
i 
 

Modelling leaf area index in a tropical 
grassland using multi-temporal 

hyperspectral data  
 

 

 

 
By 

Zolo Zime Zinu Serge Kiala 

213569675 

 

 

A thesis submitted in fulfilment for the degree of Master of Science in 

Environmental Science in the School of Agricultural, Earth and 

Environmental Sciences, University of KwaZulu-Natal 

 
 

Pietermaritzburg 

 
Supervisor: Prof. O. Mutanga 

Co-supervisor: Dr J.Odindi 

 

 

 

 

 

 

 

March 2016 



ii 
 

Abstract 

Leaf area index (LAI) is a critical parameter in assessing vegetation status and health of tropical 

grasslands. Synoptic and dynamic LAI estimates are particularly useful in monitoring changes 

in ground biomass, hence a basis for sustainable rangeland stewardship. Due to the huge 

information they provide, hyperspectral remotely sensed data in concert with multivariate 

regression techniques offer unique opportunities to accurately model LAI in tropical 

grasslands. This study was a two-step process. Firstly, interval partial least square regression 

(iPLSR) in forward mode was compared to partial least square regression (PLSR) in estimating 

LAI using in-situ canopy hyperspectral data at three sampling periods (onset, mid, end) in 

summer. iPLSR, which is a variant of PLSR, was implemented to reduce all available 

wavebands used in PLSR to 40 optimal wavebands. Then, optimal bands selected by iPLSR 

were used to compare PLSR and support vector regression (SVR). The performance of the 

three regression techniques was determined using root mean square error (RMSE) and 

coefficients of determination (R2) based on the predicted and the measured variables. Results 

show that iPLSR outperformed PLSR for all the sampling periods. iPLSR models could explain 

LAI variation with Rp
2

 values ranging from 0.809 to 0.933 and low RMSEP values from 0.211 

to 0.603 m2m-2, while PLSR models yielded Rp
2 and RMSEP values ranging from 0.364 to 

0.649 and from 0.542 to 0.694 m2m-2, respectively. The best periods for estimating LAI were 

at beginning and end of summer (R2
p = 0.882 and RMSEP = 0.299 m2m-2; R2

p = 0.890 and 

RMSEP = 0.211 m2m-2 respectively). Pooling data sets from the three assessed periods yielded 

the highest prediction error (RMSEP=0.603). PLSR outperformed SVR at the beginning and 

end of summer in generating optimal wavebands. PLSR models could explain 86.5 % and 85.1 

% in LAI variance with RMSEP values of 0.263 m2m-2 and 0.204 m2m-2, respectively. The SVR 

models could explain 85.8 % and 83.2 % in LAI variance with RMSEP values of 0.287 m2m-2 

and 0.218 m2m-2, respectively. However, at mid-summer, SVR models yielded higher 

accuracies (Rp
2 = 0.902 and RMSEP= 0.371 m2m-2) than PLSR models (Rp

2 = 0.886 and 

RMSEP = 0.379 m2m-2). Similarly, for pooled dataset, SVR models were slightly more accurate 

(Rp
2= 0.74 and RMSEP = 0.578 m2m-2) than PLSR models (Rp

2 = 0.732 and RMSEP= 0.58 

m2m-2). Variable Importance in the Projection (VIP) analysis of optimal bands show that the 

most influential bands were located in the near infrared (NIR) and shortwave (SWIR) regions 

of the electromagnetic spectrum. The superior performance of iPLSR over PLSR confirmed 

the fact that the reduction of data dimensionality to optimal wavebands improves model 

accuracies. The superiority of PLSR over SVR at early and late summer could be attributed to 
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its ability to quantify linear relationships in dataset and to be less sensitive to background 

reflectance at low canopy cover. However, the outperformance of SVR over PLSR at mid-

summer and for pooled dataset may be explained by its ability to deal with non-linearity, 

observed in high dense canopy, when saturation in reflectance sets in. Findings in this study 

provide a practical insight on the potential of mapping LAI on heterogeneous grasslands at a 

regional scale using air or space-borne sensors.  
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Chapter 1  

General introduction 
 

 

1.1 Introduction 

Grasslands of Southern Africa are of significant subsistence, commercial and ecological value. 

They provide forage for livestock and wildlife and valuable goods and services that include 

fuel wood, edible herbs and insects for humans (Chen et al., 2009; Shackleton et al., 2002). 

Quantitative (e.g. biomass and Leaf Area Index) and qualitative (e.g. nitrogen and phosphorus) 

variables of grasses, which are spatially and temporally dynamic, determine sustainable range 

production and ensure the continuous supply of goods and services (Shen et al., 2014; Si et al., 

2012). For example, for continued sustainable grazing, a minimum of grass quantity is required 

(Adler et al., 2001). However, land degradation due to overgrazing, have been attributed to 

poor management of grazing lands (Ramoelo et al., 2013). According to Snyman (1999), 66 % 

of rangelands have undergone a moderate to serious land degradation in South Africa. 

Therefore, it is crucial to understand the spatial and temporal patterns of grass quality and 

quantity in order to sustainably manage both subsistence and communal rangelands. 

Leaf Area Index (LAI) is a critical biophysical parameter that has been used  for measuring 

biomass canopy and assessing grassland productivity and carbon balance (He et al., 2007). Leaf 

Area Index drives the exchange between the atmosphere and the earth surface, hence plays a 

critical role in the biophysical processes such as photosynthesis, canopy water interception, 

transpiration, radiation extinction, carbon loads and nutrient sequestration (Leuschner et al., 

2006; Chen and Cihlar, 1996; Chason et al., 1991). A number of studies (Shen et al., 2014; 

Pfeifer et al., 2012; Doraiswamy et al., 2004; Bréda, 2003) have used LAI to model vegetation 

foliage cover, growth and productivity and effects of disturbances such as climate change, 

drought and defoliation on vegetation communities. 

Currently, direct (e.g. area harvest) and indirect (e.g. use of ceptometer, LAI-2000 canopy 

analyser, hemispherical canopy photography, spectrometer, aerial and space-borne sensors) 

approaches are used to determine LAI on grasslands (Shen et al., 2014; Zhang et al., 2012; 

Jonckheere et al., 2004; Weiss et al., 2004; Bréda, 2003). Direct methods involve LAI using 
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planimetric or volumetric techniques. In the planimetric technique, individual leaf area is 

correlated to the number of area units covered by that leaf in a horizontal canopy layer. In the 

volumetric technique, leaves are dried and correlated to leaf area using predefined ratios 

between  green-leaf-area and dry-weight, referred to as leaf mass per area (Jonckheere et al., 

2004). Whereas direct measurements are regarded as more reliable and serve as reference for 

calibrating indirect measurements, they involve destructive sampling, are labour intensive, 

costly and time-consuming (Bréda, 2003). Furthermore, they are difficult to implement on large 

spatial extents and not suited for long-term LAI spatio-temporal monitoring (He et al., 2007; 

Bréda, 2003; Chason et al., 1991). Indirect methods on the other hand derive LAI by 

implementing mathematical expressions and/or radiative transfer theory on a related 

measureable variable (Ryu et al., 2010). For example, to determine the value of LAI from 

vegetation canopy, a spectrometer measures canopy reflectance, which is used as a proxy for 

modelling LAI (Jonckheere et al., 2004). In comparison to direct measurements, indirect LAI 

measurements are relatively quick, non-destructive and can be automatically processed, thus 

allowing for LAI determination on a larger sampling area. Consequently, indirect methods are 

increasingly becoming popular (Jonckheere et al., 2004). 

Remote sensing techniques are regarded as an indirect approach of determining LAI. Remote 

sensing techniques are less costly, non-destructive, relatively quick and often the only reliable 

means for spatio-temporal LAI determination (Shen et al., 2014; Gray and Song, 2012; 

Pullanagari et al., 2012; Bulcock and Jewitt, 2010; Chen and Cihlar, 1996). However, 

traditional remotely sensed imagery are characterised by broad band widths which contain 

consolidated spectral information for biophysical variables, resulting in loss of useful 

information available in the narrow bands widths (Thenkabail et al., 2000). Shen et al. (2014) 

for instance noted that adoption of traditional image data for determining  LAI could hardly 

explain 50 % of  LAI variablity (Shen et al., 2014). Due to this limitation, use of hyperspectral 

data has been proposed for LAI modelling. 

According to Lee et al. (2004) and Marabel and Alvarez-Taboada (2013), several studies have 

demonstrated the superiority of hyperspectral data in predicting LAI over traditional remotely 

sensed multi-spectral data. However, the huge spectral information contained in hyperspectral 

data makes LAI retrieval challenging (Darvishzadeh et al., 2008). Multi-collinearity presents a 

high degree of redundancy and affects the performance of hyperspectral dataset (Li et al., 

2014). Moreover, hyperspectral dataset are often degraded by a lower signal-to-noise ratio 

(Marabel and Alvarez-Taboada, 2013). To deal with this limitation, partial least square 
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regression (PLSR) was introduced (Wold et al., 2001). PLSR decomposes highly collinear 

explanatory variables (X) into a few non-correlated components using information contained 

in the dependent variable (Y), then it predicts the Y variable using the new components (Tobias, 

1995; Cho et al., 2007). Unlike other algorithms, PLSR can be run on data where the number 

of predictors is greater than the number of dependent variables. Numerous studies 

(Darvishzadeh et al., 2008; Cho et al., 2007; Hansen and Schjoerring, 2003) that have modelled 

LAI or biomass in heterogeneous grasslands using hyperspectral data have demonstrated the 

superiority of PLSR over traditional regression techniques such as stepwise and univariate 

linear regressions using vegetation indices. Nevertheless, PLSR uses all available spectral 

bands during the computational process of model development. Andersen and Bro (2010) and 

Abdel-Rahman et al. (2014) showed that the removal of uninformative bands from the 

hyperspectral data improves model accuracies, simplifies interpretation and reduces data 

dimensionality and collection costs (Atzberger et al., 2004). 

Interval partial least squares (iPLSR), proposed by Nørgaard et al. (2000) for chemometric 

analyses,  is one of the variants of PLSR that can reduce hyperspectral data into a portion of 

bands relevant for prediction. Its principle is to subdivide the electromagnetic spectrum into 

equidistant intervals and then run PLSR on the spectral intervals. The local PLSR model with 

the lowest root mean square (RMSE) is finally selected as the best model.  iPLSR has the 

advantage of visually providing a general overview of optimal bands in different spectral 

regions, thereby sorting out optimal portions of the electromagnetic spectrum from 

uninformative portions (Navea et al., 2005; Nørgaard et al., 2000). The selected wavebands in 

the spectral optimal portions may be useful for the development of sensors on satellite and 

aerial platforms. Whereas studies in chemometrics that have applied this technique have 

concluded that iPLSR models are more accurate and reliable than full spectrum PLSR models 

(Zhou et al., 2009; Borin and Poppi, 2005; Navea et al., 2005; Nørgaard et al., 2000), only a 

few studies have investigated its ability in the field of remote sensing (Mao et al., 2015; Zhang 

et al., 2012). In this study we hypothesise that iPLSR can be used to improve LAI estimation 

in heterogeneous grasslands. 

Generally, canopy reflectance on heterogeneous grasslands is complicated by multiple surface 

materials such as varying species composition, phenology, proportions and complex canopy 

architecture (Darvishzadeh et al., 2008; Röder et al., 2007). In Addition to grass canopy 

heterogeneity, temporal variability in different growing seasons impedes the performance of 

remote sensing data in estimating LAI (Shen et al., 2014). For example, at peak season (LAI > 
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2.5), the saturation problem is observed. This results in non-linearity between canopy 

reflectance and biophysical variables such as biomass and LAI (Kooistra, 2012; Chen et al., 

2009; Wu et al., 2008; Thenkabail et al., 2000; Clevers and Huete et al., 1997). Being a linear 

regression method, PLSR would not be suited for dataset collected in this period (Wold et al., 

2001). Therefore an appropriate multivariate regression method, which accounts for non-

linearity, is necessary as a surrogate to PLSR in heterogeneous grasslands. 

Support vector regression (SVR) has been proven to quantify linear and nonlinear relationships 

in dataset (Üstün et al., 2005; Thissen et al., 2004). The SVR, introduced by  Petsche et al. 

(1997) for functions estimation (Smola and Schölkopf, 2004), belongs to the support vector 

machines (SVMs) family (Vapnik and Vapnik, 1998). SVR works by constructing  

hyperplane/s in high or infinite-dimensional space, which can separate quantitative estimates 

for regressions (Malenovsk et al., 2015). While PLSR is widely used in the field of remote 

sensing for estimating biophysical and biochemical variables from remotely sensed data (Cho 

et al., 2007; Darvishzadeh et al., 2011; Hansen and Schjoerring, 2003; Herrmann et al., 2011), 

little is known about the value of SVR (Yang et al., 2011). Whereas some studies that compared 

PLSR and SVR showed that SVR were more accurate than PLSR models (Üstün et al., 2005; 

Thissen et al., 2004), others were contrary (Marabel and Alvarez-Taboada, 2013; Shah et al., 

2010). A comparison between the two algorithms on hyperspectral data at different temporal 

scales would therefore indicate the value of the algorithm and the ideal period of application. 

This is particularly crucial for the development of reliable temporal and multi-temporal models 

of LAI in heterogeneous grasslands. 

1.2 Aims and objectives 

The major aims of this study were: 

 To investigate the potential of iPLSR on hyperspectral data in estimating LAI on a 

heterogeneous tropical grassland and  

 To compare the performance of PLSR and SVR using optimal bands selected by iPLSR in 

estimating LAI on a heterogeneous tropical grassland.  

The major objectives in the above named aims were: 

 To compare PLSR and iPLSR on hyperspectral data. 

 To evaluate the robustness of PLSR and iPLSR models at three sampling periods (i.e. onset, 

mid and end of the planting season) and pooled reflectance data during summer. 
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 To compare the performance of PLSR and SVR on iPLSR selected optimal bands at three 

sampling periods within summer (early, mid, late). 

 Identify wavebands with Variable Importance in the Projection (VIP) scores above the 

significant threshold. 

1.3 Key research questions 

 To what extent can LAI be estimated using ground-based multi-temporal hyperspectral data 

and regression techniques in tropical grasslands during the growing season? 

 What is the best period/s and regression techniques for LAI estimation? 

 What are the most optimal bands for LAI estimation? 

1.4 Structure of the dissertation 

This dissertation comprises four chapters. The first chapter introduces the study. The second 

chapter focuses on the potential of iPLSR in estimating LAI using hyperspectral data while the 

third chapter deals with the comparison between PLSR and SVR in modelling LAI using 

optimal wavebands. The second and third chapters correspond to two research papers (one 

under review and another in preparation) and therefore include the literature review and 

methods used in this study. The fourth chapter is a synthesis of different findings. 
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Chapter 2  

The potential of iPLSR in estimating LAI using hyperspectral data 
 

 

This chapter is based on: 

Kiala, Z., Mutanga, O., and Odindi, J., 2015. The potential of interval Partial Least Sqaure 

Regression (iPLSR) in estimating Leaf Area Index on a tropical grassland using hyperspectral 

data. International Journal of Remote Sensing, In Review. 

 

Abstract 

Leaf area index (LAI) is a critical parameter in determining vegetation status and health. In 

tropical grasslands, reliable determination of LAI, useful in determining above ground 

biomass, provides a basis for rangeland management, conservation and restoration. In this 

study, interval partial least square regression (iPLSR) in forward mode was compared to partial 

least square regression (PLSR) to estimate LAI from in-situ canopy hyperspectral data on a 

heterogeneous grassland. Canopy reflectance was collected using ASD FieldSpec® 3 

spectrometer at different periods (onset, mid and end) during summer. Partial least squares 

regression (PLSR) and interval partial least squares regression (iPLSR) were then used to select 

the best spectral intervals. The performance of the two techniques was determined using the 

least root mean square error (RMSE) and the highest coefficients of determination (R2) between 

the predicted and the measured variable. Results show that iPLSR models could explain LAI 

variation with R2
p values ranging from 0.809 to 0.933 and low RMSEP values from 0.211 to 

0.603 m2m-2. iPLSR model at the beginning and end of summer could estimate LAI with the 

highest accuracies (R2
p = 0.882 and RMSEP = 0.299 m2m-2 ; R2

p = 0.890 and RMSEP = 0.211 

m2m-2 respectively). Pooling data sets from the three assessed periods yielded the highest 

prediction error (RMSEP=0.603). Results show that iPLSR performed better than the PLSR, 

which yielded R2
p and RMSEP values ranging from 0.364 to 0.649 and from 0.542 to 0.694 

m2m-2, respectively. Overall, this study demonstrates the value of iPLSR in predicting LAI and 

therefore provides a basis for more accurate mapping and monitoring of canopy characteristics 

of tropical grasslands. The study further provides an indication of the bands useful for 

development of sensors on aerial and satellite platforms, necessary for large scale tropical 

grassland monitoring. 
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2.1 Introduction 

Measurement of spatio-temporal distribution of quantitative variables like leaf area index (LAI) 

and biomass are valuable for assessing the health and productivity of tropical grasslands (He 

et al., 2007). Several studies (Cho et al., 2007; Prins and Beekman, 1989; McNaughton, 1988) 

have associated vegetation characteristics such as LAI and biomass with animal grazing 

patterns. Therefore, quantitative assessment of such characteristics offer great potential for 

determining grassland conditions, useful for generating optimal management guidelines for 

grazing and rangeland conservation and restoration. 

Leaf area index (LAI) has been recognized as a key biophysical parameter for determining 

vegetation characteristics (Darvishzadeh et al. 2011 ; Broge and Mortensen 2002). Leaf area 

index determines vegetation biophysical processes such as photosynthesis, canopy water 

interception, transpiration, radiation extinction, carbon loads and nutrient sequestration (Chen 

and Cihlar, 1996; Chason et al., 1991). Consequently, LAI is commonly used as a key input 

for modelling vegetation foliage cover, growth and productivity and effects of disturbances 

such as drought and climate change on vegetation communities (Bréda, 2003). 

Previous studies that estimated LAI on tropical grasslands have emphasized on their spatial 

variation (Darvishzadeh et al., 2008). However, LAI is a biophysical parameter that is spatially 

and temporally dynamic across a landscape. According to Shen et al. (2014), the performance 

of biophysical process models are highly sensitive to the temporal and spatial variation of LAI. 

Xu and Baldocchi (2004) noted that well timed data collection on changes in LAI could be 

used to explain more than 84% of the variance in gross primary production, an important input 

in carbon cycle of an ecosystem. Therefore, analysis of temporal and spatial changes in LAI at 

the canopy level provides a valuable opportunity for modelling biophysical processes. 

Traditionally, direct (e.g. destructive sampling) and indirect (e.g. use of ceptometer LAI-2000 

canopy analyser and hemispherical canopy photography) methods are used to determine LAI 

in grasslands (Shen et al., 2014; Zhang et al., 2012; Jonckheere et al., 2004; Weiss et al., 2004; 

Bréda, 2003). Typically, the direct methods consist of manually determining LAI using 

planimetric or volumetric techniques. Whereas, these approaches are simple and reliable (Levy 

and Jarvis, 1999; Van Gardingen et al., 1999), they involve destructive sampling, are labour 

intensive, costly and time-consuming (He et al., 2007; Chason et al., 1991). This limits their 

application for estimating LAI, particularly in large spatial extents that require frequent 
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monitoring (Bréda, 2003). Indirect methods, like the use of a spectrometer on the other hand 

quantify LAI by measuring spectral reflectance which is then used as a proxy for modelling 

LAI. Generally, such indirect methods are quick and can be automatically processed, thus 

allowing their application in a larger sampling area (Jonckheere et al., 2004). 

Remotely sensed spectral data presents an opportunity to indirectly retrieve LAI in 

heterogeneous grasslands (He et al., 2007). Techniques that rely on remotely sensed spectral 

data are non-destructive, relatively quick and cost-effective, and therefore valuable for large 

spatial and multi-temporal monitoring (Shen et al., 2014; Pullanagari et al., 2012; Bulcock and 

Jewitt, 2010). Literature shows that canopy hyperspectral data, acquired using hand-held 

spectrometers has been widely adopted to derive LAI in heterogeneous grasslands (Shen et al., 

2014; Si et al., 2012; Banskota, 2006; Atzberger et al., 2004; Thenkabail et al., 2004; Hansen 

and Schjoerring, 2003). According to Hansen and Schjoerring (2003), such data provide 

hundreds or even thousands of spectral bands with information sensitive to specific vegetation 

variables valuable for modelling. However, whereas Lee et al. (2004) demonstrated that models 

generated from hyperspectral data predicted LAI better than broadband spectral data, the large 

spectral information that characterise hyperspectral data makes derivation of LAI from 

heterogeneous grasslands data challenging (Darvishzadeh et al., 2008). Additionally, 

hyperspectral datasets suffer from multi-collinearity that often occurs when many adjacent 

spectral bands present a high degree of redundancy and correlation (Li et al., 2014). Tropical 

grasslands LAI retrieval using canopy reflectance is further complicated by varying species 

composition, phenology and proportions and complex canopy architecture. 

A number of studies (Nguyen and Lee, 2006; Atzberger et al., 2004; Yeniay and Goktas, 2002) 

that have adopted canopy reflectance hyperspectral data to derive LAI demonstrated the 

superiority of partial least square regression (PLSR) over traditional regression techniques. The 

technique was introduced to solve multi-collinearity and over-fitting problems by reducing 

variables to fewer components (Li et al., 2014). The PLSR technique is a full spectrum method 

that simultaneously use all available wavebands to create models. Compared to other 

algorithms, PLSR is less restrictive because it can be run on data where sample size is smaller 

than predictor variables (Dorigo et al., 2007). The technique is particularly useful for removing 

uninformative bands and retains those useful for predicting response variables. Consequently, 

it has become valuable for improving inter alia model predictions by reducing data collection 

costs, interpretation complexity and data dimensionality (Abdel-Rahman et al., 2014; Andersen 

and Bro, 2010). 
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Whereas use of PLSR, a full spectrum technique, has gained popularity in hyperspectral data 

modelling (Li et al., 2014; Nguyen and Lee, 2006; Atzberger et al., 2004; Yeniay and Goktas, 

2002), studies in fields like chemometrics have suggested that interval partial least squares 

(iPLSR), a variant of PLSR, can reduce hyperspectral data into band portions valuable for more 

accurate prediction (Zhou et al., 2009; Borin and Poppi, 2005; Navea et al., 2005; Nørgaard et 

al., 2000). Developed by Nørgaard et al. (2000), iPLSR is a graphically oriented technique for 

local regression modelling of spectral data. Unlike PLSR, it visually provides a general 

overview of relevant information in different spectral regions, thereby screening out important 

portions of the electromagnetic spectrum and discarding interference from irrelevant portions. 

Nørgaard et al. (2000) for instance used spectra for beer samples to retrieve original extract 

concentration by comparing iPLSR, PLSR and other algorithms. They found that iPLSR 

improved determination coefficient and root mean square error of prediction of full spectrum 

PLSR model from 0.993 and 0.40 % to 0.998 and 0.17 %, respectively. Whereas this approach 

offers great promise in improving landscape modelling accuracy, no documented studies have 

used iPLSR on ground-based hyperspectral data collected from heterogeneous landscapes such 

as tropical grasslands. Consequently, this study sought to pursue two objectives, firstly, to 

compare heterogeneous tropical grasslands LAI estimates using iPLSR and PLSR models 

based on hyperspectral data and secondly, to evaluate the robustness of the two models in 

estimating multi-temporal tropical grassland LAI (i.e. onset, mid and end) and pooled 

reflectance data during summer.  

2.2 Materials and Methods 

2.2.1 The study area 

The study area is located in the Ukulinga Research Farm at the University of KwaZulu-Natal 

in Pietermaritzburg (Figure 2-1). The area is characterized by warm to hot summers and mild 

winters, often accompanied by occasional frost. Mean monthly temperature range from 13.2oC 

to 21.4oC, with a 17oC annual mean (Everson et al., 2013; Mills and Fey, 2004). The farm 

receives over 106 days of rain with an annual precipitation of about 680 mm. Soils originate 

from shallow marine shales of Lower Permian Ecca Group classified as Westleigh forms. The 

area is under the Southern Tall Grassveld and is predominately herbaceous due to frequent 

mowing and long term burnings (Mills and Fey, 2004). Themeda triandra Forssk, Heteropogon 

contortus (L.) P. Beauv. ex Roem. Schult. and Tristachya leucothrix Trin. ex Nees dominate 

the area (Ghebrehiwot et al., 2013). 
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2.2.2 Field sampling 

Data for the study was collected during the southern hemisphere summer (October of 2014 to 

March of 2015). Stratified random sampling with clustering was adopted to select sampling 

sites. The grassland area was first digitized from an aerial photograph (Figure 2-1) and stratified 

into North, South, East and West aspects. To select the plots, 10 x-y coordinates were randomly 

generated from the stratum using the Hawth tool. In total, 40 plots (30 m x 30 m) were selected 

and located in the field using a GPS (Trimble GEO XT, with an estimated 10 cm accuracy). 

Two to three subplots of 1 m x 1 m were randomly chosen within each plot to generate a final 

sample size of 100 plots. Spectral and LAI data were then collected within the subplots at the 

on-set, mid and end of summer. 

 

Figure 2-1 The study area 
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2.2.3 Data collection 

Leaf Area Index at sampling points was acquired using  LAI-2200C Plant Canopy Analyzer 

using the procedure described by Darvishzadeh et al. (2008) while canopy reflectance was 

acquired using an Analytical Spectral Device (ASD), ASD FieldSpec® 3 spectrometer (Inc., 

Boulder, CO, USA). The spectral resolution of the ASD FieldSpec® 3 spectrometer ranges 

from 350nm to 2500nm with 1.4 nm and 2 nm sampling intervals for the ultraviolet to visible 

and near infrared region (350-1000 nm) and the short-wave infrared region (1000-2500 nm) 

respectively. To normalize the spectra collected, the radiance of a white standard panel coated 

with Barium Sulphate (BaSO4) and of known reflectivity was first recorded. Canopy 

reflectance measurements were made under clear sky between 10:00 and 14:00 hrs local time 

to minimize atmospheric effects. To account for any changes in the atmospheric condition and 

the sun irradiance, reflectance measurements were recorded with frequent normalization using 

the standard panel (Adjorlolo et al., 2013). Fifteen replicates of canopy reflectance within each 

subplot were collected and averaged, allowing for elimination of measurement noise arising 

from soil background (Darvishzadeh et al., 2008). 

2.2.4 Data analysis 

2.2.4.1 Pre-processing of hyperspectral data 

To separate overlapping bands, thereby amplifying fine differences in the electromagnetic 

spectrum, the first-order derivative at three nanometers was applied on the resulting mean 

spectral data (Archontaki et al., 1999; Holden and LeDrew, 1998). First-order derivative is also 

known to be useful in minimising atmospheric and background noise (Pullanagari et al., 2012; 

Dorigo et al., 2007). A number of researchers (Darvishzadeh et al., 2008; Wang et al., 2008; 

Thenkabail et al., 2004) have applied first order derivative on hyperspectral data for LAI 

estimation.  The transformed spectra data were then exported to Microsoft Excel wherein noise 

bands were removed. The spectral regions between 350-399 nm, 1355-1420 nm, 1810-1940 

nm, 2470-2500 nm (Figure 2-2) are known to be noisy and were discarded from the spectra 

(Rajah et al., 2015; Abdel-Rahman et al., 2014; Adjorlolo et al., 2013).  

2.2.4.2 Analysis of variance (ANOVA) and Brown-Forsythe test 

The combined test of skewness and kurtosis was first employed to evaluate the distribution of 

the collected LAI data. The test of normality is a prerequisite to assessing data variability. A 
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perfect normal distribution has skewness and kurtosis values equal to zero (Peat and Barton, 

2014). To assess LAI variations between periods within summer, one-way ANOVA and 

Brown-Forsythe test (α = 0.05) were implemented. The use of Brown-Forsythe test, in addition 

to ANOVA, was justified by the smaller sample size at the end of summer (n = 73) due to the 

spectrometer failure. According to Maxwell and Delaney (2004) and Sheskin (2003), Brown-

Forsythe test is preferred to ANOVA when sample sizes are heterogeneous and is less affected 

by abnormally distributed data. 

2.2.4.3 Partial least squares regression (PLSR) 

Partial least squares regression (PLSR) is originally an econometric technique created by 

Herman Wold in the 1960s that construct predictive models from highly collinear explanatory 

variables (Yeniay and Goktas, 2002). The principle of PLSR is to firstly decompose 

explanatory variables (X) into a few non-correlated latent variables or components using 

information contained in the response variable (Y); then to regress the new components against 

the response variable (Cho et al., 2007; Tobias, 1995). According to Wang et al. (2011a), Tan 

and Li (2008) and Yeniay and Goktas (2002), the model that underlies PLSR consists of three 

phases. In the first phase, explanatory variables (X) and response variable (Y) are decomposed 

based on the expression: 

 𝑋 = 𝑇𝑃𝑇 + 𝐸 (1) 

 𝑌 = 𝑈𝑄𝑇 + 𝐹 (2) 

Where T and U are respective matrices of scores of X and Y; P and Q stand for the matrices of 

loadings; E and F, errors of X and Y matrices. In the second phase, the Y-scores (U) are 

predicted using the X-scores (T) based on the expression: 

 𝑈 = 𝑏𝑇 + 𝑒 (3) 

Where b represents the regression coefficient and e, the error matric of the relationship between 

Y-scores and X-scores. In the final phase, the predicted Y -scores are used to build predictive 

models of response variable using the expression: 

 𝑌 = 𝑏𝑇𝑄 + 𝐺 (4) 

Where G is the error matrix related to estimating Y. 
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In the present study, PLS-toolbox (Eigenvector Research Inc.) used with MATLAB (version 

R2013b) was used to build PLSR models. Before running PLSR, pre-processed hyperspectral 

data along with LAI data were autoscaled (Zhang et al., 2012). This procedure scales mean-

centres of each waveband to unit standard deviation (Wise et al., 2006). The PLSR was then 

run on data using a leave-one-out cross-validation method. The least root mean square error 

(RMSE) and the highest coefficients of determination (R2) between the predicted and the 

measured Y variable were the two criteria used to select the best model with optimal number 

of components. The best model was suggested by the software. 

2.2.4.4 Interval partial least squares regression (iPLSR) 

Interval partial least squares regression (iPLSR) is a variant of PLS that locally develops PLS 

models on equidistant portions of the full spectrum (Navea et al., 2005; Nørgaard et al., 2000). 

To predict a Y variable from spectra using iPLSR, the spectrum is split into a number of 

intervals of equal distance. A PLSR model is then built on each spectral interval. Thereafter, 

all the models built on the wavebands of different intervals are compared to the full-spectrum 

model based on calibration parameters such as root mean squared error of cross-validation 

(RMSECV). Finally, the local model with the lowest RMSECV is selected (Xiaobo et al., 2007; 

Andersen and Bro, 2010; de Lira et al., 2010). The iPLSR can operate in two modes or variable 

selection directions: backward and forward mode. In forward mode, the algorithm starts 

without any variable selection and then develops the best PLSR model from the interval with 

the lowest RMSECV. This process can be repeated by including more intervals to enhance the 

model. In backward mode, the algorithm starts by selecting all variables and then discards the 

interval with the largest RMSECV (Balabin and Smirnov, 2011; Mehmood et al., 2012). 

In this study, iPLSR in forward mode was used to select best spectral intervals. As predictive 

bands of LAI are known to spread across the entire electromagnetic spectrum (Cho et al. 2007; 

Darvishzadeh et al., 2008), the interval size was set to a single variable. This approach is 

recommended when there is uniqueness of information in variables (Wise et al., 2006). After 

several adjustments, the process was repeated 40 times. Therefore, the output local model had 

40 intervals or bands. The iPLSR in forward mode was implemented using PLS-toolbox.  

2.2.4.5 Validation 

Models were validated using leave-one-out cross validation on the training data set and then 

validated again on independent test dataset. LAI and spectral data for each period during 
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summer were split into training data set (70%) and independent test data set (30%) (Kohavi, 

1995). To avoid arbitrary data splitting that may cause biased results (Darvishzadeh et al., 

2008), onion algorithm was applied. The principle of onion algorithm is to keep outside 

covariant data plus those that are randomly inner-spaced (Sousa et al., 2015). After splitting 

data, PLSR and iPLSR were run on training dataset to develop models. The developed models 

were validated using leave-one-out cross-validation. The leave-one-out cross-validation 

successively removes a sample from the entire calibration dataset and uses it for validation 

(Arlot and Celisse, 2010). Then, for all the iterations, RMSECV and R2
cv are calculated and 

averaged to assess the performance of a predictive model (Knox et al., 2012). Finally, the 

models obtained through leave-one-out cross-validation were tested on independent test 

dataset. 

2.3 Results  

2.3.1 Variation in LAI and spectra data 

The values of skewness (between 0.397 and -0.449) and kurtosis (between 0.856 and -0.111) 

indicate that the LAI of grass species canopy in the sampling plots had a normal distribution. 

That made the LAI data in the present study suitable for ANOVA and Brown-Forsythe Test. 

In the three multi-temporal periods, samples in mid-summer had the highest mean (3.626 m2m-

2) and variability (standard deviation= 1.099 m2m-2) (p < 0.01) while samples at the end of 

summer had the second highest mean (2.015 m2m-2) and lowest variability (standard deviation 

=0.705 m2m-2) during the study. 

To assess the change in reflectance at the different sampling periods, the mean spectra of all 

the sampling plots were averaged and upper and lower 95% confidence limits derived. Results 

show that there was a change in averaged reflectance during the sampling periods (Figure 2-

2). Visually, averaged reflectance was noticeably different across the electromagnetic 

spectrum. Canopy reflectance at the end, beginning and mid-summer presented the highest 

mean reflectance in the Visible, NIR and SWIR region respectively. Figure 2-2 shows that first 

derivative spectra differed in some spectral portions at the different sampling periods.  
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Figure 2-2 Mean and respective first-order derivative of canopy spectra of all grass subplots at the beginning (a), mid (b) and end (c) of summer. 
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The highest values of first-order derivative of reflectance are located in the NIR and SWIR 

region of the electromagnetic spectrum. 

2.3.2 PLSR and iPLSR models 

Table 2-1 presents results of the PLSR and iPLSR models performance for training dataset at 

each of the sampling periods within summer. Based on RMSECV and R2, results show that the 

iPLSR models perform better that the PLSR models. At each period, iPLSR models were able 

to explain more than 85% of LAI variability (88.8% at the beginning, 90.3% in mid and 89.6% 

at the end of summer) with RMSECV values that vary from 0.237 to 0.321 (m2m-2). Although 

iPLSR had a slightly higher RMSECV value (0.529 m2m-2) it had a better estimation of LAI 

variability across the entire summer (R2
cv = 0.809). PLSR models on the other hand yielded 

high RMSECV values (0.551 - 0.768 m2m-2) and poorly explained the LAI variation (31.3 – 

67.1 %). 

Table 2-1 R2
cv, RMSECV and number of factors of training PLSR and iPLSR models 

Regression algorithm R2
cv RMSECV Number of factors 

Beginning of summer 

PLSR (full-spectrum) 0.313 0.745 6 

iPLSR (40 intervals) 0.888 0.288 6 

Middle of summer 

PLSR (full-spectrum) 0.537 0.768 4 

iPLSR (40 intervals) 0.903 0.321 5 

End of summer 

PLSR (full-spectrum) 0.391 0.551 5 

iPLSR (40 intervals) 0.896 0.237 6 

Combined-period (pooled dataset) 

PLSR (full-spectrum) 0.671 0.750 5 

iPLSR (40 intervals) 0.809 0.529 6 

 

The contribution of each waveband in the selected PLSR factors is displayed in Figure 2-3. 

The most valuable bands for estimating LAI were distributed across the electromagnetic 

spectrum. However, the highest peaks for all the periods within summer, including all the 

periods combined, were mostly located in the NIR and SWIR region. 
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Using iPLSR models with 40 intervals, Table 2-2 and Figure 2-4 present the selected bands 

and their location within the four regions of the electro-magnetic spectrum, respectively while 

Figure 2-5 provides a percentage number of predictive bands in relation to the regions within 

the electro-magnetic spectrum.  
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Figure 2-3 PLSR loadings for beginning (a), mid (b) and end (c) of summer and pooled data (d) 
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Table 2-2 Selected bands (nm) and spectral regions at the beginning, mid and end of summer and pooled data 

 

 

 

 

 

  
Visible 
 
 

 
Red Edge 
(RE) 

 
Near InfraRed 
(NIR) 

 
Short Wave InfraRed (SWIR) 

 
Beginning 
of summer 

 
461, 764 

 
- 

 
793, 1020, 1061, 
1201, 1267 

 
1633, 1640, 1656, 1681, 1708, 1741, 1956, 1997, 2003, 2021, 2071, 2086, 
2097, 2117, 2127, 2140, 2165, 2167, 2201, 2219, 2220, 2221, 2286, 2291, 
2321, 2344, 2347, 2369, 2388, 2398, 2429, 2436, 2439 
 

Middle of 
summer 

413, 442, 443 - 995, 1132, 1134, 
1174, 1240 , 1275 

1693, 1944, 1947, 1951, 1959,1969, 1978, 2011, 2042, 2048, 2065, 2181, 2206, 
2207, 2216, 2218, 2219, 2258, 2281, 2290, 2319, 2333, 2353, 2388, 2390, 
2394, 2424, 2427 ,2434, 2437, 2450 
 

End of 
summer 

- - 874, 943, 1003, 
1010, 1058, 1059 

1427, 1430, 1782, 1783, 1960, 1961, 1981, 1985, 1986, 2012, 2018, 2052, 
2067, 2102, 2114, 2119, 2141, 2152, 2190, 2208, 2250, 2262, 2301, 2321, 
2344, 2364, 2383, 2394, 2396, 2417, 2448, 2455, 2462, 2469 
 

Combined-
period 

433, 489, 490, 
535, 551  

732, 752  957, 961, 968, 
1062, 1183, 1244 

1471, 1478, 1585, 1626, 1656, 1672, 1693, 1708, 1733, 1742, 1780, 2047, 
2060, 2075, 2097, 2133, 2136, 2148, 2241, 2259, 2280, 2323, 2325, 2367, 
2372, 2403, 2417 
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Figure 2-5 Summary of predictive bands of LAI in different spectral regions 

a b 

c 

Figure 2-4 Chosen bands (in dark) for modelling LAI at the beginning (a), mid (b) and end (c) of 

summer and pooled data (d) 
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2.3.3 Model validation 

Figure 2-6 shows the performance of PLSR and iPLSR (40 intervals) models on independent 

test dataset. PLSR models of all the periods within summer (including all the periods 

combined) increased the coefficient of determination for prediction (R2
p) and slightly decreased 

the root mean square error for prediction (RMSEP). The values of R2
p and RMSEP 

respectively, varied from 0.364 to 0.649 and from 0.542 to 0.694 (m2m-2). However, iPLSR 

models performed better than the full-spectrum PLSR models for all the sampling periods in 

summer. The predictive power of iPLSR models did not change much on validation dataset. 

More than 80 % of new data of LAI could be explained by the iPLSR models at all periods 

within summer (including all the periods combined). 

 

 

 

 

 

 

 

 

 

b b 

a a 

Figure 2-6a One-to-one relationship (m2m-2) between measured and predicted LAI for 

validating PLSR and iPLSR models on independent test dataset, early summer (a), mid-

summer (b). 



22 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.4 Discussion 

This study sought to determine the performance of two multivariate regression models (PLSR 

and iPLSR) in estimating canopy level LAI on tropical grassland during summer. Comparisons 

were determined using the coefficient of determination (R2) and the root mean square (RMSE). 

Specifically, this study examined the possibility of developing a model that can estimate LAI 

at different periods within summer (beginning, mid and end) and across the entire summer 

period. Use of iPLSR to select the optimal bands for predicting LAI was also investigated. 

Results showed that PLSR algorithm run on first derivative spectra to assess LAI variation at 

different periods did not perform well. The values of R2
p and RMSE, respectively, ranged from 

0.364 to 0.649 and 0.542 to 0.694 (m2m-2). Albeit PLSR is known to reduce hyperspectral data 

c c 

Figure 2-6b One-to-one relationship (m2m-2) between measured and predicted LAI for validating 

PLSR and iPLSR models on independent test dataset, end of summer (c) and pooled data (d). 

d d 



23 
 

to a few useful bands, inclusion of all the wavebands was not useful in the predictive 

performance of PLSR models, results consistent with Liu (2014), Chung and Keles (2010), 

Filzmoser (2012) and Karaman et al. (2013). However, when data dimensionality was reduced 

to useful bands using iPLSR, the performance of models (R2 and RMSE) significantly 

improved. Overall, there were very close relationships between measured and predicted LAI 

values, with low values of RMSE and higher values of determination coefficients (R2) (Figure 

2-6). In consistency with Zhou et al. (2009), Navea et al. (2005), Borin and Poppi (2005) and 

Nørgaard et al. (2000), these findings confirmed the superiority of iPLSR over full spectrum 

PLSR.  

The best predictive models were derived from early summer canopy reflectance (R2
p = 0.882 

and RMSEP = 0.290 m2m-2) and end of summer (R2
p = 0.891 and RMSEP = 0.211 m2m-2. This 

was expected as most of reflectance (visible and near infrared) do not saturate at low LAI 

(Dorigo et al., 2007; Darvishzadeh et al., 2008). This finding concurs with Zhang et al. (2012) 

and Li et al. (2006) who showed that reflectance models at early wheat growth (tillering, 

jointing and booting stage) performed better than reflectance models at maximal period of 

growth (filling stage). In this study, the lower early summer prediction in comparison to end-

summer can be attributed to higher soil background noise. According to Darvishzadeh et al. 

(2008), soil background has a negative effect on the predictive power of hyperspectral data for 

LAI estimation. In comparison to early and end of summer, model accuracies in mid-summer 

and all the periods combined marginally dropped. Higher prediction error in mid-summer and 

combined-period model can be explained by taller and denser grass volume and therefore 

shadows (Adjorlolo et al., 2013). 

Adoption of iPLSR was useful in identifying relevant wavebands for predicting LAI.  In total, 

40 intervals were identified for all the sampling periods. The success of iPLSR for band 

selection in this study may be attributed to successful separation of overlapping bands 

performed by the first-derivative technique on the spectra. The spectral regions (NIR and 

SWIR) of bands selected by iPLSR are consistent with the findings by Darvishzadeh et al. 

(2008), Thenkabail et al. (2004), Brown (2000), Schlerf et al. (2005) and Gong et al. (2003). 

Within ±12 nm, the bands chosen (Table 2-1) in this study showed a consistency with the 

known bands for estimating LAI. For example, bands near 793 nm, 1061 nm, 1062 nm, 1633 

nm, 442 nm, 443 nm, 535 nm, 551 nm, 732 nm, 2190 were also identified by  Wang et al. 

(2008) for estimating rice LAI at different growth phases. Furthermore, Gong et al. (2003) 

found that bands centred near 1201 nm, 1240 nm, 1062 nm, 1640 nm, 2097 nm, 2259 nm were 
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useful for estimating forest LAI. 

It is worth noting that the contribution of different spectral regions along with their wavebands 

to LAI estimation depends on a particular period within summer (Table 2-2). This might be 

explained by the fact that the positions of selected wavebands are sensitive to changes in LAI 

as indicated by ANOVA and Brown-Forsythe test. Thus, the positions vary when factors like 

biochemical (e.g. chlorophyll) and biophysical (e.g. canopy closure) parameters and 

background effects change with canopy growth phases (Wang et al., 2008). For example, at the 

end of summer, as canopy senesce and the amount of chlorophyll decline, NIR and SWIR 

become more important in predicting LAI (Zhao et al., 2007). Furthermore, in the combined-

period model, the selected bands can be explained by the fact that they were insensitive to 

changes in LAI. Delegido et al. (2013) found that vegetation indices combining bands at 674 

nm and 712 nm could overcome the aforementioned saturation problem while Kim et al. (1994) 

found similar results with the ratio of 550 and 700 nm, which were insensitive to changes in 

chlorophyll concentration. 

2.5 Conclusion 

From the study findings, the following conclusions can be drawn: 

 iPLSR can be used to simplify the relationship between LAI and canopy reflectance 

transformed using first derivative technique better than PLSR. 

  The best iPLSR relationship is at the beginning and end of summer. By including all 

the variables, full-spectrum PLSR models yield higher prediction error. 

 iPLSR used as a single variable selection algorithm for LAI estimation can generate 

stable and reliable models with 40 bands. 

  The period within summer, which is associated with vegetation growth, determines 

the selection and accuracy of LAI predictive bands. 

This study has analysed the multi-temporal variation of LAI at the canopy level in a tropical 

grassland. Results show that appropriate band selection on in-situ hyperspectral data using 

iPLSR can overcome the challenge faced by remotely sensed data to accurately estimate LAI 

in a heterogeneous grassland. The findings in this study have paved the way to more accurate 

mapping and monitoring of canopy characteristics in a tropical grassland from airborne and 

space borne hyperspectral data. However, the development of iPLSR model for all the 
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combined periods within summer needs further investigations, as its prediction error was higher 

than all the models created at different periods. 
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Chapter 3  

Comparison between PLSR and SVR in estimating LAI using optimal 

bands 
 

 

This chapter is based on: 

Kiala, Z., Mutanga, O., and Odindi, J., and Kabir, P. 2015. A comparison of Partial Least 

Square and Support Vector regressions in predicting Leaf Area Index on a tropical grassland 

using hyperspectral data. International Journal of Remote Sensing, in preparation. 

 

Abstract 

Leaf area index (LAI) is a key biophysical parameter commonly used to determine vegetation 

status, productivity and health in tropical grasslands. Therefore, accurate estimates of LAI are 

useful in supporting sustainable rangeland management. Due to the vast amount of information 

they provide, hyperspectral remotely sensed data in concert with multivariate regression 

techniques offer new opportunities to accurately estimate LAI in tropical grasslands. Modelling 

techniques like partial least square regression (PLSR) have become popular in remote sensing, 

however, recent literature has shown that irrelevant variables affects its performance. Whereas 

other robust modelling techniques like support vector regression (SVR) have been successful 

in fields like chemometrics, their potential in remote sensing remain unexplored. In this study, 

the performance of support vector regression (SVR) was compared to partial least square 

regression (PLSR) on optimal hyperspectral bands on a heterogeneous grassland at different 

periods (early, mid and late) within summer. Furthermore, Variable of Importance on the 

Projection (VIP) of the bands was investigated.  The comparison of the two multivariate 

modelling regressions were based on the root mean square error (RMSE) and the coefficients 

of determination (R2) between the predicted and the measured variable. Results show that 

PLSR performed better than SVR at the beginning and end of summer. For the two sampling 

periods, PLSR models on the new dataset (30 % of the entire dataset) could respectively explain 

86.5 % and 85.1 % of LAI variance with RMSEP values of 0.263 m2m-2 and 0.204 m2m-2. The 

LAI variance in the SVR models was 85.8 % and 83.2 % with RMSEP values of 0.287 m2m-2 

and 0.218 m2m-2, respectively. However, at the peak of the growing season (mid-summer), at 
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reflectance saturation, SVR models yielded higher accuracies (R2 = 0.902 and RMSE= 0.371 

m2m-2) than PLSR models (R2 = 0.886 and RMSE= 0.379 m2m-2). Similarly, for pooled dataset, 

SVR models were slightly more accurate (R2= 0.74 and RMSE= 0.578 m2m-2) than PLSR 

models (R2 = 0.732 and RMSE= 0.58 m2m-2,). This finding confirms the ability of SVR to deal 

with nonlinearity in hyperspectral datasets. With respect to Variable of Importance on the 

Projection (VIP) scores of bands, result show that most of the bands were located in the near 

infrared (NIR) and shortwave (SWIR) regions of the electromagnetic spectrum. This study 

introduces the application of SVR in predicting LAI from sensors on aerial and satellite 

platforms, necessary for large scale tropical grassland monitoring.  

Keywords: partial least square regression, support vector regression, leaf area index, 

hyperspectral data, tropical grassland. 
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3.1 Introduction 

Grasslands are valuable economic and ecological resources. They  provide grazing lands and 

goods and services (e.g. fuel wood, edible herbs and fruit, insect) (Shackleton et al., 2002; Chen 

et al., 2009). Grassland health and productivity are determined by, inter alia, biophysical 

variables like leaf area index (LAI) and biomass, which are spatially and temporally dynamic 

(He et al., 2007). In the context of southern Africa, overgrazing associated with poor planning 

and management of grazing lands have been observed in the communal grasslands ecosystems 

(Ramoelo et al., 2013). According to Snyman (1999), 66 % of rangelands have undergone a 

moderate to serious land degradation in South Africa. Therefore, accurate estimates of 

biophysical variables such as LAI and biomass and their spatial and temporal changes may 

enhance decision and policy making process in grassland management, restoration and 

conservation in communal rangelands. 

Leaf area index is a key biophysical parameter of vegetation characteristics that has been used 

as a surrogate of canopy biomass (Darvishzadeh et al., 2011; He et al., 2007). Leaf area index 

has a direct implication on plant productivity as it determines the amount of water and energy 

exchange between plants and the atmosphere (Leuschner et al., 2006; Chen and Cihlar, 1996). 

Consequently, LAI has been used as an input to model among others vegetation foliage cover, 

growth and productivity and effects of disturbances such as climate change, drought, and 

defoliation (Bréda, 2003). 

Hyperspectral sensing techniques, compared to other approaches of measuring LAI, offer new 

opportunities to accurately estimate LAI at the regional scale because of the large amount of 

information they provide (Fava et al., 2009). The use of hyperspectral data has significantly 

improved leaf area index (LAI) estimation (Darvishzadeh et al., 2008; Broge and Mortensen, 

2002). However, previous studies on modelling LAI using hyperspectral data have 

concentrated on its spatial variation (Darvishzadeh et al., 2011; Darvishzadeh et al., 2008; He 

et al., 2006). Leaf area index is a biophysical parameter that also varies temporally across an 

ecosystem (Shen et al., 2014). According to Shen et al. (2014), temporal LAI variation 

determines the performance of biophysical processes models. Therefore, failure to periodically 

determine LAI estimates may lead to errors in those models. For example,  Li (2010) found 

that temporal changes in LAI could explain more than 84 % of the variance in gross primary 

production. Hence, there is  a need to analyse temporal changes in LAI to reliably model a 

grassland's biophysical processes (Si et al., 2012).  
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Although hyperspectral data have proven their superiority in predicting LAI over traditional 

remote sensing datasets (Marabel and Alvarez-Taboada, 2013; Lee et al., 2004), the large 

spectral information makes deriving LAI from hyperspectral data challenging (Darvishzadeh 

et al., 2008). Hyperspectral datasets also suffer from multicollinearity that often occurs when 

many adjacent spectral bands present a high degree of redundancy and correlation (Li et al., 

2014). Moreover, the performance of hyperspectral data are often deteriorated by a lower 

signal-to-noise ratio (Marabel and Alvarez-Taboada, 2013). Furthermore, spatial heterogeneity  

and temporal variability of canopy characteristics in heterogeneous ecosystems like tropical 

grasslands  are other major factors that have limited the performance of remotely sensed data 

(Shen et al., 2014). 

Many approaches have been proposed to overcome the above aforementioned limitations. 

Among others, studies have proposed the selection of informative bands that  best correlate 

with investigated biophysical variables using variable selection algorithms such as  stepwise 

multiple linear regression (SMLR) (Darvishzadeh et al., 2008; Wang et al., 2008; Jensen et al., 

2009), interval partial least square regression (iPLSR) (Zhang et al., 2012) and Partial least 

square regression (PLSR) (Kawamura et al., 2010; Banskota, 2006). Another approach has 

been the implementation of appropriate statistical modelling methods. Partial least square 

Regression (PLSR) and Support Vector Regression (SVR) have been among the most 

dominantly adopted in statistical analysis. Both techniques are full spectrum methods and have 

been commonly applied in chemometrics (Marabel and Alvarez-Taboada, 2013; Mountrakis et 

al., 2011; Thissen et al., 2004). Unlike PLSR, which is a linear regression method (Wold et al., 

2001), SVR is a non-linear method (Vapnik and Vapnik, 1998), therefore tailored to dealing 

with non-linearity in dataset, often observed in saturation reflectance from high canopy density 

(Chen et al., 2009; Thenkabail et al., 2000). Whereas PLSR has been commonly used in 

determining LAI from hyperspectral data (Li et al., 2014; Darvishzadeh et al., 2011; Atzberger 

et al., 2010; Hansen and Schjoerring, 2003), the performance of  SVR is yet to be established 

(Yang et al., 2011).  

A number of studies, mostly in chemometrics,  have compared SVR and PLSR on spectral data 

(Yue et al., 2015; Marabel and Alvarez-Taboada, 2013; Shah et al., 2010; Li et al., 2009; Üstün 

et al., 2005; Thissen et al., 2004). Some  (Yue et al., 2015; Üstün et al., 2005; Thissen et al., 

2004) demonstrated the superiority of SVR models over PLSR models whereas others 

(Marabel and Alvarez-Taboada, 2013; Shah et al., 2010) have demonstrated the superiority of 

PLSR over SVR. For example, Üstün et al. (2005) showed that SVR could create models on 
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NIR data better than PLSR. This performance was attributed to its ability to be insensitive to 

spectral noise and to quantify nonlinear relationships in dataset. This study sought to:  a) 

compare the performance of PLSR and SVR models in estimating LAI at different periods 

(early, mid, late) within summer using iPLSR selected wavebands and b) retrieve the bands 

with the most significant Variable Importance in the Projection (VIP). 

3.2 Materials and Methods 

3.2.1 Study area 

This study was conducted at the University of KwaZulu-Natal research farm in 

Pietermaritzburg (Figure 3-1). The area is characterised by warm to hot summers and mild 

winters, accompanied with occasional frost. Mean monthly and annual temperature range from 

13.2 oC to 21.4 oC and 17 oC respectively (Everson et al., 2013; Mills and Fey, 2004). Ukulinga 

farm receives over 106 days of rain with an annual precipitation of about 680 mm. Soils 

originate from shallow marine shales of Lower Permian Ecca Group classified as Westleigh 

forms. The area is under the Southern Tall Grassveld and is predominately herbaceous due to 

frequent mowing and long term burnings. (Mills and Fey, 2004). The following grass species 

are the most dominant in the area: Themeda triandra Forssk, Heteropogon contortus (L.) P. 

Beauv. ex Roem. Schult. And Tristachya leucothrix Trin. ex Nees (Ghebrehiwot et al., 2013). 

3.2.2 Field plots sampling 

Stratified random sampling with clustering was adopted. The grassland trial area was first 

identified and digitized from an aerial photograph and stratified into North, South, East and 

West aspects. Coordinates were then randomly generated from the stratum to select the plots 

using the Hawth tool in ArcGIS 9. In total, 40 plots (30 m x 30 m) were selected and located 

in the field using a GPS (Trimble GEO XT, with an estimated 10 cm accuracy). Finally, 2 or 3 

subplots of 1 m x 1 m were randomly chosen within each plot for a final sample size of 100 

plots. Spectral and LAI data were then collected within the subplots at the on-set, middle and 

end of summer (October of 2014 to March of 2015). 



31 
 

 

Figure 3-1 The study area within the Ukulinga research farm.               

3.2.3 Leaf area index and canopy reflectance measurement 

Leaf area index and canopy reflectance were measured from the canopy of most dominant grass 

species within each sampling subplots. To determine LAI, a 2200C Plant Canopy Analyzer 

was used according to the protocol described in its instruction manual (LI-COR, 2010). Leaf 

area index measured in this study corresponds to effective plant area index which partially 

account for clumping effects (Liu et al., 2012). The canopy spectra were measured using an 

Analytical Spectral Device (ASD), ASD FieldSpec® 3 spectrometer (Inc., Boulder, CO, USA). 

The ASD has a spectral resolution that ranges from 350nm to 2500nm with 1.4 nm and 2 nm 

sampling intervals for the ultraviolet to visible and near infrared region (350-1000 nm) and the 

short-wave infrared region (1000-2500 nm) respectively. Before reflectance measurement, 

target measurements were normalised by recording the radiance of a white standard panel 

coated with a barium sulphate (BaSO4) of known reflectivity (Adjorlolo et al., 2013). This was 

done to account for any changes in the atmospheric condition and the sun irradiance. This 

process was repeated every fifteen minutes. Fifteen replicates of canopy reflectance were 
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collected within each subplot under clear skies between 10:00 and 14:00 hrs local time as 

recommended by Darvishzadeh et al. (2008). 

3.2.4 Data analysis 

3.2.4.1 Pre-processing of hyperspectral data and selection of optimal bands 

The fifteen spectra of each subplot were averaged to reduce noise in the measured canopy 

reflectance (Darvishzadeh et al., 2008). The resulting mean spectral data were then transformed 

using a first-order derivative at three nanometers (Archontaki et al., 1999; Holden and LeDrew, 

1998). ViewSpecProR software was used for the computation. The mean spectra were then 

exported to Microsoft Excel wherein bands with noise were removed. The spectral regions 

between 350-399 nm, 1355-1420 nm, 1810-1940 nm, 2470-2500 nm have been reported to be 

noisy and were thus removed from the analysis (Rajah et al., 2015; Abdel-Rahman et al., 2014; 

Adjorlolo et al., 2013). On the resulting 1873 bands, interval partial least square regression 

(iPLSR) in forward mode was applied to select best spectral intervals for estimating LAI at 

different periods (onset, middle and end) within Summer. By setting the interval size to a single 

variable, models with 40 intervals or bands yielded better R2 and RMSE accuracies. The results 

of selected bands for each period within summer are shown in Table 3-1.  

3.2.4.2 Descriptive statistic, Analysis of variance (ANOVA) and Brown-Forsythe test 

Skewness and kurtosis were used to determine the distribution of the collected LAI data. The 

test of normality was done to evaluate the suitability of LAI data using an ANOVA (Peat and 

Barton, 2014). One factor-ANOVA and Brown-Forsythe test (α = 0.05) were implemented to 

assess the significance of LAI changes between the investigated periods within summer. 

Brown-Forsythe test was used to complement ANOVA because the malfunctioning ASD 

towards the end of summer. Brown-Forsythe test is less affected by heterogeneous sample sizes 

and non-distributed data (Maxwell and Delaney, 2004; Sheskin, 2003). 
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Table 3-1 Optimal wavebands (nm) selected by iPLSR at the beginning, mid and end of summer and for pooled data 

  
Visible 
 
 

 
Red Edge 
(RE) 

 
Near InfraRed (NIR) 

 
Short Wave InfraRed (SWIR) 

 
Beginning 
of summer 

 
461, 764 

 
- 

 
793, 1020, 1061, 1201, 
1267 

 
1633, 1640, 1656, 1681, 1708, 1741, 1956, 1997, 2003, 2021, 2071, 2086, 
2097, 2117, 2127, 2140, 2165, 2167, 2201, 2219, 2220, 2221, 2286, 2291, 
2321, 2344, 2347, 2369, 2388, 2398, 2429, 2436, 2439 
 

Middle of 
summer 

413, 442, 443 - 995, 1132, 1134, 1174, 
1240 , 1275 

1693, 1944, 1947, 1951, 1959,1969, 1978, 2011, 2042, 2048, 2065, 2181, 2206, 
2207, 2216, 2218, 2219, 2258, 2281, 2290, 2319, 2333, 2353, 2388, 2390, 
2394, 2424, 2427 ,2434, 2437, 2450 
 

End of 
summer 

- - 874, 943, 1003, 1010, 
1058, 1059 

1427, 1430, 1782, 1783, 1960, 1961, 1981, 1985, 1986, 2012, 2018, 2052, 
2067, 2102, 2114, 2119, 2141, 2152, 2190, 2208, 2250, 2262, 2301, 2321, 
2344, 2364, 2383, 2394, 2396, 2417, 2448, 2455, 2462, 2469 
 

Combined-
period 

433, 489, 490, 
535, 551  

732, 752  957, 961, 968, 1062, 
1183, 1244 

1471, 1478, 1585, 1626, 1656, 1672, 1693, 1708, 1733, 1742, 1780, 2047, 
2060, 2075, 2097, 2133, 2136, 2148, 2241, 2259, 2280, 2323, 2325, 2367, 
2372, 2403, 2417 
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3.2.4.3 Statistical modelling 

a) Partial least squares regression (PLSR) 

Partial least squares regression (PLSR) was first introduced by Herman Wold in the 1960s to 

construct predictive models from multicollinear variables (Yeniay and Goktas, 2002). Firstly, 

it decomposes independent variables (X) into a few non-correlated latent variables or factors 

using information contained in the dependent variable (Y); then it regresses the new latent 

variables against the response variable (Cho et al., 2007; Tobias, 1995). Generally, the model 

that underlies PLSR consists of three steps. In the first step, independent variables (X) and 

response variable (Y) are decomposed as follows: 

 𝑋 = 𝑇𝑃𝑇 + 𝐸 (5) 

 𝑌 = 𝑈𝑄𝑇 + 𝐹 (6) 

Where T and U are respectively the matrices of scores of X and Y; P and Q stand for the 

matrices of loadings; E and F, errors of X and Y matrices; in the second step, the Y-scores (U) 

are predicted using the X-scores (T) as follows: 

 𝑈 = 𝑏𝑇 + 𝑒 (7) 

Where b represents the regression coefficient and e, the error matric of the relationship between 

Y-scores and X-scores; in the third phase, the predicted Y -scores are used to build predictive 

models of response variable (Wang et al., 2011a; Tan and Li, 2008; Yeniay and Goktas, 2002). 

 𝑌 = 𝑏𝑇𝑄 + 𝐺 (8) 

Where G is the error matrix related to estimating Y. 

b) Support vector regression (SVR) 

SVR is a machine learning technique that was first introduced by Petsche et al. (1997). It was 

initially designed for function estimation (Smola and Schölkopf, 2004). Being a member of the 

support vector machines (SVMs) family, SVR can model linear or nonlinear relationship in 

dataset (Vapnik and Vapnik, 1998). The principle of SVR is to construct a hyperplane (s) in 

high- or infinite-dimensional space, which can separate quantitative estimates for regressions 

(Malenovsk et al., 2015).  
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In this study, epsilon-SVR algorithm based on the radial basis function was used to estimate 

LAI at investigated periods within summer. In summary, the theory of SVR algorithm is 

discussed as follows: given a set of calibration sample set: X= (𝑥𝑖𝑦𝑖)|𝑥 ∈ 𝑅𝑛, 𝑖 = 1,2, … … 𝑙}, 

where 𝑥𝑖 represents the n-dimensional input vector and 𝑦𝑖 = f(𝑥𝑖), the predicted output 

variable. The SVR transforms the input vector into a high-dimensional feature space using a 

non-linear function, called kernel function(𝑘(𝑥𝑖, 𝑥)), in order to approximate a linear function. 

 𝑓(𝑥) = 𝑤. 𝑥 + 𝑏     (9) 

Where 𝑤, 𝑏 are the weight vector and offset of the equation, respectively. With the introduction 

of a kernel function, the SVR equation is expressed as follows: 

 
𝑓(𝑥) = ∑(𝛼𝑖 −

𝑙

𝑖=1

𝛼𝑖
∗)𝑘(𝑥𝑖, 𝑥) + 𝑏 

(10) 

Where 𝛼𝑖 , 𝛼𝑖
∗ represent the Lagrange multipliers. The introduction of a kernel function enables 

SVR to model nonlinear relationship in dataset. Another feature of SVR is the ability to reduce 

the complexity of models (structural risk) in addition to minimizing calibration error (empirical 

risk) as in traditional regression methods. This makes SVR models less prone to overfitting and 

highly general in performance regardless the dimensionality of dataset (Axelsson et al., 2013; 

Yang et al., 2011). More detailed description on the theory behind SVR can be found in Smola 

and Schölkopf (2004) and Smola and Vapnik (1997). 

3.2.4.4 Evaluation of model performance and chemometrics software 

Comparison between SVR and PLSR models for different periods within summer was made 

on training dataset and independent test dataset using calibration measures. Data was first split 

into training (70 %) and test (30%) using Kennard-Stone algorithm (Kohavi, 1995). Using 

geometric distance, Kennard stone method first selects two samples of data that are farthest 

apart. Then, it adds another sample from the remaining dataset which is farthest away from the 

previously selected samples subset, thereby ensuring maximum coverage of the dataset 

(Comments and Source, 2011; May et al., 2010). After splitting the data, SVR and PLSR 

models were developed on same training dataset and validated using Venetian blinds cross-

validation with 10 data splits. Finally, to ensure their robustness, PLSR and SVR models were 

tested on the remaining validation dataset (Arlot and Celisse, 2010). Root mean squared error 

for cross validation (RMSE) and correlation coefficients between the predicted and observed 

LAI (R2) were used as calibration measures to evaluate the performance of models. RMSE has 
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the advantage of directly estimating the error of models. It is expressed in the same unit as 

original LAI units (Wang et al., 2011a). Models with better performance were indicated with 

smaller RMSE and greater correlation coefficient. Once the PLSR and SVR models were 

calibrated and validated, Variable Importance in the Projection (VIP) was generated to analyse 

the contribution of each variable in a model. VIP scores were considered to be applicable for 

both regression methods. This was because PLS-toolbox does not compute VIP scores for SVR. 

Also, some studies reported relatively similar variables of importance between the two 

algorithms (Axelsson et al., 2013; Thissen et al., 2004). 

Partial least square and Support vector regression models were developed in a MATLAB 

version 2013 environment using PLS-toolbox (Eigenvector Research Inc.) (Wise et al., 2006). 

The reflectance of useful wavebands and LAI values were auto scaled before running PLSR 

and SVR to set all the variables on an equal basis (Wise et al., 2006; Zhang et al., 2012). PLS-

toolbox suggested the best PLSR models with the optimal number of latent variables. It also 

automatically tuned the kernel parameter and the regularization factor of the SVR models. 

3.3 Result 

3.3.1 Variation in LAI and spectral data 

The test for skewness and kurtosis indicated that the LAI data in the present study had a positive 

or less symmetric distribution (Figure 3-2). Skewness ranged between 0.856 and -0.111 and 

kurtosis, between 0.397 and -0.449. That made the LAI data suitable for ANOVA and Brown-

Forsythe Test. 

Leaf area index variation in grass species canopy was significant among the three sampling 

periods (p < 0.01). The highest mean (3.626 m2m-2) and standard deviation (1.099 m2m-2) 

values of LAI were observed at mid-summer. Grass species canopies at the end of summer had 

the second highest mean (2.015 m2m-2) and the least standard deviation (0.705 m2m-2) values 

of LAI. Beginning of summer had the least mean value of LAI (1.667 m2m-2) in grass species 

canopies, with the second least variability (0.821 m2m-2) in LAI (Figure 3-2). 
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Figure 3-2 Descriptive statistics of LAI data (m2m-2) at the three sampling periods. 
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3.3.2 PLSR and SVR models 

3.3.2.1 Evaluation of PLSR and SVR models on calibration dataset 

Table 3-2 shows the performance of PLSR and SVR models on calibration dataset at each 

sampling period within summer. PLSR models performed better than SVR models at the 

beginning of summer and for pooled dataset. PLSR models yielded R2
cv and RMSECV values 

of 0.886 and 0.311 m2m-2, respectively, at the beginning of summer and 0.831 and 0.537 m2m-

2, respectively, for pooled dataset. However, at the middle and end of summer, SVR models 

were more accurate than PLSR models. The RMSECV and R2
cv

 of SVR models were 0.903 

and 0.351 m2m-2, respectively, at mid-summer and 0.876 and 0.272 m2m-2, respectively, at the 

end of summer.  

The optimal number of factors to avoid overfitting in PLSR models ranged between 5 and 7. 

PLSR models at the end of summer displayed the highest optimal number of factors (n=7). 

Models at the beginning, mid-summer and all periods combined (pooled dataset) had the lowest 

optimal number of factors (n=5). 

Table 3-2 R2
cv and RMSE of PLSR (including number of factors) and iPLSR models on training 

dataset 

Regression algorithm R2
cv RMSECV Number of factors 

Beginning of summer 

PLSR 0.886 0.311 5 

SVR 0.871 0.335 - 

Middle of summer 

PLSR 0.894 0.368 5 

SVR 0.903 0.351 - 

End of summer 

PLSR 0.862 0.286 7 

SVR 0.876 0.272 - 

Combined-period (pooled dataset) 

PLSR 0.831 0.537 5 

SVR 0.823 0.552 - 
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3.3.2.2 Variables of importance in the projection (VIP) in PLSR and SVR models 

Figure 3-3 shows the importance of each waveband in the PLSR and SVR models at the 

investigated periods within summer. Thirteen bands had VIP scores above the significant 

threshold at the beginning of summer, eleven at mid-summer, thirteen at the end of summer 

and ten for pooled dataset.  

 

Figure 3-3a VIP scores of PLSR models at the beginning (a), mid (b) [B= Band]. 

a 

b 
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Figure 3-3b VIP scores of PLSR models at the end of summer (c) and pooled data (d) [B= Band]. 

 

c 

d 
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3.3.3 Model validation 

Figure 3-4 shows the performance of PLSR and SVR models on validation dataset. PLSR 

models for beginning and end of summer yielded higher accuracies than SVR models. The 

values of RMSEP and R2
p
 of PLSR models were 0.263 m2m-2 and 0.865, respectively at the 

beginning of summer and 0.204 m2m-2 and 0.851, respectively at the end of summer. The SVR 

models demonstrated their superiority over PLSR models at the middle of summer and all the 

periods combined within summer (pooled dataset). The SVR models could respectively predict 

more than 90.2 % and 74 % of LAI variation in the two sampling periods. They were also 

characterized by lower values of RMSEP than PLSR models at those periods (0.371 m2m-2 and 

0.578 m2m-2 versus 0.379 m2m-2 and 0.580 m2m-2). 

 

 

Figure 3-4a One-to-one relationship (m2m-2) between measured and predicted LAI for validating 

PLSR and SVR models on validation dataset, early summer (a), mid-summer (b). 

 

a a 

b b 
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3.4 Discussion 

This study sought to determine the performance of SVR and PLSR models on valuable 

wavebands selected by iPLSR in estimating LAI at different periods (mid, late and combined-

period). The comparison of the two multivariate algorithms was based on two measures of 

accuracy: coefficient of determination (R2) and the root mean square error (RMSE). 

Significance of the contribution of bands in models was evaluated on the basis of their VIP 

scores. 

a) Performance of PLSR and SVR models on selected optimal bands 

Overall, results of the current study are comparable to existing literature. Darvishzadeh et al. 

(2011) modeled LAI in heterogenious grasslands with R2 value of 0.87 using PLSR on Hymap 

data subsets, but with higher prediction error (0.64 m2m-2 for spectral subset) and four optimal 

Figure 3-4b One-to-one relationship (m2m-2) between measured and predicted LAI for validating 

PLSR and SVR models on validation dataset, end of summer (c) and pooled data (d). 

c c 

d d 
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number of factors. Wang et al. (2011a) applied least square support vector machine (LS-SVM), 

an optimized variant of support vector machine, on 15 optimal hyperspectral bands to estimate 

LAI from rice canopy reflectance. They found that LS-SVM model could explain 90 % of LAI 

variance. Most of models in this study yielded higher accuracies than existing studies. For 

instance, Darvishzadeh et al. (2008) showed that PLSR built on useful wavebands, selected by 

SMLR,  could predict 64 % of LAI variabilty (Rp
2) with a prediction error of 0.34 (nRMSEp). 

Yang et al. (2011) developed SVR models on the full spectrum of rice canopy reflectance using 

different pre-processing techniques (e.g. first-order derivative) and obtained model with R2 and 

RMSE values of 0.8024 and 1.0496 LAI units respectively. 

b) Comparison of PLSR and SVR at different sampling periods 

In the three periods within summer, the results showed that PLSR models outperformed SVR 

models in estimating LAI at the beginning and end of summer on validation dataset. PLSR 

models could respectively explain 86.5 % and 85.1.2% in LAI variability against 85.8 % and 

83.2 % for SVR models at the end of summer (Figure 3-4). At those two sampling periods, the 

mean values of LAI were low (1.667 m2m-2and 2.015 m2m-2), thus the saturation problem was 

not critical (Fava et al., 2009; Hansen and Schjoerring, 2003). This resulted to a more linear 

relationship between LAI and useful bands. Given that PLSR algorithm is a multivariable linear 

regression method and is less affected by background effects (Chen et al., 2009; Wold et al., 

2001), the dataset at the beginning and end of summer might be more suitable to PLSR (Zhang 

et al., 2012; Li et al., 2006). These could explain the superiority of PLSR over SVR. This 

finding is consistent with Marabel and Alvarez-Taboada (2013) who found that PLSR on 

appropriate absorption features outperforms SVR in estimating less dense biomass (total 

aboveground biomass = 45.05 g/m2). Shah et al. (2010) found similar results by comparing 

PLSR and SVR in predicting peptide drift times. They attributed the outperformance of PLSR 

to a strong linear relationship between the drift times and a set of properties depicting peptide 

structure. 

However SVR models outperformed PLSR models at the middle of summer and all the periods 

combined (pooled dataset). Respectively, the R2
p values were 0.886 and 0.732 for PLSR and 

0.902 and 0.74 for SVR (Figure 3-4). Mid-summer coincides with the peak productivity period 

within summer, which is characterised by dense vegetation. According to Hansen and 

Schjoerring (2003), saturation problem is observed in canopies with LAI value above 2.5, 

which was the case of this period (mean value of LAI = 3.626 m2m-2). Various studies (Clevers 
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and Kooistra, 2012; Chen et al., 2009; Wu et al., 2008; Thenkabail et al., 2000; Huete et al., 

1997) have associated non-linearity in dataset and reflectance saturation. Non-linearity and 

spectral noise are efficiently dealt by SVR (Üstün et al., 2005). Therefore, at mid-summer, 

SVR may be the most robust algorithm in comparison to PLSR, a finding consistent with  

Axelsson et al. (2013) who compared different variants of SVR and PLSR in mapping 

mangrove foliar biochemicals. Thissen et al. (2004) also found that SVR outperformed PLSR 

in estimating ethanol, water, and iso-propanol concentrations using near infrared spectra, which 

were affected by nonlinear temperature-induced variation. 

c) The model's VIP bands  

Most of the selected VIP bands fell in the near infrared (NIR) and shortwave infrared (SWIR) 

sections of the electromagnetism spectrum (Table 3-1). In previous studies, the two spectral 

regions have been reported to contain bands that correlate to LAI on heterogeneous grasslands 

( Darvishzadeh et al., 2011; Fava et al., 2009; Darvishzadeh et al., 2008). At the end of summer, 

only bands in the NIR and SWIR region were selected. This could be due to canopy senescence, 

causing a decline of the amount of chlorophyll. According Zhao et al. (2007),  NIR and SWIR 

reflectance becomes more important at this growth stage. In the pooled dataset (all combined 

periods within summer), results showed that bands in the visible spectral region noticeably 

contributed to models. However, the contribution of bands in the near infrared region was 

significant. These findings are consistent with Fava et al. (2009) who found a strong correlation  

between visible reflectance and green biomass, LAI and nitrogen. In the same study near 

infrared reflectance exhibited a weak correlation within autumn and spring. Regardless of the 

sampling period, some of the selected bands (e.g. 793 nm 1201 nm, 1058 nm, 633 nm, 1640 

nm, 2097 nm, 442 nm, 443 nm, 433 nm,1672 nm) that had a significant contribution in models 

are similar (within ±12 nm) to known bands for predicting LAI in heterogeneous or 

homogeneous canopies (Darvishzadeh et al., 2011; Darvishzadeh et al., 2008; Wang et al., 

2008; Gong et al., 2003).    

This study has demonstrated that a proper variable selection algorithm coupled with PLSR and 

SVR on hyperspectral data can improve estimation of biochemical and biophysical variables 

in heterogeneous grass canopies. Temporal variability in heterogeneous grassland have been 

an impediment to remotely sensed data in estimating vegetation characteristics due to an 

assortment of grass species and soil background (Darvishzadeh et al., 2008; Röder et al., 2007). 

Results in this study have potential for broader spatial scaling using airborne or satellite sensors 
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by adopting selected optimal bands for image acquisition. This would immensely contribute to 

knowledge on grassland condition, thus enhance rangeland management. Moreover, 

wavebands of high VIP scores may be useful in developing new generation of imaging sensors. 

For example, sensors that specialise in quantifying LAI would focus on NIR and SWIR spectral 

regions. However, it may still be necessary to investigate the efficacy of some other  useful 

variable algorithms (e.g. genetic algorithms) in combination with PLSR or SVR, and their 

respective variants,  for effective spectral transformations and therefore more accurate models 

for heterogeneous grassland condition assessment (Li et al., 2011; Wang et al., 2011b; 

Kawamura et al., 2010; Üstün et al., 2005; Yao and Tian, 2003). 

3.5 Conclusion 

Major conclusions in this study can be summarized as: 

 PLSR and SVR can successfully be used to simplify the relationship between LAI and 

useful spectral bands on a heterogeneous grassland 

 PLSR models are suited for modelling LAI at relatively sparse vegetation, beginning 

and end of summer were the most ideal periods.  

 On denser grassland, SVR outperformed PLSR. This can be attributed to its ability to 

quantify nonlinear relationships in samples. 

 Most of bands that significantly contributed in modelling LAI are located in the NIR 

and SWIR regions. 

 

Overall, this study has endeavoured to compare the performance of PLSR and SVR on multi-

temporal variation of LAI at the canopy level in a tropical grassland. It was found that the 

performance of either multivariate regression method depends on the phenological stage. The 

findings of this study shed more light on the use of SVR in estimating biophysical variables in 

a heterogeneous grassland at different temporal scales. As only one season was used in this 

study, we recommend these findings be validated using dataset from similar sites over several 

years. 
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Chapter 4  

Synthesis 
 

 

This study focused on exploring the capability of in-situ multi-temporal hyperspectral data and 

regression techniques in estimating leaf area index (LAI) on heterogeneous tropical grassland. 

In this chapter, aims and respective objectives, which were set out in the first chapter are 

reviewed against the findings. Major conclusions and recommendations for future research are 

also highlighted.  

4.1 First aim and its objectives 

Aim:  To investigate the potential of iPLSR on hyperspectral data in estimating LAI 

on a heterogeneous tropical grassland. 

Objectives:  -To compare PLSR and iPLSR on hyperspectral data 

-To evaluate the robustness of PLSR and iPLSR models at three sampling                 

  periods (i.e. onset, mid and end) and pooled reflectance data during summer) 

Hyperspectral dataset are known to suffer from multicollinearity and high degree of 

redundancy. Partial least square regression was introduced to overcome these shortcomings. 

However, due to heterogeneous grass canopies and temporal variability of grass canopies in 

different growing seasons, the performance of PLSR is hampered by mixture of canopy 

reflectance. Darvishzadeh et al. (2008) applied PLSR on hyperspectral dataset to model LAI in 

heterogeneous grassland. They concluded that PLSR models yielded moderate accuracies. 

Therefore, this section aimed at investigating the potential of iPLSR in estimating LAI using 

hyperspectral data at different periods within summer. iPLSR is a variant of PLSR that reduces 

data dimensionality to optimal bands. Results showed that iPLSR outperformed PLSR at all 

the sampling periods. The iPLSR models were more accurate at the beginning and end of 

summer. Forty wavebands, located in the near and shortwave infrared regions, were selected 

by iPLSR. The superior performance of iPLSR over PLSR may be attributed to its ability to 

remove uninformative wavebands from hyperspectral data and retain those which are useful 

for LAI estimation. Reduction of data dimensionality has been proven to be valuable in 

improving model estimations. The reason early and end-summer models performed better than 
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mid-summer model might be explained by the absence of saturation problem, which affects 

model performance, observed at those sampling periods. 

4.2 The second aim and its objectives  

Aim: To compare the performance of PLSR and SVR using optimal bands selected 

by iPLSR in estimating LAI on a heterogeneous tropical grassland.  

Objectives:  -To compare the performance of PLSR and SVR on iPLSR selected optimal 

bands at three sampling periods within summer (early, mid, late). 

-To identify wavebands with VIP scores above the significant threshold. 

Canopy heterogeneity and temporal variability of grasslands at different periods within 

growing season are two major reasons that have hindered the performance of remote sensing 

data in estimating LAI (Shen et al., 2014). Saturation problem which is effective at peak 

productivity accentuate this hindrance by creating nonlinear relationship between canopy 

reflectance and biophysical variables such as LAI and biomass. In this study, partial least 

square regression (PLSR), a linear regression method, and support vector regression (SVR), a 

nonlinear regression, were tested and compared on optimal wavebands at the beginning, middle 

and end of summer. Overall, results showed that PLSR and SVR models developed in this 

study were more accurate than models developed in previous studies undertaken in 

homogeneous (rice canopies) or heterogeneous (heterogeneous grass canopies) environment. 

Results also showed that PLSR produced best models at low canopy density (LAI < 2.5 m2m-

2) (at the beginning and end of summer). This could be explained by the fact that at low LAI, 

the saturation problem was absent. That resulted to a linear relationship between LAI and useful 

bands. As PLSR algorithm is a multivariable linear regression method and is less affected by 

background reflectance, the dataset turned out to be more suitable to PLSR. However, when 

vegetation became dense (LAI > 2.5 m2m-2) or dataset pooled, SVR outperformed PLSR. In 

this case, saturation in reflectance was present. So, relationship between LAI and useful bands 

was nonlinear. SVR is known to efficiently deal with non-linear dataset. That could be the 

reason of the superior performance of SVR over PLSR. VIP analysis revealed that most of 

wavebands that significantly contributed in SVR and PLSR models were located in the NIR 

and SWIR regions. The occurrence of wavebands in the two spectral regions depended on the 

phenological stage.  
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4.3 Conclusion and recommendations 

The current study aimed at investigating the potential of iPLSR on hyperspectral data and 

comparing PLSR and SVR using optimal bands selected by iPLSR in estimating LAI on a 

heterogeneous tropical grassland. The conclusions are consolidated on the basis of research 

questions asked raised. 

To which extent can LAI be estimated using ground-based multi-temporal hyperspectral data 

and regression techniques in tropical grasslands during the growing season? 

 

Partial least square regression models poorly estimated LAI. When data dimensionality was 

reduced to optimal bands using iPLSR, models, accuracies improved considerably. iPLSR 

models could explain more than 80 % of new LAI data for all the sampling periods, including 

all the periods combined. Furthermore, model accuracies moderately improved using SVR on 

denser canopies, which are characterized by the presence of nonlinearity in dataset, and at all 

the periods combined (pooled dataset). 

What is the best period (s) and regression techniques for LAI estimation? 

 

The best periods for estimating LAI among the investigated periods within summer are at the 

beginning and the end. The two periods were characterized by low LAI means. Previous studies 

obtained similar results at low vegetation density. Literature reported that PLSR could deal 

with noise encountered in lower density canopies. 

What are the most optimal bands for LAI estimation? 

 

Interval partial least square regression was applied on hyperspectral data to select useful bands 

for LAI estimation. Forty bands were useful at each sampling period within summer. Majority 

of selected bands were within the NIR and SWIR spectral region. This finding was confirmed 

by preceding research undertaken on either heterogeneous or homogeneous landscape. VIP 

analysis on the contribution of optimal bands selected using iPLSR also showed that the most 

influential bands were located in the NIR and SWIR. Further light shed by VIP analysis was 

that phenological stage drove the influence of bands in different portions of the electromagnetic 

spectrum. 
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In summary, an appropriate variable coupled with multivariate regression techniques such as 

PLSR or SVR can reliably model LAI on heterogeneous tropical grassland using in situ multi-

temporal hyperspectral data. Density in vegetation canopies should determine the adoption of 

either regression method. Findings in this study provide a practical insight in mapping LAI on 

heterogeneous grasslands at regional scale using airborne or space borne hyperspectral data 

such as MERIS, HYPERION, MODIS and CHRIS. This would enhance decision and policy 

making on grassland management, thereby mitigating land degradation observed in South 

Africa and indeed the world. For future research, the methods used in this work should be 

extended to other biophysical and biochemical variables of canopy characteristics in 

heterogeneous grasslands to validate the findings. The performance of other variable selection 

algorithms in concert with relevant multivariate regression methods and reflectance 

transformations should also be pursued in future endeavours. 
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