigated in the recent 

past including the effects of an additional diffusing component (i.e., solute concentration) and external constraints such as 

magnetic field and /or rotation. Sunil et al. [28] investigated the effect of a magnetic field and rotation on a layer of couple 

stress fluid heated from below in a porous medium. Sharma and Sharma [29] have investigated the effect of suspended 

particles on electrically conducting couple stress fluid heated uniformly from below under the influence of uniform rotation 

and magnetic field. 

In this paper, we present a study of the flow of a couple stress nanofluid over a stretching sheet in a magneto-porous 

medium with thermal radiation and chemical reaction. The model equations are solved using a method that combines 

the Chebyshev spectral collocation, bivariate Lagrange interpolation polynomials together with spectral quasi-linearization 

method (SQLM) is used. Residual error estimation is presented to show the high accuracy and fast convergence of the 
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Fig. 1. Physical model and coordinate system. 

numerical technique. In fact, the main feature of this study is to introduce the size dependent on classical viscous theory 

which are synthetic liquids, electro-rheological and Blood. 

2. Mathematical formulations 

Consider the steady two-dimensional magneto-porous medium flow of an incompressible couple stress nanofluid over a 

stretching sheet with thermal radiation and heat generation. In a rectangular coordinate system ( ̄x , ̄y ) , the sheet is assumed 

to coincide with ȳ = 0 and the flow takes place in the semi-infinite porous space ȳ > 0 of constant permeability (see Fig. 1 ). 

A magnetic field of strength is applied perpendicular to the stretching surface. It is assumed that the sheet is stretched with 

velocity u w 

= bx in which b is the stretching rate. The sheet is maintained at a uniform temperature T w 

> T ∞ 

where T ∞ 

is 

the temperature of the ambient fluid. The objective is to determine the velocity, temperature and concentration fields inside 

the fluid satisfying the boundary conditions at the wall and far from the wall. To this end, we apply the boundary layer 

approximation to the continuity, momentum, concentration and energy equations to obtain, 

∂u 

∂ ̄x 
+ 

∂v 
∂ ̄y 

= 0 (1) 

u 

∂u 

∂ ̄x 
+ v 

∂u 

∂ ̄y 
= ν

∂ 2 u 

∂ ̄y 2 
− η0 

ρ

∂ 4 u 

∂ ̄y 4 
− σB 

2 
0 

ρ
u − νφ

k ∗
u + gβt (T − T ∞ 

) + gβc (C − C ∞ 

) (2) 

u 

∂T 

∂ ̄x 
+ v 

∂T 

∂ ̄y 
= 

κ

ρC p 

∂ 2 T 

∂ ̄y 2 
− 1 

ρC p 

∂q r 

∂ ̄y 
+ 

Q 

ρC p 
(T − T ∞ 

) + τ
[ 

D B 
∂C 

∂ ̄y 
. 
∂T 

∂ ̄y 
+ 

D T 

T ∞ 

(
∂T 

∂ ̄y 

)2 ] 
(3) 

u 

∂C 

∂ ̄x 
+ v 

∂C 

∂ ̄y 
= D B 

∂ 2 C 

∂ ̄y 2 
+ 

D T 

T ∞ 

∂ 2 T 

∂ ̄y 2 
− R (C − C ∞ 

) (4) 

where u and v are the velocity components along the x̄ and ȳ -directions, respectively, ν is the kinematic viscosity, ρ is the 

density, η0 is the material constant for the couple stress fluid, σ is electric conductivity, Q is the heat source coefficient, κ is 

the thermal conductivity, B 0 is the strength of constant applied magnetic field, D B is the Brownian diffusion coefficient, D T 

is the thermophoretic diffusion coefficient, τ = 

(ρc) p 
(ρc) f 

is the ratio of the effective heat capacity of the nanoparticle material 

to heat capacity of the fluid and C is the volumetric volume expansion coefficient. The flow is subject to the following 

boundary conditions 

u = u w 

= b ̄x , v = 0 , 
∂ 2 u 

∂ ̄y 2 
= 0 , T = T w 

, C = C w 

, at ȳ = 0 , (5) 

u = 0 , 
∂u 

∂ ̄y 
= 0 , T = T ∞ 

, C = C ∞ 

at ȳ → ∞ (6) 

Using the Rosseland diffusion approximation, the radiation heat flux is given by q r = − 4 σ ∗
3 k ∗

∂T 4 

∂y 
where σ ∗ is the Stephan 

Boltzmann constant and k ∗ is the mean absorption coefficient. The wall temperature excess ratio parameter is θw 

= 

T w 
T ∞ 
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where T 4 may be expressed as T 4 = T 4 ∞ 

{ 1 + (θw 

− 1) θ} 4 . The governing nonlinear partial differential equations are trans- 

formed into a system of ordinary differential equations using similarity transformations defined by, 

y = 

√ 

b 

ν
ȳ , u = b ̄x f y (y ) , v = −

√ 

νb f (y ) , 

θ (y ) = 

T − T ∞ 

T w 

− T ∞ 

, H(y ) = 

C − C ∞ 

C w 

− C ∞ 

. (7) 

We obtain a system of non-linear ordinary differential equations with appropriate boundary conditions as follows: 

k f v − f ′′′ − f f ′′ + f ′ 2 + β f ′ − Gr t θ − Gr c H = 0 (8) 

[ 
1 + Nr{ 1 + (θw 

− 1) θ} 3 
] 
θ ′′ + 3 Nr(θw 

− 1) { 1 + ( θw 

− 1 ) θ} θ ′ 2 + P r 
(

fθ ′ + λθ
)

+ P r 
(
Nbθ ′ H 

′ + Ntθ ′ 2 ) = 0 (9) 

1 

Le 

(
H 

′′ + 

Nt 

Nb 
θ ′′ 

)
+ f H 

′ − R 1 H = 0 (10) 

the boundary conditions takes the following forms: 

f (0) = 0 , f ′ (0) = 1 , f ′′′ (0) = 0 , θ (0) = 1 , H(0) = 1 

f ′ (∞ ) = 0 , f ′′ (∞ ) = 0 , θ (∞ ) = 0 , H(∞ ) = 0 , (11) 

where the non-dimensional parameters in the above equations are: k = ( η0 b / ρν2 ) is the couple stress parameter, 

β
(
= σB 2 0 / ρb + νφ/ kb 

)
is the magneto-porous parameter, Gr t 

(
= gβ(T w 

− T ∞ 

) x 3 / ν2 
)

is the temperature Grashof number, 

Gr c 
(
= gβ(C w 

− C ∞ 

) x 3 / ν2 
)

is the mass Grashof number, Nr = is the thermal radiation parameter, θw 

is the temperature ratio 

parameter, P r ( = ν/α) is the Prandtl number, λ
(
= Q/ cρc p 

)
is the heat source ( λ> 0) or sink ( λ< 0), Nb ( = τD B (C w 

− C ∞ 

) /ν) 
is the Brownian motion parameter, Nt ( = τD T (T w 

− T ∞ 

) / νT ∞ 

) is the thermophoresis parameter, Le ( = ν/ D B ) is the Lewis num- 

ber, R 1 ( = R (C w 

− C ∞ 

) ) is the chemical reaction parameter. 

The local Nusselt number, and the local Sherwood numbers are defined by 

C f = 

τw 

ρu 

2 
w 

, Nu x = 

x̄ q w 

k (T w 

− T ∞ 

) 
, Sh x = 

x̄ q m 

D B (C w 

− C ∞ 

) 
, (12) 

where 

τw 

= μ
(
∂u 

∂ ̄y 

)
ȳ =0 

− η0 

ρ

(
∂ 3 u 

∂ ̄y 3 

)
, q w 

= −
[ (

16 σ ∗T 3 

3 k ∗
+ k 

)
∂T 

∂y 

] 
ȳ =0 

q m 

= −D B 

(
∂C 

∂ ̄y 

)
ȳ =0 

(13) 

Using the non-dimensional variables (7) and the relation (12) in (13), we obtain 

C f Re 1 / 2 x = f ′′ (0) − k f ′′′′ (0) , 

Nu x Re −1 / 2 
x = −(1 + Nrθ3 

w 

) θ ′ (0) 

Sh x Re −1 / 2 
x = −H 

′ (0) , (14) 

where Re x = 

u w ̄x 
ν is the local Reynolds number. 

3. Method of Solution 

The spectral quasi-linearization method (SQLM) identifies nonlinear terms which are linearized using Taylor series ex- 

pansion. The SQLM has been described as being efficient with faster convergence compared to numerical methods such as 

the Runge–Kutta methods, Motsa et al. [30] . 

F ≡ k f v − f ′′′ − f f ′′ + f ′ 2 + β f ′ − Gr t θ − Gr c H = 0 

� ≡ H 

′′ + 

Nt 

Nb 
θ ′′ + Le f H 

′ − LeR 1 H = 0 

� ≡
[
1 + Nr ( 1 + θ (θw 

− 1) ) 
3 
]
θ ′′ + 3 Nr(θw 

− 1) θ ′ 2 ( 1 + θ (θw 

− 1) ) 

+ P r( fθ ′ + λθ ) + P r 
(
Nbθ ′ H 

′ + Ntθ ′ 2 = 0 

)
(15) 
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From the system of Eqs. (8) –(10) the nonlinear terms ff′ ′ , f ′ 2 , θ ′ 2 , f θ ′ , θθ
′′ 
, θ ′ 2 θ , fH 

′ and θ ′ H 

′ are linearized using Taylor 

series expansion as 

f f ′′ = f r f 
′′ 
r+1 + f ′′ r f r+1 − f r f 

′′ 
r (16) 

f ′ 2 = 2 f ′ r f 
′ 
r+1 − f 

′ 2 
r (17) 

θ ′ 2 = 2 θ ′ 
r θ

′ 
r+1 − θ

′ 2 
r (18) 

fθ
′ = f r θ

′ 
r+1 + θ ′ 

r f r+1 − f r θ
′ 
r (19) 

θθ
′′ = θr θ

′′ 
r+1 + θ ′′ 

r θr+1 − θr θ
′′ 
r (20) 

θ ′ 2 θ = 2 θ ′ 
r θr θ

′ 
r+1 + θ ′ 2 

r θr+1 − 2 θ ′ 2 
r θr (21) 

f H 

′ = f r H 

′ 
r+1 + H 

′ 
r f r+1 − f r H 

′ 
r (22) 

θ ′ H 

′ = θ ′ 
r H 

′ 
r+1 + H 

′ 
r θ

′ 
r+1 − θ ′ 

r H 

′ 
r (23) 

where the terms containing the subscripts r + 1 denote the current iteration and terms containing the subscripts r denote 

previous approximations. Eqs. (16) –(23) are substituted into Eqs. (8) –(10) and the resulting linearized equations are solved 

as a coupled linear system. 

a 0 ,r f 
v 
r+1 + a 1 ,r f 

i v 
r+1 + a 2 ,r f 

′′′ 
r+1 + a 3 ,r f 

′′ 
r+1 + a 4 ,r f 

′ 
r+1 + a 5 ,r f r+1 + a 6 ,r θr+1 + a 5 ,r H r+1 = R F , 

b 0 ,r θ
′′ 
r+1 + b 1 ,r θ

′ 
r+1 + b 2 ,r θr+1 + b 3 ,r f r+1 + b 4 ,r H 

′ 
r+1 = R �, 

c 0 ,r H 

′′ 
r+1 + c 1 ,r H 

′ 
r+1 + c 2 ,r H r+1 + c 3 ,r f r+1 + c 4 ,r θ

′′ 
r+1 = R �, (24) 

where 
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∂ f 
= P rθ ′ 

r , b 4 ,r = 
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∂H 

′ = P rNbθ ′ 
r , 

c 0 ,r = 

∂�

∂H 

′′ = 1 , c 1 ,r = 

∂�

∂H 

′ = Le f r , c 2 ,r = 

∂�

∂H 

= −R 1 , 

c 3 ,r = 

∂�

∂ f 
= LeH 

′ 
r , c 4 ,r = 

∂�

∂θ ′′ = 

Nt 

Nb 
. (25) 

Spectral collocation is applied using the differentiation matrix D to approximate derivatives of the unknown functions, and 

the new system of equations obtained is solved as a coupled matrix system. 

A 11 F r+1 + A 12 �r+1 + A 13 �r+1 = B 1 , 

A 21 F r+1 + A 22 �r+1 + A 23 �r+1 = B 2 , 

A 31 F r+1 + A 32 �r+1 + A 33 �r+1 = B 3 . 

(26) 

where 

A 11 = diag [ a 0 ,r ] D 

5 + diag [ a 1 ,r ] D 

4 + diag [ a 2 ,r ] D 

3 + diag [ a 3 ,r ] D 

2 + diag [ a 4 ,r ] D + diag [ a 5 ,r ] I , 

A 12 = diag [ a 6 ,r ] I , A 13 = diag [ a 7 ,r ] I 
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Fig. 2. Effect of k on the velocity profile f ′ ( η). Parameter values Gr t = 0 . 5 ; Gr c = 0 . 3 ; Le = 0 . 22 ; β = 0 . 5 ; Nr = 0 . 5 ; β = 0 . 2 ; Pr = 6 . 8 ; λ = 0 . 2 ; Nb = 0 . 3 ;
θw = 1 . 2 ; R 1 = 0 . 5 ; and Nt = 0 . 3 . 

Fig. 3. Effect of β on the velocity profile f ′ ( η). Parameter values k = 0 . 4 ; Gr t = 0 . 1 ; Gr c = 0 . 5 ; Le = 0 . 22 ; β = 0 . 5 ; Nr = 0 . 5 ; Pr = 6 . 8 ; λ = 0 . 2 ; Nb = 0 . 2 ;
θw = 1 . 2 ; R 1 = 0 . 5 ; and Nt = 0 . 1 . 

A 21 = diag [ b 3 ,r ] , A 22 = diag [ b 0 ,r ] D 

2 + diag [ b 1 ,r ] D + diag [ b 2 ,r ] , A 23 = diag [ b 4 ,r ] D 

A 31 = diag [ c 3 ,r ] , A 32 = diag [ b 4 ,r ] D 

2 
, A 33 = diag [ c 0 ,r ] D 

2 + diag [ c 1 ,r ] D + diag [ c 2 ,r ] , 

B 1 = R F , B 2 = R θ , B 3 = R φ, (27) 

The values of the space derivatives at the Chebyshev–Gauss–Lobatto points ( ηi ) ( i = 0 , 1 , 2 , . . . , N η) are computed as 

∂u 

∂η

∣∣∣∣
η= ηi 

= 

N η∑ 

j=0 

u (η j ) 
dL j (ηi ) 

dη
(28) 

= 

N η∑ 

j=0 

u (η j ) D i j = 

N η∑ 

j=0 

D i j u (η j ) , (29) 

where D i j = 

dL p (ηi ) 

dη
, is the standard first derivative Chebyshev differentiation matrix of size (N η + 1) × (N η + 1) . Similarly, 

for an n th order derivative, we have 

∂ n u 

∂ηn 

∣∣∣∣
η= ηi 

= 

N η∑ 

j=0 

D 

n 
i j u (η j ) = D 

n U j , i = 0 , 1 , 2 , . . . , N η, (30) 

where the vector U j is defined as 

U j = [ u j (η0 ) , u j (η1 ) , . . . , u j (ηN η )] T . (31) 
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Fig. 4. Effect of β on the temperature profile θ ′ ( η). Parameter values k = 0 . 4 ; Gr t = 0 . 1 ; Gr c = 0 . 5 ; Le = 0 . 22 ; β = 0 . 5 ; Nr = 0 . 5 ; Pr = 6 . 8 ;λ = 0 . 2 ; Nb = 0 . 2 ;
θw = 1 . 2 ; R 1 = 0 . 5 ; and Nt = 0 . 1 . 

and the superscript T denotes matrix transpose. In this problem U is replaced with f , θ and H as the unknowns. The bound- 

ary conditions are imposed on the individual matrices as shown in the matrix below, 

4. Results and discussion 

The set of nonlinear partial differential equations (8) –(10) with boundary conditions (11) were solved numerically using 

the SQLM and the significance of the physical parameters is illustrated through graphs. We have compared our Nusselt 

number results with data in the literature. The results are in good agreement with the literature (see Table 1 ) with those of 

Chen [31] and Zaimi [32] . The values of Nusselt number and Sherwood number are tabulated in Table 2 for various values of 

the thermophoresis parameter Nt . It is found that the local Nusselt number decreases with increases in the thermophoresis 

parameter Nt and reverse trends are seen for the local Sherwood number. The effects of couple stress parameter, transverse 

magnetic field, energy enhancement parameters Nb and Nt , Prandtl number, chemical reaction and radiation parameter on 

the velocity, temperature and concentration profiles are discussed. 

In Fig. 2 , the effects of the couple stress parameter k on the dimensionless velocity profiles are presented for fixed values 

of Gr t = 0 . 5 ; Gr c = 0 . 3 ; Le = 0 . 22 ; β = 0 . 5 ; Nr = 0 . 5 ;β = 0 . 2 ; P r = 6 . 8 ; λ = 0 . 2 ; Nb = 0 . 3 ; θw 

= 1 . 2 ; R 1 = 0 . 5 ; and Nt = 0 . 3 . 

As k increases it can be observed that the maximum velocity decreases when 0 < η < 2 and the location of the maximum 

velocity moves away from the wall. This happens because the power-index is high for couple stress fluid. 

Figs. 3–5 show the variation of the velocity and temperature profiles for different values of the magnetic parameter β . 

Fig. 3 shows that the velocity profiles considerably reduce with an increase in the value of the magnetic field. The presence 
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Fig. 5. Residual error for Gr t on the velocity profile f ′ ( η) when k = 0 . 5 ; Gr c = 0 . 5 ; Le = 0 . 22 ; β = 0 . 5 ; Nr = 0 . 5 ; Pr = 6 . 8 ; λ = 0 . 2 ; Nb = 0 . 3 ;θw = 1 . 2 ; R 1 = 

0 . 5 ; and Nt = 0 . 1 . 

Fig. 6. Effect of Gr t on the temperature profile θ ( η) when k = 0 . 5 ; Gr c = 0 . 5 ; Le = 0 . 22 ; β = 0 . 5 ;Nr = 0 . 5 ;Pr = 6 . 8 ; λ = 0 . 2 ; Nb = 0 . 3 ; θw = 1 . 2 ; R 1 = 0 . 5 ;
and Nt = 0 . 1 . 

Table 1 

Comparison of the values of the Nusselt number Nu x = 

θ ′ (0) with published data for M = Nb = Nt = β = Nr = k = 

Grt = Grc = 0 , and θw = 1 between results of present study 

and reported by Chen [31] and Zaimi et al. [32] for various 

values of Pr . For the current study the number of iterations 

that were required to reach converge was 4 iterations. 

Pr Chen [32] Zaimi et al. [33] Current study 

0.72 0.46315 0.463145 0.46314490 

1 0.58199 0.581977 0.58197671 

3 1.16523 1.165246 1.16524595 

7 1.89537 1.895403 1.89540326 

10 2.30796 2.308004 2.30800394 

of the magnetic field produces a Lorentz force which acts in the opposite direction to the fluid motion resulting in a decrease 

in the fluid velocity and an increase in the fluid temperature as shown in Fig. 4 . 

The velocity f ′ ( η) and temperature θ ( η) profiles for various values of Gr t are shown in Figs. 5 and 7 . It is observed that 

the effect of increasing the thermal buoyancy parameter Gr t is to increase the velocity profiles in the momentum boundary 

layer due to the cooling of the plate by the free convection current. Physically, in the process of cooling the free convection 

current are carried away from the plate to the free stream and since the free stream is in the upward direction and thus the 

free stream current induce the velocity to enhance. It is also noted that from Fig. 6 for large value of Gr t the temperature 

decreases at the beginning until it achieve peak value and then start decreasing until the value reaches to zero outside of 

the boundary layer. This is because a large value of Gr t produces a large buoyancy force, which produces the large kinetic 

energy. 
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Fig. 7. Effect of Gr c on the velocity profile f ′ ( η) when k = 0 . 5 ; Gr t = 0 . 5 ; Le = 0 . 22 ; β = 0 . 5 ; Nr = 0 . 5 ;Pr = 6 . 8 ; λ = 0 . 2 ; Nb = 0 . 3 ; θw = 1 . 2 ; R 1 = 0 . 5 ; and 

Nt = 0 . 1 . 

Fig. 8. Effect of Gr c on the concentration profile φ( η) when k = 0 . 5 ; Gr t = 0 . 5 ; Le = 0 . 22 ; β = 0 . 5 ; Nr = 0 . 5 ;Pr = 6 . 8 ; λ = 0 . 2 ; Nb = 0 . 3 ; θw = 1 . 2 ; R 1 = 0 . 5 ;
and Nt = 0 . 1 

Fig. 9. Effect of Nr on the temperature profile θ ( η) when k = 0 . 5 ; Gr c = 0 . 3 ; Gr t = 0 . 5 ; Le = 0 . 22 ; β = 0 . 5 ;Pr = 6 . 8 ; λ = 0 . 2 ; Nt = 0 . 2 ; Nb = 0 . 3 and R 1 = 0 . 5 . 

Figs. 7–9 show the velocity and concentration profiles for different solutal Grashof numbers Gr c , for fixed values of 

k = 0 . 5 ; Gr t = 0 . 5 ; Le = 0 . 22 ; β = 0 . 5 ; Nr = 0 . 5 ; P r = 6 . 8 ; λ = 0 . 2 ; Nb = 0 . 3 ; θw 

= 1 . 2 ; R 1 = 0 . 5 ; and Nt = 0 . 1 . We observe 

from Fig. 7 that the velocity profiles increase with an increase in the value of Gr c . It is also seen from Fig. 8 that the effect 

of increasing the solutal buoyancy parameter Gr c is to reduce the concentration profiles throughout the boundary layer. 
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Fig. 10. Effect of θw on the temperature profile θ ( η) when k = 0 . 5 ; Gr c = 0 . 3 ; Gr t = 0 . 5 ; Le = 0 . 22 ;β = 0 . 5 ;Nr = 0 . 5 ; Pr = 6 . 8 ; λ = 0 . 2 ; Nt = 0 . 2 ;Nb = 0 . 3 

and R 1 = 0 . 5 . 

Fig. 11. Effect of Pr on the temperature profile θ ( η). Parameter values k = 0 . 2 ; Gr t = 0 . 1 ; Gr c = 0 . 5 ; Nr = 0 . 5 ;β = 0 . 5 ; λ = 0 . 2 ; Nb = 0 . 2 ; Le = 0 . 22 ; θw = 1 . 2 ; 

R 1 = 0 . 5 ; and Nt = 0 . 2 . 

Table 2 

Comparison of the values of the Nusselt number Nu x = θ ′ (0) and Sherwood number Shr = −φ′ (0) with 

published data for M = Nb = β = Nr = k = Gr t = Gr c = 0 , Nt = 0 . 1 , Pr = Le = 10 and θw = 1 between re- 

sults of present study and reported by Khan and Pop [34] and Zaimi et al. [32] for various values of 

Nt. 

Nt Khan and Pop [33] Nu x Current study Nu x Khan and Pop [33] Sh x Current study Sh x 

0.1 0.9524 0.95237683 2.1294 2.12939377 

0.2 0.6932 0.69317435 2.2740 2.27402146 

0.3 0.5201 0.52007904 2.5286 2.52863819 

0.4 0.4026 0.40258080 2.7952 2.79516989 

0.5 0.3211 0.32105392 3.0351 3.03514402 

It is important to note that increasing the thermal radiation parameter Nr leads to an increase in the temperature profiles 

θ ( η) in the boundary layer as seen in Fig. 9 . The slope of the temperature distribution curves near the surface show that 

the heat is always transferred from the surface to the ambient fluid. 

Fig. 10 shows that the dimensionless temperature profiles increases as the temperature ratio parameter increases for 

different values of physical parameters k = 0 . 5 ; Gr c = 0 . 3 ; Gr t = 0 . 5 ; Le = 0 . 22 ; β = 0 . 5 ;Nr = 0 . 5 ; P r = 6 . 8 ; λ = 0 . 2 ; Nt = 0 . 2 ;
Nb = 0 . 3 and R 1 = 0 . 5 . This result is expected because as the values of θw 

increases there is an increase in the values of 

temperature difference T w 

− T ∞ 

and so the temperature of the fluid increase. 

Fig. 11 shows the effect of Prandtl numbers on the temperature profiles. It can be seen that the temperature decreases 

with Pr . The decrease observed in temperature is due to the fact that an increase in Pr leads to low thermal conductivity. 

Figs. 12–14 shows temperature and concentration profiles for different values of the thermophoresis parameter Nt for 

k = 0 . 5 ;Gr c = 0 . 3 ; Gr t = 0 . 5 ; Le = 0 . 22 ; β = 0 . 5 ; Nr = 0 . 5 ;P r = 6 . 8 ; λ = 0 . 2 ; Nb = 0 . 3 ; θw 

= 1 . 2 and R 1 = 0 . 5 . It is observed 

that an increase in the thermophoresis parameter Nt leads to increase in the fluid temperature and concentration profiles. 
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Fig. 12. Effect of Nt on the temperature profile θ ( η) when k = 0 . 5 ; Gr c = 0 . 3 ; Gr t = 0 . 5 ; Le = 0 . 22 ; β = 0 . 5 ;Nr = 0 . 5 ; Pr = 6 . 8 ; λ = 0 . 2 ; Nb = 0 . 3 ; θw = 1 . 2 

and R 1 = 0 . 5 . 

Fig. 13. Effect of Nt on the concentration profile φ( η) when k = 0 . 5 ; Gr c = 0 . 3 ; Gr t = 0 . 5 ; Le = 0 . 22 ; β = 0 . 5 ;Nr = 0 . 5 ; Pr = 6 . 8 ; λ = 0 . 2 ; Nb = 0 . 3 ; θw = 1 . 2 

and R 1 = 0 . 5 . 

Fig. 14. Effect of Nb on the temperature profile θ ( η) when k = 0 . 5 ; Gr c = 0 . 3 ; Gr t = 0 . 5 ; Le = 0 . 22 ; β = 0 . 5 ;Nr = 0 . 5 ; Pr = 6 . 8 ; λ = 0 . 2 ; Nt = 0 . 2 ; θw = 1 . 2 

and R 1 = 0 . 5 . 

We also note that increasing Nt , leads to an in increase in temperature and concentration differences between the stretching 

surface and the ambient fluid. 

The effect of the Brownian motion parameter Nb on temperature and concentration profiles is shown in Figs. 14 –16 . 

The boundary layer profiles for the temperature in case of regular heat transfer fluid increases with the increase in the 

Brownian motion parameter. This is due to enhanced molecular activity at higher values of Nb which increase the fluid 

temperature but reduce the fluid concentration profiles. The Brownian motion of the nanoparticles can enhance the thermal 
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Fig. 15. Effect of Nb on the concentration profile φ( η) when k = 0 . 5 ; Gr c = 0 . 3 ; Gr t = 0 . 5 ; Le = 0 . 22 ; β = 0 . 5 ;Nr = 0 . 5 ; Pr = 6 . 8 ; λ = 0 . 2 ; Nt = 0 . 2 ; θw = 1 . 2 

and R 1 = 0 . 5 . 

Fig. 16. Effect of Le on the concentration profile φ( η). Parameter values k = 0 . 5 ; Gr t = 0 . 1 ; Gr c = 0 . 5 ; Nr = 0 . 5 ;β = 0 . 5 ; Pr = 6 . 8 ; λ = 0 . 1 ; Nb = 0 . 3 ; θw = 

1 . 2 ; R 1 = 0 . 5 ; and Nt = 0 . 1 . 

conduction via two mechanisms; either a direct effect on nanoparticles that transport heat or indirect contribution due 

to micro convection of fluid surrounding individual nanoparticles. For small particles, Brownian motion is strong and the 

parameter Nb will have the higher value, the converse in the case of large particle and clearly Brownian motion does exert 

a significant effect on the temperature. 

Fig. 16 shows the nanoparticle concentration profiles for large Lewis numbers and fixed parameters k = 0 . 5 ; Gr t = 0 . 1 ; 

Gr c = 0 . 5 ; Nr = 0 . 5 ; β = 0 . 5 ; P r = 6 . 8 ; λ = 0 . 1 ; Nb = 0 . 3 ; θw 

= 1 . 2 ; R 1 = 0 . 5 ; and Nt = 0 . 1 . It is observed that the nanopar- 

ticle concentration distribution decreases with increasing Lewis numbers due to an inverse relationship with the Brownian 

diffusion coefficient. An increase in the Lewis number leads to a lower Brownian diffusion coefficient. 

Fig. 17 shows the influence of the chemical reaction parameter R 1 on the concentration profiles. The chemical reaction 

parameter increases due to a decrease in the concentration boundary layer of the couple stress fluid. This indicates that the 

concentration of the diffusing species reduces during a fast reaction. 

The residual error or fitting deviation is discussed for different parameters β, Gr t , Nr, θw 

, P rNt, Nb, Le, R 1 . The residual 

errors are shown in Fig. 18 to 26 for purposes of determining the accuracy and convergence of the solution method. The 

residual error in temperature profiles || Res || ≈ 10 −8 rapidly converges for 0 < iteration < 10 for magneto-porous parameter 

β = 0 , 0 . 3 and thermal Grashof number Gr t = 1 . These results sufficiently demonstrate the accuracy and convergence of the 

method in Figs. 18 and 19 . The residual error on the temperature profiles for thermal radiation parameter Nr , tempera- 

ture ratio parameter θw 

and Prandtl number Pr rapidly convergent after the iterations 0 < iteration < 5, 0 < iteration < 7 and 

0 < iteration < 9 as shown in Figs. 20 – 22 , respectively. For further insights as to the accuracy and convergence of the method, 

we have calculated concentration residual errors as shown in Fig. 23 –26 , respectively. The residual errors rapidly decrease 

for the different values of N t = 0 . 2 , N b = 0 . 4 , Le = 3 and R 1 = 0 . 4 . 
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Fig. 17. Effect of R 1 on the concentration profile φ( η) when k = 0 . 5 ; Gr c = 0 . 3 ; Gr t = 0 . 5 ; Le = 0 . 22 ; β = 0 . 5 ;Nr = 0 . 5 ; Pr = 6 . 8 ; λ = 0 . 2 ; Nt = 0 . 2 ; Nb = 0 . 3 

and θw = 1 . 2 . 

Fig. 18. Residual error for β on the temperature profile θ ( η) when k = 0 . 4 ; Gr t = 0 . 1 ; Gr c = 0 . 5 ; Le = 0 . 22 ; β = 0 . 5 ; Nr = 0 . 5 ; Pr = 6 . 8 ; λ = 0 . 2 ; Nb = 0 . 2 ;
θw = 1 . 2 ; R 1 = 0 . 5 ; and Nt = 0 . 1 . 

Fig. 19. Residual error for Gr t on the temperature profile θ ( η) when k = 0 . 5 ; Gr c = 0 . 5 ; Le = 0 . 22 ; β = 0 . 5 ; Nr = 0 . 5 ; Pr = 6 . 8 ; λ = 0 . 2 ; Nb = 0 . 3 ; θw = 1 . 2 ; 

R 1 = 0 . 5 ; and Nt = 0 . 1 . 
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Fig. 20. Residual error for Nr on the temperature profile θ ( η) when k = 0 . 5 ; Gr c = 0 . 3 ; Gr t = 0 . 5 ; Le = 0 . 22 ;β = 0 . 5 ; Pr = 6 . 8 ; λ = 0 . 2 ; Nt = 0 . 2 ; θw = 1 . 2 

and R 1 = 0 . 5 ;

Fig. 21. Residual error for θw on the temperature profile θ ( η) when k = 0 . 5 ; Gr c = 0 . 3 ; Gr t = 0 . 5 ; Le = 0 . 22 ;β = 0 . 5 ; Nr = 0 . 5 ; Pr = 6 . 8 ; λ = 0 . 2 ; Nt = 0 . 2 ;
and R 1 = 0 . 5 ;

Fig. 22. Residual error for θ ( η) when Pr = 6 . 8 , 7 , 8 , 10 , 12 . 
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Fig. 23. Residual error for Nt on the concentration profile φ( η) when k = 0 . 5 ; Gr t = 0 . 5 ; Le = 0 . 22 ; β = 0 . 5 ; Nr = 0 . 5 ; Pr = 6 . 8 ; λ = 0 . 2 ; Nb = 0 . 3 ; θw = 1 . 2 ; 

R 1 = 0 . 5 ; and Nt = 0 . 1 . 

Fig. 24. Residual error for Nb on the concentration profile φ( η) when k = 0 . 5 ; Gr t = 0 . 5 ; Le = 0 . 22 ; β = 0 . 5 ; Nr = 0 . 5 ; Pr = 6 . 8 ; λ = 0 . 2 ; Nt = 0 . 2 ; θw = 1 . 2 ; 

R 1 = 0 . 5 ; and Nt = 0 . 1 . 

Fig. 25. Residual error for φ( η) when Le = 3 , 5 , 7 , 10 , 20 . 

71



H. Sithole et al. / Applied Mathematics and Computation 339 (2018) 820–836 835 

Fig. 26. Residual error for θw on the concentration profile φ( η) when k = 0 . 5 ; Gr c = 0 . 3 ; Gr t = 0 . 5 ; Le = 0 . 22 ;β = 0 . 5 ; Nr = 0 . 5 ; Pr = 6 . 8 ; λ = 0 . 2 ; Nt = 

0 . 2 ;θw = 1 . 2 and θw = 1 . 2 . 

5. Conclusions 

A numerical model was developed to study the influence of thermal radiation and couple stress nanofluids on mixed 

convection along a stretching sheet with magneto-porous medium. Graphical illustrate the flow, heat and mass transfer 

characteristics and their dependence on some physical parameters. The results in summary have shown that: 

(i) The heat transfer characteristics are greatly influenced by an increase in the couple stress parameter. 

(ii) The boundary layer flow attains the minimum velocity for higher values of the magneto-porous parameter. 

(iii) The buoyancy parameter increases the velocity distribution in the momentum boundary layer. 

(iv)Increasing the thermal radiation leads to an increase in the temperature profiles. 

(v) Increasing the Prandtl number leads to a decrease in the temperature profiles. 

(vi) An increase in the thermophoresis parameter leads to an increase in the fluid temperature and concentration profiles. 

(vii) The Brownian motion parameter enhances the temperature in the boundary layer region. Also, increasing the Brow- 

nian motion parameter decreases concentration. 

(viii) The concentration profiles decrease with an increase in the Lewis number. 

(ix) An increase in the reaction rate parameter retards the concentration distribution in the solutal boundary layer. 
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Chapter 5

Entropy generation in a second grade
magnetohydrodynamic nanofluid flow
over a convectively heated stretching
sheet with nonlinear thermal radiation
and viscous dissipation

The power law fluid model adopted in Chapter 3 fails to predict the normal stress effects. A
second grade fluid model has the essence that allows prediction of the normal stress effects. In
this chapter we propose a model that addresses the influence of homogeneous-heterogeneous
chemical reactions on a second grade magnetohydrodynamic nanofluid moving over a
convectively heated stretching sheet with nonlinear thermal radiation and viscous dissipation.
The second grade fluid is assumed to be electrically conducting and is permeated by an
applied non-uniform magnetic field. This chapter differs from the previous chapters in that
more attention is given to entropy generation analysis during heat and fluid flow, so as to
improve the system’s performance. The mathematical equations are solved using the spectral
local linearization method.
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Chapter 6

Bivariate Spectral Local Linearization
Method (BSLLM) for Unsteady MHD
Micropolar Nanofluids with
Homogeneous–Heterogeneous Chemical
Reactions Over a Stretching Surface

The work in this chapter extends from that in the previous chapters in the sense that we now
consider an unsteady flow in which the fluid properties vary with both time and space. We
consider a micropolar fluid that contain rotating micro components. We explore the character-
istics of homogeneous–heterogeneous reactions in unsteady two-dimensional MHD flow of a
micropolar nanofluid over a stretching surface. The homogeneous–heterogeneous chemical
reactions have cubic autocatalytic kinetics and first order kinetics. The bivariate spectral local
linearization method, which has not been used for a micropolar non-Newtonian nanofluid
flow before, is used to solve the model equations. The method is applied independently in
time and space directions. We show the accuracy of bivariate spectral local linearization
method for the fluid flow configuration under study.
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Abstract
Amathematical model ofMHDmicropolar-nanofluid flow deformed by a stretchable surface
is presented with a homogeneous–heterogeneous reactions given by isothermal cubic auto-
catalator kinetics and first order kinetics. We assumed the existence of an induced magnetic
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K Material parameter
Ks Heterogeneous reaction parameter
k∗
1 Thermal conductivity of the fluid
N Angular velocity
Q0 Heat generation coefficient
Pr Prandtl number
DB Brownian diffusion coefficient
DT Thermophoretic diffusion coefficient
Nb Brownian motion parameter
Nt Thermophoresis parameter
ScA Scidth number
u, v Velocity component

Greek Symbols
ψ Stream function
λ Homogeneous reaction rate parameter
ρ Density of the fluid
μ Dynamic viscosity of the fluid
ν Kinematic viscosity
ξ, η Transformed variables
ε Ratio of the diffusion coefficient

Subscripts
C Concentration
T Temperature
w Conditions at the wall
∞ Free stream condition

Introduction

Mixed convection due to homogeneous–heterogeneous chemical reactions deformed a
stretching surface arises in many applications, such as in the production of plastic, poly-
thene, paper, polymer extrusion, cooling of elastic sheets, and other areas in, science and
engineering technology. The flow of a non-Newtonian fluid has applications in many areas
including the biosciences, the manufacture and use of paints and liquid crystals. In this study
the non-Newtonian fluids that are of particular interest are micropolar fluids with suspended
nanoparticles and subject to an applied magnetic field. An excellent review of micropolar
fluids and their applications was presented by Kumari et al. [1], Pal and Chatterjee [2]. There
is also an extensive literature on MHD fluid flows by Sithole et al. [3].

The effect of MHD heat and mass transfer subject to viscous dissipation in a micropolar
nanofluid through a porous medium is investigated by Ishak et al. [4], Muthuraj and Srini-
vas [5], Shercliff [6] and Pal and Mondal [7]. The flow of electrically conducting micropolar
nanofluid over a moving vertical surface with non-consistent heat source/sink investigated
by Sarkar and Kundu [8].

Kameswaran et al. [9] and Ravikiran and Radhakrishnamacharya [10] studied the effect of
combined homogeneous and heterogeneous chemical reactions on the peristaltic motion of
a micropolar fluid through a porous medium with wall effects and a slip boundary condition.
The effects of homogeneous–heterogeneous reactions and nonlinear density temperature
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variation in a micropolar fluid flow with convective boundary condition was analyzed by
RamReddy and Pradeepa [11] and Sachin et al. [12]. From the literature it would appear
that nonlinear convection in unsteady MHDmicropolar nanofluids flow with homogeneous–
heterogeneous reactions has not been fully investigated. The current study investigates this
problem.

Based on the above observations, the aim of the study is to explore the characteristics of
homogeneous–heterogeneous reactions in unsteady two-dimensionalMHDflowof amicrop-
olar nanofluid over a stretching surface. The transformed conservation nonlinear equations
are solved by efficient bivariate spectral local linearisation method [13]. This manuscript also
investigates themicropolar-based nanofluids to be utilizedwith homogeneous–heterogeneous
chemical reactions. The analysis discusses the validity of the continuum assumption for
micropolar-based nanofluids, temperature response of the particles inside of the fluid (see
Refs. [14–16]).

Formulation

Assuming an unsteady two-dimensional micropolar nano fluid flow deformed by implement-
ing stretchable surface having homogeneous–heterogeneous chemical reactions. The flow of
the micropolar fluid is restricted to (y > 0) and the stagnation point is fixed at x = 0. The
wall and ambient temperature are Tw and T∞ respectively, Ca and Cb the concentrations of
homogeneous and heterogeneous species A and B respectively (see Khan et al. [17], Hayat
et al. [18]). The equationstake the forms:

A + 2B → 3B, rate = k1CaC
2
b , (1)

A → B, rate = ksCa (2)

where k1 and k2 are the rate constants. Using these assumptions, and the usual boundary
layer approximation, the system of equations for the viscoelastic nanofluid is given by:

∂u

∂x
+ ∂v

∂ y
= 0, (3)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂ y
= Ue

dUe

dx
+

(
μ + k∗

1

ρ

)(
∂2u

∂x2
+ ∂2u

∂ y2

)

+ k∗
1

ρ

∂N

∂ y
− σ B2

0

ρ
(u −Ue) (4)

ρ j

(
∂N

∂t
+ u

∂N

∂x
+ v

∂N

∂ y

)
= γ

∂2N

∂ y2
− k∗

1

(
2N + ∂u

∂ y

)
(5)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂ y
= κ

ρCp

(
∂2T

∂x2
+ ∂2T

∂ y2

)
+ τDB

(
∂Cb

∂x
.
∂T

∂x
+ ∂Cb

∂ y
.
∂T

∂ y

)

+ τ
DT

T∞

[(
∂T

∂x

)2

+
(

∂T

∂ y

)2]
+ Q0

ρCp
(T − T∞), (6)

∂Ca

∂t
+ u

∂Ca

∂x
+ v

∂Ca

∂ y
= DA

(
∂2Ca

∂x2
+ ∂2Ca

∂ y2

)

+ DT

T∞

(
∂2T

∂x2
+ ∂2T

∂ y2

)
− k1CaC

2
b , (7)
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∂Cb

∂t
+ u

∂Cb

∂x
+ v

∂Cb

∂ y
= DB

(
∂2Cb

∂x2
+ ∂2Cb

∂ y2

)

+ DT

T∞

(
∂2T

∂x2
+ ∂2T

∂ y2

)
+ k1CaC

2
b , (8)

where t is the time, u and v are the velocity in the x- and y-directions respectively, ν = (μ/ρ)

is the kinematic viscosity, ρ is the density, k∗
1 is the vortex viscosity, N angular velocity of the

microroration, σ is the electrical conductivity, j is the microinertia density and γ is the spin
gradient viscosity. Moreover, Q0 is the volumetric rate of heat generation, τ = (ρc)p/(ρc) f
is ratio between the effective heat capacity of the nanofluid and the heat capacity of the base
fluid, DB and DT are the Brownian motion coefficient thermophoretic diffusion coefficient
respectively. The convenient conditions for this problem are:

u = uw = ax, v = 0, N = − n
∂u

∂ y
,

T = Tw(x), DA
∂Ca

∂ y
= ksCa, DB = ∂Cb

∂ y
= − ksCa as y = 0,

u → 0, N → 0, T → T∞, Ca → C∞, Cb → 0 as y → ∞. (9)

To reduce the equations above to a more convenient form, we introduce the non-dimensional
variables:

ψ = (aν)1/2ξ1/2x f (ξ, η), η =
(a

ν

)1/2
ξ−1/2y, ξ = 1 − eζ , ζ = at,

N =
(a

ν

)1/2
ξ−1/2axh(ξ, η), θ(ξ, η) = T − T∞

Tw − T∞
, (10)

g(ξ, η) = Ca

C∞
, φ(ξ, η) = Cb

C∞

where 0 ≤ ξ ≤ 1, andψ is the stream function which is defined in the usual form as u = ∂ψ
∂ y ,

v = − ∂ψ
∂x . The nonlinear equations and boundary conditions are reduced to

(1 + K ) f ′′′ + Kh′ + 1

2
η(1 − ξ) f ′′ + ξ( f f ′′ − f ′2 − Ha2( f ′ − 1))

= ξ(1 − ξ)
∂ f ′

∂ξ
, (11)

(
1 + K

2

)
h′′ + 1

2
(1 − ξ)(h + ηh′) + ξ( f h′ − f ′h − K (2h + f ′′))

= ξ(1 − ξ)
∂h

∂ξ
, (12)

1

Pr
θ ′′ + Nbθ

′φ′ + Ntθ
′2 + ξ( f θ ′ + δθ) + 1

2
η(1 − ξ)θ ′

= ξ(1 − ξ)
∂θ

∂ξ
, (13)

1

SCA

(
g′′ + Nt

Nb
θ ′′

)
+ ξ f g′ − λξgφ2 + 1

2
η(1 − ξ)g′

= ξ(1 − ξ)
∂g

∂ξ
, (14)
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1

εSCA

(
φ′′ + Nt

Nb
θ ′′

)
+ ξ f φ′ + ξλgφ2 + 1

2
(1 − ξ)ηφ′

= ξ(1 − ξ)
∂φ

∂ξ
. (15)

The appropriate boundary conditions are:

f (ξ, 0) = 0, f ′(ξ, 0) = 1, h(ξ, 0) = −n f ′′(ξ, 0), θ(ξ, 0) = 1,

g′(ξ, 0) = Ksg(ξ, 0), φ′(ξ, 0) = −Ksg(ξ, 0) at η → 0 (16)

f ′(ξ,∞) = 1, h(ξ,∞) = 0, θ(ξ,∞) = 0, g(ξ,∞) = 1,

φ(ξ,∞) = 0, at η → ∞ (17)

where K is the material parameter, Ha is the Hartmann number, λ is the homogeneous
reaction rate parameter, ε is the ratio of the diffusion coefficient, Ks heterogeneous reaction
rate parameter.

The diffusion co-efficient DA and DB are considered of comparable size which leads to
assume DA = DB , that is ε = 1. Hence,

g(ξ, η) + φ(ξ, η) = 1. (18)

Thus, Eqs. (14) and (15) reduce to single equation

1

SCA

(
g′′ + Nt

Nb
θ ′′

)
+ ξ f g′ − λξg(1 − g)2 + 1

2
η(1 − ξ)g′ = ξ(1 − ξ)

∂g

∂ξ
(19)

The local skin friction coefficient C fx , the local Nusselt number Nux and the local Sher-
wood number Shx are the most significant physical quantities. These can be written as:

C f = τw

ρu2w(x)
, (20)

where

τw =
(

(μ + k∗
1)

∂u

∂ y
+ k∗

1N

)
y=0

. (21)

Thus

C fx Re
1/2 = ξ−1/2

(
1 + (1 − n)K

)
f ′′(ξ, 0), (22)

where Re = uw(x)x
ν

is the local Reynolds number. The Nusselt number is

Nux = xhw

κ(Tw − T∞)
, (23)

where hw is the surface heat flux, which can been written as:

hw = − κ
(∂T

∂ y

)
y=0

. (24)

Equation (23) becomes as

Nux Re
−1/2 = − ξ−1/2θ ′(ξ, 0). (25)

Finally, the Sherwood number is

Shx = xhm
ρDB(Cw − C∞)

, (26)
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where hm represents the surface mass flux, which can be obtained from

hm = − ρDB

(∂C

∂ y

)
y=0

, (27)

hence, Eq. (26) becomes as

Shx Re
−1/2 = − ξ−1/2φ′(ξ, 0). (28)

Methods of Solution

In this section we introduce the bivariate spectral local linearisation method (BSLLM)(see
Ref. [13]) for approximating solutions of systemof the nonlinear partial differential equations.
Consider a system of n nonlinear partial differential equations of the form,

Ω1 [S1, S2, . . . , Sn] = 0, (29)

Ω2 [S1, S2, . . . , Sn] = 0, (30)

...

Ωn [S1, S2, . . . , Sn] = 0, (31)

where

S1 =
{
g1,

∂g1
∂η

,
∂2g1
∂x2

, . . . ,
∂ pg1
∂ηp

,
∂g1
∂ζ

,
∂

∂ζ

(
∂g1
∂η

)}
, (32)

S2 =
{
g2,

∂g2
∂η

,
∂2g2
∂η2

, . . . ,
∂ pg2
∂ηp

,
∂g2
∂ζ

,
∂

∂ζ

(
∂g2
∂η

)}
, (33)

...

Sn =
{
gn,

∂gn
∂η

,
∂2gn
∂η2

, . . . ,
∂ pgn
∂ηp

,
∂gn
∂ζ

,
∂

∂ζ

(
∂gn
∂η

)}
(34)

where gk(η, ζ ) and Ωk for k = 1, 2, . . . , n are non-linear operators containing spatial and
time derivatives of gk(η, ζ ). We assume that the solution may be approximated by a bivariate
Lagrange interpolating polynomial of the form

gk(η, ζ ) ≈
Nη∑
i=0

Nζ∑
j=0

gk(ηi , ζ j )Li (η)L j (ζ ), (35)

for k = 1, 2, . . . , n. The polynomial interpolates gk(η, ζ ) at selected points (ηi , ζ j ) in both
the η and ζ directions, for i = 0, 1, 2, . . . , Nη and j = 0, 1, 2, . . . , Nζ . These selected grid
points are given by

{ηi } =
{
cos

(
π i

Nη

)}Nη

i=0
, {ζ j } =

{
cos

(
π j

Nζ

)}Nζ

j=0
(36)
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are the Chebyshev–Gauss–Lobatto points. The function Li (η) is the characteristic Lagrange
cardinal polynomial based on the Chebyshev–Gauss–Lobatto grid points

Li (η) =
Nη∏
i=0
i �=k

η − ηk

ηi − ηk
, (37)

where

Li (ηk) = δik =
{
0 if i �= k
1 if i = k.

(38)

Applying the quasilinearisation method independently to each equation, we get

p∑
s=0

α(1)
s,r (η, ζ )g(s)

1,r+1 + β(1)
r (η, ζ )

∂g(0)
1,r+1

∂ζ
+ γ (1)

r (η, ζ )
∂g(1)

1,r+1

∂ζ
= R1(η, ζ ), (39)

p∑
s=0

α(2)
s,r (η, ζ )g(s)

2,r+1 + β(2)
r (η, ζ )

∂g(0)
2,r+1

∂ζ
+ γ (2)

r (η, ζ )
∂g(1)

2,r+1

∂ζ
= R2(η, ζ ), (40)

...

p∑
s=0

α(n)
s,r (η, ζ )g(s)

n,r+1 + β(n)
r (η, ζ )

∂g(0)
n,r+1

∂ζ
+ γ (n)

r (η, ζ )
∂g(1)

n,r+1

∂ζ
= Rn(η, ζ ), (41)

where α
(k)
s,r (η, ζ ), β

(k)
r (η, ζ ) and γ

(k)
r (η, ζ ) are variable coefficients of g(s)

k,r+1,
∂g(0)

k,r+1
∂ζ

, and

∂g(1)
k,r+1
∂ζ

, respectively, for k = 1, 2, . . . , n and s = 0, 1, 2, . . . , p. These coefficients cor-
respond to the kth equation, for k = 1, 2, . . . , n. Since constant p denotes the order of
differentiation, then

α(k)
s,r (η, ζ ) = ∂Ωk

∂g(s)
k,r

, (42)

β(k)
r (η, ζ ) = ∂Ωk

∂

(
∂g(0)

k,r
∂ζ

) , (43)

γ (k)
r (η, ζ ) = ∂Ωk

∂

(
∂g(1)

k,r
∂ζ

) . (44)

Rk(η, ζ ) =
p∑

s=0

α(k)
s,r (η, ζ )g(s)

k,r + β(k)
r (η, ζ )

∂g(0)
k,r

∂ζ
+ γ (k)

r (η, ζ )
∂g(1)

k,r

∂ζ )
− Ωk . (45)

Equations (39), (40), and (41) are evaluated at the Chebyshev–Gauss–Lobbatto grid points
ζ j ( j = 0, 1, . . . , Nζ ) and ηi (i = 0, 1, . . . , Nη). Substituting Eq. (35) and its derivatives
into Eqs. (39), (40), and (41) yields

A1,1G1,i + βββ(1)
r

Nζ∑
j=0

di, jG1, j + γγγ (1)
r

Nζ∑
j=0

di, jDG1, j = R1,i , (46)
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A2,2G2,i + βββ(2)
r

Nζ∑
j=0

di, jG2, j + γγγ (2)
r

Nζ∑
j=0

di, jDG2, j = R2,i , (47)

...

An,nGn,i + βββ(n)
r

Nζ∑
j=0

di, jGn, j + γγγ (n)
r

Nζ∑
j=0

di, jDGn, j = Rn,i , (48)

where

A1,1 =
p∑

s=0

ααα(1)
s,rD

(s), A2,2 =
p∑

s=0

ααα(2)
s,rD

(s), . . . , An,n =
p∑

s=0

ααα(n)
s,rD

(s). (49)

The diagonal matrices of the corresponding variable coefficients are given by

ααα(k)
s,r =

⎡
⎢⎢⎢⎢⎣

α
(k)
s,r (η0, ζ j )

α
(k)
s,r (η1, ζ j )

. . .

α
(k)
s,r (ηNη , ζ j )

⎤
⎥⎥⎥⎥⎦ , (50)

βββ(k)
r =

⎡
⎢⎢⎢⎢⎣

β
(k)
r (η0, ζ j )

β
(k)
r (η1, ζ j )

. . .

β
(k)
r (ηNη , ζ j )

⎤
⎥⎥⎥⎥⎦ , (51)

γγγ (k)
r =

⎡
⎢⎢⎢⎢⎣

γ
(k)
r (η0, ζ j )

γ
(k)
r (η1, ζ j )

. . .

γ
(k)
r (ηNη , ζ j )

⎤
⎥⎥⎥⎥⎦ . (52)

Imposing boundary conditions for i = 0, 1, · · · , Nζ − 1, Eqs. (46), (47), and (48) can be
expressed as the following Nζ (Nη + 1) × Nζ (Nη + 1) matrix system

⎡
⎢⎢⎢⎢⎢⎣

B(k)
0,0 B(k)

0,1 · · · B(k)
0,Nζ −1

B(k)
1,0 B(k)

1,1 · · · B(k)
1,Nζ −1

...
...

. . .
...

B(k)
Nζ −1,0 B(k)

Nζ −1,1 · · · B(k)
Nζ −1,Nζ −1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

Gk,0

Gk,1
...

Gk,Nζ −1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

Rk,0

Rk,1
...

Rk,Nζ −1

⎤
⎥⎥⎥⎦ , (53)

where

B(k)
(i,i) =

p∑
s=0

ααα(k)
s,rD

(s) + βββ(k)
r di,i I + γγγ (k)

r di,iD, for k = 1, 2, . . . , n, when i = j,

B(k)
(i, j) = βββ(k)

r di, j I + γγγ (k)
r di, jD, for k = 1, 2, . . . , n, when i �= j .

(54)

The vector Rk,i is defined as

Rk,i = Rk,i −
(
βββ(k)
r di,Nζ I + γγγ (k)

r di,Nζ D
)
Gk,Nζ
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for i = 0, 1, · · · , Nζ − 1 and k = 1, 2, . . . , n. The vector Gk,Nζ corresponds to the initial
boundary condition which is always prescribed.

Since the highest order of differentiation for Eqs. (11)–(15) is p = 3 and n = 5, applying
the BSLLM method to the equations, we get

A1,1G1,i + βββ(1)
r

Nζ∑
j=0

di, jG1, j + γγγ (1)
r

Nζ∑
j=0

di, jDG1, j = R1,i , (55)

A2,2G2,i + βββ(2)
r

Nζ∑
j=0

di, jG2, j + γγγ (2)
r

Nζ∑
j=0

di, jDG2, j = R2,i , (56)

A3,3G3,i + βββ(3)
r

Nζ∑
j=0

di, jG3, j + γγγ (3)
r

Nζ∑
j=0

di, jDG3, j = R3,i , (57)

A4,4G4,i + βββ(4)
r

Nζ∑
j=0

di, jG4, j + γγγ (4)
r

Nζ∑
j=0

di, jDG4, j = R4,i , (58)

A5,5G5,i + βββ(5)
r

Nζ∑
j=0

di, jG5, j + γγγ (5)
r

Nζ∑
j=0

di, jDG5, j = R5,i , (59)

where

A1,1 =
3∑

s=0

ααα(1)
s,rD

(s), A2,2 =
3∑

s=0

ααα(2)
s,rD

(s), A3,3 =
3∑

s=0

ααα(3)
s,rD

(s), (60)

A4,4 =
3∑

s=0

ααα(4)
s,rD

(s), A5,5 =
3∑

s=0

ααα(5)
s,rD

(s). (61)

The coefficients for s = 0, 1, 2, 3 are given by:

α(1)
s,r = ∂Ω1

∂g(s)
1,r

, α(2)
s,r = ∂Ω2

∂g(s)
2,r

, α(3)
s,r = ∂Ω3

∂g(s)
3,r

, β(1)
r = ∂Ω1

∂

(
∂g(0)

1,r
∂ζ

) , β(2)
r = ∂Ω2

∂

(
∂g(0)

2,r
∂ζ

) ,

β(3)
r = ∂Ω3

∂

(
∂g(0)

3,r
∂ζ

) , γ (1)
r = ∂Ω1

∂

(
∂g(1)

1,r
∂ζ

) , γ (2)
r = ∂Ω2

∂

(
∂g(1)

2,r
∂ζ

) , γ (3)
r = ∂Ω3

∂

(
∂g(1)

3,r
∂ζ

) .

The right hand side for k = 1, 2, 3, 4, 5 is given by

Rk,i =
3∑

s=0

α(k)
s,r (η, ζ )g(s)

k,r + β(k)
r (η, ζ )

∂g(0)
k,r

∂ζ
+ γ (k)

r (η, ζ )
∂g(1)

k,r

∂ζ )
− Ωk . (62)

The equations can be expressed as a matrix system in Eq. (53) and the entries of the matrix
are given by Eq. (54).
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Results and Discussion

The numerical solutions of the Eqs. (11)–(15) together with the boundary conditions (16) are
presented. Nt = 10 and Nx = 60 collocation points were used in the ξ and η domains respec-
tively. By considering the error norms between two successive iterations, the convergence
and stability of the iteration scheme was evaluated. We define the error norms as,

E f = max
0≤i≤Nt

||Fr+1,i − Fr ,i ||∞, (63)

Figure 1 depicts the change in the error terms E f , Eh, Eθ , Eg, and Eφ with the number
of iterations. The errors E f , Eh, Eθ , Eg, and Eφ decrease rapidly with an increase in the
number of iterations. It is evident that the BSLLM is converging and the size of the error
is less than 10−10 to 10−14 after 5 iterations. Furthermore, the accuracy of the BSLLM is
estimated by considering the residual errors. We define the residual error functions as,

Resq = max
0≤i≤Nt

||δq [Fi , Hi , Θ i , Gi , Φ i ] ||∞, (64)

where q stands for δ f , δh, δθ , δg, and δφ represent the corresponding nonlinear PDEs. The
maximum infinity norm is considered over all collocation points ξi . Figure 2 gives the residual
errors ||Res f ||∞, ||Resh ||∞, ||Resθ ||∞, ||Resg||∞, and ||Resφ ||∞ against the number of
iterations. Residual errors decrease significantly with the increase in the number of iterations.

Fig. 1 Error norms
E f , Eh , Eθ , Eg, and Eφ

against the number of iterations
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Fig. 2 Residual errors
||Res f ||∞, ||Resh ||∞,

||Resθ ||∞, ||Resg ||∞, and
||Resφ ||∞ against the number of
iterations
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Fig. 3 Effect of varying dimensionless time ξ on a the velocity profile f ′(ξ, η), b angular momentum h(ξ, η),
c temperature profile θ(ξ, η), d homogeneous profile g(ξ, η) and e heterogeneous profile φ(ξ, η)

The results are consistent and less than 10−7 to 10−12 after 4 iterations. This analysis of the
convergence and accuracy of the method of solution show that we can trust the numerical
solutions obtained using the BSLLM.

Figure 3 illustrate the effect of increasing time ξ on the velocity profiles, angular velocity
profiles, temperature profiles and homogeneous–heterogeneous profiles against the space η

with K = 1, Ha = 2, Pr = 6.8, Nb = 1, Nt = 0.05, SCA = 0.94, ε = 1.5, δ =
0.1, λ = 0.5, n = 1/2, and Ks = 0.025. When ξ = 0 and ξ = 1 Eqs. (11)–(15) reduces to
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Fig. 4 Effect of varying material parameter K on a the velocity profiles f ′(ξ, η), b angular velocity h(ξ, η)
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Fig. 5 Effect of the heterogeneous reaction parameter Ks on a the concentration profiles g(ξ, η) and φ(ξ, η),
b temperature profile h(ξ, η)

ordinary differential equations. These results show that the velocity profiles decrease when
at 0 ≤ η ≤ 8 while the opposite trend is observed for the angular velocity and temperature
profiles. The reaction rate profiles increase with the time variable ξ , whereas for n = 1/2. It
is evident from this figure that there is a smooth transition from small time solution ξ = 0 to
large time solution ξ = 1.

The effect of the material parameter K on the velocity profile f ′(ξ, η) and microrotation
h(ξ, η) is plotted in Fig. 4 for Ha = 2, Pr = 0.72, Nb = 1, Nt = 0.05, SCA = 0.94, ε =
1.5, δ = 0.1, λ = 0.1, n = 0.5, Ks = 0.025. At the place surface the velocity is initially
equal to 1, and decreases to a minimum value. It then increases again away from the plate
until it reaches a free stream value of unity that satisfies the boundary conditions. Increasing
the material parameter K has a noticeable effect on the non-dimensional velocity as it can be
seen in Fig. 4a. For η < 3, velocity increase with K while for η > 3, velocity decreases with
an increases in K . In Fig. 4b the angular velocity increases with the material parameter K .

The impact of varying the strength of the heterogenous chemical reaction Ks is shown in
Fig. 5a for both species A g(ξ, η) and species B φ(ξ, η), K = 3, Pr = 0.72, Nb = 1, Nt =
0.05, SCA = 0.94, ε = 1.5, δ = 0.1, λ = 0.1, n = 0.5 andheterogenous chemical reaction
Ks increases, g decreases.As heterogenous chemical reaction Ks increases,φ increases. Both
the decrease and the increase in the concentration profiles can be observed near the wall. At
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Fig. 6 Effect of the thermophoresis parameter Nt and Brownian motion parameter Nb on the concentration
profiles φ(ξ, η)

the free stream the concentration profiles asymptotically approaches 1 and 0, satisfying the
boundary conditions. Figure 5b shows that increasing the heterogenous chemical reaction
Ks increases the temperature.

Increasing the values of Nt increases the concentration profiles φ(ξ, η), see in Fig. 6a
K = 3, Nb = 1, Nt = 0.05, SCA = 0.94, ε = 1.5, δ = 0.1, λ = 0.1, n = 0.5 Increasing
the Brownian motion parameter Nb reduces the concentration profiles φ(ξ, η), as can be
observed Fig. 6b.

Conclusion

In this study we have investigated heat and mass transfer in a micropolar nanofluid flow with
homogeneous–heterogeneous reactions. The conservation equations have been solved using
the bivariate spectral quasiliearization method. The novelty of this article is in the study of
hydromagnetic flow of micropolar nanofluid due to a stretching surface with homogeneous–
heterogeneous reactions and heat generation, and the use of a novel solution method for the
nonlinear conservation equations. The main observations from this study maybe listed as
follows:

(i) The fluid concentration distribution increases when particle thermophoresis increases.
(ii) The concentration profiles decreases with increasing particle Brownian motion param-

eter.
(iv) The material parameter enhances the linear and angular velocity profiles.
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Chapter 7

Conclusion

In this thesis a theoretical study of heat and mass transport in non-Newtonian nanofluid mod-
els using spectral methods was performed. This was achieved by constructing, analyzing and
investigating boundary layer flows in various geometrical settings and boundary conditions
and subject to different source terms. The aim was to find the impact of key fluid physical
parameters on the flows and on the heat and mass transfer. The non-Newtonian fluid models
studied ranged from simple to complex models. These models led to highly nonlinear and
coupled differential equations that required advanced numerical methods for their solution.
Some recently published spectral techniques for solutions of nonlinear systems were used.

In Chapter 2, the non-Newtonian nanofluid model of interest was the upper convected
Maxwell fluid model. The Maxwell nanofluid flow with magnetic field over a shrinking
surface was assumed to be unsteady. Both convective and slip boundary conditions were
imposed. The spectral local linearization method was used to solve the resulting system of
equations. The impact and significance of Brownian motion and thermophoresis when the
nanofluid particle volume fraction flux at the boundary is zero were evaluated. In terms of
heat transfer coefficients, results showed that either increasing the value of particle Brownian
motion or magnetic field strength reduced the heat transfer coefficient but the opposite was
observed in the case of increased thermophoresis parameter. Results revealed that, with
increasing values for the unsteadiness parameter, the concentration and velocity profiles both
decreased whereas the temperature profile increased. Increasing particle Brownian motion
leads to a reduction in the concentration profiles but concentration profiles increase with
increasing thermophoresis.

In Chapter 3, the boundary layer nanofluid flow over a horizontal plate embedded in a
non-Darcy porous medium was investigated, with a non-Newtonian power-law fluid being
considered as the base fluid. For this model a mixed convective boundary condition was
employed at the surface. The model incorporated the effects of Brownian motion and
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thermophoresis. The spectral quasi- linearization method (SQLM) was used to solve the
relevant equations. Both the accuracy and the convergence of the method through the
evaluation of residual errors and error norms were investigated. Furthermore the impact of
specific parameters on the flow behaviour and heat transfer characteristics were investigated.
Results showed that the accuracy and convergence of the SQLM may depend on the choice
of parameter values. For a dilatant fluid, both the heat transfer rate and the mass transfer
rate increase with increasing mixed convection parameter. The Biot number enhances both
the flow velocity and temperature at the surface. The heat transfer rate also increases with
increasing Biot number. The mass transfer rate increases with the Biot number for smaller
values of the thermophoresis parameter, but decreases for bigger values of the thermophoresis
parameter.

In Chapter 4, we presented a study of heat and mass transfer for a couple stress nanofluid
flow in a magneto-porous medium with thermal radiation and heat generation. The flow
considered was generated by a stretching surface. The temperature and concentration distribu-
tions were studied subject to nanoparticle Brownian motion and thermophoresis effects. The
resulting nonlinear model equations were solved using a spectral quasilinearization method.
To determine the accuracy of the solutions and the convergence of the method, a qualitative
presentation of residual errors for different parameters was given. A limited parametric study
showing the influence of the flow parameters on the fluid properties was given. Results
showed that the heat transfer characteristics are greatly influenced by an increase in the
couple stress parameter. The boundary layer flow attains the minimum velocity for higher
values of the magneto-porous parameter. The buoyancy parameter increases the velocity
distribution in the momentum boundary layer. Increasing the thermal radiation leads to an
increase in the temperature profiles. Increasing the Prandtl number leads to a decrease in
the temperature profiles. An increase in the thermophoresis parameter leads to an increase
in both the fluid temperature and concentration profiles. The Brownian motion parameter
enhances the temperature in the boundary layer region. Also, increasing the Brownian
motion parameter decreases concentration. The concentration profiles decrease with motion
parameter decreases concentration. The concentration profiles decrease with an increase
in the Lewis number. An increase in the reaction rate parameter retards the concentration
distribution in the solutal boundary layer.

In Chapter 5, the second grade non-Newtonian model flow with nanofluids was con-
sidered. In this chapter the interest was on entropy generation analysis with heat and fluid
flow on second grade nanofluids, in order to improve the system performance. For this
reason, the entropy generation in magnetohydrodynamic flow of a second grade nanofluid
over a convectively heated stretching sheet with nonlinear thermal radiation and viscous
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dissipation was studied in detail. The second grade fluid was assumed to be electrically
conducting. Homogeneous-heterogeneous reactions were also considered. The mathematical
equations were solved using the spectral local linearization method. It was observed that
enhancement occurred in the momentum and thermal boundary layer thicknesses when the
second grade nanofluid parameter increased. The thermophoresis parameter acted to increase
the temperature profiles. The solute concentration at the surface decreased with the strength
of the homogeneous and heterogeneous reactions. Entropy generation was enhanced by the
Hartmann, Reynolds and Brinkmann numbers. The entropy generation number decreased
with increase of temperature difference ratio parameter.

Finally, in Chapter 6, a mathematical model of MHD micropolar nanofluid flow deformed
by a stretchable surface was presented. The homogeneous–heterogeneous reactions given by
isothermal cubic autocatalator kinetics and first order kinetics were considered. We assumed
the existence of an induced magnetic field. The basic microrotation flow and heat mass
transfer nonlinear equations in both space and time were solved using the bivariate spectral
local linearization method. Analysis of the accuracy of the method was given using residual
errors. The results showed that the concentration distribution was reduced by an increase in
the homogenous reaction parameter. The concentration distribution was also reduced by an
increase in the Schmidt number. The rate of heat transfer is enhanced by larger values of both
the Prandtl number and the thermophoresis parameter. The fluid concentration distribution
increased when particle thermophoresis increased. The concentration profiles decreased with
increasing particle Brownian motion parameter. The material parameter enhanced the linear
and angular velocity profiles.

This thesis has focused on the theoretical study of heat and mass transport in non-
Newtonian nanofluid models using spectral methods. We sought to evaluate the impact of
different fluid parameters on boundary layer flows for various non-Newtonian models using
spectral methods. A single fluid model is inadequate to illustrate all properties of all of these
fluids. We showed that one model may address only a certain number of non-Newtonian
properties but fail to predict others. In this thesis, we have considered in detail five non-
Newtonian models for a fluid in which nanoparticles were suspended; namely the upper
convected Maxwell, power law, couple stress, second grade and micropolar fluids. Our
findings showed that indeed the fluid physical parameters affect the boundary layer flow, heat
and mass transfer. Our results were comparable and were in good agreement with previously
published work.

The SLLM, SQLM and BSLLM methods were used to solve the equations. The methods
were found to be accurate and convergent. We further discovered that some numerical
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methods used may be more suitable for certain types of equations. Some numerical methods
may give better accuracy for specific parameter values.
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[39] M. E. Erdoğan and C. E. Imrak, “Steady flow of a second-grade fluid in an annulus
with porous walls,” Mathematical Problems in Engineering, vol. 2008, 2008.

[40] T. Hayat, A. Aziz, T. Muhammad, and B. Ahmad, “On magnetohydrodynamic flow of
second grade nanofluid over a nonlinear stretching sheet,” Journal of Magnetism and
Magnetic Materials, vol. 408, pp. 99–106, 2016.

[41] M. Ramzan, M. Bilal, U. Farooq, and J. D. Chung, “Mixed convective radiative flow
of second grade nanofluid with convective boundary conditions: an optimal solution,”
Results in physics, vol. 6, pp. 796–804, 2016.

[42] S. Zuhra, N. S. Khan, and S. Islam, “Magnetohydrodynamic second-grade nanofluid
flow containing nanoparticles and gyrotactic microorganisms,” Computational and
Applied Mathematics, vol. 37, no. 5, pp. 6332–6358, 2018.

[43] V. K. Stokes, “Couple stresses in fluids,” The physics of fluids, vol. 9, no. 9, pp. 1709–
1715, 1966.



References 107

[44] S. Islam and C. Zhou, “Exact solutions for two dimensional flows of couple stress
fluids,” Zeitschrift für angewandte Mathematik und Physik, vol. 58, no. 6, pp. 1035–
1048, 2007.

[45] S. Islam, C.-y. Zhou, and X.-j. Ran, “Exact solutions for different vorticity functions
of couple stress fluids,” Journal of Zhejiang University-SCIENCE A, vol. 9, no. 5,
pp. 672–680, 2008.

[46] E. Walicki and A. Walicka, “Interia effect in the squeeze film of a couple-stress fluid in
biological bearings,” Applied Mechanics and Engineering, vol. 4, no. 2, pp. 363–373,
1999.

[47] P. Hiremath and P. Patil, “Free convection effects on the oscillatory flow of a couple
stress fluid through a porous medium,” Acta Mechanica, vol. 98, no. 1-4, pp. 143–158,
1993.

[48] T. Hayat, M. Mustafa, Z. Iqbal, and A. Alsaedi, “Stagnation-point flow of couple
stress fluid with melting heat transfer,” Applied Mathematics and Mechanics, vol. 34,
no. 2, pp. 167–176, 2013.

[49] H. Bakhti and L. Azrar, “Steady flow of couple-stress fluid in constricted tapered artery:
Effects of transverse magnetic field, moving catheter, and slip velocity,” Journal of
Applied Mathematics, vol. 2016, 2016.

[50] H. S. Takhar, A. K. Singh, and G. Nath, “Unsteady MHD flow and heat transfer on a
rotating disk in an ambient fluid,” International Journal of Thermal Sciences, vol. 41,
no. 2, pp. 147–155, 2002.

[51] N. A. Khan, S. Aziz, and N. A. Khan, “Numerical simulation for the unsteady MHD
flow and heat transfer of couple stress fluid over a rotating disk,” Plos One, vol. 9,
no. 5, p. e95423, 2014.

[52] J. Umavathi, J. P. Kumar, and A. J. Chamkha, “Convective flow of two immiscible
viscous and couple stress permeable fluids through a vertical channel,” Turkish Journal
of Engineering and Environmental Sciences, vol. 33, no. 4, pp. 221–244, 2010.

[53] M. S. Sarojini, M. V. Krishna, and C. U. Shankar, “MHD flow of a couple stress fluid
through a porous medium in a parallel plate channel in presence of effect of inclined
magnetic field,” International Journal of Physics and Mathematical Sciences, vol. 1,
pp. 9–18, 2011.



References 108

[54] F. Awad, N. Haroun, P. Sibanda, and M. Khumalo, “On couple stress effects on
unsteady nanofluid flow over stretching surfaces with vanishing nanoparticle flux at
the wall,” Journal of Applied Fluid Mechanics, vol. 9, no. 4, pp. 1937–1944, 2016.

[55] R. Ellahi, A. Zeeshan, F. Hussain, and A. Asadollahi, “Peristaltic blood flow of couple
stress fluid suspended with nanoparticles under the influence of chemical reaction and
activation energy,” Symmetry, vol. 11, no. 2, p. 276, 2019.

[56] A. R. Hadjesfandiari and G. F. Dargush, “Evolution of generalized couple-stress
continuum theories: a critical analysis,” arXiv preprint arXiv:1501.03112, 2014.

[57] W. Schowalter, “The application of boundary-layer theory to power-law pseudoplastic
fluids: Similar solutions,” AIChE Journal, vol. 6, no. 1, pp. 24–28, 1960.

[58] A. Acrivos, M. Shah, and E. Petersen, “Momentum and heat transfer in laminar
boundary-layer flows of non-Newtonian fluids past external surfaces,” AIChE Journal,
vol. 6, no. 2, pp. 312–317, 1960.

[59] A. M. Ishak and N. Bachok, “Power-law fluid flow on a moving wall,” European
Journal of Scientific Research, vol. 34, no. 1, pp. 55–60, 2009.

[60] B. S. Reddy, N. Kishan, and M. Rajasekhar, “Mhd boundary layer flow of a non-
newtonian power-law fluid on a moving flat plate,” Adv. Appl. Sci. Res, vol. 3, pp. 1472–
1481, 2012.

[61] D. O. de Almeida Cruz, J. N. N. Quaresma, C. E. Maneschy, and E. N. Macêdo, “A
turbulence model for non-Newtonian power-law fluids in ducts,”

[62] P. Bose, T. Rakib, S. Das, K. M. Rabbi, and S. Mojumder, “MHD mixed convection
analysis of non-Newtonian power law fluid in an open channel with round cavity,” in
AIP Conference Proceedings, vol. 1851, p. 020057, AIP Publishing, 2017.

[63] A. Sojoudi, S. C. Saha, Y. Gu, and M. Hossain, “Steady natural convection of non-
Newtonian power-law fluid in a trapezoidal enclosure,” Advances in Mechanical
Engineering, vol. 5, p. 653108, 2013.

[64] S. Thohura, M. M. Molla, and M. M. A. Sarker, “Numerical simulation of non-
Newtonian power-law fluid flow in a lid-driven skewed cavity,” International Journal
of Applied and Computational Mathematics, vol. 5, no. 1, p. 14, 2019.

[65] J. Bear and Y. Bachmat, Introduction to modeling of transport phenomena in porous
media, vol. 4. Springer Science & Business Media, 2012.



References 109

[66] D. B. Ingham and I. Pop, Transport phenomena in porous media. Elsevier, 1998.

[67] J. H. Lehr and J. K. Lehr, Standard handbook of environmental science, health, and
technology. McGraw Hill Professional, 2000.

[68] M. Honarpour and S. M. Mahmood, “Relative-permeability measurements: An
overview,” Journal of Petroleum Technology, vol. 40, no. 08, pp. 963–966, 1988.

[69] H. P. G. Darcy, Les Fontaines publiques de la ville de Dijon. Exposition et application
des principes à suivre et des formules à employer dans les questions de distribution
d’eau, etc. V. Dalmont, 1856.

[70] Z. Zeng and R. Grigg, “A criterion for non-Darcy flow in porous media,” Transport in
Porous Media, vol. 63.

[71] J. Prasad, Hemalatha, and Prasad, “Mixed convection flow from vertical plate em-
bedded in non-Newtonian fluid saturated non- Darcy Porous Medium with Thermal
Dispersion-Radiation and Melting Effects,” Journal of Applied Fluid Mechanics,
vol. 7, no. 385, p. 394, 2011.

[72] R. Kairi, P. Narayana, and P. Murthy, “The effect of double dispersion on natural
convection heat and mass transfer in a non-Newtonian fluid saturated non-Darcy
porous medium,” Transport in porous media, vol. 68, no. 3, pp. 377–390, 2009.

[73] M. Kumari and S. Jayanthi, “Non-Darcy non-Newtonian free convection flow over a
horizontal cylinder in a saturated porous medium,” International communications in
heat and mass transfer, vol. 31, no. 8, pp. 1219–1226, 2010.

[74] H. Hadim, “Non-Darcy natural convection of a non-Newtonian fluid in a porous
cavity,” International communications in heat and mass transfer, vol. 33, no. 10,
pp. 1179–1189, 2006.

[75] A. Chamka, S. Abbasbandy, and A. Rashad, “Non-Darcy natural convection flow for
non-Newtonian nanofluid over cone saturated in porous medium with uniform heat
and volume fraction fluxes,” International Journal of Numerical Methods for Heat &
Fluid Flow, vol. 25, pp. 422–437, 2015.

[76] P. Kameswaran and P. Sibanda, “Thermal dispersion effects on convective heat and
mass transfer in an Ostwald de Waele nanofluid flow in porous media,” Boundary
Value Problems, p. 243, 2013.



References 110

[77] A. C. Eringen, “Theory of micropolar fluids,” Journal of Mathematics and Mechanics,
pp. 1–18, 1966.

[78] M. S. Uddin, K. Bhattacharyya, S. Shafie, et al., “Micropolar fluid flow and heat
transfer over an exponentially permeable shrinking sheet,” Propulsion and Power
Research, vol. 5, no. 4, pp. 310–317, 2016.

[79] J. Peddieson and M. R, “Boundary-layer theory for a micropolar fluid recent,” Adv.
Eng. Sci., vol. 5, pp. 405–476, 1970.

[80] A. C. Eringen, “Theory of thermomicrofluids,” Journal of Mathematical Analysis and
Applications, vol. 38, no. 2, pp. 480–496, 1972.

[81] H. Kümmerer, “Similar laminar boundary layers in incompressible micropolar fluids,”
Rheologica Acta, vol. 16, no. 3, pp. 261–265, 1977.

[82] K. K. Sankara and L. T. Watson, “Micropolar flow past a stretching sheet,” Zeitschrift
für angewandte Mathematik und Physik, vol. 36, no. 6, pp. 845–853, 1985.

[83] M. W. Heruska, L. T. Watson, and K. K. Sankara, “Micropolar flow past a porous
stretching sheet,” Computers & fluids, vol. 14, no. 2, pp. 117–129, 1986.

[84] I. Hassanien and R. Gorla, “Heat transfer to a micropolar fluid from a non-isothermal
stretching sheet with suction and blowing,” Acta Mechanica, vol. 84, no. 1-4, pp. 191–
199, 1990.

[85] M. M. Rahman, A. Aziz, and M. A. Al-Lawatia, “Heat transfer in micropolar fluid
along an inclined permeable plate with variable fluid properties,” International Journal
of Thermal Sciences, vol. 49, no. 6, pp. 993–1002, 2010.

[86] K. Das, “Influence of thermophoresis and chemical reaction on MHD micropolar fluid
flow with variable fluid properties,” International Journal of Heat and Mass Transfer,
vol. 55, no. 23-24, pp. 7166–7174, 2012.

[87] K. Bhattacharyya, S. Mukhopadhyay, G. Layek, and I. Pop, “Effects of thermal
radiation on micropolar fluid flow and heat transfer over a porous shrinking sheet,”
International Journal of Heat and Mass Transfer, vol. 55, no. 11-12, pp. 2945–2952,
2012.

[88] S. Mishra, S. Baag, and D. Mohapatra, “Chemical reaction and Soret effects on
hydromagnetic micropolar fluid along a stretching sheet,” Engineering Science and
Technology, an International Journal, vol. 19, no. 4, pp. 1919–1928, 2016.



References 111

[89] S. Atif, S. Hussain, and M. Sagheer, “Numerical study of MHD micropolar carreau
nanofluid in the presence of induced magnetic field,” AIP Advances, vol. 8, no. 3,
p. 035219, 2018.

[90] M. Alizadeh, A. Dogonchi, and D. Ganji, “Micropolar nanofluid flow and heat transfer
between penetrable walls in the presence of thermal radiation and magnetic field,”
Case studies in thermal engineering, vol. 12, pp. 319–332, 2018.

[91] N. Abbas, S. Saleem, S. Nadeem, A. Alderremy, and A. Khan, “On stagnation point
flow of a micro polar nanofluid past a circular cylinder with velocity and thermal slip,”
Results in Physics, vol. 9, pp. 1224–1232, 2018.

[92] Z. Shah, S. Islam, H. Ayaz, and S. Khan, “Radiative heat and mass transfer analysis of
micropolar nanofluid flow of Casson fluid between two rotating parallel plates with
effects of Hall current,” Journal of Heat Transfer, vol. 141, no. 2, p. 022401, 2019.

[93] M. Chaudhary and J. Merkin, “A simple isothermal model for homogeneous-
heterogeneous reactions in boundary-layer flow. I Equal diffusivities,” Fluid dynamics
research, vol. 16, no. 6, p. 311, 1995.

[94] M. Chaudhary and J. Merkin, “A simple isothermal model for homogeneous-
heterogeneous reactions in boundary-layer flow. II Different diffusivities for reactant
and autocatalyst,” Fluid dynamics research, vol. 16, no. 6, p. 335, 1995.

[95] P. Kameswaran, S. Shaw, P. Sibanda, and P. Murthy, “Homogeneous–heterogeneous
reactions in a nanofluid flow due to a porous stretching sheet,” International journal
of heat and mass transfer, vol. 57, no. 2, pp. 465–472, 2013.

[96] G. Ravikiran and G. Radhakrishnamacharya, “Effect of homogeneous and heteroge-
neous chemical reactions on peristaltic transport of a jeffrey fluid through a porous
medium with slip condition,” 2015.

[97] S. Shaw, P. K. Kameswaran, and P. Sibanda, “Homogeneous-heterogeneous reactions
in micropolar fluid flow from a permeable stretching or shrinking sheet in a porous
medium,” Boundary Value Problems, vol. 2013, no. 1, p. 77, 2013.

[98] W. Yu, D. M. France, J. L. Routbort, and S. U. Choi, “Review and comparison
of nanofluid thermal conductivity and heat transfer enhancements,” Heat Transfer
Engineering, vol. 29, no. 5, pp. 432–460, 2008.



References 112

[99] Y. Xuan and Q. Li, “Heat transfer enhancement of nanofluids,” International Journal
of heat and fluid flow, vol. 21, no. 1, pp. 58–64, 2000.

[100] S. P. Jang and S. U. Choi, “Cooling performance of a microchannel heat sink with
nanofluids,” Applied Thermal Engineering, vol. 26, no. 17-18, pp. 2457–2463, 2006.

[101] S.-C. Tzeng, C.-W. Lin, and K. Huang, “Heat transfer enhancement of nanofluids in
rotary blade coupling of four-wheel-drive vehicles,” Acta Mechanica, vol. 179, no. 1-2,
pp. 11–23, 2005.

[102] D. P. Kulkarni, D. K. Das, and R. S. Vajjha, “Application of nanofluids in heating
buildings and reducing pollution,” Applied Energy, vol. 86, no. 12, pp. 2566–2573,
2009.

[103] T. P. Otanicar, P. E. Phelan, R. S. Prasher, G. Rosengarten, and R. A. Taylor,
“Nanofluid-based direct absorption solar collector,” Journal of renewable and sus-
tainable energy, vol. 2, no. 3, p. 033102, 2010.

[104] N. M. Arifin, R. Nazar, and I. Pop, “Free-and mixed-convection flow past a horizontal
surface in a nanofluid,” Journal of Thermophysics and Heat Transfer, vol. 26, no. 2,
pp. 375–382, 2012.

[105] A. Chamkha, S. Abbasbandy, and A. Rashad, “Non-darcy natural convection flow for
non-newtonian nanofluid over cone saturated in porous medium with uniform heat
and volume fraction fluxes,” International Journal of Numerical Methods for Heat &
Fluid Flow, vol. 25, no. 2, pp. 422–437, 2015.

[106] S. Mondal, S. Nandy, and P. Sibanda, “MHD Flow and Heat Transfer of Maxwell
Nanofluid Over an Unsteady Permeable Shrinking Sheet with Convective Boundary
Conditions,” Journal of Nanofluids, vol. 7, no. 5, pp. 995–1003, 2018.

[107] S. Bilal, Z. Mustafa, K. U. Rehman, and M. Malik, “MHD second grade nanofluid
flow induced by a rotatory cone,” Journal of Nanofluids, vol. 8, no. 4, pp. 876–884,
2019.

[108] C. B. Sobhan and G. P. Peterson, Microscale and nanoscale heat transfer: fundamen-
tals and engineering applications. CRC Press, 2008.

[109] T. L. Bergman, F. P. Incropera, D. P. DeWitt, and A. S. Lavine, Fundamentals of heat
and mass transfer. John Wiley & Sons, Hoboken, 2011.



References 113

[110] Y. A. Cengel and A. Ghajar, Heat and mass transfer (a practical approach, SI version).
McGraw-Hill Education„ McGraw-Hill Education, New York, 2011.

[111] C. A. Yunus and J. G. Afshin, Heat and mass transfer: fundamentals and applications.
Tata McGraw-Hill, New Delhi, 2011.

[112] W. M. Kays, Convective heat and mass transfer. Tata McGraw-Hill Education, 2012.

[113] R. Malik, M. Khan, A. Munir, and W. A. Khan, “Flow and heat transfer in sisko fluid
with convective boundary condition,” Plos one, vol. 9, no. 10, p. e107989, 2014.

[114] O. D. Makinde and A. Aziz, “Boundary layer flow of a nanofluid past a stretching sheet
with a convective boundary condition,” International Journal of Thermal Sciences,
vol. 50, no. 7, pp. 1326–1332, 2011.

[115] M. J. Uddin, W. A. Khan, and A. I. Ismail, “MHD free convective boundary layer flow
of a nanofluid past a flat vertical plate with Newtonian heating boundary condition,”
PLoS One, vol. 7, no. 11, p. e49499, 2012.

[116] D. Pal and H. Mondal, “The influence of thermal radiation on hydromagnetic Darcy-
Forchheimer mixed convection flow past a stretching sheet embedded in a porous
medium,” Meccanica, vol. 46, no. 4, pp. 739–753, 2011.

[117] D. Pal, “Heat and mass transfer in stagnation-point flow towards a stretching surface
in the presence of buoyancy force and thermal radiation,” Meccanica, vol. 44, no. 2,
pp. 145–158, 2009.

[118] S. Aïboud and S. Saouli, “Entropy analysis for viscoelastic magnetohydrodynamic flow
over a stretching surface,” International Journal of Non-Linear Mechanics, vol. 45,
no. 5, pp. 482–489, 2010.

[119] A. S. Butt, S. Munawar, A. Ali, and A. Mehmood, “Entropy generation in hydrody-
namic slip flow over a vertical plate with convective boundary,” Journal of mechanical
science and technology, vol. 26, no. 9, pp. 2977–2984, 2012.

[120] M. Magherbi, H. Abbassi, N. Hidouri, and A. Brahim, “Second law analysis in
convective heat and mass transfer,” Entropy, vol. 8, no. 1, pp. 1–17, 2006.

[121] N. Hidouri, M. Magherbi, H. Abbassi, and A. Ben Brahim, “Entropy generation in
double diffusive convection in presence of the Soret effect,” Progress in Computational
Fluid Dynamics, an International Journal, vol. 7, no. 5, pp. 237–246, 2007.



References 114

[122] A. Lopez, G. Ibanez, J. Pantoja, J. Moreira, and O. Lastres, “Entropy generation
analysis of MHD nanofluid flow in a porous vertical microchannel with nonlinear ther-
mal radiation, slip flow and convective-radiative boundary conditions,” International
Journal of Heat and Mass Transfer, vol. 107, pp. 982–994, 2017.

[123] I. Khan, S. Ullah, M. Malik, and A. Hussain, “Numerical analysis of MHD Car-
reau fluid flow over a stretching cylinder with homogenous-heterogeneous reactions,”
Results in Physics, vol. 9, pp. 1141–1147, 2018.

[124] R. Sharma, R. Bhargava, and P. Bhargava, “A numerical solution of unsteady MHD
convection heat and mass transfer past a semi-infinite vertical porous moving plate
using element free Galerkin method,” Computational Materials Science, vol. 48, no. 3,
pp. 537–543, 2010.

[125] K.-J. Bathe and L. Zhang, “The finite element method with overlapping elements–
a new paradigm for CAD driven simulations,” Computers & Structures, vol. 182,
pp. 526–539, 2017.

[126] K. Vajravelu and K. V. Prasad, Keller-box method and its application, vol. 8. Walter
de Gruyter GmbH & Co KG, 2014.

[127] A. Asaithambi, “A second-order finite-difference method for the Falkner–Skan equa-
tion,” Applied Mathematics and Computation, vol. 156, no. 3, pp. 779–786, 2004.

[128] B. Bin-Mohsin, “Buoyancy Effects on MHD Transport of Nanofluid Over a Stretching
Surface With Variable Viscosity,” IEEE Access, vol. 7, pp. 75398–75406, 2019.

[129] D. Anderson, J. C. Tannehill, and R. H. Pletcher, Computational fluid mechanics and
heat transfer. CRC Press, 2016.

[130] S. S. Motsa, “A new spectral local linearization method for nonlinear boundary layer
flow problems,” Journal of Applied Mathematics, vol. 2013, Article ID 423628, 2013.

[131] M. Solecki, Mass transfer: Advancement in process modelling. InTech Open, 2015.

[132] S. Motsa and S. Shateyi, “Successive linearisation analysis of unsteady heat and mass
transfer from a stretching surface embedded in a porous medium with suction/injection
and thermal radiation effects,” The Canadian Journal of Chemical Engineering, vol. 90,
no. 5, pp. 1323–1335, 2012.

[133] R. E. Bellman and R. E. Kalaba, “Quasilinearization and nonlinear boundary-value
problems,” 1965.



References 115

[134] S. S. Motsa, P. G. Dlamini, and M. Khumalo, “Spectral relaxation method and spec-
tral quasilinearization method for solving unsteady boundary layer flow problems,”
Advances in Mathematical Physics, vol. 2014, Article ID 341964, 2014.

[135] S. Shateyi and G. T. Marewo, “On a new numerical analysis of the hall effect on mhd
flow and heat transfer over an unsteady stretching permeable surface in the presence
of thermal radiation and heat source/sink,” Boundary Value Problems, vol. 2014, no. 1,
p. 170, 2014.

[136] S. Motsa, Z. Makukula, and S. Shateyi, “Spectral local linearisation approach for
natural convection boundary layer flow,” Mathematical Problems in Engineering,
vol. 2013, 2013.

[137] S. S. Motsa, “On the practical use of the spectral homotopy analysis method and local
linearisation method for unsteady boundary-layer flows caused by an impulsively
stretching plate,” Numerical Algorithms, vol. 66, no. 4, pp. 865–883, 2014.

[138] S. Motsa, “On the new bivariate local linearisation method for solving coupled partial
differential equations in some applications of unsteady fluid flows with heat and
mass transfer,” in Marek Solecki, Mass Transfer-Advancement in Process Modelling,
IntechOpen, 2015.


	Table of contents
	1 Introduction
	1.1 Non-Newtonian fluid models
	1.1.1 Maxwell fluids
	1.1.2 Second grade fluids
	1.1.3 Couple stress fluids
	1.1.4 Power-law fluids
	1.1.5 Micropolar fluids

	1.2 Nanofluids
	1.3 Heat and mass transfer
	1.4 Convective boundary conditions
	1.5 Thermal radiation
	1.6 Entropy generation
	1.7 Numerical methods
	1.7.1 The spectral quasilinearization methods
	1.7.2 The spectral local linearization method
	1.7.3 The bivariate spectral local linearization methods

	1.8 Aims and Objectives
	1.9 Thesis structure

	2 An unsteady MHD Maxwell nanofluid flow with convective boundary conditions using spectral local linearization method
	3 Non-Darcian nanofluid flow over a horizontal surface embedded in a porous medium
	4 Numerical simulation of couple stress nanofluid flow in magneto-porous medium with thermal radiation and a chemical reaction
	5 Entropy generation in a second grade magnetohydrodynamic nanofluid flow over a convectively heated stretching sheet with nonlinear thermal radiation and viscous dissipation
	6 Bivariate Spectral Local Linearization Method (BSLLM) for Unsteady MHD Micropolar Nanofluids with Homogeneous–Heterogeneous Chemical Reactions Over a Stretching Surface
	7 Conclusion
	References

