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Abstract 

Diverse deposit-types or mineral systems form by diverse geological processes, so translation of 

knowledge about the controls of mineralization acquired from the 4D geological modeling into 2D 

spatial predictor maps is a major challenge for prospectivity analysis. In this regard, mathematical 

functions have been used to model the conceptual or perceived spatial relationships between 

geological variables and targeted type or system of mineralization. In this paper, due to the different 

models of spatial relationships between predictors and mineral deposits, we investigated the 

performance of different fuzzification functions to quantify the relationships. We demonstrated that 

various types of relationships between exploration features and a mineralization-type sought could be 

quantified using different fuzzification functions for prospectivity analysis. We illustrated the process 

of the prospectivity analysis by using a data set of orogenic gold deposits in Saqez-Sardasht 

Goldfield, Iran. Prospectivity modeling of orogenic gold mineralization in the study area showed that 

the NE-SW trending targets have priority for further prospecting of the deposits. 
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1. Introduction 

For mineral prospectivity mapping (MPM) of a deposit-type sought in an area, mathematical 

functions have been used to model spatial relationships between geological variables system of 

mineralization (e.g., Bonham-Carter, 1994; Luo and Dimitrakopoulos, 2003; Porwal et al., 2003a,b,c; 

Carranza, 2008, 2017). In MPM, mathematical functions, have been widely used to assign weights to 

discretized spatial evidence values as fuzzified evidential maps in the [0,1] range or to rank target 

areas as fuzzy prospectivity models (e.g., Bonham-Carter, 1994; Carranza and Hale, 2002; Luo and 

Dimitrakopoulos, 2003; Porwal et al., 2003c; Carranza, 2008, 2009, 2017; Lisitsin et al., 2013; Mutele 

et al., 2017; Nykänen et al., 2017). The weights assigned to classes of discretized evidential values 

may be based on (a) expert judgment directly, (b) locations of known mineral occurrences (KMOs), 

(c) a combination of (a) and (b), or (d) subjectively-defined functions, so indirectly-assigned by 

analyst (e.g., Luo, 1990; Bonham-Carter, 1994; Cheng and Agterberg, 1999; Luo and 

Dimitrakopoulos, 2003; Porwal et al., 2003a,b,c, 2004, 2006; Carranza et al., 2005; Carranza, 2008, 

2014; Porwal and Kreuzer, 2010; Mejía-Herrera et al., 2014; Carranza and Laborte, 2016; McKay and 

Harris, 2016). All these methods impart bias due to discretization of continuous spatial values, use of 

subjective expert judgments, and sparse or incomplete data on locations of KMOs in knowledge- and 

data-driven MPM (Coolbaugh et al., 2007; Lusty et al., 2012; Ford et al., 2016). 

To reduce bias in the assignment of weights to continuous-value spatial evidence, various 

researchers (e.g., Nykänen et al., 2008a; Yousefi et al., 2012, 2013, 2014; Yousefi and Carranza, 

2015a, b, c, 2016a; Yousefi and Nykänen, 2016) have applied logistic functions to assign fuzzy 

weights to indicator features without using locations of KMOs and without discretization of evidential 

values into some arbitrary classes based on expert opinion. While this practice overcomes imprecise 

evaluation of the relative importance of evidential values, as portrayed by simplification and 

discretization of continuous-value evidential data into some arbitrary classes, it is also subjective 

because using a single logistic function for weighting spatial evidence values does not consider the 

fact that diverse deposit-types or mineral systems form by diverse geological processes. Thus, the 

spatial relationships of deposits with different predictors are variable. Consequently, selection of a 

suitable function is crucial in modeling the relative importance of every evidential map derived from 

particular spatial data sets. Furthermore, there are different models of spatial relationships between 

predictors and deposits, and thus, the assignment of weights to spatial evidence values is a highly 

critical exercise (Carranza, 2008). Joly et al. (2012) mentioned that the major challenge in GIS-based 

MPM is to translate the knowledge about the controls of mineralization acquired from 4D geological 

modeling into 2D-weighted spatial predictor maps. McCuaig et al. (2010) pointed out that there are 

challenging issues for linking scientific understanding of mineral systems to their translation in 

exploration evidence layers for MPM. Thus, eliciting mineralization-related geological and 

exploration features, representing the deposit-type or mineral system of interest in a study area is a 

challenge as well (e.g., Asadi et al., 2015).  
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To address the above-mentioned challenges in this paper, we first examined mineralization 

system of the deposit-type sought to elicit exploration indicator features. Then, we trialed different 

types of logistic functions, namely large, small, and near, that were proposed by Tsoukalas and Uhrig 

(1997) and applied by Yousefi and Carranza (2015a,b,c, 2016b) and Yousefi and Nykänen (2016), in 

order to quantify diverse relationships between spatial evidence values and the deposit-type sought. 

We tested different types of logistic functions because, as McCuaig et al. (2010) pointed out, the 

mineral system approach needs to be adapted in different areas with various geological setting for 

translating mineralization-related processes to MPM. To illustrate the process of eliciting exploration 

indicator features and the application of the proposed functions, to demonstrate their ability in 

weighting different types of spatial evidence values, and to test the methodology, we selected a 

suitable area in the Kordestan province in northwest Iran where suitable data are available to analyze 

prospectivity for orogenic gold deposits.  

2. The study area and regional geological background  

The study area is situated in the Zagros orogenic belt of Iran (Fig. 1a). This belt, as part of the 

Alpine-Himalayan mountain chain, extends for about 2000 km in a NW–SE direction from the East 

Anatolian fault of eastern Turkey to the Oman Line in southern Iran (Alavi, 1994). The subduction of 

the Neo-Tethyan ocean floor beneath Iran sutured Iran to Arabia (e.g. Takin, 1972; Berberian and 

King, 1981; Alavi, 1980, 1994), and the subsequent continental convergence built the Zagros 

Orogenic Belt (e.g., Ghasemi and Talbot, 2006). This belt consists of three tectonically related parallel 

zones, which are, from northeast to southwest (Fig. 1a) (Alavi, 1994): (1) the Urumieh–Dokhtar 

Magmatic Assemblage (UDMA); (2) the Sanandaj–Sirjan Zone (SSZ); and (3) the Zagros Simply 

Folded Belt. 

The SSZ has a width of 150–250 km and lies to the southwest of the UDMA (Stocklin, 1968). 

The rocks in the SSZ are highly deformed and share the NW–SE trend of its structures (Ghasemi and 

Talbot, 2006). The rocks in the SSZ are mostly of Mesozoic age with Paleozoic rocks rarely exposed 

except in the southeast where they are predominant (Berberian and King, 1981). The SSZ is 

characterized by metamorphic and deformed rocks, which associated with abundant deformed and 

undeformed plutons, and presence of widespread Mesozoic volcanic rocks (Mohajjel et al., 2003). 

During and after the Middle Triassic phase of activity, andesitic-basaltic volcanism and acid granitic 

intrusions formed along the SSZ (Berberian and King, 1981). The SSZ can be subdivided into two 

parts (Eftekharnejad, 1981) (Fig. 1a): (1) the southern part (south SSZ) consists of rocks deformed 

and metamorphosed in Middle to Late Triassic; and (2) the northern part (north SSZ), deformed in the 

Late Cretaceous, contains many intrusive felsic rocks (Ghasemi and Talbot, 2006). 

The study area in this paper measures ~2,000 km2 and is located in the Saqez-Sardasht orogenic 

goldfield in the north SSZ, northwest Iran (Fig. 1b). The area is covered by the 1:100,000 scale Saqez 

quadrangle map (Fig. 1c) prepared by the Geological Survey of Iran (GSI) (Babakhani et al., 2003).  
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3. Deposit model and data used 

3.1. General characteristics of orogenic gold deposits 

Orogenic gold deposits are a widespread coherent group of epigenetic mineral deposits controlled 

by a similar set of factors (Groves, 1993; Knox-Robinson, 2000) and are sited in accretionary or 

collisional orogens of all ages. Orogenic lode-gold deposits formed from deep-seated hydrothermal 

fluids with Au transported as thio-complexes (Groves et al., 2000). These deposits are hosted in 

Precambrian greenstone belts and Precambrian–Phanerozoic accretionary sedimentary belts, and 

commonly show predictable and repetitive structural geometries (Groves et al., 2000). They evolved 

along the southern Gondwana margin and the northern side of the Paleo-Tethys Ocean during the 

Paleozoic, and within the circum-Pacific accreted terranes in the Mesozoic–Tertiary (Goldfarb and 

Groves, 2015).  

Structures are the first-order control on the formation and distribution of orogenic gold deposits, 

as high ore-fluid flux into permeable structures or fractured rock bodies is an essential ore control 

(Groves et al., 2000; Herbert et al., 2014; Carranza et al., 2015). Therefore, orogenic gold deposits 

display spatial relationships with fault corridors, shear zones, and crustal discontinuities that likely 

controlled flow of deep-seated hydrothermal fluids towards higher crustal levels (e.g., Groves et al. 

1998; Sillitoe, 2000; Betts and Lister, 2002; Haynes, 2002; Grauch et al., 2003; Beaudoin et al., 2006; 

Bierlein et al., 2006b; Almasi et al., 2014).  

Geological settings of orogenic gold deposits are extremely complex, which resulted in highly 

variable host rocks (Goldfarb et al., 2001; Goldfarb and Groves, 2015). Gold mineralization is 

dominantly hosted by metagreywackes, metavolcanic, metasedimentary and metamorphic rocks of a 

variety of geological ages (Bark and Weihed, 2012; Groves et al., 2000; Fu et al., 2012). Lithological 

contacts separating rocks of strongly contrasting rheologies are important to measure the relationship 

between geological structures, lithological boundaries and gold mineralization (Groves et al., 2000; 

Herbert et al., 2014).  

There are clear close geometrical and temporal relations between intrusions and gold 

emplacement structures (Craw et al., 2006). The fundamental driver for orogenic gold systems is high 

fluid flux that requires an effective thermal engine (Bierlein et al., 2006a). Mafic, ultramafic, and 

granitoids intrusions are spatially and temporally associated with gold mineralization (Bierlein et al., 

2006a; Bark and Weihed, 2012; Joly et al., 2012; Knox-Robinson, 2000; Fu et al., 2012).  

In regard of the foregoing discussion, two main types of orogens have been recognized – internal 

orogens (i.e., collisional orogens for example Variscan, Appalachian and Alpine orogens) and 

external orogens (i.e., accretionary orogens for example the American Cordillera) (Murphy and 

Nance, 1992; Bark and Weihed, 2012). Internal orogens are commonly considered less permissive for 

orogenic gold formation and this orogen should be considered relatively weakly mineralized due to its 

internal-type, unmineralized nature (Bark and Weihed, 2012). However, in some orogenic gold 

mineral systems, in particular in the Birimian gold mineral systems of West Africa, granitoids are 
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often mineralized. The explanation for that is that deformation causes the less competent 

metasedimentary country rocks to fail by shearing, but given that these rocks are very tight due to 

previous shortening and deformation no, or only very little, new space is created. The granitoid 

bodies, on the other hand, fail by fracturing creating low stress sites and space for gold deposition. 

The fracturing event triggers increased permeability and suction and thus focuses fluid flow into the 

newly created facture network / stockwork, centered upon granitoid intrusions. 

Orogenic-gold deposits are associated with indicative geochemical anomalies, which have been 

widely used as a reconnaissance-scale exploration tool (Nykänen, 2008; Nykänen et al., 2008a,b; 

Nykänen and Salmirinne, 2007; Bierlein and McKnight, 2005; Fu et al., 2012; Groves et al., 2000; 

Goldfarb et al., 2001; Carranza et al., 2015).  

In this study, to apply knowledge of critical processes of mineralization in an orogenic gold 

system to prospectivity analysis (e.g., Groves et al., 2000; McCuaig et al., 2010; Lisitsin et al., 2010; 

Herbert et al., 2014; Carranza et al., 2015; Asadi et al., 2016; Duarte Campos, 2017), district-scale 

mapping of prospectivity for the deposit-type sought was considered appropriate to delineate target 

areas for further exploration at camp-scale. Following the discussion in Carranza et al. (2015), 

district-scale of mapping was selected considering the sorts of data available in the study area (see 

next sub-section), which is covered by the 1:100,000 scale geological map (Fig. 1c) with respect to 

the general district-scale characteristics of system of orogenic gold mineralization summarized in 

Table 1. 

3.2. Datasets 

In recent years, the Saqez-Sardasht region has been surveyed for several types of mineral 

deposits because of its favorable geological settings (Aliyari et al., 2009, 2012; Tajeddin, 2011; 

Almasi et al., 2014, 2015a,b). The various exploration data sets gathered during those surveys are 

available and have been used for the analyses in this paper. Geochemical data pertain to 535 stream 

sediment samples, gathered by GSI, which were chemically analyzed for Au using fire assay method 

and for As, Bi and Hg by inductively coupled plasma mass spectrometry. Analytical detection limits 

were 1 ppb for Au, 0.5 ppm for As, and 0.1 ppm for Bi and Hg. The method of Thompson and 

Howarth (1976) was applied for assessing the analytical precision using duplicated samples. The 

precision was better than 10% for the selected elements.    

Magnetic and radiometric data, obtained from helicopter-borne geophysical surveys conducted in 

the north and south parts of the area. In the north part with area of ~1767 km2, the data were gathered 

by Atomic Energy Organization of Iran in 1976 with a line spacing and flight elevation of 500 and 

120 meters, respectively. In the south part with an area of ~ 283 km2, the geophysical surveys were 

conducted by Fugro Airborne Surveys Corporation and GSI in 2006 with a line spacing and flight 

elevation of 200 and 60 meters, respectively. These geophysical data were interpreted individually, 

and were interpolated using minimum curvature method (e.g., Akima, 1970; Smith and Wessel, 1990) 

and the same grid cell size of 100 m × 100 m, just as the other evidence layers. It is notable that only 
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seven percent of the study area is covered, so the area is suited for radiometric surveys.  

3.3. Conceptual model of orogenic gold deposits and exploration criteria in the study area 

The study area, which is located in the Saqez-Sardasht orogenic gold zone, a ductile to brittle 

shear zone (Aliyari et al., 2007, 2009), comprises a regional E–W trending gold belt with seven 

known gold occurrences (Fig. 1b) hosted by upper Cretaceous to Tertiary mafic to intermediate 

metavolcanic and metasedimentary rocks (Table 2). Figure 2 shows the Au-bearing rocks in the gold 

occurrences. The structural studies on the gold deposits/occurrences revealed that all of them are 

hosted in ductile to brittle shear zone. The gold occurrences are spatially associated within, or 

adjacent to, the major deep Saqez-Sardasht thrust fault (Fig. 1b) with ~100 km in length (Aliyari et 

al., 2012) and the normal fault systems across this structural zone (Mohajjel et al., 2003; Aliyari et al., 

2009, 2012; Tajeddin, 2011). 

Based on previous geochemical and stable isotope investigations (Aliyari et al., 2009, 2012; 

Tajeddin, 2011), the genesis of the gold deposits in the study area likely involved metamorphic 

devolatilization and dehydration processes that firstly leached Au from deeper parts of Fe-rich mafic 

and meta-volcanic rocks. The gold veins and veinlets were then deposited in the upper 

metamorphosed mafic to felsic volcanic and sedimentary rocks (e.g., greenschist facies). The 

granitoids played an important "heat engine" role, activating the percolation of gold-bearing fluids 

(Aliyari, 2006; Aliyari et al., 2007, 2009, 2012). Mineralogical studies revealed that oxide minerals in 

mafic meta-volcanic rocks are generally magnetite, titanomagnetite and ilmenite, which make them 

detectable using aeromagnetic data (Aliyari, 2006). Additionally, mylonitic granites and altered 

mylonitic granites, which were indicated as a secondary host rocks, have relatively higher radioactive-

elements content in their minerals (feldspar, plagioclase, zircon: Aliyari, 2006; Tajeddin, 2011) than 

other rock units of the study area and can be detected using airborne geophysical survey. Furthermore, 

because the geological units have various magnetic characteristics, contacts and discontinuities 

between these units can be identified efficiently using edge detection methods (Airo, 2001, 2007; 

Bierlein et al., 2006a,b; Henson et al., 2010; Ferreira et al., 2011; Almasi et al., 2014). 

Based on the characteristics of orogenic gold deposits in well-explored areas as well as in the 

study area of this paper, the localization of orogenic gold deposits within an endowed geological 

setting requires the synthesis of several critical factors, which can be defined in terms of a minerals 

system. These factors are (e.g., Groves et al., 2000; Bierlein et al., 2006a; Aliyari et al., 2009, 2012; 

Tajeddin, 2011; Carranza et al., 2015): (1) metal source(s); (2) superior structural plumbing systems, 

such as fault, geological contact, and shear zones; and (3) ore trap such as reactive host rocks. 

To translate the above-mentioned conceptual model of the deposit and the critical factors 

controlling the gold mineralization in the study area into spatial predictor maps to be used in the GIS-

based MPM, and based on the available spatial datasets, we generated five individual maps of 

evidence of prospectivity for orogenic-Au deposits. These maps are: (i) proximity to granitoids (e.g., 

Groves et al., 2000; Knox-Robinson, 2000; Nykänen et al., 2008a,b; Bark and Weihed, 2012; Herbert 
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et al., 2014) as "heat engine" evidence layer, representing activation of the percolation of fluids; (ii) 

structural evidence layer representing corridors and crustal discontinuities that controlled pathways of 

deep-seated hydrothermal fluids into higher crustal levels (e.g., Groves et al., 2000); (iii) map of K/Th 

ratio as evidence of hydrothermal activities (e.g., Ario, 2002, 2007; De Quadros et al., 2003; Almasi 

et al., 2015a) representing active pathways; (iv) proximity to metasedimentary and metavolcanic 

rocks as a proxy for regional rheology contrast (cf. Nykänen et al., 2008a,b; Groves et al., 2000; Joly 

et al., 2012; Herbert et al., 2014) representing trapping mechanism; and (iv) multi-element 

geochemical signature modeled as geochemical mineralization prospectivity index (GMPI) as 

indicator of the deposit-type sought (Yousefi et al., 2012, 2014) representing metal deposition. 

The 1:100,000 scale geological map of Saqez (Fig. 1c), prepared/published by the GSI 

(Babakhani et al., 2003), was used to generate heat engine and ore trap evidence layers. The 

geophysical data were used to generate two evidence layers, namely: (a) structural evidence layer and 

(b) evidence layer of hydrothermal activities. Each of the evidence maps was generated by using a 

suitable logistic function (Tsoukalas and Uhrig, 1997; Nykänen et al., 2008a,b; Yousefi et al., 2012, 

2013, 2014; and Yousefi and Carranza, 2015a,b) modeling the relationship of mineral deposits and the 

spatial evidence values (see section 4.1 below). For deposition of orogenic gold, source rock is 

required from which available gold can be leached and transported effectively to the site of deposition 

(e.g. Bierlein et al., 2006a). In the study area, plausible sources of Au are the deeper parts of Fe-rich 

mafic and metavolcanic rocks (Aliyari et al. 2009).  

4. Methods  

Translation of mineral systems into weighted evidential layers is a challenge for MPM (McCuaig 

et al., 2010) and requires understanding of relationships between evidential features and mineral 

deposit-type sought (Carranza, 2008). In this paper, geochemical, geophysical-potential and proximity 

data were used to derive district-scale spatial proxies for processes critical to orogenic-Au systems, 

which were then transformed into fuzzy evidential layers using appropriate logistic functions resulting 

in evidential values in the range [0,1]. The selection of appropriate logistic function is based on the 

spatial relationship of continuous evidence values and mineral deposits of the type sought. The fuzzy 

values are taken as weights. After generation of fuzzy evidence layers, each of which represents a 

certain exploration criterion of prospectivity for orogenic-Au deposits or a critical process of 

orogenic-Au systems, they were integrated to model orogenic-Au prospectivity. 

4.1. Fuzzification functions 

Transformation of data (e.g., binarization, multi-class representation, continuous-value) provides a 

set of values with more discriminatory information and less redundancy for classification (Micheli-

Tzanakou, 1999). Defining a suitable non-linear transformation into a new space could facilitate 

interpretation of a pattern for a set of evidential values in MPM compared to their original space 

(Bishop, 2006; Yousefi et al., 2014; Yousefi and Carranza, 2015b). A logistic transformation has 
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played an important role in many classification algorithms and pattern recognition (Bishop, 2006), 

such as statistics, neural networks, machine learning, and expert systems (e.g., Micheli-Tzanakou, 

1999; Berthold and Hand, 2002; Alpaydm, 2004; Fink, 2007). Recently, Yousefi et al. (2014) and 

Yousefi and Carranza (2015b) compared linear and non-linear transformations of evidential data 

using logistic function and demonstrated that the latter is much better for weighting of evidential data 

in fuzzy MPM. A logistic function maps the map data space into the [0,1] range. There is a family of 

logistic functions (Tsoukalas and Uhrig, 1997; Theodoridis and Koutroumbas, 2006) that can be used 

to transform data into logistic space based on minimum and maximum values and slope variations 

between them. Accordingly, different but suitable logistic functions have been used for transforming 

evidential values into the [0,1] range to support fuzzy logic MPM (Carranza and Hale, 2002; 

Carranza, 2008; Theodoridis and Koutroumbas, 2006; Yousefi et al., 2012, 2013, 2014; Mutele et al., 

2017; Nykänen et al., 2017). Unbounded spatial evidence values can properly be transformed into in 

the [0,1] range using a logistic function (e.g., Bishop, 2006). As Nykänen et al. (2008a), Yousefi et al. 

(2012, 2013, 2014), Yousefi and Carranza (2015a,b,c), and Yousefi and Nykänen (2016) 

demonstrated, evidential maps with spatially continuous weights can be generated by application of a 

logistic function without using locations of known mineral occurrences and without discretization of 

evidential values into some arbitrary classes. Yousefi and Carranza (2015a) used Eq. (1), a logistic 

sigmoid (S shape) function, to weight continuous-value spatial evidence: 

x s(x i)
1

1 e
µ

− −
=

+           
(1) 

where xµ is a score in the [0,1] range, fuzzy weight in logistic space, i and s are inflexion point and 

slope, respectively, of the logistic function, and X is evidential value of each pixel in an input map 

(e.g., values of geochemical signatures and the value of proximity to geological features) for which 

xµ is estimated. The parameters i and s determine the shape of the logistic function and, hence, the 

output fuzzy weights. Yousefi and Nykänen (2016) assigned the values of 0.01 and 0.99, respectively 

for the lowest and the highest spatial evidence values, Xmin and Xmax, to obtain two equations in a 

system. Then by solving the system of equations, i and s were determined based on the Xmin and Xmax 

as Eq. [2] and Eq. [3]: 

m a x m in
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X X
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−
        (2) 
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2
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+
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Therefore, the application of Eq. (1) results in highest and lowest fuzzy scores, i.e., 0.99 and 0.01, 

respectively, for the maximum and minimum values of spatial evidence. Variations of fuzzy score of 
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spatial evidence using different i and s values were pointed out by Yousefi and Nykänen (2016). 

Likewise, in this paper, to transform unbounded spatial evidence values into the [0, 1] range, we used 

various types of logistic function namely Small, Large, and Near (Masters, 1993; Zadeh, 1993; 

Tsoukalas and Uhrig, 1997; Burrough and McDonnell, 1998; Kemp et al., 2001; Nykanen et al., 

2008a,b; Almasi et al., 2015a,b; Yousefi and Carranza, 2015a,b,c; Yousefi and Nykänen, 2016).  

4.1.1  Small fuzzification function 

There are situations where low evidence values have strong spatial association with mineral 

deposits. For example, mineral deposits typically exist in close proximity (i.e., short distances) to 

certain geological features. In such situations, low evidence values must be represented by high scores 

(weights) whereas high evidence values low scores. Such situations should be modeled with a small 

fuzzification function, which has the following form (Tsoukalas and Uhrig, 1997): 

   

1

2

1

1 ( )
X

fX

f

µ =

+

         (4)
 

where X is spatial evidence value,
Xµ is a score in the [0,1] range corresponding to X, fuzzy weight in 

logistic space,  f1 is the spread of the transition from a membership value of 1 to 0, and f2 is the 

midpoint in the data set of evidence values where the fuzzy membership value is assigned by a score 

of 0.5. 

4.1.2 Large fuzzification function 

In other situations, high evidence values have strong spatial association with mineral deposits. For 

example, mineral deposits typically have spatial correlation with high values of geochemical 

anomalies. In such situations, high evidence values must be given high scores whereas low evidence 

values low scores. Such situations must be modeled with a large fuzzification function, which has the 

following form (Tsoukalas and Uhrig, 1997):  

 

1

2

1

1 ( )
X

fX

f

µ
−

=

+

        (5)
 

where X is spatial evidence value,
Xµ is a score in the [0,1] range corresponding to X, fuzzy weight in 

logistic space, f1 is the spread of the transition from a membership value of 1 to 0 and f2 is the 

midpoint in the data set of evidence values where the fuzzy membership value is assigned by a score 

of 0.5.  
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4.1.3  Near fuzzification function 

There are situations where mineral deposits have strong spatial associations with intermediate 

evidence values but not with lowest and highest evidence values. For example, in some geological 

settings mineral deposits occurred where aeromagnetic data have intermediate values resulting from 

low magnetic intensity of argillic alteration and high magnetic intensity of iron ores. In such 

situations, intermediate evidence values must be given highest scores whereas the lowest and highest 

evidence values lowest scores. Such situations must be modeled using a near fuzzification function, 

also known as a sinusoidal membership function, which has the following form (Burrough and 

McDonnell, 1998; Tsoukalas and Uhrig, 1997). 

 

 

2
1 2

1

1 ( * ( ) )X
f X f

µ =
+ −

       (6) 

where X is spatial evidence value, 
X

µ is a score in the [0,1] range corresponding to X, fuzzy weight 

in logistic space,  f1 is the spread of the transition from a membership value of 1 to 0 and f2 is the 

midpoint where the membership value is 1.  

In the Equations (4), (5), and (6), the spread and mid parameters of the function can be defined 

subjectively to reflect the expert opinion or they can be defined objectively using solving a system of 

equations (Yousefi and Nykänen, 2016). Spread is a parameter of the fuzzification algorithm that 

determines how rapidly the fuzzy membership values decrease from 1 to 0, in fact, variations slope of 

the fuzzy score. Mid is intermediate evidence value in input dataset (the crisp value) that is given an 

intermediate score of 0.5 when using the small or large fuzzification functions, in fact, inflexion point, 

or that is given the highest score of 1, when using the near fuzzification function. Tsoukalas and 

Uhrig, (1997) have presented graphs showing the influence of different f1 and f2 values of small, large, 

and near functions in their corresponding output fuzzy memberships. 

5. Results 

5.1. Generation of weighted evidence layers  

In the study area of this paper, there are only seven known gold occurrences, which were used to 

evaluate the models. All maps used in this paper were tessellated with a pixel size of 100 m × 100 m 

based on the density of geochemical sample point patterns (cf. Carranza, 2009; Hengl, 2006; Zuo, 

2012). The following sub-sections describe the extraction and integration of proxies derived from 

mappable criteria, reflecting the district scale critical processes for orogenic gold formation. 

5.1.1 Heat engine evidence layer  

There is a common temporal and spatial relationship between granitoid rocks and orogenic gold 

deposits (Goldfarb et al., 2001; Groves et al., 2000; Fraser, 2002; Cross et al., 2005; Bark and 
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Weihed, 2012; Joly et al., 2012; Herbert et al., 2014) that is due to playing heat engine and metal 

source roles to the deposition of gold. Thus, the mineralization should occur in the proximity of the 

granite bodies, with the probability of a deposit being present decreasing with the increasing distance 

from the granites. Gold deposits near and around granitoids have been studied by Groves et al. (2000), 

Knox-Robinson (2000), Nykänen (2008), and Herbert et al. (2014). In the study area of this paper, 

there are granitoids of two periods (Aliyari, 2006; Aliyari et al., 2007, 2009 and 2012; Tajeddin, 

2011): (1) granitoids, which were emplaced prior to the mineralization, causing an increase in the 

geothermal gradient and remobilization of large amounts of metamorphogenic fluids; and (2) 

granitoids that were emplaced earlier than the first group and were metamorphosed during the 

metamorphism processes (e.g., mylonitic granites). The later granitoids together with the meta-

volcanic and meta-sedimentary rocks have been suggested as the ore traps. The former, 

unmetamorphosed, granitoids have been recognized as heat engine (cf. Aliyari et al., 2009, 2012; 

Tajeddin, 2011), thus Euclidian distance from these granitoids were calculated and fuzzified using 

small function (Eq. 4) representing heat engine evidence layer (Fig. 3a). Figure 3b represents how 

application of the small fuzzification function models the relative importance of low evidence values. 

Proximity to granitoids has been applied as spatial proxy of orogenic gold deposits in different areas 

(e.g., Nykänen, 2008; Joly et al., 2012).  

5.1.2 Pathway evidence map 

Gold deposits are strongly controlled by structures, e.g., faults, shears, thrusts, lithological 

contacts, and fold axes, (Groves et al., 2000; Knox-Robinson, 2000; Bierlein et al., 2006b; Joly et al., 

2012; Herbert et al., 2014). Most mineralization is therefore expected to occur in the spatial proximity 

of these structures, and the closer an area is to structure, the higher the probability of finding a deposit 

in that area (Joly et al., 2012). Not only the structures control the location of gold deposits, they 

control the size of deposits: structure-proximal deposits tend to be larger (cf., Groves et al., 2000; 

Knox-Robinson, 2000; Joly et al., 2012). Due to the fact that not all of the structures may be active 

fluid pathways, distinguishing controlling structures is important (Bierlein et al., 2006b). Thus, 

interpretation of airborne geophysical data sets can be used to recognize parts of structures, which 

may subsequently be used as mineralization-related proxies representing the active fluid pathways 

(Groves et al., 2000; Nykänen et al., 2008b; Herbert et al., 2014).  

Aeromagnetic data is known as an important source of information for studying lineaments and 

structures (Bierlein et al., 2006; Henson et al., 2010; Li, 2013; Almasi et al., 2014). In this study, after 

removing international geomagnetic reference field (IGRF), a reduction to magnetic pole (RTP: 

Baranov, 1957) filter was applied on the total magnetic intensity (TMI) data, in order to place the 

anomalies above their causative bodies. Then, to minimize the effects of shallow magnetic sources 

and to reduce noises associated with aeromagnetic data, upward continuation filter (UC) was applied. 

The edges of magnetic anomalies can represent lithological contacts, faults, fractures and crustal 

discontinuities (Bierlein et al., 2006; Henson et al., 2010), which are potentially controlling structures 
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for deposition of gold mineralization in the study area (Aliyari et al., 2007, 2009, 2012; Tajeddin, 

2011; Almasi et al., 2014, 2015a,b). Thus, in order to detect the edges of aeromagnetic anomalies we 

applied total horizontal derivative (THD) filter (Airo, 2001, 2007; Bierlein et al., 2006a,b Henson et 

al., 2010; Ferreira et al., 2011; Almasi et al., 2014). The THD filter is used for multi-scale edge 

detection through aeromagnetic data (Archibald et al., 1999; Austin and Blenkinsop, 2008, 2009; 

Henson et al., 2010; Holden et al., 2000). Ferreira et al. (2011) proposed that applying tilt derivative 

(TDR) filter on the THD data facilitates the enhancement and visualization of magnetic edges. The 

TDR filter has been widely applied on aeromagnetic data for enhancement of magnetic edges and 

bodies (e.g., Ma and Li, 2012; Miller and Singh, 1994; Salem et al., 2007; Verduzco et al., 2004). 

Therefore, we used the TDR filter on THD data. As mentioned earlier in this paper, northern data 

were obtained from a higher flight elevation and wider line spacing in contrast with southern data, so 

have lesser resolution that would have introduced bias. Therefore, to modulate the bias resulting from 

the two surveys at different resolutions, the aforementioned interpretation processes were 

implemented separately on the north and south geophysical data. Then for further amending the bias, 

the values of TDR of the two data sets were individually transformed to the same space with the same 

minimum and maximum values, logistic space in [0, 1] range using large fuzzification function (Eq. 

5). Finally, to generate fuzzy evidence layer of pathways (Fig. 4a) a mosaic of the two fuzzy sets were 

gridded and knitted together. Figure 4b shows how the application of large fuzzification function 

models the relative importance of spatial evidence values. 

5.1.3 Evidence layer of hydrothermal activities 

Airborne radiometric data are capable to map felsic igneous rocks, which contain high amounts of 

radioactive elements (i.e., Th, K and U) and the related hydrothermal activities (Silva et al., 2003; de 

Souza Filho et al., 2007; Magalhães and Souza Filho, 2012; Almasi et al., 2014). In this regard, the 

ratio of K/Th (after Airo, 2001, 2007) is used to recognize the above-mentioned geological features. 

Regions of K enrichment have been used to identify areas of hydrothermal alteration. However, it is 

difficult to separate elevated K values related to hydrothermal alteration from those related to 

lithology and weathering. To address this difficulty a well-known ratio of K/Th can be applied (e.g., 

Airo, 2001, 2007; Herbert et al., 2014; Almasi et al., 2015a). According to De Quadros et al., 2003, 

high values of K/Th ratios are good indicators for hydrothermally altered areas. In this paper, a fuzzy 

evidence layer of hydrothermal activities (Fig. 5a) was generated by transformation of K/Th values 

using large function (Eq. 5). Fig. 5b depicts how the application of large fuzzification function models 

the relative importance of K/Th ratios for prospecting gold mineralization.   

5.1.4 Ore trap evidence map 

The orogenic gold deposits are located in a multitude of different host rocks (Groves, 1993; 

Groves et al., 2000), for example meta-sedimentary and meta-volcanic rocks (shales, greenstones, 

amphibolite to granulite facies domains (Groves, 1993; Groves et al., 2000; Goldfarb et al., 2001; Fu 

et al., 2012; Herbert et al., 2014; Joly et al., 2012), which introduce problems for conceptually based 
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prospectivity mapping (Knox-Robinson, 2000). In the study area, these units consist of meta-volcano 

sedimentary units such as schists, amphibolites and mylonitic granites (Aliyari et al., 2007, 2009, 

2012; Tajeddin, 2011) which have been portrayed in the geological map of the area (Fig. 1c). To 

transform the association of the orogenic gold deposits with meta-sedimentary and meta-volcanic 

rocks into an ore trap fuzzy evidence layer (Fig. 6a) for MPM, Euclidian distances from these units, 

were calculated and fuzzified using small function (Eq. 4). Fig.6b represents that how application of 

small fuzzification function models the relative importance of distances from host rocks. The 

application of small function results in a fuzzy evidence layer in which proximal of the rocks is more 

indicator than distal and so were assigned by higher weights to prospect orogenic gold deposits.  

5.1.5 Metal deposition evidence map 

Geochemical signatures have been used to prospect orogenic-gold deposits in regional-scale 

explorations (Nykänen et al., 2008b; Nykänen and Salmirinne 2007; Bierlein and McKnight 2005; Fu 

et al., 2012; Groves et al., 2000; Goldfarb et al., 2001). In the study area of this paper, based on 

available data, we used stream sediment uni-element concentration data of As, Au, and Bi reflecting 

sulfide sources and gold occurrences (cf. Goldfarb et al., 2001; Nykänen et al., 2008b) to generate a 

metal deposition evidence layer for MPM. These elements have been used to study orogenic gold 

deposits and are associated with this type of mineralization worldwide and in the study area (Groves 

et al., 2000; Goldfarb et al., 2001; Aliyari et al., 2007, 2009, 2012; Nykänen et al., 2008b; Almasi et 

al., 2015b). For modeling geochemical anomalies representing gold mineralization in the study area, 

concentration values of the selected elements were transformed into logistic space. Transformation of 

the values of stream sediment geochemical signatures into a logistic space, compared using original 

space (i.e., raw data), not only allows for better discrimination of geochemical anomalies but also 

improves the prediction-rate of mineral occurrences (Yousefi et al., 2014; Yousefi and Carranza, 

2015a, b). For generating mono-element geochemical signature layers, we used logistically 

transformed-values of element concentrations (using Eq. [1]) instead of original raw data. Thus, 

geochemical anomalies of As, Au, and Bi elements lie on a common scale from 0 to 1 (Nykänen and 

Salmirinne (2007); Nykänen et al. (2008a); Yousefi and Carranza (2015b). From regional to district 

scale exploration program stream sediment data have been widely used to find mineralization 

signatures (e.g., Cheng, 2007; Cheng and Agterberg, 2009; Parsa et al., 2017a, b). After 

transformation of element concentrations, because each stream sediment sample is representative of 

its upstream composition (Bonham-Carter, 1994; Bonham-Carter and Goodfellow, 1984, 1986; 

Carranza and Hale, 1997; Moon, 1999; Spadoni et al., 2004; Spadoni, 2006; Carranza, 2008, 2010; 

Yousefi et al., 2013), a catchment basin modeling method was employed to portray geochemical 

anomalies (e.g. Bonham-Carter, 1994; Carranza, 2008). Based on Bonham-Carter and Goodfellow 

(1984, 1986) and Spadoni et al. (2004), the area of influence of each stream sediment sample is 

defined as the upstream areas. For this, we used drainage catchment basins (DCB) mapping technique 

(Yousefi et al., 2013) to modulate the negative effects of transported materials in delineation of 
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mineralization-related geochemical anomalies. We used concentration-area fractal model (Cheng et 

al., 1994) to define anomaly thresholds for leveling the data, and consequently, for ascertaining the 

relative importance of catchment basins. Then geochemical signature maps of As, Au, and Bi were 

combined by using Eq. [5] of Yousefi et al, 2012 to generate a geochemical mineralization 

prospectivity index, GMPIAu-orogenic, as a stronger multi-element geochemical signature of orogenic 

gold deposition in the study area (Fig. 7a). In this paper, because the purpose is fuzzification of spatial 

relationship of indicator features and mineral deposits, the generated geochemical anomaly model has 

been presented as a fuzzy map rather than a classified model. Figure 7b shows that transformation of 

element concentrations using logistic function results in geochemical anomalies with more 

discrimination. 

5.2.  Integration of weighted evidence maps 

After generation of weighted fuzzy evidence layers, they should be combined to generate target 

areas for further exploration of the mineral deposit-type sought (Bonham-Carter, 1994; Carranza, 

2008). For this, regarding to the weighting methods, several mathematical functions can be used to 

combine evidence layers (Bonham-Carter, 1994; Carranza, 2008). In this paper, we used two 

combination functions, namely (i) fuzzy gamma operator (An et al., 1991; Bonham-Carter, 1994) and 

(ii) geometric average function (Yousefi and Carranza, 2015c). Either of these two functions can be 

used to combine fuzzified evidence maps regardless of how weights of evidence values were given. 

Figures 8a and 8b show the prospectivity models generated by fuzzy gamma and geometric average 

operators, respectively.    

5.3. Evaluation of prospectivity models 

Locations of known mineral deposits of the type sought in an area can be used as an empirical test 

to evaluate the results of prospectivity modeling in the area and to obtain measures of success 

(Agterberg and Bonham-Carter, 2005; Fabbri and Chung, 2008; Nykänen et al., 2015; Parsa et al., 

2016a, b). We used the locations of seven known orogenic gold occurrences in the study area to 

evaluate the efficiency of the prospectivity models generated by using the two different methods, and 

consequently, the functions applied for weighting evidence values. For this, we used prediction-area 

(P-A) plot (Yousefi and Carranza, 2015b, 2016b) and success-rate curves (e.g., Agterberg and 

Bonham-Carter, 2005; Carranza and Laborte, 2015; Parsa et al., 2016a,b) (Fig. 9). The P-A plot has 

been drawn for each of the two above-mentioned prospectivity models. In a P-A plot, two curves 

namely prediction-rate curve of mineral deposits and occupied area curve are plotted in a scheme 

versus their corresponding prospectivity classes. Thus, the ability of the prospectivity model in terms 

of predicting larger number of mineral deposits in a smaller area is evaluated. The intersection point 

of the two curves that is a criterion to evaluate and compare the prospectivity models (Yousefi and 

Carranza, 2015b, 2016b) achieves this. Based on the intersection points in Fig. 9a, 86% of the known 

orogenic gold occurrences are predicted in 14% of the study area for the fuzzy prospectivity model 
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whereas 89% of the known orogenic gold occurrences are predicted in 11% of the study area (Fig. 9b) 

based on the geometric average prospectivity model. According to Yousefi and Carranza (2015b), the 

extracted parameters of the intersection point of the two curves (i.e., prediction-rate and occupied 

area) in the P-A plots can be used to calculate normalized density, Nd, and the efficiency (weight) of 

the prospectivity model, We. Nd is calculated as the prediction-rate of a prospectivity model divided by 

its corresponding occupied area extracted from the intersection point of the P-A plot, and We is 

calculated by taking the natural logarithm of Nd (Mihalasky and Bonham-Carter, 2001, Yousefi and 

Carranza, 2015b). The values of Nd and We for the geometric average prospectivity model are 8.09 

and 2.09, respectively while for the fuzzy prospectivity model they are 6.14 and 1.81, respectively.  

For further evaluation of the generated prospectivity models, we used a modified success-rate 

curve with a gauge line (Nd=1) proposed by Parsa et al. (2016a) as well. The success-rate curve 

(Chung and Fabbri, 2003; Agterberg and Bonham-Carter, 2005) is drawn by plotting the portion of 

mineral occurrences predicted correctly, Po, in vertical axis versus the portion of the study area 

classified as prospective, Pa, in horizontal axis (e.g., Carranza and Laborte, 2015). In the modified 

success-rate curve the diagonal line, which represents Nd=1 and We=0, is a criterion for evaluation the 

relative importance of prospectivity models (Parsa et al., 2016a). A value of Nd close to 1 for a class 

of prospectivity indicates that the class consists of randomly selected pixels and hence is an 

unsupportive prediction class (Chung and Fabbri, 2003). Thus, the diagonal line on the plot of the 

success-rate curve is a gauge line for separating efficient and inefficient prospectivity models. In this 

regard, if the success-rate curve of a prospectivity model appears under the gauge line, it represents 

negative spatial association of the model with the mineralization and thus, the model is not a good-

generated target area for prospecting the deposit-type sought. On the other hand, if the success-rate 

curve of a model appears above the gauge line, it represents positive spatial association of the model 

with the mineralization and thus, the model is an efficient model to prospect the deposit-type sought. 

This is because a value of Nd > 1 (We > 0) for a prospectivity model, indicates a positive association of 

the generated target areas with the mineralization of the type sought, while a value of Nd <1 (We <0) 

for a model of mineral prospectivity, indicates a negative association of the targets with the 

mineralization of the type sought (Mihalasky and Bonham-Carter, 2001, Yousefi and Carranza, 

2015b). In addition, if the success-rate curve of a certain prospectivity model appears in higher above 

the gauge line in comparison with the success-rate curves of other prospectivity models, it represents 

that the generated target areas have better spatial association with the mineralization. The success-rate 

curve for both of the prospectivity models (Fig. 9c) appear above the gauge line. Thus, these two 

models are efficient to generate target areas of the deposit-type sought. However, success-rate curve 

of geometric average model appears in higher above the gauge line in comparison with the success-

rate curves of fuzzy prospectivity model. 

The above-mentioned comparisons illustrate that target areas with high prospectivity values based 

on the geometric average prospectivity model have priority for further exploration rather than those 

based on the fuzzy prospectivity model. 
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6. Discussion 

The characteristics of a certain type of mineral deposit can be different in different areas. Such 

differences, which are a function of individual mineralization-related factors, are related to geological 

complexity associated with mineralization in the area. Therefore, understanding mineral system 

processes of the deposit-type sought in the area facilitates eliciting of exploration features to be used 

for MPM. In this regard, diversity of relationships between various mineral deposits and their 

corresponding spatial evidence values results in different conceptual models of mineral prospectivity. 

Thus, translation of the parameters of a conceptual model, which derived from understanding mineral 

system of the corresponding deposit-type sought, to weighted evidence layers is a critical undertaking 

(e.g., McCuaig et al., 2010; Joly et al., 2012). The weighted evidence layers would represent the 

diverse relationships between the mineral deposit-type sought and the evidence data. As demonstrated 

in this paper, the different relationships can be modeled by different logistic functions however, 

locations of known mineral occurrences are not used as training points and spatially continuous 

evidential values are not discretized using arbitrary intervals. Furthermore, by recognizing the 

mineralization-related factors elicited from understanding of mineral system processes of the deposit-

type sough in the study area, we facilitated the decision-making for generation and prioritization of 

exploration targets.  

Considering the proposed methods in this paper, when lower spatial evidence values, e.g., a 

depletion of a geochemical element and proximal to a certain geological feature, are indicators for 

prospecting mineral deposits, the small fuzzification function can be used efficiently to generate 

weighted evidence layer. On the other hand, when higher spatial evidence values, e.g., enrichment of a 

geochemical element, high values of geophysical magnetic intensity, and high fault density values, are 

indicators for prospecting mineral deposits, application of the large fuzzification function resulted in 

fuzzy scores, which lied in [0, 1] range. However higher values of spatial evidence given higher 

weights close to 1 and lower values of spatial evidence given lower weights close to 0. In the 

situations that intermediate values of spatial evidence are indicators, the near fuzzification function, as 

explained in the method section, can be applied.  

There are various type of uncertainties that adversely affect prospectivity analysis of mineral 

deposits (e.g., McCuaig et al., 2010; Yousefi and Carranza, 2015a), of which the noteworthy are: (a) 

uncertainty due to missing evidence (Zuo et al., 2015); (b) uncertainty resulting from imprecise 

weighting to spatial evidence values (e.g., Nykänen et al. 2008a; Yousefi and Nykänen, 2016; 

Yousefi, 2017); (c) uncertainty in selection of subjectively-defined functions to be used for weighting 

spatial values (Luo, 1990; Luo and Dimitrakopoulos, 2003); (d) uncertainty due to complexity of 

geological setting (Van Loon, 2002) and anomaly patterns (Cheng, 2007; Yousefi et al., 2013); (e) 

uncertainty due to dissimilarities of geological settings (McCuaig et al., 2010; Lisitsin et al., 2013); (f) 

uncertainties due to incomplete knowledge in the understanding of mineral system processes 

(McCuaig et al., 2010); (f) uncertainty due to complex relationships between indicator features and 

mineral deposits (e.g., Yousefi et al., 2013), and (g) uncertainty due to inaccurately and imprecisely 
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presenting of geological features in exploration datasets (Lisitsin et al., 2013). Fuzziness, probability, 

similarity, vagueness, randomness, ambiguity, possibility, and imprecision are other types or sources 

of uncertainty as well (Celikyilmaz and Burhan Türksen, 2009; Yousefi and Carranza, 2015a). In this 

paper, we modulated the exploration bias resulting from improper selection of logistic function to be 

used for assigning evidential weights. However, further works are needed to overcome completely the 

other above-mentioned types of exploration bias and uncertainties to be used for prospectivity 

analysis. 

Prospectivity analysis of orogenic gold deposits in Saqez-Sardasht goldfield demonstrated, 

however, that the SSZ has a NW–SE trend, considering the spatial distribution pattern of known gold 

deposits in the study area, a NE–SW trend can be recognized for the mineralization events (Fig. 8). 

Consequently, areas with high prospectivity values in Figure 8, which show the above-mentioned 

trend, have priority for further explorations.   

7. Concluding remarks 

- Considering the conceptual model of orogenic gold deposits and the various relationships 

between exploration features and system of mineralization, logistic-based fuzzification 

functions can be competently used to translate geological characteristics of the mineralization 

into exploration evidence layers.  

- Various type of relationships between exploration features and a mineralization-type sought 

can be quantified using different fuzzification functions, i.e., small, large, and near functions. 

For a certain type of exploration data, a proper logistic function must be applied respecting the 

kind of relationship. 

- Prospectivity modeling of orogenic gold mineralization in the study area shows that the E–W 

to ENE–WSW trending targets should be prioritized for further prospecting of the deposits. 

- However, there are general indicator features that can be used to make a conceptual model for 

prospecting a certain deposit-type sough in a study area, understanding of mineral system 

processes of the deposit and translation of the processes into weighted evidence layers using 

proper mathematical functions are important keys to elicit mineralization-related exploration 

features for prospectivity analysis. 
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Figure captions: 

 

Fig. 1. Main tectonic units of Iran and the location of the study area in Sanandaj–Sirjan Zone (a), 

Saqez-Sardasht goldfield and broad distribution of the major gold deposit/prospects in the northern 

Sanandaj–Sirjan Zone (b) (after Alavi, 1994; Ghasemi and Talbot, 2006), and Saqez 1:100000 scale 

geological map (c) (after Babakhani et al., 2003). 

 

Fig. 2. a) Au-bearing chlorite-schists (Qareh-Char), b) chlorite-schists of Qareh-char, c) sulfide Au-

bearing ore, yellow bands are mostly rock-forming minerals such as quartz and feldspar, darker parts 

are sulfide-bearing products of quartz + carbonate + biotite alteration (Qabaghloujeh), d) outcrop of 

Au-bearing silicic veins, e) Au particles in quartz + carbonate + biotite gangue (Qabaghloujeh), f) 

sulfide Au-bearing ore (Qabaghloujeh) black matters are biotite, g) Au particles in a quartz 

background (Hamzeh-Qarnein), h) Au-bearing mylonitic-granite with a 2 mm wide Au particle, 

yellow banded (Qolqoleh) ( Tajeddin, 2011). 

 

Fig. 3. Fuzzified evidence layer of heat source (a) and variation of weights, assigned by small 

fuzzification function, versus corresponding original evidence values (b). 

 

Fig. 4. Fuzzy evidence layer of pathways (a) and variation of weights, assigned by large fuzzification 

function, versus corresponding original evidence values (b). 

 

Fig. 5. Fuzzy evidence layer of hydrothermal activities (a) and variation of weights, assigned by large 

fuzzification function, versus corresponding original evidence values (b). 

 

Fig. 6. Fuzzy evidence layer of ore raps (a) and variation of weights, assigned by small fuzzification 

function, versus corresponding original evidence values (b).  

 

Fig. 7. Multi-element geochemical signature of orogenic gold deposition in the study area represented 

as geochemical mineralization prospectivity index, GMPI Au-orogenic, fuzzified geochemical evidence 

layer (a) and histogram of the final GMPI values of orogenic gold deposits. The histogram of the final 

GMPI values shows two major populations meaning as Yousefi et al., (2012, 2014) demonstrated 

transformation of evidential values using logistic function facilitate recognition of geochemical 

patterns, anomalies, or  populations. 

 

Fig. 8. Prospectivity model generated by fuzzy gamma (a) and geometric average (b) operators. 

 

Fig. 9. Prediction-area plot of fuzzy (a) and geometric average (b) prospectivity models and success-

rate curves of the two prospectivity models (c). 
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Table captions: 

 

Table 1. Mineral system parameters (in general) of orogenic gold deposits 

 

Table 2. Characteristics of gold deposits/occurrences in the study area 
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Fig. 1. Main tectonic units of Iran and the location of the study area in Sanandaj–Sirjan Zone (a), 

Saqez-Sardasht goldfield and broad distribution of the major gold deposit/prospects in the northern 

Sanandaj–Sirjan Zone (b) (after Alavi, 1994; Ghasemi and Talbot, 2006), and Saqez 1:100000 scale 

geological map (c) (after Babakhani et al., 2003). 
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Fig. 2. a) Au-bearing chlorite-schists (Qareh-Char), b) chlorite-schists of Qareh-char, c) sulfide Au-

bearing ore, yellow bands are mostly rock-forming minerals such as quartz and feldspar, darker parts 

are sulfide-bearing products of quartz + carbonate + biotite alteration (Qabaghloujeh), d) outcrop of 

Au-bearing silicic veins, e) Au particles in quartz + carbonate + biotite gangue (Qabaghloujeh), f) 

sulfide Au-bearing ore (Qabaghloujeh) black matters are biotite, g) Au particles in a quartz 

background (Hamzeh-Qarnein), h) Au-bearing mylonitic-granite with a 2 mm wide Au particle, 

yellow banded (Qolqoleh) ( Tajeddin, 2011). 
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Fig. 3. Fuzzified evidence layer of heat source (a) and variation of weights, assigned by small 

fuzzification function, versus corresponding original evidence values (b). 
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Fig. 4. Fuzzy evidence layer of pathways (a) and variation of weights, assigned by large fuzzification 

function, versus corresponding original evidence values (b). 
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Fig. 5. Fuzzy evidence layer of hydrothermal activities (a) and variation of weights, assigned by large 

fuzzification function, versus corresponding original evidence values (b). 
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Fig. 6. Fuzzy evidence layer of ore raps (a) and variation of weights, assigned by small fuzzification 

function, versus corresponding original evidence values (b).  
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Fig. 7. Multi-element geochemical signature of orogenic gold deposition in the study area represented 

as geochemical mineralization prospectivity index, GMPI Au-orogenic, fuzzified geochemical evidence 

layer (a) and histogram of the final GMPI values of orogenic gold deposits. The histogram of the final 

GMPI values shows two major populations meaning as Yousefi et al., (2012, 2014) demonstrated 

transformation of evidential values using logistic function facilitate recognition of geochemical 

patterns, anomalies, or  populations. 
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Fig. 8. Prospectivity model generated by fuzzy gamma (a) and geometric average (b) operators. 
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Fig. 9. Prediction-area plot of fuzzy (a) and geometric average (b) prospectivity models and success-

rate curves of the two prospectivity models (c). 
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Table 1. Mineral system parameters (in general) of orogenic gold deposits 

 Metal source Thermal engine 
Plumbing systems 

and pathways 
Metal deposition  Physical ore traps 

E
xp

lo
ra

ti
on

 
cr

it
er

ia
 

Mafic, ultramafic, 
and granitoids  

Intrusive rocks  
fault corridors, shear 

zones, and crustal 
discontinuities  

complex 
polymetallic metal 
associations (e.g. 
Au ± Mo–W–Bi–
Te–Cu-As-B-Sb-

Te) 

metagreywackes, 
metavolcanic, 

metasedimentary and 
totally metamorphic 

rock units  

T
ra

ns
la

ti
on

 to
 s

pa
ti

al
 p

ro
xy

 

1-Proximity to 
Mafic and 

ultramafic rocks 
 

2-Proximity to 
granitoids  

Proximity to 
Intrusive rocks 

1- Proximity to 
faults  

 
2-Fault density 

 
3-Density of fault 

intersection 
 

4-Density of 
lithological contact 

 
5-Proximity to shear 

zones 

Distribution maps 
of indicator 

elements 
(univariate and 
multivariate) in 

stream sediment, 
rocks and soil 

1-Proximity to 
metavolcanics 

 
2- Proximity to 

metasedimentary 
 

3- Proximity to 
metamorphic rock 

 
4- Proximity to 

granitoids 
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Table 2. Characteristics of gold deposits/occurrences in the study area 

Deposit/ 

prospect 

Lat 

/ 

Long 

Host rocks 
Mineralization 

Style 

Genetic 

type 

Ore tonnage 

/ 

Metal grade 

Exploration 

stage 
Data source 

Qolqoleh 
593094 

/ 
3991293 

Mafic to 
intermediate 
(andesite to 

andesitic basalt) 
meta-volcanic 

rocks and sericite 
schist 

Sulfide (1-3%) 
bearing alteration 

zone, 
average 100m 

wide, 
2400m long 

Orogenic 
(ductile to 

brittle shear 
zone) 

3 million 
tones 

/ 
3.5 g/t 

Prospecting by 
trenches and drill 

holes 

Aliyari et al. 
(2007, 2009), 

Tajeddin 
(2011) 

Kervian 
596877 

/ 
3992948 

Felsic to mafic 
meta-volcanic 

and 
metasedimentary 

rocks 

Sulfide (1-5%) 
bearing alteration 

zone, 
average 100m 

wide, 
2400m long 

Orogenic 
(ductile to 

brittle shear 
zone) 

1 million 
tones 

/ 
0.8 g/t 

Prospecting by 
trenches and drill 

holes 

Heidari 
(2004), 

Heidari et al. 
(2006), 

Aliyari et al. 
(2007, 2009), 

Tajeddin 
(2011) 

Qabaqloujeh 
599008 

/ 
3994223 

Meta-volcanic 
phyllite, schist 
and mylonitic 

Sulfide (1-3%) 
bearing alteration 

zone, 
average 50m wide, 

800m long 

Orogenic 
(ductile to 

brittle shear 
zone) 

2 million 
tones 

/ 
1 g/t 

Prospecting by 
trenches and drill 

holes 

Aliyari et al. 
(2007, 2009), 

Tajeddin 
(2011) 

Hamzeh-
Gharnein 

594981 
/ 

3993146 

Chlorite schist 
mylonitic 
granites 

Sulfide bearing 
alteration zone, 

average 60m wide, 
700m long 

Orogenic 
(ductile to 

brittle shear 
zone) 

2.6 million 
tones 

/ 
1.35 g/t 

Prospecting by 
trenches and drill 

holes 

Tajeddin 
(2011) 

Pir-Omran 
595430 

/ 
3987437 

Meta- andesite, 
phyllite, schist & 

limestone 

Quartz veins and 
veinlets, 

up to 3m wide, 
200m long, 
with gold 

mineralization, 
rare sulfides 

Orogenic 
(ductile to 

brittle shear 
zone) 

Unstudied 
Prospecting 
Old mining 

Tajeddin 
(2011) 

Kasnazan 
608844 

/ 
3997250 

Meta-limestone 
mylonitic 
granites 

Quartz veins and 
veinlets, 

up to 5m wide, 
150m long, 

with sulfide & 
gold 

mineralization 

Orogenic 
(ductile to 

brittle shear 
zone) 

Unstudied Prospecting Tajeddin 
(2011) 

Ghareh-Char 
597838 

/ 
3993710 

Chlorite schist 
mylonitic 
granites 

- - Unstudied 
Prospecting by 

lithogeochemical 
samples 

Tajeddin 
(2011) 
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� Geological processes of mineralization are translated to predictor maps 
� Diverse spatial relationships between predictors and mineralization are investigated 
� Different fuzzification functions are used to quantify the relationships 
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